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Preface

I am very happy to present to the community the fifth and last volume of
our Handbook series, covering the area of Logic and Logic Programming.

The ideas and methods of logic programming gave a substantial push to
the development of logic itself. Ideas like negation as failure, goal directed
presentation of a logic, metalevel features in the object level are applicable
to any logical system and not only to the classical Horn clause fragment.

The central role and success of these ideas in logic programming pro-
vided an example to follow for research into similar developments for gen-
eral logics.

Logic programming is also a central tool in the new and wide area of
non-monotonic logic and artificial intelligence. The methods of abduction,
the use of constraints and higher order features have all interacted and
supported the new systems of logic designed to cope with practical common
sense reasoning.

The Handbooks

The Handbook of Logic in Artificial Intelligence and Logic Programming
and its companion, the Handbook of Logic in Computer Science, have been
created in response to a growing need for an in-depth survey of the appli-
cation of logic in AI and computer science.

We see the creation of the Handbook as a combination of authoritative
exposition, comprehensive survey, and fundamental reasearch exploring the
underlying unifying themes in the various areas. The intended audience is
graduate students and researchers in the areas of computing and logic, as
well as other people interested in the subject. We assume as background
some mathematical sophistication. Much of the material will also be of
interest to logicians and mathematicians.

The tables of contents of the volumes were finalized after extensive dis-
cussions between Handbook authors and second readers. The first two
volumes present the background logic and mathematics extensively used
in artificial intelligence and logic programming. The point of view is ap-
plication oriented. The other volumes present major areas in which the
methods are used. These include: Volume 1—Logical foundations; Volume
2—Deduction methodologies; Volume 3—Nonmonotonic reasoning and un-
certain reasoning; Volume 4—Epistemic and temporal reasoning.

The chapters, which in many cases are of monographic length and scope,
are written with emphasis on possible unifying themes. The chapters have
an overview, introduction, and main body. A final part is dedicated to
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more specialized topics.

Chapters are written by internationally renowned researchers in their
respective areas. The chapters are co-ordinated and their contents were dis-
cussed in joint meetings. Each chapter has been written using the following
procedures:

1. A very detailed table of contents was discussed and co-ordinated at
several meetings between authors and editors of related chapters.
The discussion was in the form of a series of lectures by the authors.
Once an agreement was reached on the detailed table of contents, the
authors wrote a draft and sent it to the editors and to other related
authors. For each chapter there is a second reader (the first reader is
the author) whose job it has been to scrutinize the chapter together
with the editors. The second reader’s role is very important and has
required effort and serious involvement with the authors.

Second readers for this volume include (in alphabetical order) K. Apt,
M. Bruynooghe, G. Dowek, K. Fine, J. P. Gallagher, F. van Harmelen,
K. Inoue, B. Jayaraman, P. Kanellakis. R. Kowalski, J-L. Lassez, J.
Lloyd, M. Leuschel, D. W. Loveland, M. Maher, J. Meseguer, D.
Miller, G. Nadathur, T. Przymusinski, K. Satoh, D. J. Sherman, and
E. Wimmers.

2. Once this process was completed (i.e. drafts seen and read by a large
enough group of authors}, there were other meetings on several chap-
ters in which authors lectured on their chapters and faced the criti-
cism of the editors and audience. The final drafts were prepared after
these meetings.

3. We attached great importance to group effort and co-ordination in the
writing of chapters. The first two parts of each chapter, namely the
introduction-overview and main body are not completely under the
discretion of the author, as he/she had to face the general criticism
of all the other authors. Only the third part of the chapter is entirely
for the authors’ own personal contribution.

The Handbook meetings were generously financed by OUP, by SERC
contract SO/809/86, by the Department of Computing at Imperial Col-
lege, and by several anonymous private donations. We would like to thank
our colleagues, authors, second readers, and students for their effort and
professionalism in producing the manuscripts for the Handbook. We would
particularly like to thank the staff of OUP for their continued and enthusi-
astic support, Mrs L. Rivlin for help with design, and Mrs Jane Spurr, our
OUP Adminstrator for her dedication and efficiency.

London D. M. Gabbay
July 1997
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Introduction: Logic and Logic
Programming Languages
Michael J. O’Donnell
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Herbrand semantics . . . ... ... ........ 58

1 Introduction

1.1 Motivation

Logic, according to Webster’s dictionary [Webster, 1987], is ‘a science that
deals with the principles and criteria of validity of inference and demon-
stration: the science of the formal principles of reasoning.’ Such ‘principles
and criteria’ are always described in terms of a language in which infer-
ence, demonstration, and reasoning may be expressed. One of the most
useful accomplishments of logic for mathematics is the design of a particu-
lar formal language, the First Order Predicate Calculus (FOPC). FOPC is
so successful at expressing the assertions arising in mathematical discourse
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that mathematicians and computer scientists often identify logic with clas-
sical logic expressed in FOPC. In order to explore a range of possible uses of
logic in the design of programming languages, we discard the conventional
identification of logic with FOPC, and formalize a general schema for a vari-
ety of logical systems, based on the dictionary meaning of the word. Then,
we show how logic programming languages may be designed systematically
for any sufficiently effective logic, and explain how to view Prolog, Dat-
alog, AProlog, Equational Logic Programming, and similar programming
languages, as instances of the general schema of logic programming. Other
generalizations of logic programming have been proposed independently by
Meseguer [Meseguer, 1989], Miller, Nadathur, Pfenning and Scedrov [Miller
et al., 1991], Goguen and Burstall [Goguen and Burstall, 1992].

The purpose of this chapter is to introduce a set of basic concepts for
understanding logic programming, not in terms of its historical develop-
ment, but in a systematic way based on retrospective insights. In order to
achieve a systematic treatment, we need to review a number of elementary
definitions from logic and theoretical computer science and adapt them to
the needs of logic programming. The result is a slightly modified logical
notation, which should be recognizable to those who know the traditional
notation. Conventional logical notation is also extended to new and anal-
ogous concepts, designed to make the similarities and differences between
logical relations and computational relations as transparent as possible.
Computational notation is revised radically to make it look similar to log-
ical notation. The chapter is self-contained, but it includes references to
the logic and theoretical computer science literature for those who wish to
explore connections.

There are a number of possible motivations for developing, studying,
and using logic programming languages. Many people are attracted to
Prolog, the best known logic programming language, simply for the spe-
cial programming tools based on unification and backtracking search that
it provides. This chapter is not concerned with the utility of particular
logic programming languages as programming tools, but with the value
of concepts from logic, particularly semantic concepts, in the design, im-
plementation, and use of programming languages. In particular, while
denotational and algebraic semantics provide excellent tools to describe
important aspects of programming systems, and often to prove correct-
ness of implementations, we will see that logical semantics can exploit the
strong traditional consensus about the meanings of certain logical notations
to prescribe the behavior of programming systems. Logical semantics also
provides a natural approach, through proof systems, to verifiably correct
implementations, that is sometimes simpler than the denotational and al-
gebraic approaches. A comparison of the three styles of semantics will show
that denotational and algebraic semantics provide descriptive tools, logical
semantics provides prescriptive tools, and the methods of algebraic seman-
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tics may be used to translate logical semantics into denotational/algebraic
semantics. )

In this chapter, a relation is called computable if and only if its char-
acteristic function is total recursive, and a relation is semicomputable if
and only if the set of ordered pairs in the relation is recursively enumer-
able. Recursion theorists and theoretical computer scientists often refer to
computable sets as decidable sets, but logicians sometimes call a theory
decidable when every formula is either provable or refutable in the theory.
The two meanings of ‘decidable’ are closely connected, but not identical,
and we avoid confusion by choosing a different word. When some com-
ponent of a relation is a finite set, the set is assumed to be represented
by a list of its members for the purpose of discussing computability and
semicomputability.

1.2 A notational apology

In order to understand logic programming rigorously in terms of formal con-
cepts from mathematical logic, and at the same time intuitively, we need
to look closely at the details of several formal relations from logic and from
theory of computation. We must come to understand the formal similarities
and differences between these relations, and how those formal properties
arise from the intuitive similarities and differences in our intended applica-
tions of these relations. Unfortunately, the conventional notations for logic
and computation look radically different, and take advantage of different
simplifying assumptions, which obscures those connections that are essen-
tial to intuitive applications of the corresponding concepts. So, we will
make visually small variations on conventional logical notation, extending
it to deal with questions and their answers as well as the traditional asser-
tions and their semantic interpretations. Then, we will radically redesign
conventional recursion-theoretic notation in order to display visually the
connections between computational relations and logical relations. In or-
der to be prepared for the strange look of the notations, we need to review
them all briefly in advance, although the precise definitions for the concepts
that they denote will be introduced gradually through Sections 2-3.

The important domains of conventional logical objects for our study are
the sets of

o logical assertions, or formulae F

sets of formulae, or theories T € 2F

semantic interpretations, or models M

sets of models, representing knowledge K € 2M

proofs, or derivations D
We add the unconventional domain of

e questions Q
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Answers to questions are particular formulae, so no additional domain is
required for them. The domains of conventional computational objects are
the sets of

e programs P

e inputs I

e computations C
e outputs O

In recursion-theoretic treatments of computation, programs, inputs, and
outputs are all integers, but our analysis is more convenient when they are
allowed to be different domains. We will find strong intuitive analogies and
formal connections between

e programs and sets of formulae

¢ inputs and questions

e computations and proofs

¢ outputs and formulae (intended as answers to questions)

In order to understand the analogies and formal connections thoroughly,
we must investigate a number of relations between domains with varying
arities from two to four. In all cases, we will use multiple infiz notation.
That is, each n-ary relation will be denoted by n — 1 symbols separating
its arguments. With some care in the geometrical design of the separator
symbols, we get a reasonably mnemonic notation.

There are two quaternary relational notations from which all the other
notations may be derived. Let @ be a question, T a set of formulae, D a
proof, and F' a formula. The notation

Q*TID-F

means that in response to the question @, given the postulates in T, we
may discover the proof D of the answer F. Similarly, let I be an input, P
a program, C a computation, and O an output. The notation

I> PIC—O

means that in response to the input I, the program P may perform the
computation C, yielding output O. The correspondence between the ar-
guments @ and I, T and P, D and C, F and O displays the crucial cor-
respondence between logic and computation that is at the heart of logic
programming.

There are two closely related trinary notations.

Q*TFF

means that there exists a proof D such that @ = T | D — F, and
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I>PHO0

means that there exists a computation C such that /> P 1 C — O.
The symbol  in @ > F F F is the conventional symbol for proof in
mathematical logic; we take the liberty of decomposing it into the two
symbols | and - for the quaternary notation. The conventional recursion-
theoretic notation for our I> P [+ O is ¢p(I) = O. The computational
symbol [ and its components [ and — are designed to have similar shapes
tor, |, and —.

Other relations from logic do not correspond directly to computational
relations, but can be understood by their connections to the quaternary
form, in which the logic/computation correspondence is direct and trans-
parent. In Section 3.2 I define @ = T | D - F to hold exactly when
both

Q*F and TID-F

where @ * F means that F is an answer (not necessarily a correct one)
to the question @, and T | D - F means that D is a proof of F, using
postulates in the set T. T | D — F is a conventional concept from math-
ematical logic (often written T, D  F or T Fp F). The question-answer
relation # is not conventional. Notice that each separating symbol in the
quaternary notation @ = T | D — F is used exactly once in the binary
and trinary forms from which it is defined, so the notational conjunction
of symbols suggests the logical conjunction of the denoted relations. Un-
fortunately, while the symbol % appears between the question @ and the
answer formula F in the binary notation @ ? F, it is not adjacent to F
in the quaternary notation @ * T | D — F. The dash component — of the
symbol - mimics the — symbol at the end of the quaternary notation, and
the similar component of the F symbol from the trinary notation above, as
a reminder that the ?- symbol is expressing a relation to the final answer
formula F, rather than to the set T of postulated formulae.

The quaternary computational relation is also defined as the conjunc-
tion of a binary and a trinary relation, but the arguments involved in these
relations do not correspond to the arguments of the binary and trinary
relations from logic. In Section 3.3 I define /> P [ C — O to hold exactly
when both

> PlC and c—0

where I P [l C means that the program P on input I may perform the
computation C, and C = O means that the computation C yields output
O. In this case, the mnemonic suggestion of the conjunction of the trinary
and binary relations in the quaternary notation works out perfectly, as all
argument positions are adjacent to the appropriate separator symbols.

A few other derived notations are useful for denoting relations from
logic. These all agree with conventional notation in mathematical logic.
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THF

means that there exists a proof D such that T | D - F—that is, F is for-
mally derivable from T. Corresponding to the relation + of formal deriv-
ability is the relation = of semantic entailment.

TEF
means that F is semantically entailed by T. Similarly,

Q*TEF
/
means that F is an answer to Q semantically entailed by T (Q * F and
T  F) in analogy to @ = T F F. The mathematical definition of semantic
entailment involves one more semantic relation. Let M be a model, and F
a formula.

MEF

means that F is true in M.

Table 1 displays all of the special notations for semantic, proof-theoretic,
and computational relations. The precise meanings and applications of
these notations are developed at length in subsequent sections. The no-
tation described above is subscripted when necessary to distinguish the
logical and computational relations of different systems.

Logic Computation

Semantics Proof

Q*TID-F|I>PIC—O
Q*TEF| Q*TH+F I> PO
I> POC

Q*F

c—=0

TID-F
TEF THF
MEF

Table 1. Special notations for logical and computational relations
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2 Specifying logic programming languages

Logic typically develops its ‘principles and criteria of validity of inference’
by studying the relations between notations for assertions, the meanings
of those assertions, and derivations of notations expressing true assertions.
Mathematical logic formalizes these concepts using logical formulae as no-
tations, sets of models to analyze meanings and characterize truth, and
demonstrations or proofs as derivations of true formulae and inferences.
The structure of formulae alone is syntaz, their relation to models is se-
mantics, and their relation to proofs is proof theory. Syntax is not relevant
to the present discussion. We must examine formal systems of semantics,
and augment them with formal concepts of questions and their answers, in
order to understand the specification of a logic programming language. In
Section 3 we see how formal systems of proof provide a natural approach
to the implementation of computations for logic programming.

2.1 Semantic systems and semantic consequences

A semantic system relates a set F of logical formulae to a set M of formal
models, each representing a conceivable state of the world in enough detail
to determine when a given formula represents a true assertion in that state
of the world.

Definition 2.1.1. A semantic system is a system S = (F,M, |}, where

1. F is a set of logical formulae
2. M is a set of models
3. [=is a relation on M x F

Let K C M. Theory(K)={F € F: M [ F for all M € K}.
Let TCF. Models(T)={M eM: M F for all F € T}.

Intuitively, M |= F is intended to mean that formula F holds in, or is
valid in, or is satisfied by, model M. Theory(K) is the fullest possible
description of K using a set of formulae in the language of the system.
Models(T) represents the state of knowledge given implicitly by the for-
mulae in T—knowing T we know that reality corresponds to one of the
models in Models(T), but we do not know which one. Notice the anti-
monotone relation between F and M:

T, C T, if and only if Models(T;) O Models(T>)
K, C K; if and only if Theory(K;) 2 Theory(K5)
Models(T; UT2) = Models(T;) N Models(T;)
Models(T; N T2) = Models(T;)U Models(T;)
Theory(K;, UK>;) = Theory(K;) N Theory(K>)
Theory(K; NK;) = Theory(K;)U Theory(K>)

In order to provide satisfactory intuitive insight, a semantic system
must relate the syntactic structure of formulae to the determination of
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truth. For example, well-known sets of formulae often come with a syntactic
operator to construct, from two formulae A and B, their logical conjunction
A A B. The semantics for conjunctions is defined structurally, by the rule
M AAB if and only if M = A and M |= B. The formal analysis of this
chapter deals only with the abstract relation of a model to a formula that
holds in the state of the world represented by that model, not the internal
structure of that relation, because we are interested here in the use of
semantics for understanding logic programming, rather than the deeper
structure of semantics itself. Goguen’s and Burstall’s institutions [Goguen
and Burstall, 1992] are similar to semantic systems, but they capture in
addition the structural connection between syntax and semantics through
category theory, and show that the functions Models and Theory form a
Galois connection.

Notice that the sets F of formulae and M of models are not required to
be given effectively. In well-known semantic systems, the set of formulae is
normally computable, since formulae are normally finite syntactic objects,
and it is easy to determine mechanically whether a given object is a formula
or not. Infinite formulae, however, have important uses, and they can be
given practical computational interpretations, so we do not add any formal
requirement of computability. The set of models, on the other hand, is
typically quite complex, because models represent conceivable states of an
external world, rather than finite constructions of our own minds. In fact,
for many semantic systems there are technical set-theoretic problems even
in regarding the collection of models in the system as a set, but those
problems do not affect any of the results of this chapter.

In this chapter, basic concepts are illustrated through a running ex-
ample based on the shallow implicational calculus (SIC), designed to be
almost trivial, but just complex enough to make an interesting example.
More realistic examples are treated toward the end of the chapter.

Example 2.1.2. Let At be a set of atomic propositional formulae. The
set Fg;, of formulae in the shallow tmplicational calculus is the smallest set
such that:

1. At C Fgy,
2. If a,b € At, then (a = b) € Fgy,

The set Mgy, of models in SIC is defined by
Mg, = 24t

The semantic relation =g, C Mgy, X Fgy, is defined by:

1. Forac At, M Eghaifandonlyif a € M
2. M k=g (a = b) if and only if eitherbe M ora & M



Introduction 9

Now (Fsp, Mgy, Esn) is a semantic system, representing the classical con-
cept of meaning for the implicational formulae of SIC.

SIC is just the restriction of the classical propositional calculus [An-
drews, 1986; Kleene, 1952; Gallier, 1986] to atomic propositional formu-
lae, and implications between atomic propositional formulae. It is called
‘shallow’ because no nesting of implications is allowed. Since the truth of
formulae in SIC (as in the propositional calculus) is determined entirely by
the truth of atomic formulae, a model merely specifies the set of atomic
formulae that are true in a given conceivable state of the world. Following
the tradition of material implication in classical logic, an implication is true
precisely when its conclusion is true, or its hypothesis is false.

For the formal definition of a logic programming language, the impor-
tant thing about a semantic system is the semantic-consequence relation
that it defines, determining when the truth of a set of formulae justifies
inferring the truth of an additional formula.

Definition 2.1.3 ([Andrews, 1986; Gallier, 1986] ). Let S = (F,M,
) be a semantic system. The semantic-consequence relation defined by S
is =C 2F xF, where T = F if and only if M |= F for all M € Models(T).

The semantic-consequence relation = is compact if and only if, for all
T CF and F € F, whenever T  F there exists a finite subset TICT
such that T |= F.

Intuitively, T = F means that F is a semantic consequence of T, since
F must be true whenever all formulae in T are true. Semantic consequences
are often called logical consequences; our terminology is chosen to highlight
the contrast between semantic consequences and the provable consequences
of Definition 3.1.4. Notice that Theory(Models(T)) is the set of semantic
consequences of T. It is easy to show that an arbitrary relation = on 2F xF
is the semantic-consequence relation of some semantic system if and only
if it is

1. reflezive: F € T implies that T  F

2. monotone: T = F and T C U imply that U = F

3. transitive: T F and TU{F} E G imply that T = G

In order for a semantic-consequence relation to be useful for logic program-
ming, or for rigorous formal reasoning, it must be sufficiently effective.
Well-known semantic systems normally define semantic-consequence rela-
tions that are compact—their behavior on arbitrary sets is determined by
their behavior on finite sets. Normal semantic-consequence relations are
semicomputable, but not necessarily computable, when restricted to finite
sets of formulae in the first component. Fortunately, semicomputability is
enough for logic programming.

Example 2.1.4. The semantic-consequence relation g of the shallow
implicational calculus of Example 2.1.2 is compact, and has a particularly
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simple behavior:

1. for atomic formulae a € At, T =gy a if and only if there is a fi-
nite sequence {ag, - . ., @) of atomic formulae such that ag € T, and
(ai = aiy1) € Tforalli <m, and am, = a

2. T [=sh (a = b) if and only if there is a finite sequence (aq, .. -, am) of
atomic formulae such that ag € T U {a}, and (a; = a;4+1) € T for all
i<m,and a, =b

We may think of the implications in T as directed edges in a graph whose
vertices are atomic formulae. Atomic formulae in T are marked true. An
atomic formula a is a semantic consequence of T precisely if there is a
directed path from some atomic formulain T to a. Similarly, an implication
a = b is a semantic consequence of T precisely if there is a directed path
from a, or from an atomic formula in T, to b. Notice that SIC satisfies the
deduction property: [Andrews, 1986; Kleene, 1952; Gallier, 1986]

T s (@ = b) if and only if TU {a} |Esh b

A semantic system provides a conceptual tool for analyzing a primitive sort

of communication in a monologue. A state of implicit knowledge is natu-
rally represented by the set of models corresponding to conceivable states of
the world that are consistent with that knowledge. Notice that larger sets
of models represent smaller amounts of knowledge. For a general discussion
of knowledge as sets of models, the shortcomings of such representations,
and problems and paradoxes that arise when subtle sorts of knowledge are
considered, see [Fagin et al., 1984]. The knowledge involved in formal anal-
ysis of the examples of logic programming in this chapter is simple enough
to be represented by sets of models without presenting the problems that
arise in a more general setting. Explicit knowledge is naturally represented
by a set of formulae. Models(T) is the implicit knowledge given explicitly
by T. Similarly, Theory(K) is the strongest explicit representation of the
implicit knowledge K that is expressible in a given language, but there
is no guarantee that an agent with implicit knowledge K can effectively
produce all of the explicit knowledge Theory (K).

Consider a speaker, whose state of knowledge is represented by K, and
an auditor with initial knowledge Kg. The speaker wishes to communi-
cate some of her knowledge to the auditor, so she utters a set of formulae
T C Theory(K,). The impact of the speaker’s utterance on the auditor’s
state of knowledge is to remove from the auditor’s set of models those that
do not satisfy T. That is, K? is replaced by K. = K% N Models(T). No-
tice that, if the auditor’s initial knowledge is minimal, that is if Kg is the
set of all models in the semantic system, then K2 = Models(T), so the
formulae implied by the new knowledge, Theory(K}), are exactly the se-
mantic consequences of T. In logic programming systems, the programmer
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plays the part of the speaker above, the processor plays the part of the
auditor, the program is the utterance, and the logical meaning of the pro-
gram is the resulting state of knowledge produced in the auditor/processor.
Inputs to, computations of, and outputs from logic programs are treated
later.

Notice that this style of semantic analysis of communication does not
give either speaker or auditor direct access to inspect or modify the models
constituting the other’s state of implicit knowledge. Rather, all such access
is mediated by the utterance of explicit logical formulae. Also, notice that
there is no attempt to construct a unigue model to represent a state of
knowledge, or the information communicated by an utterance. Rather, an
increase in implicit knowledge is represented by a reduction in the variabil-
ity of members of a set of models, any one of which might represent the
real state of the world. Unless the semantic-consequence relation of a se-
mantic system is very easy to compute—which it seldom is—the difference
between implicit knowledge and effectively utterable explicit knowledge can
be quite significant. The proof systems of Section 3.1 help describe a way
in which implicit knowledge is made explicit, and yield a rough description
of the computations of logic programs.

The preceding scheme for representing communication of knowledge
deals naturally with a sequence of utterances, by iterating the process of
shrinking the auditor’s set of models. There is no provision, however, for
analyzing any sort of interactive dialogue, other than as a pair of formally
unrelated monologues. The query systems of the next section introduce a
primitive sort of interactive question-answering dialogue.

2.2 Query Systems, questions and answers

Semantic systems and semantic-consequence relations are conventional sub-
jects for logical investigation. They suffice for discussions of the truth of a
formula and the validity of the inference of a new formula from a given set
of formulae. In order to analyze the relation between input to a logic pro-
gram and the corresponding output, we need a formal basis for discussing
questions and their answers. Mathematical logicians have given very little
attention to this branch of logic—one exception is the formal treatment
by Belnap and Steel [Belnap Jr. and Steel, 1976]. Query systems are an
abstraction of the common formal schema from a number of instances of
question—answer domains defined by Belnap and Steel.

Definition 2.2.1. A query system is a system Q = (F,Q, %), where
1. F is a set of logical formulae
2. Q is a set of questions

3. = isarelationon Q x F
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Questions, like formulae, are normally finite syntactic objects, and the set
of all questions is normally computable, but we allow exceptions to the
normal case.

@ * F is intended to mean that F' is an answer to . 7 is intended
only to determine the acceptable form for an answer to a question, not
to carry any information about correctness of an answer. For example, it
is reasonable to say that ‘2 4+ 2 = 5’ is an incorrect answer to ‘what is
2+ 27, while ‘2 +2 = 22’ is correct, but not an answer. The correctness or
incorrectness of an answer is evaluated semantically with respect to explicit
knowledge.

Definition 2.2.2. Let Q@ =(Fq,Q,%*) be a query system, and let
S = (Fs, M, =) be a semantic system with Fq C Fs.

Q *= T = F means that F' € Fq is a semantically correct answer to
Q@ € Q for explicit knowledge T C Fg, defined by

Q+*TEFifandonlyif Q%+ Fand T F

A question @ € Q is semantically answerable for explicit knowledge
T C Fs if and only if there exists a formula F € Fg such that F is a
semantically correct answer to @) in T.

Meseguer [Meseguer, 1989; Meseguer, 1992] proposes a different notion
of question answering, in which a question is a formula, and an answer is a
proof (in an abstract notation omitting many details) of the formula. (This
is an interesting twist on the formulae as types concept [Howard, 1980;
Tait, 1967], which is more usually applied by letting a program specification
be a formula, and a program be a proof of the formula [Constable et al.,
1986).)

Several interesting query systems may be defined for the shallow impli-
cational calculus.

Example 2.2.3. Let imp be a new formal symbol, and let Fg), be the
set of formulae in SIC defined in Example 2.1.2. Let

Qg; = {imp(F) : F € At}
Define the relation >-5;C Qg, x Fgp, by
imp(c) g1 (a=b)ifandonlyif a=c¢

Now (Fsh, Qg, #s1) is a query system representing the conceivable an-
swers to questions of the form ‘what atomic formula does a imply?’

The query system of Example 2.2.3 above is susceptible to two sorts of
answers that may be intuitively unsatisfying. First, in a state of knowledge
in which an atomic formula b is known to be true, (a = b) is a correct
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answer to questions imp(a) for all atomic formulae a. This problem may
be avoided by considering states of knowledge in which only implications are
known, or it may be addressed by changing the underlying semantic system
to one with a relevant interpretation of implication {Anderson and Belnap
Jr., 1975]. Second, (a => a) is a correct answer to the question imp(a).
{a = a) is a tautology, that is, it holds in all models, so it cannot give
any information about a state of knowledge. We could define a new query
system, in which only nontautologies are considered to be answers. Since,
for most useful logics, the detection of tautologies ranges from intractable to
impossible, such a technique is generally unsatisfying. A better approach
is to let a question present a set of atomic formulae that must not be
used in an answer, since the questioner considers them to be insufficiently
informative. We may find later that certain nontautological formulae are
uninformative for various reasons, and this technique reserves the flexibility
to handle those cases.

Example 2.2.4. Let rest-imp be a new formal symbol, and let
Qg, = {rest-imp(a,A) : a € At and A C At}
Define the relation *g2C Qg; x Fsp by
rest-imp{c,C) *s; (a = b) if and only if a=cand b¢ C

Now (Fsi, Qg1,%s1) is a query system representing the conceivable an-
swers to questions of the form ‘what atomic formula not in A does a imply?’

The new query system of Example 2.2.4 may be used very flexibly
to guide answers toward the most informative implications of an atomic
formula a. If the explicit knowledge available to the auditor to answer
questions is finite, then there are only a finite number of atomic formulae
that can appear in an answer, so the sets of prohibited formulae may simply
be listed. In more sophisticated languages than SIC, we need some sort
of finite notation for describing large and even infinite sets of prohibited
answers.

Query systems allow a further enrichment of the analysis of communi-
cation. Once a speaker has communicated some implicit knowledge K to
an auditor by uttering formulae, a guestioner (sometimes, but not always,
identical with the speaker) may ask a question @, which the auditor tries
to answer by discovering a formula F such that @ = F (F is an answer
to the question @), and F € Theory(K) (Q is correct according to the
implicit knowledge K).

So, given a set T of formulae expressing the knowledge Models(T), a
question @ provides an additional constraint on the search for a formula F
such that T |= F, to ensure that @ > F as well. In many cases, there is
more than one correct answer F such that @ = T = F. Depending on the
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context, the questioner may want a single answer chosen nondeterministi-
cally from the set of correct answers, or a best answer under some criterion.
The case where the questioner wants a list of all answers may be modelled
by representing that list by a single formula giving the conjunction of all
the list elements. A particularly useful criterion for best answer uses the
logical consequence relation.

