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Preface

Riemannian holonomy groups is an area of Riemannian geometry, in the field of differ-
ential geometry. The holonomy group Hol(g) of a Riemannian manifold (M, g) deter-
mines the geometrical structures on M compatible with g. Thus, Berger’s classification
of Riemannian holonomy groups gives a list of interesting geometrical structures com-
patible with a Riemannian metric, and the aim of the subject is to study each such struc-
ture in depth. Most of the holonomy groups on Berger’s list turn out to be important in
string theory in theoretical physics.

Given some class of mathematical objects, there is often a natural class of subobjects
living inside them, such as groups and subgroups for instance. The natural subobjects
of Riemannian manifolds (M, g) with special holonomy are calibrated submanifolds—
lower-dimensional, volume-minimizing submanifolds NV in M compatible with the geo-
metric structures coming from the holonomy reduction. So calibrated geometry is an
obvious companion subject for Riemannian holonomy groups. Calibrated submanifolds
are also important in string theory, as ‘supersymmetric cycles’ or ‘branes’.

This is a graduate textbook on Riemannian holonomy groups and calibrated geom-
etry. It is aimed at graduates and researchers working in differential geometry, and also
at physicists working in string theory, though the book is written very much from a
mathematical point of view. It could be used as the basis of a graduate lecture course.
The main prerequisites are a good understanding of topology, differential geometry,
manifolds, and Lie groups at the advanced undergraduate or early graduate level. Some
knowledge of Hilbert and Banach spaces would also be very useful, but not essential.

A little more than half this book is a revised version of parts of my monograph,
Compact Manifolds with Special Holonomy, Oxford University Press, 2000, reference
[188]. The main goal of [188] was to publish an extended research project on compact
manifolds with holonomy G and Spin(7), so Chapters 8-15 were almost wholly my
own research. Chapters 1-7 of [188] have been rewritten to form Chapters 1, 2, 3, 5, 6,
7 and 10 respectively of this book, the core of the Riemannian holonomy material.

To this I have added new material on quaternionic Kéhler manifolds in Chapter 10;
Chapter 11 on the exceptional holonomy groups, which summarizes Chapters 10—-15
of [188] and subsequent developments; and four new chapters on calibrated geometry,
Chapters 4, 8, 9 and 12 below. This textbook is not intended to replace the monograph
[188], and I hope my most discerning readers will want to own both. But unless you have
a particular interest in compact manifolds with holonomy G or Spin(7), this book is
probably the better of the two to buy.

This book is not a vehicle for publishing my own research, and I have aimed to
select material based on how I see the field and what I think it would be useful for
a new researcher in the subject to know. No doubt I have overemphasized my own
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contributions, and I apologize for this; my excuse is that I knew them best, and they were
easiest to plagiarize. Calibrated geometry is a younger field than Riemannian holonomy,
and a very active area of research. I have tried in Chapters 8, 9 and 12 to discuss the
frontiers of current research, and open problems I think are worth attention.

Some other books on Riemannian holonomy groups are Salamon [296] and [188],
and they are also discussed in Kobayashi and Nomizu [214,215], Besse [30, Ch. 10],
Gross, Huybrechts and the author [138, Part I] and Berger [28, Ch. 13]. The only other
book I know on calibrated geometry is Harvey [150].

Acknowledgements. Many people have shared their insights and ideas on these subjects
with me; I would like in particular to thank Bobby Acharya, Tom Bridgeland, Robert
Bryant, Simon Donaldson, Mark Haskins, Simon Salamon and Richard Thomas. I am
grateful to Maximilian Kreuzer for permission to reproduce in Figure 7.1 the graph
of Hodge numbers of Calabi—Yau 3-folds from Kreuzer and Skarke [225], and to the
EPSRC for financial support whilst I was writing this book.

I dedicate this book to my wife Jayne and daughters Tilly and Kitty, without whom
my life would have been only half as enjoyable, and this book written in half the time.

Oxford
September 2006 D.DJ.
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1
Background material

In this chapter we explain some background necessary for understanding the rest of the
book. We shall assume that the reader is already familiar with the basic ideas of dif-
ferential and Riemannian geometry (in particular, manifolds and submanifolds, tensors,
and Riemannian metrics) and of algebraic topology (in particular, fundamental group,
homology and cohomology). We start in §1.1 with a short introduction to exterior forms
on manifolds, de Rham cohomology, and Hodge theory. These will be essential tools
later in the book, and we discuss them out of completeness, and to fix notation.

The rest of the chapter is an introduction to the analysis of elliptic operators on
manifolds. Section 1.2 defines Sobolev and Holder spaces, which are Banach spaces
of functions and tensors on a manifold, and discusses their basic properties. Then §1.3—
§1.5 define elliptic operators, a special class of partial differential operators, and explain
how solutions of elliptic equations have good existence and regularity properties in
Sobolev and Holder spaces.

1.1 Exterior forms on manifolds

We introduce exterior forms on manifolds, and summarize two theories involving exte-
rior forms—de Rham cohomology and Hodge theory. The books by Bredon [49], Bott
and Tu [40] and Warner [338] are good references for the material in this section.

Let M be an n-manifold, with tangent bundle 7'M and cotangent bundle 7% M. The
kth exterior power of the bundle 7 M is written A*T* M. It is a real vector bundle over
M, with fibres of dimension (};) Smooth sections of A*T*M are called k-forms, and
the vector space of k-forms is written C>° (A*T*M).

Now AFT*M is a subbundle of ®k T*M, so k-forms are tensors on M, and may
be written using index notation. We shall use the common notation that a collection of
tensor indices enclosed in square brackets [. ..] are to be antisymmetrized over. That is,
if Ty, a5...a, 15 a tensor with £ indices, then

_ 1 :
T[al..uk] = %! Zoesk Slgn(o—)Taa(l)...aa(kp

where Sy, is the group of permutations of {1,2,...,k}, and sign(c) is 1 if o is even,
and —1 if o is odd. Then a k-form « on M 1is a tensor «y, ..., With k covariant indices
that is antisymmetric, i.e. that satisfies g, ...q), = Qay...a1]

The exterior product A and the exterior derivative d are important natural operations
on forms. If « is a k-form and 3 an [-form then o A 3 is a (k+1)-form and dav a (k+1)-
form, which are given in index notation by
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(Oé A ﬁ)a1.“ak+z = a[al...akﬁak+1...ak+l] and

O0cay...ap 4y

(da>a1.“ak+1 = T[al...ak+1]7 Where Ta1...ak+1 = a(L‘al

If « is a k-form and 3 an [-form then
d(da)=0, aAB=(-DFBAa and d(aAB)=(da)AB+(=1)ka A (dB).

The first of these is written d? = 0, and is a fundamental property of d. If dow = 0, then
a is closed, and if « = d3 for some [ then « is exact. As d? = 0, every exact form
is closed. If M is a compact, oriented n-manifold and « an (n— 1)-form, then Stokes’
Theorem says that [, da = 0.

1.1.1 De Rham cohomology

Let M be a smooth n-manifold. As d2 = 0, the chain of operators

d

0 — C®(A°T*M) -5 C=(A'T* M) -5 .. 5 C®°(A"T* M) — 0

forms a complex, and therefore we may find its cohomology groups. For k = 0,...,n,
define the de Rham cohomology groups H% (M, R) of M by

Ker(d : C®(A*T*M) — C(A*1T*M))
Im(d : C®(AF=1T*M) — C®(A*T*M))

HEJR(M7R) =

That is, HX (M, R) is the quotient of the vector space of closed k-forms on M by the
vector space of exact k-forms on M. If 1) is a closed k-form, then the cohomology class
[n] of nin HE (M, R) is n + Imd, and 7 is a representative for [n].

There are several different ways to define the cohomology of topological spaces, for
example, singular, Alexander—Spanier and Cech cohomology. If the topological space
is well-behaved (e.g. if it is paracompact and Hausdorff) then the corresponding coho-
mology groups are all isomorphic. The de Rham Theorem [338, p. 206], [40, Th. 8.9]
is a result of this kind.

Theorem 1.1.1. (The de Rham Theorem) Let M be a smooth manifold. Then the de
Rham cohomology groups HE (M, R) are canonically isomorphic to the singular,
Alexander—Spanier and Cech cohomology groups of M over R.

Thus the de Rham cohomology groups are topological invariants of M. As there is
usually no need to distinguish between de Rham and other sorts of cohomology, we will
write H*(M, R) instead of H% (M, R) for the de Rham cohomology groups. The k"
Betti number b* or b*(M) is b* = dim H¥(M,R). The Betti numbers are important
topological invariants of a manifold.

Theorem 1.1.2 (Poincaré duality) Let M be a compact, oriented n-manifold. Then
there is a canonical isomorphism H"~*(M,R) = (H"*(M, R))*, and the Betti num-
bers satisfy b* = b" .
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1.1.2 Exterior forms on Riemannian manifolds

Now let M be a compact, oriented Riemannian n-manifold, with metric g. The metric
and the orientation combine to give a volume form dV,; on M, which can be used to
integrate functions on M. We shall define two sorts of inner product on k-forms. Let
a, 3 be k-forms on M, and define («, 3) by
(Oé, 5) = aa1...akﬂb1...bk9albl s gakbk7

in index notation. Then («, () is a function on M. We call («, 3) the pointwise inner
product of «, 3. Now for k-forms «, 3, define (o, 3) = [,,(cv, 8)dV,. As M is com-
pact, {a, 8) exists in R provided «, /3 are (for instance) continuous. We call {«, 3) the
L? inner product of «, 3. (This is because it is the inner product of the Hilbert space
L2(A*T* M), which will be defined in §1.2.)

The Hodge star is an isomorphism of vector bundles * : A*T*M — A"~kT*M,
which is defined as follows. Let 3 be a k-form on M. Then */3 is the unique (n—k)-form
that satisfies the equation oA (x3) = («, 3)dV for all k-forms « on M. The Hodge star
is well-defined, and depends upon g and the orientation of M. It satisfies the identities
#1 = dV, and #(xB) = (=1)*"=%) 3, for 3 a k-form, so that 1 = (—1)F("=F)x

Define an operator d* : C°°(A¥T*M) — C>(A*~1T*M) by

d*B = (=) s d(x3).
Let a be a (k — 1)-form and 3 a k-form on M. Then
(a,d*B) = [y, (e, d*B)AV, = [, @ A (xd*B) = (=1)* [, e Ad = 3.

Butd(aA#B) = (da)Ax8+(—1)""aAdx, andas M is compact [,, d(aAx3) =0
by Stokes” Theorem. Therefore

(=DF [,and«pB=[,,da AxB = [,,(da, B)dVy = (da, B).

Combining the two equations shows that («,d*3) = (da, 3). This technique is called
integration by parts. Thus d* has the formal properties of the adjoint of d, and is some-
times called the formal adjoint of d.

As d? = 0 we see that (d*)? = 0. If a k-form « satisfies d*a = 0, then « is
coclosed, and if a = d* 3 for some 3 then « is coexact. The Laplacian A is A = dd* +
d*d. Then A : C®(A*T*M) — C>=(A*T*M) is a linear elliptic partial differential
operator of order 2. By convention d* = 0 on functions, so A = d*d on functions.

Several different operators are called Laplacians. When we need to distinguish be-
tween them we will refer to this one as the d-Laplacian, and write it Ay. If a is a k-form
and Aa = 0, then « is called a harmonic form.

1.1.3 Hodge theory

Let M be a compact, oriented Riemannian manifold, and define

A" =Ker(A: C°(AFT*M) — C=(A*T*M)),
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so that J#* is the vector space of harmonic k-forms on M. Suppose o € .#*. Then
A« = 0, and thus (a, Aa) = 0. But A = dd* + d*d, so

0= (a,dd*a) + (a,d"da) = (d*a,d* @) + (da, da) = Hd*ozH%z + ||dozH2L2,

where || . ||2 is the L? norm defined in §1.2. Thus ||[d*||z> = ||da|/z2 = 0, so that
d*a = da = 0. Conversely, if d*a = da = 0 then Aaw = (dd* + d*d)a = 0, so that a
k-form « lies in % if and only if it is closed and coclosed. Note also that if a € %,
then xa € #"F.

The next result is proved in [338, Th. 6.8].

Theorem 1.1.3. (The Hodge Decomposition Theorem) Let M be a compact, oriented
Riemannian manifold, and write d;, for d acting on k-forms and dj, for d* acting on
k-forms. Then

C(AFT*M) = 2" ® Im(dy,_,) © Im(dj ).
Moreover, Ker(dy,) = #*% & Im(dg_1) and Ker(d}) = % & Im(dy, ).

Now HE _(M,R) = Ker(dy)/Im(dg_1), and as Ker(dy,) = S#*@Im(d;_1) there
is a canonical isomorphism between /% and H¥ (M, R). Thus we have:

Theorem 1.1.4. (Hodge’s Theorem) Let M be a compact, oriented Riemannian man-
ifold. Then every de Rham cohomology class on M contains a unique harmonic repre-
sentative, and % = HE (M, R).

1.2 Introduction to analysis

Let M be a Riemannian manifold with metric g. In problems in analysis it is often
useful to consider infinite-dimensional vector spaces of functions on M, and to equip
these vector spaces with norms, making them into Banach spaces. In this book we will
meet four different types of Banach spaces of this sort, written L(M), L} (M), C*(M)
and C*% (M), and they are defined below.

1.2.1 Lebesgue spaces and Sobolev spaces

Let M be a Riemannian manifold with metric g. For ¢ > 1, define the Lebesgue space
L%(M) to be the set of locally integrable functions f on M for which the norm

1fllze = (fur 1£17dV;) "

is finite. Here dVj is the volume form of the metric g. Suppose that 7, 5,7 > 1 and that
1/r=1/s+1/t.1f ¢ € L5(M), ¢ € L*(M), then ¢op € L"(M), and ||¢¢|| - <
|l L= ||1]| +; this is Holder’s inequality.

Let ¢ > 1 and let k be a nonnegative integer. Define the Sobolev space L} (M) to be
the set of f € L9(M) such that f is k times weakly differentiable and |V f| € LY(M)
for j < k. Define the Sobolev norm on Li (M) to be

. 1
1fllg = (S5 Sy V7 £19dV,)

Then L} (M) is a Banach space with respect to the Sobolev norm. Furthermore, L (M)
is a Hilbert space.
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The spaces L?(M ), L{L (M) are vector spaces of real functions on M. We generalize
this idea to vector spaces of sections of a vector bundle over M. So, let V. — M be a
vector bundle on M, equipped with Euclidean metrics on its fibres, and V be a connec-
tion on V' preserving these metrics. Then as above, for ¢ > 1, define the Lebesgue space
L%(V) to be the set of locally integrable sections v of V over M for which the norm

1
ol e = (fyy [v]7dV) "

is finite, and the Sobolev space L{ (V) to be the set of v € L(V') such that v is k times
weakly differentiable and |V7v| € LY(M) for j < k, with the obvious Sobolev norm.

1.2.2 C* spaces and Holder spaces

Let M be a Riemannian manifold with metric g. For each integer £k > 0, define
C*(M) to be the space of continuous, bounded functions f on M that have k con-
tinuous, bounded derivatives, and define the norm ||.|cx on C*(M) by ||fllcx =
Z?:o sup,, |V f|, where V is the Levi-Civita connection.

The fourth class of vector spaces are the Holder spaces C*® (M) for k > 0 an
integer and o € (0, 1). We begin by defining C%(M). Let d(z,y) be the distance
between z,y € M calculated using g, and let & € (0,1). Then a function f on M is
said to be Holder continuous with exponent « if

f « - Sup - 7 N~
/] etyem Az, y)®

is finite. Any Holder continuous function f is continuous. The vector space C%%(M)
is the set of continuous, bounded functions on M which are Holder continuous with
exponent , and the norm on C*%(M) is || f||co.« = || f]lco + [fa-

In the same way, we shall define Holder norms on spaces of sections v of a vector
bundle V' over M, equipped with Euclidean metrics in the fibres, and a connection v
preserving these metrics. Let §(g) be the injectivity radius of the metric g on M, which
we suppose to be positive, and set

sup  |v(z) — v(y)|
[V]o = a#yeM
d(wvy‘gd(g) d(x,y)~

) (1.1

whenever the supremum exists. Now we have a problem interpreting |v(x) — v(y)| in
this equation, since v(z) and v(y) lie in different vector spaces. We make sense of it in
the following way. When = # y € M and d(z,y) < §(g), there is a unique geodesic y
of length d(z, y) joining x and y in M. Parallel translation along ~ using V identifies
the fibres of V' over x and y, and the metrics on the fibres. With this understanding, the
expression |v(z) — v(y)| is well-defined.

So, define C*:*(M) to be the set of f in C*(M) for which the supremum [V* f],
defined by (1.1) exists, working in the vector bundle ®k T* M with its natural metric
and connection. The Holder norm on C*@ (M) is || f|lcr.e = || fllcx + [VE f]a. With
this norm, C'*- (M) is a Banach space, called a Holder space.



6 BACKGROUND MATERIAL

Holder continuity is analogous to a sort of fractional differentiability. To see this,
observe that if f € CY(M) and z # y € M then |f(z) — f(y)| < 2|/f|lco, and
|f(z) = f(y)|/d(z,y) < ||V f]lco by the Mean Value Theorem. Hence [f],, exists, and

[fla < @l flleo) IV Fll&o-

Thus [f], is a sort of interpolation between the C° and C'* norms of f. It can help to
think of C'*:*(M) as the space of functions on M that are (k + «) times differentiable.
Now suppose that V' is a vector bundle on M with Euclidean metrics on its fibres,
and VV is a connection on V preserving these metrics. As in the case of Lebesgue
and Sobolev spaces, we may generalize the definitions above in an obvious way to give
Banach spaces C*(V') and C*:@ (V') of sections of V, and we leave this to the reader.

1.2.3 Embedding theorems

An important tool in problems involving Sobolev spaces is the Sobolev Embedding The-
orem, which includes one Sobolev space inside another. Embedding theorems are dealt
with at length by Aubin in [16, §2.3-8§2.9]. The following comes from [16, Th. 2.30].

Theorem 1.2.1. (Sobolev Embedding Theorem) Suppose M is a compact Rieman-
nian n-manifold, k,l € Z with k > 1 > 0, ¢,7 € R with ¢,r > 1, and o € (0,1). If

1 1 k-1
- < - N
q T n
then L} (M) is continuously embedded in L} (M) by inclusion. If
1 k-l-a
S J—
q n

then L} (M) is continuously embedded in C**(M) by inclusion.
Next we define the idea of a compact linear map between Banach spaces.

Definition 1.2.2 Let U, U, be Banach spaces, and let ¢ : U; — Us be a continuous
linear map. Let By = {u € Uy : |july, < 1} be the unit ball in U;. We call ¢ a
compact linear map if the image 1(B1) of Bj is a precompact subset of Us, that is, if
its closure ¢ (B ) is a compact subset of Us.

It turns out that some of the embeddings of Sobolev and Holder spaces given in the
Sobolev Embedding Theorem are compact linear maps in the above sense. This is called
the Kondrakov Theorem, and can be found in [16, Th. 2.34].

Theorem 1.2.3. (The Kondrakov Theorem) Suppose M is a compact Riemannian n-
manifold, k,l € Zwithk >1>0,q,r € Rwith ¢q,r > 1,and o € (0,1). If

1 1 k=1
q T n
then the embedding Li (M) — L7 (M) is compact. If
1 k-l-a
q n

then L} (M) — C“*(M) is compact. Also C**(M) — C*(M) is compact.
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Finally, we state two related results, the Inverse Mapping Theorem and the Implicit
Mapping Theorem for Banach spaces, which can be found in Lang [230, Th. 1.2, p. 128]
and [230, Th. 2.1, p. 131].

Theorem 1.2.4. (Inverse Mapping Theorem) Let X,Y be Banach spaces, and U an
open neighbourhood of x in X . Suppose the function F : U — Y is C* for some
k > 1, with F(z) = vy, and the first derivative dF,, : X — Y of F at x is an
isomorphism of X,Y as both vector spaces and topological spaces. Then there are
open neighbourhoods U’ C U of x in X and V' of y in Y, such that F : U' — V' is
a C*-isomorphism.

Theorem 1.2.5. (Implicit Mapping Theorem) Let X,Y and Z be Banach spaces, and
U,V open neighbourhoods of 0 in X and Y. Suppose the function F' : U x V — Z is
C* for some k > 1, with F(0,0) = 0, and dFo)|y : Y — Z is an isomorphism of
Y, Z as vector and topological spaces. Then there exists a connected open neighbour-
hood U’ C U of 0 in X and a unique C* map G : U’ — V such that G(0) = 0 and
F(z,G(x)) =0forall x € U’.

1.3 Introduction to elliptic operators

In this section we define elliptic operators, which are a special sort of partial differential
operator on a manifold. Many of the differential operators that crop up in problems
in geometry, applied mathematics and physics are elliptic. For example, consider the
equation Au = f on a Riemannian manifold M, where A is the Laplacian, and u, f are
real functions on M. It turns out that A is a linear elliptic operator.

The theory of linear elliptic operators tells us two things about the equation Au = f.
First, there is a theory about the existence of solutions u to this equation. If f is a given
function, there are simple criteria to decide whether or not there exists a function u with
Au = f. Secondly, there is a theory about the regularity of solutions u, that is, how
smooth u is. Roughly speaking, u is as smooth as the problem allows, so that if f is k
times differentiable, then u is k+ 2 times differentiable, but this is an oversimplifica-
tion. These theories of regularity and existence of solutions to elliptic equations will be
explained in §1.4 and §1.5.

Here we will define elliptic operators, and give a few examples and basic facts.
Although the underlying idea of ellipticity is fairly simple, there are many variations on
the theme—elliptic operators can be linear, quasilinear or nonlinear, for instance, and
they can operate on functions or on sections of vector bundles, and so on. Some useful
references for the material in this section are the books by Gilbarg and Trudinger [126]
and Morrey [267], and the appendix in Besse [30].

1.3.1 Partial differential operators on functions

Let M be a manifold, and V a connection on the tangent bundle of M, for instance, the
Levi-Civita connection of a Riemannian metric on M. Let u be a smooth function on
M. Then the k' derivative of u using V is V* £, or in index notation Va, -+ Vg, u.
We will write V, .4, u as a shorthand for this kP derivative Va, -+ Vg, u. Here is the
definition of a partial differential operator on functions.
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Definition 1.3.1 A partial differential operator or differential operator P on M of order
k is an operator taking real functions u on M to real functions on M, that depends on
u and its first £ derivatives. Explicitly, if « is a real function on M such that the first k

derivatives Vu, . .., V¥u of u exist (possibly in some weak sense), then P(u) or Pu is
a real function on M given by
(Pu)(z) = Q(z,u(z), Vu(z),..., VFu(z)) (1.2)

for x € M, where @ is some real function of its arguments.

It is usual to require that this function () is at least continuous in all its arguments. If
@ is a smooth function of its arguments, then P is called a smooth differential operator.
If Pu is linear in u (that is, P(au + Sv) = a Pu + 3 Pv for u,v functions and
a, B € R) then P is called a linear differential operator. If P is not linear, it is called
nonlinear.

Here is an example. Let P be a linear differential operator of order 2, and let

(21,...,zy) be coordinates on an open set in M. Then we may write
n
b (x ) + c(z)u(x 1.3
Z 81:18% ; 81‘1 (@)ulw), A.3)
where for 3,5 = 1,...,n, each of a™, b’ and c are real functions on this coordinate

patch, and a¥ = a’*. We call ¥, b* and c the coefficients of the operator P, so that,
for instance, we say P has Holder continuous coefficients if each of a, bt and ¢ are
Holder continuous functions. Also, a* are called the leading coefficients, as they are
the coefficients of the highest order derivative of w.

Now in §1.2 we defined various vector spaces of functions: C*(M), C>(M),
Holder spaces and Sobolev spaces. It is often useful to regard a differential opera-
tor as a mapping between two of these vector spaces. For instance, if P is a smooth
differential operator of order k, and u € C°°(M), then Pu € C*° (M), so P maps
C>(M) — C°(M). On the other hand, if u € C**!(M) then Pu € C'(M), so that
P also maps C*+(M) — C!(M).

It is not necessary to assume P is a smooth operator. For instance, let P be a linear
differential operator of order k. It is easy to see that if the coefficients of P are bounded,
then P : L{ (M) — L{(M) is a linear map, and if the coefficients of P are at least
Ch, then P : CF*+b (M) — C*(M) is also a linear map, and so on. In this way we
can consider an operator P to act on several different vector spaces of functions.

Definition 1.3.2 Let P be a (nonlinear) differential operator of order k, that is defined
as in (1.2) by a function Q that is at least C'' in the arguments u, Vu, . .., VFu. Let u
be a real function with k derivatives. We define the linearization L, P of P at u to be
the derivative of P(v) with respect to v at u, that is,

L,Pv = lim (P(““”) P(“)). (1.4)

a—0 o

Then L, P is a linear differential operator of order k. If P is linear then L, P = P.
Note that even if P is a smooth operator, the linearization L, P need not be smooth if u
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is not smooth. For instance, if P is of order k and u € C**{(M), then L,, P will have
C' coefficients in general, as it depends on the k'™ derivatives of u.

Many properties of a linear differential operator P depend only on the highest order
derivatives occurring in P. The symbol of P is a convenient way to isolate these highest
order terms.

Definition 1.3.3 Let P be a linear differential operator on functions of order k. Then in
index notation, we may write
Pu= A", w4 BURry, s w4+ KUV u 4 Lu,

where A, B, ..., K are symmetric tensors and L a real function on M. For each point
x € M and each £ € T} M, define o¢(P;z) = A& &, ...&,. Let o(P) :
T*M — R be the function with value o¢(P;z) at each & € T, M. Then o(P) is
called the symbol or principal symbol of P. It is a homogeneous polynomial of degree
k on each cotangent space.

1.3.2 Elliptic operators on functions

Now we can define linear elliptic operators on functions.

Definition 1.3.4 Let P be a linear differential operator of degree £ on M. We say
P is an elliptic operator if for each z € M and each nonzero £ € T M, we have
o¢(P; ) # 0, where o(P) is the principal symbol of P.

Thus, o(P) must be nonzero on each T M \ {0}, that is, on the complement of the
zero section in 7% M. Suppose dim M > 1. Then T, M \ {0} is connected, and as o (P)
is continuous on T} M, either o¢(P;x) > O forall § € T M \ {0}, or o¢(P;z) < 0
for all ¢ € T;yM \ {0}. However, o_¢(P;z) = (—1)ko¢(P;x). It follows that if
dim M > 1, then the degree k£ of an elliptic operator P must be even. Also, if M
is connected and P has continuous leading coefficients, then o (P) is continuous on a
connected space, so that either o(P) > 0 or o(P) < 0 on the whole of the complement
of the zero section in 7" M.

For example, let P be a linear differential operator of order 2, given in a coordinate
system (z1, ..., x,) by (1.3). Ateach point z € M, the leading coefficients a/ (') form
a real symmetric n x n matrix. The condition for P to be elliptic is that a”&;&; # 0
whenever £ # 0, that is, either a”/&;&; > 0 for all nonzero £ or a”&;€; < 0 for all
nonzero &. This is equivalent to saying that the eigenvalues of the matrix a* (x) must
either all be positive, or all be negative.

The best known example of a linear elliptic operator is the Laplacian on a Rie-
mannian manifold, defined by Au = —g¢*“V,;;u. The symbol o(A) is o¢(A;z) =
—g"&;&; = —|€|%, so that if € # 0 then ¢ (A; z) < 0, and A is elliptic. Next we define
nonlinear elliptic operators.

Definition 1.3.5 Let P be a (nonlinear) differential operator of degree k on M, and let
u be a function with k derivatives. We say P is elliptic at u if the linearization L, P of
P at u is elliptic. A nonlinear P may be elliptic at some functions u and not at others.
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1.3.3 Differential operators on vector bundles

Now let M be a manifold, and let V, W be vector bundles over M. As above, let V be
some connection on T'M, and let VV be a connection on V. Let v be a section of V.
By coupling the connections V and V", one can form repeated derivatives of v. We
will write Vi ., v for the k*® derivative of v defined in this way. Here is the idea of
differential operator on vector bundles.

Definition 1.3.6 A differential operator P of order k taking sections of V to sections
of W is an operator taking sections v of V' to sections of W, that depends on v and
its first k derivatives. Explicitly, if v is a k times differentiable section of V' then Puv is
given by

(Pv) (z) = Q(x,v(x) VY v(x),... ,V:l_“akv(x)) e W,

) al

forz € M. If Q) is a smooth function of its arguments, then P is called smooth, and
if Puv is linear in v then P is called linear. If P is not linear, it is nonlinear. If P is
a (nonlinear) differential operator defined by a function @ that is C'* in the arguments
v,V v,..., Vv, then we define the linearization L, P at u by (1.4). Although
P maps sections of V' to sections of W, by an abuse of notation we may also say that P
is a differential operator from V to W.

This is a natural generalization of differential operators on functions. Since real
functions are the same thing as sections of the trivial line bundle over M with fibre R,
a differential operator on functions is just the special case when V' = W = R. Here are
some examples. The operators

d: C®(A*T*M) — C®°(A*IT*M), d*: C°(A*T*M) — C°(A*1T* M),
and A C®(APT*M) — C=°(AFT* M)

introduced in §1.1 are all smooth linear differential operators acting on the vector bundle
A*T*M, where d,d* have order 1 and A has order 2. A connection V¥ on a vector
bundle V' is a smooth linear differential operator of order 1, mapping from V to V ®
T*M, and so on.

As in the case of differential operators on functions, we can regard differential op-
erators on vector bundles as mapping a vector space of sections of V' to a vector space
of sections of . For instance, if P is a smooth, linear differential operator of order &k
from V to W, then P acts by P : C®(V) — C®(W), P : C*ba(V) — Che (W)
and P: L{_ (V) — L}{(W).

Let P be a linear differential operator of order k£ from V' to W. Then in index
notation, we write

Py = AUy, o4 By, w4+ KOV 0 4 Lo (1.5)

However, here A%-% B are not ordinary tensors, but tensors taking values
in V* @ W. For instance, if &; is a 1-form at z € M, then A%~ (x)&; ...&;, isnota
real number, but an element of V. ® W, or equivalently, a linear map from V,, to W,
the fibres of V and W at .
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One can represent this in index notation by writing Agil"""ﬂ in place of A’ ik,
where iy, ..., are indices for T M, « is an index for W, and (3 is an index for V*, but
we prefer to suppress the indices for V and W. We call A% ... L the coefficients
of P. Next we define the symbol of a linear differential operator on vector bundles.

Definition 1.3.7 Let P be a linear differential operator of order k, mapping sections
of V' to sections of W, that is given by (1.5) in index notation. For each point x € M
and each & € T M, define o¢(P;x) = A&, &, ... &, . Then o¢(P; ) is a linear
map from V, to W,. Let o(P) : T*M x V — W be the bundle map defined by
o(P)(&,v) = o¢(P;x)v € W, wheneverz € M, & € Ty M and v € V.. Then o(P) is
called the symbol or principal symbol of P, and o(P)(§,v) is homogeneous of degree
k in £ and linear in v.

1.3.4 Elliptic operators on vector bundles

Now we define linear elliptic operators on vector bundles.

Definition 1.3.8 Let V, W be vector bundles over a manifold M, and let P be a linear
differential operator of degree k from V to W. We say P is an elliptic operator if for
each € M and each nonzero { € T M, the linear map o¢(P;z) : V, — W, is
invertible, where o (P) is the principal symbol of P.

Also, we say that P is an underdetermined elliptic operator if for each x € M and
each 0 # & € T;M, the map o¢(P;z) : V, — W, is surjective, and that P is an
overdetermined elliptic operator if for each x € M and each 0 # ¢ € Ty M, the map
o¢(P;x) : V, — W, is injective. If P is a (nonlinear) differential operator of degree k
from V to W, and v is a section of V with k derivatives, then we say P is elliptic at v
if the linearization L, P of P at v is elliptic.

Suppose the vector bundles V, W have fibres R’ and R™ respectively. If 2 € M
then V,, = R’ and W, = R™, so that o¢(P;z) : R — R™. Thus, o¢(P;z) can only
be invertible if [ = m, it can only be surjective if [ > m, and it can only be injective if
I > m. So, if P is elliptic then dim V' = dim W, if P is underdetermined elliptic then
dim V' > dim W, and if P is overdetermined elliptic then dim V' < dim W.

Consider the equation P(v) = w on M. Locally we can think of v as a collection of
[ real functions, and the equation P(v) = w as being m simultaneous equations on the
[ functions of v. Now, guided by elementary linear algebra, we expect that a system of
m equations in [ variables is likely to have many solutions if [ > m (underdetermined),
one solution if [ = m, and no solutions at all if [ < m (overdetermined). This can help
in thinking about differential operators on vector bundles.

Some authors (particularly of older texts) make a distinction between elliptic equa-
tions, by which they mean elliptic equations in one real function, and elliptic systems,
by which they mean systems of [ real equations in [ real functions for [ > 1, which we
deal with using vector bundles. We will not make this distinction, but will refer to both
cases as elliptic equations.

Papers about elliptic systems often use a more general concept than we have given,
in which the operators can have mixed degree. (See Morrey [267], for instance). It seems
to be a general rule that results proved for elliptic equations (in one real function), can
also be proved for elliptic systems (in several real functions). However, it can be difficult
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to locate the proof for elliptic systems in the literature, as many papers deal only with
elliptic equations in one real function.

Here are some examples. Let M be a Riemannian manifold of dimension n, and
consider the operators d, d* and A on M defined in §1.1. Now d : C®°(AT*M) —
C°(AYT*M) is a smooth linear differential operator of order 1. For x € M and £ €
T M, the symbol is o¢ (d; x)v = v &, forv € R = AT M. Thus, if € # 0, o¢(d; z) is
injective, and d is overdetermined elliptic. But if n > 1 then o¢(d; ) is not surjective,
so d is not elliptic. Similarly, d* : C*°(A'T*M) — C>°(A°T*M) is underdetermined
elliptic. It can also be shown that the operator

d+d*: C®(P)_o A*T*M) — C°(@_y A*T*M)

is a smooth linear elliptic operator of order 1, and the Laplacian A : C*=°(A*T*M) —
C>(A*T* M) on k-forms is smooth, linear and elliptic of order 2 for each k.

1.3.5 Elliptic operators over compact manifolds

Let M be a compact Riemannian manifold. Then from §1.2, L2(M) is a Banach space
of functions on M. In fact, it is a Hilbert space, with the L? inner product (uq,ug) =
fM ujue dVy for uy,us € LQ(M). We can also use this inner product on any vector
subspace of L2(M), such as C*°(M). In the same way, if V' is a vector bundle over M
equipped with Euclidean metrics on its fibres, then L?(V') is a Hilbert space of sections
of V, with inner product ( , ), given by (v1,v2), = fM (v1,v2)dV.

Now suppose that V, W are vector bundles over M, equipped with metrics on the
fibres, and let P be a linear differential operator of order k£ from V to W, with co-
efficients at least k times differentiable. It turns out that there is a unique linear dif-
ferential operator P* of order k from W to V, with continuous coefficients, such that
(Pv,w)y = (v, P*w), whenever v € Li(V) and w € LZ(W). This operator P* is
called the adjoint or formal adjoint of P. We have already met an example of this in
§1.1.2, where the adjoint d* of the exterior derivative d was explicitly constructed.

Here are some properties of adjoint operators. We have (P*)* = P for any P.
If P is smooth then P* is smooth. If V = W and P = P*, then P is called self-
adjoint; the Laplacian A on functions or k-forms is an example of a self-adjoint elliptic
operator. If P is elliptic then P* is elliptic, and if P is overdetermined elliptic then P*
is underdetermined elliptic, and vice versa.

One can write down an explicit formula for P* in terms of the coefficients of P and
the metric g. Because of this, adjoint operators are still well-defined when the manifold
M is not compact, or has nonempty boundary. However, in these cases the equation
(Pv,w)w = (v, P*w), may no longer hold, and must be modified by boundary terms.

1.4 Regularity of solutions of elliptic equations

Let M be a compact manifold and V, W vector bundles over M, and suppose P is a
smooth linear elliptic operator of order k from V to W. Consider the equation Pv =
w. Clearly, if v € C**(V) then w € CY (W), as w is a function of v and its first
k derivatives, all of which are [ times differentiable. It is natural to ask whether the
converse holds, that is, if w € C'(W), is it necessarily true that v € C*+(V)?
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In fact this is false, and an example is given by Morrey [267, p. 54]. However, it is
in general true that for o € (0, 1), if w € CL*(W) then v € C*+b(V), and forp > 1,
if w € L7 (W) thenv € L} (V). One way to interpret this is that if v is the solution
of a linear elliptic equation, then v must be as smooth as the problem allows it to be.
This property is called elliptic regularity. The main reason that Hélder and Sobolev
spaces are used a lot in analysis, instead of the simpler C* spaces, is that they have this
regularity property but the C* spaces do not.

Let us begin by quoting a rather general elliptic regularity result, taken from [30,
Th. 27, Th. 31, p. 463—4]. For a proof, see [267, Th. 6.4.8, p. 251].

Theorem 1.4.1 Suppose M is a compact Riemannian manifold, V, W are vector bun-
dles over M of the same dimension, and P is a smooth, linear, elliptic differential
operator of order k from V toW. Let o« € (0,1),p > 1, and | > 0 be an integer. Sup-
pose that P(v) = w holds weakly, with v € L' (V) and w € LY(W). If w € C=(W),

then v € C=(V). If w € Ly (W) then v € L} ,(V), and

lollzr , < C(llwler + vllz), (1.6)

for some C' > 0 independent of v, w. If w € CH*(W), then v € C**+-(V), and
[Wllcrse < C(llwlicre + [[vlico), (1.7

for some C' > 0 independent of v, w.

The estimates (1.6) and (1.7) are called the LP estimates and Schauder estimates for
P respectively. Theorem 1.4.1 is for smooth linear elliptic operators. However, when
studying nonlinear problems in analysis, it is often necessary to deal with linear elliptic
operators that are not smooth. Here are the Schauder estimates for operators with Holder
continuous coefficients, taken from the same references as the previous result.

Theorem 1.4.2 Suppose M is a compact Riemannian manifold, V, W are vector bun-
dles over M of the same dimension, and P is a linear, elliptic differential operator of
order k from V to W. Let o € (0,1) and | > 0 be an integer. Suppose that the coeffi-
cients of P are in C'®, and that P(v) = w for some v € C**(V') and w € CH*(W).
Then v € C**2(V), and ||v]|gr+i.a < C(||w]lcia + ||v]lco) for some constant C
independent of v, w.

1.4.1 How elliptic regularity results are proved

We shall now digress briefly to explain how the proofs of results like Theorems 1.4.1
and 1.4.2 work. For simplicity we will confine our attention to linear elliptic operators
of order 2 on functions, but the proofs in the more general cases follow similar lines.

First, let n > 2 and consider R"” with coordinates (1, . .., 2, ), with the Euclidean
metric (dxq)? + - - - + (dz,, )2 The Laplacian A on R™ is given by

n 8%u
AU = — Zj:l W

Define a function T' : R™ \ {0} — Rby I'(z) = W\IP*”, where €2, is the
volume of the unit sphere S”~* in R™. Then AT'(x) = 0 for x # 0 in R”. Now suppose
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that Au = f, for u, f real functions on R"”. It turns out that if u(z) and f(x) decay
sufficiently fast as x — oo in R™, we have

u(y) = [cpn Tz —y) f(x)da. (1.8)

This is called Green’s representation for u, and can be found in [126, §2.4].

Because (1.8) gives u in terms of f, if we know something about f or its derivatives,
we can deduce something about u. For instance, differentiating (1.8) with respect to z;,
we see that

Ou N (z —y) _ _n9r
Ox; ) = /a;eR" Ox; fle)dz /JceR"F(x y>axj ()da

by integration by parts, provided 9 f /O exists, and using this equation one can deduce
bounds on Vu. Working directly from (1.8), one can deduce LP estimates and Schauder
estimates analogous to those in Theorem 1.4.1, for the operator A on R”.

