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On the Point of this Book

In which our heroes decide, possibly encouraged by a requirement for
graduation, to set out to explore the world.



102 CHAPTER 1. ON THE POINT OF THIS BOOK

Why You Might Care

Just because some of us can read and write and do a
little math, that doesn’t mean we deserve to conquer
the Universe.

Kurt Vonnegut (1922-2007)
Hocus Pocus (1990)

This book is designed for an undergraduate student who has taken a computer sci-
ence class or three—most likely, you are a sophomore or junior prospective or current
computer science major taking your first non-programming-based CS class. If you
are a student in this position, you may be wondering why you're taking this class (or
why you have to take this class!). Computer science students taking a class like this one
sometimes don’t see why this material has anything to do with computer science—
particularly if you enjoy CS because you enjoy programming.

I want to be clear: programming is awesome! I get lost in code all the time—let’s
not count the number of hours that I spent writing the code to draw the fractals in
Figure 5.1 in IATEX, for example. (IATEX, the tool used to typeset this book, is the stan-
dard typesetting package for computer scientists, and it’s actually also a full-fledged, if
somewhat bizarre, programming language.)

But there’s more to CS than programming. In fact, many seemingly unrelated prob-
lems rely on the same sorts of abstract thinking. It’s not at all obvious that an optimiz-
ing compiler (a program that translates source code in a programming language like C
into something directly executable by a computer) would have anything important in
common with a program to play chess perfectly. But, in fact, they’re both tasks that are
best understood using logic (Chapter 3) as a central component of any solution. Simi-
larly, filtering spam out of your inbox (“given a message m, should m be categorized as
spam?”) and doing speech recognition (“given an audio stream s of a person speaking
in English, what is the best ‘transcript’ reflecting the words spoken in s?”") are both
best understood using probability (Chapter 10).

And these, of course, are just examples; there are many, many ways in which we
can gain insight and efficiency by thinking more abstractly about the commonalities of
interesting and important CS problems. That is the goal of this book: to introduce the
kind of mathematical, formal thinking that will allow you to understand ideas that are
shared among disparate applications of computer science—and to make it easier for
you to make your own connections, and to extend CS in even more new directions.

How To Use This Book

Read much, but not many Books.

Benjamin Franklin (1706-1790)
Poor Richard’s Almanack (1738)

The brief version of the advice for how to use this book is: it’s your book; use it how-
ever you'd like. (Will Shortz, the puzzle editor of The New York Times, gives the anal-
ogous advice about crossword puzzles when he’s asked whether Googling for an



answer is cheating.) But my experience is that students do best when they read ac-
tively, with scrap paper close by; most people end up with a deeper understanding of a
problem by trying to solve it themselves first, before they look at the solution.

I've assumed throughout that you're comfortable with programming in at least one
language, including familiarity with recursion. It doesn’t much matter which particu-
lar programming language you know; we’ll use features that are shared by almost all
modern languages—things like conditionals, loops, functions, and recursion. You may
or may not have had more than one programming-based CS course; many, but not all,
institutions require Data Structures as a prerequisite for this material. There are times
in the book when a data structures background may give you a deeper understanding
(but the same is true in reverse if you study data structures after this material). There
are similarly a handful of topics for which rudimentary calculus background is valu-
able. But knowing/remembering calculus will be specifically useful only a handful of
times in this book; the mathematical prerequisite for this material is really algebra and
“mathematical maturity,” which basically means having some degree of comfort with
the idea of a mathematical definition and with the manipulation of a mathematical
expression. (The few places where calculus is helpful are explicitly marked.)

There are 10 chapters after this one in the book.

103

2 data types

Their dependencies are as shown at right. Aside from l

these dependencies, there are some occasional refer- 3 logi
ences to other chapters, but these references are light. l

If you've skipped Chapter 6—many instructors will

choose not cover this material, as it is frequently in- 4 proos
cluded in a course on Algorithms instead of this one— l

5 _induction

then it will still be useful to have an informal sense of
O, Q, and © notation in the context of the worst-case / l \
6 7

8

. . analysisof ~ number relations
tions 6.1 and 6.6 before reading Chapters 7-11.) algm}r,ithms theory

running time of an algorithm. (You might skim Sec-

I've tried to include some helpful tips for problem
solving in the margins throughout the book, along with
a few warnings about common confusions and some
notes on terminology /notation that may be helpful in
keeping the words and symbols straight. There are also two kinds of extensions to the
main material. The “Taking it Further” blocks give more technical details about the
material under discussion—an alternate way of thinking about a definition, or a way
that a concept is used in CS or a related field. You should read the “Taking it Further”
blocks if—but only if'—you find them engaging. Each section also ends with one or
more boxed-off “Computer Science Connections” that show how the core material can
be used to solve a wide variety of (interesting, I hope!) CS applications. No matter how
interesting the core technical material may be, I think that it is what we can do with it
that makes it worth studying.

9 11

counting graphs/trees

|

10
probability



104 CHAPTER 1. ON THE POINT OF THIS BOOK

What This Book Is About

All truths are easy to understand once they are
discovered; the point is to discover them.

Galileo Galilei (1564-1642)

This book focuses on discrete mathematics, in which the entities of interest are dis-
tinct and separate. Discrete mathematics contrasts with continuous mathematics, as
in calculus, which addresses infinitesimally small objects, which cannot be separated.
We’ll use summations rather than integrals, and we’ll generally be thinking about
things more like the integers (“1,2, 3, ...”) than like the real numbers (“all numbers
between 7 and 42”). Because this book is mostly focused on non-programming-based
parts of computer science, in general the “output” that you produce when solving a
problem will be something different from a program. Most typically, you will be asked
to answer some question (quantitatively or qualitatively) and to justify that answer—
that is, to prove your answer. (A proof is an ironclad, airtight argument that convinces
its reader of your claim.) Remember that your task in solving a problem is to persuade
your reader that your purported solution genuinely solves the problem. Above all, that
means that your main task in writing is communication and persuasion.

There are three very reasonable ways of thinking about this book.

View #1 is that this book is about the mathematical foundations of computation.
This book is designed to give you a firm foundation in mathematical concepts that are
crucial to computer science: sets and sequences and functions, logic, proofs, probabil-
ity, number theory, graphs, and so forth.

View #2 is that this book is about practice. Essentially no particular example that
we consider matters; what’s crucial is for you to get exposure to and experience with
formal reasoning. Learning specific facts about specific topics is less important than
developing your ability to reason rigorously about formally defined structures.

View #3 is that this book is about applications of computer science: it’s about error-
correcting codes (how to represent data redundantly so that the original information
is recoverable even in the face of data corruption); cryptography (how to communi-
cate securely so that your information is understood by its intended recipient but not
by anyone else); natural language processing (how to interpret the “meaning” of an
English sentence spoken by a human using an automated customer service system);
and so forth. But, because solutions to these problems rely fundamentally on sets and
counting and number theory and logic, we have to understand basic abstract struc-
tures in order to understand the solutions to these applied problems.

In the end, of course, all three views are right: I hope that this book will help to in-
troduce some of the foundational technical concepts and techniques of theoretical
computer science, and I hope that it will also help demonstrate that these theoretical
approaches have relevance and value in work throughout computer science—in topics
both theoretical and applied. And I hope that it will be at least a little bit of fun.

Bon voyage!

Be careful; there

are two different
words that are pro-
nounced identically:

discrete, adj.: indi-
vidually separate
and distinct.

discreet, adj.: care-
ful and judicious
in speech, espe-
cially to maintain
privacy or avoid
embarrassment.

You wouldn’t read a
book about discreet
mathematics;
instead, someone
who trusts you
might quietly share
it while making
sure no one was
eavesdropping.



2
Basic Data Types

In which our heroes equip themselves for the journey ahead, by taking on
the basic provisions that they will need along the road.



202 CHAPTER 2. BASIC DATA TYPES

2.1 Why You Might Care

It is a capital mistake to theorize before one has data.

Sir Arthur Conan Doyle (1859-1930),
A Scandal in Bohemia (1892)

This chapter will introduce concepts, terminology, and notation related to the most
common data types that recur throughout this book, and throughout computer sci-
ence. These basic entities—the Booleans (True and False), numbers (integers, rationals,
and reals), sets, sequences, functions—are also the basic data types we use in modern
programming languages. Essentially every common primitive data type in programs
appears on this list: a Boolean, an integer (or an int), a real number (or a float), and
a string (an ordered sequence of characters). Ordered sequences of other elements are
usually called arrays or lists. If you've taken a course on data structures, you've proba-
bly worked on several implementations of sets that allow you to insert an element into
an unordered collection and to test whether a particular object is a “member” of the
collection. And functions that map a given input to a corresponding output are the
basic building blocks of programs.

Virtually every interesting computer science application uses these basic data types
extensively. Cryptography, which is devoted to the secure storage and transmission
of information in such a way that a malicious third party cannot decipher that infor-
mation, is typically based directly on integers, particularly large prime numbers. A
ubiquitous task in machine learning is to “cluster” a set of entities into a collection of
nonoverlapping subsets so that two entities in the same subset are similar and two en-
tities in different subsets are dissimilar. In information retrieval, where we might seek
to find the document from a large collection that is most relevant to a given query, it
is common to represent each document by a vector (a sequence of numbers) based on
the words used in the document, and to find the most relevant documents by identify-
ing which ones “point in the same direction” as the query’s vector. And functions are
everywhere in CS, from data structures like hash tables to the routing that’s done for
every packet of information on the internet.

In this chapter, we’ll describe these basic entities and some standard notation that’s
associated with them. Some closely related topics will appear later in the book, as
well. Chapter 7, on number theory, will discuss some subtler properties of the inte-
gers, particularly divisibility and prime numbers. Chapter 8 will discuss relations,

a generalization of functions. But, really, every chapter of this book is related to this
chapter: our whole enterprise will involve building complex objects out of these simple
ones (and, to be ready to understand the more complex objects, we have to understand
the simple pieces first). And before we launch into the sea of applications, we need

to establish some basic shared language. Much of the basic material in this chapter
may be familiar, but regardless of whether you have seen it before, it is important and
standard content with which it is important to be comfortable.
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2.2 Booleans, Numbers, and Arithmetic

Everything you can imagine is real.
Pablo Picasso (1881-1973)

We start with the most basic types of data: Boolean values (True and False), integers
(...,—2,-1,0,1,2,...), rational numbers (fractions with integers as numerators and de-
nominators), and real numbers (including the integers and all the numbers in between
them). The rest of this section will then introduce some basic numerical operations:
absolute values and rounding, exponentiation and logarithms, summations and prod-
ucts. Figure 2.1 summarizes this section’s notation and definitions.

2.2.1 Booleans: True and False

The most basic unit of data is the bit: a single piece of information, which either takes
on the value 0 or the value 1. Every piece of stored data in a digital computer is stored
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as a sequence of bits. (See Section 2.4 for a formal definition of sequences.)

We'll view bits from several different perspectives: 1 and 0, on and off, yes and no,
True and False. Bits viewed under the last of these perspectives have a special name,
the Booleans:

Definition 2.1 (Booleans)
A Boolean value is either True or False.

The Booleans are the central object of study of Chapter 3, on logic. In fact, they are
in a sense the central object of study of this entire book: simply, we are interested in
making true statements, with a proof to justify why the statement is true.

2.2.2 Numbers: Integers, Reals, and Rationals

We'll often encounter a few common types of numbers—integers, reals, and rationals:

Definition 2.2 (Integers, Reals, and Rationals)
® The integers, denoted by Z, are those numbers with no fractional part: 0, the positive
integers (1,2, ...), and the negative integers (—1, —2,—3,.. ).

® The real numbers, denoted by IR, are those numbers that can be (approximately)
represented by decimal numbers; informally, the reals include all integers and all numbers
“between” any two integers.

® The rational numbers, denoted by Q, are those real numbers that can be represented as a
ratio ! of two integers n and m, where n is called the numerator and m # 0 is called the

denominator. A real number that is not rational is called an irrational number.

Here are a few examples of each of these types of numbers:

Booleans are
named after George
Boole (1815-

1864), a British
mathematician,
who was the first
person to think
about True as 1 and
False as 0.

The superficially
unintuitive notation
for the integers,

the symbol Z, is a
stylized “Z” that
was chosen because
of the German
word Zahlen, which
means “numbers.”
The name rationals
comes from the
word ratio; the
symbol Q comes
from its synonym
quotient. (Besides,
the symbol R was
already taken by
the reals, so the
rationals got stuck
with their second
choice.)
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Booleans True and False

Z integers (..., —3,-2,-1,0,1,2,3,...)

Q rational numbers

R real numbers

[a, b] those real numbers x wherea < x <b

(a,b) those real numbers x wherea < x < b

[a,b) those real numbers x wherea < x < b

(a,b] those real numbers x wherea < x < b

|x| absolute value of x: |x| == —xif x < 0; |x| :=xif x > 0

|x] floor of x: x rounded down to the nearest integer

[x] ceiling of x: x rounded up to the nearest integer

bt b multiplied by itself # times

b/, or /b anumber y such that y" = b (where y > 0 if possible), if one exists
pm/n (bl / nym

log, x logarithm: logy, x is the value y such that b¥ = x, if one exists
nmod k modulo: n mod k := the remainder when dividing n by k
k|n k (evenly) divides n

Y summation: Y /L) x; := X1 +Xa+ - +Xp

I product: TT x; =21 -0+ -+ - Xy

Example 2.1 (Integers, reals, and rationals)
The following are all examples of integers: 1,42, 0, and —17.

All of the following are real numbers: 1, 99.44, the ratio of the circumference
of a circle to its diameter 7 ~ 3.141592653 - - -, and the so-called golden ratio
d=01+5)/2~1.61803---.

Examples of rational numbers include g, g, 146, and ‘11. (In Chapter 8, we'll talk

about the familiar notion of the equivalence of two rational numbers like % and %,
or like 146 and %, based on common divisors. See Example 8.36.) Of the example real

numbers above, both 1 and 99.44 are rational numbers; we can write them as % and

4%2, for example. Both 7 and ¢ are irrational.

Here are a few useful points relating these three types of numbers:

¢ All integers are rational numbers (with denominator equal to 1).

¢ All rational numbers are real numbers.

* But not all rational numbers are integers and not all real numbers are rational: for
example, g is not an integer, and /2 is not rational. (We’ll prove that v/2 is not
rational in Example 4.21.)

Taking it further: Definition 2.2 specifies Z, Q, and R somewhat informally. To be completely rigor-
ous, one can define the nonnegative integers as the smallest collection of numbers such that: (i) 0 is an
integer; and (ii) if x is an integer, then x + 1 is also an integer. See Section 5.4.1. (Of course, for even this
definition to make sense, we’d need to give a rigorous definition of the number zero and a rigorous def-
inition of the operation of adding one.) With a proper definition of the integers, it’s fairly easy to define
the rationals as ratios of integers. But formally defining the real numbers is surprisingly challenging; it
was a major enterprise of mathematics in the late 1800s, and is often the focus of a first course in analysis
in an undergraduate mathematics curriculum.

Virtually every programming language supports both integers (usually known as ints) and real
numbers (usually known as floats); see p. 217 for some discussion of the way that these basic numerical
types are implemented in real computers. (Rational numbers are much less frequently implemented as
basic data types in programming languages, though there are some exceptions, like Scheme.)

Figure 2.1: Sum-
mary of the basic
mathematical nota-
tion introduced in
Section 2.2.
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In addition to the basic symbols that we’ve introduced to represent the integers, the

rationals, and the reals (Z, Q, and R), we will also introduce special notation for some
specific subsets of these numbers. We will write Z= and Z=° to denote the nonnega-
tive integers (0, 1, 2, . ..) and nonpositive integers (0, —1,

when we write Z with a superscripted condition, we mean all those integers for which

the stated condition is true. For example, 77! denotes all integers aside from 1. Sim-
ilarly, we write R>? to denote the positive real numbers (every real number x > 0).
Other conditions in the superscript of R are analogous.

We’ll also use standard notation for intervals of real numbers, denoting all real
numbers between two specified values. There are two variants of this notation, which
allow “between two specified values” to either include or exclude those specified val-
ues. We use round parentheses to mean “exclude the endpoint” and square brackets
to mean “include the endpoint” when we denote a range:

(a, b) denotes those real numbers x for whicha < x < b.

[a, b] denotes those real numbers x for whicha < x < b.

(a, b] denotes those real numbers x for whicha < x < b.

[a, b) denotes those real numbers x for whicha < x < b.

Sometimes (g, b) and [a, b] are, respectively, called the open interval and closed inter-
val between a and b. These four types of intervals are also sometimes denoted via

a number line, with open and closed circles denoting open and closed intervals; see
Figure 2.2 for an example. For two real numbers x and y, we will use the standard
notation “x ~ y” to denote that x is approximately equal to y. This notation is defined
informally, because what counts as “close enough” to be approximately equal will
depend heavily on context.

2.2.3  Absolute Value, Floor, and Ceiling

In the remaining subsections of Section 2.2, we will give definitions of some standard
arithmetic operations that involve the numbers we just defined. We'll start in this
subsection with three operations on a real number: absolute value, floor, and ceiling.

The absolute value of a real number x, written |x|, denotes how far x is from 0, disre-
garding the sign of x (that is, disregarding whether x is positive or negative):

Definition 2.3 (Absolute Value)

x ifx>0
The absolute value of a real number x is |x| := fx =

—x otherwise.

For example, [42.42| = 42.42 and | — 128| = 128. (Definition 2.3 uses standard notation
for defining “by cases”: the value of |x| is x when x > 0, and the value of |x| is —x
otherwise—that is, when x < 0.)

For a real number x, we can consider x “rounded down” or “rounded up,” which
are called the floor and ceiling of x, respectively:

—2,...), respectively. Generally,
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Yy 1 17 7 1
o 1 2 3 4 5
(a) The interval (1,4)

I
0

(b) The interval [1,4

—s

I

I

1 2 3 4 5
[1,4]

| L1 L |
I + LR
o 1 2 3 4 5
(c) The interval [1,4)

|
I
0
(

Al 1 |
T O + I
1 2 3 4 5
d) The interval (1, 4]

Figure 2.2: Number
lines representing
real numbers
between 1 and 4,
with 1 included in
the range in (b, ¢),
and 4 included in
the range in (b, d).



206 CHAPTER 2. BASIC DATA TYPES

Definition 2.4 (Floor and ceiling)

The floor of a real number x, written | x|, denotes the largest integer that is less than or equal
to x. The ceiling of a real number x, written [x|, denotes the smallest integer that is greater
than or equal to x.

Note that Definition 2.4 defines the floor and ceiling of negative numbers, too; the
definition doesn’t care whether x is greater than or less than 0.
Here are a few examples of floor and ceiling:

Example 2.2 (Floor and ceiling)
We have |v/2] = [1.4142---| =1, |27] = |6.28318 - - | = 6,and |3] = 3. For ceilings,
we have [v/2] =2, [27] =7, and [3] = 3.

For negative numbers, | —v/2| = |~1.4142- -] = =2, and [—/2] = —1.

The number line may give an intuitive way to think about floor and ceiling: |x| de-
notes the first integer that we encounter moving left in the number line starting at
x; [x] denotes the first integer that we encounter moving right from x. (And x itself
counts for both definitions.) See Figure 2.3.

2.2.4  Exponentiation

We next consider raising a number to an exponent or power.

Definition 2.5 (Raising a number to an integer power)
For a real number b and a nonnegative integer n, the number b" denotes the result of
multiplying b by itself n times:
W:=1 and forn>1, b":=b-b---b.
~ -

~
n times

The number b is called the base and the integer n is called the exponent.

For example, 20 =1,22=2-2=4,2°=2.2.2.2-2=32,and 52 =55 = 25.

Note again that ° = 1 for any base b, including b = 0. (The case of 0° is tricky: one is
tempted to say both “0 to the anything is 0” and “anything to the 0is 1.” But, of course,
these two statements are inconsistent. For us, the latter trumps the former, and o =1,
as in Definition 2.5.)

RAISING A BASE TO NONINTEGRAL EXPONENTS

Consider the expression b* for an exponent x > 0 that is not an integer. (It’s all too
easy to have done this calculation by typing numbers into a calculator without actually
thinking about what the expression actually means!) Here’s the definition of b"/"
when the exponent ' is a rational number:

-2-10 1 2 3
Figure 2.3: The floor

and ceiling of — V2,
V2, and 3.
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Definition 2.6 (Raising a number to a positive rational power)
For any real number b and for any positive integers m and n # 0:

o /" denotes the number y such that y" = b. The value b'/" is called the nth root of b, and
it can also be denoted by /b. If there are two values y such that y" = b, then by b'/" we
mean the number y > 0 such that y" = b. If there are no such values y, then we’ll treat
b/™ as undefined.

o ™" denotes the mth power of b'/": that is, b"™/" := (b1/")".
Here are a few examples:

Example 2.3 (Some fractional exponents)
e 16'/2 is the value y such that y> = 16,50 16!/2 = 4 (because 4> = 16). Similarly,
16'/* = 2 because 2* = 16.

e The value of 5'/2 is roughly 2.2360679774, because 2.23606797742 ~ 5. (But note
that this value of 5'/2 is only an approximation, because actually 2.23606797742 =
4.99999999955372691076 # 5.)

* As the definition implies, there may be more than one y such that y" = b. For
example, consider 4!/2. We need a number y such that y> = 4—and either y = 2 or
y = —2 satisfies this condition. By the definition, if there are positive and negative
values of y satisfying the requirement, we choose the positive one. So 41/2 = 2.

e For (—8)1/ 3 we need a value y such that y3 = —8. No y > 0 satisfies this condition,
but y = —2 does. Thus (—8)1/3 = 2.

e For (—8)'/2, we need a value y such that y?> = —8. No y > 0 satisfies this condition,
and no y < 0 does either. Thus we will treat (—8)1/2 as undefined.

Taking it further: Definition 2.6 presents difficulties if we try to compute, say, v/—1: the definition tells
us that we need to find a number y such that y?> = —1. But y?> > 0if y < 0 and if y > 0, so no real number
y satisfies the requirement y2> = —1. To handle this situation, one can define the imaginary numbers,
specifically by defining i := v/—1. (The name “real” to describe real numbers was chosen to contrast with
the imaginary numbers.)

We will not be concerned with imaginary numbers in this book, although—perhaps surprisingly—
there are some very natural computational problems in which imaginary numbers are fundamental
parts of the best algorithms solving them, such as in signal processing and speech processing (transcrib-
ing English words from a raw audio stream) or even quickly multiplying large numbers together.

When we write v/b without explicitly indicating which root is intended, then we
are talking about the square root of b. In other words, v/b := v/b denotes the y such that
y? = b. An integer n is called a perfect square if /n is an integer.

Definition 2.7 (Raising a number to a negative power)
When the exponent x is negative, then b* is defined as blx'

—4_1_1 —3/2_ 1 _ 1 _1_1
For example, 2% = |, = ;¢ and 25 = 252 T (si2p T 5 T 1250
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For an irrational exponent x, the value of b* is approximated arbitrarily
closely by choosing a rational number ” sufficiently close to x and computing
the value of b"/".

Taking it further: A fully rigorous treatment of irrational powers requires a formal definition
of the real numbers and an (g, 6)-style proof as in calculus; we will omit the details as they are

tangential to our purposes in this book. The basic idea is to choose a rational number m/n that
approximates x to within a small error—for example, approximate r by the first k digits of its

of approximations.
While essentially every modern programming language supports exponentiation—including

steps that are done to compute a quantity like /x.

Here are a few useful facts about exponentiation:

Theorem 2.1 (Properties of exponentials)
For any real numbers a and b, and for any rational numbers x and y:
=1
b'=b
P = b
() = b
(ab)* =a* - b*

decimal expansion (which can be written as n/10%)—and approximate b* by b"/". For example, 27
is approximated by the sequence shown in Figure 2.4; the value of 27 is the limit of this sequence

positive, fractional, and negative powers—in some form, often in a separate math library, the actual
behind-the-scenes computation is rather complicated. See p. 218 for some discussion of the underlying

@.1.1)
(2.1.2)
2.1.3)
(2.1.4)
(2.1.5)

These properties follow fairly straightforwardly from the definition of exponentiation.

(The properties of Theorem 2.1 carry over to irrational exponents, though the proofs

are less straightforward.)

2.2.5 Logarithms

The logarithm (or log) is the inverse operation to exponentiation: the value of an expo-

nential 1Y is the result of multiplying a number b by itself y times, while the value of a

logarithm log,, x is the number of times we must multiply b by itself to get x.

Definition 2.8 (Logarithm)

For a positive real number b # 1 and a real number x > 0, the logarithm base b of x, written

log,, x, is the real number y such that bY = x.
Here are a few simple examples:

Example 2.4 (Some logs)

* The quantity log, 81 is the power to which we must raise 3 to get 81—and thus

log, 81 = 4, because 3* =3-3-3-3 = 81.
e Similarly, log, 16 = 2, because 42 = 16.

2%-8
231710 _ 85741 - ..
2914/100 — 8 8815.- - -
93141/1000 _ g 8513 . ..

231415/10000 =8.8244 . - .
2314159/100000 _ g 8749 . . .

Figure 2.4: Ap-
proximating 27.

Problem-solving

tip: T have found
many CS students
scared, and scarred,
by logs. The fear
appears to me to
result from students
attempting to
memorize facts about
logs without trying
to think about

what they mean.
Mentally translating
between logs and
exponentials can
help make these
properties more
intuitive and can
help make them
make sense. Often
the intuition of

a property of
exponentials

is reasonably
straightforward to

grasp.
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e Because2 =4 = 41/2, we have log, 2 = 0.5.
e 128°=1,501l0g;,51=0.
o 215849625 — 9.999999998 ~ 3, s0 log, 3 ~ 1.5849625.

For any base b, note that log, x does get larger as the value of x
increases, but it gets larger very slowly. Figure 2.5 illustrates the
slow rate of growth of log,, x as x grows.

For a real number x < 0 and any base b, the expression log, x is
undefined. For example, the value of log,(—4) would be the num-
ber y such that 2¥ = —4—but 2¥ can never be negative. Similarly,

logarithms base 1 are undefined: log; 2 would be the number y 200 400

such that 1¥ = 2—but 1¥ =1 for every value of y.

Logarithms show up frequently in the analysis of data structures and algorithms,
including a number that we will discuss in this book. Several facts about logarithms
will be useful in these analyses, and are also useful in other settings. Here are a few:

Theorem 2.2 (Properties of logarithms)
For any real numbers b > 1,c > 1, x > 0, and y > 0, the following properties hold:
log,1=0 (2.2.1)
log,b=1 (2.2.2)
log, xy = log, x +log, v log of a product (2.2.3)
log, ; = log, x —log, y log of a quotient (2.2.4)
log, ¥/ = ylog, x (2.2.5)
log, x » .
log, x = log. b change of base” formula (2.2.6)

These properties generally follow directly from the analogous properties of exponen-
tials in Theorem 2.1. You'll explore some properties of logarithms (including many of
the properties from Theorem 2.2) in the exercises.

We will make use of one standard piece of notational shorthand: often the expres-
sion log x is written without an explicit base. When computer scientists write the ex-
pression log x, we mean log, x. One other base is commonly used in logarithms: the
natural logarithm In x denotes log, x, where e ~ 2.718281828 - - - is defined from calculus
ase :=limy, (1 + 711)”.

2.2.6  Moduli and Division

So far, we've discussed multiplying numbers (repeatedly, to compute exponentials); in
this subsection, we turn to the division of one number by another. When we consider
dividing two integers—64 by 5, for example—there are several useful values to con-
sider: regular-old division (654 = 12.8), what’s sometimes called integer division giving

600 800 1000

Figure 2.5: A graph
of log;, x.

Throughout this
book (and through-
out computer
science), the as-
sumed base of

log x is 2. (Some
computer scien-
tists write 1g x to
denote log, x; we’ll
simply write log x.)
But be aware that
mathematicians or
engineers may treat
the default base to
be e or 10.
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“the whole part” of the fraction ( L654J = 12), and the remainder giving “the leftover
part” of the fraction (the difference between 64 and 12 - 5, namely 64 — 60 = 4).

We will return to these notions of division in great detail in Chapter 7, but we’ll
begin here with the formal definitions for the notions related to remainders:

Definition 2.9 (Modulus (remainder))

For any integers k > 0 and n, the integer n mod k is the remainder when we divide n by k.
Using the “floor” notation from Section 2.2.3, the value n mod k is defined as
nmodk:=n—k- ||

Here are examples of the value of a few integers mod 3:

Example 2.5 (Three values mod 3)

* 8mod 3 = 2, because 8 is 2 more than a multiple of 3, namely 6. (Or because
m = 26666 -] =2,and8 —2-3=8 —6=2)

e 28mod3=1,as ﬂ238 =9,and28—-9-3=28—-27=1.

* 48 mod 3 = 0, because L438J ~ |16] = 16,and 48 — 16 -3 = 0.

Taking it further: In many programming languages, the / operator performs integer division when
its arguments are both integers, and performs “real” division when either argument is a floating point
number. So the expression 64 / 5 will yield 12, but64.0 / 5and 64 / 5.0and 64.0 / 5.0 will all
yield 12.8. In this book, though, we will always mean “real” division when we write x/y or ¥

The n mod k operation is a standard one in programming languages—it’s written as n %
languages, including Java, Python, and C/C++, for example.

X
Y
k in many

In Definition 2.9, we allowed # to be a negative integer, which may stretch your
intuition about remainders a bit. Here’s an example of this case of the definition:

Example 2.6 (A negative integer mod 5)
We’ll compute —3 mod 5 simply by following the definition of mod from Defini-
tion 2.9:

—3mod5=(-3)—5- {‘;’J =(=3)—5-(=1)=(=3)+5=2.

Viewed from an appropriate perspective, this calculation should actually be very
intuitive: the value r = n mod k gives the amount by which n exceeds its closest
multiple of k. (And —3 is 2 more than a multiple of 5, namely —5, so —3 mod 5 = 2.)

Notice that the value of n mod k is always at least 0 and at most k — 1, for any # and
any k > 0; the remainder when dividing by k can never be k or more. At one of these
extreme points, when | has zero remainder, then we say that k (evenly) divides n:

Definition 2.10 (Integer k (evenly) divides integer 1)
For any integers k > 0 and n, we say that k divides n, written k | n, if |/ is an integer. Notice
that k | n is equivalent to n mod k = 0.
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Here’s a simple example:

Example 2.7 (What 5 divides)
Because5- || =5-2=10=10, weknow 5[10. But5- 2| =5-1=5#9,505 /9.

By rearranging the floor-based definition from Definition 2.9 when n mod k = 0, we
can see that the condition k | 7 is also equivalent to the condition k - | } | = n.

SOME SPECIAL NUMBERS: EVENS, ODDS, PRIMES, COMPOSITES

A few special types of integers are defined in terms of their divisibility—specifically
based on whether they are divisible by 2 (evens and odds), or whether they are divisible
by any other integer except for 1 (primes and composites).

Definition 2.11 (Even, odd, and parity)
A nonnegative integer n is even if n mod 2 = 0, and n is odd if n mod 2 = 1. The parity of
n is its “oddness” or “evenness.”

For example, we have 17 mod 2 = 1 and 42 mod 2 = 0, so 17 is odd and 42 is even.