Definition 2.2.5. Let Q = (Fq,Q,%) be a query system, and let
S = (Fs, W, =) be a semantic system with Fq CFg. F is a consequen-
tially strongest correct answer to the question @ for explicit knowledge T
if and only if

1. Q%+ TEF
2. for all G € Fq, whenever @ *+ T |= G, then {F} G

Consequentially strongest answers are not necessarily unique, but all con-
sequentially strongest answers are semantically equivalent. Notice that the
comparison of strength for two answers F and G is done without taking
into account the knowledge T. That is, we require {F} |= G, rather than
TU {F} = G. This makes sense because T is known to the auditor, but
not necessarily to the questioner. Even if the questioner knows T, he may
not be able to derive its consequences. The whole purpose of the communi-
cation between questioner and auditor is to give the questioner the benefit
of the auditor’s knowledge and inferential power. So, the value of an an-
swer to the questioner must be determined independently of the knowledge
used by the auditor in its construction (the alternative form TU{F} = G
holds trivially by monotonicity, so it carries no information anyway).

In order to illustrate the use of consequentially strongest answers, we
extend SIC to deal with conjunctions of implications.

Example 2.2.6. Expand the formulae of SIC to the set

Fse =Fsh U{FIA---AF,,:F,G € Fg}
of formulae in the shallow implicational-conjunctive calculus (SICC). The
semantic systems and proof systems of Examples 2.1.2, 3.1.3, 3.1.2 extend
in the natural way to deal with conjunctive formulae. Let conj-imp be a
new formal symbol, and let

Qs. = {conj-imp(a) : a € At}

Define the relation *s.C Qg. % Fgc by

conj-imp(c) *sc (a1 = ) A---A(am = bm) if and only if
a;=cforalli<m
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Now (Fsc, Qsc, *sc) is a query system representing the conceivable an-
swers to questions of the form ‘what are some atomic formulae implied by
a? A consequentially strongest answer to conj-imp(a) is a conjunction
of all of the implications with hypothesis a that hold in a given state of
knowledge.

The concept of consequentially strongest answers is particularly helpful
in systems where a potentially infinite answer is produced incrementally.
The entire infinite answer may often be read as an infinite conjunction of
finite formulae, and the requirement of consequentially strongest answers
guarantees that the incremental production of the answer does not stop
prematurely, before all available information is expressed.

In logic programming systems, the user of a program plays the part of
the questioner. The input is the question, and the output is the answer, if
any, discovered and proved by the processor/auditor. This scenario allows
the knowledge resources of a programmer/speaker to be combined with the
deductive powers of a processor/auditor, in order to answer questions from
the user/questioner.

2.3 Examples of logic programming languages

Now we can design a wide variety of logic programming languages, by
defining appropriate semantic systems and query systems.

2.3.1 Programming in first-order predicate calculus

Several logic programming systems, particularly Prolog and Relational
Databases, are essentially sublanguages of a general language for logic pro-
gramming in FOPC.

Definition 2.3.1 ([Andrews, 1986; Kleene, 1952; Gallier, 1986)).
Let V be a countably infinite set. Members of V are called variables, and
are written u, v, w, x,¥, 2, sometimes with subscripts.

Let Fun; be a countably infinite set for each ¢ > 0, with Fun; and Fun;
disjoint when i # ;7. Members of Fun; are called function symbols of arity
1, and are written f, g, h, sometimes with subscripts. A function symbol of
arity 0 in Funy is called a constant, and may be written a,b,c,d,e.

Let Pred; be a countably infinite set for each i > 0, with Pred; and
Pred; disjoint when ¢ # j, Pred; and Fun; disjoint for all ¢ and j. Mem-
bers of Pred; are called predicate or relation symbols of arity i, and are
written P, Q, R, sometimes with subscripts. A predicate symbol of arity 0
in Predy is called a propositional symbol, and is closely analogous to an
atomic propositional formula in At as used in Example 2.1.2.

The set Tp of terms in FOPC is defined inductively as the least set
such that:

l.f z€ Vthenx € Tp
2. if a € Fung thena € Tp
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3. if f € Fun; for somei > 0and ¢1,...,t; € Tp, then f(t;,...,t;)) € Tp

Terms are intended to represent objects in some universe of discourse.
flt1,...,t;) is intended to represent the result of applying the function
denoted by f to the objects represented by ¢i,...,t;. We often take the
liberty of writing binary function application in infix notation. For exam-
ple, if + € Fun, we may write (f; + t2) for +(¢1,t2). A ground term is a
term containing no variables.

The set Fp of formulae in FOPC is defined inductively as the least set
such that:

1. True, False € Fp

2. if P € Predy, then P € Fp

3. if P € Pred,; forsomei > 0andt,,...,t; € Tp, then P(t;,...,t;) € Fp
4. if A,B € Fp, then (AAB),(AV B), (A= B),(-A) € Fp

5.if A€ Fp and z € V, then (3z: A),(Vz: A) € Fp

Formulae in FOPC are intended to represent assertions about the objects
represented by their component terms. True and False are the trivially
true and false assertions, respectively. P(t;,...,t;) represents the assertion
that the relation denoted by P holds between t;,...,t;. (AAB), (AV B),
(A = B), (mA) represent the usual conjunction, disjunction, implication,
and negation. (3z : A) represents ‘there exists z such that A,” and (Vz : A)
represents ‘for all z A.” Parentheses may dropped when they can be inferred
from normal precedence rules.

In a more general setting, it is best to understand Fun; and Pred; as
parameters giving a signature for first-order logic, and let them vary to
produce an infinite class of predicate calculi. For this chapter, we may take
Fun; and Pred; to be arbitrary but fixed. In many texts on mathematical
logic, the language of FOPC includes a special binary predicate symbol ‘=’
for equality. We follow the Prolog tradition in using the pure first-order
predicate calculus, without equality, and referring to it simply as FOPC.

The intended meanings of FOPC formulae sketched above are formal-
ized by the traditional semantic system defined below. First, we need a set
of models for FOPC.

Definition 2.3.2 ([Andrews, 1986; Kleene, 1952; Gallier, 1986]).
Let U be an infinite set, called the universe. Let U C U.
A variable assignment over U is a function v: V = U.
A predicate assignment over U is a function

p: U{Pred; : i >0} - J{2W) :i >0}
such that P € Pred; implies p(P) C U* for all i > 0.
A function assignment over U is a function

7 U{Fun; : 5 >0} = U{UW) :i >0}
such that f € Fun, implies 7(f) : U* - U for all i > 0.

If UCU, 7 is a function assignment over U, and p is a predicate
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assignment over U, then (U, 7, p) is a model of FOPC. Mp is the set of all
models of FOPC.

Notice that FOPC models assign values to function and predicate sym-

bols, but not to variables. The exclusion of variable assignments from
models is the only technically significant distinction between variables and
constant symbols. A function assignment and a variable assignment to-
gether determine a valuation of terms. With a predicate assignment, they
also define a valuation of formulae.
Definition 2.3.3 ([Andrews, 1986; Kleene, 1952; Gallier, 1986]).
Let 7 be a function assignment over U, v a variable assignment over U.
The term valuation 7, : Tp — U is defined inductively by

1. if z € V, then 7, (z) = v(z)

2. if f € Fun;, and t3,...,t; € Tp, then

Tu(f(tly LR} ti)) = T(f)(Tu(tl)) s yTu(ti))
In addition, let p be a predicate assignment over U. The formula valuation
pro : Fp — {0,1} is defined inductively by

1. p,(False) =0

2. pr{True) =1

3. if P € Pred;, and t4,...,t; € Tp, then p, ,(P(t1,...,t;)) = 1if and

only if (rr,(t1),...,7r.(t:)) € p(P)

4. pr ,(AAB) =1if and only if p,,(A) =1 and p,,(B) =1

5. pr(AV B) =1if and only if p,,(4) =1o0r p,,(B) =1

6. pr (A= B)=1if and only if p, ,(A) =0or p,,(B) =1

7. prp(—mA) = 1if and only if p,,(A) =0

8. pr.(3z: A) = 1lifand onlyif p, . (A) = 1 for some +' such thaty # z

implies v(y) = V' (y)
9. pr.(¥z: A) =1if and only if p,,(A) =1 for all v’ such that y # x
implies v(y) = v'(y)

Now, we may define an appropriate semantic system for FOPC.

Definition 2.3.4, The classical semantic system for FOPC is (Fp,Mp,
Ep), where (U, 7,p) Ep F if and only if p,,(F) =1 for all variable as-
signments v over U.

FOPC is particularly well suited to defining relations, letting variables
stand for the parameters in the relations. For such purposes, it is important
to distinguish between uses of variables that are bound by the quantifiers
3 and V, and those that are free to be used as relational parameters.
Definition 2.3.5 ([Andrews, 1986; Kleene, 1952; Gallier, 1986]).

An occurrence of a variable x in a formula is bound if and only if it is
located within a subformula of the form (3z : F) or the form (Vz : F). An
occurrence of a variable z in a formula is free if and only if it is not bound.
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A sentence is a formula with no free occurrences of variables. If FF € Fp

is a formula, and all free occurrences of variables in F' are among z,, ..., Zi,
then the sentence (Vz; : ---Vz; : F) is a closure of F. It is easy to see that
F is semantically equivalent to each of its closures.

Let x1,...,x; be a list of variables with no repetitions, and let ¢;,...,¢;

€ Tp. Flt1,...,t;/z1,...,x;] is the formula that results from substituting
the term t; for every free occurrence of the variable z; in the formula F,
for each j, 1 < j < i, renaming bound variables of F when necessary
so that the variables of ¢;,...,t; are free in the result [Andrews, 1986;
Kleene, 1952; Gallier, 1986] . When G = Flt,,...,t;/x1,..., 2], we say
that G is an instance of F, and that F is more general than G. These
relations apply naturally to terms as well as formulae.

G is a variable renaming of F if and only if G = Fly,...,yi/z1,..., i),
for some list of variables 1, .. .,y; with no repetitions (equivalently, G is an
instance of F and F is an instance of G, since we get F' = G[z1,...,zZi/n,
i)

It is very natural to think of a query system in which we may ask what
substitutions for the free variables of a formula make it true.

Definition 2.3.6 ([Belnap Jr. and Steel, 1976]). Let what be a
new formal symbol. Let

Qp = {(whatz,,...,z,: F): F € Fp}
Define the relation -pC Qp X Fp by
(whatzy,...,7,: F) *=p G
if and only if
G =Flt,...,t;/z1,...,z;] for some t;,...,t; € Tp

Now (Fp, Qp, > p) is a query system representing the conceivable single
answers to questions of the form ‘for what terms t1,...,t; does F[t1,...,t;/
Tyy... ,Zi] hold?’

The query system above has a crucial role in the profound theoretical
connections between logic and computation. For each finite (or even semi-
computable) set T C Fp of formulae, and each question @ = (what z,.. .,
z; : F), the set

{(tl,...,ti):Q?-pTl:p F[tl,...,ti/zl,...,z,-]}

is semicomputable. If we use some constant symbol ¢ € Fung to repre-
sent the number 0, some unary function symbol f € Fun; to represent the
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successor function, and some binary predicate symbol E to represent the
equality relation, then we may define all semicomputable sets of integers by
formulae in a simple and natural way. We let R C F p be a finite set of pos-
tulates for Robinson’s arithmetic (system Q of [Mostowski et al., 1953))—a
primitive theory sufficient for deriving answers to all addition and multi-
plication problems. Then every semicomputable set is of the form

{j : (what z : F) =p R [Ep F[f(c)/z]}

for some formula F' € Fp. Similarly, every partial computable function ¢
may be defined by choosing an appropriate formula F € Fp, and letting
¢(%) be the unique number j such that

(what y : F[f*(c)/z]) *p R f=p F[f'(c), f(c)/z,9]

Notice that the FOPC questions (what z,,...,z; : F) do not allow triv-
ial tautological answers, such as the correct answer (¢ = a) to the question
imp(a) (‘what atomic formula does @ imply?’, Example 2.2.3, Section 2.2).
In fact, (what z,,...,z; : F) has a tautological answer if and only if F is
a tautology. FOPC questions avoid this problem through the distinction
between predicate symbols and function symbols. When we try to find an
answer F[ty,...,t;/r,...,z;] to the question (what z,,...,z; : F), thein-
formation in the question (what z,...,x; : F) is carried largely through
predicate symbols, while the information in the answer F[t,,...,t;/z;,.. .,
z;] is carried entirely by the function symbols in ¢,,...,¢;, since the pred-
icate symbols in the formula F are already fixed by the question. It is
the syntactic incompatibility between the formula given in the question
and the terms substituted in by the answer that prevents tautological an-
swers. Suppose that FOPC were extended with a symbol choose, where
(choosez : F) is a term such that (3z : F) implies F[(choose z : F)/z].
Then F[(choose z : F)/z] would be a trivially (but not quite tautologi-
cally) correct answer to (what z : F') except when no correct answer exists.

The absence of trivial tautological answers does not mean that all an-
swers to FOPC questions are equally useful. In some cases a question
has a most general semantically correct answer. This provides a nice syn-
tactic way to recognize certain consequentially strongest answers, and a
useful characterization of all answers even when there is no consequentially
strongest answer.

Proposition 2.3.7. If G’ is an instance of G, then G’ is a semantic
consequence of G (G |Ep G'). It follows immediately that if G is a se-
mantically correct answer to Q € Qp (Q =p T |Ep G), then G' is also a
semantically correct answer (Q =p TEp G').

If G’ is a variable renaming of G, then they are semantically equivalent.
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Definition 2.3.8. Let T C Fp be a set of formulae, and let Q = (what z,,
..,x; : F) € Qp be a question. G is a most general answer to @ for explicit
knowledge T if and only if

1. Q*pTEpG
2. for all Gy € Fp, if G is an instance of Gy and Q@ +p T p G, then
Gy is a variable renaming of G.

A set A C Fp of formulae is a most general set of correct answers to Q
for T if and only if

1. each formula F € A is a most general answer to @ for T

2. for all formulae G € Fp, if @ %p T Ep G, then G is an instance of
some F' € A

3. for all formulae F, F; € A, if F; is an instance of Fy, then F; = Fy

It is easy to see that for each question Q € Qp and set of formulae T C Fp
there is a most general set of correct answers (possibly empty or infinite).
Furthermore, the most general set of correct, answers is unique up to vari-
able renaming of its members.

Notice that it is very easy to generate all correct answers to a question
in Qp from the most general set—they are precisely the instances of its
members. If @ has a consequentially strongest answer, then it has a conse-
quentially strongest answer that is also most general. If the most general
set of correct answers is the singleton set {F'}, then F is a consequentially
strongest answer.

Example 2.3.9. Let G € Predy be a binary predicate symbol, where
G(t1,t2) is intended to assert that ¢; is strictly larger than t2. Suppose that
objects in the universe have left and right portions, and that {,r € Fun,
denote the operations that produce those portions. A minimal natural
state of knowledge about such a situation is

To = {Vz : G(z,l(z)) A G(z,r(x))}

A natural question is Q = (what z,y : G(z,y)). The most general set of
answers is
Ao = {G(z,l(z)), G(z,7(x))}
Other answers include G(I(x),r{l(x))), G(r{(z),l(r(z))), etc.
T, has only the specific knowledge that a whole is larger than its por-
tions, but not the general knowledge that the relation G is a strict ordering
relation. Let

T, = ToU{Vz,y,2:(G(z,y) AG(y,z2)) =
G(z,z), Vz,y : ~(G(z,y) AG(y,z))}

For this extended knowledge, the most general set of answers to Q is the
infinite set
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A1 = AgU{G(z,U(i(2))), G(z,U(r(2))), G(z,r(r(z))), Glz,i(l(U(z)))), ...}

The first formula added to T; above, which expresses the transitivity of
ordering, leads to the additional answers.

In some cases, it is convenient to allow conjunctions of answers to ques-
tions in Qp to be conjoined into a single answer.

Definition 2.3.10. Let conj-what be a new formal symbol. Let
Qp, = {(conj-what z,,...,z;, : F): F € Fp}
Define the relation = paC Qp, X Fp by
(conj-what z,,...,z; : F) %pp G
if and only if

G= Flt,...,t1/z1,...,c]JA---AF[t},...,t"/z1,..., ;] for some
tl,...,tr €Tp

Now (Fpa,Qpa, = pPa) is a query system representing the conceivable
conjunctive answers to questions of the form ‘for what terms ¢;,...,¢; does
F[tl, e ,ti/zl, ce ,:B,'] hold?’

Answers to (conj-what z1,...,z;: F) are precisely conjunctions of
answers to (what z),...,z; : F). (conj-whatzi,...,z;: F) may have
a consequentially strongest answer even though (what z;,...,z; : F) does
not. In particular, whenever the most general set of answers to (what z;,

..,z; : F) is finite, the conjunction of those answers is a consequentially
strongest answer to (conj-what z;,...,z; : F).

2.3.2 Prolog

The most famous programming language associated with logic program-
ming, and the one that instigated scientists to study logic programming as
a specialty within computer science, is Prolog [Kowalski, 1974; van Emden
and Kowalski, 1976), the creation of Kowalski and Colmerauer. The name
‘Prolog’ is usually associated with a group of very similar programming
languages based on logic programming in Horn clauses—a particular sub-
language of the first-order predicate calculus. Prolog as it is actually used
deviates from pure logic programming in several ways: it fails to produce
some logically entailed answers; in rare cases it produces logically incor-
rect answers; and it contains constructs that are not definable naturally
in FOPC, and which are normally understood in conventional imperative
ways. Furthermore, the criteria by which Prolog chooses one of several
possible answers cannot be explained naturally in terms of the semantics



22 Michael J. O’Donnell

of FOPC. The discrepancy between Prolog and Horn-clause logic program-
ming is closely comparable to the discrepancy between Lisp and the purely
functional language based on the lambda calculus that is sometimes called
‘pure lazy Lisp’. In spite of the discrepancies, the best way to understand
Prolog is to conceive of it as an approximation to, and extension of, a
Horn-clause logic programming language.

The essential idea behind Prolog is to find correct answers to predi-
cate calculus questions in Qp of Section 2.3.1 above. In principle, all such
answers are computable. Currently known implementation techniques re-
quire fairly stringent conditions on the sets of formulae that may be used as
explicit knowledge for question answering, and on the questions that may
be asked, in order to search for and generate proofs in a relatively simple
and disciplined way. Prolog is based on the restriction of programs to sets
of Horn clauses, and questions to simple conjunctions of positive atomic
formulae.

Definition 2.3.11. A formula F € Fp is a Horn clause if and only if it
is in one of the forms
1. F= (Rl(tl,la---,tl,il) A "'/\Rm(tm,ly---,tm,im) = P(Ul,...,Uj))
2. F= (Rl(tl,l) . 7tl,i1) Ao A Rm(tm,l,- .. ,tm,im) = False)
3. F = (True = P(uy,...,u;))
4. F = (True = False)
where R,,...,Rn, P are predicate symbols, and t1,1,...,tm i) %1, - -, U;j
are terms.

A pure Prolog program is a finite set of Horn clauses.
A pure Prolog input is a question of the form

(what Tyy.e.. L5 " Pl(tl,l)"')tl,il) A "‘/\Pm(tm,la---ytm,im))

where 21, ..., x; are precisely the free variables of Py(t11,...,81,4,) A - A
Pm(tm,l, . ,tm,i,,.)-

In order to promote readability of programs, within the limitations of
older keyboards and printers, typical Prolog implementations replace the
conventional logical symbol ‘A’ by ‘;’, they write the arguments to implica-
tions in the reverse of the usual order and replace the symbol ‘<=’ by “:—’.
Also, they denote the symbol ‘False’ in the conclusion of an implication,
and ‘True’ in the hypothesis, by the empty string. Predicate symbols are
written in lower case, and variables are written in upper case. So, the four
forms of Horn clause in actual Prolog programs look like

1. p(ul,...,uj) - Tl(tl,l,---ytl,il);'";Tm(tm,ly---ytm,im)
2. — Tl(tl,ly---,tl,i1)§'";Tm(tm,l,---,tm,im)

3. p(uy,...,u;) — (or pluy,...,u;))

4. :— (or the empty string)
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Since a question always requests substitutions for all free variables, the
header ‘what z,,...,z;’ is omitted and the question is abbreviated in the
form

ri(ta, -t )i i Tm(Emty o bmyin)

Since the substitution in an answer of the form
(Ri(t1,1y---»t1,i ) A ARm(tm1, - -y tmyi )[S1, -0y 8520, .00 2]

completely determines the answer, actual Prolog output presents only the
substitution, in the form

Ty =815 32 =8

These notational variations and abbreviations have a substantial impact on
the way Prolog programs, inputs, and outputs look, but they are completely
transparent to the logical meaning.

When a pure Prolog input is presented to a pure Prolog program, all
possible answers may be derived systematically by treating each clause of
form 1 as a recursive part of a definition of the procedure P in terms of calls
to the procedures Ry, ..., R,. Because the same predicate symbol P may
appear in the conclusion of more than one clause, each clause normally pro-
vides only a part of the definition of P. Clauses of form 3 are nonrecursive
parts of the definition of a procedure P. Clauses of form 2 are somewhat
peculiar: they act like extra hardcoded parts of the input. Clauses of form 4
are useless in programs, but allowed by the formal definition. Different im-
plementations may or may not prohibit the degenerate forms. Prolog tries
to choose more general answers instead of their instances, but it does not
guarantee that all answers produced are most general. An understanding
of the precise correspondence of Prolog to the answering of pure Prolog
input questions using pure Prolog programs requires a lot of detail that
must wait until the chapter ‘Horn clause logic programming’.

A notable variation on Prolog is AProlog [Nadathur and Miller, 1990;
Nadathur and Miller, 1988)]. This language extends predicate calculus logic
programming into the omega-order predicate calculus, also called type the-
ory [Andrews, 1986). Higher-order predicate calculi add variables ranging
over predicates, quantification over such variables, and predicates that ap-
ply to other predicates. AProlog generalizes the Horn clauses of FOPC
to the hereditary Harrop formulae of the omega-order predicate calculus
[Miller et al., 1991).

2.3.3 Relational databases and Datalog

Relational databases [Date, 1986; Codd, 1970] were invented by Codd,
completely independently of the development of Prolog and logic program-
ming in the programming language community. Nonetheless, relational
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databases and their queries may be understood very naturally in terms of
logic programming concepts. This point has been noted by the Prolog com-
munity, leading to the definition of Datalog [Maier and Warren, 1988], a
variant of relational databases in the style of Prolog. Gallaire, Minker, and
Nicolas have developed the concept of deductive databases [Gallaire et al.,
1984] to capture the logical content of relational databases and their vari-
ants. Reiter [Reiter, 1984] has shown how a logical view of databases has
advantages of robustness under several useful generalizations of database
functionality. My proposed approach to logic programming applies logic
to programming languages in essentially the same way that Reiter applies
logic to databases.

Like Prolog, relational database systems find correct answers to pred-
icate calculus questions in Qp of Section 2.3.1. The different natural as-
sumptions and performance requirements of the database world lead to far
more stringent restrictions on the sets of formulae that may be used for
question answering. The questions, which correspond to database queries,
are essentially unrestricted. Because of the stringent restrictions on knowl-
edge formulae, which limit answers to a predetermined finite set of pos-
sibilities, actual relational database implementations do not deviate from
pure logic programming, except by offering constructs that go beyond the
logical definitions. On purely relational queries, they produce precisely all
of the semantically correct answers.

Definition 2.3.12. A pure relational database is a finite set of formu-
lae of the form P(ey,...,¢;), where P € Pred; is a predicate symbol and
¢1,...,c € Fung are constant symbols.

A pure relational database as defined above is the natural logical view
of the contents of a relational database system at any given time. The
constant symbols are the objects that may appear in fields of relations in
the database. Each predicate symbol represents one of the relations in the

database. Each formula P(ei,...,¢;) represents the presence of the tuple
{e1,...,¢;) in the relation P.

Pure relational database query languages are equivalent to Qp—all
queries of the form (what 2,,...,z; : F) are allowed. Because of the sim-

plicity of the formulae in the database, restrictions on the queries are not re-
quired for tractable implementation. Notice the complementarity of Prolog
and relational database query languages. Prolog allows relatively powerful
Horn clauses as knowledge formulae, but restricts queries to conjunctions of
atomic formulae. Relational database query languages restrict knowledge
formulae to the very simple form of predicate symbols applied to constant
symbols, but allow unrestricted FOPC what queries.

The simplicity of the formulae in a pure relational database guaran-
tees that the set of answers to (what z,,...,z; : F) is finite, and relational
database query systems actually produce all the semantically correct an-
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swers. Equivalently, we may think of a relational database query system
as producing the consequentially strongest answer (unique up to the or-
der of the conjuncts) to (conj-what x,,...,z; : F). The consequentially
strongest answer to the conj-what form of the question is simply the
conjunction of all the answers to the what form.

Datalog restricts queries to the Prolog form, but allows Horn clauses
with no function symbols (no ‘functors’ in Prolog jargon) to be added to the
formulae of the database to provide additional knowledge for the purpose
of answering a given query. The Horn clauses are thought of as defining
new relations to be used in the query, rather than as adding information
to the database.

A variety of notations have been used for the expression of FOPC
queries in relational database systems. These variant notations may look
very different from FOPC at first glance, but in fact they are equivalent in
querying power. The complete translations between notations are clumsy
to define formally, so we consider the general principles behind the nota-
tion, and illustrate the translation with examples. I use Codd’s language
DSL ALPHA [Date, 1986; Codd, 1971], often called relational calculus, for
the database notation.

Instead of referring directly to objects in the universe U, relational
database languages generally refer to tuples in relations, because they cor-
respond to records in a conventional file. Instead of the positional notation
P(ty,...,t;), they give domain names D,,...,D; to the parameter posi-
tions. The name of a relation (predicate symbol) is treated as a variable
ranging over the set of tuples in that relation. The value of the domain D
in an arbitrary tuple of the relation P is denoted by the record notation
P.D. P.D = ¢ means that the value in the domain D of an unknown tuple
in the relation P is ¢, and P.D = Q.E means that the value in the domain
D of some tuple in P is the same as that in domain E of some tuple in
Q. Because of the absence of function symbols with arity greater than O,
this use of equality does not introduce the general capabilities of FOPC
with equality, it merely captures the limited sort of equality information
that is represented in pure FOPC by multiple occurrences of constants and
variables, and by binding variables to constants. In principle, the equation
Z = ¢ can be understood as P.(x), where P is a special predicate postulated
to hold on ¢, and to not hold on all other constant symbols. For example,
if P and @ are binary predicates and D, E, F,G are appropriate domain
names, then the DSL ALPHA expression

PD=cAPE=QFAQG=d
is equivalent to the FOPC formula

P(c,z) A Q(z,d)
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Additional variables may be declared in DSL ALPHA to range over the
tuples of a relation in the database, and these variables may be quantified
with V and 3. So, in the presence of the declarations

RANGE X P
RANGEY Q

which declare the variable X to range over tuples of the relation P and Y
to range over tuples of @, the expression

VX(X.D=cVIV(X.E=Y.FAY.G=d)
is equivalent to the FOPC formula
Vz, : VI3 : (P(31,72) = (71 = ¢V Q(z2,d))).

Notice that the existential quantifier in the DSL ALPHA expression is left
out of the FOPC formula, because one of its components is bound to the
constant d, and the other to the E component of the variable X, whose
quantification occurs before that of Y. In general, a FOPC quantifier is
required for each domain position of a quantified tuple in a DSL ALPHA
expression that is not bound by equality either to a constant or to a com-
" ponent of a variable that has already been quantified. With the same
RANGE declarations above, the DSL ALPHA expression

vX3Y(X.D=Y.G)
is equivalent to the FOPC formula
Vzy :Vzy : P(z),22) = 3y : Q(y,71)

So, there are some syntactic subtleties in translating quantification from
DSL ALPHA into FOPC, but they are all solvable with sufficient care.

There is one semantic problem that prevents DSL ALPHA from express-
ing everything that can be expressed by FOPC formulae with only 0-ary
function symbols. That is the limitation of the range of quantified variables
in DSL ALPHA to the set of tuples actually occurring in a relation in the
database, while FOPC may quantify over an abstract universe U. There is
no expression in DSL ALPHA semantically equivalent to Vz : P(x), since
DSL ALPHA can only express the fact that every object in a tuple of the
database satisfies the predicate P. Because these objects are exactly those
mentioned by the knowledge formulae, however, the restricted quantifica-
tion of DSL ALPHA yields the same answers to queries as the unrestricted
quantification of FOPC, so in terms of the behavior of query-answering



Introduction 27

systems the notations are equivalent. Another way of viewing this seman-
tic difference is to suppose that each database implicitly contains a closed
world assumption [Reiter, 1978)] expressing the fact that only the objects
mentioned in the database exist. In FOPC with equality, the closed world
assumption may be expressed by the formula Vx:xz =¢y V. -V = c,,
where ¢y, . .., c, are all of the constant symbols appearing in the database.
Without equality, we can only express the fact that every object acts just
like one of ¢y, . ..,cn (i.e., it satisfies exactly the same formulae), and even
that requires an infinite number of formulae.