Now A is an operator with constant coefficients, that is, the coefficients are constant
in coordinates. The next stage in the proof is to extend the results to operators P with
variable coefficients. The idea is to approximate P by an operator P’ with constant co-
efficients in a small open set, and then use results about elliptic operators with constant
coefficients proved using the Green’s representation. For the approximation of P by P’
to be a good approximation, it is necessary that the coefficients of P should not vary
too quickly. This can be ensured, for instance, by supposing the coefficients of P to be
Holder continuous with some given bound on their Holder norm.

As an example, here is a result on Schauder estimates for operators P with Holder
continuous coefficients, part of which will be needed in Chapter 6.

Theorem 1.4.3 Let By, Bs be the balls of radius 1,2 about 0 in R™. Suppose P is a
linear elliptic operator of order 2 on functions on Bs, defined by

0%u . Ou

91,01, () + b'(2) z— () + c(x)u(z).

Pu(z) = a" () oz,

Let o € (0,1). Suppose the coefficients a®/,b* and c lie in C%(By) and there are
constants A, A > 0 such that |a® (x)&;&;| > A¢|* forall z € By and £ € R”, and
la™]|co.a < A, ||b*||co« < A, and ||c||go.e < Aon By forall i,5 = 1,...,n. Then
there exist constants C, D depending on n, c, A and A, such that whenever u € C?(By)
and f € C%%(By) with Pu = f, we have u|g, € C*“(B;) and

etz ll e < CUIF oo + Ilulico), (1.9)
and whenever u € C%(Bs) and f is bounded, then u|p, € C**(B;) and

luls: || gre < DI Fllco + llullco)- (1.10)

More generally, let | > 0 be an integer and o € (0, 1). Suppose the coefficients
a',b" and c lie in C"*(By) and there are constants X\, A > 0 such that |a" (x);&;| >
M¢|? forall x € By and € € R™, and ||a||cr.e < A, ||b]|cre < A, and |[c]|cra < A
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on By forall i,j = 1,...,n. Then there exists a constant C' depending on n, [, a,, A
and A such that whenever u € C?(By) and f € Cb*(By) with Pu = f, we have
u|p, € C*%%(B;) and

ulB, || giren < C(Ifllcte + llullco). (1.11)

Here the estimates (1.9) and (1.11) follow from [126, Ths 6.2 and 6.17], and also
from [267, Th. 5.6.2]. Estimate (1.10) follows from Morrey [267, Th. 5.5.5'(b)]. In fact,
Morrey shows that the norm || f|| ;n/-«) rather than || f||co is sufficient in (1.10).

Theorem 1.4.3 specifies exactly what C' and D in eqns (1.9)—(1.11) depend on, and
this is worth looking at. The inequality |a® (2)&;€;| > A|¢|? implies that P is elliptic, by
definition, so that the constant A > 0 represents a sort of lower bound for the ellipticity
of P. The constants C' and D also depend on A, which is a bound for the coefficients of
P in C%® or C¥®, Thus, A provides a measure of how close P is to being an operator
with constant coefficients.

Notice that although u, f exist on Bs, the theorem only gives estimates of u on By,
and these estimates depend on data on Bs. A result of this sort is called an interior
estimate, because it estimates u only on the interior of the domain. Here is one reason
why we must prove results of this structure. Consider the equation Au = 0 on some
domain 2 in R™. The maximum principle [126, §3] says that u cannot have a strict
maximum at any point in the interior of €2, roughly because Au > 0 at that point. It
follows that the maximum of « on {2 must occur at the boundary of ).

This illustrates the general principle that if P is a linear elliptic operator and Pu = f
on €, then u is likely to be most badly behaved, and most difficult to bound, near the
boundary of 2. Because of this, it is easier to prove an interior estimate like Theorem
1.4.3, than to estimate u on the whole of its domain.

Now Theorems 1.4.1 and 1.4.2 deal not with subsets of R"™, but with compact man-
ifolds. The final step in the proof of results like these goes as follows. Let M be a
compact manifold. Using the compactness of M, we can find a finite set I and sets
{X;:i¢ € I}and {Y; : i € I}, where each X;,Y; is an open set in M, the sets X;
form an open cover of M, and for each ¢ € I we have X; C Y; and the pair (X;,Y;) is
diffeomorphic to the pair (By, Bs), where By, B are the balls of radius 1,2 in R".

Suppose that we know an interior estimate for linear elliptic equations Pv = w on
the balls By, B, in R", analogous to Theorem 1.4.3. Since (X, Y;) is diffeomorphic to
(B1, B2), we may apply this estimate to (X;, Y;), and the result is an estimate of v|x,,
depending on norms of v|y, and wly,. Since the sets X; form an open cover of M, in
this way we estimate v on all of M.

Using this argument, we can use interior estimates for balls in R™ to prove results
for compact manifolds M, that estimate the solution on the whole of M. Therefore,
results such as Theorems 1.4.1 and 1.4.2 should be understood as purely local results,
that do not encode any important global information about M and P.
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1.5 Existence of solutions of linear elliptic equations

Now we will use the elliptic regularity results of §1.4 and the Kondrakov Theorem to
prove some basic facts about linear elliptic operators. Our first result shows that the
kernel of a linear elliptic operator on a compact manifold is very well-behaved.

Theorem 1.5.1 Let V, W be vector bundles over a compact manifold M, and let P
be a smooth linear elliptic operator of order k from V to W. Then P acts by P :
C=(V) = C=®(W), P : C*be(V) — C*(W) and P : L}, (V) — Lj(W). The
kernel Ker P is the same for all of these actions, and is a finite-dimensional subspace

of C>® (V).

Proof If v € Ker P then Pv = 0. Since 0 € C°°(W), Theorem 1.4.1 shows that
v € C*°(V). Thus Ker P lies in C*°(V'), and is therefore the same for all three actions
above. Let o € (0,1), and define B = {v € Ker P : ||v||gr.a < 1}, so that B is the
unit ball in Ker P in the C*® norm. The Kondrakov Theorem, Theorem 1.2.3, shows
that the inclusion C*:@ (V') — C*(V') is compact. Therefore B lies in a compact subset
of C*(V), and the closure B of B in C*(V') is compact.

But P : C*(V) — C°(W) is continuous, and P(b) = 0 € C°(W) if b € B. Thus
P(Y) =0if ¥ € B,so B C Ker P. Since Ker P ¢ C*®(V), we see that B = B, and
B is a compact topological space. Now the only Banach spaces with compact unit balls
are finite-dimensional, so Ker P is finite-dimensional, as we have to prove. O

Now let M be a compact Riemannian manifold and V, W vector bundles over M
equipped with metrics in the fibres. Let P be a smooth linear elliptic operator from V' to
W. Recall from §1.3.5 that L?(V/) has an inner product (, ). If A is a vector subspace
of L2(V) and v € L*(V), we say thatv 1 A if (v,a), = 0 forall a € A. Using this
notation, we shall prove:

Proposition 1.5.2 Let V, W be vector bundles over a compact Riemannian manifold
M, equipped with metrics in the fibres, and let P be a smooth linear elliptic operator
of order k from V to W. Let | > 0 be an integer, and let o € (0,1). Then there is
a constant D > 0 such that if v € C**4*(V) and v L Ker P, then ||v| cktia <
Dl Pvllcte.

Similarly, if p > 1 and | > 0 is an integer, there is a constant D > 0 such that if

ve Ly, (V)and v L Ker P, then lollLy,, < D[|PvllLp.

Proof For simplicity, we will prove only the case ||v||cr.o < D||Pv||co.«. The proofs
in the other cases work in exactly the same way, and are left to the reader. Define a
subset S of CF*(V) by S = {v € C**(V) : v L KerP and [[v||gra = 1},
and let v = inf{||Ps|/co. : s € S}. Suppose for a contradiction that v = 0. Then
we can choose a sequence {s;}22, in S such that || Ps;|[co.e — 0as j — oo. Now
S is bounded in C*<(V') and the inclusion C**(V) «— C¥(V) is compact, by the
Kondrakov Theorem. Therefore there exists a subsequence {s;; }52; that converges in
C*k(V) to some s’ € C*(V).

As s;;, — & in C* we see that Ps;;, — Ps’ in C°. But ||Ps;,||co. — 0, and
| Ps;, ||co < || Psi,||co.e. Thus Ps’ = 0 and s’ € Ker P, so that s’ € C**(V). Now
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by Theorem 1.4.1, there is a constant C' such that |[v[|gr.« < C(||Pvl|co.e + [Jv]|co)
for all v € C*@(V). Therefore

[si, = &'l cra < C(|Psi, oo + ||si; — s"l|co)

for each j, since Ps’ = 0. But || Ps;, ||co.« — 0as j — 0o, and ||s;; — s[[co — oo as
j — oo because s;; converges to s’ in C* and so in C°. Thus [|s;, — §'[|cr.a — 0 as
j — oo. But S is closed in C*¥:®(V'), and therefore s’ € S.

As s’ € S, we have s’ 1. Ker P. But also s’ € Ker P, from above. So s’ = 0.
However, ||s'||cx.« = 1 since s’ € S, a contradiction. Therefore v > 0. Put D = !
Then for all s € S we have ||s||gk.e = 1 < DJ|Ps||go.a, by definition of ~. But
any v € C**(V) with v 1 Ker P can be written v = \s for some s € S, and so
llv|lgr.e < D||Pv|co.«, as we have to prove. O

From §1.3.5, if V, W are vector bundles, with metrics on the fibres, over a compact
Riemannian manifold M, and P is a smooth linear elliptic operator from V' to W, then
there is a smooth linear elliptic operator P* from W to V. Our next result is an existence
result for the equation Pv = w, as it gives a simple condition on w, that w 1 Ker P*,
for there to exist a solution v. This is called the Fredholm alternative.

Theorem 1.5.3 Suppose V, W are vector bundles over a compact Riemannian manifold
M, equipped with metrics in the fibres, and P is a smooth linear elliptic operator of
order k from V to W. Let | > 0 be an integer, let p > 1, and let « € (0,1). Then the
images of the maps

P:CHh (V) - CY* (W) and P: Ly (V) — LY(W)

are closed linear subspaces of C4*(W) and LY (W) respectively. If w € C* (W) then
there exists v € C*+1%(V) with Pv = w ifand only if w | Ker P*, andif v | Ker P
then v is unique. Similarly, if w € Lj (W) then there exists v € Ly (V') with Pv = w
if and only if w 1 Ker P*, and if v | Ker P then v is unique.

Proof Let {w;}52, be a sequence in P[C**- (V)] that converges to some w’ in
CL%(W). Then for each w; there exists a unique v; € C¥T5:%(V) such thatv; | Ker P
and Pv; = w;. Applying Proposition 1.5.2 we see that for all 4, j, ||[v; — v;||ck+1.a <
Dllw; — wjl|gt.a, for D some constant. Since {w;}3°; converges in CLy(W), |lw; —
wjl|lgte — 0 as i,j — oo, and therefore ||v; — vj||gr+1a — 0 asi,j — oo, and
{v;}32, is a Cauchy sequence in C**+12 (V).

As CF+be(V) is a Banach space and therefore complete, {v; 52, converges to
some v/ € CHML(V). By continuity, P(v/) = w/, so that w' € P[CFFhe(V)].
Therefore P[C*™:%(V)] contains its limit points, and is a closed linear subspace of
Che(W). Similarly, P[LY (V)] is closed in L} (W). This proves the first part.

By definition of P*, if v € L (V) and w € Li(W), then (v, P*w), = (Pv,w)y.
It follows that if w € CL*(W), then w € Ker P* if and only if (Pv,w),, = 0 for
all v € CFbe (V). So, Ker P* is the orthogonal subspace to P[C*1o(V)]. But
P[C*Th(V)] is closed. Therefore, if w € C4*(W), then w L Ker P* if and only
if w € P[C*Th*(V)], that is, if and only if there exists v € C**1:%(V) with Pv = w.
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Clearly, we may add some element of Ker P to v to make v 1 Ker P, and then v is
unique. This proves the second part. The last part follows by the same method. O

From elementary linear algebra, if A, B are finite-dimensional inner product spaces
and L : A — B is a linear map, then Ker L and Ker L* are finite-dimensional vector
subspaces of A, B. For given b € B, the equation La = b has a solution a € A
if and only if b L Ker L*, and two solutions differ by an element of Ker L. Now
by Theorems 1.5.1 and 1.5.3, these properties also hold for linear elliptic operators
P CkL(V) — Ch*(W) or P : L} (V) — Ly (W). Thus, linear elliptic operators
behave very like linear operators on finite-dimensional vector spaces.

This gives us a way of thinking about linear elliptic operators. In the situation of
theorem 1.5.3, define E = {v € C¥*-(V) : v L Ker P} and F = {w € C"*(W) :
w L Ker P*}. Then C*™-*(V) = Ker P ® E and C"*(W) = Ker P* @ F, and
the theorem implies that P : £ — F'is a linear homeomorphism, that is, it is both an
invertible linear map and an isomorphism of E and F' as topological spaces.

Now Ker P, Ker P* are finite-dimensional, and F, F’ infinite-dimensional. In some
sense, P is close to being an invertible map between the infinite-dimensional spaces
CktLbe(V) and CH*(W), as P : E — F is invertible, and it is only the finite-
dimensional pieces Ker P and Ker P* that cause the problem. Because of this, the
existence and uniqueness of solutions of linear elliptic equations can be reduced, more-
or-less, to finite-dimensional linear algebra. In contrast, non-elliptic linear differential
equations are truly infinite-dimensional problems, and are more difficult to deal with.

Here is another example of the analogy between linear elliptic operators and finite-
dimensional linear algebra. If L : A — B is a linear map of finite-dimensional inner
product spaces A, B, then dim Ker L —dim Ker L* = dim A —dim B. Thus the integer
dim Ker L — dim Ker L* depends only on A and B, and is independent of L. Now let
V, W be vector bundles over a compact Riemannian manifold M, with metrics in the
fibres, and let P be a smooth linear elliptic operator of order k£ from V' to W. Define
the index ind P of P by ind P = dim Ker P — dim Ker P* in Z. The Atiyah—Singer
Index Theorem [13] gives a formula for ind P in terms of topological invariants of the
symbol o (P). That is, the index of P is actually a topological invariant. It is unchanged
by deformations of P that preserve ellipticity, and in this sense is independent of P.

Finally, here is a version of the results of this section for operators with C>® coeffi-
cients. To prove it, follow the proofs above but apply Theorem 1.4.2 instead of Theorem
1.4.1 wherever it occurs. The reason for requiring [ > k is in order that P* should exist.

Theorem 1.5.4 Let k > 0 and | > k be integers, and o € (0,1). Suppose V, W are
vector bundles over a compact Riemannian manifold M, equipped with metrics in the
fibres, and P is a linear elliptic operator of order k from V to W with C>® coefficients.
Then P* is elliptic with Cl=k.a coefficients, and Ker P,Ker P* are finite-dimensional
subspaces of C*¥*+ (V) and C(W) respectively. If w € C“*(W) then there exists
v € CFL(V) with Pv = w if and only if w 1 Ker P*, and if one requires that
v L Ker P then v is unique.
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Introduction to connections,
curvature and holonomy
groups

In this chapter we will introduce the theory of connections, focussing in particular on
two topics, the curvature and the holonomy group of a connection. Connections can be
defined in two different sorts of bundle, that is, vector bundles and principal bundles.
Both definitions will be given in §2.1.

Sections 2.2-2.4 define the holonomy group of a connection on a vector or princi-
pal bundle, and explain some of its basic properties, including its relationship with the
curvature of the connection. The curvature is a local invariant of the connection, since
it varies from point to point on the manifold, whereas the holonomy group is a global
invariant, as it is independent of any base point in the manifold.

Section 2.5 considers connections on the tangent bundle 7'M of a manifold M,
defines the torsion of a connection on 7'M, and discusses the holonomy groups of
torsion-free connections. Finally, §2.6 defines G'-structures on a manifold and considers
the question of existence and uniqueness of torsion-free connections compatible with a
G-structure. For a more detailed introduction to connections and holonomy groups, see
Kobayashi and Nomizu [214, Ch. 2, App. 4,5,7].

2.1 Bundles, connections and curvature

We now discuss connections, and their curvature. Connections can be defined in two
settings: vector bundles and principal bundles. These two concepts are different, but
very closely related. We will define both kinds of connection, and explain the links
between them.

2.1.1 Vector bundles and principal bundles

We begin by defining vector bundles and principal bundles.

Definition 2.1.1 Let M be a manifold. A vector bundle E over M is a fibre bundle
whose fibres are (real or complex) vector spaces. That is, £ is a manifold equipped
with a smooth projection 7 : E — M. For each m € M the fibre E,,, = 7~ (m) has

the structure of a vector space, and there is an open neighbourhood U,,, of m such that
7Y (U,) 2 U, x V, where V is the fibre of E.

19
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Now let M be a manifold, and G a Lie group. A principal bundle P over M with
fibre G is a manifold P equipped with a smooth projection 7 : P — M, and an action
of G on P, which we will write as p+—— ¢ - p, for g € G and p € P. This G-action must
be smooth and free, and the projection 7 : P — M must be a fibration, with fibres the
orbits of the G-action, so that for each m € M the fibre 7= (m) is a copy of G.

Vector bundles and principal bundles are basic tools in differential geometry. Many
geometric structures can be defined using either vector or principal bundles. Thus vector
and principal bundles often provide two different but equivalent approaches to the same
problem, and it is useful to understand both.

We shall explain the links between vector and principal bundle methods by showing
how to translate from one to the other, and back. First, here is a way to go from vector
to principal bundles.

Definition 2.1.2 Let M be a manifold, and E — M a vector bundle with fibre RE.
Define a manifold F'” by

FP = {(m,el,...,ek) :m € M and (eq,...,ex) isabasisforEm}.

Define 7 : F¥ — M by 7 : (m,e1,...,e;) — m. For each A = (4;;) in GL(k,R)
and (m,eq,...,ex) in F'¥, define A - (m,eq,...,ex) = (m,ef,...,¢€}), where ] =
25:1 A;je;. This gives an action of GL(k, R) on F'”, which makes F'” into a principal
bundle over M, with fibre GL(k,R). We call F'¥ the frame bundle of E.

One frame bundle is of particular importance. When E = T'M, the bundle F™
will be written I, and called the frame bundle of M.

We can also pass from principal bundles to vector bundles.

Definition 2.1.3 Suppose M is a manifold, and P a principal bundle over M with fibre
G, a Lie group. Let p be a representation of G on a vector space V. Then G acts on
the product space P x V' by the principal bundle action on the first factor, and p on
the second. Define p(P) = (P x V)/G, the quotient of P x V by this G-action. Now
P/G = M, so the obvious map from (P x V')/G to P/G yields a projection from p(P)
to M. Since G acts freely on P, this projection has fibre V, and thus p(P) is a vector
bundle over M, with fibre V.

These two constructions are inverse, in the sense that if p is the canonical repre-
sentation of GL(k, R) on R* then F =~ p(F*). This gives a 1-1 correspondence be-
tween vector bundles over M with fibre R*, and principal bundles over M with fibre
GL(k,R). But any Lie group G can be the fibre of a principal bundle, and not just
G = GL(k,R), so principal bundles are more general than vector bundles.

Let P be a principal bundle over M with fibre G, let g be the Lie algebra of GG, and
let ad : G — GL(g) be the adjoint representation of G on g. Definition 2.1.3 gives a
natural vector bundle ad(P) over M, with fibre g, called the adjoint bundle. This will
be important later.

Let p be a representation of G on V, and 7 : P x V' — p(P) the natural projection.
We may regard P x V as the trivial vector bundle over P with fibre V. Then if e €
C°°(p(P)) is a smooth section of p(P) over M, the pull-back *(e) is a smooth section
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of P x V over P. Moreover, 7*(e) is invariant under the action of G on P x V, and this
gives a 1-1 correspondence between sections of p(P) over M and G-invariant sections
of P x V over P.

2.1.2 Connections on vector bundles

Here is the definition of a connection on a vector bundle.

Definition 2.1.4 Let M be a manifold, and £ — M a vector bundle. A connection V¥
on F is a linear map V¥ : C*°(E) — C*°(FE ® T*M) satisfying the condition

VZ(ae) =aVFe+e®da,

whenever e € C*°(FE) is a smooth section of E and « is a smooth function on M. If V*
is such a connection, e € C*°(E), and v € C°°(T'M) is a vector field, then we write
Vie =v-V¥fe € C*(E), where ‘- contracts together the T M and T M factors in
vand VFe. Thenif v € C°(TM) and e € C*°(E) and «, § are smooth functions on
M, we have

VE,(Be) = aBVEe + a(v- He. @1

Here v - § is the Lie derivative of § by v. It is a smooth function on M, and could also
be written v - dS3.

Suppose E' is a vector bundle with fibre R* over M ,and let e, ..., e, be smooth
sections of E over some open set U C M, that form a basis of F at each point of
U. Then every smooth section of E over U can be written uniquely as Zle ;e
where ay, . .., ai are smooth functions on U. Let fi, ..., fi be any smooth sections of
E ® T*M over U, and define

Ve [Zle aie;| = Zf:l(aifi + e ®doy)

for all smooth functions a, . .., ay on U. Then V* is a connection on E over U, and
moreover, every connection on E over U can be written uniquely in this way.

Next we explain how to define the curvature of a connection on a vector bundle.
Curvature is a very important topic in geometry, and there are a number of ways to define
it. The approach we take uses vector fields, and the Lie bracket of vector fields. Let M
be a manifold, and E a vector bundle over M. Write End(E) = F ® E*, where E* is
the dual vector bundle to E. Let V” be a connection on E. Then the curvature R(V*)
of the connection V¥ is a smooth section of the vector bundle End(E) ® A*T*M,
defined as follows.

Proposition 2.1.5 Let M be a manifold, E a vector bundle over M, and V* a connec-
tion on E. Suppose that v,w € C°°(T M) are vector fields and e € C*°(E), and that
«, 3, are smooth functions on M. Then

Vivvgw (76> - ngv(Exv (76> - vﬁw.ﬂw] (76>

2.2
:ozﬂ’y~{VfVﬁerZerfViw]e}, 2

where [v,w] is the Lie bracket. Thus the expression ViVZie — VEVZe — VE e is

[v,0]

pointwise-linear in v, w and e. Also, it is clearly antisymmetric in v and w. Therefore



22 INTRODUCTION TO CONNECTIONS, CURVATURE AND HOLONOMY GROUPS

there exists a unique, smooth section R(V?) € C*(End(E) ® A*T*M) called the
curvature of V*, that satisfies the equation

R(V")-(e®@vAw) =V Vie—ViVie—V[ e (2.3)
for all v,w € C®°(TM) and e € C*(E).
Proof If v,w € C°°(TM) and «, 8 are smooth functions on M, then [aw, fw]| =
afv,w] + a(v - f)w — B(w - a)v. Using this and (2.1) to expand the terms on the left
hand side of (2.2), we see that
VeuViw(ve) =apyViVie + aB(w-y)Vie + {aB(vy) + a(v-B)y} Vie
+ {a(v-B)(wy) + aBv-(w-7)) e,
ViuwVa(ve) =afyViVie + {af(w) + (w-a)By}Vie + af(v-y)Vie
+{(w-a)B(v7) + aBw-(v-7)) }e,
Viaw,pw (7€) =aBYV[, e — (w-a)ByVie + a(v-B)yVye
+ {aB([v, w]-7) + a(v-B)(w) — (w-a)B(v-7)e.

Combining these equations with the identity v - (w - ) — w - (v - y) = [v,w] - 7, after

some cancellation we prove (2.2), and the proposition follows. O
Here is one way to understand the curvature of V. Let (x1, . .., z,) be local coor-
dinates on M, and define v; = 9/0x; fori = 1,...,n. Then v; is a vector field on M,

and [v;, v;] = 0. Let e be a smooth section of . Then we may interpret V e as a kind
of partial derivative de/dz; of e. Using (or abusing) this partial derivative notation, eqn
(2.3) implies that

0% 0%e

ULy gULi

Now, partial derivatives of functions commute, so 8% f /0z;0x; = 8% f [0z ;0x; if f is
a smooth function on M. However, this does not hold for sections of F, as (2.4) shows
that the curvature R(V*) measures how much partial derivatives in E fail to commute.

2.1.3 Connections on principal bundles

Suppose P is a principal bundle over a manifold M, with fibre G and projection 7 :
P — M.Letp € P, and set m = 7(p). Then the derivative of 7 gives a linear map
dm, : T,P — T,,M. Define a subspace C,, of T,P by C,, = Ker(dm,). Then the
subspaces C), form a vector subbundle C' of the tangent bundle TP, called the vertical
subbundle. Note that C,, is T},(7~*(m)), the tangent space to the fibre of 7 : P — M
over m. But the fibres of 7 are the orbits of the free G-action on P. It follows that there
is a natural isomorphism C), = g between C), and the Lie algebra g of G.
Here is the definition of a connection on P.

Definition 2.1.6 Let M be a manifold, and P a principal bundle over M with fibre G,
a Lie group. A connection on P is a vector subbundle D of TP called the horizontal
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subbundle, that is invariant under the G-action on P, and which satisfies T,P = C), ®
D, foreach p € P.If w(p) = m, then dm, maps T,,P = C, & D, onto T,,, M, and as
Cp = Kerdm,, we see that dr,, induces an isomorphism between D), and T;,, M.

Thus the horizontal subbundle D is naturally isomorphic to 7*(T'M). So if v €
C*°(TM) is a vector field on M, there is a unique section A(v) of the bundle D C T'P
over P, such that dm, (A(v)|) = v|x(p) foreachp € P. We call A(v) the horizontal lift
of v. It is a vector field on P, and is invariant under the action of G on P.

We now define the curvature of a connection on a principal bundle. Let M be a
manifold, P a principal bundle over M with fibre GG, a Lie group with Lie algebra g,
and D a connection on P. If v,w € C°°(T'M) and «, 3 are smooth functions on M,
then by a similar argument to the proof of (2.2) in Proposition 2.1.5, we can show that

[/\(ow)7 )\(ﬂw)] - )\([ow,ﬁw}) =af- { [/\(v), )\(w)] - )\([v,w]) },

where [, ] is the Lie bracket of vector fields. Thus the expression [A(v), A(w)] —
A([v,w]) is pointwise-linear and antisymmetric in v,w. Also, as dr(A(v)) = v for
all vector fields v on M we see that

dm ([A(v), A(w)]) = dr(A([v,w])) = [v,w].

Therefore, [A(v), A(w)] — A([v,w]) lies in the kernel of dr, which is the vertical sub-
bundle C' of T'P. But there is a natural isomorphism C, = g for each p € P, and thus
we may regard [A(v), A(w)] — A([v,w]) as a section of the trivial vector bundle P x g
over P.

As A(v), A(w) and A([v,w]) are invariant under the action of G on P, this section
of P x g is invariant under the natural action of G on P X g. But from above there is a
1-1 correspondence between G-invariant sections of P x g over P, and sections of the
adjoint bundle ad(P) over M. We use this to deduce the following result, which defines
the curvature R(P, D) of a connection D on P.

Proposition 2.1.7 Let M be a manifold, G a Lie group with Lie algebra g, P a princi-
pal bundle over M with fibre GG, and D a connection on P. Then there exists a unique,
smooth section R(P, D) of the vector bundle ad(P) ® A*T* M called the curvature of
D, that satisfies

T (R(P,D) - v Aw) = [Av), Mw)] = A([v,w]) (2.5)

for all v,w € C° (T M). Here the left hand side is a g-valued function on P, the right
hand side is a section of the subbundle C C T P, and the two sides are identified using
the natural isomorphism C), = g for p € P.

Next we relate connections on vector and principal bundles. Let M, P and G be as
above. Let p be a representation of G on a vector space V, and define £ — M to be
the vector bundle p(P) over M. Given a connection D on the principal bundle P, we
will explain how to construct a unique connection V¥ on E. Let ¢ € C*°(E), so that
7*(e) is a section of P x V over P. Then 7*(e) is a function 7*(e) : P — V, so its
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exterior derivative is a linear map d=*(e)|, : T,P — V for each p € P. Thus d7n*(e)
is a smooth section of the vector bundle V' ® T P over P.
Let D be a connection on P. Then for each p € P there are isomorphisms

T,p=C,®D,, Cp=g and D, =a"(TypM).

These give a natural splitting V @ T*P = V @ g* & V @ 7* (T* M). Write 7p (d7* (e))
for the component of d7*(e) in C°>°(V ® «*(T* M) in this splitting. Now both 7* (¢)
and the vector bundle splitting are G-invariant, so mp (dw*(e)) must be G-invariant.
But there is a 1-1 correspondence between G-invariant sections of V' @ 7*(T* M)
over P, and sections of the corresponding vector bundle £ @ T*M over M. There-
fore 7p (d7* (e)) is the pull-back of a unique element of C>° (E @ T™* M ). We use this
to define V=

Definition 2.1.8 Suppose M is a manifold, P a principal bundle over M with fibre
G, and D a connection on P. Let p be a representation of G on a vector space V, and
define E to be the vector bundle p(P) over M. If e € C*°(E), then 7p (dr*(e)) is a
G-invariant section of V @ 7* (T M) over P. Define VFe € C*°(E ® T* M) to be the
unique section of £ ® T*M with pull-back 7p (dw*(e)) under the natural projection
V @ m*(T*M) — E. This defines a connection V¥ on the vector bundle E over M.

To each connection D on a principal bundle P, we have associated a unique con-
nection VZ on the vector bundle £ = p(P). If G = GL(k,R) and p is the standard
representation of G on R¥, so that P is the frame bundle F'® of F, then this gives a 1-1
correspondence between connections on P and E. However, for general G and p the
map D — V¥ may be neither injective nor surjective.

Our final result, which follows quickly from the definitions, relates the ideas of
curvature of connections in vector and principal bundles.

Proposition 2.1.9 Suppose M is a manifold, G a Lie group with Lie algebra g, P
a principal bundle over M with fibre G, and D a connection on P, with curvature
R(P,D). Let p be a representation of G on a vector space V, E the vector bundle
p(P) over M, and V” the connection given in Definition 2.1.8, with curvature R(V?).

Now g and End(V') are representations of G, and p gives a G-equivariant linear
map dp : g — End(V). This induces a map dp : ad(P) — End(F) of the vector
bundles ad(P) and End(E) over M corresponding to g and End(V). Let

dp®id: ad(P) ® A°T*M — End(E) @ A*T*M

be the product with the identity on A*T*M. Then (dp ® id)(R(P, D)) = R(V?).

Thus, the definitions of curvature of connections in vector and principal bundles are
essentially equivalent.

2.2 Vector bundles, connections and holonomy groups

We now define the holonomy group of a connection on a vector bundle, and prove some
elementary facts about it. Let M be a manifold, E — M a vector bundle over M, and
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V¥ aconnectionon E. Let v : [0, 1] — M be a smooth curve in M. Then the pull-back
7v*(E) of E'to [0, 1] is a vector bundle over [0, 1] with fibre E. ;) over ¢ € [0, 1], where
FE, is the fibre of F overz € M.

Let s be a smooth section of v*(E) over [0, 1], so that s(t) € E ) foreach ¢t €
[0, 1]. The connection V¥ pulls back under +y to give a connection on v*(E) over [0, 1].
We say that s is parallel if its derivative under this pulled-back connection is zero, i.e. if
VEys(t) = 0forallt € [0,1], where §(t) is L (t), regarded as a vector in T, ;) M.

Now this is a first-order ordinary differential equation in s(¢), and so for each pos-
sible initial value e € EW(O), there exists a unique, smooth solution s with s(0) = e. We
shall use this to define the idea of parallel transport along ~y.

Definition 2.2.1 Let M be a manifold, E a vector bundle over M, and V¥ a connection
on E. Suppose v : [0,1] — M is smooth, with 7(0) = « and (1) = y, where
x,y € M. Then for each e € E,, there exists a unique smooth section s of v*(E)
satisfying V¥ s(t) = 0 for t € [0,1], with 5(0) = e. Define P, (e) = s(1). Then
P, : E, — E,is a well-defined linear map, called the parallel transport map. This
definition easily generalizes to the case when 7y is continuous and piecewise-smooth, by
requiring s to be continuous, and differentiable whenever - is differentiable.

Here are some elementary properties of parallel transport. Let M, E and V* be as
above, let z,y, 2z € M, and let «, 8 be piecewise-smooth paths in M with «(0) = z,
a(1) =y = £(0), and 3(1) = z. Define paths a~! and Ba by

1 a(2t) if
a () =a(l —t) and pPa(t) = {ﬁ(% _1) it
Then o~ ! and SBa are piecewise-smooth paths in M with a=1(0) = y, a7 1(1) = 2,
Ba(0) = z and Ba(l) = z.

Suppose e, € E,, and P,(e,) = ey € Ey. Then there is a unique parallel section s
of a™!(E) with s(0) = e, and s(1) = e,,. Define s'(¢) = s(1 —t). Then s’ is a parallel
section of (a=1)*(E). Since s'(0) = e, and s’ (1) = e, it follows that P,-1(e,) = e,.
Thus, if P,(e;) = ey, then P,-1(e,) = ez, and so P, and P,-1 are inverse maps. In
particular, this implies that if 7 is any piecewise-smooth path in M, then P, is invertible.
By a similar argument, we can also show that Pg, = Pg o P,.

Definition 2.2.2 Let M be a manifold, E a vector bundle over M, and V¥ a connection
on E. Fix a point x € M. We say that ~ is a loop based at z if v : [0,1] — M is a
piecewise-smooth path with v(0) = (1) = x. If 7y is a loop based at x, then the parallel
transport map P, : E, — E, is an invertible linear map, so that P, lies in GL(E, ), the
group of invertible linear transformations of E,. Define the holonomy group Hol,(V*)
of V¥ based at z to be Hol,(V?) = { P, : yis aloop based at 2} C GL(E,).

If o, 3 are loops based at x, then o~ ! and Ba are too, and from above we have

P,-+ = P! and P, = Pgo P,. Thus, if P, and Pj lie in Hol,,(V?), then so do P!
and Pg o P,. This shows Hol,(V?*) is closed under inverses and products in GL(E;),
and therefore Hol, (V) is a subgroup of GL(E,), which justifies calling it a group.
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Note that in this book we suppose all manifolds to be connected. Suppose z,y € M.
Since M is connected, we can find a piecewise-smooth path v : [0,1] — M with
v(0) = x and (1) = y, so that P, : E, — E,.If « is a loop based at x, then yay™*
is a loop based at y, and P,,,-1 = Py o P, o P;l. Hence, if P, € Hol,(V*#), then

P, o P, o P;' € Hol,(V”). Thus
P, Hol, (V") P;! = Hol, (V”). (2.6)

Now this shows that the holonomy group Hol,,(V*) is independent of the base point
x, in the following sense. Suppose E has fibre R¥, say. Then any identification E, = R*
induces an isomorphism GL(FE,;) = GL(k,R), and so we may regard Hol,(V”) as a
subgroup H of GL(k, R). If we choose a different identification £, = R*, we instead
get the subgroup aHa~! of GL(k,R), for some a € GL(k,R). Thus, the holonomy
group is a subgroup of GL(k, R), defined up to conjugation. Moreover, (2.6) shows that
if z,y € M, then Hol,(V*) and Hol, (V") yield the same subgroup of GL(k,R), up
to conjugation. This proves:

Proposition 2.2.3 Let M be a manifold, EF a vector bundle over M with fibre Rk,
and V¥ a connection on E. For each © € M, the holonomy group Hol,,(V*) may be
regarded as a subgroup of GL(k, R) defined up to conjugation in GL(k,R), and in this
sense it is independent of the base point x.

Because of this we may omit the subscript  and write the holonomy group of V*
as Hol(V¥#) C GL(k,R), implicitly supposing that two subgroups of GL(k,R) are
equivalent if they are conjugate in GL(k, R). In the same way, if F has fibre CF, then the
holonomy group of V* is a subgroup of GL(k, C), up to conjugation. The proposition
shows that the holonomy group is a global invariant of the connection. Next we show
that if M is simply-connected, then Hol(V#) is a connected Lie group.

Proposition 2.2.4 Let M be a simply-connected manifold, E' a vector bundle over M
with fibre R¥, and V' a connection on E. Then Hol(V*) is a connected Lie subgroup
of GL(k,R).

Proof Choose a base point z € M, and let v be a loop in M based at x. Since M is
simply-connected, the loop  can be contracted to the constant loop at x, that is, there
exists a family {v, : s € [0,1]}, where v, : [0, 1] — M satisfies v,(0) = 7,(1) = z,
Y(t) = x fort € [0,1] and 73 = =, and 75(t) depends continuously on s and ¢. In
fact, as shown in [214, p. 73-75], one can also suppose that 7, is piecewise-smooth,
and depends on s in a piecewise-smooth way.

Therefore s — P, is a piecewise-smooth map from [0, 1] to Hol,,(V*). Since 7o
is the constant loop at x we see that P, = 1, and P,, = P, as y; = +. Thus, each P,
in Hol(V*) can be joined to the identity by a piecewise-smooth path in Hol(V#). Now
by a theorem of Yamabe [343], every arcwise-connected subgroup of a Lie group is a
connected Lie subgroup. So Hol(V*) is a connected Lie subgroup of GL(k, R). m|

When M is not simply-connected, it is convenient to consider the restricted holon-
omy group Hol’(V?), which we now define.
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Definition 2.2.5 Let M be a manifold, E a vector bundle over M with fibre RF , and
V¥ a connection on F. Fix x € M. A loop v based at z is called null-homotopic
if it can be deformed to the constant loop at x. Define the restricted holonomy group
Hol% (V*) of VZ to be Hol?(V?) = {P, : v is a null-homotopic loop based at z}.
Then Hol? (V?) is a subgroup of GL(E,). As above we may regard Hol" (V?) as a
subgroup of GL(k, R) defined up to conjugation, and it is then independent of the base
point z, and so is written Hol’(V?) C GL(k, R).

Here are some important properties of Hol’ (VE).

Proposition 2.2.6 Let M be a manifold, E' a vector bundle over M with fibre ]Rk, and
V® a connection on E. Then Hol’(V?) is a connected Lie subgroup of GL(k,R). It
is the connected component of Hol(V*?) containing the identity, and is a normal sub-
group of Hol(V?). There is a natural, surjective group homomorphism ¢ : 71 (M) —
Hol(V*) /Hol®(V?). Thus, if M is simply-connected, then Hol(V*) = Hol’ (V7).

Proof The argument used in Proposition 2.2.4 shows that the restricted holonomy
group Hol’(V?) is a connected Lie subgroup of GL(k,R). Fix z € M. If a, 3 are
loops based at 2 and 3 is null-homotopic, then a3~ ! is null-homotopic. Thus, if P, €
Hol,(V*) and P € Hol2(V*), then P,s,-1 = P, PsP; " also lies in Hol) (V*), and
so Hol% (V*) is a normal subgroup of Hol, (V?).

The group homomorphism ¢ : 71 (M) — Hol, (V?)/Hol? (V?) is given by ()
= P, - Hol2(V"), where + is a loop based at = and [4] the corresponding element of
m1(M). Tt is easy to verify that ¢ is a surjective group homomorphism. Since 71 (M)
is countable, the quotient group Hol,(V*?)/Hol2(V?) is also countable. Therefore,
Hol? (V*) is the connected component of Hol,(V*) containing the identity. O

Now we can define the Lie algebra of Hol" (V7).

