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Preface

This book is intended for those who have studied a first book in logic, and
wish to know more. It is concerned to develop logical theory, but not to
apply that theory to the analysis and criticism of ordinary reasoning. For
one who has no concern with such applications, it would be possible to read
this book as a first book in the subject, since I do in fact introduce each
logical concept that I use, even those that I expect to be already familiar (e.g.
the truth-functors and the quantifiers). But it would be tough going. For in
such cases my explanations proceed on a fairly abstract level, with virtually
no discussion of how the logical vocabulary relates to its counterpart in
everyday language. This will be difficult to grasp, if the concept is not in fact
familiar.

The book is confined to elementary logic, i.e. to what is called first-order
predicate logic, but it aims to treat this subject in very much more detail
than a standard introductory text. In particular, whereas an introductory
text will pursue just one style of semantics, just one method of proof, and so
on, this book aims to create a wider and a deeper understanding by showing
how several alternative approaches are possible, and by introducing com-
parisons between them. For the most part, it is orthodox classical logic that
is studied, together with its various subsystems. (This, of course, includes
the subsystem known as intuitionist logic, but I make no special study of it.)
The orthodox logic, however, presumes that neither names nor domains
can be empty, and in my final chapter I argue that this is a mistake, and go on
to develop a ‘free’ logic that allows for empty names and empty domains. It
is only in this part of the book that what I have to say is in any way unortho-
dox. Elsewhere almost all of the material that I present has been familiar to
logicians for some time, but it has not been brought together in a suitably
accessible way.

The title of the book shows where I think it belongs in the teaching of the
subject. Institutions which allow a reasonable time for their first course in
logic could certainly use some parts of this book in the later stages of that
course. Institutions which do not already try to get too much into their
advanced courses could equally use some parts of it in the earlier stages of
those courses. But it belongs in the middle. It should provide a very suitable
background for those who wish to go on to advanced treatments of model
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theory, proof theory, and other such topics; but it should also prove to be an
entirely satisfying resting-place for those who are aware that a first course in
logic leaves many things unexplored, but who have no ambition to master
the mathematical techniques of the advanced courses. Moreover, I do not
believe that the book needs to be accompanied by a simultaneous course of
instruction; it should be both comprehensible and enjoyable entirely on its
own.

While I have been interested in logic ever since I can remember, I do not
think that I would ever have contemplated writing a book on the topic, if it
had not been for my involvement fifteen years ago in the booklet Notes on the
Formalization of Logic. This was compiled under the guidance of Professor
Dana Scott, for use as a study-aid in Oxford University. Several themes in the
present work descend from that booklet, and I should like to acknowledge
my indebtedness not only to Dana Scott himself, but also to the others who
helped with the compilation of that work, namely Dan Isaacson, Graeme
Forbes, and Goéren Sundholm. But, of course, there are also many other
works, more widely known, which I have used with profit, but with only
occasional acknowledgement in what follows.

David Bostock
Merton College, Oxford
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Introduction

1.1. Truth 3

1.2. Validity

1.3. The Turnstile 8
1.1. Truth

The most fundamental notion in classical logic is that of truth. Philo-
sophers, of course, have long debated the question ‘what is truth?’, but that
is a debate which, for the purposes of the present book, we must leave to one
side. Let us assume that we know what truth is.

We are concerned with truth because we are concerned with the things
that are true, and I shall call these things ‘propositions’. Philosophers, again,
hold differing views on what is to count as a proposition. A simple view
is that a proposition is just a (declarative) sentence, but when one thinks
about it for a moment, there are obvious difficulties for this suggestion. For
the same sentence may be used, by different speakers or in different con-
texts, to say different things, some of them true and others false. So one may
prefer to hold that it is not the sentences themselves that are true or false, but
particular utterings of them, i.e. utterings by particular people, at particular
times and places, in this or that particular situation. A more traditional
view, however, is that it is neither the sentences nor the utterings of them
that are true, but a more abstract kind of entity, which one can characterize
as what is said by one who utters a sentence. Yet a further view, with alonger
history, is that what one expresses by uttering a sentence is not an abstract
entity but a mental entity, i.e. a judgement, or more generally a thought.
Again, we must leave this debate on one side. Whatever it is that should
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properly be said to be true, or to be false, that is what we shall call a proposi-
tion. At least, that is the official position. But in practice I shall quite often
speak loosely of sentences as being true or false. For whatever propositions
are, they must be closely associated with sentences, since it is by means of
sentences that we express both truths and falsehoods.

We assume, then, that there are these things called propositions, and that
every one of them is either true or not. And if it is not true, we say that it is
false. So there are just two truth-values, truth and falsehood, and each pro-
position has exactly one of them. In fact we assume more strongly that a
given proposition has, in every possible situation, just one of these two truth-
values, so that when we have considered the case in which it is true, and the
case in which it is false, no possibility has been omitted. Since the vast major-
ity of the propositions that we actually express in daily life suffer from
vagueness in one way or another, one must admit that this assumption is
something of an idealization. For with a vague proposition there are some
situations in which it seems natural to say that it is neither true nor false, but
classical logic makes no allowance for this. For the most part this idealiza-
tion seems to do no harm, but there are occasions when it leads to trouble,
i.e. when we apparently get the wrong result by applying the precise rules of
classicallogic to the vague propositions of everyday life.1 But, once more, for
the purposes of the present book we can only note the problem and pass by
on the other side, with the excuse that our present subject is not the applica-
tion of logical theory but the development of the theory itself. And that the-
ory does depend upon the stated assumption about propositions and truth.
Indeed, that assumption is what distinguishes classical logic from most of its
rivals.

