
Algorithms and Computation
in Mathematics • Volume 5

Editors
Manuel Bronstein Arjeh M. Cohen
Henri Cohen David Eisenbud
Bernd Sturmfels



Dieter Jungnickel

Graphs, Networks
and Algorithms

Second Edition

With 195 Figures

123



Dieter Jungnickel
Universität Augsburg
Institut für Mathematik
Lehrstuhl für Diskrete Mathematik,
Optimierung und Operations Research
86135 Augsburg, Germany
e-mail: jungnickel@math.uni-augsburg.de

Mathematics Subject Classification (2000): 05-01, 68R10, 68Q25

Library of Congress Control Number: 2004112299

Second, completely revised edition (based on the translation of the third German edition by Tilla
Schade in collaboration with the author)

ISSN 1431-1550

ISBN 3-540-21905-6 Springer Berlin Heidelberg New York
ISBN 3-540-63760-5 1st edition Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained
from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typesetting: by the author using a Springer LATEX macro package
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper 46/3142YL - 5 4 3 2 1 0



A mathematician, like a painter or a poet,
is a maker of patterns.

If his patterns are more permanent than theirs,
it is because they are made with ideas.

G. H. Hardy

To my teacher, Prof. Hanfried Lenz



Preface to the Second Edition

Change is inevitable...
Change is constant.

Benjamin Disraeli

When the first printing of this book sold out in a comparatively short time,
it was decided to reprint the original edition with only small modifications:
I just took the opportunity to correct a handful of minor mistakes and to
provide a few updates to the bibliography. In contrast, the new second edition
has been thoroughly revised, even though the general aims of the book have
remained the same. In particular, I have added some new material, namely
a chapter on the network simplex algorithm and a section on the five color
theorem; this also necessitated some changes in the previous order of the
presentation (so that the numbering differs from that of the first edition,
beginning with Chapter 8). In addition to this, numerous smaller changes
and corrections have been made and several recent developments have been
discussed and referenced. There are also several new exercises.

Again, I thank my students and assistants for their attention and interest
as well as the input they provided. Moreover, I am particularly grateful to
two colleagues: Prof. Chris Fisher who read the entire manuscript and whose
suggestions led to many improvements in the presentation; and Priv.-Doz. Dr.
Bernhard Schmidt who let me make use of his lecture notes on the network
simplex algorithm.

Augsburg, September 2004 Dieter Jungnickel



Preface to the First Edition

The algorithmic way of life is best.

Hermann Weyl

During the last few decades, combinatorial optimization and graph theory
have – as the whole field of combinatorics in general – experienced a partic-
ularly fast development. There are various reasons for this fact; one is, for
example, that applying combinatorial arguments has become more and more
common. However, two developments on the outside of mathematics may have
been more important: First, a lot of problems in combinatorial optimization
arose directly from everyday practice in engineering and management: de-
termining shortest or most reliable paths in traffic or communication net-
works, maximal or compatible flows, or shortest tours; planning connections
in traffic networks; coordinating projects; solving supply and demand prob-
lems. Second, practical instances of those tasks which belong to operations
research have become accessible by the development of more and more effi-
cient computer systems. Furthermore, combinatorial optimization problems
are also important for complexity theory, an area in the common intersec-
tion of mathematics and theoretical computer science which deals with the
analysis of algorithms. Combinatorial optimization is a fascinating part of
mathematics, and a lot of its fascination – at least for me – comes from its
interdisciplinarity and its practical relevance.

The present book focuses mainly on that part of combinatorial optimiza-
tion which can be formulated and treated by graph theoretical methods;
neither the theory of linear programming nor polyhedral combinatorics are
considered. Simultaneously, the book gives an introduction into graph the-
ory, where we restrict ourselves to finite graphs. We motivate the problems by
practical interpretations wherever possible.1 Also, we use an algorithmic point
of view; that is, we are not content with knowing that an optimal solution
exists (this is trivial to see in most cases anyway), but we are mainly inter-
ested in the problem of how to find an optimal (or at least almost optimal)

1Most of the subjects we treat here are of great importance for practical ap-
plications, for example for VLSI layout or for designing traffic or communication
networks. We recommend the books [Ber92], [KoLP90], and [Len90].



X Preface

solution as efficiently as possible. Most of the problems we treat have a good
algorithmic solution, but we also show how even difficult problems can be
treated (for example by approximation algorithms or complete enumeration)
using a particular hard problem (namely the famous travelling salesman prob-
lem) as an example. Such techniques are interesting even for problems where
it is possible to find an exact solution because they may decrease the amount
of calculations needed considerably. In order to be able to judge the quality
of algorithms and the degree of difficulty of problems, we introduce the basic
ideas of complexity theory (in an informal way) and explain one of the main
open problems of modern mathematics (namely the question P=NP?). In the
first chapters of the book, we will present algorithms in a rather detailed man-
ner but turn to a more concise presentation in later parts. We decided not to
include any explicit programs in this book; it should not be too difficult for a
reader who is used to writing programs to transfer the given algorithms. Giv-
ing programs in any fixed programming language would have meant that the
book is likely to be obsolete within a short time; moreover, explicit programs
would have obscured the mathematical background of the algorithms. How-
ever, we use a structured way of presentation for our algorithms, including
special commands based on PASCAL (a rather usual approach). The book
contains a lot of exercises and, in the appendix, the solutions or hints for find-
ing the solution. As in any other discipline, combinatorial optimization can
be learned best by really working with the material; this is true in particular
for understanding the algorithms. Therefore, we urge the reader to work on
the exercises seriously (and do the mere calculations as well).

The present book is a translation of a revised version of the third edition of
my German text book Graphen, Netzwerke und Algorithmen. The translation
and the typesetting was done by Dr. Tilla Schade with my collaboration.

The text is based on two courses I gave in the winter term 1984/85 and
in the summer term 1985 at the Justus-Liebig-University in Gießen. As the
first edition of the book which appeared in 1987 was received quite well, a sec-
ond edition became necessary in 1990. This second edition was only slightly
changed (there were only a few corrections and some additions made, includ-
ing a further appendix and a number of new references), because it appeared
a relatively short time after the first edition. The third edition, however, was
completely revised and newly typeset. Besides several corrections and rear-
rangements, some larger supplements were added and the references brought
up to date. The lectures and seminars concerning combinatorial optimization
and graph theory that I continued to give regularly (first at the University of
Gießen, then since the summer term 1993 at the University of Augsburg) were
very helpful here. I used the text presented here repeatedly; I also took it as
the basis for a workshop for high school students organized by the Verein Bil-
dung und Begabung. This workshop showed that the subjects treated in this
book are accessible even to high school students; if motivated sufficiently, they
approach the problems with great interest. Moreover, the German edition has
been used regularly at various other universities.



Preface XI

I thank my students and assistants and the students who attended the
workshop mentioned above for their constant attention and steady interest.
Thanks are due, in particular, to Priv.-Doz. Dr. Dirk Hachenberger and Prof.
Dr. Alexander Pott who read the entire manuscript of the (German) third
edition with critical accuracy; the remaining errors are my responsibility.

Augsburg, May 1998 Dieter Jungnickel
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1

Basic Graph Theory

It is time to get back to basics.

John Major

Graph theory began in 1736 when Leonhard Euler (1707–1783) solved the well-
known Königsberg bridge problem [Eul36]1. This problem asked for a circular
walk through the town of Königsberg (now Kaliningrad) in such a way as to
cross over each of the seven bridges spanning the river Pregel once, and only
once; see Figure 1.1 for a rough sketch of the situation.

a

North

South

East

Fig. 1.1. The Königsberg bridge problem

When trying to solve this problem one soon gets the feeling that there is no
solution. But how can this be proved? Euler realized that the precise shapes

1see [Wil86] and [BiLW76].
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of the island and the other three territories involved are not important; the
solvability depends only on their connection properties. Let us represent the
four territories by points (called vertices), and the bridges by curves joining
the respective points; then we get the graph also drawn in Figure 1.1. Trying
to arrange a circular walk, we now begin a tour, say, at the vertex called a.
When we return to a for the first time, we have used two of the five bridges
connected with a. At our next return to a we have used four bridges. Now we
can leave a again using the fifth bridge, but there is no possibility to return
to a without using one of the five bridges a second time. This shows that the
problem is indeed unsolvable. Using a similar argument, we see that it is also
impossible to find any walk – not necessarily circular, so that the tour might
end at a vertex different from where it began – which uses each bridge exactly
once. Euler proved even more: he gave a necessary and sufficient condition for
an arbitrary graph to admit a circular tour of the above kind. We will treat
his theorem in Section 1.3. But first, we have to introduce some basic notions.

The present chapter contains a lot of definitions. We urge the reader to
work on the exercises to get a better idea of what the terms really mean.
Even though this chapter has an introductory nature, we will also prove a
couple of nontrivial results and give two interesting applications. We warn
the reader that the terminology in graph theory lacks universality, although
this improved a little after the book by Harary [Har69] appeared.

1.1 Graphs, subgraphs and factors

A graph G is a pair G = (V, E) consisting of a finite2 set V �= ∅ and a set E of
two-element subsets of V . The elements of V are called vertices. An element
e = {a, b} of E is called an edge with end vertices a and b. We say that a and
b are incident with e and that a and b are adjacent or neighbors of each other,
and write e = ab or a

e
– b.

Let us mention two simple but important series of examples. The complete
graph Kn has n vertices (that is, |V | = n) and all two-element subsets of V as
edges. The complete bipartite graph Km,n has as vertex set the disjoint union
of a set V1 with m elements and a set V2 with n elements; edges are all the
sets {a, b} with a ∈ V1 and b ∈ V2.

We will often illustrate graphs by pictures in the plane. The vertices of a
graph G = (V, E) are represented by (bold type) points and the edges by lines
(preferably straight lines) connecting the end points. We give some examples
in Figure 1.2. We emphasize that in these pictures the lines merely serve to
indicate the vertices with which they are incident. In particular, the inner
points of these lines as well as possible points of intersection of two edges (as
in Figure 1.2 for the graphs K5 and K3,3) are not significant. In Section 1.5 we

2In graph theory, infinite graphs are studied as well. However, we restrict our-
selves in this book – like [Har69] – to the finite case.
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will study the question which graphs can be drawn without such additional
points of intersection.

K2 K3 K4 K5 K3,3

Fig. 1.2. Some graphs

Let G = (V, E) be a graph and V ′ be a subset of V . By E|V ′ we denote the set
of all edges e ∈ E which have both their vertices in V ′. The graph (V ′, E|V ′)
is called the induced subgraph on V ′ and is denoted by G|V ′. Each graph of
the form (V ′, E′) where V ′ ⊂ V and E′ ⊂ E|V ′ is said to be a subgraph of G,
and a subgraph with V ′ = V is called a spanning subgraph. Some examples
are given in Figure 1.3.

a graph a subgraph

an induced subgraph a spanning subgraph

Fig. 1.3. Subgraphs

Given any vertex v of a graph, the degree of v, deg v, is the number of edges
incident with v. We can now state our first – albeit rather simple – result:

Lemma 1.1.1. In any graph, the number of vertices of odd degree is even.
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Proof. Summing the degree over all vertices v, each edge is counted exactly
twice, once for each of its vertices; thus

∑
v deg v = 2|E|. As the right hand

side is even, the number of odd terms deg v in the sum on the left hand side
must also be even. ��

If all vertices of a graph G have the same degree (say r), G is called a regular
graph, more precisely an r-regular graph. The graph Kn is (n−1)-regular, the
graph Km,n is regular only if m = n (in which case it is n-regular). A k-factor
is a k-regular spanning subgraph. If the edge set of a graph can be divided
into k-factors, such a decomposition is called a k-factorization of the graph.
A 1-factorization is also called a factorization or a resolution. Obviously, a
1-factor can exist only if G has an even number of vertices. Factorizations of
K2n may be interpreted as schedules for a tournament of 2n teams (in soccer,
basketball etc.). The following exercise shows that such a factorization exists
for all n. The problem of setting up schedules for tournaments will be studied
in Section 1.7 as an application.

Exercise 1.1.2. We use {∞, 1, . . . , 2n − 1} as the vertex set of the complete
graph K2n and divide the edge set into subsets Fi for i = 1, . . . , 2n− 1, where
Fi = {∞i} ∪ {jk : j + k ≡ 2i (mod 2n − 1)}. Show that the Fi form a
factorization of K2n. The case n = 3 is shown in Figure 1.4. Factorizations
were first introduced by [Kir47]; interesting surveys are given by [MeRo85]
and [Wal92].

3 4

2 5

1

∞

Fig. 1.4. A factorization of K6

Let us conclude this section with two more exercises. First, we introduce
a further family of graphs. The triangular graph Tn has as vertices the two-
element subsets of a set with n elements. Two of these vertices are adjacent
if and only if their intersection is not empty. Obviously, Tn is a (2n − 4)-
regular graph. But Tn has even stronger regularity properties: the number of
vertices adjacent to two given vertices x, y depends only on whether x and y
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themselves are adjacent or not. Such a graph is called a strongly regular graph,
abbreviated by SRG. These graphs are of great interest in finite geometry; see
the books [CaLi91] and [BeJL99]. We will limit our look at SRG’s in this book
to a few exercises.

Exercise 1.1.3. Draw the graphs Tn for n = 3, 4, 5 and show that Tn has
parameters a = 2n − 4, c = n − 2 and d = 4, where a is the degree of any
vertex, c is the number of vertices adjacent to both x and y if x and y are
adjacent, and d is the number of vertices adjacent to x and y if x and y are
not adjacent.

For the next exercise, we need another definition. For a graph G = (V, E),
we will denote by

(
V
2

)
the set of all pairs of its vertices. The graph G =

(V,
(
V
2

)\E) is called the complementary graph. Two vertices of V are adjacent
in G if and only if they are not adjacent in G.

Exercise 1.1.4. Let G be an SRG with parameters a, c, and d having n
vertices. Show that G is also an SRG and determine its parameters. Moreover,
prove the formula

a(a − c − 1) = (n − a − 1)d.

Hint: Count the number of edges yz for which y is adjacent to a given vertex
x, whereas z is not adjacent to x.

1.2 Paths, cycles, connectedness, trees

Before we can go on to the theorem of Euler mentioned in Section 1.1, we
have to formalize of the idea of a circular tour. Let (e1, . . . , en) be a sequence
of edges in a graph G. If there are vertices v0, . . . , vn such that ei = vi−1vi for
i = 1, . . . , n, the sequence is called a walk; if v0 = vn, one speaks of a closed
walk. A walk for which the ei are distinct is called a trail, and a closed walk
with distinct edges is a closed trail. If, in addition, the vj are distinct, the trail
is a path. A closed trail with n ≥ 3, for which the vj are distinct (except, of
course, v0 = vn), is called a cycle. In any of these cases we use the notation

W : v0
e1 v1

e2 v2 . . . vn−1
en vn

and call n the length of W . The vertices v0 and vn are called the start vertex
and the end vertex of W , respectively. We will sometimes specify a walk by
its sequence of vertices (v0, . . . , vn), provided that vi−1vi is an edge for i =
1, . . . , n. In the graph of the following picture, (a, b, c, v, b, c) is a walk, but not
a trail; and (a, b, c, v, b, u) is a trail, but not a path. Also, (a, b, c, v, b, u, a) is a
closed trail, but not a cycle, whereas (a, b, c, w, v, u, a) is a cycle. The reader
might want to consider some more examples.
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v

w u

a c

b

Fig. 1.5. An example for walks

Exercise 1.2.1. Show that a closed walk of odd length contains a cycle. What
do closed walks not containing a cycle look like?

Two vertices a and b of a graph G are called connected if there exists a walk
with start vertex a and end vertex b. If all pairs of vertices of G are connected,
G itself is called connected. For any vertex a, we consider (a) as a trivial walk
of length 0, so that any vertex is connected with itself. Thus connectedness
is an equivalence relation on the vertex set of G. The equivalence classes of
this relation are called the connected components of G. Thus G is connected if
and only if its vertex set V is its unique connected component. Components
which contain only one vertex are also called isolated vertices. Let us give
some exercises concerning these definitions.

Exercise 1.2.2. Let G be a graph with n vertices and assume that each vertex
of G has degree at least (n − 1)/2. Show that G must be connected.

Exercise 1.2.3. A graph G is connected if and only if there exists an edge
e = vw with v ∈ V1 and w ∈ V2 whenever V = V1

.∪ V2 (that is, V1 ∩ V2 = ∅)
is a decomposition of the vertex set of G.

Exercise 1.2.4. If G is not connected, the complementary graph G is con-
nected.

If a and b are two vertices in the same connected component of a graph G,
there has to exist a path of shortest length (say d) between a and b. (Why?)
Then a and b are said to have distance d = d(a, b). The notion of distances in
a graph is fundamental; we will study it (and a generalization) thoroughly in
Chapter 3.

In the remainder of this section, we will investigate the minimal connected
graphs. First, some more definitions and an exercise. A graph is called acyclic
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if it does not contain a cycle. For a subset T of the vertex set V of a graph G
we denote by G \T the induced subgraph on V \T . This graph arises from G
by omitting all vertices in T and all edges incident with these vertices. For a
one-element set T = {v} we write G \ v instead of G \ {v}.
Exercise 1.2.5. Let G be a graph having n vertices, none of which are iso-
lated, and n−1 edges, where n ≥ 2. Show that G contains at least two vertices
of degree 1.

Lemma 1.2.6. A connected graph on n vertices has at least n − 1 edges.

Proof. We use induction on n; the case n = 1 is trivial. Thus let G be a
connected graph on n ≥ 2 vertices. Choose an arbitrary vertex v of G and
consider the graph H = G \ v. Note that H is not necessarily connected.
Suppose H has connected components Zi having ni vertices (i = 1, . . . , k),
that is, n1 + . . . + nk = n − 1. By induction hypothesis, the subgraph of H
induced on Zi has at least ni − 1 edges. Moreover, v must be connected in
G with each of the components Zi by at least one edge. Thus G contains at
least (n1 − 1) + . . . + (nk − 1) + k = n − 1 edges. ��
Lemma 1.2.7. An acyclic graph on n vertices has at most n − 1 edges.

Proof. If n = 1 or E = ∅, the statement is obvious. For the general case,
choose any edge e = ab in G. Then the graph H = G \ e has exactly one more
connected component than G. (Note that there cannot be a path in H from a
to b, because such a path together with the edge e would give rise to a cycle
in G.) Thus, H can be decomposed into connected, acyclic graphs H1, . . . , Hk

(where k ≥ 2). By induction, we may assume that each graph Hi contains at
most ni − 1 edges, where ni denotes the number of vertices of Hi. But then
G has at most

(n1 − 1) + . . . + (nk − 1) + 1 = (n1 + . . . + nk) − (k − 1) ≤ n − 1

edges. ��
Theorem 1.2.8. Let G be a graph with n vertices. Then any two of the fol-
lowing conditions imply the third:
(a) G is connected.
(b) G is acyclic.
(c) G has n − 1 edges.

Proof. First let G be acyclic and connected. Then Lemmas 1.2.6 and 1.2.7
imply that G has exactly n − 1 edges.

Next let G be a connected graph with n − 1 edges. Suppose G contains a
cycle C and consider the graph H = G \ e, where e is some edge of C. Then
His a connected with n vertices and n− 2 edges, contradicting Lemma 1.2.6.

Finally, let G be an acyclic graph with n − 1 edges. Then Lemma 1.2.7
implies that G cannot contain an isolated vertex, as omitting such a vertex
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would give an acyclic graph with n−1 vertices and n−1 edges. Now Exercise
1.2.5 shows that G has a vertex of degree 1, so that G \ v is an acyclic graph
with n − 1 vertices and n − 2 edges. By induction it follows that G \ v and
hence G are connected. ��
Exercise 1.2.9. Give a different proof for Lemma 1.2.6 using the technique
of omitting an edge e from G.

A graph T for which the conditions of Theorem 1.2.8 hold is called a tree.
A vertex of T with degree 1 is called a leaf. A forest is a graph whose connected
components are trees. We will have a closer look at trees in Chapter 4.

In Section 4.2 we will use rather sophisticated techniques from linear al-
gebra to prove a formula for the number of trees on n vertices; this result
is usually attributed to Cayley [Cay89], even though it is essentially due to
Borchardt [Bor60]. Here we will use a more elementary method to prove a
stronger result – which is indeed due to Cayley. By f(n, s) we denote the
number of forests G having n vertices and exactly s connected components,
for which s fixed vertices are in distinct components; in particular, the num-
ber of trees on n vertices is f(n, 1). Cayley’s theorem gives a formula for the
numbers f(n, s); we use a simple proof taken from [Tak90a].

Theorem 1.2.10. One has f(n, s) = snn−s−1.

Proof. We begin by proving the following recursion formula:

f(n, s) =
n−s∑
j=0

(
n − s

j

)
f(n − 1, s + j − 1), (1.1)

where we put f(1, 1) = 1 and f(n, 0) = 0 for n ≥ 1. How can an arbitrary
forest G with vertex set V = {1, . . . , n} having precisely s connected compo-
nents be constructed? Let us assume that the vertices 1, . . . , s are the specified
vertices which belong to distinct components. The degree of vertex 1 can take
the values j = 0, . . . , n − s, as the neighbors of 1 may form an arbitrary sub-
set Γ (1) of {s + 1, . . . , n}. Then we have – after choosing the degree j of 1
– exactly

(
n−s

j

)
possibilities to choose Γ (1). Note that the graph G \ 1 is a

forest with vertex set V \ {1} = {2, . . . , n} and exactly s + j − 1 connected
components, where the vertices 2, . . . s and the j elements of Γ (1) are in dif-
ferent connected components. After having chosen j and Γ (1), we still have
f(n − 1, s + j − 1) possibilities to construct the forest G \ 1. This proves the
recursion formula (1.1).

We now prove the desired formula for the f(n, s) by using induction on n.
The case n = 1 is trivial. Thus we let n ≥ 2 and assume that

f(n − 1, i) = i(n − 1)n−i−2 holds for i = 1, . . . n − 1. (1.2)

Using this in equation (1.1) gives
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f(n, s) =
n−s∑
j=0

(
n − s

j

)
(s + j − 1)(n − 1)n−s−j−1

=
n−s∑
j=1

j

(
n − s

j

)
(n − 1)n−s−j−1

+ (s − 1)
n−s∑
j=0

(
n − s

j

)
(n − 1)n−s−j−1

= (n − s)
n−s∑
j=1

(
n − s − 1

j − 1

)
(n − 1)n−s−j−1

+ (s − 1)
n−s∑
j=0

(
n − s

j

)
(n − 1)n−s−j−1

=
n − s

n − 1

n−s−1∑
k=0

(
n − s − 1

k

)
(n − 1)(n−s−1)−k × 1k

+
s − 1
n − 1

n−s∑
j=0

(
n − s

j

)
(n − 1)n−s−j × 1j

=
(n − s)nn−s−1 + (s − 1)nn−s

n − 1
= snn−s−1.

This proves the theorem. ��

Note that the rather tedious calculations in the induction step may be
replaced by the following – not shorter, but more elegant – combinatorial
argument. We have to split up the sum we got from using equation (1.2) in
(1.1) in a different way:

f(n, s) =
n−s∑
j=0

(
n − s

j

)
(s + j − 1)(n − 1)n−s−j−1

=
n−s∑
j=0

(
n − s

j

)
(n − 1)n−s−j

−
n−s−1∑

j=0

(
n − s

j

)
(n − s − j)(n − 1)n−s−j−1.

Now the first sum counts the number of words of length n−s over the alphabet
V = {1, . . . , n}, as the binomial coefficient counts the number of possibilities
for distributing j entries 1 (where j has to be between 0 and n − s), and the
factor (n − 1)n−s−j gives the number of possibilities for filling the remaining
n − s − j positions with entries �= 1. Similarly, the second sum counts the
number of words of length n − s over the alphabet V = {0, 1, . . . , n} which
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contain exactly one entry 0. As there are obvious formulas for these numbers,
we directly get

f(n, s) = nn−s − (n − s)nn−s−1 = snn−s−1.

Borchardt’s result is now an immediate consequence of Theorem 1.2.10:

Corollary 1.2.11. The number of trees on n vertices is nn−2. ��
It is interesting to note that nn−2 is also the cardinality of the set W of

words of length n − 2 over an alphabet V with n elements, which suggests
that we might prove Corollary 1.2.11 by constructing a bijection between W
and the set T of trees with vertex set V . This is indeed possible as shown by
Prüfer [Pru18]; we will follow the account in [Lue89] and construct the Prüfer
code πV : T → W recursively. As we will need an ordering of the elements of
V , we assume in what follows w.l.o.g. that V is a subset of N.

Thus let G = (V, E) be a tree. For n = 2 the only tree on V is mapped to
the empty word; that is, we put πV (G) = (). For n ≥ 3 we use the smallest
leaf of G to construct a tree on n − 1 vertices. We write

v = v(G) = min{u ∈ V : degG(u) = 1} (1.3)

and denote by e = e(G) the unique edge incident with v, and by w = w(G)
the other end vertex of e. Now let G′ = G \ v. Then G′ has n − 1 vertices,
and we may assume by induction that we know the word corresponding to G′

under the Prüfer code on V ′ = V \ {v}. Hence we can define recursively

πV (G) = (w, πV ′(G′)). (1.4)

It remains to show that we have indeed constructed the desired bijection. We
need the following lemma which allows us to determine the minimal leaf of a
tree G on V from its Prüfer code.

Lemma 1.2.12. Let G be a tree on V . Then the leaves of G are precisely
those elements of V which do not occur in πV (G). In particular,

v(G) = min{u ∈ V : u does not occur in πV (G)}. (1.5)

Proof. First suppose that an element u of V occurs in πV (G). Then u was
added to πV (G) at some stage of our construction; that is, some subtree H
of G was considered, and u was adjacent to the minimal leaf v(H) of H. Now
if u were also a leaf of G (and thus of H), then H would have to consist only
of u and v(G), so that H would have the empty word as Prüfer code, and u
would not occur in πV (G), contradicting our assumption.

Now suppose that u is not a leaf. Then there is at least one edge incident
with u which is discarded during the construction of the Prüfer code of G,
since the construction only ends when a tree on two vertices remains of G.
Let e be the edge incident with u which is omitted first. At that point of the
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construction, u is not a leaf, so that the other end vertex of e has to be the
minimal leaf of the respective subtree. But then, by our construction, u is
used as the next coordinate in πV (G). ��
Theorem 1.2.13. The Prüfer code πV : T → W defined by equations (1.3)
and (1.4) is a bijection.

Proof. For n = 2, the statement is clear, so let n ≥ 3. First we show that
πV is surjective. Let w = (w1, . . . , wn−2) be an arbitrary word over V , and
denote by v the smallest element of V which does not occur as a coordinate
in w. By induction, we may assume that there is a tree G′ on the vertex set
V ′ = V \ {v} with πV ′(G′) = (w2, . . . , wn−2). Now we add the edge e = vw1

to G′ (as Lemma 1.2.12 suggests) and get a tree G on V . It is easy to verify
that v = v(G) and thus πV (G) = w. To prove injectivity, let G and H be two
trees on {1, . . . , n} and suppose πV (G) = πV (H). Now let v be the smallest
element of V which does not occur in πV (G). Then Lemma 1.2.12 implies that
v = v(G) = v(H). Thus G and H both contain the edge e = vw, where w
is the first entry of πV (G). Then G′ and H ′ are both trees on V ′ = V \ {v},
and we have πV ′(G′) = πV ′(H ′). Using induction, we conclude G′ = H ′ and
hence G = H. ��

Note that the proof of Theorem 1.2.13 together with Lemma 1.2.12 gives
a constructive method for decoding the Prüfer code.

Example 1.2.14. Figure 1.6 shows some trees and their Prüfer codes for
n = 6 (one for each isomorphism class, see Exercise 4.1.6).

Exercise 1.2.15. Determine the trees with vertex set {1, . . . , n} correspond-
ing to the following Prüfer codes: (1, 1, . . . , 1); (2, 3, . . . , n − 2, n − 1);
(2, 3, . . . , n − 3, n − 2, n − 2); (3, 3, 4, . . . , n − 3, n − 2, n − 2).

Exercise 1.2.16. How can we determine the degree of an arbitrary vertex
u of a tree G from its Prüfer code πV (G)? Give a condition for πV (G) to
correspond to a path or a star (where a star is a tree having one exceptional
vertex z which is adjacent to all other vertices).

Exercise 1.2.17. Let (d1, . . . , dn) be a sequence of positive integers. Show
that there is a tree on n vertices having degrees d1, . . . , dn if and only if

d1 + . . . + dn = 2(n − 1), (1.6)

and construct a tree with degree sequence (1, 1, 1, 1, 2, 3, 3). Hint: Use the
Prüfer code.

We remark that the determination of the possible degree sequences for
arbitrary graphs on n vertices is a considerably more difficult problem; see,
for instance, [SiHo91] and [BaSa95].
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(1, 1, 1, 1)

Fig. 1.6. Some trees and their Prüfer codes

We have now seen two quite different proofs for Corollary 1.2.11 which il-
lustrate two important techniques for solving enumeration problems, namely
using recursion formulas on the one hand and using bijections on the other.
In Section 4.2 we will see yet another proof which will be based on the ap-
plication of algebraic tools (like matrices and determinants). In this text, we
cannot treat the most important tool of enumeration theory, namely generat-
ing functions. The interested reader can find the basics of enumeration theory
in any good book on combinatorics; for a more thorough study we recommend
the books by Stanley [Sta86, Sta99] or the extensive monograph [GoJa83], all
of which are standard references.

Let us also note that the number f(n) of forests on n vertices has been
studied several times; see [Tak90b] and the references given there. Takács
proves the following simple formula which is, however, not at all easy to derive:

f(n) =
n!

n + 1

�n/2�∑
j=0

(−1)j (2j + 1)(n + 1)n−2j

2jj!(n − 2j)!
.

Finally, me mention an interesting asymptotic result due to Rényi [Ren59]
which compares the number of all forests with the number of all trees:

lim
n→∞

f(n)
nn−2

=
√

e ≈ 1.6487.
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1.3 Euler tours

In this section we will solve the Königsberg bridge problem for arbitrary
graphs. The reader should note that Figure 1.1 does not really depict a graph
according to the definitions given in Section 1.1, because there are pairs of
vertices which are connected by more than one edge. Thus we generalize our
definition as follows. Intuitively, for a multigraph on a vertex set V , we want
to replace the edge set of an ordinary graph by a family E of two-element
subsets of V . To be able to distinguish different edges connecting the same
pair of vertices, we formally define a multigraph as a triple (V, E, J), where V
and E are disjoint sets, and J is a mapping from E to the set of two-element
subsets of V , the incidence map. The image J(e) of an edge e is the set {a, b}
of end vertices of e. Edges e and e′ with J(e) = J(e′) are called parallel. Then
all the notions introduced so far carry over to multigraphs. However, in this
book we will – with just a few exceptions – restrict ourselves to graphs.3

The circular tours occurring in the Königsberg bridge problem can be
described abstractly as follows. An Eulerian trail of a multigraph G is a trail
which contains each edge of G (exactly once, of course); if the trail is closed,
then it is called an Euler tour4 A multigraph is called Eulerian if it contains
an Euler tour. The following theorem of [Eul36] characterizes the Eulerian
multigraphs.

Theorem 1.3.1 (Euler’s theorem). Let G be a connected multigraph. Then
the following statements are equivalent:
(a) G is Eulerian.
(b) Each vertex of G has even degree.
(c) The edge set of G can be partitioned into cycles.

Proof: We first assume that G is Eulerian and pick an Euler tour, say C. Each
occurrence of a vertex v in C adds 2 to its degree. As each edge of G occurs
exactly once in C, all vertices must have even degree. The reader should work
out this argument in detail.

Next suppose that (b) holds and that G has n vertices. As G is connected,
it has at least n− 1 edges by Lemma 1.2.6. Since G does not contain vertices
of degree 1, it actually has at least n edges, by Exercise 1.2.5. Then Lemma
1.2.7 shows that there is a cycle K in G. Removing K from G we get a graph
H in which all vertices again have even degree. Considering the connected

3Some authors denote the structure we call a multigraph by graph; graphs ac-
cording to our definition are then called simple graphs. Moreover, sometimes even
edges e for which J(e) is a set {a} having only one element are admitted; such edges
are then called loops. The corresponding generalization of multigraphs is often called
a pseudograph.

4Sometimes one also uses the term Eulerian cycle, even though an Euler tour
usually contains vertices more than once.
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components of H separately, we may – using induction – partition the edge
set of H into cycles. Hence, the edge set of G can be partitioned into cycles.

Finally, assume the validity of (c) and let C be one of the cycles in the
partition of the edge set E into cycles. If C is an Euler tour, we are finished.
Otherwise there exists another cycle C ′ having a vertex v in common with
C. We can w.l.o.g. use v as start and end vertex of both cycles, so that CC ′

(that is, C followed by C ′) is a closed trail. Continuing in the same manner,
we finally reach an Euler tour. ��
Corollary 1.3.2. Let G be a connected multigraph with exactly 2k vertices of
odd degree. Then G contains an Eulerian trail if and only if k = 0 or k = 1.

Proof: The case k = 0 is clear by Theorem 1.3.1. So suppose k �= 0. Similar to
the proof of Theorem 1.3.1 it can be shown that an Eulerian trail can exist
only if k = 1; in this case the Eulerian trail has the two vertices of odd degree
as start and end vertices. Let k = 1 and name the two vertices of odd degree a
and b. By adding an (additional) edge ab to G, we get a connected multigraph
H whose vertices all have even degree. Hence H contains an Euler tour C by
Theorem 1.3.1. Omitting the edge ab from C then gives the desired Eulerian
trail in G. ��
Exercise 1.3.3. Let G be a connected multigraph having exactly 2k vertices
of odd degree (k �= 0). Then the edge set of G can be partitioned into k trails.

The line graph L(G) of a graph G has as vertices the edges of G; two edges
of G are adjacent in L(G) if and only if they have a common vertex in G. For
example, the line graph of the complete graph Kn is the triangular graph Tn.

Exercise 1.3.4. Give a formula for the degree of a vertex of L(G) (using the
degrees in G). In which cases is L(Km,n) an SRG?

Exercise 1.3.5. Let G be a connected graph. Find a necessary and sufficient
condition for L(G) to be Eulerian. Conclude that the line graph of an Eulerian
graph is likewise Eulerian, and show that the converse is false in general.

Finally we recommend the very nice survey [Fle83] which treats Eule-
rian graphs and a lot of related questions in detail; for another survey, see
[LeOe86]. A much more extensive treatment of these subjects can be found in
two monographs by Fleischner [Fle90, Fle91]. For a survey of line graphs, see
[Pri96].

1.4 Hamiltonian cycles

In 1857 Sir William Rowan Hamilton (1805–1865, known to every mathemati-
cian for the quaternions and the theorem of Cayley–Hamilton) invented the
following Icosian game which he then sold to a London game dealer in 1859
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for 25 pounds; it was realized physically as a pegboard with holes. The corners
of a regular dodecahedron are labelled with the names of cities; the task is
to find a circular tour along the edges of the dodecahedron visiting each city
exactly once, where sometimes the first steps of the tour might also be pre-
scribed. More about this game can be found in [BaCo87]. We may model the
Icosian game by looking for a cycle in the corresponding dodecahedral graph
which contains each vertex exactly once. Such a cycle is therefore called a
Hamiltonian cycle. In Figure 1.7 we give a solution for Hamilton’s original
problem.

Fig. 1.7. The Icosian game

Although Euler tours and Hamiltonian cycles have similar definitions, they
are quite different. For example, there is no nice characterization of Hamilto-
nian graphs; that is, of those graphs containing a Hamiltonian cycle. As we
will see in the next chapter, there are good reasons to believe that such a good
characterization cannot exist. However, we know many sufficient conditions
for the existence of a Hamiltonian cycle; most of these conditions are state-
ments about the degrees of the vertices. Obviously, the complete graph Kn is
Hamiltonian.

We first prove a theorem from which we can derive several sufficient con-
ditions on the sequence of degrees in a graph. Let G be a graph on n vertices.
If G contains non-adjacent vertices u and v such that deg u + deg v ≥ n,
we add the edge uv to G. We continue this procedure until we get a graph
[G], in which, for any two non-adjacent vertices x and y, we always have
deg x + deg y < n. [G] is called the closure of G. (We leave it to the reader to
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show that [G] is uniquely determined.) Then we have the following theorem
due to Bondy and Chvátal [BoCh76].

Theorem 1.4.1. A graph G is Hamiltonian if and only if its closure [G] is
Hamiltonian.

Proof. If G is Hamiltonian, [G] is obviously Hamiltonian. As [G] is derived
from G by adding edges sequentially, it will suffice to show that adding just
one edge – as described above – does not change the fact whether a graph
is Hamiltonian or not. Thus let u and v be two non-adjacent vertices with
deg u+deg v ≥ n, and let H be the graph which results from adding the edge
uv to G. Suppose that H is Hamiltonian, but G is not. Then there exists
a Hamiltonian cycle in H containing the edge uv, so that there is a path
(x1, x2, . . . , xn) in G with x1 = u and xn = v containing each vertex of G
exactly once. Consider the sets

X = {xi : vxi−1 ∈ E and 3 ≤ i ≤ n − 1}

and
Y = {xi : uxi ∈ E and 3 ≤ i ≤ n − 1}.

As u and v are not adjacent in G, we have |X|+|Y | = deg u+deg v−2 ≥ n−2.
Hence there exists an index i with 3 ≤ i ≤ n − 1 such that vxi−1 as well
as uxi are edges in G. But then (x1, x2, . . . , xi−1, xn, xn−1, . . . , xi, x1) is a
Hamiltonian cycle in G (see Figure 1.8), a contradiction. ��

xi−1

xi−2 xi

x3 xi+1

x2 xn−2

x1 = u xn−1

xn = v

xi−1

xi−2 xi

x3 xi+1

x2 xn−2

x1 = u xn−1

xn = v

Fig. 1.8.

In general, it will not be much easier to decide whether [G] is Hamiltonian.
But if, for example, [G] is a complete graph, G has to be Hamiltonian by
Theorem 1.4.1. Using this observation, we obtain the following two sufficient
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conditions for the existence of a Hamiltonian cycle due to Ore and Dirac
[Ore60, Dir52], respectively.

Corollary 1.4.2. Let G be a graph with n ≥ 3 vertices. If deg u + deg v ≥ n
holds for any two non-adjacent vertices u and v, then G is Hamiltonian. ��
Corollary 1.4.3. Let G be a graph with n ≥ 3 vertices. If each vertex of G
has degree at least n/2, then G is Hamiltonian. ��

Bondy and Chvátal used their Theorem 1.4.1 to derive further sufficient
conditions for the existence of a Hamiltonian cycle; in particular, they ob-
tained the earlier result of Las Vergnas [Las72] in this way. We also refer
the reader to [Har69, Ber73, Ber78, GoMi84, Chv85] for more results about
Hamiltonian graphs.

Exercise 1.4.4. Let G be a graph with n vertices and m edges, and assume
m ≥ 1

2 (n− 1)(n− 2) + 2. Use Corollary 1.4.2 to show that G is Hamiltonian.

Exercise 1.4.5. Determine the minimal number of edges a graph G with six
vertices must have if [G] is the complete graph K6.

Exercise 1.4.6. If G is Eulerian, then L(G) is Hamiltonian. Does the converse
hold?

We now digress a little and look at one of the oldest problems in recre-
ational mathematics, the knight’s problem. This problem consists of moving
a knight on a chessboard – beginning, say, in the upper left corner – such
that it reaches each square of the board exactly once and returns with its last
move to the square where it started.5 As mathematicians tend to generalize
everything, they want to solve this problem for chess boards of arbitrary size,
not even necessarily square. Thus we look at boards having m × n squares.
If we represent the squares of the chessboard by vertices of a graph G and
connect two squares if the knight can move directly from one of them to the
other, a solution of the knight’s problem corresponds to a Hamiltonian cycle
in G. Formally, we may define G as follows. The vertices of G are the pairs
(i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n; as edges we have all sets {(i, j), (i′, j′)}
with |i − i′| = 1 and |j − j′| = 2 or |i − i′| = 2 and |j − j′| = 1. Most of the
vertices of G have degree 8, except the ones which are too close to the bor-
der of the chess-board. For example, the vertices at the corners have degree
2. In our context of Hamiltonian graphs, this interpretation of the knight’s
problem is of obvious interest. However, solving the problem is just as well

5It seems that the first known knight’s tours go back more than a thousand
years to the Islamic and Indian world around 840–900. The first examples in the
modern European literature occur in 1725 in Ozanam’s book [Oza25], and the first
mathematical analysis of knight’s tours appears in a paper presented by Euler to the
Academy of Sciences at Berlin in 1759 [Eul66]. See the excellent website by Jelliss
[Jel03]; and [Wil89], an interesting account of the history of Hamiltonian graphs.
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possible without looking at it as a graph theory problem. Figure 1.9 gives a
solution for the ordinary chess-board of 8× 8 = 64 squares; the knight moves
from square to square according to the numbers with which the squares are
labelled. Figure 1.9 also shows the Hamiltonian cycle in the corresponding
graph.
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Fig. 1.9. A knight’s cycle

The following theorem of Schwenk [Schw91] solves the knight’s problem for
arbitrary rectangular chessboards.

Result 1.4.7. Every chessboard of size m×n (where m ≤ n) admits a knight’s
cycle, with the following three exceptions:
(a) m and n are both odd;
(b) m = 1, 2 or 4;
(c) m = 3 and n = 4, 6 or 8. ��

The proof (which is elementary) is a nice example of how such problems
can be solved recursively, combining the solutions for some small sized chess-
boards. Solutions for boards of sizes 3 × 10, 3 × 12, 5 × 6, 5 × 8, 6 × 6, 6 × 8,
7× 6, 7× 8 and 8× 8 are needed, and these can easily be found by computer.
The version of the knight’s problem where no last move closing the cycle is
required has also been studied; see [CoHMW92, CoHMW94].

Exercise 1.4.8. Show that knight’s cycles are impossible for the cases (a)
and (b) in Theorem 1.4.7. (Case (c) is more difficult.) Hint: For case (a) use
the ordinary coloring of a chessboard with black and white squares; for (b)
use the same coloring as well as another appropriate coloring (say, in red and
green squares) and look at a hypothetical knight’s cycle.

We close this section with a first look at one of the most fundamental
problems in combinatorial optimization, the travelling salesman problem (for
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short, the TSP). This problem will later serve as our standard example of a
hard problem, whereas most of the other problems we will consider are easy.6

Imagine a travelling salesman who has to take a circular journey visiting n
cities and wants to be back in his home city at the end of the journey. Which
route is – knowing the distances between the cities – the best one? To translate
this problem into the language of graph theory, we consider the cities as the
vertices of the complete graph Kn; any circular tour then corresponds to a
Hamiltonian cycle in Kn. To have a measure for the expense of a route, we
give each edge e a weight w(e). (This weight might be the distance between
the cities, but also the time the journey takes, or the cost, depending on
the criterion subject to which we want to optimize the route.) The expense
of a route then is the sum of the weights of all edges in the corresponding
Hamiltonian cycle. Thus our problem may be stated formally as follows.

Problem 1.4.9 (travelling salesman problem, TSP). Consider the
complete graph Kn together with a weight function w : E → R+. Find a cyclic
permutation (1, π(1), . . . , πn−1(1)) of the vertex set {1, . . . , n} such that

w(π) :=
n∑

i=1

w({i, π(i)})

is minimal. We call any cyclic permutation π of {1, . . . , n} as well as the
corresponding Hamiltonian cycle

1 π(1) . . . πn−1(1) 1

in Kn a tour. An optimal tour is a tour π such that w(π) is minimal among
all tours.

Note that looking at all the possibilities for tours would be a lot of work:
even for only nine cities we have 8!

2 = 20160 possibilities. (We can always take
the tour to begin at vertex 1, and fix the direction of the tour.) Of course it
would be feasible to examine all these tours – at least by computer. But for
20 cities, we already get about 1017 possible tours, making this brute force
approach more or less impossible.

It is convenient to view Problem 1.4.9 as a problem concerning matrices,
by writing the weights as a matrix W = (wij). Of course, we have wij = wji

and wii = 0 for i = 1, . . . , n. The instances of a TSP on n vertices thus
correspond to the symmetric matrices in (R+)(n,n) with entries 0 on the main
diagonal. In the following example we have rounded the distances between the
nine cities Aachen, Basel, Berlin, Dusseldorf, Frankfurt, Hamburg, Munich,
Nuremberg and Stuttgart to units of 10 kilometers; we write 10wij for the
rounded distance.

6The distinction between easy and hard problems can be made quite precise; we
will explain this in Chapter 2.
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Example 1.4.10. Determine an optimal tour for

Aa Ba Be Du Fr Ha Mu Nu St

Aa
Ba
Be
Du
Fr
Ha
Mu
Nu
St

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 57 64 8 26 49 64 47 46
57 0 88 54 34 83 37 43 27
64 88 0 57 56 29 60 44 63
8 54 57 0 23 43 63 44 41
26 34 56 23 0 50 40 22 20
49 83 29 43 50 0 80 63 70
64 37 60 63 40 80 0 17 22
47 43 44 44 22 63 17 0 19
46 27 63 41 20 70 22 19 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

An optimal tour and a tour which is slightly worse (obtained by replacing the
edges MuSt and BaFr by the edges MuBa and StFr) are shown in Figure 1.10.
We will study the TSP in Chapter 15 in detail, always illustrating the various
techniques which we encounter using the present example.

Ba
Mu

St

Nu

Fr

Aa

Du

Be

Ha

37

27

34
22

20

17

44

29

43

8
26

Fig. 1.10. Two tours for the TSP on 9 cities

Even though the number of possible tours grows exponentially with n,
there still might be an easy method to solve the TSP. For example, the number
of closed trails in a graph may also grow very fast as the number of edges
increases; but, as we will see in Chapter 2, it is still easy to find an Euler tour
or to decide that no such tour exists. On the other hand, it is difficult to find
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Hamiltonian cycles. We will return to these examples in the next chapter to
think about the complexity (that is, the degree of difficulty) of a problem.

1.5 Planar graphs

This section is devoted to the problem of drawing graphs in the plane. First,
we need the notion of isomorphism. Two graphs G = (V, E) and G′ = (V ′, E′)
are called isomorphic if there is a bijection α : V → V ′ such that we have
{a, b} ∈ E if and only if {α(a), α(b)} ∈ E′ for all a, b in V . Let E be a set
of line segments in three-dimensional Euclidean space and V the set of end
points of the line segments in E. Identifying each line segment with the two-
element set of its end points, we can consider (V, E) as a graph. Such a graph
is called geometric if any two line segments in E are disjoint or have one of
their end points in common.

Lemma 1.5.1. Every graph is isomorphic to a geometric graph.

Proof. Let G = (V, E) be a graph on n vertices. Choose a set V ′ of n points in
R3 such that no four points lie in a common plane (Why is that possible?) and
map V bijectively to V ′. Let E′ contain, for each edge e in E, the line segment
connecting the images of the vertices on e. It is easy to see that (V ′, E′) is a
geometric graph isomorphic to G. ��

As we have only a plane piece of paper to draw graphs, Lemma 1.5.1 does
not help us a lot. We call a geometric graph plane if its line segments all lie
in one plane. Any graph isomorphic to a plane graph is called planar.7 Thus,
the planar graphs are exactly those graphs which can be drawn in the plane
without additional points of intersection between the edges; see the comments
after Figure 1.2. We will see that most graphs are not planar; more precisely,
we will show that planar graphs can only contain comparatively few edges
(compared to the number of vertices).

Let G = (V, E) be a planar graph. If we omit the line segments of G from
the plane surface on which G is drawn, the remainder splits into a number
of connected open regions; the closure of such a region is called a face. The
following theorem gives another famous result due to Euler [Eul52/53].

Theorem 1.5.2 (Euler’s formula). Let G be a connected planar graph with
n vertices, m edges and f faces. Then n − m + f = 2.

Proof. We use induction on m. For m = 0 we have n = 1 and f = 1, so
that the statement holds. Now let m �= 0. If G contains a cycle, we discard
one of the edges contained in this cycle and get a graph G′ with n′ = n,

7In the definition of planar graphs, one often allows not only line segments, but
curves as well. However, this does not change the definition of planarity as given
above, see [Wag36]. For multigraphs, it is necessary to allow curves.
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m′ = m − 1 and f ′ = f − 1. By induction hypothesis, n′ − m′ + f ′ = 2 and
hence n − m + f = 2. If G is acyclic, then G is a tree so that m = n − 1, by
Theorem 1.2.8; as f = 1, we again obtain n − m + f = 2. ��

Originally, Euler’s formula was applied to the vertices, edges and faces
of a convex polyhedron; it is used, for example, to determine the five regu-
lar polyhedra (or Platonic solids, namely the tetrahedron, octahedron, cube,
icosahedron and dodecahedron); see, for instance, [Cox73]. We will now use
Theorem 1.5.2 to derive bounds on the number of edges of planar graphs. We
need two more definitions. An edge e of a connected graph G is called a bridge
if G \ e is not connected. The girth of a graph containing cycles is the length
of a shortest cycle.

Theorem 1.5.3. Let G be a connected planar graph on n vertices. If G is
acyclic, then G has precisely n− 1 edges. If G has girth at least g, then G can
have at most g(n−2)

g−2 edges.

Proof. The first claim holds by Theorem 1.2.8. Thus let G be a connected
planar graph having n vertices, m edges and girth at least g. Then n ≥ 3. We
use induction on n; the case n = 3 is trivial. Suppose first that G contains a
bridge e. Discard e so that G is divided into two connected induced subgraphs
G1 and G2 on disjoint vertex sets. Let ni and mi be the numbers of vertices and
edges of Gi, respectively, for i = 1, 2. Then n = n1 +n2 and m = m1 +m2 +1.
As e is a bridge, at least one of G1 and G2 contains a cycle. If both G1 and
G2 contain cycles, they both have girth at least g, so that by induction

m = m1 + m2 + 1 ≤ g((n1 − 2) + (n2 − 2))
g − 2

+ 1 <
g(n − 2)

g − 2
.

If, say, G2 is acyclic, we have m2 = n2 − 1 and

m = m1 + m2 + 1 ≤ g(n1 − 2)
g − 2

+ n2 <
g(n − 2)

g − 2
.

Finally suppose that G does not contain a bridge. Then each edge of G is
contained in exactly two faces. If we denote the number of faces whose border
is a cycle consisting of i edges by fi, we get

2m =
∑

i

ifi ≥
∑

i

gfi = gf,

as each cycle contains at least g edges. By Theorem 1.5.2, this implies

m + 2 = n + f ≤ n +
2m

g
and hence m ≤ g(n − 2)

g − 2
. ��

In particular, we obtain the following immediate consequence of Theorem
1.5.3, since G is either acyclic or has girth at least 3.



1.5 Planar graphs 23

Corollary 1.5.4. Let G be a connected planar graph with n vertices, where
n ≥ 3. Then G contains at most 3n − 6 edges. ��
Example 1.5.5. By Corollary 1.5.4, the complete graph K5 is not planar, as
a planar graph on five vertices can have at most nine edges. The complete
bipartite graph K3,3 has girth 4; this graph is not planar by Theorem 1.5.3,
as it has more than eight edges.

For the sake of completeness, we will state one of the most famous re-
sults in graph theory, namely the characterization of planar graphs due to
Kuratowski [Kur30]. We refer the reader to [Har69], [Aig84] or [Tho81] for
the elementary but rather lengthy proof. Again we need some definitions.
A subdivision of a graph G is a graph H which can be derived from G by
applying the following operation any number of times: replace an edge e = ab
by a path (a, x1, . . . , xk, b), where x1, . . . , xk are an arbitrary number of new
vertices; that is, vertices which were not in a previous subdivision. For conve-
nience, G is also considered to be a subdivision of itself. Two graphs H and
H ′ are called homeomorphic if they are isomorphic to subdivisions of the same
graph G.

Exercise 1.5.6. Let (V, E) and (V ′, E′) be homeomorphic graphs. Show that
|E| − |V | = |E′| − |V ′|.
Result 1.5.7 (Kuratowski’s theorem). A graph G is planar if and only
if it does not contain a subgraph which is homeomorphic to K5 or K3,3. ��

In view of Example 1.5.5, a graph having a subgraph homeomorphic to K5

or K3,3 cannot be planar. For the converse we refer to the sources given above.
There is yet another interesting characterization of planarity. If we identify
two adjacent vertices u and v in a graph G, we get an elementary contraction
of G; more precisely, we omit u and v and replace them by a new vertex w
which is adjacent to all vertices which were adjacent to u or v before;8 the
resulting graph is usually denoted by G/e, where e = uv. Figure 1.11 shows
a subdivision and a contraction of K3,3. A graph G is called contractible to
a graph H if H arises from G by a sequence of elementary contractions. For
the proof of the following theorem see [Wag37], [Aig84], or [HaTu65].

Result 1.5.8 (Wagner’s theorem). A graph G is planar if and only if it
does not contain a subgraph which is contractible to K5 or K3,3.

Exercise 1.5.9. Show that the Petersen graph (see Figure 1.12, cf. [Pet98])
is not planar. Give three different proofs using 1.5.3, 1.5.7, and 1.5.8.

8Note that we introduce only one edge wx, even if x was adjacent to both u and
v, which is the appropriate operation in our context. However, there are occasions
where it is actually necessary to introduce two parallel edges wx instead, so that a
contracted graph will in general become a multigraph.



24 1 Basic Graph Theory

Fig. 1.11. K3,3, a subdivision and a contraction

Fig. 1.12. The Petersen graph

Exercise 1.5.10. Show that the Petersen graph is isomorphic to the comple-
ment of the triangular graph T5.

The isomorphisms of a graph G to itself are called automorphisms; clearly,
they form a group, the automorphism group of G. In this book we will not
study automorphisms of graphs, except for some comments on Cayley graphs
in Chapter 9; we refer the reader to [Yap86], [Har69], or [CaLi91]. However,
we give an exercise concerning this topic.

Exercise 1.5.11. Show that the automorphism group of the Petersen graph
contains a subgroup isomorphic to the symmetric group S5. Hint: Use Exercise
1.5.10.

Exercise 1.5.12. What is the minimal number of edges which have to be
removed from Kn to get a planar graph? For each n, construct a planar graph
having as many edges as possible.

The final exercise in this section shows that planar graphs have to contain
many vertices of small degree.

Exercise 1.5.13. Let G be a planar graph on n vertices and denote the num-
ber of vertices of degree at most d by nd. Prove
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nd ≥ n(d − 5) + 12
d + 1

and apply this formula to the cases d = 5 and d = 6. (Hint: Use Corollary
1.5.4.) Can this formula be strengthened?

Much more on planarity (including algorithms) can be found in the mono-
graph by [NiCh88].

1.6 Digraphs

For many applications – especially for problems concerning traffic and trans-
portation – it is useful to give a direction to the edges of a graph, for example
to signify a one-way street in a city map. Formally, a directed graph or, for
short, a digraph is a pair G = (V, E) consisting of a finite set V and a set
E of ordered pairs (a, b), where a �= b are elements of V . The elements of V
are again called vertices, those of E edges; the term arc is also used instead
of edge to distinguish between the directed and the undirected case. Instead
of e = (a, b), we again write e = ab; a is called the start vertex or tail, and b
the end vertex or head of e. We say that a and b are incident with e, and call
two edges of the form ab and ba antiparallel. To draw a directed graph, we
proceed as in the undirected case, but indicate the direction of an edge by an
arrow (see Figure 1.13). Directed multigraphs can be defined analogously to
multigraphs; we leave the precise formulation of the definition to the reader.

There are some operations connecting graphs and digraphs. Let G = (V, E)
be a directed multigraph. Replacing each edge of the form (a, b) by an undi-
rected edge {a, b}, we obtain the underlying multigraph |G|. Replacing parallel
edges in |G| by a single edge, we get the underlying graph (G). Conversely,
let G = (V, E) be a multigraph. Any directed multigraph H with |H| = G is
called an orientation of G. Replacing each edge ab in E by two arcs (a, b) and
(b, a), we get the associated directed multigraph

→
G; we also call

→
G the com-

plete orientation of G. The complete orientation of Kn is called the complete
digraph on n vertices. Figure 1.13 illustrates these definitions.

We can now transfer the notions introduced for graphs to digraphs. There
are some cases where two possibilities arise; we only look at these cases ex-
plicitly and leave the rest to the reader. We first consider trails. Thus let
G = (V, E) be a digraph. A sequence of edges (e1, . . . , en) is called a trail if
the corresponding sequence of edges in |G| is a trail. We define walks, paths,
closed trails and cycles accordingly. Thus, if (v0, . . . , vn) is the corresponding
sequence of vertices, vi−1vi or vivi−1 must be an edge of G. In the first case,
we have a forward edge, in the second a backward edge. If a trail consists of
forward edges only, it is called a directed trail; analogous definitions can be
given for walks, closed trails, etc. In contrast to the undirected case, there
exist directed cycles of length 2, namely cycles of the form (ab, ba).
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G |G| (G) An orientation of (G)

Fig. 1.13. (Directed) multigraphs

A directed Euler tour in a directed multigraph is a directed closed trail con-
taining each edge exactly once. We want to transfer Euler’s theorem to the
directed case; this requires some more definitions. The indegree din(v) of a ver-
tex v is the number of edges with head v, and the outdegree dout(v) of v is the
number of edges with tail v. A directed multigraph is called pseudosymmetric
if din(v) = dout(v) holds for every vertex v. Finally, a directed multigraph G
is called connected if |G| is connected. We can now state the directed analogue
of Euler’s theorem. As the proof is quite similar to that of Theorem 1.3.1, we
shall leave it to the reader and merely give one hint: the part (b) implies (c)
needs a somewhat different argument.

Theorem 1.6.1. Let G be a connected directed multigraph. Then the following
statements are equivalent:
(a) G has a directed Euler tour.
(b) G is pseudosymmetric.
(c) The edge set of G can be partitioned into directed cycles. ��

For digraphs there is another obvious notion of connectivity besides simply
requiring that the underlying graph be connected. We say that a vertex b of
a digraph G is accessible from a vertex a if there is a directed walk with start
vertex a and end vertex b. As before, we allow walks to have length 0 so that
each vertex is accessible from itself. A digraph G is called strongly connected if
each vertex is accessible from every other vertex. A vertex a from which every
other vertex is accessible is called a root of G. Thus a digraph is strongly
connected if and only if each vertex is a root.

Note that a connected digraph is not necessarily strongly connected. For
example, a tree can never be strongly connected; here, of course, a digraph
G is called a tree if |G| is a tree. If G has a root r, we call G a directed tree,
an arborescence or a branching with root r. Clearly, given any vertex r, an
undirected tree has exactly one orientation as a directed tree with root r.

We conclude this section by considering the question which connected
multigraphs can be oriented in such a way that the resulting graph is strongly
connected. Such multigraphs are called orientable. Thus we ask which con-
nected systems of streets can be made into a system of one-way streets such
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that people can still move from each point to every other point. The answer
is given by the following theorem [Rob39].

Theorem 1.6.2 (Robbins’ theorem). A connected multigraph is orientable
if and only if it does not contain any bridge. ��

We will obtain Theorem 1.6.2 by proving a stronger result which allows
us to orient the edges one by one, in an arbitrary order. We need some more
terminology. A mixed multigraph has edges which are either directed or undi-
rected. (We leave the formal definition to the reader.) A directed trail in a
mixed multigraph is a trail in which each oriented edge is a forward edge, but
the trail might also contain undirected edges. A mixed multigraph is called
strongly connected if each vertex is accessible from every other vertex by a
directed trail. The theorem of Robbins is an immediate consequence of the
following result due to Boesch and Tindell [BoTi80].

Theorem 1.6.3. Let G be a mixed multigraph and e an undirected edge of G.
Suppose that G is strongly connected. Then e can be oriented in such a way
that the resulting mixed multigraph is still strongly connected if and only if e
is not a bridge.

Proof. Obviously, the condition that e is not a bridge is necessary. Thus sup-
pose that e is an undirected edge of G for which neither of the two possible
orientations of e gives a strongly connected mixed multigraph. We have to
show that e is a bridge of |G|. Let u and w be the vertices incident with e,
and denote the mixed multigraph we get by omitting e from G by H. Then
there is no directed trail in H from u to w: otherwise, we could orient e from
w to u and get a strongly connected mixed multigraph. Similarly, there is no
directed trail in H from w to u.

Let S be the set of vertices which are accessible from u in H by a directed
trail. Then u is, for any vertex v ∈ S, accessible from v in H for the following
reason: u is accessible in G from v by a directed trail W ; suppose W contains
the edge e, then w would be accessible in H from u, which contradicts our
observations above. Now put T = V \ S; as w is in T , this set is not empty.
Then every vertex t ∈ T is accessible from w in H, because t is accessible
from w in G, and again: if the trail from w to t in G needed the edge e, then
t would be accessible from u in H, and thus t would not be in T .

We now prove that e is the only edge of |G| having a vertex in S and a
vertex in T , which shows that e is a bridge. By definition of S, there cannot
be an edge (s, t) or an edge {s, t} with s ∈ S and t ∈ T in G. Finally, if
G contained an edge (t, s), then u would be accessible in H from w, as t is
accessible from w and u is accessible from s. ��
Exercise 1.6.4. Let G be a multigraph. Prove that G does not contain a
bridge if and only if each edge of G is contained in at least one cycle. (We
will see another characterization of these multigraphs in Chapter 7: any two
vertices are connected by two edge-disjoint trails.)
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Mixed multigraphs are an obvious model for systems of streets. However,
we will restrict ourselves to multigraphs or directed multigraphs for the rest of
this book. One-way streets can be modelled by just using directed multigraphs,
and ordinary two-way streets may then be represented by pairs of antiparallel
edges.

Exercise 1.6.5. Let G be a connected graph all of whose vertices have even
degree. Show that G has a strongly connected, pseudosymmetric orientation.

Some relevant papers concerning (strongly connected) orientations of
graphs are [ChTh78], [ChGT85], and [RoXu88].

1.7 An application: Tournaments and leagues

We conclude this chapter with an application of the factorizations mentioned
before, namely setting up schedules for tournaments9. If we want to design
a schedule for a tournament, say in soccer or basketball, where each of the
2n participating teams should play against each of the other teams exactly
once, we can use a factorization F = {F1, . . . , F2n−1} of K2n. Then each edge
{i, j} represents the match between the teams i and j; if {i, j} is contained
in the factor Fk, this match will be played on the k-th day; thus we have to
specify an ordering of the factors. If there are no additional conditions on the
schedule, we can use any factorization. At the end of this section we will make
a few comments on how to set up balanced schedules.

Of course, the above method can also be used to set up a schedule for a
league (like, for example, the German soccer league), if we consider the two
rounds as two separate tournaments. But then there is the additional problem
of planning the home and away games. Look at the first round first. Replace
each 1-factor Fk ∈ F by an arbitrary orientation Dk of Fk, so that we get a
factorization D of an orientation of K2n – that is, a tournament as defined in
Exercise 7.5.5 below. Then the home and away games of the first round are
fixed as follows: if Dk contains the edge ij, the match between the teams i
and j will be played on the k-th day of the season as a home match for team
i. Of course, when choosing the orientation of the round of return matches,
we have to take into account how the first round was oriented; we look at that
problem later.

Now one wants home and away games to alternate for each team as far as
possible. Hence we cannot just use an arbitrary orientation D of an arbitrary
factorization F to set up the first round. This problem was solved by de Werra
[deW81] who obtained the following results. Define a (2n × (2n − 1))-matrix
P = (pik) with entries A and H as follows: pik = H if and only if team i has
a home match on the k-th day of the season; that is, if Dk contains an edge

9This section will not be used in the remainder of the book and may be skipped
during the first reading.
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of the form ij. De Werra calls this matrix the home-away pattern of D. A
pair of consecutive entries pik and pi,k+1 is called a break if the entries are the
same; that is, if there are two consecutive home or away games; thus we want
to avoid breaks as far as possible. Before determining the minimal number of
breaks, an example might be useful.

Example 1.7.1. Look at the case n = 3 and use the factorization of K6

shown in Figure 1.4; see Exercise 1.1.2. We choose the orientation of the five
factors as follows: D1 = {1∞, 25, 43}, D2 = {∞2, 31, 54}, D3 = {3∞, 42, 15},
D4 = {∞4, 53, 21} and D5 = {5∞, 14, 32}. Then we obtain the following
matrix P :

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

A H A H A
H A H A H
H A A H A
A H H A H
H A H A A
A H A H H

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the lines and columns are ordered ∞, 1, . . . , 5 and 1, . . . , 5, respectively.
Note that this matrix contains four breaks, which is best possible for n = 3
according to the following lemma.

Lemma 1.7.2. Every oriented factorization of K2n has at least 2n−2 breaks.

Proof. Suppose D has at most 2n − 3 breaks. Then there are at least three
vertices for which the corresponding lines of the matrix P do not contain any
breaks. At least two of these lines (the lines i and j, say) have to have the
same entry (H, say) in the first column. As both lines do not contain any
breaks, they have the same entries, and thus both have the form

H A H A H . . .

Then, none of the factors Dk contains one of the edges ij or ji, a contradiction.
(In intuitive terms: if the teams i and j both have a home match or both have
an away match, they cannot play against each other.) ��

The main result of de Werra shows that the bound of Lemma 1.7.2 can
always be achieved.

Theorem 1.7.3. The 1-factorization of K2n given in Exercise 1.1.2 can al-
ways be oriented in such a way that the corresponding matrix P contains
exactly 2n − 2 breaks.

Sketch of proof. We give an edge {∞, k} of the 1-factor Fk of Exercise 1.1.2
the orientation k∞ if k is odd, and the orientation ∞k if k is even. Moreover,
the edge {k + i, k− i} of the 1-factor Fk is oriented as (k + i, k− i) if i is odd,
and as (k − i, k + i) if i is even. (Note that the orientation in Example 1.1.3
was obtained using this method.) Then it can be shown that the orientated
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factorization D of K2n defined in this way has indeed exactly 2n − 2 breaks.
The lines corresponding to the vertices ∞ and 1 do not contain any breaks,
whereas exactly one break occurs in all the other lines. The comparatively
long, but not really difficult proof of this statement is left to the reader.
Alternatively, the reader may consult [deW81] or [deW88]. ��

Sometimes there are other properties an optimal schedule should have. For
instance, if there are two teams from the same city or region, we might want
one of them to have a home game whenever the other has an away game.
Using the optimal schedule from Theorem 1.7.3, this can always be achieved.

Corollary 1.7.4. Let D be the oriented factorization of K2n with exactly 2n−
2 breaks which was described in Theorem 1.7.3. Then, for each vertex i, there
exists a vertex j such that pik �= pjk for all k = 1, . . . , 2n − 1.

Proof. The vertex complementary to vertex ∞ is vertex 1: team ∞ has a home
game on the k-th day of the season (that is, ∞k is contained in Dk) if k is
even. Then 1 has the form 1 = k − i for some odd i, so that 1 has an away
game on that day. Similarly it can be shown that the vertex complementary
to 2i (for i = 1, . . . , n − 1) is the vertex 2i + 1. ��

Now we still have the problem of finding a schedule for the return round
of the league. Choose oriented factorizations DH and DR for the first and
second round. Of course, we want D = DH ∪DR to be a complete orientation
of K2n; hence ji should occur as an edge in DR if ij occurs in DH . If this is
the case, D is called a league schedule for 2n teams. For DH and DR, there
are home-away patterns PH and PR, respectively; we call P = (PHPR) the
home-away pattern of D. As before, we want a league schedule to have as few
breaks as possible. We have the following result.

Theorem 1.7.5. Every league schedule D for 2n teams has at least 4n − 4
breaks; this bound can be achieved for all n.

Proof. As PH and PR both have at least 2n − 2 breaks by Lemma 1.7.2, P
obviously contains at least 4n − 4 breaks. A league schedule having exactly
4n − 4 breaks can be obtained as follows. By Theorem 1.7.3, there exists
an oriented factorization DH = {D1, . . . , D2n−1} of K2n with exactly 2n −
2 breaks. Put DR = {E1, . . . , E2n−1}, where Ei is the 1-factor having the
opposite orientation as D2n−i; that is, ji ∈ Ei if and only if ij ∈ D2n−i. Then
PH and PR each contain exactly 2n− 2 breaks; moreover, the first column of
PR corresponds to the factor E1, and the last column of PH corresponds to
the factor D2n−1 which is the factor with the opposite orientation of E1. Thus,
there are no breaks between these two columns of P , and the total number of
breaks is indeed 4n − 4. ��

In reality, the league schedules described above are unwelcome, because
the return round begins with the same matches with which the first round
ended, just with home and away games exchanged. Instead, DR is usually
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defined as follows: DR = {E1, . . . , E2n−1}, where Ei is the 1-factor oriented
opposite to Di. Such a league schedule is called canonical. The following result
can be proved analogously to Theorem 1.7.5.

Theorem 1.7.6. Every canonical league schedule D for 2n teams has at least
6n − 6 breaks; this bound can be achieved for all n. ��

For more results about league schedules and related problems we refer
to [deW80, deW82, deW88] and [Schr80]. In practice, one often has many
additional secondary restrictions – sometimes even conditions contradicting
each other – so that the above theorems are not sufficient for finding a solution.
In these cases, computers are used to look for an adequate solution satisfying
the most important requirements. As an example, we refer to [Schr92] who
discusses the selection of a schedule for the soccer league in the Netherlands
for the season 1988/89. Another actual application with secondary restrictions
is treated in [deWJM90], while [GrRo96] contains a survey of some European
soccer leagues.

Back to tournaments again! Although any factorization of K2n can be used,
in most practical cases there are additional requirements which the schedule
should satisfy. Perhaps the teams should play an equal number of times on
each of the n playing fields, because these might vary in quality. The best one
can ask for in a tournament with 2n − 1 games for each team is, of course,
that each team plays twice on each of n − 1 of the n fields and once on the
remaining field. Such a schedule is called a balanced tournament design. Every
schedule can be written as an n× (2n−1) matrix M = (mij), where the entry
mij is given by the pair xy of teams playing in round j on field i. Sometimes
it is required in addition that, for the first as well as for the last n columns
of M , the entries in each row of M form a 1-factor of K2n; this is then called
a partitioned balanced tournament design (PBTD) on 2n vertices. Obviously,
such a tournament schedule represents the best possible solution concerning a
uniform distribution of the playing fields. We give an example for n = 5, and
cite an existence result for PBDT’s (without proof) which is due to Lamken
and Vanstone [LaVa87, Lam87].

Example 1.7.7. The following matrix describes a PBTD on 10 vertices:⎛
⎜⎜⎜⎜⎝

94 82 13 57
83 95 46 02
56 03 97 81
12 47 80 96
07 16 25 43

∣∣∣∣∣∣∣∣∣∣

06
17
42
53
98

∣∣∣∣∣∣∣∣∣∣

23 45 87 91
84 92 05 63
67 01 93 85
90 86 14 72
15 37 26 04

⎞
⎟⎟⎟⎟⎠

Result 1.7.8. Let n ≥ 5 and n /∈ {9, 11, 15, 26, 28, 33, 34}. Then there exists
a PBTD on 2n vertices. ��

Finally, we recommend the interesting survey [LaVa89] about tournament
designs, which are studied in detail in the books of Anderson [And90, And97].
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Algorithms and Complexity

If to do were as easy as to know
what were good to do...

William Shakespeare

In Theorem 1.3.1 we gave a characterization for Eulerian graphs: a graph G
is Eulerian if and only if each vertex of G has even degree. This condition is
easy to verify for any given graph. But how can we really find an Euler tour
in an Eulerian graph? The proof of Theorem 1.3.1 not only guarantees that
such a tour exists, but actually contains a hint how to construct such a tour.
We want to convert this hint into a general method for constructing an Euler
tour in any given Eulerian graph; in short, into an algorithm. In this book
we generally look at problems from the algorithmic point of view: we want
more than just theorems about existence or structure. As Lüneburg once said
[Lue82], it is important in the end that we can compute the objects we are
working with. However, we will not go as far as giving concrete programs,
but describe our algorithms in a less formal way. Our main goal is to give an
overview of the basic methods used in a very large area of mathematics; we can
achieve this (without exceeding the limits of this book) only by omitting the
details of programming techniques. Readers interested in concrete programs
are referred to [SyDK83] and [NiWi78], where programs in PASCAL and
FORTRAN, respectively, can be found.

Although many algorithms will occur throughout this book, we will not
try to give a formal definition of the concept of algorithms. Such a definition
belongs to both mathematical logic and theoretical computer science and is
given, for instance, in automata theory or in complexity theory; we refer the
reader to [HoUl79] and [GaJo79]. As a general introduction, we also recom-
mend the books [AhHU74, AhHU83].

In this chapter, we will try to show in an intuitive way what an algorithm
is and to develop a way to measure the quality of algorithms. In particular,
we will consider some basic aspects of graph theoretic algorithms such as,
for example, the problem of how to represent a graph. Moreover, we need a
way to formulate the algorithms we deal with. We shall illustrate and study
these concepts quite thoroughly using two specific examples, namely Euler
tours and acyclic digraphs. At the end of the chapter we introduce a class of
problems (the so-called NP-complete problems) which plays a central role in
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complexity theory; we will meet this type of problem over and over again in
this book.

2.1 Algorithms

First we want to develop an intuitive idea what an algorithm is. Algorithms
are techniques for solving problems. Here the term problem is used in a very
general sense: a problem class comprises infinitely many instances having a
common structure. For example, the problem class ET (Euler tour) consists
of the task to decide – for any given graph G – whether it is Eulerian and,
if this is the case, to construct an Euler tour for G. Thus each graph is an
instance of ET . In general, an algorithm is a technique which can be used to
solve each instance of a given problem class.

According to [BaWo82], an algorithm should have the following properties:

(1) Finiteness of description: The technique can be described by a finite text.
(2) Effectiveness: Each step of the technique has to be feasible (mechanically)

in practice.1

(3) Termination: The technique has to stop for each instance after a finite
number of steps.

(4) Determinism: The sequence of steps has to be uniquely determined for
each instance.2

Of course, an algorithm should also be correct, that is, it should indeed solve
the problem correctly for each instance. Moreover, an algorithm should be
efficient, which means it should work as fast and economically as possible.
We will discuss this requirement in detail in Sections 2.5 and 2.7.

Note that – like [BaWo82] – we make a difference between an algorithm
and a program: an algorithm is a general technique for solving a problem (that
is, it is problem-oriented), whereas a program is the concrete formulation
of an algorithm as it is needed for being executed by a computer (and is
therefore machine-oriented). Thus, the algorithm may be viewed as the essence
of the program. A very detailed study of algorithmic language and program
development can be found in [BaWo82]; see also [Wir76].

Now let us look at a specific problem class, namely ET . The following
example gives a simple technique for solving this problem for an arbitrary
instance, that is, for any given graph.

1It is probably because of this aspect of mechanical practicability that some peo-
ple doubt if algorithms are really a part of mathematics. I think this is a misunder-
standing: performing an algorithm in practice does not belong to mathematics, but
development and analysis of algorithms – including the translation into a program
– do. Like Lüneburg, I am of the opinion that treating a problem algorithmically
means understanding it more thoroughly.

2In most cases, we will not require this property.



2.1 Algorithms 35

Example 2.1.1. Let G be a graph. Carry out the following steps:

(1) If G is not connected3 or if G contains a vertex of odd degree, STOP: the
problem has no solution.

(2) (We now know that G is connected and that all vertices of G have even
degree.) Choose an edge e1, consider each permutation (e2, . . . , em) of the
remaining edges and check whether (e1, . . . , em) is an Euler tour, until
such a tour is found.

This algorithm is correct by Theorem 1.3.1, but there is still a lot to be said
against it. First, it is not really an algorithm in the strict sense, because it does
not specify how the permutations of the edges are found and in which order
they are examined; of course, this is merely a technical problem which could
be dealt with.4 More importantly, it is clear that examining up to (m − 1)!
permutations is probably not the most intelligent way of solving the problem.
Analyzing the proof of Theorem 1.3.1 (compare also the directed case in 1.6.1)
suggests the following alternative technique going back to Hierholzer [Hie73].

Example 2.1.2. Let G be a graph. Carry out the following steps:
(1) If G is not connected or if G contains a vertex of odd degree, STOP: the

problem has no solution.
(2) Choose a vertex v0 and construct a closed trail C0 = (e1, . . . , ek) as follows:

for the end vertex vi of the edge ei choose an arbitrary edge ei+1 incident
with vi and different from e1, . . . , ei, as long as this is possible.

(3) If the closed trail Ci constructed is an Euler tour: STOP.
(4) Choose a vertex wi on Ci incident with some edge in E \Ci. Construct a

closed trail Zi as in (2) (with start and end vertex wi) in the connected
component of wi in G \ Ci.

(5) Form a closed trail Ci+1 by taking the closed trail Ci with start and end
vertex wi and appending the closed trail Zi. Continue with (3).

This technique yields a correct solution: as each vertex of G has even degree,
for any vertex vi reached in (2), there is an edge not yet used which leaves vi,
except perhaps if vi = v0. Thus step (2) really constructs a closed trail. In
(4), the existence of the vertex wi follows from the connectedness of G. The
above technique is not yet deterministic, but that can be helped by numbering
the vertices and edges and – whenever something is to be chosen – always
choosing the vertex or edge having the smallest number. In the future, we will
not explicitly state how to make such choices deterministically. The steps in
2.1.2 are still rather big; in the first few chapters we will present more detailed
versions of the algorithms. Later in the book – when the reader is more used

3We can check whether a graph is connected with the BFS technique presented
in Section 3.3.

4The problem of generating permutations of a given set can be formulated in a
graph theoretic way, see Exercise 2.1.3. Algorithms for this are given in [NiWi78]
and [Eve73].
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to our way of stating algorithms – we will often give rather concise versions
of algorithms. A more detailed version of the algorithm in Example 2.1.2 will
be presented in Section 2.3.

Exercise 2.1.3. A frequent problem is to order all permutations of a given
set in such a way that two subsequent permutations differ by only a transpo-
sition. Show that this problem leads to the question whether a certain graph
is Hamiltonian. Draw the graph for the case n = 3.

Exercise 2.1.4. We want to find out in which cases the closed trail C0 con-
structed in Example 2.1.2 (2) is already necessarily Eulerian. An Eulerian
graph is called arbitrarily traceable from v0 if each maximal trail beginning in
v0 is an Euler tour; here maximal means that all edges incident with the end
vertex of the trail occur in the trail. Prove the following results due to Ore
(who introduced the concept of arbitrarily traceable graphs [Ore51]) and to
[Bae53] and [ChWh70].
(a) G is arbitrarily traceable from v0 if and only if G \ v0 is acyclic.
(b) If G is arbitrarily traceable from v0, then v0 is a vertex of maximal degree.
(c) If G is arbitrarily traceable from at least three different vertices, then G

is a cycle.
(d) There exist graphs which are arbitrarily traceable from exactly two ver-

tices; one may also prescribe the degree of these vertices.

2.2 Representing graphs

If we want to execute some algorithm for graphs in practice (which usually
means on a computer), we have to think first about how to represent a graph.
We do this now for digraphs; an undirected graph can then be treated by
looking at its complete orientation.5 Thus let G be a digraph, for example the
one shown in Figure 2.1. We have labelled the vertices 1, . . . , 6; it is common
practice to use {1, . . . , n} as the vertex set of a graph with n vertices. The
easiest method to represent G is to list its edges.

Definition 2.2.1 (edge lists).
A directed multigraph G on the vertex set {1, . . . , n} is specified by:
(i) its number of vertices n;
(ii) the list of its edges, given as a sequence of ordered pairs (ai, bi), that is,

ei = (ai, bi).
The digraph G of Figure 2.1 may then be given as follows.
(i) n = 6;

5This statement refers only to the representation of graphs in algorithms in
general. For each concrete algorithm, we still have to check whether this substitution
makes sense. For example, we always get directed cycles by this approach.
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(ii) 12, 23, 34, 15, 52, 65, 46, 64, 41, 63, 25, 13,
where we write simply ij instead of (i, j). The ordering of the edges was chosen
arbitrarily.

1

2

5

3

4

6

Fig. 2.1. A digraph G

A list of m edges can, for example, be implemented by two arrays [1 . . . m]
(named head and tail) of type integer; in PASCAL we could also define a
type edge as a record of two components of type integer and then use an
array[1 . . . m] of edge to store the list of edges.

Lists of edges need little space in memory (2m places for m edges), but
they are not convenient to work with. For example, if we need all the vertices
adjacent to a given vertex, we have to search through the entire list which
takes a lot of time. We can avoid this disadvantage either by ordering the
edges in a clever way or by using adjacency lists.

Definition 2.2.2 (incidence lists). A directed multigraph G on the vertex
set {1, . . . , n} is specified by:
(1) the number of vertices n;
(2) n lists A1, . . . , An, where Ai contains the edges beginning in vertex i. Here

an edge e = ij is recorded by listing its name and its head j, that is, as
the pair (e, j).

The digraph of Figure 2.1 may then be represented as follows:
(1) n = 6;
(2) A1 : (1, 2), (4, 5), (12, 3); A2 : (2, 3), (11, 5); A3 : (3, 4); A4 : (7, 6), (9, 1);

A5 : (5, 2); A6 : (6, 5), (8, 4), (10, 3),
where we have numbered the edges in the same order as in 2.2.1.

Note that incidence lists are basically the same as edge lists, given in a
different ordering and split up into n separate lists. Of course, in the undirected
case, each edge occurs now in two of the incidence lists, whereas it would have
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been sufficient to put it in the edge list just once. But working with incidence
lists is much easier, especially for finding all edges incident with a given vertex.
If G is a digraph or a graph (so that there are no parallel edges), it is not
necessary to label the edges, and we can use adjacency lists instead of incidence
lists.

Definition 2.2.3 (adjacency lists). A digraph with vertex set {1, . . . , n} is
specified by:
(1) the number of vertices n;
(2) n lists A1, . . . , An, where Ai contains all vertices j for which G contains

an edge (i, j).
The digraph of Figure 2.1 may be represented by adjacency lists as follows:
(1) n = 6;
(2) A1 : 2, 3, 5; A2 : 3, 5; A3 : 4; A4 : 1, 6; A5 : 2; A6; 3, 4, 5.
In the directed case, we sometimes need all edges with a given end vertex
as well as all edges with a given start vertex; then it can be useful to store
backward adjacency lists, where the end vertices are given, as well. For imple-
mentation, it is common to use ordinary or doubly linked lists. Then it is easy
to work on all edges in a list consecutively, and to insert or remove edges.

Finally, we give one further method for representing digraphs.

Definition 2.2.4 (adjacency matrices). A digraph G with vertex set
{1, . . . , n} is specified by an (n × n)-matrix A = (aij), where aij = 1 if and
only if (i, j) is an edge of G, and aij = 0 otherwise. A is called the adjacency
matrix of G. For the digraph of Figure 2.1 we have

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1 0
0 0 1 0 1 0
0 0 0 1 0 0
1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Adjacency matrices can be implemented simply as an array [1 . . . n, 1 . . . n].
As they need a lot of space in memory (n2 places), they should only be
used (if at all) to represent digraphs having many edges. Though adjacency
matrices are of little practical interest, they are an important theoretical tool
for studying digraphs.

Unless stated otherwise, we always represent (directed) multigraphs by
incidence or adjacency lists. We will not consider procedures for input or
output, or algorithms for treating lists (for operations such as inserting or
removing elements, or reordering or searching a list). These techniques are
not only used in graph theory but belong to the basic algorithms (searching
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and sorting algorithms, fundamental data structures) used in many areas.
We refer the reader to the literature, for instance, [AhHU83], [Meh84], and
[CoLR90]. We close this section with two exercises about adjacency matrices.

Exercise 2.2.5. Let G be a graph with adjacency matrix A. Show that the
(i, k)-entry of the matrix Ah is the number of walks of length h beginning
at vertex i and ending at k. Also prove an analogous result for digraphs and
directed walks.

Exercise 2.2.6. Let G be a strongly regular graph with adjacency matrix A.
Give a quadratic equation for A. Hint: Use Exercise 2.2.5 with h = 2.

Examining the adjacency matrix A – and, in particular, the eigenvalues
of A – is one of the main tools for studying strongly regular graphs; see
[CaLi91]. In general, the eigenvalues of the adjacency matrix of a graph are
important in algebraic graph theory; see [Big93] and [ScWi78] for an intro-
duction and [CvDS80, CvDGT87] for a more extensive treatment. Eigenvalues
have many noteworthy applications in combinatorial optimization as well; the
reader might want to consult the interesting survey [MoPo93].

2.3 The algorithm of Hierholzer

In this section, we study in more detail the algorithm sketched in Example
2.1.2; specifically, we formulate the algorithm of Hierholzer [Hie73] which is
able to find an Euler tour in an Eulerian multigraph, respectively a directed
Euler tour in a directed Eulerian multigraph. We skip the straightforward
checking of the condition on the degrees.

Throughout this book, we will use the symbol ← for assigning values:
x ← y means that value y is assigned to variable x. Boolean variables can
have values true and false.

Algorithm 2.3.1. Let G be a connected Eulerian multigraph, directed or not,
having vertex set {1, . . . , n}. Moreover, let s be a vertex of G. We construct
an Euler tour K (which will be directed if G is) with start vertex s.
1. Data structures needed
a) incidence lists A1, . . . , An; for each edge e, we denote the end vertex by

end(e);
b) lists K and C for storing sequences of edges forming a closed trail. We

use doubly linked lists; that is, each element in the list is linked to its
predecessor and its successor, so that these can be found easily;

c) a Boolean mapping used on the vertex set, where used(v) has value true if
v occurs in K and value false otherwise, and a list L containing all vertices
v for which used(v) = true holds;

d) for each vertex v, a pointer e(v) which is undefined at the start of the
algorithm and later points to an edge in K beginning in v;
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e) a Boolean mapping new on the edge set, where new(e) has value true if e
is not yet contained in the closed trail;

f) variables u, v for vertices and e for edges.

2. Procedure TRACE(v,new; C)
The following procedure constructs a closed trail C consisting of edges not
yet used, beginning at a given vertex v.
(1) If Av = ∅, then return.
(2) (Now we are sure that Av �= ∅.) Find the first edge e in Av and delete e

from Av.
(3) If new(e) = false, go to (1).
(4) (We know that new(e) = true.) Append e to C.
(5) If e(v) is undefined, assign to e(v) the position where e occurs in C.
(6) Assign new(e) ← false and v ← end(e).
(7) If used(v) = false, append v to the list L and set used(v) ← true.
(8) Go to (1).
Here return means that the procedure is aborted: one jumps to the end of
the procedure, and the execution of the program continues with the procedure
which called TRACE. As in the proof of Theorem 1.6.1, the reader may check
that the above procedure indeed constructs a closed trail C beginning at v.

3. Procedure EULER(G, s; K).
(1) K ← ∅, used(v) ← false for all vertices v, new(e) ← true for all edges e.
(2) used(s) ← true, append s to L.
(3) TRACE(s, new; K);
(4) If L is empty, return.
(5) Let u be the last element of L. Delete u from L.
(6) C ← ∅.
(7) TRACE(u, new; C).
(8) Insert C in front of e(u) in K.
(9) Go to (4).
In step (3), a maximal closed trail K beginning at s is constructed and all
vertices occurring in K are stored in L. In steps (5) to (8) we then try, begin-
ning at the last vertex u of L, to construct a detour C consisting of edges that
were not yet used (that is, which have new(e) = true), and to insert this de-
tour into K. Of course, the detour C might be empty. As G is connected, the
algorithm ends only if we have used(v) = true for each vertex v of G so that
no further detours are possible. If G is a directed multigraph, the algorithm
works without the function new; we can then just delete each edge from the
incidence list after it has been used.

We close this section with a somewhat lengthy exercise; this requires some
definitions. Let S be a given set of s elements, a so-called alphabet. Then
any finite sequence of elements from S is called a word over S. A word of
length N = sn is called a de Bruijn sequence if, for each word w of length
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n, there exists an index i such that w = aiai+1 . . . ai+n−1, where indices are
taken modulo N . For example, 00011101 is a de Bruijn sequence for s = 2 and
n = 3. These sequences take their name from [deB46]. They are closely related
to shift register sequences of order n, and are, particularly for s = 2, important
in coding theory and cryptography; see, for instance, [Gol67], [MacSl77], and
[Rue86]; an extensive chapter on shift register sequences can also be found in
[Jun93]. We now show how the theorem of Euler for directed multigraphs can
be used to construct de Bruijn sequences for all s and n. However, we have
to admit loops (a, a) as edges here; the reader should convince himself that
Theorem 1.6.1 still holds.

Exercise 2.3.2. Define a digraph Gs,n having the sn−1 words of length n−1
over an s-element alphabet S as vertices and the sn words of length n (over
the same alphabet) as edges. The edge a1 . . . an has the word a1 . . . an−1 as
tail and the word a2 . . . an as head. Show that the de Bruijn sequences of
length sn over S correspond to the Euler tours of Gs,n and thus prove the
existence of de Bruijn sequences for all s and n.

Exercise 2.3.3. Draw the digraph G3,3 with S = {0, 1, 2} and use Algorithm
2.3.1 to find an Euler tour beginning at the vertex 00; where there is a choice,
always choose the smallest edge (smallest when interpreted as a number).
Finally, write down the corresponding de Bruijn sequence.

The digraphs Gs,n may also be used to determine the number of de Bruijn
sequences for given s and n; see Section 4.8. Algorithms for constructing de
Bruijn sequences can be found in [Ral81] and [Etz86].

2.4 How to write down algorithms

In this section, we introduce some rules for how algorithms are to be de-
scribed. Looking again at Algorithm 2.3.1, we see that the structure of the
algorithm is not easy to recognize. This is mainly due to the jump commands
which hide the loops and conditional ramifications of the algorithm. Here the
comments of Jensen and Wirth [JeWi85] about PASCAL should be used as
a guideline: “A good rule is to avoid the use of jumps to express regular it-
erations and conditional execution of statements, for such jumps destroy the
reflection of the structure of computation in the textual (static) structures of
the program.” This motivates us to borrow some notation from PASCAL –
even if this language is by now more or less outdated – which is used often in
the literature and which will help us to display the structure of an algorithm
more clearly. In particular, these conventions emphasize the loops and ram-
ifications of an algorithm. Throughout this book, we shall use the following
notation.
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Notation 2.4.1 (Ramifications).

if B then P1; P2; . . . ; Pk else Q1; Q2; . . . ; Ql fi
is to be interpreted as follows. If condition B is true, the operations P1, . . . , Pk

are executed; and if B is false, the operations Q1, . . . , Ql are executed. Here
the alternative is optional so that we might also have
if B then P1; P2; . . . ; Pk fi.
In this case, no operation is executed if condition B is not satisfied.

Notation 2.4.2 (Loops).

for i = 1 to n do P1; . . . , Pk od
specifies that the operations P1, . . . , Pk are executed for each of the (integer)
values the control variable i takes, namely for i = 1, i = 2, . . . , i = n. One
may also decrement the values of i by writing
for i = n downto 1 do P1; . . . ; Pk od.

Notation 2.4.3 (Iterations).

while B do P1; . . . ; Pk od
has the following meaning. If the condition B holds (that is, if B has Boolean
value true), the operations P1, . . . , Pk are executed, and this is repeated as
long as B holds. In contrast,

repeat P1; . . . ; Pk until B

requires first of all to execute the operations P1, . . . , Pk and then, if condition
B is not yet satisfied, to repeat these operations until finally condition B
holds. The main difference between these two ways of describing iterations is
that a repeat is executed at least once, whereas the operations in a while
loop are possibly not executed at all, namely if B is not satisfied. Finally,

for s ∈ S do P1; . . . ; Pk od
means that the operations P1, . . . , Pk are executed |S| times, once for each
element s in S. Here the order of the elements, and hence of the iterations, is
not specified.

Moreover, we write and for the Boolean operation and and or for the
Boolean operation or (not the exclusive or). As before, we shall use ← for
assigning values. The blocks of an algorithm arising from ramifications, loops
and iterations will be shown by indentations. As an example, we translate the
algorithm of Hierholzer into our new notation.

Example 2.4.4. Let G be a connected Eulerian multigraph, directed or not,
having vertex set {1, . . . , n}. Moreover, let s be a vertex of G. We construct
an Euler tour K (which will be directed if G is) with start vertex s. The data
structures used are as in 2.3.1. Again, we have two procedures.
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Procedure TRACE(v,new; C)
(1) while Av �= ∅ do
(2) delete the first edge e from Av;
(3) if new(e) = true
(4) then append e at the end of C;
(5) if e(v) is undefined
(6) then assign the position where e occurs in C to e(v)
(7) fi
(8) new(e) ← false, v ← end(e);
(9) if used(v) = false

(10) then append v to L;
(11) used(v) ← true
(12) fi
(13) fi
(14) od

Procedure EULER(G, s; K)
(1) K ← ∅, L ← ∅;
(2) for v ∈ V do used(v) ← false od;
(3) for e ∈ E do new(e) ← true od;
(4) used(s) ← true, append s to L;
(5) TRACE(s,new;K);
(6) while L �= ∅ do
(7) let u be the last element of L;
(8) delete u from L;
(9) C ← ∅;

(10) TRACE(u, new; C);
(11) insert C in front of e(u) in K
(12) od

While we need a few more lines than in 2.3.1 to write down the algorithm, the
new notation clearly reflects its structure in a much better way. Of course,
this is mainly useful if we use a structured language (like PASCAL or C)
for programming, but even for programming in a language which depends on
jump commands it helps first to understand the structure of the algorithm. We
will look at another example in detail in Section 2.6. First, we shall consider
the question of how one might judge the quality of algorithms.

2.5 The complexity of algorithms

Complexity theory studies the time and memory space an algorithm needs as
a function of on the size of the input data; this approach is used to compare
different algorithms for solving the same problem. To do this in a formally
correct way, we would have to be more precise about what an algorithm is; we
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would also have to make clear how input data and the time and space needed
by the algorithm are measured. This could be done using Turing machines
which were first introduced in [Tur36], but that would lead us too far away
from our original intent.

Thus, we will be less formal and simply use the number of vertices or
edges of the relevant (directed) multigraph for measuring the size of the input
data. The time complexity of an algorithm A is the function f , where f(n)
is the maximal number of steps A needs to solve a problem instance having
input data of length n. The space complexity is defined analogously for the
memory space needed. We do not specify what a step really is, but count
the usual arithmetic operations, access to arrays, comparisons, etc. each as
one step. This does only make sense if the numbers in the problem do not
become really big, which is the case for graph-theoretic problems in practice
(but usually not for arithmetic algorithms).

Note that the complexity is always measured for the worst possible case for
a given length of the input data. This is not always realistic; for example, most
variants of the simplex algorithm in linear programming are known to have
exponential complexity although the algorithm works very fast in practice.
Thus it might often be better to use some sort of average complexity. But
then we would have to set up a probability distribution for the input data, and
the whole treatment becomes much more difficult.6 Therefore, it is common
practice to look at the complexity for the worst case.

In most cases it is impossible to calculate the complexity f(n) of an algo-
rithm exactly. We are then content with an estimate of how fast f(n) grows.
We shall use the following notation. Let f and g be two mappings from N to
R+. We write

• f(n) = O(g(n)), if there is a constant c > 0 such that f(n) ≤ cg(n) for all
sufficiently large n;

• f(n) = Ω(g(n)), if there is a constant c > 0 such that f(n) ≥ cg(n) for all
sufficiently large n;

• f(n) = Θ(g(n)), if f(n) = O(g(n)) and f(n) = Ω(g(n)).

If f(n) = Θ(g(n)), we say that f has rate of growth g(n). If f(n) = O(g(n))
or f(n) = Ω(g(n)), then f has at most or at least rate of growth g(n), respec-
tively. If the time or space complexity of an algorithm is O(g(n)), we say that
the algorithm has complexity O(g(n)).

We will usually consider the time complexity only and just talk of the
complexity. Note that the space complexity is at most as large as the time
complexity, because the data taking up memory space in the algorithm have
to be read first.

Example 2.5.1. For a graph G we obviously have |E| = O(|V |2); if G is con-
nected, Theorem 1.2.6 implies that |E| = Ω(|V |). Graphs with |E| = Θ(|V |2)

6How difficult it really is to deal with such a distribution can be seen in the
probabilistic analysis of the simplex algorithm, cf. [Bor87].
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are often called dense, while graphs with |E| = Θ(|V |) are called sparse.
Corollary 1.5.4 tells us that the connected planar graphs are sparse. Note
that O(log |E|) and O(log |V |) are the same for connected graphs, because
the logarithms differ only by a constant factor.

Example 2.5.2. Algorithm 2.3.1 has complexity Θ(|E|), because each edge
is treated at least once and at most twice during the procedure TRACE;
each such examination of an edge is done in a number of steps bounded by a
constant, and constants can be disregarded in the notation we use. Note that
|V | does not appear because of |E| = Ω(|V |), as G is connected.

If, for a problem P , there exists an algorithm having complexity O(f(n)),
we say that P has complexity at most O(f(n)). If each algorithm for P has
complexity Ω(g(n)), we say that P has complexity at least Ω(g(n)). If, in
addition, there is an algorithm for P with complexity O(g(n)), then P has
complexity Θ(g(n)).

Example 2.5.3. The problem of finding Euler tours has complexity Θ(|E|):
we have provided an algorithm with this complexity, and obviously each al-
gorithm for this problem has to consider all the edges to be able to put them
into a sequence forming an Euler tour.

Unfortunately, in most cases it is much more difficult to find lower bounds
for the complexity of a problem than to find upper bounds, because it is
hard to say something non-trivial about all possible algorithms for a problem.
Another problem with the above conventions for the complexity of algorithms
lies in disregarding constants, as this means that the rates of growth are
only asymptotically significant – that is, for very large n. For example, if we
know that the rate of growth is linear – that is O(n) – but the constant is
c = 1, 000, 000, this would not tell us anything about the common practical
cases involving relatively small n. In fact, the asymptotically fastest algorithms
for integer multiplication are only interesting in practice if the numbers treated
are quite large; see, for instance, [AhHU74]. However, for the algorithms we
are going to look at, the constants will always be small (mostly ≤ 10).

In practice, the polynomial algorithms – that is, the algorithms of com-
plexity O(nk) for some k – have proved to be the most useful. Such algorithms
are also called efficient or – following Edmonds [Edm65b] – good. Problems for
which a polynomial algorithm exists are also called easy, whereas problems for
which no polynomial algorithm can exist are called intractable or hard. This
terminology may be motivated by considering the difference between polyno-
mial and exponential rates of growth. This difference is illustrated in Table
2.1 and becomes even more obvious by thinking about the consequences of
improved technology. Suppose we can at present – in some fixed amount of
time, say an hour – solve an instance of size N on a computer, at rate of
growth f(n). What effect does a 1000-fold increase in computer speed then
have on the size of instances we are able to solve? If f(n) is polynomial, say
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nk, we will be able to solve an instance of size cN , where c = 103/k; for ex-
ample, if k = 3, this still means a factor of c = 10. If the rate of growth is
exponential, say ac, there is only an improvement of constant size: we will be
able to solve instances of size N + c, where ac = 1000. For example, if a = 2,
we have c ≈ 9.97; for a = 5, c ≈ 4.29.

Table 2.1. Rates of growth

f(n) n = 10 n = 20 n = 30 n = 50 n = 100

n 10 20 30 50 100
n2 100 400 900 2,500 10,000
n3 1,000 8,000 27,000 125,000 1,000,000
n4 10,000 160,000 810, 000 6, 250, 000 100, 000, 000
2n 1,024 1, 048, 576 ≈ 109 ≈ 1015 ≈ 1030

5n 9, 765, 625 ≈ 1014 ≈ 1021 ≈ 1035 ≈ 1070

We see that, from a practical point of view, it makes sense to consider
a problem well solved only when we have found a polynomial algorithm for
it. Moreover, if there is a polynomial algorithm, in many cases there is even
an algorithm of rate of growth nk with k ≤ 3. Unfortunately, there is a very
large class of problems, the so-called NP-complete problems, for which not
only is no polynomial algorithm known, but there is good reason to believe
that such an algorithm cannot exist. These questions are investigated more
thoroughly in complexity theory; see [GaJo79] or [Pap94]. Most algorithms we
study in this book are polynomial. Nevertheless, we will explain in Section 2.7
what NP-completeness is, and show in Section 2.8 that determining a Hamil-
tonian cycle and the TSP are such problems. In Chapter 15, we will develop
strategies for solving such problems (for example, approximation or complete
enumeration) using the TSP as an example; actually, the TSP is often used
as the standard example for NP-complete problems. We will encounter quite
a few NP-complete problems in various parts of this book.

It has to be admitted that most problems arising from practice tend to
be NP-complete. It is indeed rare to be able to solve a practical problem
just by applying one of the polynomial algorithms we shall treat in this book.
Nevertheless, these algorithms are also very important, since they are regularly
used as sub-routines for solving more involved problems.

2.6 Directed acyclic graphs

In this section, we provide another illustration for the definitions and notation
introduced in the previous sections by considering an algorithm which deals
with directed acyclic graphs, that is, digraphs which do not contain directed
closed trails. This sort of graph occurs in many applications, for example in the
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planning of projects (see 3.6) or for representing the structure of arithmetic
expressions having common parts, see [AhHU83]. First we give a mathematical
application.

Example 2.6.1. Let (M,�) be a partially ordered set, for short, a poset. This
is a set M together with a reflexive, antisymmetric and transitive relation �.
Note that M corresponds to a directed graph G having vertex set M and the
pairs (x, y) with x ≺ y as edges; because of transitivity, G is acyclic.

A common problem is to check whether a given directed graph is acyclic
and, if this is the case, to find a topological sorting of its vertices. That is, we
require an enumeration of the vertices of G (labelling them with the numbers
1, . . . , n, say) such that i < j holds for each edge ij. Using the following
lemma, we shall show that such a sorting exists for every directed acyclic
graph.

Lemma 2.6.2. Let G be a directed acyclic graph. Then G contains at least
one vertex with din(v) = 0.

Proof. Choose a vertex v0. If din(v0) = 0, there is nothing to show. Otherwise,
there is an edge v1v0. If din(v1) = 0, we are done. Otherwise, there exists
an edge v2v1. As G is acyclic, v2 �= v0. Continuing this procedure, we get a
sequence of distinct vertices v0, v1, . . . , vk, . . .. As G has only finitely many
vertices, this sequence has to terminate, so that we reach a vertex v with
din(v) = 0. ��
Theorem 2.6.3. Every directed acyclic graph admits a topological sorting.

Proof. By Lemma 2.6.2, we may choose a vertex v with din(v) = 0. Consider
the directed graph H = G \ v. Obviously, H is acyclic as well and thus can be
sorted topologically, using induction on the number of vertices, say by labelling
the vertices as v2, . . . , vn. Then (v, v2, . . . , vn) is the desired topological sorting
of G. ��
Corollary 2.6.4. Each partially ordered set may be embedded into a linearly
ordered set.

Proof. Let (v1, . . . , vn) be a topological sorting of the corresponding directed
acyclic graph. Then vi ≺ vj always implies i < j, so that v1 ≺ . . . ≺ vn is a
complete linear ordering. ��

Next we present an algorithm which decides whether a given digraph is
acyclic and, if this is the case, finds a topological sorting. We use the same
technique as in the proof of Theorem 2.6.3, that is, we successively delete
vertices with din(v) = 0. To make the algorithm more efficient, we use a list
of the indegrees din(v) and bring it up to date whenever a vertex is deleted;
in this way, we do not have to search the entire graph to find vertices with
indegree 0. Moreover, we keep a list of all the vertices having din(v) = 0. The
following algorithm is due to Kahn [Kah62].
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Algorithm 2.6.5. Let G be a directed graph with vertex set {1, . . . , n}. The
algorithm checks whether G is acyclic; in this case, it also determines a topo-
logical sorting.
Data structures needed

a) adjacency lists A1, . . . , An;
b) a function ind, where ind(v) = din(v);
c) a function topnr, where topnr(v) gives the index of vertex v in the topo-

logical sorting;
d) a list L of the vertices v having ind(v) = 0;
e) a Boolean variable acyclic and an integer variable N (for counting).

Procedure TOPSORT (G; topnr,acyclic)
(1) N ← 1, L ← ∅;
(2) for i = 1 to n do ind(i) ← 0 od;
(3) for i = 1 to n do
(4) for j ∈ Ai do ind(j) ← ind(j) + 1 od
(5) od;
(6) for i = 1 to n do if ind(i) = 0 then append i to L fi od;
(7) while L �= ∅ do
(8) delete the first vertex v from L;
(9) topnr(v) ← N ; N ← N + 1;

(10) for w ∈ Av do
(11) ind(w) ← ind(w) − 1;
(12) if ind(w) = 0 then append w to L fi
(13) od
(14) od;
(15) if N = n + 1 then acyclic ← true else acyclic ← false fi

Theorem 2.6.6. Algorithm 2.6.5 determines whether G is acyclic and con-
structs a topological sorting if this is the case; the complexity is O(|E|) provided
that G is connected.

Proof. The discussion above shows that the algorithm is correct. As G is
connected, we have |E| = Ω(|V |), so that initializing the function ind and the
list L in step (2) and (6), respectively, does not take more than O(|E|) steps.
Each edge is treated exactly once in step (4) and at most once in step (10)
which shows that the complexity is O(|E|). ��

When checking whether a directed graph is acyclic, each edge has to be
treated at least once. This observation immediately implies the following re-
sult.

Corollary 2.6.7. The problem of checking whether a given connected digraph
is acyclic or not has complexity Θ(|E|). ��
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Exercise 2.6.8. Show that any algorithm which checks whether a digraph
given in terms of its adjacency matrix is acyclic or not has complexity at least
Ω(|V |2).

The above exercise shows that the complexity of an algorithm might de-
pend considerably upon the chosen representation for the directed multigraph.

Exercise 2.6.9. Apply Algorithm 2.6.5 to the digraph G in Figure 2.2, and
give an alternative drawing for G which reflects the topological ordering.

2
3

6

1

4 5

7

Fig. 2.2. A digraph

In the remainder of this book, we will present algorithms in less detail.
In particular, we will not explain the data structures used explicitly if they
are clear from the context. Unless stated otherwise, all multigraphs will be
represented by incidence or adjacency lists.

2.7 NP-complete problems

Up to now, we have encountered only polynomial algorithms; problems which
can be solved by such an algorithm are called polynomial or – as in Section 2.5
– easy. Now we turn our attention to another class of problems. To do so, we
restrict ourselves to decision problems, that is, to problems whose solution is
either yes or no. The following problem HC is such a problem; other decision
problems which we have solved already are the question whether a given
multigraph (directed or not) is Eulerian, and the problem whether a given
digraph is acyclic.

Problem 2.7.1 (Hamiltonian cycle, HC). Let G be a given connected
graph. Does G have a Hamiltonian cycle?
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We will see that Problem 2.7.1 is just as difficult as the TSP defined in
Problem 1.4.9. To do so, we have to make an excursion into complexity theory.
The following problem is arguably the most important decision problem.

Problem 2.7.2 (satisfiability, SAT). Let x1, . . . , xn be Boolean variables:
they take values true or false. We consider formulae in x1, . . . , xn in conjunctive
normal form, namely terms C1C2 . . . Cm, where each of the Ci has the form
x′

i + x′
j + . . . with x′

i = xi or x′
i = xi; in other words, each Ci is a disjunction

of some, possibly negated, variables.7 The problem requires deciding whether
any of the possible combinations of values for the xi gives the entire term
C1 . . . Cm the value true. In the special case where each of the Ci consists of
exactly three literals, the problem is called 3-satisfiability (3-SAT).

Most of the problems of interest to us are not decision problems but opti-
mization problems: among all possible structures of a given kind (for example,
for the TSP considered in Section 1.4, among all possible tours), we look for
the optimal one with respect to a certain criterion (for example, for the short-
est tour). We shall solve many such problems: finding shortest paths, minimal
spanning trees, maximal flows, maximal matchings, etc.

Note that each optimization problem gives rise to a decision problem
involving an additional parameter; we illustrate this using the TSP. For a
given matrix W = (wij) and every positive integer M , the associated decision
problem is the question whether there exists a tour π such that w(π) ≤ M .
There is a further class of problems lying in between decision problems and
optimization problems, namely evaluation problems; here one asks for the
value of an optimal solution without requiring the explicit solution itself. For
example, for the TSP we may ask for the length of an optimal tour without
demanding to be shown this tour. Clearly, every algorithm for an optimiza-
tion problem solves the corresponding evaluation problem as well; similarly,
solving an evaluation problems also gives a solution for the associated decision
problem. It is not so clear whether the converse of these statements is true.
But surely an optimization problem is at least as hard as the corresponding
decision problem, which is all we will need to know.8

7We write p for the negation of the logical variable p, p + q for the disjunction

p or q, and pq for the conjunction p and q. The x′
i are called literals, the Ci are

clauses.
8We may solve an evaluation problem quite efficiently by repeated calls of the

associated decision problem, if we use a binary search. But in general, we do not
know how to find an optimal solution just from its value. However, in problems from
graph theory, it is often sufficient to know that the value of an optimal solution can
be determined polynomially. For example, for the TSP we would check in polynomial
time whether there is an optimal solution not containing a given edge. In this way
we can find an optimal tour by sequentially using the algorithm for the evaluation
problem a linear number of times.
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We denote the class of all polynomial decision problems by P (for poly-
nomial).9 The class of decision problems for which a positive answer can be
verified in polynomial time is denoted by NP (for non-deterministic polyno-
mial). That is, for an NP-problem, in addition to the answer yes or no we
require the specification of a certificate enabling us to verify the correctness of
a positive answer in polynomial time. We explain this concept by considering
two examples, first using the TSP. If a possible solution – for the TSP, a tour
– is presented, it has to be possible to check in polynomial time

• whether the candidate has the required structure (namely, whether it is
really a tour, and not, say, just a permutation with several cycles)

• and whether the candidate satisfies the condition imposed (that is, whether
the tour has length w(π) ≤ M , where M is the given bound).

Our second example is the question whether a given connected graph is not
Eulerian. A positive answer can be verified by giving a vertex of odd degree.10

We emphasize that the definition of NP does not demand that a negative
answer can be verified in polynomial time. The class of decision problems for
which a negative answer can be verified in polynomial time is denoted by
Co-NP.11

Obviously, P ⊂ NP ∩ Co-NP, as any polynomial algorithm for a decision
problem even provides the correct answer in polynomial time. On the other
hand, it is not clear whether every problem from NP is necessarily in P or
in Co-NP. For example, we do not know any polynomial algorithm for the
TSP. Nevertheless, we can verify a positive answer in polynomial time by
checking whether the certificate π is a cyclic permutation of the vertices,
calculating w(π), and comparing w(π) with M . However, we do not know
any polynomial algorithm which could check a negative answer for the TSP,
namely the assertion that no tour of length ≤ M exists (for an arbitrary M).
In fact, the questions whether P = NP or NP = Co-NP are the outstanding
questions of complexity theory. As we will see, there are good reasons to
believe that the conjecture P �= NP (and NP �= Co-NP) is true. To this end,
we consider a special class of problems within NP.

A problem is called NP-complete if it is in NP and if the polynomial
solvability of this problem would imply that all other problems in NP are
solvable in polynomial time as well. More precisely, we require that any given

9To be formally correct, we would have to state how an instance of a problem
is coded (so that the length of the input data could be measured) and what an
algorithm is. This can be done by using the concept of a Turing machine introduced
by [Tur36]. For detailed expositions of complexity theory, we refer to [GaJo79],
[LePa81], and [Pap94].

10Note that no analogous certificate is known for the question whether a graph is
not Hamiltonian.

11Thus, for NP as well as for Co-NP, we look at a kind of oracle which presents
some (positive or negative) answer to us; and this answer has to be verifiable in
polynomial time.
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problem in NP can be transformed in polynomial time to the specific problem
such that a solution of this NP-complete problem also gives a solution of
the other, arbitrary problem in NP. We will soon see some examples of such
transformations. Note that NP-completeness is a very strong condition: if we
could find a polynomial algorithm for such a problem, we would prove P =
NP. Of course, there is no obvious reason why any NP-complete problems
should exist. The following celebrated theorem due to Cook [Coo71] provides
a positive answer to this question; for the rather technical and lengthy proof,
we refer to [GaJo79] or [PaSt82].

Result 2.7.3 (Cook’s theorem). SAT and 3-SAT are NP-complete. ��
Once a first NP-complete problem (such as 3-SAT) has been found, other

problems can be shown to be NP-complete by transforming the known NP-
complete problem in polynomial time to these problems. Thus it has to be
shown that a polynomial algorithm for the new problem implies that the given
NP-complete problem is polynomially solvable as well. As a major example,
we shall present a (quite involved) polynomial transformation of 3-SAT to
HC in Section 2.8. This will prove the following result of Karp [Kar72] which
we shall use right now to provide a rather simple example for the method of
transforming problems.

Theorem 2.7.4. HC is NP-complete. ��
Theorem 2.7.5. TSP is NP-complete.

Proof. We have already seen that TSP is in NP. Now assume the existence
of a polynomial algorithm for TSP. We use this hypothetical algorithm to
construct a polynomial algorithm for HC as follows. Let G = (V, E) be a
given connected graph, where V = {1, . . . , n}, and let Kn be the complete
graph on V with weights

wij :=

{
1 for ij ∈ E,

2 otherwise.

Obviously, G has a Hamiltonian cycle if and only if there exists a tour π of
weight w(π) ≤ n (and then, of course, w(π) = n) in Kn. Thus the given
polynomial algorithm for TSP allows us to decide HC in polynomial time;
hence Theorem 2.7.4 shows that TSP is NP-complete. ��
Exercise 2.7.6 (directed Hamiltonian cycle, DHC). Show that it is
NP-complete to decide whether a directed graph G contains a directed Hamil-
tonian cycle.

Exercise 2.7.7 (Hamiltonian path, HP). Show that it is NP-complete to
decide whether a given graph G contains a Hamiltonian path (that is, a path
containing each vertex of G).
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Exercise 2.7.8 (Longest path). Show that it is NP-complete to decide
whether a given graph G contains a path consisting of at least k edges. Prove
that this also holds when we are allowed to specify the end vertices of the
path. Also find an analogous results concerning longest cycles.

Hundreds of problems have been recognized as NP-complete, including
many which have been studied for decades and which are important in prac-
tice. Detailed lists can be found in [GaJo79] or [Pap94]. For none of these
problems a polynomial algorithm could be found in spite of enormous efforts,
which gives some support for the conjecture P �= NP.12 In spite of some theo-
retical progress, this important problem remains open, but at least it has led
to the development of structural complexity theory; see, for instance, [Boo94]
for a survey. Anyway, proving that NP-complete problems are indeed hard
would not remove the necessity of dealing with these problems in practice.
Some possibilities how this might be done will be discussed in Chapter 15.

Finally, we introduce one further notion. A problem which is not neces-
sarily in NP, but whose polynomial solvability would nevertheless imply P =
NP is called NP-hard. In particular, any optimization problem corresponding
to an NP-complete decision problem is an NP-hard problem.

2.8 HC is NP-complete

In this section (which is somewhat technical and may be skipped during the
first reading) we prove Theorem 2.7.4 and show that HC is NP-complete.
Following [GaJo79], our proof makes a detour via another very important NP-
complete graph theoretical problem; a proof which transforms 3-SAT directly
to HC can be found in [PaSt82]. First, a definition. A vertex cover of a graph
G = (V, E) is a subset V ′ of V such that each edge of G is incident with at
least one vertex in V ′.

Problem 2.8.1 (vertex cover, VC). Let G = (V, E) be a graph and k a
positive integer. Does G have a vertex cover V ′ with |V ′| ≤ k?

Obviously, the problem VC is in NP. We prove a further important result
due to Karp [Kar72] and show that VC is NP-complete by transforming 3-
SAT polynomially to VC and applying Result 2.7.3. The technique we employ
is used often for this kind of proof: we construct, for each instance of 3-SAT,
a graph consisting of special-purpose components combined in an elaborate
way. This strategy should become clear during the proofs of Theorem 2.8.2
and Theorem 2.7.4.

Theorem 2.8.2. VC is NP-complete.
12Thus we can presumably read NP-complete also as non-polynomial. However,

one also finds the opposite conjecture P = NP (along with some incorrect attempts
at proving this claim) and the suggestion that the problem might be undecidable.
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Proof. We want to transform 3-SAT polynomially to VC. Thus let C1 . . . Cm

be an instance of 3-SAT, and let x1, . . . , xn be the variables occurring in
C1, . . . , Cm. For each xi, we form a copy of the complete graph K2:

Ti = (Vi, Ei) where Vi = {xi, xi} and Ei = {xixi}.
The purpose of these truth-setting components is to determine the Boolean
value of xi. Similarly, for each clause Cj (j = 1, . . . , m), we form a copy
Sj = (V ′

j , E′
j) of K3:

V ′
j = {c1j , c2j , c3j} and E′

j = {c1jc2j , c1jc3j , c2jc3j}.
The purpose of these satisfaction-testing components is to check the Boolean
value of the clauses. The m+n graphs constructed in this way are the special-
purpose components of the graph G which we will associate with C1 . . . Cm;
note that they merely depend on n and m, but not on the specific structure
of C1 . . . Cm. We now come to the only part of the construction of G which
uses the specific structure, namely connecting the Sj and the Ti by further
edges, the communication edges. For each clause Cj , we let uj , vj , and wj be
the three literals occurring in Cj and define the following set of edges:

E′′
j = {c1juj , c2jvj , c3jwj}.

Finally, we define G = (V, E) as the union of all these vertices and edges:

V :=
n⋃

i=1

Vi ∪
m⋃

j=1

V ′
j and E :=

n⋃
i=1

Ei ∪
m⋃

j=1

E′
j ∪

m⋃
j=1

E′′
j .

Clearly, the construction of G can be performed in polynomial time in n and
m. Figure 2.3 shows, as an example, the graph corresponding to the instance

(x1 + x3 + x4)(x1 + x2 + x4)

of 3-SAT. We now claim that G has a vertex cover W with |W | ≤ k = n+2m
if and only if there is a combination of Boolean values for x1, . . . , xn such that
C1 . . . Cm has value true.

First, let W be such a vertex cover. Obviously, each vertex cover of G has
to contain at least one of the two vertices in Vi (for each i) and at least two of
the three vertices in V ′

j (for each j), since we have formed complete subgraphs
on these vertex sets. Thus W contain at least n + 2m = k vertices, and hence
actually |W | = k. But then W has to contain exactly one of the two vertices
xi and xi and exactly two of the three vertices in Sj , for each i and for each
j. This fact allows us to use W to define a combination w of Boolean values
for the variables x1, . . . , xn as follows. If W contains xi, we set w(xi) = true;
otherwise W has to contain the vertex xi, and we set w(xi) = false.

Now consider an arbitrary clause Cj . As W contains exactly two of the
three vertices in V ′

j , these two vertices are incident with exactly two of the
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three edges in E′′
j . As W is a vertex cover, it has to contain a vertex incident

with the third edge, say c3jwj , and hence W contains the corresponding vertex
in one of the Vi – here the vertex corresponding to the literal wj , that is, to
either xi or xi. By our definition of the truth assignment w, this literal has
the value true, making the clause Cj true. As this holds for all j, the formula
C1 . . . Cm also takes the Boolean value true under w.

c11 c31 c12 c32

x1 x1 x2 x2 x3 x3 x4 x4

c21

c22

Fig. 2.3. An instance of VC

Conversely, let w be an assignment of Boolean values for the variables
x1, . . . , xn such that C1 . . . Cm takes the value true. We define a subset W ⊂ V
as follows. If w(xi) = true, W contains the vertex xi, otherwise W contains
xi (for i = 1, . . . , n). Then all edges in Ei are covered. Moreover, at least one
edge ej of E′′

j is covered (for each j = 1, . . . , m), since the clause Cj takes the
value true under w. Adding the end vertices in Sj of the other two edges of
E′′

j to W , we cover all edges of E′′
j and of E′

j so that W is indeed a vertex
cover of cardinality k. ��
Exercise 2.8.3. An independent set (IS) (or stable set) in a graph G = (V, E)
is a subset U of the vertex set V such that no two vertices in U are adjacent. A
clique in G is a subset C of V such that all pairs of vertices in C are adjacent.
Prove that the following two problems are NP-complete by relating them to
the problem VC.
(a) Independent set. Does a given graph G contain an independent set of

cardinality ≥ k?
(b) Clique. Does a given graph G contain a clique of cardinality ≥ k?

In view of from Theorem 2.8.2, we may now prove the NP-completeness of
HC by transforming VC polynomially to HC; as before, we follow [GaJo79].
Let G = (V, E) be a given instance of VC, and k a positive integer. We
have to construct a graph G′ = (V ′, E′) in polynomial time such that G′ is
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Hamiltonian if and only if G has a vertex cover of cardinality at most k. Again,
we first define some special-purpose components. There are k special vertices
a1, . . . , ak called selector vertices, as they will be used to select k vertices from
V . For each edge e = uv ∈ E, we define a subgraph Te = (V ′

e , E′
e) with 12

vertices and 14 edges as follows (see Figure 2.4):

V ′
e := {(u, e, i) : i = 1, . . . , 6} ∪ {(v, e, i) : i = 1, . . . , 6};

E′
e := {{(u, e, i), (u, e, i + 1)} : i = 1, . . . , 5}

∪ {{(v, e, i), (v, e, i + 1)} : i = 1, . . . , 5}
∪ {{(u, e, 1), (v, e, 3)}, {(u, e, 3), (v, e, 1)}}
∪ {{(u, e, 4), (v, e, 6)}, {(u, e, 6), (v, e, 4)}}.

This cover-testing component Te will make sure that the vertex set W ⊂ V
determined by the selectors a1, . . . , ak contains at least one of the vertices
incident with e. Only the outer vertices (u, e, 1), (u, e, 6), (v, e, 1) and (v, e, 6)
of Te will be incident with further edges of G′; this forces each Hamiltonian
cycle of G′ to run through each of the subgraphs Te using one of the paths
shown in Figure 2.5, as the reader can (and should) easily check.

(u, e, 6)

(u, e, 5)

(u, e, 4)

(u, e, 3)

(u, e, 2)

(u, e, 1)

(v, e, 6)

(v, e, 5)

(v, e, 4)

(v, e, 3)

(v, e, 2)

(v, e, 1)

Fig. 2.4. Cover-testing component

Now we describe the remaining edges of G′. For each vertex v ∈ V , we label the
edges incident with v as ev1, . . . , evdeg v and connect the deg v corresponding
graphs Tevi

by the following edges:

E′
v := {{(v, evi, 6), (v, evi+1, 1)} : i = 1, . . . ,deg v − 1}.

These edges create a path in G′ which contains precisely the vertices (x, y, z)
with x = v, see Figure 2.6. Finally, we connect the start and end vertices of
all these paths to each of the selectors aj :

E′′ := {{aj , (v, ev1, 1)} : j = 1, . . . , k} ∪ {{aj , (v, evdeg v, 6)} : j = 1, . . . k}.
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Then G′ = (V ′, E′) is the union of all these vertices and edges:

V ′ := {a1, . . . , ak} ∪
⋃
e∈E

V ′
e and E′ :=

⋃
e∈E

E′
e ∪

⋃
v∈V

E′
v ∪ E′′.

Obviously, G′ can be constructed from G in polynomial time. Now suppose
that G′ contains a Hamiltonian cycle K. Let P be a trail contained in K
beginning at a selector aj and not containing any further selector. It is easy
to see that P runs through exactly those Te which correspond to all the edges
incident with a certain vertex v ∈ V (in the order given in Figure 2.6). Each
of the Te appears in one of the ways shown in Figure 2.5, and no vertices from
other cover-testing components Tb (not corresponding to edges f incident
with v) can occur. Thus the k selectors divide the Hamiltonian cycle K into k
trails P1, . . . , Pk, each corresponding to a vertex v ∈ V . As K contains all the
vertices of G′ and as the vertices of an arbitrary cover-testing component Tf

can only occur in K by occurring in a trail corresponding to one of the vertices
incident with f , the k vertices of V determined by the trails P1, . . . , Pk form
a vertex cover W of G.

Fig. 2.5.

Conversely, let W be a vertex cover of G, where |W | ≤ k. We may assume
|W | = k (because W remains a vertex cover if arbitrary vertices are added
to it). Write W = {v1, . . . , vk}. The edge set of the desired Hamiltonian cycle
K is determined as follows. For each edge e = uv of G we choose the thick
edges in Te drawn in one of the three graphs of Figure 2.5, where our choice
depends on the intersection of W with e as follows:
• if W ∩ e = {u}, we choose the edges of the graph on the left;
• if W ∩ e = {v}, we choose the edges of the graph on the right;
• if W ∩ e = {u, v}, we choose the edges of the graph in the middle.
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(v, ev1, 6)

(v, ev1, 1)

(v, ev2, 1)

(v, ev2, 6)

(v, evdeg v, 6)

(v, evdeg v, 1)

Fig. 2.6.

Moreover, K contains all edges in E′
vi

(for i = 1, . . . , k) and the edges

{ai, (vi, (evi)1, 1)} for i = 1, . . . , k;
{ai+1, (vi, (evi)deg vi

, 6)} for i = 1, . . . , k − 1; and
{a1, (vk, (evk)deg vk

, 6)}.

The reader may check that K is indeed a Hamiltonian cycle for G′. ��



3

Shortest Paths

So many paths that wind and wind. . .

Ella Wheeler Wilcox

One of the most common applications of graphs in everyday life is representing
networks for traffic or for data communication. The schematic map of the
German motorway system in the official guide Autobahn Service, the railroad
or bus lines in some public transportation system, and the network of routes
an airline offers are routinely represented by graphs. Therefore it is obviously
of great practical interest to study paths in such graphs. In particular, we
often look for paths which are good or even best in some respect: sometimes
the shortest or the fastest route is required, sometimes we want the cheapest
path or the one which is safest – for example, we might want the route where
we are least likely to encounter a speed-control installation. Thus we will study
shortest paths in graphs and digraphs in this chapter; as we shall see, this is
a topic whose interest extends beyond traffic networks.

3.1 Shortest paths

Let G = (V, E) be a graph or a digraph on which a mapping w : E → R is
defined. We call the pair (G, w) a network; the number w(e) is called the length
of the edge e. Of course, this terminology is not intended to exclude other
interpretations such as cost, duration, capacity, weight, or probability; we
will encounter several examples later. For instance, in the context of studying
spanning trees, we usually interpret w(e) as the weight of the edge e. But
in the present chapter the reader should keep the intuitive interpretation of
distances in a network of streets in mind. This naturally leads to the following
definition. For each walk W = (e1, . . . , en), the length of W is w(W ) :=
w(e1)+ . . .+w(en); of course, W has to be directed for digraphs. The distance
d(a, b) between two vertices a and b in G is the minimum over all lengths
of walks starting at a and ending at b. There are two difficulties with this
definition: first, b might not be accessible from a, and second, a minimum
might fail to exist. The first problem is solved by defining d(a, b) = ∞ if b is
not accessible from a. The second problem arises from the possible existence
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of cycles of negative length. For example, in the network shown in Figure 3.1,
we can find a walk of arbitrary negative length from a to b by using the cycle
(x, y, z, x) as often as needed. This problem can be avoided by restricting the
definition to trails. Most of the networks we will deal with will not contain
any cycles of negative length; then the distance between two vertices is well-
defined even if we allow walks in the definition.

a
x y

b

z

1 −3 1

1 1

Fig. 3.1. A network

The reader might wonder why negative lengths are allowed at all and
whether they occur in practice. The answer is yes, they do occur, as the
following example taken from [Law76] shows; this also provides a first example
for another interpretation of the length of an edge.

Example 3.1.1. A trading ship travels from port a to port b, where the
route (and possible intermediary ports) may be chosen freely. The routes are
represented by trails in a digraph G, and the length w(e) of an edge e = xy
signifies the profit gained by going from x to y. For some edges, the ship
might have to travel empty so that w(e) is negative for these edges: the profit
is actually a loss. Replacing w by −w in this network, the shortest path
represents the route which yields the largest possible profit.

Clearly, the practical importance of the preceding example is negligible.
We will encounter genuinely important applications later when treating flows
and circulations, where the existence of cycles of negative length – and finding
such cycles – will be an essential tool for determining an optimal circulation.

Thus, we allow negative values for w in general and define distances as
explained above. A shortest path from a to b then is a trail (directed in the
case of digraphs) of length d(a, b) from a to b. If G does not contain any
cycles of negative length, we can also talk of shortest walks. Note that always
d(a, a) = 0, since an empty sum is considered to have value 0, as usual. If we
talk of shortest paths and distances in a graph (or a digraph) without giving
any explicit length function, we always use the length function which assigns
length w(e) = 1 to each edge e.

We now give an example for an interpretation of shortest paths which
allows us to formulate a problem (which at first glance might seem completely
out of place here) as a problem of finding shortest paths in a suitable graph.

Example 3.1.2. In many applications, the length of an edge signifies the
probability of its failing – for instance, in networks of telephone lines, or broad-
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casting systems, in computer networks, or in transportation routes. In all these
cases, one is looking for the route having the highest probability for not fail-
ing. Let p(i, j) be the probability that edge (i, j) does not fail. Under the –
not always realistic – assumption that failings of edges occur independently of
each other, p(e1) . . . p(en) gives the probability that the walk (e1, . . . , en) can
be used without interruption. We want to maximize this probability over all
possible walks with start vertex a and end vertex b. Note first that the maxi-
mum of the product of the p(e) is reached if and only if the logarithm of the
product, namely log p(e1)+ . . .+log p(en), is maximal. Moreover, log p(e) ≤ 0
for all e, since p(e) ≤ 1. We now put w(e) = − log p(e); then w(e) ≥ 0 for all
e, and we have to find a walk from a to b for which w(e1) + . . . + w(en)
becomes minimal. Thus our problem is reduced to a shortest path problem.
In particular, this technique solves the problem mentioned in our introduc-
tory remarks – finding a route where it is least likely that our speed will be
controlled by the police – provided that we know for all edges the probability
of a speed check.

In principle, a technique for finding shortest paths can also be used to
find longest paths: replacing w by −w, a longest path with respect to w is
just a shortest path with respect to −w. However, good algorithms for finding
shortest paths are known only for the case where G does not contain any
cycles of negative length. In the general case we basically have to look at
all possible paths. Note that replacing w by −w in general creates cycles of
negative length.

Exercise 3.1.3 (knapsack problem). Consider n given objects, each of
which has an associated weight aj and also a value cj , where both the aj

and the cj are positive integers. We ask for a subset of these objects such that
the sum of their weights does not exceed a certain bound b and such that the
sum of their values is maximal. Packing a knapsack provides a good example,
which explains the terminology used. Reduce this problem to finding a longest
path in a suitable network. Hint: Use an acyclic network with a start vertex
s, an end vertex t, and b + 1 vertices for each object.

3.2 Finite metric spaces

Before looking at algorithms for finding shortest paths, we want to show that
there is a connection between the notions of distance and metric space. We
recall that a metric space is a pair (X, d) consisting of a set X and a mapping
d : X2 → R+

0 satisfying the following three conditions for all x, y, z ∈ X:

(MS1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y;
(MS2) d(x, y) = d(y, x);
(MS3) d(x, z) ≤ d(x, y) + d(y, z).
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The value d(x, y) is called the distance between x and y; the inequality in
(MS3) is referred to as the triangle inequality. The matrix D = (d(x, y))x,y∈X

is called the distance matrix of (X, d).
Now consider a network (G, w), where G is a graph and w is a positive

valued mapping w : E → R+. Note that a walk with start vertex a and end
vertex b which has length d(a, b) – where the distance between a and b is
defined as in Section 3.1 – is necessarily a path. The following result states
that our use of the term distance in this context is justified; the simple proof
is left to the reader.

Lemma 3.2.1. Let G = (V, E) be a connected graph with a positive length
function w. Then (V, d) is a finite metric space, where the distance function
d is defined as in Section 3.1. ��

Lemma 3.2.1 suggests the question whether any finite metric space can be
realized by a network. More precisely, let D be the distance matrix of a finite
metric space (V, d). Does a graph G = (V, E) with length function w exist
such that its distance matrix with respect to w agrees with D? Hakimi and
Yau [HaVa64] answered this question as follows.

Proposition 3.2.2. Any finite metric space can be realized by a network with
a positive length function.

Proof. Let (V, d) be a finite metric space. Choose G to be the complete graph
with vertex set V , and let the length function w be the given distance function
d. By d′ we denote the distance in the network (G, w) as defined in Section
3.1; we have to show d = w = d′. Thus let W = (e1, . . . , en) be a trail with
start vertex a and end vertex b. For n ≥ 2, an iterative application of the
triangle inequality yields:

w(W ) = w(e1) + . . . + w(en) = d(e1) + . . . + d(en) ≥ d(a, b).

As the one edge path a – b has length d(a, b), we are finished. ��
Exercise 3.2.3. Find a condition under which a finite metric space can be
realized by a graph, that is, by a network all of whose edges have length 1;
see [KaCh65].

We have only considered the case where a metric space (V, d) is realized
by a network on the vertex set V . More generally, we could allow a network
on a graph G = (V ′, E) with V ⊂ V ′, where the distance dG(a, b) in G for
two vertices a, b of V is the same as their distance d(a, b) in the metric space.
Such a realization is called optimal if the sum of all lengths of edges is minimal
among all possible realizations. It is not obvious that such optimal realizations
exist, but they do; see [Dre84] and [ImSZ84].
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Example 3.2.4. The following simple example shows that the realization
given in the proof of Proposition 3.2.2 is not necessarily optimal. Let d(a, b) =
d(b, c) = 4 and d(a, c) = 6. The realization on K3 has total length 14, whereas
there is a realization on four vertices with total length just seven:

a b

c

4

6 4

a b

c

d3 1

3

Fig. 3.2. Two realizations of a distance matrix

Realizations of metric spaces by networks have been intensively studied.
In particular, the question whether a given metric space can be realized on a
tree has sparked considerable interest; such a realization is necessarily optimal
[HaVa64]. Bunemann [Bun74] proved that a realization on a tree is possible if
and only if the following condition holds for any four vertices x, y, z, t of the
given metric space:

d(x, y) + d(z, t) ≤ max (d(x, z) + d(y, t), d(x, t) + d(y, z)).

A different characterization (using ultra-metrics) is due to [Ban90]. We also
refer the reader to [Sim88] and [Alt88]. The problem of finding an optimal
realization is difficult in general: it is NP-hard [Win88].

3.3 Breadth first search and bipartite graphs

We now turn to examining algorithms for finding shortest paths. All tech-
niques presented here also apply to multigraphs, but this generalization is of
little interest: when looking for shortest paths, out of a set of parallel edges
we only use the one having smallest length. In this section, we consider a
particularly simple special case, namely distances in graphs (where each edge
has length 1). The following algorithm was suggested by Moore [Moo59] and
is known as breadth first search, or, for short, BFS. It is one of the most
fundamental methods in algorithmic graph theory.

Algorithm 3.3.1 (BFS). Let G be a graph or digraph given by adjacency
lists Av. Moreover, let s be an arbitrary vertex of G and Q a queue.1 The
vertices of G are labelled with integers d(v) as follows:

1Recall that a queue is a data structure for which elements are always appended
at the end, but removed at the beginning (first in – first out). For a discussion of
the implementation of queues we refer to [AhHU83] or [CoLR90].
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Procedure BFS(G, s; d)

(1) Q ← ∅; d(s) ← 0;
(2) append s to Q;
(3) while Q �= ∅ do
(4) remove the first vertex v from Q;
(5) for w ∈ Av do
(6) if d(w) is undefined
(7) then d(w) ← d(v) + 1;
(8) append w to Q
(9) fi

(10) od
(11) od

Theorem 3.3.2. Algorithm 3.3.1 has complexity O(|E|). At the end of the
algorithm, every vertex t of G satisfies

d(s, t) =
{

d(t) if d(t) is defined,
∞ otherwise.

Proof. Obviously, each edge is examined at most twice by BFS (in the directed
case, only once), which yields the assertion about the complexity. Moreover,
d(s, t) = ∞ if and only if t is not accessible from s, and thus d(t) stays
undefined throughout the algorithm. Now let t be a vertex such that d(s, t) �=
∞. Then d(s, t) ≤ d(t), since t was reached by a path of length d(t) from s.
We show that equality holds by using induction on d(s, t). This is trivial for
d(s, t) = 0, that is, s = t. Now assume d(s, t) = n + 1 and let (s, v1, . . . , vn, t)
be a shortest path from s to t. Then (s, v1, . . . , vn) is a shortest path from
s to vn and, by our induction hypothesis, d(s, vn) = n = d(vn). Therefore
d(vn) < d(t), and thus BFS deals with vn before t during the while-loop. On
the other hand, G contains the edge vnt so that BFS certainly reaches t when
examining the adjacency list of vn (if not earlier). This shows d(t) ≤ n + 1
and hence d(t) = n + 1. ��
Corollary 3.3.3. Let s be a vertex of a graph G. Then G is connected if and
only if d(t) is defined for each vertex t at the end of BFS(G, s; d). ��

Note that the statement analogous to Corollary 3.3.3 for directed graphs is
not true. If we want to check whether a given digraph is connected, we should
apply BFS to the corresponding graph |G|. Applying BFS(G, s; d) for each
vertex s of a digraph allows us to decide whether G is strongly connected;
clearly, this holds if and only if BFS(G, s; d) always reaches all vertices t and
assigns values to d(t). However, this method is not very efficient, as it has
complexity O(|V ||E|). In Chapter 8, we will see a much better technique
which has complexity O(|E|).
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For an example, let us consider how BFS runs on the digraph G drawn
in Figure 3.3. To make the algorithm deterministic, we select the vertices in
alphabetical order in step (5) of the BFS. In Figures 3.4 and 3.5, we illustrate
the output of BFS both for G and the associated graph |G|. To make things
clearer, we have drawn the vertices in levels according to their distance to s;
also, we have omitted all edges leading to vertices already labelled. Thus all
we see of |G| is a spanning tree , that is, a spanning subgraph of G which
is a tree. This kind of tree will be studied more closely in Chapter 4. Note
that distances in G and in |G| do not always coincide, as was to be expected.
However, we always have dG(s, t) ≥ d|G|(s, t).
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Fig. 3.3. A digraph G
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Fig. 3.4. BFS-tree for G

Exercise 3.3.4. Design a BFS-based algorithm COMP(G) which determines
the connected components of a graph G.
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Fig. 3.5. BFS-tree for |G|

Next we consider a particularly important class of graphs, namely the bi-
partite graphs. As we shall see soon, BFS gives an easy way to decide whether
or not a graph belongs to this class. Here a graph G = (V, E) is said to be
bipartite if there is a partition V = S

.∪ T of its vertex set such that the sets
of edges E|S and E|T are empty, that is, each edge of G is incident with one
vertex in S and one vertex in T . The following theorem gives a very useful
characterization of these graphs.

Theorem 3.3.5. A graph G is bipartite if and only if it does not contain any
cycles of odd length.

Proof. First suppose that G is bipartite and let V = S
.∪ T be the corre-

sponding partition of its vertex set. Consider an arbitrary closed trail in G,
say

C : v1 v2 . . . vn v1.

We may assume v1 ∈ S. Then

v2 ∈ T, v3 ∈ S, v4 ∈ T, . . . , vn ∈ T, v1 ∈ S,

as there are no edges within S or T . Hence n must be even.
Conversely, suppose that G does not contain any cycles of odd length.

We may assume that G is connected. Choose some vertex x0. Let S be the
set of all vertices x having even distance d(x, x0) from x0, and let T be the
complement of S. Now suppose that there is an edge xy in G with x, y ∈ S.
Let Wx and Wy be shortest paths from x0 to x and y, respectively. By our
definition of S, both these paths have even length. Let us denote the last
common vertex of Wx and Wy by z (traversing both paths starting at x0),
and call their final parts (leading from z to x and y, respectively) W ′

x and
W ′

y. Then it is easily seen that
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x
W ′

x z
W ′

y
y

xy
x

is a cycle of odd length in G, a contradiction. Similarly, G cannot contain an
edge xy with x, y ∈ T . Hence S

.∪ T is a partition of V such that there are no
edges within S or T , and G is bipartite. ��

The proof of Theorem 3.3.5 shows how we may use the distances d(s, t)
in G (from a given start vertex s) for finding an appropriate partition of the
vertex set of a given bipartite graph G. These distances can be determined
using BFS; of course, we should modify Algorithm 3.3.1 in such a way that
it detects cycles of odd length, in case G is not bipartite. This is actually
rather simple: when BFS examines an edge e for the first time, a cycle of odd
length containing e exists if and only if e has both its vertices in the same
level. This gives us the desired criterion for checking whether G is bipartite
or not; moreover, if G is bipartite, the part of G determined by s consists of
those vertices which have even distance from s. These observations lead to
the following algorithm and the subsequent theorem.

Algorithm 3.3.6. Let G be a connected graph and s a vertex of G.
Procedure BIPART(G, s; S, T ,bip)

(1) Q ← ∅, d(s) ← 0, bip ← true, S ← ∅;
(2) append s to Q;
(3) while Q �= ∅ and bip = true do
(4) remove the first vertex v of Q;
(5) for w ∈ Av do
(6) if d(w) is undefined
(7) then d(w) ← d(v) + 1; append w to Q
(8) else if d(v) = d(w) then bip ← false fi
(9) fi

(10) od
(11) od;
(12) if bip = true then for v ∈ V do
(13) if d(v) ≡ 0 (mod 2) then S ← S ∪ {v} fi
(14) od;
(15) T ← V \ S
(16) fi

Theorem 3.3.7. Algorithm 3.3.6 checks with complexity O(|E|) whether a
given connected graph G is bipartite; if this is the case, it also determines the
corresponding partition of the vertex set. ��
Exercise 3.3.8. Describe a BFS-based algorithm which finds with complexity
O(|V ||E|) a shortest cycle in – and thus the girth of – a given graph G.
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The problem of finding a shortest cycle was extensively studied by Itai and
Rodeh [ItRo78] who also treated the analogous problem for directed graphs.
The best known algorithm has a complexity of O(|V |2); see [YuZw97]. BFS
can also be used to find a shortest cycle of even or odd length, respectively;
see [Mon83].

3.4 Bellman’s equations and acyclic digraphs

We now turn to the problem of determining shortest paths in a general net-
work; actually, all known algorithms for this problem even find a shortest path
from the start vertex s to each vertex t which is accessible from s. Choosing
t in a special way does not decrease the complexity of the algorithms. As
agreed in Section 3.1, we always assume that G does not contain any cycles of
negative length. Moreover, we assume from now on that G is a directed graph
so that all paths used are also directed.2

Without loss of generality, we may assume that G has vertex set V =
{1, . . . , n}. Let us write wij := w(ij) if G contains the edge ij, and wij = ∞
otherwise. Furthermore, let ui denote the distance d(s, i), where s is the start
vertex; in most cases, we will simply take s = 1. Now any shortest path from s
to i has to contain a final edge ki, and deleting this edge yields a shortest path
from s to k. Hence the distances ui have to satisfy the following system of
equations due to Bellman [Bel58], where we assume for the sake of simplicity
that s = 1.

Proposition 3.4.1 (Bellman’s equations). Let s = 1. Then

(B) u1 = 0 and ui = min {uk + wki : i �= k} for i = 2, . . . , n. �

We will now show that the system of equations (B) has a unique solution
– namely the distances ui in G – provided that G contains only cycles of
positive length and that each vertex is accessible from 1. To this purpose, let
ui (i = 1, . . . , n) be any solution of (B) and choose some vertex j �= 1. We
want to construct a path of length uj from 1 to j. To do so, we first choose
some edge kj with uj = uk +wkj , then an edge ik with uk = ui +wik, etc. Let
us show that this construction cannot yield a cycle. Suppose, to the contrary,
we were to get a cycle, say

C : v1 v2 . . . vm v1.

Then we would have the following equations which imply w(C) = 0, a con-
tradiction to our assumption that G contains cycles of positive length only:

2For nonnegative length functions, the undirected case can be treated by consid-

ering the complete orientation
→
G instead of G. If we want to allow edges of negative

length, we need a construction which is considerably more involved, see Section 14.6.
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uv1 = uvm
+ wvmv1

= uvm−1 + wvm−1vm + wvmv1

= . . .

= uv1 + wv1v2 + . . . + wvmv1 .

Thus our construction can only stop at the special vertex 1, yielding a path
from 1 to j. Also, for each vertex i occurring on this path, the part of the path
leading to i has length ui. Continuing in this way for all other vertices not yet
occurring in the path(s) constructed so far – where we construct a new path
backward only until we reach some vertex on one of the paths constructed
earlier – we obtain a directed spanning tree with root 1. In particular, we
may apply this technique to the distances in G, since they satisfy Bellman’s
equations. This proves the following result.

Theorem 3.4.2. If 1 is a root of G and if all cycles of G have positive length
with respect to w, then G contains a spanning arborescence with root 1 for
which the path from 1 to any other vertex in G always is a shortest path. ��

A spanning arborescence with root s is usually called a shortest path tree
for the network (G, w) if, for each vertex v, the path from s to v in T has
length d(s, v); we will often use the shorter term SP-tree. Thus Theorem 3.4.2
shows that an SP-tree exists provided that all cycles of G have positive length
with respect to w.

Now let u1, . . . , un be the distances in G, and let u′
1, . . . , u

′
n be a further

solution of (B). Suppose uj �= u′
j for some j. The above construction shows

that u′
j is the length of some – not necessarily shortest – path from 1 to j. As

uj = d(1, j), this means u′
j > uj . Let kj be the last edge in a path of length u′

j

from 1 to j. By induction, we may assume uk = u′
k. But then u′

j > u′
k + wkj

which contradicts (B). Hence uj = u′
j for all j = 1, . . . , n, proving the desired

uniqueness result.

Theorem 3.4.3. If 1 is a root of G and if all cycles of G have positive length
with respect to w, then Bellman’s equations have a unique solution, namely
the distances uj = d(1, j). ��

In view of the preceding results, we have to solve the system of equations
(B). We begin with the simplest possible case, where G is an acyclic digraph.
As we saw in Section 2.6, we can find a topological sorting of G in O(|E|)
steps. After having executed TOPSORT, let us replace each vertex v by its
number topnr(v). Then every edge ij in G satisfies i < j, and we may simplify
Bellman’s equations as follows:

u1 = 0 and ui = min {uk + wki : k = 1, . . . , i − 1} for i = 2, . . . , n.

Obviously, this system of equations can be solved recursively in O(|E|) steps
if we use backward adjacency lists, where each list contains the edges with a
common head. This proves the following result.
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Theorem 3.4.4. Let N be a network on an acyclic digraph G with root s.
Then one can construct a shortest path tree with root s in O(|E|) steps. ��

Mehlhorn and Schmidt [MeSc86] found a larger class of graphs (contain-
ing the acyclic digraphs) for which with complexity O(|E|) it is possible to
determine the distances with respect to a given vertex.

Exercise 3.4.5. Show that, under the same conditions as in Theorem 3.4.4,
we can also with complexity O(|E|) determine a system of longest paths from
s to all other vertices. Does this yield an efficient algorithm for the knapsack
problem of Exercise 3.1.3? What happens if we drop the condition that the
graph should be acyclic?

Let us return to SP-trees again. We want to prove the following important
strengthening of Theorem 3.4.2:

Theorem 3.4.6. Let G be a digraph with root s, and let w : E → R be a length
function on G. If the network (G, w) does not contain any directed cycles of
negative length, then there exists an SP-tree with root s for (G, w).

