Algorithms and Computation
in Mathematics ¢ Volume 5

Editors

Manuel Bronstein Arjeh M. Cohen
Henri Cohen David Eisenbud
Bernd Sturmfels

Dieter Jungnickel

Graphs, Networks
and Algorithms

Second Edition

With 195 Figures

@ Springer

Dieter Jungnickel

Universitdt Augsburg

Institut fiir Mathematik

Lehrstuhl fiir Diskrete Mathematik,
Optimierung und Operations Research
86135 Augsburg, Germany

e-mail: jungnickel@math.uni-augsburg.de

Mathematics Subject Classification (2000): 05-01, 68R10, 68Q25

Library of Congress Control Number: 2004112299

Second, completely revised edition (based on the translation of the third German edition by Tilla
Schade in collaboration with the author)

ISSN 1431-1550

ISBN 3-540-21905-6 Springer Berlin Heidelberg New York
ISBN 3-540-63760-5 1st edition Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005

Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typesetting: by the author using a Springer ETEX macro package
Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper 46/3142YL-543210

A mathematician, like a painter or a poet,

is a maker of patterns.

If his patterns are more permanent than theirs,
1t 1s because they are made with ideas.

G. H. HARDY

To my teacher, Prof. Hanfried Lenz

Preface to the Second Edition

Change is inevitable...
Change 1is constant.

BENJAMIN DISRAELI

When the first printing of this book sold out in a comparatively short time,
it was decided to reprint the original edition with only small modifications:
I just took the opportunity to correct a handful of minor mistakes and to
provide a few updates to the bibliography. In contrast, the new second edition
has been thoroughly revised, even though the general aims of the book have
remained the same. In particular, I have added some new material, namely
a chapter on the network simplex algorithm and a section on the five color
theorem; this also necessitated some changes in the previous order of the
presentation (so that the numbering differs from that of the first edition,
beginning with Chapter 8). In addition to this, numerous smaller changes
and corrections have been made and several recent developments have been
discussed and referenced. There are also several new exercises.

Again, I thank my students and assistants for their attention and interest
as well as the input they provided. Moreover, I am particularly grateful to
two colleagues: Prof. Chris Fisher who read the entire manuscript and whose
suggestions led to many improvements in the presentation; and Priv.-Doz. Dr.
Bernhard Schmidt who let me make use of his lecture notes on the network
simplex algorithm.

Augsburg, September 2004 Dieter Jungnickel

Preface to the First Edition

The algorithmic way of life is best.
HERMANN WEYL

During the last few decades, combinatorial optimization and graph theory
have — as the whole field of combinatorics in general — experienced a partic-
ularly fast development. There are various reasons for this fact; one is, for
example, that applying combinatorial arguments has become more and more
common. However, two developments on the outside of mathematics may have
been more important: First, a lot of problems in combinatorial optimization
arose directly from everyday practice in engineering and management: de-
termining shortest or most reliable paths in traffic or communication net-
works, maximal or compatible flows, or shortest tours; planning connections
in traffic networks; coordinating projects; solving supply and demand prob-
lems. Second, practical instances of those tasks which belong to operations
research have become accessible by the development of more and more effi-
cient computer systems. Furthermore, combinatorial optimization problems
are also important for complexity theory, an area in the common intersec-
tion of mathematics and theoretical computer science which deals with the
analysis of algorithms. Combinatorial optimization is a fascinating part of
mathematics, and a lot of its fascination — at least for me — comes from its
interdisciplinarity and its practical relevance.

The present book focuses mainly on that part of combinatorial optimiza-
tion which can be formulated and treated by graph theoretical methods;
neither the theory of linear programming nor polyhedral combinatorics are
considered. Simultaneously, the book gives an introduction into graph the-
ory, where we restrict ourselves to finite graphs. We motivate the problems by
practical interpretations wherever possible.! Also, we use an algorithmic point
of view; that is, we are not content with knowing that an optimal solution
exists (this is trivial to see in most cases anyway), but we are mainly inter-
ested in the problem of how to find an optimal (or at least almost optimal)

'Most of the subjects we treat here are of great importance for practical ap-
plications, for example for VLSI layout or for designing traffic or communication
networks. We recommend the books [Ber92], [KoLP90], and [Len90].

X Preface

solution as efficiently as possible. Most of the problems we treat have a good
algorithmic solution, but we also show how even difficult problems can be
treated (for example by approximation algorithms or complete enumeration)
using a particular hard problem (namely the famous travelling salesman prob-
lem) as an example. Such techniques are interesting even for problems where
it is possible to find an exact solution because they may decrease the amount
of calculations needed considerably. In order to be able to judge the quality
of algorithms and the degree of difficulty of problems, we introduce the basic
ideas of complexity theory (in an informal way) and explain one of the main
open problems of modern mathematics (namely the question P=NP?). In the
first chapters of the book, we will present algorithms in a rather detailed man-
ner but turn to a more concise presentation in later parts. We decided not to
include any explicit programs in this book; it should not be too difficult for a
reader who is used to writing programs to transfer the given algorithms. Giv-
ing programs in any fixed programming language would have meant that the
book is likely to be obsolete within a short time; moreover, explicit programs
would have obscured the mathematical background of the algorithms. How-
ever, we use a structured way of presentation for our algorithms, including
special commands based on PASCAL (a rather usual approach). The book
contains a lot of exercises and, in the appendix, the solutions or hints for find-
ing the solution. As in any other discipline, combinatorial optimization can
be learned best by really working with the material; this is true in particular
for understanding the algorithms. Therefore, we urge the reader to work on
the exercises seriously (and do the mere calculations as well).

The present book is a translation of a revised version of the third edition of
my German text book Graphen, Netzwerke und Algorithmen. The translation
and the typesetting was done by Dr. Tilla Schade with my collaboration.

The text is based on two courses I gave in the winter term 1984/85 and
in the summer term 1985 at the Justus-Liebig-University in Gieflen. As the
first edition of the book which appeared in 1987 was received quite well, a sec-
ond edition became necessary in 1990. This second edition was only slightly
changed (there were only a few corrections and some additions made, includ-
ing a further appendix and a number of new references), because it appeared
a relatively short time after the first edition. The third edition, however, was
completely revised and newly typeset. Besides several corrections and rear-
rangements, some larger supplements were added and the references brought
up to date. The lectures and seminars concerning combinatorial optimization
and graph theory that I continued to give regularly (first at the University of
Gieflen, then since the summer term 1993 at the University of Augsburg) were
very helpful here. I used the text presented here repeatedly; I also took it as
the basis for a workshop for high school students organized by the Verein Bil-
dung und Begabung. This workshop showed that the subjects treated in this
book are accessible even to high school students; if motivated sufficiently, they
approach the problems with great interest. Moreover, the German edition has
been used regularly at various other universities.

Preface XI

I thank my students and assistants and the students who attended the
workshop mentioned above for their constant attention and steady interest.
Thanks are due, in particular, to Priv.-Doz. Dr. Dirk Hachenberger and Prof.
Dr. Alexander Pott who read the entire manuscript of the (German) third
edition with critical accuracy; the remaining errors are my responsibility.

Augsburg, May 1998 Dieter Jungnickel

Contents

When we have not what we like,
we must like what we have.

COMTE DE BUSSY-RABUTIN

Preface to the Second Edition VII
Preface to the First Edition IX
1 Basic Graph Theory 1
1.1 Graphs, subgraphs and factors, 2
1.2 Paths, cycles, connectedness, trees b)
1.3 FEulertours o 13
1.4 Hamiltonian cycles i 14
1.5 Planar graphs...... ... 21
1.6 Digraphs ... 25
1.7 An application: Tournaments and leagues.................. 28
2 Algorithms and Complexity 33
2.1 Algorithms o 34
2.2 Representing graphs i i i 36
2.3 The algorithm of Hierholzer 39
2.4 How to write down algorithms 41
2.5 The complexity of algorithms 43
2.6 Directed acyclic graphs........ i i, 46
2.7 NP-complete problems 49
2.8 HCis NP-complete ..., 53
3 Shortest Paths...... 59
3.1 Shortest paths 59
3.2 Finite metric spaces i 61
3.3 Breadth first search and bipartite graphs 63
3.4 Bellman’s equations and acyclic digraphs 68
3.5 An application: Scheduling projects....................... 71
3.6 The algorithm of Dijkstra 75
3.7 An application: Train schedules 79

XIV Contents

3.8 The algorithm of Floyd and Warshall 82
3.9 Cycles of negative length 87
3.10 Pathalgebras i 89
4 Spanning Trees i 95
4.1 Treesand forestsoiiiii i 95
4.2 Incidence matricescouvuuiir i, 97
4.3 Minimal spanning trees 101
4.4 The algorithms of Prim, Kruskal and Boruvka 104
4.5 Maximal spanning trees i i 110
4.6 SEEINer treesS . .. oottt e 112
4.7 Spanning trees with restrictions 116
4.8 Arborescences and directed Euler tours. 118
5 The Greedy Algorithm 123
5.1 The greedy algorithm and matroids 123
5.2 Characterizations of matroids 125
5.3 Matroid duality 130
5.4 The greedy algorithm as an approximation method 132
5.5 Minimization in independence systems 139
5.6 Accessible set systems. i i i 143
6 FloWS ... 147
6.1 The theorems of Ford and Fulkerson 147
6.2 The algorithm of Edmonds and Karp 153
6.3 Auxiliary networks and phases, 162
6.4 Constructing blocking flows 169
6.5 Zero-one flows 179
6.6 The algorithm of Goldberg and Tarjan 182
7 Combinatorial Applications 201
7.1 Disjoint paths: Menger’s theorem 201
7.2 Matchings: Konig’s theorem 205
7.3 Partial transversals: The marriage theorem 209
7.4 Combinatorics of matrices, 215
7.5 Dissections: Dilworth’s theorem 219
7.6 Parallelisms: Baranyai’s theorem 223
7.7 Supply and demand: The Gale-Ryser theorem.............. 226
8 Connectivity and Depth First Search 231
8.1 k-connected graphs i 231
8.2 Depthfirst search 234
8.3 2-connected graphs 238
8.4 Depth first search for digraphs 244

8.5 Strongly connected digraphs L. 246

10

11

12

13

Contents XV

8.6 Edge connectivity 250
Colorings 253
9.1 Comparability graphs and interval graphs 253
9.2 Vertex colorings, 256
9.3 Edge colorings 259
9.4 Cayley graphs.o 262
9.5 The five color theorem, 266
Circulations 271
10.1 Circulations and flows. 271
10.2 Feasible circulations i 274
10.3 Elementary circulations o 281
10.4 The algorithm of Klein i .. 286
10.5 The algorithm of Busacker and Gowen 290
10.6 Potentials and e-optimality 293
10.7 Optimal circulations by successive approximation........... 302
10.8 A polynomial procedure REFINE 306
10.9 The minimum mean cycle cancelling algorithm 313
10.10 Some further problems 318
The Network Simplex Algorithm 321
11.1 The minimum cost flow problem 322
11.2 Treesolutions., 324
11.3 Constructing an admissible tree structure.................. 327
11.4 The algorithm 331
11.5 Efficient implementations 336
Synthesis of Networks 341
12.1 Symmetric networks L 341
12.2 Synthesis of equivalent flow trees 344
12.3 Synthesizing minimal networks 351
1204 CUb ErEES « o vttt e 357
12.5 Increasing the capacities........... 361
Matchings 367
13.1 The 1-factor theorem, 367
13.2 Augmenting paths 371
13.3 Alternating trees and blossoms, 374
13.4 The algorithm of Edmonds 380

13.5 Matching matroids i 396

XVI Contents

14 Weighted matchings 399
14.1 The bipartite case 400
14.2 The Hungarian algorithm........... 401
14.3 Matchings, linear programs, and polytopes................. 410
14.4 The general case i 414
14.5 The Chinese postmanuuuueininnenenn... 418
14.6 Matchings and shortest paths 422
14.7 Some further problems, 430

15 A Hard Problem: The TSP 433
15.1 Basic definitions.ot 433
15.2 Lower bounds: Relaxations 436
15.3 Lower bounds: Subgradient optimization 441
15.4 Approximation algorithms 446
15.5 Upper bounds: Heuristics............o . 453
15.6 Upper bounds: Local search 455
15.7 Exact neighborhoods and suboptimality 459
15.8 Optimal solutions: Branch and bound 464
15.9 Concluding remarks i 472
Some NP-Complete Problems 475
Solutions 483
B.1 Solutions for Chapter 1 i, 483
B.2 Solutions for Chapter 2 489
B.3 Solutions for Chapter 3 493
B.4 Solutions for Chapter 4 500
B.5 Solutions for Chapter 5 504
B.6 Solutions for Chapter 6 507
B.7 Solutions for Chapter 7 516
B.8 Solutions for Chapter 8 523
B.9 Solutions for Chapter 9 530
B.10 Solutions for Chapter 10 oo, 530
B.11 Solutions for Chapter 11 538
B.12 Solutions for Chapter 12 i, 538
B.13 Solutions for Chapter 13 544
B.14 Solutions for Chapter 14 548
B.15 Solutions for Chapter 15 554

C List of Symbols 557
C.1 General Symbols 557
C.2 Special Symbols 559

References. 565

1

Basic Graph Theory

It is time to get back to basics.

JOHN MAJOR

Graph theory began in 1736 when Leonhard Euler (1707-1783) solved the well-
known Kénigsberg bridge problem [Eul36]!. This problem asked for a circular
walk through the town of Konigsberg (now Kaliningrad) in such a way as to
cross over each of the seven bridges spanning the river Pregel once, and only
once; see Figure 1.1 for a rough sketch of the situation.

North
East
a
| | H_RI ——
South

Fig. 1.1. The Konigsberg bridge problem

When trying to solve this problem one soon gets the feeling that there is no
solution. But how can this be proved? Euler realized that the precise shapes

see [Wil86] and [BiLWT76].

2 1 Basic Graph Theory

of the island and the other three territories involved are not important; the
solvability depends only on their connection properties. Let us represent the
four territories by points (called vertices), and the bridges by curves joining
the respective points; then we get the graph also drawn in Figure 1.1. Trying
to arrange a circular walk, we now begin a tour, say, at the vertex called a.
When we return to a for the first time, we have used two of the five bridges
connected with a. At our next return to a we have used four bridges. Now we
can leave a again using the fifth bridge, but there is no possibility to return
to a without using one of the five bridges a second time. This shows that the
problem is indeed unsolvable. Using a similar argument, we see that it is also
impossible to find any walk — not necessarily circular, so that the tour might
end at a vertex different from where it began — which uses each bridge exactly
once. Euler proved even more: he gave a necessary and sufficient condition for
an arbitrary graph to admit a circular tour of the above kind. We will treat
his theorem in Section 1.3. But first, we have to introduce some basic notions.

The present chapter contains a lot of definitions. We urge the reader to
work on the exercises to get a better idea of what the terms really mean.
Even though this chapter has an introductory nature, we will also prove a
couple of nontrivial results and give two interesting applications. We warn
the reader that the terminology in graph theory lacks universality, although
this improved a little after the book by Harary [Har69] appeared.

1.1 Graphs, subgraphs and factors

A graph G is a pair G = (V, E) consisting of a finite? set V # () and a set E of
two-element subsets of V. The elements of V' are called vertices. An element
e = {a,b} of E is called an edge with end vertices a and b. We say that a and
b are incident with e and that a and b are adjacent or neighbors of each other,
and write e = ab or a = b.

Let us mention two simple but important series of examples. The complete
graph K, has n vertices (that is, |V| = n) and all two-element subsets of V' as
edges. The complete bipartite graph K, ,, has as vertex set the disjoint union
of a set V7 with m elements and a set V5 with n elements; edges are all the
sets {a,b} with a € V7 and b € V5.

We will often illustrate graphs by pictures in the plane. The vertices of a
graph G = (V, E) are represented by (bold type) points and the edges by lines
(preferably straight lines) connecting the end points. We give some examples
in Figure 1.2. We emphasize that in these pictures the lines merely serve to
indicate the vertices with which they are incident. In particular, the inner
points of these lines as well as possible points of intersection of two edges (as
in Figure 1.2 for the graphs K5 and K3 3) are not significant. In Section 1.5 we

2In graph theory, infinite graphs are studied as well. However, we restrict our-
selves in this book — like [Har69] — to the finite case.

1.1 Graphs, subgraphs and factors 3

will study the question which graphs can be drawn without such additional
points of intersection.

K> K3 Ky Ks K33

Fig. 1.2. Some graphs

Let G = (V, E) be a graph and V' be a subset of V. By E|V’ we denote the set
of all edges e € E which have both their vertices in V’. The graph (V', E|V")
is called the induced subgraph on V' and is denoted by G|V'. Each graph of
the form (V’, E’) where V! C V and E’ C E|V' is said to be a subgraph of G,
and a subgraph with V/ = V is called a spanning subgraph. Some examples
are given in Figure 1.3.

@%\

a graph a subgraph
an induced subgraph a spanning subgraph

Fig. 1.3. Subgraphs

Given any vertex v of a graph, the degree of v, deg v, is the number of edges
incident with v. We can now state our first — albeit rather simple — result:

Lemma 1.1.1. In any graph, the number of vertices of odd degree is even.

4 1 Basic Graph Theory

Proof. Summing the degree over all vertices v, each edge is counted exactly
twice, once for each of its vertices; thus > degv = 2|E|. As the right hand
side is even, the number of odd terms degwv in the sum on the left hand side
must also be even. O

If all vertices of a graph G have the same degree (say 7), G is called a regular
graph, more precisely an r-regular graph. The graph K, is (n —1)-regular, the
graph K, ,, is regular only if m = n (in which case it is n-regular). A k-factor
is a k-regular spanning subgraph. If the edge set of a graph can be divided
into k-factors, such a decomposition is called a k-factorization of the graph.
A 1-factorization is also called a factorization or a resolution. Obviously, a
1-factor can exist only if G has an even number of vertices. Factorizations of
Ks,, may be interpreted as schedules for a tournament of 2n teams (in soccer,
basketball etc.). The following exercise shows that such a factorization exists
for all n. The problem of setting up schedules for tournaments will be studied
in Section 1.7 as an application.

Exercise 1.1.2. We use {o0,1,...,2n — 1} as the vertex set of the complete
graph K, and divide the edge set into subsets F; for i = 1,...,2n — 1, where
F; = {oc0i} U{jk : j+k = 2i (mod 2n — 1)}. Show that the F; form a
factorization of Ks,. The case n = 3 is shown in Figure 1.4. Factorizations
were first introduced by [Kird7]; interesting surveys are given by [MeRo85]
and [Wal92].

Fig. 1.4. A factorization of Kjg

Let us conclude this section with two more exercises. First, we introduce
a further family of graphs. The triangular graph T, has as vertices the two-
element subsets of a set with n elements. Two of these vertices are adjacent
if and only if their intersection is not empty. Obviously, T;, is a (2n — 4)-
regular graph. But T}, has even stronger regularity properties: the number of
vertices adjacent to two given vertices x,y depends only on whether and y

1.2 Paths, cycles, connectedness, trees 5

themselves are adjacent or not. Such a graph is called a strongly reqular graph,
abbreviated by SRG. These graphs are of great interest in finite geometry; see
the books [CaLi91] and [BeJL99]. We will limit our look at SRG’s in this book
to a few exercises.

Exercise 1.1.3. Draw the graphs 7T, for n = 3,4,5 and show that 7T, has
parameters a = 2n — 4, ¢ = n — 2 and d = 4, where a is the degree of any
vertex, c¢ is the number of vertices adjacent to both x and y if x and y are
adjacent, and d is the number of vertices adjacent to x and y if x and y are
not adjacent.

For the next exercise, we need another definition. For a graph G = (V| E),

we will denote by (‘2/) the set of all pairs of its vertices. The graph G =
(v, (‘2/) \ E) is called the complementary graph. Two vertices of V are adjacent

in G if and only if they are not adjacent in G.

Exercise 1.1.4. Let G be an SRG with parameters a, ¢, and d having n
vertices. Show that G is also an SRG and determine its parameters. Moreover,
prove the formula

ala—c—1)=(n—a-1)d.

Hint: Count the number of edges yz for which y is adjacent to a given vertex
x, whereas z is not adjacent to x.

1.2 Paths, cycles, connectedness, trees

Before we can go on to the theorem of Euler mentioned in Section 1.1, we

have to formalize of the idea of a circular tour. Let (eq, ..., e,) be a sequence
of edges in a graph G. If there are vertices vy, ..., v, such that e; = v;_qv; for
i =1,...,n, the sequence is called a walk; if v9 = v,,, one speaks of a closed

walk. A walk for which the e; are distinct is called a trail, and a closed walk
with distinct edges is a closed trail. If, in addition, the v; are distinct, the trail
is a path. A closed trail with n > 3, for which the v; are distinct (except, of
course, vg = vy), is called a cycle. In any of these cases we use the notation

(&3] () e
W: v Vg Vpo1 —2 v,

and call n the length of W. The vertices vy and v,, are called the start vertex
and the end vertex of W, respectively. We will sometimes specify a walk by
its sequence of vertices (vp,...,v,), provided that v;_jv; is an edge for i =
1,...,n. In the graph of the following picture, (a, b, ¢, v, b, ¢) is a walk, but not
a trail; and (a, b, ¢, v,b,u) is a trail, but not a path. Also, (a,b,c,v,b,u,a) is a
closed trail, but not a cycle, whereas (a, b, ¢, w,v,u,a) is a cycle. The reader
might want to consider some more examples.

6 1 Basic Graph Theory

v

Fig. 1.5. An example for walks

Exercise 1.2.1. Show that a closed walk of odd length contains a cycle. What
do closed walks not containing a cycle look like?

Two vertices a and b of a graph G are called connected if there exists a walk
with start vertex a and end vertex b. If all pairs of vertices of G are connected,
G itself is called connected. For any vertex a, we consider (a) as a trivial walk
of length 0, so that any vertex is connected with itself. Thus connectedness
is an equivalence relation on the vertex set of G. The equivalence classes of
this relation are called the connected components of G. Thus G is connected if
and only if its vertex set V is its unique connected component. Components
which contain only one vertex are also called isolated vertices. Let us give
some exercises concerning these definitions.

Exercise 1.2.2. Let G be a graph with n vertices and assume that each vertex
of G has degree at least (n —1)/2. Show that G must be connected.

Exercise 1.2.3. A graph G is connected if and only if there exists an edge
e = vw with v € V; and w € V, whenever V = V; U V; (that is, Vi NV, = ()
is a decomposition of the vertex set of G.

Exercise 1.2.4. If G is not connected, the complementary graph G is con-
nected.

If @ and b are two vertices in the same connected component of a graph G,
there has to exist a path of shortest length (say d) between a and b. (Why?)
Then a and b are said to have distance d = d(a,b). The notion of distances in
a graph is fundamental; we will study it (and a generalization) thoroughly in
Chapter 3.

In the remainder of this section, we will investigate the minimal connected
graphs. First, some more definitions and an exercise. A graph is called acyclic

1.2 Paths, cycles, connectedness, trees 7

if it does not contain a cycle. For a subset T' of the vertex set V of a graph G
we denote by G\ T the induced subgraph on V' \ T'. This graph arises from G
by omitting all vertices in 7" and all edges incident with these vertices. For a
one-element set 7' = {v} we write G \ v instead of G \ {v}.

Exercise 1.2.5. Let G be a graph having n vertices, none of which are iso-
lated, and n—1 edges, where n > 2. Show that G contains at least two vertices
of degree 1.

Lemma 1.2.6. A connected graph on n vertices has at least n — 1 edges.

Proof. We use induction on n; the case n = 1 is trivial. Thus let G be a
connected graph on n > 2 vertices. Choose an arbitrary vertex v of G and
consider the graph H = G \ v. Note that H is not necessarily connected.
Suppose H has connected components Z; having n; vertices (i = 1,...,k),
that is, nq + ... + nx = n — 1. By induction hypothesis, the subgraph of H
induced on Z; has at least n; — 1 edges. Moreover, v must be connected in
G with each of the components Z; by at least one edge. Thus G contains at
least (ny — 1)+ ...+ (ng — 1) + k =n — 1 edges. O

Lemma 1.2.7. An acyclic graph on n vertices has at most n — 1 edges.

Proof. If n = 1 or E = (), the statement is obvious. For the general case,
choose any edge e = ab in G. Then the graph H = G\ e has exactly one more
connected component than G. (Note that there cannot be a path in H from a
to b, because such a path together with the edge e would give rise to a cycle
in G.) Thus, H can be decomposed into connected, acyclic graphs Hy, ..., Hy
(where k > 2). By induction, we may assume that each graph H; contains at
most n; — 1 edges, where n; denotes the number of vertices of H;. But then
G has at most

m—-D+...+nr—1)+1=(mm+...4n)—(k—1) < n-1
edges. ad

Theorem 1.2.8. Let G be a graph with n vertices. Then any two of the fol-
lowing conditions imply the third:

(a) G is connected.
(b) G is acyclic.
(¢) G has n — 1 edges.

Proof. First let G be acyclic and connected. Then Lemmas 1.2.6 and 1.2.7
imply that G has exactly n — 1 edges.

Next let G be a connected graph with n — 1 edges. Suppose G contains a
cycle C' and consider the graph H = G \ e, where e is some edge of C. Then
His a connected with n vertices and n — 2 edges, contradicting Lemma 1.2.6.

Finally, let G be an acyclic graph with n — 1 edges. Then Lemma 1.2.7
implies that G cannot contain an isolated vertex, as omitting such a vertex

8 1 Basic Graph Theory

would give an acyclic graph with n — 1 vertices and n — 1 edges. Now Exercise
1.2.5 shows that G has a vertex of degree 1, so that G \ v is an acyclic graph
with n — 1 vertices and n — 2 edges. By induction it follows that G \ v and
hence G are connected. ad

Exercise 1.2.9. Give a different proof for Lemma 1.2.6 using the technique
of omitting an edge e from G.

A graph T for which the conditions of Theorem 1.2.8 hold is called a tree.
A vertex of T with degree 1 is called a leaf. A forestis a graph whose connected
components are trees. We will have a closer look at trees in Chapter 4.

In Section 4.2 we will use rather sophisticated techniques from linear al-
gebra to prove a formula for the number of trees on n vertices; this result
is usually attributed to Cayley [Cay89], even though it is essentially due to
Borchardt [Bor60]. Here we will use a more elementary method to prove a
stronger result — which is indeed due to Cayley. By f(n,s) we denote the
number of forests G having n vertices and exactly s connected components,
for which s fixed vertices are in distinct components; in particular, the num-
ber of trees on n vertices is f(n,1). Cayley’s theorem gives a formula for the
numbers f(n, s); we use a simple proof taken from [Tak90a].

Theorem 1.2.10. One has f(n,s) = sn" 571

Proof. We begin by proving the following recursion formula:

n—s

fns) = 3 (") 0=t i), (L)

=0

where we put f(1,1) = 1 and f(n,0) = 0 for n > 1. How can an arbitrary
forest G with vertex set V = {1,...,n} having precisely s connected compo-
nents be constructed? Let us assume that the vertices 1, ..., s are the specified
vertices which belong to distinct components. The degree of vertex 1 can take
the values j =0,...,n — s, as the neighbors of 1 may form an arbitrary sub-
set I'(1) of {s+1,...,n}. Then we have — after choosing the degree j of 1
— exactly (";S) possibilities to choose I'(1). Note that the graph G\ 1 is a
forest with vertex set V' \ {1} = {2,...,n} and exactly s + j — 1 connected
components, where the vertices 2,...s and the j elements of I'(1) are in dif-
ferent connected components. After having chosen j and I'(1), we still have
fln—1,s4 j — 1) possibilities to construct the forest G \ 1. This proves the
recursion formula (1.1).

We now prove the desired formula for the f(n,s) by using induction on n.
The case n = 1 is trivial. Thus we let n > 2 and assume that

f(n—1,i) = i(n—1)""""2 holdsfor i=1,...n—1. (1.2)

Using this in equation (1.1) gives

1.2 Paths, cycles, connectedness, trees 9

n—s
fnns) = 3 (")t = - e
— J
7=0
= 3a(" -y
= N
4 (5 _ 1) Z (n * S) (TL _ 1)77, s—j—1
=0 7
~—/n-s—1 s
= (n—s) . (n—1)"°
; J—1
j=1
I S e
=0\ J
nisn - n—s—1 (n—s—1)—k k
= — >) (n—1) x 1
k=0
s—1e=(n—s ; ;
)i w19
=P (j)(e
7=0
n—s—1 _ n—s
_ (Tl S)n + (5 l)n — Snnfsfl.
n—1
This proves the theorem. a

Note that the rather tedious calculations in the induction step may be
replaced by the following — not shorter, but more elegant — combinatorial
argument. We have to split up the sum we got from using equation (1.2) in
(1.1) in a different way:

n

19 = 3 ("7)= v

n—s—1 _
> (” .) (n—s—j)(n -1
=0 7
Now the first sum counts the number of words of length n—s over the alphabet
V ={1,...,n}, as the binomial coefficient counts the number of possibilities
for distributing j entries 1 (where j has to be between 0 and n — s), and the
factor (n — 1)"~*7J gives the number of possibilities for filling the remaining
n — s — j positions with entries # 1. Similarly, the second sum counts the
number of words of length n — s over the alphabet V' = {0,1,...,n} which

10 1 Basic Graph Theory

contain exactly one entry 0. As there are obvious formulas for these numbers,
we directly get

f(n,s) = n"7° —(n—s)n" "t = sp" 7L
Borchardt’s result is now an immediate consequence of Theorem 1.2.10:
Corollary 1.2.11. The number of trees on n vertices is n™ 2. a

It is interesting to note that n"~2 is also the cardinality of the set W of
words of length n — 2 over an alphabet V with n elements, which suggests
that we might prove Corollary 1.2.11 by constructing a bijection between W
and the set T of trees with vertex set V. This is indeed possible as shown by
Priifer [Prul8]; we will follow the account in [Lue89] and construct the Priifer
code Ty : T — W recursively. As we will need an ordering of the elements of
V', we assume in what follows w.l.o.g. that V is a subset of N.

Thus let G = (V, E) be a tree. For n = 2 the only tree on V' is mapped to
the empty word; that is, we put my(G) = (). For n > 3 we use the smallest
leaf of G to construct a tree on n — 1 vertices. We write

v = v(G) = min{u € V: deg,(u) =1} (1.3)

and denote by e = e(G) the unique edge incident with v, and by w = w(G)
the other end vertex of e. Now let G’ = G \ v. Then G’ has n — 1 vertices,
and we may assume by induction that we know the word corresponding to G’
under the Priifer code on V/ =V '\ {v}. Hence we can define recursively

Wv(G) = (’wﬂTV/(GI)). (14)

It remains to show that we have indeed constructed the desired bijection. We
need the following lemma which allows us to determine the minimal leaf of a
tree G on V from its Priifer code.

Lemma 1.2.12. Let G be a tree on V. Then the leaves of G are precisely
those elements of V' which do not occur in my(G). In particular,

v(G) = min{u € V: u does not occur in wy (G)}. (1.5)

Proof. First suppose that an element u of V occurs in 7y (G). Then u was
added to my (G) at some stage of our construction; that is, some subtree H
of G was considered, and u was adjacent to the minimal leaf v(H) of H. Now
if u were also a leaf of G (and thus of H), then H would have to consist only
of u and v(G), so that H would have the empty word as Prifer code, and u
would not occur in 7y (G), contradicting our assumption.

Now suppose that w is not a leaf. Then there is at least one edge incident
with « which is discarded during the construction of the Priifer code of G,
since the construction only ends when a tree on two vertices remains of G.
Let e be the edge incident with u which is omitted first. At that point of the

1.2 Paths, cycles, connectedness, trees 11

construction, u is not a leaf, so that the other end vertex of e has to be the
minimal leaf of the respective subtree. But then, by our construction, w is
used as the next coordinate in 7y (G). O

Theorem 1.2.13. The Priifer code my: T — W defined by equations (1.3)
and (1.4) is a bijection.

Proof. For n = 2, the statement is clear, so let n > 3. First we show that
7y is surjective. Let w = (w1,...,w,_2) be an arbitrary word over V, and
denote by v the smallest element of V' which does not occur as a coordinate
in w. By induction, we may assume that there is a tree G’ on the vertex set
V' =V \ {v} with 7y (G') = (wa, ..., w,—_2). Now we add the edge e = vw;
to G’ (as Lemma 1.2.12 suggests) and get a tree G on V. It is easy to verify
that v = v(G) and thus 7y (G) = w. To prove injectivity, let G and H be two
trees on {1,...,n} and suppose 7y (G) = 7y (H). Now let v be the smallest
element of V' which does not occur in 7y (G). Then Lemma 1.2.12 implies that
v = v(G) = v(H). Thus G and H both contain the edge e = vw, where w
is the first entry of 7y (G). Then G’ and H' are both trees on V' =V \ {v},
and we have 7y, (G’) = my (H'). Using induction, we conclude G’ = H' and
hence G = H. O

Note that the proof of Theorem 1.2.13 together with Lemma 1.2.12 gives
a constructive method for decoding the Priifer code.

Example 1.2.14. Figure 1.6 shows some trees and their Priifer codes for
n = 6 (one for each isomorphism class, see Exercise 4.1.6).

Exercise 1.2.15. Determine the trees with vertex set {1,...,n} correspond-
ing to the following Priifer codes: (1,1,...,1); (2,3,...,n — 2,n — 1);
(2,3,....,n—3,n—2,n—2); (3,3,4,...,n—3,n—2,n—2).

Exercise 1.2.16. How can we determine the degree of an arbitrary vertex
u of a tree G from its Priifer code 7y (G)? Give a condition for my (G) to
correspond to a path or a star (where a star is a tree having one exceptional
vertex z which is adjacent to all other vertices).

Exercise 1.2.17. Let (di,...,d,) be a sequence of positive integers. Show
that there is a tree on n vertices having degrees d, ..., d, if and only if
dy+...+d, = 2(n-1), (1.6)

and construct a tree with degree sequence (1,1,1,1,2,3,3). Hint: Use the
Priifer code.

We remark that the determination of the possible degree sequences for
arbitrary graphs on n vertices is a considerably more difficult problem; see,
for instance, [SiHo91] and [BaSa95].

12 1 Basic Graph Theory

1
1 1
2
2 2
4
4
o 45 6
6 5 6
(2,3,4,5) (2,3,4,4) (2,3,3,3)
1 1 2 2
2 3 6 3
3 5 4 1
4 6 5 6 5 4
(2,3,2,5) (3,3,4,4) (1,1,1,1)

Fig. 1.6. Some trees and their Priifer codes

We have now seen two quite different proofs for Corollary 1.2.11 which il-
lustrate two important techniques for solving enumeration problems, namely
using recursion formulas on the one hand and using bijections on the other.
In Section 4.2 we will see yet another proof which will be based on the ap-
plication of algebraic tools (like matrices and determinants). In this text, we
cannot treat the most important tool of enumeration theory, namely generat-
ing functions. The interested reader can find the basics of enumeration theory
in any good book on combinatorics; for a more thorough study we recommend
the books by Stanley [Sta86, Sta99] or the extensive monograph [GoJa83], all
of which are standard references.

Let us also note that the number f(n) of forests on n vertices has been
studied several times; see [Tak90b] and the references given there. Takdcs
proves the following simple formula which is, however, not at all easy to derive:

[n/2] . Y
_nl 25+ D+ 1)
f) =7 ;)(—1) 29il(n—2j)

Finally, me mention an interesting asymptotic result due to Rényi [Ren59)
which compares the number of all forests with the number of all trees:

i L™

n— oo nn—2

= e ~ 1.6487.

1.3 Euler tours 13

1.3 Euler tours

In this section we will solve the Konigsberg bridge problem for arbitrary
graphs. The reader should note that Figure 1.1 does not really depict a graph
according to the definitions given in Section 1.1, because there are pairs of
vertices which are connected by more than one edge. Thus we generalize our
definition as follows. Intuitively, for a multigraph on a vertex set V', we want
to replace the edge set of an ordinary graph by a family E of two-element
subsets of V. To be able to distinguish different edges connecting the same
pair of vertices, we formally define a multigraph as a triple (V, E, J), where V
and E are disjoint sets, and J is a mapping from E to the set of two-element
subsets of V, the incidence map. The image J(e) of an edge e is the set {a, b}
of end vertices of e. Edges e and ¢’ with J(e) = J(e’) are called parallel. Then
all the notions introduced so far carry over to multigraphs. However, in this
book we will — with just a few exceptions — restrict ourselves to graphs.?

The circular tours occurring in the Konigsberg bridge problem can be
described abstractly as follows. An FEulerian trail of a multigraph G is a trail
which contains each edge of G (exactly once, of course); if the trail is closed,
then it is called an Fuler tour* A multigraph is called Eulerian if it contains
an Euler tour. The following theorem of [Eul36] characterizes the Eulerian
multigraphs.

Theorem 1.3.1 (Euler’s theorem). Let G be a connected multigraph. Then
the following statements are equivalent:

(a) G is Eulerian.
(b) Each vertex of G has even degree.
(c) The edge set of G can be partitioned into cycles.

Proof: We first assume that G is Eulerian and pick an Euler tour, say C. Each
occurrence of a vertex v in C adds 2 to its degree. As each edge of G occurs
exactly once in C, all vertices must have even degree. The reader should work
out this argument in detail.

Next suppose that (b) holds and that G has n vertices. As G is connected,
it has at least n — 1 edges by Lemma 1.2.6. Since G does not contain vertices
of degree 1, it actually has at least n edges, by Exercise 1.2.5. Then Lemma
1.2.7 shows that there is a cycle K in G. Removing K from G we get a graph
H in which all vertices again have even degree. Considering the connected

3Some authors denote the structure we call a multigraph by graph; graphs ac-
cording to our definition are then called simple graphs. Moreover, sometimes even
edges e for which J(e) is a set {a} having only one element are admitted; such edges
are then called loops. The corresponding generalization of multigraphs is often called
a pseudograph.

4Sometimes one also uses the term Eulerian cycle, even though an Euler tour
usually contains vertices more than once.

14 1 Basic Graph Theory

components of H separately, we may — using induction — partition the edge
set of H into cycles. Hence, the edge set of G can be partitioned into cycles.

Finally, assume the validity of (c) and let C be one of the cycles in the
partition of the edge set F into cycles. If C' is an Euler tour, we are finished.
Otherwise there exists another cycle C’ having a vertex v in common with
C. We can w.l.o.g. use v as start and end vertex of both cycles, so that CC’
(that is, C followed by C”) is a closed trail. Continuing in the same manner,
we finally reach an Euler tour. a

Corollary 1.3.2. Let G be a connected multigraph with exactly 2k vertices of
odd degree. Then G contains an Eulerian trail if and only if k =0 or k = 1.

Proof: The case k = 0 is clear by Theorem 1.3.1. So suppose k # 0. Similar to
the proof of Theorem 1.3.1 it can be shown that an Eulerian trail can exist
only if kK = 1; in this case the Eulerian trail has the two vertices of odd degree
as start and end vertices. Let k¥ = 1 and name the two vertices of odd degree a
and b. By adding an (additional) edge ab to G, we get a connected multigraph
H whose vertices all have even degree. Hence H contains an Euler tour C by
Theorem 1.3.1. Omitting the edge ab from C then gives the desired Eulerian
trail in G. a

Exercise 1.3.3. Let G be a connected multigraph having exactly 2k vertices
of odd degree (k # 0). Then the edge set of G can be partitioned into k trails.

The line graph L(G) of a graph G has as vertices the edges of G; two edges
of G are adjacent in L(G) if and only if they have a common vertex in G. For
example, the line graph of the complete graph K, is the triangular graph T,,.

Exercise 1.3.4. Give a formula for the degree of a vertex of L(G) (using the
degrees in G). In which cases is L(K,,) an SRG?

Exercise 1.3.5. Let G be a connected graph. Find a necessary and sufficient
condition for L(G) to be Eulerian. Conclude that the line graph of an Eulerian
graph is likewise Eulerian, and show that the converse is false in general.

Finally we recommend the very nice survey [Fle83] which treats Eule-
rian graphs and a lot of related questions in detail; for another survey, see
[LeOe86]. A much more extensive treatment of these subjects can be found in
two monographs by Fleischner [F1e90, Fle91]. For a survey of line graphs, see
[Pri96].

1.4 Hamiltonian cycles
In 1857 Sir William Rowan Hamilton (1805-1865, known to every mathemati-

cian for the quaternions and the theorem of Cayley—Hamilton) invented the
following Icosian game which he then sold to a London game dealer in 1859

1.4 Hamiltonian cycles 15

for 25 pounds; it was realized physically as a pegboard with holes. The corners
of a regular dodecahedron are labelled with the names of cities; the task is
to find a circular tour along the edges of the dodecahedron visiting each city
exactly once, where sometimes the first steps of the tour might also be pre-
scribed. More about this game can be found in [BaCo87]. We may model the
Icosian game by looking for a cycle in the corresponding dodecahedral graph
which contains each vertex exactly once. Such a cycle is therefore called a
Hamiltonian cycle. In Figure 1.7 we give a solution for Hamilton’s original
problem.

Fig. 1.7. The Icosian game

Although Euler tours and Hamiltonian cycles have similar definitions, they
are quite different. For example, there is no nice characterization of Hamilto-
nian graphs; that is, of those graphs containing a Hamiltonian cycle. As we
will see in the next chapter, there are good reasons to believe that such a good
characterization cannot exist. However, we know many sufficient conditions
for the existence of a Hamiltonian cycle; most of these conditions are state-
ments about the degrees of the vertices. Obviously, the complete graph K, is
Hamiltonian.

We first prove a theorem from which we can derive several sufficient con-
ditions on the sequence of degrees in a graph. Let G be a graph on n vertices.
If G contains non-adjacent vertices u and v such that degu + degv > n,
we add the edge uv to G. We continue this procedure until we get a graph
[G], in which, for any two non-adjacent vertices z and y, we always have
degz +degy < n. [G] is called the closure of G. (We leave it to the reader to

16 1 Basic Graph Theory

show that [G] is uniquely determined.) Then we have the following theorem
due to Bondy and Chvétal [BoCh76].

Theorem 1.4.1. A graph G is Hamiltonian if and only if its closure [G] is
Hamiltonian.

Proof. If G is Hamiltonian, [G] is obviously Hamiltonian. As [G] is derived
from G by adding edges sequentially, it will suffice to show that adding just
one edge — as described above — does not change the fact whether a graph
is Hamiltonian or not. Thus let © and v be two non-adjacent vertices with
degu+ degv > n, and let H be the graph which results from adding the edge
uv to G. Suppose that H is Hamiltonian, but G is not. Then there exists
a Hamiltonian cycle in H containing the edge uwv, so that there is a path
(z1,22,...,2,) in G with ;1 = w and z,, = v containing each vertex of G
exactly once. Consider the sets

X=Az;:vz; 1 € Fand3<i<n-—1}

and
Y={2;:ux; e Fand 3 <i<n-—1}.

As u and v are not adjacent in G, we have | X|+|Y| = degu+degv—2 > n—2.
Hence there exists an index ¢ with 3 < ¢ < n — 1 such that vx;_; as well

as ux; are edges in G. But then (z1,z9,...,Ti—1,Tn, Tn—1,...,2;,T1) IS a
Hamiltonian cycle in G (see Figure 1.8), a contradiction. O
Ty =0 Ty =0

T =1u Tn—1 1 =U Tn—1

€T9 Tn—2 €T9 Tp—2
X X
1 1
1 1
1 1
1 1

T3) Ti+1 I3] Ti41

. .
Ti—2 T ZTi—2 .\. Ti
Ti—1 Ti—1
Fig. 1.8.

In general, it will not be much easier to decide whether [G] is Hamiltonian.
But if, for example, [G] is a complete graph, G has to be Hamiltonian by
Theorem 1.4.1. Using this observation, we obtain the following two sufficient

1.4 Hamiltonian cycles 17

conditions for the existence of a Hamiltonian cycle due to Ore and Dirac
[Ore60, Dir52], respectively.

Corollary 1.4.2. Let G be a graph with n > 3 vertices. If degu + degv > n
holds for any two non-adjacent vertices u and v, then G is Hamiltonian. O

Corollary 1.4.3. Let G be a graph with n > 3 wvertices. If each vertex of G
has degree at least n/2, then G is Hamiltonian. a

Bondy and Chvatal used their Theorem 1.4.1 to derive further sufficient
conditions for the existence of a Hamiltonian cycle; in particular, they ob-
tained the earlier result of Las Vergnas [Las72] in this way. We also refer
the reader to [Har69, Ber73, Ber78, GoMi84, Chv85] for more results about
Hamiltonian graphs.

Exercise 1.4.4. Let G be a graph with n vertices and m edges, and assume
m > %(n—1)(n —2) 4+ 2. Use Corollary 1.4.2 to show that G is Hamiltonian.

Exercise 1.4.5. Determine the minimal number of edges a graph G with six
vertices must have if [G] is the complete graph K.

Exercise 1.4.6. If G is Eulerian, then L(G) is Hamiltonian. Does the converse
hold?

We now digress a little and look at one of the oldest problems in recre-
ational mathematics, the knight’s problem. This problem consists of moving
a knight on a chessboard — beginning, say, in the upper left corner — such
that it reaches each square of the board exactly once and returns with its last
move to the square where it started.® As mathematicians tend to generalize
everything, they want to solve this problem for chess boards of arbitrary size,
not even necessarily square. Thus we look at boards having m x n squares.
If we represent the squares of the chessboard by vertices of a graph G and
connect two squares if the knight can move directly from one of them to the
other, a solution of the knight’s problem corresponds to a Hamiltonian cycle
in G. Formally, we may define G as follows. The vertices of G are the pairs
(i,7) with 1 <4 <m and 1 < j < n; as edges we have all sets {(¢,), (', 5')}
with [i —é'| =1and |j —j'| =2 or |i —i| = 2 and |j — j'| = 1. Most of the
vertices of G have degree 8, except the ones which are too close to the bor-
der of the chess-board. For example, the vertices at the corners have degree
2. In our context of Hamiltonian graphs, this interpretation of the knight’s
problem is of obvious interest. However, solving the problem is just as well

5Tt seems that the first known knight’s tours go back more than a thousand
years to the Islamic and Indian world around 840-900. The first examples in the
modern European literature occur in 1725 in Ozanam’s book [Oza25], and the first
mathematical analysis of knight’s tours appears in a paper presented by Euler to the
Academy of Sciences at Berlin in 1759 [Eul66]. See the excellent website by Jelliss
[Jel03]; and [Wil89], an interesting account of the history of Hamiltonian graphs.

18 1 Basic Graph Theory

possible without looking at it as a graph theory problem. Figure 1.9 gives a
solution for the ordinary chess-board of 8 x 8 = 64 squares; the knight moves
from square to square according to the numbers with which the squares are
labelled. Figure 1.9 also shows the Hamiltonian cycle in the corresponding
graph.

2413712 |53(26|39| 4 |55
51164 (27 (12(29|14 (41|16
36 23(62|45(60|43|56| 5
63 50|11 |28(13 |30 |17 |42
22135146 |61 |44 (59| 6 |57
4911013320 (47| 8 |31 18
3412114819 (32119587

Fig. 1.9. A knight’s cycle

The following theorem of Schwenk [Schw91] solves the knight’s problem for
arbitrary rectangular chessboards.

Result 1.4.7. FEvery chessboard of size mxn (where m < n) admits a knight’s
cycle, with the following three exceptions:

(a) m and n are both odd;
(b)y m=1,2 or4;
(¢)m=3andn=4,6 or8. 0

The proof (which is elementary) is a nice example of how such problems
can be solved recursively, combining the solutions for some small sized chess-
boards. Solutions for boards of sizes 3 x 10, 3 x 12, 5x 6,5 x 8,6 x 6, 6 X 8,
7x6,7x8and 8 x 8 are needed, and these can easily be found by computer.
The version of the knight’s problem where no last move closing the cycle is
required has also been studied; see [COHMW92, CoHMW94].

Exercise 1.4.8. Show that knight’s cycles are impossible for the cases (a)
and (b) in Theorem 1.4.7. (Case (c) is more difficult.) Hint: For case (a) use
the ordinary coloring of a chessboard with black and white squares; for (b)
use the same coloring as well as another appropriate coloring (say, in red and
green squares) and look at a hypothetical knight’s cycle.

We close this section with a first look at one of the most fundamental
problems in combinatorial optimization, the travelling salesman problem (for

1.4 Hamiltonian cycles 19

short, the T'SP). This problem will later serve as our standard example of a
hard problem, whereas most of the other problems we will consider are easy.’
Imagine a travelling salesman who has to take a circular journey visiting n
cities and wants to be back in his home city at the end of the journey. Which
route is — knowing the distances between the cities — the best one? To translate
this problem into the language of graph theory, we consider the cities as the
vertices of the complete graph K,; any circular tour then corresponds to a
Hamiltonian cycle in K,,. To have a measure for the expense of a route, we
give each edge e a weight w(e). (This weight might be the distance between
the cities, but also the time the journey takes, or the cost, depending on
the criterion subject to which we want to optimize the route.) The expense
of a route then is the sum of the weights of all edges in the corresponding
Hamiltonian cycle. Thus our problem may be stated formally as follows.

Problem 1.4.9 (travelling salesman problem, TSP). Consider the
complete graph K, together with a weight function w: E — R™. Find a cyclic
permutation (1,7(1),...,7"71(1)) of the vertex set {1,...,n} such that

n

w(m) =Y w({i,m(i)})

=1

is minimal. We call any cyclic permutation 7 of {1,...,n} as well as the
corresponding Hamiltonian cycle

1 — 1) — ... — @711 — 1

in K,, a tour. An optimal tour is a tour m such that w(s) is minimal among
all tours.

Note that looking at all the possibilities for tours would be a lot of work:
even for only nine cities we have %’ = 20160 possibilities. (We can always take
the tour to begin at vertex 1, and fix the direction of the tour.) Of course it
would be feasible to examine all these tours — at least by computer. But for
20 cities, we already get about 107 possible tours, making this brute force
approach more or less impossible.

It is convenient to view Problem 1.4.9 as a problem concerning matrices,
by writing the weights as a matrix W = (w;;). Of course, we have w;; = wj;
and wy = 0 for ¢ = 1,...,n. The instances of a TSP on n vertices thus
correspond to the symmetric matrices in (R*)(™") with entries 0 on the main
diagonal. In the following example we have rounded the distances between the
nine cities Aachen, Basel, Berlin, Dusseldorf, Frankfurt, Hamburg, Munich,
Nuremberg and Stuttgart to units of 10 kilometers; we write 10w;; for the
rounded distance.

5The distinction between easy and hard problems can be made quite precise; we
will explain this in Chapter 2.

20 1 Basic Graph Theory

Example 1.4.10. Determine an optimal tour for

Aa Ba Be Du Fr Ha Mu Nu St

Aa (0 57 64 8 26 49 64 47 46
Ba | 57 0 88 54 34 83 37 43 27
Be | 64 8 0 57 56 29 60 44 63
Du | 8 54 57 0 23 43 63 44 41
Fr |26 34 56 23 0 50 40 22 20
Ha |49 83 29 43 50 0 80 63 70
Mu | 64 37 60 63 40 8 0 17 22
Nu | 47 43 44 44 22 63 17 0 19
St \46 27 63 41 20 70 22 19 O

An optimal tour and a tour which is slightly worse (obtained by replacing the
edges MuSt and BaF'r by the edges MuBa and StFr) are shown in Figure 1.10.
We will study the TSP in Chapter 15 in detail, always illustrating the various
techniques which we encounter using the present example.