Given the translation of DSL ALPHA expressions to FOPC formulae
suggested above, we may translate DSL ALPHA queries into FOPC ques-
tions. DSL ALPHA queries have the general form

GET Q(P.Dy,...,P,.D;) : E

where P, ..., P; are relations in the database, @) is a new relational symbol
not occurring in the database, D,, ..., D; are domain names, and E is an
expression. Appropriate declarations of the ranges of variables in E must
be given before the query. Let F be a FOPC formula equivalent to E, using
the variables z,, . % for the values P,.D,, ..., P;.D;. Then, the effect of
the DSL ALPHA query above is to assign to @ the relation (set of tuples)
answering the question

what z,,...,z; . F
That is,

Q= {la,...,c):(whatzy,...,z; . F)*=pDfp
Fla,...,ci/z1,...,z]}

where D is the set of formulae in the database. Equivalently, the value of
@ may be thought of as an abbreviation for the consequentially strongest
answer to conj-what z,,...,z; : F for D, which is just the conjunction of
all the answers to what z,,...,z; : F.

Another type of notation for relational database queries avoids ex-
plicit quantification entirely, and uses the relational operations of pro-
jection, join, etc. to define new relations from those in the database.
Notation in the style of DSL ALPHA above is called relational calcu-
lus, because of the similarity to predicate calculus in the use of explicit
quantification. The alternate approach through operations on relations
is called relational algebra, because the equations that express the prop-
erties of the relational operations resemble well-known definitions of al-
gebras. In fact, each notation has its own algebra and its own calculus,
and the difference is just the way in which relations are denoted. Most
recent work on relational databases refers to the relational algebra nota-
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tion, which looks even more distant from FOPC than the relational cal-
culus notation, but is still easily translatable into FOPC. See [Date, 1986;
Codd, 1972] for a description of relational algebra notation for database
queries, and a translation to the relational calculus notation.

2.3.4 Programming in equational logic

Another natural logical system in which to program is equational logic.
A large number of programming languages may be viewed essentially as
different restrictions of programming in equational logic.

Definition 2.3.13. Let the set V of variables, the sets Fung, Fun,, ... of
constant and function symbols, and the set T p of terms be the same as in
FOPC (see Definition 2.3.1). Let = be a new formal symbol (we add the
dot to distinguish between the formal symbol for equality in our language
and the meaningful equality symbol = used in discussing the language).
The set F - of equational formulae (or simply equations) is

Fé ={t1 =tg: 11,12 ETP}

Models for equational logic are the same as models for FOPC, omit-
ting the predicate assignments. Although = behaves like a special binary
predicate symbol, it is given a fixed meaning (as are A, V, -, =, 3, V),
so it need not be specified in each model. An equational formula ¢; = t5
holds in a model precisely when ¢, denotes the same object as ¢; for every
variable assignment.

Definition 2.3.14. Let the infinite universe U and the set of function
assignments be the same as in FOPC (Definition 2.3.4). f U C U and 7
is a function assignment over U, then (U, 7) is a model of equational logic.
M. is the set of all models of equational logic.

Let the set of variable assignments be the same as in FOPC (Def-
inition 2.3.2), as well as the definition of a term valuation 7., from a function
assignment 7 and variable assignment v (Definition 2.3.3). The classical
semantic system for equational logic is (F-,M_.,|=.), where (U, 1) |- 1
=t if and only if 7, (t1) = 7. (t2) for all variable assignments v over U.

Models of equational logic are essentially algebras (Cohn, 1965; Gritzer,
1968; Mac Lane and Birkhoff, 1967] . The only difference is that alge-
bras are restricted to signatures—subsets, usually finite, of the set of con-
stant and function symbols. Such restriction does not affect any of the
properties discussed in this chapter. If T is a finite subset of T, then
the set of algebras Models(T) (restricted, of course, to an appropriate
signature) is called a variety. For example, the monoids are the models
of {m(z,m(y, z)) = m(m(z,y),2), m(z,e) =z, m(e,z) = e} restricted to
the signature with one constant symbol e and one binary function symbol
m.
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Perhaps the simplest sort of question that is naturally answered by an
equation is ‘what is to?’ for a term to. For each term ¢, the equation ¢y = ¢,
is an answer to this question. The trouble with such a primitive question
is that it admits too many answers. For example, the tautology to = to is
always a correct answer to ‘what is to?’. This problem is closely analogous
to the problem of the tautological answer (a = a) to the question imp(a)
(‘what atomic formula does a imply?’, Example 2.2.3, Section 2.2). For
the shallow implicational calculus, we avoided undesired answers simply
by listing a set A of them, in the form rest-imp{(a, A) (‘what atomic
formula not in A does a imply?’, Example 2.2.4). Since the number of
terms t; making ¢y = ¢; true is generally infinite, we need a finite notation
for describing the prohibited answers. A particularly useful way is to give a
finite set of terms with variables, and prohibit all instances of those terms
from appearing as subterms in an answer term.

Definition 2.3.15. Let z),...,2; be a list of variables with no repeti-
tions, and let ¢,t1,...,t; € Tp. t[t1,...,t:i/21,...,2;] is the formula that
results from substituting the term ¢; for every occurrence of the variable
z; in the term ¢, for each 7,1 < j <i. When s = t[t1,...,t;/z1,..., %], we
say that s is an instance of ¢, and that ¢ is more general than s.

The concepts of substitution, instance, and generality for terms are
analogous to the corresponding concepts defined for formulae in Defini-
tion 2.3.5, simplified because all occurrences of variables in terms are
free.

Definition 2.3.16. Let t1,...,t; € Tp be terms. A term s is a normal
form for {t1,...,t;} if and only if no subterm of s is an instance of a term
in {tl, ceey ti}.

Let norm be a new formal symbol. Let
Q. ={(normt,,...,¢;:t) : t,t;,...,t; € Tp}
Define the relation -.C Q. x F_- by

{(norm ty,...,t;: t) . (s1 = 82)
if and only if $; =t and s, is a normal form for {t1,...,%;}.
Now (F.,Q_.,?.) is a query system representing the answers to ques-
tions of the form ‘what normal form for t,,...,¢; is equal to t7’

For every semicomputable set T C F -, the set of equations (¢ = s) such
that (normt,,...,t; : t) . T |=. (t = s) is semicomputable. It is easy to
define a query system with conjunctive equational answers, similar to the
conjunctive FOPC answers of Definition 2.3.10. Such a step is most useful
when infinite conjunctions are allowed, so it is reserved for Section 7.1 of the
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chapter ‘Equational Logic Programming.’

Example 2.3.17. Let a € Fung be a constant symbol representing zero,
let s € Fun; be a unary function symbol representing the successor func-
tion, and let p € Funy be a binary function symbol representing addition.
A natural state of knowledge about these symbols is

T ={p(a,z) =z, p(s(x),y) = s(p(z,y))}

A natural question is (norm p(z,y) : p(s(s(a)), s(s(s(a))))). The unique
correct answer is (p(s(s(a)), s(s(s(a)))) = s(s(s(s(s{a)))))). That is, the
answer to the question ‘what is a term for 2 plus 3, not using the plus
operator?’ is ‘2 plus 3 equals 5.’

Another question, peculiar but formally legitimate, is (norm s(s(z)),
s(p(z,y)) : s(s(a))). Correct answers include (s(s(a)) = p(s(a), s(a))),
(s(s(a)) = p(s(a), p(s(a),a))), (s(s(a)) = p(p(s(a),a),s(a))), etc. The an-
swers to this question express 2 as sums of 1 and 0. The simplest form is
1 plus 1; all other forms simply add extraneous Os.

Every partial computable function ¢ may be defined similarly by letting
¢(7) be the unique j such that

(normty, ...t : f(s'(a))) = T = (f(s'(a)) = s7(a))

for appropriately chosen t;,...,¢; and finite set T of equations defining
f- In principle, we might ask for most general or consequentially strongest
answers to questions in Q_-. In practice, multiple answers to such questions
are usually incomparable.

A more powerful form of equational question answering involves the
solution of equations.

Definition 2.3.18. Let solve be a new formal symbol. Let
Qsé = {(solvexy,...,z;: t1 =13) : t;,t2 € Tp}

Define the relation ?-_. by

(solvexy,...,x;: t; =t3) .z (81 = 82)
if and only if there are terms uy,...,u; € Tp such that s; = t1[uy, ..., u;/
Ty,.. .,1,‘1'] and s; = tz[ul,.. uifTy, .. .,1,‘1'].
Now (Q,-,F ., % =) is a query system representing the answer to ques-
tions of the form ‘what values of x,,...,z; solve the equation t; = 37’
Notice the close analogy between the question (solve xy,...,x; : ] = t3)

above, and the FOPC question (what z,,...,z; : F) of Definition 2.3.6,
Section 2.3.1. Syntactically, the equational question is merely the spe-
cial case of the FOPC question where the formula F is restricted to be an
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equation. The semantics of equational logic lead, however, to very different
typical uses for, and implementations of, equation solving.

2.3.5 Functional and equational programming languages

A wide variety of nonprocedural programming languages have been inspired
by Backus’ proposal of functional programming languages [Backus, 1974;
Backus, 1978] defined by equations. The previous development of Lisp by
McCarthy [McCarthy, 1960], although not originally conceived in terms of
functional programming, fits in retrospect into the functional approach,
and its success has boosted the interest in functional languages substan-
tially. Languages for the algebraic description of abstract data types [Gut-
tag and Horning, 1978; Wand, 1976; Futatsugi et al., 1985] use equations
in individual programs, rather than in the language design, and one exper-
imental language is defined explicitly in terms of equational logic program-
ming [Hoffmann and O’Donnell, 1982; Hoffmann et al., 1985; O'Donnell,
1985]. The essential idea behind functional, algebraic, and equational, pro-
gramming languages is to find correct answers to normalization questions
in Q. of Section 2.3.4 above. A number of different styles are used to
specify these languages, often obscuring the logic programming content.
In this section, ‘functional programming languages’ include all program-
ming languages that can be described naturally as answering normalization
questions, and we view them as a form of equational logic programming,
whether or not they are conventionally thought of in that way. Actual
functional languages differ widely on a number of dimensions:

e the notation in which terms are written;

o the way in which the knowledge formulae are determined by the lan-
guage design and the program,;

¢ the way in which questions are determined by the language design,
the program, and the input;

¢ deviations from pure equational logic programming.

Because of the complexity of these variations, the discussion in this section
is organized around the various decisions involved in designing a functional
programming language, rather than around a survey of the most important
languages.

The style in which many functional programming languages are spec-
ified creates an impression that there are fundamental logical differences
between functional programming and equational logic programming. This
impression is false—functional programming and equational logic program-
ming are two different ways of describing the same behaviors. The different
styles of description may encourage different choices in language design, but
they do not introduce any fundamental logical deviations. In particular,
‘higher order’ functional programming languages are not higher order in
any fundamental logical sense, and may be described very naturally by
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first-order equational logic [Goguen, 1990]. The chapter ‘Equational Logic
Programming,” Section 1.2, provides more discussion of the connection be-
tween functional and equational programming ideologies.

Determining equational knowledge from language design and program. The
equational formulae used as explicit knowledge for answering normaliza-
tion questions in functional programming languages are derived from the
language design itself and from the program that is being executed. In
principle, they could also be given in the input, but this possibility has
not been exploited explicitly. Many functional languages are processed by
interactive interpreters, which blur the distinction between program and
input, and many functional languages have mechanisms, such as lambda
abstraction [McCarthy, 1960] or the let construct, that simulate the intro-
duction of certain equations within an input term. Interactive interpretive
processing, and the simulation of additional equations within terms, pro-
vide implicitly a lot of the power of explicit equations in the input.

Most functional languages are designed around substantial sets of prim-
itive operations, defined by equations. For example, the primitives cons
(construct ordered pair), car (first component of pair), and edr (second
component of pair) in Lisp are defined by the two equations (car(cons(z,y))
= z) and (cdr(cons(z,y)) = y) [McCarthy, 1960]. Primitive operators that
manipulate term structure, or provide program control structures, are usu-
ally defined by explicitly given small finite sets of equations. Primitive
operators for basic mathematical operations are defined by large or infinite
sets of equations that must be described rather than listed. For exam-
ple, the conventional arithmetic operation of addition is defined by the
equations add(0,0) =0, add(0,1) = 1,..., add(1,0) =1, add(1,1) = 2,...,
add(2,0) =2, add(2,1) = 3, add(2,2) =4,....

Most functional programming languages have rich enough primitive sets
of operators defined by equations in the language design that it is not nec-
essary to introduce new equations in a program—the goals of the program
may be accomplished by appropriate combinations of primitive operations.
In particular, many functional languages have operators that simulate the
introduction of additional local equations within a term. Even in lan-
guages with powerful primitives, it is often convenient to introduce explicit
equations defining new operators in a given program. A few functional
languages have weak primitives, and depend upon equations in programs
for their expressive power.

Most functional languages impose restrictions on the equations that
may be introduced by programs, in order to allow simple and efficient
proof searches in the implementation. Typical restrictions are surveyed
in the chapter ‘Equational Logic Programming,’ Section 2.3.2. In most
languages, the restrictions on equations in programs allow each equation
f(t1,...,t;) =t in a program to be treated as a part of the definition of a
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procedure to compute f. Note the similarity to the treatment of clauses in
Prolog programs (Section 2.3.2).

Determining a question from language design, program, and input. Re-
call that the form of a normalization question is (norm t,,...,t; :t). An
answer to such a question gives a term equal to ¢t that does not contain
a subterm of any of the forms t,,...,t;. The determination of a question
divides naturally into the determination of the prohibited forms t,,...,
t; and the term ¢ to normalize.

In most functional programming languages, the prohibited forms ¢y, . . .,
t; are determined by partitioning the set of symbols into constructors, prim-
itive functions, and defined functions. Constructors are intended to be com-
putationally inert—they are treated as elements of a data structure. The

~use of constructors in equations is highly restricted to ensure this inertness.
The binary symbol cons in Lisp is the archetypal constructor. In languages
that distinguish constructors, the prohibited formms in normalization ques-
tions are precisely the terms f(zi,...,%;), where f is a primitive function
or a defined function of arity ¢. That is, the normal forms for questions in
constructor systems are precisely the constructor ezpressions—terms com-
posed entirely of variables and constructors. The set of constructors may
be fixed by the language design, or a program may be allowed to introduce
new constructors, in explicit declarations of the symbols or in recursive
type definitions.

In a functional language without constructors, the prohibited forms
may be implicit in the equations of a program. Most functional languages
infer from the presentation of the equation t; = {5 that the left-hand side
t; is to be transformed into the right-hand side 3. Such an inference is
not justified directly by the semantics of equational logic, but it is often
justified by restrictions on the form of equations imposed by the language.
So, the prohibited forms in questions are often taken to be precisely the
terms on the left-hand sides of equations in the program.

The term to be normalized is typically in the form

G P o £ W W [ 7. (W Iy
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where t!2 is fixed by the language design, ", ... ,tf:r are determined by
the program, and tiln, . ,ti?n are determined by the input. In principle,
other forms are possible, but it seems most natural to view the language
design as providing an operation to be applied to the program, producing
an operation to be applied to the input. For example, in a pure Lisp
eval interpreter, tla = eval(z1,nil). The program to be evaluated is ¢
(the second argument nil to the eval function indicates an empty list of
definitions under which to evaluate the program). Pure Lisp has no input—
conceptual input may be encoded into the program, or extralogical features
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may be used to accomplish input. A natural extension of pure Lisp to
allow definitions of symbols in a program yields t'* = eval(z;,z2), " is
the expression given by the program to be interpreted, and t5" is a list of
bindings representing the definitions given in the program. In a language,
unlike Lisp, where a program designates a particular defined function f
as the main procedure to be executed on the input, we can have tla — 1
(the language design does not contribute to the term to be normalized),
Y = f(y1) where f is the designated main function, and ti® is the input.
In yet other languages, the term to be normalized is given entirely by the
input.

Notational variations and abbreviations. Functional programming lang-
uages vary widely in the notations used for terms, using all sorts of prefix,
infix, postfix, and mixfix forms. A survey of the possibilities is pointless. All
current functional languages determine the prohibited forms in questions
implicitly, either from the language design or from the left-hand sides of
equations in a program. Questions are presented by specifying some or all
of the term to be normalized—other parts of the term may be implicit as
described above. Outputs always present only the normal form s rather
than the equation £ = 3, since the question term ¢ is already given explicitly
or implicitly.

Deuwviations from pure equational logic programming. Implementations of
functional programming languages have generally come closer to the ideal
of pure equational logic programming than Prolog systems have to pure
Horn-clause logic programming, largely because of a simpler correspon-
dence between logical and procedural concepts in functional languages than
in Prolog. Many functional languages extend pure logic programming with
side-effect-producing operations, similar to those in Prolog. These exten-
sions are usually used to deal with input and output. Some functional
languages avoid such extensions by modelling the entire input and output
as an expression, called a stream, that lists the atomic elements of the in-
put and output [Karlsson, 1981; Thompson, 1990; Hudak and Sundaresh,
1988; Hudak, 1992; Gordon, 1992; Dwelly, 1988]; others use a functional
representation of input and output based on continuations [Perry, 1991;
Hudak and Sundaresh, 1988; Hudak, 1992]. Also see [Williams and Wim-
mers, 1988] for an implicit approach to functional I/O. A protocol that
decouples the temporal order of input and output from its representa-
tion in a functional program has been proposed as well [Rebelsky, 1993;
Rebelsky, 1992] .

The purely functional subsets of functional programming languages usu-
ally avoid giving incorrect answers. Implementations of Lisp before the
1980s are arguably incorrect in that their use of dynamic scope [Stark, 1990;
Moses, 1970] for parameter bindings gives answers that are incorrect ac-
cording to the conventional logical equations for substitution of terms for



Introduction 35

parameters, taken from the lambda calculus [Church, 1941; Stenlund, 1972;
Barendregt, 1984] . Since the equations for manipulating bindings were
never formalized precisely in the early days of Lisp, implementors may ar-
gue that their work is correct with respect to an unconventional definition
of substitution. Early Lispers seem to have been unaware of the logical
literature on variable substitution, and referred to the dynamic binding
problem as the ‘funarg’ problem.

Essentially all functional programming languages before the 1980s fail
to find certain semantically correct answers, due to infinite evaluation of
irrelevant portions of a term. In conventional Lisp implementations, for
example, the defining equation car(cons(z,y)}) = z is not applied to a term
car(cons(t1,t2)) until both ¢, and 2 have been converted to normal forms.
If the attempt to normalize t5 fails due to infinite computation, then the
computation as a whole fails, even though a semantically correct answer
might have been derived using only ¢,. Systems that fail to find a normal
form for car(cons(t1,t2)) unless both of t; and t2 have normal forms are said
to have strict cons functions. The discovery of lazy evaluation [Friedman
and Wise, 1976; Henderson and Morris, 1976; O’Donnell, 1977] showed
how to avoid imposing unnecessary strictness on cons and other functions,
and many recent implementations of functional programming languages are
guaranteed to find all semantically correct answers. Of course, it is always
possible to modify defining equations so that the strict interpretation of a
function is semantically complete.

Example 2.3.19. Consider Lisp, with the standard equations
car(cons(z,y)) = z and cdr(cons(m,y)) =y

To enforce strict evaluation of lists, even in a lazily evaluated implemen-
tation of equational logic programming, add new function symbols test,
strict, and, and a new constant true, with the equations

test(true,z) =z, and(true, true) = true,
strict(cons(z,y)) = and(strict(z), strict(y)), strict(a) = true

for each atomic symbol a. Then, redefine car and cdr by
car(cons(z,y)) = test(strict(y),z) and cdr(cons(z,y)) = test(strict(z),y)
Lazy evaluation with the new set of equations has the same effect as strict

evaluation with the old set.

Some definitions of functional programming language specify strictness
explicitly. One might argue that the strict version of cons was intended in
the original definition of Lisp [McCarthy, 1960], but strictness was never
stated explicitly there.
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2.3.6 Equation solving and predicate calculus with equality

Given successful applications of logic programming in the pure first-order
predicate calculus without equality, and in pure equational logic, it is
very tempting to develop languages for logic programming in the first-
order predicate calculus with equality (FOPC_.). Unfortunately, there
is a mismatch between the style of questions used in the two sorts of
logic programming. FOPC logic programming uses questions of the form
(what z;,...,z; : F) (Definition 2.3.6), whose answers supply substitu-
tions for the variables z,,...,z; satisfying F. Equational logic program-
ming uses questions of the form (normt,,...,t; : t) (Definition 2.3.16),
whose answers supply normal forms equal to ¢, not containing the forms
ty,-..,t;. The implementation techniques for answering these two sorts of
questions do not appear to combine well.

The most natural idea for achieving logic programming in FOPC_ is
to use the FOPC style of question, and extend it to deal with equations.
In principle that is feasible, because the formal equality symbol = may be
treated as another binary predicate symbol in Predz, and Horn clauses ex-
pressing its crucial properties are easy to find. Unfortunately, the natural
Horn clauses for the equality predicate, when treated by current imple-
mentation techniques for FOPC logic programming, yield unacceptably
inefficient results. In practice, a satisfactory realization of logic program-
ming in FOPC_. will require new techniques for solving equations—that
is, for answering questions of the form (solve z,,...,z; : t; = t3) (Defini-
tion 2.3.18). An interesting experimental language incorporating signifi-
cant steps toward logic programming in FOPC.. is EqL [Jayaraman, 1985],
but this language only finds solutions consisting of constructor expressions.
The problem of finding nonconstructor solutions is much more difficult.

It is also possible to define FOPC logic programming in terms of a
normalization-style query. Consider a question ‘what acceptable formula
implies Fp’, which presents a goal formula F, and some description of
which answer formulae are acceptable and which are prohibited (the prob-
lem of describing such prohibited formulae is more complex in FOPC than
in equational logic because of the structural properties of the logical con-
nectives A,V,...). An answer to such a question is an implication of the
form F; = Fy, where F) is an acceptable formula. The conventional FOPC
questions (what z,,...,2; : Fo) may be understood as a variant of the
‘what implies Fp’ questions, where the acceptable formulae are precisely
those of the form x; =¢; A--- A x; = ¢;. The proposed new style of FOPC
question may be seen as presenting a set of constraints expressed by Fy,
and requesting a normalized expression of constraints F} such that every
solution to the constraints expressed by Fj is also a solution to the con-
straints of Fy. Constraint Logic Programming [Jaffar and Lassez, 1987;
Lassez, 1991] has taken some steps in this direction, although Constraint
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Logic Programming generally views the normalized constraints expressed
by F1 not as a final result to be output as an answer, but as something to
be solved by techniques outside of FOPC, such as numerical techniques for
solving linear systems of equations.

3 Implementing logic programming languages
Semantic systems and query systems are convenient tools for specifying
logic programming languages: we require a language to provide semanti-
cally correct answers to questions. In order to implement logic program-
ming languages, we first develop sound (correct) and complete (powerful)
proof systems to provide effective certificates of the semantic correctness of
inferences. Then, we convert proof systems to programming systems that
process inputs and programs efficiently to produce outputs, by introduc-
ing strategies for choosing incrementally which proofs to construct. In this
chapter we consider only the abstract forms of implementations, far above
the level of actual code for real machines. Truly practical implementations
do, however, follow these abstract forms quite closely.

3.1 Proof systems and provable consequences

A semantic-consequence relation determines in principle whether it is cor-
rect to infer one logical formula from others. In order to give a formal
justification for an inference, we need a notation for proofs. We reserve the
initial P for programs, so D is used to stand for proofs, which might also
be called demonstrations or derivations.

Definition 3.1.1. A proof system is a system D = (F,D, | -}, where

1. F is a set of formulae

2. D is a set of proofs

3. | - is a relation on 2F x D x F (when (T, D, F) are in the relation
| -, we write T|D - F)

4. | - is monotone (if TID - Fand T C U, then U|D - F)

The proof system D is compact if and only if, for all TCF, P € D,
and F € F, whenever T | D - F there exists a finite subset Tf C T such
that Tf | D - F.

T | D - F is intended to mean that D is a proof of F which is allowed
to use hypotheses in T. The fact that D is not required to use all hypothe-
ses leads to monotonicity (4). There are a number of proposals for systems
of ‘nonmonotonic logic,” but they may be regarded as studies of different
relations between proofs and formulae than the notion of derivability rep-
resented by | — above, rather than as arguments about the properties of | —.
The controversy about nonmonotonic logic is not relevant to the discussion
in this chapter, and fans of nonmonotonic relations between proofs and
formulae may translate into their own notation if they like.
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In well-known proof systems, proofs as well as formulae are finite syntac-
tic objects, and the set D of all proofs is computable. There are important
uses, however, for infinite proofs of infinite formulae, so we do not add
a formal requirement of computability. Typically, a proof D determines
uniquely the conclusion formula F' and minimum hypothesis set T such
that T | D — F, but there is no need to require such a property. Meseguer
[Meseguer, 1989] proposed a similar general notion of proof calculus.

It is straightforward to design a proof system for SIC. The following
proof system follows the conventional style of textbooks in logic. Proofs
are sequences of formulae, each one either a hypothesis, a postulate, or a
consequence of earlier formulae in the proof.

Example 3.1.2. Let Fgp be the set of formulae in SIC. The set of linear
proofs in SIC is Pg) = F;’h, the set of nonempty finite sequences of formulae.
The proof relation | ~g; is defined by

T ! (Fy,...,Fy) —s1 F if and only if F,, = F and,
for all i < m, one of the following cases holds:

1. ;€T

2. F; = (a = a) for some atomic formula a € At

3. F; = b, and there exist j,k < ¢ such that F; =a and Fx = (a = b)
for some atomic formulae a,b € At

4. F; = (a =>c), and there exist j,k <1 such that F; = (a = b) and
Fy, = (b= ¢) for some atomic formulae a,b,c € At

Now (Fsh, Psy,!| —s1) is a compact proof system, representing the Hilbert,
or linear, style of proof for implications.

Intuitively, a linear or Hilbert-style proof is a finite sequence of formu-
lae, each one being either a hypothesis (case 1 above), a postulate (case 2
above, expressing the postulate scheme of reflezivity of implication), or
the consequence of previous formulae by a rule of inference (case 3 above,
expressing the rule of modus ponens, and case 4, expressing the rule of
transitivity of implication). The conclusion of a linear proof is the last
formula in the list.

An alternative proof system for SIC, less conventional but more con-
venient for some purposes, follows the natural deduction style of proof
[Prawitz, 1965]. Natural deduction proofs are trees, rather than sequences,
to display the actual logical dependencies of formulae. They also allow the
introduction and discharging of temporary assumptions in proofs, to mimic
the informal style in which we prove a = b by assuming a and proving b.

Example 3.1.3. Let Fsy be the set of formulae in the shallow implica-
tional calculus defined in Example 2.1.2. Let assume, modus-ponens,
and deduction-rule be new formal symbols.
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The set Pg, of natural deduction proofs in SIC and the proof relation

I =snC 2FSh x Pg, X Fgy, are defined by simultaneous inductive definition
to be the least set and relation such that:

1. for each atomic formula a € At, and each set of formulae T C Fgy,

assume(a) € Pg,
and
T U {a} | assume(a) —s, a

2. if a,8 € Pgsn, and T | a —g, a for some atomic formula a € At, and
Ul B sy (@ = b), then

modus-ponens{a, 3) € Ps, and TUU | modus-ponens(a, 8) —s, b

3. if € Ps, and TU{a} | B —g, b for some atomic formula a € At,
then

deduction-rule(a, 3) € Pg, and T | deduction-rule(a, 3) —s, (a = b)

Now (Fgh, Psn, | —sn) is a compact proof system, representing the natural
deduction style of proof for implications.

Intuitively, assume(a) is a trivial proof of a from hypothesis a. modus-
ponens (a,3) is the result of using a proof a of some atomic formula
a, a proof 3 of an implication (a = b), and combining the results along
with the rule of modus ponens to conclude b. The set of hypotheses for
the resulting proof includes all hypotheses of & and all hypotheses of 3.
deduction-rule(a, 3) is the result of taking a proof 3 of & from hypotheses
including a, and discharging some (possibly 0) of the assumptions of @ from
the proof, to get a proof of (a = b) by the deduction rule. In clause 3 of the
inductive definition above, notice that the hypothesis set T may contain
a, in which case TU {a} = T. It is this case that allows for the possibility
that one or more assumptions of a remain undischarged in an application
of the deduction rule.

