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Foreword

The idea of mathematical induction has been with us for ages, certainly since the
16th century, but was made rigorous only in the 19th century by Augustus de
Morgan who, incidentally, also introduced the term ‘mathematical induction’. By
now, induction is ubiquitous in mathematics and is taken for granted by cvery
mathematician. Nevertheless, those who are getting into mathematics are likely to
need much practice before induction is in their blood: The aim of this book is to
speed up this process.

Proofs by induction vary a great deal. In fact, when it comes to finite structures
or, more generally, sequences of assertions, every proof may be viewed as a proof
by induction; when proving a particular proposition, we may as well assumne that
we have already proved every assertion which comes earlier in the sequence. For
example, when proving the simple result that every graph with n vertices and more
than n?/4 edges contains a triangle, we may as well assume that this is true for
graphs with fewer than n vertices. Thus, when a professor asks his class for ideas
as to how to try to prove a result about finite groups and gets the suggestion ‘By
induction!’, he is right to dismiss this as being unhelpful, since we are always free
to use induction, and in some sense we are always using it. Nevertheless, it is true
that in some cases induction plays a major role, while in others we hardly make any
use of it. And the question is not whether to use induction but, when using it, how
to use it.

It would be impossible for this Handbook of Mathematical Induction 1o cover all
aspects of mathematical induction and its variants for infinite sets, but there is plenty
of exciting material here, selected with much care, with emphasis on some of the
most elegant results. This book contains all the standard exercises on induction and
many more, ranging from the trifle and the trivial to the significant and challenging.

There are numerous examples from graph theory, point set topology, elementary
number theory, linear algebra, analysis, probability theory, geometry, group theory,
game theory, and the theory of inequalitics, with results about continued fractions,
logical forinulae, Latin rectangles, Hankel matrices, Hilbert’s affine cube, and the
numbers of Fibonacci, Bernoulli, Euler, Catalan and Schroder, amoug others. Fur-
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thermore, the reader is guided through appropriate proofs of the thecrems of Ram-
sey, Schur, Kneser, Hales and Jewett, Helly, Radon, Carathcodory, and many other
results.

What prompts someone to write a book on mathematical induction? To share his
passion for mathematics? Gunderson’s passion for all of mathematics is evident.
Perhaps this remarkable passion is due to the unusual road he has taken to math-
cmatics. When I first met him, at Emory University in 1993, he was a graduate
student. A rather ‘mature’ graduatc student; as I learned later, in his youth he
had flown aerobatics, and then had been a laborer and truck driver for ten years or
so before starting in pure maihematics for the fun of puzzle solving. Although he
has been in mathematics for over two decades, his physical prowess is still amazing:
he has a penchant for ripping telephone books, and has not lost an arm-wrestling
match since 1982.

This book is the first example that I know of which treats mathematical induction
seriously, more than just a collection of recipes. It is sure to be an excellent student
companion and instructor’s guide for a host of courses.

Béla Bollobas
University of Cambridge and University of Memphis



Preface

Mathematical induction is a powerful proof technique that is generally used to prove
statements involving whole numbers. Students often first encounter this technique in
first or second year university courses on number theory, graph theory, or computer
science. Many students report that their first exposure to mathematical induction
was both scary yet simple and intriguing. In high school, formal proof techniques are
rarely covered in great dctail, and just the word “proof” seems daunting to many.
Mathematical induction is a tool that seems quite different from anything taught in
high school.

After just a few examples of proof by mathematical induction, the average stu-
dent seems to gain an appreciation for the technique because the format for such a
proof is straightforward and prescribed, yet the consequences are quite grand. Some
students are further fascinated by the technique because of the erroneous conclusions
available when the format is not followed precisely. It seems as if many students
view mathematical induction as simply a necessary evil. Few beginning students in
mathematics or computer science realize that all of mathematics is based on math-
ematical induction, nor do they realize that the foundations for the technique are
of a completely different type than “scientific induction”, or the “scientific method”
forms of “hypothesis, testing, and conclusion™ arguments used in most sciences.

In part, because of the recent explosion of knowledge in combinatorics, com-
puting, and discrete mathematics, mathematical induction is now, more than ever,
critical in education, perhaps surpassing calculus in its relevance and utility. The
theory of recursion in computing science is practically the study of mathematical in-
duction applied to algorithms. The theory of mathematical logic and model theory
rests entirely on mathematical induction, as does set theory. Tt may be interesting
to note that even in calculus, mathematical induction plays a vital role. Contin-
uous mathematics (like calculus or analysis) uses counting numbers, diimension of
a space, iterated derivatives, exponents in polynomials, or size of a matrix, and so
mathematical induction might one day be taught in all junior math courses. In fact,
mathematical induction is absolutely essential in lincar algebra, probability theory,
modelling, and analysis, to name but a few areas. Mathematical indnction is a
common thread that joins all of mathematics and computing science.

This book contains hundreds of examples of mathematical induction applied in
a vast array of scientific areas, as well as a study of the theory and how to find

xix
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and write mathematical induction proofs. The presentation here is quite unlike that
of a discrete mathematics book, as theory and examples took precedence over nice
pictures, charts, and chapters intended for one or two lectures.

The inception of this book

As with many books in mathematics, the incipient version of this book was a col-
lection of notes for students. Nearly a decade ago, I put together a few pages with
some standard induction problems for discrete math students. To help their writing
of inductive proofs, I then provided a template and a few pages of advice on writing
up induction proofs, producing a small booklet for the students that I distributed
in any course requiring induction.

Since there seemed to be no readily available books on induction (most were
out of print), I originally had the idea to write something small that could be
universally available as a supplement to courses in discrete mathematics, including
linear algebra, combinatorics, or even geometry. My first goal was to have around
a hundred of the standard exercises in induction, complete with solutions. T also
wanted the solutions to be written in a format that students could follow easily and
reproduce. When I began to collect and write up problems for this small planned
booklet, I found so many examples and major theorems that engaged me, I couldn’t
wait to write them down and share them with anyone who would listen. I then tried
to supplement this carly collection to somehow give a fair treatiment to all of the
mathematical sciences, including computing science.

By that time, it was too late. As many collectors do, I became obsessed with
finding different kinds of inductive proofs from as many areas as possible. Even after
gathering many different types of questions, I continued to add to the collection,
giving more examples of some types, and also including a healthy amount of set
theory and foundations—in an attempt to give a “credible” or “scholarly” repre-
scntation of the theory and applications surrounding induction. In a sense, I was
constructing a tribute to onc of the major proof techniques in mathematics.

After the book quickly burgeoned into a few hundred pages, people (including
publishers) asked e, *for whom is this book?” or “can this book be used for
any course?’ 1 could only reply that this book will work well with nearly any
mathematics or computing science course. Then I just kept adding problems! Only
when the collection began 1o point north of 500 pages, did Chapman & Hall/CRC
suggest that I put together an encyclopedia of induction, a handbook. So. T added a
few hundred more pages, sampling {from as many fields [ had the courage and time
for. This is the product.
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Who is this book for?

This book is intended for anyone who enjoys a good proof, and for those who
would like to master the technique of mathematical induction. I think that nearly
cvery student and professor of mathematics and computer science can get a little
something from this book.

Students may find inductive solutions for their practice or even their hormework,
they nmiay learn how to write inductive proofs, and they may discover some interesting
mathematics along the way. Most topics in this book include definitions and simple
theory in order to deliver the exercises, and any student perusing thesc might acquire
new interests in arcas previously unexplored.

The professor may find examples to give as exercises, test questions, or contest
practice questions. Some professors and high school teachers might appreciate sec-
tions here on writing mathematical induction proofs, both for themselves and in
passing along such skills to their students.

The professor or student might also use this text for definitions and references,
as well as many famous theorems and their proofs. This book is designed to be a
source book for everyone interested in mathematics. When | was an undergraduate,
I spent all of my spare money (and more) on reference books, including collections
of worked exercises, and had this book been available back then, [ would have most
certainly purchased it—not only to help me with induction homework, but also as
a resource of popular results and mathematical tricks.

This book may enhance nearly every course in mathematics—from freshman to
graduate courses. At the university, nathematical induction is taught in many dif-
ferent courses, including thosc in discrete mathematics, graph theory, theoretical
computer science, set theory, logic, combinatorics, linear algebra, and math edu-
cation. Other areas, including courses in computing science, engincering, analysis,
statistics, modelling, game theory, and econornics now use induction as a standard
tool. These and many other arcas arc treated generously.

Structure of this book

The book is essentially divided into three parts: “theory”, “applications and exer-
cises”, and “solutions”. These titles aren’t completely accurate, as there are exer-
cises and solutions in the theory part and there is theory in the exercises part. The
theory part also contains far more than just theory, but a more appropriate title
could not be found.

In the theory part, first a brief introduction is given. The introduction is not.
meant 1o be expository nor complete in a way that some discrete mathematics books
might cover mathematical induction. The formal development of natural numnbers
from axioms is given by mathematical induction. Many readers will want to skip this
section, as it can be a little dry, but this material can be understood and appreciated
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by most undergraduates in their second or third year. Having basic arithmetic skills
in hand, different inductive techniques are discussed: well-ordered sets, basic math-
ematical induction, strong induction, double induction, infinite descent, downward
induction, and variants of some of these.

Chapter 4 is aboul mathematical induction and infinity, including an introduc-
tion to ordinals and cardinals, transfinite induction, more on well-ordering, the
axiom of choice, and Zorn’s lemma. Thc material in Chapter 4 is intended for the
senior math or computer science student. and can be omitted by the inexperienced
reader. One reviewecr suggested that this material be moved to much later in the
book; however, I feel that it fits well from a logical perspective, perhaps just not
from a pedagogical one when viewed by first-year students.

There are sections on the history of induction (Section 1.8) and the present
state of literature on mathematical induction (Section 1.9). Fallacies and induction
(Chapter 5) and empirical induction (Chapter 6) arc also surveyed. Chapters 7
and 8 on doing and writing inductive proofs are given with the intention of helping
the student and perhaps providing some guidelines that a teacher might use when
teaching presentation skills. Much of these two chapters are directed at the student,
and so the advanced reader can safely skip these.

Part II, “Applications and exercises”, contains over 750 cxercises, showcasing the
different levels of difficulty of an inductive proof, the variety of inductive techniques
available, and the scope of results provable by mathematical induction. Topics are
grouped into areas, complete with necessary definitions, theory, and notation, so
each chapter is nearly independent from all others. I tried to include some famous
or fundamental theorems from most major fields. In many areas, I include some
very specialized problems, if only because I enjoyed them. In general, exercises
arc not ranked according to difficulty, so expect surprises. Many advanced topics
are covered here, so there are many examples appropriate for even graduate-level
courses.

The number of published mathematical induction proofs is finite: however, one
might get the impression that this munber is infinite! There can be no comprehensive
coverage. The present collection identifies results spanning many fields, and there
seems to be no end of topics that I could continue to add. It seemed that whenever [
researched some mathematical induction proof, I found yet another nearby. People
have joked that, by induction, I could then find infinitely many examples. At some
point, I had to (at least temporarily) wrap up the project, and this is the outcome.

In part, I feel like a travel guide commissioned to write a handbook about touring
Europe; after staying in Budapest for a month but only driving through Paris, the
“handbook” may seem like only a biased “guidebook”. I have delved deceply into
specialist areas, and only glossed over some more usual topics.

If this book survives to a second edition, many more topics will be developed. For
example, the theory of Turing machines or Markov processes might make worthy
additions. Additive number theory, computational geometry, the theory of algo-
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rithms and recursion might be developed. I welcome suggestions for possible future
inclusion.

In Part I1T, solutions to most exercises are given. Solutions are mnost often written
in a strict format, making them slightly longer than what might be ordinarily found
in texts (and much longer than those found in journals). The extra structure does
not seem to interfere with reading the proof and, in fact, it may sometimes help. [
have also attempted to eliminate as many pronouns as possible, and have avoided
the royal “we” that often occurs in mathematics.

Of the over 750 exercises, over 500 have complete solutions, and many of the
rest. have either brief hints or references.

For some unusual exercises presented here without solutions, I have tried to
provide references. Many induction exercises are now *folklore” with origins difficult
to trace, so citations often just direct the reader to at least one instance of where a
problem has occurred previously. Readers are invited to inform me if { have missed
some key citations.

There are necarly 600 bibliography references, and results are cross referenced
and indexed thoroughly. I have given over 3000 index entries to assist in quick
referencing. The bibliography is also back-referenced; bold face numbers following
each entry indicate where in this book the entry is cited [*].

DSG
Winnipeg, Canada
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Chapter 1

What is mathematical
induction?

Induction makes you feel guilty for geiling something out of nothing,
and it is arlificial, but it ¢s one of the greatest ideas of civilization.

Herbert S. Wilf,

MAA address, Baltimore, 10 Jan. 1998.

1.1 Introduction

In the sciences and in philosophy, essentially two types of inference are used, deduc-
tive and inductive. Deductive inference is usually based on the strict rules of logic
and in most settings, deductive logic is irrefutable. Inductive rcasoning is the act of
guessing a pattern or rule or predicting future behavior based on past experience.
For examnple, for the average person, the sun has risen every day of that person’s life;
it might seem safe to then conclude that the sun will risc again tomorrow. However,
one can not prove beyond a shadow of a doubt that the sun will rise tomorrow.
There may be a certain set of circumstances that prevent the sun rising tomorrow.

Guessing a larger pattern based upon smaller patterns in observations is called
emnpirical induction. (See Chapter 6 for more on empirical induction.) Proving that
the larger patiern always holds is another matter. For example, after a number of
experiments with force, one might conclude that Newton'’s sccond “law” of motion
f = ma holds; nobody actually proved that f = ma always holds, and in fact, this
“law” has recently been shown to be flawed (see nearly any modern text in physics,
e-g., [56, p.76]).

Another type of induction is more reliable: Mathematical induction is a form
of reasoning that proves, without a doubt, some particular rule or pattern, usually
infinite. The process of mathematical induction uses two steps. The first step
is the “base step”: some simple cases are established. The second step is called
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the “induction step”, and usually involves showing that an arbitrary large example
follows logically from a slightly smaller pattern. Observations or patterns proved by
mathematical induction share the veracity or assurance of those statements proved
by deductive logic. The validity of a proof by mathematical induction follows from
basic axioms regarding positive integers (sec Chapter 2 for more on the foundations
of the theory).

In its most basic form, mathematical induction, abbreviated “MI”, is a proof
technique used to prove the truth of statements regarding the positive integers.
(The statements themselves are rarely discovered using mathematical induction.) In
this chapter, mathematical induction is only briefly introduced, with later chapters
spelling out a more formal presentation.

It is easy to get excited about introducing the proof technique called *mathemat-
ical induction”, especially since no mathematical aptitude or training is necessary
to understand the underlying concept. With only very little high school algebra
(and sometimes none at all!), mathematical induction enables a student to quickly
prove hundreds of fascinating results. What more can a teacher ask for—an easy to
understand technique complete with an amazing array of consequences!

1.2 An informal introduction to mathematical induc-
tion

To demonstrate the claim that no mathematical sophistication is necessary to com-
prehend the idea of mathematical induction, let me share an ancedote. When my
daughter Christine decided to keep a stray cat as a pet, the two of them soon be-
came inseparable—until it was titne to go to bed. Christine slept in the top of a
set of large bunk beds, but the cat was not so cager about climbing this strange
contraption we humans know as a ladder. The cat, named Jupiter, sat on the floor
meowing until I lifted him to Christine’s warm bed each night. {He could jump
down without fear, however, via the dresser.)

So I tried to teach Jupiter how to climb the ladder. {The cat probably could climb
a ladder without my help, however it seemed as if he was waiting for permission—so
for the sake of this story, assume that he did not know how.) There scemed to be
two separate skills that Jupiter needed to acquire. First, he was apprehensive about
just getting on the ladder, so with a little guidance and much encouragement, he
discovered that he could indeed get on and balance on the first rung. Second, he had
to learn how to climb from one rung to the next higher rung. T put his front paws
on the next step and then tickled his back feet; to cscape the tickle, he brought up
his hind legs to the next rung. [ repeated this on the next rung; he quickly realized
how to go up one more (or that it was okay io do so?), and almost immediately
upon “learning™ this second skill, he applied it a few more times, and a moment
later was rewarded with a big hug from Christine at the top.

That’s the basic idea behind what is called “the principle of mathematical in-
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duction™: in order to show that one can get to any rung on a ladder, it suffices to
first show that one can get on the first rung, and then show that one can climb from
any rung to the next. This heuristic applies no matter how tall the ladder, or even
how far up the “first” rung is; one might even consider the 0-th rung to be the floor.

1.3 Ingredients of a proof by mathematical induction

In mathematical jargon, let S(zn) denote a statement with one “free” variable n,
where, say, n = 1,2,3,.... For example, S(n) might be “the cat can get on the n-th
rung of the ladder” or say, “rolling n dice, there are 5n + 1 totals possible” (see next
section). To show that for every n > 1, the proposition S(n) is true, the argument
is often in two parts: first show that S{1) is true (called the “base step”). The
second part (called the “induction step”) is to pick some arbitrary & > 1 and show
that if S(k) is true, then S(k + 1) follows. In this case, S(k) is called the “inductive
hypothesis”. Once these two parts have been shown, if one were then asked to
demonstrate that S{4) is true, begin with S(1), then by repeating the second part
three times,

S(1) — S(2); S(2) — S(3); S(3) — S(4).

This method succeeds in reaching the truth of S(n) for any n > 1, not just n. = 4.

The base step above nced not have been n = 1. Sometimes induction starts a
little later. For example, the statement S(n) : n? < 2" is not true for n = 1,2, 3, or
4, but is true for any larger n = 5,6,7,.... In this case, the base step is 5(5) : 52 <
25, which is verified by 25 < 32. The inductive step is, for k > 5. S(k) — S(k + 1)
(which is not difficult: sce Exercise 159).

So the principle of mathematical induction can be restated so that the base step
can be any integer (positive or negative or zero): [This is stated again formally in
Chapters 2 and 3.]

Principle of mathematical induction: For some fixed integer b,
and for each integer n > b, let S(n) be a statement involving n. If
(1) S(b) is true, and

(ii) for any integer k > b, S(k) — S(k + 1),

then for all n > b, the statement S(n) is true.

The expression “principle of mathematical induction” is often abbreviated by
“PMI”, however in this text, simply “MI” is used. In the statement of the principle
of mathematical induction above, (i) is the base step and (ii) is the induction step,
in which S(k) is the inductive hypothesis. A proof that uses mathematical induction
is sometimes called simply “a proof by induction” when uno confusion can arise.

For an assortment of reasons, mathematical induction proofs are, in general, casy.
First, the general rule often does not need to be guessed, it is usually given. A great
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deal of work is often required to guess the rule, but an inductive proof starts after
that hard work has been done. Another aspect of proving by mathematical induction
that makes it easy is that there are usually clearly defined steps to take, and when
the last step is achicved, the logic of the proof makes the answer undeniable. For
some, the most challenging part of an inductive step is only in applying simple
arithmetic or algebra to simplify expressions.

A proof by mathematical induction has essentially four parts:

1. Carefully describe the statement to be proved and any ranges on certain vari-
ables.

2. The base step: prove one or more base cases.

W

. The inductive step: show how the truth of one statement follows from the
truth of some previous statement(s).

4. State the precise conclusion that follows by mathematical induction.

For more on the structure of a proof by mathematical induction, sce Chapters 2,
3; for the reader just learning how to prove by mathematical induction, see Chapter 7
for techniques and Chapter 8 for how to write up a proof by mathematical induction.

1.4 Two other ways to think of mathematical induction

Many authors compare mathematical induction to dominoes toppling in succession.
If the b-th domino is tipped, (see Figure 1.1) then all successive dominoes also fall.

J L.

Figure 1.1: Dominoes fall successively

This comparison allows one to view mathematical induction in a slightly more
gencral form, since all dominoes need not be in a single row for the phenomenon
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to work; as long as each “non-starting” domino has one “before it” which is close
enough to topple it. So, in a sense, mathematical induction is not just done from
any one integer to the next; induction can operate for many sequences of staterments
as long as for each non-initial case, there is a previous case by which one can use a
rule to jump up from.

Another analogy for mathematical induction is given by Hugo Steinhaus n Math-
ematical Snapshots [508] [in the 1983 edition see page 299]: Consider a pile of en-
velopes, as high as one likes. Suppose that each envelope except the bottom one
contains the same message “open the next envelope on the pile and follow the in-
structions contained therein”. If someonc opens the first (top) envelope, reads the
message, and follows its instructions, then that person is compelled to open enve-
lope number two of the pile. If the person decides to follow each instruction, that
person then opens all the envelopes in the pile. The last envelope might contain
a message “Done”. This is the principle of mathematical induction applied to a
finite set, perhaps called “finite induction”. Of course, if the pile is infinite and
each envelope is numbered with consecutive positive integers, anyone following the
instructions would (if there were enough time) open all of them; such a situation is
analogous to mathematical induction as it is most often used.

1.5 A simple example: Dice

Here is an example of a problem, a conjecture, and a proof of this conjecture by
mathematical induction.

When rolling a single die, there are six possible outcomes: 1,2,3,4,5,6. When
rolling two dice, there are 11 possible totals amoung two dice: 2,3, ..., 12, and for
three dice, the 16 possible totals are 3,4,..., 18. After a moment of reflection, one
might guess that for n > 1 dice, the number of possible totals is 5n + 1.

Proposition 1.5.1. The number of possible totals formed by rolling n > 1 dice is
on + 1.

Proof: (By mathematical induction on n) For each positive integer n, denote the
statement

S(n): When rolling n dice, there are 5n + 1 possible totals.
So 5(1), S(2), §(3). ...form an infinite family of statements. (Using mathematical
induction, all such statements are proved.)

Baske sTEP: The statement S(1) is already verified as there are 6 = 5(1) + 1
outcomes.

INDUCTIVE $TEP: Fix k > | and suppose that S(k) is true (the inductive hypoth-
esis), that is, among k dice, there are 3k + 1 possible outcomes. To comnplete the
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inductive step, one needs only to show that the subsequent statement
S(k+1): When rolling k£ + 1 dice, there are 5(k + 1) + 1 possible totals

is also true.

Consider &k + 1 dice, say Dy, D, ..., Di, Drs1. Among the first k& dice there are
(by the inductive assumption S(k)) 5k + 1 possible totals. Among these totals, the
smallest possible is k& (where cach dice shows 1), and so the lowest total possible
using alt £ + 1 dice is £ + 1 (when Dy, also shows 1). The highest possible total
for all the first k dice is 6k (when each of Dy, ..., Dy show a 6). Then using Dy,
cach of 6k + 1,6k + 2,...,6k + 6 is a ncw possible total. Hence, there are six new
possible totals, and one old possible total (k) which no longer occurs among & + 1
dice. Hence, there are 5 more totals possible with k+ 1 dice than with & dice, giving
5k +1+5=>5(k+ 1)+ 1 outcomes as desired. This completes the inductive step.

Hence, one concludes by mathematical induction that for any n > 1, the state-
ment S(n) is true. This concludes the proof of Proposition 1.5.1. O

[The “O” indicates the end of a proof.]

1.6 Gauss and sums

It scems to be tradition in teaching induction that the first example demonstrating
how well MI can work is in proving a formnula for summing the first n positive
integers.

There is a story about a young Carl Friedrich Gauss (1777-1855) that is often
told. T first give the apocryphal version, which is an over-simplification of the
supposed facts, because it so aptly creates a segue to the inductive proof. [The
more historical version ---which is even more unbelievable—is given after the proof
of Theorem 1.6.1.]

Gauss was extremely quick as a child, and his teachers had a tough time keeping
ahead of him. To keep Gauss busy, his teacher once asked him to sum the numbers
from 1 to 100—to which Gauss almost immediately replied “5050”. Perhaps he had
discovered the following fact.

Theorem 1.6.1. For each positive integer n,

1+2+3+~~-+n=”("T+1).
Proof of Theorem 1.6.1 by MI: Let S(n) be the statement

nn+1)
5

Sn): 14243+ --4+n=
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BAsk STEP (n = 1): The statement S(1) says that 1 = 1(2—2), which is clearly true,

so S(1) holds.
INpUCTIVE STEP(S(k) — S(k +1) ): Fix some k > 1, and suppose that

_ k(k+1)

S(k): 1+24+3+---+k 5

holds. (This statement is called the inductive hypothesis.) To complete the induc-
tive step, it suffices to verify that the statement

(k+ 1){k +2)

Sk+1): 1+2+3+ - +k+(k+1)= 5

also holds. Beginning with the left-hand side of S(k + 1),

1+2+3+--+k+k+1)=(14+24+34+---+5)+(k+1)

1
_ k(kz-l- } + (k‘ + 1} (l‘)y ind. hyp.),

=(k+1)(§+1),

=(k+1)(¥),

which is equal to the right-hand side of S{(k + 1). Hence S(k) — S(k | 1) is proved.
completing the inductive step.

Conclusion: By the principle of mathematical induction, for each n > 1, the state-
ment S(n) is true. O

Many statements provable by mathematical induction are also provable in a
direct manner. For example, here is one of many other proofs of the expression in
Theorem 1.6.1:

Direct proof of Theorem 1.6.1: (without cxplicit use of MI) Write the sum
s(n) =142+ --- 4+ n twice, the second time with the summands in reverse order,
and add:

s(n) = 1+ 2 + 3 doo {n=1) +n
s(n) = n+ (n-1 + (n-2) +---+ 2 +1
2s(n) = (n+1+ (n+1) + (»+1) +---+ (n+1) +(n+1)

The summand (n + 1) occurs n times, and so 2s(n) = n(n + 1); division by 2
completes the proof. [



8 Chapter 1. What is mathematical induction?

The numbers 7;, = 1+ 2+ 3 + - -+ n are called the triangular numbers. One
reason that they are called triangular might be because if one makes a diagram with
n rows of dots, starting with one dot in the first row, and in subsequent rows putting
one more dot, then the dots form a triangle, and 77, is the total number of dots.

Here is an example for n = 6:

To compute T}, of Theorem 1.6.1, put an n by n+ 1 box around such a triangle,
and notice that T3, accounts for half of the box. Sec also Nelsen’s wonderful little
book Proof without words [403, p. 69], where the caption is “—“The ancient Greeks”
(as cited by Martin Gardner)”. Another similar “Proof without words” of the for-
mula for T}, is given by Ian Richards [453] (also reprinted in [403, p. 70]). See also
[404, p. 83]. One can also think of the triangle above as being equilateral. For other
polygons, there are other “figurate numbers”, for example, n(3n —1)/2 is a pentago-
nal number (the square numbers you already know). Sce the wonderfully illustrated
[116, pp. 38ff] for more on polygonal (and polyhedral) numbers. [Polygonal numbers
arc also a rich source for induction probleins as most are defined recursively, though
few appear in this volume.]

For a moment, return to Gauss in the classroom. Expanding on the account
given above, here is an excerpt from E. T. Bell’'s Gauss, Prince of Mathematicians
[44] (also found in Newman’s 1956 anthology [45]):

Shortly after his seventh birthday Gauss entered his first school, a
squalid relic of the Middle Ages run by a virile brute, one Biittner, ...

Then, in his tenth year, Gauss was admitted to the class in arith-
metic. As it was the beginning class none of the boys have heard of
an arithmetical progression. It was easy then for the heroic Bittner
Lo give out a long problem in addition whose answer he could find by
a formula in a few seconds. The problem was of the following sort,
81297 + 81495 + 81693 + - - - 4+ 100899, where the step from one numnber
to the next is the same all along (here 198), and a given number of terms
(here 100) are to be added.

It was the custom, of the school for the boy who first got the answer
to lay his slate on the table; the next laid his slate on top of the first,
and so on. Biittner had barely finished stating the problem when Gauss
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flung his slate on the table: “There it lies,” he said—*“Liggit se” in his
pleasant dialect. Then, for the ensuing hour, while the other boys toiled,
he sat with his hands folded, favored now and then by a sarcastic glance
from Biittner, who imagined the youngest pupil in the class was just
another blockhead. At the end of the period Biittner looked over the
slates. On Gauss’ slate there appeared but a single number. To the end
of his days Gauss loved to tell how the one number he had written was
the correct answer and how all the others were wrong.

1.7 A variety of applications

One aspect of mathematical induction is that it can be found in the proofs of a broad
spectrum of results. In this section a sample is given of areas that mathematical
induction is found.

Hundreds of equalities and inequalities have proofs by induction. For example,

Exercise 54 asks to show the well-known formula
2422 4+82 4. 40l n(n+1)(2n +1)
——

Trigonometric identities also can be proved by induction, as in Exercise 124 where
for any real number z and n > 1,

; . 1

2 s Omg
cos“™(x) + sin“"(z) > T
Many such identities (or inequalities) are proved in a manner very similar to that
in Theorem 1.6.1. Some incqualities have mathematical induction proofs that are
not so evident. For example, in Exercise 204, induction is applied to show that any

positive integer n,
\/2\/3,/4.-.\/5 <3

Suppose that a sequence of numbers is defined recursively, that is, a few initial
values are given, and then a formula or rule shows how to get the nth number from
earlier numbers. For example, define a sequence ag, a1,a2,az, ... by first setting
ap = 3 and let a; = 3. Then for each n > 2, define a, = 2a, .2 + an—;, each
a combination of the two previous values. Working out the first few values are
3.3,9,15,33. There is a method by which to come up with a formula for the general
term a,; however, one might also guess that for each n > 0,

an = 21 4 (1)

Mathematical induction can be used to prove that this guess is correct. In the
theory of recursion, mathematical induction is indispensable in proving correctness
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of formulas or algorithms. See Chapter 16 for mathematical induction in the theory
of recursion. Many popular algorithms are analyzed here by mathematical induction.

Induction can also solve problems that have no apparent equation associated
with it. For example, on a circular track, put n cars (with engines off}, and among
all cars, distribute just enough gas for ore car to go around a track. In Exercise
590, induction is used to prove that there is a car that can make its way around a
lap by collecting gas from the other cars on its way.

In an election, a votes are cast for candidate A and b < a votes cast for candidate
B. In Exercise 764, one counts the number of ways a + b votes can be ordered so
that after each vote, candidate A is winning. Similar results have an impact in game
theory, probability theory, and economics.