Ha

Fig. 1.10. Two tours for the TSP on 9 cities

Even though the number of possible tours grows exponentially with n,
there still might be an easy method to solve the TSP. For example, the number
of closed trails in a graph may also grow very fast as the number of edges
increases; but, as we will see in Chapter 2, it is still easy to find an Euler tour
or to decide that no such tour exists. On the other hand, it is difficult to find

1.5 Planar graphs 21

Hamiltonian cycles. We will return to these examples in the next chapter to
think about the complexity (that is, the degree of difficulty) of a problem.

1.5 Planar graphs

This section is devoted to the problem of drawing graphs in the plane. First,
we need the notion of isomorphism. Two graphs G = (V, E) and G' = (V', E’)
are called isomorphic if there is a bijection o : V' — V' such that we have
{a,b} € E if and only if {a(a),a(b)} € E’ for all a,b in V. Let E be a set
of line segments in three-dimensional Euclidean space and V the set of end
points of the line segments in E. Identifying each line segment with the two-
element set of its end points, we can consider (V, E') as a graph. Such a graph
is called geometric if any two line segments in E are disjoint or have one of
their end points in common.

Lemma 1.5.1. Fvery graph is isomorphic to a geometric graph.

Proof. Let G = (V, E) be a graph on n vertices. Choose a set V' of n points in
R such that no four points lie in a common plane (Why is that possible?) and
map V bijectively to V'. Let E’ contain, for each edge e in E, the line segment
connecting the images of the vertices on e. It is easy to see that (V', E’) is a
geometric graph isomorphic to G. ad

As we have only a plane piece of paper to draw graphs, Lemma 1.5.1 does
not help us a lot. We call a geometric graph plane if its line segments all lie
in one plane. Any graph isomorphic to a plane graph is called planar.” Thus,
the planar graphs are exactly those graphs which can be drawn in the plane
without additional points of intersection between the edges; see the comments
after Figure 1.2. We will see that most graphs are not planar; more precisely,
we will show that planar graphs can only contain comparatively few edges
(compared to the number of vertices).

Let G = (V, E) be a planar graph. If we omit the line segments of G from
the plane surface on which G is drawn, the remainder splits into a number
of connected open regions; the closure of such a region is called a face. The
following theorem gives another famous result due to Euler [Eul52/53].

Theorem 1.5.2 (Euler’s formula). Let G be a connected planar graph with
n vertices, m edges and f faces. Thenn —m+ f = 2.

Proof. We use induction on m. For m = 0 we have n = 1 and f = 1, so
that the statement holds. Now let m # 0. If G contains a cycle, we discard
one of the edges contained in this cycle and get a graph G’ with n’ = n,

"In the definition of planar graphs, one often allows not only line segments, but
curves as well. However, this does not change the definition of planarity as given
above, see [Wag36]. For multigraphs, it is necessary to allow curves.

22 1 Basic Graph Theory

m' =m —1 and f’ = f — 1. By induction hypothesis, n’ — m’ + f' = 2 and
hence n — m+ f = 2. If G is acyclic, then G is a tree so that m = n — 1, by
Theorem 1.2.8; as f = 1, we again obtain n —m + f = 2. a

Originally, FEuler’s formula was applied to the vertices, edges and faces
of a convex polyhedron; it is used, for example, to determine the five regu-
lar polyhedra (or Platonic solids, namely the tetrahedron, octahedron, cube,
icosahedron and dodecahedron); see, for instance, [Cox73]. We will now use
Theorem 1.5.2 to derive bounds on the number of edges of planar graphs. We
need two more definitions. An edge e of a connected graph G is called a bridge
if G'\ e is not connected. The girth of a graph containing cycles is the length
of a shortest cycle.

Theorem 1.5.3. Let G be a connected planar graph on n wvertices. If G is
acyclic, then G has precisely n — 1 edges. If G has girth at least g, then G can

% edges.

have at most

Proof. The first claim holds by Theorem 1.2.8. Thus let G be a connected
planar graph having n vertices, m edges and girth at least g. Then n > 3. We
use induction on n; the case n = 3 is trivial. Suppose first that G contains a
bridge e. Discard e so that G is divided into two connected induced subgraphs
G and G5 on disjoint vertex sets. Let n; and m; be the numbers of vertices and
edges of G;, respectively, for ¢ = 1,2. Then n = ny +n9e and m = my +mo+ 1.
As e is a bridge, at least one of G; and G5 contains a cycle. If both G; and
G contain cycles, they both have girth at least g, so that by induction

-2 -2 -2
a1 < W=D =2) L gn=2)
g—2 g—2
If, say, G2 is acyclic, we have mgo = no — 1 and
-2 -2
m=mi+me+1 < Mﬁ‘nz < M
g—2 g—2

Finally suppose that G does not contain a bridge. Then each edge of G is
contained in exactly two faces. If we denote the number of faces whose border
is a cycle consisting of i edges by f;, we get

2m = Zifi > ngi = gf,

1
as each cycle contains at least g edges. By Theorem 1.5.2, this implies

g(n —2)
g—2

2
m+2=n+f§n—|—ﬂ and hence m < O
g

In particular, we obtain the following immediate consequence of Theorem
1.5.3, since G is either acyclic or has girth at least 3.

1.5 Planar graphs 23

Corollary 1.5.4. Let G be a connected planar graph with n vertices, where
n > 3. Then G contains at most 3n — 6 edges. O

Example 1.5.5. By Corollary 1.5.4, the complete graph Kj is not planar, as
a planar graph on five vertices can have at most nine edges. The complete
bipartite graph K3 3 has girth 4; this graph is not planar by Theorem 1.5.3,
as it has more than eight edges.

For the sake of completeness, we will state one of the most famous re-
sults in graph theory, namely the characterization of planar graphs due to
Kuratowski [Kur30]. We refer the reader to [Har69], [Aig84] or [Tho81] for
the elementary but rather lengthy proof. Again we need some definitions.
A subdivision of a graph G is a graph H which can be derived from G by
applying the following operation any number of times: replace an edge e = ab
by a path (a,z1,...,x,b), where x1,..., 2, are an arbitrary number of new
vertices; that is, vertices which were not in a previous subdivision. For conve-
nience, GG is also considered to be a subdivision of itself. Two graphs H and
H' are called homeomorphic if they are isomorphic to subdivisions of the same
graph G.

Exercise 1.5.6. Let (V, E) and (V’, E’) be homeomorphic graphs. Show that
[El = V] =[E'| = V']

Result 1.5.7 (Kuratowski’s theorem). A graph G is planar if and only
if it does not contain a subgraph which is homeomorphic to K5 or K3 3. O

In view of Example 1.5.5, a graph having a subgraph homeomorphic to K5
or K3 3 cannot be planar. For the converse we refer to the sources given above.
There is yet another interesting characterization of planarity. If we identify
two adjacent vertices u and v in a graph G, we get an elementary contraction
of GG; more precisely, we omit v and v and replace them by a new vertex w
which is adjacent to all vertices which were adjacent to u or v before;® the
resulting graph is usually denoted by G/e, where e = uv. Figure 1.11 shows
a subdivision and a contraction of K33. A graph G is called contractible to
a graph H if H arises from G by a sequence of elementary contractions. For
the proof of the following theorem see [Wag37], [Aig84], or [HaTu65].

Result 1.5.8 (Wagner’s theorem). A graph G is planar if and only if it
does not contain a subgraph which is contractible to K5 or Kz 3.

Exercise 1.5.9. Show that the Petersen graph (see Figure 1.12, cf. [Pet98])
is not planar. Give three different proofs using 1.5.3, 1.5.7, and 1.5.8.

8Note that we introduce only one edge wz, even if was adjacent to both v and
v, which is the appropriate operation in our context. However, there are occasions
where it is actually necessary to introduce two parallel edges wx instead, so that a
contracted graph will in general become a multigraph.

24 1 Basic Graph Theory

A X

Fig. 1.11. K3 3, a subdivision and a contraction

Fig. 1.12. The Petersen graph

Exercise 1.5.10. Show that the Petersen graph is isomorphic to the comple-
ment of the triangular graph T5.

The isomorphisms of a graph G to itself are called automorphisms; clearly,
they form a group, the automorphism group of G. In this book we will not
study automorphisms of graphs, except for some comments on Cayley graphs
in Chapter 9; we refer the reader to [Yap86|, [Har69], or [CaLi9l]. However,
we give an exercise concerning this topic.

Exercise 1.5.11. Show that the automorphism group of the Petersen graph
contains a subgroup isomorphic to the symmetric group Ss. Hint: Use Exercise
1.5.10.

Exercise 1.5.12. What is the minimal number of edges which have to be
removed from K, to get a planar graph? For each n, construct a planar graph
having as many edges as possible.

The final exercise in this section shows that planar graphs have to contain
many vertices of small degree.

Exercise 1.5.13. Let GG be a planar graph on n vertices and denote the num-
ber of vertices of degree at most d by ng. Prove

1.6 Digraphs 25

n(d—5)+12

fd = d+1

and apply this formula to the cases d = 5 and d = 6. (Hint: Use Corollary
1.5.4.) Can this formula be strengthened?

Much more on planarity (including algorithms) can be found in the mono-
graph by [NiCh88].

1.6 Digraphs

For many applications — especially for problems concerning traffic and trans-
portation — it is useful to give a direction to the edges of a graph, for example
to signify a one-way street in a city map. Formally, a directed graph or, for
short, a digraph is a pair G = (V, E) consisting of a finite set V' and a set
E of ordered pairs (a,b), where a # b are elements of V. The elements of V
are again called vertices, those of E edges; the term arc is also used instead
of edge to distinguish between the directed and the undirected case. Instead
of e = (a,b), we again write e = ab; a is called the start vertez or tail, and b
the end vertex or head of e. We say that a and b are incident with e, and call
two edges of the form ab and ba antiparallel. To draw a directed graph, we
proceed as in the undirected case, but indicate the direction of an edge by an
arrow (see Figure 1.13). Directed multigraphs can be defined analogously to
multigraphs; we leave the precise formulation of the definition to the reader.

There are some operations connecting graphs and digraphs. Let G = (V, E)
be a directed multigraph. Replacing each edge of the form (a,b) by an undi-
rected edge {a, b}, we obtain the underlying multigraph |G|. Replacing parallel
edges in |G| by a single edge, we get the underlying graph (G). Conversely,
let G = (V, E) be a multigraph. Any directed multigraph H with |H| = G is
called an orientation of G. Replacing each edge ab in E by two arcs (a,b) and

(b,a), we get the associated directed multigraph 6’; we also call a the com-
plete orientation of G. The complete orientation of K, is called the complete
digraph on n vertices. Figure 1.13 illustrates these definitions.

We can now transfer the notions introduced for graphs to digraphs. There
are some cases where two possibilities arise; we only look at these cases ex-
plicitly and leave the rest to the reader. We first consider trails. Thus let
G = (V,E) be a digraph. A sequence of edges (e1,...,e,) is called a trail if
the corresponding sequence of edges in |G| is a trail. We define walks, paths,
closed trails and cycles accordingly. Thus, if (v, ..., v,) is the corresponding
sequence of vertices, v;_1v; or v;v;_1 must be an edge of G. In the first case,
we have a forward edge, in the second a backward edge. If a trail consists of
forward edges only, it is called a directed trail; analogous definitions can be
given for walks, closed trails, etc. In contrast to the undirected case, there
exist directed cycles of length 2, namely cycles of the form (ab, ba).

26 1 Basic Graph Theory

AONA N

An orientation of (

Fig. 1.13. (Directed) multigraphs

A directed Fuler tour in a directed multigraph is a directed closed trail con-
taining each edge exactly once. We want to transfer Euler’s theorem to the
directed case; this requires some more definitions. The indegree d;, (v) of a ver-
tex v is the number of edges with head v, and the outdegree doyi(v) of v is the
number of edges with tail v. A directed multigraph is called pseudosymmetric
if din(v) = dout(v) holds for every vertex v. Finally, a directed multigraph G
is called connected if |G| is connected. We can now state the directed analogue
of Euler’s theorem. As the proof is quite similar to that of Theorem 1.3.1, we
shall leave it to the reader and merely give one hint: the part (b) implies (c)
needs a somewhat different argument.

Theorem 1.6.1. Let G be a connected directed multigraph. Then the following
statements are equivalent:

(a) G has a directed Euler tour.
(b) G is pseudosymmetric.
(¢) The edge set of G can be partitioned into directed cycles. a

For digraphs there is another obvious notion of connectivity besides simply
requiring that the underlying graph be connected. We say that a vertex b of
a digraph G is accessible from a vertex a if there is a directed walk with start
vertex a and end vertex b. As before, we allow walks to have length 0 so that
each vertex is accessible from itself. A digraph G is called strongly connected if
each vertex is accessible from every other vertex. A vertex a from which every
other vertex is accessible is called a root of G. Thus a digraph is strongly
connected if and only if each vertex is a root.

Note that a connected digraph is not necessarily strongly connected. For
example, a tree can never be strongly connected; here, of course, a digraph
G is called a tree if |G| is a tree. If G has a root r, we call G a directed tree,
an arborescence or a branching with root r. Clearly, given any vertex r, an
undirected tree has exactly one orientation as a directed tree with root r.

We conclude this section by considering the question which connected
multigraphs can be oriented in such a way that the resulting graph is strongly
connected. Such multigraphs are called orientable. Thus we ask which con-
nected systems of streets can be made into a system of one-way streets such

1.6 Digraphs 27

that people can still move from each point to every other point. The answer
is given by the following theorem [Rob39).

Theorem 1.6.2 (Robbins’ theorem). A connected multigraph is orientable
if and only if it does not contain any bridge. a

We will obtain Theorem 1.6.2 by proving a stronger result which allows
us to orient the edges one by one, in an arbitrary order. We need some more
terminology. A mized multigraph has edges which are either directed or undi-
rected. (We leave the formal definition to the reader.) A directed trail in a
mixed multigraph is a trail in which each oriented edge is a forward edge, but
the trail might also contain undirected edges. A mixed multigraph is called
strongly connected if each vertex is accessible from every other vertex by a
directed trail. The theorem of Robbins is an immediate consequence of the
following result due to Boesch and Tindell [BoTi80].

Theorem 1.6.3. Let G be a mized multigraph and e an undirected edge of G.
Suppose that G is strongly connected. Then e can be oriented in such a way
that the resulting mized multigraph is still strongly connected if and only if e
is mot a bridge.

Proof. Obviously, the condition that e is not a bridge is necessary. Thus sup-
pose that e is an undirected edge of G for which neither of the two possible
orientations of e gives a strongly connected mixed multigraph. We have to
show that e is a bridge of |G|. Let w and w be the vertices incident with e,
and denote the mixed multigraph we get by omitting e from G by H. Then
there is no directed trail in H from u to w: otherwise, we could orient e from
w to u and get a strongly connected mixed multigraph. Similarly, there is no
directed trail in H from w to u.

Let S be the set of vertices which are accessible from w in H by a directed
trail. Then wu is, for any vertex v € S, accessible from v in H for the following
reason: u is accessible in G from v by a directed trail W; suppose W contains
the edge e, then w would be accessible in H from w, which contradicts our
observations above. Now put 7= V' \ S; as w is in T, this set is not empty.
Then every vertex ¢ € T is accessible from w in H, because t is accessible
from w in G, and again: if the trail from w to ¢ in G needed the edge e, then
t would be accessible from u in H, and thus ¢ would not be in 7.

We now prove that e is the only edge of |G| having a vertex in S and a
vertex in T, which shows that e is a bridge. By definition of S, there cannot
be an edge (s,t) or an edge {s,t} with s € S and t € T in G. Finally, if
G contained an edge (t,s), then u would be accessible in H from w, as t is
accessible from w and u is accessible from s. ad

Exercise 1.6.4. Let G be a multigraph. Prove that G does not contain a
bridge if and only if each edge of G is contained in at least one cycle. (We
will see another characterization of these multigraphs in Chapter 7: any two
vertices are connected by two edge-disjoint trails.)

28 1 Basic Graph Theory

Mixed multigraphs are an obvious model for systems of streets. However,
we will restrict ourselves to multigraphs or directed multigraphs for the rest of
this book. One-way streets can be modelled by just using directed multigraphs,
and ordinary two-way streets may then be represented by pairs of antiparallel
edges.

Exercise 1.6.5. Let G be a connected graph all of whose vertices have even
degree. Show that G has a strongly connected, pseudosymmetric orientation.

Some relevant papers concerning (strongly connected) orientations of
graphs are [ChTh78], [ChGT85], and [RoXu88|.

1.7 An application: Tournaments and leagues

We conclude this chapter with an application of the factorizations mentioned
before, namely setting up schedules for tournaments®. If we want to design
a schedule for a tournament, say in soccer or basketball, where each of the
2n participating teams should play against each of the other teams exactly
once, we can use a factorization F = {F},..., F5,_1} of Ks,. Then each edge
{4,j} represents the match between the teams i and j; if {4,j} is contained
in the factor F}, this match will be played on the k-th day; thus we have to
specify an ordering of the factors. If there are no additional conditions on the
schedule, we can use any factorization. At the end of this section we will make
a few comments on how to set up balanced schedules.

Of course, the above method can also be used to set up a schedule for a
league (like, for example, the German soccer league), if we consider the two
rounds as two separate tournaments. But then there is the additional problem
of planning the home and away games. Look at the first round first. Replace
each 1-factor Fj, € F by an arbitrary orientation Dj, of F}, so that we get a
factorization D of an orientation of K5, — that is, a tournament as defined in
Exercise 7.5.5 below. Then the home and away games of the first round are
fixed as follows: if Dy contains the edge ij, the match between the teams i
and j will be played on the k-th day of the season as a home match for team
i. Of course, when choosing the orientation of the round of return matches,
we have to take into account how the first round was oriented; we look at that
problem later.

Now one wants home and away games to alternate for each team as far as
possible. Hence we cannot just use an arbitrary orientation D of an arbitrary
factorization F' to set up the first round. This problem was solved by de Werra
[deW81] who obtained the following results. Define a (2n x (2n — 1))-matrix
P = (p;) with entries A and H as follows: p;; = H if and only if team ¢ has
a home match on the k-th day of the season; that is, if Dy contains an edge

9This section will not be used in the remainder of the book and may be skipped
during the first reading.

1.7 An application: Tournaments and leagues 29

of the form ij. De Werra calls this matrix the home-away pattern of D. A
pair of consecutive entries p;;, and p; ;41 is called a break if the entries are the
same; that is, if there are two consecutive home or away games; thus we want
to avoid breaks as far as possible. Before determining the minimal number of
breaks, an example might be useful.

Example 1.7.1. Look at the case n = 3 and use the factorization of Kjg
shown in Figure 1.4; see Exercise 1.1.2. We choose the orientation of the five
factors as follows: D1 = {100,25,43}, Dy = {o02,31,54}, D3 = {300,42, 15},
Dy = {004,53,21} and D5 = {500, 14,32}. Then we obtain the following

matrix P:

AHAHA
HAHAH
p_ HAAHA
" |AHHAH |’
HAHAA
AHAHH
where the lines and columns are ordered co,1,...,5 and 1,...,5, respectively.

Note that this matrix contains four breaks, which is best possible for n = 3
according to the following lemma.

Lemma 1.7.2. Every oriented factorization of Ko, has at least 2n—2 breaks.

Proof. Suppose D has at most 2n — 3 breaks. Then there are at least three
vertices for which the corresponding lines of the matrix P do not contain any
breaks. At least two of these lines (the lines i and j, say) have to have the
same entry (H, say) in the first column. As both lines do not contain any
breaks, they have the same entries, and thus both have the form

H A H A H...

Then, none of the factors Dy, contains one of the edges ij or ji, a contradiction.
(In intuitive terms: if the teams ¢ and j both have a home match or both have
an away match, they cannot play against each other.) a

The main result of de Werra shows that the bound of Lemma 1.7.2 can
always be achieved.

Theorem 1.7.3. The 1-factorization of Ko, given in Exercise 1.1.2 can al-
ways be oriented in such a way that the corresponding matrix P contains
exactly 2n — 2 breaks.

Sketch of proof. We give an edge {00, k} of the 1-factor Fj, of Exercise 1.1.2
the orientation koo if k is odd, and the orientation ook if k is even. Moreover,
the edge {k+ 1,k —i} of the 1-factor Fj, is oriented as (k+1¢,k —) if 7 is odd,
and as (k — 4,k +4) if ¢ is even. (Note that the orientation in Example 1.1.3
was obtained using this method.) Then it can be shown that the orientated

30 1 Basic Graph Theory

factorization D of K, defined in this way has indeed exactly 2n — 2 breaks.
The lines corresponding to the vertices co and 1 do not contain any breaks,
whereas exactly one break occurs in all the other lines. The comparatively
long, but not really difficult proof of this statement is left to the reader.
Alternatively, the reader may consult [deW81] or [deW88]. O

Sometimes there are other properties an optimal schedule should have. For
instance, if there are two teams from the same city or region, we might want
one of them to have a home game whenever the other has an away game.
Using the optimal schedule from Theorem 1.7.3, this can always be achieved.

Corollary 1.7.4. Let D be the oriented factorization of Ko, with exactly 2n—
2 breaks which was described in Theorem 1.7.3. Then, for each vertex i, there
exists a vertex j such that piy, # pjr for allk=1,...,2n —1.

Proof. The vertex complementary to vertex oo is vertex 1: team oo has a home
game on the k-th day of the season (that is, ook is contained in Dy) if k is
even. Then 1 has the form 1 = k — ¢ for some odd i, so that 1 has an away
game on that day. Similarly it can be shown that the vertex complementary
to 2i (for i =1,...,n — 1) is the vertex 2i 4 1. O

Now we still have the problem of finding a schedule for the return round
of the league. Choose oriented factorizations Dy and Dpg for the first and
second round. Of course, we want D = Dy UDpg to be a complete orientation
of Ks,; hence ji should occur as an edge in Dy if ij occurs in Dg. If this is
the case, D is called a league schedule for 2n teams. For Dy and Dg, there
are home-away patterns Py and Pg, respectively; we call P = (PgyPgr) the
home-away pattern of D. As before, we want a league schedule to have as few
breaks as possible. We have the following result.

Theorem 1.7.5. Fvery league schedule D for 2n teams has at least 4n — 4
breaks; this bound can be achieved for all n.

Proof. As Py and Pg both have at least 2n — 2 breaks by Lemma 1.7.2, P
obviously contains at least 4n — 4 breaks. A league schedule having exactly
4n — 4 breaks can be obtained as follows. By Theorem 1.7.3, there exists
an oriented factorization Dy = {Dy,..., Da,_1} of Ky, with exactly 2n —
2 breaks. Put D = {Fi,...,E2,_1}, where F; is the 1-factor having the
opposite orientation as Da,_;; that is, ji € E; if and only if ij € Da,,_;. Then
Py and Pg each contain exactly 2n — 2 breaks; moreover, the first column of
Pgr corresponds to the factor Ey, and the last column of Py corresponds to
the factor Ds,,_1 which is the factor with the opposite orientation of E;. Thus,
there are no breaks between these two columns of P, and the total number of
breaks is indeed 4n — 4. a

In reality, the league schedules described above are unwelcome, because
the return round begins with the same matches with which the first round
ended, just with home and away games exchanged. Instead, Dy is usually

1.7 An application: Tournaments and leagues 31

defined as follows: Dy = {E1,..., Fap—1}, where E; is the 1-factor oriented
opposite to D;. Such a league schedule is called canonical. The following result
can be proved analogously to Theorem 1.7.5.

Theorem 1.7.6. Every canonical league schedule D for 2n teams has at least
6n — 6 breaks; this bound can be achieved for all n. ad

For more results about league schedules and related problems we refer
to [deW80, deW82, deW88] and [Schr80]. In practice, one often has many
additional secondary restrictions — sometimes even conditions contradicting
each other —so that the above theorems are not sufficient for finding a solution.
In these cases, computers are used to look for an adequate solution satisfying
the most important requirements. As an example, we refer to [Schr92] who
discusses the selection of a schedule for the soccer league in the Netherlands
for the season 1988/89. Another actual application with secondary restrictions
is treated in [deWJM90], while [GrRo96] contains a survey of some European
soccer leagues.

Back to tournaments again! Although any factorization of Ks,, can be used,
in most practical cases there are additional requirements which the schedule
should satisfy. Perhaps the teams should play an equal number of times on
each of the n playing fields, because these might vary in quality. The best one
can ask for in a tournament with 2n — 1 games for each team is, of course,
that each team plays twice on each of n — 1 of the n fields and once on the
remaining field. Such a schedule is called a balanced tournament design. Every
schedule can be written as an n x (2n—1) matrix M = (m;;), where the entry
m;; is given by the pair zy of teams playing in round j on field ¢. Sometimes
it is required in addition that, for the first as well as for the last n columns
of M, the entries in each row of M form a 1-factor of K, ; this is then called
a partitioned balanced tournament design (PBTD) on 2n vertices. Obviously,
such a tournament schedule represents the best possible solution concerning a
uniform distribution of the playing fields. We give an example for n = 5, and
cite an existence result for PBDT’s (without proof) which is due to Lamken
and Vanstone [LaVa87, Lam87].

Example 1.7.7. The following matrix describes a PBTD on 10 vertices:

94 82 13 57 | 06 | 23 45 87 91
83 95 46 02 | 17 | 84 92 05 63
56 03 97 81 | 42 | 67 01 93 85
12 47 80 96 | 53 | 90 86 14 72
07 16 25 43 | 98 | 15 37 26 04

Result 1.7.8. Let n > 5 and n ¢ {9,11,15,26,28,33,34}. Then there exists
a PBTD on 2n vertices. a

Finally, we recommend the interesting survey [LaVa89] about tournament
designs, which are studied in detail in the books of Anderson [And90, And97].

2

Algorithms and Complexity

If to do were as easy as to know
what were good to do...

WILLIAM SHAKESPEARE

In Theorem 1.3.1 we gave a characterization for Eulerian graphs: a graph G
is Eulerian if and only if each vertex of G has even degree. This condition is
easy to verify for any given graph. But how can we really find an Euler tour
in an Eulerian graph? The proof of Theorem 1.3.1 not only guarantees that
such a tour exists, but actually contains a hint how to construct such a tour.
We want to convert this hint into a general method for constructing an Euler
tour in any given Eulerian graph; in short, into an algorithm. In this book
we generally look at problems from the algorithmic point of view: we want
more than just theorems about existence or structure. As Liineburg once said
[Lue82], it is important in the end that we can compute the objects we are
working with. However, we will not go as far as giving concrete programs,
but describe our algorithms in a less formal way. Our main goal is to give an
overview of the basic methods used in a very large area of mathematics; we can
achieve this (without exceeding the limits of this book) only by omitting the
details of programming techniques. Readers interested in concrete programs
are referred to [SyDKS83|] and [NiWi78], where programs in PASCAL and
FORTRAN, respectively, can be found.

Although many algorithms will occur throughout this book, we will not
try to give a formal definition of the concept of algorithms. Such a definition
belongs to both mathematical logic and theoretical computer science and is
given, for instance, in automata theory or in complexity theory; we refer the
reader to [HoUlI79] and [GaJo79]. As a general introduction, we also recom-
mend the books [AhHU74, AhHUS3].

In this chapter, we will try to show in an intuitive way what an algorithm
is and to develop a way to measure the quality of algorithms. In particular,
we will consider some basic aspects of graph theoretic algorithms such as,
for example, the problem of how to represent a graph. Moreover, we need a
way to formulate the algorithms we deal with. We shall illustrate and study
these concepts quite thoroughly using two specific examples, namely Euler
tours and acyclic digraphs. At the end of the chapter we introduce a class of
problems (the so-called NP-complete problems) which plays a central role in

34 2 Algorithms and Complexity

complexity theory; we will meet this type of problem over and over again in
this book.

2.1 Algorithms

First we want to develop an intuitive idea what an algorithm is. Algorithms
are techniques for solving problems. Here the term problem is used in a very
general sense: a problem class comprises infinitely many instances having a
common structure. For example, the problem class ET (Euler tour) consists
of the task to decide — for any given graph G — whether it is Eulerian and,
if this is the case, to construct an Euler tour for G. Thus each graph is an
instance of ET. In general, an algorithm is a technique which can be used to
solve each instance of a given problem class.

According to [BaWo82], an algorithm should have the following properties:

(1) Finiteness of description: The technique can be described by a finite text.

(2) Effectiveness: Each step of the technique has to be feasible (mechanically)
in practice.!

(3) Termination: The technique has to stop for each instance after a finite
number of steps.

(4) Determinism: The sequence of steps has to be uniquely determined for
each instance.?

Of course, an algorithm should also be correct, that is, it should indeed solve
the problem correctly for each instance. Moreover, an algorithm should be
efficient, which means it should work as fast and economically as possible.
We will discuss this requirement in detail in Sections 2.5 and 2.7.

Note that — like [BaWo82] — we make a difference between an algorithm
and a program: an algorithm is a general technique for solving a problem (that
is, it is problem-oriented), whereas a program is the concrete formulation
of an algorithm as it is needed for being executed by a computer (and is
therefore machine-oriented). Thus, the algorithm may be viewed as the essence
of the program. A very detailed study of algorithmic language and program
development can be found in [BaWo82]; see also [Wir76).

Now let us look at a specific problem class, namely ET. The following
example gives a simple technique for solving this problem for an arbitrary
instance, that is, for any given graph.

Tt is probably because of this aspect of mechanical practicability that some peo-
ple doubt if algorithms are really a part of mathematics. I think this is a misunder-
standing: performing an algorithm in practice does not belong to mathematics, but
development and analysis of algorithms — including the translation into a program
— do. Like Liineburg, I am of the opinion that treating a problem algorithmically
means understanding it more thoroughly.

2In most cases, we will not require this property.

2.1 Algorithms 35

Example 2.1.1. Let G be a graph. Carry out the following steps:

(1) If G is not connected?® or if G contains a vertex of odd degree, STOP: the
problem has no solution.

(2) (We now know that G is connected and that all vertices of G have even
degree.) Choose an edge eq, consider each permutation (es,...,e,,) of the
remaining edges and check whether (eq,...,e,,) is an Euler tour, until
such a tour is found.

This algorithm is correct by Theorem 1.3.1, but there is still a lot to be said
against it. First, it is not really an algorithm in the strict sense, because it does
not specify how the permutations of the edges are found and in which order
they are examined; of course, this is merely a technical problem which could
be dealt with.* More importantly, it is clear that examining up to (m — 1)!
permutations is probably not the most intelligent way of solving the problem.
Analyzing the proof of Theorem 1.3.1 (compare also the directed case in 1.6.1)
suggests the following alternative technique going back to Hierholzer [Hie73].

Example 2.1.2. Let G be a graph. Carry out the following steps:

(1) If G is not connected or if G contains a vertex of odd degree, STOP: the
problem has no solution.

(2) Choose a vertex vg and construct a closed trail Cy = (eq, . .., ex) as follows:
for the end vertex v; of the edge e; choose an arbitrary edge e;11 incident
with v; and different from eq,...,e;, as long as this is possible.

(3) If the closed trail C; constructed is an Euler tour: STOP.

(4) Choose a vertex w; on C; incident with some edge in E '\ C;. Construct a
closed trail Z; as in (2) (with start and end vertex w;) in the connected
component of w; in G\ C;.

(5) Form a closed trail C;41 by taking the closed trail C; with start and end
vertex w; and appending the closed trail Z;. Continue with (3).

This technique yields a correct solution: as each vertex of G has even degree,
for any vertex v; reached in (2), there is an edge not yet used which leaves v;,
except perhaps if v; = vg. Thus step (2) really constructs a closed trail. In
(4), the existence of the vertex w; follows from the connectedness of G. The
above technique is not yet deterministic, but that can be helped by numbering
the vertices and edges and — whenever something is to be chosen — always
choosing the vertex or edge having the smallest number. In the future, we will
not explicitly state how to make such choices deterministically. The steps in
2.1.2 are still rather big; in the first few chapters we will present more detailed
versions of the algorithms. Later in the book — when the reader is more used

3We can check whether a graph is connected with the BFS technique presented
in Section 3.3.

4The problem of generating permutations of a given set can be formulated in a
graph theoretic way, see Exercise 2.1.3. Algorithms for this are given in [NiWi78]
and [EveT73].

36 2 Algorithms and Complexity

to our way of stating algorithms — we will often give rather concise versions
of algorithms. A more detailed version of the algorithm in Example 2.1.2 will
be presented in Section 2.3.

Exercise 2.1.3. A frequent problem is to order all permutations of a given
set in such a way that two subsequent permutations differ by only a transpo-
sition. Show that this problem leads to the question whether a certain graph
is Hamiltonian. Draw the graph for the case n = 3.

Exercise 2.1.4. We want to find out in which cases the closed trail Cy con-
structed in Example 2.1.2 (2) is already necessarily Eulerian. An Eulerian
graph is called arbitrarily traceable from vy if each maximal trail beginning in
v is an Euler tour; here mazrimal means that all edges incident with the end
vertex of the trail occur in the trail. Prove the following results due to Ore
(who introduced the concept of arbitrarily traceable graphs [Ore51]) and to
[Baeb3] and [ChWh70].

(a) G is arbitrarily traceable from vg if and only if G \ vg is acyclic.

(b) If G is arbitrarily traceable from v, then vg is a vertex of maximal degree.

(c) If G is arbitrarily traceable from at least three different vertices, then G
is a cycle.

(d) There exist graphs which are arbitrarily traceable from exactly two ver-
tices; one may also prescribe the degree of these vertices.

2.2 Representing graphs

If we want to execute some algorithm for graphs in practice (which usually
means on a computer), we have to think first about how to represent a graph.
We do this now for digraphs; an undirected graph can then be treated by
looking at its complete orientation.® Thus let G be a digraph, for example the
one shown in Figure 2.1. We have labelled the vertices 1,...,6; it is common
practice to use {1,...,n} as the vertex set of a graph with n vertices. The
easiest method to represent G is to list its edges.

Definition 2.2.1 (edge lists).
A directed multigraph G on the vertex set {1,...,n} is specified by:

(i) its number of vertices n;

(ii) the list of its edges, given as a sequence of ordered pairs (a;,b;), that is,
ei = (as, b;).

The digraph G of Figure 2.1 may then be given as follows.

(i) n=6;
5This statement refers only to the representation of graphs in algorithms in

general. For each concrete algorithm, we still have to check whether this substitution
makes sense. For example, we always get directed cycles by this approach.

2.2 Representing graphs 37

(i) 12,23,34, 15,52, 65, 46, 64, 41, 63, 25, 13,

where we write simply ij instead of (4, j). The ordering of the edges was chosen
arbitrarily.

Fig. 2.1. A digraph G

A list of m edges can, for example, be implemented by two arrays [1...m)]
(named head and tail) of type integer; in PASCAL we could also define a
type edge as a record of two components of type integer and then use an
array[l...m] of edge to store the list of edges.

Lists of edges need little space in memory (2m places for m edges), but
they are not convenient to work with. For example, if we need all the vertices
adjacent to a given vertex, we have to search through the entire list which
takes a lot of time. We can avoid this disadvantage either by ordering the
edges in a clever way or by using adjacency lists.

Definition 2.2.2 (incidence lists). A directed multigraph G on the vertex

set {1,...,n} is specified by:

(1) the number of vertices n;

(2) nlists Ay,..., A,, where A; contains the edges beginning in vertex ¢. Here
an edge e = ij is recorded by listing its name and its head j, that is, as
the pair (e, j).

The digraph of Figure 2.1 may then be represented as follows:

(1) n = 6;

(2) A1 : (1,2),(4,5),(12,3); Az : (2,3),(11,5); As: (3,4); As: (7,6),(9,1);
As: (57 2); Ag: (67 5)7 (87 4)7 (]-Oa 3)»

where we have numbered the edges in the same order as in 2.2.1.

Note that incidence lists are basically the same as edge lists, given in a

different ordering and split up into n separate lists. Of course, in the undirected
case, each edge occurs now in two of the incidence lists, whereas it would have

38 2 Algorithms and Complexity

been sufficient to put it in the edge list just once. But working with incidence
lists is much easier, especially for finding all edges incident with a given vertex.
If G is a digraph or a graph (so that there are no parallel edges), it is not
necessary to label the edges, and we can use adjacency lists instead of incidence
lists.

Definition 2.2.3 (adjacency lists). A digraph with vertex set {1,...,n} is

specified by:

(1) the number of vertices n;

(2) n lists Aq,...,A,, where A; contains all vertices j for which G contains
an edge (1, 7).

The digraph of Figure 2.1 may be represented by adjacency lists as follows:

(1) n=6;

(2) A1:2,3,5; A3:3,5; As:4; Ay: 1,65 As: 2; Ag; 3,4, 5.

In the directed case, we sometimes need all edges with a given end vertex

as well as all edges with a given start vertex; then it can be useful to store

backward adjacency lists, where the end vertices are given, as well. For imple-

mentation, it is common to use ordinary or doubly linked lists. Then it is easy
to work on all edges in a list consecutively, and to insert or remove edges.

Finally, we give one further method for representing digraphs.

Definition 2.2.4 (adjacency matrices). A digraph G with vertex set
{1,...,n} is specified by an (n x n)-matrix A = (a;;), where a;; = 1 if and
only if (7,7) is an edge of G, and a,;; = 0 otherwise. A is called the adjacency
matriz of G. For the digraph of Figure 2.1 we have

SO = O OO
O= OO O =
_ O O O = =
—_ o0 Ok OO
_ O O O =
SO OOO

Adjacency matrices can be implemented simply as an array [1...n,1...n].
As they need a lot of space in memory (n? places), they should only be
used (if at all) to represent digraphs having many edges. Though adjacency
matrices are of little practical interest, they are an important theoretical tool
for studying digraphs.

Unless stated otherwise, we always represent (directed) multigraphs by
incidence or adjacency lists. We will not consider procedures for input or
output, or algorithms for treating lists (for operations such as inserting or
removing elements, or reordering or searching a list). These techniques are
not only used in graph theory but belong to the basic algorithms (searching

2.3 The algorithm of Hierholzer 39

and sorting algorithms, fundamental data structures) used in many areas.
We refer the reader to the literature, for instance, [AhHUS83], [Meh84], and
[CoLR90]. We close this section with two exercises about adjacency matrices.

Exercise 2.2.5. Let G be a graph with adjacency matrix A. Show that the
(i, k)-entry of the matrix A" is the number of walks of length h beginning
at vertex ¢ and ending at k. Also prove an analogous result for digraphs and
directed walks.

Exercise 2.2.6. Let G be a strongly regular graph with adjacency matrix A.
Give a quadratic equation for A. Hint: Use Exercise 2.2.5 with h = 2.

Examining the adjacency matrix A — and, in particular, the eigenvalues
of A — is one of the main tools for studying strongly regular graphs; see
[CaLi9l]. In general, the eigenvalues of the adjacency matrix of a graph are
important in algebraic graph theory; see [Big93] and [ScWi78] for an intro-
duction and [CvDS80, CvDGT8T7] for a more extensive treatment. Eigenvalues
have many noteworthy applications in combinatorial optimization as well; the
reader might want to consult the interesting survey [MoPo93].

2.3 The algorithm of Hierholzer

In this section, we study in more detail the algorithm sketched in Example
2.1.2; specifically, we formulate the algorithm of Hierholzer [Hie73] which is
able to find an Euler tour in an Eulerian multigraph, respectively a directed
Euler tour in a directed Eulerian multigraph. We skip the straightforward
checking of the condition on the degrees.

Throughout this book, we will use the symbol « for assigning values:
r < y means that value y is assigned to variable z. Boolean variables can
have values true and false.

Algorithm 2.3.1. Let G be a connected Eulerian multigraph, directed or not,
having vertex set {1,...,n}. Moreover, let s be a vertex of G. We construct
an Euler tour K (which will be directed if G is) with start vertex s.

1. Data structures needed

a) incidence lists Ay,..., A,; for each edge e, we denote the end vertex by
end(e);

b) lists K and C for storing sequences of edges forming a closed trail. We
use doubly linked lists; that is, each element in the list is linked to its
predecessor and its successor, so that these can be found easily;

c¢) a Boolean mapping used on the vertex set, where used(v) has value true if
v occurs in K and value false otherwise, and a list L containing all vertices
v for which used(v) = true holds;

d) for each vertex v, a pointer e(v) which is undefined at the start of the
algorithm and later points to an edge in K beginning in v;

40 2 Algorithms and Complexity

e) a Boolean mapping new on the edge set, where new(e) has value true if e
is not yet contained in the closed trail;
f) variables u, v for vertices and e for edges.

2. Procedure TRACE(v, new; C)
The following procedure constructs a closed trail C' consisting of edges not
yet used, beginning at a given vertex v.

(1) If A, = 0, then return.
(2) (Now we are sure that A, # .) Find the first edge e in A, and delete e
from A,.
3) If new(e) = false, go to (1).
4) (We know that new() = true.) Append e to C.
) If e(v) is undefined, assign to e(v) the position where e occurs in C.
) Assign new(e) < false and v < end(e).
) If used(v) = false, append v to the list L and set used(v) < true.
8) Go to (1).

Here return means that the procedure is aborted: one jumps to the end of
the procedure, and the execution of the program continues with the procedure
which called TRACE. As in the proof of Theorem 1.6.1, the reader may check
that the above procedure indeed constructs a closed trail C' beginning at v.

3. Procedure EULER(G, s; K).

(1) K <), used(v) « false for all vertices v, new(e) « true for all edges e.
2) used(s) « true, append s to L.

) TRACE(s, new; K);

) If L is empty, return.

) Let u be the last element of L. Delete u from L.

)

)

)

)

AAAA,_\/_\

C 0.

TRACE(u, new; C).

Insert C in front of e(u) in K.

Go to (4).

In step (3), a maximal closed trail K beginning at s is constructed and all
vertices occurring in K are stored in L. In steps (5) to (8) we then try, begin-
ning at the last vertex u of L, to construct a detour C' consisting of edges that
were not yet used (that is, which have new(e) = true), and to insert this de-
tour into K. Of course, the detour C' might be empty. As G is connected, the
algorithm ends only if we have used(v) = true for each vertex v of G so that
no further detours are possible. If G is a directed multigraph, the algorithm
works without the function new; we can then just delete each edge from the
incidence list after it has been used.

(

(3
(4
(5
(6
(7
(8
(9

We close this section with a somewhat lengthy exercise; this requires some
definitions. Let S be a given set of s elements, a so-called alphabet. Then
any finite sequence of elements from S is called a word over S. A word of
length N = s" is called a de Bruijn sequence if, for each word w of length

2.4 How to write down algorithms 41

n, there exists an index ¢ such that w = a;a;41 ... a;4,—1, where indices are
taken modulo V. For example, 00011101 is a de Bruijn sequence for s = 2 and
n = 3. These sequences take their name from [deB46]. They are closely related
to shift register sequences of order n, and are, particularly for s = 2, important
in coding theory and cryptography; see, for instance, [Gol67], [MacSI77], and
[Rue86]; an extensive chapter on shift register sequences can also be found in
[Jun93]. We now show how the theorem of Euler for directed multigraphs can
be used to construct de Bruijn sequences for all s and n. However, we have
to admit loops (a,a) as edges here; the reader should convince himself that
Theorem 1.6.1 still holds.

Exercise 2.3.2. Define a digraph G5, having the s"~! words of length n — 1
over an s-element alphabet S as vertices and the s™ words of length n (over
the same alphabet) as edges. The edge a1 ...a, has the word a; ...a,_1 as
tail and the word as...a, as head. Show that the de Bruijn sequences of
length s™ over S correspond to the Euler tours of G, and thus prove the
existence of de Bruijn sequences for all s and n.

Exercise 2.3.3. Draw the digraph G3 3 with S = {0, 1,2} and use Algorithm
2.3.1 to find an Euler tour beginning at the vertex 00; where there is a choice,
always choose the smallest edge (smallest when interpreted as a number).
Finally, write down the corresponding de Bruijn sequence.

The digraphs G, may also be used to determine the number of de Bruijn
sequences for given s and n; see Section 4.8. Algorithms for constructing de
Bruijn sequences can be found in [Ral81] and [Etz86].

2.4 How to write down algorithms

In this section, we introduce some rules for how algorithms are to be de-
scribed. Looking again at Algorithm 2.3.1, we see that the structure of the
algorithm is not easy to recognize. This is mainly due to the jump commands
which hide the loops and conditional ramifications of the algorithm. Here the
comments of Jensen and Wirth [JeWi85] about PASCAL should be used as
a guideline: “A good rule is to avoid the use of jumps to express regular it-
erations and conditional execution of statements, for such jumps destroy the
reflection of the structure of computation in the textual (static) structures of
the program.” This motivates us to borrow some notation from PASCAL —
even if this language is by now more or less outdated — which is used often in
the literature and which will help us to display the structure of an algorithm
more clearly. In particular, these conventions emphasize the loops and ram-
ifications of an algorithm. Throughout this book, we shall use the following
notation.

42 2 Algorithms and Complexity

Notation 2.4.1 (Ramifications).
if B then P;P;...; P, else Q1;Q2;...;Q; fi

is to be interpreted as follows. If condition B is true, the operations Py, ..., Py
are executed; and if B is false, the operations @1, ..., Q; are executed. Here
the alternative is optional so that we might also have

if B then P; P;...; P, fi.

In this case, no operation is executed if condition B is not satisfied.

Notation 2.4.2 (Loops).
for i=1 ton do Pi;...,P; od

specifies that the operations Py, ..., Py are executed for each of the (integer)
values the control variable i takes, namely for ¢ = 1,7 =2, ...,i = n. One
may also decrement the values of ¢ by writing

for i=n downto 1 do Pi;...;P, od.

Notation 2.4.3 (Iterations).

while B do Pi;...;P. od

has the following meaning. If the condition B holds (that is, if B has Boolean
value true), the operations P,..., P, are executed, and this is repeated as
long as B holds. In contrast,

repeat Pi;...;P. until B

requires first of all to execute the operations P, ..., P, and then, if condition
B is not yet satisfied, to repeat these operations until finally condition B
holds. The main difference between these two ways of describing iterations is

that a repeat is executed at least once, whereas the operations in a while
loop are possibly not executed at all, namely if B is not satisfied. Finally,

for s€S do Pi;...;P, od

means that the operations Pi,..., Py are executed |S| times, once for each
element s in S. Here the order of the elements, and hence of the iterations, is
not specified.

Moreover, we write and for the Boolean operation and and or for the
Boolean operation or (not the exclusive or). As before, we shall use « for
assigning values. The blocks of an algorithm arising from ramifications, loops
and iterations will be shown by indentations. As an example, we translate the
algorithm of Hierholzer into our new notation.

Example 2.4.4. Let G be a connected Eulerian multigraph, directed or not,
having vertex set {1,...,n}. Moreover, let s be a vertex of G. We construct
an Euler tour K (which will be directed if G is) with start vertex s. The data
structures used are as in 2.3.1. Again, we have two procedures.

2.5 The complexity of algorithms 43

Procedure TRACE(v, new; C)

1) while A, # 0 do
2) delete the first edge e from A,;

(
(
(3) if new(e) = true
4) then append e at the end of C;
(5) if e(v) is undefined
(6) then assign the position where e occurs in C' to e(v)
(7) fi
(8) new(e) « false, v < end(e);
(9) if used(v) = false
(10) then append v to L;
(11) used(v) « true
(12) fi
(13) fi
(14) od
Procedure EULER(G, s; K)
(1) K <0, L~ 0;
(2) for v € V do used(v) < false od,;
(3) for e € E do new(e) < true od,;
(4) used(s) < true, append s to L;
(5) TRACE(s,new;K);
(6) while L # () do
(7) let u be the last element of L;
(8) delete u from L;
(9) C 0
(10) TRACE(u, new; C);
(11) insert C' in front of e(u) in K
(12) od

While we need a few more lines than in 2.3.1 to write down the algorithm, the
new notation clearly reflects its structure in a much better way. Of course,
this is mainly useful if we use a structured language (like PASCAL or C)
for programming, but even for programming in a language which depends on
jump commands it helps first to understand the structure of the algorithm. We
will look at another example in detail in Section 2.6. First, we shall consider
the question of how one might judge the quality of algorithms.

2.5 The complexity of algorithms

Complexity theory studies the time and memory space an algorithm needs as
a function of on the size of the input data; this approach is used to compare
different algorithms for solving the same problem. To do this in a formally
correct way, we would have to be more precise about what an algorithm is; we

44 2 Algorithms and Complexity

would also have to make clear how input data and the time and space needed
by the algorithm are measured. This could be done using Turing machines
which were first introduced in [Tur36], but that would lead us too far away
from our original intent.

Thus, we will be less formal and simply use the number of vertices or
edges of the relevant (directed) multigraph for measuring the size of the input
data. The time complezity of an algorithm A is the function f, where f(n)
is the maximal number of steps A needs to solve a problem instance having
input data of length n. The space complexity is defined analogously for the
memory space needed. We do not specify what a step really is, but count
the usual arithmetic operations, access to arrays, comparisons, etc. each as
one step. This does only make sense if the numbers in the problem do not
become really big, which is the case for graph-theoretic problems in practice
(but usually not for arithmetic algorithms).

Note that the complexity is always measured for the worst possible case for
a given length of the input data. This is not always realistic; for example, most
variants of the simplex algorithm in linear programming are known to have
exponential complexity although the algorithm works very fast in practice.
Thus it might often be better to use some sort of average complexity. But
then we would have to set up a probability distribution for the input data, and
the whole treatment becomes much more difficult.® Therefore, it is common
practice to look at the complexity for the worst case.

In most cases it is impossible to calculate the complexity f(n) of an algo-
rithm exactly. We are then content with an estimate of how fast f(n) grows.
We shall use the following notation. Let f and g be two mappings from N to
RT. We write

e f(n)=0(g(n)), if there is a constant ¢ > 0 such that f(n) < cg(n) for all
sufficiently large n;

o f(n)=Q(g(n)), if there is a constant ¢ > 0 such that f(n) > cg(n) for all
sufficiently large n;

o f(n) =6(g(n)),if f(n) = O(g(n)) and f(n) = Q(g(n)).

If f(n) = ©(g(n)), we say that f has rate of growth g(n). If f(n) = O(g(n))
or f(n) =Q(g(n)), then f has at most or at least rate of growth g(n), respec-
tively. If the time or space complexity of an algorithm is O(g(n)), we say that
the algorithm has complexity O(g(n)).

We will usually consider the time complexity only and just talk of the
complerity. Note that the space complexity is at most as large as the time
complexity, because the data taking up memory space in the algorithm have
to be read first.

Example 2.5.1. For a graph G we obviously have |E| = O(|V|?); if G is con-
nected, Theorem 1.2.6 implies that |E| = Q(|V]). Graphs with |E| = O(|V|?)

SHow difficult it really is to deal with such a distribution can be seen in the
probabilistic analysis of the simplex algorithm, cf. [Bor87].

2.5 The complexity of algorithms 45

are often called dense, while graphs with |E| = ©O(|V]) are called sparse.
Corollary 1.5.4 tells us that the connected planar graphs are sparse. Note
that O(log |E|) and O(log|V|) are the same for connected graphs, because
the logarithms differ only by a constant factor.

Example 2.5.2. Algorithm 2.3.1 has complexity ©(|E|), because each edge
is treated at least once and at most twice during the procedure TRACE;
each such examination of an edge is done in a number of steps bounded by a
constant, and constants can be disregarded in the notation we use. Note that
|V| does not appear because of |E| = Q(|V]), as G is connected.