Proof. Let v �= s be an arbitrary vertex of G. By hypothesis, v is accessible
from s; let W be a trail of shortest length d(s, v) from s to v. As (G, w) does
not contain any directed cycles of negative length, W is even a shortest walk
from s to v. Now let u be the last vertex on W before v, so that the final edge
of W is e = uv. Then W \ e has to be a shortest trail from s to u: if W ′ were
a trail from s to u shorter than W \ e, then W ′ e would be a shorter walk
from s to v than W . Hence

d(s, v) = d(s, u) + w(uv). (3.1)

Thus we may, for each vertex v �= s, choose an edge e = ev = uv satisfying
condition (3.1). This gives |V | − 1 edges which together form a spanning
arborescence T of G with root s.3 It is now easy to see that the unique path
Pt from s to v in T always has length d(s, v): this follows by induction on
the number of edges contained in Pt, using the fact that all edges of T satisfy
condition (3.1). Thus T is the desired SP-tree for (G, w). ��
Exercise 3.4.7. Show that the condition that no cycles of negative length
exist is necessary for proving Theorem 3.4.6: if (G, w) contains a directed
cycle of negative length, then thereis no SP-tree for (G, w).

Exercise 3.4.8. Let T be a spanning arborescence with root s in a network
(G, w) which does not contain any directed cycles of negative length. Show
that T is an SP-tree if and only if the following condition holds for each edge
e = uv of G:

dT (s, v) ≤ dT (s, u) + w(uv), (3.2)

where dT (s, u) denotes the distance from s to u in the network (T, w|T ).
3The reader should check this for himself as an exercise; a formal proof can be

found in Lemma 4.8.1.
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3.5 An application: Scheduling projects

We saw in Exercise 3.4.5 that it is easy to find longest paths in an acyclic
digraph. We will use this fact to solve a rather simple instance of the problem
of making up a schedule for a project. If we want to carry out a complex project
– such as, for example, building a dam, a shopping center or an airplane – the
various tasks ought to be well coordinated to avoid loss of time and money.
This is the goal of network planning, which is, according to [Mue73] “the
tool from operations research used most.” [Ta92] states that these techniques
‘enjoy tremendous popularity among practitioners in the field’. We restrict
ourselves to the simple case where we have restrictions on the chronological
sequence of the tasks only: there are some tasks which we cannot begin before
certain others are finished. We are interested in the shortest possible time the
project takes, and would like to know the points of time when each of the tasks
should be started. Two very similar methods to solve this problem, namely the
critical path method (CPM) and the project evaluation and review technique
(PERT) were developed between 1956 and 1958 by two different groups, cf.
[Ta92] and [Mue73]. CPM was introduced by E. I. du Pont de Nemours &
Company to help schedule construction projects, and PERT was developed
by Remington Rand for the U.S. Navy to help schedule the research and
development activities for the Polaris missile program. CPM-PERT is based
on determining longest paths in an acyclic digraph. We shall use a formulation
where the activities in the project are represented by vertices; alternatively,
one could also represent them by arcs, cf. [Ta92].

First, we assign a vertex i ∈ {1, . . . , N} of a digraph G to each of the N
tasks of our project. We let ij be an edge of G if and only if task i has to be
finished before beginning task j. The edge ij then has length wij = di equal
to the time task i takes. Note that G has to be acyclic, because otherwise
the tasks in a cycle in G could never be started. As we have seen in Lemma
2.6.2, G contains at least one vertex v with din(v) = 0 and, analogously, at
least one vertex w with dout(w) = 0. We introduce a new vertex s (the start
of the project) and add edges sv for all vertices v with din(v) = 0; similarly,
we introduce a new vertex z (the end of the project) and add edges wz for
all vertices w with dout(w) = 0. All the new edges sv have length 0, whereas
the edges wz are given length dw. In this way we get a larger digraph H with
root s; by Theorem 2.6.3, we may assume H to be topologically sorted.

Now we denote the earliest possible point of time at which we could start
task i by ti. As all the tasks immediately preceding i have to be finished
before, we get the following system of equations:

(CPM) ts = 0 and ti = max {tk + wki : ki an edge in H} .

This system of equations is analogous to Bellman’s equations and describes
the longest paths in H, compare Exercise 3.4.5. As in Theorem 3.4.3, (CPM)
has a unique solution which again is easy to calculate recursively, since H is
topologically sorted and thus only contains edges ij with i < j. The minimal
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amount of time the project takes is the length T = tz of a longest path from
s to z. If the project is actually to be finished at time T , the latest point of
time Ti where we can still start task i is given recursively by

Tz = T and Ti = min {Tj − wij : ij an edge in H} .

Thus Tz − Ti is the length of a longest path from i to z. Of course, we should
get Ts = 0, which is useful for checking our calculations. The difference mi =
Ti − ti between the earliest point of time and the latest point of time for
beginning task i is called float or slack. All tasks i having float mi = 0 are
called critical, because they have to be started exactly at the point of time
Ti = ti, as otherwise the whole project would be delayed. Note that each
longest path from s to z contains critical tasks only; for that reason each such
path is called a critical path for H. In general, there will be more than one
critical path.

In practice, H will not contain all edges ij for which i has to be finished
before j, but only those edges for which i is an immediate predecessor of j
so that there are no intermediate tasks between i and j. As an example, let
us consider a simplified schedule for building a house. First, we need a list of
the tasks, the amount of time they take, and which tasks have to be finished
before which other tasks; this information can be found in Table 3.2. The
corresponding digraph is shown in Figure 3.6. We have drawn the edges as
undirected edges to make the figure somewhat simpler: all edges are to be
considered as directed from left to right.

The way the digraph is drawn in Figure 3.6, it is not necessary to state a
topological sorting of the vertices explicitly; see Exercise 3.5.2. Using (CPM),
we calculate consecutively

ts = 0, t1 = 0, t2 = 0, t3 = 3, t4 = 5, t5 = 7, t8 = 7,

t6 = 14, t11 = 14, t13 = 17, t7 = 17, t9 = 18, t10 = 18,

t12 = 20, t14 = 22, t15 = 25, t16 = 28, T = tz = 33.

Similarly, we compute the Ti and the floats mi:

Tz = 33, mz = 0; T16 = 28, m16 = 0; T15 = 25, m15 = 0;
T12 = 29, m12 = 9; T14 = 22, m14 = 0; T9 = 27, m9 = 9;
T10 = 21, m10 = 3; T7 = 20, m7 = 3; T13 = 17, m13 = 0;
T6 = 17, m6 = 3; T11 = 14, m11 = 0; T5 = 7, m5 = 0;
T8 = 18, m8 = 11; T4 = 5, m4 = 0; T3 = 3, m3 = 0;
T1 = 0, m1 = 0; T2 = 1, m2 = 1; Ts = 0, ms = 0.

Thus the critical tasks are s, 1, 3, 4, 5, 11, 13, 14, 15, 16, z, and they form (in
this order) the critical path, which is unique for this example.
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Table 3.1. Project of building a house

Vertex Task Amount of time Preceding tasks

1 prepare the building site 3 –
2 deliver the building material 2 –
3 dig the foundation-hole 2 1,2
4 build the foundation 2 3
5 build the walls 7 4
6 build the roof supports 3 5
7 cover the roof 1 6
8 connect the water pipes to the house 3 4
9 plasterwork outside 2 7,8

10 install the windows 1 7,8
11 put in the ceilings 3 5
12 lay out the garden 4 9,10
13 install inside plumbing 5 11
14 put insulation on the walls 3 10,13
15 paint the walls 3 14
16 move 5 15
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Fig. 3.6. Digraph for the project of building a house

Further information on project scheduling can be found in the books [Ta92]
and [Mue73], and in the references given there. Of course, there is much more
to scheduling than the simple method we considered. In practice there are
often further constraints that have to be satisfied, such as scarce resources
like limited amounts of machinery or restricted numbers of workers at a given
point of time. For a good general overview of scheduling, the reader is referred
to [LaLRS93]. We close this section with a couple of exercises; the first of these
is taken from [Mue73].
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Exercise 3.5.1. A factory wants to replace an old production facility by a
new one; the necessary tasks are listed in the table below. Draw the corre-
sponding network and determine the values ti, Ti, and mi.

Table 3.2. Project of building a new production facility

Vertex Task Amount of time Preceding tasks

1 ask for offers, compare and order 25 –
2 take apart the old facility 8 –
3 remove the old foundation 5 2
4 plan the new foundation 9 1
5 term of delivery for the new facility 21 1
6 build the new foundation 9 3,4
7 install the new facility 6 5,6
8 train the staff 15 1
9 install electrical connections 2 7

10 test run 1 8,9
11 acceptance test and celebration 2 10

Exercise 3.5.2. Let G be an acyclic digraph with root s. The rank r(v) of
a vertex v is the maximal length of a directed path from s to v. Use the
methods introduced in this chapter to find an algorithm which determines
the rank function.

Exercise 3.5.3. Let G be an acyclic digraph with root s, given by adjacency
lists Av. Show that the following algorithm computes the rank function on G,
and determine its complexity:
Procedure RANK(G, s; r)

(1) create a list S0, whose only element is s;
(2) r(s) ← 0; k ← 0;
(3) for v ∈ V do d(v) ← din(v) od;
(4) while Sk �= ∅ do
(5) create a new list Sk+1;
(6) for v ∈ Sk do
(7) for w ∈ Av do
(8) if d(w) = 1
(9) then append w to Sk+1; r(w) ← k + 1; p(w) ← v

(10) fi;
(11) d(w) ← d(w) − 1
(12) od
(13) od;
(14) k ← k + 1
(15) od

How can we determine d(w)? How can a longest path from s to v be found?
Can RANK be used to find a topological sorting of G?
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3.6 The algorithm of Dijkstra

In this section, we consider networks having all lengths nonnegative. In this
case Bellman’s equations can be solved by the algorithm of Dijkstra [Dij59],
which is probably the most popular algorithm for finding shortest paths.

Algorithm 3.6.1. Let (G, w) be a network, where G is a graph or a digraph
and all lengths w(e) are nonnegative. The adjacency list of a vertex v is
denoted by Av. We want to calculate the distances with respect to a vertex s.
Procedure DIJKSTRA(G, w, s; d)

(1) d(s) ← 0, T ← V ;
(2) for v ∈ V \ {s} do d(v) ← ∞ od;
(3) while T �= ∅ do
(4) find some u ∈ T such that d(u) is minimal;
(5) T ← T \ {u};
(6) for v ∈ T ∩ Au do d(v) ← min(d(v), d(u) + wuv) od
(7) od

Theorem 3.6.2. Algorithm 3.6.1 determines with complexity O(|V |2) the dis-
tances with respect to some vertex s in (G, w). More precisely, at the end of
the algorithm

d(s, t) = d(t) for each vertex t.

Proof. Obviously, d(t) = ∞ if and only if t is not accessible from s. Now assume
d(t) �= ∞. Then d(s, t) ≤ d(t), as the algorithm reaches t via a directed path
of length d(t) from s to t. We will show the converse inequality d(t) ≤ d(s, t)
by using induction on the order in which vertices are removed from T . The
first vertex removed is s; trivially d(s) = 0 = d(s, s). Now suppose that the
inequality is true for all vertices t that were removed from T before u. We
may assume that d(u) is finite. Moreover, let

s = v0
e1 v1

e2 . . .
en vn = u

be a shortest path from s to u. Then

d(s, vh) =
h∑

j=1

w(ej) for h = 0, . . . , n.

Choose i as the maximal index such that vi was removed from T before u. By
the induction hypothesis,

d(s, vi) = d(vi) =
i∑

j=1

w(ej).
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Let us consider the iteration where vi is removed from T in the while loop. As
vi+1 is adjacent to vi, the inequality d(vi+1) ≤ d(vi) + w(ei+1) is established
during this iteration. But d(vi+1) cannot be increased again in the subsequent
iterations and, hence, this inequality still holds when u is removed. Thus

d(vi+1) ≤ d(vi)+w(ei+1) = d(s, vi)+w(ei+1) = d(s, vi+1) ≤ d(s, u). (3.3)

Suppose first vi+1 �= u, that is, i �= n − 1. By equation (3.3), d(s, u) < d(u)
would imply d(vi+1) < d(u); but then vi+1 would have been removed from T
before u in view of the selection rule in step (4), contradicting the fact that
we chose i to be maximal. Hence indeed d(u) ≤ d(s, u), as asserted. Finally,
for u = vi+1, the desired inequality follows directly from equation (3.3). This
establishes the correctness of Dijkstra’s algorithm. For the complexity, note
that in step (4) the minimum of the d(v) has to be calculated (for v ∈ T ),
which can be done with |T |−1 comparisons. In the beginning of the algorithm,
|T | = |V |, and then |T | is decreased by 1 with each iteration. Thus we need
O(|V |2) steps altogether for the execution of (4). It is easy to see that all other
operations can also be done in O(|V |2) steps. ��

We remark that the algorithm of Dijkstra might not work if there are
negative weights in the network, even if no cycles of negative length exist. Note
that the estimate in equation (3.3) does not hold any more if w(ei+1) < 0. An
algorithm which works also for negative weights can be found in Exercise 3.6.9.

Exercise 3.6.3. Modify Dijkstra’s algorithm in such a way that it actually
gives a shortest path from s to t, not just the distance d(s, t). If s is a root of
G, construct an SP-tree for (G, w).

Example 3.6.4. Consider the network given in Figure 3.7 with vertex set
V = {1, . . . , 8}. With s = 1, Algorithm 3.6.1 is executed as follows, where the
final values for d is indicated in bold face:

start values: d(1) = 0, d(i) = ∞ for i = 2, . . . , 8, T = V .
Iteration I: u = 1, T = {2, . . . , 8}, d(2) = 28, d(3) = 2, d(5) = 1;
Iteration II: u = 5, T = {2, 3, 4, 6, 7, 8}, d(2) = 9, d(3) = 2, d(6) = 27;
Iteration III: u = 3, T = {2, 4, 6, 7, 8}, d(2) = 9, d(6) = 26, d(8) = 29;
Iteration IV: u = 2, T = {4, 6, 7, 8}, d(4) = 18, d(6) = 19;
Iteration V: u = 4, T = {6, 7, 8}, d(6) = 19, d(7) = 26, d(8) = 25;
Iteration VI: u = 6, T = {7, 8}, d(8) = 20;
Iteration VII: u = 8, T = {7}, d(7) = 26;
Iteration VIII: u = 7, T = ∅.

Exercise 3.6.5. Calculate the distance s with respect to s = 1 for the under-
lying undirected network.
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Fig. 3.7. A network

Let us return to the complexity of Dijkstra’s algorithm. Initializing the
variables in (1) and (2) takes O(|V |) steps. During the entire while loop, each
edge e = uv is considered exactly once, namely during the iteration where u
is removed from T . Thus step (6) contributes only O(|E|) to the complexity
of the algorithm, which is – at least for sparse graphs – much better than
O(|V |2). Therefore it makes sense to try to reduce the number of comparisons
in step (4) by using an appropriate data structure.

Recall that a priority queue (sometimes also called a heap) is a data struc-
ture consisting of a number of elements each of which is associated with a real
number, its priority. Permissible operations include inserting elements accord-
ing to their priority as well as determining and removing the element with the
smallest priority; the latter operation is usually referred to as DELETEMIN.
As shown in computer science, a priority queue with n elements can be imple-
mented in such a way that each of these two operations can be executed with
complexity O(log n); we need a refinement of this standard implementation
which enables us also to remove a given element or reduce its priority with
the same complexity O(log n). We do not go into any details here but refer
the reader to [AhHU83] or [CoLR90]. Using these results, we put the vertex
set of our digraph into a priority queue T in Dijkstra’s algorithm, with d as
the priority function. This leads to the following modified algorithm.

Algorithm 3.6.6. Let (G, w) be a given network, where G is a graph or a
digraph and all lengths w(e) are nonnegative. We denote the adjacency list
of v by Av. Moreover, let T be a priority queue with priority function d. The
algorithm calculates the distances with respect to a vertex s.
Procedure DIJKSTRAPQ(G, w, s; d).

(1) T ← {s}, d(s) ← 0;
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(2) for s ∈ V \ {s} do d(v) ← ∞ od;
(3) while T �= ∅ do
(4) u := min T ;
(5) DELETEMIN (T );
(6) for v ∈ Au do
(7) if d(v) = ∞
(8) then d(v) ← d(u) + wuv;
(9) insert v with priority d(v) into T

(10) else if d(u) + wuv < d(v)
(11) then change the priority of v to d(v) ← d(u) + wuv

(12) fi
(13) fi
(14) od
(15) od

As noted before, each of the operations during the while loop can be per-
formed in O(log |V |) steps, and altogether we need at most O(|E|) + O(|V |)
such operations. If G is connected, this gives the following result.

Theorem 3.6.7. Let (G, w) be a connected network, where w is nonnega-
tive. Then Algorithm 3.6.6 (the modified algorithm of Dijkstra) has complexity
O(|E| log |V |). ��

The discussion above provides a nice example for the fact that sometimes
we can decrease the complexity of a graph theoretical algorithm by selecting
more appropriate (which usually means more complex) data structures. But
this is not a one-way road: conversely, graph theory is a most important tool
for implementing data structures. For example, priority queues are usually
implemented using a special types of trees (for instance, so-called 2-3-trees).
A nice treatment of the close interplay between algorithms from graph theory
and data structures may be found in [Tar83].

Exercise 3.6.8. Let s be a vertex of a planar network with a nonnegative
length function. What complexity does the calculation of the distances with
respect to s have?

Using even more involved data structures, we can further improve the
results of Theorem 3.6.7 and Exercise 3.6.8. Implementing a priority queue
appropriately (for instance, as a Fibonacci Heap), inserting an element or re-
ducing the priority of a given element can be done in O(1) steps; DELETEMIN
still requires O(log n) steps. Thus one may reduce the complexity of Algorithm
3.6.6 to O(|E| + |V | log |V |); see [FrTa87]. The best theoretical bound known
at present is O(|E|+(|V | log |V |)/(log log |V |)); see [FrWi94]. This algorithm,
however, is of no practical interest as the constants hidden in the big-O nota-
tion are too large. If all lengths are relatively small (say, bounded by a constant
C), one may achieve a complexity of O(|E|+ |V |(log C)1/2); see [AhMOT90].
For the planar case, there is an algorithm with complexity O(|V |(log |V |)1/2);
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see [Fre87]. A short but nice discussion of various algorithmic approaches of
practical interest is in [Ber93]. More information about practical aspects may
be found in [GaPa88] and [HuDi88].

To end this section, we present an algorithm which can also treat instances
where negative lengths occur, as long as no cycles of negative length exist. This
is due to Ford [For56] and Bellman [Bel58].

Exercise 3.6.9. Let (G, w) be a network without cycles of negative length.
Show that the following algorithm calculates the distances with respect to a
given vertex s and determine its complexity:
Procedure BELLFORD(G, w, s; d)

(1) d(s) ← 0;
(2) for v ∈ V \ {s} do d(v) ← ∞ od;
(3) repeat
(4) for v ∈ V do d′(v) ← d(v) od;
(5) for v ∈ V do d(v) ← min (d′(v), min {d′(u) + wuv : uv ∈ E}) od
(6) until d(v) = d′(v) for all v ∈ V .

Apply this algorithm to Example 3.6.4, treating the vertices in the order
1, . . . , 8.

3.7 An application: Train schedules

In this section, we discuss a practical problem which can be solved using
the algorithm of Dijkstra, namely finding optimal connections in a public
transportation system.4 Such a system consists of several lines (of trains or
buses) which are served at regular intervals. Typical examples are the German
Intercity network or the American Greyhound bus lines. If someone wants to
use such a system to get from one point to another in the network, it may
be necessary to change lines a couple of times, each time having to wait for
the connection. Often there might be a choice between several routes; we
are interested in finding the fastest one. This task is done in practice by
interactive information systems, giving travellers the optimal routes to their
destinations. For example, the state railway company of the Netherlands uses
such a schedule information system based on the algorithm of Dijkstra, as
described in [SiTu89]. We now use a somewhat simplified example to illustrate
how such a problem can be modelled so that the algorithm of Dijkstra applies.
For the sake of simplicity, we we restrict our interpretation to train lines and
train stations, and we have our trains begin their runs at fixed intervals. Of
course, any set of events occurring at regular intervals can be treated similarly.

We begin by constructing a digraph G = (V, E) which has the train sta-
tions as vertices and the tracks between two stations as edges. With each edge

4I owe the material of this section to my former student, Dr. Michael Guckert.
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e, we associate a travel time f(e); here parallel edges might be used to model
trains going at different speeds. Edges always connect two consecutive points
of a line where the train stops, that is, stations a train just passes through do
not occur on this line. Thus lines are just paths or cycles5 in G. With each line
L, we associate a time interval TL representing the amount of time between
two consecutive trains of this line. For each station v on a line L, we define
the time cycle tL(v) which specifies at which times the trains of line L leave
station v; this is stated modulo TL. Now let

L : v0
e1 v1 . . . vn−1

en vn

be a line. Clearly, the time of departure at station vi is the sum of the time of
departure at station vi−1 and the travelling time f(ei) from vi−1 to vi, taken
modulo TL.6 Hence the values tL(vi) are determined as follows:7

tL(v0) := sL (mod TL);
tL(vi) := tL(vi−1) + f(ei) (mod TL) for i = 1, . . . , n.

(3.4)

The schedule of line L is completely determined by (3.4): the trains depart
from station vi at the time tL(vi) (modulo TL) in intervals of length TL.

Next we have to calculate the waiting times involved in changing trains.
Let e = uv and e′ = vw be edges of lines L and L′, respectively. A train of
line L′ leaves the station v at the times

tL′(v), tL′(v) + TL′ , tL′(v) + 2TL′ , . . .

and a train of line L reaches station v at the times8

tL(v), tL(v) + TL, tL(v) + 2TL, . . . .

Now assume that L and L′ have different time cycles. Then the waiting time
depends not only on the time cycles, but also on the precise point of time
modulo the least common multiple T of TL and TL′ . Let us illustrate this by
an example. Suppose the time cycle of line L is 12 minutes, while that of L′ is
10 minutes so that T = 60. For tL(v) = 0 and tL′(v) = 5 we get the following
schedules at v:

5Remember the Circle line in the London Underground system!
6We will neglect the amount of time a train stops at station vi. This can be

taken into account by either adding it to the travelling time f(ei) or by introducing
an additional term wL(vi) which then has to be added to tL(vi−1) + f(ei).

7Note that we cannot just put tL(v0) = 0, as different lines may leave their start
stations at different times.

8More precisely, the trains of line L leave station v at these times, that is, they
reach v a little bit earlier. We assume that this short time interval suffices for the
process of changing trains, so that we can leave this out of our considerations as
well.
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Line L: 0 12 24 36 48
Line L′ : 5 15 25 35 45 55

Thus the waiting time for the next train of line L′ varies between one minute
and nine minutes in this example. To simplify matters, we now assume that
all time cycles are actually the same. Then the waiting time at station v is
given by

w(vLL′) = tL′(v) − tL(v) (mod T ).

This even applies in case L = L′: then we do not have to change trains.

Exercise 3.7.1. Reduce the case of different time cycles to the special case
where all time cycles are equal.

We now construct a further digraph G′ = (V ′, E′) which will allow us to
find an optimal connection between two stations directly by finding a shortest
path. Here a connection between two vertices v0 and vn in G means a path

P : v0
e1 v1 . . .

en vn

in G together with the specification of the line Li corresponding to edge ei

for i = 1, . . . , n, and the travelling time for this connection is

f(e1) + w(vL1L2) + f(e2) + w(vL2L3) + . . . + w(vLn−1Ln) + f(en). (3.5)

This suggests the following definition of G′. For each vertex v ∈ V and each
line L serving station v, we have two vertices (v, L)in and (v, L)out in V ′; for
each edge e = vw contained in some line L, there is an edge (v, L)out(w, L)in
in E′. Moreover, for each vertex v contained in both lines L and L′, there is an
edge (v, L)in(v, L′)out. Then a directed path from v0 to vn in G′ corresponds in
fact to a connection between v0 and vn, and this even includes the information
which lines to use and where to change trains. In order to obtain the travelling
time (3.5) as the length of the corresponding path in G′, we simply define a
weight function w′ on G′ as follows:

w′((v, L)out(w, L)in) := f(vw)

w′((v, L)in(v, L′)out) := w(vLL′).

Now our original problem is solved by applying Dijkstra’s algorithm to the
network (G′, w′). Indeed, we may find all optimal connections leaving station
v by applying this algorithm (modified as in Exercise 3.6.3) starting from all
vertices in (G′, w′) which have the form (v, L)out.

In this context, let us mention some other problems concerning the design
of a schedule for several lines having fixed time cycles, that is, the problem of
how to choose the times of departure sL for the lines L for given time cycles
TL. In general, we might want the desired schedule to be optimal with respect
to one of the following objectives.
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• The longest waiting time (or the sum of all the waiting times) should be
minimal.

• The shortest time interval between the departure of two trains from a
station should be maximal; that is, we want a safety interval between
successive trains.

• The sum of all travelling times between any two stations should be min-
imal; we might also give each of the routes a weight in this sum corre-
sponding to its importance, maybe according to the expected number of
travellers.

These problems are considerably more difficult; in fact, they are NP-hard in
general, although polynomial solutions are known when the number of lines
is small. We refer to the literature; in particular, for the first two problems
see [Gul80], [Bur86], and [BrBH90]. The last problem was studied in detail
by Guckert [Guc96], and the related problem of minimizing the sum of the
waiting times of all travellers was treated by Domschke [Dom89]. Both these
authors described and tested various heuristics.

3.8 The algorithm of Floyd and Warshall

Sometimes it is not enough to calculate the distances with respect to a certain
vertex s in a given network: we need to know the distances between all pairs
of vertices. Of course, we may repeatedly apply one of the algorithms treated
before, varying the start vertex s over all vertices in V . This results in the
following complexities, depending on the specific algorithm used.

algorithm of Moore: O(|V ||E|);
algorithm of Dijkstra: O(|V |3) or O(|V ||E| log |V |);
algorithm of Bellman and Ford: O(|V |2|E|).

These complexities could even be improved a bit according to the remarks
at the end of Section 3.6. Takaoka [Tak92] presented an algorithm with com-
plexity O(|V |3(log log |V |/ log |V |)1/2). In the planar case one can achieve a
complexity of O(|V |2); see [Fre87].

In this section, we study an algorithm for this problem which has just
the same complexity as the original version of Dijkstra’s algorithm, namely
O(|V |3). However, it offers the advantage of allowing some lengths to be neg-
ative – though, of course, we cannot allow cycles of negative length. This
algorithm is due to Floyd [Flo62], see also Warshall [War62], and works by
determining the distance matrix D = (d(v, w))v,w∈V of our network.

Algorithm 3.8.1 (Algorithm of Floyd and Warshall). Let (G, w) be
a network not containing any cycles of negative length, and assume V =
{1, . . . , n}. Put wij = ∞ if ij is not an edge in G.
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Procedure FLOYD(G, w; d)

(1) for i = 1 to n do
(2) for j = 1 to n do
(3) if i �= j then d(i, j) ← wij else d(i, j) ← 0 fi
(4) od
(5) od;
(6) for k = 1 to n do
(7) for i = 1 to n do
(8) for j = 1 to n do
(9) d(i, j) ← min (d(i, j), d(i, k) + d(k, j))

(10) od
(11) od
(12) od

Theorem 3.8.2. Algorithm 3.8.1 computes the distance matrix D for (G, w)
with complexity O(|V |3).
Proof. The complexity of the algorithm is obvious. Let D0 = (d0

ij) denote the
matrix defined in step (3) and Dk = (dk

ij) the matrix generated during the
k-th iteration in step (9). Then D0 contains all lengths of paths consisting
of one edge only. Using induction, it is easy to see that (dk

ij) is the shortest
length of a directed path from i to j containing only intermediate vertices
from {1, . . . , k}. As we assumed that (G, w) does not contain any cycles of
negative length, the assertion follows for k = n. ��
Exercise 3.8.3. Modify algorithm 3.8.1 so that it not only calculates the
distance matrix, but also determines shortest paths between any two vertices.

Example 3.8.4. For the network shown in Figure 3.8, the algorithm of Floyd
and Warshall computes the accompanying matrices.

Exercise 3.8.5. Apply Algorithm 3.8.1 to the network in Figure 3.9 [Law76].

In Section 2.6, we looked at acyclic digraphs associated with partially
ordered sets. Such a digraph G is transitive: if there is a directed path from
u to v, then G has to contain the edge uv. Now let G be an arbitrary acyclic
digraph. Let us add the edge uv to G for each pair of vertices (u, v) such that
v is accessible from u, but uv is not already an edge . This operation yields
the transitive closure of G. Clearly, the transitive closure of an acyclic digraph
is again acyclic and thus corresponds to a partially ordered set. By definition,
two vertices u and v have distance d(u, v) �= ∞ if and only if uv is an edge
of the transitive closure of G. Hence the algorithm of Floyd and Warshall can
be used to compute transitive closures with complexity O(|V |3).
Exercise 3.8.6. Simplify Algorithm 3.8.1 for computing the transitive clo-
sure by interpreting the adjacency matrix of an acyclic digraph as a Boolean
matrix; see [War62].
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Fig. 3.8. A network

D0 =

⎛
⎜⎜⎜⎜⎝

0 2 4 ∞ 3
2 0 8 ∞ 1
6 2 0 4 3
1 ∞ ∞ 0 5
∞ ∞ ∞ 1 0

⎞
⎟⎟⎟⎟⎠ D1 =

⎛
⎜⎜⎜⎜⎝

0 2 4 ∞ 3
2 0 6 ∞ 1
6 2 0 4 3
1 3 5 0 4
∞ ∞ ∞ 1 0

⎞
⎟⎟⎟⎟⎠

D2 =

⎛
⎜⎜⎜⎜⎝

0 2 4 ∞ 3
2 0 6 ∞ 1
4 2 0 4 3
1 3 5 0 4
∞ ∞ ∞ 1 0

⎞
⎟⎟⎟⎟⎠ D3 =

⎛
⎜⎜⎜⎜⎝

0 2 4 8 3
2 0 6 10 1
4 2 0 4 3
1 3 5 0 4
∞ ∞ ∞ 1 0

⎞
⎟⎟⎟⎟⎠

D4 =

⎛
⎜⎜⎜⎜⎝

0 2 4 8 3
2 0 6 10 1
4 2 0 4 3
1 3 5 0 4
2 4 6 1 0

⎞
⎟⎟⎟⎟⎠ D5 =

⎛
⎜⎜⎜⎜⎝

0 2 4 4 3
2 0 6 2 1
4 2 0 4 3
1 3 5 0 4
2 4 6 1 0

⎞
⎟⎟⎟⎟⎠
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Fig. 3.9. A network

Let us mention a further way of associating an acyclic digraph to a partially
ordered set. More generally, consider any acyclic digraph G. If uv is an edge
in G and if there exists a directed path of length ≥ 2 from u to v in G,
we remove the edge uv from G. This operation yields a digraph called the
transitive reduction Gred of G. If G is the digraph associated with a partially
ordered set as in Section 2.6, Gred is also called the Hasse diagram of G. If we
want to draw a Hasse diagram, we usually put the vertices of equal rank on
the same horizontal level. Figure 3.10 shows the Hasse diagram of the partially
ordered set of the divisors of 36. The orientation of the edges is not shown
explicitly: it is understood that all edges are oriented from bottom to top. As
an exercise, the reader might draw some more Hasse diagrams.

Exercise 3.8.7. Design an algorithm for constructing the reduction of an
acyclic digraph with complexity O(|V |3) and show that G and Gred have the
same transitive closure. Hint: Modify the Floyd and Warshall algorithm so
that it may be used here to determine longest paths.

For more about the transitive closure and the transitive reduction of an
acyclic digraph see [Meh84]. Schnorr [Schn78] gave an algorithm for construct-
ing the transitive closure with an average complexity of O(|E|).

Let us consider a final application of the algorithm of Floyd and War-
shall. Sometimes we are interested in finding the center of some network.9 Let
(G, w) be a network not containing any cycles of negative length. Then the
eccentricity of a vertex v is defined as

ε(v) = max {d(v, u) : u ∈ V } .

9It is obvious how this notion could be applied in the context of traffic or com-
munication networks.
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Fig. 3.10. Hasse diagram of the divisors of 36

A center of a network is a vertex having minimal eccentricity. The centers
of a given network can be determined easily using the algorithm of Floyd and
Warshall as follows. At the end of the algorithm, ε(i) simply is the maximum
of the i-th row of the matrix D = (d(i, j)), and the centers are those vertices
for which this maximum is minimal. For example, the vertices of the network
of Example 3.8.4 have eccentricities ε(1) = 4, ε(2) = 6, ε(3) = 4, ε(4) =
5 and ε(5) = 6, so that 1 and 3 are centers of the network. It is obvious
that the complexity of the additional operations needed – namely finding the
required maxima and minima – is dominated by the complexity O(|V |3) of
the algorithm of Floyd and Warshall. Thus we have the following result.

Theorem 3.8.8. Let N be a network without cycles of negative length. Then
the centers of N can be determined with complexity O(|V |3). ��

If we take all edges in a given graph (directed or not) to have length 1,
the above definition yields the eccentricities of the vertices and the centers
of the graph in the graph theory sense. Sometimes we are interested in the
maximal eccentricity of all vertices of a graph. This value is called the diameter
of the graph; again, this is a notion of interest in communications networks,
see [Chu86]. For more on communication networks, we also refer to [Bie89]
and [Ber92]. It is a difficult (in fact, NP-hard) problem to choose and assign
centers for networks under the restrictions occurring in practical applications,
see [BaKP93].
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To close this section, we briefly discuss the dynamic variant of the problem
of determining shortest paths between any two vertices in a network. Suppose
we have found a solution for some optimization problem, using an appropriate
algorithm. For some reason, we need to change the input data slightly and
find an optimal solution for the modified problem. Can we do so using the
optimal solution we know already, without having to run the whole algorithm
again? For our problem of finding shortest paths, this means keeping up to
date the distance matrix D as well as information needed for constructing
shortest paths (as, for example, the matrix P = (p(i, j)) used in the solution
of Exercise 3.8.3) while inserting some edges or reducing lengths of edges.
Compare this procedure with calculating all the entries of the matrices D and
P again. If all lengths w(e) are integers in the interval [1, C], it is obvious
that at most O(Cn2) such operations can be performed because an edge may
be inserted at most once, and the length of each edge can be reduced at
most C times. While a repeated application of the algorithm of Floyd and
Warshall for a sequence of such operations would need O(Cn5) steps, it is
also possible to solve the problem with complexity just O(Cn3 log nC), using
an adequate data structure. If we are treating an instance with graph theoretic
distances, that is, for C = 1, a sequence of O(n2) insertions of edges needs
only O(n3 log n) steps. We refer the reader to [AuIMN91] for this topic.

3.9 Cycles of negative length

Later in this book (when treating flows and circulations in Chapter 10), we
will need a method to decide whether a given network contains a directed
cycle of negative length; moreover, we should also be able to find such a cycle
explicitly. We shall now modify the algorithm of Floyd and Warshall to meet
these requirements. The essential observation is as follows: a network (G, w)
contains a directed cycle of negative length passing through the vertex i if
and only if Algorithm 3.8.1 yields a negative value for d(i, i).

Algorithm 3.9.1. Let (G, w) be a network with vertex set V = {1, . . . , n}.
Procedure NEGACYCLE(G, w; d, p, neg, K)

(1) neg ← false, k ← 0;
(2) for i = 1 to n do
(3) for j = 1 to n do
(4) if i �= j then d(i, j) ← wij else d(i, j) ← 0 fi;
(5) if i = j or d(i, j) = ∞ then p(i, j) ← 0 else p(i, j) ← i fi
(6) od
(7) od;
(8) while neg = false and k < n do
(9) k ← k + 1;

(10) for i = 1 to n do
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(11) if d(i, k) + d(k, i) < 0
(12) then neg ← true; CYCLE(G, p, k, i; K)
(13) else for j = 1 to n do
(14) if d(i, k) + d(k, j) < d(i, j)
(15) then d(i, j) ← d(i, k) + d(k, j); p(i, j) ← p(k, j)
(16) fi
(17) od
(18) fi
(19) od
(20) od

Here CYCLE denotes a procedure which uses p for constructing a cycle of
negative length containing i and k. Note that p(i, j) is, at any given point of
the algorithm, the predecessor of j on a – at that point of time – shortest
path from i to j. CYCLE can be described informally as follows. First, set
v0 = i, then v1 = p(k, i), v2 = p(k, v1), etc., until va = k = p(k, va−1) for some
index a. Then continue with va+1 = p(i, k), va+2 = p(i, va+1), etc., until an
index b is reached for which va+b = v0 = i = p(i, va+b−1). Now the cycle we
have found uses each edge in the direction opposite to its orientation, so that
(va+b = v0, va+b−1, . . . , v1, v0) is the desired directed cycle of negative length
through i and k. It can then be stored in a list K. We leave it to the reader
to state this procedure in a formally correct way.

If (G, w) does not contain any directed cycles of negative length, the vari-
able neg has value false at the end of Algorithm 3.9.1. In this case, d contains
the distances in (G, w) as in the original algorithm of Floyd and Warshall.
The matrix (p(i, j)) may then be used to find a shortest path between any
two given vertices; this is similar to the procedure CYCLE discussed above.
Altogether, we get the following result.

Theorem 3.9.2. Algorithm 3.9.1 decides with complexity O(|V |3) whether or
not a given network (G, w) contains cycles of negative length; in case it does,
such a cycle is constructed. Otherwise, the algorithm yields the distance matrix
(d(i, j)) for (G, w). ��
Exercise 3.9.3. Let G be a digraph on n vertices having a root s, and let
w be a length function on G. Modify the algorithm of Bellman and Ford
(see Exercise 3.6.9) so that it determines whether (G, w) contains a cycle of
negative length. If there is no such cycle, the algorithm should determine an
SP-tree with root s using a procedure SPTREE. Write down such a procedure
explicitly.

Exercise 3.9.4. Modify the algorithm of Floyd and Warshall so that it de-
termines the shortest length of a directed cycle in a network not containing
any cycles of negative length.
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3.10 Path algebras

Let (G, w) be a network without cycles of negative length. According to Bell-
man’s equations (Proposition 3.4.1), the distances ui with respect to a vertex
i then satisfy the conditions

(B) u1 = 0 and ui = min {uk + wki : i �= k} for i = 2, . . . , n.

In this section, we consider the question whether such a system of equations
might be solved using methods from linear algebra. In fact, this is possible
by introducing appropriate algebraic structures called path algebras. We only
sketch the basic ideas here; for details we refer to the literature, in particular
[Car71, Car79, GoMi84, Zim81].10

We begin with a suitable transformation of the system (B). Recall that
we put wij = ∞ if ij is not an edge of our network; therefore we extend R to
R = R ∪ {∞}. Moreover, we introduce two operations ⊕ and ∗ on R:

a ⊕ b := min(a, b) and a ∗ b := a + b,

where, as usual, we define a + ∞ to be ∞. Obviously, (B) can be written as

u1 = min (0, min {uk + wk1 : k �= 1}) and
ui = min (∞, min {uk + wki : k �= i}) ,

since (G, w) does not contain any cycles of negative length. Using the opera-
tions introduced above, we get the system of equations

(B′) u1 =
n⊕

k=1

(uk ∗ wk1) ⊕ 0, ui =
n⊕

k=1

(uk ∗ wki) ⊕∞,

where we set wii = ∞ for i = 1, . . . , n. We can now define matrices over R and
apply the operations ⊕ and ∗ to them in analogy to the usual definitions from
linear algebra. Then (B′) (and hence (B)) can be written as a linear system
of equations:

(B′′) u = u ∗ W ⊕ b,

where u = (u1, . . . , un), b = (0,∞, . . . ,∞) and W = (wij)i,j=1,...,n.
Thus Bellman’s equations may be viewed as a linear system of equations

over the algebraic structure (R,⊕, ∗). Then the algorithm of Bellman and Ford
given in Exercise 3.6.9 admits the following interpretation. First set

u(0) = b and then recursively u(k) = u(k−1) ∗ W ⊕ b,

until the sequence eventually converges to u(k) = u(k−1), which in our case
occurs for k = n or earlier. Hence the algorithm of Bellman and Ford is

10This section is included just to provide some more theoretical background. As
it will not be used in the rest of the book, it may be skipped.
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analogous to the Jacobi method from classical linear algebra over R; see, for
instance, [Str88].

These observations lead to studying algebraic structures which satisfy the
same conditions as (R,⊕, ∗). A path algebra or dioid is a triple (R,⊕, ∗) such
that (R,⊕) is a commutative monoid, (R, ∗) is a monoid, and both distributive
laws hold; moreover, the neutral element o of (R,⊕) satisfies the absorption
law. This means that the following axioms hold, where e denotes the neutral
element for (R, ∗):
(1) a ⊕ b = b ⊕ a;
(2) a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c;
(3) a ⊕ o = a;
(4) a ∗ o = o ∗ a = o;
(5) a ∗ e = e ∗ a = a;
(6) a ∗ (b ∗ c) = (a ∗ b) ∗ c;
(7) a ∗ (b ⊕ c) = (a ∗ b) ⊕ (a ∗ c);
(8) (b ⊕ c) ∗ a = (b ∗ a) ⊕ (c ∗ a).

Exercise 3.10.1. Show that (R,⊕, ∗) is a path algebra with e = 0 and o = ∞.

Exercise 3.10.2. Let (R,⊕, ∗) be a path algebra. We define a relation � on
R by

a � b ⇐⇒ a = b ⊕ c for some c ∈ R.

Show that � is a preordering (that is, it is reflexive and transitive). If ⊕ is
idempotent (that is, a⊕a = a for all a ∈ R), then � is even a partial ordering
(that is, it is also antisymmetric).

Exercise 3.10.3. Let (G, w) be a network without cycles of negative length.
Give a matrix equation for the distance matrix D = (d(i, j)).

We now transfer the notions developed in the special case of (R,⊕, ∗) to
arbitrary path algebras. For the remainder of this section, a network means
a pair (G, w) such that G is a digraph, w : E → R is a length function, and
(R,⊕, ∗) is a path algebra. The length of a path P = (v0, v1, . . . , vn) is defined
as

w(P ) := w(v0v1) ∗ w(v1v2) ∗ . . . ∗ w(vn−1vn).

The AP-problem (short for algebraic path problem) requires calculating the
sums

w∗
ij = ⊕ w(P ) (where P is a directed path from i to j)

and finding a path P from i to j such that w(P ) = w∗
ij (if the above sum

and such a path exist). For the case (R,⊕, ∗), the AP-problem reduces to the
familiar SP-problem (shortest path problem) of determining the distances and
shortest paths.
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As before, we introduce a matrix W = (wij) whose (i, j)-entry is the length
w(ij) if ij is an edge of G. We set wii = o for i = 1, . . . , n and wij = o if
i �= j and ij is not an edge in G. Note that, for the special case (R,⊕, ∗)
above, we looked at the matrix W ′ = W ⊕E; see Exercise 3.10.5 below. Here
E denotes the unit matrix, that is, eii = e for i = 1, . . . , n and eij = o for
i �= j. As usual, we write Ak for the k-th power of A; moreover, we define
A(k) := E ⊕ A ⊕ A2 ⊕ . . . ⊕ Ak.

Lemma 3.10.4. The (i, j)-entry of the matrix W k or of W (k) is the sum
⊕w(P ) over all directed walks from i to j consisting of exactly k edges for the
former, and of at most k edges for the latter.

Proof. Use induction on k. ��
We look again at the special case of the SP-problem. In a network (G, w)

not containing cycles of negative length, distances can always be realized by
paths, so that we need at most n − 1 edges. Thus we have D = W (n−1);
moreover, W (n−1) = W (n) = . . .. It is easy to see that W (n−1) indeed satisfies
the matrix equation given in the solution to Exercise 3.10.3:

W (n−1) ∗ W ⊕ E = (E ⊕ W ⊕ . . . ⊕ Wn−1) ∗ W ⊕ E

= E ⊕ W ⊕ . . . ⊕ Wn−1 ⊕ Wn = W (n) = W (n−1).

An element a with a(p) = a(p+1) for some p is called a stable element; this
notion is important also for general path algebras. In fact, the matrix W ∗ =
(w∗

ij) of the AP-problem is an infinite sum ⊕W k = E⊕W ⊕W 2⊕ . . ., that is,
it is the limit of the matrices W (k) for k → ∞. If W is stable, these formulas
make sense: if W (p) = W (p+1), then W ∗ = W (p). That is the reason why
criteria for stability play an important part in the theory of path algebras;
see [Zim81]. For the theory of convergence, see also [KuSa86].

Exercise 3.10.5. Let (R,⊕, ∗) be a path algebra such that ⊕ is idempotent.
For every matrix A, we put A′ := E ⊕A. Show (A′)k = A(k) and use this fact
to find a technique for calculating A(n); also discuss its complexity.

Now suppose that W is stable; we call W ∗ = W (p) = W (p+1) the quasi-
inverse of W . As in the special case R = R above, we have

W ∗ = W ∗ ∗ W ⊕ E = W ∗ W ∗ ⊕ E.

Thus, for an arbitrary matrix B , the matrices Y := W ∗ ∗B and Z := B ∗W ∗,
respectively, are solutions of the equations

Y = W ∗ Y ⊕ B and Z = Z ∗ W ⊕ B. (3.6)

In particular, we can choose a column or row vector b for B and obtain a
linear system of equations analogous to the system (B′′).
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Exercise 3.10.6. Let (R,⊕, ∗) be an arbitrary path algebra. Show that the
(n×n)-matrices over R also form a path algebra and define a preordering (or,
in the idempotent case, a partial ordering) on this path algebra; see Exercise
3.10.2. Prove that W ∗ ∗B and B ∗W ∗ are minimal solutions of equation (3.6)
and that the system (3.6) has a unique minimal solution in the idempotent
case.

Equations having the same form as (3.6) can be solved using techniques
analogous to the well-known methods of linear algebra over R. We have al-
ready seen that the algorithm of Bellman and Ford corresponds to the Jacobi
method; this technique can also be used for the general case of a stable matrix
W over any path algebra R. Similarly, it can be shown that the algorithm of
Floyd and Warshall corresponds to the Gauss-Jordan elimination method. For
more on this result and other general algorithms for solving (3.6), we refer to
[GoMi84] and [Zim81].

We conclude this section with some examples which will show that the
abstract concept of path algebras makes it possible to treat various in-
teresting network problems with just one general method. However, the
SP-problem is still the most important example; here the case of positive
lengths – that is, the path algebra (R+, min, +) – was already studied
by [Shi75]. Similarly, longest paths can be treated using the path algebra
(R ∪ {−∞}, max, +) instead.

Example 3.10.7. Consider the path algebra ({0, 1}, max, min) – that is, the
Boolean algebra on two elements – and put wij = 1 for each edge of G. Then
Lemma 3.10.4 has the following interpretation. There exists a directed walk
from i to j consisting of exactly k edges if and only if the (i, j)-entry of W k is
1, and of at most k edges if and only if the (i, j)-entry of W (k) is 1. Moreover,
the matrix W ∗ = W (n−1) is the adjacency matrix of the transitive closure of
G; see Exercise 3.8.6.

Example 3.10.8. Consider the path algebra (R+, max, min) and think of
the length w(ij) of an edge ij as its capacity. Then w(P ) is the capacity of the
path P ; that is, w(P ) is the minimum of the capacities of the edges contained
in P . Here the (i, j)-entry of W k is the largest capacity of a walk from i to j
with exactly k edges, while for W (k) it is the largest capacity of a walk from i
to j with at most k edges. Hence W ∗ = W (n−1) and w∗

ij is the largest capacity
of a walk from i to j; see [Hu61].

Example 3.10.9. Consider the path algebra (N0, +, ·), where each edge of G
has length w(ij) = 1. Then W is just the adjacency matrix of G. The (i, j)-
entry of W k and of W (k) represent the number of walks from i to j consisting
respectively of precisely and at most k edges; see Exercise 2.2.5. Note that
W ∗ does not exist in general, as there might be infinitely many walks from i
to j. If G is an acyclic digraph, W ∗ is well-defined; in this case W ∗ = W (n−1)

and w∗
ij is the number of all directed walks from i to j.
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Exercise 3.10.10. Find a path algebra which is suitable for treating the
problem of Example 3.1.2, where w(i, j) is the probability p(i, j) described
in Example 3.1.2; see [Kal60].

Exercise 3.10.11. Any commutative field (K, +, ·) is obviously also a path
algebra. Show that A is stable over K if G is acyclic, and give a formula for
A∗ under this condition. Does the converse hold?

The reader can find a lot of further examples for path algebras in the
literature quoted above, in particular in [GoMi84] and in [Zim81]; see also
[KuSa86] for applications in automata theory. Finally, let us also mention a
practical example from operations research.

Example 3.10.12. We construct a digraph G whose vertices are the single
parts, modules, and finished products occurring in an industrial process. We
want the edges to signify how many single parts or intermediary modules are
needed for assembling bigger modules or finished products. That is, we assign
weight w(i, j) to edge ij if we need w(i, j) units of part i for assembling product
j. G is called the gozinto graph. In most cases, the modules and products are
divided into levels of the same rank, where the finished products have highest
rank, and basic parts (which are not assembled from any smaller parts) lowest
rank; that is, the products and modules are divided into disposition levels. The
notion of ranks used here is the same as in Exercise 3.5.2; it can be calculated
as in Exercise 3.5.3. Often the gozinto graph is taken to be reduced in the sense
of Section 3.8, that is, it contains an edge ij only if part i is used directly in
assembling module j, without any intermediate steps. Note that the reduced
graph Gred can be determined as in Exercise 3.8.7, as we always assume G to
be acyclic.11

Now suppose that we have a gozinto graph which is reduced already. Some-
times one wants to know how much of each part is needed, no matter whether
directly or indirectly. For this purpose, we consider the path algebra (N0, +, ·)
and the given weights w(ij). As G is acyclic, there are only finitely many
directed paths from vertex i to vertex j; thus the matrix W ∗ (= W (n−1))
exists. Now it is easily seen that the entry w∗

ij is just the total number of
units of i needed for the assembly of j. The matrix W ∗ may, for example, be
determined using the algorithm of Bellman and Ford – that is, the generalized
Jacobi method – or the analogue of the algorithm of Floyd and Warshall; see
[Mue69].

More about gozinto graphs can be found in the book by Müller-Merbach
[Mue73] as well as in his two papers already cited. Note that the entries
of a column of W ∗ give the numbers of parts and modules needed for the
corresponding product, whereas the entries in the rows show where (and how
much of) the corresponding part or module is needed.

11This assumption does not always hold in practice. For instance, gozinto graphs
containing cycles are quite common in chemical production processes; see [Mue66].
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Spanning Trees

I think that I shall never see
A poem lovely as a tree.

Joyce Kilmer

In this chapter, we will study trees in considerably more detail than in the
introductory Section 1.2. Beginning with some further characterizations of
trees, we then present another way of determining the number of trees on n
vertices which actually applies more generally: it allows us to compute the
number of spanning trees in any given connected graph. The major part of
this chapter is devoted to a network optimization problem, namely to finding
a spanning tree for which the sum of all edge lengths is minimal. This prob-
lem has many applications; for example, the vertices might represent cities
we want to connect to a system supplying electricity; then the edges repre-
sent the possible connections and the length of an edge states how much it
would cost to build that connection. Other possible interpretations are tasks
like establishing traffic connections (for cars, trains or planes: the connec-
tor problem) or designing a network for TV broadcasts. Finally, we consider
Steiner trees (these are trees where it is allowed to add some new vertices)
and arborescences (directed trees).

4.1 Trees and forests

We defined a tree to be a connected acyclic graph and gave some equivalent
conditions in Theorem 1.2.8. The following lemma provides further character-
izations for trees.

Lemma 4.1.1. Let G be a graph. Then the following four conditions are equiv-
alent:

(1) G is a tree.
(2) G does not contain any cycles, but adding any further edge yields a cycle.
(3) Any two vertices of G are connected by a unique path.
(4) G is connected, and any edge of G is a bridge.
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Proof. First let G be a tree. We add any new edge, say e = uv. Since G is

connected, there is a path W from v to u. Then v
W

u
e

v is a cycle.
As G itself is acyclic by definition, condition (1) implies (2).

Next assume the validity of (2) and let u and v be any two vertices of G.
Suppose there is no path between u and v. Then u and v are not adjacent;
also, adding the edge uv to G cannot yield a cycle, contradicting (2). Thus G
must be connected. Now suppose that G contains two different paths W and
W ′ from u to v. Obviously, following W from u to v and then W ′ (in reverse
order) from v to u would give a closed walk in G. But then G would have to
contain a cycle, a contradiction. Hence condition (2) implies (3).

Now assume the validity of (3) and let e = uv be any edge in G. Suppose
e is not a bridge so that G \ e is still connected. But then there exist two
disjoint paths from u to v in G. This contradiction establishes (4).

Finally, assume the validity of (4). Suppose G contains a cycle C. Then
any edge of C could be omitted from G, and the resulting graph would still be
connected. In other words, no edge of C would be a bridge. This contradiction
proves (1). ��
Exercise 4.1.2. A connected graph is called unicyclic if it contains exactly
one cycle. Show that the following statements are equivalent [AnHa67]:

(1) G is unicyclic.
(2) G \ e is a tree for a suitable edge e.
(3) G is connected, and the number of vertices is the same as the number of

edges.
(4) G is connected, and the set of all edges of G which are not bridges forms

a cycle.

Exercise 4.1.3. Prove that every tree has either exactly one center or exactly
two centers; see Section 3.8. Discuss the relationship between the eccentricity
and the diameter of a tree.

Exercise 4.1.4. Let G be a forest with exactly 2k vertices of odd degree.
Prove that the edge set of G is the disjoint union of k paths.

Exercise 4.1.5. Let T be a tree, and suppose that the complementary graph
T is not connected. Describe the structure of T and show that these graphs
T are precisely the disconnected graphs with the maximal number of edges.

Exercise 4.1.6. Determine all isomorphism classes of trees on six vertices and
calculate the number of trees in each isomorphism class, as well as the number
of all trees on six vertices. Moreover, find the corresponding automorphism
groups.

We note that the number tn of isomorphism classes of trees on n vertices
grows very rapidly with n, a phenomenon illustrated by 4.1 which is taken from
[Har69]; for n = 1, 2, 3, trivially tn = 1. Harary also develops a remarkable
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formula for the tn which is due to Otter [Ott48]; as this uses the method of
generating functions, it is beyond the scope of the present book.

We refer the reader to [CaRa91] for an interesting exposition of the prob-
lem of checking whether or not two given rooted trees are isomorphic. Here a
rooted tree is just a tree T with a distinguished vertex r which is called the
root of T ; this terminology makes sense as T has a unique orientation so that
r indeed becomes the root of the resulting directed tree.

Table 4.1. Number tn of isomorphism classes for trees on n vertices

n 4 5 6 7 8 9 10
tn 2 3 6 11 23 47 106

n 11 12 13 14 15 16 17
tn 235 551 1301 3159 7741 19320 48629

n 18 19 20 21 22 23 24
tn 123867 317955 832065 2144505 5623756 14828074 39299897

4.2 Incidence matrices

In this section we consider a further matrix associated with a given digraph.
This will be used for yet another characterization of trees and for finding a
formula for the number of spanning trees of an arbitrary connected graph.

Definition 4.2.1. Let G be a digraph with vertex set V = {1, . . . , n} and
edge set E = {e1, . . . , em}. Then the n × m matrix M = (mij), where

mij =

⎧⎪⎨
⎪⎩

−1 if i is the tail of ej ,

1 if i is the head of ej ,

0 otherwise,

is called the incidence matrix of G.

Of course, M depends on the labelling of the vertices and edges of G; thus
it is essentially only determined up to permutations of its rows and columns.
For example, the digraph of Figure 2.1 has the following incidence matrix, if
we number the vertices and edges as in 2.2.1:⎛

⎜⎜⎜⎜⎜⎜⎝

−1 0 0 −1 0 0 0 0 1 0 0 −1
1 −1 0 0 1 0 0 0 0 0 −1 0
0 1 −1 0 0 0 0 0 0 1 0 1
0 0 1 0 0 0 −1 1 −1 0 0 0
0 0 0 1 −1 1 0 0 0 0 1 0
0 0 0 0 0 −1 1 −1 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
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Note that each column of an incidence matrix contains exactly two non-zero
entries, namely one entry 1 and one entry −1; summing the entries −1 in row
i gives dout(i), whereas summing the entries 1 yields din(i). The entries 0, 1
and −1 are often considered as integers, and the matrix M is considered as a
matrix over Z, Q or R. We could also use any other ring R as long as 1 �= −1,
that is, R should have characteristic �= 2.

Adding all the rows of the incidence matrix of a digraph gives a row for
which all entries equal 0. This yields the following lemma.

Lemma 4.2.2. Let G be a digraph with n vertices. Then the incidence matrix
of G has rank at most n − 1. ��

We will soon determine the precise rank of the incidence matrix. To this
end, we first characterize the forests among the class of all digraphs; of course,
a digraph G is called a forest if the undirected version |G| is a forest, as in
the special case of trees.

Theorem 4.2.3. A digraph G with incidence matrix M is a forest if and only
if the columns of M are linearly independent.

Proof. We have to show that G contains a cycle if and only if the columns of
M are linearly dependent. Suppose first that

C = v0
e1 v1

e2 . . .
ek vk

is a cycle in G, and let s1, . . . , sk be the columns of M corresponding to the
edges e1, . . . , ek. Moreover, let xi = 1 if ei is a forward edge, and xi = −1 if
ei is a backward edge in C (for i = 1, . . . , k). Then x1s1 + . . . + xksk = 0.

Conversely, let the columns of M be linearly dependent. Then there are
columns s1, . . . , sk and integers x1, . . . , xk �= 0 such that x1s1+ . . .+xksk = 0.
Let E′ be the set of edges corresponding to the columns s1, . . . , sk and V ′

the set of vertices of G incident with the edges contained in E′, and write
G′ = (V ′, E′). Note that every vertex of the associated graph |G′| has degree
at least 2. Now Exercise 1.2.5 shows that no connected component of |G′| is
a tree. Hence all components of |G′| contain cycles, so that |G| cannot be a
forest. ��
Theorem 4.2.4. Let G be a digraph with n vertices and p connected compo-
nents. Then the incidence matrix M of G has rank n − p.

Proof. According to Theorem 4.2.3, the rank of M is the number of edges of a
maximal forest T contained in |G|. If p = 1, T is a tree and has exactly n− 1
edges; thus M has rank n − 1 = n − p in this case.

Now suppose p �= 1. Then G can be partitioned into its p connected com-
ponents, that is, T is the disjoint union of p trees. Suppose that these trees
have n1, . . . , np vertices, respectively. Then the incidence matrix of G has rank
(n1 − 1) + . . . + (np − 1) = n − p. ��



4.2 Incidence matrices 99

Next we want to show that the incidence matrix of a digraph has a very
special structure. We require a definition. A matrix over Z is called totally
unimodular if each square submatrix has determinant 0, 1 or −1. These ma-
trices are particularly important in combinatorial optimization; for example,
the famous theorem about integral flows in networks1 is a consequence of the
following result; see also [Law76], §4.12.

Theorem 4.2.5. Let M be the incidence matrix of a digraph G. Then M is
totally unimodular.

Proof. Let M ′ be any square submatrix of M , say with k rows and columns. We
shall use induction on k. Trivially, M ′ has determinant 0, 1 or −1 if k = 1. So
let k �= 1. Assume first that each column of M ′ contains two non-zero entries.
Then the rows and columns of M ′ define a digraph G′ with k vertices and k
edges. By Theorem 1.2.7, |G′| cannot be acyclic, so that G′ is not a forest.
Therefore the columns of M ′ are linearly dependent by Theorem 4.2.3 and
hence det M ′ = 0. Finally assume that there is a column of M ′ with at most
one entry �= 0. We may calculate the determinant of M ′ by expanding it with
respect to such a column. Then we obtain a factor 0, 1, or −1 multiplied with
the determinant of a square ((k − 1)× (k − 1))-submatrix M ′′. The assertion
follows by induction. ��
Corollary 4.2.6. Let G be a digraph with n vertices and n − 1 edges. Let B
be the matrix which arises from the incidence matrix M of G by deleting an
arbitrary row. If G is a tree, then det B = 1 or det B = −1, and otherwise
det B = 0.

Proof. Note that the row deleted from M is a linear combination of the re-
maining rows. By Theorem 4.2.4, B has rank n − 1 if and only if G is a tree.
Now the assertion is an immediate consequence of Theorem 4.2.5. ��

Next we use the incidence matrix to determine the number of spanning
trees of a digraph G. Of course, a spanning tree of G is just a directed subgraph
T of G such that |T | is a spanning tree for |G|.
Theorem 4.2.7 (matrix tree theorem). Let B be the matrix arising from
the incidence matrix of a digraph G by deleting an arbitrary row. Then the
number of spanning trees of G is det BBT .

Proof. Let n be the number of vertices of G. For any set S of n − 1 column
indices, we denote the matrix consisting of the n−1 columns of B correspond-
ing to S by B|S. Now the theorem of Cauchy and Binet (see, for instance,
[Had61]) implies

det BBT =
∑
S

det(B|S)(B|S)T =
∑
S

det(B|S)2.

1We will treat this result in Chapter 6. Actually we shall use a different proof
which is not based on Theorem 4.2.5.
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By Corollary 4.2.6, detB|S �= 0 if and only if the edges of G corresponding
to S form a tree; moreover, in this case, (det B|S)2 = 1. This proves the
theorem. ��

Theorem 4.2.7 is contained implicitly in [Kirh47]. Not surprisingly, this
result may also be used to determine the number of spanning trees of a graph
G by considering the incidence matrix of any orientation of G. We need the
following simple lemma; then the desired result is an immediate consequence
of this lemma and Theorem 4.2.7.

Lemma 4.2.8. Let A be the adjacency matrix of a graph G and M the in-
cidence matrix of an arbitrary orientation H of G, where both matrices use
the same ordering of the vertices for numbering the rows and columns. Then
MMT = diag(deg 1, . . . ,deg n) − A.

Proof. The (i, j)-entry of MMT is the inner product of the i-th and the j-th
row of M . For i �= j, this entry is −1 if ij or ji is an edge of H and 0 otherwise.
For i = j, we get the degree deg i. ��
Theorem 4.2.9. Let A be the adjacency matrix of a graph G and A′ the
matrix −A + diag(deg 1, . . . ,deg n). Then the number of spanning trees of G
is the common value of all minors of A′ which arise by deleting a row and the
corresponding column from A′. ��

In Section 4.8, we will give a different proof for Theorem 4.2.9 which avoids
using the theorem of Cauchy and Binet. The matrix A′ is called the degree
matrix or the Laplacian matrix of G. As an example, let us consider the case
of complete graphs and thus give a third proof for Corollary 1.2.11.

Example 4.2.10. Theorem 4.2.9 contains a formula for the number of all
trees on n vertices; note that this formula counts the different trees, not the
isomorphism classes of trees. Obviously, the degree matrix of Kn is A′ =
nI − J , where J is the matrix having all entries = 1. By Theorem 4.2.9, the
number of trees on n vertices is the determinant of a minor of A′, that is

∣∣∣∣∣∣∣∣
n − 1 −1 . . . −1
−1 n − 1 . . . −1
. . . . . . . . . . . . . . . . . . . .
−1 −1 . . . n − 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

n − 1 −n −n . . . −n
−1 n 0 . . . 0
−1 0 n . . . 0

. . . . . . . . . . . . . . . . . . . .
−1 0 0 . . . n

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0
−1 n 0 . . . 0
−1 0 n . . . 0
. . . . . . . . . . . .
−1 0 0 . . . n

∣∣∣∣∣∣∣∣∣∣
= nn−2.



4.3 Minimal spanning trees 101

The following exercise concerns a similar application of the matrix tree
theorem; see [FiSe58]. A simple direct proof can be found in [Abu90] where
this result is also used to give yet another proof for Corollary 1.2.11.

Exercise 4.2.11. Use Theorem 4.2.9 to show that the number of spanning
trees of the complete bipartite graph Km,n is mn−1nm−1.

Note that we can also define incidence matrices for graphs: the matrix M
has entry mij = 1 if vertex i is incident with edge ej , and mij = 0 otherwise.
But the statements analogous to Lemma 4.2.2 and Theorem 4.2.3 do not hold;
for example, the three columns of a cycle of length 3 are linearly independent
over Z. However, the situation changes if we consider the incidence matrix M
as a matrix over Z2.

Exercise 4.2.12. Prove the analogues of 4.2.2 through 4.2.4 for graphs, where
M is considered as a binary matrix.

The incidence matrix M of a graph – considered as a matrix over the inte-
gers – is not unimodular in general, as the following exercise shows. Moreover,
it provides a further important characterization of bipartite graphs.

Exercise 4.2.13. Let G be a graph with incidence matrix M . Show that G is
bipartite if and only if M is totally unimodular as a matrix over Z. Hint: The
proof that unimodularity of M is necessary is similar to the proof of Theorem
4.2.5. The converse can be proved indirectly.

Exercise 4.2.14. Let e be an edge of Kn. Determine the number of spanning
trees of Kn \ e.

Exercise 4.2.15. Let G be a forest with n vertices and m edges. How many
connected components does G have?

Sometimes, a list of all spanning trees of a given graph is needed, or an
arbitrary choice of some spanning tree of G (a random spanning tree). These
tasks are treated in [CoDN89]; in particular, it is shown that the latter problem
can be solved with complexity O(|V |3).

4.3 Minimal spanning trees

In this section, we consider spanning forests in networks. Thus let (G, w) be
a network. For any subset T of the edge set of G, we define the weight of T
by

w(T ) =
∑
e∈T

w(e).

A spanning forest of G is called a minimal spanning forest if its weight is
minimal among all the weights of spanning forests; similarly, a minimal span-
ning tree has minimal weight among spanning trees. We restrict ourselves to



102 4 Spanning Trees

spanning trees; the general case can be treated by considering a minimal span-
ning tree for each connected component of G. Thus, we now assume G to be
connected.

Minimal spanning trees were first considered by Boruvka [Bor26a, Bor26b].
Shortly after 1920, electricity was to be supplied to the rural area of South-
ern Moravia; the problem of finding as economical a solution as possible for
the proposed network was presented to Boruvka. He found an algorithm for
constructing a minimal spanning tree and published it in the two papers cited
above. We will present his algorithm in the next section. Boruvka’s papers
were overlooked for a long time; often the solution of the minimal spanning
tree problem is attributed to Kruskal and Prim [Kru56, Pri57], although both
of them quote Boruvka; see the interesting article [GrHe85] for a history of
this problem. There one also finds references to various applications reaching
from the obvious examples of constructing traffic or communication networks
to more remote ones in classification problems, automatic speech recognition,
image processing, etc.

As the orientation of edges is insignificant when looking at spanning trees,
we may assume that G is a graph. If the weight function w should be constant,
every spanning tree is minimal; then such a tree can be found with complexity
O(|E|) using a BFS, as described in Section 3.3. For the general case, we
shall give three efficient algorithms in the next section. Corollary 1.2.11 and
Exercise 4.2.11 show that the examination of all spanning trees would be a
method having non-polynomial complexity.

But first we characterize the minimal spanning trees. Let us introduce the
following notation. Consider a spanning tree T and an edge e not contained in
T . By Lemma 4.1.1, the graph arising from T by adding e contains a unique
cycle; we denote this cycle by CT (e). The following result is of fundamental
importance.

Theorem 4.3.1. Let (G, w) be a network, where G is a connected graph. A
spanning tree T of G is minimal if and only if the following condition holds
for each edge e in G \ T :

w(e) ≥ w(f) for every edge f in CT (e). (4.1)

Proof. First suppose that T is minimal. If (4.1) is not satisfied, there is an
edge e in G \ T and an edge f in CT (e) with w(e) < w(f). Removing f from
T splits T into two connected components, since f is a bridge. Adding e to
T \ f gives a new spanning tree T ′; as w(e) < w(f), T ′ has smaller weight
than T . This contradicts the minimality of T .

Conversely, suppose that (4.1) is satisfied. We choose some minimal span-
ning tree T ′ and show w(T ) = w(T ′), so that T is minimal as well. We use
induction on the number k of edges in T ′ \T . The case k = 0 (that is, T = T ′)
is trivial. Thus let e′ be an edge in T ′ \ T . Again, we remove e′ from T ′,
so that T ′ splits into two connected components V1 and V2. If we add the
path CT (e′) \ {e′} to T ′ \ {e′}, V1 and V2 are connected again. Hence CT (e′)
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has to contain an edge e connecting a vertex in V1 to a vertex in V2. Note
that e cannot be an edge of T ′, because otherwise T ′ \ {e′} would still be
connected. The minimality of T ′ implies w(e) ≥ w(e′): replacing e′ by e in
T ′, we obtain another spanning tree T ′′; and if w(e) < w(e′), this tree would
have smaller weight than T ′, a contradiction. On the other hand, by condition
(4.1), w(e′) ≥ w(e); hence w(e′) = w(e) and w(T ′′) = w(T ′). Thus T ′′ is a
minimal spanning tree as well. Note that T ′′ has one more edge in common
with T than T ′; using induction, we conclude w(T ) = w(T ′′) = w(T ′). ��

Next we give another characterization of minimal spanning trees. To do
so, we need two definitions. Let G be a graph with vertex set V . A cut is a
partition S = {X, X ′} of V into two nonempty subsets. We denote the set
of all edges incident with one vertex in X and one vertex in X ′ by E(S)
or E(X, X ′); any such edge set is called a cocycle. We will require cocycles
constructed from trees:

Lemma 4.3.2. Let G be a connected graph and T a spanning tree of G. For
each edge e of T , there is exactly one cut ST (e) of G such that e is the only
edge which T has in common with the corresponding cocycle E(ST (e)).

Proof. If we remove e from T , the tree is divided into two connected compo-
nents and we get a cut ST (e). Obviously, the corresponding cocycle contains
e, but no other edge of T . It is easy to see that this is the unique cut is the
with the desired property. ��
Theorem 4.3.3. Let (G, w) be a network, where G is a connected graph. A
spanning tree T of G is minimal if and only if the following condition holds
for each edge e ∈ T :

w(e) ≤ w(f) for every edge f in E(ST (e)). (4.2)

Proof. First let T be minimal. Suppose that there is an edge e in T and an
edge f in E(ST (e)) with w(e) > w(f). Then, by removing e from T and
adding f instead, we could construct a spanning tree of smaller weight than
T , a contradiction.

Conversely, suppose that (4.2) is satisfied. We want to reduce the statement
to Theorem 4.3.1; thus we have to show that condition (4.1) is satisfied. Let
e be an edge in G \ T and f �= e an edge in CT (e). Consider the cocycle
E(ST (f)) defined by f . Obviously, e is contained in E(ST (f)); hence (4.2)
yields w(f) ≤ w(e). ��
Exercise 4.3.4. Let (G, w) be a network, and let v be any vertex. Prove that
every minimal spanning tree has to contain an edge incident with v which has
smallest weight among all such edges.

Exercise 4.3.5. Let (G, w) be a network, and assume that all edges have dis-
tinct weights. Show that (G, w) has a unique minimal spanning tree [Bor26a].
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4.4 The algorithms of Prim, Kruskal and Boruvka

In this section, we will treat three popular algorithms for determining minimal
spanning trees, all of which are based on the characterizations given in the
previous section. Let us first deal with a generic algorithm which has the
advantage of allowing a rather simple proof. The three subsequent algorithms
are special cases of this general method which is due to Prim [Pri57].

Algorithm 4.4.1. Let G = (V, E) be a connected graph with vertex set V =
{1, . . . , n} and w : E → R a weight function for G. The algorithm constructs
a minimal spanning tree T for (G, w).
Procedure MINTREE(G, w; T )

(1) for i = 1 to n do Vi ← {i}; Ti ← ∅ od;
(2) for k = 1 to n − 1 do
(3) choose Vi with Vi �= ∅;
(4) choose an edge e = uv with u ∈ Vi, v /∈ Vi, and w(e) ≤ w(e′)

for all edges e′ = u′v′ with u′ ∈ Vi, v′ /∈ Vi;
(5) determine the index j for which v ∈ Vj ;
(6) Vi ← Vi ∪ Vj ; Vj ← ∅;
(7) Ti ← Ti ∪ Tj ∪ {e}; Tj ← ∅;
(8) if k = n − 1 then T ← Ti fi;
(9) od

Theorem 4.4.2. Algorithm 4.4.1 determines a minimal spanning tree for the
network (G, w).

Proof. We use induction on t := |T1|+ . . . + |Tn| to prove the following claim:

For t = 0, . . . , n − 1, there exists a minimal spanning tree T (4.3)
of G containing T1, . . . , Tn.

For t = n − 1, this claim shows that the algorithm is correct. Clearly, (4.3)
holds at the beginning of the algorithm – before the loop (2) to (9) is executed
for the first time – since t = 0 at that point. Now suppose that (4.3) holds for
t = k−1, that is, before the loop is executed for the k-th time. Let e = uv with
u ∈ Vi be the edge which is constructed in the k-th iteration. If e is contained
in the tree T satisfying (4.3) for t = k − 1, there is nothing to show. Thus
we may assume e /∈ T . Then T ∪ {e} contains the unique cycle C = CT (e);
obviously, C has to contain another edge f = rs with r ∈ Vi and s /∈ Vi. By
Theorem 4.3.1, w(e) ≥ w(f). On the other hand, by the choice of e in step
(4), w(e) ≤ w(f). Hence w(e) = w(f), and T ′ = (T ∪ {e}) \ {f} is a minimal
spanning tree of G satisfying (4.3) for t = k. ��

Of course, we cannot give the precise complexity of Algorithm 4.4.1: this
depends both on the choice of the index i in step (3) and on the details of the
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implementation. We now turn to the three special cases of Algorithm 4.4.1
mentioned above. All of them are derived by making steps (3) and (4) in
MINTREE precise. The first algorithm was favored by Prim and is generally
known as the algorithm of Prim, although it was already given by Jarńık
[Jar30].

Algorithm 4.4.3. Let G be a connected graph with vertex set V = {1, . . . , n}
given by adjacency lists Av, and let w : E → R be a weight function for G.
Procedure PRIM(G, w; T )

(1) g(1) ← 0, S ← ∅, T ← ∅;
(2) for i = 2 to n do g(i) ← ∞ od;
(3) while S �= V do
(4) choose i ∈ V \ S such that g(i) is minimal, and set S ← S ∪ {i};
(5) if i �= 1 then T ← T ∪ {e(i)} fi;
(6) for j ∈ Ai ∩ (V \ S) do
(7) if g(v) > w(ij) then g(v) ← w(ij) and e(v) ← ij fi
(8) od
(9) od

Theorem 4.4.4. Algorithm 4.4.3 determines with complexity O(|V |2) a min-
imal spanning tree T for the network (G, w).

Proof. It is easy to see that Algorithm 4.4.3 is a special case of Algorithm 4.4.1
(written a bit differently): if we always choose V1 in step (3) of MINTREE,
we get the algorithm of Prim. The function g(i) introduced here is just used
to simplify finding the shortest edge leaving V1 = S. Hence the algorithm is
correct by Theorem 4.4.2; it remains to discuss its complexity. The while-loop
is executed |V | times. During each of these iterations, the comparisons in step
(4) can be done in at most |V | − |S| steps, so that we get a complexity of
O(|V |2). As G is simple, this is also the overall complexity: in step (6), each
edge of G is examined exactly twice. ��
Example 4.4.5. Let us apply Algorithm 4.4.3 to the undirected version of
the network of Figure 3.5, where we label the edges as follows: e1 = {1, 5},
e2 = {6, 8}, e3 = {1, 3}, e4 = {4, 5}, e5 = {4, 8}, e6 = {7, 8}, e7 = {6, 7},
e8 = {4, 7}, e9 = {2, 5}, e10 = {2, 4}, e11 = {2, 6}, e12 = {3, 6}, e13 = {5, 6},
e14 = {3, 8}, e15 = {1, 2}. Thus the edges are ordered according to their
weight. We do not need really this ordering for the algorithm of Prim, but
will use it later for the algorithm of Kruskal. The algorithm of Prim then
proceeds as follows; the resulting minimal spanning tree is indicated by the
bold edges in Figure 4.1.
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Fig. 4.1. A network

Iteration 1: i = 1, S = {1}, T = ∅, g(2) = 28, e(2) = e15, g(5) = 1,
e(5) = e1, g(3) = 2, e(3) = e3

Iteration 2: i = 5, S = {1, 5}, T = {e1}, g(2) = 8, e(2) = e9, g(4) = 5,
e(4) = e4, g(6) = 26, e(6) = e13

Iteration 3: i = 3, S = {1, 5, 3}, T = {e1, e3}, g(6) = 24, e(6) = e12,
g(8) = 27, e(8) = e14

Iteration 4: i = 4, S = {1, 5, 3, 4}, T = {e1, e3, e4}, g(7) = 8, e(7) = e8,
g(8) = 7, e(8) = e5

Iteration 5: i = 8, S = {1, 5, 3, 4, 8}, T = {e1, e3, e4, e5}, g(6) = 1,
e(6) = e2, g(7) = 7, e(7) = e6

Iteration 6: i = 6, S = {1, 5, 3, 4, 8, 6}, T = {e1, e3, e4, e5, e2}
Iteration 7: i = 7, S = {1, 5, 3, 4, 8, 6, 7}, T = {e1, e3, e4, e5, e2, e6}
Iteration 8: i = 2, S = {1, 5, 3, 4, 8, 6, 7, 2}, T = {e1, e3, e4, e5, e2, e6, e9}

Now we turn to the second special case of Algorithm 4.4.1; this is due to
Kruskal [Kru56]. We first give a somewhat vague version.

Algorithm 4.4.6. Let G = (V, E) be a connected graph with V = {1, . . . , n},
and let w : E → R be a weight function. The edges of G are ordered according
to their weight, that is, E = {e1, . . . , em} with w(e1) ≤ . . . ≤ w(em).
Procedure KRUSKAL(G, w; T )

(1) T ← ∅;
(2) for k = 1 to m do
(3) if ek does not form a cycle together with some edges of T

then append ek to T fi
(4) od
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Note that the algorithm of Kruskal is the special case of MINTREE where
Vi and e are chosen in such a way that w(e) is minimal among all edges which
are still available: that is, among all those edges which do not have both
end vertices in one of the sets Vj and would therefore create a cycle. Again,
Theorem 4.4.2 shows that the algorithm is correct. Alternatively, we could
also appeal to Theorem 4.3.1 here: in step (3), we choose the edge which does
not create a cycle with the edges already in the forest and which has minimal
weight among all edges with this property. Thus the set T of edges constructed
satisfies (4.1), proving again that T is a minimal spanning tree.

Let us consider the complexity of Algorithm 4.4.6. In order to arrange the
edges according to their weight and to remove the edge of smallest weight,
we use the data structure priority queue already described in Section 3.6.
Then these operations can be performed in O(|E| log |E|) steps. It is more
difficult to estimate the complexity of step (3) of the algorithm: how do we
check whether an edge creates a cycle, and how many steps does this take?
Here it helps to view the algorithm as a special case of Algorithm 4.4.1. In
step (1), we begin with a (totally) disconnected forest T on n = |V | vertices
which consists of n trees without any edges. During each iteration, an edge
is added to the forest T if and only if its two end vertices are contained in
different connected components of the forest constructed so far; these two
connected components are then joined by adding the edge to the forest T .
Therefore we may check for possible cycles by keeping a list of the connected
components; for this task, we need a data structure appropriate for treating
partitions. In particular, operations like disjoint unions (MERGE) and finding
the component containing a given element should be easy to perform. Using
such a data structure, we can write down the following more precise version
of Algorithm 4.4.6.

Algorithm 4.4.7. Let G = (V, E) be a connected graph with V = {1, . . . , n},
and let w : E → R be a weight function on G. We assume that E is given as
a list of edges.
Procedure KRUSKAL (G, w; T )

(1) T ← ∅;
(2) for i = 1 to n do Vi ← {i} od;
(3) put E into a priority queue Q with priority function w;
(4) while Q �= ∅ do
(5) e := DELETEMIN(Q);
(6) find the end vertices u and v of e;
(7) find the components Vu and Vv containing u and v, respectively;
(8) if Vu �= Vv then MERGE(Vu, Vv); T ← T ∪ {e} fi
(9) od

Now it is easy to determine the complexity of the iteration. Finding and
removing the minimal edge e in the priority queue takes O(log |E|) steps.
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Successively merging the original n trivial components and finding the com-
ponents in step (7) can be done with a total effort of O(n log n) steps; see
[AhHU83] or [CoLR90]. As G is connected, G has at least n−1 edges, so that
the overall complexity is O(|E| log |E|). We have established the following
result.

Theorem 4.4.8. The algorithm of Kruskal (as given in 4.4.7) determines
with complexity O(|E| log |E|) a minimal spanning tree for (G, w). ��

For sparse graphs, this complexity is much better than the complexity of
the algorithm of Prim. In practice, the algorithm of Kruskal often contains one
further step: after each merging of components, it is checked whether there is
only one component left; in this case, T is already a tree and we may stop the
algorithm.

Example 4.4.9. Let us apply the algorithm of Kruskal to the network of
Figure 4.1. The edges e1, e2, e3, e4, e5, e6 and e9 are chosen successively, so that
we obtain the same spanning tree as with the algorithm of Prim (although
there the edges were chosen in a different order). This has to happen here, since
our small example has only one minimal spanning tree. In general, however,
the algorithms of Prim and Kruskal will yield different minimal spanning trees.

Now we turn to our third and final special case of Algorithm 4.4.1; this
is due to Boruvka [Bor26a] and requires that all edge weights are distinct.
Then we may combine several iterations of MINTREE into one larger step:
we always treat each nonempty Vi and add the shortest edge leaving Vi. We
shall give a comparatively brief description of the resulting algorithm.

Algorithm 4.4.10. Let G = (V, E) be a connected graph with V = {1, . . . , n},
and let w : E → R be a weight function for which two distinct edges always
have distinct weights.
Procedure BORUVKA(G, w; T )

(1) for i = 1 to n do Vi ← {i} od;
(2) T ← ∅; M ← {V1, . . . , Vn};
(3) while |T | < n − 1 do
(4) for U ∈ M do
(5) find an edge e = uv with u ∈ U , v /∈ U and w(e) < w(e′)

for all edges e′ = u′v′ with u′ ∈ U , v′ /∈ U ;
(6) find the component U ′ containing v;
(7) T ← T ∪ {e};
(8) od
(9) for U ∈ M do MERGE(U, U ′) od

(10) od

Theorem 4.4.11. The algorithm of Boruvka determines a minimal spanning
tree for (G, w) in O(|E| log |V |) steps.
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Proof. It follows from Theorem 4.4.2 that the algorithm is correct. The con-
dition that all edge weights are distinct guarantees that no cycles are created
during an execution of the while-loop. As the number of connected compo-
nents is at least halved in each iteration, the while-loop is executed at most
log |V | times. We leave it to the reader to give a precise formulation of steps
(5) and (6) leading to the complexity of O(|E| log |V |). (Hint: For each vertex
v, we should originally have a list Ev of the edges incident with v.) ��
Example 4.4.12. Let us apply the algorithm of Boruvka to the network
shown in Figure 4.2. When the while-loop is executed for the first time,
the edges {1, 2}, {3, 6}, {4, 5}, {4, 7} and {7, 8} (drawn bold in Figure 4.2)
are chosen and inserted into T . That leaves only three connected components,
which are merged during the second execution of the while-loop by adding
the edges {2, 5} and {1, 3} (drawn bold broken in Figure 4.2).
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Fig. 4.2. A network

Exercise 4.4.13. Show that the condition that all edge weights are distinct
is necessary for the correctness of the algorithm of Boruvka.

Exercise 4.4.14. The following table taken from [BoMu76] gives the dis-
tances (in units of 100 miles) between the airports of the cities London, Mexico
City, New York, Paris, Peking and Tokyo:

L MC NY Pa Pe To

L – 56 35 2 51 60
MC 56 – 21 57 78 70
NY 35 21 – 36 68 68
Pa 2 57 36 – 51 61
Pe 51 78 68 51 – 13
To 60 70 68 61 13 –
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Find a minimal spanning tree for the corresponding graph.

Exercise 4.4.15. The tree graph T (G) of a connected graph G has the span-
ning trees for G as vertices; two of these trees are adjacent if they have |V |−2
edges in common. Prove that T (G) is connected. What can be said about the
subgraph of minimal spanning trees (for a given weight function w)?

The complexity of the algorithms discussed in this section can often be
improved by using appropriate data structures. Implementations for the al-
gorithms of Prim and Kruskal with complexity O(|E| log |V |) are given in
[Joh75] and [ChTa76]. Using Fibonacci heaps, the algorithm of Prim can be
implemented with complexity O(|E| + |V | log |V |); see [AhMO93]. Boruvka’s
algorithm (or appropriate variations) can likewise be implemented with com-
plexity O(|E| log |V |); see [Yao75] and [ChTa76]. Almost linear bounds are in
[FrTa87] and [GaGST86]; finally, an algorithm with linear complexity was dis-
covered by Fredman and Willard [FrWi94]; of course, this supposes that the
edges are already sorted according to their weights. Unfortunately, the best
theoretical algorithms tend to be of no practical interest because of the large
size of the implicit constants. There is a simple algorithm with complexity
O(|V |) for planar graphs; see [Mat95].

The problem of finding a new minimal spanning tree if we change the
weight of an edge and know a minimal spanning tree for the original graph
already is discussed in [Fre85] and [Epp94]. On the average, an update may be
done in O(log |V |) steps (under suitable assumptions). Finally, it can be veri-
fied in linear time (that is, with complexity O(|E|)) whether a given spanning
tree is minimal. A similar result holds for the sensitivity analysis of minimal
spanning trees; this is the problem how much the weight of a given edge e can
be increased without changing the minimal spanning tree already known. For
the latter two problems, see [DiRT92].

4.5 Maximal spanning trees

For some practical problems, it is necessary to consider maximal spanning
trees: we want to determine a spanning tree whose weight is maximal among
all spanning trees for a given network (G, w). Obviously, a spanning tree T
for (G, w) is maximal if and only if T is minimal for (G,−w). Hence we
can find a maximal spanning tree by replacing w by −w and using one of
the algorithms of Section 4.4. Alternatively, we could also stay with w and
just replace minimum by maximum in the algorithms of Prim, Kruskal and
Boruvka; of course, in Kruskal’s Algorithm, we then need to order the edges
according to decreasing weight.

Let us give some examples where one requires a maximal spanning tree;
the first of these is taken from [Chr75].
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Example 4.5.1. Consider the problem of sending confidential information to
n persons. We define a graph G with n vertices corresponding to the n persons;
two vertices i and j are adjacent if it is possible to send information directly
from i to j. For each edge ij, let pij denote the probability that the information
sent is overheard; we suppose that these probabilities are independent of each
other. Now we replace pij by qij = 1−pij , that is, by the probability that the
information is sent without being overheard. In order to send the information
to all n persons, we are looking for a spanning subgraph of G for which the
product of the qij (over the edges occurring in the subgraph) is maximal.
Replacing qij by w(ij) = log qij , we have reduced our problem to finding a
spanning tree of maximal weight.

Problem 4.5.2 (network reliability problem). Let us consider the ver-
tices in Example 4.5.1 as the nodes of a communication network, and let us
interpret pij as the probability that the connection between i and j fails. Then
a maximal spanning tree is a tree which maximizes the probability for undis-
turbed communication between all nodes of the network. This interpretation
– and its algorithmic solution – is already contained in [Pri57].

Problem 4.5.3 (bottleneck problem). Let (G, w) be a network, where G
is a connected graph, and let

W = v0
e1 v1

e2 v2 . . .
en vn,

be any path. Then c(W ) = min {w(ei) : i = 1, . . . , n} is called the capacity or
the inf-section of W . (We may think of the cross-section of a tube in a supply
network or the capacity of a road.) For each pair (u, v) of vertices of G, we
want to determine a path from u to v with maximal capacity.

The following theorem due to Hu [Hu61] reduces Problem 4.5.3 to finding
a maximal spanning tree. Thus the algorithms of Prim, Kruskal, and Boruvka
– modified for determining maximal spanning trees – can be used to solve the
bottleneck problem.

Theorem 4.5.4. Let (G, w) be a network on a connected graph G, and let T
be a maximal spanning tree for G. Then, for each pair (u, v) of vertices, the
unique path from u to v in T is a path of maximal capacity in G.

Proof. Let W be the path from u to v in T , and e some edge of W with
c(W ) = c(e). Suppose there exists a path W ′ in G having start vertex u and
end vertex v such that c(W ′) > c(W ). Let ST (e) be the cut of G defined
in Lemma 4.3.2 and E(ST (e)) the corresponding cocycle. As u and v are in
different connected components of T \ e, the path W ′ has to contain some
edge f of E(ST (e)). As c(W ′) > c(W ), we must have w(f) > w(e). But then
(T ∪ {f}) \ {e} would be a tree of larger weight than T . ��
Exercise 4.5.5. Determine a maximal spanning tree and the maximal capac-
ities for the network of Figure 4.1.
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Exercise 4.5.6. Prove the following converse of Theorem 4.5.4. Let T be a
spanning tree and assume that, for any two vertices u and v, the unique path
from u to v in T is a path of maximal capacity in the network (G, w). Then
T is a maximal spanning tree for (G, w).

The following problem is closely related to the bottleneck problem.

Problem 4.5.7 (most uniform spanning tree). Let G be a connected
graph and w : E → R a weight function for G. We ask for a spanning tree T
for which the difference between the largest and the smallest edge weights is
minimal. This problem can be solved using a modification of the algorithm
of Kruskal with complexity O(|V ||E|); using a more elaborate data structure,
one may even achieve a complexity of O(|E| log |V |). We refer the reader to
[CaMMT85] and [GaSc88].

We remark that analogous problems for digraphs are also of interest. For
example, given a digraph having a root, we might want to determine a directed
spanning tree of minimal (or maximal) weight. We will return to this problem
briefly in Section 4.8.

Exercise 4.5.8. Show that a directed spanning tree of maximal weight in a
network (G, w) on a digraph G does not necessarily contain paths of maximal
capacity (from the root to all other vertices).

4.6 Steiner trees

Assume that we are faced with the problem of connecting n points in the
Euclidean plane by a network of minimal total length; for a concrete example
we may think of connecting n cities by a telephone network. Of course, we
might just view the given points as the vertices of a complete graph and
determine a minimal spanning tree with respect to the Euclidean distance.
However, Example 3.2.4 suggests that it should be possible to do better if
we are willing to add some new vertices – in our concrete example, we might
introduce some switch stations not located in any of the n cities. A plane
tree which is allowed to contain – in addition to the n given vertices – an
arbitrary number of further vertices, the so-called Steiner points, is called a
Steiner tree. The euclidean Steiner problem (called the geometric Steiner tree
problem in [GaJo76]) is the problem of finding a minimal Steiner tree for the
given n vertices.2

In the last century Jacob Steiner, among others, studied this problem,
which accounts for its name. Actually, the Steiner tree problem for n = 3 goes

2Beware: some authors use the term Steiner tree for what we call a minimal
Steiner tree. As an exercise, the reader might try to settle the geometric Steiner tree
problem for the vertices of a unit square: here one gets two Steiner points, and the
minimal Steiner tree has length 1+

√
3. See [Cox61], Section 1.8, or [CoRo41], p.392.
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back to Fermat.3 A fundamental paper on Steiner trees is due to Gilbert and
Pollak [GiPo68]; these authors suggested the problem of finding a lower bound
ρ for the ratio between the total length of a minimal Steiner tree and the total
length of a minimal spanning tree for a given set of vertices. They were able
to show ρ ≥ 1

2 – a result we will prove in Theorem 15.4.9 – and suggested
the Steiner ratio conjecture: ρ ≥ √

3/2. This bound is optimal, as can be seen
rather easily by considering an equilateral triangle; it was finally shown to be
correct by Du and Hwang [DuHw90a, DuHw90b]. Thus a minimal Steiner tree
for a given set of n vertices is at most (roughly) 14 % better than a minimal
spanning tree. We note that minimal Steiner trees are difficult to determine:
the euclidean Steiner tree problem is NP-complete, see [GaGJ77]. In contrast,
it is easy to find minimal spanning trees. For practical applications, one will
therefore be satisfied with minimal spanning trees or with better, but not
necessarily minimal, Steiner trees. A relatively good algorithm for determining
minimal Steiner trees can be found in [TrHw90]; heuristics for finding good
Steiner trees are in [DuZh92].

The Steiner problem has also been studied extensively for other metric
spaces. In this section, we consider a graph theoretic version, the Steiner
network problem. Here one is given a network (G, w) with a positive weight
function w, where the vertex set V of G is the disjoint union of two sets R and
S. Now a minimal Steiner tree is a minimal spanning tree T for an induced
subgraph whose vertex set has the form R ∪ S′ with S′ ⊂ S. The vertices in
S′ are again called Steiner points.

Note that the Steiner network problem is a common generalization of two
problems for which we have already found efficient solutions: the case S = ∅
is the problem of determining a minimal spanning tree; and for |R| = 2, the
problem consists of finding a shortest path between the two given vertices.
Nevertheless, the general Steiner network problem is NP-hard, a result due
to [Kar72]. [Law76] gave an algorithm whose complexity is polynomial in the
cardinality s of S but exponential in the cardinality r of R. Before presenting
this algorithm, we prove a further result due to [GiPo68]: one needs only a
relatively small number of Steiner points, provided that we are in the met-
ric case, where G is complete and w satisfies the triangle inequality (metric
Steiner network problem). Then we will show how to reduce the general Steiner
network problem to the metric case.

Lemma 4.6.1. Let G = (V, E) be a complete graph whose vertex set is the
disjoint union V = R

.∪ S of two subsets. Moreover, let w be a positive
weight function on E satisfying the triangle inequality. Then there is a mini-
mal Steiner tree for the network (G, w) which contains at most |R|−2 Steiner
points.

3Here is an exercise for those who remember their high school geometry. Prove
that the Fermat point of a triangle in which no vertex exceeds 120◦ is the unique
point from which the three sides each subtend a 120◦ angle. See, for example,
[Cox61], Section 1.8.
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Proof. Write r = |R|, and let T be a minimal Steiner tree for (G, w) with
exactly p Steiner points. Let us denote the average degree of a vertex of R in
T by x; similarly, y denotes the average degree of a vertex of S′ in T . Then
the number of all edges in T satisfies

r + p − 1 =
rx + py

2
.

Trivially, x ≥ 1. As w satisfies the triangle inequality, we may assume that
any Steiner point in T is incident with at least three edges, hence y ≥ 3. This
gives r + p − 1 ≥ (r + 3p)/2; that is, p ≤ r − 2. ��

Lemma 4.6.2. Let G = (V, E) be a graph whose vertex set is the disjoint
union V = R

.∪ S of two subsets. Moreover, let w be a positive weight function
on E and d the distance function in the network (G, w). Then the weight of
a minimal Steiner tree for the network (KV , d) is the same as the weight of a
minimal Steiner tree for the original network (G, w).

Proof. First let T be any Steiner tree for (G, w). Since each edge e = uv of T
has weight w(uv) ≥ d(u, v), the minimal weight of a Steiner tree for (KV , d)
is at most w(T ). Now let us replace each edge uv in a minimal Steiner tree T ′

for (KV , d) by the edges of a shortest path from u to v in G. We claim that
this yields a Steiner tree T ′′ of the same weight for (G, w), which will prove
the assertion. To justify our claim, we just note that no edge can occur twice
and that there cannot be a cycle after replacing the edges, because otherwise
we could obtain a Steiner tree from T ′′ by discarding superfluous edges. As
we would have to discard at least one edge, this would give an upper bound
< w(T ′) for the weight of a minimal Steiner tree for (KV , d) by the first part
of our argument, contradicting the minimality of T ′. ��
Algorithm 4.6.3. Let G = (V, E) be a connected graph with a positive
weight function w : E → R, where the vertex set V = {1, . . . , n} is the disjoint
union V = R

.∪ S of two subsets. Write |R| = r. The algorithm constructs a
minimal Steiner tree T for R in (G, w).
Procedure STEINER(G, R,w; T )

(1) W ← ∞; T ← ∅; H ← Kn;
(2) FLOYD(G, w; d, p);
(3) for i = 1 to r − 2 do
(4) for S′ ⊂ S with |S′| = i do
(5) PRIM(H|(R ∪ S′), d; T ′, z);
(6) if z < W then W ← z; T ← T ′ fi;
(7) od
(8) od;
(9) for e = uv ∈ T do

(10) if e /∈ E or w(e) > d(u, v)
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(11) then replace e in T by the edges of a shortest path from
u to v in G

(12) fi
(13) od

Here FLOYD is a modified version of the procedure given in Section 3.8 which
uses a function p (giving the predecessor as in Algorithm 3.9.1) to determine
not only the distance between two vertices, but a shortest path as well. We
need this shortest path in step (11). Similarly, the procedure PRIM is modified
in an obvious way to compute not only a minimal spanning tree, but also its
weight.

Theorem 4.6.4. Algorithm 4.6.3 constructs a minimal Steiner tree for
(G, R; w) with complexity O(|V |3 + 2|S||R|2).
Proof. In view of Lemma 4.6.1, Lemma 4.6.2 and its proof, and the correctness
of the procedures FLOYD and PRIM, Algorithm 4.6.3 is correct. The pro-
cedure FLOYD called in step (2) has complexity O(|V |3) by Theorem 3.8.2.
Each call of the procedure PRIM in step (5) has complexity O(|R|2) by Theo-
rem 4.4.4; note here that PRIM is applied to O(|R|) vertices only, by Lemma
4.6.1. The number of times PRIM is called is obviously

r−2∑
i=0

(|S|
i

)
≤ 2|S|.

This established the desired complexity bound. ��
In particular, Theorem 4.6.4 shows that Algorithm 4.6.3 is polynomial in

|V | for fixed s. However, the estimate for the complexity given in the proof of
Theorem 4.6.4 is rather bad if we assume r to be fixed; in that case the number
of calls of PRIM should better be estimated as about |S|r−2. Thus Algorithm
4.6.3 is polynomial for fixed r as well. Altogether, we have proved the following
result which generalizes the fact that the Steiner network problem can be
solved efficiently for the cases r = 2 and s = 0, as noted above.

Corollary 4.6.5. For fixed r or for fixed s the Steiner network problem can
be solved with polynomial complexity. ��

We conclude this section with some recommendations for further read-
ing. A version of the Steiner network problem for digraphs is considered in
the survey [Mac87], and an extensive exposition of the various Steiner prob-
lems can be found in the book [HwRW92]; more recent books on the subject
are [Cie98, Cie01] and [PrSt02]; there is also an interesting collection of arti-
cles [DuSR00]. Steiner trees have important applications in VLSI layout; see
[KoPS90], [Len90], or [Mar92]. In this context, one is particularly interested
in good heuristics; for this topic, we refer to [Vos92], [DuZh92], and [BeRa94].
As this by no means exhaustive collection of references shows, Steiner trees
constitute a large and very active area of research.
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4.7 Spanning trees with restrictions

In reality, most of the problems one encounters cannot be solved by determin-
ing just any (minimal) spanning tree; usually, the solution will have to satisfy
some further restrictions. Unfortunately, this often leads to much harder –
quite often even to NP-hard – problems. In this section, we state some of
these problems without discussing any possible strategies for solving them
(like heuristics); this will be done in Chapter 15 for the TSP as a prototypi-
cal example. Even if there is no weight function given, certain restrictions can
make the task of finding an appropriate spanning tree NP-hard. The following
four problems are all NP-complete; see [GaJo79].

Problem 4.7.1 (degree constrained spanning tree). Let G be a con-
nected graph and k a positive integer. Is there a spanning tree T for G with
maximal degree ∆ ≤ k?

Problem 4.7.2 (maximum leaf spanning tree). Let G be a connected
graph and k a positive integer. Is there a spanning tree for G having at least
k leaves?

Problem 4.7.3 (shortest total path length spanning tree). Let G be
a connected graph and k a positive integer. Is there a spanning tree T such
that the sum of all distances d(u, v) over all pairs of vertices {u, v} is ≤ k?

Problem 4.7.4 (isomorphic spanning tree). Let G be a connected graph
and T a tree (both defined on n vertices, say). Does G have a spanning
tree isomorphic to T? Note that this problem contains the Hamiltonian path
problem of Exercise 2.7.7: HP is the special case where T is a path.

We can neither expect to solve these problems efficiently by some algo-
rithm nor to find a nice formula for the value in question – for example, for
the maximal number of leaves which a spanning tree of G might have. Nev-
ertheless, it is often still possible to obtain interesting partial results, such
as, for example, lower or upper bounds for the respective value. We illustrate
this for Problem 4.7.2 and quote a result due to Kleitman and West [KlWe91]
which shows that a connected graph with large minimal degree has to contain
a spanning tree with many leaves.

Result 4.7.5. Let l(n, k) be the largest positive integer m such that each con-
nected graph with n vertices and minimal degree k contains a spanning tree
with at least m leaves. Then

(1) l(n, k) ≤ n − 3 n
�k−1� + 2;

(2) l(n, 3) ≥ n
4 + 2;

(3) l(n, 4) ≥ 2n+8
5 ;
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(4) l(n, k) ≥ n
(
1 − b ln k

k

)
for sufficiently large k, where b is a constant with

b ≥ 5
2 . �

We will not include the relatively long (though not really difficult) proof
and refer the reader to the original paper instead. The proof given there
consists of an explicit construction of a spanning tree with the desired number
of leaves.

Now let us turn to some weighted problems with restrictions.

Problem 4.7.6 (bounded diameter spanning tree). Let G be a con-
nected graph with a weight function w : E → N, and let d and k be two
positive integers. Does G contain a spanning tree T with weight w(T ) ≤ k
and diameter at most d?

According to [GaJo79], this problem is NP-complete. Hence it is NP-hard
to find among all minimal spanning trees one having the smallest possible
diameter. This remains true even if the weight function is restricted to the
values 1 and 2 only; however, it is easy to solve the case where all weights are
equal.

Exercise 4.7.7. Give a polynomial algorithm for determining a spanning tree
whose diameter is at most 1 larger than the smallest possible diameter. Hint:
Look at Theorem 3.8.8 and Exercise 4.1.3.

A variation of Problem 4.7.6 was studied in [HoLC91]: one asks for a
spanning tree satisfying w(T ) ≤ k and d(u, v) ≤ d for all u, v ∈ V , where
d(u, v) is the distance in the network (G, w). This variation is NP-complete as
well. However, in a Euclidean graph (that is, the vertices are points in a space
Rm and the weights w(u, v) are given by the Euclidean distance), it is possible
to find a spanning tree such that the maximum of the d(u, v) is minimal with
complexity O(|V |3).
Problem 4.7.8 (minimal cost reliability ratio spanning tree). Let G
be a connected graph with both a weight function w : E → N and a reliability
function r : E → (0, 1]; we interpret r(e) as the probability that edge e works,
and w(e) as the cost of using e. Now let T be a spanning tree. As usual, w(T )
is the sum of all w(e) with e ∈ T , whereas r(T ) is defined to be the product of
the r(e) for e ∈ T . Thus w(T ) is the total cost of T , and r(T ) is the probability
that no edge in the tree fails; see Problem 4.5.2. We require a spanning tree
T for which the ratio w(T )/r(T ) is minimal.

Problem 4.7.8 is one of the few restricted problems for which a polynomial
algorithm is known: if we count all arithmetic operations as one step each, it
can be solved in O(|E|5/2 log log |V |) steps;4 see [ChAN81] and [ChTa84].

4As some of the arithmetic operations concerned are exponentiations, this esti-
mate of the complexity might be considered a little optimistic.
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Our final example involves two functions on E as well. But this time,
the two functions are coupled non-linearly, and our goal is to minimize the
resulting function.

Problem 4.7.9 (optimum communication spanning tree). Let G be a
connected graph with a weight function w : E → N0 and a request function
r :

(
V
2

) → N0, and let k be a positive integer. Denote the distance function
in the network (T, w) by d; thus d(u, v) is the sum of the weights w(e) of all
edges occurring in the unique path from u to v in T . Does G have a spanning
tree T satisfying ∑

{u,v}∈(V
2)

d(u, v) × r(u, v) ≤ k?

In practice, d(u, v) signifies the cost of the path from u to v, and r(u, v) is the
capacity we require for communication between u and v – for example, the
number of telephone lines needed between cities u and v. Then the product
d(u, v)r(u, v) is the cost of communication between u and v, and we want to
minimize the total cost.

Problem 4.7.9 is NP-complete even if the request is the same for all edges
(optimum distance spanning tree); see [JoLR78]. However, the special case
where all weights are equal can be solved in polynomial time; see [Hu74] for
an algorithm of complexity O(|V |4). But even this special case of Problem
4.7.9 (optimum requirement spanning tree) is much more difficult to solve
than the problem of determining a minimal spanning tree , and the solution
is found by a completely different method. We shall return to this problem in
Section 12.4.

The general problem of finding spanning trees which are optimal with
respect to several functions is discussed in [HaRu94].

4.8 Arborescences and directed Euler tours

In this section, we treat the analogue of Theorem 4.2.9 for the directed case
and give an application to directed Euler tours. We begin with a simple char-
acterization of arborescences which we used in Section 3.4 already.

Lemma 4.8.1. Let G be an orientation of a connected graph. Then G is a
spanning arborescence with root r if and only if

din(v) = 1 for all v �= r and din(r) = 0. (4.4)

Proof. Condition (4.4) is clearly necessary. Thus assume that (4.4) holds. Then
G has exactly |V | − 1 edges. As |G| is connected by hypothesis, it is a tree
by Theorem 1.2.8. Now let v be an arbitrary vertex. Then there is a path W
in G from r to v; actually, W is a directed path, as otherwise din(r) ≥ 1 or
din(u) ≥ 2 for some vertex u �= r on W . Thus r is indeed a root for G. ��
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In analogy to the degree matrix of a graph, we now introduce the indegree
matrix D = (dij)i,j=1,...,n for a digraph G = (V, E) with vertex set V =
{1, . . . , n}, where

dij =

⎧⎨
⎩

din(i) for i = j
−1 for ij ∈ E

0 otherwise.

We denote the submatrix of D obtained by deleting the i-th row and the
i-th column by Di. The following analogue of Theorem 4.2.9 is due to Tutte
[Tut48].

Theorem 4.8.2. Let G = (V, E) be a digraph with indegree matrix D. Then
the r-th minor det Dr is equal to the number of spanning arborescences of G
with root r.

Proof. We may assume r = 1. Note that it is not necessary to consider edges
with head 1 if we want to construct spanning arborescences with root 1, and
that the entries in the first column of D do not occur in the minor detD1.
Thus we may make the following assumption which simplifies the remainder
of the proof considerably: G contains no edges with head 1, and hence the
first column of D is the vector having all entries 0. If there should be a vertex
i �= 1 with din(i) = 0, G cannot have any spanning arborescence. On the other
hand, the i-th column of D then has all entries equal to 0, so that detD1 = 0.
Thus our assertion is correct for this case, and we may from now on assume
that the condition

din(i) ≥ 1 for each vertex i �= 1 (4.5)

holds. We use induction on m := din(2) + . . . + din(n); note m = |E|, because
of our assumption din(1) = 0. The more difficult part of the induction here
is the induction basis, that is, the case m = n − 1. We have to verify that
G is an arborescence (with root 1) if and only if detD1 = 1. First let G be
an arborescence; then condition (4.4) holds for r = 1. As G is acyclic, G has
a topological sorting by Theorem 2.6.3. Thus we may assume i < j for all
edges ij in E. Then the matrix D is an upper triangular matrix with diagonal
(0, 1, . . . , 1) and det D1 = 1.

Conversely, suppose det D1 �= 0; we have to show that G is an arborescence
(and therefore, actually detD1 = 1). It follows from condition (4.5) and m =
n− 1 that din(i) = 1 for i = 2, . . . , n. Thus G satisfies condition (4.4), and by
Lemma 4.8.1 it suffices to show that G is connected. In view of Theorem 1.2.8,
we may check instead that G is acyclic. By way of contradiction, suppose that
G contains a cycle, say

C : i1 i2 . . . ik i1.

Let us consider the submatrix U of D1 which consists of the columns corre-
sponding to i1, . . . , ik. As each of the vertices i1, . . . , ik has indegree 1, U can
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have entries �= 0 only in the rows corresponding to i1, . . . , ik. Moreover, the
sum of all rows of U is the zero vector, so that U has rank ≤ k − 1. Thus
the columns of U , and hence also the columns of D1, are linearly dependent;
but this implies detD1 = 0, contradicting our hypothesis. Hence the assertion
holds for m = n − 1.

Now let m ≥ n. In this case, there has to be a vertex with indegree ≥ 2,
say

din(n) = c ≥ 2. (4.6)

For each edge e of the form e = jn, let D(e) denote the matrix obtained by
replacing the last column of D by the vector ve = −ej + en, where ek is the
k-th unit vector; thus ve has entry −1 in row j, entry 1 in row n and all other
entries 0. Then D(e) is the indegree matrix for the graph G(e) which arises
from G by deleting all edges with head n except for e. Because of (4.6), G(e)
has at most m− 1 edges; hence the induction hypothesis guarantees that the
minor det D(e)1 equals the number of spanning arborescences of G(e) with
root 1. Obviously, this is the number of spanning arborescences of G which
have root 1 and contain the edge e. Therefore the number of all spanning
arborescences of G with root 1 is the sum

det D(e1)1 + . . . + det D(ec)1,

where e1, . . . , ec are the c edges of G with head n. On the other hand, the last
column of D is the sum ve1 + . . .+vec of the last columns of D(e1), . . . , D(ec).
Thus the multilinearity of the determinant implies

det D1 = det D(e1)1 + . . . + det D(ec)1,

and the assertion follows. ��
Theorem 4.8.2 can be used to obtain an alternative proof for Theorem

4.2.9. Even though this proof is not shorter than the proof given in Section
4.2, it has the advantage of avoiding the use of the theorem of Cauchy and
Binet (which is not all that well-known).

Corollary 4.8.3. Let H = (V, E) be a graph with adjacency matrix A and
degree matrix D = diag(deg 1, . . . ,deg n) − A. Then the number of spanning
trees of H is the common value of all minors det Dr of D.

Proof. Let G be the complete orientation of H. Then there is a one-to-one
correspondence between the spanning trees of H and the spanning arbores-
cences of G with root r. Moreover, the degree matrix D of H coincides with
the indegree matrix of G. Thus the assertion follows from Theorem 4.8.2. ��

Now let G be a directed Eulerian graph; then G is a connected pseudo-
symmetric digraph by Theorem 1.6.1. The following theorem of de Bruijn
and van Aardenne-Ehrenfest (1951) [deBA51] gives a connection between the
spanning arborescences and the directed Euler tours of G.
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Theorem 4.8.4. Let G = (V, E) be an Eulerian digraph. For i = 1, . . . , n,
let ai denote the number of spanning arborescences of G with root i. Then the
number eG of directed Euler tours of G is given by

eG = ai ×
n∏

j=1

(din(j) − 1)! , (4.7)

where i may be chosen arbitrarily.

Sketch of proof. Let A be a spanning arborescence of G with root i. For each
vertex j �= i, let ej denote the unique edge in A with head j, and choose ei

as a fixed edge with head i. Now we construct a cycle C in G by the method
described in the algorithm of Hierholzer, using all edges backward (so that we
get a directed cycle by reversing the order of the edges in C). That is, we leave
vertex i using edge ei; and, for each vertex j which we reach by using an edge
with tail j, we use – as long as this is possible – some edge with head j not yet
used to leave j again. In contrast to the algorithm of Hierholzer, we choose
ej for leaving j only after all other edges with head j have been used already.
It can be seen as usual that the construction can only terminate at the start
vertex i, since G is pseudo-symmetric. Moreover, for each vertex j, all edges
with head j – and hence all the edges of G – are used exactly once, because
of the restriction that ej is chosen last. Thus we indeed get an Euler tour.
Obviously, whenever we have a choice of an edge in our construction, different
choices will give different Euler tours. But the choice of the edges with head
j leads to altogether (din(j) − 1)! possibilities, so that the product in (4.7)
gives the number of distinct Euler tours of G which can be constructed using
A. It is easy to see that distinct arborescences with root i also lead to distinct
Euler tours. Conversely, we may construct a spanning arborescence with root
i from any directed Euler tour in a similar way. ��
Corollary 4.8.5. Let G be an Eulerian digraph. Then the number of spanning
arborescences of G with root i is independent of the choice of i. ��

From Exercise 2.3.2 we know that the de Bruijn sequences of length
N = sn over an alphabet S of cardinality s correspond bijectively to the
directed Euler tours of the digraph Gs,n defined there. Combining Theorems
4.8.2 and 4.8.4, we can now determine the number of such sequences, a result
due to de Bruijn [deB46]. See also [vLi74]; a similar method can be found in
[Knu67].

Theorem 4.8.6. The number of de Bruijn sequences of length N = sn over
an alphabet S of cardinality s is

bs,n = s−n(s!)sn−1
. (4.8)

Sketch of proof. As each vertex of Gs,n has indegree s, Theorem 4.8.4 yields
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bs,n = a((s − 1)!)sn−1
, (4.9)

where a is the common value of all minors of the indegree matrix D of Gs,n.
Thus it remains to show

a = ssn−1−n. (4.10)

To do this, Theorem 4.8.2 is used. (We have to be a bit careful here, because
Gs,n contains loops. Of course, these loops should not appear in the matrix
D.) As the technical details of calculating the determinant in question are
rather tedious, we will not give them here and refer to the literature cited
above. ��

We conclude this chapter with some references for the problem of deter-
mining an arborescence of minimal weight in a network (G, w) on a digraph
G. This problem is considerably more difficult than the analogous problem of
determining minimal spanning trees in the undirected case; for this reason,
we have not treated it in this book. A minimal arborescence can be deter-
mined with complexity O(|V |2) or O(|E| log |V |); the respective algorithms
were found independently by Chu and Liu [ChLi65] and Edmonds [Edm67b].
For an implementation, see [Tar77] and [CaFM79], where some details of Tar-
jan’s paper are corrected, or [GoMi84]. The best result up to now is due
in [GaGST86], where Fibonacci heaps are used to achieve a complexity of
O(|V | log |V | + |E|).



5

The Greedy Algorithm

Greed is good. Greed is right. Greed works.

From ‘Wall Street’

In this chapter we study a generalization of the algorithm of Kruskal, the
so-called greedy algorithm. This algorithm can be used for maximization on
independence systems – in the case of the algorithm of Kruskal, the system of
spanning forests of a graph. The greedy strategy is rather short-sighted: we
always select the element which seems best at the moment. In other words,
among all the admissible elements, we choose one whose weight is maximal
and add it to the solution we are constructing. In general, this simple strategy
will not work, but for a certain class of structures playing an important part in
combinatorial optimization, the so-called matroids, it indeed leads to optimal
solutions. Actually, matroids may be characterized by the fact that the greedy
algorithm works for them, but there are other possible definitions. We will look
at various other characterizations of matroids and also consider the notion of
matroid duality.

Following this, we shall consider the greedy algorithm as an approximation
method for maximization on independence systems which are not matroids.
We examine the efficiency of this approach, that is, we derive bounds for the
ratio between the solution given by the greedy algorithm and the optimal
solution. We also look at the problem of minimization on independence sys-
tems. Finally, in the last section, we discuss some further generalizations of
matroids and their relationship to the greedy algorithm.

5.1 The greedy algorithm and matroids

Let us begin by recalling the algorithm of Kruskal for determining a maximal
spanning tree or forest. Thus let G = (V, E) be a simple graph and w : E → R

a weight function. We order the edges according to decreasing weight and
treat them consecutively: an edge is inserted into the set T if and only if it
does not form a cycle with the edges which are already contained in T . At the
end of the algorithm, T is a maximal spanning forest – or, if G is connected,
a maximal spanning tree. We may describe this technique on a slightly more
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abstract level as follows. Let S be the set of all subsets of E which are forests.
Then the edge e which is currently examined is added to T if and only if
T ∪{e} is also in S. Of course, we may apply this strategy – namely choosing
the element e ∈ E which is maximal among all elements of E satisfying a
suitable restriction – also to other systems (E,S). We need some definitions.

An independence system is a pair (E,S), where E is a set and S is a subset
of the power set of E closed under inclusion: A ∈ S and B ⊂ A imply B ∈ S.
The elements of S are called independent sets. We associate an optimization
problem with (E,S) as follows. For a given weight function w : E → R+

0 , we
ask for an independent set A with maximal weight

w(A) :=
∑
e∈A

w(e). 1

For example, determining a maximal spanning forest for a graph G = (V, E)
is the optimization problem associated with (E,S), where S is the indepen-
dence system of all edge sets constituting forests. We can now generalize the
algorithm of Kruskal to work on an arbitrary independence system.

Algorithm 5.1.1 (greedy algorithm). Let (E,S) be an independence sys-
tem and w : E → R+

0 a weight function.

Procedure GREEDY(E,S, w; T )

(1) order the elements of E according to their weight: E = {e1, . . . , em} with
w(e1) ≥ w(e2) ≥ . . . ≥ w(em);

(2) T ← ∅;
(3) for k = 1 to m do
(4) if T ∪ {ek} ∈ S then append ek to T fi
(5) od

By Theorem 4.4.8, the greedy algorithm solves the optimization problem
associated with the system of forests of a graph. For arbitrary independence
systems, however, the simple strategy – Always take the biggest piece! – of this
algorithm does not work. We call an independence system (E,S) a matroid
if the greedy algorithm solves the associated optimization problem correctly.2

Then we may restate Theorem 4.4.8 as follows.
1Note that the restriction to nonnegative weight functions ensures that there

is a maximal independent set among the independent sets of maximal weight. We
may drop this condition and require A to be a maximal independent set instead; see
Theorem 5.5.1.

2Originally, Whitney [Whi35] and van der Waerden [vdW37] (see also [vdW49]
for an English edition) introduced matroids as an abstract generalization of the
notions of linear and algebraic independence, respectively. In the next section, we
give some other possible definitions. The generalization of the algorithm of Kruskal
to matroids was found independently by [Gal68], [Wel68] and – actually a bit earlier
– by Edmonds; see [Edm71]. Early forms of the underlying ideas go back even to
[Bor26a] and [Rad57].



5.2 Characterizations of matroids 125

Theorem 5.1.2. Let G = (V, E) be a graph, and let S be the set of those
subsets of E which are forests. Then (E,S) is a matroid. ��

The matroid described above is called the graphic matroid of the graph G.
Next we treat a class of matroids arising from digraphs.

Theorem 5.1.3. Let G = (V, E) be a digraph, and let S be the set of all
subsets A of E for which no two edges of A have the same head. Then (E,S)
is a matroid, the head-partition matroid of G.3

Proof. Obviously, an independent set of maximal weight can be found by
choosing, for each vertex v of G with din(v) �= 0, the edge with head v having
maximal weight. Thus the greedy algorithm solves the corresponding opti-
mization problem. ��

Next we give an example where it is absolutely trivial that the greedy
algorithm works correctly.

Example 5.1.4. Let E be a set, and let S be the set of all subsets X ⊆ E
with |X| ≤ k, where 1 ≤ k ≤ |E|. Then (E,S) is called a uniform matroid of
degree k. For k = |E|, we also speak of the free matroid on E.

Exercise 5.1.5. Let G be a graph. A matching in G is a set of edges which
do not have any vertices in common; we will study this notion in detail later.
Show that the matchings in a graph G do not form a matroid in general,
even if G is bipartite. The independence system of matchings in G will be
investigated in Section 5.4.

5.2 Characterizations of matroids

We begin with two characterizations of matroids which show that these struc-
tures can be viewed as generalizations of the notion of linear independence.

Theorem 5.2.1. Let M = (E,S) be an independence system. Then the fol-
lowing conditions are equivalent:

(1) M is a matroid.
(2) For J, K ∈ S with |J | = |K|+ 1, there always exists some a ∈ J \K such

that K ∪ {a} is also in S.
(3) For every subset A of E, all maximal independent subsets of A have the

same cardinality.

Proof. Suppose first that M is a matroid for which (2) is not satisfied. Then
there are J, K ∈ S with |J | = |K| + 1 such that, for every a ∈ J \ K, the set
K ∪ {a} is not in S. Let k = |K|, and define a weight function w as follows:

3The tail-partition matroid is defined analogously.
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w(e) :=

⎧⎨
⎩

k + 2 for e ∈ K,

k + 1 for e ∈ J \ K,

0 otherwise.

Note that K is not the solution of the associated optimization problem:
w(K) = k(k + 2) < (k + 1)2 ≤ w(J). On the other hand, the greedy al-
gorithm first chooses all elements of K, because they have maximal weight.
Afterwards, the weight of the solution cannot be increased any more: all re-
maining elements e either have w(e) = 0 or are in J \ K, so that K ∪ {e}
is not in S, according to our assumption above. Thus M is not a matroid, a
contradiction. Hence (1) implies (2).

Now let A be an arbitrary subset of E and J and K two maximal inde-
pendent subsets contained in A; thus there is no independent subset of A con-
taining J or K, except J or K itself, respectively. Suppose we have |K| < |J |.
As S is closed under inclusion, there is a subset J ′ of J with |J ′| = |K| + 1.
By (2), there exists an element a ∈ J ′ \ K such that K ∪ {a} is independent,
contradicting the maximality of K. Thus (2) implies (3).

Finally, suppose that M is not a matroid, but satisfies condition (3).
Then the greedy algorithm does not work for the corresponding optimization
problem. Thus we may choose a weight function w for which Algorithm 5.1.1
constructs an independent set K = {e1, . . . , ek}, even though there exists an
independent set J = {e′1, . . . , e′h} of larger weight. We may assume that the
elements of J and K are ordered according to decreasing weight and that J
is a maximal independent subset of E. By construction, K is maximal too.
Then (3), with A = E, implies h = k. We use induction on m to show that
the inequality w(ei) ≥ w(e′i) holds for i = 1, . . . , m; the instance m = k then
gives a contradiction to our assumption w(K) < w(J). Now the greedy algo-
rithm chooses e1 as an element of maximal weight; thus the desired inequality
holds for m = 1. Now suppose that the assertion holds for m ≥ 1 and assume
w(em+1) < w(e′m+1). Consider the set

A = {e ∈ E : w(e) ≥ w(e′m+1)}.

We claim that S = {e1, . . . , em} is a maximal independent subset of A. To
see this, let e be any element for which {e1, . . . , em, e} is independent. Then
w(e) ≤ w(em+1) < w(e′m+1), since the greedy algorithm chose the element
em+1 after having chosen em; hence e /∈ A so that S is indeed a maximal subset
of A. But {e′1, . . . , e′m+1} is also an independent subset of A, contradicting
condition (3). Thus (3) implies (1). ��

Note that condition (2) of Theorem 5.2.1 is analogous to a well-known
result from linear algebra, the Steinitz exchange theorem; therefore (2) is
usually called the exchange axiom. Similarly, condition (3) is analogous to
the fact that all bases of a linear subspace have the same cardinality. In fact,
Theorem 5.2.1 immediately gives the following result.
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Theorem 5.2.2. Let E be a finite subset of a vector space V , and let S be
the set of all linearly independent subsets of E. Then (E,S) is a matroid. ��

A matroid constructed as in Theorem 5.2.2 is called a vectorial matroid or
a matric matroid. The second name comes from the fact that a subset E of a
vector space V can be identified with the set of columns of a suitable matrix
(after choosing a basis for V ); then the independent sets are the linearly
independent subsets of this set of columns. An abstract matroid is called
representable over F , where F is a given field, if it is isomorphic to a vectorial
matroid in a vector space V over F . (We leave it to the reader to give a formal
definition of the term isomorphic.)

Exercise 5.2.3. Every graphic matroid is representable over F for every field
F . Hint: Use the incidence matrix of an arbitrary orientation of the underlying
graph.

Exercise 5.2.4. Let G = (V, E) be a graph. A set A ⊆ E is called a k-forest
of G if it splits into a forest F and at most k edges not in F . Prove that the
set of all k-forests of G forms a matroid Mk(G). Hint: Use Theorem 5.2.1 and
reduce the assertion to the case k = 0, where the matroid in question is just
the graphic matroid.

Let us introduce some more terminology chosen in analogy to that used
in linear algebra. The maximal independent sets of a matroid M = (E,S)
are called its bases. The rank ρ(A) of a subset A of E is the cardinality of
a maximal independent subset of A. Any subset of E not contained in S is
called dependent.

Exercise 5.2.5. Let ρ be the rank function of a matroid M = (E,S). Show
that ρ has the following properties.

(1) ρ(A) ≤ |A| for all A ⊂ E;
(2) ρ is isotonic, that is, A ⊂ B implies ρ(A) ≤ ρ(B) (for all A, B ⊂ E);
(3) ρ is submodular, that is, ρ(A ∪ B) + ρ(A ∩ B) ≤ ρ(A) + ρ(B) for all

A, B ⊂ E.

Conversely, matroids can be defined using their rank function. Let E be a
set and ρ a function from the power set of E to N0 satisfying conditions (1),
(2), and (3) above. Then the subsets X of E satisfying ρ(X) = |X| are the
independent sets of a matroid on E; for example, see [Wel76]. Submodular
functions are important in combinatorial optimization and matroid theory;
see, for instance, [PyPe70], [Edm70], [FrTa88], [Qi88], and the monograph by
[Fuj91].

To solve Exercise 5.2.5, we need a result worth noting explicitly, although
it is a direct consequence of condition (2) of Theorem 5.2.1.

Theorem 5.2.6 (basis completion theorem). Let J be an independent set
of the matroid M = (E,S). Then J is contained in a basis of M . ��
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We will now use the rank function to introduce another important concept;
this rests on the following simple observation.

Lemma 5.2.7. Let J be an independent set of the matroid (E,S), and let
X, Y ⊆ E. If J is a maximal independent set of X as well as of Y , then J is
also a maximal independent set of X ∪ Y . ��
Theorem 5.2.8. Let M = (E,S) be a matroid and A a subset of E. Then
there is a unique maximal set B containing A such that ρ(A) = ρ(B), namely

B = {e ∈ E : ρ(A ∪ {e}) = ρ(A)}.
Proof. First let C be an arbitrary superset of A satisfying ρ(A) = ρ(C).
Then ρ(A ∪ {e}) = ρ(A) holds for each e ∈ C: otherwise we would have
ρ(C) ≥ ρ(A∪{e}) > ρ(A). Thus we only need to show that the set B defined
in the assertion satisfies the condition ρ(A) = ρ(B). Let J be a maximal
independent subset of A; then J is also a maximal independent subset of
A ∪ {e} for each e ∈ B. By Lemma 5.2.7, J is also a maximal independent
subset of B. ��

The set B defined in Theorem 5.2.8 is called the span of A and is denoted
by σ(A). By analogy with the terminology of linear algebra, a generating set
of M is a set A with E = σ(A). A set A satisfying σ(A) = A is called a closed
set, and a hyperplane is a maximal closed proper subset of E. Matroids may be
characterized by systems of axioms using the notion of span or of hyperplane;
we refer again to [Wel76]. Let us pose some exercises concerning the concepts
just introduced.

Exercise 5.2.9. Let M = (E,S) be a matroid. Then the span operator σ has
the following properties:

(1) X ⊂ σ(X) for all X ⊂ E;
(2) Y ⊂ X ⇒ σ(Y ) ⊂ σ(X) for all X, Y ⊂ E;
(3) σ(σ(X)) = σ(X) for all X ⊂ E;
(4) If y /∈ σ(X) and y ∈ σ(X ∪ {x}), then x ∈ σ(X ∪ {y}).
Property (3) explains why the sets σ(A) are called closed; property (4) is again
called the exchange axiom because it is basically the same as condition (2)
of Theorem 5.2.1. Conversely, the conditions given above can be used for an
axiomatic characterization of matroids by the span operator.

Exercise 5.2.10. Show that the bases of a matroid are precisely the minimal
generating sets.

Exercise 5.2.11. Let (E,S) be a matroid. Prove the following assertions:
(a) The intersection of closed sets is closed.
(b) σ(X) is the intersection of all closed sets containing X.
(c) X is closed if and only if ρ(X ∪ {x}) = ρ(X) + 1 for some x ∈ E \ X.
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Exercise 5.2.12. Let (E,S) be a matroid of rank r, that is, ρ(E) = r). Show
that (E,S) contains at least 2r closed subsets.

Let us introduce one further notion, this time generalizing a concept from
graph theory. A circuit in a matroid is a minimal dependent set – by analogy
with a cycle in a graph. We have the following result; the special case of a
graphic matroid should be clear from the preceding discussion.

Theorem 5.2.13. Let M = (E,S) be a matroid, J an independent set of M ,
and e any element of E \ J . Then either J ∪ {e} is independent, or J ∪ {e}
contains a unique circuit.

Proof. Suppose that J ∪ {e} is dependent, and put

C = {c ∈ E : (J ∪ {e}) \ {c} ∈ S}.

Note C �= ∅, since e ∈ C by definition. Also, C is dependent, because otherwise
it could be completed to a maximal independent subset K of J ∪{e}. As J is
independent itself, we would have |K| = |J |, so that K = (J ∪ {e}) \ {d} for
some element d. But then d would have to be an element of C, a contradiction.
It is easy to see that C is even a circuit: if we remove any element c, we get
a subset of (J ∪ {e}) \ {c} which is, by definition of C, an independent set. It
remains to show that C is the only circuit contained in J ∪{e}. Thus let D be
any circuit contained in J ∪ {e}. Suppose there exists an element c ∈ C \ D.
Then D is a subset of (J ∪ {e}) \ {c} which is an independent set. Therefore
C ⊂ D, and hence C = D. ��

We conclude this section by characterizing matroids in terms of their cir-
cuits. We begin with a simple observation.

Lemma 5.2.14. Let (E,S) be a matroid. A subset A of E is dependent if and
only if ρ(A) < |A|. Moreover, ρ(A) = |A| − 1 for every circuit A. ��
Theorem 5.2.15. Let M = (E,S) be a matroid, and let C be the set of all
circuits of M . Then C has the following properties:

(1) If C ⊂ D, then C = D for all C, D ∈ C;
(2) For all C, D ∈ C with C �= D and for each x ∈ C ∩D, there always exists

some F ∈ C with F ⊂ (C ∪ D) \ {x}.
Conversely, assume that a set system (E,C) satisfies the preceding two circuit
axioms. Then there is a unique matroid (E,S) having C as its set of circuits.

Proof. First, let C be the set of circuits of M . As circuits are minimal de-
pendent sets, condition (1) is trivial. The submodularity of ρ yields, together
with Lemma 5.2.14,

ρ(C ∪D) + ρ(C ∩D) ≤ ρ(C) + ρ(D) = |C|+ |D| − 2 = |C ∩D|+ |C ∪D| − 2.
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As C and D are minimal dependent sets, C ∩ D is independent; therefore
ρ(C ∩ D) = |C ∩ D|, and hence

ρ((C ∪ D) \ {x}) ≤ ρ(C ∪ D) ≤ |C ∪ D| − 2 < |(C ∪ D) \ {x}|.
By Lemma 5.2.14, (C ∪ D) \ {x} is dependent and hence contains a circuit.

Conversely, suppose C satisfies the conditions (1) and (2). If there exists
a matroid (E,S) with set of circuits C, its independent sets are given by

S = {J ⊂ E : J does not contain any element of C}.
Obviously, S is closed under inclusion, and it suffices to show that (E,S)
satisfies condition (2) of Theorem 5.2.1. Suppose that this condition is not
satisfied, and choose a counterexample (J, K) such that |J ∪ K| is minimal.
Let J \K = {x1, . . . , xk}. Note k �= 1, because otherwise |J | = |K|+ 1 would
imply that K is a subset of J , and hence J = K∪{x1} would be independent.
Our assumption means K ∪ {xi} /∈ S for i = 1, . . . , k. In particular, there
exists C ∈ C with C ⊂ K ∪ {x1}; as K is independent, x1 must be in C.
As J is independent, there is an element y ∈ K \ J which is contained in C.
Consider the set Z = (K \ {y}) ∪ {x1}. If Z is not in S, then there exists
D ∈ C with D ⊂ Z and x1 ∈ D, and the circuit axiom (2) yields a set
F ∈ C with F ⊂ (C ∪D) \ {x1} ⊂ K, contradicting K ∈ S. Hence Z must be
independent. Note that |Z ∪ J | < |K ∪ J |. As we chose our counterexample
(J, K) to be minimal, (J, Z) has to satisfy condition (2) of Theorem 5.2.1.
Thus there exists some xi, say x2, such that Z ∪{x2} ∈ S. But K ∪{x2} /∈ S,
so that there is a circuit C ′ ∈ C with C ′ ⊂ K ∪ {x2}. We must have x2 ∈ C ′,
because K is independent; and (K \ {y}) ∪ {x1, x2} ∈ S yields y ∈ C ′. Thus
C ′ �= C, and y ∈ C ∩ C ′. Using the circuit axiom (2) again, there exists a set
F ′ ∈ C with F ′ ⊂ (C ∪C ′) \ {y} ⊂ (K \ {y})∪ {x1, x2} ∈ S. This contradicts
the definition of S. Therefore M = (E,S) is indeed a matroid, and clearly C
is the set of circuits of M . ��
Exercise 5.2.16. Show that the set C of circuits of a matroid (E,S) actually
satisfies the following stronger version of the circuit axiom (2) in Theorem
5.2.15 [Leh64]:

(2′) For all C, D ∈ C, for each x ∈ C ∩ D, and for each y ∈ C \ D,
there exists a set F ∈ C with y ∈ F ⊂ (C ∪ D) \ {x}.

5.3 Matroid duality

In this section we construct the dual matroid M∗ of a given matroid M . We
stress that the notion of duality of matroids differs from the duality known
from linear algebra: the dual matroid of a finite vector space is not the matroid
formed by the dual space. Matroid duality has an interesting meaning in graph
theory; see Result 5.3.4 below. The following construction of the dual matroid
is due to Whitney [Whi35].
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Theorem 5.3.1. Let M = (E,S) be a matroid. Put M∗ = (E,S∗), where

S∗ = {J ⊂ E : there is a basis B of M with J ⊂ E \ B}.
Then M∗ is a matroid as well, and the rank function ρ∗ of M∗ is given by

ρ∗(A) = |A| + ρ(E \ A) − ρ(E). (5.1)

Proof. Obviously, S∗ is closed under inclusion. By Theorem 5.2.1, it suffices to
verify the following condition for each subset A of E: all maximal subsets of
A which are independent with respect to S∗ have the cardinality ρ∗(A) given
in (5.1). Thus let J be such a subset of A. Then there exists a basis B of M
with J = (E \ B) ∩ A; moreover, J is maximal with respect to this property.
This means that B is chosen such that A \ J = A \ ((E \ B) ∩ A) = A ∩ B is
minimal with respect to inclusion. Hence K := (E \ A) ∩ B is maximal with
respect to inclusion. Thus K is a basis of E \ A in the matroid M and has
cardinality ρ(E \A). Therefore the minimal subsets A∩B all have cardinality

|B| − ρ(E \ A) = ρ(E) − ρ(E \ A);

and all maximal subsets J ∈ S∗ of A have cardinality

|J | = |A| − |A \ J | = |A| − |A ∩ B| = |A| + ρ(E \ A) − ρ(E). �

The matroid M∗ constructed in Theorem 5.3.1 is called the dual matroid
of M . The bases of M∗ are the cobases of M ; the circuits of M∗ are the
cocircuits of M . According to Exercise 5.2.10, the independent sets of M∗ are
precisely the complements of generating sets of M . This implies the following
result.

Corollary 5.3.2. Let M = (E,S) be a matroid. Then the independent sets of
M∗ are the complements of the generating sets of M . In particular, the bases
of M∗ are the complements of the bases of M . Hence (M∗)∗ = M . ��
Example 5.3.3. Let M = M(G) be the matroid corresponding to a con-
nected graph G. Then the bases of M are the spanning trees of G, and the
bases of M∗ are the cotrees, that is, the complements of the spanning trees.
More generally, a set S is independent in M∗ if and only if its complement S
contains a spanning tree of G, that is, if and only if S is connected. By defi-
nition, the circuits of a matroid are the minimal independent sets. Thus the
circuits of M are the cycles in G, and the circuits of M∗ are the minimal sets
C for which the complement C is not connected. In other words, the circuits
of M∗ are the simple cocycles of G – all those cocycles which are minimal
with respect to inclusion.

In the general case, if G has p connected components, n vertices and m
edges, then M(G) has rank n−p and M(G)∗ has rank m−(n−p), by Theorem
4.2.4.
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We now state an important theorem due to Whitney [Whi33] which clar-
ifies the role of matroid duality in graph theory; a proof can be found in
Chapter 6 of [Wel76].4

Result 5.3.4. A graph G is planar if and only if the dual matroid M(G)∗ is
graphic. ��
Exercise 5.3.5. Let M = (E,S) be a matroid, and let A and A∗ be two
disjoint subsets of E. If A is independent in M and if A∗ is independent in
M∗, then there are bases B and B∗ of M and M∗, respectively, with A ⊂ B,
A∗ ⊂ B∗, and B ∩ B∗ = ∅. Hint: Note ρ(E) = ρ(E \ A∗).

Exercise 5.3.6. Let M = (E,S) be a matroid. A subset X of E is a basis of
M if and only if X has nonempty intersection with each cocircuit of M and
is minimal with respect to this property.

Exercise 5.3.7. Let C be a circuit and C∗ a cocircuit of the matroid M .
Prove |C ∩ C∗| �= 1. Hint: Use Exercise 5.3.5 for an indirect proof.

This result plays an important role in characterizing a pair (M, M∗) of
dual matroids by the properties of their circuits and cocircuits; see [Min66].

Exercise 5.3.8. Let x and y be two distinct elements of a circuit C in a
matroid M . Then there exists a cocircuit C∗ in M such that C ∩C∗ = {x, y}.
Hint: Complete C \ {x} to a basis B of M and consider B∗ ∪ {y}, where
B∗ = E \ B is a cobasis.

We will return to matroids several times throughout this book. For a thor-
ough study of matroid theory we recommend the book by Welsh [Wel76],
which is still a standard reference. We also mention the monographs [Tut71],
[Rec89], and [Oxl92]; of these, Oxley’s book is of particular interest as it also
includes applications of matroids. A series of monographs concerning matroid
theory was edited by White [Whi86, Whi87, Whi92].

5.4 The greedy algorithm as an approximation method

In this section we investigate independence systems M = (E,S) which are not
matroids. By definition, the greedy algorithm then does not (always) yield an
optimal solution for the optimization problem

(P) determine max{w(A) : A ∈ S},
4We will give a rough idea how the dual matroid of a planar graph G can be

seen to be graphic; to simplify matters, we assume that each edge lies in a circle.
Suppose G is drawn in the plane. Construct a multigraph G∗ = (V ∗, E∗) whose
vertices correspond to the faces of G, by selecting a point in the interior of each
face; two such points are connected by as many edges as the corresponding faces
share in G. This gives a plane multigraph G∗, and one may show M(G)∗ ∼= M(G∗).
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where w : E → R+
0 is a given weight function. Of course, we may apply the

greedy algorithm nevertheless, in the hope of obtaining a reasonably good ap-
proximate solution in this way. We shall examine the quality of this approach
by deriving bounds for the term

f(M) = min
{

w(Tg)
w(T0)

: w : E → R+
0

}
,

where Tg denotes a solution for (P) constructed by the greedy algorithm,
whereas T0 is an optimal solution.5 We follow Korte and Hausmann [KoHa78]
in this section; similar results were also obtained by Jenkyns [Jen76].

First we introduce some useful parameters for independence systems. For
any subset A of E, the lower rank of A is

lr(A) = min{|I| : I ⊂ A, I ∈ S, I ∪ {a} /∈ S for all a ∈ A \ I}.
Similarly, we define the upper rank of A as

ur(A) = max{|I| : I ⊂ A, I ∈ S, I ∪ {a} /∈ S for all a ∈ A \ I}.
Moreover, the rank quotient of M is

rq(M) = min
{

lr(A)
ur(A)

: A ⊂ E

}
;

here terms 0
0 might occur; such terms are considered to have value 1. Note

that Theorem 5.2.1 immediately yields the following result.

Lemma 5.4.1. An independence system M = (E,S) is a matroid if and only
if rq(M) = 1. ��

As we will see, the rank quotient indicates how much M differs from a
matroid. Below, we will get an interesting estimate for the rank quotient
confirming this interpretation. But first, we prove the following theorem of
[Jen76] and [KoHa78]6, which shows how the quality of the solution found by
the greedy algorithm depends on the rank quotient of M .

Theorem 5.4.2. Let M = (E,S) be an independence system with a weight
function w : E → R+

0 . Moreover, let Tg be a solution of problem (P) found by
the greedy algorithm, and T0 an optimal solution. Then

rq(M) ≤ w(Tg)
w(T0)

≤ 1.

5Note that the greedy algorithm might yield different solutions Tg for different
orderings of the elements of E (which may occur if there are distinct elements having
the same weight). Hence we also have to minimize over all Tg.

6This result was conjectured or even proved somewhat earlier by various other
authors; see the remarks in [KoHa78].
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Proof. The second inequality is trivial. To prove the first inequality, we in-
troduce the following notation. Suppose the set E is ordered according to
decreasing weight, say E = {e1, . . . , em} with w(e1) ≥ w(e2) ≥ . . . ≥ w(em).
We put w(em+1) = 0 and write

Ei = {e1, . . . , ei} for i = 1, . . . , m.

Then we get the following formulae:

w(Tg) =
m∑

i=1

|Tg ∩ Ei|(w(ei) − w(ei+1)); (5.2)

w(T0) =
m∑

i=1

|T0 ∩ Ei|(w(ei) − w(ei+1)). (5.3)

Now T0 ∩ Ei is an independent subset of Ei, and thus |T0 ∩ Ei| ≤ ur(Ei). By
definition of the greedy algorithm, Tg ∩Ei is a maximal independent subset of
Ei, and therefore |Tg ∩ Ei| ≥ lr(Ei). Using these two observations, we obtain

|Tg ∩ Ei| ≥ |T0 ∩ Ei| × lr(Ei)
ur(Ei)

≥ |T0 ∩ Ei| × rq(M).

Using (5.2) and (5.3) yields

w(Tg) =
m∑

i=1

|Tg ∩ Ei|(w(ei) − w(ei+1))

≥ rq(M) ×
m∑

i=1

|T0 ∩ Ei|(w(ei) − w(ei+1))

= rq(M) × w(T0). �

As w and Tg were chosen arbitrarily in Theorem 5.4.2, we conclude
rq(M) ≤ f(M). The following result shows that we actually have equality.

Theorem 5.4.3. Let M = (E,S) be an independence system. Then there exist
a weight function w : E → R+

0 and a solution Tg for problem (P) obtained by
the greedy algorithm such that

w(Tg)
w(T0)

= rq(M),

where T0 denotes an optimal solution for (P).

Proof. Choose a subset A of E with rq(M) = lr(A)/ur(A), and let Il and Iu

be maximal independent subsets of A satisfying |Il| = lr(A) and |Iu| = ur(A).
Define the weight function w by
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w(e) :=
{

1 for e ∈ A

0 otherwise

and order the elements e1, . . . , em of E such that

Il = {e1, . . . , elr(A)}, A \ Il = {elr(A)+1, . . . , e|A|}, E \ A = {e|A|+1, . . . , em}.

Then Il is the solution for (P) found by the greedy algorithm with respect to
this ordering of the elements of E, whereas Iu is an optimal solution. Hence

w(Il)
w(Iu)

=
|Il|
|Iu| =

lr(A)
ur(A)

= rq(M). �

As Theorems 5.4.2 and 5.4.3 show, the rank quotient of an independence
system gives a tight bound for the weight of the greedy solution in comparison
to the optimal solution of (P); thus we have obtained the desired measure for
the quality of the greedy algorithm as an approximation method. Of course,
this leaves us with the nontrivial problem of determining the rank quotient
for a given independence system M . The following result provides an example
where it is possible to determine this invariant explicitly.

Theorem 5.4.4. Let G = (V, E) be a graph and M = (E,S) the indepen-
dence system given by the set of all matchings of G; see Exercise 5.1.5. Then
rq(M) = 1 provided that each connected component of G is isomorphic either
to a complete graph Ki with i ≤ 3 or to a star. In all other cases, rq(M) = 1

2 .

Proof. First we prove rq(M) ≥ 1
2 . Thus we need to show

lr(A)
ur(A)

≥ 1
2

for all A ⊂ E.

Let I1 and I2 be two maximal independent subsets of A, that is, two maximal
matchings contained in A. Obviously, it suffices to show |I1| ≥ 1

2 |I2|. We
define a mapping α : I2 \ I1 → I1 \ I2 as follows. Let e be any edge in I2 \ I1.
As I1 ∪ {e} ⊂ A and as I1 is a maximal independent subset of A, I1 ∪ {e}
cannot be a matching. Thus there exists an edge α(e) ∈ I1 which has a vertex
in common with e. As I2 is a matching, we cannot have α(e) ∈ I2, so that
we have indeed defined a mapping α : I2 \ I1 → I1 \ I2. Clearly, each edge
e ∈ I1 \ I2 can share a vertex with at most two edges in I2 \ I1, so that e has
at most two preimages under α. Therefore

|I1 \ I2| ≥ |α(I2 \ I1)| ≥ 1
2
|I2 \ I1|

and hence

|I1| = |I1 \ I2| + |I1 ∩ I2| ≥ 1
2
|I2 \ I1| + 1

2
|I1 ∩ I2| =

1
2
|I2|.
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Assume first that each connected component of G is isomorphic either to a
complete graph Ki with i ≤ 3 or to a star. Then lr(A) = ur(A) for all A ⊂ E,
so that rq(M) = 1. In all other cases, G contains a subgraph (U, A) isomorphic
to a path P3 of length 3. Then lr(A) = 1 and ur(A) = 2, so that rq(M) ≤ 1

2 .
Together with the converse inequality already proved, this establishes the
theorem. ��

Let us mention a further similar result without proof; the interested reader
is referred to [KoHa78].

Result 5.4.5. Let G = (V, E) be the complete graph on n vertices, and let
M = (E,S) be the independence system whose independent sets are the subsets
of Hamiltonian cycles of G. Then

1
2

≤ rq(M) ≤ 1
2

+
3
2n

. �

By definition, the maximal independent sets of an independence system as
in Result 5.4.5 are precisely the Hamiltonian cycles of G. Thus the greedy al-
gorithm provides a good approximation to the optimal solution of the problem
of finding a Hamiltonian cycle of maximal weight in Kn for a given weight
function w : E → R+

0 . Note that this is the problem opposite to the TSP,
where we look for a Hamiltonian cycle of minimal weight.

The above examples suggest that the greedy algorithm can be a really good
approximation method. Unfortunately, this is not true in general. As the fol-
lowing exercise shows, it is easy to construct an infinite class of independence
systems whose rank quotient becomes arbitrarily small.

Exercise 5.4.6. Let G be the complete digraph on n vertices, and let M =
(E,S) be the independence system determined by the acyclic directed sub-
graphs of G, that is,

S = {D ⊂ E : D does not contain any directed cycle}.

Then rq(M) ≤ 2/n, so that lim
n→∞ rq(M) = 0.

Our next aim is to derive a useful estimate for the rank quotient of an
independence system. We need a lemma first.

Lemma 5.4.7. Every independence system M = (E,S) can be represented as
the intersection of finitely many matroids on E.