Taking it further: If we view 0 as False and 1 as True (see Section 2.2.1), then the value n mod 2 can be
interpreted as a Boolean value. In fact, there’s a deeper connection between arithmetic and the Booleans
than might be readily apparent. The “exclusive or” of two Boolean values p and q (which we will en-
counter in Section 3.2.3) is denoted p @ ¢, and the expression p @ ¢ is true when one but not both of p and
q is true. The exclusive or is sometimes referred to as the parity function, because p + q is odd (viewing p
and g as numerical values, 0 or 1) exactly when p @ q is true (viewing p and g as Boolean values, False or
True).

Definition 2.12 (Prime and composite numbers)
A positive integer n > 1 is prime if the only positive integers that evenly divide n are 1 and n
itself. A positive integer n > 1 is composite if it is not prime.

Notice that the definition of prime numbers does not include 0 and 1, and neither does
the definition of composite numbers: in other words, 0 and 1 are neither composite nor
prime. Here are a few examples of prime and composite numbers:

Example 2.8 (Prime numbers)
Problem: 1s 77 prime? What about 7?

Solution: 77 is not prime, because it is evenly divisible by 7. In other words, because
77 mod 7 = 0 (and the integer 7 that evenly divides 77 is neither 1 nor 77 itself), 77
is composite.

On the other hand, 7 is prime. Convincing yourself that something is prime
is harder than convincing yourself that something is not prime, but we can see it
by trying all the possible divisors, namely every positive integer except 1 and 7:
7mod2=1and7mod3=1and7mod4=3and7 mod5=2and 7 mod 6 =1,
and furthermore 7 mod d = 7 for any d > 8. None of these remainders is zero, so 7
is prime.
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Example 2.9 (Small primes and composites)
The first ten prime numbers are 2,3,5,7,11,13,17,19, 23,29. The first ten composite
numbers are 4,6,8,9,10,12,14,15, 16, 18.

Chapter 7 is devoted to the properties of modular arithmetic, prime numbers, and the
like. These quantities have deep and important connections to cryptography, error-
correcting codes, and other applications that we’ll explore later.

2.2.7 Summations and Products

There is one final piece of notation related to numbers that we need to introduce: a
simple way of expressing the sum or product of a collection of numbers. We'll start with
the compact summation notation that allows us to express the result of adding many
numbers:

Definition 2.13 (Summation notation)
Let x1,x,...,xy be a sequence of n numbers. We write Y i ; x; (usually read as “the sum for i
equals 1 to n of x;”) to denote the sum of the x;s:

n
Exi =X +Xp 4+ Xy
i=1

The variable i is called the index of summation or the index variable.
Note that Y-9_ x; = 0: when you add nothing together, you end up with zero.

Here are a few very simple examples:

Example 2.10 (Some simple summations)
Leta; =2,ap =4,a3=8,and ag = 16,and let by =1, b, =2, b3 = 3, and by = 4. Then

-
|

ap+ay+az+ag = 2+4+8+16 = 30
=
g
Y by =bi+by+b3+by = 1+2+3+4 =10
i=1
We can interpret this summation notation as if it expressed a for loop, as shown 1: result =0
in Figure 2.6. The for loop interpretation might help make the “empty sum” more 2: fori:=1,2,...,n

intuitive: the value of Y2 ; x; = 0 is simply 0 because result is set to 0 in line 1, and it 3 result = result +x;
1 4: return result

never changes, because n = 0 (and therefore line 3 is never executed).

Figure 2.6: A for

loop that returns

pression involving the index of summation. (We can also start the index of summation the value of Y., x;.

In general, instead of just adding x; in the ith term of the sum, we can add any ex-

at a value other than 1: to denote the sum x; + X1 + - - - + x5, we write Z?:j x;.) Here are
a few examples:
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Example 2.11 (Some sums)
Leta; =2,a, =4,a3 =8,and a4 = 16. Then

Yiia =2+4+8+16 = 30
Yii@+1) = Q+1)+@+1)+B+1)+(16+1) = 34
Y = 1+2+3+4 =10

Example 2.12 (Some more sums)
Problem: As above,leta; = 2,a, = 4,a3 = 8, and a4 = 16. What are the values of the
following expressions?
1.Yh, 2 2.4, 3.7 (@ +%) 4.54,5

Solution: Here are the values of these sums:

1. yh,# = 12+2%2+32+42 = 30
2. i, = 22432 +42 =29
3. YH@+2) = 2+19)+(@+2)+(8+3)+(16+4%) = 60
4. Y45 = 545+545 = 20

Two special types of summations arise frequently enough to have special names. A
geometric series is Iy o/ for some real number «; an arithmetic series is Yiy i - o for a
real number «. See Section 5.2.2 for more on these types of summations.

We will very occasionally consider an infinite sequence of numbers x1,x3,...,%;,...;
we may write ) ;°; x; to denote the infinite sum of these numbers.

Example 2.13 (An infinite sum)

Define x; := 1/2{,sothatx; = 1/2,x, = 1/4,x3 = 1/8, and so forth. We can write
Yoy xitodenote1/2+1/4+1/8+1/16+ - - -. The value of this summation is 1: each
term takes the sum halfway closer to 1.

While the for loop in Figure 2.6 would run forever if we tried to apply it to an infinite
summation, the idea remains precisely the same: we successively add the value of
each term to the result variable. (We will discuss this type of infinite sum in detail in
Section 5.2.2, too.)

REINDEXING SUMMATIONS

Just as in a for loop, the “name” of the index variable in a summation doesn’t mat-
ter, as long as it’s used consistently. For example, both Y2 ; a; and 2]5=1 a; denote the
value of a1 +dp +as+adyg+as.

We can also rewrite a summation by reindexing it (also known as using a change of
index or a change of variable), by adjusting both the limits of the sum (lower and upper)
and what'’s being summed while ensuring that, overall, exactly the same things are
being added together.

213



214 CHAPTER 2. BASIC DATA TYPES

Example 2.14 (Shifting by two)
The sums Y 5i and Z]’.:lz(j +2) are equal, because both express 3+4+5+- - - +n. (We
have applied the substitution j := i — 2 to get from the first summation to the second.)

Example 2.15 (Counting backward)
The following two summations have the same value:

n n

Y (n—i) and Y.

i=0 =0
We can produce one from the other by substituting j := n — i, so thati = 0,1,...,n
correspondstoj=n—0,n—1,...,n —n (or, more simply, toj=n,n—1,...,0).

Reindexing can be surprisingly helpful when we’re confronted by ungainly summa-
tions; doing so can often turn the given summation into something more familiar.

NESTED sums

We can sum any expression that depends on the index variable—including sum-
mations. These summations are called double summations or, more generally, nested
summations. Just as with nested loops in programs, the key is to read “from the inside
out” in simplifying a summation. Here are two examples:

Example 2.16 (A double sum)
Let’s compute Y0 { ;=1 5} .

Observe that, for any fixed value of i > 0, the value of Z]l:=1 5 is just 57, because we
are summing i different copies of the number 5. Therefore

i=1 | j=1 i=1

6 i 6
ZL 51 =) 5i=5+10+15+20+25+30 = 105.

Example 2.17 (A slightly more complicated double sum)
Problem: Whatis Y9, [Z};l j} ?

Solution: Observe that the inner sum (Z};l j) has the following value, for each
1<i<eé6

« Ylj=1 © Yiyj=1+2+3+4=10
© Yiqj=1+2=3 © ¥,j=1+2+3+4+5=15
. Zf’=1]'=1+2+3=6 . Zf=1j=1+2+3+4+5+6=21

Thus Y8, Yy j=1+3+6+10+15+21 = 56.
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When you're programming and need j=12 3 4 5 6 7 8
to write two nested loops, it sometimes i=1|-1|-1|-2|-2|-3|-3|-4| -4
ends up being easier to write the loops é 71 71 j 73 j 72 71 j
with one variable in the outer loop 4| 1| 1| 2| 2| 3| 3| 4| 4
rather than the other variable. Sim- 1 2 3 4 51-11-1}-2}-2)-3)-3|—4| -4
. . . 11715]6]5 6l 1| 1| 2| 2| 3| 3| 4| 4
ilarly, it may turn out to be easier to I I 71211l =2 —2| =3 —3| —4| —4
think about a nested sum by revers- 313583 8 1] 1| 2| 2| 3| 3| 4| 4
ing the summation—that is, swapping (a) A small table with some (b) The terms of Y2, Y7y (<1 - [ ),
which variable is the “outer” summa- arbitrarily chosen numbers. forn =8.

tion and which is the “inner.” If we have
any sequence a;; of numbers indexed by two variables i and j, then Y7 Z}Ll a;; and
Y1 Yty a;j have precisely the same value.

Here are two examples of reversing the order of a double summation, for the tables
shown in Figure 2.7:

Example 2.18 (A simple sum)

Consider the table in Figure 2.7(a). Write 4; to denote the element in the ith row and
jth column of the table. Then the sum of elements in the table is, by summing the
row-sums,

3[4 3
) LZ al]] =) the sum of elements in row i =23+18+19 = 60.
i=1 i=1

And, by summing the column-sums, the sum of elements in the table is also

4
Z [Z“U] =) the sum of elementsin columnj  =15+15+15+15 = 60.
j=1 j=1

Example 2.19 (A double sum, reversed)
Problem: Letn = 8. What is the value of the following sum?

n n .
3y [0
B5 e [4]

Solution: We are computing the sum of all the values contained in the table in Fig-
ure 2.7(b). The hard way to add up all of these values is by computing the row
sums, and then adding them all up. (The given equation expresses this hard way.)
The easier way is reverse the summation, and to instead compute

E5 [ 4]

=

For any value of j, observe that } i’ (— 1) [2] is actually zero! (This value is just
([iDa+(=1T3 ]) .) In other words, every column sum in the table is zero. Thus
the value of the entire summation is Z .1 0, which is just 0.

Figure 2.7: Two
tables whose
elements we’ll sum
“row-wise” and
“column-wise.”

Problem-solving tip:
When you’re look-
ing at a complicated
double summation,
try reversing it; it
may be much easier
to analyze the other
way around.
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Note that computing the sum from Example 2.19 when n = 100 or n = 100,000 remains
just as easy if we use the column-based approach: as long as 7 is an even number,
every column sum is 0, and thus the entire summation is 0. (The row-based approach
is ever-more painful to use as n gets large.)

Here’s one more example—another view of the double sum Y5 Z]?:l j from Exam-
ple 2.17—where reversing the summation makes the calculation simpler:

Example 2.20 (A double sum, redone)
The value of Y9, Z]l;l j is the sum of all the numbers in the table in Figure 2.8. We
solved Example 2.17 by first computing Z]l-zl j, which is the sum of the numbers in the
ith row. We then summed these values over the six different values of i to get 56.
Alternatively, we can compute the desired sum by looking at columns instead of

rows. The sum of the table’s elements is also Zle [Z?:j j} , where 21‘6=j j is the sum of
the numbers in the jth column. Because there are a total of (7 — j) terms in 21‘6=j j, the
sum of the numbers in the jth column is precisely j - (7 — j). (For example, the 4th
column’s sumis 4 - (7 —4) =4 -3 = 12.) Thus the overall summation can be written as
6 i 6

: 1j=2%[j-(7—j)} =1-6)+(2-5+(3-4)+4-3)+(5-2)+(6-1)
I R

=6+10+12+12+10+6 = 56.

Propucrs
The ) notation allows us to express repeated addition of a sequence of numbers;
there is analogous notation to represent repeated multiplication of numbers, too:

Definition 2.14 (Product notation)
Let x1,x,...,Xy be a sequence of n numbers. We write [ i, x; (usually read as “the product
for i equals 1 to n of x;”) to denote the product of the x;s:

n
Hxl:le.xz. oo '-xﬂ-
i=1

There are direct analogues between the notions regarding ) - and corresponding
notions for [ ]: the for loop interpretation (Figure 2.9), infinite products, reindexing,
and nested products. One slight difference worthy of note: the value of [T, x; is 1;
when we multiply by nothing, we’re multiplying by one.

Example 2.21 (Some products)
Here are a few simple products:

[Th,i =1-2-3-4 24
[Ttei =0-1-2-3-4 =0

[Th,# = 12.22.32.4% = 576
[M4,5 =5-5-5-5 =625

4
4
4

5
5|6

S Gl LN
= e e e
NINDNDNDN

W W W W

Figure 2.8: The
terms of Y% Z;:l j-
We seek the sum
of all entries in the
table.

The summation and
product notation
have a secret
mnemonic to help
you remember
what each means:
“3” is the Greek
letter Sigma, which
starts with the same
letter as the word
sum. And “I1” is
the Greek letter Pi,
which starts with
the same letter as
the word product.

1: result =1
2: fori:=1,2,...,n

result := result - x;

: return result

Figure 2.9: A for
loop that returns
the value of [T\, x;.
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‘ CoMPUTER ScIENCE CONNECTIONS I

INTEGERS AND ints, REaLs AND floats

Every modern programming language has types that correspond to the
integers and the real numbers, often called something like int (short for
“integer”) and float (short for floating-point number; more about this name
and the floating point representation is below).

In most programming languages, though, these types differ from Z and
R in important ways. Every piece of data stored on a computer is stored
as a sequence of bits, and typically the bit sequence storing a number has
some fixed length. For example, an int stored using 7 bits can range from
0000000 (the number 0 represented in binary) to 1111111 (the number 27 —1=
127 represented in binary). Typically, the first bit in an int’s representation
is reserved as the sign bit (set to True for a negative number and False for
a positive number), and the remaining bits store the value of the number.

(See Figure 2.10.) Thus there’s a bound on the largest int, depending on the
number of bits used to represent ints in a particular programming language:
32,767 in Pascal (= 215 _1q, using 16 bits per int: 1 sign bit and 15 data bits),
and 2,147,483,647 in Java (= 231 _ 1; 32 bits, of which 1 is a sign bit). Similar
constraints apply to the set of real numbers representable as a float.

A crucial point about Z and R is that they are infinite: there is no small-
est integer, there’s no biggest real number, and there isn’t even a biggest real
number that is smaller than 1. In almost every programming language, how-
ever, there is a smallest int, a biggest float, and a biggest float that’s smaller
than 1: after all, there are only finitely many possible floats (perhaps P
different values), and one of these 264 values is the smallest float.

The finite nature of these programming language data types can cause
some subtle bugs in programs. There are issues related to integer overflow if we
try to store “too large” an integer: for example, when we compute 32767 + 1
in Pascal, the result is —32768. And there are bugs related to underflow if we
try to store “too small” a floating-point number: for example, if we compute
(0.0000000001)33 in Python, the result is 0.0. (But (0.0000000001)3? is, correctly,
10~320) Similarly, there are also rounding errors implicit in floating point
representations of numbers: because there are only finitely many different
floats, the infinitely many real numbers cannot all be stored exactly. For
example, when I type 0.0006 - 0.0004 == 0.0002 into a Python interpreter, I
get False as output. (That’s because, according to Python, 0.0006 - 0.0004 is
0.00019999999999999993, not 0.0002.)

The name float originates with a clever idea that’s used to mitigate (though
not solve) the issues above: we allow the decimal point to “float” in the repre-
sentation of different numbers. Consider decimal numbers like

x = 0.000000000000000000000000000000000000000000000000001
y = 1929192919291929192919291929192919291929192919291929.5.

If, say, we represent these numbers using a total of 64 bits, most of the 64 bits
representing x are devoted to the part after decimal point, whereas most of the
64 bits representing y are devoted to the part before the decimal point.'

sign bit
} data bits

070 11 0 0 1 1]
+ 0+32+16+0+0+2+1 =51

0/1 01 01 0 0]
+ GA+0+16+0+4+0+0 =84

Figure 2.10: The integers 51 and 84,
represented in binary as 8-bit signed
integers.

You can learn more about the details

of how numerical values are stored on
computers in a course on computer
architecture. In addition to the floating-
point standard, other interesting details
include 2’s complement storage of inte-
gers, which allows a single representa-
tion of positive and negative integers so
that addition “just works” the same way,
even with a sign bit. You can learn more
about this material in a good computer
architecture textbook, such as

! David A. Patterson and John L. Hen-
nessy. Computer Organization and Design:
the Hardware/Software Interface. Morgan
Kaufmann, 4th edition, 2008.
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‘ CoMPUTER ScIENCE CONNECTIONS I

CoMPUTING SQUARE Roots, AND Not COMPUTING SQUARE RooTts

Programs can make use of numerical operations in surprisingly com-
plex ways. Many programmers just happily use these numerical operations
without thinking about how they’re implemented—but a little knowledge of
what’s happening behind the scenes can actually help speed up our programs.
Computer hardware can directly and efficiently execute basic arithmetic op-
erations like addition and multiplication and division, but more complex
operations may require many of these basic operations.

Consider the task of computing +/x, given an input value x, for example.
The basic idea is to use some kind of iterative improvement algorithm: we
start with a guess y of the value of \/x, and then update our guess to a new
guess y; (by observing in some way whether iy was too big or too small). We
continue to improve our guess until we’ve reached a value y such that y? is
“close enough” to x. (We can specify the tolerance of the algorithm—that is,
how close counts as “close enough.”)

A simple implementation of this idea is called Heron's method, named af-
ter the 1st-century Greek mathematician Heron of Alexandria and shown
in Figure 2.11. It relies on the nonobvious fact that the average of y and ; is
closer to y/x than y was. (Unless y is exactly equal to /x, of course; in that
case, the new guess is identical to the old guess: the average of 1/x and o
is still v/x.) Almost two millennia later, Isaac Newton developed a general
technique for computing values of numerical expressions involving exponen-
tials, among other things. This technique, known as Newton’s method, involves
calculus—specifically, using derivatives to figure out how far to move from
a current guess y; in making the next guess y;,1. Like Heron’s method, New-
ton’s method is an example of a technique in scientific computing, the subfield
of computer science devoted to efficient computation of numerical values,
often for the purposes of simulating a complex system.?

Work in scientific computing has improved the efficiency of numerical
computation. But even better is to be aware of the fact that operations like
square roots require significant computation “under the hood,” and to avoid
them when possible. To take one particular example, consider applying a blur
filter to an image: replace each pixel p by the average of all pixels within a
radius-r circle centered at p in the original image. To compute the blurred ver-
sion of a particular pixel p, we might look at every pixel g within +r rows or
columns and compute whether p and g are within distance r. (See Figure 2.12.)
There are two natural ways to compute whether the two pixels p and g are
within distance 7:

1. the “obvious” way: test whether \/ (x + 42>+ (py +qy)> < 1.

2. the “other” way: test whether (px + qx)* + (py +¢y)* < .

While there is no important mathematical difference between these two for-
mulas (we’ve simply squared both sides in the “other” way), there is a com-
putational difference. Because square roots are expensive to compute, it turns

out that in my Python implementation of a blur filter, using the “other” way
was about 12% faster than using the “obvious” way.

Input: A positive real number x.
Output: A real number y such that
2y
YR
1: Let yg be arbitrary, and let i := 0.
2: while (y,‘)2 is too far from x:

Yity, .
3 lety; 1 :=""," andi:=i+1
4: return y;

For example, here’s the computation of
the square root of x = 42, using 7 as the
initial guess:

| vi
21
11.5
7.576086956 - - -
6.559922961 - - -
6.481218587 - - -
6.480740716 - - -
6.480740698 - - -

U WN = O ™

Figure 2.11: Heron’s method for com-
puting square roots, and an example.

Many interesting questions and tech-
niques are used in scientific computing;
one outstanding, and classic, reference
for some of this material is the book

2 William Press, Saul Teukolsky, William
Vetterling, and Brian Flannery. Nu-
merical Recipes: The Art of Scientific
Computing. Cambridge University Press,
3rd edition, 2007.

Figure 2.12: Implementing a blur filter.
We wish to average all pixels within the
circle to compute the new pixel p.
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2.2.8 Exercises

What are the smallest and largest integers that are ...

2.1 ... 1in the interval (111, 202)? 2.2 ...1in the interval [111,202)?
2.3 ... in the interval (17, 42) but not in the interval (39, 99]?
24 ... 1in the interval [17, 42] but not in the interval [39, 99)?

Explain your answers to the following questions.

2.5 If x and y are integers, is x + y necessarily an integer?
2.6 If x and y are rational numbers, is x + y necessarily rational?
2.7 If x and y are irrational numbers, is x + y necessarily irrational?

What is the value of each of the following expressions?
2.8 [2.5] + [3.75] 2.9 [3.14159] - [0.87853] 2.10 (13.14159 ) 3141591

211 Most programming languages provide two different functions called floor and truncate to trim
real numbers to integers. In these languages, £1loor(x) is defined exactly as we defined | x|, and trunc(x)

is defined to simply delete any digits that appear after the decimal point in writing x. So trunc(3.14159) =
3.14159 = 3. Explain why programming languages have both floor and trunc—that is, explain under what
circumstances floor(x) and trunc(x) give different values.

Using floor, ceiling, and standard arithmetic notation, give an expression for a real number x . ..

212 ... rounded to the nearest integer. (“Round up” for a number that’s exactly between two integers—
for example, 7.5 rounds to 8.)

213 ... rounded to the nearest 0.1.

2.14 ... rounded to the nearest 107, for an arbitrary number k of digits after the decimal point.

2.15 ... truncated to k digits after the decimal point—that is, leaving off the (k + 1)st digit and beyond.

(For example, 3.1415926 truncated with 3 digits is 3.141, and truncated with 4 digits is 3.1415.)

Taking it further: Many programming languages provide a facility for displaying formatted output,
particularly numbers, in the style of Example 2.15. For example, printf("%.3f", x) says to “print
(formatted)” the value of x with only 3 digits after the decimal point. (The “f” of “printf” stands for
formatted; the “f” of "%.3f" stands for float.) This style of printf command appears in many languages:
C, Java, Python, and others.

2.16 For what value(s) of x in the interval [2,3] is x — MEM the largest?

xJ+[x]

2.17 For what value(s) of x in the interval [2,3] is x — L ; the smallest?

Let x be a real number. Rewrite each of the following as simply as possible:

2.18 L1x]] 2.19 [Tx1] 2.20 [[x]] 2.21 E

2.22 Are ||x|| and ||x|| always equal? Explain.

2.23 Are1+ |x| and |1+ x| always equal? Explain.

2.24 Are |x]| + |y| and |x +y] always equal? Explain.

2.25 Let x be a real number. Describe (in English) what 1+ |x] — [x] represents. Explain.

2.26 In performing a binary search for x in a sorted n-element array A[1...n] (see Figure 6.17(a)), the

first thing we do is to compare the value of x and the value of A len |]. Assume that all elements of A are
distinct. How many elements of A are less than A [| 3" |]? How many are greater? Write your answers as
simply as possible.

2.27 Which is bigger, 3'° or 1032

What is the value of each of the following expressions?
2.28 48 2.30 (—4)® 2.32 256174 2.34 83/4
2.29 (1/4) 2.31 (—4)° 2.33 gl/4 2.35 (—9)1/4

What is the value of each of the following expressions?
2.36 log, 8 2.37 log,(1/8) 2.38 logg 2 2.39 log, 52

219
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2.40 Which is bigger, log,, 17 or log;, 10?

Each of the following statements are general properties of logarithms (from Theorem 2.2), for any real numbers b,c > 1
and x,y > 0. Using the definition of logarithms and the properties of exponentials from Theorem 2.1, justify each of
these properties.

2.41 log,1=0 2.44 log, xy = log,, x +log, y
2.42 log, b =1 2.45 log; x = }ggi b
2.43 log, x¥V = ylog, x

Using the properties from Theorem 2.2 that you just proved, and the fact that logy, x = log,, y exactly when x =y (for
any base b > 1), justify the following additional properties of logarithms:

2.46 For any real numbers b > 1 and x > 0, we have that b{l°8s*1 = x.

2.47 For any real numbers b > 1 and a,n > 0, we have that nllogy al = gllogy ],

2.48 Prove (2.2.4) from Theorem 2.2: for any b > 1 and x,y > 0, we have that log), ; = log, x —log, y.
2.49 Using notation defined in this chapter, define the “hyperceiling” [n] of a positive integer 1, where

[n] is the smallest exact power of two that is greater than or equal to n. (That is, [#n] denotes the smallest
value of 2 where 25 > 1 and k is a nonnegative integer.)

2.50 Similar to the last exercise: when writing down an integer # on paper using standard decimal
notation, we need enough columns for all the digits of n (and perhaps one additional column for a “—" if

n < 0). Write down an expression indicating how many columns we need to represent n. (Hint: use the case
notation introduced in Definition 2.3, and be sure that your expression is well defined—that is, it doesn’t “generate any
errors”—for all integers n.)

What are the values of the following expressions?

2.51 202 mod 2 2.54 —202 mod 10 2.57 17 mod 17

2.52 202 mod 3 2.55 17 mod 42 2.58 —42 mod 17

2.53 202 mod 10 2.56 42 mod 17 2.59 —42 mod 42

2.60 Observe the Python behavior of the % operator (the Python notation for mod) that’s shown in

Figure 2.13. The first two lines (3 mod 5 = 3 and —3 mod 5 = 2) are completely consistent with the definition
that we gave for mod (Definition 2.9), including its use for # mod k when 7 is negative (as in Example 2.6).
But we haven’t defined what #n mod k means for k < 0. Propose a formal definition of % in Python that’s
consistent with Figure 2.13.

What is the smallest positive integer n that has the following characteristics?

>>> 3 %5

>>> -3 %5
2
>>> 3 % -5
-2
>>> -3 % -5
-3

Figure 2.13:
Python’s imple-
mentation of %
(“mod”). (The
value of the expres-
sion written after

2.61 nmod2=0,nmod3=0,andnmod5=0 R

2.62 nmod2=1,nmod3=1,andnmod5=1 > 1s.sh0wn on the
next line.)

2.63 nmod2=0,nmod3=1,andnmod5=0

2.64 nmod3=2nmod5=3andnmod7 =5

2.65 nmod2=1,nmod3=2,nmod5=3,andn mod7 =4

2.66 (programming required) Write a program to determine whether a given positive integer » is prime

by testing all possible divisors between 2 and n — 1. Use your program to find all prime numbers less than

202.

2.67 (programming required) A perfect number is a positive integer n that has the following property: n

is equal to the sum of all positive integers k < # that evenly divide n. For example, 6 is a perfect number,
because 1, 2, and 3 are the positive integers less than 6 that evenly divide 6—and 6 = 1+2 + 3. Write a
program that finds the four smallest perfect numbers.

2.68 (programming required) Write a program to find all integers between 1 and 1000 that are evenly
divisible by exactly three different integers.
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Compute the values of the following summations and products.

2.69
2.70
2.71
2.72
2.73

Yo.6 2.74
Yo, 2 2.75
Yo, 2% 2.76
Yo i-2 2.77
Yo 3+2) 2.78

Compute the values of the following nested summations.

2.79
2.80
2.81
2.82
2.83
2.84
2.85

IRED Y BI(AY)
o X))
IR EDSRI(AY)
Y i
DA NIy
i Z?:i(i +)
T TG

I15.,6
M, #
H?:l 221'
[, i-2
T +2)
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2.3 Sets: Unordered Collections

History is a set of lies agreed upon.
Napoleon Bonaparte (1769-1821)

Section 2.2 introduced the primitive types of objects that we’ll use throughout the
book. We turn now to collections of objects, analogous to lists and arrays in program-
ming languages. We start in this section with sets, in which objects are collected with-
out respect to order or repetition. (Section 2.4 will address sequences, which are collec-
tions of objects in which order and repetition do matter.) The definitions and notation
related to sets are summarized in Figure 2.14.

Definition 2.15 (Sets)
A set is an unordered collection of objects.

Here are a few simple examples:

Example 2.22 (Some sets)

Here are three sets: the set of bits {0, 1}, the set of prime numbers {2,3,5,7,11,...},
and the set of basic arithmetic operators {+, —, -, / }. (We’ve written these sets using
standard notation by listing the objects in the set between curly braces { and }.)

Set membership—that is, the question is the object x one of the objects in the collection S?, for
a particular object x and a particular set S—is the central notion for sets:

Definition 2.16 (Set membership)
For a set S and an object x, the expression x € S is true when x is one of the objects contained
in the set S. When x € S, we say that x is an element or member of S or, more simply, that x
isin S.
The expression x ¢ S is the negation of the expression x € S: thatis, x € Sis true

whenever x is not an element of S (and thus whenever x € S is false).

Example 2.23 (Some set memberships)

The integer 0 is an element of the set of bits, and + is in the set of basic arithmetic
operators. But 1 is not an element of the set of prime numbers, and 8 is not in the set
of bits.

A second key concept about a set is its cardinality, or size:

Definition 2.17 (Set cardinality)
The cardinality of a set S, denoted by |S|, is the number of distinct elements in S.

Sets are typi-

cally denoted by
uppercase let-

ters (generically
S,T,U,A,B,...), of-
ten by a mnemonic
letter: S for a set of
students, D for a
set of documents,
etc. As we saw,

the common sets
from mathematics
defined in Sec-
tion 2.2.2 are often
written using a
“blackboard bold”
font: Z, R, and Q.
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Example 2.24 (Some set sizes)
The cardinality of the set of bits is 2, because there are two distinct elements of that
set (namely 0 and 1).

The cardinality of the set S of prime numbers between 10 and 20 is |S| = 4: the four
elements of S are 11, 13,17, and 19.

Chapter 9 is devoted entirely to the apparently trivial problem of counting—given a
(possibly convoluted) description of a set S, find |S|—which turns out to have some
interesting and useful applications, and isn't as easy as it seems.

Taking it further: In this book, we will be concerned almost exclusively with the cardinality of finite sets,
but one can also ask questions about the cardinality of sets like Z or R that contain an infinite number

of distinct elements. For example, it’s possible to prove that |Z| = |Z=°|, which is a pretty amazing
result: there are as many nonnegative integers as there are integers! (And that’s true despite the fact that

every nonnegative integer is an integer!) But it’s also possible to prove that |Z| # |R|: ... but there are
more real numbers than integers! More amazingly, one can use similar ideas to prove that there are fewer
computer programs than there are problems to solve, and that therefore there are some problems that
are not solved by any computer program. This idea is the central focus of the study of computability and
uncomputability. See Section 4.4.4 and the discussion on p. 937.

2.3.1 Building Sets from Scratch

There are two standard ways to specify a set “from scratch”: by simply listing each of
the elements of the set, or by defining the set as the collection of objects for which a
particular logical condition is true.

SET DEFINITION VIA EXHAUSTIVE ENUMERATION
A set can be specified using an exhaustive listing its elements—that is, by writing a
complete list of its elements inside the curly braces { and }. Here are a few examples:

Example 2.25 (Some exhaustively enumerated sets)
e The set of even prime numbers is {2}.

set membership | x € S x is one of the elements of S
cardinality S| the number of distinct elements in the set S
set enumeration | {x1,xa,..., %} the set containing elements x1,xy, ..., Xk
set abstraction {xeU:Px)} the set containing all x € U for which P(x) is true;
U is the “universe” of candidate elements
empty set {}oro the set containing no elements
complement ~Si={xelU:x ¢S} the set of all elements in the universe U that aren’t in S;
U may be left implicit if it’s obvious from context
union SUT:={x:xe€SorxeT} the set of all elements in either S or T (or both)
intersection SNT:={x:xeSandx € T} | thesetof all elementsin both Sand T
set difference S—T:={x:xecSandx ¢ T} | thesetofall elementsin SbutnotinT
set equality S=T every x € Sisalsoin T, and every x € T'is alsoin S
subset SCT every x € Sisalsoin T
proper subset sScT SCTbutS#T
superset SOT every x € Tisalsoin S
proper superset | SO T SOTbutS#T
power set 2(S) the set of all subsets of S

Figure 2.14: A
summary of set
notation.
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* The set of prime numbers between 10 and 20 is {11,13,17,19}.