If, for a problem P, there exists an algorithm having complexity O(f(n)),
we say that P has complexity at most O(f(n)). If each algorithm for P has
complexity Q(g(n)), we say that P has complexity at least Q(g(n)). If, in
addition, there is an algorithm for P with complexity O(g(n)), then P has
complexity ©(g(n)).

Example 2.5.3. The problem of finding Euler tours has complexity O(|E|):
we have provided an algorithm with this complexity, and obviously each al-
gorithm for this problem has to consider all the edges to be able to put them
into a sequence forming an Euler tour.

Unfortunately, in most cases it is much more difficult to find lower bounds
for the complexity of a problem than to find upper bounds, because it is
hard to say something non-trivial about all possible algorithms for a problem.
Another problem with the above conventions for the complexity of algorithms
lies in disregarding constants, as this means that the rates of growth are
only asymptotically significant — that is, for very large n. For example, if we
know that the rate of growth is linear — that is O(n) — but the constant is
¢ = 1,000,000, this would not tell us anything about the common practical
cases involving relatively small n. In fact, the asymptotically fastest algorithms
for integer multiplication are only interesting in practice if the numbers treated
are quite large; see, for instance, [AhHU74]. However, for the algorithms we
are going to look at, the constants will always be small (mostly < 10).

In practice, the polynomial algorithms — that is, the algorithms of com-
plexity O(n¥) for some k — have proved to be the most useful. Such algorithms
are also called efficient or — following Edmonds [Edm65b] — good. Problems for
which a polynomial algorithm exists are also called easy, whereas problems for
which no polynomial algorithm can exist are called intractable or hard. This
terminology may be motivated by considering the difference between polyno-
mial and exponential rates of growth. This difference is illustrated in Table
2.1 and becomes even more obvious by thinking about the consequences of
improved technology. Suppose we can at present — in some fixed amount of
time, say an hour — solve an instance of size N on a computer, at rate of
growth f(n). What effect does a 1000-fold increase in computer speed then
have on the size of instances we are able to solve? If f(n) is polynomial, say

46 2 Algorithms and Complexity

n¥*, we will be able to solve an instance of size ¢cN, where ¢ = 10%/*; for ex-

ample, if k& = 3, this still means a factor of ¢ = 10. If the rate of growth is
exponential, say a¢, there is only an improvement of constant size: we will be
able to solve instances of size N + ¢, where a® = 1000. For example, if a = 2,
we have ¢ ~ 9.97; for a = 5, ¢ = 4.29.

Table 2.1. Rates of growth

f(n) n=10 n =20 n=30 n=>50 n = 100

n 10 20 30 50 100

n? 100 400 900 2,500 10,000

n® 1,000 8,000 27,000 125,000 1,000,000
n* 10,000 160,000 810,000 6,250,000 100,000,000
n 1,024 1,048,576 ~10° =~ 10%° ~ 10%°

2
5" 9,765,625 ~ 10 ~10*' =~ 10% ~ 107

We see that, from a practical point of view, it makes sense to consider
a problem well solved only when we have found a polynomial algorithm for
it. Moreover, if there is a polynomial algorithm, in many cases there is even
an algorithm of rate of growth n* with k& < 3. Unfortunately, there is a very
large class of problems, the so-called NP-complete problems, for which not
only is no polynomial algorithm known, but there is good reason to believe
that such an algorithm cannot exist. These questions are investigated more
thoroughly in complexity theory; see [GaJo79] or [Pap94]. Most algorithms we
study in this book are polynomial. Nevertheless, we will explain in Section 2.7
what NP-completeness is, and show in Section 2.8 that determining a Hamil-
tonian cycle and the TSP are such problems. In Chapter 15, we will develop
strategies for solving such problems (for example, approximation or complete
enumeration) using the TSP as an example; actually, the TSP is often used
as the standard example for NP-complete problems. We will encounter quite
a few NP-complete problems in various parts of this book.

It has to be admitted that most problems arising from practice tend to
be NP-complete. It is indeed rare to be able to solve a practical problem
just by applying one of the polynomial algorithms we shall treat in this book.
Nevertheless, these algorithms are also very important, since they are regularly
used as sub-routines for solving more involved problems.

2.6 Directed acyclic graphs

In this section, we provide another illustration for the definitions and notation
introduced in the previous sections by considering an algorithm which deals
with directed acyclic graphs, that is, digraphs which do not contain directed
closed trails. This sort of graph occurs in many applications, for example in the

2.6 Directed acyclic graphs 47

planning of projects (see 3.6) or for representing the structure of arithmetic
expressions having common parts, see [AhHUS83]. First we give a mathematical
application.

Example 2.6.1. Let (M, <) be a partially ordered set, for short, a poset. This
is a set M together with a reflexive, antisymmetric and transitive relation <.
Note that M corresponds to a directed graph G having vertex set M and the
pairs (x,y) with < y as edges; because of transitivity, G is acyclic.

A common problem is to check whether a given directed graph is acyclic
and, if this is the case, to find a topological sorting of its vertices. That is, we
require an enumeration of the vertices of G (labelling them with the numbers
1,...,n, say) such that i < j holds for each edge ij. Using the following
lemma, we shall show that such a sorting exists for every directed acyclic
graph.

Lemma 2.6.2. Let G be a directed acyclic graph. Then G contains at least
one vertex with di, (v) = 0.

Proof. Choose a vertex vg. If di,,(vg) = 0, there is nothing to show. Otherwise,
there is an edge vivg. If din(v1) = 0, we are done. Otherwise, there exists
an edge vovy. As G is acyclic, vo # vy. Continuing this procedure, we get a

sequence of distinct vertices vg,v1,...,Vk,.... As G has only finitely many
vertices, this sequence has to terminate, so that we reach a vertex v with
din(’t}) =0. O

Theorem 2.6.3. Every directed acyclic graph admits a topological sorting.

Proof. By Lemma 2.6.2, we may choose a vertex v with di,(v) = 0. Consider
the directed graph H = G'\ v. Obviously, H is acyclic as well and thus can be
sorted topologically, using induction on the number of vertices, say by labelling
the vertices as va, . .., v,. Then (v, vq, ..., v,) is the desired topological sorting
of G. a

Corollary 2.6.4. Each partially ordered set may be embedded into a linearly
ordered set.

Proof. Let (v1,...,v,) be a topological sorting of the corresponding directed
acyclic graph. Then v; < v; always implies ¢ < j, so that v; < ... < v, is a
complete linear ordering. a

Next we present an algorithm which decides whether a given digraph is
acyclic and, if this is the case, finds a topological sorting. We use the same
technique as in the proof of Theorem 2.6.3, that is, we successively delete
vertices with di, (v) = 0. To make the algorithm more efficient, we use a list
of the indegrees d;,(v) and bring it up to date whenever a vertex is deleted;
in this way, we do not have to search the entire graph to find vertices with
indegree 0. Moreover, we keep a list of all the vertices having d;,(v) = 0. The
following algorithm is due to Kahn [Kah62].

48 2 Algorithms and Complexity

Algorithm 2.6.5. Let G be a directed graph with vertex set {1,...,n}. The
algorithm checks whether G is acyclic; in this case, it also determines a topo-
logical sorting.
Data structures needed

a) adjacency lists Ay, ..., Ap;

b) a function ind, where ind(v) = d;y, (v);

¢) a function topnr, where topnr(v) gives the index of vertex v in the topo-

logical sorting;
d) a list L of the vertices v having ind(v) = 0;
e) a Boolean variable acyclic and an integer variable N (for counting).

Procedure TOPSORT (G; topnr,acyclic)

YN —1, L — 0

2) for i =1 to n do ind(i) < 0 od;
3)fori=1tondo

4 for j € A; do ind(j) < ind(j) + 1 od

]

)

)

)

) od:

) for i =1 to n do if ind(i) = 0 then append ¢ to L fi od,;
) while L # () do

) delete the first vertex v from L;
) topnr(v) < N; N «— N + 1;

) for w e A, do

) ind(w) « ind(w) — 1;

) if ind(w) = 0 then append w to L fi

) od

) od;

) if N =n+ 1 then acyclic « true else acyclic « false fi

(1
(
(
(
(
(
(
(
(
1
1
1
1
1
1

)
6
7
8
9
0
1
2
3
4
)

Py

Theorem 2.6.6. Algorithm 2.6.5 determines whether G is acyclic and con-
structs a topological sorting if this is the case; the complexity is O(|E|) provided
that G is connected.

Proof. The discussion above shows that the algorithm is correct. As G is
connected, we have |E| = Q(|V]), so that initializing the function ind and the
list L in step (2) and (6), respectively, does not take more than O(|F|) steps.
Each edge is treated exactly once in step (4) and at most once in step (10)
which shows that the complexity is O(|E|). O

When checking whether a directed graph is acyclic, each edge has to be
treated at least once. This observation immediately implies the following re-
sult.

Corollary 2.6.7. The problem of checking whether a given connected digraph
is acyclic or not has complezity ©(|E|). O

2.7 NP-complete problems 49

Exercise 2.6.8. Show that any algorithm which checks whether a digraph
given in terms of its adjacency matrix is acyclic or not has complexity at least
QVI).

The above exercise shows that the complexity of an algorithm might de-
pend considerably upon the chosen representation for the directed multigraph.

Exercise 2.6.9. Apply Algorithm 2.6.5 to the digraph G in Figure 2.2, and
give an alternative drawing for G which reflects the topological ordering.

1

7
Fig. 2.2. A digraph

In the remainder of this book, we will present algorithms in less detail.
In particular, we will not explain the data structures used explicitly if they
are clear from the context. Unless stated otherwise, all multigraphs will be
represented by incidence or adjacency lists.

2.7 NP-complete problems

Up to now, we have encountered only polynomial algorithms; problems which
can be solved by such an algorithm are called polynomial or — as in Section 2.5
— easy. Now we turn our attention to another class of problems. To do so, we
restrict ourselves to decision problems, that is, to problems whose solution is
either yes or no. The following problem HC is such a problem; other decision
problems which we have solved already are the question whether a given
multigraph (directed or not) is Eulerian, and the problem whether a given
digraph is acyclic.

Problem 2.7.1 (Hamiltonian cycle, HC). Let G be a given connected
graph. Does G have a Hamiltonian cycle?

50 2 Algorithms and Complexity

We will see that Problem 2.7.1 is just as difficult as the TSP defined in
Problem 1.4.9. To do so, we have to make an excursion into complexity theory.
The following problem is arguably the most important decision problem.

Problem 2.7.2 (satisfiability, SAT). Let z1,...,z, be Boolean variables:
they take values true or false. We consider formulae in x4, . . ., x,, in conjunctive
normal form, namely terms C1Cs ... C,,, where each of the C; has the form
ri+ 2%+ ... with 2] = x; or x} = Tj; in other words, each C; is a disjunction
of some, possibly negated, variables.” The problem requires deciding whether
any of the possible combinations of values for the x; gives the entire term
Ci...C,, the value true. In the special case where each of the C; consists of
exactly three literals, the problem is called 3-satisfiability (3-SAT).

Most of the problems of interest to us are not decision problems but opti-
mization problems: among all possible structures of a given kind (for example,
for the TSP considered in Section 1.4, among all possible tours), we look for
the optimal one with respect to a certain criterion (for example, for the short-
est tour). We shall solve many such problems: finding shortest paths, minimal
spanning trees, maximal flows, maximal matchings, etc.

Note that each optimization problem gives rise to a decision problem
involving an additional parameter; we illustrate this using the TSP. For a
given matrix W = (w;;) and every positive integer M, the associated decision
problem is the question whether there exists a tour 7 such that w(n) < M.
There is a further class of problems lying in between decision problems and
optimization problems, namely evaluation problems; here one asks for the
value of an optimal solution without requiring the explicit solution itself. For
example, for the TSP we may ask for the length of an optimal tour without
demanding to be shown this tour. Clearly, every algorithm for an optimiza-
tion problem solves the corresponding evaluation problem as well; similarly,
solving an evaluation problems also gives a solution for the associated decision
problem. It is not so clear whether the converse of these statements is true.
But surely an optimization problem is at least as hard as the corresponding
decision problem, which is all we will need to know.®

"We write p for the negation of the logical variable p, p 4+ ¢ for the disjunction
p or q, and pq for the conjunction p and q. The 2 are called literals, the C; are
clauses.

8We may solve an evaluation problem quite efficiently by repeated calls of the
associated decision problem, if we use a binary search. But in general, we do not
know how to find an optimal solution just from its value. However, in problems from
graph theory, it is often sufficient to know that the value of an optimal solution can
be determined polynomially. For example, for the TSP we would check in polynomial
time whether there is an optimal solution not containing a given edge. In this way
we can find an optimal tour by sequentially using the algorithm for the evaluation
problem a linear number of times.

2.7 NP-complete problems 51

We denote the class of all polynomial decision problems by P (for poly-
nomial).® The class of decision problems for which a positive answer can be
verified in polynomial time is denoted by NP (for non-deterministic polyno-
mial). That is, for an NP-problem, in addition to the answer yes or no we
require the specification of a certificate enabling us to verify the correctness of
a positive answer in polynomial time. We explain this concept by considering
two examples, first using the TSP. If a possible solution — for the TSP, a tour
— is presented, it has to be possible to check in polynomial time

e whether the candidate has the required structure (namely, whether it is
really a tour, and not, say, just a permutation with several cycles)

e and whether the candidate satisfies the condition imposed (that is, whether
the tour has length w(r) < M, where M is the given bound).

Our second example is the question whether a given connected graph is not
Eulerian. A positive answer can be verified by giving a vertex of odd degree.'?
We emphasize that the definition of NP does not demand that a negative
answer can be verified in polynomial time. The class of decision problems for
which a negative answer can be verified in polynomial time is denoted by
Co-NP.!!

Obviously, P C NP N Co-NP, as any polynomial algorithm for a decision
problem even provides the correct answer in polynomial time. On the other
hand, it is not clear whether every problem from NP is necessarily in P or
in Co-NP. For example, we do not know any polynomial algorithm for the
TSP. Nevertheless, we can verify a positive answer in polynomial time by
checking whether the certificate 7 is a cyclic permutation of the vertices,
calculating w(w), and comparing w(w) with M. However, we do not know
any polynomial algorithm which could check a negative answer for the TSP,
namely the assertion that no tour of length < M exists (for an arbitrary M).
In fact, the questions whether P = NP or NP = Co-NP are the outstanding
questions of complexity theory. As we will see, there are good reasons to
believe that the conjecture P # NP (and NP # Co-NP) is true. To this end,
we consider a special class of problems within NP.

A problem is called NP-complete if it is in NP and if the polynomial
solvability of this problem would imply that all other problems in NP are
solvable in polynomial time as well. More precisely, we require that any given

9To be formally correct, we would have to state how an instance of a problem
is coded (so that the length of the input data could be measured) and what an
algorithm is. This can be done by using the concept of a Turing machine introduced
by [Tur36]. For detailed expositions of complexity theory, we refer to [GaJo79],
[LePa81], and [Pap94].

Note that no analogous certificate is known for the question whether a graph is
not Hamiltonian.

HThus, for NP as well as for Co-NP, we look at a kind of oracle which presents
some (positive or negative) answer to us; and this answer has to be verifiable in
polynomial time.

52 2 Algorithms and Complexity

problem in NP can be transformed in polynomial time to the specific problem
such that a solution of this NP-complete problem also gives a solution of
the other, arbitrary problem in NP. We will soon see some examples of such
transformations. Note that NP-completeness is a very strong condition: if we
could find a polynomial algorithm for such a problem, we would prove P =
NP. Of course, there is no obvious reason why any NP-complete problems
should exist. The following celebrated theorem due to Cook [Coo71] provides
a positive answer to this question; for the rather technical and lengthy proof,
we refer to [GaJo79] or [PaSt82].

Result 2.7.3 (Cook’s theorem). SAT and 3-SAT are NP-complete. O

Once a first NP-complete problem (such as 3-SAT) has been found, other
problems can be shown to be NP-complete by transforming the known NP-
complete problem in polynomial time to these problems. Thus it has to be
shown that a polynomial algorithm for the new problem implies that the given
NP-complete problem is polynomially solvable as well. As a major example,
we shall present a (quite involved) polynomial transformation of 3-SAT to
HC in Section 2.8. This will prove the following result of Karp [Kar72] which
we shall use right now to provide a rather simple example for the method of
transforming problems.

Theorem 2.7.4. HC is NP-complete. a

Theorem 2.7.5. TSP is NP-complete.

Proof. We have already seen that TSP is in NP. Now assume the existence
of a polynomial algorithm for TSP. We use this hypothetical algorithm to
construct a polynomial algorithm for HC as follows. Let G = (V,E) be a
given connected graph, where V' = {1,...,n}, and let K, be the complete
graph on V with weights

1 forij e FE,
Wij 1= .
J 2 otherwise.

Obviously, G has a Hamiltonian cycle if and only if there exists a tour 7 of
weight w(m) < n (and then, of course, w(r) = n) in K,. Thus the given
polynomial algorithm for TSP allows us to decide HC in polynomial time;
hence Theorem 2.7.4 shows that TSP is NP-complete. a

Exercise 2.7.6 (directed Hamiltonian cycle, DHC). Show that it is
NP-complete to decide whether a directed graph G contains a directed Hamil-
tonian cycle.

Exercise 2.7.7 (Hamiltonian path, HP). Show that it is NP-complete to
decide whether a given graph G contains a Hamiltonian path (that is, a path
containing each vertex of G).

2.8 HC is NP-complete 53

Exercise 2.7.8 (Longest path). Show that it is NP-complete to decide
whether a given graph GG contains a path consisting of at least k£ edges. Prove
that this also holds when we are allowed to specify the end vertices of the
path. Also find an analogous results concerning longest cycles.

Hundreds of problems have been recognized as NP-complete, including
many which have been studied for decades and which are important in prac-
tice. Detailed lists can be found in [GaJo79] or [Pap94]. For none of these
problems a polynomial algorithm could be found in spite of enormous efforts,
which gives some support for the conjecture P # NP.!2 In spite of some theo-
retical progress, this important problem remains open, but at least it has led
to the development of structural complezity theory; see, for instance, [Boo94]
for a survey. Anyway, proving that NP-complete problems are indeed hard
would not remove the necessity of dealing with these problems in practice.
Some possibilities how this might be done will be discussed in Chapter 15.

Finally, we introduce one further notion. A problem which is not neces-
sarily in NP, but whose polynomial solvability would nevertheless imply P =
NP is called NP-hard. In particular, any optimization problem corresponding
to an NP-complete decision problem is an NP-hard problem.

2.8 HC is NP-complete

In this section (which is somewhat technical and may be skipped during the
first reading) we prove Theorem 2.7.4 and show that HC is NP-complete.
Following [GaJoT9], our proof makes a detour via another very important NP-
complete graph theoretical problem; a proof which transforms 3-SAT directly
to HC can be found in [PaSt82]. First, a definition. A vertex cover of a graph
G = (V,E) is a subset V' of V such that each edge of G is incident with at
least one vertex in V.

Problem 2.8.1 (vertex cover, VC). Let G = (V, E) be a graph and k a
positive integer. Does G have a vertex cover V/ with |V’| < k?

Obviously, the problem VC is in NP. We prove a further important result
due to Karp [Kar72] and show that VC is NP-complete by transforming 3-
SAT polynomially to VC and applying Result 2.7.3. The technique we employ
is used often for this kind of proof: we construct, for each instance of 3-SAT,
a graph consisting of special-purpose components combined in an elaborate
way. This strategy should become clear during the proofs of Theorem 2.8.2
and Theorem 2.7.4.

Theorem 2.8.2. V(' is NP-complete.

2Thus we can presumably read NP-complete also as non-polynomial. However,
one also finds the opposite conjecture P = NP (along with some incorrect attempts
at proving this claim) and the suggestion that the problem might be undecidable.

54 2 Algorithms and Complexity

Proof. We want to transform 3-SAT polynomially to VC. Thus let C1...C,,
be an instance of 3-SAT, and let z1,...,z, be the variables occurring in
Ci,...,Cp,. For each x;, we form a copy of the complete graph Ks:

T, = (V;, E;) where V;={z;,7;} and E;={z;7;}.

The purpose of these truth-setting components is to determine the Boolean
value of x;. Similarly, for each clause C; (j = 1,...,m), we form a copy
Sj = (V], E}) of Ks:

! !
‘/j = {Clj,ng, ng} and Ej = {CleQj,Clj03j, CQngj}.

The purpose of these satisfaction-testing components is to check the Boolean
value of the clauses. The m+n graphs constructed in this way are the special-
purpose components of the graph G which we will associate with C ... Cyy;
note that they merely depend on n and m, but not on the specific structure
of Cy...C,,. We now come to the only part of the construction of G which
uses the specific structure, namely connecting the S; and the T; by further
edges, the communication edges. For each clause Cj, we let u;, vj, and w; be
the three literals occurring in C; and define the following set of edges:

"
Ej = {cljuj, C25Vj, ng’wj}.

Finally, we define G = (V, E) as the union of all these vertices and edges:

V::OVZ-UGVJ-’ and E::OEZ-UOE;-UGE;’.
i=1 j=1 i=1 j=1 j=1

Clearly, the construction of G can be performed in polynomial time in n and
m. Figure 2.3 shows, as an example, the graph corresponding to the instance

(x1 + T3 +72)(TT + 22 + Ta)

of 3-SAT. We now claim that G has a vertex cover W with [W| < k =n+2m
if and only if there is a combination of Boolean values for z1, ..., z, such that
C4...C,, has value true.

First, let W be such a vertex cover. Obviously, each vertex cover of G has
to contain at least one of the two vertices in V; (for each) and at least two of
the three vertices in Vj’ (for each j), since we have formed complete subgraphs
on these vertex sets. Thus W contain at least n 4+ 2m = k vertices, and hence
actually |W| = k. But then W has to contain exactly one of the two vertices
x; and T; and exactly two of the three vertices in Sj, for each ¢ and for each
j. This fact allows us to use W to define a combination w of Boolean values
for the variables 1, ..., x, as follows. If W contains x;, we set w(z;) = true;
otherwise W has to contain the vertex 77, and we set w(z;) = false.

Now consider an arbitrary clause C;. As W contains exactly two of the
three vertices in Vj’ , these two vertices are incident with exactly two of the

2.8 HC is NP-complete 55

three edges in E;’ . As W is a vertex cover, it has to contain a vertex incident
with the third edge, say c3jw;, and hence W contains the corresponding vertex
in one of the V; — here the vertex corresponding to the literal w;, that is, to
either z; or T;. By our definition of the truth assignment w, this literal has
the value true, making the clause C; true. As this holds for all j, the formula
Cy...C,, also takes the Boolean value true under w.

T X1) X9 z3 x3 Ty o
L J @
C21
C22
C11 C31 C12 C32

Fig. 2.3. An instance of VC

Conversely, let w be an assignment of Boolean values for the variables
T1,...,Ty, such that Cy ... C,, takes the value true. We define a subset W C V
as follows. If w(x;) = true, W contains the vertex x;, otherwise W contains
Z; (for i = 1,...,n). Then all edges in E; are covered. Moreover, at least one
edge e; of £ is covered (for each j = 1,...,m), since the clause C; takes the
value true under w. Adding the end vertices in S; of the other two edges of
E;-’ to W, we cover all edges of E;/ and of E’ so that W is indeed a vertex
cover of cardinality k. a

Exercise 2.8.3. An independent set (IS) (or stable set) in a graph G = (V, E)
is a subset U of the vertex set V' such that no two vertices in U are adjacent. A
clique in G is a subset C of V such that all pairs of vertices in C' are adjacent.
Prove that the following two problems are NP-complete by relating them to
the problem VC.

(a) Independent set. Does a given graph G contain an independent set of

cardinality > k7
(b) Clique. Does a given graph G contain a clique of cardinality > k?

In view of from Theorem 2.8.2, we may now prove the NP-completeness of
HC by transforming VC polynomially to HC; as before, we follow [GaJo79].
Let G = (V,E) be a given instance of VC, and k a positive integer. We
have to construct a graph G’ = (V’/, E’) in polynomial time such that G’ is

56 2 Algorithms and Complexity

Hamiltonian if and only if G has a vertex cover of cardinality at most k. Again,
we first define some special-purpose components. There are k special vertices
ai, - . .,ay called selector vertices, as they will be used to select k vertices from
V. For each edge e = uv € E, we define a subgraph T, = (V/, E!) with 12
vertices and 14 edges as follows (see Figure 2.4):

V! :={(u,e,i):i=1,...,6}U{(v,e,9):i=1,...,6};

E. = {{(u,e,i), (u,e,i+ 1)} :i=1,...,5}
U{{(v,e,i),(v,e,s+1)}:i=1,...,5}
U {{(u,e,1), (v, e,3)},{(u,€e,3), (v,e,1)}}
U {{(u,e,4), (v,e,6)},{(u,e,6),(v,e,4)}}.

This cover-testing component T, will make sure that the vertex set W C V
determined by the selectors aq,...,ar contains at least one of the vertices
incident with e. Only the outer vertices (u, e, 1), (u,e,6), (v,e,1) and (v, e, 6)
of T, will be incident with further edges of G’; this forces each Hamiltonian
cycle of G’ to run through each of the subgraphs T, using one of the paths
shown in Figure 2.5, as the reader can (and should) easily check.

(u,e,1) (v,e,1)
(u,e,2) @ o (v,¢,2)
(u,e,3) (v,¢€,3)
(u,e,4) (v,e,4)
(u,e,5) @ o (v,¢,5)
(u,e,6) (v,e,6)

Fig. 2.4. Cover-testing component

Now we describe the remaining edges of G'. For each vertex v € V', we label the
edges incident with v as evy,. .., ev4eg» and connect the degv corresponding
graphs T, by the following edges:

E! = {{(v,ev;,6), (v,eviy1,1)} i =1,...,degv — 1}.

These edges create a path in G’ which contains precisely the vertices (x,y, 2)
with x = v, see Figure 2.6. Finally, we connect the start and end vertices of
all these paths to each of the selectors a;:

E":={{a;,(v,ev1, 1)} 1 =1,...,k} U{{aj, (v, eVdegv,6)} : j = 1,...k}.

2.8 HC is NP-complete 57

Then G’ = (V'/, E’) is the union of all these vertices and edges:

Vi={ay,...,ax}U|JV/ and E:=|JEUl|JEUE"
ecE ecE veV

Obviously, G’ can be constructed from G in polynomial time. Now suppose
that G’ contains a Hamiltonian cycle K. Let P be a trail contained in K
beginning at a selector a; and not containing any further selector. It is easy
to see that P runs through exactly those T, which correspond to all the edges
incident with a certain vertex v € V (in the order given in Figure 2.6). Each
of the T, appears in one of the ways shown in Figure 2.5, and no vertices from
other cover-testing components T}, (not corresponding to edges f incident
with v) can occur. Thus the k selectors divide the Hamiltonian cycle K into k
trails Py, ..., Pg, each corresponding to a vertex v € V. As K contains all the
vertices of G’ and as the vertices of an arbitrary cover-testing component T
can only occur in K by occurring in a trail corresponding to one of the vertices
incident with f, the k vertices of V' determined by the trails P, ..., P, form
a vertex cover W of G.

Fig. 2.5.

Conversely, let W be a vertex cover of GG, where |W| < k. We may assume
|W| = k (because W remains a vertex cover if arbitrary vertices are added
to it). Write W = {vy,..., v }. The edge set of the desired Hamiltonian cycle
K is determined as follows. For each edge e = uv of G we choose the thick
edges in T, drawn in one of the three graphs of Figure 2.5, where our choice
depends on the intersection of W with e as follows:

e if WNe={u}, we choose the edges of the graph on the left;
o if WNe={v}, we choose the edges of the graph on the right;
o if WnNe={u,v}, we choose the edges of the graph in the middle.

58 2 Algorithms and Complexity

(v, evy,1)

\\(\v, €Vdeg v; 1)
~,

(’l), €Vdeg v 6)

Fig. 2.6.

Moreover, K contains all edges in E;, (fori=1,...,k) and the edges

{ai,(vi,(evi)l,l)} for i = 17...,]6;
{ait1, (vi, (€Vi)degr;»6)} fori=1,...,k—1; and

{alv (’Ukv (euk)deg Vg y 6)}

The reader may check that K is indeed a Hamiltonian cycle for G’.

3

Shortest Paths

So many paths that wind and wind. . .
ErLLA WHEELER WILCOX

One of the most common applications of graphs in everyday life is representing
networks for traffic or for data communication. The schematic map of the
German motorway system in the official guide Autobahn Service, the railroad
or bus lines in some public transportation system, and the network of routes
an airline offers are routinely represented by graphs. Therefore it is obviously
of great practical interest to study paths in such graphs. In particular, we
often look for paths which are good or even best in some respect: sometimes
the shortest or the fastest route is required, sometimes we want the cheapest
path or the one which is safest — for example, we might want the route where
we are least likely to encounter a speed-control installation. Thus we will study
shortest paths in graphs and digraphs in this chapter; as we shall see, this is
a topic whose interest extends beyond traffic networks.

3.1 Shortest paths

Let G = (V, E) be a graph or a digraph on which a mapping w : E — R is
defined. We call the pair (G, w) a network; the number w(e) is called the length
of the edge e. Of course, this terminology is not intended to exclude other
interpretations such as cost, duration, capacity, weight, or probability; we
will encounter several examples later. For instance, in the context of studying
spanning trees, we usually interpret w(e) as the weight of the edge e. But
in the present chapter the reader should keep the intuitive interpretation of
distances in a network of streets in mind. This naturally leads to the following
definition. For each walk W = (ey,...,e,), the length of W is w(W) :=
w(ey)+...+w(ey); of course, W has to be directed for digraphs. The distance
d(a,b) between two vertices a and b in G is the minimum over all lengths
of walks starting at a and ending at b. There are two difficulties with this
definition: first, b might not be accessible from a, and second, a minimum
might fail to exist. The first problem is solved by defining d(a,b) = oo if b is
not accessible from a. The second problem arises from the possible existence

60 3 Shortest Paths

of cycles of negative length. For example, in the network shown in Figure 3.1,
we can find a walk of arbitrary negative length from a to b by using the cycle
(x,y, z,z) as often as needed. This problem can be avoided by restricting the
definition to trails. Most of the networks we will deal with will not contain
any cycles of negative length; then the distance between two vertices is well-
defined even if we allow walks in the definition.

z

0@ I x 3 ’ I =0 b

Fig. 3.1. A network

The reader might wonder why negative lengths are allowed at all and
whether they occur in practice. The answer is yes, they do occur, as the
following example taken from [Law76] shows; this also provides a first example
for another interpretation of the length of an edge.

Example 3.1.1. A trading ship travels from port a to port b, where the
route (and possible intermediary ports) may be chosen freely. The routes are
represented by trails in a digraph G, and the length w(e) of an edge e = zy
signifies the profit gained by going from x to y. For some edges, the ship
might have to travel empty so that w(e) is negative for these edges: the profit
is actually a loss. Replacing w by —w in this network, the shortest path
represents the route which yields the largest possible profit.

Clearly, the practical importance of the preceding example is negligible.
We will encounter genuinely important applications later when treating flows
and circulations, where the existence of cycles of negative length — and finding
such cycles — will be an essential tool for determining an optimal circulation.

Thus, we allow negative values for w in general and define distances as
explained above. A shortest path from a to b then is a trail (directed in the
case of digraphs) of length d(a,b) from a to b. If G does not contain any
cycles of negative length, we can also talk of shortest walks. Note that always
d(a,a) = 0, since an empty sum is considered to have value 0, as usual. If we
talk of shortest paths and distances in a graph (or a digraph) without giving
any explicit length function, we always use the length function which assigns
length w(e) = 1 to each edge e.

We now give an example for an interpretation of shortest paths which
allows us to formulate a problem (which at first glance might seem completely
out of place here) as a problem of finding shortest paths in a suitable graph.

Example 3.1.2. In many applications, the length of an edge signifies the
probability of its failing — for instance, in networks of telephone lines, or broad-

3.2 Finite metric spaces 61

casting systems, in computer networks, or in transportation routes. In all these
cases, one is looking for the route having the highest probability for not fail-
ing. Let p(i,j) be the probability that edge (i,j) does not fail. Under the —
not always realistic — assumption that failings of edges occur independently of
each other, p(e1)...p(e,) gives the probability that the walk (eq,...,e,) can
be used without interruption. We want to maximize this probability over all
possible walks with start vertex a and end vertex b. Note first that the maxi-
mum of the product of the p(e) is reached if and only if the logarithm of the
product, namely log p(e1) +. .. +1og p(e,), is maximal. Moreover, log p(e) < 0
for all e, since p(e) < 1. We now put w(e) = —logp(e); then w(e) > 0 for all
e, and we have to find a walk from a to b for which w(e1) +... + w(e,)
becomes minimal. Thus our problem is reduced to a shortest path problem.
In particular, this technique solves the problem mentioned in our introduc-
tory remarks — finding a route where it is least likely that our speed will be
controlled by the police — provided that we know for all edges the probability
of a speed check.

In principle, a technique for finding shortest paths can also be used to
find longest paths: replacing w by —w, a longest path with respect to w is
just a shortest path with respect to —w. However, good algorithms for finding
shortest paths are known only for the case where G does not contain any
cycles of negative length. In the general case we basically have to look at
all possible paths. Note that replacing w by —w in general creates cycles of
negative length.

Exercise 3.1.3 (knapsack problem). Consider n given objects, each of
which has an associated weight a; and also a value cj, where both the a;
and the c¢; are positive integers. We ask for a subset of these objects such that
the sum of their weights does not exceed a certain bound b and such that the
sum of their values is maximal. Packing a knapsack provides a good example,
which explains the terminology used. Reduce this problem to finding a longest
path in a suitable network. Hint: Use an acyclic network with a start vertex
s, an end vertex t, and b + 1 vertices for each object.

3.2 Finite metric spaces

Before looking at algorithms for finding shortest paths, we want to show that
there is a connection between the notions of distance and metric space. We
recall that a metric space is a pair (X, d) consisting of a set X and a mapping
d: X? — R{ satisfying the following three conditions for all z,y,z € X:

(MS1) d(z,y) >0, and d(z,y) = 0 if and only if z = y;
(MS2) d(z,y) = d(y, »);
(MS3) d(z,z) < d(z,y) +d(y, 2).

62 3 Shortest Paths

The value d(z,y) is called the distance between x and y; the inequality in
(MS3) is referred to as the triangle inequality. The matrix D = (d(z,y))z yex
is called the distance matriz of (X, d).

Now consider a network (G,w), where G is a graph and w is a positive
valued mapping w : E — R*. Note that a walk with start vertex a and end
vertex b which has length d(a,b) — where the distance between a and b is
defined as in Section 3.1 — is necessarily a path. The following result states
that our use of the term distance in this context is justified; the simple proof
is left to the reader.

Lemma 3.2.1. Let G = (V, E) be a connected graph with a positive length
function w. Then (V,d) is a finite metric space, where the distance function
d is defined as in Section 3.1. ad

Lemma 3.2.1 suggests the question whether any finite metric space can be
realized by a network. More precisely, let D be the distance matrix of a finite
metric space (V,d). Does a graph G = (V, E) with length function w exist
such that its distance matrix with respect to w agrees with D7 Hakimi and
Yau [HaVa64] answered this question as follows.

Proposition 3.2.2. Any finite metric space can be realized by a network with
a positive length function.

Proof. Let (V,d) be a finite metric space. Choose G to be the complete graph
with vertex set V', and let the length function w be the given distance function
d. By d’ we denote the distance in the network (G, w) as defined in Section
3.1; we have to show d = w = d'. Thus let W = (eq1,...,e,) be a trail with
start vertex a and end vertex b. For n > 2, an iterative application of the
triangle inequality yields:

w(W) =w(er) +...+w(ey,) =d(er) + ... +d(e,) > d(a,b).
As the one edge path a — b has length d(a,b), we are finished. a

Exercise 3.2.3. Find a condition under which a finite metric space can be
realized by a graph, that is, by a network all of whose edges have length 1;
see [KaCh65)].

We have only considered the case where a metric space (V,d) is realized
by a network on the vertex set V. More generally, we could allow a network
on a graph G = (V',E) with V' C V', where the distance dg(a,b) in G for
two vertices a,b of V' is the same as their distance d(a, b) in the metric space.
Such a realization is called optimal if the sum of all lengths of edges is minimal
among all possible realizations. It is not obvious that such optimal realizations
exist, but they do; see [Dre84] and [ImSZ84].

3.3 Breadth first search and bipartite graphs 63

Example 3.2.4. The following simple example shows that the realization
given in the proof of Proposition 3.2.2 is not necessarily optimal. Let d(a,b) =
d(b,c¢) = 4 and d(a, c) = 6. The realization on K3 has total length 14, whereas
there is a realization on four vertices with total length just seven:

Fig. 3.2. Two realizations of a distance matrix

Realizations of metric spaces by networks have been intensively studied.
In particular, the question whether a given metric space can be realized on a
tree has sparked considerable interest; such a realization is necessarily optimal
[HaVa64]. Bunemann [Bun74] proved that a realization on a tree is possible if
and only if the following condition holds for any four vertices z,y, z,t of the
given metric space:

d(z,y) + d(2,t) < max (d(z, 2) + d(y,),d(z,t) + d(y, 2)).

A different characterization (using ultra-metrics) is due to [Ban90]. We also
refer the reader to [Sim88] and [Alt88]. The problem of finding an optimal
realization is difficult in general: it is NP-hard [Win88].

3.3 Breadth first search and bipartite graphs

We now turn to examining algorithms for finding shortest paths. All tech-
niques presented here also apply to multigraphs, but this generalization is of
little interest: when looking for shortest paths, out of a set of parallel edges
we only use the one having smallest length. In this section, we consider a
particularly simple special case, namely distances in graphs (where each edge
has length 1). The following algorithm was suggested by Moore [Moo59] and
is known as breadth first search, or, for short, BFS. It is one of the most
fundamental methods in algorithmic graph theory.

Algorithm 3.3.1 (BFS). Let G be a graph or digraph given by adjacency
lists A,. Moreover, let s be an arbitrary vertex of G and Q a queue.! The
vertices of G are labelled with integers d(v) as follows:

'Recall that a queue is a data structure for which elements are always appended
at the end, but removed at the beginning (first in — first out). For a discussion of
the implementation of queues we refer to [AhHU83] or [CoLR90].

64 3 Shortest Paths

Procedure BFS(G, s;d)

) Q «— 0; d(s) «

) append s to Q,

) while Q # 0 do

) remove the first vertex v from Q;
) for w e A, do

) if d(w) is undefined
) then d(w) «— d(v) + 1
) append w to Q
) fi

)

)

(od

(1

(2
(3
(4
(5
(6
(7
(8
(9
10
(11

od

Theorem 3.3.2. Algorithm 3.3.1 has complexity O(|E|). At the end of the
algorithm, every vertex t of G satisfies

d(s,t) = {d(t) if d(t) is defined,

oo otherwise.

Proof. Obviously, each edge is examined at most twice by BFS (in the directed
case, only once), which yields the assertion about the complexity. Moreover,
d(s,t) = oo if and only if ¢ is not accessible from s, and thus d(t) stays
undefined throughout the algorithm. Now let ¢ be a vertex such that d(s,t) #
00. Then d(s,t) < d(t), since t was reached by a path of length d(t) from s.
We show that equality holds by using induction on d(s,t). This is trivial for
d(s,t) =0, that is, s = t. Now assume d(s,t) = n + 1 and let (s,v1,...,v,,1)
be a shortest path from s to t. Then (s,v1,...,v,) is a shortest path from
s to v, and, by our induction hypothesis, d(s,v,) = n = d(v,). Therefore
d(v,) < d(t), and thus BFS deals with v, before ¢t during the while-loop. On
the other hand, G contains the edge v,t so that BFS certainly reaches ¢ when
examining the adjacency list of v, (if not earlier). This shows d(t) < n + 1
and hence d(t) =n + 1. O

Corollary 3.3.3. Let s be a vertex of a graph G. Then G is connected if and
only if d(t) is defined for each vertex t at the end of BFS(G, s;d). a

Note that the statement analogous to Corollary 3.3.3 for directed graphs is
not true. If we want to check whether a given digraph is connected, we should
apply BFS to the corresponding graph |G|. Applying BFS(G, s;d) for each
vertex s of a digraph allows us to decide whether G is strongly connected;
clearly, this holds if and only if BFS(G, s;d) always reaches all vertices ¢t and
assigns values to d(t). However, this method is not very efficient, as it has
complexity O(|V||E|). In Chapter 8, we will see a much better technique
which has complexity O(|E]).

3.3 Breadth first search and bipartite graphs 65

For an example, let us consider how BFS runs on the digraph G drawn
in Figure 3.3. To make the algorithm deterministic, we select the vertices in
alphabetical order in step (5) of the BFS. In Figures 3.4 and 3.5, we illustrate
the output of BFS both for G and the associated graph |G|. To make things
clearer, we have drawn the vertices in levels according to their distance to s;
also, we have omitted all edges leading to vertices already labelled. Thus all
we see of |G| is a spanning tree , that is, a spanning subgraph of G which
is a tree. This kind of tree will be studied more closely in Chapter 4. Note
that distances in G and in |G| do not always coincide, as was to be expected.
However, we always have dg(s,t) > dg|(s,t).

a d h
®
s
¢ f
b e g

Fig. 3.3. A digraph G

o=

Fig. 3.4. BFS-tree for G

Exercise 3.3.4. Design a BFS-based algorithm COMP(G) which determines
the connected components of a graph G.

66 3 Shortest Paths

0 ' 1 ' 2 ' 3
a	
[d [ﬁ	
)
s	
1	
¢	
T ® T ®	
I b I ¢ I g

Fig. 3.5. BFS-tree for |G|

Next we consider a particularly important class of graphs, namely the bi-
partite graphs. As we shall see soon, BFS gives an easy way to decide whether
or not a graph belongs to this class. Here a graph G = (V, E) is said to be
bipartite if there is a partition V =S U T of its vertex set such that the sets
of edges E|S and E|T are empty, that is, each edge of G is incident with one
vertex in S and one vertex in T'. The following theorem gives a very useful
characterization of these graphs.

Theorem 3.3.5. A graph G is bipartite if and only if it does not contain any
cycles of odd length.

Proof. First suppose that G is bipartite and let V = S U T be the corre-
sponding partition of its vertex set. Consider an arbitrary closed trail in G,
say

C:vy —wvg — ... — v, — v1.

We may assume v; € S. Then
wel, wvyeS, wveT, ... , v,e€T, vi€es,

as there are no edges within S or 7. Hence n must be even.

Conversely, suppose that G does not contain any cycles of odd length.
We may assume that G is connected. Choose some vertex xg. Let S be the
set of all vertices z having even distance d(z,z) from zg, and let T be the
complement of S. Now suppose that there is an edge zy in G with z,y € S.
Let W, and W, be shortest paths from xg to x and y, respectively. By our
definition of S, both these paths have even length. Let us denote the last
common vertex of W, and W, by z (traversing both paths starting at z),
and call their final parts (leading from z to z and y, respectively) W, and
W,. Then it is easily seen that

3.3 Breadth first search and bipartite graphs 67

W W,
xmzyyxyx

is a cycle of odd length in G, a contradiction. Similarly, G' cannot contain an
edge ry with x,y € T. Hence S U T is a partition of V such that there are no
edges within S or T, and G is bipartite. a

The proof of Theorem 3.3.5 shows how we may use the distances d(s,t)
in G (from a given start vertex s) for finding an appropriate partition of the
vertex set of a given bipartite graph G. These distances can be determined
using BF'S; of course, we should modify Algorithm 3.3.1 in such a way that
it detects cycles of odd length, in case G is not bipartite. This is actually
rather simple: when BFS examines an edge e for the first time, a cycle of odd
length containing e exists if and only if e has both its vertices in the same
level. This gives us the desired criterion for checking whether G is bipartite
or not; moreover, if G is bipartite, the part of G determined by s consists of
those vertices which have even distance from s. These observations lead to
the following algorithm and the subsequent theorem.

Algorithm 3.3.6. Let G be a connected graph and s a vertex of G.
Procedure BIPART(G, s; S, T,bip)

1) Q@ < 0, d(s) < 0, bip « true, S «— 0;
append s to Q;
while Q # () and bip = true do
remove the first vertex v of ();
for w € A, do
if d(w) is undefined
then d(w) < d(v) + 1; append w to @
else if d(v) = d(w) then bip « false fi
fi

DO

3

[N

od

od;

if bip = true then for v € V do
if d(v) =0 (mod 2) then S — SU{v} fi
od;

T—V\S

= = e e e e o o o o~~~ —

DU W~ O O oo ~J o Ut
NSNS N N NI S S N NN

NN N AN N S
j=p]

Theorem 3.3.7. Algorithm 3.3.6 checks with complexity O(|E|) whether a
given connected graph G is bipartite; if this is the case, it also determines the
corresponding partition of the vertex set. ad

Exercise 3.3.8. Describe a BFS-based algorithm which finds with complexity
O(|V]|E|) a shortest cycle in — and thus the girth of — a given graph G.

68 3 Shortest Paths

The problem of finding a shortest cycle was extensively studied by Itai and
Rodeh [ItRo78] who also treated the analogous problem for directed graphs.
The best known algorithm has a complexity of O(|V|?); see [YuZw97]. BFS
can also be used to find a shortest cycle of even or odd length, respectively;
see [Mon83].

3.4 Bellman’s equations and acyclic digraphs

We now turn to the problem of determining shortest paths in a general net-
work; actually, all known algorithms for this problem even find a shortest path
from the start vertex s to each vertex ¢ which is accessible from s. Choosing
t in a special way does not decrease the complexity of the algorithms. As
agreed in Section 3.1, we always assume that G does not contain any cycles of
negative length. Moreover, we assume from now on that G is a directed graph
so that all paths used are also directed.?

Without loss of generality, we may assume that G has vertex set V =
{1,...,n}. Let us write w;; := w(ij) if G contains the edge ij, and w;; = oo
otherwise. Furthermore, let u; denote the distance d(s,), where s is the start
vertex; in most cases, we will simply take s = 1. Now any shortest path from s
to 7 has to contain a final edge ki, and deleting this edge yields a shortest path
from s to k. Hence the distances u; have to satisfy the following system of
equations due to Bellman [Bel58], where we assume for the sake of simplicity
that s = 1.

Proposition 3.4.1 (Bellman’s equations). Let s = 1. Then

(B) u1 =0 and w;=min{ug +wg;:i#k} fori=2,...,n. O

We will now show that the system of equations (B) has a unique solution
— namely the distances u; in G — provided that G contains only cycles of
positive length and that each vertex is accessible from 1. To this purpose, let
u; (i =1,...,n) be any solution of (B) and choose some vertex j # 1. We
want to construct a path of length u; from 1 to j. To do so, we first choose
some edge kj with u; = up +wy;, then an edge ik with uy = u; +w;y, etc. Let
us show that this construction cannot yield a cycle. Suppose, to the contrary,
we were to get a cycle, say

C:vy — vy — ... — v, — 1.
Then we would have the following equations which imply w(C) = 0, a con-
tradiction to our assumption that G contains cycles of positive length only:

2For nonnegative length functions, the undirected case can be treated by consid-

ering the complete orientation a‘ instead of G. If we want to allow edges of negative
length, we need a construction which is considerably more involved, see Section 14.6.

3.4 Bellman’s equations and acyclic digraphs 69

Uy, = Uy, + Wy,,, v1

= Uy, + W,y —10m + Wy,,, vy

= Uy, + Wyypy + oo+ Wy v -

Thus our construction can only stop at the special vertex 1, yielding a path
from 1 to j. Also, for each vertex i occurring on this path, the part of the path
leading to 4 has length ;. Continuing in this way for all other vertices not yet
occurring in the path(s) constructed so far — where we construct a new path
backward only until we reach some vertex on one of the paths constructed
earlier — we obtain a directed spanning tree with root 1. In particular, we
may apply this technique to the distances in G, since they satisfy Bellman’s
equations. This proves the following result.

Theorem 3.4.2. If 1 is a root of G and if all cycles of G have positive length
with respect to w, then G contains a spanning arborescence with root 1 for
which the path from 1 to any other vertexr in G always is a shortest path. 0O

A spanning arborescence with root s is usually called a shortest path tree
for the network (G,w) if, for each vertex v, the path from s to v in T has
length d(s, v); we will often use the shorter term SP-tree. Thus Theorem 3.4.2
shows that an SP-tree exists provided that all cycles of G have positive length
with respect to w.

Now let ug,...,u, be the distances in G, and let u},...,u!, be a further
solution of (B). Suppose u; # u; for some j. The above construction shows
that u; is the length of some — not necessarily shortest — path from 1 to j. As
u; = d(1,7), this means u; > u;. Let kj be the last edge in a path of length v
from 1 to j. By induction, we may assume uy = uj,. But then u} > uj + wg;
which contradicts (B). Hence u; = u3 forall j =1,...,n, proving the desired
uniqueness result.

Theorem 3.4.3. If 1 is a root of G and if all cycles of G have positive length
with respect to w, then Bellman’s equations have a unique solution, namely
the distances uj; = d(1, 7). O

In view of the preceding results, we have to solve the system of equations
(B). We begin with the simplest possible case, where G is an acyclic digraph.
As we saw in Section 2.6, we can find a topological sorting of G in O(|E)|)
steps. After having executed TOPSORT, let us replace each vertex v by its
number topnr(v). Then every edge ij in G satisfies ¢ < j, and we may simplify
Bellman’s equations as follows:

up =0 and wuw; =min{up +wg;:k=1,...,i—1} fori=2,...,n.

Obviously, this system of equations can be solved recursively in O(|E|) steps
if we use backward adjacency lists, where each list contains the edges with a
common head. This proves the following result.

70 3 Shortest Paths

Theorem 3.4.4. Let N be a network on an acyclic digraph G with root s.
Then one can construct a shortest path tree with root s in O(|E|) steps. O

Mehlhorn and Schmidt [MeSc86] found a larger class of graphs (contain-
ing the acyclic digraphs) for which with complexity O(|E|) it is possible to
determine the distances with respect to a given vertex.

Exercise 3.4.5. Show that, under the same conditions as in Theorem 3.4.4,
we can also with complexity O(|E|) determine a system of longest paths from
s to all other vertices. Does this yield an efficient algorithm for the knapsack
problem of Exercise 3.1.37 What happens if we drop the condition that the
graph should be acyclic?

Let us return to SP-trees again. We want to prove the following important
strengthening of Theorem 3.4.2:

Theorem 3.4.6. Let G be a digraph with root s, and let w: E — R be a length
function on G. If the network (G,w) does not contain any directed cycles of
negative length, then there exists an SP-tree with root s for (G,w).

Proof. Let v # s be an arbitrary vertex of G. By hypothesis, v is accessible
from s; let W be a trail of shortest length d(s, v) from s to v. As (G,w) does
not contain any directed cycles of negative length, W is even a shortest walk
from s to v. Now let u be the last vertex on W before v, so that the final edge
of W is e = uv. Then W\ e has to be a shortest trail from s to u: if W’ were
a trail from s to u shorter than W\ e, then W’ — e would be a shorter walk
from s to v than W. Hence

d(s,v) = d(s,u) + w(uw). (3.1)

Thus we may, for each vertex v # s, choose an edge e = e, = wv satisfying
condition (3.1). This gives |V| — 1 edges which together form a spanning
arborescence T of G with root 5.2 It is now easy to see that the unique path
P, from s to v in T always has length d(s,v): this follows by induction on
the number of edges contained in P, using the fact that all edges of T satisfy
condition (3.1). Thus T is the desired SP-tree for (G, w). O

Exercise 3.4.7. Show that the condition that no cycles of negative length
exist is necessary for proving Theorem 3.4.6: if (G,w) contains a directed
cycle of negative length, then thereis no SP-tree for (G, w).