Proof. We have to show the existence of a positive integer k and matroids
M1 = (E,S1), . . . , Mk = (E,Sk) satisfying S =

⋂k
i=1 Si. Let C1, . . . , Ck be

the minimal elements of the set {A ⊂ E : A /∈ S}, that is, the circuits of the
independence system M . It is easily seen that
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S =
k⋂

i=1

Si, where Si := {A ⊆ E : Ci �⊆ A}.

Thus we want to show that all Mi = (E,Si) are matroids. So let A be an
arbitrary subset of E. If Ci is not a subset of A, then A is independent in
Mi, so that A itself is the only maximal independent subset of A in Mi. Now
suppose Ci ⊆ A. Then, by definition, the maximal independent subsets of A
in Mi are the sets of the form A \ {e} for some e ∈ Ci. Thus all maximal
independent subsets of A have the same cardinality |A| − 1 in this case. This
shows that Mi satisfies condition (3) of Theorem 5.2.1, so that Mi is indeed
a matroid. ��
Theorem 5.4.8. Let the independence system M = (E,S) be the intersection
of k matroids M1, . . . , Mk on E. Then rq(M) ≥ 1/k.

Proof. Let A be any subset of E, and let I1, I2 be any two maximal independent
subsets of A. Obviously, it suffices to show k|I1| ≥ |I2|. For i = 1, . . . , k and
j = 1, 2, let Ii,j be a maximal independent subset of I1 ∪ I2 containing Ij

(in Mi). Suppose there exists an element e ∈ I2 \ I1 with e ∈ Ii,1 \ I1 for
i = 1, . . . , k. Then

I1 ∪ {e} ⊆
k⋂

i=1

Ii,1 ∈ S,

contradicting the maximality of I1. Hence each e ∈ I2 \ I1 can be contained
in at most k − 1 of the sets Ii,1 \ I1; this implies

(∗)
k∑

i=1

|Ii,1| − k|I1| =
k∑

i=1

|Ii,1 \ I1| ≤ (k − 1)|I2 \ I1| ≤ (k − 1)|I2|.

As all the Mi are matroids, we have |Ii,1| = |Ii,2| for i = 1, . . . , k and hence,
using (∗),

|I2| ≤ |I2| +
k∑

i=1

|Ii,2 \ I2| =
k∑

i=1

|Ii,2| − (k − 1)|I2|

=
k∑

i=1

|Ii,1| − (k − 1)|I2| ≤ k|I1|. �

For each positive integer k, there exists an independence system for which
the bound of Theorem 5.4.8 is tight. Unfortunately, equality does not hold in
general; for instance, Result 5.4.5 provides a family of counterexamples. The
interested reader is referred to [KoHa78].

Example 5.4.9. Let G = (V, E) be a strongly connected digraph, and let
M be the intersection of the graphic matroid and the head-partition matroid
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of G. Then the independent sets of maximal cardinality in M are precisely
the spanning arborescences of G. Note that M may admit further maximal
independent sets, as an arbitrary arborescence does not necessarily extend to
a spanning arborescence: in general, M is not a matroid.

Exercise 5.4.10. Let G be a digraph. Find three matroids such that each
directed Hamiltonian path in G is an independent set of maximal cardinality
in the intersection of these matroids.

In the situation of Example 5.4.9, the greedy algorithm constructs an ar-
borescence whose weight is at least half of the weight of a maximal arbores-
cence, by Theorems 5.4.8 and 5.4.2. As mentioned at the end of Section 4.8,
a maximal arborescence can be found with complexity O(|E| log |V |), using a
considerably more involved method. The following result about the intersec-
tion of two arbitrary matroids is interesting in this context.

Result 5.4.11. Consider an independence system M = (E,S) which is the
intersection of two matroids M1 = (E,S1) and M2 = (E,S2), and let
w : E → R+

0 be a weight function on M . Assume that we may check in
polynomial time whether a set is independent in either M1 or M2. Then it is
also possible to find an independent set of maximal weight in M in polynomial
time. ��

For a situation as described in Result 5.4.11, we say that the two matroids
M1 and M2 are given by oracles for independence; this just means that it is
somehow possible to check whether a given set is independent in polynomial
time. Then Result 5.4.11 states that a maximal independent set in M can be
found in oracle polynomial time, that is, by using both oracles a polynomial
number of times; see [HaKo81] for more on oracles representing matroids
and independence systems. Result 5.4.11 is very important in combinatorial
optimization. We have decided to omit the proof because the corresponding
algorithms as well as the proofs for correctness are rather difficult – even in
the case without weights – and use tools from matroid theory which go beyond
the limits of this book. The interested reader may consult [Law75], [Edm79],
and [Cun86]; or the books [Law76] and [Whi87].

Of course, one may also consider the analogous problems for the inter-
section of three or more matroids; we will just state the version without
weights. Unfortunately, these problems are presumably not solvable in poly-
nomial time, as the next result indicates.

Problem 5.4.12 (matroid intersection problem, MIP). Let three ma-
troids Mi = (E,Si), i = 1, 2, 3, be given, and let k be a positive integer. Does
there exist a subset A of E with |A| ≥ k and A ∈ S1 ∩ S2 ∩ S3?

Theorem 5.4.13. MIP is NP-complete.
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Proof. Exercise 5.4.10 shows that the question whether a given digraph con-
tains a directed Hamiltonian path is a special case of MIP. This problem
(directed Hamiltonian path, DHP) is NP-complete, as the analogous problem
HP for the undirected case is NP-complete by Exercise 2.7.7, and as HP can
be transformed polynomially to DHP by replacing a given graph by its com-
plete orientation. Hence the more general MIP is NP-complete, too. ��

Theorem 5.4.13 indicates that the results presented in this chapter really
are quite remarkable: even though the problem of determining a maximal
independent set in the intersection of k ≥ 3 matroids is NP-hard (maximal ei-
ther with respect to cardinality or a more general weight function), the greedy
algorithm gives a quite simple polynomial method for finding an approximate
solution which differs at most by a fixed ratio from the optimal solution. This
result is by no means trivial, as there are many optimization problems for
which even the question whether an approximate solution with a performance
guaranty exists is NP-hard; we will encounter an example for this phenomenon
in Chapter 15.

5.5 Minimization in independence systems

In this section we consider the minimization problem for independence sys-
tems, that is, the problem of finding a maximal independent set of minimal
weight; this turns out to be easy for matroids. We first show that the greedy
algorithm actually works for arbitrary weight functions on a matroid.

Theorem 5.5.1. Let M = (E,S) be a matroid, and let w : E → R be any
weight function on M . Then the greedy algorithm finds an optimal solution
for the problem

(BMAX) determine max{w(B) : B is a basis of M}.
Proof. By definition, the assertion holds if all weights are nonnegative.
Otherwise, we put

C = max {−w(e) : e ∈ E, w(e) < 0}
and consider the weight function w′ : E → R+

0 defined by

w′(e) = w(e) + C for all e ∈ E.

Now all bases of M have the same cardinality, say k. Let B be a basis; then the
weights w(B) and w′(B) differ just by the constant kC. In particular, every
basis of maximal weight for w′ also has maximal weight for w. Hence we may
use the greedy algorithm to find a basis B0 of maximal weight for w′ which
is also a solution for the original problem (BMAX). Obviously, the greedy
algorithm runs for w exactly as for w′; hence it yields the correct solution B0

also when applied to the original function w. ��
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Theorem 5.5.2. Let M = (E,S) be a matroid, and let w : E → R be any
weight function on M . Then the greedy algorithm finds an optimal solution
for the problem

(BMIN) determine min {w(B) : B is a basis of M},
provided that step (1) in Algorithm 5.1.1 is replaced as follows:
(1′) order the elements of E according to their weight:

E = {e1, . . . , em} with w(e1) ≤ w(e2) ≤ . . . ≤ w(em).

Proof. This follows immediately from Theorem 5.5.1 by considering the weight
function −w instead of w. ��

As an application, we investigate the behavior of the greedy algorithm
in the context of duality. Suppose we are given a matroid M = (E,S) and
a weight function w : E → R+

0 . Obviously, a basis B of M has maximal
weight if and only if the corresponding cobasis B∗ of M∗ has minimal weight.
Now we use the greedy algorithm, modified as described in Theorem 5.5.2, to
determine a basis B∗ of M∗ with minimal weight. Consider the moment when
we investigate the element ek. Then ek is added to the current solution – that
is, the independent subset T ∗ constructed so far – if and only if T ∗ ∪ {ek}
is independent in M∗. Viewing this situation within M , we may as well say
that ek is removed from the current solution T = E \ T ∗, as the (final)
solution of the maximization problem for M is precisely the complement of
the solution of the minimization problem for M∗. These considerations lead
to the following dual version of the greedy algorithm, formulated in terms of
the primal matroid M .

Algorithm 5.5.3 (dual greedy algorithm). Let (E,S) be a matroid, and
let w : E → R+

0 be a weight function.
Procedure DUALGREEDY(G, w; T )

(1) order the elements of E according to their weight: E = {e1, . . . , em} with
w(e1) ≤ w(e2) ≤ . . . ≤ w(em);

(2) T ← E;
(3) for k = 1 to m do
(4) if (E \ T ) ∪ {ek} does not contain a cocircuit
(5) then remove ek from T
(6) fi
(7) od

Note that the condition in step (4) is satisfied if and only if T ∗ ∪ {ek} =
(E \ T ) ∪ {ek} is independent in M∗; hence the correctness of the greedy
algorithm immediately implies the following theorem.

Theorem 5.5.4. Let M = (E,S) be a matroid, and let w : E → R+
0 be a

nonnegative weight function on M . Then the dual greedy algorithm computes
a basis B of M = (E,S) with maximal weight. ��
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Example 5.5.5. Let M = M(G) be a graphic matroid, where G is connected.
The dual greedy algorithm investigates the edges of G in the order given by
increasing weight. Initially, T = E. When an edge e is examined, it is removed
from the current solution T if and only if it does not form a cocycle with the
edges already removed, that is, if removing e does not disconnect the graph
(E, T ). This special case of Algorithm 5.5.3 was already treated by Kruskal
[Kru56].

In the remainder of this section, we look at the greedy algorithm as a pos-
sible approximation method for the problems described in Theorems 5.5.1 and
5.5.2 when M = (E,S) is an arbitrary independence system, not necessarily
a matroid. Unfortunately, this will not work well. Even for the maximization
problem, the quotient of the weight of a solution found by the greedy algo-
rithm and the weight of an optimal solution – which we used as a measure for
the quality of approximation in Section 5.4 – does not make sense if negative
weights occur. Still, there is one positive result: Theorem 5.4.2 carries over
to the case of arbitrary weight functions if we consider the problem (P) of
Section 5.4, that is, if we require not a basis but only an independent set of
maximal weight and terminate the greedy algorithm as soon as an element of
negative weight would be chosen.

Let us now turn to the question whether there is a performance guarantee
for applying the greedy algorithm to the minimization problem

(PMIN) determine min {w(A) : A is a maximal independent set in S},
where w : E → R+

0 is a nonnegative weight function. Here the reciprocal
quotient

g(M) = min
{

w(T0)
w(Tg)

: w : E → R+
0

}

should be used for measuring the quality of approximation, where again Tg

denotes a solution constructed by the greedy algorithm and T0 an optimal
solution for (PMIN). Clearly, the matroids are precisely the independence
systems with g(M) = 1. Unfortunately, no result analogous to Theorem 5.4.2
can be proved; this was first shown in [KoHa78] via a rather trivial series of
counterexamples, namely a path of length 2 with various weight functions. We
will exhibit a class of considerably more interesting examples due to Reingold
and Tarjan [ReTa81].

Example 5.5.6. Let us denote the complete graph on 2t vertices by Gt =
(Vt, Et). For each of these graphs, we define a weight function wt satisfying
the triangle inequality as follows. First we choose, for all t ≥ 2, a Hamiltonian
cycle Ct of Gt; for t = 1, we take C1 as the only edge of G1. We define wt

on Ct as indicated in Figure 5.1, where the edges not marked explicitly with
their weight are understood to have weight 1. For every edge e = uv in Et\Ct,
the weight wt(e) is defined as the distance dt(u, v) in the network (Ct, wt).
Since the largest weight occurring in Ct is precisely the sum of the weights
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of all other edges of Ct, it is easy to see that wt indeed satisfies the triangle
inequality.

Now put Mt = (Et,St), where St is the set of all matchings of Gt. Thus
we consider the problem of finding a maximal matching – that is, a 1-factor
– of minimal weight for (Gt, wt). It is easy to see that the greedy algorithm
computes, for the cases t = 1, 2, 3, 4 shown in Figure 5.1, the 1-factors Ft

drawn bold there, provided that we order edges of the same weight in a suitable
manner; these 1-factors have weight 1, 4, 14, and 46, respectively. In the
general case of an arbitrary t, one may show that a 1-factor Ft of Gt of weight

wt(Ft) = 2 × 3t−1 − 2t−1

results; this formula for the weight of Ft can be derived from the rather obvious
recursion

wt+1(Ft+1) = 2wt(Ft) − 3t−1 + 3t,

where w1(F1) = 1. We leave the details to the reader. On the other hand,
there is a 1-factor F ′

t of Gt, for t ≥ 2, of weight 2t−1 which consists of the
edges not drawn bold in Figure 5.1: F ′

t = Ct \ Ft. Thus the quality of the
approximation found by the greedy algorithm is only

2t−1

2 × 3t−1 − 2t−1
→ 0 (for t → ∞).

3 9 3

27

C4

C1

3

C2

9

3

C3

Fig. 5.1.

Example 5.5.6 shows that the greedy algorithm may yield an arbitrarily bad
solution for (PMIN). By Theorem 5.4.4, the rank quotient of the independence
system (Et,St) formed by the matchings in Gt has value 2 for all t ≥ 2.
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Hence in the case of minimization, the rank quotient does not guarantee a
corresponding quality of approximation – a rather disappointing result.

It was shown in [ReTa81] that the bound for w(T0)/w(Tg) given in Exam-
ple 5.5.6 is essentially worst possible. Indeed, for any weight function on the
complete graph Kn satisfying the triangle inequality,

w(Tg)
w(T0)

≤
(

3θ

2θ+1 − 1
− 1

)
× 4

3
nlog 3

2 ,

where θ = �log n�−log n. For the rather involved proof, we refer to the original
paper.

Determining a 1-factor of minimal weight with respect to a weight function
w on a complete graph satisfying the triangle inequality will be a tool for solv-
ing the Chinese postman problem in Chapter 14; this problem has interesting
practical applications – for example, drawing large graphs with a plotter.

Exercise 5.5.7. Show that it is not possible to change the weight function wt

in Example 5.5.6 such that the quotient F ′
t/Ft becomes smaller. Also, for an

arbitrary weight function (not necessarily satisfying the triangle inequality),
it is not possible to give any measure (as a function of n) for the quality of a
1-factor in a complete graph found by the greedy algorithm.

5.6 Accessible set systems

We conclude this chapter with a brief report on further generalizations of the
greedy algorithm from independence systems to even more general systems
of sets. As the methods used are rather similar to the methods we have been
using (although more involved), we shall skip all proofs and refer the reader
to the original literature instead.

A set system is simply a pair M = (E,S), where E is a finite set and S is
a nonempty subset of the power set of E. The elements of S are called feasible
sets of M ; maximal feasible sets will again be called bases. As the greedy
algorithm always chooses single elements and adds them one by one to the
feasible set under construction, it would not make sense to consider entirely
arbitrary set systems. At the very least, we have to ensure that every feasible
set can be obtained by successively adding single elements to the empty set.
Formally, we require the following accessibility axiom:

(A) For each nonempty feasible set X ∈ S, there exists
an element x ∈ X such that X \ {x} ∈ S.

In particular, the empty set is contained in S, as S �= ∅. A set system M
satisfying axiom (A) is called an accessible set system. Any independence
system is an accessible set system, but axiom (A) is a much weaker condition
than the requirement of being closed under inclusion. Given an accessible
set system M and a weight function w : E → R, we consider the following
optimization problem:



144 5 The Greedy Algorithm

(BMAX) determine max {w(B) : B is a basis of M}.
This generalizes the corresponding problem for independence systems. We also
need to modify the greedy algorithm 5.1.1 so that it applies to accessible set
systems.7 This can be done as follows.

Algorithm 5.6.1. Let M = (E,S) be an accessible set system, and let w :
E → R be a weight function.
Procedure GREEDY(E,S, w; T )
(1) T ← ∅; X ← E;
(2) while there exists x ∈ X with T ∪ {x} ∈ S do
(3) choose some x ∈ X with T ∪ {x} ∈ S and

w(x) ≥ w(y) for all y ∈ X with T ∪ {y} ∈ S;
(4) T ← T ∪ {x}; X ← X \ {x}
(5) od

Of course, we want to characterize those accessible set systems for which
Algorithm 5.6.1 always finds an optimal solution for (BMAX). Before describ-
ing this result, we consider a special class of accessible set systems introduced
by Korte and Lovász [KoLo81].

An accessible set system M satisfying the exchange axiom (2) of Theorem
5.2.1 is called a greedoid. Greedoids have been studied intensively because
many interesting objects in combinatorics and optimization are greedoids. In
particular, the so-called antimatroids are greedoids. Antimatroids constitute a
combinatorial abstraction of the notion of convexity; they play an important
role in convexity, partially ordered sets, and graph theory. Greedoids occur
as well in the context of matchings and of Gauß elimination. We will not go
into detail here, but recommend that the reader consult the extensive survey
[BjZi92] or the monograph [KoLS91]. Unfortunately, the greedy algorithm
does not find an optimal solution of (BMAX) for all greedoids.8 However,
Korte and Lovász were able to characterize those greedoids for which the
greedy algorithm works. There is a simpler characterization due to Bryant
and Brooksbank [BrBr92], which uses the following strong exchange axiom.
We note that this condition holds for every matroid, but not for all greedoids.

(SE) For J, K ∈ S with |J | = |K| + 1, there always exists some
a ∈ J \ K such that K ∪ {a} and J \ {a} are in S.

7Note that it does not make sense to apply the original version of the greedy
algorithm if S is not closed under inclusion: in this case, it might happen that an
element x cannot be added to the feasible set T constructed so far, because T ∪{x} is
not feasible; nevertheless, it might be permissible to add x at some later point to the
set T ′ = T ∪ A. If w(x) > w(y) for some y ∈ A, the original greedy algorithm 5.1.1
would fail in this situation, as the element x would already have been dismissed.
To avoid this, we simply keep the strategy of always selecting the largest available
element; all that is required is a different formulation.

8Characterizing greedoids in terms of the greedy algorithm requires the use of
certain non-linear objective functions; see [KoLS91].
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Result 5.6.2. Let M = (E,S) be a greedoid. Then the greedy algorithm 5.6.1
finds an optimal solution of (BMAX) for all weight functions w : E → R if
and only if M satisfies axiom (SE). ��

We need some further preparations to be able to formulate the charac-
terization of those accessible set systems M = (E,S) for which the greedy
algorithm computes an optimal solution. Given a feasible set A, we write

ext(A) := {x ∈ E \ A : A ∪ {x} ∈ S}.

Now there are some situations where the greedy algorithm does not even
construct a basis, but stops with some feasible set which is not maximal. This
happens if there exists a basis B with a proper feasible subset A ⊂ B such
that ext(A) = ∅. In this case, we may define a weight function w by

w(x) :=

⎧⎨
⎩

2 for x ∈ A,
1 for x ∈ B \ A,
0 otherwise;

then the greedy algorithm constructs A, but cannot extend A to the optimal
basis B. The accessibility axiom (A) is too weak to prevent such situations:
it merely ensures that a basis B can be obtained somehow by adding single
elements successively to the empty set, but not necessarily by adding ele-
ments to a given feasible subset of B. To avoid this, we require the following
extensibility axiom:

(E) For every basis B and every feasible subset A ⊂ B with A �= B,
there exists some x ∈ B \ A with A ∪ {x} ∈ S.

Note that this axiom is satisfied for all greedoids. We need one more definition.
For any set system M = (E,S), define

S := {X ⊆ E : there is A ∈ S with X ⊆ A},

and call M := (E,S) the hereditary closure of M . Now we require the following
closure congruence axiom:

(CC) For every feasible set A, for all x, y ∈ ext (A), and for each subset
X ⊆ E \ (A∪ ext(A)), A ∪ X ∪ {x} ∈ S implies A ∪ X ∪ {y} ∈ S.

Exercise 5.6.3. Show that an accessible set system M = (E,S) for which
the greedy algorithm works correctly has to satisfy axiom (CC).

One may show that axiom (CC) is independent of the exchange axiom,
even if we only consider accessible set systems satisfying the extensibility
axiom. In fact, there are greedoids not satisfying (CC); on the other hand,
independence systems always satisfy (CC), because the only choice for X is
X = ∅. We need one final axiom:
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(ME) The hereditary closure M of M is a matroid.

(ME) is called the matroid embedding axiom. Now we can state the following
characterization due to Helman, Mont and Shapiro [HeMS93]:

Result 5.6.4. Let M = (E,S) be an accessible set system. Then the following
statements are equivalent:

(1) M satisfies axioms (E), (CC) and (ME).
(2) For every weight function w : E → R, the optimal solutions of (BMAX)

are precisely those bases of M which are found by the greedy algorithm
5.6.1 (given an appropriate order of the elements of equal weight).

(3) For every weight function w : E → R, the greedy algorithm 5.6.1 yields an
optimal solution of (BMAX). ��
The reader might try to fill in the missing parts of the proof; this is a more

demanding exercise, but can be done using the methods we have presented.
Alternatively, we recommend a look at the original paper [HeMS93], which
contains some further interesting results. In particular, the authors consider
bottleneck problems, that is, problems of the form

(BNP) Maximize min {w(x) : x ∈ B} over all bases B of M

for a given weight function w : E → R. The greedy algorithm constructs
an optimal solution for (BNP) in the situation of Result 5.6.4. In fact, this
holds even under considerably weaker conditions. We need one further axiom,
namely the strong extensibility axiom:

(SE) For every basis B and each feasible set A with |A| < |B|,
there exists x ∈ B \ A with A ∪ {x} ∈ S.

Then the following characterization holds [HeMS93]:

Result 5.6.5. Let M = (E,S) be an accessible set system. The greedy algo-
rithm 5.6.1 constructs an optimal solution for (BNP) for all weight functions
w : E → R if and only if M satisfies axiom (SE). ��

For partially ordered set systems, the greedy algorithm was studied by
Faigle [Fai79] who obtained characterizations analogous to Results 5.6.4 and
5.6.5. Further characterizations of related structures by the greedy algorithm
(or appropriately modified versions) can be found in [Fai85], [Goe88], and
[BoFa90], where ordered languages, greedoids of Gauß elimination, and anti-
matroids are studied, respectively. There are further important generalization
of the notion of a matroid such as oriented matroids. We will not consider
these structures here, but refer the reader to the monographs [BaKe92] and
[BjLSW92].
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Flows

What need you flow so fast?

Anonymous

In this chapter, we study flows in networks: How much can be transported
in a network from a source s to a sink t if the capacities of the connections
are given? Such a network might model a system of pipelines, a water supply
system, or a system of roads. With its many applications, the theory of flows
is one of the most important parts of combinatorial optimization. In Chapter
7 we will encounter several applications of the theory of flows within combina-
torics, and flows and related notions will appear again and again throughout
the book. The once standard reference, Flows in Networks by Ford and Fulk-
erson [FoFu62], is still worth reading; an extensive, more recent treatment is
provided in [AhMO93].

6.1 The theorems of Ford and Fulkerson

In this chapter, we study networks of the following special kind. Let G = (V, E)
be a digraph, and let c :E → R+

0 be a mapping; the value c(e) will be called
the capacity of the edge e. Moreover, let s and t be two special vertices of G
such that t is accessible from s.1 Then N = (G, c, s, t) is called a flow network
with source s and sink t. An admissible flow or, for short, a flow on N is a
mapping f : E → R+

0 satisfying the following two conditions:

(F1) 0 ≤ f(e) ≤ c(e) for each edge e;
(F2)

∑
e+=v

f(e) =
∑

e−=v

f(e) for each vertex v �= s, t, where e− and e+ denote

the start and end vertex of e, respectively.

Thus the feasibility condition (F1) requires that each edge carries a nonneg-
ative amount of flow which may not exceed the capacity of the edge, and

1Some authors require in addition din(s) = dout(t) = 0. We do not need this
condition here; it would also be inconvenient for our investigation of symmetric
networks and the network synthesis problem in Chapter 12.
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the flow conservation condition (F2) means that flows are preserved: at each
vertex, except for the source and the sink, the amount that flows in also flows
out. It is intuitively clear that the total flow coming out of s should be the
same as the total flow going into t; let us provide a formal proof.

Lemma 6.1.1. Let N = (G, c, s, t) be a flow network with flow f . Then∑
e−=s

f(e) −
∑

e+=s

f(e) =
∑
e+=t

f(e) −
∑
e−=t

f(e). (6.1)

Proof. Trivially,∑
e−=s

f(e) +
∑
e−=t

f(e) +
∑

v �=s,t

∑
e−=v

f(e) =
∑

e

f(e) =

=
∑

e+=s

f(e) +
∑
e+=t

f(e) +
∑

v �=s,t

∑
e+=v

f(e).

Now the assertion follows immediately from (F2). ��
The quantity in equation (6.1) is called the value of f ; it is denoted by

w(f). A flow f is said to be maximal if w(f) ≥ w(f ′) holds for every flow f ′

on N . The main problem studied in the theory of flows is the determination
of a maximal flow in a given network. Note that, a priori, it is not entirely
obvious that maximal flows always exist; however, we will soon see that this
is indeed the case.

Let us first establish an upper bound for the value of an arbitrary flow.
We need some definitions. Let N = (G, c, s, t) be a flow network. A cut of N
is a partition V = S

.∪ T of the vertex set V of G into two disjoint sets S
and T with s ∈ S and t ∈ T ; thus cuts in flow networks constitute a special
case of the cuts of |G| introduced in Section 4.3. The capacity of a cut (S, T )
is defined as

c(S, T ) =
∑

e−∈S,e+∈T

c(e);

thus it is just the sum of the capacities of all those edges e in the corresponding
cocycle E(S, T ) which are oriented from S to T . The cut (S, T ) is called
minimal if c(S, T ) ≤ c(S′, T ′) holds for every cut (S′, T ′). The following lemma
shows that the capacity of a minimal cut gives the desired upper bound on
the value of a flow.

Lemma 6.1.2. Let N = (G, c, s, t) be a flow network, (S, T ) a cut, and f a
flow. Then

w(f) =
∑

e−∈S,e+∈T

f(e) −
∑

e+∈S,e−∈T

f(e). (6.2)

In particular, w(f) ≤ c(S, T ).
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Proof. Summing equation (F2) over all v ∈ S gives

w(f) =
∑
v∈S

(∑
e−=v

f(e) −
∑

e+=v

f(e)

)

=
∑

e−∈S,e+∈S

f(e) −
∑

e+∈S,e−∈S

f(e) +
∑

e−∈S,e+∈T

f(e) −
∑

e+∈S,e−∈T

f(e).

The first two terms add to 0. Now note f(e) ≤ c(e) for all edges e with e− ∈ S
and e+ ∈ T , and f(e) ≥ 0 for all edges e with e+ ∈ S and e− ∈ T . ��

The main result of this section states that the maximal value of a flow
always equals the minimal capacity of a cut. But first we characterize the
maximal flows. We need a further definition. Let f be a flow in the network
N = (G, c, s, t). A path W from s to t is called an augmenting path with
respect to f if f(e) < c(e) holds for every forward edge e ∈ W , whereas
f(e) > 0 for every backward edge e ∈ W . The following three fundamental
theorems are due to Ford and Fulkerson [FoFu56].

Theorem 6.1.3 (augmenting path theorem). A flow f on a flow network
N = (G, c, s, t) is maximal if and only if there are no augmenting paths with
respect to f .

Proof. First let f be a maximal flow. Suppose there is an augmenting path W .
Let d be the minimum of all values c(e)− f(e) (taken over all forward edges e
in W ) and all values f(e) (taken over the backward edges in W ). Then d > 0,
by definition of an augmenting path. Now we define a mapping f ′ : E → R+

0

as follows:

f ′(e) =

⎧⎨
⎩

f(e) + d if e is a forward edge in W,

f(e) − d if e is a backward edge in W,

f(e) otherwise.

It is easily checked that f ′ is a flow on N with value w(f ′) = w(f)+d > w(f),
contradicting the maximality of f .

Conversely, suppose there are no augmenting paths in N with respect to
f . Let S be the set of all vertices v such that there exists an augmenting path
from s to v (including s itself), and put T = V \ S. By hypothesis, (S, T ) is
a cut of N . Thus each edge e with e− ∈ S and e+ ∈ T must be saturated:
f(e) = c(e); and each edge e with e− ∈ T and e+ ∈ S has to be void: f(e) = 0.
Then Lemma 6.1.2 gives w(f) = c(S, T ), so that f is maximal. ��

We note that the preceding proof contains a useful characterization of
maximal flows:

Corollary 6.1.4. A flow f on a flow network N = (G, c, s, t) is maximal if
and only if the set S of all vertices accessible from s on an augmenting path
with respect to f is a proper subset of V . In this case, w(f) = c(S, T ), where
T = V \ S. ��
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Theorem 6.1.5 (integral flow theorem). Let N = (G, c, s, t) be a flow
network where all capacities c(e) are integers. Then there is a maximal flow
on N such that all values f(e) are integral.

Proof. By setting f0(e) = 0 for all e, we obtain an integral flow f0 on N with
value 0. If this trivial flow is not maximal, then there exists an augmenting
path with respect to f0. In that case the number d appearing in the proof of
Theorem 6.1.3 is a positive integer, and we can construct an integral flow f1

of value d as in the proof of Theorem 6.1.3. We continue in the same manner.
As the value of the flow is increased in each step by a positive integer and as
the capacity of any cut is an upper bound on the value of the flow (by Lemma
6.1.2), after a finite number of steps we reach an integral flow f for which no
augmenting path exists. By Theorem 6.1.3, this flow f is maximal. ��
Theorem 6.1.6 (max-flow min-cut theorem). The maximal value of a
flow on a flow network N is equal to the minimal capacity of a cut for N .

Proof. If all capacities are integers, the assertion follows from Theorem 6.1.5
and Corollary 6.1.4. The case where all capacities are rational can be reduced
to the integral case by multiplying all numbers by their common denominator.
Then real-valued capacities may be treated using a continuity argument, since
the set of flows is a compact subset of R|E| and since w(f) is a continuous
function of f . A different, constructive proof for the real case is provided by
the theorem of Edmonds and Karp [EdKa72], which we will treat in the next
section. ��

Theorem 6.1.6 was obtained in [FoFu56] and, independently, in [ElFS56].
In practice, real capacities do not occur, as a computer can only represent (a
finite number of) rational numbers anyway. From now on, we mostly restrict
ourselves to integral flows. Sometimes we also allow networks on directed
multigraphs; this is not really more general, because parallel edges can be
replaced by a single edge whose capacity is the sum of the corresponding
capacities of the parallel edges.

The remainder of this chapter deals with several algorithms for finding a
maximal flow. The proof of Theorem 6.1.5 suggests the following rough outline
of such an algorithm:

(1) f(e) ← 0 for all edges e;
(2) while there exists an augmenting path with respect to f do
(3) let W = (e1, . . . , en) be an augmenting path from s to t;
(4) d ← min

({c(ei) − f(ei) : ei is a forward edge in W}
∪ {f(ei) : ei is a backward edge in W});

(5) f(ei) ← f(ei) + d for each forward edge ei;
(6) f(ei) ← f(ei) − d for each backward edge ei;
(7) od
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Of course, we still have to specify a technique for finding augmenting paths.
We could use a modified breadth first search (BFS), where edges may be used
regardless of their orientation as long as they satisfy the necessary condition
f(e) < c(e) or f(e) > 0. Note that we not only have to decide whether t
is accessible from s by an augmenting path, but we also need to find the
value for d and change the values f(e) accordingly. In view of these additional
requirements, it makes more sense to apply a labelling technique; moreover,
this will also allow us to find a minimal cut.

Algorithm 6.1.7 (labelling algorithm of Ford and Fulkerson). Let
N = (G, c, s, t) be a flow network.

Procedure FORDFULK(N ; f, S, T )

(1) for e ∈ E do f(e) ← 0 od;
(2) label s with (−,∞);
(3) for v ∈ V do u(v) ← false; d(v) ← ∞ od;
(4) repeat
(5) choose a vertex v which is labelled and satisfies u(v) = false;
(6) for e ∈ {e ∈ E : e− = v} do
(7) if w = e+ is not labelled and f(e) < c(e) then
(8) d(w) ← min{c(e) − f(e), d(v)}; label w with (v,+, d(w)) fi
(9) od;

(10) for e ∈ {e ∈ E : e+ = v} do
(11) if w = e− is not labelled and f(e) > 0 then
(12) d(w) ← min{f(e), d(v)}; label w with (v,−, d(w)) fi
(13) od;
(14) u(v) ← true;
(15) if t is labelled
(16) then let d be the last component of the label of t;
(17) w ← t;
(18) while w �= s do
(19) find the first component v of the label of w;
(20) if the second component of the label of w is +
(21) then set f(e) ← f(e) + d for e = vw
(22) else set f(e) ← f(e) − d for e = wv
(23) fi;
(24) w ← v
(25) od;
(26) delete all labels except for the label of s;
(27) for v ∈ V do d(v) ← ∞; u(v) ← false od
(28) fi
(29) until u(v) = true for all vertices v which are labelled;
(30) let S be the set of vertices which are labelled and put T ← V \ S

Using the proofs we gave for Theorems 6.1.3 and 6.1.5, we immediately get
the following theorem due to Ford and Fulkerson [FoFu57].
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Theorem 6.1.8. Let N be a network whose capacity function c takes only
integral (or rational) values. Then Algorithm 6.1.7 determines a maximal flow
f and a minimal cut (S, T ), so that w(f) = c(S, T ) holds. ��
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Fig. 6.1. A flow network

Algorithm 6.1.7 may fail for irrational capacities, if the vertex v in step
(5) is chosen in an unfortunate way; an example for this can be found in
[FoFu62], p. 21. In that example the algorithm not only does not terminate,
but it even converges to a value which is only 1/4 of the maximal possible flow
value. Moreover, Algorithm 6.1.7 is not polynomial even for integer capacities,
because the number of necessary changes of the flow f does not only depend
on |V | and |E|, but might also depend on c. For example, if we use the paths

s a b e f t and s d e b c t

alternately as augmenting paths for the network in Figure 6.1 (which the
algorithm will do if vertex v in step (5) is chosen suitably), the value of the
flow will only be increased by 1 in each step, so that we need 2n iterations.
Of course, this can be avoided by choosing the paths appropriately; with

s a b c t and s d e f t,

we need only two iterations. In the next section, we show how the augment-
ing paths can be chosen efficiently. Then we shall also apply the resulting
algorithm to an example and show the computations in detail. We close this
section with a few exercises.

Exercise 6.1.9. Let N = (G, c, s, t) be a flow network for which the capacities
of the vertices are likewise restricted: there is a further mapping d : V → R+

0 ,
and the flows f have to satisfy the additional restriction

(F3)
∑

e+=v

f(e) ≤ d(v) for v �= s, t.

For instance, we might consider an irrigation network where the vertices are
pumping stations with limited capacity. Reduce this problem to a problem for
an appropriate ordinary flow network and generalize Theorem 6.1.6 to this
situation; see [FoFu62], §1.11.
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Exercise 6.1.10. How can the case of several sources and several sinks be
treated?

Exercise 6.1.11. Let N = (G, c, s, t) be a flow network, and assume that N
admits flows of value �= 0. Show that there exists at least one edge e in N
whose removal decreases the value of a maximal flow on N . An edge e is called
most vital if the removal of e decreases the maximal flow value as much as
possible. Is an edge of maximal capacity in a minimal cut necessarily most
vital?

Exercise 6.1.12. By Theorem 6.1.5, a flow network with integer capacities
always admits an integral maximal flow. Is it true that every maximal flow
has to be integral?

Exercise 6.1.13. Let f be a flow in a flow network N . The support of f is
supp f = {e ∈ E : f(e) �= 0}. A flow f is called elementary if its support is
a path. The proof of Theorem 6.1.6 and the algorithm of Ford and Fulkerson
show that there exists a maximal flow which is the sum of elementary flows.
Can every maximal flow can be represented by such a sum?

Exercise 6.1.14. Modify the process of labelling the vertices in Algorithm
6.1.7 in such a way that the augmenting path chosen always has maximal
possible capacity (so that the value of the flow is always increased as much as
possible). Hint: Use an appropriate variation of the algorithm of Dijkstra.

6.2 The algorithm of Edmonds and Karp

As we have seen in the previous section, the labelling algorithm of Ford and
Fulkerson is, in general, not polynomial. We now consider a modification of
this algorithm due to Edmonds and Karp [EdKa72] for which we can prove
a polynomial complexity, namely O(|V ||E|2). As we will see, it suffices if we
always use an augmenting path of shortest length – that is, having as few
edges as possible – for increasing the flow. To find such a path, we just make
step (5) in Algorithm 6.1.7 more specific: we require that the vertex v with
u(v) = false which was labelled first is chosen. Then the labelling process
proceeds as for a BFS; compare Algorithm 3.3.1. This principle for selecting
the vertex v is also easy to implement: we simply collect all labelled vertices in
a queue – that is, some vertex w is appended to the queue when it is labelled
in step (8) or (12). This simple modification is enough to prove the following
result.

Theorem 6.2.1. Replace step (5) in Algorithm 6.1.7 as follows:

(5′) among all vertices with u(v) = false, let v be
the vertex which was labelled first.

Then the resulting algorithm has complexity O(|V ||E|2).
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Proof. We have already noted that the flow f is always increased using an
augmenting path of shortest length, provided that we replace step (5) by (5′).
Let f0 be the flow of value 0 defined in step (1), and let f1, f2, f3, . . . be the
sequence of flows constructed subsequently. Denote the shortest length of an
augmenting path from s to v with respect to fk by xv(k). We begin by proving
the inequality

xv(k + 1) ≥ xv(k) for all k and v. (6.3)

By way of contradiction, suppose that (6.3) is violated for some pair (v, k);
we may assume that xv(k + 1) is minimal among the xw(k + 1) for which
(6.3) does not hold. Consider the last edge e on a shortest augmenting path
from s to v with respect to fk+1. Suppose first that e is a forward edge, so
that e = uv for some vertex u; note that this requires fk+1(e) < c(e). Now
xv(k + 1) = xu(k + 1) + 1, so that xu(k + 1) ≥ xu(k) by our choice of v.
Hence xv(k + 1) ≥ xu(k) + 1. On the other hand, fk(e) = c(e), as otherwise
xv(k) ≤ xu(k) + 1 and xv(k + 1) ≥ xv(k), contradicting the choice of v.
Therefore e was as a backward edge when fk was changed to fk+1. As we
have used an augmenting path of shortest length for this change, we conclude
xu(k) = xv(k) + 1 and hence xv(k + 1) ≥ xv(k) + 2, a contradiction. The case
where e is a backward edge can be treated in the same manner. Moreover,
similar arguments also yield the inequality

yv(k + 1) ≥ yv(k) for all k and v, (6.4)

where yv(k) denotes the length of a shortest augmenting path from v to t with
respect to fk.

When increasing the flow, the augmenting path always contains at least
one critical edge: the flow through this edge is either increased up to its
capacity or decreased to 0. Let e = uv be a critical edge in the augmenting
path with respect to fk; this path consists of xv(k) + yv(k) = xu(k) + yu(k)
edges. If e is used the next time in some augmenting path (with respect to
fh, say), it has to be used in the opposite direction: if e was a forward edge
for fk, it has to be a backward edge for fh, and vice versa.

Suppose that e was a forward edge for fk. Then xv(k) = xu(k) + 1 and
xu(h) = xv(h) + 1. By (6.3) and (6.4), xv(h) ≥ xv(k) and yu(h) ≥ yu(k).
Hence we obtain

xu(h) + yu(h) = xv(h) + 1 + yu(h) ≥ xv(k) + 1 + yu(k) = xu(k) + yu(k) + 2.

Thus the augmenting path with respect to fh is at least two edges longer
than the augmenting path with respect to fk. This also holds for the case
where e was a backward edge for fh; to see this, exchange the roles of u and
v in the preceding argument. Trivially, no augmenting path can contain more
than |V | − 1 edges. Hence each edge can be critical at most (|V | − 1)/2 times,
and thus the flow can be changed at most O(|V ||E|) times. (In particular,
this establishes that the algorithm has to terminate even if the capacities are
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non-rational.) Each iteration – finding an augmenting path and updating the
flow – takes only O(|E|) steps, since each edge is treated at most three times:
twice during the labelling process and once when the flow is changed. This
implies the desired complexity bound of O(|V ||E|2). ��
Remark 6.2.2. As the cardinality of E is between O(|V |) and O(|V |2), the
complexity of the algorithm of Edmonds and Karp lies between O(|V |3) for
sparse graphs (hence, in particular, for planar graphs) and O(|V |5) for dense
graphs.

Examples for networks with n vertices and O(n2) edges for which the
algorithm of Edmonds and Karp actually needs O(n3) iterations may be found
in [Zad72, Zad73b]; thus the estimates used in the proof of Theorem 6.2.1 are
best possible. Of course, this by no means precludes the existence of more
efficient algorithms. One possible approach is to look for algorithms which
are not based on the use of augmenting paths; we will see examples for this
approach in Sections 6.4 and 6.6 as well as in Chapter 11. Another idea is to
combine the iterations in a clever way into larger phases; for instance, it turns
out to be useful to consider all augmenting paths of a constant length in one
block; see Sections 6.3 and 6.4. Not surprisingly, such techniques are not only
better but also more involved.

Example 6.2.3. We use the algorithm of Edmonds and Karp to determine a
maximal flow and a minimal cut in the network N given in Figure 6.2. The
capacities are given there in parentheses; the numbers without parentheses
in the following figures always give the respective values of the flow. We also
state the labels which are assigned at the respective stage of the algorithm;
when examining the possible labellings coming from some vertex v on forward
edges (steps (6) through (9)) and on backward edges (steps (10) through (13)),
we consider the adjacent vertices in alphabetical order, so that the course
of the algorithm is uniquely determined. The augmenting path used for the
construction of the next flow is drawn bold.

We start with the zero flow f0, that is, w(f0) = 0. The vertices are labelled
in the order a, b, f, c, d, t as shown in Figure 6.3; e is not labelled because t
is reached before e is considered. Figures 6.3 to 6.12 show how the algorithm
works. Note that the last augmenting path uses a backward edge, see Figure
6.11. In Figure 6.12, we have also indicated the minimal cut resulting from
the algorithm.

The reader will note that many labels are not changed from one iteration
to the next. As all the labels are deleted in step (26) after each change of
the flow, this means we do a lot of unnecessary calculations. It is possible
to obtain algorithms of better complexity by combining the changes of the
flow into bigger phases. To do this, a blocking flow is constructed in some
appropriate auxiliary network. This subject is treated in Sections 6.3 and 6.4.
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It can be shown that it is theoretically possible to obtain a maximal flow in
a given network in at most |E| iterations, and that this may even be achieved
using augmenting paths which consist of forward edges only; see [Law76],
p. 119. However, this result is of no practical interest, because it is not known
how one would actually find such paths.

We mention that Edmonds and Karp have also shown that the flow has to
be changed at most O(log w) times, where w is the maximal value of a flow on
N , if we always choose an augmenting path of maximal capacity. Even though
we do not know w a priori, the number of steps necessary for this method is
easy to estimate, as w is obviously bounded by

W = min {
∑

e−=s

c(e),
∑
e+=t

c(e)}.

Note that this approach does not yield a polynomial algorithm, since the
bound depends also on the capacities. Nevertheless, it can still be better for
concrete examples where W is small, as illustrated by the following exercise.

Exercise 6.2.4. Determine a maximal flow for the network of Figure 6.2 by
always choosing an augmenting path of maximal capacity.

Exercise 6.2.5. Apply the algorithm of Edmonds and Karp to the network
shown in Figure 6.13 (which is taken from [PaSt82]).
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Fig. 6.13. A network

We conclude this section with three exercises showing that it is possible
to change several capacities in a given network and find solutions for the
corresponding new problem without too much effort, if we know a solution of
the original problem.

Exercise 6.2.6. Suppose we have determined a maximal flow for a flow net-
work N using the algorithm of Edmonds and Karp, and realize afterwards
that we used an incorrect capacity for some edge e. Discuss how we may use
the solution of the original problem to solve the corrected problem.

Exercise 6.2.7. Change the capacity of the edge e = ac in the network of
Figure 6.2 to c(e) = 8, and then to c(e) = 12. How do these modifications
change the value of a maximal flow? Give a maximal flow for each of these
two cases.

Exercise 6.2.8. Change the network of Figure 6.2 as follows. The capacities
of the edges ac and ad are increased to 12 and 16, respectively, and the edges
de and ct are removed. Determine a maximal flow for the new network.

6.3 Auxiliary networks and phases

Let N = (G, c, s, t) be a flow network with a f . We define a further flow
network (G′, c′, s, t) as follows. G′ has the same vertex set as G. For each
edge e = uv of G with f(e) < c(e), there is an edge e′ = uv in G′ with
c′(e′) = c(e) − f(e); for each edge e = uv with f(e) �= 0, G′ contains an edge
e′′ = vu with c′(e′′) = f(e).

The labelling process in the algorithm of Ford and Fulkerson – as given in
steps (6) to (9) for forward edges and in steps (10) to (13) for backward edges
– uses only those edges e of G for which G′ contains the edge e′ or e′′; an
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augmenting path with respect to f in G corresponds to a directed path from
s to t in G′. Thus we may use G′ to decide whether f is maximal and, if this
is not the case, to find an augmenting path. One calls N ′ = (G′, c′, s, t) the
auxiliary network with respect to f . The next lemma should now be clear.

Lemma 6.3.1. Let N = (G, c, s, t) be a flow network with a flow f , and let
N ′ be the corresponding auxiliary network. Then f is maximal if and only if
t is not accessible from s in G′. ��
Example 6.3.2. Consider the flow f = f3 of Example 6.2.3; see Figure 6.6.
The corresponding auxiliary network is given in Figure 6.14.
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Fig. 6.14. Auxiliary network for Example 6.3.2

It is intuitively clear that a flow in N ′ can be used to augment f when
constructing a maximal flow on N . The following two results make this idea
more precise.

Lemma 6.3.3. Let N = (G, c, s, t) be a flow network with a flow f , and let
N ′ be the corresponding auxiliary network. Moreover, let f ′ be a flow on N ′.
Then there exists a flow f ′′ of value w(f ′′) = w(f) + w(f ′) on N .

Proof. For each edge e = uv of G, let e′ = uv and e′′ = vu. If e′ or e′′

is not contained in N ′, we set f ′(e′) = 0 or f ′(e′′) = 0, respectively. We
put f ′(e) = f ′(e′) − f ′(e′′);2 then we may interpret f ′ as a (possibly non-
admissible) flow on N : f ′ satisfies condition (F2), but not necessarily (F1).
Obviously, the mapping f ′′ defined by

f ′′(e) = f(e) + f ′(e′) − f ′(e′′)
2Note that the minus sign in front of f ′(e′′) is motivated by the fact that e′ and

e′′ have opposite orientation.
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also satisfies condition (F2). Now the definition of N ′ shows that the con-
ditions 0 ≤ f ′(e′) ≤ c(e) − f(e) and 0 ≤ f ′(e′′) ≤ f(e) hold for each
edge e, so that f ′′ satisfies (F1) as well. Thus f ′′ is a flow, and clearly
w(f ′′) = w(f) + w(f ′). ��
Theorem 6.3.4. Let N = (G, c, s, t) be a flow network with a flow f , and
let N ′ be the corresponding auxiliary network. Denote the value of a maximal
flow on N and on N ′ by w and w′, respectively. Then w = w′ + w(f).

Proof. By Lemma 6.3.3, w ≥ w′ + w(f). Now let g be a maximal flow on N
and define a flow g′ on N ′ as follows: for each edge e of G, set

g′(e′) = g(e) − f(e) if g(e) > f(e);
g′(e′′) = f(e) − g(e) if g(e) < f(e).

Note that e′ and e′′ really are edges of N ′ under the conditions given above
and that their capacities are large enough to ensure the validity of (F1). For
every other edge e∗ in N ′, put g′(e∗) = 0. It is easy to check that g′ is a flow
of value w(g′) = w(g) − w(f) on N ′. This shows w′ + w(f) ≥ w. ��
Exercise 6.3.5. Give an alternative proof for Theorem 6.3.4 by proving that
the capacity c′(S, T ) of a cut (S, T ) in N ′ is equal to c(S, T ) − w(f).

Remark 6.3.6. Note that the graph G′ may contain parallel edges even if
G itself – as we always assume – does not. This phenomenon occurs when
G contains antiparallel edges, say d = uv and e = vu. Then G′ contains the
parallel edges d′ and e′′ with capacities c′(d′) = c(d) − f(d) and c′(e′′) =
f(e), respectively. For the validity of the preceding proofs and the subsequent
algorithms, it is important that parallel edges of G′ are not identified (and
their capacities not added). Indeed, if we identified the edges d′ and e′′ above
into a new edge e∗ with capacity c′(e∗) = c(d) − f(d) + f(e), it would no
longer be obvious how to distribute a flow value f ′(e∗) when defining f ′′ in
the proof of Lemma 6.3.3: we would have to decide which part of f ′(e∗) should
contribute to f ′′(d) (with a plus sign) and which part to f ′′(e) (with a minus
sign). Of course, it would always be possible to arrange this in such a manner
that a flow f ′′ satisfying the feasibility condition (F1) arises, but this would
require some unpleasant case distinctions. For this reason, we allow G′ to
contain parallel edges.3 However, when actually programming an algorithm
using auxiliary networks, it might be worthwhile to identify parallel edges of
G′ and add the necessary case distinctions for distributing the flow on N ′

during the augmentation step. In addition, one should also simplify things
then by cancelling flow on pairs of antiparallel edges in such a way that only
one edge of such a pair carries a non-zero flow.

3Alternatively, we could forbid G to contain antiparallel edges; this might be
achieved, for instance, by always subdividing one edge of an antiparallel pair.
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We have seen that it is possible to find a maximal flow for our origi-
nal network N by finding appropriate flows in a series of auxiliary networks
N1 = N ′(f0), N2 = N ′(f1), . . . Note that the labelling process in the algo-
rithm of Ford and Fulkerson amounts to constructing a new auxiliary network
after each augmentation of the flow. Thus constructing the auxiliary networks
explicitly cannot by itself result in a better algorithm; in order to achieve an
improvement, we need to construct several augmenting paths within the same
auxiliary network. We require a further definition. A flow f is called a blocking
flow if every augmenting path with respect to f has to contain a backward
edge. Trivially, any maximal flow is blocking as well. But the converse is false:
for example, the flow f8 of Example 6.2.3 displayed in Figure 6.11 is blocking,
but not maximal.

There is yet another problem that needs to be addressed: the auxiliary
networks constructed so far are still too big and complex. Indeed, the auxiliary
network in Example 6.3.2 looks rather crowded. Hence we shall work with
appropriate sub-networks instead. The main idea of the algorithm of Dinic
[Din70] is to use not only an augmenting path of shortest length, but also
to keep an appropriate small network N ′′(f) basically unchanged – with just
minor modifications – until every further augmenting path has to have larger
length.

For better motivation, we return once more to the algorithm of Edmonds
and Karp. Making step (5) of Algorithm 6.1.7 more precise in step (5′) of
Theorem 6.2.1 ensures that the labelling process on the auxiliary network
N ′ = N ′(f) runs as a BFS on G′; thus the labelling process divides G′ into
levels or layers of vertices having the same distance to s; see Section 3.3. As we
are only interested in finding augmenting paths of shortest length, N ′ usually
contains a lot of superfluous information: we may omit

• all vertices v �= t with d(s, v) ≥ d(s, t) together with all edges incident
with these vertices;

• all edges leading from some vertex in layer j to some vertex in a layer
i ≤ j.

The resulting network N ′′ = N ′′(f) = (G′′, c′′, s, t) is called the layered auxil-
iary network with respect to f .4 The name layered network comes from the
fact that G′′ is a layered digraph: the vertex set V of G′′ is the disjoint union
of subsets V0, . . . , Vk and all edges of G′′ have the form uv with u ∈ Vi and
v ∈ Vi+1 for some index i.

Example 6.3.7. Consider the flow f = f3 in Example 6.2.3 and the corre-
sponding auxiliary network N ′ displayed in Figure 6.14. The associated lay-
ered auxiliary network N ′′ is shown in Figure 6.15. Here the capacities are

4Strictly speaking, both N ′ and N ′′ should probably only be called networks if t
is accessible from s, that is, if f is not yet maximal – as this is part of the definition
of flow networks. But it is more convenient to be a bit lax here.
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written in parentheses; the other numbers are the values of a blocking flow g
on N ′′ which arises from the three augmenting paths displayed in Figures 6.6,
6.7, and 6.8. Note that all three paths of length four in Example 6.2.3 can now
be seen in the considerably clearer network N ′′. Note that g is blocking but
not maximal: the sequence (s, a, d, e, c, f, t) determines an augmenting path
containing the backward edge ce.

s

a

b

d

c

e

f

t

9 (30)

1 (1)

0 (6)

1 (26)

9 (9)

0 (1)

3 (24)

7 (8)

7 (7)

3 (25)

Fig. 6.15. Layered auxiliary network

We remark that even N ′′ might still contain superfluous elements, for
example vertices from which t is not accessible. But as such vertices cannot
be determined during the BFS used for constructing N ′′, we will not bother
to find and remove them.

Exercise 6.3.8. How could vertices v in N ′′ from which t is not accessible be
removed?

Exercise 6.3.9. Draw N ′ and N ′′ for the flow f7 displayed in Figure 6.10
and determine a blocking flow for N ′′.

We will treat two algorithms for determining maximal flows. Both algo-
rithms can take a given flow f , construct a blocking flow g in the corresponding
layered auxiliary network N ′′(f), and then use g to augment f . Note that a
flow f ′ of value w(f ′) on N ′′(f) may indeed be used to augment the given
flow f to a flow of value w(f) + w(f ′), as N ′′ is a sub-network of N ′; hence
we may apply Lemma 6.3.3 and the construction given in its proof.

Exercise 6.3.10. Show that Theorem 6.3.4 does not carry over to N ′′(f).

Thus we begin with some starting flow f0, usually the zero flow, construct
a blocking flow g0 in N ′′(f0), use this flow to augment f0 to a flow f1 of
value w(g0), construct a blocking flow g1 in N ′′(f1), and so on. The algorithm
terminates when we reach a flow fk for which the sink t is not accessible
from s in N ′′(fk). Then t is not accessible from s in N ′(fk) either; hence
fk is maximal, by Lemma 6.3.1. Each construction of a blocking flow gi,
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together with the subsequent augmentation of fi to fi+1, is called a phase of
the algorithm. We postpone the problem of determining blocking flows to the
next section. Now we derive an estimate for the number of phases needed and
write down an algorithm for constructing the layered auxiliary network.

Lemma 6.3.11. Let N = (G, c, s, t) be a flow network with a flow f , and let
N ′′(f) be the corresponding layered auxiliary network. Moreover, let g be a
blocking flow on N ′′(f), h the flow on N of value w(f) + w(g) constructed
from f and g as in Lemma 6.3.3, and N ′′(h) the layered auxiliary network
with respect to h. Then the distance from s to t in N ′′(h) is larger than in
N ′′(f).

Proof. It is easy to see that N ′′(h) is the layered auxiliary network for N ′ =
N ′(f) with respect to g.5 We may also view g as a flow on N ′′ = N ′′(f),
by assigning value 0 to all edges contained in N ′, but not in N ′′. As g is a
blocking flow on N ′′, there is no augmenting path from s to t in N ′′ consisting
of forward edges only. Hence each augmenting path in N ′ with respect to g
has to contain a backward edge or one of those edges which were omitted
during the construction of N ′′. In both cases, the length of this path must be
larger than the distance from s to t in N ′′. Thus the distance from s to t in
the layered auxiliary network for N ′ with respect to g – that is, in N ′′(h) – is
indeed larger than the corresponding distance in N ′′. ��
Corollary 6.3.12. Let N be a flow network. Then the construction of a max-
imal flow on N needs at most |V | − 1 phases.

Proof. Let f0, f1, . . . , fk be the sequence of flows constructed during the al-
gorithm. Lemma 6.3.11 implies that the distance from s to t in N ′′(fk) is at
least k larger than that in N ′′(f0). Thus the number of phases can be at most
|V | − 1. ��
Exercise 6.3.13. Let f be the flow f3 in Example 6.2.3 and g the blocking
flow on N ′′(f) in Example 6.3.7. Draw the layered auxiliary networks with
respect to g on N ′(f) and on N ′′(f). What does the flow h determined by f
and g on N look like? Convince yourself that N ′′(h) is indeed equal to the
layered auxiliary network with respect to g on N ′(f).

The following procedure for constructing the layered auxiliary network
N ′′(f) corresponds to the labelling process in the algorithm of Ford and Fulk-
erson with step (5) replaced by (5′) – as in Theorem 6.2.1. During the execu-
tion of the BFS, the procedure orders the vertices in layers and omits super-
fluous vertices and edges, as described in the definition of N ′′. The Boolean
variable max is assigned the value true when f becomes maximal (that is,
when t is no longer accessible from s); otherwise, it has value false. The vari-
able d + 1 gives the number of layers of N ′′.

5The analogous claim for N ′′ = N ′′(f) instead of N ′(f) does not hold, as Exercise
6.3.13 will show.
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Algorithm 6.3.14. Let N = (G, c, s, t) be a flow network with a flow f .
Procedure AUXNET(N, f ; N ′′, max, d)

(1) i ← 0, V0 ← {s}, E′′ ← ∅, V ′′ ← V0;
(2) repeat
(3) i ← i + 1, Vi ← ∅;
(4) for v ∈ Vi−1 do
(5) for e ∈ {e ∈ E : e− = v} do
(6) if u = e+ /∈ V ′′ and f(e) < c(e)
(7) then e′ ← vu, E′′ ← E ∪ {e′}, Vi ← Vi ∪ {u};

c′′(e′) ← c(e) − f(e) fi
(8) od;
(9) for e ∈ {e ∈ E : e+ = v} do

(10) if u = e− /∈ V ′′ and f(e) �= 0
(11) then e′′ ← vu, E′′ ← E ∪ {e′′}, Vi ← Vi ∪ {u};

c′′(e′′) ← f(e) fi
(12) od
(13) od;
(14) if t ∈ Vi then remove all vertices v �= t together with all

edges e satisfying e+ = v from Vi fi;
(15) V ′′ ← V ′′ ∪ Vi

(16) until t ∈ V ′′ or Vi = ∅;
(17) if t ∈ V ′′ then max ← false; d ← i else max ← true fi

We leave it to the reader to give a formal proof for the following lemma.

Lemma 6.3.15. Algorithm 6.3.14 constructs the layered auxiliary network
N ′′ = N ′′(f) = (G′′, c′′, s, t) on G′′ = (V ′′, E′′) with complexity O(|E|). ��

In the next section, we will provide two methods for constructing a blocking
flow g on N ′′. Let us assume for the moment that we already know such a
procedure BLOCKFLOW(N ′′; g). Then we want to use g for augmenting f .
The following procedure performs this task; it uses the construction given in
the proof of Lemma 6.3.3. Note that N ′′ never contains both e′ and e′′.

Algorithm 6.3.16. Let N = (G, c, s, t) be a given flow network with a flow
f , and suppose that we have already constructed N ′′ = N ′′(f) and a blocking
flow g.
Procedure AUGMENT(f, g; f)

(1) for e ∈ E do
(2) if e′ ∈ E′′ then f(e) ← f(e) + g(e′) fi;
(3) if e′′ ∈ E′′ then f(e) ← f(e) − g(e′′) fi
(4) od

We can now write down an algorithm for determining a maximal flow:



6.4 Constructing blocking flows 169

Algorithm 6.3.17. Let N = (G, c, s, t) be a flow network.
Procedure MAXFLOW(N ; f)

(1) for e ∈ E do f(e) ← 0 od;
(2) repeat
(3) AUXNET(N, f ; N ′′, max, d);
(4) if max = false
(5) then BLOCKFLOW(N ′′; g); AUGMENT(f, g; f) fi
(6) until max = true

Remark 6.3.18. The only part which is still missing in Algorithm 6.3.17 is
a specific procedure BLOCKFLOW for determining a blocking flow g on N ′′.
Note that each phase of Algorithm 6.3.17 has complexity at least O(|E|), be-
cause AUGMENT has this complexity. It is quite obvious that BLOCKFLOW
will also have complexity at least O(|E|); in fact, the known algorithms have
even larger complexity. Let us denote the complexity of BLOCKFLOW by
k(N). Then MAXFLOW has a complexity of O(|V |k(N)), since there are at
most O(|V |) phases, by Corollary 6.3.12.

Exercise 6.3.19. Modify Algorithm 6.3.17 in such a way that it finds a min-
imal cut (S, T ) as well.

6.4 Constructing blocking flows

In this section, we fill in the gap left in Algorithm 6.3.17 by presenting two
algorithms for constructing blocking flows. The first of these is due to Dinic
[Din70]. The Dinic algorithm constructs, starting with the zero flow, augment-
ing paths of length d in the layered auxiliary network N ′′ (where d+1 denotes
the number of layers) and uses them to change the flow g until t is no longer
accessible from s; then g is a blocking flow. Compared to the algorithm of
Edmonds and Karp, it has two advantages. First, using N ′′ = N ′′(f) means
that we consider only augmenting paths without any backward edges, since a
path containing a backward edge has length at least d + 2. Second, when we
update the input data after an augmentation of the current flow g on N ′′, we
only have to decrease the capacities of the edges contained in the respective
augmenting path and omit vertices and edges that are no longer needed. In
particular, we do not have to do the entire labelling process again.

Algorithm 6.4.1. Let N = (G, c, s, t) be a layered flow network with layers
V0, . . . , Vd, where all capacities are positive.
Procedure BLOCKFLOW(N ; g)

(1) for e ∈ E do g(e) ← 0 od;
(2) repeat
(3) v ← t, a ← ∞;
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(4) for i = d downto 1 do
(5) choose some edge ei = uv;
(6) a ← min {c(ei), a}, v ← u
(7) od;
(8) for i = 1 to d do
(9) g(ei) ← g(ei) + a, c(ei) ← c(ei) − a;

(10) if c(ei) = 0 then omit ei from E fi
(11) od;
(12) for i = 1 to d do
(13) for v ∈ Vi do
(14) if din(v) = 0
(15) then omit v and all edges e with e− = v fi
(16) od
(17) od
(18) until t /∈ Vd

Theorem 6.4.2. Algorithm 6.4.1 determines a blocking flow on N with com-
plexity O(|V ||E|).
Proof. By definition of a layered auxiliary network, each vertex is accessible
from s at the beginning of the algorithm. Thus there always exists an edge
ei with end vertex v which can be chosen in step (5), no matter which edges
ed, . . . , ei+1 were chosen before. Hence the algorithm constructs a directed
path P = (e1, . . . , ed) from s to t. At the end of the loop (4) to (7), the
variable a contains the capacity a of P , namely a = min {c(ei) : i = 1, . . . , d}.
In steps (8) to (11), the flow constructed so far (in the first iteration, the
zero flow) is increased by a units along P , and the capacities of the edges
e1, . . . , ed are decreased accordingly. Edges whose capacity is decreased to 0
cannot appear on any further augmenting path and are therefore discarded.
At the end of the loop (8) to (11), we have reached t and augmented the
flow g. Before executing a further iteration of (4) to (11), we have to check
whether t is still accessible from s. Even more, we need to ensure that every
vertex is still accessible from s in the modified layered network. This task is
performed by the loop (12) to (17). Using induction on i, one may show that
this loop removes exactly those vertices which are not accessible from s as
well as all edges beginning in these vertices. If t is still contained in N after
this loop has ended, we may augment g again so that we repeat the entire
process. Finally, the algorithm terminates after at most |E| iterations, since
at least one edge is removed during each augmentation; at the very latest,
t can no longer be in Vd when all the edges have been removed. Obviously,
each iteration (4) to (17) has complexity O(|V |); this gives the desired overall
complexity of O(|V ||E|). ��

Using Remark 6.3.18, we immediately obtain the following result due to
Dinic.
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Corollary 6.4.3. Assume that we use the procedure BLOCKFLOW of Al-
gorithm 6.4.1 in Algorithm 6.3.17. Then the resulting algorithm calculates a
maximal flow on a given flow network N with complexity O(|V |2|E|). ��

Note that the algorithm of Dinic has a complexity of O(|V |4) for dense
graphs, whereas the algorithm of Edmonds and Karp needs O(|V |5) steps
in this case. Using another, more involved, method for constructing blocking
flows, we may reduce the complexity to O(|V |3) for arbitrary graphs. But
first, let us work out an example for the algorithm of Dinic.

Example 6.4.4. Consider again the flow f = f3 in Example 6.2.3. The cor-
responding layered auxiliary network N ′′ was displayed in Figure 6.15. We
apply Algorithm 6.4.1 to N ′′. In step (5), let us always choose the edge uv for
which u is first in alphabetical order, so that the algorithm becomes deter-
ministic. Initially, it constructs the path s a c e t with capacity 7.
The corresponding flow g1 is shown in Figure 6.16; the numbers in parenthe-
ses give the new capacities (which were changed when the flow was changed).
The edge et, which is drawn broken, is removed during this first iteration.
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Fig. 6.16. w(g1) = 7

In the second iteration, we obtain the path s a c f t in the net-
work of Figure 6.16; it has capacity two. Figure 6.17 shows the new network
with the new flow g2. Note that the edge ac has been removed.

Finally, using the network in Figure 6.17, the third iteration constructs
the path s b c f t with capacity one, and we obtain the flow g3

displayed in Figure 6.18. During this iteration, the algorithm removes first
the edge sb, the vertex b, and the edge bc; then the vertex c, and the edges
ce and cf ; the vertex f , and the edge ft; and finally t itself; see Figure 6.18.
Hence g3 is a blocking flow – actually, the blocking flow previously displayed
in Figure 6.15.

Exercise 6.4.5. Use Algorithm 6.4.1 to determine a blocking flow on the
layered network shown in Figure 6.19; this is taken from [SyDK83].
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Fig. 6.17. w(g2) = 9
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Fig. 6.18. Blocking flow g3 with w(g3) = 10
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We now turn to a completely different method for constructing blocking
flows, which is due to Malhotra, Kumar and Mahashwari [MaKM78] and has
complexity O(|V |2). This algorithm does not use augmenting paths and tries
instead to push as big a flow as possible through the network. We need some
notation. Let N = (G, c, s, t) be a layered flow network. For each vertex v, the
flow potential p(v) is defined by

p(v) = min

{∑
e−=v

c(e),
∑

e+=v

c(e)

}
;

thus p(v) is the maximal amount of flow which could possibly pass through
v. A vertex u is called a minimal vertex – and its flow potential the minimal
potential – if p(u) ≤ p(v) holds for all vertices v. Intuitively, it should be
possible to construct a flow g of value w(g) = p(u) by pushing the flow from
u forward to t and pulling it back from u to s. This is the main idea of the
following algorithm for constructing a blocking flow on N .

Algorithm 6.4.6. Let N = (G, c, s, t) be a layered flow network with layers
V1, . . . Vd, where all capacities are positive.
Procedure BLOCKMKM(N ; g)

(1) for e ∈ E do g(e) ← 0 od;
(2) for v ∈ V do
(3) if v = t then p−(v) ← ∞ else p−(v) ← ∑

e−=v

c(e) fi

(4) if v = s then p+(v) ← ∞ else p+(v) ← ∑
e+=v

c(e) fi

(5) od;
(6) repeat
(7) for v ∈ V do p(v) ← min {p+(v), p−(v)} od;
(8) choose a minimal vertex w;
(9) PUSH(w, p(w));

(10) PULL(w, p(w));
(11) while there exists v with p+(v) = 0 or p−(v) = 0 do
(12) for e ∈ {e ∈ E : e− = v} do
(13) u ← e+, p+(u) ← p+(u) − c(e);
(14) remove e from E
(15) od;
(16) for e ∈ {e ∈ E : e+ = v} do
(17) u ← e−, p−(u) ← p−(u) − c(e);
(18) remove e from E
(19) od;
(20) remove v from V
(21) od
(22) until s /∈ V or t /∈ V
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Here, PUSH is the following procedure for pushing a flow of value p(w) to t:
Procedure PUSH(y, k)

(1) let Q be a queue with single element y;
(2) for u ∈ V do b(u) ← 0 od;
(3) b(y) ← k;
(4) repeat
(5) remove the first element v from Q;
(6) while v �= t and b(v) �= 0 do
(7) choose an edge e = vu;
(8) m ← min {c(e), b(v)};
(9) c(e) ← c(e) − m, g(e) ← g(e) + m;

(10) p+(u) ← p+(u) − m, b(u) ← b(u) + m;
(11) p−(v) ← p−(v) − m, b(v) ← b(v) − m;
(12) append u to Q;
(13) if c(e) = 0 then remove e from E fi
(14) od
(15) until Q = ∅
The procedure PULL for pulling a flow of value p(w) to s is defined in an
analogous manner; we leave this task to the reader.

Theorem 6.4.7. Algorithm 6.4.6 constructs a blocking flow g on N with com-
plexity O(|V |2).
Proof. We claim first that an edge e is removed from E only if there exists no
augmenting path containing e and consisting of forward edges only. This is
clear if e is removed in step (14) or (18): then either p+(v) = 0 or p−(v) = 0
(where e− = v or e+ = v, respectively) so that no augmenting path containing
v and consisting of forward edges only can exist. If e is removed in step (13)
during a call of the procedure PUSH, we have c(e) = 0 at this point; because of
step (9) in PUSH, this means that g(e) has reached its original capacity c(e) so
that e cannot be used any longer as a forward edge. A similar argument applies
if e is removed during a call of PULL. As each iteration of BLOCKMKM
removes edges and decreases capacities, an edge which can no longer be used
as a forward edge with respect to g when it is removed cannot be used as a
forward edge at a later point either. Hence, there cannot exist any augmenting
path consisting of forward edges only at the end of BLOCKMKM, when s or
t have been removed. This shows that g is blocking; of course, it still remains
to check that g is a flow in the first place.

We now show that g is indeed a flow, by using induction on the number
of iterations of the repeat-loop (6) to (22). Initially, g is the zero flow. Now
suppose that g is a flow at a certain point of the algorithm (after the i-
th iteration, say). All vertices v which cannot be used any more – that is,
vertices into which no flow can enter or from which no flow can emerge any
more – are removed during the while-loop (11) to (21), together with all edges
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incident with these vertices. During the next iteration – that is, after the flow
potentials have been brought up to date in step (7) – the algorithm chooses
a vertex w with minimal potential p(w); here p(w) �= 0, since otherwise w
would have been removed before during the while-loop. Next, we have to
check that the procedure PUSH(w, p(w)) really generates a flow of value p(w)
from the source w to the sink t. As Q is a queue, the vertices u in PUSH are
treated as in a BFS on the layers Vk, Vk+1, . . . , Vd, where w ∈ Vk. During the
first iteration of the repeat-loop of PUSH, we have v = w and b(v) = p(w);
here b(v) contains the value of the flow which has to flow out of v. During
the while-loop, the flow of value b(v) is distributed among the edges vu with
tail v. Note that the capacity of an edge vu is always used entirely, unless
b(v) < c(e). In step (9), the capacity of vu is reduced – in most cases, to 0, so
that vu will be removed in step (13) – and the value of the flow is increased
accordingly. Then we decrease the value b(v) of the flow which still has to leave
v via other edges accordingly in step (11), and increase b(u) accordingly in
step (10); also the flow potentials are updated by the appropriate amount. In
this way the required value of the flow b(v) is distributed among the vertices of
the next layer; as we chose w to be a vertex of minimal potential, we always
have b(v) ≤ p(w) ≤ p(v), and hence it is indeed possible to distribute the
flow. At the end of procedure PUSH, the flow of value p(w) has reached t,
since Vd = {t}. An analogous argument shows that the subsequent call of the
procedure PULL(w, p(w)) yields a flow of value p(w) from the source s to
the sink w; of course, PULL performs the actual construction in the opposite
direction. We leave the details to the reader. Hence g will indeed be a flow
from s to t after both procedures have been called.

Each iteration of the repeat-loop of BLOCKMKM removes at least one
vertex, since the flow potential of the minimal vertex w is decreased to 0
during PUSH and PULL; hence the algorithm terminates after at most |V |−1
iterations. We now need an estimate for the number of operations involving
edges. Initializing p+ and p− in (3) and (4) takes O(|E|) steps altogether. As
an edge e can be removed only once, e appears at most once during the for-
loops (12) to (19) or in step (13) of PUSH or PULL. For each vertex v treated
during PUSH or PULL, there is at most one edge starting in v which still has
a capacity �= 0 left after it has been processed – that is, which has not been
removed. As PUSH and PULL are called at most |V | − 1 times each, we need
at most O(|V |2) steps for treating these special edges. But O(|V |2) dominates
O(|E|); hence the overall number of operations needed for treating the edges
is O(|V |2). It is easy to see that all other operations of the algorithm need at
most O(|V |2) steps as well, so that we obtain the desired overall complexity
of O(|V |2). ��

The algorithm arising from Algorithm 6.3.17 by replacing BLOCKFLOW
with BLOCKMKM is called the MKM-algorithm. As explained in Remark
6.3.18, Theorem 6.4.7 implies the following result.
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Theorem 6.4.8. The MKM-algorithm constructs with complexity O(|V |3) a
maximal flow for a given flow network N . ��
Example 6.4.9. Consider again the layered auxiliary network of Example
6.3.7. Here the flow potentials are as follows: p(s) = 31, p(a) = 15, p(b) = 1,
p(c) = 32, p(d) = 1, p(e) = 7, p(f) = 24, p(t) = 32. Let us choose b as
minimal vertex in step (8). After the first iteration, we have the flow g1 shown
in Figure 6.20; the vertex b as well as the edges sb and bc have been removed.
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Fig. 6.20. w(g1) = 1

Next, we have flow potentials p(s) = 30, p(a) = 15, p(c) = 9, p(d) = 1,
p(e) = 7, p(f) = 23, p(t) = 31, so that d is the unique minimal vertex. After
the second iteration, we have constructed the flow g2 in Figure 6.21; also, d,
ad, and de have been removed.
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Fig. 6.21. w(g2) = 2

In the following iteration, p(s) = 29, p(a) = 9, p(c) = 9, p(e) = 6, p(f) = 23
and p(t) = 30. Hence the vertex e is minimal and we obtain the flow g3 shown
in Figure 6.22; note that e, ce, and et have been removed.
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Fig. 6.22. w(g3) = 8

Now the flow potentials are p(s) = 23, p(a) = 3, p(c) = 3, p(f) = 23, p(t) = 24.
We select the minimal vertex a and construct the flow g4 in Figure 6.23, a
blocking flow with value w(g4) = 11; all remaining elements of the network
have been removed. Note that g4 differs from the blocking flow constructed
in Example 6.4.4.
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Fig. 6.23. w(g4) = 11

Exercise 6.4.10. Use Algorithm 6.4.6 to find a blocking flow for the layered
auxiliary network of Exercise 6.4.5.

We have now seen three classical algorithms for constructing maximal
flows. Note that these algorithms have quite different complexities for the
case of dense graphs, that is, for |E| = O(|V |2). As this case shows, the
MKM-algorithm is superior to the other two algorithms; however, it is clearly
also considerably more involved.

Further algorithms with complexity O(|V |3) are given in [Kar74], [Tar84],
and [GoTa88]; the last of these papers also contains an algorithm of com-
plexity O(|V ||E| log(|V |2/|E|)). We shall present the algorithm of Goldberg
and Tarjan in Section 6.6. The approach of Goldberg and Tarjan can also be
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used to solve the parametrized flow problem, where the capacities of the edges
incident with s and t depend monotonically on some real parameter; interest-
ingly, the complexity will only change by a constant factor; see [GaGT89]. A
modification of the algorithm of Goldberg and Tarjan suggested in [ChMa89]
results in a complexity O(|V |2|E|1/2; we shall include this result in Section
6.6 as well.

An algorithm with complexity O(|V ||E| log |V |) is given in [Sle80]; see
also [SlTa83]. In the paper [AhOr89], there is an algorithm of complexity
O(|V ||E| + |V |2 log U), where U denotes the maximum of all capacities c(e)
occurring in the problem. This result may be improved somewhat: the term
log U can be replaced by (log U)1/2; see [AhOT89].

A probabilistic algorithm was proposed by [ChHa89]. Later, several au-
thors gave deterministic variants of this algorithm; see [Alo90], [KiRT94],
and [ChHa95]. For instance, for graphs satisfying |V | log |V |)2 ≤ |E| ≤
|V |5/3 log |V |, one obtains a complexity of only O(|V ||E|). An algorithm with
complexity O(|V |3/ log |V |) can be found in [ChHM96].

Let us also mention three good surveys dealing with some of the more re-
cent algorithms: [GoTT90] and [AhMO89, AhMO91]. For an extensive treat-
ment of flow theory and related topics, we refer to the monograph [AhMO93].

A further new idea for solving the max-flow problem emerged in a paper by
Karger [Kar99], who proceeds by computing approximately minimal cuts and
uses these to compute a maximum flow, thus reversing the usual approach. He
shows that his algorithm has an improved complexity with high probability;
however, this seems not to be of practical interest (yet).

A completely different approach to the problem of finding a maximal flow
is to use the well-known simplex algorithm from linear programming and
specialize it to treat flow networks; the resulting algorithm actually works for
a more general problem. It is called the network simplex algorithm and is of
eminent practical interest; we will devote the entire Chapter 11 to this topic.

For planar graphs, one may construct a maximal flow with complexity
O(|V | 32 log |V |); see [JoVe82]. If s and t are in the same face of G, even a
complexity of O(|V | log |V |) suffices; see [ItSh79].

In the undirected case – that is, in symmetric flow networks, see Section
12.1 – the max flow problem can be solved with complexity O(|V | log2 |V |); see
[HaJo85]. For flow networks on bipartite graphs, fast algorithms can be found
in [GuMF87] and in [AhOST94]; these algorithms are particularly interesting
if one of the two components of the bipartition is very small compared to the
other component.

Finally, let us mention some references discussing the practical efficiency
of various flow algorithms: [Che80], [Gal81], [Ima83], [GoGr88], [DeMe89],
and [AhKMO92]. There are also several relevant papers in the collection
[JoMcG93].
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6.5 Zero-one flows

In this section, we consider a special case occurring in many combinatorial
applications of flow theory6, namely integral flows which take the values 0
and 1 only. In this special case, the complexity estimates we have obtained so
far can be improved considerably; it will suffice to use the algorithm of Dinic
for this purpose. We need some terminology. A 0-1-network is a flow network
N = (G, c, s, t) for which all capacities c(e) are restricted to the values 0 and
1. A flow f on a network N is called a 0-1-flow if f takes values 0 and 1 only.
We begin with the following important lemma taken from [EvTa75].

Lemma 6.5.1. Let N = (G, c, s, t) be a 0-1-network. Then

d(s, t) ≤ 2|V |√
M

, (6.5)

where M is the maximal value of a flow on N . If, in addition, each vertex v
of N except for s and t satisfies at least one of the two conditions din(v) ≤ 1
and dout(v) ≤ 1, then even

d(s, t) ≤ 1 +
|V |
M

. (6.6)

Proof. Denote the maximal distance from s in N by D, and let Vi be the set
of all vertices v ∈ V with d(s, v) = i (for i = 0, . . . , D). Obviously,

(Si, Ti) = (V0 ∪ V1 ∪ . . . ∪ Vi, Vi+1 ∪ . . . ∪ VD)

is a cut, for each i < d(s, t). As every edge e with e− ∈ Si and e+ ∈ Ti satisfies
e− ∈ Vi and e+ ∈ Vi+1 and as N is a 0-1-network, Lemma 6.1.2 implies

M ≤ c(Si, Ti) ≤ |Vi| × |Vi+1| for i = 0, . . . , d(s, t) − 1.

Thus at least one of the two values |Vi| or |Vi+1| cannot be smaller than
√

M .
Hence at least half of the layers Vi with i ≤ d(s, t) contain

√
M or more

vertices. This yields

d(s, t)
√

M

2
≤ |V0| + . . . + |Vd(s,t)| ≤ |V |,

and hence (6.5) holds. Now assume that N satisfies the additional condition
stated in the assertion. Then the flow through any given vertex cannot exceed
one, and we get the stronger inequality

M ≤ |Vi| for i = 1, . . . , d(s, t) − 1.

6We will discuss a wealth of such applications in Chapter 7.
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Now
M(d(s, t) − 1) ≤ |V1| + . . . + |Vd(s,t)−1| ≤ |V |,

proving (6.6). ��
Using estimates which are a little more accurate, (6.5) can be improved

to d(s, t) ≤ |V |/√M . We will not need this improvement for the complexity
statements which we will establish later in this section; the reader might derive
the stronger bound as an exercise.

Lemma 6.5.2. Let N = (G, c, s, t) be a layered 0-1-network. Then the algo-
rithm of Dinic can be used to determine a blocking flow g on N with complexity
O(|E|).
Proof. The reader may easily check that the following modification of Algo-
rithm 6.4.1 determines a blocking flow g on a given 0-1-network N .
Procedure BLOCK01FLOW(N, g)

(1) L ← ∅;
(2) for v ∈ V do ind(v) ← 0 od;
(3) for e ∈ E do g(e) ← 0; ind(e+) ← ind(e+) + 1 od;
(4) repeat
(5) v ← t;
(6) for i = d downto 1 do
(7) choose an edge e = uv and remove e from E;
(8) ind(v) ← ind(v) − 1; g(e) ← 1;
(9) if ind(v) = 0

(10) then append v to L;
(11) while L �= ∅ do
(12) remove the first vertex w from L;
(13) for {e ∈ E : e− = w} do
(14) remove e from E; ind(e+) ← ind(e+) − 1;
(15) if ind(e+) = 0 then append e+ to L fi;
(16) od;
(17) od;
(18) fi;
(19) v ← u;
(20) od;
(21) until ind(t) = 0

Obviously, each edge e is treated – and then removed – at most once during
the repeat-loop in this procedure, so that the complexity of BLOCK01FLOW
is O(|E|). ��
Theorem 6.5.3. Let N = (G, c, s, t) be a 0-1-network. Then the algorithm
of Dinic can be used to compute a maximal 0-1-flow on N with complexity
O(|V |2/3|E|).
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Proof. In view of Lemma 6.5.2, it suffices to show that the algorithm of Dinic
needs only O(|V |2/3) phases when it runs on a 0-1-network. Let us denote the
maximal value of a flow on N by M . As the value of the flow is increased by
at least 1 during each phase of the algorithm, the assertion is trivial when-
ever M ≤ |V |2/3; thus we may suppose M > |V |2/3. Consider the uniquely
determined phase where the value of the flow is increased to a value exceed-
ing M − |V |2/3, and let f be the 0-1-flow on N which the algorithm had
constructed in the immediately preceding phase. Then w(f) ≤ M − |V |2/3,
and therefore the value M ′ of a maximal flow on N ′(f) is given by
M ′ = M − w(f) ≥ |V |2/3, by Theorem 6.3.4. Obviously, N ′ is likewise a
0-1-network, so that the distance d(s, t) from s to t in N ′(f) satisfies the
inequality

d(s, t) ≤ 2|V |√
M ′ ≤ 2|V |2/3,

by Lemma 6.5.1. Now Lemma 6.3.11 guarantees that the distance between
s and t in the corresponding auxiliary network increases in each phase, and
hence the construction of f can have taken at most 2|V |2/3 phases. By our
choice of f , we reach a flow value exceeding M − |V |2/3 in the next phase,
so that at most |V |2/3 phases are necessary to increase the value of the flow
step by step until it reaches M . Hence the number of phases is indeed at most
O(|V |2/3). ��

In exactly the same manner, we get a further improvement of the com-
plexity provided that the 0-1-network N satisfies the additional condition of
Lemma 6.5.1 and hence the stronger inequality (6.6). Of course, this time the
threshold M used in the argument should be chosen as |V |1/2; also note that
the 0-1-network N ′(f) likewise satisfies the additional hypothesis in Lemma
6.5.1. We leave the details to the reader and just state the final result.

Theorem 6.5.4. Let N = (G, c, s, t) be a 0-1-network. If each vertex v �= s, t
of N satisfies at least one of the two conditions din(v) ≤ 1 and dout(v) ≤ 1,
then the algorithm of Dinic can be used to determine a maximal 0-1-flow on
N with complexity O(|V |1/2|E|). ��

We close this section with a few exercises outlining some applications of
0-1-flows; they touch some very interesting questions which we will study in
considerably more detail later. We shall also present several further applica-
tions of 0-1-flows in Chapter 7.

Exercise 6.5.5. A prom is attended by m girls and n boys. We want to
arrange a dance where as many couples as possible should participate, but
only couples who have known each other before are allowed. Formulate this
task as a graph theoretical problem.

Exercise 6.5.6. Given a bipartite graph G = (S
.∪ T, E), we seek a matching

of maximal cardinality in G; see Exercise 5.1.5. Show that this problem is
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equivalent to finding a maximal 0-1-flow on an appropriate flow network.
Moreover, use the algorithms and results of this chapter to design an algorithm
for this problem having complexity at most O(|V |5/2).

The method for finding a maximal matching hinted at in Exercise 6.5.6
is basically due to Hopcroft and Karp [HoKa73], who used a rather different
presentation; later, it was noticed by Evan and Tarjan [EvTa75] that this
method may be viewed as a special case of the MAXFLOW-algorithm. We
will meet maximal matchings quite often in this book: the bipartite case will
be treated in Section 7.2, and the general case will be studied in Chapters 13
and 14.

Exercise 6.5.7. Let G = (S
.∪ T, E) be a bipartite graph. Show that the set

system (S,S) defined by

S =
{
X ⊂ S : there exists a matching M with X = {e− : e ∈ M}}

is a matroid; here e− denotes that vertex incident with e which lies in S.
Hint: Use the interpretation via a network given in Exercise 6.5.6 for a con-
structive proof of condition (3) in Theorem 5.2.1.

The result in Exercise 6.5.7 becomes even more interesting when seen in
contrast to the fact that the set M of all matchings does not form a matroid
on E; see Exercise 5.1.5.

6.6 The algorithm of Goldberg and Tarjan

This final section of Chapter 6 is devoted to a more recent algorithm for finding
maximal flows which is due to Goldberg and Tarjan [GoTa88]. The algorithms
we have presented so far construct a maximal flow – usually starting with the
zero flow – by augmenting the flow iteratively, either along a single augmenting
path or in phases where blocking flows in appropriate auxiliary networks are
determined.

The algorithm of Goldberg and Tarjan is based on a completely different
concept: it uses preflows. These are mappings for which flow excess is allowed:
the amount of flow entering a vertex may be larger than the amount of flow
leaving it. This preflow property is maintained throughout the algorithm; it
is only at the very end of the algorithm that the preflow becomes a flow –
which is then already maximal.

The main idea of the algorithm is to push flow from vertices with excess
flow toward the sink t, using paths which are not necessarily shortest paths
from s to t, but merely current estimates for such paths. Of course, it might
occur that excess flow cannot be pushed forward from some vertex v; in this
case, it has to be sent back to the source on a suitable path. The choice of all
these paths is controlled by a certain labelling function on the vertex set. We
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will soon make all this precise. Altogether, the algorithm will be quite intuitive
and comparatively simple to analyze. Moreover, it needs a complexity of only
O(|V |3), without using any special tricks. By applying more complicated data
structures, it can even be made considerably faster, as we have already noted
at the end of Section 6.4.

Following [GoTa88], we define flows in this section in a formally different –
although, of course, equivalent – way; this notation from [Sle80] will simplify
the presentation of the algorithm. First, it is convenient to consider c and f
also as functions from V × V to R. Thus we do not distinguish between f(e)
and f(u, v), where e = uv is an edge of G; we put f(u, v) = 0 whenever uv is
not an edge of G; and similarly for c. Then we drop the condition that flows
have to be nonnegative, and define a flow f : V × V → R by the following
requirements:

(1) f(v, w) ≤ c(v, w) for all (v, w) ∈ V × V

(2) f(v, w) = −f(w, v) for all (v, w) ∈ V × V

(3)
∑

u∈V

f(u, v) = 0 for all v ∈ V \ {s, t}.

The anti-symmetry condition (2) makes sure that only one of the two edges
in a pair vw and wv of antiparallel edges in G may carry a positive amount
of flow.7 Condition (2) also simplifies the formal description in one important
respect: we will not have to make a distinction between forward and backward
edges anymore. Moreover, the formulation of the flow conservation condition
(3) is easier. The definition of the value of a flow becomes a little easier, too:

w(f) =
∑
v∈V

f(v, t).

For an intuitive interpretation of flows in the new sense, the reader should
consider only the nonnegative part of the flow function: this part is a flow
as originally defined in Section 6.1. As an exercise, the reader is asked to use
the antisymmetry of f to check that condition (3) is equivalent to the earlier
condition (F2).

Now we define a preflow as a mapping f : V ×V → R satisfying conditions
(1) and (2) above and the following weaker version of condition (3):

(3′)
∑

u∈V

f(u, v) ≥ 0 for all v ∈ V \ {s}.

Using the intuitive interpretation of flows, condition (3′) means that the
amount of flow entering a vertex v �= s no longer has to equal the amount
leaving v; it suffices if the in-flow is always at least as large as the out-flow.
The value

7In view of condition (2) we have to assume that G is a symmetric digraph: if
vw is an edge, wv must also be an edge of G. As noted earlier, there is no need
for positive amounts of flow on two antiparallel edges: we could simply cancel flow
whenever such a situation occurs.
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e(v) =
∑
u∈V

f(u, v)

is called the flow excess of the preflow f in v.
As mentioned before, the algorithm of Goldberg and Tarjan tries to push

flow excess from some vertex v with e(v) > 0 forward towards t. We first need
to specify which edges may be used for pushing flow. This amounts to defin-
ing an auxiliary network, similar to the one used in the classical algorithms;
however, the algorithm itself does not involve an explicit construction of this
network. Given a preflow f , let us define the residual capacity rf : V ×V → R

as follows:
rf (v, w) = c(v, w) − f(v, w).

If an edge vw satisfies rf (v, w) > 0, we may move some flow through this
edge; such an edge is called a residual edge. In our intuitive interpretation,
this corresponds to two possible cases. Either the edge vw is a forward edge
which is not yet saturated: 0 ≤ f(v, w) < c(v, w); or it is a backward edge,
that is, the antiparallel edge wv is a non-void: 0 < f(w, v) ≤ c(w, v), and
hence f(v, w) = −f(w, v) < 0 ≤ c(v, w). The residual graph with respect to f
is defined as

Gf = (V, Ef ), where Ef = {vw ∈ E : rf (v, w) > 0}.

As the intuitive interpretation shows, Gf really corresponds to the auxiliary
network N ′(f) used in the classical algorithms. Now we may also introduce
the labelling function mentioned before. A mapping d : V → N0 ∪ {∞} is
called a valid labelling with respect to a given preflow f if the following two
conditions hold:

(4) d(s) = |V | and d(t) = 0;
(5) d(v) ≤ d(w) + 1 for all vw ∈ Ef .

The algorithm of [GoTa88] starts with some suitable preflow and a corre-
sponding valid labelling. Usually, one saturates all edges emanating from s,
and puts d(s) = |V | and d(v) = 0 for all v ∈ V \{s}. More precisely, the initial
preflow is given by f(s, v) = −f(v, s) = c(s, v) for all v �= s and f(v, w) = 0
for all v, w �= s.

Then the algorithm executes a series of operations which we will specify
later. These operations change either the preflow f (by pushing the largest
possible amount of flow along a suitable residual edge) or the labelling d (by
raising the label of a suitable vertex); in both cases, the labelling will always
remain valid. As mentioned before, d is used to estimate shortest paths in the
corresponding residual graph. More precisely, d(v) is always a lower bound for
the distance from v to t in Gf provided that d(v) < |V |; and if d(v) > |V |,
then t is not accessible from v, and d(v)−|V | is a lower bound for the distance
from v to s in Gf . The algorithm terminates as soon as the preflow has become
a flow (which is then actually a maximal flow).
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We need one more notion to be able to write down the algorithm in its
generic form. A vertex v is called active provided that v �= s, t; e(v) > 0; and
d(v) < ∞.

Algorithm 6.6.1. Let N = (G, c, s, t) be a flow network on a symmetric
digraph, where c : V × V → R+

0 ; that is, for (v, w) /∈ E we have c(v, w) = 0.
Procedure GOLDBERG(N ; f)

(1) for (v, w) ∈ (V \ {s})× (V \ {s}) do f(v, w) ← 0; rf (v, w) ← c(v, w) od;
(2) d(s) ← |V |;
(3) for v ∈ V \ {s} do
(4) f(s, v) ← c(s, v); rf (s, v) ← 0;
(5) f(v, s) ← −c(s, v); rf (v, s) ← c(v, s) + c(s, v);
(6) d(v) ← 0;
(7) e(v) ← c(s, v)
(8) od
(9) while there exists an active vertex v do

(10) choose an active vertex v and execute an admissible operation
(11) od

In (10), one of the following operations may be used, provided that it is
admissible:
Procedure PUSH(N, f, v, w; f)

(1) δ ← min (e(v), rf (v, w));
(2) f(v, w) ← f(v, w) + δ; f(w, v) ← f(w, v) − δ;
(3) rf (v, w) ← rf (v, w) − δ; rf (w, v) ← rf (w, v) + δ;
(4) e(v) ← e(v) − δ; e(w) ← e(w) + δ.

The procedure PUSH(N, f, v, w; f) is admissible provided that v is active,
rf (v, w) > 0, and d(v) = d(w) + 1.

Procedure RELABEL(N, f, v, d; d)

(1) d(v) ← min {d(w) + 1: rf (v, w) > 0};
The procedure RELABEL(N, f, v, d; d) is admissible provided that v is active
and rf (v, w) > 0 always implies d(v) ≤ d(w).8

Let us look more closely at the conditions for admissibility. If we want to
push some flow along an edge vw, three conditions are required. Two of these
requirements are clear: the start vertex v has to be active, so that there is
positive flow excess e(v) available which we might move; and vw has to be
a residual edge, so that it has capacity left for additional flow. It is also not
surprising that we then push along vw as much flow as possible, namely the
smaller of the two amounts e(v) and rf (v, w).

8The minimum in (1) is defined to be ∞ if there does not exist any w with
rf (v, w) > 0. However, we will see that this case cannot occur.
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The crucial requirement is the third one, namely d(v) = d(w)+1. Thus we
are only allowed to push along residual edges vw for which d(v) is exactly one
unit larger than d(w), that is, for which d(v) takes its maximum permissible
value; see (5) above. We may visualize this rule by thinking of water cascading
down a series of terraces of different height, with the height corresponding to
the labels. Obviously, water will flow down, and condition (5) has the effect
of restricting the layout of the terraces so that the water may flow down only
one level in each step.

Now assume that we are in an active vertex v – so that some water is
left which wants to flow out – and that none of the residual edges leaving
v satisfies the third requirement. In our watery analogy, v would be a sort
of local sink: v is locally on the lowest possible level, and thus the water is
trapped in v. It is precisely in such a situation that the RELABEL-operation
becomes admissible: we miraculously raise v to a level which is just one unit
higher than that of the lowest neighbor w of v in Gf ; then a PUSH becomes
permissible, that is, (some of) the water previously trapped in v can flow down
to w. Of course, these remarks in no way constitute a proof of correctness;
nevertheless, they might help to obtain a feeling for the strategy behind the
Goldberg-Tarjan algorithm.

Now we turn to the formal proof which proceeds via a series of auxiliary
results. This will allow us to show that Algorithm 6.6.1 constructs a maximal
flow on N in finitely many steps, no matter in which order we select the active
vertices and the admissible operations. This is in remarkable contrast to the
situation for the algorithm of Ford and Fulkerson; recall the discussion in
Section 6.1. To get better estimates for the complexity, however, we will have
to specify appropriate strategies for the choices to be made.

We begin by showing that the algorithm is correct under the assumption
that it terminates at all. Afterwards, we will estimate the maximal number of
admissible operations executed during the while-loop and use this result to
show that the algorithm really is finite. Our first lemma is just a simple but
important observation; it states a result which we have already emphasized
in our informal discussion.

Lemma 6.6.2. Let f be a preflow on N , d a valid labelling on V with respect
to f , and v an active vertex. Then either a PUSH-operation or a RELABEL-
operation is admissible for v.

Proof. As d is valid, we have d(v) ≤ d(w) + 1 for all w with rf (v, w) > 0. If
PUSH(v, w) is not admissible for any w, we must even have d(v) ≤ d(w) for
all w with rf (v, w) > 0, as d takes only integer values. But then RELABEL
is admissible. ��
Lemma 6.6.3. During the execution of Algorithm 6.6.1, f always is a preflow
and d always is a valid labelling (with respect to f).

Proof. We use induction on the number k of admissible operations already
executed. The assertion holds for the induction basis k = 0: obviously, f is
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initialized as a preflow in steps (4) and (5); and the labelling d defined in (2)
and (6) is valid for f , since d(v) = 0 for v �= s and since all edges sv have
been saturated in step (4); also, the residual capacities and the flow excesses
are clearly initialized correctly in steps (4), (5), and (7).

For the induction step, suppose that the assertion holds after k operations
have been executed. Assume first that the next operation is a PUSH(v, w).
It is easy to check that f remains a preflow, and that the residual capacities
and the flow excesses are updated correctly. Note that the labels are kept
unchanged, and that vw and wv are the only edges for which f has changed.
Hence we only need to worry about these two edges in order to show that d is
still valid. By definition, vw ∈ Ef before the PUSH. Now vw might be removed
from the residual graph Gf (which happens if it is saturated by the PUSH);
but then the labelling stays valid trivially. Now consider the antiparallel edge
wv. If this edge already is in Gf , there is nothing to show. Thus assume that
wv is added to Gf by the PUSH; again, d stays valid, since the admissibility
conditions for the PUSH(v, w) require d(w) = d(v) − 1.

It remains to consider the case where the next operation is a RELABEL(v).
Then the admissibility requirement is d(v) ≤ d(w) for all vertices w with
rf (v, w) > 0. As d(v) is increased to the minimum of all the d(w) + 1, the
condition d(v) ≤ d(w) + 1 holds for all w with rf (v, w) > 0 after this change;
all other labels remain unchanged, so that the new labelling d is still valid
for f . ��
Lemma 6.6.4. Let f be a preflow on N and d a valid labelling with respect
to f . Then t is not accessible from s in the residual graph Gf .

Proof. Suppose there exists a path

W : s = v0 v1 . . . vm = t

in Gf . As d is a valid labelling, d(vi) ≤ d(vi+1)+1 for i = 0, . . . , m−1. Hence
d(s) ≤ d(t) + m < |V |, since d(t) = 0 and since the path can have length at
most |V | − 1. But d(s) = |V |, by the validity of d, and we have reached a
contradiction. ��
Theorem 6.6.5. If Algorithm 6.6.1 terminates with all labels finite, then the
preflow f constructed is in fact a maximal flow on N .

Proof. By 6.6.2, the algorithm can only terminate when there are no more
active vertices. As all labels are finite by hypothesis, e(v) = 0 has to hold
for each vertex v �= s, t; hence the preflow constructed by the final operation
is indeed a flow on N . By Lemma 6.6.4, there is no path from s to t in Gf ,
so that there is no augmenting path from s to t with respect to f . Now the
assertion follows from Theorem 6.1.3. ��

It remains to show that the algorithm indeed terminates and that the
labels stay finite throughout. We need two further lemmas.
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Lemma 6.6.6. Let f be a preflow on N . If v is a vertex with positive flow
excess e(v), then s is accessible from v in Gf .

Proof. We denote the set of vertices accessible from v in Gf (via a directed
path) by S , and put T := V \ S. Then f(u, w) ≤ 0 for all vertices u, w with
u ∈ T and w ∈ S, since

0 = rf (w, u) = c(w, u) − f(w, u) ≥ 0 + f(u, w).

Using the antisymmetry of f , we get∑
w∈S

e(w) =
∑

u∈V,w∈S

f(u, w)

=
∑

u∈T,w∈S

f(u, w) +
∑

u,w∈S

f(u, w)

=
∑

u∈T,w∈S

f(u, w) ≤ 0.

Now the definition of a preflow requires e(w) ≥ 0 for all w �= s. But e(v) > 0,
and hence

∑
w∈S e(w) ≤ s implies s ∈ S. ��

Lemma 6.6.7. Throughout Algorithm 6.6.1, d(v) ≤ 2|V | − 1 for all v ∈ V .

Proof. Obviously, the assertion holds after the initialization phase in steps
(1) to (8). The label d(v) of a vertex v can only be changed by an operation
RELABEL(v), and such an operation is admissible only if v is active. In
particular, v �= s, t, so that the claim is trivial for s and t; moreover, e(v) > 0.
By Lemma 6.6.6, there exists a directed path

W : v = v0 v1 . . . vm = s

in the residual graph Gf . Since d is a valid labelling, d(vi) ≤ d(vi+1) + 1 for
i = 0, . . . , m − 1. Now W has length at most |V | − 1, and we conclude

d(v) ≤ d(s) + m ≤ d(s) + |V | − 1 = 2|V | − 1. �

Lemma 6.6.8. During the execution of Algorithm 6.6.1, at most 2|V | − 1
RELABEL-operations occur for any given vertex v �= s, t. Hence the total
number of RELABEL-operations is at most (2|V | − 1)(|V | − 2) < 2|V |2.
Proof. Each RELABEL(v) increases d(v). Since d(v) is bounded by 2|V | − 1
throughout the entire algorithm (see Lemma 6.6.7), the assertion follows. ��

It is more difficult to estimate the number of PUSH-operations. We need
to distinguish two cases: a PUSH(v, w) will be called a saturating PUSH if
rf (v, w) = 0 holds afterwards (that is, for δ = rf (v, w) in step (1) of the
PUSH), and a non-saturating PUSH otherwise.
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Lemma 6.6.9. During the execution of Algorithm 6.6.1, fewer than |V ||E|
saturating PUSH-operations occur.

Proof. By definition, any PUSH(v, w) requires vw ∈ Ef and d(v) = d(w) + 1.
If the PUSH is saturating, a further PUSH(v, w) can only occur after an
intermediate PUSH(w, v), since we have rf (v, w) = 0 after the saturating
PUSH(v, w). Note that no PUSH(w, v) is admissible before the labels have
been changed in such a way that d(w) = d(v)+1 holds; hence d(w) must have
been increased by at least 2 units before the PUSH(w, v). Similarly, no further
PUSH(v, w) can become admissible before d(v) has also been increased by at
least 2 units. In particular, d(v) + d(w) has to increase by at least 4 units
between any two consecutive saturating PUSH(v, w)-operations.

On the other hand, d(v) + d(w) ≥ 1 holds as soon as the first PUSH from
v to w or from w to v is executed. Moreover, d(v), d(w) ≤ 2|V |−1 throughout
the algorithm, by Lemma 6.6.7; hence d(v) + d(w) ≤ 4|V | − 2 holds when the
last PUSH-operation involving v and w occurs. Therefore there are at most
|V | − 1 saturating PUSH(v, w)-operations, so that the the total number of
saturating PUSH-operations cannot exceed (|V | − 1)|E|. ��
Lemma 6.6.10. During the execution of Algorithm 6.6.1, there are at most
2|V |2|E| non-saturating PUSH-operations.

Proof. Let us introduce the potential

Φ =
∑

v active

d(v)

and investigate its development during the course of Algorithm 6.6.1. After
the initialization phase, Φ = 0; and at the end of the algorithm, we have Φ = 0
again.

Note that any non-saturating PUSH(v, w) decreases Φ by at least one unit:
because rf (v, w) > e(v), the vertex v becomes inactive so that Φ is decreased
by d(v) units; and even if the vertex w has become active due to the PUSH,
Φ is increased again by only d(w) = d(v) − 1 units, as the PUSH must have
been admissible. Similarly, any saturating PUSH(v, w) increases Φ by at most
2|V | − 1, since the label of the vertex w – which might again have become
active due to this PUSH – satisfies d(w) ≤ 2|V | − 1, by Lemma 6.6.7.

Let us put together what these observations imply for the entire algorithm.
The saturating PUSH-operations increase Φ by at most (2|V |−1)|V ||E| units
altogether, by Lemma 6.6.9; and the RELABEL-operations increase Φ by at
most (2|V |−1)(|V |−2) units, by Lemma 6.6.7. Clearly, the value by which Φ is
increased over the entire algorithm must be the same as the value by which it
is decreased again. As this happens for the non-saturating PUSH-operations,
we obtain an upper bound of (2|V |−1)(|V ||E|+ |V |−2) for the total number
of non-saturating PUSH-operations. Now the bound in the assertion follows
easily, using that G is connected. ��

The preceding lemmas combine to give the desired result:
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Theorem 6.6.11. Algorithm 6.6.1 terminates after at most O(|V |2|E|) ad-
missible operations (with a maximal flow). ��

The precise complexity of Algorithm 6.6.1 depends both on the way the
admissible operations are implemented and on the order in which they are
applied in the while-loop. In any case, the running time will be polynomial.
We shall treat two variants which lead to particularly good results; they differ
only in the manner in which they select the active vertex in step (10). Both
variants use the obvious strategy not to change the active vertex v unneces-
sarily, but to stick with v until

• either e(v) = 0;
• or all edges incident with v have already been used for a PUSH(v, w), as

far as this is possible, and a RELABEL(v) has occurred afterwards.

To implement this strategy, we use incidence lists. For each vertex v, there
always is a distinguished current edge in its incidence list Av (which may
be implemented via a pointer). Initially, this edge is just the first edge of Av;
thus we assume Av to have a fixed order. In the following algorithm, the active
vertices are selected according to the rule first in first out – which explains
its name.

Algorithm 6.6.12 (FIFO preflow push algorithm). Let N = (G, c, s, t)
be a flow network, where G is a symmetric digraph given by incidence lists
Av. Moreover, Q denotes a queue and rel a Boolean variable.
Procedure FIFOFLOW(N ; f)

(1) for (v, w) ∈ (V \ {s})× (V \ {s}) do f(v, w) ← 0; rf (v, w) ← c(v, w) od;
(2) d(s) ← |V |; Q ← ∅;
(3) for v ∈ V \ {s} do
(4) f(s, v) ← c(s, v); rf (s, v) ← 0;
(5) f(v, s) ← −c(s, v); rf (v, s) ← c(v, s) + c(s, v);
(6) d(v) ← 0; e(v) ← c(s, v);
(7) make the first edge in Av the current edge;
(8) if e(v) > 0 and v �= t then append v to Q fi
(9) od

(10) while Q �= ∅ do
(11) remove the first vertex v from Q; rel ← false;
(12) repeat
(13) let vw be the current edge in Av;
(14) if rf (v, w) > 0 and d(v) = d(w) + 1
(15) then PUSH(N, f, v, w; f);
(16) if w /∈ Q and w �= s, t then append w to Q fi
(17) fi
(18) if e(v) > 0 then
(19) if vw is not the last edge in Av

(20) then choose the next edge in Av as current edge
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(21) else RELABEL(N, f, v, d; d); rel ← true;
(22) make the first edge in Av the current edge
(23) fi
(24) fi
(25) until e(v) = 0 or rel = true;
(26) if e(v) > 0 then append v to Q fi
(27) od

The reader may show that Algorithm 6.6.12 is indeed a special case of Algo-
rithm 6.6.1; this amounts to checking that RELABEL(v) is called only when
no PUSH along an edge starting in v is admissible. By Theorem 6.6.11, the
algorithm terminates with a maximal flow on N . The following result giving
its complexity is due to Goldberg and Tarjan [GoTa88].

Theorem 6.6.13. Algorithm 6.6.12 determines with complexity O(|V |3) a
maximal flow on N .

Proof. Obviously, the initialization phase in steps (1) to (9) has complexity
O(|E|). In order to analyze the complexity of the while-loop, we divide the
course of the algorithm into phases.9 Phase 1 consists of the execution of
the repeat-loop for those vertices which were originally appended to Q, that
is, when Q was initialized in step (8). If phase i is already defined, phase
i + 1 consists of the execution of the repeat-loop for those vertices which
were appended to Q during phase i. We claim that there are at most O(|V |2)
phases.

By Lemma 6.6.8, there are at most O(|V |2) phases involving a RELABEL.
It remains to establish the same bound for phases without a RELABEL. For
this purpose, we take the same approach as in the proof of Lemma 6.6.10:
we define a potential and investigate its development during the course of the
algorithm. This time, we let Φ be the maximum value of the labels d(v), taken
over all active vertices v. Let us consider how Φ changes during a phase not
involving any RELABEL-operations. Then, for each active vertex v, excess
flow is moved to vertices w with label d(v)− 1 until we finally reach e(v) = 0,
so that v ceases to be active. Of course, Φ cannot be increased by these
operations; and at the end of such a phase – when all originally active vertices
v have become inactive – Φ has actually decreased by at least one unit. Hence,
if Φ remains unchanged or increases during a phase, at least one RELABEL-
operation must occur during this phase; we already noted that there are at
most O(|V |2) phases of this type. As Φ = 0 holds at the beginning as well as
at the end of the algorithm, at most O(|V |2) decreases of Φ can occur. Hence
there are indeed at most O(|V |2) phases not involving a RELABEL.

We can now estimate the number of steps required for all PUSH-operations;
note that an individual PUSH needs only O(1) steps. Hence we want to show

9In the original literature, the phases are called passes over Q, which seems
somewhat misleading.
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that there are only O(|V |3) PUSH-operations. In view of Lemma 6.6.9, it suf-
fices to consider non-saturating PUSH-operations. Note that the repeat-loop
for a vertex v is aborted as soon as a non-saturating PUSH(v, w) occurs; see
step (25). Clearly, at most O(|V |) vertices v are investigated during a phase,
so that there are at most O(|V |) non-saturating PUSH-operations during each
phase. Now our result on the number of phases gives the assertion.

It remains to estimate how often each edge is examined during the while-
loop. Consider the edges starting in a specified vertex v. During a repeat-
loop involving v, the current edge e runs through (part of) the incidence
list Av of v. More precisely, the pointer is moved to the next edge whenever
treating e leaves v with flow excess e(v) > 0; and the pointer is returned
to the first edge only when a RELABEL(v) occurs. By Lemma 6.6.8, each
vertex v is relabeled at most 2|V | − 1 times, so that the incidence list Av

of v is examined only O(|V |) times during the entire algorithm. (Note that
this estimate also includes the complexity of the RELABEL-operations: each
RELABEL(v) also amounts to looking through all edges in Av.) Hence we
obtain altogether O(|V ||Av|) examinations of the edges starting in v; summing
this over all vertices shows that the edge examinations and the RELABEL-
operations only contribute O(|V ||E|) to the complexity of the algorithm. ��

Examples which show that the FIFO-algorithm might indeed need O(|V |3)
steps are provided in [ChMa89].

We now turn to our second variation of Algorithm 6.6.1. This time, we
always choose an active vertex which has the maximal label among all the ac-
tive vertices. To implement this strategy, we use a priority queue with priority
function d instead of an ordinary queue. This variant was likewise suggested
by Goldberg and Tarjan [GoTa88].

Algorithm 6.6.14 (highest label preflow push algorithm). Let N =
(G, c, s, t) be a flow network, where G is a symmetric digraph given by inci-
dence lists Av. Moreover, let Q be a priority queue with priority function d,
and rel a Boolean variable.
Procedure HLFLOW(N ; f)

(1) for (v, w) ∈ (V \ {s})× (V \ {s}) do f(v, w) ← 0; rf (v, w) ← c(v, w) od;
(2) d(s) ← |V |; Q ← ∅;
(3) for v ∈ V \ {s} do
(4) f(s, v) ← c(s, v); rf (s, v) ← 0;
(5) f(v, s) ← −c(s, v); rf (v, s) ← c(v, s) + c(s, v);
(6) d(v) ← 0; e(v) ← c(s, v);
(7) make the first edge in Av the current edge;
(8) if e(v) > 0 and v �= t then insert v into Q with priority d(v) fi;
(9) od

(10) while Q �= ∅ do
(11) remove a vertex v of highest priority d(v) from Q; rel ← false;
(12) repeat
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(13) let vw be the current edge in Av;
(14) if rf (v, w) > 0 and d(v) = d(w) + 1 then
(15) PUSH(N, f, v, w; f);
(16) if w /∈ Q and w �= s, t then insert w into Q

with priority d(w) fi
(17) fi
(18) if e(v) > 0 then
(19) if vw is not the last edge in Av

(20) then choose the next edge in Av as current edge;
(21) else RELABEL(N, f, v, d; d); rel ← true;
(22) make the first edge in Av the current edge;
(23) fi
(24) fi
(25) until e(v) = 0 or rel = true;
(26) if e(v) > 0 then insert v into Q with priority d(v) fi;
(27) od

Goldberg and Tarjan proved that Algorithm 6.6.14 has a complexity of at most
O(|V |3); this estimate was improved by Cheriyan and Maheshwari [ChMa89]
as follows.

Theorem 6.6.15. Algorithm 6.6.14 determines a maximal flow on N with
complexity O(|V |2|E|1/2).

Proof.10 As in the proof of Theorem 6.6.13, the main problem is to establish
the necessary bound for the number of non-saturating PUSH-operations; all
other estimates can be done as before. Note here that O(|V ||E|) – that is,
the bound for the saturating PUSH-operations provided by Lemma 6.6.9 – is
indeed dominated by O(|V |2|E|1/2).

As in the proof of Theorem 6.6.13, we divide the algorithm into phases;
but this time, a phase consists of all operations occurring between two con-
secutive RELABEL-operations. The length li of the i-th phase is defined as
the difference between the values of dmax at the beginning and at the end of
the phase, where dmax denotes the maximal label d(v) over all active vertices
v. Note that dmax decreases monotonically during a phase; immediately after
the end of the phase, when a RELABEL-operation is executed, dmax increases
again.

We claim that the sum of the lengths li over all the phases is at most
O(|V |2). To see this, it suffices to show that the increase of dmax during the
entire algorithm is at most O(|V |2). But this is an immediate consequence of
Lemma 6.6.7, since the label d(v) increases monotonically for each vertex v
and is always bounded by 2|V | − 1.

10As the proof of Theorem 6.6.15 is rather technical, the reader might decide to
skip it at first reading. However, it does involve a useful method, which we have not
seen before.
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The basic idea of the proof is to partition the non-saturating PUSH-
operations in a clever way. For this purpose, we call a non-saturating
PUSH(u, v)-operation special11 if it is the first PUSH-operation on the edge
uv following a RELABEL(u)-operation.

Now consider a non-saturating, nonspecial PUSH-operation PUSH(z, w).
We try to construct (in reverse order) a directed path Tw with end ver-
tex w which consists entirely of edges for which the last non-saturating
PUSH-operation executed was a nonspecial one. Suppose we have reached
a vertex u �= w, and let the last edge constructed for Tw be uv. Thus the
last PUSH(u, v) was a non-saturating nonspecial PUSH. Before this PUSH-
operation was executed, we had e(u) > 0. We want to consider the last PUSH-
operation PUSH(y, u) executed before this PUSH(u, v). It is possible that no
such PUSH-operation exists;12 then we simply end the construction of Tw

at the vertex u. We also terminate the construction of Tw at u if the last
PUSH(y, u) was saturating or special. Otherwise we replace u by y and con-
tinue in the same manner.

Note that our construction has to terminate provided that Tw is indeed
a path, which just amounts to showing that no cycle can occur during the
construction. But this is clear, as PUSH-operations may only move flow to-
wards vertices with lower labels; hence no cycle can arise, unless a RELABEL
occurred for one of the vertices that we have reached; and this is not possible
by our way of construction. We call the sequence of non-saturating PUSH-
operations corresponding to such a path Tw a trajectory with originating edge
xy, if xy is the unique edge encountered at the end of the construction of
Tw for which either a saturating or a special PUSH had been executed (so
that the construction was terminated at y); in the exceptional case mentioned
above, we consider the edge su to be the originating edge of Tw. By definition,
the originating edge is not a part of Tw: the trajectory starts at the head of
this edge.

We claim that the whole of the nonspecial non-saturating PUSH-operations
can be partitioned into such trajectories. Actually we require a somewhat
stronger statement later: two trajectories containing PUSH-operations on
edges which are current edges simultaneously (in different adjacency lists)
cannot have any vertices in common, with the exception of possible common
end vertices. We may assume w.l.o.g. that the two trajectories correspond
to paths Tw and Tw′ for which (at a certain point of the algorithm) both
e(w) > 0 and e(w′) > 0 hold. Let xy and x′y′ be the originating edges of the
two trajectories. Now suppose that u is a common vertex contained in both
trajectories, where u �= y, y′, w, w′. We may also choose u to be the last such
vertex. Let uv and uv′ be the edges occurring in Tw and Tw′ , respectively.
We may assume that PUSH(u, v) was executed before PUSH(u, v′); note that

11In the original paper, the term non-zeroing is used instead.
12Note that this case occurs if and only if the entire flow excess in u comes directly

from s, that is, if it was assigned to u during the initialization phase.
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v �= v′ by our choice of u. Then PUSH(u, v′) can only have been executed
after some flow excess was moved to u again by some PUSH(z, u)-operation.
Then the condition d(z) = d(u) + 1 must have been satisfied; this means that
there must have been a RELABEL(z)-operation executed before, since the
active vertex is always a vertex having a maximal label and u was already
active before z. Thus the PUSH(z, u)-operation was a special PUSH and the
construction of Tw′ should have been terminated at the vertex u with the
originating edge zu, contradicting the choice of u. Hence any two trajectories
are always disjoint, establishing our claim.

Let us call a trajectory short if it consists of at most K operations; here
K is a parameter whose value we will fix later in an optimal manner. As the
originating edge of any trajectory comes from a saturating or a special PUSH-
operation or – in the exceptional case – from the initialization of the preflow,
the number of short trajectories can be bounded by O(|V ||E|) as follows.
By Lemma 6.6.9, there are at most O(|V ||E|) saturating PUSH-operations.
Also, there are at most O(|V ||E|) special PUSH-operations, since there are
at most O(|V |) RELABEL-operations per vertex by Lemma 6.6.8 and since
a special PUSH(u, v) has to be preceded by a RELABEL(u). Hence all the
short trajectories together may contain at most O(K|V ||E|) non-saturating
PUSH-operations.

Now we have to examine the long trajectories, that is, those trajectories
which contain more than K operations. Recall that any two trajectories con-
taining PUSH-operations on edges which are current simultaneously cannot
contain any common vertices (excepting the end vertices). Hence, at any point
during the course of the algorithm, there are at most |V |/K long trajectories
which contain a PUSH-operation current at this point. In particular, there
are at most |V |/K long trajectories meeting a given phase of the algorithm.
By definition, no phase contains a RELABEL-operation, and PUSH(u, v) can
only be executed for d(u) = d(v)+1. Hence there can be only li non-saturating
PUSH-operations per trajectory in any given phase of length li, as li is the
difference between the values of dmax at the beginning and at the end of phase
i: if PUSH-operations have been executed on a path of length c during phase
i, the maximal label must have been decreased by c at least. As we already
know that the sum of all lengths li is O(|V |2), all the long trajectories together
may contain at most O(|V |3/K) non-saturating PUSH-operations.

Altogether, the entire algorithm uses at most O(K|V ||E|) + O(|V |3/K)
non-saturating PUSH-operations. Now we get the optimal bound on the com-
plexity by balancing these two terms, that is, by choosing K in such a way that
K|V ||E| = |V |3/K. This gives K = |V ||E|−q/2 and leads to the complexity
stated in the assertion. ��

Balancing techniques as in the proof above are very useful for analyzing
the complexity of algorithms. Cheriyan and Maheshwari have also shown that
the bound in Theorem 6.6.15 is best possible: there exist families of networks
for which Algorithm 6.6.14 indeed needs O(|V |2|E|1/2) steps. From a prac-
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tical point of view, Algorithm 6.6.14 is one of the best methods known for
determining maximal flows; see the empirical studies mentioned at the end of
Section 6.4.

Example 6.6.16. Let us apply Algorithm 6.6.14 to the flow network of Fig-
ure 6.2; compare Example 6.2.3. Where a choice has to be made, we use
alphabetical order, as usual. We summarize several operations in each figure,
namely at least one RELABEL-operation together with all PUSH-operations
following it (that is, together with the subsequent phase); sometimes we even
display two or three shorter phases in one figure. We will not draw pairs of
antiparallel edges: we include only those edges which carry a nonnegative flow,
in accordance with the intuitive interpretation discussed at the beginning of
this section; this simplifies the figures.

Moreover, we give the capacities in parentheses only in the first figure
(after the initialization phase). The numbers in the subsequent figures always
give the values as they are after the last operation executed. So the number
written on some edge e is the value f(e) of the current preflow f ; here all
new values coming from a saturating PUSH-operation are framed, whereas
all new values coming from a non-saturating PUSH-operation are circled.
Additionally, the vertices v are labelled with the pair (d(v), e(v)); that is, we
display the valid label and the flow excess in v. For the vertices s and t, only
the (never changing) valid label is given; by definition, these two vertices are
never active.

Below each figure, we also list the RELABEL- and PUSH-operations which
have occurred and the queue Q containing the active vertices as it looks after
all the operations have been executed. Note that the maximal flow constructed
by HLFLOW given in Figure 6.31 differs from the maximal flow of Figure 6.12:
the edge ct does not carry any flow, and the value of the flow on the edges cf
and ft is larger accordingly.

Exercise 6.6.17. Apply Algorithm 6.6.12 to the flow network of Figure 6.2
(with the usual convention about alphabetical order), and compare the num-
ber of RELABEL- and PUSH-operations necessary with the corresponding
numbers for Algorithm 6.6.14; see Example 6.6.16.

For a discussion of the implementation of various PUSH- and RELABEL-
algorithms, see [ChGo95].
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Fig. 6.24. Initialization: Q = (a, b, f)
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Fig. 6.29. RELABEL(b), PUSH(b, c), PUSH(c, f), RELABEL(e),
PUSH(e, f), Q = (e, f)
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Fig. 6.30. RELABEL(e), PUSH(e, c), PUSH(c, f), Q = (f)
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Fig. 6.31. RELABEL(f), PUSH(f, t), Q = ∅
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Combinatorial Applications

Everything flows.

Heraclitus

In this chapter, we use the theorems of Ford and Fulkerson about maximal
flows to prove some central results in combinatorics. In particular, transversal
theory can be developed from the theory of flows on networks; this approach
was first suggested in the book by Ford and Fulkerson [FoFu62] and is also
used in the survey [Jun86]. Compared with the usual approach [Mir71b] of
taking Philip Hall’s marriage theorem [Hal35] – which we will treat in Section
7.3 – as the starting point of transversal theory, this way of proceeding has a
distinct advantage: it also yields algorithms for explicit constructions. We shall
study disjoint paths in graphs, matchings in bipartite graphs, transversals, the
combinatorics of matrices, partitions of directed graphs, partially ordered sets,
parallelisms, and the supply and demand theorem.

7.1 Disjoint paths: Menger’s theorem

The theorems treated in this section are variations of one of the most widely
known results in graph theory, namely Menger’s theorem. All these theorems
deal with the number of disjoint paths joining two vertices of a graph or a
digraph. There are two possible definitions of what disjoint means here. Let
G be a graph and s and t two vertices of G. Then a set of paths in G with
start vertex s and end vertex t is called edge disjoint if no two of these paths
share an edge, and vertex disjoint if no two of the paths have a vertex other
than s and t in common. A subset A of E is called an edge separator for s
and t if each path from s to t contains some edge from A. Similarly, a subset
X of V \ {s, t} is called a vertex separator for s and t if each path from s to t
meets X in some vertex. If G is a digraph, we use the same terminology but
assume the paths in question to be directed. The following theorem – although
quite similar to the original theorem of Menger [Men27] – was published much
later; see [FoFu56] and [ElFS56]; we shall derive it from the max-flow min-cut
theorem.
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Theorem 7.1.1 (Menger’s theorem, edge version). Let G be a graph or
digraph, and let s and t be two vertices of G. Then the maximal number of
edge disjoint paths from s to t is equal to the minimal cardinality of an edge
separator for s and t.

Proof. First let G be a digraph. We may assume that t is accessible from s;
otherwise, the assertion is trivial. Let us consider the network N on G where
each edge has capacity c(e) = 1. Obviously, any k edge disjoint directed paths
from s to t yield a flow f of value k by putting f(e) = 1 if e occurs in one of
the paths, and f(e) = 0 otherwise. Hence the maximal value of a flow on N is
some integer k′ ≥ k. The proof of Theorem 6.1.5 shows that we can construct
an integral maximal flow by beginning with the zero flow and then using k′

augmenting paths of capacity 1. Note that these paths are not necessarily
directed, as backward edges might occur. Nevertheless, it is always possible
to find k′ augmenting paths without backward edges: suppose that e = uv
is a backward edge occurring in the path W ; then there has to exist a path
W ′ which was constructed before W and which contains e as a forward edge.
Thus the paths W and W ′ have the form

W = s
W1 v

e
u

W2 t

and

W ′ = s
W ′

1 u
e

v
W ′

2 t.

Now we may replace the paths W and W ′ by the paths W1W
′
2 and W ′

1W2 and
thus eliminate the edge e. We may assume that e is the backward edge which
occurred first; then W1, W ′

2 and W ′
1 contain forward edges only (whereas W2

might still contain backward edges). Repeating this construction as often as
necessary, we obtain k′ augmenting paths which consist of forward edges only,
that is, directed paths from s to t in G. Any two augmenting paths consisting
of forward edges have to be edge disjoint, as all edges have unit capacity. This
implies k′ ≤ k, and hence k = k′.

Thus the maximal number of edge disjoint paths from s to t in G is equal to
the maximal value of a flow on N and hence, by Theorem 6.1.6, to the capacity
of a minimal cut in N . It remains to show that the minimal cardinality of an
edge separator for s and t is equal to the capacity of a minimal cut in N .
Obviously, any cut (S, T ) in N yields an edge separator of cardinality c(S, T ):

A = {e ∈ E : e− ∈ S, e+ ∈ T}.
Conversely, let A be a given minimal edge separator for s and t. Denote the set
of those vertices v which are accessible from s by a directed path containing
no edges of A by SA, and put TA = V \ SA. Then (SA, TA) is a cut in N .
Looking at the definition of the sets SA and TA, it is clear that each edge e
with e− ∈ SA and e+ ∈ TA has to be contained in A. As A is minimal, A
consists of exactly these edges and is therefore induced by a cut. This proves
the theorem for the directed case.
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Now let G be a graph. We reduce this case to the directed case by consid-
ering the complete orientation

→
G of G. Obviously, a system of edge disjoint

paths in G induces a corresponding system of edge disjoint directed paths in
→
G. The converse also holds, provided that the edge disjoint directed paths in
→
G do not contain any pair of antiparallel edges. But such pairs of edges can
be eliminated, similar to the elimination of backward edges in the first part of
the proof. Now let k be the maximal number of edge disjoint directed paths
in G and hence also in

→
G. Then there exists an edge separator

→
A in

→
G of

cardinality k; the corresponding set of edges in G is an edge separator for s
and t in G of cardinality ≤ k. As the minimal cardinality of an edge separator
for s and t has to be at least as large as the maximal number of disjoint paths
from s to t, we obtain the assertion. ��

The proof of Theorem 7.1.1 shows that we may use the algorithm of Dinic
to construct a maximal 0-1-flow (of value k, say), and then find k edge dis-
joint paths from s to t by eliminating backward edges. The algorithm should
be modified for this task so that it immediately eliminates a backward edge
whenever such an edge occurs. The reader is asked to provide such a modifi-
cation and convince himself that this does not increase the complexity of the
algorithm. In view of Theorems 7.1.1 and 6.5.3, we get the following result.

Corollary 7.1.2. Let G be a (directed) graph and s and t two vertices of G.
Then the maximal number of (directed) edge disjoint paths from s to t (and a
system of such paths) can be determined with complexity O(|V |2/3|E|). ��
Exercise 7.1.3. Let N be any flow network. Show that one may construct
a maximal flow using augmenting paths which consist of forward edges only;
do so for the flow network of Example 6.2.3. Hint: Apply a method similar to
that used in the proof of Theorem 7.1.1.

Now we turn to vertex disjoint paths. The analogue of Theorem 7.1.1 is
the following well-known result due to Menger [Men27].

Theorem 7.1.4 (Menger’s theorem, vertex version). Let G be a graph
or digraph, and let s and t be any two non-adjacent vertices of G. Then the
maximal number of vertex disjoint paths from s to t is equal to the minimal
cardinality of a vertex separator for s and t.

Proof. We assume that G is a digraph; the undirected case can be treated in a
similar manner. In order to reduce the assertion to Theorem 7.1.1, we define
a new digraph G′ as follows. Loosely speaking, we split each vertex different
from s and t into two parts joined by an edge; this will result in transforming
vertex disjoint paths into edge disjoint paths.

Formally, the vertices of G′ are s, t, and, for each vertex v �= s, t of G, two
new vertices v′ and v′′. For every edge sv or vt in G, G′ contains the edge sv′

or v′′t, respectively; and for every edge uv in G, where u, v �= s, t, G′ contains
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the edge u′′v′. Finally, G′ also contains all edges of the form v′v′′, where v is
a vertex of G with v �= s, t. It is clear that vertex disjoint paths in G indeed
correspond to edge disjoint paths in G′.

By Theorem 7.1.1, the maximal number of edge disjoint paths from s to
t in G′ equals the minimal cardinality of an edge separator for s and t, say
A. Of course, A might contain edges not of the form v′v′′, in which case it
would not immediately correspond to a vertex separator in G. However, if
some edge u′′v′ occurs in A, we may replace it by u′u′′ and obtain again a
minimal edge separator. Hence we may restrict our considerations to minimal
edge separators in G′ which only contain edges of the form v′v′′ and therefore
correspond to vertex separators in G. ��
Corollary 7.1.5. Let G be a graph or digraph, and let s and t be any two
non-adjacent vertices of G. Then the maximal number of vertex disjoint paths
from s to t – and a system of such paths – can be determined with complexity
O(|V |1/2|E|).
Proof. We may assume w.l.o.g. that all vertices of G are accessible from s.
Then the digraph G′ constructed in the proof of Theorem 7.1.4 has O(|V |)
vertices and O(|E|) edges. The assertion follows in the same way as Corollary
7.1.2 did, taking into account that the network defined on G′ (with capacity
1 for all edges) satisfies the condition of Theorem 6.5.4. ��

The existence of disjoint paths plays an important role for questions of net-
work reliability : if there are k vertex disjoint paths from s to t, the connection
between s and t can still be maintained even if k−1 vertices fail, and similarly
for edges. Such considerations are important for computer networks, for ex-
ample.1 This suggests measuring the strength of connectivity of a connected
graph by the number of vertex disjoint paths (or edge disjoint paths) between
any two given vertices. Menger’s theorem leads to the following definition.

Definition 7.1.6. The connectivity κ(G) of a graph G = (V, E) is defined as
follows. If G is a complete graph Kn, then κ(G) = n − 1; otherwise

κ(G) = min {|T | : T ⊂ V and G \ T is not connected} .

G is called k-connected if κ(G) ≥ k.

We will consider questions of connectivity in Chapter 8 in detail; now we
just pose three exercises.

Exercise 7.1.7 (Whitney’s theorem). Show that a graph G is k-connec-
ted if and only if any two vertices of G are connected by at least k vertex
disjoint paths [Whi32a]. (Hint: Note that Menger’s theorem only applies to
non-adjacent vertices s and t.)

1For more on network reliability, we recommend [Col87].
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Exercise 7.1.8. Use Exercise 1.5.13 to show that a planar graph can be at
most 5-connected. Moreover, find a 4-connected planar graph on six vertices;
also, show that a 5-connected planar graph has at least 12 vertices, and give
an example on 12 vertices.

Exercise 7.1.9. Let S and T be two disjoint subsets of the vertex set V of
a graph G = (V, E). Show that the minimal cardinality of a vertex separator
X for S and T (that is, every path from some vertex in S to some vertex in
T has to contain some vertex in X) is equal to the maximal number of paths
from S to T such that no two of these paths have any vertex in common (not
even one of the end vertices!).

7.2 Matchings: König’s theorem

Recall that a matching in a graph G is a set M of edges no two of which
have a vertex in common. In this section, we consider matchings in bipartite
graphs only; the general case will be dealt with in Chapter 13. The following
result was already proved in Exercise 6.5.6.

Theorem 7.2.1. Let G be a bipartite graph. Then a matching of maximal
cardinality in G can be determined with complexity O(|V |5/2). ��

It is common usage to call a matching of maximal cardinality a maxi-
mal matching. This is really quite misleading, as the term maximal suggests
that such a matching cannot be extended to a larger matching; however, an
unextendable matching does not necessarily have maximal cardinality, as the
example in Figure 7.1 shows. Still, we will often accept such ambiguity, as this
unfortunate terminology is firmly established.

Fig. 7.1. A matching which cannot be extended

Exercise 7.2.2. Let G be an arbitrary (not necessarily bipartite) graph, and
denote the maximal cardinality of a matching in G by k. Find a lower bound
for the number of edges of an unextendable matching.

Note that Theorem 7.2.1 is a special case of Corollary 7.1.5. To see this,
let G = (S

.∪ T, E) be the given bipartite graph. We define a new graph H
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which has, in addition to the vertices of G, two new vertices s and t and
whose edges are the edges of G plus all edges sx for x ∈ S and all edges yt
for y ∈ T . Obviously, the edges of a matching M in G correspond to vertex
disjoint paths from s to t in H: associate the path s x y t with the
edge xy in G, where x ∈ S and y ∈ T . Of course, for determining a maximal
matching in practice, we should not use Corollary 7.1.5 (and the graphs used
there) but work with H itself as described in the solution to Exercise 6.5.6.

Let us apply Theorem 7.1.4 to the graph H just defined and interpret this
result within G. As noted above, vertex disjoint paths in H correspond to
matchings in G. Also, a vertex separator for s and t in H is a set X of vertices
in G such that each edge of G has at least one of its end vertices in X; that
is, X is a vertex cover for G. It is usual to denote the maximal cardinality
of a matching by α′(G), and the minimal cardinality of a vertex cover by
β(G). Using this notation, Theorem 7.1.4 immediately implies the following
major result [Koe31, Ege31]: α′(G) = β(G).2 We shall provide a second proof
taken from [Riz00] which does not rely on Menger’s theorem and, hence, on
the theory of network flows; this also provides a nice illustration for a further
important method in discrete mathematics: proof by minimal counterexample.

Theorem 7.2.3 (König’s theorem). Let G be bipartite graph. Then the
maximal cardinality of a matching in G equals the minimal cardinality of a
vertex cover: α′(G) = β(G).

Proof. By definition, no vertex can be incident with more than one edge in a
given matching. Hence one direction of the assertion is obvious: α′(G) ≤ β(G).
Thus we only need to prove the reverse inequality.

Now let us assume to the contrary that α′(G) < β(G). Among all bipar-
tite graphs violating the theorem, we choose G = (S

.∪ T, E) as a minimal
counterexample: G has the smallest possible number of vertices, say n; and
among all counterexamples on n vertices, G also has the minimal number of
edges. Then G is connected. Also, G cannot be a cycle or a path, since bipar-
tite graphs of this type clearly satisfy the theorem. Hence we may choose a
vertex u with deg u ≥ 3. Let v be adjacent to u, and consider the graph G\ v.
Since G was chosen as a minimal counterexample, G \ v satisfies the theorem:
α′(G \ v) = β(G \ v).

Now assume α′(G \ v) < α′(G). Then we may adjoin v to a vertex cover
W of G \ v with cardinality α′(G \ v) to obtain a vertex cover for G. This
implies β(G) ≤ α′(G \ v) + 1 ≤ α′(G), and G satisfies the theorem after all, a
contradiction.

Hence we must have α′(G \ v) = α′(G). Then there exists a maximal
matching M of G for which no edge in M is incident with v. In view of
deg u ≥ 3, we may choose an edge e /∈ M which is incident with u, but
not with v. Because of the minimality of G, the subgraph G \ e satisfies the

2Quite often, this result is stated in the language of matrices instead; see Theorem
7.4.1 below.
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theorem, and we obtain α′(G) = α′(G \ e) = β(G \ e). Let W ′ be a vertex
cover of G \ e with cardinality α′(G). As no edge in M is incident with v, we
must have v /∈ W ′. Hence W ′ has to contain the other end vertex u of the
edge uv �= e and is therefore actually a vertex cover for G. Again, G satisfies
the theorem after all; this final contradiction establishes the theorem. ��

Obviously, the maximal cardinality of a matching in a bipartite graph
G = (S

.∪ T, E) is bounded by min {|S|, |T |}. A matching of this cardinality is
called a complete matching. The following theorem due to Philip Hall [Hal35]
characterizes the bipartite graphs which admit a complete matching.3

Theorem 7.2.4. Let G = (S
.∪ T, E) be a bipartite graph with |S| ≥ |T |. For

J ⊂ T , let Γ (J) denote the set of all those vertices in S which are adjacent
to some vertex in J . Then G admits a complete matching if and only if the
following condition is satisfied:

(H) |Γ (J)| ≥ |J | for all J ⊂ T.

Proof. To see that condition (H) is necessary, let M be a complete matching
of G and J any subset of T . Denote the set of edges contained in M which are
incident with a vertex in J by E(J). Then the end vertices of the edges in E(J)
which are contained in S form a subset of cardinality |J | of Γ (J). Conversely,
suppose that condition (H) is satisfied and that the maximal cardinality of a
matching in G is less than |T |. Then Theorem 7.2.3 yields the existence of a
vertex cover X = S′ .∪ T ′ with S′ ⊂ S, T ′ ⊂ T , and |S′| + |T ′| < |T |. But
then the end vertices u of those edges uv for which v is one of the |T | − |T ′|
vertices in T \ T ′ are all contained in S′, so that

|Γ (T \ T ′)| ≤ |S′| < |T | − |T ′| = |T \ T ′|,
a contradiction. ��

For |S| = |T |, a complete matching is precisely a 1-factor of G; in this case,
we also speak of a perfect matching. An important consequence of Theorem
7.2.4 is the following sufficient condition for the existence of perfect matchings.
We need a further definition: a regular bipartite graph is a bipartite graph
G = (S

.∪ T, E) for which all vertices have the same degree �= 0. Note that
this implies |S| = |T |.
Corollary 7.2.5. Let G = (S

.∪ T, E) be a regular bipartite graph. Then G
has a perfect matching.

Proof. By Theorem 7.2.4, it is sufficient to show that G satisfies condition
(H). Let r be the degree of the vertices of G. If J is a k-subset of T , there are
exactly kr edges of the form st with t ∈ J and s ∈ S. As each vertex in S is
incident with exactly r edges, these kr edges have to be incident with at least
k distinct vertices in S. ��

3This theorem is likewise often stated in different language; see Theorem 7.3.1.
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Corollary 7.2.6. A bipartite graph G has a 1-factorization if and only if it
is regular.

Proof. Obviously, the regularity of G is necessary. Using induction, Corollary
7.2.5 shows that this condition is also sufficient. ��
Exercise 7.2.7. Show that an r-regular non-bipartite graph does not neces-
sarily admit a 1-factorization, even if it has an even number of vertices.

The following – somewhat surprising – application of Corollary 7.2.6 is due
to Petersen [Pet91].

Theorem 7.2.8. Every 2k-regular graph (where k �= 0) has a 2-factorization.

Proof. Let G be a 2k-regular graph and assume w.l.o.g. that G is connected.
By Theorem 1.3.1, G contains an Euler tour C. Let H be an orientation of G
such that C is a directed Euler tour for H. Now we define a regular bipartite
graph G′ as follows. For each vertex v of H, let G′ have two vertices v′ and
v′′; and for every edge uv of H, let G′ contain an edge u′v′′. Then G′ is k-
regular, and hence G′ has a 1-factorization, by Corollary 7.2.6. It is easy to
see that each 1-factor of G′ corresponds to a 2-factor of G, so that we get a
2-factorization for G. ��

We close this section with some exercises concerning factorizations.

Exercise 7.2.9. Let G be a graph on 3n vertices. A 2-factor of G is called a
triangle factor or a �-factor if it is the disjoint union of n cycles of length 3.
Show that it is possible to decompose the graph K6n into one �-factor and
6n − 3 1-factors. Hint: View the vertex set as the union of three sets R, S, T
of cardinality 2n each, and consider regular bipartite graphs on all pairs of
these sets. Furthermore, use Exercise 1.1.2.

�-factors are used in finite geometry; for example, Exercise 7.2.9 is used
in [JuLe87] for constructing certain linear spaces. The general problem of
decomposing K6n into c �-factors and d 1-factors was studied by Rees [Ree87].
It is always possible to decompose K6n into a 1-factor and 3n − 1 �-factors
yielding a so-called near-Kirkman triple system; see [BaWi77] and [HuMR82].

The most popular problem in this context is the case of Kirkman triple
systems, which are decompositions of K6n+3 into �-factors. The name comes
from a famous problem in recreational mathematics, namely Kirkman’s school
girl problem, which was posed in [Kir50] as follows:

Fifteen young ladies in a school walk out three abreast for seven days
in succession; it is required to arrange them daily, so that no two will
walk twice abreast.

If we represent the school girls by 15 vertices and join two of them by an edge
if they walk abreast, then a daily arrangement corresponds to a �-factor of
K15, and the seven �-factors for the seven days form a decomposition into
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�-factors. A solution of this problem is given in Figure 7.2, where only one
�-factor is drawn. The other �-factors in the decomposition are obtained by
rotating the given factor around the vertex ∞ so that the set {p0, . . . , p6} is
left invariant; there are seven ways to do so, including the identity mapping.
The general problem of decomposing the graph K6n+3 into �-factors was
only solved 120 years later by Ray-Chaudhuri and Wilson [RaWi71]; see also
[BeJL99], §IX.6.

∞

q3

p0

p3

q0

q2

p1

p2

q1

p4

q6

q4

p6

p5

q5

Fig. 7.2. A solution of Kirkman’s school girl problem

Exercise 7.2.10. Decompose the graph K9 into �-factors. Hint: There is no
cyclic decomposition as in Figure 7.2.

Exercise 7.2.11. Decompose the graph K6n−2 into 3-factors. Hint: Use The-
orem 7.2.8.

Readers interested in seeing more results on 1-factorizations and graph de-
compositions in general should consult the monographs [Bos90] and [Wal97].

7.3 Partial transversals: The marriage theorem

This section presents the basic theory of transversals. We begin with some
definitions. Let A = (A1, . . . , An) be a family of subsets of a (finite) set S.
Then any family (a1, . . . , an) with aj ∈ Aj for j = 1, . . . , n is called a system
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of representatives for A. If, in addition, ai �= aj holds whenever i �= j, then
(a1, . . . , an) is called a system of distinct representatives (SDR) for A, and
the underlying set {a1, . . . , an} is called a transversal of A.4

Let us construct a bipartite graph G with vertex set S
.∪ T , where T =

{1, . . . , n}, which has an edge st whenever s ∈ At. Then, for J ⊂ T , the set
Γ (J) defined in Theorem 7.2.4 is the union of all sets At with t ∈ J ; and a
perfect matching of G is the same as an SDR for A. Therefore Theorem 7.2.4
translates into the following result.

Theorem 7.3.1 (marriage theorem). Let A = (A1, . . . , An) be a family of
subsets of a finite set S. Then A has a transversal if and only if the following
condition is satisfied:

(H′)
∣∣∣⋃j∈J Aj

∣∣∣ ≥ |J | for all J ⊂ {1, . . . , n}. �

This theorem was proved by Philip Hall [Hal35] in terms of set families; as
explained above, this is equivalent to using the setting of bipartite graphs. The
name marriage theorem is due to the following interpretation of the theorem.
Let S be a set of girls, and view the index set T as a set of boys; the set At

is the set of girls which boy t would be willing to marry. Then the marriage
theorem gives a necessary and sufficient condition for the existence of an
arrangement of marriages so that each boy marries some girl of his choice. Of
course, the roles of boys and girls may be exchanged. For more symmetry, it
is also possible to assume |S| = |T | and to put only those girls into At who
are actually prepared to accept a proposal from boy t. Then the marriage
theorem gives us a criterion if all boys and girls may get a partner of their
choice. Thus condition (H′) can be put into everyday language as follows: if
nobody is too choosy, everybody can find someone!

The marriage theorem is often considered to be the root of transversal
theory, which then appears as a sequence of specializations and applications
of this theorem. In particular, the theorems of König, Menger, and Ford and
Fulkerson can all be derived from the marriage theorem. The book [Mir71b]
uses this approach; let us give two exercises in this direction.

Exercise 7.3.2. Give a direct proof for Theorem 7.3.1 using induction on n.
Hint: Use a case distinction depending on the existence of a critical subfamily
of A, that is, a subfamily (Aj)j∈J with |⋃j∈J Aj | = |J |.
Exercise 7.3.3. Derive Theorem 7.2.3 from Theorem 7.3.1.

4For an intuitive interpretation, we might think of the Ai as certain groups of
people who each send a representative ai into a committee. Then the SDR property
means that no committee member is allowed to represent more than one group, and
the transversal {a1, . . . , an} just is the committee. Another interpretation will be
given below, after Theorem 7.3.1.
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In the remainder of this section, we use the marriage theorem to prove
a small selection of further results from transversal theory. We need some
definitions first. An SDR for a subfamily (Aj)j∈J of A = (A1, . . . , An) is said
to be a partial SDR for A, and the underlying set {aj : j ∈ J} is called a partial
transversal. The marriage theorem only distinguishes between families of sets
having a transversal and those without transversals. A finer measure for the
representability of a family of sets is is the transversal index t(A); that is, the
maximal cardinality of a partial transversal of A. The deficiency of a partial
transversal of cardinality k is the number n − k; hence the transversal index
equals n minus the minimal deficiency of a partial transversal. The following
condition of [Ore55] for the existence of a partial transversal with a given
deficiency follows easily from the marriage theorem.

Theorem 7.3.4 (deficiency version of the marriage theorem). Let
A = (A1, . . . , An) be a family of subsets of a finite set S. Then A has a
partial transversal of cardinality k (that is, with deficiency d = n − k) if and
only if the following condition holds:∣∣∣ ⋃

j∈J

Aj

∣∣∣ ≥ |J | + k − n for all J ⊂ {1, . . . , n}. (7.1)

Proof. Let D be an arbitrary d-set disjoint from S, and define a family A′ =
(A′

1, . . . , A
′
n) of subsets of S∪D by putting A′

i = Ai∪D. By Theorem 7.3.1, A′

has a transversal if and only if it satisfies condition (H); that is, if and only if
(7.1) holds for A. Now every transversal T of A′ yields a partial transversal for
A of cardinality at least k, namely T \D. Conversely, each partial transversal
of cardinality k of A can be extended to a transversal of A′ by adding the
elements of D. ��
Corollary 7.3.5. The minimal deficiency of a partial transversal of A is

d(A) = max
{
|J | − ∣∣ ⋃

j∈J

Aj

∣∣ : J ⊂ {1, . . . , n}
}

,

and the transversal index is t(A) = n − d(A). ��
Exercise 7.3.6. Translate Corollary 7.3.5 into the language of bipartite
graphs.