 The set of 2-digit perfect squares is {81, 64, 25,16, 36,49}.

* The set of bits is {0,1}.

* The set of Turing Award winners between 1984 and 1987 inclusive is
{Niklaus Wirth, Richard Karp, John Hopcroft, Robert Tarjan, John Cocke}.

Taking it further: The Turing Award is the most prestigious award given in computer science—the “No-
bel Prize of CS,” it’s sometimes called. Niklaus Wirth developed a number of programming languages,
including Pascal. Richard Karp made major contributions to the study of computational complexity,

in particular with respect to the understanding of NP-Completeness. John Hopcroft and Robert Tar-

jan made massive early contributions in designing and analyzing algorithms and data structures for
problems. John Cocke was a leader in compilers and computer architecture and is often credited with
inventing the RISC architecture, which changed the way that computer chips and their corresponding
instruction sets were designed.

Recall that a set is an unordered collection, and thus the order in which the elements
are listed doesn’t matter when specifying a set via exhaustive enumeration. Any repe-
tition in the listed elements is also unimportant. For example:

Example 2.26 (The same set, three ways)

Theset {2+2, 2-2, 2/2, 2 — 2} is precisely identical to the set {0,1,4}, both of
which are precisely identical to {4,0,1}. Also note that [{2+2, 2-2, 2/2, 2 —-2}| =3;
despite there being four entries in the list of elements, there are only three distinct
objects in the set.

It’s important to remember that the integer 2 and the set {2} are two entirely different
kinds of things. For example, note that 2 € {2}, but that {2} ¢ {2}, the lone element in
{2} is the number two, not the set containing the number two.

SET DEFINITION VIA SET ABSTRACTION

Instead of explicitly listing all of a set’s elements, we can also define a set in terms of
a condition that is true for the elements of the set and that’s false for every object that
is not an element of the set. Defining a set this way uses set abstraction notation:

Definition 2.18 (Set Abstraction)
Let U be a set of possible elements, called the universe. Let P(x) be a condition (also called a
predicate) that, for every x € U, is either true or false. Then

{x e U:P(x)}

denotes the set of all objects x € U for which P(x) is true.

That is, for any candidate element y € U, the element y is in the set {x € U : P(x)}
when P(y) = True, and y ¢ {x € U : P(x)} when P(y) = False. (A fully proper version of
Definition 2.18 requires functions, described in Section 2.5.)

The colon in the
notation for set
abstraction is read
as “such that,” so
the set in Definition
2.18 would be read
“the set of all x in U
such that P of x.”
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Example 2.27 (Most of Example 2.25, redone)

e The set of even prime numbers is {x € Z>! : x is prime and x is even} .
o The set of 2-digit perfect squaresis {n € Z:/n € Zand 10 <n < 99} .
o The set of bitsis {b € Z: b* =b}.

For this set abstraction notation to meaningfully define a set S, we must specify the
universe U of candidates from which the elements of S are drawn. We will permit
ourselves to be sloppy in our notation, and when the universe U is clear from context
we will allow ourselves the liberty of writing {x : P(x)} instead of {x € U : P(x)}.

Taking it further: The notational sloppiness of omitting the universe in set abstraction will be a
convenience for us, and it will not cause us any trouble—but it turns out that one must be careful! In
certain strange scenarios when defining sets, there are subtle but troubling paradoxes that arise if we
allow the universe to be anything at all. The key problem can be seen in Russell’s paradox, named after
the British philosopher/mathematician Bertrand Russell; Russell’s discovery of this paradox revealed an
inconsistency in the commonly accepted foundations of mathematics in the early 20th century.

Here is a brief sketch of Russell’s Paradox. Let X denote the set of all sets that do not contain them-

a real number, so R ¢ IR. On the other hand, if we let T* denote the set of all sets, then T* ¢ X: because
T* is a set, and T* contains all sets, then T* € T* and therefore T* ¢ X.

Here’s the problem: is X € X? Suppose that X € X: then X € {S: S ¢ S} by the definition of X, and
thus X ¢ X. But suppose that X ¢ X; then, by the definition of X, we have X € X. Soif X € X then
X ¢ X,and if X ¢ X then X € X—but that’s absurd!

One standard way to escape this paradox is to say that the set X cannot be defined—because, to be
able to define a set using set abstraction, we need to start from a defined universe of candidate elements.
(And the set T* cannot be defined either.) The Liar’s Paradox, dating back about 3000 years, is a simi-
lar paradox: is “this sentence is false” true (nope!) or false (nope!)? In both Russell’s Paradox and the
Liar’s Paradox, the fundamental issue relates to self-reference; many other mind-twisting paradoxes are
generated through self-reference, too.”

Definition 2.18 lets us write {x € U : P(x)} to denote the set containing exactly those
elements x of U for which P(x) is True. We will extend this notation to allow ourselves
to write more complicated expressions to the left of the colon, as in the following ex-
ample:

Example 2.28 (2-digit perfect squares, again)
We can write the set of 2-digit perfect squares as {x?: x € Z and 10 < x?> < 99} or as
{x*:x€{4,56,7,89}} = {4,5,6%,7%,8,92}.

To properly define this extended form of the set-abstraction notation, we again need

the idea of functions, which are defined in Section 2.5.1. See Definition 2.47 for a proper

definition of this extended notation.

Taking it further: Almost all modern programming languages support the use of lists to store a collec-
tion of objects. While these lists store ordered collections, there are some very close parallels between
these lists and sets. In fact, the ways we’ve described building sets have very close connections to ideas
in certain programming languages like Scheme and Python; see p. 233 for some discussion.

THE EMPTY SET
One particularly useful set—despite its simplicity—is the empty set, also sometimes
called the null set:

selves: thatis, let X := {S: S ¢ S}. For example, {2} € X because {2} ¢ {2}, and R € X because R is not

For more on these
and other para-
doxes, see

3R. M. Sainsbury.
Paradoxes. Cam-
bridge University
Press, 3rd edition,
2009.
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Definition 2.19 (The empty set &)
The empty set, denoted {} or @, is the set that contains no elements.

The definition of the empty set as { } is an exhaustive listing of all of the elements of
the set—though, because there aren’t any elements, there are no elements in the list.

Alternatively, we could have used the set abstraction notation to define the empty
set, as @ = {x : False}. This definition may seem initially confusing, but it’s in fact a
direct application of Definition 2.18: the condition P for this set is P(x) = False (that
is: for every object x, the value of P(x) is False), and we’ve defined & to contain every
object y such that P(y) = True. But there isn’t any object y such that P(y) = True—
because P(y) is always false—and thus there’snoy € {x : P(x)}.

Notice that, because there are zero elements in @, its cardinality is zero: in other
words, |@| = 0. One other special type of set is defined based on its cardinality; a sin-
gleton set is a set S that contains exactly one element—that is, a set S such that |S| = 1.

2.3.2  Building Sets from Other Sets

There are a number of ways to create new sets from two given sets A and B. We will
define these operations formally, but it is sometimes more intuitive to look at a more
visual representation of sets called a Venn diagram, which are drawings that represent
sets as circular “blobs” that contain points (elements), enclosed in a rectangle that
denotes the universe.

Example 2.29 (Venn diagram of odds and primes)
LetU := {1,2,...,10}. Let P := {2,3,5,7} denote the set of primes in U, and let
O :={1,3,5,7,9} denote the set of odd numbers in U.

A Venn diagram illustrating these sets is shown in Figure 2.15: 3,5, and 7 are
elements of both P and O; 2 is in P but not O; 1 and 9 are in O but not P; and 4, 6, and
8 are in neither P nor O.

We will now define four standard ways of building a new set in terms of one or two
existing sets: complement, union, intersection, and set difference.

Definition 2.20 (Set complement)

The complement of a set A with respect to the universe U, written ~A (or sometimes A), is
the set of all elements not contained within A. Formally, ~A := {x € U : x ¢ A} . (When the
universe is obvious from context, we will leave it implicit.)

Figure 2.16 shows a Venn diagram illustrating the complement of A.
For example, if the universe is {1,2,...,10}, then ~ {1,2,3} = {4,5,6,7,8,9,10} and
~{3,4,5,6} ={1,2,7,8,9,10}.

Venn diagrams
are named after
the 19th-century
British logician/
philosopher John
Venn.

Figure 2.15: A Venn
diagram for the set
O of odd numbers
and the set P of
prime numbers
between 1 and 9.

u

AQ
Figure 2.16: The
complement of a
set A. The shaded
region represents
the set ~A with

respect to the
universe U.
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Definition 2.21 (Set union)

The union of two sets A and B, denoted A U B, is the set of all elements in either A or B (or
both). Formally, AUB := {x : x € Aorx € B}. Analogously to summation and product
notation (Y and T]), we will sometimes write |Ji_, S; to denote Sy U Sy U - - - US,,.

Figure 2.17 shows a Venn diagram illustrating the union of A and B.
For example, {1,2,3} U {3,4,5,6} = {1,2,3,4,5,6}.

Definition 2.22 (Set intersection)

The intersection of two sets A and B, denoted A N B, is the set of all elements in both A and
B. Formally, ANB :={x :x € Aand x € B} . We will sometimes write (\}_; S; to denote
S51NSN---NSy,.

Figure 2.18 shows a Venn diagram illustrating A N B.
For example, {1,2,3} N {3,4,5,6} = {3}.

Definition 2.23 (Set difference)

The difference of two sets A and B, denoted A — B, is the set of all elements contained in the
set A but not in the set B. Formally, A— B := {x : x € Aand x ¢ B} . (Some people write
A\ B instead of A — B to denote set difference.)

Figure 2.19 shows a Venn diagram illustrating the set difference of A and B. Note that
A — B and B — A are different sets; both are illustrated in Figure 2.19. For example,
{1,2,3} — {3,4,5,6} = {1,2} and {3,4,5,6} — {1,2,3} = {4,5,6}.

In more complicated expressions that use more than one of these set operators, the
~ operator “binds tightest”—that is, in an expression like ~S U T, we mean (~S) U T
and not ~(S U T). We use parentheses to specify the order of operations among N, U,
and —. Here’s a slightly more complicated example that combines set operations:

Example 2.30 (Combining odds and primes)

Problem: As in Example 2.29, define U := {1,2,...,10}, theset P := {2,3,5,7} of
primes in U, and the set O := {1,3,5,7,9} of odd numbers in U. What are the
following sets?

1. PN~O
2. ~(PUO)
3. ~P—-~0O
Solution: For each part, we simply plug in the definitions:

1. The set P N ~O is the set of all prime numbers that are also not odd.
PN~0={235"7}n~{1,3,57,9}
={2,3,5,7}n{2,4,6,8,10}
={2}.

S

Figure 2.17: The
union A U B of two
sets A and B.

.

Figure 2.18: The
intersection A N B of
sets A and B.

clls

Figure 2.19: The
difference of two
sets A and B. The
shaded region

in the first panel
represents the set
A — B, and the
shaded region in
the second panel
represents B — A.
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2. The set ~(P U O) consists of everything that is not an element of P U O—that is,
~(P U O) contains only nonprime even numbers.

~(PUO) =~({2,3,5,7} U{1,3,5,7,9})
=~{1,2,3,5,7,9}
= {4,6,8,10}.

3. The set ~P — ~O consists of all elements of ~P except those that are elements
of ~O—in other words, all nonprime numbers that aren’t nonodd, or, more
simply stated, all nonprime odd numbers:

~P—~0=~1{2,3,57} - ~{1,3,5,7,9}
= {1,4,6,8,9,10} — {2,4,6,8,10}
= {1,9}.

Of course, we can also combine more than two sets in A Bl A Bl A B
expressions using these set operators—for example,
AUBUC denotes theset {x :x € Aorx € Borx € C}.
We can use Venn diagrams to visualize set operations

C c c

that involve more than two sets; see Figure 2.20 for a few
(@ BUC)—-A (b) (A-B)NnC (0 AN(BUCQC)

examples.

Figure 2.20: Some
three-set Venn

ARITHMETIC OPERATIONS ON SETS .
diagrams.

We’ll end this subsection with a few pieces of notation that allow us to perform
mathematical operations on the elements of a set. In Section 2.2.7, we introduced
summation and product notation, so that we could write

n n
Z X; and H X;
i=1 i=1

torepresentx; +x,+ -+ +xzandxg-xp- -+ - x,. We will also sometimes wish to
represent the sum or product of the elements of a particular set (instead of a sequence
of values like x1, xp, ..., x4). It will also sometimes be handy to refer to the smallest or
largest element in a set.

Definition 2.24 (Sum, product, minimum, and maximum of a set)
Let S be a set. Then the expressions

E X, | | X, min x, and max x
xes xeS
x€eSs x€eS

respectively denote the sum of the elements of S, the product of the elements of S, the smallest
element in S, and the largest element in S.

For example, for the set S := {1, 2,4, 8}, we have that the sum of the elements of S is
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Y vesx = 15; the product of the elements of Sis [[,c5x = 64; the minimum of S is
min,cgx = 1; and the maximum of S is max,cgx = 8.

2.3.3 Comparing Sets

In the same way that two numbers x and y can be compared (we can ask questions
like: does x = y? is x < y? is x > y?), we can also compare two sets A and B. Here, we
will define the analogous notions of comparison for sets. We’ll begin by defining what
it means for two sets to be equal:

Definition 2.25 (Set equality)

Two sets A and B are equal, denoted A = B, if A and B have exactly the same elements. (In
other words, sets A and B are not equal if there’s an element x € A but x ¢ B, or if there’s an
elementy € Bbuty ¢ A.)

This definition formalizes the idea that order and repetition don’t matter in sets: for
example, the sets {4,4} and {4} are equal because there is no element x € {4,4} where
x ¢ {4} and there is no element y € {4} wherey ¢ {4,4}. This definition also implies
that the empty set is unique: any set containing no elements is identical to &.

Taking it further: Definition 2.25 is sometimes called the axiom of extensionality. (All of mathematics,

including a completely rigorous definition of the integers and all of arithmetic, can be built up from

a small number of axioms about sets, including this one.) The point is that the only way to compare

two sets is by their “externally observable” properties. For example, the following two sets are exactly

the same set: {x: x > 10 is an even prime number}, and {y : y is a country with a 128-letter name}.
(Namely, both of these sets are @.)

The other common type of comparison between two sets A and B is the subset rela-
tionship, which expresses that every element of A is also an element of B:

Definition 2.26 (Subset)
A set A is a subset of a set B, written A C B, if every x € A is also an element of B. (In other
words, A C B is equivalent to A — B = {}.)

For example, {1,3,5} C {1,2,3,4,5}, because 1 € {1,2,3,4,5}and 3 € {1,2,3,4,5}
and 5 € {1,2,3,4,5}.

Notice that {} C S for any set S: it’s impossible for there tobe anx € {} that
satisfies x ¢ S, because there is no element x € {} in the first place—and if there’s no
x € {} atall, then there’s certainly no x € {} such thatx ¢ S.

Definition 2.27 (Proper subset)
A set A is a proper subset of a set B, written A C B, if A C B and A # B. In other words,
A C B whenever A C Bbut B  A.

For example, let A := {1,2,3}. Then A C {1,2,3,4} and A C {1,2,3} and A C {1,2,3,4},
but A is not a proper subset of {1,2,3}.

When A C Bor A C B, we refer to A as the (possibly proper) subset of B; we can
also call B the (possibly proper) superset of A:

229
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Definition 2.28 (Superset and proper superset)
Let A be a set. A set B is a superset of A, written B O A, if A C B. The set B is a proper
superset of A, written B D A, if A C B.

Figure 2.21 illustrates subsets, proper subsets, supersets, and proper supersets. Here’s
an example involving these relationships:

Example 2.31 (Subsets and supersets)
Problem: LetA :={3,4,5} and B := {4,5,6}. Identify a set C satisfying the following
conditions, or state that the requirement is impossible to achieve and explain why.

1. ACCand C DO B
2. ADCand CCB
3. ADCand C DB

Solution: The first two conditions are achievable, but the third isn’t.
1. LetC:={3,4,5,6}; both A and B are (proper) subsets of this set.
2. We can choose C := {4,5}, because {4,5} C Aand {4,5} C B.
3. It's impossible to satisfy {3,4,5} 2 C and C 2 {4,5,6} simultaneously. If 6 € C

then we don’t have {3,4,5} 2 C,butif 6 ¢ C we don'thave C O {4,5,6}. We
can’'t have 6 € C and we can’t have 6 ¢ C, so we're stuck with an impossibility.

We’ll end the section with one last piece of terminology. Two sets A and B are called
disjoint if they have no elements in common:

Definition 2.29 (Disjoint sets)
Two sets A and B are disjoint if there is no x € A where x € B—in other words, if
AnB={}

For example, the sets {1,2,3} and {4, 5,6} are disjoint because {1,2,3} N {4,5,6} = {},
but the sets {2,3,5,7} and {2, 4, 6,8} are not disjoint because 2 is an element of both.
See Figure 2.22 for a diagram of two disjoint sets.

2.3.4 Sets of Sets

Just as we can have a list of lists in a programming language like Scheme or Java, we
can also consider a set that has sets as its elements. (After all, sets are just collections of
objects, and one kind of object that can be collected is a set itself.)

Example 2.32 (Set of sets of numbers)

The set A := {Z,R,Q} of the sets defined in Section 2.2.2 is itself a set. This set has
cardinality |A| = 3, because A has three distinct elements—namely Z and R and
Q. (Of course, all three of these elements of A are themselves sets, and each of these
three elements of A has infinite cardinality.)

Figure 2.21: Two
sets satisfying

A C Band, equiv-
alently, B O A.
The sets satisfy
ACB(and B D A)
if there’s at least
one element in
the darker shaded
region, and they
satisfy A = B if
there’s no element
in that region.

@ BC)
Figure 2.22: Disjoint
sets A and B.
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Example 2.33 (A set of smaller sets)

Consider the set B := {{},{1,2,3}}. Note that |B| = 2: B has two elements, namely {}
and {1,2,3}. Therefore {} € Bbecause {} is one of the two elements of B. How-
ever 1 ¢ B, because 1 isnot one of the two elements of B—thatis, 1 # {} and

1 #{1,2,3}—although 1 is an element of one of the two elements of B.

There are two important types of sets of sets that we will define in the remainder of
this section, both derived from a base set S.

PArRTITIONS

The first interesting use of a set of sets is to form a partition of S into a set of disjoint
subsets whose union is precisely S.

Definition 2.30 (Partition)

A partition of a set S is a set {A1, Ay, ..., Ax} of nonempty sets A1, Ay, ..., Ay, for some
k > 1, such that:

O A]UA2U"'UAk=S,'Cl1’ld
e forany distinct i,j € {1,...,k}, the sets A; and Aj are disjoint.

(a) The set S.
A useful way of thinking about a partition of a set S is that we’ve divided S up into

several (nonoverlapping) subcategories. See Figure 2.23 for an illustration of a partition
of a set 5. Here’s an example of one set partitioned many different ways:

Example 2.34 (Several partitions of the same set) (b) S partitioned
Consider the set S := {1,2,3,4,5,6,7,8,9,10}. Here are some different ways to parti- into 5 subsets.
tion S: Figure 2.23: A
visualization of
{{1,3,5,7,9},{2,4,6,8,10}} (evens and odds) g?:,:gg?;fni set
_ LI nonempty subsets
{{1,2,3,4,5,6,7,8,9},{10}} (one- and two-digit numbers) whose union equals
{{1,4,7,10},{2,5,8},{3,6,9}} (xmod3=0and =1and =2) S itself.
{1}, {2}, {3}, {4}, {5} {6}, {7}, {8}, {9} {10}} (all separate)
{{1,2,3,4,5,6,7,8,9,10}} (all together)

In each case, each of the 10 numbers from S is in one, and only one, of the listed sets
(and no elements not in S appear in any of the listed sets).

It’s worth noting that the last two ways of partitioning S in Example 2.34 genuinely
are partitions. For the partition {{1},{2},{3},{4},{5},{6},{7},{8},{9},{10}},
we have k = 10 different disjoint sets whose union is precisely S. For the partition
{{1,2,3,4,5,6,7,8,9,10}}, we have k = 1: there’s only one “subcategory” in the par-
titioning, and every x € S is indeed contained in one (the only one!) of these “subcat-
egories.” (And no two distinct subcategories overlap, because there aren’t even two
distinct subcategories at all!)
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Taking it further: One way to helpfully organize a massive set S of data—for example, students or
restaurants or web pages—is to partition S into small clusters. The idea is that two elements in the same
cluster will be “similar,” and two entities in different clusters will be “dissimilar.” (So students might be
clustered by their majors or dorms; restaurants might be clustered by their cuisine or geography; and
web pages might be clustered based on the set of words that appear in them.) For more about clustering,
see the discussion on p. 234.

PowEeRr seTs
Our second important type of a set of sets is the power set of a set S, which is the set
of all subsets of S:

Definition 2.31 (Power set)
The power set of a set S, written &(S), denotes the set of all subsets of S: that is, a set A is The power set of §

an element of P (A) precisely if A C S. In other words, (S) := {A: A C S}. is also occasionally
denoted by 2%, in
part because—

as we'll see in
Chapter 9—| 2(5)|
is 2I°|. The name
“power set” also

Here are some simple examples, and one example that’s a bit more complicated:

Example 2.35 (Some small power sets)

Here are the power sets of {0}, {0,1}, and {0,1,2}: comes from this
fact: the cardinality
20} = {{},{0}} of 2(S) is 2 to the

power of |S|.

20,1} = {{},{0},{1},{0,1}}
2({0,1,2}) = {{},{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}}

A quick check for the second of these examples: there are four elements in #({0,1}):
the empty set, two singleton sets {0} and {1}, and the two-element set {0, 1} itself,
because {0,1} C {0, 1} is a subset of itself.

Example 2.36 (Z(£({0,1})))
The power set of the power set of {0,1} is

2(2({0,1}))
=2{{}.{0},{1}.{0,1}})
{ } ’ 1 set with 0 elements
{{}},{{0}},{{1}},{{0,1}}, 4 sets with 1 element

{{}/ {0}}1{{}/ {1}},{{}, {0, 1}}, 6 sets with 2 elements
= {{0}, {13}, {{0}, {01} }, {{1}, {0, 1} },

{{0}, {1}, {0, 1} } P { {}, {1}, {0,1}}, 4 sets with 3 elements
{{}, {0}, {02} }, {{}, {0}, {1} },

{ {}, {0}/ {1} ’ {0, 1} } 1 set with 4 elements
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‘ CoMPUTER ScIENCE CONNECTIONS I

SeT BuiLDING IN LANGUAGES

Programming languages like Python, Scheme, or ML make heavy use of

lists and also allow higher-order functions (functions that take other functions

as parameters); if you have experience programming in these languages,
the set-construction notions from Section 2.3.1 may seem familiar. These

mechanisms for building sets in mathematical notation closely parallel built-in

functionality for building lists in programs in these languages:

® build a list from scratch by writing out its elements.

® build a list from an existing list using the function filter, which takes two

parameters (a list U, corresponding to the universe, and a function P) and
returns a new list containing all x € U for which P(x) is true.

® build a list from an existing list using the function map, which takes two

Unlike sets, the map function can

parameters (a list U and a function f) and returns a new list containing £ (x) cause repetitions in the stored list:

for every element x of U.

map(square, L) where L contains both
2 and —2 will lead to 4 being present

Python has filter and map built in; some versions of Scheme have filter and twice. (Some languages, including

map either built in or in a standard library. In Python, there’s even an explicit
list comprehension syntax to create a list without using filter or map, which
even more closely parallels the set-abstraction notation from Definitions 2.18
and 2.47. Here are some examples:

Python, also have syntax for sefs in-
stead of [ists, creating an unordered,
duplicate-free collection of elements.)

In set notation: In Python: In Scheme:
def even(x): return x % 2 == (define even?
def square(x): return x*x2 (lambda (x) (= (modulo x 2) 0)))
L= {1/2r4/8r16} def false(x): return False (define square (lambda (x) (* x x)))
M={xeL:x<10} (define false? (lambda (x) #f))
N={xeL:xiseven} : .
O= {x2 :xelL} L =11,2,4,8,16] (define L (list 1 2 4 8 16))
> : . M = [x for x in L if x < 10] ;33 no simple Scheme is analogous to M in Python
P={x*:x € Land xis even} N = filter(even, L) (define N (filter even? L))
Q={x €L :False} 0 = map(square, L) (define 0 (map square L))
P = [square(x) for x in L if even(x)] (define P (map square (filter even? L)))
Q = [x for x in L if false(x)] (define Q (filter false? L))
>>> L > L
[1, 2, 4, 8, 16] (1248 16)
L= {11214181 16} >>> M
M={1,24,8} [1, 2, 4, 8]
N ={2,4,8,16} >>> N >N
O={1,4,16,64,256} [2, 4, 8, 16] (2 4 8 16)
>>> 0 >0
P ={4,16,64,256} [1, 4, 16, 64, 256] (14 16 64 256)
Q= {} >>> P > P
[4, 16, 64, 256] (4 16 64 256)
>>> () > Q
[1 ()
While the technical details are a bit different, the basic idea underlying map
forms half of a programming model called MapReduce that’s become increas-
ingly popular for processing very large datasets.* MapReduce is a distributed- *Jeffrey Dean and Sanjay Ghemawat.
computing framework that processes data using two user-specified functions: MapReduce: simplified data processing

a “map” function that’s applied to every element of the dataset, and a “re-

duce” function that collects together the outputs of the map function. Imple-

on large clusters. Communications of the
ACM, 51(1):107-113, 2008.

mentations of MapReduce allow these computations to occur in parallel, on a

cluster of machines, vastly speeding processing time.
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‘ CoMPUTER ScIENCE CONNECTIONS I

CLUSTERING

Partitioning a set is a task that arises frequently in various applications,
usually with a goal like clustering a large collection of data points. The goal
is that elements placed into the same cluster should be “very similar,” and
elements in different clusters should be “not very similar.”> Why might we
want to perform clustering on a data set? For example, we might try to cluster
a set N of news articles into “topics” Cy, Cy, ..., Cx, where any two articles
x,y that are both in the same cluster C; are similar (say, with respect to the
words contained within them), butif x € Cjandy € C;4 then x and y are
not very similar. Or we might try to cluster the people in a social network
into communities, so that a person in community ¢ has a large fraction of her
friends who are also in community c. Understanding these clusters—and
understanding what properties of a data point “cause” it to be in one cluster
rather than another—can help reveal the structure of a large data set, and can
also be useful in building a system to react to new data. Or we might want to
use clusters for anomaly detection: given a large data set—for example, of user
behavior on a computer system, or the trajectory of a car on a highway—we
might be able to identify those data points that do not seem to be part of a
normal pattern. These data points may be the result of suspicious behavior
that’s worth further investigation (or that might trigger a warning to the
driver of the car that he or she has strayed from a lane).

Here’s one (vastly simplified) example application for clustering: speech
processing. Software systems that interact with users as they speak in natu-
ral language—that is, as they talk in English—have developed with rapidly
increasing quality over the last decade. Speech recognition—taking an audio
input, and identifying what English word is being spoken from the acoustic
properties of the audio signal—turns out to be a very challenging problem.
Figure 2.24 illustrates some of the reasons for the difficulty, showing a spec-
trogram generated by the Praat software tool.® In a spectrogram, the x-axis is
time, and the y-axis is frequency; a darkly shaded frequency f at time f shows
that the speech at time t had an intense component at frequency f. But we
can partition a training set of many speakers saying a collection of common
words into subsets based on which word was spoken, and then use the av-
erage acoustic properties of the utterances to guess which word was spoken.
Figure 2.25 shows the frequencies of the two lowest formants—frequencies of
very high intensity—in the utterances of a half-dozen college students pro-
nouncing the words bat and beat. First, the formants’ frequencies are shown
unclustered; second, they are shown partitioned by the pronounced word.
The centroid of each cluster (the center of mass of the points) can serve as a
prototypical version of each word’s acoustics.

@)

(@]
o 9 © O’beat 9 ©

e o 8 bat” e

You can read more about clustering, and
clustering algorithms, in a data-mining
book like

5 Jure Leskovec, Anand Rajaraman,

and Jeff Ullman. Mining of Massive
Datasets. Cambridge University Press,
2nd edition, 2014.

(L

;brh d i'! { i
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Figure 2.24: A spectrogram generated by
Praat of me pronouncing the sentence “I
prefer agglomerative clustering.” There
are essentially no acoustic correlates

to the divisions between words, which
is one reason speech recognition is so
difficult.

¢ Paul Boersma and David Weenink.
Praat: doing phonetics by computer.
http://www.praat.org, 2012. Version
5.3.22.

Figure 2.25: The frequencies of the
first two formants in utterances by six
speakers saying the words beat and bat.
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2.3.5 Exercises

LetH :={0,1,2,3,4,5,6,7,8,9,2,b,c,d, e, £} denote the set of hexadecimal digits.
2.86 Is6 € H? 2.88 Is a70e € H?
2.87 Ish € H? 2.89 What is |H|?

LetS := {0+0,0+1,14+0,1+1,0-0,0-1, 1-0, 1-1} be the set of results of adding any two bits together or
multiplying any two bits together.

2.90 Which of 0, 1, 2, and 3 are elements of S? 2.91 What is |S|?

LetT == {n€Z:0<n<20and n mod 2=nmod 3}. Let H := {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e, £} and
S:={0+0,0+1,1+0,1+1,0-0,0-1, 1-0, 1-1}, as in the previous blocks of exercises.

2.92 Identify at least one element of H that is not an element of T.
2.93 Identify at least one element of T that is not an element of H.
2.94 Identify at least one element of T that is not an element of S.
2.95 Identify at least one element of S that is not an element of T.
2.96 What is |T|?

Rewrite the following sets by exhaustively listing their elements:
2.97 {neZ:0<n<20and nmod5=nmod7}
2.98 {neZ:10 <n<30and n mod 5=nmod 7}

Let A :={1,3,4,5,7,8,9} and let B := {0,4,5,9}. What are the following sets?

2.99 ANB 2.101 A—B

2.100 AUB 2.102 B—A

Assume the universe is the set U = {0,1,2,...,9}. Define C := {0,3,6,9}, and let A := {1,3,4,5,7,8,9} and
B :={0,4,5,9} as before. What are the following sets?

2.103 ~B 2.105 ~C — ~B 2.107 ~(C = ~A)
2.104 AU~C 2.106 C—~C

2.108 In general, A — B and B — A do not denote the same set. (See Figure 2.26.) But your friends Evan
and Yasmin wander by and tell you the following. Let E denote the set of CS homework questions that Evan A B
has not yet solved. Let Y denote the set of CS homework questions that Yasmin has not yet solved. Evan and
Yasmin claim that E — Y = Y — E. Is this possible? If so, under what circumstances? If not, why not? Justify
your answer.