The style of proof formalized in Example 3.1.3 is called natural deduc-
tion, since it mimics one popular informal style of proof in which an implica-
tion is proved by assuming its hypothesis and deriving its conclusion. Nat-
ural deduction style [Prawitz, 1965), and the similar style of sequent deriva-
tion [Gentzen, 1935; Kleene, 1952], both due to Gentzen, are the styles of
proof most commonly treated by research in proof theory [Stenlund, 1972;
Prawitz, 1965; Takeuti, 1975; Schutte, 1977; Girard et al., 1989]. In proof
theory, natural deduction rules are expressed very naturally as terms in a
typed lambda calculus, where the type of a lambda term is the formula
that it proves [Howard, 1980; Tait, 1967].
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In many cases, we are interested only in the provability of an inference,
and not the proof itself. So, we let each proof system define a provable-
consequence relation, analogous to the semantic-consequence relation asso-
ciated with a semantic system.

Definition 3.1.4. Let D = (F,D,|-) be a proof system. The provable-
consequence relation defined by D is FC 2F x F, where

T } F if and only if there exists a proof D € D such that T 1D - F.

The provable-consequence relation  is compact if and only if, for all
T C F,and F € F, whenever T F F then there exists a finite subset T C T
such that Tf - F.

Intuitively, T F F means that F is provable from hypotheses in T. It
is easy to show that an arbitrary relation F on 2F x F is the provable-
consequence relation of some proof system if and only if it is monotone
(T F F and T C U imply that Uk F). See [Meseguer, 1989] for another
abstract definition of provable consequence relations, with more stringent
requirements.

Most well-known semantic/provable-consequence relations are compact,
and semicomputable on the finite sets of formulae. The trinary proof rela-
tions of proof systems (restricted to finite sets of hypotheses) are normally
computable. That is, in a reasonable proof system we can determine defi-
nitely and mechanically whether or not a supposed proof is in fact a proof of
a given conclusion from a given finite set of hypotheses. It is easy to see that
a proof system with semicomputable set D of proofs and semicomputable
trinary proof relation | — also has a semicomputable provable-consequence
relation, and that compactness of the proof system implies compactness of
the provable-consequence relation. In fact, every semicomputable provable-
consequence relation is defined by some proof system with computable D
and trinary proof relation | —. In this respect the trinary proof relation acts
as a Godel T-predicate [Kleene, 1952 to the binary provable consequence
relation.

3.2 Soundness and completeness of proof systems

The behavior of a proof system may be evaluated in a natural way with re-
spect to a semantic system with the same or larger set of formulae. We say
that the proof system is sound for the semantic system when every prov-
able consequence is a semantic consequence, and that the proof system is
complete when every semantic consequence is provable. Roughly, sound-
ness means correctness, and completeness means maximal power within the
constraints imposed by the set of formulae available in the proof system.

Definition 3.2.1. Let D = (Fp,D,! ) be a proof system, and let § =



Introduction 41

(Fs,M, =) be a semantic system, with Fp C Fg.
D is sound for S if and only if, for all T C F and F € Fp,

T+ F implies T = F
D is complete for S if and only if, for all T C F and F € Fp,

T |= F implies T+ F

Each of the proposed proof systems for SIC is sound and complete
for the semantic system of SIC. The following proofs of completeness for
SIC are similar in form to completeness proofs in general, but unusu-
ally simple. Given a set of hypotheses T, and a formula F that is not
provable from T, we construct a model M satisfying exactly the set of
provable consequences of T within some sublanguage Fr containing F
(Theory(M) NFr D Theory(Models(T)) N Fr). In our example below,
Fr is just the set of all shallow implicational formulae (Fgy,), and the model
construction is particularly simple.

Example 3.2.2. Each of the proof systems (Fsn,Psn,! ~sn) of Exam-
ple 3.1.3 and-(Fsh, Ps),! —s1) of Example 3.1.2 is sound and complete for
the semantic system (Fgsn, Msh, =sn) of Example 2.1.2.

The proofs of soundness involve elementary inductions on the size of
proofs. For the natural deduction system, the semantic correctness of a
proof follows from the correctness of its components; for the linear system
correctness of a proof (Fy,...,Fm41) follows from the correctness of the
prefix (Fy, ..., Fn).

The proofs of completeness require construction, for each set T of for-
mulae, ofamodel M = {a € At : T kg, a} (or T kg a). So M |=gn aforall
atomic formulae a € T M At trivially. It is easy to show that M =sn (@ = b)
for all implications (a = b) € T as well, since either a € M, or b follows by
modus ponens from a and a = b, so b € M. Finally, it is easy to show that
M |=sh F if and only if T bg, F (or T bg F).

In richer languages than SIC, containing for example disjunctions or
negations, things may be more complicated. For example, if the disjunction
(A V B) is in the set of hypotheses T, each model satisfying T must satisfy
one of A or B, yet neither may be a logical consequence of T, so one of them
must be omitted from Fr. Similarly, in a language allowing negation, we
often require that every model satisfy either A or —A. Such considerations
complicate the construction of a model substantially.

Notice that the formal definitions above do not restrict the nature of
semantic systems and proof systems significantly. All sorts of nonsensical
formal systems fit the definitions. Rather, the relationships of soundness
and completeness provide us with conceptual tools for evaluating the be-
havior of a proof system, with respect to a semantic system that we have
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already accepted as appropriate. Logic is distinguished from other tech-
nical sciences, not by the formal definition of the systems that it studies,
but rather by the use of logical concepts to evaluate these systems. The
distinction between logic programming and other forms of programming is
similarly based on the approach to evaluating the systems, rather than the
formal qualities of the systems.

While formal studies may reveal pleasing or disturbing properties of
semantic systems, there is also an unavoidable intuitive component in the
evaluation of a semantic system. A semantic system is reasonable only if
it accurately captures enough of the structure of the mental meaning that
we want to associate with a formula to allow a sensible determination of
the correctness or incorrectness of steps of reasoning. Since different people
have different intuitive notions about the proper meanings of formulae, and
the same person may find different intuitions useful for different purposes,
we should be open minded about considering a broad variety of semantic
systems. But, the mere satisfaction of a given form of definition, whether
the form in Definition 2.1.1 above, or one of the popular ‘denotational’
forms using lattices or chain-complete partial orderings and fixpoints, does
not make a ‘semantics’ meaningful. A number of additional mathemati-
cal and philosophical dissertations are needed to give practical aid in the
evaluation and selection of semantic proposals. The best one-sentence ad-
vice that I can offer is to always ask of a proposed semantic system, ‘for
a given formula F', what does the semantic system tell about the informa-
tion regarding the world that is asserted by F.” For this chapter, I use
only systems of semantics based on first-order classical forms of logic that
have been shaken down very thoroughly over the years. In these systems,
the individual models clearly present enough alleged facts about a possible
state of the world to determine the truth or falsehood of each formula. So,
the information asserted by a formula is that the world under discussion
is one of the ones satisfying the formula in the sense of |=. There are
many reasons to prefer nonclassical logics for programming and for other
purposes. But, we must never rest satisfied with ‘semantic’ treatments of
these logics until they have been connected convincingly to an intuitive
notion of meaning.

A semantic system and a sound proof system may be used to analyze
the process by which implicit knowledge is made explicit—we are particu-
larly interested in the derivation of explicit knowledge in order to answer
a question. Consider an agent with implicit knowledge given by the set
K of models consistent with that knowledge, and represent the agent’s ex-
plicit knowledge by a set T of formulae that he can utter effectively. The
correctness of the explicit knowledge requires that T C Theory(K). Sup-
pose that the agent knows that the proof system is sound, and suppose
that he can recognize at least some cases when the relation T | D - F
holds—often this capability results from computing the appropriate deci-
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sion procedure for a computable proof system (or enumeration procedure
for a semicomputable proof system), with an appropriate finite subset of T
Then, whenever he finds a formula F and a proof D such that TiD - F,
the agent may add the formula F to his explicit knowledge. The soundness
of the proof system guarantees that F € Theory(K). Notice that sound
proofs can never extend explicit knowledge beyond the bound determined
by implicit knowledge, which is Theory(K).

Definition 3.2.3. Let @ = (Fq,Q,?) be a query system, and let D =
(Fp,D,| ~) be a proof system with Fg C Fp.

Q > T | F means that F € Fq is a provably correct answer to Q € Q
for explicit knowledge T C Fg, defined by

Q*T+HFifandonlyif Q> Fand THF
Similarly,

Q*TID-Fifandonlyif Q%= Fand TID - F

If P is sound, then provable correctness implies semantic correctness
(Definition 2.2.2). If P is complete, then semantic correctness implies prov-
able correctness.

Going back to the communication analysis of previous sections, let K;
be the speaker’s implicit knowledge, let Kg be the auditor’s initial im-
plicit knowledge, and let T? be the auditor’s initial explicit knowledge.
When the speaker utters a set of formulae T,, consistent with her im-
plicit knowledge, the auditor’s implicit knowledge improves as before to
K! = KN Models(T,), and the auditor’s explicit knowledge improves to
T; = Tg U T,. Let a questioner ask a question @ of the auditor. Without
further communication from the speaker, the auditor may improve his ex-
plicit knowledge by proving new formulae from hypotheses in T} in order to
answer the question Q. If the auditor’s initial explicit knowledge is empty,
then T, = T, so the formulae derivable in this way are exactly the prov-
able consequences of T, and the answers that may be found are exactly
the provably correct answers to @ for T,. If the proof system used by the
auditor is sound, then all such answers are semantically correct; if the proof
system is complete then all semantically correct answers are provable. Now
let the speaker be a programmer who utters a set of formulae constituting
a logic program, let the auditor be a processor, and let the questioner be a
user whose question is given as input to the program. Then, computations
performed by the processor take the form of search for and construction of
proofs deriving the explicit knowledge needed to produce an output answer,
from the explicit knowledge given in the program.
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3.3 Programming systems

A programming system represents the computational behavior of a proces-
sor. In order to understand logic programming, we consider an arbitrary,
possibly ineffective and nondeterministic, programming system, and then
show how to evaluate its behavior logically with respect to a given semantic
system and query system. We choose an unconventional formal notation
for programming systems in order to expose the close analogy of sets of for-
mulae to programs, questions to inputs, proofs to computations, answers
to outputs.

Definition 3.3.1. A programming system is a system P = (P,I,C, O,
© 0, =), where
1. P is a set of programs
2. Iis a set of inputs
3. Cis a set of computations
4. O is a set of outputs
5. > [is a relation on I x P x C (when (I, P,C) are in the relationt [,
we write I> P [ C)
6. Foreach I € I and P € P, thereis at leastone C € C with I> P C
7. = is a relationon C x O
8. For each C € C, there is at most one O € O with C — O (that is, =
is a partial function from C to O)

We define the relation> 1 2CI x P x C x O by

I PIC—>OQOifandonlyif I PIC and C = O

I> P [C is intended to mean that, when input I is presented to pro-
gram P, one possible resulting computation is C. C — O is intended to
mean that the computation C produces output O. Multiple computa-
tions for a given P and I are allowed, indicating nondeterminism, but each
computation produces at most one output. The intended meaning of a
nondeterministic computation relation is that we do not know which of
the several possible computations will occur for a given input and output
[Dijkstra, 1976]. The choice may be determined by unknown and time-
dependent factors, or it may be random. In order to guarantee some
property of the result of computation, we must ensure that it holds for
all possible nondeterministic choices.

In well-known programming systems from theory textbooks, programs,
inputs, and outputs (like formulae, proofs, and questions) are finite syntac-
tic objects, and the sets P, I, and O are computable. Infinite computations,
in the form of infinite sequences of finite memory-state descriptions, are al-
lowed, but in theory textbooks the infinite computations normally have
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no output. On the other hand, the straightforward abstractions of well-
known programming systems from real life (abstracted only by ignoring
all bounds on time and space resources in the computation) allow infinite
computations to consume infinite inputs and produce infinite outputs.

In many cases, we are interested only in the input—output behavior of
a program, and not in the computations themselves. So, we let each pro-
gramming system define a trinary relation determining the possible outputs
for a given program and input.

Definition 3.3.2. Let P = (P,I,C,O,> [, =) be a programming system.
The computed-output relation defined by P is> [HC P x I x O, where

I> P [ O if and only if there exists a computation C € C
such that I> P[0 C — O.

For a programming system to be useful, the computed-output relation >
[~ must be sufficiently effective to allow a mechanical implementation.
Computed-output relations in theory textbooks, like provable-consequence
relations, are normally semicomputable; computation and output relations
> [ and —, like trinary proof relations | —, are normally computable (and
even primitive recursive). If C,> [, and — are all semicomputable, then
so is> [-. In fact, every semicomputable computed-output relation> [
may be defined from computable C, > [, and —. Systems with infinite
inputs and/or infinite outputs require more liberal, and less conventional,
notions of effectiveness.

The programming systems of Definition 3.3.1 are not required to be de-
terministic, or effective. They are a simple generalization of the program-
ming systems, also called indexings and Gédel numberings, of recursion
theory [Machtey and Young, 1978; Kleene, 1952). Our I> P [ O corre-
sponds to the recursion-theoretic notation ¢p(I) = O. Recursion theory
normally considers only determinate programming systems.

Definition 3.3.3. A programming system P = (P,I,C,0O,> [,—) is de-
terminate if and only if, for each program P and input I, there is at most
one output O such that I> P [ O. That is,> [ is a partial function
from P x I to O.

A programming system P = (P,I,C,O,> [, =) is deterministic if and
only if, for each program P and input I, there is a unique computation C
such that I> P [ C. That is,> [ is a partial function from P x I to C.

Determinism implies determinacy, but not the converse—a nondeter-
ministic programming system may provide many computations that yield
the same determinate output.

A number of different programming systems may be defined to answer
questions in the shallow implicational calculus, depending on the type of
question and the stringency of requirements for the answer.
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Example 3.3.4. Let Fo. = {{a = b) : a,b € At} be the set of implica-
tional SIC formulae (Fg;, — At, with Fg), and At defined in Example 2.1.2).
The set of implicational logic programs (P=.) is the set of finite subsets of
F..
Let the set of inputs to implicational logic programs be Qg;—the set of
questions of the form imp(a) (‘what atomic formula does a imply?’) de-
fined in Example 2.2.3.
The set of naive implicational computations (Cs;) is the set of nonempty
finite and infinite sequences of atomic formulae.
The computation relation D> [g; is defined by imp(a) > T [0s; (co,
c1,- ..y if and only if

l.cg=a

2. (¢;-1 = ¢;) €T for all 7> 0 in the (finite or infinite) range of the

sequence {cg, .. .)

The output relation —g; is defined by
{co,---rem) s1 (co = cm)

Infinite computations have no output.
Now (P, Qg;,Cs1,F= > ls1,?s:1) is a programming system, computing
answers to questions of the form ‘what atomic formula does a imply?’

The programming system above behaves nondeterministically and in-
determinately in proving some implication of a. Its computations may halt
at any point and output the latest atomic conclusion found. Loops in the
graph of implications lead to infinite computations with no output. Notice
that each finite computation {(cg,...c;,...,cn), with output (co = cm),
translates very easily into the linear proof

{(co = €p)y-- -y (Cic1 = €i)y(Co = C)y-o s (Cme1 = Cm), (co => Cm))

of (co = ¢;n) in the proof system of Example 3.1.2. The first line is an
instance of the reflexive rule, and subsequent lines alternate between im-
plications in T, and applications of transitivity.

In order to avoid uninformative outputs, such as (a = a), we need a
programming system with a slightly more sophisticated notion of when to
stop a computation.

Example 3.3.5. Let fail be a new formal symbol, and let the set of naive
implicational computations with failure be

Cs2 = Cs1 U {{co,...,Cm,fail) : ¢g,...,cm € At}

(the set of finite and infinite sequences of atomic formulae, possibly ending
in the special object fail).
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Let the set of inputs to implicational logic programs be Qgy—the set of
questions of the form rest-imp(a, A) (‘what atomic formula not in A does
a imply?’).
The computation relation > [g; is defined by rest-imp{a, A)> T [s; {co,
...) if and only if
l.co=a
2. if ¢; € A, and there is a d € At such that (¢; = d) € T, then the
sequence has an 1 + 1st element ¢;41, and (¢; = ¢j4+1) € T
3. if ¢; € A, and there is no d € At such that (¢; = d) € T, then the
sequence has an i + 1st element, and ¢;4, = fail
4. if ¢; € At — A, then either there is no ¢+1st element, or (¢; = ¢i41) € T
5. if ¢; = fail, then there is no 7 + 1st element

So,P (g2 allows computations to terminate only when an atomic formula
outside of A has been found, or a dead end in the implication graph has
been reached.

Theé output relation —>go is defined by

{(Coy---yCm) —>s2 (Co = ¢p) for ¢ € At

Infinite computations and finite computations ending in fail have no out-
put.

Now (P, Qgs, Cs2, F= > [s2, —s2) is a programming system, computing
answers to questions of the form ‘what atomic formula not in A does a
imply?’

The programming system of Example 3.3.5 is nondeterministic and in-
determinate. It avoids useless answers, but it still may fall into infinite or
finite failing computations, even when a legitimate answer exists. It also
may find an answer, but fail to output it and proceed instead into a failure
or an infinite computation. Successful computations translate into proofs
as in Example 3.3.4.

We may further strengthen the behavior of a programming system by
letting it back up and try new proofs after finite failures, and by insisting
that answers be output as soon as they are found.

Example 3.3.6. Let the set of inputs to implicational logic programs
again be Qgo—the set of questions of the form rest-imp(a,A) (‘what
atomic formula not in A does a imply?’).

Let print be a new formal symbol. The set of backtracking implicational
computations {Css) is the set of nonempty finite and infinite sequences of
finite sets of atomic formulae, possibly ending in the special form print(a)
where a is an atomic formula (fail of Example 3.3.5 is represented now by
the empty set).

The computation relation > [s3 is defined by rest-imp{a, A)> T ls3 (Cy,
...} if and only if
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1. Co = {a}
2. if C; C A and C; # 0, then there is an i + 1st element, and

Ciri=C;,—{cju{d:(c=>d) e T}

for some atomic formula ¢ € C;

3. if C; C At, and C; — A # @, then there is an i + 1st element, and
C.+1 = print(c) for some c € C; — A

4. if C; =0, or C; = print(c), then there is no ¢ + 1st element

So, I> lls3 allows a computation to replace any atomic formula that has
already been proved with the set of atomic formulae that it implies directly
in T. A computation halts precisely when it chooses a unique atomic
formula not in A to output, or when it fails by producing the empty set.
The output relation —g3 is defined by

({a},...,print(b)) —s3 (a = b)

Infinite computations, and finite computations ending in @, have no output.
Now (P, Qgs,Cs3,F= P> ls3, —s3) is another programming system, com-
puting answers to questions of the form ‘what atomic formula not in A does
a imply?’

The programming system of Example 3.3.6 is nondeterministic and in-
determinate. It is less susceptible to missing answers than that of Exam-
ple 3.3.5. The new system does not get stuck with a failure when a single
path in the implication graph leads to a dead end: a computation ends in
# only when all paths have been followed to a dead end. When there is a
finite path to an answer, and also a cycle, the nondeterministic choice of
which formula to replace at each step determines which path is followed in
the computation, and so determines success or infinite computation. The
translation of a computation in the latest system to a proof is not quite
as transparent as in Examples 3.3.4 and 3.3.5, but it is still simple. Each
successful computation ({co}, Cy,. .., Cm—1, print(c.»)) must contain a se-
quence of atomic formulae {co, c1,- . -,Cm—1,Cm), Where for i < m ¢; € C;,
and for adjacent pairs c;, ci41, either ¢; = ¢;41, or (¢; = ¢;i41) € T. This
sequence of atomic formulae transforms to a linear proof as before. -

A final example of a programming system illustrates the use of incre-
mental output from possibly infinite computations to produce consequen-
tially strong answers.

Example 3.3.7. Let the set of inputs to implicational logic programs be
Qg.—the set of questions of the form conj-imp(a) (‘what are some atomic
formulae that a implies?’) from Example 2.2.6.

The set of conjunctive implicational computations (Csq4) is the set of non-
empty finite or infinite sequences of finite sets of atomic formulae (the same
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as Cg3, without the final elements print(a)).
The computation relation®™ [g4 is defined by conj-imp(a)> T ls4 (Co,...)
if and only if

1. Co = {a}

2. if C; # 0, then there is an ¢ + 1st element, and

Cit1=(Ci— {c})U{d: (c=d) € T}

for some atomic formula ¢ € C;
3. if C; = 0, then there is no i + 1st element

The computations above are the same as those of Example 3.3.6, except
that we never choose a single atomic formula to output. @ is no longer
regarded as a failure.

The output relation —*g4 is defined by {(Co,...) 54 (@ = h)) A--- A
(a = b,,) if and only if

1. Co = {a}
2. {b1,...b,} =CoUC,U---, and by, ... b, are given in the order of
first appearance in the sequence Cy,..., with ties broken by some

arbitrary ordering of atomic formulae

Notice that even infinite computations have output.

Now (P, Qg.,Cs4,Fo P> [gq, s4) is a programming system, computing
answers to questions of the form ‘what are some atomic formulae that a
implies?’

The programming system above should be thought of as producing its
output incrementally at each computation step. It is nondeterministic and
indeterminate. Even though the computation may be infinite, it never
fails to produce an answer, although the output may be the trivial formula
a = a. The strength of the answer produced depends on the nondetermin-
istic choices of the atomic formula replaced in each computation step.

3.4 Soundness and completeness of programming sys-
tems

A query system determining what constitutes an answer, and the semantic-
consequence relation of a semantic system determining the correctness of
an answer, yield criteria for evaluating the behavior of a programming
system, similar to the criteria for evaluating a proof system in Section 3.1.
We define soundness and completeness of programming systems, in analogy
to the soundness and completeness of proof systems. Logic programming
is distinguished from other sorts of programming by the use of such logical
concepts to evaluate programming systems.

There is only one sensible concept of soundness for a programming
system: every output is a correct answer to the input program. When
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a given question has more than one correct answer, completeness criteria
vary depending on the way in which we expect an output answer to be
chosen.

Definition 3.4.1. Let P = (P,I,C,0,> [, =) be a programming system,
let S =(Fs,M, =) be a semantic system, and let @ = (Fq,Q,?) be a
query system, with P C 2F5, I1CQ,and O CFsnNFq.

P is sound for S and Q if and only if, for all P€ P and I € 1,

I> P> Oimplies I > PO

P is weakly complete for S and Q if and only if, forall Pe Pand I €1
such that I is semantically answerable for P (Definition 2.2.2), and for all
computations C € C such that I> P [ C, there exists O € O such that

C—=0andI*PEO

(O is unique because — is a partial function).

P is consequentially complete for S and Q if and only if P is weakly
complete and, in addition, O above is a consequentially strongest correct
answer ({O} |= N for all N € Fq such that I > P |= N).

So, a programming system is sound if all of its outputs are correct an-
swers to input questions, based on the knowledge represented explicitly
by programs. A system is weakly complete if, whenever a correct answer
exists, every computation outputs some correct answer. A system is conse-
quentially complete if, whenever a correct answer exists, every computation
outputs a consequentially strongest correct answer. Notice that, for conse-
quential completeness, the strength of the output answer is judged against
all possible answers in the query system, not just those that are possible
outputs in the programming system, so we cannot achieve consequential
completeness by the trickery of disallowing the truly strongest answers.

A programming system provides another approach to analyzing a simple
form of communication. While semantic systems, proof systems, and query
systems yield insight into the meaning of communication and criteria for
evaluating the behavior of communicating agents, programming systems
merely describe that behavior. A programmer provides a program P to a
processor. A user (sometimes, but not always, identical with the program-
mer) provides an input I, and the processor performs a computation C such
that I®> P [ C from which the output O, if any, such that C = O, may be
extracted. We allow the mapping from computation to output to depend
on purely conventional rules that are adopted by the three agents. What
aspects of a computation are taken to be significant to the output is really
a matter of convention, not necessity. Often, only the string of symbols
displayed on some printing device is taken to be the output, but in various
contexts the temporal order in which they are displayed (which may be
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different from the printed order if the device can backspace), the temporal
or spatial interleaving of input and output, the speed with which output
occurs, the color in which the symbols are displayed, which of several de-
vices is used for display, all may be taken as significant. Also, convention
determines the treatment of infinite computation as having no output, null
output, or some nontrivial and possibly infinite output produced incremen-
tally. The presentation of input to a computation is similarly a matter of
accepted convention, rather than formal computation.

In logic programming, where the programmer acts as speaker, the pro-
cessor as auditor, and the user as questioner, soundness of the program-
ming system guarantees that all outputs canstitute correct answers. Vari-
ous forms of completeness guarantee that answers will always be produced
when they exist. In this sense, soundness and completeness mean that a
programming system provides a correct and powerful implementation of
the auditor in the speaker-auditor-questioner scenario of Section 2.2.

There is a close formal correspondence between programming systems
and pairs of proof and query systems: inputs correspond to questions,
programs correspond to sets of hypotheses, computations to proofs, and
outputs to theorems (for a different correspondence, in which programs
in the form of lambda terms correspond to natural deduction proofs, see
[Howard, 1980; Tait, 1967; Constable et al., 1986]—compare this to the in-
terpretation of formulae as queries and proofs as answers [Meseguer, 1989]).
Notice that both quaternary relations @ = TI1D - Fand I> PIC = O
are typically computable, while both of the trinary relations @ - T + F
and I> P [ O are typically semicomputable. Furthermore, the defini-
tions of the trinary relations from the corresponding quaternary relations
are analogous. In both cases we quantify existentially over the third argu-
ment, which is variously a proof or a computation.

There is an important difference, however, between the forms of defi-
nition of the provable-answer relation @ = T | D — F, and of the compu-
tational relation I> P [| C = O, reflecting the difference in intended uses
of these relations. This difference has only a minor impact on the rela-
tions definable in each form, but a substantial impact on the efficiency of
straightforward implementations based on the definitions. In the query-
proof domain, we relate formulae giving explicit knowledge (program) to
the proofs (computations) that can be constructed from that knowledge,
yielding formulae (outputs) that are provable consequences of the given
knowledge in the relation T | D — F. We independently relate questions
(inputs) to the answers (outputs) in the relation @ * F, and then take
the conjunction of the two. There is no formal provision for the question
(input) to interact with the knowledge formulae (program) to guide the
construction of the proof (computation)—the question (input) is only used
to select a completed proof. In the computational domain, we relate inputs
(questions) directly to programs (knowledge formulae) to determine com-
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putations (proofs) that they can produce in the relation I P [ C. Then,
we extract outputs (answer formulae) from computations (proofs) in the
relation C — O. The relation I> P [ C provides a formal concept that
may be used to represent the interaction of input (question) with program
(knowledge) to guide the construction of the computation (proof).

Given a proof system and a query system, we can construct a pro-
gramming system with essentially the same behavior. This translation is
intended as an exercise in understanding the formal correspondence be-
tween proofs and computations. Since our requirements for proof systems
and programming systems are quite different, this construction does not
normally lead to useful implementations.

Proposition 3.4.2. Let D = (F,D,]-) be a proof system, and let Q =
(F,Q, %) be a query system. Define the programming system

P ={(2F,Q,(D x F)u {fail},F > ,—)

where
1. Q> TO(P,F) ifandonlyif Q*+= T | P~ F
2. QP T [ fail if and only if there are no P and F such that
Q*TIP-F
3. (PFY=>Gifandonlyif F=G
4. fail = F is false for all F € F

Then,
Q*FTI|P~-F ifandonly if Q> TIU(P,F) > F

Therefore,
Q*THrHF ifand only if Q> T F

If D above is sound for some semantic system &, then P is sound for
S and Q, but the converse fails because some formulae may never occur
as answers to questions. Proposition 3.4.2 shows that a proof may be
interpreted as a nondeterministically chosen computation that outputs a
theorem. ‘

Because hypotheses to proofs are sets of formulae, rather than single for-
mulae, and the proof relation must be monotone with respect to the subset
relation, there are computational relations™ [I= defined by programming
systems that are not the same as the relation > F of any proof and query
systems. Intuitively, in order to mimic an arbitrary programming system
with a proof system and a query system, we must augment the output O
resulting from input [ into a formula asserting that input I produces out-
put O. This augmentation is almost trivial, in the sense that echoed input
may just as well be regarded as an implicit part of the output. Informal
question answering uses such implicit augmentation: in response to the



Introduction 53

question ‘what is the capital city of Idaho?’ the abbreviated answer ‘Boise’
is generally accepted as equivalent to the full answer ‘the capital city of
Idaho is Boise.’
Proposition 3.4.3. Let P = {P,I,C, Q) be a programming system. De-
fine the proof system D = (P U (I x O),C,| =), where

1. TIC - {I,0) if and only if I> PN C — O for some P€ T

2. TIC — P is false forall Pe P
Also define the query system Q = (I x O,1, %), where

1. I+ ({J,0) ifand only if I = J.
Then, :
I> PIC—O ifandonlyif I {P}IC - {I,0)

Therefore,
I> P> O if and only of I = {P}+{I,0)

As in the construction of Proposition 3.4.2, soundness of D implies
soundness of P, but the converse fails, and completeness does not transfer
either way. Proposition 3.4.3 shows that a computation may be interpreted
as a proof that a given program and input produce a certain output.