Exercise 3.4.8. Let T be a spanning arborescence with root s in a network
(G,w) which does not contain any directed cycles of negative length. Show
that T' is an SP-tree if and only if the following condition holds for each edge
e =uv of G:

dr(s,v) < dr(s,u)+ w(uv), (3.2)

where dr(s,u) denotes the distance from s to u in the network (T, w|T).

3The reader should check this for himself as an exercise; a formal proof can be
found in Lemma 4.8.1.

3.5 An application: Scheduling projects 71
3.5 An application: Scheduling projects

We saw in Exercise 3.4.5 that it is easy to find longest paths in an acyclic
digraph. We will use this fact to solve a rather simple instance of the problem
of making up a schedule for a project. If we want to carry out a complex project
— such as, for example, building a dam, a shopping center or an airplane — the
various tasks ought to be well coordinated to avoid loss of time and money.
This is the goal of network planning, which is, according to [Mue73] “the
tool from operations research used most.” [Ta92] states that these techniques
‘enjoy tremendous popularity among practitioners in the field’. We restrict
ourselves to the simple case where we have restrictions on the chronological
sequence of the tasks only: there are some tasks which we cannot begin before
certain others are finished. We are interested in the shortest possible time the
project takes, and would like to know the points of time when each of the tasks
should be started. Two very similar methods to solve this problem, namely the
critical path method (CPM) and the project evaluation and review technique
(PERT) were developed between 1956 and 1958 by two different groups, cf.
[Ta92] and [Mue73]. CPM was introduced by E. I. du Pont de Nemours &
Company to help schedule construction projects, and PERT was developed
by Remington Rand for the U.S. Navy to help schedule the research and
development activities for the Polaris missile program. CPM-PERT is based
on determining longest paths in an acyclic digraph. We shall use a formulation
where the activities in the project are represented by vertices; alternatively,
one could also represent them by arcs, cf. [Ta92].

First, we assign a vertex ¢ € {1,..., N} of a digraph G to each of the N
tasks of our project. We let 75 be an edge of G if and only if task ¢ has to be
finished before beginning task j. The edge 4j then has length w;; = d; equal
to the time task ¢ takes. Note that G has to be acyclic, because otherwise
the tasks in a cycle in G could never be started. As we have seen in Lemma
2.6.2, G contains at least one vertex v with di,(v) = 0 and, analogously, at
least one vertex w with doyt(w) = 0. We introduce a new vertex s (the start
of the project) and add edges sv for all vertices v with d;,(v) = 0; similarly,
we introduce a new vertex z (the end of the project) and add edges wz for
all vertices w with dout(w) = 0. All the new edges sv have length 0, whereas
the edges wz are given length d,,. In this way we get a larger digraph H with
root s; by Theorem 2.6.3, we may assume H to be topologically sorted.

Now we denote the earliest possible point of time at which we could start
task i by t;. As all the tasks immediately preceding ¢ have to be finished
before, we get the following system of equations:

(CPM) ts =0 and ¢; = max {t; + wk;: ki an edge in H}.

This system of equations is analogous to Bellman’s equations and describes
the longest paths in H, compare Exercise 3.4.5. As in Theorem 3.4.3, (CPM)
has a unique solution which again is easy to calculate recursively, since H is
topologically sorted and thus only contains edges ij with ¢ < j. The minimal

72 3 Shortest Paths

amount of time the project takes is the length T' = ¢, of a longest path from
s to z. If the project is actually to be finished at time T, the latest point of
time T; where we can still start task i is given recursively by

T,=T and T; = min {T; — w;;: ij an edge in H}.

Thus T, —T; is the length of a longest path from ¢ to z. Of course, we should
get Ty = 0, which is useful for checking our calculations. The difference m; =
T; — t; between the earliest point of time and the latest point of time for
beginning task i is called float or slack. All tasks ¢ having float m; = 0 are
called critical, because they have to be started exactly at the point of time
T; = t;, as otherwise the whole project would be delayed. Note that each
longest path from s to z contains critical tasks only; for that reason each such
path is called a critical path for H. In general, there will be more than one
critical path.

In practice, H will not contain all edges ij for which ¢ has to be finished
before j, but only those edges for which ¢ is an immediate predecessor of j
so that there are no intermediate tasks between 7 and j. As an example, let
us consider a simplified schedule for building a house. First, we need a list of
the tasks, the amount of time they take, and which tasks have to be finished
before which other tasks; this information can be found in Table 3.2. The
corresponding digraph is shown in Figure 3.6. We have drawn the edges as
undirected edges to make the figure somewhat simpler: all edges are to be
considered as directed from left to right.

The way the digraph is drawn in Figure 3.6, it is not necessary to state a
topological sorting of the vertices explicitly; see Exercise 3.5.2. Using (CPM),
we calculate consecutively

tSZO, t1:0, t2:07 t3:3, t4:5, t5:77 t8:7,
te =14, t11 =14, t153=17, t; =17, tg=18, t19= 18,
t1p =20, t1qa=22, t15=25 tig=28, T =t,=33.

Similarly, we compute the T; and the floats m;:

T.=33, m.,=0; Tig=28, mie=0; Ti5=25 m5=0;
Tio=29, mia=9; Ti4=22, myu=0; Tog=27, mg=09;
To=21, mpo=3; T7;=20, mry;=3; Tiz=17, my3=0;
Te=17, mg=3; Ti1=14, m;1=0; T5=7, m5=0;
Tg =18, mg=11; T4=5 my=0; T35=3, m3=0;

T1 =0, m=0; To=1, mo=1; Ty=0, mg=0.

Thus the critical tasks are s,1,3,4,5,11,13,14,15,16, z, and they form (in
this order) the critical path, which is unique for this example.

3.5 An application: Scheduling projects 73

Table 3.1. Project of building a house

Vertex Task Amount of time Preceding tasks

1 prepare the building site 3 -

2 deliver the building material 2 -

3 dig the foundation-hole 2 1,2

4 build the foundation 2 3

5 build the walls 7 4

6 build the roof supports 3 5

7 cover the roof 1 6

8 connect the water pipes to the house 3 4

9 plasterwork outside 2 7,8
10 install the windows 1 7,8
11 put in the ceilings 3 5
12 lay out the garden 4 9,10
13 install inside plumbing 5 11
14 put insulation on the walls 3 10,13
15 paint the walls 3 14
16 move 5 15

Fig. 3.6. Digraph for the project of building a house

Further information on project scheduling can be found in the books [Ta92]
and [Mue73], and in the references given there. Of course, there is much more
to scheduling than the simple method we considered. In practice there are
often further constraints that have to be satisfied, such as scarce resources
like limited amounts of machinery or restricted numbers of workers at a given
point of time. For a good general overview of scheduling, the reader is referred
to [LaLRS93]. We close this section with a couple of exercises; the first of these
is taken from [MueT73].

74 3 Shortest Paths

Exercise 3.5.1. A factory wants to replace an old production facility by a
new one; the necessary tasks are listed in the table below. Draw the corre-
sponding network and determine the values t¢;, T;, and m;.

Table 3.2. Project of building a new production facility

Vertex Task Amount of time Preceding tasks
1 ask for offers, compare and order 25 -
2 take apart the old facility 8 -
3 remove the old foundation 5 2
4 plan the new foundation 9 1
5 term of delivery for the new facility 21 1
6 build the new foundation 9 3,4
7 install the new facility 6 5,6
8 train the staff 15 1
9 install electrical connections 2 7

10 test run 1 8,9

11 acceptance test and celebration 2 10

Exercise 3.5.2. Let G be an acyclic digraph with root s. The rank r(v) of
a vertex v is the maximal length of a directed path from s to v. Use the
methods introduced in this chapter to find an algorithm which determines
the rank function.

Exercise 3.5.3. Let GG be an acyclic digraph with root s, given by adjacency
lists A,. Show that the following algorithm computes the rank function on G,
and determine its complexity:

Procedure RANK(G, s;7)

) create a list Sy, whose only element is s;
r(s) « 0; k « 0;

3) for veV do d() < din(v) od;

4) while S # 0 do

create a new list Sk41;

for v € S;, do

7 for w € A, do

(1
(2)
(3)
(4)
(5)
(6)
(7)
(8) if d(w) =1
(9)
10)
11)
12)
13)
14)
1

O

9 then append w to Sgy1; r(w) — k+1; p(w) «— v
fi;
d(w) — d(w) —

od
od;

)

kE—k+1

w N

4
5) 0

How can we determine d(w)? How can a longest path from s to v be found?
Can RANK be used to find a topological sorting of G?

(
(
(
(
(
(

3.6 The algorithm of Dijkstra 75

3.6 The algorithm of Dijkstra

In this section, we consider networks having all lengths nonnegative. In this
case Bellman’s equations can be solved by the algorithm of Dijkstra [Dij59],
which is probably the most popular algorithm for finding shortest paths.

Algorithm 3.6.1. Let (G, w) be a network, where G is a graph or a digraph
and all lengths w(e) are nonnegative. The adjacency list of a vertex v is
denoted by A,. We want to calculate the distances with respect to a vertex s.

Procedure DIJKSTRA (G, w, s;d)

1) d(s) <0, T« V;

2) for v € V'\ {s} do d(v) « o0 od;
3) while T # () do

4) find some w € T such that d(u) is minimal;

5) T —T\A{u};

6) for v € TN A, do d(v) « min(d(v), d(u) + wyy) od
7)

Theorem 3.6.2. Algorithm 3.6.1 determines with complezity O(|V'|?) the dis-
tances with respect to some vertex s in (G,w). More precisely, at the end of
the algorithm

d(s,t) =d(t) for each vertex t.

Proof. Obviously, d(t) = oo if and only if ¢ is not accessible from s. Now assume
d(t) # oo. Then d(s,t) < d(t), as the algorithm reaches t via a directed path
of length d(t) from s to ¢t. We will show the converse inequality d(t) < d(s,t)
by using induction on the order in which vertices are removed from 1. The
first vertex removed is s; trivially d(s) = 0 = d(s, s). Now suppose that the
inequality is true for all vertices ¢t that were removed from T before u. We
may assume that d(u) is finite. Moreover, let

€1 €9 €
s =1 vy e v, =u

be a shortest path from s to u. Then

h
d(s,v) = Zw(ej) for h=0,...,n.

Jj=1

Choose i as the maximal index such that v; was removed from T' before u. By
the induction hypothesis,

d(s,v;) = d(v;) = Y _w(e;).
j=1

76 3 Shortest Paths

Let us consider the iteration where v; is removed from 7' in the while loop. As
v;41 1s adjacent to v;, the inequality d(v;11) < d(v;) + w(e;41) is established
during this iteration. But d(v;41) cannot be increased again in the subsequent
iterations and, hence, this inequality still holds when u is removed. Thus

d(vit1) < d(vy)+wleirr) = d(s,v;) +w(eir1) = d(s,vip1) < d(s,u). (3.3)

Suppose first v;41 # u, that is, i # n — 1. By equation (3.3), d(s,u) < d(u)
would imply d(v;11) < d(u); but then v;41 would have been removed from T
before u in view of the selection rule in step (4), contradicting the fact that
we chose i to be maximal. Hence indeed d(u) < d(s,u), as asserted. Finally,
for u = v;11, the desired inequality follows directly from equation (3.3). This
establishes the correctness of Dijkstra’s algorithm. For the complexity, note
that in step (4) the minimum of the d(v) has to be calculated (for v € T),
which can be done with |T|—1 comparisons. In the beginning of the algorithm,
|T| = |V, and then |T| is decreased by 1 with each iteration. Thus we need
O(|V']?) steps altogether for the execution of (4). It is easy to see that all other
operations can also be done in O(|V|?) steps. O

We remark that the algorithm of Dijkstra might not work if there are
negative weights in the network, even if no cycles of negative length exist. Note
that the estimate in equation (3.3) does not hold any more if w(e; 1) < 0. An
algorithm which works also for negative weights can be found in Exercise 3.6.9.

Exercise 3.6.3. Modify Dijkstra’s algorithm in such a way that it actually
gives a shortest path from s to ¢, not just the distance d(s,t). If s is a root of
G, construct an SP-tree for (G, w).

Example 3.6.4. Consider the network given in Figure 3.7 with vertex set
V ={1,...,8} With s = 1, Algorithm 3.6.1 is executed as follows, where the
final values for d is indicated in bold face:

start values: d(1)=0,d(i)=oc0 fori=2,...,8, T=V.
Iteration I: u=1T=1{2,...,8},d(2) = 28, d(3) =2,d(5
Iteration II: u=>5T=1{23,4,6,7,8}, d(2) =9, d(3) =
Iteration III: ~ w=3,T ={2,4,6,7,8}, d(2) =9, d(6) = 26,
Iteration IV: uw=2,T ={4,6,7,8}, d(4) = 18, d(6) = 19;
Iteration V: u=4,T=1{6,7,8}, d(6) =19, d(7) = 26, d(8) = 25;
Iteration VI: uw=6,T = {7,8}, d(8) = 20;

Iteration VII: uw=38,T = {7}, d(7) = 26;

Iteration VIII: uw="7,T = 0.

)

(5
2,)

_/@

d(
d(8) =

Exercise 3.6.5. Calculate the distance s with respect to s = 1 for the under-
lying undirected network.

3.6 The algorithm of Dijkstra 7

Fig. 3.7. A network

Let us return to the complexity of Dijkstra’s algorithm. Initializing the
variables in (1) and (2) takes O(|V|) steps. During the entire while loop, each
edge e = uv is considered exactly once, namely during the iteration where u
is removed from T'. Thus step (6) contributes only O(|E|) to the complexity
of the algorithm, which is — at least for sparse graphs — much better than
O(|V|?). Therefore it makes sense to try to reduce the number of comparisons
in step (4) by using an appropriate data structure.

Recall that a priority queue (sometimes also called a heap) is a data struc-
ture consisting of a number of elements each of which is associated with a real
number, its priority. Permissible operations include inserting elements accord-
ing to their priority as well as determining and removing the element with the
smallest priority; the latter operation is usually referred to as DELETEMIN.
As shown in computer science, a priority queue with n elements can be imple-
mented in such a way that each of these two operations can be executed with
complexity O(logn); we need a refinement of this standard implementation
which enables us also to remove a given element or reduce its priority with
the same complexity O(logn). We do not go into any details here but refer
the reader to [AhHUS83] or [CoLR90]. Using these results, we put the vertex
set of our digraph into a priority queue 1" in Dijkstra’s algorithm, with d as
the priority function. This leads to the following modified algorithm.

Algorithm 3.6.6. Let (G,w) be a given network, where G is a graph or a
digraph and all lengths w(e) are nonnegative. We denote the adjacency list
of v by A,. Moreover, let T be a priority queue with priority function d. The
algorithm calculates the distances with respect to a vertex s.

Procedure DIJKSTRAPQ(G, w, s;d).
(1) T« {s}, d(s) < 0;

78 3 Shortest Paths

2) for s € V'\ {s} do d(v) < oo od;
3) while T' # () do
4 u := min T}
DELETEMIN (T);
for v € A, do
if d(v) = o0

then d(v) — d(u) + wyy;
insert v with priority d(v) into T

else if d(u) + wy,y < d(v)
then change the priority of v to d(v) « d(u) + Wy,
fi

=W N = O © oo 0 WL
PN AN AN N N NI A A AN 2

od

= = e e e o~ o o~ o~~~ —~

Py

ot
=}
o

As noted before, each of the operations during the while loop can be per-
formed in O(log |V]) steps, and altogether we need at most O(|E|) + O(|V])
such operations. If G is connected, this gives the following result.

Theorem 3.6.7. Let (G,w) be a connected network, where w is nonnega-
tive. Then Algorithm 3.6.6 (the modified algorithm of Dijkstra) has complexity
O(|E|log |[V]). 0

The discussion above provides a nice example for the fact that sometimes
we can decrease the complexity of a graph theoretical algorithm by selecting
more appropriate (which usually means more complex) data structures. But
this is not a one-way road: conversely, graph theory is a most important tool
for implementing data structures. For example, priority queues are usually
implemented using a special types of trees (for instance, so-called 2-3-trees).
A nice treatment of the close interplay between algorithms from graph theory
and data structures may be found in [Tar83].

Exercise 3.6.8. Let s be a vertex of a planar network with a nonnegative
length function. What complexity does the calculation of the distances with
respect to s have?

Using even more involved data structures, we can further improve the
results of Theorem 3.6.7 and Exercise 3.6.8. Implementing a priority queue
appropriately (for instance, as a Fibonacci Heap), inserting an element or re-
ducing the priority of a given element can be done in O(1) steps; DELETEMIN
still requires O(log n) steps. Thus one may reduce the complexity of Algorithm
3.6.6 to O(JE| + |V|log|V]); see [FrTa87]. The best theoretical bound known
at present is O(|E| + (|V|1log|V])/(loglog |V])); see [FrtWi94]. This algorithm,
however, is of no practical interest as the constants hidden in the big-O nota-
tion are too large. If all lengths are relatively small (say, bounded by a constant
C)), one may achieve a complexity of O(|E|+ |V|(log C)/?); see [AhMOTI0].
For the planar case, there is an algorithm with complexity O(|V|(log [V])'/?);

3.7 An application: Train schedules 79

see [Fre87]. A short but nice discussion of various algorithmic approaches of
practical interest is in [Ber93]. More information about practical aspects may
be found in [GaPa88] and [HuDi88].

To end this section, we present an algorithm which can also treat instances
where negative lengths occur, as long as no cycles of negative length exist. This
is due to Ford [For56] and Bellman [Bel58].

Exercise 3.6.9. Let (G, w) be a network without cycles of negative length.
Show that the following algorithm calculates the distances with respect to a
given vertex s and determine its complexity:

Procedure BELLFORD(G, w, 8;d)

) d(s) —
2 forvEV\{s}dod() «— o0 od;

(1

(2)

(3) repeat

(4) for v € V do d'(v) — d(v) od

(5) for v € V do d(v) « min (d'(v), min {d'(u) + wy,: uwv € E}) od
(6) until d(v) = d’'(v) for all v € V.

Apply this algorithm to Example 3.6.4, treating the vertices in the order
1,...,8.

3.7 An application: Train schedules

In this section, we discuss a practical problem which can be solved using
the algorithm of Dijkstra, namely finding optimal connections in a public
transportation system.* Such a system consists of several lines (of trains or
buses) which are served at regular intervals. Typical examples are the German
Intercity network or the American Greyhound bus lines. If someone wants to
use such a system to get from one point to another in the network, it may
be necessary to change lines a couple of times, each time having to wait for
the connection. Often there might be a choice between several routes; we
are interested in finding the fastest one. This task is done in practice by
interactive information systems, giving travellers the optimal routes to their
destinations. For example, the state railway company of the Netherlands uses
such a schedule information system based on the algorithm of Dijkstra, as
described in [SiTu89]. We now use a somewhat simplified example to illustrate
how such a problem can be modelled so that the algorithm of Dijkstra applies.
For the sake of simplicity, we we restrict our interpretation to train lines and
train stations, and we have our trains begin their runs at fixed intervals. Of
course, any set of events occurring at reqular intervals can be treated similarly.

We begin by constructing a digraph G = (V, E') which has the train sta-
tions as vertices and the tracks between two stations as edges. With each edge

41 owe the material of this section to my former student, Dr. Michael Guckert.

80 3 Shortest Paths

e, we associate a travel time f(e); here parallel edges might be used to model
trains going at different speeds. Edges always connect two consecutive points
of a line where the train stops, that is, stations a train just passes through do
not occur on this line. Thus lines are just paths or cycles® in G. With each line
L, we associate a time interval 17, representing the amount of time between
two consecutive trains of this line. For each station v on a line L, we define
the time cycle tr,(v) which specifies at which times the trains of line L leave
station v; this is stated modulo T7,. Now let

€1 (&
L: v 1 . Vp—1 Z

Un

be a line. Clearly, the time of departure at station v; is the sum of the time of
departure at station v;—; and the travelling time f(e;) from v;_1 to v;, taken
modulo 77.% Hence the values ¢ (v;) are determined as follows:”

tr(vo) := sz (mod T1);

tr(vi) :=tr(vi—1) + f(e;) (mod Ty,) fori=1,...,n. (3:4)
The schedule of line L is completely determined by (3.4): the trains depart
from station v; at the time ¢z, (v;) (modulo Tp) in intervals of length T7..
Next we have to calculate the waiting times involved in changing trains.
Let ¢ = uv and ¢ = vw be edges of lines L and L', respectively. A train of
line L' leaves the station v at the times

tr(v), to(v) + T, tr(v) + 2T, ...

and a train of line L reaches station v at the times®

tL(’U), tL(U)+TL, tL(’U) +2TL,

Now assume that L and L’ have different time cycles. Then the waiting time
depends not only on the time cycles, but also on the precise point of time
modulo the least common multiple T" of Ty, and T7/. Let us illustrate this by
an example. Suppose the time cycle of line L is 12 minutes, while that of L’ is
10 minutes so that T' = 60. For ¢1,(v) = 0 and ¢1-(v) = 5 we get the following
schedules at v:

®Remember the Circle line in the London Underground system!

SWe will neglect the amount of time a train stops at station v;. This can be
taken into account by either adding it to the travelling time f(e;) or by introducing
an additional term wr (v;) which then has to be added to tr(vi—1) + f(e;).

"Note that we cannot just put ¢z, (vo) = 0, as different lines may leave their start
stations at different times.

8More precisely, the trains of line L leave station v at these times, that is, they
reach v a little bit earlier. We assume that this short time interval suffices for the
process of changing trains, so that we can leave this out of our considerations as
well.

3.7 An application: Train schedules 81

Line L: 0 12 24 36 48
Line L’ : 5 15 25 35 45 55

Thus the waiting time for the next train of line L’ varies between one minute
and nine minutes in this example. To simplify matters, we now assume that
all time cycles are actually the same. Then the waiting time at station v is
given by

w(vLL/) :tL/('U)ftL(’U) (IIlOd T)

This even applies in case L = L': then we do not have to change trains.

Exercise 3.7.1. Reduce the case of different time cycles to the special case
where all time cycles are equal.

We now construct a further digraph G’ = (V’, E’) which will allow us to
find an optimal connection between two stations directly by finding a shortest
path. Here a connection between two vertices vy and v,, in G means a path

€1 (&
P: v 1 o

in G together with the specification of the line L; corresponding to edge e;
for i =1,...,n, and the travelling time for this connection is

fler) +w(vr,r,) + fle2) t w(vr,ry) + ... twlve, ,r,) + flen). (3.5)

This suggests the following definition of G’. For each vertex v € V and each
line L serving station v, we have two vertices (v, L)i, and (v, L)yt in V'; for
each edge e = vw contained in some line L, there is an edge (v, L)out(w, L)in
in E’. Moreover, for each vertex v contained in both lines L and L', there is an
edge (v, L)in(v, L')ous- Then a directed path from vg to v, in G’ corresponds in
fact to a connection between vy and v,,, and this even includes the information
which lines to use and where to change trains. In order to obtain the travelling
time (3.5) as the length of the corresponding path in G’, we simply define a
weight function w’ on G’ as follows:

w/((vv L)out (’LU, L)in) = f(vw)
U//((’U, L)in(’l), L/)out) = w(’ULL/).

Now our original problem is solved by applying Dijkstra’s algorithm to the
network (G',w’). Indeed, we may find all optimal connections leaving station
v by applying this algorithm (modified as in Exercise 3.6.3) starting from all
vertices in (G’,w’) which have the form (v, L)out.

In this context, let us mention some other problems concerning the design
of a schedule for several lines having fixed time cycles, that is, the problem of
how to choose the times of departure sy, for the lines L for given time cycles
Ty, In general, we might want the desired schedule to be optimal with respect
to one of the following objectives.

82 3 Shortest Paths

e The longest waiting time (or the sum of all the waiting times) should be
minimal.

e The shortest time interval between the departure of two trains from a
station should be maximal; that is, we want a safety interval between
successive trains.

e The sum of all travelling times between any two stations should be min-
imal; we might also give each of the routes a weight in this sum corre-
sponding to its importance, maybe according to the expected number of
travellers.

These problems are considerably more difficult; in fact, they are NP-hard in
general, although polynomial solutions are known when the number of lines
is small. We refer to the literature; in particular, for the first two problems
see [Gul80], [Bur86], and [BrBH90]. The last problem was studied in detail
by Guckert [Guc96], and the related problem of minimizing the sum of the
waiting times of all travellers was treated by Domschke [Dom8&9]. Both these
authors described and tested various heuristics.

3.8 The algorithm of Floyd and Warshall

Sometimes it is not enough to calculate the distances with respect to a certain
vertex s in a given network: we need to know the distances between all pairs
of vertices. Of course, we may repeatedly apply one of the algorithms treated
before, varying the start vertex s over all vertices in V. This results in the
following complexities, depending on the specific algorithm used.

algorithm of Moore: O(|VI|E));
algorithm of Dijkstra: O(|V|?) or O(|V||E|log |V]);
algorithm of Bellman and Ford: O(|V|?|E|).

These complexities could even be improved a bit according to the remarks
at the end of Section 3.6. Takaoka [Tak92] presented an algorithm with com-
plexity O(|V|?(log log |V|/ log |V])/?). In the planar case one can achieve a
complexity of O(|V|?); see [Fre87].

In this section, we study an algorithm for this problem which has just
the same complexity as the original version of Dijkstra’s algorithm, namely
O(|V|?). However, it offers the advantage of allowing some lengths to be neg-
ative — though, of course, we cannot allow cycles of negative length. This
algorithm is due to Floyd [Flo62], see also Warshall [War62], and works by
determining the distance matriz D = (d(v,w))ywev of our network.

Algorithm 3.8.1 (Algorithm of Floyd and Warshall). Let (G,w) be
a network not containing any cycles of negative length, and assume V =
{1,...,n}. Put w;; = oo if 45 is not an edge in G.

P

3.8 The algorithm of Floyd and Warshall 83

Procedure FLOYD(G, w; d)

1l)fori=1tondo
for j =1tondo
if i # j then d(i,j) « w;; else d(i,j5) — 0 fi

= N

P W e N S D I e

od

]
Q.

for k =1 ton do
for i =1ton do
for j =1tondo
d(i,j) < min (d(i,5),d(i, k) + d(k, J))
od
od

[el e e e L e e T

N — O © 00 ~J O Ot

)
=B

Theorem 3.8.2. Algorithm 3.8.1 computes the distance matriz D for (G, w)
with complezity O(|V|?).

Proof. The complexity of the algorithm is obvious. Let Dy = (df;) denote the
matrix defined in step (3) and Dy = (dfj) the matrix generated during the
k-th iteration in step (9). Then Dy contains all lengths of paths consisting
of one edge only. Using induction, it is easy to see that (dfj) is the shortest
length of a directed path from i to j containing only intermediate vertices
from {1,...,k}. As we assumed that (G,w) does not contain any cycles of
negative length, the assertion follows for k = n. ad

Exercise 3.8.3. Modify algorithm 3.8.1 so that it not only calculates the
distance matrix, but also determines shortest paths between any two vertices.

Example 3.8.4. For the network shown in Figure 3.8, the algorithm of Floyd
and Warshall computes the accompanying matrices.

Exercise 3.8.5. Apply Algorithm 3.8.1 to the network in Figure 3.9 [Law76].

In Section 2.6, we looked at acyclic digraphs associated with partially
ordered sets. Such a digraph G is transitive: if there is a directed path from
u to v, then G has to contain the edge uv. Now let G be an arbitrary acyclic
digraph. Let us add the edge uv to G for each pair of vertices (u,v) such that
v is accessible from u, but uv is not already an edge . This operation yields
the transitive closure of G. Clearly, the transitive closure of an acyclic digraph
is again acyclic and thus corresponds to a partially ordered set. By definition,
two vertices u and v have distance d(u,v) # oo if and only if uv is an edge
of the transitive closure of G. Hence the algorithm of Floyd and Warshall can
be used to compute transitive closures with complexity O(|V[3).

Exercise 3.8.6. Simplify Algorithm 3.8.1 for computing the transitive clo-
sure by interpreting the adjacency matrix of an acyclic digraph as a Boolean
matrix; see [War62)].

3 Shortest Paths

84

Fig. 3.8. A network

M — M <t O

mm401

<+ o ow Y
Noam ¥

0261%

D, =

M — MmO

B
+ oo 8K
o™ ¥R

oSN o~ R

Dy =

—
MmO
0w S <+ o~
<+ © o ¥
o m R
o™ < — R
N~——

Il

gl

Q
—

N = O

%%401

<+ o oww R
No ™ m R

o™~ ¥

Dy =

—
MmN = MmO
< AN O
< © O 10 O
N AN <
S A < o~ N
N—

Il

o
S

02483
206101
42043
13504
24610

|

D, =

3.8 The algorithm of Floyd and Warshall 85

Fig. 3.9. A network

Let us mention a further way of associating an acyclic digraph to a partially
ordered set. More generally, consider any acyclic digraph G. If uv is an edge
in G and if there exists a directed path of length > 2 from u to v in G,
we remove the edge uv from G. This operation yields a digraph called the
transitive reduction Greq of G. If G is the digraph associated with a partially
ordered set as in Section 2.6, Geq is also called the Hasse diagram of G. If we
want to draw a Hasse diagram, we usually put the vertices of equal rank on
the same horizontal level. Figure 3.10 shows the Hasse diagram of the partially
ordered set of the divisors of 36. The orientation of the edges is not shown
explicitly: it is understood that all edges are oriented from bottom to top. As
an exercise, the reader might draw some more Hasse diagrams.

Exercise 3.8.7. Design an algorithm for constructing the reduction of an
acyclic digraph with complexity O(|V|?) and show that G and G.eq have the
same transitive closure. Hint: Modify the Floyd and Warshall algorithm so
that it may be used here to determine longest paths.

For more about the transitive closure and the transitive reduction of an
acyclic digraph see [Meh84]. Schnorr [Schn78] gave an algorithm for construct-
ing the transitive closure with an average complexity of O(|E|).

Let us consider a final application of the algorithm of Floyd and War-
shall. Sometimes we are interested in finding the center of some network.” Let
(G,w) be a network not containing any cycles of negative length. Then the
eccentricity of a vertex v is defined as

e(v) = max{d(v,u):ueV}.

91t is obvious how this notion could be applied in the context of traffic or com-
munication networks.

86 3 Shortest Paths

36
12 18
40 ®9
2 3
1

Fig. 3.10. Hasse diagram of the divisors of 36

A center of a network is a vertex having minimal eccentricity. The centers
of a given network can be determined easily using the algorithm of Floyd and
Warshall as follows. At the end of the algorithm, (i) simply is the maximum
of the i-th row of the matrix D = (d(i, j)), and the centers are those vertices
for which this maximum is minimal. For example, the vertices of the network
of Example 3.8.4 have eccentricities (1) = 4, €(2) = 6, £(3) = 4, e(4) =
5 and €(5) = 6, so that 1 and 3 are centers of the network. It is obvious
that the complexity of the additional operations needed — namely finding the
required maxima and minima — is dominated by the complexity O(|V|3) of
the algorithm of Floyd and Warshall. Thus we have the following result.

Theorem 3.8.8. Let N be a network without cycles of negative length. Then
the centers of N can be determined with complezity O(|V]3). O

If we take all edges in a given graph (directed or not) to have length 1,
the above definition yields the eccentricities of the vertices and the centers
of the graph in the graph theory sense. Sometimes we are interested in the
maximal eccentricity of all vertices of a graph. This value is called the diameter
of the graph; again, this is a notion of interest in communications networks,
see [Chu86]. For more on communication networks, we also refer to [Bie89]
and [Ber92]. It is a difficult (in fact, NP-hard) problem to choose and assign
centers for networks under the restrictions occurring in practical applications,
see [BaKP93].

3.9 Cycles of negative length 87

To close this section, we briefly discuss the dynamic variant of the problem
of determining shortest paths between any two vertices in a network. Suppose
we have found a solution for some optimization problem, using an appropriate
algorithm. For some reason, we need to change the input data slightly and
find an optimal solution for the modified problem. Can we do so using the
optimal solution we know already, without having to run the whole algorithm
again? For our problem of finding shortest paths, this means keeping up to
date the distance matrix D as well as information needed for constructing
shortest paths (as, for example, the matrix P = (p(i,7)) used in the solution
of Exercise 3.8.3) while inserting some edges or reducing lengths of edges.
Compare this procedure with calculating all the entries of the matrices D and
P again. If all lengths w(e) are integers in the interval [1,C], it is obvious
that at most O(Cn?) such operations can be performed because an edge may
be inserted at most once, and the length of each edge can be reduced at
most C times. While a repeated application of the algorithm of Floyd and
Warshall for a sequence of such operations would need O(Cn®) steps, it is
also possible to solve the problem with complexity just O(Cn?lognC'), using
an adequate data structure. If we are treating an instance with graph theoretic
distances, that is, for C' = 1, a sequence of O(n?) insertions of edges needs
only O(n?logn) steps. We refer the reader to [AuIMN91] for this topic.

3.9 Cycles of negative length

Later in this book (when treating flows and circulations in Chapter 10), we
will need a method to decide whether a given network contains a directed
cycle of negative length; moreover, we should also be able to find such a cycle
explicitly. We shall now modify the algorithm of Floyd and Warshall to meet
these requirements. The essential observation is as follows: a network (G, w)
contains a directed cycle of negative length passing through the vertex i if
and only if Algorithm 3.8.1 yields a negative value for d(i,7).

Algorithm 3.9.1. Let (G, w) be a network with vertex set V.= {1,...,n}.
Procedure NEGACYCLE(G, w; d, p,neg, K)

) neg « false, k «— 0;
for:=1tondo
for j =1 tondo
if i # j then d(i, j) < w;; else d(i,j) «— 0 fi;
if i = j or d(i,j) = oo then p(i,j) < 0 else p(i,j) — i fi

2

od;

while neg = false and k£ < n do
k—k+1;

for i =1tondo

(1
(
(
(
(
(
(
(
(
1

)
3)
4)
5)
6) od
7)
8)
9)
0)

(

88 3 Shortest Paths

(11) if d(i, k) + d(k,i) < 0

(12) then neg « true; CYCLE(G, p, k,i; K)

(13) else for j =1 ton do

(14) if d(i, k) + d(k,j) < d(i,j)

(15) then d(i,) — d(i, k) + d(k, j); p(i,§) — p(k,)
(16) fi

(17) od

(18) fi

(19) od

(20) od

Here CYCLE denotes a procedure which uses p for constructing a cycle of
negative length containing ¢ and k. Note that p(i, j) is, at any given point of
the algorithm, the predecessor of j on a — at that point of time — shortest
path from i to j. CYCLE can be described informally as follows. First, set
vo = 1, then vy = p(k, i), vo = p(k, v1), etc., until v, = k = p(k,v4—1) for some
index a. Then continue with vo41 = p(i, k), var2 = p(i,vq+1), etc., until an
index b is reached for which v,y = v9 = i = p(i,vVa+p—1). Now the cycle we
have found uses each edge in the direction opposite to its orientation, so that
(Vgab = V0, Vaitb—1,---,01,00) is the desired directed cycle of negative length
through ¢ and k. It can then be stored in a list K. We leave it to the reader
to state this procedure in a formally correct way.

If (G, w) does not contain any directed cycles of negative length, the vari-
able neg has value false at the end of Algorithm 3.9.1. In this case, d contains
the distances in (G,w) as in the original algorithm of Floyd and Warshall.
The matrix (p(i,j)) may then be used to find a shortest path between any
two given vertices; this is similar to the procedure CYCLE discussed above.
Altogether, we get the following result.

Theorem 3.9.2. Algorithm 3.9.1 decides with complexity O(|V|?) whether or
not a given network (G, w) contains cycles of negative length; in case it does,
such a cycle is constructed. Otherwise, the algorithm yields the distance matriz

(d(i, 7)) for (G, w). O

Exercise 3.9.3. Let G be a digraph on n vertices having a root s, and let
w be a length function on G. Modify the algorithm of Bellman and Ford
(see Exercise 3.6.9) so that it determines whether (G, w) contains a cycle of
negative length. If there is no such cycle, the algorithm should determine an
SP-tree with root s using a procedure SPTREE. Write down such a procedure
explicitly.

Exercise 3.9.4. Modify the algorithm of Floyd and Warshall so that it de-
termines the shortest length of a directed cycle in a network not containing
any cycles of negative length.

3.10 Path algebras 89

3.10 Path algebras

Let (G, w) be a network without cycles of negative length. According to Bell-
man’s equations (Proposition 3.4.1), the distances u; with respect to a vertex
1 then satisfy the conditions

(B) w1 =0 and wu; =min{ug +wg;:i#k} fori=2,...,n.

In this section, we consider the question whether such a system of equations
might be solved using methods from linear algebra. In fact, this is possible
by introducing appropriate algebraic structures called path algebras. We only
sketch the basic ideas here; for details we refer to the literature, in particular
[Car71, Car79, GoMi84, Zim81].19

We begin with a suitable transformation of the system (B). Recall that
we put w;; = 00 if 45 is not an edge of our network; therefore we extend R to
R = R U {oc}. Moreover, we introduce two operations @ and * on R:

a ® b :=min(a,b) and axb:=a+0b,
where, as usual, we define a + oo to be co. Obviously, (B) can be written as

uy = min (0, min {uy + w1 : k # 1}) and

u; = min (oo, min {uy + wy; : k #i}),
since (G, w) does not contain any cycles of negative length. Using the opera-
tions introduced above, we get the system of equations

n n

(B) up = @(uk xwr1) B0, u; = @(uk * W) B 00,
k=1 k=1
where we set w;; = oo for i = 1,...,n. We can now define matrices over R and

apply the operations & and * to them in analogy to the usual definitions from
linear algebra. Then (B’) (and hence (B)) can be written as a linear system
of equations:
(B"Y u=uxWahb,
where u = (u1,...,u,), b= (0,00,...,00) and W = (wsj)i j=1,....n-
Thus Bellman’s equations may be viewed as a linear system of equations

over the algebraic structure (R, @, x). Then the algorithm of Bellman and Ford
given in Exercise 3.6.9 admits the following interpretation. First set

u® =p and then recursively u® = * D W b,

until the sequence eventually converges to u*) = w(*=1) which in our case
occurs for £ = n or earlier. Hence the algorithm of Bellman and Ford is

0This section is included just to provide some more theoretical background. As
it will not be used in the rest of the book, it may be skipped.

90 3 Shortest Paths

analogous to the Jacobi method from classical linear algebra over R; see, for
instance, [Str88].

These observations lead to studying algebraic structures which satisfy the
same conditions as (R, @, *). A path algebra or dioid is a triple (R, ®, %) such
that (R, @) is a commutative monoid, (R, %) is a monoid, and both distributive
laws hold; moreover, the neutral element o of (R, ®) satisfies the absorption
law. This means that the following axioms hold, where e denotes the neutral
element for (R, *):

(1

(2)

(3)

(4)

(5) axe=ex*xa=a;
(6) ax(bxc)=(axb)*c

(7) ax(b@c)=(axb)® (axc);
(8) b@®c)xa=(bxa)® (cxa).

Exercise 3.10.1. Show that (R, @, *) is a path algebra with e = 0 and 0 = oo

Exercise 3.10.2. Let (R, ®, x) be a path algebra. We define a relation > on
R by
a-b <= a=b&®c forsomecéeER.

Show that = is a preordering (that is, it is reflexive and transitive). If @ is
idempotent (that is, a®a = a for all @ € R), then = is even a partial ordering
(that is, it is also antisymmetric).

Exercise 3.10.3. Let (G, w) be a network without cycles of negative length.
Give a matrix equation for the distance matrix D = (d(i, 7)).

We now transfer the notions developed in the special case of (R, ®,*) to
arbitrary path algebras. For the remainder of this section, a network means
a pair (G, w) such that G is a digraph, w : E — R is a length function, and
(R, ®, %) is a path algebra. The length of a path P = (vg,v1,...,v,) is defined
as

w(P) := w(vovr) * w(v1v2) * ... % W(Vyp_10p).

The AP-problem (short for algebraic path problem) requires calculating the
sums

wi; = @ w(P) (where P is a directed path from ¢ to j)

and finding a path P from i to j such that w(P) = wj; (if the above sum
and such a path exist). For the case (R, @, *), the AP-problem reduces to the
familiar SP-problem (shortest path problem) of determining the distances and
shortest paths.

3.10 Path algebras 91

As before, we introduce a matrix W = (w;;) whose (4, j)-entry is the length
w(ij) if ij is an edge of G. We set w;; = o for ¢ = 1,...,n and w;; = o if
i # j and ij is not an edge in G. Note that, for the special case (R,®,*)
above, we looked at the matrix W’ = W @ E; see Exercise 3.10.5 below. Here
E denotes the unit matriz, that is, e;; = e for i = 1,...,n and e;; = o for
i # j. As usual, we write A* for the k-th power of A; moreover, we define
AW =FEoAeA’e...0 A

Lemma 3.10.4. The (i, j)-entry of the matriz W* or of W®*) is the sum
@ w(P) over all directed walks from i to j consisting of exactly k edges for the
former, and of at most k edges for the latter.

Proof. Use induction on k. a

We look again at the special case of the SP-problem. In a network (G, w)
not containing cycles of negative length, distances can always be realized by
paths, so that we need at most n — 1 edges. Thus we have D = W(—1;
moreover, W1 = W) = Tt is easy to see that W("~1) indeed satisfies
the matrix equation given in the solution to Exercise 3.10.3:

W(n—l)*W@E:(E@W@.“@Wnﬂ)*W@E
—EoWo..oW'lowr=wm = wyhr-1,

An element a with a® = a®*D for some p is called a stable element; this
notion is important also for general path algebras. In fact, the matrix W* =
(w;‘j) of the AP-problem is an infinite sum @W* = EGW @ W?2&. . ., that is,
it is the limit of the matrices W) for k — oo. If W is stable, these formulas
make sense: if W® = W»+D then W* = W), That is the reason why
criteria for stability play an important part in the theory of path algebras;
see [Zim81]. For the theory of convergence, see also [KuSa86].

Exercise 3.10.5. Let (R, ®, *) be a path algebra such that @ is idempotent.
For every matrix A, we put A’ := E® A. Show (A")* = A®) and use this fact
to find a technique for calculating A™): also discuss its complexity.

Now suppose that W is stable; we call W* = w® = w®tD the quasi-
inverse of W. As in the special case R = R above, we have

W =W*"«WaeE=WxxW*"®E.

Thus, for an arbitrary matrix B , the matrices Y := W*x B and Z := Bx W™,
respectively, are solutions of the equations

Y=WxY®B and Z=7Z%W ® B. (3.6)

In particular, we can choose a column or row vector b for B and obtain a
linear system of equations analogous to the system (B”).

92 3 Shortest Paths

Exercise 3.10.6. Let (R, ®,) be an arbitrary path algebra. Show that the
(n X n)-matrices over R also form a path algebra and define a preordering (or,
in the idempotent case, a partial ordering) on this path algebra; see Exercise
3.10.2. Prove that W* x B and B+ W™ are minimal solutions of equation (3.6)
and that the system (3.6) has a unique minimal solution in the idempotent
case.

Equations having the same form as (3.6) can be solved using techniques
analogous to the well-known methods of linear algebra over R. We have al-
ready seen that the algorithm of Bellman and Ford corresponds to the Jacobi
method; this technique can also be used for the general case of a stable matrix
W over any path algebra R. Similarly, it can be shown that the algorithm of
Floyd and Warshall corresponds to the Gauss-Jordan elimination method. For
more on this result and other general algorithms for solving (3.6), we refer to
[GoMi84] and [Zim81].

We conclude this section with some examples which will show that the
abstract concept of path algebras makes it possible to treat various in-
teresting network problems with just one general method. However, the
SP-problem is still the most important example; here the case of positive
lengths — that is, the path algebra (R, min, +) — was already studied
by [Shi75]. Similarly, longest paths can be treated using the path algebra
(RU{—o00}, max, +) instead.

Example 3.10.7. Consider the path algebra ({0, 1}, max, min) — that is, the
Boolean algebra on two elements — and put w;; = 1 for each edge of G. Then
Lemma 3.10.4 has the following interpretation. There exists a directed walk
from i to j consisting of exactly k edges if and only if the (4, j)-entry of W* is
1, and of at most k edges if and only if the (i, j)-entry of W) is 1. Moreover,
the matrix W* = W(~1 is the adjacency matrix of the transitive closure of
G; see Exercise 3.8.6.

Example 3.10.8. Consider the path algebra (R, max, min) and think of
the length w(ij) of an edge ij as its capacity. Then w(P) is the capacity of the
path P; that is, w(P) is the minimum of the capacities of the edges contained
in P. Here the (i, j)-entry of W¥ is the largest capacity of a walk from i to j
with exactly k edges, while for W) it is the largest capacity of a walk from i
to j with at most k edges. Hence W* = W ("1 and w;; is the largest capacity
of a walk from i to j; see [Hu61].

Example 3.10.9. Consider the path algebra (N, +,), where each edge of G
has length w(ij) = 1. Then W is just the adjacency matrix of G. The (i, j)-
entry of W* and of W(*) represent the number of walks from i to j consisting
respectively of precisely and at most k edges; see Exercise 2.2.5. Note that
W* does not exist in general, as there might be infinitely many walks from i
to j. If G is an acyclic digraph, W* is well-defined; in this case W* = W1
and wyj; is the number of all directed walks from 7 to j.

3.10 Path algebras 93

Exercise 3.10.10. Find a path algebra which is suitable for treating the
problem of Example 3.1.2, where w(i,j) is the probability p(i,j) described
in Example 3.1.2; see [Kal60].

Exercise 3.10.11. Any commutative field (K, +,-) is obviously also a path
algebra. Show that A is stable over K if G is acyclic, and give a formula for
A* under this condition. Does the converse hold?

The reader can find a lot of further examples for path algebras in the
literature quoted above, in particular in [GoMi84] and in [Zim81]; see also
[KuSa86] for applications in automata theory. Finally, let us also mention a
practical example from operations research.

Example 3.10.12. We construct a digraph G whose vertices are the single
parts, modules, and finished products occurring in an industrial process. We
want the edges to signify how many single parts or intermediary modules are
needed for assembling bigger modules or finished products. That is, we assign
weight w(i, j) to edge ij if we need w(i, j) units of part ¢ for assembling product
j. G is called the gozinto graph. In most cases, the modules and products are
divided into levels of the same rank, where the finished products have highest
rank, and basic parts (which are not assembled from any smaller parts) lowest
rank; that is, the products and modules are divided into disposition levels. The
notion of ranks used here is the same as in Exercise 3.5.2; it can be calculated
as in Exercise 3.5.3. Often the gozinto graph is taken to be reduced in the sense
of Section 3.8, that is, it contains an edge ¢j only if part ¢ is used directly in
assembling module j, without any intermediate steps. Note that the reduced
graph G,eq can be determined as in Exercise 3.8.7, as we always assume G to
be acyclic.'!

Now suppose that we have a gozinto graph which is reduced already. Some-
times one wants to know how much of each part is needed, no matter whether
directly or indirectly. For this purpose, we consider the path algebra (Ng, +, -)
and the given weights w(ij). As G is acyclic, there are only finitely many
directed paths from vertex i to vertex j; thus the matrix W* (= W®—1)
exists. Now it is easily seen that the entry wy; is just the total number of
units of ¢ needed for the assembly of j. The matrix W* may, for example, be
determined using the algorithm of Bellman and Ford — that is, the generalized
Jacobi method — or the analogue of the algorithm of Floyd and Warshall; see
[Mue69].

More about gozinto graphs can be found in the book by Miiller-Merbach
[Mue73] as well as in his two papers already cited. Note that the entries
of a column of W* give the numbers of parts and modules needed for the
corresponding product, whereas the entries in the rows show where (and how
much of) the corresponding part or module is needed.

" This assumption does not always hold in practice. For instance, gozinto graphs
containing cycles are quite common in chemical production processes; see [Mue66].

4

Spanning Trees

I think that I shall never see
A poem lovely as a tree.

JOYCE KILMER

In this chapter, we will study trees in considerably more detail than in the
introductory Section 1.2. Beginning with some further characterizations of
trees, we then present another way of determining the number of trees on n
vertices which actually applies more generally: it allows us to compute the
number of spanning trees in any given connected graph. The major part of
this chapter is devoted to a network optimization problem, namely to finding
a spanning tree for which the sum of all edge lengths is minimal. This prob-
lem has many applications; for example, the vertices might represent cities
we want to connect to a system supplying electricity; then the edges repre-
sent the possible connections and the length of an edge states how much it
would cost to build that connection. Other possible interpretations are tasks
like establishing traffic connections (for cars, trains or planes: the connec-
tor problem) or designing a network for TV broadcasts. Finally, we consider
Steiner trees (these are trees where it is allowed to add some new vertices)
and arborescences (directed trees).

4.1 Trees and forests

We defined a tree to be a connected acyclic graph and gave some equivalent
conditions in Theorem 1.2.8. The following lemma provides further character-
izations for trees.

Lemma 4.1.1. Let G be a graph. Then the following four conditions are equiv-
alent:

(1) G is a tree.

(2) G does not contain any cycles, but adding any further edge yields a cycle.
(3) Any two vertices of G are connected by a unique path.

(4) G is connected, and any edge of G is a bridge.

96 4 Spanning Trees

Proof. First let G be a tree. We add any new edge, say e = wv. Since G is

connected, there is a path W from v to u. Then v U
As G itself is acyclic by definition, condition (1) implies (2).

Next assume the validity of (2) and let u and v be any two vertices of G.
Suppose there is no path between v and v. Then u and v are not adjacent;
also, adding the edge uv to G cannot yield a cycle, contradicting (2). Thus G
must be connected. Now suppose that G contains two different paths W and
W’ from u to v. Obviously, following W from u to v and then W’ (in reverse
order) from v to u would give a closed walk in G. But then G would have to
contain a cycle, a contradiction. Hence condition (2) implies (3).

Now assume the validity of (3) and let e = uv be any edge in G. Suppose
e is not a bridge so that G \ e is still connected. But then there exist two
disjoint paths from u to v in G. This contradiction establishes (4).

Finally, assume the validity of (4). Suppose G contains a cycle C. Then
any edge of C' could be omitted from G, and the resulting graph would still be
connected. In other words, no edge of C' would be a bridge. This contradiction
proves (1). O

v is a cycle.

Exercise 4.1.2. A connected graph is called unicyclic if it contains exactly
one cycle. Show that the following statements are equivalent [AnHa67]:

(1) G is unicyclic.

(2) G\ e is a tree for a suitable edge e.

(3) G is connected, and the number of vertices is the same as the number of
edges.

(4) G is connected, and the set of all edges of G which are not bridges forms
a cycle.

Exercise 4.1.3. Prove that every tree has either exactly one center or exactly
two centers; see Section 3.8. Discuss the relationship between the eccentricity
and the diameter of a tree.

Exercise 4.1.4. Let G be a forest with exactly 2k vertices of odd degree.
Prove that the edge set of G is the disjoint union of k paths.

Exercise 4.1.5. Let T" be a tree, and suppose that the complementary graph
T is not connected. Describe the structure of T and show that these graphs
T are precisely the disconnected graphs with the maximal number of edges.