Let D and E be arbitrary sets. For each set given below, indicate which of the following statements is true: A B

® the given set must be a subset of D (for every choice of D and E);
o the given set may be a subset of D (for certain choices of D and E); or

e the given set cannot be a subset of D (for any choice of D and E). Figure 2.26: In

If you answer “must” or “cannot,” justify your answer (1-2 sentences). If you answer “may,” identify an example general, the sets
D1, Eq for which the given set is a subset of Dy, and an example Dy, E, for which the given set is not a subset of Dj. A—Band B—Aare
2109  DUE 2111  D-E 2113 ~D R

2.110 DNE 2.112 E-D

LetF := {1,2,4,8},let G := {1,3,9}, and let H := {0,5,6,7}. Let U := {0,1,2,...,9} be the universe. Which of the
following pairs of sets are disjoint?

2.114 Fand G 2.116 FNGand H

2.115 Gand ~F 2117 H and ~H

Let S and T be two sets, with n = |S| and m = |T|. For each of the following sets, state the smallest cardinality that the
given set can have. Give examples of the minimum-sized sets for each part. (You should give a family of examples—
that is, describe a smallest-possible set for any values of n and m.)

2.118 SuT 2.119 sNT 2.120 S-T

Repeat the last three exercises for the largest set: for two sets S and T withn = |S|and m = |T|, state the largest
cardinality that the given set can have. Give a family of examples of the largest-possible sets for each part.

2,121 SuT 2.122 sNT 2.123 S-T
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In a variety of CS applications, it's useful to be able to compute the similarity of two sets A and B. (More about one of
these applications, collaborative filtering, below.) There are a number of different ideas of how to measure set similarity,
all based on the intuition that the larger |A N B| is, the more similar the sets A and B are. Here are two basic measures
of set similarity that are sometimes used:

e the cardinality measure: the similarity of A and B is |A N B|.

e theJaccard coefficient” the similarity of A and B is }fﬂg}
2.124 Let A := {chocolate, hazelnut, cheese}; B := {chocolate, cheese, cardamom, cherries}; and

C := {chocolate }. Compute the similarities of each pair of these sets using the cardinality measure.

2.125 Repeat the previous exercise for the Jaccard coefficient.

Suppose we have a collection of sets Ay, A,, ..., Ay. Consider the following claim:

Claim: Suppose that the set A is the most similar set to the set A, in this collection (aside from A, itself).
Then Ay is necessarily the set that is most similar to A, (aside from A, itself).

2.126 Decide whether you think this claim is true for the cardinality measure of set similarity, and
justify your answer. (That is, argue why it must be true, or give an example showing that it’s false.)

2.127 Repeat the previous exercise for the Jaccard coefficient.

Taking it further: A collaborative filtering system, or recommender system, seeks to suggest new products
to a user u on the basis of the similarity of u’s past behavior to the past behavior of other users in the
system. Collaborative filtering systems are mainstays of many popular commercial online sites (like
Amazon or Netflix, for example). One common approach to collaborative filtering is the following. Let
U denote the set of users of the system, and for each user u € U, define the set S, of products that u has
purchased. To make a product recommendation to a user u € U:

(i) Identify the user v € U — {u} such that S, is the set “most similar” to S,.
(ii) Recommend the products in S, — S, to user u (if any exist).

This approach is called nearest-neighbor collaborative filtering, because the v found in step (i) is the other
person closest to 1. The measure of set similarity used in step (i) is all that’s left to decide, and either car-
dinality or the Jaccard coefficient are reasonable choices. The idea behind the Jaccard coefficient is that
the fraction of agreement matters more than the fotal amount of agreement: a {Cat’s Cradle, Catch 22}
purchaser is more similar to a {Slaughterhouse Five, Cat’s Cradle} purchaser than someone who bought
every book Amazon sells.

For each of the following claims, decide whether you think the statement is true for all sets of integers A, B, C. If it’s true
for every A, B, C, then explain why. (A Venn diagram may be helpful.) If it’s not true for every A, B, C, then provide an
example for which it does not hold.

2128  ANB=~(~AU~B) 2130 (A-B)UB-C)=(AUB)—C
2129  AUB=~(~AN~B) 2131 (B-A)NC-A)=BNC)-A
2.132 List all of the different ways to partition the set {1,2,3}.

The Jaccard coeffi-
cient is named after
the Swiss botanist
Paul Jaccard, from
around the turn of
the 20th century,
who was interested
in how similar

or different the
distributions of
various plants were
in different regions.

7P, Jaccard. Dis-
tribution de la
flore alpine dans le
bassin des dranses
et dans quelques
régions voisines.
Bulletin de la So-
ciété Vaudoise des
Sciences Naturelles,
37:241-272, 1901.

Consider the table of distances shown in Figure 2.27 for a set P = {Alice, ..., Frank} of 8 o
people. Suppose we partition P into subsets Sy, ...,Sg. Define the intracluster distance < =
as the largest distance between two people who are in the same cluster: Alice | 00 17
‘ Bob | 1.7 0.0

max gry\g)si distance between x and y | . Chatlie | 1.2 43

) . . ) ) David | 0.8 1.1
Define the intercluster distance as the smallest distance between two people who are in Foe | 72 43
different clusters: Frank | 29 34

min | min distance between x and y | .
ij#i | xESYES;

In each of the following questions, partition P into ...

2.133 ... 3 or fewer subsets so that the intracluster distance is < 2.0.

2.134 ...subsets Sy, ..., Sk so the intracluster distance is as small as possible. (You choose k.)

2.135 ...subsets Sy, ..., Sk so the intercluster distance is as large as possible. (Again, you choose k.)
2.136 Define S := {1,2,...,100}. Let W := {x € S:xmod 2=0},H := {x € S: x mod 3 =0}, and

O:=S—H—-W.Is {W,H,O} a partition of S?

What is the power set of each of the following sets?

2.137 {1,a} 2.138 {1} 2.139 ! 2.140 2(1)

T 0= x
3z ¥
S & & &£
1.2 08 72 29
43 11 43 34
00 78 52 13
78 00 21 19
52 21 00 19
1.3 19 19 00
Figure 2.27: Some
distances between
people.
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2.4 Sequences, Vectors, and Matrices: Ordered Collections

Watch out for the fellow who talks about putting
things in order! Putting things in order always means
getting other people under your control.

Denis Diderot (1713-1784)
Supplément au voyage de Bougainville (1796)

In Section 2.3, we introduced sets—collections of objects in which the order of those
objects doesn’t matter. In many circumstances, though, order does matter: if a Java
method takes two parameters, then swapping the order of those parameters will usu-
ally change what the method does; if there’s an interesting site at longitude x and lati-

tude y, then showing up at longitude y and latitude x won't do. In this section, we turn

to ordered collections of objects, called sequences. A summary of the notation related to
sequences is given in Figure 2.29.

Definition 2.32 (Sequence, list, and tuple)

A sequence—also known as a list or tuple—is an ordered collection of objects, typically
called components or entries. When the number of objects in the collection is 2, 3, 4, or n,
the sequence is called an (ordered) pair, triple, quadruple, or, n-tuple, respectively.

We'll write a sequence inside angle brackets, as in (Northfield, Minnesota) or (0, 1).
(Some people use parentheses instead of angle brackets, as in (128, 128, 0) instead of
(128,128,0).) For two sets A and B, we frequently will refer to the set of ordered pairs
whose two elements, in order, come from A and B:

Definition 2.33 (Cartesian product)
The Cartesian product of two sets A and B, denoted A X B, is the set

AXxB={{a,b):a€ Aandb € B}

containing all ordered pairs where the first component comes from A and the second from B.

For example, {0,1} x {2,3} is the set {(0,2), (0,3), (1,2), (1,3) }. We can also view any
particular cell in a 2-dimensional grid—Ilike a cell in a spreadsheet, or a square on a
chess board—as a sequence:

Example 2.37 (Chess positions)

A chess board is an 8-by-8 grid. Chess players use what'’s called “Algebraic nota-
tion” to refer to the columns (which they call files) using the letters a through h, and
they refer to the rows (which they call ranks) using the numbers 1 through 8. (See
Figure 2.28.)

Thus the square containing the white queen ¥ is (d, 1); the full set of squares of
the chess board is {a,b,c,d, e, f, g, h} x {1,2,3,4,5,6,7,8}; and the squares containing
knights—the & pieces (both white and black)—are {(b, 1), (g, 1), (b, 8), (g, 8) }. The
set of squares with knights could also be written as {b, g} x {1,8}.

The Cartesian prod-
uct is named after
René Descartes, the
17th-century French
philosopher/
mathematician.
(The English ad-
jectival form uses
only the cartes part
of his last name
Descartes.)

= N W N 01O N
ST - - -

Figure 2.28: The
squares of a chess
board, written
using Algebraic
notation.
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sequence/ordered tuple

Cartesian product

the set of all n-element sequences of S
vector

vector length, for x € R"

vector addition, for vectors x,y € R"
scalar product, fora € R and x € R”

(aq,a2,...,00)
AXxB:={{ab):aecAandb € B}
§":=5x 8§ x---x§(ntimes)

x € R"

= /i 2

x4y ={x1+Yy1, X2+ Y2, -, Xn+Yn)
ax = (a-x1,a-X3,...,0Xy)

dot product, for vectors x,y € R" xoy =YXy
matrix M e R™™
1 0
0 1
identity matrix amatrix I € R"" wherel =
0 0

scalar multiplication, for « € R and M € R"™*"
matrix addition, for M, M’ € R"*™

matrix multiplication, for A € R"*" and B € R"*?
matrix inverse, for M € R"*"

amatrix N € R™" where N;; := a - M

Here’s another example, about color representation on computers:

Example 2.38 (RGB color values)

The RGB color space represents colors as ordered triples, where each component is

an element of {0, 1,...,255}. RGB stands for red—green—blue; the three components

of a color c, respectively, represent how red, how green, and how blue the color c is.

Formally, a color ¢ is an element of {0,1,...,255} x {0,1,...,255} x {0,1,...,255}.
The order of these components matters; for example, the color (0, 0,255) is pure

blue, while the color (255, 0, 0) is pure red. See Figure 2.30 for a few examples.

Taking it further: An annoying pedantic point: we are being sloppy with notation in Example 2.38;

we only defined the Cartesian product for two sets, so when we write S x S x S we “must” mean

either S X (S x S) or (S x S) x S. We're going to ignore this issue, and simply write statements like
(0,1,1) € {0,1} x {0,1} x {0,1}—even though we ought to instead be writing statements like
(0,(1,1)) € {0,1} x ({0,1} x {0,1}). (A similar shorthand shows up in programming languages

like Scheme, where pairing—"cons”ing—a single element 3 with a list (2 1) yields the three-element list
(3 2 1), rather than the two-element pair (3 . (2 1)), where the second element is a two-element list.)

Beyond the “obvious” sequences like Examples 2.37 and 2.38, we’ve also already
seen some definitions that don’t seem to involve sequences, but implicitly are about
ordered tuples of values. One example is the rational numbers (see Section 2.2.2):

Example 2.39 (Rational numbers as sequences)

We can define the rational numbers (also known as fractions) as the set Q := Z x Z>9.
Under this view, a rational number would be represented as a pair (1,d) € Z x Z>°,
with a numerator n and a denominator 4.

For example, the fractions } and 202 would be represented as (1,2) and (202, 808),
respectively. (To flesh out the details of this representation, we also have to consider
reducing fractions to lowest terms, to establish the equivalence of fractions like (2, 4)
and (1,2). In Example 8.36, we'll formalize this equivalence.)

amatrix N € R"" where N;; := M;; +M{j
amatrix M € R"*? where M;; = YL, A;xBy;
amatrix M~! € R"*" where MM ~! = I (if any such M~! exists)

Figure 2.29: A sum-
mary of notation for
sequences, vectors,
and matrices.

violet (128,0,128)
indigo (74,0,130)
blue 0,0,255)

(
(
(
green (0,255,0)
(
(
(

yellow (255,255,0)

orange (255,128,0)
255,0,0)

red

Figure 2.30: A
few RGB values of
colors.
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We will often consider sequences of elements that are all drawn from the same set,
and there is special notation for such a sequence:

Definition 2.34 (Sequences of elements from the same set)
For a set S and a positive integer n, we write S to denote

S":=SxSx...x8S.
—_———

n times

Thus S" denotes the set of all sequences of length 1 where each component of the
sequence is an element the set S. For example, the RGB values from Example 2.38 o {1,3)
are elements of {0,1,..., 255}3, and {0, 1}3 denotes the set

{{0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0), (1,0,1),(1,1,0), (1,1,1) }.

This notation also lets us write R x R, called the Cartesian plane, as R2—the way
you might have written it in a high school algebra class. (See Figure 2.31.) Figure 2.31: Three

points in R2. The
first component
represents the x-
axis (horizontal)
position; the second
component rep-

. . s resents the y-axis
In certain contexts, sequences of elements from the same set (as in Definition 2.34) (vertical) position.

Taking it further: René Descartes, the namesake of the Cartesian product and the Cartesian plane, was
a major contributor in mathematics, particularly geometry. But Descartes is probably most famous as

a philosopher, for the cogito ergo sum (“I think therefore I am”) argument, in which Descartes—after
adopting a highly skeptical view about all claims, even apparently obviously true ones—attempts to
argue that he himself must exist.

are called strings. For a set 2, called an alphabet, a string over 3, is an element of 3" for
some nonnegative integer n. (In other words, a string is any element of |J,,c z>0 2".)
The length of a string x € 2" is n. For example, the set of 5-letter words in English
is a subset of {A,B, ..., Z}°. We allow strings to have length zero: for any alphabet

3, there is only one sequence of elements from 3, of length 0, called the empty string;
it's denoted by ¢, and for any alphabet 3, we have 30 := {¢}. When writing strings,
it is customary to omit the punctuation (angle brackets and commas), so we write
ABRACADABRA € {A,B,...,z}!" and 11010011 € {0,1}®.

2.4.1 Vectors

As we've already seen, we can create sequences of many types of things: we can view
sequences of letters as strings (like ABRACADABRA € {A,B,..., Z}ll), or sequences of
three integers between 0 and 255 as colors (like (119,136,153) € {0,1, ..., 255}3, offi-
cially called “light slate gray”). Perhaps the most pervasive type of sequence, though,
is a sequence of real numbers, called a vector.

Taking it further: Vectors are used in a tremendous variety of computational contexts: computer
graphics (representing the line-of-sight from the viewer’s eye to an object in a scene), machine learning
(a feature vector describing which characteristics a particular object has, which can be used in trying to
classify that object as satisfying a condition or failing to satisfy a condition), among many others. The
discussion on p. 248 describes the vector-space model for representing a document d as a vector whose
components correspond to the number of times each word appears in d.

Vectors and matrices (the topics of this and the next subsection) are the main focus of a math course
in linear algebra. In these subsections, we're only mentioning a few highlights of vectors and matrices;
you can find much more in any good textbook on linear algebra.
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Definition 2.35 (Vector)

A vector (or n-vector) x is a sequence x € IR", for some positive integer n. For a vector
x € R" and for any index i € {1,2,...,n}, we write x; to denote the ith component of x.
For example, (0,1), (1,0), and (\}2, \}2> are all vectors in IR?. For the vector x :=
(1/2,+/3/2), we have x; = 1/2 and x, = v/3/2.

Vectors are sometimes contrasted with scalars, which are just numbers: that is, a
scalar is an element of R. Vectors are also sometimes written in square brackets, so
we may see an n-vector x written as x = [x1,x0,...,%x,]. We may encounter vectors in
which the components are a restricted kind of number—for example, integers or bits.
Elements of {0,1}" are often called bit vectors or bitstrings.

Here’s an example of using vectors to compute distances between points:

Example 2.40 (Train stations in Manhattan)

Problem: Let’s (very roughly!) represent a location in Manhattan as a vector—
specifically, as a point (x,y) € IR? representing the intersection of xth Avenue
and yth Street. Define the walking distance between points p and g in Manhattan as
lp1 — 91| + |p2 — 92|: the number of east-west blocks between p and g plus the num-
ber of north—south blocks between p and 4. (Note that walking distance is different
from the straight-line distance between the points!)

1. The two major train stations in Manhattan are Penn Station, located ats :=
(8,33), and Grand Central Station, located at g := (4,42). What's the walking
distance between Penn Station and Grand Central?

2. Describe the set of all points that are closer (in walking distance) to Penn Sta-
tion than to Grand Central.

Solution: 1. The distance between s = (8,33) and g = (4,42) is |[s1 — 1| + [s2 — &2 =

|8 —4|+(33 —42| =4+9=13.
2. Let’s compute some points that are equidistant to the two stations. (Those

points are on the boundary of the region of points closer to g and the region
of points closer to s.) For example, a point (4, y) has distances |42 — y| and
4 + |y — 33| to the stations; these distances are both equal to 6.5 when y = 35.5.
More generally, let’s think about a point whose x-coordinate falls between 4 and
8. For any offset 0 < § < 4, the distance between the point (4 + 4, y) and the two
stations are ¢ + [42 — y| and 4 — 0 + |y — 33|. These two values are both equal to
6.5 when y = 35.5+ 4. (For example, when § = 4, then y = 39.5.) Thus the points
(4+0,35.5+0) = (4,35.5) and (4+4,35.5+4) = (8,39.5) are both equidistant to s
and g, as are all points on the line segment between them. (See Figure 2.32.)
The remaining cases of the analysis—figuring out which points with x-
coordinate less than 4 or greater than 8 are closer to s or g (the regions marked
with “?” in Figure 2.32)—are left to you in Exercises 2.184 and 2.185.

A warning for C or
Java or Python (or
...) programmers:
notice that our vec-
tors’ components
are indexed starting
at one, not zero. For
avectorx € R”,
the expression x; is
meaningless unless
i€{l,2,...,n}.In
particular, the ex-
pression xp doesn’t
mean anything.

(4,42)

(8,33)
23456789 10

(4, 2|

//
7/
4

-~

___Q'—_'—_'.—_

?

N\

I

&
I
I
I
I

®(8,33)
2345678910

Figure 2.32: Illustra-
tions of Manhattan
train stations. In
the second panel,
the dark shaded
points are closer (in
walking distance)
to (4,42) than to
(8,33). The white
shaded points are
closer to (8,33) than
to (4,42).
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Taking it further: The measure of walking distance between points that we used in Example 2.40 is
used surprisingly commonly in computer science applications—and, appropriately enough, it’s actually
named after Manhattan. The Manhattan distance between two points p,q € R" is defined as Y1; |p; — 4i|-
(We're summing the number of “blocks” of difference in each of the n dimensions; we take the absolute
value of the difference in each component because we care about the difference in each dimension rather
than which point has the higher value in that component.)

Here’s one more useful definition about vectors:

Definition 2.36 (Vector length)
The length of a vector x € R" is defined as ||x|| := /1 (x;)2.

For example, ||(2,8)|| = V22 + 82 = \/4+ 64 = \/68 ~ 8.246. If we draw a vector x € R2
in the Cartesian plane, then ||x|| denotes the length of the line from (0, 0) to x. (See
Figure 2.33.) A vector x € R" is called a unit vector if ||x|| = 1.

VECTOR ARITHMETIC

We will now define basic arithmetic for vectors: vector addition, which is performed
component-wise (adding the corresponding elements of the two vectors), and two
forms of multiplication—one for multiplying a vector by a scalar (also component-
wise) and one for multiplying two vectors together. We'll start with addition:

Definition 2.37 (Vector addition)

The sum of two vectors x,y € R", written x +y, is a vector z € R", where for every index
i€{1,2,...,n} wehave z; := x; +y;. (Note that the sum of two vectors with different sizes is
meaningless.)

For example, (1.1,2.2,3.3) + (2,0,2) = (3.1,2.2,5.3).

The first type of multiplication for vectors is scalar multiplication, when we multiply
a vector by a real number. As with vector addition, scalar multiplication acts on each
component independently, by rescaling each component by the same factor:

Definition 2.38 (Scalar product)
Given a vector x € R" and a real number o € R, the scalar product ax is a vector z € R”,

where z; = ax; for every index i € {1,2,...,n}.

For example, we have 3 - (1,2,3) = (3,6,9). Similarly —1.5- (1, —1) = (—1.5,1.5) and
0-(1,2,3,58)=(0,0,0,0,0).

The second type of vector multiplication, the dot product, takes two vectors as input
and multiplies them together to produce a single scalar as output:

Definition 2.39 (Dot product)
Given two vectors x,y € R", the dot product of x and y, denoted x »y, is given by summing
the products of the corresponding components:

x-y=;xi~yi.

Figure 2.33:

Two vector
lengths: ||(1,9)]]
is V/1+81 = /82,
and ||[(—3,-5)| is
V9 +25=1/34.

As with vector
addition, the
dimensions of the
vectors in a dot
product have to
match up: if x € R”
andy € R" are
vectors where

n #m,thenxeyis
meaningless.
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For example, (1,2,3)¢(4,5,6) =1-4+2-5+3-6=4+10+18 =32.
Intuitively, the dot product of two vectors measures the extent to which they point
in the “same direction.” Here’s an example with a few unit vectors:

Example 2.41 (Dot products of unit vectors)
Consider the unit vectors a := (0,1),b := (1,0), ¢ := (1/v/2,1/+/2),and d := (0, —1).

(See Figure 2.34.) Here is the dot product of ¢ with each of these vectors: 1 HA bq
cea ceb cec ced OH ) b
=C1'611+Cz'ﬂ2 :Cl'b1+C2‘b2 =C1-Cl+CCo =C1'd1+C2'd2 AN Ve
- \/2 0+ \/2 1= \/2 1+ ¢2 0= ¢12 ' ¢12 * ¢12 ' ¢12 - \/2 0+ \/2 1 Fi;lreZ.?)i: Fourw
N \/2' = \/2' =3+;=1 = \}2- unit vectors.

Here are two examples using dot products for simple applications:

Example 2.42 (Common classes)
Let C := (CS1,CS2,...,CS8) denote the list of all courses offered by a (somewhat
narrowly focused) university. For a particular student, let the bit vector u represent
the courses taken by that student, so that u; := 1 if the student has taken course c;
(and u; := 0 otherwise). For example, a student who’s taken only CS1 and CS8 would
be represented by x := (1,0,0,0,0,0,0,1),and a student who's taken everything
except CS3 would be represented by y := (1,1,0,1,1,1,1,1).

The dot product of two student vectors represents the number of common courses
that they’ve taken. For example, the number of common classes taken by x and y is

8
x-y=2xiyi=1~1+0~1+0~0+0~1+0~1+0-1+0-1+1-1
i=1
=14+0+0+0+0+0+0+1 =72,

Specifically, the two common courses taken by x and y are CS1 and CS8.

Example 2.43 (GPAs)
Let ¢ € R" be an n-vector where g; denotes the grade (measured on the grade point
scale) that you got in the ith class that you've taken in your college career. Let ¢ € R”
be an n-vector where c; denotes the number of credit hours for the ith class you took
in your college career. Then your grade point average (GPA) is given by *

For example, suppose your school gives grade points on the scale 4.0 = A 3 7=A-,
3.3 = B+, 3.0 = B, etc. Suppose you took CS 111 (6 credits), CS 201 (6 credits), and
Mbira Lessons (4 credits), and got grades of B+, A-, and B, respectively. Then

g =(3.3,3.7,3.0) and c = (6, 6,4), and your GPA is given by

gec 33:6+37-6+3.0-4 198+222+120 54

= = = _=23375.
21 161 6+6+4 16 16
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. Mg My ... My

2.4.2  Matrices Msy Mas ... Mom
If a vector is analogous to an array of numbers, then a matrix is analogous to : : N

My1 Mup .. My

a two-dimensional array of numbers:

Figure 2.35: A
Definition 2.40 (Matrix) matrix M.

An n-by-m matrix M is a two-dimensional table of real numbers containing n

rows and m columns. The (i, j)th entry of the matrix appears in the ith row and jth
column, and we denote that entry by M; j, as shown in Figure 2.35. Such a matrix M is an
element of R"*™, and we refer to M as having size or dimension n-by-m.

Here are a few very small example matrices: The plural of matrix
is matrices (which
rhymes with the
Example 2.44 (Three matrices) Wgr d “cheese”).

Here are three matrices. (The (2, 1)st entry is circled in each.)

51 5. &
A= B= 8| I= 1 0
@72 6 9 0o 0 1

In these examples, A is a 2-by-3 matrix, B is a 3-by-2 matrix, and I is a 3-by-3 matrix.

One can think of a two-dimensional array in a programming language as a one-
dimensional array of one-dimensional arrays. Similarly, if you prefer, you can think of
an n-by-m matrix as a

sequence of n vectors,
] 11111111111111111111
all of which are ele- 11111111111111011111
. 11111111111111001111
m .
ments of R™. This view 11111111111111000111
o . 00000000000000000011
of an n-by-m matrix is 11111111111111000111
asanelementof(l[{n)m' 117111111111111001111
) o 171111111111111011111
One simple application 11111111111111111111
. . a) A matrix. . .
of matrices is as an easy @) (b) A bitmapped image.

way to represent images: Figure 2.36: A

matrix representing
Example 2.45 (Bitmaps) a black-and-white
- . . L . bitmapped image,
A black-and-white image can be represented as a matrix with all entries in {0,1}: and the image.
each 1 entry represents white in the corresponding pixel; each 0 represents black. For

example, the matrix in Figure 2.36(a) could represent the image in Figure 2.36(b).

Taking it further: The picture shown in Figure 2.36 is a simple black-and-white image, but we can use
the same basic structure for grayscale or color images. Instead of just an integer in {0,1} as each entry
in the matrix, a grayscale pixel could be represented using a real number in [0, 1]—or, more practically, a
number in { 225 , 2})5 Sy ggg }. For color images, each entry would be an RGB triple (see Example 2.38).

These matrix-based representations of an image are often called bitmaps. Bitmaps are highly in-
efficient ways of storing images; most computer graphics file formats use much cleverer (and more
space-efficient) representations.
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Here are few other examples of the pervasive applications of matrices in computer science. A term—
document matrix can be used to represent a collection of documents: the entry M, of the matrix M stores
the number of times that keyword k appears in document d. An adjacency matrix (see Chapter 11) can
represent the page-to-page hyperlinks of the web in a matrix M, where M;; = 1if web page i has a
hyperlink to web page j (and M;; = 0 otherwise). A rotation matrix can be used in computer graphics to
re-render a scene from a different perspective; see p. 249 for some discussion.

A matrix M € R™*" is called square if m = n. For a square matrix M € R"*", we may
say that the size of M is n (rather than saying that its size is n-by-n). A square matrix
M is called symmetric if, for all indices i,j € {1,2,...,n}, we have M;; = M; ;. The main
diagonal of a square matrix M € IR"*" is the sequence consisting of the entries M; ; for
i=1,2,...,n For example:

Example 2.46 (Main diagonal)
Consider the 3-by-3 square matrix M shown in Figure 2.37. The main diagonal of M
is (M1,1,Ma2,M33) = (1,5,9).

One special square matrix that will arise frequently is the identity matrix, which has
ones on the main diagonal and zeros everywhere else (see Figure 2.38):

Definition 2.41 (Identity matrix)
The n-by-n identity matrix is the matrix I € R"*" whose entries satisfy

L i
YTV 0 i

Note that there is a different n-by-n identity matrix for every n > 1:

Example 2.47 (The smallest identity matrices)
Here are the identity matrices of size up to 5:

100 0 1 00 0O

{} 10 1 00 010 0 01000

1 [1 010 0 01 00
01 0 010

0 0 1 0 00 10

0001 0 00 01

As with vectors, we will need to define the basic arithmetic operations of addition
and multiplication for matrices. Just as with vectors, adding two n-by-m matrices or
multiplying a matrix by a scalar is done component by component.

Definition 2.42 (Matrix addition and scalar multiplication)
Given two matrices M, M' € R™™ and a real number o € R:

* The product oM is a matrix N € R™*™ where N; ; := aM;; for all indices
i€e{l,2,...,n}andj e {1,2,...,m}.

Figure 2.37: A
matrix M with the
entries of the main
diagonal circled.

1 0 0
0 1 0
0 0 1

Figure 2.38: The
identity matrix I.
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* The sum M+ M’ is a matrix N € R"™™ where Ny j :== M;; + M; ; for all indices
ie{l,2,...,n}andje{1,2,...,m}.

Again, just as with vectors, adding two matrices that are not the same size is meaning-
less. Here are some small examples:

Example 2.48 (Simple matrix arithmetic)
Consider the following matrices:

02 2 1 2 3 10 0
A=12 0 2 B:=10 0 6 I=10 10
2 20 0 0 4 0 0 1
Then we have:
[1 4 5] (4 8 12
A+B = (2 0 8 4B = |0 0 24
2 2 4 0 0 16
(3 2 2] (-3 2 2
A+3] = |2 3 2 A-3 = |2 -3 2
2 2 3 2 2 -3

MATRIX MULTIPLICATION

Multiplying matrices is a bit more complicated than the other vector/matrix op-
erations that we’ve seen so far. The product of two matrices is a matrix, rather than a
single number: the entry in the ith row and jth column of AB is derived from the ith
row of A and the j column of B. More precisely:

Definition 2.43 (Matrix multiplication)
The product AB of two matrices A € R™™ and B € R™*? is an n-by-p matrix M € R™"*P
whose entries are, forany i € {1,2,...n}andj € {1,2,...,p},

m
Mij =) AijBy,.
k=1

As usual, if the dimensions of the matrices A and B don’t match—if the number of
columns in A is different from the number of rows in B—then AB is undefined.

Example 2.49 (Multiplying some small matrices)
Let’s compute the product of a sample 2-by-3 matrix and a 3-by-2 matrix:

245
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Note that, by definition, the result will be a 2-by-2 matrix. Let’s compute its entries:

7 =
1 2 3| 1 2 1-7+2-1+3-9 1-8+2-3+3-0
9 0 4-7+5-1+6-9 4-8+5-3+6-0

[ 742427 8+6+0]

28+5+54 32+15+0
36 14] I
. roblem-solving tip:
_87 47 To help keep matrix
multiplication
For example, the 14 in (row #1, column #2) of the result was calculated by succes- straight, it may
be helpful to
compute the (i, j)th
column (8,3,0). Alternatively, here’s a visual representation of this multiplication: entry of AB by
simultaneously

_ ; tracing the ith row

36 of A with the index
= finger of your left

87 47 hand, and the jth
) . column of B with

- s1 T _ i the index finger of
(1 2 3] % 36 14 1 2 3] 36 14 your right hand.
: 3 | = : = . Multiply the two
@@@- @ 0 4 -@@@ &7 numbir}:; that you're
: - ) i i pointing at, and

add the result to a
More compactly, we could write matrix multiplication using the dot product from running tally; when
Definition 2.39: for two matrices A € R"*™ and B € R™*?, the (i,j)th entry of AB is you've traced the
whole row /column,
the running tally is
Be careful: matrix multiplication is not commutative—that is, for matrices A and (AB)ij.

sively multiplying the first matrix’s first row (1,2,3) by the second matrix’s second

Juy

o0 [B]. @] g
_456__@0_ RAES |4 5 6 |

r
Nel

OO LY

L 1
Nel —_ N

the value of A; (1..m) * B1..m),-

B, the values AB and BA are generally different! (This asymmetry is unlike numeri-
cal multiplication: for x,y € IR, itis always the case that xy = yx.) In fact, because
the number of columns of A must match the number of rows of B for AB to even be
meaningful, it’s possible for BA to be meaningless or a different size from AB.