Various forms of mathematical induction can be used to prove very general and
powerful results about infinite structures. For example, a special form of mathemat-
ical induction, called Zorn’s lemma, is applied in Exercise 692, to show that every
vector space has a basis.

An abundance of results in discrete math and graph theory are proved by in-
duction. For example, if a graph on n vertices has more than n?/4 edges, Exercise
509 shows thal the graph always contains a triangle. Problems in geometry (sec
Chapter 20) have surprising solutions using induction, as well.

Many basic counting principles have proofs by mathematical induction; for exam-
ple, both the pigeonhole principle and the inclusion-exclusion principle have proofs
by induction (see Exercises 743 and 427, respectively).

Model theory, foundations of mathematics, and computing theory are highly
reliant on inductive proof techniques. Most elementary properties of arithmetic are
derived using induction.

Mathematical induction is often associated with discrete counting; however, it
can be used to prove many results in calculus and analysis. For example, starting
with the simple product rule (fg)’ = f'g + fg’, by induction one can prove (see
Exercise 611) an extended version:

(fife---fa) = fifafa- - Sn+ fifofs- ot + Nf2 - frafi

This examplc hints at a theme.

Very loosely speaking, there are countless examples in mathematics where a
concept is generalized or exiended from one dimension to two; then from two to
three; if a pattern becomes obvious in these first jumps, the pattern often describes
a recursion, one that can serve as a model for an induction step taking the concept
to any finite dimension required. The same is true for linear algebra and matrix
theory; in fact, it might appcar that most concepts iu linear algebra “grow by
induction” from smaller ones. See Exercises 637-668 for what might seem to be
most of the major results in matrix theory. including a few applications, all proved
by mathematical induction.

After only a brief perusal of the exercises in this book, one might conclude that
most of mathematics is tied to induction. To many, this comes as no surprise,
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becausc counting numbers and basic rules of arithmetic and algebra are either de-
veloped or proved true using induction. Hence nearly all of discrete mathematics is
based on induction, in a sense.

The first part of Chapter 2 establishes some useful notation and terminology,
and the latter parts of that chapter are for thosc interested in the theory behind
induction. To continuc the introduction to mathematical induction, Chapter 3 gives
examples of the many different inductive techniques and examples of each. If the
reader is just beginning to learn induction and how to write proofs, I recommend
also reading Chapters 7 and 8.

1.8 History of mathematical induction

I have read somewhere or other, in Dionysius of Halicarnassus, [
think, that History is Philosophy teaching by examples.

---Ienry St. John (Viscount Bolingbroke) (1678-1751),

On the study and use of history.

A usual (modern) development of the principle of mathematical induction begins
with Peano’s axioms. In this book, too, this approach is adopted. This perspective
is admittedly a bit naive, since there were many other key players in cstablishing
the present confidence held in the concept.

Tt is not clear who first used mathematical induction, but in Bussey’s 1917 article
[91], he reported that Blaise Pascal (1623 1662) recognized that an Italian named D.
Franciscus Maurolycus (1494~1575) (also spelled Francesco or Francesko Maurolico
or Maurolyci) used induction in his book [376] published in 1575. In that book,
{actually, in Book I) he proved by induction that the odd numbers are formed by
successively adding 2 to the first odd number, 1. Maurolycus used what is now
called “induction” to prove that the sum of the first n odd numbers is n2. These
and many other ideas were learned by Blaise Pascal, in the mid 1600s, with Pascal
perhaps being the first to apply induction for a formula for the sum of the first
n natural numbers. In Struik’s [515, p. 106] A Concise History of Mathematics,
two works ([201] and [448]) are cited as cvidence that “He [Pascal] was the first to
cstablish a satisfying formulation of the principle of complete induction.”

Maurolycus’ proof of the formula for the sum of the first n numbers was non-
inductive, although Georg Cantor (1845-1918) claimed that Pascal got his inductive
proof from Maurolycus; Bussey refutes this claim. Cantor (Georg Ferdinand Lud-
wig Philip Cantor) once claimed that Pascal was the originator of mathematical
induction, but later withdrew his claim after he was informed by sorneone named
G. Vacca about Maurolycus (see [544]). So it scems, Pascal learned induction from
Maurolycus.
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It might be interesting to note that Bussey’s article was published while Cantor
was still alive. Cantor quit teaching at the University of Halle in 1905, was very ill
late in life, and died in a mental hospital in Halle in 1918, so perhaps he never saw
the article. Cantor is now credited with being the founder of set theory, particularly,
the theory of infinite sets.

In George Pélya's (1887-1985) 1962 book Mathematical Discovery [435], math-
ematical induction is credited to Pascal as well, but in Bourbaki’s The Set Theory
(69] (1965), “Maurolico F.” receives credit. [Bourbaki was not a person, but a group
of sometimes 20 persons, at various times including C. Chevally, J. Delsarete, .J.
Dieudonne, and A. Weil—they had to retire from the group at age 50.)

It seems odd that such a simple technique was only learned in the 16th century.
In fact, it would not be a surprise if Euclid (ca. 330-275 BC) used mathematical
induction, though there does not seem to be any explicit instance of it. It might be
worth noting that Euclid’s result that states that there are infinitely many primes
can be easily proved by induction; see Exercise 207. This has led some authors to
the opinion that Euclid used, if even tacitly, induction. The debate as to whether or
not Euclid knew of mathematical induction has gone as far as to interpret induction
less formally. For more on Euclid and induction, see [175], [197], [541], [542], and
{557]. It has been suggested [523] that Pappus (ca. 300AD) also knew of induction,
though T have not yet seen the evidence. Even Plato might have known of the
principle (see {3]).

The method of mathematical induction has been compared to the “method of
exhaustion”, due to Eudoxus (408-355 B.C.) [about a century before Euclid] and
used by Archimedes (287 212 B.C.) in his derivation of many formulas (for areas
and volumes), and his “method of equilibrium”--which often uses the method of
slicing called the method of indivisibles by Cavalieri (1598-1647), a technigue still
used in modern integral calculus.  The method of exhaustion begins with an as-
sumption that magnitudes can be divided an infinite number of times. For example,
the method can be used to prove that the formula A = 772 for the area of a circle
is correct by finding larger and larger polygons that fit inside a circle. (See [180,
11-3] for a details.) What this method has in common with mathematical induction
is that a formula must first be guessed, and the proof is an iteration of (perhaps)
infinitely many steps, often based on some kind of recursion depending on earlier
steps. Some proofs by the method of exhaustion can be translated into proofs by
induction, however the method of induction does not seem to be used explicitly by
any of these masters from (nearly) ancient times.

Internet sources suggest that Ralbag (Rabbi Levi Ben Gershon) gave proofs that
used induction in the 13th century. One such correspondence was from Boaz Tzaban,
Bar Ilan University, Isracl; another was from Ed Sandifer at Western Connecticut
State University, Danbury, CT. They rcported on a talk given by Shai Simonson of
Stonehill College in Massachusetts, a scholar of Ben Gershon'’s work. It is not clear
that Gershon formalized the concept, but. there seems to be some agreement that
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he used mathematical induction. For more support on these ideas, see [444]. Many
other authors report on the use of induction or inductive techniques by al-Karaji
{sum of cubes formula, around 1000 A.D.), al-Haytham (sum of fourth powers),
and al-Samawal (binomial theorem). [l have not yet directly seen these references,
however, more information is available in [307].]

According to Quine {443, p. 243], “Mathcmatical induction was used and ex-
plicitly recognized by Pascal in 1654 ... and Fermat in 1659 ... But the principle
of mathematical induction retained the status of an ultimate arithmetic axiom un-
til 1879 when Frege defined the ancestral and by its means the class of natural
numbers.” Quine also says that *...Such inference, called mathematical induction,
is afforded by the following metatheorem” and then uses very careful (and barely
readable) logical notation to give the metatheorem.

Grimaldi reports in his textbook on discrete mathematics [238], that it was
Augustus DeMorgan (1806-1871) who, in 1838, carefully described the principle
and gave it its present name “mathematical induction”. The reference Grimaldi
gave for this fact was Bussey's paper [91], however, a quick look at Bussey’s paper
does not sceru to confirm this. In fact, on the website Earliest Known Uses of Some
of the Words of Mathematics [384], it is reported':

The term INDUCTION was first used in the phrase per modum in-
ductionis by John Wallis in 1656 in Arithmetica Infinitorum. Wallis was
the first person to designate a name for this process; Maurolico and
Pascal used no term for it (Burton. page 440).

and

The term MATHEMATICAL INDUCTION was introduced by Au-
gustus de Morgan (1806-1871) in 1838 in the article Induction (Mathe-
matics) that he wrote for the Penny Cyclopedia. De Norgan had sug-
gested the name successive induction in the same article and only used
the term mathernatical induction incidentally. The expression complete
induction attained popularity in Germany after Dedekind used it in a
paper of 1887 (Burton. page 440; Boyer, page 404).

The references for the above citations are Boyer [70] and Burton {89]. See also [92]
for more on the history of the name “mathematical induction”. One night note that
the method of mathematical induction still is accasionally referred to as “complete
induction” (e.g.. in [556}) or “full induction.”
Near the end of the 19th century, David Hilbert (1862 1943) was writing a
book [26Y], attempting to establish gecometry based not on “truths”, but on axioms.
sottlob Frege (1848-1925) had been studying mathematical logic and communicated
regularly with Hilbert. Much debate arose about what axioms were, what they
“should” be, and what “truth” in mathematics is. (See [451] for an account of

'Used with kind permission from Joff Miller
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the discussions between Frege and Hilbert regarding axioms.) Frege was essentially
trying to reduce mathematical reasoning to purely logical reasoning. For some
kinds of reasoning, a “second-order” kind of logic was necessary, but Frege wanted
(perhaps) to rephrase mathematical induction that did not rely on second-order
logic. To this end, he used terms like “ancestors” (well, in German, he must have
used “Vorfahren” or something similar) and “ancestor induction”. The basic idea
was to extend reasoning of the form: “Ole is an ancestor of John, and John is an
ancestor of David, so Ole is an ancestor of David.” [These, inasmuch as my parents
tell me, are accurate statements.|

In [128] {thanks to Dr. Peter Morton for supplying this reference] Demopoulos
mentions that Crispin Wright presented an argument that Hume's principle [the
number of elements in a set S is equal to the number of elements T if and only
if there is a one-to-one correspondence between elements of S and T implies one
of Peano’s axioms: “...in the context of the system of second-order logic of Frege’s
Bereffsschrift, Peano’s second postulate [every natural number has a successor | is
derivable from Hume’s principle.” Demopoulos continues to mention “...that Frege
discovered that, in the context of second-order logic, Hume’s principle implies the
infinity of the natural numbers, Frege’s theorem.” (If the reader wants another
perspective, readable but confusing, on these mnatters, see [556].)

Ernst Zermelo (1871-1953), Richard Dedekind (1831-1916), Bourbaki, Bertrand
Russell {1872-1970), and many others continued the debate regarding assumptions
about the natural numbers. Concepts like “well-ordering” and “Axiom of Choice”
were also introduced in an attempt to logically legitimize what students of math-
ematics all “know” to be “true” about natural numbers. For present purposes,
assume that all the necessary groundwork has been done to establish that present
assumnptions (or Peano’s assumptions) are reasonable. For more facts and debates
regarding the history of induction, see [175], [197], [300], {523], [541], [542], and
(581].

The interested reader may pursue these discussions from a model theoretic per-
spective as well; the mathematical logician Leon Henkin [265] examines Peano mod-
els in contrast to induction models (those with only the induction axiom). Classify-
ing algebraic systems according to the set of axioms that generate the system, and
examining which functions arise from “primitive recursion”, is too deep a subject
to entertain here. The reader is recommended to sce some of the popular literature
that is referred to in Section 2.2. The theory can get quite complex; it is hard to
say what the best approach is.

Instead of being drawn into further discussions regarding epistemology and phi-
losophy, this discussion is concluded with a quotation from Ernst Mach, as found in
[433]. regarding Jacques Bernoulli (1667-1748):

Jacques Bernoulli’s method is important to the naturalist. We find
what seems to be a property A of the concept B by observing cases
C,0y,C3,...,. We learn from Bernoulli’s method that we should not
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attribute such a property A, found by incomplete, non-mathematical
induction, to the concept B, unlecss we perceive that A is linked to the
characteristics of B and is independent of the variation of the cases. Asin
many other points, mathematics offers here a model to natural science.

1.9 Mathematical induction in modern literature

One of the chiefest triumphs of modern mathematics consists in hav-
ing discovered what mathematics really is.

—Bertrand Russell’

International Monthly, 1901.

In any mathematics textbook that contains a section on induction, there is usu-
ally a collection of problems, a handful of which are now used repcatedly in nearly
every such text. There are perhaps about a hundred problems in toto that might,
due to their frequency, be called “standard”; virtually all problems appearing in
modern texts are adaptations of these. A few books have been devoted exclusively
to induction. This chapter contains a brief overview of books specifically on induc-
tion, articles about induction, and typical books containing chapters or sections on
induction, prirnarily from the last century; for articles concerning mathematical in-
duction before that, see Section 1.8 on the history of mathematical induction. This
overview hopefully contains most major works and a few less well-known. Aside from
references given here, there are likely thousands more articles concerning induction,
so parts of this review can never hope to be comprehensive. On 11 February 2009,
MathSciNet showed 395 matches to “mathematical induction”, 74 of which were in
the title. There were 1436 titles containing simply the word “induction”, most in
well respected refereed journals. The number of books or articles that use induction
in them is probably in the hundreds of thousands.

My own introduction to induction in high school was from Mathematical Induc-
tion and Conic Sections [550], a booklet excerpt from a textbook. That booklet has
only a few pages on induction, but it lists 39 exerciscs. There have been a few other
books specifically on induction, most of which I only recently became aware of, and
norne of which seem to be in print any morc.

In 1958, a 63-page book {388} by Mitrinovié on mathematical induction appeared
in Serbo-Croatian, the last chapter of which contains a short history of induction.
The translated title was The Method of Mathematical Induction. A dozen years later,
the same author came out with another book [389], about half of which is reportedly
devoted to problems solvable by mathematical induction, (also in Serbo-Croatian),
however I have not scen either.

In 1956, 1. S. Sominskii's Russian text [498] on induction was already enjoying
its fourth cdition. In 1959, he published Metod Matematicheskoii Induktsii; this
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was translated into English and published in 1961 as The Method of Malhematical
Induction [499]. a 57-page collection of theorems and 52 problems; most appear with
helpful, complete solutions. A rcviewer named N. D. Kazarinoff reviewed that book
for Math Reviews [27 5669] and wrote “In addition to a high school training in these
subjects, the reader must have good eyesight: symbols in forinulas are often about
the size of periods.” This book has enjoyed dozens of editions in various languages,
including Russian (e.g., [498], 4th ed., 48 pages), German (e.g., {501}, 13th ed., 55
pp.. [287], 120 examples, 183 pp., with two other authors), Spanish ([502], 2nd ed.,
62 pp.), and Turkish (e.g.. [500], viii+72 pp.).

In 1964, a 55 page booklet, Mathematical Induction [582], by Bevan K Youse
{note: there is no period after the “K” in his name] appeared, repeating many of the
problems in Sominskii’s book, but with a few interesting additions. Youse’s book
has 72 problems, most of which now commonly appear in today’s texts without
reference. There are only 29 complete solutions.

In 1979, the 133-page book Induction in Geometry [220], published in Moscow,
contains inductive proofs of many difficult theorems in geometry (only a few of
which are covered in this volume). This book is no longer in print and is hard to
find [thanks to R. Padmanabhan for giving me his copy]. but, in my opinion, well
worth an effort to locate.

Another, more recent book is Manucl d’Induclion Mathématique (Handbook of
mathematical induction) by Luis Lopes [350]; this book has 100 problems complete
with solutions (in French), many of which are also standard and easy; however, the
author does not shy away from some really challenging solutions. The exercises
occupy just over a dozen pages, with the bulk of the 127 pages being solutions.

The principles behind mathematical induction arve studied in almost every logic
text or sct theory text (for example, in [95)], [289]). There are numerous articles
on mathematical induction from different points of view in logic, language, model
theory, universal algebra. or philosophy (e.g., [200] on predicate synthesis, [265] on
model theory, [383] on formal theory of finite scts, [145] on variable free algebra and
Galois connections, {111] on material implication, {139} on predicates on any well-
founded set, [471] on ramified type theory as an adequate formalization of predictive
methods).

More general works, like [181], [274], [400], and {556] give broad historical per-
spective in the modern foundations of mathematics and induction. History of math-
ernatics texts almost always describe how induction arrived on the mathematical
scene (e.g., {180]) and how it relates to other areas of mathematics.

Hundreds of references have been used in assembling the collection of exercises
here. Many problems using mathematical induction are now part of the folklore, but
unusual problems are referenced. Here are a few kinds of books that deal explicitly
with mathematical induction.

Many lexts in discrete mathematics have sections on induction {e.g., see [10f,
(8], [33], (38], [52], [59], {83}, [147], (195]. [222], [238], [292]. [299], [355], [363], [373],
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[375}, [431], [462], [464], and [535]). Of these volumes, [238], [292], and [462] are very
popular in North America, probably because of the colossal amount of mathematics
(including induction, of course) contained in cach.

Closely related are books on combinatorics, many with a prodigious array of
applications of induction (for example, see |6], [77, 78], [94], [255], [266], [455], or
[506]). Lovész's now classic compilation, Combinatorial Problems and Ezercises
[354] is also an abundant source of wonderful inductive proofs, many highly non-
trivial. Also, for induction in advanced combinatorics, see [58].

One might be delighted to know that even some calculus books (for example,
the classic book by Apostol [20], and the more modern text by Trim [534]) devote
a section to induction. Books on programming cover induction, as well (see, e.g.,
[483]). Texts that concentrate on mathematical problem solving often contain sec-
tions on induction and are a rich source of problems. In particular, Engel’s book
Problem-solving Strategies [161] contains a chapter on induction in which 39 exer-
cises and solutions are discussed; hundreds of solutions using induction also occur
throughout the book. [Some solutions are little on the brief side, but considering
the plethora of problems that are actually solved, Engel’s work might be considered
as one of the richest sources for problem solving available today.] Three more ref-
erences of this type that come to mind are {47], {124] and [461]. Such texts are an
invaluable resource for mathlete training. Other works concentrate on aspects of
teaching induction (e.g., [194], [382], [490], and [516] to name but a few).

For anyornie wanting a gencral insight into how to conjecture and prove mathemat-
ical statements, particularly by induction, one might be pleasantly rewarded with
a look at Pélya’s books [433], [434], {135]. A fairly recent collection of non-trivial
probleins over a broad range of fields, many of which employ induction, quickly be-
came one of my favorites: The Art of Mathematics: Caffec Time in Memphis [61],
by Béla Bollobsds.

Leo Zippin’s classic monograph Uses of Infinity [589] shows off induction in vari-
ous settings, most notably in proving limits. In What is Mathematics? [120, §§1.2.1-
1.2.7, pp. 9-20] by Richard Courant and Herbert Robbins onc finds a particularly
easy-to-read discussion of mathematical induction. (Zippin, [389, p. 106] also refers
the reader to the Courant and Robbins book.) Another, more recent delightful
problem book (which has a scction on induction, and various induction problems
throughout) is Winning Solutions, by Edward Lozansky and Cecil Rousseau [357],
a collection of contest problemns and their solutions that might complement any
library.

Some books on recreational mathernatics and popular science include discussion
of mathematical induction. Onec of the most noteworthy of these is Martin Gard-
ner's Penrose Tiles to Trapdoor Ciphers, |214, Ch. 10, pp. 137-149], a chapter
called “Mathematical induction and colored hats”. Another, [560], discusses Pen-
rose’s non-computability of thought, consciousness, self-referencing, and discusses
mathematical thinking viz-a-viz Godel’s theorem, Poincaré, and Galois, and some-
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how manages to tie in mathematical induction.

There has been some work on computer programs designed to produce induc-
tive proofs (also called “automated induction”). See, for example, 28], [68] (using
SPIKE), {87], [187], [303], [398], [543], [557] (using LISP), and {588]. There is a greal
deal more literature on this subject, as proofs by mathematical induction are central
in many computer science and Al applications. An older article [139] highlights the
importance of mathematical induction in termination of programs and properties of
programming languages.

A special kind of mathematical induction, called “transfinite induction” (see
Section 4.2) is closely related to complexity theory in [489]. The invariance theorem
{whatever that is] and induction are studied in [278]. Induction and program veri-
fication and modelling are also closely related and many books and articles discuss
this relation (see, e.g., [302], {361], [452]).

Many texts with “finitc mathematics” in the title contain scctions on mathemat-
ical induction, as induction is often taught in high school and beginning university
math courses. Various other subject areas (for example, number theory, algebra, and
graph theory) use induction quite heavily, and some related texts contain sections
on induction (e.g., [150], [566]).

One can find numerous articles on induction in various popular journals, too; for
example, see [82] or [265]. The article by Dragos Hrimiuc [280] is short (3 pages!)
and easy to read, yet is a substantial introduction to the subject. Some are from a
historical perspective (e.g., [91], [175], [197], [300], [523], [541], [542], [581]). There
are a variety of journal articles on induction in general (e.g., {138], [L75], [237] (in
Spanish), [262] (in Japanese), [290] (in Chinese), and [504]).

Induction is not only applied in discrete situations. Analysis and induction are
more closely related than one might think (see [155] for some classical connections).
In fact, there is a kind of continuous, or non-discrete induction at play. Some of the
first (and most referred to) articles in this area seem to be by Ptdk [441, 442] (with
the Banach fixed point theorem, Banach algebra, closed graph theorem, Newton’s
process, and more); see also [26], [25], [27], [578], [579]. For those who can read
Russian and are interested in differential equations, sce [318].

Induction is ubiquitous. In fact, in any volume of a mathematics journal (popular
or specialized) it seems rare not to find at lcast one proof by induction!

Incidentally, it might come as a bit of a surprise that the word “induction”
does not seem to be mentioned in George Gamow’s classic book One Two Three ...
Infinity onc can be comforted, though, by the knowledge that Gamow [203, pp.
19-23] explains well two problems that are solved inductively.

Finally, there is the internet. In September 2005, a Google search for “mathe-
matical induction” produced “about 2,610,000” hits! For some reason, this number
dropped to 436,000 as of January 2009. Any ranking of these sites is hopeless, how-
ever, many scem to be rather well done. The sites seem to range from the very
elementary to some collections of somewhat challenging problems.



Chapter 2

Foundations

The reasoning of mathematicians is founded on certain and infallible
principles. Every word they use conveys a determinate idea, and by
accurate definitions they excite the same ideas in the mind of the
reeder that were in the mind of the writer. When they have defined
the terms they intend to make use of, they premise a few azioms,
or self-evident principles, that every one must assent to as soon as
proposed. They then takc for granied certain postulates, ..., and
from these plain, simple principles they have raised most astonishing
speculations, and proved the extent of the human mind (o be more
spacious and capactous than any science.

—John Adains,

Diary.

This chapter attempts to put mathematical induction (MI) on a sound logical
ground, and the principle of mathematical induction is described more formally. The
usual starting point is a set of axioms called “Peano’s axioms”, the last of which
is, essentially, the principle of mathematical induction. Using these axioms one can
prove many of the basic properties of natural numbers, perhaps a reasonable place
to start in mathematics.

2.1 Notation

The notation used in this text is fairly standard. If S is a set, “x € S” denotes that
x is an element of S. The notation “z,y € S is a common shorthand for “z € S
and y € §". Use “I" C §” or “T" C §” to denote that T is a subset of S, that is,
every clement of T is an clement of S; in either notation, T can be equal to S. If
T #£8,yet TCS, then T is a proper subset of S (denoted by T C S, if necessary).

19
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Though they have yect to rigorously defined, let N = {1,2,3,...} denote the set of
natural nuimmbers. The empty set is denoted by @ (this is not a computer 0).

Note: Many authors, especially comnbinatorists, set theorists, and those trained
in the British system, include the number 0 in the natural numbers; here 0 is not
included, and so where ever confusion can arise, different notation is used. In some
schools, the set W = {0,1,2,3,...} is called the set of whole numbers, though the
expression “non-negative integers” is used here. [I was taught to remember the
difference by observing that the whole numbers had an extra “hole”.] To avoid
confusion, one might also say “positive integers” rather than “natural numbers”.

There is, however, good rcason to include 0 in the natural numbers (as one
might witness with ordinal numbers and the Zermelo hierarchy—set theoretic inter-
pretations of counting numbers). The tradition of natural numbers without 0 is a
tradition followed in many North American schools. (I deliberated for some time on
this choice of notation, and I am still not sure that I have made the correct choice;
from a mathematical perspective, it seems to make more sense to include 0.]

The symbols Z, Q, R, and C denote the sets of integers, rationals, rcals, and
complex numbers. respectively. The notation Z7 = {1,2,3,...} is often used to
indicate the set of the positive integers; this notation is somewhat universal, and
hence is occasionally used instead of N to avoid confusion (regarding the inclusion of
0). Throughout, unless otherwise noted, all variables in this text are non-negative
integers. For statements p and ¢, use the shorthand p — ¢ to abbreviate “if p then
q”. or “p implies ¢”, and p = ¢ for “p logically implies ¢”. In mathematics, one
often confuses their meanings; the “—™ is implication in the object language, and
“=" is in the metalanguage. Many mathematicians use the double arrow to mean
simply “implies”, perhaps to differentiate from the single arrow used for functions.

The symbol V¥ means “for all” and the symbol 3 means “there exists”; as handy as
thesc quantifiers are, their use is limited in this text since they tend to make simple
statements unrcadable to some non-mathematics students. The symbols “A” and
“V" are occasionally used to represent “and” and “or” respectively. If a paragraph
is followed by “0", then this indicates the end of a proof. The expression “iff” is an
abbreviation for “if and only if”.

2.2 Axioms

There are many statements in mathematics that arc not proven, but are simply
assunied to be true. For example, in Euclidean geometry, it is assumed that for
any pair of distinct points in the plane, there is a unique line that contains them.
Some people find this to be a reasonable assumption, however, might have difficulty
proving such an assumption (whatever that might mean).

A statement that is assumed to be true (but not necessarily provable) is called
an ariom or postulate. To state an axiom, one often requires that certain terms are
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accepted without meaning. For cxample, undefined terms might include “element”,
“set”, “point”, “line”, “plane”, “is incident with”, and “is in between”. Having
established the terms, one might agree on rules of logic (where the default is usually
to simply accept standard Boolecan logic, with or without quantifiers, for example,
and the standard connectives). With these in place, one can state an axiom, cither
a property of a term, (e.g., “there exists something called a point”) or a relation
between terins (e.g., “there exists a set which does not contain any clements”).

A theoremn is a statement that then follows deductively from the axioms, either
directly or indircctly using other theorems. A lemma is a “lesser” theorem, often
used to help prove a more significant theorem. {'The plural for “lemma” is “lemmata”
or more simply, “leminas”.) A corollary is a statement that is a consequence of a
theorem; usually a corollary follows from a theorem in a fairly obvious way.

When specaking of the validity of a particular result, one actually only refers to
whether or not the result follows from axioms. In Edmund Landau’s book Grund-
lagen der Analysis [339], he begins with axioms and derives most of the foundations
of arithmetic. The approach here is similar, beginning with the same sct of axioms.

Any discussion in set theory, logic, gecometry, number theory, or even mechanics,
usually presumes that a set of axioms has been agreed upon. How would a scientist
decide on a list of absolute truths (axioms) from which to develop a particular
system? Of any collection of axioms a scientist might assemble, there are two
properties of the collection that may be desirable:

First, insist that the list is as short as possible. Perhaps most importantly, it
would not be desirable to want so many axioms that fromn any (or all) of the axioms,
one could derive a contradiction (that is, both a statement and its negation). If one
can not deductively derive any contradictions froin a particular collection of axioms,
the collection is called consistent, and the system that rests upon these axioms is
also called consistent or sound.

If a particular system is sound, it might be very difficult to prove such a fact.
Even proving the inconsistency of a system by exhibiting a contradiction might be
an impossible task.

Onc reassurance of soundness is to find a model ov interpreletion that realizes all
of the axioms. In fact, depending on your assumptions about the world, finding a
model is sometimes proof that a set of axioms is consistent—as it is in many math-
ematical situations. For example, the naive image of standard Euclidean geometry
seems to be a model that satisties the postulates in Euclid’s Elements of Geomeltry
(written around 300 B.C.). If a collection of axioms is consistent, any subcollection
is also consistent. Different modcls for geometries have been found that realize all
but the fifth of Buclid’s postulates, (e.g, elliptic or hyperbolic geometries). See [274,
pp. 88-93] for a lively, easy to read discussion of the discoveries that led to various
“non-Euclidean” geometries.

Any attempt to construct a sct of consistent axioms might start by selecting a
very large sct of axioms, deriving some contradiction. then throwing out one possibly
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offending axiom, and trying again, continuing until no contradictions are derivable.
It is yet another problem, however, to show that contradictions can not arisc at
any one stage. To support a claim that one particular axiom is consistent with a
given set of axioms, one might assume its negation and try to prove a contradiction.
Enough about consistency for the moment.

The second desirable property for a collection of axioms to satisfy is that the
collection of axioms is large enough so as to be able to derive all truths in the
system from the axioms. Such an axiomatic system is called complete. In Euclid’s
thirteen books of Elements of Geometry is a set of five postulates, however it scems
that Euclid’s postulates are not complete (see [264, p. 1636]) for what is now called
“Euclidean geometry”. Hilbert's set of axioms for geometry [269] arose out of efforts
to find “completeness”, efforts which were destined for failure as well.

There has been much discussion about what sort of minimal collection of axioms
“should be” agreed upon so that one can do. say. set theory, geometry, or arithmetic.
In this text, t~ - _.ribe the natural numbers, a set of axioms (now commonly thought
to be not too problematic), Peano’s axioms, is the starting point. The standard
axioms of ZFC are implicitly assumed here. (See appendix IV for a list of ZFC
axioms and further discussion about consistency and completeness.)

2.3 Peano’s axioms

In the 19th century, Giuseppe Pcano (1858-1932), a professor from the University
of Turin (Italy), published (in Formulario Matematico, 1889), a collection of axioms
for the natural numbers N, defined here to be Z* .