Exercise 4.1.6. Determine all isomorphism classes of trees on six vertices and
calculate the number of trees in each isomorphism class, as well as the number
of all trees on six vertices. Moreover, find the corresponding automorphism
groups.

We note that the number ¢,, of isomorphism classes of trees on n vertices
grows very rapidly with n, a phenomenon illustrated by 4.1 which is taken from
[Har69]; for n = 1,2,3, trivially ¢, = 1. Harary also develops a remarkable

4.2 Incidence matrices 97

formula for the ¢, which is due to Otter [Ott48]; as this uses the method of
generating functions, it is beyond the scope of the present book.

We refer the reader to [CaRa91] for an interesting exposition of the prob-
lem of checking whether or not two given rooted trees are isomorphic. Here a
rooted tree is just a tree T" with a distinguished vertex r which is called the
root of T'; this terminology makes sense as T' has a unique orientation so that
r indeed becomes the root of the resulting directed tree.

Table 4.1. Number ¢, of isomorphism classes for trees on n vertices

n 4 5 6 7 8 9 10
tn 2 3 6 11 23 47 106
n 11 12 13 14 15 16 17

tn 235 551 1301 3159 7741 19320 48629

n 18 19 20 21 22 23 24
tn, 123867 317955 832065 2144505 5623756 14828074 39299897

4.2 Incidence matrices

In this section we consider a further matrix associated with a given digraph.
This will be used for yet another characterization of trees and for finding a
formula for the number of spanning trees of an arbitrary connected graph.

Definition 4.2.1. Let G be a digraph with vertex set V' = {1,...,n} and
edge set E = {eq,...,en}. Then the n x m matrix M = (m;;), where

—1 if 7 is the tail of e;,
mij = 1 if ¢ is the head of ej,

0 otherwise,
is called the incidence matriz of G.

Of course, M depends on the labelling of the vertices and edges of G; thus
it is essentially only determined up to permutations of its rows and columns.
For example, the digraph of Figure 2.1 has the following incidence matrix, if
we number the vertices and edges as in 2.2.1:

-1 0 0 -1 0 0 0 O 1 0 0 -1
1 -1 0 0 1 0 O O O 0 -1 0
0o 1 -1 0 0 O O O O 1 0 1
o o 1 0 O 0O -11 -1 0 0 O
o o o0 1 -1.1 0 O O O 1 O
o o o0 O o0 -11 -1 0 -1 0 O

98 4 Spanning Trees

Note that each column of an incidence matrix contains exactly two non-zero
entries, namely one entry 1 and one entry —1; summing the entries —1 in row
i gives dout (), whereas summing the entries 1 yields d;,(i). The entries 0,1
and —1 are often considered as integers, and the matrix M is considered as a
matrix over Z, Q or R. We could also use any other ring R as long as 1 # —1,
that is, R should have characteristic # 2.

Adding all the rows of the incidence matrix of a digraph gives a row for
which all entries equal 0. This yields the following lemma.

Lemma 4.2.2. Let G be a digraph with n vertices. Then the incidence matriz
of G has rank at most n — 1. ad

We will soon determine the precise rank of the incidence matrix. To this
end, we first characterize the forests among the class of all digraphs; of course,
a digraph G is called a forest if the undirected version |G| is a forest, as in
the special case of trees.

Theorem 4.2.3. A digraph G with incidence matriz M is a forest if and only
if the columns of M are linearly independent.

Proof. We have to show that G contains a cycle if and only if the columns of
M are linearly dependent. Suppose first that

e e e
C = vy —— v, —=— ... LA

is a cycle in G, and let sq,..., s, be the columns of M corresponding to the

edges eq,...,er. Moreover, let z; = 1 if e; is a forward edge, and x; = —1 if

e; is a backward edge in C (for i = 1,...,k). Then z1s1 + ... + xps, = 0.
Conversely, let the columns of M be linearly dependent. Then there are
columns sq, ..., si and integers x1, ..., x, 7# 0 such that x1s1+...+xksE = 0.
Let E’ be the set of edges corresponding to the columns si,...,s; and V'
the set of vertices of G incident with the edges contained in E’, and write
G' = (V', E'). Note that every vertex of the associated graph |G’| has degree
at least 2. Now Exercise 1.2.5 shows that no connected component of |G’| is
a tree. Hence all components of |G’| contain cycles, so that |G| cannot be a
forest. a

Theorem 4.2.4. Let G be a digraph with n vertices and p connected compo-
nents. Then the incidence matriz M of G has rank n — p.

Proof. According to Theorem 4.2.3, the rank of M is the number of edges of a
maximal forest T' contained in |G|. If p =1, T is a tree and has exactly n — 1
edges; thus M has rank n — 1 = n — p in this case.

Now suppose p # 1. Then G can be partitioned into its p connected com-
ponents, that is, T is the disjoint union of p trees. Suppose that these trees
have n1,...,n, vertices, respectively. Then the incidence matrix of G has rank
(m—1)+...+(np,—1)=n—np. O

4.2 Incidence matrices 99

Next we want to show that the incidence matrix of a digraph has a very
special structure. We require a definition. A matrix over Z is called totally
unimodular if each square submatrix has determinant 0, 1 or —1. These ma-
trices are particularly important in combinatorial optimization; for example,
the famous theorem about integral flows in networks' is a consequence of the
following result; see also [Law76], §4.12.

Theorem 4.2.5. Let M be the incidence matriz of a digraph G. Then M is
totally unimodular.

Proof. Let M’ be any square submatrix of M, say with k rows and columns. We
shall use induction on k. Trivially, M’ has determinant 0, 1 or —1 if K = 1. So
let k # 1. Assume first that each column of M’ contains two non-zero entries.
Then the rows and columns of M’ define a digraph G’ with k vertices and k
edges. By Theorem 1.2.7, |G’| cannot be acyclic, so that G’ is not a forest.
Therefore the columns of M’ are linearly dependent by Theorem 4.2.3 and
hence det M’ = 0. Finally assume that there is a column of M’ with at most
one entry # 0. We may calculate the determinant of M’ by expanding it with
respect to such a column. Then we obtain a factor 0, 1, or —1 multiplied with
the determinant of a square ((k — 1) x (k — 1))-submatrix M". The assertion
follows by induction. a

Corollary 4.2.6. Let G be a digraph with n vertices and n — 1 edges. Let B
be the matriz which arises from the incidence matrix M of G by deleting an
arbitrary row. If G is a tree, then det B =1 or det B = —1, and otherwise
det B = 0.

Proof. Note that the row deleted from M is a linear combination of the re-
maining rows. By Theorem 4.2.4, B has rank n — 1 if and only if G is a tree.
Now the assertion is an immediate consequence of Theorem 4.2.5. a

Next we use the incidence matrix to determine the number of spanning
trees of a digraph G. Of course, a spanning tree of G is just a directed subgraph
T of G such that |T| is a spanning tree for |G]|.

Theorem 4.2.7 (matrix tree theorem). Let B be the matrix arising from
the incidence matriz of a digraph G by deleting an arbitrary row. Then the
number of spanning trees of G is det BBT.

Proof. Let n be the number of vertices of G. For any set S of n — 1 column
indices, we denote the matrix consisting of the n—1 columns of B correspond-
ing to S by B|S. Now the theorem of Cauchy and Binet (see, for instance,
[Had61]) implies

det BB" = Zdet B|S)(B|S)" Zdet B|S)*.

"We will treat this result in Chapter 6. Actually we shall use a different proof
which is not based on Theorem 4.2.5.

100 4 Spanning Trees

By Corollary 4.2.6, det B|S # 0 if and only if the edges of G corresponding
to S form a tree; moreover, in this case, (det B|S)? = 1. This proves the
theorem. 0

Theorem 4.2.7 is contained implicitly in [Kirh47]. Not surprisingly, this
result may also be used to determine the number of spanning trees of a graph
G by considering the incidence matrix of any orientation of G. We need the
following simple lemma; then the desired result is an immediate consequence
of this lemma and Theorem 4.2.7.

Lemma 4.2.8. Let A be the adjacency matrix of a graph G and M the in-
cidence matriz of an arbitrary orientation H of G, where both matrices use

the same ordering of the vertices for numbering the rows and columns. Then
MM7T = diag(deg1,...,degn) — A.

Proof. The (i, 7)-entry of M M7 is the inner product of the i-th and the j-th
row of M. For i # j, this entry is —1 if ij or ji is an edge of H and 0 otherwise.
For ¢« = 7, we get the degree deg:. a

Theorem 4.2.9. Let A be the adjacency matriz of a graph G and A’ the
matriz —A + diag(deg 1,...,degn). Then the number of spanning trees of G
1s the common value of all minors of A" which arise by deleting a row and the
corresponding column from A’. ad

In Section 4.8, we will give a different proof for Theorem 4.2.9 which avoids
using the theorem of Cauchy and Binet. The matrix A’ is called the degree
matriz or the Laplacian matriz of G. As an example, let us consider the case
of complete graphs and thus give a third proof for Corollary 1.2.11.

Example 4.2.10. Theorem 4.2.9 contains a formula for the number of all
trees on n vertices; note that this formula counts the different trees, not the
isomorphism classes of trees. Obviously, the degree matrix of K, is A’ =
nl — J, where J is the matrix having all entries = 1. By Theorem 4.2.9, the
number of trees on n vertices is the determinant of a minor of A’, that is

n—1-n-n...—n
ne b e 1 n 0.0
=| -1 0 n 0

1 00...0
—1n0...0
=|—-10n 0
—-100 n

4.3 Minimal spanning trees 101

The following exercise concerns a similar application of the matrix tree
theorem; see [FiSe58]. A simple direct proof can be found in [Abu90] where
this result is also used to give yet another proof for Corollary 1.2.11.

Exercise 4.2.11. Use Theorem 4.2.9 to show that the number of spanning

trees of the complete bipartite graph K, ,, is m™~tn™~1

Note that we can also define incidence matrices for graphs: the matrix M
has entry m;; = 1 if vertex ¢ is incident with edge e;, and m;; = 0 otherwise.
But the statements analogous to Lemma 4.2.2 and Theorem 4.2.3 do not hold;
for example, the three columns of a cycle of length 3 are linearly independent
over Z. However, the situation changes if we consider the incidence matrix M
as a matrix over Zs.

Exercise 4.2.12. Prove the analogues of 4.2.2 through 4.2.4 for graphs, where
M is considered as a binary matrix.

The incidence matrix M of a graph — considered as a matrix over the inte-
gers — is not unimodular in general, as the following exercise shows. Moreover,
it provides a further important characterization of bipartite graphs.

Exercise 4.2.13. Let G be a graph with incidence matrix M. Show that G is
bipartite if and only if M is totally unimodular as a matrix over Z. Hint: The
proof that unimodularity of M is necessary is similar to the proof of Theorem
4.2.5. The converse can be proved indirectly.

Exercise 4.2.14. Let e be an edge of K,,. Determine the number of spanning
trees of K, \ e.

Exercise 4.2.15. Let G be a forest with n vertices and m edges. How many
connected components does G have?

Sometimes, a list of all spanning trees of a given graph is needed, or an
arbitrary choice of some spanning tree of G (a random spanning tree). These
tasks are treated in [CoDN89]; in particular, it is shown that the latter problem
can be solved with complexity O(|V|?).

4.3 Minimal spanning trees

In this section, we consider spanning forests in networks. Thus let (G, w) be
a network. For any subset T' of the edge set of G, we define the weight of T’
by

ecT
A spanning forest of G is called a minimal spanning forest if its weight is
minimal among all the weights of spanning forests; similarly, a minimal span-
ning tree has minimal weight among spanning trees. We restrict ourselves to

102 4 Spanning Trees

spanning trees; the general case can be treated by considering a minimal span-
ning tree for each connected component of G. Thus, we now assume G to be
connected.

Minimal spanning trees were first considered by Boruvka [Bor26a, Bor26b].
Shortly after 1920, electricity was to be supplied to the rural area of South-
ern Moravia; the problem of finding as economical a solution as possible for
the proposed network was presented to Boruvka. He found an algorithm for
constructing a minimal spanning tree and published it in the two papers cited
above. We will present his algorithm in the next section. Boruvka’s papers
were overlooked for a long time; often the solution of the minimal spanning
tree problem is attributed to Kruskal and Prim [Kru56, Pri57], although both
of them quote Boruvka; see the interesting article [GrHe85] for a history of
this problem. There one also finds references to various applications reaching
from the obvious examples of constructing traffic or communication networks
to more remote ones in classification problems, automatic speech recognition,
image processing, etc.

As the orientation of edges is insignificant when looking at spanning trees,
we may assume that G is a graph. If the weight function w should be constant,
every spanning tree is minimal; then such a tree can be found with complexity
O(|E|) using a BFS, as described in Section 3.3. For the general case, we
shall give three efficient algorithms in the next section. Corollary 1.2.11 and
Exercise 4.2.11 show that the examination of all spanning trees would be a
method having non-polynomial complexity.

But first we characterize the minimal spanning trees. Let us introduce the
following notation. Consider a spanning tree T and an edge e not contained in
T. By Lemma 4.1.1, the graph arising from 7" by adding e contains a unique
cycle; we denote this cycle by Cr(e). The following result is of fundamental
importance.

Theorem 4.3.1. Let (G,w) be a network, where G is a connected graph. A
spanning tree T of G is minimal if and only if the following condition holds
for each edge e in G\ T':

w(e) > w(f) for every edge f in Cr(e). (4.1)

Proof. First suppose that T is minimal. If (4.1) is not satisfied, there is an
edge e in G\ T and an edge f in Cr(e) with w(e) < w(f). Removing f from
T splits T into two connected components, since f is a bridge. Adding e to
T\ f gives a new spanning tree 7’; as w(e) < w(f), T" has smaller weight
than T'. This contradicts the minimality of T

Conversely, suppose that (4.1) is satisfied. We choose some minimal span-
ning tree 77 and show w(T) = w(T"), so that T is minimal as well. We use
induction on the number k of edges in 7"\ T'. The case k = 0 (that is, T = T")
is trivial. Thus let €’ be an edge in 77\ T. Again, we remove e’ from T”,
so that T splits into two connected components V; and V5. If we add the
path Cr(e') \ {e'} to T”\ {€¢'}, V1 and V4, are connected again. Hence Cp(e’)

4.3 Minimal spanning trees 103

has to contain an edge e connecting a vertex in V; to a vertex in V5. Note
that e cannot be an edge of T’, because otherwise T \ {e’} would still be
connected. The minimality of 7" implies w(e) > w(e’): replacing ¢’ by e in
T’, we obtain another spanning tree T”; and if w(e) < w(e’), this tree would
have smaller weight than T”, a contradiction. On the other hand, by condition
(4.1), w(e’) > w(e); hence w(e') = w(e) and w(T") = w(T’). Thus T” is a
minimal spanning tree as well. Note that T” has one more edge in common
with T than T”; using induction, we conclude w(T') = w(T") = w(T"). O

Next we give another characterization of minimal spanning trees. To do
so, we need two definitions. Let G be a graph with vertex set V. A cut is a
partition S = {X, X'} of V into two nonempty subsets. We denote the set
of all edges incident with one vertex in X and one vertex in X’ by E(S)
or E(X,X"); any such edge set is called a cocycle. We will require cocycles
constructed from trees:

Lemma 4.3.2. Let G be a connected graph and T a spanning tree of G. For
each edge e of T, there is exactly one cut St(e) of G such that e is the only
edge which T has in common with the corresponding cocycle E(St(e)).

Proof. If we remove e from T, the tree is divided into two connected compo-
nents and we get a cut St(e). Obviously, the corresponding cocycle contains
e, but no other edge of T'. It is easy to see that this is the unique cut is the
with the desired property. a

Theorem 4.3.3. Let (G, w) be a network, where G is a connected graph. A
spanning tree T of G is minimal if and only if the following condition holds
for each edge e € T':

w(e) < w(f) for every edge f in E(St(e)). (4.2)

Proof. First let T be minimal. Suppose that there is an edge e in T and an
edge f in E(Sr(e)) with w(e) > w(f). Then, by removing e from T and
adding f instead, we could construct a spanning tree of smaller weight than
T, a contradiction.

Conversely, suppose that (4.2) is satisfied. We want to reduce the statement
to Theorem 4.3.1; thus we have to show that condition (4.1) is satisfied. Let
e be an edge in G\ T and f # e an edge in Cr(e). Consider the cocycle
E(St(f)) defined by f. Obviously, e is contained in E(St(f)); hence (4.2)
yields w(f) < w(e). O

Exercise 4.3.4. Let (G, w) be a network, and let v be any vertex. Prove that
every minimal spanning tree has to contain an edge incident with v which has
smallest weight among all such edges.

Exercise 4.3.5. Let (G, w) be a network, and assume that all edges have dis-
tinct weights. Show that (G, w) has a unique minimal spanning tree [Bor26a].

104 4 Spanning Trees

4.4 The algorithms of Prim, Kruskal and Boruvka

In this section, we will treat three popular algorithms for determining minimal
spanning trees, all of which are based on the characterizations given in the
previous section. Let us first deal with a generic algorithm which has the
advantage of allowing a rather simple proof. The three subsequent algorithms
are special cases of this general method which is due to Prim [Pri57].

Algorithm 4.4.1. Let G = (V, E) be a connected graph with vertex set V =
{1,...,n} and w: E — R a weight function for G. The algorithm constructs
a minimal spanning tree T for (G, w).

Procedure MINTREE(G, w; T)

(I)fori=1tondoV;, — {i}; T; — 0 od;

(2)for k=1ton—1do

(3) choose V; with V; # 0;

(4) choose an edge e = wv with u € V;, v ¢ V;, and w(e) < w(e’)
for all edges ¢/ = u/v' with v’ € V;, v/ ¢ V;

determine the index j for which v € Vj;

Vi = V; UV V0

T, — T, UT; U{e}; T; — 0;

ifk=n—1then T « T; fi;

A~ S~
© 00 ~J O Ot
—_— N —

od

Theorem 4.4.2. Algorithm 4.4.1 determines a minimal spanning tree for the
network (G,w).

Proof. We use induction on ¢ := |Ty| + ...+ |T,| to prove the following claim:

Fort =0,...,n — 1, there exists a minimal spanning tree T’ (4.3)

of G containing 11, ...,T,.

For t = n — 1, this claim shows that the algorithm is correct. Clearly, (4.3)
holds at the beginning of the algorithm — before the loop (2) to (9) is executed
for the first time — since ¢ = 0 at that point. Now suppose that (4.3) holds for
t = k—1, that is, before the loop is executed for the k-th time. Let e = uv with
u € V; be the edge which is constructed in the k-th iteration. If e is contained
in the tree T satisfying (4.3) for ¢ = k — 1, there is nothing to show. Thus
we may assume e ¢ T. Then T U {e} contains the unique cycle C' = Crp(e);
obviously, C' has to contain another edge f = rs with » € V; and s ¢ V;. By
Theorem 4.3.1, w(e) > w(f). On the other hand, by the choice of e in step
(4), w(e) < w(f). Hence w(e) = w(f), and T" = (T'U{e}) \ {f} is a minimal
spanning tree of G satisfying (4.3) for ¢t = k. O

Of course, we cannot give the precise complexity of Algorithm 4.4.1: this
depends both on the choice of the index ¢ in step (3) and on the details of the

4.4 The algorithms of Prim, Kruskal and Boruvka 105

implementation. We now turn to the three special cases of Algorithm 4.4.1
mentioned above. All of them are derived by making steps (3) and (4) in
MINTREE precise. The first algorithm was favored by Prim and is generally
known as the algorithm of Prim, although it was already given by Jarnik
[Jar30].

Algorithm 4.4.3. Let G be a connected graph with vertexset V = {1,...,n}
given by adjacency lists A,, and let w: E — R be a weight function for G.

Procedure PRIM(G, w;T)

(1) g(1) = 0, 8 — 0, T —0;
(2) for i = 2 to n do ¢(i) < oo od,;

(3) while S # V do

(4) choose i € V'\ S such that g(7) is minimal, and set S « S U {i};
(5) ifi#1then T «— TU{e(i)} fi;

(6) for je A;n(V\S) do

(7) if g(v) > w(ij) then g(v) «— w(ij) and e(v) « ij fi

(8) od

9)

od

Theorem 4.4.4. Algorithm 4.4.3 determines with complexity O(|V|?) a min-
imal spanning tree T for the network (G, w).

Proof. Tt is easy to see that Algorithm 4.4.3 is a special case of Algorithm 4.4.1
(written a bit differently): if we always choose V; in step (3) of MINTREE,
we get the algorithm of Prim. The function g(7) introduced here is just used
to simplify finding the shortest edge leaving V7 = S. Hence the algorithm is
correct by Theorem 4.4.2; it remains to discuss its complexity. The while-loop
is executed |V times. During each of these iterations, the comparisons in step
(4) can be done in at most |V| — |S] steps, so that we get a complexity of
O(|V|?). As G is simple, this is also the overall complexity: in step (6), each
edge of GG is examined exactly twice. a

Example 4.4.5. Let us apply Algorithm 4.4.3 to the undirected version of
the network of Figure 3.5, where we label the edges as follows: e; = {1,5},
€2 = {678}7 €3 = {133}7 €4 = {475}a €5 = {478}7 €6 = {738}3 €7 = {677}7
es = {4,7}, eg = {2,5}, e10 = {2,4}, e11 = {2,6}, e12 = {3,6}, e13 = {5,6},
els = {3,8}, e15 = {1,2}. Thus the edges are ordered according to their
weight. We do not need really this ordering for the algorithm of Prim, but
will use it later for the algorithm of Kruskal. The algorithm of Prim then
proceeds as follows; the resulting minimal spanning tree is indicated by the
bold edges in Figure 4.1.

106 4 Spanning Trees

Fig. 4.1. A network

Iteration 1:1=1, S = {1}, T =0, g(2) = 28, e(2) = e15, g(5) = 1,
e(5) =e1, 9(3) =2, e(3) = e3

Iteration 2:i =5, S ={1,5}, T ={e1}, g(2) =8, e(2) = ey, g(4) = 5,
e(4) = eq, g(6) = 26, e(6) = €13

Iteration 3:i =3, S ={1,5,3}, T = {e1,es}, g(6) = 24, e(6) = e12,
g(8) =27, e(8) = e14

Iteration 4: i =4, S ={1,5,3,4}, T = {e1,es,es}, g(7) =8, e(7) = eg,
9(8) =T, ¢e(8) =e;

Iteration 5:1 =28, S ={1,5,3,4,8}, T = {e1,e3,€4,¢e5}, g(6) =1,
e(6) = e, g(7) =7, e(7) = eg

Iteration 6:i =6, S ={1,5,3,4,8,6}, T = {e1,e3,e4, 65,62}

Iteration 7.1 =17, 8 ={1,5,3,4,8,6,7}, T = {e1,e3,e4,€5,€2, €6}

Iteration 8 i =2, S ={1,5,3,4,8,6,7,2}, T = {e1, e3,€4, €5,€2,€5,€9}

Now we turn to the second special case of Algorithm 4.4.1; this is due to
Kruskal [Kru56]. We first give a somewhat vague version.

Algorithm 4.4.6. Let G = (V, E) be a connected graph with V = {1,...,n},
and let w: £ — R be a weight function. The edges of G are ordered according
to their weight, that is, £ = {e1,..., e} with w(e1) < ... <w(en).
Procedure KRUSKAL(G, w;T)

(1) T « 0;
(2) for k=1 tom do
(3) if ex, does not form a cycle together with some edges of T'

then append e; to T fi
(4) od

4.4 The algorithms of Prim, Kruskal and Boruvka 107

Note that the algorithm of Kruskal is the special case of MINTREE where
V; and e are chosen in such a way that w(e) is minimal among all edges which
are still available: that is, among all those edges which do not have both
end vertices in one of the sets V; and would therefore create a cycle. Again,
Theorem 4.4.2 shows that the algorithm is correct. Alternatively, we could
also appeal to Theorem 4.3.1 here: in step (3), we choose the edge which does
not create a cycle with the edges already in the forest and which has minimal
weight among all edges with this property. Thus the set T of edges constructed
satisfies (4.1), proving again that T is a minimal spanning tree.

Let us consider the complexity of Algorithm 4.4.6. In order to arrange the
edges according to their weight and to remove the edge of smallest weight,
we use the data structure priority queue already described in Section 3.6.
Then these operations can be performed in O(|E|log|E|) steps. It is more
difficult to estimate the complexity of step (3) of the algorithm: how do we
check whether an edge creates a cycle, and how many steps does this take?
Here it helps to view the algorithm as a special case of Algorithm 4.4.1. In
step (1), we begin with a (totally) disconnected forest T on n = |V| vertices
which consists of n trees without any edges. During each iteration, an edge
is added to the forest T' if and only if its two end vertices are contained in
different connected components of the forest constructed so far; these two
connected components are then joined by adding the edge to the forest 7.
Therefore we may check for possible cycles by keeping a list of the connected
components; for this task, we need a data structure appropriate for treating
partitions. In particular, operations like disjoint unions (MERGE) and finding
the component containing a given element should be easy to perform. Using
such a data structure, we can write down the following more precise version
of Algorithm 4.4.6.

Algorithm 4.4.7. Let G = (V, E) be a connected graph with V = {1,...,n},
and let w: E — R be a weight function on G. We assume that F is given as
a list of edges.

Procedure KRUSKAL (G, w;T)

)

) put F into a priority queue @ with priority function w;

) while @ # 0 do

) e := DELETEMIN(Q);

) find the end vertices u and v of e;

) find the components V,, and V,, containing u and v, respectively;
) if V,, # V,, then MERGE(V,,,V,,); T «— T U {e} i

)

Now it is easy to determine the complexity of the iteration. Finding and
removing the minimal edge e in the priority queue takes O(log|E|) steps.

108 4 Spanning Trees

Successively merging the original n trivial components and finding the com-
ponents in step (7) can be done with a total effort of O(nlogn) steps; see
[AhHUS83] or [CoLR90]. As G is connected, G has at least n — 1 edges, so that
the overall complexity is O(|E|log|E|). We have established the following
result.

Theorem 4.4.8. The algorithm of Kruskal (as given in 4.4.7) determines
with complexity O(|E|log|E|) a minimal spanning tree for (G, w). O

For sparse graphs, this complexity is much better than the complexity of
the algorithm of Prim. In practice, the algorithm of Kruskal often contains one
further step: after each merging of components, it is checked whether there is
only one component left; in this case, T is already a tree and we may stop the
algorithm.

Example 4.4.9. Let us apply the algorithm of Kruskal to the network of
Figure 4.1. The edges €1, e, €3, €4, €5, €g and eg are chosen successively, so that
we obtain the same spanning tree as with the algorithm of Prim (although
there the edges were chosen in a different order). This has to happen here, since
our small example has only one minimal spanning tree. In general, however,
the algorithms of Prim and Kruskal will yield different minimal spanning trees.

Now we turn to our third and final special case of Algorithm 4.4.1; this
is due to Boruvka [Bor26a] and requires that all edge weights are distinct.
Then we may combine several iterations of MINTREE into one larger step:
we always treat each nonempty V; and add the shortest edge leaving V;. We
shall give a comparatively brief description of the resulting algorithm.

Algorithm 4.4.10. Let G = (V, E) be a connected graph with V' = {1,...,n},
and let w: F — R be a weight function for which two distinct edges always
have distinct weights.

Procedure BORUVKA(G,w;T)

(1) for i =1tondoV, — {i} od;

2)T —0;M—{V,....V, }

(3) while |T| <n—1do

(4) for U € M do

(5) find an edge e = wv with uw € U, v ¢ U and w(e) < w(e’)
for all edges ¢/ = w/v' with v’ € U, v’ ¢ U,

find the component U’ containing v;

T —TU{e};

Ut

(6)

(7)

(8) od
(9) for U € M do MERGE(U,U’) od
10)

od

Theorem 4.4.11. The algorithm of Boruvka determines a minimal spanning
tree for (G,w) in O(|E|log|V]) steps.

4.4 The algorithms of Prim, Kruskal and Boruvka 109

Proof. Tt follows from Theorem 4.4.2 that the algorithm is correct. The con-
dition that all edge weights are distinct guarantees that no cycles are created
during an execution of the while-loop. As the number of connected compo-
nents is at least halved in each iteration, the while-loop is executed at most
log |V times. We leave it to the reader to give a precise formulation of steps
(5) and (6) leading to the complexity of O(|E|log |V|). (Hint: For each vertex
v, we should originally have a list F, of the edges incident with v.) a

Example 4.4.12. Let us apply the algorithm of Boruvka to the network
shown in Figure 4.2. When the while-loop is executed for the first time,
the edges {1,2}, {3,6}, {4,5}, {4,7} and {7,8} (drawn bold in Figure 4.2)
are chosen and inserted into 7. That leaves only three connected components,
which are merged during the second execution of the while-loop by adding
the edges {2,5} and {1, 3} (drawn bold broken in Figure 4.2).

2 10 4

Fig. 4.2. A network

Exercise 4.4.13. Show that the condition that all edge weights are distinct
is necessary for the correctness of the algorithm of Boruvka.

Exercise 4.4.14. The following table taken from [BoMu76] gives the dis-
tances (in units of 100 miles) between the airports of the cities London, Mexico
City, New York, Paris, Peking and Tokyo:

L MC NY Pa Pe To

L - 5 35 2 51 60
MC 56 - 21 57 78 70
NY 35 21 36 68 68

Pa 2 57 36 -~ 51 61

Pe 51 78 68 51 — 13
To 60 70 68 61 13 —

110 4 Spanning Trees
Find a minimal spanning tree for the corresponding graph.

Exercise 4.4.15. The tree graph T(G) of a connected graph G has the span-
ning trees for G as vertices; two of these trees are adjacent if they have |V|—2
edges in common. Prove that T'(G) is connected. What can be said about the
subgraph of minimal spanning trees (for a given weight function w)?

The complexity of the algorithms discussed in this section can often be
improved by using appropriate data structures. Implementations for the al-
gorithms of Prim and Kruskal with complexity O(|E|log|V]) are given in
[Joh75] and [ChTa76]. Using Fibonacci heaps, the algorithm of Prim can be
implemented with complexity O(|E| + |V|log |V]); see [AhMO93]. Boruvka’s
algorithm (or appropriate variations) can likewise be implemented with com-
plexity O(|E|log |V|); see [Yao75] and [ChTa76]. Almost linear bounds are in
[FrTa87] and [GaGSTS86]; finally, an algorithm with linear complexity was dis-
covered by Fredman and Willard [FrWi94]; of course, this supposes that the
edges are already sorted according to their weights. Unfortunately, the best
theoretical algorithms tend to be of no practical interest because of the large
size of the implicit constants. There is a simple algorithm with complexity
O(]V]) for planar graphs; see [Mat95].

The problem of finding a new minimal spanning tree if we change the
weight of an edge and know a minimal spanning tree for the original graph
already is discussed in [Fre85] and [Epp94]. On the average, an update may be
done in O(log |V|) steps (under suitable assumptions). Finally, it can be veri-
fied in linear time (that is, with complexity O(|E|)) whether a given spanning
tree is minimal. A similar result holds for the sensitivity analysis of minimal
spanning trees; this is the problem how much the weight of a given edge e can
be increased without changing the minimal spanning tree already known. For
the latter two problems, see [DiRT92].

4.5 Maximal spanning trees

For some practical problems, it is necessary to consider mazimal spanning
trees: we want to determine a spanning tree whose weight is maximal among
all spanning trees for a given network (G, w). Obviously, a spanning tree T’
for (G,w) is maximal if and only if T is minimal for (G, —w). Hence we
can find a maximal spanning tree by replacing w by —w and using one of
the algorithms of Section 4.4. Alternatively, we could also stay with w and
just replace minimum by mazimum in the algorithms of Prim, Kruskal and
Boruvka; of course, in Kruskal’s Algorithm, we then need to order the edges
according to decreasing weight.

Let us give some examples where one requires a maximal spanning tree;
the first of these is taken from [Chr75].

4.5 Maximal spanning trees 111

Example 4.5.1. Consider the problem of sending confidential information to
n persons. We define a graph G with n vertices corresponding to the n persons;
two vertices ¢ and j are adjacent if it is possible to send information directly
from i to j. For each edge ij, let p;; denote the probability that the information
sent is overheard; we suppose that these probabilities are independent of each
other. Now we replace p;; by ¢;; = 1 —py;, that is, by the probability that the
information is sent without being overheard. In order to send the information
to all n persons, we are looking for a spanning subgraph of G for which the
product of the g;; (over the edges occurring in the subgraph) is maximal.
Replacing ¢;; by w(ij) = logg;;, we have reduced our problem to finding a
spanning tree of maximal weight.

Problem 4.5.2 (network reliability problem). Let us consider the ver-
tices in Example 4.5.1 as the nodes of a communication network, and let us
interpret p;; as the probability that the connection between 7 and j fails. Then
a maximal spanning tree is a tree which maximizes the probability for undis-
turbed communication between all nodes of the network. This interpretation
— and its algorithmic solution — is already contained in [Pri57].

Problem 4.5.3 (bottleneck problem). Let (G, w) be a network, where G
is a connected graph, and let

€2

W = vy U1 Vg ... Un,

be any path. Then ¢(W) = min {w(e;) : i =1,...,n} is called the capacity or
the inf-section of W. (We may think of the cross-section of a tube in a supply
network or the capacity of a road.) For each pair (u,v) of vertices of G, we
want to determine a path from w to v with maximal capacity.

The following theorem due to Hu [Hu61] reduces Problem 4.5.3 to finding
a maximal spanning tree. Thus the algorithms of Prim, Kruskal, and Boruvka
— modified for determining maximal spanning trees — can be used to solve the
bottleneck problem.

Theorem 4.5.4. Let (G, w) be a network on a connected graph G, and let T
be a mazimal spanning tree for G. Then, for each pair (u,v) of vertices, the
unique path from u to v in T is a path of mazimal capacity in G.

Proof. Let W be the path from u to v in T, and e some edge of W with
¢(W) = c(e). Suppose there exists a path W’ in G having start vertex u and
end vertex v such that ¢(W') > ¢(W). Let Sr(e) be the cut of G defined
in Lemma 4.3.2 and E(Sr(e)) the corresponding cocycle. As u and v are in
different connected components of T'\ e, the path W’ has to contain some
edge f of E(Sr(e)). As c(W') > ¢(W), we must have w(f) > w(e). But then
(TU{f})\{e} would be a tree of larger weight than T. O

Exercise 4.5.5. Determine a maximal spanning tree and the maximal capac-
ities for the network of Figure 4.1.

112 4 Spanning Trees

Exercise 4.5.6. Prove the following converse of Theorem 4.5.4. Let T' be a
spanning tree and assume that, for any two vertices v and v, the unique path
from w to v in T is a path of maximal capacity in the network (G, w). Then
T is a maximal spanning tree for (G, w).

The following problem is closely related to the bottleneck problem.

Problem 4.5.7 (most uniform spanning tree). Let G be a connected
graph and w: F — R a weight function for G. We ask for a spanning tree T’
for which the difference between the largest and the smallest edge weights is
minimal. This problem can be solved using a modification of the algorithm
of Kruskal with complexity O(|V'||E|); using a more elaborate data structure,
one may even achieve a complexity of O(|E|log|V|). We refer the reader to
[CaMMT85] and [GaSc88].

We remark that analogous problems for digraphs are also of interest. For
example, given a digraph having a root, we might want to determine a directed
spanning tree of minimal (or maximal) weight. We will return to this problem
briefly in Section 4.8.

Exercise 4.5.8. Show that a directed spanning tree of maximal weight in a
network (G, w) on a digraph G does not necessarily contain paths of maximal
capacity (from the root to all other vertices).

4.6 Steiner trees

Assume that we are faced with the problem of connecting n points in the
Euclidean plane by a network of minimal total length; for a concrete example
we may think of connecting n cities by a telephone network. Of course, we
might just view the given points as the vertices of a complete graph and
determine a minimal spanning tree with respect to the Euclidean distance.
However, Example 3.2.4 suggests that it should be possible to do better if
we are willing to add some new vertices — in our concrete example, we might
introduce some switch stations not located in any of the n cities. A plane
tree which is allowed to contain — in addition to the n given vertices — an
arbitrary number of further vertices, the so-called Steiner points, is called a
Steiner tree. The euclidean Steiner problem (called the geometric Steiner tree
problem in [GaJo76]) is the problem of finding a minimal Steiner tree for the
given n vertices.?

In the last century Jacob Steiner, among others, studied this problem,
which accounts for its name. Actually, the Steiner tree problem for n = 3 goes

2Beware: some authors use the term Steiner tree for what we call a minimal
Steiner tree. As an exercise, the reader might try to settle the geometric Steiner tree
problem for the vertices of a unit square: here one gets two Steiner points, and the
minimal Steiner tree has length 1-++/3. See [Cox61], Section 1.8, or [CoRo41], p.392.

4.6 Steiner trees 113

back to Fermat.? A fundamental paper on Steiner trees is due to Gilbert and
Pollak [GiPo68]; these authors suggested the problem of finding a lower bound
p for the ratio between the total length of a minimal Steiner tree and the total
length of a minimal spanning tree for a given set of vertices. They were able
to show p > % — a result we will prove in Theorem 15.4.9 — and suggested
the Steiner ratio conjecture: p > +/3/2. This bound is optimal, as can be seen
rather easily by considering an equilateral triangle; it was finally shown to be
correct by Du and Hwang [DuHw90a, DuHw90b]. Thus a minimal Steiner tree
for a given set of n vertices is at most (roughly) 14 % better than a minimal
spanning tree. We note that minimal Steiner trees are difficult to determine:
the euclidean Steiner tree problem is NP-complete, see [GaGJ77]. In contrast,
it is easy to find minimal spanning trees. For practical applications, one will
therefore be satisfied with minimal spanning trees or with better, but not
necessarily minimal, Steiner trees. A relatively good algorithm for determining
minimal Steiner trees can be found in [TrHw90]; heuristics for finding good
Steiner trees are in [DuzZh92].

The Steiner problem has also been studied extensively for other metric
spaces. In this section, we consider a graph theoretic version, the Steiner
network problem. Here one is given a network (G, w) with a positive weight
function w, where the vertex set V' of G is the disjoint union of two sets R and
S. Now a minimal Steiner tree is a minimal spanning tree T for an induced
subgraph whose vertex set has the form R U S’ with S’ C S. The vertices in
S’ are again called Steiner points.

Note that the Steiner network problem is a common generalization of two
problems for which we have already found efficient solutions: the case S = ()
is the problem of determining a minimal spanning tree; and for |R| = 2, the
problem consists of finding a shortest path between the two given vertices.
Nevertheless, the general Steiner network problem is NP-hard, a result due
to [Kar72]. [Law76] gave an algorithm whose complexity is polynomial in the
cardinality s of S but exponential in the cardinality r of R. Before presenting
this algorithm, we prove a further result due to [GiPo68]: one needs only a
relatively small number of Steiner points, provided that we are in the met-
ric case, where G is complete and w satisfies the triangle inequality (metric
Steiner network problem). Then we will show how to reduce the general Steiner
network problem to the metric case.

Lemma 4.6.1. Let G = (V, E) be a complete graph whose vertex set is the
disjoint union V.= R U S of two subsets. Moreover, let w be a positive
weight function on E satisfying the triangle inequality. Then there is a mini-
mal Steiner tree for the network (G, w) which contains at most |R| —2 Steiner
poInts.

3Here is an exercise for those who remember their high school geometry. Prove
that the Fermat point of a triangle in which no vertex exceeds 120° is the unique
point from which the three sides each subtend a 120° angle. See, for example,
[Cox61], Section 1.8.

114 4 Spanning Trees

Proof. Write » = |R|, and let T' be a minimal Steiner tree for (G,w) with
exactly p Steiner points. Let us denote the average degree of a vertex of R in
T by x; similarly, y denotes the average degree of a vertex of S’ in T. Then
the number of all edges in T satisfies

T+ py

1=
r+p 5

Trivially, x > 1. As w satisfies the triangle inequality, we may assume that
any Steiner point in T is incident with at least three edges, hence y > 3. This
gives r +p — 1> (r+ 3p)/2; that is, p < r — 2. a

Lemma 4.6.2. Let G = (V,E) be a graph whose vertex set is the disjoint
union V.= R U S of two subsets. Moreover, let w be a positive weight function
on E and d the distance function in the network (G,w). Then the weight of
a minimal Steiner tree for the network (Kv,d) is the same as the weight of a
minimal Steiner tree for the original network (G, w).

Proof. First let T be any Steiner tree for (G, w). Since each edge e = uv of T
has weight w(uv) > d(u,v), the minimal weight of a Steiner tree for (Ky,d)
is at most w(7T"). Now let us replace each edge uv in a minimal Steiner tree T”
for (Ky,d) by the edges of a shortest path from u to v in G. We claim that
this yields a Steiner tree T” of the same weight for (G, w), which will prove
the assertion. To justify our claim, we just note that no edge can occur twice
and that there cannot be a cycle after replacing the edges, because otherwise
we could obtain a Steiner tree from 7" by discarding superfluous edges. As
we would have to discard at least one edge, this would give an upper bound
< w(T") for the weight of a minimal Steiner tree for (Kv,d) by the first part
of our argument, contradicting the minimality of T”. a

Algorithm 4.6.3. Let G = (V,E) be a connected graph with a positive
weight function w: E — R, where the vertex set V = {1,...,n} is the disjoint
union V = R U S of two subsets. Write |R| = 7. The algorithm constructs a
minimal Steiner tree T for R in (G, w).

Procedure STEINER(G, R, w;T)

(1) W +—o00; T + 0; H «— Ky;

(2) FLOYD(G, w; d, p);

(3)fori=1tor—2do

(4) for S’ C S with |S'| =4 do

(5) PRIM(H|(RU S'),d; T", 2);

(6) if z<W then W «— z; T« T' fi;
(7) od

(8) od;

(9) fore=uv € T do

10) if e ¢ F or w(e) > d(u,v)

4.6 Steiner trees 115

(11) then replace e in T' by the edges of a shortest path from
utovin G

(12) fi

(13) od

Here FLOYD is a modified version of the procedure given in Section 3.8 which
uses a function p (giving the predecessor as in Algorithm 3.9.1) to determine
not only the distance between two vertices, but a shortest path as well. We
need this shortest path in step (11). Similarly, the procedure PRIM is modified
in an obvious way to compute not only a minimal spanning tree, but also its
weight.

Theorem 4.6.4. Algorithm 4.6.3 constructs a minimal Steiner tree for
(G, R;w) with complexity O(|V|? + 2I5I|R|?).

Proof. In view of Lemma 4.6.1, Lemma 4.6.2 and its proof, and the correctness
of the procedures FLOYD and PRIM, Algorithm 4.6.3 is correct. The pro-
cedure FLOYD called in step (2) has complexity O(|V|?) by Theorem 3.8.2.
Each call of the procedure PRIM in step (5) has complexity O(|R|?) by Theo-
rem 4.4.4; note here that PRIM is applied to O(|R|) vertices only, by Lemma
4.6.1. The number of times PRIM is called is obviously

Z ('f') < oSl

i=0
This established the desired complexity bound. a

In particular, Theorem 4.6.4 shows that Algorithm 4.6.3 is polynomial in
|V| for fixed s. However, the estimate for the complexity given in the proof of
Theorem 4.6.4 is rather bad if we assume r to be fixed; in that case the number
of calls of PRIM should better be estimated as about |S|"~2. Thus Algorithm
4.6.3 is polynomial for fixed r as well. Altogether, we have proved the following
result which generalizes the fact that the Steiner network problem can be
solved efficiently for the cases r = 2 and s = 0, as noted above.

Corollary 4.6.5. For fixed v or for fixed s the Steiner network problem can
be solved with polynomial complexity. a

We conclude this section with some recommendations for further read-
ing. A version of the Steiner network problem for digraphs is considered in
the survey [Mac87], and an extensive exposition of the various Steiner prob-
lems can be found in the book [HwRW92]; more recent books on the subject
are [Cie98, Cie01] and [PrSt02]; there is also an interesting collection of arti-
cles [DuSRO0]. Steiner trees have important applications in VLSI layout; see
[KoPS90], [Len90], or [Mar92]. In this context, one is particularly interested
in good heuristics; for this topic, we refer to [Vos92], [DuZh92], and [BeRa94].
As this by no means exhaustive collection of references shows, Steiner trees
constitute a large and very active area of research.

116 4 Spanning Trees

4.7 Spanning trees with restrictions

In reality, most of the problems one encounters cannot be solved by determin-
ing just any (minimal) spanning tree; usually, the solution will have to satisfy
some further restrictions. Unfortunately, this often leads to much harder —
quite often even to NP-hard — problems. In this section, we state some of
these problems without discussing any possible strategies for solving them
(like heuristics); this will be done in Chapter 15 for the TSP as a prototypi-
cal example. Even if there is no weight function given, certain restrictions can
make the task of finding an appropriate spanning tree NP-hard. The following
four problems are all NP-complete; see [GaJo79).

Problem 4.7.1 (degree constrained spanning tree). Let G be a con-
nected graph and k a positive integer. Is there a spanning tree T' for G with
maximal degree A < k7

Problem 4.7.2 (maximum leaf spanning tree). Let G be a connected
graph and k a positive integer. Is there a spanning tree for G having at least
k leaves?

Problem 4.7.3 (shortest total path length spanning tree). Let G be
a connected graph and k a positive integer. Is there a spanning tree T such
that the sum of all distances d(u,v) over all pairs of vertices {u,v} is < k?

Problem 4.7.4 (isomorphic spanning tree). Let G be a connected graph
and T a tree (both defined on n vertices, say). Does G have a spanning
tree isomorphic to T'?7 Note that this problem contains the Hamiltonian path
problem of Exercise 2.7.7: HP is the special case where T is a path.

We can neither expect to solve these problems efficiently by some algo-
rithm nor to find a nice formula for the value in question — for example, for
the maximal number of leaves which a spanning tree of G might have. Nev-
ertheless, it is often still possible to obtain interesting partial results, such
as, for example, lower or upper bounds for the respective value. We illustrate
this for Problem 4.7.2 and quote a result due to Kleitman and West [KIWe91]
which shows that a connected graph with large minimal degree has to contain
a spanning tree with many leaves.

Result 4.7.5. Let I(n, k) be the largest positive integer m such that each con-
nected graph with n vertices and minimal degree k contains a spanning tree
with at least m leaves. Then

(2) i(n,3) = 7 +2;

(3) 1(n,4) > 2248,

4.7 Spanning trees with restrictions 117

(4) l(n,k) >n (1 — %) for sufficiently large k, where b is a constant with
b> 2. o
We will not include the relatively long (though not really difficult) proof
and refer the reader to the original paper instead. The proof given there
consists of an explicit construction of a spanning tree with the desired number
of leaves.
Now let us turn to some weighted problems with restrictions.

Problem 4.7.6 (bounded diameter spanning tree). Let G be a con-
nected graph with a weight function w: £ — N, and let d and k£ be two
positive integers. Does G contain a spanning tree T' with weight w(T) < k
and diameter at most d?

According to [GaJoT9], this problem is NP-complete. Hence it is NP-hard
to find among all minimal spanning trees one having the smallest possible
diameter. This remains true even if the weight function is restricted to the
values 1 and 2 only; however, it is easy to solve the case where all weights are
equal.

Exercise 4.7.7. Give a polynomial algorithm for determining a spanning tree
whose diameter is at most 1 larger than the smallest possible diameter. Hint:
Look at Theorem 3.8.8 and Exercise 4.1.3.

A variation of Problem 4.7.6 was studied in [HoLC91]: one asks for a
spanning tree satisfying w(T') < k and d(u,v) < d for all u,v € V, where
d(u,v) is the distance in the network (G, w). This variation is NP-complete as
well. However, in a Euclidean graph (that is, the vertices are points in a space
R™ and the weights w(u, v) are given by the Euclidean distance), it is possible
to find a spanning tree such that the maximum of the d(u,v) is minimal with
complexity O(|V[3).

Problem 4.7.8 (minimal cost reliability ratio spanning tree). Let G
be a connected graph with both a weight function w: £ — N and a reliability
function r: E — (0, 1]; we interpret r(e) as the probability that edge e works,
and w(e) as the cost of using e. Now let T be a spanning tree. As usual, w(T")
is the sum of all w(e) with e € T, whereas r(T") is defined to be the product of
the r(e) for e € T. Thus w(T) is the total cost of T', and r(T') is the probability
that no edge in the tree fails; see Problem 4.5.2. We require a spanning tree
T for which the ratio w(T)/r(T) is minimal.

Problem 4.7.8 is one of the few restricted problems for which a polynomial
algorithm is known: if we count all arithmetic operations as one step each, it
can be solved in O(|E|>/?loglog |V|) steps;* see [ChANS81] and [ChTa84].

4As some of the arithmetic operations concerned are exponentiations, this esti-
mate of the complexity might be considered a little optimistic.

118 4 Spanning Trees

Our final example involves two functions on E as well. But this time,
the two functions are coupled non-linearly, and our goal is to minimize the
resulting function.

Problem 4.7.9 (optimum communication spanning tree). Let G be a
connected graph with a weight function w: E — Ny and a request function
T (‘2/) — Np, and let k be a positive integer. Denote the distance function
in the network (T, w) by d; thus d(u,v) is the sum of the weights w(e) of all
edges occurring in the unique path from u to v in T'. Does GG have a spanning
tree T satisfying

Z d(u,v) x r(u,v) < k?
{uw}ye(})

In practice, d(u, v) signifies the cost of the path from u to v, and r(u, v) is the
capacity we require for communication between u and v — for example, the
number of telephone lines needed between cities u and v. Then the product
d(u,v)r(u,v) is the cost of communication between u and v, and we want to
minimize the total cost.

Problem 4.7.9 is NP-complete even if the request is the same for all edges
(optimum distance spanning tree); see [JoLRT78]. However, the special case
where all weights are equal can be solved in polynomial time; see [Hu74] for
an algorithm of complexity O(|V|*). But even this special case of Problem
4.7.9 (optimum requirement spanning tree) is much more difficult to solve
than the problem of determining a minimal spanning tree , and the solution
is found by a completely different method. We shall return to this problem in
Section 12.4.

The general problem of finding spanning trees which are optimal with
respect to several functions is discussed in [HaRu94].

4.8 Arborescences and directed Euler tours

In this section, we treat the analogue of Theorem 4.2.9 for the directed case
and give an application to directed Euler tours. We begin with a simple char-
acterization of arborescences which we used in Section 3.4 already.

Lemma 4.8.1. Let G be an orientation of a connected graph. Then G is a
spanning arborescence with root v if and only if

din(v) =1 foralv#r and din(r) =0. (4.4)

Proof. Condition (4.4) is clearly necessary. Thus assume that (4.4) holds. Then
G has exactly |V| — 1 edges. As |G| is connected by hypothesis, it is a tree
by Theorem 1.2.8. Now let v be an arbitrary vertex. Then there is a path W
in G from r to v; actually, W is a directed path, as otherwise dj,(r) > 1 or
din (u) > 2 for some vertex u # r on W. Thus r is indeed a root for G. O

4.8 Arborescences and directed Euler tours 119

In analogy to the degree matrix of a graph, we now introduce the indegree
matric D = (di;)ij=1,..» for a digraph G = (V, E) with vertex set V =
{1,...,n}, where

din(i) fori=j
dij = -1 for 1j € E
0 otherwise.

We denote the submatrix of D obtained by deleting the i-th row and the
i-th column by D;. The following analogue of Theorem 4.2.9 is due to Tutte
[Tut48].