Example 3.4.4. The programming systems of Examples 3.3.4, 3.3.5, 3.3.6,
and 3.3.7 are all sound for their appropriate semantic and query systems.
The proof of soundness is easy—every computation can be transformed
easily into a proof in a sound proof system.

The programming system of naive implicational computations in Ex-
ample 3.3.4 is not weakly complete. Consider the program

{a=b,b=>a,a=c}

Given the input question imp(a) (‘what logical formula does a imply?’), a
possible computation is the infinite sequence

{a,b,a,b,...)
which has no output. There are three correct answers,
a=>a,a=>b anda=c
each of which is found by a short computation.
The programming system of naive implicational computations with fail-

ure in Example 3.3.5 is not weakly complete. Consider the program

{a=b,a=¢, c=>a,a=>d}
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Given the input question rest-imp(a, {a, b, c}) (‘what logical formula not
in {a, b, c} does a imply?’), two possible computations with no output are

{(a, b, fail) and {(a,c,a,c,...)

There is a correct answer, a = d, which is found by the computation {(a, d).

The programming system of backtracking implicational computations
in Example 3.3.6 avoids the finite failure of the naive computations with
failure, but is still not weakly complete because of infinite computations. It
succeeds on the program and question above, with the unique computation

({a},{b,c,d}, {d})
but fails on a slightly trickier case. Consider the program
{a=ba=c, c=>a,a=>d, d= e}

and the question rest-imp(a, {a, b, ¢, d}). There is no finite failing compu-
tation, and the correct answer a = e is output by the computation

{{a}, {b,c,d}, {b,d}, {a,d}, {a, e}, print(e))

But there is still an infinite computation that misses the output:

({a}, {b,c,d}, {b,a,d}, {b,c,d},...)

The programming system of conjunctive implicational computations in
Example 3.3.7 is weakly complete, simply because every computation out-
puts some correct answer of the form (a = a) A ..., where in the worst case
only the first conjunct is given. This system was clearly aimed, however,
toward producing consequentially strong answers. It is not consequentially
complete. Consider again the program

{a=b,a=>c, c=>a,a=>d, d=¢€}
and the new question conj-imp(a). The computation
({a}, {b.c,d}, {b,c,e}, {b,a,e},{b,c,d, e}, {b,a,d, e}, {b,c,d,e},...)
outputs the consequentially strongest answer
(@a=>a)A(a=>bA(a=c)A(a=>d)A(a=>e)

But the computation
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({a},{b,c,d}, {b,a,d}, {b,c,d},...)
outputs only the weaker answer
(a=alA(a=>b)A(ea=>c)A(a=>d)

missing the conjunct a = e.

In each case above, the failure of completeness results from the possi-
bility of unfortunate choices for the next computational step.

Most practical implementations of logic programming languages are
not complete, and many are not even sound. Nonetheless, soundness and
completeness are useful standards against which to judge implementations.
Most implementations are sound and complete for well-characterized sub-
sets of their possible programs and inputs. The cases where soundness
and/or completeness fail are typically considered at least peculiar, and
sometimes pathological, and they are the topics of much discussion and
debate. The history of programming languages gives some hope for a
trend toward stricter adherence at least to soundness criteria. For ex-
ample, early Lisp processors employed dynamic scoping, which is essen-
tially an unsound implementation of logical substitution. Modern Lisp
processors are usually statically scoped, and provide sound implementa-
tions of substitution [Muchnick and Pleban, 1980; Brooks et al., 1982;
Rees Clinger, 1986). As compiler technology matured, the logically cor-
rect static scoping was found to be more efficient than dynamic scoping,
although early work assumed the contrary.

In spite of the close formal correspondence outlined above between
proof and computation, our natural requirements for proof systems and
programming systems differ significantly. The requirements for correct-
ness, formalized as soundness, are essentially the same—everything that is
proved/computed must be a logical consequence of given information. But,
the requirements for power, formalized as completeness, vary substantially.

Proofs are thought of as things to search for, using any available tools
whether formal, intuitive, or inspirational, and we only demand formal or
mechanical verification of the correctness of a proof, not mechanical dis-
covery of the proof. So, proofs are quantified existentially in the definition
of completeness of a proof system, and we are satisfied with the mere ex-
istence of a proof of a given true formula. Computations, on the other
hand, are thought of as being generated on demand by a computing agent
in order to satisfy the requirement of a user. So, we require that a complete
programming system be guaranteed to produce a sufficiently strong correct
answer whenever a correct answer exists. Since we do not know which of
several possible computations will be generated nondeterministically by the
computing agent, we quantify universally over computations.

Because of the requirement that all computations in a complete pro-
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gramming system yield correct answers, merely mimicking the relational
behavior of a proof system, as in Proposition 3.4.2, is not sufficient for use-
ful implementation. Practical implementations must use complete strate-
gies for choosing proofs in order to provide programming systems with the
desired guaranteed results.

3.5 Proof-theoretic foundations for logic programming

Given a suitable proof system, a practical implementation of a logic pro-
gramming language still must solve the difficult problem of searching the set
of proofs for one that provides an answer to a given input question. Meth-
ods for choosing and generating proofs are called proof strategies. While
logical semantics provides the conceptual tools for specifying logic program-
ming languages, proof theory [Stenlund, 1972; Prawitz, 1965; Takeuti, 1975;
Schutte, 1977; Girard et al., 1989]. provides the tools for developing proof
strategies. Once a proof strategy has been defined, the remaining prob-
lems in implementation are the invention of appropriate algorithms and
data structures for the strategy, and the details of code generation or in-
terpreting. The organization of logic programming into the application of
semantics to specification, and the application of proof theory to imple-
mentation, does not mean, however, that the former precedes the latter in
the design of a logic programming language. Design normally requires the
simultaneous consideration of specification and implementation, and the
designer must search the two spaces of semantic specifications and proof-
theoretic strategies in parallel for a compatible pair of ideas. In different
circumstances either topic can be the primary driver of design decisions.
In writing this chapter, I have not been able to develop the proof theoretic
side of logic programming design as thoroughly as the semantic side, merely
because I ran out of time, pages, and energy. In this section, I will only
outline the issues involved in applying proof theory to logic programming.

The choice of a proof strategy affects both the power and the complexity
of an implementation, but not the soundness. Given a sound proof system,
a proof strategy can only choose (or fail to find) a correct proof, it cannot
expand the class of proofs. But, a given proof strategy may be incapable of
discovering certain provably correct answers, so it may yield an incomplete
computing system, even when starting with a complete proof system. So,
there is great value in proof theoretic theorems demonstrating that, when-
ever a formula F is provable, there is a proof in some usefully restricted
form. Even when these do not lead to complete implementations, they can
improve the power/complexity tradeoff dramatically. Fortunately, proof
theorists have concentrated a lot of attention on such results, particularly
in the form of proof normalization theorems, which show that all proofs
may be reduced to a normal form with special structure. Many normal-
ization results are expressed as cut elimination theorems, showing that a
particular version of modus ponens called the cut rule may be removed from



Introduction 57

proofs. Cut elimination theorems are usually associated with the predicate
calculus and its fragments, variants, and extensions. The impact of cut
elimination on proof strategies has been studied very thoroughly, leading
to an excellent characterization of the sequent-style proof systems that
are susceptible to generalizations of the simple goal-directed proof strategy
used in Prolog [Miller et al., 1991]). These proof-theoretic methods have
been applied successfully in some novel logics where the model-theoretic
semantics are not yet properly understood.

In the term rewriting literature, there are similar results on the nor-
malization of equational proofs. Many of these come from confluence (also
called Church-Rosser) results. A system of equations

{llirl,...,lm:':rm}

presented with each equation oriented in a particular left-right order, is
confluent precisely if every proof of an equation s = t may be transformed
into a rewriting of each of s and ¢ to a common form u. Rewriting means
here that an equational hypothesis I; = r; may only be used from left to
right, to replace instances of /; by corresponding instances of r; but not the
reverse. The restriction of equational proofs to rewritings allows complete
strategies that are much simpler and more efficient than those that search
through all equational proofs. See Sections 2.2 and 2.3 of the chapter
‘Equational Logic Programming’ in this volume, as well as [Klop, 1991],
for more on the application of term rewriting to equational proofs.

4 The uses of semantics

The development of logic programming systems from logics, given above,
provides a particular flavor of semantics, called logical semantics, for logic
programming languages. Logical semantics, rather than competing directly
with other flavors of programming language semantics, provides different
insights, and is useful for different purposes. The careful comparison of dif-
ferent styles of semantics is a wide-open area for further research. In this
section, I sketch the sort of relations that I believe should be explored be-
tween logical semantics, denotational semantics, and algebraic semantics.
Meseguer proposes two sorts of logic programming—‘weak’ logic program-
ming uses essentially the same notion of logical semantics as mine, while
‘strong’ logic programming uses the theory of a single model, such as a
model derived by algebraic semantics [Meseguer, 1989].

4.1 Logical semantics vs. denotational semantics

Roughly, denotational semantics [Scott, 1970; Scott and Strachey, 1971;
Stoy, 1977] takes the meaning of a program to be an abstract descrip-
tion of its input/output behavior, where inputs and outputs are uninter-
preted tokens. Denotational semantics assigns to each program a unique
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value carrying that meaning. One problem of denotational semantics is
how to deal with observable computational behavior, such as nontermi-
nation, that does not produce output tokens in the concrete sense. This
problem was solved by expanding the domains of input and output, as
well as the domains of program meanings, to partially ordered sets (usu-
ally chain-complete partial orderings [Markowsky, 1976] or lattices [Scott,
1976]) containing objects representing abstract computational behaviors,
not all of which produce tokens as output [Reynolds, 1973; Scott, 1982]. In
practice, the definition of appropriate domains is often the most challeng-
ing task in creating a denotational semantic description of a programming
language, and domain theory has become a definite specialty in theoretical
computer science [Schmidt, 1986; Stoy, 1977; Zhang, 1991; Gunter, 1992;
Winksel, 1993).

The denotational approach provides a useful tool for characterizing
what a particular type of implementation actually does, but it does not
give any intuitive basis for discussing what an implementation ought to
do. Logical semantics, on the other hand, begins with an interpretation
of input and output. It does not directly address techniques for analyz-
ing the behavior of programs—that is left to a metalanguage. But it does
provide an intuitive basis for distinguishing logically reasonable behaviors
from other behaviors.

For example, denotational semantics for functional languages was ini-
tially defined using eager evaluation [Backus, 1978] The domains that were
used to define eager evaluation are not rich enough to represent lazy evalu-
ation. In fact the definition of domains for lazy evaluation [Winksel, 1993]
posed difficult technical problems, causing resistance to the use of lazy
evaluation. Denotational semantics for lazy evaluation matured long after
the idea had been implemented, and informal evidence for its utility had
been presented. [Friedman and Wise, 1976; Henderson and Morris, 1976]
Logical semantics for equational programming, on the other hand, requires
lazy evaluation for completeness, and the demand for lazy evaluation from
this point of view precedes its invention as a programming tool—at latest
it goes back to [O’Donnell, 1977] and the essential roots are already there
in work on combinatory logic and the lambda calculus [Curry and Feys,
1958]. Once lazy evaluation was explained denotationally, that explanation
became a very useful tool for analysis and for deriving implementations. In
general logical semantics predicts and prescribes useful techniques, while
denotational semantics explains and analyzes them.

4.2 Logical semantics vs. initial/final-algebra and
Herbrand semantics

Semantics that use initial or final algebras or Herbrand models [Guttag and
Horning, 1978; Goguen et al., 1978; Meseguer and Goguen, 1985] to repre-
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sent the meanings of programs provide systematic techniques for deriving
denotational-like semantics from logical semantics. Logical semantics de-~
termines a large class of models consistent with a given program. Algebraic
semantic techniques construct a single model, depending on the language
in which output is expressed as well as the given program, whose output
theory is the same as that of the class of models given by logical semantics.
This single model can be used for the same sorts of analysis as denotational
semantics (although it is not always based on a lattice or chain-complete
partial ordering). Such single-model semantics must be reconsidered when-
ever the output language expands, since in the larger language the theory
of the single model may not be the same as the theory of the class of models
consistent with the program.

For example, consider a language (based on ideas from Lucid [Ashcroft
and Wadge, 1977] ) with symbols cons, first, more, a, b, satisfying the
equations

first(cons(z,y)) = first(z)
first(a) = a
first(b) = b

more(cons(z,y)) = y
more(a) = a
more(b) = b

Assume that only the symbols a and b are allowed as output—that
is, we are only interested in deriving equations of the forms s =a and
t = b, where s and t are arbitrary input terms. Algebraic semantic tech-
niques typically interpret this system over a universe of infinite flat (i.e.,
not nested) lists with elements from the set {a,b}, where after some fi-
nite prefix, all elements of the list are the same. cons(s,?) is interpreted
as the list beginning with the first element of s, followed by all the ele-
ments of ¢t. In this algebraic interpretation, cons(cons(a,b),b) = cons(a,b)
and cons(b, cons(a, a)) = cons(b,a) hold, although neither is a semantic
consequence of the given equations. If, however, we add the conventional
symbols car and cdr, and define them by the equations

car(cons(z,y)) = =z
cdr(cons(z,y)) = y

then we must expand the universe of the algebraic interpretation to the
universe of binary trees with leaves marked a and b. There is no way to
define the functions car and cdr in the flat list model so that they satisfy
the new equations. If we take the full equational theory of the flat list
model, and add the defining equations for car and cdr, then the resulting
theory trivializes. Every two terms s and t are equal by the derivation

s = cdr(car(cons(cons(a,s),b)))
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cdr(car(cons(a, b)))
cdr(car(cons(cons(a, t),b)))
t

Of course, nobody would apply algebraic semantics in this way—taking the
model for a smaller language and trying to interpret new function symbols
in the same universe. But, what the example shows is that an algebraic
model of a given system of equations may not preserve all of the relevant
information about the behavior of those equations in extended languages.
The set of models associated with a system of equations by logical semantics
is much more robust, and carries enough information to perform extensions
such as the example above.

In general, algebraic semantic techniques, based on initial models, final
models, and Herbrand universes, provide useful tools for determining, in a
given program, the minimum amount of information that a data structure
must carry in order to support the computational needs of that program.
They do not, and are not intended to, represent the inherent information
given by the formulae in the program, independently of a particular def-
inition of the computational inputs and outputs that the program may
operate on.
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Sections 2.3.4 and 2.3.5 of the chapter ‘Introduction: Logic and Logic Pro-
gramming Languages’ are crucial prerequisites to this chapter. I summarize



70 Michael J. O’Donnell

their relevance below, but do not repeat their content.

Logic programming languages in general are those that compute by
deriving semantic consequences of given formulae in order to answer ques-
tions. In equational logic programming languages, the formulae are all
equations expressing postulated properties of certain functions, and the
questions ask for equivalent normal forms for given terms. Section 2.3.4 of

the ‘Introduction ...’ chapter gives definitions of the models of equational
logic, the semantic consequence relation
T, (i =t2)

(t1 =t2 is a semantic consequence of the set T of equations, see Defini-
tion 2.3.14), and the question answering relation

(normty,... t;:t) - (t=s)

(t = s asserts the equality of ¢ to the normal form s, which contains no
instances of ¢,...,t;, see Definition 2.3.16). Since this chapter is entirely
about Equational Logic, we drop the subscripts and write |= for |- and
?- for .. The composed relation

(normt,,...,t;: ) = TE({t=s)

(t = s is a semantically correct answer to the question (norm#,...,t; : t)
for knowledge T, see Definition 2.2.2) means that s is a normal form—a
term containing no instances of £, ..., t;—whose equality to ¢ is a seman-
tic consequence of the equations in T. Equational logic programming lan-
guages in use today all take sets T of equations, prohibited forms #;,...,%;,
and terms ¢ to normalize, and they compute normal forms s satisfying the
relation above.

Section 2.3.5 of the ‘Introduction ...’ chapter explains how different
equational languages variously determine T, #;,...,%;, and t from the
language design, the program being executed, and the input. An alter-
nate style of equational logic programming, using questions of the form
(solve z,...,x; : t; = t3) that ask for substitutions for zi,...,z; solving
the equation (t; = t2), is very attractive for its expressive power, but much
harder to implement efficiently (see Section 7.2).

There is a lot of terminological confusion about equational logic pro-
gramming. First, many in the Prolog community use ‘logic’ to mean the
first-order predicate calculus (FOPC), while I stick closer to the dictionary
meaning of logic, in which FOPC is one of an infinity of possible logical
systems. Those who identify logic with FOPC often use the phrase ‘equa-
tional logic programming’ to mean some sort of extension of Prolog using
equations, such as logic programming in FOPC with equality. In this chap-
ter, ‘equational logic programming’ means the logic programming of pure
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equational logic, as described in the chapter ‘Introduction: Logic and Logic
Programming Languages.’

A second source of confusion is that many equational logic programming
languages have been invented under different labels. Lisp [McCarthy, 1960,
APL [Iverson, 1962], Red languages [Backus, 1974], functional program-
ming languages [Backus, 1978; Hudak, 1992], many dataflow languages
[Ashcroft and Wadge, 1985; Pingali and Arvind, 1985; Pingali and Arvind,
1986], and languages for algebraic specification of abstract datatypes [Fu-
tatsugi et al., 1985; Guttag and Horning, 1978; Wand, 1976] are all forms
of equational logic programming languages, although they are seldom re-
ferred to as such. This chapter focuses on a generic notion of equational
logic programming, rather than surveying particular languages.

1.2 Motivation for programming with equations

From a programmer’s point of view, an equational logic programming lan-
guage is the same thing as a functional programming language[Backus,
1978]. The advantages of functional programming languages are discussed
in [Hudak, 1989; Bird and Wadler, 1988; Field and Harrison, 1988]—
equational logic programming languages offer essentially the same advan-
tages to the programmer. Functional programming and equational logic
programming are different views of programming, which provide different
ways of designing and describing a language, but they yield essentially the
same class of possible languages. The different styles of design and descrip-
tion, while they allow the same range of possibilities, influence the sense
of naturalness of different languages, and therefore the relative importance
of certain features to the designer and implementer. The most important
impact of the equational logic programming view on language design is
the strong motivation that it gives to implement lazy, or demand-driven,
computation.

In the conventional view of functional programming, computation is
the evaluation of an input term in a unique model associated with the pro-
gramming language. This view makes it very natural to evaluate a term of
the form f(si,...,sn) by first evaluating all of the arguments s;, and then
applying the function denoted by f to the values of the arguments. If the
attempt to evaluate one of the arguments leads to infinite computation,
then the value of that argument in the model is said to be an object called
‘undefined’ (the word is used here as a noun, although the dictionary rec-
ognizes it only as an adjective), and typically denoted by the symbol L.
But, since the value L is indicated by the behavior of infinite computation,
there is no chance to actually apply the function denoted by f to it, so that
every function is forced to map L to L. Such functions are called strict
functions.

Early functional programming languages required all primitive func-
tions to be strict, except for the conditional function cond. The normal
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way to evaluate a term of the form cond(s,t,u) is to evaluate s, then use
its value to determine which of ¢ or u to evaluate, omitting the other. The
function denoted by cond is thus not strict, since for example the value
of cond(true,0,1) is O rather than L. Only Backus seems to have been
annoyed by the inconsistency between the nonstrictness of the conditional
function and the strictness of all other primitives. He proposed a strict
conditional, recovering the selective behavior of the nonstrict conditional
through a higher-order coding trick [Backus, 1978]. In effect, he took ad-
vantage of the nearly universal unconscious acceptance of a nonstrict in-
terpretation of function application, even when the function to be applied
is strict.

In the equational logic programming view, computation is the deriva-
tion of an equivalent normal form for an input term using the information
given by a set of equations describing the symbols of the programming
language. The equivalence of input to output holds in all of the infinitely
many models of those equations. This view makes it very natural to ap-
ply equations involving f to derive an equivalent form for f(si,...,sn) at
any time, possibly before all possible derivation has been performed on the
arguments s;. The natural desire for completeness of an implementation re-
quires that infinite computation be avoided whenever possible. Notice that
the equational logic programming view does not assign a value L denoting
‘undefined’ (the noun) to a term with infinite computational behavior. In
fact, in each individual model all functions are total. Rather, we might ob-
serve that a term is undefined (the word is now an adjective, as approved by
the dictionary) if there is no equivalent term suitable for output, although
each model of the given equations assigns it some value. So, equational
logic programming leads naturally to computational behavior that is not
strict—in fact, a logically complete implementation of equational logic pro-
gramming must make functions as unstrict as possible. The preference for
nonstrictness comes from regarding undefinedness as our inability to dis-
cover the value of a function, rather than the inherent lack of a semantic
value.

The contrast between strict and nonstrict treatments of functions is
best understood by comparing the conventional implementation of cond,
true and false to that of cons, car and edr in Lisp.

Example 1.2.1. The following equations define the relationship between
cond, true, and false:

T .ong = 1(cond(true,z,y) = z), (cond(false,z,y) =y)}

Similarly the following equations define the relationship between cons, car,
and cdr:

T cons = {(car(cons(z,y)) = z), (cdr(cons(z,y)) =y)}
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These equations were given, without explicit restriction, in the earliest
published definition of Lisp [McCarthy, 1960].

Notice the formal similarity between T, 7 and T cons in Example 1.2.1
above. In both cases, two equations provide a way to select one of the two
subterms denoted by the variables x and y. In T,,,4, the selection is de-
termined by the first argument to cond, in Tcons it is determined by the
function symbol applied to the term headed by cons. Yet in all early Lisp
implementations cons is evaluated strictly, while cond is not. The equation
(car(cons(0,s)) = 0) is a logical consequence of T ¢ons, even when s leads
to infinite computation, so a complete implementation of equational logic
programming must not treat cons strictly.

In the Lisp and functional programming communities, nonstrict evalu-
ation of functions other than the conditional is called lazy evaluation. The
power of lazy evaluation as a programming tool is discussed in [Friedman
and Wise, 1976; Henderson and Morris, 1976; Henderson, 1980; Hudak,
1989; Bird and Wadler, 1988; Field and Harrison, 1988; O’Donnell, 1985].
Lazy evaluation is demand-driven—computation is performed only as re-
quired to satisfy demands for output. So, the programmer may define large,
and even infinite, data structures as intermediate values, and depend on
the language implementation to compute only the relevant parts of those
structures. In particular, lazily computed lists behave as streams [Karlsson,
1981; Hudak and Sundaresh, 1988], allowing a straightforward encoding of
pipelined coroutines in a functional style.

Many modern implementations of functional programming languages
offer some degree of lazy evaluation, and a few are now uniformly lazy. But,
in the functional programming view, lazy evaluation is an optional added
feature to make programming languages more powerful. The basic denota-
tional semantic approach to functional programming makes strictness very
natural to describe, while denotational semantics for lazy evaluation seems
to require rather sophisticated use of domain theory to construct models
with special values representing all of the relevant nonterminating and par-
tially terminating behaviors of terms [Winksel, 1993]. In the equational
logic programming view, lazy evaluation is required for logical complete-
ness, and strict evaluation is an arbitrary restriction on derivations that
prevents certain answers from being found.

The functional and equational views also diverge in their treatments
of certain terms that are viewed as pathological. From the functional
programming view, pathological terms seem to require specialized logical
techniques treating errors as values, and even new types of models called
error algebras [Goguen, 1977]. For example, in a language with stacks,
the term pop(empty) is generally given a value which is a token denoting
the erroneous attempt to pop an empty stack. Given a set of equations,
equational logic programming provides a conceptual framework, based on
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well-understood traditional concepts from mathematical logic, for prescrib-
ing completely the computational behavior of terms. The judgement that
a particular term is pathological is left to the consumer of that answer,
which might be a human reader or another program. For example, the
term pop(empty) need not be evaluated to an error token: it may be out-
put as a normal form, and easily recognized as a pathological case by the
consumer. Or, an explicit equation pop(empty) = e may be added to the
program, where e gives as much or as little detailed information about the
particular error as desired.

So, for the programmer there is nothing to choose between lazy func-
tional programming and equational logic programming—these are two styles
for describing the same programming languages, rather than two different
classes of programming languages. To the language designer or implemen-
tor, the functional programming view provides a connection to a large body
of previous work, and offers some sophisticated tools for the thorough de-
scription of the processing of erroneous programs and the use of varying
degrees of strictness or laziness. The equational logic programming view
offers a deeper explanation of the logical content of computations, a way
- of defining correctness of the computation of answers independently of the
classification of programs as correct or erroneous, and a strong motivation
for uniformly lazy evaluation. It also connects equational/functional pro-
gramming to other sorts of logic programming in a coherent way, which
may prove useful to future designs that integrate equational/functional
programming with other styles.

1.3 Outline of the chapter

The next part of this chapter is primarily concerned with problems in
the implementation of equational logic programming and some interest-
ing variants of it. Those problems arise at four very different levels of
abstraction—logic, strategy, algorithm, and code. At the level of pure
logic, Section 2 discusses two different formal systems of proof for equa-
tional logic—inferential proof and term rewriting proof—and argues that
the latter is logically weaker in general, but more likely to provide efficient
computation for typical equational programs. The confluence property of
sets of equations is introduced, and shown to be a useful way of guarantee-
ing that term rewriting proof can succeed. Next, Section 3 treats high-level
strategic questions in the efficient search for a term rewriting proof to an-
swer a given question. The crucial problem is to choose the next rewriting
step out of a number of possibilities, so as to guarantee that all correct an-
swers are found, and to avoid unnecessary steps. Then, Section 4 discusses
the design of efficient algorithms and data structures for finding and choos-
ing rewriting steps, and for representing the results of rewriting. Section 5
contains a brief description of the conventional machine code that a com-
piler can generate based on these algorithms and data structures. Section 6
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discusses briefly some of the problems involved in parallel implementation
of equational logic programming. Finally, Section 7 treats several possible
extensions to the functionality of equational logic programming and the
problems that arise in their semantics and implementation.

2 Proof systems for equational logic

The basic idea in implementations of equational logic programming is to
search for a proof that provides a correct answer to a given question. The
basic idea behind proofs in equational logic is that the equation t; = ¢
allows ¢; and 2 to be used interchangeably in other formulae. As in Def-
inition 3.1.1, of the chapter ‘Introduction: Logic and Logic Programming
Languages,” T | D — F means that D is a correct proof of the formula F
from hypotheses in T. T F F means that there exists a proof of F from
hypotheses in T. In this chapter, subscripts on the generic symbols | —
and + are omitted whenever the particular proof system is clear from the
context.

In Sections 2.1 and 2.2, we consider two different styles of equational
proof. Inferential proofs derive equations step by step from other equa-
tions. Term rewriting proofs use equations to transform a given term into
a provably equivalent term by substituting equals for equals.

2.1 Inferential proofs

In order to explore a variety of approaches to proving equations, we first
define generic concepts of rules of inference and proofs using rules, and
then consider the power of various sets of rules.

Definition 2.1.1. Let the set V of variables, the sets Fun; of i-ary func-
tion symbols, and the set Tp of terms, be the same as in Definition 2.3.1
of the ‘Introduction ...’ chapter Section 2.3, and let the set of equational
formulae, or simply equations, be F-. = {t; =t :t),t2 € Tp}, as in Defi-
nition 2.3.13 in Section 2.3.4 of the chapter ‘Introduction: Logic and Logic
Programming Languages.’

An equational rule of inference is a binary relation

RC2F= xF.

When T R F, we say that F follows from T by rule R. Members of T are
called hypotheses to the application of the rule, and F is the conclusion.
When @ R F, we call F a postulate. (It is popular now to call a postulated
formula F' an aziom, although the dictionary says that an axiom must be
self-evident, not just postulated.) Rules of inference are usually presented
in the form
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Where H; ..., H,, are schematic descriptions of the hypotheses, and C is
a schematic description of the conclusion of an arbitrary application of the
rule. Notice that the union of rules of inference is itself a rule.