Peano received the axioms from Dedekind in a letter, and he even recognized
this in his publication, however, the terin “Peano’s axioms” has survived to refer
to Dedekind’s axiomns (e.g., see Pollock’s book {432], though Pollock does not give
references). This fact doesn’t seem to be widely cited in other textbooks. Peano’s
axioms are generally now accepted by the mathematical community as a starting
point for arithmetic.

To describe these axioms, common function notation is used: The cartesian
product of sets S and T'is S x T = {(s,t) : s € §,t € T}. A function f from a
domain S to T (written f : § — T') is a subset f C S x T so that for every s € S,
there is exactly one t € T so that (s,t) € f. In this case, write f(s) = ¢. (Sce
Section 18.2 for more details on functions.)

Peano’s axioms are usually given as a list of five, yet one more appears in his
writings, one roughly equivalent to “N is a class of things called numbers.” (Sce
[310, p. 1872] for a translation; many other wonder(ul articles regarding axions are
also found in the same collection.) His fifth axiom is really the principle that is now
known as “mathematical induction”.
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Peano’s axioms:
Pl 1eN.

P2 There is a function § : N — N where for each z € N, §(z) =2’ €
N is called the successor of x.

P3 For every z € N, 2/ # 1.
P4 If 2’ =9/, thenz = y.

P5 If S C N is such that
(i)1€ 8, and
(i) foreveryz € Nz € S— 2’ € S,
then S = N.

A prool employing P5 is said to be “inductive” or “is by induction”. The step
P5(i) is called the base step and P5(ii) is called the inductive step. Some philosophers
call these two parts the bdasic clause and the inductive clause (for example, see [29,
p. 468]). The antecedent “x € S” in P5(ii) is called the inductive hypothesis (or
sometimes induction hypothesis.)

2.4 Principle of mathematical induction

This section contains a very brief formulation of what is called the “principle of
mathematical induction™ as it is applied to various statements, instead of just for
sels. Applications and various forms of this principle are discussed again in Chap-
ter 3.

There are many forms of mathematical induction-—weak, strong, and backward,
to name a few. [n what follows, n is a variable denoting an integer (usually non-
negative) and S(n) denotes a mathematical statement with one or more oceurrences
of the variable n. The following is the standard presentation of mathematical induc-
tion, also called “weak matheniatical induction”. Observe that §(z) =2’ =z + 1
is a successor function satisfying P2, P3, and P4 (it is shown in Theorem 2.5.4 that
this is the only successor function on natural numbers).

Theorem 2.4.1 (Principle of Mathematical Induction (MI)).
If 8(n) is a statement involving v and if
(i) S(1) holds, and
(ii) for every k > 1, S(k) implies S(k + 1),
then for every n > 1, the statement S(n) holds.
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The two stages (i) and (ii) in a proof by MI are still called the base step (in
which the base case is proved), and the inductive step, respectively. In (ii), S(k) is
called the inductive hypothesis (also called the induction hypothesis). Depending on
the definition of the natural numbers used by different authors, the base step might.
also be S(0).

Proof of MI from Peano’s axioms: Define A = {n € N: S(n) is true}. Then
by (i), 1 € A. By (ii), if k € A, then k& + 1 € A. So by P5, A =N, proving MI.  []

2.5 Properties of natural numbers

"The next few results (proved from Peano’s axioms) will enable one to talk about N
in more familiar terms.

First observe that for any successor function §(z) = z’, to each x there is a
unique z’, and hence [z = y| — [2 = ¢/'].
Lemma 2.5.1. For any z,y € N, [x £ y] — [z’ #¥'].
Proof: This is just the contrapositive of P4. [If a statement is of the form “if P,

then Q, the contrapositive of the statement is “if not Q, then not P, The two
statements are logically equivalent.] a

Theorem 2.5.2. Ifz € N then &' # x.
Proof: (By induction) Let 4 = {x € N: 2’ # x}.
BaAsSE sTEP: By P3, 1 € A.

INDUCTIVE STEP: Assume that y € A, that is, ¥’ # y. Lemma 2.5.1 then implics
(¥') #y',and so ¢y € A.
Hence, by P5, A = N, |
The next result shows that predecessors are unique.
Theorem 2.5.3. Ifz € N and x # 1, then there is a unique y so that x = y'.
Proof: (By induction) Let
A={z€N:z =1or there exists y € N so that z = y'}.

BASE STEP: 1 € A by definition.

INDUCTIVE STEP: Suppose that € A. Then either z = 1 or z = y’ for some y € N.
To be shown is that ' € A. If z = 1, then 2’ € N; if # = ¢, then « € N by P2.
Hence, in any case, £ € N, and by the definition of A, 2’ € A.

Thereforc, by P5, 4 = N. Thus, for any & # 1, there is some y € N so that
z — 3. The uniqueness of y follows from P4. O
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The next theorem shows that the successor function is what one might expect
it to be, namely ' = x 4+ 1. In this theorem, a function is defined from N x N to N,
that is, it takes ordered pairs and returns natural numbers. For such a function f,
it is standard to write f{xz,y) instead of the more proper f((x,y)).

Theorem 2.5.4. There exists a unique function f : Nx N --— N so that for all
z,y € N,

(a) flx,1) =2";

(b) flz,y') = (f(z,9))-

Proof: There are two things to show, existence and uniqueness.

(Existence) A function from N x N to N can be described by an infinite matrix:

SLY) f(L2) £(1L,3) fQ.4)
2.1 f(2.2) f(2,3) f(2,4)
f3.1) f(3.2) f(3,3) f(3,4)
f(a,1) f4,2) f(4.3) f4.4)

The idea in this existence part of the proof is to create this matrix row by row. It
will suffice to show that the first row can be constructed so that (a) and (b} hold,
and then to show that an arbitrary row can be constructed from a previous one.

Define B to be the set of all z € N so that one can find a set of function values
{f(z, i) : ¢ € N} so that for all y, both (a) and (b) hold (for the fixed z). To be
shown is that B = N.

BASE STEP (x = 1): For every y € N, define f(1,y) = ¥'. By definition, f(1,1) = 1’,
and so (a) holds with z = 1. Also, by definition, f(1,¥") = (¥') = (f(1,¥)), and so
(b) holds with z = 1.

INDUCTIVE STEP: Suppose thai z € B. Then f(x,y) is defined for all y € N so
that (a) and (b) hold. Define f{z’,y) = (f(x.y))’. Then, by definition, f(z',1) =
(f(z,1)) = ('Y and so (a) holds with z’ in place of z. Also

f' ) = S,y (by definition)
= ((f(z,p))Y (by (b) since = € B)
=(f(@"y)) (by definition),

and so (b) holds for x'. Thus, 2’ € B, completing the inductive step.
By induction, B = N, finishing the existence part of the proof.
(Uniqueness) Suppose that f is defined so that for all z,3 € N both (a) and (b) hold

and also suppose that g is a function satisfyiug the corresponding equalities:
(2’ g(x,1) = o', and
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(®") g(z,¥) = (9(z,y))
Let = € N be fixed and define the set A; = {y € N: f(z,y) = g(z.y)}. Induction is
used to first to show that 4, = N.

BASE STEP: 1 € A, since f(z,1) =’ = g(x,1).

INDUCTIVE $TEP: Suppose that y € A,. that is, f(x,y) = g(z,y). Then by (b) and
(), f(r,y") = (f(x,y)) and g(z,y'} = (9(z,y))’. Hence, by P4, f(z,¥') = g(z.y").
Soy € A;.

Hence by P5, A, = N. Since z was arbitrary, this completes the uniqueness part
of the proof, and hence the entire proof. . a

The function f above is better known by its common notation, f(z,y) =z + y,
and hence the successor function is £’ = z + 1 (as one might expect). One can now
freely use the result of the previous theorem, namely, the existence of the unique
function f defined so that

(a') f(x* 1} = xl’:

(b) f(z.¥) = (f(z,y));

(c) f(I,y) =y,

(d) f(z'.y) = (f(=z,9)),
where (c) and (d) are from the way f was defined in the existence part of the proof;
translating (a) -(d) into common notation using the “+” sign,

@)z+1=2a;
®)z+y =(zt+y)
() l+y=y"

(d)z'+y=(r+y).
The expression “z + y” is called the sum of z and y, and the process of computing
x + y is called addition.

Theorem 2.5.5. Addilion of naturel nwmbers is associative, that is, for every
z,y,2 €N,
z+y)+z=z+ W+ 2).

Proof: Let z and y be fixed natural numbers and put
A={zeN:(z+y)+z=z+{y+2)}.

BASE STEP: 1 € A because

(z+y)+1=(z+y) (by (a?))
=z+y (by (b))
=z +(y+1) (by (a))-

INDUCTIVE STEP: Suppose that z € A. Then

@+y)+=(@+y) +2) (by (b))
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=(z+(y+2) (because z € A)
=z+(y+z) (by (b7))
=z+(y+72) (by (b7)),

and so 2’ € A, completing the inductive step. Hence, by P5, A = N. O

Since addition is associative, it matters not which adjacent terms are added first,
and hence parentheses are not needed.
For natural numbers x;,z2, 3, ..., define inductively

T1+Zo+ ...+ Tn={(T1 + T2 +... +Tn-1) + ZTn-

To abbreviate the left side, one uses so-called sigma notation:
mn
Ty +Xo+ -+ Ty = Za:i.
i=1

Such notation extends in the obvious way, for example,

7

Zyj =Ys+ytys +Yo+ yr
=3

For later reference, a formal definition of the sigma notation is given:

Definition 2.5.6. Let 1, z2.x3,Z4,... be a sequence of natural numbers. Define
Zil:l x; = z; and recursively define for each n > 1,

n n—1
i=1 i=1

Generalizing this slightly, for any j € N, define Zf:j x; = xj and recursively define
for each n > j,

n n-1
E € = E z; | +x,.
i=j i=j

Finally, define the sum over an empty set of indices to be zero.

According to {556], the next theorem is due to H. Grassman, {rom Lehrbuch der
Arithmetik, 1861 (though T have not seen the original proof).

Theorem 2.5.7. Addition in natural numbers is commutative, that is, for cvery
T,y €N,
r+y=y+az.
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Proof: Let 2 € N be fixed, and put A={yeN:z+y=y+z}.

BAsE STEP: 1 € A because by (a’) and (c') respectively,

z+l=z'=1+z.

INDUCTIVE STEP: Suppose that y € A. Then

z+y =(x+y) (by (b))
= (y+z) (because y € A)
=y +z (by (d)),

and so y’' € A, completing the inductive step.
Hence, by P5, A = N, finishing the proof of the theorem. O

Theorem 2.5.8. For everyx,y € N, z+y £ x.

Proof: Let A be the set of all those x € N such that for every y e N, z + y # «.
Base sTEP: By P3 and property (c’), for every ye€ N, 1 +y # 1,andso 1 € A.

INDUCTIVE STEP: Assume that z € A, that is, z is such that for any y € N,
o+ y # z. If for some y, ' + y = z’ holds, then by property (b"), it follows that
(z +y) =, and so by P4, £ +y = z, contradicting that x &€ A; hence conclude
that ' + y # 2/, and thus ' € A.

By P5, A = N. ]

The next sequence of exercises establishes the propertics for the operation known
as “multiplication” of natural numbers; they are proved in a very similar manner to
thosc above. The content of the exercises in this chapter are really theorems whose
proofs are perhaps boring or repetitive and are nol intended as the first exercises
regarding induction that a student might see.

Exercise 1. Prove that there erists a unique function g : N x N -— N so that for
allz,ye N

(e) g(z,1) = x;

(f) Q(I»y') = (‘E + Q(I,y)).

Replace the notation g(z,y) by z -y, the multiplication of x and y, and then
abbreviate « - y by zy.

Oddly enough, it helps to first prove distributivity before associativity of multi-
plication.
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Exercise 2. Prove that the distributive laws hold, that is, prove that for any x,y,z €
N)
z(y + 2) =xy + xz,

and
(x+y)z =zxz+yz

Exercise 3. Prove that the general distributive laws hold for natural numbers, that
is, for xy,22,...,Zn,c €N,

n n
C E T | = E CZ;.
i=1 i=1
Using one of the basic distributive laws, associativity comes fairly easily.

Exercise 4. Prove that multiplication of natural numbers is associative, thal is,
prove that for any z,y,z € N,

(zy)z = z(y2).

Definition 2.5.9. The notation []. | z; is defined recursively by H}=1 z; =y, and
forn>1,

n+1 n
IEE e
i=1 i=1

Since multiplication of natural numbers is associative, if the z;’s are natural num-
bers, the mecaning of

n
Hibi = Z1x2In
i-=1

is unambiguous. Finally, define the product over an cmpty set of vertices to be equal

to one, that is,
Hl‘i =1.
€0

Note that when all z;’s are equal, the first simple definition of exponentiation
is given (for positive integers): define x; = z, and for n > 1, having defined 21
define 2™ = z"! - .

"T'he discussions above are just a beginning to thoroughly define the real numbers,
or to check all of the propertics of or operations on the natural numbers. A few of
thesc are given as exercises.
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2.6 Well-ordered sets

Given a set S, a binary relation on S is a subset of the cartesian product S x § =
{(a,b) : a € S,b € S}.
A binary relation R on S is

o reflexive iff for every z € 5, (z,z) € R,

o symmetric iff for every 2,y € S, [(z,y) € R] — [(y,z) € R].

o antisymmetric ifl for every z,y € S, [((z,y) € B) A (¢ # y)] — [(y, ) € R].
o transitive iff for every z,y,2 € S, [((z,y) € R) A ((y,2) € R)] — [(x,2) € I-Z]

A binary relation R on S is a partial order if and only if R is reflexive, antisymmetric,
and transitive. If R is a partial order on S, the set (S, R) is called a partially ordered
set , abbreviated, poset.

One can write x <p y if (z.y) € R, and if also = # y, write £ <p y and say
that z is less than y. The notation TRy is also quite common. If the relation R
is implicitly understood, simply write £ < y or x < y, rather than z <p y or
z <py (or zRy). (Some texts define a partial order without reflexivity, and so a
total order is then always written with “<” rather than “<"; such notation is often
practiced regardless of whether or not reflexivity is insisted on in the definitions,
since a relation without reflexive property determines precisely one with reflexivity.)

A least element in a partially ordered set (P, <) is an element z € P so that
for every y € P, z < y. For example, the poset {(a,c),(b,¢)} has no least element
(instead it has two minimal clements: a and b) but the poset {(z,y),{z,2)} has a
lcast clement z. If a least element exists, then it is unique. For a subsct Q C P, a
lower bound for @Q is an clement u € P so that for every ¢ € Q, u < g; if u is a lower
bound for Q, write u < Q. Similarly definc greatest element and upper bound. A
least upper bound for Q) C P is a least element in the set of all upper bounds; note
that if a least upper bound for @ exists, it is unique. Similarly define greatest lower
bound. Sometimes the notation = < @ denotes that for every ¢ € @, z < Q.

A partial order R on a set S is called a total order (or linear order) if for every
x,y € S, either (z,y) € R or {y,z) € R holds; in this case, the ordered set {5, R) is
called a totally ordered set.

The standard order on N is often defined by = < y if and only if there exists
n € N so that y = z+n. (Note that one can not yet really say in this definition “...if
and only if there exists n > 1 so that...”, since the order > is being defined!) As
one might expect, this standard order on N is indeed a linear order or total order.
One first step in proving this is to show that any two elements in N are comparable,
that is, for any z,y € N, one of ¢ < y, £ = y, or y < z holds. The following “Law
of Trichotomy” says precisely that.

Exercise 5 (Law of Trichotomy). For any z,y € N, exactly one of z < y, z = y,
or y < x holds. Prove this result by induction.



2.6. Well-ordered scts 31

This law also confirms that since < means < or =, the relation < as defined is
antisymmetric. Tt also follows that < defincs a total order. Again, by induction,
addition preserves order:

Exercise 6. For any natural numbers x,y,p,
r<y ifandonlyif z+p<y+p

There are different kinds of total orderings. For example, N, the integers Z, the
rationals Q. and the reals R all have no largest element. Of these, only N has a
smallest element. Also, both @ and R are dense (between any two there is another),
yet of these two, only R contains all its limit points.

Definition 2.6.1. A well-ordering on a set W is a total order < (or <) on W so
that for any non-cmpty § C W, S contains a lcast element. Any ordered set (W, <)
where < is a well-ordering is called well-ordered.

As well [pun intended| noted in [95], the term “well-ordering” might very well
be replaced with “good-ordering”, because “well” in this instance is an adjective,
not an adverb, however this usage has survived to become standard these days.

Peano’s axioms imply that every non-empty subset of natural numbers indeed
has a least clement:

Theorem 2.6.2. The standard order on N is a well-ordering.

Proof: Let S € N. First observe that if any least element in S exists, then it is
unique, since if there were two least elements, say m; and ma, then one would have
both 1y < my aud my < my. Consequently, by the Law of Trichotomy, m; = my.

Assume that S is without a least element; to finish the proof, it suffices to show
that S = (). Let

A= {m e N: no number less than m belongs to S}.

By P3. 1€ A. Suppose that &k € A. If n. < k + I, then either n < k (in which case
n ¢ Ssince k € A) or n = k (in which case n € S, for if n € S, then n would be
least in S). In any case, such an n is not in S. Hence £+ 1 € A. Thus by P35,
A=N, and so § = 0. O

Exercise 7. Let (X, <) be a well-ordered sct and let Y ¢ X. Show that if f : X - -
Y is an isomorphism, then for allx € X, f(x) > .

Theorem 2.6.3. A linearly ordered set (W, <) is well-ordered if and only if there
s no infinite decreasing sequence in W,
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Proof: Suppose that W is well-ordered. If w; > wy > ... is an infinite decreasing
sequence in W, put § = {w;,ws,...}. By well-ordering, let wy, be the least element
of S; then wg > w4 € S, contradicting the minimality of wy.

Assume that W is a linearly ordered set with no infinite decrecasing sequence. Fix
any non-empty S C W, and let t € S. If ¢ is not the least element of S, pick w; € S,
wy < t. If wy is not the least element of S, pick we € § with wy < wy. Continue
choosing successively smaller elements. Since W contains no infinite decreasing
sequence, the same is truc for S, so this process must stop after finitely many steps,
and at that time, the least element of S is produced. O

Note: Jech {289, p. 18] states that the direction “no infinite decreasing subset
implies well-ordered” in Theorem 2.6.3 follows from the Axiom of Choice (see Section
4.5); however, AC does not seem to be needed in the above proof.

Definition 2.6.4. For totally ordered sets (W), <) and (W3, <2) a function f :
W1 — Wy is order preserving (o.p.) iff  <; y implies f(x) <o f(y). Well-ordered
sets A and B are similar, written A ~ B, iff there is an order preserving bijection
between thein.

An order preserving bijection is also called a similarity. [Caution: “similarity” is
also a term used in geometry for functions that preserve ratios of distances.] Some
authors use the term “isomorphism” to describe a similarity; “isomorphism” is often
used for a bijection that preserves algebraic or relational structure; in this case the
structure is only the order.

Theorem 2.6.5. 2.6.5 Let (W, <) be a well-ordered set and letY CW. If f: W —
Y is an order preserving bijection, then for allw e W, f(w) > w.

There are two ways to present this proof, one by induction, and the other by
contradiction; the difference is subtle.

First proof of Theorem 2.6.3: Let M = {w € W : f(w) < w}. It M is non-
empty, pick some m € M; then f(m) < m and f being order preserving imnply
f(f(m)) < f(m), so f(m) € M as well. Continue applying f, by induction, giving
an infinite decreasing sequence m, f(m), f(f(m)),... in M. But since M is a subset
of the well-ordered set W, M has a least element, so the assumption that M is
non-empty must be abandoned. Thus conclude that M = §. ]

Second proof of Theorem 2.6.3: With the same notation as above, if M # 0,
since M is a subset of a well-ordered set, M contains a least clement yy. Then
Fyo) < yo implies that f(f(yo)) < f(yo) and hence f(yo) € M, contradicting that
Yo is least in M. So M = (. 0

The first proof above can be thought of as a proof that uses downward induction
o produce an infinite decreasing sequence, a sequence which contradicts a previously
established fact. This very same technique is used in Fermat’s method of infinite
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descent (sce Section 3.6). Thus, many proofs by contradiction might be considered
as proofs by induction.

2.7 Well-founded sets

A partial order (P, <) is called well-founded if {or every non-empty subset X C P,
X contains a minimal (with respect to <). In a well-founded partial order, for
every element x € P, there is a well-ordered set containing both z and a minimal
elenient of 2. Just as mathematical induction is used on well-ordered sets, so too
is mathematical induction valid for well-founded sets. This kind of induction might
be called generalized induction. For example, suppose that onc wants to prove a
sequence of statements P(m, n) that depend on two variables, say, for finitely many
m. Suppose also that one knows P(m,n) — P(m,n + 1). An inductive proof could
start with the base cases as ’(m;.0). and from each base case, ordinary induction
can be applied to reach all statements of the form P(m;,n). Generalized induction is
most often used for induction on two variables, called “double induction”, discussed
inn the next chapter. Generalized induction also includes the notion of “alternative
induction”, also in the next chapter.






Chapter 3

Variants of finite mathematical
induction

Mathematics is either Pure or Mized..... And as for Mized Mathe-
matics, I may only make this prediction, that there cannot fail to be
more kinds of them, as nature grows further disclosed.

—Francis Bacon,

Advancement of Learning.

There are many forins of mathematical induction—weak, strong, and backward.
to name a few. In what follows, n is a variable denoting an integer (usually non-
negative) and S(n) denotes a mathematical statement with one or more occurrences
of the variable n.

3.1 The first principle

For convenience, the standard presentation of mathematical induction is repeated
here. Somnetimes this standard version of induction is called the “first principle
of mathematical induction”, and is also called “weak mathematical induction” (as
opposed to “strong” induction, a modification appearing in Section 3.2). Recall that
the notation P — @ is short for “P implies @”.

Theorem 2.4.1 [Principle of Mathematical Induction (MI)]
Let $(n) be a statement involving n. If

(1) S(1) holds, and

(i) for every k > 1, S(k) — S(k + 1),
then for every n > 1, the statement S(n) holds.

35
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By Theoremn 4.5.5, an inductive step can also be accomplished indirectly by
showing that the set of integers for which S(n) fails has no least element, contra-
dicting the well-ordering of N. Such an example occurs in the following Section 3.2
on strong mathematical induction. (See also one solution to Exercise 477.)

Note that the base step in an inductive proof is essential, since, for example, if
one were to attempt to prove that for any positive integer n, the statement S(n) :
3i1(2i — 1) = n? + 5 holds, it is not hard to show that S(n) — S(n + 1), however,
S5(1) does not even hold, and so one may not conclude that S(n) holds for all n > 1.
Another such statement (where n is a positive integer) is “n? -+ 5n + 1 is even”, for
which the inductive step works, but the statement is in fact never true!

The base case for MI need not be 1 (or 0); in fact, one may start at any integer.
Here is a slightly more general {but equivalent) form of the principle of induction:

Theorem 3.1.1 (Principle of Mathematical Induction (MI)).

Let S(n) denote a statement regarding an integer n, and let k € Z be fized. If
(i) S(k) holds. and
(ii) for every m >k, S(m) — S(m + 1),

then for every n > k, the statement S(n) holds.

Proof: Let T(n) be the statement S{(n + k& — 1), and repecat the above proof,
instead with 7" replacing every occurrence of S. Then the base case becomes T(1) =
S(1+k—1) = S(k) as desired. O

3.2 Strong mathematical induction

While attempting an inductive proof, in the inductive step one often needs only the
truth of S(n) to prove S(n + 1); sometimes a little morc “power” is needed, and
often this is made possible by strengthening the inductive hypothesis. The following
version of mathematical induction can be viewed as contained in the principle of
transfinite induction (see Section 4.2).

Theorem 3.2.1 (Strong Mathematical Induction).
Let S(n) denote a statement involving an integer n. If
(i) S(k) is true and
(it) for everym 2> k, [S(K)AS(k+1)A---AS(m)] — S(m +1)
then for every n > k, the statement S(n) is true.

The principle of strong induction is also referred to by some as course-of-values
induction (e.g., see {42]). A few professionals use “full induction™ or “complete in-
duction” to denote strong induction: these terms have long been accepted as meaning
simply “mathematical induction” (as opposed to empirical induction). [See Section
1.8 on history of induclion.]
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In Theorem 2.6.2, it was shown that Peano’s axioms imply the well-ordering of
N. This well-ordering is used (below) to prove strong induction, and hence, to show
that strong induction also follows from I°5. Notice that Theorem 4.5.5 also shows
that both forms of induction follow from well-ordering,.

Proof of strong induction principle from weak: Assume that for some k, the
statement S(k) is true and for every m > k, [S(K)AS(k+1)A---AS(m)] — S(m+1).
Let B be the sct of all n > m for which S(n) is false. If B # §), B C N and so
by well-ordering. B has a least element, say £. By the definition of B, for every
k <t< ¢ S{t)is true. The premise of the inductive hypothesis is true, and so S(£)
is true, contradicting that ¢ € B. Hence B = (. O

Strong induction also implies weak induction.

Proof of weak induction from strong: Assume that strong induction holds (in
particular, for k£ = 1). That is, assume that if S(1) is true and for every m > 1,
[S(L)AS(2) A--- A S(m)] — S(m + 1), then for every n > 1, §(n) is true.

Observe (by truth tables, if you will). that for m + 1 statements p;,

Ipl i 172] N {])2 - PS] VARIAN [pm - pm+1] = [(pl ANpaA... /\pm) - I7m+v1],

itself a result provable by induction (see Exercise 456).

Assume that the hypotheses of weak induction are true, that is, that S(1) is
true, and that for arbitrary ¢, $(¢) — S(t + 1). By repeated application of these
recent assumptions, S(1} — $(2), S(2) — $(3), ..., S(m) — S(m + 1) each hold.
By the above observation, then

(S(LYAS@2) A - AS(m)| — S(m +1).

Thus the hypotheses of strong induction are complete, and so one concludes that
for every n > 1, the statement S(n) is true, the consequence desired to complete
the proof of weak induction. O

Hence it has been demonstrated that weak and strong forms of mathematical
induction are equivalent. For remarks on this relationship, see [477].

llere is an example where strong induction is used. Recall that a prime number
(or simply. a prime) is one whose only divisors are itself and 1 (and convention says
that 1 is not a prime); the first few primes are

2,3.5,7,11,13,17,19,23,29,31,37,41,43.47,53, . ...
Theorem 3.2.2. Any positive inleger n > 2 is a product of primes.

Proof: Let S(n) be the statement “n is a product of primes.”
BaSe STEP (n = 2): Since n = 2 is trivially a product of primes (well, actually only
one prime), S(2) is true.
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INDUCTIVE STEP: Fix some m > 2, and assurne that for every ¢ satisfying 2 < ¢t < m,
the statement S(t) is true. To be shown is that

S(m+1): m+1is a product of primes,

is true. If m + 1 is prime, then S(m + 1) is true. If m + 1 is not prime, then there
exists 7 and s with 2 < r < m and 2 < s < m so that m 4 1 = rs. Since S(r) is
assumed to be true, r is a product of primes; similarly, by S(s), s is a product of
primes. Hence m + 1 = rs is a product of primes, and so S(m + 1) holds. So, in
either case, S(m + 1) holds, completing the inductive step.

Thus, by mathematical induction, for all n > 2, the staternent S(n) is true. O]

The so-called “Fundamental theorem of arithmetic” says that any integer n > 2
is a product of primes in exactly one way, that is, the prime factorization is unique—
another result provable by induction (see Exercise 206).

3.3 Downward induction

Suppose that you are trying to prove a statement S(r) and a forward inductive
argument is difficult for every n. Here is another strategy: first prove the staternent
for infinitely many n (for example, when n is a power of 2 --either directly or by
an inductive step of the form S(k) — S(2k), say) and then prove S(n) for the gaps
between. The proof for the gaps can cither be by forward induction, or backward
induction. For examnple, in the case where one has the truth of S(n) for all powers
of 2, one can then fill in the gaps with an inductive argument for each fixed & of the
form S(2F + t) — §(2% +t — 1) for each ¢ satisfying 1 < t < 2K.

Downward (also called “backward”) inductive arguments have been around a
long time; many authors, including Cauchy (1759-1857) and Weierstrass (1815-
1897) (see (259, p.19]) have used them. The term “backward induction” can also be
used in game theory where players reason “working backward from the last possible
move in a game to anticipate each other’s rational choices.”[114}. What has recently
become known as “downward induction” defined below might be more appropriately
called “upward-downward” induction.

Downward induction: Let S(n) be a statement involving rn. If
(i) S(n) is true for infinitely many n, and
(ii) for each m > 2, S(m) — S(m - 1)

then for every n > 1, the statement S(n) is true.

Proof of downward induction from MI: Assume the hypotheses (i) and (ii) hold
and let ny,n9,n3,... be an infinite sequence so that for each i € Z%, S(n;) holds.
Fix some k € Z*, and prove S(k) holds as follows: Fix i sosuch that n,_; < k < n;.
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For j = 0,1,...,n; — n;—1, definc the statement T(j) = S(n; — j). It suffices to
prove that T'(n; — k) = S(k); this is done by induction on j.

BASE STEP (j = 0): T(j) = T(0) = S(n; — 0) = S(n;), which was assumed to be
true by (i)-

INDUCTIVE STEP: Suppose that for some j > 0, T(j) = S(n; — 7) holds. By (ii),
T(j + 1) = S(n; — j — 1) holds, completing the inductive step T(j) — T'(j + 1).

Thercfore, by MI, T'(5) holds for all j > 0, in particular, T(n; — k) = S(k) holds,
finishing the proof of downward induction. O

There are different proofs of the so-called “theoremn of arithmetic and geometric
means”; for example, there is one downward induction proof appearing in [259] and
another simpler one also suggested there. The simpler one is presented here. An-
other proof follows from Jensen’s inequality on convex functions—see Exercise 602
or 603---both provable by downward induction. After giving the proof by downward
induction, one more simple, but tricky proof by ordinary induction due to Kong-
Ming Chong [102] is presented. For other proofs prior to 1976 (mentioned in [102])
of the AM-GM inequality, see, e.g.. [5. pp. 200-224], [43, §5 pp. 4 5; §11 pp. 9-10),
[104, p.46], [259], [135], and ]397].