Theorem 4.8.2. Let G = (V, E) be a digraph with indegree matriz D. Then
the r-th minor det D,. is equal to the number of spanning arborescences of G
with root r.

Proof. We may assume r = 1. Note that it is not necessary to consider edges
with head 1 if we want to construct spanning arborescences with root 1, and
that the entries in the first column of D do not occur in the minor det D;.
Thus we may make the following assumption which simplifies the remainder
of the proof considerably: G contains no edges with head 1, and hence the
first column of D is the vector having all entries 0. If there should be a vertex
i # 1 with di, (1) = 0, G cannot have any spanning arborescence. On the other
hand, the i-th column of D then has all entries equal to 0, so that det D; = 0.
Thus our assertion is correct for this case, and we may from now on assume
that the condition

din(i) > 1 for each vertex i # 1 (4.5)

holds. We use induction on m := diy(2) + ... + din(n); note m = |E|, because
of our assumption d;,(1) = 0. The more difficult part of the induction here
is the induction basis, that is, the case m = n — 1. We have to verify that
G is an arborescence (with root 1) if and only if det D; = 1. First let G be
an arborescence; then condition (4.4) holds for » = 1. As G is acyclic, G has
a topological sorting by Theorem 2.6.3. Thus we may assume i < j for all
edges ij in E. Then the matrix D is an upper triangular matrix with diagonal
(0,1,...,1) and det Dy = 1.

Conversely, suppose det Dy # 0; we have to show that G is an arborescence
(and therefore, actually det Dy = 1). It follows from condition (4.5) and m =
n — 1 that di(¢) = 1 for i = 2,...,n. Thus G satisfies condition (4.4), and by
Lemma 4.8.1 it suffices to show that G is connected. In view of Theorem 1.2.8,
we may check instead that G is acyclic. By way of contradiction, suppose that
G contains a cycle, say

C: iy —dg— ... — i — 1.

Let us consider the submatrix U of D; which consists of the columns corre-
sponding to 41, ...,1,. As each of the vertices i1, ..., i has indegree 1, U can

120 4 Spanning Trees

have entries # 0 only in the rows corresponding to i1, ...,4,. Moreover, the
sum of all rows of U is the zero vector, so that U has rank < k — 1. Thus
the columns of U, and hence also the columns of Dy, are linearly dependent;
but this implies det D; = 0, contradicting our hypothesis. Hence the assertion
holds for m =n — 1.
Now let m > n. In this case, there has to be a vertex with indegree > 2,
say
din(n) =c> 2. (4.6)

For each edge e of the form e = jn, let D(e) denote the matrix obtained by
replacing the last column of D by the vector v. = —e; + e,,, where e, is the
k-th unit vector; thus v, has entry —1 in row j, entry 1 in row n and all other
entries 0. Then D(e) is the indegree matrix for the graph G(e) which arises
from G by deleting all edges with head n except for e. Because of (4.6), G(e)
has at most m — 1 edges; hence the induction hypothesis guarantees that the
minor det D(e); equals the number of spanning arborescences of G(e) with
root 1. Obviously, this is the number of spanning arborescences of G which
have root 1 and contain the edge e. Therefore the number of all spanning
arborescences of G with root 1 is the sum

det D(Bl)l + ...+ det D(ec)l,

where e1, ..., e, are the c edges of G with head n. On the other hand, the last
column of D is the sum v, +...+v,,_ of the last columns of D(e;), ..., D(e.).
Thus the multilinearity of the determinant implies

det D1 = det D(61)1 4+ ...+ det D(ec)l,

and the assertion follows. O

Theorem 4.8.2 can be used to obtain an alternative proof for Theorem
4.2.9. Even though this proof is not shorter than the proof given in Section
4.2, it has the advantage of avoiding the use of the theorem of Cauchy and
Binet (which is not all that well-known).

Corollary 4.8.3. Let H = (V, E) be a graph with adjacency matriz A and
degree matriz D = diag(deg1,...,degn) — A. Then the number of spanning
trees of H is the common value of all minors det D,. of D.

Proof. Let G be the complete orientation of H. Then there is a one-to-one
correspondence between the spanning trees of H and the spanning arbores-
cences of G with root r. Moreover, the degree matrix D of H coincides with
the indegree matrix of G. Thus the assertion follows from Theorem 4.8.2. O

Now let G be a directed Eulerian graph; then G is a connected pseudo-
symmetric digraph by Theorem 1.6.1. The following theorem of de Bruijn
and van Aardenne-Ehrenfest (1951) [deBA51] gives a connection between the
spanning arborescences and the directed Euler tours of G.

4.8 Arborescences and directed Euler tours 121

Theorem 4.8.4. Let G = (V, E) be an Eulerian digraph. For i = 1,... n,
let a; denote the number of spanning arborescences of G with root i. Then the
number eg of directed Euler tours of G is given by

ec = a; x [[(din(5) - 1)!, (4.7)
j=1

where i may be chosen arbitrarily.

Sketch of proof. Let A be a spanning arborescence of G with root i. For each
vertex j # i, let e; denote the unique edge in A with head j, and choose e;
as a fixed edge with head i. Now we construct a cycle C in G by the method
described in the algorithm of Hierholzer, using all edges backward (so that we
get a directed cycle by reversing the order of the edges in C). That is, we leave
vertex 4 using edge e;; and, for each vertex j which we reach by using an edge
with tail 7, we use — as long as this is possible — some edge with head j not yet
used to leave j again. In contrast to the algorithm of Hierholzer, we choose
e; for leaving j only after all other edges with head j have been used already.
It can be seen as usual that the construction can only terminate at the start
vertex i, since G is pseudo-symmetric. Moreover, for each vertex j, all edges
with head j — and hence all the edges of G — are used exactly once, because
of the restriction that e; is chosen last. Thus we indeed get an Euler tour.
Obviously, whenever we have a choice of an edge in our construction, different
choices will give different Euler tours. But the choice of the edges with head
J leads to altogether (diy(j) — 1)! possibilities, so that the product in (4.7)
gives the number of distinct Euler tours of G which can be constructed using
A. It is easy to see that distinct arborescences with root ¢ also lead to distinct
Euler tours. Conversely, we may construct a spanning arborescence with root
1 from any directed Euler tour in a similar way. a

Corollary 4.8.5. Let G be an Eulerian digraph. Then the number of spanning
arborescences of G with root i is independent of the choice of i. a

From Exercise 2.3.2 we know that the de Bruijn sequences of length
N = s™ over an alphabet S of cardinality s correspond bijectively to the
directed Euler tours of the digraph G ,, defined there. Combining Theorems
4.8.2 and 4.8.4, we can now determine the number of such sequences, a result
due to de Bruijn [deB46]. See also [vLi74]; a similar method can be found in
[Knu67].

Theorem 4.8.6. The number of de Bruijn sequences of length N = s™ over
an alphabet S of cardinality s is

1

ben = s (). (4.8)

s

Sketch of proof. As each vertex of G, has indegree s, Theorem 4.8.4 yields

122 4 Spanning Trees

—1

bem =a((s — 1)), (4.9)

where a is the common value of all minors of the indegree matrix D of G .
Thus it remains to show -

a=s" " (4.10)
To do this, Theorem 4.8.2 is used. (We have to be a bit careful here, because
G, contains loops. Of course, these loops should not appear in the matrix
D.) As the technical details of calculating the determinant in question are
rather tedious, we will not give them here and refer to the literature cited
above. a

We conclude this chapter with some references for the problem of deter-
mining an arborescence of minimal weight in a network (G, w) on a digraph
G. This problem is considerably more difficult than the analogous problem of
determining minimal spanning trees in the undirected case; for this reason,
we have not treated it in this book. A minimal arborescence can be deter-
mined with complexity O(|V|?) or O(|E|log|V|); the respective algorithms
were found independently by Chu and Liu [ChLi65] and Edmonds [Edm67b].
For an implementation, see [Tar77] and [CaFM79], where some details of Tar-
jan’s paper are corrected, or [GoMi84]. The best result up to now is due

in [GaGST86], where Fibonacci heaps are used to achieve a complexity of
O(|V[log [V[+|El).

5

The Greedy Algorithm

Greed is good. Greed is right. Greed works.
From ‘WALL STREET’

In this chapter we study a generalization of the algorithm of Kruskal, the
so-called greedy algorithm. This algorithm can be used for maximization on
independence systems — in the case of the algorithm of Kruskal, the system of
spanning forests of a graph. The greedy strategy is rather short-sighted: we
always select the element which seems best at the moment. In other words,
among all the admissible elements, we choose one whose weight is maximal
and add it to the solution we are constructing. In general, this simple strategy
will not work, but for a certain class of structures playing an important part in
combinatorial optimization, the so-called matroids, it indeed leads to optimal
solutions. Actually, matroids may be characterized by the fact that the greedy
algorithm works for them, but there are other possible definitions. We will look
at various other characterizations of matroids and also consider the notion of
matroid duality.

Following this, we shall consider the greedy algorithm as an approximation
method for maximization on independence systems which are not matroids.
We examine the efficiency of this approach, that is, we derive bounds for the
ratio between the solution given by the greedy algorithm and the optimal
solution. We also look at the problem of minimization on independence sys-
tems. Finally, in the last section, we discuss some further generalizations of
matroids and their relationship to the greedy algorithm.

5.1 The greedy algorithm and matroids

Let us begin by recalling the algorithm of Kruskal for determining a maximal
spanning tree or forest. Thus let G = (V, E) be a simple graph and w: E — R
a weight function. We order the edges according to decreasing weight and
treat them consecutively: an edge is inserted into the set T if and only if it
does not form a cycle with the edges which are already contained in T'. At the
end of the algorithm, T is a maximal spanning forest — or, if G is connected,
a maximal spanning tree. We may describe this technique on a slightly more

124 5 The Greedy Algorithm

abstract level as follows. Let S be the set of all subsets of E which are forests.
Then the edge e which is currently examined is added to T if and only if
T U{e} is also in S. Of course, we may apply this strategy — namely choosing
the element e € E which is maximal among all elements of E satisfying a
suitable restriction — also to other systems (F,S). We need some definitions.

An independence system is a pair (F, S), where E is a set and S is a subset
of the power set of E closed under inclusion: A € S and B C A imply B € S.
The elements of S are called independent sets. We associate an optimization
problem with (E,S) as follows. For a given weight function w: E — R{, we
ask for an independent set A with maximal weight

w(A) ==Y wle).!

ecA

For example, determining a maximal spanning forest for a graph G = (V, E)
is the optimization problem associated with (E,S), where S is the indepen-
dence system of all edge sets constituting forests. We can now generalize the
algorithm of Kruskal to work on an arbitrary independence system.

Algorithm 5.1.1 (greedy algorithm). Let (E,S) be an independence sys-
tem and w: E — R a weight function.

Procedure GREEDY (E, S, w;T)

(1) order the elements of E according to their weight: E = {e1, ..., e, } with
w(er) > w(ez) > ... > wlen);

2) T — 0

3) for k=1to m do

4) if TU{er} € S then append e, to T fi

5)

Py

od

By Theorem 4.4.8, the greedy algorithm solves the optimization problem
associated with the system of forests of a graph. For arbitrary independence
systems, however, the simple strategy — Always take the biggest piece! — of this
algorithm does not work. We call an independence system (FE,S) a matroid
if the greedy algorithm solves the associated optimization problem correctly.?
Then we may restate Theorem 4.4.8 as follows.

'Note that the restriction to nonnegative weight functions ensures that there
is a maximal independent set among the independent sets of maximal weight. We
may drop this condition and require A to be a maximal independent set instead; see
Theorem 5.5.1.

2Qriginally, Whitney [Whi35] and van der Waerden [vdW37] (see also [vdW49]
for an English edition) introduced matroids as an abstract generalization of the
notions of linear and algebraic independence, respectively. In the next section, we
give some other possible definitions. The generalization of the algorithm of Kruskal
to matroids was found independently by [Gal68], [Wel68] and — actually a bit earlier
— by Edmonds; see [Edm71]. Early forms of the underlying ideas go back even to
[Bor26a] and [Rad57].

5.2 Characterizations of matroids 125

Theorem 5.1.2. Let G = (V| E) be a graph, and let S be the set of those
subsets of E which are forests. Then (E,S) is a matroid. O

The matroid described above is called the graphic matroid of the graph G.
Next we treat a class of matroids arising from digraphs.

Theorem 5.1.3. Let G = (V, E) be a digraph, and let S be the set of all
subsets A of E for which no two edges of A have the same head. Then (E,S)
is a matroid, the head-partition matroid of G.3

Proof. Obviously, an independent set of maximal weight can be found by
choosing, for each vertex v of G with di,(v) # 0, the edge with head v having
maximal weight. Thus the greedy algorithm solves the corresponding opti-
mization problem. a

Next we give an example where it is absolutely trivial that the greedy
algorithm works correctly.

Example 5.1.4. Let E be a set, and let S be the set of all subsets X C F
with | X| < k, where 1 < k < |E|. Then (E,S) is called a uniform matroid of
degree k. For k = |E|, we also speak of the free matroid on E.

Exercise 5.1.5. Let G be a graph. A matching in G is a set of edges which
do not have any vertices in common; we will study this notion in detail later.
Show that the matchings in a graph G do not form a matroid in general,
even if GG is bipartite. The independence system of matchings in G will be
investigated in Section 5.4.

5.2 Characterizations of matroids

We begin with two characterizations of matroids which show that these struc-
tures can be viewed as generalizations of the notion of linear independence.

Theorem 5.2.1. Let M = (E,S) be an independence system. Then the fol-
lowing conditions are equivalent:

(1) M is a matroid.

(2) For J,K € S with |J| = |K|+ 1, there always exists some a € J\ K such
that K U {a} is also in S.

(3) For every subset A of E, all mazimal independent subsets of A have the
same cardinality.

Proof. Suppose first that M is a matroid for which (2) is not satisfied. Then
there are J, K € S with |J| = |K| + 1 such that, for every a € J\ K, the set
K U{a} is not in S. Let k = |K|, and define a weight function w as follows:

3The tail-partition matroid is defined analogously.

126 5 The Greedy Algorithm

k+2 foreeK,
w(e):=< k+1 foree J\K,
0 otherwise.

Note that K is not the solution of the associated optimization problem:
w(K) = k(k+2) < (k+ 1) < w(J). On the other hand, the greedy al-
gorithm first chooses all elements of K, because they have maximal weight.
Afterwards, the weight of the solution cannot be increased any more: all re-
maining elements e either have w(e) = 0 or are in J \ K, so that K U {e}
is not in S, according to our assumption above. Thus M is not a matroid, a
contradiction. Hence (1) implies (2).

Now let A be an arbitrary subset of E' and J and K two maximal inde-
pendent subsets contained in A; thus there is no independent subset of A con-
taining J or K, except J or K itself, respectively. Suppose we have |K| < |J|.
As S is closed under inclusion, there is a subset J’ of J with |J/| = |K| + 1.
By (2), there exists an element a € J'\ K such that K U {a} is independent,
contradicting the maximality of K. Thus (2) implies (3).

Finally, suppose that M is not a matroid, but satisfies condition (3).
Then the greedy algorithm does not work for the corresponding optimization
problem. Thus we may choose a weight function w for which Algorithm 5.1.1
constructs an independent set K = {ey,...,ex}, even though there exists an
independent set J = {€/,..., e} } of larger weight. We may assume that the
elements of J and K are ordered according to decreasing weight and that J
is a maximal independent subset of E. By construction, K is maximal too.
Then (3), with A = E, implies h = k. We use induction on m to show that
the inequality w(e;) > w(e}) holds for ¢ = 1,...,m; the instance m = k then
gives a contradiction to our assumption w(K) < w(J). Now the greedy algo-
rithm chooses e; as an element of maximal weight; thus the desired inequality
holds for m = 1. Now suppose that the assertion holds for m > 1 and assume
w(em1) < w(ey, ;). Consider the set

A ={ecE:w(e)>wle,)}

We claim that S = {ej,...,en} is a maximal independent subset of A. To
see this, let e be any element for which {ej, ..., e, e} is independent. Then
w(e) < w(ems1) < wlep,), since the greedy algorithm chose the element
em-+1 after having chosen e,,; hence e ¢ A so that S is indeed a maximal subset
of A. But {e},... ey, 1} is also an independent subset of A, contradicting
condition (3). Thus (3) implies (1). O

Note that condition (2) of Theorem 5.2.1 is analogous to a well-known
result from linear algebra, the Steinitz exchange theorem; therefore (2) is
usually called the ezchange axiom. Similarly, condition (3) is analogous to
the fact that all bases of a linear subspace have the same cardinality. In fact,
Theorem 5.2.1 immediately gives the following result.

5.2 Characterizations of matroids 127

Theorem 5.2.2. Let E be a finite subset of a vector space V', and let S be
the set of all linearly independent subsets of E. Then (E,S) is a matroid. O

A matroid constructed as in Theorem 5.2.2 is called a vectorial matroid or
a matric matroid. The second name comes from the fact that a subset F of a
vector space V' can be identified with the set of columns of a suitable matrix
(after choosing a basis for V); then the independent sets are the linearly
independent subsets of this set of columns. An abstract matroid is called
representable over F', where I is a given field, if it is isomorphic to a vectorial
matroid in a vector space V over F. (We leave it to the reader to give a formal
definition of the term isomorphic.)

Exercise 5.2.3. Every graphic matroid is representable over F for every field
F. Hint: Use the incidence matrix of an arbitrary orientation of the underlying
graph.

Exercise 5.2.4. Let G = (V, E) be a graph. A set A C E is called a k-forest
of G if it splits into a forest F' and at most k£ edges not in F. Prove that the
set of all k-forests of G forms a matroid My(G). Hint: Use Theorem 5.2.1 and
reduce the assertion to the case k = 0, where the matroid in question is just
the graphic matroid.

Let us introduce some more terminology chosen in analogy to that used
in linear algebra. The maximal independent sets of a matroid M = (E,S)
are called its bases. The rank p(A) of a subset A of E is the cardinality of
a maximal independent subset of A. Any subset of £ not contained in S is
called dependent.

Exercise 5.2.5. Let p be the rank function of a matroid M = (E,S). Show
that p has the following properties.

(1) p(A) < |A| for all A C E;

(2) p is isotonic, that is, A C B implies p(A) < p(B) (for all A, B C E);

(3) p is submodular, that is, p(A U B) + p(AN B) < p(A4) + p(B) for all
A, BCE.

Conversely, matroids can be defined using their rank function. Let E be a
set and p a function from the power set of E to Ny satisfying conditions (1),
(2), and (3) above. Then the subsets X of E satisfying p(X) = |X]| are the
independent sets of a matroid on F; for example, see [Wel76]. Submodular
functions are important in combinatorial optimization and matroid theory;
see, for instance, [PyPe70], [Edm70], [FrTa88], [Qi88], and the monograph by
[Fujo1].

To solve Exercise 5.2.5, we need a result worth noting explicitly, although
it is a direct consequence of condition (2) of Theorem 5.2.1.

Theorem 5.2.6 (basis completion theorem). Let J be an independent set
of the matroid M = (E,S). Then J is contained in a basis of M. O

128 5 The Greedy Algorithm

We will now use the rank function to introduce another important concept;
this rests on the following simple observation.

Lemma 5.2.7. Let J be an independent set of the matroid (E,S), and let
XY C E. If J is a maximal independent set of X as well as of Y, then J is
also a mazimal independent set of X UY . ad

Theorem 5.2.8. Let M = (E,S) be a matroid and A a subset of E. Then
there is a unique mazimal set B containing A such that p(A) = p(B), namely

B = {ec B: p(AU{e}) = p(A)}.

Proof. First let C' be an arbitrary superset of A satisfying p(A) = p(C).
Then p(A U {e}) = p(A) holds for each e € C: otherwise we would have
p(C) > p(AU{e}) > p(A). Thus we only need to show that the set B defined
in the assertion satisfies the condition p(A) = p(B). Let J be a maximal
independent subset of A; then J is also a maximal independent subset of
AU {e} for each e € B. By Lemma 5.2.7, J is also a maximal independent
subset of B. O

The set B defined in Theorem 5.2.8 is called the span of A and is denoted
by o(A). By analogy with the terminology of linear algebra, a generating set
of M is aset A with E = o(A). A set A satisfying o0(A) = A is called a closed
set, and a hyperplane is a maximal closed proper subset of E. Matroids may be
characterized by systems of axioms using the notion of span or of hyperplane;
we refer again to [Wel76]. Let us pose some exercises concerning the concepts
just introduced.

Exercise 5.2.9. Let M = (E,S) be a matroid. Then the span operator o has
the following properties:

(1) X Co(X) for all X C E;
2)YCX=0Y)Co(X)forall X,Y C E;

(3) o(0(X)) = o(X) for all X C E;

D Ifydo(X)andy € o(X U{x}), then z € o(X U {y}).

Property (3) explains why the sets o(A) are called closed; property (4) is again
called the exchange aziom because it is basically the same as condition (2)
of Theorem 5.2.1. Conversely, the conditions given above can be used for an
axiomatic characterization of matroids by the span operator.

Exercise 5.2.10. Show that the bases of a matroid are precisely the minimal
generating sets.

Exercise 5.2.11. Let (E,S) be a matroid. Prove the following assertions:

(a) The intersection of closed sets is closed.
(b) o(X) is the intersection of all closed sets containing X.
(c) X is closed if and only if p(X U {z}) = p(X) + 1 for some z € E\ X.

5.2 Characterizations of matroids 129

Exercise 5.2.12. Let (E,S) be a matroid of rank r, that is, p(E) = r). Show
that (E,S) contains at least 2" closed subsets.

Let us introduce one further notion, this time generalizing a concept from
graph theory. A circuit in a matroid is a minimal dependent set — by analogy
with a cycle in a graph. We have the following result; the special case of a
graphic matroid should be clear from the preceding discussion.

Theorem 5.2.13. Let M = (E,S) be a matroid, J an independent set of M,
and e any element of E\ J. Then either J U {e} is independent, or J U {e}
contains a unique circuit.

Proof. Suppose that J U {e} is dependent, and put
C = {ceE:(JU{e})\{c} €S}

Note C # 0, since ¢ € C by definition. Also, C is dependent, because otherwise
it could be completed to a maximal independent subset K of JU{e}. As J is
independent itself, we would have |K| = |J|, so that K = (J U {e}) \ {d} for
some element d. But then d would have to be an element of C, a contradiction.
It is easy to see that C' is even a circuit: if we remove any element ¢, we get
a subset of (JU{e}) \ {¢} which is, by definition of C, an independent set. It
remains to show that C' is the only circuit contained in JU{e}. Thus let D be
any circuit contained in J U {e}. Suppose there exists an element ¢ € C'\ D.
Then D is a subset of (J U {e}) \ {¢} which is an independent set. Therefore
C Cc D, and hence C = D. a

We conclude this section by characterizing matroids in terms of their cir-
cuits. We begin with a simple observation.

Lemma 5.2.14. Let (E,S) be a matroid. A subset A of E is dependent if and
only if p(A) < |A|. Moreover, p(A) = |A| — 1 for every circuit A. O

Theorem 5.2.15. Let M = (E,S) be a matroid, and let C be the set of all
circuits of M. Then C has the following properties:

(1) IfC C D, then C =D for all C,D € C;

(2) For all C, D € C with C # D and for each x € CN D, there always exists
some F € C with F C (CUD)\ {z}.

Conversely, assume that a set system (E, C) satisfies the preceding two circuit
axioms. Then there is a unique matroid (E,S) having C as its set of circuits.

Proof. First, let C be the set of circuits of M. As circuits are minimal de-
pendent sets, condition (1) is trivial. The submodularity of p yields, together
with Lemma 5.2.14,

p(CUD)+p(CND) <p(C)+p(D)=|Cl+|D|-2=|CND[+|CUD|-2.

130 5 The Greedy Algorithm

As C and D are minimal dependent sets, C' N D is independent; therefore
p(CND)=|CnD|, and hence

p((CUD)\{z}) < p(CUD) < |CUD|-2 < [(CUD)\ {a}|

By Lemma 5.2.14, (C' U D) \ {z} is dependent and hence contains a circuit.
Conversely, suppose C satisfies the conditions (1) and (2). If there exists
a matroid (E,S) with set of circuits C, its independent sets are given by

S = {J C E: J does not contain any element of C}.

Obviously, S is closed under inclusion, and it suffices to show that (E,S)
satisfies condition (2) of Theorem 5.2.1. Suppose that this condition is not
satisfied, and choose a counterexample (J, K) such that |J U K| is minimal.
Let J\ K = {x1,...,2}. Note k # 1, because otherwise |J| = |K|+ 1 would
imply that K is a subset of J, and hence J = K U{z1} would be independent.
Our assumption means K U {z;} ¢ S for i = 1,..., k. In particular, there
exists C' € C with C C K U {x1}; as K is independent, 1 must be in C.
As J is independent, there is an element y € K \ J which is contained in C.
Consider the set Z = (K \ {y}) U{z1}. If Z is not in S, then there exists
D € C with D C Z and x; € D, and the circuit axiom (2) yields a set
F € Cwith F C (CUD)\ {1} C K, contradicting K € S. Hence Z must be
independent. Note that |Z U J| < |[K U J|. As we chose our counterexample
(J,K) to be minimal, (J,Z) has to satisfy condition (2) of Theorem 5.2.1.
Thus there exists some x;, say x2, such that ZU{z2} € S. But K U{z2} ¢ S,
so that there is a circuit C' € C with ¢’ C K U {z3}. We must have x5 € C’,
because K is independent; and (K \ {y}) U {z1,22} € S yields y € C’. Thus
C'# C,and y € C N C". Using the circuit axiom (2) again, there exists a set
F'e Cwith F/ C (CUC)\{y} € (K\{y})U{z1, 22} € S. This contradicts
the definition of S. Therefore M = (E, S) is indeed a matroid, and clearly C
is the set of circuits of M. O

Exercise 5.2.16. Show that the set C of circuits of a matroid (E, S) actually
satisfies the following stronger version of the circuit axiom (2) in Theorem
5.2.15 [Leh64]:

(2" For all C, D € C, for each x € C N D, and for each y € C'\ D,
there exists a set F € C withy € F C (CUD)\ {z}.

5.3 Matroid duality

In this section we construct the dual matroid M* of a given matroid M. We
stress that the notion of duality of matroids differs from the duality known
from linear algebra: the dual matroid of a finite vector space is not the matroid
formed by the dual space. Matroid duality has an interesting meaning in graph
theory; see Result 5.3.4 below. The following construction of the dual matroid
is due to Whitney [Whi35].

5.3 Matroid duality 131
Theorem 5.3.1. Let M = (E,S) be a matroid. Put M* = (E,S*), where
S* = {J C E : there is a basis B of M with J C E'\ B}.
Then M* is a matroid as well, and the rank function p* of M* is given by
P (A) = [A[+p(E\ A) = p(E). (5.1)

Proof. Obviously, S* is closed under inclusion. By Theorem 5.2.1, it suffices to
verify the following condition for each subset A of E: all maximal subsets of
A which are independent with respect to S* have the cardinality p*(A) given
in (5.1). Thus let J be such a subset of A. Then there exists a basis B of M
with J = (F'\ B) N A; moreover, J is maximal with respect to this property.
This means that B is chosen such that A\ J=A\ (F\B)NA)=ANBis
minimal with respect to inclusion. Hence K := (E \ A) N B is maximal with
respect to inclusion. Thus K is a basis of E \ A in the matroid M and has
cardinality p(E'\ A). Therefore the minimal subsets AN B all have cardinality

Bl = p(E\ A) = p(E) —p(E\ A);
and all maximal subsets J € S* of A have cardinality

[JI = |Al = [ANJ| = |A] = |AN B| = [A[+p(E\A) = p(E). O

The matroid M* constructed in Theorem 5.3.1 is called the dual matroid
of M. The bases of M* are the cobases of M; the circuits of M™* are the
cocircuits of M. According to Exercise 5.2.10, the independent sets of M* are
precisely the complements of generating sets of M. This implies the following
result.

Corollary 5.3.2. Let M = (E,S) be a matroid. Then the independent sets of
M* are the complements of the generating sets of M. In particular, the bases
of M* are the complements of the bases of M. Hence (M*)* = M. ad

Example 5.3.3. Let M = M(G) be the matroid corresponding to a con-
nected graph G. Then the bases of M are the spanning trees of GG, and the
bases of M* are the cotrees, that is, the complements of the spanning trees.
More generally, a set S is independent in M* if and only if its complement S
contains a spanning tree of G, that is, if and only if S is connected. By defi-
nition, the circuits of a matroid are the minimal independent sets. Thus the
circuits of M are the cycles in G, and the circuits of M* are the minimal sets
C for which the complement C is not connected. In other words, the circuits
of M* are the simple cocycles of G — all those cocycles which are minimal
with respect to inclusion.

In the general case, if G has p connected components, n vertices and m
edges, then M (G) has rank n—p and M (G)* has rank m — (n—p), by Theorem
4.2.4.

132 5 The Greedy Algorithm

We now state an important theorem due to Whitney [Whi33] which clar-
ifies the role of matroid duality in graph theory; a proof can be found in
Chapter 6 of [Wel76].

Result 5.3.4. A graph G is planar if and only if the dual matroid M(G)* is
graphic. ad

Exercise 5.3.5. Let M = (E,S) be a matroid, and let A and A* be two
disjoint subsets of E. If A is independent in M and if A* is independent in
M*, then there are bases B and B* of M and M*, respectively, with A C B,
A* C B*, and BN B* = (). Hint: Note p(E) = p(E \ A*).

Exercise 5.3.6. Let M = (E,S) be a matroid. A subset X of E is a basis of
M if and only if X has nonempty intersection with each cocircuit of M and
is minimal with respect to this property.

Exercise 5.3.7. Let C be a circuit and C* a cocircuit of the matroid M.
Prove |C' N C*| # 1. Hint: Use Exercise 5.3.5 for an indirect proof.

This result plays an important role in characterizing a pair (M, M*) of
dual matroids by the properties of their circuits and cocircuits; see [Min66].

Exercise 5.3.8. Let z and y be two distinct elements of a circuit C in a
matroid M. Then there exists a cocircuit C* in M such that CNC* = {z, y}.
Hint: Complete C' \ {z} to a basis B of M and consider B* U {y}, where
B* = FE '\ B is a cobasis.

We will return to matroids several times throughout this book. For a thor-
ough study of matroid theory we recommend the book by Welsh [Wel76],
which is still a standard reference. We also mention the monographs [Tut71],
[Rec89], and [Ox192]; of these, Oxley’s book is of particular interest as it also
includes applications of matroids. A series of monographs concerning matroid
theory was edited by White [Whi86, Whi87, Whi92].

5.4 The greedy algorithm as an approximation method

In this section we investigate independence systems M = (E, S) which are not
matroids. By definition, the greedy algorithm then does not (always) yield an
optimal solution for the optimization problem

(P) determine max{w(A): A € S},

4We will give a rough idea how the dual matroid of a planar graph G can be
seen to be graphic; to simplify matters, we assume that each edge lies in a circle.
Suppose G is drawn in the plane. Construct a multigraph G* = (V*, E*) whose
vertices correspond to the faces of GG, by selecting a point in the interior of each
face; two such points are connected by as many edges as the corresponding faces
share in G. This gives a plane multigraph G*, and one may show M (G)* = M(G™).

5.4 The greedy algorithm as an approximation method 133

where w: E — RJ is a given weight function. Of course, we may apply the
greedy algorithm nevertheless, in the hope of obtaining a reasonably good ap-
proximate solution in this way. We shall examine the quality of this approach
by deriving bounds for the term

f(M) = min{z}}gi; ; UHE—>R§},

where T, denotes a solution for (P) constructed by the greedy algorithm,
whereas Ty is an optimal solution.® We follow Korte and Hausmann [KoHa78]
in this section; similar results were also obtained by Jenkyns [Jen76].

First we introduce some useful parameters for independence systems. For
any subset A of E, the lower rank of A is

Ir(A) = min{|I|: IC A, IS, IU{a} ¢Sforallaec A\ I}.
Similarly, we define the upper rank of A as

ur(A) = max{|I|: IC A, I€S,IU{a} ¢Sforallaec A\I}.
Moreover, the rank quotient of M is

Ir(A)
ur(A)
0

here terms § might occur; such terms are considered to have value 1. Note
that Theorem 5.2.1 immediately yields the following result.

rq(M) = min{ : ACE};

Lemma 5.4.1. An independence system M = (E,S) is a matroid if and only
if rq(M) = 1. O

As we will see, the rank quotient indicates how much M differs from a
matroid. Below, we will get an interesting estimate for the rank quotient
confirming this interpretation. But first, we prove the following theorem of
[Jen76] and [KoHa78]%, which shows how the quality of the solution found by
the greedy algorithm depends on the rank quotient of M.

Theorem 5.4.2. Let M = (E,S) be an independence system with a weight
function w: E — RS‘. Moreover, let Ty be a solution of problem (P) found by
the greedy algorithm, and Ty an optimal solution. Then

w(T,)
w(To)

rq(M) <

SNote that the greedy algorithm might yield different solutions T, for different
orderings of the elements of F (which may occur if there are distinct elements having
the same weight). Hence we also have to minimize over all Tj,.

5This result was conjectured or even proved somewhat earlier by various other
authors; see the remarks in [KoHaT78].

134 5 The Greedy Algorithm

Proof. The second inequality is trivial. To prove the first inequality, we in-
troduce the following notation. Suppose the set E is ordered according to
decreasing weight, say F = {e1,...,en} with w(e1) > w(ez) > ... > w(en).
We put w(e;,+1) =0 and write

E;, = {e1,...,e;} fori=1,...,m.

Then we get the following formulae:

m

w(Ty) = Z Ty N Eil(w(e:) — w(eir1)); (5.2)
w(T0> = Z |T0 n Ez|(w(el) — w(€i+1)). (53)

Now Ty N E; is an independent subset of E;, and thus |Ty N E;| < ur(E;). By
definition of the greedy algorithm, T;; N F; is a maximal independent subset of
E;, and therefore |Ty N E;| > Ir(E;). Using these two observations, we obtain

T,NE;| > [ToNE;
|Qm |—|0m |Xur(Ei)

> |To N E;| x rq(M).

Using (5.2) and (5.3) yields

m

w(Ty) = Z|Tg N Ej|(w(e;) —w(eit1))

> rq(M) x Z |To N Ei|(w(ei) — w(eitr))
= rq(M) x w(Tp). O

As w and T, were chosen arbitrarily in Theorem 5.4.2, we conclude
rq(M) < f(M). The following result shows that we actually have equality.

Theorem 5.4.3. Let M = (E, S) be an independence system. Then there exist
a weight function w: E — Rg and a solution Ty for problem (P) obtained by
the greedy algorithm such that

w(Tg)
w(Tp)

= rq(M),

where Ty denotes an optimal solution for (P).

Proof. Choose a subset A of E with rq(M) = Ir(A)/ur(A4), and let I; and I,
be maximal independent subsets of A satisfying |I;| = Ir(A) and || = ur(A).
Define the weight function w by

5.4 The greedy algorithm as an approximation method 135

(e) i= 1 forecAd
W= 10 otherwise

and order the elements eq,...,e,, of E such that

I = {ela .- ~761r(A)}7 A\Il = {elr(A)-l—lv .- '76|A|}a E\A = {G\A\+17' . ',em}~

Then I; is the solution for (P) found by the greedy algorithm with respect to
this ordering of the elements of E, whereas I,, is an optimal solution. Hence

w(lp) L] Ir(A)

w(l,) |LJ] — ur(A)

=rq(M). O

As Theorems 5.4.2 and 5.4.3 show, the rank quotient of an independence
system gives a tight bound for the weight of the greedy solution in comparison
to the optimal solution of (P); thus we have obtained the desired measure for
the quality of the greedy algorithm as an approximation method. Of course,
this leaves us with the nontrivial problem of determining the rank quotient
for a given independence system M. The following result provides an example
where it is possible to determine this invariant explicitly.

Theorem 5.4.4. Let G = (V, E) be a graph and M = (E,S) the indepen-
dence system given by the set of all matchings of G; see Exercise 5.1.5. Then

rq(M) = 1 provided that each connected component of G is isomorphic either

to a complete graph K; with i < 3 or to a star. In all other cases, rq(M) = %

Proof. First we prove rq(M) > % Thus we need to show
Ir(A) _ 1
> = forall AC E.
ur(A) ~ 2 ora <

Let I; and I be two maximal independent subsets of A, that is, two maximal
matchings contained in A. Obviously, it suffices to show |I;| > 1|I5]. We
define a mapping « : Iy \ I; — I \ I7 as follows. Let e be any edge in I7 \ I.
As I U{e} C A and as I; is a maximal independent subset of A, I; U {e}
cannot be a matching. Thus there exists an edge a(e) € I; which has a vertex
in common with e. As I is a matching, we cannot have a(e) € I, so that
we have indeed defined a mapping « : Io \ I; — I \ 2. Clearly, each edge
e € I \ I can share a vertex with at most two edges in I \ I, so that e has
at most two preimages under a. Therefore

1
(LA 2 fa(l\)] 2 S\ L]
and hence

1 1 1
|Il| = |Il\.[2|+|[1ﬂ[2‘ > 5|12\11‘+§‘I1 ﬂ[2| = §‘I2|

136 5 The Greedy Algorithm

Assume first that each connected component of G is isomorphic either to a
complete graph K; with ¢ < 3 or to a star. Then Ir(A) = ur(A) for all A C E,
so that rq(M) = 1. In all other cases, G contains a subgraph (U, A) isomorphic
to a path Py of length 3. Then Ir(A) = 1 and ur(A) = 2, so that rq(M) < 3.
Together with the converse inequality already proved, this establishes the
theorem. ad

Let us mention a further similar result without proof; the interested reader
is referred to [KoHa78].

Result 5.4.5. Let G = (V, E) be the complete graph on n vertices, and let
M = (E,S) be the independence system whose independent sets are the subsets
of Hamiltonian cycles of G. Then

1 1 3

By definition, the maximal independent sets of an independence system as
in Result 5.4.5 are precisely the Hamiltonian cycles of G. Thus the greedy al-
gorithm provides a good approximation to the optimal solution of the problem
of finding a Hamiltonian cycle of maximal weight in K,, for a given weight
function w: EF — R(J{. Note that this is the problem opposite to the TSP,
where we look for a Hamiltonian cycle of minimal weight.

The above examples suggest that the greedy algorithm can be a really good
approximation method. Unfortunately, this is not true in general. As the fol-
lowing exercise shows, it is easy to construct an infinite class of independence
systems whose rank quotient becomes arbitrarily small.

Exercise 5.4.6. Let G be the complete digraph on n vertices, and let M =
(E,S) be the independence system determined by the acyclic directed sub-
graphs of G, that is,

S = {D C E: D does not contain any directed cycle}.

Then rq(M) < 2/n, so that lim rq(M) =0.
n—oo
Our next aim is to derive a useful estimate for the rank quotient of an
independence system. We need a lemma first.

Lemma 5.4.7. Every independence system M = (E,S) can be represented as
the intersection of finitely many matroids on E.

Proof. We have to show the existence of a positive integer k£ and matroids
M, = (E,S)),..., My = (E,Sy) satisfying S = (/_, S;. Let C,...,Cy be
the minimal elements of the set {A C E : A ¢ S}, that is, the circuits of the
independence system M. It is easily seen that

5.4 The greedy algorithm as an approximation method 137

k
S = (Si, whereS;:={ACE: C;ZA}.

i=1

Thus we want to show that all M; = (E,S;) are matroids. So let A be an
arbitrary subset of E. If C; is not a subset of A, then A is independent in
M;, so that A itself is the only maximal independent subset of A in M;. Now
suppose C; C A. Then, by definition, the maximal independent subsets of A
in M; are the sets of the form A\ {e} for some e € C;. Thus all maximal
independent subsets of A have the same cardinality |A| — 1 in this case. This
shows that M; satisfies condition (3) of Theorem 5.2.1, so that M; is indeed
a matroid. ad

Theorem 5.4.8. Let the independence system M = (E,S) be the intersection
of k matroids My, ..., My on E. Thenrq(M) > 1/k.

Proof. Let A be any subset of F, and let I, I5 be any two maximal independent
subsets of A. Obviously, it suffices to show k|I1| > |I3|. For i = 1,...,k and
j = 1,2, let I; ; be a maximal independent subset of I; U I3 containing I;
(in M;). Suppose there exists an element e € Iy \ I; with e € I,; \ I; for
i=1,...,k. Then

k

Ilu{e} - ﬂIi,l < S,

i=1
contradicting the maximality of I;. Hence each e € Iy \ I; can be contained
in at most k — 1 of the sets I; 1 \ I1; this implies

k k
() Dol =KL = Y [La\L| < (k=1)[L\ L] < (k—1)|l].
i=1 i=1
As all the M, are matroids, we have |I; 1| = |I; 2| for ¢ = 1,...,k and hence,

using (),

k k
L] < ||+ L2\ L] = Y |Lial— (k—1)|L]
=1

=1

k
=D Mgl = (k=] < kL] O
i=1

For each positive integer k, there exists an independence system for which
the bound of Theorem 5.4.8 is tight. Unfortunately, equality does not hold in
general; for instance, Result 5.4.5 provides a family of counterexamples. The
interested reader is referred to [KoHa78].

Example 5.4.9. Let G = (V, E) be a strongly connected digraph, and let
M be the intersection of the graphic matroid and the head-partition matroid

138 5 The Greedy Algorithm

of G. Then the independent sets of maximal cardinality in M are precisely
the spanning arborescences of G. Note that M may admit further maximal
independent sets, as an arbitrary arborescence does not necessarily extend to
a spanning arborescence: in general, M is not a matroid.

Exercise 5.4.10. Let G be a digraph. Find three matroids such that each
directed Hamiltonian path in G is an independent set of maximal cardinality
in the intersection of these matroids.

In the situation of Example 5.4.9, the greedy algorithm constructs an ar-
borescence whose weight is at least half of the weight of a maximal arbores-
cence, by Theorems 5.4.8 and 5.4.2. As mentioned at the end of Section 4.8,
a maximal arborescence can be found with complexity O(|E|log|V|), using a
considerably more involved method. The following result about the intersec-
tion of two arbitrary matroids is interesting in this context.

Result 5.4.11. Consider an independence system M = (E,S) which is the
intersection of two matroids My = (FE,S1) and My = (E,Ss), and let
w: F — RS‘ be a weight function on M. Assume that we may check in
polynomial time whether a set is independent in either My or My. Then it is
also possible to find an independent set of mazimal weight in M in polynomial
time. a

For a situation as described in Result 5.4.11, we say that the two matroids
My and M, are given by oracles for independence; this just means that it is
somehow possible to check whether a given set is independent in polynomial
time. Then Result 5.4.11 states that a maximal independent set in M can be
found in oracle polynomial time, that is, by using both oracles a polynomial
number of times; see [HaKo81] for more on oracles representing matroids
and independence systems. Result 5.4.11 is very important in combinatorial
optimization. We have decided to omit the proof because the corresponding
algorithms as well as the proofs for correctness are rather difficult — even in
the case without weights — and use tools from matroid theory which go beyond
the limits of this book. The interested reader may consult [Law75], [Edm79],
and [Cun86]; or the books [Law76] and [Whi87].

Of course, one may also consider the analogous problems for the inter-
section of three or more matroids; we will just state the version without
weights. Unfortunately, these problems are presumably not solvable in poly-
nomial time, as the next result indicates.

Problem 5.4.12 (matroid intersection problem, MIP). Let three ma-
troids M; = (E,S;), i = 1,2,3, be given, and let k be a positive integer. Does
there exist a subset A of E with |A| > k and A € S; NSy N S3?

Theorem 5.4.13. MIP is NP-complete.

5.5 Minimization in independence systems 139

Proof. Exercise 5.4.10 shows that the question whether a given digraph con-
tains a directed Hamiltonian path is a special case of MIP. This problem
(directed Hamiltonian path, DHP) is NP-complete, as the analogous problem
HP for the undirected case is NP-complete by Exercise 2.7.7, and as HP can
be transformed polynomially to DHP by replacing a given graph by its com-
plete orientation. Hence the more general MIP is NP-complete, too. a

Theorem 5.4.13 indicates that the results presented in this chapter really
are quite remarkable: even though the problem of determining a maximal
independent set in the intersection of k > 3 matroids is NP-hard (maximal ei-
ther with respect to cardinality or a more general weight function), the greedy
algorithm gives a quite simple polynomial method for finding an approximate
solution which differs at most by a fixed ratio from the optimal solution. This
result is by no means trivial, as there are many optimization problems for
which even the question whether an approximate solution with a performance
guaranty exists is NP-hard; we will encounter an example for this phenomenon
in Chapter 15.

5.5 Minimization in independence systems

In this section we consider the minimization problem for independence sys-
tems, that is, the problem of finding a maximal independent set of minimal
weight; this turns out to be easy for matroids. We first show that the greedy
algorithm actually works for arbitrary weight functions on a matroid.

Theorem 5.5.1. Let M = (E,S) be a matroid, and let w: E — R be any
weight function on M. Then the greedy algorithm finds an optimal solution
for the problem

(BMAX) determine max{w(B): B is a basis of M}.

Proof. By definition, the assertion holds if all weights are nonnegative.
Otherwise, we put

C = max{-w(e): ec E, w(e) <0}
and consider the weight function w’: E — R{ defined by
w'(e) = w(e)+C foralleeE.

Now all bases of M have the same cardinality, say k. Let B be a basis; then the
weights w(B) and w’(B) differ just by the constant kC'. In particular, every
basis of maximal weight for w’ also has maximal weight for w. Hence we may
use the greedy algorithm to find a basis By of maximal weight for w’ which
is also a solution for the original problem (BMAX). Obviously, the greedy
algorithm runs for w exactly as for w’; hence it yields the correct solution By
also when applied to the original function w. a

140 5 The Greedy Algorithm

Theorem 5.5.2. Let M = (E,S) be a matroid, and let w: E — R be any
weight function on M. Then the greedy algorithm finds an optimal solution
for the problem

(BMIN) determine min{w(B): B is a basis of M},
provided that step (1) in Algorithm 5.1.1 is replaced as follows:

(1') order the elements of E according to their weight:
E={e1,...,en} with w(e;) <w(ez) < ... <wlem).

Proof. This follows immediately from Theorem 5.5.1 by considering the weight
function —w instead of w. a

As an application, we investigate the behavior of the greedy algorithm
in the context of duality. Suppose we are given a matroid M = (E,S) and
a weight function w: E — RS‘ . Obviously, a basis B of M has maximal
weight if and only if the corresponding cobasis B* of M* has minimal weight.
Now we use the greedy algorithm, modified as described in Theorem 5.5.2, to
determine a basis B* of M* with minimal weight. Consider the moment when
we investigate the element eg. Then ey is added to the current solution — that
is, the independent subset T* constructed so far — if and only if T* U {ey}
is independent in M*. Viewing this situation within M, we may as well say
that ey is removed from the current solution 7' = E \ T*, as the (final)
solution of the maximization problem for M is precisely the complement of
the solution of the minimization problem for M*. These considerations lead
to the following dual version of the greedy algorithm, formulated in terms of
the primal matroid M.

Algorithm 5.5.3 (dual greedy algorithm). Let (E,S) be a matroid, and
let w: E — RY be a weight function.

Procedure DUALGREEDY (G, w; T)

(1) order the elements of E according to their weight: F = {ey, ..., e, } with
w(er) <w(ez) < ... < wlem);
T — F;
for k=1tomdo
if (E\T)U{ex} does not contain a cocircuit
then remove ¢ from T'

Note that the condition in step (4) is satisfied if and only if 7% U {ex} =
(E\T)U {er} is independent in M*; hence the correctness of the greedy
algorithm immediately implies the following theorem.

Theorem 5.5.4. Let M = (E,S) be a matroid, and let w: E — R be a
nonnegative weight function on M. Then the dual greedy algorithm computes
a basis B of M = (E,S) with mazimal weight. O

5.5 Minimization in independence systems 141

Example 5.5.5. Let M = M (G) be a graphic matroid, where G is connected.
The dual greedy algorithm investigates the edges of GG in the order given by
increasing weight. Initially, 7= E. When an edge e is examined, it is removed
from the current solution 7 if and only if it does not form a cocycle with the
edges already removed, that is, if removing e does not disconnect the graph
(E,T). This special case of Algorithm 5.5.3 was already treated by Kruskal
[Kru56].

In the remainder of this section, we look at the greedy algorithm as a pos-
sible approximation method for the problems described in Theorems 5.5.1 and
5.5.2 when M = (E,S) is an arbitrary independence system, not necessarily
a matroid. Unfortunately, this will not work well. Even for the maximization
problem, the quotient of the weight of a solution found by the greedy algo-
rithm and the weight of an optimal solution — which we used as a measure for
the quality of approximation in Section 5.4 — does not make sense if negative
weights occur. Still, there is one positive result: Theorem 5.4.2 carries over
to the case of arbitrary weight functions if we consider the problem (P) of
Section 5.4, that is, if we require not a basis but only an independent set of
maximal weight and terminate the greedy algorithm as soon as an element of
negative weight would be chosen.

Let us now turn to the question whether there is a performance guarantee
for applying the greedy algorithm to the minimization problem

(PMIN) determine min{w(A): A is a maximal independent set in S},

where w : E — R(J{ is a nonnegative weight function. Here the reciprocal

quotient
= min w(Th)
a(M) = {w(Tg)

should be used for measuring the quality of approximation, where again T
denotes a solution constructed by the greedy algorithm and Tj an optimal
solution for (PMIN). Clearly, the matroids are precisely the independence
systems with g(M) = 1. Unfortunately, no result analogous to Theorem 5.4.2
can be proved; this was first shown in [KoHa78| via a rather trivial series of
counterexamples, namely a path of length 2 with various weight functions. We
will exhibit a class of considerably more interesting examples due to Reingold
and Tarjan [ReTa81].

:w:EHRS'}

Example 5.5.6. Let us denote the complete graph on 2! vertices by G; =
(V4, Ey). For each of these graphs, we define a weight function w, satisfying
the triangle inequality as follows. First we choose, for all ¢t > 2, a Hamiltonian
cycle Cy of Gy; for t = 1, we take C as the only edge of G;. We define w;
on C; as indicated in Figure 5.1, where the edges not marked explicitly with
their weight are understood to have weight 1. For every edge ¢ = uv in E;\ C,
the weight wy(e) is defined as the distance di(u,v) in the network (Ct,ws).
Since the largest weight occurring in Cj is precisely the sum of the weights

142 5 The Greedy Algorithm

of all other edges of (Y, it is easy to see that w,; indeed satisfies the triangle
inequality.

Now put M; = (E;,S¢), where S; is the set of all matchings of G;. Thus
we consider the problem of finding a maximal matching — that is, a 1-factor
— of minimal weight for (G¢,w;). It is easy to see that the greedy algorithm
computes, for the cases t = 1,2,3,4 shown in Figure 5.1, the 1-factors F}
drawn bold there, provided that we order edges of the same weight in a suitable
manner; these 1-factors have weight 1, 4, 14, and 46, respectively. In the
general case of an arbitrary ¢, one may show that a 1-factor F; of G of weight

wy(Fy) = 2x 371 —2t71

results; this formula for the weight of F; can be derived from the rather obvious
recursion
Wi (Fyp1) = 2wy (Fy) — 371 + 3%,

where wy(Fy) = 1. We leave the details to the reader. On the other hand,
there is a 1-factor F} of Gy, for t > 2, of weight 2! which consists of the
edges not drawn bold in Figure 5.1: F]/ = C; \ F;. Thus the quality of the
approximation found by the greedy algorithm is only

2t—1
w — 0 (fOr t— OO)
3 9
— S L
Cl C2 CB
27
Cy
Fig. 5.1.