Definition 2.2.7 Let M be a manifold, E a vector bundle over M with fibre RF , and
V” a connection on E. Then Hol(V?) is a Lie subgroup of GL(k,R), defined up to
conjugation. Define the holonomy algebra hol(V7) to be the Lie algebra of Hol" (V7).
Itis a Lie subalgebra of gl(k, R), defined up to the adjoint action of GL(k, R). Similarly,
Hol? (V*) is a Lie subgroup of GL(E,,) for all z € M. Define hol, (V") to be the Lie
algebra of Hol (V7). It is a Lie subalgebra of End(E,).

Note that because Hol’(V*) is the identity component of Hol(V*), the Lie algebras
of Hol”(V*) and Hol(V*) coincide. Also, although Hol’(V*) is a Lie subgroup of
GL(k,R), it is not necessarily a closed subgroup, and so it may not be a submanifold
of GL(k,R) in the strictest sense. (The inclusion of R in 7% = R?/Z? given by t
(t + Z,t\/2 + Z) for t € R gives an example of a non-closed Lie subgroup of a Lie
group, and this is the sort of behaviour we have in mind.) Even if Hol®(V?) is closed,
the full holonomy group Hol(V*#) may not be closed in GL(k, R).

The term ‘holonomy group’ is in some ways misleading, as it suggests that the
holonomy group is defined simply as an abstract Lie group. In fact, if V* is a connec-
tion on a vector bundle E, then the holonomy group Hol(V*¥) comes equipped with a
natural representation on the fibre R* of E, or equivalently, Hol(V#) is embedded as
a subgroup of GL(k, R). Thus, when we describe the holonomy group of a connection,
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we must specify not only a Lie group, but also a representation of this group. It is im-
portant to remember this. We will refer to the representation of Hol(V*?) on the fibre of
FE as the holonomy representation.

2.3 Holonomy groups and principal bundles

Next we define holonomy groups of connections in principal bundles.

Definition 2.3.1 Let M be a manifold, P a principal bundle over M with fibre G, and
D aconnectionon P.Let+ : [0,1] — P be a smooth curve in P. Then (t) € TP is
tangent to ([0, 1]) foreach ¢ € [0, 1]. We call v a horizontal curve if its tangent vectors
are horizontal, that is, §(t) € D for each t € [0, 1]. Similarly, if v : [0,1] — P is
piecewise-smooth, we say that +y is horizontal if 4(t) € D, ) for t in the open, dense
subset of [0, 1] where 4(t) is well-defined.

Now, if v : [0,1] — M is piecewise-smooth with y(0) = m, and p € P with
7(p) = m, then there exists a unique horizontal, piecewise-smooth map v’ : [0,1] — P
such that 4/(0) = p and 7 o 7/ is equal to -, as maps [0, 1] — M. This follows from
existence results for ordinary differential equations, and is analogous to the facts about
existence and uniqueness of parallel sections of v*(E') used in Definition 2.2.1. We call
~" a horizontal lift of ~.

Here is the definition of holonomy group.

Definition 2.3.2 Let M be a manifold, P a principal bundle over M with fibre GG, and
D a connection on P. For p,q € P, write p ~ ¢ if there exists a piecewise-smooth
horizontal curve in P joining p to ¢. Clearly, ~ is an equivalence relation. Fix p € P,
and define the holonomy group of (P, D) based at p to be Hol,,(P,D) = {g € G :
p ~ g - p}. Similarly, define the restricted holonomy group Holg(P7 D) to be the set of
g € G for which there exists a piecewise-smooth, horizontal curve v : [0, 1] — P such
that v(0) = p, v(1) = g - p, and 7 o -y is null-homotopic in M.

If g € G and p,q € P with p ~ ¢, then there is a horizontal curve v in P joining
p and q. Applying g to 7, we see that g - v is a horizontal curve joining ¢ - p and
g - q. Therefore if g € G and p ~ ¢, theng-p ~ ¢ -q.If g € Hol,(P, D), then
p ~ g - p. Applying g~ ! gives that g1 - p ~ g% (g - p) = p. Thusp ~ g~ p and
g~ € Hol,(P, D), so that Hol, (P, D) contains inverses of its elements.

Now suppose that g, h € Hol,,(P, D). Applying g to p ~ h-p shows that g-p ~ (gh)-
p.Butp ~ g-p,sop~ (gh) - pas ~ is an equivalence relation, and gh € Hol, (P, D).
So Hol,, (P, D) is closed under products, and therefore it is a subgroup of G. A similar
argument shows that Holg(P, D) is a subgroup of G.

Since ~ is an equivalence relation, it is easy to see that if p,¢q € P and p ~ g,
then Hol,, (P, D) = Hol, (P, D). Also, one can show that for all g € G and p € P, we
have Holy.,(P, D) = gHol,(P, D)g~'. Now if p,q € P, then 7(p),m(q) € M. As
M is connected, there exists a piecewise-smooth path + in M with y(0) = 7(p) and
~v(1) = m(q). There is a unique horizontal lift 7’ of v with 7/(0) = p and 7/(1) = ¢/,
for some ¢’ € P. As 7(q") = 7(q), we see that ¢ = g - ¢ for some g € G, and as 7/ is
horizontal we have p ~ ¢'. Thus, whenever p, q € P, there exists g € G withq ~ g - p,
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and so from above Hol, (P, D) = Hol,.,(P, D) = gHol,(P, D)g~'. This proves the
following result, the analogue of Proposition 2.2.3.

Proposition 2.3.3 Let M be a manifold, P a principal bundle over M with fibre G,
and D a connection on P. Then the holonomy group Hol,, (P, D) depends on the base
point p € P only up to conjugation in G. Thus we may regard the holonomy group as
an equivalence class of subgroups of G under conjugation, and it is then independent of
p and is written Hol(P, D). Similarly, we regard Holg(P7 D) as an equivalence class of

subgroups of G under conjugation, and write it Hol® (P, D).
By following the proofs of Propositions 2.2.4 and 2.2.6, we can show:

Proposition 2.3.4 Let M be a manifold, P a principal bundle over M with fibre G,
and D a connection on P. Then Holo(P7 D) is a connected Lie subgroup of G. It is the
connected component of Hol(P, D) containing the identity, and is normal in Hol(P, D).
There is a natural, surjective homomorphism ¢ : m (M) — Hol(P, D) /Hol®(P, D). If
M is simply-connected, then Hol(P, D) = Hol’(P, D).

We define the Lie algebra of Hol’(P, D).

Definition 2.3.5 Suppose M is a manifold, P a principal bundle over M with fibre
G, and D a connection on P. Then Hol(P, D) is a connected Lie subgroup of G,
defined up to conjugation. Define the holonomy algebra hol(P, D) to be the Lie algebra
of Hol’(P, D). Then hol(P, D) is a Lie subalgebra of the Lie algebra g of G, and is
defined up to the adjoint action of G on g.

Similarly, Holg(P7 D) is a Lie subgroup of G for all p € P. Let hol,(P, D) C g
be the Lie algebra of Holg(P7 D). Let m(p) = m € M, and define hol,,(P,D) =
m(hol,(P, D)), where 7 : P x g — ad(P) is as in Definition 2.1.3. Then hol,,, (P, D)
is a vector subspace of ad(P),,. As ol (P, D) = Ad(g) [hol, (P, D)] for g in G, we
see that hol,,, (P, D) is independent of the choice of p € w~!(m). Thus hol,,, (P, D) is
well-defined.

Now let M, P,G and D be as above, and fix p € P. Write H = Hol,,(P, D), and
suppose H is a closed Lie subgroup of GG. Define Q = {q € P : p ~ ¢}. Clearly, Q is
preserved by the action of H on P, and thus H acts freely on (). Also, 7 restricts to )
giving a projection 7 : () — M, and it is easy to see that the fibres of 7 : Q — M are
actually the orbits of H. As H is a closed subgroup of G, it is a Lie group, and one can
also show that () is a submanifold of P, and thus a manifold. If H is not closed in G,
then ( is not a submanifold of P in the strict sense.

All this shows that () is a principal subbundle of P, with fibre H. A subbundle of this
sort is called a reduction of P. Let C' be the vertical subbundle of (). A point ¢ lies in
Q if it can be joined to p by a horizontal curve. Therefore, any horizontal curve starting
in @) must remain in (), and so 7 must contain all horizontal vectors at g, giving that
D, C T,Q. Now T,P = C; ® Dy, and D, C T,Q, and clearly C; = C, N T,Q.
But these equations imply that 7;,QQ = C; @ D,. Therefore, the restriction D’ of the
distribution D to () is in fact a connection on (). Thus we have proved:
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Theorem 2.3.6. (Reduction Theorem) Let M be a manifold, P a principal bundle
over M with fibre G, and D a connection on P. Fix p € P, let H = Hol,(P, D),
and suppose that H is a closed Lie subgroup of G. Define Q = {q € P : p ~ q}. Then
Q is a principal subbundle of P with fibre H, and the connection D on P restricts to
a connection D' on Q. In other words, P reduces to (), and the connection D on P
reduces to D' on Q.

The hypothesis that H is closed in G here may be dropped, but then () may not be
closed in P. An example of such a subgroup H C G was given in the previous section.
Using this theorem, we can interpret holonomy groups in the following way. Suppose P
is a principal bundle over M, with fibre G, and a connection D. Then Hol(P, D) is the
smallest subgroup H C G, up to conjugation, for which it is possible to find a reduction
@ of P with fibre H, such that the connection D reduces to Q.

Finally, we shall compare the holonomy groups of connections in vector bundles
and in principal bundles, using the ideas of §2.1. The relation between the two is given
by the following proposition, which is easy to prove.

Proposition 2.3.7 Let M be a manifold, and P a principal bundle over M with fibre
G. Suppose p : G — GL(V) is a representation of G on a vector space V, and set E =
p(V). Let D be a connection on P, and V* the connection on E given in Definition
2.1.8. Then Hol(P, D) and Hol(V*?) are subgroups of G and GL(V) respectively, each
defined up to conjugation, and p(Hol(P, D)) = Hol(V*).

Similarly, suppose M is a manifold, & a vector bundle over M with fibre R*,
and F” the frame bundle of E. Then F* is a principal bundle with fibre GL(k,R).
Let V* be a connection on E, and D* the corresponding connection on F'*. Then
Hol(V*) and Hol(F'®, D) are both subgroups of GL(k, R) defined up to conjugation,
and Hol(V*?) = Hol(F*®, D?).

Thus the two definitions of holonomy group are essentially equivalent.

2.4 Holonomy groups and curvature

Given a connection on a vector bundle or a principal bundle, there is a fundamental
relationship between the holonomy group (or its Lie algebra) and the curvature of the
connection. The holonomy algebra both constrains the curvature, and is determined by
it. Here are two results showing that the curvature of a connection lies in a vector bundle
derived from the holonomy algebra.

Proposition 2.4.1 Let M be a manifold, E a vector bundle over M, and V¥ a con-
nection on E. Then for each m € M the curvature R(V?),, of VZ at m lies in
hol,,,(VZ) @ A2T* M, where hol,,(V?) is the vector subspace of End(E,,) given in
Definition 2.2.7.

Proposition 2.4.2 Let M be a manifold, P a principal bundle over M with fibre G,
and D a connection on P. Then for each m € M the curvature R(P, D), of D at m
lies in hol,,, (P, D) ® A>T} M, where hol,, (P, D) is the vector subspace of ad(P),,
given in Definition 2.3.5.

We will only prove the second proposition, as the first follows from it.
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Proof of Proposition 2.4.2 It is enough to show that if v, w are vector fields on M then

(R(P,D)-vAw)ym, liesin hol,, (P, D). Choose p € M withm = 7(p). Then (R(P, D)-

v A W), lies in hol,, (P, D) if and only if 7*(R(P, D) - v A w),, lies in hol, (P, D).
So by (2.5), we must show that for all v,w € C*°(T'M) and p € P, we have

[A@), A(w)][p = A([v,w]) |, € hol,(P, D). .7

Here [A(v), A(w)]|, — A([v, w])|, € Cp, which is identified with g, and hol,,(P, D) C g.
Let @ be the subset {¢g € P : p ~ q} C P considered in §2.3. Then by Theorem 2.3.6,
@ is a principal subbundle of P with fibre Hol, (P, D), and the connection D reduces
to (). This means that at ¢ € @, we have D, C T,Q.

Consider the restriction of A\(v) to Q. Since it is horizontal, it lies in D, and hence
in T,Q at each ¢ € Q. Thus, A\(v)|qg is a vector field on Q. Similarly, A\(w)|g and
A([v,w])|q are vector fields on @, so [A(v), A(w)]|q is a vector field on Q. Since
p € Q, we see that [A(v), A(w)]], — A([v, w])|, € T,Q. But we already know this lies
in Cy, so it lies in C,, N T},Q. However, C), N T),Q is identified with hol, (P, D) under
the isomorphism C), = g. This verifies eqn (2.7), and the proof is complete. O

There is a kind of converse to Propositions 2.4.1 and 2.4.2, known as the Ambrose—
Singer Holonomy Theorem [10], [214, p. 89]. We state it here in two forms, for con-
nections in vector bundles and principal bundles.

Theorem 2.4.3 (a) Let M be a manifold, F a vector bundle over M, and V¥ a con-
nection on E. Fix x € M, so that hol, (V*) is a Lie subalgebra of End(E,). Then
hol, (V*) is the vector subspace of End(E,) spanned by all elements of End(E,) of
the form P! [R(V*), - (v Aw)]| Py, where x: € M is a point,~y : [0,1] — M is piece-
wise smooth with v(0) = x and (1) = y, P, : E, — E, is the parallel translation
map, and v,w € T, M.

(b) Let M be a manifold, P a principal bundle over M with fibre G, and D a
connection on P. Fix p € P, and define @ = {q € P : p ~ q}, as in §2.3. Then
hol, (P, D) is the vector subspace of the Lie algebra g of G spanned by the elements
of the form 7 (R(P, D) - v Aw), forall ¢ € Q and v,w € C*°(T' M), where m maps
P x g to ad(P).

This shows that R(V*) determines hol(V*), and hence Hol"(V*). For instance, if
V” is flat, so that R(V”) = 0, then hol(V”) = 0, and therefore Hol’(V*) = {1}.
The theorem is used by Kobayashi and Nomizu [214, Th. 8.2, p. 90] to prove the next
proposition.

Proposition 2.4.4 Let M be a manifold and P a principal fibre bundle over M with
fibre G. If dim M > 2 and G is connected, then there exists a connection D on P
with Hol(P, D) = G.

As a corollary we have the following result, which can be seen as a sort of converse
to Theorem 2.3.6.

Theorem 2.4.5 Let M be a manifold, and P a principal bundle over M with fibre G.
Suppose dim M > 2. Then for each connected Lie subgroup H C G, there exists a
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connection D on P with holonomy group Hol(P, D) = H if and only if P reduces to
a principal bundle () with fibre H.

This shows that the question of which groups can appear as the holonomy group of a
connection on a general vector or principal bundle is determined entirely by global topo-
logical issues: it comes down to asking when the principal bundle admits a reduction to
a subgroup, which can be answered using algebraic topology. Therefore, the question
of which groups can be the holonomy groups of a connection on a general bundle is not
very interesting from the geometrical point of view. To make the question interesting we
must impose additional conditions on the connection, as we will see in the next section.

2.5 Connections on the tangent bundle, and torsion

We now consider connections V on the tangent bundle 7'M of a manifold M. We
shall show that V also acts on the tensors on M, and the constant tensors on M are
determined by the holonomy group Hol(V). We also define an invariant 7'(V) called
the torsion, and discuss the holonomy groups of torsion-free connections.

Suppose M is a manifold of dimension n, and let F' be the frame bundle of M, as in
Definition 2.1.2. Then T'M is a vector bundle over M with fibre R™, and F' a principal
bundle over M with fibre GL(n, R). As in §2.1, there is a 1-1 correspondence between
connections V on T'M, and connections D on F'.

Now §2.1-§2.4 developed the theories of connections in vector bundles and prin-
cipal bundles in parallel, comparing them, but keeping the two theories distinct. From
now on we will not make this distinction. Instead, we will identify a connection V on
T M with the corresponding connection D on F'. We will refer to both as connections
on M, and we will make use of both vector and principal bundle methods, according to
which picture is most helpful.

2.5.1 Holonomy groups and constant tensors

Let M be a manifold of dimension n, and V a connection on M. Then V is identi-
fied with a connection D on the frame bundle F' of M, a principal bundle with fibre
GL(n,R). Now if p is a representation of GL(n,RR) on a vector space V' then Defi-
nitions 2.1.3 and 2.1.8 define a vector bundle p(F') on M and a connection, V* say,
on p(F).

Let p be the usual representation of GL(n,R) on V' = R". Then p(F') is just T M,
and V? = V. However, starting from V' we can construct many other representations of
GL(n,R) by taking duals, tensor products, exterior products and so on. From each of
these representations, we get a vector bundle with a connection. For instance, the repre-
sentation of GL(n,R) on V* gives the cotangent bundle 7* M, and the representation
R"V @ ®' V* yields the bundle @" TM ® Q' T+ M.

In fact, all of the vector bundles of tensors ®k TM® ®l T* M, and subbundles of
these such as the symmetric tensors S¥T'M or the exterior forms A'T* M, arise through
the construction of Definition 2.1.3. Thus, Definition 2.1.8 yields a connection on each
of these bundles. This gives:
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Lemma 2.5.1 Let M be a manifold. Then a connection V on T M induces connections
on all the vector bundles of tensors on M, such as @" TM @ @' T*M. All of these
induced connections on tensors will also be written V.

Let M be a manifold, V a connection on M, and S a tensor on M, so that S €
(O (®k TM® ®l T*M) for some k, . We say that S is a constant tensor if V.S = 0.
Our next result shows that the constant tensors on M are determined entirely by the
holonomy group Hol(V).

Proposition 2.5.2 Let M be a manifold, and V a connectionon T'M. Fix x € M, and
let H = Hol, (V). Then H is a subgroup of GL(T,M). Let E be the vector bundle
®"TM ® ®' T*M over M. Then the connection V on T'M induces a connection
V¥ on E, and H has a natural representation on the fibre E, of F at x.

Suppose S € C*°(FE) is a constant tensor, so that V*S = 0. Then S|, is fixed by
the action of H on E,. Conversely, if S, € E, is fixed by the action of H, then there
exists a unique tensor S € C*°(E) such that V*S = 0 and S|, = S,.

Proof Let p : H — GL(E,) be the natural representation. Then Proposition 2.3.7
shows that Hol,, (V") = p(H). Let y be a loop in M based at =, and P, € GL(E,)
the parallel translation map using V” in E. Then P, € Hol,(V"*), so P, € p(H), and
P, = p(h) for some h € H. Moreover, for every h € H we have P,, = p(h) for some
loop y in M based at z.

Now VS = 0, and therefore the pull-back v*(S) is a parallel section of v*(E)
over [0, 1]. Therefore Py (S|,(0)) = S| (1)- But v(0) = (1) = 2, so Py(S|z) = Sl
Thus p(h)(S|z) = S|, forall h € H, and S|, is fixed by the action of H on E,.

For the second part, suppose S, € E, is fixed by p(H ). We will define S € C*°(E)
with the required properties. Let y € M be any point. As M is connected, there is a
piecewise-smooth path « : [0,1] — M with «(0) = x and a(1) = y. Let @ and 3
be two such paths, and let P, Pg : E, — I, be the parallel transport maps, so that
P,-15 = P;'P3. But a8 is a loop based at z, and thus P,—15 = P; ' Pg = p(h) for
some h € H.

Now p(h)(Sz) = S, by assumption. Hence P, ' P3(S;) = S, giving P, (S.) =
P3(S;). Therefore, if o, 3 : [0,1] — M are any two piecewise-smooth paths from x
to y then P, (S;) = Ps(Ss), and the element P, (S;) € E, depends only on y, and
not on «. Define a section S of E by S|, = P,(S;), where « is any piecewise-smooth
path from z to y. Then S is well-defined. If  is any path in M then v*(.9) is parallel,
and thus S is differentiable with VZS = 0. Also S|, = S, by definition, and clearly
S € C*°(FE), which finishes the proof. O

In the proposition we wrote V* for the connection on F, in order to distinguish it
from the connection V on 7'M . Usually we will not make this distinction, but will write
V for the connections on all the tensor bundles of M. As a corollary we have:

Corollary 2.5.3 Let M be a manifold and V a connection on T'M, and fix x € M.
Define G C GL(T; M) to be the subgroup of GL(T,, M) that fixes S|, for all constant
tensors S on M. Then Hol, (V) is a subgroup of G.
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Now, in nearly all of the geometrical situations that interest us—if, for instance,
Hol, (V) is compact and connected—we actually have Hol, (V) = G in this corollary.
This is not true in every case, as for instance G is closed in GL(7, M) but Hol, (V) is
not always closed, but it is a good general rule. The point is that Hol(V) = G if Hol(V)
can be defined as the subgroup of GL(n, R) fixing a collection of elements in the finite-
dimensional representations of GL(n, R), and this is true for most of the subgroups of
GL(n,R) of any geometrical interest.

Thus, given a manifold M and a connection V on 7'M, the holonomy group Hol(V)
determines the constant tensors on M, and the constant tensors on M usually determine
the holonomy group Hol(V). Therefore, studying the holonomy of a connection, and
studying its constant tensors, come down to the same thing.

2.5.2 The torsion of a connection on )/

Let M be a manifold, and V a connection on M. Then the torsion T'(V) of V is a tensor
on M defined in the following proposition. We leave the proof as an easy exercise, as it
is similar to that of Proposition 2.1.5.

Proposition 2.5.4 Let M be a manifold, and V a connection on T'M . Suppose v, w €
C>(T M) are vector fields and «, 3 smooth functions on M. Then

Vao(Bw) = Vguw(aw) — [av, Bw] = af - {V,w — Vv — [v,w] },

where [v, w] is the Lie bracket. Thus the expression V ,w — V,v — [v, w] is pointwise-
linear in v and w, and it is clearly antisymmetric in v and w. Therefore there exists
a unique, smooth section T(V) € C*(TM ® A*T*M) called the torsion of V, that
satisfies the equation

T(V):(vAw) =Vyw— Vv —[v,w] forall v,w e C*(TM). (2.8)

The torsion T'(V) of a connection V is a tensor invariant, similar to the curvature
R(V). The definition of T'(V) uses V once, but that of R(V) uses V twice. In fact, the
torsion is a much simpler invariant than the curvature. Note also that we can only define
the torsion of a connection on 7'M, as the definition makes no sense for an arbitrary
vector bundle E over M. A connection V on T'M with T'(V) = 0 s called torsion-free,
or of zero torsion. Torsion-free connections are an important class of connections.

Let M be a manifold and V a connection on M. For simplicity we will write T for
the torsion T'(V) and R for the curvature R(V) of V. Then T and R are tensors on M.
Using the index notation, we have

T =T with Ty =-T5, and R=R%., with R%_ ;= —R%4.
For a torsion-free connection V, the curvature R and its derivative VR have certain
extra symmetries, known as the Bianchi identities.
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Proposition 2.5.5 Let M be a manifold, and V a torsion-free connection on T'M.
Then the curvature R, ; of V satisfies the tensor equations

Rabcd + Racdb + Radbc == 07 and (29)
VeR%q+ VeR% 4o + VaR%, . = 0. (2.10)
These are known as the first and second Bianchi identities, respectively.

Proof Equation (2.9) is equivalent to the condition that

R -u®vAw)+ R-w@wAu)+R-(w®@uAv)=0 (2.11)
for all vector fields u, v, w € C°°(T'M). By definition of R we have

R-(u®@vAw)=V,Vyu—V,Vyu— Vi u. (2.12)

But V is torsion-free, so T' = 0, and therefore

T (uAv,w]) = Vu[v,w] = Vi wju — [u, [v,w]] = 0.
Substituting this into (2.12) gives

R - (u®vAw)=V,Vyu—Vy,Vyu— Vy[v,w] + [u, [v,w]].

Applying the three cyclic permutations of w, v, w to this equation and adding the
results together, we find that the left hand side of (2.11) is equal to

Vu(Vow = Vv = [v,0]) + Vo (Veu — Vyw — [w, u))
+Vu (VUU - Vyu — [u,’UD + [’LL, [’U, w“ + [’U, [U)?uH + [wa [u,vﬂ.

The first term is V,, (T (v A w)) which is zero as T = 0, and the two similar terms
vanish in the same way. But the remaining three terms sum to zero, by the Jacobi identity
for vector fields. Thus (2.11) holds, and this proves (2.9). Equation (2.10) can be proved
by similar methods. O

2.5.3 The holonomy of torsion-free connections

It was explained in §2.4 that Theorem 2.4.5 describes exactly the possible holonomy
groups of a connection on a bundle, and so the problem of which groups can be the
holonomy groups of a general connection on a bundle, is not a very fruitful one. How-
ever, the problem can be made much more interesting by restricting attention to torsion-
free connections. We state this as the following question, which is one of the main
motivating problems in the field of holonomy groups.

Question 1: What are the possible holonomy groups Hol(V) of torsion-free connec-
tions V on a given manifold M ?

In general, the problem of determining which holonomy groups are realized by
torsion-free connections on a given manifold M, a compact manifold for instance, is
very difficult and depends strongly on the topology of M. So, let us consider instead the
corresponding Iocal problem, that is:
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Question 2: What are the possible holonomy groups Hol(V) of torsion-free connec-
tions V on an open ball in R™?

This question is still rather difficult, but some powerful algebraic techniques can be
applied to the problem, and a fairly complete answer to the question is known.

The classification of Lie groups, and representations of Lie groups, is well under-
stood. Therefore one could, in principle, write down a list of all possible connected Lie
subgroups of GL(n, R) up to conjugation, for each n. This list is of course infinite, and
rather complicated. The idea is to test every subgroup on this list, to see whether or not
it can be a holonomy group.

Naturally, because of the complexity of the classification of Lie groups and represen-
tations, this is a huge task, and so one looks for short cuts. There is an algebraic method
that excludes many groups H from being holonomy groups. This is to study the space
RH of possible curvature tensors for H. Proposition 2.4.1 and the first Bianchi identity
restrict A | making it small. But the Ambrose—Singer Holonomy Theorem shows that
MM must be large enough to generate the Lie algebra h of H. If these requirements are
not consistent, then H cannot be a holonomy group.

The list of groups H that pass this test is shorter and more manageable. Berger [27,
Th. 3-Th. 5, p. 318-320] published, without proof, a list of these groups which is sub-
stantially complete, but with some omissions. Later, a number of holonomy groups
of torsion-free connections that did not appear on Berger’s list were discovered by
Bryant, Chi, Merkulov and Schwachhéfer, who called them exotic holonomy groups.
A (hopefully) complete classification of holonomy groups of torsion-free connections,
with proof, has been published by Merkulov and Schwachhéfer [260], to which the
reader is referred for further details and references.

These algebraic methods eventually yield a list of candidates H for possible holon-
omy groups, but they do not prove that every such H actually occurs as a holonomy
group. There is another approach to the classification problem using the machinery of
Cartan—Kdihler theory, which is a way of describing how many solutions there are to
a given partial differential equation. The advantage of this approach is that it system-
atically determines whether each H occurs as a holonomy group or not. Bryant [57]
uses Cartan—Kéhler theory to give a unified treatment of the classification of holonomy
groups. We shall discuss the problem of classification of Riemannian holonomy groups
at greater length in §3.4.

2.6 (-structures and intrinsic torsion

We will now discuss G-structures on manifolds, and their torsion. The theory of G-
structures gives a different way of looking at connections on M and their holonomy
groups, and is a useful framework for studying geometrical structures.

Definition 2.6.1 Let M be a manifold of dimension n, and F' the frame bundle of M,
as in §2.5. Then F is a principal bundle over M with fibre GL(n, R). Let G be a Lie
subgroup of GL(n,R). Then a G-structure on M is a principal subbundle P of F', with
fibre G.

The G-structures, for the many possible Lie subgroups G C GL(n,R), provide
a large family of interesting geometrical structures on manifolds. Other geometrical
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objects such as Riemannian metrics and complex structures can also be interpreted as
G-structures, as the following example shows.

Example 2.6.2 Let (M, g) be a Riemannian n-manifold, and F the frame bundle of M.
Each point of F'is (z,e1,...,¢e,), where x € M and (eq,...,e,) is a basis for T, M.
Define P to be the subset of F' for which (eq,...,e,) is orthonormal with respect to
g. Then P is a principal subbundle of F' with fibre O(n), so P is an O(n)-structure on
M. In fact, this gives a 1-1 correspondence between O(n)-structures and Riemannian
metrics on M.

Now let M be a manifold of dimension n with frame bundle F', let G be a Lie
subgroup of GL(n,R), and P a G-structure on M. Suppose D is a connection on P.
Then there is a unique connection D’ on F that reduces to D on P. Conversely, a
connection D’ on F reduces to a connection D on P if and only if for each p € P, the
subspace D'|,, of T, F' lies in T, P.

As we explained in §2.5, connections D’ on the principal bundle F are equivalent to
connections V on the vector bundle 7'M . We call a connection V on T'M compatible
with the G-structure P, if the corresponding connection on F reduces to P. Thus we see
that every connection D on P induces a unique connection V on 7'M, and conversely,
a connection V on T'M arises from a connection D on P if and only if V is compatible
with P. Our next result shows that if V is a fixed connection on 7'M, then there is a
compatible G-structure P if and only if Hol(V) C G.

Proposition 2.6.3 Let M be a connected manifold of dimension n, with frame bundle
F, and fix f € F. Let V be a connection on T'M. Then for each Lie subgroup G C
GL(n,R), there exists a G-structure P on M compatible with V and containing f if
and only if Hol;(V) C G C GL(n,R). If P exists then it is unique. More generally,
there is a 1-1 correspondence between the set of G-structures on M compatible with
V, but not necessarily containing f, and the homogeneous space G \{a € GL(n,R) :
aHoly(V)a™! C G}.

Proof The proof is similar to that of Theorem 2.3.6, so we will be brief. If P exists
then it contains f and is closed under G, so it contains g - f foreach g € G. As P is
compatible with V, any horizontal curve starting in P remains in P. Thus, if p € P and
q € F with p ~ g then g € P, where ~ is the equivalence relation defined in §2.3.
Combining these two facts shows that if p € F andp ~ ¢ - f for any g € G, then
p € P.Butas M is connected, every p € P must satisfy p ~ g - f for some g € G. So
Pmustbe {p € F:p~ g- f forsome g € G} if it exists. It is easy to show that this
set is a principal bundle over M, with fibre the subgroup of GL(n,R) generated by G
and Hol (V). Hence, P exists if and only if Hol;(V) C G, and if it exists it is unique.
Now if a € GL(n,R), then Hol,.;(V) = a Hol;(V)a~!. Thus from above, there is
a unique G-structure P containing a - f if and only if a Hol;(V)a~! C G. But any G-
structure containing a - f also contains (ga) - f forall g € G. So the set of G-structures
on M compatible with V is in 1-1 correspondence with the given set. O

This proposition gives a good picture of the set of G-structures compatible with
a fixed connection V on T'M. So let us turn the problem around, and ask about the
set of connections V on T'M compatible with a fixed G-structure P on M. We have
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seen above that these are in 1-1 correspondence with connections on P, of which there
are many. So we shall restrict our attention to torsion-free connections V, and ask the
question: given a G-structure P on a manifold M, how many torsion-free connections
V are there on T'M compatible with P ?

If V and V' are two connections on P, then the difference o« = V’ — V is a smooth
section of ad(P) ® T* M. But ad(P) is a vector subbundle of TM ® T*M. So a is a
tensor, written «f!, in index notation, and if v, w are vector fields then (V,w—V,w)* =
ag wbve. Substituting this into (2.8) we see that

T(v/»)lc = T(V>Zc - agc + agb'

Let V be an arbitrary, fixed connection on P. Clearly, there exists a torsion-free
connection V' on P if and only if there is an o € C* (ad(P) @ T*M) with T'(V), =
ap, — afy. Moreover, if some such V'’ does exist, then the set of all torsion-free con-
nections V' on P is in 1-1 correspondence with the vector space of a € C*° (ad(P) ®
T*M) for which af, = a%,.

Here is an alternative way to explain this.

Definition 2.6.4 Let G be a Lie subgroup of GL(n,R), and let V' be R™. Then G acts
faithfully on V,and g C V ® V*. Define 0 : g@ V* — V @ A*V* by o(af.) =
ag, — a2, in index notation. Define vector spaces W7, ..., Wy by

Wy =V oA V* Wy=Imo, Wz =V ®@A?*V*/Imo and Wy = Kero,

and let p; : G — GL(W;) be the natural representations of G on W7, ..., W,. Now
suppose M is a manifold of dimension n, and P a G-structure on M. Then we can
associate a vector bundle p(P) over M to each representation p of G, as in §2.1.1. Thus
p1(P), ..., ps(P) are vector bundles over M. Clearly, p2(P) is a vector subbundle of
p1(P), and the quotient bundle p1 (P)/p2(P) is p3(P).

If V is any connection on P, then its torsion 7'(V) lies in C*°(p1 (P)), and if V, V'
are two connections on P, then T'(V’) — T(V) lies in the subspace C*°(p2(P)) of
C*(p1(P)). Therefore, the projections of T(V) and T'(V’) to the quotient bundle
p3(P) = p1(P)/p2(P) are equal. Define the intrinsic torsion T*(P) of P to be the
projection to p3(P) of the torsion T'(V) of any connection V on P. Then T"(P) lies in
C*(p3(P)), and depends only on the G-structure P and not on the choice of V.

We call the G-structure P torsion-free if T%(P) = 0. Clearly, there exists a torsion-
free connection V on P if and only if P is torsion-free, and so the intrinsic torsion
T*(P) is the obstruction to finding a torsion-free connection on P. Any two torsion-free
connections differ by an element of C°°(p4(P)). Thus, if T¢(P) = 0 then the torsion-
free connections V on P are in 1-1 correspondence with C*°(p4(P)). If Kero = 0,
this set is a single point, so V is unique.

The proof of the next result is similar to that of Proposition 2.6.3.

Proposition 2.6.5 Let M be a manifold of dimension n, and G a Lie subgroup of
GL(n,R). Then M admits a torsion-free G-structure P if and only if there exists a
torsion-free connection V on T'M with Hol(V) = H, for some subgroup H of G.
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This shows that torsion-free G-structures on a manifold M are intimately related
to torsion-free connections V on T'M with Hol(V) = G. However, torsion-free G-
structures are simpler, and often easier to work with, than torsion-free connections with
prescribed holonomy. This is because a torsion-free G-structure P is defined by a dif-
ferential equation T"(P) = 0, whereas the condition Hol(V) = G involves both differ-
entiation and integration, and is rather more complicated.

A number of familiar geometric structures are in fact torsion-free G-structures in
disguise. Here are some examples. We saw in Example 2.6.2 that a Riemannian metric
g is equivalent to an O(n)-structure P. But when G = O(n) in Definition 2.6.4 it turns
out that o is both injective and surjective. Therefore, every O(n)-structure P is torsion-
free, and there is a unique torsion-free connection V on P. This is the Levi-Civita
connection, and will be discussed at greater length in §3.1.1.

Set n = 2m, and let G be the subgroup GL(m,C) C GL(2m,R). Then an almost
complex structure J on a manifold M is equivalent to a GL(m, C)-structure on M,
and J is a complex structure if and only if this GL(m, C)-structure is torsion-free.
(Complex structures and almost complex structures will be defined in §5.1.) Thus, a
complex structure is equivalent to a torsion-free GL(m, C)-structure.

Note that in this case, because Ker ¢ is nonzero, a complex manifold admits infi-
nitely many torsion-free connections preserving the complex structure. In a similar way,
a symplectic structure on a manifold M of dimension 2m is the same thing as a torsion-
free Sp(m, R)-structure, where Sp(m,R) C GL(2m, R) is the symplectic group, and a
Kihler structure on M is the same as a torsion-free U(m)-structure.
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Riemannian holonomy groups

Let M be a manifold, and g a Riemannian metric on M. Then there is a unique, pre-
ferred connection V on T'M called the Levi-Civita connection, which is torsion-free
and satisfies Vg = 0. The curvature R(V) of the Levi-Civita connection is called the
Riemann curvature, and its holonomy group Hol(V) the Riemannian holonomy group
Hol(g) of g.

In 1955, Marcel Berger proved that if (M, g) is a Riemannian manifold with M
simply-connected and g irreducible and nonsymmetric, then Hol(g) must be one of
SO(n), U(m), SU(m), Sp(m), Sp(m) Sp(1), G2 or Spin(7). The goal of §3.1-§3.4 is
to explain what this result means and how it is proved. We start with the Levi-Civita
connection, Riemann curvature, and Riemannian holonomy groups. After sections on
reducible Riemannian manifolds and symmetric spaces we move onto Berger’s classifi-
cation, describing the proof and the groups on Berger’s list. Sections 3.5 and 3.6 explore
the relationship between the holonomy group Hol(g) and the topology of the underlying
manifold M, in particular when M is compact.

For more information on the material of §3.1-§3.4, see Kobayashi and Nomizu [214,
§IIL, §IV]. The treatments by Besse [30, §10] and Salamon [294, §2, §10] are also help-
ful, and Bryant [57] approaches the classification of holonomy groups from a different
point of view, that of Cartan—K#&hler theory.

3.1 Introduction to Riemannian holonomy groups

We define the Levi-Civita connection V and Riemann curvature tensor R of a Rie-
mannian metric g, and prove some symmetries of R and V R. Then we discuss the el-
ementary properties of Riemannian holonomy groups and their relation to torsion-free
G-structures.

3.1.1 The Levi-Civita connection

Each Riemannian manifold (M, g) has a natural Levi-Civita connection V on T M,
which is torsion-free with Vg = 0. This result is called the Fundamental Theorem of
Riemannian Geometry, and is very important. Here is a proof.

Theorem 3.1.1 Let M be a manifold and g a Riemannian metric on M. Then there

exists a unique, torsion-free connection V on T'M with Vg = 0, called the Levi-Civita
connection.

40
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Proof Suppose first that V is a torsion-free connection on T'M with Vg = 0. Let
u,v,w € C®(TM) be vector fields on M. Then g(v,w) is a smooth function on
M, and so w acts on g(v, w) to give another smooth function « - g(v,w) on M. Since
Vg = 0, using the properties of connections we find that

u- g(v, w) = g(vuva w) + g(v, vuw)
Combining this with similar expressions for v - g(u, w) and w - g(u, v) gives

u-glv,w) +v-gu,w) —w- gu,v)
= g(Vyv,w) + g(v, Vyw) + g(Vyu, w) + g(u, Vyw)
— g(Vypu,v) — g(u, Vo)
= g(Vuv + Vyu,w) + g(Vyw — Vyu,u) + g(Vyw — Viyu, v)
= g(2Vuv — [u,v], w) + g([v, w], u) + g([u, w], v).

Here we have used V,,v — V,u = [u, v], and two similar equations, which hold because
V is torsion-free. Rearranging this equation shows that

29(Vyv,w) =u - g(v,w) + v - g(u,w) —w - g(u,v)

T g(lu, o]y w) — 9((o, wl ) — g(fu wl,v). G-b

Itis easy to show that for fixed u, v, there is a unique vector field V,,v which satisfies
(3.1) for all w € C°°(T'M). This defines V uniquely, and it turns out that V is indeed
a torsion-free connection with Vg = 0. O

In §2.5 we saw that a connection on the tangent bundle 7'M of a manifold M induces
connections on vector bundles of tensors on M. Thus, the Levi-Civita connection V
of a Riemannian metric ¢ on M induces connections on all the tensors on M. These
connections will also be written V.

3.1.2 The Riemann curvature

Suppose M is a Riemannian manifold, with metric g and Levi-Civita connection V.
Then the curvature R(V) of V is a tensor R, ., on M. Define Roped = GaeR% oy
We shall refer to both R%, _; and Rpcq as the Riemann curvature of g. The following
theorem gives a number of symmetries of R,.4. Equations (3.3) and (3.4) are known
as the first and second Bianchi identities, respectively.