Example 2.50 (Multiplying the other way around)
If we multiply the matrices from Example 2.49 in the other order, we get

7
8 12 3 39 54 69
8- =113 17 21
4 5 6
9 0 9 18 27
This matrix differs from the result in Example 2.49—it’s not even the same size!

You'll show in the exercises that, for any n-by-m matrix A, the result of multiplying A
by the identity matrix I yields A itself: that is, Al = A. You'll also explore the inverse of
a matrix A: that is, the matrix A~! such that AA~1 = I (if any such A~ exists).

Here’s another example of using matrices, and matrix multiplication, to combine
different types of information:
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Example 2.51 (Programming language knowledge)

Problem: Let A be an n-by-m matrix where A;; = 1 if student i has taken class j (and
Aij = 0 otherwise). Let B be an m-by-p matrix where B;; = 1 if class j uses pro-
gramming language k (and B;; = 0 otherwise). What does the matrix AB repre-
sent?

Solution: First, note that the resulting matrix AB has n rows and p columns; that is,
its size is (number of students)-by-(number of languages). For a student i and a
programming language k, we have by definition that

m
(AB);x =) A;Bjx
=1

J

m
= 0 otherwise

{ 1 if student i took class j and j uses language k

because0-0 = 0-1 = 1-0 = 0, so the only terms of the sum that are 1 occur
when both A;j (“student i took class j?”) and B; x (“class j uses language k?”) are
true (that is, 1). Thus (AB); x denotes the number of classes that use language k that
student i took.

Example 2.52 (A concrete example of Example 2.51)
Concretely, consider these 3 students, 5 courses, and 7 programming languages:

8 i< § )
3 5 3 S g
S L % g 3 3 s 2 f 2
. ?} § s 3 A A O =S T O o
§ § go %: § intro 0 1 0 0 0 0 0
Alice]0 1 1 1 1 datastruct |01 0 1 0 O O
A= Bb[1 1 0 1 O B:= orgiarch |0 0 1 0 1 0 O
Charie|1 0 0 0 1 proglang ({0 1 1 1 1 1 1
theory of comp i 0O 0 00O O 0 o ]
For these matrices, we have =
= E 3 T% + §
g & o & 2 & 3
Alie([0 2 2 2 2 1 1
AB = Bb[0 3 1 2 1 1 1
Caie|0 1 0 0 0 0 O
(For example, the Alice/C cell is computed by (0,1,1,1,1) « (0,0,1,1,0)—the dot

product of Alice’s row of A with C’s column of B—which has the value
0-0+1-0+1-1+1-1+1-0=2.

This entry reflects the fact that Alice has taken two classes that use C: organization/
architecture and programming languages.)

247
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‘ CoMPUTER ScIENCE CONNECTIONS I

THE VECTOR SPACE MODEL

Here’s a classic application of vectors, taken from information retrieval, the
subfield of computer science devoted to searching for information relevant to
a given query in large datasets. We start with a large corpus of documents—for
example, transcripts of all email messages that you've sent in your entire life.
(The word corpus comes from the Latin for “body”; it simply means a body
of texts.) Tasks involving the corpus might include clustering the documents
into subcollections (“which of my email messages are spam?”), or finding the
stored documents most similar to a given query (“find me the 10 emails most
relevant to ‘good restaurants in Chicago’ in my archives”).

The vector space model is a standard approach to representing text docu-
ments for the purposes of information retrieval. We choose a list of n terms
that might appear in a document. We then represent a document 4 as an n-
vector x of integers, where x; is the number of times that the ith term appears
in the document d. See Figure 2.39 for an example.

Because documents that are about similar topics tend to contain similar
vocabulary, we can judge the similarity of documents d and d’ based on “how
similar” their corresponding vectors x and x’ are:

e A first stab at measuring similarity between x and x’ is to compute the dot
product x e x'; this approach counts the number of times any word in d
appears in d’. (And if a word appears twice in d, then each appearance in d’
counts twice for the dot product.)

¢ This first approach has an issue in that it favors longer documents: a docu-
ment that lists all the words in the dictionary would correspond to a vector
[1,1,1,1,1,...]—which would therefore have a large dot product with all
documents in the corpus. To compensate for the fact that longer documents
have more words, we normalize these vectors so that they have the same
length, by using x/||x|| and x"/||x’|| to represent the documents. It turns
out that the dot product of the normalized vectors computes the cosine of
the angle between these representations of the documents.

® This second approach suffers from counting common occurrences of the
word the and the word normalize as equally indicative of the similarity
of documents. Information retrieval systems apply different weights to
different terms in measuring similarity; one common approach is called
term frequency—inverse document frequency (TFIDF), which downweights
terms that appear in many documents in the corpus.

It’s worth noting that real information retrieval systems are usually quite a lot
more complicated than we’ve discussed so far. For example, a document that
talks about sofas would be judged to be completely unrelated to a document
that talks about couches, which seems like a naive judgement. Handling syn-
onyms requires a more complicated approach, often based around analyzing
the term—document matrix that simultaneously represents the entire corpus.
(For example, if documents that discuss sofas use very similar other words to
documents that discuss couches—like change and cushion and nap—then we
might be able to infer something about sofas and couches.)®

di
do
ds
dq

do
ds

Three is one of the loneliest

numbers.

A one and a two and a one,

two, three.

One, two, buckle my shoe.
1

[1,0,1]

[2,2,1]

[1,1,0]

(a) Three documents translated
into vectors using the keywords

‘one’,

‘two’, and ‘three’.

‘three’

‘two’

(b) A plot of the three documents in R3

Figure 2.39: An example from the
vector-space model.

For much more on information retrieval,
see the excellent text

8 Christopher D. Manning, Prabhakar
Raghavan, and Hinrich Schiitze. Intro-
duction to Information Retrieval. Cam-
bridge University Press, 2008.
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‘ CoMPUTER ScIENCE CONNECTIONS I

Roration MATRICES

When an image is rendered (drawn) using computer graphics, we typically
proceed by transforming a 3-dimensional representation of a scene, a model
of the world, into a 2-dimensional image fit for a screen. The scene is typically
represented by a collection of points in IR3, each defining a vertex of a poly-
gon. The camera (the eye from which the scene is viewed) is another point in
IR3, with an orientation describing the direction of view. We then project the
polygons’ points into IR?. This computation is done using matrix multiplica-
tions, by taking into account the position and direction of view of the camera,
and the position of the given point. While a full account of this rendering al-
gorithm isn't too difficult, we’ll stick with a simpler problem that still includes
the interesting matrix computations.” We'll instead consider the rotation of a
set of points in R? by an angle 6. (The full-scale problem requires thinking
about the angle of view with two parameters, akin to “azimuth” and “ele-
vation” in orienteering: the direction 6 in the horizontal plane and the angle
¢ away from a straight horizontal view.) Suppose that we have a scene that
consists of a collection of points in R2. As an example, Figure 2.40 shows a
collection of hand-collected points in IR? that represent the borders of the state
of Nevada.

Suppose that we wish to rotate a point (x, y) by an angle 6 around the point
(0,0). You should be able to convince yourself with a drawing that we can ro-
tate a point (x,0) around the point (0,0) by moving it to (x cos ¢, x sin 6). More
generally, the point (x, y) becomes the point (x cos — ysin 6, xsin 6 + y cos 9)
when it’s rotated.

Suppose we wish to rotate the points (x1,¥1), ..., (¥, yn) by angle 6. Write
a matrix with the ith column corresponding to the ith point, and perform
matrix multiplication as follows:

cosf —sinf| [xq xp - Xy| |x1cos0—yysinf xpcosf —ypsind
sinf cos® | [y1 yo - yn| |x1sinf+y;cosh xpsind+1y,coshd
(The matrix R = cosf = sinf is called a rotation matrix.)

sinf  cos0

The result is that we have rotated an entire collection of points—arranged
in the 2-by-n matrix M—by multiplying M by this rotation matrix. In other
words, RM is a 2-by-n matrix of the rotated points. See Figure 2.41.

You can learn more about way that the
full-scale computer graphics algorithms
work in a textbook like

? John F. Hughes, Andries van Dam,
Morgan McGuire, David F. Sklar,
James D. Foley, Steven K. Feiner, and
Kurt Akeley. Computer Graphics: Princi-
ples and Practice. Addison-Wesley, 3rd
edition, 2013.

o) o)

C

W/

)

Figure 2.40: The 10 points in R? repre-
senting the boundaries of Nevada.

Xp oS0 — vy, sin 6
Xy sin 6 + yy, cos 0

Figure 2.41: Nevada, as above and
rotated by three different angles.
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2.4.3 Exercises

2141  Whatis {1,2,3} x {1,4,16}? 2143 Whatis {1} x {1} x {1}?
2142 Whatis {1,4,16} x {1,2,3}? 2144 Whatis {1,2} x {2,3} x {1,4,16}?
2.145 Suppose A x B ={(1,1),(2,1)}. What are A and B?

Let S :={1,2,3,4,5,6,7,8}, and let T be an unknown set. From the following, what can you conclude about T? Be as
precise as possible: if you can list the elements of T exhaustively, do so; if you can't, identify any elements that you can
conclude must be (or must not be) in T.

2.146 |SxT|=16and (1,2),(3,4) € Sx T 2.148 (SxT)N(T xS)={(3,3)}

2.147 SxT=0g 2.149 SxT=TxS§

Recall that Algebraic notation denotes the squares of the chess board as {a,b,c,d, e, f, g, h} x {1,2,3,4,5,6,7,8},
as in Figure 2.42. For each of the following questions, identify sets S and T such that the set of cells containing the

designated pieces can be described as S x T.
2.150 the white rooks () 2.152 the pawns (&, white or black)
2.151 the bishops (£, white or black) 2.153 no pieces at all

Write out the elements of the following sets.
2.154 {0,1,2}° 2.155 {a,B} x {c,0}* x {E} 2156 U2, {01}

— N WH OO

Let3, := {A,B,...,2} denote the English alphabet. Using notation from this chapter, give an expression that denotes
each of the following sets. It may be useful to recall that S* denotes the set of strings consisting of a sequence of k
elements from S, so 30 contains the unique string of length 0 (called the empty string, and typically denoted by e—or
by "" in most programming languages).

Figure 2.42: The
squares of a chess
board, written

2.157 The set of 8-letter strings. “Sing Algebraic
2.158 The set of 5-letter strings that do not contain any vowels {A,E, I,0,U}. notation.

2.159 The set of 6-letter strings that do not contain more than one vowel. (So GRITTY, QWERTY, and

BRRRRR are fine; but EEEEEE, THREAT, STRENGTHS, and A are not.)

2.160 The set of 6-letter strings that contain at most one type of vowel—multiple uses of the same vowel

are fine, but no two different vowels can appear. (So BANANA, RHYTHM, and BOOBOO are fine; ESCAPE and STRAIN

are not.)

Recall that the length of a vector x € R" is given by ||x|| = \/ " | x2. Considering the vectors a := (1,3), b := (2,—2),

c:=(4,0), and d := (—3,—1), state the values of each of the following:

2.161 [|a]l 2.164 a+b 2.167 [la|l + ||c|| and |ja +c||

2.162 ||B]| 2.165 3d 2.168 lall + ||b]| and [|la +b||

2.163 Ilell 2.166 2a+c—3b 2.169 3||d|| and ||34]||

2.170 Explain why, for an arbitrary vector x € R” and an arbitrary scalar a € R, ||ax|| = a||x||.

2171 For any two vectors x,y € R", we have ||x|| + ||ly|| > ||x +y||. Under precisely what circumstances

do we have ||x|| + |ly|| = ||x +y]| for x,y € R"? Explain briefly.

Still considering the same vectors a = (1,3), b := (2, —2), ¢ := (4,0), and d := (—3,—1), what are the following?

2.172 aeb 2.173 aed 2.174 cec

Recall that the Manhattan distance between vectors x,y € R" is defined as Y j-; |x; — y;|. The Euclidean distance

between two vectors x,y € R™ is /Y4 (x; — y;)2. What is the Manhattan/Euclidean distances between the following

pairs of vectors?

2.175 aand b 2.176 aand d 2177 bandc

Suppose that the Manhattan distance between two vectors x,y € R? is 1. Justify your answers: z

2.178 What's the largest possible Euclidean distance between x and y? 1

2.179 What's the smallest possible Euclidean distance between x and y? 0

2.180 What'’s the smallest possible Euclidean distance between x and y if x,y € R" (not just n = 2)? 12

Consider Figure 2.43, and sketch the following sets: 3 52 a0 1 2 s
2.181 {x € R?: the Euclidean distance between x and (0, 0) is at most 2}.

2.182 {x € R? : the Manhattan distance between x and (0, 0) is at most 2}. Figure 2.43: The

plane.
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In Example 2.40, we considered two train stations located at 44 44
points s := (8,33) and g = (4,42). (See Figure 2.44(a).) 22 ig
In that example, we showed that, for an offset § € [0,4], P (4,42 A ® (442)
the Manhattan distance between the point (4 + 6,y) and s 40 40
. . . 39 39
is smaller than the Manhattan distance between the point 38 /p 38
(4+6,y) and g when y < 35.5+46. 37 s 37
2.183 Show that the point (16,40) is closer to one 22 (/ 22
station under Manhattan distance, and to the other 34 34
under Euclidean distance. gz ®(8,33) 22 @ (8,33)
Let § > 0. Under Manhattan distance, describe the values of y 23845678510 S A A
for which the following point is closer to s than to g: (a) The unscaled version. (b) The scaled version.
2.184 (8+6,y)
2.185 (4—6,y) Figure 2.44: Man-
hattan train sta-
2.186 In the real-world island of Manhattan, the east-west blocks are roughly twice the length of the tions.
north-south blocks. As such, the more accurate picture of distances in the city is shown in Figure 2.44(b).
Assuming it takes 1.5 minutes to walk a north-south (up-down) block and 3 minutes to walk an east-west
(left-right) block, give a formula for the walking distance between (x, y) and Penn Station, at s := (8,33).
A Voronoi diagram—rnamed after the 20th-century Russian mathematician Georgy Voronoy—is a decomposi-
tion of the plane R? into regions based on a given set S of points. The region “belonging” to a point x € Sis
{y € R?:d(x, y) < mingesd(z, y)}, where d(-, -) denotes Euclidean distance—in other words, the region “belong-
ing” to point x is that portion of the plane that’s closer to x than any other point in S.
2.187 Compute the Voronoi diagram of the set of points {(0,0), (4,5), (3,1) }. That is, compute:
e the set of points y € IR? that are closer to (0,0) than (4,5) or (3,1) under Euclidean distance;
¢ the set of points y € IR? that are closer to (4,5) than (0,0) or (3,1) under Euclidean distance; and
e the set of points y € R? that are closer to (3,1) than (0,0) or (4,5) under Euclidean distance.
2.188 Compute the Voronoi diagram of the set of points {(2,2), (8,1), (5,8) }.
2.189 Compute the Voronoi diagram of the set of points {(0,7), (3,3), (8,1) }.
2.190 (programming required) Write a program that takes three points as input and produces a represen-
tation of the Voronoi diagram of those three points as output.
Taking it further: Voronoi diagrams are used frequently in computational geometry, among other areas
of computer science. (For example, a coffee-shop chain might like to build a mobile app that is able to
quickly answer the question What store is closest to me right now? for any customer at any time. Voronoi
diagrams can allow precomputation of these answers.)
Given any set S of 1 points, it’s reasonably straightforward to compute (an inefficient representation
of) the Voronoi diagram of those points by computing the line that’s equidistant between each pair of
points, as you saw in the last few exercises. But there are cleverer ways of computing Voronoi diagrams
more efficiently; see a good textbook on computational geometry for more."’ 1 Mark de Berg,
Marc van Krev-
Consider the following matrix: eld, Mark Over-
3.9 2 mars, and Otfried
0 9 8 Schwarzkopf. Com-
M= 6 2 0 putational Geometry.
7 5 5 Springer-Verlag,
702 4 2nd edition, 2000.
1 6 7
2.191 What size is M? 2.193 List every (i, /) such that M;; = 7.
2.192 What is M31? 2.194 What is 3M?

Considering the following matrices, what are the values of the given expressions (if they're defined)?

0 8 0 5 8 7 2 7
A=19 6 0 B=17 5 C=1(3 5 6 D=B ;} E={§ ﬂ F=E i (9)}
2 3 3 3 2 1 2 5
(If the given quantity is undefined, say so—and say why.)
2.195 A+C 2.198 A+A 2.201 AB 2.204 BC
2.196 B+F 2.199 —-2D 2.202 AC 2.205 DE

2.197 D+E 2.200 0.5F 2.203 AF 2.206 ED
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Consider the matrices

1 0 0 0 0 O
A=1[1 0 0 and B=10 1 0.
1 1 0 1 1 1

2.207 What is 0.25A + 0.75B? 2.208 What is 0.5A + 0.5B?
2.209 Identify two other matrices C and D with the same average—that is, such that {A, B} # {C, D} but
0.5A +0.5B = 0.5C +0.5D.

2.210 (programming required) A common computer graphics effect in the spirit of the last few exercises
is morphing one image into another—that is, slowly changing the first image into the second. There are
sophisticated techniques for this task, but a simple form can be achieved just by averaging. Given two
n-by-m images represented by matrices A and B—say grayscale images, with each entry in [0, 1] —we can
produce a “weighted average” of the images as AMA + (1 — A)B, for a parameter X € [0, 1]. See Figure 2.45.

Write a program, in a programming language of your choice, that takes three inputs—an image A, an
image B, and a weight A € [0,1]—and produces a new image AA + (1 — A)B. (You'll need to research an
image-processing library to use in your program.)

2.211 Let A be an m-by-n matrix. Let I be the n-by-n identity matrix. Explain why the matrix Al is
identical to the matrix A.

If M is an n-by-n matrix, then the product of M with itself is also an n-by-n matrix. We write matrix powers in the
normal way that we defined powers of integers (or of the Cartesian product of sets): MK = M - M - - - M, multiplied k
times. (MY is the n-by-n identity matrix 1.) What are the following? (Hint: M?* = (M¥)2.)

3 2 4 9
2 3 1 1 1 1 1 1
2.212 L 1} 2.213 L O} 2.214 L O} 2.215 L O}

Taking it further: The Fibonacci numbers are defined recursively as the sequencef; = 1,f, = 1, and
fa =fa—1+fa_2 for n > 3. The first several Fibonacci numbers are 1,1,2,3,5,8,13,.... As we’ll see in Exer-

cises 5.56 and 6.99, there’s a very fast algorithm to compute the nth Fibonacci number based on computing the nth Figure 2.45: Clubs
power of the matrix from Exercises 2.213-2.215. to hearts (0%, 20%,
40%, 60%, 80%, and
Let A by an n-by-n matrix. The inverse of A, denoted A, is also an n-by-n matrix, with the property that AA=! = 1. 100%).

There’s a general algorithm that one can develop to invert matrices, but in the next few exercises you'll calculate
inverses of some small matrices by hand.

-1
2.216 Note that 1 A I y+w . Thus 1l is the matrix oy , where the
2 1 z w 2x+z 2y+w 2 1 z w

following four conditions hold: x +z =1 and y+w = 0 and 2x + z = 0 and 2y + w = 1. Find the values of x, y,
w, and z that satisfy these four conditions.

Using the same approach as the last exercise, find the inverse of the following matrices:

1 2 0 1 10
2.217 {3 4} 2.218 L O} 2.219 {O 1}
2.220 Not all matrices have inverses—for example, L l} doesn’t have an inverse. Explain why not.

An error-correcting code (see Section 4.2) is a method for redundantly encoding information so that the information
can still be retrieved even in the face of some errors in transmission/storage. The Hamming code is a particular error-
correcting code for 4-bit chunks of information. The Hamming code can be described using matrix multiplication:
given a message m € {0,1}*, we encode m as mG mod 2, where

1 0 0 0 0 1 1
G- 01 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

(Here you should interpret the “mod 2” as describing an operation to each element of the output vector.) For example,
[1,1,1,11- G =11,1,1,1,3,3,3], so we'd encode [1,1,1,1] as [1,1,1,1,3,3,3] mod 2 = [1,1,1,1,1,1, 1]. What is the
Hamming code encoding of the following messages?

2.221 [0,0,0,0] 2.222 [0,1,1,0] 2.223 [1,0,0,1]
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2.5 Functions

There is no passion like that of a functionary for his
function.

Georges Clemenceau (1841-1929)

A function transforms an input value into an output value; that is, a function f takes
an arqument or parameter x, and returns a value f(x). Functions are familiar from both
algebra and from programming. In algebra, we frequently encounter mathematical
functions like f(x) = x + 6, which means that, for example, we have f(3) = 9 and
f(4) = 10. In programming, we often write or invoke functions that use an algorithm to
transform an input into an output, like a function sort—so that sort((3,1,4,1,5,9)) =
(1,1,3,4,5,9), for example.

In this section, we will give formal definitions of functions and of some terminol-
ogy related to functions, and also discuss a few special types of functions. (Functions
themselves are a special case of relations, and we will revisit the definition of functions
in Chapter 8 when we discuss relations.)

2.5.1 Basic Definitions

We start with the definition of a function itself:

Definition 2.44 (Function)

Let A and B be sets. A function f from A to B, written f : A — B, assigns to each input
value a € A a unique output value b € B; the unique value b assigned to a is denoted by f(a).
We sometimes say that f maps a to f(a).

Note that A and B are allowed to be the same set; for example, a function might have
inputs and outputs that are both elements of Z.

Here are two simple examples. First, we define a function nof for Boolean inputs
that maps True to False, and False to True:

Example 2.53 (Not function) x
The function not : {True, False} — {True,False} can be defined with the table in g;ll; z

Figure 2.46. Given an input x, we find the output value not(x) by locating x in the
first column of the table and reading the value in that row’s second column. Thus
not(True) = False and not(False) = True.

As another simple example, we can also define a function square that returns its input
multiplied by itself:

Example 2.54 (Square function)

The function square : R — R can be defined as square(x) := x*: for any input x € R,
the output is the real number x?. Thus, for example, square(8) = 64, because the
function square assigns the output 82 = 64 to the input 8.

253

| not(x)
False
True

Figure 2.46: The
function not.
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Note, too, that a functionf : A — B might have a set A of inputs that are pairs; for
example, the function that takes two numbers and returns their average is the function
average : R x R — R, where average({x,y)) := (x +y)/2. (We interpret R x R — R as
(R x R) — R.) When there is no danger of confusion, we drop the angle brackets and
simply write, for example, average(3, 2) instead of average((3,2)).

As we've already seen in Examples 2.53 and 2.54, the rule by which a function as-
signs an output to a given input can be specified either symbolically—typically via an
algebraic expression—or exhaustively, by giving a table describing the input/output
relationship. The table-based definition only makes sense when the set of possible
inputs is finite; otherwise the table would have to be infinitely large. (And it’s only
practical to define a function with a table if the set of possible inputs is pretty small!)

Here’s an example of specifying the same function in two different ways, once sym-
bolically and once using a table:

Example 2.55 (Doubling function)
Let’s define the function double that doubles its input value, for any input in

{0,1,...,7}. (That is, we are defining a function double : {0,1,...,7} — Z.) x| double(x)
We can write double symbolically by defining (1) g
2 4
double(x) :=2 - x. 3 6
4 8
To define double using a table, we specify the output corresponding to every one of 2 12
the 8 possible inputs, as shown in Figure 2.47. 7 14

Figure 2.47: The

The functions that we’ve discussed so far are all fairly simple, but even simple func- d"”b?? f‘émﬁ_on'
. .. , . specified using a
tions can have some valuable applications. Here’s an example of another simple func- table.

tion that can be used in compressing images so that they take up less space:

Example 2.56 (Reducing the colorspace of an image)
The pixels in a grayscale image are all elements of {0,1,...,255}. To reduce the space
requirements for a large image, we can consider a form of lossy compression (that is,
compression that loses some amount of data) by replacing each pixel with one chosen
from a smaller list of candidate colors. That is, instead of having 256 different shades
of gray, we might have 128 or 64 or even fewer shades.

Define quantize : {0,1,...,255} — {0,1,...,255} as follows:

26 if0<n<51

78 if52 <n <103
quantize(n) := 130 if 104 < n < 155

182 if 156 < n < 207

234 if 208 < n < 255.

We can apply quantize to every pixel in a grayscale image, and then use a much
smaller number of bits per pixel in storing the resulting image. See Figure 2.48 for
an example.
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Figure 2.48: A
visual repre-
sentation of the
color-mapping
function (each input
color in the left
column is assigned
the corresponding
color in the right
column), applied to
an example image.
In PNG format, the
file for the second
image takes up less
than 14% of the
space consumed by
the first image.

@) ];he function (b) Animage of a house. (c) The same image, compressed to use
quantize. only 5 shades of gray using the quantize
function.

Taking it further: A byte is a sequence of 8 bits. Using 8 bits, we can represent the numbers from
00000000 to 11111111—that is, from 0 to 255. Thus a pixel with {0,1,...,255} as possible grayscale
values in an image requires one byte of storage for each pixel. If we don’t do something cleverer, a mod-
erately sized 2048-by-1536 image (the size of an iPad) requires over 3 megabytes even if it’s grayscale.

(A color image requires three times that amount of space.) Techniques similar to the compression func-
tion from Example 2.56 are used in a variety of CS applications—including, for example, in automatic
speech recognition, where each sample from a sound stream is stored using one of only, say, 256 different
possible values instead of a floating-point number, which requires much more space.

DOMAIN AND CODOMAIN
The domain and codomain of a function are its sets of possible inputs and outputs:

Definition 2.45 (Domain/codomain)
For a function f : A — B, the set A is called the domain of the function f : A — B, and the
set B is called the codomain of the function f : A — B.

Let’s identify the domain and codomain from the previous examples of this section:

Example 2.57 (Some domains and codomains)
For the functions from Examples 2.53-2.56, we have:

function ‘ domain ‘ codomain
not (Example 2.53) {True, False} | {True, False}
square (Example 2.54) R R

double (Example 2.55) {0,1,...,7} z
quantize (Example 2.56) | {0,1,...,255} | {0,1,...,255}

Note that for three of these functions, the domain and codomain are actually the
same set; for the function double : {0,1,...,7} — Z, they’re different.
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When the domain and codomain are clear from context (or they are unimportant for
the purposes of a discussion), then they may be left unwritten.

Taking it further: This possibility of implicitly representing the domain and codomain of a function

is also present in code. Some programming languages (like Java) require the programmer to explicitly
write out the types of the inputs and outputs of a function; in some (like Python), the input and output
types are left implicit. In Java, for example, one would write an isPrime function with the explicit
declaration that the input is an integer (int) and the output is a Boolean (boolean). In Python, one would
write the function without any explicit type information.

boolean isPrime(int n) {
/* code to check primality of n */

}

def isPrime(n):
# code to check primality of n

But regardless of whether they’re written out or left implicit, these functions do have a domain (the set of
valid inputs) and a codomain (the set of possible outputs).

RANGE/IMAGE

For a function f : A — B, the set A (the domain) is the set of all possible inputs, and
the set B (the codomain) is the set of all possible outputs. But not all of the possible
outputs are necessarily actually achieved: in other words, there may be an element
b € B for which there’s no a € A with f(a) = b. For example, we defined square : R — R
in Example 2.54, but there is no real number x such that square(x) = —1. The range or
image defines the set of actually achieved outputs:

Definition 2.46 (Range/image)
The range or image of a function f : A — B is the set of all b € B such that f (a) = b for some
a € A. Using the notation of Section 2.3, the range of f is the set

{y € B : there exists at least one x € A such that f(x) =y} .
We'll start with the four functions defined earlier in this section:

Example 2.58 (Some ranges)
For the functions from Examples 2.53-2.56, we have:

function ‘ range

not (Example 2.53) {True, False}

square (Example 2.54) R=0

double (Example 2.55) {0,2,4,6,8,10,12,14}
quantize (Example 2.56) | {26,78,130,182,234}

For not, double, and quantize, the range is easy to determine: it’s precisely the set of
values that appear in the “output” column of the table defining the function.

For square, it’s clear that the range includes no negative numbers, because there’s
noy € Rsuchthaty? < 0.In fact, the range of square is precisely R=: for any
x € R2Y, there’s an input to square that produces x as output—specifically /x.

Here’s another example, for a slightly more complex function:



2.5. FUNCTIONS 257

Example 2.59 (The smallest divisor function)
Problem: Define a function sd : Z=? — Z=2 as follows. Given an input n € Z=2, the
value of sd(n) is the smallest integer k > 2 that evenly divides n. For example:

* 35d(2) = 2 (because 2 | 2);

® 35d(3) = 3 (because 3 |3 but 2 /3);

* sd(4) = 2 (because 2 | 4); and

o sd(121) = 11 (because 11 | 121 but 2 /121,3 f121,...,10 f121).

What are the domain, codomain, and range of sd?

Solution: The domain and codomain of sd are easy to determine: they are both Z=2.
Any integer n > 2 is a valid input to sd, and we defined the function sd as produc-
ing an integer k > 2 as its output. (The domain and codomain are simply written
in the function’s definition, before and after the arrow in sd : Z=? — Z=2.) The
range is a bit harder to see, but it turns out to be the set P of all prime numbers.
Let’s argue that P is the range of sd by showing that (i) every prime number p € P
is in the range of sd, and (ii) every number p in the range of P is a prime number.

(i) Letp € Z=?Dbe any prime number. Then sd(p) = p: by the definition of pri-
mality, the only integers than evenly divide p are 1 and p itself (and 1 > 2 isn’t
true!). Therefore every prime number p is in the range of sd, because there’s an
input to sd such that the output is p.

(if) Letp be any number in the range of sdi—that is, suppose sd(n) = p for some n.
We will argue that p must be prime. Imagine that p were instead composite—
that is, there is an integer k satisfying 2 < k < p that evenly divides p. But
then sd(n) = p is impossible: if p evenly divides n, then k also evenly divides n,
and k < p, so k would be a smaller divisor of n. (For example, if n were evenly
divisible by the composite number 15, then n would also be evenly divisible by 3
and 5—two factors of 15—so sd(n) # 15.) Therefore every number in the range
of sd is prime.

Putting together the facts from (i) and (ii), we conclude that the range of sd is
precisely the set of all prime numbers.

We will also introduce a minor extension to the set-abstraction notation from Sec-
tion 2.3.1 that’s related to the range of a function. (We used this notation informally
in Example 2.28.) Consider a functionf : A — Band asetU C A. We denote by
{f(x) : x € U} the set of all output values of the function f when it’s applied to the
elements x € U:

Definition 2.47 (Set abstraction using functions)
For a function f : A — Band a set U C A, we write {f(x) : x € U} as shorthand for the set
{b € B : there exists some u € U for which f (u) = b}.

Remember that order and repetition of elements in a set don’t matter, which means
that the set {f(x) : x € A} is precisely the range of the functionf : A — B.

Problem-solving

tip: Example 2.59
illustrates a useful
general technique
if we wish to show
that two sets A
and B are equal.
One nice way to
establish that A = B
is to show that

A C Band B C A.
That’s what we
did to establish
the range of sd in
Example 2.59:

e define P as the
set of all prime
numbers.

e define R as the
range of sd.