Theorem 7.3.7. Let A = (A1, . . . , An) be a family of subsets of a finite set S.
Then a subset X of S is a partial transversal of A if and only if the following
condition holds:∣∣∣ ⋃

j∈J

Aj ∩ X
∣∣∣ ≥ |J | + |X| − n for all J ⊂ {1, . . . , n}. (7.2)
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Proof. Obviously, X is a partial transversal of A if and only if it is a partial
transversal of A′ = (Ai ∩ X)i=1,...,n; that is, if and only if A′ has a partial
transversal of cardinality |X|. this observation reduces the assertion to Theo-
rem 7.3.4. ��

The partial transversals characterized in the preceding theorem are the in-
dependent sets of a matroid, a result due to Edmonds and Fulkerson [EdFu65]:

Theorem 7.3.8. Let A = (A1, . . . , An) be a family of subsets of a finite set
S, and let S be the set of partial transversals of A. Then (S,S) is a matroid.

Proof. Consider the bipartite graph G corresponding to A as explained at the
beginning of this section. Then the partial transversals of A are precisely the
subsets of the form {e− : e ∈ M} of S, where M is a matching of G. Hence
the assertion reduces to Exercise 6.5.7. ��

The matroids described in Theorem 7.3.8 are called transversal matroids.
Theorems 7.3.8 and 5.2.6 together imply the following result; a constructive
proof for this result is given in the solution to Exercise 6.5.7.

Corollary 7.3.9. Let A be a family of subsets of a finite set S, and assume
that A has a transversal. Then every partial transversal of A can be extended
to a transversal. ��

Corollary 7.3.9 is generally attributed to Hoffmann and Kuhn [HoKu56].
Marshall Hall [Hal56] should also be mentioned in this context; he gave the
first algorithm for determining an SDR, and this algorithm yields a construc-
tive proof for Corollary 7.3.9. We note that the solution to Exercise 6.5.7 given
in the appendix yields a considerably simpler proof: Hall’s algorithm is much
harder to understand than the determination of a maximal partial SDR – that
is, more precisely, of a maximal matching in the corresponding bipartite graph
– using network flows. Moreover, Hall’s algorithm does not have polynomial
complexity.

Edmonds and Fulkerson also proved a more general version of Theorem
7.3.8 which uses matchings in arbitrary graphs for constructing matroids; we
will present this theorem in Section 13.5. The special case above suffices to
solve the following exercise:

Exercise 7.3.10. Let E = A1

.∪ . . .
.∪ Ak be a partition of a finite set E, and

let d1, . . . , dk be positive integers. Then (E,S) is a matroid, where

S = {X ⊂ E : |X ∩ Ai| ≤ di for i = 1, . . . , k} .

Matroids of this type are called partition matroids. If we choose E as the edge
set of a digraph G, Ai as the set of all edges with end vertex i, and di = 1
(i = 1, . . . , |V |), we get the head-partition matroid of Theorem 5.1.3.

The following strengthening of Corollary 7.3.9 is due to Mendelsohn and
Dulmage [MeDu58].
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Theorem 7.3.11. Let A = (A1, . . . , An) be a family of subsets of a finite set
S. In addition, let A′ be a subfamily of A and S′ a subset of S. Then the
following statements are equivalent:

(1) A′ has a transversal, and S′ is a partial transversal of A.
(2) There exist a subset S′′ of S containing S′ and a subfamily A′′ of A

containing A′ for which S′′ is a transversal of A′′.

Proof. Trivially, (1) follows from (2). So suppose that (1) holds. Write m = |S|
and assume A′ = (A1, . . . , Ak). Let D be an arbitrary set of cardinality n
which is disjoint to S, and consider the family B consisting of the sets

A1, . . . , Ak, Ak+1 ∪ D, . . . , An ∪ D and m times the set (S \ S′) ∪ D.

Now suppose that B has a transversal. As B consists of m + n subsets of the
set S∪D having m+n elements, this transversal has to be S∪D itself. Thus,
S is a transversal of a subfamily of B which contains all the sets A1, . . . , Ak,
some of the sets Ak+1 ∪D, . . . , An ∪D, and some copies of (S \S′)∪D. If we
delete all those elements representing copies of (S \S′)∪D from S, we obtain
a subset S′′ of S which contains S′ and is a transversal for a subfamily of A
containing A′.

It remains to show that the family B defined above satisfies condition (H′)
of the marriage theorem. This condition is∣∣∣∣∣∣(

⋃
j∈J

Aj) ∪ (
⋃

j∈K

Aj ∪ D) ∪ (
c⋃

i=1

(S \ S′) ∪ D)

∣∣∣∣∣∣ ≥ |J | + |K| + c (7.3)

for all J ⊂ {1, . . . , k}, K ⊂ {k + 1, . . . , n} and c ∈ {0, . . . , m}. First consider
the case c = 0. If K = ∅, (7.3) follows from condition (H′) for A′, which holds
as A′ has a transversal. If K �= ∅, the union on the left hand side contains the
n-set D, so that (7.3) is satisfied because of n ≥ |J | + |K|. Now let c �= 0; it
suffices to consider the case c = m. As D and S are disjoint, (7.3) becomes∣∣∣∣∣∣

⋃
j∈J

Aj ∪ (S \ S′)

∣∣∣∣∣∣ ≥ |J | + m − n for J ⊂ {1, . . . , n}. (7.4)

But ∣∣∣∣∣∣
⋃
j∈J

Aj ∪ (S \ S′)

∣∣∣∣∣∣ = m − |S′| +
∣∣∣∣∣∣(
⋃
j∈J

Aj) ∩ S′

∣∣∣∣∣∣ ,
so that (7.4) is equivalent to∣∣∣∣∣∣(

⋃
j∈J

Aj) ∩ S′

∣∣∣∣∣∣ ≥ |J | + |S′| − n.
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This condition holds by Theorem 7.3.7, as S′ is a partial transversal of A. ��
Now we translate Theorem 7.3.11 into the language of bipartite graphs,

where the symmetry of this result – between subsets of S and subfamilies of
A – becomes more obvious. Let M be a matching in a graph G = (V, E). We
say that M covers a subset X of V if each vertex in X is incident with some
edge of M . Then we have the following result equivalent to 7.3.11.

Corollary 7.3.12. Let G = (S
.∪ T, E) be a bipartite graph, S′ a subset of

S, and T ′ a subset of T . If there exists a matching in G covering S′ and one
covering T ′, then there also exists a matching covering S′ ∪ T ′.

Proof. Apply Theorem 7.3.11 to the family A = (At)t∈T of subsets of S which
corresponds to G. ��

An intuitive proof of Corollary 7.3.12 (as well as an interesting interpre-
tation of this result) can be found in [Law76], §5.4.

Exercise 7.3.13. Let A = (At)t∈T be a finite family of subsets of a finite set
S. Show that A induces a matroid on T as well.

The following result of [Hal35] is a further application of the marriage
theorem. It gives a criterion for the existence of a common system of repre-
sentatives for two families of sets.

Theorem 7.3.14. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two fam-
ilies of subsets of a finite set S. Then A and B have a common system of
representatives if and only if the following condition holds:∣∣∣{i : Bi ∩

( ⋃
j∈J

Aj

)
�= ∅

}∣∣∣ ≥ |J | for all J ⊂ {1, . . . , n}. (7.5)

Proof. A and B have a common system of representatives if and only if there
is a permutation π of {1, . . . , n} such that Ai ∩ Bπ(i) �= ∅ for i = 1, . . . , n.
Define the family C = (C1, . . . , Cn) by Cj := {i : Aj ∩ Bi �= ∅}; then the
condition above reduces to the existence of a transversal of C. It is easily seen
that condition (H′) for C is equivalent to (7.5), and thus the assertion follows
from Theorem 7.3.1. ��

The following two results of [vdW27] and [Mil10], respectively, are imme-
diate consequences of Theorem 7.3.14.

Corollary 7.3.15. Let M = A1

.∪ . . .
.∪ An = B1

.∪ . . .
.∪ Bn be two parti-

tions of a finite set M into subsets of cardinality k. Then (A1, . . . , An) and
(B1, . . . , Bn) have a common transversal. ��
Corollary 7.3.16. Let H be a subgroup of a finite group G. Then the families
of right and left cosets of H in G have a common system of representatives.

��
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We have proved Theorems 7.3.4, 7.3.7, 7.3.11, and 7.3.14 by applying the
marriage theorem to a suitable auxiliary family of sets. Thus, in some sense,
the marriage theorem is a self-strengthening result, as pointed out by Mirsky
[Mir69a]. A further result which can be proved in the same manner is left to
the reader as an exercise; see [HaVa50].

Exercise 7.3.17 (harem theorem). Let A = (A1, . . . , An) be a family
of subsets of a finite set S, and (p1, . . . , pn) a family of positive integers.
Show that a family of pairwise disjoint sets (X1, . . . , Xn) with Xi ⊂ Ai and
|Xi| = pi for i = 1, . . . , n exists if and only if the following condition holds:∣∣∣ ⋃

i∈J

Ai

∣∣∣ ≥
∑
i∈J

pi for all J ⊂ {1, . . . , n}.

We close this section with some remarks. Network flow theory can be used
to prove many more results about (partial) transversals and systems of repre-
sentatives; we refer to [FoFu58b, FoFu62]. In particular, it is possible to derive
a criterion for when two families of sets have a common transversal. However,
this result follows more easily from a generalization of the marriage theorem
to matroids due to Rado [Rad42], who gave a criterion for the existence of
transversals which are independent in the matroid. It turns out that the the-
ory of matroids is the natural structural setting for transversal theory; we
refer to the books [Mir71b, Wel76], to the survey [Mir69b], and to [MiPe67].

7.4 Combinatorics of matrices

This section treats some combinatorial theorems concerning matrices. We be-
gin by translating Theorem 7.2.3 into the language of matrices. Let A =
(aij)i=1,...,m; j=1,...,n be a matrix where a certain subset of the cells (i, j) is
marked as admissible – usually, the cells (i, j) with aij �= 0. A set C of cells is
called independent if no two cells of C lie in the same row or column of A. The
term rank or scatter number ρ(A) is the maximal cardinality of an indepen-
dent set of admissible cells of A. Corresponding to A, we construct a bipartite
graph G with vertex set S

.∪ T , where S = {1, . . . , m} and T = {1′, . . . , n′},
and where G contains an edge st′ if and only if the cell (s, t) is admissible.
Then the matchings of G correspond to the independent sets of admissible
cells of A; moreover, vertex covers of G correspond to those sets of rows and
columns which contain all the admissible cells. Hence Theorem 7.2.3 translates
into the following result.

Theorem 7.4.1. The term rank ρ(A) of a matrix A is equal to the minimal
number of rows and columns of A which contain all the admissible cells of
A. ��

From now on, we restrict our attention to square matrices. We want to
derive a criterion of Frobenius [Fro12] which tells us when all terms in the
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sum representation of the determinant of a matrix are equal to 0. Again, we
need some definitions. If A is an n× n matrix, any set of n independent cells
is called a diagonal. A diagonal is said to be a non-zero diagonal or a positive
diagonal if each of its cells has entry �= 0 or > 0, respectively. The width of an
r × s matrix is r + s. Now we mark the cells having entry �= 0 as admissible
and define a bipartite graph G corresponding to A, as before. Then a non-zero
diagonal of A corresponds to a perfect matching of G. We get the following
result equivalent to Theorem 7.2.4.

Lemma 7.4.2. Let A be a square matrix of order n. Then A has a non-zero
diagonal if and only if the non-zero entries in a set of k columns of A always
belong to at least k different rows. ��
Theorem 7.4.3. Let A be an n×n matrix. Then each diagonal of A contains
at least one entry 0 if and only if A has a zero submatrix of width n + 1.

Proof. By Lemma 7.4.2, every diagonal of A contains an entry 0 if and only if
there are k columns of A which have all their non-zero entries in r < k rows.
Then these k columns have entry 0 in the remaining n− r > n− k rows, and
we obtain a zero submatrix of width n − r + k ≥ n + 1. ��

Note that the diagonals of A correspond precisely to the terms in the sum
representation of the determinant of A, so that Theorem 7.4.3 gives the desired
criterion. Next, we consider an important class of matrices which always have
a positive diagonal. An n × n matrix with nonnegative real entries is called
doubly stochastic if the row sums and the column sums always equals 1. The
next three results are due to König [Koe16].

Lemma 7.4.4. Every doubly stochastic matrix has a positive diagonal.

Proof. For doubly stochastic matrices, a positive diagonal is the same as a
non-zero diagonal. Thus we may apply Lemma 7.4.2. Now suppose that all
non-zero entries of a given set of k columns belong to r < k rows. Denote the
matrix determined by these k columns and r rows by B. Then the sum of all
entries of B is = k (when added by columns) as well as ≤ r (when added by
rows), a contradiction. ��

We will see that there is a close relationship between doubly stochastic ma-
trices and permutation matrices, that is, square matrices which have exactly
one entry 1 in each row and column, and all other entries 0.

Theorem 7.4.5 (decomposition theorem). Let A be an n×n matrix with
nonnegative real entries for which all row sums and all column sums equal
some constant s. Then A is a linear combination of permutation matrices
with positive real coefficients.5

5A strong generalization of Theorem 7.4.5 is proved in [LeLL86].
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Proof. Dividing all entries of A by s yields a doubly stochastic matrix A′.
By Lemma 7.4.4, A′ (and hence A) has a positive diagonal D. Let P be the
permutation matrix corresponding to D (that is, P has entry 1 in the cells
of D), and let c be the minimum of the entries in D. Then B = A − cP is a
matrix with nonnegative real entries and constant row and column sums as
well. But B has at least one more entry 0 than A, so that the assertion follows
using induction. ��
Corollary 7.4.6 (König’s lemma). Let A be a square matrix with entries
0 and 1 for which all row sums and all column sums equal some constant k.
Then A is the sum of k permutation matrices.

Proof. The assertion follows immediately from the proof of Theorem 7.4.5: in
this case, we always have c = 1. ��

The preceding lemma – which the reader should compare with Corollary
7.2.5 – and some generalizations are important tools in finite geometry, more
precisely for the recursive construction of incidence structures; see for ex-
ample [Jun79b]. A further immediate consequence of Theorem 7.4.5 is the
following classical result due to Birkhoff [Bir46]. Recall that the convex hull
of vectors x1, . . . , xn in a real vector space is the set of all linear combinations
x1c1 + . . . + xncn with nonnegative coefficients ci satisfying c1 + . . . + cn = 1.

Theorem 7.4.7. The convex hull of the permutation matrices in R(n,n) is the
set of doubly stochastic matrices. ��

Further theorems from combinatorial matrix theory can be found in the
books [Mir71b] and [FoFu62]. Let us mention an interesting strengthening of
Lemma 7.4.4 without proof; see [MaMi65].

Result 7.4.8. Every doubly stochastic n×n matrix A has a diagonal for which
the product of its n entries is at least n−n. ��

The matrix with all entries 1/n shows that the bound of Result 7.4.8 is
best possible. Summing the products of the entries in D over all diagonals
D of a square matrix A gives the permanent per A.6 The van der Waerden
conjecture [vdW26] suggested a considerably stronger result than 7.4.8; this
conjecture remained open for more than fifty years until it was finally proved
independently by Egoritsjev and Falikman [Ego81, Fal81]. Proofs can also be
found in [Knu81], [Hal86], [Min88], and [vLiWi01].

Result 7.4.9 (van der Waerden conjecture). Every doubly stochastic
n × n matrix A satisfies per A ≥ n!/nn, with equality only for the matrix
with all entries 1/n. ��

6Note that this function differs from the determinant of A only by the signs of the
terms appearing in the sum. Although there exist efficient algorithms for computing
determinants, evaluating the permanent of a matrix is NP-hard by a celebrated
result of Valiant [Val79a].
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The permanent plays an important role in determining the number of
SDR’s of a family of sets, and in determining the number of complete match-
ings of a bipartite graph; see [Mir71b], [Hal86], and [Min78]. As an example,
let us note the following interesting application of Result 7.4.9.

Theorem 7.4.10. Let G be a k-regular bipartite graph with |S| = |T | = n.
Then G admits at least n!kn/nn different perfect matchings.

Proof. Let A be the 0-1-matrix corresponding to G; that is, aij = 1 if and
only if ij is an edge of G. Then the perfect matchings of G correspond to
the positive diagonals of A. As 1

kA is a doubly stochastic matrix, we have
per( 1

kA) ≥ n!/nn. Now each diagonal of 1
kA has product 0 or 1/kn, so that

there have to be at least n!kn/nn positive diagonals of A. ��
Theorem 7.4.10 and its generalizations (see Exercise 7.4.15) are interesting

tools in finite geometry; see [Jun79a, Jun79b]. Next we mention two important
optimization problems for matrices.

Example 7.4.11 (bottleneck assignment problem). Suppose we are
given an n × n matrix A = (aij) with nonnegative real entries. We want
to find a diagonal of A such that the minimum of its entries is maximal. A
possible interpretation of this abstract problem is as follows. We need to as-
sign workers to jobs at an assembly line; aij is a measure of the efficiency of
worker i when doing job j. Then the minimum of the entries in a diagonal D
is a measure for the efficiency arising from the assignment of workers to jobs
according to D.

Problem 7.4.11 can be solved using the above methods as follows. Start
with an arbitrary diagonal D whose minimal entry is m, say, and declare all
cells (i, j) with aij > m admissible. Obviously, there will be some diagonal
D′ with minimal entry m′ > m if and only if there is an admissible diagonal
for A. This can be checked with complexity O(|V |5/2) by determining the
cardinality of a maximal matching in the corresponding bipartite graph G.
Note that the problem will be solved after at most O(n2) such steps.7 The
following famous problem – which will be studied extensively in Chapter 14
– can be treated in a similar way.

Example 7.4.12 (assignment problem). Let A be a given square matrix
with nonnegative real entries. We require a diagonal of A for which the sum
of all its entries is maximal (or minimal). We could interpret this problem
again as finding an assignment of workers to jobs or machines (which are, this
time, independent of one another), where the entries of A give the value of the
goods produced (or the amount of time needed for a given number of goods
to be produced).

7This problem was generalized by Gabow and Tarjan, [GaTa88] who also gave
an algorithm with complexity O((|V | log |V |)1/2|E|). For our classical special case,
this yields a complexity of O((log |V |)1/2|V |5/2).
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As we will see in Chapter 14, the assignment problem can be solved with
complexity O(n3). The Hungarian algorithm of Kuhn [Kuh55], which is often
used for this task, is based on finding maximal matchings in appropriate
bipartite graphs. We close this section with a few exercises, some of which
are taken from [MaRe59], [Jun79a], and [FaMi60].

Exercise 7.4.13. Translate Corollary 7.4.6 into the terminology of bipartite
graphs.

Exercise 7.4.14. Let A be a doubly stochastic matrix of order n. Then A
has a diagonal whose entries have sum at least 1. Hint: Use Result 7.4.8 and
the inequality between the arithmetic mean and the geometric mean.

Exercise 7.4.15. Let A be an m × n 0-1-matrix having row sums tr and
column sums ≤ r. Then A is the sum of r matrices Ai having row sums t and
column sums ≤ 1. Hint: Use induction on r by determining an appropriate
transversal for the family of sets which contains t copies of each of the sets
Ti = {j ∈ {1, . . . , n} : aij = 1} for i = 1, . . . , m.

Exercise 7.4.16. Let A be a 0-1-matrix for which all row and columns sums
are at most r. Show that A is the sum of r 0-1-matrices for which all row and
columns sums are at most 1. Hint: Translate the claim into the language of
bipartite graphs and use Corollary 7.3.12 for a proof by induction.

Exercise 7.4.17. Show that the subspace of R(n,n) generated by the permu-
tation matrices has dimension n2 − 2n + 2; see Theorem 7.4.7.

7.5 Dissections: Dilworth’s theorem

In this section we deal with decomposition theorems for directed graphs and
partially ordered sets. Again, we begin with a definition. Let G be a graph
or a digraph. A subset X of the vertex set of G is called independent or
stable if no two vertices in X are adjacent; cf. Exercise 2.8.3. The maximal
cardinality α(G) of an independent set of G is called the independence number
of G.8 Obviously, the complement of an independent set is a vertex cover; this
implies the following lemma.

Lemma 7.5.1. Let G be a graph or a digraph. Then α(G) + β(G) = |V |. ��
For the remainder of this section, let G = (V, E) be a digraph. A dissection

of G is a set of directed paths in G such that the sets of vertices on these paths
form a partition of the vertex set V . One denotes the minimal possible number
of paths contained in a dissection by ∆(G). We have the following major result
due to Dilworth [Dil50].

8Note that independent sets are the vertex analogue of matchings, which may
be viewed as independent sets of edges; hence the notation α′(G) in Section 7.2 for
the maximal cardinality of a matching.
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Theorem 7.5.2. Let G be a transitive acyclic digraph. Then the maximal
cardinality of an independent set equals the minimal number of paths in a
dissection: α(G) = ∆(G).

Proof. Since G is transitive, a directed path can meet an independent set in
at most one vertex, and hence α(G) ≤ ∆(G). We shall reduce the reverse
inequality to Theorem 7.2.3, an approach introduced in [Ful56]. To this end,
we replace each vertex v of G by two vertices v′, v′′ and construct a bipartite
graph H with vertex set V ′ .∪ V ′′, where H contains the edge v′w′′ if and only
if vw is an edge of G.

Let M = {v′iw′′
i : i = 1, . . . , k} be any matching of cardinality k of H; we

claim that M can be used to construct a dissection of G into n − k paths,
where n = |V |. Note that v1w1, . . . , vkwk are edges of G, and that all vertices
v1, . . . , vk as well as all vertices w1, . . . , wk are distinct. However, vi = wj is
possible; in this case, we may join the paths viwi and vjwj to form a larger
path vj wj = vi wi. By continuing in this manner (that is, joining paths
having the same start or end vertex), we finally obtain c paths whose vertex
sets are pairwise disjoint. Suppose these paths have lengths x1, . . . , xc. The
remaining n − ((x1 + 1) + . . . + (xc + 1)) vertices are then partitioned into
trivial paths of length 0. Altogether, this yields the desired dissection of G
into n − (x1 + . . . + xc) = n − k paths.

In particular, we may choose M as a maximal matching of H, that is,
k = α′(H). By Theorem 7.2.3, α′(H) = β(H); obviously, β(H) ≥ β(G); and
by Lemma 7.5.1, α(G) = n − β(G). Hence G can be dissected into

n − α′(H) = n − β(H) ≤ n − β(G) = α(G)

paths, proving ∆(G) ≤ α(G). ��
Dilworth proved Theorem 7.5.2 in the setting of partially ordered sets.

Thus let (M,�) be a poset and G the corresponding transitive acyclic digraph;
see Example 2.6.1. Then a directed path in G corresponds to a chain in (M,�);
that is, to a subset of M which is linearly ordered: for any two distinct ele-
ments a, b of the subset, a ≺ b or b ≺ a. Similarly, an independent set in G
corresponds to an antichain of (M,�); that is, to a subset of M consisting of
incomparable elements: for any two distinct elements a, b of the subset, nei-
ther a ≺ b nor b ≺ a holds. Then Theorem 7.5.2 translates into the following
result stated by Dilworth.

Theorem 7.5.3 (Dilworth’s theorem). Let (M,�) be a partially ordered
set. Then the maximal cardinality of an antichain of M is equal to the minimal
number of chains into which M can be partitioned. ��

The parameter defined in Theorem 7.5.3 is called the Dilworth number of
(M,�). Before considering some consequences of Theorem 7.5.3, we return to
the proof of Theorem 7.5.2. Obviously, the inequality ∆(G) ≤ α(G) carries
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over to arbitrary acyclic digraphs.9 Gallai and Milgram [GaMi60] showed that
the graph does not even have to be acyclic for this inequality to hold; however,
there is no proof known for this result which uses flow networks or matchings.
We leave the proof to the reader as a more demanding exercise:

Exercise 7.5.4 (Gallai-Milgram theorem). Let G be an arbitrary di-
rected graph. Prove the inequality ∆(G) ≤ α(G). Hint: Consider a minimal
counterexample.

Fig. 7.3. A digraph with α = 4 and ∆ = 2

Exercise 7.5.5 (Redéi’s theorem). A tournament is an orientation of a
complete graph.10 Prove that every tournament contains a Hamiltonian path.
This result is due to Redéi [Red34].

As promised above, we now derive some consequences of Theorem 7.5.3.

Corollary 7.5.6. Let (M,�) be a partially ordered set with at least rs + 1
elements. Then M contains a chain of cardinality r + 1 or an antichain of
cardinality s + 1.

Proof. If M does not contain an antichain of cardinality s+1, then M can be
partitioned into s chains by Theorem 7.5.3. At least one of these chains has
to contain at least r + 1 elements. ��

Corollary 7.5.6 yields a simple proof for the following result originally
proved by Erdős and Szekeres [ErSz35].

Theorem 7.5.7. Let (ai)i=1,...,n be a sequence of real numbers, and assume
n ≥ r2 + 1. Then there exists a monotonic subsequence of length r + 1.

9However, the reverse inequality does not hold for this more general case, as the
example in Figure 7.3 shows.

10The term tournament becomes clear by considering a competition where there
are no draws: for example, tennis. Assume that each of n players (or teams, as the
case may be) plays against every other one, and that the edge {i, j} is oriented as
ij if i wins against j. Then an orientation of Kn indeed represents the outcome of
a (complete) tournament.
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Proof. Put M = {(i, ai) : i = 1, . . . , n} and define a partial ordering � on M
as follows:

(i, ai) � (j, aj) ⇐⇒ i ≤ j and ai ≤ aj .

Now suppose that M contains an antichain with r + 1 elements and let
i1 < i2 < . . . < ir+1 be the first coordinates of these elements. Then the
corresponding second coordinates form a strictly decreasing subsequence of
length r + 1. If there is no such antichain, M has to contain a chain of length
r +1, by Corollary 7.5.6; then the second coordinates form an increasing sub-
sequence of length r + 1. ��

The following well-known result due to Sperner [Spe28] has become the
starting-point for a large area of research concerning partially ordered sets:
Sperner Theory ; see the survey [GrKl78] as well as [Gri88] and the monograph
[Eng97]. We shall deduce this result by using Dilworth’s theorem.

Theorem 7.5.8 (Sperner’s lemma). Let the power set 2M of a finite set
M be partially ordered with respect to inclusion; then the maximal cardinality
of an antichain is N =

(
n

�n/2�
)
, where n = |M |.

Proof. Obviously, the subsets of cardinality �n/2� form an antichain of cardi-
nality N . To show that there is no antichain having more elements, consider
the digraph G with vertex set 2M corresponding to (2M ,⊆). By Theorem
7.5.2, it suffices to partition G into N directed paths. Note that the vertex set
of G is partitioned in a natural way into n + 1 sets, namely all subsets of M
having the same cardinality i for i = 0, . . . , n.

Consider the bipartite graph Gk induced by G on the subsets of M of
cardinality k or k + 1, where k = 0, . . . , n − 1. We claim that each of the Gk

has a complete matching; we may assume k + 1 ≤ n/2. Consider an arbitrary
collection of j k-subsets of M and note that these subsets are incident with
j(n−k) edges in Gk. As each (k+1)-subset is on exactly k+1 ≤ n/2 edges in
Gk, these j(n− k) edges have to be incident with at least j(n− k)/k + 1 ≥ j
distinct (k+1)-subsets. By Theorem 7.2.4, Gk indeed has a complete matching.
Finally, the edges of the complete matchings of the bipartite graphs Gk (k =
0, . . . , n − 1) can be joined to form the desired directed paths in G. ��

A further interesting application of Theorem 7.5.2 treating distributive
lattices is given in [Dil50]; we refer to [Aig97] for this so-called coding theorem
of Dilworth. We pose two more exercises; the first of these is due to Mirsky
[Mir71a].

Exercise 7.5.9. Let (M,�) be a partially ordered set. Show that the maximal
cardinality of a chain in (M,�) equals the minimal number of antichains into
which M can be partitioned. This result is dual to Dilworth’s theorem, but
its proof is much easier than the proof of Theorem 7.5.2. Hint: Consider the
set of maximal elements.

Exercise 7.5.10. Use Dilworth’s theorem to derive the marriage theorem.
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We remark that our proof of Theorem 7.5.2 is also interesting from an
algorithmic point of view, since it allows to calculate the Dilworth number
of G by determining a maximal matching in the bipartite graph H, because
of ∆ = n − α′(H). Thus Theorem 7.5.2 implies the following result (and its
translation to posets which we will leave to the reader).

Corollary 7.5.11. Let G = (M, E) be a transitive acyclic digraph. Then the
maximal cardinality of an independent set of vertices in G – that is, the min-
imal number of paths in a dissection of G – can be calculated with complexity
O(|M |5/2). ��

We note that the proof of the theorem of Gallai and Milgram given in the
solution for Exercise 7.5.4 is not applicable algorithmically. As this result is
stronger than Dilworth’s theorem, it would be interesting from the algorithmic
point of view to find an alternative proof using the theory of flows, or to reduce
the general case to the special case of acyclic digraphs. It is an open problem
whether or not such a proof exists.

7.6 Parallelisms: Baranyai’s theorem

This section contains an application of the integral flow theorem in finite
geometry, namely the theorem of Baranyai [Bar75]. Let X be a given finite
set of cardinality n; the elements of X will be called points. We denote the set
of all t-subsets of X by

(
X
t

)
. A parallelism of

(
X
t

)
is a partition of

(
X
t

)
whose

classes are themselves partitions of X; the classes are called parallel classes.
Note that a parallelism satisfies the usual Euclidean axiom for parallels: for
every point x ∈ X and for each t-subset Y of X, there is exactly one t-subset
Y ′ which is parallel to Y (that is, contained in the same parallel class as Y )
and contains x. Obviously, a parallelism can exist only if t is a divisor of n. It
was already conjectured by Sylvester that this condition is sufficient as well.
For t = 3, the conjecture was proved by Peltesohn [Pel36]; the general case
remained open until Baranyai’s work. His main idea was to use induction on
n; the crucial fact is that this approach requires dealing with an assertion
which is much stronger than Sylvester’s conjecture (which does not allow an
inductive proof), as we shall see later. In fact, Baranyai proved the following
result.

Theorem 7.6.1 (Baranyai’s theorem). Let X be a set with n elements,
and A = (aij)i=1,...,r;j=1,...,s a matrix over Z+

0 . Moreover, let t1, . . . , tr be
integers such that 0 ≤ ti ≤ n for i = 1, . . . , r. Then there exist subsets Aij

of the power set 2X of X with cardinality aij satisfying the following two
conditions:

(1) For each i, {Ai1, . . . , Ais} is a partition of
(
X
ti

)
.
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(2) For each j, A1j ∪ . . . ∪ Arj is a partition of X.

if and only if A satisfies the two conditions

(3) ai1 + . . . + ais =
(

n
ti

)
for i = 1, . . . , r,

(4) t1a1j + . . . trarj = n for j = 1, . . . , s.

Proof. Trivially, conditions (1) and (2) imply (3) and (4). So suppose con-
versely that (3) and (4) are satisfied; we have to construct appropriate sets
Aij . We do this using induction on n; the induction basis n = 1 is trivial. So
let n �= 1 and suppose the statement has already been proved for n − 1. We
sketch the idea of the proof first: suppose we have already found the desired
sets Aij . Then, removing some point x0 ∈ X from all subsets of X for each i

yields partitions of
(
X′

ti

)
and

(
X′

ti−1

)
, where X ′ := X \ {x0}. Note that x0 will

be removed, for fixed j, from exactly one of the Aij . We want to invert this
procedure, which is easier said than done.

Let us define a network N = (G, c, q, u) as follows: G has vertices q (the
source); u (the sink); x1, . . . , xr; and y1, . . . , ys. The edges of G are all the qxi,
with capacity c(qxi) =

(
n−1
ti−1

)
; all the yju, with capacity 1; and all the xiyj ,

with capacity 1 or 0 depending on whether aij �= 0 or aij = 0. Now let f be a
flow on N . Then f can have value at most c(y1u)+ . . .+ c(ysu) = s. We show
that a rational flow with this value exists. Note

c(qx1) + . . . + c(qxr) =
(

n − 1
t1 − 1

)
+ . . . +

(
n − 1
tr − 1

)
= s;

this follows from
s∑

j=1

(t1a1j + . . . + trarj) = ns =
r∑

i=1

ti

(
n

ti

)
= n

r∑
i=1

(
n − 1
ti − 1

)
,

which in turn is a consequence of (3) and (4). Now we define f by

f(qxi) =
(

n − 1
ti − 1

)
, f(yju) = 1 and f(xiyj) =

tiaij

n

for i = 1, . . . , r and j = 1, . . . , s. Condition (4) yields tiaij/n ≤ 1 = c(xiyj),
whenever aij �= 0. Moreover, if f really is a flow, it obviously has value w(f) =
s. It remains to check the validity of condition (F2) for f :

∑
e−=xi

f(e) =
s∑

j=1

f(xiyj) =
s∑

j=1

tiaij

n
=
(

n

ti

)
ti
n

=
(

n − 1
ti − 1

)
= f(qxi)

and ∑
e+=yj

f(e) =
r∑

i=1

f(xiyj) =
r∑

i=1

tiaij

n
= 1 = f(yju);
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these identities follow using (3) and (4), respectively. Summing up, f is indeed
a maximal flow on N . By Theorem 6.1.5, there also exists a maximal integral
flow f ′ on N ; such a flow obviously has to have the form

f ′(qxi) = f(qxi) =
(

n − 1
ti − 1

)
, f ′(yju) = f(yju) = 1, f ′(xiyj) =: eij ∈ {0, 1}

for i = 1, . . . , r and j = 1, . . . , s. Moreover, the eij have to satisfy the following
conditions which follow from (F2):

(5) ei1 + . . . + eis =
(

n−1
ti−1

)
for i = 1, . . . , r

and

(6) e1j + . . . + erj = 1 for j = 1, . . . s.

Now we put

t′i =

{
ti for i = 1, . . . r

ti−r − 1 for i = r + 1, . . . 2r

and

a′
ij =

{
aij − eij for i = 1, . . . , r

ei−r,j for i = r + 1, . . . 2r

for j = 1, . . . s. The condition 0 ≤ t′i ≤ n−1 holds except if ti = n or ti−r = 0.
But these two cases are trivial and may be excluded, as they correspond to
partitions of {X} and {∅}. Note a′

ij ≥ 0 for all i, j.
Now we use (5) and (6) to check that the t′i and the matrix A′ = (a′

ij)
satisfy conditions (3) and (4) with n − 1 instead of n:

a′
i1+. . .+a′

is = (ai1+. . .+ais)−(ei1+. . .+eis) =
(

n

ti

)
−
(

n − 1
ti − 1

)
=
(

n − 1
t′i

)

for i = 1, . . . r;

a′
i1 + . . . + a′

is = ei−r,1 + . . . + ei−r,s =
(

n − 1
ti−r − 1

)
=
(

n − 1
t′i

)

for i = r + 1, . . . 2r; and

a′
1jt

′
1 + . . . + a′

2r,jt
′
2r = ((a1j − e1j)t1 + . . . + (arj − erj)tr) +

+(e1j(t1 − 1) + . . . + erj(tr − 1))
= (a1jt1 + . . . + arjtr) − (e1j + . . . + erj) = n − 1

for j = 1, . . . , s. Hence the induction hypothesis guarantees the existence of
subsets A′

ij (for i = 1, . . . , 2r and j = 1, . . . , s) of 2X′
satisfying conditions

analogous to (1) and (2). For each j, exactly one of the sets A′
r+1,j , . . . , A

′
2r,j

is nonempty, because of (6). Then this subset contains exactly one (ti−1)-set,
say Xj . We put
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Aij =

{
A′

ij for eij = 0
A′

ij ∪ {Xj ∪ {x0}} for eij = 1

for i = 1, . . . , r and j = 1, . . . , s. It remains to show that these sets Aij satisfy
conditions (1) and (2). Trivially, Aij has cardinality aij . Moreover, for fixed
i, {Ai1, . . . , Ais} is a partition of

(
X
ti

)
. To see this, let Y be any ti-subset

of X. If Y does not contain x0, then Y occurs in exactly one of the sets
A′

ij . If Y contains x0, then Y ′ = Y \ {x0} occurs in exactly one of the sets
A′

r+1,j , . . . , A
′
2r,j , say in A′

i+r,j ; then Y occurs in Aij . Thus (1) holds. Finally,
for each j, the set A′

1j ∪ . . . ∪ A′
2r,j is a partition of X ′; and as x0 was added

to exactly one of these sets (namely to Xj), condition (2) has to be satisfied
as well. ��

If we choose r = 1, t1 = t, s =
(
n−1
t−1

)
, and a1j = n/t (for all j) in Theorem

7.6.1, we obtain the conjecture of Sylvester mentioned at the beginning of this
section.

Corollary 7.6.2 (Sylvester’s conjecture). Let X be an n-set and t a
positive integer. Then

(
X
t

)
has a parallelism if and only if t divides n. ��

The proof of Theorem 7.6.1 actually yields a method for constructing a
parallelism of

(
X
t

)
recursively. However, this approach would not be very effi-

cient because the number of rows of the matrix A doubles with each iteration,
so that the complexity is exponential. For t = 2, a parallelism is the same
as a 1-factorization of the complete graph on X; here Exercise 1.1.2 provides
an explicit solution. Beth [Bet74] gave parallelisms for t = 3 and appropri-
ate values of n (using finite fields); see also [BeJL99], §VIII.8. No such series
of parallelisms are known for larger values of t. The interesting monograph
[Cam76] about parallelisms of complete designs (those are exactly the paral-
lelisms defined here) should be mentioned in this context. Also, we remark
that in finite geometry, parallelisms are studied for several other kinds of in-
cidence structures, for example in Kirkman’s school girl problem (see Section
7.2); we refer the reader to [BeJL99].

7.7 Supply and demand: The Gale-Ryser theorem

In the final section of this chapter, we consider a further application of network
flow theory in optimization, namely the supply and demand problem.11 Let
(G, c) be a network, and let X and Y be disjoint subsets of the vertex set V .
The elements x of X are considered to be sources, and the vertices y in Y are
interpreted as sinks. With each source x, we associate a supply a(x), and with
each sink y a demand d(y) – intuitively, we may think of companies producing
a certain product and customers who want to buy it. A feasible flow on (G, c)
is a mapping f : E → R+

0 satisfying the following conditions:

11A somewhat more general problem will be the subject of Chapter 11.
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(ZF 1) 0 ≤ f(e) ≤ c(e) for all e ∈ E;

(ZF 2)
∑

e−=x

f(e) − ∑
e+=x

f(e) ≤ a(x) for all x ∈ X;

(ZF 3)
∑

e+=y

f(e) − ∑
e−=y

f(e) = d(y) for all y ∈ Y ;

(ZF 4)
∑

e+=v

f(e) =
∑

e−=v

f(e) for all v ∈ V \ (X ∪ Y ).

Thus the amount of flow coming out of a source cannot be larger than the
corresponding supply a(x), and the amount of flow going into a sink has to
equal the corresponding demand d(y). For all other vertices (which are often
called intermediate nodes or transshipment nodes), the amount of flow going
into that vertex has to be the same as the amount of flow coming out of it;
this agrees with the flow conservation condition (F2). We have the following
result due to Gale [Gal57].

Theorem 7.7.1 (supply and demand theorem). For a given supply and
demand problem (G, c, X, Y, a, d), there exists a feasible flow if and only if the
following condition is satisfied:

c(S, T ) ≥
∑

y∈Y ∩T

d(y) −
∑

x∈X∩T

a(x) for each cut (S, T ) of G.12 (7.6)

Proof. We reduce the existence problem for feasible flows to usual network
flows. To this end, we add two new vertices to G, namely the source s and the
sink t; and we also add all edges sx (for x ∈ X) with capacity c(sx) = a(x),
and all edges yt (for y ∈ Y ) with capacity c(yt) = d(y). This yields a standard
flow network N . It is easy to see that the original problem admits a feasible
flow if and only if there exists a flow on N which saturates all edges yt; that
is, if and only if the maximal value of a flow on N equals the sum w of the
demands d(y). Using Theorem 6.1.6, this means that there exists a feasible
flow if and only if each cut in N has capacity at least w. Note that a cut in
N has the form (S ∪ {s}, T ∪ {t}), where (S, T ) is a cut in G. Hence we get
the condition

c(S ∪ {s}, T ∪ {t}) = c(S, T ) +
∑

x∈X∩T

a(x) +
∑

y∈Y ∩S

d(y) ≥
∑
y∈Y

d(y),

and the assertion follows. ��
Let us apply Theorem 7.7.1 to derive necessary and sufficient conditions

for the existence of a bipartite graph G with vertex set V = S
.∪ T and

given degree sequences (p1, . . . , pm) for the vertices in S, and (q1, . . . , qn) for
the vertices in T . We may assume q1 ≥ q2 ≥ . . . ≥ qn; we will see that this

12In contrast to our former definition, S = ∅ or T = ∅ are allowed here.
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assumption is quite helpful. An obvious necessary condition for the existence
of such a graph is p1 + . . . + pm = q1 + . . . + qn; however, this condition is not
sufficient.

Exercise 7.7.2. Show that there is no bipartite graph with degree sequences
(5, 4, 4, 2, 1) and (5, 4, 4, 2, 1).

The following theorem of Gale [Gal57] and Ryser [Rys57] gives the desired
criterion:

Theorem 7.7.3 (Gale-Ryser theorem). Let (p1, . . . , pm) and (q1, . . . , qn)
be two sequences of nonnegative integers satisfying the conditions

q1 ≥ q2 ≥ . . . ≥ qn and p1 + . . . + pm = q1 + . . . + qn.

Then there exists a bipartite graph G with vertex set V = X
.∪ Y and degree

sequences (p1, . . . , pm) on X and (q1, . . . , qn) on Y if and only if the following
condition holds:

m∑
i=1

min(pi, k) ≥
k∑

j=1

qj for k = 1, . . . , n. (7.7)

Proof. Let X = {x1, . . . , xm} and Y = {y1, . . . , yn}. We define a supply and
demand problem as follows. The network (G, c) contains all edges xiyj with
capacity c(xiyj) = 1. Moreover, with xi we associate the supply a(xi) = pi,
and with yj we associate the demand d(yj) = qj . Obviously, the existence of a
feasible flow for (G, c) is equivalent to the existence of a bipartite graph with
vertex set V = X

.∪ Y having the prescribed degree sequences: the edges with
non-zero flow in the network are precisely the edges of G. Thus we need to
check that condition (7.6) in Theorem 7.7.1 is equivalent to (7.7).

For each subset U of V , put U ′ = {i : xi ∈ U} and U ′′ = {j : yj ∈ U}.
Then c(S, T ) = |S′||T ′′|, where T := V \ S. First, suppose there exists a
feasible flow. Then (7.6) implies

|S′||T ′′| ≥
∑

j∈T ′′
qj −

∑
i∈T ′

pi for all S ⊂ V. (7.8)

Choosing S = {xi : pi > k} ∪ {yk+1, . . . , yn}, (7.8) becomes

k × ∣∣{i : pi > k}∣∣ ≥
k∑

j=1

qj −
∑
pi≤k

pi.

This implies (7.7) noting the following fact: for pi ≤ k, we have pi = min(pi, k);
and for pi > k, we have k = min(pi, k).

Conversely, suppose that condition (7.7) is satisfied, and let S be an arbi-
trary subset of V . Consider the cut (S, T ), where T = V \ S. With k = |T ′′|,
we get
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c(S, T ) =
∑
i∈S′

k ≥
∑
i∈S′

min(pi, k) ≥
k∑

j=1

qj −
∑
i∈T ′

min(pi, k)

≥
∑

j∈T ′′
qj −

∑
i∈T ′

pi =
∑

y∈Y ∩T

d(y) −
∑

x∈X∩T

a(x).

Thus (7.7) indeed implies (7.6). ��
Actually, Ryser stated and proved Theorem 7.7.3 in the language of 0-1-

matrices. With any bipartite graph G = (X
.∪ Y, E), we associate – as usual – a

matrix M = (mxy)x∈X,y∈Y , where mxy = 1 if xy ∈ E and mxy = 0 otherwise.
Conversely, each 0-1-matrix yields a bipartite graph. Then the degree sequence
on X corresponds to the sequence of row sums of M , and the degree sequence
on Y corresponds to the sequence of column sums of M . In this way, Theorem
7.7.3 translates into the following criterion for the existence of a 0-1-matrix
with given row and column sums.

Theorem 7.7.4. Let (p1, . . . , pm) and (q1, . . . , qn) be two sequences of non-
negative integers satisfying the conditions q1 ≥ q2 ≥ . . . ≥ qn and
q1 + . . . + qn = p1 + . . . + pm. Then there exists an m×n 0-1-matrix with row
sums (p1, . . . , pm) and column sums (q1, . . . , qn) if and only if condition (7.6)
in Theorem 7.7.3 holds. ��

A different proof of Theorems 7.7.3 and 7.7.4 using the methods of
transversal theory can be found in [Mir71b].

Exercise 7.7.5. Suppose we are given a supply and demand problem where
the functions c, a, and d are integral. If there exists a feasible flow, is there
an integral feasible flow as well?
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Connectivity and Depth First Search

How beautiful the world would be if there
were a rule for getting around in labyrinths.

Umberto Eco

We have already encountered the notions of connectivity, strong connectivity,
and k-connectivity; and we know an efficient method for determining the con-
nected components of a graph: breadth first search. In the present chapter, we
mainly treat algorithmic questions concerning k-connectivity and strong con-
nectivity. To this end, we introduce a further important strategy for searching
graphs and digraphs (besides BFS), namely depth first search. In addition, we
present various theoretical results, such as characterizations of 2-connected
graphs and of edge connectivity.

8.1 k-connected graphs

In Section 7.1, we defined the connectivity κ(G) of a graph and introduced k-
connected graphs. As Exercise 7.1.7 shows, these notions are intimately related
to the existence of vertex disjoint paths. This suggests a further definition:
for any two vertices s and t of a graph G, we denote by κ(s, t) the maximal
number of vertex disjoint paths from s to t in G. By Menger’s theorem, κ(s, t)
equals the minimal cardinality of a vertex separator for s and t whenever s
and t are non-adjacent. Using this notation, we may re-state the result in
Exercise 7.1.7 as follows.

Theorem 8.1.1 (Whitney’s theorem). A graph G is k-connected if and
only if κ(s, t) ≥ k for any two vertices s and t of G. Hence

κ(G) = min {κ(s, t) : s, t ∈ V } . (8.1)

Exercise 8.1.2. Show that a k-connected graph on n vertices contains at
least �kn/2� edges. (Note that this bound is tight; see [Har62].)

Exercise 8.1.3. Let G = (V, E) be a k-connected graph, T a k-subset of V ,
and s ∈ V \T . Show that there exists a set of k paths with start vertex s and
end vertex in T for which no two of these paths share a vertex other than s.
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We will soon present an algorithm which determines the connectivity of
a given graph. First we apply Exercise 8.1.3 to the existence problem for
Hamiltonian cycles; the following sufficient condition is due to Chvátal and
Erdös [ChEr72].

Theorem 8.1.4. Let G be a k-connected graph, where k ≥ 2. If G contains
no independent set of cardinality k + 1 – that is, if α(G) ≤ k – then G is
Hamiltonian.

Proof. As G is 2-connected, G has to contain cycles.1 Let C be a cycle of
maximal length m. Assume m ≤ k. Then G is also m-connected, and we can
apply Exercise 8.1.3 to the vertex set of C (as the set T ) and an arbitrary
vertex s /∈ T . Replacing one edge e = uv of C with the resulting vertex disjoint
paths from s to u and v, respectively, we obtain a cycle of length > m. This
contradiction shows m > k.

Now suppose that C is not a Hamiltonian cycle. Then there exists a vertex
s /∈ C. Again by Exercise 8.1.3, there exist k paths Wi (i = 1, . . . , k) with
start vertex s and end vertex ti on C which are pairwise disjoint except for s.
Moreover, we may assume that ti is the only vertex Wi has in common with
C. Now consider C as a directed cycle – the choice of the orientation does
not matter – and denote the successor of ti on C by ui. If s is adjacent to
one of the vertices ui, we may replace the edge tiui of C by the path from
ti to s followed by the edge sui. Again, this yields a cycle of length > m,
a contradiction. Hence s cannot be adjacent to any of the vertices ui. As
α(G) ≤ k, the (k +1)-set {s, u1, . . . , uk} cannot be independent, and hence G
contains an edge of the form uiuj . Then, by replacing the edges tiui and tjuj

of C by the edge uiuj and the paths from s to ti and from s to tj , we get a
cycle of length > m once again. This final contradiction shows that C has to
be a Hamiltonian cycle. ��
Corollary 8.1.5. Assume that the closure [G] of a graph G satisfies the con-
dition α([G]) ≤ κ([G]). Then G is Hamiltonian.

Proof. This follows immediately from Theorems 1.4.1 and 8.1.4. ��
Exercise 8.1.6. Show that Theorem 8.1.4 is best possible by constructing
(for each choice of κ(G)) a graph G with α(G) = κ(G) + 1 which is not
Hamiltonian.

Now we turn to the problem of efficiently determining the connectivity of
a given graph. By Theorem 8.1.1, it suffices to determine the maximal number
of vertex disjoint paths between any two vertices of G. Corollary 7.1.5 states
that this can be done with complexity O(|V |1/2|E|) for an arbitrary pair
of vertices, so that we have a total complexity of O(|V |5/2|E|). If G is not

1For the time being, we leave it to the reader to prove this claim; alternatively,
see Theorem 8.3.1.
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a complete graph, we actually need to examine only non-adjacent pairs of
vertices, as we will see in the proof of Theorem 8.1.9. We shall present a
simple algorithm due to Even and Tarjan [EvTa75] which achieves a slightly
better complexity.

Exercise 8.1.7. Design an algorithm for determining the maximal value of a
flow on a 0-1-network (MAX01FLOW); and an algorithm for calculating the
maximal number of vertex disjoint paths between two given vertices s and t in
a graph or digraph (PATHNR). Hint: Use the results of Sections 6.5 and 7.1.

Algorithm 8.1.8. Let G = (V, E) be a graph on n vertices. The algorithm
calculates the connectivity of G.
Procedure KAPPA(G;kappa)

(1) n ← |V |, k ← 0, y ← n − 1, S ← V ;
(2) repeat
(3) choose v ∈ S and remove v from S;
(4) for w ∈ S \ Av do PATHNR(G, v, w; x);

y ← min{y, x} od;
(5) k ← k + 1
(6) until k > y;
(7) kappa ← y
(8) fi

Theorem 8.1.9. Let G = (V, E) be a connected graph. Then Algorithm 8.1.8
calculates with complexity O(|V |1/2|E|2) the connectivity of G.

Proof. If G is a complete graph Kn, the algorithm terminates (after having
removed all n vertices) with kappa = y = n − 1. Now assume that G is not
complete. During the repeat-loop, vertices v1, v2, . . . , vk are chosen one by
one until the minimum γ of all values κ(vi, w) is less than k, where w runs
through the vertices which are not adjacent to vi; then k ≥ γ + 1 ≥ κ(G) + 1.
By definition, there exists a vertex separator T for G of cardinality κ(G). As
k ≥ κ(G)+ 1, there is at least one vertex vi /∈ T . Now G \T is not connected;
hence there exists a vertex v in G \ T so that each path from v to vi meets
the set T . In particular, vi and v cannot be adjacent; thus γ ≤ κ(vi, v) ≤
|T | = κ(G), so that γ = κ(G). This shows that the algorithm is correct.
The complexity is O(κ(G)|V |3/2|E|): during each of the κ(G) iterations of
the repeat-loop, the procedure PATHNR is called O(|V |) times, and each
of these calls has complexity O(|V |1/2|E|). Trivially, κ(G) ≤ deg v for each
vertex v. Using the equality

∑
v deg v = 2|E|, we get

κ(G) ≤ min{deg v : v ∈ V } ≤ 2|E|/|V |,
which yields the desired complexity O(|V |1/2|E|2). ��

As we have seen, it takes a considerable amount of work to determine the
exact value of κ(G). In practice, one is often satisfied with checking whether
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G is at least k-connected. For k = 1, this can be done with complexity O(|E|)
using BFS; see Section 3.3. For k = 2, we shall present an algorithm in Sec-
tion 8.3 which also has complexity O(|E|). Even for k = 3, it is possible
to achieve a complexity of O(|E|), albeit with considerably more effort; see
[HoTa73]. There is an algorithm having complexity O(k|V ||E|) provided that
k ≤ |V |1/2, see [Eve77, Eve79]; in particular, it is possible to check with
complexity O(|V ||E|) whether a graph is k-connected when k is fixed. This
problem is also treated in [Gal80] and in [LiLW88], where an unusual approach
is used. For the purpose of designing communication networks it is of inter-
est to find a k-connected subgraph of minimal weight in a directed complete
graph; for this problem, we refer to [BiBM90] and the references given there.

8.2 Depth first search

In this section we treat an important method for searching graphs and di-
graphs, which will be used repeatedly throughout the present chapter. Recall
that the BFS in Algorithm 3.3.1 examines a graph G in a breadth–first fashion:
vertices which have larger distance to the start vertex s are examined later
than those with smaller distance to s. In contrast, depth first search follows
paths as far as possible: from a vertex v already reached, we proceed to any
vertex w adjacent to v which was not yet visited; then we go on directly from
w to another vertex not yet reached etc., as long as this is possible. (If we
cannot go on, we backtrack just as much as necessary.) In this way, one con-
structs maximal paths starting at some initial vertex s. This idea seems to go
back to M. Tremaux who suggested it in 1882 as a method to traverse mazes;
see [Luc82] and [Tar95]. The following version is taken from the fundamental
paper by Tarjan [Tar72].

Algorithm 8.2.1 (depth first search, DFS). Let G = (V, E) be a graph
and s a vertex of G.
Procedure DFS(G, s; nr, p)

(1) for v ∈ V do nr(v) ← 0; p(v) ← 0 od;
(2) for e ∈ E do u(e) ← false od;
(3) i ← 1; v ← s; nr(s) ← 1;
(4) repeat
(5) while there exists w ∈ Av with u(vw) = false do
(6) choose some w ∈ Av with u(vw) = false; u(vw) ← true;
(7) if nr(w) = 0 then p(w) ← v; i ← i + 1; nr(w) ← i;

v ← w fi
(8) od;
(9) v ← p(v)

(10) until v = s and u(sw) = true for all w ∈ As
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The algorithm labels the vertices with numbers nr according to the order in
which they are reached; p(w) is the vertex from which w was accessed.

Theorem 8.2.2. Each edge in the connected component of s is used exactly
once in each direction during the execution of Algorithm 8.2.1. Hence Algo-
rithm 8.2.1 has complexity O(|E|) for connected graphs.

Proof. We may assume that G is connected. First, we give a more precise
meaning to the assertion by showing that the DFS constructs a walk in G
beginning in s. In step (6), an edge e = vw (where initially v = s) is used
to move from v to w; if nr(w) = 0, v is replaced by w. If nr(w) �= 0, e is
used immediately in the opposite direction to backtrack from w to v, and the
algorithm proceeds (if possible) with another edge incident with v which was
not yet used. If there is no such edge available – that is, if all edges incident
with v have been used at least once – the edge p(v)v which was used to reach
v from p(v) is traversed in the opposite direction to backtrack again, and v is
replaced by p(v). Thus the algorithm indeed constructs a walk in G.

Now we show that no edge can be used twice in the same direction so that
the walk is in fact a trail in

→
G. Suppose this claim is false; then there is an

edge e = vw which is used twice in the same direction. We may assume that e
is the first such edge and that e is used from v to w. As each edge is labelled
true in step (6) when it is used first, u(e) must have value true when e is used
the second time; hence this event occurs during an execution of step (9). But
then w = p(v), and all edges incident with v have to be labelled true already,
because of the condition in (5). Thus the walk must have left v at least deg v
times before e is used for the second time. This means that the walk must
have arrived at v at least deg v + 1 times; therefore some edge of the form uv
must have been used twice from u to v before, a contradiction.

The preceding considerations imply that the algorithm terminates. It re-
mains to show that each edge of G is used in both possible directions. Let S
be the set of all vertices v for which each edge incident with v is used in both
directions. When the algorithm terminates, it must have reached a vertex v
with p(v) = 0 for which there is no edge incident with v which is labelled with
false (because of (10)). This can only happen for v = s; moreover, all edges
incident with s must have been used to move from s to their other end vertex.
But then all these deg s edges must also have been used to reach s, since none
of them was used twice in the same direction. This means s ∈ S.

We now claim S = V . Suppose otherwise. As G is connected, there exist
edges connecting S to V \S. Let e = vw be the edge with v ∈ S and w ∈ V \S
which is used first during the algorithm. Note that every edge connecting
some vertex of S and some vertex of V \ S is used in both directions, by the
definition of S. As we reach vertex w for the first time when we use e from v
to w, nr(w) = 0 at that point of time. Then, in step (7), we set v = p(w), and
e is labelled true. Now we can only use e again according to step (9), that is,
from w to v. At that point, all edges incident with w must have been labelled
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true. As each edge incident with w can only be used at most once in each
direction, each of these edges must have been used in both directions, so that
w ∈ S, a contradiction. ��

Theorem 8.2.2 shows that depth first search is indeed a possible strategy
for finding the exit of a maze, provided that it is possible to label edges – that
is, paths in the maze – which have been used already; see Exercise 8.2.6. In the
next section, we shall use a refined version of DFS for studying 2-connected
graphs. Now we give a much simpler application.

Theorem 8.2.3. Let G be a connected graph and s a vertex of G. Determine
the function p by a call of DFS(G, s; nr, p). Then the digraph on V with edges
p(v)v is a spanning arborescence for G with root s.

Proof. Denote the digraph in question by T . As each vertex v of G is reached
for the first time during the DFS via the edge p(v)v, |T | is obviously connected.
More precisely, the sequence v = v0, v1, v2, . . . with vi+1 = p(vi) for vi �= s
yields a path from s to v in T . Thus s is a root of T . Moreover, T contains
exactly |V | − 1 edges (note that p(s) = 0 is not a vertex of G). Hence |T | is a
tree by Theorem 1.2.8. ��

Hence we may use either BFS (as in Chapter 3.3) or DFS to check with
complexity O(|E|) whether a given graph G is connected and – if this is the
case – to construct a spanning tree rooted at s.

The edges p(v)v contained in the spanning arborescence of Theorem 8.2.3
are called tree edges, whereas all other edges of G are called back edges; the
next result will explain this terminology. Let us call a vertex u in a directed
tree an ancestor of some other vertex v if there exists a directed path from
u to v in T ; similarly, u is a descendant of v if there is a directed path from
v to u.

Lemma 8.2.4. Let G be a connected graph, and let T be a spanning arbores-
cence of G determined by a call of DFS(G, s; nr, p). Moreover, let e = vu be
a back edge of G. Then u is an ancestor or a descendant of v in T .

Proof. We may assume nr(v) < nr(u); that is, during the DFS u is reached
after v. Note that all edges incident with v have to be traversed starting from
v and then labelled true (in step (5)) before the algorithm can backtrack from
v according to step (9); in particular, this holds for e. As u is not a direct
descendant of v (because otherwise v = p(u) so that e would be a tree edge),
u must have been labelled before e was examined. This means that u is an
indirect descendant of v. ��
Example 8.2.5. We consider the graph G of Figure 8.1 and perform a DFS
beginning at s. To make the algorithm deterministic, we choose the edges
in step (6) according to alphabetical order of their end vertices. Then the
vertices are reached in the following order: s, a, b, c, d, e, f, g. After that, the
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algorithm backtracks from g to f , to e, and then to d. Now h is reached and
the algorithm backtracks to d, c, b, a, and finally to s. The directed tree T
constructed by the DFS is shown in Figure 8.2.

In comparison, the BFS algorithm of Section 3.3 treats the vertices in
the order s, a, b, c, d, e, f, h, g; the corresponding tree T ′ was already given in
Figure 3.5. Note that the distance d(s, x) in T ′ is equal to the corresponding
distance in G, whereas this is not true in T : here vertex g has distance 7
from s (the maximal distance from s occurring in T ). This illustrates the
phenomenon that the DFS indeed tries to move as deeply into the graph as
possible.

s
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Fig. 8.1. A graph G
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Fig. 8.2. DFS tree for G

Exercise 8.2.6. Describe a way of associating a graph with a given maze
which allows us to find a path through the maze via a depth first search.
Apply this approach to the maze depicted in Figure 8.3. This task is somewhat
lengthy, but really instructive.
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Fig. 8.3. A maze

8.3 2-connected graphs

A cut point or articulation point of a graph G is a vertex v such that G \ v
has more connected components than G. According to Definition 7.1.6, a
connected graph with at least three vertices either contains a cut point or is
2-connected. A connected graph containing cut points is said to be separable.
The maximal induced subgraphs of a graph G which are not separable are
called the blocks or biconnected components of G.

Recall that the connected components of a graph form a partition of its
vertex set. The analogous statement for blocks does not hold in general. For
example, the graph given in Figure 8.1 has blocks {s, a, b, c, d, e, f, g} and
{d, h}. If c is a cut point of a connected graph G, then V \c can be partitioned
into sets V1

.∪ . . .
.∪ Vk such that two vertices a and b are in the same part of

the partition if and only if they are connected by a path not containing c. Thus
no block can contain vertices from more than one of the Vi; in particular, two
blocks intersect in at most one vertex, and this vertex has to be a cut point.
Let us mention another useful observation: every cycle has to be contained in
some block.
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We now give some conditions equivalent to 2-connectedness; these are due
to Whitney [Whi32b].

Theorem 8.3.1. Let G be a graph with at least three vertices and with no
isolated vertices. Then the following conditions are equivalent:

(1) G is 2-connected.
(2) For every pair vertices of G, there exists a cycle containing both of them.
(3) For each vertex v and for each edge e of G, there exists a cycle containing

both v and e.
(4) For every pair of edges of G, there exists a cycle containing both of them.
(5) For every pair of vertices {x, y} and for each edge e of G, there exists a

path from x to y containing e.
(6) For every triple of vertices (x, y, z) of G, there exists a path from x to y

containing z.
(7) For every triple of vertices (x, y, z) of G, there exists a path from x to y

not containing z.

Proof.
(1) ⇔ (2) : If G is 2-connected, Theorem 8.1.1 implies that any two vertices
are connected by two vertex disjoint paths; the union of these paths yields the
desired cycle containing both vertices. Conversely, a graph satisfying condition
(2) obviously cannot contain any cut points.
(1) ⇒ (3) : Let e = uw; we may assume v �= u, w. We subdivide e by a
new vertex x; that is, we replace e by the edges ux and xwto get a new graph
G′; compare Section 1.5. As G satisfies (2) as well, G′ cannot contain any cut
points, that is, G′ is likewise 2-connected. Hence G′ satisfies (2), and there is
a cycle containing v and x in G′; then the corresponding cycle in G has to
contain v and e.
(3) ⇒ (2) : Let u and v be two vertices of G. As G does not contain any
isolated vertices, there exists an edge e incident with u. If (3) holds, there
exists a cycle containing e and v; this cycle also contains u and v.
(1) ⇒ (4) : Similar to (1) ⇒ (3).
(4) ⇒ (2) : Similar to (3) ⇒ (2).
(1) ⇒ (5) : Let G′ be the graph we get by adding an edge e′ = xy to G (if
x and y are not adjacent in G in the first place). Obviously G′ is 2-connected
as well, so that (4) implies the existence of a cycle in G′ containing e and e′.
Removing e′ from this cycle yields the desired path in G.
(5) ⇒ (6) : Choose an edge e incident with z. By (5), there is a path from
x to y containing e – and then z as well, of course.
(6) ⇒ (7) : As (6) holds for any three vertices of G, there exists a path from
x to z containing y. The first part of this path (the part from x to y) is the
desired path.
(7) ⇒ (1) : If (7) holds, G can obviously not contain any cut points. ��
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Exercise 8.3.2. Let G be a connected graph with at least two vertices. Show
that G contains at least two vertices which are not cut points. Is this bound
tight?

Exercise 8.3.3. This exercise deals with some results due to Gallai [Gal64].
Given any graph G, we define the block-cutpoint graph bc(G) as follows. The
vertices of bc(G) are the blocks and the cut points of G; a block B and a cut
point c of G are adjacent in bc(G) if and only if c is contained in B. Show
that the following assertions hold.

(a) If G is connected, bc(G) is a tree.
(b) For each vertex v of G, let b(v) denote the number of blocks containing v.

Moreover, let b(G) be the number of blocks of G, and denote the number
of connected components of G by p. Then

b(G) = p +
∑

v

(b(v) − 1).

(c) For each block B, let c(B) be the number of cut points contained in B,
and let c(G) be the number of all cut points of G. Then

c(G) = p +
∑
B

(c(B) − 1).

(d) b(G) ≥ c(G) + 1.

Exercise 8.3.4. Let G be a connected graph with r cut points. Show that G
has at most

(
n−r

2

)
+ r edges, and construct a graph where this bound is tight

[Ram68]. Hint: Use the number k of blocks of G and part (d) of Exercise 8.3.3;
also, derive a formula for the sum of the cardinalities of the blocks from part
(b) of 8.3.3.

For the remainder of this section, let G = (V, E) be a connected graph.
Suppose we have constructed a spanning arborescence T for G with root s
by a call of DFS(G, s; nr, p); see Theorem 8.2.3. We will use the functions nr
and p for determining the cut points of G (and hence the blocks). We also
require a further function L (for low point) defined on V : for a given vertex v,
consider all vertices u which are accessible from v by a path (possibly empty)
which consists of a directed path in T followed by at most one back edge; then
L(v) is the minimum of the values nr(u) for all these vertices u.

Example 8.3.5. Let G be the graph of Example 8.2.5; see Figure 8.1. In
Figure 8.4, the vertices of G are labelled with the numbers they are assigned
during the DFS; the numbers in parentheses are the values of the function L.
The thick edges are the edges of the directed tree constructed by the DFS.

Note that the easiest way of computing the values L(i) is to begin with the
leaves of the tree; that is, to treat the vertices ordered according to decreasing
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DFS numbers. In Algorithm 8.3.8, we will see how the function L may be
calculated during the DFS. The following result of Tarjan [Tar72] shows why
this function is important.

1(1)

2(1)

3(1)

4(1)

5(2)

6(3)

7(5)

9(9)

8(6)

Fig. 8.4. Labels assigned during the DFS and function L

Lemma 8.3.6. Let G be a connected graph, s a vertex of G, and T the span-
ning arborescence of G determined by a call of DFS(G, s; nr, p). Moreover, let
u be a vertex of G distinct from s. Then u is a cut point if and only if there
is a tree edge e = uv satisfying L(v) ≥ nr(u), where L is the function defined
above.

Proof. First suppose that u is a cut point of G. Then there is a partition
V \ u = V1

.∪ . . .
.∪ Vk (where k ≥ 2) for which all paths connecting two

vertices in distinct components of the partition have to pass through u. We
may assume s ∈ V1. Let e be the first tree edge of the form e = uv traversed
during the DFS for which v /∈ V1 holds, say v ∈ V2. As there are no edges
connecting a vertex in V2 with a vertex in V \ (V2 ∪ {u}) and as all vertices
which are accessible from v by tree edges are again in V2 (and are therefore
reached at a later point of the algorithm than u), we conclude L(v) ≥ nr(u).

Conversely, let e = uv be a tree edge with L(v) ≥ nr(u). Denote the set
of all vertices on the path from s to u in T by S (including s, but not u), and
let T ′ be the part of T having root v; that is, T ′ consists of the descendants
of v. By Lemma 8.2.4, there cannot be an edge connecting a vertex of T ′ with
a vertex of V \ (S ∪ T ′ ∪ {u}). Moreover, there are no edges of the form xy
with x ∈ T ′ and y ∈ S: such an edge would be a back edge, implying the
contradiction L(v) ≤ nr(y) < nr(u) (because of the path from v to x in T ′

followed by the edge xy). Hence each path connecting a vertex in T ′ with a
vertex in S has to contain u, so that u is a cut point. ��
Lemma 8.3.7. Under the assumptions of Lemma 8.3.6, s is a cut point if
and only if s is on at least two tree edges.
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Proof. First, let s be a cut point and V1

.∪ . . .
.∪ Vk (with k ≥ 2) a partition of

V \s for which all paths connecting two vertices in distinct components of the
partition have to pass through s. Moreover, let e = sv be the first (tree) edge
traversed during the DFS; say v ∈ V1. Then no vertex outside V1 is accessible
from v in T , so that s has to be incident with at least one further tree edge.

Conversely, let sv and sw be tree edges, and let T ′ be the part of T which
has root v. By Lemma 8.2.4, there are no edges connecting a vertex of T ′ to a
vertex in V \ (T ′ ∪ {s}). As the set V \ (T ′ ∪ {s}) is nonempty by hypothesis
(it contains w), s is a cut point. ��

Obviously, the only cut point in Example 8.3.5 is the vertex 5, in agreement
with Lemmas 8.3.6 and 8.3.7. We now want to design a variant of Algorithm
8.2.1 which also computes the function L and determines both the cut points
and the blocks of G. Let us first consider how L could be calculated. We set
L(v) := nr(v) when v is reached for the first time. If v is a leaf of T , the
definition of L implies

L(v) = min {nr(u) : u = v or vu is a back edge in G} . (8.2)

Thus we replace L(v) by min {L(v), nr(u)} as soon as the algorithm uses a
back edge vu – that is, as soon as nr(u) �= 0 during the examination of vu
in step (6) or (7) of the DFS. When the algorithm backtracks from v to p(v)
in step (9), all back edges have been examined, so that L(v) has obtained its
correct value (8.2). Similarly, if v is not a leaf,

L(v) = min ({nr(u) : u = v or vu a back edge } ∪ {L(u) : vu ∈ T}) ; (8.3)

in this case, we have to replace L(v) by min {L(v), L(u)} as soon as a tree
edge vu is used for the second time, namely from u to v. Then the examination
of u is finished and L(u) has its correct value, as may be shown by induction.

Now we are in a position to state the algorithm of Tarjan [Tar72]. It will
be convenient to use a stack S for determining the blocks.2 The reader should
note that Algorithm 8.3.8 has precisely the same structure as the DFS in
Algorithm 8.2.1 and therefore also the same complexity O(|E|).
Algorithm 8.3.8. Let G be a connected graph and s a vertex of G. The
algorithm determines the set C of cut points of G and the blocks of G and,
thus, the number k of blocks of G).

Procedure BLOCKCUT(G, s; C, k)

(1) for v ∈ V do nr(v) ← 0; p(v) ← 0 od;

2Recall that a stack is a list where elements are appended at the end and removed
at the end as well (last in – first out), in contrast to a queue where elements are
appended at the end, but removed at the beginning (first in – first out). For a more
detailed discussion of these data structures (as well as for possible implementations),
we refer to [AhHU74, AhHU83] or to [CoLR90].
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(2) for e ∈ E do u(e) ← false od;
(3) i ← 1; v ← s; nr(s) ← 1; C ← ∅; k ← 0; L(s) ← 1;
(4) create a stack S with single element s;
(5) repeat
(6) while there exists w ∈ Av with u(vw) = false do
(7) choose some w ∈ Av with u(vw) = false; u(vw) ← true;
(8) if nr(w) = 0
(9) then p(w) ← v; i ← i + 1; nr(w) ← i;

L(w) ← i; append w to S; v ← w
(10) else L(v) ← min {L(v), nr(w)}
(11) fi
(12) od;
(13) if p(v) �= s
(14) then if L(v) < nr(p(v))
(15) then L(p(v)) ← min {L(p(v)), L(v)}
(16) else C ← C ∪ {p(v)}; k ← k + 1;
(17) create a list Bk containing all vertices of S up to v (including

v) and remove these vertices from S; append p(v) to Bk

(18) fi
(19) else if there exists w ∈ As with u(sw) = false then C ← C ∪ {s} fi;
(20) k ← k + 1; create a list Bk containing all vertices of S up to v

(including v) and remove these vertices from S; append s to Bk

(21) fi;
(22) v ← p(v)
(23) until p(v) = 0 and u(vw) = true for all w ∈ Av

Theorem 8.3.9. Algorithm 8.3.8 determines the cut points and the blocks of
a connected graph G with complexity O(|E|).
Proof. As in the original DFS, each edge is used exactly once in each direction
(see Theorem 8.2.2); moreover, for each edge a constant number of steps is
executed. Hence Algorithm 8.3.8 has complexity O(|E|). The considerations
above show that L(v) has the correct value given in (8.2) or (8.3), as soon as
the algorithm has finished examining v (because the condition in step (6) is
no longer satisfied). A formal proof of this fact may be given using induction
on nr(v) (in decreasing order). Note that the edge vw chosen in step (7) is a
back edge if and only if nr(w) �= 0 holds, and that the tree edge p(v)v is used
in step (15) for updating the value of L(p(v)) after L(v) has been determined
(unless this updating is redundant because of L(v) ≥ nr(p(v)) ≥ L(p(v))).

It remains to show that the cut points and the blocks are determined
correctly. After the algorithm has finished examining the vertex v (according
to the condition in (6)), it is checked in (14) or (19) whether p(v) is a cut point.
First suppose p(v) �= s. If the condition in (14) is satisfied, the (correct) value
of L(v) is used to update L(p(v)) (as explained above); otherwise, p(v) is a cut
point by Lemma 8.3.6. In this case, p(v) is added to the set C of cut points in
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step (16). The vertices in S up to v (including v) are descendants of v in T ,
where T is the arborescence determined by the DFS. Now these vertices are
not necessarily all the descendants of v: it is possible that descendants of cut
points were removed earlier; there might have been cut points among these
vertices. However, it can be shown by induction that no proper descendants
of such cut points are contained in S any more. (The induction basis – for
leaves of T – is clear.) Therefore, the set Bk in step (17) is indeed a block.

Next, suppose p(v) = s. If the condition in step (19) holds, s is a cut
point by Lemma 8.3.7. It can be shown as above that Bk is a block of G. In
particular, s is added to C if and only if not all the edges incident with s were
treated yet when p(v) = s occurred for the first time.

In both cases, v is replaced at this point by its predecessor p(v). By Lem-
mas 8.3.6 and 8.3.7, all cut points have been found when the algorithm ter-
minates (after all edges have been used in both directions). ��
Exercise 8.3.10. Execute Algorithm 8.3.8 for the graph displayed in Figure
8.5. If there are choices to be made, proceed in alphabetical order.

s b

a

c

d

f

e

g

h

i

l

j

k

Fig. 8.5. A connected graph G

8.4 Depth first search for digraphs

In this section we discuss how the DFS given in Algorithm 8.2.1 should be
performed for a digraph G. For this purpose, all edges vw are to be interpreted
as directed from v to w (for example, in step (5) of the algorithm). In every
other respect, the algorithm is executed as before, so that the only difference
compared to the undirected case is that edges with u(e) = false may be used
in one direction only, namely as forward edges.
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Even if G is connected, we will in general not reach all vertices of G. In
fact, DFS(G, s; nr, p) reaches exactly those vertices which are accessible from
s by a directed path. We shall often assume that these are all the vertices of
G; otherwise, DFS may be executed again for a vertex s′ not accessible from s,
etc. Basically, Theorem 8.2.2 remains valid: all those edges whose start vertex
is accessible from s are used exactly once in each direction. Edges of the form
p(v)v are again called tree edges. If all vertices of G are accessible from s,
the tree edges form a spanning arborescence of G with root s, as in Theorem
8.2.3; in the general case, we will obtain a directed spanning forest. All proofs
proceed in complete analogy to the corresponding proofs for the undirected
case given in Section 8.2, and will therefore be omitted. The following theorem
summarizes these considerations.

Theorem 8.4.1. Let G be a digraph and s a vertex of G. Moreover, let S
be the set of vertices of G which are accessible from s. Then DFS(G, s; nr, p)
reaches all the vertices of S and no other vertices (that is, nr(v) �= 0 if and only
if v ∈ S \ {s}); moreover, the tree edges p(v)v form a spanning arborescence
on S. The complexity of the algorithm is O(|E|). ��

In the undirected case, there were only tree edges and back edges (see
Lemma 8.2.4). For a digraph, we have to distinguish three kinds of edges
beside the tree edges:

(1) Forward edges: these are edges of the form e = vu such that u is a descen-
dant of v, but not v = p(u). In this case, we have nr(u) > nr(v).

(2) Back edges: these are edges of the form e = vu such that u is an ancestor
of v; here, nr(u) < nr(v).

(3) Cross edges: these are edges of the form e = vu such that u is neither an
ancestor nor a descendant of v. In particular, each edge connecting two
distinct directed trees (if not all vertices of G are accessible from s) is
a cross edge. Cross edges may also exist within a single directed tree; in
that case, we have nr(u) < nr(v).

Example 8.4.2. Let G be the digraph shown in Figure 8.6. Then a call of
DFS(G, a; nr, p) followed by DFS(G, f ; nr, p) yields the result drawn in Figure
8.7, where choices are made in alphabetical order (as usual). Tree edges are
drawn bold, cross edges broken, and all other edges are in normal print. The
only back edge is eb.

Exercise 8.4.3. Consider a digraph G = (V, E). Let u and v be two vertices
in a tree found by a call of DFS(G, s; nr, p), and assume nr(u) > nr(v) and
e = vu ∈ E. Show that e is indeed a forward edge.

Exercise 8.4.4. Let G = (V, E) be a digraph and T1, . . . , Tk a directed span-
ning forest partitioning V , found by repeated execution of DFS on G. Show
that G is acyclic if and only if G does not contain any back edges.
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Fig. 8.6. A digraph G
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Fig. 8.7. The result of a DFS on G

8.5 Strongly connected digraphs

In analogy with the notion of blocks in a graph, the vertex set S of any
maximal, strongly connected, induced subdigraph of a digraph G is called
a strong component of G. Thus each vertex in S has to be accessible from
each other vertex in S, and S is maximal with respect to this property. For
example, the vertices b, c, d, e of the digraph shown in Figure 8.6 form a strong
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component; the remaining strong components of this digraph are singletons.
Our first result collects some rather obvious equivalent conditions for strong
connectedness; the proof is left to the reader.

Theorem 8.5.1. Let G be a digraph with at least three vertices and with no
isolated vertices. Then the following conditions are equivalent.

(1) G is strongly connected.
(2) For each pair of vertices of G, there exists a directed closed walk containing

both of them.
(3) For each vertex v and for each edge e of G, there exists a directed closed

walk containing both v and e.
(4) For each pair of edges of G, there exists a directed closed walk containing

both of them.
(5) For each pair of vertices (x, y) and for each edge e of G, there exists a

directed walk from x to y containing e.
(6) For each triple of vertices (x, y, z), there exists a directed walk from x to

y containing z. ��
Exercise 8.5.2. The reader will have noticed that the properties stated in
Theorem 8.5.1 are similar to those given in Theorem 8.3.1 for 2-connected
graphs; however, it uses walks instead of cycles or paths. Show by giving
counterexamples that the analogous statement to (7) of Theorem 8.3.1 does
not hold, and that the conditions in Theorem 8.5.1 do not hold if we replace
closed walks and walks by cycles and paths, respectively.

Note that the underlying graph |G| of a strongly connected digraph G is
not necessarily 2-connected. On the other hand, a 2-connected graph cannot
contain any bridges and is therefore orientable by Theorem 1.6.2.

Exercise 8.5.3. Let G be a connected digraph. Show that G is strongly con-
nected if and only if every edge of G is contained in a directed cycle.

Our next aim is an algorithm for determining the strong components of
a digraph G. The algorithm which we will present is taken from the book of
Aho, Hopcroft and Ullman [AhHU83]; it consists of performing a DFS both
for G and for the digraph having opposite orientation3. A further algorithm
for this task was given by Tarjan [Tar72]; his algorithm requires to execute a
DFS only once, but needs – similar to Algorithm 8.3.8 – the function L(v).
Tarjan’s algorithm can also be found in the book [Eve79]. The basic concept
of the algorithm we give below is considerably simpler; as both methods lead
to the same complexity, we have chosen the simpler one. First we need to
modify the DFS algorithm slightly: we will require a second labelling Nr(v)
of the vertices, according to the order in which the examination of the vertices
is finished.

3This means replacing each edge uv of G by vu.
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Algorithm 8.5.4. Let G = (V, E) be a digraph and s a root of G.
Procedure DFSM(G, s; nr, Nr, p)

(1) for v ∈ V do nr(v) ← 0; Nr(v) ← 0; p(v) ← 0 od;
(2) for e ∈ E do u(e) ← false od;
(3) i ← 1; j ← 0; v ← s; nr(s) ← 1; Nr(s) ← |V |;
(4) repeat
(5) while there exists w ∈ Av with u(vw) = false do
(6) choose some w ∈ Av with u(vw) = false; u(vw) ← true;
(7) if nr(w) = 0 then p(w) ← v; i ← i + 1; nr(w) ← i;

v ← w fi
(8) od;
(9) j ← j + 1; Nr(v) ← j; v ← p(v)

(10) until v = s and u(sw) = true for each w ∈ As.

Using this procedure, we can write down the algorithm of Aho, Hopcroft
and Ullman for determining the strong components of G. We may assume
that each vertex of G is accessible from s.

Algorithm 8.5.5. Let G be a digraph and s a root of G. The algorithm
determines the strong components of G.
Procedure STRONGCOMP(G, s; k)

(1) DFSM(G, s; nr, Nr, p); k ← 0;
(2) let H be the digraph with the opposite orientation of G;
(3) repeat
(4) choose the vertex r in H for which Nr(r) is maximal;
(5) k ← k + 1; DFS(H, r; nr′, p′); Ck ← {v ∈ H : nr′(v) �= 0};
(6) remove all vertices in Ck and all the edges incident with them;4

(7) until the vertex set of H is empty

Theorem 8.5.6. Let G be a digraph with root s. Then Algorithm 8.5.5 cal-
culates with complexity O(|E|) the strong components C1, . . . , Ck of G.

Proof. The complexity of Algorithm 8.5.5 is clear. We have to show that the
directed forest on the vertex sets C1, . . . , Ck determined by the second DFS
during the repeat-loop indeed consists of the strong components of G.

Thus let v and w be two vertices in the same strong component of G. Then
there exist directed paths from v to w and from w to v in G, and hence also in
H as well. We may suppose that v is reached before w during the DFS on H.
Moreover, let Ti be the directed tree containing v, and x the root of Ti. As w
is accessible from v in H and was not examined before, w has to be contained
in Ti as well: Theorem 8.4.1 implies that w is reached during the execution of
the DFS with root x.

4Note that the resulting digraph is still denoted by H.
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Conversely, let v and w be two vertices contained in the same directed tree
Ti (on Ci). Again, let x be the root of Ti; we may suppose v �= x. As v is a
descendant of x in Ti, there exists a directed path from x to v in H and hence
a directed path from v to x in G. Now v was not yet examined when the DFS
on H with root x began, so that Nr(v) < Nr(x) because of (4). Thus the
examination of v was finished earlier than the examination of x during the
DFS on G; see step (9) in Algorithm 8.5.4. But as x is accessible from v in G,
v cannot have been reached earlier than x during the DFS on G. This means
that the entire examination of v was done during the examination of x, so
that v has to be a descendant of x in the spanning tree T for G. Hence there
also exists a directed path from x to v in G, and x and v are contained in the
same strong component. Similarly, w has to be contained in the same strong
component. ��
Example 8.5.7. We apply Algorithm 8.5.5 to the digraph G of Figure 8.6.
As a is not a root of G, we have to modify the algorithm slightly or apply it
twice (from a and from f). Figure 8.8 shows the digraph H and the result of
the DFS on G modified as in 8.5.4. All edges of H have orientation opposite
to the orientation they have in G; the numbers given are the values Nr(v)
calculated by calls of DFSM(G, a; nr, p) and DFSM(G, f ; nr, p). The cross
edges connecting the two directed trees are omitted. In Figure 8.9, the strong
components as determined by Algorithm 8.5.5 are drawn; to make the figures
simpler, we leave out all the edges connecting distinct strong components.
Note that a DFS on H using a different order of the start vertices – beginning
at e, for example – would yield an incorrect result.

a5
c 3

b 4

d 2

e 1

f6

g 3

h2

j5

i 1

k 4

Fig. 8.8. Directed graph H with Nr-labels
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Fig. 8.9. Result of the DFS on H and strong components

Exercise 8.5.8. Determine the strong components of the digraph displayed
in Figure 3.3.

Exercise 8.5.9. Let C1, . . . , Ck be the strong components of a digraph G.
We define a digraph G′, the condensation of G, as follows: the vertices of G′

are C1, . . . , Ck; CiCj is an edge of G′ if and only if there exists an edge uv in
G with u ∈ Ci and v ∈ Cj . Show that G′ is acyclic and determine G′ for the
digraph of Figure 3.3; compare Exercise 8.5.8.

Exercise 8.5.10. Give a definition of the term strongly k-connected for di-
graphs and investigate whether the main results of Section 8.1 carry over.

8.6 Edge connectivity

We finish this chapter by considering notions of connectivity which arise from
replacing vertex separators and vertex disjoint paths by edge separators and
edge disjoint paths, respectively. Let G be a graph or a digraph, and let u and
v be two distinct vertices of G. By λ(u, v) we denote the minimal cardinality of
an edge separator for u and v. By Theorem 7.1.1, λ(u, v) is also the maximal
number of edge disjoint paths (directed if G is a digraph) from u to v. The
edge connectivity λ(G) is defined as

λ(G) = min{λ(u, v) : u, v ∈ V }.
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G is called m-fold edge connected5 if λ(G) ≥ m. Moreover, δ(G) denotes the
minimal degree of a vertex of G if G is a graph, and the minimum of all din(v)
and all dout(v) if G is a digraph. We have the following simple result; see
[Whi32a].

Theorem 8.6.1. Let G be a graph or a digraph. Then κ(G) ≤ λ(G) ≤ δ(G).

Proof. We consider only the undirected case; the directed case is similar. Let
v be a vertex with deg v = δ(G). Removing all edges incident with v obviously
yields a disconnected graph, so that λ(G) ≤ δ(G). If λ(G) = 1, G contains a
bridge e = uv. Then G cannot be 2-connected, because removing u from G
yields either a K1 or a disconnected graph. If λ(G) = k ≥ 2, removing k − 1
edges e2, . . . , ek of an edge separator from G results in a graph H containing a
bridge e1 = uv. Therefore, if we remove from G one of the end vertices of each
of the ei distinct from u and v (for i = 2, . . . , k), we get either a disconnected
graph or a graph where e1 is a bridge (so that removing u makes the graph
disconnected). In either case, κ(G) ≤ k = λ(G). ��

The graph in Figure 8.10 shows that the inequalities of Theorem 8.6.1 may
be strict. This graph arises from a considerably more general construction
[ChHa68]:

Exercise 8.6.2. Fix integers k, d, and m with 0 < k ≤ m ≤ d. Find a graph
with κ(G) = k, λ(G) = m, and δ(G) = d. Hint: Distinguish the cases k = d
and k �= d.

Fig. 8.10. A graph with κ = 2, λ = 3, and δ = 4

Exercise 8.6.3. Let G be a graph with n vertices. Show λ(G) = δ(G) pro-
vided that δ(G) ≥ n/2. Is this bound tight? See [Cha66].

5Some authors use the terms line connectivity and line connected instead.
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The following lemma, due to Schnorr [Schn79], is useful for computing
λ(G) because it allows one to determine min {λ(u, v) : u, v ∈ V } by calculating
λ(u, v) for only a few pairs (u, v).

Lemma 8.6.4. Let G be a graph or a digraph with vertex set V = {v1, . . . , vn}.
Then, with vn+1 = v1:

λ(G) = min{λ(vi, vi+1) : i = 1, . . . , n}.

Proof. Let u and v be vertices of G satisfying λ(G) = λ(u, v), and let T be
an edge separator of cardinality λ(u, v) for u and v. Denote the set of all
vertices w for which there is a path (directed if G is a digraph) from u to w
not containing any edge of T by X; similarly, Y denotes the set of all vertices
w for which each path (directed if G is a digraph) from u to w contains some
edge from T . Then (X, Y ) is a cut of G, with u ∈ X and v ∈ Y . Now T is an
edge separator for x and y for each pair of vertices with x ∈ X and y ∈ Y :
otherwise, there would be a path from u to y not containing any edges from
T . Hence |T | = λ(G) ≤ λ(x, y) ≤ |T |; that is, λ(x, y) = λ(G). Obviously, there
has to exist an index i such that vi ∈ X and vi+1 ∈ Y ; then λ(G) = λ(vi, vi+1)
for this i. ��

The reader is invited to explore why an analogous argument for vertex
separators does not work. By Corollary 7.1.2, each λ(u, v) can be determined
with complexity O(|V |2/3|E|). Hence Lemma 8.6.4 immediately yields the
following result.

Theorem 8.6.5. The edge connectivity λ(G) of a graph or a digraph G can
be determined with complexity O(|V |5/3|E|). ��

With a little more effort, one may improve the complexity bound of The-
orem 8.6.5 to O(|V ||E|); see [Mat87] and [MaSc89]. Finally, we mention two
interesting results concerning edge connectivity; proofs can be found in [Eve79]
or in the original papers [Edm73] and [EvGT77].

Result 8.6.6. Let G be a digraph and u a vertex of G. Then there exist k
edge disjoint directed spanning trees of G with common root u, where k =
min{λ(u, v) : v �= u}. ��
Result 8.6.7. Let G be a digraph with λ(G) ≥ k. For each pair of vertices
vertices (u, v) and for every m with 0 ≤ m ≤ k, there are m directed paths
from u to v and k−m directed paths from v to u, all of which are edge disjoint.

��
We refer to [Bol78] for a treatment of extremal cases; a typical problem of

this sort is the determination of the structure of 2-connected graphs for which
removing any edge destroys the 2-connectedness.
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Colorings

More delicate than the historians’
are the map-makers’ colors.

Elizabeth Bishop

This chapter treats a subject occurring quite often in graph theory, namely
colorings. First, we explain the relationship between colorings and partial
orderings, and briefly discuss perfect graphs. Then we prove two major results,
namely the theorems of Brooks on vertex colorings and the theorem of Vizing
on edge colorings. Next, we consider edge colorings of Cayley graphs; these
are graphs which are defined using groups. Finally, we turn to map colorings:
we shall prove Heawood’s five color theorem and discuss the famous four color
theorem. Our discussion barely scratches the surface of the vast area; for a
detailed study of coloring problems we refer the reader to the monograph
[JeTo95].

9.1 Comparability graphs and interval graphs

We want to apply the results of Section 7.5 to two particularly interesting
classes of graphs. To this end, we associate an undirected graph with a given
partial ordering (whereas we used digraphs for this purpose in Section 7.5).
Let (M,�) be a partially ordered set. We define a graph G with vertex set
M by choosing all those sets {x, y} (where x �= y) as edges of G for which
x and y are comparable: x � y or y � x holds. Any such graph G is called
a comparability graph. Note that a graph G is a comparability graph if and
only if it has a transitive orientation. It it possible to check with complexity
O(|V |5/2) whether some given graph belongs to this class, and such a graph
can be oriented with complexity O(|V |2); see [Spi85].

We need some more definitions. A coloring of a graph G = (V, E) assigns
a color to each of its vertices so that adjacent vertices always have different
colors.1 More formally, we have a map c : V → C into some set C which

1Sometimes an arbitrary assignment of colors to the vertices is called a coloring.
Then colorings for which adjacent vertices always have different colors are called
admissible colorings.
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we interpret as the set of colors, and we require c(v) �= c(w) for every edge
vw ∈ E. The chromatic number χ(G) is the minimal number of colors needed
in a coloring of G.

Example 9.1.1. Obviously, a graph G has chromatic number 2 if and only
if its vertex set can be partitioned into two subsets S and T so that no edge
has both its end vertices in one of S or T . Thus the graphs G with χ(G) = 2
are precisely the (nonempty) bipartite graphs.

We continue with our definitions. The maximal cardinality of a clique in a
graph G = (V, E) is denoted by ω(G). The clique partition number θ(G) is the
minimal number of cliques in a partition of V into cliques. Let us note some
simple relations between the independence number α and the parameters ω,
θ, and χ of a graph G and its complementary graph G.

Lemma 9.1.2. Let G = (V, E) be a graph. Then:

χ(G) ≥ ω(G); α(G) ≤ θ(G); α(G) = ω(G); θ(G) = χ(G).

Proof. The first inequality holds, since the vertices of a clique obviously have
to have distinct colors. Similarly, the vertices of an independent set have to
be in distinct cliques, which yields the second inequality. Finally, independent
sets in G are precisely the cliques in G, and a coloring of G is equivalent to a
partition of V into independent sets. ��
Theorem 9.1.3. Let G be a comparability graph or the complement of such
a graph. Then α(G) = θ(G) and ω(G) = χ(G).

Proof. Let G be a comparability graph. Then the cliques in G are precisely the
chains of the corresponding partially ordered set (M,�), and the independent
sets in G are the antichains of (M,�). Hence Theorem 7.5.3 implies α(G) =
θ(G), and Exercise 7.5.9 yields ω(G) = χ(G). The assertion for G then follows
using Lemma 9.1.2. ��

Let us have a closer look at the complements of comparability graphs. Let
M1, . . . , Mn be intervals of real numbers, and G the graph on {1, . . . , n} whose
edges are precisely the sets {i, j} with Mi ∩ Mj �= ∅. Such a graph is called
an interval graph.

Lemma 9.1.4. Every interval graph is the complement of a comparability
graph.

Proof. Let M1, . . . , Mn be intervals of real numbers and G the corresponding
interval graph. We define a partial ordering � on {1, . . . , n} by

i ≺ j :⇐⇒ x < y for all x ∈ Mi and all y ∈ Mj .

The reader should check that this indeed yields a partial ordering. Obviously,
{i, j} is an edge in the comparability graph corresponding to � if and only if
Mi ∩ Mj = ∅; that is, iff {i, j} is not an edge of G. ��
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Exercise 9.1.5. Show that every interval graph is triangulated: each cycle
of length at least 4 has a chord, that is, an edge of G which connects two
non-consecutive vertices of the cycle.

Conversely, every triangulated graph whose complement is a compara-
bility graph has to be an interval graph; see [GiHo64]. Also, a graph G is
a comparability graph if and only if every closed trail (not necessarily a
cycle) (v0, v1, . . . , v2n, v2n+1 = v0) of odd length has a chord of the form
vivi+2; see [Gho62] and [GiHo64]. Proofs for these results can also be found
in [Ber73], Chapter 16; further characterizations are given in [Gal67]. The
paper [Fis85] contains more about interval graphs; algorithms for recognizing
interval graphs are in [BoLu76] and [KoMo89]; and applications in biology are
described in [MiRo84].

Corollary 9.1.6. Let G be an interval graph or the complement of such a
graph. Then α(G) = θ(G) and ω(G) = χ(G). ��
Example 9.1.7. One often encounters interval graphs in practical applica-
tions, where the intervals are time intervals needed for performing certain
tasks. A coloring of such a graph with as few colors as possible then corre-
sponds to an optimal assignment of the jobs to the minimum possible number
of workers (or teams). A coloring is given by a partition of the associated
comparability graph – the complement of the given interval graph – into as
few cliques as possible; that is, using the theorem of Dilworth, by a parti-
tion of the corresponding partial ordering into chains (compare the proof of
Lemma 9.1.4). As mentioned at the end of Section 7.5, such a partition can
be determined using a flow network. An explicit algorithm avoiding the use
of flows can be found in [FoFu62], §II.9.

Comparability graphs and interval graphs are special instances of a very
important class of graphs which we can only discuss briefly. A graph G is
called perfect if the condition α(H) = θ(H) holds for every induced subgraph
H of G. Equivalently, G is perfect if and only if every induced subgraph H
satisfies ω(H) = χ(H). The fact that these two conditions are equivalent
was first conjectured by Berge [Ber61] and finally proved by Lovász [Lov72];
see also [Gas96] for a considerably simpler proof. Alternatively, using Lemma
9.1.2, the result can also be formulated as follows:

Result 9.1.8 (perfect graph theorem). The complement of a perfect graph
is likewise perfect.

Obviously, an induced subgraph of a comparability graph is again a compa-
rability graph, so that we can summarize the results of this section as follows.

Theorem 9.1.9. Comparability graphs, interval graphs, and the complements
of such graphs are perfect. ��
Exercise 9.1.10. Show that bipartite graphs are perfect.
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More about perfect graphs can be found in [Ber73], Chapter 16; for exam-
ple, it is shown that every triangulated graph is perfect. A stronger conjecture
also posed by Berge [Ber61] remained unsolved for about 40 years before it
was turned into a theorem in 2002 by Chudnovsky, Robertson, Seymour and
Thomas [ChRST02]; see also [ChRST03] for background and an outline of the
proof.

Result 9.1.11 (strong perfect graph theorem). A graph is perfect if and
only if neither G nor G contain a cycle of odd length ≥ 5 as an induced
subgraph.

Note that determining α, θ, ω, and χ is an NP-hard problem for graphs in
general. Hence it is quite likely that no good algorithm exists for this prob-
lem; see [GaJo79]. However, all these parameters can be found in polynomial
time for perfect graphs; see [GrLS84]. Thus perfect graphs are particularly
interesting from an algorithmic point of view as well. This result and fur-
ther interesting papers can be found in [BeCh84] which is devoted entirely to
perfect graphs; see also [Gol80] and Chapter 9 of [GrLS93].

9.2 Vertex colorings

In this section we prove some basic results about the chromatic number χ(G)
of a graph G. Let us first consider the following greedy-type approach to
coloring a graph. We may assume that the colors are given by the positive
integers 1, 2, . . . Given an ordering v1, . . . , vn of the vertices of G, we color the
vertices one by one, where we always use the smallest available color. Here is
a formal version of this idea:

Algorithm 9.2.1. Let G = (V, E) be a graph given by adjacency lists Ai,
and let v = (v1, . . . , vn) be an ordering of the vertices of G. The algorithm
constructs a coloring c of G with colors 1, 2, . . ..
Procedure COLOR(G,v; f).

(1) c(v1) ← 1;
(2) for i = 2 to n do
(3) c(vi) ← min {j : c(vh) �= j for all h = 1, . . . , i − 1 with h ∈ Ai }
(4) od

Lemma 9.2.2. Let G be a graph. Then χ(G) ≤ ∆(G)+1, where ∆(G) denotes
the maximal degree of a vertex of G.

Proof. Let v1, . . . , vn be an arbitrary ordering of the vertices of G. Now vi

has at most ∆(G) adjacent predecessors when it is colored in step (3) of
Algorithm 9.2.1; hence there are at most ∆(G) colors which are not admissible
for coloring vi so that c(vi) ≤ ∆(G) + 1. ��
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Example 9.2.3. There are graphs for which equality holds in Lemma 9.2.2,
namely complete graphs and cycles of odd length: χ(Kn) = n = ∆(Kn) + 1
and χ(C2n+1) = 3 = ∆(C2n+1)+1. On the other hand, χ(C2n) = 2 = ∆(C2n).

Using an appropriate ordering of the vertices, we can prove the following
stronger bound; its main interest lies in the subsequent corollary.

Lemma 9.2.4. Let G = (V, E) be a graph. Then:

χ(G) ≤ 1 + max {δ(H) : H is an induced subgraph of G} ,

where δ(H) denotes the minimal degree of a vertex of H.

Proof. Denote the maximum defined above by k; by hypothesis, k ≥ δ(G).
Thus we may choose a vertex vn with deg vn ≤ k. Now look at the induced
subgraph H = Hn−1 := G \ vn and choose a vertex vn−1 having at most
degree k in H. We continue in this manner until we get a graph H1 consisting
of only one vertex, namely v1. This determines an ordering v1, . . . , vn of V ;
we apply Algorithm 9.2.1 with respect to this ordering. Then each vertex vi

has at most k adjacent predecessors, because deg vi ≤ k holds in Hi. Thus
Algorithm 9.2.1 needs at most k + 1 colors for coloring G. ��

Corollary 9.2.5. Let G be a connected graph, and assume that G is not reg-
ular. Then χ(G) ≤ ∆(G).

Proof. Write k = ∆(G) and suppose χ(G) > k. Then G has to have an induced
subgraph H with δ(H) = k, by Lemma 9.2.4. As k is the maximal degree in
G, H must be a k-regular subgraph which is not connected to any vertex
outside of H. Since G is connected, we conclude G = H, so that G has to be
k-regular. ��

We now come to the major result of this section, namely the theorem
of Brooks [Bro41]: with the obvious exceptions mentioned in Example 9.2.3,
χ(G) ≤ ∆(G).

Theorem 9.2.6 (Brooks’ theorem). Let G be a connected graph which is
neither complete nor a cycle of odd length. Then χ(G) ≤ ∆(G).

Proof. In view of Corollary 9.2.5, we may assume that G is regular of degree
k = ∆(G). Now k = 2 means that G is a cycle, and we know the chromatic
number of a cycle from Example 9.2.3. Hence we may assume k ≥ 3. First
suppose that G is not 2-connected. Then there exists a vertex v such that
G \ v is not connected; see Definition 7.1.6. Let V1, . . . , Vl be the connected
components of G \ v. Using induction on the number of vertices, we may
assume that the subgraph of G induced on Vi ∪ {v} can be colored with k
colors. Then G can obviously be colored using k colors as well. Thus we may
from now on assume that G is 2-connected.
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The assertion follows easily if we can find three vertices v1, v2, and vn

such that the graph H = G \ {v1, v2} is connected, and G contains the edges
v1vn and v2vn, but no edge joining v1 to v2. Suppose we have already found
such vertices; then we may order the remaining vertices as follows: for i =
n − 1, . . . , 3, we choose (in decreasing order, beginning with i = n − 1) a
vertex vi ∈ V \ {v1, v2, vi+1, . . . , vn} adjacent to at least one of the vertices
vi+1, . . . , vn; note that this is indeed possible, since H is connected. Now we
apply Algorithm 9.2.1 using this ordering of the vertices. Then we first get
c(v1) = c(v2) = 1, as v1 and v2 are not adjacent. Furthermore, each vertex
vi with 3 ≤ i ≤ n − 1 has at most k − 1 adjacent predecessors: vi is adjacent
to at least one vertex vj with j > i. Finally, vn is adjacent to the vertices v1

and v2 which have the same color. Therefore, the algorithm needs at most k
colors.

It remains to show that G contains vertices v1, v2, and vn satisfying the
above conditions. First suppose that G is even 3-connected. Then we may
choose an arbitrary vertex for vn. Note that the set Γ (vn) of vertices adjacent
to vn has to contain two non-adjacent vertices v1 and v2. (Otherwise the
k + 1 vertices in Γ (vn) ∪ {vn} form a complete graph Kk+1; because of the
connectedness and the k-regularity of G, this graph would have to be G itself,
which contradicts the hypothesis of the theorem.) As G is 3-connected, H
must still be connected.

Finally, we turn to the case where G is 2-connected but not 3-connected.
Here we may choose a vertex separator {v, vn}. Let V1, . . . Vk be the connected
components of G \ {v, vn} and put Gi = G|(Vi ∪ {v, vn}). Then the graphs
Gi are connected; moreover, vn has to have some neighbor �= v in each of the
Gi, as otherwise G \ v would not be connected. Now we choose two neighbors
v1 ∈ G1 and v2 ∈ G2 of vn such that v1, v2 �= v. Then v1 and v2 are not
adjacent and H := G \ {v1, v2} is still connected which is seen as follows. Let
x be any vertex of H. It suffices to show that v is still accessible from x in H.
Now G is 2-connected, so that there are two vertex disjoint paths from x to
v in G by Theorem 7.1.4; obviously, H contains at least one of these paths.
This shows that H is connected and concludes the proof of the theorem. ��

Let us make some remarks about the theorem of Brooks. The bound
χ(G) ≤ ∆(G) may be arbitrarily bad: for bipartite graphs, χ(G) = 2; and
∆(G) can take any value ≥ 2. In general, determining χ(G) is an NP-hard
problem; see [Kar72]. If P �= NP holds, then there is not even a polyno-
mial algorithm producing an approximate solution which always needs less
than 2χ(G) colors; see [GaJo76]. However, there is an algorithm of complex-
ity O(|V | + |E| log k) which, with probability almost 1, colors any given
k-colorable graph with k colors [Tur88].

In the context of colorings, there are two important conjectures concern-
ing the structure of k-colorable graphs. The first of these is one of the most
famous open problems in graph theory: Hadwiger’s conjecture [Had43] asserts
that G contains a subgraph contractible to Kn provided that χ(G) ≥ n. This
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conjecture has been proved for n ≤ 6; for n ≤ 4, the proof can be found in
Theorem 5.13 of [Aig84]. By a result of Wagner [Wag60], the case n = 5 is
equivalent to the four color theorem (see Section 9.5) and is therefore proved
as well. Finally, the case n = 6 was established by Robertson, Seymour and
Thomas [RoST93]. The general case remains open; see [Tof96] for a survey.
The second important conjecture sounds similar but is in fact stronger. Hajós’
conjecture [Haj61] asserts that every graph with χ(G) ≥ n contains a subdi-
vision of Kn. However, Catlin [Cat79] found a counterexample for n = 8 (and
hence for all n ≥ 8), so that this conjecture is false in general. (Note that
a subdivision of Kn can be contracted to Kn.) Hajós’ conjecture is true for
n ≤ 4; for n = 5, 6, 7 it remains open; see [Aig84].

For more profound studies of the chromatic number, algebraic tools – in
particular, the chromatic polynomial – are needed. This is one of the central
topics in algebraic combinatorics; we refer the interested reader to [God93] or
[Tut84].

9.3 Edge colorings

In this section we treat edge colorings; this means we assign a color to each
edge so that any two edges having a vertex in common have distinct colors.
The smallest possible number of colors needed for an edge coloring of a graph
G is called the chromatic index or the edge chromatic number; it is denoted
by χ′(G). Note χ′(G) = χ(L(G)), where L(G) is the line graph of G. The
counterpart of the theorem of Brooks about vertex colorings is the theorem
of Vizing [Viz64]. There is a remarkable difference, though: while the bound
for χ(G) in Brooks’ theorem can be arbitrarily bad, the theorem of Vizing
guarantees that χ′(G) can only take one of two possible values, namely either
∆(G) or ∆(G) + 1.

Exercise 9.3.1. Prove χ′(G) = ∆(G) for bipartite graphs G. Hint: Use Ex-
ercise 7.4.16.

Theorem 9.3.2 (Vizing’s theorem). Let G be a graph. Then either χ′(G) =
∆(G) or χ′(G) = ∆(G) + 1.

Proof. The inequality χ′(G) ≥ ∆(G) is obvious. Using induction on m = |E|,
we prove χ′(G) ≤ ∆(G)+1. The induction basis m = 1 is trivial. Now choose
any edge e1 = uv of G and assume that G \ e1 has already been colored using
∆(G) + 1 colors; we will use this coloring of G \ e1 to construct a coloring of
G. We need more notation. For any two colors α and β, let G(α, β) be the
subgraph of G whose edges are precisely those edges of G which have color
α or β. Obviously, the connected components of G(α, β) are paths or cycles
of even length whose edges are alternately colored with α and β. Note that
interchanging the two colors α and β in some of the connected components of
G(α, β) yields a valid coloring again.
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As each vertex v has degree at most ∆(G), there is at least one color γ
missing at v in the coloring of G \ e1: none of the edges incident with v has
been assigned the color γ. If the same color is missing at u and at v1, we may
assign this color to the edge e1. Now suppose that this is not the case; say
color α is missing at u, and color β1 �= α is missing at v1. Also, we may assume
that some edge incident with v1 is colored with α, and some edge e2 = uv2

is colored with β1. We change the given coloring as follows: we assign color
β1 to edge e1 and leave edge e2 without a color for the moment. If α is the
color missing at v2, we may color e2 with α. So suppose that α is assigned
to some edge incident with v2. If u, v1, and v2 are not in the same connected
component of G(α, β1), we can exchange the colors α and β1 in the component
containing v2, so that α is then missing at v2 (and α is still missing at u); then
we may assign α to e2. Otherwise, u, v1, and v2 are contained in the same
connected component of G(α, β1), which means that there is a path from u
to v2 alternately colored with α and β1. This path together with the (not yet
colored) edge e2 forms a cycle; see Figure 9.1.

u v2

v1

α

e1

β1

e2

?
α

β1

Fig. 9.1. A cycle in G

Now suppose that the color missing at v2 is β2 �= β1. We may also assume
that this color occurs at u (for otherwise we might assign β2 to e2 and obtain
the desired valid coloring); let e3 = uv3 be the edge colored with β2. We
change the given coloring as follows: we assign β2 to e2 and leave e3 without a
color for the moment. As before, we may assume that α occurs at v3 and that
u, v2, and v3 lie in the same connected component of G(α, β2) (otherwise, it
would be possible to find a color for e2 and finish the coloring as above). Thus
there is a path from u to v3 colored alternately with α and β2, and this path
together with the (not yet colored) edge e3 forms a cycle.

We have now found two alternating cycles as shown in Figure 9.2. We
continue to change the coloring in the same manner, until we reach some
vertex vk adjacent to u for which the edge ek = uvk is not yet colored and
one of the following two cases occurs. Either some color βk �= βk−1 is missing
at vk, and this color is also missing at u; in this case, ek may be assigned
this color. Or some color βi with i ≤ k − 2 is missing at vk. (Note that one
of these alternatives has to occur at some point, because we can find at most
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deg u ≤ ∆(G) neighbors of u.) As before, u, vi, and vi−1 are contained in the
same connected component of G(α, βi). This component is a path P from u
to vi+1 alternately colored with α and βi, and this path does not contain vk,
since βi is missing at vk. Thus the component C of G(α, βi) containing vk is
disjoint from P ; see Figure 9.3. Now we exchange the colors α and βi in C;
then we may assign α to ek to finish our coloring. ��

A short proof for a generalization of Vizing’s theorem can be found in
[BeFo91]; this also provides an alternative proof of Theorem 9.3.2.

u v2

v1

v3

α

e1

β1

e2

β2

α

β1

e3
?

α

Fig. 9.2. Two cycles in G

u vi+1

vi

vk

α

ei

βi

ei+1

βi+1

α

βi

ek
?

α

Fig. 9.3. Concluding the proof of Theorem 8.3.2
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As we saw in Exercise 9.3.1, bipartite graphs always have chromatic in-
dex χ′(G) = ∆(G). As a consequence of Vizing’s theorem, we can now also
determine χ′(G) for all regular graphs.

Corollary 9.3.3. Let G be a k-regular graph with n vertices. Then χ′(G) =
k + 1 whenever n is odd. If n is even, χ′(G) = k if and only if G admits a
1-factorization.

Proof. First let n be odd, say n = 2m + 1. Then a given color can be assigned
to at most m edges. As G contains k(2m + 1)/2 > mk edges, χ′(G) = k is
impossible; hence χ′(G) = k + 1, by Theorem 9.3.2.

Now let n be even, say n = 2m. By a similar argument, χ′(G) = k if and
only if each color is assigned to exactly m edges, which happens iff the color
classes of edges form a 1-factorization. ��

We refer to the monograph [Yap86] for an extensive discussion of edge
colorings. Shannon [Sha49] proved that multigraphs have chromatic index
χ′(G) ≤ 3∆(G)/2. Some further results in this direction can be found for
example in [And77] and [HiJa87] who proved that χ′(G) ≤ ∆(G) + 1 still
holds if all edges occurring more than once in G form a matching.

Even though Vizing’s theorem restricts the chromatic index of a graph G
to only two possible values, determining χ′(G) is an NP-hard problem. Holyer
[Hol81] proved that this continues to hold when G is restricted to the class of
3-regular graphs. There are fast algorithms with complexity O(|E|log|E|) for
the bipartite case; see, for example, [GaKa82] or [CoHo82]. For the general
case, an algorithm can be found in [HoNS86].

Sometimes the coloring we are looking for does not need to be optimal,
but might be slightly worse; then the proof of Vizing’s Theorem given above
yields an algorithm which with complexity O(|V ||E|) finds an edge coloring
using just ∆(G) + 1 colors.

9.4 Cayley graphs

This section is devoted to a class of graphs which admit a particularly inter-
esting automorphism group. A graph G = (V, E) is called a Cayley graph if
it has an automorphism group H which operates regularly (or sharply transi-
tively) on V : for any two vertices v and w, there is exactly one automorphism
h ∈ H which maps v to vh = w.2 We have two reasons for studying these
graphs in this section: first, we want to prove something nontrivial about au-
tomorphisms of graphs at least once in this book; and second, we will be able
to give an interesting application of Vizing’s theorem.

2We denote the image of a vertex v under some automorphism h by vh; this is
common usage in algebra as well as in finite geometry. Also note that we do not
require H = Aut G: H is just some subgroup of Aut G.
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Usually, Cayley graphs are defined by an explicit description as follows.
Let H be some finite group (written multiplicatively, with unit element 1),
and let S be a subset of H having the following properties:

1 /∈ S and S = S−1 := {s−1 : s ∈ S}. (9.1)

Then we define a graph G = G(H, S) with vertex set V = H and edge set

E = E(H, S) = {{x, y} : xy−1 ∈ S}.
Note that this indeed yields a graph: xy−1 ∈ S is equivalent to yx−1 ∈ S−1,
and S = S−1 holds by (9.1). Now H operates on G by right translation: h ∈ H
maps x to xh := xh. Thus G is a Cayley graph with respect to H. (Note that
h ∈ H maps an edge {x, y} to the edge {xh, yh}, since xy−1 ∈ S is equivalent
to (xh)(yh)−1 ∈ S.) In fact, every Cayley graph can be written in this form.

Lemma 9.4.1. A graph G = (V, E) is a Cayley graph with respect to the
automorphism group H if and only if G is isomorphic to a graph of the form
G(H, S).

Proof. We have already seen that the condition in the assertion is sufficient.
Conversely, let G be a Cayley graph with respect to H. Choose an arbitrary
vertex c in G as base vertex, and identify each vertex v with the unique
element h of H for which ch = v holds. In particular, c is identified with the
unit element 1. Now we define S by

S = {h ∈ H : {1, h} ∈ E}.
If {x, y} is an edge of G, then {xy−1, 1} = {xy−1, yy−1} is likewise an edge,
as H is an automorphism group of G, and as h ∈ H maps a vertex z = 1z to
zh = (1z)h. Thus {x, y} ∈ E is equivalent to xy−1 ∈ S. If {1, h} is an edge,
then {h−1, 1} is an edge as well, so that S = S−1. As G does not contain any
loops, 1 /∈ S is also satisfied, and G is isomorphic to G(H, S). ��

Next we determine the connected components of a Cayley graph.

Lemma 9.4.2. The connected components of G = G(H, S) are precisely the
right cosets of the subgroup U of H generated by S.

Proof. By definition of a Cayley graph, {xi, xi+1} is an edge if and only if
si = xix

−1
i+1 ∈ S (for i = 1, . . . , m− 1). Therefore (x1, . . . , xm) is the sequence

of vertices of a walk in G if and only if x1x
−1
m = s1 . . . sm−1 is an element of

U ; that is, iff x1 ∈ Uxm. ��
Let us consider the problem when the chromatic index of a Cayley graph

G(H, S) is equal to ∆(G). Note that a Cayley graph G(H, S) is always regu-
lar. Hence Corollary 9.3.3 and Lemma 9.4.2 imply a necessary condition for
χ′(G) = ∆(G): the subgroup U of G generated by S has to have even order.
Then an edge coloring using ∆(G) colors is the same as a 1-factorization of G.
As we will see, there are reasons to believe that this condition is also sufficient.
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Conjecture 9.4.3. A Cayley graph G(H, S) has a 1-factorization if and only
if the subgroup U of H generated by S has even order.

Stern and Lenz [StLe80] proved that this conjecture holds for cyclic graphs,
that is, Cayley graphs G(H, S) for which H is a cyclic group. Later, Stong
[Sto85] – who apparently was not aware of the paper of Stern and Lenz –
obtained stronger results; we shall present the most important ones. The proof
we give is a somewhat simplified variation of the proofs given by these authors;
all known proofs rely heavily on Vizing’s theorem. The following result gives
a general construction for 1-factorizations in certain Cayley graphs, which we
will use to prove Conjecture 9.4.3 for three specific classes of groups.3

Theorem 9.4.4. Let G = G(H, S) be a Cayley graph, and suppose that the
group H has a normal subgroup N of index 2.4 Then G has a 1-factorization
provided that S satisfies one of the following two conditions:

(1) G∗ = G(N, S ∩ N) has a 1-factorization.
(2) There is an element d ∈ S \N such that s ∈ S∩N implies dsd−1 ∈ S∩N .

Proof. If (1) holds, we may assume w.l.o.g. that S is not contained in N ,
so that we can choose some element d ∈ S \ N ; and if (2) holds, let d be
an element as described there. In either case we have H \ N = dN = Nd.
Consider the cocycle C in G defined by the cut (N, dN):

C = {{x, y} ∈ E : x ∈ N and y ∈ dN}.
Since the subgroup N of H operates regularly (by right translation) both on
N and on dN , the orbits of N on C have to be 1-factors, say F1, . . . , Fr.
We may assume F1 = {{n, dn} : n ∈ N}, as n(dn)−1 is in S. Deleting the
remaining Fi (i = 2, . . . , r) from G yields a regular graph G′. If we delete F1

as well, we get a disconnected graph G′′ which is the disjoint union of the
two isomorphic graphs G∗ = G(N, S ∩ N) and G∗d induced by G on N and
on dN = Nd, respectively. (Here G∗d denotes the image of G∗ under right
translation by d.)

Now it suffices to find a 1-factorization of either G′ or G′′. If condition
(1) is satisfied, G∗ (and hence also G∗d) has a 1-factorization, which yields a
1-factorization of G′′.

Finally, suppose that condition (2) is satisfied. We denote the degree of
the vertices of the regular graph G∗ (and hence also of G∗d) by t; then G′ is
(t + 1)-regular. Using Vizing’s theorem, we may color the edges of G∗ with

3For the (elementary) statements and definitions concerning groups which we
use in the remainder of this section, we refer the reader to [Hup67] or [Suz82].

4This condition holds for large classes of groups as it suffices that all elements
of odd order form a normal subgroup of H. For example, this is true if the 2-Sylow
subgroups of H are cyclic. A simple ad hoc proof of this statement is given in Lemma
X.12.1 of [BeJL99]. For a stronger result in this direction, we refer to Satz IV.2.8 in
[Hup67].
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t + 1 colors. Note that the mapping n �→ dn induces an isomorphism from
G∗ to G∗d: {m, n} is an edge of G∗ if and only if mn−1 ∈ S ∩ N holds; that
is – because of (2) – iff d(mn−1)d−1 = (dm)(dn)−1 ∈ S ∩ N . Now this is
equivalent to {dm, dn} being an edge of G, and hence also of G∗d. We use
this isomorphism to define an edge coloring of G∗d with t + 1 colors: an edge
{dm, dn} of G∗d is assigned the color of the edge {m, n} of G∗. Since both
G∗ and G∗d are t-regular, there is exactly one color c(v) missing at each of
the vertices v of G′. By construction, we have c(n) = c(dn) for all n ∈ N .
Thus we may color the edge {n, dn} of F1 using the color c(n) (for each n).
In this way, we get an edge coloring of G′ with t + 1 colors; this edge coloring
is equivalent to the desired 1-factorization of G′. ��

We can now prove Conjecture 9.4.3 for three large classes of groups.

Theorem 9.4.5. Let H be an abelian group, a 2-group, or a generalized dihe-
dral group. Then the Cayley graph G = G(H, S) has a 1-factorization if and
only if the subgroup u of H generated by S has even order.

Proof. If H is a 2-group (that is, |H| = 2a for some a), then H has a normal
subgroup N of index 2. Using induction on a, we may assume that we know a
1-factorization for G(N, S ∩N) already. Then condition (1) of Theorem 9.4.4
holds, so that G itself has a 1-factorization.

Next suppose that H is abelian. We may assume that G is connected; then
H = U , and H has even order. Again, H has a normal subgroup of index 2.
As G is connected, there exists an element d ∈ S \ N . Now condition (2) of
Theorem 9.4.4 is satisfied because H is abelian, so that G has a 1-factorization.

Finally, suppose that H is a generalized dihedral group: H has even order
2n and is the semi-direct product of an abelian group N of order n with
the cyclic group of order 2 (which we write multiplicatively as {1, b} here);
moreover, the relation bab = a−1 holds for all a ∈ N .5 As every subgroup of
H is either abelian or a generalized dihedral group again, we may assume that
G is connected: H = U . Again, there exists an element d ∈ S \N , say d = ba
with a ∈ N . Then s ∈ S ∩ N implies

dsd−1 = (ba)s(a−1b) = bsb = s−1 ∈ S ∩ N.

Hence condition (2) of Theorem 9.4.4 holds, and G has a 1-factorization. ��
Unfortunately, the results we know so far do not suffice to prove Conjecture

9.4.3 for, say, all nilpotent groups. However, the conjecture is true for this case
if S is a minimal generating set for H; see [Sto85]. Theorem 9.4.5 shows that
the Petersen graph is not a Cayley graph: by Exercise 7.2.7, it does not have
a 1-factorization, and the only groups of order 10 are the cyclic group and the
dihedral group.

5The classical dihedral groups are the ones where N is cyclic; see, for exam-
ple, I.9.15 in [Hup67]. The generalized dihedral groups play an important role in
reflection geometry; see [Bac89].
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Cayley graphs are of considerable interest; in particular, the conjecture
of Lovász [Lov70a] that any connected Cayley graph contains a Hamiltonian
cycle has been studied by many authors. This conjecture is still open, although
it has been proved for several specific classes of groups; for example, it holds
for all abelian groups. A proof of this result – and more on Cayley graphs
and automorphism groups of graphs – can be found in the interesting book
[Yap86]. It is also of great interest to examine the strongly regular Cayley
graphs; for a nice survey of this subject, see [Ma94]. We conclude this section
with a basic exercise.

Exercise 9.4.6. Prove that a Cayley graph G(H, S) is strongly regular with
parameters (v, k, λ, µ) if and only if both the following conditions are satisfied:

(1) |H| = v and |S| = k.
(2) The list of quotients cd−1 with c, d ∈ S and c �= d contains each element

h �= 1 of H either λ or µ times, depending on whether or not h belongs
to S.

The set S is then called a partial difference set, since H is usually written
additively in this context so that (2) turns into a condition on differences.

9.5 The five color theorem

Let us imagine the plane (or a sphere, which makes no difference topologically)
dissected by a net of curves in such a way that no point can belong to more
than three of the resulting regions; we speak of an (admissible) map, borders,
and states. Thus we rule out the possibility of four or more states meeting in
a common border point, as is the case for Utah, Arizona, New Mexico, and
Colorado. Now let us choose five different colors and paint our map in such a
way that no two states with the same color share a common border; then we
have an (admissible) map coloring. Can this always be done? The answer is
yes, by the five color theorem of Heawood [Hea90] which we will prove in this
section.

Let us translate the map coloring problem into the language of graph
theory. To this end, we use our map to define a graph G = (V, E) with the
states as vertices; two vertices (that is, two states) will be adjacent if and
only if they share a common border. It is easy to see that G is a planar
graph; to be explicit, we may choose for each state a suitable point in its
interior, and realize adjacency by line segments. Obviously, any admissible
map coloring corresponds to a coloring of G and, hence, Heawood’s five color
theorem becomes the assertion that every planar graph G satisfies χ(G) ≤ 5.

Example 9.5.1. As a warmup exercise, we shall prove the analogous six color
theorem. Let G be a planar graph. By Exercise 1.5.13, there is a vertex v of
degree at most 5. Using induction, we may assume that G \ v can be colored
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with six colors. This leaves at least one color which does not yet occur at
one of the neighbors of v. Hence the given coloring extends to an admissible
coloring for G.

The shortest and most elegant proof of the five color theorem is due to
Thomassen [Tho94] and actually establishes quite a bit more. We need some
further definitions. An (admissible) list coloring of a graph G = (V, E) again
assigns a color to each of its vertices such that adjacent vertices always have
different colors; but now each vertex v has its own list of colors C(v) from
which we have to choose its color c(v). The graph G is called k-choosable if
it admits a list coloring for every choice of lists C(v) of cardinality ≥ k each.
The choosability or list coloring number of G is the smallest k for which G
is k-choosable; this parameter is denoted by ch(G). Clearly, ch(G) ≥ χ(G);
however, in general, the chromatic number and the list coloring number do
not agree, as the following simple example shows.

Example 9.5.2. Consider the bipartite graph K3,3 which has chromatic num-
ber 2 by Example 9.1.1. Let us assign to the three points in each of the two
classes forming the partition of V the color lists {1, 2}, {1, 3}, and {2, 3};
then there is no coloring using these lists, as the reader may easily check as
an exercise. In fact, ch(K3,3) = 3.

By a result of [ErRT80], there are bipartite graphs with an arbitrarily large
choosability; thus k-choosability can indeed be a much stronger requirement
than k-colorability. This makes Thomassen’s generalization of the five color
theorem to list colorings even more remarkable.

Theorem 9.5.3. Let G be a planar graph. Then ch(G) ≤ 5.

Proof. By assumption, every vertex v of G is associated with a color list C(v)
of cardinality ≥ 5. We may assume G to be drawn in the plane. Let

C : v1 v2 v3 . . . vp−1 vp = v1

be the cycle forming the boundary of the unique infinite face of the given
planar realization of G. If G is not yet triangulated, we may add new edges
to obtain a triangulated graph; clearly, it suffices to prove the result in this
(possibly harder) case. We make our problem even more difficult by also pre-
scribing the colors c(v1) and c(v2), and by requiring merely |C(v)| ≥ 3 for all
v ∈ C \ {v1, v2}. This trick will allow us to prove the result by induction on
n = |V |.

The starting case p = n = 3 (and thus G = C) is trivial, as at least one
of the colors in C(v3) has not yet been used for v1 or v2. Now let n ≥ 4. We
shall distinguish two cases. First, we assume that C has a chord e = vw. Then
C ∪ {e} contains exactly two cycles C1 and C2 sharing the edge e; we may
assume v1v2 ∈ C1. Now we apply the induction hypothesis to C1 and obtain a
list coloring c1 of the subgraph with boundary C1 so that v1 and v2 take the
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prescribed colors. Then we apply the induction hypothesis once again to find
a list coloring c2 of the subgraph with boundary C2 so that v and w take the
same colors as under c1. Altogether, this gives the desired list coloring of G.

It remains to consider the case where C has no chords. Let us label
the neighbors of vp in their natural order around vp (say clockwise) as
v1, u1, . . . , uk, vp−1; then the ui lie in the interior of C. As G is triangulated,

P : v1 u1 u2 . . . uk vp−1

has to be a path in G. Since C has no chords, C∗ := P ∪ (C \ {vp}) is the
boundary cycle of the subgraph G \ vp. We choose two colors distinct from
c(v1) in C(vp) and discard them from all color lists C(ui) (i = 1, . . . , k); this
leaves shortened color lists of at least three colors each. Now we may apply
the induction hypothesis to C∗ and the shortened color lists to find a list
coloring c of the subgraph G \ vp with boundary C∗ for which v1 and v2 take
the prescribed colors. Finally, we may choose an admissible color for vp, since
at least one of the two colors previously selected in C(vp) for discarding has
to be distinct from c(vp−1). ��

v

v2

v1

vp
vp–1

w

C1
e

C2
v2

v1

vp
vp–1

W
u1

uk

C*

Case 1 Case 2

Corollary 9.5.4 (five color theorem). Let G be a planar graph. Then
χ(G) ≤ 5. ��

For more than one hundred years, the most famous open problem in graph
theory was the question if four colors suffice for coloring planar graphs (four
color conjecture, 4CC). This problem was first posed in October 1852 by
Francis Guthrie; the first written reference occurs in a letter by Augustus de
Morgan to Sir William Rowan Hamilton. In 1878, Arthur Cayley presented the
problem to the London Mathematical Society, making it more widely known.
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A year later, the English lawyer and mathematician Alfred Bray Kempe pub-
lished a proof for the correctness of the 4CC, see [Kem79]; a decade after that,
[Hea90] discovered a fundamental error in Kempe’s arguments. Nevertheless,
he managed to modify these arguments to obtain the five color theorem. Sub-
sequently, many important mathematicians worked on the 4CC, among them
Heffter, Birkhoff, Ore, and Heesch. The conjecture was finally proved by Ap-
pel and Haaken [ApHa77, ApHK77] with the help of a computer, after a series
of theoretical reductions based on the ideas of Kempe and Heesch (unavoid-
able configurations). There was some controversy about the validity of this
proof, because of its extraordinary length and complexity as well as the huge
amount of computer time needed for establishing the result. In response to
this, Appel and Haaken presented a 741 page algorithmic treatment [ApHa89],
where they also corrected several minor errors in their original proof. Finally,
a much simplified proof (though still using the same basic approach) was given
by Robertson, Sanders, Seymour and Thomas [RoSST97]; this also provides
an independent verification. For a sketch of this new proof and a discussion of
relations between the 4CC and other branches of mathematics, see [Tho98].
A very nice account of the 4CC and its solution may be found in the book
[Wil2002]. To sum up, the 4CC is now firmly established and may be stated
as the following theorem.

Result 9.5.5 (four color theorem). Every planar graph satisfies χ(G) ≤ 4.

One might hope to prove this result by establishing a strengthening to list
colorings, in analogy with Theorem 9.5.3. Unfortunately, this is impossible, as
there are planar graphs which are not 4-choosable; the first example for this
phenomenon is in [Voi93].

The coloring problem has also been considered (and indeed solved) for
maps drawn on other types of surfaces; for this topic, where the fundamental
work is due to Gerhard Ringel, we refer the reader to [MoTh01]. We conclude
with two more references. For a good survey on list colorings, see [Woo01].
Finally, [Aig84] develops graph theory motivated by the four color conjecture
and the attempts to solve it.
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Circulations

Round and round the circle. . .

T. S. Eliot

In Chapter 6, we introduced the simplest kind of flow problems, namely the
determination of maximal flows in a network; and in Chapter 7, we studied
various applications of this theory. The present chapter deals with generaliza-
tions of the flows we worked with so far. For example, quite often there are
also lower bounds on the capacities of the edges given, or a cost function on
the edges. To solve this kind of problem, it makes sense to remove the excep-
tional role of the vertices s and t by requiring the flow preservation condition
(F2) of Chapter 6 for all vertices, including s and t. This leads to the notion
of circulations on directed graphs. As we will see, there are many interesting
applications of this more general concept. To a large part, these cannot be
treated using the theory of maximal flows as presented before; nevertheless,
the methods of Chapter 6 will serve as fundamental tools for the more general
setting.

10.1 Circulations and flows

Let G = (V, E) be a digraph; in general, we tacitly assume that G is connected.
A mapping f : E → R is called a circulation on G if it satisfies the flow
conservation condition

(Z1)
∑

e+=v f(e) =
∑

e−=v f(e) for all v ∈ V .

In addition, let b : E → R and c : E → R be two further mappings, where
b(e) ≤ c(e) for all e ∈ E. One calls b(e) and c(e) the lower capacity and the
upper capacity of the edge e, respectively. Then a circulation f is said to be
feasible or legal (with respect to the given capacity constraints b and c) if

(Z2) b(e) ≤ f(e) ≤ c(e) for all e ∈ E.

Finally, let γ : E → R be a further mapping called the cost function. Then the
cost of a circulation f (with respect to γ) is defined as
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γ(f) =
∑
e∈E

γ(e)f(e).

A feasible circulation f is called optimal or a minimum cost circulation if
γ(f) ≤ γ(g) holds for every feasible circulation g.

It is quite possible that no feasible circulations exist: the capacity restric-
tions may be contradictory, as the simple example in Figure 10.1 shows, where
each edge e is labelled b(e), c(e). We shall obtain a criterion for the existence
of feasible circulations in the next section.

1, 2

2, 3 0, 1

Fig. 10.1. A digraph not admitting any feasible circulation

We now introduce several interesting problems involving circulations. Let
us first show that the flows studied in Chapter 6 may be viewed as special
types of circulation.

Example 10.1.1 (max-flow problem). Let N = (G, c, s, t) be a flow net-
work with a flow f of value w(f), and let G′ be the digraph obtained by adding
the edge r = ts to G. We extend the mappings c and f to G′ as follows:1

c(r) = ∞ and f(r) = w(f).

Then f is a circulation on G′ by (F2) and Lemma 6.1.1. Setting b(e) = 0 for
all edges e of G′, f is even feasible. Conversely, every feasible circulation f ′ on
G′ yields a flow of value f(r) on G. The edge r is often called the return arc
of N . In order to characterize the maximal flows on N in our new terminology,
we define a cost function on G′ as follows:

γ(r) = −1 and γ(e) = 0 otherwise.

Then a flow f on N is maximal if and only if the corresponding circulation has
minimal cost with respect to γ: maximal flows on N = (G, c, s, t) correspond
to optimal circulations for (G′, b, c, γ).

It is not surprising that removing the exceptional role of s and t will allow
us to treat circulations in a considerably more elegant manner than flows. For
example, it is clear that the set of all circulations on a digraph G′ forms a
vector space; we will make use of this observation in Section 10.3. Moreover,
the fact that circulations are a considerably more general concept enables us
to solve a large number of additional problems.

1As usual, ∞ stands for a sufficiently large number, for example
∑

e−=s

c(e).
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Example 10.1.2 (flows with lower capacity bounds). Let N = (G, c, s, t)
be a flow network, and let b : E → R be an additional mapping satisfying the
condition b(e) ≤ c(e) for every edge e. We look for a maximal flow f on N
which satisfies the condition

(F1′) b(e) ≤ f(e) ≤ c(e) for all e ∈ E,

instead of condition (F1) of Chapter 6. We use the same transformation as
in Example 10.1.1: we add the return arc r (with c(r) = ∞) and define γ as
before. Moreover, we extend the given function b to G′ by setting b(r) = 0.
Again, maximal flows on N correspond to optimal circulations on G′. As
before, the problem will be unsolvable should no feasible circulation exists.

Example 10.1.3 (optimal flow problem). Let N = (G, c, s, t) be a given
flow network, with an additional cost function γ : E → R. The cost of a flow
f is defined as for circulations: γ(f) =

∑
γ(e)f(e); in other words, γ(e) is the

cost resulting from one unit of flow flowing through the edge e. Suppose that
the maximal value of a flow through N is w. We require an optimal flow, that
is, a flow of value w having minimal cost.

In order to formulate this problem in the terminology of circulations, we
again introduce the return arc r = ts, and put c(r) = b(r) = w and γ(r) = 0.
If there is a lower bound b on the capacities in N (as in Example 10.1.2),
we have specified all the necessary data; otherwise, we put b(e) = 0 for all
edges of G. Now a feasible circulation corresponds to a flow of value w, since
b(r) = c(r) = w. As γ(r) = 0, an optimal circulation is the extension of an
optimal flow.

Example 10.1.4 (assignment problem). We will show that the assign-
ment problem defined in Example 7.4.12 may be reduced to an optimal flow
problem. Let A = (aij) be an n × n matrix with nonnegative real entries; we
require a diagonal D of A for which the sum of the entries in D is minimal.
Construct a bipartite digraph G with vertex set S

.∪ T , where S = {1, . . . , n}
and T = {1′, . . . , n′}, and adjoin two additional vertices s and t. The edges
of G are all the (s, i), all the (i, j′), and all the (j′, t) with i ∈ S and
j′ ∈ T ; all edges have capacity c(e) = 1. Finally, define the cost function
by γ(s, i) = γ(j′, t) = 0 and γ(i, j′) = aij . Then the optimal integral flows
(with value n) correspond to the solutions of the assignment problem.

As the diagonals of A correspond to the complete matchings of the bi-
partite graph on S

.∪ T , the assignment problem can also be formulated as a
problem concerning weighted matchings; we will study the assignment prob-
lem from this point of view in Chapter 14. In §10.10, we will look at some
generalizations of the assignment problem.

Before concluding this introductory section with two exercises, we see that
even the determination of shortest paths may be formulated in the framework
of circulations.
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Example 10.1.5 (shortest path problem). Let G be a network where γ(e)
is the length of the edge e; we require a shortest path from s to t. Interpreting
γ as the cost function and assigning capacity c(e) = 1 to each edge, a shortest
path from s to t is the same as an integral flow of value 1 with minimal cost,
so that the problem is a special case of the optimal flow problem. Of course,
problems concerning paths are not solved in this way in practice; on the
contrary, determining shortest paths is often used as a tool for constructing
optimal circulations.

Exercise 10.1.6. Let G be a connected mixed multigraph where each vertex
is incident with an even number of edges. Reduce the question whether an
Euler tour exists in G (note that all directed edges have to be used according
to their direction in such a tour!) to the determination of a feasible circulation
in an appropriate digraph; see [FoFu62].

Exercise 10.1.7 (caterer problem). The owner of some restaurant needs
fresh napkins every day, say r1, . . . , rN napkins for N consecutive days. He
can either buy new napkins (paying some price α for each napkin) or use
washed ones; here, the laundry service offers two possibilities: a fast service
(the napkins are returned clean after m days at a cost of β per napkin) and a
standard service (taking n days at a price of δ for each napkin). All napkins
have to be bought before the first day. Formulate the task of supplying the
required napkins at the lowest possible cost as an optimal flow problem. The
caterer problem has its origin in the practical task of either servicing or buying
new engines for airplanes; see [FoFu62], §III.8.

10.2 Feasible circulations

In this section we consider the problem of finding a feasible circulation for a
given digraph G with capacity constraints b and c, or to prove the nonexis-
tence of such a circulation. This problem can be solved using the methods of
Chapter 6 by considering an appropriate flow network [FoFu62, BeGh62]. To
simplify the presentation somewhat, we assume b(e) ≥ 0 for all edges e; the
general, more technical case can be treated in a similar manner; see Exercise
10.2.3. For many practical applications, the additional condition is satisfied,
as indicated by the examples of the previous section.

Let G = (V, E) be a digraph with nonnegative capacity constraints b and
c. We add two new vertices s and t and all edges of the form sv or vt to G
(where v ∈ V ) and denote the resulting larger digraph by H. Now we define
a capacity function c′ on H as follows:

c′(e) = c(e) − b(e) for all e ∈ E;

c′(sv) =
∑

e+=v

b(e) for all v ∈ V ;
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c′(vt) =
∑

e−=v

b(e) for all v ∈ V.

This defines a flow network N = (H, c′, s, t). Obviously, c′(e) ≥ 0 for each edge
of H. Hence the methods of Chapter 6 can be used to determine a maximal
flow on N ; let f ′ be such a flow. Note that the value of f ′ is at most

W =
∑
v∈V

c′(sv) =
∑
e∈E

b(e) =
∑
v∈V

c′(vt).

Moreover, w(f ′) = W holds if and only if f ′ saturates every edge of H incident
with s or t: f ′(sv) = c′(sv) and f ′(vt) = c′(vt) for all v ∈ V . We now show
that there exists a feasible circulation on G if and only if f ′ achieves this
bound.

Theorem 10.2.1. Let G = (V, E) be a digraph with nonnegative capacity
constraints b and c, and let N = (H, c′, s, t) be the flow network defined above.
Then there exists a feasible circulation on G if and only if the maximal value
of a flow on N is W =

∑
e∈E b(e).

Proof. First let f ′ be a flow of value w(f ′) = W on N . We define a function
f on E by

f(e) = f ′(e) + b(e) for all e ∈ E. (10.1)

By definition, f ′ satisfies the condition 0 ≤ f ′(e) ≤ c′(e) = c(e) − b(e); hence
f satisfies condition (Z2). It remains to check that f also satisfies (Z1). Thus
let v be any vertex of G. As f ′ is a flow on N , (F2) implies

f ′(sv) +
∑

e+=v

f ′(e) = f ′(vt) +
∑

e−=v

f ′(e). (10.2)

As w(f ′) = W , all edges of H incident with s or t are saturated, so that

f ′(sv) =
∑

e+=v

b(e) and f ′(vt) =
∑

e−=v

b(e). (10.3)

Now (10.1) and (10.2) imply (Z1):∑
e+=v

f(e) =
∑

e−=v

f(e). (10.4)

Conversely, let f be a feasible circulation on G. Then we can define a
mapping f ′ on the edge set of H using (10.1) and (10.3). As f is feasible, we
have 0 ≤ f ′(e) ≤ c′(e) for each edge e of G. For edges of the form sv and
vt, we have c′(sv) = f ′(sv) and c′(vt) = f ′(vt), respectively. Thus all edges
incident with s are saturated, and therefore w(f ′) = W . Then f ′ is indeed a
flow, as (10.1), (10.3), and (10.4) imply (10.2). ��
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0, 8

0, 2 1, 3

1, 4

Fig. 10.2. A digraph with capacity constraints

Example 10.2.2. Let G be the digraph given in Figure 10.2 with capacity
constraints b and c. We require a feasible circulation on G. By Theorem 10.2.1,
we have to determine a maximal flow for the network N shown in Figure 10.3.
In general, we would use one of the algorithms of Chapter 6 for such a task; for
this simple example, the desired maximal flow can be found by inspection. As
we know that all edges incident with s or t have to be saturated if there exist
feasible circulations, we define the value of the flow on these edges accordingly.
(The values of f ′ are printed in bold face in Figure 10.3.) Then (F2) holds for
the vertices u, v, and w. As (F2) has to hold for x as well, we put f ′(zx) = 3;
finally, with f ′(yz) = 1 (F2) holds also for y and z.

From f ′ we obtain the feasible circulation f on G given in Figure 10.4.
Note that f may be interpreted as a feasible flow from x to z having value
w(f) = 3. This is not yet a maximal feasible flow from x to z: we can increase
the value of the flow to 3 on the path x y z, and to 2 on the path
x u v w z. In this way we obtain a flow of value 5; in view of the
capacities of the edges xy and xu this is the maximal possible flow value.

Exercise 10.2.3. Modify the construction of the flow network N for Theorem
10.2.1 so that it applies also to negative lower capacity constraints b(e).

Note that the proof of Theorem 10.2.1 is constructive. Together with Ex-
ercise 10.2.3, we obtain the following algorithm for checking if feasible circu-
lations exist, and for determining such a circulation.
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Fig. 10.3. The corresponding flow network

Algorithm 10.2.4. Let G be a digraph with capacity constraints b and c.
Procedure LEGCIRC(G, b, c; legal, f)

(1) V ′ ← V ∪ {s, t}, E′ ← E ∪ {sv : v ∈ V } ∪ {vt : v ∈ V };
(2) for e ∈ E do c′(e) ← c(e) − b(e) od;
(3) for v ∈ V do c′(sv) ← ∑

e+=v,b(e)>0

b(e) − ∑
e−=v,b(e)<0

b(e);

c′(vt) ← ∑
e−=v,b(e)>0

b(e) − ∑
e+=v,b(e)<0

b(e) od;

(4) H ← (V ′, E′), N ← (H, c′, s, t);
(5) FIFOFLOW (N ; f ′);
(6) if f ′(sv) = c′(sv) for all v ∈ V then legal ← true else legal ← false fi;
(7) if legal=true then
(8) for e ∈ E do f(e) ← f ′(e) + b(e) od
(9) fi
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Fig. 10.4. A feasible circulation

Corollary 10.2.5. Algorithm 10.2.4 decides with complexity O(|V |3) whether
there exists a feasible circulation on G; in this case, it also constructs such a
circulation.

Proof. Theorem 10.2.1 and Exercise 10.2.3 show that the algorithm is cor-
rect. As the network N has O(|V |) vertices, a maximal flow f ′ on N can be
constructed with complexity O(|V |3) by Theorem 6.6.13. All the remaining
operations in Algorithm 10.2.4 have complexity O(|E|). ��

Clearly, we may replace FIFOFLOW in Algorithm 10.2.4 by any other
algorithm for finding a maximal flow on N ; of course, we then also get the
corresponding – in general different – complexity. For example, we may achieve
a complexity of O(|V |2|E|1/2); see Theorem 6.6.15.

Exercise 10.2.6. Describe an algorithm which decides whether a given flow
network with lower capacity constraint b has a feasible flow and, if possible,
constructs a maximal feasible flow; also, discuss the complexity of such an
algorithm.

Note that there exists a completely different algorithm for constructing a
feasible circulation. We begin with any circulation (for example f = 0) and
change this circulation successively until we either get a feasible circulation or
realize that no such circulation exists. We refer the reader to [FoFu62], §11.3.
The algorithm described there has the disadvantage that it is not possible
to give a polynomial bound for the complexity, even for integral capacity
constraints b and c: the complexity depends on the values b and c take.

Next we give a criterion for the existence of a feasible circulation which
may be viewed as a generalization of the max-flow min-cut theorem. We need
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some notation. Let G be a digraph with nonnegative capacity constraints b
and c. A cut of G is a partition V = S

.∪ T of the vertex set of G. The capacity
of the cut (S, T ) is given by

c(S, T ) =
∑

e−∈S,e+∈T

c(e) −
∑

e+∈S,e−∈T

b(e).

Now consider the flow network N = (H, c′, s, t) constructed on G as in The-
orem 10.2.1. Then (S′, T ′) with S′ = S ∪ {s} and T ′ = T ∪ {t} is a cut of N
with capacity

c′(S′, T ′) =
∑

e−∈S′,e+∈T ′
c′(e),

where e runs through all the edges of H. By definition of c′, we obtain the
following identity, where the sums now run over the edges e of G only:

c′(S′, T ′) =
∑
v∈T

c′(sv) +
∑
v∈S

c′(vt) +
∑

e−∈S,e+∈T

c′(e)

=
∑

e+∈T

b(e) +
∑

e−∈S

b(e) +
∑

e−∈S,e+∈T

(c(e) − b(e))

=
∑

e−∈S,e+∈T

c(e) −
∑

e+∈S,e−∈T

b(e) +
∑

e

b(e)

= c(S, T ) + W.

Note that every cut (S′, T ′) of N arises from a cut (S, T ) of G in this way.
By Theorem 10.2.1, there exists a feasible circulation on G if and only if the
maximal value of a flow on N is equal to W ; and by Theorem 6.1.6, the
maximal value of a flow on N equals the minimal capacity of a cut (S′, T ′).
Thus we get the condition c′(S′, T ′) ≥ W for all (S′, T ′); that is, c(S, T ) ≥ 0
for all cuts (S, T ) of G. We have proved the following fundamental result due
to Hoffman [Hof60].

Theorem 10.2.7 (circulation theorem). Let G be a digraph with nonneg-
ative capacity constraints b and c. Then there exists a feasible circulation on
G if and only if each cut (S, T ) of G has nonnegative capacity, which means∑

e−∈S,e+∈T

c(e) ≥
∑

e+∈S,e−∈T

b(e)

for every cut (S, T ) of G. ��
We may use Theorem 10.2.7 to characterize the maximal value of a feasible

flow on a flow network N = (G, c, s, t) with a lower capacity b; cf. Example
10.1.2 and Exercise 10.2.6. Again, we add the return arc r = ts to G and put
b(r) = v and c(r) = ∞. Then the feasible circulations correspond to feasible



280 10 Circulations

flows on N with value ≥ v. According to Theorem 10.2.7, such a circulation
exists if the condition c(S, T ) ≥ 0 holds for every cut (S, T ) of G. If t ∈ S
and s ∈ T , the term c(r) = ∞ occurs in c(S, T ), so that the condition clearly
holds for such cuts. If s ∈ S and t ∈ T , the term −b(r) = −v occurs in c(S, T )
which yields the condition∑

e−∈S,e+∈T

c(e) −
∑

e+∈S,e−∈T

b(e) ≥ v.

In the remaining cases – that is, for s, t ∈ S or s, t ∈ T – we get conditions
which do not involve the value v of the flow, since the return arc r does
not occur in the sum for c(S, T ); these conditions are needed to ensure the
existence of some feasible flow. Thus we get the maximal value for a flow –
assuming that there actually exist feasible flows on N – if v is the minimal
capacity of an ordinary cut of N : a cut with s ∈ S and t ∈ T . Here, of course,
we have to define the capacity c(S, T ) as before:

c(S, T ) =
∑

e−∈S,e+∈T

c(e) −
∑

e+∈S,e−∈T

b(e). (10.5)

We have proved the following result.