Example 5.5.6 shows that the greedy algorithm may yield an arbitrarily bad
solution for (PMIN). By Theorem 5.4.4, the rank quotient of the independence
system (E};,S;) formed by the matchings in G; has value 2 for all ¢ > 2.

5.6 Accessible set systems 143

Hence in the case of minimization, the rank quotient does not guarantee a
corresponding quality of approximation — a rather disappointing result.

It was shown in [ReTa81] that the bound for w(7Ty)/w(Ty) given in Exam-
ple 5.5.6 is essentially worst possible. Indeed, for any weight function on the
complete graph K, satisfying the triangle inequality,

w(Ty) 3 1 g
< -1 -n'%8
w(Tp) = (29+1 1 SERE

where § = [log n] —logn. For the rather involved proof, we refer to the original
paper.

Determining a 1-factor of minimal weight with respect to a weight function
w on a complete graph satisfying the triangle inequality will be a tool for solv-
ing the Chinese postman problem in Chapter 14; this problem has interesting
practical applications — for example, drawing large graphs with a plotter.

Exercise 5.5.7. Show that it is not possible to change the weight function w;
in Example 5.5.6 such that the quotient F}/F; becomes smaller. Also, for an
arbitrary weight function (not necessarily satisfying the triangle inequality),
it is not possible to give any measure (as a function of n) for the quality of a
1-factor in a complete graph found by the greedy algorithm.

5.6 Accessible set systems

We conclude this chapter with a brief report on further generalizations of the
greedy algorithm from independence systems to even more general systems
of sets. As the methods used are rather similar to the methods we have been
using (although more involved), we shall skip all proofs and refer the reader
to the original literature instead.

A set system is simply a pair M = (E,S), where E is a finite set and S is
a nonempty subset of the power set of E. The elements of S are called feasible
sets of M; maximal feasible sets will again be called bases. As the greedy
algorithm always chooses single elements and adds them one by one to the
feasible set under construction, it would not make sense to consider entirely
arbitrary set systems. At the very least, we have to ensure that every feasible
set can be obtained by successively adding single elements to the empty set.
Formally, we require the following accessibility axiom:

(A) For each nonempty feasible set X € S, there exists
an element = € X such that X \ {z} € S.

In particular, the empty set is contained in S, as S # (). A set system M
satisfying axiom (A) is called an accessible set system. Any independence
system is an accessible set system, but axiom (A) is a much weaker condition
than the requirement of being closed under inclusion. Given an accessible
set system M and a weight function w: EF — R, we consider the following
optimization problem:

144 5 The Greedy Algorithm

(BMAX) determine max {w(B): B is a basis of M}.

This generalizes the corresponding problem for independence systems. We also
need to modify the greedy algorithm 5.1.1 so that it applies to accessible set
systems.” This can be done as follows.

Algorithm 5.6.1. Let M = (F,S) be an accessible set system, and let w :
FE — R be a weight function.

Procedure GREEDY (E, S, w;T)

()T < ; X — E;

(2) while there exists z € X with TU {z} € S do

(3) choose some z € X with T U {z} € S and

w(z) > w(y) for all y € X with TU{y} € S;
() TeTUleh X — X\ {z}
(5) od

Of course, we want to characterize those accessible set systems for which
Algorithm 5.6.1 always finds an optimal solution for (BMAX). Before describ-
ing this result, we consider a special class of accessible set systems introduced
by Korte and Lovész [KoLo81].

An accessible set system M satisfying the exchange axiom (2) of Theorem
5.2.1 is called a greedoid. Greedoids have been studied intensively because
many interesting objects in combinatorics and optimization are greedoids. In
particular, the so-called antimatroids are greedoids. Antimatroids constitute a
combinatorial abstraction of the notion of convexity; they play an important
role in convexity, partially ordered sets, and graph theory. Greedoids occur
as well in the context of matchings and of Gauf} elimination. We will not go
into detail here, but recommend that the reader consult the extensive survey
[BjZi92] or the monograph [KoLS91]. Unfortunately, the greedy algorithm
does not find an optimal solution of (BMAX) for all greedoids.® However,
Korte and Lovasz were able to characterize those greedoids for which the
greedy algorithm works. There is a simpler characterization due to Bryant
and Brooksbank [BrBr92], which uses the following strong exchange axiom.
We note that this condition holds for every matroid, but not for all greedoids.

(SE) For J,K € S with |J]| = |K| + 1, there always exists some
a € J\ K such that K U {a} and J \ {a} are in S.

"Note that it does not make sense to apply the original version of the greedy
algorithm if S is not closed under inclusion: in this case, it might happen that an
element = cannot be added to the feasible set T constructed so far, because TU{x} is
not feasible; nevertheless, it might be permissible to add x at some later point to the
set 7' =T U A. If w(x) > w(y) for some y € A, the original greedy algorithm 5.1.1
would fail in this situation, as the element x would already have been dismissed.
To avoid this, we simply keep the strategy of always selecting the largest available
element; all that is required is a different formulation.

8Characterizing greedoids in terms of the greedy algorithm requires the use of
certain non-linear objective functions; see [KoLS91].

5.6 Accessible set systems 145

Result 5.6.2. Let M = (E,S) be a greedoid. Then the greedy algorithm 5.6.1
finds an optimal solution of (BMAX) for all weight functions w: E — R if
and only if M satisfies axiom (SE). O

We need some further preparations to be able to formulate the charac-
terization of those accessible set systems M = (E,S) for which the greedy
algorithm computes an optimal solution. Given a feasible set A, we write

ext(A):={z e E\ A: AU{x} € S}.

Now there are some situations where the greedy algorithm does not even
construct a basis, but stops with some feasible set which is not maximal. This
happens if there exists a basis B with a proper feasible subset A C B such
that ext(A) = 0. In this case, we may define a weight function w by

2 forxeA,
w(z):=4 1 forze B\A,
0 otherwise;

then the greedy algorithm constructs A, but cannot extend A to the optimal
basis B. The accessibility axiom (A) is too weak to prevent such situations:
it merely ensures that a basis B can be obtained somehow by adding single
elements successively to the empty set, but not necessarily by adding ele-
ments to a given feasible subset of B. To avoid this, we require the following
extensibility aziom:

(E) For every basis B and every feasible subset A C B with A # B,
there exists some x € B\ A with AU {z} € S.

Note that this axiom is satisfied for all greedoids. We need one more definition.
For any set system M = (E,S), define

S:={X CE: thereis A € S with X C A},

and call M := (E, S) the hereditary closure of M. Now we require the following
closure congruence aziom:

(CC) For every feasible set A, for all z,y € ext (A), and for each subset
X CE\ (AU ext(4)), AUX U{z} € S implies AU X U{y} € S.

Exercise 5.6.3. Show that an accessible set system M = (E,S) for which
the greedy algorithm works correctly has to satisfy axiom (CC).

One may show that axiom (CC) is independent of the exchange axiom,
even if we only consider accessible set systems satisfying the extensibility
axiom. In fact, there are greedoids not satisfying (CC); on the other hand,
independence systems always satisfy (CC), because the only choice for X is
X = (). We need one final axiom:

146 5 The Greedy Algorithm
(ME) The hereditary closure M of M is a matroid.

(ME) is called the matroid embedding aziom. Now we can state the following
characterization due to Helman, Mont and Shapiro [HeMS93]:

Result 5.6.4. Let M = (E,S) be an accessible set system. Then the following
statements are equivalent:

(1) M satisfies axioms (E), (CC) and (ME).

(2) For every weight function w: E — R, the optimal solutions of (BMAX)
are precisely those bases of M which are found by the greedy algorithm
5.6.1 (given an appropriate order of the elements of equal weight).

(3) For every weight function w: E — R, the greedy algorithm 5.6.1 yields an
optimal solution of (BMAX). O

The reader might try to fill in the missing parts of the proof; this is a more
demanding exercise, but can be done using the methods we have presented.
Alternatively, we recommend a look at the original paper [HeMS93], which
contains some further interesting results. In particular, the authors consider
bottleneck problems, that is, problems of the form

(BNP) Maximize min {w(x): = € B} over all bases B of M

for a given weight function w : E — R. The greedy algorithm constructs
an optimal solution for (BNP) in the situation of Result 5.6.4. In fact, this
holds even under considerably weaker conditions. We need one further axiom,
namely the strong extensibility axiom:

(SE) For every basis B and each feasible set A with |A| < |B|,
there exists x € B\ A with AU {z} € S.

Then the following characterization holds [HeMS93]:

Result 5.6.5. Let M = (E,S) be an accessible set system. The greedy algo-
rithm 5.6.1 constructs an optimal solution for (BNP) for all weight functions
w: F — R if and only if M satisfies axiom (SE). O

For partially ordered set systems, the greedy algorithm was studied by
Faigle [Fai79] who obtained characterizations analogous to Results 5.6.4 and
5.6.5. Further characterizations of related structures by the greedy algorithm
(or appropriately modified versions) can be found in [Fai85], [Goe88], and
[BoFa90], where ordered languages, greedoids of Gaufl elimination, and anti-
matroids are studied, respectively. There are further important generalization
of the notion of a matroid such as oriented matroids. We will not consider
these structures here, but refer the reader to the monographs [BaKe92] and
[BjLSW92].

Flows

What need you flow so fast?
ANONYMOUS

In this chapter, we study flows in networks: How much can be transported
in a network from a source s to a sink t if the capacities of the connections
are given? Such a network might model a system of pipelines, a water supply
system, or a system of roads. With its many applications, the theory of flows
is one of the most important parts of combinatorial optimization. In Chapter
7 we will encounter several applications of the theory of flows within combina-
torics, and flows and related notions will appear again and again throughout
the book. The once standard reference, Flows in Networks by Ford and Fulk-
erson [FoFu62], is still worth reading; an extensive, more recent treatment is

provided in [AhMO93].

6.1 The theorems of Ford and Fulkerson

In this chapter, we study networks of the following special kind. Let G = (V, E)
be a digraph, and let ¢: E — R be a mapping; the value c(e) will be called
the capacity of the edge e. Moreover, let s and ¢ be two special vertices of G
such that t is accessible from s.! Then N = (G, ¢, s,t) is called a flow network
with source s and sink t. An admissible flow or, for short, a flow on N is a
mapping f: F — RS‘ satisfying the following two conditions:

(F1) 0 < f(e) < c(e) for each edge e;
(F2) > f(e) = > f(e) for each vertex v # s,t, where e~ and e™ denote

et=v e~ =v
the start and end vertex of e, respectively.

Thus the feasibility condition (F1) requires that each edge carries a nonneg-
ative amount of flow which may not exceed the capacity of the edge, and

1Some authors require in addition din(s) = doust(t) = 0. We do not need this
condition here; it would also be inconvenient for our investigation of symmetric
networks and the network synthesis problem in Chapter 12.

148 6 Flows

the flow conservation condition (F2) means that flows are preserved: at each
vertex, except for the source and the sink, the amount that flows in also flows
out. It is intuitively clear that the total flow coming out of s should be the
same as the total flow going into ¢; let us provide a formal proof.

Lemma 6.1.1. Let N = (G, ¢, s,t) be a flow network with flow f. Then

dYoHe) =D fle) = D fle) = fle) (6.1)

e~ =s et=s et=t e~ =t

Proof. Trivially,

S HO+ S @+ 3 S o) = S i) =

e~ =s e =t v#s,t e~ =v
=D fle+ X fle+ Y D fle)
et=s et=t v#s,tet=v
Now the assertion follows immediately from (F2). O

The quantity in equation (6.1) is called the value of f; it is denoted by
w(f). A flow f is said to be mazimal if w(f) > w(f') holds for every flow f’
on N. The main problem studied in the theory of flows is the determination
of a maximal flow in a given network. Note that, a priori, it is not entirely
obvious that maximal flows always exist; however, we will soon see that this
is indeed the case.

Let us first establish an upper bound for the value of an arbitrary flow.
We need some definitions. Let N = (G, ¢, s,t) be a flow network. A cut of N
is a partition V = S U T of the vertex set V of G into two disjoint sets S
and T with s € S and t € T; thus cuts in flow networks constitute a special
case of the cuts of |G| introduced in Section 4.3. The capacity of a cut (S, T)

is defined as
o8, T) = > cle);
e—€S,eteT

thus it is just the sum of the capacities of all those edges e in the corresponding
cocycle E(S,T) which are oriented from S to T. The cut (S,7T) is called
minimal if (S, T) < ¢(S’,T") holds for every cut (S’,T"). The following lemma
shows that the capacity of a minimal cut gives the desired upper bound on
the value of a flow.

Lemma 6.1.2. Let N = (G, ¢, s,t) be a flow network, (S,T) a cut, and f a

flow. Then
w(f) = D fle- Y [(6.2)

e~ €SeteT eteS,e— €T

In particular, w(f) < e(S,T).

6.1 The theorems of Ford and Fulkerson 149

Proof. Summing equation (F2) over all v € S gives

w(f) = (Z OB f(e)>
vES \e—=v et=v
= > fle= D flo+ D, flo- > fle).
e~ €S,etesS eteS,e— €S e~ €S,eteT eteS,e— €T

The first two terms add to 0. Now note f(e) < c(e) for all edges e with e™ € S
and e™ € T, and f(e) > 0 for all edges e with e € S and e~ € T O

The main result of this section states that the maximal value of a flow
always equals the minimal capacity of a cut. But first we characterize the
maximal flows. We need a further definition. Let f be a flow in the network
N = (G,c¢,s,t). A path W from s to ¢ is called an augmenting path with
respect to f if f(e) < c(e) holds for every forward edge e € W, whereas
f(e) > 0 for every backward edge e € W. The following three fundamental
theorems are due to Ford and Fulkerson [FoFu56].

Theorem 6.1.3 (augmenting path theorem). 4 flow f on a flow network
N = (G, ¢, s,t) is mazimal if and only if there are no augmenting paths with
respect to f.

Proof. First let f be a maximal flow. Suppose there is an augmenting path .
Let d be the minimum of all values c¢(e) — f(e) (taken over all forward edges e
in W) and all values f(e) (taken over the backward edges in W). Then d > 0,
by definition of an augmenting path. Now we define a mapping f': E — RJ
as follows:

fle)+d if eis a forward edge in W,
f'(e) = ¢ f(e) —d if eis a backward edge in W,
f(e) otherwise.

It is easily checked that f’ is a flow on N with value w(f’) = w(f)+d > w(f),
contradicting the maximality of f.

Conversely, suppose there are no augmenting paths in N with respect to
f- Let S be the set of all vertices v such that there exists an augmenting path
from s to v (including s itself), and put 7= V '\ S. By hypothesis, (S,T) is
a cut of N. Thus each edge ¢ with e~ € S and e € T must be saturated:
f(e) = c(e); and each edge e with e~ € T'and et € S has to be void: f(e) = 0.
Then Lemma 6.1.2 gives w(f) = ¢(S,T), so that f is maximal. O

We note that the preceding proof contains a useful characterization of
maximal flows:

Corollary 6.1.4. A flow f on a flow network N = (G, ¢, s,t) is maximal if
and only if the set S of all vertices accessible from s on an augmenting path
with respect to [is a proper subset of V. In this case, w(f) = ¢(S,T), where
T=V\S. O

150 6 Flows

Theorem 6.1.5 (integral flow theorem). Let N = (G,c¢,s,t) be a flow
network where all capacities c(e) are integers. Then there is a mazimal flow
on N such that all values f(e) are integral.

Proof. By setting fo(e) = 0 for all e, we obtain an integral flow fo on N with
value 0. If this trivial flow is not maximal, then there exists an augmenting
path with respect to fo. In that case the number d appearing in the proof of
Theorem 6.1.3 is a positive integer, and we can construct an integral flow f;
of value d as in the proof of Theorem 6.1.3. We continue in the same manner.
As the value of the flow is increased in each step by a positive integer and as
the capacity of any cut is an upper bound on the value of the flow (by Lemma
6.1.2), after a finite number of steps we reach an integral flow f for which no
augmenting path exists. By Theorem 6.1.3, this flow f is maximal. ad

Theorem 6.1.6 (max-flow min-cut theorem). The mazimal value of a
flow on a flow network N is equal to the minimal capacity of a cut for N.

Proof. If all capacities are integers, the assertion follows from Theorem 6.1.5
and Corollary 6.1.4. The case where all capacities are rational can be reduced
to the integral case by multiplying all numbers by their common denominator.
Then real-valued capacities may be treated using a continuity argument, since
the set of flows is a compact subset of RI”! and since w(f) is a continuous
function of f. A different, constructive proof for the real case is provided by
the theorem of Edmonds and Karp [EdKa72], which we will treat in the next
section. a

Theorem 6.1.6 was obtained in [FoFu56] and, independently, in [EIFS56].
In practice, real capacities do not occur, as a computer can only represent (a
finite number of) rational numbers anyway. From now on, we mostly restrict
ourselves to integral flows. Sometimes we also allow networks on directed
multigraphs; this is not really more general, because parallel edges can be
replaced by a single edge whose capacity is the sum of the corresponding
capacities of the parallel edges.

The remainder of this chapter deals with several algorithms for finding a
maximal flow. The proof of Theorem 6.1.5 suggests the following rough outline
of such an algorithm:

(1) f(e) « 0 for all edges e;

(2) while there exists an augmenting path with respect to f do
(3) let W = (eq,...,e,) be an augmenting path from s to ¢;
(4) d — min ({c(e;) — f(e;) : €; is a forward edge in W}

U {f(ei) : e; is a backward edge in W});

(5) f(e;) < f(e;) + d for each forward edge e;;
(6) f(ei) < f(e;) — d for each backward edge e;;
(7) od

6.1 The theorems of Ford and Fulkerson 151

Of course, we still have to specify a technique for finding augmenting paths.
We could use a modified breadth first search (BFS), where edges may be used
regardless of their orientation as long as they satisfy the necessary condition
fle) < c(e) or f(e) > 0. Note that we not only have to decide whether ¢
is accessible from s by an augmenting path, but we also need to find the
value for d and change the values f(e) accordingly. In view of these additional
requirements, it makes more sense to apply a labelling technique; moreover,
this will also allow us to find a minimal cut.

Algorithm 6.1.7 (labelling algorithm of Ford and Fulkerson). Let
N = (G,¢,s,t) be a flow network.

Procedure FORDFULK(N; f, S, T)

1) for e € E do f(e) < 0 od;
label s with (—, 00);
for v € V do u(v) « false; d(v) « oo od;
repeat
choose a vertex v which is labelled and satisfies u(v) = false;
forec{ec E:e” =v}do
if w = e is not labelled and f(e) < ¢(e) then
d(w) < min{c(e) — f(e),d(v)}; label w with (v, +,d(w)) fi
od;
forec{e€ E:et =v} do
if w = e~ is not labelled and f(e) > 0 then
d(w) < min{f(e),d(v)}; label w with (v, —, d(w)) fi
od;
u(v) «— true;
if ¢ is labelled
then let d be the last component of the label of ¢;
w <« t;
while w # s do
find the first component v of the label of w;
if the second component of the label of w is +
then set f(e) — f(e) +d for e = vw
else set f(e) < f(e) —d for e = wv
fi;
w— v
od;
delete all labels except for the label of s;
for v € V do d(v) « oo; u(v) « false od
fi
until u(v) = true for all vertices v which are labelled,;
let S be the set of vertices which are labelled and put 7' «— V' \ S

O O 0O UL WNF O OO0 Utk WO OO Oo ULk Wi
NN AN AN AN N s NI A NG NI N s NI A S AN 2

Using the proofs we gave for Theorems 6.1.3 and 6.1.5, we immediately get
the following theorem due to Ford and Fulkerson [FoFu57].

152 6 Flows

Theorem 6.1.8. Let N be a network whose capacity function c¢ takes only
integral (or rational) values. Then Algorithm 6.1.7 determines a mazimal flow

f and a minimal cut (S,T), so that w(f) = ¢(S,T) holds. O
a n b n c
n
n
s 1 t
n
n n "
d e f

Fig. 6.1. A flow network

Algorithm 6.1.7 may fail for irrational capacities, if the vertex v in step
(5) is chosen in an unfortunate way; an example for this can be found in
[FoFu62], p. 21. In that example the algorithm not only does not terminate,
but it even converges to a value which is only 1/4 of the maximal possible flow
value. Moreover, Algorithm 6.1.7 is not polynomial even for integer capacities,
because the number of necessary changes of the flow f does not only depend
on |V| and |E[, but might also depend on c. For example, if we use the paths

s—a—b—e—f—t and s—d—e—b—c—1t

alternately as augmenting paths for the network in Figure 6.1 (which the
algorithm will do if vertex v in step (5) is chosen suitably), the value of the
flow will only be increased by 1 in each step, so that we need 2n iterations.
Of course, this can be avoided by choosing the paths appropriately; with

s—a—b—c—1t and s—d—e— f—1,

we need only two iterations. In the next section, we show how the augment-
ing paths can be chosen efficiently. Then we shall also apply the resulting
algorithm to an example and show the computations in detail. We close this
section with a few exercises.

Exercise 6.1.9. Let N = (G, ¢, s,t) be a flow network for which the capacities
of the vertices are likewise restricted: there is a further mapping d: V' — Rf{ ,
and the flows f have to satisfy the additional restriction
(F3) > f(e) < d(v) for v # s,t.

et=v
For instance, we might consider an irrigation network where the vertices are
pumping stations with limited capacity. Reduce this problem to a problem for
an appropriate ordinary flow network and generalize Theorem 6.1.6 to this
situation; see [FoFu62], §1.11.

6.2 The algorithm of Edmonds and Karp 153

Exercise 6.1.10. How can the case of several sources and several sinks be
treated?

Exercise 6.1.11. Let N = (G, ¢, s,t) be a flow network, and assume that N
admits flows of value # 0. Show that there exists at least one edge e in N
whose removal decreases the value of a maximal flow on V. An edge e is called
most vital if the removal of e decreases the maximal flow value as much as
possible. Is an edge of maximal capacity in a minimal cut necessarily most
vital?

Exercise 6.1.12. By Theorem 6.1.5, a flow network with integer capacities
always admits an integral maximal flow. Is it true that every maximal flow
has to be integral?

Exercise 6.1.13. Let f be a flow in a flow network N. The support of f is
supp f = {e € E: f(e) # 0}. A flow f is called elementary if its support is
a path. The proof of Theorem 6.1.6 and the algorithm of Ford and Fulkerson
show that there exists a maximal flow which is the sum of elementary flows.
Can every maximal flow can be represented by such a sum?

Exercise 6.1.14. Modify the process of labelling the vertices in Algorithm
6.1.7 in such a way that the augmenting path chosen always has maximal
possible capacity (so that the value of the flow is always increased as much as
possible). Hint: Use an appropriate variation of the algorithm of Dijkstra.

6.2 The algorithm of Edmonds and Karp

As we have seen in the previous section, the labelling algorithm of Ford and
Fulkerson is, in general, not polynomial. We now consider a modification of
this algorithm due to Edmonds and Karp [EdKa72] for which we can prove
a polynomial complexity, namely O(|V||E|?). As we will see, it suffices if we
always use an augmenting path of shortest length — that is, having as few
edges as possible — for increasing the flow. To find such a path, we just make
step (5) in Algorithm 6.1.7 more specific: we require that the vertex v with
u(v) = false which was labelled first is chosen. Then the labelling process
proceeds as for a BFS; compare Algorithm 3.3.1. This principle for selecting
the vertex v is also easy to implement: we simply collect all labelled vertices in
a queue — that is, some vertex w is appended to the queue when it is labelled
in step (8) or (12). This simple modification is enough to prove the following
result.

Theorem 6.2.1. Replace step (5) in Algorithm 6.1.7 as follows:

(5') among all vertices with u(v) = false, let v be
the vertex which was labelled first.

Then the resulting algorithm has complezity O(|V||E|?).

154 6 Flows

Proof. We have already noted that the flow f is always increased using an
augmenting path of shortest length, provided that we replace step (5) by (5).
Let fo be the flow of value 0 defined in step (1), and let f1, fa, f3,... be the
sequence of flows constructed subsequently. Denote the shortest length of an
augmenting path from s to v with respect to fi by x, (k). We begin by proving
the inequality

xy(k+1) > x,(k) for all k and v. (6.3)

By way of contradiction, suppose that (6.3) is violated for some pair (v, k);
we may assume that x,(k + 1) is minimal among the x,(k + 1) for which
(6.3) does not hold. Consider the last edge e on a shortest augmenting path
from s to v with respect to fiy1. Suppose first that e is a forward edge, so
that e = wv for some vertex u; note that this requires fr11(e) < c(e). Now
2y(k+1) = xy(k+ 1) + 1, so that z,(k + 1) > x,(k) by our choice of v.
Hence x,(k 4+ 1) > z,(k) + 1. On the other hand, fi(e) = c(e), as otherwise
(k) < xy(k) + 1 and z,(k + 1) > z,(k), contradicting the choice of wv.
Therefore e was as a backward edge when f; was changed to fri11. As we
have used an augmenting path of shortest length for this change, we conclude
2y (k) = 2,(k) + 1 and hence x,(k+1) > x,(k) + 2, a contradiction. The case
where e is a backward edge can be treated in the same manner. Moreover,
similar arguments also yield the inequality

yp(k+1) > y,(k) for all k and v, (6.4)

where y, (k) denotes the length of a shortest augmenting path from v to ¢ with
respect to fx.

When increasing the flow, the augmenting path always contains at least
one critical edge: the flow through this edge is either increased up to its
capacity or decreased to 0. Let e = uv be a critical edge in the augmenting
path with respect to fi; this path consists of z, (k) + vy, (k) = zu (k) + yu (k)
edges. If e is used the next time in some augmenting path (with respect to
fr, say), it has to be used in the opposite direction: if e was a forward edge
for fx, it has to be a backward edge for f5, and vice versa.

Suppose that e was a forward edge for fx. Then z,(k) = z,(k) + 1 and
z,(h) = x,(h) + 1. By (6.3) and (6.4), x,(h) > x,(k) and y,(h) > y.(k).
Hence we obtain

Ty (h) +yu(h) = zo(h) + 1+ yu(h) > 24 (k) + 1+ yu (k) = 2o (k) + yu (k) + 2.

Thus the augmenting path with respect to fj is at least two edges longer
than the augmenting path with respect to fi. This also holds for the case
where e was a backward edge for f; to see this, exchange the roles of u and
v in the preceding argument. Trivially, no augmenting path can contain more
than |V| —1 edges. Hence each edge can be critical at most (]V'| —1)/2 times,
and thus the flow can be changed at most O(|V||E|) times. (In particular,
this establishes that the algorithm has to terminate even if the capacities are

6.2 The algorithm of Edmonds and Karp 155

non-rational.) Each iteration — finding an augmenting path and updating the
flow — takes only O(|E)|) steps, since each edge is treated at most three times:
twice during the labelling process and once when the flow is changed. This
implies the desired complexity bound of O(|V||E|?). O

Remark 6.2.2. As the cardinality of F is between O(|V|) and O(|V|?), the
complexity of the algorithm of Edmonds and Karp lies between O(|V|3) for
sparse graphs (hence, in particular, for planar graphs) and O(|V|®) for dense
graphs.

Examples for networks with n vertices and O(n?) edges for which the
algorithm of Edmonds and Karp actually needs O(n?) iterations may be found
in [Zad72, Zad73b]; thus the estimates used in the proof of Theorem 6.2.1 are
best possible. Of course, this by no means precludes the existence of more
efficient algorithms. One possible approach is to look for algorithms which
are not based on the use of augmenting paths; we will see examples for this
approach in Sections 6.4 and 6.6 as well as in Chapter 11. Another idea is to
combine the iterations in a clever way into larger phases; for instance, it turns
out to be useful to consider all augmenting paths of a constant length in one
block; see Sections 6.3 and 6.4. Not surprisingly, such techniques are not only
better but also more involved.

Example 6.2.3. We use the algorithm of Edmonds and Karp to determine a
maximal flow and a minimal cut in the network N given in Figure 6.2. The
capacities are given there in parentheses; the numbers without parentheses
in the following figures always give the respective values of the flow. We also
state the labels which are assigned at the respective stage of the algorithm;
when examining the possible labellings coming from some vertex v on forward
edges (steps (6) through (9)) and on backward edges (steps (10) through (13)),
we consider the adjacent vertices in alphabetical order, so that the course
of the algorithm is uniquely determined. The augmenting path used for the
construction of the next flow is drawn bold.

We start with the zero flow fy, that is, w(fo) = 0. The vertices are labelled
in the order a,b, f,c,d,t as shown in Figure 6.3; e is not labelled because t
is reached before e is considered. Figures 6.3 to 6.12 show how the algorithm
works. Note that the last augmenting path uses a backward edge, see Figure
6.11. In Figure 6.12, we have also indicated the minimal cut resulting from
the algorithm.

The reader will note that many labels are not changed from one iteration
to the next. As all the labels are deleted in step (26) after each change of
the flow, this means we do a lot of unnecessary calculations. It is possible
to obtain algorithms of better complexity by combining the changes of the
flow into bigger phases. To do this, a blocking flow is constructed in some
appropriate auxiliary network. This subject is treated in Sections 6.3 and 6.4.

156 6 Flows

Fig. 6.2. A flow network

Fig. 6.3. w(fy) =0

6.2 The algorithm of Edmonds and Karp 157

Fig. 6.5. w(f2) =3

158 6 Flows

Fig. 6.7. w(fy) = 17

6.2 The algorithm of Edmonds and Karp 159

160 6 Flows

Fig. 6.11. w(fs) = 30

6.2 The algorithm of Edmonds and Karp 161

Fig. 6.12. w(f9) =31 = ¢(S,T)

It can be shown that it is theoretically possible to obtain a maximal flow in
a given network in at most |E| iterations, and that this may even be achieved
using augmenting paths which consist of forward edges only; see [LawT76],
p- 119. However, this result is of no practical interest, because it is not known
how one would actually find such paths.

We mention that Edmonds and Karp have also shown that the flow has to
be changed at most O(log w) times, where w is the maximal value of a flow on
N, if we always choose an augmenting path of maximal capacity. Even though
we do not know w a priori, the number of steps necessary for this method is
easy to estimate, as w is obviously bounded by

W = min { Z cle), Z c(e)}.

Note that this approach does not yield a polynomial algorithm, since the
bound depends also on the capacities. Nevertheless, it can still be better for
concrete examples where W is small, as illustrated by the following exercise.

Exercise 6.2.4. Determine a maximal flow for the network of Figure 6.2 by
always choosing an augmenting path of maximal capacity.

Exercise 6.2.5. Apply the algorithm of Edmonds and Karp to the network
shown in Figure 6.13 (which is taken from [PaSt82]).

162 6 Flows

Fig. 6.13. A network

We conclude this section with three exercises showing that it is possible
to change several capacities in a given network and find solutions for the
corresponding new problem without too much effort, if we know a solution of
the original problem.

Exercise 6.2.6. Suppose we have determined a maximal flow for a flow net-
work N using the algorithm of Edmonds and Karp, and realize afterwards
that we used an incorrect capacity for some edge e. Discuss how we may use
the solution of the original problem to solve the corrected problem.

Exercise 6.2.7. Change the capacity of the edge e = ac in the network of
Figure 6.2 to c(e) = 8, and then to c¢(e) = 12. How do these modifications
change the value of a maximal flow? Give a maximal flow for each of these
two cases.

Exercise 6.2.8. Change the network of Figure 6.2 as follows. The capacities
of the edges ac and ad are increased to 12 and 16, respectively, and the edges
de and ct are removed. Determine a maximal flow for the new network.

6.3 Auxiliary networks and phases

Let N = (G,¢,s,t) be a flow network with a f. We define a further flow
network (G',c,s,t) as follows. G’ has the same vertex set as G. For each
edge e = wv of G with f(e) < c(e), there is an edge ¢’ = wv in G’ with
d(e') = c(e) — f(e); for each edge e = uv with f(e) # 0, G’ contains an edge
e’ =vu with ¢/(e”) = f(e).

The labelling process in the algorithm of Ford and Fulkerson — as given in
steps (6) to (9) for forward edges and in steps (10) to (13) for backward edges
— uses only those edges e of G for which G’ contains the edge e’ or €”; an

6.3 Auxiliary networks and phases 163

augmenting path with respect to f in G corresponds to a directed path from
s to t in G'. Thus we may use G’ to decide whether f is maximal and, if this
is not the case, to find an augmenting path. One calls N’ = (G', ¢/, s,t) the
auzxiliary network with respect to f. The next lemma should now be clear.

Lemma 6.3.1. Let N = (G, ¢, s,t) be a flow network with a flow f, and let
N’ be the corresponding auziliary network. Then f is maximal if and only if
t is not accessible from s in G'. a

Example 6.3.2. Consider the flow f = f3 of Example 6.2.3; see Figure 6.6.
The corresponding auxiliary network is given in Figure 6.14.

f

Fig. 6.14. Auxiliary network for Example 6.3.2

It is intuitively clear that a flow in N’ can be used to augment f when
constructing a maximal flow on N. The following two results make this idea
more precise.

Lemma 6.3.3. Let N = (G, ¢, s,t) be a flow network with a flow f, and let
N’ be the corresponding auziliary network. Moreover, let f' be a flow on N'.
Then there exists a flow " of value w(f") = w(f) +w(f’) on N.

Proof. For each edge ¢ = wv of G, let ¢ = uwv and ¢’ = vu. If € or ¢”
is not contained in N’, we set f’(¢/) = 0 or f'(¢”) = 0, respectively. We
put f'(e) = f'(¢/) — f'(€");?> then we may interpret f’ as a (possibly non-
admissible) flow on N: f’ satisfies condition (F2), but not necessarily (F1).
Obviously, the mapping f” defined by

fe) = fle)+ f'(e") = f'(e")

2Note that the minus sign in front of f’(e”’) is motivated by the fact that e’ and
e’ have opposite orientation.

164 6 Flows

also satisfies condition (F2). Now the definition of N’ shows that the con-
ditions 0 < f'(e/) < ¢(e) — f(e) and 0 < f/'(¢”) < f(e) hold for each
edge e, so that f” satisfies (F1) as well. Thus f” is a flow, and clearly
w(f") = w(f) +w(f’). o

Theorem 6.3.4. Let N = (G, ¢,s,t) be a flow network with a flow f, and
let N' be the corresponding auziliary network. Denote the value of a mazimal
flow on N and on N' by w and w', respectively. Then w = w' + w(f).

Proof. By Lemma 6.3.3, w > w’ + w(f). Now let g be a maximal flow on N
and define a flow ¢’ on N’ as follows: for each edge e of G, set

g'(e) = gle) = f(e) ifg(e) > f(e);
g'(e") = fle) —gle) ifgle) < f(e)

Note that ¢/ and ¢” really are edges of N’ under the conditions given above
and that their capacities are large enough to ensure the validity of (F1). For
every other edge e* in N’, put ¢’(e*) = 0. It is easy to check that ¢ is a flow
of value w(g’') = w(g) — w(f) on N'. This shows w’' + w(f) > w. O

Exercise 6.3.5. Give an alternative proof for Theorem 6.3.4 by proving that
the capacity ¢/(S,T) of a cut (S,T) in N’ is equal to ¢(S,T) — w(f).

Remark 6.3.6. Note that the graph G’ may contain parallel edges even if
G itself — as we always assume — does not. This phenomenon occurs when
G contains antiparallel edges, say d = uv and e = vu. Then G’ contains the
parallel edges d’ and e’ with capacities ¢/(d') = ¢(d) — f(d) and ¢'(e”) =
f(e), respectively. For the validity of the preceding proofs and the subsequent
algorithms, it is important that parallel edges of G’ are not identified (and
their capacities not added). Indeed, if we identified the edges d’ and e” above
into a new edge e* with capacity ¢'(e*) = ¢(d) — f(d) + f(e), it would no
longer be obvious how to distribute a flow value f’(e*) when defining f” in
the proof of Lemma 6.3.3: we would have to decide which part of f’(e*) should
contribute to f”(d) (with a plus sign) and which part to f”(e) (with a minus
sign). Of course, it would always be possible to arrange this in such a manner
that a flow f” satisfying the feasibility condition (F1) arises, but this would
require some unpleasant case distinctions. For this reason, we allow G’ to
contain parallel edges.> However, when actually programming an algorithm
using auxiliary networks, it might be worthwhile to identify parallel edges of
G’ and add the necessary case distinctions for distributing the flow on N’
during the augmentation step. In addition, one should also simplify things
then by cancelling flow on pairs of antiparallel edges in such a way that only
one edge of such a pair carries a non-zero flow.

3 Alternatively, we could forbid G to contain antiparallel edges; this might be
achieved, for instance, by always subdividing one edge of an antiparallel pair.

6.3 Auxiliary networks and phases 165

We have seen that it is possible to find a maximal flow for our origi-
nal network N by finding appropriate flows in a series of auxiliary networks
N1 = N'(fo), N2 = N'(f1),... Note that the labelling process in the algo-
rithm of Ford and Fulkerson amounts to constructing a new auxiliary network
after each augmentation of the flow. Thus constructing the auxiliary networks
explicitly cannot by itself result in a better algorithm; in order to achieve an
improvement, we need to construct several augmenting paths within the same
auxiliary network. We require a further definition. A flow f is called a blocking
flow if every augmenting path with respect to f has to contain a backward
edge. Trivially, any maximal flow is blocking as well. But the converse is false:
for example, the flow fg of Example 6.2.3 displayed in Figure 6.11 is blocking,
but not maximal.

There is yet another problem that needs to be addressed: the auxiliary
networks constructed so far are still too big and complex. Indeed, the auxiliary
network in Example 6.3.2 looks rather crowded. Hence we shall work with
appropriate sub-networks instead. The main idea of the algorithm of Dinic
[Din70] is to use not only an augmenting path of shortest length, but also
to keep an appropriate small network N”(f) basically unchanged — with just
minor modifications — until every further augmenting path has to have larger
length.

For better motivation, we return once more to the algorithm of Edmonds
and Karp. Making step (5) of Algorithm 6.1.7 more precise in step (5') of
Theorem 6.2.1 ensures that the labelling process on the auxiliary network
N’ = N'(f) runs as a BFS on G’; thus the labelling process divides G’ into
levels or layers of vertices having the same distance to s; see Section 3.3. As we
are only interested in finding augmenting paths of shortest length, N’ usually
contains a lot of superfluous information: we may omit

e all vertices v # t with d(s,v) > d(s,t) together with all edges incident
with these vertices;

e all edges leading from some vertex in layer j to some vertex in a layer
i<

The resulting network N” = N”(f) = (G”,c", s,t) is called the layered auxil-
iary network with respect to f.* The name layered network comes from the
fact that G” is a layered digraph: the vertex set V of G” is the disjoint union
of subsets Vj,...,V; and all edges of G” have the form uv with v € V; and
v € V41 for some index i.

Example 6.3.7. Consider the flow f = f3 in Example 6.2.3 and the corre-
sponding auxiliary network N’ displayed in Figure 6.14. The associated lay-
ered auxiliary network N is shown in Figure 6.15. Here the capacities are

4Strictly speaking, both N’ and N” should probably only be called networks if ¢
is accessible from s, that is, if f is not yet maximal — as this is part of the definition
of flow networks. But it is more convenient to be a bit lax here.

166 6 Flows

written in parentheses; the other numbers are the values of a blocking flow g
on N’ which arises from the three augmenting paths displayed in Figures 6.6,
6.7, and 6.8. Note that all three paths of length four in Example 6.2.3 can now
be seen in the considerably clearer network N”. Note that g is blocking but
not maximal: the sequence (s,a,d,e,c, f,t) determines an augmenting path
containing the backward edge ce.

Fig. 6.15. Layered auxiliary network

We remark that even N’ might still contain superfluous elements, for
example vertices from which ¢ is not accessible. But as such vertices cannot
be determined during the BFS used for constructing N”, we will not bother
to find and remove them.

Exercise 6.3.8. How could vertices v in N from which ¢ is not accessible be
removed?

Exercise 6.3.9. Draw N’ and N” for the flow f7 displayed in Figure 6.10
and determine a blocking flow for N”'.

We will treat two algorithms for determining maximal flows. Both algo-
rithms can take a given flow f, construct a blocking flow g in the corresponding
layered auxiliary network N”(f), and then use g to augment f. Note that a
flow f’ of value w(f’) on N”(f) may indeed be used to augment the given
flow f to a flow of value w(f) + w(f’), as N” is a sub-network of N’; hence
we may apply Lemma 6.3.3 and the construction given in its proof.

Exercise 6.3.10. Show that Theorem 6.3.4 does not carry over to N”(f).

Thus we begin with some starting flow fy, usually the zero flow, construct
a blocking flow gg in N”(fy), use this flow to augment fy to a flow f; of
value w(gp), construct a blocking flow g; in N”(f1), and so on. The algorithm
terminates when we reach a flow fi for which the sink ¢ is not accessible
from s in N”(fx). Then t is not accessible from s in N'(fy) either; hence
fr is maximal, by Lemma 6.3.1. Each construction of a blocking flow g;,

6.3 Auxiliary networks and phases 167

together with the subsequent augmentation of f; to f;y1, is called a phase of
the algorithm. We postpone the problem of determining blocking flows to the
next section. Now we derive an estimate for the number of phases needed and
write down an algorithm for constructing the layered auxiliary network.

Lemma 6.3.11. Let N = (G, ¢, s,t) be a flow network with a flow f, and let
N"(f) be the corresponding layered auziliary network. Moreover, let g be a
blocking flow on N"(f), h the flow on N of value w(f) + w(g) constructed
from f and g as in Lemma 6.3.3, and N"(h) the layered auziliary network
with respect to h. Then the distance from s to t in N"(h) is larger than in

NY(f)-

Proof. Tt is easy to see that N”(h) is the layered auxiliary network for N’ =
N'(f) with respect to g.> We may also view g as a flow on N” = N"(f),
by assigning value 0 to all edges contained in N’, but not in N”. As g is a
blocking flow on N”, there is no augmenting path from s to ¢t in N” consisting
of forward edges only. Hence each augmenting path in N’ with respect to g
has to contain a backward edge or one of those edges which were omitted
during the construction of N”. In both cases, the length of this path must be
larger than the distance from s to ¢ in N”. Thus the distance from s to ¢ in
the layered auxiliary network for N’ with respect to g — that is, in N”(h) — is
indeed larger than the corresponding distance in N”. a

Corollary 6.3.12. Let N be a flow network. Then the construction of a mazx-
imal flow on N needs at most |V| — 1 phases.

Proof. Let fo, f1,..., fi be the sequence of flows constructed during the al-
gorithm. Lemma 6.3.11 implies that the distance from s to ¢ in N”(fy) is at
least k larger than that in N”(fp). Thus the number of phases can be at most
V] —1. a

Exercise 6.3.13. Let f be the flow f3 in Example 6.2.3 and g the blocking
flow on N”(f) in Example 6.3.7. Draw the layered auxiliary networks with
respect to g on N'(f) and on N”(f). What does the flow h determined by f
and g on N look like? Convince yourself that N”(h) is indeed equal to the
layered auxiliary network with respect to g on N'(f).

The following procedure for constructing the layered auxiliary network
N"(f) corresponds to the labelling process in the algorithm of Ford and Fulk-
erson with step (5) replaced by (5') — as in Theorem 6.2.1. During the execu-
tion of the BFS, the procedure orders the vertices in layers and omits super-
fluous vertices and edges, as described in the definition of N”’. The Boolean
variable max is assigned the value true when f becomes maximal (that is,
when ¢ is no longer accessible from s); otherwise, it has value false. The vari-
able d + 1 gives the number of layers of N”.

5The analogous claim for N = N”(f) instead of N’(f) does not hold, as Exercise
6.3.13 will show.

168 6 Flows

Algorithm 6.3.14. Let N = (G, ¢, s,t) be a flow network with a flow f.
Procedure AUXNET(N, f; N” max, d)

(1) P — 07 VO — {S}a E" ma V" VO;
(2) repeat
(3) i—i+1,V; — 0
(4) for ve V;_; do
(5) forec{ec E:e” =v}do
(6) ifu=et ¢ V" and f(e) < c(e)
(7) then ¢/ — vu, B — EU{e'}, V; — V; U {u};
& (e!) — ele) - f(e)
(8) od;
(9) forec{e€c F:et =v} do
(10) ifu=e ¢ V" and f(e) #0
(11) then ¢’ «—vu, " — EU{"}, V; — V; U{u};
e — fle) f
(12) od
(13) od;
(14) if t € V; then remove all vertices v # ¢ together with all

edges e satisfying e™ = v from V; fi;
(15) V"' —V"uV;
(16) until t € V" or V; = ();
(17) if t € V" then max « false; d < i else max « true fi

We leave it to the reader to give a formal proof for the following lemma.

Lemma 6.3.15. Algorithm 6.3.1} constructs the layered auxiliary network
N"=N"(f)=(G",c",s,t) on G" = (V" E") with complexity O(|E|). O

In the next section, we will provide two methods for constructing a blocking
flow g on N”. Let us assume for the moment that we already know such a
procedure BLOCKFLOW(N"; g). Then we want to use g for augmenting f.
The following procedure performs this task; it uses the construction given in
the proof of Lemma 6.3.3. Note that N never contains both ¢’ and ¢”.

Algorithm 6.3.16. Let N = (G, ¢, s,t) be a given flow network with a flow
f, and suppose that we have already constructed N” = N”(f) and a blocking
flow g.

Procedure AUGMENT(f,g; f)

(1) for e € E do
(2) if ¢ € E” then f(e) « f(e) + g(¢') fi;
(3) if ¢” € E” then f(e) — f(e) —g(e”) fi
(4) od

We can now write down an algorithm for determining a maximal flow:

6.4 Constructing blocking flows 169

Algorithm 6.3.17. Let N = (G, ¢, s,t) be a flow network.
Procedure MAXFLOW(N; f)

(1) for e € E do f(e) < 0 od;
(2) repeat

(3) AUXNET(N, f; N” , max, d);
4) if max = false
(5) then BLOCKFLOW(N"; g); AUGMENT({, ¢; f) fi
(6) until max = true

Remark 6.3.18. The only part which is still missing in Algorithm 6.3.17 is
a specific procedure BLOCKFLOW for determining a blocking flow g on N”'.
Note that each phase of Algorithm 6.3.17 has complexity at least O(|E|), be-
cause AUGMENT has this complexity. It is quite obvious that BLOCKFLOW
will also have complexity at least O(]E|); in fact, the known algorithms have
even larger complexity. Let us denote the complexity of BLOCKFLOW by
E(N). Then MAXFLOW has a complexity of O(|V|k(N)), since there are at
most O(|V'|) phases, by Corollary 6.3.12.

Exercise 6.3.19. Modify Algorithm 6.3.17 in such a way that it finds a min-
imal cut (S,T) as well.

6.4 Constructing blocking flows

In this section, we fill in the gap left in Algorithm 6.3.17 by presenting two
algorithms for constructing blocking flows. The first of these is due to Dinic
[Din70]. The Dinic algorithm constructs, starting with the zero flow, augment-
ing paths of length d in the layered auxiliary network N’ (where d+ 1 denotes
the number of layers) and uses them to change the flow g until ¢ is no longer
accessible from s; then g is a blocking flow. Compared to the algorithm of
Edmonds and Karp, it has two advantages. First, using N = N”(f) means
that we consider only augmenting paths without any backward edges, since a
path containing a backward edge has length at least d + 2. Second, when we
update the input data after an augmentation of the current flow g on N”, we
only have to decrease the capacities of the edges contained in the respective
augmenting path and omit vertices and edges that are no longer needed. In
particular, we do not have to do the entire labelling process again.

Algorithm 6.4.1. Let N = (G, ¢, s,t) be a layered flow network with layers
Vo, ..., Vg, where all capacities are positive.

Procedure BLOCKFLOW (N g)
(1) for e € E do g(e) « 0 od;
(2) repeat

(3) v —t, a « 00;

170 6 Flows

(4) for i = d downto 1 do

(5) choose some edge e; = uv;

(6) a — min {c(e;),a}, v —u

(7) od;

(8) for i=1toddo

(9) glei) — g(ei) + a, c(e;) — c(e:) — a3
(10) if ¢(e;) = 0 then omit e; from F fi
(11) od;
(12) for i =1to d do
(13) for v € V; do
(14) if din(v) =0
(15) then omit v and all edges e with e™ = v fi
(16) od
(17) od
(18) until ¢ ¢ Vy

Theorem 6.4.2. Algorithm 6.4.1 determines a blocking flow on N with com-
plexity O(|V||E).

Proof. By definition of a layered auxiliary network, each vertex is accessible
from s at the beginning of the algorithm. Thus there always exists an edge
e; with end vertex v which can be chosen in step (5), no matter which edges

€d,---,ei+1 were chosen before. Hence the algorithm constructs a directed
path P = (e1,...,eq) from s to t. At the end of the loop (4) to (7), the
variable a contains the capacity a of P, namely a = min {c(e;):i=1,...,d}.

In steps (8) to (11), the flow constructed so far (in the first iteration, the
zero flow) is increased by a units along P, and the capacities of the edges
e1,...,eq are decreased accordingly. Edges whose capacity is decreased to 0
cannot appear on any further augmenting path and are therefore discarded.
At the end of the loop (8) to (11), we have reached ¢ and augmented the
flow g. Before executing a further iteration of (4) to (11), we have to check
whether ¢ is still accessible from s. Even more, we need to ensure that every
vertex is still accessible from s in the modified layered network. This task is
performed by the loop (12) to (17). Using induction on 4, one may show that
this loop removes exactly those vertices which are not accessible from s as
well as all edges beginning in these vertices. If ¢ is still contained in N after
this loop has ended, we may augment g again so that we repeat the entire
process. Finally, the algorithm terminates after at most |E| iterations, since
at least one edge is removed during each augmentation; at the very latest,
t can no longer be in V; when all the edges have been removed. Obviously,
each iteration (4) to (17) has complexity O(|V]); this gives the desired overall
complexity of O(|V||E|). O

Using Remark 6.3.18, we immediately obtain the following result due to
Dinic.

6.4 Constructing blocking flows 171

Corollary 6.4.3. Assume that we use the procedure BLOCKFLOW of Al-
gorithm 6.4.1 in Algorithm 6.3.17. Then the resulting algorithm calculates a
mazximal flow on a given flow network N with complezity O(|V|?|E|). O

Note that the algorithm of Dinic has a complexity of O(]V|*) for dense
graphs, whereas the algorithm of Edmonds and Karp needs O(|V]%) steps
in this case. Using another, more involved, method for constructing blocking
flows, we may reduce the complexity to O(|V|?) for arbitrary graphs. But
first, let us work out an example for the algorithm of Dinic.

Example 6.4.4. Consider again the flow f = f3 in Example 6.2.3. The cor-
responding layered auxiliary network N” was displayed in Figure 6.15. We
apply Algorithm 6.4.1 to N”. In step (5), let us always choose the edge uv for
which w is first in alphabetical order, so that the algorithm becomes deter-
ministic. Initially, it constructs the path s — a — ¢ — e — t with capacity 7.
The corresponding flow ¢; is shown in Figure 6.16; the numbers in parenthe-
ses give the new capacities (which were changed when the flow was changed).
The edge et, which is drawn broken, is removed during this first iteration.