We showed in (i)
that every element
of Pisin R (that is,
P C R); and in (ii)
that every element
of Ris in P (that is,
R C P). Together
these facts establish
that R = P.
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A VISUAL REPRESENTATION OF FUNCTIONS

The table-based and symbolic representations of functions that we’ve discussed
fully represent a function, but sometimes a more visual representation of a function
is clearer. Consider a functionf : A — B. We can give a picture representing f by
putting the elements of A into one column, the elements of B into a second column,
and drawing an arrow from eacha € A to the value of f(a) € B. Notice that the
definition of a function guarantees that every element in the first column has one and only
one arrow going from it to the second column: if f : A — B is a function, then everya € A is
assigned a unique output f(2) € B. Here’s a simple example:

Example 2.60 (A picture of a function)
Figure 2.49 displays a function f : {1,...,5} — {10,...,15}, where f(1) = 10 and
f(2)=f4)=11and f(3) = 12 and f(5) = 13.

We can read the domain, codomain, and range directly from this picture: the do-
main is the set of elements in the first column; the codomain is the set of elements in
the second column; and the range is the set of elements in the second column for which
there is at least one incoming arrow. For instance, the range of f from Example 2.60 is
{10,11,12,13}. (There are no arrows pointing to 14 or 15, so these two numbers are in
the codomain but not the range of f.)

FuNcTION COMPOSITION

Suppose we have two functionsf : A — Band g : B — C. Given an inputa € A, we
can find f(a) € B, and then apply g to map f(a) to an element of C, namely g(f(a)) € C.
This successive application of f and g defines a new function, called the composition of
f and g, whose domain is A and whose codomain is C:

Definition 2.48 (Function composition)
For two functionsf : A — Band g : B — C, the function g of : A — C maps an element
a € Atog(f(a)) € C. The function g o f is called the composition of f and g.

Notice a slight oddity of the notation: g o f applies the function f first and the function
g second, even though g is written first.

Here’s an example of the functions that result from composing two simple functions
in four different ways:

Example 2.61 (Function composition, four ways)
Letf : R — Rand g : R — R be defined by f(x) := 2x + 1 and g(x) := x2.
1. The function g o f, given an input x, produces output
g(f(x) =g@x+1) = 2x+1)? =dx? +4x + 1.
2. The function f o g maps x to f(g(x)) = f(x?) =222 +1.
3. The function g o ¢ maps x to g(g(x)) = g(x2) = (x?)? = x*.
4. The function f o f maps x to f(f(x)) =f(2x+1) =2(2x+ 1)+ 1 = 4x + 3.

A f B
1]
2 b11
3 12
4 .13
5 14
N 15

Figure 2.49: A
picture of a function
f A — B,where
A={1,...,5} and
B={10,...,15}.
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As with many function-

related concepts, the visual i f B B g C i f B g C
representation of functions 1 10 101—p20 1 10 20
gives a nice way of thinking 2 M1 11 21 2 r11 21
about function compo- 3 12 1 23 3 12 2
sition: the function g o f N N N N

b 4 13 131524 4 131424
corresponds to the “short- I .
circuiting” of the pictures of i 14 14 i 14
the functions f and g. Here 15 15 15

is a small example of this
visualization:

Example 2.62 (Function composition, by picture)

Figure 2.50 shows functions f : A — B and g : B — C. Their composition g o f is given
by following two arrows in the diagram. For example, the value of (g o f)(1) is g(f (1)),
which is g(11) because f(1) = 11. And g(11) = 24 because of g’s arrow from 11 to 24.

2.5.2 Onto and One-to-One Functions

We now turn to two special categories of functions—onto and one-to-one functions—
that are distinguished by how many different input values (always at least one? never
more than one?) are mapped to each output value.

ONTO FUNCTIONS
A function f : A — B is onto if every possible output in B is, in fact, an actual output:

Definition 2.49 (Onto functions)
A function f : A — B is called onto if, for every b € B, there exists at least one a € A for
which f(a) = b. An onto function is also sometimes called a surjective function.

Alternatively, using the terminology of Section 2.5.1, a function f is onto if f’s codomain

equals f’s range. As an example, here are two of our previous functions, one of which
is onto and one of which isn’t:

Example 2.63 (An onto function)
The function not : {True, False} — {True, False} is onto: there’s an input value that

produces True (namely False), and there’s an input value that produces False (namely

True). Every element of the codomain is “hit” by not, so the function is onto.

Example 2.64 (A non-onto function)
The function quantize : {0,1,...,255} — {0,1,...,255} from Example 2.56 is not onto.
Recall that the only output values achieved were {26,78,130,182,234}. For example,

Figure 2.50: A
picture of functions
f:+A — Band

g : B — C, first
separately and then
pasted together.
The third panel
shows g o f, based
on successively
following two
arrows from the
second panel.
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then, there is no value of x for which quantize(x) = 42. Thus 42 is not in the range of
quantize, and therefore this function is not onto.

Here is a collection of a few more examples, where we’ll try to construct onto and
non-onto functions meeting a certain description:

Example 2.65 (Sample onto/non-onto functions)
Problem: Let A :={0,1,2} and B := {3,4}. Give an example of a function that satisfies
the following descriptions; if there’s no such function, explain why it’s impossible.

1. an onto functionf : A — B.
2. afunction g : A — B that is not onto.
3. anonto function i : B — A.

Solution: The first two are possible, but the third is not:

1. Define f(0) := 3, f(1) := 4, and f(2) := 4.

2. Define g(0) := 3, g(1) := 3, and g(2) := 3.

3. Impossible! A function 1 whose domain is {3,4} only has two output values,
namely /(3) and h(4). For a function whose codomain is {0, 1,2} to be onto, we
need three different output values to be achieved. These two conditions cannot
be simultaneously satisfied, so there is no onto function from B to A.

It may be easier to think about onto functions using the A B
visual representation that we just introduced: a function f f
is onto if there’s at least one arrow pointing at every element in 0 3
the second column. Figure 2.51 illustrates the functions from . A
Example 2.65.1 and Example 2.65.2; the fact that f is onto and / il
g is not onto is immediately visible. 2]

ONE-TO-ONE FUNCTIONS

An onto functionf : A — B guarantees that every element b € B is “hit at least
once” by f—that is, that b = f(a) for at least one a € A. A one-to-one functionf : A — B
guarantees that every element b € B is “hit at most once” by f:

Definition 2.50 (One-to-one functions)
A function f : A — B is called one-to-one if, for any b € B, there is at most one a € A such
that f(a) = b. A one-to-one function is also sometimes called an injective function.

(Terminologically, a one-to-one function sits in contrast to a many-to-one function, in
which many different input values map to the same output value. Thinking about
what a many-to-one function would mean may help to make the name “one-to-one”

more intuitive.)

Figure 2.51: An

onto function
£:{0,1,2} — {3,4}
and a non-

onto function
¢:{0,1,2} — {3,4}.
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Taking it further: One of the many places that functions are used in computer science is in designing
the data structure known as a hash table, discussed on p. 267. The idea is that we will store a piece of data
called x in a location f(x), for some function h called a hash function. We want to choose h to ensure that
this function is “not-too-many-to-one” so that no location has to store too much information.

As an example, we’ll consider two of our previous functions, double and quantize,
and evaluate whether they are one-to-one:

x | double(x)
Example 2.66 (A one-to-one function) (1) g
The function double : {0,1,...,7} — Z, defined in Example 2.55, is one-to-one. 2 4
By examining the table of outputs for the function (reproduced in Figure 2.52), we z g
see that no number appears more than once in the second column. Because every 5 10
element of the codomain is “hit” by double at most once, the function is one-to-one. ; ﬁ

Figure 2.52: The
Observe that double : {0,1,...,7} — Z is not onto, because there are elements of the double function.
codomain that are “hit” zero times—but it is one-to-one, because no element of the
codomain is hit twice. Here’s an example of a function that is not one-to-one:

Example 2.67 (A non—one-to-one function)

The function quantize : {0,1,...,255} — {0,1,...,255} from Example 2.56 is not
one-to-one. Recall that quantize(42) = 26 and quantize(17) = 26. Thus 26 is the output
for two or more distinct inputs, and therefore this function is not one-to-one.

As with the definition of onto, it may be easier to think A B A B
about one-to-one functions using our visual two-column 0 f 3 o g .
representation: a function f is one-to-one if there’s at most ]
one arrow pointing at every element in the second column. Here ! \><”’ 4 ! //”’ >
are two simple examples using this visual perspective: the 27 "5 27 1> 6
function f in Figure 2.53 is one-to-one, because no element 6 3 //

of B has multiple incoming arrows. But the function g is not
Figure 2.53: A one-
to-one function f
and a non—one-
to-one function g.

one-to-one, because 4 € B has two incoming arrows.

ONE-TO-ONE AND ONTO FUNCTIONS
One way of restating the definitions of onto and one-to-one functions is as follows.
Letf : A — B be a function. Then

* fisontoif, forevery b € B, wehave |[{a € A:f(a)=b}| > 1.
* fis one-to-one if, for every b € B, we have [{a € A : f(a) =b}| < 1.

Therefore a functionf : A — B that is both one-to-one and onto guarantees that

|{a € A:f(a)=b}| = 1—thatis, forany b € B, there is exactly one elementa € A
so that f(a) = b. (There is at most one such a because f is one-to-one, and at least one
such a because f is onto.) A function with both of these properties is called a bijection:
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Definition 2.51 (Bijection)
A function f : A — B is called a bijection if f is one-to-one and onto—that is, if
|{a € A:f(a)=b}| =1 foreveryb € B.

Here are two examples of bijections:

Example 2.68 (Two bijections)
The function not : {True, False} — {True, False} from Example 2.53 and the function
f IR — R defined by f(x) := x — 1 are both bijections.

For not, there’s exactly one input value whose output is True, namely False; and
there’s exactly one input value whose output is False, namely True.

Similarly, for f, for every b € IR, there is exactly one a such that f(a) = b: specifically,
the valuea =b +1.

Iff : A — Bis abijection, then every input in A is assigned by f to a unique value in
B. We can define a new function, denoted f ~!, that reverses this assignment—given
b € B, the function f ~1(b) identifies the a € A to which b was assigned by f. This
function f ! called the inverse of f:

Definition 2.52 (Function inverses)
Let f be a bijection. Then f~! : B — A is a function called the inverse of f, where f ~1(b) = a
whenever f(a) = b.

Here is an example of finding inverses of a few functions:

Example 2.69 (Three inverses)
Problem: What is the inverse of each of the following functions?

1. f:R — R, wheref(x) = 3.
2. square : RZ9 — R=0, where square(x) = x.
3. not : {True, False} — {True, False}.

Solution: 1. We can find the function f~!, the inverse of f, by solving the equation
y = 3 for x. We see that 2y = x. Thus the function f “1:R — Ris given by
f~(y) = 2y. For any real number x € R, we have that f(x) = 5 and f~1(}) = x.
(For example, f(3) = 1.5and f ~1(1.5) = 3.)

2. Notice that square : R=9 — R=Y is a bijection—otherwise this problem wouldn’t
be solvable!—because the domain and the codomain are both the equal to the
set of nonnegative real numbers. (For example, 3> = 9 and (—3)? = 9; if we
had allowed both negative and positive inputs, then square would not have been
one-to-one. And there’s no x € R such that x?> = —9; if we had allowed negative
outputs, then square would not have been onto.) The inverse of square is the
function square~'(y) = ,/y.

3. Note that not(not(True)) = not(False) = True and not(not(False)) = not(True) =
False. Thus the inverse of the function not is the function not itself!
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Iff : A — Bis a bijection, then, for any a € A, observe that applying f ~! to f(a) gives a
back as output: that is, f ~!(f(a)) = a. In other words, the function f ~! o f is the identity
function, defined by id : A — A where id(a) = a.

A bijectionf : A — B has exactly one arrow coming into A B A B
every element in the second column, and by definition it f f1
also has exactly one arrow leaving every element in the first 0 L 4 0 N -4
column. The inverse of f is precisely the function that results . s » 5
from reversing the direction of each arrow. (The fact that i
every right-hand column element has exactly one incoming 2] L6 2] L6
arrow under f is precisely what guarantees that reversing the N
direction of each arrow still results in the arrow diagram of a 37 7 37 7

function.)

Figure 2.54 shows an example of a bijection and its inverse illustrated in this man-
ner. This picture-based approach should help to illustrate why a function that is not
onto or that is not one-to-one fails to have an inverse. If f : A — B is not onto, then
there exists some element b* € B that’s never the value of f, so f ~!(b*) would be unde-
fined. On the other hand, if f is not one-to-one, then there exists bf such that f(a) = b
and f(a') = bt fora # a’; thus f ~1(b") would have to be both a and @, which is forbidden
by the definition of a function.

2.5.3 Polynomials

We'll turn now to polynomials, a special type of function whose input and output are
both real numbers, and where f(x) is the sum of powers of x:

Definition 2.53 (Polynomial)
A polynomial is a function f : R — R of the form

f(x)=ﬂ0+a1x+a2x2+...+akxk

where each a; € R and ay. # 0, for some k € Z=0. (More compactly, we can write this
function as f(x) = Yy aix'.)

The real numbers ag,ay, . .., ax are called the coefficients of the polynomial, and the values
g, a1x, x>, . .., ax* being added together are called the terms of the polynomial.

Here are a few examples:

Example 2.70 (Some polynomials)

Here are a few polynomials: f(x) = 7x,¢(x) = x?%2 — 201x'!, and h(x) = x* — 2.
The function h is graphed in Figure 2.55—in other words, for every x € R, the point
(x,h(x)) is drawn.

There are two additional definitions related to polynomials that will be useful. The
first is the degree of the polynomial p(x), which is the highest power of x in p’s terms:

Figure 2.54: A bijec-
tionf :{0,1,2,3} —
{4,5,6,7} and

its inverse
f1:{4,567} —
{0,1,2,3}.

Figure 2.55: A
graph of the poly-
nomial h(x) = x2 — 2.
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Definition 2.54 (Degree)
The degree of a polynomial f (x) = Z?:o apx' is the largest index i such that a; # 0—that is,
the highest power of x with a nonzero coefficient.

Here are a few examples:

Example 2.71 (Some degrees)

For the polynomials f(x) = x + x> and g(x) = x°, the degree of f is 3 and the degree
of g is 9. For the polynomial p(x) withag = 1,47 = 3,and a, = 0, the degree of pis 1,
because p(x) = 1+ 3x+0x% = 1+ 3x.

Some more examples of
polynomials with small
degrees (namely 0, 1, 2,
3, and 4) are shown in

Figure 2.56. / | \_/ / \J

The second useful

notion about a polyno— (a) Degree 0. (b) Degree 1. (c) Degree 2. (d) Degree 3. (e) Degree 4.

mial p(x) is a root, which
Figure 2.56: Graphs
of some polynomi-
als of degree0, 1, 2,
Definition 2.55 (Roots) ‘ 3 and 4.

The roots of a polynomial p(x) are the values in the set {x € R : p(x) = 0}.

is a value of x where the graph of p crosses the x axis:

Here are a few simple examples:

Example 2.72 (Some roots)
The roots of the polynomial f(x) = x + x> are 0 and —1. For the polynomial g(x) = x?,
the only root is 0.

A useful general theorem relates the number of different roots for a polynomial to
its degree: a polynomial p with degree k has at most k different values of x for which
p(x) = 0 (unless p is always equal to 0):

Theorem 2.3 ((Nonzero) polynomials of degree k have at most k roots)
Let p(x) be a polynomial of degree at most k. Then p has at most k roots unless p(x) is zero
for every value x € R.

When p(x) is zero for every value x € R, we sometimes write p(x) = 0 and say that p is
identically zero.

We won't give a formal proof of Theorem 2.3, but here’s one way to convince your-
self of the basic idea. Think about how many times a polynomial of degree k can
“change direction” from increasing to decreasing or from decreasing to increasing.
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Observe that a polynomial p must change directions between any two roots. (Draw a
picture!) A polynomial of degree 0 never changes direction, so it’s either always zero
or never zero. A polynomial p(x) of degree d > 1 can change directions only at a point
where its slope is precisely equal to zero—that is, a point x where the derivative p’ of
p satisfies p(x) = 0. Using calculus, we can show that the derivative of a polynomial
of degreed > 1is a polynomial of degree d — 1. The idea of a proof by mathematical
induction is to combine the above intuition to prove the theorem.

Taking it further: Here’s some more detailed intuition of how to prove Theorem 2.3 using a proof by
mathematical induction; see Chapter 5 for much more detail on this form of proof.

Think first about a degree-zero polynomial—that is, a constant function p(x) = a. The theorem is
clear for this case: either a = 0 (in which case p(x) = 0); ora # 0, in which case p(x) # 0 for any x. (See
Figure 2.56(a).)

Now think about a degree-1 polynomial—that is, p(x) = ax + b fora # 0. The derivative of p is a
constant function—namely p’(x) = a # 0. Imagine what it would mean for p to have two roots: as we
move from smaller x to larger x, at some point 7 we cross the x-axis, say from p(r —e) < 0to p(r +¢) > 0.
(See Figure 2.56(b).) In order to find another root larger than r, the function p would have to change from
increasing to decreasing—in other words, there would have to be a point at which p’(x) = 0. But we just
argued that a degree-zero polynomial like p'(x) that is not identically zero is never zero. So we can't find
another root.

Now think about a degree-2 polynomial—that is, p(x) = ax? + bx + ¢ for a # 0. After a root, p will have
to change direction to head back toward the x-axis. That is, between any two roots of p, there must be a
point where the derivative of p is zero: that is, there is a root of the degree-one polynomial p’(x) = 2ax + b
between any two roots of p. But p’ has at most one root, as we just argued, so p has at most two roots.

And so forth! We can apply the same argument for degree 3, then degree 4, and so on, up to any
degree k. (See Chapter 5.)

2.5.4 Algorithms

While functions are a valuable mathematical abstraction, computer scientists are fun-
damentally interested in computing things. So, in addition to the type of functions that
we’ve discussed so far in this section, we will also often talk about mapping an in-
put x to a corresponding output f(x) in the way that a computer program would, by
computing the value of f(x) using an algorithm:

Definition 2.56 (Algorithm)
An algorithm is step-by-step procedure to transform an input into an output.

In other words, an algorithm is function—but specified as a sequence of simple oper-
ations, of the type that could be written as a program in your favorite programming
language; in fact, these step-by-step procedures are even called functions in many pro-
gramming languages. (It's probably worth noting that it’s unusual for a book like this
one to introduce algorithms in the context of functions. But, because the point of an
algorithm really is to transform inputs into outputs, it can be helpful to think of an
algorithm as a description a function f that specifies how to calculate the output f(x)
from a given input x, instead of simply describing what the value f(x) is.)

We will write algorithms in pseudocode, rather than in any particular programming
language. In other words, we will specify the steps of the algorithm in a style that is
neither Python nor Java nor English, but something in between; it’s written in a style
that “looks” like a program, but is designed to communicate the steps to a human

265
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reader, rather than to a computer executing the code. We will aim to write pseudocode
that can be interpreted straightforwardly by a reader who has used any modern pro-
gramming language; we will always try to avoid getting bogged down in detailed
syntax, and instead emphasize trying to communicate algorithms clearly. Translating
the pseudocode for an algorithm into any programming language should be straight-
forward.

We will make use of the standard elements of any programming language in our
pseudocode: conditionals (“if”), loops (“for” and “while”), function definitions and
function calls (including recursive function calls), and functions returning values. We
will use the symbol “:=" to denote assignment and the symbol “=" to denote equality
testing, so that x := 3 sets the value of x to be 3, and x = 3 is True (if x is 3) or False
(if x is not 3). We assume a basic familiarity with these basic programming constructs
throughout the book.

We will spend significant energy later in the findMaxIndex(L):
book on proving algorithms correct (Chapters 4
and 5)—that is, showing that an algorithm com-

. maxIndex =1
: fori:=2ton:

putes the correct output for any given input—and 1
2
3: if L[i] > L[maxIndex] then
4
5

on analyzing the efficiency of algorithms (Chap-

ter 6). But here is one simple example to get us maxIndex := i

. return maxIndex

started:

Example 2.73 (Max finder)

An algorithm to find the index of the maximum element of a list is shown in Fig-
ure 2.57. (More properly, this algorithm finds the index of the first maximum ele-
ment.)

Our notation of

:= for assignment
and = for equality
testing is borrowed
from the program-
ming language
Pascal. In a lot of
other programming
languages, like

C and Java and
Python, assignment
is expressed using =
and equality testing
is expressed using

Input: A list L withn > 1 elements L[1],...,L[n].
Output: Anindex i such that L[i] is the maximum value in L.

Figure 2.57: An
algorithm to find
the index of the
maximum element
of a list.
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Hasu TaBLeEs aAND Hasa FuncTions

Consider the following scenario: we have a set S of elements that we must
store, each of which is chosen from a universe U of all possible elements. We
need to be able to answer the question “is x in S?” quickly. (We might also
have data associated with each x € S, and seek to find the associated data
rather than just determining membership.) Furthermore, the set S might
change over time, either by insertion of a new element or deletion of an ex-
isting element. How might we efficiently organize the data to support these
operations?

A hash table, one of the most frequently used data structures in computer
science, is designed to store a set like S, as follows:

e we define a table T[1...n].
e we choose a hash functionh : U — {1,...,n}.
e each element x € S is stored in the cell T[h(x)].

There are several different choices about how to handle collisions, when we try
to store two different elements in the same cell, but for simplicity let’s assume
that we store them all in that cell, in a list. For example, see the hash function
and hash table in Figure 2.58:

20 2 4

1 23 456 7 8 910

(b) The table, filled with 4, 2, 8, and 20.

h(x) := (x*> mod 10) + 1

1 23456 7 8 910
(a) A hash table with hash function A.

To insert a value x into the table, we merely need to compute k(x) and place
the value into the list in the cell T[h(x)]. Answering the question “is x stored in
the table?” is similar; we compute /(x) and look through whatever entries are
stored in that list. As a result, the performance of this data structure is almost
entirely dependent on how many collisions are generated—that is, how long
the lists are in the cells of the table.

A “good” hash function i : U — {1,...,n} is one that distributes the pos-
sible values of U as evenly as possible across the n different cells. The more
evenly the function spreads out U across the cells of the table, the smaller
the typical length of the list in a cell, and therefore the more efficiently the
program would run. (Figure 2.58(c) says that the above hash function is not a
very good one.) Programming languages like Python and Java have built-in
implementations of hash tables, and they use some mildly complex iterative
arithmetic operations in their hash functions. But designing a good hash
function for whatever kind of data you end up storing can be the difference
between a slow implementation and a blazingly fast one.

Incidentally, there are two other concerns with efficiency: first, the hash
function must be able to be computed quickly, and there’s also some clever-
ness in choosing the size of the table and in deciding when to rehash every-
thing in the table into a bigger table if the lists get too long (on average).
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1] 2]  [4] 3]
9 8 6 7
11 12 14 13
19 18 16 17
P1 P2 D4 3
29 P8 26 D7l
31 32 B4 33
39 38 B6 37
41 42 44 43
49 48 U6 47
(0] 51 52 [5] 54 53
10 59 58 [15 56 57
20 61 62 25 64 63
30 69 68 35 66 67
40 71 72 U5 74 73
50 79 78 155 76 77
60 81 82 65 84 83
70 189 88 [75 86 87
80 91 92 185 94 93
9099 989596 97

1 2 3 45 6 7 8 910
(c) The table filled with {0,1,...,99}.

Figure 2.58: A hash table, empty and
filled. If we're asked to store 4 and 2
and 20 and 8, they would go into cells
h(4) = (16 mod 10)+1 =7 and h(2) = 5
and k(20) = 1 and h(8) = 5. Panel (c)
shows every element from the universe
{0,1,...,99}; the fact that the number
of elements per cell is so variable means
that this hash function does a poor job
of spreading out its inputs across the
table.
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2.5.5 Exercises

Consider the function f : {0,1,...7} — {0,1,...7} defined by f(x) := (x* +3) mod 8.

2.224 What is f(3)? 2.226 For what x is f(x) = 3?
2.225 What is f(7)? 2.227 Redefine f using a table.
2.228 In Example 2.56, we introduced a function quantize for compressing 26 if0<n <51

a grayscale image to use only five different shades of gray. (See Figure 2.59 for a

reminder of the function.) Using basic arithmetic notation (including | | and/or [ ] if
appropriate), redefine quantize without using cases. quantize() := 130 if104 <n <155
182 if156 < n <207

78 if52<n <103

Let’s generalize the quantization idea from the previous exercise to be a two-argument furnc-

tion, so that quantize(n, k) takes an input color n € {0,1,...,255} and a number k of 234 if208 <n <255
“quanta.” (We insist that 1 < k < 256.) In other words, k is the number of different equally

spaced output values, and the input color n is translated to the closest of these k values. (The Figure 2.59: The
ranges associated with the quanta are only approximately equal because of issues of integrality: for example, in the function from

k = 5 case from Figure 2.59, the first four quanta correspond to 52 different colors; the last quantum corresponds to only Example 2.56.
256 — 52 - 4 = 48 different colors.)

2.229 What are the domain and range of quantize(n, k)?

2.230 Repeat Exercise 2.228 for quantize(n, k). You should ensure that quantize(, 5) yields the func-
tion from Figure 2.59. (Hint: first determine how big a range of colors should be mapped to a particular quantum,
rounding the size up. Then figure out which quantum the given input n corresponds to.)

2.231 A functionf : A — Bissaid to be c-to-1 if, for every output value b € B, there are exactly c
different values @ € A such thatf(a) = b. (These functions are useful in counting; see the Division Rule in
Theorem 9.11.) For what values of k is it possible to define a c-to-1 (for some integer c) quantizing function
that transforms into {0,1,...,255} into a set of k quanta?

2.232 (programming required) Implement quantization for image files, in a programming language of
your choice. Specifically, implement quantize(n, k), and apply it to every pixel of a given image. (You'll need
to research an image-processing library to use in your program.)

Many of the pieces of basic numerical notation that we’ve introduced can be thought of as functions. For each of the
following, state the domain and range of the given function.

2.233 fx) = x| 2.237 f(x) =xmod 2 2.241 fx) =1x]|

2.234 fx) = |x] 2.238 f(x) =2mod x 2.242 £(6) = (cos 0,sin 6)
2.235 flx)=2% 2.239 f(x,y) =xmod y

2.236 f(x) =log, x 2.240 f)=2x

2.243 LetT = {1,...,12} x {0,1,...,59} denote the set of numbers that can be displayed on a digital
clock in twelve-hour mode. Define a function add : T x ZZ% — T so that add(t, x) denotes the time that’s x
minutes later than ¢. Do so using only standard symbols from arithmetic.

Define the functions f(x) := x mod 10, g(x) = x + 3, and h(x) := 2x. What are the following? (That is, rewrite
the definition of the given function using a single algebraic expression. For example, the function g o g is given by the

definition (g o g)(x) = g(g(x)) = x +6.)

2244 fof 2246  fog 2248  hog 2250  fogoh
2245  hoh 2247  goh 2249  foh

Let f(x) := 3x + 1 and let g(x) := 2x. Identify a function h such that ...

2.251 ...gohandf are identical. 2.252 ...hogandf are identical.

Which of the following functions f : {0,1,2,3} — {0,1,2,3} are onto?

2.253 fl)=x 2.256 f0)=3,f1)=2,f2)=1,f(3)=0
2.254 f(x) =x> mod 4 2.257 f0)=1,f1)=2,f2)=1,f3)=2

2.255 f(x) =x* —xmod 4

Which of the following functions f : {0,1,2,3} — {0,1,...,7} are one-to-one?

2.258 f(x) =x? mod 8 2.261 f(x) = (x® +2x) mod 8

2.259 f(x) =x® mod 8 2.262 f0)=3,f1)=1,f2) =4,f(3) =1
2.260 f(x) = (x® —x) mod 8
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A heap is a data structure that is used to represent a collection of items, each of which has an associated
priority. (See p. 529.) A heap can be represented as a complete binary tree—a binary tree with no “holes” e
as you read in left-to-right, top-to-bottom order—but a heap can also be stored more efficiently as an array, e e
in which the elements are stored in that same left-to-right and top-to-bottom order. (See Figure 2.60.) To

do so, we define three functions that allow us to compute the index of the parent of a node; the index of the e e e

left child of a node; and the index of the right child of a node. (For example, the parent of the node labeled
8 in Figure 2.60 is labeled 9, the left child of the node labeled 8 is labeled 3, and the right child is labeled 5.)
Here are the functions: given an index i into the array, we define

Lofs]7]3]5]6]
1 2 3 4 5 6

i
arent(i) := left(i) := 2i right(?) :=2i+ 1.
P O {ZJ 0 Bht?) Figure 2.60: A

For example, the node labeled 8 has index 2 in the array, and parent(2) = 1 (the index of the node labeled maximum heap,

9); left(2) = 4 (the index of the node labeled 3); and right(2) = 5 (the index of the node labeled 5). as a tree and as an
2.263 Suppose that we have a heap stored as an array A[1...n]. State the domain and range of the array:
function parent. Is parent one-to-one?

2.264 State the domain and range of left and right for the heap as stored in A[1...#n]. Are left and right

one-to-one?

Give both a mathematical description and an English-language description of the meanings of the following heap-

related functions. Assume for the purposes of these questions that the array A is infinite (that is, don’t worry about the

possibility of encountering an i such that left(i) or right(i) is undefined).

2.265 parent o left 2.267 left o parent

2.266 parent o right 2.268 right o parent

What are the inverses of the following functions?

2.269 f:R — R, where f(x) = 3x + 1. 2.271 h:R20 — R21, where h(x) = 3%.
2.270 g:RZ% — R0, where g(x) = x3.

2.272 Why doesn’t the function f : {0,...,23} — {0,..., 11} where f(1) = n mod 12 have an inverse?

What are the degrees of the following polynomials?
2.273 p(x) =3x% +2x2 +x+0 2.275 p(x) = 4x* +x2 — (2x)?
2.274 p(x) = 93

Suppose that p and q are polynomials, both with degree 7. What are the smallest and largest possible degrees of the
following polynomials?

2276 f(x) =p(x) +q(x) 2278 f(x) =p(q(x)
2277 f(x) =p)-q(x)

Give an example of a polynomial p of degree 2 such that . ..

2.279 ... p has exactly 0 roots. 2.281 ... p has exactly 2 roots.
2.280 ... p has exactly 1 root.
2.282 The median of a list L of n numbers is the number in the “middle” of L in sorted order. Describe an

algorithm to find the median of a list L. (Don’t worry about efficiency.) You may find it useful to make use of
the algorithm in Figure 2.57.
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2.6 Chapter at a Glance

Booleans, Numbers, and Arithmetic

A Boolean value is True or False. The integers Z are {...,—3,-2,-1,0,1,2,3,...}. The
real numbers R are the integers and all numbers in between. The closed interval [a, b]
consists of all real numbers x where a < x < b; the open interval (a, b) excludes a and b.
The rational numbers Q are those numbers that can be represented as a/b for integers a
and b # 0. Here is some useful notation involving numbers:

e exponentiation: b*isb-b- --- -b, where b is multiplied k times;

¢ logarithms: log,, x is the number y such that b¥ = x;

absolute value: |x| is x for x > 0, and |x| = —x for x < 0;

e floor and ceiling: | x| is the largest integer n < x; [x] is the smallest integer n > x;

¢ modulus: n mod k is the remainder when 7 is divided by k.

If n mod d = 0, then d is a factor of n or evenly divides n, written d | n. If 2| n for a positive
integer n, then n is even (“has even parity”); otherwise n is odd. An integer n > 2is
prime if it has no positive integer factors other than 1 and n; otherwise n is composite.
(Note that 0 and 1 are neither prime nor composite.)