Theorem 10.2.8. Let N = (G, b, c, s, t) be a flow network with a nonnegative
lower capacity b. The following is a necessary and sufficient condition for the
existence of feasible flows on N :

c(X, Y ) ≥ 0 for all partitions V = X
.∪ Y with t /∈ X or s /∈ Y. (10.6)

If (10.6) holds, the maximal value of a feasible flow equals the minimum of
the capacities c(S, T ) (defined as in (10.5)) over all cuts (S, T ). ��

In the special case of ordinary flows (that is, for b ≡ 0), the existence of
feasible flows is trivial, and Theorem 10.2.8 reduces to the max-flow min-cut
theorem.

Exercise 10.2.9. Let G be a mixed multigraph. Find necessary and sufficient
conditions for the existence of an Euler tour in G; cf. Exercise 10.1.6.

Exercise 10.2.10. Let N = (G, b, c, s, t) be a flow network with a nonnega-
tive lower capacity b. Describe a technique for determining a minimal feasible
flow on N (that is, a feasible flow of minimum value), and discuss its com-
plexity. Moreover, give a description for the value of such a minimal feasible
flow analogous to Theorem 10.2.8. (Note that this problem is irrelevant for
the ordinary flows treated in Chapter 6: trivially, the zero flow is a minimal
feasible flow in that situation.)

Exercise 10.2.11. Let G be a connected digraph with capacity constraints b
and c, where b(e) is always positive and c(e) = ∞ for all edges e. Show that
G has a feasible circulation if and only if it is strongly connected. Moreover,
give a criterion for the existence of a feasible flow if we also specify a source
s and a sink t. Hint: Use Exercise 8.5.3.
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Feasible circulations on undirected and mixed graphs are studied in [Sey79]
and [ArPa86], respectively.

10.3 Elementary circulations

In this section, we consider the problem of decomposing a given circulation
into circulations which are as simple as possible. The results obtained will
be applied in Sections 10.4 to 10.7 when we present three algorithms for
determining optimal circulations.

We begin by translating the notion of a circulation into the terminology of
linear algebra. Let G be a (not necessarily connected) digraph with incidence
matrix A, say with vertex set V = {1, . . . , n} and edge set E = {e1, . . . , em}.
Every mapping f : E → R induces a vector f in Rm, namely

f = (f(e1), f(e2), . . . , f(em))T .

Note that f satisfies condition (Z1) if and only if Af = 0; this follows by
recalling that the i-th row of A has entry +1 or −1 in those columns j for
which the edge ej has end vertex or start vertex i, respectively. Thus we have
the following simple but important result.

Lemma 10.3.1. Let G be a digraph with incidence matrix A. Then f : E → R

is a circulation if and only if Af = 0. ��
In other words, the circulations are precisely the mappings which are as-

sociated with the elements in the kernel of the linear mapping from Rm to
Rn corresponding to the matrix A. These mappings form a vector space of
dimension m − rank A. By Theorem 4.2.4, rankA = n − p, where p is the
number of connected components of G. This gives the following result.

Theorem 10.3.2. Let G be a digraph with incidence matrix A. Then the cir-
culations on G form a vector space of dimension ν(G) = m − n + p; here
m, n, and p denote, respectively, the number of edges, vertices, and connected
components of G. ��
Corollary 10.3.3. Let f be a circulation on the digraph G. If G is a tree,
then necessarily f = 0.

Proof. For trees, p = 1 and m = n − 1, hence ν(G) = 0. ��
Exercise 10.3.4. Let (S, T ) be a cut of G and f a circulation on G. Show
f(S, T ) = f(T, S), where

f(S, T ) =
∑

e−∈S,e+∈T

f(e).

Also prove – without using algebraic tools – that the support of a circulation
(compare Exercise 6.1.13) cannot contain any bridges.
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Next we look for canonical bases for the vector space of circulations on G.
We need a definition. A circulation f �= 0 is called elementary if its support is
minimal with respect to inclusion: there is no circulation g �= 0 for which the
support of g is contained in, but not equal to, the support of f . The following
result shows that elementary circulations correspond to cycles.

Lemma 10.3.5. Let G be a digraph and f a circulation on G. Then f is
elementary if and only if the support of f is a cycle of G. For every cycle C
of G, there exists an elementary circulation with support C.

Proof. Let C = (e1, . . . , ek) be any cycle. We first construct an elementary
circulation fC with support C: we set fC(e) = 0 for all edges e /∈ C and
fC(ei) = +1 or −1 (for i = 1, . . . , k), according as ei is a forward or a
backward edge of C. It is immediate that fC is a circulation on G. (This is
merely the first part of the proof of Theorem 4.2.3 put into different language.)

Now let g be a circulation whose support is strictly contained in the sup-
port of f . We may assume g(ek) = 0. As C is a cycle, the edges e1, . . . , ek−1

form a path; thus Corollary 10.3.3 implies g = 0. Hence fC is elementary.
Conversely, let f be any elementary circulation on G. As f �= 0, the support
of f has to contain a closed trail and hence a cycle C. Since there exists a cir-
culation having support C and as f is elementary by hypothesis, the support
of f has to be C itself. ��

The next theorem shows that ν(G) equals the maximal number of linearly
independent cycles of G; this explains why this parameter is usually called
the cyclomatic number of G.

Theorem 10.3.6. Let G be a digraph with n vertices, m edges, and p con-
nected components. Then there exists a basis of the vector space V of circula-
tions on G which consists of ν(G) = m − n + p elementary circulations.

Proof. It suffices to prove the assertion for each connected component of G;
thus we may assume p = 1, so that G is connected. Let T be a spanning
tree for |G|. For each edge e of |G| \ T , let CT (e) be the unique cycle of |G|
containing e and edges of T only, as in Section 4.3. By Lemma 10.3.5, there
exists an elementary circulation fe on G having support CT (e). It remains to
show that the fe form a basis of V . In view of Corollary 10.3.2, it suffices to
check that the fe are linearly independent, since there are exactly m − n + 1
edges e in |G| \ T . But this is clear: the support of fe contains just one edge
outside T , namely e. ��
Exercise 10.3.7. Write an arbitrary circulation on G explicitly as a linear
combination of the elementary circulations fe constructed in the proof of
Theorem 10.3.6.



10.3 Elementary circulations 283

In view of Lemma 10.3.5 and Theorem 10.3.6, the vector space V of all
circulations on G is also called the cycle space of G.2 When weights are as-
signed to the edges of G, a basis of V having smallest weight can be found
with complexity O(|V ||E|3); in the unweighted case, at most 3(n−1)(n−2)/2
edges are needed; see [Hor87]. However, determining a basis of V having small-
est weight and consisting of elementary cycles (that is, a basis as given in the
proof of Theorem 10.3.6) is an NP-hard problem; see [DePK82].

Exercise 10.3.8. Let G = (V, E) be a digraph having n vertices, m edges,
and p connected components. Let A be the incidence matrix of G, and let
q : V → R be a mapping which we call a potential. We define δq : E → R by

δq(xy) = q(y) − q(x) for xy ∈ E.

Any mapping of the form δq is called a potential difference; this terminol-
ogy comes from electricity networks. Show the following results, which are
analogous to the preceding results about circulations:

(a) The potential differences form a vector space P corresponding to the row
space of A. Determine dim P .

(b) Given any cocycle of G, there exists a potential difference having this
cocycle as support.

(c) If G is connected, use a spanning tree T for constructing a basis of P .
Hint: Compare Lemma 4.3.2.

The vector space P is called the cocycle space or bond space of G, since cocycles
are sometimes also called bonds.

By Theorem 10.3.6, every circulation on a digraph G can be written as
a sum of elementary circulations. In the remainder of this section, we will
establish a stronger result: nonnegative circulations can be written as linear
combinations of nonnegative elementary circulations with positive coefficients.
To this end, we first prove a lemma about colorings due to Minty [Min66],
which turns out to be very useful.

Theorem 10.3.9 (painting lemma). Let G be a digraph whose edges are
colored arbitrarily with the colors black, red, and green; edges without color
are allowed as well. Moreover, let e0 be a black edge of G. Then we have one
(and only one) of the following alternatives:

(1) There exists a cycle K through e0 which contains no uncolored edges;
moreover, all black edges of K have the same orientation as e0, and all
green edges have opposite orientation.

2The cycle space of a graph is a special case of a more general construction
assigning certain modules to any geometry ; see [GhJu90] and the references given
there.
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(2) There exists a cocycle C through e0 which does not contain any red edges;
moreover, all black edges of C have the same orientation as e0, and all
green edges have opposite orientation.

Proof. Let e0 = ts. We mark the vertices of G according to the following two
rules:

(a) s is marked.
(b) Suppose v is already marked. A vertex u not yet marked is marked if and

only if there exists a black or red edge vu, or a red or green edge uv.

This process terminates when no further vertices can be marked according to
rule (b). This can happen in two possible ways:
Case 1: t has been marked. Then rule (b) implies the existence of a path from
s to t which contains no uncolored edges, and for which each black edge is a
forward edge and each green edge a backward edge. Adding the edge e0 = ts
yields a cycle as in alternative (1).
Case 2: t has not been marked. Let S be the set of all vertices which have been
marked; then s ∈ S and t ∈ V \ S. Let C be the cocycle of G corresponding
to the cut (S, V \ S). By rule (b), C cannot contain any red edge, or any
black edge with start vertex in S, or any green edge with end vertex in S; for
otherwise it would be possible to label a vertex of V \ S. Thus C is a cocycle
as in alternative (2).
It remains to show that (1) and (2) cannot hold simultaneously. Suppose C is
a cocycle as in (2), and K is a cycle as in (1). As C and K both contain e0,
K has to contain a further edge of C, because s and t are in different parts
of the cut defining C; suppose e1 ∈ C ∩ K. Now e1 cannot be red or black
because of (2), since e1 is oriented in the opposite direction as e0. Thus e1 is
either green or uncolored. But as e1 has the same orientation as e0 in K, this
cycle cannot satisfy (1), a contradiction. ��

Coloring all edges of G black yields an interesting corollary. We need a
notation. Let C be the cocycle corresponding to the cut (S, T ). C is called a
directed cocycle or a cocircuit if all edges of C have the same orientation (from
S to T , say).

Corollary 10.3.10. Each edge of a digraph is either contained in a directed
cycle or in a directed cocycle. ��

We can now prove the promised result about nonnegative circulations:

Theorem 10.3.11. Let G be a digraph and f �= 0 a circulation on G. Then f
is nonnegative (that is, f(e) ≥ 0 for all edges e) if and only if f can be written
in the form f = λ1f1 + . . . + λkfk, where the fi are nonnegative elementary
circulations and the λi positive numbers.
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Proof. Obviously, the condition stated in the assertion is sufficient. Conversely,
let f �= 0 be a nonnegative circulation on G, and let G′ be the sub-digraph
of G defined by the support of f . As f satisfies condition (Z1), G′ cannot
contain a directed cocycle. Hence Corollary 10.3.10 guarantees the existence
of a directed cycle C1 in G′. Let f1 be the elementary circulation corresponding
to C1; that is, f1(e) = 1 for all edges e in C1, and f1(e) = 0 otherwise. Put
λ1 = min{f(e) : e ∈ C1} > 0 and g = f −λ1f1. Then g is again a nonnegative
circulation on G. If g = 0, we are done; otherwise the support of g contains
at least one edge less than the support of f does, so that the assertion follows
by induction. ��
Corollary 10.3.12. Let N = (G, c, s, t) be a flow network. Then any flow can
be written as a sum of elementary flows and nonnegative elementary circula-
tions.

Proof. Let G′ be the graph we obtain by adding the return arc r = ts to G; see
Example 10.1.1. We know that every flow f can be extended to a circulation
on G′ by defining f(r) := w(f). As flows are nonnegative by definition, this
circulation is likewise nonnegative. Now the assertion follows from Theorem
10.3.11; note that all those elementary circulations fi on G′ whose support
contains r yield elementary flows on N . ��

As shown in Exercise 6.1.13, one cannot avoid using elementary circula-
tions – and not just elementary flows – in Corollary 10.3.12.

We now translate the proof of Minty’s painting lemma into an algorithm
which constructs – given any coloring of a digraph with the colors black, red,
and green – a cycle K or a cocycle C as described in Theorem 10.3.9. The
Boolean variable cycle will have value true if and only if the algorithm actually
constructs a cycle.

Algorithm 10.3.13. Let G = (V, E) be a digraph; F a partial coloring of
the edges of G with the colors black, red, and green; and e0 ∈ E a black edge.

Procedure MINTY(G, F, e0; cycle, K, C)

(1) for v ∈ V do u(v) ← false od;
(2) s ← e+

0 ; t ← e−0 ; K ← ∅; C ← ∅; A ← ∅;
(3) label s with (−,−) and set A ← A ∪ {s};
(4) repeat
(5) choose a labelled vertex v with u(v) = false;
(6) for e ∈ {e ∈ E : e− = v} do
(7) if w = e+ is not labelled and F (e) = red or F (e) = black
(8) then label w with (v,+); A ← A ∪ {w} fi
(9) od;

(10) for e ∈ {e ∈ E : e+ = v} do
(11) if w = e− is not labelled and F (e) = red or F (e) = green
(12) then label w with (v,−); A ← A ∪ {w} fi
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(13) od;
(14) u(v) ← true;
(15) until t is labelled or u(v) = true for all v ∈ A;
(16) if t is labelled
(17) then cycle ← true, K ← K ∪ {e0}, w ← t;
(18) while w �= s do
(19) find the first component v of the label of w;
(20) if the second component of the label of w is +
(21) then e ← vw else e ← wv fi;
(22) K ← K ∪ {e}; w ← v
(23) od;
(24) else cycle ← false;
(25) C ← {e ∈ E : e− ∈ A, e+ ∈ V \ A or e+ ∈ A, e− ∈ V \ A}
(26) fi

Now the following result is immediate from Theorem 10.3.9.

Theorem 10.3.14. Algorithm 10.3.13 constructs with complexity O(|E|) a
cycle or a cocycle of G, as described in Theorem 10.3.9. ��
Example 10.3.15. Let us show that the labelling algorithm of Ford and
Fulkerson (Algorithm 6.1.7) may be viewed as a special case of Algorithm
10.3.13. We choose for e0 the return arc r = ts introduced in Example 10.1.1,
and color e0 black. The remaining edges e are colored as follows: black if e is
void, green if e is saturated, and red otherwise. It should be clear that case (1)
of the painting lemma then yields an augmenting path from s to t, whereas in
case (2) no such path exists. Then the cocycle constructed by the algorithm
corresponds to a minimal cut of N (with capacity equal to the value of the
maximal flow f).

As in the special situation of Chapter 6, it is advisable to make step (5) of
Algorithm 10.3.13 deterministic by always selecting the vertex v with u(v) =
false which was labelled first; to achieve this, the labelled vertices are put into
a queue. This guarantees that we obtain a shortest path from s to t in case
(1) of the painting lemma – that is, a cycle C of shortest length through e0.

10.4 The algorithm of Klein

In the next few sections, we will present three algorithms for constructing op-
timal circulations. We begin with a particularly simple algorithm which is due
to Klein [Kle67]. In the course of this algorithm, we have to examine an ap-
propriate auxiliary digraph check whether it contains cycles of negative length
(and construct such a cycle); we will use Algorithm 3.9.1 (NEGACYCLE) for
this purpose.
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Algorithm 10.4.1. Let G be a digraph with capacity constraints b and c
and a cost function γ. The algorithm checks whether there exists a feasible
circulation; if this is the case, an optimal circulation is constructed.

Procedure KLEIN(G, b, c, γ; legal, f)

(1) LEGCIRC(G, b, c; legal, f);
(2) if legal = true then repeat
(3) E′ ← ∅;
(4) for e = uv ∈ E do
(5) if f(e) < c(e)
(6) then E′ ← E′ ∪ {e}; tp(e) ← 1; c′(e) ← c(e) − f(e);

w(e) ← γ(e) fi;
(7) if b(e) < f(e)
(8) then e′ ← vu; E′ ← E′ ∪ {e′}; tp(e′) ← 2;

c′(e′) ← f(e) − b(e); w(e′) ← −γ(e)
(9) fi

(10) od;
(11) H ← (V, E′);
(12) NEGACYCLE(H, w; d, p, neg, C);
(13) if neg = true
(14) then δ ← min{c′(e) : e ∈ C};
(15) for e ∈ C do
(16) if tp(e) = 1 then f(e) ← f(e) + δ

else f(e) ← f(e) − δ fi
(17) od
(18) fi
(19) until neg = false
(20) fi

It is usual to refer to a change of f along a cycle C as in steps (14) to (17)
above simply by saying that the cycle C is cancelled .

We now have to check whether Algorithm 10.4.1 is correct, and determine
its complexity. First, we show that the algorithm terminates if and only if
the circulation f constructed so far is optimal. Step (19) has the effect that
the algorithm terminates only if there is no cycle of negative length in the
auxiliary digraph H corresponding to f . Thus we have to prove the following
result.

Lemma 10.4.2. Let G be a digraph with capacity constraints b and c and
a cost function γ. Moreover, let f be a feasible circulation on G. Then f is
optimal if and only if the auxiliary network (H, w) constructed in steps (3)
to (11) of Algorithm 10.4.1 does not contain any directed cycle of negative
length.
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Proof. It is clear that the condition given in the assertion is necessary: if (H, w)
contains a directed cycle C of negative length, then it is possible to change
the present feasible circulation f according to steps (14) to (17) so that we
get a new feasible circulation with smaller cost. Note that the cost is changed
by the following amount:

δ
( ∑

e∈C,tp(e)=1

γ(e) −
∑

e∈C,tp(e)=2

γ(e)
)

= δ
∑
e∈C

w(e) < 0.

Conversely, assume that the condition of the theorem is satisfied; we have to
show γ(g) ≥ γ(f) for every feasible circulation g. To do so, we consider the
circulation g − f . This circulation induces a circulation h on H as follows:

• if c(e) ≥ f(e) > g(e) ≥ b(e), we define h(e′) = f(e) − g(e), where e = uv
and e′ = vu;

• if c(e) ≥ g(e) > f(e) ≥ b(e), we set h(e) = g(e) − f(e);
• for all other edges of H, we put h(e) = 0.

As h is a nonnegative circulation on H, we may apply Theorem 10.3.11: there
exist nonnegative elementary circulations h1, . . . , hk and positive numbers
λ1, . . . , λk with h = λ1h1 + . . . + λk. Let w(h) denote the cost of the cir-
culation h on H with respect to the cost function w. Then

γ(g) − γ(f) = w(h) = λ1w(h1) + . . . + λkw(hk) ≥ 0,

as (H, w) does not contain any directed cycles of negative length. Hence γ(g) ≥
γ(f), as claimed. ��

In step (1) of Algorithm 10.4.1, we apply the procedure LEGCIRC. By
Corollary 10.2.5, either a feasible circulation is constructed, or the algorithm
terminates (because no such circulation exists so that the Boolean variable
legal takes the value false). We have already indicated that each iteration
of the repeat-loop changes the present feasible circulation so that the new
feasible circulation has smaller cost; we leave the details to the reader.

It remains to address the question under which conditions we can guar-
antee that the algorithm actually terminates (with an optimal circulation,
by Lemma 10.4.2). Let us assume that b and c are integral. Then the origi-
nal feasible circulation constructed by LEGCIRC is integral as well, because
MAXFLOW constructs an integral maximal flow whenever the given capacity
constraints are integral; compare Theorem 6.1.5. Therefore the capacity func-
tion c′ on E′ defined in steps (4) to (10) is integral, too, so that δ is integral
in step (14). It follows by induction that each feasible circulation constructed
during the course of the algorithm is integral. We also know that changing the
current circulation f in step (16) by cancelling a cycle C of negative length
decreases the cost by |δw(C)|; see the proof of Lemma 10.4.2. Thus, if we
assume γ to be integral as well, the cost is decreased with each iteration of
the repeat-loop by a positive integer. Note that
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m =
∑

e
γ(e) > 0

γ(e)b(e) +
∑

e
γ(e) < 0

γ(e)c(e)

is a lower bound on γ(f) for every feasible circulation f on G; hence the
algorithm has to terminate. This also applies in the case of rational values of
b, c, and γ, as these may be multiplied by their common denominator. We
have proved the following result.

Theorem 10.4.3. Let G be a digraph, and assume that the capacity con-
straints b and c as well as the cost function γ take rational values only. Then
Algorithm 10.4.1 determines an optimal circulation f on G. If b, c, and γ are
actually integral, f is integral as well. ��

The call of LEGCIRC in Algorithm 10.4.1 has complexity O(|V |3) by
Corollary 10.2.5. Moreover, each iteration of the repeat-loop likewise has
complexity O(|V |3), because NEGACYCLE has this complexity by Theorem
3.9.2. Unfortunately, the entire algorithm is, in general, not polynomial: the
number of iterations depends on the values of the functions b, c, and γ. How-
ever, the algorithm becomes polynomial provided that the cycles of negative
length are chosen in an appropriate way; this result is due to Goldberg and
Tarjan [GoTa89] and will be proved in Section 10.9.

Exercise 10.4.4. Give an upper bound for the number of iterations of the
repeat-loop in Algorithm 10.4.1 if the functions b, c, and γ are integral.

Foe a long time, the most popular algorithm for determining an optimal
circulation was not the algorithm of Klein presented here, but the so-called
out-of-kilter algorithm; see [Ful61] and [Min60]. However, that algorithm is
considerably more involved; it is based on Minty’s painting lemma. We refer
the interested reader to [FoFu62], [Law76], or [GoMi84] for a presentation of
the out-of-kilter algorithm. It is also not polynomial in our terminology: its
complexity likewise depends on the capacity constraints.3

Using an appropriate scaling, a complexity of O(|E|2p) can be obtained,
where p = log2 C and C is the maximum of the capacities c(e); see [EdKa72].
A particularly simple weakly polynomial algorithm is in [BaTa89]; it is based
on Theorem 7.5.2 and an idea of Weintraub [Wei74], and uses several cycles

3We note that the out-of-kilter algorithm is polynomial if we include the capac-
ities in the calculation of the size of the input data: for a natural number z, we may
take log2 z as a measure for the size of z. Algorithms which are polynomial in our
sense (that is, their complexity is independent of the capacity constraints and the
cost function) are often called strongly polynomial in the literature. For this prop-
erty, all numbers occurring during the algorithm have to be polynomial in the total
size of the input data. This is trivially true if the algorithm involves only additions,
subtractions, comparisons, and multiplications or divisions by a constant factor. We
will sometimes call algorithms which are polynomial in |E|, |V |, and the logarithm
of the size of the input data weakly polynomial.
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of negative length simultaneously during each iteration. The first algorithm
which is polynomial in our sense was given by Tardos [Tar85]; the complex-
ity of her algorithm is O(|E|2T log |E|), where T denotes the complexity of
the MAXFLOW-routine used. This result was improved and varied several
times; we refer the interested reader to [Fuj86, GaTa88, GaTa89, GoTa89,
GoTa90, AhGOT92, Orl93]. Altogether, it is possible to reach a complexity
of O(|V |4 log |V |). The algorithm of Goldberg and Tarjan [GoTa90] will be
presented in Section 10.7; it has a complexity of O(|V |3|E| log |V |).

10.5 The algorithm of Busacker and Gowen

In this section, we consider the special case where the lower capacity constraint
on G is always 0. In this case, the zero circulation is feasible; if we assume
that G does not contain any directed cycles of negative length with respect
to γ, it is even optimal. If we consider the edge ts as the return arc, the zero
flow is a flow of minimal cost on the flow network (G \ ts, c, s, t). We shall
now solve the optimal flow problem of Example 10.1.3 by constructing flows
of minimal cost with increasing values, beginning with the zero flow. This can
be done by using a path of minimal cost for augmenting the flow, as suggested
by Busacker and Gowen [BuGo61].

The algorithm of Busacker and Gowen is basically the same as the algo-
rithm of Ford and Fulkerson of Section 6.1, only that each change of the flow
is made using an augmenting path of minimal cost. To determine such a path,
the auxiliary network introduced at the beginning of Section 6.3 is used. Let
N = (G, c, s, t) be a flow network with cost function γ which does not contain
any cycles of negative length. Also, let f be an optimal flow of value w(f) = w
on N ; that is, f has minimal cost γ(f) among all flows of value w. Now con-
sider the auxiliary network N ′ = (G′, c′, s, t) with respect to f and define a
cost function γ′ on N ′ as follows:

• for each edge e = uv of G with f(e) < c(e), the edge e′ = uv of G′ is
assigned cost γ′(e′) = γ(e) and capacity c′(e′) = c(e) − f(e);

• for each edge e = uv of G with f(e) > 0, the edge e′′ = vu of G′ is assigned
cost γ′(e′′) = −γ(e) and capacity c′(e′′) = f(e).

Moreover, we add the return arc r = ts to N ; put b(r) = c(r) = w, γ(r) = 0,
and f(r) = w; and b(e) = 0 for all other edges e. Then f becomes an optimal
circulation, and N ′ is the auxiliary network corresponding to this circulation.
As f is optimal, N ′ does not contain any directed cycles of negative length, by
Lemma 10.4.2. Therefore it is possible – assuming that f is not yet a maximal
flow – to find an augmenting path P of minimal cost among all augmenting
paths from s to t in N ′; for example, we may use the algorithm of Floyd and
Warshall for this task. Denote the capacity of P by δ; then we can use P to
construct a flow f ′ on N of value w(f ′) = w + δ (as in Algorithm 6.1.7). We
will show that f ′ is an optimal flow for this value.
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To this end, we consider both f ′ and f as circulations. Then f ′ − f is a
circulation whose support is a cycle C which contains the return arc r and has
minimal cost with respect to γ′, where γ′(r) = 0. Thus f ′ − f = δfC , where
fC is the elementary circulation corresponding to the cycle C (as in Theorem
10.3.5). Now suppose that g is any flow of value w + δ on N , and consider
g likewise as a circulation. By analogy to the proof of Lemma 10.4.2, we can
show that g−f induces a nonnegative circulation h on N ′ – more precisely, on
G′ with the return arc r added. By Theorem 10.3.11, we may write h as a linear
combination h = λ1h1 + . . . + λkhk of nonnegative elementary circulations on
N ′ with positive coefficients λi. We may assume that the hi are numbered so
that the supports of h1, . . . , hp contain the return arc r, whereas the supports
of hp+1, . . . , hk do not. Now g and f ′ have the same value, and hence

λ1 + . . . + λp = w(h) = w(g) − w(f) = w(f ′) − w(f) = δ.

Moreover, γ′(hi) ≥ γ′(fC) for i = 1, . . . , p, since C is a cycle of minimal cost
containing r. Finally, γ′(hi) ≥ 0 for i = p + 1, . . . , k, because there are no
directed cycles of negative cost with respect to γ′. Thus

γ′(g) − γ′(f) = γ′(h) = λ1γ
′(h1) + . . . + λkγ′(hk)

≥ (λ1 + . . . + λp)γ′(fC)

= δγ′(fC) = γ′(f ′) − γ′(f),

which yields γ′(g) ≥ γ′(f ′), as desired. Thus we have established the following
fundamental result.

Theorem 10.5.1. Let N = (G, c, s, t) be a flow network with cost function γ,
and suppose that there are no directed cycles of negative cost with respect to γ.
Moreover, let f be an optimal flow of value w on N , and P an augmenting path
of minimal cost in the auxiliary network N ′ = (G′, c′, s, t) with respect to the
cost function γ′ defined above. If f ′ is the flow which results from augmenting
f along P (with capacity δ), then f ′ is an optimal flow of value w + δ. If c,
f , and γ are integral, then so is f ′. ��

Theorem 10.5.1 shows that the following algorithm is correct. As the al-
gorithm is merely a variation of the algorithm of Ford and Fulkerson, we only
give an informal description; the reader should have no difficulties in writing
out a detailed version.

Algorithm 10.5.2. Let N = (G, c, s, t) be a flow network, where the capacity
function c is integral, and let γ be a cost function such that G does not contain
any directed cycles having negative cost. The algorithm constructs an integral
optimal flow of value v on N .

Procedure OPTFLOW(G, c, s, t, γ, v; f, sol)

(1) for e ∈ E do f(e) ← 0 od;
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(2) sol ← true, val ← 0;
(3) while sol = true and val < v do
(4) construct the auxiliary network N ′ = (G′, c′, s, t) with

cost function γ′;
(5) if t is not accessible from s in G′

(6) then sol ← false
(7) else determine a shortest path P from s to t in (G′, γ′);
(8) δ ← min{c′(e) : e ∈ P}; δ′ ← min(δ, v − val); val ← val + δ′;
(9) augment f along P by δ′

(10) fi
(11) od

The Boolean variable sol indicates whether the problem has a solution (that
is, whether there exists a flow of value v on N). If sol has value true at the
end of the algorithm, then f is an optimal flow of value v.

Note that at most v iterations of the while-loop are needed: the value val
of the flow is increased by at least 1 during each iteration. Constructing N ′

and augmenting f needs O(|E|) steps in each iteration. A shortest path with
respect to γ may be determined with complexity O(|V |3) using the algorithm
of Floyd and Warshall of Section 3.8. Then we get a (non-polynomial) overall
complexity of O(|V |3v) for Algorithm 10.5.2.

If we assume that γ is nonnegative, we may use Dijkstra’s algorithm in-
stead of the algorithm of Floyd and Warshall for determining a shortest path
from s to t in (G′, γ′) during the first iteration; this takes only O(|V |2) steps.
However, during the following iterations, negative values of γ′ always occur,
namely for backward edges. We shall now describe a trick due to Edmonds
and Karp [EdKa72] which allows us to use Dijkstra’s algorithm in spite of the
negative values of γ′: we replace γ′ by an appropriate nonnegative auxiliary
function γ∗.

Let f be an optimal flow on N of value w. Suppose that we have already
determined an augmenting path P of shortest length from s to t in (G′, γ′),
and also all distances d′(s, x) in (G′, γ′). As mentioned above, this is possible
with complexity O(|V |2) for f = 0 if we use Dijkstra’s algorithm. Let us denote
the augmented optimal flow (obtained from P ) by f ′; the auxiliary network
corresponding to f ′, by N ′′ = (G′′, c′′, s, t) (this differs from our notation of
Chapter 6); and the new cost function, by γ′′. We require a shortest path P ′

from s to t in (G′′, γ′′), and also all distances d′′(s, x) in (G′′, γ′′). Now we
replace γ′′(e) for each edge e = uv of G′′ by γ∗(e), where

γ∗(e) = γ′′(e) + d′(s, u) − d′(s, v), (10.7)

and denote the distances in (G′′, γ∗) by d∗(s, x). Note that (10.7) implies

γ∗(X) = γ′′(X) − d′(s, x)
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for every path X from s to x in G′′; in particular, a shortest path from s to t
in G′′ with respect to γ∗ is also a shortest path with respect to γ′′. Moreover,
the distances

d′′(s, x) = d∗(s, x) + d′(s, x)

with respect to γ′′ can be calculated easily from those with respect to γ∗.
Thus we may use the nonnegative function γ∗ in the algorithm instead of γ′′.
To see that γ∗ is indeed nonnegative, consider an arbitrary edge e = uv of
G′′. If e is not contained in the augmenting path P used for constructing f ′

or if e is a forward edge of P , then e is an edge of G′ as well. In this case,
γ′′(e) = γ′(e) and hence d′(s, u)+γ′(e) ≥ d′(s, v), by definition of the distance;
thus γ∗(e) ≥ 0. And if e = uv is a backward edge in P , then e′ = vu is an
edge of G′ and d′(s, u) = d′(s, v) + γ′(e′), since P is a path of shortest length
with respect to γ′.

Hence we may use Dijkstra’s algorithm for (G′′, γ∗) and determine the
distances and a shortest augmenting path P ′ with complexity O(|V |2) or
O(|E| log |V |); see Theorems 3.6.2 and 3.6.7. We have proved the following
result [EdKa72]:

Theorem 10.5.3. Let N = (G, c, s, t) be a flow network with integral capacity
function c and nonnegative cost function γ. Then Algorithm 10.5.2 can be
used to determine an optimal flow of value v with complexity O(v|V |2) or
O(v|E| log |V |). ��

In Section 12.5, we will apply Algorithm 10.5.2 to an important class of
examples. A particular advantage of the algorithm is that it allows us to
construct optimal flows for all possible values recursively. We denote the cost
of an optimal flow of value v on N by γ(v). Then Algorithm 10.5.2 may be
used to find the cost curve of N : the function v �→ γ(v).

Exercise 10.5.4. Discuss the properties of the cost curve of N = (G, c, s, t),
where the cost function γ is nonnegative and the capacity function c is integral.
In particular, show that the cost curve is a convex function:

γ(λv + (1 − λ)v′) ≤ λγ(v) + (1 − λ)γ(v′)

for all v, v′ and all λ with 0 ≤ λ ≤ 1.

Exercise 10.5.5. Discuss the complexity of the assignment problem intro-
duced in Example 10.1.4.

10.6 Potentials and ε-optimality

This section provides the necessary foundation for the polynomial algorithms
of Goldberg and Tarjan [GoTa90] for determining optimal circulations (which
will be described in the subsequent sections). Similar to Section 6.6, we begin



294 10 Circulations

by introducing a different presentation of circulations which will result in some
technical simplifications; see the footnote to Theorem 10.6.4. As it is not quite
as obvious as it was for flow networks that the new notation is indeed equiv-
alent to the original definitions, we shall treat the necessary transformations
in detail.

Construction 10.6.1. Let G = (V, E) be a digraph with capacity constraints
b and c. Our first step is to replace each pair of antiparallel edges by a single
edge (having either of the two possible orientations). Thus let e′ = uv and
e′′ = vu be any two antiparallel edges in G. We replace e′ and e′′ by the edge
e = uv with capacity constraints

b(e) = b(e′) − c(e′′) and c(e) = c(e′) − b(e′′).

This definition makes sense: b(e′) ≤ c(e′) and b(e′′) ≤ c(e′′) immediately imply
b(e) ≤ c(e). If f is a feasible circulation for N = (G, b, c), then f remains
feasible after the above transformation of N if we put f(e) = f(e′) − f(e′′).
Conversely, let f be a feasible circulation on the transformed network N ′. We
need to consider what happens to a new edge e; as f is feasible,

b(e′) − c(e′′) ≤ f(e) ≤ c(e′) − b(e′′). (10.8)

We now have to distribute f(e) into two parts f(e′) and f(e′′) so that f is also
feasible in the original network. Thus we look for values x and y satisfying

f(e) = x − y; b(e′) ≤ x ≤ c(e′); and b(e′′) ≤ y ≤ c(e′′),

which is equivalent to

max{b(e′), b(e′′) + f(e)} ≤ x ≤ min{c(e′), c(e′′) + f(e)}.

It is easy to see that it is indeed possible to choose x appropriately; this follows
immediately from (10.8).4

Thus we may now assume that N = (G, b, c) does not contain any pair
of antiparallel edges. In our second step, we symmetrize G and f by re-
introducing antiparallel edges: for each edge e = uv, we add the antiparallel
edge e′ = vu and define b, c, and f as follows:

b(e′) = c(e), c(e′) = −b(e), f(e′) = −f(e).

In this way, f becomes a feasible circulation for the new symmetric network,
since b(e) ≤ f(e) ≤ c(e) implies −c(e) ≤ −f(e) ≤ −b(e). Note that it is
not necessary to state lower bounds explicitly any more: the lower bound
b(e) ≤ f(e) follows from −f(e) = f(e′) ≤ c(e′) = −b(e).

4A similar argument shows that we do not need parallel edges; indeed, we have
always excluded parallel edges in our study of flows and circulations.



10.6 Potentials and ε-optimality 295

For convenience, we consider f also as a function from V × V to R: we do
not distinguish between f(e) and f(u, v), where e = uv is an edge of G; and
we put f(u, v) = 0 whenever uv is not an edge of G. We proceed similarly
for c. Then the compatibility condition (Z2) for f is replaced by the condition

−f(u, v) = f(u, v) ≤ c(u, v) for all (u, v) ∈ V × V. (10.9)

As in Section 6.6, we define

e(v) = ef (v) =
∑
u∈V

f(u, v);

again, the flow conservation condition (Z1) is now written as

ef (v) = 0 for all v ∈ V. (10.10)

From now on, we restrict our attention to networks N = (G, c), where c :
V × V → R may also take negative values.5 A (feasible) circulation on N is a
mapping f : V × V → R satisfying conditions (10.9) and (10.10). A mapping
which satisfies condition (10.9) only is called a pseudoflow on N . We still have
to define a cost function γ : V × V → R to be able to consider optimality.
Now the antisymmetry conditions for circulations force us to require that γ
is likewise antisymmetric:

γ(u, v) = −γ(v, u) for all (u, v) ∈ V × V.

Then the cost of a pseudoflow f is defined as

γ(f) =
1
2

∑
(u,v)

γ(u, v)f(u, v).

The factor 1/2 is introduced here since the cost of the flow is counted twice
for each edge uv of the original digraph G in the above sum; note that
γ(u, v)f(u, v) = γ(v, u)f(v, u). A pseudoflow or circulation of minimal cost
is called optimal . This finishes the transformation of our usual setup to the
definition of circulations used in [GoTa90].6

As in Section 6.6, we now introduce a residual graph Gf with respect
to a given pseudoflow f ; if f is a circulation, this graph corresponds to the
auxiliary network used in Section 10.4. Let us define the residual capacity
rf : V × V → R by

rf (v, w) = c(v, w) − f(v, w) for all (v, w) ∈ V × V.

5Of course, c is not completely arbitrary: we should have −c(v, u) ≤ c(u, v);
otherwise, there are no feasible circulations on N .

6For an intuitive interpretation of a circulation in the new sense, consider only
its positive part – which lives on a network without antiparallel edges.
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If rf (v, w) > 0 for some edge vw, we may use this edge to move some extra
flow: in our intuitive interpretation, vw is a non-saturated edge. Such an edge
is called a residual edge. The residual graph with respect to f ,

Gf = (V, Ef ), where Ef = {(v, w) ∈ V × V : rf (v, w) > 0},

corresponds to the auxiliary network introduced in the classical approach.

Exercise 10.6.2. Describe a procedure RESIDUAL for constructing the resid-
ual graph.

Next we want to establish a further optimality criterion for circulations.
We need a definition and a lemma first. A potential or a price function on the
vertex set V is just a mapping p : V → R. For a given potential p and a given
cost function γ, the reduced cost function γp is defined by

γp(u, v) = γ(u, v) + p(u) − p(v). (10.11)

The following lemma is easily verified and will be left to the reader; the second
part of this lemma is particularly important.

Lemma 10.6.3. Let (G, c) be a network with cost function γ, and let p be a
potential on V . Then one has

γp(P ) = γ(P ) + p(u) − p(v)

for every directed path P in G with start vertex u and end vertex v. In par-
ticular, γp(C) = γ(C) for every directed cycle C in G. ��
Theorem 10.6.4. Let N = (G, c) be a network with cost function γ, and let
f be a circulation on N . Then the following four statements are equivalent:

(a) f is optimal.
(b) The residual graph Gf does not contain any directed cycles of negative

length (with respect to γ).
(c) There exists a potential p on V such that γp(u, v) ≥ 0 for all uv ∈ Ef .
(d) There exists a potential p on V which satisfies the condition

γp(u, v) < 0 =⇒ f(u, v) = c(u, v)

for all (u, v) ∈ V × V .7

7This optimality criterion for potentials is one example for how the different way
of description used in this section simplifies the technical details of our presentation.
Of course, an analogous criterion can be proved using the standard notation for a
network (G, b, c). However, we would then need three conditions which have to be
satisfied for all edges uv ∈ E:

f(u, v) = b(u, v) =⇒ cp(u, v) ≥ 0,
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Proof. Conditions (a) and (b) are equivalent by Lemma 10.4.2. Moreover,
conditions (c) and (d) are obviously equivalent if we consider the definition
of the residual graph Gf . Thus it is sufficient to show that conditions (b) and
(c) are equivalent. First, let p be a potential satisfying condition (c). Then all
cycles in Gf have nonnegative length with respect to the reduced cost γp. By
Lemma 10.6.3, the analogous condition holds for γ; hence (b) is satisfied.

Conversely, suppose that condition (b) holds. We construct an auxiliary
graph Hf by adding a new vertex s and all edges sv (with v ∈ V ) to Gf . By
construction, s is a root of Hf . We extend γ to Hf by putting γ(sv) = 0 for all
v ∈ V . As Gf (and hence Hf ) does not contain any cycles of negative length,
Theorem 3.4.6 yields the existence of an SP-tree T with root s for Hf . We
define a potential p by p(v) = dT (s, v), where dT (s, v) denotes the distance of
s from v in the network (T, γ). Then, by Exercise 3.4.8,

dT (s, v) ≤ dT (s, u) + γ(u, v)

for all edges uv of Gf ; hence

γp(u, v) = γ(u, v) + p(u) − p(v) ≥ 0 for all uv ∈ Ef ,

so that p satisfies condition (c). ��
The basic idea of the algorithm of Goldberg and Tarjan is to construct

a sequence of progressively improving circulations on (G, c). Theorem 10.6.4
suggests the following weakening of the notion of optimality: a circulation
– and, more generally, a pseudoflow – f is called ε-optimal , where ε is a
nonnegative real number, if there exists a potential p on V satisfying the
condition

γp(u, v) ≥ −ε for all uv ∈ Ef . (10.12)

Obviously, (10.12) can also be written as

γp(u, v) < −ε =⇒ uv /∈ Ef for all (u, v) ∈ V × V. (10.13)

By Theorem 10.6.4, 0-optimality is the same as optimality. The following sim-
ple result illustrates the importance of the notion of ε-optimality: at least for
integral cost functions, it suffices to determine an almost optimal circulation.

Theorem 10.6.5. Let N = (G, c) be a network with an integral cost function
γ : V × V → Z. Moreover, let ε > 0 be a real number satisfying the condition
ε|V | < 1. Then an ε-optimal circulation on N is already optimal.

f(u, v) = c(u, v) =⇒ cp(u, v) ≤ 0,

b(u, v) < f(u, v) < c(u, v) =⇒ cp(u, v) = 0;

see [AhMO93], p. 330. These conditions are called complementary slackness condi-
tions; they are a special case of the corresponding conditions used in linear program-
ming. It may be checked that the potentials p(v) correspond to the dual variables if
the problem of determining an optimal circulation is written as a linear program.
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Proof. Let p be a potential satisfying condition (10.12), and let C be a directed
cycle in Gf . Then Lemma 10.6.3 implies

γ(C) = γp(C) ≥ −|C|ε ≥ −|V |ε > −1.

But γ is integral, and hence γ(C) ≥ 0. Thus (Gf , γ) does not contain any
directed cycles of negative length, so that f is optimal by Theorem 10.6.4. ��

We now need a method for checking whether a given circulation is ε-
optimal and for constructing an associated potential satisfying condition
(10.12). This can be done using an argument similar to the proof of Theorem
10.6.4; the corresponding result actually holds for pseudoflows in general.

Theorem 10.6.6. Let f be a pseudoflow on the network N = (G, c) with cost
function γ. For ε > 0, we define the function γ(ε) by

γ(ε)(u, v) = γ(u, v) + ε for all (u, v) ∈ V × V.

Then f is ε-optimal if and only if the network (Gf , γ(ε)) does not contain any
directed cycles of negative length.

Proof. We define the graph Hf as in the proof of Theorem 10.6.4. Note that
all directed cycles in Hf actually lie in Gf , because s has indegree 0. We
extend γ(ε) to Hf by putting γ(ε)(sv) = 0 for all v ∈ V ; then we may check
the criterion given in the assertion for Hf (instead of Gf ). First suppose that
f is ε-optimal with respect to the potential p, and let C be a directed cycle
in Gf . Lemma 10.6.3 implies γ(C) = γp(C) ≥ −|C|ε and, hence, indeed

γ(ε)(C) = γ(C) + |C|ε ≥ 0.

Conversely, suppose that (Gf , γ(ε)) does not contain any directed cycles of
negative length. By analogy to the proof of Theorem 10.6.4, we may choose
an SP-tree T for (Hf , γ(ε)) and define a potential p by p(v) = dT (s, v). Then
γ

(ε)
p (u, v) ≥ 0 and thus γp(u, v) ≥ −ε for all (u, v) ∈ Gf . ��

The proof of Theorem 10.6.6 shows the validity of the following corollary,
which allows us, using Exercise 3.9.3, to construct with complexity O(|V ||E|)
the associated potential p satisfying condition (10.12) for a given ε-optimal
circulation.

Corollary 10.6.7. Let f be an ε-optimal pseudoflow on N = (G, c) with re-
spect to the cost function γ. Moreover, let T be an SP-tree with root s in
the auxiliary graph Hf with respect to γ(ε). Then the potential p defined by
p(v) = dT (s, v) satisfies condition (10.12). ��
Exercise 10.6.8. Write down a procedure POTENTIAL explicitly which
with complexity O(|V ||E|) determines a potential as in Corollary 10.6.7.
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Remark 10.6.9. Note that every pseudoflow f – in particular, every circu-
lation – on (G, c) is ε-optimal (with respect to γ) for some value of ε. For
example, if C is the maximum of all values |γ(u, v)| and if the potential p is
chosen as the zero potential, f is trivially C-optimal.

Now the problem arises how we may determine the smallest ε such that a
given pseudoflow f is still ε-optimal; in this case, we say that f is ε-tight. We
need a further concept. Let (H, w) be a network. For every directed cycle C
in H,

m(C) =
w(C)
|C|

is called the mean weight of C.8 Moreover,

µ(H, w) = min{m(C) : C a directed cycle in (H, w)}

is called the minimum cycle mean.

Theorem 10.6.10. Let f be a pseudoflow on (G, c) which is not optimal with
respect to the cost function γ. Then f is ε-tight, where ε = µ(Gf , γ).

Proof. Let C be a directed cycle in Gf , and denote by ε the real number
for which f is ε-tight. Then Theorem 10.6.6 implies (using the notation of
Theorem 10.6.6)

γ(ε)(C) = γ(C) + |C|ε ≥ 0;

thus m(C) = γ(C)/|C| ≥ −ε. As this holds for every directed cycle, we
conclude µ := µ(Gf , γ) ≥ −ε; hence ε ≥ −µ.

Conversely, every directed cycle C satisfies m(C) = γ(C)/|C| ≥ µ, by
definition. Therefore

γ(−µ)(C) = γ(C) − |C|µ ≥ 0.

Again by Theorem 10.6.6, f is at least (−µ)-optimal, so that also ε ≤ −µ. ��
It remains to address the question how the minimum cycle mean can be

determined efficiently. By a result of Karp [Kar78], this may be done with
complexity O(|V ||E|) – the same complexity as for determining an SP-tree, or
for checking whether any directed cycle of negative length exists (see 3.9.3); of
course, determining µ(H, w) also answers the latter question. Karp’s algorithm
is based on the following characterization of µ(H, w).

Theorem 10.6.11. Let (H, w) be a network on a digraph H = (V, E), and
suppose that H has a root s and contains directed cycles. For each vertex v
and each positive integer k, let Fk(v) denote the minimal length of a directed

8In our context, the terms mean cost or mean length would make more sense;
however, we do not want to deviate from common usage.
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walk from s to v consisting of exactly k edges; if no such walk exists, we put
Fk(v) = ∞. Then, with n = |V |,

µ(H, w) = min
v∈V

max
{

Fn(v) − Fk(v)
n − k

: k = 1, . . . , n − 1
}

. (10.14)

Proof. We first prove the desired identity for the special case µ(H, w) = 0.
Then (H, w) does not contain any directed cycles of negative length, so that
the shortest length of a path from s to v equals the shortest length of a walk
from s to v. Therefore

Fn(v) ≥ d(s, v) = min {Fk(v) : k = 1, . . . , n − 1} ,

and thus

Fn(v) − d(s, v) = max {Fn(v) − Fk(v) : k = 1, . . . , n − 1} ≥ 0

and

max
{

Fn(v) − Fk(v)
n − k

: k = 1, . . . , n − 1
}

≥ 0.

Hence it suffices to prove the existence of some vertex v with Fn(v) = d(s, v).
Let C be any cycle of weight 0 and u a vertex in C; moreover, let P be a
path of length d(s, u) from s to u. Now we may append C to P any number
of times to obtain a shortest walk W from s to u. Note that any part W ′ of
W beginning in s and ending in v, say, has to be a shortest walk from s to
v. Obviously, we may choose v in such a way that W ′ consists of exactly n
edges; this vertex v satisfies Fn(v) = d(s, v).

It remains to consider the case µ(H, w) = µ �= 0. We replace the given
weight function w with the function w′ defined by

w′(uv) = w(uv) − µ for all uv ∈ E.

Then every cycle C in H satisfies w′(C) = w(C)−|C|µ, and therefore m′(C) =
m(C)−µ. In other words, replacing w by w′ results in reducing the minimum
cycle mean by µ, so that µ(H, w′) = 0. But we have already established the
assertion in this case, and therefore

µ(H, w′) = 0 = min
v∈V

max
{

F ′
n(v) − F ′

k(v)
n − k

: k = 1, . . . , n − 1
}

.

On the other hand, every walk W in H satisfies w′(W ) = w(W ) − |W |µ, so
that F ′

l (v) = Fl(v) − lµ. This implies

F ′
n(v) − F ′

k(v)
n − k

=
(Fn(v) − nµ) − (Fk(v) − kµ)

n − k
=

Fn(v) − Fk(v)
n − k

− µ,

and the assertion follows. ��
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Corollary 10.6.12. Let H = (V, E) be a connected digraph with weight func-
tion w : E → R. Then µ(H, w) can be determined with complexity O(|V ||E|).
Proof. By Theorem 2.6.6, we may check with complexity O(|E|) whether H
is acyclic; in this case, µ(H, w) = ∞. Otherwise we may, if necessary, add a
root s to H (as we did in the proof of Theorem 10.6.4) without introducing
any new directed cycles. Then Theorem 10.6.11 may be applied to the new
graph. The values Fk(v) can be calculated recursively using the initial values

F0(s) = 0, F0(v) = ∞ for v �= s,

and the identity

Fk(v) = min{Fk−1(u) + w(uv) : uv ∈ E};

this obviously takes O(|V ||E|) steps. After we have calculated all the Fk(v),
we may determine µ(H, w) with O(|V |2) comparisons, by Theorem 10.6.10.
As H is connected, |V | is dominated by |E|, and the assertion follows. ��
Exercise 10.6.13. Write down a procedure MEANCYCLE having the prop-
erties described in Corollary 10.6.12. In addition, your procedure should also
construct a cycle which has the minimum cycle mean as its mean weight.

There is also an algorithm with complexity O(|V |1/2|E| log(|V |C)) for de-
termining µ(H, w), where C is the maximum of the absolute values |γ(u, v)|;
see [OrAh92]. Another efficient algorithm is in [YoTO91]; experiments with
random graphs suggest that its average complexity is O(|E| + |V | log |V |).

Let us summarize the preceding results as follows:

Theorem 10.6.14. Let f be a circulation on a network N = (G, c) with cost
function γ. Then the number ε for which f is ε-tight can be determined with
complexity O(|V ||E|).
Proof. We calculate µ = µ(Gf , γ); this can be done with the desired complexity
by Corollary 10.6.12. If µ ≥ 0, Gf does not contain any directed cycles of
negative length with respect to γ, so that f is optimal by Theorem 10.6.4,
and hence ε = 0. Otherwise µ < 0 and f is not optimal. But then ε = −µ by
Theorem 10.6.10. ��

Theorem 10.6.14 allows us to determine an optimal measure for the quality
of any given circulation on N . As hinted before, the algorithm of Goldberg and
Tarjan is based on finding a sequence of ε-optimal circulations for decreasing
ε and finally applying Theorem 10.6.5 (in the integral case). We will present
their algorithm in the next section.

Exercise 10.6.15. Write down a procedure TIGHT explicitly which deter-
mines the number ε of Theorem 10.6.14 with complexity O(|V ||E|).
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10.7 Optimal circulations by successive approximation

In this section, we present a generic version of the polynomial algorithm of
Goldberg and Tarjan [GoTa90] for determining optimal circulations; this rests
on the ideas treated in the previous section. For the time being, we shall
assume that we have already designed an auxiliary procedure REFINE which
constructs from a given ε-optimal circulation f with associated potential p
an ε′-optimal circulation f ′ and a corresponding potential p′, where ε′ = ε/2;
an efficient version of REFINE will be derived in the next section. We always
assume that the network under consideration does not have any antiparallel
edges; we may do so in view of Construction 10.6.1.

Algorithm 10.7.1. Let N = (G0, b, c) be a network with cost function γ,
where G0 = (V, E0) is a digraph without any pairs of antiparallel edges. The
algorithm constructs an optimal circulation f0 on N , or determines the non-
existence of feasible solutions.

Procedure OPTCIRC(G0, b, c, γ; legal, f0)

(1) LEGCIRC(G0, b, c; legal, f)
(2) if legal = true then
(3) E ← E0;
(4) for uv ∈ E0 do
(5) E ← E ∪ {vu}; f(v, u) ← −f(u, v);
(6) γ(v, u) ← −γ(u, v); c(v, u) ← −b(u, v)
(7) od;
(8) G ← (V, E);
(9) TIGHT (G, c, γ, f ; ε)

(10) while ε > 0 do
(11) POTENTIAL(G, c, γ, f, ε; p);
(12) REFINE(G, c, γ, f, ε, p; f);
(13) TIGHT(G, c, γ, f ; ε)
(14) od;
(15) f0 ← f |E0;
(16) fi

Theorem 10.7.2. Let N = (G0, b, c) be a network with an integral cost func-
tion γ, where G0 = (V, E0) is a digraph without any pairs of antiparallel edges,
and assume the existence of feasible circulations. Suppose that REFINE is a
procedure which constructs from an ε-optimal circulation f with associated
potential p an ε/2-optimal circulation and a corresponding potential. Then
Algorithm 10.7.1 determines with complexity O(log(|V |C)) an optimal circu-
lation f0 on N , where C = max {|γ(e)| : e ∈ E0} .

Proof. By Corollary 10.2.5, step (1) of the algorithm constructs a feasible
circulation f on N . Steps (3) to (8) determines the symmetrized form (G, c)
of the network (G0, b, c) as well as corresponding versions of the functions f
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and γ, as in Construction 10.6.1. In step (9), the procedure TIGHT calculates
the value of ε for which f is ε-tight. If ε > 0 – so that f is not yet optimal –
the algorithm constructs an associated potential p for f ; changes f to an ε/2-
optimal circulation again denoted by f ; and determines the precise value of ε
for which the new f is ε-tight. All this happens during the while-loop (10) to
(14); note that this while-loop terminates only if ε = 0 so that the current f
is an optimal circulation. As ε is decreased with each iteration of the loop by
at least a factor of 1/2 (note that ε may actually be smaller than this bound
guarantees!), and as the initial circulation is C-optimal by Remark 10.6.9, an
ε-optimal circulation with ε < 1/|V | is reached after at most O(log(|V |C))
iterations. By Theorem 10.6.5, this circulation is already optimal – so that
actually ε = 0, and the while-loop is terminated. Finally, in step (15), f0 is
assigned the values of the final optimal circulation on (G, c), restricted to the
original network. ��

In the remainder of this section, we show that Algorithm 10.7.1 terminates
after at most O(|E| log |V |) iterations, even if γ is not integral. This requires
some more work; we begin by showing that the flow value f(e) on an edge e
cannot be further changed in subsequent iterations provided that the reduced
cost of e is sufficiently large.

Theorem 10.7.3. Let f be an ε-optimal circulation with associated potential
p on a network N = (G, c) with cost function γ, and assume ε > 0. Moreover,
suppose

|γp(u, v)| ≥ |V |(ε + δ)

for some edge uv and some δ ≥ 0. Then every δ-optimal circulation g satisfies
g(u, v) = f(u, v).

Proof. Because of the antisymmetry of f and γ, we may assume γp(u, v) ≥ 0.
Now let g be any circulation with g(u, v) �= f(u, v). Our hypothesis implies
γp(u, v) > ε, and hence γp(v, u) < −ε; thus, by (10.13), vu /∈ Ef . Using this,
we obtain

f(u, v) = −f(v, u) = −c(v, u) ≤ −g(v, u) = g(u, v).

In view of g(u, v) �= f(u, v), we conclude g(u, v) > f(u, v). We now show that
g cannot be δ-optimal. For this purpose, we consider the digraph G> with
vertex set V and edge set

E> = {xy ∈ E : g(x, y) > f(x, y)}.

Obviously, G> is a subdigraph of Gf containing the edge uv. We show first
that G> contains a directed cycle through uv. Consider the digraph H whose
edges are all the edges e ∈ Ef satisfying h(e) := g(e)− f(e) �= 0. We color the
edges of H either black or green, depending on whether h(e) > 0 or h(e) < 0.
By the antisymmetry of f and g, an edge e = xy is black if and only if the
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antiparallel edge e′ = yx is green. By the painting lemma (Theorem 10.3.9),
there exists either a cycle K or a cocycle C containing e0 = uv so that all its
black edges have the same orientation as e0, whereas all its green edges are
oriented in the opposite direction. In the first case, we may replace all green
edges occurring in K by their corresponding antiparallel edges, so that we get
a directed cycle in G> containing e0. The second case leads to a contradiction.
To see this, let (S, T ) be the cut of H corresponding to C. By Exercise 10.3.4,
h(S, T ) = h(T, S). However, the properties of C given in the painting lemma
together with e0 ∈ C imply h(S, T ) > 0 and h(T, S) < 0. Thus this case
cannot occur.

Thus G> indeed contains a directed cycle K through uv; note that all
edges of K are in Ef . Using Lemma 10.6.3 and the definition of ε-optimality,

γ(K) = γp(K) ≥ γp(u, v) − (|K| − 1)ε
≥ |V |(ε + δ) − (|V | − 1)ε
> |V |δ ≥ |K|δ.

Now let K be the cycle of G which we obtain by inverting the orientation of
all edges of K. Then K is contained in G<, where G< is the subdigraph with
edge set

E< = {xy ∈E : g(x, y) < f(x, y)},
so that G< is likewise a subgraph of the residual graph Gg. The antisymmetry
of γ implies

γ(K) = −γ(K) < −|K|δ = −|K|δ
and hence

γ(δ)(K) = γ(K) + δ|K| < 0.

By Theorem 10.6.6, g cannot be δ-optimal. ��
Let us call an edge uv ε-fixed if the value f(u, v) is the same for all ε-

optimal circulations f on (G, c) with respect to γ.

Corollary 10.7.4. Let f be an ε-optimal circulation with associated potential
p on (G, c) with respect to the cost function γ, where ε > 0. Then every edge
uv with γp(u, v)| ≥ 2|V |ε is ε-fixed. ��
Lemma 10.7.5. Let f be an ε-tight circulation with ε �= 0 on the network
N = (G, c) with respect to the cost function γ, and let p be a corresponding
potential. Moreover, let C be a directed cycle of minimum cycle mean in the
residual graph Gf . Then γp(u, v) = −ε for all uv ∈ C.

Proof. By hypothesis,

γp(u, v) ≥ −ε for all uv ∈ Ef . (10.15)

On the other hand, µ(Gf , γ) = −ε by Theorem 10.6.10; note that this number
is negative because ε �= 0. Then, by Lemma 10.6.3,
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1
|C|

∑
uv∈C

γp(u, v) =
1
|C|

∑
uv∈C

γ(u, v) = m(C) = −ε.

Now (10.15) implies the assertion. ��
Lemma 10.7.6. Let N = (G, c) be a network with cost function γ, and denote
by Fε the set of all ε-fixed edges in G, where ε > 0. Also, assume the existence
of an ε-tight circulation f . Then the set Fε is a proper subset of Fδ for every
δ ≥ 0 with 2δ|V | ≤ ε.

Proof. Trivially, Fε ⊆ Fδ. Thus we have to find some edge which is δ-fixed
but not ε-fixed. As f is an ε-tight circulation, there exists a directed cycle
C in the residual graph Gf of mean weight m(C) = −ε (with respect to γ),
by Theorem 10.6.10. Then we may increase f along C by a sufficiently small
amount and get a new feasible circulation f ′. We shall show that f ′ is likewise
ε-optimal, so that the edges of C cannot be contained in Fε.

Thus let p be a potential corresponding to f . Then γp(u, v) ≥ −ε for all
edges uv ∈ Ef . The only edges uv ∈ Ef ′ which are not necessarily contained
in Ef as well are those edges for which the antiparallel edge vu lies in C; note
that the cycle having opposite orientation to C indeed has to be contained in
Gf ′ . Because of vu ∈ Ef and by Lemma 10.7.5, these edges satisfy

γp(u, v) = −γp(v, u) = ε > 0,

so that f ′ is ε-optimal with respect to the same potential p.
Next we show that at least one edge of C is contained in Fδ. Let g be any

δ-optimal circulation with associated potential p′. By the choice of C,

γp′(C) = γp(C) = γ(C) = −|C|ε,

where we have used Lemma 10.6.3 again. Therefore C has to contain an edge
uv with

γp′(u, v) ≤ −ε ≤ −2|V |δ.
Thus |γp′(u, v)| ≥ 2|V |δ; by Corollary 10.7.4, uv is contained in Fδ. ��
Theorem 10.7.7. If N admits feasible circulations, Algorithm 10.7.1 deter-
mines an optimal circulation on N in O(|E| log |V |) iterations of the while-
loop, under the assumption that REFINE satisfies the requirements of Theo-
rem 10.7.2.

Proof. Let f be an ε-optimal circulation calculated at some point of the algo-
rithm. By our assumptions regarding REFINE, we need at most O(log |V |) it-
erations to construct a δ-tight circulation f ′ from f for some δ with δ ≤ ε/2|V |.
If δ = 0, the algorithm terminates. Otherwise, the set Fδ of δ-fixed edges con-
tains at least one more edge than Fε. Now the algorithm has to terminate for
sure if all edges are δ-fixed, which takes at most O(|E| log |V |) iterations. ��
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Note that Algorithm 10.7.1 usually terminates earlier, since in most cases
not all edges are 0-fixed: it is very well possible that there are several different
optimal circulations. In the next section, we will show that the auxiliary pro-
cedure REFINE can be performed in O(|V |3) steps. The above results then
yield the following theorem [GoTa90].

Theorem 10.7.8. Let N = (G, b, c) be a network with cost function γ which
admits feasible circulations. Then Algorithm 10.7.1 determines with com-
plexity O(|E||V |3 log |V |) an optimal circulation on N . If the cost function
γ is integral, the complexity is also bounded by O(|V |3 log(|V |C)), where
C = max{|γ(u, v)| : uv ∈ E}. ��

If G is not a dense graph, the complexity may be improved by using more
intricate data structures; in particular, there is a version of REFINE which
needs only O(|V ||E| log(|V |2/|E|)) steps; see [GoTa90].

10.8 A polynomial procedure REFINE

We still need to fill the gap left in the last section and provide an auxiliary
procedure REFINE with complexity O(|V |3). We shall present the procedure
of Goldberg and Tarjan [GoTa90], which is quite similar to Algorithm 6.6.1
for determining a maximal flow on a flow network, even as far as the proofs
are concerned. As in Section 6.6, we first give a generic version where the
auxiliary operations used can be chosen in an arbitrary order. Afterwards,
an appropriate way of choosing these operations will lead to a rather good
complexity bound. Again, we call a vertex v active if its flow excess with
respect to f satisfies the condition ef (v) > 0.

Algorithm 10.8.1. Let (G, c) be a network as described in Construction
10.6.1 with cost function γ. Moreover, let f be an ε-optimal circulation with
corresponding potential p. The algorithm determines an ε/2-optimal circula-
tion and the corresponding potential.
Procedure REFINE(G, c, γ, f, ε, p; f)

(1) ε ← ε/2;
(2) for uv ∈ E do
(3) γp(u, v) ← γ(u, v) + p(u) − p(v);
(4) if γp(u, v) < 0
(5) then f(u, v) ← c(u, v); f(v, u) ← −c(u, v);
(6) rf (u, v) ← 0; rf (v, u) ← c(v, u) − f(v, u)
(7) fi
(8) od;
(9) for v ∈ V do e(v) ←∑

u f(u, v) od;
(10) while there exist admissible operations do
(11) choose some admissible operation and execute it
(12) od
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Here the possible admissible operations are:
Procedure PUSH(f, v, w; f)

(1) δ ← min(e(v), rf (v, w));
(2) f(v, w) ← f(v, w) + δ; f(w, v) ← f(w, v) − δ;
(3) rf (v, w) ← rf (v, w) − δ; rf (w, v) ← rf (w, v) + δ;
(4) e(v) ← e(v) − δ; e(w) ← e(w) + δ.

The operation PUSH(f, v, w; f) is admissible if v is active, rf (v, w) > 0, and
γp(v, w) < 0.

Procedure RELABEL(f, v, p; f, p)

(1) ∆ ← ε + min{γp(v, w) : rf (v, w) > 0};
(2) p(v) ← p(v) − ∆;
(3) for w ∈ V \ {v} do
(4) γp(v, w) ← γp(v, w) − ∆; γp(w, v) ← −γp(v, w)
(5) od

The operation RELABEL(f, v, p; f, p) is admissible if v is active and if
γp(v, w) ≥ 0 holds whenever rf (v, w) > 0. Alternatively, we could describe
the modification of the value p(v) in RELABEL by the command

p(v) ← max{p(w) − γ(v, w) − ε : rf (v, w) > 0},

as in the original paper.

As in Section 6.6, we first prove that Algorithm 10.8.1 is correct, provided
that it terminates. The following lemma is similar to Lemma 6.6.2 and equally
obvious.

Lemma 10.8.2. Let f be an ε-optimal pseudoflow on (G, c) with respect to
the cost function γ, and let p be a corresponding potential. Moreover, let v be
an active vertex. Then either RELABEL(v) is admissible, or there is an edge
vw for which PUSH(v, w) is admissible. ��
Lemma 10.8.3. Let f be an ε-optimal pseudoflow on (G, c) with respect to
the cost function γ, and let p be a corresponding potential. Moreover, let v be
an active vertex. Then the new pseudoflow which is obtained from a PUSH-
operation on some edge vw is still ε-optimal. A RELABEL(v)-operation de-
creases p(v) by at least ε; again, the pseudoflow remains ε-optimal after the
RELABEL-operation.

Proof. To prove the first claim, note that a PUSH(v, w) does not change the
reduced cost of edges which already occur in Gf . If the edge wv is added to Gf

by the PUSH(v, w), the conditions for the admissibility of a PUSH-operation
yield γp(v, w) < 0, so that γp(w, v) > 0; hence the new residual edge wv
satisfies the condition for ε-optimality.
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Now consider a RELABEL(v)-operation. If this operation is admissible,
we must have γp(v, w) ≥ 0 for all vw ∈ Ef , so that

p(v) ≥ p(w) − γ(v, w) for all vw ∈ Ef

holds before RELABEL is performed. This implies

p′(v) = max{p(w) − γ(v, w) − ε : vw ∈ Ef} ≤ p(v) − ε

for the value p′(v) of the potential after the RELABEL operation. Therefore
p(v) is decreased by at least ε during the RELABEL(v)-operation. The only
edges whose reduced cost is changed by a RELABEL(v) are the edges which
are incident with v. For every edge of the form wv, γp(w, v) is increased by
at least ε; trivially, this does not change the ε-optimality. Now consider a
residual edge of the form vw. By definition of p′(v), such an edge satisfies

p′(v) ≥ p(w) − γ(v, w) − ε

and hence
γp′(v, w) = γ(v, w) + p′(v) − p(w) ≥ −ε,

so that the condition for ε-optimality holds also in this case. ��
Theorem 10.8.4. Assume that Algorithm 10.8.1 terminates. Then the final
pseudoflow f is an ε/2-optimal circulation.

Proof. Note that the pseudoflow f constructed during the initialization phase
(2) to (8) is actually 0-optimal (as all edges with negative reduced cost are
saturated), so that it is for sure ε/2-optimal. Now Lemma 10.8.3 shows that
the pseudoflow remains ε/2-optimal throughout the algorithm. By Lemma
10.8.2, the algorithm terminates only when there is no longer any active vertex.
But this means e(v) ≤ 0 for all vertices v; hence∑

v

e(v) =
∑
u,v

f(u, v) = 0

shows e(v) = 0 for all v. Thus the ε/2-optimal pseudoflow constructed during
the last iteration of the algorithm is indeed a circulation. ��

In order to show that Algorithm 10.8.1 terminates, we have to find an up-
per bound for the number of admissible operations executed during the algo-
rithm. As in Section 6.6, we distinguish saturating PUSH-operations, namely
those with δ = rf (v, w), from non-saturating PUSH-operations. We begin
by analyzing the RELABEL-operations. The following important lemma is
analogous to Lemma 6.6.6.

Lemma 10.8.5. Let f be a pseudoflow and g a circulation on (G, c). For
each vertex v with ef (v) > 0, there exist a vertex w with ef (w) < 0 and a
sequence of distinct vertices v = v0, v1, . . . , vk−1, vk = w with vivi+1 ∈ Ef and
vi+1vi ∈ Eg for i = 0, . . . , k − 1.
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Proof. We define the directed graphs G> and G< as in the proof of Theorem
10.7.3; then G> is a subdigraph of Gf , and G< is a subdigraph of Gg. More-
over, xy ∈ E> if and only if yx ∈ E<, since pseudoflows are antisymmetric.
Hence it suffices to show the existence of a directed path

P : v0 = v v1 . . . vk = w

with ef (w) < 0 in G>. Denote the set of vertices which are accessible from
v in G> by S, and put S := V \ S. (The set S might be empty.) For each
pair (x, y) of vertices with x ∈ S and y ∈ S, we have g(x, y) ≤ f(x, y) by
definition. As g is a circulation and as f and g are antisymmetric,

0 =
∑
y∈S

eg(y) =
∑

x∈V,y∈S

g(x, y)

=
∑

x∈S,y∈S

g(x, y) ≤
∑

x∈S,y∈S

f(x, y)

=
∑

x∈S,y∈V

f(x, y) = −
∑

x∈S,y∈V

f(y, x) = −
∑
x∈S

ef (x).

However, v ∈ S and ef (v) > 0. Therefore S has to contain a vertex w with
ef (w) < 0, proving the assertion. ��
Lemma 10.8.6. For each vertex v, at most 3|V | RELABEL(v)-operations are
performed during Algorithm 10.8.1. Thus there are altogether at most O(|V |2)
RELABEL-operations during the course of the algorithm.

Proof. Note that the values of the potential can only decrease during the execu-
tion of REFINE, by Lemma 10.8.3. Now consider the situation immediately
after some RELABEL(v)-operation, and let f be the ε-optimal pseudoflow
with associated potential p at this point of time. Then ef (v) > 0. In what
follows, we denote the original ε-optimal circulation and the corresponding
potential – the input parameters of REFINE – by g and q. By Lemma 10.8.5,
there exist a vertex w with ef (w) < 0 and a directed path

P : v = v0 v1 . . . vk−1 vk = w

with vivi+1 ∈ Ef and vi+1vi ∈ Eg for i = 0, . . . , k−1. Using the ε/2-optimality
of f and Lemma 10.6.3, we obtain

−εk

2
≤

k−1∑
i=0

γp(vi, vi+1) = p(v) − p(w) +
k−1∑
i=0

γ(vi, vi+1).

In the same way, the ε-optimality of the original circulation g yields

−εk ≤
k−1∑
i=0

γq(vi+1, vi) = q(w) − q(v) +
k−1∑
i=0

γ(vi+1, vi).
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We add the preceding two inequalities and use the antisymmetry of the cost
function to obtain

−3εk

2
≤ p(v) − p(w) + q(w) − q(v).

Next we show p(w) = q(w): RELABEL can only be applied for vertices with
positive flow excess, so that the original value q(w) of the potential for a vertex
w with ef (w) < 0 cannot have changed unless the flow excess has become
positive at some point. However, once a vertex has positive flow excess, it can
never again acquire negative flow excess because of step (1) in PUSH. Thus
ef (w) < 0 indeed implies p(w) = q(w). From this we conclude

p(v) ≥ q(v) − 3εk

2
≥ q(v) − 3ε|V |

2
.

By Lemma 10.8.3, each RELABEL(v)-operation decreases the original value
q(v) of the potential by at least ε/2, so that there cannot be more than 3|V |
such operations for a given vertex v. ��

We can now also treat the saturating PUSH-operations.

Lemma 10.8.7. Algorithm 10.8.1 involves at most O(|V ||E|) saturating
PUSH-operations.

Proof. Consider the saturating PUSH-operations for a given edge vw. After
such a PUSH(v, w) has been executed, rf (v, w) = 0, so that a further PUSH
on vw is possible only if a PUSH(w, v) is executed first. Now the saturat-
ing PUSH(v, w) was admissible only if γp(v, w) < 0, whereas a PUSH(w, v)
requires the converse condition γp(w, v) < 0 and therefore γp(v, w) > 0.
Thus a RELABEL(v)-operation has to occur between any two consecutive
saturating PUSH-operations on vw, as this is the only way to decrease
γp(v, w) = γ(v, w) + p(v) − p(w). Now Lemma 10.8.6 shows that at most
O(|V |) saturating PUSH-operations may occur on vw during the course of
Algorithm 10.8.1. ��

As in Section 6.6, the non-saturating PUSH-operations play the crucial
role in the complexity of REFINE. We need a lemma to be able to analyze
how many non-saturating PUSH-operations occur. Let us call the edges vw of
the residual graph Gf which have negative reduced cost γp(v, w) admissible
edges, and denote the subdigraph of Gf which contains only the admissible
edges – the admissible graph – by GA = GA(f).

Lemma 10.8.8. The admissible graph GA is always acyclic during the course
of Algorithm 10.8.1.

Proof. As mentioned in the proof of Theorem 10.8.4, the pseudoflow f con-
structed during the initialization (2) to (8) is even 0-optimal, so that the corre-
sponding graph GA is empty (and hence trivially acyclic). Now a PUSH(v, w)



10.8 A polynomial procedure REFINE 311

can only be executed if γp(v, w) < 0, so that γp(w, v) > 0. Thus the an-
tiparallel edge wv – which might be added to Gf – is definitely not added
to GA. Hence PUSH-operations do not add edges to GA, so that GA stays
acyclic. Finally, consider a RELABEL(v)-operation. Before this operation is
performed, γp(u, v) ≥ −ε/2 for all uv ∈ Gf . As we saw in Lemma 10.8.3,
RELABEL(v) decreases p(v) by at least ε/2, so that γp(u, v) ≥ 0 holds after
the RELABEL(v). Therefore GA does not contain any edges with end vertex
v, and GA is still acyclic after the RELABEL(v). ��

As in Section 6.6, we could now find an upper bound for the number of non-
saturating PUSH-operations. However, we prefer to proceed by performing
the admissible operations in a particularly efficient order, and leave the more
general result to the reader as an exercise.

Exercise 10.8.9. Show that at most O(|V |2|E|) non-saturating PUSH-
operations occur during Algorithm 10.8.1. Hint: Consider the function Φ =∑
v active

Φ(v), where Φ(v) is the number of vertices which are accessible from v

in the admissible graph GA.

We now follow [GoTa90] and present a special version of REFINE called
the first active method ; this is similar to the highest label preflow push al-
gorithm in Section 6.6. Again, we keep adjacency lists Av and distinguish a
current edge in each Av; initially, this is always the first edge of Av. Moreover,
throughout the algorithm, we keep a topological sorting of V with respect to
the admissible graph GA in a list L. As GA is initially empty, the vertices
may be added arbitrarily to L during the initialization phase. Furthermore,
we need a current vertex: this is always the vertex for which we want to per-
form the next admissible operation, preferably a PUSH(v, w), but if this is
not possible, then a RELABEL(v). Immediately after a RELABEL(v), v is
deleted from L and inserted again at the beginning of L. Note that v has
indegree 0 in GA at this point, as shown in the proof of Lemma 10.8.8. Hence
L remains a topological sorting for GA. In this case, v always stays the cur-
rent vertex. If v becomes inactive during a PUSH-operation, the next vertex
in L is chosen as the current vertex; as L gives a topological sorting of GA,
there can be no active vertex in L before v. These considerations lead to the
following algorithm:

Algorithm 10.8.10 (first active method). Let (G, c) be a network with
cost function γ as described in Section 10.6, where G is given by adjacency
lists Av. Moreover, let f be an ε-optimal circulation with associated potential
p. Finally, let L be a list and rel a Boolean variable.
Procedure FAREFINE(G, c, γ, f, ε, p; f)

(1) ε ← ε/2;
(2) for uv ∈ E do
(3) γp(u, v) ← γ(u, v) + p(u) − p(v);
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(4) if γp(u, v) < 0
(5) then f(u, v) ← c(u, v), f(v, u) ← −c(u, v)
(6) rf (u, v) ← 0, ef (v, u) ← c(v, u) − f(v, u)
(7) fi
(8) od;
(9) for v ∈ V do e(v) ←∑

u
f(u, v) od;

(10) L ← V ;
(11) let v be the first vertex in L;
(12) while there exists an active vertex do
(13) if e(v) > 0
(14) then rel ← false; select the first edge in Av as the current edge;
(15) repeat
(16) let vw be the current edge in Av;
(17) if rf (v, w) > 0 and γp(v, w) < 0
(18) then PUSH(f, v, w; f);
(19) fi
(20) if e(v) > 0 then
(21) if vw is not the last edge in Av

(22) then choose the next edge in Av as the current edge
(23) else RELABEL(f, v, p; f, p); rel ← true;
(24) choose the first edge in Av as the current edge
(25) fi
(26) fi
(27) until e(v) = 0 or rel = true;
(28) if e(v) = 0
(29) then replace v by the next vertex in L
(30) else move v to the beginning of L
(31) fi
(32) else replace v by the next vertex in L
(33) fi
(34) od

Theorem 10.8.11. Algorithm 10.8.10 constructs with complexity O(|V |3) an
ε/2-optimal circulation f on (G, c).

Proof. As Algorithm 10.8.10 is a special version of Algorithm 10.8.1, Theorem
10.8.4 implies that it is correct, provided that it terminates. By Lemma 10.8.6,
there are at most O(|V |2) RELABEL-operations during the execution of the
algorithm; each of them needs at most O(|V |) steps. Moreover, by Lemma
10.8.7, there are at most O(|V ||E|) saturating PUSH-operations, each of which
takes only O(1) steps. Thus it suffices to show that there are altogether at
most O(|V |3) non-saturating PUSH-operations.

As noted before, the list L contains a topological sorting of the vertices
with respect to the admissible graph GA throughout the algorithm. By the
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word phase we refer to the the sequence of operations between two consecutive
RELABEL-operations, or between the beginning of the algorithm and the
first RELABEL-operation, or after the last RELABEL and the termination
of the algorithm. By Lemma 10.8.6, there are at most O(|V |2) phases. At the
beginning of each phase, v is always the first vertex of L – initially because of
(11), later because of (30). Of course, the algorithm may examine at most all
|V | vertices in L before either the next RELABEL-operation is performed or
the algorithm terminates. For each vertex v, there can be at most one non-
saturating PUSH-operation during a given phase: after such a PUSH, e(v) = 0
so that v is replaced by the next vertex in L. This yields the desired bound
of at most O(|V |) non-saturating PUSH-operations during each phase. ��

Using the procedure FAREFINE above in Algorithm 10.7.1 instead of
REFINE, we get an algorithm which constructs an optimal circulation for a
given network with the complexity stated in Theorem 10.7.8.

10.9 The minimum mean cycle cancelling algorithm

In this section, we shall return to the algorithm of Klein and show that an ap-
propriate specification yields a polynomial algorithm, a result due to Goldberg
and Tarjan [GoTa89]. The complexity one obtains is inferior to the complex-
ity achieved in Theorem 10.7.7; however, the modified algorithm of Klein is
particularly simple and intuitive.

Let us first consider a specialization of the algorithm of Klein to flow
networks as in Chapter 6. As in Example 10.1.1, we add the return arc r = ts
to the flow network N = (G, c, s, t); put γ(r) = −1 and γ(e) = 0 for all
other edges e; and consider the corresponding problem of finding an optimal
circulation. Then a flow f of value w on N corresponds to a circulation f ′

on G′ = G ∪ {r} with cost −w(f). Now let (H, w) be the auxiliary network
with respect to f ′, as constructed in Algorithm 10.4.1. Obviously, the only
cycles of negative length are cycles containing the return arc, and these cycles
correspond precisely to the augmenting paths in G with respect to f – that
is, to paths from s to t in the auxiliary network N ′(f); see Section 6.3. It is
now easily seen that the algorithm of Klein reduces to the labelling algorithm
of Ford and Fulkerson (Algorithm 6.1.7) for determining a maximal flow. As
shown in Section 6.1, the algorithm of Klein is therefore not polynomial even
if all input data are integral.

As we have seen in Section 6.2, the algorithm of Ford and Fulkerson be-
comes polynomial if the augmenting paths are chosen in a clever way: always
select an augmenting path P of shortest length in N ′(f). This suggests inter-
preting this strategy in terms of the associated circulations, and then trying
to generalize it to arbitrary circulations. As already mentioned, P corresponds
to a cycle C of negative length in (H, w). Note that all these cycles have the
same length, namely w(C) = −1, which might be disappointing. Fortunately,
the length |P | of P is reflected in the mean weight m(C) of C:
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m(C) =
w(C)
|C| = − 1

|P | + 1
.

Thus an augmenting path of shortest length in N ′(f) corresponds to a cycle
with minimum cycle mean µ(H, w). This motivates the strategy suggested
by Goldberg and Tarjan: always cancel a (negative) cycle of minimum cycle
mean in order to improve the present circulation f ; recall that such a cycle
can be determined efficiently by the method of Karp described in Section 10.6.
We will see that the resulting algorithm is indeed polynomial – but this will
require considerable effort.

Algorithm 10.9.1 (minimum mean cycle canceling algorithm). Let G
be a digraph with capacity constraints b and c and a cost function γ. The
algorithm decides whether an admissible circulation exists; if this is the case,
it constructs an optimal circulation.
Procedure MMCC(G, b, c, γ; legal, f)

(1) LEGCIRC(G, b, c, γ; legal, f);
(2) if legal = true then repeat
(3) E′ ← ∅;
(4) for e = uv ∈ E do
(5) if f(e) < c(e)
(6) then E′ ← E′ ∪ {e}; tp(e) ← 1; c′(e) ← c(e) − f(e);

w(e) ← γ(e) fi;
(7) if b(e) < f(e)
(8) then e′ ← vu; E′ ← E′ ∪ {e′}; tp(e′) ← 2;

c′(e′) ← f(e) − b(e); w(e′) ← −γ(e)
(9) fi

(10) od;
(11) H ← (V, E′);
(12) MEANCYCLE (H, w; µ, C, acyclic)
(13) if acyclic = false and µ < 0
(14) then δ ← min{c′(e) : e ∈ C};
(15) for e ∈ C do
(16) if tp(e) = 1 then f(e) ← f(e) + δ

else f(e) ← f(e) − δ fi
(17) od
(18) fi
(19) until acyclic = true or µ ≥ 0
(20) fi

Here the procedure MEANCYCLE is the algorithm described in Exercise
10.6.13. As usual, we refer to a change of f along a cycle C as in steps (14)
to (17) above as cancelling the cycle C.

The rest of this section is devoted to showing that Algorithm 10.9.1 is
indeed polynomial. We now think of the original network (G0, b, c) and the
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corresponding circulations as transformed into the form (G, c) described in
Construction 10.6.1 and Algorithm 10.7.1, so that we may apply the results
of Sections 10.6 and 10.7. Even though the MMCC-algorithm does not use
the technique of successive approximation, we nevertheless need the theory of
ε-optimality for analyzing it.

We saw in Section 10.6 that each circulation f is ε-tight for some value
ε ≥ 0; let us denote this number by ε(f). The following lemma shows that
cancelling a cycle of minimum cycle mean does not increase this parameter.

Lemma 10.9.2. Let f be an ε-tight circulation on (G, c) with respect to the
cost function γ, where ε > 0. Moreover, let C be a directed cycle of mini-
mum cycle mean in the residual graph Gf . Then the circulation g obtained by
cancelling C satisfies ε(g) ≤ ε(f) = ε.

Proof. Let p be a potential corresponding to f . Then, by Lemma 10.7.5,

γp(u, v) = −ε for all uv ∈ C. (10.16)

We obtain the residual graph Gg from Gf by deleting some edges of C and
adding some edges which are antiparallel to edges of C. Now (10.16) implies

γp(v, u) = −γp(u, v) = ε > 0

for edges uv ∈ C, so that the condition γp(u, v) ≥ −ε also holds for all edges
uv in Gg. Hence g is ε-optimal with respect to the potential p, and therefore
ε(g) ≤ ε = ε(f). ��

Now it is possible that cancelling C does not lead to an improvement of
the tightness: ε(g) = ε(f) in Lemma 10.9.2 may occur. However, the next
lemma shows that this cannot happen too often.

Lemma 10.9.3. Let f be a circulation on (G, c) which is ε-tight with respect
to the cost function γ. Suppose g is a circulation obtained from f by cancelling
|E| cycles of minimum cycle mean. Then

ε(g) ≤ (1 − 1
|V | )ε.

Proof. Let p be a potential corresponding to f :

γp(u, v) ≥ −ε for all uv ∈ Ef .

As we saw in the proof of Lemma 10.9.2, all edges added to Gf when can-
celling a cycle of minimum cycle mean have positive reduced cost γp(u, v).
On the other hand, at least one edge e (for which the minimum in step (14)
of Algorithm 10.9.1 is achieved) is deleted from Gf . Also note that p always
remains unchanged. Now we distinguish two cases.

Case 1: All |E| cycles which were cancelled to obtain g consist of edges e with
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γp(e) < 0 only. Then all edges added to Gf by these cancellations have posi-
tive reduced cost. As at least one edge with negative reduced cost is deleted
for each cancellation, only edges with nonnegative reduced cost can remain
in the residual graph after these |E| cancellations. Therefore, g is optimal:
ε(g) = 0, and the assertion holds.

Case 2: At least one of the cycles cancelled contains some edge with nonneg-
ative reduced cost with respect to p. Let C be the first cancelled cycle with
this property. All edges e added to Gf before C was cancelled have positive
reduced cost γp(e). Hence we have

γp(e) ≥ −ε for all e ∈ C and γp(e0) ≥ 0 for some edge e0 ∈ C.

Therefore

m(C) =
1
|C|

∑
e∈C

γ(e) =
1
|C|

∑
e∈C

γp(e)

≥ −(|C| − 1)ε
|C| ≥ −(1 − 1

|V | )ε.

Let h denote the circulation which has been changed by cancelling C. Then

µ(Gh, γ) = m(C) ≥ −(1 − 1
|V | )ε,

and hence, by Theorem 10.6.10,

ε(h) = −µ(Gh, γ) ≤ (1 − 1
|V | )ε.

Repeated application of Lemma 10.9.2 yields ε(g) ≤ ε(h), which implies the
assertion. ��

We need one further simple lemma.

Lemma 10.9.4. Let m be a positive integer, and let (yk)k∈N be a sequence of
nonnegative reals satisfying the condition

yk+1 ≤ (1 − 1
m

)yk for all k ∈ N.

Then yk+m ≤ yk/2 for all k ∈ N.

Proof. By hypothesis,

yk ≥ yk+1 +
yk+1

m − 1
for all k,

so that
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yk ≥ yk+1 +
yk+1

m − 1

≥ (yk+2 +
yk+2

m − 1
) +

yk+1

m − 1
≥ yk+2 +

2yk+2

m − 1

≥ . . . ≥ yk+m +
myk+m

m − 1
≥ 2yk+m. �

Theorem 10.9.5. Algorithm 10.9.1 determines in O(|V ||E|2 log |V |) itera-
tions an optimal circulation on (G, b, c).

Proof. Put k = |V ||E| �log |V | + 1� and divide the iterations of Algorithm
10.9.1 into phases of k subsequent cancellations. We claim that at least one
further edge of G becomes ε-fixed (for some appropriate ε) during each phase.
This yields the assertion, because the algorithm has to terminate at the latest
after all edges have become ε-fixed.

Now let f0 and fk be the circulations constructed directly before the first
cancellation and directly after the last cancellation of some phase, respectively.
Put ε = ε(f0) and ε′ = ε(fk), and let p be a potential corresponding to fk:

γp(v, w) ≥ −ε′ for all vw ∈ Gfk
.

By Lemma 10.9.3, any |E| subsequent cancellations decrease ε(f) by at least
a factor of 1 − 1/|V |. Using Lemma 10.9.4, this implies that any |V ||E| sub-
sequent cancellations decrease ε(f) by at least a factor of 1/2. Therefore,

ε′ ≤ ε × (
1
2
)�log |V |+1� ≤ ε

2|V | ,

so that
−ε ≤ −2|V |ε′. (10.17)

Now let C be the cycle which is used first during the phase under considera-
tion: f0 is changed cancelling C. Then, by Theorem 10.6.10,

m(C) = −ε in (Gf0 , γ).

By Lemma 10.6.3, also m(C) = −ε in (Gf0 , γp), and hence C contains an edge
e with γp(e) ≤ −ε. Then (10.17) yields γp(e) ≤ −2|V |ε′, and e is ε′-fixed by
Corollary 10.7.4. On the other hand, e was not ε-fixed, as e is contained in the
cycle C which was cancelled when f0 was changed. Thus at least one further
edge becomes δ-fixed (for some appropriate value of δ) during each phase. ��
Exercise 10.9.6. Assume that the cost function γ is integral. Show that Al-
gorithm 10.9.1 terminates after O(|V ||E| log(|V |C)) iterations, where

C = max {|γ(u, v)| : uv ∈ E} .

Using Exercise 10.6.13, Theorem 10.9.5, and Exercise 10.9.6 yields the
following result.
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Theorem 10.9.7. Algorithm 10.9.1 determines in O(|V |2|E|3 log |V |) steps
an optimal circulation on (G, b, c). If γ is integral, the complexity is also
bounded by O(|V |2|E|2 log(|V |C)). ��

The reader may find a more detailed examination of the number of can-
cellations needed by Algorithm 10.9.1 in [RaGo91]. Using appropriate data
structures and making some modifications in the way the negative cycles are
chosen, the bounds of Theorem 10.9.7 can be improved: one may obtain a
complexity of O(|V ||E|2(log |V |)2); see [GoTa89]. There also exist polynomial
algorithms which work with cancellations of cuts: these algorithms are – in
the sense of linear programming – dual to the algorithms where cycles are
cancelled; see [ErMcC93].

10.10 Some further problems

Let us close this chapter with some further problems which can be dealt
with using optimal circulations or optimal flows. We will also mention some
generalizations of the problems treated so far; however, we have to refer to
the literature for more information on most of these problems. An even more
general version of the following problem will be studied in detail in Chapter 11.

Example 10.10.1 (transshipment problem). Let G = (V, E) be a digraph
with a nonnegative capacity function c : E → R and a nonnegative cost
function γ : E → R. Moreover, let X and Y be disjoint subsets of V ; we
call the elements of X sources and the elements of Y sinks, as in Section
7.7. Again, we associate with each source x a supply a(x) and with each sink
y a demand b(y), where the functions a and b are nonnegative. As in the
supply and demand problem of Section 7.7, we require a feasible flow9 on
(G, c): a mapping f : E → R satisfying conditions (ZF 1) to (ZF 4) of Section
7.7. Moreover, we want to find an optimal flow among all feasible flows; that
is, a flow of minimal cost with respect to γ. This transshipment problem is
the weighted version of the supply and demand problem. Again, we add a
new source s, a new sink t, all edges sx with capacity c(sx) = a(x), and all
edges yt with capacity c(yt) = b(y). We also extend the cost function γ by
putting γ(sx) = 0 and γ(yt) = 0. Then an optimal flow of value

∑
b(y) on

the resulting flow network N gives a solution for our problem. To find such
a solution, we may, for example, use the algorithm of Busacker and Gowen
presented in Section 10.5.

Example 10.10.2 (transportation problem). A transshipment problem
for which V = X

.∪ Y holds is called a transportation problem. In this case,
there are no intermediate nodes: each vertex of V is either a source or a sink. If
G is the complete bipartite graph on X

.∪ Y , the problem is called a Hitchcock

9Sometimes, there are upper bounds placed also on the capacities of the edges.
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problem; see [Hit41]. Note that the assignment problem of Example 10.1.4 is
a special Hitchcock problem: it is the case with |X| = |Y | where all capacities
and all the values a(x) and b(y) are equal to 1.

We have seen that the Hitchcock problem is a very special case of the
problem of finding optimal flows on a flow network. Conversely, it can be
shown that the general problem of finding optimal flows can be transformed
to a Hitchcock problem (even without capacity constraints) on an appropriate
bipartite graph; see, for example, [Law76, §4.14].

The transshipment problem (with or without capacity constraints) is often
solved in practice using a special version of the simplex algorithm of linear
programming, namely the so-called network simplex algorithm which we will
study in the next chapter. A very good presentation of this method can also
be found in part III of [Chv83], a book that is recommendable in general.10

Although the network simplex method can be rather bad when applied to cer-
tain pathological networks [Zad73a], it is spectacularly successful in practice.
As Chvátal puts it: ‘It takes just a few minutes to solve a typical problem with
thousands of nodes and tens of thousands of arcs; even problems ten times
as large are solved routinely.’ Meanwhile, polynomial variants of the network
simplex method have been found; see [OrPT93], [Orl97], and [Tar97].

Finally, we mention some generalizations of the flow problems treated in
this book. In Section 12.2, we consider multiterminal problems, where we want
to determine the maximal flow values between all pairs of vertices; usually,
the graph underlying such a network is assumed to be undirected.

More about the following three generalizations can be found in [FoFu62],
[GoMi84], and [AhMO93]. For some practical problems, it makes sense to
consider flows with gains or losses : the quantity of flow entering an edge at
vertex u is changed by a factor mu while passing through that edge. This may
serve as a model for exchanging currencies11, or for losses in a water supply
system due to evaporation. A weakly polynomial algorithm for this problem
can be found in [GoPT91].

One also considers networks on which different flows occur simultaneously
without intermingling (multicommodity flows); see, for example, [Lom85]. A
polynomial algorithm for this problem was given by Tardos [Tar86].

Finally, one also studies dynamic flows: here transversal times are assigned
to the edges; this is definitely relevant for traffic networks. This problem can
be reduced to flows in the usual sense; see [FoFu58a, FoFu62].

We also mention an interesting collection of papers concerning various
network problems: [KlPh86].

10The author of the present book thinks that the most intuitive way to become
acquainted with problems of combinatorial optimization is the presentation in a
graph theory context; however, the theory of linear programming is indispensable
for further study.

11[Gro85, §8.2] shows an actual example where a chain of transactions resulting
in a gain occurs.
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A detailed discussion how actual problems from the practice of operations
research may be modelled as network problems is beyond the scope of this
book; at least, we have seen a few examples already. Modelling is an extremely
important – and by no means trivial – task, and it has to be accomplished be-
fore any of the mathematical algorithms presented in this book can be applied.
We recommend the monograph [GlKP92] for more about this subject, and the
references given there for further actual case studies. An interesting more re-
cent application is in [JaKR93]: two models for deciding between delays and
cancellations of flights when planes cannot be used as scheduled. In particu-
lar, an optimal flow problem is solved in this context using the algorithm of
Busacker and Gowen.
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The Network Simplex Algorithm

O sancta simplicitas!

John Huss

For practical applications, by far the most useful optimization algorithm for
solving linear programs is the celebrated simplex algorithm. With professional
implementation it has a remarkable performance: problems with ≈1000 vari-
ables and ≈1000 restrictions can be dealt with within 0.1 to 0.5 seconds. This
suggests trying to apply this algorithm also to problems from graph theory. In-
deed, the most important network optimization problems may be formulated
in terms of linear programs; this holds, for instance, for the determination of
shortest paths, maximal flows, optimal flows, and optimal circulations.

Nevertheless, a direct application of the usual simplex algorithm would
make no sense, as the resulting programs would be unwieldy and highly de-
generate. These two problems are avoided by using a suitable graph theoretic
specialization of the simplex algorithm, the network simplex algorithm. This
algorithm is usually formulated in terms of a standard problem which we will
introduce in the first section, namely the minimum cost flow problem; all other
problems of practical interest admit easy transformations to this problem.

For a long time, the existence of a provably efficient version of the net-
work simplex algorithm was one of the major open problems in complexity
theory, even though it was clearly the most efficient practical algorithm for
the minimum cost flow problem. This problem was finally solved by Orlin
[Orl97] who gave an implementation with complexity O(|V |2|E| log(|V |C)),
where C = max {|γ(e)| : e ∈ E} is the maximum of the cost values appearing.
An improved complexity bound of O(|V ||E| log |V | log(|V |C)) was achieved
in [Tar97]. For more background, we also mention the books [Chv83] and
[BaJS90] as well as the papers [GoHa90], [GoHa91], and [GoGT91]; in these
papers, suitable dual versions of the network simplex algorithm were shown
to have polynomial running time – something of a breakthrough.

In this book, we have decided to emphasize the graph theoretical aspects
of combinatorial optimization while avoiding the theory of linear program-
ming as much as possible. In view of this philosophy, it is very fortunate that
the network simplex algorithm may be dealt with entirely in graph theoretic
terms, with no need to appeal to linear programming. This will be done in the
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present chapter, using many of the ideas and concepts we have already met.
Nevertheless, a working knowledge of the ordinary simplex algorithm would,
of course, be helpful: it would provide additional motivation for the notions
to be introduced in this chapter.

11.1 The minimum cost flow problem

The minimum cost flow problem (MCFP) is arguably the most fundamental
among the flow and circulation problems, as all such problems may be trans-
formed easily to the MCFP, and as this problem can be solved extremely
efficiently using the network simplex algorithm. The MCFP is a common gen-
eralization of the transshipment problem defined in Example 10.10.1 (where
additional lower capacity restrictions are added) and the minimum cost circu-
lation problem studied extensively in Chapter 10 (where the flow conservation
condition is replaced by a demand condition).

Definition 11.1.1 (minimum cost flow problem). Let G = (V, E) be a
connected digraph, and let the following data be given:

• upper and lower capacity functions b : E → R and c : E → R, respectively;
• a cost function γ : E → R;
• a demand function d : V → R with

∑
v∈V d(v) = 0.

The minimum cost flow problem (MCFP) requires the determination of a
mapping f : E → R with minimal cost γ(f) =

∑
e∈E γ(e)f(e) subject to the

following two conditions:

(F1) b(e) ≤ f(e) ≤ c(e) for all e ∈ E (capacity restrictions);

(F2)
∑

e+=v f(e)−∑e−=v f(e) = d(v) for all v ∈ V (demand restrictions).

Vertices with a negative demand (which we might also view as a supply, as
in the supply and demand problem studied in Section 7.7) are called sources,
and vertices with a positive demand are referred to as sinks; all other vertices
may again be considered as transshipment nodes. A flow is a map f : E → R

satisfying the demand restrictions for all v ∈ V ; if, in addition, the capacity
restrictions hold for all e ∈ E, one speaks of an admissible flow. Thus the
MCFP asks for an admissible flow of minimum cost.

A small example of an MCFP is displayed in Figure 11.1; and in Table
11.1 we indicate how some other standard problems can be transformed into
MCFP’s.

Before we can try to find a flow of minimum cost, we have to decide if there
are admissible flows at all. To this purpose, we shall generalize the supply and
demand theorem 7.7.1 to the case where a lower capacity function appears;
this is similar to the transformation used in Section 10.2 to decide if there are
feasible circulations.
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Fig. 11.1. A minimum cost flow problem

Table 11.1. Some problem transformations

Problem Specifications

Shortest path from s to t
with respect to lengths w

b ≡ 0; c ≡ 1; γ = w; d(s) = −1; d(t) = 1;
d(v) = 0 for v �= s, t

Maximum flow for the flow
network N = (G, c1, s, t)

b ≡ 0; c = c1; d(v) = 0 for v ∈ V ; γ(e) = 0 for
e ∈ E; new return arc ts with γ(ts) = −1,
b(ts) = 0, c(ts) =

∑
e−=s c1(e)

circulation problem d(v) = 0 for v ∈ V ; remaining data as given

As in the context of circulations, a cut will just be a partition V = S
.∪ T ,

and the capacity of such a cut is

c(S, T ) =
∑

e−∈S,e+∈T

c(e) −
∑

e+∈S,e−∈T

b(e).

We can now prove the following common generalization of Theorems 7.7.1
and 10.2.7.

Theorem 11.1.2. An MCFP P as in Definition 11.1.1 allows an admissible
flow if and only if the following condition holds for every cut V = S

.∪ T :
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c(S, T ) ≥
∑
v∈T

d(v). (11.1)

Proof. By Theorem 7.7.1, the assertion holds provided that b(e) = 0 for all
e ∈ E. If this is not the case, we put

b′(e) = 0 for e ∈ E,

c′(e) = c(e) − b(e) for e ∈ E,

d′(v) = d(v) +
∑

e−=v

b(e) −
∑

e+=v

b(e) for v ∈ V,

and denote the resulting problem by P ′; the cost function is immaterial in
this context. One easily checks that a mapping f is an admissible flow for P
if and only if the mapping g defined by

g(e) = f(e) − b(e) for e ∈ E

is an admissible flow for P ′. By Theorem 7.7.1, there is an admissible flow for
P ′ – and hence also for P – if and only if the condition

c′(S, T ) ≥
∑
v∈T

d′(v) (11.2)

holds for every cut (S, T ). But

c′(S, T ) =
∑

e−∈S,e+∈T

(c(e) − b(e)) = c(S, T ) +
∑

e+∈S,e−∈T

b(e) −
∑

e−∈S,e+∈T

b(e)

and ∑
v∈T

d′(v) =
∑
v∈T

d(v) +
∑

e−∈T,e+∈S

b(e) −
∑

e+∈T,e−∈S

b(e).

Because of these two equalities, (11.1) holds if and only if (11.2) holds. ��

11.2 Tree solutions

Consider an MCFP P on a digraph G, and let T be a spanning tree for G.
An admissible flow f is called a tree solution for P (with respect to T ) if the
flow value f(e) is either the lower capacity b(e) or the upper capacity c(e)
of e, whenever e is an edge outside of T . As we will see, the existence of an
admissible flow for P implies the existence of an optimal tree solution for P .
Moreover, a non-optimal tree solution may always be improved to a better tree
solution by exchanging just one edge, as in Section 4.3. The network simplex
algorithm uses operations of this type until an optimal tree solution is reached.
These exchange operations are much simpler and may also be implemented
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much more efficiently than the cycle cancelling operations used in Chapter
10; this is the major advantage of the network simplex algorithm.

Now let f be an admissible flow for P . We call an edge e free (with respect
to f) provided that b(e) < f(e) < c(e). Thus f is a tree solution for P if and
only if there is some spanning tree T containing all the free edges. It should
be noted that we do not require that all edges of T be free: an admissible flow
f may be a tree solution with respect to different spanning trees. We now
prove the following fundamental result already mentioned above.

Theorem 11.2.1. Let P be an MCFP on a digraph G, as in Definition 11.1.1.
If P allows an admissible flow, then it also admits an optimal tree solution.

Proof. We use a continuity argument as in the proof of Theorem 6.1.6. As the
set of admissible flows for an MCFP is a compact subset of R|E| and as the cost
function is continuous, there exists some optimal solution f . We may assume
that the free edges with respect to f are not contained in a spanning tree for
G; otherwise, there is nothing to prove. Then there exists an (undirected) cycle
C in G consisting of free edges only; hence we may augment f by cancelling
this cycle; it is immaterial which of the two possible orientations of C we use.
(Cancelling a cycle is, of course, done exactly as in Chapter 10 and formally
described in Algorithm 10.4.1.) As in the case of circulations, the cost of both
orientations of C clearly has to be nonnegative (and then actually 0), because
of the optimality of f . After cancelling C, at least one edge reaches either its
lower or upper capacity bound, and therefore is no longer free with respect
to the resulting optimal flow f ′. Hence this operation decreases the number
of free edges by at least one. Continuing in this way, we will eventually reach
an optimal flow g such that the set F of free edges with respect to g does not
contain any cycle. As G is connected, F is contained in a spanning tree for G,
and hence g is an (optimal) tree solution. ��

Now let T be some spanning tree for G. In general, there will be many tree
solutions with respect to T , as each edge in E \ T may reach either its lower
or its upper capacity. Indeed, we can obtain a candidate for a tree solution by
prescribing a lower or upper capacity for each e ∈ E \ T :

Lemma 11.2.2. Consider an MCFP P on a digraph G, let T be a spanning
tree for G, and let E \T = L

.∪ U be any partition of E \T . Then there exists
a unique flow f satisfying f(e) = b(e) for all e ∈ L and f(e) = c(e) for all
e ∈ U .

Proof. Put

f(e) = b(e) for all e ∈ L and f(e) = c(e) for all e ∈ U. (∗)

Now let v be any leaf of T , and e the unique edge of T incident with v. Then
the demand restriction for v together with (∗) uniquely determines the flow
value f(e). The same reasoning may then be applied to each leaf of the tree
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T \ e etc. In this way, one recursively defines the flow values f(e) for all edges
e ∈ T while simultaneously satisfying all demand restrictions. ��

One calls a partition L
.∪ U of E \ T a tree structure. Note that the flow

constructed in Lemma 11.2.2 (for a prescribed tree structure (T, L, U)) is
not necessarily admissible. Thus it makes sense to call (T, L, U) admissible or
optimal if the associated flow has the respective property.

We now prove an optimality criterion which will allow us to decide if a tree
solution is already optimal. Recall that a potential is just a map π : V → R,
and that the associated reduced cost function is defined by

γπ(uv) = γ(uv) + π(u) − π(v) for uv ∈ E.

Theorem 11.2.3. An admissible tree structure (T, L, U) for an MCFP is op-
timal if and only if there exists a potential π : V → R satisfying

γπ(e)

⎧⎨
⎩

= 0 for all e ∈ T,

≥ 0 for all e ∈ L,

≤ 0 for all e ∈ U.

(11.3)

Proof. Let g : E → R be any flow. Then

γπ(g) =
∑

uv∈E

g(uv)(γ(uv) + π(u) − π(v))

=
∑

uv∈E

g(uv)γ(uv) +
∑
u∈V

∑
e−=u

g(e)π(u) −
∑
v∈V

∑
e+=v

g(e)π(v)

= γ(g) +
∑
v∈V

π(v)(
∑

e−=v

g(e) −
∑

e+=v

g(e))

= γ(g) −
∑
v∈V

π(v)d(v),

where we have used the demand restrictions in the final step. Thus γπ(g) and
γ(g) differ only by a constant which is independent of g. Hence an admissible
flow is optimal for the cost function γ if and only if it is optimal for γπ.

Let f : E → R be the admissible flow defined by an admissible tree struc-
ture (T, L, U) satisfying (11.3). By definition,

f(e) = b(e) for all e ∈ L and f(e) = c(e) for all e ∈ U. (11.4)

Now consider an admissible flow g. By (11.3) and (11.4),

γπ(g) =
∑
e∈T

g(e)γπ(e) +
∑
e∈L

g(e)γπ(e) +
∑
e∈U

g(e)γπ(e)

=
∑
e∈L

g(e)γπ(e) +
∑
e∈U

g(e)γπ(e)

≥
∑
e∈L

b(e)γπ(e) +
∑
e∈U

c(e)γπ(e)

=
∑
e∈E

f(e)γπ(e) = γπ(f).
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Thus f is optimal for the reduced cost function γπ and hence also for γ. ��
The potential in the optimality condition (11.3) has the property that

all edges of some spanning tree have reduced cost 0. The network simplex
algorithm uses potentials of this kind only. We next show that any spanning
tree T determines such a potential, which is unique up to prescribing one
value.

Lemma 11.2.4. Let (T, L, U) be a tree structure for an MCFP, and let x be
any vertex. Then there exists a unique potential π satisfying

π(x) = 0 and γπ(e) = 0 for all e ∈ T. (11.5)

Proof. More explicitly, condition (11.5) requires

γ(uv) + π(u) − π(v) = 0 for each edge e = uv ∈ T (∗).

Because of π(x) = 0, the values π(r) are determined by (∗) for every vertex r
adjacent to x. In the same way, π is then also determined for the neighbors of
these vertices etc. As T contains a unique path from x to every other vertex
of G, condition (∗) indeed yields a unique potential π with π(x) = 0. ��

11.3 Constructing an admissible tree structure

To start the network simplex algorithm, we need some admissible tree struc-
ture for the given MCFP. This can be achieved by a suitable transformation.

Table 11.2. The auxiliary problem P ′

V ′ = V ∪ {x} (with x /∈ V )

d′(v) = d(v) for v ∈ V ; d′(x) = 0

E′ = E ∪ {xv : d(v) +
∑

e+=v b(e) −∑
e−=v b(e) < 0}

∪ {vx : d(v) +
∑

e+=v b(e) −∑
e−=v b(e) ≥ 0}

b′(e) = b(e) for e ∈ E; b′(xv) = 0 for xv ∈ E′; b′(vx) = 0 for vx ∈ E′

c′(e) = c(e) for e ∈ E;

c′(xv) = d(v) −∑
e+=v b(e) +

∑
e−=v b(e) + 1 for xv ∈ E′;

c′(vx) = −d(v) +
∑

e+=v b(e) −∑
e−=v b(e) + 1 for vx ∈ E′

γ′(e) = γ(e) for e ∈ E; γ′(xv) = M for xv ∈ E′; γ′(vx) = M

for vx ∈ E′, where M := 1 + 1
2
|V |max {|γ(e)| : e ∈ E}
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Theorem 11.3.1. Consider an MCFP P on a digraph G = (V, E) as in
11.1.1, and let the auxiliary MCFP P ′ be given by the data in Table 11.2.1

Then there exists an optimal solution g for P ′. Moreover, we have one of the
following two alternatives:

• If g(xt) > 0 for some xt ∈ E′, then there exists no admissible flow for P .

• If g(xv) = 0 for all xv ∈ E′, then the restriction f of g to E is an optimal
flow for P .

Proof. The map h defined by h(e) = b(e) for e ∈ E and h(e) = c′(e) − 1 for
e ∈ E′ \ E obviously satisfies the capacity restrictions for P ′. We check that
the demand restrictions are likewise satisfied. Let v be an arbitrary vertex in
V , and assume first xv ∈ E′. Then∑

e∈E′
e+=v

h(e) −
∑
e∈E′
e−=v

h(e) = h(xv) +
∑
e∈E

e+=v

b(e) −
∑
e∈E

e−=v

b(e)

= c′(xv) − 1 +
∑
e∈E

e+=v

b(e) −
∑
e∈E

e−=v

b(e)

= d(v) = d′(v).

Now assume vx ∈ E′. Then∑
e∈E′
e+=v

h(e) −
∑
e∈E′
e−=v

h(e) = −h(vx) +
∑
e∈E

e+=v

b(e) −
∑
e∈E

e−=v

b(e)

= −c′(vx) + 1 +
∑
e∈E

e+=v

b(e) −
∑
e∈E

e−=v

b(e)

= d(v) = d′(v).

This proves the validity of the demand restrictions for all vertices in V . It
remains to check the new vertex x:∑

e∈E′
e+=x

h(e) −
∑
e∈E′
e−=x

h(e) =
∑

vx∈E′
(c′(vx) − 1) −

∑
xv∈E′

(c′(xv) − 1)

=
∑
v∈V

⎛
⎜⎝−d(v) −

∑
e∈E

e+=v

b(e) +
∑
e∈E

e−=v

b(e)

⎞
⎟⎠

= −
∑
v∈V

d(v) −
∑
e∈E

b(e) +
∑
e∈E

b(e)

= 0 = d′(x).

1The purpose of the constants +1 appearing in the definition of c′ is to make
the auxiliary problem nondegenerate.
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Hence h is an admissible flow for P ′, and by Theorem 11.2.1 P ′ admits an
optimal flow, in fact even an optimal tree solution. Let us choose any optimal
flow g.

Case 1. g(xt) > 0 for some xt ∈ E′.

We first claim that no cycle C in P ′ can contain two edges xv and wx satisfying
g(xv) > 0 and g(wx) > 0, and such that one may cancel C, where we use
the orientation of C opposite to that of xv. Assume otherwise. Note that C
contains at most |V | − 1 edges besides xv and wx and that

−2M + (|V | − 1) max {|γ(e)| : e ∈ E} < −2M + 2M = 0.

Therefore augmenting g by cancelling C would strictly decrease the cost, which
contradicts the optimality of g. This proves our auxiliary claim.

Now let us assume, by way of contradiction, that there exists an admissible
flow for P . Then every cut V = S

.∪ T satisfies

c(S, T ) ≥
∑
v∈T

d(v), (11.6)

by Theorem 11.1.2. Choose a vertex t with g(xt) > 0, and let T denote the set
of all vertices v ∈ V for which one may be reach t via an augmenting path for
g.2 Assume g(vx) > 0 for some v ∈ T . Then we can construct a cycle through
xt and vx along which we may augment in the opposite direction of xt: an
augmenting path from v to t, followed by the backward edges xt and vx. This
contradicts our auxiliary claim above, and we conclude

g(vx) = 0 or vx �∈ E′ for all v ∈ T. (11.7)

Now put S = V \ T . Then

g(e) =

{
c(e) if e− ∈ S, e+ ∈ T,

b(e) if e+ ∈ S, e− ∈ T ;
(11.8)

for otherwise we could reach t via an augmenting path from either e− ∈ S or
e+ ∈ S, contradicting the definition of T . Equation (11.8) implies∑

e+∈T

g(e) −
∑

e−∈T

g(e) =
∑

e−∈S,e+∈T

g(e) −
∑

e+∈S,e−∈T

g(e)

=
∑

e−∈S,e+∈T

c(e) −
∑

e+∈S,e−∈T

b(e)

= c(S, T ).
2By analogy with Chapter 6, a path W from v to t is called an augmenting path

with respect to g if g(e) < c(e) holds for every forward edge e ∈ W , and g(e) > b(e)
holds for every backward edge e ∈ W .
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Let us put g(xv) = 0 if xv �∈ E′, and g(vx) = 0 if vx �∈ E′. Using the preceding
equation together with (11.7) and g(xt) > 0, we compute

∑
v∈T

d(v) =
∑
v∈T

⎛
⎝ ∑

e∈E′,e+=v

g(e) −
∑

e∈E′,e−=v

g(e)

⎞
⎠

=
∑
v∈T

⎛
⎝g(xv) − g(vx) +

∑
e∈E,e+=v

g(e) −
∑

e∈E,e−=v

g(e)

⎞
⎠

=
∑
v∈T

g(xv) +
∑

e∈E,e+∈T

g(e) −
∑

e∈E,e−∈T

g(e)

=
∑
v∈T

g(xv) + c(S, T ) > c(S, T ),

contradicting (11.6). Thus P does not allow an admissible flow, which proves
the assertion in Case 1.

Case 2. g(xv) = 0 for all xv ∈ E′.

As d′(x) = 0, we must also have g(vx) = 0 for all vx ∈ E′. Thus the restriction
f of g to E is an admissible flow for P . If P were also to admit a flow f ′ with
strictly smaller cost, we could extend f ′ to an admissible flow for P ′ by putting
f ′(e) = 0 for all e ∈ E′ \ E; but this flow would have smaller cost than the
optimal flow g, a contradiction. Hence f is indeed an optimal flow for P . ��

As we have seen, the auxiliary problem P ′ always allows an admissible flow
and hence, by Theorem 11.2.1, also an admissible tree structure. We shall now
exhibit one such structure explicitly.

Lemma 11.3.2. Let P ′ be the auxiliary MCFP given by the data in Table
11.2, and put

T = {xv : xv ∈ E′} ∪ {vx : vx ∈ E′}, L = E, and U = ∅.

Then (T, L, U) is an admissible tree structure for P ′.

Proof. Since x is joined to each vertex in V by exactly one edge, T is indeed
a spanning tree for G′ = (V ′, E′). Let g be the flow associated with (T, L, U)
according to Lemma 11.2.2. Then g(e) = b(e) for all e ∈ E. Now the demand
restrictions determine the values g(xv) and g(vx) uniquely, and thus g agrees
with the admissible flow defined in the first part of the proof of Theorem
11.3.1. Hence (T, L, U) is indeed admissible for P ′. ��
Exercise 11.3.3. Fill in the details of the proof of Lemma 11.3.2 and show
that g indeed agrees with the tree solution associated with (T, L, U).
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It should also be noted that it is not absolutely necessary to introduce the
auxiliary problem P ′: there are other ways to determine an admissible tree
structure for P .3 One first constructs an arbitrary feasible solution; as in the
special case of circulations, this can be done efficiently. Then one cancels free
cycles as long as possible, and finally uses the remaining free edges together
with suitable other edges to determine an admissible tree solution. In my group
at the University of Augsburg, we have implemented such an algorithm in the
free software package GOBLIN which treats many fundamental optimization
problems for graphs and networks; GOBLIN is available from the URL

http://www.math.uni-augsburg.de/opt/goblin.html

Another implementation of the network simplex algorithm which may be ob-
tained free of charge for academic use is the MCFZIB-code; see

http://www.zib.de/Optimization/Software/Mcf/

11.4 The algorithm

We can now describe the general structure of the network simplex algorithm,
though we will have to be more specific later to ensure termination. It will
simplify matters to deviate from our usual way of writing algorithms and just
give a very concise description split into appropriate blocks.

Algorithm 11.4.1 (network simplex algorithm). Let P be an MCFP on
a digraph G as in Definition 11.1.1, and let P ′ be the associated auxiliary
MCFP P ′ with the data given in Table 11.2.

1. Initialization. Put

T = E′ \ E; L = E; U = ∅;
f(e) = b(e) for e ∈ E and f(e) = c′(e) − 1 for e ∈ E′ \ E;

π(x) = 0; π(v) = M for v ∈ V with xv ∈ E′; and
π(v) = −M for v ∈ V with vx ∈ E′.

3The approach of Theorem 11.3.1 corresponds to the big-M method in linear
programming. There is a major difference, though: for an MCFP, we can explicitly
select a reasonable value of M , whereas for general linear programs M has to be
taken really huge – which automatically leads to numerical problems. For instance,
with M = 1016 and a standard floating point arithmetic accurate to 15 digits,
computing a sum M + x with 0 < x < 10 has no meaning. In other words, the big-
M method is of theoretical interest, but not suitable for practical use. In contrast,
the method in Theorem 11.3.1 also works very well in practice. A value of M which
is so large that it would lead to numerical instability could arise only if some cost
values differ by ≈ 1015/|V |, which is not the case in practical applications.
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2. Optimality test. If there is no e ∈ L ∪ U with either

e ∈ L and γπ(e) < 0 or e ∈ U and γπ(e) > 0 (∗)
stop: in case f(e) > 0 for some e ∈ E′ \ E, there is no admissible flow for P ;
otherwise, the restriction f of g to E is an optimal flow for P .

3. Pricing. Choose some e ∈ L ∪ U satisfying (∗) and determine the unique
cycle C contained in T ∪ {e}.
4. Augmenting. Consider C as oriented in the direction of e if e ∈ L, and as
oriented in the direction opposite to that of e if e ∈ U . Augment f (by an
amount of δ) by cancelling C, so that at least one edge of C reaches either
its upper or lower capacity bound. Choose such an edge a; here a = e is only
permissible in case δ > 0.

5. Update. Put

T = (T \ {a}) ∪ {e},

L =
{

(L \ {e}) ∪ {a} if a reaches its lower capacity bound
L \ {e} if a reaches its upper capacity bound,

U = E′ \ (T ∪ L),

and compute the unique potential π associated with (T, L, U) satisfying
π(x) = 0, as outlined in the proof of Lemma 11.2.4. Go to Step 2.

Now consider an iteration taking place during the course of the algorithm.
The arc e selected in Step 3 is called the entering arc, and the unique cycle
C ⊂ T ∪{e} the associated pivot cycle. The arc a selected in Step 4 is referred
to as the leaving arc.

As in the case of the labelling algorithm or the algorithm of Klein, the
generic version of the network simplex algorithm given above does not nec-
essarily terminate. The reason behind this phenomenon is the possibility of
degenerate tree structures: tree structures (T, L, U) where T does not consist
of free edges only. In this case, a proper augmentation along the cycle de-
termined in Step 3 may be impossible: we may have δ = 0 in Step 4. Even
though we do change the tree T (as the leaving arc a is distinct from the the
entering arc e in this case), we might – after a series of updates – reach the
same tree structure (T, L, U) again. One says that the algorithm may cycle.
Indeed, this is a real danger, as it is not unusual in practical instances to have
90% of all tree structures degenerate. However, cycling can be prevented by
choosing the leaving arc appropriately; fortunately, the extra effort required
to do so even tends to speed up the algorithm by cutting down the number
of iterations needed.

We shall now explain in detail how one may prevent cycling. To this end, we
first choose a fixed vertex w which we will use as the root of all the spanning
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trees constructed during the course of the algorithm. Then an admissible
tree structure (T, L, U) will be called strongly admissible if, for every vertex
v �= w, the unique path from v to w in T is in fact an augmenting path
for the tree solution f canonically associated with (T, L, U). In particular, an
admissible tree structure (T, L, U) is strongly admissible provided that it is
nondegenerate; that is, if all edges of T are free.

In the initialization stage (Step 1), we choose w = x. Then the initial tree
structure (T, L, U) = (E′ \ E, E, ∅) is indeed strongly admissible for P ′: it is
admissible by Theorem 11.3.2, and we have g(xv) = c′(xv)−1 > 0 for xv ∈ E′

and g(vx) = c′(vx) − 1 < c′(vx) for vx ∈ E′, so that T is nondegenerate.
Now consider an iteration taking place during the course of the algorithm.

Let e be the entering arc selected in Step 3, and let C ⊂ T ∪ {e} be the
associated pivot cycle. We consider C as oriented in the direction of e if
e ∈ L, and as oriented in the direction opposite to that of e if e ∈ U . An arc
in C \ {e} will be called blocking if cancelling C results in a reaching either
its upper or its lower capacity bound. The unique vertex of C which is closest
to to the root w of T is called the apex of C. We will show that the following
selection rule for the leaving arc preserves the strong admissibility of all tree
structures occurring during the course of the algorithm.

Rule of the last blocking arc: Starting with the apex of the pivot cycle
C, traverse C according to its orientation and select the last blocking arc
encountered as the leaving arc.

To illustrate the rule of the last blocking arc in Figure 11.2, we have used
the following notation:

• W : The path from the apex to the last blocking arc, following the orien-
tation of C. In Figure 11.2, the apex is 2 and W = 2 − 3 − 5.

• W ′: The path from the apex to the last blocking arc, following the opposite
orientation of C. In Figure 11.2, W ′ = 2 − 4 − 6 − 8 − 10 − 9 − 7.

Theorem 11.4.2. Let (T, L, U) be a strongly admissible tree structure, and let
e �∈ T . If the leaving arc a is selected in Step 4 of Algorithm 11.4.1 according
to the rule of the last blocking arc, then the resulting tree structure in Step 5
is again strongly admissible.

Proof. Let f denote the tree solution associated with (T, L, U), and let g be the
admissible flow which results by cancelling C according to Step 4. It remains
to show that in the resulting spanning tree T ′ = (T ∪ {e}) \ {a} the path
leading from v to w is augmenting with respect to g (for every vertex v �= w).
We shall distinguish four cases.

Case 1. v is the apex of C. Then the paths from v to w in T ′ and T agree,
and the flow values have not been changed on the edges of this common path
Q. As (T, L, U) was strongly admissible, Q is augmenting with respect to f
and hence also with respect to g.
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Fig. 11.2. The rule of the last blocking arc

Case 2. v is on W ′. As a is the last blocking arc encountered by traversing
C from its apex following its orientation, no edge in W ′ can be blocking.
Therefore the path from v to the apex of C in T ′ is augmenting with respect
to g. In view of Case 1, the path from v to w in T ′ is likewise augmenting
with respect to g.

Case 3. v is on W . Let δ ≥ 0 be the amount of augmentation as in Step 4. In
case δ > 0, the flow f was increased on the edges of W by δ; hence the path
opposite to W (which ends in the apex of C) is augmenting with respect to
g. In view of Case 1, the path from v to w in T ′ is likewise augmenting with
respect to g. Now assume δ = 0. As a is not on W , the paths from v to w in
T ′ and T agree, and the flow values have not been changed on the edges of
this common path Q (because of δ = 0). As (T, L, U) was strongly admissible,
Q is augmenting with respect to f and hence also with respect to g.

Case 4. v is not on C. As (T, L, U) is strongly admissible, the path Z from
v to w in T is augmenting with respect to f . Assume first that Z and C are
disjoint. Then Z is also a path in T ′ which is augmenting also with respect to
g, as the flow values have not changed on Z. Otherwise let y be the first vertex
on Z which also belongs to C. Then the path from v to y in T ′ is augmenting
with respect to g (as before). By the previous three cases, the same conclusion
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holds for the path from y to w in T ′. Hence the path from v to w in T ′ is
likewise augmenting with respect to g. ��

We need a further auxiliary result for proving that the network simplex
algorithm terminates when using the rule of the last blocking arc.

Lemma 11.4.3. Let (T, L, U) be a tree structure occurring during the course
of Algorithm 11.4.1, and let π be the associated potential. Moreover, let a the
leaving arc and e = rs the entering arc, and denote the new potential (after
augmenting and updating) by π′. Finally, let T1 be the connected component
of T \ {a} containing w, and write T2 = V \ T1. Then

π′(v) =

⎧⎨
⎩

π(v) if v ∈ T1

π(v) + γπ(e) if v ∈ T2 and r ∈ T1

π(v) − γπ(e) if v ∈ T2 and r ∈ T2

Proof. Write T ′ = (T ∪ {e}) \ {a}. Then, by the definition of π′,

γ(uv) + π′(u) − π′(v) = 0 for all uv ∈ T ′. (11.9)

Let v be any vertex in T1. Then the paths from v to w in T ′ and T agree, and
from π(w) = π′(w) = 0 we conclude π′(v) = π(v).

Now assume r ∈ T1 and thus s ∈ T2. Then π′(r) = π(r) and hence
π′(s) = γ(rs) + π(r) = π(s) + γπ(rs) by (11.9). Note that the paths from s to
v in T ′ and T agree for every vertex v ∈ T2. Therefore π′(v) = π(v) + γπ(rs)
for all v ∈ T2.

Finally, assume r ∈ T2 and thus s ∈ T1. Then π′(s) = π(s) and therefore
π′(r) = −γ(rs) + π(s) = π(r) − γπ(rs) by (11.9). Note that the paths from r
to v in T ′ and T agree for every vertex v ∈ T2. Therefore π′(v) = π(v)−γπ(rs)
for all v ∈ T2. ��

In the following theorem, we assume that all data in our given MCFP are
rational. Of course, this is no real restriction from a practical point of view,
as we can represent only rational numbers in a computer anyway.

Theorem 11.4.4. Let P be an MCFP on a digraph G as in Definition 11.1.1,
and assume that all data b, c, d, γ are rational. Then the network simplex al-
gorithm 11.4.1 terminates after finitely many steps provided that the rule of
the last blocking arc is used for choosing the leaving arcs.

Proof. By multiplying all data by their lowest common denominator, we may
assume that the data are in fact integral. Then any augmentation by a positive
value decreases the cost by at least 1 unit. But the cost of any admissible flow
is bounded from below, so that there are only finitely many augmentations
with δ > 0. Hence it suffices to show that we can have only finitely many
consecutive augmentations with δ = 0.

Thus let us consider an augmentation with δ = 0, starting with a strongly
admissible tree structure (T, L, U). As usual, let C be the pivot cycle; e = rs
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the entering and a the leaving arc; π the potential associated with (T, L, U),
and π′ the potential resulting after augmenting and updating. According to
Step 3 in Algorithm 11.4.1, we distinguish two cases.

Case 1. e ∈ L and γπ(e) < 0. In this case, the orientation of e agrees with that
of C. Then a lies between the apex of C and r when we traverse C according to
its orientation. This is intuitively clear; see Figure 11.2. A formal proof can be
given as follows. Let Z be the path in T from the end vertex s of e to the apex
of C, following the orientation of C; in Figure 11.2, Z = 10− 8− 6− 4− 2. As
(T, L, U) is strongly admissible, Z is augmenting with respect to the associated
tree solution f . Because of δ = 0, no arc on Z can be blocking. In particular, a
indeed cannot lie on Z. This implies r ∈ T2, and thus π′(v) = π(v)−γπ(rs) >
π(v) for all v ∈ T2, by Lemma 11.4.3.

Case 2. e ∈ T and γπ(e) > 0. In this case, the orientation of e is opposite
to that of C. Now a lies between s and the apex of C when we traverse C
according to its orientation; this is similar to the corresponding argument in
the first case. Hence r ∈ T1, and thus π′(v) = π(v) + γπ(rs) > π(v) for all
v ∈ T2, by Lemma 11.4.3.

Note π′(v) = π(v) for all v ∈ T1, again by Lemma 11.4.3. Hence the sum
of all potentials p(v) increases by at least 1 in both cases. As w always has
potential 0, no potential can exceed |V |C, where C = max {|γ′(e)| : e ∈ E′} .
Hence the sum of all the potentials is bounded from above by |V |2C, and thus
the number of consecutive augmentations with δ = 0 is always finite. ��

11.5 Efficient implementations

During each iteration of Algorithm 11.4.1, we need to compute the current
pivot cycle C, augment along C, and update the potentials. In order to do all
this efficiently, one requires information about the current spanning tree. One
possibility for an efficient implementation uses so-called tree indices which we
will now introduce.

Recall that we have selected a fixed vertex w which serves as the root for
all spanning trees constructed during the course of the algorithm. Let T be
one of these spanning trees. We define the following tree indices for T :

• predecessor index: For every vertex v �= w, p(v) is the predecessor of v on
the path from w to v in T .

• depth index: For every vertex v, d(v) is the distance between v and w in
T ; thus d(v) is the number of edges on the path from w to v in T . In
particular, d(w) = 0.

• thread index: Let w, v1, ..., vn−1 be an ordering of the vertices according to
a depth first search on T with start vertex w. Then we put th(w) = v1,
th(vn−1) = w, and th(vi) = vi+1 for i = 1, ..., n−2. Thus the thread indices
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are used to describe a possible traversing of the vertex set according to a
DFS on T . Note that these indices are, in general, not uniquely determined
by T .

In Figure 11.3, we have drawn a spanning tree T with root w = 0. Below, the
values p(v), d(v), and th(v) are listed (where the DFS on T runs from left to
right).

root

T

0

1 2

3 4 5 6

7 8
9

v 0 1 2 3 4 5 6 7 8 9

p(v) – 0 0 1 1 2 2 3 3 5

d(v) 0 1 1 2 2 2 2 3 3 3

th(v) 1 3 5 7 2 9 0 8 4 6

Fig. 11.3. Tree indices

By adjoining the entering arc e to T , we create the pivot cycle C. With a
naive implementation, finding C would require a search of the entire tree T
and therefore cause a complexity of O(|V |). Using the predecessor and depth
indices, we only need O(|C|) instead. Practical experience shows that this will
often result in a speed-up by a factor of about n/ log n; thus we may hope
to find C about 1000 times faster for n = 10, 000. Similar speed-ups can be
achieved for the potential updates to be discussed later.

The following procedure will determine the apex of C, the value of δ used
in cancelling C, and also the leaving arc a as determined by the rule of the
last blocking arc.
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Algorithm 11.5.1. Let (T, L, U) be the current strongly admissible tree
structure, with tree indices p, d, th, entering arc e = rs and pivot cycle C.
For i �= w, denote the edge in T joining i and p(i) by e(i), and let r(i) be the
amount of flow which may still be sent through e(i) according to the orienta-
tion of C.
Procedure PIVOTCYCLE(G, b, c, d, γ, T, L, U, e; apex, a, δ)

(1) δ ← ∞;
(2) if e ∈ L then i ← r, j ← s else i ← s, j ← r fi;
(3) while i �= j do
(4) if d(i) > d(j)
(5) if r(i) < δ then δ ← r(i), a ← e(i) fi;
(6) i ← p(i)
(7) else
(8) if r(j) ≤ δ then δ ← r(j), a ← e(j) fi;
(9) j ← p(j)

(10) fi
(11) od;
(12) apex ← i.

Note that i and j have been defined in such a way that i is reached before
j when C is traversed according to its orientation. The vertices i and j run
during the procedure through two disjoint subtrees of T which meet in the
apex of C. Thus we have reached the apex in the moment when i = j. Then the
procedure terminates, and i is the apex of C, the arc a is the last blocking arc
of C, and δ is the maximal amount which may be used for augmenting along
C according to its orientation (and thus the amount involved in cancelling
this cycle).

In order to augment the current tree solution f associated with (T, L, U),
it is necessary to traverse C once again. While this is somewhat unfortunate,
it does result in an extra benefit which will turn out to be useful in updating
the potentials: we can decide if the start vertex r of the entering arc e = rs
lies in the subtree T1 defined in Lemma 11.4.3, via the variable subtree.

Algorithm 11.5.2. Let (T, L, U) be the current strongly admissible tree
structure, with tree indices p, d, th, entering arc e = rs, and pivot cycle C.
Moreover, let the apex of C, the value δ involved in cancelling C, and the
leaving arc a (as determined by the rule of the last blocking arc) be computed
via Algorithm 11.5.1.
Procedure AUGMENT(G, b, c, d, γ, T, L, U, e, apex, a, δ; subtree)

(1) i ← r; j ← s;
(2) while i �= apex do
(3) augment the flow value on e(i) by δ (in the direction of C);
(4) if e(i) = a then subtree = T2;
(5) i = p(i)
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(6) od;
(7) while j �= apex do
(8) augment the flow value on e(j) by δ (in the direction of C);
(9) if e(j) = a then subtree = T1;

(10) j = p(j)
(11) od

Of course, augmenting the flow value on an edge means either increasing or
decreasing it by δ, according to whether the orientation of the edge under
consideration agrees or disagrees with that of C.

When we remove the leaving arc a = uv from T , the tree splits into the two
connected components T1 and T2. By Lemma 11.4.3, the current potential π
does not change on T1 when we switch to the new tree structure by adding the
entering arc; and on T2, the new potential differs from π only by a constant.
Note that u is in T1 if and only if d(u) < d(v). By Lemma 11.4.3, the following
procedure correctly updates the potential.

Algorithm 11.5.3. Let (T, L, U) be the current strongly admissible tree
structure, with associated potential π and tree indices p, d, th, and let e = rs
be the entering arc. Moreover, let the value of subtree be as computed by
Algorithm 11.5.2.
Procedure PIUPDATE(G, b, c, d, γ, T, L, U, e, subtree;π)

(1) if subtree = T1 then y ← v else y ← u;
(2) if d(u) < d(v) then ε ← γπ(e) else ε ← −γπ(e);
(3) π(y) ← π(y) + ε, z ← th(y);
(4) while d(z) > d(y) do π(z) ← π(z) + ε, z ← th(y) od

Of course, there remains the task of efficiently updating the tree indices;
as this is quite technical and involved, we will omit a discussion of this topic
and refer the reader to [BaJS90] instead.

We have also left another major step in the network simplex algorithm
unspecified: the selection of the entering arc in the pricing step (3). Actually
the selection strategy chosen for this task plays a decisive role in the overall
performance of the algorithm. Practical rules are heuristics: they do not lead
to a provably polynomial complexity. An example for a rule that works very
well in practice is provided by the multiple partial pricing rule employed in
the MCFZIB-code mentioned before.
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Synthesis of Networks

What thought and care to determine the
exact site for a bridge, or for a fountain, and
to give a mountain road that perfect curve
which is at the same time the shortest. . .

Marguerite Yourcenar

Up to now, we have considered flows or circulations only on a given network.
But it is also quite interesting to study the reverse problem of designing a
network (as economically as possible) on which a flow meeting given require-
ments can be realized. On the one hand, we will consider the case where all
edges may be built with the same cost, and where we are looking for an undi-
rected network with lower bounds on the maximal values of a flow between
any two vertices. Both the analysis and design of such symmetric networks
use so-called equivalent flow trees; this technique has an interesting applica-
tion for the construction of certain communication networks which will be the
topic of Section 12.4. On the other hand, we shall address the question of how
one may increase the maximal value of the flow for a given flow network by
increasing the capacities of some edges by the smallest possible amount.

12.1 Symmetric networks

Let G = (V, E) be a graph with a nonnegative capacity function c : E → R;
we will call N = (G, c) a symmetric network. If we want to treat N in the
usual manner, we may replace G with its complete orientation

→
G and define

c accordingly: then c(xy) = c(yx) for every arc xy. Let us assume that G is
connected, so that

→
G is strongly connected. Then any two distinct vertices s

and t of G define an ordinary flow network : Nst = (
→
G, c, s, t). We will denote

the maximal value of a flow on Nst by w(s, t). Note that w is a symmetric
function: w(s, t) = w(t, s). We call w : V × V → R the flow function of the
symmetric network N ; for the sake of simplicity, we put w(x, x) = 0 for x ∈ V .
In Section 12.3, we will consider the construction of symmetric networks for a
prescribed flow function. In the present section, we study the basic question of
which symmetric functions w occur as flow functions. The following theorem
due to Gomory and Hu [GoHu61] gives a simple answer.
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Theorem 12.1.1. Let V be a set with n elements, and let w : V × V → R+
0

be a symmetric function. Then there exists a symmetric network N = (G, c)
with flow function w on an appropriate connected graph G = (V, E) if and only
if the following inequality holds whenever x, y, z are three distinct elements
of V :

w(x, y) ≥ min{w(x, z), w(z, y)}. (12.1)

Proof. First let N = (G, c) be an arbitrary symmetric network on the vertex
set V , and let x, y, z be any three distinct elements of V . By Theorem 6.1.6,
there exists a cut (S, T ) with x ∈ S and y ∈ T such that w(x, y) = c(S, T ).
If z is contained in S, we obtain w(z, y) ≤ c(S, T ) = w(x, y) by Lemma 6.1.2;
and if z is in T , we have w(x, z) ≤ c(S, T ) = w(x, y). Thus condition (12.1) is
satisfied for every flow function w.

Conversely, let w be a symmetric function satisfying (12.1). We consider
the complete graph K on V with weight function w and choose a maximal
spanning tree T of (K, w), as in Section 4.5. Now let x, y be any two distinct
vertices. By Theorem 4.5.4, the unique path from x to y in T is a path of
maximal capacity with respect to w; we denote this capacity by q(x, y). Then
q(x, y) ≥ w(x, y), because the edge xy is also a path from x to y. Using
induction, (12.1) implies

w(x1, xk) ≥ min{w(x1, x2), . . . , w(xk−1, xk)} (12.2)

for each k ≥ 3 and any k distinct vertices x1, . . . , xk. If we choose the vertices
on a path of maximal capacity from x to y for x1, . . . , xk, then (12.2) implies
w(x, y) ≥ q(x, y), and hence equality holds. Now put c(e) = w(u, v) for every
edge e = uv of T , and choose G = T and N = (T, c). As the path Px,y from
x to y in T is uniquely determined, the maximal value of a flow from x to
y in N equals the capacity q(x, y) = w(x, y) of Px,y. Therefore w is the flow
function of the symmetric network (T, c). ��
Corollary 12.1.2. Every flow function on a symmetric network can also be
realized on a tree. If the symmetric network N is defined on n vertices, the
flow function on N takes at most n − 1 distinct values.

Proof. The first claim follows from the proof of Theorem 12.1.1. The second
claim is clear: as a tree on n vertices has exactly n − 1 edges, at most n − 1
distinct weights and hence at most n − 1 distinct capacities occur. ��

The following further consequence of Theorem 12.1.1 will be used in the
next section.

Corollary 12.1.3. Let N be a symmetric network with flow function w. Then
the smallest two of the three values w(x, y), w(x, z), and w(y, z) coincide when-
ever x, y, z are three distinct elements of V .

Proof. We may assume that w(x, y) is the minimum of the three values in
question. Condition (12.1) shows that the two inequalities w(x, y) < w(x, z)
and w(x, y) < w(y, z) cannot hold simultaneously. ��
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Exercise 12.1.4. Let N = (G, c) be a symmetric network with flow function
w, and assume that G is a complete graph. Show that a spanning tree T of
G is an equivalent flow tree for N if and only if T is a maximal spanning tree
for the network (G, w). Here a tree T is called an equivalent flow tree for N if
the flow function of the symmetric network (T, w|T ) is equal to w.

Exercise 12.1.5. Show that every flow function may be realized on a path,
and give such a realization for the symmetric network of Figure 12.1. Hint:
Consider a pair (x, y) of vertices such that w(x, y) is maximal, and use induc-
tion on the number of vertices.

e f g

c d

b

a

1 7 8

10 2

4

Fig. 12.1. A symmetric network on a tree

Now let r : V ×V → R+
0 be a symmetric function which describes the flow

requirements for which we would like to construct a symmetric network: the
request function. We will allow the possibility that these flow requirements
do not satisfy the necessary condition (12.1) for a flow function, so that it is
not possible to realize these requirements exactly. This suggests the following
definitions. A network N = (G, c) on a connected graph G = (V, E) on V is
called feasible for a given request function r if the condition w(x, y) ≥ r(x, y)
is satisfied all x, y ∈ V . A minimal network for r is a feasible network for
which the overall capacity

c(E) =
∑
e∈E

c(e)

is minimal among all feasible networks: we want to minimize the sum of the
capacities of all the edges we have to provide. This makes sense, for example,
if the cost of building an edge depends linearly on the capacity we want to
install only, but not on the choice of the edge. Of course, this assumption is
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not always realistic: in traffic networks, for example, the cost of building an
edge will usually depend both on the terrain and on the distance between
the start and the end vertex. Hence a cost function of the form

∑
γ(e)c(e)

would clearly be more useful; it is possible to treat this case as well, albeit
with considerably more effort; see [GoHu62]. The special case we consider here
admits a particularly elegant solution which we shall present in Section 12.3.
Before doing so, let us have a closer look at analyzing symmetric networks
and at the synthesis of equivalent flow trees.

12.2 Synthesis of equivalent flow trees

In this section, we provide an efficient way to analyze a given symmetric
network N = (G, c) on a graph G = (V, E) – that is, to determine its flow
function w. Recall that we may calculate with complexity O(|V |3) the value
of the flow between any two given vertices, by Theorems 6.4.8 and Theorem
6.6.13. As the number of pairs of vertices is |V |(|V | − 1)/2, the flow function
can certainly be determined with a complexity of O(|V |5): just run one of
the standard algorithms for all pairs of vertices. However, Corollary 12.1.2
suggests that we ought to be able to do better, since there are at most |V |−1
distinct flow values. This is indeed possible: Gomory and Hu [GoHu61] proved
that it suffices to compute |V | − 1 flow values on suitable (smaller) networks
obtained from N by condensing, which leads to a complexity of O(|V |4) for de-
termining w. A detailed description of their rather complicated algorithm can
be found in §IV.3 of [FoFu62]. We present an alternative, considerably simpler
technique due to Gusfield [Gus90] which likewise works with computing just
|V | − 1 flow values.

As we saw in the proof of Theorem 12.1.1, there exist a spanning tree T on
V and a weight function w : T → R+

0 such that the capacity of the path from x
to y is equal to the value w(x, y) of the flow function for all pairs x, y ∈ V . This
means that T is an equivalent flow tree for N .1 We shall present Gusfield’s
algorithm in a rather concise and informal way. The algorithm requires the
determination of a minimal cut (S, T ) for a flow network (G, c, s, t). Such a cut
may be found by applying a labelling procedure (see Corollary 6.1.4) after a
maximal flow has been found. More precisely, this task can be performed with
complexity O(|E|) if we apply the procedure AUXNET modified according to
Exercise 6.3.19. Therefore we may use any algorithm for determining maximal
flows as a subroutine for finding the required cuts in Gusfield’s algorithm.

Algorithm 12.2.1. Let N = (G, c) be a symmetric network on G = (V, E),
where V = {1, . . . , n}. The algorithm determines an equivalent flow tree
(B, w). It also calculates a function p; for i �= 1, p(i) is the predecessor of

1Using this rather sloppy notation (that is, using the same symbol w for the
weight function on T as well as for the flow function on N) is justified, as w(x, y) =
w(e) for each edge e = xy of T .
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i on a path from vertex 1 to vertex i in B; thus B consists of the edges
{p(i), i} for i = 2, . . . , n.

Procedure FLOWTREE(G, c; B, w)

(1) B ← ∅;
(2) for i = 2 to n do p(i) ← 1 od;
(3) for s = 2 to n do
(4) t ← p(s);
(5) calculate a minimal cut (S, T ) and the value w of a maximal

flow in the flow network (G, c, s, t);
(6) B ← B ∪ {st}; w(s, t) ← w;
(7) for i = s + 1 to n do
(8) if i ∈ S and p(i) = t then p(i) ← s fi
(9) od

(10) od

Note that the function p in the procedure FLOWTREE defines a spanning
tree B on V throughout the algorithm: B is initialized in step (2) as a star
with center 1. During the s-th iteration, B is a tree for which all vertices i ≥ s
are leaves, where p(i) gives the unique neighbor of i in B. The neighbor of s
is chosen as the sink t, and a minimal cut (S, T ) for the network with source s
and sink t is calculated. Then one assigns the maximal value of a flow from s
to t as weight w = c(S, T ) to the edge st. Finally, in steps (7) to (9), we cut off
all leaves i > s which satisfy p(i) = t and are contained in S, and re-connect
all these vertices to s as leaves. Before proving that B is indeed an equivalent
flow tree for the given weight function when the algorithm terminates, let us
give an example.

Example 12.2.2. Consider the network of Figure 12.2, where the edge labels
give the capacities. Figure 12.3 shows the star with center 1 constructed during
the initialization and the tree resulting from the iteration for s = 2. During
this iteration, t = 1 and w(s, t) = 5 = c(S, T ) for the cut S = {2, 3, 5, 6, 7}
and T = {1, 4}. (In this simple example, it is not necessary to appeal to a
max-flow algorithm: the values of the flow and a minimal cut can always be
found by inspection.) Now the leaves 3, 5, 6, and 7 are cut off from t = 1 and
connected to s = 2 instead, and the edge {1, 2} is assigned weight 5.

During the next iteration, s = 3, t = 2, and w(S, T ) = 6 = c(S, T ) with
S = {1, 3, 4, 6, 7} and T = {2, 5}. The leaves 6 and 7 are cut off from t = 2
and connected to s = 3; edge {2, 3} is assigned weight 6. This yields the tree
on the left hand side of Figure 12.4. This tree is not changed during the two
subsequent iterations, but two more edges are assigned their weights. For s =
4, we have t = 1 and w(s, t) = 5 = c(S, T ) with S = {4}, T = {1, 2, 3, 5, 6, 7};
and for s = 5, we have t = 2 and w(s, t) = 3 = c(S, T ) with S = {5} and
T = {1, 2, 3, 4, 6, 7}. The next iteration yields a new tree: For s = 6 and t = 3,
we get w(s, t) = 4 = c(S, T ) for S = {6, 7} and T = {1, 2, 3, 4, 5}. Thus vertex
7 is cut off from vertex 3 and connected to vertex 6, yielding the tree on
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the right hand side of Figure 12.4. This tree remains unchanged during the
final iteration: for s = 7, we have t = 6, w(s, t) = 3 = c(S, T ) with S = {7}
and T = {1, 2, 3, 4, 5, 6}. It is easy to check that this final tree is indeed an
equivalent flow tree.
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Fig. 12.2. A symmetric network
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Fig. 12.3. Initialization and iteration s = 2

To show that Algorithm 12.2.1 is correct, we need some preliminaries. The
following lemma comes from [GoHu61].
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Fig. 12.4. Iterations s = 3, 4, 5 and s = 6, 7

Lemma 12.2.3. Let N = (G, c) be a symmetric network and (X, Y ) a min-
imal (x, y)-cut – that is, a minimal cut in the flow network (G, c, x, y) – for
two distinct vertices x and y of G. Moreover, let u and v be two vertices in
X and (U, V ) a minimal (u, v)-cut. If y ∈ U , then (U ∪ Y, V ∩ X) is also a
minimal (u, v)-cut; and if y ∈ V , then (U ∩X, V ∪Y ) is a minimal (u, v)-cut.