Theorem 3.3.1 (AM-GM inequality). Let ay....,a, be non-negative real numbers.
Then

an)/mgBitaat H o

Ao -
(araz -

with equality holding if and only if all a;’s are equal.
Proof: Let S(n) be the statement that for any ay,...,ans,

faz+ - +an
b

a
(alaz'“an)l’/n S ! n

with equality holding if and only if all @;’s are equal. The first part of the proof is
to show that S(n) holds whenever n is a power of 2. This requires a form of strong
induction, one with two base cases.

BASE STEP n = 1: The statement, S(1) reduces to a; = aj, which is true.

BASE sTEP n = 2: To show S(2), let a1 = a and ap = b; then

b a+b 2_ a-b\?
ab = 3 3

< ((erb)Q,

- 2

with equality holding if and only if a = b.
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UPWARD INDUCTIVE STEP (S(k) — S(2k)): For some k > 2 assume that S(k)
holds, that is, assume that for non-negative ¢;, ¢, ... ,ck,

k
C 9+ -+ ¢
0102...ck S (._l_i(__z_k__.._-'_-_k.) ,

with equality if and only if the ¢;’s are all equal. To show that S(2k) follows:

ajaz - agbiby - - by

k k
< (a1+ +ak) (b1+.k +bk) (by S(k) twice)
(et tag)(b b \F
= 3

k

< 0.1+ cdap+ b+ b QL by S(2)
_ 1+ -+ap+b +--b 2k
- 2k

and incqualities are strict unless all a;’s and b;’s arc cequal. Hence S(k) — S(2k),
completing this inductive step.
By induction, for all n that are powers of 2, the statement S(n) holds.

DOWNWARD INDUCTIVE STEP (S(m) — S(m — 1)): For some n > 2, assume that
S{m) holds, and let aj, ag,...,am-.1 be non-negative, not all equal, and put

ap+a+...+ Qp-

A= m—1
Then
o1 +A\™
a1an - g1 A < (“‘+a2+ m*“" L ) (by S(m)),
_ (=Dt Ay
- m

= AT".

and hence @109 -+ am_1 < A™7!, thus showing S(m — 1). This completes the proof
of the downward induction step, and hence the proof. 0O

Note: Theorem 3.3.1 has a more direct proof, based on Exercise 199, the solution
of which is a fairly easy inductive proof; see comments after the solution to Exercise
199.

As mentioned above, here is an outline of Chong’s simple (but tricky) inductive
proof of the AM-GM inequality. Suppose that the base case n = 2 is done, and for
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some k > 3, suppose that S(k — 1) is true, in particular, suppose that for any choice
of by,a2,...,0k .1 not all equal,
by tar+az+ - +ag_;
k-1
To be shown is that S(k) holds (in the case when all numbers are not equal). Let
a; < az € -+ < ap benot all equal, that is, a; < a,, and let A = (a1 +ax+---4-a,)/n
be their arithmetic mecan. Then a; < A < a,,, which implies that

A(a1 +ag — A) —ajag = (al - A)(A —ag) >0,

o
> (bragay - - ax_1) %1,

and so
aiag

—A> —. .
ar +ag > (31)

Let by = aj + ay, - A; then
b1+0.2 +~~ak_1 _ (Zai) — A _ kA - A

= = A.
k--1 k—1 k-1
Thus, by induction hypothesis,
A > (1)10.2(13 ce . 1)“)“’-
a
( 1/;le2 . ak)ﬁ by eqn (3.1)
which yields
ghml o 002
’ A !

A% > aray -« - g,

showing that S(k) is true, completing the (upward) inductive step, and hence
Chong’s proof. =

There are other inductive proofs of the AM-GM inequality; one inductive step
begins by assuming that for any a;’s satisfying ajas---a, = 1 then aj + -+ a, > n.
Then assume that byby---b,b, 1 = 1; without loss of generality, let b, < 1 and
bpy1 > 1. Then by +- -+ by > n+1 by setting a; = by, as = ba, ..., an-1 = bn—y
but ap, = byby+1. Then by inductive hypothesis, by + by + -+ + b,—1 + by > 1.
To finish the inductive step, it suffices to show

by +bpt1 = bnbrﬁ'—l + 1,

or

(] - bn)(l —bny1) <0,
which is true by the initial assumption on b, and b,.,, finishing the inductive
step. O

See (146, pp. 37-40] for yet another solution by induction based on the following
lemma:
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Lemma 3.3.2. For real numbers w, x, y, and z, if w+ 2z = y + z, then the largest
of the two products wr and yz is formed by the pair with the smallest difference.

Proof: Let w + z = y + z. Note the following two identities:
(w+2)? = (w - 2)? = 4wz,
y+2)° —(y-2)° =4y

Since w +z = y + z, also (w + )% = (y + 2)2, s0 the left-hand side of the two
identities is made largest when the second term is smallest. O

It might be interesting to note that the case n = 2 in Theorem 3.3.1 can be
used to prove that no chord of a circle is longer than the diameter. Let three points
A, B,C form a straight line segment, with distances |AB| = a and |BC| = b units
(see Figure 3.1.

\_

Figure 3.1: Chords are shorter than diameters

Using the line segment AC as a diameter, form the circle whose diameter is
|AC| = a + b units. Form a chord of that circle perpendicular to AC through B.
Then with a simple application of Pythagoras’ theorem, one finds that the length of
that chord is 2v/ab. By Theorem 3.3.1, vab < “T“’, and so the length of the chord
is not longer than the diameter of the circle.

3.4 Alternative forms of mathematical induction

There are many ways to apply inductive rcasoning. For example, if S(0) and S(1)
are true. and if for any n > 0, §{n) — S(n + 2) holds, then for all n > 0, S(n)
is true, since actually, two scparate inductive proofs are combined in one (one for
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the even cases, and one for the odd cases). Here is an cxample of a situation where
three inductive proofs are rolled into one. [Note: This very example is listed again as
Exercise 311.] Other applications of this alternative form of mathematical induction
appear throughout the exercises, e.g., in Exerciscs 113 and 275.)

Theorem 3.4.1. For any integer n > 14, n is expressible as a sum of 8’s and/or
8’s.

Proof: Let S(n) be the statement: n is expressibie as a sum of 3's and/or 8's.

BASE CASES (S5(14},5(15),S5(16)): Since 14 =3 +3+8, 15=3+3+3+3 +
3, and 16 = 8 + 8, the base steps are shown. :

INDUCTIVE STEP (S(k) — S(k+3)): Assume that for some & > 14, S(k) holds, that
this, there exist o, € Zsothat k. =a-3+ 3-8 Thenk+3=a-34+3-8+3 =
(a+1)-3+ 3-8, that is, k + 3 is expressible as a sum of 3’s and/or 8’s, showing
S(k + 3) holds, completing the inductive step.

By MI, for all n > 14, the statement S(n) is true. (Actually, there arc three
separate proofs by MI rolled into one, one proving the statement for the sequence
n = 14.17.20,..., one for n = 15,18,21,..., and another for n = 16,19,22,...

) o

An inductive proof might be also encountered when both $(2) and $(3) hold and
for k> 2, [S(k) A Sk + 1)] — S(k + 2), then S(n) holds for all n > 2; such a proof
might be classified somewhere between weak and strong induction. In Section 12.2
on Fibonacci numbers, there are many exercises where such a technique is required.

Many mathematical induction proofs use more than one base case, and such
proots can fall into the category of “generalized induction” on well-founded sets.
The technique relies on the fact that in any well-founded set (a partial order with
minimal elements) and a statement S about elements of that set, for each x in the
set, there is an inductive argument for S(x) that has as its base case one of the
minimal elements. For example, consider the set X = {2,3,4,5,6,...}. If X is
ordered according to divisibility, the proof of any statement S about members of X
might start with the base cases being a proof about each prime, the primes being
the set of minimal elements in the partially ordered set X.

3.5 Double induction

A special kind of inductive argument is called “double induction”; some texts refer to
double induction as an inductive step that requires, say, S{(n) and S(n + 1) to prove
S{n + 2). Another kind of “double induction” is where two statements involving n
are proved simultancously {see, for example, Exercise 320 or Exercise 122 where the
inductive step consists of two proofs, one for each of two statements). In this section.
however, “double induction™, means an induction on two variables simultaneously.
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Many mathematical statements involve two (or more) variables, each of which
may vary independently over, say, N. Some such statements can be proved by
induction in different ways. Let S(m,n) be a statement involving two positive
integer variables m and n. One method to prove S(m,n) forallm > 1l and n > 1
is to first prove $(1,1), then by induction prove S(m,1) for each m, and then for
cach fixed myq, inductively prove S{(mg,n) for all n. Here is a rather simple example
of the technique.

Theorem 3.5.1. Let positive integers m and n be given.

22(7 +i) = mn(m+n+2)

i=1 j=1

Proof: Let S(m,n) be the equality in the statement of the theorem.
First it is proved that for all m > 1, S(m, 1) is true.
BASE sTEP: The statement S(1,1) is true since 1 +1 =1-1(1 + 1+ 2)/2.

INDUCTIVE STEP (inducting on m): For some k > 1, assume that S(k,1) is true,
that is, Z;“:,(i + 1) = k(k + 3)/2. Beginning with the left-hand side of S(k + 1,1),

k+1 i
Sa+1) = (Z(i+1))+(k+l)+1
=1 i=1
_ ’1(5';_3)+k+2 (by S(k,1))
- k2+0k+4
B :;" I
2

the right-hand side of S(k + 1,1). Hence S(k,1) — S(k + 1,1), and so by mathe-
matical induction, for all m > 1, S(m, 1) is true.

Fix an arbitrary mg. Then S(myg, 1) is true and so this is a base step for proving
that for all n, $(mg,n) holds.

INDUCTIVE STEP (inducting on n): This step is of the form S(myg, ) — S(mg, £+1).
Let £ > 1 be fixed and assume that S(mg, £) is true, that is,

mg €

Z_—:g i+ 9) mge(m02+€+2).

Beginning with the left side of S(my, € 1 1),

mg €+1 4

ZZl+J)—Z S+ +@+e+1)

i=1 j=1 t=1 j=1
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mo 14 mo

=Y S+ |+ G +e+1)

i=1 \j=I i=1

my

2)
- mllmo +£43) | Z(z +041) (by S(mo,)),

_ mgl(mg + €+ 2) + mg (g + 1) +mo(l + 1)
2 2

mob(mo +£€+2)  molmo +1+42(€+1))
2 + 2

_ mo(fmo + 2+ 20+ mo+14+2(£+1))
- 2
mo(l+ 1)(mg +£€+1+2)

2 b

which is the right-hand side of S(mg, €+ 1). Hence, by induction, for each fixed myg
and all n > 1, S{mg, n) is true, completing this inductive step.

Since mg was arbitrary, by induction, for all . > 1 and n > 1 the statement

S(m,n) is proved. a

Sometimes the inductive proofs contained in each stage of the double induction
require multiple base cases and alternative forms of induction (or strong induction).
Sce Excrcise 304 for such a situation, where the alternative form of induction in the
second stage requires two proofs by induction in the first stage.

Another way to apply a double induction argument would be to use S(1,1) as a
base step, then show that both S(m,n) — S(m +1,n), and §(m,n) ~» S(m,n+ 1).
This would prove S(m,n) for all m and n. One must be careful, however, for only
the step S(m.n) — S(m + 1,n + 1) would not prove the statement for all m and n,
only the cases where m = n.

A slightly trickier double induction occurs in Exercise 380, where the induction
step shows S(n — 2,k — 1) AS(n —1,k) — S(n, k). In this case, one needs to prove
two families of base cases, those of the forms S(0, k), S(1,%) and thosc of the form
S(n,0), S(n,1). Then, for cxample, to prove S(6,3), one proceeds as follows:

$(0,1)AS8(1,2) — S(2,2)
S(L1)AS2.2) — S(3,2)
S(2,1)AS8(3,2) — S(4,2)
S(3,1)AS4,2) — S(5,2)

S(0,2)AS(1.3) — S(2,3)
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$(1,2)AS5(2,3) — S5(3,3)
$(2,2) A 8(3,3) — S(4,3)
5(3,2)AS8(4,3) — S5(5,3)
5(4,2)AS(5,3) — S(6,3).

So in this situation, one fixes £ — 1 and k, inducts on n, then one repeats the process
for k and k + 1, and so on. Given that the base cases and the inductive step are .
proved, the interested reader can try to write up the proof formally.

3.6 Fermat’s method of infinite descent

One of the more famous applications of Fermat’s method of infinite descent showed
that any right angle triangle with sides having rational lengths could not have in-
tegral area. His technique was to first show that the truth of the theorem follows
from the special case for right triangles with integer lengths, that is, for Pythagorean
triangles. Then he showed that if one could find such a Pythagorean triangle with
integer area, one could then (using the number-theoretic properties of the lengths of
the sides from the first one) produce a smaller Pythagorcan triangle with the same
property. From the smaller one, applying precisely the same argument, one would
find yet a smaller one. By induction, one gets an infinite sequence of consecutively
smaller triangles with the desired property. Clearly there is no infinite descend-
ing sequence of Pythagorean triangles (by the well-ordering of natural numbers) -a
contradiction. So one must abandon the assamption that one found a Pythagorcan
triangle with integer area.

The above discussion hints at the possibility that there are proofs that are in-
ductive, but not in any straightforward way. To demonstrate the beauty of Fermat’s
technique, the next theorem is given with a proof by infinite descent; in many re-
spects, it duplicates the proof alluded to above for Pythagorean triangles.

Theorem 3.6.1. The equation
a4+t = 22 (3.2)
has no solution in non-zero inlegers x, y, and z.

Proof by infinite descent: If any triple of integers (z,y, z) satisfy (3.2), then so
do any of (£x,ty, +2); thus to show the theorem, it suffices to show that are no
positive integer solutions to (3.2).

The proof is accomplished by showing that if some solution z, y, z to (3.2) exists,
then from that solution one can crcate another “smaller” solution z’,, 2’, where
“stnaller” means that 2/ < z. Since the positive integers are well-ordered, this
process can not continue forever, and so one must abandon the original assuinption
some solution exists.
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Hypothetically, suppose that x,vy, z is a solution to (3.2).

Considering the equation (3.2) modulo 4, one observes that x and y can not both
be odd (any odd number squared is congruent to 1 modulo 4, and since then z has
to be even, 22 is 0 modulo 4).

Let z and y be even, say = = 2k, y = 2¢; then 16 divides 22, and so 4 divides z,
say z = 4m. Then {2k)* 4+ (20)* = (4m)?, and division by 16 yields k* + 1 = m?,
a smaller solution. Similarly, if any prime p divides both = and y, write * = pk,
y = pf, and z = p?m. Division by p* shows that ¥’ =k, y' = ¢, and 2 = m
is another smaller solution to (3.2). Hence, it suffices to assume that z and y are
relatively prime.

So suppose that exactly one of x and y is even, the other odd (and z and y are
relatively prime). Without loss of generality, suppose that 2 is even and y is odd.
Then z2 and y? are relatively prime, and so the triple x2,42, z form a fundamental
Pythagorean triple (a triple of positive integers a, b, ¢, each pair relatively prime,
satisfying a2 + % = c?). It is well known (e.g., see [150]) that a fundamental
Pythagorean triple is a triple of the form 2mn, m2 —n?, and m? + n?, where m and
n are relatively prime positive integers with exactly one of m, n odd.

Fix such an m and n, and write 22 = 2mn, y2 = m?2—n2, and z = m?+n2. Since
y%2+m? = n?, the triple y, m,n is a Pythagorcan triple. Since m and n are relatively
prime, so are y and 7, with y odd and n even, and so y, m, n is a fundamental triple.
Ience, there are relatively prime p and g, so that m = 2pg and n = p? + ¢°.

Since 2 = 2mn = 4pg(p® + ¢%) and p and ¢ are relatively prime, each of p, ¢,
and p? + ¢2 are all relatively prime and hence cach must be a perfect square, say
p=20a? ¢= 752 and p? + ¢ = 2. Then a? 4 4! = 42 with v < m < 2, giving a
smaller solution to {3.2). |

Since z* is a perfect square, Theorem 3.6.1 implies that 2:* +3* = 2* has no non-

zero integer solutions, a special case of what is now called “Fermat’s last theorem™:
for each integer n > 3, the equation " + y™ = 2" has no non-zero solutions. (This
was a conjecture until Andrew Wiles et al. finally proved it in 1995 (see [569}). In
1753, Euler gave an incorrect proof for n = 3, later corrected by Gauss; both ideas
were using descent, however Gauss failed to notice that unique factorization did not
hold in his “proof”. The case n = 5 was solved with infinite descent by Dirichlet
(1805- 1859) and Legendre {1752-1833) in 1825 (both proofs were based on a result
by Sophie Germain ); Dirichlet also managed n = 14 in 1832. Lamé settled the
case n = 7 in 1839. [Added note: 1 forget the reference, but I recall reading that it
was proved that the method of descent wonld not work for n > 17. Also, Kumrmer
proved Fermat’s last theorem for all “regular primes”.]

Some authors prove that /2 is irrational by the method of infinite descent.
The argument is by contradiction and begins by assuming that v/2 is rational, say,
V2 = % for some positive integers a and b. Squaring each side, 2 = %:— and so
2a% = b2, Then 2 divides b2, and hence 2 divides b, so write b = 2k. Then replacing
this in the previous equation gives 2a? = 4k?, vielding a? = 2k?. Again, this shows
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that now 2 divides a, and so a = 2¢, for some positive integer £ > 1. Replacing a
in the previous equation now gives 4¢2 = 2k?, and hence 2 = %; Thus two smaller
integers k and ¢ are found with /2 = % This process of finding smaller integers to
represent /2 as a fraction can continue forever, contradicting the well-ordering of
the natural numbers.

The above proof of the irrationality of v/2 does not have to take the form of
infinite descent if one merely assumes at the outset that a and b are relatively prime.
The contradiction is then quickly arrived at since the above proof then delivers that.
2 is a common factor to both a and b. Sce, for example, [216] or [260] for more on
proving the irrationality of v/2.

Exercise 8. Using infinite descent, prove that for each positive integer n, /4n - 1
s not a rational number.

For more results provable by descent, see (among others) Exercises 214, 222,
223, 224, and 225.

3.7 Structural induction

Computer scientists refer to mathematical induction, when applied to a recursively
defined structure, as “structural induction”. Apparently, the term originally came
from model theory (although I cannot find the origin) where various properties of
models are proved by using chains of models, and some kind of induction on cach
chain. The discussion here is far less serious. In the rest of mathematics, the term
“structural induction” is rarely used outside of computer science applications—as a
friend once said, “it’s all just induction”.

Assume that & is a class of structures (it is not important what kind of structure)
with some partial order < relating individual structures. Suppose S contains mini-
mal elements, and for every structure S € S therc is a well-ordered set of structures
beginning with a minimal element in S and culminating in S (in other words, S is
well-founded). Let P be some proposition about elements of S. Then to prove the
truth of P(S), it suffices to prove inductively along the chain leading to S, where
each inductive step is maintained by some property of the recursion used to gencrate
structurcs. Then such a proof might be called a “structural induction” proof.

T'he most common way in which structural induction is implemented is on re-
cursively defined structures that have some kind of “rank”—-a measure of how many
recursions are necessary to construct a structure from minimal structures. The typ-
ical example to help make things clear is that of rooted trees (see Section 15.2 for
terminology). T'he rank of a rooted tree is its height, and any finite rooted tree of
height h can be constructed recursively [rom trees of height 4 — 1 by simply adding
a new root. The inductive step for structural induction is usually proved by some
simple property that follows from a recursive definition for the structurc.
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Structural induction is also used to prove properties with many base cases (as in
generalized induction on well-founded sets) and can even be applied with transfinite
induction (sec Chapter 4).

Structural induction appears throughout this book. For examples using permu-
tations, see the proof of (12.5). For examples regarding well-formed formulae, sce
Exercises 465, 466, 467. For examples using trees, see Exercises 483, 484, or 485.
Graph theory uses structural induction frequently; as just one example, see Exercise
513, where structures are partite graphs, and r-partite graphs are constructed from
(r — 1)-partite graphs recursively. Other exaimnples in graph theory where structural
induction is used include theorems for amalgamation (see e.g., Theorem 21.5.1 as
a restricted form of amalgamation) because certain classes of graphs can be con-
structed by recursively gluing together two graphs on some common subgraph(s).

Hadamard matrices might be the structures concerned, and a simple tensor
product construction creates recursively larger and larger Hadamard matrices (see
Exercise 659). A similar notion is encountered when constructing latin squares
recursively from latin rectangles (see Exercise 666). Functions forin a large class
of structures, and one can recursively define a function by its behavior on larger
and larger domains (see, e.g., Exercise 426). Colorings of objects are themselves
functions, and so, for example, Exercise 731 is solved with structural induction.
Certain classes of geometric objects can be considered as structures, in which case
many exercises in Chapter 20 are by structural induction.

The instances of structural induction in this book are too numerous to list here.
The index points Lo a few more examples of structural induction.






Chapter 4

Inductive techniques applied to
the infinite

But of all other ideus, it is number, which I think furnishes us with
the clearest and most distinet idea of infinity we are capable of.

—John Locke,

An essay concerning human understanding.

So far, mmathematical induction has only been applied to one type of infinity,
namely that of the counting numbers. In fact, mathematical induction can be
performed on many other kinds of sets that have some kind of order defined on
themn, in particular, to sets that have a larger cardinality than that of Z*. These
different forms of induction often depend on the axiom system decided upon. In
the most common axiom systems, forms of induction for infinite sets are used to
prove very powerful theorems. For example, the fact every vector space has a basis
is easily proved by one of these forms.

4.1 More on well-ordered sets

Theorem 4.1.1. There is at most one order-preserving bijection between any two
well-ordered sets.

Proof: Let (A, <) and {B, <) be well-ordered scts. Suppose that both f and g are
order-preserving bijections from a A onto B. Then g~! o f is an order preserving
bijection from A to itself. By Theorem 2.6.3, for all a € A, a < ¢~ '(f(a)), and
applying g to each side, g(a) < f(a). Similarly, applying f"tog to 4, foreach a € 4,
f(a) £ g(a). Combining these two facts shows that for all a € A, f(a) = g{a). O

5]
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Definition 4.1.2. For a well-ordered set (W, <) and t € W, define the initial
segment of (W, <) up to t by

seg«)(t) = {w e W rw < t}.
Define a closed initial segment by
seg(t) = {w € W:w <t} =seg(t)u {¢}.

When no confusion can arise, the notations segu: (t). seg< (£), or seg(?) denote
scg(w,<)(t). If a subset S of W satisfies a € S,b < o = b € §, then cither § is an
initial segment of W or § = W.

A closed initial scgment seg(t) is also an initial segment, for if £ is the least
element of W\seg(t), then seg(t) = seg(¢). However, an initial segment need not be
closed; for example, consider the well-ordered set X = w +1 = {0,1,2,3,... ,w}.
Then segy(w) = w, which is not a closed initial segment in X.

A well-ordered set is similar (or isomnorphic) to the collection of all its initial
seginents:

Theorem 4.1.3. Let (W, <) be a well-ordered set, and put § = {seg(w) : w € W}.
Then (W, <) ~ (S, Q).

Proof outline: It is not difticult to verify that the function f(z) = seg(x) is the
desired order preserving bijection. O

Lemina 4.1.4. Let (P, <) and (Q, <2) be well-ordered sets with a.b € P and
5.t € Q and let g : segp(a) — segp(s) and h : segp(b) — segp(t) be order preserving
bijections. If a <b, then h [seg,.(a)= 9-

Proof: Let a < b. Suppose the conclusion fails. that is, suppose h [seg, ()% 9-
Because the set of all those y € segp(a) with that g(y) # A(y) is a subset of a
well-ordered set, fix the least element yo € segp(a) such that g(yo) # h(yy). There
are a number of ways to derive a contradiction. If g(yg) < h(ye), then for every
z,2z € seg(a)p with x < yy < z, since h is order-preserving, h(x) = g(r) < g(yo) <
h{yo) < h{z) shows that g{yo) is not in the range of k, contradicting h being onto
an initial segment. Similarly, £(yo) < g{ye) implies that g is not onto an initial
segment, 0

Theorem 4.1.5. Lel (W, <) be a well-ordered set. For any w € W, there is no
order preserving bijection from W to seg(w).

Proof: If f: W — seg(w) is any function, then f(w) < w, so by Theorem 2.6.3,
such a function can not be an order preserving bijection. O

Exercise 9. Show thal an arbitrary union of initial segments in a well-ordered set
(W, <) is either another initial segment of W or is W itsclf. Similarly, the union
of closed initial segments will elways be an initial segment, the closure of an initial
segment, or W itself.
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4.2 Transfinite induction

The principle of mathematical induction, as seen so far, applies to only sels that
have a well-ordering identifiable with the well-ordered sct N. In short, transfinite
induction works just like the principle of mathematical induction, however applies
to any well-ordered set, particularly, to infinite ordinals other than w. In fact,
transfinite induction is a generalization of “strong induction” (scec Theorem 3.2.1).

Principle of transfinite induction: Let A be a subset of a well-
ordered set X with xo being the least element of X. If

(i) zg € A, and

(ii} for every z € X, [segx(z) C A] — [z € 4]
then A = X.

In fact, in the statement of the principle of transfinite induction, one can even
dispense with part (i), since ) C A and if (ii) holds, 0 = seg(x¢) implies that zy € A.
Proof of the transfinite induction principle: Suppose that it fails, that is,
suppose the condition (ii) holds, but A # X. Put C = X\A. Since X is well-
ordered and C' C X, C has a least element, say ¢ ¢ A. Then segy(¢) C A, and by
(ii), ¢ € A, a contradiction. |

Transfinite induction is suited to proving theorems about initial segments of
well-ordered sets. The same principle can be adapted to other statements, however,
caution is needed regarding what axioms are being used (see [160] and the comments
at the end of Section 4.4). Loosely speaking, if some process or construction is based
on transfinite induction over a well-ordered set, the process is called transfinite
recursion. lor example, if W is a well-ordered sct, one can define a function f on
W to any set X by defining inductively the map f, by defining each f(w) € X
according to how f is defined before w. By transfinite induction, the resulting map
on all of W is again a function.

Lemma 4.2.1. For any two well-ordered sets P and Q, either they are similar or
one ts similar Lo an initial segment of the other.

There are many proofs of Lemma 4.2.1; the proof below can be found in, e.g.,
[160]. Given any function ¢ and set A contained in the domain of g, the shorthand
gl4] = {g(a) : a € A} is used for the image of A under g; the function g restricted
to A is denoted by g|4. If either of P or @ is finite, then the smaller one is similar
to an initial segment of the other; hence any proof need only be applied when P and
Q are infinite. One may interpret the idea in the proof given below as an attempt
to construct (inductively) an order-preserving injection f from P onto an initial
segment of @Q; if this process fails for some P C P. then J takes P’ onto () (then
f7Vis a bijection from () onto £').
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Proof of Lemma 4.2.1: Let P and Q be well-ordered sets. Fix some symbol z
not in Q. By transfinite rccursion, define the function f: P — QU {2} by

o) = {the least clement of Q \ f[seg(p)], if Q\ flseg(p)] # 0

z, otherwise.

Set @ = QN f[P] = f[P]\ {z} and P’ = fYQ] = f1{Q'] and define f': P’ —
Q' by f' = f|lp. Then f’ is onto Q'

To see that f' is one-to-one, let a,b € P’ with a < b; since a € seg(b) and
f(6) € Q\ flseg(b}] C Q\ {f(a)}, f(b) # f(a).

To sec that f’ is order preserving, let a,b € P’ with a < b. Then since flseg(a)] C
Flseg®)], Q\ flseg(@)] 2 Q@ \ flscg(®)] and so f(a) = f'(a) < ['(5) = £().
Claim: Either P’ = Por Q' = Q.
Proof of claim: If P’ # P, then there is a € I” so that f(a) ¢ Q, in which case
f(a) = z; this means that Q C f[seg{a)] C f[P] and hence Q' = @, proving the
claim.

Also, P’ is an initial segment of P or P’ == P and ' is an initial segment of Q
or @ =Q. Ifa.be Pwitha<bandbe P, then 0 # Q\ flseg b C Q\ flseg(a)]-
Thus f(a) € Q and hence a € P'. Given z,w € Q with z <wandw e @', let pc P
be such that f(p) = w. Then w is the least element of @\ flseg p} and since z < w,
z ¢ Q\ [flseg(p)] and so z € flseg(p)] C f[P] and hence z € Q'.

Therefore, f' is an order-preserving bijection either from P onto an initial seg-
ment of @ or else from an initial segment of P onto Q. 0

Transfinite induction can be applied with any well-founded sets (not just well-
ordered), including in proofs by structural induction {the term “structural induc-
tion” likely originated in model theory); see Section 3.7.

4.3 Cardinals

This section is a very brief introduction to cardinals to establish some terminology.
If there is an injection from a set A into a set B, write |4| < |B|. M there is
a bijection from A to B, write |[A] = |B|, and say that A and B have the same
cardinality, or arc equinumerous. This definition is duc to Cantor.

To define a cardinal, one needs to give an interpretation for |A]. Given two sets
A and B, if there is a bijection from A4 to B, write A =~ B. It is easily seen that the
relation =2 is an equivalence relation on the collection of all sets. (Note that one does
not say “an equivalence relation on the set of all sets”, for this leads to Russell’s
paradox.) Although the following definition leaves open just what an element of an
equivalence class is, it is convenient:

Definition 4.3.1. A cardinal number, or simply a cardinel, is an equivalence class
for .
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Denote the cardinal number containing A by |A]. Then two sets have the same
cardinality iff |4] = |B|.

A set A is called countable iff A is cither finite or is equinumerous with N, and
uncountable otherwise. Standard proofs show that Z and Q@ are countable, yet R is
uncountable. Even the set of algebraic numbers in R is countable. It is known that
a union of countably many countable sets is again countable (sec Exercise 434).

Cardinal numbers are well-ordered, so induction is often carried out on cardi-
nalities of sets.

Cardinal numbers say something about the “size” of a set. The cardinal number
(or cardinality of) for a well-ordered set says something about its size; to differentiate
between well-ordered sets of the same size, something called ordinals are introduced.