Theorem 3.1.2 Let (M, g) be a Riemannian manifold, V the Levi-Civita connection
of g, and R,pcq the Riemann curvature of g. Then Rgpcq and V. Rgpcq Satisty

Rabcd = _Rabdc = _Rbacd = Rcdab7 (32)
Rabcd + Radbc + Racdb = 07 (33)
and veRabcd + chabde + vdRabec =0. (34)
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Proof Since V is torsion-free, by Proposition 2.5.5 the Bianchi identities (2.9) and
(2.10) hold for R*, ;. Contracting these with g and substituting in Vg = 0, we get (3.3)
and (3.4). Also R(V) € C (End(TM) ®A2T*M) ,and thus R%, ; = —R%;., which
gives Raped = —Rabde, the first part of (3.2).

Now V also acts on tensors such as g, and by properties of curvature we deduce that

VeVagar — VaVegah = =R cq9eb — Ryeqae-

But the left hand side is zero as Vg = 0, and the right hand side is —Rpqcqd — Rabed by
definition. Therefore R,pcq = — Rpacd, the second part of (3.2).
To prove the third part of (3.2), by permuting a, b, ¢, d in (3.3) we get

Rabcd + Radbc + Racdb = 07 Rdabc + Rdcab + Rdbca = 07 (35)
Rbcda + Rbacd + Rbdac = O, Rcdab + Rcbda + Rcabd =0. (36)

Adding together eqns (3.5), subtracting eqns (3.6), and applying the first two parts of
(3.2) we get 2Rupcq — 2Rcdapr = 0, and thus Rypeq = Regab, as we want. O

Next we define two components of the Riemann curvature tensor, the Ricci curvature
and the scalar curvature.

Definition 3.1.3 Let (), g) be a Riemannian manifold, with Riemann curvature R%, .
Then g is called flat if R%, ; = 0. The Ricci curvature of g is R,, = R°, ., and the
scalar curvature of g is s = g*’ Ry, = g“bRCacb. By (3.2), the Ricci curvature satisfies
Rap = Rpq. We say that g is Einstein if Rq, = Agqp for some constant A € R, and that
g is Ricci-flat if R, = 0.

Einstein and Ricci-flat metrics are interesting for a number of reasons. There are of
course a huge number of Riemannian metrics on any manifold of dimension at least two.
The Einstein and Ricci-flat metrics provide a natural way of picking out a much smaller
set of special, ‘best’ metrics on the manifold. Also, Einstein and Ricci-flat metrics are
of great importance to physicists, because in general relativity, empty space is described
by a Ricci-flat Lorentzian metric.

3.1.3 Riemannian holonomy groups

Let (M, g) be a Riemannian manifold of dimension n with Levi-Civita connection V.
Then Vg = 0, and so g is a constant tensor in the sense of §2.5.1. Therefore, by Propo-
sition 2.5.2, if x € M then the action of Hol, (V) on T, M preserves the metric g|, on
T, M. But the group of transformations of T,, M preserving g|,. is the orthogonal group
O(n). Therefore, the holonomy group Hol(V) is a subgroup of O(n).

Here is another way to see this, using the ideas of Theorem 2.3.6. Let ' be the frame
bundle of M. Then each point of F is a basis (eq, . .., e,) for one of the tangent spaces
T, M of M. Define P to be the subset of points (e1, ..., e,) in F such thatey, ..., e,
are orthonormal with respect to the metric g. Then P is a principal subbundle of F' with
fibre O(n), that is, a reduction of F'. Moreover, because the connection V in F satisfies
Vg = 0, the connection V reduces to P. Again, we see that Hol(V) is a subgroup of
O(n), defined up to conjugation.
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Definition 3.1.4 Let (1, ¢g) be a Riemannian manifold with Levi-Civita connection V.
Define the holonomy group Hol(g) of g to be Hol(V). Then Hol(g) is a subgroup of
O(n), defined up to conjugation in O(n). We shall refer to the holonomy group of a
Riemannian metric as a Riemannian holonomy group. Similarly, define the restricted
holonomy group Hol’(g) of g to be Hol’(V). Then Hol’(g) is a connected Lie sub-
group of SO(n) defined up to conjugation in O(n).

Using the results of §2.5 it is easy to prove the following proposition.

Proposition 3.1.5 Let M be an n-manifold, and V a torsion-free connection on T'M.
Then V is the Levi-Civita connection of a Riemannian metric g on M if and only if
Hol(V) is conjugate in GL(n,R) to a subgroup of O(n).

Thus, Riemannian holonomy is really part of the wider subject of holonomy groups
of torsion-free connections.

Definition 3.1.6 Let (M, g) be a Riemannian manifold with Levi-Civita connection V.
Define the holonomy algebra hol(g) of g to be hol(V). Then hol(g) is a Lie subalgebra
of so(n), defined up to the adjoint action of O(n). Let x € M. Then hol, (V) is a
vector subspace of T, M ® T, M. We may use the metric g to identify T, M @ T M
and ®2 T*M, by equating 7% with Top, = gocT5. This identifies hol, (V) with a
vector subspace of ® T* M that we will write as hol,,(g). It is easy to see that hol, (g)
actually lies in AT M.

Now Proposition 2.4.1 shows that R%, _, lies in hol, (V) @ A?T* M at z. Lowering
the index a to get Rupeq as above, we see that Rypeq lies in hol,(g) ® AQT,J;k M at x.
Using this and eqn (3.2), we have:

Theorem 3.1.7 Let (M, g) be a Riemannian manifold with Riemann curvature Rgpcq.
Then Rapca lies in the subspace S?hol,(g) of A>T M @ AT M at each z € M.

Combining this theorem with the Bianchi identities, (3.3) and (3.4), gives quite
strong restrictions on the curvature tensor R,p.q of a Riemannian metric g with a pre-
scribed holonomy group Hol(g). These restrictions are the basis of the classification of
Riemannian holonomy groups, which will be explained in §3.4.

3.1.4 Riemannian holonomy groups and torsion-free G-structures

We now apply the ideas of §2.6 to Riemannian holonomy groups. Suppose M is an
n-manifold, and g a Riemannian metric on M. Then Example 2.6.2 defines a unique
O(n)-structure P on M. If G is a Lie subgroup of O(n) and @) a G-structure on M, we
say that ) is compatible with g if () is a subbundle of P. Equivalently, () is compatible
with g if each point of (), which is a basis of some tangent space 1, M, is orthonormal
with respect to g.

If @ is compatible with g, then P = O(n) - Q as a subset of the frame bundle F' of
M, and so one can reconstruct P, and hence g, from Q. Thus, if G is a Lie subgroup
of O(n) then a G-structure (Q on M gives us a Riemannian metric g on M, and some
additional geometric data as well. For instance, an SO(n)-structure on M is equivalent
to a metric g, together with a choice of orientation on M.
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Putting G = O(n) in Definition 2.6.4, the map o : o(n) ® (R™)* — R™ @ A?(R"™)*
turns out to be an isomorphism. As ¢ is surjective, every O(n)-structure P on M is
torsion-free, and so there exists a torsion-free connection V on T'M compatible with
P. And since o is injective, V is unique. Thus, given a Riemannian metric g on M,
there is a unique torsion-free connection V on 7'M compatible with the O(n)-structure
P corresponding to g. This is the Levi-Civita connection of g, and we have found an
alternative proof of Theorem 3.1.1.

When G is a Lie subgroup of O(n), then the map ¢ of Definition 2.6.4 is injective,
but not in general surjective. Hence, if () is a G-structure on M, then the condition
T Q) = 0 for Q to be torsion-free is in general nontrivial. If Q is torsion-free, then
there is a unique torsion-free connection V on 7'M compatible with @), which is the
Levi-Civita connection of the unique metric g compatible with Q.

If @ is a torsion-free G-structure compatible with g then Hol(g) C G. Because
of this, torsion-free G-structures are a useful tool for studying Riemannian holonomy
groups. The following result is easily deduced from Proposition 2.6.3, and shows the
relationship between torsion-free G-structures and metrics with prescribed holonomy.

Proposition 3.1.8 Let (M, g) be a connected Riemannian n-manifold. Then Hol(g)
is a subgroup of O(n), defined up to conjugation. Let G be a Lie subgroup of O(n).
Then M admits a torsion-free G-structure () compatible with g if and only if Hol(g)
is conjugate to a subgroup of G. Moreover, there is a 1-1 correspondence between the
set of such G-structures (), and the homogeneous space

G\{a € O(n) : aHol(g)a™" C G}.

G-structures are often used in constructions of Riemannian metrics g with holonomy
G. Here is a sketch of an argument used in Chapter 11. One writes down an explicit G-
structure () on a manifold M with intrinsic torsion 7%((QQ) small, in some suitable sense.
Then one proves that () can be deformed to a nearby G-structure Q with T’(Q) = 0.
The metric g associated to Q has Hol(g) C G. Finally, if M satisfies certain topological

conditions, it can be shown that Hol(g) = G.

3.2 Reducible Riemannian manifolds

Let M;, M5 be manifolds, and M; x Ms the product manifold. Then at each point
(pl,pg) of My x M>, we have T(phpz)(Ml X Mg) = Tlel D TPQMQ. Let g1, g2 be
Riemannian metrics on M, M. Then ¢1]p, + g2/p, is a metric on T}, My & T, Mo.
Define the product metric g1 x g2 on My x M3 by g1 X ga|(p, ps) = 91lp, + g2lp, forall
p1 € M7 and po € Ms. Then g1 X go is a Riemannian metric on M X Mo, and M7 X M>
is a Riemannian manifold. We call (M7 x My, g1 X g2) a Riemannian product.

A Riemannian manifold (M, g) is said to be reducible if it is isometric to a Rie-
mannian product (M xMa, g1xXg2), with dim M; > 0. Also, (M, g) is said to be locally
reducible if every point has a reducible open neighbourhood. We shall call (M, g) irre-
ducible if it is not locally reducible. The following proposition, which is easy to prove,
gives the holonomy group of a product metric g; X go.
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Proposition 3.2.1 Let (M, g1), (Ma, g2) be Riemannian manifolds. Then the product
metric g1 X g2 has holonomy Hol(g1 X g2) = Hol(g1) x Hol(gz).

In our next three propositions we shall show that if g is a Riemannian metric and the
holonomy representation (see the end of §2.2) of g is reducible, then the metric itself is
at least locally reducible, and its holonomy group is a product. The first proposition is
left as an exercise for the reader.

Proposition 3.2.2 Let (M, g) be a Riemannian manifold with Levi-Civita connection
V, and fix p € M, so that Hol,(g) acts on T, M. Suppose that T,M = V,,&W,,, where
Vp, W), are proper vector subspaces of T, M preserved by Hol,(g), and orthogonal with
respect to g. Then there are natural vector subbundles V, W of T'M with fibres V,,, W),
at p. These subbundles V, W are orthogonal with respect to g and closed under parallel
translation, and satisfy TM =V @ W and T*M =V* & W*.

Proposition 3.2.3 In the situation of Proposition 3.2.2, let R,p.q be the Riemann cur-
vature of g. Then Rapq is a section of the subbundle S*(A?V*) & S?(A2W*) of
S2(A2T* M). Also, the reduced holonomy group Holg (g) is a product group H,, X Hyy,
where H, is a subgroup of SO(V,) and acts trivially on W, and Hy, is a subgroup of
SO(W,,) and acts trivially on V,.

Proof As T*M =2 V* @ W*, we see that A°T*M =2 A2V* @ A2W* @ V* @ W*.
By Theorem 3.1.7 we know that Rypcq lies in S?hol,(g) at p € M, where hol,(g) is a
vector subspace of A2T* M identified with the holonomy algebra hol(g). But, because
the holonomy algebra preserves the splitting 7'M = V & W, we see that hol,,( g) lies in
the subspace A*V,y @& A*W of AT M. Therefore, Rypcq is a section of

AVFQAV* @ APWHQA W™ @ A2V QA’W* @ A2W*QA2 V™. (3.7)

Now, Rapeq satisfies the first Bianchi identity (3.3). Using this, we find that the
components of R,pcq in the last two components of (3.7) are zero. Therefore, since
Rapeq is symmetric in the two A2T™* M factors we see that it is a section of S2(A2V*)®
SZ(A?W*), as we have to prove. We deduce that R, is a section of the bundle

VoV*e AV @& WW*e A2W*. (3.8)

Letg € M, lety : [0,1] — M be piecewise-smooth with v(0) = p and y(1) = ¢,
and let P, : T,M — T, M be the parallel translation map. Because R lies in the
subbundle (3.8), it follows that (Rq - (u Av) : w,v € TZM) = Ay & By, where A,
is a subspace of V;, ® V" and B, a subspace of W, ® W;. Now V and W are closed
under parallel translation, so P, takes V}, to V, and W}, to W, and thus P{ 1AqP7 lies
inV, ® V7 and P; ' B, P, lies in W, © W

But Theorem 2.4.3 says that hol, (V) is spanned by the elements of End(7},M ) of
the form P, ' [R, - (u A v)]| Py, for all ¢ € M and u,v € T,M, and we have just
shown that for each fixed ¢ € M, the subspace generated by these elements splits into
a direct sum of a piece in V,, ® V7, and a piece in W), @ W. Therefore, the span of
these elements for all ¢ € M splits in the same way, so by Theorem 2.4.3 we see that
hol, (V) = b, @b,,, where b, is a subspace of V), @V, and h,, a subspace of W, @W.
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As ho[p(V) is the Lie algebra of Holg(g), which is a connected Lie group, we
see that b, b, are the Lie algebras of subgroups H,, Hy, of SO(V},) and SO(W},)
respectively, and Holg(g) = H, x Hy,. This completes the proof. a

Proposition 3.2.4 In the situation of Proposition 3.2.3, there is a connected open neigh-
bourhood N of p in M and a diffeomorphism N = X x Y for manifolds X,Y,
such that under the isomorphism T(X xY) 2 TX & TY, we have V|y = TX and
W|n = TY. There are Riemannian metrics gx on X and g, on Y such that g|n
is isometric to the product metric gx X gy. Thus g is locally reducible, and moreover
Hol)(gx) € Hy and Hol)(gy) € Hy,. where p € N is identified with (¢,7) € X x Y.

Proof Since V is closed under parallel translation, we deduce that if u € C*°(T'M)
and v € C®(V), then V,v € C(V). Suppose that v,v" € C°(V). Then V0’
and V,v € C*(V). But V is torsion-free, so that [v,v'] = V,v' — V,sv. Thus, if
v,v" € C®(V), then [v,v'] € C°°(V). This proves that V' is an integrable distribution,
so that by the Frobenius Theorem [214, p. 10] we see that locally M is fibred by a
family of submanifolds of M, with tangent spaces V.

Similarly, we deduce that W is an integrable distribution. But TM =V & W, so
these two integrable distributions define a local product structure on M. This means that
we can identify a connected open neighbourhood NV of p € M with a product manifold
X XY, such that the isomorphism T'(X x V) 2 TX @ TY identifies V with TX and
W with TY, as we want.

As V and W are orthogonal, we may write g = gy + gw, where g,, € C>(S?V*)
and gy, € C(S?W*). Since V is torsion-free and N is connected, it is not difficult
to show that the restriction of g, to N = X x Y is independent of the Y directions,
and is therefore the pull-back to X x Y of a metric gx on X. Similarly, g, | is the
pull-back of a metric g,- on Y. Therefore g|x is isometric to gx X gy, as we have to
prove. The rest of the proposition follows from Proposition 3.2.1 and the definition of
local reducibility. |

From Propositions 3.2.2-3.2.4 we immediately deduce:

Corollary 3.2.5 Let M be an n-manifold, and g an irreducible Riemannian metric on
M. Then the representations of Hol(g) and Hol"(g) on R™ are irreducible.

More generally, if (M, g) is a Riemannian manifold of dimension n, then Hol®(g)
is a subgroup of SO(n), and has a natural representation on R". By the representation
theory of Lie groups, we may decompose R™ into a finite direct sum of irreducible
representations of Hol’ (g9)- By applying Propositions 3.2.2-3.2.4 and using induction
on k, we easily prove the following theorem.

Theorem 3.2.6 Let (M, g) be a Riemannian n-manifold, so that Hol®(g) is a subgroup
of SO(n) acting on R™. Then there is a splitting R" = R™ & - - -®R"™*, where n; > 0,
and a corresponding isomorphism Hol" (9) = H1 x - -+ x Hy, where H; is a connected
Lie subgroup of SO(n;) acting irreducibly on R"7.

The theorem shows that if the holonomy representation of Hol’ (g) is reducible,
then Hol" (g) is in fact a product group, and the holonomy representation a direct sum
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of irreducible representations of each factor. Therefore, if G is a connected Lie group
and V a representation of G, such that G and V' cannot be written G = G1 X - -+ X Gy,
andV =V, @ --- @V}, where Vj is an irreducible representation of G;, then G and V/
cannot be the reduced holonomy group and holonomy representation of any Riemannian
metric. This is a strong statement, because there are very many such pairs G, V, and all
are excluded as possible holonomy groups.

Notice that Theorem 3.2.6 does not claim that the groups H; are the holonomy
groups of metrics on manifolds of dimension n;. In fact, a careful examination of the
proof shows that the group H; is generated by subgroups which are the holonomy
groups of metrics on small open subsets of R™, but there are topological difficulties
in assembling these patches into a single Riemannian manifold: there is a natural way
to do it, but the resulting topological space may not be Hausdorff.

The reason this is important to us is in the classification of Riemannian holonomy
groups. Theorem 3.2.6 nearly says that if the holonomy representation of Hol” (g) is
reducible, then Hol’ (g) is a product of holonomy groups of metrics in lower dimen-
sions. If we knew this was true, then a classification of groups Hol" (g) with irreducible
holonomy representations would imply a classification of all groups Hol” (9), and thus
we could restrict our attention to holonomy groups with irreducible representations.

In fact, this problem turns out not to matter. The classification theory for irreducible
holonomy groups that we will summarize in §3.4 also works to classify the groups H;
arising in Theorem 3.2.6, and the classification is the same. This is because the failure
of the Hausdorff condition we referred to above does not affect the proof. For further
discussion of this point, see Besse [30, §10.42, §10.107].

Next, suppose that the manifold M in Propositions 3.2.2-3.2.4 is simply-connected,
and the metric g is complete. In this case, by a result of de Rham [93], the local product
structure constructed in Proposition 3.2.4 is actually a global product structure, so that
M = X x Y, and g is globally isometric to a Riemannian product metric gx X gy
Therefore, using similar arguments to the previous theorem we may prove the following
result, which is a sort of converse to Proposition 3.2.1.

Theorem 3.2.7 Let (M, g) be a complete, simply-connected Riemannian manifold.
Then there exist complete, simply-connected Riemannian manifolds (M, g;) for j =
1,...,k, such that the holonomy representation of Hol(g;) is irreducible, (M, g) is
isometric to (M7 X - - - X My, g1 X+ - -x gi,), and Hol(g) = Hol(g1) % - - - x Hol(gx).

It is shown in [214, App. 5], using the theory of Lie groups, that every connected
Lie subgroup of SO(n) that acts irreducibly on R" is closed in SO(n). From this result
and Theorem 3.2.6 we deduce:

Theorem 3.2.8 Let (M, g) be a Riemannian n-manifold. Then Hol’(g) is a closed,
connected Lie subgroup of SO(n).

Since SO(n) is compact, this implies that Hol’(g) is also compact. By a study of
the fundamental group of a compact, irreducible Riemannian manifold, Cheeger and
Gromoll [75, Th. 6] prove the following result.

Theorem 3.2.9 Let (M, g) be a compact, irreducible Riemannian n-manifold. Then
Hol(g) is a compact Lie subgroup of O(n).
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3.3 Riemannian symmetric spaces

We will now briefly describe the theory of Riemannian symmetric spaces. These were
introduced in 1925 by Elie Cartan, who classified them completely, by applying his own
classification of irreducible representations of Lie groups. For a very thorough treatment
of symmetric spaces, see Helgason’s book [157]. Also, the treatments by Kobayashi and
Nomizu [215, Chap. XI] and Besse [30, §§7.F, 10.G, 10.K] are helpful.

Definition 3.3.1 A Riemannian manifold (), g) is said to be a Riemannian symmetric
space if for every point p € M there exists an isometry s, : M — M that is an
involution (that is, si is the identity), such that p is an isolated fixed point of s,,.

Let (M, g) be a complete Riemannian manifold, and p € M. Then for each unit
vector u € T, M, there is a unique geodesic v, : R — M parametrized by arc length,
such that 7,,(0) = p and 4,,(0) = u. Define the exponential map exp,, : T,M — M
by exp,,(tu) = 7,(t) for all ¢ € R and unit vectors u € T}, M. Then exp,, induces a
diffeomorphism between neighbourhoods of 0 in T}, M and p in M.

Identifying T, M = R" yields a coordinate system on M near p. These are called
normal coordinates or geodesic normal coordinates at p. If we start with a Riemannian
manifold (M, g) that is not complete, then exp,, can still be defined in a neighbourhood
of 0in T}, M. The following lemma shows that the isometries in Definition 3.3.1 assume
a particularly simple form in normal coordinates.

Lemma 3.3.2 Let (M, g) be a complete Riemannian manifold, let p € M, and suppose
s : M — M is an involutive isometry with isolated fixed point p. Then s(exp,(v)) =
exp,(—v) forall v € T, M.

Proof The derivative ds of s maps T, M to itself. Since s is the identity, (ds)? is the
identity on T), M, and as p is an isolated fixed point, 0 is the sole fixed point of ds on
T, M. Clearly, this implies that ds(v) = —v forall v € T,M. Now s preserves g, as it is
an isometry, and the map exp,, depends solely on g. Therefore, exp,, must commute with
s, in the sense that s (exp, (v)) = exp, (ds(v)) for v € T, M. Substituting ds(v) = —v
gives the result. O

The next three propositions explore the geometry of Riemannian symmetric spaces.

Proposition 3.3.3 Let (M, g) be a connected, simply-connected Riemannian symmet-
ric space. Then g is complete. Let G be the group of isometries of (M, g) generated
by elements of the form s, o s, for q,r € M. Then G is a connected Lie group acting
transitively on M. Choose p € M, and let H be the subgroup of G fixing p. Then H
is a closed, connected Lie subgroup of G, and M is the homogeneous space G/ H.

Proof Let~y: (—e¢,¢) — M be a geodesic segment in M, parametrized by arc length.
Then the lemma shows that s.,)(7(y)) = v(—y) for y € (—¢, €). More generally we
see that s.,(;/2)(7(y)) = v(@ — y) whenever z,y and x — y lie in (—e, €). This gives

S(2/2) © 540 (YY) = v(z +y),

provided %x, y and x + y are in (—¢, €). Thus, the map o, = s,(;/2) © 5,(0) MoOves
points a distance = along . But «, is defined on the whole of M. By applying o, and
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its inverse «_, many times, one can define the geodesic 7 not just on (—e, €), but on R.
Therefore, every geodesic in M can be extended indefinitely, and g is complete.

Now «;, lies in G by definition. Hence, if p, ¢ are two points in M joined by a
geodesic segment of length x, there exists an element v, in G such that «,(p) = ¢. But
M is connected, and so every two points p, ¢ in M can be joined by a finite number of
geodesic segments put end to end. Composing the corresponding elements of G, we get
an element o of G with a(p) = q. Therefore G acts transitively on M.

Let ¢,7 € M. Then, as M is connected, there exists a smooth path «y : [0,1] — M
with v(0) = ¢ and v(1) = r. Consider the family of isometries s, o s.,(;) fort € [0, 1].
This is a smooth path in G, joining the identity at ¢ = 0 with s, o s, at ¢ = 1. Thus, the
generating elements s, o s,. of G can be joined to the identity by smooth paths, and so
G is arcwise-connected.

By the Myers—Steenrod Theorem [30, p. 39], the isometry group of (M, g) is a Lie
group acting smoothly on M. Thus G is an arcwise-connected subgroup of a Lie group,
so by the theorem of Yamabe quoted in §2.2, G is a connected Lie group. Also G acts
smoothly on M, and so H is a closed Lie subgroup of G. Since G acts transitively on
M, we have M = G/H. Because M is simply-connected, G/H is simply-connected,
and this implies that H is connected. o

Note that the group G in the proposition may not be the full isometry group of
(M, g), or even the identity component of the isometry group. For example, if M is R"
with the Euclidean metric, then G = R" acting by translations and H = 0, but the full
isometry group also includes the rotations O(n) acting on R™.

Proposition 3.3.4 Let M, g,G,p and H be as above, and let g be the Lie algebra of
G. Then there is an involutive Lie group isomorphism o : G — G, and a splitting
g = b ® m, where § is the Lie algebra of H, and k) and m are the eigenspaces of the
involution do : g — g with eigenvalues 1 and —1 respectively. These subspaces satisty

[h,b] € b, hm]Cm  and [m,m]Ch. (3.9)

~

There is a natural isomorphism m = T, M. The adjoint action of H on g induces a
representation of H on m, or equivalently T,,M, and this representation is faithful.
Also, H is the identity component of the fixed point set of o.

Proof Define o : G — G by o() = sp 0 a0 s;,. Clearly o does map G to G, and
is a group isomorphism, so do : g — g is a Lie algebra isomorphism. Also, o is an
involution, as sf, =1, 50 (do)? is the identity. Therefore do has eigenvalues +1, and g
is the direct sum of the corresponding eigenspaces. As M is connected, the isometries
sp in Definition 3.3.1 are unique. Hence, for p € M and o € G we have a0 s, 0 ™!
Sa(p)- Therefore h o s, 0 h™' = s, for h € H, so that o(h) = s, 0 ho s, = h. Thus,
H is fixed by o, and do is the identity on b.

The identification of G/ H with M identifies p with the coset H and T), M with g/§.
Under this identification, the maps ds,, : T,M — T, M and do : g/h — g/b coincide.
But ds,, multiplies by —1, as in Lemma 3.3.2. Thus, do is the identity on ) C g, and
acts as —1 on g/b. Therefore there exists a unique splitting g = h & m where ), m are
the 1 and —1 eigenspaces of do, as we want. The relations in (3.9) then follow easily
from the fact that do is a Lie algebra isomorphism.
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The splitting g = h & m and the isomorphism T, = g/h give an isomorphism
m = T, M, as required. Clearly, m is preserved by the adjoint action of I on g, and this
gives a representation of H on m, and so on T, M. This action of 4 on T}, M can also be
described as follows: each element h € H fixes p, and so dh maps T,,M to itself. Now
g is complete, so the exponential map exp,, : T,M — M is well-defined, and clearly
satisfies exp,,(dh(v)) = h - exp,(v) forall h € H andv € T, M.

Thus, dh : T, M — T, M determines the action of / on the subset exp,, (7, M) of
M, and so on all of M, as M is connected. It follows that if dA is the identity then
h is the identity. Therefore, the representation of /1 on T}, M, or equivalently on m, is
faithful. Finally, we know that H is part of the fixed point set of o, that H is connected,
and that the subspace of g fixed by do is . Together these show that H is the identity
component of the fixed points of 0. o

Proposition 3.3.5 In the situation of Proposition 3.3.4, the Riemann curvature I?,, of g
atp liesin T, M @ TyM ® A2T;M. Identifying m and T}, M in the natural way, R, is
given by the equation

R, (u®@vAw)=u,v,w], (3.10)

for all u,v,w € m. Moreover, the holonomy group Hol,(g) is H, with the above
representation on T}, M, and the Riemann curvature R of g satisfies VR = 0.

Proof Using the splitting g = b & m, one can construct a unique torsion-free, G-
invariant connection V on T'M. This satisfies Vg = 0, and so V is the Levi-Civita
connection of g. Explicit computation then yields the formula (3.10) for R,,. For more
details of this argument, see [215, §X.2, §XI.3]. The formula shows that for v,w €
m, we have R, - (v A w) = —ad([v,w]) in End(m). But [m,m] C b by (3.9), so
that R, - (v Aw) € ad(h).

By definition, G is generated by s, o s, for ¢, € M. By fixing r = p and letting
q approach p we can prove an infinitesimal version of this statement, which says that g
is generated by the elements < (Sexpp(t'u) o sp)|i=o of g, for all v € T, M. But these
are exactly the elements of m, and thus g is generated as a Lie algebra by m. Therefore
(3.9) implies that [m, m] = b, and so the equation R,, - (v A w) = — ad([v, w]) gives

(Ry - (vAw) :v,w €m) = ad(h). (3.11)

Proposition 2.4.1 then shows ad(b) is a subset of hol,,(g), the Lie algebra of Hol, (g).

Letq € M. Then s, : M — M is an isometry, and so preserves R and VR. But
dsq acts as —1 on T, M, and thus ds,(VR|;) = —VR)|,. Therefore VR|, = 0 for all
q € M, giving and VR = 0 as we want. Let v : [0,1] — M be piecewise-smooth
with 7(0) = p and y(1) = ¢, and let P, : T,M — T,M be the parallel translation
map. Since VR = 0, it follows that P! [R, - (v Aw)|Py = Ry, - (P;'v A Py w), for
all v, w € T,M.

Now Theorem 2.4.3 shows that hol,,(V) is spanned by elements of End(7}, M) of
the form P! [R, - (v A w)] P,. Therefore (3.11) implies that hol,(V) = ad(h). But H
is connected by Proposition 3.3.3, and Hol, (g¢) is connected as M is simply-connected,
and so Hol,(¢g) = Ad(H), where Ad is the adjoint representation of H on m, and we



RIEMANNIAN SYMMETRIC SPACES 51

identify m and T}, M. Since the representation is faithful, we have Hol,(g) = H, and
the proof is complete. m|

Propositions 3.3.3-3.3.5 reduce the problem of classifying simply-connected Rie-
mannian symmetric spaces to a problem in the theory of Lie groups. This was solved
completely by E. Cartan in 19267, who was able to write down a complete list of all
simply-connected Riemannian symmetric spaces. Helgason [157, Chap. IX] discusses
Cartan’s proof, and Besse [30, §7.H, §10.K] gives tables of all the possibilities.

Using the results above, the holonomy group of a Riemannian symmetric space is
easily found. Therefore, Cartan’s classification implies the classification of the holon-
omy groups of Riemannian symmetric spaces. A considerable number of Riemannian
holonomy groups arise in this way: for example, every connected, compact, simple
Lie group is (up to a finite cover) the holonomy group of an irreducible Riemannian
symmetric space, with holonomy representation the adjoint representation.

Some well-known examples of Riemannian symmetric spaces are R" with the Eu-
clidean metric, 8™ with the round metric, H™ with the hyperbolic metric, and CP™ with
the Fubini—Study metric. The corresponding groups are G = R"™ and H = {1} for
R™, so that R" has holonomy group {1}, G = SO(n+1) and H = SO(n) for S"
and G = SO(n, 1) and H = SO(n) for H™, so that S™ and H" both have holonomy
group SO(n), and G = U(n+1)/U(1) and H = U(n) for CP", so that CP" has
holonomy U(n).

Next we shall discuss locally symmetric Riemannian manifolds, which satisfy a
local version of the symmetric space condition.

Definition 3.3.6 We call a Riemannian manifold (M, g) locally symmetric if every
point p € M admits an open neighbourhood U, in M, and an involutive isometry
sp + Up — Up, with unique fixed point p. We call (M, g) nonsymmetric if it is not
locally symmetric.

Clearly, every Riemannian symmetric space is locally symmetric. Conversely, one
can show that every locally symmetric Riemannian manifold is locally isometric to a
Riemannian symmetric space.

Theorem 3.3.7 Suppose (M, g) is a locally symmetric Riemannian manifold. Then
there is a unique simply-connected Riemannian symmetric space (N, h) with (M, g)
locally isometric to (N, h). In other words, given any points p € M and q € N, there
exist isometric open neighbourhoods U of p in M and V of ¢ in N.

A proof of this theorem can be found in [157, p. 183], but we will not give it. Here
is one way the result can be proved. The problem is that because the isometries s, are
defined only locally, they cannot be put together to form Lie groups of isometries G, H,
as in Proposition 3.3.3. However, the Lie algebras g, of G, H can be defined in the
locally symmetric case, as Lie algebras of Killing vector fields, defined locally. Let G
be the unique connected, simply-connected Lie group with Lie algebra g, and let H
be the unique connected Lie subgroup of G with Lie algebra h. Then N = G/H is a
Riemannian symmetric space, with the desired properties.

Let (M, g) be a Riemannian manifold. If (M, g) is locally symmetric, then by The-
orem 3.3.7 it is locally isometric to a Riemannian symmetric space, and so Proposition
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3.3.5 shows that VR = 0, where V is the Levi-Civita connection, and R the Riemann
curvature. Surprisingly, the converse is also true: if VR = 0, then (M, g) is locally
symmetric.

Theorem 3.3.8 Let (M, g) be a Riemannian manifold, with Levi-Civita connection V
and Riemann curvature R. Then (M, g) is locally symmetric if and only if VR = 0.

See [215, p. 244] for a proof of this. Here is how it works. Let (M, g) be a Rie-
mannian manifold, and let p € M. Then exp, : T,M — M is well-defined and
injective in a small ball B, (0) about the origin in 7,, M. Define U, = exp,,(Bc(0)), and
define s, : U, — U, by s, (exp,(v)) = exp,(—v). This map s, is called the geodesic
symmetry about p, and is clearly an involution.

Now, if VR = 0 it can be shown that s, is an isometry on U,. This is because the
Jacobi fields along a geodesic are the solutions of a differential equation with constant
coefficients, and therefore the metric g on U, assumes a simple form in normal coordi-
nates at p, determined entirely by the metric and curvature at p. A similar argument is
given in detail in [214, §VI, Th. 7.2, Th. 7.4].

Theorem 3.3.8 is important in the classification of Riemannian holonomy groups.
For suppose (M, g) is a Riemannian manifold with VR = 0. Then (M, g) is locally iso-
metric to a simply-connected Riemannian symmetric space (N, h) by Theorems 3.3.7
and 3.3.8, and therefore Hol’(g) = Hol(h). But, as we have seen above, the classi-
fication of holonomy groups of Riemannian symmetric spaces comes out of Cartan’s
classification of Riemannian symmetric spaces, and is already well understood.

Therefore, we may restrict our attention to holonomy groups of Riemannian metrics
that are nonsymmetric, for which VR # 0. Now, this condition VR # 0 can be used
to exclude many candidate holonomy groups, in the following way. Theorems 3.1.2
and 3.1.7 show that if a metric g has a prescribed holonomy group H C O(n), then
the Riemann curvature R and its derivative V R have certain symmetries, and also lie
in vector subspaces determined by the Lie algebra ) of H. For some groups H, these
conditions force VR = 0, so that H cannot be a nonsymmetric holonomy group.

3.4 The classification of Riemannian holonomy groups

In this section we shall discuss the question: which subgroups of O(n) can be the
holonomy group of a Riemannian n-manifold (M, g)? To simplify the answer, it is
convenient to restrict the question in three ways. Firstly, we suppose that M is simply-
connected, or equivalently, we study the restricted holonomy group Hol’ (g) instead of
the holonomy group Hol(g). This eliminates issues to do with the fundamental group
and global topology of M.

Secondly, we know from §3.2 that if g is locally reducible then Hol” (g) is a prod-
uct of holonomy groups in lower dimensions. Therefore, we suppose that g is irre-
ducible. And thirdly, from §3.3, if g is locally symmetric then Hol’(g) lies on the list of
holonomy groups of Riemannian symmetric spaces, which are already known. So we
suppose that g is not locally symmetric, and ask another question: which subgroups of
SO(n) can be the holonomy group of an irreducible, nonsymmetric Riemannian metric
g on a simply-connected n-manifold M ? In 1955, Berger [27, Th. 3, p. 318] proved the
following result, which is the first part of the answer to this question.
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Theorem 3.4.1. (Berger) Suppose M is a simply-connected manifold of dimension n,
and g is an irreducible, nonsymmetric Riemannian metric on M. Then exactly one of
the following seven cases holds:

(i) Hol(g) = SO(n),

(il) » = 2m with m > 2, and Hol(g)
(iii) m = 2m with m > 2, and Hol(g)
(iv) m = 4m with m > 2, and Hol(g)
(v) n = 4m with m > 2, and Hol(g)
(vi) n =7 and Hol(g) = G5 in SO(7), o
(vii) n = 8 and Hol(g) = Spin(7) in SO( ).

U(m) in SO(2m),
U(m) in SO(2m),
p(m) in SO(4m),
p(m) Sp(1) in SO(4m),

S
S
S

In fact Berger also included the eighth case n = 16 and Hol(g) = Spin(9) in
SO(16), but it was shown by Alekseevskii [7] and also by Brown and Gray [53] that
any Riemannian metric with holonomy group Spin(9) is symmetric. We shall refer to
Theorem 3.4.1 as Berger’s Theorem, and to the groups in parts (i)—(vii) as Berger’s
list. Berger’s proof will be discussed in §3.4.3. It is rather algebraic, and uses the clas-
sification of Lie groups and their representations, and the symmetry properties of the
curvature tensor.

Berger proved that the groups on his list were the only possibilities, but he did not
show whether the groups actually do occur as holonomy groups. It is now known (but
this took another thirty years to find out) that all of the groups on Berger’s list do occur
as the holonomy groups of irreducible, nonsymmetric metrics.

Here are a few remarks about Berger’s Theorem.

e Theorem 3.4.1 gives the holonomy group Hol(g) not just as an abstract group, but
as a particular subgroup of SO(n). In other words, the holonomy representation of
Hol(g) on R™ is completely specified.

e Combining Theorem 3.4.1 with the results of §3.2 and §3.3, we see that the re-
stricted holonomy group Hol’(g) of any Riemannian manifold (M, g) is a product
of groups from Berger’s list and the holonomy groups of Riemannian symmetric
spaces, which are known from Cartan’s classification.

e In cases (ii)—(v) of Theorem 3.4.1, we require m > 2 to avoid repeating holonomy
groups. In case (i), U(1) = SO( ), coinciding with n = 2 in case (i). In (iii)
SU(1) = {1}, which acts reducibly, and can be regarded as SO(1) x SO(1) acting
onR? = R@R. In (iv) Sp(1) = SU(2) in SO(4), and in (v) Sp(1) Sp(1) = SO(4).

In §3.4.1, we will say a little bit about each of the groups on Berger’s list. Chapters
5,7, 10 and 11 discuss cases (ii)—(vii) in much more detail. Then §3.4.2 will discuss
Berger’s list as a whole, bringing out various common features and themes. Finally,
§3.4.3 explains the principles behind the proofs by Berger and Simons of Theorem 3.4.1.

3.4.1 The groups on Berger’s list
We make some brief remarks, with references, about each group on Berger’s list.
(1) SO(n) is the holonomy group of generic Riemannian metrics.

(ii) Riemannian metrics g with Hol(g) C U(m) are called Kéhler metrics. Kihler
metrics are a natural class of metrics on complex manifolds, and generic Kéhler
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metrics on a given complex manifold have holonomy U(m). Kéhler geometry is
covered by Griffiths and Harris [132], and Kobayashi and Nomizu [215, §IX].
(iii) Metrics g with Hol(g) € SU(m) are called Calabi-Yau metrics. Since SU(m)
is a subgroup of U(m), all Calabi—Yau metrics are Kihler. If g is Kéhler, then
Hol’(g) € SU(m) if and only if g is Ricci-flat. Thus Calabi—Yau metrics are
locally the same as Ricci-flat Kdhler metrics.
Explicit examples of complete metrics with holonomy SU(m) were given by
Calabi [69]. The existence of metrics with holonomy SU(m) on compact man-
ifolds follows from Yau’s solution of the Calabi Conjecture, [345]. The most
well-known example is the K3 surface, which admits a family of metrics with
holonomy SU(2).
(iv) Metrics g with Hol(g) € Sp(m) are called hyperkihler metrics. As Sp(m) C
SU(2m) C U(2m), hyperkidhler metrics are Ricci-flat and Kihler. Explicit ex-
amples of complete metrics with holonomy Sp(m) were found by Calabi [69].
Yau’s solution of the Calabi Conjecture can be used to construct metrics with
holonomy Sp(m) on compact manifolds; examples were given by Fujiki [114] in
the case Sp(2), and Beauville [25] in the case Sp(m).
Metrics g with holonomy group Sp(m) Sp(1) for m > 2 are called quaternionic
Kéhler metrics. (Note that quaternionic Kéhler metrics are not in fact Kéhler.)
They are Einstein, but not Ricci-flat. For the theory of quaternionic Kdhler man-
ifolds, see Salamon [294], and for explicit examples, see Galicki and Lawson
[120, 121]. It is an important open question whether there exist compact, non-
symmetric quaternionic Kéhler manifolds with positive scalar curvature.