Proof. We may assume that none of the four sets

P = X ∩ U, Q = Y ∩ U, R = X ∩ V and S = Y ∩ V

is empty; otherwise the assertion is trivial. (For example, for Q = ∅, we have
U ∩ X = U and V ∪ Y = V .) Then (X, Y ) and (U, V ) are said to be crossing
cuts. Thus our goal is to construct a minimal (u, v)-cut (U ′, V ′) such that
(X, Y ) and (U ′, V ′) are non-crossing cuts. Figure 12.5 illustrates the given
crossing cuts for the two possible cases for y. Using symmetry arguments, it
suffices to consider one of these two cases, say y ∈ Q. Note that it does not
matter whether x ∈ U or x ∈ V .

As (P ∪ R ∪ S, Q) is an (x, y)-cut and as (X, Y ) is a minimal (x, y)-cut,
we obtain

c(P, Q) + c(P, S) + c(R, Q) + c(R, S) = c(X, Y )
≤ c(P ∪ R ∪ S, Q)
= c(P, Q) + c(R, Q) + c(S, Q)

and therefore
c(P, S) + c(R, S) ≤ c(S, Q).

Using the trivial inequality c(P, S) ≥ 0, we conclude c(R, S) ≤ c(S, Q), so
that



348 12 Synthesis of Networks

P Q

R S

U

V

X Y

u

v

x y
P Q

R S

U

V

X Y

u

v

x

y

Fig. 12.5. The crossing cuts in Lemma 10.2.3

c(P ∪ Q ∪ S, R) = c(P, R) + c(Q, R) + c(S, R)
≤ c(P, R) + c(Q, R) + c(Q, S) + c(P, S) = c(U, V ),

where we have used the symmetry of c. As (U, V ) is a minimal (u, v)-cut,
(P ∪ Q ∪ S, R) = (U ∪ Y, V ∩ X) has to be a minimal (u, v)-cut as well. �

Corollary 12.2.4. Under the assumptions of Lemma 12.2.3, there exists a
minimal (u, v)-cut (U ′, V ′) with U∩X = U ′∩X for which (X, Y ) and (U ′, V ′)
are non-crossing cuts. ��

We now turn to analyzing the procedure FLOWTREE. In each iteration,
we view the edge {s, t} treated in step (6) as oriented from s to t. Then the tree
B generated by the algorithm is oriented in such a way that s > t holds for
each edge st of B. Note that all directed paths in B are oriented towards vertex
1; that is, B has the opposite orientation of a spanning arborescence with root
1. For the tree of Example 12.2.2, the orientation is shown in Figure 12.6.

Lemma 12.2.5. Let B be a directed tree generated by Algorithm 12.2.1 for a
symmetric network N = (G, c). Moreover, let P = Pij be a directed path in
B with start vertex i and end vertex j, and let kj be an arc in B such that
k ≤ h holds for each vertex h �= j on P . Then, at the point of the algorithm
when a minimal (k, j)-cut C = (K, J) is constructed, i is adjacent to j in the
current tree. Moreover, i ∈ K if and only if k is a vertex of P .

Proof. After the initialization phase, each vertex h �= 1 is a leaf, with 1
as its unique neighbor. Note that vertex h stays a leaf until iteration h. The
neighbor of h can change (from u to v, say) only if s = v and t = u in some
iteration. It is easy to see that the directed path Ph1 from h to 1 in the tree
B consists precisely of those vertices which were the unique neighbor of h at
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some point during the first h iterations of the algorithm. Now each path Pij is
part of the path Pi1; hence i, while it was still a leaf, must have been adjacent
to j at some point of time before iteration i was executed.

Assume that the neighbor of i was changed afterwards; necessarily, this
happened during the iteration s = h (where t = j) for the predecessor h of j
on Pij . However, k ≤ h holds by hypothesis, so that i must have been adjacent
to j during the iteration s = k, when the (k, j)-cut (K, J) was calculated. Now
if k is a vertex on the path P (that is, k = h is the predecessor of j on P ),
then i must have been contained in K, because otherwise it would not have
been cut off from j. Conversely, if i ∈ K, then i is indeed cut off from j and
connected to k in step (8) of the algorithm; hence k ∈ P , as asserted. ��
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Fig. 12.6. Oriented flow tree for Example 10.2.2

Theorem 12.2.6. Algorithm 12.2.1 determines an equivalent flow tree for the
symmetric network N .

Proof. We introduce some notation first. For any two vertices x and y, let Pxy

be the unique path from x to y in the tree B determined by Algorithm 12.2.1.
Note that, in general, Pxy is not a directed path. Moreover, for any path P in
B, let k(P ) be the capacity of P in the network (B, w): k(P ) is the minimum
of the values w(xy) over all edges xy ∈ P . Thus the assertion is equivalent to

k(Pxy) = w(x, y) for all x, y ∈ V, (12.3)

where w is the flow function on N . For each edge xy ∈ B (with x > y),
let (Sxy, Txy) denote the minimal (x, y)-cut which the algorithm calculates in
step (5) of the iteration where s = x and t = y; we always assume x ∈ Sxy and
y ∈ Txy. To prove (12.3), we distinguish four cases. Note that k(Pxy) ≤ w(x, y)
holds by Theorem 12.1.1.

Case 1: xy is an edge of B, so that x > y. Then (12.3) holds trivially, because
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xy has been assigned the value w(x, y) as weight in step (6) of the iteration
s = x in this case.

Case 2: Pxy is a directed path from x to y; again, this means x > y. We use
induction on the length l of the path Pxy. The induction basis (l = 1) was
proved in Case 1. Thus assume l ≥ 2, and let v be the immediate predecessor of
y on Pxy. Consider the cut (Svy, Tvy). By Lemma 12.2.5, x ∈ Svy. Now Lemma
6.1.2 implies w(x, y) ≤ c(Svy, Tvy) = w(v, y). By the induction hypothesis,
w(x, v) = k(Pxv), so that

k(Pxy) = min{k(Pxv), w(v, y)} = min{w(x, v), w(v, y)}.
Now if we had w(x, y) > k(Pxy), Corollary 12.1.3 would imply

w(x, y) > k(Pxy) = w(x, v) = w(v, y),

contradicting w(x, y) ≤ w(v, y) above.

Case 3: Pyx is a directed path. This case reduces to Case 2 by interchanging
the roles of x and y.

Case 4: Neither Pxy nor Pyx is a directed path. Let z be the first common
vertex of the directed paths Px1 and Py1. Then Pxy is the union of the two
directed paths Pxz and Pyz. Denote the predecessors of z on Pxz and Pyz by
x′ and y′, respectively. We may assume x′ < y′, so that the cut (Sx′z, Tx′z) is
calculated at an earlier point than the cut (Sy′z, Ty′z). Then the cases treated
before imply

w(x, z) = k(Pxz) and w(y, z) = k(Pyz),

so that
k(Pxy) = min{w(x, z), w(y, z)}.

Now suppose w(x, y) > k(Pxy). Then Corollary 12.1.3 yields

k(Pxy) = w(x, z) = w(y, z).

Therefore Pxz contains some edge of weight k(Pxy); we choose e = uv as the
last edge with this weight on the directed path Pxz. Applying Lemma 12.2.5
to the path Pxv, we get x ∈ Suv. As we assumed w(x, y) > k(Pxy), we must
also have y ∈ Suv, because otherwise

w(x, y) ≤ c(Suv, Tuv) = w(u, v) = k(Pxy),

a contradiction. Applying Lemma 12.2.5 to the path Pyz, we also get y /∈ Sx′z.
Hence uv �= x′z, as y ∈ Suv. Again using Lemma 12.2.5 (now applied to the
paths Pxz, Puz, and Pvz), we see that u, v, and x are all contained in Sx′z.
Thus the situation looks as shown in Figure 12.7; the positions of u, v, x, and
y in one of the four quarters are uniquely determined, whereas there are two
possibilities for x′ and z. Depending on whether z ∈ Q or z ∈ S holds, either
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(R, P ∪ Q ∪ S) or (P, Q ∪ R ∪ S) is a minimal (u, v)-cut, by Lemma 12.2.3;
this yields the two cases of Figure 12.7. We denote this cut by (U, V ).
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Fig. 12.7. Case 4

First consider the case z ∈ Q. Then the cut (U, V ) separates the vertices z
and v, so that

w(v, z) ≤ c(U, V ) = c(Suv, Tuv) = w(u, v) = k(Pxy).

On the other hand, the fact that the path Pvz is directed implies w(v, z) =
k(Pvz). By the choice of e, we must have k(Pvz) > k(Pxy), contradicting the
inequality above. Therefore, this case cannot occur and z must be in S. Now
the cut (U, V ) separates the vertices x and y and we obtain

w(x, y) ≤ c(U, V ) = c(Suv, Tuv) = w(u, v) = k(Pxy),

that is, w(x, y) = k(Pxy). ��
Corollary 12.2.7. Let N be a symmetric network on G = (V, E). Then one
may determine with complexity O(|V |3|E|1/2) an equivalent flow tree for N .

Proof. The assertion follows immediately from Theorems 6.6.15 and 12.2.6, if
we use Algorithm 6.6.14 for determining a maximal flow and – as explained
at the beginning of this section – a minimal cut in step (5) of procedure
FLOWTREE. ��

12.3 Synthesizing minimal networks

As promised at the end of Section 12.1, we now present the method of Gomory
and Hu [GoHu61] for constructing a minimal feasible network (N, c) for a
given request function r : V × V → R. To this end, we consider the complete
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graph K on V with weight function r. In the present context, a maximal
spanning tree T for (K, r) will be called a dominant requirement tree for r.
Such a tree T may be determined in O(|V |2) steps, using the algorithm of
Prim (Algorithm 4.4.3) modified for maximal spanning trees as in Section
4.5. Then we partition T into uniform trees, where a graph with a weight
function is called uniform if all edges have the same weight. To do so, let
m be the minimal weight occurring in T , and choose as a first uniform tree
the tree T ′ containing the same edges as T , but each edge with weight m.
Now delete all edges of weight r(e) = m from T , and replace the weight r(e)
of all other edges by r(e) − m > 0. The result is a forest on V ; the trees
contained in this forest may then be partitioned into uniform trees using the
same procedure.

Example 12.3.1. Let K be the graph in Figure 12.8, where edges of weight
r(e) = 0 are not drawn. The fat edges form a dominant requirement tree T
which can be partitioned into uniform trees U1, . . . , U6 as in Figure 12.9. Note
that T is not uniquely determined: for instance, the edge gh of T could be
replaced by the edge bg.
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Fig. 12.8. A dominating tree

Suppose that the dominant requirement tree T has been partitioned into
uniform trees U1, . . . , Uk. For each tree Ui containing at least three vertices,
we form a cycle Ci on the vertices of Ui, in an arbitrary order; each edge in
this cycle is assigned weight ui/2, where ui is the weight of the edges in Ui.
Trees Ui consisting of one edge only are kept as Ci with unchanged weight.
Now consider the graph G = (V, E) whose edge set is the union of the edge
sets of C1, . . . , Ck, where parallel edges are merged to form one edge with
weight the sum of the individual weights.
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Fig. 12.9. Partitioning T into uniform trees

Example 12.3.2. For the partition of Figure 12.9, we may use the cycles
C1, . . . , C6 shown in Figure 12.10 to obtain the symmetric network (G, c)
shown in Figure 12.11.

We claim that any symmetric network (G, c) constructed in this way is a
minimal feasible network for r. We first prove that N is feasible; it will suffice
to verify the following condition:

w(u, v) ≥ r(u, v) for each edge uv of T. (12.4)

Clearly, this condition is necessary. On the other hand, for any two vertices x
and y, the unique path P in T from x to y is a path of maximal capacity in
K, by Theorem 4.5.4. Now (12.2) in the proof of Theorem 12.1.1 and (12.4)
imply

w(x, y) ≥ min {w(u, v) : uv ∈ P} ≥ min {r(u, v) : uv ∈ P} ≥ r(x, y),

since xy is a path of capacity r(x, y) in K.
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Fig. 12.10. The cycles corresponding to the trees of Figure 12.9

Thus we have to check that condition (12.4) is satisfied for the symmetric
network (G, c) defined above. But this is rather obvious: for each cycle Ci, we
may realize a flow of value ui between any two vertices of Ci. Now let e = uv
be an arbitrary edge of T . By summing the flows from u to v for all Ci which
contain both u and v, we obtain a flow from u to v which has the required
value ∑

i
u,v∈Ui

ui = r(u, v).

It remains to show that N is a minimal network for r. For each vertex x, we
let u(x) denote the maximal value of flow required in x:

u(x) = max {r(x, y) : y �= x} .
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Fig. 12.11. The corresponding symmetric network

As (x, V \x) is a cut (for simplicity, we write x instead of {x}), Theorem 6.1.6
yields c′(x, V \ x) ≥ u(x) for every symmetric network N ′ = (G′, c′) which is
feasible for r. Summing this over all vertices x gives∑

x,y∈V

c′(x, y) ≥
∑
x∈V

u(x) =: u(V ), (12.5)

where c′(x, y) = 0 whenever xy is not an edge of G′. Therefore the sum of all
capacities in N ′ is at least u(V )/2. We will show that equality holds in (12.5)
for the network N constructed above, so that N is indeed minimal. To this
end, we define a function u′ on V by

u′(x) = max {r(x, y) : xy is an edge of T} ;

trivially, u′(x) ≤ u(x) for all x.2 By construction of N , c(x, V \ x) = u′(x)
holds for every vertex x, so that in N∑

x,y∈V

c(x, y) =
∑
x∈V

u′(x) ≤ u(V ).

Thus equality holds in (12.5) for N ′ = N , as claimed.
Finally, let us discuss the complexity of this construction procedure. The

dominant requirement tree may be determined O(|V |2) steps if we use the
algorithm of Prim; see Theorem 4.4.4. As there are at most |V | − 1 distinct
weights, O(|V |2) steps also suffice to partition T into uniform trees. Finally,
constructing the network (G, c) from the uniform trees takes another O(|V |2)
steps. Thus we have proved the following result due to Gomory and Hu:

2Actually u(x) = u′(x) for all x, but we do not need this for our proof.
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Theorem 12.3.3. Let r be a given symmetric request function on a vertex
set V . Then one can determine a minimal feasible symmetric network for r
in O(|V |2) steps. ��

We will not write down the preceding algorithm in a formal way; the
reader might do so as an exercise. As there are many different choices for the
dominant requirement tree T and for the order of the vertices in each of the
cycles Ci, there exist many different minimal networks for r. It is possible to
single out some of these networks according to a further optimality criterion,
although this extra property may still be satisfied by several distinct networks.
A minimal network for r will be called dominating if its flow function w
satisfies the condition

w(x, y) ≥ w′(x, y) for all x, y ∈ V,

whenever w′ is the flow function for some minimal network N ′ with respect to
the request function r. Gomory and Hu also proved that dominating networks
indeed exist:

Theorem 12.3.4. For every request function r on V , there exists a dominat-
ing minimal network for r.

Proof. We replace the given request function r on V by the function s defined
as follows:

s(x, y) = min {u(x), u(y)} ,

where u is as before: u(x) = max {r(x, y) : y �= x} . The following inequalities
show that u can also be defined by using s instead of r:

u(x) ≥ max {s(x, y) : y �= x} = max {min {u(x), u(y)} : y �= x}
≥ max {min {u(x), r(x, y)} : y �= x}
= max {r(x, y) : y �= x} = u(x).

Hence indeed u(x) = max {s(x, y) : y �= x} . Now we construct a minimal fea-
sible network N for s. As

r(x, y) ≤ min {u(x), u(y)} = s(x, y)

for all x and y, the network N is also feasible for r. Let us show that in N all
flow requirements have to be satisfied with equality: w(x, y) = s(x, y) for all
x and y. Suppose otherwise so that w(x, y) > s(x, y) for some x, y ∈ V . We
may assume u(x) ≤ u(y). Then Lemma 6.1.2 implies

c(x, V \ x) ≥ w(x, y) > s(x, y) = u(x).

As N is minimal for s, this contradicts the fact (established in the proof of
Theorem 12.3.3) that a minimal network has to satisfy inequality (12.5) with
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equality. Since the function u is the same for r and s, N has to be a minimal
feasible network for r as well.

Finally, let N ′ be any minimal network for r, with capacity function c′

and flow function w′. Moreover, let x and y be any two vertices in V . Sup-
pose s(x, y) = w(x, y) < w′(x, y) and assume w.l.o.g. s(x, y) = u(x) ≤ u(y).
Applying Lemma 6.1.2 again yields

c′(x, V \ x) ≥ w′(x, y) > w(x, y) = u(x),

so that equality cannot hold in (12.5) for N ′. This contradicts the minimality
of N ′ and finishes the proof. ��

A dominating network is distinguished among all minimal networks for r
by the fact that the flow value is as large as possible for each pair of vertices,
subject to the condition that the overall cost has to be as small as possible.
Any further increase of the value of the flow for even just one pair of vertices
would require increasing the sum of the capacities as well, and therefore the
cost would increase. We shall discuss this type of problem in Section 12.5.

Exercise 12.3.5. Determine a dominating feasible network N for Example
12.3.1 and check that there are pairs x, y of vertices for which the value of
the flow on N is larger than the flow value realized by the minimal network
shown in Figure 12.11.

A more general problem of synthesizing a flow network is studied in
[GoHu64]. The problem we have discussed is the special case where, at any
point of time, there is only a single flow request for just one pair of vertices;
this case is called complete time-sharing or multi-terminal network flow . The
other extremal case occurs if all requests r have to be satisfied simultaneously;
this leads to multi-commodity flows; see [GoMi84] and [FoFu58c]. One may
also treat the case where the flow requests are time-dependent; see [GoHu64].

12.4 Cut trees

In this section we consider a strengthening of the notion of equivalent flow
trees introduced in Section 12.2 and present an interesting application to the
construction of certain communication networks.

Let N = (G, c) be a symmetric network with flow function w, and let B be
an equivalent flow tree for N . Moreover, assume that the following condition
holds for each pair of vertices x and y:

(∗) The cut (U, V ) determined by an edge e = uv of minimal weight
w(u, v) on the path Pxy from x to y in B is a minimal (x, y)-cut.

Then B is called a cut tree for N . It is easy to see that it suffices to verify
condition (∗) for all edges xy of the equivalent flow T . The following example
shows that an equivalent flow tree for N is not necessarily a cut tree.
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Example 12.4.1. Consider the symmetric network N of Example 12.2.2 and
the equivalent flow tree B constructed there – that is, the tree on the right
hand side of Figure 12.4. Then the condition for a cut tree is satisfied for
all edges of B but one: the only exception is the edge e = {2, 3}, where the
corresponding cut is S = {3, 6, 7}, T = {1, 2, 4, 5} with capacity c(S, T ) = 7,
whereas w(2, 3) = 6. However, modifying B slightly yields the cut tree B′ for
N shown in Figure 12.12.

2

437

6

5

1

5
56

3

4
3

Fig. 12.12. A cut tree

The rather involved method proposed by Gomory and Hu [GoHu61] does
in fact always construct not just an equivalent flow tree, but a cut tree. For-
tunately, an appropriate modification of the simpler Algorithm 12.2.1 can be
used for this purpose as well; the cut tree given in the preceding example was
obtained in this way.

Algorithm 12.4.2. Let N = (G, c) be a symmetric network on G = (V, E),
where V = {1, . . . , n}. The algorithm determines a cut tree (B, w) for N .
It also calculates a function p; for i �= 1, p(i) is the predecessor of i on a
path from vertex 1 to vertex i in B; thus B consists of the edges {p(i), i} for
i = 2, . . . , n.

Procedure CUTTREE(G, c; B, w)

(1) B ← ∅;
(2) for i = 2 to n do p(i) ← 1 od;
(3) for s = 2 to n do
(4) t ← p(s);
(5) determine a minimal cut (S, T ) and the value w of a maximal flow

in the flow network (G, c, s, t);
(6) f(s) ← w;
(7) for i = 1 to n do
(8) if i ∈ S \ {s} and p(i) = t then p(i) ← s fi
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(9) od
(10) if p(t) ∈ S then p(s) ← p(t); p(t) ← s; f(s) ← f(t); f(t) ← w fi
(11) od
(12) for i = 2 to n do
(13) w(i, p(i)) ← f(i);
(14) B ← B ∪ {{i, p(i)}}
(15) od

The main difference between Algorithms 12.2.1 and 12.4.2 is as follows: during
iteration s of Algorithm 12.2.1, only vertices in S satisfying i > s are cut off
from t and re-connected to s; here, in 12.4.2, this is done for vertices i < s
as well. When i < s, the weight of an edge it which was removed has to be
transferred to the new edge is. Moreover, the tree B does not grow by adding
edges one by one (as in Algorithm 12.2.1, step (6)), but it might happen that
edges {s, p(s)} previously constructed are changed again. Thus the procedure
CUTTREE is somewhat more involved, which makes the proof of the following
result more difficult; in view of its length and technical complexity, we refer
the reader to the original paper [Gus90].

Theorem 12.4.3. Let N = (G, c) be a symmetric network. Then Algorithm
12.4.2 constructs a cut tree for N . By using Algorithm 6.6.14 in step (5), one
may achieve a complexity of O(|V |3|E|1/2). ��

A further algorithm for constructing |V | − 1 cuts corresponding to a cut
tree can be found in [ChHu92]; this algorithm is capable of dealing with an
arbitrary symmetric cost function for constructing the cuts – not necessarily
the capacity. Related problems are considered in [GuNa91].

Next we use cut trees for treating Problem 4.7.9 (optimum communication
spanning tree). As already mentioned in Section 4.7, this problem is NP-
complete. However, Hu [Hu74] was able to give an efficient solution for the
special case where all edge weights are equal. Let us formulate this special
case explicitly.

Problem 12.4.4 (optimum requirement spanning tree). Let G be a
complete graph on the vertex set V , and let r : V × V → R+

0 be a request
function. We look for a spanning tree T for G such that

γ(T ) =
∑

u,v∈V
u �=v

d(u, v)r(u, v)

is minimal, where d(u, v) denotes the distance of u and v in the tree T .

Hu’s method for solving Problem 12.4.4 rests on finding a cut tree for
an appropriate symmetric network. For this purpose, the pair N = (G, r)
of Problem 12.4.4 is considered as a symmetric network on G with capacity
function r. We begin with the following auxiliary result.
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Lemma 12.4.5. Let G be the complete graph on the vertex set V , and let
r : V × V → R+

0 be a request function. Consider the symmetric network
N = (G, r). Then every spanning tree T of G satisfies

γ(T ) =
∑
e∈T

r(ST (e)),

where ST (e) is the cut of G determined by e ∈ T as in Section 4.3, and where
r(ST (e)) denotes the capacity of this cut in N .

Proof. The cost γ(T ) may be written as follows:

γ(T ) =
∑

u,v∈V
u�=v

∑
e∈Puv

r(u, v) =
∑
e∈T

∑
u,v∈V

u�=v, e∈Puv

r(u, v),

where Puv denotes the path from u to v in T . Therefore it suffices to show∑
u,v∈V

u �=v, e∈Puv

r(u, v) = r(ST (e)).

But this is rather obvious: the path Puv in T contains the edge e if and only
if u and v lie in different components of the cut ST (e). ��

We need the preceding lemma to establish the following result due to Hu;
our proof is considerably simpler than the one in the original paper [Hu74].

Theorem 12.4.6. Let G be the complete graph on the vertex set V , and let
r : V ×V → R+

0 be a request function. Then every cut tree T for the symmetric
network N = (G, r) is a solution of Problem 12.4.4.

Proof. Let w be the flow function on N . As we saw in Exercise 12.1.4, every
maximal spanning tree B for (G, w) is an equivalent flow tree for N . Let us
denote the common weight of all these trees by β; we begin by showing the
following auxiliary claim:

γ(T ) ≥ β for every spanning tree T of G. (12.6)

For this purpose, we consider the weight function w′ on T defined by

w′(u, v) = r(ST (e)) for all e = uv ∈ T.

We extend w′ to the flow function of the symmetric network (T, w′); using
Exercise 12.1.4 again, T is a maximal spanning tree for the network (G, w′).
Now (12.6) follows if we can show

w(x, y) ≤ w′(x, y) for all x, y ∈ V. (12.7)

Thus let x and y be any two vertices, and choose an edge e = uv of minimal
weight with respect to w′ on the path Pxy from x to y in T . Then indeed
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w′(x, y) = w′(u, v) = r(ST (e)) ≥ w(x, y),

as ST (e) is an (x, y)-cut. This establishes (12.6), which allows us to restrict
our attention to equivalent flow trees for N . Let B be such a tree. Then

γ(B) =
∑
e∈B

r(SB(e)) ≥
∑

e=uv∈B

w(u, v) = w(B) = β,

since SB(u, v) is a (u, v)-cut. Here equality holds if and only if SB(u, v) is a
minimal (u, v)-cut for all uv ∈ B, which means that B is a cut tree for N . ��

Theorems 12.4.3 and 12.4.6 immediately yield the following result.

Corollary 12.4.7. Algorithm 12.4.2 solves Problem 12.4.4 with complexity
O(|V |3|E|1/2) . ��
Example 12.4.8. Let us interpret the capacity function of the symmetric
network N on V = {1, . . . , 7} shown in Figure 12.8 as a request function for
the complete graph KV ; of course, we put r(u, v) = 0 for edges which are
not contained in N . Then the cut tree T displayed in Figure 12.12 solves
Problem 12.4.4 for this request function. The weights given in that figure are
the capacities of the cuts ST (e), so that

γ(T ) =
∑
e∈T

r(ST (e)) = 26.

For comparison, the equivalent flow tree B shown in Figure 12.4 (which was
constructed using the simpler Algorithm 12.2.1) has cost

γ(B) =
∑
e∈B

r(SB(e)) = 27,

so that B is indeed not an optimal solution for Problem 12.4.4.

We conclude this section with an exercise taken from [Hu74].

Exercise 12.4.9. Determine an optimal solution for the following instance
of Problem 12.4.4: V = {1, . . . , 6} and r(1, 2) = 10, r(1, 6) = 8, r(2, 3) = 4,
r(2, 5) = 2, r(2, 6) = 3, r(3, 4) = 5, r(3, 5) = 4, r(3, 6) = 2, r(4, 5) = 7,
r(4, 6) = 2, r(5, 6) = 3.

12.5 Increasing the capacities

The final section of this chapter is devoted to the question of how one may
increase the maximal value of a flow on a flow network N = (G, c, s, t) as
economically as possible. More specifically, we ask how the capacities of the
given edges should be increased if we want to increase the maximal value w of
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a flow on N by k units; note that we do not allow adding new edges. We shall
assume that the cost for increasing the capacity of an edge e by d(e) units is
proportional to d(e).

Thus let N = (G, c, s, t) be a flow network with an integral capacity func-
tion c, and let δ : E → N be an arbitrary mapping. For each v ∈ N, we look
for a mapping d = dv : E → N0 for which the network (G, c + d, s, t) allows a
flow of value v; moreover, the sum

z(v) =
∑
e∈E

d(e)δ(e)

should be minimal under this condition. Thus the cost for realizing a flow of
value v on N in the prescribed manner is at least z(v), and the function dv

specifies how the capacities should be increased in an optimal solution.
Note that this approach also solves the the parametric budget problem,

where we want to determine the maximal possible flow value which may be
achieved by installing extra capacity subject to a given budget b: we simply
need to find the largest value of v for which z(v) ≤ b holds. In general, the
bound b will not be achieved with equality, as we assumed the capacities to be
integral; of course, equality may be obtained by interpolation. The parametric
budget problem was first considered by Fulkerson [Ful59]. As we will see, it
may be solved using the algorithm of Busacker and Gowen presented in Section
10.5; this is notably simpler than Fulkerson’s method.

Let us define a further flow network on a digraph H which extends the
given digraph G as follows. Each edge e of G is also contained in H with
cost γ(e) = 0 and with its original capacity: c′(e) = c(e). Additionally, H
also contains a parallel edge e′ = uv with unlimited capacity c′(e′) = ∞ and
costγ(e′) = δ(e).3 We claim that our problem can be solved by determining an
optimal flow f of value v on the flow network N ′ = (H, c′, s, t), with respect
to the cost function γ. This is seen as follows. Since f is optimal, f(e′) �= 0
can only hold if e is saturated: f(e) = c′(e). Then the desired function dv is
given by dv(e) = f(e′), and z(v) = γ(f).

Hence we may calculate dv and z(v) for every positive integer v using the
algorithm of Busacker and Gowen. Clearly, z(v) = 0 for v ≤ w: in this case, we
do not have to increase any capacities. Hence we may start Algorithm 10.5.2
with a maximal flow f on N instead of the zero flow, a further simplification.
Let us look at an example.

Example 12.5.1. Consider again the flow network N of Example 6.2.3; see
Figure 12.13, where we state the capacities in parentheses and the cost in
brackets. In 6.2.3, we calculated a maximal flow f of value w = 31; for the
convenience of the reader, we display this flow again in Figure 12.14, where
we have also drawn the minimal cut (S, T ) corresponding to f . As explained
above, we may use f as the initial flow in the algorithm of Busacker and
Gowen.

3If desired, we may avoid parallel edges by subdividing e′.
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Fig. 12.13. Flow network with cost for capacity increase
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Fig. 12.14. Maximal flow and minimal cut on N

We now have to imagine G as being extended to H: for each edge e of G,
we have to add a parallel edge e′ with capacity ∞ and cost δ(e). Then we
should proceed by constructing the auxiliary network N∗ corresponding to
f . Unfortunately, the backward edges and parallel edges make this network
rather large and difficult to draw. Therefore we will omit all edges which are
not important for our purposes, since they cannot occur in a path of minimal
cost from s to t in N∗:
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• edges with end vertex s or start vertex t;
• edges e′ for which e is not yet saturated;
• edges leading from T to S;4

• edges e which are saturated.

The interesting part of N∗ is shown in Figure 12.15, where the path P con-
sisting of fat edges is a path of minimal cost from s to t. The numbers without
parentheses give the cost, and the numbers in parentheses state the capaci-
ties in N∗. Note that the path P has cost 2 and capacity 10. Thus we may
increase the existing maximal flow of value w = 31 by ε with cost 2ε to a
flow of value v = 31 + ε for ε = 1, . . . , 10. The flow g of value 41 obtained for
ε = 10 is shown in Figure 12.16; the fat edge ac is the edge whose capacity was
increased. Should we desire any further increase of the value of the flow, we
just continue in the same manner with the algorithm of Busacker and Gowen.
If a budget b is given, the procedure may be terminated as soon as we reach
z(v) > b.
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Fig. 12.15. A path of minimal cost in N∗

Exercise 12.5.2. Determine the cost function z(v) for all v for the flow net-
work of Example 12.5.1. Hint: Two more steps of Algorithm 10.5.2 are needed.

In view of Exercise 10.5.4, it is clear that the cost function z(v) is always a
piecewise linear, monotonically increasing, convex function. Moreover, we need
at most |E| iterations of the algorithm of Busacker and Gowen to determine
z(v) for all v: in the worst case, we have to adjoin a parallel edge for each

4Vertices in S can be reached from s by a path of cost 0, so that we want to
direct our path from S to T , not reversely.
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edge of E to ensure that we reach a path of minimal cost from s to t which
has infinite capacity.

s
b

a

f

c

d

e

t
1(1)

38(38)

2(2)

8(8)

11(26)

24(24)

20(20) 2(2)

6(8)

26(27)

1(1)

1(1)

7(7)

7(7)

10(13)

Fig. 12.16. An optimal flow of value 41

A survey of various problems and algorithms concerning the design of
networks for communication or transport purposes can be found in [MaWo94].
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Matchings

And many a lovely flower and tree
Stretch’d their blossoms out to me.

William Blake

This chapter is devoted to the problem of finding maximal matchings in ar-
bitrary graphs; the bipartite case was treated in Section 7.2. In contrast to
the bipartite case, it is not at all easy to reduce the general case to a flow
problem.1 However, we will see that the notion of an augmenting path can be
modified appropriately.

We emphasize again that the term maximal matching means a matching
of maximal cardinality, and that an unextendable matching is not necessarily
maximal; see Section 7.2. The graphs for which every unextendable matching
is already maximal are characterized in [Men74]. An algorithmically satisfac-
tory solution is due to [LePP84]: one can check in polynomial time whether a
graph is equimatchable.

13.1 The 1-factor theorem

Clearly, the cardinality of a matching in a graph G = (V, E) cannot exceed
|V |/2, and a matching of this size exists if and only if |V | is even and G has a
1-factor. As in the bipartite case, a 1-factor is also called a perfect matching
of G. In this section, we shall prove the 1-factor theorem of Tutte [Tut47]
which characterizes the graphs having a perfect matching. This result is a
generalization of Hall’s marriage theorem (Theorem 7.3.1).

1Kocay and Stone [KoSt93, KoSt95] showed that matchings may indeed be
treated in the context of flow theory by introducing special types of networks and
flows which satisfy certain symmetry conditions: balanced networks and balanced
flows; related ideas can be found in the pioneering work of Tutte [Tut67] and in
[GoKa96]. Subsequently, Fremuth-Paeger and Jungnickel provided a general the-
ory based on this approach, including efficient algorithms; see [FrJu99a, FrJu99b,
FrJu99c, FrJu01a, FrJu01b, FrJu01c, FrJu02, FrJu03]. We will not present this
rather involved theory because that would take up far too much space; instead,
we refer the reader to the original papers.
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Let G = (V, E) be a graph, and let S be a subset of V . We denote by p(S)
the number of connected components of odd cardinality in the graph G\S. If
G has a perfect matching M , then at least one vertex of each odd component
(that is, each connected component of odd cardinality) has to be incident with
an edge of M whose other vertex is contained in S; hence p(S) ≤ |S|. The
1-factor theorem states that this necessary condition is actually sufficient. We
shall give a short proof taken from [And71].

Theorem 13.1.1 (1-factor theorem). Let G = (V, E) be a graph. Then G
has a perfect matching if and only if the following condition holds:

(T) p(S) ≤ |S| for each subset S of V ,

where p(S) denotes the number of odd components of G \ S.

Proof. We have already seen that condition (T) is necessary. Conversely, sup-
pose that this condition holds. For S = ∅, (T ) shows that |V | is even, say
|V | = 2n. We use induction on n; the case n = 1 is trivial. Clearly,

p(S) ≡ |S| (mod 2) for each S ⊆ V. (13.1)

We now distinguish two cases.

Case 1: p(S) < |S| for all subsets S with 2 ≤ |S| ≤ 2n. In view of (13.1),
actually even p(S) ≤ |S| − 2. We choose some edge e = uv of G and consider
the graph H = G \A, where A = {u, v}. For each subset S of V \A, let p′(S)
be the number of odd components of H \S. Assume that such a set S satisfies
p′(S) > |S|. Then

p(S ∪ A) = p′(S) > |S| = |S ∪ A| − 2,

and hence p(S∪A) ≥ |S∪A| by (13.1), a contradiction. Hence always p′(S) ≤
|S|, so that H satisfies condition (T). By the induction hypothesis, H admits
a perfect matching M . Then M ∪ {e} is a perfect matching for G.

Case 2: There exist subsets S of V with p(S) = |S| ≥ 2. Let us choose a
maximal subset R with this property. Then each component of G \ R has to
be odd. Suppose otherwise, and let C be an even component. Then we can add
a vertex a of C to R to obtain a further odd component, which contradicts
the maximality of R.

Now let R′ be the set of all (necessarily odd) components of H = G\R, and
consider the bipartite graph B with vertex set R

.∪ R′ for which a vertex r in
R and a component C in R′ are adjacent if and only if there is an edge rc in G
with c ∈ C. We show that B has a complete matching, by verifying condition
(H) of Theorem 7.2.4. Let J be a set of (necessarily odd) components of H,
and let T be the set of vertices in R which are adjacent to some component
in J . Now condition (T) for G implies |J | = p(T ) ≤ |T |, so that (H) indeed
holds for B.
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Thus we may choose a vertex x from each component and associate with
it a vertex yx ∈ R in such a way that xyx always is an edge in G and all the yx

are distinct. This yields a matching M of G. It now suffices to show that, for
each component C (with vertex x = x(C) chosen above), the induced graph
GC on the vertex set C \ x has a perfect matching MC . Then the union of M
and all these matchings MC will yield the desired perfect matching of G.

To this end, we verify condition (T) for GC . For a subset W of C \ x, let
pC(W ) be the number of odd components of GC \ W . Assume pC(W ) > |W |
for such a subset W . Then (13.1) implies pC(W ) ≥ |W | + 2, so that

p(W ∪ R ∪ {x}) = pC(W ) + p(R) − 1 ≥ |W | + |R| + 1 = |W ∪ R ∪ {x}|.
However, this contradicts the maximality of R. Therefore (T) indeed holds for
GC , and our proof is finished. ��
Exercise 13.1.2. Let G = (S

.∪ T, E) be a bipartite graph with |S| = |T |.
Show that condition (T) for the existence of a perfect matching in G reduces
to condition (H) of Theorem 7.2.4 in this case. Hint: Add the edges of the
complete graph on T to G, and consider the resulting graph H instead of G.

Exercise 13.1.3. Let G be a 3-regular graph without bridges. Show that
G has a perfect matching [Pet91]. Does this also hold for 3-regular graphs
containing bridges? Does a 3-regular graph without bridges necessarily have
a 1-factorization?

Next we present a deficiency version of Theorem 13.1.1 – in analogy with
the deficiency version of the marriage theorem in Section 7.3. Let M be a
matching in the graph G = (V, E). Then a vertex v which is not incident with
any edge in M is called exposed (with respect to M), whereas vertices incident
with some edge of M are called saturated. For each saturated vertex v, we will
call the unique vertex u with uv ∈ M the mate of v. The following result is
due to Berge [Ber58].

Theorem 13.1.4. Let G = (V, E) be a graph. Then G admits a matching
with precisely d exposed vertices if and only if the following condition holds:

d ≡ |V | (mod 2) and p(S) ≤ |S| + d for all S ⊂ V. (13.2)

Proof. We define an auxiliary graph H as follows. Adjoin a d-element set D
with D ∩ V = ∅ to the vertex set V of G, and add all edges of the form vw
with v ∈ V and w ∈ D to E. It is now easy to see that G has a matching with
precisely d exposed vertices if and only if H has a perfect matching. Thus we
have to show that condition (13.2) is equivalent to the existence of a perfect
matching of H. For each subset X of V ∪ D, let p′(X) denote the number of
odd components of H \ X. Obviously, p′(S ∪ D) = p(S) for all S ⊂ V . If H
has a perfect matching, then condition (T) for H implies immediately

p(S) = p′(S ∪ D) ≤ |S ∪ D| = |S| + d for all S ⊂ V.



370 13 Matchings

Moreover, if H has a perfect matching, |V |+ d has to be even, so that (13.2)
is necessary.

Conversely, suppose that (13.2) is satisfied. By Theorem 13.1.1, we have
to show that the following condition holds:

p′(X) ≤ |X| for all X ⊂ V ∪ D. (13.3)

Assume first that D is not contained in X. Then H \ X is connected by the
construction of H, so that (13.3) is obviously satisfied for X �= ∅. For X = ∅,
(13.3) holds as |V ∪ D| = |V | + d is an even number by hypothesis. Now
assume D ⊂ X, say X = S

.∪ D for some S ⊂ V . Then (13.2) implies

p′(X) = p(S) ≤ |S| + d = |X|,
so that (13.3) is satisfied for this case as well. ��
Corollary 13.1.5. Let G = (V, E) be a graph, and let M be a maximal match-
ing of G. Then there are precisely

d = max {p(S) − |S| : S ⊂ V }
exposed vertices, and M contains precisely (|V | − d)/2 edges.

Proof. The assertion follows immediately from Theorem 13.1.4 together with
|V | ≡ p(S) + |S| ≡ p(S) − |S| (mod 2). ��
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Fig. 13.1. An augmenting path
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13.2 Augmenting paths

In this section we use augmenting paths with respect to a given (not yet
maximal) matching M in a graph G = (V, E) for constructing a matching
M ′ of larger cardinality. Let us first consider the bipartite case again. In the
solution of Exercise 6.5.6, we determined a maximal matching of G by using
a maximal flow on an appropriate 0-1-network. We now want to describe the
augmenting paths occurring during this process within G. Thus let M be a
matching of cardinality k in G, and by f denote the corresponding 0-1-flow (as
in the solution of Exercise 6.5.6). Then an augmenting path looks as follows:

s −→ v1 −→ v2 ←− . . . −→ v2n−2 ←− v2n−1 −→ v2n −→ t,

where v1 and v2n are vertices which are not incident with any saturated edge
and where the edges v2iv2i+1 are backward edges (that is, they are saturated).
Thus the vertices v1 and v2n are exposed with respect to M , and the edges
v2iv2i+1 are contained in M ; see Figure 13.1, where fat edges are contained
in the matching M .

The bipartite case suggests the following way of defining augmenting paths
in general. Let M be a matching in an arbitrary graph G = (V, E). An alter-
nating path with respect to M is a path P for which edges contained in M
alternate with edges not contained in M . Such a path is called an augmenting
path if its start and end vertex are distinct exposed vertices.

w
v

b u
e

a c d f

y x

Fig. 13.2. Graph G with matching M
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Example 13.2.1. The fat edges in the graph G displayed in Figure 13.2 form
a matching M . The vertices a, f , and y are exposed with respect to M , and
the sequences (a, b, c, d, e, f) and (a, b, c, u, v, w, x, y) define augmenting paths
P and P ′, respectively. Interchanging the roles of edges and non-edges of M
on the path P ′ yields the matching M ′ of cardinality |M | + 1 exhibited in
Figure 13.3; more formally, we replace M by M ⊕ P ′, where ⊕ denotes the
symmetric difference. Note that M ′ is a maximal matching of G, as there is
only one exposed vertex.

w
v

b u
e

a c d f

y x

Fig. 13.3. Matching M ′ = M ⊕ P ′

Example 13.2.1 illustrates the following simple but fundamental result due
to Berge [Ber57].

Theorem 13.2.2 (augmenting path theorem). A matching M in a graph
G is maximal if and only if there is no augmenting path with respect to M .

Proof. Assume first that M is maximal. If there exists an augmenting path P
in G, we may replace M by M ′ = M ⊕ P , as in Example 13.2.1. Then M ′ is
a matching of cardinality |M | + 1, a contradiction.

Conversely, suppose that M is not maximal; we will show the existence of
an augmenting path with respect to M . Let M ′ be any maximal matching,
and consider the subgraph H of G determined by the edges in M ⊕M ′. Note
that each vertex of H has degree at most 2; also, a vertex v having degree 2
has to be incident with precisely one edge of M and one edge of M ′. Therefore
a connected component of H which consists of more than one vertex has to
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be either a cycle of even length (where edges of M and M ′ alternate) or a
path formed by such an alternating sequence of edges. As M ′ contains more
edges than M , there exists at least one such path P whose first and last edges
belong to M ′. Then P is an augmenting path with respect to M , since its end
vertices are obviously exposed. ��

Theorem 13.2.2 is the basis of most algorithms for determining maximal
matchings in arbitrary graphs. The basic idea is obvious: we start with any
given matching – for example, the empty matching or just a single edge – and
try to find an augmenting path with respect to the present matching in order
to enlarge the matching until no such paths exist any more. To do so, we need
an efficient technique for finding augmenting paths; note that in general the
number of paths in a graph grows exponentially with the size of the graph. It
will be natural to use some sort of BFS starting at an exposed vertex; let us
first show that no exposed vertex needs to be examined more than once.

Lemma 13.2.3. Let G be a graph, M a matching in G, and u an exposed
vertex with respect to M . Moreover, let P be an augmenting path, and put
M ′ = M ⊕P . If there is no augmenting path with respect to M starting at u,
then there is no augmenting path with respect to M ′ starting at u either.

Proof. Let v and w be the end vertices of P ; note u �= v, w. Suppose there
exists an augmenting path P ′ with respect to M ′ starting at u. If P and P ′

have no vertex in common, then P ′ is an augmenting path with respect to M
as well, which contradicts our assumption. Thus let u′ be the first vertex on
P ′ which is contained also in P , and let e be the unique edge of M ′ incident
with u′. Then u′ divides the path P into two parts, one of which does not
contain e. Let us call this part P1, and denote the part of P ′ from u to u′ by
P ′

1. Then P1P
′
1 is an augmenting path with respect to M starting at u (see

Figure 13.4)2, a contradiction. ��
Now suppose we have some algorithm which constructs a maximal match-

ing step by step by using augmenting paths. We call each iteration of the
algorithm in which an augmenting path is determined and used for chang-
ing the present matching according to Theorem 13.2.2 a phase. The following
result is an immediate consequence of Lemma 13.2.3.

Corollary 13.2.4. Assume that during some phase of the construction of a
maximal matching no augmenting path starting at a given exposed vertex u
exists. Then there is no such path in any of the subsequent phases either. ��
Exercise 13.2.5. Let G be a graph with 2n vertices, and assume either
deg v ≥ n for each vertex v, or |E| ≥ 1

2 (2n − 1)(2n − 2) + 2. Show that
G has a perfect matching. Hint: Derive these assertions from a more general
result involving Hamiltonian cycles.

2The edges of M ′ are drawn bold in Figure 13.4; note that M ′ ∩ P ′
1 = M ∩ P ′

1

and M ′ ∩ P1 ⊂ M ⊕ P1.



374 13 Matchings
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Fig. 13.4. Proof of Lemma 12.2.3

Exercise 13.2.6. Let G be a connected graph, and assume that every match-
ing in G can be extended to a perfect matching; such a graph is called randomly
matchable. Prove that the only randomly matchable graphs on 2n vertices are
the graphs Kn,n and K2n; see [Sum79] and [LePP84]. Hint: Show first that
G has to be 2-connected. If G is bipartite and contains non-adjacent vertices
s and t which are in different parts of G, consider a path (of odd length)
from s to t and construct a matching whose only exposed vertices are s and
t. Finally, assume that G is not bipartite. Prove that each vertex is contained
in a cycle of odd length and that any two vertices are connected by a path of
odd length; then proceed as in the bipartite case.

13.3 Alternating trees and blossoms

The first polynomial algorithm for determining maximal matchings is due
to Edmonds [Edm65b]; his algorithm is based on using augmenting paths
according to Theorem 13.2.2. Edmonds achieved a complexity of O(|V |4) with
his algorithm, although he did not state this formally. Later both Gabow
[Gab76] and Lawler [Law76] proved that one may reduce the complexity to
just O(|V |3) by implementing the algorithm appropriately; we shall present
such a version of the algorithm in Section 13.4.

A faster (but considerably more involved) algorithm for finding maximal
matchings generalizes the method of Hopcroft and Karp [HoKa73] for the bi-
partite case; it is due to Micali and Vazirani [MiVa80]. As in the bipartite
case, this results in a complexity of O(|V |1/2|E|). Although an extensive dis-
cussion of this algorithm was given in [PeLo88], a formal correctness proof
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appeared only 14 years after the algorithm had been discovered; see Vazirani
[Vaz94]. The (theoretically) best algorithm known at present achieves a com-
plexity of O(|V |1/2|E| log(|V 2|/|E|)/ log |V |) via graph compression. This is
due to Feder and Motwani [FeMo95] for the bipartite case; the general case is
in [FrJu03]. Empirical studies concerning the quality of various algorithms for
determining maximal matchings can be found in [DeHe80] and [BaDe83]; for
further advances concerning implementation questions we refer to the mono-
graph [JoMcG93].

Although it is possible to use the empty matching to initialize the construc-
tion of a maximal matching via augmenting paths, from a practical point of
view it is obviously advisable to determine a reasonably large initial matching
in a heuristic manner: we may expect this to result in a considerable reduc-
tion of the number of phases required by the algorithm. We will give a simple
greedy method for finding such an initial matching.

Algorithm 13.3.1. Let G = (V, E) be a graph with vertex set V = {1, . . . , n}.
The algorithm constructs an unextendable matching M described by an ar-
ray mate: for ij ∈ M , mate(i) = j and mate(j) = i, whereas mate(k) = 0 for
exposed vertices k. The variable nrex denotes the number of exposed vertices
with respect to M .

Procedure INMATCH(G; mate, nrex)

(1) nrex ← n;
(2) for i = 1 to n do mate(i) ← 0 od;
(3) for k = 1 to n − 1 do
(4) if mate(k) = 0 and there exists j ∈ Ak with mate(j) = 0
(5) then choose j ∈ Ak with mate(j) = 0;
(6) mate(j) ← k; mate(k) ← j; nrex ← nrex −2
(7) fi
(8) od

Our next task is to design an efficient technique for finding augmenting
paths; this problem turns out to be more difficult than it might appear at
first sight. We begin by choosing an exposed vertex r (with respect to a given
matching M of G). If there exists an exposed vertex s adjacent to r, we can
extend M immediately by simply adding the edge rs. Of course, this case
cannot occur if M was constructed by Algorithm 13.3.1.

Otherwise, we take r as the start vertex for a BFS and put all vertices
a1, . . . , ap adjacent to r in the first layer; note that all these vertices are
saturated. As we are looking for alternating paths, we put only the vertices
bi = mate(ai) in the second layer. The next layer consists of all vertices
c1, . . . , cq which are adjacent to one of the bi, and where the connecting edge
is not contained in M . We continue in this manner; as we will soon see, certain
difficulties may arise.
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If we should encounter an exposed vertex in one of the odd-numbered
layers, we have found an augmenting path. This motivates the following def-
inition: a subtree T of G with root r is called an alternating tree if r is an
exposed vertex and if every path starting at r is an alternating path. The
vertices in layers 0, 2, 4, . . . are called outer vertices, and the vertices in layers
1, 3, 5, . . . are inner vertices of T .3 Thus an alternating tree looks like the tree
shown in Figure 13.5, where fat edges belong to M (as usual). Of course, the
purpose of constructing an alternating tree with root r is either to find an
exposed inner vertex – and thus an augmenting path – or to determine that
no such vertex exists.

r
0

1

2

3

Fig. 13.5. An alternating tree

Let us suppose that the layer 2i − 1 has already been constructed. If no
vertex in this layer is exposed, the next layer is easy to construct: simply add
the vertex w = mate(v) and the edge vw to T for each vertex v in layer 2i−1.
In contrast, difficulties may arise when constructing the subsequent layer of
inner vertices. Let x be a vertex in layer 2i, and let y �= mate(x) be a vertex
adjacent to x. There are four possible cases.

Case 1: y is exposed (and not yet contained in T ). Then we have found an
augmenting path.

Case 2: y is not exposed, and neither y nor mate(y) are contained in T . Then
we put y into layer 2i + 1 and mate(y) into layer 2i + 2.

Case 3: y is already contained in T as an inner vertex. Note that adding the
edge xy to T would create a cycle of even length in T ; see Figure 13.6. As T
already contains an alternating path from r to the inner vertex y, such edges

3Some authors use the terminology even vertex or odd vertex instead.
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should be redundant for our purposes. We shall show later that this is indeed
true, so that we may ignore this case.

r

y

x

r

x

y

Fig. 13.6. Case 3

Case 4: y is already contained in T as an outer vertex. Note that adding the
edge xy to T would create a cycle of odd length 2k + 1 in T for which k
edges belong to M ; see Figure 13.7. Such cycles are called blossoms; these
blossoms – which of course cannot occur in the bipartite case – cause the
difficulties alluded to above: edges forming a blossom with the tree constructed
so far cannot just be ignored. For example, consider the blossom displayed in
Figure 13.8. Each of the vertices a, b, c, d, e, f may be reached via two different
alternating paths with start vertex r: for one path, the vertex will be an outer
vertex, and for the other path it will be an inner vertex. For example, a is
an inner vertex with respect to (r, a), and an outer vertex with respect to
(r, b, d, e, f, c, a). Now suppose that there exists an edge ax for which x is
exposed; then (r, b, d, e, f, c, a, x) will be an augmenting path. If we would
simply omit the edge fc when constructing T , it is quite possible that we
will not find any augmenting path by our approach (even though such a
path exists); the graph G in Figure 13.8 provides a simple example for this
phenomenon.4

4It is tempting to proceed by using all vertices of a blossom both as inner and as
outer vertices, so that we cannot miss an augmenting path which uses part of a blos-
som. Indeed, Pape and Conradt [PaCo80] proposed splitting up each blossom into
two alternating paths, so that the vertices of a blossom appear twice in the alter-
nating tree T , both as inner and as outer vertices. Unfortunately, a serious problem
arises: it might happen that an edge xy which was left out earlier in accordance with
Case 3 (that is, an edge closing a cycle of even length) is needed at a later point
because it is also contained in a blossom. The graph shown in Figure 13.9 contains a
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r
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y

Fig. 13.7. Case 4
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a b

x
c d

f

e

Fig. 13.8. A blossom

The difficulties arising from Case 4 are avoided in the algorithm of Ed-
monds by shrinking blossoms to single vertices. At a later point of the algo-
rithm, blossoms which were shrunk earlier may be expanded again. We shall
treat this process in the next section.

unique augmenting path (between r and r′) which is not detected by the algorithm
of [PaCo80]; thus their algorithm is too simple to be correct! This counterexample is
due to Christian Fremuth-Paeger; see the first edition of the present book for more
details.
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Fig. 13.9. A graph with a unique augmenting path

In the bipartite case, constructing an alternating tree T presents no prob-
lems, as no cycles of odd length can occur. Hence there are no blossoms, and
it is clear for all vertices whether they have to to be added as inner or as outer
vertices to T : with V = S

.∪ S′ and r ∈ S (say), all vertices of S which are
accessible from r have to be outer vertices, and all vertices of S′ accessible
from r have to be inner vertices. Thus there exists an augmenting path start-
ing at r if and only if the corresponding alternating tree contains an exposed
inner vertex. For the sake of completeness, we now present an algorithm for
constructing a maximal matching in a bipartite graph which uses this tech-
nique. Even though its complexity is worse than the complexity guaranteed
by Theorem 7.2.1, it is of some interest to have a method (which is, after
all, still quite good) which does not depend on network flows. Moreover, the
algorithm in question will also be the basis of the Hungarian algorithm to be
treated in Chapter 14.

Algorithm 13.3.2. Let G = (V, E) be a bipartite graph with respect to the
partition V = S

.∪ S′, where S = {1, . . . , n} and S′ = {1′, . . . , m′}; we assume
n ≤ m. The algorithm constructs a maximal matching M described by an
array mate. The function p(y) gives, for y ∈ S′, the vertex in S from which y
was accessed.

Procedure BIPMATCH(G; mate, nrex)

(1) INMATCH(G; mate, nrex);
(2) r ← 0;
(3) while nrex ≥ 2 and r < n do
(4) r ← r + 1;
(5) if mate(r) = 0
(6) then for i = 1 to m do p(i′) ← 0 od;
(7) Q ← ∅; append r to Q; aug ← false;
(8) while aug = false and Q �= ∅ do
(9) remove the first vertex x of Q;
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(10) if there exists y ∈ Ax with mate(y) = 0
(11) then choose such a y;
(12) while x �= r do
(13) mate(y) ← x; next ← mate(x); mate(x) ← y;
(14) y ← next; x ← p(y)
(15) od;
(16) mate(y) ← x; mate(x) ← y; nrex ← nrex−2; aug ← true
(17) else for y ∈ Ax do
(18) if p(y) = 0 then p(y) ← x; append mate(y) to Q fi
(19) od
(20) fi
(21) od
(22) fi
(23) od

Of course, it is also possible to use the empty matching for initializing the
construction: simply replace (1) and (2) by

(1′) for v ∈ V do mate(x) ← 0 od;
(2′) r ← 0; nrex ← n;

We leave it to the reader to prove the following result.

Theorem 13.3.3. Let G = (V, E) be a bipartite graph with respect to the
partition V = S

.∪ S′. Then Algorithm 13.3.2 determines with complexity
O(|V ||E|) a maximal matching of G. ��

Balinsky and Gonzales [BaGo91] gave an algorithm for determining a max-
imal matching of a bipartite graph which does not rely on augmenting paths;
their algorithm also has complexity O(|V ||E|).

13.4 The algorithm of Edmonds

In this section, G = (V, E) is always a connected graph with a given initial
matching M ; we present the algorithm for constructing maximal matchings
due to Edmonds [Edm65b]. We begin by constructing an alternating tree T
with root r, as described in the previous section. Edges xy closing a cycle of
even length (Case 3 in Section 13.3) will be ignored. Whenever we encounter
an edge xy closing a blossom B (Case 4 in Section 13.3, see Figure 13.7),
we stop the construction of T and shrink the blossom B. Formally, we may
describe this operation as contracting G with respect to B to a smaller graph
G/B which is defined as follows:

• The vertex set of G/B is V/B = (V \ B) ∪ {b}, where b is a new vertex
(that is, b /∈ V is a new symbol).
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• The edge set E/B of G/B is derived from E by first removing all edges
uv ∈ E with u ∈ B or v ∈ B and then adding an edge ub for all those
u ∈ V \ B which are adjacent in G to at least one vertex of B.5

To distinguish it from the original vertices, the new vertex b is called a pseu-
dovertex of G/B. Now we have to address the question how shrinking a blos-
som B effects the construction of T . Note that the matching M of G induces
in a natural way a matching M/B of G/B. When we encounter an edge xy
closing a blossom B, we know just two vertices of B, namely x and y. The
whole blossom can be determined by following the paths from x and y to the
root r in T ; the first common vertex w of these two paths is called the base
of the blossom B. Note that w is an outer point of T . Then B is the union
of xy with the two paths Pwx and Pwy from the base w to the vertices x and
y, respectively. Omitting these two paths from T and replacing the base w
by the pseudovertex b yields an alternating tree T/B for G/B with respect
to the matching M/B. Now we proceed with our construction in G/B, using
T/B; here the next outer vertex we examine is the pseudovertex b. Of course,
further blossoms may arise, in which case we will have to perform a series of
shrinkings. Let us illustrate this procedure with an example.

8 10 16

18

7
9 15

6

4 3
5

11 13 2

12 14
1

17

Fig. 13.10. A graph G with an initial matching M

Example 13.4.1. Let G be the graph shown in Figure 13.10. Starting at the
vertex r = 17, we construct the alternating tree T displayed in Figure 13.11.

5Note that G/B is the result of a sequence of elementary contractions with
respect to the edges contained in the blossom B; see Section 1.5.
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We examine outer vertices in the order in which they were reached (that is,
we use a BFS-type ordering) and use increasing order for the adjacency lists.
Note that the edge {6, 3} is ignored (Case 3 in Section 13.3) when the outer
vertex 6 is examined, because it closes a cycle of even length. Similarly, the
edge {8, 9} is ignored when we examine the vertex 8.

8 10 16

7 9 15

4 6

3 5

2

1

17

Fig. 13.11. Alternating tree T in G

The next edge {8, 10} closes a blossom, namely B = {4, 7, 8, 9, 10}. This blos-
som has base 4 and is contracted to a pseudovertex b; we obtain the graph
G′ = G/B with the matching M ′ = M/B and the corresponding alternating
tree T/B shown in Figure 13.12.

Continuing the construction with the outer vertex b (which is nearest to
the root r = 17), we obtain the alternating tree T ′ in Figure 13.13. Here the
edge {b, 15} is ignored in accordance with Case 3, whereas the edge {b, 16}
closes a further blossom B′ = {b, 2, 3, 5, 6, 15, 16} with base 2; thus B′ has
to be contracted to a second pseudovertex b′. Note that pseudovertices may
contain other pseudovertices which were constructed earlier. The result is the
graph G′′ = G′/B′ with the matching M ′′ = M ′/B′ and the corresponding
tree T ′′ = T ′/B′ in Figure 13.14.

Now the outer vertex b′ is examined. This time we find an adjacent exposed
vertex, namely 18, which yields the augmenting path P ′′ : 18 b′ 1 17
in G′′. We want to use this path to determine an augmenting path P in G.
For this purpose, we trace P ′′ backwards from its end vertex 18 to the root
17 of T ′′. The first vertex we reach is the pseudovertex b′; thus there has to
be at least one vertex p in G′ which is adjacent to 18 and contained in the
blossom B′. In fact, there are two such vertices: 15 and 16. We choose one of
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them, say p = 15. In the blossom B′, p is incident with a unique edge of M ′,
namely the edge e = {15, 16}. We trace the path from 15 to 16 and continue
in B′ until we reach the base 2 of B′.

16

18
b

15
6

3
5

11 13 2

12 14
1

17

b

3

2

1

17

5

6

15

16

Fig. 13.12. Contracted graph G/B with alternating tree T/B
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Fig. 13.13. Alternating tree T ′ for G′
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11 13
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1
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Fig. 13.14. Contracted graph G′/B′ with alternating tree T ′/B′

Thus we have constructed an augmenting path P ′ in G′ from the augment-
ing path P ′′ in G′′:

P ′ : 18 15 16 b 3 2 1 17

Similarly, we encounter the pseudovertex b when we trace P ′ backwards from
its end vertex 18 to the root 17 of T ′. Thus 16, the immediate predecessor
of b on P ′, has to be adjacent to at least one vertex of the blossom B; this
vertex is 10. The unique edge of M incident with 10 is {10, 9}, so that we
traverse the blossom B from 10 to 9 and on to its base 4. This yields the
desired augmenting path in our original graph G:

P : 18 15 16 10 9 4 3 2 1 17

Finally, we augment our initial matching M using the path P , which yields
the perfect matching shown in Figure 13.15.

Exercise 13.4.2. Use the method described in Example 13.4.1 to enlarge
the matching shown in the graph of Figure 13.9. Take r as the root of the
alternating tree; if choices have to be made, use the vertices according to
increasing labels. Hint: You can simplify this task by exploiting the inherent
symmetry of the graph in question, which allows you to consider its two halfs
separately.

The algorithm of Edmonds generalizes the method used in Example 13.4.1.
Before stating his algorithm explicitly, we ought to prove that the shrinking
process for blossoms always works correctly. It will suffice to show that the
graph G′ = G/B resulting from contracting the first blossom B which we
encounter contains an augmenting path with start vertex r (or b, if r should
be contained in B) if and only if the original graph G contains such a path.
(In the case r ∈ B, the vertex r of G is replaced with the pseudovertex b in G′



13.4 The algorithm of Edmonds 385

by the shrinking process.) Then the general result follows by induction on the
number of blossoms encountered. We will prove our assertion by establishing
the following two lemmas.

8 10 16

18

7
9 15

6

4 3
5

11 13 2

12 14
1

17

Fig. 13.15. A perfect matching in G

Lemma 13.4.3. Let G be a connected graph with a matching M , and let r be
an exposed vertex with respect to M . Suppose that, during the construction of
an alternating tree T with root r (according to the rules described above), the
first blossom B is found when the edge e = xy is examined; here x denotes
the outer vertex which the algorithm examines at this time, and y is another
outer vertex of T . Let w be the base of B, and consider the contracted graph
G′ = G/B which results by replacing B with the pseudovertex b. If G contains
an augmenting path with respect to M starting at r, then G′ contains an
augmenting path with respect to the induced matching M ′ = M/B starting at
r (or at b, when r ∈ B).

Proof. Let P be an augmenting path in G with respect to M starting at r, and
denote the end vertex of P by s. As all vertices in P are saturated except for
r and s, we may actually assume that r and s are the only exposed vertices of
G. (Otherwise, we may remove all further exposed vertices together with the
edges incident with them from G.) Assume first that P and B do not have any
vertices in common. Then the assertion is obvious: P is also an augmenting
path in G′ with respect to M ′. Thus we may assume that P and B are not
disjoint. We distinguish two cases.

Case 1: The root r is contained in the blossom B, so that r is the base of B. We
trace P from r to s. Let q be the first vertex of P which is not contained in B,
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and denote its predecessor on P by p; thus p is the last vertex of P contained
in B. (Note that p = r is possible.) Then the edge pq is not contained in B.
Denote the part of P from r to p by P1, and the part from q to s by P2; see
Figure 13.16. Clearly, P ′ = b q

P2 s is an augmenting path in G′ with
respect to M ′.

s

q p

r

P2

s

q bP2

Fig. 13.16. Case 1 of Lemma 13.4.3

Case 2: The root r of T is not contained in B, so that the base of B is an
outer vertex w �= r. Denote the alternating path of even length from r to w
in T by S; S is usually called the stem of the blossom B. This time it is not
quite obvious how the augmenting path P with respect to M interacts with
the blossom B. Therefore we will use a trick which allows us to reduce this
case to Case 1: we replace M by the matching M1 = M ⊕ S, which has the
same cardinality. Then w and s are the only exposed vertices with respect to
M1, so that the blossom B (which has not been changed) has base w if we
begin constructing an alternating tree at vertex w; see Figure 13.17. Thus the
situation for M1 is really as in Case 1.

As there exists an augmenting path in G with respect to M , M was not
maximal. Hence M1 is not maximal either; by Theorem 13.2.2, there exists
an augmenting path P1 with respect to M1 in G. According to Case 1, this
implies the existence of an augmenting path P ′

1 in G′ with respect to M1/B,
so that the matching M1/B is not maximal. It follows that the matching M/B
of G′ (which has the same cardinality as the matching M1/B) is not maximal
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either; hence there must be an augmenting path in G′ with respect to M/B.
As r and s are the only exposed vertices in G′, the assertion follows. ��

w

r

w

r

Fig. 13.17. Case 2 of Lemma 13.4.3

Lemma 13.4.4. Let G be a connected graph with a matching M , and suppose
that r is an exposed vertex with respect to M . Moreover, let B be a blossom
with base w and G′ = G/B the contracted graph where B is replaced with the
pseudovertex b. If G′ contains an augmenting path with respect to M ′ = M/B
starting at r (or at b, when r ∈ B), then there exists an augmenting path in
G with respect to M starting at r.

Proof. Assume first that the augmenting path P ′ in G′ does not contain the
pseudovertex b. Then P ′ is also a path in G, and the assertion is clear. Thus
suppose b ∈ P ′. We consider only the case r /∈ B; the case r ∈ B is similar
and actually even simpler. Let w be the base of B. First suppose that the
distance from r to b in P ′ is even. Then P ′ has the form

P ′ : r
P1 p b q

P3 s,

where P1 is the part of P ′ from r to p = mate(b). Now q must be adjacent to
a vertex q′ ∈ B. Denote the alternating path of even length in B from w to
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q′ by P2; note P2 = ∅ if w = q′. Then

P : r
P1 p w

P2 q′ q
P3 s

is an augmenting path in G with respect to M , where P3 denotes the part of
P ′ from q to s; see Figure 13.18.

Finally, if the distance from r to b in P ′ is odd, the distance from s to
b in P ′ has to be even. Then we simply exchange the roles of r and s and
proceed as before. (This case may indeed occur, as the solution to Exercise
13.4.2 shows.) ��

s

q

b

p

r

P3

P1

s

q q′

w

p

r

P3

P2

P1

Fig. 13.18. Proof of Lemma 13.4.4

As the following exercise shows, the condition that the blossom B under
consideration must have been found during the construction of the alternating
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tree T is actually needed in Lemma 13.4.3, whereas no such condition on B
is required for Lemma 13.4.4.

Exercise 13.4.5. Consider the graph G with the matching M shown in Fig-
ure 13.19. Obviously, G contains a unique blossom. Show that the contracted
graph G′ does not contain an augmenting path with respect to M ′, even
though G contains an augmenting path with respect to M .

Fig. 13.19. Graph with a blossom

Now we are ready to state a version of the algorithm of Edmonds, which
more or less generalizes the method used in Example 13.4.1. There will be one
major difference, though: in order to achieve a better complexity, the graph
will not be contracted explicitly when a blossom B is encountered, as this
would require rather involved update operations and also a later re-expansion
of the contracted graph. Instead, the vertices in B will be declared inactive,
which is done with the help of a Boolean function a(v) on V .

Algorithm 13.4.6 (Algorithm of Edmonds). Let G = (V, E) be a graph
on the vertex set V = {1, . . . , n}, given by adjacency lists Av. The algorithm
constructs a maximal matching M of G described by an array mate and
determines the number of exposed vertices of G with respect to M .

The main procedure MAXMATCH uses the procedure INMATCH given
in Algorithm 13.3.1 to determine an initial matching as well as three fur-
ther auxiliary procedures: BLOSSOM, CONTRACT, and AUGMENT. These
three procedures are described after MAXMATCH in a less formal way. In
MAXMATCH, the function d describes the position of the vertices in the cur-
rent alternating tree T with root r: vertices which are not yet in the tree have
d(y) = −1; for all other vertices, d(y) is the distance between y and the root
r of T . In particular, vertices y for which d(y) is odd are inner vertices, and
vertices y for which d(y) is even are outer vertices. The outer vertices are kept
in a priority queue Q with priority function d.

The construction of the alternating tree T is always continued from the first
active vertex of Q. Initially, all vertices are active. Vertices become inactive
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if they are contained in a blossom which is contracted. The examination of
the neighbors of an outer vertex x is done as described in Section 13.3, and
blossoms are contracted immediately when they are discovered.

As we need the original adjacency lists Av of G later for expanding the
augmenting paths (as in Example 13.4.1), these lists must not be changed
throughout the algorithm. Therefore we will use new adjacency lists CA(v)
for describing the contracted graphs. As mentioned before, the vertices of a
contracted blossom are not actually removed from the graph, but are just
declared to be inactive; of course, originally all vertices are active. For this
purpose, we use a Boolean function a: a vertex v remains active as long as
a(v) has the value true.

Finally, there are also Boolean variables aug and cont, which serve to
control the loop: the variable aug has the value false until an augmenting
path is found; and during the examination of an outer vertex x, cont has
value false until a blossom is found (and contracted).

Procedure MAXMATCH(G; mate, nrex)

(1) INMATCH(G; mate, nrex);
(2) r ← 0;
(3) while nrex ≥ 2 and r < n do
(4) r ← r + 1;
(5) if mate(r) = 0
(6) then Q ← ∅, aug ← false, m ← 0;
(7) for v ∈ V do
(8) p(v) ← 0, d(v) ← −1, a(v) ← true;
(9) CA(v) ← Av

(10) od;
(11) d(r) ← 0; append r to Q;
(12) while aug=false and Q �= ∅ do
(13) remove the first vertex x of Q;
(14) if a(x) = true
(15) then cont ← false
(16) for y ∈ CA(x) do u(y) ← false od;
(17) repeat
(18) choose y ∈ CA(x) with u(y) = false; u(y) ← true;
(19) if a(y) = true
(20) then if d(y) ≡ 0 (mod 2)
(21) then m ← m + 1;
(22) BLOSSOM (x, y; B(m), w(m));
(23) CONTRACT (B(m), m, w);
(24) else if d(y) = −1
(25) then if mate(y) = 0
(26) then AUGMENT(x, y)
(27) else z ← mate(y);
(28) p(y) ← x; d(y) ← d(x) + 1;
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(29) p(z) ← y; d(z) ← d(y) + 1;
(30) insert z with priority d(z) into Q;
(31) fi
(32) fi
(33) fi
(34) fi
(35) until u(y) = true for all y ∈ CA(v) or aug = true

or cont = true
(36) fi
(37) od
(38) fi
(39) od

The following procedure BLOSSOM constructs a blossom B with base w. This
procedure is called by MAXMATCH if a further outer vertex y is discovered
in CA(x) during the examination of an outer vertex x (according to Case 4
in Section 13.3).

Procedure BLOSSOM(x, y; B, w)

(1) P ← {x}; P ′ ← {y}; u ← x; v ← y;
(2) repeat
(3) P ← P ∪ {p(u)}; u ← p(u)
(4) until p(u) = r;
(5) repeat
(6) P ′ ← P ′ ∪ {p(v)}; v ← p(v)
(7) until v = r;
(8) S ← P ∩ P ′;
(9) let w be the element of S for which d(w) ≥ d(z) for all z ∈ S;

(10) B ← ((P ∪ P ′) \ S) ∪ {w}
The procedure CONTRACT is used for contracting a blossom B, and the
adjacency lists CA(v) for the contracted graph are updated accordingly.

Procedure CONTRACT(B, m, w)

(1) b ← n + m; a(b) ← true;
(2) p(b) ← p(w); d(b) ← d(w); mate(b) ← mate(w);
(3) insert b into Q with priority d(b);
(4) CA(b) ← ⋃

z∈B CA(z);
(5) for z ∈ CA(b) do CA(z) ← CA(z) ∪ {b} od;
(6) for z ∈ B do a(z) ← false od;
(7) for z ∈ CA(b) do
(8) if a(z) = true and p(z) ∈ B
(9) then d(z) ← d(b) + 1; p(z) ← b;

(10) d(mate(z)) ← d(z) + 1;
(11) fi
(12) od
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(13) cont ← true

The final procedure AUGMENT serves to construct an augmenting path (and
to change the matching M accordingly) when an exposed vertex y is encoun-
tered during the construction of the alternating tree T ; see step (25) in MAX-
MATCH.

Procedure AUGMENT(x, y)

(1) P ← {y, x}; v ← x;
(2) repeat
(3) P ← P ∪ {p(v)}; v ← p(v)
(4) until p(v) = r;
(5) while there exists b ∈ P with b > n do
(6) choose the largest b ∈ P with b > n;
(7) B ← B(b − n); w ← w(b − n); z ← mate(w);
(8) let q be the neighbor of b on P which is different from z;
(9) choose some q′ ∈ B ∩ CA(q);

(10) determine the alternating path B′ of even length in B from w to q′;
(11) replace b by w in P ;
(12) insert B′ into P between w and q
(13) od;
(14) u ← y; v ← x;
(15) while v �= r do
(16) z ← mate(v); mate(v) ← u; mate(u) ← v;
(17) u ← z; let v be the successor of z on P
(18) od
(19) mate(v) ← u; mate(u) ← v;
(20) nrex ← nrex −2; aug ← true

Theorem 13.4.7. Let G = (V, E) be a connected graph. Then Algorithm
13.4.6 determines a maximal matching of G. If the auxiliary procedures BLOS-
SOM, CONTRACT, and AUGMENT are implemented appropriately, one
may achieve an overall complexity of O(|V |3).
Proof. The detailed discussion given when we derived Edmonds’ algorithm in
the present and the previous sections already shows that Algorithm 13.4.6 is
correct. Nevertheless, we will summarize the main points once again.

First, an initial matching M described by the array mate is constructed via
the procedure INMATCH. The subsequent outer while-loop in MAXMATCH
comprises the search for an augmenting path with respect to M with start
vertex r: it constructs an alternating tree T with root r. Obviously, this search
can only be successful if there are still at least two exposed vertices; hence
we require nrex ≥ 2. Moreover, we may restrict to r ≤ n− 1 the examination
of exposed vertices r as start vertices for an augmenting path, because an
augmenting path with start vertex n would have been found earlier when
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its end vertex was used as the root of an alternating tree. It follows from
Theorem 13.2.2 and Lemma 13.2.3 that it indeed suffices to examine each
exposed vertex at most once as the root of an alternating tree.

As already mentioned, the outer vertices of T are kept in the priority
queue Q and examined in a BFS-like fashion (provided that they are still
active). During the inner while-loop, the first active vertex x from Q is chosen
– as long as this is possible and no augmenting path has been found yet.
By examining the vertices adjacent to x, the construction of the tree T is
continued. Choosing x according to the priority function d(x) ensures that
the construction of T is always continued from a vertex which has smallest
distance to the root r.6 Inner vertices y are ignored during the examination
of the vertices adjacent to x according to the conditions in steps (20) and
(24): in that case, the edge xy would close a cycle of even length, and y would
already be accessible from r by an alternating path of odd length in T . Note
that the function d(y) is used to decide whether y is already contained in T :
either d(y) > 0, and this value equals the distance between r and y in T ; or y
has not been added to the tree yet, in which case d(y) = −1.

If the condition on d(y) holds in step (20) (so that d(y) is even and hence y
is contained in T as an outer vertex), the edge xy closes a blossom B. Accord-
ing to Lemmas 13.4.3 and 13.4.4, we may then continue with the contracted
graph G/B instead of G: there is an augmenting path with respect to M in G
if and only if G/B contains an augmenting path with respect to the induced
matching M/B. The first step in replacing G by G/B is to construct the blos-
som B by calling the procedure BLOSSOM in step (22). This procedure uses
the predecessor function p defined in steps (28) and (29) of the main proce-
dure: p(v) is the predecessor of v on the unique path from the root r to v in T .
With the help of p, BLOSSOM determines the paths P and P ′ from x and y,
respectively, to the root r in the obvious manner. Clearly, the intersection S
of P and P ′ is the stem of B. As the function d gives the distance of a vertex
from the root r of T , the base of B is precisely the vertex w of S for which
d(w) is maximal. Therefore the blossom B is indeed ((P ∪ P ′) \ S) ∪ {w} as
stated in step (10) of BLOSSOM; thus this procedure indeed constructs the
blossom B as well as its base w.

Next, the procedure CONTRACT is called in step (23) of MAXMATCH in
order to replace the graph G with the contracted graph G/B and to change M
and T accordingly. The pseudovertex b to which B is contracted is numbered
as b = n + m, where m counts the number of blossoms discovered up to
this point (including B). This makes it easy to decide which vertices of a
contracted graph are pseudovertices: the pseudovertices are precisely those
vertices b with b > n. Steps (1) to (3) of CONTRACT label b as an active

6In contrast to an ordinary BFS, we need the explicit distance function d(x)
because contractions of blossoms may change the distances in the current tree T : a
new pseudovertex b is, in general, closer to the root than some other active vertices
which were earlier added to T ; compare Example 13.4.1.
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vertex, insert it into Q, and replace the base w and all other vertices of B
by b in T : the predecessor of b is defined to be p(w), and the distance of
b from r is set to d(w); moreover, mate(b) is defined to be mate(w), as we
also need the induced matching M/B. Steps (4) to (6) contain the implicit
contraction: all vertices of B are labelled as inactive and all vertices adjacent
to some vertex of B are made neighbors of b by putting them into CA(b). In
steps (7) to (12), T is updated to T/B by defining b to be the predecessor
of all active vertices z whose predecessor p(z) was some vertex in B, and by
defining the distance of these vertices to the root r to be d(b)+1. The same is
done for the corresponding outer vertices mate(z). Finally, the variable cont
is assigned the value true; this means that the examination of the vertex x
(which is no longer active) is stopped in MAXMATCH, and the construction
of T is continued with the active vertex in Q which has highest priority (that
is, smallest distance from r).

If a vertex y is not yet contained in T when the edge xy is examined (that
is, if d(y) = −1), we check in step (25) whether y is exposed. If this is not
the case, the vertices y and z = mate(y) are added to the tree T (as an inner
and an outer vertex, respectively) by appending the path x y z at x, and
by defining the predecessors and the distances of y and z to r accordingly
in steps (28) and (29); also, the new active outer vertex z is inserted into Q
with priority d(z) in step (30). Finally, if y is exposed, AUGMENT replaces
M with a larger matching according to Theorem 13.2.2.

Steps (1) to (4) of the procedure AUGMENT construct an augmenting
path P with respect to the present matching M ′ which is induced by M in
the graph G′ (the current, possibly multiply contracted graph). During the
first while-loop, the pseudovertices on this path (which are recognized by the
condition b > n) are expanded in decreasing order: the pseudovertices which
were constructed first (and thus have smaller labels) are expanded last. To
execute such an expansion, the neighbor q �= mate(b) of b is determined and
the edge {b, q} on P is replaced by the alternating path of even length from
the base w of the corresponding blossom to the vertex q′ ∈ B adjacent to
q; compare the proof of Lemma 13.4.4. Therefore P is an augmenting path
in G with respect to M when the first while-loop is terminated; we view P
as being oriented from y to the root r. The second while-loop augments the
matching M along this path by updating the function mate appropriately. In
step (20) of AUGMENT, the number of exposed vertices is decreased by 2
and the variable aug is assigned value true; hence the construction of the tree
T is stopped in MAXMATCH according to step (12) or (35). Then the outer
while-loop of MAXMATCH starts once again, using the next exposed vertex
as the root r of a new alternating tree (if possible).

The repeat-loop in MAXMATCH (which comprises the search for an
exposed outer vertex from a fixed vertex x) is terminated according to step
(35) if either a contraction or an augmentation has been performed, or if
all currently active vertices y adjacent to x have been examined. The inner
while-loop terminates if either an augmenting path was found or if Q is
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empty; in the latter case the construction of T terminates without finding an
augmenting path. In this case, we have constructed an alternating tree T ′ for
a (in general, multiply contracted) graph G′ in which all blossoms discovered
during the construction of the tree with root r were immediately contracted.
Therefore, as there is no augmenting path with start vertex r in G′, there is
no such path in G either – by Lemma 13.4.4. In both cases, the algorithm
continues with the next exposed vertex as the root of an alternating tree.
This process continues until the outer while-loop is terminated (as discussed
above), so that the then current matching M is maximal.

It remains to discuss the complexity of MAXMATCH. Obviously, there
are at most O(|V |) iterations of the outer while-loop; in other words, the
algorithm has at most O(|V |) phases (where an alternating tree with root
r is constructed). Hence we want to show that each phase can be executed
in O(|V |2) steps, provided that the auxiliary procedures are implemented
suitably.

Note that each blossom contains at least three vertices and that each vertex
may be contracted (that is, made inactive) at most once, so that there are only
O(|V |) contractions during a given phase. To be more precise, at most |V |/2
pseudovertices may occur during the inner while-loop, which implies that
there are at most O(|V |) iterations of this loop. When the vertices y adjacent
to x are examined during the repeat-loop, at most O(|V |) edges are treated,
so that this whole process can take at most O(|V |2) steps – not counting
the complexity of the auxiliary procedures BLOSSOM, CONTRACT, and
AUGMENT. It is easily seen that one call of BLOSSOM takes at most O(|V |)
steps; since there are at most O(|V |) such calls in a phase, these operations
also contribute at most O(|V |2) steps.

We next show that the calls of CONTRACT during a given phase alto-
gether need at most O(|V |2) steps, provided that step (4) is implemented
appropriately: note that the construction of the adjacency list of the pseu-
dovertex b is the only part of CONTRACT whose complexity is not quite
obvious. Fortunately, it is possible to perform this construction efficiently by
using a labelling process: initially, all vertices are unlabeled; then we label
all vertices occurring in one of the adjacency lists of the vertices contained
in B; and finally, we define CA(b) to be the set of all labelled vertices. For
each blossom B, this labelling method requires O(|V |) steps plus the number
of steps we need for examining the adjacency lists of the vertices of B. Now
there are only O(|V |) vertices which might occur in one of the blossoms and
need to be examined then; hence these examinations – added over all calls of
CONTRACT – cannot take more than O(|V |2) steps altogether.

Finally, we have to convince ourselves that an eventual call of AUGMENT
has complexity at most O(|V |2). Obviously, there are at most O(|V |) iterations
of the first while-loop in AUGMENT. All operations during this loop can be
executed in O(|V |) steps, except possibly for the determination of a vertex
q′ in CA(q) in step (9) and the determination of an alternating path from w
to q′ in step (10) during the expansion of a pseudovertex b to a blossom B.
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However, the first of these two operations may be implemented via a labelling
process, which easily leads to a complexity of O(|V |): we label the vertices in
CA(q) and then look for a labelled vertex in B. The second operation may
also be performed in O(|V |) steps if we store the blossom B in BLOSSOM
not just as a set, but as a doubly linked list: then we simply trace B from
q′ in the direction given by mate(q′) until we reach the base w. Therefore,
AUGMENT likewise allows a complexity of O(|V |2).

Summing up, each phase of MAXMATCH may be performed in O(|V |2)
steps, so that the overall complexity is indeed O(|V |3). ��

It should be mentioned that actually implementing the procedures for de-
termining a maximal matching (as described above) is in fact a rather daunt-
ing task. We close this section with an exercise.

Exercise 13.4.8. Let G be a bipartite graph with vertex set V = S
.∪ T ,

where S = {1, . . . , n} and T = {1′, . . . , n′}. G is called symmetric if the
existence of an edge ij′ in G always implies that also ji′ is an edge of G.
A matching of G is called symmetric if M does not contain any edge of the
form ii′ and if, for each edge ij′ ∈ M , the edge ji′ is contained in M as well.
How could a maximal symmetric matching in a symmetric bipartite graph be
determined?

13.5 Matching matroids

In this final section we return to theoretical considerations once again. We will
present the generalization of Theorem 7.3.8 due to Edmonds and Fulkerson
[EdFu65] which was already mentioned in Section 7.3.

Theorem 13.5.1. Let G = (V, E) be a graph, and let S be the set of all those
subsets of vertices which are covered by some matching in G. Then (V,S) is
a matroid.

Proof. Let A and A′ be two independent sets with |A| = |A′| + 1, and let M
and M ′ be matchings in G which cover the vertices in A and A′, respectively.
If there exists a vertex a ∈ A\A′ such that M ′ meets A′∪{a}, then condition
(2) of Theorem 5.2.1 is trivially satisfied. Otherwise let X be the symmetric
difference of M and M ′. Then X has to consist of alternating cycles and
alternating paths (as in the proof of Theorem 13.2.2): X splits into cycles and
paths in which edges of M and M ′ alternate. As |A\A′| = |A′ \A|+1, X has
to contain a path P connecting a vertex x ∈ A \ A′ to a vertex y /∈ A′. Then
M ′ ⊕ P is a matching meeting A′ ∪ {x}. Therefore condition (2) of Theorem
5.2.1 is always satisfied, so that (V,S) is a matroid. ��

Given any matroid (M,S) and any subset N of M , the restriction (N,S|N),
where S|N = {A ⊂ N : A ∈ S}, is again a matroid. Hence Theorem 13.5.1
immediately implies the following result.
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Corollary 13.5.2. Let G = (V, E) be a graph, and let W be a subset of V .
Moreover, let S be the set of all subsets of W consisting of vertices covered by
some matching of G. Then (W,S) is a matroid. ��

The matroids described in Corollary 13.5.2 are called matching matroids.

Exercise 13.5.3. Derive Theorem 7.3.8 from Corollary 13.5.2.

Exercise 13.5.4. Let G = (V, E) be a graph and A a subset of V . Assume
that there exists a matching M covering all vertices in A. Show that there
also exists a maximal matching covering A. In particular, each vertex which
is not isolated is contained in a maximal matching.

We close this chapter with some remarks. As we have seen, there are
efficient algorithms for determining a matching of maximal cardinality. In
contrast, determining a non-extendable matching of minimal cardinality is an
NP-hard problem – even for planar or bipartite graphs, and even in the case
of maximal degree at most 3; see [YaGa80].

The notion of a matching can be generalized as follows. Let G = (V, E) be
a graph with V = {1, . . . , n}, and let f : V → N0 be an arbitrary mapping.
A subgraph of G with deg v = f(v) for v = 1, . . . , n is called an f-factor.
Tutte generalized his Theorem 13.1.1 to a necessary and sufficient condition
for the existence of an f -factor; see [Tut52]. His general theorem may actually
be derived from the 1-factor theorem; see [Tut54]. Anstee [Ans85] gave an
algorithmic proof of Tutte’s theorem which allows one to determine an f -factor
with complexity O(n3) (or show that no such factor exists). The existence
question for f -factors can also be treated in the framework of flow theory, by
using the balanced networks already mentioned; see the footnote on page 367.
Further generalizations – where the degrees of the vertices are restricted by
upper and lower bounds – are considered in [Lov70b] and [Ans85]. A wealth
of results concerning matchings as well as an extensive bibliography can be
found in the important monograph [LoPl86].
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Weighted matchings

With matching it’s like with playboy bunnies:
You never have it so good.

Jack Edmonds

In the previous chapter, we studied matchings of maximal cardinality (the
cardinality matching problem). The present chapter is devoted to weighted
matchings, in particular to the problem of finding a matching of maximal
weight in a network (G, w) (the weighted matching problem). In the bipar-
tite case, this problem is equivalent to the assignment problem introduced in
Example 10.1.4, so that the methods discussed in Chapter 10 apply. Never-
theless, we will give a further algorithm for the bipartite case, the Hungarian
algorithm, which is one of the best known and most important combinatorial
algorithms.

We proceed by explaining the connection between matching problems and
the theory of linear programming, even though we generally avoid linear pro-
grams in this book. We need this to see the deeper reason why the approach
used in the Hungarian algorithm works: its success is due to the particularly
simple structure of the corresponding polytope, and ultimately to the total
unimodularity of the incidence matrix of a bipartite graph. In this context, the
significance of blossoms will become much clearer, as will the reason why the
determination of maximal matchings (weighted or not) is considerably more
difficult for arbitrary graphs than for bipartite ones. It would make little sense
to describe an algorithm for the weighted matching problem in general graphs
without using more of the theory of linear programming; for this reason, no
such algorithm is presented in this book.

Nevertheless, we will include two interesting applications of weighted
matchings: the Chinese postman problem (featuring a postman who wants
an optimal route for delivering his mail) and the determination of shortest
paths for the case where edges of negative weight occur. Finally, we include a
few remarks about matching problems with certain additional restrictions – a
situation which occurs quite often in practice; we will see that such problems
are inherently more difficult.
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14.1 The bipartite case

Let G = (V, E) be a bipartite graph with weight function w : E → R. As
usual, the weight w(M) of a matching M of G is defined by

w(M) =
∑
e∈M

w(e).

A matching M is called a maximal weighted matching if w(M) ≥ w(M ′)
holds for every matching M ′ of G. Obviously, a maximal weighted matching
cannot contain any edges of negative weight. Thus such edges are irrelevant
in our context, so that we will usually assume w to be nonnegative; but even
under this assumption, a maximal weighted matching is not necessarily also
a matching of maximal cardinality. Therefore we extend G to a complete
bipartite graph by adding all missing edges e with weight w(e) = 0; then
we may assume that a matching of maximal weight is a complete matching.
Similarly, we may also assume |S| = |T | by adding an appropriate number
of vertices to the smaller of the two sets (if necessary), and by introducing
further edges of weight 0.

In view of the preceding considerations, we will restrict our attention to
the problem of determining a perfect matching of maximal weight with respect
to a nonnegative weight function w in a complete bipartite graph Kn,n. We
call such a matching an optimal matching of (Kn,n, w). If we should require
a perfect matching of maximal weight in a bipartite graph containing edges
of negative weight, we can add a sufficiently large constant to all weights first
and thus reduce this case to the case of a nonnegative weight function. Hence
we may also treat the problem finding a perfect matching of minimal weight,
by replacing w by −w.

Thus let w : E → R+
0 be a weight function for the graph Kn,n. Suppose

the maximal weight of all edges is C. We define the cost of a perfect matching
M as follows:

γ(M) =
∑
e∈M

γ(e),

where the cost γ(e) of an edge e is given by γ(e) = C − w(e). Then the
optimal matchings are precisely the perfect matchings of minimal cost. Hence
determining an optimal matching in G with respect to the weight function w
is equivalent to solving the assignment problem for the matrix A = (C−w(ij))
and thus to a special case of the optimal flow problem (compare Examples
10.1.3 and 10.1.4): we just need to find an optimal flow of value n in the
flow network described in 10.1.4. As this may be done using the algorithm of
Busacker and Gowen, Theorem 10.5.3 implies the following result.

Theorem 14.1.1. Let w be a nonnegative weight function for Kn,n. Then an
optimal matching can be determined with complexity O(n3). ��
Exercise 14.1.2. Design a procedure OPTMATCH which realizes the asser-
tion of Theorem 14.1.1.



14.2 The Hungarian algorithm 401

The complexity O(n3) given above is, in fact, the best known result for pos-
itive weight functions on complete bipartite graphs Kn,n. For non-complete
bipartite graphs, one may give a better complexity bound; this follows, for
example, from Theorem 10.5.3, using the same approach as above; see also
[Tar83, p. 114]. The best known complexity for determining an optimal match-
ing in a general bipartite graph is O(|V ||E|+ |V |2 log |V |), see [FrTa87]; algo-
rithms of complexity O(|V |1/2|E| log (|V |C)) are in [GaTa89] and [OrAh92].
A polynomial version of the network simplex algorithm specialized to the
assignment problem can be found in [AhOr92].

14.2 The Hungarian algorithm

In this section, we present a further algorithm for finding an optimal matching
in a complete bipartite graph. This algorithm is due to Kuhn [Kuh55, Kuh56]
and is based on ideas of König and Egerváry, so that Kuhn named it the Hun-
garian algorithm. Even though his algorithm does not improve on the com-
plexity bound O(n3) reached in Theorem 14.1.1, it is presented here because
it is one of the best-known and (historically) most important combinatorial
algorithms.

Thus let G = (V, E) be the complete bipartite graph Kn,n with V = S
.∪ T ,

where S = {1, . . . , n} and T = {1′, . . . , n′}, and with a nonnegative weight
function w described by a matrix W = (wij): the entry wij is the weight of
the edge {i, j′}. A pair of real vectors u = (u1, . . . , un) and v = (v1, . . . , vn)
is called a feasible node-weighting if the following condition holds:

ui + vj ≥ wij for all i, j = 1, . . . , n. (14.1)

We will denote the set of all feasible node-weightings (u,v) by F and the
weight of an optimal matching by D. The following simple result is immediate
by summing (14.1) over all edges of the matching M .

Lemma 14.2.1. For each feasible node-weighting (u,v) and for each perfect
matching M of G, we have

w(M) ≤ D ≤
n∑

i=1

(ui + vi) . �� (14.2)

If we can find a feasible node-weighting (u,v) and a perfect matching
M for which equality holds in (14.2), then M has to be optimal. Indeed, it is
always possible to achieve equality in (14.2); the Hungarian algorithm will give
a constructive proof for this fact.1 We now characterize the case of equality in
(14.2). For a given feasible node-weighting (u,v), let Hu,v be the subgraph of
G with vertex set V whose edges are precisely those ij′ for which ui+vj = wij

holds; Hu,v is called the equality subgraph for (u,v).
1This approach is not a trick appearing out of the blue; we will discuss its

theoretical background in the next section.
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Lemma 14.2.2. Let H = Hu,v be the equality subgraph for (u,v) ∈ F. Then
n∑

i=1

(ui + vi) = D

holds if and only if H has a perfect matching. In this case, every perfect
matching of H is an optimal matching for (G, w).

Proof. First let
∑

(ui+vi) = D and suppose that H does not contain a perfect
matching. For J ⊂ S, we denote by Γ (J) the set of all vertices j′ ∈ T which
are adjacent to some vertex i ∈ J (as usual). By Theorem 7.2.4, there exists a
subset J of S with |Γ (J)| < |J |. (Note that we exchanged the roles of S and
T compared to 7.2.4.) Put

δ = min {ui + vj − wij : i ∈ J, j′ /∈ Γ (J)}
and define (u′,v′) as follows:

u′
i =

{
ui − δ for i ∈ J

ui for i /∈ J
and v′j =

{
vj + δ for j′ ∈ Γ (J)

vj for j′ /∈ Γ (J).

Then (u′,v′) is again a feasible node-weighting: the condition u′
i + v′j ≥ wij

might only be violated for i ∈ J and j′ /∈ Γ (J); but then δ ≤ ui + vj −wij , so
that wij ≤ (ui − δ) + vj = u′

i + v′j . We now obtain a contradiction:

D ≤
∑

(u′
i + v′j) =

∑
(ui + vj) − δ|J | + δ|Γ (J)| = D − δ(|J | − |Γ (J)|) < D.

Conversely, suppose that H contains a perfect matching M . Then equality
holds in (14.1) for each edge of M , and summing (14.1) over all edges of M
yields equality in (14.2). This argument also shows that every perfect matching
of H is an optimal matching for (G, w). ��

The Hungarian algorithm starts with an arbitrary feasible node-weighting
(u,v) ∈ F; usually, one takes

v1 = . . . = vn = 0 and ui = max {wij : j = 1, . . . , n} (for i = 1, . . . , n).

If the corresponding equality subgraph contains a perfect matching, our prob-
lem is solved. Otherwise, the algorithm determines a subset J of S with
|Γ (J)| < |J | and changes the feasible node-weighting (u,v) in accordance
with the proof of Lemma 14.2.2. This decreases the sum

∑
(ui + vi) and adds

at least one new edge ij′ with i ∈ J and j′ /∈ Γ (J) (with respect to Hu,v) to
the new equality subgraph Hu′,v′ . This procedure is repeated until the partial
matching in H is no longer maximal. Finally, we get a graph H containing a
perfect matching M , which is an optimal matching of G as well. For extend-
ing the matchings and for changing (u,v), we use an appropriately labelled
alternating tree in H. In the following algorithm, we keep a variable δj for
each j′ ∈ T which may be viewed as a potential : δj is the current minimal
value of ui + vj −wij . Moreover, p(j) denotes the first vertex i for which this
minimal value is obtained.
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Algorithm 14.2.3 (Hungarian algorithm). Let G = (V, E) be a complete
bipartite graph with V = S

.∪ T , where S = {1, . . . , n} and T = {1′, . . . , n′}
and where each edge ij′ of G has an associated nonnegative weight wij . The
algorithm determines an optimal matching in G described by an array mate
(as in Chapter 13). Note that Q denotes a set in what follows (not a queue).
Also, we will use a different procedure AUGMENT (compared to Chapter 13),
as we are in the bipartite case now.

Procedure HUNGARIAN(n, w; mate)

(1) for v ∈ V do mate(v) ← 0 od;
(2) for i = 1 to n do ui ← max {wij : j = 1, . . . , n}; vi ← 0 od;
(3) nrex ← n;
(4) while nrex �= 0 do
(5) for i = 1 to n do m(i) ← false; p(i) ← 0; δi ← ∞ od;
(6) aug ← false; Q ← {i ∈ S : mate(i) = 0};
(7) repeat
(8) remove an arbitrary vertex i from Q; m(i) ← true; j ← 1;
(9) while aug = false and j ≤ n do

(10) if mate(i) �= j′

(11) then if ui + vj − wij < δj

(12) then δj ← ui + vj − wij ; p(j) ← i;
(13) if δj = 0
(14) then if mate(j′) = 0
(15) then AUGMENT(mate, p, j′; mate);
(16) aug ← true; nrex ← nrex −1
(17) else Q ← Q ∪ { mate(j′)}
(18) fi
(19) fi
(20) fi
(21) fi;
(22) j ← j + 1
(23) od;
(24) if aug = false and Q = ∅
(25) then J ← {i ∈ S : m(i) = true}; K ← {j′ ∈ T : δj = 0};
(26) δ ← min {δj : j′ ∈ T \ K};
(27) for i ∈ J do ui ← ui − δ od;
(28) for j′ ∈ K do vj ← vj + δ od;
(29) for j′ ∈ T \ K do δj ← δj − δ od;
(30) X ← {j′ ∈ T \ K : δj = 0};
(31) if mate(j′) �= 0 for all j′ ∈ X
(32) then for j′ ∈ X do Q ← Q ∪ {mate(j′)} od
(33) else choose j′ ∈ X with mate(j′) = 0;
(34) AUGMENT(mate, p, j′; mate);
(35) aug ← true; nrex ← nrex − 1
(36) fi



404 14 Weighted matchings

(37) fi
(38) until aug = true
(39) od

Procedure AUGMENT(mate, p, j′; mate)

(1) repeat
(2) i ← p(j); mate(j′) ← i; next ← mate(i); mate(i) ← j′;
(3) if next �= 0 then j′ ← next fi
(4) until next =0

Theorem 14.2.4. Algorithm 14.2.3 determines with complexity O(n3) an op-
timal matching for (G, w).

Proof. Let us call all the operations executed during one iteration of the while-
loop (4) to (39) a phase. First we show by induction on the phases that
the array mate always defines a matching in the current equality subgraph
Hu,v. Because of step (1), this holds after the initialization. Now suppose
that our claim holds at the beginning of some phase. During the repeat-
loop, an alternating forest (that is, a disjoint union of alternating trees) B is
constructed in Hu,v. The outer vertices of this forest are all i ∈ S satisfying
m(i) = true, and the inner vertices of B are the vertices j′ ∈ T with δj = 0.
If the condition in (14) holds at some point, we have found an augmenting
path with end vertex j′ in B; then the current matching in Hu,v is replaced
by a larger matching using AUGMENT. As B is a subgraph of Hu,v, the new
matching is again contained in Hu,v.

We now turn to the case where the condition in (24) is satisfied, so that
we have reached Q = ∅ without finding an augmenting path in B. If this
is the case, subsets J ⊆ S and K ⊆ T are defined in (25) which satisfy
K = Γ (J). To see this, recall that the vertices in Γ (J) are precisely those
vertices j′ for which ui + vj = wij holds for some i ∈ J . Note that in step (8)
all vertices which were an element of Q at some point have been examined, so
that (during the while-loop (9) to (23)) all vertices j′ ∈ Γ (J) were associated
with some vertex i = p(j) and δj was set to 0. Also, for each vertex j′ of K, the
vertex mate(j′) is contained in J because of (17) and (8). As J contains all the
exposed vertices as well (because of (6)), we must have |Γ (J)| < |J |. Therefore
it makes sense to proceed by changing the feasible node-weighting (u,v) as in
the proof of Lemma 14.2.2, and thus to decrease the sum

∑
(ui + vi). This is

done in steps (26) to (28); let us denote the updated vectors (for the moment)
by u′ and v′. Now (27) and (28) imply for each edge ij′ of Hu,v with i ∈ J
and j′ ∈ K

u′
i + v′j = (ui − δ) + (vj + δ) = wij (as ij′ ∈ Hu,v),

so that all such edges of Hu,v are contained in Hu′,v′ as well. Moreover, the
condition u′

i + v′j ≥ wij still holds for all i and j; this is seen as in the proof
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of Lemma 14.2.2. When we change u to u′ in step (27), the potential δj also
decreases by δ for all j′ ∈ T \ K; the necessary adjustment is made in step
(29). Our definition of δ implies that this process yields at least one j′ ∈ T \K
satisfying δj = 0. Thus Hu′,v′ contains at least one edge ij′ with i ∈ J and
j′ /∈ K, that is, an edge leaving J which was not contained in Hu,v.2

In step (30), all vertices j′ /∈ K with δj = 0 are put into the set X. If
there exists an exposed vertex j′ ∈ X, we have found an augmenting path
in Hu′,v′ and the present matching is enlarged using AUGMENT (in steps
(33) to (35)). Otherwise, the vertex mate(j′) can be added to the alternating
forest B for each j′ ∈ X, so that Q is no longer empty (step (32)); then the
construction of B in the repeat-loop continues. Note that the set cardinality
of K = Γ (J) strictly increases with each execution of steps (25) to (37), so
that an exposed vertex has to be reached after having changed (u,v) at most
n times. This shows also that each phase terminates with aug = true and that
the matching is extended during each phase.

Obviously, there are exactly n phases. As updating the feasible node-
weighting (u,v) and calling the procedure AUGMENT both need O(n) steps,
these parts of a phase contribute at most O(n2) steps altogether. Note that
each vertex is inserted into Q and examined in the inner while-loop at most
once during each phase. The inner while-loop has complexity O(n), so that
the algorithm consists of n phases of complexity O(n2), which yields a total
complexity of O(n3) as asserted. ��

Note that each phase of Algorithm 14.2.3 boils down to an application of
Algorithm 13.3.2 to the equality subgraph Hu,v. Thus the determination of an
optimal matching can be reduced to the cardinality matching problem. It is
not uncommon that the weighted version of an optimization problem reduces
to several applications of the corresponding unweighted problem.

Example 14.2.5. We use Algorithm 14.2.3 for determining an optimal match-
ing of the graph (K5,5, w), where the weight function w is given by the fol-
lowing matrix W = (wij): ⎛

⎜⎜⎜⎜⎝
3 8 9 1 6
1 4 1 5 5
7 2 7 9 2
3 1 6 8 8
2 6 3 6 2

⎞
⎟⎟⎟⎟⎠

9
5
9
8
6

0 0 0 0 0 v\u

2In general, Hu′,v′ does not contain Hu,v (as we will see in Example 14.2.5): there
may be edges ij′ with i /∈ J and j′ ∈ K which are omitted from Hu,v. Fortunately,
this does not cause any problems because all vertices j′ ∈ K are saturated by the
matching constructed so far; as mentioned above, mate(j′) is defined for all j′ ∈ K
(and is contained in J). Thus Hu′,v′ still contains the current matching.
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The numbers on the right-hand side of and below the matrix are the ui and
the vj , respectively, which the algorithm uses as initial values according to
step (2). To make the execution of the algorithm deterministic, we always
choose the smallest element of Q in step (8). This gives i = 1 in the first
phase. We obtain the following values of δj and p(j):

1′ 2′ 3′ 4′ 5′ j′

6 1 0 ∞ ∞ δj

1 1 1 − − p(j).

The vertex 3′ is exposed, so that {1, 3′} is chosen as the first edge of the
matching. During the second phase, we have i = 2 and the edge {2, 4′} is
added to the matching. During the third phase, Q = {3, 4, 5}; hence i = 3
and

1′ 2′ 3′ 4′ 5′ j′

2 7 2 0 7 δj

3 3 3 3 3 p(j).

As 4′ is already saturated, mate(4′) = 2 is added to Q. Then i = 2 is removed
from Q in step (8) and we get

2 1 2 0 0 δj

3 2 3 3 2 p(j).

Now 5′ is exposed and AUGMENT yields the new matching consisting of the
edges {2, 5′}, {3, 4′} and {1, 3′}, since we had p(5) = 2, mate(2) = 4′, p(4) = 3
and mate(3) = 0 before. During the fourth phase, Q = {4, 5}; then i = 4 and

5 7 2 0 0 δj

4 4 4 4 4 p(j).

As the vertices 4′ and 5′ are both saturated, their mates 3 and 2 are inserted
into Q. With i = 2, i = 3, and i = 5 in step (8), we obtain the following values
for δj and p(j):

i = 2 :
4 1 2 0 0
2 2 4 4 4

i = 3 :
2 1 2 0 0
3 2 4 4 4

i = 5 :
2 0 2 0 0
3 5 4 4 4.

Now both 2′ and p(2) = 5 are exposed, so that the edge {5, 2′} is added
to the matching. This ends the fourth phase; up to now, we have found the
matching M = {{1, 3′}, {2, 5′}, {3, 4′}, {5, 2′}} in the equality subgraph Hu,v;
see Figure 14.1.
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1′ 2′ 3′ 4′ 5′

1 2 3 4 5

Fig. 14.1. Equality subgraph with a matching

The fifth (and final) phase starts with Q = {4}; then i = 4 and the values of
δj and p(j) are

5 7 2 0 0
4 4 4 4 4.

Similar to the preceding phase, 2 and 3 are inserted into Q. Then the values
of δj and p(j) are changed for i = 2 and i = 3 as follows:

i = 2 :
4 1 2 0 0
2 2 4 4 4

i = 3 :
2 1 2 0 0
3 2 4 4 4.

Now we have reached Q = ∅ for the first time; thus the feasible node-weighting
(u,v) is changed in accordance with steps (27) and (28). With J = {2, 3, 4},
K = {4′, 5′}, and δ = 1, we obtain⎛

⎜⎜⎜⎜⎝
3 8 9 1 6
1 4 1 5 5
7 2 7 9 2
3 1 6 8 8
2 6 3 6 2

⎞
⎟⎟⎟⎟⎠

9
4
8
7
6

0 0 0 1 1 v\u

and the new equality subgraph given in Figure 14.2. Note that the edge {5, 4′}
was removed from the old equality subgraph, whereas the edge {2, 2′} was
added. The resulting new equality subgraph is displayed in Figure 14.2. Next
the δj are updated in step (29) as follows:

1 0 1 0 0
3 2 4 4 4.
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1′ 2′ 3′ 4′ 5′

1 2 3 4 5

Fig. 14.2. Second equality subgraph

Then X = {2′}; as 2′ is not exposed and mate(2′) = 5, we insert 5 into Q and
get (with i = 5):

1 0 1 0 0
3 2 4 4 4.

Again, Q = ∅. This time the feasible node-weighting (u,v) is changed as
follows (with J = {2, 3, 4, 5}, K = {2′, 4′, 5′}, and δ = 1):⎛

⎜⎜⎜⎜⎝
3 8 9 1 6
1 4 1 5 5
7 2 7 9 2
3 1 6 8 8
2 6 3 6 2

⎞
⎟⎟⎟⎟⎠

9
3
7
6
5

0 1 0 2 2 v\u
The new equality subgraph is shown in Figure 14.3: three edges have been
added and none removed. The δj are then changed to

0 0 0 0 0
3 2 4 4 4.

1′ 2′ 3′ 4′ 5′

1 2 3 4 5

Fig. 14.3. Third equality subgraph with perfect matching
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Now X = {1′, 3′}; as 1′ is exposed, the matching can be enlarged. With
p(1) = 3, mate(3) = 4′, p(4) = 4, and mate(4) = 0 we obtain the optimal
matching M = {{1, 3′}, {2, 5′}, {3, 1′}, {4, 4′}, {5, 2′}}, which is displayed in
Figure 14.3 and which corresponds to the bold entries in the final matrix
above; note that w(M) = 35 indeed equals

∑
(ui + vi) for the feasible node-

weighting (u,v) indicated there.

Exercise 14.2.6. Determine an optimal matching of K9,9 with respect to the
following weight matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 31 24 80 62 39 24 41 42
31 0 0 34 54 5 51 45 61
24 0 0 31 32 59 28 44 25
80 34 31 0 65 45 25 44 47
62 54 32 65 0 38 48 66 68
39 5 59 45 38 0 8 25 18
24 51 28 25 48 8 0 71 66
41 45 44 44 66 25 71 0 69
42 61 25 47 68 18 66 69 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hint: Even though the matrix is quite big, the algorithm works rather fast:
the first four phases are almost trivial.

Analyzing Algorithm 14.2.3 again, the reader will realize that the proof ac-
tually works for nonnegative weights from an arbitrary ordered abelian group.
(This remark seems to be due to Lüneburg.) Recall that an abelian group G is
called ordered if a partial ordering � is specified which satisfies the following
condition:

x � y ⇐⇒ x + z � y + z for all x, y, z ∈ G.

Using the ordered group (R+, ·), we may apply Algorithm 14.2.3 for weights
≥ 1 to determine a matching for which the product of the weights is maximal.
More generally, the algebraic assignment problem is the problem of finding a
perfect matching of maximal (or minimal) weight where the weights come from
an ordered commutative monoid; compare Section 3.10. For this problem, we
refer to [Zim81] and to [BuHZ77].

Exercise 14.2.7. Show that the bottleneck assignment problem defined in
Example 7.4.11 is a special case of the algebraic assignment problem; see
[Law76, §5.7] and [GaTa88] for that problem.

Exercise 14.2.8. Determine a product-optimal matching for the graph K5,5

with respect to the weight matrix of Example 14.2.5; that is, we seek a perfect
matching for which the product of the weights of its edges is maximal. Hint:
Apply the Hungarian algorithm within the group (Q+, ·); note that the zero
of this group is 1, and that the positive elements are the numbers ≥ 1.
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Exercise 14.2.9. Consider the problem of finding a product-optimal match-
ing of Kn,n with respect to a weight matrix all of whose entries are posi-
tive integers. Show that this problem is equivalent to determining an optimal
matching with respect to some other appropriate weight matrix. Would it be
better in practice to use this transformation and then apply Algorithm 14.2.3
directly?

Exercise 14.2.10. Is every optimal matching also product-optimal?

14.3 Matchings, linear programs, and polytopes

The Hungarian algorithm presented in the previous section is an elegant and
efficient technique for determining an optimal matching in a weighted bipartite
graph. It also allows us to check the correctness of the final result (a feature
which is certainly useful when computing smaller examples by hand): we need
to check only whether the final vectors u and v are indeed a feasible node-
weighting and whether the weight of the matching which we have computed
is equal to

∑
(ui + vi); see Lemma 14.2.2.

However, we did not provide any motivation for considering feasible node-
weightings in the previous section. It is by no means a coincidence that this
approach works and even allows such an easy check of the correctness of the
final result. To understand this, we have to appeal to the theory of linear
programming, although it is our philosophy to avoid this as far as possible
in this book. Nevertheless, linear programming is indispensable for a deeper
treatment of combinatorial optimization. Thus we now present a detour into
this area; the material dealt with here will be used only rarely in later sections.

A linear programming problem (or, for short, an LP) is an optimization
problem of the following kind: we want to maximize (or minimize, as the case
may be) a linear objective function with respect to some given constraints
which have the form of linear equalities or inequalities; note that any equality
can be replaced by two inequalities. Formally, one uses the following notation:

(LP) maximize x1c1 + . . . + xncn

subject to ai1x1 + . . . + ainxn ≤ bi (i = 1, . . . , m),
xj ≥ 0 (j = 1, . . . , n).

Sometimes, (some of) the variables xi are also allowed to be nonrestricted.
Writing A = (aij), x = (x1, . . . , xn), and c = (c1, . . . , cn), we may write (LP)
more concisely:

(LP′) maximize cxT

subject to AxT ≤ bT and x ≥ 0.

For our purposes, A, b, and c are integral, but we allow x to have real values.
Indeed, the solutions of (LP) are in general not integral but rational. Adding
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the condition that x should be integral to the LP, we get the corresponding
integer linear programming problem (or, for short, ILP).3 If we restrict x even
further by requiring xi ∈ {0, 1} for i = 1, . . . , n, we have a zero-one linear
program (or, for short, ZOLP). Many of the most important problems of com-
binatorial optimization can be formulated as a ZOLP; in particular, this holds
for optimal matchings.

Example 14.3.1. Let G = (V, E) be a complete bipartite graph with a non-
negative weight function w. Then the optimal matchings of G are precisely
the solutions of the following ZOLP:

maximize
∑
e∈E

w(e)xe

subject to xe ∈ {0, 1} for all e ∈ E and
∑

e∈δ(v)

xe = 1 for all v ∈ V,

where δ(v) denotes the set of edges incident with v. An edge e is contained
in the corresponding perfect matching if and only if xe = 1. The constraints
above make sure that any solution x indeed corresponds to a perfect matching.
In this particular case, the vectors x satisfying the constraints (that is, the
admissible vectors) coincide with the admissible vectors for the corresponding
ILP, where the condition xe ∈ {0, 1} is replaced by xe ≥ 0. Using the incidence
matrix A of G, we can write the ILP concisely as

maximize wxT subject to AxT = 1T and x ≥ 0, (14.3)

where x = (xe)e∈E ∈ ZE .

Exercise 14.3.2. Describe the problem of finding an optimal integral circu-
lation on a network (G, b, c) as an ILP. Also, describe the problem of finding a
maximal spanning tree for a network (G, w) as a ZOLP. Is this an interesting
approach to the problem?

3Note that the problem SAT treated in Section 2.7 may be viewed as a special
case of the problem ILP; see e.g. [PaSt82, Chapter 1]. This implies that ILP is NP-
hard, which makes it likely that it cannot be solved in polynomial time. In contrast,
LP is a polynomial problem, as the ellipsoid algorithm of Khachiyan [Kha79] shows
(which is unfortunately of no use for practical purposes); see also [PaSt82, Chapter
7]. A further polynomial algorithm for LP – which is of considerable practical im-
portance – is due to Karmarkar [Kar84]. We refer to [BaJS90] for a nice presentation
concerning the complexity of LP, including a detailed description of the algorithm
of Karmarkar; the reader will also find further references to the literature there.
The original paper of Karmarkar was the starting point for a very large and active
area of research. Actually his algorithm is best understood in the context of non-
linear programming; a variation based on a barrier function approach is described
in [BaSS93, §9.5]. A good discussion of the so-called path-following methods can be
found in [Gon92] which includes a detailed reference list as well; we also recommend
the first part of the monograph [Ter96] on interior point methods.
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As we wish to apply the theory of linear programming, we have to trans-
form the ILP of Example 14.3.1 into an ordinary LP. Some geometric consid-
erations will be useful here. If the set of all admissible vectors x ∈ Rn for a
given LP is bounded and nonempty, then all these vectors form a polytope:
the convex hull (see Section 7.4) of a finite number of vectors in Rn. It is
a fundamental result that optimal solutions for the LP can always be found
among the vectors corresponding to vertices of the polytope (though there
may exist further optimal solutions); here the vertices of the polytope can be
defined as those points at which an appropriate objective function achieves
its unique maximum over the polytope.

It should now be clear that the incidence vectors of perfect matchings M
of G are vertices of the polytope in RE defined by the constraints given in
Example 14.3.1. Assuming that all the vertices of the polytope actually corre-
spond to perfect matchings, the ZOLP of Example 14.3.1 would be equivalent
to the corresponding LP and could be solved – at least in principle – with one
of the known algorithms for linear programs.4 Fortunately, this assumption
indeed holds, as the following result of Hoffman and Kruskal [HoKr56] implies;
see also [PaSt82, Theorem 13.1].

Result 14.3.3. Let A be an integer matrix. If A is totally unimodular, then
the vertices of the polytope {x : AxT = bT , x ≥ 0} are integral whenever b is
integral. ��

As we assumed G to be bipartite, the incidence matrix A of G is indeed
totally unimodular; see Exercise 4.2.13. Hence Result 14.3.3 implies immedi-
ately that all vertices of the polytope defined by the LP of Example 14.3.1
are integral, and therefore correspond to perfect matchings of G.

Theorem 14.3.4. Let A be the incidence matrix of a complete bipartite graph
G = (V, E). Then the vertices of the polytope

P =
{
x ∈ RE : AxT = 1T , x ≥ 0

}
coincide with the incidence vectors of perfect matchings of G. Hence the opti-
mal matchings are precisely those solutions of the LP given in Example 14.3.1
which correspond to vertices of P (for a given weight function). ��

Theorem 14.3.4 is certainly interesting, but it does not explain yet why
the feasible node-weightings of the previous section work so efficiently. For
this purpose, we require also the notion of duality. For any linear program

(LP) maximize cxT subject to AxT ≤ bT and x ≥ 0,

the dual LP is the linear program

(DP) minimize byT subject to AT yT ≥ cT and y ≥ 0,

where y = (y1, . . . , ym). Then the following theorem holds.
4We note that this would not be a particularly efficient approach in practice, as

the LP under consideration is highly degenerate.
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Result 14.3.5 (strong duality theorem). Let x and y be admissible vec-
tors for (LP) and (DP), respectively. Then one has

cxT ≤ byT

with equality if and only if x and y are actually optimal solutions for their
respective linear programs. ��
Example 14.3.6. Let us return to the situation of Example 14.3.1. As w is
nonnegative, we may consider the LP

maximize wxT subject to AxT ≤ 1T and x ≥ 0 (14.4)

instead of the original LP given there; note that the LP (14.4) likewise yields
a polytope with integral vertices; see [PaSt82, Theorem 13.2]. Then the dual
linear program is as follows:

minimize 1yT subject to AT yT ≥ wT and y ≥ 0, (14.5)

where y = (yv)v∈V . In view of G = Kn,n, it makes sense to use variables
u1, . . . , un and v1, . . . , vn corresponding to the partition V = S

.∪ T of the
vertex set of G instead of the yv. Then (14.5) becomes

minimize
∑n

i=1(ui + vi) subject to ui, vi ≥ 0 (i = 1, . . . , n) and
ui + vj ≥ wi,j (i, j = 1, . . . , n).

(14.6)

Thus the admissible vectors y for the dual LP (14.5) correspond precisely to
the feasible node-weightings (u,v) in Rn ×Rn. By Result 14.3.5, an arbitrary
perfect matching M of G and an arbitrary feasible node-weighting (u,v) have
to satisfy the condition

∑
(ui + vi) ≥ w(M), and such a perfect matching

is optimal if and only if equality holds. This provides us with alternative,
more theoretical proofs for the results obtained in Lemma 14.2.1 and Lemma
14.2.2. Thus we have indeed found a deeper reason why the basic idea of the
Hungarian algorithm works.

We might now also suspect that the problem of finding optimal matchings
in the general case will be considerably harder: the incidence matrix of G
will no longer be totally unimodular (see Exercise 4.2.13), so that the linear
programming approach cannot possibly work as easily as before. This prob-
lem will be addressed in the next section. Note also that network flows and
circulations can be treated in a similar way (see Exercise 14.3.2), since the
incidence matrix of a digraph is always totally unimodular by Theorem 4.2.5.
In particular, Lemma 6.1.2 and Theorem 6.1.6 (max-flow min-cut) may also
be derived from Result 14.3.5; see e.g. [PaSt82, Section 6.1].

We hope that the material of this section has convinced the reader that the
theory of linear programming is well worth studying, even if one is interested
mainly in algorithms concerning graph theoretical problems. Nevertheless,
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in my opinion, the first approach to combinatorial optimization should be
via graph theory, as this is much more intuitive. We recommend the books
[PaSt82], [Chv83], [Schr86], and [NeWo88] for further study.

Let us close this section with some remarks. The Hungarian algorithm
shows that we can restrict our attention to feasible node-weightings having
integer entries. Again, this is not just a coincidence. There is a simple theo-
retical explanation: if an integer matrix A is totally unimodular, so is AT . In
particular, another application of Result 14.3.3 shows that the dual program
(14.5) for the LP (14.4) of Example 14.3.6 again leads to a polytope with inte-
gral vertices. We saw that the Hungarian algorithm simultaneously calculates
solutions of the linear program (14.4) and of the dual program (14.5); in fact
it can be viewed as a special case of the primal-dual algorithm of [DaFF56],
which does the same for any linear program (LP) and its dual program (DP);
see also [PaSt82]. Moreover, Dijkstra’s algorithm, the algorithm of Ford and
Fulkerson, and the out-of-kilter algorithm mentioned in Chapter 10 are like-
wise special cases of the primal-dual algorithm.

Let us also state a result which shows that the vertices of a polytope are
integral even under weaker conditions than the total unimodularity of the
matrix A; see [Hof74] and [EdGi77].

Result 14.3.7 (total dual integrality theorem). If the dual program (DP)
admits an optimal integral solution for every choice of the objective function
c of (LP), then the polytope

P =
{
x ∈ Rn : AxT ≤ bT , xT ≥ 0

}
has integral vertices. ��

Linear programs having the property described in Result 14.3.7 are called
totally dual integral.

Finally, we give a few more references. On the one hand, we recommend
four interesting surveys which treat the questions considered in this section
more thoroughly: [Hof79] for the role of unimodularity in combinatorial appli-
cations of linear inequalities; [Lov79] about integral programs in graph theory;
and [EdGi84] and [Schr84] about total dual integrality. On the other hand (and
on a much deeper level), the reader may find an encyclopaedic treatment of
the polyhedral approach to combinatorial optimization in [Schr03].

14.4 The general case

In this section, we will discuss optimal matchings in arbitrary graphs and the
corresponding linear programs without giving any proofs. Let G = (V, E) be
a complete graph K2n with a nonnegative weight function w.5 As in Exam-
ple 14.3.1, the optimal matchings of (G, w) are precisely the solutions of the

5Using arguments similar to those employed in Section 14.1, one sees that deter-
mining a matching of maximal weight – as well as determining a perfect matching
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integer linear program

maximize wxT subject to AxT = 1T and x ≥ 0, (14.7)

where x = (xe)e∈E and where A is the incidence matrix of G. Unfortunately,
by Exercise 4.2.13, A is not totally unimodular in general, so that the meth-
ods used in the previous section cannot be transferred immediately. Indeed,
the linear program corresponding to (14.7) usually admits rational solutions:
the corresponding polytope may have vertices which are not integral. The
following simple example for this phenomenon is taken from [Edm67a].

Example 14.4.1. Consider the graph G = K6 with the weights shown in
Figure 14.4; edges which are missing in this figure have weight 0. It is easy
to check that the bold edges form an optimal matching M , which has weight
w(M) = 18. On the other hand, the rational values for xe shown in Figure
14.5 lead to a better value for the objective function: wxT = 19; incidentally,
this is the optimal solution for the corresponding linear program.

5

4

5

6 8

4

67

7

Fig. 14.4. An optimal matching

0

0

0

1/2 1/2

1/2

1/2

1/2

1/2

Fig. 14.5. A rational solution which is better

of maximal weight, or a perfect matching of minimal weight – in a non-bipartite
graph reduces to the problem of determining an optimal matching in a complete
graph K2n.
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One possible way to avoid this unpleasant situation would be to cut off the
non-integral vertices of the polytope P′ =

{
x : AxT = 1T , x ≥ 0

}
by adding

further inequalities; this approach is quite common in integer linear program-
ming (cutting plane algorithms); see [PaSt82, Chapter 14].

Thus we add appropriate inequalities to the LP (14.7) until the enlarged
system of linear inequalities corresponds to a polytope which is the convex hull
of the incidence vectors of the perfect matchings of G (that is, of the solutions
of the ILP (14.7) for an appropriate function w). The following result due to
Edmonds [Edm65a] makes this more precise.

Result 14.4.2. Let G = (V, E) be a graph with an even number of vertices.
Then the polytope defined by (14.7) together with the system of additional
linear inequalities

∑
e∈E|S

xe ≤ |S| − 1
2

for each subset S of V of odd cardinality (14.8)

is the convex hull P = P (G) of the incidence vectors of the perfect matchings
of G. ��

It is clear that the incidence vectors of perfect matchings satisfy (14.8).
The interesting part of Result 14.4.2 states that any vector in RE which
satisfies both (14.7) and (14.8) necessarily is a convex combination of perfect
matchings.

Corollary 14.4.3. Let G be a complete graph K2n with incidence matrix A.
Given any nonnegative weight function w, the linear program

maximize wxT subject to (14.7) and (14.8)

has an optimal integral solution, which is the incidence vector x of an optimal
matching of (G, w). ��

Edmonds’ proof for Result 14.4.2 is constructive – that is, algorithmic.
Result 14.4.2 can also be derived by using the following result of Cunningham
and Marsh [CuMa78] together with Result 14.3.7.

Result 14.4.4. Let G = (V, E) be a graph with incidence matrix A. Then the
system of inequalities

AxT ≤ 1T , x ≥ 0 and

∑
e∈E|S

xe ≤ |S|−1
2 for each subset S of V of odd cardinality

is totally dual integral. ��
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Again, the original proof for this result was algorithmic. Short combina-
torial proofs of Results 14.4.2 and 14.4.4 can be found in [Schr83a, Schr83b].

It should be clear that one may now proceed in analogy with the bipartite
case: replace the ILP (14.7) by the LP in Corollary 14.4.3 and apply an appro-
priate special version of the primal-dual algorithm for solving it. In fact, the
algorithms most frequently used in practice use this approach. In particular,
this holds for the first solution of the ILP (14.7), which was given by Edmonds
[Edm65a]; his method has a complexity of O(n4), but this can be improved to
O(n3); see [Gab76] and [Law76]. A different algorithm with complexity O(n3)
is in [CuMa78].

The fastest algorithms known for determining a matching of maximal
weight in an arbitrary graph have complexity O(|V ||E|+|V |2 log |V |), as in the
bipartite case; see [Gab90]. A further fast algorithm (which takes the maximal
size of the weights into account) is due to [GaTa91]. An algorithm treating
the interesting special case where the weight function on a graph K2n is given
by the distances between 2n points in the Euclidean plane can be found in
[Vai89]; this algorithm has a complexity of O(n5/2(log n)4).

All the algorithms for determining an optimal matching in K2n mentioned
above are considerably more involved than corresponding algorithms for the
bipartite case. This is not surprising if we consider the additional inequalities
needed in (14.8) for subsets of odd cardinality; note that these correspond to
the fact that blossoms may occur. As it seems almost impossible to give suf-
ficient motivation for an algorithm which does not explicitly use the methods
of linear programming, we decided not to treat any algorithm for the deter-
mination of optimal matchings in arbitrary graphs. Hence we just state the
following result for later use.

Result 14.4.5. It is possible to determine with complexity O(n3) an optimal
matching in K2n with respect to a given nonnegative weight function w. ��

For a proof of Result 14.4.5, we refer to [Law76] or [BaDe83]. In [PaSt82],
an algorithm with complexity O(n4) is derived from the primal-dual algo-
rithm. A method which avoids the explicit use of linear programming – and
which is, not surprisingly, less motivated – can be found in [GoMi84]. Finally,
we also recommend the monograph [Der88].

We close this section with some remarks. The inequalities in Result 14.4.4
define the matching polytope M(G) of the graph G, whereas those in Corollary
14.4.3 describe the perfect matching polytope P(G). These two polytopes are
the convex hulls of the incidence vectors of the matchings and the perfect
matchings of G, respectively. One might also wonder what the linear span of
the associated vectors in RE is. This question is trivial for M(G): then any
edge forms a matching in G by itself, so that the linear span is all of RE .
However, the problem becomes interesting (and quite difficult) for P(G); a
solution can be found in [EdLP82]. Lovász [Lov85] asked the related question
about the lattice generated by the incidence vectors of the perfect matchings
in ZE (that is, the set of integral linear combinations of these vectors) and



418 14 Weighted matchings

derived interesting partial results. Let us pose two exercises regarding this
problem.

Exercise 14.4.6. Extend Corollary 7.2.6 to regular bipartite multigraphs.

Exercise 14.4.7. Let G be a bipartite graph, and let L(G) be the lattice in
ZE generated by the incidence vectors of the perfect matchings of G, and
H(G) the linear span of L(G) in RE . Show that L(G) = H(G) ∩ ZE [Lov85].
Hint: Use Exercise 14.4.6.

The result of Exercise 14.4.7 does not extend to arbitrary graphs, as shown
by [Lov85]: the Petersen graph provides a counterexample. The general case
is treated in [Lov87]. Related problems can be found in [JuLe88, JuLe89]
and [Rie91], where lattices corresponding to the 2-matchings of a graph and
lattices corresponding to the bases of a matroid are examined.

For some practical applications in which n is very large even algorithms for
determining an optimal matching with complexity O(n3) are not fast enough;
in this case, one usually resorts to approximation techniques. In general, these
techniques will not find an optimal solution but just a reasonable approxima-
tion; to make up for this, they have the advantage of being much faster. We
refer the interested reader to [Avi78, Avi83] and to [GrKa88]. Two alterna-
tives to using heuristics for large values of n are either to use appropriate
LP-relaxations to determine minimal perfect matchings on suitable sparse
subgraphs, or to use post-optimization methods. We refer to [GrHo85] and to
[DeMe91]; one of the best practical methods at present seems to be the one
given in [ApCo93].

14.5 The Chinese postman

This section is devoted to an interesting application of optimal matchings in
K2n. The following problem due to Kwan [Kwa62] concerns a postman who
has to deliver the mail for a (connected) system of streets: our postman wants
to minimize the total distance he has to walk by setting up his tour suitably.
This problem is nowadays generally known as the Chinese postman problem.

Problem 14.5.1 (Chinese postman problem, CPP). Let G = (V, E) be
a connected graph, and let w : E → R+

0 be a length function on G. We want
to find a closed walk C of minimal length w(C) which contains each edge of
G at least once.6

6Note that we view the edges of our graph as (segments of) streets here, and
the vertices as intersections (or dead ends), so that each edge certainly needs to
be traversed to deal with the houses in this street; in this rather simplistic model
we neglect the need for having to cross the street to deliver the mail to houses on
opposite sides. Hence it might be more realistic to consider the directed case and
use the complete orientation of G; see Exercise 14.5.6.
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If G should be Eulerian, the solution of the CPP is trivial: any Euler tour
C will do the job. Recall that G is Eulerian if and only if each vertex of
G has even degree (Theorem 1.3.1) and that an Euler tour C can then be
constructed with complexity O(|E|) (Example 2.5.2).

If G is not Eulerian, we use the following approach. Let X be the set of
all vertices of G with odd degree. We add a set E′ of edges to G such that
the following three conditions are satisfied:

(a) Each edge e′ ∈ E′ is parallel to some edge e ∈ E; we extend w to E′ by
putting w(e′) = w(e).

(b) In (V, E′), precisely the vertices of X have odd degree.
(c) w(E′) is minimal: w(E′) ≤ w(E′′) for every set E′′ satisfying (a) and (b).

Then (V, E
.∪ E′) is an Eulerian multigraph, and any Euler tour induces a

closed walk of minimal length w(E)+w(E′) in G. It is rather obvious that any
solution of CPP can be described in this way. We now state – quite informally
– the algorithm of Edmonds and Johnson [EdJo73] for solving the CPP. Note
that |X| is even by Lemma 1.1.1.

Algorithm 14.5.2. Let G = (V, E) be a connected graph with a length func-
tion w : E → R+

0 .

Procedure CPP(G, w; C)

(1) X ← {v ∈ V : deg v is odd};
(2) Determine d(x, y) for all x, y ∈ X.
(3) Let H be the complete graph on X with weight function d(x, y). Determine

a perfect matching M of minimal weight for (H, d).
(4) Determine a shortest path Wxy from x to y in G and, for each edge in

Wxy, add a parallel edge to G (for all xy ∈ M). Let G′ be the multigraph
thus defined.

(5) Determine an Euler tour C ′ in G′ and replace each edge of C ′ which is
not contained in G by the corresponding parallel edge in G. Let C be the
closed walk in G arising from this construction.

Step (2) can be performed using Algorithm 3.8.1; however, if |X| is small, it
might be better to run Dijkstra’s algorithm several times. Determining short-
est paths explicitly in step (4) can be done easily by appropriate modifications
of the algorithms already mentioned; see Exercise 3.8.3 and 3.6.3. In the worst
case, steps (2) and (4) need a complexity of O(|V |3). Step (3) can be executed
with complexity O(|X|3) by Result 14.4.5; note that determining a perfect
matching of minimal weight is equivalent to determining an optimal match-
ing for a suitable auxiliary weight function; see Section 14.1. Finally, step (5)
has complexity O(|E′|) by Example 2.5.2. Thus we get a total complexity of
O(|V |3).

It still remains to show that the algorithm is correct. Obviously, the con-
struction in step (4) adds, for any matching M of H, a set E′ of edges to G
which satisfies conditions (a) and (b) above; the closed walk in G arising from
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this construction has length w(E) + d(M), where d(M) is the weight of M
with respect to d. Thus it is reasonable to choose a matching M of minimal
weight in step (3). However, it is not immediately clear that there cannot be
some other set E′ of edges leading to a solution of even smaller weight. We
need the following lemma.

Lemma 14.5.3. Let G = (V, E) be a connected graph with length function
w : E → R+

0 . Moreover, let H be the complete graph on a subset X of V of
even cardinality; the edges of H are assigned weight d(x, y), where d denotes
the distance function in G with respect to w. Then, for each perfect matching
M of H with minimal weight and for each subset E0 of E for which any
two vertices of X have the same distance in G and in (V, E0), the inequality
d(M) ≤ w(E0) holds.

Proof. Let M = {x1y1, . . . , xnyn} be a perfect matching with minimal weight
in H. Then d(M) = d(x1, y1) + . . . + d(xn, yn). Moreover, let Pi be a shortest
path from xi to yi in (V, E0) (for i = 1, . . . , n). By hypothesis, w(Pi) =
d(xi, yi). We claim that no edge e with w(e) �= 0 can be contained in more
than one of the paths Pi; if we prove this claim, the assertion of the lemma
follows. Suppose our claim is wrong. Then we may assume

P1 = x1
P ′

1 u
e

v
P ′′

1 y1 and P2 = x2
P ′

2 u
e

v
P ′′

2 y2,

which implies

d(x1, y1) + d(x2, y2) = d(x1, u) + w(e) + d(v, y1) + d(x2, u) + w(e) + d(v, y2)
> d(x1, u) + d(u, x2) + d(y1, v) + d(v, y2)
≥ d(x1, x2) + d(y1, y2).

But then replacing x1y1 and x2y2 by x1x2 and y1y2 in M would yield a perfect
matching of smaller weight, a contradiction. ��
Theorem 14.5.4. Algorithm 14.5.2 calculates with complexity O(|V |3) a so-
lution of the CPP.

Proof. We already know that Algorithm 14.5.2 yields a closed walk of length
w(E) + d(M) containing each edge of G, where d(M) is the minimal weight
of a perfect matching of (H, d).

Now suppose that E′ is an arbitrary set of edges satisfying conditions (a)
to (c). Then E′ induces a closed walk of weight w(E) + w(E′) which contains
all edges of G. We have to show w(E′) ≥ d(M). Suppose Z is a connected
component of (V, E′) containing at least two vertices. Then we must have
Z ∩X �= ∅: otherwise, we could omit all edges of E′ which are contained in Z
and the remaining set of edges would still satisfy (a) and (b). As X is the set
of vertices of (V, E′) with odd degree, |Z ∩X| has to be even by Lemma 1.1.1.
Thus the connected components of (V, E′) induce a partition X1, . . . , Xk of
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X into sets of even cardinality so that any two vertices in Xi are connected
by a path in E′.

Let x, y ∈ Xi, and let Pxy be the path from x to y in E′. Then Pxy must
be a shortest path from x to y in G: otherwise, the edges of Pxy could be
replaced by the edges of a shortest path from x to y, which would yield a set
E′′ of edges satisfying (a) and (b) and w(E′′) < w(E′). Now, trivially, Pxy is
also a shortest path from x to y in (V, E′). Denote the connected component
of (V, E′) corresponding to Xi by Zi, and let E′

i be the set of edges of E′ which
have both end vertices in Zi. Moreover, let Hi be the complete graph on Zi

with weights d(x, y) (where d is the distance function in G or in (Zi, E
′
i)).

Then Lemma 14.5.3 yields d(Mi) ≤ w(E′
i) for each perfect matching Mi of

minimal weight in Hi. Obviously, M1 ∪ . . . ∪ Mk is a perfect matching of H,
and E′ = E′

1 ∪ . . . ∪ E′
k. Hence we obtain the desired inequality

w(E′) = w(E′
1) + . . . + w(E′

k) ≥ d(M1) + . . . + d(Mk) ≥ d(M). ��

Example 14.5.5. Let G be the graph displayed in Figure 14.6. Then X =
{x, y, z, w}, so that we get the complete graph H shown in Figure 14.7.
The edges xw and yz form a perfect matching of minimal weight of H; the
corresponding paths are (x, a, w) and (y, x, z). Hence we replace the corre-
sponding edges in G by two parallel edges each; this yields the multigraph
G′ in Figure 14.8. Now it is easy to find an Euler tour in G′, for example
(x, y, b, w, c, z, x, y, a, x, a, w, a, z, x) with length 30 + 4 = 34.

b w c

y
a

z

x

5 5

3 3

5 1 5

11

Fig. 14.6. A graph

Exercise 14.5.6. We consider the directed version of the CPP: let G be a
digraph with a nonnegative length function w; we want to find a directed
closed walk of minimal length containing each edge of G at least once. Hint:
Reduce this problem to the problem of determining an optimal circulation
[EdJo73].
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Fig. 14.7. The complete graph H
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Fig. 14.8. The corresponding Eulerian multigraph

Theorem 14.5.4 and Exercise 14.5.6 (together with a corresponding al-
gorithm for determining an optimal circulation) show that there are good
algorithms for the CPP for directed graphs as well as for undirected graphs.
In contrast, the CPP for mixed graphs is NP-complete, so that most likely
there is no polynomial solution; see [Pap76] or [GaJo79]. A cutting plane al-
gorithm for the mixed CCP is in [NoPi96], and some applications of the CPP
are discussed in [Bar90].

14.6 Matchings and shortest paths

This section deals with applications of matchings to the problem of deter-
mining shortest paths in a network on an undirected graph without cycles of
negative length. We remind the reader that our usual transformation to the
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directed case – replacing a graph G by its complete orientation – will not work
in this situation, because an edge e = {u, v} of negative weight w(e) in (G, w)
would yield a directed cycle u v u of negative length 2w(e) in (

→
G, w),

whereas all the algorithms given in Chapter 3 apply only to graphs withouts
such cycles. We describe a solution for this path problem below; it is due to
Edmonds [Edm67a].

The first step consists of transforming the given problem to the problem of
determining an f -factor in an appropriate auxiliary graph; this problem was
already mentioned at the end of Section 13.5. In our case, the only values f(v)
will take are 1 and 2; however, the auxiliary graph might contain loops. Note
that a loop {v, v} adds 2 to the degree deg v of a vertex v. In what follows,
we call a path from s to t an {s, t}-path.
Lemma 14.6.1. Let N = (G, w) be a network on a graph G = (V, E) with
respect to a weight function w : E → R, and assume that there are no cycles of
negative length in N . Let s and t be two vertices of G, and let G′ be the graph
which results from adding the loop {v, v} to G for each vertex v �= s, t. Extend
the weight function w to G′ by putting w(v, v) = 0. Then each {s, t}-path P
in G may be associated with an f-factor F = F (P ) in G′, where f is given by

f(s) = f(t) = 1 and f(v) = 2 for all v �= s, t, (14.9)

so that the weight of P always equals that of the corresponding f-factor F .
Moreover, the problem of determining a shortest {s, t}-path in (G, w) is equiv-
alent to determining a minimal f-factor in (G′, w).

Proof. Given an {s, t}-path P in G, put

F = P ∪ {{v, v} : v is not contained in P} .

Obviously, F is an f -factor for G′, as the loop {v, v} increases the degree of v
in F to 2 whenever v is not contained in P . By our definition of w for loops,
w(F ) = w(P ).

Conversely, let F be an f -factor for G′; we want to construct an {s, t}-path
P from F . As s has degree 1 in F , there is exactly one edge sv1 in F . Now v1

has degree 2 in F , so that there exists precisely one further edge in F incident
with v1, say v1v2; note that this edge cannot be a loop. Continuing in this
manner, we construct the edge sequence of a path P with start vertex s in G.
As the only other vertex of degree 1 in F is t, t must be the end vertex of P .

Note that it is quite possible that there are not only loops among the
remaining edges of F : these edges might contain one or more cycles. In other
words, in general we will have F �= F (P ), so that the correspondence given
above is not a bijection. However, our assumption that there are no cycles of
negative length in (G, w) guarantees at least w(P ) ≤ w(F ), which proves the
final assertion. ��

Next we show how one may reduce the determination of a minimal f -factor
for the special case where f(v) ∈ {1, 2} to the determination of a minimal
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perfect matching in an appropriate auxiliary graph whose size is polynomial
in the size of the original graph. As already mentioned in Section 13.5, the
general existence problem for arbitrary f -factors can be reduced to the general
existence problem for perfect matchings; see [Tut54].

Lemma 14.6.2. Let G = (V, E) be a graph (where loops are allowed), and let
f : V → N be a function with f(v) ∈ {1, 2} for all v ∈ V . Then the f-factors
of G correspond to perfect matchings of a suitable auxiliary graph H with at
most 5|E| edges and at most 2|V | + 2|E| vertices. If there also is a weight
function w : E → R on G given, a weight function w on H can be defined
in such a way that the weight w(F ) of an f-factor F is always equal to the
weight w(M) of the corresponding perfect matching M .

Proof. Our transformation consists of two steps. First, the given f -factor prob-
lem for G is transformed to an equivalent problem for an auxiliary graph H ′

for which each non-loop edge is incident with at least one vertex v satisfying
f(v) = 1. Thus let e = uv ∈ E be an edge with u �= v and f(u) = f(v) = 2.
We subdivide e by introducing two new vertices ue, ve; replace the edge e by
the path

Pe : u ue ve v;

and extend f by putting f(ue) = f(ve) = 1. By performing this operation
for all edges e = uv with f(u) = f(v) = 2 and u �= v, we obtain the desired
graph H ′. Now let F be an f -factor in G. Then F yields an f -factor F ′ in
H ′ as follows: we replace each edge e = uv ∈ F with f(u) = f(v) = 2 and
u �= v by the edges uue and vve; moreover, we add for each edge e = uv with
f(u) = f(v) = 2 and u �= v which is not in F the edge ueve to F ′. Under this
operation, each f -factor in H ′ actually corresponds to an f -factor in G. We
can also make sure that the weights of corresponding f -factors F and F ′ are
equal: for each edge e = uv with f(u) = f(v) = 2 and u �= v, we define the
weights of the edges on Pe as

w(uue) = w(vve) =
w(e)

2
and w(ueve) = 0.

In the second step of the transformation, we define a graph H which results
from H ′ by splitting each vertex v with f(v) = 2 into two vertices:7 we replace
v by two vertices v′ and v′′; we replace each edge e = uv with u �= v by two
edges e′ = uv′ and e′′ = uv′′; finally, each loop {v, v} with f(v) = 2 is
replaced by the edge v′v′′. These operations are well-defined because of the
transformations performed in the first step: H ′ does not contain any edges
e = uv with f(u) = f(v) = 2 and u �= v. Let us denote the resulting graph
by H.

It is now easy to see that the f -factors F ′ of H ′ correspond to the perfect
matchings M of H. Note that at most one of the two parts of a split edge

7Note that this condition can hold only for old vertices, that is, vertices which
were contained in G.
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e = uv (with f(v) = 2) can be contained in a perfect matching M of H, since
we must have f(u) = 1 in that case. Note that this correspondence between
f -factors and perfect matchings is, in general, not bijective: if F ′ contains two
edges e1 = u1v and e2 = u2v (where f(v) = 2 and f(u1) = f(u2) = 1), M
might contain either u1v

′ and u2v
′′ or u1v

′′ and u2v
′. Thus, in general, there

are several perfect matchings of H which correspond to the same f -factor of
H ′. However, the weights of corresponding f -factors and perfect matchings
agree if we put

w(e′) = w(e′′) = w(e)

for split edges e′ and e′′. ��
By performing the transformations of Lemmas 14.6.1 and 14.6.2 succes-

sively, we obtain the desired reduction of the determination of a shortest path
between two vertices s and t in an undirected network (G, w) without cy-
cles of negative length to the determination of a perfect matching of minimal
weight in an appropriate auxiliary graph H (with respect to a suitable weight
function). As the number of vertices of H is linear in the number of vertices
of G, Result 14.4.5 yields the following conclusion.

Theorem 14.6.3. Let N = (G, w) be a network on a graph G = (V, E), where
w : E → R, and let s and t be two vertices of G. If N does not contain cycles
of negative length, one may determine with complexity O(|V |3) a shortest path
from s to t. ��
Example 14.6.4. Consider the network (G, w) given in Figure 14.9. The bold
edges form a path

P : s c b t

of length w(P ) = 0, which corresponds to the f -factor

F = {{a, a}, sc, cb, bt}

of weight w(F ) = 0 in the graph G′ shown in Figure 14.10, where f(a) =
f(b) = f(c) = 2 and f(s) = f(t) = 1. Again, F consists of the bold edges.

Now we perform the transformations of Lemma 14.6.2. First, when H ′ is
constructed, the edges e = ab and g = bc are divided into paths of length 3.
We obtain the auxiliary graph H ′ with the f -factor

F ′ = {{a, a}, sc, ccg, bbg, bt, aebe}

corresponding to F , where f(a) = f(b) = f(c) = 2 and f(v) = 1 for all other
vertices v. Note that F ′ indeed has weight w(F ′) = 0. Figure 14.11 shows H ′

and F ′; as usual, F ′ consists of the bold edges.
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Fig. 14.10. The corresponding f -factor in G′

Finally, in the second step of the transformation, the three vertices a, b, c
with f(a) = f(b) = f(c) = 2 are divided into two vertices each. This yields
the graph H shown in Figure 14.12 and the perfect matching
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K = {aa′, sc′, c′′cg, b
′′bg, b

′t, aebe}

of weight w(K) = 0 corresponding to the f -factor F ′.
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0
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3/2 0 3/2 2 0 2

Fig. 14.11. The corresponding f -factor in H ′

Exercise 14.6.5. Determine an {s, t}-path of shortest length as well as the
corresponding f -factors and a corresponding perfect matching of minimal
weight for the network of Example 14.6.4.