4.4 Ordinals

There are different ways to define “ordinals™, all equivalent. Recall that for well-
ordered sets A and B (in fact, for any linearly ordered sets) A is similar to B, written
A ~ B, if and only if there exists an order preserving bijection f: A — B.

Definition 4.4.1. An ordinal is an equivalence class under ~.

Ordinals are sometimes called ordinal numbers. Different ordinals have different
“shape”. If « is an ordinal and A € «, then A is said to be of type . An ordinal
a is often identified with any set of type a. For two ordinals o and 3. say that o
precedes 3 if and only if there exist A € o and B € 3 so that A € B. The order on
ordinals is given by o < 3 iff ¢ precedes ;3. Thus, with an abusce of notation, & < 3
can be written o ¢ 73, or simply a C 3.

For an ordinal 3. one can identify each element a € 3 with its initial segment
seg(a), the set of predecessors of a. Given this identification, some define an ordinal,
to be a well-ordered set (X, <) with the property that every element a € X is equal
to its initial segment. One can (and some do) define natural numbers (and 0) as
ordinals: Put 0 = §; 1 = {#}={0};2 = {0, {0}} = {0,1}; 3 = {0, {0}, {0.{0}}} =
{0,1,2}, and in general, n = {0,1,....,n — 1}.

The ordinal number w = {0,1,2,...} (with the usual well-order) is the first
infinite ordinal, which is really the set of all natural numbers together with 0. (This
is a “good” reason why some texts use 0 in the definition of natural numbers—so
that they can identify w with N.) In ordinal arithmetic, if any one of @ < 3, v € 3,
or & < 3 hold, then all hold.

Au ordinal 8 # @ is one of two types:

o 3 is called a limit ordinal if 3 = U, 30, and

o Jis called a successor ordinal if 3 = ot {a} for some ordinal « (in this case,
3 is the smallest ordinal larger than a, sometimes denoted by 3 = a + 1 or
at).
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Recall that two sets have the same cardinality (think “size”) iff there is a bijection
between them (see Exercises 430 and 431). A cardinal number is an ordinal 8 whose
every initial segment has a different cardinality than 3. Every infinite cardinal
number is a limit ordinal.

Here are (without proof) a sequence of lemmas that can be used to prove the
subsequent theorem. Some of these facts have proofs that rely on facts already
proved for well-ordered sets in general; most proofs are simple, and can be considered
as exercises. (For details, see [95, pp. 42-43].) The subsequent theorem is used later
to give a simple proof by transfinite induction, a proof that could otherwise be very
complicated.

Lemma 4.4.2. Fvery initial segment of an ordinal is again an ordinal.

Lemma 4.4.3. If a and v are ordinals with o C v, then « is an initial segment of
v.

Lemma 4.4.4. For any distinct ordinals o and 3, one is an initial segment of the
other. Thus any collection of distinct ordinals is linearly ordered by inclusion. This
order s indeed a well-order.

Lemma 4.4.5. The union of a set of ordinals is again an ordinal.
Theorem 4.4.6 (Burali-Forti paradox). The collections of all ordinals is not a set.

Proof outline: Let C be the collection of all ordinals. Then C itself is an ordinal,
greater than each of its members, a contradiction. ]

Suppose that P(«) is a statement involving an ordinal a, perhaps infinite. If
P(ag) holds and P{a) — P(« + 1) then by transfinite induction, one can conclude
that P(f) holds from ag up to any ordinal below the next limit ordinal. As is,
however, one can not ‘jump’ to the limit ordinal.

For a limit ordinal 3 the statement P(3) is proved by showing that for every
« € 3, P(a) holds. This allows one to prove P “across limit ordinals”. Ordinary
induction can be thought of as ‘pushing up’ from n to n + 1; transfinite induction
can be considered more as ‘reaching down and pulling up’. Proofs by transfinite
induction are often divided into three cases, one for the base case, one for successor
ordinals, and one for limit ordinals. In many instances, only two steps are required,
since the process for limit ordinals usually works for successor ordinals, too. In fact,
by the comment above, often only one case is necessary.

There are many proofs in sct theory that rely on constructing functions by trans-
finite induction. One might find different proofs in the literature for the same result,
both using some kind of transfinite induction, some relatively short, some very long
(and horrid). Thanks to an explanation by Prof. Kucera [331] the reason for differ-
ence in complexity lics iu a subtlety not usually a concern for non-foundationalists
(translation: mere mortals). Here is a very rough account of that subtlety: In the de-
velopment of set theory, some authors prefer proofs that don't invoke a “replacement
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axiom” (see Appendix IV for statement) unless necessary. Avoiding unnccessary as-
sumptions can make a proof very difficult.

As Kucera commented, the replacement axioms are not necessary if transfinite
induction is used to construct functions from ordinals to ordinals, however for func-
tions from ordinals to the class of all scts, often the extra axioms are required. (See
[160, pp. 178-9] for more intelligent discussion on this matter.) Others implicitly
assume these axioms (or assume them at the onset, many pages before the proof in
question). For cxample, (these abbreviations are defined below) compare proofs of
AC implying WO, {160, Thm 6M] or [347, p. 182 with {289, Thm 15|, or proofs of
AC implying ZL, [416, p.531] with [289, p. 40].)

4.5 Axiom of choice and its equivalent forms

In set theory, one begins not with Peano's axioms, but with axioms that apply to
sets in general, not just N. (See Appendix IV for such a collection of axioms.)
The most famous of such axioms is the “Axiom of Choice” {AC). There are, in fact,
many axioms that have been shown to be equivalent to the Axiom of Choice. In this
section, a few of these forms are given together with a sequence of proofs showing
them all to be equivalent. In any such sequence, it seems that there is always at
least one step that is difficult, especially if one restricts the tools available. For more
on such equivalences, the reader might look at the reference standards by Herman
and Jean Rubin {472, 473]; see also a more recent. book [281] by P. Howard and Jean
Rubin on consequences of the Axiom of Choice.

To state the Axiom of Choice, a definition is helpful. If F is a family of sets, a
choice function for F is a function

v:F = UperF

so that for every F € F, v(I’) € F. So a choice function picks an clement from
every set in the family.

Axiom of Choice (AC): If ¥ is a non-empty family of non-empty
sets, then F has a choice function.

A standard example (some say it goes back to Bertrand Russell (1872 -1970))
used to demonstrate what AC says is: among infinitely many pairs of shoes, it would
be easy to pick one shoe from each pair—pick the left onc of each pair. If, however,
there were infinitely many pairs of socks, AC guarantees that there is still a choice
function that picks one sock from each pair. This doesn’t seem very surprising, and
in fact, most would argue that this goes without saying. The subtlety might lic in
the fact that the Axiom of Choice says that all these socks can be picked at once
even though there is no way to diflerentiate between socks of a pair.
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It might be interesting to note that the following apparently weaker “Axiom of
Choice” is indeed equivalent to the Axiom of Choice:

Zermelo’s Postulate: For every non-empty family of disjoint non-
empty sets S there exists a choice function f : & — UgesS.

Theorem 4.5.1. The Axiom of Choice is equivalent to Zermelo’s Postulate.

Proof: The Axiom of Choice clearly implics Zermelo’s Postulate, so it suffices to
prove only the other direction. Assume that Zermelo’s Postulate is true and let S =
{S; : i € I'} be a non-empty family of sets, not necessarily disjoint. From &, create a
disjoint family as follows. For each i € I, set S} = §; x {i} = {(s,%) : s € S;}. Then
8* = {S} : i € I} is a disjoint family of non-empty sets. By Zermelo’s postulate, fix
a choice function f* : 8* — U1 S}, and for each @ € I, set f * (S;) = (si,7). Then
the function f : S —» U;erS; defined by f(S;) = s; is a choice function for S. 0O

Note: In the above proof, the fact was used that the family of sets was indexed.
If a given family of scts is not indexed, how can one create an index set for this
family? One has to look more closely at what at an indexed set is. An indezing of
a family of sets F by a set I is a bijection

n:I—F.

In this case, write (i) = F; and F = {£;}ics. If one chooses 7 to be the identity
function on F, a family of sets can itself act as the index set! Hence, any family of
sets can be indexed.

The Axiom of Choice can be stated for indexed families of sets, but is often done
using product notation. Since product notation can be a bit confusing for infinite
products, the reader might be forgiven for erring on the side of being too pedantic
in the following explanatiou.

Recall that the cartesian product of two sets is written

X1 X Xq = {(a,b) 0 € Xp,be Xg}.

To generalize this to a product of infinitely many sets, reinterpret the product
X) x Xy as follows: Each (a,b) € X| x X2 can be considered as the image of a
function, v : {X;, X2} — X, U X2, where (X)) = a € X} and y(X2) = b € Xo.
As a trivial example, if X; = {5,10} and X; = {3, 5}, since there are four ordered
pairs in X X Xy, there are four different functions, say v, 4, ¢, £. to be considered:

(X1 =5,  (X2)=3;
§(X) =5, 8(Xs) =5
H(X1) =10,  &(X2) = 3;
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&X1) =10, &(X2)=5.

Notice that the meaning of the function - is clear without the order mattering:
“4(X1} = 5 and 7(X2) = 3" means precisely the same thing as “y(X2) = 3 and
4(X1) = 5”. The meaning of the ordered pair (3, 5) captures this if onc remembers
that the 3 came from X; and the 5 came from X,. Then

X xXo = {f {X[,X’)} —- X1UXs: f(Xl) € X[,f(Xg) € Xg}.
Dealing with indices only, write
X1 XXQ:{f:{1,2}—>X1UX2:f(1)€X[,f(Z)GXz}.

If the sets were indexed by something other than numbers, the meaning of their
product would then not depend on order at all:

Xox Xp=1{f:{#4 A} — XaUXn: f(®)E Xa.f(D) € Xp}.

Recall that A x B # B x A, because the first is ordered pairs of the form (a,b) while
the second consists of ordered pairs of the form (b,a). The difference is only in the
order in which one writes them down. In fact, cither would be fine, if only one had
some way of knowing which of the ordered pair came from which set. Usually, the
first coordinate is to mean that the element came from the first set listed in the
collection A, B. If there are infinitely many sets, however, and no order imposcd
on the list, then what does one do? The answer is sinple: go back to the function
interpretation of the product.

Definition 4.5.2. For a family of indexed sets {F;}icr, define the infinite product
HF,—:{f:I—'UF,«: for each i € I, f(i)EFL-}.
iel il

Any function f : I — U;erF; for which each f(i) € F;, in fact determines a
choice function. Thus, the Axiom of Choice can be restated as follows:

‘ Axiom of Choice (indexed version): Let {A4;}ics be a family of
non-empty scts. Then [, A; # 0.

Another axiom that is often a starting point in set theory is called the well-
ordering principle. By Theorem 2.6.2, the natural numbers can be (or are) well-
ordered; can any set be well-ordered? No one has becn able to prove otherwise, so
the following might seem like a reasonable axiom:

rWell-orderirng principle (WO): Any set can be well-ordered.
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In 1904, Zermclo wrote in a letter to Hilbert that the Axiom of Choice implied
the weli-ordering principle (see [586]). However, Eves [181, p. 297] says that after
Zermelo proved the well-ordering principle, it was Emile Borel who was searching
for a flaw in Zermelo’s proof, and discovered that it relied on the Axiom of Choice,
and pointed out that the Axiom of Choice (AC) is equivalent to the well-ordering
principle (WQ) (that is, if AC is true, then WO is true, and if WO is true, then AC
is true). A modified proof of AC implying WO was then published by Zermelo [587]
in 1908. Some authors call the well-ordering principle the well-ordering theorem
(since it can be derived it from the Axiom of Choice). The reverse direction is easy:

Theorem 4.5.3. The well-ordering principle implies the Aziom of Choice.

Proof: Suppose that WO holds and that F is a family of non-cinpty sets. Since
WO holds, each FF € F can be well-ordered. Since every well-ordered sct F' contains
a minimal element, say, min F, then the function f : F — UpczF defined by
F(F) = min F is a choice function. O

The other directiorr (AC implying WQ) is not as simple. Two proofs are given
here. The first is an adaptation of that found in [347, p. 182] combined with notes
on a lecture given by R. Aharoni, (at University of Calgary, 1986). This proof
apparently docs not rely on replaccment axioms. A second proof, occupying only
one paragraph, is from Jech {289, p. 39] and is vastly simpler, relying ou the stronger
form of transfinite induction.

Theorem 4.5.4. The Awiom of Choice implies the well-ordering principle.

First proof of Theorem 4.5.4: Let X be a set let f: 2¥\{0} — X be a choice
function.

Look at pairs of the form (W, <), where W C X and < is a well-ordering of W.
Define a pair (W, <) to be f-compatible iff for every ¢t € W,

F(X\segqw o (8) = .

Such f-compatible sets exist by the following: let xg = f(X), 71 = f(X\{zo}),
and z2 = f(X\{zo,z1}). It is not difficult to verify that W = {z¢, 21,22} with the
ordering xp < 7 < 29 is indeed f-compatible.

[Comment: If (W, <) is f-compatible, then (W, <) was created according to the
rule: choose a next element to be f(X \elements chosen so far)].

Fact 0: For any f-compatible sets (W), <) and (W3, <5), either they are equal
or one is an initial segment of the other.

Proof of Fact 0: Let (W), <) and (W3, <2) be f-compatible. Since (W), <;)
and (Wy, <) are well-ordered sets, by Lemma 4.2.1, either they are similar or one

is similar to an initial segment of the other. Without loss, let o : W) — W5 be a
similarity from W) onto either W5 or an initial segment of Ws.
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Let W = {w € Wy : a{w) # w}, cverything that o moves. If W = 0, then

either W) = Wy or Wy is an initial segment of W (since « is either a similarity onto
W, or onto an initial segment of Ws). Thus, Fact 0 is proven if it can be shown that
Wiy =0.

Suppose, in hopes of contradiction, that W[ # §, and let ¢, be the least element
of W{. Then

to = f(X\segw, <,)(t0)) = F(X\sC8(ws,. <,y (a(to))) = alto).

contradicting o € W;. Hence W} = @, proving Fact 0.

So by Fact 0, without loss assume that (W, <;) and (W5, <,) are such that W,
is an initial segment of Wy (or Wy = W3). If a,be W, C Wy thena <, biflu <o b
(that is, the orders are “compatible” for f-compatible well-orderings).

Let V = {z € X : for some f-compatible w.o. (W, <),z € W}. Define (V, <} =
U{(W, <) : (W, <) is f-compatible, W C X}.

By the compatibility of the f-compatible well-orderings, the next fact follows:

Fact 1: (V, <) is a totally ordered set.
Fact 2: (V, <) is a well-ordered set.

Proof of Fact 2: Let 1" C V, T # ¥, and let £ € T. Then for some well-ordercd
set (W, <), 1 € W. Since W is well-ordered, W N T has a least clement, call it x.

[Aside: f z € V and W is a w.o. such that z € W, then forany y € V., if y < w,
then y € W because for some w.o. W’ y € W, but one of W or W' is an initial
scgment of the other, so y € W N W]

Thus for any s € T, if s < «, then s € W. But then s <z and s €¢ WNT,
contradicting x being the least in W N 7. Therefore, x is the least element of 1,
proving Fact 2.

Fact 3: (V, <) is f-compatible.

Proof of Fact 3: Pick v € V with (W], <;) an f-compatible set such that
v e Wy

The next thing to show is that segy, «,)(v) = segqy,y(v). Since (Wi, <y) €
(V, <), it follows that segiw,, <) (¥) C seg(y, (V). Let & € seg(y «)(v); then for any
(W2, <) with V' € Wy, (by the aside above) z € Wa, so z € segy, . ,)(v). Therefore,
segw,, <) (V) = seg(y, 4y (v)-

So f(X\segv,<)(v)) = f(X\segw, <,)(v)) = v since Wy is f-compatible.

Fact 4: V = X.

Proof of Fact 4: Supposc not, that is, suppose that X\V" # ), and since f
is a choice function, put z = f(X\V). Put V/ = V U {z} and extend the order
< to <’ by defining for every v € V, v <’ z. Then seg(y (y(2) = V and so
flsegyr < (2)) = fF(X\V) = z. So (V', <) is f-compatible, and so z € V' C V
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(since V' was the union of all f-compatible sets). Then z = f(X\V) € X\V,
contradicting that f is a choice funetion. Hence no such z exists, and so V = X,
finishing the proof of Fact 4.

Therefore, X is well-ordered. O

Second proof of Theorem 4.5.4: (Based on [289, p. 39].) Let A be a set.
To well-order A, it suffices to construct a transfinite sequence {a, : @ < ) that
enumerates A. Such a sequence can be found by induction, using a choice function
f for the family S of all nonempty subsets of A. Let ag = f(A), and

aa = f(A\{ag : § <a})

if A\{a¢ : £ < o} is non-empty. Let 6 be the least ordinal such that A = {a : £ < 6}.
Then (aq : @ < 0) enumerates A. U

Instead of assuming Peano’s axioms for the natural nunbers, one could take as
an axiom that the natural numbers are well-ordered and then derive that P5 holds.

Theorem 4.5.5 (WO —DP5). Assuming that the usual order on N is a well-ordering,
then P5 holds.

Proof: Assune that N is well-ordered and assume the hypothesis of P5 holds, that
is, that § # 0 is a non-empty set of natural numbers with 1 € S and satisfying
(re8) o' el letT={teS:t¢&N}. Toshow that P5 holds, one must
show that § = N, that is, that T = ).

In hopes of a coutradiction, suppose that T # @. By well-ordering, 7' contains a
least element, say tg € T. Since 1 € S, £ # 1. Since tp is the least element in T,
to -1 ¢ T, and so tg — 1 € N. By the hypothesis of PS5, then (t; — 1)) = to € N,
contradicting that ¢y € . So one must abandon the assumnption that T # 0 and
conclude that T = 0 and hence S = N, thereby showing that P5 holds. [

For an article (in Spanish) on the equivalence between WO and P5, see [237]. It is
interesting to note that there has been some controversy regarding the implication
W0 to P5. In a review [Math. Reviews 2002k:03003] of an article “Is the least
integer principle equivalent to the principle of mathematical induction?” [140],
the reviewer (Victor V. Pambuccian) writes: “... the purported equivalence may
have been erroneously read into an article by Pieri, in which he proposes an axiom
system which differs from the one proposed by Padoa (a variant of Peano’s) not
only in replacing PI |[P3] with LEP [WO], but in the other axioms as well, such
as in adding an axiom requiring that there is at most one number which is not a
successor.” [I have not scen the article, so I can not comment more here, but it
might be interesting to investigate the matter more.]

One more axiom, also equivalent to the Axiom of Choice, is called “Zorn’s
lemima™ (named after Max Zorn (1906-1993)). It has many forms.
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Zorn’s lemma (version 1): [n a partial order (P, <), if every totally
ordered subset of P has an upper bound in P, then £ contains at least
one maximal element.

Note: Stating Zorn’s lemma without the phrase “in P” can allow for misinter-
pretation.

Some authors suggest that Zorn's lemma is more appropriately called Kure-
towski’s Lemma as Kuratowski published the statement in 1922 [333] whereas, Zorn
published in 1935 [590, statement (42)]. Jech [289. p.40] avoids this controversy
by callirig it the “Kuratowski Zorn Lemma”. Hausdorff and Brouwer also stated
“Zorn’s lemma” before Zorn did.

Another version of Zorn’s lemma, is often used in application. Recall that for
a sel X, a chain of subsets of X is a tolally ordered sequence of sets, ordered by
containment. For example, {1}, {4,7}, {4.5.7}. {4,5.6, 7} is a chain. If C is a chain,
then the notation UC denotes the union of all sets in C. If F is a family of sets, a
mazimal element of F is asct § € F so that forevery T € F,if S C T then § =17
Note, maximal elements might not be unique (for example, the family of three scts
{2}, {2,4},{2.5} has two maximal clements).

Zorn’s lemma (version 2): Let F be a family of subscts of a set X
with Lhe property that for every chain C € F, UC € F. Then F has
at least one maximal clement.

The first version of Zorn’s lemma casily implies the sccond:
Exercise 10. Prove that version 2 of Zorn’s lemma follows from version 1.

On the other hand, somewhat surprisingly. the second version also implies the
first!

Theorem 4.5.6. The two versions of Zorn’s lemma are equivalent.
q

Proof: As onc direction is left as an exercise above, assume that version 2 holds,
and let (P, <) be a poset so that every totally ordered subset of P has an upper
bound in P. Let X be the set of all chains (totally ordered subsets) in P. Order X
by inclusion and now consider chains in X. If C is a chain in (X, C), then

u=\Jc
CceC

is also an element of X (another chain in (P, <)}. Thus, by version 2, (X, C) contains
a maximal chain F.

Then F = UF is a maximal totally ordered subset of (P, <); by assumption, ¥
has an upper bound z in P. Then z is a maximal element of P {for if not. there
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is another element y € P with #* < y, in which case ¥ Uy together with F form a
larger chain, contradicting the maximality of F). |

The utility of Zorn’s lemma is demonstrated in many well-known results, many of
them occurring as exercises in this book. These results include Tychonoft’s product
theorem for compact spaces {see Exercise 449), the Hahn-Banach theorem (see
Exercise 607), the existence and uniqueness of the algebraic closure of a ficld, the
existence of maximal ideals in rings with 1 (see Exercise 682), and that cvery vector
space has a basis (sec Exercise 692). See also Exercise 592.

Theorem 4.5.7. Zorn’s lemma (version 1) implies the Aziom of Choice.

Proof outline: Let S be a family of non-empty sets. Let P be the set of all choice
functions on subsets of S. The set P is ordered by restriction (or inclusion) in the
natural way: for two subsets 77 and 73 of S, if T C 7¢ and f ig a choice function for
T3, then the restriction of f to 7; is a choice function g for 7;. Tn this case, f C g
(as f both functions are sets of ordered pairs). In this manner, P(,C) is a partially
ordered set. For any chain C in (£, C), the union

U7

fec

is a choice function for the union of the domains, so Zorn's lemma applies, yielding
a maximal h € P.

Observe that Ak is a choice function for S, for if it were not, there is some
S* € § for which A is not a choice function. Extending & to a function /* defined
by h*{(8) = h(S) for any S in the domain of h, and sclecting any z € S, put
h*(5~) = x. Thus h is a proper subset of h™, contradicting the maximality of . (1

Theorem 4.5.8. Zorn’s lemma implies the Well-Ordering Principle.

Proof: Lel X be a set, and assume that Zorn’s lemma is true. To show is that X
can be well-ordered, that is, that there exists a well-ordering of X. Define the set

S = {(W,<): W C X, (W, <) is a well-ordered set}.

Since each well-ordered (W, <) is a subset of X x X, consider the partially ordered
set (S, C), where the order is containment. Note that if (W), <)) C (Wa, <2), then
W, € W, and the orders agree on W).

Observe that S is non-empty because the trivial ordering defined by equality,
(X, =) = {(2,2) : £ € X}, is indeed a well-ordered set.

Let C = {(W;,<;) : i € I} be achain in (5, C). The next claim is that U;e; (W),
the union of the chain is again a well-ordered set. The sets W; are nested and so
any subset Y C U;z7(W;) is contained entirely within some W;, and so has a least
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element {(each W; is well-ordered); this proves the claim. Hence the union of any
chain in S is again an element of S.

Since the conditions for Zorn’s lemma are satisfied, .S has a maximal element,
say (M, =) (where < is a well-ordering of some subset A). The next claim is that
X = M. If otherwise, that is, if X # M, then there exists y € X that is not in M.
Then one can create a larger well-ordered set (M U {y}, X*) defined by y <* x for
all z € M. But then (M, <) C (M U {y}. <*), contrary to (M, <) being maximal.
This finishes the claimn that X = M. Hence < is a well-ordering of X. O

Since ZL = WO = AC has been shown, to completc the demonstration that
all three are equivalent, it suffices to show that AC = ZL. This is accomplished by
giving a principle from which Zorn’s lemma easily follows, and proving that principle
using the Axiom of Choice.

Hausdorff’s maximality principle: Every partially ordered set has
a maximal totally ordered subset (chain).

The Hausdorfl maximality principle is sometimes called the “Hausdorfl-Birkhoff
maximality principle”, a special version of which is called the “high-chain principle”
(a high chain is a chain with no proper upper bound, so maximal chains are high
chains), but the proofs below are attempted without this extra terminology.

Theorem 4.5.9. Hausdorff’s mazimality principle implies Zorn’s lemma.

Proof: Let (P, <) be a poscl, and assume that every chain in P has an npper
bound in P. By Hausdorff’s maximality principle, let C be a maximal chain in P.
By assurnption, € has an upper bound in P, say u € P. Observe that u is a maxirnal
element in P, for if there were to exist an element v with u < v, then CU {v} would
be a larger chain containing C, contrary to C being maximal. O

For the reader interested in Hausdorff’s maximality principle, its applications,
and connection to inductive proofs, see [155], a short article in the American Math-
ematical Monthly. The Heine-Borel theorein and the uniform continuity of contin-
uous functions arc examples discussed.

The proof of Zorn’s lemma from the Axiom of Choice is now completed by
showing that the Axiom of Choice implies the maximality principle.

Theorem 4.5.10. The Aziom of Choice implies the Hausdor(f mazimality principle.

Three proofs are given, each significantly different from the others. The first
proof is reminiscent of the (difficult) proof of Theorem 4.5.4 and is adapted from
[416, pp. 529-532], without invoking terms like “high chain®. The correlation
between “f-compatible” sets from the proof of Theorem 4.5.4 ind “f-chains” below
will soon be apparent. Apparently, this proof has evolved from Zermelo's first (1904)
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proof of the well-ordering principle, Hellmuth Kneser’'s proof [319] of Zorn’s lemma,
and a (one page!) proof outline by Weston [567].

Proof of Theorem 4.5.10: The outline of the proof is given, with some details to
be filled in by the reader. Let M be a partially ordered set. For any chain (totally
ordered subset) C in M, let C denote the set of all proper upper bounds for C,
(often called the roof of C), that is, all upper bounds for C not including any upper
bound contained in C.

Step 1: By AC, let f be a choice function for the family of all non-empty C’s,
that is, for any chain C in M, if C # @, then f(C) € C. Call a chain K in M an
f-chain iff for any subchain C C K satisfying C N K # @, then f(C) is the least
element of CN K. That is, if C is a chain in K with proper upper bound in X, then
f(C) is the least of these proper upper bounds.

Step 2: Show that if K is a chain and C C K, then K=Cis equivalent to
CnK=0.

Step 3: Show that if K is an f-chain with K # @, then K* = K U f(K) is an
f-chain.

Proof of Step 3: First observe that K™ is indeed a chain with greatest element
f(k) and K* ¢ K. Assume that C C K* with CNK* # 0 and let s € CNnK*.
Then for every c € C, ¢ < s < f(k) and so f(K) ¢ Cand CCK.

IfC =K, then f(C) = f(K)and CNK* = KNK* = f(K). I C # K,
follows from Step 2 that f(C) € K and f(C < CNK.

Step 4: Show that if K and L are f-chains, then L C KU Kand KCLUL.

Step 5: If K and L are f-chains, then either K € L or L ¢ K.

Step 6: Show that the union of an arbitrary set of f-chains is again an f-chain.

Step 7: Let V be the union of all f-chains. By Step 6, V is an f-chain, and so
by Step 3, V = 0. O

Two more ways to show that AC implies Zorn’s lemma arc more direct.

Theorem 4.5.11. The Aziom of Choice implies Zorn’s lemma.

Two outlines of proof are presented here, the first from Thomas Jech, the second
from Peter Cameron. Both proofs follow the same general philosophy, however they
are distinct in their approach. Both assume AC.

First proof of Theorem 4.5.11: (Paraphrased from [289, p. 40]) Let (P, <) be a
partially ordered set so that every chain has an upper bound. The idea is by using
a choice function for the non-empty subsets of P, construct a chain in P that leads
to a maximal element of P.

Let, by transfinite induction, a, € I be such that for every £ < a (if there are
any) a¢ < ao. If @ > 0 is a limit ordinal, then

Ca={a5:£<a}
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is a chain in P and a, exists by assumption. “Eventually” therc is a 8 such that
there is no @g.1 € P with agy) € P. Thus ag is a maximal element of . ]

Second proof of Theorem 4.5.11: (See [95, p. 119].) Let (£, <) be a partially
ordered set in which every chain has an upper bound. Suppose, in hopes of con-
tradiction, that P has no maximal element. Attempt to construct a function by
transfinite induction from ordinals to P. Let f be a choice function for non-empty
subsets of P.

Set h(0) = f(P). Since every chain has an upper bound, and @ is a chain, it
has an upper bound, so P # ), and thus A(0) is defined. If h(«) has been defined,
{z € P:z > h(a)} is non-empty, for otherwise, h(e) would be a maximal element
of P. Hence, for each «, let ot be the successor to ¢, and put

h(a*) = f({z € P: z > h(a))}).

Finally, if A is a limit ordinal, observe that A = {y : ¥ < A} and so can be considered
as a chain, and since for o < 8, h(e) < h(3), {h(7) : v < A} is a chain C., in P.
Then set

h{A) = f(the set of all upper bounds for C,).

By transfinite induction, & is a function from the class of all ordinals into X. Ilow-
ever, h is 1:1, and since the class of all ordinals is not a sct, this is a contradiction. 0O

See Theorem 13.2.2 for a countable version of Zorn’s lemma for measurable sets.






Chapter 5

Paradoxes and sophisms from
induction

As lightning clears the air of impalpable vapours, so an incisive para-
dox frees the human intelligence from the lethargic influence of latent
and unsuspected assumptions. Paradoz is the slayer of Prejudice.

-J. J. Sylvester,

On o lady’s fan, etc.

Tn {589] is a quotation from Rostrand’s Cyrano de Bergerac, describing a “jocular
version of mathematical induction™:

I stand on a platform holding a strong magnet which I hurl upwards.
The platform follows. 1 catch the magnet and hurl it up again, the
platform following, and repeating this is in stages, [ ascend to the moon.