(v

~

(vi) and (vii) The holonomy groups G2 and Spin(7) are called the exceptional holon-
omy groups. The existence of metrics with holonomy G5 and Spin(7) was first
established in 1985 by Bryant [56], using the theory of exterior differential sys-
tems. Explicit examples of complete metrics with holonomy G4 and Spin(7) were
found by Bryant and Salamon [64]. Metrics with holonomy G2 and Spin(7) on
compact manifolds were constructed by the author in [183, 184] for the case of
G2, and [185] for the case of Spin(7).

3.4.2 A discussion of Berger’s list

Attempts to generalize the concept of number from real numbers to complex numbers
and beyond led to the discovery of the four division algebras: the real numbers R, the
complex numbers C, the quaternions H, and the octonions or Cayley numbers O. At
each step in this sequence, the dimension doubles, and one algebraic property is lost. So,
the complex numbers have dimension 2 (over R) and are not ordered; the quaternions
have dimension 4 and are not commutative; and the octonions have dimension 8 and
are not associative. The sequence stops here, possibly because there are no algebraic
properties left to lose.

The groups on Berger’s list correspond to the division algebras. First consider cases
(i)=(v). The group SO(n) is a group of automorphisms of R". Both U(m) and SU(m)
are groups of automorphisms of C™, and Sp(m) and Sp(m) Sp(1) are automorphism
groups of H™. To make the analogy between R, C and H more complete, we add the
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holonomy group O(n). Then O(n), U(m) and Sp(m) Sp(1) are automorphism groups
of R", C™ and H™ respectively, preserving a metric. And SO(n), SU(m) and Sp(m)
are the subgroups of O(n), U(m) and Sp(m) Sp(1) with ‘determinant 1” in an appro-
priate sense.

The exceptional cases (vi) and (vii) also fit into this pattern, although not as neatly.
One can regard G5 and Spin(7) as automorphism groups of Q. The octonions split as
0 =~ R ImO, where InQ 2 R” is the imaginary octonions. The automorphism
group of Im O is Gb.

In some sense, G5 is the group of ‘determinant 1’ automorphisms of O, so it fits
into the sequence SO(n), SU(m), Sp(m), Gz. Similarly, Spin(7) is the group of auto-
morphisms of O = R® which preserve a certain part of the multiplicative structure of
O, and it fits into the sequence O(n), U(m), Sp(m) Sp(1), Spin(7).

Here are three ways in which we can gather together the holonomy groups on
Berger’s list into subsets with common features.

e The Kihler holonomy groups are U(m), SU(m) and Sp(m). Any Riemannian
manifold with one of these holonomy groups is a Kdhler manifold, and thus a
complex manifold. Therefore one can use complex geometry to study the Kéhler
holonomy groups, and this is a tremendous advantage.

As complex manifolds are locally trivial, complex geometry has a very different
character to Riemannian geometry, and a great deal is known about the global
geometry of complex manifolds, particularly through complex algebraic geometry,
which has no real parallel in Riemannian geometry.

Although metrics with holonomy Sp(m) Sp(1) for m > 1 are not Kéhler, they
should be considered along with the Kihler holonomy groups. A Riemannian man-
ifold M with holonomy Sp(m) Sp(1) has a twistor space [294], a complex mani-
fold Z of real dimension 4m + 2, which fibres over M with fibre CP. If M has
positive scalar curvature, then 7 is Kéhler. Thus, metrics with this holonomy group
can also be studied using complex and Kéhler geometry.

e The Ricci-flat holonomy groups are SU(m), Sp(m), G2 and Spin(7). Any metric
with one of these holonomy groups is Ricci-flat. As irreducible symmetric spaces
(other than R) are Einstein with nonzero scalar curvature, none of the Ricci-flat
holonomy groups can be the holonomy group of a symmetric space, or more gen-
erally of a homogeneous space. Because of this, simple examples of metrics with
the Ricci-flat holonomy groups are difficult to find, and one has to work harder to
get a feel for what the geometry of these metrics is like.

e The exceptional holonomy groups are G and Spin(7). They are the exceptional

cases in Berger’s classification, and they are rather different from the other holon-
omy groups. The holonomy groups U(m), SU(m), Sp(m) and Sp(m) Sp(1) can
all be approached through complex geometry, and SO(n) is uninteresting for ob-
vious reasons.
This leaves G and Spin(7), which are similar to one another but stand out from
the rest. Since we cannot use complex manifold theory to tell us about the global
geometry of manifolds with holonomy G2 and Spin(7), at present our understand-
ing of them is essentially local in nature.
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3.4.3 A sketch of the proof of Berger’s Theorem

Here is a sketch of Berger’s proof of Theorem 3.4.1. As M is simply-connected, The-
orem 3.2.8 shows that Hol(g) is a closed, connected Lie subgroup of SO(n), and since
g is irreducible, Corollary 3.2.5 shows that the representation of Hol(g) on R" is irre-
ducible. So, suppose that H is a closed, connected subgroup of SO(n) with irreducible
representation on R"™, and Lie algebra b. The classification of all such groups H follows
from the classification of Lie groups (and is of considerable complexity).

Berger’s method was to take the list of all such groups H, and to apply two tests
to each possibility to find out if it could be a holonomy group. The only groups H
which passed both tests are those in the theorem. Berger’s tests are algebraic and involve
the curvature tensor. Suppose that R,p.q is the Riemann curvature of a metric g with
Hol(g) = H. Then Theorem 3.1.2 shows that R,p.q € S2b, and the first Bianchi
identity (3.3) applies.

If b has large codimension in so(n), then the vector space R of elements of S2
satisfying (3.3) will be small, or even zero. But Theorem 2.4.3 shows that /%7 must be
big enough to generate fj. For many of the candidate groups H this does not hold, and so
H cannot be a holonomy group. This is the first test. Now V. Rgpcq lies in (R™)* @ RH,
and also satisfies the second Bianchi identity (3.4). Frequently these requirements imply
that VR = 0, so that g is locally symmetric. Therefore we may exclude such H, and
this is Berger’s second test.

Later, with the benefit of hindsight, Simons [313] found a shorter (but still difficult)
proof of Theorem 3.4.1 based on showing that if g is irreducible and nonsymmetric,
then Hol(g) must act transitively on the unit sphere in R™. But the list of compact,
connected Lie groups acting transitively and effectively on spheres had already been
found by Montgomery and Samelson [262], [38].

They turn out to be the groups on Berger’s list, plus two others, Sp(m) U(1) acting
on S*™~1 for m > 1, and Spin(9) acting on S'°. Thus, to complete the second proof
one must show that these two cannot occur as holonomy groups. Short accounts of
Simons’ proof are given by Besse [30, p. 303-305] and Salamon [294, p. 149-151].

3.5 Holonomy groups, exterior forms and cohomology

Let (M, g) be a compact Riemannian manifold. In this section we explore the links be-
tween Hol(g) and the de Rham cohomology H* (M, R). We explain how a G-structure
on M divides the bundle of k-forms on M into a sum of vector subbundles, correspond-
ing to irreducible representations of G. If the G-structure is torsion-free for G C O(n)
then H*(M,R) has an analogous decomposition into vector subspaces by Hodge the-
ory. Finally we show that if Hol(g) is one of the Ricci-flat holonomy groups then
H'(M,R) = 0, and 71 (M) is finite.

3.5.1 Decomposition of exterior forms

Let M be an n-manifold, G a Lie subgroup of GL(n,R), and @) a G-structure on M.
Then from Definition 2.1.3, to each representation p of G on a vector space V we can
associate a vector bundle p(Q) over M, with fibre V. In particular, if p is the restriction
to G of the natural representation of GL(n,R) on V' = R", then p(Q) = T'M.
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The representation of G on V' induces representations of G on the dual vector space
V* and its exterior powers A*V*. Write p* for the representation of G on A*V*. Then
p*(Q) = A*T*M, the bundle of k-forms on M. Now A¥V* is an irreducible repre-
sentation of GL(n, R) for every k. However, if G is a proper subgroup of GL(n, R), it
can happen that the representation p* of G on A*V* is reducible. Then we can write
APV = @, WE and pF = @, pF, where each (pf, W) is an irreducible rep-
resentation of G, and I is a finite indexing set.

But then A*T*M = p*(Q) = @, ;v p¥(Q). This means that a G-structure on M
induces a splitting of the vector bundle A*T™* M of k-forms on M into a direct sum of
vector subbundles pf(Q) corresponding to irreducible representations of G. We shall
use the notation A¥ for p¥(Q), and 7; : A¥T*M — A¥ for the projection to A¥ in the
decomposition A*T*M = @, ;» A¥.

Note that analogous decompositions hold for tensor bundles ®k TM ® ®l T*M
on a manifold with a G-structure ), and also, if G is a subgroup of O(n) and M is
spin, for the spin bundles of M with respect to the Riemannian metric induced by Q.
We will not make much use of these, though. The following proposition, which is trivial
to prove, summarizes the material above.

Proposition 3.5.1 Let G be a Lie subgroup of GL(n,R). Write (p, V') for the natural
representation of G on R", and let p* be the induced representation of G on A*V*.
Then (p*, A¥V*) is a direct sum of irreducible representations (p¥, Wk) of G, for
i € I*, a finite indexing set. Suppose M is an n-manifold, and Q a G-structure on M.
Then there is a natural decomposition

AFT*M = @, AF, (3.12)

where A¥ is a vector subbundle of A*T*M with fibre WF. If two representations
(p¥, W) and (p}, W}) are isomorphic, then A} and A} are isomorphic. If ¢ : AFV* —
A'V* is a G-equivariant linear map, there is a corresponding map ® : A*T*M —
A'T*M of vector bundles.

We can also do the same thing, but working with complex forms ARV @ C,
A*T*M ®@g C, and their decomposition into irreducible representations over C. The
advantage of doing this is that G-representations which are irreducible over R may be
reducible over C when complexified, so working over C can give a finer decomposition
into smaller pieces. This occurs when G = U(m), as will be explained in §5.2.2.

As an example of these ideas, we explain the Hodge star of §1.1.2.

Example 3.5.2 Let G be the subgroup SO(n) of GL(n,R). Then a G-structure on an
n-manifold M is equivalent to a Riemannian metric g and an orientation on M. There
is an isomorphism * : A¥V* — A"~V between the representations of SO(n). By
Proposition 3.5.1, this induces an isomorphism * : A*T*M — A"~*FT*M called the
Hodge star.

In the case n = 4m, the map * : A?"”V* — A?"V* satisfies 2 = 1, and so
A*™V* splits as A*™V* = W™ @ W2™, where W3™ are the eigenspaces of * with
eigenvalues 1. Here W?™ and W2™ are in fact irreducible representations of SO(4m)
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of equal dimension, and we choose the indexing set I>™ = {+, —}. Thus, there is a
corresponding splitting A™T*M = A%™ @ A?™,

We are principally interested in the case in which G is a Lie subgroup of O(n)
in GL(n,R), and @ a torsion-free G-structure. The condition that () be torsion-free
implies that the exterior derivative d on k-forms, and its formal adjoint d*, behave in a
special way with regard to the splitting A¥T*M = @, ;. A¥, and this has important
consequences for the de Rham cohomology of M.

3.5.2 Hodge theory and the splitting of de Rham cohomology

Suppose (M, g) is a compact Riemannian n-manifold. Let G be a Lie subgroup of
O(n), and suppose that Hol(g) C G. Then from §3.1.4, there is a unique, torsion-free
O(n)-structure P on M induced by g, and a torsion-free G-structure ) on M contained
in P. Moreover, the Levi-Civita connection V of g reduces to Q.

Our goal is to study the Hodge theory of M. Hodge theory is described in §1.1.3,
and concerns the Laplacian A = dd* 4 d*d acting on k-forms on M, and its kernel
% which is a finite-dimensional vector space of k-forms. The Weitzenbock formula
for k-forms [30, §1.1], [296, Prop. 4.10] is

(dd* + d*d)¢ = V*VE — 2R(€), (3.13)

where, using the index notation and writing R4 for the Ricci curvature and R?, ; for
the Riemann curvature of g, we have

~ _ be
R(g)T'l---T'k - Zl<i<j<kg CRaricrj g"'l---7'1',—1aT'i+1---7'j—lb7'j+1---T'k:

Lk b (3.14)
) Zj:l g RT']'b 57‘1...1'j,1a'r‘j+1.“7'k~
Proposition 3.5.1 gives an isomorphism
Co(AT*M) = @jen C(AT). (3.15)

Suppose that £ € C°°(A¥) for some i. As V preserves the G-structure @, it preserves
the decomposition (3.12). Thus V& € C°(T*M ® AF), and so V*V¢ € C(AF).

Now Theorem 3.1.7 shows that the Riemann curvature Rgpcq lies in S%hol,(g)
at each x € M, where hol,(g) is a vector subspace of A?TM isomorphic to the
holonomy algebra hol(g). As Hol(g) C G, we have hol(g) C g, where g is the Lie
algebra of G. Using this, one can show that the linear map R : A¥T*M — A*T*M de-
fined by (3.14) preserves the splitting (3.12), and thus R(f) € C°°(A¥). Therefore we
see that if &€ € C°°(A¥), then both V*V¢ and R(€) lie in C*°(A¥), and so (dd* +d*d)¢
lies in C°°(A¥) by (3.13). This proves that the Laplacian A = dd*+d*d maps C>(AF)
into itself for each i € I*.

Thus in (3.15), the Laplacian A takes each factor C>°(A¥) to itself. Therefore

AP =@, pn HF, where A" = Ker A and H% = Ker(A| ). (3.16)

In Proposition 3.5.1 we saw that if W} and Wl are isomorphic representations of G,
then the vector bundles Ak and Al are 1som0rphlc Now it turns out that V*V and R
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depend only on the representation of GG, and not on its particular embedding in A*V*.
By (3.13) this is true also of dd* + d*d, and so if Wf and W]l are isomorphic represen-
tations of G, it follows that #* and L%”jl are isomorphic.

But H*(M,R) is isomorphic to .#* by Theorem 1.1.3. Thus, (3.16) gives a de-
composition of H*(M,R) corresponding to the splitting (3.12). This yields:

Theorem 3.5.3 Suppose M is a compact n-manifold and () a torsion-free G-structure
on M, where G is a Lie subgroup of O(n), and let g be the metric associated to Q).
Then Proposition 3.5.1 gives a splitting A*T*M = @, A¥, corresponding to the
decomposition of A*(R™)* into irreducible representations of G.

The Laplacian A =dd*+d*d of g maps C*(Af) to itself. Define ;" =Ker Az,
and let HF(M,R) be the subspace of the de Rham cohomology group H*(M,R) with
representatives in #*. Then HF(M,R)=2 7%, and we have the direct sum

H*(M,R) = @, HF(M,R). (3.17)

If WF and VVJZ are isomorphic as representations of G, then HF (M, R) = HjZ (M,R).

The theorem shows that if a Riemannian metric g on a compact manifold M has
Hol(g) = G, then the de Rham cohomology H*(M,R) has a natural decomposition
into smaller pieces, which depend on G and its representations. The Betti numbers
of M are b*(M) = dim H*(M,R). Define the refined Betti numbers b¥(M) to be
b¥(M) = dim HF(M,R), fori € I*. Then (3.17) shows that b* (M) = >, 1« bF(M).
The refined Betti numbers carry both topological information about M, and geometrical
information about the G-structure Q).

If a compact manifold M admits a metric g with Hol(g) = G, then the theorem
forces its cohomology H*(M, R) to assume a certain form. Conversely, if one can show
that H*(M,R) cannot be written in this way, then M cannot admit any metric g with
Hol(g) = G. Thus, one can prove that some compact manifolds do not admit metrics
with a given holonomy group, for purely topological reasons. For example, when G =
U(m) one finds that b* (M) must be even when k is odd; roughly speaking, this is
because each irreducible representation occurs twice.

Suppose that for some k and i € I*, we have W} = R, the trivial representation of
G. Now A°(R™)* = W7 is also a copy of R, the trivial representation. So W} and W7
are isomorphic as representations of G, and HF(M,R) = H)(M,R) = H°(M,R)
by Theorem 3.5.3. But H°(M,R) = R, as M is connected. Thus, if W} is the trivial
representation R, then there is a natural isomorphism HF (M, R) = R.

The explanation for this is simple. Proposition 2.5.2 shows that there is a 1-1 corre-
spondence between constant tensors on M, and invariant elements of the corresponding
representation of Hol(g). Since Hol(g) C G, if W[ is a trivial representation its ele-
ments are invariant under Hol(g), and so correspond to constant k-forms. Now if &
is a constant k-form, then V& = 0. But d¢ and d*¢ are components of V&, and so
d¢ = d*¢ = 0. Hence (dd* + d*d)¢ = 0, and ¢ lies in 2%, Thus, if W is a trivial
representation, then JZ* is a vector space of constant k-forms isomorphic to W}k.

We have shown that if () is a torsion-free G-structure on a compact manifold M,
then to each G-invariant element of A*V* there corresponds a constant k-form &, and
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this defines a cohomology class [¢] € H¥(M,R). So, to each torsion-free G-structure
Q we associate a collection of cohomology classes in H* (M, R), corresponding to the
G-invariant part of A¥V*. Now H*(M,R) is a topological invariant of M, and does
not depend on @). Thus we can compare the cohomology classes associated to different
torsion-free G-structures @, Q' on M.

Often, the family of torsion-free G-structures on M, when divided by the group of
diffeomorphisms of M isotopic to the identity, forms a finite-dimensional manifold .# ¢
called a moduli space. The cohomology classes associated to a torsion-free G-structure
give maps .# ¢ — H"*(M,R), and these provide a natural coordinate system on .# .
More generally, the splitting (3.17) may also be regarded in this light. This topological
information can be exploited to give a local (and, in good cases, global) description of
the moduli spaces .# ¢, when G is one of the Ricci-flat holonomy groups.

3.5.3 One-forms and the Ricci-flat holonomy groups

Let (M, g) be a compact Riemannian n-manifold. From eqns (3.13) and (3.14) we see
that if £ is a 1-form, then

(dd* + d*d)&, = V*VE, + Rapg™ée,

where Ry is the Ricci curvature of ¢g. Suppose now that & € 1, the kernel of dd* +
d*d on 1-forms. Then we have V*V¢, + R,,g*¢. = 0. Taking the inner product of
this equation with £ and integrating by parts yields

IVENZ: + / Rapg"g*?€:£4dV = 0. (3.18)
M

If the Ricci curvature Ry is zero, this shows that || V]| 2 = 0, so that V& = 0.

More generally, if R, is nonnegative, then the second term in (3.18) is nonnegative.
But the first term is also nonnegative, so both must be zero. Thus, if R,; is nonnegative,
we have V& = 0. If R,y is positive definite, then either & = 0, or the second term in
(3.18) is positive, which is a contradiction. This shows that if R, is zero or nonnegative,
then all 1-forms & in 7! are constant, and if R is positive definite, then all 1-forms &
in s#" are zero.

Suppose that R, is nonnegative, and that dim ' = k > 0. Choose a basis
&,...,& for 5. Then &, ..., &, are constant 1-forms, and so by Proposition 2.5.2
they correspond to elements of (R™)* fixed by Hol(g). Clearly, this implies that k < n
and R" splits orthogonally as R" = R* @ R™~*, where Hol(g) preserves the splitting
and acts trivially on RF.

Thus, the action of Hol(g) on R™ is reducible, and so by Corollary 3.2.5 the metric
g is locally reducible. Moreover, let (M, §) be the universal cover of (M, g). Then
Hol(§) = Hol"(g) € Hol(g), and § is complete as M is compact. So Theorem 3.2.7
applies to show that (M, §) is globally reducible. In fact (M, §) is isometric to a product
R" x N, where R¥ carries the Euclidean metric and NV is a Riemannian (n—Fk)-manifold.

But 7 = H'(M,R) by Theorem 1.1.3. Thus we have proved the following result,
known as the Bochner Theorem.
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Theorem 3.5.4. (Bochner [32]) Let (M, g) be a compact Riemannian manifold. If the
Ricci curvature of g is nonnegative, then dim H 1(M ,R) = k < dim M, and the uni-
versal cover (M, §) of (M, g) is isometric to a product R x N, where R has the
Euclidean metric. If the Ricci curvature of g is positive definite, then H' (M, R) = 0.

One can also prove strong results on the fundamental group of a compact manifold
with nonnegative Ricci curvature. As a consequence of the Cheeger—Gromoll Splitting
Theorem [75], [30, §6.G] we get the following result, from Besse [30, Cor. 6.67].

Theorem 3.5.5 Suppose (M, g) is a compact Riemannian manifold. If g is Ricci-flat
then M admits a finite cover isometric to T* x N, where T* carries a flat metric and
N is a compact, simply-connected Riemannian manifold. If the Ricci curvature of M
is positive definite then 1 (M) is finite.

Now suppose that Hol(g) is one of the Ricci-flat holonomy groups SU(m), Sp(m),
G5 and Spin(7). Then R, = 0, so that 77 L consists of constant 1-forms, from above.
But by Proposition 2.5.2, the constant tensors on M are entirely determined by Hol(g).
Since SU(m), Sp(m), G2 and Spin(7) all fix no nonzero elements in (R™)*, there are no
nonzero constant 1-forms. Thus 5#! = 0, and so H' (M, R) = 0. Moreover, it follows
from Theorem 3.5.5 that 7y (M) is finite. Therefore we have:

Corollary 3.5.6 Suppose (M, g) is a compact Riemannian manifold and Hol(g) is one
of the Ricci-flat holonomy groups SU(m), Sp(m), G2 and Spin(7). Then H*(M,R) =
0, so that b' (M) = 0, and the fundamental group 71 (M) is finite.

This is an example of how the topology of a compact manifold M can impose
constraints on the possible holonomy groups Hol(g) of Riemannian metrics g on M.

3.6 Spinors and holonomy groups

If (M, g) is a Riemannian spin manifold, then there is a natural vector bundle S over
M called the spin bundle, and sections of S are called spinors. Spinors are closely
related to tensors, and have similar properties. In particular, just as the constant tensors
on M are determined by Hol(g), so the constant spinors on M are also determined
by Hol(g), with the right choice of spin structure. In this section we explore the link
between spin geometry and holonomy groups, and deduce some topological information
about compact 4m-manifolds M with the Ricci-flat holonomy groups.

3.6.1 Introduction to spin geometry

Here is a brief explanation of some ideas from spin geometry that we will need later.
Some general references are Lawson and Michelson [233] and Harvey [150].

For each n > 3, the Lie group SO(n) is connected and has fundamental group
71(SO(n)) = Zz. Therefore it has a double cover, the Lie group Spin(n), which is a
compact, connected, simply-connected Lie group. The covering map =« : Spin(n) —
SO(n) is a Lie group homomorphism. There is a natural representation A™ of Spin(n),
called the spin representation. It has the following properties:

e A?™ is a complex representation of Spin(2m), with complex dimension 2™. It
splits into a direct sum A*™ = A2™ @ A?™, where A3™ are irreducible represen-
tations of Spin(2m) with complex dimension 2~ 1.
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o A?™ jg a complex representation of Spin(2m+1), with complex dimension 2.
It is irreducible, and does not split into positive and negative parts.

e Whenn = 8k—1,8k or 8k+1, A™ = A ®; C, where A is a real representation
of Spin(n).

Now let (M, g) be an oriented Riemannian n-manifold. The metric and orientation
on M induce a unique SO(n)-structure P on M. A spin structure (P,7) on M is a
principal bundle P over M with fibre Spin(n), together with a map of bundles 7 : P—
P, that is locally modelled on the projection 7 : Spin(n) — SO(n). We may regard P
as a double cover of P, and 7 as the covering map.

Spin structures do not exist on every manifold. In fact, an oriented Riemannian man-
ifold M admits a spin structure if and only if wo (M) = 0, where wo (M) € H?(M, Zs)
is the second Stiefel-Whitney class of M. Also, if a spin structure exists it may not be
unique: when wy(M) = 0, the family of spin structures on M is parametrized by
HY(M,Zs). This is finite if M is compact, and zero if M is simply-connected. We call
M a spin manifold if we (M) = 0, that is, if M admits a spin structure.

Let (M, g) be an oriented, spin Riemannian n-manifold, and choose a spin structure
(P, ) on M. Define the (complex) spin bundle S — M tobe S = P Spin(n) A™. Then
S is a complex vector bundle over M, with fibre A™. Sections of .S are called spinors. If
n = 2m, then A" splits as A” = AT A", and so S also splits as S = S, ®S_, where
S are vector subbundles of S with fibre A’}. Sections of S, S_ are called positive
and negative spinors respectively. In dimensions 8k—1, 8% and 8k+1 there is a real spin
representation A7 as well as a complex one A™. In this case one defines the real spin
bundle S, = P XSpin(n) A% . We shall always work with complex spinors, unless we
explicitly say otherwise.

The SO(n)-bundle P over M has a natural connection, the Levi-Civita connection
V of g. Because 7 : P — Pis locally an isomorphism, we may lift V to P.Thus, P also
carries a natural connection, and as in §2.1, this induces a connection V*° : C*°(S) —
C>(T*M ® S) on S, called the spin connection. Now, there is a natural linear map
from T*M ® S to S, defined by Clifford multiplication. Composing this map with V*
gives a first-order, linear partial differential operator D : C*°(S) — C°(S) called the
Dirac operator.

The Dirac operator is self-adjoint and elliptic. In even dimensions, it splits as a sum
D = D, & D_, where D maps C*(S;) — C°°(S_) and D_ maps C*(S_) —
C*°(S4). Here D are both first-order linear elliptic operators, and D_ is the formal
adjoint of D, and vice versa. The result of changing the orientation of M is, in even
dimensions, to exchange S and S_, and D4 and D_.

3.6.2 Parallel spinors and holonomy groups

Let (M, g) be an oriented Riemannian n-manifold with a spin structure. Then the
holonomy group Hol(V*®) is a subgroup of Spin(n). Moreover, under the projection
7w : Spin(n) — SO(n), the image of Hol(V?) is exactly Hol(g). The projection
7 : Hol(V®) — Hol(g) may be an isomorphism, or it may be a double cover; in gen-
eral, this depends on the choice of spin structure. However, if M is simply-connected,
then both Hol(g) and Hol(V*) are connected, which forces Hol(V?) to be the identity
component of 71 (Hol(g)) in Spin(n). Thus, for simply-connected spin manifolds, the
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classification of holonomy groups of spin connections V* follows from that of Rie-
mannian holonomy groups.

Suppose that ¢ € C*°(S) satisfies Vo = 0, so that o is a parallel spinor, or con-
stant spinor. Just as in §2.5.1 we found a 1-1 correspondence between constant tensors
and elements of the appropriate representation invariant under Hol(V), so there is a 1-1
correspondence between parallel spinors and elements of A™ invariant under Hol(V*).
Therefore, one can apply Berger’s classification of Riemannian holonomy groups to
classify the holonomy groups of metrics with parallel spinors. This has been done by
Wang [336, p. 59], in the following result.

Theorem 3.6.1 Let M be an orientable, connected, simply-connected spin n-manifold
forn > 3, and g an irreducible Riemannian metric on M . Define N to be the dimension
of the space of parallel spinors on M. If n is even, define Ny to be the dimensions of
the spaces of parallel spinors in C*°(S.), so that N = Ny + N_.

Suppose N > 1. Then, after making an appropriate choice of orientation for M,
exactly one of the following holds:

(i) n=4m for m > 1 and Hol(g) = SU(2m), with Ny =2 and N_ =0,
(ii) n = 4m for m > 2 and Hol(g) = Sp(m), with Ny =m + 1and N_ =0,
(iii) n = 4m + 2 for m > 1 and Hol(g) = SU(2m + 1), with Ny =1 and N_ =1,
(iv) n =7 and Hol(g) = G2, with N = 1, and
(v) n =8 and Hol(g) = Spin(7), with Ny =1 and N_ = 0.
With the opposite orientation, the values of N1 are exchanged.

Notice that the holonomy groups appearing here are exactly the Ricci-flat holonomy
groups. Hence, every Riemannian spin manifold that admits a nonzero parallel spinor is
Ricci-flat. (In fact, this can be proved directly.) Conversely, it is natural to ask whether
every Riemannian manifold with one of the Ricci-flat holonomy groups is in fact a spin
manifold, and possesses constant spinors. The answer to this is yes, and it follows from
the next proposition.

Proposition 3.6.2 Suppose M is an n-manifold that admits a G-structure (), where
n > 3 and G is a connected, simply-connected subgroup of SO(n). Then M is spin,
and has a natural spin structure P induced by Q.

Proof Since G and SO(n) are connected, the embedding ¢ : G — SO(n) lifts to a
homomorphism 7 between the universal covers of G and SO(n). Because G is simply-
connected and the universal cover of SO(n) is Spin(n), as n > 3, this gives an injective
Lie group homomorphism i : G < Spin(n) such that 7 o 7 = ¢, where 7 : Spin(n) —
SO(n) is the covering map.

Now the G-structure () on M induces an SO(n)-structure P = SO(n) - Q on M.
By definition, M is spin if and only if P admits a double cover P, which fibres over
M with fibre Spin(n). But using the embedding 7 : G <— Spin(n) we may define
P = Q x Spin(n), and this is indeed a double cover of P that fibres over M with fibre
Spin(n). Thus M is spin. a

Since all of the Ricci-flat holonomy groups SU(m), Sp(m), G2 and Spin(7) are
connected and simply-connected, the next corollary quickly follows.
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Corollary 3.6.3 Let (M, g) be a Riemannian manifold, and suppose that Hol(g) is one
of the Ricci-flat holonomy groups SU(m), Sp(m), G2 and Spin(7). Then M is spin,
with a preferred spin structure. With this spin structure, the spaces of parallel spinors on
M are nonzero and have the dimensions prescribed by Theorem 3.6.1.

Thus, an irreducible metric has one of the Ricci-flat holonomy groups if and only if
it admits a nonzero constant spinor.

3.6.3 Harmonic spinors and the fl-genus

Let (M, g) be a compact Riemannian spin manifold, with spin bundle S and Dirac
operator D. The Weitzenbock formula of Lichnerowicz [244, p. 8, eqn (7)] states that if
o € C*(S) then D?¢ = (V*)*V%0 + 150, where s is the scalar curvature of g. We
call o a harmonic spinor if Do = 0, that is, if ¢ € Ker D. By the ‘Bochner argument’
used to prove Theorem 3.5.4, we find:

Proposition 3.6.4 Let (M, g) be a compact Riemannian spin manifold. If the scalar
curvature s of g is zero, then every harmonic spinor on M is parallel. If the scalar
curvature s of g is positive, then there are no nonzero harmonic spinors.

Suppose (M, g) is a compact Riemannian spin manifold of dimension 4m, for
m > 1. Then D, is a linear elliptic operator, with adjoint D_, which has index
ind Dy = dimKer D, — dim Ker D_. Now the Atiyah—Singer Index Theorem [13]
gives a topological formula for ind D, and by [13, Th. 5.3], ind D is equal to A(M)
a characteristic class of M called the A—genus. From Proposition 3.6.4, if M is a com-
pact Riemannian spin manifold of dimension 4m with positive scalar curvature, then
Ker D4 = 0, and so A(M ) = 0. Conversely, if M is a compact spin manifold of di-
mension 4m and A(M ) # 0, then there are no Riemannian metrics with positive scalar
curvature on M.

If M is a compact Riemannian spin manifold with zero scalar curvature, Proposition
3.6.4 shows that Ker D are the spaces of parallel positive and negative spinors, which
are determined by Hol(V?). Thus, ind D is determined by Hol(V?), and in fact by
Hol(g). When Hol(g) is SU(2m), Sp(m) or Spin(7), by Corollary 3.6.3 the dimensions
of Ker D are those given in Theorem 3.6.1, and this gives A(M ) explicitly. Thus we
have proved the following result.

Theorem 3.6.5 Let (M, g) be a compact Riemannian spin manifold of dimension 4m,
for m > 1. If the scalar curvature of g is positive, then A(M ) = 0. If the scalar
curvature of g is zero, then A(M ) is an integer determined by the holonomy group
Hol(g) of g. In particular, if Hol(g) = SU(2m) then A(M) = 2. If Hol(g) =
SU(2k) x SU(2m —2k) for 0 < k < m then A(M) = 4. If Hol(g) = Sp(m) then
A(M) =m + 1, and if m = 2 and Hol(g) = Spin(7) then A(M) = 1.

Here is one way this theorem is applied. Let G be SU(2m), Sp(m) or Spin(7). Then
we can use analytic methods to construct a torsion-free G-structure () on a compact
manifold M. The Riemannian metric ¢ associated to ) must then have Hol(g) C G,
but it does not immediately follow that Hol(g) = G. However, by studying the topology
of M we may compute A(M ), and so use Theorem 3.6.5 to distinguish between the
different possibilities for Hol(g).



4
Calibrated geometry

The theory of calibrated geometry was invented by Harvey and Lawson in their seminal
paper [151], which is still an excellent reference. It concerns calibrated submanifolds, a
special kind of minimal submanifold of a Riemannian manifold M, which are defined
using a closed form on M called a calibration. It is closely connected with the theory of
Riemannian holonomy groups because Riemannian manifolds with reduced holonomy
usually come equipped with one or more natural calibrations.

We begin in §4.1 by discussing minimal and calibrated submanifolds. Section 4.2
explains the relation between calibrated geometry and holonomy groups, central to this
book, and §4.3 considers the problem of classifying constant calibrations on R™. Finally,
84.4 describes geometric measure theory, which studies a class of measure-theoretic
generalizations of submanifolds called integral currents that have good compactness
properties and are natural in calibrated geometry problems.

4.1 Minimal submanifolds and calibrated submanifolds
For clarity we first define submanifolds, following Kobayashi and Nomizu [214, §1.1].

Definition 4.1.1 Let M and N be smooth manifolds, and ¢ : N — M a smooth map.
We call © an immersion if for each x € N, the linear map du|, : T,N — T,(,)M is
injective. We then say that N (or its image ¢(IN) in M) is an immersed submanifold in
M. We call ¢+ an embedding if it is an injective immersion. We then say that N (or its
image «(IV) in M) is an embedded submanifold in M. Two submanifolds ¢ : N — M
and /' : N’ — M are isomorphic if there exists a diffeomorphism ¢ : N — N’ with
t = ' 0 5. We consider isomorphic submanifolds to be the same. In this book we do not
require submanifolds N to be connected (though the ambient manifold M is assumed
connected), nor the image ¢(N) to be closed in M.

As usual, we generally think of a submanifold ¢+ : N — M as a special kind of
subset of M, that is, we implicitly identify N with its image ¢(N) in M, and suppress
all mention of the immersion ¢. For embedded submanifolds this is reasonable, as the set
t(N) can be given the structure of a smooth manifold uniquely such that the inclusion
t(N) < N is an embedding, and then ¢(N) — N is isomorphicto¢: N — M.

But for immersed submanifolds there can be distinct points z,y € N with ¢(z) =
t(y) in M, so that ¢(x) is a ‘self-intersection point’ of +(N). Then the image ¢(N) may
be singular at .(z), that is, we cannot give ¢(N) the structure of a manifold such that the

65
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inclusion ¢(N) < N is an embedding. Alternatively, ¢(IN') could be a nonsingular em-
bedded submanifold with ¢ : N — +(NN) a nontrivial multiple cover. In these cases one
cannot reconstruct NV, ¢ up to isomorphism from ¢(NV), so an immersed submanifold is
more than just a subset of M. Next we discuss minimal submanifolds. Two introductory
books on minimal submanifolds are Lawson [232] and Xin [342].

Definition 4.1.2 Let (M, g) be a Riemannian manifold, and N a compact submanifold
of M with immersion ¢ : N — M. Then ¢t*(g) is a Riemannian metric on N, so we can
define the volume vol(N) of N by integrating the volume form of +*(g) over N. We
call N a minimal submanifold if its volume is stationary under small variations of the
immersion ¢ : N — M.

For noncompact submanifolds we modify this definition as follows, as vol(/V) may
be infinite (undefined), or N might have a boundary. Let S C N be an open subset
whose closure S in IV is compact. Then the volume vol(S) is well-defined and finite. We
call N a minimal submanifold if for all such subsets .S, the volume vol(.S) is stationary
under small variations of ¢« : N — M which are supported in S, that is, we consider
only variations 7 : N — M with 7|y s = t|n\s-

One-dimensional minimal submanifolds are geodesics. It is natural to think of min-
imal submanifolds as submanifolds with minimal volume, but in fact we only require
the volume to be stationary. For example, the equator in S? is minimal, but does not
minimize length amongst lines of latitude.

We can also define minimal submanifolds by a partial differential equation. Suppose
N is a submanifold in a Riemannian manifold (M, g). Let v — N be the normal
bundle of N in M, so that T M|y = TN & v is an orthogonal direct sum. The second
fundamental form is a section B of S?T* N ®v such that whenever v, w are vector fields
on M with v|y,w|n sections of TN over N, then B - (U|N ® w\N) =, (va|N),
where ‘* contracts S?T*N with TN ® TN, V is the Levi-Civita connection of g, and
m, is the projection to v in the splitting TM |y = TN @ v.

The mean curvature vector  of N is the trace of the second fundamental form B
taken using the metric g on V. It is a section of the normal bundle v. It can be shown
by the Euler—Lagrange method that a submanifold NV is minimal if and only if its mean
curvature vector « is zero. Thus, an equivalent definition of minimal submanifold is a
submanifold with zero mean curvature.

Ift : N — M is an immersed submanifold, then the mean curvature x of IV depends
on ¢ and its first and second derivatives, so the condition that N be minimal is a nonlinear
second-order p.d.e. on ¢. In a certain sense (after factoring out by diffeomorphisms of V)
this p.d.e. is elliptic, as in §1.3. Thus elliptic regularity results apply, as in §1.4. Using
results of Morrey [266], one can show that if . : N — M is a C? immersion with zero
mean curvature then ¢ : N — M is isomorphic to a smooth immersion .’ : N’ — M,
and if (M, g) is real analytic then we can take N', .’ to be real analytic.

Now we can define calibrated submanifolds, following Harvey and Lawson [151].

Definition 4.1.3 Let (M, g) be a Riemannian manifold. An oriented tangent k-plane
V on M is a vector subspace V' of some tangent space T, M to M with dimV = k,
equipped with an orientation. If V' is an oriented tangent k-plane on M then g|y is a
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Euclidean metric on V, so combining g|y with the orientation on V' gives a natural
volume form voly on V', which is a k-formon V.

Now let ¢ be a closed k-form on M. We say that ¢ is a calibration on M if for every
oriented k-plane V on M we have ¢|y < voly. Here |y = « - voly for some o € R,
and ¢|y < voly if @ < 1. Let N be an oriented submanifold of M with dimension k.
Then each tangent space T, N for x € N is an oriented tangent k-plane. We say that NV
is a calibrated submanifold or y-submanifold if |7, y = voly, n forallx € N.

It is easy to show that calibrated submanifolds are automatically minimal subman-
ifolds [151, Th. 11.4.2]. We prove this in the compact case, but noncompact calibrated
submanifolds are locally volume-minimizing as well.

Proposition 4.1.4 Let (M, g) be a Riemannian manifold, ¢ a calibration on M, and N
a compact p-submanifoldin M. Then N is volume-minimizing in its homology class.