Exercise 14.6.6. Discuss the transformation method given above for the case
in which (G, w) contains cycles of negative length. What will go wrong then?

Now consider a network (G, w) on a digraph G which does not contain di-
rected cycles of negative length. Then the problem of determining a shortest
directed path from s to t can be transformed to the problem of determin-
ing a perfect matching of minimal weight in a bipartite graph – that is, to
the assignment problem; see [HoMa64] and also [AhMO93, Chapter 12.7]. As
we have already seen two efficient algorithms for determining shortest paths
for this case in Chapter 3, we will not present this transformation here. In
practice, the reverse approach is more common: the assignment problem is
often solved using the SP-problem (without negative weights) as an auxiliary
procedure.
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Fig. 14.12. A corresponding perfect matching in H

We conclude this section with one more application of matching theory to
a problem concerning shortest paths, which is taken from [Gro85]. Consider a
network N = (G, w) on a graph G, where w is a nonnegative weight function.
Let us call a path P in G odd if P contains an odd number of edges, so that
P has odd length in the graph theoretical sense; even paths contain an even
number of vertices.

We want to find a shortest odd path between two given vertices s and t.
This problem can be reduced to determining a perfect matching of minimal
weight in a suitable auxiliary graph G′, which again results from G by splitting
vertices: each vertex v �= s, t of G is replaced by two vertices v′ and v′′, and
an edge v′v′′ of weight w(v′v′′) = 0 is added to E. Moreover, each edge of
G of the form sv or tv is replaced by the edge sv′ or tv′, respectively; and
each edge uv with u, v �= s, t is replaced by two edges u′v′ and u′′v′′. Using
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similar arguments as for the proofs of Lemmas 14.6.1 and 14.6.2, one obtains
the following result; the details will be left to the reader as an exercise.

Theorem 14.6.7. Let N = (G, w) be a network on a graph G, where w is a
nonnegative weight function. Moreover, let s and t be two vertices of G, and
let G′ be the auxiliary graph described above. Then the odd {s, t}-paths P in
G correspond bijectively to the perfect matchings M in G′, and the length of
P is equal to the weight of the matching M corresponding to P under this
bijection. In particular, the shortest odd {s, t}-paths correspond bijectively to
the perfect matchings of minimal weight in G′. ��
Example 14.6.8. Let (G, w) be the network shown in Figure 14.13, where all
edges e ∈ E have weight w(e) = 1. Then the bold edges form an {s, t}-path

P : s u v t

of length 3, which corresponds to the perfect matching

K = {su′, u′′v′′, v′t, a′a′′, b′b′′, c′c′′}

in the auxiliary graph G′; see Figure 14.14.

b c

s t

u v

a

Fig. 14.13. A path of odd length in G

Exercise 14.6.9. Find a transformation similar to the one used in Theorem
14.6.7 which allows to find a shortest even {s, t}-path in (G, w) and apply this
transformation to Example 14.6.8.
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Fig. 14.14. The corresponding perfect matching in G′

14.7 Some further problems

In this final section of the chapter, we briefly mention some further problems
concerning matchings, beginning with problems with side constraints. Such
problems occur in practice, for example, when planning the schedules for
bus drivers, when designing school time tables, or even when analyzing bio-
medical pictures; see [Bal85], [EvIS76], and [ItRo78]. We restrict our attention
to rather simple – or at least seemingly simple – types of side constraints.

Problem 14.7.1 (restricted perfect matching, RPM). Let G = (V, E)
be a graph, and let E1, . . . , Ek be subsets of E and b1, . . . , bk be positive
integers. Does there exist a perfect matching M of G satisfying the conditions

|M ∩ Ei| ≤ bi for i = 1, . . . , k? (14.10)

If we want to fix the number k of constraints, we use the notation RPMk.

Exercise 14.7.2. Show that RPM1 can be solved with complexity O(|V |3)
[ItRo78]. Hint: Reduce the problem to the determination of an optimal match-
ing for the complete graph H on V with respect to a suitable weight function.
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In contrast to the result of Exercise 14.7.2, the general problem RPM
(that is, without restrictions on k) is NP-complete and thus probably not
solvable in polynomial time; see [ItRT78]. The following related problem is
rather interesting in this context.

Problem 14.7.3 (exact perfect matching, EPM). Let G = (V, E) be a
graph, and let R be a subset of E and b a positive integer. Does there exist a
perfect matching M of G with |M ∩ R| = b?

Exercise 14.7.4. Show that EPM is a special case of RPM2.

It is still unknown whether EPM (and RPM2, for that matter) admits a
polynomial algorithm. However, it is known that the problem is polynomial
at least for planar graphs; see Barahona and Pulleyblank [BaPu87]. Their
algorithm is based on a result of Kasteleyn [Kas67] which allows one to de-
termine the number of perfect matchings in a planar graph efficiently. It has
been conjectured [PaYa82] that EPM is NP-complete for arbitrary graphs. For
a good survey on exact matching problems, see [Lec86]; further information
about EPM and various other problems with side constraints is contained in
[Lec87].

Finally, we mention a rather different, but equally interesting, optimality
criterion for perfect matchings: stability. In the bipartite case, the following
interpretation is commonly used (the stable marriage problem): suppose there
are n women and n men, who each rank the n persons of the opposite sex in
a list. We want to find a perfect matching (which may be interpreted as a set
of marriages) so that there is no unmarried couple consisting of a man and a
woman who would both prefer each other to the partners they are married to
according to the given matching.

Formally, we consider a weight function w on the complete orientation of
Kn,n for which the n edges having vertex v as tail are assigned a permutation
of the numbers 1, . . . , n as weights. We require a perfect matching M with
the following property: if xy is an edge not contained in M and if xy′ and
x′y are edges of M , then at least one of the two inequalities w(xy′) < w(xy)
and w(x′y) < w(xy) holds. Gale and Shapley [GaSh62] proved that, for each
n and for each w, such a stable matchings exists and that a solution can
be determined with complexity O(n2); see [Wil72], [Gus87], and [IrLG87].8

8Stable matching problems – and some slight extensions, where one requires a
precsribed number of edges for each vertex in one part of the graph – are not just of
theoretical interest. Until recently, the Gale-Shapley algorithm was used to match
medical students to hospital residencies, a rather difficult task if all parties are
to be reasonably happy with the results (or, at the very least, to feel that they are
subjected to a fair procedure); see the brief but interesting articles [Rob03a, Rob03b].
That an optimization algorithm is correct mathematically does, of course, not mean
that it will achieve an end which is desirable from a social or moral point of view:
there always is the problem of what should be optimized.
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Determining the number of all solutions, however, is an NP-hard problem; see
[IrLe86].

The analogous problem for the complete graph K2n (known as the stable
roommates problem) is more difficult; for example, it cannot be solved for
each choice of n and w. Irving [Irv85] gave an algorithm which decides with
complexity O(n2) whether there exists a solution and, if this is the case,
actually finds one; see also [Gus88]. We recommend the excellent monograph
[GuIr89] for further study of this type of problems; see also [BaRa97] for a
nice exposition.
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A Hard Problem: The TSP

Which way are you goin’. . .

Jim Croce

Up to now, we have investigated only those optimization problems which allow
an efficient – that is, polynomial – algorithm. In contrast, this final chapter
will deal with a typical NP-complete problem: the travelling salesman prob-
lem already introduced in Chapter 1. We saw in Chapter 2 that no efficient
algorithms are known for NP-complete problems, and that it is actually quite
likely that no such algorithms can exist. Now we address the question of how
such hard problems – which regularly occur in practical applications – might
be approached: one uses, for instance, approximation techniques, heuristics,
relaxations, post-optimization, local optima, and complete enumeration. We
shall explain these methods only for the TSP, but they are typical for dealing
with hard problems in general.

We will also briefly mention a further extremely important approach to
solving hard problems: polyhedral combinatorics. A detailed discussion of this
vast area of research would far exceed the limits of this book; as mentioned be-
fore, the reader can find an encyclopedic treatment of the polyhedral approach
to combinatorial optimization in [Schr03].

15.1 Basic definitions

Let us recall the formal definition of the TSP given in Section 1.4:

Problem 15.1.1 (travelling salesman problem, TSP). Let w : E → R+

be a weight function on the complete graph Kn. We seek a cyclic permutation
(1, π(1), . . . , πn−1(1)) of the vertex set {1, . . . , n} such that

w(π) =
n∑

i=1

w({i, π(i)})

is minimal. We call any cyclic permutation π of {1, . . . , n} as well as the
corresponding Hamiltonian cycle
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1 π(1) . . . πn−1(1) 1

in Kn a tour; if w(π) is minimal among all tours, π is called an optimal
tour. The weights of the edges will be given via a matrix W , as explained in
Section 1.4.

We shall use the following example also already introduced in Section 1.4
to illustrate the various methods for finding a good solution of the TSP, which
are the subject matter of this chapter.

Example 15.1.2. Determine an optimal tour for

Aa Ba Be Du Fr Ha Mu Nu St

Aa
Ba
Be
Du
Fr
Ha
Mu
Nu
St

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 57 64 8 26 49 64 47 46
57 0 88 54 34 83 37 43 27
64 88 0 57 56 29 60 44 63
8 54 57 0 23 43 63 44 41
26 34 56 23 0 50 40 22 20
49 83 29 43 50 0 80 63 70
64 37 60 63 40 80 0 17 22
47 43 44 44 22 63 17 0 19
46 27 63 41 20 70 22 19 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We saw in Theorem 2.7.5 that the TSP is NP-complete, so that we cannot
expect to find an efficient algorithm for solving it. Nevertheless, this problem
is extremely important in practice, and techniques for solving – or at least
approximately solving – instances of considerable size are essential.

Indeed, there are many applications of the TSP which bear little resem-
blance to the original travelling salesman interpretation. To mention a simple
example, we might have to prepare the machines in a plant for n successive
production processes. Let wij denote the setup cost arising if process j is
scheduled immediately after process i; then the problem of finding an order-
ing for the n processes which minimizes the total setup cost can be viewed as a
TSP. In [GrJR91] the reader can find an interesting practical case study, which
demonstrates the relevance of approximation techniques for solving the TSP
to some tasks arising in the production of computers. A further impressive
example is described in [BkSh89]: applying the TSP in X-ray crystallogra-
phy resulted in dramatic savings in the amount of time a measuring process
takes. Several further applications are discussed in [LeRi75] and in [LaLRS85,
Chapter 2].

Note that the instance given in Example 15.1.2 has a rather special struc-
ture: the weights satisfy the triangle inequality wik ≤ wij+wjk. Of course, this
holds whenever the weights stand for distances in the plane, or in a graph, and
(more generally) whenever W corresponds to a metric space; see Section 3.2.
Hence the following definition.
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Problem 15.1.3 (metric travelling salesman problem, ∆TSP). Let
W = (wij) be a symmetric matrix describing a TSP, and assume that W
satisfies the triangle inequality:

wik ≤ wij + wjk for i, j, k = 1, . . . , n.

Then one calls the given TSP metric or, for short, a ∆TSP.

Note that the TSP used in the proof of Theorem 2.7.5 is clearly metric.
Hence we have the following result:

Theorem 15.1.4. ∆TSP is NP-complete. ��
Nevertheless, the metric property does make a difference in the degree of

complexity of a TSP: in the metric case, there always exists a good approxi-
mation algorithm; most likely, this does not hold for the general case, where
the triangle inequality is not assumed; see Section 15.4.

Let us conclude this section with a brief discussion of three further variants
of the TSP.

Problem 15.1.5 (asymmetric travelling salesman problem, ATSP).

Instead of Kn, we consider the complete directed graph
→
Kn on n vertices: we

allow the weight matrix W to be non-symmetric (but still with entries 0 on
the main diagonal). This asymmetric TSP contains the usual TSP as a special
case, and hence it is likewise NP-hard.

Example 15.1.6. We drop the condition that the travelling salesman should
visit each city exactly once, so that we now consider not only Hamiltonian
cycles, but also closed walks containing each vertex of Kn at least once. If
the given TSP is metric, any optimal tour will still be an optimal solution.
However, this does not hold in general, as the example given in Figure 15.1
shows: here (w, x, y, z, x, w) is a shortest closed walk (of length 6), but the
shortest tour (w, x, y, z, w) has length 8.

y z

w

x

5

1

1

1

2

5

Fig. 15.1. A TSP for n = 4
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Given a matrix W = (wij) not satisfying the triangle inequality, we may
consider it as a matrix of lengths on Kn and then calculate the corresponding
distance matrix D = (dij). For example, we can use the algorithm of Floyd and
Warshall for this purpose; see Section 3.8. Of course, D satisfies the triangle
inequality and, hence, defines a metric TSP. It is easy to see that the optimal
closed walks with respect to W correspond to the optimal tours with respect
to D. Thus the seemingly more general problem described in Example 15.1.6
actually reduces to the metric TSP.

Finally, one may also consider an arbitrary connected graph G with some
length function w instead of Kn. Then it is not at all clear whether any
tours exist: we need to check first whether G is Hamiltonian. As proved in
Section 2.8, this feasibility question is already an NP-complete problem in
itself.

15.2 Lower bounds: Relaxations

From a practical point of view, it will often be necessary (and also sufficient) to
construct a reasonably good approximate solution instead of an optimal tour.
For example, it will suffice for most practical applications if we can provide
an efficient method for finding a solution which is at most 2% worse than
the optimal tour: using a vast amount of resources for further improvement
of the quality of the solution would not make any economic sense. In this
context, note also that input data – distances, for example – always have a
limited accuracy, so that it might not even mean much to have a truly optimal
solution at our disposal.

In order to judge the quality of an approximate solution, we need lower
bounds on the length of a tour, and these bounds should not only be strong
but also easily computable – aims which are, of course, usually contradictory.
A standard approach is the use of suitable relaxations: instead of the original
problem P, we consider a problem P′ containing P; this auxiliary (simpler)
problem is obtained by a suitable weakening of the conditions defining P.
Then the weight w(P′) of an optimal solution for P′ is a lower bound for the
weight w(P) of an optimal solution for P.1

Unfortunately, in many cases it is not possible to predict the quality of the
approximation theoretically, so that we have to use empirical methods: for in-
stance, comparing lower bounds found by relaxation with upper bounds given
by solutions constructed by some heuristic. We shall consider various heuristics
in Section 15.5; now we discuss several relaxations which have proved useful
for dealing with TSP’s. In this section, P is always a TSP on the complete
graph Kn on V = {1, . . . , n}, given by a weight matrix W = (wij).

1Our discussion refers to the TSP, but applies to minimization problems in gen-
eral. Of course, with appropriate adjustments, it can also be transferred to maxi-
mization problems.
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A. The assignment relaxation

One choice for P′ is the assignment problem AP defined in Example 7.4.12
and studied in Chapter 14. Thus we seek a permutation π of {1, . . . , n} for
which w1,π(1) + . . . + wn,π(n) becomes minimal. In particular, we have to ex-
amine all cyclic permutations π (each of which determines a tour); for these
permutations, the sum in question equals the length of the associated tour.
Therefore we can indeed relax TSP to AP.

Note that we ought to be a little more careful here, since we should not just
use the given matrix W to specify our AP: the diagonal entries wii = 0 would
yield the identity as an optimal solution, which would result in a completely
trivial lower bound: 0. As we are not interested in permutations with fixed
points for the TSP anyway, we can avoid this problem by simply putting
wii = ∞ for all i.2 Clearly, this modification guarantees that an optimal
solution of AP is a permutation without fixed points. If we should obtain a
cyclic permutation as the optimal solution of AP, this permutation actually
yields a solution of the TSP (by coincidence). Of course, in general, there is
no reason why this should happen.

It is also comparatively easy to determine the weight w(AP) of an op-
timal solution for the relaxed problem: the Hungarian algorithm of Section
14.2 will allow us to do so with complexity O(n3). Note that the Hungar-
ian algorithm actually determines maximal weighted matchings, whereas we
want to find a perfect matching of minimal weight for Kn,n (with respect to
the weights given by our modification of W ). However, this merely requires a
simple transformation, which was already discussed in Section 14.1.

It turns out that w(AP) is usually a reasonably good approximation to
w(TSP) in practice – even though nobody has been able to prove this. Balas
and Toth considered random instances for values of n between 40 and 100
and got an average of 82% of w(TSP) for w(AP); see [LaLRS85, Chapter 10].
That the assignment relaxation has such good approximation properties is,
perhaps, to be expected, since the cyclic permutations form quite a big part
of all permutations without fixed points: the number of permutations without
fixed points in Sn is about n!/e, so that there is about one cyclic permutation
among n/e fixed point free permutations; see, for example, [Hal86].

Balas and Toth examined the assignment relaxation also for the ATSP,
using 400 problems randomly chosen in the range 50 ≤ n ≤ 250. Here w(AP)
was on average 99, 2% of w(ATSP).

Example 15.2.1. Consider the TSP of Example 15.1.2, where we replace the
diagonal entries 0 in W by 88 (the maximum of the wij) to obtain the matrix
W ′ for an associated AP. In order to reduce this AP to the determination
of a maximal weighted matching, we consider the matrix W ′′ =

(
88 − w′

ij

)
instead of W ′, as described in Section 14.1; note that W ′′ is the matrix given

2In practice, this is done by using a sufficiently large number M instead of ∞:
for instance, M = max {wij : i, j = 1, . . . , n}.
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in Exercise 14.2.6. Then the Hungarian algorithm yields a maximal weighted
matching, which has value 603; see the solution to 14.2.6. Any optimal match-
ing for W ′′ is a solution of the original AP; hence w(AP) = 9×88−603 = 189.
This gives the bound w(TSP) ≥ 189. As we will see, w(TSP) = 250, so that
the assignment relaxation amounts to less than 76% in this case.

Exercise 15.2.2. Try to provide an explanation for the phenomenon that the
assignment relaxation tends to give much stronger bounds in the asymmetric
case.

B. The MST relaxation

Now we use the problem MST of determining a minimal spanning tree of Kn

(with respect to the weights given by W ) as P′. Of course, a tour is not a
tree; but if we omit any edge from a tour, we indeed get a spanning tree,
which is even of a very special type: it is a Hamiltonian path. This shows
w(MST) ≤ w(TSP). An optimal solution for MST can be determined with
complexity O(n2), if we use the algorithm of Prim; see Theorem 4.4.4. We will
prove later that this type of relaxation is rather good for the ∆TSP, whereas
not much can be said for the general TSP; let us check how it works for our
running example.

Example 15.2.3. For the TSP of Example 15.1.2, we obtain the minimal
spanning tree T with w(T ) = 186 shown in Figure 15.2. This bound is slightly
inferior to the one provided in Example 15.2.1, but determining a minimal
spanning tree is also much easier than solving an AP. Moreover, something is
lost by leaving out the weight of one of the edges of the tour; this observation
motivates the next relaxation which we consider.

C. The s-tree relaxation

Let us choose a special vertex s ∈ V . An s-tree is a spanning tree for the
induced subgraph Kn \ s together with two edges incident with s.3 Obviously,
every tour is a special s-tree; hence w(MsT) ≤ w(TSP), where MsT denotes
the problem of determining a minimal s-tree. Note that it is easy to solve this
problem: just determine a minimal spanning tree for Kn \ s, and add those
two edges incident with s which have smallest weight. Clearly, this can be
done in O(n2) steps; see Theorem 4.4.4. Of course, the resulting bound will
usually depend on the choice of the special vertex s.4 As usual, let us apply
this relaxation to our running example.

3In the literature, it is quite common to assume s = 1. Moreover, the term 1-tree
is often used for the general concept (no matter which special vertex is selected),
even though this is rather misleading.

4We might solve MsT for each choice of s to obtain the best possible bound, but
this is probably not worth the extra effort provided that we select s judiciously.
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Fig. 15.2. MST relaxation

Example 15.2.4. We choose s = Be in Example 15.1.2; this choice is moti-
vated by the fact that the sum of the two smallest edge weights is maximal for
this vertex. We obtain the 1-tree B shown in Figure 15.3; note that B is the
minimal spanning tree T given in Figure 15.2, with the edge BeNu added.
Hence w(TSP) ≥ w(B) = 186 + 44 = 230.

Exercise 15.2.5. Determine a minimal s-tree for the TSP of Example 15.1.2
for the other possible choices of the special vertex s.

Exercise 15.2.6. Discuss the relation between minimal spanning trees of Kn

and minimal s-trees. In particular, find a condition on s which guarantees
that a given minimal spanning tree of Kn extends to a minimal s-tree. Show
that the strategy for selecting s which we have used in Example 15.2.4 does
not always lead to a good bound.

Balas and Toth calculated the s-tree relaxation as well during their ex-
amination of the assignment relaxation. On average, w(MsT) was only 63%
of w(TSP), which is considerably worse than w(AP). This may be explained
by the fact that the number of s-trees is much larger than the number of
permutations without fixed points.

Exercise 15.2.7. Determine the number of s-trees of Kn. Hint: Use Corollary
1.2.11.
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Fig. 15.3. s-tree relaxation

Exercise 15.2.8. For a vertex i, let s(i) and s′(i), respectively, denote
the smallest and second smallest weight of an edge incident with i. Show
w(TSP) ≥ 1

2

∑
(s(i) + s′(i)), and calculate the resulting bound for Example

15.1.2.

A variation of the s-tree relaxation may be found in [LeRe89]. In the next
section, we will see that s-trees yield much better results when one also uses
so-called penalty functions.

D. The LP relaxation

For the sake of completeness, we briefly discuss the relationship between the
TSP and linear programming. By analogy with Example 14.3.1, the assign-
ment relaxation of the TSP can be described by the following ZOLP:

Minimize
n∑

i,j=1

wijxij subject to (15.1)

xij ∈ {0, 1},
n∑

j=1

xij = 1 and
n∑

i=1

xij = 1 (for i, j = 1, . . . , n).

Then the admissible matrices (xij) correspond precisely to the permutations
in Sn. In order to restrict the feasible solutions to tours, we add the following
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subtour elimination constraints:∑
i,j∈S

xij ≤ |S| − 1 for all S ⊂ {1, . . . , n}. (15.2)

The inequalities (15.2) indeed have the effect that the path corresponding to
the permutation has to leave the subset S, so that no cycles of a length smaller
than n can occur.

Now let P be the polytope defined by the feasible solutions of (15.1) and
(15.2); that is, the vertices of P correspond to the tours among the assign-
ments. In principle, it is possible to describe P by a system of linear inequal-
ities and solve the corresponding LP; unfortunately, the inequalities given in
(15.1) and (15.2) do not suffice for this purpose.5 Even worse, nobody knows
a complete set of corresponding inequalities, although large classes of required
inequalities (for example the clique tree inequalities) are known; see [LaLRS85,
Chapter 8] and [GuPa02, Chapter 2], as well as [Nad90] and [BaFi93]. Also
note that there is an exponential number of inequalities even in (15.2) alone.

Usually the inequalities in (15.1) are used together with some further (clev-
erly chosen) inequalities to define a first LP relaxation. In general, a whole
sequence of such LP relaxations is solved, and the inequalities which are added
for the next relaxation are chosen depending on the deficiencies of the solu-
tion calculated before, namely subtours or values �= 0, 1. The most successful
algorithms for solving large instances of the TSP use this approach; see, for ex-
ample, [LaLRS85, Chapter 9], as well as [GrHo91], [PaRi87], [ApBCC95] and
[ApBCC03]. Finally, we also mention [PaSu91], where the quality of several
formulations of the TSP as a linear program is studied.

15.3 Lower bounds: Subgradient optimization

In this section, we show how the lower bounds obtained from the s-tree re-
laxation can be improved considerably by using so-called penalty functions.
This method was introduced by Held and Karp [HeKa70, HeKa71] and used
successfully for solving comparatively large instances of the TSP. The basic
idea is rather simple: we choose some vector p = (p1, . . . , pn)T ∈ Rn and
replace the weights wij of the given TSP by the transformed weights

w′
ij = wij + pi + pj (i, j = 1, . . . , n, i �= j). (15.3)

Let us denote the weight of a tour π with respect to the w′
ij by w′(π). Clearly,

5The polytope P is the convex hull of the incidence vectors of tours: its vertices
are 0-1-vectors. Leaving out the restriction xij ∈ {0, 1}, the inequalities in (15.1)
and (15.2) define a polytope P ′ containing P , which will (in general) have additional
rational vertices. Thus all vertices of P ′ which are not 0-1-vectors have to be cut off
by further appropriate inequalities.
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w′(π) = w(π) + 2(p1 + . . . + pn) for every tour π; (15.4)

hence any tour which is optimal for W is optimal also for W ′. On the other
hand, the weight of an s-tree B is not transformed by just adding a constant:

w′(B) = w(B) + (p1 × degB 1) + . . . + (pn × degB n) . (15.5)

Thus the difference between the weight of a tour and the weight of an s-tree
– which we would, of course, like to minimize – is

w′(π) − w′(B) = (w(π) − w(B)) − dp(B), (15.6)

where
dp(B) = p1 (degB 1 − 2) + . . . + pn (degB n − 2) . (15.7)

Let us assume that dp(B) is positive for every s-tree B. Then we can improve
the lower bound w(MsT) of the s-tree relaxation with respect to W by de-
termining a minimal s-tree with respect to W ′: the gap between w(TSP) and
w(MsT) becomes smaller according to (15.6). We show below how this works
for Example 15.1.2.

Of course, it is not clear whether such a vector p exists at all, and how it
might be found. We will use the following simple strategy: calculate a minimal
s-tree B0 with respect to W , choose some positive constant c, and put

pi = c × (
degB0

i − 2
)

for i = 1, . . . , n. (15.8)

Thus the non-zero coordinates of p impose a penalty on those vertices which
do not have the correct degree 2 in B0. This way of defining p has the following
distinct advantage:

Exercise 15.3.1. Show that replacing W by W ′ according to the definition
of p in (15.8) does not change the weight of a tour.

There remains the problem of choosing the value of c. It is possible to
just use c = 1; however, in our example, we will select the most advantageous
value (found by trial and error).

Example 15.3.2. Let B0 be the minimal s-tree shown in Figure 15.3 for the
TSP of Example 15.1.2, where s = Be. Note that the vertices Aa, Ba, and
Mu have degree 1 in B0, whereas the vertices Du, Nu, and St have degree 3 in
B0. Hence we obtain p = (−3,−3, 0, 3, 0, 0,−3, 3, 3)T , where we have chosen
c = 3. This leads to the following transformed weight matrix W ′:
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Aa Ba Be Du Fr Ha Mu Nu St

Aa
Ba
Be
Du
Fr
Ha
Mu
Nu
St

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 51 61 8 23 46 58 47 46
51 0 85 54 31 80 31 43 27
61 85 0 60 56 29 57 47 66
8 54 60 0 26 46 63 50 47
23 31 56 26 0 50 37 25 23
46 80 29 46 50 0 77 66 73
58 31 57 63 37 77 0 17 22
47 43 47 50 25 66 17 0 25
46 27 66 47 23 73 22 25 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A minimal s-tree B1 with respect to W ′ is displayed in Figure 15.4; its weight
is w′(B1) = 242. Note that we could also have used the edge AaHa instead of
DuHa. In this case, we would have obtained a different minimal s-tree, which
would look less like a tour: also the vertices Aa and Du would have degree
different from 2. For this reason, we prefer the tree B1 of Figure 15.4. As the
lengths of tours do not change for our choice of p (by Exercise 15.3.1), we
have managed to improve the bound of Example 15.2.4 to w(TSP) ≥ 242.
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FrAa
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Fig. 15.4. Minimal s-tree with respect to W ′
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As B1 is not yet a tour, we try to continue in the same manner. Again,
we select Be as the special vertex s. The vertices of B1 which do not yet
have the correct degree 2 are Ba and St. This time we choose c = 4 and
p = (0,−4, 0, 0, 0, 0, 0, 0, 4)T , which yields the following weight matrix W ′′:

Aa Ba Be Du Fr Ha Mu Nu St

Aa
Ba
Be
Du
Fr
Ha
Mu
Nu
St

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 47 61 8 23 46 58 47 50
47 0 81 50 27 76 27 39 27
61 81 0 60 56 29 57 47 70
8 50 60 0 26 46 63 50 51
23 27 56 26 0 50 37 25 27
46 76 29 46 50 0 77 66 77
58 27 57 63 37 77 0 17 26
47 39 47 50 25 66 17 0 29
50 27 70 51 27 77 26 29 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A minimal s-tree B2 with respect to W ′′ is shown in Figure 15.5. (Looking
at the degrees, we find it advisable to include the edge BaSt instead of either
BaMu or BaFr.) This improves our bound to w(TSP) ≥ w′′(B2) = 248.

Ba

Mu

St

Nu

FrAa

Du

Be

Ha

27
26

17

23

8

46

29

47

25

Fig. 15.5. Minimal s-tree with respect to W ′′
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Again, there are two vertices which do not yet have the correct degree 2,
namely Ba and Mu. This time we choose c = 1 and p = (0,−1, 0, 0, 0, 0, 1, 0, 0).
We leave it to the reader to compute the corresponding weight matrix W ∗

and to check that this leads to the minimal s-tree B3 of weight w∗(B3) = 250
shown in Figure 15.6. As B3 is actually a tour, we have now (coincidentally)
solved the TSP of Example 15.1.2: the tour

Aa Du Ha Be Nu Mu St Ba Fr Aa

is optimal, and hence w(TSP) = 250.
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Fig. 15.6. Minimal s-tree with respect to W ∗: an optimal tour

In general, it would be nice to be able to choose the vector p as advan-
tageously as possible. As a tour which is optimal with respect to w is also
optimal with respect to w′, where w′ is defined as in (15.3), we want to min-
imize the gap d(p) between the length w′(TSP) of an optimal tour and the
weight w′(B) of a minimal s-tree B. Equations (15.5) and (15.6) yield

d(p) = w(TSP) − min {w(B) + dp(B) : B is an s-tree} .

If we want to minimize d(p), we need to determine

(L) L(w) = max
{

min {w(B) + dp(B) : B is an s-tree} : p ∈ Rn
}
.
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In general, we will not end up with L(w) = w(TSP): it is quite possible that no
choice of p yields a minimal s-tree which is already a tour; an example for this
situation can be found in [HeKa70]. But the lower bound for w(TSP) given by
(L) is particularly strong: the values of L(w) are on average more than 99%
of w(TSP) according to [VoJo82]. An interesting theoretical examination of
the Held-Karp technique can be found in [ShWi90].

Of course, solving (L) is a considerably more involved problem than the
original s-tree relaxation. There are various approaches to this problem; the
vectors p are called subgradients in this context. These subgradients can be
used for solving (L) recursively; this yields a method which is guaranteed to
converge to L(w) (for an appropriate choice of the step widths c). Unfortu-
nately, one cannot predict how many steps will be required, so that the process
is often terminated in practice as soon as the improvement between successive
values becomes rather small.

The problem (L) is a special case of a much more general method which is
used quite often for integer linear programming problems:Lagrange relaxation;
we refer to [Sha79] and [Fis81]. The approach via subgradient optimization is
only one of several ways to solve Lagrange relaxations; it is described in detail
(together with other methods) in [Sho85]; see also [HeWC74].

Appropriate relaxations are very important for finding the optimal so-
lution of a TSP, because they form an essential part of branch-and-bound
techniques; we will present an example for such a method in Section 15.8. We
refer the reader to [VoJo82] and to [LaLRS85, Chapter 10] for more detailed
information. Further methods for determining lower bounds can be found, for
example, in [CaFT89].

15.4 Approximation algorithms

The preceding two sections treated the problem of finding lower bounds on
the length of an optimal tour, so it is now natural to ask for upper bounds.
It would be nice to have an algorithm (of small complexity, if possible) for
constructing a tour which always gives a provably good approximation to the
optimal solution. We need a definition to make this idea more precise, which
generalizes the approach we took when we studied the greedy algorithm as an
approximation method in Section 5.4.

Let P be an optimization problem, and let A be an algorithm which cal-
culates a feasible – though not necessarily optimal – solution for any given
instance I of P. We denote the weights of an optimal solution and of the
solution constructed by A by w(I) and wA(I), respectively. If the inequality

|wA(I) − w(I)| ≤ εw(I) (15.9)

holds for each instance I, we call A an ε-approximative algorithm for P. For
example, a 1-approximative algorithm for the TSP would always yields a tour
which is at most twice as long as an optimal tour.
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Given an NP-complete problem, there is little hope to find a polynomial
algorithm which solves P correctly. Thus it seems promising to look instead for
a polynomial ε-approximative algorithm, with ε as small as possible. Unfortu-
nately, this approach is often just as difficult as solving the original problem.
In particular, this holds for the TSP, as the following result of Sahni and
Gonzales [SaGo76] shows.

Theorem 15.4.1. If there exists an ε-approximative polynomial algorithm for
the TSP, then P = NP .

Proof. Let A be an ε-approximative polynomial algorithm for the TSP. We
will use A to construct a polynomial algorithm for determining a Hamilto-
nian cycle; then the assertion follows from Theorem 2.7.4. The construction
resembles the one given in the proof of Theorem 2.7.5. Let G = (V, E) be a
connected graph, and consider the complete graph KV on V with weights

wij =

{
1 for ij ∈ E

2 + ε|V | otherwise.

If the given algorithm A should determine a tour of weight n = |V | for this
instance of the TSP, then G is obviously Hamiltonian.

Conversely, suppose that G contains a Hamiltonian cycle. Then the corre-
sponding tour has weight n and is trivially optimal. As A is ε-approximative
by hypothesis, it will compute a tour π of weight w(π) ≤ (1 + ε)n. Suppose
that π contains an edge e /∈ E. Then

w(π) ≥ (n − 1) + (2 + εn) = (1 + ε)n + 1,

a contradiction. Hence the tour π determined by A actually induces a Hamil-
tonian cycle in G, so that it has in fact weight n.

We have proved that G is Hamiltonian if and only if A constructs a tour
of weight n for our auxiliary TSP, so that A would indeed yield a polynomial
algorithm for HC. ��

Clearly, a result analogous to Theorem 15.4.1 holds for the ATSP. Inter-
estingly, the situation is much more favorable for the metric TSP. We need
a definition and a lemma. Let Kn be the complete graph on V = {1, . . . , n}.
Then any connected Eulerian multigraph on V is called a spanning Eulerian
multigraph for Kn.

Lemma 15.4.2. Let W be the weight matrix of a ∆TSP on Kn, and let G =
(V, E) be a spanning Eulerian multigraph for Kn. Then one can construct with
complexity O(|E|) a tour π satisfying w(π) ≤ w(E).

Proof. By Example 2.5.3, it is possible to determine with complexity O(|E|)
an Euler tour C for G. Write the sequence of vertices corresponding to C
in the form (i1, P1, i2, P2, . . . , in, Pn, i1), where (i1, . . . , in) is a permutation
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of {1, . . . , n} and where the P1, . . . , Pn are (possibly empty) sequences on
{1, . . . , n}. Then (i1, . . . , in, i1) is a tour π satisfying

w(π) =
n∑

j=1

wijij+1 ≤ w(E) (where in+1 = i1),

since the sum of the weights of all edges in a path from x to y is always an
upper bound for wxy

6 and since each edge occurs exactly once in the Euler
tour C. ��

We now construct spanning Eulerian multigraphs of small weight and use
these to design approximative algorithms for the metric TSP. The easiest
method is simply to double the edges of a minimal spanning tree, which results
in the following well-known algorithm.

Algorithm 15.4.3 (tree algorithm). Let W = (wij) be the weight matrix
for a ∆TSP on Kn.

(1) Determine a minimal spanning tree T for Kn (with respect to the weights
given by W ).

(2) Let G = (V, E) be the multigraph which results from replacing each edge
of T with two parallel edges.

(3) Determine an Euler tour C for G.
(4) Choose a tour contained in C (as described in the proof of Lemma 15.4.2).

Theorem 15.4.4. Algorithm 15.4.3 is a 1-approximative algorithm of com-
plexity O(n2) for ∆TSP.

Proof. Using the algorithm of Prim, step (1) has complexity O(n2); see The-
orem 4.4.4. The procedure EULER developed in Chapter 2 can be used to
perform step (3) in O(|E|) = O(n) steps. Clearly, steps (2) and (4) also have
complexity O(n). This establishes the desired complexity bound.

By Lemma 15.4.2, the tree algorithm constructs a tour π with weight
w(π) ≤ 2w(T ). On the other hand, the MST relaxation of Section 15.2 shows
that all tours have weight at least w(T ). Hence w(π) is indeed at most twice
the weight of an optimal tour. ��
Example 15.4.5. Let us again consider Example 15.1.2. We saw in Example
15.2.3 that the MST relaxation yields the minimal spanning tree T of weight
w(T ) = 186 displayed in Figure 15.2. A possible Euler tour for the doubled
tree is

(Aa, Du, Ha, Be, Ha, Du, Fr, St, Ba, St, Nu, Mu, Nu, St, Fr, Du, Aa),

6Note that this is the one point in the proof where we make use of the triangle
inequality.
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which contains the tour

π : Aa Du Ha Be Fr St Ba Nu Mu Aa

of length 307; see Figure 15.7. Note that Theorem 15.4.4 only guarantees that
we will be able to find a tour of length ≤ 372; it is just good luck that π is
actually a considerably better solution.
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Fig. 15.7. Tour constructed by Algorithm 14.4.3

It is quite possible that Algorithm 15.4.3 constructs a tour whose weight
is close to 2w(TSP); see [LaLRS85, Chapter 5]. In contrast, the difference
between the length of the tour of Example 15.4.5 and the optimal tour of
Example 15.3.2 is less than 23%.

Next we present a 1
2 -approximative algorithm, which is due to Christofides

[Chr76]; his method is a little more involved.

Algorithm 15.4.6 (Christofides’ algorithm). Let W = (wij) be a weight
matrix for a ∆TSP on Kn.

(1) Determine a minimal spanning tree T of Kn (with respect to W ).
(2) Let X be the set of all vertices which have odd degree in T .
(3) Let H be the complete graph on X (with respect to the weights given by

the relevant entries of W ).
(4) Determine a perfect matching M of minimal weight in H.
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(5) Let G = (V, E) be the multigraph which results from adding the edges of
M to T .

(6) Determine an Euler tour C of G.
(7) Choose a tour contained in C (as described in the proof of Lemma 15.4.2).

Theorem 15.4.7. Algorithm 15.4.6 is a 1
2 -approximative algorithm of com-

plexity O(n3) for ∆TSP.

Proof. In addition to the procedures also used in Algorithm 15.4.3, Algorithm
15.4.6 requires the determination of a perfect matching of minimal weight.
This can certainly be done with complexity O(n3) (by Result 14.4.5), so that
the total complexity will be O(n3). It remains to consider the quality of the
resulting approximation.

As G is Eulerian by Theorem 1.3.1, the tour π determined in step (5)
satisfies the inequality

w(π) ≤ w(E) = w(T ) + w(M) (15.10)

(by Lemma 15.4.2). Thus we have to find a bound for w(M). Write |X| = 2m
and let (i1, i2, . . . , i2m) be the vertices of X in the order in which they occur
in some optimal tour σ.7 We consider the following two matchings of H:

M1 = {i1i2, i3i4, . . . , i2m−1i2m} and M2 = {i2i3, i4i5, . . . , i2mi1} .

The triangle inequality for W implies

w(σ) ≥ wi1i2 + wi2i3 + . . . + wi2m−1i2m + wi2mi1

= w(M1) + w(M2) ≥ 2w(M),

since M is a perfect matching of minimal weight. Hence

w(M) ≤ w(TSP)/2 and w(T ) ≤ w(TSP)

(by the MST relaxation), and (15.10) yields w(π) ≤ 3w(TSP)/2. ��
The bound of Theorem 15.4.7 is likewise best possible: there are examples

where Christofides’ algorithm constructs a tour π for which the ratio between
w(π) and w(TSP) is arbitrarily close to 3/2; see [CoNe78].

Example 15.4.8. Consider once again Example 15.1.2, and let T be the min-
imal spanning tree with weight w(T ) = 186 given in Example 15.2.3. The set
of vertices of odd degree is X = {Aa, Be, Du, St, Ba, Mu}. Thus we require a
perfect matching M of minimal weight with respect to the following matrix:

7Of course we do not know such an optimal tour explicitly, but that does not
matter for our argument.
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Aa Ba Be Du Mu St

Aa
Ba
Be
Du
Mu
St

⎛
⎜⎜⎜⎜⎜⎜⎝

– 57 64 8 64 46
57 – 88 54 37 27
64 88 – 57 60 63
8 54 57 – 63 41
64 37 60 63 – 22
46 27 63 41 22 –

⎞
⎟⎟⎟⎟⎟⎟⎠

By inspection, we obtain M = {AaDu, BeMu, BaSt} with w(M) = 95.
Adding the edges of M to T yields an Eulerian multigraph of weight 281
with Euler tour

(Be, Mu, Nu, St, Ba, St, Fr, Du, Aa, Du, Ha, Be),

which contains the tour

Be Mu Nu St Ba Fr Du Aa Ha Be;

see Figure 15.8. Note that this tour has weight 266, which is only 6% more
than the optimal value of 250.
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Fig. 15.8. Tour constructed by Algorithm 14.4.6
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The algorithm of Christofides is the best approximative algorithm for the
∆TSP known so far: the existence of an ε-approximative polynomial algorithm
for the ∆TSP for some ε < 1/2 is open. A priori, it would be conceivable that
such an algorithm exists for each ε > 0; such a family of algorithms is called
an approximation scheme.

It was known for many years that P �= NP would imply the nonexistence of
a fully polynomial approximation scheme for the ∆TSP: there is no family of
ε-approximative algorithms such that their complexity is polynomial in n and
1/ε; see Theorem 6 in [LaLRS85, Chapter 5]. Later this result was extended to
arbitrary approximation schemes; see [ArLMS92]. This result holds even if the
weights are restricted 1 and 2. Nevertheless, Papadimitriou and Yannakakis
[PaYa93] managed to find a 1

6 -approximative algorithm for the interesting
special case of the ∆TSP with weights restricted to 1 and 2.

Some other important problems are even more difficult to handle than the
∆TSP. For example, the existence of a polynomial ε-approximative algorithm
for determining a maximal clique (for any particular choice of ε > 0) already
implies P = NP; see [ArSa02]. For even stronger results in this direction, we
refer to [Zuc96]. All these results use an interesting concept from theoretical
computer science: so-called transparent proofs ; see, for example, [BaFL91] and
[BaFLS91].

To close this section, we use the main idea behind Algorithm 15.4.3 to
prove the simple bound mentioned in Section 4.6 for the ratio of the weight
of a minimal Steiner tree to a minimal spanning tree; this result is due to E.
F. Moore (see [GiPo68]).

Theorem 15.4.9. Let v1, . . . , vn be n points in the Euclidean plane, and let
S and T be a minimal Steiner tree and a minimal spanning tree, respectively,
for these n points. Then w(T ) ≤ 2w(S), where the weight w(uv) of an edge
uv is the Euclidean distance between u and v.

Proof. Consider the ∆TSP on V = {v1, . . . , vn} with the Euclidean distance
as weight function. As in Algorithm 15.4.3, we double the edges of a minimal
Steiner tree S for v1, . . . , vn and determine an Euler tour C for the resulting
Eulerian multigraph (V, E). As S contains the vertices v1, . . . , vn (perhaps
together with some Steiner points), it is possible to choose a tour π contained
in C. As in Lemma 15.4.2, one shows

w(π) ≤ w(E) = 2w(S).

But then
w(T ) ≤ w(TSP) ≤ w(π) ≤ 2w(S)

is immediate. ��
Note that the preceding proof of Theorem 15.4.9 is also valid for the Steiner

problem in an arbitrary metric space.
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15.5 Upper bounds: Heuristics

We saw in Theorem 15.4.1 that we cannot expect to find good approxima-
tive algorithms for the general TSP. Still, we would like to be able to solve a
given TSP as well as possible. After having found lower bounds for w(TSP)
in Sections 15.2 and 15.3, we now look more closely at the problem of deter-
mining upper bounds. Of course, any tour yields an upper bound. As a tour
chosen randomly cannot be expected to give a very good bound, one usually
resorts to heuristics for constructing suitable tours. Of course, these heuris-
tics might also produce rather weak bounds, but we may at least hope for a
meaningful result. It is also common practice to try to improve a candidate
tour (whether constructed by heuristic methods or at random) by some sort
of post-optimization procedure; we will consider this approach in the next
section.

Perhaps the most frequently used heuristics are the so-called insertion
algorithms. Such an algorithm first chooses an arbitrary city x1 as a starting
point for the tour to be constructed. Then a city x2 is chosen – using some
criterion still to be specified – and added to the partial tour constructed so
far, giving the partial tour (x1, x2, x1). This procedure is repeated until a
tour (x1, . . . , xn, x1) is obtained. Thus the current partial tour of length k is
always extended to a tour of length k +1 by adding one more city in the k-th
iteration; this involves two tasks:

(a) choosing the city to be added and
(b) deciding where the city chosen in (a) will be inserted into the current

partial tour.

There are several standard strategies for choosing the city in (a): arbitrary
choice; selecting the city which has maximal (or, alternatively, minimal) dis-
tance to the cities previously chosen; or choosing the city which is cheapest
to add. We also have to settle on a criterion for step (b); here an obvious
strategy is to insert the city at that point of the partial tour where the least
additional cost occurs.

We describe an algorithm which usually works quite nicely in practice,
although there are no bounds known for its quality – not even in the metric
case. In step (a), we always choose the city which has maximal distance to
the current partial tour. This might appear strange at first glance, but there
is a good reason for this strategy: as all the cities have to appear in the tour
anyway, it seems best to plan the rough outline of the tour first, by taking
all those cities into account which are far apart from each other. Towards the
end of the insertion process, the remaining cities merely change the details of
the tour, which should not increase the cost that much any more.

Thus we choose in step (a) that city y which has maximal distance to the
partial tour π = (x1, . . . , xk, x1). Here the distance of y to π is defined as
d(y) = min {wy,x1 , . . . , wy,xk

}. In step (b), the selected city y is then inserted
between two consecutive cities i and j in π for which the cost
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c(i, j) = wi,y + wy,j − wi,j

caused by the insertion is minimal. We obtain the following algorithm, where
distances are stored in an array denoted by d.

Algorithm 15.5.1 (farthest insertion). Let W = (wij) be the weight ma-
trix of a TSP on Kn, and let s be the vertex of Kn chosen as the starting
point of the tour C to be constructed.

Procedure FARIN(W, s; C)

(1) C ← (s, s), K ← {ss}, w ← 0;
(2) for u = 1 to n do d(u) ← wsu od;
(3) for k = 1 to n − 1 do
(4) choose y with d(y) = max {d(u) : u = 1, . . . , n};
(5) for e = ij ∈ K do c(e) ← wi,y + wy,j − wi,j od;
(6) choose an edge f ∈ K with c(f) = min {c(e) : e ∈ K}, say f = uv;
(7) insert y between u and v in C;
(8) K ← (K \ {f}) ∪ {uy, yv}, w ← w + c(f), d(y) ← 0;
(9) for x ∈ {1, . . . , n} \ C do d(x) ← min {d(x), wyx}

(10) od

The simple proof of the following theorem will be left to the reader.

Theorem 15.5.2. Algorithm 15.5.1 constructs with complexity O(n2) a tour
C with weight w(C) = w. ��
Example 15.5.3. Consider again the TSP of Example 15.1.2; we choose the
vertex s = Fr as our starting point. We always state the distances in the form
of a 9-tuple d containing the distances to Aa, . . . , St (in this order).

In the first iteration, we obtain d = (26, 34, 56, 23, 0, 50, 40, 22, 20). The
vertex of maximal distance is Be with d(Be) = 56. Thus the partial tour for
i = 1 is T = (Fr, Be, Fr) of length 112.

The distances in the second iteration are (26, 34, 0, 23, 0, 29, 40, 22, 20); this
yields y = Mu, d(Mu) = 40 and C = (Fr, Be, Mu, Fr) with length w = 156.

For k = 3, the distances are (26, 34, 0, 23, 0, 29, 0, 17, 20); hence y = Ba
and C = (Fr, Be, Mu, Ba, Fr) with length w = 187.

In the fourth iteration, d = (26, 0, 0, 23, 0, 29, 0, 17, 20). Inserting y = Ha
at the point of least cost yields C = (Fr, Ha, Be, Mu, Ba, Fr) and w = 210.

For k = 5, we obtain d = (26, 0, 0, 23, 0, 0, 0, 17, 20). Now y = Aa, and we
obtain C = (Fr, Aa, Ha, Be, Mu, Ba, Fr) with length w = 235.

The sixth iteration with distances (0, 0, 0, 8, 0, 0, 0, 17, 20) yields y = St,
C = (Fr, Aa, Ha, Be, Mu, St, Ba, Fr) and w = 247.

For k = 7, we have y = Nu and C = (Fr, Aa, Ha, Be, Nu, Mu, St, Ba, Fr)
with length w = 248.

In the final iteration, y = Du. We obtain the tour

Fr Aa Du Ha Be Nu Mu St Ba Fr
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with length w = 250. Thus FARIN has found – by sheer coincidence – the
optimal tour constructed in Example 15.3.2 via the penalty approach; see
Figure 15.6.

Exercise 15.5.4 (nearest insertion). Consider the procedure NEARIN
which results from replacing step (4) of Algorithm 15.5.1 by

(4′) choose j with d(j) = min {d(u) : u = 1, . . . , n, u /∈ C}.
Use this procedure to calculate a tour for the TSP of Example 15.1.2.

Several insertion algorithms are examined in [RoSL77]. More about heuris-
tics, such as results concerning the quality in the metric case, empirical results,
and probabilistic analysis, can be found in the books [LaLRS85] and [GuPa02].

15.6 Upper bounds: Local search

Having chosen a tour (at random or using a heuristic), the next step is to try
to improve this tour as far as possible: we want to apply post-optimization.
This means we consider sets of solutions that are neighboring in some sense
and look for a local optimum. Let us formalize this idea.

Suppose F is the set of all feasible solutions for a given optimization prob-
lem; for example, for the TSP, F would be the set of all tours. A neighborhood
is a mapping N : F → 2F: we say that N maps each f ∈ F to its neigh-
borhood N(f). Any algorithm which proceeds by determining local optima in
neighborhoods is called a local search algorithm.

Lin [Lin65] proposed the following neighborhoods for a TSP on Kn with
weight matrix W = (wij). Let f be a tour, and choose k ∈ {2, . . . , n}. The
neighborhood Nk(f) is the set of all those tours g which can be obtained from
f by first removing k arbitrary edges and then adding a suitable collection
of k edges (not necessarily distinct from the removed edges). One calls Nk(f)
the k-change neighborhood. Any tour f which has minimal weight among all
tours in Nk(f) is said to be k-optimal. We can now describe a large family of
local search algorithms for the TSP.

Algorithm 15.6.1 (k-opt). Let W = (wij) be the weight matrix of a TSP
on Kn.

(1) Choose an initial tour f .
(2) while there exists g ∈ Nk(f) with w(g) < w(f) do
(3) choose g ∈ Nk(f) with w(g) < w(f);
(4) f ← g
(5) od

Of course, this generic algorithm leaves several choices unspecified. First,
we have to decide how the initial tour should be chosen: at random or using
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one of the heuristics of Section 15.5. Also, in general there will be many
possibilities for selecting a tour g in step (3). Two standard strategies are
first improvement (we choose the first admissible g encountered) and steepest
descent (we select a tour g of minimal weight in Nk(f)).

One could also run the algorithm several times, using distinct initial tours;
in this case it makes sense to choose these tours randomly.

Perhaps the most important problem concerns which value of k one should
choose. For large k (that is, larger neighborhoods), the algorithm yields a bet-
ter approximation, but the complexity will grow correspondingly.8 In practice,
the value k = 3 proposed by [Lin65] seems to work best. We restrict ourselves
to the simpler case k = 2 and examine it in more detail.

Let f be a tour described by its edge set f = {e1, . . . , en}:
x1

e1 x2
e2 . . .

en−1
xn

en x1

is the corresponding Hamiltonian cycle. Then the tours g ∈ N2(f) can be
found as follows: remove any two edges ei and ej from f , and connect the
resulting two paths by inserting two edges e′i and e′j . We are interested only
in the case f �= g. Then ei and ej should not have a vertex in common, and
this requirement determines e′i and e′j uniquely; see Figure 15.9.

y′
x′

x

y

ej

ei

y′
x′

x

y

e′i
e′j

Fig. 15.9. 2-exchange

Note that every neighborhood N2(f) contains precisely n(n − 3)/2 tours
g �= f . For each such tour g, we put

δ(g) = w(f) − w(g) = w(ei) + w(ej) − w(e′i) − w(e′j). (15.11)

Thus δ(g) measures the advantage which the tour g offers compared to f . We
set δ = max {δ(g) : g ∈ N2(f)}; if δ > 0, we replace f by some tour g with

8Obviously, k-opt needs O(nk) steps for each iteration of the while-loop; nothing
can be said about the number of iterations required.
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δ(g) = δ (so we use steepest descent). Otherwise, f is already 2-optimal, and
the algorithm 2-opt terminates. As noted before, each iteration has complexity
O(n2); the number of iterations cannot be predicted. With these specifications,
Algorithm 15.6.1 becomes the following algorithm proposed already in [Cro58].

Algorithm 15.6.2 (2-opt). Let W = (wij) be the weight matrix of a TSP
on Kn, and let f be a tour with edge set {e1, . . . , en}.
Procedure 2-OPT(W, f ; f)

(1) repeat
(2) δ ← 0, g ← f ;
(3) for h ∈ N2(f) do
(4) if δ(h) > δ then g ← h; δ ← δ(h) fi
(5) od;
(6) f ← g;
(7) until δ = 0

Note that Algorithm 15.6.2 has to terminate with a 2-optimal tour g:
whenever step (4) is executed, the current tour is replaced by a better tour,
so that the length of the tour decreases; obviously, this can happen only
a finite number of times. It should be emphasized that the solution which
the algorithm generates by no means has to be optimal: it is quite likely
for the algorithm to get stuck in a bad neighborhood and produce only a
local optimum. Therefore, it is common practice for 2-OPT (and for other
local search algorithms) to run the algorithm repeatedly, starting with distinct
initial tours.

Example 15.6.3. As usual, we consider the TSP of Example 15.1.2. Let us
choose the tour of weight 266 constructed using Christofides’ algorithm in
Example 15.4.8 as our initial tour f ; see Figure 15.8.

During the first iteration of 2-OPT, the edges BeMu and NuSt are re-
placed with BeNu and MuSt; this yields the tour

Be Nu Mu St Ba Fr Du Aa Ha Be

of length 253; see Figure 1.10.
The second iteration of 2-OPT exchanges the edges FrDu and AaHa for

FrAa and DuHa. The resulting tour is the optimal tour of length 250 shown
both in Figure 15.6 and also in Figure 1.10. We have now constructed this
tour in three different ways. Of course, it is coincidental that we reach an
optimal solution by running a post-optimization procedure.

Exercise 15.6.4. Apply 2-OPT to the tour of Example 15.4.5; see Figure
15.7.

To speed up the running time, it might be a good idea to resort to the
strategy first improvement and simply select the first tour g which is better
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than f in k-opt. In the special case of a metric TSP, it also makes sense not to
consider all possible edge replacements, but to restrict the algorithm to edges
being rather close to each other (according to the given metric).

A report about practical experiments with 2-OPT for large instances (up
to a million cities) of the Euclidean TSP , where the distances are given by the
Euclidean distance between n points in the plane, can be found in [Ben90].

Or [Or76] suggested a variation of 3-opt which examines only a small
portion of all possible edge replacements, which cuts down the running time
considerably, but nevertheless tends to yield good results. His basic idea is
to try first to insert three consecutive cities of f between two other cities; if
this improves the tour, the corresponding change is done immediately. If no
more improvements can be achieved in this manner, the algorithm continues
by considering pairs of consecutive cities, and so on.

An algorithm designed by Lin and Kernighan [LiKe73] has proved to be
very efficient in practice; however, it is also considerably more involved. It
uses variable values for k and decides during each iteration how many edges
are to be replaced. The algorithm contains a number of tests, with the aim of
checking – after r edges have been replaced already – whether it would make
sense to exchange a further edge. Unfortunately, there are examples for which
the Lin-Kernighan algorithm needs exponentially many steps; see [Pap92].

More recently, a wealth of further heuristics of a rather different nature
have been proposed; these are motivated by concepts from either physics or bi-
ology. We mention three important methods: threshold accepting, tabu search,
and the great deluge algorithm. These methods sometimes yield results of sur-
prising quality with relatively little effort; see, for example, [DuSc90], [Fie94],
and [Due93]. The approach via genetic algorithms and evolution programs is
interesting as well; see [Mic92, Chapter 10] and the references given there, in
particular [MuGK81]. Unfortunately, it seems to be impossible to prove any
theoretical results about the quality of such algorithms.

To sum up, the common approach to the TSP consists of several parts.
First an initial tour is constructed using some heuristic (as in Section 15.5);
usually, insertion algorithms are used for this task. Then a local search algo-
rithm is applied to improve the current tour. Simultaneously, lower bounds
are calculated (using the algorithm of Held and Karp of Section 15.3 or an
LP-relaxation) to be able to judge the quality of the current solution.

Even for large instances of several hundred cities, it is nowadays usually
possible to reduce the gap between the solution found and the optimal value
to 1% or less. Not surprisingly, it is possible to construct degenerate examples
for which the above techniques yield arbitrarily bad results [PaSt78], but
examples coming from practical applications can generally be solved quite
well. A composite heuristic in [LaLRS85, Chapter 7] seems to particularly
well-behaved. Finally, we recommend a monograph on local search techniques:
[AaLe97].
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15.7 Exact neighborhoods and suboptimality

We saw in the previous section how neighborhoods are used for determining
locally optimal solutions to hard problems. Using this approach, we hope that
the locally optimal solution – or, perhaps, the best one among several local
optima – is pretty good also from a global point of view. Of course, the nicest
thing that could possibly happen is that every local optimum is actually a
global optimum. This suggests the following definition.

Let F be the set of admissible solutions of some optimization problem.
A neighborhood N : F → 2F is called an exact neighborhood if every locally
optimal solution is already a global optimum.9 Before examining exact neigh-
borhoods for the TSP, we give an example for an (albeit polynomial) problem
where exact neighborhoods are indeed helpful: the determination of minimal
spanning trees.

Example 15.7.1. Let G = (V, E) be a connected graph with weight function
w : E → R. We define a neighborhood N as follows: for a given spanning
tree T of G, N(T ) consists of precisely those spanning trees T ′ which result
from T by adding some edge e /∈ T and then removing an arbitrary edge from
the cycle CT (e); compare Section 4.3. The results proved there imply that
this neighborhood is exact; to this end, it suffices to verify condition (4.1) in
Theorem 4.3.1 for the global optimality of a given (locally optimal) tree T .

Assume that condition (4.1) is not satisfied. Then it is possible to find
an edge e ∈ E \ T and an edge f ∈ CT (e) such that w(e) < w(f). Adding
e and removing f then yields a tree T ′ ∈ N(T ) with w(T ′) < w(T ), which
contradicts the local optimality of T . Note that this argument is just the first
part of the proof of Theorem 4.3.1. Thus Theorem 4.3.1 may be viewed as a
proof for the exactness of the neighborhood N ; note that the correctness of
the algorithms of Kruskal and Prim given in Section 4.4 basically rests on this
fact.

Example 15.7.1 suggests the following approach to solving optimization
problems:

(a) Find an exact neighborhood N .
(b) Find an efficient algorithm for examining the neighborhood N(f) of

a given feasible solution f : the algorithm should be able to recognize
whether f is locally – and, hence, also globally – optimal; if this is not the
case, it should replace f with a better solution f ′.

Of course, it is not at all clear how efficient a search algorithm based on (a)
and (b) would be: in general, it is not known how many neighborhoods N(f)

9Of course, our previous experiences suggest that this idea will not be very helpful
for the TSP; indeed, the present section will provide more bad news on the TSP in
more than one respect. To use a phrase taken from [LaLRS85, p. 76]: The outlook
continues to be bleak.
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need to be examined until an optimum is found. Nevertheless, in view of our
experiences with the TSP, we would probably be quite happy with an exact
neighborhood and a polynomial algorithm for examining this neighborhood.10

Unfortunately, we will soon see that even this is only possible if we should have
P = NP. This requires some effort. We begin by showing that the following
problem is NP-complete.

Problem 15.7.2 (restricted Hamiltonian cycle, RHC). Let G be a
graph which admits a Hamiltonian path. Does G contain also a Hamiltonian
cycle?

Even though this problem may seem simpler than HC, it is just as difficult:
knowing a Hamiltonian path does not help to decide if a graph is Hamiltonian,
as the following result due to Papadimitriou and Steiglitz [PaSt77] shows.

Theorem 15.7.3. RHC is NP-complete.

Proof. As HC is NP-complete by Theorem 2.7.4, it is sufficient to transform
HC polynomially to RHC. To do this, we use the auxiliary graph D (D for
diamond) shown in Figure 15.10. Let G = (V, E) be a connected graph. We
replace each vertex v of G by a diamond Dv; by adding suitable edges, we will
construct a graph G = (V ′, E′)′ with a Hamiltonian path; moreover, G′ will
contain a Hamiltonian cycle if and only if G does. As the number of vertices
is multiplied only by 8, we will obtain a polynomial transformation of HC to
RHC in this way.

S

db

EW

ca

N

Fig. 15.10. a diamond D

When we specify E′, we will impose the following restriction: all edges
connecting a diamond Dv with G′ \ Dv have to be incident with one of the

10It can be shown that not even the huge neighborhood Nn−3 of Section 15.6 is
exact.
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four vertices labelled as N , S, W , and E in Figure 15.10. As we shall show in
a moment, this will guarantee that an arbitrary Hamiltonian cycle of G′ can
traverse a given diamond only in two ways: it has to contain one of the two
paths shown in Figure 15.11. We will refer to these two possibilities as the
north-south method and the west-east method, respectively.

It is actually rather easy to check our claim: suppose that C is a Hamil-
tonian cycle of G′ which enters a diamond D via the vertex N . Then C has
to contain the vertex a next; otherwise, a could not be contained in C at all,
since deg a = 2 and since N cannot be used a second time. Then the next ver-
tex of C has to be W . Note that C cannot leave D in W : otherwise, C would
have to enter D for a second time; but then it could not possibly contain all
three vertices d, b, and c. Therefore C has to pass through b, c, E, d, and S
in this order, leaving D from S. This indeed is just the north-south method.
Similarly, a Hamiltonian cycle entering D in W has to traverse D according
to the west-east method.

S

db

EW

ca

N

north-south method

S

db

EW

ca

N

west-east method

Fig. 15.11. Hamiltonian paths through D

We now specify E′, where we assume V = {1, . . . , n}. First, we connect
the n copies Dv of D (which form the vertex set of G′) by adding the following
n−1 edges: S1N2, S2N3, . . . , Sn−1Nn. These edges create a Hamiltonian path
path in G′: the north-south method of D1 followed by S1N2, followed by the
north-south method of D2, and so on to the edge Sn−1Nn followed by the
north-south method of Dn; see Figure 15.12.

In addition, we include the edges WiEj and WjEi in E′, whenever ij is
an edge of G. Then it is obvious that any Hamiltonian cycle C of G induces
a Hamiltonian cycle C ′ in G′: the diamonds in G′ are visited in the same
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order as C visits the vertices of G, and each diamond is traversed using the
west-east method.

Sn

Nn

S2

N2

S1

N1

Fig. 15.12. A Hamiltonian path in G′

Conversely, suppose that G′ has a Hamiltonian cycle C ′. Then C ′ cannot
reach any of the diamonds Di via Ni or Si: otherwise, C ′ would have to
pass through all of the diamonds using the north-south method. This would
yield the Hamiltonian path W of G′ shown in Figure 15.12, which cannot be
extended to a cycle since G′ does not contain the edge N1Sn. Therefore C ′

has to pass through all the diamonds by the west-east method, so that C ′

clearly induces a Hamiltonian cycle in G. ��
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We now use Theorem 15.7.3 to show that the following problem is likewise
NP-complete, which is quite interesting in its own right: most likely we cannot
even recognize an optimal tour when we see one. This result is also due to
Papadimitriou and Steiglitz [PaSt77].

Problem 15.7.4 (TSP suboptimality). Suppose we are given a TSP and
a tour. Is this tour suboptimal? That is, does there exist a shorter tour?

Theorem 15.7.5. TSP suboptimality is NP-complete, even when restricted
to the metric case.

Proof. Clearly, the problem is in P, as any tour of shorter length constitutes a
certificate for the answer yes. By Theorem 15.7.3, it will suffice to transform
RHC to the problem in question. Let G be a graph on the vertex set V =
{1, . . . , n}, and let P be a Hamiltonian path for G. Consider the ∆TSP on
Kn, where the weight matrix W = (wij) is defined as in the proof of Theorem
2.7.5, and note that P extends to a tour π of length

w(π) ≤ (n − 1) + 2 = n + 1.

If π actually has length n, we have proved that G is a Hamiltonian: tours of
length n correspond to Hamiltonian cycles of G. Now assume w(π) = n + 1.
Then G contains a Hamiltonian cycle if and only if π is not optimal. By
hypothesis, there is a polynomial algorithm deciding TSP suboptimality, so
that the criterion just given can be checked efficiently. This shows that RHC
would likewise be decidable in polynomial time. ��
Theorem 15.7.6. Assume the existence of an exact neighborhood N for the
TSP and of a polynomial algorithm for deciding whether a given tour T is
(locally and, hence, globally) optimal. Then P = NP .

Proof. Note that such an algorithm would be able to decide TSP suboptimality
in polynomial time. Thus the assertion follows from Theorem 15.7.5. ��

Note that Theorem 15.7.6 asserts more than just the NP-completeness of
TSP. Assume P �= NP. Then TSP is not solvable in polynomial time (by The-
orem 2.7.5), so that no algorithm based on a polynomial local search process
for an exact neighborhood could yield a solution after a polynomial number of
iterations. Nevertheless, there still might be an exact neighborhood admitting
a polynomial local search algorithm which needs, for instance, an exponential
number of iterations. Theorem 15.7.6 excludes even this possibility.

Thus no neighborhood for the TSP which admits a polynomial local search
algorithm can be exact (always assuming that P �= NP). In particular, this
applies to the neighborhoods Nk (for fixed k), since Nk allows a local search
algorithm of complexity O(nk). The following exercise strengthens this result
by showing that a polynomial local search algorithm for a given neighborhood
cannot lead to an ε-approximative algorithm for the TSP – even if we allow
more than a polynomial number of iterations. Again, this result is due to
Papadimitriou and Steiglitz [PaSt77].
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Exercise 15.7.7. Let N be a neighborhood for the TSP admitting a polyno-
mial algorithm A which checks whether a given tour is locally optimal and, if
this is not the case, finds a better tour. Moreover, let A′ be the local search
algorithm based on A (as in Section 15.6). Suppose that A′ is ε-approximative
for some ε. Show that this implies P = NP (without any assumptions about
the number of iterations). Hint: Proceed by analogy to the proof of Theorem
15.4.1 and show that otherwise HC would be solvable in polynomial time.
Why does A′ need only a polynomial number of iterations for the instances
of the TSP used in this argument?

Exercise 15.7.8. Prove that it is NP-complete to decide whether a given
edge ij occurs in an optimal tour (for a given instance of the TSP). Hint:
Show that a polynomial algorithm for this decision problem would allow us
to construct an optimal tour in polynomial time.

Exercise 15.7.9. In view of Exercises 15.7.7 and 15.7.8, it is tempting to try
proving Theorem 15.7.5 by reducing the NP-completeness of TSP subopti-
mality to that of HC (and thus to avoid the detour via RHC). Discuss why
this idea does not work.

Even though the considerations in this section show that we cannot expect
any guarantee for the quality of the local search algorithms – such as 3-OPT
– which were described in Section 15.6, these algorithms nevertheless tend to
work rather nicely in practice.

15.8 Optimal solutions: Branch and bound

This section is devoted to the problem of finding optimal solutions for the
TSP. All the known techniques basically boil down to analyzing all possible
solutions; this is not surprising because the TSP is an NP-complete problem.
Nevertheless, it can make a huge difference in practice how one organizes this
complete case analysis. Quite often, it is possible to find an optimal solution
without too much effort by using some tricks (and hoping for a bit of good
luck). We will illustrate this phenomenon via our standard example specified
in 15.1.2.

The method we will use is called branch and bound; roughly, it works as
follows. In each step, the set of all possible solutions is split into two or more
subsets, which are represented by branches in a decision tree. For the TSP,
an obvious criterion for dividing all tours into subsets is whether they contain
a given edge or not. Of course, by itself this is just a useful way of organizing
a complete case distinction. The approach becomes really useful only when
we add an extra idea: in each step, we will calculate lower bounds for the
weight of all solutions in the respective subtrees (using a suitable relaxation)
and compare them with some previously computed upper bound (for instance,
the length of a good tour found by a heuristic followed by post-optimization).
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Then no branch of the tree for which the lower bound exceeds the known upper
bound can possibly lead to an optimal tour, so that this entire branch of the
tree can be discarded; quite often, a large number of tours will be excluded
in this way. Of course, the quality of this method will depend both on the
relaxation and on the branching criteria used; also, it can only be judged
heuristically: we may not expect any theoretical performance guarantees.

We will present one of the oldest branch and bound techniques, which is
due to Little, Murty, Sweeney and Karel [LiMSK63] (where the name branch
and bound was introduced). Their algorithm was designed for the ATSP; of
course, it may also be applied to the special case of the TSP. This algorithm
is not particularly efficient, but it is easy to understand and easy to illustrate.
As our purpose is merely to show how branch and bound algorithms work in
principle, it will serve quite nicely. We refer the reader to [LaLRS85, Chapter
10] and [GuPa02, Chapter 4] for more recent branch and bound algorithms
which use more advanced relaxations and more involved branching criteria.

Let W = (wij) be the weight matrix of a given TSP on Kn. We choose
the diagonal entries wii as ∞ (as we did for the assignment relaxation); this
can be interpreted as forbidding the use of loops. In order to calculate lower
bounds, we shall transform the weight matrix in a manner similar to the
transformation used in Section 15.3.

Let us select some row or column of W , and let us subtract a positive
number d from all its entries, subject to the restriction that the resulting
matrix W ′ should still have nonnegative entries only; thus we will use the
smallest entry in our row or column. Recall that each tour π corresponds to
a diagonal of the matrix W ; hence it has to contain some entry of the row or
column used for our transformation, so that the weight of π with respect to
W ′ is reduced by d compared to its weight with respect to W . In particular,
the optimal tours for W coincide with those for W ′.

We continue this process until we obtain a matrix W ′′ having at least one
entry 0 in each row and each column; such a matrix is called reduced. Note
that the optimal tours for W agree with those for W ′′, and that the weight
of each tour with respect to W ′′ is reduced by s compared to its weight with
respect to W , where s is the sum of all the numbers subtracted during the
reduction process. It follows that s is a lower bound for the weight of all tours
(with respect to W ). Note that the weight matrices resulting from the above
construction will no longer be symmetric (in contrast to the transformations
used in Section 15.3).

We illustrate the reduction process for the TSP of 15.1.2. We replace the
diagonal entries 0 by ∞ and subtract, for each row of the matrix, the minimum
of its entries; this yields the matrix W̃ displayed on the next page. Next we
treat the columns of this matrix in the same manner and obtain the reduced
matrix W ′.
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Aa Ba Be Du Fr Ha Mu Nu St

W̃ :

Aa
Ba
Be
Du
Fr
Ha
Mu
Nu
St

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 49 56 0 18 41 56 39 38
30 ∞ 61 27 7 56 10 16 0
35 59 ∞ 28 27 0 31 15 34
0 46 49 ∞ 15 35 55 36 33
6 14 36 3 ∞ 30 20 2 0
20 54 0 14 21 ∞ 51 34 41
47 20 43 46 23 63 ∞ 0 5
30 26 27 27 5 46 0 ∞ 2
27 8 44 22 1 51 3 0 ∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Aa Ba Be Du Fr Ha Mu Nu St

W ′ :

Aa
Ba
Be
Du
Fr
Ha
Mu
Nu
St

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞ 41 56 0 17 41 56 39 38
30 ∞ 61 27 6 56 10 16 0
35 51 ∞ 28 26 0 31 15 34
0 38 49 ∞ 14 35 55 36 33
6 6 36 3 ∞ 30 20 2 0
20 46 0 14 20 ∞ 51 34 41
47 12 43 46 22 63 ∞ 0 5
30 18 27 27 4 46 0 ∞ 2
27 0 44 22 0 51 3 0 ∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The sum of all the numbers subtracted is

s = 8 + 27 + 29 + 8 + 20 + 29 + 17 + 17 + 19 + 8 + 1 = 183,

so that each tour has weight at least 183 with respect to W . Of course, we
found better bounds earlier: for example, 230 using the s-tree relaxation in
Example 15.2.4, but this does not help us in the present context.

Next, we have to choose an edge ij to split the set of solutions; note that
we have to use directed edges ij here. Tours not containing ij can then be
described by the weight matrix M which results from W ′ by replacing the
(i, j)-entry by ∞. As we would like to increase the current lower bound s,
we should choose some edge that corresponds to a zero entry in W ′ and,
moreover, is the only 0-entry in its row and column (so that the matrix M
will allow a further reduction). Clearly, it makes sense to choose the entry 0
for which M can be reduced by the largest possible amount. In our example,
this is the edge BeHa, which leads to a reduction of 30+15 = 45 for M . Thus
the first part of the decision tree looks as follows.
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all solutions

Solutions with BeHa
weight ≥ 183

Solutions without BeHa
weight ≥ 228

Recall that we already know an optimal tour (of weight 250), which we
can obtain from the FARIN heuristic; see Example 15.5.3 and Figure 14.6.
Our present considerations should, of course, confirm that that tour is indeed
optimal. Still, that tour does not help us to exclude one of the branches of the
decision tree yet. Of course, such limited progress is to be expected, because
the known solution of weight 250 contains the edge HaBe (for an appropri-
ate orientation) and thus occurs on the right branch of the decision tree. As
our original TSP was symmetric, it actually suffices to consider this branch:
for each tour containing the edge BeHa, there is a corresponding tour of the
same weight not containing this edge, namely the tour having the opposite
orientation. Thus we may replace W ′ by the following weight matrix M .

Aa Ba Be Du Fr Ha Mu Nu St

M :

Aa
Ba
Be
Du
Fr
Ha
Mu
Nu
St

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞ 41 56 0 17 11 56 39 38
30 ∞ 61 27 6 26 10 16 0
20 36 ∞ 13 11 ∞ 16 0 19
0 38 49 ∞ 14 5 55 36 33
6 6 36 3 ∞ 0 20 2 0
20 46 0 14 20 ∞ 51 34 41
47 12 43 46 22 33 ∞ 0 5
30 18 27 27 4 16 0 ∞ 2
27 0 44 22 0 21 3 0 ∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Again, we use that entry 0 in M which allows the largest possible further
reduction when we replaced it with ∞ in order to split up the set of possible
solutions: (Ha, Be), where the possible reduction is 14 + 27 = 41. Then the
part of the decision tree which belongs to tours which contain neither HaBe
nor BeHa has a lower bound of 269; hence this branch can be discarded in
view of the known tour of weight 250. In other words: every optimal tour for
the TSP of Example 15.1.2 has to contain the edge HaBe.11 As none of the
tours which we still need to consider may contain a further edge beginning in

11This fact is not all that surprising, as HaBe is the shortest edge incident with
Be, while all the other edges are considerably longer.
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Ha or ending in Be, we may omit both the row Ha and the column Be from
M . Next we use the (Aa, Du)-entry of the resulting 8 × 8-matrix. For tours
not containing the edge AaDu, we may replace this entry by ∞ and reduce
the resulting matrix by 11 + 3 = 14. This yields the following matrix A, with
the associated lower bound 242.

Aa Ba Du Fr Ha Mu Nu St

A :

Aa
Ba
Be
Du
Fr
Mu
Nu
St

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞ 30 ∞ 6 0 45 28 27
30 ∞ 24 6 26 10 16 0
20 36 10 11 ∞ 16 0 19
0 38 ∞ 14 5 55 36 33
6 6 0 ∞ 0 20 2 0
47 12 43 22 33 ∞ 0 5
30 18 24 4 16 0 ∞ 2
27 0 19 0 21 3 0 ∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We shall investigate A later. First, we examine those tours which contain
the edge AaDu. For such tours, both the row Aa and the column Du may
be omitted from M . Moreover, the edge DuAa cannot also occur, so that the
corresponding entry may be replaced by ∞. Then the resulting matrix can
be reduced even further: we may subtract 6 from the column Aa and 5 from
the row Du. This yields the following matrix M ′ with associated lower bound
239.

Aa Ba Fr Ha Mu Nu St

M ′ :

Ba
Be
Du
Fr
Mu
Nu
St

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

24 ∞ 6 26 10 16 0
14 36 11 ∞ 16 0 19
∞ 33 9 0 50 31 28
0 6 ∞ 0 20 2 0
41 12 22 33 ∞ 0 5
24 18 4 16 0 ∞ 2
21 0 0 21 3 0 ∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let us consider tours not containing the edge FrAa next. Then the entry
corresponding to FrAa may be replaced by ∞, so that the matrix can be
reduced by 14. That yields a new lower bound of 253, so that this branch of
the decision tree can again be discarded (in view of the known tour of weight
250). Thus we may restrict our attention to tours containing the edge FrAa.
We can now omit both the row Fr and the column Aa from M ′. As our tour
contains the edges FrAa and AaDu, the edge DuFr is no longer permissible,
so that we replace the corresponding entry by ∞; note that this does not lead
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to any further possibilities for reducing the matrix, so that the lower bound
239 stays unchanged. The resulting matrix M ′′ looks as follows.

Ba Fr Ha Mu Nu St

M ′′ :

Ba
Be
Du
Mu
Nu
St

⎛
⎜⎜⎜⎜⎜⎜⎝

∞ 6 26 10 16 0
36 11 ∞ 16 0 19
33 ∞ 0 50 31 28
12 22 33 ∞ 0 5
18 4 16 0 ∞ 2
0 0 21 3 0 ∞

⎞
⎟⎟⎟⎟⎟⎟⎠

Next we consider tours which do not involve the edge DuHa; this yields a
lower bound of 283, so that we may restrict our attention to tours containing
DuHa. Thus we discard both the row Du and the column Ha. Moreover,
the tours still left all contain the path (Fr, Aa, Du, Ha, Be), which precludes
using the edge BeFr; hence the corresponding entry is replaced by ∞. In the
next step, we find that the tour has to contain the edge BeNu: without this
edge, we get a lower bound of 239 + 16 = 255, which once again exceeds the
known upper bound. Then we must also discard the edge NuFr; replacing
the corresponding entry by ∞ allows us to subtract 5 from row Mu. Now our
lower bound has increased to 244, and we are left with the following matrix.

Ba Fr Mu St

Ba
Mu
Nu
St

⎛
⎜⎜⎝

∞ 6 10 0
7 17 ∞ 0
18 ∞ 0 2
0 0 3 ∞

⎞
⎟⎟⎠

We may now insert the edge MuSt into our tour: for tours not containing
this edge, we obtain a lower bound of 251. Next we omit both the row Mu and
the column St and replace the (St, Mu)-entry by ∞. Subtracting 6 from row
Ba, we get a lower bound of 250, and this means we may stop: the known tour
of this length is at least as good as any tour in the branch under investigation.

Continuing the procedure in the same way would yield the additional edges
StBa, BaFr, and NuMu, so that we would obtain the (optimal) tour

Fr Aa Du Ha Be Nu Mu St Ba Fr

of length 250 which we already know. Thus we could have obtained this tour
without using heuristic methods by performing a sort of DFS on the decision
tree: always choose the branch with the smallest lower bound for continuing
the investigation. Of course, it is then possible that we discover only at a later
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point of the decision tree that we could have discarded some of the earlier
branches.

It remains to investigate the branch of the decision tree which belongs to
the matrix A on page 468. Suppose that a tour in this branch does not con-
tain the edge DuAa. Then the matrix can be reduced by 5 + 6, which yields
a lower bound of 253, so that the corresponding branch can be discarded.
Hence we insert the edge DuAa into our tour, and discard both the row Du
and the column Aa from A. Next, we see that an optimal tour on this branch
of the tree has to contain BeNu: otherwise, we obtain a lower bound of 252.
Hence we may omit also the row Be and the column Nu; moreover, we have
to replace the (Ha, Nu)-entry by ∞, since HaBe and BeNu are contained in
the tour. Then we can subtract 5 from row Mu, which yields a lower bound
of 247 and the matrix A′ below.

Ba Du Fr Ha Mu St

A′ :

Aa
Ba
Fr
Mu
Nu
St

⎛
⎜⎜⎜⎜⎜⎜⎝

30 ∞ 6 0 45 27
∞ 24 6 26 10 0
6 0 ∞ 0 20 0
7 38 17 28 ∞ 0
18 24 4 ∞ 0 2
0 19 0 21 3 ∞

⎞
⎟⎟⎟⎟⎟⎟⎠

Next we insert the edge FrDu, as leaving out this edge would increase
the lower bound by 19 to 266; omit the corresponding row and column; and
replace the (Aa, Fr)-entry by ∞. This forces us to include the edge (Aa, Ha):
otherwise we would increase the lower bound to 295. Now we can replace
the (Nu, Fr)-entry by ∞. Then the edge (Mu, St) has to be contained in
the tour, and the (St, Mu)-entry is changed to ∞. After having omitted the
appropriate rows and columns, we are left with a (3 × 3)-matrix which can
be reduced by 6 in row Ba. This yields a new lower bound of 253, so that we
can actually ignore all tours on the branch of the decision tree belonging to
A, and the algorithm terminates. By complete analysis of all possibilities, we
have now proved that our tour of length 250 is optimal. Figure 15.13 shows
the whole decision tree.

As noted before, the partial tour in the left-most branch can be completed
in a unique manner, which yields the known optimal tour of weight 250. Also
note that the branch with lower bound 253 indeed contains a tour of this
weight, which may be obtained by exchanging the order of Aa and Du in
the optimal tour. Similarly, the branch with lower bound 251 contains a tour
of this length, which results from exchanging the order of Ba and St in the
optimal tour.

We refrain from stating the preceding branch and bound algorithm for-
mally; the worked example should suffice to illustrate how the algorithm



15.8 Optimal solutions: Branch and bound 471

works. An explicit formulation as well as a PASCAL program and an ATSP-
example of size 6 can be found in [SyDK83].

all solutions
(lower bound 183)

w.l.o.g.

without BeHa (228)

with HaBe (228) without HaBe (269)

with AaDu (239) without AaDu (242)

with FrAa (239) without FrAa (253) with DuAa (242) without DuAa
(253)

with DuHa (239) without DuHa (283) with BeNu (247) without BeNu
(252)

with BeNu (244) without BeNu (255) with FrDu (247) without FrDu
(266)

with MuSt (250) without MuSt (251) with AaHa (247) without AaHa
(295)

with StBa (250) without StBa (268) with MuSt (253) without MuSt
(254)

Fig. 15.13. Decision tree for the TSP of Example 14.1.2

We close this section with some remarks concerning the preceding algo-
rithm. The numbers which were subtracted from the rows and columns of the
original weight matrix W define two vectors: u = (8, 27, 29, 8, 20, 29, 17, 17, 19)
and v = (0, 8, 0, 0, 1, 0, 0, 0, 0). The reduction process does not only change the
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weight of every tour by a constant (in this case, 183): it actually changes the
weight of each diagonal of the matrix, that is, of each matching for the cor-
responding assignment problem. Hence the bound of

∑
i(ui + vi) = 183 is

actually a bound for the corresponding assignment relaxation; compare Sec-
tion 15.2.

This is not really surprising: using the terminology of Section 14.2, (u,v)
is a feasible node weighting for the corresponding assignment problem, albeit
in its minimization version, which can be treated in analogy to Chapter 14;
indeed, always ui + vj ≤ wij . Thus the algorithm of [LiMSK63] is based on
relaxing the assignment relaxation of the TSP even further, which leads to
rather weak lower bounds.

One final comment: replacing certain entries by ∞ – that is, forbidding
the corresponding edges – during the algorithm corresponds to excluding non-
cyclic permutations. If one would omit this feature from the algorithm, it
would determine a complete matching of minimal weight instead of an optimal
tour.

15.9 Concluding remarks

As we mentioned in Section 15.2, TSP’s are often solved by linear program-
ming methods, using the polytope P associated with the tours. Recall that
two vertices of a polytope are called adjacent if they are incident with a com-
mon edge. It can be shown that the unique minimal exact neighborhood for
a wide class of optimization problems is always given by adjacency in the
corresponding polytope; see [PaSt82], §19.7.

In particular, for the TSP, the minimal exact neighborhood N(f) of a
tour f contains precisely those tours which are adjacent to f in P . Unfortu-
nately, this does not help us either: the question whether two vertices of P
are adjacent is again an NP-complete problem; see [Pap78]. In this context,
we mention a truly amazing result about the polytope P ′ corresponding to
the ATSP: the diameter of P ′ (in the graph theoretical sense, where we con-
sider the vertices and edges of P ′ as a graph called the skeleton of P ′) is 2;
see [PaRa74]. Thus the distance in P ′ between an arbitrary tour and a given
optimal tour is just 2! We refer the reader to [LaLRS85, Chapter 8] and to
[GuPa02] for details – and references – concerning the polytopes associated
with the TSP.

We turn to some algorithmic consequences of the polyhedral approach.
As mentioned before, even large instances of the TSP (consisting of several
hundreds or even thousands of cities) can nowadays be approximated very
well: it is routinely possible to find a solution which is not more than 1%
worse than the optimal solution.

But what about determining optimal solutions? The first larger instance of
a TSP for which an optimal solution was found involved 49 cities: Washington,
D.C. and the 48 capitals of the then 48 states of the USA; see [DaFJ54].
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Dantzig, Fulkerson and Johnson first determined a good solution heuristically,
which was actually already optimal, and then used the LP relaxation together
with adding appropriate inequalities; compare Section 15.2. Their paper is
considered a milestone in the history of combinatorial optimization; it is the
forerunner of virtually all algorithms used at present for solving TSPs to
optimality. The main part of these algorithms is the LP relaxation, which can
be summarized as follows.

(1) Choose some LP relaxation for the TSP, and determine an optimal solu-
tion x for this relaxation.

(2) If x is not a tour, try to find one or more valid inequalities for the polytope
P which are violated by x. Add these inequalities to the LP, and replace
x by a solution of the new LP. If possible, repeat this step until there are
no longer any violated inequalities.12

Using just this method, Grötschel [Gro80] could solve a problem involving 120
German cities (where the distances were taken from the Deutscher Generalat-
las) in merely 13 iterations – without using a branch and bound technique.
The results of [PaHo80] and [CrPa80] indicate that LP relaxation usually
yields very good lower bounds, if not actually an optimal solution. Thus, even
if the LP relaxation does not produce an optimum, it should at least establish
that some heuristically constructed tour is a really good approximate solu-
tion. Then it is also quite often possible to construct an optimal solution,
using branch and bound; solving problems of about 100 cities is nowadays
more or less routine. In [CrPa80], a problem with 318 cities was solved via
this approach; this was the world record for several years. Since then, this
record has been surpassed quite a few times; see Table 15.1.

We now give a brief discussion of the first problem listed in Table 15.1
(with 532 cities), in order to emphasize the importance of efficient heuris-
tics for solving large TSPs to optimality via the LP relaxation method. As
the graph K532 contains precisely 141, 246 edges, the LP treated by [PaRi87]
has just this number of (structural) variables (and some additional slack-
ness variables). Now Padberg and Rinaldi applied the Lin-Kernighan heuristic
mentioned earlier to 50 initial tours chosen at random; the resulting locally
optimal tours contained altogether only 1278 edges. The corresponding 1278
variables were used for the first LP relaxation: all other variables were fixed at
0. Throughout the whole computation for solving this (already rather large)
problem, no LP occurred which involved more than 1520 structural variables
or more than 815 restrictions.

If one settles for extremely good approximations, one may reach consid-
erably larger orders of magnitude. We mention a particularly impressive ex-
ample: the World TSP tour of length 7,516,353,779 found by Keld Helsgaun
in December 2003. A lower bound provided by the Concorde TSP code of

12Of course, it will usually be necessary to abort this process at some point: there
is no guarantee at all that it has to terminate.
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Applegate, Bixby, Chvátal, and Cook shows that this tour is at most 0.076%
longer than an optimal tour through the given 1,904,711 cities. This informa-
tion comes from their excellent website concerning the TSP, which is highly
recommended; see

http://www.math.princeton.edu/tsp/index.html

For a more detailed description of the LP relaxation method, which was
merely sketched here, we refer the reader to the following sources: [LaLRS85,
Chapter 9], [PaRi91], and [GuPa02]. This technique is a special case of a
general method which proved to be efficient for several other hard optimiza-
tion problems as well. It belongs to the field of polyhedral combinatorics , an
important part of combinatorial optimization. We refer the reader to the in-
teresting surveys of [Pul83] and [Gro84] and to the monumental work [Schr03].
We also recommend the book [GrLS93] as well as [Rei94], a nice monograph
on computational aspects of the TSP and its applications.

Finally, we mention that several other NP-hard problems have been at-
tacked with a remarkable degree of success. For instance, maximal cliques
in graphs with up to 400 vertices and 30, 000 edges have been found; see
[BaYu86]. Similar results for the corresponding weighted problem are in
[BaXu91].

Table 15.1. Some large TSPs solved to optimality

Year Cities Reference

1987 532 [PaRi87]

1991 666 [GrHo91]

1991 1,002 [PaRi91]

1991 2,392 [PaRi91]

1995 7,397 [ApBCC95]

1998 13,509 [ApBCC98]

2001 15,112 [ApBCC01]
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Some NP-Complete Problems

To ask the hard question is simple.
But what does it mean?
What are we going to do?

W. H. Auden

In this appendix we present a brief list of NP-complete problems; we restrict
ourselves to problems which either were mentioned before or are closely related
to subjects treated in the book. A much more extensive list can be found in
Garey and Johnson [GaJo79].

Chinese postman (cf. Section 14.5)

Let G = (V, A, E) be a mixed graph, where A is the set of directed edges and
E the set of undirected edges of G. Moreover, let w be a nonnegative length
function on A ∪ E, and c be a positive number. Does there exist a cycle of
length at most c in G which contains each edge at least once and which uses
the edges in A according to their given orientation?

This problem was shown to be NP-complete by Papadimitriou [Pap76],
even when G is a planar graph with maximal degree 3 and w(e) = 1 for all
edges e. However, it is polynomial for graphs and digraphs; that is, if either
A = ∅ or E = ∅. See Theorem 14.5.4 and Exercise 14.5.6.

Chromatic index (cf. Section 9.3)

Let G be a graph. Is it possible to color the edges of G with k colors, that is,
does χ′(G) ≤ k hold?

Holyer [Hol81] proved that this problem is NP-complete for each k ≥ 3;
this holds even for the special case where k = 3 and G is 3-regular.

Chromatic number (cf. Section 9.2)

Let G be a graph. Is it possible to color the vertices of G with k colors, that
is, does χ(G) ≤ k hold?

Karp [Kar72] proved that this problem is NP-complete for each k ≥ 3.
Even the special case where k = 3 and G is a planar graph with maximal
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degree 4 remains NP-complete; see [GaJS76]. Assuming P �= NP, there is not
even a polynomial approximative algorithm which always needs fewer than
2χ(G) colors; see [GaJo76]. For perfect graphs, the chromatic number can be
computed in polynomial time; see [GrLS93].

Clique (cf. Exercise 2.8.3)

Let G = (V, E) be a graph and c ≤ |V | a positive integer. Does G contain a
clique consisting of c vertices?

This problem is NP-complete by a result of Karp [Kar72]; thus determin-
ing the clique number ω(G) is an NP-hard problem. Also, the related question
of whether G contains a clique with at least r|V | vertices, where 0 < r < 1, is
NP-complete for fixed r. Assuming P �= NP, there is not even a polynomial
ε-approximative algorithm for determining a maximal clique; see [ArSa02].
However, the problem can be solved in polynomial time for perfect (in partic-
ular, for bipartite) graphs; see [GrLS93].

Diameter (cf. Section 3.8)

Let G = (V, E) be a connected graph, and let c ≤ |V | be a positive integer.
Recall that the diameter of G can be determined efficiently; see Section 3.8.
However, the following two related problems are NP-complete; see [ChTh78]
and [GaJo79].

(1) Does there exist a strongly connected orientation H of G with diameter at
most c? Note that Robbins’ theorem allows us to check efficiently whether
a strongly connected orientation exists (and to find such an orientation,
if possible); see Section 1.6.

(2) Let C be a given set of at most |E| nonnegative integers. Does there exist
a mapping w : E → C such that G has weighted diameter at most c, that
is, such that any two vertices u, v have distance d(u, v) ≤ c in the network
(G, w)? This problem remains NP-complete even for C = {0, 1}.

Discrete metric realization (cf. Section 3.2)

Let D = (dxy) be an n × n matrix with integer entries representing distances
in a finite metric space . Is there a network (G, w) of total length ≤ k realizing
D?

Winkler [Win88] proved that this problem – and also the the analogous
real problem – is NP-complete.

Disjoint paths (cf. Section 7.1)

Let G = (V, E) be a graph, s and t be two vertices of G, and k and c be two



A Some NP-Complete Problems 477

positive integers. Does G contain k vertex disjoint paths of length at most c
from s to t?

Itai, Pearl and Shiloach [ItPS82] proved that this problem is NP-complete
for each fixed k ≥ 5 (whereas it is polynomial for fixed k ≤ 4). Similar results
hold for edge disjoint paths from s to t, and for the analogous problems where
each path should contain precisely c edges. In contrast, the maximal number
of (edge or vertex) disjoint paths from s to t can be determined efficiently
using network flow methods if no restrictions are added; see Section 7.1.

Graph partitioning (cf. Section 9.1)

Let G = (V, E) be a graph and c a positive integer. The question of whether
G can be partitioned into at most c subgraphs of a given type is NP-complete
for many classes of subgraphs: for triangles and, more generally, for subgraphs
with a given isomorphism type, for Hamiltonian subgraphs, for forests, for
cliques, and for matchings. We refer the reader to [GaJo79, §A1.1] and the
references given there.

In particular, determining the clique partition number θ(G) is an NP-
hard problem in general. For perfect graphs, this problem can be solved in
polynomial time; see [GrLS93].

Hamiltonian cycle (cf. Sections 1.4 and 2.8)

Let G = (V, E) be a graph. Does G contain a Hamiltonian cycle?
Karp [Kar72] proved that this problem is NP-complete; it remains NP-

complete even if we know a Hamiltonian path of G [PaSt77]; see Theorem
15.7.3. The special cases for bipartite graphs and for planar, 3-connected, 3-
regular graphs are still NP-complete; see [Kri75] and [GaJT76]. The analogous
problem for directed Hamiltonian cycles in digraphs likewise is NP-complete
[Kar72]; see Exercise 2.7.6.

Hamiltonian path (cf. Exercise 2.7.7)

Does the graph G = (V, E) contain a Hamiltonian path? This problem and
the analogous directed problem are NP-complete, even if the start and end
vertices of the Hamiltonian path are fixed; see [GaJo79].

Independent set (cf. Exercise 2.8.3)

Let G = (V, E) be a graph and c ≤ |V | a positive integer. Does G contain
an independent set with c elements? Note that the independent sets of G are
precisely the cliques of the complementary graph G. This problem is therefore
NP-complete in general, but polynomial for perfect graphs (see Clique and
Vertex cover).
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The independent set problem remains NP-complete when restricted to 3-
regular planar graphs; see [GaJS76].

Induced subgraph

Let G = (V, E) be a graph and c a positive integer. The problem of whether
G contains an induced subgraph on c vertices that belongs to a prescribed
class of graphs is often NP-complete: for cliques and independent sets (see
Clique and Independent set), and also for planar subgraphs, for bipartite
subgraphs, for subforests, etc. We refer to [GaJo79, §A1.2] and the references
given there.

Integer linear programming (cf. Section 14.3)

Let A be an m × n integer matrix, c ∈ Zn and b ∈ Zm integer vectors, and
d an integer. Does there exist an integer vector x ∈ Zn satisfying x ≥ 0,
AxT ≤ bT , and cxT ≥ d? This problem is NP-complete by a result of Karp
[Kar72], whereas the corresponding linear program (where x may have rational
entries) can be solved in polynomial time by the work of Khachyan [Kha79].

Longest cycle

Let N = (G, w) be a network with a nonnegative length function w, where G
is a graph, and let c be a positive integer. Does N contain a cycle of length
at least c?

This problem is NP-complete even when all edges have length 1; see Ex-
ercise 2.7.8. Similar results hold for the analogous directed problem.

Longest path (cf. Sections 2.7 and 3.1)

Let s and t be two vertices in a network N = (G, w) on a graph G, where w
is a nonnegative length function, and let c be a positive integer. Does there
exist a path from s to t of length at least c?

This problem is NP-complete even when all edges have length 1; see Ex-
ercise 2.7.8. Similar results hold for the analogous directed problem.

Matroid intersection (cf. Section 5.4)

Let (E,Si) (i = 1, 2, 3) be three matroids on the same set E, and let c be a
positive integer. Does E have a subset U of cardinality c which is an indepen-
dent set for all three matroids?

This problem is NP-complete; see Theorem 5.4.13. Note that the corre-
sponding problem for the intersection of two matroids is solvable in polynomial
time (even in the weighted case); see [Law75, Law76], [Edm79], [Cun86], and
[Whi87].
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Max cut (cf. Chapter 6)

Let G = (V, E) be a graph with a nonnegative capacity function c, and let b be
a positive integer. Does there exist a cut (S, T ) of G with capacity c(S, T ) ≥ b?

This problem is NP-complete by a result of Karp [Kar72]; this holds even in
the special case where G has maximal degree 3 and c(e) = 1 for all edges e; see
[Yan78]. Thus determining a cut of maximal capacity is an NP-hard problem,
whereas the analogous problem for cuts of minimal capacity is easy.

However, the max cut problem is polynomial for planar graphs; see
[Had75].

Min cut (cf. Chapter 6)

Let G = (V, E) be a graph with a nonnegative capacity function c, let s and t
be two vertices of G, and b ≤ |V | and k be two positive numbers. Does there
exist a cut (S, T ) of G with s ∈ S, t ∈ T , |S| ≤ b, |T | ≤ b, and capacity
c(S, T ) ≤ k?

This problem is NP-complete, even when c(e) = 1 for all edges e; see
[GaJS76]. Note that omitting the bounds on |S| and |T | (that is, putting
b = |V |) yields one of the fundamental easy problems: again, we have a case
of an easy problem becoming hard due to additional constraints.

Minimum k-connected subgraph (cf. Chapter 8)

Let G = (V, E) be a graph, and let k ≤ |V | and b ≤ |E| be two positive
integers. Does there exist a subset E∗ of E with |E∗| ≤ b such that G∗ =
(V, E∗) is k-connected?

This problem – and also the analogous problem for k-fold line connectivity
– is NP-complete for each fixed k ≥ 2; see [GaJo76]. Thus determining a
minimal k-connected subgraph of G is NP-hard. Note that the case k = 1 can
be solved with complexity O(|E|) using BFS, for example: then we merely
have to find a spanning tree of G.

Minimum spanning tree (cf. Chapter 4)

Let N = (G, w) be a network with a nonnegative weight function w on a
connected graph G. As we saw in Section 4.3, determining a minimal spanning
tree T is one of the fundamental easy problems of algorithmic graph theory.
As for the problem of determining spanning trees in general, we obtain NP-
complete problems by adding side constraints, for example by restricting the
diameter of T . See Section 4.7 and [GaJo79, §A.2.1].

Network flow (cf. Chapters 6 and 10)

The flow problems we treated in this book are all solvable in polynomial time.
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Again, adding side constraints will often result in NP-complete problems. We
refer the reader to [GaJo79, §A.2.4] and the references given there.

Network reliability (cf. Example 3.1.2)

Let G = (V, E) be a graph, V ∗ a subset of V , p a mapping from E to the
rational numbers in [0, 1] (the failure probability), and q ≤ 1 a positive rational
number. Is the probability that any two vertices in V ∗ are connected by at
least one reliable path (that is, a path which does not contain an edge which
fails) at least q?

This problem is NP-complete by a result of Rosenthal [Ros77]; see also
[Val79b] for related questions. Provan [Pro86] showed that it is NP-hard to
determine the probability for the existence of a reliable path from s to t in a
planar acyclic digraph G, and also in a planar graph G with maximal degree
∆(G) = 3.

Permanent evaluation (cf. Section 7.4)

Let A be an n × n matrix with entries 0 and 1, and let k ≤ n! be a positive
integer. Does per A = k hold?

This problem and the corresponding problems about perA ≤ k and
per A ≥ k are NP-hard, which is due to Valiant [Val79a]; we note that it
is not known whether these problems actually belongs to NP.

Recall that determining the number of perfect matchings in a bipartite
graph is equivalent to determining the permanent of an appropriate matrix,
so that this problem is likewise NP-hard.

Restricted matching (cf. Section 14.7)

Let G = (V, E) be a graph, and consider a decomposition of E into subsets Ei

(i = 1, . . . , k). Also, let c and bi (i = 1, . . . , k) be positive integers. Does there
exist a matching K with c edges such that |K∩Ei| ≤ bi holds for i = 1, . . . , k?

This problem is NP-complete, even when all bi are 1; see [ItRT78].

Satisfiability (cf. Section 2.7)

Let C1 . . . Cm be a formula involving n Boolean variables in conjunctive nor-
mal form. Does there exist an assignment of the values true and false to the
n variables such that the given formula takes the value true?

This problem is NP-complete, even when each of the Ci involves precisely
three of the n Boolean variables (3-SAT). This celebrated result due to [Coo71]
was the starting point of the theory of NP-completeness.
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Shortest cycle (cf. Sections 3.3 and 10.6)

Let N = (G, w) be a network on a graph G, where w is a length function that
may take negative values, and c an integer. Does G contain a cycle of length
at most c?

This problem is NP-complete; see [GaJo79]. It can be solved in polynomial
time for nonnegative length functions; see, for example, [ItRo78] and [Mon83].
Similar results hold for the analogous directed problem. Note that determining
a cycle of minimum cycle mean is easy for arbitrary length functions w; see
Section 10.6.

Shortest path (cf. Chapter 3 and Section 14.6)

Let s and t be two vertices in a network N = (G, w) on a graph G, where w
is a length function that may take negative values, and let c be an integer.
Does there exist a path from s to t of length at most c?

This problem is NP-complete, and this also holds for the analogous di-
rected problem; see [GaJo79]. As we saw in Section 14.6, the problem becomes
polynomial if we assume that N does not contain any cycles of negative length.
Particularly good algorithms exist for the special case where all edges have
nonnegative length; see Chapter 3.

Spanning tree (cf. Chapter 4)

We know that a spanning tree in a connected graph G can be determined with
linear complexity using either BFS or DFS; see Sections 3.3 and 8.2.

However, the problem usually becomes NP-complete if we add extra con-
straints such as either a lower bound on the number of leaves, or an upper
bound on the maximal degree of the tree; see [GaJo79, §4.7]. The same con-
clusion holds if we ask whether the sum of the distances d(u, v) in T (taken
over all pairs (u, v) of vertices) can be bounded by c; see [JoLR78].

Steiner network (cf. Section 4.6)

Let N = (G, w) be a network on a graph G = (V, E), where V = R
.∪ S and

where w : E → R+ is a positive weight function, and let c be a positive integer.
Does there exist a minimal spanning tree T for some induced subgraph whose
vertex set has the form R ∪ S′ with S′ ⊂ S so that w(T ) ≤ c?

This problem is NP-complete by a result of Karp [Kar72]. The problem
becomes polynomial when either |R| or |S| is fixed.

Steiner tree (cf. Section 4.6)

For a given set of n points in the Euclidean plane, we want to find a minimal
Steiner tree (that is, a tree of minimal length with respect to the Euclidean



482 A Some NP-Complete Problems

distance) which contains the given n points. This problem was shown to be
NP-hard by Garey, Graham and Johnson [GaGJ77].

Travelling salesman problem (TSP) (cf. Chapter 15)

Let w : E → R+ be a positive length function on the complete graph Kn.
Given a positive integer b, is there a tour (that is, a Hamiltonian cycle) of
length at most b?

Recall that the TSP served as our standard example for an NP-complete
problem. It remains NP-complete in the metric case, in the asymmetric case,
and for length functions restricted to the values 1 and 2. The related questions
of whether a tour is suboptimal or whether an optimal tour contains a given
edge are likewise NP-hard.

The associated approximation problem is NP-hard in the general case, but
easy in the metric case: there is a polynomial ε-approximative algorithm with
ε = 1/2 for the ∆TSP. The existence of such an algorithm for a smaller value
of ε is open; however, the existence of a polynomial approximation scheme for
the metric TSP would already imply P = NP; see [ArLMS92].

See Chapter 15 and the monographs [LaLRS85] and [GuPa02].

Unextendable matching (cf. Section 7.2 and Chapter 13)

Let G = (V, E) be an arbitrary graph, and let c be a positive integer. Does G
contain an unextendable matching of cardinality at most c?

This problem is NP-complete by a result of Yannakakis and Gavril
[YaGa80]. The problem remains NP-complete in the special cases of planar
graphs and of bipartite graphs (even when the maximal degree is restricted
to 3).

Recall that a matching which cannot be extended does not have to have
maximal cardinality in general. As we have seen, it is easy to determine a
maximal matching (that is, a matching of maximal cardinality) in G. Hence
the existence of an unextendable matching of cardinality at least c is easy to
decide.

Vertex cover (cf. Section 2.8)

Let G = (V, E) be a graph, and let c be a positive integer. Does G have a
vertex cover of cardinality at most c?

This problem is NP-complete by a result of Karp [Kar72]; see Theorem
2.8.2. It can be solved in polynomial time for perfect graphs (hence, for bi-
partite graphs); see [GrLS93].

Note that Vertex cover is equivalent to Independent set: the comple-
ment of a vertex cover is an independent set.
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Solutions

People of quality know everything without
ever having been taught anything.

Molière

This appendix contains solutions or hints to almost all the exercises. For
difficult exercises, we include more details; if an exercise is of a purely com-
putational nature, we usually state only the result.

B.1 Solutions for Chapter 1

1.1.2 As 2n − 1 is odd, 2i (i = 1, . . . 2n − 1) runs through all residue classes
modulo 2n − 1. Therefore the sets Fi are pairwise disjoint. Clearly, each Fi

is a factor of K2n. As F1, . . . , F2n−1 contain altogether n(2n − 1) edges, they
must form a factorization.

1.1.3 Note T3 = K3. The graph T4 is K6 with one 1-factor removed. The
complement of T5 is shown in Figure 1.12; cf. Exercise 1.5.10.

A vertex {x, y} of Tn is adjacent precisely to the 2(n − 2) vertices of
the form {x, z} and {y, z}, where z �= x, y. Two distinct vertices {x, y} and
{x, z} are adjacent precisely to the n−3 vertices {x, w} for w �= x, y, z and to
{y, z}. Finally, the common neighbors of two vertices {x, y} and {z, w}, where
x, y, z, w are distinct, are precisely {x, z}, {x, w}, {y, z}, and {y, w}.

1.1.4 For a given vertex x, there are exactly a′ = n − a − 1 vertices which
are not adjacent to x in G. If x and y are vertices adjacent in G, there are
precisely a− c− 1 vertices which are adjacent to x but not to y, and precisely
(n − a − 1) − (a − c − 1) vertices which are adjacent neither to x nor to y.
Thus G has parameters a′ = n− a− 1 and d′ = n− 2a+ c. Similar arguments
give c′ = n − 2a + d − 2.

To prove the validity of the equation in question, choose some vertex x.
Then there are n−a− 1 vertices z which are not adjacent to x. For each such
vertex z, there are precisely d vertices y which are adjacent to x as well as to
z. On the other hand, there are a vertices y adjacent to x, and for each such
vertex y, there are a − c − 1 vertices z adjacent to y but not adjacent to x.
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1.2.1 Let W = (v0, . . . , vn) be a closed walk of odd length which is not a
cycle. Suppose there exists some index i �= 0, n such that v0 = vi = vn. Then
one of the closed walks (v0, . . . , vi) or (vi, . . . , vn) has odd length, and the
assertion follows by induction. In the general case, there are indices i, j �= 0, n
with i �= j and vi = vj ; again, the assertion follows by induction.

We obtain a closed walk of even length not containing any cycle if we
append to some path P (from u to v, say) the same path P traversed in the
opposite direction (that is, from v to u).

1.2.2 Let x and y be any two vertices. Then the connected components of x
and y contain at least (n + 1)/2 vertices each; hence they cannot be disjoint,
and therefore they coincide.

1.2.3 Trivially, the condition is necessary. To show that it is also sufficient,
choose some vertex s and let V1 be its connected component. Then V2 = V \V1

has to be empty: otherwise, the hypothesis would provide an edge vw with
v ∈ V1 and w ∈ V2, and w would after all be in V1, a contradiction.

1.2.4 If neither G nor G are connected, choose some vertex s and denote the
connected components of G and G containing s by S and T , respectively. As
each vertex v �= s is either adjacent to s in S or in T , we must have V = S∪T .
It can be seen by similar arguments that there cannot exist a pair (v, w) of
vertices with v ∈ S \ T and w ∈ T \ S, a contradiction.

1.2.5 The assertion follows from
∑

v deg v = 2n− 2; see the proof of Lemma
1.1.1.

1.2.9 If G \ e is connected, the assertion follows using induction on |E|. Oth-
erwise, G consists of two connected components V1 and V2. Using induction
on n, the assertion holds for the induced graphs G|V1 and G|V2. Hence

|E| = |(E|V1)| + |(E|V2)| + 1 ≥ (|V1| − 1) + (|V2| − 1) + 1 = n − 1.

1.2.15 See Figure B.1.

1.2.16 The symbol u occurs precisely deg u−1 times in πV (G); this is similar
to the proof of Lemma 1.2.12. In particular, stars are precisely those trees G
for which all entries of πV (G) agree, whereas paths are the trees having a
Prüfer code with distinct entries.

1.2.17 As a tree on n vertices has n − 1 edges, condition (1.6) is certainly
necessary. By the solution to Exercise 1.2.16, the degree of a vertex u in a
tree T equals the number of entries u in the Prüfer code πV (T ) plus 1. Now
let d1, . . . , dn be a sequence of positive integers satisfying (1.6); then

(d1 − 1) + (d2 − 1) + . . . + (dn − 1) = n − 2.
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n − 1 n

n − 2

3

1 2

(3, 3, 4, . . . , n − 3,

n − 2, n − 2)

Fig. B.1. Solution to Exercise 1.2.15

Hence there are words of length n − 2 over the alphabet {1, . . . n} which
contain exactly di − 1 entries i (for i = 1, . . . n), and the corresponding trees
under the Prüfer code have the prescribed degree sequence. For the sequence
(1, 1, 1, 1, 2, 3, 3), we may use the Prüfer code (5, 6, 6, 7, 7) to obtain the tree
shown in Figure B.2.

3

2 6 7

4

5 1

(5, 6, 6, 7, 7)

Fig. B.2. Tree with prescribed degree sequence

1.3.3 Denote the vertices of odd degree by xi and yi (for i = 1, . . . , k). Adding
the edges xiyi to G yields an Eulerian multigraph H. The desired trails arise
by omitting the edges xiyi from a Euler tour for H.

1.3.4 Note that an edge uv of G has degree deg u+deg v−2 when considered
as a vertex of L(G). In particular, L(Km,n) is (m+n− 2)-regular. If x, y, z, w
are distinct vertices of Km,n, edges of the form xy and zw are always adjacent
to precisely two edges in L(Km,n). Edges of the form xy and xz are adjacent
to m− 2 or n− 2 edges, depending on which part of Km,n contains x. Hence
L(Km,n) is an SRG if and only if m = n.
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1.3.5 Note first that L(G) is connected, since G is assumed to be connected.
By Exercise 1.3.4, an edge uv of G has degree deg u + deg v − 2 in L(G); by
Theorem 1.3.1, L(G) is Eulerian if and only if this number is always even.
As G is connected, this requires that the degrees of all the vertices of G have
the same parity. In particular, this condition is met if G is Eulerian: then all
vertices of G have even degree. Finally, L(K2n) is Eulerian while K2n is not
Eulerian, as all vertices have odd degree.

1.4.4 The existence of non-adjacent vertices u and v with deg u + deg v < n
would imply m < 1

2 (n−2)(n−3)+n = 1
2 (n−1)(n−2)+2, since the maximal

number of edges arises if the remaining n−2 vertices induce a complete graph.

1.4.5 As K6 is Hamiltonian, G also has to be Hamiltonian by Theorem 1.4.1.
Therefore G contains a cycle of length 6. We have to add at least two edges
to this cycle to obtain a graph where deg u + deg v ≥ 6 holds for some pair of
non-adjacent vertices u and v. On the other hand, it is easy to check that the
closure of such a graph G is indeed K6. Hence eight edges are needed.

1.4.6 Let (e1, . . . , em) be an Euler tour of G; then the sequence (e1, . . . , em, e1)
is a Hamiltonian cycle in L(G). The converse is false; for example, K4 is not
Eulerian even though L(K4) = T4 is Hamiltonian.

1.4.8 We color the squares of a chess board alternately black and white,
as usual. Note that a knight always moves from a black square to a white
one, and from a white square to a black one; in the corresponding graph, all
edges connect a black and a white vertex. (This means that G is bipartite;
see Section 3.3.) Obviously, G can only contain a Hamiltonian cycle if the
numbers of white and black vertices are equal, which is impossible if n and m
are both odd. This accounts for case (a).

In case (b), the preceding necessary condition is satisfied. However, the
cases m = 1 and m = 2 are trivially impossible. In order to show that a
knight’s cycle is also impossible for m = 4, we consider a second coloring of
the chess board: the squares of the first and fourth rows are green, whereas
the squares in rows two and three are red. Then a knight can move from a
green square only to a red square; from a red square, green squares as well as
red squares are accessible. Now assume the existence of a knight’s cycle. Then
the knight has to reach and to leave each of the green squares precisely once.
As the green squares are only accessible from the red ones, the 2n moves from
a red square always have to be moves to a green square, so that red and green
squares alternate in the knight’s cycle. But white and black squares also occur
alternately; as the two colorings of the board are obviously distinct, this is
impossible.

1.5.6 Any subdivision of a graph increases the number of vertices by the
same value as the number of edges.
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1.5.9 The Petersen graph G has girth g = 5. As G contains more than
40/3 edges, G cannot be planar by Theorem 1.5.3. Figure B.3 shows G and a
subgraph homeomorphic to K3,3, where the vertices of K3,3 are indicated by
fat circles and squares, whereas the vertices obtained by subdivision are drawn
as small circles. Thus Result 1.5.7 applies. Contracting each outer vertex of G
with its adjacent inner vertex shows that G can be contracted to K5, so that
Result 1.5.8 likewise applies.

15 23

24 14

34 45

25 13

35

12

Fig. B.3. The Petersen graph

1.5.10 We write the 2-subsets {x, y} of {1, . . . , 5} simply as xy. Then the ver-
tices of T5 are the xy, and xy and zw are adjacent in T5 if and only if x, y, z, w
are four distinct elements. Now it is easy to give the desired isomorphism using
the labelling of the vertices shown in Figure B.3.

1.5.11 Each permutation α ∈ S5 induces an automorphism of T5 – and hence,
by Exercise 1.5.10, an automorphism of the Petersen graph – by mapping each
2-subset xy to xαyα. Actually, S5 already yields all automorphisms of the
Petersen graph; however, proving this requires a little more effort. (Hint: Try
to show that there are at most 120 automorphisms of the Petersen graph.)

1.5.12 For n = 1, . . . , 4, Kn is already planar. For n ≥ 5, Kn cannot be
planar, since a planar graph on n vertices has at most 3n−6 edges by Corollary
1.5.4. Thus we have to remove at least 1

2n(n−1)−(3n−6) = 1
2 (n−2)(n−5)+1

edges. Using induction, it can be shown that there exists a planar graph with
3n − 6 edges for each n; in fact, this graph can even be assumed to have a
triangle as its outer border. The induction basis (n = 3, 4, 5) and the recursive
construction of placing a planar graph with n vertices and 3n−6 edges inside
a triangle are sketched in Figure B.4.
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Fig. B.4. Maximal planar graphs

1.5.13 As n − nd vertices have degree at least d + 1, Corollary 1.5.4 implies
(n − nd)(d + 1) ≤ ∑

v deg v = 2m ≤ 6n − 12 and hence the assertion. In
particular, n5 ≥ 2 and n6 ≥ n/7; thus more than 14% of the vertices of a
planar graph have degree at most 6.

The given formula can be strengthened as follows: any planar graph can
be embedded in a planar graph (by adding appropriate edges) whose vertices
have degree at least 3. For these planar graphs, the left hand side of the
inequality can be increased by 3nd, and we obtain

nd ≥ n(d − 5) + 12
d − 2

;

in particular, n5 ≥ 4 and n6 ≥ n/4.

1.6.1 Let G be pseudosymmetric. Choose an arbitrary edge e1 = v0v1, then
some edge e2 = v1v2 and so on, always selecting edges which have not oc-
curred before. Whenever we reach a vertex vi �= v0 via an edge ei, there is an
unused edge ei+1 available for leaving vi, since G is pseudosymmetric. Hence
our construction yields a directed cycle C. Removing C from G results in a
pseudosymmetric graph H, and the assertion follows by induction.

1.6.4 Obviously, an edge contained in a cycle cannot be a bridge. Conversely,
let e = uv be an edge which is not a bridge. Then the connected component
containing u and v is still connected after removing e, so that there exists a
path P from u to v not containing e. Appending e to P yields the desired
cycle.

1.6.5 G is Eulerian by Theorem 1.3.1. Let (v0, . . . , vm = v0) be the sequence
of vertices in an Euler tour (e1, . . . , em) of G. Orienting each edge ei from
vi−1 towards vi, we obtain an orientation of G, and (e1, . . . , em) is a directed
Euler tour for this orientation. Hence this orientation is pseudosymmetric and
strongly connected.
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B.2 Solutions for Chapter 2

2.1.3 Let G have the n! permutations of {1, . . . , n} as vertices, and let two
permutations be adjacent if and only if they differ by only a transposition. The
case n = 3 is shown in Figure B.5, where we denote the permutation (x, y, z)
of {1, 2, 3} by xyz; here the sequence (123, 132, 312, 321, 231, 213) provides a
solution.

231

213 321

123 312

132

Fig. B.5. Transposition graph for S3

2.1.4 (a) First assume that G \ v0 is acyclic, and let C be a maximal path
starting at v0. Then C is a cycle. If C were not an Euler tour, we could find a
cycle C ′ in G\C as in Example 2.1.2. By hypothesis, C ′ would have to contain
v0, so that C would not be maximal. Hence G is arbitrarily traceable from v0.
Conversely, suppose that G is arbitrarily traceable from v0. If there exists a
cycle C in G\v0, we can choose an Euler tour K of the connected component
of v0 in G \ C, so that K is a maximal trail starting in v0, a contradiction.

(b) Let w be a vertex of maximal degree 2k in G, and let C be an Euler
tour for G. Then C can be divided into k cycles C1, . . . , Ck, each of which
contains w only once. As G \ v0 is acyclic by (a), v0 has to occur in each of
these cycles, and hence also deg v0 = 2k.

(c) Suppose G is arbitrarily traceable from u, v, and w. By part (a), each
of these three vertices has to occur in all cycles of G. Suppose that G contains
at least two cycles (which intersect in u, v, and w); then it is easy to construct
a third cycle which contains only two of these vertices, a contradiction. Hence
G contains at most one cycle and thus is itself a cycle.

(d) By part (b), both vertices have to be vertices of maximal degree, say
2k. Choose two vertices u and v and connect them by 2k parallel edges. Then
all subdivisions of this multigraph are arbitrarily traceable from both u and v.

2.2.5 Use induction on h; the case h = 1 is clear. With B = Ah, the (i, k)-
entry of Ah+1 is the sum of all terms bijajk over j = 1, . . . , n. By the induction
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hypothesis, bij is the number of walks of length h from i to j. Moreover, ajk = 1
if (j, k) is an edge, and ajk = 0 otherwise. Observe that a walk of length h+1
from i to k consists of a walk of length h (from i to some vertex j) followed
by a last edge (j, k). This proves the assertion for graphs; the same argument
works in the directed case, if we restrict attention to directed walks.

2.2.6 By Exercise 2.2.5, the (i, j)-entry of the matrix A2 is the number of
walks of length 2 from i to j; note that this reduces to the degree of i whenever
i = j. Denote the matrix with all entries equal to 1 by J . Using the defining
properties of a strongly regular graph yields the desired quadratic equation:
A2 = aI + cA + d(J − I − A).

2.3.2 Note that a word w = ai . . . ai+n−1 is the immediate predecessor of a
word v = ai+1 . . . ai+n in a de Bruijn sequence if and only if the edge v has the
end vertex of w as start vertex; thus the de Bruijn sequences correspond to
Euler tours in Gs,n. It remains to show that Gs,n satisfies the two conditions
of Theorem 1.6.1. First, Gs,n is strongly connected: two vertices b1 . . . bn−1

and c1 . . . cn−1 are connected by the directed path

(b1 . . . bn−1c1, b2 . . . bn−1c1c2, . . . , bn−1c1 . . . cn−1).

Gs,n is also pseudosymmetric: din(x) = dout(x) = s for each vertex x.

2.3.3 The digraph G3,3 is shown in Figure B.6. Using s = 00, the procedure
TRACE(s, new; K) yields the cycle

K = (000, 001, 010, 100, 002, 020, 200).

Then all edges with start vertex 00 have been used, and L = (00, 01, 10, 02, 20).
In step (5) of EULER, the vertex u = 20 is removed from L; then step (7)
calls TRACE(u, new; C), which yields the cycle

C = (201, 011, 110, 101, 012, 120, 202, 021, 210, 102, 022, 220).

This cycle is inserted in front of the edge 200 into K according to step (8)
of EULER; we then have K = (000, 001, . . . , 020, 201, 011, . . . , 220, 200) and
L = (00, 01, 10, 02, 11, 12, 21, 22). Next, u = 22 is removed from L in step (5),
and the cycle

C = (221, 211, 111, 112, 121, 212, 122, 222)

is constructed and inserted into K in front of the edge 220. After this, EULER
discovers that all edges have been used (by investigating all vertices in L). The
de Bruijn sequence corresponding to this Euler tour is

0 0 0 1 0 0 2 0 1 1 0 1 2 0 2 1 0 2 2 1 1 1 2 1 2 2 2.
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Fig. B.6. The digraph G3,3

2.6.8 Let G = (V, E) be the empty digraph with n vertices: E = ∅. Then
any algorithm using the adjacency matrix has to check at least one of the
two entries aij and aji for each pair (i, j) with i �= j: otherwise, we could
add the edges (i, j) and (j, i) to G and the algorithm would not realize that
the digraph is no longer acyclic. Thus the algorithm has to check at least
n(n − 1)/2 = Ω(n2) entries.

2.6.9 The algorithm first calculates ind(1) = 2, ind(2) = 0, ind(3) = 3,
ind(4) = 1, ind(5) = 2, ind(6) = 4, ind(7) = 3, and L = (2). Then 2 is removed
from L and the function ind is updated as follows: ind(1) = 1, ind(3) = 2,
ind(4) = 0, ind(7) = 2. Now 4 is appended to L. During the next iteration,
4 is removed from L, and the following updates are performed: ind(1) = 0,
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ind(3) = 1, ind(5) = 1, ind(7) = 1. Then 1 is appended to L and immediately
removed again during the next iteration. Continuing in this way yields the
topological sorting (2, 4, 1, 3, 5, 7, 6) for G; see Figure B.7, where indeed all
edges are oriented from left to right.

2
4 5

6

1

3

7

Fig. B.7. Solution to Exercise 2.6.9

2.7.6 DHC contains HC as a special case; this follows by considering the
complete orientation of a given graph.

2.7.7 We transform HC to HP. Let G = (V, E) be a connected graph. We
choose a fixed vertex v0. Then we adjoin three new vertices u, u′, and w to
G, and add the following edges: uu′, wv0, and an edge uv for each vertex v
adjacent to v0; see Figure B.8. The resulting graph G′ has a Hamiltonian path
if and only if G admits a Hamiltonian cycle; this follows by noting that every
Hamiltonian path of G′ has to start with the edge uu′ and to end with the
edge v0w.

2.7.8 Note that HP is a special case of Longest path: given a graph G with
n vertices, we apply Longest path with k = n.

Now assume that we also have to specify the end vertices of the path. If we
had a polynomial algorithm for this modified problem, we could just invoke
the algorithm for all pairs of vertices to get a polynomial algorithm for the
unrestricted problem.

The corresponding result holds for longest cycles: the question “Does a
given graph G admit a cycle consisting of at least k edges?” contains HC.
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v0

u

u′

w

G

Fig. B.8. Construction for Exercise 2.7.7

2.8.3 Independent sets are precisely the complements of vertex covers. As
VC is NP-complete, it follows immediately that IS is NP-complete as well.

The cliques in a graph G are precisely the independent sets of the com-
plementary graph G. Therefore, Clique is likewise NP-complete.

B.3 Solutions for Chapter 3

3.1.3 Let all pairs (j, k) with j = 1, . . . , n and k = 0, . . . , b be vertices of G.
We choose all pairs ((j − 1, k), (j, k)) as edges of length 0 (for j = 2, . . . , n;
k = 0, . . . , b), and all pairs ((j−1, kj −aj), (j, kj)) as edges with length cj (for
j = 2, . . . , n and kj = aj , . . . , b). We also adjoin a start vertex s to G, and
add the edges (s, (1, 0)) with length 0 and (s, (1, a1)) with length c1. Then the
paths from s to (j, k) correspond to those subsets of {1, . . . , j} whose total
weight is k (and whose total value is the length of the associated path). Finally,
we add an end vertex t and edges ((n, k), t) of length 0 (for k = 0, . . . , b). Then
paths from s to t correspond to subsets whose weight is at most b, and the
length of a longest path from s to t is the value of an optimal solution for the
given knapsack problem.

3.2.3 The distances in the metric space have to be integral; moreover,
d(x, y) ≥ 2 always has to imply that a point z with d(x, y) = d(x, z) + d(z, y)
exists. It is clear that this condition is necessary. In order to show that it is
also sufficient, choose all pairs {x, y} with d(x, y) = 1 as edges.

3.3.4 The connected components can be determined as follows, where p de-
notes the number of connected components and where c(v) is the component
of G containing v ∈ V .
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Procedure COMP(G; p, c)

(1) i ← 1;
(2) while V �= ∅ do
(3) choose a vertex s ∈ V
(4) BFS(G, s; d)
(5) L ← {v ∈ V : d(v) is defined}; V ← V \ L;
(6) for v ∈ L do c(v) ← i od;
(7) i ← i + 1
(8) od

3.3.8 Let G be a graph containing cycles. Obviously, G contains a cycle which
is accessible from some vertex s if and only if a BFS with start vertex s reaches
a vertex w (when searching from the vertex v, say) such that d(w) is already
defined. Considering the point where such a vertex w occurs for the first time,
we obtain a bound g for the length of a shortest cycle accessible from s:1

g ≤
{

2d(v) + 2 if d(w) = d(v) + 1;
2d(v) + 1 if d(w) = d(v).

If d(w) = d(v), the bound cannot be improved by continuing the BFS. How-
ever, if d(w) = d(v) + 1, the BFS should be continued until all vertices which
are in the same layer as v have been examined, because l might still be de-
creased by one; after this, the BFS may be terminated.

If we execute this procedure for all possible start vertices, the final value
of g clearly equals the girth of G. If we also store a vertex s for which the
BFS did yield the best value for g, it is easy to actually determine a cycle C
of shortest length using a final modified BFS with start vertex s: we always
store the vertex v from which w is reached when it is labelled with d(w); that
is, we add the instruction p(w) ← v in step (7) of BFS. The final BFS can be
terminated as soon as an edge vw which closes a cycle C occurs. Then we use
the predecessor function p to construct the paths (in the BFS-tree Ts) from
v and w to the root, and define C as the union of these two paths and the
edge vw. We leave it to the reader to write down such a procedure explicitly.2

As BFS has complexity O(|E|), we achieve a complexity of O(|V ||E|) by this
approach.

3.4.5 Let ui denote the length of a longest path from 1 to i. Then the following
analogue of the Bellman equations has to be satisfied:

1Note that this is indeed just a bound; the precise length can be determined by
backtracking the paths from v and w to s in the BFS-tree Ts up to the first vertex
they have in common. Obviously, this vertex does not have to be s.

2If we want to check first whether G actually contains cycles, we may use the
procedure COMP of Exercise 3.3.4 to determine the connected components, and
then check the numbers of edges of the components using Theorem 1.2.8.
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(B′) u1 = 0 and ui = max {uk + wki : i �= k} (i = 2, . . . , n),

where we put wki = −∞ if (k, i) is not an edge of G. Theorems 3.4.2 to 3.4.4
carry over to this case: replace w by −w and apply the original theorems to
(G,−w). If we do not want to require G to be acyclic, it suffices to assume
that G contains cycles of negative length only.

The digraph corresponding to the knapsack problem of Exercise 3.1.3 is
acyclic, so that it is possible to determine a longest path from s to t – that is,
a solution of the knapsack problem – with complexity O(|E|). However, this
does not yield an efficient algorithm, because the number of edges of G has
order of magnitude O(nb), so that it depends not only on n but also on b.
Restricting the values of b yields a polynomial algorithm, whereas the general
knapsack problem is NP-hard; see [Kar72] and [GaJo79].

3.4.7 Let (G, w) be a network containing a directed cycle C of negative
length. Suppose there exists an SP-tree T (with root s, say) for (G, w). We
choose a path P in T from s to a vertex of C which has the minimal number
of edges among all such paths in T . Denoting the end vertex of P by v, we
have dT (s, v) = w(P ) = d(s, v). Note that our choice of P guarantees that
P cannot contain any edge of C. Hence appending the cycle C to P yields a
trail from s to v in G (note that this is not a path) of shorter length than P ,
a contradiction.

3.4.8 First let T be an SP-tree and uv an edge of G. By definition, the path
from s to v in T is a shortest path from s to v in G. On the other hand,
appending the edge uv to the path from s to u in T also yields a path from s
to v in G. Therefore

dT (s, v) = d(s, v) ≤ dT (s, u) + w(uv),

which is the desired inequality. Conversely, suppose that

(∗) dT (s, v) ≤ dT (s, u) + w(uv)

holds for all edges uv of G. If P is a shortest path from s to v in G (for
v �= s) and e = uv is the last edge of P , then P ′ = P \ e has to be a
shortest path from s to u in G. (This follows – as in the proof of Theorem
3.4.6 – from the assumption that (G, w) does not contain any directed cycles
of negative length.) Using induction on the number of edges of P , we may
assume d(s, u) = w(P ′) = dT (s, u). Then (∗) implies immediately

d(s, v) = d(s, u) + w(uv) = dT (s, u) + w(uv) ≥ dT (s, v),

so that dT (s, v) = d(s, v). Thus T is indeed an SP-tree.

3.5.1 We obtain the network shown in Figure B.9 and the values ts = 0,
t1 = 0, t2 = 0, t3 = 8, t4 = 25, t5 = 25, t8 = 25, t6 = 34, t7 = 46, t9 = 52,
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t10 = 54, t11 = 55, tz = 57 and Tz = 57, mz = 0; T11 = 55, m11 = 0;
T10 = 54, m10 = 0; T9 = 52, m9 = 0; T7 = 46, m7 = 0; T6 = 37, m6 = 3;
T8 = 39, m8 = 14; T5 = 25, m5 = 0; T4 = 28, m4 = 3; T3 = 32, m3 = 24;
T2 = 24, m2 = 24; T1 = 0, m1 = 0; Ts = 0, ms = 0. The critical path is
(s, 1, 5, 7, 9, 10, 11, z).

s

1

2

4

3

5

8

6

7 9

10 11 z

0

0

8

25

25

25

5

9

21

9

15

6
2

1 2

Fig. B.9. Digraph for the project New production facility

3.5.2 Consider the network on G where all edges have length 1. As G is
acyclic, we may use TOPSORT to determine a topological sorting for G.
Then the length of a longest path from s to v can be determined as in Section
3.5 or as explained in the solution to Exercise 3.4.5, by recursively solving
the equations (B′) or (CPM), respectively. The whole method has complexity
O(|E|).

3.5.3 For the time being, we denote the rank function on G by r′. Thus we
have to show that, at the end of RANK, r(v) = r′(v) holds for all v. This can be
done using induction on the order in which r is defined. Note that p(w) is the
predecessor of w on a longest path from s to w; this function can also be used
to find such a path: in reverse order, we get the path (w, p(w), p(p(w)), . . . , s).
The values d(v) = din(v) needed in step (3) can be determined from the
adjacency lists (as in TOPSORT). Ordering the vertices of G by increasing
rank yields a topological sorting of G; the order of vertices of the same rank is
arbitrary. As each edge is examined exactly twice during RANK (once when
d is determined in (3), and once in step (7)), this algorithm has complexity
O(|E|).

3.6.3 We introduce a variable p(v) which will yield the predecessor of v on a
shortest path from s to v (at the end of the algorithm): p(v) is initialized to
be 0, and step (6) is changed as follows:
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(6′) for v ∈ T ∩ Au do if d(u) + wuv < d(v)
then d(v) ← d(u) + wuv; p(v) ← u fi od

3.6.5 One obtains in turn d(1) = 0, d(5) = 1, d(3) = 2, d(4) = 6, d(2) = 9,
d(8) = 13, d(6) = d(7) = 14.

3.6.8 We may assume the given network to be connected; then planarity
implies |E| = Θ(|V |); see Example 2.5.1. Thus the modified algorithm of
Dijkstra has complexity O(|V | log |V |).

3.6.9 Let us denote the values defined in (1) and (2) by d0(v), and the
values defined during the k-th iteration of the repeat-loop by dk(v). Using
induction, one shows that dk(v) is the length of a shortest path from s to v
which has at most k edges. As (G, w) does not contain any cycles of negative
length, a shortest path from s to v consists of at most |V | − 1 edges. Thus
the condition in (7) holds for k = |V | at the latest. As one iteration of the
repeat-loop requires O(|E|) steps (using backward adjacency lists), we obtain
a complexity of O(|V ||E|).

3.7.1 Determine the least common multiple T of all time cycles and replace
each line L with time cycle TL = T/mL, where mL �= 1, by mL lines with
time cycle T and times of departure sL, sL + TL, sL + 2TL,. . .

3.8.3 Proceed as in the solution to Exercise 3.6.3.

3.8.5 The final matrix is

D7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 4 5 7 12 10 12
∞ 0 6 3 8 6 8
∞ ∞ 0 4 9 7 9
∞ ∞ 3 0 5 3 3
∞ ∞ 7 4 0 3 2
∞ ∞ 9 6 2 0 2
∞ ∞ ∞ ∞ ∞ ∞ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3.8.6 Replace the length function w in the procedure FLOYD by the adja-
cency function of G: put d(i, j) = 1 in (3) if ij is an edge, and d(i, j) = 0
otherwise. Then change step (9) to

(9′) d(i, j) ← max (d(i, j), min (d(i, k), d(k, j))) ;

alternatively, max could be interpreted as the Boolean operation or, and min
as and.
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3.8.7 Let G be an acyclic digraph, and consider the network on G having
all lengths equal to 1. As in the solution to Exercise 3.8.6, we replace the
length function w in the procedure FLOYD by the adjacency function of
G; moreover, we calculate max (d(i, j), d(i, k) + d(k, j)) in step (9) of that
procedure instead of the minimum given there. As G is acyclic, the revised
procedure will compute longest paths between all pairs of vertices: at the end
of the algorithm, d(i, j) = 0 if and only if j is not accessible from i; otherwise,
d(i, j) is the maximal length of a path from i to j. (This can be shown by
analogy to the proof of Theorem 3.8.2.) Then Gred consists of all the edges ij
with d(i, j) = 1.

3.9.3 Define the values of the variables dk(v) as in the solution to Exercise
3.6.9. Then G contains a directed cycle of negative length which is accessible
from s if and only if dn−1 �= dn. (The reader should prove this claim in detail.)
Since s is a root of G, the algorithm of Bellman-Ford can be used to find cycles
of negative length by replacing the repeat-until-loop used in BELLFORD
with a for-do-loop. If we also introduce a predecessor function p(v), we can
find either a directed cycle of negative length or an SP-tree with root s. We
give such a procedure below, using backward adjacency lists A′

v.

Procedure SPTREE(G, w, s; d, p, neg, T )

(1) d(s) ← 0;
(2) T ← ∅;
(3) for v ∈ V \ {s} do d(v) ← ∞ od;
(4) for i = 1 to n do
(5) for v ∈ V do d′(v) ← d(v) od;
(6) for v ∈ V do
(7) for u ∈ A′

v do
(8) if d′(v) > d′(u) + wuv

(9) then d(v) ← d′(u) + wuv, p(v) ← u
(10) fi
(11) od
(12) od
(13) od;
(14) if d(v) = d′(v) for all v ∈ V
(15) then neg ← false;
(16) for v ∈ V \ {s} do T ← T ∪ {p(v)v} od
(17) else neg ← true
(18) fi.

3.9.4 Replace the initial values d(i, i) = 0 in step (3) of procedure FLOYD
by d(i, i) = ∞. Then, at the end of the algorithm, d(i, i) equals the shortest
length of a directed cycle through i.
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3.10.2 Note that a = a ⊕ o shows that � is reflexive. Also a = b ⊕ b′ and
b = c⊕ c′ imply a = c⊕ (b′ + c′), so that � is transitive as well. Suppose that
⊕ is idempotent. Then a = b ⊕ c and b = a ⊕ d imply

a = b ⊕ c = b ⊕ (b ⊕ c) = b ⊕ a = a ⊕ b = a ⊕ (a ⊕ d) = a ⊕ d = b;

it follows that � is antisymmetric.

3.10.3 Let E be the matrix with diagonal entries 0 and all other entries ∞.
Then D = D ∗ W ⊕ E.

3.10.5 We have (A′)k =
k∑

i=0

(
k
i

)
Ai =

k∑
i=0

Ai = A(k). Thus A(n) can be calcu-

lated for n = 2a using a matrix multiplications:

A(1) = A′ = A ⊕ E, A(2) = (A′)2, A(4) = (A(2))2, etc.

If we assume that the operations ⊕ and ∗ in R take one step each, we obtain a
complexity of O(n3 log n) for this method of calculating A(n). For the special
case (R,⊕, ∗), we get – as explained in Lemma 3.10.4 – an alternative to the
algorithm of Floyd-Warshall, as D = W (n−1). However, the complexity of this
technique is inferior to the one achieved in Theorem 3.8.2.

3.10.6 It is routine to verify that the matrices form a path algebra. For any
solution Y of Equation (3.6), we have

Y = W ∗ (W ∗ Y ⊕ B) ⊕ B = W 2 ∗ Y ⊕ W (1) ∗ B;

hence, by induction,

Y = W k+1 ∗ Y ⊕ W (k) ∗ B for all k.

In particular, for k = p,

Y = W p+1 ∗ Y ⊕ W ∗ ∗ B; that is, Y � W ∗ ∗ B.

If the addition ⊕ on R is idempotent, then addition of matrices is likewise
idempotent; in this case, the corresponding preordering on the set of matrices
is even a partial ordering by Exercise 3.10.2. Then the minimal solution W ∗∗B
of (∗) is unique.

3.10.10 Choose R = {a : 0 ≤ a ≤ 1}, ⊕ = max, and ∗ = ·.

3.10.11 Note that A is stable if and only if Ar = 0 for some r ∈ N, since
A(r−1) = A(r) = A(r−1)+Ar holds if and only if Ar = 0. Lemma 3.10.4 implies
that this condition is satisfied in the acyclic case: then each walk contains at
most r − 1 edges, where r is the number of vertices of G. In this case, A
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is a solution of the equation A∗ = A∗A + E. As K is a field, this means
A∗(E − A) = E; that is, A∗ = (E − A)−1.

More generally, it is possible to show that A is stable if all cycles in G
have weight 0 with respect to w. The converse is false in general: it is easy to
find an example with weights 1 and −1 such that A is stable, but G contains
cycles of weight �= 0. However, the converse does hold for K = R and positive
weights.

B.4 Solutions for Chapter 4

4.1.2

(1) ⇒ (2): Let e be an edge contained in the unique cycle C of G. Then G\e
is connected and acyclic, so that G \ e is a tree.

(2) ⇒ (3): As every tree on n vertices has n− 1 edges and is connected, the
claim in (3) follows.

(3) ⇒ (4): As G is not a tree (since it has one more edge than a tree would
have), there must be edges in G which are not bridges; see Lemma
4.1.1. Removing some edge e which is not a bridge yields a tree,
so that e has to be contained in each cycle of G. Thus the set of
all edges which are not bridges forms a cycle.

(4) ⇒ (1): An edge e is not a bridge if and only if it lies in a cycle; see
Exercise 1.6.4). Thus G contains a unique cycle, which consists
of those edges which are not bridges.

4.1.3 The claim concerning the number of centers is clear for the trees K1

and K2. For every other tree T , remove all leaves of T ; then the resulting tree
T ′ has the same centers as T , and the assertion follows by induction.

Denote the diameter of a tree T by d and the eccentricity of a center by e.
Then either d = 2e or d = 2e − 1, and d = 2e holds if and only if T has a
unique center. For a formal proof, proceed again by induction.

4.1.4 Let W be a trail of maximal length in G. As G is acyclic, W has to
be a path, and as W is maximal, the end vertices of W have degree 1. Thus
G \W is a forest containing 2k− 2 vertices of odd degree. Now use induction.

4.1.5 By hypothesis, T has at least two connected components. Let x and y
be two arbitrary vertices in distinct connected components of T . In particular,
x and y are not adjacent in T , so that T contains the edge xy. Thus any two
points in distinct components of T have to be adjacent in T .

The preceding observation shows that there cannot be three distinct con-
nected components: otherwise, we would obtain a cycle of length 3 in T .
Moreover, one of the two components must be an isolated point of T : other-
wise, we would obtain a cycle of length 4 in T . Hence T contains a vertex x
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which is adjacent to all other vertices, so that T is a star. The final assertion
follows from Exercise 1.2.4 and Theorem 1.2.6.

4.1.6 There are precisely six isomorphism types of trees on 6 vertices; rep-
resentatives for these types were given in Figure 1.6; we will denote these
representatives by T1, . . . , T6. Now let T be any tree on {1, . . . , 6}. Then the
image of T under an arbitrary permutation σ ∈ S6 is a tree isomorphic to
T . By a well-known equation for permutation groups, the number of trees
isomorphic to T is equal to the order of S6 (that is, 6! = 720) divided by the
order of the automorphism group of T . We obtain:

T1 : cyclic group of order 2 (rotate the tree by 180◦), 360 isomorphic trees;
T2 : cyclic group of order 2 (exchange the two lower leaves of the tree), 360

isomorphic trees;
T3 : symmetric group S3 (acting on the three lower leaves of the tree), 120

isomorphic trees;
T4 : cyclic group of order 2 (reflect the tree, exchanging the two branches), 360

isomorphic trees;
T5 : direct product of 3 cyclic groups of order 2 (reflect the tree, exchanging

the two centers and the two pairs of leaves; or switch the two leaves of
one of the two pairs), 90 isomorphic trees;

T6 : symmetric group S5 (acting on the five leaves), 6 isomorphic trees.

This gives a total of 360 + 360 + 120 + 360 + 90 + 6 = 1296 = 64 trees, which
agrees with the result of Corollary 1.2.11.

4.2.11 By Theorem 4.2.9, the number of spanning trees of the complete
bipartite graph Km,n is equal to the absolute value of the determinant of the
matrix

A′ =
(

nIm −Jm,n−1

−Jn−1,m mIn−1

)
,

where the indices give the numbers of rows and columns of the respective
submatrices (and where I denotes an identity matrix and J a matrix hav-
ing all entries 1, as usual). Now it is just a matter of some linear algebra
to show det A′ = nm−1mn−1: using appropriate row and column transforma-
tions, one can transform A′ into a triangular matrix with diagonal entries
1, n . . . , n, m, . . . , m.

4.2.12 The proofs of the results in question carry over: just take into account
that now 1 + 1 = 0, and hence −1 = +1.

4.2.13 First assume that G′ is bipartite, with respect to the partition V =
S

.∪ T . Let M ′ be a square submatrix of M of order k, say. The case k = 1 is
trivial, so let k �= 1. First consider the case where each column of M ′ contains
two entries 1. The k vertices corresponding to the rows of M ′ can be divided
into two sets S′ ⊂ S and T ′ ⊂ T . Each column of M ′ corresponds to an edge
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of G which has both end vertices in S′∪T ′ (by hypothesis). As G is bipartite,
each column of M has one entry 1 in a row corresponding to S′, and the other
entry 1 in a row corresponding to T ′. Hence the sum of the rows corresponding
to S′ equals sum of the rows corresponding to T ′, so that the rows of M ′ are
linearly dependent, and hence detM ′ = 0. It remains to consider the case
where M ′ contains a column with at most one entry 1. Then the claim follows
by developing detM ′ with respect to this column (and using induction).

Conversely, let M be totally unimodular, and suppose that G is not bi-
partite. By Theorem 3.3.5, G contains a cycle C of odd length, say

C : v0
e1 v1 . . . v2n−1

e2n v2n
e2n+1

v0.

But then the determinant of the submatrix M corresponding to the 2n + 1
vertices and the 2n + 1 edges of C is 2, a contradiction.

4.2.14 By Corollary 1.2.11, the graph Kn has precisely nn−2 spanning trees.
Note that each spanning tree of Kn has n − 1 edges and that each edge e
has to be contained in the same number x of spanning trees, which implies
x = 2nn−3. Hence the number of spanning trees of Kn \ e is nn−2 − 2nn−3 =
(n − 2)nn−3.

4.2.15 G has p = n − m connected components.

4.3.4 Let e be an edge incident with v which has smallest weight among all
such edges, and suppose that e is not contained in a given minimal spanning
tree T for G. The cycle CT (e) which arises by adding e to T has to contain a
second edge incident with v, say f ; by Theorem 4.3.1, w(e) ≥ w(f). In view
of our choice of e, we conclude w(f) = w(e), so that f is an edge of T having
the required property.

4.3.5 Suppose that G contains two distinct minimal spanning trees T and
T ′. Order the edges of T and T ′ according to increasing weight and assume
that both trees have their first k − 1 edges in common, whereas they differ in
their respective kth edges:

T = {e1, . . . , ek−1, ek, . . . , en−1} and T ′ =
{
e1, . . . , ek−1, e

′
k, . . . , e′n−1

}
,

where (without loss of generality)

w(e1) < . . . < w(en−1) and w(ek) < w(e′k) < . . . < w(e′n−1).

Adding the edge ek to T ′ yields a cycle CT ′(ek); by Theorem 4.3.1, w(ek) ≥
w(f) for all edges f ∈ CT ′(ek). As the weights of the edges are distinct, all
edges f �= ek of CT ′(ek) have to be contained among the first k − 1 edges
e1, . . . ek−1 of T ′. Hence T contains the cycle CT ′(ek), a contradiction.
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4.4.13 Assign weight 1 to all the edges, and apply the algorithm of Boruvka
in this situation. Then we could choose an arbitrary edge eu leaving a given
connected component U ∈ M . In general, there will exist two connected com-
ponents U, U ′ ∈ M which can be connected by two different edges of G; then
choosing these two edges as eu and eu′ would create a cycle.