Mathematical induction can be used to prove both simple mundane results and
truly fantastic constructs. Occasionally. however, inductive reasoning leads to con-
troversial conclusions. Sometimes this is because the inductive rcasoniung itself is
faulty, or at times, dcliberately deceitful! (See [86] for a few remarkable exam-
ples.) There might be, however, some bizarre results that mathematical induction
“proves”, yet no error in recasoning can be found. In this chapter are introduced
a few standard inductive arguments that yield questionable results. Can you tell
which type each is? Some of the conclusions below are due to faulty reasoning, some
may lead to unsolved paradoxes.
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5.1 Trouble with the language?

5.1.1 Richard’s paradox

There are a couple of paradoxes arising from induction that have become quite
farnous, the first of which mentioned here is called “Richard’s paradox”, given by
the French mathematician Jules Richard in 1905.

Statement: “Every natural number is definable by an English expression of less
than thirty syllables.”

Proof (?) by strong induction: Let S(n) be the statement “n is definable by
an English expression of less than thirty syllables.”

BASE STEP: n = 1 is definable as “the least natural number”, an expression with
less than thirty syllables, and so S(1) holds.

INDUCTION STEP: Let & > 1 be fixed and assumne that S$(1),5(2),....S(k - 1) hold,
that is, every number less than & is definable by an English expression of less than
30 syllables. If k£ is not so definable, then k is “the least natural number that is not
definable by an English expression of less than thirty syllables”—an expression of
29 syllables, and so is definable after all. This contradiction proves the inductive
step.

Hence by mathematical induction, S(n} is true for all n, and so the statement
of theorem is true. o

Exercise 11. Decide whether or not the result i Richard’s paradox is true, and if
it is not, find the error (if any) in the given inductive proof.

Richard’s paradox is very similar to something called “Berry’s least integer para-
dox”. given by a British librarian, G. G. Berry in 1908. (For a more thorough
discussion, see Nicholas TFalletta’s book The Paradoxicon [185, p. 49].) Here's the
paradox: Since the set of all natural numbers is well-ordered, the set of all integers
n describable by the expression “n is not nameable in fewer than 19 syllables” has a
least element, say n*. (According to [185], Bertrand Russell claimed this number is
111,777.) But n* is then described by the expression “the least integer not namcable
in fewer than nineteen syllables” has eighteen syllables, a contradiction.

5.1.2 Paradox of the unexpected exam

Suppose that a professor announces to a class that “there will be an exam in the
next week, and that the exam will be unexpected”.

The students agree that the exam can not be on the following Friday --because if
by Thursday night they still have not yet had the exam, then the exam must occur
on Friday. In this case, the examn would be expected.
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So, the exam could only occur on one of Monday, Tuesday, Wednesday, or Thurs-
day. If by Wednesday night, the exam has still not yet taken place, the exam could
then only occur on Thursday, and it would be expected -so now they have argued
that the exain could not occur on either Thursday or Friday! Continuing inductively,
the exam could not take place on Wednesday, it could not take place on Tuesday,
and so it must occur on Monday—again an expected scenario. So the class concludes
that they will not have an exam the next week and that the professor was deceitful.

Exercise 12. The professor gives the exam on Tuesday, and the students were
surprised. Where did the inductive reasoning go awry?

5.2 Fuzzy definitions

Another kind of paradox comes when examining certain definitions that arc not
really precise.

5.2.1 No crowds allowed

How many people does it take to form a crowd? If a certain group of people do not
already form a crowd, it is unlikely that the addition of just one more person would
create a crowd. Continuing one person at a time, one could prove by induction that
no crowds ever assemble.

5.2.2 Nobody is rich

Reasoning similar to that used for no crowds could be used to show that nobody
could ever be rich, since the addition of one penny to your bank account would not
ever transform you from being “not rich” to “rich”. Thus, by induction, one could
prove that nobody is rich! This rcasoning can also “show” that there are no heaps
of sand.

5.2.3 Everyone is bald

Certainly, a person with no hair is called “bald”. However, if a person has only a
single hair, it is likely that most would cousider that person to bald, too. Adding a
single hair to someone’s head would not change one from being bald to “not bald”.
Therefore, by induction, everyone is bald.

5.3 Missed a case?

Many attempts at an inductive proof fail because the base case is missing. A classic
example (e.g., see [355, p. 29]) is the following “proof” that for every positlive integer
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n, the number n(n+ 1) is an odd number: since n(n+1) = (n—1)n+2n, if (n—1)n
is odd, then certainly so is n{n + 1), and so the inductive step flies. However, when
checking any value for n, one sces that n(n + 1) is always even. ‘I'he error is that no
basc case was proved. Sometimes, however, it is not the base case that is missing,
but some other case.

5.3.1  All is for naught
Here is a clever example that has appeared in many books (e.g., see [373]).
Statement: “Every non-negative iuteger is equal to 0.”

False Proof: For cach non-negative integer n, let S(n) be the statement “n =
0”. Certainly the basc case S(0) is truc. So fix some k£ > 0 and assume that
5(0),...,5(k) are true. To prove that S(k + 1) is true, notice that S(k) says k =0
and S(1) says 1 == 0, hence k + 1 = 0+ 0 = 0, proving S(k + 1). This concludes the
inductive step, and hence the proof by strong induction.

Exercise 13. Why is this reasoning faulty?

5.3.2 All horses are the same color
Here is one that has appeared in a number of places; it is apparently due to Pélya.
Statement: All horses are the same color.

False proof: The “proof” is by induction. The base case is that one horse is
the sanie color as itself, which is clearly true. For some fixed & > 1, assume that
any k horses are the same color. Examine a rernuda of k& + 1 horses, say Hy,
Hy,...,Hy, Hi... By induction hypothesis, H,...., Hy are the same color, say
roan. Also by induction hypothesis, the horses Ho, If3, ..., Hy, )y, are of the
same color, and since Hs is roan, so are all the others. Hence, all k + 1 horses are
the same color, completing the inductive step, and hence the proof.

Exercise 14. Find the flaw in the reasoning that “proves” that all horses have the
same color.

5.3.3 Non-parallel lines go through one point

No discussion of bizarre conclusions from inductive reasoning would be complete
without this old classic (see, e.g. [355. 2.1.13 p.30]).

Statement S{n): For any collection of n lines in the plane, if no two are parallel,
then all lines intersect in one point.

Proof? For n = 1 the statement is plainly true, as it is for n = 2 (since no two
lines are parallel). Let & > 2 and assume S(k), that is, that any collection of k
non-parallel lines intersect in a single point. To prove S(k + 1), it suflices to show
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that any k + 1 non-parallel lines intersect in a point. Let €,€a,. .., €4 be lines,
no two of which are parallel. By the induction hypothesis S(k), the first & lines
2y, ..., ¢ intersect in some point X. Again by S(k), the last k lines €o, ..., 0
intersect in some point Y. The point X is on lines €3 and f£3, and so is Y. Since
two lines intersect in a unique point, X = Y, which is the intersection of all lines,
concluding the proof of S(k + 1).

By mathematical induction, for all n, the statement S(n) is true.

Exercise 15. Find the flaw in the reasoning above.

5.4 More deceit?

5.4.1 A ncw formula for triangular numbers

Recall that in Section 1.6, the sum of the first n positive integers was called the
triangular number Ty, and by Theorem 1.6.1. T}, = n{n — 1)/2.
Problem: prove for that for all positive integers n, the assertion

n 2
Am): Y i <n+ é) /2.

i- 1

Bogus solution: A(1) is true, so assume that for somne & > 1, A(k) is true. Then

k41 k
Y i= (ZL) +(k+1)

i=1 ja=1
k+3)? N
AL Y (by A(k))
n+1+3)?
- (L'iQ_'i‘JL (by algebra)

proves A(k + 1) and hence the inductive step. Hence, for all n > 1, A(n) gives a
new formula for the sumn of the first n positive integers.

Exercise 16. Find the error in the above bogus solution.

The next two examples are quoted from [36], where it is cited that they appeared
a few years earlier in Mathematical Gazette T2. The first one is rather standard (e.g..
see [18(), pp. 450-451]), however the second one might raisc an cycbrow! Can you
find the faw in each?
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5.4.2 All positive integers are equal

Here is a “proof” by induction that all positive integers arc equal. The first step is
to prove by induction that for each n > 1 the statement S(n): if n is the maximum
of two positive integers a and b, (a,b € Z1) thena =b.

BASE STEP: When n = 1, max{a,b} = 1, and a,b € Z%, then a = b = 1, s0 S(1)
holds.

INDUCTIVE STEP: Let k € 7%, and suppose that S(k) holds. Suppose that two
positive integers ¢,d satisly max{c,d} = k + 1. Then max{c — 1,d — 1} = k,
and so by S(k), c— 1 =-d — 1, and so ¢ = d. This completes the inductive step
S(k) — Sk +1).

By MI, one concludes that for all n > 1, S(n) is true.

Once this is achieved, then, for any two positive integers = and y, taking n to
be their maximum, one concludes that z = y.

Exercise 17. Find the flaw in the above reasoning that all positive integers are
equal.

5.4.3 Four weighings suffice

An old popular puzzle concerns 12 coins, one of which is counterfeit and has a
different weight from the others; using a balance scale (and no extra weights), the
counterfeit coin can be identified with three weighings. In general, if m coins are
given, one of which is counterfeit, what is the minimum number of weighings required
to identify the fake? This question is answered in Exercise 586.

This puzzle has a variant that is much easier to solve (see Exercise 585); if the
counterfeit coin is known to be lighter than the rest, three weighings can locate the
counterfeit coin from among 27 coins. It seems rcasonable that as the number of
coins goes up, so does the number of weighings required to spot the bogus coin, so
one might be suspicious of the following claim:

Statement: Lor any m > 2. if exactly one of 1 coins is counterfeit and weighs less
than the rest, then the light coin can be identificd with at most four weighings on
a balance scale.

Proof (?): Base step: If there are only two coins, only one weighing is required.
Induction step: Suppose that the result is true for m > 2 coins, and consider m + 1
coins, only one of which is lighter. Lay any one coin aside and apply the induction
hypothesis to the remaining m coins. If the light coin is not determined from among
these m coins in four weighings, then the coin set aside is the counterfeit, so the
resuit is true for m + 1 coins, completing the inductive step. By MI, the statement
above is true for any number m > 2 of coins.

Exercise 18. What 1s wrong with the “proof” for the above coin weighing statement?
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In Martin Gardner’s article “Mathematical induction and colored hats” [214]
more paradoxes concerning induction are entertained. Two articles Gardner refer-
ences are the first chapter of [348] and [378], an articlc on paradoxes. (The problem
of the colored hats is introduced in Section 17.4 in this volume.)






Chapter 6

Empirical induction

What is the good of drawing conclusions from experience?

-G. C. Lichtenberg, 18th century.

6.1 Introduction

The above quotation was found in a daily bridge column by Phillip Alder (Calgary
Sun, 25 February, 2001); the column was entitled *Don’t jump to conclusions”.
(Alder says that Lichtenberg was an 18th century German physicist and philoso-
pher.)

Every cow that I have seen has four legs, and so it would be easy for me to
conclude that all cows have four legs. Such reasoning is called empirical induction--
cupirical evidence suggesting a pattern that holds in all cases. (Come to think of it,
I have seen a variety of cow with 110 legs— it’s called “ground beef”.) Okay, perhaps
a better examnple is that since the sun has risen every day this century, it will rise
again tomorrow, and hence the expression “is as certain as the sun rising tomorrow.”
Quoting Martin Gardner [214, p. 137], Charles Sanders Peirce once wrote “I like
that phrase, for its great moderation because it is infinitely far from certain that the
sun will rise tomorrow.” Gardner continues: “There is not a single truth of science,
Peirce said, on which he would ‘bet more than about a million of millions to one.” *

Exercise 19. Give an example of a statement S(n) thal is true only forn = 1 to
n = 1,000,000, but fails at n == 1,000,001.

When working on a problem, one often gathers information about small cases,
and based on this empirical evidence, one might spot what scems to be a pattern;
it is “empirical induction” that leads one to believe, at least in part, that the same
pattern always holds in more general situations. This guess at the pattern can
then sometimes be proved directly, or by mathematical induction. Both empirical
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induction and mathematical induction are types of what one might call “inductive
reasoning”. Coming up with the guess is usually doue by cnpirical induction, and
proving it is sometimes done by mathematical induction. The difference between
the two types of induction is highlighted in this chapter. It seems that experience
is the only teacher of how to use empirical induction in formulating guesses, and so
no explicit training is given here on how to guess patterns.

There are many examples through the ages of famous mathematicians or other
scientists making incorrect guesses based on patterns. In [245] and [247], Richard
Guy exhibits a collection of patterns in sequences from which it would be easy
to “conclude” a general rule, but many times, incorrectly. Such patterns exhibit
something Guy has called “The Strong Law of Small Numbers”, roughly to be
interpreted as “there aren’t enough small numbers to fit all perceived patterns.”

Richard Guy has toured the world giving many wonderful lectures based on this
theme and has been the subject of many articles and interviews (for example, see
[427]). Later in this section and throughout this text are included a few of the more
famous examples found Guy’s lectures and articles. In [247], Richard Guy also cites
Leonhard Buler (1707-1783) as one of the carlier discoverers of The Strong Law of
Small Numbers, , which Euler called

“exemplum memorable inductionis fallacis.”

The word “induction” has been used even in mathematical literature with differ-
ent meanings. An interesting quotation due to Neils Henrik Abel (1802-1829) was
given by Lakatos (336, p. 133]:

In a letter to Hansteen dated 29 March 1826, Abel characterized “mis-
erable Eulerian induction™ as a method that leads to false and unfounded
generalizations and he asks what the reason is for such procedures having
in fact led to so few calamities. His answer is

To my mind the reason is that in analysis one is largely concerned with
functions that can be represented by power-series. As soon as other functions
enter—and this happens but rarely—then {induction] does not work any more
and an infinite number of incorrect theorems arise from these false conclusions,
one leading to others. I have investigated several of these and I was lucky
enough to solve the problem...

It is noteworthy to see that in the above quotation, “theorems” can be incorrect!
Also in the above quotation, it is not exactly clear what “Fulerian induction” is, but
certainly this can’t have the same meaning as what is now known as “mathematical
induction.” If one reads Polya (e.g., [433, p. 90ff}), it becomes immediately clear
that “Fulerian induction” ts so named because of Euler’s techniques, reasoning, and
presentation of reasons that led him to his discoveries. Pdlya writes:

Yet Euler scems to me almost unique in one respect: he takes pains to
present the relevant inductive evidence carefully, in detail, in good order.
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He presents convincingly but honestly, as a genuine scientist should do.
His presentation is “the candid exposition of the ideas that led him to
those discoveries” and has a distinctive charm.

Pélya’s sentiments are implicitly shared in {499], where Leonhard Euler was called
“one of the first St. Petersburg Academicians”.

Later, in [336], Lakatos goes on to contrast the deductivist approach in mathe-
matics with to the inductivist style of science in general. He claims that deductive
reasoning stifles independent and critical thought (see pp. 142-143}. The present
concept of mathematical induction really does typify deductivism, but onc might
benefit from viewing a M1 proof as a final stage in some creative mathematical
thinking. The first stages in finding a theorem usually counsist of a different type
of induction, namely, collecting data, seeing general patterns, making conjecturc
after conjecture (as in most science), and then finally trying to prove some of the
conjectures.

The reader is cautioned that most books with “induction” in the title (even
some math texts!) are philosophical discussions about inference. not mathematical
induction. For example, in Foundations of Geometry end Induction [413] by Jean
Nicod (a student of Bertrand Russcll) one finds a definition of induction:

Definition of induction--What sort of inference is induction? It
is defined in current times by the logical form of its premises and its
conclusion by saying that it is a passage from the individual to the
universal,

Nicod then later says *...perfect induction does not concern us here.” What
he really examines is how one establishes probabilities concerning generalizing from
the individual to the universal. Nicod also notes that probability is different from
certainty not only in degree, but in nature. One must be careful even when a
probability is 1. If an integer taken at random from a given set X satisfies a certain
property with probability 1, this still does not guarantee that every number from
X satisfies the property; for example, a random natural number in base 10 has at
least 3 digits with probability 1, however there are 99 numbers that do not have 3
digits.

In many of the hard sciences (and perhaps many of the soft, too). empirical
induction is the only way to guess “the rule”. Mathematical induction differs in
that it can be used to prove {or sometimes disprove) the rule once it is conjectured.
Here are some situations where it is easy to guess the rule, yet ultimately, it is not
obvious how to prove the rule. Some of the examples in this chapter have been
reported by Guy in {243] (also see [247]).
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6.2 Guess the pattern?

Many intelligence tests give a pattern of numbers and ask to provide the next number
in the sequence. If you find too ingenious a rule, you won’t get the answer that was
intended. Your rule could have been a polynomial! For any finite sequence of
integers, there are infinitely many polynomials that produce the given sequence; the
next number in the sequence could really be anything, depending on “the rule” you
find. As an casy exawple [564, p. 123], consider the polynomial

p(z) = 42> ~ 182% + 322 - 15.

One can check that p(1) = 3, p(2) = 9, p(3) = 27, and p(4) = 81. Is il reasonable
to guess what p(5) is? Would you guess 35 = 243, or the correct answer 1957

6.3 A pattern in primes?

This example is mentioned in the delightful book Hidden Connections, Double Mean-
ings by David Wells {564, p. 122]. All primes except 3 are either one more than a
multiple of 3 or one less. Call these “more-primes” and “less-primes”, respectively.
Of the primes less than 100, there are (two) more less-primes than more-primes.
This property persisis through the hundreds of thousands. It might be reasonable
to conjecture that this property is true forever, however, it fails at the plus-prime
608,981,813,029, where the plus-primes then dominate for a while. It has becn
proved that the lead changes an infinite number of times, thereby destroying any
hope of a conjecture either way.

As an added note, Chebychev once conjectured that primes of the form 4k + 3
eventually outnumber those of the forin 4k + 1; however, it has been proven that
the lead again changes Lands infinitely often. For more on this and the distribution
of primes, see [199].

6.4 A sequence of integers?

Let s = 1 and for n > 0, let

1+s+si+---82
n+1

Sp+1 =

For example, 51 = 2, $9 = 3, s3 = 5, sq4 = 10, s5 = 28, sg = 154, s; = 3520,

sy = 1,551,880, s9 = 267,593,772, 160, and
sy0 = 7,160,612, 690, 122,633, 501, 504.

Exercise 20. /s s,, always an integer?
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6.5 Secquences with only primes?

Pierre de Fermat (1601-1605), along with Marin Mersenne (1588-1648) and a host
of others, worked extensively searching for primes among integers of the form 2% +1
or 28 — 1. If k is even and greater than 2, the number 25 — 1 is not prime, since
22 1 = (2™ ~1)(2™ +1). For k = 2,3,5,7, the expression 2F — 1 is prime, however
21 = 2047 = 23 - 89, which spoils the conjecture that if p is prime, then 2P — 1 is
prime.

For t > 0, define the Fermat numbers by = 22' 4 1. Then Iy =3, F =5,
I = 17, F3 = 257, and Fy = 65537, all prime numbers. Fermat conjectured that
for every non-negative integer t, F, is prime, but Euler proved this to be false.

Theorem 6.5.1 (Fuler). £y = 232 + 1 is not prime.

Proof: Put g =27 and b =5. Thena -5 =128 — 125 =3 and 1 + ab— #* =
14 (a—b%)b=1+3b=16 = 2*. Hence

241 = 221 1=25+1=(a)+1=2%"+1
= (L+ab—bHa +1
= (L +ab)a* — (a¥' - 1)
= (14 ab)a’ - (@®? 1)(a®6? + 1)
= (1+ab)a® - (ab+ 1)(ab — 1)(a’b® + 1)
(1 4 ab){a* - (ab—1)(a®p® + 1)},
and so 11 ab =14 27.5 =641 is a divisor of F. |

QOver a century later, Landry proved that Fg is not prime cither! Since then, it
has been shown that for 5 < n < 21, F, is composite. For further references, see,
e.g., {456, pp. 214-215).

Fermat numbers do, however, share one property (provable by induction):

Exercise 21. Prove that for every t > 2, the last digit of the Fermat number Fy is
7.

The next property of Fermat numbers was mentioned in Proofs from the Book
[7]. and although it says nothing about producing primes, it has an amazing con-
nection to the number of primes being infinite. The following statement follows the
convention that an empty product is 1.

Exercise 22. Prove that forn =0,1,2,...,

n—1

L= J]F+2 (6.1)
i=0
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From Equation (6.1), it follows that the Fermat numbers are relatively prime (if
any two had a common divisor, it would also have to divide 2, but Fermat numbers
are odd). As pointed out in [7]. it then follows easily that there are infinitely many
primes (as there are infinitely many Fermat numbers). (Compare with Exercise
207, a variation of Fuclid’s proof.) Note that a similar divisibility situation to
that in Euclid’s proof (with a product and something small added) occurs in the
consequence of Exercise 6.1.

When addressing the next question, a table of primes might be used to verify the
first few values; one might write a small computer program to check larger values if
a proof by induction is not immediately apparent.

Exercise 23. Are all of the numbers in the infinite sequence
31,331, 3331, 33331, 333331, 3333331, 33333331, 333333331, . ..

prime?

Another classic example is a remarkable polynomial discovered by Leonhard
Euler that generates a long sequence of primes. For n > 0, define f(n) = n? —n+41.
One notices that f{0) = 41, f(1) = 41, f(2) = 43, f(3) = 47, are all prime numbers.

Checking more values, f(4) = 53, f(5) = 61, f(6) = 71, f(7) = 83, f(8) = 97,
f(9) = 113, f(10) = 131, f(11) = 151, f(12) = 173, f(13) = 197, f(14) = 223,
f(15) = 251, f(16) = 281, f(17) = 313—all primes! Given the empirical evidence,
one might make the following guess:

Conjecture: For each n > 0, f{n) = n? —n 4 41 is prime.

The reader can check the next twenty values, and still get primes! Can you prove
the conjecture in general? It secems that an inductive proof is required, however,
primes are curious creatures; knowing the first = primes, there is no known way to
predict what the (n + 1)-st prime is.

Exercise 24. Determine whether or not for everyn > 1, f(n) = n? —n + 41 is
prime.

The history of prime-producing polynomials is quite rich; the interested reader
might look in (150} or [247] for a start. See also [215] for intercsting discussion and
references.

6.6 Divisibility

Leibniz observed that for any positive integer n, 3 divides n® —n (see Exercise 243),
5 divides n® — n (Exercise 252), and 7 divides n” — n, and for a short time, thought
that if ¢ is odd, then t divides n' — n, until he noticed that with n = 2 and t = 9,
29 _ 2 = 510, which is not divisible by 9.
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According to [220], the Soviet mathematician D. A. Grave once conjectured that
for any prime p, that p? divides 2°~! - 1. This conjecture may seem reasonable since
it is true for all primes less than 1000.

Exercise 25. Find the first prime p that proves Grave’s conjecture false.

6.7 Never a square?

In attempting to solve the next exercise, one might be inclined to invoke a computer
search.

Exercise 26. Define f(n) = 991n% + 1. Decide whether or not for eack n > 1, f(n)
is never a perfect square.

6.8 Goldbach’s conjecture

Christian Goldbach (1690-1764) conjectured in 1742 that every cven number greater
than 2 is the sum of two primes. For example, 4=2+2,6=3+3,8=3+5, and
16 = 3 + 13. Some even numbers are the sum of two primes in more than one way,
for example,

20=34+17=7+13.

(See [24] for an early work on how many ways an even number can be the sum of
two primes.) To this day, Goldbach’s conjecture has not been resolved, though it
has been verified for all even numbers up to 1.615 x 10*? in 1988 [133]. For progress
on Goldbach’s conjecture up to the late 1940s, see {288]: popular, inviting discussion
and more facts can also be found in more recent works, for example, [120], {153],
[248], {428].

In 1752, Goldbach also conjectured that any odd natural number greater than 1
is either a prime, or a perfect square, or can be written as the sum of a prime and
twice a square. For cxample, the first non-prime non-square is 135, which is 7+ 2 - 4,
and the next is 21 = 13 + 2 x 4. Calculations for the first few thousand cascs
might have very well caused some mathematicians to search for a proof, perhaps an
inductive proof. However, all such efforts were doomed to fail. The first value for
which this breaks down is 5777. The following exercise can be resolved with much
less effort.

Exercise 27. Can every odd natural number greater than 3 be written as the sum of
a prime and o power of 2¢ For example, 5 =3+2,7 =542 = 34+4, 9 = 5+4 = 7T+2.

6.9 Cutting the cake

Mark n dots on the edge of a circle, and then connect all dots with straight chords
as in Figure 6.1; this cuts the circle into various regions. Given n dots, what is the
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maximum number of regions the circle can be cut into? For n = 1 dot, there are
no chords, and hence only ! region. The numbers of regions for the first five cases

are 1,2,4.8,16.
- - ‘\'
— .
\\\. / \_,/ \ —
I'igure 6.1: Cutting the cake

By empirical induction. one might pose the following guess for the number of
regions:

Conjecture: The maximum number of regions in a circle created by n dots joined
by chords is 2 1.

Apparently (sce [564, pp. 119-120}), the disruption in the pattern was discovered
by the mathematician Leo Moser.

Exercise 28. Show that this conjecture is false by checking the case n = 6.

Exercise 29. Show that by cutting a cake between every pair of n dots on its cir-
cumference, the maximum number of regions formed is

r(n) = i(n4 —6n® + 2402 — 18n + 24).

6.10 Sums of hex numbers

Start with a penny on a table, then surround this penny with six others to form a
hexagon (see Figure 6.2). Again, surround this hexagon with 12 more pennies to
form yet a larger hexagon, now with a total of 19 pennies.

Continue this process and get a sequence of so-called hez numbers:

1,7,19,37,61,91,127,169,....

Adding these hex numbers cumulatively, the partial sums are

1=1,
1+7=28,
1+7+19=27,

1474194 37 = 64,
14+74+19+37+61 =125,
1+ 7419+ 37+ 61+ 91 = 216,
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Figure 6.2: Pennies and the second hex number

1+ 7+19+37+61+91 + 127 = 343,
1474 19+37+61+91+ 127+ 169 = 512,

cach of which is a perfect cube, 13,23, 3%,4%,5%,63,7%,83,. ... Will this always hap-
pen? Perhaps one could begin by finding a general formula for the n-th hex number,
and then show that the total of the first n hex numbers is the desired difference of
cubes?

Exercise 30. Prove or disprove that the difference of consecutive cubes is always a
hex number.

6.11 Factoring z" — 1

The polynowial p(x) = 2™ - 1 occurs in mathematics in a number of different
contexts. For examnple, if r is a real pumber with |r| < 1, one can ask what the
infinite geowetric series

T+r+r2+rd4...
converges to, if indeed it does. Treating r like a variable, one begins by noticing
(multiply it out!) that for any positive integer n,

("'L'l+7'n_2+~~~—|—1‘2+r+l)(T-» 1)=Tn__]‘

and so
. rt—1
l+r+r2+. . .+ = —1
As n — ¢, this last equation says
o
L+r+72 40384+ = lim ——,

n—oc 1 o--
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and since |r| < 1, lim,_, ™ = 0, and so

. -1 1
]+7.+T2+1,-3+...= = .
r—-1 1-r

Other common occurrences of the polynomial p(z) = z™ — 1 are in the study of
power series, in finding roots of unity in complex numbers, in number theory, in
field theory, and even in cryptography.

The polynomial p(z) = £™ — 1 appears in many mathematical calculations, and
hence it might be interesting to look at p(z) a little more closely. Can one factor this
polynomial into polynomials with integer coefficients? The answer is “of course”, as
has already been scen:

- 1=(z-D)E" 42"+ 4224z 4 1).

What if one asks further to have p(z) factored into polynomials each with integer
coefficients and each polynomial is as small as possible (irreducible, not having
further factorization into polynomials with integer coefficients)? For example,

22-1 = (z-1)(z+1)

2-1 = (z-DE*+z+1)

-1 = -+ DE2+1)

-1 = (-1 284022421 1)

-1 = (@ D+ —z+ )2 +z+1).

In each of these five factorizations, all coeflicients are +1 or 0. In 1938, the Sovict
mathematician N. G. Chebotarév [100] (also spelled “Tschebotareff”) asked if this
always holds. It wasn’t until 1941 that Ivanov [285] published an answer to the
question. It turns out that for all n < 105, the coefficients are indeed 0 or +1,
but when n = 105, this fails. One irreducible factor of 2% — 1 has degree 48 and
coefficients 1, 1, 1, 0,0, ~1, =1, -2, =1, —1,0,0, {, 1, 1,1, 1, 1.0, 0, -1, 0, —1,
0 -1,0, -1,0, -1,0,0,1,1,1,1,1,10,0, -1, -1, -2, -1, -1, 0, 0, 1, 1,
1, (where the first 1 is the coefficient of z8). In fact, what Ivanov proved was the
following (from the review written by J. A. Shohat in Math. Reviews 3,164a): Let
Xm be the irreducible factor of the polynomial ™ — 1 whose zeros are the primitive
m-th root of unity. If m = pq is the product of two distinct (odd) primes, then the
coeflicients in X,,, have only values -1.0,1. If m =pgr (p < ¢ <r.p+q >r)is the
product of three distinct primes then in X,,, the coefficient of z" is -2. [Note that
105 = 3-5-7.] If mn has sufficiently many distinct primes in its factorization, then
coefficients in X, can attain arbitrarily large absolute values.

6.12 Goodstein sequences

Hercules had a fight with the Hydra, and every time Hercules chopped off one of the
heads of the Hydra, two inore grew back. Can Hercules ever kill the Hydra? It seems
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not, for if the fight gocs on long enough. Hydra will eventually have millions of heads,
a monster that even IHercules might not be able to conquer. In the Hercules-Hydra
fight, only simple subtraction of 1 and addition of 2 is required to calculate the
number of heads at each step. However, what hides behind that “mathematics” is
yet another monster, and this monster is defeated by well-ordering. [This delightful
paradox was first shown to me by Ron Aharoni over 20 years ago, and only recently
did I find its name—thanks to KR/
Consider the sequence: 1' = 1, 22 = 4, 3% = 27, 4% = 256, 5° = 3125, 6° = 46636,
The terms are growing faster than any simple exponential sequence. The
situation is much more drastic with exponents stacked three high:

2% = 16, 35" = 7625597484987, 4% > 10'%4, 55° ~ 102184 6E° > 1036305

One can only imagine how fast such expressions grow if the exponents are stacked
even higher.