For a collection of numbers x1, Xy, . .., X, their sum x1 + xp + - - - + Xy, is written
formally as } /' ; x;, and their product x; - x5 - -+ - x, is written [T} ; x;.

Sets: Unordered Collections

A set is an unordered collection of objects called elements. A set can be specified by
listing its elements inside braces, as {x1,xp, ..., X, }. A set can also be denoted by

{x : P(x)}, which contains all objects x such that P(x) is true. The set of possible val-
ues x that are considered is the universe U, which is sometimes left implicit.

Standard sets include the empty set {} (also written @), which contains no elements;
the integers Z; the real numbers IR; and the booleans {True, False}. We write Z=0 =
{0,1,2,...} and 7<0 = {—1,-2,...}, etc. For a set A and an object x, the expression
x € A("xisin A”)is true whenever x is in the set A. (Soy € {x: P(x)} whenever
P(y) = True,and y € {x1,x;...,x,} whenever x; = y for some i.) The cardinality of a set
A, written |A|, is the number of distinct elements in A.

Given two sets A and B, the union of Aand Bis AUB = {x:x € Aorx € B}. The
intersection of Aand Bis ANB = {x:x € Aand x € B}. The set difference of A and
BisA—B = {x:x € Aand x ¢ B}. The complement of aset Ais ~A = U —A =
{x:x € Uand x ¢ A}, where U is the universe.

A subset of a set B is a set A such that every element of A is also an element of B;
this relationship is denoted by A C B. If A is a subset of B, then B is a superset of A,
written B D A. A proper subset of B is a set A that is a subset of Bbut A # B, written
A C B. Such a set B is a proper superset of A, written B O A. Two sets A and B are
disjoint it AN B = &. A partition of a set S is a collection of sets Ay, Ay, ..., Ay, where
A1 UAU---UAg = S and, for any distinct i and j, the sets A; and A; are disjoint.

The power set of a set A, written ?(A), is the set of all subsets of A.
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Sequences, Vectors, and Matrices: Ordered Collections
A sequence (or tuple, (ordered) pair, triple, quadruple, ..., n-tuple, ...) is an ordered col-
lection of objects called components or entries, written inside angle brackets. The set
AxB={(a,b):a€ Aandb € B} is the Cartesian product of sets A and B; the set A x B
contains all pairs where the first component comes from A and the second from B. For
aset S and a number n > 0, the set S" denotes the n-fold Cartesian product of S with
itself: S”" =S x S x ... x S, where S occurs n times in this product.

A vector (or n-vector) is an element of IR", for some positive integer n > 2. (An
element of R! = R is called a scalar.) A bit vector is an element of {0,1}". Vectors are
sometimes written in square brackets: x = [x1,xp,...,x,]. For a vector x, write x; to
denote the ith component of x. (But x; is meaningless unless i € {1,2,...,n}.) The size
or dimensionality of x € R" is n.

For a vector x € R" and a real number « € R, the scalar product ax is a vector where
(ax); = ax;. For two vectors x,y € R", the sum of x and y is a vector x + y, where
(x+y)i = x; +y;. The dot product of two vectors x,y € R"isxey = Y ' ; x;y;. Bothx +y
and x ¢ y are meaningless unless x and y have the same dimensionality.

An n-by-m matrix M is an element of (R")", which is also sometimes Miy Mip ... My,
written R"*"™. Such a matrix M has n rows and m columns, as in Fig- | M2 Maz o Mo
ure 2.61. A matrix M € R"*™ is square if n = m. For a size n, the identity - : : :
matrix is I € R"*" has ones on the main diagonal (the entries I;; = 1) and Muy Muz oo Mo
zeros everywhere else. Figure 2.61: A

Given a matrix M € R"*" and a real number o € IR, the matrix aM is specified by matrix.
(aM);; = aM;;. Given two matrices M, M" € IR"*™, the matrix M + M’ is specified by
(M+M');; = Mi;+M; . (The sum M + M’ is meaningless if M and M’ have different
dimensions.) The product of two matrices A € R"*" and B € R™*? is a matrix
AB € R"*? whose components are given by (AB);; = Yt_; A; ;B j. (More compactly,
(AB)ij = Ai1..m) * Ba..m),;-) If the number of rows in A is different from the number
of columns in B then AB is meaningless. The inverse of M is a matrix M~! such that
MM~ =T (if any such matrix M ~1 exists).

Functions

A functionf : A — Bmaps every elementa € A tosome elementf(a) € B. The
domain of f is A and the codomain is B. The image or range of f is {f(x) : x € A}, the set
of elements of the codomain “hit” by some element of A according to f.

The composition of a functionf : A =+ Band g : B — Ciswrittengof : A — C,and
(gof)x) = g(f(x)). A function f : A — B is one-to-one or injective if f(x) = f(y) implies
that x = y. The function f is onto or surjective if the image is equal to the codomain. If
f : A — Bis one-to-one and onto, it is bijective. For a bijectionf : A — B, the function
f~1:B — Ais the inverse of f, where f ~1(b) = a when f(a) = b.

A polynomial p : R — R is a function p(x) = ag +a1x + - - - + axxk, where each a; € R is
a coefficient. The degree of p is k. The roots of p are {x : p(x) = 0}. A polynomial of degree
k that is not always zero has at most k different roots.

An algorithm is a step-by-step procedure that transforms an input into an output.
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Key Terms and Results

Key Terms

BooLeEaNs, NUMBERS, ARITHMETIC

booleans, integers, reals, rationals
open intervals, closed intervals
absolute value |x|, floor | x|, ceiling [x]
exponentiation, logarithms

modulus, remainder, divides

even, odd, prime, parity

summation ), product [ ]

nested summations, nested products

SETs

set, element, membership, cardinality
exhaustive enumeration

set abstraction, universe

the empty set @ = {}

Venn diagram

complement ~, union U, intersection N
set difference —

(proper) subset, (proper) superset
disjoint sets

partitions

power set

SEQUENCES, VECTORS, MATRICES

sequence, list, ordered pair, n-tuple
Cartesian product

vector, dot product

matrix, identity matrix

matrix multiplication

matrix inverse

FuncTions

domain, codomain, image/range
function composition
one-to-one, onto functions
bijection, inverse

polynomial, degree, roots
algorithm

Key Results

BooLeaNs, NUMBERS, AND ARITHMETIC

1. Thevalueof 0" isb - b- - - b, multiplied together n times. If
n < 0, then b" = 1/(b~"). For rational exponents, b'/" is
the number x such that x™ = b, and b"/™ = (b!/™)".

2. For a positive real number b # 1 and a real number x > 0,

the quantity log; x (the log base b of x) is the real number
y such that b¥ = x.

3. Consider integers k > 0 and n. Then k | n (“k divides n”) if
¢ is an integer—or, equivalently, if # mod k = 0.

4. Aslong as the terms being added remain unchanged, we
can reindex a summation (for example, shifting the
variable over which the sum is taken, or reversing the
order of nested sums) without affecting the total value of
the sum. The same is true for products.

SeETs: UNORDERED COLLECTIONS

1. A set can be specified using exhaustive enumeration (a
list of its elements), or by abstraction (a condition
describing when an object is an element of the set).

2. Two sets S and T are equal if every element of S is an
element of T and every element of T is an element of S.

SEQUENCES, VECTORS, AND MATRICES

1. For vectors x,y € IR", the dot product of x and y is
Xey =L XiYi.
2. The product AB of two matrices A € R"*" and B € R™*P

is an n-by-p matrix M € R"*? whose components are
given by M;; = Y 111 A;jx By,

FuncTiOoNs

1. A one-to-one and onto function f : A — B has an inverse
function f~! : B — A, where f(a) = b precisely when
fHb) =a.

2. A polynomial of degree k that is not always zero has at
most k different roots.



Logic

In which our heroes move carefully through the marsh, making sure that
each step follows safely from the one before it.
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3.1 Why You Might Care

How fondly dost thou reason!

William Shakespeare (1564-1616)
The Comedy of Errors

Logic is the study of truth and falsity, of theorem and proof, of valid reasoning in
any context. In this chapter, we focus on formal logic, in which it is the “form” of the
argument that matters, rather than the “content.” This chapter will introduce the two
major types of formal logic:

e propositional logic (Sections 3.2 and 3.3), in which we will study the truth and falsity
of statements, how to construct logical statements from basic logical operators (like
and and or), and how to reason about those statements.

* predicate logic (Sections 3.4 and 3.5), which gives us a framework to write logical
statements of the form “every x ...” or “there’s some x such that....”

One of our main goals in this chapter will be to define a precise, formal, and unam-
biguous language to express reasoning—in which writer and reader agree on what
each word means.

Logic is the foundation of all of computer science; it’s the reasoning that you use
when you write the condition of an if statement or when you design a circuit to add
two 32-bit integers or when you design a program to beat a grandmaster at chess. Be-
cause logic is the study of valid reasoning, any endeavor in which one wishes to state
and justify claims rigorously—such as that of this book—must at its core rely on logic.
Every condition that you write in a loop is a logical statement. When you sit down to
write binary search in Python, it is through a (perhaps tacit) use of logical reasoning
that you ensure that your code works properly for any input. When you use a search
engine to look for web pages on the topic “beatles and not john or paul or george or
ringo” you've implicitly used logical reasoning to select this particular query. Solving
a Sudoku puzzle is nothing more and nothing less than following logical constraints
to their conclusion. The central component of a natural language processing (NLP)
system is to take an utterance by a human user that’s made in a “natural” language
like English and “understand” what it means—and understanding what a sentence
means is essentially the same task as understanding the circumstances under which
the sentence is true, and thus is a question of logic.

And these are just a handful of examples; for a computer scientist, logic is the basis
of the discipline. Indeed, the processor of a computer is built up from almost un-
thinkably simple logical components: wires and physical implementations of logical
operations like and, or, and not. Our main goal in this chapter will be to introduce the
basic constructs of logic. But along the way, we will encounter applications of logic to
natural language processing, circuits, programming languages, optimizing compilers,
and building artificially intelligent systems to play chess and other games.
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3.2 An Introduction to Propositional Logic

Everyone wishes to have truth on his side, but not
everyone wishes to be on the side of truth.

Richard Whately (1787-1863)

A proposition is a statement that is either true or false—In December 2012, Facebook
had over one billion users or Java is a programming language that uses indentation to denote
block structure, for example. Propositional logic is the study of propositions, including
how to formulate statements as propositions, how to evaluate whether a proposition
is true or false, and how to manipulate propositions. The goal of this section is to
introduce propositions—including related terminology, standard notation, and some
techniques for reasoning about propositions.

3.2.1 Propositions and Truth Values

We'll begin, briefly, with propositions themselves:

Definition 3.1 (Propositions and Truth Values)
A proposition is a statement that is either true or false. For a particular proposition p, the
truth value of p is its truth or falsity.

A proposition is also sometimes called a Boolean expression or a Boolean formula. (See
Section 2.2.1.) A proposition is written in English as a declarative sentence, the kind of
sentence that usually ends with a period. (Questions and demands—like Did you try
binary search? or Use quicksort!—aren’t the kinds of things that are true or false, and so
they’re not propositions.) Here are a few examples:

Example 3.1 (Some sample propositions)
The following statements are all propositions:

. 2+2=4.

. 33 is a prime number.

. Barack Obama is the 44th person to be president of the United States.

. Every even integer greater than 2 can be written as the sum of two prime num-

=~ W N =

bers.

(The last of these propositions is called Goldbach’s conjecture; it's more complicated
than the other propositions in this example, and we’ll return to it in Section 3.4.)

Let’s determine the above propositions” truth values:

Example 3.2 (Determining truth values)
Problem: What are the truth values of the propositions from Example 3.1?

Solution: These propositions’ truth values are

303
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1. True. It really is the case that 2 + 2 equals 4.

2. False. The integer 33 is not a prime number because 33 = 3 - 11. (Prime numbers
are evenly divisible only by 1 and themselves; 33 is evenly divisible by 3 and 11.)

3. False. Although Barack Obama is called president #44, Grover Cleveland was
president #22 and #24. So Barack Obama is actually the 43rd person to be presi-
dent of the United States, not the 44th.

4. Unknown (!). Goldbach’s conjecture was first made in 1742, but has thus far

resisted proof—or disproof! It’s easy to check that particular small even integers

can be written as the sum of two prime numbers; for example, 4 = 2+2,6 =
3+3,8 =3+5,10 = 3+7, and so on. But is it true for all even integers greater
than 2? We simply don’t know! Many even integers have been tested, and no
violation has been found in any of these tests. But, as far as we know, the next

even integer we test can’t be written as the sum of two primes. See Example 3.47

and Exercises 3.178-3.181.

Before we move on from Example 3.2, there’s an important point to make about state-

ments that have an unknown truth value. Even though we don’t know the truth value
of Goldbach’s conjecture, it is still a proposition and thus it has a truth value. That is,

Goldbach’s conjecture is indeed either true or false; it’s just that we don’t know which

it is. (Like the proposition The person currently sitting next to you is wearing clean under-
wear: it has a truth value, you just don’t know what truth value it has.)

Taking it further: Goldbach’s conjecture stands in contrast to declarative sentences whose truth is ill-

defined—for example, This book is boring and Logic is fun. Whether these claims are true or false depends
on the (imprecise) definitions of words like boring and fun. We're going to de-emphasize subtle “shades

of truth” questions of this form throughout the book, but see p. 314 for some discussion, including the

role of ambiguity in software systems that interact with humans via English language input and output.
There is also a potentially interesting philosophical puzzle that’s hiding in questions about the truth

values of natural-language utterances. Here’s a silly (but obviously true) statement: The sentence “snow is

white” is true if and only if snow is white. (Of course!) This claim becomes a bit less trivial if the embedded

proposition is stated in a different language—Spanish or Dutch, say: The sentence “La nieve es blanca” is

true if and only if snow is white; or The sentence “Sneeuw is wit” is true if and only if snow is white. But there’s

a troubling paradox lurking here. Surely we would like to believe that the English sentence x and the
French translation of the English sentence x have the same truth value. For example, Snow is white and

La neige est blanche surely are both true, or they’re both false. (And, in fact, it’s the former.) But this belief

leads to a problem with certain self-referential sentences: for example, This sentence starts with a “T” is
true, but Cette phrase commence par un “T” is, surely, false.'

3.2.2  Atomic and Compound Propositions

We will distinguish between two types of propositions, those that cannot be broken
down into conceptually simpler pieces and those that can be:

Definition 3.2 (Atomic and compound propositions)
An atomic proposition is a proposition that is conceptually indivisible. A compound
proposition is a proposition that is built up out of conceptually simpler propositions.

For more on para-
doxes and puzzles
of translation, see

1 Douglas Hofs-
tadter. Le Ton Beau
de Marot: In Praise
of the Music of Lan-
guage. Basic Books,
1998; and R. M.
Sainsbury. Para-
doxes. Cambridge
University Press,
3rd edition, 2009.
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Here’s a simple example of the difference:

Example 3.3 (Atomic and compound propositions)
The University of Minnesota’s mascot is the Badger is an atomic proposition, because it is
not conceptually divisible into any simpler claim.

The University of Washington’s mascot is the Duck or the University of Oregon’s mascot
is the Duck is a compound proposition, because it is conceptually divisible into two
simpler claims—namely The University of Washington’s mascot is the Duck and The
University of Oregon’s mascot is the Duck.

Atomic propositions are also sometimes called Boolean variables; see Section 2.2.1. A
compound proposition that contains Boolean variables py, . . ., py is sometimes called a
Boolean expression or Boolean formula over p, ..., px.

Example 3.4 (Password validity as a compound proposition)
A certain small college sends the following instructions to its users when they are
required to change their password:

Your password is valid only if it is at least 8 characters long, you have not previously
used it as your password, and it contains at least three different types of characters
(lowercase letters, uppercase letters, digits, non-alphanumeric characters).

This compound proposition involves seven different atomic propositions:

¢ p: the password is valid

* g: the password is at least 8 characters long

e r: the password has been used previously by you

e s: the password contains lowercase letters

e {: the password contains uppercase letters

* u: the password contains digits

¢ v: the password contains non-alphanumeric characters

The form of the compound proposition is “p, only if g and not 7 and at-least-three-
of {s,t,u,v} are true.” (Later we'll see how to write this compound proposition in
standard logical notation; see Example 3.15.)

3.2.3  Logical Connectives

Logical connectives are the glue that creates the more complicated compound proposi-
tions from simpler propositions. Here are definitions of our first three of these logical
connectives—not, and, and or:

Definition 3.3 (Negation (not): —)
The proposition —p (“not p,” called the negation of the proposition p) is true when the
proposition p is false, and is false when p is true.
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Definition 3.4 (Conjunction (and): A)
The proposition p A q (“p and q,” the conjunction of the propositions p and q) is true when
both of the propositions p and q are true, and is false when one or both of p or q is false.

Definition 3.5 (Disjunction (or): V)
The proposition p V q (“p or q,” the disjunction of the propositions p and q) is true when one
or both of the propositions p or q is true, and is false when both p and q are false.

In the conjunction p A g, the propositions p and g are called conjuncts; inp V g, they are
called disjuncts. Here’s a simple example:

Example 3.5 (Some simple compound propositions)
Let p denote the proposition Ohio State’s mascot is the Buckeye and let g denote the
proposition Michigan’s mascot is the Wolverine. Then:

* —g denotes the proposition Michigan’s mascot is not the Wolverine.

* p A g denotes the proposition Ohio State’s mascot is the Buckeye, and Michigan’s mascot
is the Wolverine.

* pV g denotes the proposition Ohio State’s mascot is the Buckeye, or Michigan’s mascot
is the Wolverine.

Here’s an example of translating some English statements that express compound

propositions into standard logical notation:

Example 3.6 (From English statements to compound propositions)

Problem: Translate each of the following statements into logical notation. (Name the

atomic propositions using appropriate Boolean variables.)

1.

Carissa is majoring in computer science and studio art.

2. Either Dave took a formal logic class, or he is a quick learner.
3.
4. Fred knows Python or he has programmed in both C and Java.

Eli broke his hand and didn’t take the test as scheduled.

Solution: Let’s first name the atomic propositions within these English statements:

p = Carissa is majoring in computer science. ¢ = Eli broke his hand.

q = Carissa is majoring in studio art. u = Eli took the test as scheduled.
r = Dave took a formal logic class. v = Fred knows Python.
s = Dave is a quick learner. w = Fred has programmed in C.

x = Fred has programmed in Java.

We can now translate the four given statements as: (1) p Ag; (2) ¥ Vs; (3) t A —~u; and
4) oV (wAx).

IMPLICATION (IF/THEN)

Another important logical connective is =, which denotes implication. It expresses

a familiar idea from everyday life, though one that’s not quite captured by a single

The prefix con-
means “together”
and dis- means
“apart.” (Junct
means “join.”) The
conjunction p A q is
true when p and g
are true together;
the disjunction p V q
is true when p is
true “apart from”
q, or the other way
around.

To help keep the
symbols straight,

it may be helpful

to notice that the
symbol A is the
angular version

of the symbol N
(intersection), while
the symbol V is the
angular version

of the symbol U
(union). The set

SN T is the set of all
elements contained
in S and T; the set
SUT is the set of all
elements contained
inSorT.
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English word. Consider the sentence If you scratch my back, then I'll scratch yours. It's
easiest to think of this sentence as a promise: I've promised that I'll scratch your back
as long as you scratch mine. I haven’t promised anything about what I'll do if you fail
to scratch my back—I can abstain from back scratching, or I might generously scratch
your back anyway, but I haven’t guaranteed anything. (You'd justifiably call me a liar if
you scratched my back and I failed to scratch yours in return.) This kind of promise is

expressed as an implication in propositional logic: One initially con-
fusing aspect of
logical implica-
Definition 3.6 (Implication: =) ﬁfn is thafthe
The proposition p = q is true when the truth of p implies the truth of q. In other words, word “implies”
seems to hint at
something about
causation—but

p = q is true unless p is true and q is false.

In the implication p = g, the proposition p is called the antecedent or the hypothesis, and p = g doesn’t ac-
e . . tually say anything
the proposition g is called the consequent or the conclusion. :
about p causing q,
Here are a few examples of statements involving implication: only that p being

true implies that q
is true (or, in other

Example 3.7 (Some implications) words, p being true

The following propositions are all true: lets us conclude that q
is true).

* 1+1=2implies that2+3 =5. (“True implies True” is true.)

* 2+3 =4implies that2+2 =4. (“False implies True” is true.)

* 243 =4implies that2+3 =6. (“False implies False” is true.)

But the following proposition is false:
* 2+2=4implies that2+1=5. (“True implies False” is false.)

This last proposition is false because 2 + 2 = 4 is true, but 2 + 1 = 5 is false.

There are many different ways to express the proposition p = g “p implies g” “q,if p”
in English, including all of those in Figure 3.1. “if p, then 4" “q is necessary for p”
“p only if g” “p is sufficient for g”

Here is an example of the same implication being stated in “g whenever p"

English in many different ways: Figure 3.1: Some

ways of expressing
Example 3.8 (Expressing implications in English) p = q in English.

According to United States law, people who can legally vote must be American citi-
zens, and they must also satisfy some other various conditions that vary from state
to state (for example, registering in advance or not being a felon). Thus the following
compound proposition is true:

you are a legal U.S. voter = you are an American citizen.

All of the following sentences express this proposition in English:

If you are a legal U.S. voter, then you are an American citizen.
You being a legal U.S. voter implies that you are an American citizen.
You are a legal U.S. voter only if you are an American citizen.
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You are an American citizen if you are a legal U.S. voter.

You are an American citizen whenever you are a legal U.S. voter.

You being an American citizen is necessary for you to be a legal U.S. voter.
You being a legal U.S. voter is sufficient for you to be an American citizen.

Most of these sentences are reasonably natural ways to express the stated implication,
though the last phrasing seems awkward. But it’s easier to understand if we slightly
rephrase it as “You being a legal U.S. voter is sufficient for one to conclude that you are an
American citizen.”

Here’s another example of restating implications:

Example 3.9 (More implications in English)
Consider the proposition

The nondisclosure agreement is valid only if you signed it .
- -~ -~ ~ ~ -~
p q
(This statement is different from “if you signed, then the agreement is valid”: for
example, the agreement might not be valid because you're legally a minor and thus
not legally allowed to sign away rights.) We can restate p = g as “if p then g4”:

If the nondisclosure agreement is valid, then you signed it.

We can also restate this implication equivalently—and perhaps more intuitively—
using the so-called contrapositive =g = —p (see Example 3.21):

The nondisclosure agreement is invalid if you didn't sign it.

“ExcLusIVE OR” AND “IF AND ONLY IF”
The four logical connectives that we have defined so far (-, V, A, and =) are the
ones that are most frequently used, but we’ll define two other common connectives

too. The first is exclusive or: The connective @ is
usually pronounced

PR . like “ex ore” (a
Definition 3.7 (Exclusive or: &) former signiﬁ(cant

The proposition p & q (“p exclusive or q” ot, more briefly, “p xor q”) is true when one of the other + some rock
with high precious-
metal content).

propositions p or q is true, but not both. Thus p @ q is false when both p and q are true, and
when both p and q are false.

When we want to emphasize the distinction between V and @&, we refer to V as inclusive
or. This terminology highlights the fact that p V g includes the possibility that both p
and g are true, while p @ g excludes that possibility. Unfortunately, the word “or” in
English can mean either inclusive or exclusive or, depending on the context in which
it’s being used. When you see the word “or,” you’ll have to think carefully about which
meaning is intended.

Here’s an example of distinguishing inclusive and exclusive or:
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Example 3.10 (Inclusive versus exclusive or in English)
Problem: Translate these statements from a cover letter for a job into logical notation:

You may contact me by email or by phone. I am available for an on-site day-long
interview on October 8th in Minneapolis or Hong Kong.

Use the following Boolean variables:

p = you may contact me by phone

g = you may contact me by email

r =1 am physically available for an interview in Minneapolis
s =1 am physically available for an interview in Hong Kong

Solution: The “or” in “email or phone” is inclusive, because you could receive both an
email and a call. However, the “or” in “Minneapolis or Hong Kong” is exclusive,
because it’s not physically possible to be simultaneously present in Minneapolis
and Hong Kong. Thus a correct translation of these statements is (p V g) A (r @ s).

We are now ready to define our last logical connective: Sometimes you'll
see < abbreviated
T . in sentences as
Definition 3.8 (If and only if: <) “if” as shorthand
The proposition p < q (“p if and only if q”) is true when the propositions p or q have the for “if and only
same truth value (both p and q are true, or both p and q are false), and false otherwise. if.” We'll avoid

this notation in
this book, but you

The reason that < is read as “if and only if” is thatp < ¢ means the same thing should understand
as the compound proposition (p = g) A (g = p). (We'll prove this equivalence in itlif YCLU see it
elsewhere.

Example 3.23.) Furthermore, the propositions p = gand g = p can be rendered,
respectively, as “p only if g7 and “p, if g.” Thus p < g expresses “p if g, and p only
if g”—or, more compactly, “p if and only if 4.” (The connective < is also sometimes
called the biconditional, because an implication can also be called a conditional.)
Unfortunately, just like with “or,” the word “if” is ambiguous in English. Some-
times “if” is used to express an implication, and sometimes it’s used to express an
if-and-only-if definition. When you see the word “if” in a sentence, you'll need to think
carefully about whether it means = or <. Here’s an example:

Example 3.11 (“If” versus “if and only if” in English)
Problem: Think of a number between 10 and 1,000,000. Let

p := your number is prime.
g := your number is even.
r := your number is evenly divisible by an integer other than 1 and itself.

Now translate the following two sentences into logical notation:

1. If the number you're thinking of is even, then it isn’t prime.
2. The number you're thinking of isn't prime if it’s evenly divisible by an integer
other than 1 and itself.

Solution: The “if” in (1) is an implication, and the “if” in (2) is “if and only if.” A
correct translation of these sentences is (1) g = —p; and (2) —p < r.
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3.2.4 Combining Logical Connectives

The six standard logical connectives

negation -p “not p”
that we’ve defined so far (-, A, V, conjunction pAg  “pandg”
=, ®, and <) are summarized in disjunction  pvg “porg”
) . . exclusive or p®qg “pxorg”
Figure 3.2. The logical connective — implication  p=gq “ifp, then ¢” or “p implies "
is a unary operator, because it builds a ifandonlyif p< g “pifandonlyifg”

compound proposition from a single

simpler proposition. The other five connectives are binary operators, which build a
compound proposition from two simpler propositions. (We'll encounter the full list of
binary logical connectives later; see Exercises 4.66-4.71.)

Taking it further: The unary-vs.-binary categorization of logical connectives based on how many
“arguments” they accept also occurs in other contexts—for example, arithmetic and programming. In
arithmetic, for example, one might distinguish between “unary minus” and “binary minus”: the former
denotes negation, as in —3; the latter subtraction, as in 2 — 3.

In programming languages, the number of arguments that a function takes is called its arity. (The
arity of length is one; the arity of equals is two.) You will sometimes encounter variable arity functions
that can take a different number of arguments each time they're invoked. Common examples include the
print functions in many languages—C’s printf and Python’s print, for example, can take any number
of arguments—or arithmetic in prefix languages like Scheme, where you can write an expression like
(+ 123 4)todenotel1+2+3+4 (= 10).

ORDER OF OPERATIONS

A full description of the syntax of a programming language always includes a ta-
ble of the precedence of operators, arranged from “binds the tightest” (highest prece-
dence) to “binds the loosest” (lowest precedence). These precedence rules tell us when
we have to include parentheses in an expression to make it mean what we want it
to mean, and when the parentheses are optional. In the same way, we’ll adopt some
standard conventions regarding the precedence of our logical connectives:

* Negation (—) binds the tightest.

e After negation, there is a three-way tie among A, V, and @. (We'll always use paren-
theses in propositions containing more than one of these three operators, just as we
should in programs.)

e The trifecta (A, V, and @) is followed by =-.

* = is followed finally by <.

The horizontal lines in Figure 3.2 separate the logical connectives by their precedence,
so that operators closer to the top of the table have higher precedence. For example:

Example 3.12 (Precedence of logical connectives)
The propositions p V ~gand p V 4 = —r < p mean, respectively,

pv(=q)  and ((p V)= (ﬂr)) <P

which we can see by simply applying the relevant precedence rules (“— goes first,
then V, then =, then <”).

highest precedence

lowest precedence

Figure 3.2: Sum-
mary of notation for
propositional logic.

The word “prece-
dence” (pre before,
cede go) means
“what comes first,”
so precedence rules
tell us the order of
which the operators
“get to go.” For
example, consider

a proposition like
pAg=r.If A “goes
first,” the proposi-
tionis (p A q) = 1;
if = “goes first,” it
means p A (g = 7).
Figure 3.2 says that
the former is the
correct interpreta-
tion.
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Taking it further: The precedence rules that we've described here match the precedence rules in most
programming languages. In Java, for example, the condition !p & g—that’s “not p and q” in Java
syntax—will be interpreted as (!p) & q, because not/—/! binds tighter than and /A /&&.

The precedence rules for operators tell us the order in which two different operators
are applied in an expression. For a sequence of applications of the same binary opera-
tor, we’ll use the convention that the operator associates to the left. For example, p Aq A r
willmean (p Ag) Arand not p A (g A ).

Example 3.13 (Precedence of logical connectives)
Problem: Fully parenthesize each of the following propositions. (In other words, add
parentheses around each operator without changing the meaning.)

pvVg<sp
pOpPDOIDYq
pepepep)
pPAg=Tr<s
p=q=r1As

SUE I

Solution: Using the precedence rules from Figure 3.2 and left associativity, we get:

AN
((pepegeq

- ((p)=p) = (p=p)
((pA(g) =)= s

- p=q9 = TANs)

—_

O &= W N

The choice that logical operators associate to the left (instead of associating to the
right) won’t matter for most of the logical connectives anyway. For example, the propo-
sitions (p A q) Ar and p A (g A ) are true under exactly the same circumstances, as we’ll
see shortly. In fact, of the binary operators {A, V, ®, =, <}, the only one for which the
order of application matters is implication. See Exercises 3.45-3.47.

3.2.5 Truth Tables

In Section 3.2.3, we described the logical connectives -, A, V, =, @, and <, but we
can more systematically define these connectives by using a truth table that collects the
value yielded by the logical connective under every truth assignment.

Definition 3.9 (Truth assignment)
A truth assignment for a proposition over variables p1,p2, . .., Px is a function that assigns a
truth value to each p;.

For example, the function f where f(p) = T and f(gq) = F is a truth assignment for the
proposition p V —q. (Each “T” abbreviates a truth value of true; each “F” abbreviates a
truth value of false.)

Writing tip: Because
the order of appli-
cation does matter
for implication, it’s
considered good
style to include the
optional parenthe-
ses so that it’s clear
what you mean.
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For any particular proposition and for any particular truth assignment f for that
proposition, we can evaluate the proposition under f to figure out the truth value of
the entire proposition. In the previous example, the proposition p V —g is true under
the truth assignment with p = T and g = F (because T V —=F is T V T, which is true). A
truth table displays a proposition’s truth value (evaluated in the way we just described)
under all truth assignments:

Definition 3.10 (Truth table)
A truth table for a proposition lists, for each possible truth assignment for that proposition

(with one truth assignment per row in the table), the truth value of the entire proposition. }; f} P ? q
T F F
For example, the truth table that defines A is shown in Figure 3.3. A few words F T F
F F F

about this truth table are in order:

Figure 3.3: The
* Columns #1 and #2 correspond to the atomic propositions p and 4. There is a row truth table for A.

in the table corresponding to each possible truth assignment for p A g—that is, for
every pair of truth values for p and 4. (So there are four rows: TT, TF, FT, and FF.)