4.4.14 A minimal spanning tree has weight 2 + 13 + 21 + 35 + 51 = 122.

4.4.15 The proof of Theorem 4.3.1 shows that the subgraph of the minimal
spanning trees (for a given weight function w) is connected. If we assign weight
w(e) = 1 to all edges e, we see that this implies that the whole tree graph is
connected.

4.5.5 The edges e15, e14, e13, e12, e11, e10 and e8 form a maximal spanning
tree (of weight 28 + 27 + 26 + 24 + 10 + 9 + 8 = 132). The edges are given in
the order in which the algorithm of Kruskal would find them.

4.5.6 The following characterization of maximal spanning trees follows from
Theorem 4.3.1 by replacing w by −w: a spanning tree T is maximal if and
only if the condition

(∗) w(e) ≤ w(f) for all edges f in CT (e)

holds for each edge e /∈ T . Now let e = uv be an edge of G not contained in T .
By hypothesis, the unique path P from u to v in T has capacity w(P ) ≥ w(e);
this implies (∗) in view of CT (e) = P ∪ {e}, which proves the assertion.

4.5.8 The digraph shown in Figure B.10 provides an example.

s1

3 2

2

Fig. B.10. A digraph

4.7.7 Let T be an arbitrary spanning tree for G, and let x be a center of
T . Denote the eccentricity of x in T by eT (x); then T has diameter either
dT = 2eT (x) or dT = 2eT (x)− 1 by Exercise 4.1.3. Clearly, x has eccentricity
at most eT (x) in G. Thus it is an obvious approach to look for spanning trees
whose centers are centers of G as well.

Now let z be a center of G, and let Tz be a spanning tree for G determined
by a BFS starting at z. Note that Tz is an SP-tree for G with root z. It is
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easy to see that z is also a center of Tz. Therefore Tz has diameter d = 2e
or d = 2e − 1, where e denotes the eccentricity of z in G. Moreover, every
other spanning tree has diameter at least 2e− 1. Hence the tree Tz solves our
problem; note that a center z (and then a tree Tz) can be determined with
complexity O(|V |3) by Theorem 3.8.8.

We mention that it is easy to find examples where a BFS starting at z
could either find a tree of diameter 2e or a tree of diameter 2e− 1, depending
on the order in which adjacent vertices are examined.

B.5 Solutions for Chapter 5

5.1.5 The network in Figure B.11 has a maximal matching of weight 14, but
the greedy algorithm constructs a matching of weight 12.
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3

2

maximal matching

6

7

2
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3

2

greedy matching

Fig. B.11. Two matchings

5.2.3 Let N be the incidence matrix of the graph G = (V, E). Identify E
with the set of columns of N and apply Theorem 4.2.3.

5.2.4 Let A ⊆ E. As the forests of G form the graphic matroid M(G) =
M0(G) on E, A has a well-defined rank �(A) in M(G), namely the maximal
cardinality of a forest contained in A. We use this fact to verify condition (3)
in Theorem 5.2.1 for M = Mk(G), which will establish that M is likewise a
matroid. We distinguish two cases: if |A| − �(A) ≤ k, then A itself is inde-
pendent in M (and thus the only maximal independent set contained in A);
and if |A| − �(A) > k, then the maximal independent sets of M contained in
A are the maximal forests in A enlarged by any k further edges from A (and
thus all have cardinality �(A) + k).

5.2.5 Conditions (1) and (2) are clear. To show that (3) holds, let J be a
maximal independent subset of A ∩ B, and choose a maximal independent
subset K of A ∪ B containing J . Write K = J

.∪ X
.∪ Y with X ⊂ A
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and Y ⊂ B. Then J ∪ X and J ∪ Y are independent subsets of A and B,
respectively, so that

ρ(A ∪ B) + ρ(A ∩ B) = 2|J | + |X| + |Y | = |J ∪ X| + |J ∪ Y | ≤ ρ(A) + ρ(B).

5.2.9 By Theorem 5.2.8, σ(X) = {e ∈ E : ρ(X ∪ {e}) = ρ(X)}; hence
condition (1) is clear. To prove (2), let J be a maximal independent subset
of Y , and choose a maximal independent subset K of X containing J . If
e ∈ σ(Y ), then e ∈ σ(X): otherwise K ∪ {e} would be independent, so that
J ∪ {e} would be independent as well, contradicting ρ(J ∪ {e}) = ρ(J)).

By Theorem 5.2.8, σ(X) is the unique maximal set containing X such that
ρ(σ(X)) = ρ(X); now (3) is clear. To show (4), let J be a maximal independent
subset of X (and hence of σ(X)). As y /∈ σ(X) and y ∈ σ(X ∪ {x}), J ∪ {x}
and J∪{y} have to be independent sets. Moreover, ρ(X∪{x}) = ρ(X∪{y}) =
ρ(X ∪ {x, y}). But this implies x ∈ σ(X ∪ {y}).

5.2.10 Let B be a basis of the matroid M = (E,S). As ρ(B) = ρ(E),
Theorem 5.2.8 yields ρ(B) = E, so that B is a generating set for M . Suppose
that B is not minimal. Then then there exists a proper subset C of B such
that B ⊂ E = σ(C). But then ρ(E) = |C| < |B|, which contradicts the fact
that B is independent.

Conversely, let D be a minimal generating set and A a maximal indepen-
dent subset of D. Then ρ(D) = |A| implies D ⊂ σ(A) and (using Exercise
5.2.9) E = σ(D) ⊂ σ(σ(A)) = σ(A). Hence A is a generating set of M , and
the minimality of D implies A = D. Thus D is independent. Now σ(D) = E,
so that |D| = ρ(E); therefore D is a basis of M .

5.2.11 Let A and B be two closed sets in M . Then

σ(A ∩ B) ⊂ σ(A) ∩ σ(B) = A ∩ B ⊂ σ(A ∩ B),

so that A ∩ B is closed as well; this establishes (a).
To prove (b), let A be a closed set containing X. Then σ(X) ⊂ σ(A) = A.

Thus σ(X) is contained in the intersection of all closed sets containing X.
Now (a) implies that σ(X) coincides with this intersection.

Finally, suppose that the condition in (c) is violated for some x ∈ E \ X,
so that ρ(X ∪ {x}) = ρ(X). Then x ∈ σ(X), and X cannot be closed. The
converse is similar.

5.2.12 Let {x1, . . . , xr} be a basis of (E,S). The 2r subsets of this basis have
2r distinct spans.

5.2.16 Suppose that condition (2′) does not hold. Choose two cycles C and
D and elements x ∈ C ∩ D and y ∈ C \ D violating (2′), so that |C ∪ D| is
minimal among all counterexamples. In view of Theorem 5.2.15, there exists
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a cycle F1 ⊂ (C ∪D)\{x} with y /∈ F1. Note that the set F1 ∩ (D \C) cannot
be empty: otherwise F1 would be a proper subset of C. Hence we may choose
an element z ∈ F1 ∩ (D \ C).

Now consider the cycles D and F1 and the elements z ∈ D ∩ F1 and
x ∈ D \ F1. Note that D ∪ F1 is a proper subset of C ∪ D, since y /∈ D ∪ F1.
By the minimality of our counterexample, there exists a cycle F2 such that
x ∈ F2 ⊂ (D ∪ F1) \ {z}. Consider C, F2, x ∈ C ∩ F2, and y ∈ C \ F2. Again,
the minimality of our counterexample applies: there exists a cycle F3 such
that y ∈ F3 ⊂ (C ∪ F2) \ {x}. As C ∪ F2 is contained in C ∪ D, we have
obtained a contradiction.

5.3.5 By Theorem 5.3.1, ρ(E \ A∗) = ρ∗(A∗) − |A∗| + ρ(E) = ρ(E), since
A∗ is independent in M∗. As A is an independent subset of E \A∗, A can be
extended to a maximal independent subset (in M) of E \ A∗; we denote this
subset by B. Then ρ(B) = ρ(E), so that B is a basis of M . Hence B∗ = E \B
is a basis of M∗ containing A∗.

5.3.6 First let B be a basis of M . Suppose that C∗ is a cocircuit which
is disjoint to B. Then E \ B contains the cocircuit C∗ and is dependent in
M∗, which contradicts Corollary 5.3.2. Now suppose that a subset X of B
intersects each cocircuit. Then E \ X cannot contain any circuit of M∗, so
that E \ X must be independent in M∗. As E \ X contains the basis E \ B
of M∗, we conclude X = B. Thus the bases are the minimal sets intersecting
each cocircuit. The converse is shown in a similar manner.

5.3.7 Suppose C ∩ C∗ = {e}. Then the disjoint sets A = C \ {e} and A∗ =
C∗ \ {e} are independent in M and in M∗, respectively. By Exercise 5.3.5, A
and A∗ can be extended to bases B and B∗ of M and M∗, respectively, and
these bases are disjoint. Hence E = B ∪ B∗. As C and C∗ are dependent, e
can be contained neither in B nor in B∗, a contradiction.

5.3.8 Let B be a basis of M containing C \ {x}. As B∗ = E \B is a basis of
M∗, B∗ ∪ {y} has to contain a unique cocircuit C∗ of M by Theorem 5.2.13.
Obviously, y must be contained in C∗. Now x /∈ C∗ would imply |C∩C∗| = 1,
contradicting Exercise 5.3.7. Thus x, y ∈ C ∩ C∗, so that C ∩ C∗ = {x, y}.

5.4.6 It suffices to find a subset A of E and two maximal independent subsets
D and D′ of A such that 2|D′| = n|D|. We may assume V = {1, . . . n}. Then
D = {(i, i + 1) : i = 1, . . . , n − 1}, D′ = {(i, j) : i, j = 1, . . . n and i > j} and
A = D ∪ D′ have the required property.

5.4.10 M is the intersection of the graphic matroid M(G), the head-partition
matroid of G, and the tail-partition matroid of G.

5.5.7 Suppose w does not have to satisfy the triangle inequality. Then we may,
for instance, increase the weight of the edge of maximal weight in Example
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5.5.6 by an arbitrary value and thus make the solution determined by the
greedy algorithm arbitrarily poor.

5.6.3 Suppose that (CC) is violated by some A ∈ S, elements x, y ∈ ext(A),
and a set X ⊂ E \ (A ∪ ext(A)). Thus there exists a basis B such that
A∪X ∪{x} ⊂ B, whereas A∪X ∪{y} is not contained in any basis. Consider
the following weight function for E:

w(z) =

⎧⎪⎪⎨
⎪⎪⎩

3 if z ∈ A
2 if z ∈ X
1 if z = y
0 otherwise.

Then the basis B has weight w(B) = 3|A| + 2|X|. The greedy algorithm
begins by constructing (in some order) the feasible set A and then adds y;
note that the elements of X have larger weight than y, but are not contained
in ext(A). After that, the algorithm can add at most |X| − 1 of the elements
of X, because we assumed that A ∪ X ∪ {y} is not contained in any feasible
set. Thus the solution generated by the greedy algorithm has weight at most

3|A| + 1 + 2(|X| − 1) < w(B),

a contradiction.

B.6 Solutions for Chapter 6

6.1.9 Replace each vertex v by a pair (v, v′) of vertices, and each edge vw
by v′w. Furthermore, add all edges of the form vv′, and put c(v′w) = c(vw)
and c(vv′) = d(v). It is easily checked that a flow f ′ on the new network
corresponds to a flow f on N satisfying (F3).

Now let (S, T ) be a cut in the new network, and denote the set of edges
e with e− ∈ S and e+ ∈ T by E′. Each edge of type v′w corresponds to an
edge vw in N , and each edge of type vv′ corresponds to a vertex v of N .
Thus the set E′ of edges of the cut (S, T ) corresponds to a cut in N in the
following sense: a (generalized) cut is a set of edges and vertices (distinct from
s and t) of G so that every directed path from s to t contains at least one
of these edges and vertices. The capacity of such a cut is the sum of all c(e)
and d(v) for edges e and vertices v, respectively, which are contained in the
cut. Then the generalization of Theorem 6.1.6 states that he minimal capacity
of a generalized cut equals the maximal value of a flow satisfying (F3). This
theorem is easily derived by applying Theorem 6.1.6 to the network defined
above.

6.1.10 If we require k vertices s1, . . . , sk as sources (so that (F2) does not
have to be satisfied for these vertices, and as much flow as possible should
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originate there), we can add a new source s and all edges ssi (i = 1, . . . k)
with sufficiently large capacity.

6.1.11 Let W be the maximal value of a flow on N , and let (S, T ) be a
minimal cut; by hypothesis, c(S, T ) = W �= 0. If we remove an edge e with
e− ∈ S and e+ ∈ T and c(e) �= 0 from G, the capacity c(S, T ) and hence the
value of a maximal flow is decreased by c(e). This suggests to choose e as an
edge of maximal capacity in a minimal cut. However, these edges do not have
to be most vital, as the example of the network given in Figure 6.12 shows:
here the edge sa is obviously most vital, but it is not contained in a minimal
cut.

6.1.12 No: the flow in the flow network of Figure B.12 provides a counter-
example.

s t
1 (1)

2.5 (3)

1.5 (2)

2.5 (3)

1 (1)

Fig. B.12. A flow

6.1.13 The capacities in the flow network of Figure B.12 actually define an
integral flow, which is obviously maximal but not the sum of elementary flows.

6.1.14 First, in step (3) of Algorithm 6.1.7, we set d(v) = 0 for v �= s.
During the following labelling process, the labels are not permanent; similarly
to the algorithm of Dijkstra, the label of the vertex v which is chosen in step
(5) is made permanent at this point. As we want to construct augmenting
paths of maximal capacity from s to all the other vertices, we choose in step
(5) – among all labelled vertices v with u(v) = false (that is, v is not yet
permanent) – the vertex v for which d(v) is maximal; initially, this is s.

Moreover, we do not change the flow as soon as t is reached, but wait
until t is chosen in step (5) (and thus made permanent). For this purpose,
we insert an if clause after step (5): if v = t, we may change the flow as in
steps (16) to (28) of Algorithm 6.1.7; of course, we have to set d(v) = 0 for
v �= s in step (27). Otherwise (if v �= t), the labelling process is continued
from v. As in steps (6) to (9), we first consider all edges of the form e = vw.
If u(w) = false (that is, w is not yet labelled permanently) and d(w) < min
{d(v), c(e) − f(e)}, then d(w) is replaced by this minimum and w is labelled
with (v,+, d(w), so that the former label is also replaced. Steps (10) to (13)
(for edges of the form e = wv) are changed in an analogous manner. Next v
is made permanent in step (14). We leave the details and the task of writing
down a formal version of this method to the reader.
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6.2.4 We use the algorithm described in the solution to Exercise 6.1.14.
During the first iteration, the vertices chosen in step (5) are s with d(s) = ∞,
a with d(a) = 38, d with d(d) = 13, c with d(c) = 10, f with d(f) = 10, and t
with d(t) = 10 (in this order). This yields an augmenting path with capacity
10; we obtain the flow f1 of value 10 shown in Figure B.13, which also gives
the labels determined by the first iteration.

s

(−,∞)
b

(a, +, 8)

a
(s, +, 38)

f
(c, +, 10)

c
(a, +, 10)

d
(a, +, 13)

e
(c, +, 8)

t

(f, +, 10)

0(1)

10(38)

0(2)

0(8)

0(26)

10(24)

10(10) 0(2)

0(8)

10(27)

0(1)

0(1)

0(7)

0(7)

0(13)

Fig. B.13. w(f1) = 10

During the next iteration, the vertices s with d(s) = ∞, a with d(a) = 28,
d with d(d) = 13, b with d(b) = 8, c with d(c) = 8, f with d(f) = 8, and
t with d(t) = 8 are chosen in step (5). The corresponding augmenting path
with capacity 8 yields the flow f2 shown in Figure B.14.

During the following iteration, the vertices chosen in step (5) are s with
d(s) = ∞, a with d(a) = 20, d with d(d) = 13, and t with d(t) = 7. We obtain
an augmenting path with capacity 7 and the flow f3 shown in Figure B.15.

Four more iterations are needed; the augmenting paths constructed are

• s f t with capacity 2,
• s a d b c f t with capacity 2,
• s b c t with capacity 1,
• and s a d e t with capacity 1.

The resulting flow f with w(f) = 31 is shown in Figure B.16.
Thus this algorithm needs seven flow changes, whereas the algorithm of

Edmonds and Karp used in Example 6.2.3 made nine changes. However, in the
algorithm used here, the labelling process is somewhat more involved. Note
that the maximal flows of Figures 6.12 and B.16 are not identical; actually,
there are further maximal flows, as there are several ways of distributing the
flow emanating from c.
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s

(−,∞)
b

(a, +, 8)

a
(s, +, 28)

f
(c, +, 8)

c
(b, +, 8)

d
(a, +, 13)

e
(c, +, 8)

t

(f, +, 8)

0(1)

18(38)

0(2)

8(8)

8(26)

18(24)

10(10) 0(2)

0(8)

18(27)

0(1)

0(1)

0(7)

0(7)

0(13)

Fig. B.14. w(f2) = 18

s
(−,∞) b

(d, +, 2)

a
(s, +, 20)

f
(s, +, 2)

c
(b, +, 2)

d
(a, +, 13)

e
(c, +, 2)

t
(d, +, 7)

0(1)

25(38)

0(2)

8(8)

8(26)

18(24)

10(10) 0(2)

0(8)

18(27)

0(1)

0(1)

0(7)

7(7)

7(13)

Fig. B.15. w(f3) = 25
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s
(−,∞) b

a
(s, +, 10)

f

c

d
(a, +, 3)

e

t
1(1)

28(38)

2(2)

8(8)

11(26)

20(24)

10(10) 2(2)

0(8)

22(27)

1(1)

1(1)

1(7)

7(7)

10(13)

Fig. B.16. w(f) = 31

6.2.5 The maximal value of a flow is 5; Figure B.17 shows a flow f with
w(f) = 5 and a cut having this capacity.

s
c

a

e

d

b

f

t
1(2)

2(2)

2(2)

0(1)

0(1)

1(1)

1(1)

1(1)

1(1)

1(1)

1(1)

0(1)

2(2)

2(2)

1(2)

S

T

Fig. B.17. Solution to Exercise 6.2.5

6.2.6 Let f be the flow of value W = w(f) which was found for the incorrect
capacity d(e), let (S, T ) be a minimal cut, and denote the correct capacity by
c(e). The results for the incorrect input data can be used when calculating a
flow for the correct capacity as follows, where we distinguish two cases.

Case 1. c(e) < d(e). It is clear that (S, T ) is still a minimal cut, if e is
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contained in (S, T ) (that is, e− ∈ S and e+ ∈ T ). In the corrected network,
(S, T ) has capacity c(S, T ) − (d(e) − c(e)), so that the maximal value of a
flow is W ′ = W − (d(e) − c(e)). To find a flow of value W ′, consider all the
augmenting paths (constructed before) containing e and decrease the value of
the corresponding flow by d(e) − c(e).

If e is not contained in (S, T ) and f(e) ≤ c(e), there is obviously nothing
to change. If f(e) > c(e), we decrease the flow by f(e) − c(e) (as before) and
run the algorithm again, using the decreased flow as the initial flow.

Case 2. c(e) > d(e): If e is not contained in (S, T ), then (S, T ) is still a minimal
cut and there is nothing to change. Otherwise, we run the algorithm again,
using f as the initial flow.

6.2.7 Note that the edge e = ac is contained in the minimal cut (S, T ) shown
in Figure 6.12. If c(e) = 8, (S, T ) is still a minimal cut, so that the value
of the flow has to be decreased to 29. A maximal flow of this value can be
constructed from the flow of Figure 6.12 by decreasing the flow values of all
edges in the augmenting path shown in Figure 6.7 by 2. For c(e) = 12, the
same augmenting path can be used for increasing the value of the flow to 33.

6.2.8 First, the capacity of ac is increased to 12, so that the value of the
flow can be increased to 33 (by increasing f(e) by 2 for each of the edges
e = sa, ac, cf, ft); see Exercise 6.2.7. Since the edge ad is not contained in
the minimal cut (S, T ), increasing the capacity of this edge does not affect
the maximal flow. Now we delete the edge de. As this edge is contained in
(S, T ), the value of the flow has to be decreased by 1, say along the path
s a d e t. Finally, ct is removed. The value of a maximal flow is not
changed, because the unit of flow carried by ct can be moved along the path
c f t instead. We obtain the flow of value 32 shown in Figure B.18; note
that (S, T ) is still a minimal cut.

6.3.5 By definition, c′(S, T ) is the sum of all c′(x) for x− ∈ S and x+ ∈ T . If
x = e′ corresponds to a forward edge e, we have c′(x) = c(e)−f(e). Otherwise
(if x = e′′ corresponds to a backward edge e), c′(x) = f(e). Thus

c′(S, T ) =
∑

e−∈S,e+∈T

c(e) −
∑

e−∈S,e+∈T

f(e) +
∑

e−∈T,e+∈S

f(e);

hence, using Lemma 6.1.2, c′(S, T ) = c(S, T )−w(f). In particular, this holds
for minimal cuts, and the assertion follows by applying Theorem 6.1.6 to both
networks.

6.3.8 Execute a BFS starting at t on the digraph with opposite orientation,
and remove all vertices which are not reached during the algorithm.

6.3.9 The network N ′′ and a blocking flow are shown in Figure B.19.
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s
(−,∞) b

a
(s, +, 10)

f

c

d
(a, +, 3)

e

t
1(1)

29(38)

2(2)

8(8)

11(26)

17(24)

12(12)

2(2)

6(8)

19(27)

6(7)

7(7)

9(16)

S

T

Fig. B.18. w(f) = 32 = c(S, T )

s
a d b c f

t

e

3(13) 3(6) 2(2) 2(17) 3(13) 3(14)

1(1) 1(7)

Fig. B.19. A blocking flow

6.3.10 Consider Example 6.3.7, and note that the blocking flow g on N ′′(f)
of value 10 leads to a maximal flow g′ of value 11 on N ′′(f) . The underlying
flow f has value 10, whereas the maximal value of a flow on N is 31 �= 10+11;
see Example 6.2.3.

6.3.13 The layered auxiliary network with respect to g on N ′(f) is shown in
Figure B.20, and the layered auxiliary network with respect to g on N ′′(f) is
shown in Figure B.21. The flow determined on N by f and g is the flow h = f6

shown in Figure 6.9. Thus N ′′(h) is equal to the network of Figure B.20.

6.3.19 Replace step (17) of procedure AUXNET (Algorithm 6.3.14) by
(17′) if t ∈ V ′′ then max ← false; d ← i else max ← true;

S ← V ′′; T ← V \ S fi

6.4.5 A blocking flow determined by Algorithm 6.4.1 is shown in Figure
B.22. The paths corresponding to the sequences (s, a, d, f, t), (s, b, d, f, t),
(s, c, d, f, t), (s, c, d, g, t), (s, a, e, h, t), (s, a, e, k, t) were constructed in this or-
der (as usual, if there were several possible ways of choosing the edge e = uv
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in step (5), we have proceeded according to the alphabetical order of the ver-
tices); their capacities are 3, 2, 4, 3, 1, and 10, respectively. Thus the total
value of the flow is 23.

s
a b c f

t

d e

21 8 25 21 22

6
1

Fig. B.20. Layered auxiliary network for N ′(f)

s
a d e c f

t

b

21 6 1 7 21 22

1

Fig. B.21. Layered auxiliary network for N ′′(f)

s
b

c

a

d

e

g

h

f

k

t

7(7)

2(20)

14(16)

7(7)

2(2)

0(12)

3(3)

11(15)

9(12)

0(13)

3(19)

0(3)

1(1)

10(10)

9(9)

3(18)

1(8)

10(11)

Fig. B.22. Solution to Exercise 6.4.5

6.4.10 Algorithm 6.4.6 needs four iterations, where the vertices of minimal
potential are h with p(h) = 4, c with p(c) = 7, d with p(d) = 2, and e with
p(e) = 10, respectively. The resulting blocking flow of value 23 is shown in
Figure B.23. Note that it is not identical with the one given in Figure B.22.
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e
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h

f

k

t

7(7)

2(20)

14(16)

7(7)

2(2)

0(12)

3(3)

11(15)

9(12)

0(13)

0(19)

3(3)

1(1)

10(10)

9(9)

0(18)

4(8)

10(11)

Fig. B.23. Solution to Exercise 6.4.10

6.5.5 Define a bipartite graph G on S
.∪ T , where S = {1, . . . , m} and

T = {1′, . . . , n′}, and let {i, j′} be an edge if and only if girl i and boy j′ know
each other. Then the desired arrangement for a dance obviously corresponds
to a matching of maximal cardinality in G; a solution can be determined using
Exercise 6.5.6.

6.5.6 We define a digraph H by adding two new vertices s and t to the vertex
set S ∪ T of G. The edges of H are all the sx for x ∈ S, all the xy for which
{x, y} is an edge of G, and all the yt for y ∈ T . All edges are assigned capacity
1. This defines a flow network N .

Note that the edges {xi, yi} (i = 1, . . . , k) of an arbitrary matching of G
induce a flow of value k on N : put f(e) = 1 for all edges e = sxi, e = xiyi, and
e = yit (for i = 1, . . . , k). Conversely, a 0-1-flow of value k yields a matching
consisting of k edges: select the k edges of the type xy which actually carry a
non-zero flow.

By Theorem 6.5.4, a maximal 0-1-flow on N can be determined with com-
plexity O(|V |1/2|E|); thus the complexity is at most O(|V |5/2). This leads to
the following algorithm:3

Procedure MATCH(G; K)

(1) let s and t be two new vertices; V ′ ← S ∪ T ∪ {s, t};
(2) for e ∈ E do if e = {x, y} then e′ = xy fi od;
(3) E′ ← {sx : x ∈ S} ∪ {e′ : e ∈ E} ∪ {yt : y ∈ T};

3Note that backward edges may occur during the algorithm. This does not in-
terfere with the final solution, because c(sv) = c(wt) = 1 holds for all v and w, so
that at most one edge of the form vw incident with v or w, respectively, can carry
a non-zero flow.
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(4) for e ∈ E′ do c(e) ← 1 od;
(5) H ← (V ′, E′), N ← (H, c, s, t), K ← ∅;
(6) MAXFLOW(N ; f)
(7) for e ∈ E do if f(e′) = 1 then K ← K ∪ {e} fi od

6.5.7 Let A ⊂ S, and let X ⊂ A be an independent subset of maximal
cardinality of A, say |X| = k. Consider the network N constructed from G in
the solution to Exercise 6.5.6. Remove all vertices of S \ A together with all
edges incident with them from N , and denote the resulting network by NA.
Moreover, let M be a matching of G with X = {e− : e ∈ M}. As we saw in
Exercise 6.5.6, M induces a flow of value k on NA.

Now let Y be a maximal independent subset of A, say Y = {e− : e ∈ M ′}
for some matching M ′; by hypothesis, |Y | ≤ k. Suppose |Y | < k. Then the
flow on NA corresponding to M ′ cannot be maximal, and a maximal flow
f can be obtained by constructing k − |Y | augmenting paths in NA. It is
easy to see that there always is a matching corresponding to an independent
subset of A containing Y (for each change of the flow). Thus Y cannot have
been maximal either, a contradiction. Hence any two maximal independent
subsets of A have the same cardinality k, so that (S,S) satisfies condition (3)
of Theorem 5.2.1 and therefore is a matroid.

Such matroids are called transversal matroids; they are considered in Sec-
tion 7.3. We have given an algorithmic proof for the fact that (S,S) is a
matroid, by showing in a constructive way that condition (3) of Theorem
5.2.1 is satisfied. In a similar manner, the validity of condition (3) can be
proved also – in the language of transversal theory – by using the algorithm
of [Hal56]; see Section 7.3.

6.6.17 The algorithm FIFOFLOW determines (after nine phases) the maxi-
mal flow shown in Figure 6.12. It needs four more RELABEL- and five more
PUSH-operations than HLFLOW – that is, about one third more operations
altogether.

B.7 Solutions for Chapter 7

7.1.3 We use the algorithm of Edmonds and Karp. Suppose that there exists
an augmenting path containing a backward edge, and let P be the first such
path and e = uv be the last backward edge in P . When P is constructed, we
must have f(e) �= 0. Let Q be the last augmenting path constructed before P
for which f(e) was changed (and actually increased). Then P and Q have the
form

P : s
P ′

v u
P ′′

t

and

Q : s
Q′

u v
Q′′

t.
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Denote the capacities of P and Q by γ and δ, respectively. Suppose first that
γ ≤ δ. Then we may replace Q and P by the following three paths:

s
Q′

u v
Q′′

t (with capacity δ − γ);

s
Q′

u
P ′′

t (with capacity γ);

s
P ′

v
Q′′

t (with capacity γ).

Then P ′′, Q′, and Q′′ contain only forward edges, and the sum of the capacities
of these three paths is γ + δ, so that we have removed the backward edge e
from P .

For γ > δ, we use similar arguments to replace P and Q by three paths
whose capacities sum to γ + δ. However, the backward edge e is not removed
in this case, since we need the path P with capacity γ − δ. Nevertheless,
the capacity of P is decreased, so that this method has to terminate. As
the algorithm of Edmonds and Karp is finite, we get a finite method for
constructing a maximal flow which uses only augmenting paths consisting
exclusively of forward edges.

In Example 6.2.3, the only backward edge occurs in the last augmenting
path, which has capacity 1 (see Figure 6.11):

P : s a d e c f t;

the backward edge is ce. Here Q is the following augmenting path:

Q : s a c e t,

which has capacity 7; see Figure 6.6. As described above, we may replace P
and Q by the following three augmenting paths:

• s a c e t (with capacity 6);
• s a c f t (with capacity 1);
• s a d e t (with capacity 1).

7.1.7 Clearly, the proposed criterion is sufficient. Now let G be k-connected.
By Menger’s theorem, any two non-adjacent vertices of G are connected by
k vertex disjoint paths. It remains to consider adjacent vertices s and t. Let
H be the graph obtained by removing the edge st from G. Obviously, H is at
least (k− 1)-connected. Again by Menger’s theorem, s and t are connected in
H by k − 1 vertex disjoint paths. Then st is the k-th path from s to t in G.

7.1.8 By Exercise 7.1.7, any two vertices of a k-connected graph are connected
by k vertex disjoint paths, so that every vertex must have degree at least k.
On the other hand, Exercise 1.5.13 shows that a planar graph has to contain
vertices of degree at most 5. This proves the first assertion.
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The graph with six vertices shown in Figure B.4 is 4-connected. If G is
5-connected, every vertex must have degree at least 5. As in the solution to
Exercise 1.5.13, we get the following bound on the number n5 of vertices of
degree at most (and hence equal to) 5:

6(n − n5) + 5n5 ≤ 12n − 6;

thus n ≥ n5 ≥ 12. The icosahedron provides an example with twelve vertices;
see Figure B.24.

Fig. B.24. The icosahedron

7.1.9 Add two vertices s and t and all edges sx for x ∈ S as well as all edges
yt for y ∈ T to G. Then the assertion follows from Theorem 7.1.4.

7.2.2 An unextendable matching M ′ has at least k/2 edges: otherwise, at
least one of the k edges of a maximal matching M could be added to M ′. It
is easy to construct examples which show that this bound is best possible.

7.2.7 The Petersen graph (see Figure 1.12) is 3-regular, but does not have a
1-factorization.

7.2.9 Let us choose the disjoint union of the three 2n-sets R = {r1, . . . , r2n},
S = {s1, . . . , s2n}, and T = {t1, . . . , t2n} as the vertex set of K6n. Moreover

denote the complete bipartite graph on S
·∪ T by KST , and the 1-factor

{siti : i = 1, . . . , 2n} of KST by FST .
By Corollary 7.2.6 and Exercise 1.1.2, both GST = KST \ FST and the

complete graph KR on R can be decomposed into 2n−1 1-factors. By choosing
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an arbitrary bijection between these two sets of 1-factors and by merging all
the corresponding factors, we obtain 2n−1 1-factors of K6n; altogether, these
factors contain precisely all the edges of one of the types sitj and rirj (for
i �= j).

The same method yields (for the two cyclic permutations of the sets R,
S, and T ) 4n− 2 further 1-factors of K6n. The remaining edges which do not
occur in one of these 6n − 3 1-factors are of the form risi, riti, and siti (for
i = 1, . . . , 2n); obviously, these edges form a ∆-factor.

7.2.10 Denote the nine vertices by ij, where i, j = 0, 1, 2. Then the edges
where i is constant form three triangles which yield a first ∆-factor; similarly,
we obtain a second ∆-factor for constant j; then the remaining two ∆-factors
are uniquely determined. This unique decomposition of K9 into ∆-factors is –
using geometric terminology – just the affine plane of order 3; see, for instance,
[BeJL99].

7.2.11 Choose 2n−1 factors of a 1-factorization of K6n−2 (see Exercise 1.1.2)
and denote the graph formed by these factors by G. Then G is regular with
degree (4n − 2) and, hence, can be decomposed into 2-factors by Theorem
7.2.8. Now choose a bijection between these two sets of 2n − 1 factors and
merge corresponding factors.

7.3.2 The assertion is clear for n = 1. Thus let n > 1. Choose x1 ∈ A1 and
put

B = (B2, . . . , Bn) with Bi = Ai \ {x1}.
Assume first that A does not contain a critical subfamily. Then the union of
any k sets in A contains at least k + 1 elements; thus B clearly satisfies (H′).
Hence B contains a transversal T , so that T ∪ {x1} is a transversal of A.

It remains to consider the case where A contains a critical subfamily, say
A′ = (A1, . . . , Am). By the induction hypothesis, A′ contains a transversal
T ′. Put C = (Cm+1, . . . , Cn), where Ci = Ai \ T ′. Now one checks that C
likewise satisfies condition (H′), so that C has a transversal T ′′. Then T ′∪T ′′

is a transversal of A.

7.3.3 It is obvious that the maximal cardinality of a matching of G cannot
exceed the minimal cardinality of a vertex cover of G. Now suppose that
X = S′ ∪ T ′ (where S′ ⊂ S and T ′ ⊂ T ) is a minimal vertex cover. We will
apply Theorem 7.3.1 in the terminology used in Theorem 7.2.4.

Consider the bipartite graph G′ induced on the set (S \S′)
·∪ T ′. We want

to show that G′ satisfies condition (H). Suppose otherwise. Then there exists
a subset J of T ′ with |Γ (J)| < |J |, so that the set S′ ∪ Γ (J) ∪ (T ′ \ J) is a
vertex cover for G which has smaller cardinality than |X|. This contradicts
our assumption above and proves that G′ satisfies (H). By Theorem 7.2.4, G′

has a matching of cardinality |T ′|.
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Similarly, the bipartite graph G′′ induced on the set S ∪ (T \ T ′) contains
a matching of cardinality |S′|. Then the union of these two matchings of G′

and G′′ forms a matching of cardinality |X| of G.

7.3.6 The maximal cardinality of a matching in a bipartite graph (with vertex

set S
·∪ T ) is |T | − max {|J | − |Γ (J)| : J ⊂ T}.

7.3.10 Consider the family A which consists of di copies of Ai for i = 1, . . . , k.
Then S is precisely the set of partial transversals of A, so that the assertion
follows from Theorem 7.3.8.

7.3.13 Let G be the bipartite graph with vertex set S
·∪ T corresponding

to A. As in Exercise 6.5.7, one sees that there is also a matroid induced on
T . Using the terminology of set families, the independent sets of this matroid
are precisely those subsets of the index set T for which the corresponding
subfamily of A has a transversal.

7.3.17 Let B be the family consisting of pi copies of Ai for i = 1, . . . , n.
Then the existence of sets Xi with the desired properties is equivalent to
the existence of a transversal of B. Now condition (H′) for B is precisely the
condition given in the exercise, so that the assertion follows from the marriage
theorem.

7.4.13 The assertions of Corollaries 7.4.6 and 7.2.6 are equivalent.

7.4.14 Let D be a diagonal with entries d1, . . . , dn satisfying d1 . . . dn ≥ n−n.
The inequality between the arithmetic and the geometric mean4 implies

(d1 . . . dn)1/n ≤ d1 + . . . + dn

n
,

so that d1 + . . . + dn ≥ 1.

7.4.15 Let T be the set family as described in the hint. Then T satisfies
condition (H′), since the ktr entries 1 in any given k rows of A have to be
contained in at least kt columns of A (note that A has column sums ≤ r).
Therefore T has a transversal, so that there exist pairwise disjoint t-subsets
Si of Ti for i = 1, . . . , m. Then the matrix P with entries pij = 1 for i ∈ Sj

and pij = 0 otherwise has row sums t and column sums ≤ 1. Moreover, the
matrix A′ = A − P has row sums t(r − 1).

As we want to use induction on r, we still have to make sure that the
set X of all those indices for which column j of A has sum r is contained in

4For a proof of the inequality mentioned above and of a more general inequality
due to Muirhead [Mui03] using the methods of transversal theory, we refer the reader
to [Mir71b, Theorem 4.3.3].
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S1 ∪ . . . ∪ Sm (so that A′ has column sums ≤ r − 1). By Corollary 7.3.9, it is
sufficient to show that X is a partial transversal of T. However, any k columns
having sum r together contain precisely kr entries 1, and these entries have
to be contained in at least k/t rows of A. As each Ti occurs precisely t times
in T, any k elements of X correspond to at least k sets in T. Now Theorem
7.2.4 implies that X is a partial transversal.

7.4.16 Using the equivalence of 0-1-matrices and bipartite graphs discussed
at the beginning of Section 7.4, the assertion amounts to showing that a
bipartite graph of maximal degree r can be decomposed into r matchings. Let
S

·∪ T be the vertex set of G, and denote the set of vertices of degree r in S
and T by S′ and T ′, respectively. By Theorem 7.2.4, there exist matchings M ′

and M ′′ of G which meet S′ and T ′, respectively. By Corollary 7.3.12, there
also exists a matching M meeting S′ ∪ T ′. Then G \ M has maximal degree
r − 1, and the assertion follows by induction.

7.4.17 We may assume n ≥ 3. We show first that the subspace W of R(n,n)

spanned by the permutation matrices consists precisely of those matrices for
which all row and column sums are equal. Obviously, any linear combination
of permutation matrices is contained in W and has constant row and column
sum. Conversely, let A be a matrix with constant row and column sum. If
A does not contain any negative entries, A is contained in W by Theorem
7.4.7. Otherwise, put b = max {−aij : i, j = 1, . . . , n}. Then the matrix B =
A + bJ (where J is the matrix with all entries 1) has nonnegative entries and
constant row and column sum. Therefore J and B (and A as well) are linear
combinations of permutation matrices.

Now let W ′ be the subspace spanned by the 2n−2 matrices Si and Zi (for
i = 1, . . . , n−1) which have entry 1 in cell (n, i) and in cell (i, n), respectively,
and all other entries 0. Obviously, W and W ′ have only the zero matrix in
common. Thus dim W = n2 − 2n + 2 follows if we can show that W and W ′

together generate R(n,n). Let A be an arbitrary matrix in R(n,n). By adding
appropriate multiples of Si or of Zi to A, we can obtain a matrix C for which
the first n− 1 rows and the first n− 1 columns have a fixed sum s. Then the
last row and the last column of C must have identical sum, say x. Adding aSi

and aZi to C, the sum s can be changed to s′ = s + a; simultaneously, x is
changed to x′ = x + (n − 1)a. As n �= 2, we can determine a so that x′ = s′;
that is, the resulting matrix C ′ has constant row and column sum. Thus C ′

is contained in W , so that A is contained in W + W ′.

7.5.4 Suppose G is a minimal counterexample to the assertion, and let D be
a dissection of G consisting of as few paths as possible. Then D contains at
least α + 1 paths. Suppose we have |D| ≥ α + 2. We omit a path W from
D. As G is minimal, G \ W has a dissection into at most α paths, say D′.
But then D′ ∪ {W} is a dissection of G into α + 1 paths contradicting our
assumption.
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Hence |D| = α + 1, say D = {W1, . . . , Wα+1}. Denote the start vertex of
Wi by pi. By definition of α, the α+1 vertices pi cannot form an independent
set; we may assume that p1p2 is an edge. If W1 consists of p1 only, we may
omit W1 and replace W2 by (p1p2)W2, so that G would be decomposable into
α paths. Thus W1 cannot be trivial.

Let W ′
1 be the path obtained by omitting the first edge p1p

′
1 from W1. As

G is a minimal counterexample, the graph H = G \ p1 satisfies the assertion.
Now {W ′

1, W2, . . . , Wα+1} is a dissection of H, so that we can find a dissection
{Z1, . . . , Zk} of H into k ≤ α paths such that the start vertices of these paths
are contained in {p′1, p2, . . . , pα+1}.

If p′1 is the start vertex of one of the paths Zi, Zi can be replaced by
(p1p

′
1)Zi, which yields a dissection of G into at most α paths. If k < α, we

may add the trivial path {p′1} to the Zi. If neither of these two conditions
holds, we must have k = α, and the start vertices of the Zi are precisely the
vertices p2, . . . , pα+1. Thus p2 is the start vertex of some Zh. Replacing Zh

by (p1p2)Zh again yields a dissection of G into at most α paths. Therefore G
cannot be a counterexample, and the assertion holds in general.

7.5.5 As a tournament is an orientation of a complete graph, the maximal
independent sets have only one element in this case. Thus the assertion follows
immediately from Exercise 7.5.4.

Let us also give a very easy direct proof (not using Exercise 7.5.4). Choose
a directed path of maximal length in G, say W : v1 v2 . . . vk.
Suppose that W is not a Hamiltonian path; then there exists a vertex v not
on W . As W is maximal, G contains neither an edge vv1 nor an edge vkv, so
that G has to contain the edges v1v and vvk. Hence there must be some index
i (1 < i < k) such that G contains the edges viv and vvi+1. Then we can
replace the edge vivi+1 in W by these two edges, so that W is not maximal,
a contradiction.

7.5.9 Let k be the maximal cardinality of a chain in M . Moreover, let A
denote the antichain of the maximal elements of M . Then the maximal car-
dinality of a chain in M \ A is k − 1, and the assertion follows by induction.

7.5.10 Let A = (A1, . . . , An) be a family of subsets of {x1, . . . , xm} satisfying
(H′). We define a partial ordering on M = {x1, . . . , xm, A1, . . . , An} by

u ≺ v ⇐⇒ u = xi, v = Aj and xi ∈ Aj ( for suitable i, j).

Let {x1, . . . , xh, A1, . . . , Ak} be an antichain of maximal cardinality s = h+k.
Then k ≤ |A1 ∪ . . . ∪ Ak| ≤ m − h, so that s = h + k ≤ m. By Dilworth’s
theorem, (M,�) can be decomposed into s chains, say

{x1, A1}, . . . , {xi, Ai}, {Ai+1}, . . . , {An}, {xi+1}, . . . , {xm}.
Then s = m + n − i, and hence n = s − m + i ≤ i; this forces n = i, so that
{x1, . . . , xn} is a transversal of A.
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7.7.2 Use Theorem 7.7.3.

7.7.5 We have derived Theorem 7.7.1 from Theorem 6.1.6 by constructing an
appropriate flow network N . If c, a, and d are integral, the capacity function
of N is likewise integral. Thus Theorem 6.1.5 implies that there exists an
integral solution (provided that there are feasible flows).

B.8 Solutions for Chapter 8

8.1.2 Note that each vertex has to have degree at least k if G is k-connected.

8.1.3 Add a new vertex t and all edges xt with x ∈ T to G. It is easy to show
that the resulting graph H is again k-connected: clearly, there is no vertex
separator for H consisting of k − 1 vertices. By Theorem 8.1.1, there are k
vertex disjoint paths from s to t; these paths have to contain all the k edges
xt with x ∈ T . Deleting these edges, we obtain the desired paths in G.

8.1.6 The graph Km,m+1 has connectivity κ = m and independence number
α = m + 1. It cannot be Hamiltonian, since a Hamiltonian cycle would have
length 2m + 1; by Theorem 3.3.5, bipartite graphs do not contain cycles of
odd length.

8.1.7 Using the procedure BLOCK01FLOW of Lemma 6.5.2, we can deter-
mine a maximal 0-1-flow as follows (by analogy with Algorithm 6.3.17). Here
G is a digraph with two special vertices s and t, and val denotes the value of
a maximal flow.

Procedure MAX01FLOW(G, s, t; f, val)

(1) for e ∈ E do c(e) ← 1; f(e) ← 0 od;
(2) val ← 0; N ← (G, c, s, t);
(3) repeat
(4) AUXNET (N, f ; N ′′, max, d);
(5) if max = false then BLOCK01FLOW(N ′′; g); AUGMENT (f, g; f) fi
(6) until max = true;
(7) for e ∈ As do
(8) if f(e) = 1 then val ← val +1 fi
(9) od

The proofs of Theorems 7.1.1 and 7.1.4 imply that the maximal number of
vertex disjoint paths from s to t in G equals the maximal value of a 0-1-flow
on the 0-1-network with underlying digraph H defined during the following
procedure.

Procedure PATHNR(G, s, t; k)

(1) V ′ ← {s, t}; E′ ← ∅;
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(2) for v ∈ V \ {s, t} do V ′ ← V ′ ∪ {v′, v′′}; E′ ← E′ ∪ {v′v′′} od;
(3) for e ∈ E do
(4) if e = sv with v �= t then E′ ← E′ ∪ {sv′} fi;
(5) if e = tv with v �= s then E′ ← E′ ∪ {v′′t} fi;
(6) if e = uv with u, v �= s, t then E′ ← E′ ∪ {u′′v′, v′′u′} fi
(7) od;
(8) H ← (V ′, E′); MAX01FLOW (Hs, t; f, val);
(9) if st ∈ E then k ← val + 1 else k ← val fi

Theorems 7.1.1 and 7.1.4 show that this procedure is correct; note that s and
t are not adjacent in H. If s and t should be adjacent in G, we have to add
one further path from s to t, namely the edge st itself. By Corollary 7.1.5,
PATHNR has complexity O(|V |1/2|E|). Finally, if G is an undirected graph,
we can replace G by its complete orientation (as in the proof of Theorem
7.1.1).

Fig. B.25. A maze with corresponding graph G

8.2.6 Define a graph G which has a vertex for each junction of the maze,
where also the entrance, the exit, and dead ends are viewed as junctions.
The edges of G correspond to those paths in the maze which connect two
consecutive junctions: the end vertices of an edge are the respective junctions.
Figures B.25 and B.26 show the graph G which corresponds to the maze given
in Figure 8.3. The labels of the vertices in Figure B.26 indicate one possible
course for a DFS on G which starts at the entrance of the maze (which is
represented by the vertex labelled 1); the algorithm terminates when the exit
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is reached (that is, at the vertex labelled 64). The corresponding path through
the maze is drawn in Figure B.27; for the sake of simplicity, we have not
included dead ends occurring during the DFS (which have, of course, to be
traversed and then necessitate corresponding backtracking).
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Fig. B.26. A partial DFS on G

Of course, when we designed the above solution, we had a bird’s-eye view
of the maze (and used this knowledge). However, it is not hard to find a rule
which allows us to apply a DFS to a maze without knowing it in its entirety,
provided that it is possible to label junctions and paths when we pass them.
We leave it to the reader to formulate such a rule.5

5In this context, the following quotation from Umberto Eco’s The Name of the
Rose is of some interest; see [Eco83, p. 176]:

At every new junction, never seen before, the path we have taken will be
marked with three signs. If, because of previous signs on some of the paths
of the junction, you see that the junction has already been visited, you will
make only one mark on the path you have taken. If all the apertures of the
junction are still without signs, you will choose any one, making two signs
on it. Proceeding through an aperture that bears only one sign, you will
make two more, so that now the aperture bears three. All the parts of the
labyrinth must have been visited if, arriving at a junction, you never take a
passage with three signs, unless none of the other passages is now without
signs.
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Fig. B.27. A path through the maze

8.3.2 Consider two vertices u and v for which d(u, v) is maximal. If v were
a cut point, then G \ v would consist of two components, so that we could
choose a vertex w which is not contained in the component of u. Then every
path from u to w would have to contain v, so that the distance from w to
u would have to be at least d(u, v) + 1, a contradiction. Therefore v and u
cannot be cut points. On the other hand, a path of length n contains precisely
n − 2 cut points.

8.3.3 Suppose that bc(G) contains a cycle (B1, c1, B2, c2, . . . , Bk, ck, B1).
Then we can remove ck and still reach vertices in B1 from vertices in Bk,
a contradiction. This proves that bc(G) is always acyclic. If G is connected,
also bc(G) is connected, so that bc(G) is a tree. This proves (a).

For claim (b), we may assume that G is connected, so that p = 1. Then
bc(G) is a tree and, hence, contains precisely b(G)+c(G)−1 edges. Each edge
connects a cut point with a block, so that the number of edges equals the sum
of all the b(c) (over all cut points c). Therefore

b(G) + c(G)− 1 =
∑

c

b(c) =
∑

c

1 +
∑

v

(b(v)− 1) = c(G) +
∑

v

(b(v)− 1),

This somewhat chaotic rule contains the basic idea of a depth first search, even
though the hero of the tale, William of Baskerville (who admits that he just recites
‘an ancient text I once read’), obviously confused the labelling rules a bit.
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since each vertex which is not a cut point is contained in precisely one block.
Assertion (c) can be proved in a similar manner.

For (d), we use induction on the number c(G) of cut points. The case
c(G) = 1 is clear. Now assume c(G) > 1. Then bc(G) contains a leaf, and
every leaf B has to be a block; note that the unique edge incident with B
has a cut point c as its other end vertex. Removing B from the graph G
corresponds to removing c and B from bc(G). Now the assertion follows by
induction.

8.3.4 Let b(G) = k. We denote the cardinalities of the blocks by n1, . . . , nk

and the number of vertices of G by n. By Exercise 8.3.3 (b), n1 + . . . + nk =
k + n − 1. By Exercise 8.3.3 (d), a graph with r cut points has to have at
least r + 1 blocks; also, G will have the maximum possible number of edges if
and only if each block is a complete graph on at least two vertices. Thus this
number is given by

max

{
k∑

i=1

(
ni

2

)
: n1 + . . . + nk = n + k − 1; n1, . . . , nk ≥ 2; k ≥ r + 1

}

= max
{

k − 1 +
(

n + k − 1 − (2k − 2)
2

)
: k ≥ r + 1

}
=

(
n − r

2

)
+ r,

which is realized by a graph consisting of Kn−r with a path of length r ap-
pended.
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Fig. B.28. DFS-tree, blocks, and cut points

8.3.10 We obtain the graph shown in Figure B.28, where each vertex v is
labelled with its DFS-number nr(v) and with L(v). Algorithm 8.3.8 yields
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the cut points i, e, s, and h in this order. The blocks are {k, j, i}; {i, e};
{e, f, b, a, s}; {l, h}; and {h, d, g, c, s}. The fat edges are the edges of the DFS
tree, and cut points are indicated by a circle.

8.4.3 As u is reached later than v during the DFS, the examination of u has
to take place during the examination of v.

8.4.4 If a back edge e = vu occurs during the DFS, we obtain a directed
cycle in G, as u is an ancestor of v. Conversely, suppose that G contains a
directed cycle. Let v be the first vertex of G examined during the DFS which
is contained in a directed cycle, and let e = uv be an edge on such a cycle C.
By our choice of v, u is examined later than v during the DFS, so that e is
neither a forward edge nor a tree edge. As u is accessible from v (using C), u
has to be a descendant of v. Thus e cannot be a cross edge either, so that e
must be a back edge.

8.5.2 Choose G to be a directed cycle or the complete orientation of a path.

8.5.3 Obviously, G is strongly connected if every edge is contained in a di-
rected cycle. To prove the converse, let C and C ′ be two distinct strong com-
ponents of G. As G is connected, there exists an edge e connecting a vertex in
C and a vertex in C ′. Then e cannot be contained in a directed cycle, because
that would imply C = C ′.

8.5.8 The vertices h, f , and g each form a strong component with only one
element; the remaining vertices together form a further strong component.

8.5.9 Suppose the strong components C1, . . . , Cm are contained in a cycle of
G′. Then there are edges viv

′
i with vi ∈ Ci and v′i ∈ Ci+1 (where m + 1 is

interpreted as 1). As Ci contains a directed path from v′i−1 to vi, we obtain a
directed cycle, so that C1, . . . , Cm have to be contained in a common strong
component, a contradiction. Therefore G′ has to be acyclic. Figure B.29 shows
G′ for the digraph G of Figure 3.3.

8.5.10 Define a digraph to be strongly k-connected if it is the complete
orientation of Kk+1, or if each set S of vertices for which G\S is not strongly
connected contains at least k vertices. Then the analogues of Theorems 8.1.1
and 8.1.9 hold; in both cases, κ(vi, w) as well as κ(w, vi) have to be calculated.

8.6.2 For k = m = d, we can choose G = Kd+1. For k �= d, we use two copies
of the complete graph Kd+1 on two disjoint vertex sets S and T , together with
2k further vertices x1, . . . , xk, x′

1, . . . , x
′
k and all the edges xix

′
i. Moreover, we

connect each of the xi to d − 1 vertices in S, and each of the x′
i to d − 1

vertices in T . Finally, we add m − k further edges connecting the vertices in
S ∪ {x2, . . . , xk} to some of the x′

i. See Figure B.30.
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s f

h

g

Fig. B.29. Condensed digraph for the digraph of Fig. 3.3

x1

xk

x′
1

x′
k

S

T

Fig. B.30. Solution to Exercise 8.6.2

8.6.3 Let E′ be a minimal edge separator of G. Then G\E′ has two connected
components S and T , and E′ is the cocycle determined by the cut (S, T ). We
may assume x = |S| ≤ n/2. Then E′ has to contain at least xδ − x(x − 1) =
x(δ − x + 1) edges. It is easy to check x(δ − x + 1) ≥ δ if δ ≥ n/2 (for
x = 1, . . . , n/2). The graph consisting of two disjoint copies of Kd (connected
by at most d − 1 edges) shows that nothing can be said for the case δ < n/2.



530 B Solutions

B.9 Solutions for Chapter 9

9.1.5 Let (M0, M1, . . . , Mk = M0) be a sequence of vertices defining a cycle
of length k ≥ 4 in an interval graph, where Mi = (xi, yi) for i = 0, . . . , k − 1.
(The case of closed intervals is similar.) We may assume x0 < x1. If M2M0

is an edge, we have found a chord of the cycle. Otherwise, M2 ∩ M0 = ∅,
M1 ∩ M0 �= ∅, and M2 ∩ M1 �= ∅ imply x1 < y0 ≤ x2 < y1. Thus, if the cycle
does not have a chord, the lower bounds of the intervals Mi have to form a
monotonically increasing sequence. But then Mk−1M0 cannot be an edge, a
contradiction. Hence G must be triangulated.

9.1.10 As induced subgraphs of a bipartite graph are likewise bipartite, it
suffices to prove α(G) = θ(G) for every bipartite graph G. In the bipartite
case, θ(G) = |V | − α′(G), where α′(G) denotes the maximal cardinality of a
matching. Moreover, α(G) = |V | − β(G); see Lemma 7.5.1. Therefore Theo-
rem 7.2.3 yields α(G) = θ(G). (Verifying χ(G) = ω(G) is even easier: both
parameters are 2 in the bipartite case; see Example 9.1.1.)

9.3.1 Clearly, χ′(G) is the minimal number of matchings into which G can
be decomposed. Thus the assertion amounts to showing that a bipartite graph
of maximal degree r can always be decomposed into r matchings, which was
proved in the solution to Exercise 7.4.16.

9.4.6 Clearly, G = G(H, S) is regular of degree k, where k is the cardinality
of S. Given any two elements x and y of H, we have to determine the number
of elements z ∈ H which are adjacent to both x and y. As H acts regularly
on G, we may assume y = 1. By definition, z is adjacent to both 1 and x if
and only if z−1, xz−1 ∈ S. If we put d = z−1 and c = xz−1, we may use (9.1)
to re-write the preceding condition as

x = cd−1, z = d−1 with c, d ∈ S.

Hence the number of elements z of H which are adjacent to both 1 and x
equals the number of quotient representations of x from S. Noting that x is
adjacent to 1 if and only if x ∈ S, one sees that condition (2) in the assertion
holds if and only if G is strongly regular with parameters λ and µ.

B.10 Solutions for Chapter 10

10.1.6 Put b(e) = c(e) = 1 for each directed edge e of G, and replace each
undirected edge e = {u, v} by two directed edges e′ = uv and e′′ = vu with
b(e′) = b(e′′) = 0 and c(e′) = c(e′′) = 1; this defines a directed multigraph H
with capacity constraints b and c. Obviously, every Euler tour of G yields a
feasible circulation on H.
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Conversely, let f be a feasible circulation on H. Let e be an undirected
edge of G. If either f(e′) = 1, f(e′′) = 0 or f(e′′) = 1, f(e′) = 0, we replace e
by e′ or by e′′, respectively. Performing this operation for all undirected edges
yields a mixed multigraph G′ for which the number of directed edges with
start vertex v always equals the number of directed edges with end vertex v.
Then an Euler tour can be constructed using the methods of Chapter 1; cf.
1.3.1 and 1.6.1.

10.1.7 We introduce the following vertices:

• a source s and a sink t;
• a vertex 0 which represents the person selling the napkins;
• vertices 1, . . . , N corresponding to the dirty napkins which are sent off for

cleaning (we assume that all napkins are washed for i ≤ N − n);
• vertices 1′, . . . , N ′ which represent the supply of clean napkins needed for

the N days.

We also add the following edges (with respective capacity constraints):

• e = s0 with b(e) = 0, c(e) = ∞, γ(e) = 0;
• all si with b(si) = c(si) = ri, γ(si) = 0;
• all 0i′ with b(0i′) = 0, c(0i′) = ∞, γ(0i′) = α;
• all e = i(i + m)′ with b(e) = 0, c(e) = ri, γ(e) = β (for i + m > N , the

edge i(i + m)′ has to be interpreted as it, so that the cost of this edge has
to be changed to 0);

• all e = i(i + n)′ with b(e) = 0, c(e) = ri, γ(e) = δ (for i + n > N , the edge
i(i + n)′ has to be interpreted as it, so that the cost of this edge has to be
changed to 0);

• all i′t with b(i′t) = c(i′t) = ri, γ(i′t) = 0;
• all edges e = i′(i + 1)′ with b(e) = 0, c(e) = ∞, γ(e) = 0; these edges

represent the possibility of saving unused napkins for the next day.

10.2.3 As before, we define c′(e) = c(e) − b(e). Moreover, put

c′(sv) =
∑

e+=v
b(e)>0

b(e) −
∑

e−=v
b(e)<0

b(e); c′(vt) =
∑

e−=v
b(e)>0

b(e) −
∑

e+=v
b(e)<0

b(e).

Then Theorem 10.2.1 remains valid without changes: a feasible circulation
on G exists if and only if the maximal value of a flow on N is given by
W =

∑
e b(e).

10.2.6 First determine – if possible – a feasible flow as in Example 10.2.2.
Next, a maximal flow can be found as in Chapter 6. To make sure that this
flow is still feasible, we have to replace the condition f(e) �= 0 in step (10)
of Algorithm 6.3.14 (when constructing the auxiliary network) by f(e) >
b(e) and replace the assignment in step (11) by c′′(e) ← f(e) − b(e). Let us
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denote the resulting procedure by LEGAUXNET. We may now proceed as in
Algorithm 6.3.17. (Note that the algorithm of Ford and Fulkerson with similar
changes would serve the same purpose.) We obtain the following algorithm of
complexity O(|V |3), where we put N = (G, b, c, s, t) and use the FIFO preflow
push algorithm for determining a blocking flow.

Procedure MAXLEGFLOW(N ; legal, f)

(1) Add the edge r = ts to G; b(r) ← 0; c(r) ← ∞;
(2) LEGCIRC(G, b, c; f, legal);
(3) if legal = true then
(4) remove the edge r = ts from G;
(5) repeat
(6) LEGAUXNET(N, f ; N ′′, max, d);
(7) if max = false then BLOCKMKM(N ′′; g); AUGMENT(f, g; f) fi
(8) until max = true
(9) fi

10.2.9 Apply the criterion of Theorem 10.2.7 to the directed multigraph H
defined in the solution to Exercise 10.1.6 (using the capacity functions b and
c given there); this yields the following theorem.
Let G be a connected mixed multigraph. Then G has an Euler tour if and only
if the following two conditions hold:

(i) Each vertex of G is incident with an even number of edges.
(ii) For each subset X of V , the difference between the number of directed

edges e with e− ∈ X and e+ ∈ V \ X and the number of directed edges
e with e+ ∈ X and e− ∈ V \ X is at most as large as the number of
undirected edges connecting X and V \ X.

10.2.10 Similarly to the proof of Theorem 10.2.8, one sees that the minimal
value of a feasible flow is given by

max

⎧⎨
⎩

∑
e−∈S,e+∈T

b(e) −
∑

e+∈S,e−∈T

c(e) : (S, T ) is a cut on N

⎫⎬
⎭ ,

where has c(r) = v and b(r) = −∞ for the return arc r = ts.
To determine a minimal flow, an arbitrary feasible flow can be changed

applying methods similar to those used in Chapter 6. To find a path along
which the value of the flow can be decreased, we admit forward edges e in
the auxiliary network if and only if b(e) < f(e), and backward edges if and
only if f(e) < c(e). Then the bounds on the complexity are the same as in
Chapter 6. We leave the details to the reader.

10.2.11 By Exercise 8.5.3, G is strongly connected if and only if every edge
is contained in a directed cycle. Hence we may show that this criterion is
satisfied if and only if G has a feasible circulation.
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First assume that G has a feasible circulation. Let e = uv be an edge of G,
and let S be the set of all vertices s from which u is accessible. If v /∈ S, then
(S, V \S) is a cut for which all edges of the corresponding cocycle are oriented
from S to V \ S. Such a cut would violate the condition of Theorem 10.2.7,
as b(e) > 0. Therefore there exists a directed path W from v to u. Then e is
contained in the directed cycle u

e
v

W
u.

Conversely, assume that every edge of G is contained in a directed
cycle. Then all cocycles contain edges in both possible directions, so that
the condition of Theorem 10.2.7 is satisfied, since c(e) = ∞ for all e.

Finally, let N be a flow network with c(e) = ∞ and b(e) > 0 for all edges
e. Removing the return arc r = ts, we see that a feasible flow exists if and
only if each edge is contained either in a directed cycle or in a directed path
from s to t.

10.3.4 The first assertion is an immediate consequence of condition (Z1):

f(S, T ) =
∑

e−∈S,e+∈T

f(e) =
∑
v∈S

∑
e−=v,e+∈T

f(e)

=
∑
v∈S

( ∑
e−=v

f(e) −
∑

e−=v,e+∈S

f(e)
)

=
∑
v∈S

( ∑
e+=v

f(e) −
∑

e−=v,e+∈S

f(e)
)

=
∑
v∈S

( ∑
e+=v,e−∈T

f(e) +
∑

e+=v,e−∈S

f(e) −
∑

e−=v,e+∈S

f(e)
)

=
∑

e−∈T,e+∈S

f(e) = f(T, S).

For the second assertion, let f �= 0 be a circulation and consider an edge
e = uv in the support of f . Suppose that e is a bridge. Then G \ e has at
least two connected components S and T , say u ∈ S and v ∈ T . Now e is the
only edge in the cocycle E(S, T ), so that f(S, T ) = f(e) �= 0 and f(T, S) = 0,
contradicting the first assertion.

10.3.7 We may assume that each of the elementary circulations fe in the
proof of Theorem 10.3.6 satisfies the condition fe(e) = 1 (otherwise we mul-
tiply fe by −1). Given an arbitrary circulation f , put

g = f −
∑

e∈G\T

f(e)fe.

Then the support of g is contained in T , and Corollary 10.3.3 yields g = 0.

10.3.8 Denote the vector in Rm corresponding to δq : E → R by δq. Then
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δq =
n∑

i=1

q(vi)ai,

where ai is the i-th row of A (corresponding to the vertex i). Now P corre-
sponds to the row space of A, and Theorem 4.2.4 yields dim P = rank A =
n − p. This shows part (a).

For part (b), let (S, T ) be a cut of G. We put q(v) = 1 for v ∈ S, and
q(v) = 0 for v ∈ T . Then δq(e) = +1 or = −1 for all edges e contained in the
cocycle corresponding to (S, T ), and δq(e) = 0 for all other edges.

Finally, let T be a spanning tree and T ′ the corresponding cotree: T ′ =
E \T . Consider any edge e ∈ T . By Lemma 4.3.2, there exists a unique cut for
which the corresponding cocycle Ce contains only edges in T ′, except for e.
By part (b), there is a potential difference δqe for Ce whose support consists
precisely of the edges of Ce. Thus the δqe with e ∈ T are n − 1 linearly
independent potential differences; in view of part (a), they have to form a
basis of P : as G is connected, p = 1.

10.4.4 For any feasible circulation, the integer

M =
∑

e
γ(e) > 0

γ(e)c(e) +
∑

e
γ(e) < 0

γ(e)b(e)

is an upper bound for the cost. Defining m as in the proof of Lemma 10.4.2,
M − m is an upper bound for the number of iterations needed.

10.5.4 We first consider the problem of determining the optimal cost γ(v),
where M is the maximal value of a flow on N and v ≤ M a real number.
Denote the largest integer ≤ v by w, and let f be an optimal flow of value w
constructed by Algorithm 10.5.2. Moreover, let W be an augmenting path of
least possible cost from s to t in the auxiliary network N ′(f) with respect to
the cost function γ′. As W has integral capacity, f can be augmented along
W by δ = v − w < 1 with cost δγ′(W ). It can be shown that the resulting
flow of value v is optimal (proceed as in the proof of Lemma 10.5.1).

Thus the cost function is linear between any two integers w and w + 1.
As the cost of an augmenting path is always nonnegative, the cost function
is also monotonically increasing. Finally, for any two feasible flows f and f ′

of values v and v′, respectively, and for each λ with 0 ≤ λ ≤ 1, the linear
combination λf +(1−λ)f ′ is a feasible flow with value λv +(1−λ)v′, so that

γ(λv + (1 − λ)v′) ≤ λγ(v) + (1 − λ)γ(v′).

Hence the cost function is a monotonically increasing, piecewise linear, convex
function.

10.5.5 By Example 10.1.4, the assignment problem can be reduced to the
determination of an optimal flow of value n on a flow network with 2n + 2
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vertices. As all capacities are integral (actually, they are always 1) and as
the cost function is nonnegative, the algorithm of Busacker and Gowen can
be used for determining an optimal flow with complexity O(|V |2n) = O(n3),
by Theorem 10.5.3. Hence the assignment problem has complexity at most
O(n3); it will be studied more thoroughly in Chapter 14.

10.6.2 The following procedure provides a possible solution:

Procedure RESIDUAL(G, c, f ; H)

(1) E′ ← ∅;
(2) for e ∈ E do
(3) if c(e) > f(e) then E′ ← E′ ∪ {e} fi
(4) od;
(5) H ← (V, E′)

10.6.8 Let f be an ε-optimal pseudoflow on (G, c) with respect to the cost
function γ. We construct the auxiliary graph Hf described in the proof of
Theorem 10.6.6 with cost function γ(ε), and proceed by determining an SP-
tree for (Hf , γ(ε)) using the procedure SPTREE given in Exercise 3.9.3; then
the desired potential is just the distance function in this network, by Corol-
lary 10.6.7. The procedure below does the job; here s is a vertex not contained
in G.

Procedure POTENTIAL(G, c, γ, f, ε; p)

(1) RESIDUAL(G, c, f ; H);
(2) V ∗ ← V ∪ {s}; E∗ ← E′;
(3) for e ∈ E do γ∗(e) ← γ∗(e) + ε od;
(4) for v ∈ V do E∗ ← E∗ ∪ {sv}; γ∗(sv) ← 0 od;
(5) H∗ ← (V ∗, E∗);
(6) SPTREE (H∗, γ∗, s; p, q, neg, T )

Note that p is the required distance function dT in the arborescence T ; the
remaining output variables (that is, the predecessor function q for the SP-tree
T and the Boolean variable neg) are not actually needed here. We could, of
course, use the condition neg = false to check whether the given pseudoflow
is indeed ε-optimal; see Theorem 10.6.6.

10.6.13 In the following procedure, s is a vertex not contained in H, and
n − 1 denotes the number of vertices of H.

Procedure MEANCYCLE(H, w; µ, C)

(1) TOPSORT (H; topnr, acyclic);
(2) if acyclic = true
(3) then µ ← ∞
(4) else V ∗ ← V ∪ {s}; E∗ ← E; F (0, s) ← 0;
(5) for v ∈ V do



536 B Solutions

(6) E∗ ← E∗ ∪ {sv};
(7) w(sv) ← 0; F (0, v) ← ∞
(8) od;
(9) for k = 1 to n do

(10) for v ∈ V ∗ do
(11) F (k, v) ← min {F (k − 1, u) + w(uv) : uv ∈ E}
(12) q(k, v) ← u, where u ∈ V is an element such that

F (k − 1, u) + w(uv) = min {F (k − 1, x) + w(xv) : xv ∈ E};
(13) od;
(14) od;
(15) for v ∈ V ∗ do

(16) M(v) ← max
{

F (n,v)−F (k,v)
n−k : k = 0, . . . , n − 1

}
(17) od;
(18) choose v with M(v) = min {M(x) : x ∈ V };
(19) µ ← M(v);
(20) determine a walk W of length F (n, v) from s to v which consists

of n edges;
(21) determine a cycle C contained in W
(22) fi

To prove that this procedure is correct, we use the proofs of Theorem 10.6.11
and Corollary 10.6.12. The procedure TOPSORT checks – according to The-
orem 2.6.6 – whether H∗ (and hence H) is acyclic; in this case, µ is set to ∞.
Otherwise, H contains directed cycles, and the for-loop in steps (9) to (14)
determines the minimal length F (k, v) of a directed walk from s to v consist-
ing of precisely k edges (for all k and v); this is done recursively. Then, in steps
(15) to (19), the minimum cycle mean µ of a directed cycle in H is calculated
in accordance with Theorem 10.6.11. Now consider – as in the proof of The-
orem 10.6.11 – the changed weight function w′ defined by w′(e) = w(e) − µ
for all e ∈ E. The second part of the proof of Theorem 10.6.11 shows that the
corresponding values F ′(k, v) and the vertex v chosen in step (18) satisfy the
condition

max
{

F ′(n, v) − F ′(k, v)
n − k

: k = 0, . . . , n − 1
}

= 0.

Thus the network (H, w′) has minimum cycle mean 0. Now the first part of the
proof of Theorem 10.6.11 shows that F ′(n, v) = F (n, v) − nµ is the shortest
length of a directed walk from s to v (and therefore the distance from s to v)
in (H∗, w′). In step (20), a directed walk W from s to v having this length and
consisting of n edges is determined; this is done recursively using the function
q(k, v) defined in step (12): the last edge of W is uv, where u = q(n, v); the
edge before the last is u′u, where u′ = q(n, u) and so on.

As W consists of precisely n edges, W has to contain a directed cycle C
which is determined in step (21): this can be implemented, for example, by
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a labelling process while W is traced from s to v. Then W \ C is a directed
walk from s to v as well, which must have length at least F ′(u, v) in (H∗, w′).
Therefore w′(C) has to be 0; otherwise, w′(C) would be positive because of
µ′ = 0, so that w′(W \ C) < w′(W ). Hence w(C) = µ.

10.6.15 Using Exercise 10.6.13 and Theorem 10.6.14, we obtain the following
procedure:

Procedure TIGHT (G, c, γ, f ; ε)

(1) RESIDUAL(G, c, f ; H);
(2) MEANCYCLE(H, γ; µ, C);
(3) if µ ≥ 0 then ε ← 0 else ε ← −µ fi

10.8.9 Define the function Φ as given in the hint. At the beginning of Algo-
rithm 10.8.1, Φ ≤ |V |, since the admissible graph GA does not contain any
edges at this point, so that Φ(v) = 1 holds trivially for all vertices.

A saturating PUSH-operation, say PUSH(u, v), can increase Φ by at most
Φ(v) ≤ |V | (if v becomes active by this operation), so that all the satu-
rating PUSH-operations together can increase Φ by at most O(|V |2|E|), by
Lemma 10.8.7. A RELABEL(v)-operation might add new edges of the form
vu to GA, so that Φ is increased by at most |V |. Note that RELABEL(v)
does not change the values Φ(w) for w �= v: as we saw in the proof of Lemma
10.8.8, GA does not contain any edges with end vertex v after this operation.
By Lemma 10.8.6, all the RELABEL-operations together can increase Φ by
at most O(|V |3); this value is dominated by O(|V |2|E|).

It remains to consider the non-saturating PUSH-operations. Such a
PUSH(u, v) makes u inactive, whereas v might become active; thus it decreases
Φ by Φ(u), and possibly increases Φ by Φ(v). However, Φ(u) ≥ Φ(v)+ 1, since
each vertex in GA which is accessible from v is accessible from u as well, and
since u is not accessible from v (as GA is acyclic by Lemma 10.8.8). Note that
a PUSH-operation does not add any edges to GA according to the proof of
Lemma 10.8.8. Thus each non-saturating PUSH decreases Φ by at least 1. It
follows that the total number of non-saturating PUSH-operations is bounded
by the total increase of Φ during the algorithm, which is O(|V |2|E|).

10.9.6 The circulation f constructed during the initialization of Algorithm
10.9.1 is clearly C-optimal, so that ε(f0) ≤ C. By Lemma 10.9.3, |E| consec-
utive iterations decrease ε(f) by at least a factor of 1−1/|V |. Theorem 10.6.5
guarantees that the algorithm terminates with an optimal circulation f as
soon as ε(f) becomes smaller than 1/|V |; hence it suffices to decrease ε(f) by
a total factor of value < 1/C|V |. By Theorem 10.6.4, |E||V | consecutive iter-
ations always decrease ε(f) by at least a factor of 1/2, so that the algorithm
has to terminate with an optimal circulation after at most O(|V ||E| log C|V |)
iterations.
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B.11 Solutions for Chapter 11

11.3.3 First assume xv ∈ E′, that is, d(v) +
∑

e+=v b(e) −∑
e−=v b(e) < 0.

With g(e) = b(e) for all e ∈ E, the demand restriction for v yields

d(v) = d′(v) = g(xv) +
∑

e+=v

g(e) −
∑

e−=v

g(e)

= g(xv) +
∑

e+=v

b(e) −
∑

e−=v

b(e),

and hence

g(xv) = d(v) −
∑

e+=v

b(e) +
∑

e−=v

b(e) = c′(xv) − 1.

Thus indeed g(xv) = h(xv), where h is the admissible flow defined in the
first part of the proof of Theorem 11.3.1. Similarly, one checks g(vx) = h(vx)
whenever vx ∈ E′.

B.12 Solutions for Chapter 12

12.1.4 As the proof of Theorem 12.1.1 shows, every maximal spanning tree
for (G, w) is also an equivalent flow tree for N = (G, c). Conversely, let T be
an equivalent flow tree for N . Note that the flow value wT (x, y) between x and
y in the network (T, w|T ) equals the capacity w(Pxy) of the unique path Pxy

from x to y in T . By hypothesis, wT (x, y) = w(x, y) for all x, y ∈ V , which
implies that Pxy is a path of maximal capacity from x to y in the network
(G, w). By Exercise 4.5.6, T is a maximal spanning tree for (G, w).

12.1.5 We use induction on the number n of vertices. The case n = 2 is
trivial. Thus let n ≥ 3. Choose a pair (x, y) of vertices such that w(x, y) is
maximal, and remove one of these vertices, say x. By the induction hypothesis,
the smaller flow network on G \ x can be realized on a path P , say

P : x1 x2 . . . xn−1,

where y = xi. We insert x after y in P and denote the resulting path by P ′.
As w(x, y) is the largest flow value on N , the flow values realized before on
G \ x are not changed by this operation. Clearly, we also obtain the correct
flow value w(x, y) between x and y.

It remains to consider w(x, z) for a vertex z with z �= x, y. Then w(x, z) =
w(y, z): the inequality (12.1) of Theorem 12.1.1 shows

w(x, z) ≥ min {w(x, y), w(y, z)} = w(y, z);



B.12 Solutions for Chapter 12 539

similarly, w(y, z) ≥ w(x, z). As P realizes all flow values w(y, z) correctly, P ′

yields the correct values w(x, z).
Applying this technique recursively, we obtain from the network of Figure

12.1 the flow networks on smaller trees shown in Figure B.31 (in the order
shown there). These smaller flow networks can be realized (beginning with
the trivial path on two vertices) on the paths shown below the corresponding
tree.
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Fig. B.31. Recursive realization of a flow network on a path

12.3.5 For the graph in Example 12.3.1, u(a) = 13, u(b) = 13, u(c) = 12,
u(d) = 12, u(h) = 13, u(g) = 15, u(f) = 15, and u(e) = 11. As shown in
the proof of Theorem 12.3.4, the increased flow requirements which can be
realized with the minimal capacity of 52 given by r (see Figure 12.11) are
s(x, y) = min {u(x), u(y)}. Using this weight function on K yields the same
dominating tree T as in Example 12.3.1; only the weights differ, see Figure
B.32.
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Fig. B.32. Dominating tree T
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Fig. B.33. Partitioning T into uniform trees
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We decompose T into the uniform trees U1, . . . , U4 shown in Figure B.33 and
construct corresponding cycles, say C1 = (a, b, c, d, e, f, g, h, a) with weight
11/2, C2 = (a, b, c, d, f, g, h, a) with weight 1/2, C3 = (a, b, f, g, h, a) with
weight 1/2, and the edge C4 = (g, f) with weight 2 (recall the order of the
vertices is arbitrary); this yields the dominating network N shown in Figure
B.34. Note that N indeed allows higher flow values: for example, w(a, c) = 12,
whereas the network of Figure 12.11 gives a flow between a and c of value 8
only.
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Fig. B.34. A dominating network
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Fig. B.35. Solution to Exercise 10.4.9

12.4.9 The network for the given values of the request function is shown in
Figure B.35. By Theorem 12.4.6, we have to determine a cut tree T for (G, r);
this is done using Algorithm 12.4.2. After initializing T as a star with center
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1, we obtain s = 2, t = 1, w = 18, and s = {2, 3, 4, 5, 6}, so that f(s) = 2.
The vertices 3, 4, 5, and 6 are then cut off from 1 and connected to 2 instead.

Next we have s = 3, t = 2, w = 13, and S = {3, 4, 5}. We set f(3) = 13,
cut off the vertices 4 and 5 from 2, and connect them to 3 instead. For s = 4,
we get t = 3, w = 14, and S = {4}. The tree T is not changed during this
iteration, we just set f(4) = 14.

Next s = 5, t = 3, w = 15, and S = {4, 5, 6}. The vertices 3, 4, and 5 are
removed from T , s = 5 is then connected to p(t) = p(3) = 3, and 3 and 4 are
connected to 5. Also, f(5) is now given the value f(t) = f(3) = 13, and f(3)
is changed to w = 15.

In the final iteration, s = 6, t = 2, w = 17, and S = {3, 4, 5, 6}. We set
f(6) = 17, and cut off 5 from 2 and re-connect it to 6. The resulting tree with
weight 77 solves Problem 12.4.4 for the given request function r. Figure B.36
illustrates how the algorithm works.
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Fig. B.36. Determining a cut tree for N



B.12 Solutions for Chapter 12 543

12.5.2 The relevant part of the auxiliary network corresponding to the flow
g of Figure 12.16 is drawn in Figure B.37; the fat edges form an augmenting
path with cost 3 and capacity 15. Increasing the capacity of both sb and ct by
θ (for θ = 1, . . . , 15), we obtain a flow of value v = 41 + θ. The total cost for
the corresponding increase of the capacity is 20 + 3θ. In particular, we obtain
the flow h of value 56 and cost 65 shown in Figure B.38.
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Fig. B.38. Flow h of value 56

The next step yields the auxiliary network shown in Figure B.39; again, the
fat edges form an augmenting path, now with cost 4 and unlimited capacity.
Thus we can now realize any flow value v = 56 + τ with total cost 65 + 4τ
by increasing the capacity of each of the edges sb, bc, and ct by τ . Note that
there are other paths of cost 4 in the auxiliary network of Figure B.39, but the
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capacity of these paths is limited. We have now determined the cost function
z(v) completely (by executing the iteration step of the algorithm of Busacker
and Gowen three times).
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Fig. B.39. Auxiliary network for h

B.13 Solutions for Chapter 13

13.1.2 Let H be the graph which results from adding the edges of the com-
plete graph on T to G. Clearly, G has a perfect matching if and only if H
does. Thus it suffices to show that condition (H) holds for G if and only if (T)
holds for H. Put n = |S| = |T |.

First assume the validity of (H) for G. Given any subset X of V , we have
to show p(X) ≤ |X|. This is clear for X = ∅, as H is connected and contains
precisely 2n vertices.

Next we consider the case where X ⊂ T and X �= ∅, and put J = T \ X.
Then the components of H \ X are the set Y = J ∪ Γ (J) and the singletons
corresponding to the elements of S \ Γ (J). If |Y | is even, we have p(X) =
n−|Γ (J)| and |X| = n−|J |. Now (H) implies |Γ (J)| ≥ |J |, so that p(X) ≤ |X|
holds, as desired. If |Y | is odd, |Γ (J)| ≥ |J | actually forces |Γ (J)| ≥ |J | + 1,
and the assertion follows in the same manner.

It remains to consider the case where X is not a subset of T . If T ⊂ X,
the assertion holds trivially. Otherwise, let X ′ = T ∩ X and put J = T \ X,
so that the components of H \ X are the set J ∪ Γ (J) and the singletons
corresponding to the elements of S \ Γ (J). This implies

p(X) ≤ p(X ′) + 1 ≤ |X ′| + 1 ≤ |X|,

as required.
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Conversely, assume the validity of condition (T) for H. Then one may
check that (H) holds for G using a similar – actually easier – argument.

13.1.3 Let S be a subset of V , and denote the odd components of G \ S by
V1, . . . , Vk. Moreover, let mi be the number of edges connecting a vertex in
Vi to a vertex in S (for i = 1, . . . , k). Since G does not contain any bridges,
always mi �= 1. As G is 3-regular,

∑
v∈Vi

deg v = 3|Vi| for i = 1, . . . , k, so that

mi =
∑
v∈Vi

deg v − 2|Ei|

is an odd number (where Ei denotes the edge set of the graph Gi induced on
Vi). Hence always mi ≥ 3, which yields

p(S) = k ≤ 1
3
(m1 + . . . + mk) ≤ 1

3

(∑
v∈S

deg v
)

= |S|.

Thus condition (T) is satisfied, and the assertion follows from Theorem 13.1.1.
Figure B.40 shows a 3-regular graph containing bridges; this graph cannot

have a perfect matching, as p({v}) = 3. Finally, the Petersen graph defined
in Exercise 1.5.9 is a 3-regular graph without bridges which does not admit a
1-factorization.

v

Fig. B.40. A 3-regular graph without a perfect matching

13.2.5 Let C be a Hamiltonian cycle in a graph G on 2n vertices. Choosing
every other edge of C, we obtain a perfect matching of G. Thus every Hamil-
tonian graph having an even number of vertices admits a perfect matching.
Hence the two proposed criteria are indeed sufficient for the existence of a
perfect matching of G, by Corollary 1.4.3 and Exercise 1.4.4.
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13.2.6 We show first that G is 2-connected. Suppose otherwise. Then there
exists a cut point v, so that G \ v has two components X and Y . Choose an
edge of the form vx with x ∈ X and extend it to a perfect matching K. Then
|Y | has to be even and X has to be odd. However, the same argument also
shows that |Y | is odd and |X| is even, a contradiction.

Assume first that G is bipartite, say V = S
·∪ T . Suppose there are non-

adjacent vertices s ∈ S and t ∈ T , and let P be a path from s to t. As P has
odd length, choosing the first, the third, . . . , and the last edge of P gives a
matching M . By hypothesis, M can be extended to a perfect matching M ′.
Then M ′⊕P is a matching whose only exposed vertices are s and t. As s and
t are not adjacent, this matching cannot be extended, a contradiction. Thus
necessarily G = Kn,n in the bipartite case.

It remains to consider the case where G is not bipartite. We show first
that each vertex is contained in a cycle of odd length. Let v be a vertex of G,
and let C be an arbitrary cycle of odd length; note that such a cycle exists
by Theorem 3.3.5. We may assume that v is not contained in C. As G is
2-connected, Exercise 8.1.3 guarantees the existence of two paths P and P ′

with start vertex v and end vertex some vertex of C, which share only the
vertex v. Thus these two paths together with the appropriate path in C which
connects the two end vertices of P and P ′ form the desired cycle of odd length
through v.

Now suppose that G contains two vertices u and v which are not adjacent.
We claim that u and v are connected by a path of odd length. To see this,
choose a cycle C of odd length containing v. If u is contained in C, the claim
is clear. Otherwise, choose a path P with start vertex u and end vertex w �= v
on C which does not contain any further vertices of C. Then P together with
the appropriate path in C which connects w and v gives the required path of
odd length from u to v. Now we obtain a contradiction just as in the bipartite
case, and hence necessarily G = K2n.

13.4.2 To simplify matters, we will make use of the inherent symmetry of
the graph shown in Figure 13.9 and consider only its right half: we restrict
attention to the subgraph G induced on the set {r, s, 1, 2, 3, 4, 5, 6}. The left
half – which is isomorphic to the right half – can be treated in the same way,
and a final augmenting path arises by joining the two individual augmenting
paths via the matching edge ss′.

Beginning the procedure at r yields the alternating tree T shown in Figure
B.41. When examining the edge 26, the blossom B = {2, 5, 6} with base
2 is discovered and contracted. We obtain the graph G′ = G/B and the
corresponding contracted tree T ′ = T/B shown in Figure B.42.

Next we examine the pseudovertex b and find the blossom B′ = {r, 1, 3, 4, b}
with base r (because of edge 64). Contracting this blossom yields the graph
G′′ = G′/B′ which consists of the edge b′s only. This edge forms a trivial
augmenting path P ′′. Expanding this path starting at s gives the augmenting
path
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P ′ : s 1 b 4 3 r

in G′ and finally the augmenting path

P : s 1 2 5 6 4 3 r

in G.

6

5

2 4

1 3

r

Fig. B.41. Alternating tree T for G
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r

b

1
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3

r

Fig. B.42. Contracted graph G/B with corresponding tree T/B

13.4.5 The graph G of Figure 13.19 is drawn again in Figure B.43. Obviously,
1 2 3 5 is an augmenting path in G with respect to M . Contracting
the blossom B = {2, 3, 4}, we obtain the graph G′ = G/B shown also in
Figure B.43; this graph has the matching M ′ = {b6}. Clearly, G′ does not
contain an augmenting path with respect to M ′.

13.4.8 Let H be the graph with vertex set V = {1, . . . , n} which has an
edge ij if and only if ij′ (and then also ji′) is an edge of G (for i �= j). Then
matchings in H consisting of k edges correspond to symmetric matchings in G
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with 2k edges. Thus a maximal symmetric matching of G can be determined
using Algorithm 13.4.6 with complexity O(n3).6

5

3

2

1

4

6

5 6

b

1

Fig. B.43. Graph G and contracted graph G/B

13.5.3 Let G be the bipartite graph on V = S
·∪ T corresponding to A =

(A1, . . . , An) (as defined in Section 7.3). Obviously, the partial transversals
of A are precisely those subsets of S which are met by a matching of G.
Therefore the partial transversals of A form a matroid by Corollary 13.5.2.

13.5.4 As the maximal matchings of G induce the bases of the matching
matroid (V,S), the assertion follows from Theorem 5.2.6. Alternatively, we
may use Theorem 13.2.2: extending a matching using an augmenting path (as
in the proof of Theorem 13.2.2) leaves any saturated vertex saturated, so that
the assertion follows by induction.

B.14 Solutions for Chapter 14

14.1.2 Proceeding as outlined in Section 14.1, we obtain:

Procedure OPTMATCH(n, w; M, D)

(1) W ← max {wij : i, j = 1, . . . , n};
(2) V ← {1, . . . , n} ∪ {1′, . . . , n′} ∪ {s, t};
(3) E ← {ij′ : i, j = 1, . . . , n} ∪ {si : i = 1, . . . , n} ∪ {j′t : j = 1, . . . , n};
(4) G ← (V, E);
(5) for i = 1 to n do
(6) γ(si) ← 0; γ(i′t) ← 0; for j = 1 to n do γ(ij′) ← W − wij od

6The work of Kocay and Stone and Fremuth-Paeger and Jungnickel mentioned
at the beginning of this chapter uses the reverse approach: a symmetric bipartite
graph G and an associated network are used for constructing a maximal matching
in the corresponding graph H.
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(7) od;
(8) for e ∈ E do c(e) ← 1 od;
(9) OPTFLOW(G, c, s, t, γ, n; f, sol);

(10) M ← {ij′ : f(ij′) = 1}; D ←∑
e∈M w(e)

To achieve a complexity of O(n3), we have to use the algorithm of Dijkstra
for determining the shortest paths in step (7) of OPTFLOW, as explained in
Section 10.5).

14.2.6 During the first four phases, we obtain (without any changes) the
edges {1, 4′}, {2, 9′}, {3, 6′}, and {4, 1′} (in this order). Even the feasible
node weighting (u,v) remains unchanged.

During the fifth phase (where i = 5), the only vertex j′ with δj = 0 is 9′,
which is saturated already. Nothing is changed by i = 2, because mate(9′) = 2
is the smallest vertex in Q. Next, for i = 6, we find the edge {6, 3′}. Similarly,
during the phases 6 and 7, the edges {7, 8′} and {8, 7′} are constructed. Up
to this point, (u,v) was not changed.

During phase 8, we have i = 5, i = 2 (because of δ9 = 0, mate(9′) = 2),
i = 9, and i = 7 (because of δ8 = 0, mate(8′) = 7). Now J = {2, 5, 7, 9},
K = {8′, 9′}, and δ = 1, so that the ui and vj have to be changed. We
obtain the exposed vertex 5′ with δ5 = 0, and the edge {9, 5′} is added to the
matching constructed so far.

The ninth (and last) phase is the most involved one. Again, we first have
i = 5, i = 2, and i = 7. Then (u,v) has to be changed according to J =
{2, 5, 7}, K = {8′, 9′}, and δ = 2. Then δ4 = 0 and mate (4′) = 1, so that i = 1.
Again, (u,v) has to be changed, this time for J = {1, 2, 5, 7}, K = {4′, 8′, 9′}
and δ = 3. Three more changes of (u,v) follow: for J = {1, 2, 4, 5, 7}, K =
{1′, 4′, 8′, 9′}, δ = 1; J = {1, 2, 4, 5, 7, 9}, K = {1′, 4′, 5′, 8′, 9′}, δ = 2; and
J = {1, 2, 4, 5, 7, 8, 9}, K = {1′, 4′, 5′, 7′, 8′, 9′}, δ = 5. Now 2′ is exposed and
we can complete the matching by adding the edge {5, 2′}.

We show the values for (u,v) below; the entries corresponding to edges
used in the construction are in bold type. Note that indeed w(M) =

∑
(ui+vi)

(= 603) holds.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 31 24 80 62 39 24 41 42
31 0 0 34 54 5 51 45 61
24 0 0 31 32 59 28 44 25
80 34 31 0 65 45 25 44 47
62 54 32 65 0 38 48 66 68
39 5 59 45 38 0 8 25 18
24 51 28 25 48 8 0 71 66
41 45 44 44 66 25 71 0 69
42 61 25 47 68 18 66 69 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

69
47
59
72
54
59
57
66
61

8 0 0 11 7 0 5 14 14 v\u
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Note that the matching consisting of the edges {1, 4′}, {2, 5′}, {3, 6′}, {4, 1′},
{5, 9′}, {6, 3′}, {7, 8′}, {8, 7′}, and {9, 2′} is optimal as well.

14.2.7 The algebraic assignment problem for the ordered semigroup
(R+

0 , min) yields the bottleneck assignment problem.

14.2.8 During the first two phases, the edges {1, 3′} and {2, 4′} are found. In
phase 3, first i = 3 and δ4 = 1; as mate(4′) = 2, then i = 2, and we find the
exposed vertex 5′ with δ5 = 1. Thus the present matching is changed using
p(5) = 2, mate(2) = 4′, and p(4) = 3; we obtain the edges {1, 3′}, {2, 5′}, and
{3, 4′}.

In phase 4, the current matching is enlarged by the edge {5, 2′}. During
the final phase, (u,v) has to be changed twice: first with J = {2, 3, 4}, K =
{4′, 5′}, and δ = 5/4; and then with J = {2, 3, 4, 5}, K = {2′, 4′, 5′}, and
δ = 36/35. The matching is changed once again; we get the solution

M = {{1, 3′}, {2, 5′}, {3, 1′}, {4, 4′}, {5, 2′}} .

The corresponding entries are set bold in the matrix below. We also check our
calculations: w(M) =

∏
(ui, vi) = 15120.

⎛
⎜⎜⎜⎜⎝

3 8 9 1 6
1 4 1 5 5
7 2 7 9 2
3 1 6 8 8
2 6 3 6 2

⎞
⎟⎟⎟⎟⎠

9
35/9

7
56/9
35/6

1 36
35 1 9

7
9
7 v\u

Note that this product-optimal matching accidentally coincides with the op-
timal matching of Example 14.2.5; as Exercise 14.2.10 shows, this really is
exceptional.

14.2.9 Denote the given weight matrix by W = (wij) and put W ′ = (log wij).
Then the product-optimal matchings with respect to W are precisely the
optimal matchings with respect to W ′.

However, this transformation is not of practical interest. When execut-
ing calculations with W ′ using a computer, errors occur because of rounding
(logarithms are irrational in general), and this means we cannot check our
solution by comparing w′(M) with

∑
(u′

i + v′i).
Alternatively, we might consider doing all calculations symbolically, so that

we perform operations such as replacing log p+log q with log pq. But then we
may as well use the version of the Hungarian algorithm modified for (R+, ·).
Nevertheless, the above transformation at least yields an immediate proof for
the correctness of this approach.
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14.2.10 For the matrix ⎛
⎝ 3 1 1

1 4 5
6 1 4

⎞
⎠ ,

the matching given by the bold entries has weight 12 = 1 + 5 + 6 and is
obviously optimal. However, it is not product-optimal. On the other hand,
the matching corresponding to the entries in the main diagonal is product-
optimal but not optimal.

14.3.2 First let A be the incidence matrix of a digraph G. By Lemma 10.3.1,
the vector f = (fe)e∈E gives a circulation if and only if AfT = 0. Therefore
we get the ILP

minimize γxT subject to AxT = 0T , b ≤ x ≤ c.

For the second part, let T be a spanning tree of a graph G on n vertices.
As T contains n − 1 edges and is acyclic, we can use the following ZOLP:

maximize wxT subject to 1xT = n − 1 and
∑

e∈C

xe ≤ |C| − 1,

where x = (xe)e∈E and where C runs over all cycles in G. This approach is
not interesting in practice, as the ZOLP will (in general) contain far too many
inequalities.

14.4.6 Let G be a regular bipartite multigraph with vertex set V = S
·∪ T ,

where |S| = |T | = n. We define the adjacency matrix A = (aij)i,j=1,...,n of
the multigraph G as follows: aij is the number of edges of G with end vertices
i and j′, where we assume S = {1, . . . , n} and T = {1′, . . . , n′}.

Thus A is a matrix with nonnegative integral entries, and its row and
column sums are constant. By Theorem 7.4.5, we can write A as a sum of
permutation matrices. As each permutation matrix corresponds to a 1-factor
of G, the decomposition of A yields a 1-factorization of G.

14.4.7 Obviously, L(G) ⊂ H(G) ∩ ZE . Now let x be a vector in H(G) ∩ ZE ,
and choose some positive integer k which is larger than the absolute value of
x. Then x′ = x +

∑
km is likewise an element of H(G) ∩ ZE , where m runs

over the incidence vectors of the perfect matchings of G. Moreover, x′ ≥ 0.
We now define a regular bipartite multigraph G′ by replacing each edge

e of G with x′
e parallel edges. Note that G′ is indeed regular, since x′ is

contained in H(G). By Exercise 14.4.6, G′ can be decomposed into 1-factors.
As each 1-factor of G′ induces a 1-factor of G, we see that x′ has to be a linear
combination of incidence vectors of perfect matchings of G with nonnegative
integral coefficients, so that also x = x′ −∑

km is contained in L(G).

14.5.6 Every closed walk of G which contains each edge at least once induces
a circulation f on G: define fe as the number of times e occurs in the given
walk. Note f ≥ 1.
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Conversely, every circulation f with f ≥ 1 induces a closed walk on G which
contains all edges: replace each edge e with fe parallel edges. By Theorem
1.6.1, the resulting pseudosymmetric digraph contains an Euler tour, which
induces the desired walk.

Note that G is obviously connected. Thus a shortest directed closed walk
corresponds to an optimal circulation with respect to the capacity constraints
b(e) = 1 and c(e) = ∞ and the cost γ(e) = w(e) (for all e ∈ E). Thus the
directed CPP can be solved using the algorithm OPTCIRC from Section 10.7.

14.6.5 W : s c t is a shortest {s, t}-path (of length −1). The correspond-
ing f -factors are

F = {{a, a}, {b, b}, sc, ct} and F ′ = {{a, a}, {b, b}, sc, ct, cgbg, aebe} ,

and the corresponding perfect matching is M = {a′a′′, b′b′′, sc′, c′′t, aebe, cgbg}.

14.6.6 If (G, w) contains cycles of negative length, the method is not ap-
plicable, as the proof of Lemma 14.6.1 shows. (The construction would yield
a path from s to t together with – possibly negative – cycles.) This is not
surprising, since the problem of finding a shortest path is then NP-hard; see
Appendix A or [GaJo79].

14.6.9 Use the following modification of the transformation described in
Theorem 14.6.7: each edge of the form tv is now replaced by an edge tv′′

(instead of tv′), and an eventual edge st is removed.

b c

s t

a

u v

Fig. B.44. A path of even length in G
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For the graph G of Example 14.6.8, the even {s, t}-path

W : s u v a t

corresponds to the perfect matching

M = {su′, u′′v′′, v′a′, a′′t, b′b′′, c′c′′}
in the auxiliary graph G′′; see Figures B.44 and B.45.

b′ c′

b′′ c′′

s t

a′

a′′u′

u′′

v′

v′′

Fig. B.45. The corresponding perfect matching in G′′

14.7.2 Define the weight function w on H as follows:

we =

⎧⎨
⎩

0 for e /∈ E
c − 1 for e ∈ E1

c for e ∈ E \ E1.

Now let M be an optimal matching of H with respect to this weight function.
Then M consists exclusively of edges of G if and only if w(M) ≥ n(c−1), where
|V | = 2n. In this case, the number of edges of M contained in E1 is cn−w(M).
Thus the problem RPM1 has a solution if and only if cn − w(M) ≤ b1.
By Result 14.4.5, w(M) can be determined with complexity O(n3), and the
assertion follows.

14.7.4 Put E1 = R, E2 = E \ R, b1 = b, and b2 = n − b (where |V | = 2n).
The perfect matchings of G which satisfy condition (14.10) of Problem 14.7.1
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for these values are precisely the desired solutions of EPM, since every perfect
matching contains exactly n edges.

B.15 Solutions for Chapter 15

15.2.2 Consider an edge e of smallest weight in a perfect matching M of
minimal weight, say e = ij with weight wij . In the symmetric case, wij = wji.
If the remaining weights are much larger, also the edge ji will belong to M .
Hence it is more likely that a pair of antiparallel edges occurs in the symmetric
case than in the asymmetric case.

15.2.5 Let T be the minimal spanning tree associated with the given TSP
which is shown in Figure 15.2. Note that we obtain a minimal s-tree for s = Aa
by adding the edge AaFr, so that the weight is 186 + 26 = 212. Similarly,
we obtain weights of 186 + 34 = 220 and 186 + 22 = 208 for for s = Ba and
s = Mu, respectively.

For s = Du, a minimal spanning tree on the remaining eight vertices
consists of the edges BeHa, HaAa, AaFr, FrSt, StBa, StNu and NuMu,
so that the weight of a minimal s-tree is 187 + 8 + 23 = 218.

For the remaining four choices of s, we just list the weight of a minimal
s-tree: 184 + 20 + 22 = 226 for s = Fr; 158 + 29 + 43 = 230 for s = Ha;
172 + 17 + 19 = 208 for s = Nu; and 176 + 19 + 20 = 215 for s = St.

15.2.6 Let T be a minimal spanning tree associated with the given TSP, and
assume that s is a leaf of T . Then we obtain a minimal s-tree by adding an
edge of smallest weight among all edges not in T and incident with s to T .
This follows by observing that T \ e, where e is the unique edge of T incident
with s, has to be a minimal spanning tree for the complete graph induced on
the remaining points.

In general, however, matters cannot be as simple. For instance, if s has
degree at least 3 in T , we cannot obtain an s-tree containing T for trivial
reasons. This observation also suggests examples showing that the strategy
for selecting s which we have used in Example 15.2.4 may fail badly.

For instance, let T be a star for which all edges have weight a, and assume
that all remaining edges have weight b > a; note that T is the unique minimal
spanning tree for TSP-instances of this type. Our strategy does not allow us
to select s as the center of T , which would lead to a minimal s-tree of weight
(n−2)b+2a. Any other choice of s is permissible and would result in a minimal
s-tree of weight (n − 2)a + 2b; in general, this will be a considerably smaller
– and hence inferior – bound. Thus our strategy can prevent the optimal
choice for s, and the deviation between the resulting bounds can even be
made arbitrarily large.

15.2.7 By Corollary 1.2.11, there are (n − 1)n−3 distinct spanning trees on
the remaining n−1 vertices. To each of these trees, we have to add one of the
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(n − 1)(n − 2)/2 pairs of edges incident with s, so that the total number of
s-trees of Kn is 1

2 (n − 2)(n − 1)n−2.

15.2.8 In every tour, each vertex i is incident with two edges whose weight
is at least s(i) + s′(i). This leads to the desired inequality and yields a lower
bound of 214 for the TSP of Example 15.1.2; note that w is integral.

15.3.1 Let B be an s-tree. Then∑
i

pi = c ×
∑

i

(degB i − 2) = c ×
(∑

i

degB i − 2n
)

= c(2n − 2n) = 0.

15.5.4 As in Example 15.5.3, we begin with s = Fr. In the first two steps, we
obtain the partial tour (Fr, St, Fr) with length 40 and then (Fr, St, Nu, Fr)
with length 61.

Now Mu is inserted, and we get (Fr, St, Mu, Nu, Fr) with length 81. The
next iteration yields (Fr, Du, St, Mu, Nu, Fr) with length 125. Inserting Aa
between Du and St yields a partial tour with length 138.

We proceed with (Fr, Du, Aa, Ba, St, Mu, Nu, Fr) with length 176; after
this, we insert Ha between Fr and Du, which yields a partial tour with length
246. Finally, we obtain the tour (Fr, Be, Ha, Du, Aa, Ba, St, Mu, Nu, Fr)
with length 281.

15.6.4 First, the edges AaMu and FrBe are replaced with MuBe and
AaFr. This reduces the weight of the tour shown in Figure 15.7 by 34 =
(64 + 56) − (60 + 26); the resulting tour of weight 307 − 34 = 273 is
(Aa, Du, Ha, Be, Mu, Nu, Ba, St, Fr, Aa).

Next, the edges NuBa and FrSt are replaced with BaFr and StNu.
This yields the tour (Aa, Du, Ha, Be, Mu, Nu, St, Ba, Fr, Aa) and reduces
the weight by (43 + 20) − (34 + 19) = 10 to 263.

Finally, we replace the edges StNu and BeMu with StMu and NuBe,
which yields the (optimal) tour of length 250 shown in Figure 15.9; indeed,
this step reduces the weight by (19 + 60) − (22 + 44) = 13.

15.7.7 As A′ is assumed to be an ε-approximative algorithm for TSP, we
can use it to solve the problem HC as described in the proof of Theorem
15.4.1. Note that each iteration of the algorithm A′ (that is, each application
of A to a neighborhood N(f)) decreases the weight of the current tour – with
the exception of the final application of A, which merely discovers that the
current tour is now locally optimal.

As the weight function defined in the proof of Theorem 15.4.1 takes only
two values, there can be only n + 1 distinct lengths of tours. Therefore A′

cannot need more than O(n) iterations of A. Since A is polynomial, A′ would
be a polynomial algorithm for HC, so that P=NP by Result 13.2.2.
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15.7.8 Suppose that the given problem could be solved polynomially. We
show that this implies that we can find even an optimal tour in polynomial
time. We may assume that all weights are ≥ 2. (If necessary, we add a constant
to all weights.)

Now we check whether some specified edge e1 is contained in an optimal
tour. If the answer is yes, we reduce w(e1) to 1; this ensures that e1 has to be
contained in every optimal tour for the modified problem. More precisely, the
optimal tours for the new problem are precisely those optimal tours for the old
problem which contain the edge e1. Continuing in this manner, we obtain an
optimal tour for the original problem after O(n2) calls of the decision problem
which we assumed to be polynomial.

15.7.9 Note that TSP suboptimality does not actually produce a better tour:
it only tells us if such a tour exists. Hence it is not possible to apply a hypo-
thetical polynomial algorithm A for this problem repeatedly, which would be
necessary if we were to use A to construct a polynomial algorithm for HC.



C

List of Symbols

Now pray, what did he mean by that?

Richard Brinsley Sheridan

C.1 General Symbols

This first part of the list contains some general symbols which are more or
less standard. The special symbols of graph theory will be covered in the next
section.

Sets

A ∪ B union of the sets A and B

A
.∪ B disjoint union of the sets A and B

A ∩ B intersection of the sets A and B

A × B Cartesian product of the sets A and B

A \ B A without B: A ∩ B

A ⊕ B symmetric difference of A and B: (A \ B) ∪ (B \ A)

2A power set of A

A complement of A (with respect to a given universal set)

At set of ordered t-tuples with elements from A(
A
t

)
set of t-subsets of A

|A| cardinality of A

∅ empty set

A ⊂ B A is a subset of B
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Mappings

f : A → B f is a mapping from A to B

f(x) image of x under the mapping f

f : x �→ y f maps x to y: f(x) = y

f(X) {f(x) : x ∈ X} for f : A → B and X ⊂ A

supp f support of f

Numbers

n∑
i=1

ai a1 + . . . + an

n∏
i=1

ai a1a2 . . . an

�x� smallest integer ≥ x (for x ∈ R)

�x� largest integer ≤ x (for x ∈ R)

n! n(n − 1)(n − 2) . . . 1 (for n ∈ N)(
n
t

)
number of t-subsets of an n-set

e base of the natural logarithm

Matrices

AT transpose of the matrix A

J matrix with all entries 1

I identity matrix

diag(a1, . . . , an) diagonal matrix with entries a11 = a1, . . . , ann = an

(aij) matrix with entries aij

det A, |A| determinant of the matrix A

per A permanent of the matrix A

Sets of numbers and algebraic structures

N or Z+ set of natural numbers (not including 0)

N0 set of natural numbers including 0

Z ring of integers
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Zn ring of integers modulo n

Q field of rational numbers

Q+ set of positive rational numbers

Q+
0 set of non-negative rational numbers

R field of real numbers

R+ set of positive real numbers

R+
0 set of non-negative real numbers

K∗ multiplicative group of the field K

Kn n-dimensional vector space over the field K

K(n,n) ring of (n × n)-matrices over the field K

Sn symmetric group acting on n elements

Miscellaneous

x := y, y =: x x is defined to be y

x ← y x is assigned the value of y

C.2 Special Symbols

This second part of the list contains symbols from graph theory and the sym-
bols introduced in this book.

Graphs and networks

G complementary graph of the graph G

Gred reduced digraph of the acyclic digraph G

G|U subgraph of G induced on the vertex set U

G \ e G with the edge e discarded

G \ T subgraph of G induced on the set V \ T

G \ v subgraph of G induced on the set V \ {v} (for v ∈ V )

G/B contraction of the graph G with respect to the blossom B
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G/e contraction of the graph G with respect to the edge e

|G| multigraph underlying the directed multigraph G

(G) underlying graph for the multigraph G

→
G complete orientation of the graph G

[G] closure of the graph G

bc(G) block-cutpoint graph of G

G(H, S) Cayley graph defined b the group H and the set S

Gs,n de Bruijn graph

Hu,v equality subgraph for G with respect to (u,v)

Kn complete graph on n vertices

Km,n complete bipartite graph on m + n vertices

L(G) line graph of G

N ′, N ′(f) auxiliary network for N (with respect to the flow f)

N ′′, N ′′(f) layered auxiliary network for N (with respect to the flow f)

T (G) tree graph of the connected graph G

Tn triangular graph on
(
n
2

)
vertices

Objects in graphs

CT (e) cycle determined by the spanning tree T and the edge e /∈ T

a
e

b edge e = ab

e− the start vertex (tail) of the edge e

e+ the end vertex (head) of the edge e

E(S), E(X, Y ) edge set corresponding to the cut S = (X, Y )

E|V ′ edge set induced on the vertex set V ′

Fε set of ε-fixed edges (with respect to a given circulation)

ST (e) cut determined by the spanning tree T and the edge e ∈ T

Γ (J) neighbourhood of the vertex set J

Γ (v) neighbourhood of the vertex v

Parameters for graphs

ch(G) choosability of G
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deg v degree of the vertex v

din(v) indegree of the vertex v

dout(v) outdegree of the vertex v

g girth of G

nd number of vertices of degree d

α(G) independence number of G

α′(G) maximal cardinality of a matching of G

β(G) minimal cardinality of a vertex cover of G

δ(G) minimal degree of a vertex of G

∆(G) maximal degree of a vertex of G

∆ minimal number of paths in a dissection of G

(Dilworth number)

θ(G) clique partition number of G

κ(G) connectivity of G

λ(G) edge connectivity of G

ν(G) cyclomatic number of G

χ(G) chromatic number of G

χ′(G) chromatic index of G

ω(G) maximal cardinality of a clique in G

Mappings on graphs and networks

a(x) supply at the vertex x

b(e) lower capacity constraint for the edge e

c(e) capacity of the edge e

c(W ) capacity of the path W

c(S, T ) capacity of the cut (S, T )

d(x) demand at the vertex x

d(a, b) distance between the vertices a and b

dH(a, b) distance between vertices a and b in the graph H

f(S, T ) flow value for the cut (S, T ) with respect to the flow f

m(K) mean weight of the cycle K
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p(v) flow potential at the vertex v

p(S) number of odd components of G \ S

r(v) rank of the vertex v in an acyclic digraph

w(e) weight (or length) of the edge e

w(f) value of the flow f

w(P ) weight of the optimal solution for the problem P

w(X) weight (or length) of a set X of edges

w(π) weight of the tour π

wA(P ) weight of the solution for problem P determined by
algorithm A

w(s, t) value of a maximal flow between s and t

(in a symmetric network)

γ(e) cost of the edge e

γ(ε)(f) cost of the edge e increased by ε

γp(e) reduced cost of the edge e (with respect to the potential p)

γ(f) cost of the circulation or the flow f

γ(M) cost of the perfect matching M

γ(v) cost of an optimal flow with value v

δq potential difference

ε(f) optimality parameter for the circulation f

ε(v) excentricity of the vertex v

κ(s, t) maximal number of vertex disjoint paths from s to t

λ(s, t) maximal number of edge disjoint paths from s to t

µ(G, w) minimum cycle mean in the network (G, w)

πV (T ) Prüfer code of the tree T on the vertex set V

Matroids and independence systems

lr(A) lower rank of the set A

M(G) graphic matroid corresponding to G

M∗ dual matroid of the matroid M

M hereditary closure of the set system M
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rq (M) rank quotient of the independence system M

ur (A) upper rank of the set A

S|N restriction of the set system S to the set N

ρ(A) rank of the set A

σ(A) span of the set A

Matrices

A adjacency matrix of a graph

A′ degree matrix of a graph

M incidence matrix of a graph or a digraph

ρ(A) term rank of the matrix A

Miscellaneous

Av adjacency list for the vertex v

A′
v reverse adjacency list for the vertex v

d(a) deficiency of the set family A

t(A) transversal index of the set family A

O(f(n)) upper bound on the complexity

Ω(f(n)) lower bound on the complexity

Θ(f(n)) rate of growth



References

Round up the usual suspects.

From ‘Casablanca’

[AaLe97] Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization.
Wiley, New York (1997)

[Abu90] Abu-Sbeih, M.Z.: On the number of spanning trees of Kn and Km,n.
Discr. Math. 84, 205–207 (1990)

[AhHU74] Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of
Computer Algorithms. Addison Wesley, Reading, Mass. (1974)

[AhHU83] Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algo-
rithms. Addison Wesley, Reading, Mass. (1983)

[AhGOT92] Ahuja, R.K., Goldberg, A.V., Orlin, J.B., Tarjan, R.E.: Finding
minimum-cost flows by double scaling. Math. Progr. 53, 243–266
(1992)

[AhKMO92] Ahuja, R.K., Kodialam, M., Mishra, A.K., Orlin, J.B.: Computational
testing of maximum flow algorithms. Sloan working paper, Sloan
School of Management, MIT (1992)

[AhMO89] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows. In:
Nemhauser, G.L., Rinnooy Kan, A.H.G., Todd, M.J. (eds) Handbooks
in Operations Research and Management Science, Vol 1: Optimiza-
tion, pp. 211–369. North Holland, Amsterdam (1989)

[AhMO91] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Some recent advances in
network flows. SIAM Review 33, 175–219 (1991)

[AhMO93] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory,
Algorithms and Applications. Prentice Hall, Englewood Cliffs, N.J.
(1993)

[AhMOT90] Ahuja, R.K., Mehlhorn, K., Orlin, J.B., Tarjan, R.E.: Faster algo-
rithms for the shortest path problem. J. Ass. Comp. Mach. 37, 213–
223 (1990)

[AhOr89] Ahuja, R.K., Orlin, J.B.: A fast and simple algorithm for the maxi-
mum flow problem. Oper. Res. 37, 748–759 (1989)

[AhOr92] Ahuja, R.K., Orlin, J.B.: The scaling network simplex algorithm.
Oper. Res. 40, Suppl. 1, S5–S13 (1992)

[AhOr95] Ahuja, R.K., Orlin, J.B.: A capacity scaling algorithm for the con-
strained maximum flow problem. Networks 25, 89–98 (1995)

[AhOST94] Ahuja, R.K., Orlin, J.B., Stein, C., Tarjan, R.E.: Improved algorithm
for bipartite network flow. SIAM J. Computing 23, 906–933 (1994)



566 References

[AhOT89] Ahuja, R.K., Orlin, J.B., Tarjan, R.E.: Improved time bounds for the
maximum flow problem. SIAM J. Comp. 18, 939–954 (1989)

[Aig84] Aigner, M.: Graphentheorie. Eine Entwicklung aus dem 4-Farben-
Problem. Teubner, Stuttgart (1984)

[Aig97] Aigner, M.: Combinatorial Theory. Springer, New York (1997)
[Alo90] Alon, N.: Generating pseudo-random permutations and maximum

flow algorithms. Inform. Proc. Letters 35, 201–204 (1990)
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Smerédi, E. (eds) Theory of Algorithms, pp. 323–337. North Holland,
Amsterdam (1985)

[Lov87] Lovász, L.: The matching structure and the matching lattice. J. Comb.
Th. (B) 43, 187–222 (1987)

[LoPl86] Lovász, L., Plummer, M.D.: Matching Theory. North Holland, Ams-
terdam (1986)
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[Lue82] Lüneburg, H.: Programmbeispiele aus Algebra, Zahlentheorie und

Kombinatorik. Report, Universität Kaiserslautern (1982)
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Index

We look before and after;
We pine for what is not...

Percy Bisshe Shelley

accessibility axiom, 143

accessible, 26

accessible set system, 143

active vertex, 185, 306

acyclic digraph, 46, 70, 74, 220, 245

acyclic graph, 6

adjacency list, 38

adjacency matrix, 38, 551

adjacent, 2, 472

admissible cell, 215

admissible edge, 310

admissible flow, 147, 322

admissible graph, 310

admissible operations, 307

admissible PUSH, 185, 307

admissible RELABEL, 185, 307

admissible vector, 411

algebraic assignment problem, 409

algorithm, 33, 34, 41–46

ε-approximative, 446–452

dual greedy, 140

efficient, 45

farthest insertion, 454

FIFO preflow push, 190

good, 45

greedy, 124

highest label preflow push, 192

Hungarian, 401–410

insertion, 453

labelling, 151, 285

local search, 455

minimum mean cycle-canceling, 314

MKM, 173–175

nearest insertion, 455

polynomial, 45

primal-dual, 414

strongly polynomial, 289

tree, 448

weakly polynomial, 289

algorithm of

Bellman and Ford, 79

Boruvka, 108

Busacker and Gowen, 290–293,
361–365

Christofides, 449

Dijkstra, 75–78

Dinic, 169, 180

Edmonds, 389

Edmonds and Karp, 153–162

Floyd and Warshall, 82–87

Ford and Fulkerson, 151, 285

Goldberg and Tarjan, 182–196,
302–313

Gusfield, 344

Hierholzer, 35, 39–40

Klein, 286–289, 313–318

Kruskal, 107

Malhotra, Kumar and Mahaswari,
173–175

Minty, 285

Moore, see BFS

Prim, 105

Tarjan, 242

alphabet, 40

alternating forest, 404

alternating path, 371
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alternating tree, 376
ancestor, 236
and, 42
antichain, 220
antiparallel, 25
apex, 333
approximation scheme, 452
ε-approximative algorithm, 446–452
arbitrarily traceable, 36
arborescence, 26

spanning, 69, 118–122, 236
arc, 25

entering, 332
leaving, 332

articulation point, 238
assignment (of values to variables), 42
assignment problem, 218, 273
assignment relaxation, 437, 472
associated digraph, 25
asymmetric travelling salesman

problem, 465
asymmetric TSP, 435
ATSP, 435
AUGMENT, 168, 338, 392, 404
augmenting path, 149, 329, 371
augmenting path theorem, 149, 372
automorphism, 24
automorphism group, 24, 262

regular, 262
auxiliary network, 163

layered, 165
AUXNET, 168

back edge, 236, 245
backward adjacency list, 38
backward edge

in a directed path, 25
in a flow network, 149

balanced flow, 367
balanced network, 367
Baranyai’s theorem, 223
base, 381
basis, 127, 143
basis completion theorem, 127
BELLFORD, 79
Bellman’s equations, 68, 89
BFS, 63–68
biconnected component, see block
BIPART, 67

bipartite graph, 66, 101, 181, 205, 218,
227, 254, 379, 396, 400–410

complete, 2
regular, 207
symmetric, 396

BIPMATCH, 379
block, 238–244
block-cutpoint graph, 240
BLOCK01FLOW, 180
BLOCKCUT, 242
BLOCKFLOW, 169
blocking flow, 165–177, 180
BLOCKMKM, 173
blossom, 377–389
BLOSSOM, 391
bond space, 283
Boolean variable, 50
border, 266
BORUVKA, 108
bottleneck assignment problem, 218,

409
bottleneck problem, 111, 146
branch and bound, 464–472
branching, 26
breadth first search, see BFS
break, 29
bridge, 22, 27, 281
Brooks’ theorem, 257

cancelling a cycle, 287
canonical, 31
capacity, 323

in a digraph, 271
in a flow network, 147
of a cut, 148, 279
of a path, 111
residual, 184, 295

capacity constraints, 271
capacity function, 341
capacity increase, 362–365
capacity restrictions, 322
cardinality matching problem, 399
caterer problem, 274
Cayley graph, 262
cell (of a matrix), 215

admissible, 215
center, 86
certificate, 51
chain, 220
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k-change neighbourhood, 455
Chinese postman problem, 418–422, 475
choosability, 267
chord, 255
Christofides’ algorithm, 449
chromatic index, 259, 475
chromatic number, 254, 475
circuit, 129
circuit axioms, 129
circulation, 271, 295

ε-optimal, 297
ε-tight, 299
elementary, 282, 284
feasible, 271, 295
legal, 271
minimum cost, 272
optimal, 272, 295

circulation theorem, 279
clause, 50
clique, 55, 476
clique partition number, 254
clique problem, 55
closed set, 128
closed trail, 5
closed walk, 5
closure, 15

hereditary, 145
transitive, 83

closure congruence axiom, 145
Co-NP, 51
cobasis, 131
cocircuit, 131, 284
cocycle, 103

directed, 284
cocycle space, 283
color, 254
COLOR, 256
coloring, 253

edge, 259
common system of representatives, 214
common transversal, 214
COMP, 493
comparability graph, 253
comparable, 253
complementary graph, 5
complementary slackness conditions,

297
complete bipartite graph, 2
complete digraph, 25

complete graph, 2
complete matching, 207
complete orientation, 25
complete time-sharing, 357
complexity, 44
component

biconnected, see block
connected, 6, 65, 235, 263
odd, 368
strong, 246–250

condensation, 250
conjecture

four color, 268
Steiner ratio, 113
strong perfect graph, 256

conjecture of
Berge, 255
Hadwiger, 258
Hajós, 259
Lovász, 266
Sylvester, 226
van der Waerden, 217

conjunctive normal form, 50
connected component, 6, 65, 235, 263

strong, 246–250
connected digraph, 26

strongly, 26, 246–250
connected graph, 6, 65

2-connected, 238–244
m-fold edge, 251
k-connected, 204, 231–234

connected vertices, 6
connectivity, 204, 231–234
connector problem, 95
constraints, 410
CONTRACT, 391
contractible, 23
contraction, 23, 380

elementary, 23
convex function, 293
convex hull, 217
Cook’s theorem, 52
cost

for capacity increase, 362–365
of a circulation, 271
of a flow, 273
of a matching, 400
of a pseudoflow, 295

cost curve, 293
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cost function, 322
for capacity increase, 362–365
for circulations, 271
reduced, 296

cotree, 131
cover (a matching covers a set), 214,

396, 397
CPP, see Chinese postman problem,

419, 475
critical edge, 154
critical path, 72
critical path method, 71
critical subfamily, 210
critical task, 72
cross edge, 245
crossing cuts, 347
current edge, 190, 311
current vertex, 311
cut, 323

in a digraph, 279
in a flow network, 148
in a graph, 103
minimal, 148

cut point, 238
cut tree, 357–361
cuts

crossing, 347
non-crossing, 347

CUTTREE, 358
cycle, 5

cancelling, 287
directed, 25
Hamiltonian, 15, 52

directed, 52
of minimum cycle mean, 299–301,

314–317
of negative length, 87–88, 287, 296,

298
pivot, 332
shortest, 67

cycle mean
minimum, 299

cycle space, 283
cyclic graph, 264
cyclomatic number, 282

dag, see acyclic digraph
de Bruijn sequence, 40, 121
decision problem, 49

decision tree, 464
decomposition theorem, 216
deficiency, 211
deficiency version

of the 1-factor theorem, 369
of the marriage theorem, 211

degree, 3
degree matrix, 100
degree sequence, 11
DELETEMIN, 77
demand, 226
demand function, 322
demand restrictions, 322
dense, 45
dependent set, 127
depth first search, see DFS
depth index, 336
descendant, 236
determinism, 34
DFS, 234–237, 248
DFSM, 248
DHC, see directed Hamiltonian cycle

problem
DHP, see directed Hamiltonian path

problem
diagonal, 216–219

non-zero, 216
positive, 216

diameter, 86, 476
digraph, 25–28, 46–49, 97–100, 118–122,

147, 219–223, 244–250, 271
acyclic, 46–49, 70, 74, 220, 245
associated, 25
complete, 25
condensation, 250
connected, 26
layered, 165
pseudosymmetric, 26
strongly connected, 26, 246–250
symmetric, 183
transitive, 83
transitive reduction, 85

DIJKSTRA, 75
DIJKSTRAPQ, 77
Dilworth number, 220
Dilworth’s theorem, 220
dioid, 90
directed cocycle, 284
directed cycle, 25
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directed Euler tour, 26
directed graph, see digraph
directed Hamiltonian cycle, 52
directed Hamiltonian cycle problem, 52
directed Hamiltonian path, 138, 139
directed Hamiltonian path problem, 139
directed multigraph, 25
directed path, 25
directed trail, 25, 27
directed tree, see arborescence
Discrete metric realization, 476
dissection, 219
distance, 6, 59–65

to a partial tour, 453
distance matrix, 62, 82
dodecahedral graph, 15
dominant requirement tree, 352
dominating network, 356
doubly stochastic matrix, 216
dual greedy algorithm, 140
dual linear program, 412
dual linear programming problem, 412
dual matroid, 131–132, 140
DUALGREEDY, 140
duality theorem, 413
dynamic flow, 319

easy problem, 45, 49
edge, 2, 25

ε-fixed, 304
admissible, 310
antiparallel, 25
back, 236, 245
backward, 25
connected, 251
critical, 154
cross, 245
current, 190, 311
forward, 25, 245
free, 325
most vital, 153
originating, 194
parallel, 13
residual, 184, 296
saturated, 149
tree, 236, 245
void, 149

m-fold edge connected, 251
edge chromatic number, 259

edge coloring, 259
edge connectivity, 250
edge disjoint paths, 201, 477
edge list, 36
edge separator, 201
edge set, 2
effectiveness, 34
efficiency, 34
efficient, 45
elementary circulation, 282, 284
elementary contraction, 23
elementary flow, 153
end vertex, 2, 5, 25
EPM, see exact perfect matching

problem
equality subgraph, 401
equimatchable, 367
equivalent flow tree, 343
Euclidean Steiner problem, 112
Euclidean TSP, 458
EULER, 40, 43
Euler tour, 13, 39–41

directed, 26
Euler’s formula, 21
Eulerian cycle, see Euler tour
Eulerian graph, 13, 39–41
Eulerian multigraph, 13

spanning, 447
Eulerian trail, 13
evaluation problem, 50
even path, 428
even vertex, 376
exact neighbourhood, 459
exact perfect matching problem, 431
excentricity, 85
exchange axiom, 126, 128

strong, 144
exposed vertex, 369
extensibility axiom, 145

face, 21
factor, 4

1-, 4
2-, 208
f -, 397
k-, 4
�-, 208
triangle, 208

1-factor theorem, 367
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deficiency version, 369
factorization, 4

1-, 4
2-, 208
k-, 4
oriented, 28–31

FAREFINE, 311
FARIN, 454
farthest insertion algorithm, 454
feasibility condition, 147
feasible circulation, 271, 295
feasible flow, 226
feasible network, 343
feasible node-weighting, 401
feasible set, 143
Fermat point, 113
FIFO preflow push algorithm, 190
FIFOFLOW, 190
finiteness of description, 34
first active method, 311
first improvement, 456
five color theorem, 266, 268
ε-fixed, 304
float, 72
flow, 147, 322

0-1-, 179
blocking, 165–177, 180
dynamic, 319
elementary, 153
feasible, 226
maximal, 148
minimal feasible, 280
multicommodity, 319, 357
optimal, 273, 290, 318

flow conservation condition, 148
flow excess, 184
flow function, 341
flow network, 147

layered, 165–177, 180
flow potential, 173
flow with gain or loss, 319
FLOWTREE, 345
FLOYD, 82
for . . . do, 42
FORDFULK, 151
forest, 8, 98

minimal spanning, 101
alternating, 404

forward edge

in a DFS, 245
in a directed path, 25
in a flow network, 149, 203

four color conjecture, 268
four color theorem, 269
free matroid, 125

Gale-Ryser theorem, 228
generalized dihedral group, 265
generating set, 128, 131
geometric graph, 21
geometric Steiner tree problem, 112
girth, 22
GOBLIN, 331
GOLDBERG, 185
good algorithm, 45
gozinto graph, 93
graph, 2

2-connected, 238–244
m-fold edge connected, 251
acyclic, 6
admissible, 310
arbitrarily traceable, 36
bipartite, 66, 101, 181, 205, 218, 227,

254, 379, 396, 400–410
symmetric, 396

block-cutpoint, 240
Cayley, 262
comparability, 253
complementary, 5
complete Kn, 2
complete bipartite Km,n, 2
connected, 6, 65
contracted, 380
contractible, 23
cyclic, 264
dense, 45
directed, see digraph
dodecahedral, 15
edge connected, 251
equality, 401
equimatchable, 367
Eulerian, 13, 39–41
geometric, 21
gozinto, 93
Hamiltonian, 15
homeomorphic, 23
interval, 254
isomorphic, 21
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k-connected, 204, 231–234
line, 14
mixed, 27
orientable, 26
perfect, 255
Petersen, 23
planar, 21–25
plane, 21
randomly matchable, 374
regular, 4
regular bipartite, 207
residual, 184, 296
separable, 238
sparse, 45
strongly regular, 5, 39
triangular Tn, 4
triangulated, 255
underlying, 25
unicyclic, 96
uniform, 352

graph partitioning, 477
graphic matroid, 125
greedoid, 144
GREEDY, 124, 144
greedy algorithm, 124

dual, 140

Hadwiger’s conjecture, 258
Hajós’ conjecture, 259
Hamiltonian cycle, 15, 52

directed, 52
Hamiltonian cycle problem, 49, 477
Hamiltonian graph, 15
Hamiltonian path, 52, 139

directed, 138, 139
Hamiltonian path problem, 52, 477
hard problem, 45
harem theorem, 215
Hasse diagram, 85
HC, see Hamiltonian cycle problem
head, 25
head-partition matroid, 125
heap, 77
hereditary closure, 145
heuristics, 453–455
highest label preflow push algorithm,

192
Hitchcock problem, 319
HLFLOW, 192

home-away pattern, 29
homeomorphic, 23
HP, see Hamiltonian path problem
HUNGARIAN, 403
Hungarian algorithm, 401–410
hyperplane, 128

Icosian game, 14
if . . . then . . . else, 42
ILP, see integer linear programming

problem
incidence list, 37
incidence map, 13
incidence matrix, 97
incident, 2, 25
increasing the capacities, 362–365
indegree, 26
indegree matrix, 119
independence number, 219
independence system, 124
independent set

in a matroid, 124
of vertices, 55, 219, 477

independent set of cells, 215
independent set problem, 55
induced subgraph, 3
induced subgraph problem, 478
inf-section, 111
INMATCH, 375
inner vertex, 376
insertion algorithm, 453
instance, 34
integer linear program, 411
integer linear programming problem,

411, 478
integral flow theorem, 150
intermediate node, 227, 318
intersection of matroids, 136–138
interval graph, 254
intractable problem, 45
IS, see independent set problem
isolated vertex, 6
isomorphic, 21
isotonic, 127
iteration, 42

k-connected, 204, 231–234
KAPPA, 233
Kirkman’s school girl problem, 208
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KLEIN, 287
knapsack problem, 61
knight’s problem, 17
Königsberg bridge problem, 1
KRUSKAL, 106, 107
König’s lemma, 217
König’s theorem, 206

labelling algorithm, 151, 285
labelling, valid, 184
Lagrange relaxation, 446
Laplacian matrix, 100
lattice, 417
layered auxiliary network, 165
layered digraph, 165
layered flow network, 165–177, 180
leaf, 8, 10
league schedules, 30–31
legal circulation, 271
LEGCIRC, 277
lemma of

König, 217
Minty, 283
Sperner, 222

length, 5, 59
level, 65
line graph, 14
linear program, 410

0–1, 411
dual, 412
integer, 411

linear programming problem, see LP
linear span, 417
list

adjacency, 38
backward adjacency, 38
color, 267
edge, 36
incidence, 37

list coloring, 267
list coloring number, 267
list of edges, 36
literal, 50
local search algorithm, 455
long trajectory, 195
longest cycle problem, 478
longest path problem, 53, 478
loop, 13, 42
low point, 240

lower capacity, 271, 322
lower rank, 133
LP, 410

dual, 412
LP relaxation, 440
LPD, see dual linear programming

problem

m-fold edge connected, 251
MsT, 438
map, 266
map coloring, 266
marriage theorem, 210

deficiency version, 211
MATCH, 515
matching, 125, 205

complete, 207
covering a set, 214, 397
maximal, 205
maximal weighted, 400
of maximal cardinality, 205
optimal, 400
perfect, 207, 367
product-optimal, 409
stable, 431
symmetric, 396
unextendable, 482

matching matroid, 397
matching polytope, 417
mate, 369
matric matroid, 127
matrix

0-1-, 217, 219, 229
adjacency, 38
degree, 100
distance, 62, 82
doubly stochastic, 216
incidence, 97
indegree, 119
Laplacian, 100
permutation, 216
quasi-inverse, 91
reduced, 465
totally unimodular, 99

matrix tree theorem, 99
matroid, 124

dual, 131–132, 140
free, 125
graphic, 125
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head-partition, 125
matching, 397
matric, 127
partition, 212
representable, 127
restriction, 396
tail-partition, 125
transversal, 212
uniform, 125
vectorial, 127

matroid embedding axiom, 146
matroid intersection problem, 138, 478
max cut problem, 479
max-flow min-cut theorem, 150
max-flow problem, 272
MAX01FLOW, 523
MAXFLOW, 169
maximal flow, 148
maximal matching, 205
maximal spanning tree, 110–112
maximal weighted matching, 400
MAXLEGFLOW, 532
MAXMATCH, 390
maze, 237
MCFZIB, 331, 339
mean weight (of a cycle), 299
MEANCYCLE, 301, 535
MERGE, 107
metric space, 61
metric Steiner network problem, 113
metric travelling salesman problem, 435
min cut problem, 479
minimal counterexample, 206
minimal cut, 148
minimal network, 343
minimal potential, 173
minimal spanning forest, 101
minimal spanning tree, 101–110, 438,

448, 479
minimal Steiner tree, 113, 452
minimal vertex, 173
minimum k-connected subgraph

problem, 479
minimum cost circulation, 272
minimum cost flow problem, 322
minimum cycle mean, 299–301, 314
minimum mean cycle canceling

algorithm, 314
minimum spanning tree problem, 479

MINTREE, 104
MINTY, 285
Minty’s painting lemma, 283
MIP, see matroid intersection problem
mixed graph, 27
mixed multigraph, 27
MKM-algorithm, 173–175
MMCC, 314
monotonic subsequence, 221
most vital edge, 153
MST relaxation, 438
multi-terminal network flow, 357
multicommodity flow, 319, 357
multigraph, 13

directed, 25
Eulerian, 13
mixed, 27
orientable, 26
spanning Eulerian, 447
strongly connected, 27
underlying, 25

nearest insertion algorithm, 455
NEGACYCLE, 87
neighbour, 2
neighbourhood, 455

k-change, 455
exact, 459

network, 59
0-1-, 179
auxiliary, 163
dominating, 356
feasible, 343
flow, 147
layered, 165–177, 180
layered auxiliary, 165
minimal, 343
symmetric, 341

network flow, 479
network reliability problem, 111, 480
network synthesis, 341–365
node

intermediate, 227, 318
transshipment, 227

non-crossing cuts, 347
non-saturating PUSH, 188, 308
non-zero diagonal, 216
NP, 51
NP-complete problem, 46, 51
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NP-hard problem, 53

objective function, 410
odd component, 368
odd path, 428
odd vertex, 376
2-OPT, 457
2-opt, 457
k-opt, 455
OPTCIRC, 302
OPTFLOW, 291
k-optimal, 455
ε-optimal, 297
optimal circulation, 272, 295
optimal flow, 273, 290, 318
optimal flow problem, 273
optimal matching, 400
optimal pseudoflow, 295
optimal realization, 62
optimal tour, 19, 434
optimization problem, 50
optimum communication spanning tree,

118
optimum requirement spanning tree,

359
optimum requirement tree, 118
OPTMATCH, 400, 548
or, 42
ordered abelian group, 409
orientable, 26
orientation, 25

complete, 25
transitive, 253

oriented 1-factorization, 28–31
originating edge, 194
out-of-kilter algorithm, 289
outdegree, 26
outer vertex, 376

P, 51
painting lemma, 283
parallel class, 223
parallel edges, 13
parallelism, 223
parametric budget problem, 362
parametrized flow problem, 178
partial difference set, 266
partial SDR, 211
partial transversal, 211

partially ordered set, 47, 220–223
partition matroid, 212
path, 5

alternating, 371
augmenting, 149, 329, 371
critical, 72
directed, 25
edge disjoint, 201
Eulerian, 13
even, 428
Hamiltonian, 52, 139
odd, 428
reliable, 480
shortest, 60
vertex disjoint, 201

path algebra, 90
PATHNR, 523
penalty, 442
penalty function, 441
perfect graph, 255
perfect graph theorem, 255
perfect matching, 207, 367
perfect matching polytope, 417
permanent (of a matrix), 217
permanent evaluation problem, 480
permutation matrix, 216
Petersen graph, 23
phase, 167, 191, 313, 373, 404
PIUPDATE, 339
pivot cycle, 332
PIVOTCYCLE, 338
planar graph, 21–25
plane graph, 21
Platonic solids, 22
point, 223

cut, 238
Steiner, 112
vertex, 173

polyhedral combinatorics, 474
polynomial algorithm, 45
polynomial problem, 49
polytope, 412
poset, see partially ordered set
positive diagonal, 216
post-optimization, 455
potential, 189, 283, 296, 326

minimal, 173
POTENTIAL, 298, 535
potential difference, 283
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predecessor index, 336
preflow, 183
price function, 296
PRIM, 105
primal-dual algorithm, 414
priority, 77
priority queue, 77
problem

3-SAT, 50, 480
algebraic assignment, 409
assignment, 218, 273
asymmetric travelling salesman, 435,

465
bottleneck, 111, 146
bottleneck assignment, 218, 409
bounded diameter spanning tree, 117
cardinality matching, 399
caterer, 274
Chinese postman, 418, 475
chromatic index, 475
chromatic number, 475
clique, 55, 476
connector, 95
decision, 49
degree constrained spanning tree, 116
directed Hamiltonian cycle, 52
directed Hamiltonian path, 139
discrete metric realization, 476
easy, 45, 49
euclidean Steiner, 112
evaluation, 50
exact perfect matching, 431
geometric Steiner tree, 112
graph partitioning, 477
Hamiltonian cycle, 49, 477
Hamiltonian path, 52
hard, 45
Hitchcock, 319
independent set, 55, 477
induced subgraph, 478
integer linear programming, 411, 478
intractable, 45
isomorphic spanning tree, 116
Kirkman’s school girl, 208
knapsack, 61
knight’s, 17
Königsberg bridge, 1
length restricted disjoint paths, 477
linear programming, 410

longest cycle, 478
longest path, 53, 478
matroid intersection, 138, 478
max cut, 479
max-flow, 272
maximum leaf spanning tree, 116
metric Steiner network, 113
metric travelling salesman, 435
min cut, 479
minimal cost reliability ratio spanning

tree, 117
minimum k-connected subgraph, 479
minimum spanning tree, 479
most uniform spanning tree, 112
network reliability, 111, 480
NP-complete, 46, 51
NP-hard, 53
optimal flow, 273
optimization, 50
optimum communication spanning

tree, 118
parametric budget, 362
parametrized flow, 178
permanent evaluation, 480
polynomial, 49
restricted Hamiltonian cycle, 460
restricted perfect matching, 430, 480
satisfiability, 50, 480
shortest cycle, 67, 481
shortest path, 274, 481
shortest total path length spanning

tree, 116
spanning tree, 481
stable marriage, 431
Steiner network, 113, 481
Steiner tree, 481
supply and demand, 226–229
transportation, 318
transshipment, 318
travelling salesman, 18, 433, 482
TSP suboptimality, 463
unextendable matching, 482
vertex cover, 53, 482
weighted diameter, 476
weighted matching, 399
zero-one linear programming, 411

problem class, 34
product-optimal matching, 409
program, 33
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project evaluation and review technique,
71

project schedule, 71–74
Prüfer code, 10
pseudoflow, 295

ε-optimal, 297
ε-tight, 299
optimal, 295

pseudograph, 13
pseudosymmetric, 26
pseudovertex, 381
PULL, 174
PUSH, 174, 185, 307

admissible, 185, 307
non-saturating, 188, 308
saturating, 188, 308

quasi-inverse, 91
queue, 63

ramification, 42
randomly matchable graph, 374
RANK, 74
rank

in a digraph, 74
in a matroid, 127

lower, 133
upper, 133

rank quotient, 133
rate of growth, 44
reduced cost function, 296, 326
reduced matrix, 465
reduction, transitive, 85
Redéi’s theorem, 221
REFINE, 302–313
regular automorphism group, 262
regular bipartite graph, 207
regular graph, 4
RELABEL, 185, 307

admissible, 185, 307
relaxation, 436

s-tree, 438–440
assignment, 437, 472
Lagrange, 446
LP, 440
MST, 438

reliable path, 480
repeat . . . until, 42
representable, 127

request function, 343
RESIDUAL, 296, 535
residual capacity, 184, 295
residual edge, 184, 296
residual graph, 184, 296
resolution, 4
restricted Hamiltonian cycle, 460
restricted perfect matching, 430, 480
restriction of a matroid, 396
return arc, 272
RHC, see restricted hamiltonian cycle
root, 26, 97
RPM, see restricted perfect matching

problem

SAT, see satisfiability problem
3-SAT, 50, 480
satisfiability problem, 50, 480
saturated edge, 149
saturated vertex, 369
saturating PUSH, 188, 308
scatter number, 215
sceleton, 472
schedule

league, 30–31
project, 71–74
tournament, 28–31
train, 79–82

SDR, 210
partial, 211

separable graph, 238
separator

edge, 201
vertex, 201, 203

set
closed, 128
dependent, 127
feasible, 143
generating, 128, 131
independent, 55, 124, 219, 477
of edges, 2
partial difference, 266
partially ordered, 47, 220–223
stable, 55, 219

set system, 143
accessible, 143

shortest cycle problem, 67, 481
shortest path, 60
shortest path problem, 274, 481
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shortest path tree, see SP-tree
sink, 147, 322
six color theorem, 266
slack, 72
source, 147, 322
SP-tree, 69, 88
space complexity, 44
span, 128

linear, 417
span operator, 128
spanning arborescence, 69, 118–122, 236
spanning Eulerian multigraph, 447
spanning forest

minimal, 101
spanning subgraph, 3
spanning tree, 65, 99, 459, 481

maximal, 110–112
minimal, 101–110, 438, 448

spanning tree problem, 481
spanning tree with restrictions, 116–118
sparse, 45
Sperner’s lemma, 222
SPTREE, 498
SRG, see strongly regular graph
stable marriage problem, 431
stable matching, 431
stable roommates problem, 432
stable set, 55, 219
stack, 242
star, 11
start vertex, 5, 25
state, 266
steepest descent, 456
STEINER, 114
Steiner network problem, 113, 481
Steiner point, 112
Steiner points, 113
Steiner ratio conjecture, 113
Steiner tree, 112–115, 481

minimal, 113, 452
Steiner tree problem, 481
stem, 386
step (in an algorithm), 44
strong component, 246–250
strong duality theorem, 413
strong exchange axiom, 144
strong extensibility axiom, 146
strong perfect graph theorem, 256
STRONGCOMP, 248

strongly connected, 26, 27, 246–250
strongly polynomial, 289
strongly regular graph, 5, 39
subdivision, 23
subfamily

critical, 210
subgradient, 446
subgradient optimization, 441
subgraph, 3

equality, 401
induced, 3
spanning, 3

submodular, 127
suboptimal, 463
subtour elimination constraints, 441
supply, 226, 322
supply and demand problem, 226–229
supply and demand theorem, 227
support, 153
Sylvester’s conjecture, 226
symmetric bipartite graph, 396
symmetric digraph, 183
symmetric matching, 396
symmetric network, 341
system of distinct representatives, see

SDR
system of representatives, 210

common, 214

tail, 25
tail-partition matroid, 125
term rank, 215
termination, 34
theorem

1-factor, 368
augmenting path, 149, 372
basis completion, 127
circulation, 279
decomposition, 216
five color, 268
four color, 269
harem, 215
integral flow, 150
marriage, 210
matrix tree, 99
max-flow min-cut, 150
perfect graph, 255
strong duality, 413
supply and demand, 227
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total dual integrality, 414
theorem of

Baranyai, 223
Birkhoff, 217
Cauchy and Binet, 99
Euler, 13
Gale and Ryser, 228
Phillip Hall, 207
Brooks, 257
Cook, 52
Dilworth, 220
Ford and Fulkerson, 149–150
Kuratowski, 23
König, 206
Menger, 201–204
Redéi, 221
Robbins, 27
Stern and Lenz, 264
Tutte, 368
Vizing, 259
Wagner, 23
Whitney, 204, 231

thread index, 336
TIGHT, 301, 537
ε-tight, 299
time complexity, 44
time cycle, 80
topological sorting, 47
TOPSORT, 48
total dual integrality theorem, 414
totally dual integral, 414
totally unimodular, 99
tour, 19, 434

k-optimal, 455
Euler, 13
optimal, 19, 434
suboptimal, 463

tournament, 221
schedules, 28–31

TRACE, 40, 43
trail, 5, 25

closed, 5
directed, 25, 27
Eulerian, 13

train schedule, 79–82
trajectory, 194

long, 195
transitive closure, 83
transitive digraph, 83

transitive orientation, 253
transitive reduction, 85
transportation problem, 318
transshipment node, 227, 322
transshipment problem, 318
transversal, 210

common, 214
partial, 211

transversal index, 211
transversal matroid, 212
travelling salesman problem, 18, see

TSP
tree, 8, 26, 95

s-, 438
alternating, 376
cut, 357–361
directed, see arborescence
dominant requirement, 352
equivalent flow, 343
maximal spanning, 110–112
minimal spanning, 101–110, 438, 448,

479
rooted, 97
shortest path, 69
SP-, 69, 88
spanning, 65, 99, 459, 481

with restrictions, 116–118
Steiner, 112–115, 481

minimal, 113, 452
uniform, 352

s-tree relaxation, 438–440
tree algorithm, 448
tree edge, 236, 245
tree graph, 110
tree indices, 336
tree solution, 324
tree structure, 326

admissible, 326
degenerate, 332
nondegenerate, 333
optimal, 326
strongly admissible, 333

triangle factor, 208
triangle inequality, 62
triangular graph, 4
triangulated, 255
TSP, 482

∆, 435
asymmetric, 435
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Euclidean, 458
metric, 435

TSP suboptimality, 463

underlying graph, 25
underlying multigraph, 25
unextendable matching, 205, 482
unextendable matching problem, 482
unicyclic graph, 96
uniform graph, 352
uniform matroid, 125
uniform tree, 352
upper capacity, 271, 322
upper rank, 133

valid labelling, 184
value (of a flow), 148
van der Waerden’s conjecture, 217
VC, 53, see vertex cover problem
vectorial matroid, 127
vertex, 2, 25

accessible, 26
active, 185, 306
current, 311
end, 2, 5, 25
even, 376
exposed, 369
inner, 376
isolated, 6
odd, 376
of a polytope, 412

outer, 376
pseudo-, 381
saturated, 369
start, 5, 25

vertex cover, 53, 482
vertex cover problem, 53, 482
vertex disjoint paths, 201, 477
vertex separator, 201, 203
vertex set, 2, 25
Vizing’s theorem, 259
void edge, 149

walk, 5
closed, 5

weakly polynomial, 289
weight, 19, 101, 124, 400
weighted matching problem, 399
while . . . do, 42
Whitney’s theorem, 204, 231
width (of a matrix), 216
word, 40

zero-one linear program, 411
zero-one linear programming problem,

411
zero-one matrix, 217, 219, 229
zero-one-flow, 179
zero-one-network, 179
ZOLP, see zero-one linear programming

problem
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