Expressions of the above form can be used to write large numbers using only
small digits. For example, using only 1's and 2's, one can express

300 = 22°%" 4 921 4 92+1 4 92,
Using only digits at most 3,
300 = 3%2 1 2.3% + 3.

In gencral, if n is a large integer and b > 2 is smaller, a simple algorithm produces
such a form. First write n = gb*+r, where ¢ < b, z is the largest power possible, and
r < &% is the remainder upon dividing n by b*. Now apply the same decomposition
to each of x and r., and continuc until all the exponents are are at most b. For
example, with b = 4,

3205 =3-454+133=3-4**"1 +2.434+5=3.4%"142.43 441 1.

Such a representation is called the hereditary base b representation of n. When
b = w, the first infinite ordinal, such a representation is called the Cantor normal
form (see [160]) of an ordinal.

For each n,b € Z*, b > 2, define By(n) to be the positive integer obtained by
replacing each “b” with “b 4+ 1” in the hereditary base b representation of n. For
example,

B3(300) = 4112 + 2. 4% 4 4 = 4612.

Beginning with any number n, define the Goodstein sequence ng,n,ng. ... recur-
sively by sctting ng = n (written in hereditary base 2), and for cach £ =0.,1,2,.. .,
if ng > 0, then define

g1 = Begpo(ne) — 1
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if some ng = 0, the sequence terminates. So the sequence begins with a base 2 form,
and at each stage, the base is increased and then 1 is subtracted. The following
example for n = 266 is given in [67, p. 36] [and many other places on-line]:

266 = ng = 22°'" + 2271 421,

ny = Ba(ne) — 1
— 333"'1 + 331 131
=3¥7 L3l g

ng = B3(n;) — 1
= 41" gty

n3 = By(na) — 1
— 555+1 T+ 55+l‘

Ny = B,r,('ng) -1

=67 460

-_-GGGH +5.66+5,65+...+5-6+5;
ns = Bg(ng) — 1

:777+! +5‘77+5,75+...+5~7+4;

Despite the rapid growth of this sequence, it actually terminates at 0. Indeed, this
is true for any Goodstein sequence, which was proved by R. L. Goodstein [223] in
1944. Most people might agree that this result is not to be believed, because the
growth of the sequence seeins to vastly outweigh subtracting just 1 cach time.
ITere is a proof sketch: Given any hereditary base 2 representation, replace all
2’s with w’s. This new ordinal is larger than cach term in the sequence, and since
an ordinal is a well-ordered set, subtracting 1 from the ordinal number can only be
done a finite number of times. O

In a sense, this proof might scem like a cheat since one had to “go through
infinity”, whereas cvery term in the sequence is finite. In fact, in 1982, Kirby
and Paris [312] showed that any proof of Goodstein’s theorem indeed had to go
outside of Peano arithmetic. (The Kirby- Paris result scems very similar to the
Paris—-Harrington theoremn in Ramsey theory—sce [231].)

The calculations reported on in [67] are amazing. For the above Goodstein
sequence starting with n = 266, for & = 3(2402““53'2“ — 1) (which is roughly
1012"2"):695), ne = 0, and the sequence terminates.



Chapter 7

How to prove by induction

A good proof is one that makes us wiser.
—Yu I. Manin,

A course in mathematical logic.

When learning to prove theorems by mathematical induction, there are usually
two challenges. First one must find the proof idea (or understand one from the
literature). The second concern is how to present the proof formally. This chapter
is concerned with the discovery or understanding process. Some tips include how
a stronger resull might be easier to prove, or how induction can be used to prove
limits. Readiug this chapter might implicitly help one’s writlen proof, as well. The
next chapter focusses more on aspects of how to present the written proof, complete
with a template for writing an inductive proof, and information on notation.

For more on the thinking that surrounds the discovery and writing of an inductive
proof, see Pélya {433].

7.1 Tips on proving by induction

Here are some tips that might help while trying to prove a statement S(n) using
induction.

1. A problem that says “... for all n > 0..” says the same as “... for each
n > 0...”. Sometimes, a problem might ask to prove “...for any n > 0...” —this
does not mean that you can pick your favorite n and solve only that case; it
really means that you must show the problem for any arbitrary n, that is, for
each possible n.

2. Work out a few examples with actual numbers in ${(n) and confirm the truth of
the statement for yoursclf. This process helps one to see how an inductive proof

89
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might go. Furthermore, it is very easy to copy the question down incorrectly
(heaven knows, 1 have done it dozens of times while writing this book!), and
then get frustrated trying to prove something that is not even true! Needless
to say (so I say it anyway) a few minutes of simple checking can often prevent
a big headache (or cure it).

. Work backwards. When proving the inductive step of an equality (or inequal-

ity), what one often does in practice is to put the left side of S(k) at the top
of a page, and put S{k + 1) at the bottom. If one gets stuck going down, one
might start at the other end and try working back. For example, in the solu-
tion to Exercise 61, one is faced with trying to derive a sequence of cqualities
of the form

P43 45844 (2~ 1%+ 20k +1) - 1)°
=143 45884+ 2k -1+ (2k+1)3
= K22k — 1) + (2k + 1) (by E(k))

= (k+ D22k + 1)2 - 1).
It looks pretty daunting, so the next step might be to write

= Kk?(2k% - 1) + (2k +1)® (by E(k))
=2k — k% + 8K% + 12k + 6k + 1

= (k% 4 2k + 1)(2k* + 4k + 1)
= (k+ 1)%(2(k + 1)2 - 1),

working from each end. When you get to the middle and the expressions are
the same, you know that you have it!

Note: 1t is easy to sometimes fool yourself with this method, so be honest with
yourself about every step. To write up a proof with this method and then pull
some magic trick in the middle might go unnoticed by your instructor, but if
it is noticed, it will say more about your work habits than a simple note to the
instructor that says that you can’t quite bridge the gap. (Many instructors
would prefer to see an inductive proof in proper format with an admission of
difficulty in the middle rather than a poorly formatted proof or an outright
“fudge”.)

. There are usually many different solutions to one problem, so don't panic if

yours does not agree precisely with the solution given. For example. there
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might be completely different scquences of algebraic manipulation that will
prove a particular equality. In fact, it is ofien very iustructive to deliberately
seek a different solution.

. Use only siinple algebra in the steps so that any reader (including yourself)

can clearly follow what has happened. It is much better to err on the side
of showing too many operations than too few. The only steps one should
feel comfortable in omitting are those that can be verified with the simplest
of high school algebra in a very few steps. For example, adding fractions
first requires comimon denominators -showing this interinediate step is often
helpful but not required. Just don’t force your readers to go off and do a page
of calculations just to verify one equality.

To ease simplification of a huge expression, it is often helpful to put all common

factors “out front” first, then simplify the smaller inner factor. For cxample,
in the inductive step of Excrcise 54, one is faced with simplifying

M&ﬂ + (k -+ 1)2_
6
Que could proceed like

k(k + 1)(2k + 1)

k(k +1)(2k + 1) + 6(k + 1)?
6 :

+ (k+1)?
6

2k% +3k> + k + 6k* + 12k + 6
6

263 +9k2 4+ 13k + 6
6

and then one would have to factor a cubic polynomial-—sometimes not very
much fun. However, if one factors out the term (k + 1) first, things get a bit
simpler, having only to factor a quadratic:

k(k+‘)6__(£+_”+(k+1)‘2 = (k+1) ﬂgk(:—l)Jr(kH)
_ (k+l)k-(2k+1)+(i(k+1)
6
9.2 .1 G
o (kR

22+ Tk +6

(k+1)
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(k +2)(2k + 3)

6

This idea of separating common factors from the rest of the calculations can
be extremely helpful for more complicated expressions, especially when adding
terms each having many factors.

(k+1)

. 'T'he base step can be vacuously true (as in Exercise 684, the base case is true

because it never applies) but. it is good practice to explicitly mention this fact
in an inductive proof. Many writers might say something like “since for n = 0
this is clearly true, so assume n > 0.” This is often the only clue that you are
reading an inductive proof.

. If an inductive proof in some text ends up confusing you, try rewriting it in a

formal style, using your own variables, clearly identifying the statement, the
parameters, and both the hypothesis and conclusion of the inductive step. For
example, when [ first discovered the result in Exercise 684, I tried reading the
proof in sorne text, and got lost—it said that the result was “elementary”, and
so I felt a bit stupid. The notation was a little different from that I was used
to, and perhaps that threw me. Only after rewriting it carefully did 1 agrec
that it was indecd fairly elementary!

. Sometimes in the inductive step, there seems to be no way to relate an ex-

pression to that found in the inductive hypothesis. One trick is to add and
subtract the same term. For example, in Exercise 279, in the inductive step,
one has to show that 65+2 4+ 726+ j5 divisible by 43, based on the hypothesis
that 65! -+ 7% 1 is divisible by 43. To connect the two expressions, one can
add and subtract the expression 6 - 72¥~1 as follows:

Gk-|-2 + 72/\,‘+l — 6k+2 +6- 72/{-1 -6 72/(.'~'1 + 72k+l
6(6k+1 + 72k I) + (—6 + 72)72k—1'
In the last line, the first of the two cxpressions in parentheses is divisible by 43

by the induction hypothesis, and in the second expression, a 43 serendipitously
drops out, making the whole expression divisible by 43.

Don’t feel bad if you miss this trick~ for it is only that, a trick. After a
few math courses, you might witness this trick only a few times, but it is
nevertlieless worth remembering. In this particular case, the “trick” can take
a different form by writing

652 4 72+ g Rl 4 g0 . 72 = gkt 4 721y 143 72

essentially the same idea as above.

. Recheck your inductive step with the first case. For example, if S(n) is true for

n > 1. recheck your inductive step to see that it indeed proves S(1) — $(2).
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10.

11.

12.

Often, one has to subtract 1 in a denominator, say, making an expression
nonsensical if ¥ = 1. Once you have checked it for the first jump, try another,
say, for n = 4 to n = 3. Checking the inductive step that gets you from
n =1 to n = 2, say, often prevents errors of the type mentioned Chapter 5 on
paradoxes in this volume.

In the inductive step S(k) — S(k + 1), try to do it in one long sequence of
equalities (or inequalities). If one has to manipulate S(k) to get S(k + 1), be
aware of the rules that preserve equality. For example, taking square roots of
cach side does not necessarily preserve cquality. Here is a silly example I was
taught in high school that shows how dangerous it is to go from equation to
equation, rather than using one long string of equalities (or inequalities}):

-20=-20 (obviously true)
16 — 36 = 25 — 45 (rewrite each side)

1 1
16 — 36 + 87 =25 ~ 45 + 87 (add 8! to each side)

(4 - g)z - (5 - g)z (factor)

4 — =5 -

(take square roots)

N ©
il
o

N ©

(add g to each side)

When proving the inductive step, one often gets stuck, not sccing how to get
to the last line in a sequence of equalities or incqualities. Often a simple
observation must be made, but one that requires a separate proof. Figure out
this step, usually working backwards, and then put this observation, nsually
with proof, before you start the string of incqualities so that you can simply
refer to it when needed, strcamlining the presentation. For exainple, in the

solution to Exercise 188, one soon finds that an inequality like 2vk + Tklﬁ <
2vk + 1 would be very handy. To check this, one might first investigate by
multiplying by vk + 1, squaring, and then standing back and staring—the
actual proof is then done in reverse, starting with the obvious 4k* + 4k <
4k? + 4k + 1.

If the statement to be proved has the variable n in it, use a different variable,
say k, for the inductive step. The reason is that in an inductive step, the &
is fixed, whereas n could be thought to be varying. [This comment is echoed
in [194].] Some authors use the samc variable for both, but this can easily
lead to confusion. For example, if S(n) is stated, the inductive step could be
S(k) — S(k + 1)-—some express this by “Assume that the statement is true
for n = k (inductive hypothesis); to be proved is the statement forn = k+1."
For the beginner, 1 suggest to stay away [romn such a format. Professional



94 Chapter 7. Iow to prove by induction

mathematicians often use more concise shortcuts; e.g., in [58, p. 20], the fol-
lowing is used: *The casc = 1 being trivial, we assume that n > 1 and that
the assertion holds for all smaller values of n.” This is particularly poor style
for a novice; such shorthand might be reserved for only those with years of
experience with induction.

In this volume, many different variables are used so that the student thinks
more about the proof than the letiers on the page; it helps one’s problem
solving ability to be flexible in notation. Standard variables for inductive
proofs are usually those reserved for integers, like m, n, p, q, %, 7, k, M, and
N, but you are certainly not restricted to these. Some authors prefer lower
case Greek letters like o, 3, v and 4, and these are recommended when working
with ordinals. Try to select variables that might remind the reader (or author)
as to their meaning.

13. Be suspicious! When reading a proof in some book (including this one) and
something doesn’t scem quite right, don’t just blindly copy it down and hope
that sense can be made of it later. Everyone makes mistakes, including pro-
fessors and textbook authors. Ask your instructor! Convince yourself whole-
heartedly thal each step is justified—you learn a great deal more this way.

14, Fight the urge to read the solution after only a few minutes of effort. [f after
scratching your head for a day, maybe take a peek, get an idea, then try
again without the solution in front of you. If you must gain the idea from a
published solution, try to rewrite the proof in your own style, perhaps using
new variables. If you are submitting your work, and you have discovered the
solution in some text, cite your sources! It might be considered academic
dishonesty by some instructors to find a solution somewhere, usc it, and not
tell anyone of the source.

7.2 Proving more can be easier

An interesting feature regarding proofs is that it sometimes makes a proof easier if
onc strengthens the original statement! This is particularly true for some statements
provable by induction; such a technique is sometimes called “loading the inductive
hypothesis”, or “inductive loading”. Pélya [434, p. 121] calls this the inventor’s
paradox:  an inventor might be more successful in trying a more ambitious project.

For example, if one were to try to prove the statement “the sum of the first n
cubes is a perfect square”, one might have trouble finding the proof, however, if one

2
strengthens the statement to “the sum of the first n cubes is [R(L;u] 7, the proof
is straightforward (see Exercise 56).

In his wonderful book Problemn-solving Strategies, Engel {161, p. 180, 7.16] gives
the following as an exercise (sec Exercise 192 in this volume): prove that for every
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n 2>l
I 35 2n—1 1
_

2°1°6 20 T VBr+1

Engel then asks the reader to try and prove by a weaker result, namecly

5 .2n—71< 1

6 2m - Van
Though the second inequality is not as tight, it is much harder to prove by induction
(try it!). (This example also occurs in a number of other texts; e.g., see [462].)

Another example (regarding Fibonacci numbers) is found in the proof of Exercisc
332 in this volume; there it helps to actually prove two statements simultaneously,
the truth of which imply the one result asked for. Perhaps an even more bizarre
example (also with Fibonacci numbers) occurs in Exercise 365, a very simple looking
result which seems impossible to prove without first proving a more general state-
ment, that of Exercise 352. (The rcader is invited to try and prove Exercise 365
first! In fact, when I was writing an carlier draft of this book, I tried to do the
innocuous looking one before the more complicated looking one—and got stumped;
the more complicated one is really quite easy, and the other follows directly.) In
Exercise 381, oune is asked to prove that a particular sum is a Fibonacci number; if
one first guesses as to which Fibonacci number is arrived at, then one has a better
chance of proving the result. The similar situation ariscs in Exercise 577, counting
ways to place dominoes, where a more precise count is easy to prove by induction,
and the proof yields a result stronger than what was asked for! Without making
the extra assumption in the inductive step, it is not apparent how one would solve
the question. See also the solution of Exercise 515, where a far stronger claim is
easier to prove inductively. Again, proving a more precise result is often easier than
proving a weaker statement.

Here is yet another examnple from Pélya [433, pp. 119, 243, Ex. 12] that requircs
only freshman calculus:

Define a sequence of functions fy, f1, f2, . .. recursively by

1

1-z’

13
2 4

Jo(z) =

and for n > 0. define
d
for1(z) = 3U‘d_[fn($)]~

7
The goal is to prove (by induction) that for each n > 0, the statement

S(n): The numerator of f,(x) is a polynomial.

For the moment, ignore the fact that the statement is mcaningless, because one has
placed no constraints on the denominator, or made any claims about f being a ra-
tional function, but the intent might be made clear. [Thanks to Sasho Kalajdzievski
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for this observation.] Perhaps S$(n) was to mean that f is naturally written as a
ratio of two simple looking expressions, and the cxpression in the numerator is a
polynomial, as opposed to, say, an exponential function or a square root. One might
naively attempt a proof as follows:

BASE STEP: Since the numerator of fy(z) is 1, $(0) is clearly truc.

INDUCTIVE STEP: (S(k) — S(k + 1). For some fixed & > 0, assume that S(k) is
true, that is, assume that the numerator of fi(x) is a polynomial, say p(z). To be
proved is that S(k + 1) holds, that is, it remains to prove that the numerator of
Sfe+1(z) is also a polynomial.

All one has at hand is that fiy (z) = x%[ f«(x)], and that the numerator of
fi(z) is a polynomial. How can one conclude anything about fr,(z)? In fact,
one can not—not without more information. One needs to strengthen the inductive
hypothesis. So, inslead, examine the following statement:

T{n): The denominator of f,(x) is (1 — x)**! and the numerator of f,(x) is a
polynomial of degree n having constant term 0 and with all other coefficients being
positive integers.

The statement T'(0) is still true, and for each n, the statement T'(n) is stronger
than S(n), that is, 7'(n} — S(n). So instead of proving S(k) — S(k + 1), the
following is proved:

INvucTive STEP (T(k) — T(k + 1)): For some fixed k > 0, assume that T(k) is
true, that is, there are positive integers ay, .. ., ag so that

az+ax+ -+ (lkl'k

(1 - x)kil

Then putting p(z) = a1z + a9z + - - - ag’,

fule) =

i

fev1(z) 2L [(1 p(;))ul]

dx
z)(1 — o) — plx)(k+ 1)1 — x)F (=1

_ x<p( ) — =) t f(m));fﬂ)z ) = =)*( ))
_ zlP(=)(1 - z) + p(x)(k +1)]
- (1 — z)k+2
_ zlay + 20z + - + ket (1 - 2) + aplz)(k +1)
h (L —z)ki2
(a4 2092 + - - + kagr®)(1 = z) + xp(e) (1 + k)
- (1 ——x)k+2 *

the numerator of which is

a,xr + (2(12 + kay )1:2 + (303 + (k - ].)(7,2).1'73 + -+ (k'ak + 2(Lk_,1):tk + (Lksr'k'i'l.
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Thus f4 satisfies T'(k + 1), completing the inductive step T'(k) — T(k + 1).
Hence by MI, for all n > 0, T(n) is true, and so for all n > 0, the original

statement S(n) is truc. |

7.3 Proving limits by induction

Mathematical induction can be an invaluable tool in evaluating the long terin be-
havior of a sequence or a series. Induction can be used to prove if a sequence or
series has a limit, and often, some information about a limit when it exists. Many
sequences are defined inductively, and so occasionally, an inductive proof of some
property of a sequence is fairly simple.

A sequence is an ordered list, and some sequences have terms that tend to a
particular value L as one goes further down the sequence. An infinite sequence
81,52, 83, . .. 18 said to converge to e lmit L iff for any small real number number
€ > 0, there is an integer N = N(€), so that for all n > N, the nth terin s, is within
e of L; in this case, write limg ..o 8, = L. If no such L exists, say that the sequence
diverges or is divergent. Two divergent sequences are 0, 1,0. 1,0, 1, ..., and 2, 4, 6,
8, ... .

For example, the sequence 1.1, 1.11, 1.111, ..., tends to the value 10/9, hecause
as nearly every child knows, dividing 10 by 9 gives the infinite decimal 1.11111....
Induction can be used to come to the same conclusion in a rather indirect way. In
this example, it hardly seems worth the work, but one way is to find an expression
for the nth term in the sequence,

041002+ .+ 10+ 1
+ 101!,

an =1

that will clearly reveal the same conclusion. Express the nth term of the sequence
by

o =14 10" -1
t 910"
and simplify to get
1 1
=1+-(1- . .
ar + 9 ( 10”) (7.1)

The expression (7.1) is easy to verify using mathematical induction, as is the relation
n+1 = ayp + 107", It then follows that im,_, . a, —= 199. In fact, from (7.1), onc
observes that each a,, is strictly less than 10/9, an observation that is also scen by
looking at the sequence directly. When a given sequence is not so simple, induction
can often be used to prove that a sequence is bounded above (or below) by some
number used as a guess for any putative limit.

The following theorem is a standard result (which follows from the cormpleteness
of the real numbers, or the Bolzano-Weirstrass theorem, one version of which that



98 Chapter 7. How to prove by induction

says any bounded infinite sequence of rcal numbers has a convergent subsequence)
that is most useful in analyzing “monotonic” sequences. Recall that a sequence
S1,82,83,... of real numbers is called non-decreasing iff for each ¢ = 1,2,3,...,
$i € si+1 or non-increasing iff for each ¢ = 1,2,3,..., 8; = si41.

Theorem 7.3.1. If sy1,582,... is a non-decreasing sequence of real numbers hounded
above by a real number U (i.e., for each i = 1,2,..., s; < U), then the sequence
converges, and converges to a value that is at most U. The analogous result is true
for non-increasing sequences bounded from below.

As an example, for each n =1,2,..., define

1\"
an=<1+;) .

To see that the sequence {a} converges, by Theorem 7.3.1 it suffices to show this
sequence is increasing and bounded above. One way to see that this sequence is
increasing is to check the derivative of the function f given by f(z) = (1 + z~1)*.
Here is the outline of an inductive proof that {a,} is increasing: expand (1 + 1/n)"
by the binomial theorein (see Exercises 103 or 104), and expand (1 +1/(n + 1))**!
also. For k = 0,1,...,n, compare the (k + 1)-th terms of each. The (k + 1) term of
the second is greater than equal to the first iff (n 4+ 1 — k)(n 4+ 1)*~1 < n*, and this
is provable by induction on k. So corresponding terms in the expansion get bigger
and the second expansion has an additional term, so @, < an+1- To see that the
sequence is bounded from above, prove by induction that for each £ =0,1,...,n
n! &

R

and then (see also Excrcise 182 for another proof)

1 2L/, 1 1 =
14 23 = )k < — <1 27k < 3.
( +n) Z(k)(n) "Lk!" +Z -
k =0 k=0 k=0
So the sequence is bounded above by 3. In fact, the limit of the sequence is e,
roughly 2.71828....

Knowing that a particular sequence has a limit (say, by use of Theorem 7.3.1)
can sometimes reveal precisely what the limit is. For example, let a; = v2 and
for each n > 1, define an+1 = V2 + ap. It can be shown that the sequence {a,} is
increasing and bounded above by 2. so by Theorem 7.3.1, the sequence has a limit
L. Using standard properties of limits (of continuous functions)

L= lim a, = lim 531 = lim V24+a,= /24 lim a, =V2+ L
n—oc [{Samge 9] n—oc n-—o0
and so L = 2 + L, from which it follows that L% — L — 2 = 0. The roots of this
quadratic are L = —1 and L = 2, and since L > 0, L = 2 is the desired limit.
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As another example occurring in Exercise 546, for any real number ¢ € (0,1]
define the sequence sy, $2, 83, . . . recursively by s, = ¢/2, and for each n > 1,

sﬁ+c
Sn+1 = 9

Mathematical induction is used to show that the sequence is strictly increasing and
strictly bounded above by 1, that is, for cach n > 1, s, < 8p41 < 1. Then one can
conclude that lim,, _,«, s, exists and is at most 1. Throughout analysis, induction is
used to prove that certain secquences are monotonic and bounded.

Induction can also help to prove that a complicated secquence can be compared
with some known simple sequence (see Exercises 561 and 559 and many others
in Section 16.3 and clsewhere throughout this book). Occasionally, a complicated
looking scquence can be bounded above and below by two convergent sequences,
thereby restricting the limit of the complicated sequence, either precisely, or to
some small interval. As a trivial example, in Exercise 191, it is shown that

1 _1:3:5---(2n—1) 1

< < .
n> 2:4.6---(2n) - Vatl

Viewing this as a comparison of three sequences, the center sequence is then forced
to converge to 0 (by what some call “the squeeze theorem”).
An infinite series is a sum of the form

0
Zai=a1+(lz+(l:{+"',

i=1

Loosely speaking, an infinite series is said to converge if the series sums to a single
finite number. To have infinitely many nunbers adding up to a finite number might
be counterintuitive, but the following standard example might help.
Consider a square with side length 1. As in Figure 7.1, cut it in half, cut one of
the remaining halves in half, cut one of the remaining quarters in half, and so on.
Measuring areas of all {infinitcly many) pieces gives an intuitive proof of

or

3 zlm =1. (7.2)
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: . A dog L 4+ 1 o1
Figure 7.1: The scries 5 + 3+ 5 +
At the n-th step, by construction, the remaining area is

8 2n on’

1 1 1 i 1
1-(‘—+—+-+~-+~>=-— (7.3)
2 4 ¢

a result also provable by induction without too much difficulty (see Excreise 49 for
the general formula for a geometric series). In particular, equation (7.3) implies that

bz =1 (7.4)

and so in the limit,

Zeno's paradox (that finite distance can be made up by an infinite number of steps)
i3 soon resolved by equation (7.2).

If one is faced with an arbitrary iufinite serics, say > oo, bn, what does it mean
for it to converge? By definition, this scries converges iff the sequence of partial
sums

s = b
$o = by +bs
83 = by +by+bs

Smoo= by+bad .. by,
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converges. If one can find a closed form for each of the partial sums (as was done
in equation (7.2) above), then one might be able to evaluate the sum of the series
because then

o

iy .

} b, = lim s,
n—oo

n=1

might be obvious. Even if one can not find an explicit form for cach partial sum,
onc might be able to prove that each partial sum'is bounded above by some number
or expression.

Notice, that if each term in a series is positive, then the partial sums are increas-
ing. In particular, Theorem 7.3.1 can often be applied to the sequence of partial
sums. If each term in a series is positive or zero, then the partial sums are non-
decreasing, and so if the partial sums are all at most U, then the above theorem
shows that the partial sums have a limit, that is, the series converges, to a value at
most U.

For example, in Exercise 180, the incquality to be shown is that for cach n > 1,

RIS PP S
49 n? n’

Once this has been shown, one can then conclude that the series Zj‘;l 1—:; converges,

and converges to a value that is at most

lim (2 - l) =2
j—oo j

In fact, the sum of the reciprocals of the squares converges to the value #2/6, a
rather unexpected value, but it is at most 2 as promised. A statcinent involving
limits is similarly implicit in Exercise 181 and others.

There are many other ways to apply mathematical induction regarding limits.
In some cases, finding an expression for a partial sum by induction then gives way
to secing that a series diverges (sums to infinity, or does not. smn to any single finite
number). If the partial sums grow larger than any given n, the series diverges {see
Exercise 395 for such an example).

Sequences that are defined recursively often don't easily lend themselves to de-
tailed analysis unless some intermediary observations can be shown, and such obser-
vations are often proved by induction. Kxamine the sequence 21,22, 3, ... defined
recursively by z; =2, and for n = 1,2,3,..., 41 = %(;1:" + 6). This sequence
converges to 6, and this is shown below by first proving that the sequence is increas-
ing, and then by showing cach term is bounded above by 6. These two facts show
(by Theoreni 7.3.1) that the sequence converges to something at most 6. Finally,
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knowing the limit. exists, a simple computation shows that it is indeed 6. Compuling
a few terms,

T1 =222 = 4,23 = 5,14 = 55,15 = 5.75,x¢ = 5.875,r7 = 5.9375, ...,

so the result sceins reasonable. To show that the sequence is increasing is done by
induction. Let I(n) be the statement thal o, << &p -
BASE STEP (/(1): The statement I(1) is true since z; =2 < 4 = z».

InDucTION STEP (I(k) -— I(k +1)): Suppose that for some fixed k > 1, I{k) is
true, that is, zx < T4, Next, it is shown that [(k + 1) 1 &y < ZTpyo follows:

1 .
Tgso = *2-(1'“1 +6)

> %(zk + 6) {which follows by I(k))
= Tgy1 (byv def’n).

This completes the inductive step.

By mathematical induction, for cach n > 1, f(n) is true, and so the sequence is
increasing.

To show boundedness: For cach n > 1, let B(n) be the statement that z,, < 6.
Since 21 = 2 < 6, the base case B(0) is true. For some k > 1, suppose that B(k) is
true. Then

—

s = 55k +6) < 5(6+6) (by BK)

1343

= 6,

shows B(k + 1) is also true, completing the inductive step. Thercfore, by induction,
each term of the sequenee is bounded above by 6. Hence, the sequence converges
to a limit L that is at most 6. Using the fact (which only holds for convergent
sequerces) that

lim zp41 = L = lim x,,

n—oo n—oo

one has

L=1 =l 1(' 6—£l' 6)—lI+6'

P = T = i plen+0) = 5 (i, 7 +0) = (1 +0)
solving the equation L = %(L + 6) gives L — 6. This concludes the example.

Soine other interesting applications of induction to limits can be found in exam-
ining interesting expressionus such as

\/2+\/2+\/2—1—.—._.=2
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(sce Exercisc 203, for one). Results for continucd fractions are also often obtained
using induction.

There are many exercises in this volume that can be used to derive certain limits,
sometimes in a less than obvious manner. (Sce the index under “limits, proving by
induction” for many other excrcises.)

7.4 Which kind of induction is preferable?

Determining which kind of mathematical induction to use is a difficult problem.
There are no general rules. When is it reasonable to use the first principle of
mathematical induction instead of strong induction? For which kinds of problems
docs well-ordering help; when is it feasible to attempt a proof by contradiction and
downward induction? What kind of inductive step is preferable? If a problem has
two variables, how do you decide upon which to induct? How many basc cases need
be ciployed? None of these questions seerm to have firm answers.

7.4.1 When is induction nceded?

How does somcone decide whether or not to attempt an inductive solution to a
problem? A few maihemalicians may not believe in induction at all, and are only
willing to accept theorems that have a direct proof. Some mathematicians suggest
{(in good fun) that an inductive proof is used only as a last resort, for if one really
knows the subject, induction is not required. Others insist (or joke) that only real
mathematicians use induction, and they use it often. [Names of individuals in each
class are suppressed.)