Fig. 6.16. w(g1) =7

In the second iteration, we obtain the path s — a— ¢ — f — ¢ in the net-
work of Figure 6.16; it has capacity two. Figure 6.17 shows the new network
with the new flow go. Note that the edge ac has been removed.

Finally, using the network in Figure 6.17, the third iteration constructs
the path s — b— ¢ — f — ¢ with capacity one, and we obtain the flow g3
displayed in Figure 6.18. During this iteration, the algorithm removes first
the edge sb, the vertex b, and the edge bc; then the vertex ¢, and the edges
ce and cf; the vertex f, and the edge ft; and finally ¢ itself; see Figure 6.18.
Hence g3 is a blocking flow — actually, the blocking flow previously displayed
in Figure 6.15.

Exercise 6.4.5. Use Algorithm 6.4.1 to determine a blocking flow on the
layered network shown in Figure 6.19; this is taken from [SyDK83].

172 6 Flows

a 0(6) >;i 0(1) _e¢
9 (21) I R
s 9 (0) 7 (1) t
0(1) AN 2 (23)
0 (26) 2 (22)
b c f

Fig. 6.19. A layered network

6.4 Constructing blocking flows 173

We now turn to a completely different method for constructing blocking
flows, which is due to Malhotra, Kumar and Mahashwari [MaKM78] and has
complexity O(|V'|?). This algorithm does not use augmenting paths and tries
instead to push as big a flow as possible through the network. We need some
notation. Let N = (G, ¢, s,t) be a layered flow network. For each vertex v, the
flow potential p(v) is defined by

p(0) — i {z (0. 3 c<e>};

e~ =v et=v

thus p(v) is the maximal amount of flow which could possibly pass through
v. A vertex u is called a minimal vertex — and its flow potential the minimal
potential — if p(u) < p(v) holds for all vertices v. Intuitively, it should be
possible to construct a flow g of value w(g) = p(u) by pushing the flow from
u forward to ¢ and pulling it back from u to s. This is the main idea of the
following algorithm for constructing a blocking flow on N.

Algorithm 6.4.6. Let N = (G, ¢, s,t) be a layered flow network with layers
Vi,...Vy, where all capacities are positive.

Procedure BLOCKMKM(N; g)

)

)

)

)

)

) for v € V do p(v) « min {p*(v),p~(v)} od;
) choose a minimal vertex w;

) PUSH(w, p(w));

) PULL(w, p(w));

) while there exists v with p*(v) =0 or p~(v) = 0 do
) forec{ec€c E:e” =v}do

) u et p(u) < p*(u) —cle);
) remove e from E

) od;

) forec{ec F:et =v} do

) we e, p(u) — p(u) = cfe)
) remove e from E

) od;

) remove v from V'

) od

Juntil s ¢ Vort¢V

174 6 Flows

Here, PUSH is the following procedure for pushing a flow of value p(w) to t:
Procedure PUSH(y, k)

(1) let @ be a queue with single element y;

(2) for u € V do b(u) < 0 od,;

(3) b(y) < k;

(4) repeat

(5) remove the first element v from Q;

(6) while v # t and b(v) # 0 do

(7) choose an edge e = vu;

(8) m « min {c(e),b(v)};

(9) c(e) — c(e) —m, g(e) — g(e) +m;
(10) p*(u) — p*(u) —m, b(u) «— b(u) + m;
(11) P (v) — p(v) = m, b(v) — blv) — m;
(12) append u to Q;

(13) if ¢(e) = 0 then remove e from F fi
(14) od
(15) until Q = 0

The procedure PULL for pulling a flow of value p(w) to s is defined in an
analogous manner; we leave this task to the reader.

Theorem 6.4.7. Algorithm 6.4.6 constructs a blocking flow g on N with com-
plezity O(|V|?).

Proof. We claim first that an edge e is removed from FE only if there exists no
augmenting path containing e and consisting of forward edges only. This is
clear if e is removed in step (14) or (18): then either p™(v) = 0 or p~(v) =0
(where e~ = v or et = v, respectively) so that no augmenting path containing
v and consisting of forward edges only can exist. If e is removed in step (13)
during a call of the procedure PUSH, we have c¢(e) = 0 at this point; because of
step (9) in PUSH, this means that g(e) has reached its original capacity c(e) so
that e cannot be used any longer as a forward edge. A similar argument applies
if e is removed during a call of PULL. As each iteration of BLOCKMKM
removes edges and decreases capacities, an edge which can no longer be used
as a forward edge with respect to g when it is removed cannot be used as a
forward edge at a later point either. Hence, there cannot exist any augmenting
path consisting of forward edges only at the end of BLOCKMKM, when s or
t have been removed. This shows that g is blocking; of course, it still remains
to check that g is a flow in the first place.

We now show that ¢ is indeed a flow, by using induction on the number
of iterations of the repeat-loop (6) to (22). Initially, g is the zero flow. Now
suppose that g is a flow at a certain point of the algorithm (after the i-
th iteration, say). All vertices v which cannot be used any more — that is,
vertices into which no flow can enter or from which no flow can emerge any
more — are removed during the while-loop (11) to (21), together with all edges

6.4 Constructing blocking flows 175

incident with these vertices. During the next iteration — that is, after the flow
potentials have been brought up to date in step (7) — the algorithm chooses
a vertex w with minimal potential p(w); here p(w) # 0, since otherwise w
would have been removed before during the while-loop. Next, we have to
check that the procedure PUSH(w, p(w)) really generates a flow of value p(w)
from the source w to the sink t. As @ is a queue, the vertices u in PUSH are
treated as in a BFS on the layers Vi, Vii1,. .., Vg, where w € V. During the
first iteration of the repeat-loop of PUSH, we have v = w and b(v) = p(w);
here b(v) contains the value of the flow which has to flow out of v. During
the while-loop, the flow of value b(v) is distributed among the edges vu with
tail v. Note that the capacity of an edge vu is always used entirely, unless
b(v) < c¢(e). In step (9), the capacity of vu is reduced — in most cases, to 0, so
that vu will be removed in step (13) — and the value of the flow is increased
accordingly. Then we decrease the value b(v) of the flow which still has to leave
v via other edges accordingly in step (11), and increase b(u) accordingly in
step (10); also the flow potentials are updated by the appropriate amount. In
this way the required value of the flow b(v) is distributed among the vertices of
the next layer; as we chose w to be a vertex of minimal potential, we always
have b(v) < p(w) < p(v), and hence it is indeed possible to distribute the
flow. At the end of procedure PUSH, the flow of value p(w) has reached ¢,
since V4 = {t}. An analogous argument shows that the subsequent call of the
procedure PULL(w, p(w)) yields a flow of value p(w) from the source s to
the sink w; of course, PULL performs the actual construction in the opposite
direction. We leave the details to the reader. Hence g will indeed be a flow
from s to t after both procedures have been called.

Each iteration of the repeat-loop of BLOCKMKM removes at least one
vertex, since the flow potential of the minimal vertex w is decreased to 0
during PUSH and PULL; hence the algorithm terminates after at most |V|—1
iterations. We now need an estimate for the number of operations involving
edges. Initializing p™ and p~ in (3) and (4) takes O(|E|) steps altogether. As
an edge e can be removed only once, e appears at most once during the for-
loops (12) to (19) or in step (13) of PUSH or PULL. For each vertex v treated
during PUSH or PULL, there is at most one edge starting in v which still has
a capacity # 0 left after it has been processed — that is, which has not been
removed. As PUSH and PULL are called at most |V| —1 times each, we need
at most O(|V'|?) steps for treating these special edges. But O(|V'|?) dominates
O(]E|); hence the overall number of operations needed for treating the edges
is O(|V|?). It is easy to see that all other operations of the algorithm need at
most O(|V|?) steps as well, so that we obtain the desired overall complexity
of O(|V]?). O

The algorithm arising from Algorithm 6.3.17 by replacing BLOCKFLOW
with BLOCKMKM is called the MKM-algorithm. As explained in Remark
6.3.18, Theorem 6.4.7 implies the following result.

176 6 Flows

Theorem 6.4.8. The MKM-algorithm constructs with complexity O(|V|*) a
mazimal flow for a given flow network N . a

Example 6.4.9. Consider again the layered auxiliary network of Example
6.3.7. Here the flow potentials are as follows: p(s) = 31, p(a) = 15, p(b) = 1,
p(e) = 32, p(d) = 1, p(e) = 7, p(f) = 24, p(t) = 32. Let us choose b as
minimal vertex in step (8). After the first iteration, we have the flow g; shown
in Figure 6.20; the vertex b as well as the edges sb and bc have been removed.

\\ R
b
Fig. 6.20. w(g1) =1

Next, we have flow potentials p(s) = 30, p(a) = 15, p(c) = 9, p(d) = 1,
ple) =7, p(f) = 23, p(t) = 31, so that d is the unique minimal vertex. After
the second iteration, we have constructed the flow g» in Figure 6.21; also, d,
ad, and de have been removed.

Fig. 6.21. w(gs) = 2

In the following iteration, p(s) = 29, p(a) =9, p(c) =9, p(e) = 6, p(f) = 23
and p(t) = 30. Hence the vertex e is minimal and we obtain the flow g5 shown
in Figure 6.22; note that e, ce, and et have been removed.

6.4 Constructing blocking flows 177

Fig. 6.22. w(gs) =8

Now the flow potentials are p(s) = 23, p(a) = 3, p(c) = 3, p(f) = 23, p(t) = 24.
We select the minimal vertex a and construct the flow g4 in Figure 6.23, a
blocking flow with value w(gs) = 11; all remaining elements of the network
have been removed. Note that g4 differs from the blocking flow constructed
in Example 6.4.4.

a d 1 e
____> _____
/%\ 7\\
s \ / N
10, . , 7
s \ / N
5 & 9\ /6 >t
\\ \ / //
N \ 4 -
1> <)
N / 7
N - L -4 =7
b c f

Fig. 6.23. w(g4) = 11

Exercise 6.4.10. Use Algorithm 6.4.6 to find a blocking flow for the layered
auxiliary network of Exercise 6.4.5.

We have now seen three classical algorithms for constructing maximal
flows. Note that these algorithms have quite different complexities for the
case of dense graphs, that is, for |E| = O(|V]?). As this case shows, the
MKM-algorithm is superior to the other two algorithms; however, it is clearly
also considerably more involved.

Further algorithms with complexity O(|V|?) are given in [Kar74], [Tar84],
and [GoTa88]; the last of these papers also contains an algorithm of com-
plexity O(|V||E|log(|]V|?/|E|)). We shall present the algorithm of Goldberg
and Tarjan in Section 6.6. The approach of Goldberg and Tarjan can also be

178 6 Flows

used to solve the parametrized flow problem, where the capacities of the edges
incident with s and ¢t depend monotonically on some real parameter; interest-
ingly, the complexity will only change by a constant factor; see [GaGT89]. A
modification of the algorithm of Goldberg and Tarjan suggested in [ChMa89]
results in a complexity O(|V|?|E|'/?; we shall include this result in Section
6.6 as well.

An algorithm with complexity O(|V||E|log|V|) is given in [Sle80]; see
also [S1Ta83]. In the paper [AhOr89], there is an algorithm of complexity
O(|V||E| + |[V]?logU), where U denotes the maximum of all capacities c(e)
occurring in the problem. This result may be improved somewhat: the term
log U can be replaced by (logU')/?; see [AhOTS89).

A probabilistic algorithm was proposed by [ChHa89]. Later, several au-
thors gave deterministic variants of this algorithm; see [Alo90], [KiRT94],
and [ChHa95]. For instance, for graphs satisfying |[V|log|V])? < |E| <
[V[5/310g | V|, one obtains a complexity of only O(|V||E|). An algorithm with
complexity O(|V|?/log|V|) can be found in [ChHM96].

Let us also mention three good surveys dealing with some of the more re-
cent algorithms: [GoTT90] and [AhMO89, AhMO91]. For an extensive treat-
ment of flow theory and related topics, we refer to the monograph [AhMO93].

A further new idea for solving the max-flow problem emerged in a paper by
Karger [Kar99], who proceeds by computing approximately minimal cuts and
uses these to compute a maximum flow, thus reversing the usual approach. He
shows that his algorithm has an improved complexity with high probability;
however, this seems not to be of practical interest (yet).

A completely different approach to the problem of finding a maximal flow
is to use the well-known simplex algorithm from linear programming and
specialize it to treat flow networks; the resulting algorithm actually works for
a more general problem. It is called the network simplex algorithm and is of
eminent practical interest; we will devote the entire Chapter 11 to this topic.

For planar graphs, one may construct a maximal flow with complexity
O(|V|3 log |V|); see [JoVe82]. If s and ¢ are in the same face of G, even a
complexity of O(|]V]log|V]) suffices; see [ItSh79).

In the undirected case — that is, in symmetric flow networks, see Section
12.1 — the max flow problem can be solved with complexity O(|V|log® |V|); see
[HaJo85]. For flow networks on bipartite graphs, fast algorithms can be found
in [GuMF&87] and in [AhOST94]; these algorithms are particularly interesting
if one of the two components of the bipartition is very small compared to the
other component.

Finally, let us mention some references discussing the practical efficiency
of various flow algorithms: [Che80], [Gal81], [Ima83], [GoGr88], [DeMeg9],
and [AhKMO92]. There are also several relevant papers in the collection
[JoMcG93].

6.5 Zero-one flows 179

6.5 Zero-one flows

In this section, we consider a special case occurring in many combinatorial
applications of flow theory®, namely integral flows which take the values 0
and 1 only. In this special case, the complexity estimates we have obtained so
far can be improved considerably; it will suffice to use the algorithm of Dinic
for this purpose. We need some terminology. A 0-1-network is a flow network
N = (G, ¢, s,t) for which all capacities c(e) are restricted to the values 0 and
1. A flow f on a network N is called a 0-1-flow if f takes values 0 and 1 only.
We begin with the following important lemma taken from [EvTa75].

Lemma 6.5.1. Let N = (G, ¢, s,t) be a 0-1-network. Then
2|V]|

/M 9
where M is the mazimal value of a flow on N. If, in addition, each vertex v

of N except for s and t satisfies at least one of the two conditions din(v) < 1
and dout(v) < 1, then even

d(s,t) < (6.5)

d(s,t) < 1+%. (6.6)

Proof. Denote the maximal distance from s in N by D, and let V; be the set
of all vertices v € V with d(s,v) =i (for i =0, ..., D). Obviously,

(Si,Ti) = (VbuWhu...uV;, ‘/;_HU...UVD)

is a cut, for each 7 < d(s,t). As every edge ¢ with e~ € S; and et € T; satisfies
e~ €V;and et € V;;1 and as N is a 0-1-network, Lemma 6.1.2 implies

M < (S, T;) < |Vi| x [Viga| fori=0,...,d(s,t) — 1.

Thus at least one of the two values |V;| or |V;41| cannot be smaller than v M.
Hence at least half of the layers V; with ¢« < d(s,t) contain v M or more
vertices. This yields

vM

d(S,t)T < Vol 4o A+ [Vasol < V],

and hence (6.5) holds. Now assume that N satisfies the additional condition
stated in the assertion. Then the flow through any given vertex cannot exceed
one, and we get the stronger inequality

M < |V;| fori=1,...,d(s,t)—1.

5We will discuss a wealth of such applications in Chapter 7.

180 6 Flows

Now
M(d(87t) - 1) S |‘/1‘ +...+ |Vd(s,t)71| S ‘V‘7

proving (6.6). O

Using estimates which are a little more accurate, (6.5) can be improved
to d(s,t) < |V|/v/M. We will not need this improvement for the complexity
statements which we will establish later in this section; the reader might derive
the stronger bound as an exercise.

Lemma 6.5.2. Let N = (G, ¢, s,t) be a layered 0-1-network. Then the algo-
rithm of Dinic can be used to determine a blocking flow g on N with complezity

O(E))-

Proof. The reader may easily check that the following modification of Algo-
rithm 6.4.1 determines a blocking flow g on a given 0-1-network N.

Procedure BLOCKOIFLOW(N, g)

) L0
) for v € V do ind(v) < 0 od;

) for e € E do g(e) < 0; ind(e™) «— ind(e*) + 1 od;

) repeat

) vt

) for i = d downto 1 do

) choose an edge e = wv and remove e from F;

) ind(v) «—ind(v) — 1; g(e) « 1;

) if ind(v) =0

) then append v to L;

) while L # () do

) remove the first vertex w from L;

) for {ec E:e” =w} do

) remove e from E; ind(e™) « ind(e™) — 1;
) if ind(e*) = 0 then append et to L fi;

) od;

) od;

) fi;
) v

) od;

1) until ind(t) =0

(1

(2
3
(4
(5
6
(7
8
9
10
11
12
13
14
15
16
17
18
19
20

(
(
(
(
(
(
(
(
(
(
(
(2

Obviously, each edge e is treated — and then removed — at most once during
the repeat-loop in this procedure, so that the complexity of BLOCKO1FLOW
O(|E|). a

Theorem 6.5.3. Let N = (G,¢,s,t) be a 0-1-network. Then the algorithm
of Dinic can be used to compute a mazximal 0-1-flow on N with complexity

OV 2| E)).

6.5 Zero-one flows 181

Proof. In view of Lemma 6.5.2, it suffices to show that the algorithm of Dinic
needs only O(|V|?/3) phases when it runs on a 0-1-network. Let us denote the
maximal value of a flow on N by M. As the value of the flow is increased by
at least 1 during each phase of the algorithm, the assertion is trivial when-
ever M < |V[*/3; thus we may suppose M > |V|?>/3. Consider the uniquely
determined phase where the value of the flow is increased to a value exceed-
ing M — |V|?/3, and let f be the 0-1-flow on N which the algorithm had
constructed in the immediately preceding phase. Then w(f) < M — |V|?/3,
and therefore the value M’ of a maximal flow on N’'(f) is given by
M' = M —w(f) > |V|*/3, by Theorem 6.3.4. Obviously, N’ is likewise a
0-1-network, so that the distance d(s,t) from s to ¢ in N'(f) satisfies the
inequality]
2|V

d(s,t) < Wi
by Lemma 6.5.1. Now Lemma 6.3.11 guarantees that the distance between
s and t in the corresponding auxiliary network increases in each phase, and
hence the construction of f can have taken at most 2|V|?/3 phases. By our
choice of f, we reach a flow value exceeding M — |[V|?/3 in the next phase,
so that at most |V/|?/3 phases are necessary to increase the value of the flow

step by step until it reaches M. Hence the number of phases is indeed at most
O(|V|>/3). a

< 2IV[*/3,

In exactly the same manner, we get a further improvement of the com-
plexity provided that the 0-1-network NN satisfies the additional condition of
Lemma 6.5.1 and hence the stronger inequality (6.6). Of course, this time the
threshold M used in the argument should be chosen as [V|'/2; also note that
the 0-1-network N'(f) likewise satisfies the additional hypothesis in Lemma
6.5.1. We leave the details to the reader and just state the final result.

Theorem 6.5.4. Let N = (G, ¢, s,t) be a 0-1-network. If each vertex v # s,t
of N satisfies at least one of the two conditions din(v) < 1 and dowt(v) < 1,

then the algorithm of Dinic can be used to determine a mazimal 0-1-flow on
N with complexity O(|V|'/?|E|). O

We close this section with a few exercises outlining some applications of
0-1-flows; they touch some very interesting questions which we will study in
considerably more detail later. We shall also present several further applica-
tions of 0-1-flows in Chapter 7.

Exercise 6.5.5. A prom is attended by m girls and n boys. We want to
arrange a dance where as many couples as possible should participate, but
only couples who have known each other before are allowed. Formulate this
task as a graph theoretical problem.

Exercise 6.5.6. Given a bipartite graph G = (S U T, E), we seek a matching
of maximal cardinality in G; see Exercise 5.1.5. Show that this problem is

182 6 Flows

equivalent to finding a maximal 0-1-flow on an appropriate flow network.
Moreover, use the algorithms and results of this chapter to design an algorithm
for this problem having complexity at most O(|V[>/2).

The method for finding a maximal matching hinted at in Exercise 6.5.6
is basically due to Hopcroft and Karp [HoKa73], who used a rather different
presentation; later, it was noticed by Evan and Tarjan [EvTa75] that this
method may be viewed as a special case of the MAXFLOW-algorithm. We
will meet maximal matchings quite often in this book: the bipartite case will
be treated in Section 7.2, and the general case will be studied in Chapters 13
and 14.

Exercise 6.5.7. Let G = (S U T, E) be a bipartite graph. Show that the set
system (S, S) defined by

S = {X C S: there exists a matching M with X = {e”:e € M}}

is a matroid; here e~ denotes that vertex incident with e which lies in S.
Hint: Use the interpretation via a network given in Exercise 6.5.6 for a con-
structive proof of condition (3) in Theorem 5.2.1.

The result in Exercise 6.5.7 becomes even more interesting when seen in
contrast to the fact that the set M of all matchings does not form a matroid
on F; see Exercise 5.1.5.

6.6 The algorithm of Goldberg and Tarjan

This final section of Chapter 6 is devoted to a more recent algorithm for finding
maximal flows which is due to Goldberg and Tarjan [GoTa88]. The algorithms
we have presented so far construct a maximal flow — usually starting with the
zero flow — by augmenting the flow iteratively, either along a single augmenting
path or in phases where blocking flows in appropriate auxiliary networks are
determined.

The algorithm of Goldberg and Tarjan is based on a completely different
concept: it uses preflows. These are mappings for which flow excess is allowed:
the amount of flow entering a vertex may be larger than the amount of flow
leaving it. This preflow property is maintained throughout the algorithm; it
is only at the very end of the algorithm that the preflow becomes a flow —
which is then already maximal.

The main idea of the algorithm is to push flow from vertices with excess
flow toward the sink ¢, using paths which are not necessarily shortest paths
from s to ¢, but merely current estimates for such paths. Of course, it might
occur that excess flow cannot be pushed forward from some vertex v; in this
case, it has to be sent back to the source on a suitable path. The choice of all
these paths is controlled by a certain labelling function on the vertex set. We

6.6 The algorithm of Goldberg and Tarjan 183

will soon make all this precise. Altogether, the algorithm will be quite intuitive
and comparatively simple to analyze. Moreover, it needs a complexity of only
O(|V|?), without using any special tricks. By applying more complicated data
structures, it can even be made considerably faster, as we have already noted
at the end of Section 6.4.

Following [GoTa88], we define flows in this section in a formally different —
although, of course, equivalent — way; this notation from [Sle80] will simplify
the presentation of the algorithm. First, it is convenient to consider ¢ and f
also as functions from V' x V' to R. Thus we do not distinguish between f(e)
and f(u,v), where e = wv is an edge of G; we put f(u,v) = 0 whenever uv is
not an edge of (G; and similarly for c¢. Then we drop the condition that flows
have to be nonnegative, and define a flow f: V x V — R by the following
requirements:

(1) f(v,w) < ¢(v,w) for all (v,w) eV xV
(2) f(v,w) = —f(w,v) for all (v,w) eV xV
(3) > f(u,v) =0 forallveV\{s,t}.

ucV
The anti-symmetry condition (2) makes sure that only one of the two edges
in a pair vw and wv of antiparallel edges in G may carry a positive amount
of flow.” Condition (2) also simplifies the formal description in one important
respect: we will not have to make a distinction between forward and backward
edges anymore. Moreover, the formulation of the flow conservation condition
(3) is easier. The definition of the value of a flow becomes a little easier, too:

w(f) = Y fv,b).

veV

For an intuitive interpretation of flows in the new sense, the reader should
consider only the nonnegative part of the flow function: this part is a flow
as originally defined in Section 6.1. As an exercise, the reader is asked to use
the antisymmetry of f to check that condition (3) is equivalent to the earlier
condition (F2).

Now we define a preflow as a mapping f: V x V — R satisfying conditions
(1) and (2) above and the following weaker version of condition (3):

3 > flu,v) >0 forallveV\ {s}.

ueV
Using the intuitive interpretation of flows, condition (3’) means that the
amount of flow entering a vertex v # s no longer has to equal the amount
leaving v; it suffices if the in-flow is always at least as large as the out-flow.
The value

"In view of condition (2) we have to assume that G is a symmetric digraph: if
vw is an edge, wv must also be an edge of G. As noted earlier, there is no need
for positive amounts of flow on two antiparallel edges: we could simply cancel flow
whenever such a situation occurs.

184 6 Flows
ew) = 3 f(u,v)

is called the flow excess of the preflow f in v.

As mentioned before, the algorithm of Goldberg and Tarjan tries to push
flow excess from some vertex v with e(v) > 0 forward towards ¢. We first need
to specify which edges may be used for pushing flow. This amounts to defin-
ing an auxiliary network, similar to the one used in the classical algorithms;
however, the algorithm itself does not involve an explicit construction of this
network. Given a preflow f, let us define the residual capacityry: V xV — R
as follows:

rr(v,w) = clv,w) — f(v,w).

If an edge vw satisfies r¢(v,w) > 0, we may move some flow through this
edge; such an edge is called a residual edge. In our intuitive interpretation,
this corresponds to two possible cases. Either the edge vw is a forward edge
which is not yet saturated: 0 < f(v,w) < ¢(v,w); or it is a backward edge,
that is, the antiparallel edge wv is a non-void: 0 < f(w,v) < ¢(w,v), and
hence f(v,w) = —f(w,v) < 0 < ¢(v,w). The residual graph with respect to f
is defined as

Gy = (V,E;), where E;={vweE: ry(v,w) >0}

As the intuitive interpretation shows, Gy really corresponds to the auxiliary
network N’(f) used in the classical algorithms. Now we may also introduce
the labelling function mentioned before. A mapping d: V — Ny U {co} is
called a walid labelling with respect to a given preflow f if the following two
conditions hold:

(4) d(s)=|V| and d(t) =0;
(5) d(v) <d(w)+1 forall vw € Ey.

The algorithm of [GoTa88] starts with some suitable preflow and a corre-
sponding valid labelling. Usually, one saturates all edges emanating from s,
and puts d(s) = |V] and d(v) = 0 for all v € V'\ {s}. More precisely, the initial
preflow is given by f(s,v) = —f(v,s) = ¢(s,v) for all v # s and f(v,w) =0
for all v, w # s.

Then the algorithm executes a series of operations which we will specify
later. These operations change either the preflow f (by pushing the largest
possible amount of flow along a suitable residual edge) or the labelling d (by
raising the label of a suitable vertex); in both cases, the labelling will always
remain valid. As mentioned before, d is used to estimate shortest paths in the
corresponding residual graph. More precisely, d(v) is always a lower bound for
the distance from v to ¢ in Gy provided that d(v) < |V|; and if d(v) > |V,
then ¢ is not accessible from v, and d(v) —|V| is a lower bound for the distance
from v to s in Gy. The algorithm terminates as soon as the preflow has become
a flow (which is then actually a maximal flow).

6.6 The algorithm of Goldberg and Tarjan 185

We need one more notion to be able to write down the algorithm in its
generic form. A vertex v is called active provided that v # s,t; e(v) > 0; and
d(v) < o0.

Algorithm 6.6.1. Let N = (G,¢,s,t) be a flow network on a symmetric
digraph, where c: V x V — RJ; that is, for (v,w) ¢ E we have c(v,w) = 0.
Procedure GOLDBERG(N; f)

) for (v,w) € (V\ {s}) x (V\{s}) do f(v,w) < 0; r¢(v,w) < c(v,w) od;
d(s) — |V|;
for ve V\ {s} do
f(s,0) « c(s,0); T (s,v) «— 0;
f(v,8) — —c(s,0); 75(v,5) (v, 5) + c(s,0);

In (10), one of the following operations may be used, provided that it is
admissible:

Procedure PUSH(N, f, v, w; f)

(1) 6 < min (e(v),r¢(v,w));

(2) f(v,w) — f(v,w) +6; f(w,v) — f(w,v) =6

(3) rp(v,w) < ry(v,w) =& rp(w,) —ry(w,v) +0;

(4) e(v) — e(v) = & e(w) — e(w) +

—
The procedure PUSH(N, f, v,
rf(v,w) > 0, and d(v) = d(w)

Procedure RELABEL(N, f,v,d;d)
(1) d(v) < min {d(w) + 1: r¢(v,w) > 0};

The procedure RELABEL(N, f,v,d;d) is admissible provided that v is active
and r¢(v,w) > 0 always implies d(v) < d(w).®

) is admissible provided that v is active,

Let us look more closely at the conditions for admissibility. If we want to
push some flow along an edge vw, three conditions are required. Two of these
requirements are clear: the start vertex v has to be active, so that there is
positive flow excess e(v) available which we might move; and vw has to be
a residual edge, so that it has capacity left for additional flow. It is also not
surprising that we then push along vw as much flow as possible, namely the
smaller of the two amounts e(v) and (v, w).

8The minimum in (1) is defined to be oo if there does not exist any w with
r¢(v,w) > 0. However, we will see that this case cannot occur.

186 6 Flows

The crucial requirement is the third one, namely d(v) = d(w)+ 1. Thus we
are only allowed to push along residual edges vw for which d(v) is exactly one
unit larger than d(w), that is, for which d(v) takes its maximum permissible
value; see (5) above. We may visualize this rule by thinking of water cascading
down a series of terraces of different height, with the height corresponding to
the labels. Obviously, water will flow down, and condition (5) has the effect
of restricting the layout of the terraces so that the water may flow down only
one level in each step.

Now assume that we are in an active vertex v — so that some water is
left which wants to flow out — and that none of the residual edges leaving
v satisfies the third requirement. In our watery analogy, v would be a sort
of local sink: v is locally on the lowest possible level, and thus the water is
trapped in v. It is precisely in such a situation that the RELABEL-operation
becomes admissible: we miraculously raise v to a level which is just one unit
higher than that of the lowest neighbor w of v in Gf; then a PUSH becomes
permissible, that is, (some of) the water previously trapped in v can flow down
to w. Of course, these remarks in no way constitute a proof of correctness;
nevertheless, they might help to obtain a feeling for the strategy behind the
Goldberg-Tarjan algorithm.

Now we turn to the formal proof which proceeds via a series of auxiliary
results. This will allow us to show that Algorithm 6.6.1 constructs a maximal
flow on N in finitely many steps, no matter in which order we select the active
vertices and the admissible operations. This is in remarkable contrast to the
situation for the algorithm of Ford and Fulkerson; recall the discussion in
Section 6.1. To get better estimates for the complexity, however, we will have
to specify appropriate strategies for the choices to be made.

We begin by showing that the algorithm is correct under the assumption
that it terminates at all. Afterwards, we will estimate the maximal number of
admissible operations executed during the while-loop and use this result to
show that the algorithm really is finite. Our first lemma is just a simple but
important observation; it states a result which we have already emphasized
in our informal discussion.

Lemma 6.6.2. Let f be a preflow on N, d a valid labelling on V' with respect
to f, and v an active vertex. Then either a PUSH-operation or a RELABEL-
operation is admissible for v.

Proof. As d is valid, we have d(v) < d(w) + 1 for all w with r¢(v,w) > 0. If
PUSH (v, w) is not admissible for any w, we must even have d(v) < d(w) for
all w with r¢(v,w) > 0, as d takes only integer values. But then RELABEL
is admissible. ad

Lemma 6.6.3. During the execution of Algorithm 6.6.1, f always is a preflow
and d always is a valid labelling (with respect to f).

Proof. We use induction on the number k of admissible operations already
executed. The assertion holds for the induction basis k = 0: obviously, f is

6.6 The algorithm of Goldberg and Tarjan 187

initialized as a preflow in steps (4) and (5); and the labelling d defined in (2)
and (6) is valid for f, since d(v) = 0 for v # s and since all edges sv have
been saturated in step (4); also, the residual capacities and the flow excesses
are clearly initialized correctly in steps (4), (5), and (7).

For the induction step, suppose that the assertion holds after k operations
have been executed. Assume first that the next operation is a PUSH(v, w).
It is easy to check that f remains a preflow, and that the residual capacities
and the flow excesses are updated correctly. Note that the labels are kept
unchanged, and that vw and wv are the only edges for which f has changed.
Hence we only need to worry about these two edges in order to show that d is
still valid. By definition, vw € E; before the PUSH. Now vw might be removed
from the residual graph Gy (which happens if it is saturated by the PUSH);
but then the labelling stays valid trivially. Now consider the antiparallel edge
wv. If this edge already is in G'¢, there is nothing to show. Thus assume that
wv is added to G by the PUSH; again, d stays valid, since the admissibility
conditions for the PUSH (v, w) require d(w) = d(v) — 1.

It remains to consider the case where the next operation is a RELABEL(v).
Then the admissibility requirement is d(v) < d(w) for all vertices w with
rf(v,w) > 0. As d(v) is increased to the minimum of all the d(w) + 1, the
condition d(v) < d(w) + 1 holds for all w with r;(v,w) > 0 after this change;
all other labels remain unchanged, so that the new labelling d is still valid
for f. O

Lemma 6.6.4. Let f be a preflow on N and d a valid labelling with respect
to f. Then t is not accessible from s in the residual graph Gy.

Proof. Suppose there exists a path
W: s=vg—uvy— ... — v, =t

in Gy. As d is a valid labelling, d(v;) < d(vi41)+1fori=0,...,m—1. Hence
d(s) < d(t) +m < |V], since d(t) = 0 and since the path can have length at
most |V| — 1. But d(s) = |V, by the validity of d, and we have reached a
contradiction. O

Theorem 6.6.5. If Algorithm 6.6.1 terminates with all labels finite, then the
preflow f constructed is in fact a mazimal flow on N.

Proof. By 6.6.2, the algorithm can only terminate when there are no more
active vertices. As all labels are finite by hypothesis, e(v) = 0 has to hold
for each vertex v # s,t; hence the preflow constructed by the final operation
is indeed a flow on N. By Lemma 6.6.4, there is no path from s to ¢ in Gy,
so that there is no augmenting path from s to ¢ with respect to f. Now the
assertion follows from Theorem 6.1.3. ad

It remains to show that the algorithm indeed terminates and that the
labels stay finite throughout. We need two further lemmas.

188 6 Flows

Lemma 6.6.6. Let [be a preflow on N. If v is a vertex with positive flow
excess e(v), then s is accessible from v in Gy.

Proof. We denote the set of vertices accessible from v in Gy (via a directed
path) by S, and put T := V' \ S. Then f(u,w) < 0 for all vertices u,w with
u €T and w € S, since

0 = re(w,u) = clw,u) — flw,u) > 0+ f(u,w).

Using the antisymmetry of f, we get

Z e(w) = Z f(uvw)

weSs ueV,wes
= Z f(u7w)+ Z f(uvw)
ueT, wWES u,weS
= Z flu,w) < 0.
ueT,wes

Now the definition of a preflow requires e(w) > 0 for all w # s. But e(v) > 0,
and hence), g e(w) < s implies s € S. O

Lemma 6.6.7. Throughout Algorithm 6.6.1, d(v) < 2|V| —1 for allv e V.

Proof. Obviously, the assertion holds after the initialization phase in steps
(1) to (8). The label d(v) of a vertex v can only be changed by an operation
RELABEL(v), and such an operation is admissible only if v is active. In
particular, v # s, ¢, so that the claim is trivial for s and ¢; moreover, e(v) > 0.
By Lemma 6.6.6, there exists a directed path

W: v=v9g—uvi— ... — U, =S

in the residual graph Gy. Since d is a valid labelling, d(v;) < d(v;41) + 1 for
i=0,...,m—1. Now W has length at most |V| — 1, and we conclude

dv) < d(s)+m < d(s)+|V|—-1 = 2|V]-1. O

Lemma 6.6.8. During the execution of Algorithm 6.6.1, at most 2|V| — 1
RELABEL-operations occur for any given vertex v # s,t. Hence the total
number of RELABEL-operations is at most (2|V| —1)(|[V| - 2) < 2|V|%.

Proof. Each RELABEL(v) increases d(v). Since d(v) is bounded by 2|V| -1
throughout the entire algorithm (see Lemma 6.6.7), the assertion follows. O

It is more difficult to estimate the number of PUSH-operations. We need
to distinguish two cases: a PUSH(v,w) will be called a saturating PUSH if
rf(v,w) = 0 holds afterwards (that is, for ¢ = r(v,w) in step (1) of the
PUSH), and a non-saturating PUSH otherwise.

6.6 The algorithm of Goldberg and Tarjan 189

Lemma 6.6.9. During the execution of Algorithm 6.6.1, fewer than |V ||E)|
saturating PUSH-operations occur.

Proof. By definition, any PUSH (v, w) requires vw € Ey and d(v) = d(w) + 1.
If the PUSH is saturating, a further PUSH(v,w) can only occur after an
intermediate PUSH(w, v), since we have r¢(v,w) = 0 after the saturating
PUSH(v,w). Note that no PUSH(w,v) is admissible before the labels have
been changed in such a way that d(w) = d(v) + 1 holds; hence d(w) must have
been increased by at least 2 units before the PUSH(w, v). Similarly, no further
PUSH(v, w) can become admissible before d(v) has also been increased by at
least 2 units. In particular, d(v) + d(w) has to increase by at least 4 units
between any two consecutive saturating PUSH (v, w)-operations.

On the other hand, d(v) + d(w) > 1 holds as soon as the first PUSH from
v to w or from w to v is executed. Moreover, d(v), d(w) < 2|V|—1 throughout
the algorithm, by Lemma 6.6.7; hence d(v) + d(w) < 4|V| — 2 holds when the
last PUSH-operation involving v and w occurs. Therefore there are at most
|[V| — 1 saturating PUSH(v, w)-operations, so that the the total number of
saturating PUSH-operations cannot exceed (|V| — 1)|E]|. O

Lemma 6.6.10. During the execution of Algorithm 6.6.1, there are at most
2|V|2|E| non-saturating PUSH-operations.

Proof. Let us introduce the potential

¢ = > du)

v active

and investigate its development during the course of Algorithm 6.6.1. After
the initialization phase, @ = 0; and at the end of the algorithm, we have ® = 0
again.

Note that any non-saturating PUSH (v, w) decreases @ by at least one unit:
because (v, w) > e(v), the vertex v becomes inactive so that @ is decreased
by d(v) units; and even if the vertex w has become active due to the PUSH,
& is increased again by only d(w) = d(v) — 1 units, as the PUSH must have
been admissible. Similarly, any saturating PUSH (v, w) increases @ by at most
2|V| — 1, since the label of the vertex w — which might again have become
active due to this PUSH — satisfies d(w) < 2|V| — 1, by Lemma 6.6.7.

Let us put together what these observations imply for the entire algorithm.
The saturating PUSH-operations increase ¢ by at most (2|V|—1)|V || E| units
altogether, by Lemma 6.6.9; and the RELABEL-operations increase @ by at
most (2|V|—1)(]V|—2) units, by Lemma 6.6.7. Clearly, the value by which & is
increased over the entire algorithm must be the same as the value by which it
is decreased again. As this happens for the non-saturating PUSH-operations,
we obtain an upper bound of (2|V|—1)(|V||E|+|V|—2) for the total number
of non-saturating PUSH-operations. Now the bound in the assertion follows
easily, using that G is connected. ad

The preceding lemmas combine to give the desired result:

190 6 Flows

Theorem 6.6.11. Algorithm 6.6.1 terminates after at most O(|V|*|E|) ad-
missible operations (with a mazimal flow). O

The precise complexity of Algorithm 6.6.1 depends both on the way the
admissible operations are implemented and on the order in which they are
applied in the while-loop. In any case, the running time will be polynomial.
We shall treat two variants which lead to particularly good results; they differ
only in the manner in which they select the active vertex in step (10). Both
variants use the obvious strategy not to change the active vertex v unneces-
sarily, but to stick with v until

e cither e(v) = 0;
e or all edges incident with v have already been used for a PUSH(v, w), as
far as this is possible, and a RELABEL(v) has occurred afterwards.

To implement this strategy, we use incidence lists. For each vertex v, there
always is a distinguished current edge in its incidence list A, (which may
be implemented via a pointer). Initially, this edge is just the first edge of A,;
thus we assume A, to have a fixed order. In the following algorithm, the active
vertices are selected according to the rule first in first out — which explains
its name.

Algorithm 6.6.12 (FIFO preflow push algorithm). Let N = (G, ¢, s,t)
be a flow network, where G is a symmetric digraph given by incidence lists
A,. Moreover, () denotes a queue and rel a Boolean variable.

Procedure FIFOFLOW(N; f)

1) for (v,w) € (V\{s}) x (V\{s}) do f(v,w) < 0; r¢(v,w) < ¢(v,w) od;
d(s) — |V]; Q « 0;
for v e V\ {s} do
f(S,U) — C(S7U); ’I"f(S,’U) —0;
F(v,5) — —c(s,0); 7 (v,5) — (v, 5) + cls,0);
d(v) « 05 e(v) « c(s,v);
make the first edge in A, the current edge;
if e(v) > 0 and v # t then append v to Q fi

2)

3)

4)

5)

6)

7)

8)

9)

0) while Q # 0 do

1) remove the first vertex v from @Q; rel « false;
2) repeat

3) let vw be the current edge in A,;

4) if r¢(v,w) >0 and d(v) = d(w) + 1

5) then PUSH(N, f,v,w; f);

6) if wé¢ @Q and w # s,t then append w to Q fi

7) fi

8) if e(v) > 0 then

9) if vw is not the last edge in A,

0) then choose the next edge in A, as current edge

6.6 The algorithm of Goldberg and Tarjan 191

[\)
it

else RELABEL(N, f,v,d;d); rel « true;
make the first edge in A, the current edge

[\
[\

NN AN SN SN S N
N
~— N e

fi
fi
until e(v) = 0 or rel = true;
if e(v) > 0 then append v to Q fi

[\]

5
26
27) od

The reader may show that Algorithm 6.6.12 is indeed a special case of Algo-
rithm 6.6.1; this amounts to checking that RELABEL(v) is called only when
no PUSH along an edge starting in v is admissible. By Theorem 6.6.11, the
algorithm terminates with a maximal flow on N. The following result giving
its complexity is due to Goldberg and Tarjan [GoTa88].

Theorem 6.6.13. Algorithm 6.6.12 determines with complezity O(|V|?) a
maximal flow on N.

Proof. Obviously, the initialization phase in steps (1) to (9) has complexity
O(|E|). In order to analyze the complexity of the while-loop, we divide the
course of the algorithm into phases.” Phase 1 consists of the execution of
the repeat-loop for those vertices which were originally appended to @, that
is, when @ was initialized in step (8). If phase i is already defined, phase
i + 1 consists of the execution of the repeat-loop for those vertices which
were appended to Q during phase i. We claim that there are at most O(|V|?)
phases.

By Lemma 6.6.8, there are at most O(|V'|?) phases involving a RELABEL.
It remains to establish the same bound for phases without a RELABEL. For
this purpose, we take the same approach as in the proof of Lemma 6.6.10:
we define a potential and investigate its development during the course of the
algorithm. This time, we let @ be the maximum value of the labels d(v), taken
over all active vertices v. Let us consider how @ changes during a phase not
involving any RELABEL-operations. Then, for each active vertex v, excess
flow is moved to vertices w with label d(v) — 1 until we finally reach e(v) = 0,
so that v ceases to be active. Of course, @ cannot be increased by these
operations; and at the end of such a phase — when all originally active vertices
v have become inactive — @ has actually decreased by at least one unit. Hence,
if @ remains unchanged or increases during a phase, at least one RELABEL-
operation must occur during this phase; we already noted that there are at
most O(|V'|?) phases of this type. As & = 0 holds at the beginning as well as
at the end of the algorithm, at most O(|V|?) decreases of ® can occur. Hence
there are indeed at most O(|V|?) phases not involving a RELABEL.

We can now estimate the number of steps required for all PUSH-operations;
note that an individual PUSH needs only O(1) steps. Hence we want to show

9In the original literature, the phases are called passes over @, which seems
somewhat misleading.

192 6 Flows

that there are only O(|V|?) PUSH-operations. In view of Lemma 6.6.9, it suf-
fices to consider non-saturating PUSH-operations. Note that the repeat-loop
for a vertex v is aborted as soon as a non-saturating PUSH (v, w) occurs; see
step (25). Clearly, at most O(|V|) vertices v are investigated during a phase,
so that there are at most O(|V|) non-saturating PUSH-operations during each
phase. Now our result on the number of phases gives the assertion.

It remains to estimate how often each edge is examined during the while-
loop. Consider the edges starting in a specified vertex v. During a repeat-
loop involving v, the current edge e runs through (part of) the incidence
list A, of v. More precisely, the pointer is moved to the next edge whenever
treating e leaves v with flow excess e(v) > 0; and the pointer is returned
to the first edge only when a RELABEL(v) occurs. By Lemma 6.6.8, each
vertex v is relabeled at most 2|V| — 1 times, so that the incidence list A,
of v is examined only O(]V|) times during the entire algorithm. (Note that
this estimate also includes the complexity of the RELABEL-operations: each
RELABEL(v) also amounts to looking through all edges in A,.) Hence we
obtain altogether O(|V'||4,|) examinations of the edges starting in v; summing
this over all vertices shows that the edge examinations and the RELABEL-
operations only contribute O(|V||E|) to the complexity of the algorithm. O

Examples which show that the FIFO-algorithm might indeed need O(|V|?)
steps are provided in [ChMag&9].

We now turn to our second variation of Algorithm 6.6.1. This time, we
always choose an active vertex which has the maximal label among all the ac-
tive vertices. To implement this strategy, we use a priority queue with priority
function d instead of an ordinary queue. This variant was likewise suggested
by Goldberg and Tarjan [GoTa88].

Algorithm 6.6.14 (highest label preflow push algorithm). Let N =
(G, ¢, s,t) be a flow network, where G is a symmetric digraph given by inci-
dence lists A,. Moreover, let Q be a priority queue with priority function d,
and rel a Boolean variable.

Procedure HLFLOW(N; f)
) for (v,w) € (V\{s}) x (V\{s}) do f(v,w) < 0; 74(v,w) — ¢(v,w) od;

2) d(s) < [V]; Q < 0;

I

)
)
) f(s,v) « c(s,v); rs(s,v) — 0;

) f(v,s) — —c(s,v); 74(v,8) < (v, s) + c(s,v);

) d(v) « 0; e(v) « c(s,v);

) make the first edge in A, the current edge;

) if e(v) > 0 and v # ¢ then insert v into @ with priority d(v) fi;
)

)

)

)

50

(
(
(

hlle Q # 0 do
remove a vertex v of highest priority d(v) from Q; rel « false;
repeat

(1
(
(
(
(
(
(
(
(
1
1
1

6.6 The algorithm of Goldberg and Tarjan 193

) let vw be the current edge in A,;

) if r¢(v,w) > 0 and d(v) = d(w) + 1 then

) PUSH(N, f,v,w; f);

) if wé @Q and w # s,t then insert w into @
with priority d(w) fi

(17) fi

(18) if e(v) > 0 then

(19) if vw is not the last edge in A,

(20) then choose the next edge in A, as current edge;
(21) else RELABEL(N, f,v,d;d); rel « true;

(22) make the first edge in A, the current edge;
(23) fi

(24) fi

(25) until e(v) = 0 or rel = true;

(26) if e(v) > 0 then insert v into @ with priority d(v) fi;

(27) od

Goldberg and Tarjan proved that Algorithm 6.6.14 has a complexity of at most
O(|V']3); this estimate was improved by Cheriyan and Maheshwari [ChMa89)
as follows.

Theorem 6.6.15. Algorithm 6.6.14 determines a mazximal flow on N with
complexity O(|V|?|E|'/?).

Proof.'° As in the proof of Theorem 6.6.13, the main problem is to establish
the necessary bound for the number of non-saturating PUSH-operations; all
other estimates can be done as before. Note here that O(|V||E|) — that is,
the bound for the saturating PUSH-operations provided by Lemma 6.6.9 — is
indeed dominated by O(|V|?|E|'/2).

As in the proof of Theorem 6.6.13, we divide the algorithm into phases;
but this time, a phase consists of all operations occurring between two con-
secutive RELABEL-operations. The length l; of the i-th phase is defined as
the difference between the values of dy.x at the beginning and at the end of
the phase, where dyax denotes the maximal label d(v) over all active vertices
v. Note that dy,.x decreases monotonically during a phase; immediately after
the end of the phase, when a RELABEL-operation is executed, d,,x increases
again.

We claim that the sum of the lengths I; over all the phases is at most
O(|V|?). To see this, it suffices to show that the increase of dpax during the
entire algorithm is at most O(|V'|?). But this is an immediate consequence of
Lemma 6.6.7, since the label d(v) increases monotonically for each vertex v
and is always bounded by 2|V| — 1.

10 A5 the proof of Theorem 6.6.15 is rather technical, the reader might decide to
skip it at first reading. However, it does involve a useful method, which we have not
seen before.

194 6 Flows

The basic idea of the proof is to partition the non-saturating PUSH-
operations in a clever way. For this purpose, we call a non-saturating
PUSH(u, v)-operation special'l if it is the first PUSH-operation on the edge
uv following a RELABEL(u)-operation.

Now consider a non-saturating, nonspecial PUSH-operation PUSH(z, w).
We try to construct (in reverse order) a directed path T, with end ver-
tex w which consists entirely of edges for which the last non-saturating
PUSH-operation executed was a nonspecial one. Suppose we have reached
a vertex u # w, and let the last edge constructed for T, be uv. Thus the
last PUSH(u,v) was a non-saturating nonspecial PUSH. Before this PUSH-
operation was executed, we had e(u) > 0. We want to consider the last PUSH-
operation PUSH(y, u) executed before this PUSH(u, v). It is possible that no
such PUSH-operation exists;'? then we simply end the construction of T,
at the vertex u. We also terminate the construction of T, at wu if the last
PUSH(y, u) was saturating or special. Otherwise we replace u by y and con-
tinue in the same manner.

Note that our construction has to terminate provided that T, is indeed
a path, which just amounts to showing that no cycle can occur during the
construction. But this is clear, as PUSH-operations may only move flow to-
wards vertices with lower labels; hence no cycle can arise, unless a RELABEL
occurred for one of the vertices that we have reached; and this is not possible
by our way of construction. We call the sequence of non-saturating PUSH-
operations corresponding to such a path Ty, a trajectory with originating edge
xy, if xy is the unique edge encountered at the end of the construction of
T, for which either a saturating or a special PUSH had been executed (so
that the construction was terminated at y); in the exceptional case mentioned
above, we consider the edge su to be the originating edge of T,,. By definition,
the originating edge is not a part of T,,: the trajectory starts at the head of
this edge.

We claim that the whole of the nonspecial non-saturating PUSH-operations
can be partitioned into such trajectories. Actually we require a somewhat
stronger statement later: two trajectories containing PUSH-operations on
edges which are current edges simultaneously (in different adjacency lists)
cannot have any vertices in common, with the exception of possible common
end vertices. We may assume w.l.o.g. that the two trajectories correspond
to paths Ty, and T, for which (at a certain point of the algorithm) both
e(w) > 0 and e(w’) > 0 hold. Let xy and z'y’ be the originating edges of the
two trajectories. Now suppose that u is a common vertex contained in both
trajectories, where u # y, ', w,w’. We may also choose u to be the last such
vertex. Let uv and wv’ be the edges occurring in Ty, and T,,, respectively.
We may assume that PUSH(u, v) was executed before PUSH(u, v); note that

11n the original paper, the term non-zeroing is used instead.
2Note that this case occurs if and only if the entire flow excess in u comes directly
from s, that is, if it was assigned to u during the initialization phase.

6.6 The algorithm of Goldberg and Tarjan 195

v # v’ by our choice of u. Then PUSH(u,v’) can only have been executed
after some flow excess was moved to u again by some PUSH(z, u)-operation.
Then the condition d(z