Proof Letdim N = k, and let [N] € Hy(M,R) and [¢] € H*(M,R) be the homol-
ogy and cohomology classes of NV and ¢. Then

[90] ' [N] = fng SD|TT,N = szNVOITIN = VO](N)a

since ¢|7, v = volp, y for each € N, as N is a calibrated submanifold. If N’ is any
other compact k-submanifold of M with [N'] = [N] in Hy(M,R), then

(o] - INI =[] - [N = [oen

T. N’ S fxEN’ volr, Nv = VO](N/>7

since ¢|1, nv < volr, Nv as @ is a calibration. The last two equations give vol(N) <
vol(N’). Thus N is volume-minimizing in its homology class. i

Now let (M, g) be a Riemannian manifold with a calibration o, and let ¢ : N — M
be an immersed submanifold. Whether N is a -submanifold depends upon the tangent
spaces of V. That is, it depends on ¢ and its first derivative. So, to be calibrated with
respect to ¢ is a first-order p.d.e. on ¢. But if N is calibrated then N is minimal, so it has
zero mean curvature. As above this is a second-order p.d.e. on ¢, which is implied by the
calibration first-order p.d.e. One moral is that the calibrated equations, being first-order,
are often easier to solve than the minimal submanifold equations, which are second-
order. So calibrated geometry is a fertile source of examples of minimal submanifolds.

4.2 Calibrated geometry and Riemannian holonomy groups

A calibration ¢ on (M, g) can only have nontrivial calibrated submanifolds if there exist
oriented tangent k-planes V on M with ¢|y, = voly . For instance, ¢ = 0 is a calibration
on M, but has no calibrated submanifolds. This means that a calibration ¢ is only inter-
esting if the set of oriented tangent k-planes V on M with |y, = voly has reasonably
large dimension. We now explain a natural method of constructing interesting calibra-
tions ¢ on Riemannian manifolds (M, g) with special holonomy, which automatically
have families of calibrated tangent k-planes with reasonably large dimension.

Let G C O(n) be a possible holonomy group of a Riemannian metric. In particular,
we can take G to be one of Berger’s list U(m), SU(m), Sp(m), Sp(m) Sp(1), G2 or
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Spin(7). Then G acts on the k-forms A¥(R™)* on R", so we can look for G-invariant
k-forms on R™. Suppose ¢q is a nonzero, G-invariant k-form on R". By rescaling g
we can arrange that for each oriented k-plane U C R" we have ¢g|y < voly, and that
wolu = voly for at least one such U. Let F be the family of oriented k-planes U in R"
with g |y = voly, and let I = dim F. Then F is nonempty. Since ¢ is G-invariant, if
U € Fthen-U € F for all v € G. This usually means that [ > 0.

Let M be a manifold of dimension n, and g a metric on M with Levi-Civita con-
nection V and holonomy group G. Then by Proposition 2.5.2 there is a k-form ¢ on M
with V¢ = 0, corresponding to ¢¢. Hence d = 0, and ¢ is closed. Also, the condition
wolu < voly for all oriented k-planes U in R™ implies that ¢|, < voly for all oriented
tangent k-planes in M. Thus ¢ is a calibration on M.

At each point z € M there is an [-dimensional family JF, of oriented tangent k-
planes V' with |y = voly, isomorphic to F. Hence, the set of oriented tangent k-
planes V in M with ¢|y = voly has dimension [ 4+ n, which is reasonably large. This
suggests that locally there should exist many y-submanifolds IV in M, so the calibrated
geometry of ¢ on (M, g) is nontrivial.

This gives us a general method for finding interesting calibrations on manifolds with
reduced holonomy. Here are some examples of this, taken from [151].

e Let G = U(m) € O(2m). Then G preserves a 2-form wo on R*™. If g is a metric

on M with holonomy U(m) then g is Kahler with complex structure J, and the
2-form w on M associated to wy is the Kéhler form of g, as in Chapter 5.
One can show that w is a calibration on (M, g), and the calibrated submanifolds are
exactly the holomorphic curves in (M, .J). More generally w” /k! is a calibration
on M for 1 < k < m, and the corresponding calibrated submanifolds are the
complex k-dimensional submanifolds of (M, J).

e Let G = SU(m) C O(2m). Riemannian manifolds (M, g) with holonomy SU(m)
are called Calabi—Yau manifolds, and are the subject of Chapter 7. A Calabi—Yau
manifold comes equipped with a complex m-form 6 called a holomorphic volume
form. The real part Ref is a calibration on M. Its calibrated submanifolds are
called special Lagrangian submanifolds, and are the subject of Chapter 8.

e The group G2 C O(T7) preserves a 3-form g and a 4-form g on R”, which will
be given explicitly in §11.1. Thus a Riemannian 7-manifold (M, g) with holonomy
G2 comes with a 3-form ¢ and 4-form %, which are both calibrations. We call
(p-submanifolds associative 3-folds, and *p-submanifolds coassociative 4-folds.
They will be studied in Chapter 12.

e The group Spin(7) C O(8) preserves a 4-form Q2 on R®, which will be given
explicitly in §11.4. Thus a Riemannian 8-manifold (M, g) with holonomy Spin(7)
has a 4-form {2, which is a calibration. We call {2-submanifolds Cayley 4-folds.
They will be discussed in Chapter 12.

It is an important general principle that to each calibration ¢ on an n-manifold
(M, g) with special holonomy we construct in this way, there corresponds a constant
calibration g on R™. Locally, p-submanifolds in M look very like (g-submanifolds in
R"™, and have many of the same properties. Thus, to understand the calibrated subman-
ifolds in a manifold with special holonomy, it is often a good idea to start by studying
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the corresponding calibrated submanifolds of R".

In particular, singularities of p-submanifolds in M will be locally modelled on sin-
gularities of ¢p-submanifolds in R™. So by studying singular ¢g-submanifolds in R™,
we may understand the singular behaviour of ¢-submanifolds in M.

4.3 Classification of calibrations on R”

Just as we classified Riemannian holonomy groups in Chapter 3, it is an interesting
problem to look for some form of classification of calibrated geometries. In particular,
we will see in Chapters 8 and 12 that the special Lagrangian, associative, coassocia-
tive and Cayley calibrations mentioned in §4.2 have a beautiful, rich theory with many
calibrated submanifolds, and a classification should reveal if there are other interesting
calibrated geometries that we have missed.

We now explain some ideas from Harvey and Lawson [151, §I1.7] and Morgan [264]
which go some way towards answering this question. We restrict to calibrations ¢ on
Euclidean space (R", g) with constant coefficients. As in §4.2, if such a ¢ is invariant
under a possible holonomy group G C O(n) then Riemannian n-manifolds with holon-
omy G also carry calibrations modelled on ¢, so classifying constant calibrations ¢ on
R™ implies a classification of constant calibrations on manifolds with special holonomy.

Let ¢ € A¥(R™)* be a calibration on R". Write Gr (k, R™) for the Grassmannian
of oriented k-planes V' in R", so that |y < voly for all V' € Gry(k,R") as ¢ is
a calibration. Define 7, C Gr4(k,R"™) to be the subset of V' which are calibrated
with respect to ¢, that is, those V' with |y = voly. Then an oriented k-submanifold
N C R" is a p-submanifold if and only if T, N € F,, forall z € N. So F,, determines
the family of ¢-submanifolds in R".

The first principle in our classification is that two calibrations ¢,% € AF(R™)*
are equivalent if F, = F, that is, if they determine the same calibrated submanifolds.
Also we will consider two calibrations ¢, ¥ equivalent if they are conjugate under O(n).
Thus what we want to determine is the family of possible subsets F,, in Gr (k,R")
realized by calibrations ¢ € AF(R™)*, up to the action of O(n) on Gr, (k, R™). Our
next definition explains a useful point of view on these sets F.

Definition 4.3.1 For integers 0 < k < n, define a map Gry (k,R") — AFR" as
follows: map each V in Gr, (k,R™), which is an oriented k-dimensional subspace of
R™, toe; Aea A--- Aeyin AFR™, where (e1, ..., ex) is an oriented orthonormal basis
of V. The point e; A ez A -+ A e, is independent of choice of (es,...,ex), so this
defines a map Gr, (k,R™) — A¥R"™, which is in fact an embedding. We use this to
regard Gr, (k, R™) as a compact submanifold of A*R".

Now AF(R™)* 2 (A*R™)*, so each k-form ¢ on R™ defines a linear map L :
AFR™ — R. It is easy to see that for V € Gri(k,R") C AFR" we have |y =
L (V) voly. Therefore ¢ is a calibration on R" if and only if |L¢|Gr+(k7Rn) < 1,and
if this holds then the set F, is the set of V' € Gr. (k,R"™) with L, (V') = 1. Thatis, F,,
is the intersection of Gr (k, R™) with the real hyperplane L, = 1 in A*R™.

Thus we have the following picture. The oriented Grassmannian Gr4 (k,R"™) is a
compact submanifold of A*R™. If we bring a real hyperplane in from infinity in the
vector space AFR™ = R™/F "=k yngi] it first touches the submanifold Gr (k,R™)
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then the contact set is F, for some calibration ¢, and all nonempty F, arise this way.
Therefore these sets F, are called faces of the Grassmannian Gr. (k,R"), by analogy
with faces of polyhedra in Euclidean geometry.

The Hodge star * of §1.1.2 gives linear isometries * : A¥(R")* — A"~*(R™)* and
* : AFR™ — A"~FR", which satisfy * Gr (k, R") = Gr4 (n—k,R") and *F, = F..
To see this on the level of k-planes, note that each oriented k-plane V' has a unique
orthogonal oriented (n—k)-plane V', such that if ¢ € A¥(R™)* with |y, = a voly for
a € Rthen |y, = avoly .. Thus, ¢ is a calibration if and only if *¢ is a calibration,
and then V is calibrated w.r.t. ¢ if and only if V- is calibrated w.r.t. . Therefore,
classifying faces of Gr, (k,R") is equivalent to classifying faces of Gry(n—k,R").

The case k = 1is trivial as Gry (1, R") is the unit sphere S"~* in R", and nonempty
faces are single points. Faces of Gr (2, R™) are classified by Harvey and Lawson [151,
Th. I1.7.16], and come from symplectic calibrations on subspaces R?™ C R™. Applying
the Hodge star gives classifications of faces of Gr4 (n—1, R") and Gry (n—2, R™). This
gives a complete description of calibrations of degree 1,2,n—2 and n—1 in R". We
express it in terms of choices of orthonormal coordinates in R™, which is equivalent to
working up to the action of O(n).

Theorem 4.3.2 Let ¢ € A¥(R")* be a calibration with F,, # 0 for k =1,2,n— 2 or

n — 1. Then there exist orthonormal coordinates (x1, . . .,xy) on R" such that either:

(i) k=1,¢ =dz; and F, = {(1,0,...,0)}, and @-submanifolds in R™ are real
affine lines parallel to (1,0,...,0);

(i) k = 2 and F, = Fy,, = CP™ ! for some 1 < m < n/2 where ¢, =
Z;":l dzoj—1 A dxaj, and p-submanifolds are of the form ¥ x {v} for ¥ a holo-
morphic curve in R?™ = C?™ with complex coordinates z; = x9;_1 + tx; for
j=1,...,m,and v € R"™*™ with coordinates (a1, ..., Tn);

(iii) k=n—2and F, = Fy,, = CP™ ! forsome 1 < m < n/2 and 1, as in (ii),
and -submanifolds are of the form ¥ x R" ™2™ for ¥ a complex hypersurface
in R*™ = C*™ with complex coordinates zj = Tgj—1 +ixej for j=1,...,m,
where R" ™™ has coordinates (T2 41, - - - , Zp); or

(iv) k=n—-1,¢ =dzaA---Adx, and F, = {0%-2/\' - ~/\%}, and y-submanifolds
in R™ are real hyperplanes 1 = c for ¢ € R.

Theorem 4.3.2 classifies all calibrations on R for n < 5, so the first new case is
3-forms on R®. These were classified by Dadok and Harvey [90] and Morgan [263, §4].

Theorem 4.3.3 Let ¢ € A®(R®)* be a calibration with F, # (. Then there exist
orthonormal coordinates (21, ... ,xg) on RS such that either:
(1) Fy = Fazindzondes = {3%1 A % A 3%3}, and -submanifolds in R are affine

3-planes (x4, x5, 2¢) = c for ¢ € R?;

(i) F, = {Vi,Va}, where Vi, V5 have oriented orthonormal bases %, %, % and
cosHla%l—f—sinHlaimmos 923%2—&—sin92%7cos 93%+sin933%6 for some 0 <
0, < 6y < 035 < 7 with 63 < 61 + 02, and p-submanifolds in RS are affine
3-planes parallel to V; or V5. Furthermore, for each choice of 601, 65,653 as above
there is a unique calibration p € A3(R®)* with F,, = {V1,Va};
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(iii) Fp = Fderdwandzs+dzsadzandes = CP', and -submanifolds are of the form
> x R x {c} for ¥ a holomorphic curve in R* = C? with complex coordinates
(21,22) = (1 + ix2, 23 + ix4), and R has coordinate x5, and x¢ = ¢ € R; or

(iv) ¢ = Re((dzy +ida2) A (dws +idzy) A (das +idag)) and F, = SU(3)/ SO(3),
and @-submanifolds are special Lagrangian 3-folds in R® = C?, as in Chapter 8.

The faces of Gr+(3,R7) were classified by Harvey and Morgan [152, Th. 6.2].
There are five discrete and five infinite types of families. Here is a partial statement.

Theorem 4.3.4 Let ¢ € A®(R")* be a calibration with F, # (). Then there exist
orthonormal coordinates (1, . . .,x7) on R” such that either:

(1) ¢ = dx123 + dx145 + dx167 + dxo46 — dXo57 — dx347 — dX356 as in (11.1),
where dXape = dz, A dzp Adze, and F, =2 G2/ SO(4), and p-submanifolds are
associative 3-folds in R, as in Chapter 12;

(i) ¢ = Re((dzy +idw2) A (dzs +idzs) A (dzs +idae)) and F, = SU(3)/ SO(3),
and p-submanifolds are of the form ¥ x {c} for ¥ a special Lagrangian 3-fold in
RS o (C3, as in Chapter 8, and x7 = c € R;

(iii) ¢ = (dzy A dws + daz A dog + das A dag) A doy and F, = CP?) and -
submanifolds are of the form ¥ x R for ¥ a holomorphic curve in R® = C? with
complex coordinates (z1,z2,23) = (%1 + iz, 23 + 124,25 + i26), and R has
coordinate x7;

(iv) Fy = Fazindesrdes+desrdzandes = CP!, and (p-submanifolds are of the form
> x R x {c} for ¥ a holomorphic curve in R* = C? with complex coordinates
(21, 22) = (1 +ixe, x3+ix4), and R has coordinate x5, and (xg, x7) =ceR? or

(v) in the remaining six cases F, is one point, or two points, or two CP' s intersecting
in a point, or diffeomorphic to S*, S? or S3.

Applying the Hodge star classifies faces of Gr4 (4, R7). In particular, from case (i)
we get coassociative 4-folds in R”, which will be studied in Chapter 12. One conclusion
we can draw from Theorems 4.3.2-4.3.4 is that for all constant calibrations ¢ on R"
for n < 7 with dim F,, reasonably large (that is, with dim F, > 0 for n < 6 and
dim F, > 3 for n = 7), the ¢-submanifolds are derived from one of: (a) complex
curves in C? or C?, (b) complex surfaces in C?, (c) special Lagrangian 3-folds in C?,
(d) associative 3-folds in R7, or (e) coassociative 4-folds in R”. So we have not missed
any interesting calibrated geometries in 7 dimensions or less.

No complete classification of faces of Gry (k,R") is known for any n > 8, and it
seems certain the full answer will be very complex and messy. Dadok, Harvey and Mor-
gan [91] classify F., for ¢ in several large subspaces of AY(R®)*, including A% (R®)*.
Calibrations in Ai (Rg)* include the following interesting examples:

e The Cayley 4-form €2 of (11.12), which has Fq, = Spin(7)/(SU(2)3/Zz), with
dim Fq, = 12. Its calibrated submanifolds are Cayley 4-folds, as in Chapter 12.

e The special Lagrangian calibration Re(dzq A --- A dz4) on C* = R®, which has
FRe(-—.) = SU(4)/SO(4), with dim Fre(...) = 9. Its calibrated submanifolds are
special Lagrangian 4-folds, as in Chapter 8.
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e The Kihler calibration %w A w for w the Kihler form on C* = Rg, which has
Fonws2 2U(4)/U(2) x U(2), with dim F, /2 = 8. Its calibrated submanifolds
are complex surfaces in (C4

e A calibration ¢ with F, = Sp(2)/U(2) and dim F,, = 6, whose calibrated sub-
manifolds are complex Lagrang1an surfaces in C* = RS with respect to the com-
plex symplectic form dzl /\ dzz + dzg A dzy.

e A calibration ¢ with F, p(2)/Sp(1) x Sp(1) and dim F,, = 4, whose cali-
brated submanifolds are afﬁne quaternionic lines H in H? = R®.

For all five examples we have F, C Fq,, so that all these different kinds of cali-
brated 4-folds in R® are examples of Cayley 4-folds. Also, if A is an associative 3-fold
and C* a coassociative 4-fold in R” then R x A3 and {c} x C* for ¢ € R are Cayley
4-folds in R x R” = R3. Thus, Cayley 4-folds in R® include as special cases all the
other interesting classes of calibrated 4-submanifolds we have found.

4.4 Geometric measure theory and tangent cones

We now review some geometric measure theory, and its application to calibrated geom-
etry. An introduction to the subject is provided by Morgan [265] and an in-depth (but
dated) treatment by Federer [102], and Harvey and Lawson [151, §II] relate geomet-
ric measure theory to calibrated geometry. Geometric measure theory studies measure-
theoretic generalizations of submanifolds called rectifiable and integral currents, which
may be very singular, and is particularly powerful for minimal submanifolds.

Let (M, g) be a complete Riemannian manifold. For k = 0, ...,dim M write 2"
for the vector space of smooth k-forms on M with compact support, and Z, for its dual
vector space. Elements of &, are called currents. We equip 2, with the weak topology,
thatis, Tj — T in 9 as j — oo if and only if Tj(¢) — T(p) in R for all ¢ € Z*.

Let N be a compact, oriented k-dimensional submanifold of M, possibly with
boundary. Then N defines a current N € % by N(p) = [y ¢ forall p € 2"
There is a natural boundary operator 0 : &, — D1 glven by (0T)(¢) = T(dy) for
all ¢ € 2%~ This is compatible with the boundary operator on submanifolds, for if
N is an oriented k-submanifold with boundary and ¢ € 2~ then [, ¢ = [ dgp by
Stokes’ Theorem, so IN = (9N).

Thus currents can be regarded as generalizations of oriented submanifolds. The
space Z is too huge to be useful, so we introduce two subspaces, rectifiable and in-
tegral currents. Roughly speaking, rectifiable currents are compactly-supported, finite
area, countable Z-linear combinations of currents of the following form: let A C R*
have finite Hausdorff k-measure and F : R¥ — M be a Lipschitz map, then we de-
fine a current by ¢ — [, F 1 F* (). As F is Lipschitz it is differentiable almost every-
where, so F* () exists almost everywhere as a bounded k-form on R*, and J4F*(9)
is well-defined. Rectifiable k-currents T have a volume vol(T") defined using Hausdorff
k-measure. We call T’ € 2, an integral current if T and 0T are rectifiable.

Here is a very important property of integral currents [265, 5.5], [102, 4.2.17].

Theorem 4.4.1. (The Compactness Theorem) Let (M, g) be a complete Riemannian
manifold, U C M be compact, 0 < k < dim M and C > 0. Then the subset of k-
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dimensional integral currents T in M supported in U with vol(T') < C and vol(9T) <
C' is compact in the weak topology on Zy.

The following argument is useful in the study of minimal submanifolds. Let (M, g)
be a compact Riemannian manifold, and o a nonzero homology class in Hy (M, Z).
We would like to find a compact minimal k-submanifold N in M with homology class
[N] = a. To do this, we choose a minimizing sequence (NN;)$2; of compact subman-
ifolds V; with [N;] = «, such that vol(V;) approaches the infimum of volumes of
submanifolds with homology class « as © — oo.

Pretend for the moment that the set of all closed k-dimensional submanifolds N
without boundary with vol(IV) < C'is a compact topological space. Then there exists a
subsequence (N, );’il which converges to some submanifold NV, which is the minimal
submanifold we want. In fact this does not work, because the set of submanifolds /N
does not have the compactness properties we need. However, Theorem 4.4.1 implies
that integral currents do have these properties, and so every integral homology class «
in Hy,(M,Z) is represented by a volume-minimizing integral current.

The question remains: how close are these volume-minimizing integral currents to
being submanifolds? Here is a major result of Almgren [9], [265, Th. 8.3]. The interior
T° of an integral current 7" is supp 7"\ supp 97T It is not known whether the singular
set of T'° has finite Hausdorff (k—2)-measure. When k& = 2 or k = dim M — 1 one can
go further; for a survey, see Morgan [265, §8].

Theorem 4.4.2. (Almgren [9]) Let (M, g) be a complete Riemannian manifold and
T € 9 be a volume-minimizing rectifiable current in M. Then the interior T° of T is
a smooth, embedded minimal submanifold of M except for a singular set of Hausdorff
dimension at most k — 2.

Harvey and Lawson [151, §II] discuss calibrated geometry and geometric measure
theory. They show that on a Riemannian manifold (M, g) with calibration k-form ¢ one
can define integral p-currents, that is, integral currents which are calibrated w.r.t. ¢, and
that they are volume-minimizing in their homology class. An integral current 7" in M is
a p-current if fT = vol(T), or equivalently if the tangent k-planes to T are calibrated
by ¢ almost everywhere in Hausdorff k-measure. If IV is a compact ¢-submanifold with
boundary then NN is an integral (-current.

Next we discuss tangent cones of volume-minimizing integral currents, a general-
ization of tangent spaces of submanifolds, as in [265, 9.7]. Since cones in R™ except
{0} are never compactly-supported, tangent cones are not rectifiable currents, but they
are locally rectifiable, that is, their restriction to compact sets in R™ is rectifiable.

Definition 4.4.3 A locally rectifiable current C' in R" is called a cone if C = tC for
allt > 0, where t : R™ — R™ acts by dilations in the obvious way. Let T" be a locally
rectifiable current in R™, and let x € T°. We say that C is a tangent cone to T at x if
there exists a decreasing sequence 1 > 19 > - - - tending to zero such that rj_l (T —x)
converges to C as a locally rectifiable current as j — oo.

More generally, if (M, g) is a complete Riemannian n-manifold, T is a locally recti-
fiable current in M, and € T°°, then one can define a tangent cone C to T at x, which
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is a locally rectifiable current cone in the Euclidean vector space T, M. Identifying M
with R™ near z using a coordinate system, the two notions of tangent cone coincide.

The next result follows from Morgan [265, p. 94-95], Federer [102, 5.4.3] and Har-
vey and Lawson [151, Th. I1.5.15].

Theorem 4.4.4 Let (M, g) be a complete Riemannian manifold, and T a volume-
minimizing integral current in M. Then for all x € T°, there exists a tangent cone
C to T at x. Moreover C' is itself a volume-minimizing locally rectifiable current in
T,M with O0C = 0, and if T is calibrated with respect to a calibration ¢ on (M, g),
then C is calibrated with respect to the constant calibration |, on T, M.

Note that the theorem does not claim that the tangent cone C' is unique, and in fact
it is an important open question whether a volume-minimizing integral current has a
unique tangent cone at each point of 7°. However, Simon [312] shows that if some
tangent cone C is nonsingular and multiplicity 1 away from 0, then C' is the unique
tangent cone, and T converges to C in a C* sense. Simon claims only that ¢ is C?
rather than smooth, but smoothness follows by elliptic regularity as in §4.1.

Theorem 4.4.5 Let C' be an m-dimensional oriented minimal cone in R" with C' =
C \ {0} nonsingular, so that ¥ = C' N 8"~ ! is a compact, oriented, nonsingular, em-
bedded, minimal (m — 1)-submanifold of S"~1. Define v : ¥ x (0,00) — C’ C R"
by t(o,r) = ro. Let (M, g) be a complete Riemannian n-manifold and x € M. Fix
an isometry v : R" — T, M, and choose an embedding Y : Br — M with T(0) = x
and dY'|p = v, where Bp, is the ball of radius R > 0 about 0 € R".

Suppose T is a minimal integral current in M with x € T°, and v.(C) is a tangent
cone to T at x with multiplicity 1. Then v, (C') is the unique tangent cone to T at x.
Furthermore there exists R’ € (0, R] and an embedding ¢ : £x(0, R') — Br: C B, with

6o =, Jo—il=olr) and |V(6-0|=o(t) asr—0, @1

such that T N (Y (Bg) \ {z}) is the embedded submanifold Y o ¢(% x (0, R')), with
multiplicity 1.

In §8.5 we will discuss special Lagrangian m-folds with isolated conical singular-
ities, which have this kind of behaviour near their singular points. One moral we can
draw from these ideas is that the tangent cone at a singular point of a calibrated subman-
ifold captures the leading order behaviour of the submanifold near the singular point,
and so to understand the possible singularities of calibrated submanifolds we should
start by constructing and studying calibrated cones in R™ with respect to the corre-
sponding constant calibration.
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Kahler manifolds

In this chapter we shall introduce the very rich geometry of complex and Kihler man-
ifolds. Complex manifolds are manifolds with a geometric structure called a complex
structure, which gives every tangent space the structure of a complex vector space. They
are defined in §5.1, together with complex submanifolds and holomorphic maps. Sec-
tion 5.2 discusses tensors on complex manifolds, and their decomposition into compo-
nents using the complex structure, and §5.3 defines holomorphic vector bundles over a
complex manifold.

Sections 5.4-5.7 deal with Kéhler metrics on complex manifolds. A Kahler metric
is a Riemannian metric on a complex manifold, that is compatible with the complex
structure in a natural way. Also, Kihler metrics have special holonomy groups: if g
is a Kihler metric on a complex manifold of dimension m, then the holonomy group
Hol(g) is a subgroup of U(m). Quite a lot of the geometry of Kéhler metrics that we
will describe has parallels in the geometry of other holonomy groups. We discuss Kéhler
potentials, the curvature of Kéhler metrics, and exterior forms on Kéihler manifolds.

In §5.1-§5.7 we treat complex and Kihler manifolds using differential and Rie-
mannian geometry. But one can also study complex and Kihler manifolds using com-
plex algebraic geometry, and we give an introduction to this in §5.8-§5.10. Algebraic
geometry is a very large subject and we cannot do it justice in a few pages, so we aim
only to provide enough background for the reader to understand the algebraic parts of
the rest of the book, which occur mostly in Chapters 7, 10 and 11.

Section 5.8 introduces complex algebraic varieties, the objects studied in complex
algebraic geometry, and briefly describes some of the fundamental ideas—morphisms,
rational maps, sheaves and so on. We then cover two areas in more detail: singulari-
ties, resolutions and deformations in §5.9, and holomorphic line bundles and divisors
in §5.10.

And now a word about notation. Unfortunately, the literature on Kihler geometry is
rather inconsistent about the notation it uses. For example, while writing this chapter I
found four different definitions of the Kéhler form w of §5.4 in various books, that differ
from the definition we shall give by constant factors. In the same way, the operator d° of
§5.2, the Ricci form p of §5.6 and the Laplacian A on a Kéhler manifold all have several
definitions, differing by constant factors. I have done my best to make the formulae in
this book consistent with each other, but readers are warned that other books and papers
have other conventions.
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5.1 Introduction to complex manifolds

A complex manifold is a real, even-dimensional manifold equipped with a geometric
structure called a complex structure. Here are three ways to define this.

First Definition. Let M be a real manifold of dimension 2m. A complex chart on M is
a pair (U, ), where U is openin M and ¢ : U — C™ is a diffeomorphism between U
and some open set in C"™*. Equivalently, ¥ gives a set of complex coordinates 21, . . ., Zp,
on U. If (U, 1) and (Us, 1)2) are two complex charts, then the transition function is
12 Y1 (U1 NU3) — 2 (U NU3), given by 1h12 = g0 z/Jfl. We say M is a complex
manifold if it has an atlas of complex charts (U, 1), such that all the transition functions
are holomorphic, as maps from C™ to itself.

This is the traditional definition of complex manifold, using holomorphic coordi-
nates. However, in this book we prefer to take a more differential geometric point of
view, and to define geometric structures using tensors. So, here are the preliminaries to
our second definition of complex manifold.

Let M be a real manifold of dimension 2m. We define an almost complex structure
J on M to be a smooth tensor J° on M satisfying JJ¢ = —4¢. Let v be a smooth
vector field on M, written v in index notation, and define a new vector field Jv by
(Jv)® = Jov®. Thus J acts linearly on vector fields. The equation J2J¢ = —&¢ implies
that J(Jv) = —v, so that J? = —1. Observe that .J gives each tangent space 7, M the
structure of a complex vector space.

For all smooth vector fields v, w on M, define a vector field N (v, w) by

Ny(v,w) = [v,w] + J([Jv,w] + [v, Jw]) — [Jv, Jw],

where [, ] is the Lie bracket of vector fields. It turns out that N; is a tensor, meaning
that N (v, w) is pointwise bilinear in v and w. We call N; the Nijenhuis tensor of J.

Second Definition. Let M be a real manifold of dimension 2m, and J an almost com-
plex structure on M. We call J a complex structure if Ny = 0 on M. A complex
manifold is a manifold M equipped with a complex structure .J. We shall often use the
notation (M, J) to refer to a manifold and its complex structure.

Here is why the first two definitions are equivalent. Let f : M — C be a smooth
complex function on M. We say that f is holomorphic if J2(df), = i(df), on M.
These are called the Cauchy—Riemann equations. It turns out that if m > 1, the equa-
tions are overdetermined, and the Nijenhuis tensor N ; is an obstruction to the existence
of holomorphic functions. Simply put, if N; = 0 there are many holomorphic functions
locally, but if N; # 0 there are few holomorphic functions.

Let (U,v) be a complex chart on M. Then v is a set of complex coordinates
(21,...,2m) on U, where z; : U — C is a smooth function. We call (U, ) a holo-
morphic chart if each of the functions z1, .. ., z,, is holomorphic in the above sense.

The Newlander—Nirenberg Theorem shows that a necessary and sufficient condition
for there to exist a holomorphic chart around each point of M, is the vanishing of the
Nijenhuis tensor N; of J. Therefore, if (M, J) is a complex manifold in the sense of
the second definition, then M has an atlas of holomorphic charts. This atlas makes M
into a complex manifold in the sense of the first definition.
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Our third way to define the idea of complex structure uses the language of G-
structures and intrinsic torsion, that was defined in §2.6. Let M be a real 2m-manifold
with frame bundle F, and let J be an almost complex structure on M. Define P to be
the subbundle of frames in F' in which the components of .J assume the standard form

1 ifa=b+m,
Jg=49-1 ifa=b—m,

0 otherwise,

fora,b=1,...,2m. Then P is a principal subbundle of F’ with fibre GL(m, C), which
is a Lie subgroup of GL(2m, R) in the obvious way, and so P is a GL(m, C)-structure
on M. Clearly, this defines a 1-1 correspondence between almost complex structures .J
and GL(m, C)-structures P on M.

It turns out that the Nijenhuis tensor N; of J is equivalent to the intrinsic torsion
T*(P) of P, in the sense of Definition 2.6.4. Thus, N; = 0 if and only if P is torsion-
free. So, the second definition of complex structure is equivalent to the following:

Third Definition. Let M be a real manifold of dimension 2m. Then a complex structure
on M is a torsion-free GL(m, C)-structure on M.

All three definitions are useful for different purposes. The second definition is con-
venient for differential geometric calculations, and we will use it most often. But the first
definition is best for defining complex manifolds explicitly. Here is a simple example.

Example 5.1.1 A very important family of complex manifolds are the complex pro-
Jjective spaces CP™. Define CIP"™ to be the set of one-dimensional vector subspaces of
C™* Let (20,. .., 2y,) be a pointin C™** \ {0}. Then we write

[205 -y 2m] = {(ozzo7 ce, QZy) € (C} e CpP™.

Every point in CP™ is of the form [zo, . . . , 2,,,] for some (20, ..., zm) € C™1\ {0}.
This notation is called homogeneous coordinates for CP"*. The homogeneous coor-
dinates of a point are not unique, since if A € C is nonzero then [z, ..., zm,] and
[Azo, - .., Azp,] represent the same point in CP™.

We will define a set of complex charts on CP™, that make it into a compact com-
plex manifold of dimension m, in the sense of the first definition above. For each j =
0,1,...,m, define U; = {[z0,...,2m] € CP™ : z; # 0}. Then U; is an open set in
CP™, and every point in U, can be written uniquely as [zo, ..., zj—1, 1, Zj41, - - -, Zm ],
that is, with z; = 1. Define a map ¢; : U; — C™ by

wj([ZOa"'aZj*17laZj+1a"'aZmD = (ZOa"'aZj*thJrla"me)'

Then 1); is a diffeomorphism, and (Uj, ;) is a complex chart on CP™. It is easy to
show that the charts (Uj, ;) for j = 0,1,...,m form a holomorphic atlas for CP"",
and thus CP™ is a complex manifold.
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5.1.1 Holomorphic maps and complex submanifolds

Many concepts in real differential geometry have natural analogues in the world of
complex manifolds. We will now examine the ideas of holomorphic maps and complex
submanifolds, which are the complex analogues of smooth maps and submanifolds.

Let M, N be complex manifolds with complex structures .J,,, Jy, and let f : M —
N be a smooth map. At each point p € M, the derivative of f is a linear map d, f :
TyM — Ty,)N. We say that f is a holomorphic map if, for each point p € M and
each v € T, M, the equation Jy (dpf(v)) = dpf(JM(v)) holds. In other words, we
must have Jy o df = df o J,, as maps between the vector bundles TM and f*(TN)
over M.

A map f : M — N between complex manifolds is called biholomorphic, or a
biholomorphism, if an inverse map f~! : N — M exists, and both f and f~! are holo-
morphic maps. Biholomorphic maps are the natural notion of isomorphism of complex
manifolds, just as diffeomorphisms are isomorphisms of smooth manifolds.

Now let M be a complex manifold with complex structure .J, and let N be a sub-
manifold of M. Then for each p € N, the tangent space T, NV is a vector subspace of the
tangent space T,,M. We say that N is a complex submanifold of M if J(T,N) = T,N
for each p € N, that is, if the tangent spaces of N are closed under J.

If N is a complex submanifold, then the restriction of J to T'N is a complex struc-
ture on NN, so that IV is a complex manifold, and the inclusion map i : N — M is
holomorphic. Also, a submanifold N C M is a complex submanifold if and only if it
can locally be written as the zeros of a finite number of holomorphic functions.

The complex projective spaces CP"* have many complex submanifolds, which are
defined as the set of zeros of a collection of polynomials. Such submanifolds are called
complex algebraic varieties, and will be the subject of §5.8. Here are two examples, to
illustrate the ideas of holomorphic map and complex submanifold.

Example 5.1.2 Define a map f : CP' — CP? by

f([z,9]) = [%, 2y, %]

As above, if A € C is nonzero then the points [Az, Ay] and [z, y] are the same. To see
that f is well-defined, we must show that the definition is independent of the choice of
homogeneous coordinates. But this is obvious because

[(A2)?, (Az)(Ay), (Ay)?] = [N2®, Nay, \2y?] = [2°, 2y, y7],

and so f is well-defined. The reason that this works is that the polynomials 22, zy and
y? are all homogeneous of the same degree.

This map f is a holomorphic map between the complex manifolds CP' and CP?. Its
image N = Im f is a complex submanifold of CPP?, which is isomorphic as a complex
manifold to CP'. We can also define NV as a subset of CP? by

N = {[2’0721,22} € CP?: 2929 — 22 = 0}_

Thus N is an example of a conic in CP?.
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Example 5.1.3 Let C be the cubic in CP? given by
C= {[20721722] e CP?: 2o+ = 0}.

This is a compact, complex submanifold of CP?. As a real manifold, C is diffeomorphic
to the torus T'2. More generally, let P(zo, 21, 22) be a homogeneous complex polyno-
mial of degree d > 1, and define a set Cp C CP? by

Cp = {[20, 21, 22] € CP? : P(z9,21,22) = 0}.

For generic polynomials P the curve Cp is a compact complex submanifold of CIP?,
which is diffeomorphic as a real manifold to a surface of genus g = 2 (d — 1)(d — 2).
For more details, see [132, §2.1].

5.2 Tensors on complex manifolds

We showed in §3.5.1 that if G is a Lie subgroup of GL(n,R) and @ is a G-structure on
an n-manifold M, then the bundles of tensors and exterior forms on M decompose into
a direct sum of subbundles corresponding to irreducible representations of GG. Now §5.1
defined a complex structure to be a torsion-free GL(m, C)-structure on a 2m-manifold.
Thus, the bundles of tensors and exterior forms on a complex manifold split into sub-
bundles corresponding to irreducible representations of GL(m, C). In this section we
will explain these splittings, and some of their consequences.

Let M be a manifold of dimension 2m, and J a complex structure on M. Then J
acts linearly on vector fields v by v — Jv, such that J(Jv) = —v. As vector fields
are sections of the tangent bundle 7'M of M, we may regard J as a bundle-linear map
J:TM — TM. At a point p in M, this gives a linear map J,, : T, M — T,M. Now
T, M is areal vector space isomorphic to R?*™. It is convenient to complexify T,M to
get T, M ®r C, which is a complex vector space isomorphic to C?™. (Note that this
operation of complexification is independent of .J.) The map J,, extends naturally to a
map J, : T,M ®@r C — T, M ®r C, which is linear over C.

Consider the eigenvalues and eigenvectors of J, in T, M ®g C. Since Jp2 = —id,
where id is the identity, any eigenvalue A of .J, must satisfy A\*> = —1. Hence A = +i.
Define TTELO)M to be the eigenspace of J}, in T}, M ®r C with eigenvalue 7, and TTEO’I)M
to be the eigenspace with eigenvalue —i. It is easy to show that Tp(l’O)M ~ C™
7"V M, that T,M ®r C = T"OM @ T,°Y M, and that T,"” M and TV M are
complex conjugate subspaces under the natural complex conjugation on 7, M ®g C.

As this works at every point p in M, we have defined two subbundles 7(*% M/ and
TOUN of TM ®g C, with TM ®@r C = TW0O M @ 7O M. What we have shown
is that a complex structure on M splits the complexified tangent bundle into two sub-
bundles. In a similar way, the complexified cotangent bundle, and in fact complexified
tensors of all kinds on M, are split into subbundles by the complex structure.

This is an important idea in complex geometry, and to make use of it we will usually
work with complex-valued tensors on complex manifolds, that is, all vector bundles will
be complexified, as above with the tangent bundle. We will now develop the idea in two
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different ways. Firstly, a notation for tensors on complex manifolds will be defined, and
secondly, the decomposition of exterior forms by the complex structure is explained,
and the 0 and J operators are defined.

5.2.1 The decomposition of complex tensors

Let M be a complex manifold with complex structure .J, which will be written with
indices as J]’?. Let S = 5% be a tensor on M, taking values in C. Here a is a con-
travariant index of S, and any other indices of S are represented by dots. The Greek
characters v, 3,7, 8, € and their conjugates &, 3, ¥, 0, €, will be used in place of the Ro-
man indices a, b, ¢, d, e respectively. They are tensor indices in the normal sense, and
their use is actually a shorthand indicating a modification to the tensor itself.