The set of inferential equational proofs is P. = F the set of nonempty
finite sequences of equations. Given a rule of inference R, the proof relation

|—1z§ 211‘é XP=- XF&

is defined by
T | (Fy,...,F,) —r Fif and only if F,, = F and,
for all 7« < m, one of the following cases holds:

1. F;eT
2. There exist ji1,...,Jn <1 such that {Fj,,...,F; } R F;

So, a proof of F' from hypotheses in T using rule R is a sequence of equa-
tions, each one of which is either a hypothesis, or it follows from previous
equations by the rule R. The following are popular rules of inference for
proofs in equational logic.

Definition 2.1.2.

Reflexive -
s=s
. s=t
Symmetric —
=s
... =85, 8=
Transitive .
r=
.. 5=
Instantiation

s[r/x] = t[r/x]

s=t

r[s/x] = rt/x]

Substitution

Slﬁtl,...,smitm

f(s1,.0h8m) = fltr, ... tm)

Congruence
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Now, when R is the union of any of the rules presented above, (F_,P.,
| =) is a compact proof system (Definition 2.1.3, Section 2.1).

The rules above are somewhat redundant. Every proof system using a
subset of these rules is sound, and those using the Reflexive, Symmetric,

Transitive and Instantiation rules, and at least one of Substitution and
Congruence, are also complete.

Proposition 2.1.3. Let R be the union of any of the rules in Defini-
tion 2.1.2. Then (F-.,P_.,| —z) is a sound proof system for the standard
semantic system of Definition 2.3.14, Section 2.8.4 of the chapter ‘Introduc-
tion: Logic and Logic Programming Languages.” That is, T b (t, = t2)
implies T = (t; = t3).

The proof of soundness is an elementary induction on the number of
steps in a formal equational proof, using the fact that each of the rules of
inference proposed above preserves truth.

Proposition 2.1.4. Let R be the union of the Reflezive, Symmetric,
Transitive, and Instantiation rules, and at least one of the Substitution
and Congruence rules. Then (F-,P.,| -gr) is a complete proof system.
That is, T |= (t1 = tz) implies T |"R (t1 = tz).

To prove completeness, we construct for each set T of equations, a
term model My such that Theory({Mr}) contains ezactly the semantic
consequences of T. For each term t € Tp,

ltlhe ={s: TFr (s =t)}

Because R includes the Reflexive, Symmetric, and Transitive rules, prov-
able equality is an equivalence relation on terms, and |t|x is the equivalence
class containing t. Now, construct the model

My = (U'r, T’r)

whose universe is
Ur = {|t|r:t € Tp}

and whose function assignment is defined by

e(H)(tslrs .- ltile) = [f(t1,- - - t)lr

Either of the rules Substitution and Congruence is sufficient to guaran-
tee that ©r 1s well defined. Finally, the Instantiation rule guarantees that
TF (s =t) if and only if 7r,(s) = 1,(t) for all variable assignments v,
which by Definition 2.5.14 is equivalent to T | (s = t).
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Notice that each inference by the Congruence rule is derivable by k
applications of the Substitution rule, combined by the Transitive rule. In
effect, Congruence is just a special form of multiple simultaneous substi-
tution. Similarly, each inference by the Substitution rule is derivable by
repeated applications of the Congruence rule and additional instances of
the Reflexive rule (this can be proved easily by induction on the structure
of the term r on which substitution is performed in the Substitution rule).

In the rest of this chapter, the symbols | —;,r and Fi,s refer to a sound
and complete system of inferential equational proof, when the precise rules
of inference are not important.

2.2 Term rewriting proofs

The most commonly used methods for answering normal form questions
(norm ¢y,...,¢; : t) all involve replacing subterms by equal subterms, using
the Substitution rule, to transform the term ¢ into an equivalent normal
form. Substitution of subterms according to given rules is called term
rewriting, and is an interesting topic even when the rewriting rules are
not given by equations (see the chapter ‘Equational Reasoning and Term
Rewriting Systems’ in Volume 1). In this chapter, we are concerned only
with the use of term rewriting to generate equational proofs—this technique
is also called demodulation [Loveland, 1978] in the automated deduction
literature.

Definition 2.2.1. Let T={lj =ry,...,l, =ra} be a set of equations.
Recall that an instance of a formula or term is the result of substituting
terms for variables (Definition 2.3.5 in Section 2.3.1 of the chapter ‘Intro-
duction: Logic and Logic Programming Languages’).

A term s; rewrites to sy by T (written s; 5 82) if and only if there is
a term ¢, a variable x with exactly one occurrence in ¢, and an instance
I; = r! of an equation /; = r; in T, such that s, = ¢[l}/z] and s; = t[r}/z].
That is, $5 results from finding exactly one instance of a left-hand side of
an equation in T occurring as a subterm of s;, and replacing it with the
corresponding right-hand side instance.

A term rewriting sequence for T is a nonempty finite or infinite sequence
{ug,u1,...) such that, for each ¢, u; 5 Uit]-

Term rewriting sequences formalize the natural intuitive process of re-

placing equals by equals to transform a term. A term rewriting sequence
may be viewed as a somewhat terse proof.

Definition 2.2.2. Let T; be the set of nonempty finite sequences of terms
in Tp. The proof relation | —, is defined by T | {ug, ..., Um) —¢ (s =1t} if
and only if ug = 3, 4, = t, and for each < m, u; N Uit1-

Then (F.,T},| —1), is a compact proof system, representing the term
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rewriting style of equational proof.

A term rewriting proof for T represents an inferential proof from hy-
potheses in T in a natural way.
Proposition 2.2.3. If Ty (s =t), then T bins (s =t).

Let (ug,...,un) be the term rewriting sequence such that

T | (uo,.-.,un) —¢r (s=1)

In particular, ug = s and un, =t. The proof of the proposition is an ele-
mentary induction on n.

Basis: For n=0, s=up=un =1, 50 T |{uo = uo) —int (s=1), by
the Reflexive rule.

INDUCTION: For n >0, since a nonempty prefit of a term rewrit-
ing proof is also a term rewriting proof, we have T | (uo,...,Un—1) —tr
(8 = un—1). By the induction hypothesis, there is a D such that T | D —in¢
(s = Un—1). It is easy to extend D to D’ so that TID' —(s=1t), by
adding the following steps:

o the appropriate equation from T;

e a sequence of applications of the Instantiation rule to produce the
appropriate instance of the equation above;

e one application of the Substitution rule to produce un_1 =t;

e one application of the Transitive rule to produce s = t.

Since inferential proof is sound, it follows that term rewriting proof is
also sound.

Example 2.2.4. Let T = {f(a, f(z,y)) = f(y, ), g(z) = z}.

(f(g(a), f(g(b),c)), f(a, f(g(b);c)), flc,g(b)), f(c,b))

is a term rewriting proof of

f(g(a), f(g(b), c)) = f(c,b)

from T. The corresponding inferential proof from the induction in Propo-
sition 2.2.3 is given below. Line numbers are added on the left, and rules
cited on the right, for clarity: formally the proof is just the sequence of
equations. The key occurrences of the terms in the term rewriting sequence
above are boxed to show the correspondence.
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(
1 f(ga), flg(b)e) = [f(g(a), f(g(®), )] Refleive
2 glz) = =z , Hypothesis
3 gla) = a ,  Instantiation,2
4 flg(a), f(g(b),c)) = f(a, f(g(b),c)) ,  Substitution,3
5 flg(a), f(g(b),c)) = m , Transitive,1,3
7 fla, f(z,y)) = f(y,7) , Hypothesis
8 fla, f(g(®),9)) = f(y,9(b)) ,  Instantiation,7
9 f(a, f(g(0),0)) = f(c,g(b)) ,  Instantiation,8
10 fla, f(g(0),c)) = flc,9(b) , Substitution,9
11 f(g(a), f(g(b),c)) = |f(c,g(®) ,  Transitive,1,10
12 glz) = z ‘ , Hypothesis
13 gb) = b , Instantiation,12
14 fle,g(d)) = flc,b) ,  Substitution 13
15 f(g(a), f(g(b),c)) f(c,b) Transitive,1, 14

)

Steps 5, 10, and 12 above are redundant (they reproduce the results already
obtained in steps 4, 9, 2), but the systematic procedure in the induction of
Proposition 2.2.3 includes them for uniformity.

So, a term rewriting proof is a convenient and natural shorthand for an
inferential proof.

Not every inferential proof corresponds to a term rewriting proof. First,
the proofs corresponding to term rewriting sequences do not use the Sym-
metric rule. This represents a serious incompleteness in term rewriting
proof. Section 2.3 shows how restrictions on equational hypotheses can
avoid the need for the Symmetric rule, and render term rewriting complete
for answering certain normal form questions.

Example 2.2.5. Let T={a=b,c=b c=d}. Tk (a=d), and
T Fins (@ = d), by one application of the Symmetric rule and two appli-
cations of the Transitive rule. But, there is no term rewriting sequence
from a to d, nor from d to a, nor from a and d to a common form equal to
both.

Second, term rewriting proofs limit the order in which the Instantiation,
Substitution, and Transitive rules are applied. This second limitation does
not affect the deductive power of the proof system.

Proposition 2.2,6. Let T = {l, =r1,...,ln =r,} be a set of equations.
Let T = {r=4,...,rn =1} TX is the same as T except that the left
and right sides of equations are interchanged—equivalently, T® contains
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the results of applying the Symmetric rule to the equations in T.

For all equations (s = t), if T Fins (s = t) (equivalently, if T |= (s =1t))
then TU TR b, (s=1).

The proof of the proposition, given in more detail in [O’Donnell, 1977],
works by permuting the steps in an arbitrary inferential proof of s = ¢ into
the form:
hypotheses;
applications of the Symmetric rule;
applications of the Instantiation rule;
applications of the Substitution rule;

5. applications of the Transitive rule.

W=

The reflexive rule is only needed in the degenerate case when s =1 (s
and t are the same term). In this form, it is easy to represent each of
the applications of the Transitive rule as concatenating two term rewriting
sequences. The crucial quality of the permuted form of the proof is that
all uses of the Instantiation rule come before any use of the Transitive and
Substitution rules.

The implementor of a logic programming system often faces a trade-
off between the cost of an individual proof, and the cost of the search for
that proof. The discipline of term rewriting can be very advantageous in
reducing the number of possible steps to consider in the search for a proof
to answer a question, but it increases the lengths of proofs in some cases.
Section 4.3.3 shows how clever uses of Instantiation sometimes reduce the
length of a proof substantially compared to term rewriting proofs. Effi-
cient implementations of programming languages have not yet succeeded
in controlling the costs of search for a proof with the more sophisticated
approaches to Instantiation, so term rewriting is the basis for almost all
implementations.

2.3 The confluence property and the completeness of
term rewriting

Term rewriting is often much more efficient than an undisciplined search
for an equational proof. But, for general sets T of equational hypotheses,
term rewriting is not complete, due to its failure to apply the Symmet-
ric rule. It is tempting, then, to use each equation in both directions,
and take advantage of the completeness result of Proposition 2.2.6. Un-
fortunately, known techniques for efficient term rewriting typically fail or
become inefficient when presented with the reversed forms of equations.
So, we find special restrictions on equations that imply the completeness of
term rewriting for the answering of particular normal form questions. The
confluence property, also called the Church-Rosser property, provides the
key to such restrictions.
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Definition 2.3.1. Let — be a binary relation, and —* be its reflexive—
transitive closure. — is confluent if and only if, for all s, ¢, ¢3 in its
domain such that s —»* ¢; and s =* o, there exists a u such that ¢; =»* u
and t2 —* u (see Figure 1 B)

/\ /\ /\
\/ \/ \/

A. Local confluence B. Confluence C. One-step confluence

The circle around u indicates that it is existentially quantified, the uncircled
s, 11, t2 are universally quantified.

Fig. 1. Confluence and related properties.

Two similar properties that are very important in the literature are
local confluence, which is weaker than confluence, and one-step confluence,
which is stronger than confluence.

Definition 2.3.2 (([Newman, 1942]). Let — be a binary relation, and
—* be its reflexive-transitive closure.- — is locally confluent if and only if,
for all s, t;, t2 in its domain such that s — ¢; and s — 2, there exists a u
such that t; =* u and t2 =* u (see Figure 1 A).

While confluence guarantees that divergent term rewriting sequences
may always be rewritten further to a common form, local confluence guar-
antees this only for single step term rewriting sequences.

Definition 2.3.3 ([Newman, 1942]). Let — be a binary relation. — is
locally confluent if and only if, for all s, 1, ¢2 in its domain such that s — ¢,
and s — £, there exists a u such that t; — u and t2 — u (see Figure 1 C).

While confluence guarantees that divergent term rewriting sequences
may always be rewritten further to a common form, one-step confluence
guarantees that for single step divergences, there is a single-step conver-
gence.

Proposition 2.3.4. One-step confluence implies confluence implies local
confluence.

The first implication is a straightforward induction on the number of
steps in the diverging rewrite sequences. The second s trivial.
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2.3.1 Consequences of confluence

When the term rewriting relation 5 for a set T of equations has the con-
fluence property, term rewriting is sufficient for deriving all logical conse-
quences of T, in the sense that T |= (s = t) implies that s and ¢ rewrite to
some common form u.

Proposition 2.3.5 ([Curry and Feys, 1958]). Let T be a set of equa-
tions, and let — be the term rewriting relation for T (Definition 2.2.1). If
5 is confluent, then for all terms s and t such that T E (s =t), there is
a term u such that T by (s = u) and T by, (8 = u).

The proof of the proposition is an elementary induction on the length
of an inferential proof D such that T |1 D —iys (s = t).

So, confluent term rewriting is nearly complete, in the sense that every
logical consequence s = ¢ of a set of equations T may be derived by choosing
an appropriate term u, and finding two term rewriting proofs and a trivial
inferential proof as follows:

1. Thy (s =u)
2. T by (=)
3. {s =u, t =u} by (s = ¢) trivially, by one application of Symmetry
and one application of Transitivity.
The near-completeness of confluent term rewriting leads to its use in the-
orem proving [Knuth and Bendix, 1970; Loveland, 1978]. For equational
logic programming, term rewriting can answer all normal form queries in

a confluent system, when the prohibited terms in normal forms are all the
left-hand sides of equations.

Proposition 2.3.6. Let T={ly =r,...,ln =rn} be a set of equa-
tions, with confluent term rewriting relation I), and let t be any term.

If
(normby,.. . ln: ) = TE(t=2s)

then
(normily,... .l : )= Tk (t=5)

The proof is elementary. By confluence, t and s rewrite to a common
form u. Since s is a normal form, it is not rewritable, and must be the
same as u.

So, for equations T with confluent rewriting relation, term rewriting
based on T is sufficient for answering all queries requesting normal forms
that prohibit left-hand sides of equations in T. From now on, a normal
form will mean a normal form for the left-hand sides of whatever set of
equations we are discussing (see Definition 2.3.16 in the chapter ‘Introduc-
tion: Logic and Logic Programming Languages’ for the general concept of
normal form).
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The most famous consequence of the confluence property is uniqueness
of normal forms.

Proposition 2.3.7. Let T={lh =r1,...,lm =7m} be a set of equa-
tions, with confluent term rewriting relation =. If

(norm1y,...,In:t) =T E({t=23)

and
(morm!y,.. ., Im:t) = T E (t = s2)

then s; = 32 (51 and s2 are the same term).

The proof is elementary. By confluence, sy and sz rewrite to a common
form u. Since s; and ss are normal forms, they are not rewritable, and
must be the same as u.

So, equational logic programs using confluent systems of equations have
uniquely defined outputs. This is an interesting property to note, but it is
not essential to the logic programming enterprise—logic programs in FOPC
are allowed to have indeterminate answers (Section 2.3.1 of the ‘Introduc-
tion’ chapter), and this freedom is often seen as an advantage. In efficient
equational logic programming, confluence is required for the completeness
of term rewriting, and uniqueness of answers is an accidental side-effect
that may be considered beneficial or annoying in different applications.
Confluence, in effect, guarantees that the order of applying rewrite steps
cannot affect the normal form. In Section 3 we see that the order of appli-
cation of rewrite rules can affect the efficiency with which a normal form is
found, and in some cases whether or not the unique normal form is found
at all.

2.3.2 Testing for confluence

Proposition 2.3.8. Confluence is an undecidable property of finite sets
of equations.

The proof is straightforward. Given an arbitrary Turing Machine M,
modify M so that, if it halts, it does so in the special configuration Iy.
Encode configurations (instantaneous descriptions) of M as terms (just let
the tape and state symbols be unary function symbols), and provide rewrit-
ing rules to simulate the computation of M. So far, we have a system
of equations in which an arbitrary encoding of an initial configuration Iy
rewrites to Iy if and only if M halts on Iy. Choose a new symbol a not
used in encoded configurations, and add two more equations: Iy = a and
Iy = a. The extended system is confluent if and only if M halts on Io.

For practical purposes in programming language implementations, we
need a sufficient condition for confluence that is efficient to test.
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Orthogonality. A particularly useful sort of condition for guaranteeing
confluence is orthogonality, also called regularity (but not connected in
any sensible way to the regular languages). Orthogonality is a set of re-
strictions on rewrite rules insuring that they do not interfere with one
another in certain pathological ways. We consider three versions of or-
thogonality. Rewrite-orthogonality insures that the rewrites performed by
the rules do not interfere, while the stronger condition of rule-orthogonality
prohibits even the appearance of interference based on an inspection of the
left-hand sides of the rules, and ignoring the right-hand sides. Constructor-
orthogonality is an even stronger and simpler syntactic condition that guar-
antees rule-orthogonality. In other literature on term rewriting, ‘orthogo-
nality’ and ‘regularity’ refer to the stronger form, rule-orthogonality.

Definition 2.3.9. Let T = {l; =ry,...,l, =7} be a set of equations.
T is rewrite-orthogonal if and only if the following conditions hold:

1. (Nontrivial) No left-hand side {; of an equation I; = r; in T consists
entirely of a variable.

2. (Rule-like) Every variable in the right-hand side r; of an equation
l; = r; in T occurs in the left-hand side [; as well.

3. (Left-linear) No variable occurs more than once in the left-hand side
l; of an equation l; =7r; in T.

4. (Rewrite-Nonambiguous) Let I; and {; be left-hand sides of equations
in T, and let s be a term with a single occurrence of a new variable
y (not occurring in any equation of T). If

slilts, .- tm/T1, - Tm) Y] = it -t/ 2Y, - 2]

then either s is an instance of [, or

s[rilty, .-y tm/Z1, - Zm) /Y] = 1[0, -t /Y, )
In clause 4 the nested substitution may be hard to read.

S[Tl‘[tl,. .. ,tm/.’L‘l, e ,.’L‘m]/y]

is the result of substituting ¢;,...,t, for z;,...,Z, in r;, to produce r} =
ri[t1, .. -, tm/Z1, ..., Tm], then substituting r; for ¥ in s. Clause 4 is best
understood by considering an example where it fails. The set of equations
{f(g(v,w),z) = a, g(h(y),z) = b} is rewrite-ambiguous bécause, in the
term f(g(h(c),d),e), there is an instance of f(g(w,z)) and an instance
of g(h(y),z), and the two instances share the symbol g. Furthermore,
f(g(h(c),d),e) rewrites to a using the first equation, and to a different
result, f(b,e), using the second equation.

Nontriviality and the Rule-like property are required in order for the
interpretation of the equations as term rewriting rules to make much sense.
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Left-linearity is of practical importance because the application of a rule
with repeated variables on the left-hand side requires a test for equality.
Non-left-linear systems also fail to be confluent in rather subtle ways, as
shown in Example 2.3.16 below. Rewrite-nonambiguity says that if two
rewriting steps may be applied to the same term, then they are either
completely independent (they apply to disjoint sets of symbols), or they
are equivalent (they produce the same result). Example 2.3.16 below shows
more cases of rewrite-ambiguity and its consequences.

One simple way to insure rewrite-nonambiguity is to prohibit all inter-
ference between left-hand sides of rules.

Definition 2.3.10 (Klop [1991;1980]). Let T ={l; =r,...,l, =1,}
be a set of equations. T is rule-orthogonal if and only if T satisfies condi-
tions 1-3 of Definition 2.3.9 above, and also

4" (Rule-Nonambiguous) Let /; and {; be left-hand sides of equations in
T, and let s be a term with a single occurrence of a new variable y
(not occurring in any equation of T). If

sty -y tm/Z1, ..y Tm] /Y] = LiltL, -t /2, 2]

then either s is an instance of [;, or s =y and i = j.

Rule-nonambiguity says that if two rewriting steps may be applied to the
same term, then they are either completely independent, or they are iden-
tical (the same rule applied at the same place). Notice that rule nonambi-
guity depends only on the left-hand sides of equations, not the right-hand
sides. In fact, only the Rule-like condition of rule-orthogonality depends
on right-hand sides.

Definition 2.3.11. Two systems of equations are left-similar if the mul-
tisets of left-hand sides of equations are the same, except for renaming of
variables.

Proposition 2.3.12. A set T of equations is rule-orthogonal if and only
if

o T satisfies the rule-like restriction, and

o every rule-like set of equations left-similar to T is rewrite-orthogonal.

That is, rule-orthogonality holds precisely when rewrite-orthogonality can
be guaranteed by the forms of the left-hand sides alone, independently of
the right-hand sides.

An even simpler way to insure rule-nonambiguity is to use a constructor
system, in which symbols appearing leftmost in rules are not allowed to
appear at other locations in left-hand sides.

Definition 2.3.13. Let T = {l; =ry,...,ln = r.} be a set of equations.
T is constructor-orthogonal if and only if T satisfies conditions 1-3 of
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Definition 2.3.9 above, and the symbols of the system partition into two
disjoint sets—the set C of constructor symbols, and the set D of defined
symbols, satisfying

4" (Symbol-Nonambiguous)

¢ Every left-hand side of an equation in T has the form f(¢1,...,
t,), where f € D is a defined symbol, and ¢,,...,¢, contain
only variables and constructor symbols in C.

e Let I; and I; be left-hand sides of equations in T. If there exists
a common instance s of /; and [;, then ¢ = 5.

In most of the term-rewriting literature, ‘orthogonal’ and ‘regular’ both
mean rule-orthogonal. It is easy to see that constructor orthogonality im-
plies rule-orthogonality, which implies rewrite-orthogonality. Most func-
tional programming languages have restrictions equivalent or very similar
to constructor-orthogonality.

Orthogonal systems of all varieties are confluent.

Proposition 2.3.14. Let T be a constructor-, rule- or rewrite-orthogonal

set of equations. Then the term rewriting relation 3 is confluent.

Let — be the rewrite relation that is to be proved confluent. The essen-
tial idea of these, and many other, proofs of confluence is to choose another
relation —' with the one-step confluence property (Definition 2.3.3, whose
transitive closure is the same as the transitive closure of —. Since conflu-
ence is defined entirely in terms of the transitive closure, — s confluent
if and only if ' is confluent. —' is confluent because one-step confluence
implies confluence. To prove confluence of orthogonal systems of equations,
the appropriate —' allows simultaneous rewriting of any number of disjoint
subterms.

Theorem 10.1.8 of the chapter ‘Equational Reasoning and Term-
Rewriting Systems’ in Section 10.1 of Volume 1 of this handbook is the
rewrite-orthogonal portion of this proposition, which is also proved in [Huet
and Lévy, 1991; Klop, 1991]. The proof for rewrite-orthogonal systems has
never been published, but it is a straightforward generalization. [O’Donnell,
1977] proves a version intermediate between rule-orthogonality and rewrite-
orthogonality.

In fact, for nontrivial, rule-like, left-linear systems, rule-nonambiguity
captures precisely the cases of confluence that depend only on the left-hand
sides of equations.

Proposition 2.3.15. A nontrivial, rule-like, lefi-linear set T of equations
is rule-nonambiguous if and only if, for every set of equations T’ left-

!
similar to T, 5 is confluent.
(=) is a direct consequence of Propositions 2.3.14 and 2.5.12. (&) is
straightforward. In a rule-ambiguous system, simply fill in each right-hand
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side with a different constant symbol, not appearing on any left-hand side,
to get a nonconfluent system.

In the rest of this chapter, we use the term ‘orthogonal’ in assertions
that hold for both rewrite- and rule-orthogonality. To get a general un-
derstanding of orthogonality, and its connection to confluence, it is best
to consider examples of nonorthogonal systems and investigate why they
are not confluent, as well as a few examples of systems that are not rule
orthogonal, but are rewrite orthogonal, and therefore confluent.
Example 2.3.16. The first example, due to Klop [Klop, 1980], shows
the subtle way in which non-left-linear systems may fail to be confluent.
Let

T = {EQ(‘T"’E) = true, f({E) = eQ(mv f(z))a a= f(a)}
eg represents an equality test, a very useful operation to define with a
non-left-linear equation. Now

fa) 3 eq(a, f(a)) 3 eq(f(a), f(a)) 33 true
and also

f@) 3 f(f(a) 3 fleala, f(a))) 3 flea(f(a), f(a)) 3 f(true)

true is in normal form, and f(true) rewrites infinitely as

f(true) I eq(true, f(true)) f eq(true, eq(true, f(true))) ..

The system is not confluent, because the attempt to rewrite f(true) to true
yields an infinite regress with f(true) =3 eq(true, f(true)). Notice that —
has unique normal forms. The failure of confluence involves a term with
a normal form, and an infinite term rewriting sequence from which that
normal form cannot be reached. Non-left-linear systems that satisfy the
other requirements of rule-orthogonality always have unique normal forms,
even when they fail to be confluent [Chew, 1981]. I conjecture that this
holds for rewrite-orthogonality as well.
A typical rewrite-ambiguous set of equations is

T2 = {c(a,'y) = a, C(fE, b) = b}

¢ represents a primitive sort of nondeterministic choice operator. Tz vio-
lates condition (4') because

wle(a, y)[b/y)/w) = c(a,b) = c(z, b)[a/x]

but



Equational Logic Programming 89

wlalb/yl/w] = a # b = bla/x]
2 is not confluent, as c(a,b) =3 a by the first equation, and ¢(a,b) =3 b by

the second equation, but a and b are in normal form.
By contrast, consider the set

Tor+ = {or(true,y) = true, or(z, true) = true}

of equations defining the positive parallel or operator. Although Tory is
rule-ambiguous, it is rewrite-nonambiguous:

wlor(true, y)[true/y]/w] = or(true, true) = or(z, true)(true/z]

and w is not an instance of or(z, true), but the corresponding right-hand
sides are both true:

w(true[true/y|/w] = true = true(true/z]

T
Tor4+ is rewrite-orthogonal, so %+ is confluent.
A more subtle example of a rewrite-orthogonal set of equations that is
rule-ambiguous is the negative parallel or:

Tor— = {or(false,y) =y, or(z,false) = z}
Although

wlor(false, y)[false [y]/w] = or(false, false) = or(z, false){false/x]

and w is not an instance of or(z, false), the substitution above unifies the
corresponding right-hand sides as well:

ylfalse/y] = false = z{false/x]

T -
Tor- is rewrite-orthogonal, so %~ is confluent.
Another type of rewrite-ambiguous set of equations is

Ts = {f(9(z,y)) = 9(f(2), f(¥)), 9(i,2) = 2}

These equations express the fact that f is a homomorphism for g (i.e., f
distributes over g), and that 7 is a left identity for g. The left-hand sides of
the two equations overlap in f(g(z, 2)), with the symbol g participating in
instances of the left-hand sides of both equations. Condition (4) is violated,

because
w)(g(i, 2)[y/2]/w] = f(9(i,y)) = f(9(z,y))[i/]
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but f(w) is not an instance of f(g(z,y)). 3 is not confluent, as f(g(i, 1)) =3

g(f (@), f(?)) by the first equation, and f(g(, 1)) B3 #(i) by the second equa-
tion, but both g(f(¢), f(i}) and f(¢) are in normal form. While the previous
examples of ambiguity involved two rules applying to precisely the same
term, the ambiguity in T3 comes from two overlapping applications of
rules to a term and one of its subterms. Some definitions of orthogonal-
ity /regularity treat these two forms of ambiguity separately.