Some scholars examine theorems that have been proved using the axiom of choice
(AC) and work very hard to find proofs that don’t rely on AC. There is a large school
of thought that prefers proofs that don’t rely on contradiction, for the law of the
excluded middle is forbidden to them; for these people, inductive proofs that use
infinite descent might be troublesome. {Sce, e.g.. [316. p. 332-340] for a discussion
of 3-valued logic.]

For many, whether or not to use induction boils down to simply a matter of
individual taste, ignoring the deep philosophical questions regarding axiomatic as-
sumptions. Sometimes, a proofl by mathematical induction seems just “*beautiful”,
and sometimes not. To decide among which of all proofs for a result is more beau-
tiful, or more appropriate, is very personal.

There is the opinion that induction is used excessively. One writer [71] said in a
letter to the editor of MAA Focus,*...mathematical induction tends to be over-used
as a proof technique.” *“...I ain sure that I am not alone in feeling that induction
should generally be avoided. ... If we come across an identity for which ihe only
known proof relies on induction, then it’s our job to gain a better understanding of
that identity until a more conceptual proof is found.” Perhaps the word “should”
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in the above quotation is inappropriate, since induction is often taught via, at first,
simple examples (perhaps those that can be verified independent of induction).
[Personally, I object to the word “should” when it is used as an imperative; if an
instance of the word “should” is a truc imperative, it would be nice to see the rest
of the tacitly assumed “if you want... then you should (must?)..” sentence, so
that it can be verified logically.] Perhaps one reason that induction seems to be
overused is that in teaching induction, often simple statcments are used, statements
that otherwise have simple direct proofs. For example, for n > 7, to prove that
n% — 52 — 6 > 0 can be done by induction, however a simpler proof is by factoring:
n% -5z — 6 = (n —6)(n + 1), each factor of which is positive for n > 7. The
inductive proof might be discovered first, however the latter argument is certainly
morc efficient.

On the other hand, in a response to the letter referred to above, Stockmeyer {514]
replies “We can certainly construct proofs of combinatorial identities, such as his
example --14+2+3+--4+n = n(n+1)/2—that hide the induction from our students.
As mathematicians, thongh, we should fsic] keep in mind that with identities of this
type induction is always present, at least in the background.” Stockmeyer continues
“We should not be surprised, then, when induction turns out to be a natural proof
technique for identities that sum over the positive integers.” Stockmeyer has a
point: since the counting numbers arc defined recursively, and many operations in
math (like addition of integers) are defined recursively, and confirmed inductively,
induction is almost always at work. Oue might take this reasoning a bit further and
argue that induction is actually alive in eny mathematical statement. [The term
“mathematical statement” is used here deliberately without definition.]

Induction certainly suffers frorn the weakness that one already needs to “know”
(or guess) the desired result before induction can be applied; only in certain situa-
tions can induction be used to discover, say, a particular identity. Finding a partic-
ular identity might be done without induction, but for more complicated problems,
one often guesses at a formula via non-inductive techniques, whereas induction may
provide the easiest proof.

Sometimes a statement (like the sum mentioned above, see Theorem 1.6.1) with
an inductive proof has a simple direct proof. Some prefer a direct proof—if one is
at all available. For example, some might say that since the formula for the sum of
squares (Exercise 54) has many “non-inductive” proofs, induction “should” never
be used to prove the formula! One advantage of an inductive proof is that one never
has to remember the “trick” behind some direct proof. The formula for the sum
of the first n squares can be proved in a way analogous to the Gauss proof for the
sum of the first n integers, and similarly so can a formula for the sum of the first
cubes (see Exercise 56) be proved “directly™, however such proofs soon become more
involved for more complicated sums.

Another simple example is in showing that for any positive integer n, the number

2 2 —n =n(n-1). and onc of n or n — | is even. the result

n? —n is even. Since n
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is nearly immediate. An inductive proof of this fact is also available. Is n% — n
always divisible by 3? Is there a pattern? An advantage of MI is that perhaps just
one technique can be executed repeatedly with little variation, producing a host of
results, and cven though each individual result may have a “cute” proof, there is no
nced to remember all the cute proofs. Mathematical induction often requires little
thought when applied in such situations. There is an old adage that says something
like “why remember all of the details, when you can just remember where to find
them?” In a sense, mathematical induction is like a place where one can find many
proofs, and so induction is like having the proofs forever at hand.

Sometimes a proof by upward induction can be turned into a proof using well-
ordering and downward induction {descent). Some people feel rather strongly about
which way is preferable. In fact, it may be true that a vast majority of inductive
proofs can be given using a minimal counterexample, and to give such a proof
might be pedagogically interesting. Some problems only seem to have a proof by
contradiction and downward induction (see, e.g., Exercise 201), so discovering any
proof might entail trying a number of techniques. Again, it may seem to be a matter
of taste as to which kind of inductive proof need be attempted, or taught, but one
can imagine that there are situations where one method seemns preferable to another.

It seems that not all statements provable by induction also have direct (using
only deductive logic and no induction) proofs (like Theorem 1.6.1), though proving
this claim might be difficult! It’s very likely that there are mathematical statements
for which only an inductive proof is known.

There is probably no good answer to “When is induction needed?”. As Charles
Caleb Colton said in 1825, “... for the greatest fool may ask more than the wisest
man can answer”. This next exercise might indced ask more than can be answered,
but the questions in it might make for interesting discussion.

Exercise 31. Does there erist a mathematical truth that does not have a (mean-
ingful) proof by induction? If someone handed you such a truth, how could you
guarantee that no inductive proof exists? Docs there exist a property provable by
induction, but with no other kind of proof? Again, how would one show that no
direct proof exists? Can one characlerize thuse mathematical truths for which no
inductive proof exists, or can one characterize those statements that have inductive
proofs, but fail to have any other proof?

Perhaps, one might be able to more safely approximate an answer to “Should
I try an inductive proof for this problem?” There are somc obvious earmarks to a
problemn that might easily be solved using induction. Finding a particular forinula
is often not done by induction, however once a correct formuia is guessed, mathe-
matical induction is often a natural choice for a proof technique. If the statement
of the problem contains only one variable, and that variable is meant to only hold
integer values, then induction might be a reasonable choice for a proof technique. If
the problem involves a process of steps that can be matched to the positive integers,
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then induction might be efficacious. It seems that many problems involving recur-
stve definitions (like those in logic, set theory, combinatorics, or computer science)
might be candidates for an inductive solution.

Some might say that induction should be one of the first choices of proof tech-
nique. Often one gets lucky, even when there are different choices for variables to
induct on. For example, one can prove the handshaking lemma (Lemma 15.1.1) by
either inducting on the number of vertices in a graph or on the number of edges in
a graph; the first of these two proofs is slightly more difficult, so sometimes it pays
to try different approaches.

Mathematical induction is often a more powerful technique than one might ex-
pect. Even if one attempts an inductive proof and fails, invaluable familiarity with
the problem may be gained, knowledge that might very well lead to a direct proof.
It may seem that atiempting a proof of a conjecture by induction is rarcly a (total)
waste of time. Induction is an invaluable technique to any student of mathematics
and is one of the most powerful tools in the hands of any working mathemati-
cian. Practicing induction by proving known results is often how one first learns the
method.

7.4.2 Which kind of induction to use?

There are many theorems having two or more different kinds of inductive proof. For
example (see Exercise 477), to prove that a tree on 7 vertices has n — 1 edges, one
can use either the first principle of mathematical induction, or one can use strong
mathematical induction—or one can use well-ordering. The choice of which kind
of induction to use may depend upon the idea behind the proof. In the inductive
step of one such proof, one assumes the existence of a leaf in a tree (by Lemma
15.2.1}, and deleting this leaf gives a tree with one fewer vertex and onc fewer edge.
Then the induction hypothesis need only be applied to the remaining tree onn 1
vertices, giving n — 2 edges; together with the edge deleted, this gives n — 1 edges
in all.

On the other hand, if one did not think to delete a leaf vertex, one could, by
Lemima 15.2.3, delete any edge and get two smaller trees. To apply any induction
hypothesis to the smaller trees, one must assume that the the statement holds for
all smaller trees, that is, one must. use strong induction. See the solutions for yet
another proof, one using well-ordering and contradiction.

Another example of a theoremn that has various proofs is that in the statement of
Exercise 515, showing that a tournanient has a king. One inductive proof is slightly
tricky, however a proof by strong induction is remarkably straightforward! [Thanks
to Liji Huang for reminding me of this example.]

In Exercise 214, oune is asked to show that if s and ¢t are relatively prime (non-
zero) integers so that st is a perfect square, then both s and ¢ are perfect squares. A
fairly simple proof comes to mind involving unique factorization, however two very
different proofs are available by some form of induction; a proof by strong induction
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and a proof by infinite descent are given in the solutions. Both seem relatively
natural and painless, but there are likely fans of both proofs.

Often one can not tell that strong induction is needed until after failing in an
attempt to prove the inductive step using only one inductive hypothesis. It is for
this reason that some authors tend to use strong induction for every induction proof,
for then it matters not that the extra inductive hypotheses are superfluous.

Proving as many (small) cases as you can without any induction serves rnany
purposes. Doing so might make it obvious as to which kind of proof will work. For
exainple, doing just the first two cases directly might reveal that a gencral proof of
the n-th statement might depend on whether = is even or odd. This might suggest
two base cases, and an inductive step of the form S(k) — S(k+2) to prove all cases.

Some results involving more than one variable often require some kind of double
induction (see Section 3.5), where it is often casy to identify which variable to induct
on first. Sometimes a variable occupies essentially two different roles, and so perhaps
a more general statement involving two variables is easier to prove than the one with
a single variable. See Exercise 330 for a problem where, at first, it is not clear as to
which variable one might try to induct on.

Making decisions about what other types of inductive proof to try is challeng-
ing. About all that one can hope is that after many failed attempts, one gains a
better sense of when to use, for example, Hausdorfl’s maximality principle instead
of transfinite induction, or when to use infinite descent over induction. Studying
the many famous proofs might be the best advice toward learning which kind of
inductive proof to try first. Consequently, many failed attempts may be invaluable
in any attempt to gain a “fecl” for which kind of inductive proof is most apt.

Comment: Professor Farahat once told me that pages of seemingly wasted work
(mistakes, preliminary calculations, failed proof attempts, and clumsy proof expo-
sition) are never really wasted; “they build character”. Of course, he might have
meant “character” in the sense that hard-working people have solid character, but
he probably also intended “character” to mean “mathematical character”, the wis-
dom to choose appropriate efficient notation, the mathematical maturity [pardon
the trite phrase] to sclect proof techniques that are elegant, and the faith that hard
work will produce many answers. His wisdom can be cspecially appropriate when
trying to find (or write or teach) inductive proofs.






Chapter 8

The written MI proof

We may always depend upon it that algebra, which cannot be trans-
lated into good English and sound common sense, is bad algebra.

—William Kinston Clifford (1845-1879),

Common sense in the exacl sciences.

This chapter is directed at the student, especially the student just learning how to
write an inductive proof. Many teachers might also benefit from guidelines presented
here when experimenting in how to teach MI writing. Some comments given here
may also be useful to professional mathematicians, however most professionals can
afford to be slightly relaxed in their presentation because they may expect that most
of their audience can rcconstruct a formally written proof from their outline.

In this chapter, the student is given a template to follow for writing up an
inductive proof. Other aspects of the written proof are given that not only may
help with style, but with organization and logical presentation.

Many mathematicians have different ideas as to what is “well written math”,
and this collection of comments is an attempt to capture the best from many of my
teachers. When 1 was being taught how to write mathematics, at first I resented all
the red ink on my assignments—but have since appreciated the incredible work my
professors put into my education. Three professors, E. C. Milner, I1. K. Farahat,
and N. Saucr, stand out as profound influences on my written word (but don’t blame
them for any idiosyncracies here).

The style of an inductive proof has certain nccessary parts, and when learning
to write such proofs, I have found that a very strict format is helpful. In my
opinion, only after writing up many inductive proofs should the student atteinpt to
abbreviate this style. Most proofs in this text are written keeping in mind this strict
format; only a few are written up in more conversational style.

Before getting into whai an “ideal” inductive proof might look like, let me tell a
brief story. 1 once gave a one-hour lecture on induction to a group of keen freshman,

109
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going over the theory and a few examples. At the end of the lecture, all nodded their
heads politely that they understood, and so 1 announced that, in next class, I would
give a quiz—just one proof by induction. The outcomne was extremely disappointing.
So, I developed a plan. T told the class that I would give them yet another quig,
but I offered them a template most inductive proofs “should” follow. I promised
that any submitted solution that followed the template PRECISELY would earn
9 out of 10 marks. To gain full marks, the student nceded only to manage the
algebraic manipulation proving the inductive step. My goal was to first eliminate
many common logical mistakes by teaching them how to format and present their
proofs.

8.1 A template

Ierc is some of the rationale behind the ternplate (the actual template then follows).
Suppose that a particular statement regarding n is to be proved for n > 3.

1. Define the statement that needs to be proved. For example: “For each n > 3,
let S(n) be the statement ..." . If there is more than one variable, be careful
of quantification; for example, the expression

For cach n > 3 let S(n) be the statement that for all m < n ...
is different from
For each n > 3 and all m < n, let S(n) be the statement that ...

In the second expression, the lower bound for m is not stated, and it is not
clear whether or not S{n) depends on the particular value of m, so perhaps
something like

For each n > 3 and each m satisfying 1 < m < n, let S(m,n) be the
statement...

is better. It might help to also identify in advance for which variables a
particular sentence even makes sense, later restricting the variable to the cases
that are being proved.

2. State the range of n for which the statement is to be proved: For example:
“To be proved is that for each integer n > 3, the statement S(n) is true.”

3. Base step: Write the words “Base step” and verify that the base case is true
(giving reasons if it is not trivial}. For example:

BASE sTEP: S(3) says ... which is true.
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. Mention when the inductive step is done. For example, one might write

. Inductive step: Write out the words “INDUCTIVE STEP:”

. State the inductive hypothesis. For simple mathematical induction, this will

read like: For some fixed £ > 3, assume that S(k) is true. [Writing out
preciscly what S(k) says is usually an excellent idea.] For strong induction,
this will read something like: “For some fixed k > 3, assume that S(3), S(4),
..., S(k) arc all true,” or “For some fixed k& > 3, assume that for 3 < 7 < &,
S(j) is true.” Labelling the inductive hypothesis with the words “inductive
hypothesis” (or “III”) is often a useful practice for the novice.

. State what nceds to be proved, namely S(k + 1). It is highly recommended

that one writes out S(k + 1) specifically so that one sees the required form of
the conclusion in the inductive step.

. Prove S(k-+1}. If S(n) is an equality (or inequality), it is best (sec comments in

Section 7.1) to start with one side of S(k+ 1), and via a sequence of cqualities
(or inequalitics), derive the other side. At the point where the inductive
hypothesis ts used, this should be mentioned cither as a side comment “by
S(k)”, “by induction hypothesis”, or even by putting the initials “TH” over the
relevant equal sign. For example, in the solution to Exercise 243, the induction
hypothesis S(k) is that there exists an integer m so that 226 — 1 = 3m. The
equalities

2K+ ) =g 9% 1= 4(22% — 1) + 3 E 4(8m) + 3 =3(4m + 1)

are then used. The above equations could have been written
Q2k+1) _ 1 4.9%k _
= 402%* -1)+3
= 4(3m)+3
= 34m+1),

or in the manner most commonly used:
22(1&‘11) -1 :.4.22’(:_ {
=4(2%* - 1) +3
=4{(3m) + 3 (by S(k))
= 3(41’71 + 1).

£

cowpleting the inductive step S(k) — S(k + 1).”, or simply “This completes
the inductive step.”
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9. State the conclusion: “Therefore by mathematical induction, for all n > 3,
S(n) is true. O, using the symbol “0O" to denote that the cutire proof is
complete. Some mathematicians prefer to quantify variables before they are
used, as in “... for all n > 3, S(n) is true.” This is a good practice, as it reads
more logically, however remember to insert a comma (because “n > 3 S(n)”
might be meaningless) or an extra phrase like *... for n > 3, the statement
S(n) holds.”

The template I gave was the following, with the instructions to change certain
letters and numbers as appropriate:

Problem: Prove that for all » > 3, ... holds.

Solution: For any integer n > 3, let §(n) denote the statement...
BASE STEP (n = 3): S(3) says ... which is true because...

INDUCTIVE STEP S(k) — S{k + 1): Fix some k > 3. Assume that
S(k): (write out what S(k} says)
holds. [S(k) is called the inductive hypothesis.] To be proved is that
S(k +1): (write out what S(k + 1) says)
follows. Beginning with the left side of S(k + 1),

LHS of S(k+ 1) = simplify or rearrange

- . (by S(k)

RHS of S(k + 1),

one arrives at the right side of S{k + 1), thercby showing S(k+ 1) is
also true, completing the inductive step.

CoNCLUSION: By mathematical induction, it is proved that for all
n > 3, the statement S(n) is true. @]

Note: In the above template, if the prool is by strong induction, the induction
hypothesis should be replaced with “assume that for each 7, 3 < j <k,

S(3): (write out what S(j) says)
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holds.” Also, in the sequence of cquations, at the point where the induction hy-
pothesis is invoked, either write “by 1H” or mention which statements of the IH are
used (e.g., by S(4) and S(k)).

Amazingly, in an attempt to simply memorize the format of an inductive proof
(for which my students received healthy marks), the students also seemed to discover
what was wrong with their previous formats. Also incredibly, students began to ask
for more induction problems to practice on! (That was the genesis of this book.) The
result was that nearly every student secmed to look forward Lo cracking inductive
proofs on exams (believe it or not!).

8.2 Improving the flow

In some sense, there are two languages for mathematics. There is the language of
doing mathematics, and there is the language for writing mathematics as a formal
record of logical implications.

When doing mathematics, oue often tries a few cases, drafts a dozen or so dia-
grams with dots, arrows, and sausages all over the place, and makes a few guesses.
Details are often worked out from the desired result, that is, backwards, and vari-
ables are changed a few times depending on how confused the writer gets. Ounly
after all the mathematics has been done, can it be written.

Unfortunately, in mathematics journals, the output that rcaders see is often
sterile, uninspiring, a bit on the terse side, usually without superfluous or auxiliary
obscrvatious, and with a strict adherence to notational consistency. A proof might
start out “Let & = ¢3/2,” with no insight as to why such a choice was made. Some
authors like to develop a proof, showing why it is required to use such a 4, say, and
do the proof from the bottom up. It takes years of practise to come to a balance
between the two styles that is acceptable to both the writer and readcr.

There are many ways to make an indnctive proof read more “smoothly”. Some
of these ways include rearranging details and careful use of language. In the next
section are a few comments on notation, proper usc of which may improve presenta-
tion. Again, please be reminded that many comments are intended for the novice,
and that much of what follows are my personal opinion or style, not rigid rules.
Other styles can be equally cffective.

8.2.1 Using other results in a proof

If some auxiliary fact is used in proving an inductive step, state the fact (and prove
it if necessary) before starting the induction; this streamlines the proof, as you can
simply reference it when needed in the body of the proof. (This topic was briefly
discussed in Section 7.1. where Exercise 188 was mentioned.) This means that
sometimes you will have to rewrite the proof two or three times. llere is a simple
example (from the solution of Exercise 236), which uses only basic number theory:
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For n > 1, let S(n) be the statement that 3™ + 7* = 2 (mod 8) [the notation T = 2
(mod 8) means that z is 2 more than a multiple of 8}.

What happens when one tries a proof of the inductive step S{k) — S(k + 1)?
Fix k > 1 and assume S(k) is true. In a first attempt to prove S(k + 1),

gl 7l =3 .83k 7. 7
=3-3*-7% (mod 8)
=4-3*-(3*+7%) (inod 8)
=4-3*-2 (mod 8) (by S(k))

one gets stuck. Notice that if 4 - 3* = 4 (mod 8) were to hold, the proof becomes
simple. In fact, upon a moment of reflection, one sees that 3% is always an odd
number (for k£ > 1), and multiplying any odd number by 4, say (2b + 1)4 = 8b + 4,
gives precisely 4 modulo 8. Put this observation first, and then write the proof, citing
this observation in the appropriate ptace. One might even comment as to why a
particular observation may be needed later. The proof then reads more smoothly.
(See the solution for Exercise 236 for the final outcome.)

8.2.2 Clearly, it’s trivial!

Particularly in the base step of an inductive proof, there is a tendency to want to
say something like “S(1) clearly holds”, or “which is obviously true”. In general, try
to avoid such phrases. There are many examples in mathematical literature that an
author uses such a phrase, only to find out later that some special case violates the
claim. Eric Temple Bell (a famous mathematician and mathematics historian) once
said

# ‘Obvious’ is the most dangerous word in Mathematics.”
Another interesting relevant quotation is from Pdélya [433):

“The advanced reader who skips parts that appear too elementary may
miss more than the less advanced reader who skips parts that appear
too complex.”

In other words, there is often immense value in checking what appear to be simple
details. As a rule, if something is obvious, or trivial, then it doesn’t take very much
effort to give a rigorous proof-- so do so.

Also, if one person has a certain picture in their head, indeed an observation
can be trivial, but not everyone will have that same picture, so it might help the
reader to give at least a strong indication as to why something is true. Once you
have seen why something is true, it is easy to say that “it is trivial”. There is a
story (perhaps apocryphal) about a professor giving a lecture and in the middle,
said “this is trivial”. He then scratched his head, standing there specchless for a
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minute. To the surprise of the audience, without saying anything, he left the room.
The crowd remained seated, waiting patiently for some news. After 20 minutes, he
came back, and announced “yes, it's indeed trivial.” [At least five versions of this
story persist—1I cannot locate the source.]

The famous physicist Richard P. Feynman wrotc in Surely You're Joking, Mr.
Feynman (189, p. 70):

We decided that ‘trivial’ means ‘proved’. So we joked with wmathemati-
cians: ‘We have a new thcorein —that mathematicians can only prove
trivial theoreins, because every theorem that is proved is trivial’.

8.2.3 Pronouns

Try to avoid using too many pronouns or vague descriptors. For exarple, in the
middle of your proof, if you write “...then it is an even number...” the term “it”
might be meant to indicate any of a long list of things. Gencrally, any occurrence
of words like “it” or “this” will point to the very last thing written, so be carelul
to check what “it” might mean. Also, if you want to refer to a formula or equation
already mentioned, one can go back, display that formula on its own line. mark it
with a star or a number, and then later say something like “... and so by equation
(*) above, one has...”. This saves one having to repeat the same fornmla again, yet
there is no ambiguity as to which equation you are now referring to.

8.2.4 Footnotes

In mathematical writing, it was once common practice to use foutnotes, especially
for comments and references. Footnotes can be used to provide a comument, once
which would interrupt the flow if included in the text. Footnotes were often used
for bibliographic references, saving the reader from fipping Lo the back of the book.
Mathematical typesetting has evolved a great deal in the past few years. and it
seems that footnotes are now on the way out in math; in other sciences, footnotes
are still rather common. Today, in mathematics it is now customary to refer the
reader to a bibliography by use of labels. For commnents that are an aside, footnotes
are still efficacious, but putting such comments in square brackets also works.

8.2.5 We, let’s, our, will, now, must

In mathematical writing, it is common to encounter the “royal we”, as in “We sce
that...”, or “we have ...” or “Let’s calculate...”, or “in our assumption that ...”.
In most cases, there is no need for such, and some might think that such usages
are downright silly. Once a reader gets used to “we wish to prove...”, it is rather
difficult to write while avoiding such phrases.

Some authors believe that using “we” makes the mathematics more personal,
that its use makes the reader feel invited to a cooperative process with the author.
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Students emulate that which they sce in the literature, and so “we” is now commonly
found in homework, too. [This might be appropriate for joint submissions where
the authors say “We researched this problem...”, in first person.] If one attempts
to write mathematics without the word “we”, a writer is often forced to switch
from a narrative about how to proceed, to concentrating on the logic behind the
mathematics. 1 ecncourage younger mathematicians to try writing without “we”; the
mathematics then tends to stand out. After all, the royal “we” is just a tradition,
and in my opinion, an unnecessary one. [For consistency, I have removed most
occurrences of *we” in this book, but doing so was a real challenge.]

There is only one situation where I can see using the word “we”, and that is
when two or more authors are passing along thoughts in a first person inanner. Some
authors write in the first person (e.g., “I once proved that...”, or “Erdds once told
me ...”) whereas some find such conversational writing a bit too informal; I think
that first person prose in mathematics is sometimes refreshing.

Some authors insist on not using the word “will”. For example, the phrase “the
proof will be presented in Section 2...” might be written as “the proof is presented
in Section 2. One reason for climinating such a “will” is that word can be taken
to mean that something in the future is about to happen—or as an order (“you will
soon see...”). [T'hanks to Ted Bisztriczky for the suggestion.] If an author wants
to indicate what will be done in an subsequent volume, “will” might be replaced
with “plan to”, quite possibly a more rcliable phrase. In a similar vein, senteuces
beginning “Now, let z be ...” can be avoided, especially since the word “Now” can
often be tacitly assumed. and it is very easy to overuse it.

There is one more word that a writer must be careful about: “must”. This word
smells more of imperative than of proof. If one wants to skip some logic, one might
say “this must be true”. Such a phrase can mean any number of things; first, it
could mean “this is true”, and supporting arguments have been given. On the other
hand, it could mean “it is probably truc, yet I don’t have a proof handy”. When
referecing a journal article, a professional mathematician might raise an eyebrow if
the word “must” is used anywhere; “must” often points to where errors are hiding.

8.3 Using notation and abbreviations

Here are a {ew points on notation that might be worthwhile to know. These points
refer not only to inductive proofs, but written mathematics in general.

Perhaps one of the most useful things to keep in mind is that when usiug some
particular notation, it is always safe to describe it first. For example, in calculus,
one often denotes % by simply ', however, if given the expression

o 9 L
y_ = ""2 - 31‘*,

the term y' might not be so meaningful; if one is asked to find %, one might

start by saying “let ¥’ = % and 2’ = %” and then calculating might begin “upon
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differentiating with respect to s, onc finds
2y -y’ = 2s — 3*In(3)2,

and so ..." With the extra words about notation at the beginning, thcre is little
room for doubt about what later expressions mean.

On the other hand, there is much notation that is standard and has well accepted
meaning in any circumstances. Unfortunately, some students have learned to use
certain notations without remembering what they really mean. It is often helpful
to read out loud that which you have written in symbols; this technique may help
the author to find better notation.

Symbols that are commonly misused are “=" and “—”. Let I” and @ be (com-
plete) sentences that can be either true or false. The expression “I> — " is notation
for “P implies @” or “if P then @”. The statement P — @ is an implication. The
expression P = @ means that P logically implies @, that is, the truth of P — Q
follows directly from the rules of the language. Many mathematicians tend to use
the logical implication arrow = when they mean ounly —; however, this abuse of the
notation is often handy when there many other arrows, like those used in limits. In
lectures, it is often tacitly assumed that “=-" means only “implies”. Sometimes the
expression “P — Q" is replaced with “P thercfore Q”. The word “therefore” (often
capitalized to indicate the beginning of a new sentence) used too many times in a
row can appear boring, so the words “hence” or “thus” are often used. The word
“whence” means “from which” and its use is not generally preferred (however, 1 like
to use it once in a while). “From whence” is improper, as is any sentence beginning
“Whence..."; “whence” is not a fancy form of “hence”.

If both P — @ and @ — P, then write P «— @, often expressed as “P if and
only if @ (where the “P if Q" part is the implication @ — P’). The expression “if
and only if” is often abbreviated “ift”.

Two pieces of notation that seemn to creep into (and take over!) solutions on
math exams or homework are “-” and “.”’shorthand for “therefore” and “because”
respectively. My guess is that in university homework assignments, such notation
is misused over half of the time. It seems that many students have learned to write
.". beside nearly every expression, and include no real reasons. Students copy their
teachers, and since it seemed cool for their teacher to use these symbols, it is cool
for them too. In my own classes, I have since forbidden the use of these symbols,
requiring my students to instead use words (and complete sentences) to convey
what “therefore” means. (The proper use of implication arrows is encouraged, also.)
Misused, these notatious confuse the reader; overused, they offer no real help to the
reader. [Also. their usage scems to be becoming passé-—maybe that is only wishful
thinking.]

When practical, I encourage students to use the words instead of symbols, at
least until proper usage of notation is learned. “Longhand” has an added benefit
of forcing the student, to think while writing, with the goal of communicating their
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ideas, rather than writing something that merely looks “technically fancy”. The
central reason for learning how to write up proofs is to learn how to communicate
ideas clearly. Often, an added benefit to writing things out in longhand is that doing
so forces you to organize your thoughts more.

It is incredible how many exams and assignments are turned in for grading that
do not contain a single word, only equations, dots, arrows, and charts with numbers.
Oune marked difference between high school and university is that in high school,
students seem to get away with writing only a record of steps processed, whereas
in university, most often, the student is expected to give coherent and complete
reasoning.- Someonc once told me “good mathematics is good prose,” perhaps a
thought worthwhile reinembering. Most math texts are written so that everything
is a part of a complete sentence (look for periods at the end of equations, even in
this book). The process by which a student learns to write in this manner is often
painful, but the rewards are incredible.

As in ordinary prose, abbreviations are useful, but incorrect usage cau drastically
alter meaning in mathematics—or at least make reading clumsy. Here are a few more
abbreviations that are often misused. The expression “Q.E.D.” is short for “quod
erat demonstratum”, literally, “that which was to be demonstrated”, and often
appears at the end of a proof. This does not mean that onc can put “QED” at the
end of every proof—only use it if the phrase “that which was to be demonstrated”
would make sensc in its place. [“QED?” is also short for “quantum electrodynamics™,
as in Richard Feynman's book QED The strange theory of light and matter [190],
but I digress.] Similarly, “Q.E.F” is short for “quod erat faciendum”, mecaning “that
which was to be done™. (This is sometimes used when, for example, a construction of
a promised object is accomplished, so a loose translation might be “that which was
to be made”; in any case, QEF is rather archaic and is seldom used in mathematical
works lately.) Omne standard way to indicate the ¢nd a proof these days is with ~0O”.

Two other commonly misused abbreviations are “e.g.”, an abbreviation for ez-
empli gratia, (“fo