Define S = $(8% — iJ#S7 ) and S* = L(S% 4 4J#S7 ). In the same
way, if b is a covariant index on a complex-valued tensor 7}, , define T~ = %(Tb'ff. —
iJgT]:;;.) and TB = %(Tb'::‘ + iJgT]:::A). These operations on tensors are projections,
and satisfy S = S% + 5% and Ty =Ty + TB

Let 5% be the Kronecker delta, regarded as a tensor on M. Then 6% = 67 + 62 in
this notation. It is also easy to show that J® = 5% — i65. Thus J acts on tensor indices
of the form «, 3, . . . by multiplication by ¢, so we may think of these as complex linear
components with respect to .J. Similarly, J acts on indices of the form &, (3, ... by
multiplication by —%, and we may think of these as complex antilinear components.

5.2.2 Exterior forms on complex manifolds

By the argument used above, the complexified cotangent bundle 7* M ®g C splits into
pieces: T* M@rC = T M@T*OD M. Now if U, V, W are vector spaces with U =
V @ W, then the exterior powers of U, V and W are related by A¥U = @?:o NV ®
AR~ . Using the splitting of T* M ®g C, it follows that

AFT*M @5 C = @F_y MT*COM @c AF=IT*OD M. 5.1)
Define A”"7M to be the bundle APT*(LO M @c AIT*OD M. Then (5.1) gives
APT*M @p C = @ _g AWM. (5.2)

This is the decomposition of the exterior k-forms on M induced by the complex struc-
ture J. A section of AP is called a (p, q)-form.

We may use the splittings of A*T*M ®r C and A¥HT*M @ C to divide the
exterior derivative d on complex k-forms into components, each component mapping
sections of AP*9M to sections of A™*M, where p +q = kand r + s = k + 1. Pro-
vided J is a complex structure (not just an almost complex structure), the only nonzero
components are those that map AP*2M to APT1H9M and to AP9T1 M.

Define  to be the component of d mapping C°°(AP*¢M) to C°°(APT14M), and
0 to be the component of d mapping C*° (AP M) to C°°(AP:4+1\). Then 9, O are
first-order partial differential operators on complex k-forms which satisfy d = 9 + 0.
The identity d> = 0 implies that 9> = 9> = 0 and 99 + 99 = 0. As 9> = 0, we may
define the Dolbeault cohomology groups H* (M) of a complex manifold, by



HOLOMORPHIC VECTOR BUNDLES 81

HEY(M) = Ker (9 : C®(AP9M) — C> (AP M)
? B Im(é : Co(AP—1aM) — COO(AZWM)) .

b (5.3)

The Dolbeault cohomology groups depend on the complex structure of M.
Now define an operator d° : C>®(AFT*M ®g C) — C®(AFT*M @ C) by
d® =4(0 — 0). It is easy to show that

dd+d°d =0, (d)*=0, 9=1(d+id°), 0= 1(d—1id°) and dd® = 2i00.

Also d€ is a real operator, that is, if « is a real k-form then d“«a is a real (k+1)-form.

5.3 Holomorphic vector bundles

Next we define holomorphic vector bundles over a complex manifold, which are the
analogues in complex geometry of smooth vector bundles over real manifolds. A good
reference for the material in this section is [132, §0.5 & §1.1].

Definition 5.3.1 Let M be a complex manifold. Let {E, : p € M} be a family of
complex vector spaces of dimension k, parametrized by M. Let E be the total space
of this family, and 7 : E — M be the natural projection. Suppose also that F has the
structure of a complex manifold. This collection of data (the family of complex vector
spaces, with a complex structure on its total space) is called a holomorphic vector bundle
with fibre Ck, if the following conditions hold.

(i) The map 7 : ' — M is a holomorphic map of complex manifolds.
(i1) Foreach p € M there exists an open neighbourhood U C M, and a biholomorphic
map oy : Y (U) — U x C.
(iii) In part (ii), for each v € U the map ¢y takes E, to {u} X C*, and this is an
isomorphism between E,, and CF as complex vector spaces.

The vector space F,, is called the fibre of ¥ over p. Usually we will refer to F as the
holomorphic vector bundle, implicitly assuming that the rest of the structure is given.

Let E and F' be holomorphic vector bundles over M. Then E* and F ® F' are also
holomorphic bundles in a natural way, where E* is the dual vector bundle to E with
fibre E; atp € M, and F ® F is the tensor product bundle, with fibre £, ® F,.

Suppose F is a holomorphic vector bundle over M, with projection 7 : £ — M. A
holomorphic section s of E is a holomorphic map s : M — FE, such that 7 o s is the
identity map on M. Because the fibres of ' are complex vector spaces, holomorphic
sections of F can be added together and multiplied by complex constants. Thus the
holomorphic sections of E form a complex vector space, which is finite-dimensional if
M is compact.

Now, every complex manifold M comes equipped with a number of natural holo-
morphic vector bundles. For example, the product M x CFisa holomorphic vector
bundle over M, called the trivial vector bundle with fibre C*. Also, the tangent bundle
T M and the cotangent bundle 7 M are both real vector bundles over M, but we may
make them into complex vector bundles by identifying .J with multiplication by ¢ € C.
The total spaces of T'M and T M both have natural complex structures, which make
them into holomorphic vector bundles.
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From T'M and T*M we can make other holomorphic vector bundles by tensor
products. We will consider the bundles of exterior forms. The vector bundles AP* M of
§5.2.2 are complex vector bundles, smooth vector bundles with complex vector spaces
as fibres. But which of these are holomorphic vector bundles? It turns out that AP M
is a holomorphic vector bundle in a natural way if and only if ¢ = 0, so that AP°M is a
holomorphic vector bundle for p = 0, 1, ..., m. There are natural isomorphisms

A OM =M xC, AYM=T*M, and AP°M = APT*M,

as holomorphic vector bundles.

Now let s € C°°(APPM), so that s is a smooth section of AP°M. Then s is a
holomorphic section of AP° M if and only if ds = 0 in C>° (AP M). A holomorphic
section of A% M is called a holomorphic p-form. From eqn (5.3) we see that the Dol-
beault group H g 0 (M) is actually the vector space of holomorphic p-forms on M.

5.4 Introduction to Kahler manifolds

Let (M, J) be a complex manifold, and let g be a Riemannian metric on M. We call g
a Hermitian metric if three equivalent conditions hold:

@) g(v,w) = g(Jv, Jw) for all vector fields v, w on M,

(ii) in index notation, g,, = Jnggcd,
(iii) in the notation of §5.2, gap = g,5 + gap- Thatis, gag = g55 = 0.
This is a natural compatibility condition between a complex structure and a Riemannian
metric. If g is a Hermitian metric, we define a 2-form w on M called the Hermitian form
of g in three equivalent ways:

(i) w(v,w) = g(Jv,w) for all vector fields v, w on M,

(i1) in index notation, wg. = Jfl’ Gbes
(iii) in the notation of §5.2, wap = 19,5 — 19ap-
Then w is a (1,1)-form, and we may reconstruct g from w using the equation g(v, w) =
w(v, Jw). Define a (1,1)-form w on a complex manifold to be positive if w(v, Jv) > 0
for all nonzero vectors v. It is easy to see that if w is a (1,1)-form on a complex manifold,

then w is the Hermitian form of a Hermitian metric if and only if w is positive. The idea
of Hermitian metric also makes sense for JJ an almost complex structure.

Definition 5.4.1 Let (M, J) be a complex manifold, and g a Hermitian metric on M,
with Hermitian form w. We say g is a Kahler metric if dw = 0. In this case we call w
the Kiéhler form, and the triple (M, J, g) a Kahler manifold.

Here are some important facts about Kéhler metrics.

Proposition 5.4.2 Let M be a manifold of dimension 2m, J an almost complex struc-
ture on M, and g a Hermitian metric, with Hermitian form w. Let V be the Levi-Civita
connection of g. Then the following conditions are equivalent:

(i) J is a complex structure and g is Kéhler.

@Gi) VJ =0.
(iii)) Vw = 0.
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(iv) The holonomy group of g is contained in U(m), and J is associated to the corre-
sponding U(m)-structure.

In §5.1 we saw that one way to define a complex structure is as a torsion-free
GL(m, C)-structure on a 2m-manifold M. In the same way, a Kihler structure can
be defined to be a torsion-free U(m)-structure on M, as in §2.6.

Notice that if ¢ is a Hermitian metric on a complex manifold, then the rather weak
condition dw = 0 implies the much stronger conditions that Vw = VJ = 0. One
moral is that Kidhler metrics are easy to construct, as closed 2-forms are easy to find, but
they have many interesting properties following from Vw = V.J = 0. Also, note that
a Kihler metric is just a Riemannian metric with holonomy contained in U(m). The
highest exterior power w™ of w is proportional to the volume form dVj; of g, and with
the conventions used in this book, the relationship is

W™ =ml!-dVj. 5.4

Let M be a Kéhler manifold with Kéhler metric g and Kéhler form w. If N is a
complex submanifold of M in the sense of §5.1.1, then the restriction of g to IV is also
Kihler. (One way to see this is that the restriction of w to IV is clearly a closed, positive
(1,1)-form.) Thus, any complex submanifold of a Kihler manifold is a Kdhler manifold
in its own right.

Example 5.4.3 The complex manifold CP™, described in Example 5.1.1, carries a
natural Kihler metric. Here is one way to define it. There is a natural projection

7 C™T\ {0} — CP™, definedby 7 :(20,...,2m) — [20,-- -, 2Zm]-

Define a real function u : C"™ '\ {0} — (0,00) by u(20, - - -, 2m) = 20>+ - -+ |2m|>.
Define a closed (1,1)-form e on C"™"*\ {0} by o = dd®(log u). Now « is not the Kiihler
form of any Kihler metric on C™ %! \ {0}, because it is not positive. However, there
does exist a unique positive (1,1)-form w on CP™, such that « = 7*(w). The Kéhler
metric g on CP" with Kihler form w is the Fubini-Study metric.

The idea here of using dd® to make Kihler forms will be explored in §5.5. Since
CP™ is Kihler, it follows that any complex submanifold of CP™ is also a Kihler man-
ifold. Now there are lots of complex submanifolds in the complex projective spaces
CP™. They are studied in the subject of complex algebraic geometry, which will be
introduced in §5.8. This gives a huge number of examples of Kédhler manifolds.

5.5 Kabhler potentials

Let (M, J) be a complex manifold. We have seen that to each Kéhler metric g on M
there is associated a closed real (1,1)-form w, called the Kahler form. Conversely, if w
is a closed real (1,1)-form on M, then w is the Kahler form of a Kdhler metric if and
only if w is positive (that is, w(v, Jv) > 0 for all nonzero vectors v). Positivity is an
open condition on closed real (1,1)-forms, meaning that it holds on an open set in the
space of closed real (1,1)-forms.
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Let ¢ be a smooth real function on M. Then dd®¢ is clearly a closed (and in fact
exact) real 2-form, as both d and d° are real operators. But since dd® = 200, it follows
that dd“¢ is also a (1,1)-form. Thus if ¢ is a real function then dd“¢ is a closed real
(1,1)-form. The following are converses to this.

The Local dd°-Lemma. Let 1 be a smooth, closed, real (1, 1)-form on the unit disc in
C™. Then there is a smooth real function ¢ on the unit disc with n = dd°¢.

The Global dd°-Lemma. Let M be a compact Kihler manifold, and n a smooth, exact,
real (1,1)-form on M. Then there is a smooth real function ¢ on M with n=dd°®.

In the second it is necessary that M should be Kihler, rather than just complex, for
the result to hold. From the Local dd®-Lemma it follows that if g is a K&hler metric
on M with Kihler form w, then locally in M we may write w = dd“¢ for some real
function ¢. Such a function ¢ is called a Kahler potential for the metric g. However, in
general we cannot find a global Kihler potential for g, for the following reason.

Suppose M is a compact Kéhler manifold of dimension 2m, with Kahler form w. As
w is closed, it defines a de Rham cohomology class [w] € H?(M,R), called the Kihler
class. Now [w]™ = [,, w™ = m!vol(M) > 0by (5.4), so [w] # 0. However, dd“¢ is
exact, so that [dd°¢] = 0 in H?(M,R). Therefore, on a compact Kihler manifold it is
impossible to find a global Kéhler potential; but we do have the following useful result.

Lemma 5.5.1 Let M be a compact complex manifold and g, g’ Kéhler metrics on M
with Kéhler forms w,w’. Suppose [w] = [w’] in H?(M,R). Then there is a smooth real
function ¢ on M with ' = w + dd¢, which is unique up to addition of a constant.

Proof Since [w] = [w'], w’ — w is an exact, real (1,1)-form. So, by the Global dd°-
Lemma, a function ¢ exists with w’ — w = dd®¢, and w’ = w + dd¢ as we want. If ¢,
and ¢ are both solutions, then by subtraction dd®(¢; — ¢2) = 0 on M, which implies
that ¢ — ¢ is constant, as M is compact. Therefore ¢ is unique up to a constant. O

The lemma gives a parametrization of the Kédhler metrics with a fixed Kihler class,
by smooth functions on the manifold. We may also express the metric g’ in terms of
gand ¢. As W' = w + dd°¢ = w + 2i00¢, we have w! 5 = w,5 + 10,054 and
Wap = wap—i0a0p¢. But 9B = —Wap Jap = iwdg,g;B —iw! zand g5 5 = iw! 5

_ B B’
and therefore g;B = gop + 0a050 and g}, 5 = gap + 0a0p¢.

i

5.6 Curvature of Kahler manifolds

Let M be a 2m-manifold, and g a Kihler metric on M. Then Hol(g) C U(m), by
Proposition 5.4.2. Applying Theorem 3.1.7, one can show that in the notation of §5.2,
the Riemann curvature tensor of g satisfies

R%.q =R 5+ R%55 + R 5+ R%g.5. (5.5)

Now a general tensor T'% _; has 16 components in its complex decomposition. Equa-
tion (5.5) says that 12 of these components vanish for the curvature tensor of a Kéhler
manifold, leaving only 4 components. However, using symmetries of Riemann curva-

ture, and complex conjugation, we may identify R sys With R~ 55 and identify both



EXTERIOR FORMS ON KAHLER MANIFOLDS 85

R® 5,5 and Re 55 With the complex conjugate of R, . Thus the Kahler curvature is
determined by the single component R e

The Ricci curvature is Ryq = R%,, ;. From (5.5) we see that Ryq = Raﬁa5+Ra,§5¢5'
Hence R, = Rag + Ragp, and Ryp = Rag = 0. Also, R4y = Ry, by symmetries of
curvature. Therefore, the Ricci curvature satisfies the same conditions as a Hermitian
metric. From a Hermitian metric we can make a Hermitian form, so we will try the
same trick with the Ricci curvature. Define the Ricci form p by pay, = iR,5 — iRag,
or equivalently p,. = J?Ry.. Then p is a real (1,1)-form, and we may recover the Ricci
curvature from p using the equation Rqp = pgcJi. It is a remarkable fact that p is a
closed 2-form. The cohomology class [p] € H?(M,R) depends only on the complex
structure of M, and is equal to 27 ¢1 (M), where ¢1 (M) is the first Chern class of M.

To see why this is so, we will give an explicit expression for the Ricci curvature
in coordinates. Let (21, .. ., 2, ) be holomorphic coordinates on an open set in M. Let
9ab = Joj3 t gap be the Kéhler metric. We may regard « as an index for dzy, . . ., dzp,,
and (3 as an index for dZ, . .., dZ,,. Hence, o and 3 are both indices running from 1 to
m, and g, is an m X m complex matrix.

It is easy to see g,; is a Hermitian matrix (that is, g,5 = gpa), so it has real
eigenvalues, and det(g,,3) is a real function. This determinant is also given by

w™ =1i"m! det(g,5)dz1 AdZ1 Adza AdZp A+ Adzy, A dZp,. (5.6)

Here w is the m-fold wedge product of w. We see from (5.6) that det(g,,53) is positive,
as w" is a positive 2m-form by (5.4).

It can be shown that the Ricci curvature is given by R,5 = 730455 [log det(g, g)] ,
and therefore the Ricci form is

p = —idd|log det(gwg)] = —1dd°[log det(gvg)]. (5.7)

Thus locally we may write p = — %ddC f for a smooth real function f, so pis closed. As
the determinant only makes sense in a holomorphic coordinate system, and we cannot
find holomorphic coordinates on the whole of M, this is only a local expression for p.

As we remarked in §3.4.1, a Kihler metric g on M has Hol’(g) € SU(m) if and
only if it is Ricci-flat, and thus if and only if it has Ricci form p = 0. Such metrics are
called Calabi—Yau metrics, because they can be constructed using Yau’s solution of the
Calabi Conjecture, as in Chapter 6.

5.7 Exterior forms on Kahler manifolds

Section 1.1.2 defined the Hodge star * and the operators d* and A4 on an oriented
Riemannian manifold. We begin by defining analogues of these on a Kéhler manifold.
Let M be a Kihler manifold of real dimension 2m, with Kédhler metric g. The complex
structure induces a natural orientation on M, and the metric and the orientation combine
to give a volume form dV,; on M, which is a real 2m-form.

Let o, 3 be complex k-forms on M. Define a pointwise inner product («, 3) by

2 b b
(aaﬁ) = aa1...akﬁb1...bkgal b 'gak k
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in index notation. Here («, 3) is a complex function on M, which is linear in « and
antilinear in (3, that is, linear in the complex conjugate (3 of (3. Note that (3, o) = (o, 3),
and that («, @) is a nonnegative real function on M.

When M is compact, define the L? inner product of complex k-forms «, 3 by
(o, B) = [, (o, B)dVy. Then (, ) is a Hermitian inner product on the space of com-

plex k-forms. That is, («, 3) is a complex number, bilinear in « and B such that
(B,a) = {a, 8), and (o, @) = ||a||32 is real and nonnegative.

Now let the Hodge star on Kéhler manifolds be the unique map * : A¥T* M @rC —
A?m=kT* M @ C satisfying a A (x3) = (a, 3)dV, for all complex k-forms a, 3. Then
*( is antilinear in . The relation to the Hodge star on real forms defined in §1.1.2, is
thatif 3 = (1 +i3; for 31, B2 real k-forms, then 3 = x3; —i (o. It satisfies x1 = dV
and *(x3) = (—1)*3, for 3 a complex k-form, so that 1 = (—1)Fx.

Since M is complex, we have operators d, 0 and 0 taking complex k-forms to com-
plex (k+1)-forms. Define operators d*, 9* and 0* by

d*a = — xd(xa), 0*a = —*0(xa) and 0 a = — * I(xq). (5.8)

Then d*, 9* and 0* all take complex k-forms to complex (k — 1)-forms. Moreover, the
argument used in §1.1.2 to show that (o, d*3) = (d«, §) for a« a (k—1)-form and 3 a
k-form on a compact oriented Riemannian manifold, also shows that

(o, d"B) = (dev, B), (@, 0"B) = (0a, ) and (0, 9"B) = (Do, B),

where « is a complex (k—1)-form and 3 a complex k-form on M.
In §1.1 we defined the Laplacian A = dd* + d*d on Riemannian manifolds. By
analogy, from d, 0, 9, d*, 0*, 0* we can make three Laplacians on complex k-forms:

Aq =dd* + d*d7 Ay =00"+0%0 and Ag = 00* + 0%0.

We call Aq4 the d-Laplacian, Ay the 0-Laplacian and Aj the 0-Laplacian. Tt can be
shown (see [132, p. 115]) that these satisfy

Ap=0A5= 1A, (5.9)

Now x takes AP9M to A™~P™=4)M . Since § : C°(APIM) — C°°(APTLIM)
and 0 : C°(APIM) — C(AP9T1)M), we see from (5.8) that 9% : C°(APIM) —
C>®(AP=19M) and 0% : C°(AP9M) — C>(AP9~1M). Thus Ay, Ay and Ay map
C®(APIM) — C(APIM).

It is conventional to call the -Laplacian on a Kihler manifold the Laplacian, and
to write it A rather than Ag. This can lead to confusion, because on a Riemannian
manifold we call the d-Laplacian A4 the Laplacian, so that the Laplacian on a Kihler
manifold is half the Laplacian on a Riemannian manifold.

5.7.1 Hodge theory on Kiihler manifolds

In §1.1.3 we summarized the ideas of Hodge theory for a compact Riemannian manifold
(M, g). Then in §3.5.2 we showed that the space .7#* of Hodge k-forms is a direct sum
of subspaces Jf;k corresponding to irreducible representations of the holonomy group
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Hol(g) of g, and deduced that the de Rham cohomology group H* (M, R) decomposes
in the same way.

Since a Kihler metric g has Hol(g) € U(m), these ideas apply to compact Kihler
manifolds, and we will now work them out in more detail. Our notation differs slightly
from §1.1.3 and §3.5.2, in that we deal with complex rather than real k-forms, and write
the summands 7’79 rather than JZ*. Let M be a compact Kéhler manifold, and define

AP = Ker (A : C=(APIM) — C®(APIM))

so that 52’79 is the vector space of harmonic (p, ¢)-forms on M. It is easy to show by
(5.9) and integration by parts that o € 779 if and only if da = da = 0*a = 0% =
0. Here is a version of the Hodge decomposition theorem for the 9 operator, proved
in [132, p. 84].

Theorem 5.7.1 Let M be a compact Kéihler manifold. Then
C®(APIM) = #P1 o 5[0“(Ap’q’1M)] ® 0" [COO(AT”QHM)], where
Kerd = 7% @ 0[C*(AP47'M)] and Kerd* = % @ 0* [C°(APIT' M)].

Comparing Theorem 5.7.1 with (5.3) defining the Dolbeault groups H g’q(M )of M
we see that 79 (M) = 577, Now define

A" =Ker(A: C°(A*T*M ®@g C) — C*(AFT*M ®r C)).

As A = %Ad by (5.9), Theorem 1.1.4 implies that there is a natural isomorphism
between 7% and the complex cohomology H* (M, C) of M. But

K o
A =@ AT

Define HP>4(M) to be the vector subspace of HPT4(M,C) with representatives in

2P, Then we have:

Theorem 5.7.2 Let M be a compact Kdhler manifold of real dimension 2m. Then
HF(M,C)= @;?:0 H7*=3(M). Every element of HP-%(M) is represented by a unique
harmonic (p, q)-form. Moreover for all p, g we have H?%(M) = HZ(M),

HP4(M) = HeP(M) and HPI(M) = (H™ "™ 9(M))".

Note that if M is a compact complex manifold admitting Kihler metrics, then the
decomposition H*(M,C) = @?:o H7*=3(M) above depends only on the complex
structure of M, and not on the choice of a particular Kéhler structure. Define the Hodge
numbers h?? or h?1(M) by h?? = dim HP'9(M ). Theorem 5.7.2 implies that

bk — Z?:o hi%=7 and hPY = TP = pMmTPM—a = pm—4m=p, (5.10)

From these equations one can deduce that some compact manifolds, even complex
manifolds, cannot admit a Kdhler metric for topological reasons. Here are two ways this
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can happen. First, if k& = 21 + 1 then b* = 2 Z;IO h7%=3 so that if M is a compact
Kihler manifold, then b” is even when k is odd. Thus, any compact manifold that admits
a Kihler metric must satisfy this topological condition. For instance, the 4-manifold
S3 x S hasa complex structure, but as b! = 1 it can have no Kihler metric.

Secondly, a compact complex manifold M has Dolbeault groups H g’q(M ) de-
pending on its complex structure. Theorem 5.7.2 shows that a necessary condition
for M to admit a Kéhler metric with this complex structure is that dim H g’q(M ) =
dim H2* (M) for all p, ¢, which is not always the case.

Now in the splitting (5.2) of complex k-forms on a complex manifold into (p, ¢)-
forms, the summands AP*?M correspond to irreducible representations of GL(m, C).
However, when 1 < p,q < m—1, the corresponding representation of U(m) is not
irreducible, but is the sum of several irreducible subrepresentations. This means that
P17 and HP?(M) can be split into smaller pieces, using the U(m)-structure. The
simplest example of this is that AL M = (w) @ A(l)’lM , where w is the Kéhler form
and A(l)’lM is the bundle of (1,1)-forms orthogonal to w. However, we prefer to work
with the splitting into (p, ¢)-forms, as it is simpler and loses little information.

Finally we consider Kahler classes and the Kahler cone.

Definition 5.7.3 Let (M, J) be a compact complex manifold admitting Kihler met-
rics. If g is a Kidhler metric on M, then the Kéhler form w of g is a closed real 2-form,
and so defines a de Rham cohomology class [w] € H?(M,R), called the Kihler class
of g. It is a topological invariant of g. Since w is also a (1,1)-form, [w] lies in the
intersection H1 (M) N H?(M,R), regarding H!(M) and H?(M,R) as vector sub-
spaces of H?(M, C). Define the Khler cone Ky of M to be the set of Kihler classes
[w] € HYY(M) N H?(M,R) of Kéhler metrics on M.

If g1, go are Kéhler metrics on M and t1,t5 > 0, then t1g1 + t2g- is also Kéhler.
Thus, if a1, s € s and t1,t9 > 0 then tyay + tos € Ky, so that Ky is a convex
cone. Furthermore, if w is the Kdhler form of a Kéhler metric and 7 is a smooth, closed
real (1,1)-form on M with |n| < 1 on M, then w + 7 is also the Kéhler form of a Kéhler
metric on M. As M is compact, this implies that K5/ is open in H1 (M) N H? (M, R).

Suppose that 3 is a compact complex curve in a complex manifold (M, J), and that
w is the Kéhler form of a Kéhler metric ¢ on M. Then ¥ defines a homology class
[X] € H2(M,R), and the area of ¥ with respect to g is [w] - [X] € R. But this area must
be positive. Therefore, each « in the Kihler cone Ky of M must satisfy « - [X] > 0,
for each compact complex curve ¥ C M. In simple cases KCjy is exactly the subset of
HYY (M) N H?(M,R) satisfying these inequalities, and is a polyhedral cone bounded
by a finite number of hyperplanes, but this is not always true.

5.8 Complex algebraic varieties

This section is designed as a rather brief introduction to complex algebraic geome-
try. We shall define complex algebraic varieties, and discuss related ideas such as the
Zariski topology, sheaves, and schemes. Here are some introductory books on algebraic
geometry. Griffiths and Harris [132] cover complex algebraic geometry, taking quite a
differential geometric point of view, and discussing manifolds, Kédhler metrics, Hodge
theory, and so on. Hartshorne [149] has a more algebraic approach, and this section is
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largely based on [149, §1 & §2]. Two other books, both rather algebraic, are Harris [148]
and Iitaka [171]. Harris’ book is more elementary and contains lots of examples.

Let C™ have complex coordinates (21, ..., 2m), and C[z1, ..., z,] be the ring of
polynomials in the variables z1, . . ., 2,,, with complex coefficients. Then C[z1, . . ., 2,,)
is a ring of complex functions on C™. Now C™ is a topological space, with the usual
manifold topology. However, there is another natural topology on C™ called the Zariski
topology, which is more useful for the purposes of algebraic geometry.

Definition 5.8.1 An algebraic set in C™ is the set of common zeros of a finite number
of polynomials in Clz1, ..., z,]. It is easy to show that if X,Y are algebraic sets in
C™, then X NY and X UY are algebraic sets. Also, ) and C™ are algebraic sets.

Define the Zariski topology on C™ by taking the open subsets to be C™ \ X, for all
algebraic sets X . This gives a topology on C™, in which a subset X C C™ is closed if
and only if it is algebraic.

In this section, we shall regard C™ as a topological space with the Zariski topology,
rather than the usual topology. The simplest sort of complex algebraic varieties are affine
varieties, which we define now.

Definition 5.8.2 An algebraic set X in C™ is said to be irreducible if it is not the union
X1 U X, of two proper subsets, which are also algebraic sets in C™.

An affine algebraic variety, or simply affine variety, is an irreducible algebraic set
in C™. It is considered to be a topological space, with the induced (Zariski) topology.
A quasi-affine variety is an open set in an affine variety.

Let X be an affine variety in C™. Let I(X) be the set of f € C[z1,..., 2] that
vanish on X, and A(X) the set { f|x : f € Clz1,..., 2y} of functions on X. Then
A(X) is a ring of functions on X, and 7(X) is an ideal in the ring C[z1, . . ., 2], with
A(X) 2 Clz, ..., 2m]/I(X). We call A(X) the affine coordinate ring of X.

Choose 2 € X, and define I, to be the set of functions in A(X) that are zero at
x. Clearly, I,; is an ideal in A(X). In fact, I, is a maximal ideal in A(X'). Moreover,
every maximal ideal in A(X) is of the form I, for some x € X, and if x1,22 € X,
then I, = I, if and only if 1 = . It follows that there is a 1-1 correspondence
between the points of X, and the set of maximal ideals in A(X). This is the beginning
of the subject of affine algebraic geometry. The idea is that the ring A(X) is regarded as
the primary object, and then X is derived from A(X). The philosophy is to investigate
affine varieties by using the algebraic properties of rings of functions on them.

Next, we will discuss projective varieties. Projective varieties are subsets of CP™,
just as affine varieties are subsets of C". Since we cannot define polynomials on CP™,
instead we use homogeneous polynomials on C™ .

Definition 5.8.3 Let CP™ be the complex projective space, and let [z, ..., 2] be
homogeneous coordinates on CP™, as described in Example 5.1.1. Let d be a non-
negative integer. A polynomial f € C|zo,..., 2] is called homogeneous of degree
dif f(Az0,...,Azm) = Mf(20,...,2m) forall X and zg,...,z, € C.Let f be a
homogeneous polynomial in C[zo, ..., z,,], and let [z, ..., z,m] € CP™. We say that
[0, ..., 2m] is a zero of fif f(zo,...,2m) = 0. As f is homogeneous, this definition

does not depend on the choice of homogeneous coordinates for [z, . . . , 2 ].
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Here are the analogous definitions of the Zariski topology on CP™, and projective
and quasi-projective varieties.

Definition 5.8.4 Define an algebraic set in CP™ to be the set of common zeros of a
finite number of homogeneous polynomials in C[zo, . . ., 2,,]. Define the Zariski topol-
ogy on CP™ by taking the open subsets to be CP™\ X, for all algebraic sets X C CP™.
An algebraic set X in CP™ is said to be irreducible if it is not the union of two proper
algebraic subsets. A projective algebraic variety, or simply projective variety, is defined
to be an irreducible algebraic set in CP"". A quasi-projective variety is defined to be an
open subset of a projective variety, in the Zariski topology.

Now C" can be identified with the open set { [20y .-+, 2m]| ECP™ : zo# 0} in CP™.
Making this identification, we see that affine, quasi-affine and projective varieties are
all examples of quasi-projective varieties. Because of this, quasi-projective varieties are
often referred to as algebraic varieties, or simply varieties. In this section we consider
varieties to be topological spaces with the Zariski topology, unless we specify otherwise.

An affine variety is studied using the ring of polynomials on it. On projective va-
rieties we cannot consider polynomials, so we consider two other classes of functions,
the rational functions and regular functions.

Definition 5.8.5 Let X be a quasi-projective variety in CP™. Let g, h € C[zo, .. ., 2m)
be homogeneous polynomials of the same degree d. Define a subset Uy, in X by Uj, =
{[z0,--,2m] € X : h(20,...,2m) # 0}. Then Uy, is a Zariski open set. Define the
rational function f : U, — C by

f([207...72’m]) = h(207"'7zm).

As g and h are both homogeneous of the same degree, f is independent of the choice of
homogeneous coordinates for each point, and so is well-defined.

Let U be open in X and let f : U — C be a function. If p € U, we say that f is
regular at p if there is an open set U’ C U containing p, and f is equal to a rational
function on U’. If f is regular at every point p € U, we say f is regular. A regular
function is one that is Iocally equal to a rational function.

Next we define two ideas of map between varieties, morphisms and rational maps.

Definition 5.8.6 Let X and Y be varieties. A morphism ¢ : X — Y is a continuous
map (with the Zariski topologies) such that whenever V is openin Y and f : V — Cis
regular, then fo¢ : ¢~1(V) — Cis also regular. Clearly,if ¢ : X — Yandvy: Y — Z
are morphisms of varieties, then (o ¢ : X — Z is also a morphism. Amap¢: X — Y
is called an isomorphism if ¢ is bijective, so that it has an inverse ¢~* : Y — X, and
both ¢ and ¢! are morphisms.

Definition 5.8.7 Let X and Y be varieties. A rational map ¢ : X --» Y is an equiv-
alence class of morphisms ¢y : U — Y, where U is a dense open set in X, and
morphisms ¢y : U — Y and ¢y : V — Y are equivalent if ¢y |yny = év|uny - Note
that a rational map is not in general a map of the set X to the set Y.
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A birational map ¢ : X --» Y is a rational map which admits a rational inverse.
That is, ¢ is an equivalence class of maps ¢y : U — V, where U, V are dense open sets
in X, Y respectively, and ¢y is an isomorphism of varieties. If there is a birational map
between X and Y, we say X and Y are birationally equivalent, or simply birational.
This is an equivalence relation.

A birational morphism ¢ : X — Y is a morphism of varieties which is also a
birational map. That is, there should exist dense open subsets U C X and V C Y
such that ¢(U) = V and ¢y : U — V is an isomorphism. A birational morphism
¢ : X — Y is a genuine map from the set X to Y.

If X and Y are isomorphic varieties, then they are birational. However, if X and Y’
are birational, they need not be isomorphic. Thus, birationality is a cruder equivalence
relation on varieties than isomorphism.

Let X be a variety, and U be open in X . Define Ay to be the set of regular func-
tions on U. Then Ay is a ring of functions on U. If U,V are open sets with U C V,
then restriction from V' to U gives a natural map ry,;y : Ay — Ay, which is a ring
homomorphism. All this information is packaged together in a composite mathematical
object called a sheaf of rings on X (see [132, p. 35] or [171, p. 27]).

Definition 5.8.8 Let X be a topological space with topology 7. A sheaf of rings % on
X associates to each open set U € 7 aring .7 (U), called the sections of .% over U,
and to each pair U C V in T a ring homomorphism ry i : # (V) — % (U), such that
conditions (i)—(v) below are satisfied. The map ry s is called the restriction map, and
for o € (V) we write ry.y(0) = o|u. Here are the necessary axioms.

(i Z(0) = {0}.

(i) rpv : F(U) — F(U) is the identity forall U € 7.
i) U, V,W € T withU Cc V C W, then TW,U = TW,v °TV,U-
(v) U,V € Tando € Z(U), 7 € F(V) satisfy o|yny = T|unv, then there exists

p € .Z(UUV)suchthat p|y = o and ply = 7.
V) fU,V € Tando € # (U UV) satisfies 0|y = 0 and o]y = 0, then o = 0.

A sheaf of groups on X is defined in exactly the same way, except that % (U') should be
a group rather than a ring, and the restrictions 7,7 should be group homomorphisms.
A ringed space is defined to be a pair (X, &), where X is a topological space and & a
sheaf of rings on X. We call X the base space, and & the structure sheaf.

If .% is a sheaf of groups or rings over a topological space X, then one can define
the sheaf cohomology groups H? (X,.7 ) for j = 0, 1,2, . ... They are an important tool
in algebraic geometry. The group H°(X,.%) is .% (X), the group of global sections of
Z over X, but the groups H*(X,.%) for k > 1 are more difficult to interpret. For more
details, see [132, §0.3], [149, §3] or [171, §4].

Let X be a projective variety. Then X is a topological space, with the Zariski topol-
ogy, and the regular functions on X form a sheaf & of rings on X, called the sheaf of
regular functions on X . Thus (X, ©) is a ringed space. Moreover, for each open set U,
the ring &'(U) is actually a ring of complex functions on U.

Complex algebraic geometry can be described as the study of complex algebraic va-
rieties up to isomorphisms. Let X and Y be varieties, and ¢ : X — Y an isomorphism
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of varieties. Consider the question: if X and Y are isomorphic, what features of X and
Y have to be ‘the same’? Well, from the definition we see that X and Y have to be iso-
morphic as topological spaces, with the Zariski topologies, and the sheaves of regular
functions must also agree. However, there is no need for the embeddings X — CP™
and Y — CP" to be related at all.

Because of this, it is useful to think of a variety not as a particular subset of CP™,
but as a topological space X equipped with a sheaf of rings &. Following this idea,
one can define the concept of an abstract variety, which is a variety without a given
embedding in CP™. In affine algebraic geometry, the primary object is a ring A. The
topological space X is derived from A as the set of maximal ideals, and is studied using
algebraic tools and a lot of ring theory.

In more general algebraic geometry, the primary object is often an abstract variety,
regarded as a topological space X equipped with a sheaf of rings &. It is also studied
from a very algebraic point of view. In fact, a lot of algebraic geometry is written in
terms of schemes [149, §2], which are closely related to varieties. Recall that in an
affine variety, the points of the topological space are the maximal ideals of a ring. In an
affine scheme the points of the topological space are instead the prime ideals of a ring.
A scheme is a ringed space (X, ) that is locally isomorphic to an affine scheme.

5.9 Singular varieties, resolutions, and deformations

Let X be a variety in CP™, and let x € X. We say that x is a nonsingular point
if X is a complex submanifold of CP™ in a neighbourhood of x. We call x singular
if it is not nonsingular. The variety X is called singular if it has singular points, and
nonsingular otherwise. In general, the nonsingular points form a dense open subset of
X, and the singular points are a finite union of subvarieties of X. There is also an
equivalent, algebraic way to define singular points, using the idea of local ring.

For example, let p(z1, . . ., z;,) be a complex polynomial that is not constant with no
repeated factors, and X be the hypersurface { (21, ..., 2m) € C™ : p(z1,...,2m) =0}
in C™. Then a point z € X is singular if and only if Op/dz; = O0atxz forj =1,...,m.
So, for instance, the quadric 27 +23+27 = 0in C* has just one singular point at (0, 0, 0).

Clearly, a complex algebraic variety X is a complex manifold if and only if it is
nonsingular. The converse, however, is not true: not every complex manifold is an al-
gebraic variety. Let X be a compact complex manifold. A meromorphic function f on
X is a singular holomorphic function, that can be written locally as the quotient of two
holomorphic functions. On an algebraic variety, all the regular functions are meromor-
phic. Therefore a variety must have a lot of meromorphic functions—enough to form a
holomorphic coordinate system near each point, for instance.

So, if a compact complex manifold has only a few meromorphic functions, then it
cannot be an algebraic variety. There are many compact complex manifolds that ad-
mit no nonconstant meromorphic functions at all, and these are not algebraic varieties.
However, Chow’s Theorem [132, p. 167] states that any compact complex submanifold
of CP™ is algebraic. The study of nonalgebraic complex manifolds is sometimes called
transcendental complex geometry.

There is a natural generalization of the idea of complex manifold to include singu-
larities, called a complex analytic variety.
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Definition 5.9.1 Let U be an open set in C™, in the usual topology, rather than the
Zariski topology. An analytic subset of U is a subset S C U defined by the vanishing
of a finite number of holomorphic functions on U. The restriction to S of the sheaf &
of holomorphic functions on U is a sheaf of rings &'s on S. We define a (complex)
analytic variety to be a ringed space (X, € x ) such that X is Hausdorff, and (X, O'x)
is locally isomorphic to (S, &'g) for analytic subsets S C U C C™. Here sheaves and
ringed spaces are defined in Definition 5.8.8.

We call a point 2 € X nonsingular if (X, 0'x) is locally isomorphic to (Ck, Ocr)
near z, where k is the dimension of X near x. We call x singular if it is not nonsingular.
If X contains no singular points then it is a complex manifold. Otherwise it is a singular
complex manifold. For more information about analytic varieties, see [132, p. 12—14].

Complex algebraic varieties are examples of complex analytic varieties. Conversely,
complex analytic varieties are locally isomorphic to complex algebraic varieties, but not
necessarily globally isomorphic. All the ideas in the rest of this section work equally
well in the setting of algebraic varieties or analytic varieties, but we will only give
definitions for one of the two.

Now a singular point in a variety X is a point where the manifold structure of X
breaks down in some way. Given a singular variety X, it is an important problem in
algebraic geometry to understand how to repair the singularities of X, and make a new,
nonsingular variety X closely related to X. There are two main strategies used to do
this, called resolution and deformation.