By contrast, consider the set

Ty = {f(g(z,y)) = f(y), g(i,2) = 2}

Although T, is rule-ambiguous, it is rewrite-nonambiguous:

fw)lg(, 2)[y/z]/w] = f(g(i,y)) = f(g(,y))i/x]

and f(w) is not an instance of f(g(z,y)), but the corresponding right-hand

sides yield
f(w)lz[z/2]/w] = f(2) = f(y)li,2/=,y]

T, is rewrite-orthogonal, so %% is confluent.
Condition (4) may also be violated by a single self-overlapping equation,

such as
= {f(f(z)) = g(=)}

The left-hand side f(f(z)) overlaps itself in f(f(f(z))), with the second
instance of the symbol f participating in two different instances of f(f(z)).
Condition (4) is violated, because

Ff(f@) /vl = F(f(f(2)) = f(f(2))[f(z)/=]

but f(y) is not an instance of f(f(x)). 23 is not confluent, as f(f(f(a))) I
9(f(a)) and f(f(f(a))) 7% f(g(a)), but both g(f(a)) and f(g(a)) are in

normal form.
A final example of overlapping left-hand sides is

T6 = {f(g(avx)vy) iav g(Z,b) = b}

The left-hand sides of the two equations overlap in f(g(a,b),y), with the
symbol g participating in instances of the left-hand sides of both equations.
Condition (4) is violated, because

f(w,y)lg(z,b)[a/z]/w] = f(g(a,b),y) = f(g(a,z),y)[b/2]

but f(w,y) is not an instance of f(g(a,z),y). T$ is not confluent, as
f(g(a,b),¢) =$ a by the first equation, and f(g(a,b),c) =3 £(b, ¢) by the
second equation, but both a and f(b,¢) are in normal form.
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The equations for combinatory logic
TSK = {@(@(@(va)7y)7z) = @(@(xsz)v@(yvz))v @(@(K,x),y) = .’L’}

are rule-orthogonal, but not constructor-orthogonal, since the symbol @
(standing for application of a function to an argument) appears leftmost
and also in the interior of left-hand sides. In more familiar notation, @(a, 3)
is written (af3), and leftward parentheses are omitted, so the equations look
like

Szyz = x2z(yz), Kzy ==z

Many functional programming languages vary the definition of constructor-
orthogonality to allow pure applicative systems (the only symbol of arity
greater than zero is the apply symbol @) in which the zeroary symbols
(S and K in the example above) are partitioned into defined symbols and
constructors.

The equations for addition of Horner-rule form polynomials in the sym-
bolic variable V' (V is a variable in the polynomials, but is treated formally
as a constant symbol in the equations) are

poly= { FF@,x(Vi2)), + (5, #(V,2)) = +(+(w,9), #(V, +(z,2)),
+(w, +(5, x(V,2))) = +(+(w,9), x(V; 2)),
(w0, (V. 2)),9) = +(+(w,9), #(Vz)) }

This system is rule-orthogonal, but not constructor-orthogonal, because
the symbols + and * appear leftmost and also in the interior of left-hand
sides. In the more familiar infix form for + and x, the equations look like

(wW+V*z)+y+V*z)=(w+y)+V=(z+2),
w+ Y+ V*z)=(w+y)+Vx*z
(w+Vs*z)+y=(w+y)+V=*z

No natural variation on the definition of constructor-orthogonality seems to
allow these equations. The only obvious way to simulate their behavior with
a constructor-orthogonal system is to use two different symbols for addition,
and two different symbols for multiplication, depending on whether the
operation is active in adding two polynomials, or is merely part of the
representation of a polynomial in Horner-rule form.

Although the polynomial example above shows that some natural sets of
equations are rule-orthogonal but not constructor-orthogonal, Thatte has
an automatic translation from rule-orthogonal to constructor-orthogonal
systems [Thatte, 1985] showing that in some sense the programming power
of the two classes of systems is the same. I still prefer to focus attention on
the more general forms of orthogonality, because they deal more directly
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with the intuitive forms of equations, and because I believe that improved
equational logic programming languages of the future will deal with even
more general sets of equations, so I prefer to discourage dependence on the
special properties of constructor systems.

Knuth-Bendix Methods. Although overlapping left-hand sides of equa-
tions may destroy the confluence property, there are many useful equa-
tional programs that are confluent in spite of overlaps. In particular, the
equation expressing the associative property has a self-overlap, and equa-
tions expressing distributive or homomorphic properties often overlap with
those expressing identity, idempotence, cancellation, or other properties
that collapse a term. These overlaps are usually benign, and many useful
equational programs containing similar overlaps are in fact confluent.

Example 2.3.17. Consider the singleton set
T7 = {g(x,g(y,z)) = g(g(xiy)iz)}

expressing the associative law for the operator g. This equation has a self-
overlap, violating condition (4) of rewrite-orthogonality (Definition 2.3.9)
because

g(w,u)lg(z, 9(y, 2)) /u] = g(w,g(z,9(y,2)))
= g(z, g(y,2))[w, z,9(y, 2)/,y, 2]

but the corresponding right-hand sides disagree:

g(w,u)[g(g(z,y), 2)/;1] = g(w, 9(g(x,9y), 2))
9(g(w,z), 9(y, 2)) = 9(g(z,v), 2)[w,z,9(y, 2) /2, 9, 2]

Nonetheless, % is confluent. For example, while

g(a, g(b,g(c,d))) =% g(a, g(g(b, ), d))

and
9(a, g(b, g(c, d))) =% g(g(a, b), g(c, d))

by different applications of the equation, the two results rewrite to a com-
mon normal form by

g(a, g(g(b, ), d)) = g(g(a,g(b,c)),d) = g(g(g(a,b),c),d)

and .
9(9(a, g(b,¢c)),d) = g(g(g(a,b),c),d)
Consider also the set
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Ts = {f(9(x,y)) = 9(f(z), f(¥)), 9(i,2) =z, f(i) =4}

expressing the distribution of f over g, and the fact that 7 is a left identity
for ¢ and a fixed point for f. The first and second equations overlap,
violating condition (4) of rewrite-orthogonality, because

f(w)lg(i, 2)/w] = f(g(i,2)) = f(9(@,¥))[i, 2/, y]

but the corresponding right-hand sides disagree:
fw)lz/w] = f(2) # 9(f(i), f(2)) = g(f(z), f(W))i, 2/, Y]

Nonetheless, T8 is confluent. For example, while

fg(i,a)) 33 g(f(i), f(a))

by the first equation and

Flg(i,a) 3 f(a)

by the second equation, the first result rewrites to the second, which is in
normal form, by

9(F(5), f(a)) 8 g(i, F(a)) T8 f(a)

Notice that Tg = T3 U {f(¢) =i}, and that confluence failed for T35 (Ex-
ample 2.3.16).

Experience with equational logic programming suggests that most
naively written programs contain a small number of benign overlaps, which
are almost always similar to the examples above. An efficient test for con-
fluence in the presence of such overlaps would be extremely valuable.

The only known approach to proving confluence in spite of overlaps is
based on the Knuth-Bendix procedure [Knuth and Bendix, 1970]. This
procedure relies on the fact that local confluence (Definition 2.3.2) is often
easier to verify than confluence, and that local confluence plus termination
imply confluence.

Proposition 2.3.18 ([Newman, 1942]). If = is locally confluent, and
there is no infinite sequence sy — s1 — - -, then — is confluent.
The proof is a simple induction on the number of steps to normal form.

Unfortunately, a system with nonterminating rewriting sequences may
be locally confluent, but not confluent.

Example 2.3.19. T, of Example 2.3.16 is locally confluent, but not
confluent.
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Consider also the set of equations
To={a=bb=a,a=c, b=d}

B is locally confluent, but not confluent. Notice how confluence fails due
to the two-step rewritings a =3 b =3 d and b =3 a =3 ¢ (see Figure 2).

a+—}p

/ N

c d
Fig. 2. Ty is locally confluent, but not confluent.
Another example, without a rewriting loop, is the set of equations
T = {f(z) = g(h(z)), 9(z) = g(h(2)), f(z) = ¢, 9(z) = d}
¥ s locally confluent, but not confluent. Again, confluence fails due

to the two-step rewritings f(z) - g(h(z)) = d and g(z) P f(h(z) ¥ ¢
(see Figure 3).

c d

Fig. 3. Ty is locally confluent, but not confluent.
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The Knuth-Bendix procedure examines overlaps one at a time to see
whether they destroy the local confluence property. Given a pair of equa-
tions l; =7, and l; = r2 be such that their left-hand sides overlap—i.e.,
there is a term s # y with one occurrence of y such that

s[ll[tl,...,tm/xl,...,xm]/y] =lz[t'1,,t'n/x'1,,x'n]

but s is not an instance of l2. For each s, [, and [z, use the smallest
t1,...,tm and t},...,t,, that satisfy this equation. The results of rewrit-
ing the instance of s above in two different ways, according to the over-
lapping instances of equations, are ¢; = s[r1[t1,...,tm/21,...,Zm]/y] and
e =rofty, ..., th /2y, ..., z,]). The pair {c1,co) is called a critical pair. A
finite set of equations generates a finite set of critical pairs, since only a
finite number of ss can be compatible with some /3, but not an instance
of l;. The procedure checks all critical pairs to see if they rewrite to a
common normal form. If so, the system is locally confluent.

Proposition 2.3.20 ([Huet, 1980]). Let T be a set of equations. If for

every critical pair {c1,¢c2) of T there is a term d such that ¢ I* d and
T % T .

co =™ d, then — is locally confluent.

This proposition, and the Knuth-Bendix method, apply even to non-
left-linear sets of equations. For example, the local confluence of T; in
Example 2.3.16 may be proved by inspecting all critical pairs.

When some critical pair cannot be rewritten to a common form, the
Knuth-Bendix procedure tries to add an equation to repair that failure
of local confluence. For equational logic programming, we would like
to use just the part of the procedure that checks local confluence, and
leave it to the programmer to decide how to repair a failure. Although,
in principle, the search for a common form for a critical pair might go
on forever, in practice a very shallow search suffices. I have never ob-
served a natural case in which more than two rewriting steps were in-
volved. Unfortunately, many useful equational programs have nontermi-
nating term rewriting sequences, so local confluence is not enough. The
design of a variant of the Knuth-Bendix procedure that is practically
useful for equational logic programming is an open topic of research—
some exploratory steps are described in [Chen and O’Donnell, 1991]. A
number of methods for proving termination are known [Dershowitz, 1987;
Guttag et al., 1983], which might be applied to portions of an equational
program even if the whole program is not terminating, but we have no
experience with the practical applicability of these methods. If the rewrit-
ing of the terms ¢; and ¢z in a critical pair to a common form d (see
Proposition 2.3.20) takes no more than one rewriting step (this is one-step
confluence, Definition 2.3.3), then we get confluence and not just local con-
fluence. Rewrite-orthogonal systems are those whose critical pairs are all



96 Michael J. O’Donnell

trivial—the members of the pair are equal, and so the reduction to a com-
mon form takes zero steps. Unfortunately, all of the important examples so
far of confluent but not rewrite-orthogonal equational programs have the
basic structure of associativity or distributivity (see Example 2.3.17) and
require two rewriting steps to resolve their critical pairs.

The sets of equations in Example 2.3.17 pass the Knuth-Bendix test
for local confluence, and a number of well-known techniques can be used to
prove that there is no infinite term rewriting sequence in these systems.
But, we need to recognize many variations on these example systems,
when they are embedded in much larger sets of equations which gener-
ate some infinite term rewriting sequences, and no completely automated
method has yet shown practical success at that problem (although there are
special treatments of commutativity and associativity [Baird et al., 1989;
Dershowitz et al., 1983]). On the other hand, in practice naturally con-
structed systems of equations that are locally confluent are almost always
confluent. Surely someone will find a useful and efficient formal criterion
to distinguish the natural constructions from the pathological ones of Ex-
ample 2.3.19.

3 Term rewriting proof strategies

Given an orthogonal set of equations T = {l{; =r1,...,lm = rx}, or any set
with confluent term rewriting relation 3, we may now answer all questions
of the form (norml,...,l, : t) by exploring term rewriting sequences
starting with ¢{. Confluence guarantees that if there is an answer, some
term rewriting sequence will find it (Proposition 2.3.6). Furthermore, con-
fluence guarantees that no finite number of term rewriting steps can be
catastrophic, in the sense that if s L* ¢ and if s rewrites to a normal form,
then ¢t rewrites to the same normal form. Confluence, however, does not
guarantee that no infinite term rewriting sequence can be catastrophic.

Example 3.0.1. Consider the set of equations
T11‘ = {car(cons(z,y)) = z, a = f(a)}

The first equation is the usual definition of the car (left projection) function
of Lisp, the second is a silly example of an equation leading to infinite
term rewriting. Ty; is orthogonal, so = is confluent. But car(cons(b, a))
rewrites to the normal form b, and also in the infinite rewriting sequence
car(cons(b,a)) = car(cons(b, f(a))) = ---.

Notice that, due to confluence, no matter how far we go down the infi-
nite term rewriting sequence car(cons(b,a)) =¥ car(cons(b, f(a))) =¥ .-,
one application of the first equation leads to the normal form b. Nonethe-
less, a naive strategy might fail to find that normal form by making an infi-
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nite number of unfortunate rewrites. In fact, the usual recursive evaluation
techniques used in Lisp and other term-evaluating languages correspond to
term rewriting strategies that choose infinite sequences whenever possible.
A breadth-first search of all possible rewriting sequences is guaranteed to
find all normal forms, but at the cost of a lot of unnecessary work.

For efficient implementation of equational logic programming, we need
strategies for choosing term rewriting steps so that

* a small number of term rewriting sequences is explored, preferably
only one;

e if there is a normal form, it is found, preferably by the shortest or
cheapest sequence possible.

Some theoretical work on sequencing in the lambda calculus has already
been explored under the title of one-step strategies [Barendregt, 1984].

3.1 Complete and outermost complete rewriting se-
quences

In orthogonal systems of equations, there are two useful results on strate-
gies that are guaranteed to find normal forms. The formal notation for
stating these results precisely is somewhat involved (see the chapter ‘Equa-
tional Reasoning and Term Rewriting Systems’ in Volume 1), so I only
give rough definitions here. The concepts in this section can be extended
to nonorthogonal systems, but in some cases there are very subtle problems
in the extensions, and they have never been treated in the literature.

Definition 3.1.1 ([Huet and Lévy, 1991]). A reder is an occurrence
of an instance of a left-hand side of an equation in a term. An outermost
redex is one that is not nested inside any other redex. When « is a redex in
s, and s Ix t, the residuals of a in t are the redexes in ¢ that correspond in
the obvious way to « in s—they are essentially explicit copies of a, except
that some rewriting step may have rewritten a subterm of a, so that some
copies may be modified. All residuals of a are occurrences of instances of
the same left-hand side as a.

Example 3.1.2. Consider the rule-orthogonal set of equations

T = {f(.’L‘) = g("a:,x), g(h(x),y) = h(.’L‘), a= b}

The term g(f(f(h(a))), f(h(a))) has five redexes: two occurrences each of
the terms a and f(h(a)), and one occurrence of f(f(h(a))). The latter
two are both instances of the left-hand side f(x) of the first equation.
The leftmost occurrence of f(h(a)}) is nested inside f(f(h(a))), so it is not
outermost. Each occurrence of a is nested inside an occurrence of f(h(a)),
so neither is outermost. The rightmost occurrence of f(h(a)), and the sole
occurrence of f(f(h(a))), are both outermost redexes. In the rewriting
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sequence below, the leftmost occurrence of f(h(a)), and its residuals in
each succeeding term, are boxed.

g(F([Fh@) ], f(h@) ¥ g(a([£(a(a))], [£(R(a))]). f(h(a)))
= g(e([F(R®) |, [ £(r(@) ]), f(B(a))
= g(g(g(h(b), h(B)), | f(h(a)) ]), f(h(a)))
= g(g(h(b), | f(R(a)) |), F(R(a)))
= g(h(®), f(h(a)))
¢ K

Notice how the leftmost occurrence of f(h(a)) in the first term of the
sequence is copied into two occurrences in the second, due to the rewriting
of a redex in which it is nested. The first of these is changed to f(h(b))
in the third term of the sequence, but it is still a residual of the original
leftmost f(h(a)). In the fourth term of the sequence, f(h(b)) is rewritten,
eliminating one of the residuals. In the sixth term, the remaining residual,
still in the form f(A(a)), is eliminated due to rewriting of a redex in which
it is nested. Another occurrence of f(h(a)) remains, but it is a residual of
the rightmost occurrence of that term in the first term of the sequence.

In general, a residual « of a redex is eliminated when a is rewritten (or,
in rewrite-orthogonal systems, when a redex overlapping « is rewritten). o
is copied zero, one, or more times (zero times eliminates the residual) when
another redex in which « is nested is rewritten. a remains the same when
another redex disjoint from o is rewritten. Finally, a is modified in form,
but remains an instance of the same left-hand side, when another redex
nested inside o« is rewritten.

In orthogonal systems, the nontrivial, rule-like, and nonambiguous qual-
ities of equations (restrictions 1, 2, 4 or 4’ of Definition 2.3.9 or 2.3.10) guar-
antee that a given redex may be rewritten in precisely one way. So, a term
rewriting strategy need only choose a redex to rewrite at each step. The
most obvious way to insure that all normal forms are found is to rewrite
every redex fairly.

Definition 3.1.3 ([O’Donnell, 1977]). A finite or infinite term rewriting
sequence to — t; — - - - is complete (also called fair) if and only if, for every
¢ and every redex a in t;, there exists a § > ¢ such that ¢; contains no
residual of a.

A complete term rewriting sequence is fair to all redexes, in the sense

that every redex o (or its residuals, which are essentially the later versions
of the redex) eventually gets eliminated, either by rewriting a (with rewrite-
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orthogonality, a redex overlapping ), or by making zero copies of a while
rewriting another redex in which « is nested. Complete term rewriting
sequences are maximal, in the sense that they produce terms that are
rewritten further than every other sequence. Since nothing is rewritten
further than a normal form, complete sequences produce a normal form
whenever there is one.

Proposition 3.1.4 ([O’Donnell, 1977]). Let T be an orthogonal set of
equations, let ty N t 5. bea complete rewriting sequence, and let s

be any term such that tg B* 5. There exists an i such that s 3% t;. In
particular, if s is in normal form, then t; = s.

Computing a single complete term rewriting sequence is generally
cheaper than searching breadth-first among a number of sequences, but
fair rewriting strategies (such as the strategy of adding new redexes to a
queue, and rewriting all residuals of the head redex in the queue) typically
perform a substantial number of superfluous rewriting steps, and can eas-
ily waste an exponentially growing amount of work in some cases. Since a

- residual o of a redex may only be eliminated by rewriting o, or some redex
inside which « is nested, we need only be fair to the outermost redexes in
order to be sure of finding normal forms.

Definition 3.1.5 ([O’Donnell, 1977]). A finite or infinite term rewrit-
ing sequence ty =+ ¢, ~> - - - is outermost complete or outermost fair (called
eventually outermost in [O’Donnell, 1977]) if and only if, for every i and
every outermost redex « in t;, there exists a j > ¢ such that the unique
residual of a in ¢;_; is either eliminated by rewriting in ¢;, or is no longer
outermost in t; (equivalently, no residual of o is outermost in ¢;).

Since, for the least j satisfying the definition above, o remains outer-
most from ¢; through t;_; and cannot be copied, there is no loss of gener-
ality in requiring the residual of « in ¢;_, to be unique.

Proposition 3.1.6 ([O’Donnell, 1977]). Let T be a rule-orthogonal

set of equations, let ty 545 - be an outermost complete rewriting se-
quence, and let s be a (unique) normal form for to. There exists an ¢ such
that t; = s.

[O’Donnell, 1977] proves this proposition for a form of orthogonality
intermediate between rule- and rewrite-orthogonality. I conjecture that the
proof generalizes to rewrite-orthogonality.

The requirement that T be orthogonal, and not just confluent, is essen-
tial to Proposition 3.1.6.

Example 3.1.7. Consider the set of equations

Tz = {f(g(z,b)) = b, g(z,y) = g(f(2),y), a = b}
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These equations are confluent, but not rewrite-orthogonal, since the left-
hand sides of the first and second equations overlap in f(g(z, b)), but the
corresponding right-hand sides yield b # f(g(f(z),b)). The natural out-
ermost complete rewriting sequence starting with f(g(b,a)) is the infinite
one

F(9(6,a)) =¥ f(g(£(b),0)) = F(a(f(f(B)),a)) = ---

But f(g(b,a)) rewrites to normal form by

flg(d,a)) ™ f(g(b,b) b

The problem is that rewriting the nonoutermost redex a to b creates a
new outermost redex for the first equation above the previously outermost
one for the second equation. This leapfrogging effect allows an inner re-
dex to kill an outer one indirectly, by creating another redex even closer
to the root. There should be some interesting conditions, weaker than
rewrite-orthogonality, that prohibit this leapfrogging effect and guarantee
outermost termination for confluent systems.

The obvious way to generate outermost-complete rewriting sequences
is to alternate between finding all outermost redexes, and rewriting them
all. The order in which the outermost redexes are rewritten is irrelevant
since they are all disjoint and cannot cause copying or modification of one
another. Unfortunately, this strategy often generates a lot of wasted work.
For example, consider a system containing the equations T, ; for the
conditional function from Example 1.2.1

Tcond = {cond(true,z, y) =z, Cond(false»ﬂi»y) = y}

In a term of the form cond(r, s, t), there will usually be outermost redexes
in all three of 7 s and ¢. But, once r rewrites to either frue or false, one of
s and t will be thrown away, and any rewriting in the discarded subterm
will be wasted. The ad hoc optimization of noticing when rewriting of one
outermost redex immediately causes another to be nonoutermost sounds
tempting, but it probably introduces more overhead in detecting such cases
than it saves in avoiding unnecessary steps. Notice that it will help the cond
example only when r rewrites to true or false in one step. So, we need
some further analysis to choose which among several outermost redexes to
rewrite.

3.2 Sequentiality analysis and optimal rewriting

For rewrite-orthogonal systems of equations in general, it is impossible to
choose reliably a redex that must be rewritten in order to reach normal
form, so that there is no risk of wasted work.
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Example 3.2.1. Let T, be equations defining some general-purpose
programming system, such as Lisp. The forms of the particular equations
in T, are not important to this example, merely the fact that they are
powerful enough for general-purpose programming. Assume that in the
system T, there is an effective way to choose a redex that must be rewritten
to reach normal form (this is the case for typical definitions of Lisp). Now,
add the positive parallel-or equations

Tors = {or(true,z) = true, or(z, true) = true}

and consider the system T, U T or4.

For an arbitrary given term or(s,t), we would like to choose either
s or t to rewrite first. If s rewrites to true, but ¢ does not, then it is
crucial to choose s, else work (possibly infinitely much work) will be wasted.
Similarly, if ¢ rewrites to true, but s does not, it is crucial to choose ¢. If
neither s nor t rewrites to ¢true, then both must be rewritten to normal
form in order to normalize the whole term, so we may choose either. If both
s and t rewrite to true then, ideally, we would like to choose the one that
is cheapest to rewrite, but suppose that we are satisfied with either choice
in this case also.

Suppose that we have an effective way to choose s or ¢ above. Then,
we have a recursive separation of the terms or(s,t) in which s rewrites
to true and ¢ has no normal form from those in which ¢ rewrites to true
and s has no normal form. Such a separation is known to be impossible.
(It would lead easily to a computable solution of the halting problem. See
[Machtey and Young, 1978) for a discussion of recursive inseparability.) So,
we cannot decide effectively whether to rewrite redexes in s or in ¢ without
risking wasted work.

The case where both s and t rewrite to true poses special conceptual
problems for sequentiality theory. Although it is necessary to rewrite one
of s or t in order to reach the normal form true, it is neither necessary to
rewrite s, nor necessary to rewrite . The criterion of choosing a redex that
mmust be rewritten fails to even define a next rewriting step mathematically,
and the question of computability does not even arise. Notice that this
latter case is problematic for Tor+ alone, without the addition of T..

The difficulty in Example 3.2.1 above appears to depend on the unifia-
bility of the left-hand sides of the two equations in T or4, which is allowed
in rewrite-orthogonal systems, but not rule-orthogonal systems. A more
subtle example, due to Huet and Lévy, shows that rule-orthogonality is
still not sufficient for effective sequencing.

Example 3.2.2 ([Huet and Lévy, 1991]). Replace the parallel-or
equations of Example 3.2.1 by the following:

T14 = {f(z,a,b) ic, f(b1zya) écv f(avbvz) ic}
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and consider the system T, U T14. Given a term of the form f(r,s,t), we
cannot decide whether to rewrite redexes in r, in s, or in ¢ without risking
wasted work, because we cannot separate computably the three cases

er—o*gand s—o*b
er—*bandt o*a
e so¥gandt=*b

Unlike the parallel-or example, it is impossible for more than one of
these three cases to hold. There is always a mathematically well-defined
redex that must be rewritten in order to reach a normal form, and the
problem is entirely one of choosing such a redex effectively. In fact, for sets
T of equations such that T U T4 is terminating (every term has a normal
form), the choice of whether to rewrite r, s, or t in f(r, s, ) is effective, but
usually unacceptably inefficient.

So, some further analysis of the form of equations beyond checking for
orthogonality is required in order to choose a good redex to rewrite next
in a term rewriting sequence. Analysis of equations in order to determine
a good choice of redex is called sequentiality analysis.

3.2.1 Needed redexes and weak sequentiality

The essential ideas for sequentiality analysis in term rewriting are due to
Huet and Lévy [Huet and Lévy, 1991], based on a notion of sequential pred-
icate by Kahn [Kahn and Plotkin, 1978]. A redex that may be rewritten
without risk of wasted work is called a needed redez.

Definition 3.2.3 ([Huet and Lévy, 1991]). Given an orthogonal set T
of equations and a term #g, a redex « in ¢y is a needed redez if and only if,

e T T T .
for every term rewriting sequence ¢y = t; — -+ - — t,,, either

o there exists an ¢, 1 < i < m such that a residual of « is rewritten in
the step ¢, 5 ti, or
¢ o has at least one residual in ¢,,.

A needed redex is a redex whose residuals can never be completely elim-
inated by rewriting other redexes. So, the rewriting of a needed redex is
not wasted work, since at least one of its residuals has to be rewritten in
order to reach normal form. Huet and Lévy defined needed redexes only for
terms with normal forms, but the generalization above is trivial. A system
is weakly sequential if there is always a needed redex to rewrite.

Definition 3.2.4. A rewrite-orthogonal set of equations is weakly se-
quential if and only if every term that is not in normal form contains at
least one needed redex. A set of equations is effectively weakly sequential
if and only if there is an effective procedure that finds a needed redex in
each term not in normal form.
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The word ‘sequential’ above is conventional, but may be misleading to
those interested in parallel computation. A weakly sequential system is not
required to be computed sequentially—typically there is great opportunity
for parallel evaluation. Rather, a weakly sequential system allows sequen-
tial computation without risk of wasted rewriting work. In this respect
‘sequentializable’ would be a more enlightening word than ‘sequential.’

The parallel-or system Tory of Example 3.2.1 is rewrite-orthogonal,
but not weakly sequential, because the term

or(or(true,a), or{true,a))

has two redexes, neither of which is needed, since either can be elimi-
nated by rewriting the other, then rewriting the whole term to true. Rule-
orthogonality guarantees weak sequentiality.

Proposition 3.2.5 ([Huet and Lévy, 1991]). A nontrivial, rule-like,
and left-linear set of equations (Definition 2.3.9) is weakly sequential if
and only if it is rule-orthogonal.

The proof of (<) is in [Huet and Lévy, 1991]. It involves a search
through all rewriting sequences (including infinite ones), and does not yield
an effective procedure. (=) is straightforward, since when two redezes over-
lap neither is needed.

Proposition 3.2.5 above shows that no analysis based on weak sequen-
tiality can completely sequentialize systems whose confluence derives from
rewrite-orthogonality, or from a Knuth-Bendix analysis. Section 3.2.4 dis-
cusses possible extensions of sequentiality beyond rule-orthogonal systems.

The system T.UT14 of Example 3.2.2 is rule-orthogonal, and therefore
weakly sequential. For example, in a term of the form f(r,s,t), where
r =* a and s =* b, both r and s contain needed redexes. The subsystem
T,4, without the general-purpose programming system T, is effectively
weakly sequential, but only because it is terminating. I conjecture that
effective weak sequentiality is undecidable for rule-orthogonal systems.

3.2.2 Strongly needed redexes and strong sequentiality

The uncomputability of needed redexes and the weak sequential property
are addressed analogously to the uncomputability of confluence: by finding
efficiently computable sufficient conditions for a redex to be needed, and
for a system to be effectively weakly sequential. A natural approach is
to ignore right-hand sides of equations, and detect those cases of needed
redexes and effectively weakly sequential systems that are guaranteed by
the structure of the left-hand sides. To this end we define w-rewriting, in
which a redex is replaced by an arbitrary term.

Definition 3.2.6 ([Huet and Lévy, 1991]). Let T = {l; = ry,...,
l, =r,} be a rule-orthogonal set of equations.
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A term sy w-rewrites to sy by T (written sy - s2) if and only if there
is a term ¢, a variable z with exactly one occurrence in ¢, an instance I} of a
left-hand side {; in T, and a term r such that s; = t[l}/z] and s; = ¢[r/z].
That is, sz results from finding exactly one instance of a left-hand side
of an equation in T occurring as a subterm of si, and replacing it with
an arbitrary term. The definition of residual (Definition 3.1.1) generalizes
naturally to w-rewriting.