¢ The third column corresponds to the compound proposition p A g, and ithasa T
only in the first row. That is, the truth value of p A g is false unless both p and g are
true—just as Definition 3.4 said.

The truth tables for the six basic logical

. . . . . p P p 9 pAq pVqg p=q pbg peg
connectives (negation, conjunction, disjunc- T F T T T T T F T
tion, exclusive or, implication, and “if and F T g }; E $ }; ¥ II::
only if”) are shown in Figure 3.4. It's worth F F F F T F T

aying special attention to the column for
bayms sp Figure 3.4: Truth

tables for the basic
false. False implies anything! Anything implies true! For example, both of the following logical connectives.

p = g: the only truth assignment under which p = g is false is when p is true and g is

are true propositions:

If 2 + 3 = 4, then you will eat tofu for dinner. (if false, then anything)
If you are your own mothet, then 2 +3 = 5. (if anything, then true)

To emphasize the point, observe that the first statement is true even if you would never
eat tofu if it were the last so-called food on earth; the hypothesis “2 + 3 = 4” of the
proposition wasn't true, so the truth of the proposition doesn’t depend on what your
dinner plans are.

For more complicated compound propositions, we can fill in a truth table by re-
peatedly applying the rules in Figure 3.4. For example, to find the truth table for
(p = 9) N (g V p), we compute the truth tables for p = gand gV p, and puta “T” in
the (p = g9) A (g V p) column for precisely those rows in which the truth tables for p = g
and q V p both had “T”s. Here’s a simple example, and a somewhat more complicated
one:

Example 3.14 (A small truth table)
Here is a truth table for the proposition (p A ) = —¢:
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pqa pAqg g (A9 =g
T T T F F
T F F T T
F T F F T
F F F T T

This truth table shows that the given proposition (p A gq) = —q is true precisely when
at least one of p and g is false.

Example 3.15 (Three (or more) of four, formalized)
In Example 3.4 (on the validity of passwords), we had a sentence of the form

“p, only if g and not r and at-least-three-of {s, ¢, u, v} are true.”

Let’s translate this sentence into propositional logic. The tricky part will be translat-
ing “at least three of {s, f,u, v} are true.” There are many solutions, but one relatively
simple way to do it is to explicitly write out four cases, one corresponding to allowing
a different one of the four variables {s, t, u, v} to be false:

SAEAUNV(SAEAD)V(SAUAND)V (EAUAD)

We can verify that we’ve gotten this proposition right with a (big!) truth table, shown
in Figure 3.5. Indeed, the five rows in which the last column has a “T” are exactly the
five rows in which there are three or four “T”s in the columns for s, ¢, 1, and v.

To finish the translation, recall that “x only if ¥” means x = y, so the given sen-
tence can be translated as p = g A —r A (the proposition above)—that is,

p=gA-rA ((s/\t/\u)\/(sAtAv)v(s/\u/\v)v(tAu/\v)).
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Figure 3.5: A

truth table for
Example 3.15.

Taking it further: It's worth pondering
why there are five different rows of the
truth table in Figure 3.5 in which the last
column is true: there are four different
truth assignments corresponding to
exactly three of {s,t,u, v} being true
(stu, suv, stv, tuv), and there is one

truth assignment corresponding to all
four being true (stuv). In Chapter 9, on
counting, we’ll re-encounter this style of
question. (And, actually, precisely the
same reasoning as in this example will
allow us to prove something interesting
about error-correcting codes—see
Section 4.2.5.)

%
—~
=
Q

SAtAuU SAtAv  sAuAlNv tAuUAND

oo Beo oo Moo e s Moo e s Mo e B e B e B e B
oo Beo o Moo B e B B B o e o B e B o B B e B
M A
e e Mo B B o B B o B B s B B B Bl o B B o B
oo ies oo Moo lie s Miec e s Ml Moo oo Mics e s Bl Mies B N
oo BieoBeo Moo e s Mo e s B Moo lie o Mo Bie o Ml e M o M
oo Bieo oo Moo e s Mies e s B Moo lie s Mo B B Bile o Ml o Bl
oo BieoBeo Moo e s Mies e s B Moo Bile o Mo Bile o Bl s Bile o e o N

(sAtAu)

V (sAEtAD)
V (sAuAv)
V (EAUAD)
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CoMPUTER ScIENCE CONNECTIONS

NATURAL LANGUAGE PROCESSING, AMBIGUITY, AND TRUTH

Our main interest in this book is in developing (and understanding) precise
and unambiguous language to express mathematical notions; in this chap-
ter specifically, we're thinking about the truth values of completely precise
statements. But thinking about the truth of ambiguous or ill-defined terms
is absolutely crucial to any computational system that’s designed to interact
with users via natural language. (A natural language is one like English or
French or Xhosa; these languages contrast with artificial languages like Java or
Python or, arguably, Esperanto or Klingon.)

Natural language processing (NLP) (or the roughly similar computational
linguistics) is the subfield of computer science that lies at the discipline’s inter-
face with linguistics.”> In NLP, we work to develop software systems that can
interact with users in a natural language. A necessary step in an NLP system
is to take an utterance made by the human user and “understand it.” (“Under-
standing what a sentence means” is more or less the same as “understanding
the circumstances under which it is true”—which is fundamentally a question
of logic.)

One major reason that NLP is hard is that there is a tremendous amount
of ambiguity in natural-language utterances. We can have lexical ambiguity, in
which two different words are spelled identically but have two different mean-
ings; we have to determine which word is meant in a sentence. Or there’s
syntactic ambiguity, in which a sentence’s structure can be interpreted very
differently. (See Figure 3.6.) But there are also subtleties about when a state-
ment is true, even if the meaning of each word and the sentence’s structure are
clear.

Consider, for example, designing and implementing a conversational
system designed to assist with travel planning. (Many airlines or train com-
panies have such systems.) Such a system might engage in a dialogue like the
one in Figure 3.7 with a human user. There’s no hard-and-fast rule for what
other flights should count as “slightly later” and “too much more expensive.”
This conversational system has to be able to decide the truth of statements
like Delta #2931 is slightly later than Delta #1927 and Delta #2931 isn't too much
more expensive than Delta #1927, even though the “truth” of these statements
depends on heavy use of conversational context and pragmatic reasoning.

Of course, even though one cannot unambiguously determine whether these
sentences are true or false, they're the kind of statement made continually in
natural language. So systems that process natural language must deal with
this issue with great frequency.

One approach for handling these statements whose truth value is ambigu-
ous is called fuzzy logic, in which each proposition has a truth value that is
a real number between 0 and 1. (So 10:33a is slightly later than 8:45a is “more
true” than 12:19p is slightly later than 8:45a—so the former might have a truth
value of 0.74, while the latter might have a truth value of 0.34. But 7:30a is
slightly later than 8:45a would have a truth value of 0.00, as 7:30a is unambigu-
ously not slightly later than 8:45a.)

For more, you can look for a textbook on
NLP like

2 Daniel Jurafsky and James H. Martin.
Speech and Language Processing: An Intro-
duction to Natural Language Processing,
Computational Linguistics, and Speech
Recognition. Pearson Prentice Hall, 2nd
edition, 2008.

A: Do you prefer coffee or tea?

B: Do you prefer cream or sugar?
C: We ate cake with walnuts.

D: We ate cake with forks.

Figure 3.6: Examples of lexical (A and
B) and syntactic ambiguity (C and D).
The or of A/B can be either inclusive
or exclusive; simply answering “yes”
is a reasonable response to question
B, but a bizarre one to question A. The
with of C/D can either attach to the cake
or the eating; the sentences’ structures
are consistent with using walnuts

as an eating utensil in C, or the cake
containing forks as an ingredient in D.

User: [ want to fly from MSP to
BOS on 28 December.

System: Delta #1927 is a nonstop
flight from MSP to BOS on
Delta Airlines for $472 that
leaves at 8:45am.

User: Is there a slightly later
flight that isn't too much more
expensive?

Figure 3.7: A sample dialogue. Suppose
that Delta #2931 is a second nonstop
flight from MSP to BOS that leaves at
10:33am and costs $529.
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3.2.6 Exercises

What are the truth values of the following propositions?

31 22432 =42
3.2 The number 202 is written 11010010 in binary.
3.3 After executing the C code fragment in Figure 3.8 (shown at right), the variable x has the value 1.

Consider the following atomic propositions:

p: x + yisvalid Python w: xisanumeric value
q: x * yisvalid Python v: yisanumeric value
r: X *x yisvalid Python w: xisalist

s:  x x yisalist z: yisalist

t:  x + yisalist

Using these atomic propositions, translate the following (true!) statements about legal Python programs into logical
notation. (Note that these statements do not come close to fully characterizing the set of valid Python statements, for
several reasons: first, they’re about particular variables—x and y—rather than about generic variables. And, second,
they omit some important common-sense facts—for example, it’s not simultaneously possible to be both a list and a
numeric value. That is, for example, we have —v V —z.)

3.4 x ** yis valid Python if and only if x and y are both numeric values.

3.5 x + yis valid Python if and only if x and y are both numeric values, or they’re both lists.

3.6 x * yis valid Python if and only if x and y are both numeric values, or if one of x and y is a list
and the other is numeric.

3.7 x * yisalistif x * yis valid Python and x and y are not both numeric values.

3.8 if x + yisa list, then x * yisnot a list.

3.9 x + yand x * y are both valid Python only if x is not a list.

3.10 True story: a 29-year-old friend of mine who does not have an advance care directive was asked

the following question on a form at a doctor’s office. What should she answer?

If you're over 55 years old, do you have an advance care directive? Circle one: YES NO

In Example 3.15, we constructed a proposition corresponding to “at least three of {s,t,u, v} are true.” Generalize this
construction by building a proposition . ..

3.11 ... expressing “at least 3 of {py,...,pn } are true.”

3.12 ...expressing “at least n — 1 of {p1,...,pn} are true.”

The identity of a binary operator < is a value i such that, for any x, the expressions {x,x ¢ i,i o x} are all equivalent.
The zero of o is a value z such that, for any x, the expressions {z,x ¢ z,z o x} are all equivalent. For an example from
arithmetic, the identity of + is 0, because x + 0 = 0+ x = x for any number x. And the zero of multiplication is 0,
because x - 0 = 0 - x = 0 for any number x. For each of the following, identify the identity or zero of the given logical
operator. Justify your answer. Some operators do not have an identity or a zero; if the given operator fails to have the
stated identity/zero, explain why it doesn't exist.

3.13 What is the identity of V? 3.17 What is the zero of V?
3.14 What is the identity of A? 3.18 What is the zero of A?
3.15 What is the identity of <? 3.19 What is the zero of ?
3.16 What is the identity of ©? 3.20 What is the zero of ©?

Because = is not commutative (that is, because p = q and g = p mean different things), it is not too surprising that
= has neither an identity nor a zero. But there are a pair of related definitions that apply to this type of operator:

3.21 The left identity of a binary operator ¢ is a value i, such that, for any x, the expressions x and

iy © x are equivalent. The right identity of ¢ is a value i, such that, for any x, the expressions x and x ¢ i,

are equivalent. (Again, some operators may not have left or right identities.) What are the left and right
identities of = (if they exist)?

3.22 The left zero of a binary operator ¢ is a value z, such that, for any x, the expressions z, and z; o x
are equivalent; similarly, the right zero is a value z, such that, for any x, the expressions z, and x ¢ z, are
equivalent. (Again, some operators may not have left or right zeros.) What are the left and right zeros for =
(if they exist)?

int x = 202;
while (x > 2) {
X =X/ 2;

}

Figure 3.8: Snippet
of C code. Note
that x/2 denotes
integer division; for
example, 7/2 = 3.
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In many programming languages, the Boolean values True and False are actually stored as the numerical values 1 and
0, respectively. In Python, for example, both @ == False and 1 == True are True. Thus, despite appearances, we can
add or subtract or multiply Boolean values! Furthermore, in many languages (including Python), anything that is not
False (in other words, anything other than 0) is considered True for the purposes of conditionals. For example, in many
programming languages, including Python, code like if 2 print "yes" else print "no" will print “yes.”
Suppose that x and y are two Boolean variables in a programming language, like Python, where True and False
are 1 and 0, respectively—that is, the values of x and y are both 0 or 1. Each of the following code snippets includes a
conditional statement based on an arithmetic expression using x and y. For each, rewrite the given condition using the
standard notation of propositional logic.
3.23 if x xy ... 3.25
3.24 ifx+y ... 3.26

ifl1-x...
if (x * (1 -y)) + ((1 - x) xy) ...

We can use the common programming language features described in in the previous block of exercises to give a simple
programming solution to Exercises 3.11-3.12. Assume that {p1,...,pn } are all Boolean variables in Python—that is,
their values are all 0 or 1. Write a Python conditional expressing the condition that ...

3.27 ...atleast 3 of {py,...,pn} are true.

3.28 ...atleastn —1of {p1,...,pn} are true.

In addition to purely logical operations, computer circuitry has to be built to do simple arithmetic very quickly. Here
you'll explore some pieces of using propositional logic and binary representation of integers to express arithmetic
operations. (It's straightforward to convert your answers into circuits.)

Consider a number x € {0,...,15} represented as a 4-bit binary number, as shown in Figure 3.9. Denote by xg the
least-significant bit of x, by x the next bit, and so forth. For example, for the number x = 12 (written 1100 in binary)
would have xog =0, x1 =0, x, = 1, and x3 = 1). For each of the following conditions, give a proposition over the Boolean
variables {xo,x1,X2,x3} that expresses the stated condition. (Think of 0 as false and 1 as true.)

3.29 x is greater than or equal to 8.

3.30 x is evenly divisible by 4.

3.31 x is evenly divisible by 5. (Hint: use a truth table, and then build a proposition from the table.)

3.32 x is an exact power of two.

3.33 Suppose that we have two 4-bit input integers x and y, represented as in Exercises 3.29-3.32. Give
a proposition over {xo, X1, X2, X3, Y0,Y1,Y2,Y3 } that expresses the condition that x = y.

3.34 Given two 4-bit integers x and y as in the previous exercise, give a proposition over the Boolean

variables {xo,x1,X2,%3,Y0,Y1,Y2,y3} that expresses the condition that x < y.

3.35 Suppose that we have a 4-bit input integer x, represented by four Boolean variables {xo, x1,x2,x3}
as in Exercises 3.29-3.32. Let y be the integer x + 1, represented again as a 4-bit value {yo, ¥1,12,y3}. (For the
purposes of this question, treat 15+ 1 = 0—that is, we're really defining y = (x + 1) mod 16.) For example, for
x = 11 (which is 1011 in binary), we have that y = 12 (which is 1100 in binary). For each i € {0,1,2,3}, give a
proposition over the Boolean variables {xp, x1,x2,x3} that expresses the value of y;.

The remaining problems in this section ask you to build a program to compute various facts about a given proposition
. To make your life as easy as possible, you should consider a simple representation of o, based on representing
any compound proposition as a list. In such a list, the first element will be the logical connective, and the remaining
elements will be the subpropositions. For example, the proposition p = (—q) will be represented as

["implies”, ["or", "p", "r"], ["not", "q"1]
Now, using this representation of propositions, write a program, in a programming language of your choice, to accom-
plish the following operations:
3.36 (programming required) Given a proposition ¢, compute the set of all atomic propositions con-
tained within ¢. The following recursive formulation may be helpful:

variables(p) := {p} variables(—) := variables(y)

variables(y ¢ 1)) := variables(yp) U variables(¢)) for any connective o € {\,V,=,<,®,...}

3.37 (programming required) Given a proposition ¢ and a truth assignment for each variable in ¢,
evaluate whether ¢ is true or false under this truth assignment.
3.38 (programming required) Given a proposition ¢, compute the set of all truth assignments for the

variables in ¢ that make ¢ true. (One good approach: use your solution to Exercise 3.36 to compute all the
variables in ¢, then build the full list of truth assignments for those variables, and then evaluate ¢ under
each of these truth assignments using your solution to Exercise 3.37.)

X3 X2 X1 Xp
0 0 1 1
0+0+2+1 =3

X3 X2 X1 Xo
1 1 0 O
8§+4+0+0 =12

Figure 3.9:
Representing

x € {0,...,15}
using 4-bits.

We'll occasionally
use lowercase
Greek letters,
particularly ¢
(“phi”) or ¢ (“psi”),
to denote not-
necessarily-atomic
propositions.
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3.3 Propositional Logic: Some Extensions

Against logic there is no armor like ignorance.

Laurence J. Peter (1919-1990)

With the definitions from Section 3.2 in hand, we turn to a few extensions: some
special types of propositions, and some special ways of representing propositions.

3.3.1 Tautology and Satisfiability

Several important types of propositions are defined in terms of their truth tables: those
that are always true (fautologies), sometimes true (satisfiable propositions), or never true

(unsatisfiable propositions). We will explore each of these types in turn.

TAUTOLOGIES
We'll start by considering propositions that are always true:

Definition 3.11 (Tautology)
A proposition is a tautology if it is true under every truth assignment.

One reason that tautologies are important is that we can use them to reason about
logical statements, which can be particularly valuable when we’re trying to prove a
claim.

Examples 3.16 and 3.17 illustrate two important tautologies. The first of these tau-

tologies is the proposition p V —p, which is called the law of the excluded middle: for any

proposition p, either p is true or p is false; there is nothing “in between.”

Example 3.16 (Law of the Excluded Middle)
Here is the truth table for the proposition p vV —p:

p P pVP
T F T
F T T

The third column is filled with “T”s, so p V —p is a tautology.

The second tautology is the proposition p A (p = q) = ¢, called modus ponens: if we
know both that (a) p is true and that (b) the truth of p implies the truth of g, then we
can conclude that g is true.

Example 3.17 (Modus Ponens)
Here is the truth table forp A (p = q) = g (with a few extra columns of “scratch
work,” for each of the constituent pieces of the desired final proposition):

p 9 pr=>q9 pAp=q9 pAp=9=9q
T T T T T
T F F F T
F T T F T
F F T F T

Etymologically,
the word tautology
comes from taut
“same” (to + auto)
+ logy “word.”
Another meaning
for the word “tau-
tology” (in real life,
not just in logic) is
the unnecessary
repetition of an
idea: “a canine
dog.” (The ety-
mology and the
secondary street
meaning are not
totally removed
from the usage in
logic.)

Modus ponens
rhymes with “goad
us phone-ins”;
literally, it means
“the mood that
affirms” in Latin.
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There are only “T”s in the last column of this truth table, which establishes that
modus ponens is a tautology.

Figure 3.10 contains a number of tautologies

p=9Np=9q Modus Ponens
that you may find interesting and occasionally p=DA-q=>-p Modus Tollens
helpful. (Exercises 3.60-3.72 ask you to build pyr pow of the Excluded Middle
. . p& -p ouble Negation
truth tables to verify that these propositions pep
really are tautologies.) p=pVvq
One terminological note from Figure 3.10: fp/\qu):j\p b= g
modus tollens is the proposition (p = q) A 7 = P=A(Ep=>9 =9
—p, and it’s the counterpoint to modus ponens: if p=N@q=nr=@p=r1)

p=pDNp=r)cp=qNr

we know both that (a) the truth of p implies the = V= op—qyr

truth of g4 and that (b) g is not true, then we can pPA@GVT) S PAQV(pAT)

conclude that p cannot be true either. (Modus P=@=neprg=r

tollens means “the mood that denies” in Latin.) Figure 3.10: Some
tautologies.

SATISFIABLE AND UNSATISFIABLE PROPOSITIONS
We now turn to propositions that are sometimes true, and those propositions that
are never true:

Definition 3.12 (Satisfiable propositions)
A proposition is satisfiable if it is true under at least one truth assignment.

If f is a truth assignment under which a proposition is true, then we say that the
proposition is satisfied by f .

Definition 3.13 (Unsatisfiable propositions/contradictions)
A proposition is unsatisfiable if it is not satisfiable. Such a proposition is also called a
contradiction.

Thus a proposition is satisfiable if it is true under at least one truth assignment, and
unsatisfiable if it is false under every truth assignment. (And it’s a tautology if it is
true under every truth assignment.) Here are some examples:

Example 3.18 (Contradiction of p <> gand p © ¢q)
Here is the truth table for (p < g) A (p € 9):

p g9 preq o poqg pepApog)
T T T F F
T F F T F
F T F T F
F F T F F

Because the column of the truth table corresponding to the given proposition has no
“T”s in it, the proposition (p < q) A (p @ q) is unsatisfiable.
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Though it might not have been immediately apparent when they were defined, the

logical connectives @ and < demand precisely opposite things of their arguments:
the proposition p @ g is true when p and g have different truth values, while p < gis
true when p and g have the same truth values. Because p and g cannot simultaneously
have the same and different truth values, the conjunction (p < g) A (p B g)isa
contradiction.

Example 3.19 (Demanding satisfaction)
Problem: Is the proposition p V q = —p A —q satisfiable?

Solution: We'll answer the question by building a truth table for the given proposi-

tion:
P 9 pvqg —p  —q  pA-q pVag=pAq
T T T F F F F
T F T F T F F
F T T T F F F
F F F T T T T

Because there is at least one “T” in the last column in the truth table, the proposi-
tion is satisfiable. Specifically, this proposition is satisfied by the truth assignment
p = False,q = False. (Under this truth assignment, the hypothesis p V g is false;
because false implies anything, the entire implication is true.)

Let ¢ be any proposition. Then ¢ is a tautology exactly when —¢ is unsatisfiable: ¢
is a tautology when the truth table for ¢ is all “T”s, which happens exactly when the
truth table for —¢ is all “F”s. And that’s precisely the definition of —¢ being unsatisfi-
able!

Taking it further: While satisfiability seems like a pretty precise technical definition that wouldn’t mat-
ter all that much, the satisfiability problem—given a proposition ¢, determine whether ¢ is satisfiable—
turns out to be at the heart of the biggest open question in computer science today. If you figure out how
to solve the satisfiability problem efficiently (or prove that it’s impossible to solve efficiently), then you'll
be the most famous computer scientist of the century. See the discussion on p. 326.

3.3.2  Logical Equivalence

We’ll now turn to a special type of pairs of propositions. When two propositions
“mean the same thing” (that is, they are true under precisely the same circumstances),
they are called logically equivalent:

Definition 3.14 (Logical equivalence)

Two propositions ¢ and 1 are logically equivalent, written ¢ = v, if they have exactly
identical truth tables (in other words, their truth values are the same under every truth
assignment).

To state it differently: propositions ¢ and ¢ are logically equivalent whenever ¢ < 1 is
a tautology. Here’s a simple example of logical equivalence:

As we said in
Section 3.2.6,

we occasionally
denote generic
propositions by
lowercase Greek
letters, particularly
o (“phi”) or ¢
(“psi”).
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Example 3.20 (=(pAg) = (p A gq) = —q)
In Example 3.14, we found that (p A q) = —g is true except when p and g are both
true. Thus —(p A g) is logically equivalent to (p A q) = —g, as this truth table shows:

p 9 @AD=-q ~(pAg)
T T F F
T F T T
F T T T
F F T T

IMPLICATION, CONVERSE, CONTRAPOSITIVE, INVERSE, AND MUTUAL IMPLICATION
We’ll now turn to an important question of logical equivalence that involves the
proposition p = g and three other implications derived from it:

Definition 3.15 (Converse, Contrapositive, and Inverse)
Consider an implication p = q. Then:

* The converse of p = q is the proposition g = p.
* The contrapositive of p = q is the proposition ~q = —p.
* The inverse of p = q is the proposition —p = —q.

These three new implications de-
rived from the original implication

contrapositive
—g = —p

proposition converse
p = g—particularly the converse P9 p=1 1=p
and the contrapositive—will arise T T T T
T F F T F
frequently. Let’s compare the three F T T F T
F F T T T

new implications to the original in
light of logical equivalence:

Example 3.21 (Implications, contrapositives, converses, inverses)
Problem: Consider the implication p = g. Which of the converse, contrapositive, and
inverse of p = ¢ are logically equivalent to the original proposition p = ¢?

Solution: To answer this question, let’s build the truth table; see Figure 3.11. Thus the
proposition p = g is logically equivalent to its contrapositive =g = —p, but not to
its inverse or its converse.

Here’s a real-world example to make these results more intuitive:

Example 3.22 (Contrapositives, converses, and inverses)
Consider the following (true!) proposition, of the form p = g:
If you were President of the UL.S. in 2006, then your name is George.
~ ~ - ~ ~ -

4 q

The contrapositive of this proposition is =g = —p, which is also true:

Writing tip: Now
that we have a
reasonable amount
of experience

in writing truth
tables, we will
permit ourselves

to skip columns
when they’re both
obvious and not
central to the point
of a particular
example. When
you're writing
anything—whether
as a food critic or a
Shakespeare scholar
or a computer
scientist—you
should always think
about the intended
audience, and

how much detail

is appropriate for
them.

inverse
-p =g

=

Figure 3.11: The
truth table for an
implication and
its contrapositive,
converse, and
inverse.

Thanks to Jeff
Ondich for Exam-
ple 3.22.
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If your name isn't George, then you weren’t President of the U.S. in 2006.

But the converse ¢ = p and the inverse —p = —g are both blatantly false:

If your name is George, then you were President of the UL.S. in 2006.
If you weren’t President of the U.S. in 2006, then your name isn’t George.

Consider, for example, George Clooney, Saint George, George Lucas, and Curious
George—all named George, and none the President in 2006.

For emphasis, let’s summarize the results from Example 3.21. Any implicationp = g
is logically equivalent to its contrapositive =g = —p, but it is nof logically equivalent to
its converse g = p or its inverse —p = —g. You might notice, though, that the inverse of
p = q is the contrapositive of the converse of p = g (!), so the inverse and the converse
are logically equivalent to each other.

Here’s another example of the concepts of tautology and satisfiability, as they relate
to implications and converses:

Example 3.23 (Mutual implication)

Problem: Consider the conjunction of the implication p = g and its converse: in other
words, consider (p = g) A (g = p). Is this proposition a tautology? Satisfiable?
Unsatisfiable? Is there a simpler proposition to which it’s logically equivalent?

Solution: We can answer this question with a truth table:

p=q9 q=>p @E=9AN@G=p
T T

M AT

q
T
F
T
F

—=Hm a4

F F
T F
T T
Because there is a “T” in its column, (p = g) A (§ = p) is satisfiable (and thus
isn’t a contradiction). But that column does contain an “F” as well, and therefore
(p = 9) N\ (g = p) is not a tautology.

Notice that the truth table for (p = q) A (§ = p) is identical to the truth table for
p < q. (See Figure 3.4.) Thus p < gand (p = q) A (g = p) are logically equivalent.
(And < is called mutual implication for this reason: p and g imply each other.)

SOME OTHER LOGICALLY EQUIVALENT STATEMENTS

Figure 3.12 contains a large collection of logical equivalences. These equivalences
may use some unfamiliar terminology, which we’ll define here. Informally, an operator
is commutative if the order of its arguments doesn’t matter; an operator is associative
if the way we parenthesize successive applications doesn’t matter; and an operator
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is idempotent if applying it to the same argument twice gives that argument back. (In Latin: idem “same”

addition to these definitions, there are two other frequently discussed concepts: the
identity and the zero of the operator; logical equivalences involving identities and zeros
were left to you, in Exercises 3.13-3.22.) For each equivalence in Figure 3.12, it’s worth

+ potent “strength.”
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Commutativity pVg=qVp
PAG=qgAp Distribution of A over V pAN@Vr)=p@AqV({pAT)
PPg=qDp Distribution of V over A pV@Ar)=pPVg ApVr)
peq=qep Contrapositive p=9g=—q="p
Associativity pV@Vr)=@pVveVr p=>qg=-pVyqg
pA@GAT)=@PAg) AT p=@=>r=pAqg=>r
re@@en=peqor peq=pe g
pe@en=peqer Mutual Implication (@p=9A@G@=p =p g
Idempotence pVp=p De Morgan’s Laws ~(pAg)=-pV g
pApP=p Ve =-pAq

Figure 3.12: Some
logically equivalent
taking a few minutes to think about why the two propositions are logically equivalent. propositions.
See also Exercises 3.73-3.82.
De Morgan’s Laws
are named after
Augustus De
Morgan, a 19th-
century British
mathematician.

Taking it further: There are at least two ways in which the types of logical equivalences shown in Fig-
ure 3.12 play an important role in programming. (See the discussion on p. 327.) First, most modern
languages have a feature called short-circuit evaluation of logical expressions—they evaluate conjunc-
tions and disjunctions from left to right, and stop as soon as the truth value of the logical expression is
known—and programmers can exploit this feature to make their code cleaner or more efficient. Second,
in compiled languages, an optimizing compiler can make use of logical equivalences to simplify the
machine code that ends up being executed.

3.3.3 Representing Propositions: Circuits and Normal Forms

Now that we’ve established the core concepts of propositional logic, we’ll turn to some
bigger and more applied questions. We’ll spend the rest of this section exploring two
specific ways of representing propositions: circuits, the wires and connections from
which physical computers are built; and two normal forms, in which the structure of
propositions is restricted in a particular way.

The approach we're taking with normal forms is a commonly used idea to make
reasoning about some language L easier: we define a subset S of L, with two goals:
(1) any statement in L is equivalent to some statement in S; and (2) S is “simple” in
some way. Then we can consider any statement from the “full” language L, which we
can then “translate” into a simple-but-equivalent statement of S. Defining this subset
and its accompanying translation will make it easier to accomplish some task for all
expressions in L, while still making it easy to write statements clearly.

Taking it further: The idea of translating all propositions into a particular form has a natural analogue
in designing and implementing programming languages. For example, every for loop can be expressed
as a while loop instead, but it would be very annoying to program in a language that doesn’t have for
loops. A nice compromise is to allow for loops, but behind the scenes to translate each for loop into a
while loop. This compromise makes the language easier for the “user” programmer to use (for loops
exist!) and also makes the job of the programmer of the compiler/interpreter easier (she can worry
exclusively about implementing and optimizing while loops!).

In programming languages, this translation is captured by the notion of syntactic sugar. (The phrase
is meant to suggest that the addition of for to the language is a bonus for the programmer—"sugar on
top,” maybe—that adds to the syntax of the language.) The programming language Scheme is perhaps
the pinnacle of syntactic sugar; the core language is almost unbelievably simple. Here’s one illustration:
(and x y) (Scheme for “x A y”) is syntactic sugar for (if x y #f) (that’s “if x then y else false”). So a
Scheme programmer can use and, but there’s no “real” and that has to be handled by the interpreter.

Circuits
We’ll introduce the idea of circuits by using the proposition (p A =) V (—p A q) as an
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example. (Note, by the way, that this proposition is logically equivalent to p & g.)
Observe that the stated proposition is a disjunction of two smaller proposi-

tions, p A =g and —p A g. Similarly, p A —q is a conjunction of two even simpler /\/\
propositions, namely p and —g. A representation of a proposition called a tree /A\ /A\
continues to break down every compound propositio