5.9.1 Resolutions of singular varieties

Definition 5.9.2 Let X be a singular variety. A resolution (X, 7) of X is a normal,
nonsingular variety X with a proper birational morphism 7 : X — X. Here normal
varieties are defined by Griffiths and Harris [132, p. 177] and Iitaka [171, §2], and
proper morphisms by Hartshorne [149, p. 95-105]. From [149, p. 95], a morphism
f: X —Y of complex algebraic varieties is proper if it pulls back compact sets in Y to
compact sets in X, using the manifold topologies on X, Y, not the Zariski topologies.

This means that X is a complex manifold, and the map 7 : X — X is surjec-
tive. There are dense open sets of X and X on which = is also injective, and in fact
biholomorphic. But if z is a singular point of X, then 7—!(x) is in general a compact
subvariety of X, rather than a single point. Often 71 (=) is a submanifold of X, orafi-
nite union of submanifolds. Thus, in a resolution we repair the singularities by replacing
each singular point by a submanifold, or more general subvariety.

One way to construct resolutions is to use a technique called blowing up, which we
define first for affine varieties.

Definition 5.9.3 Let X C C™ be an affine variety with affine coordinate ring A(X), let
Y be a closed subvariety of X, and let Iy C A(X) be the ideal of functions in A(X)
that are zero on Y. Then Iy is finitely generated, and we can choose a set of generators
fos--oy fn € Iy for Iy. Defineamap ¢ : X\Y — CP" by ¢(x) = [fo(x),..., fn(2)]

The (algebraic) blow-up X of X along Y is the closure in X x CP" of the graph of
&, that is, X = {(z,6(x)) 12 € X\ Y} C X x CP". The projection T : X - Xis
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the map 7 : (x,z) — x. Then X is a variety, and 7 : X — X is a birational morphism.
In a similar way, one can define the blow-up ()~( , ) of a general algebraic or analytic
variety X along a closed subvariety Y. For more information, see [132, p. 182, p. 602]
and [148, p. 82].

Here 7 : X — X is surjective, and 7 : X \ 7~ 1(Y) — X \ Y is an isomorphism.
The pull-back 7=1(Y') is a finite union of closed subvarieties of X of codimension one,
called the exceptional divisor. If X is nonsingular and Y is a submanifold of X, then
7~1(Y) is the projectivized normal bundle of Y in X. In particular, if Y is the single
point y, then 7~ (y) is the complex projective space P (T}, X ).

Now suppose X is a singular variety, and let Y C X be the set of singular points
in X. Then Y is a finite union of subvarieties of X, and we can consider the blow-up
X of X along Y. Although X may not be nonsingular, it is a general principle that the
singularities of X are usually of a less severe kind, and easier to resolve, than those of
X. Our next result, sometimes called the Resolution of Singularities Theorem, shows
that the singularities of any variety can be resolved by a finite number of blow-ups.

Theorem 5.9.4. (Hironaka [159]) Let X be a complex algebraic variety. Then there
exists a resolution m : X — X, which is the result of a finite sequence of blow-ups
of X. That is, there are varieties X = Xo, X1, ..., X, = X, such that X is a blow-
up of X;_; along some subvariety, with projection 7; : X; — X;_1, and the map
7:X > XisT=m 0 0my.

5.9.2 Deformations of singular and nonsingular varieties

Definition 5.9.5 Let X be a complex analytic variety of dimension m. A 1-parameter
family of deformations of X is a complex analytic variety 2  of dimension m + 1,
together with a proper holomorphic map f : £~ — A where A is the unit disc in C,
such that Xy = f~1(0) is isomorphic to X . The other fibres X; = f~1(¢) fort # 0 are
called deformations of X .

If the deformations X; are nonsingular for ¢ # 0, they are called smoothings of
X. By a small deformation of X we mean a deformation X; where ¢ is small. That
is, when we say something is true for all small deformations of X, we mean that in
any l-parameter family of deformations {X; : t € A} of X, the statement holds for
all sufficiently small . We say that X is rigid if all small deformations X, of X are
biholomorphic to X .

We shall be interested in deformations of complex analytic varieties for two reasons.
Firstly, a singular variety X may admit a family of nonsingular deformations X;. Thus,
as with resolutions, deformation gives a way of repairing the singularities of X to get a
nonsingular variety.

From the point of view of algebraic geometry, there is a big difference between res-
olution and deformation. If X is a singular variety and X a resolution of X, then X and
X are birationally equivalent, and share the same field of meromorphic functions. So
to algebraic geometers, who often try to classify varieties up to birational equivalence,
X and X are nearly the same thing. But a variety X and its deformations X; can be
algebraically very different.



SINGULAR VARIETIES, RESOLUTIONS, AND DEFORMATIONS 95

The second reason we will be interested in deformations is when we wish to describe
the family of all integrable complex structures upon a particular compact manifold, up
to isomorphism. Suppose that (X, .J) is a compact complex manifold. Then all small de-
formations X; of X are nonsingular, and are diffeomorphic to X as real manifolds. Thus
small deformations of X are equivalent to complex structures .J; on X that are close to
the complex structure J, in a suitable sense. So, to understand the local geometry of the
moduli space of complex structures on X, we need a way to study the collection of all
small deformations of a complex analytic variety.

Definition 5.9.6 Let X be a complex analytic variety. A family of deformations of
X consists of a (possibly singular) complex analytic variety 1" called the base space
containing a base point tg, and a complex analytic variety 2~ with a flat holomorphic
map f : 2 — T, such that X;, = f~!(to) is isomorphic to X. The other fibres
X; = f~Y(to) are then deformations of X . Here flatness is a technical condition upon
morphisms of algebraic or analytic varieties defined in [149, §II1.9]. It implies, in par-
ticular, that dim X; = dim X forallt € T

If (S, sp) is another complex analytic variety with base point and F' : S — T is
a holomorphic map with F(sg) = ¢o, then we get an induced family of deformations
F*(Z) of X over S. A family of deformations of X is called versal or semi-universal
if any other family of small deformations of X can be induced from it by a suitable map
F'. Tt is called universal if this map F' is unique.

Note that some authors (e.g. Slodowy [315, p. 7]) define semi-universality differ-
ently, and distinguish between versal and semi-universal deformations. If {X; : t € T'}
is a universal family of deformations of X, then every small deformation of X ap-
pears exactly once in the family. Thus the collection of all deformations of X is lo-
cally isomorphic to the base space 1" of the universal family, and has the structure of
a complex analytic variety. In particular, if (X, J) is a compact complex manifold and
{X, : t € T} is a universal family of deformations of (X, .J), then the moduli space of
all complex structures J; on X is locally isomorphic to 7.

However, there exist compact complex manifolds (X, J) which have no universal
family of deformations. The moduli space of complex structures on X up to isomor-
phism has a natural topology. If this topology is not Hausdorff near J then (X, J)
cannot have a universal family of deformations, because the base space 1" would be
non-Hausdorff, contradicting its definition as a complex analytic variety.

Rather than working with moduli spaces of pathological topology, it is helpful in this
case to consider a versal family of deformations of X. In a versal family every small
deformation of X is represented at least once, but some may appear many times. Now
the theory of deformations of compact complex manifolds was developed by Kodaira,
Spencer and Kuranishi, and is described in Kodaira [217]. The main result in this theory
is that a versal family of deformations exists for any compact complex manifold, and
can be constructed using sheaf cohomology.

Let X be a compact complex manifold, and let © x be the sheaf of holomorphic
vector fields of X. Then the sheaf cohomology groups H* (X, © x) are the cohomology
of the complex
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0 — (T X)-L,0%(T1OX © A% X)-2,0(TH0X @ A%2x)-s ... |

Here we interpret H'(X,© ) as the space of infinitesimal deformations of the
complex structure of X, and H?(X,©x) as the space of obstructions to lifting an in-
finitesimal deformation to an actual deformation of the complex structure of X. Ko-
daira, Spencer and Kuranishi prove that there is an open neighbourhood U of 0 in
H'(X,0x) and a holomorphic map ® : U — H?(X,0x) with ®(0) = d®(0) = 0,
such that T = ®~1(0) is the base of a versal family of deformations of X, with base
point 0, called the Kuranishi family of X. The group H°(X,©Ox) also has an inter-
pretation as the Lie algebra of the group of holomorphic automorphisms of X, and if
H°(X,0©x) = 0 then the Kuranishi family is universal.

5.10 Line bundles and divisors

Let M be a complex manifold. A holomorphic line bundle over M is a holomorphic
vector bundle with fibre C, the complex line. Holomorphic lines bundles are important
in algebraic geometry. If L, L’ and L” are holomorphic line bundles over M, then the
dual bundle L* and the tensor product L ® L’ are also holomorphic line bundles. These
operations satisfy the equations L® L' 2 L' @ L, (L L)@ L" 2 L& (L' ® L"),
and L ® L* = C, where C is the trivial line bundle M x C.

Define Py, to be the set of isomorphism classes of holomorphic line bundles over
M . From the equations above we see that P, is an abelian group, where multiplication
is given by the tensor product, inverses are dual bundles, and the identity is the trivial
bundle C. This group is called the Picard group of M. It can be identified with the sheaf
cohomology group H'(M, &™) [132, p. 133], but we will not explain this.

Because of the group structure on Py, it is convenient to use a multiplicative nota-
tion for line bundles. Let M be a complex manifold, L a holomorphic line bundle over
M, and k € Z. Then we write L¥ = @" Lifk > 0, L¥ = ® "L*if k < 0, and
L° = C. In particular, the dual L* is written L.

If M is a complex manifold of dimension m, then APOM is a holomorphic vector
bundle with fibre dimension (7;1) Thus, when p = m, the fibre of A™9M is C, and
A™OM is a holomorphic line bundle. This is called the canonical bundle of M, and is
written K. It is the bundle of complex volume forms on M, and is an important tool
in algebraic geometry.

Let L be a holomorphic line bundle over a complex manifold M. The first Chern
class ¢1(L) of L is a topological invariant of L called a characteristic class, which lies
in the cohomology group H?(M, Z). Characteristic classes are described in [261]. The
first Chern class classifies line bundles as smooth vector bundles. It satisfies

C1 (L*> = —C1(L) and Cl(L &® L/) =C1 (L) + Cl(L/>.

Thus ¢; : Py — H?(M,Z) is a homomorphism of abelian groups.

Let M be a complex manifold, and L a holomorphic line bundle over M. For each
open set U C M, define &' (U) to be the vector space of holomorphic sections of L
over U, and if U,V are open in M with U C V,letryy : 0L(V) — Or(U) be
the restriction map. Then &', is a sheaf of groups over M, the sheaf of holomorphic
sections of L. Now we describe the line bundles over the projective space CP™.
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Example 5.10.1 Recall that in Example 5.1.1, CP™ was defined to be the set of one-
dimensional vector spaces of C"™ . Define the tautological line bundle L~" over CP™
to be the subbundle of the trivial bundle CP™ x C™*!, whose fibre at z € CP™ is the
line in C"™* represented by . Then L~ is a vector bundle over CP"™ with fibre C.
The total space of L~ is a complex submanifold of CP™ x C™*, and has the structure
of a complex manifold. Thus, L~ is a holomorphic line bundle over CP"™.

Define L to be the dual of L~!. Then L is a holomorphic line bundle over CP"™,
called the hyperplane bundle. So, L* is a holomorphic line bundle over CP" for each
k € Z. It can be shown [132, p. 145] that every holomorphic line bundle over CP™
is isomorphic to L* for some k € Z. There is an isomorphism H?(CP™,Z) & Z,
and making this identification we find that ¢;(L*) = k € Z. Thus ¢; : Pcpm —
H?(CP™,Z) = Z is a group isomorphism. The canonical bundle Kcpm of CP™ is
isomorphic to L™ 1,

The sheaf of holomorphic sections &1, of L* over CP™ is written &(k). (Also,
by an abuse of notation, &(k) often denotes the line bundle L*.) The vector space of
holomorphic sections of L¥ is HO(CP™, 0'(k)), in the notation of sheaf cohomology.
If k < 0 then HY(CP™, 0(k)) is zero, and if k& > 0 it is canonically identified with
the set of homogeneous polynomials of degree k& on C™ !, which is a vector space of

dimension (m;gk)

Let M be a compact complex manifold, and L a holomorphic line bundle over M.
Let V be the vector space H(M, &', of holomorphic sections of L over M. Then V
is a finite-dimensional vector space over C, of dimension m + 1, say. For each point
p € M, define amap ¢, : V — L, by ¢,(s) = s(p). Then ¢, is linear, so that
¢p € V* ® L,. Define p to be a base point of L if ¢, = 0, and let B C M be the
set of base points of L. Then if p € M \ B, then ¢, is nonzero in V* ® L,, and
thus [¢,] € P(V* ® Ly).

But L is a line bundle, so L, = C as complex vector spaces. Therefore the projective
spaces P(V*) and P(V* ® L,,) are naturally isomorphic, and we can regard [¢,] as a
pointin P(V*). So, defineamap ¢y, : M \ B — P(V*) by t1,(p) = [¢p]. Now P(V*)
is a complex projective space CP™, and thus a complex manifold, and B is closed in
M, so that M \ B is also a complex manifold. It is easy to show that ¢y, : M\ B — CP™
is a holomorphic map of complex manifolds. When L = K7, a power of the canonical
bundle, the maps ¢ are called the pluricanonical maps, and are important in algebraic
geometry.

A line bundle L over a compact complex manifold M is called very ample if L
has no base points in M, and the map ¢y, : M — CP™ is an embedding of M in
CP™. Also, L is called ample if L* is very ample for some k& > 0. Thus, if L is very
ample, then ¢y, identifies M with a complex submanifold of CP™, its image ¢, (M).
Now by Chow’s Theorem [132, p. 167], every compact complex submanifold of CP™
is a nonsingular projective variety. Thus, if M is a compact complex manifold with an
ample line bundle, then M is a projective variety.

The remarkable Kodaira Embedding Theorem [132, p. 181] gives a simple criterion
for a holomorphic line bundle L over a compact complex manifold M to be ample. A
line bundle L is called positive if its first Chern class ¢1(L) can be represented, as a
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de Rham cohomology class, by a closed (1, 1)-form « which is positive in the sense of
§5.4. The Kodaira Embedding Theorem says that L is ample if and only if it is positive.
Therefore, a compact complex manifold with a positive line bundle is a projective vari-
ety. Because of this, many problems on compact complex and Kédhler manifolds become
problems about projective varieties, and can be attacked algebraically.

5.10.1 Divisors

Now we shall explore the connections between line bundles and divisors, which are
formal sums of hypersurfaces in complex manifolds.

Definition 5.10.2 Let M be a complex manifold. A closed subset N C M is said to be
a hypersurface in M if for each p € N there is an open neighbourhood U of p in M and
a nonzero holomorphic function f : U — C, suchthat NNU = {u € U : f(u) = 0}.
A hypersurface N C M is called irreducible if it is not the union of two hypersurfaces
N1, Ny with N, Ny 7& N.

In general, a hypersurface N C M is a singular submanifold of M, of codimension
one. Every hypersurface in M can be written uniquely as a union of irreducible hyper-
surfaces, and if M is compact then this union is finite. Suppose now that M is a complex
manifold, L a holomorphic line bundle over M, and s a nonzero holomorphic section
of L. Define N C M to be the set {m € M : s(m) = 0}. Then N is a hypersurface in
M. Thus, there is a link between holomorphic line bundles, holomorphic sections, and
hypersurfaces. To render this link more explicit, we make another definition.

Definition 5.10.3 Let M be a complex manifold. An irreducible hypersurface N C M
is called a prime divisor on M. A divisor D on M is alocally finite formal linear combi-
nation D = ; @iIN;, where a; € Z, and each N; is a prime divisor. Here ‘locally finite’
means that each compact subset of M/ meets only a finite number of the hypersurfaces
N;. The divisor D is called effective if a; > 0 for all 7.

Suppose as before that M is a complex manifold, L a holomorphic line bundle over
M, and s a nonzero holomorphic section of L. Let N be the hypersurface N = {m €
M : s(m) = 0}. Then N may be written in a unique way as a locally finite union
N = J,; Ni, where the N; are prime divisors. For each 4, there is a unique positive
integer a;, such that s vanishes to order a; along N;. Define D = Zl a;N;. Then D is
an effective divisor. In this way, whenever we have a nonzero holomorphic section of a
holomorphic line bundle over M, we construct an effective divisor on M.

This construction is reversible, in the following sense. Suppose that L1, Lo are holo-
morphic line bundles over M, and s;, so are nonzero holomorphic sections of L, Lo
respectively. Let Dy, Dy be the effective divisors constructed from sp, so. It can be
shown that D1 = D if and only if there exists an isomorphism ¢ : Ly — L of holo-
morphic line bundles, such that ¢(s1) = s2, and the isomorphism ¢ is then unique.
Moreover, if D is an effective divisor on M, then there exists a holomorphic line bundle
L over M, and a nonzero holomorphic section s of L, that yields the divisor D.

Thus there is a 1-1 correspondence between effective divisors on M, and isomor-
phism classes of holomorphic line bundles equipped with nonzero holomorphic sec-
tions. In the same way, there is a 1-1 correspondence between divisors on M, and iso-
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morphism classes of line bundles equipped with nonzero meromorphic sections. In this
case, the divisor ), a; N; corresponds to a section s with a zero of order a; along N; if
a; > 0, and a pole of order —a; along N; if a; < 0.

Let M be a compact complex manifold of complex dimension m, and L a holomor-
phic line bundle over M, with a nonzero meromorphic section associated to a divisor
D. Then D = )", a;N; defines a homology class [D] = Y~ a;[N;] € Hopm—2(M,Z).
Under the natural isomorphism H?(M,Z) = Hs,,_2(M,Z), this homology class is
identified with ¢; (L), the first Chern class of L. This gives one way to understand ¢1 (L).

Here is a result on the topology of a hypersurface N in M associated to a positive
line bundle L.

Theorem 5.10.4. (Lefschetz Hyperplane Theorem) Let M be a compact complex
m-manifold, N a nonsingular hypersurface in M, and L the holomorphic line bundle
over M associated to the divisor N. Suppose L is positive. Then
(a) the map H*(M,C) — H¥(N,C) induced by the inclusion N — M is an iso-
morphism for 0 < k < m — 2 and injective for k = m — 1, and
(b) the map of homotopy groups 7, (N) — (M) induced by the inclusion N — M
is an isomorphism for 0 < k < m — 2 and surjective for k = m — 1.

The result also holds if M and N are orbifolds instead of manifolds, and N is a non-
singular hypersurface in the orbifold sense.

This is known as the Lefschetz Hyperplane Theorem, as we can take M to be a
submanifold of CP" and L the restriction to M of the line bundle &'(1) over CP", and
then NV is the intersection of M with a hyperplane H in CP". Part (a) is proved in
Griffiths and Harris [132, p. 156] for complex manifolds, and rather more general and
complicated versions of (b) are proved by Goresky and MacPherson [129, p. 153] and
Hamm [147], in which M, N can be singular complex varieties, not just orbifolds.



6
The Calabi Conjecture

Let (M, J) be a compact, complex manifold, and g a Kéhler metric on M, with Ricci
form p. From §5.6 we know that p is a closed (1,1)-form and [p] = 27 ¢ (M) in
H?(M,R). It is natural to ask which closed (1,1)-forms can be the Ricci forms of a
Kihler metric on M. The Calabi Conjecture [67,68] answers this question.

The Calabi Conjecture. Let (M, J) be a compact, complex manifold, and g a Kihler
metric on M, with Kéhler form w. Suppose that o’ is a real, closed (1,1)-form on M
with [p'] = 27 ¢1(M). Then there exists a unique Kéhler metric ¢’ on M with Kéhler
form o', such that [w'] = [w] € H*(M,R), and the Ricci form of g is p'.

The conjecture was posed by Calabi in 1954, who also showed that if ¢’ exists it
must be unique. It was eventually proved by Yau in 1976, [344,345]. Before this, Aubin
[15] had made significant progress towards a proof. In this chapter we will give a proof
of the Calabi Conjecture that broadly follows Yau’s own proof, with some differences.
My main references were Yau’s paper [345], and the treatment given in Aubin’s book
[16, §7]. The proof is also explained, in French, by Bourguignon et al. [42].

In §6.1 the Calabi Conjecture is reformulated as a nonlinear, elliptic partial differ-
ential equation in a real function ¢. Section 6.2 states four results, Theorems C1-C4,
and then proves the Calabi Conjecture assuming these theorems. After some prepara-
tory work in §6.3, Theorems C1-C4 are proved in §6.4-8§6.7 respectively, and the proof
of the Calabi Conjecture is complete. Finally, section 6.8 discusses some analytic issues
from the proof.

The proof of the Calabi Conjecture is very important in the subject of Riemannian
holonomy groups, for the following reason. Suppose M is a compact Kéhler manifold
with ¢1 (M) = 0. Then we may choose the 2-form p’ in the Calabi Conjecture to be
zero, and so the proof of the conjecture guarantees the existence of a Kihler metric g’
on M with zero Ricci form. Thus, we construct families of Ricci-flat Kahler metrics on
compact complex manifolds.

Now from §3.4.1, a generic Kihler metric g has Hol"(g) = U(m), but if g is Ricci-
flat then Hol"(g) C SU(m). If g is irreducible, Berger’s Theorem implies that either
Hol"(g) = SU(m), or m = 2k and Hol’(g) = Sp(k). Therefore, the Calabi Conjec-
ture proof yields examples of compact Riemannian manifolds with holonomy SU(m)
and Sp(k). These manifolds, called Calabi—Yau manifolds and hyperkihler manifolds
respectively, will be the subjects of Chapters 7 and 10.

100
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There are other applications of the proof of the Calabi Conjecture which we shall
not discuss; for instance, it can be used to find Kéhler metrics with positive or negative
definite Ricci curvature on some compact complex manifolds M, and this has conse-
quences for the fundamental group 71 (M), and the group of biholomorphisms of M.
There are also results on the existence of Kéhler-Einstein metrics on complex mani-
folds that are closely related to the Calabi Conjecture proof. For more information on
these topics, see Besse [30, §11].

6.1 Reformulating the Calabi Conjecture

We shall rewrite the Calabi Conjecture in terms of a partial differential equation. Let
(M, J) be a compact, complex manifold, g a Kihler metric on M with Kahler form
w, and p the Ricci form of g. Let p’ be a real, closed (1,1)-form on M with [p'] =
27 ¢1(M). To solve the Calabi Conjecture we must find a Kihler metric g’, with Kéhler
form «’, such that [w] = [w’] and ¢’ has Ricci form p'.

As [p'] = 2me1(M) = [p] we have [p' — p] = 0 in H?(M,R), so by the proof
of Lemma 5.5.1 there exists a smooth real function f on M, unique up to addition of
a constant, such that p’ = p — %ddC f. Define a smooth, positive function F' on M by
(W)™ = F - w™. Using eqns (5.6) and (5.7) of §5.6 we deduce that 1dd°(log F) =
p—p' = 3dd°f. Thus dd°(f — log F)) = 0, so that f — log F is constant on M.

Define A > 0 by f —log F = —log A. Then F = Aef, and ¢’ must satisfy

(W)™ = Aefw™. 6.1)

As [w'] = [w] € H*(M,R), and M is compact, we see that [, ()™ = [, w™.
Substituting (6.1) in and applying (5.4), we deduce that

A / efdv, = / dV, = vol,(M), (6.2)
M M

where dV/, is the volume form on M induced by g, and vol, (M) the volume of M with
this volume form. This determines the constant A.

Note that in this book, all manifolds are by definition assumed to be connected. If
M were not connected then we would have to choose a different constant A for each
connected component of M/. We have shown that the Calabi Conjecture is equivalent to
the following:

The Calabi Conjecture (second version). Let (M, .J) be a compact, complex mani-
fold, and g a Kéhler metric on M, with Kahler form w. Let f be a smooth real function
on M, and define A > 0 by A [,,e/dV, = voly(M). Then there exists a unique
Kihler metric g¢' on M with Kihler form o', such that [w'] = [w] € H?*(M,R),
and (W)™ = Aefw™.

Here is a way to understand this. The conjecture is about the existence of metrics
with prescribed volume forms. Every volume form on M may be written as F'dVj, for
F' a smooth real function. We impose two conditions on this volume form: firstly that
it should be positive, so that ' > 0, and secondly that it should have the same total
volume as dVj, so that [ u FdVy = S 2 AVy. Then the Calabi Conjecture says that
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there is a unique Kéhler metric ¢’ with the same Kéhler class, such that dV, = FdV,,
that is, with the chosen volume form.

This is in fact a considerable simplification. The first statement of the conjecture
prescribed the Ricci curvature of ¢/, which depends on ¢’ and its second derivatives,
and was in effect m? real equations on ¢’. But this second statement depends only on
¢’, not on its derivatives, and imposes only one real equation on g’.

Next, observe that as [w'] = [w], by Lemma 5.5.1 there exists a smooth real function
¢ on M, unique up to addition of a constant, such that

W' = w4+ dde. (6.3)

Suppose also that ¢ satisfies the equation |’ u ©dVy = 0. This then specifies ¢ uniquely.
So, we deduce that the Calabi Conjecture is equivalent to the following:

The Calabi Conjecture (third version). Let (M, J) be a compact, complex manifold,
and g a Kahler metric on M, with Kéhler form w. Let f be a smooth real function on
M, and define A > 0 by A [,, e/dV, = voly(M). Then there exists a unique smooth
real function ¢ such that

(1) w+ dd®¢ is a positive (1, 1)-form,

(i) [,, #dVy =0, and
(iii) (w +dd®¢)™ = Aefw™ on M.
Moreover, part (iii) is equivalent to the following:
(iii)" Choose holomorphic coordinates z1, ..., 2, on an open set U in M. Then g,5

may be interpreted as an m x m Hermitian matrix indexed by a, 3 = 1,2,...,m
in U. The condition on ¢ is

&%
8za825

det (gaﬁ + > = Ae/ det (9ag)- (6.4)

For part (iii)’, eqn (6.3) gives g/, 5= Yap T 92056, and the result follows from
eqn (5.6) of §5.6. Equation (6.4) is a nonlinear, elliptic, second-order partial differential
equation in ¢, of a kind known as a Monge—-Ampére equation. We have reduced the
Calabi Conjecture to a problem in analysis, that of showing that a particular p.d.e. has a
unique, smooth solution.

The difficulty of the Calabi Conjecture, and the reason it took twenty years to com-
plete, is that nonlinear equations in general are difficult to solve, and the nonlinearities
of (6.4) are of a particularly severe kind, as they are nonlinear in the derivatives of
highest order.

In fact part (i) follows from part (iii), as the following lemma shows.

Lemma 6.1.1 Let (M, J) be a compact, complex manifold, and g a Kéhler metric on
M, with Kihler form w. Let f € C°(M), and define A by A [,, e/ dV, = voly(M).
Suppose ¢ € C?(M) satisfies the equation (w + dd°¢)™ = Aefw™ on M. Then
w + dd¢¢ is a positive (1, 1)-form.

Proof Choose holomorphic coordinates z1, . . ., 2, on a connected open set U in M.
Then in U, the new metric ¢’ is g(’l 5= Yap T 0%¢/ 0z4,0Z3. As usual, we may interpret
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ggé[; as an m x m Hermitian matrix indexed by o, 3 = 1,2, ...,m in U. A Hermitian
matrix has real eigenvalues. From §5.4, w + dd®¢ is a positive (1,1)-form if and only if
g’ is a Hermitian metric, that is, if and only if the eigenvalues of the matrix g;, 5 are all
positive.

But from (6.4), det(g;,53) > 0 on U, so g,,5 has no zero eigenvalues. Therefore by
continuity of g/, 5» if the eigenvalues of 9., j are positive at some point p € U then they
are positive everywhere in U. So by covering M with such open sets U and using the
connectedness of M, we can show that if w + dd®¢ is positive at some point p € M,
then it is positive on all of M.

Since M is compact and ¢ is continuous, ¢ has a minimum on M. Let p € M
be a minimum point of ¢, and U a coordinate patch containing p. It is easy to show
that at p the matrix 9%¢/ 024075 has nonnegative eigenvalues, and so g/, 5 has positive
eigenvalues at p. Thus w + dd¢ is positive at p, and everywhere on M. O

6.2 Overview of the proof of the Calabi Conjecture

We begin by stating four results, Theorems C1-C4, which will be proved later in the
chapter. These are the four main theorems which make up our proof of the Calabi Con-
jecture. After this, we will prove the Calabi Conjecture assuming Theorems C1-C4, and
make some comments on the proof.

Theorem C1 Let (M, J) be a compact, complex manifold, and g a Kéhler metric on
M, with Kéhler form w. Let Q1 > 0. Then there exist (2, @3, Q4 > 0 depending only
on M, J, g and @)1, such that the following holds.

Suppose f € C3(M), ¢ € C°(M) and A > 0 satisty the equations

Ifllos < Q1. / 6dV, =0, and (w+dd°e)™ — Aelu™.
M

Then |[¢l[co < Qa,

Theorem C2 Let (M, J) be a compact, complex manifold, and g a Kéhler metric on
M, with Kéhler form w. Let Q1,...,Q4 > 0 and o € (0, 1). Then there exists Q5 > 0
depending only on M, J, g, @1, ...,Q4 and «, such that the following holds.

Suppose f € C3*(M), ¢ € C°(M) and A > 0 satisfy (w + dd°¢)™ = Aefw™
and the inequalities

dd®¢||co < Q3 and || Vdd®d||co < Qu.

Ifllgae < @1, idllco < Q2, [ldddllco < @5 and  [[Vdd*¢llco < Qa.

Then ¢ € C>*(M) and ||¢||cs.« < Qs. Also, if f € C**(M) for k > 3 then
¢ € C*22(M), and if f € C°(M) then ¢ € C>=(M).

Theorem C3 Let (M, J) be a compact complex manifold, and g a Kéhler metric on
M, with Kéhler form w. Fix o € (0,1), and suppose that f' € C3*(M), ¢/ €
C5%(M) and A’ > 0 satisfy the equations

/ ¢ dV, =0 and (w+dd°¢)™ = Al W™
M
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Then whenever f € C*%(M) and ||f — f’| cs.« is sufficiently small, there exist ¢ €
C5%(M) and A > 0 such that

¢dV, =0 and (w+dd¢)™ = Aelw™.
M
Theorem C4 Let (M, J) be a compact complex manifold, and g a Kéhler metric on
M, with Kéhler form w. Let f € CY(M). Then there is at most one function ¢ €
C3(M) such that [,, $dV, = 0 and (w + dd°¢)™ = Aefw™ on M.

Here are some remarks on these results. The positive constants A, A’ above are
determined entirely by f, f using (6.2). Theorem C1 is due to Yau [345, §2]. Results
of this type are called a priori estimates, because it tells us in advance (a priori) that any
solution to a given equation must satisfy a certain bound. Finding such a priori estimates
was the most difficult part of the Calabi Conjecture, and was Yau’s biggest contribution
to the proof.

Aseqn (6.4) is a nonlinear, elliptic p.d.e., we can draw on the fruit of decades of hard
work on the properties of solutions of elliptic equations. Theorem C2 uses results about
the differentiability of solutions of elliptic equations, and Theorem C3 uses results on
the existence of solutions of elliptic equations. Theorem C4 shows that if ¢ exists, then
it is unique. It has an elementary proof found by Calabi [68, p. 86]. Broadly speaking,
Theorems C1-C3 concern the existence of the function ¢, Theorem C2 is about the
smoothness of ¢, and Theorem C4 is about the uniqueness of ¢. Using Theorems C1—
C4 we now prove the Calabi Conjecture.

6.2.1 The proof of the Calabi Conjecture

We start with a definition, the purpose of which will become clear soon.

Definition 6.2.1 Let (M, J) be a compact complex manifold, and g a Kihler metric on
M, with Kéhler form w. Fix a € (0,1) and f € C3(M). Define S to be the set of all
t € [0, 1] for which there exists ¢ € C**(M) with [,, $dV, = 0 and A > 0, such that
(w+ dd®¢)™ = Aetfw™ on M.

Now, using Theorems C1 and C2 we will show that this set S is closed, and using
Theorem C3 we will show that S is open.

Theorem 6.2.2 In Definition 6.2.1, the set S is a closed subset of [0, 1].

Proof It must be shown that S contains its limit points, and therefore is closed. Let
{t;}520 be a sequence in S, which converges to some ¢’ € [0, 1]. We will prove that
' € S. Since t; € S, by definition there exists ¢; € C%*(M) and A; > 0 such that

Ji AV =0 and (w+dde¢g;)™ = Ajelifw™, (6.5)

Define Q1 by Q1 = ||f|lc3.«. Let Q2,Q3,Q4 be the constants given by Theorem
C1, which depend on @)1, and @5 the constant given by Theorem C2, which depends
onQ1,...,Q4.

Ast; € [0,1], ||tj fllcs < Q1. So, applying Theorem C1 with ¢; in place of ¢ and
t; f in place of f, we see that |¢;||co < Qo2, [[dd°¢;|lco < @3 and ||[Vdd®d;]|co < Qu
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for all j. Thus, by Theorem C2, ¢; € C%*(M) and ||¢;|cs.« < Q5 for all j. Now the
Kondrakov Theorem, Theorem 1.2.3, says that the inclusion C**(M) — C®(M) is
compact, in the sense of Definition 1.2.2. It follows that as the sequence {;}52, is
bounded in C%% (M), it lies in a compact subset of C(M ). Therefore there exists a
subsequence {¢;; }52, which converges in C°(M). Let ¢/ € C°(M) be the limit of
this subsequence.

Define A" > 0 by A’ [}, e¥'1dV, = voly(M). Then A;; — A’ as j — oo, because
ti, — t'as j — oo. Since {¢;; }32, converges in C* we may take the limit in (6.5),
giving

Jy® dV, =0 and (w+dde¢)™ = A'e’Sw™. (6.6)
Theorems C1 and C2 then show that ¢/ € C(M). Therefore t' € S. So S contains
its limit points, and is closed. O

Theorem 6.2.3 In Definition 6.2.1, the set S is an open subset of [0, 1].

Proof Supposet’ € S.Then by definition there exist ¢’ € C**(M) with [, ¢' AV, =
0 and A’ > 0, such that (w + dd¢¢')™ = A’e"'fw™ on M. Apply Theorem C3, with
t' f in place of f, and ¢ f in place of f, for t € [0, 1]. The theorem shows that whenever
[t — | - || fl| 3. is sufficiently small, there exist ¢ € C**(M) and A > 0 such that

[y #dVy =0 and (w+dd°¢)™ = Ae'fw™.

But then t € S. Thus, if ¢ € [0, 1] is sufficiently close to ¢’ then ¢ € S, and S contains
an open neighbourhood in [0, 1] of each ¢’ in S. So S is open. O

Using Lemma 6.1.1 and Theorems 6.2.2 and 6.2.3 we shall prove an existence result
for the function ¢. Notice that parts (i)—(iii) come from the third version of the Calabi
Conjecture.

Theorem 6.2.4 Let (M, J) be a compact complex manifold, and g a Kihler metric on
M with Kéhler form w. Choose a € (0,1), and let f € C*“(M). Then there exist
¢ € C>*(M) and A > 0 such that

(i) w+ dd°¢ is a positive (1, 1)-form,

(i) [,; #dVy =0, and
(iii) (w +dd®¢)™ = Aefw™ on M.

Proof Theorems 6.2.2 and 6.2.3 imply that S is an open and closed subset of [0, 1].
Since [0, 1] is connected, either S = () or S = [0, 1]. But when ¢ = 0, the function
¢ = 0 satisfies the conditions in Definition 6.2.1, so that 0 € S. Thus S cannot be
empty, and S = [0, 1]. It follows that 1 € S. So, setting ¢ = 1, there exist ¢ € C>*(M)
with [;, ¢dVy, = 0 and A > 0 such that (w + dd®¢)™ = Ae/w™ on M. Therefore
parts (ii) and (iii) of the theorem hold for ¢. By Lemma 6.1.1, part (i) holds as well.
This completes the proof. o

Finally, using Theorem 6.2.4 and Theorems C2 and C4, we show:

Theorem 6.2.5 The Calabi Conjecture is true.
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Proof Suppose (M, J) is a compact, complex manifold, and g a Kéhler metric on M,
with Kihler form w. Let f € C°°(M). Then Theorem 6.2.4 constructs ¢ € C%*(M)
and A > 0 for which conditions (i)—(iii) of the third version of the Calabi Conjecture
hold. Theorems C2 and C4 show that ¢ is smooth and unique. This proves the third
version of the Calabi Conjecture. O

6.2.2 The continuity method

The idea used in the proofs above is known as the continuity method, and it works like
this. The goal is to prove that a particular nonlinear equation, in our case the equation

(w4 dd¢¢p)™ = Aefw™,

has a solution ¢. The first step is to think of a similar equation which we already know
has a solution. In this case we choose the equation

(w + ddc(b)’l'ﬂ — w77l7

which has the obvious solution ¢ = 0.

The second step is to write down a 1-parameter family of equations depending con-
tinuously on ¢ € [0, 1], such that when ¢ = 0 the equation is the one we know has a
solution, and when ¢ = 1 the equation is the one which must be solved. In our case this
family of equations is

(w4 dd®¢,)™ = Aetfw™.

To complete the proof one must show that the set S of ¢ € [0, 1] for which the cor-
responding equation has a solution ¢, is both open and closed in [0, 1]. For then, as
the equation is soluble when ¢ = 0, it is also soluble when ¢t = 1 by the argument in
Theorem 6.2.4, which is what we want.

Here are two standard arguments that are used to show S is open and closed. To
show S is open, suppose that ' € S, so a solution ¢ exists. Then, one tries to show that
when ¢ is close to ¢’ in [0, 1], there is a solution ¢ that is close to ¢4 (in some Banach
space). To do this it is usually enough to consider the linearization of the equation about
¢, which simplifies the problem.

To show S is closed, one shows that .S contains its limit points. Suppose {¢; }?io isa
sequence in S that converges to ¢’. Then there is a corresponding sequence of solutions
{1,}320- Now by establishing a priori bounds on all solutions ¢; in some Banach
norm, it may be possible to show that they lie in some compact subset in a Banach
space. If this is so, the sequence {¢;, };";0 contains a convergent subsequence. One then
shows that the limit of this subsequence is a solution ¢ fort = ¢/, so ¢’ € S, and S is
closed. This is the continuity method.

6.3 Calculations at a point

Let (M, J) be a compact, complex manifold of dimension m, and g a Kéhler metric on
M with Kéhler form w. Let f € C°(M), ¢ € C?*(M) and A > 0. Setw’ = w + dd°¢,
and suppose (w')™ = Aefw™ on M. Lemma 6.1.1 then shows that «’ is a real, positive
(1,1)-form, which therefore determines a Kihler metric g’. Let p be a point in M. In
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this section we shall find expressions for w and w’ at p, and derive several inequalities
that will be useful later.

Lemma 6.3.1 In the situation above there are holomorphic coordinates z1, . .., zy, on
M near p, such that g, g',w and ' are given at p by

gp =2|dz1 > + - + 2[dzn|?, g} =2a1]dz1|* + - 4 2am|dzm|?, 6.7)
wp =i(dz1 AdZ1 + -+ + dzy AdZn),

and w;, =i(ardzy AdZ1 + -+ + amdz, AdZy),

6.8)

where aq, . . ., a,, are positive real numbers.

Proof Since T,EI’O)M is isomorphic to C™ as a complex vector space, if we fix a basis

for T,El’o) M over C, then we may regard (g,) .5 and (g},) . 5 as invertible, Hermitian m x
m complex matrices. By elementary linear algebra, using simultaneous diagonalization,

one can choose a basis (v1, ..., vy,) for T, M over C with respect to which
1 ifa=43, a; 