Now, a strongly needed redez is defined analogously to a needed redex,
using w-rewriting instead of rewriting.

Definition 3.2.7 ((Huet and Lévy, 1991]). Given a rule-orthogonal set
T of equations and a term %o, a redex « in %y is strongly needed if and only
if, for every w-rewriting sequence ¢ —? ty ;:) e ;:) t,., either

e there exists an 7, 1 < ¢ < m such that a residual of « is rewritten in
the step t;..1 %} t;, or

e « has at least one residual in ¢,,.

Because of rule-orthogonality, the property of being strongly needed de-
pends only on the location of a redex occurrence, and not on its internal
structure. So, we call an arbitrary occurrence in a term strongly needed if
and only if a redex substituted in at that location is strongly needed. [Huet
and Lévy, 1991] defines strong indezes, and shows that they determine ex-
actly the strongly needed redexes. It is easy to see that every strongly
needed redex is needed, and outermost. And, it is easy to detect whether
a given redex is strongly needed (see Section 4 and [Huet and Lévy, 1991]).
A system of equations is strongly sequential if there is always a strongly
needed redex to be rewritten, except in a normal form term.

Definition 3.2.8 ([Huet and Lévy, 1991]). A rule-orthogonal set of
equations is strongly sequential if and only if every term that is not in
normal form contains at least one strongly needed redex.

It is obvious that every strongly sequential system is effectively weakly
sequential, but the converse does not hold.

Example 3.2.9. The system T4 of Example 3.2.2, although it is effec-
tively weakly sequential, is not strongly sequential. f(f(a,b,c), f(a,b,c),
f(a,b,c)) w-rewrites to f(f(a,b, ¢}, a,b), which is a redex, so the first redex
f(a,b,c) is not strongly needed. Similarly, f(f(a,b,c), f(a,b,¢), f(a,b,c))
w-rewrites to the redexes f(b, f(a,b,¢),a) and f(a,b, f(a,b,c)), so the sec-
ond and third redexes are not strongly needed. All three redexes are weakly
needed.
By contrast, consider the strongly sequential system

Ts = {f(g(b’ b), h(z,b)) = b, f(g(c,x),h(c,c)) =c, h(z,d) =d, a= b}



Equational Logic Programming 105

In the term f(g(a, a), h(a, a)), the first and last occurrences of a are strongly
needed, but the second and third are not.

Notice that w-rewriting allows different redexes that are occurrences
of instances of the same left-hand side to be rewritten inconsistently in
different w-rewriting steps. Such inconsistency is critical to the example
above, where in one case f(a,b, c) w-rewrites to a, and in another case it
w-rewrites to b.

Strong sequentiality is independent of the right-hand sides of equa-
tions.

Proposition 3.2.10. If T; and Ty are left-similar (see Definition 2.3.11),
and T is strongly sequential, then so is Ts.

The proof is straightforward, since T, and Ty clearly have the same
w-rewriting relations (Definition 3.2.6).

It is not true, however, that a system is strongly sequential whenever
all left-similar systems are weakly sequential. The system of Example 3.2.2
and all left-similar systems are weakly sequential, but not strongly sequen-
tial. But in that case, no given redex is needed in all of the left-similar
systems. An interesting open question is whether a redex that is needed in
all left-similar systems must be strongly needed.

For finite rule-orthogonal sets of equations, strong sequentiality is de-
cidable.

Proposition 3.2.11 ([Huet and Lévy, 1991; Klop and Middeldorp,
1991]). Given a finite rule-orthogonal set T of equations, it is decidable
whether T is strongly sequential.

The details of the proof are quite tricky, but the essential idea is that
only a finite set of terms, with sizes limited by o function of the sizes of
left-hand sides of equations, need to be checked for strongly needed redezes.

In developing the concept of strongly needed redexes and connecting it
to the concept of weakly needed redexes, Huet and Lévy define the inter-
mediately powerful concept of an inder. Roughly, an index is a needed
redex that can be distinguished from other redexes just by their relative
positions in a term, without knowing the forms of the redexes themselves
[Huet and Lévy, 1991]. Every index is a weakly needed redex, but not vice
versa. Strong indexes are equivalent to strongly needed redexes. A system
in which every term not in normal form has at least one index is called
sequential. The precise relation between sequentiality in all left-similar
systems, and strong sequentiality, is an interesting open problem.

All of the sequentiality theory discussed in this section deals with se-
quentializing the process of rewriting a term to normal form. Example 7.1.6
in Section 7.1 shows that even strongly sequential systems may require a
parallel evaluation strategy for other purposes, such as a complete proce-
dure for rewriting to head-normal form.
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3.2.3 Optimal rewriting

From a naive point of view, the natural strategy of rewriting a strongly
needed redex at each step does not lead to minimal-length rewriting se-
quences ending in normal form. The problem is that the rewriting of a
strongly needed redex may cause another needed (but not strongly needed)
redex to be copied arbitrarily many times. Since strongly needed redexes
are always outermost, they are particularly likely to cause such copying.

Example 3.2.12. In the strongly sequential system of equations
Ti6 = {f(2) = g(z,2)}

given the initial term f(f(a)), both redexes, f(f{(a)) and f(a), are needed,
but only the outermost one is strongly needed. By rewriting a strongly
needed redex at each step, we get the 3-step sequence

F(f(@) ™ g(f(a), f(a)) ™ g(g(a,a), f(a)) = g(g(a,a),g(a,a))

But, there is a 2-step sequence

F(f(a)) ™ f(g(a,a)) ¥ g(g(a,a),g(a,a))

which does not rewrite the unique strongly needed redex in the first step.

It is easy to construct further examples in which the number of steps
wasted by rewriting strongly needed redexes is arbitrarily large.

Proposition 3.2.13. Given an arbitrary strongly sequentiel system of
equations, and a term, there is no effective procedure to choose a redex at
each step so as to minimaize the length of the rewriting sequence to normal
form.

I am not aware of a treatment of this point in the literature. The basic
idea is to use the equations

T17 = {f(zvy) = g(xv z, h(y))1 a = b1 g(.’E,.’E,O) = 0}

similar to T;6 of Example 3.2.12, and add additional equations to define h
as the evaluator for Lisp or some other general-purpose computing system.
Now, start with a term of the form f(a, p), where p is an arbitrary program.
If evaluation of p halts with value 0 (that is, if A{p) rewrites to 0), then
an optimal rewriting sequence rewrites f(a,p) to g(a, a, h(p)) in the first
step, and never rewrites the occurrences of a. If evaluation of p halts with
any value other than 0, then an optimal sequence rewrites a to b in the
first step (else it must be rewritten twice later). An effective method for
choosing the first step would yield a recursive separation of the programs
that halt with output O from those that halt with output 1, which is known
to be impossible [Machtey and Young, 1978).
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Notice that, when there is a normal form, breadth-first search over all
rewriting sequences yields a very expensive computation of a minimal se-
quence. But, no effective procedure can choose some redex in all cases (even
in the absence of a normal form), and minimize the number of rewriting
steps when there is a normal form.

The uncomputability of minimal-length rewriting strategies in Propo-
sition 3.2.13 sounds discouraging. The number of rewriting steps is not,
however, a good practical measure of the efficiency of a sequencing strat-
egy. Given equations, such as f(z) = g(z,z) in Example 3.2.12, with more
than one occurrence of the same variable z on the right-hand side, normal
sensible implementations do not make multiple copies of the subterm sub-
stituted for that variable. Rather, they use multiple pointers to a single
copy. Then, only one actual computing step is required to rewrite all of
the apparent multiple copies of a redex within that substituted subterm.
So, in Example 3.2.12, the strategy of choosing a strongly needed redex
actually leads to only two steps, from f(f(a)) to g(f(a), f(a)), and then
directly to g(g(a,a), g(a,a)). The normal form is represented in practice
with only one copy of the subterm g(a,a), and two pointers to it for the
two arguments of the outermost g. If we charge only one step for rewriting
a.whole set of shared redexes, then rewriting strongly needed redexes is
optimal.

Proposition 3.2.14. Consider multiple-rewriting sequences, in which in
one step all of the shared copies of a redex are rewritten simultaneously.
Given a strongly sequential set of equations and a term, the strategy of
rewriting at each step a strongly needed redex and all of its shared copies
leads to normal form in a minimal number of steps.

This proposition has never been completely proved in print. I claimed
a proof [O’Donnell, 1977] but had a fatal error [Berry and Lévy, 1979;
O’Donnell, 1979). The hard part of the proposition—that the rewriting
of a strongly needed redex is never a wasted step—was proved by Huet
and Lévy [Huet and Lévy, 1991]. The remaining point—that rewriting a
strongly needed redex never causes additional rewriting work later in the
sequence—seems obvious, but has never been treated formally in general.
Lévy [Lévy, 1978)] treated a similar situation in the lambda calculus, but
in that case there is no known efficient implementation technique for the
sequences used in the optimality proof. Although the formal literature on
optimal rewriting is still incomplete, and extensions of optimality theory to
systems (such as the lambda calculus) with bound variables are extremely
subtle, for most practical purposes Huet’s and Lévy’s work justifies the
strategy of rewriting all shared copies of a strongly needed redex at each
step. Optimality aside, rewriting strategies that always choose a strongly
needed redex are examples of one-step normalizing strategies, which pro-
vide interesting theoretical problems in combinatory logic and the lambda
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calculus [Barendregt, 1984].

3.2.4 Extensions to sequentiality analysis

Proposition 3.2.5 seems to invalidate rewrite-orthogonal systems for effi-
cient or optimal sequential rewriting. A closer look shows that the defini-
tion of weakly needed redexes and weak sequentiality is inappropriate for
rewrite-orthogonal systems. When two redexes from a rewrite-orthogonal
system overlap, we get the same result by rewriting either one. So, there is
no need for a sequential strategy to choose between them, and we might as
well allow an arbitrary selection. This observation suggests a more liberal
concept of needed redex.

Definition 3.2.15. Given a rewrite-orthogonal set T of equations and a
term tg, a redex a in tg is a rewrite-needed redex if and only if, for every
o T T T .
term rewriting sequence ¢y = ¢; = - -+ = t,y, either
o there exists an ¢, 1 <7 < m such that a residual of « is rewritten in
the step #;.1 5 t;, or
o there exists an ¢, 1 < ¢ < m such that a redex overlapping a residual
. . . T
of a is rewritten in the step ¢;_, = t;, or
e o has at least one residual in ¢,,.

This is the same as Definition 3.2.3 of needed redex, except that when one
redex is reduced, we give credit to all redexes that overlap it. We generalize
Definition 3.2.4 with the new version of needed redexes.

Definition 3.2.16. An orthogonal-set of equations is weakly rewrite-
sequential if and only if every term that is not in normal form contains
at least one rewrite-needed redex. A set of equations is effectively weakly
rewrite-sequential if and only if there is an effective procedure that finds a
rewrite-needed redex in each term not in normal form.

Three sorts of overlaps between left-hand sides of equations have dif-
ferent impacts on weak rewrite-sequentiality. Recall (Definition 2.3.9) that
the problematic overlaps occur when there is a term s, and left-hand sides
l; and I}, such that

sllilts, .. tm/z, .z Y] = Gl L 2L, 2]

Rewrite-nonambiguity requires that either s is an instance of I;, or the
corresponding right-hand sides r; and r; satisfy

s[ri[tl""’tm/zl’--"zvrt]/y] =Tj[t’1v~"7t:1/z’1""’z:1]

1. Sometimes the structure of the inner term I; is entirely subsumed
by the structure of the outer term /;—that is, the substituted terms
t},...,t, are trivial, and
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S[Ii[tl,---7tm/zlv"'7zm]/y] =1;

In this case, the equation I; = r; is redundant, since every possible
application of it can be accomplished by applying l; = r; instead.

2. Sometimes the structure of the inner term [; extends below the struc-
ture of the outer term [;—that is, the substituted terms t;,...,tn
are trivial, and

sllifyl = L[t1, ..., th /2y, ... 2]

Overlaps of this sort appear not to destroy weak rewrite-sequentiality.

3. Otherwise, neither set of substituted terms ¢;,..., ¢y, norty,...,t, is
trivial. This is the interesting case. Weak rewrite-sequentiality may
hold or not, depending on the extent to which redexes in substituted
subterms are copied or eliminated by the right-hand sides.

Figure 4 illustrates the three types of overlap with suggestive pictures.

X Y

Type 1 Type 2 Type 3

Fig. 4. The three types of left-hand-side overlap.

Example 3.2.17. Consider the set

Tis = {f(9(h(2))) = f(h(2)), 9(z) = z}

The overlap here is of type 1, since

FW)g@)h(z)/x]/y] = f(9(h(z)))

The first equation is redundant since it is essentially a special case of the
second.
Next, consider

Ty = {f(9(2), a) = f(z,a), 9(h(z)) = h(z)}
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The overlap here is of type 2, since

fy, a)lg(h(2))/y] = f(9(h(z)),a) = f(g(x), a)[h(z)/x]

T1o is weakly rewrite-sequential. In a term of the form f(s,t), in which

s g(h{s')) and also ¢ T¥ a, it is always safe to rewrite ¢ first, since by
rewriting s to g{h(s")) and then rewriting this to h{s’), we cannot eliminate
the redexes in ¢.

Now, consider

T2 = {f(9(a,2)) = f(a), 9(z,a) = a}
The overlap here is of type 3, since

fWlg(z, a)la/z]/y] = f(g(a,a)) = f(g(a,x))[a/z]

is the smallest substitution showing the overlap, and neither substitution
is trivial. T2p is not weakly rewrite-sequential, since the term f(g(g(a,a),
g(a, a))) has the two rewrite sequences

f(9(s(a,a), g(a,a))) = f(g(a,g(a,a))) =¥ f(a)

which shows that the rightmost occurrence of g(a, a) is not needed and

f(g(g(a,a), g(a,a))) 3 f(g(g(a,a),a)) =3 f(a)

which shows that the leftmost occurrence of g(a,a) is not needed.
Modify the previous example slightly, by changing the right-hand sides:

T21 = {f(g(a,z)) = f(.’E), g(z,a) = ‘T}

The result is still a type 3 overlap, but the system is weakly rewrite-
sequential, since the redexes that are not needed immediately in the cre-
ation of an outer redex are preserved for later rewriting.

The positive parallel-or equations in T gr+ of Examples 2.3.16 and 3.2.1
give another example of a type 3 overlap where weak rewrite-sequentiality
fails. On the other hand, the negative parallel-or equations of Tor_ in
Example 2.3.16 have type 2 overlap, but they are sequential. In a term

Tor— Tor— . .
of the form or(s,t) where s = false and t = false, it is safe to rewrite
either s or t first, since the redexes in the other, unrewritten, subterm are
preserved for later rewriting.

Theories extending sequentiality analysis, through concepts such as
weak rewrite-sequentiality, are open topics for research. I conjecture that
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weak rewrite-sequentiality is an undecidable property of rewrite-orthogonal
systems, and that the natural concept of strong rewrite-sequentiality has
essentially the same properties as strong sequentiality, except for allow-
ing type 2 overlaps. Optimality is very subtle in these extensions, since
the amount of sharing may vary depending on which of two overlapping
redexes is reduced. More interesting and powerful extensions of sequential-
ity will require analysis of right-hand sides to deal with type 3 overlaps.
Such analysis should be related in interesting ways to strictness analysis in
functional programming languages [Mycroft, 1980; Hughes, 1985b] , which
detects partial strictness properties of defined functions. Absiract interpre-
tation [Abramsky and Hankin, 1987; Cousot and Cousot, 1977] provides a
promising approach to sequentiality analysis based on right-hand sides.

Extensions of useful sequentiality analysis to systems whose confluence
is established by variations on the Knuth-Bendix procedure will require
the concept of residual to be generalized so that the residual of a redex a
may be an arbitrarily long rewriting sequence used in resolving a critical
pair involving a. Variations on sequentiality analysis for incremental and
parallel implementations of equational logic programming are discussed in
Sections 6 and 7, respectively.

4 Algorithms and data structures to implement
equational languages

The basic idea of implementing equational logic programming for strongly
sequential systems is straightforward. Represent terms as linked structures
with sharing, in the time-honored style of Lisp [McCarthy et al., 1965;
McCarthy, 1960]. At every step, find a strongly needed redex and rewrite
it, halting if and when the sequence ends with a normal form. A lot of work
is required to reduce these basic ideas to efficient practice. At the abstract
level of algorithm and data-structure design, the problem breaks naturally
into three components: a data structure to represent terms, a pattern-
matching and sequencing algorithm to find strongly needed redexes, and
a driving procedure to invoke the pattern-matcher/sequencer, perform the
chosen rewrites, and incorporate the results into the term data structure.

4.1 Data structures to represent terms

The natural data structure for terms is a linked structure in a heap, with
sharing allowed. Each occurrence of a symbol f in a term is represented by
a node of storage containing f and pointers to its arguments. Sharing is
accomplished by allowing several different argument pointers to point to the
same node. There are a number of optimizations that coalesce small nodes,
or break large nodes into linked sequences, that have been explored in the
literature on Lisp compilers [Bobrow and Clark, 1979]. In this section, we
consider data structures at an abstract level with precisely one symbol per
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heap node, and assume that such optimizations are applied at a lower level
of implementation.

4.1.1 A conceptual model for term data structures

Some useful techniques for implementing equational logic programming
require more than the linked heap structures representing terms. For ex-
ample, it is sometimes better to represent the rewriting of s to t by a link
from the head node of the representation of s pointing to the head node
of t, rather than by an actual replacement of s by ¢. This representation
still uses a heap, but the heap now represents a portion of the infinite
rewriting graph for a starting term, rather than just a single term at some
intermediate stage in rewriting to normal form. Other techniques involve
the memoing of intermediate steps to avoid recomputation—these require
more efficient table lookup than may be achieved with-a linked heap. For-
tunately, there is a single abstract data structure that subsumes all of the
major proposals as special cases, and which allows a nice logical interpre-
tation [Sherman, 1990]. This data structure is best understood in terms of
three tables representing three special sorts of functions.

Definition 4.1.1. For each ¢ > 0 let Fun; be a countably infinite set of
function symbols of arity 1. The 0-ary function symbols in Fung are called
constant symbols. T% is the set of ground terms (terms without variables)
constructed from the given function symbols (see Definition 2.3.1 of the
chapter ‘Introduction: Logic and Logic Programming Languages’). Let P
be a countably infinite set. Members of P are called parameters, and are
written a, 3, ..., sometimes with subscripts. Formally, parameters behave
just like the variables of Definition 2.3.1, but their close association with
heap addresses later on makes us think of them somewhat differently.

An i-ary signature is a member of Fun; x P*. The signature (f, {(ay,...,
@;)), is normally denoted by f(ai,...,qa;). Sig denotes the set of signatures
of all arities.

Let nil be a symbol distinct from all function symbols, parameters, and
signatures.

A parameter valuation is a function val : P — Sig U {nil}.

A parameter replacement is a function repl : P — P U {nil}.

A signature indez is a function ind : Sig — P U {nil}.

A parameter valuation, parameter replacement, or signature index is
finitely based if and only if its value is nil for all but a finite number of
arguments.

The conventional representation of a term by a linked structure in a
heap may be understood naturally as a table representing a finitely based
parameter valuation. The parameters are the heap addresses, and the
signatures are the possible values for data nodes. val(a) is the signature
stored at address a. But, we may also think of parameters as additional
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Table 1. Parameter valuation representing f(g(a, f(a,a)), f(a,a)).

a = flon,a2)
a) o d 9(03102)
az f(a37a4)
a3 H— a
4 + a
Qo f \
| g N
Qs f
as| a a4l a

Fig. 5. Linked structure representing f(g(a, f(a,a)), f(a, a)).

0-ary symbols, of signatures as terms of height 1 built from parameters,
and of the function val as a set of formulae asserting equalities between
parameters and signatures. Each value val(a) = f(f5,...,8:) # nil of the
valuation function represents the formula o = f(81,...,8:;). When val
represents the contents of a heap with the head symbol of a term ¢ stored at
address «, then a =t is a logical consequence of the equations represented
by val.

Example 4.1.2. Consider the finitely based parameter valuation val given
by Table 1. All values of val not shown in the tables are nil. The linked
heap structure associated with val is shown in Figure 5. The set of equa-
tions represented by val is

{ao = f(alaa2)7 23] = g(a3aa2)i as = f(aéia4)’ Q3 = a, Q4 = a}

Logical consequences of these equations include a2 = f(a,a), oy = g(a,
f(a,a)), and ao = f(g(a, f(a,a)), f(a,a)). ‘

It is useful to have a notation for the term represented explicitly by a
parameter valuation at a particular parameter.
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Definition 4.1.3. Let val be a parameter valuation. The partial function
val* : P = T% is defined inductively by

val*(a) = f(val*(8,),...,val*(8;))

when val(a) = f(8,...,08:). Notice that the case where f is a constant
symbol, and therefore ¢ = 0, provides a basis for the inductive definition. If
a value of nil is encountered anywhere in the induction, or if the induction
fails to terminate because of a loop, val® is undefined.

When val*(a) is well-defined, the equation a = val*(a) is always a
logical consequence of the equations represented by val.

Optimized implementations of equational logic programming languages
sometimes find it more efficient to link together nodes representing left-
and right-hand sides of equations, rather than to actually perform rewrit-
ing steps. Such linking can be implemented by an additional pointer in
each node of a heap structure. The information in these links is natu-
rally represented by a parameter replacement function. Given a set T
of equations, it first appears that we should think of the function repl
as a set of formulae asserting that one term rewrites to another—that is,
repl(a) = 8 # nil represents the formula val*(e) 3* val*(3). But further
rewriting steps on subterms of the term represented by a may invalidate
such a relation. There are also implementations that make efficient use
of data structures for which val® is ill defined. So, the proper logical in-
terpretation of repl(a) = as a formula is merely a = 3. An efficient
implementation manipulates val and repl so that 3 is in some way a bet-
ter starting point for further rewriting than a. The precise sense in which
it is better varies among different implementations. val and repl together
yield a set of terms for each parameter, all of which are known to be equal.
The set valy,, (a) defined below is the set of terms that may be read by
starting at o and following links in val and repl.

Definition 4.1.4. Let val be a parameter valuation and let repl be a
parameter replacement. The function val;, : P — 2T is defined so that
valt, () is the least set satisfying

1. If val(a) = f(51,.--,08:), then
val:epl(a) 2 {f(tla crey ti) 1t € val:epl()al) ARRRNAS FHS Val:epl()ai)}
2. If repl(a) # nil, then val}, () D val;,, (repl(a))

repl repl

*

In the presence of loops, valy,(a) may be infinite. Even without loops,
its size may be exponential in the size of the data structure representing
val and repl. The power of such data structures derives from this ability
to represent large sets of equivalent terms compactly. When val*(a) is
well defined, val”(a) € val;.; (). Another special member of val;,,(a)
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Table 2. Parameter valuation and replacement.

val repl
ap ~  flal,as) ap o4
ay = flaz,a3) a; +~ nil
a H a as +> nil
ag — b a3 Qs
oy = glas,a3) a4 + nil
as — ¢ as +> nil

is particularly interesting—the one reached by following repl links as much
as possible.

Definition 4.1.5. Let val be a parameter valuation and let repl be a
parameter replacement. The partial function valr i : P — T% is defined
inductively by

max

valpi(@) = valrgpi(repl(a))

when repl(a) # nil.
valpi(a) = f(valieri(61), - -, valiehi(8:))

when repl(a) = nil and val(a) = f(B1,...,8:). As with val®, valy.2] is
undefined if nil is encountered as a value of val, or if the induction fails

to terminate because of a loop.

Example 4.1.6. Consider the finitely based parameter valuation val
and parameter replacement repl given by Table 2. All values of val and
repl not shown in the tables are nil. These tables represent some of the
consequences of the equations

Tae = {f(f(xa y)’z) = g(x,z), b= C}

when used to rewrite the term f(f(a,b),b) The linked heap structure as-
sociated with val and repl is shown in Figure 6. The rightmost link in
each node a points to repl{a). By following links from ap in the table we
can construct the six ground terms in val;;(ao): val*(ao) = f(f(a,b),b),
f(f(a,b),0), f(f(a,c),b), f(fla,c),c), g(a,b), and vallfi(ao) = g(a,c).
Every equality between these terms is a logical consequence of Tj3, and
all of these equalities may be read immediately from the data structure by
following links from ag.

A prime weakness of data structures based on parameter valuations
and replacements is that both functions require a parameter as argument.
Given a newly constructed signature, there is no direct way, other than
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ao| f slisloeT— as| g Vs nil
ar| f]¢]«|nil
az| a |nil az| b | et+— as5( ¢ |nil

Fig. 6. Linked structure showing val and repl links.

searching through the parameter valuation, to discover whether informa-
tion on that signature is already available. Signature indexes are intended
precisely to allow a newly constructed signature to be translated to an
equivalent parameter. While finitely based parameter valuations and re-
placements are normally implemented by direct memory access, using pa-
rameters as addresses, the number of possible signatures is generally too
great to allow such an implementation of a finitely based signature index.
General-purpose table-look-up methods are used instead, usually hash ta-
bles [Knuth, 1973). A typical application of a hash-table representation of
a signature index is the hashed cons optimization in Lisp [Spitzen et al.,
1978), where every newly constructed node is looked up in a hash table to
see whether it already exists in the heap—if it does the existing node may be
shared instead of creating another copy in the heap. The most obvious use
of a signature index ind, such as the hashed cons application, requires that
whenever ind(f(81,...,8:;)) = a # nil, then val(a) = f(5,...,5:); that
is, val is a partial inverse to ind. It may be advantageous in some cases to
let ind(f(f1,...,0:)) be a parameter known to be equal to f(53y,...,8:).
The proper logical interpretation of ind(f(3;,...,8:)) = a # nil is merely
the formula f(5,...,B:) = a. So, ind provides the same type of logical in-
formation as val, but allows access to that information through a signature
argument, instead of a parameter argument.
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4.1.2 Logical interpretation of term data structures

Each point in the graph of a parameter valuation val, a parameter re-
placement repl, and a signature index ind represents an equation. An
entire data structure consisting of finitely based functions val, repl, and
ind represents a suitably quantified conjunction of these equations. For
definiteness, suppose that inputs and outputs are rooted at the parameter
ap. Then the logical meaning of val, repl, and ind is the conjunction of all
their equations, with all parameters ezcept oy existentially quantified.

Definition 4.1.7. Let val, repl, ind be a parameter valuation, a parame-
ter replacement, and a signature index, respectively, all three finitely based.
Let ay,...,a, be all of the parameters 3 occurring in the finite basis of the
domain of val or of repl (val(3) # nil or repl(3) # nil), or in the range of
repl, or as a component of a signature in the finite basis of the domain of
ind or in the range of val, except for the input/output parameter ap. The
logical interpretation of val,repl,ind is the formula Fyalreplina defined
by
Fval,repl,ind = (aal’ Y2 2V G)
where G is the conjunction of all the equations

1. 8= f(m,...,v) where val(8) = f(m,..., 1)
2. B =+ where repl(8) = v
3. f(ﬂlw"aﬂ‘i)ivw}lere ind(f(ﬂlrrﬂ‘l))=7

Example 4.1.8. Consider the finitely based parameter valuation val and
parameter replacement repl discussed in Example 4.1.6, and shown in Ta-
ble 2 and Figure 6. If ap is the parameter used for the root of the input
and output, then the logical interpretation of val and repl is

day,...,a5: ap = flag,az) Aay = flag,a3) Aaz =aAas =bA
oy = glaz,03) Nas =cAhap =auhag =ag

The interpretation of parameter valuations, parameter replacements,
and signature indexes as encodings of existentially quantified conjunctions
of equations makes it much easier to insure correctness of proposed algo-
rithms for manipulating data structures based on these functions. The
essential idea is that a transformation of a data structure from a state
representing valp, reply, indp to one representing val,;, repl,, ind,; in the
computation of an equational program T is logically permissible if and only
if the formula represented by val;, repl,, ind, is a logical consequence of
T plus the formula represented by valp, repl;, indg. So, an evaluation
algorithm may take input s, start in a state where val™**(ap) = s, and ap-
ply permissible transformations to reach a state where ¢t € vali¢j(ao), for
some normal form ¢. The permissibility of the transformations guarantees
that t is a correct answer.
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The interpretation of the term data structures as sets of formulae applies
the concepts of logic programming to the implementation of a logic pro-
gramming language. A similar use of logical concepts within the implemen-
tation of a logic programming language occurs in recent presentations of
unification algorithms (used in the implementation of Prolog) as processes
that derive solutions to equations, where every intermediate step repre-
sents a new and simpler set of equations to be solved [Kapur et al., 1982;
Martelli and Mo