In developing our theory of logic we shall wish to speak generally of all
propositions, and we introduce the schematic letters ‘P,'Q}‘R’,... to facilitate
this. They are called sentence-letters (or, in some books, propositional let-
ters) because they are to be understood as standing in for, or taking the place
of, sentences which are or express propositions. We can therefore generalize
by letting such a letter represent any proposition, arbitrarily chosen. But
we shall also speak of ‘interpreting’ a sentence-letter, or assigning an ‘inter-
pretation’ to it, and it is natural to say that here we are thinking of the letter
as representing some particular and specified proposition. That is just how
one does proceed when applying logical theory, for example to test actual
arguments containing actual propositions. However, for our purposes in

1 The best-known example is the so-called ‘Sorites paradox’. See e.g. C. Wright, ‘Language-Mastery
and the Sorites Paradox’, in G. Evans and J. McDowell (eds.), Truth and Meaning (Oxford University
Press: Oxford, 1976).
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this book, the only feature of the assigned proposition that will ever be rel-
evant is its truth-value. So in fact we shall ‘interpret’ a sentence-letter just
by assigning to it a truth-value, either T (for truth) or F (for falsechood). We
shall not pause to specify any particular proposition which that letter rep-
resents and which has the truth-value in question.

1.2. Validity

The word ‘valid’ is used in a variety of ways, even within the orthodox ter-
minology of logic. But its primary application is to arguments, so we may
begin with this.

In an argument some propositions are put forward as premisses, and
another proposition is claimed to follow from them as conclusion. Of
course, an actual case will often involve rather more than this, for the arguer
will notjust claim that his conclusion follows from his premisses; he will also
try to show (i.e. to prove) that it does, and this may involve the construction
oflong and complicated chains of reasoning. It is only in rather simple cases
that a mere claim is deemed to be enough. Nevertheless, the classical def-
inition of validity ignores this complication, and it counts an argument as
valid if and only if the conclusion does in fact follow from the premisses,
whether or not the argument also contains any demonstration of this fact.
To say that the conclusion does follow from the premisses is the same as to
say that the premisses do entail the conclusion, and on the classical account
thatis to be defined as meaning; it is impossible that all the premisses should
be true and the conclusion false. Once more, we must simply leave on one
side the philosophers’ debate over the adequacy of this definition, either asa
definition of validity or as a definition of entailment.

Now logic is often characterized as the study of validity in argument,
though in fact its scope is very much narrower than this suggests. In what is
called elementary logic we study just two ways in which an argument may
be valid, namely (1) when its validity is wholly due to the truth-functional
structure of the propositions involved, and (2) when it is due to both truth-
functional and quantificational structure working together.2 In other areas
oflogic, not usually called elementary, one studies the contribution to valid-
ity of various other features of propositions, for example their tense or
modality. But there is no end to the list of propositional features that can

2 If the words ‘truth-functional’ and ‘quantificational’ are not familiar, then please be patient.
Detailed explanations will come in the next two chapters.
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contribute to validity, since any necessary connection between premisses
and conclusion will satisfy the definition, and it would be foolish to suppose
that some one subject called ‘logic’ should study themall. In response to this
point it used to be said that logic is concerned with ‘form’ rather than with
‘content’, and accordingly that its topic can be circumscribed as ‘validity in
virtue of form’. My impression is that that suggestion is not looked upon
with much favour these days, because of the difficulty of making any suit-
able sense of the notion of ‘form’ being invoked. In any case, I mention the
point only to set it aside, along with the many other interesting problems
that affect the very foundations of our subject. So far as this book is con-
cerned, we will confine attention just to the way that truth-functional and
quantificational complexity can affect validity. (But later we shall add a brief
consideration of identity.)

Because our subject is so confined, we can usefully proceed by introdu-
cing what are called ‘formal languages’, in which the particular kind of com-
plexity that we are studying is the only complexity that is allowed to occur
at all. For example, to study the effects of truth-functional complexity we
shall introduce a ‘language’ in which there are symbols for certain specified
truth-functions—and these, of course, are assigned a definite meaning—
but all the other symbols are merely schematic. Indeed, in this case the other
symbols will be just the schematic sentence-letters already mentioned. They
will occupy positions where one might write a genuine sentence, expressing
a genuine proposition, but they do not themselves express any propositions.
Accordingly, this so-called ‘formal language’ is not really a language at all,
for the whole point of a language is that you can use it to say things, whereas
in this ‘formal language’ nothing whatever can be said. So it is better re-
garded, not as a language, but as a scherna for a language—something that
would become a language if one were to replace its schematic letters by genu-
ine expressions of the appropriate type (in this case, sentences). Let us say,
then, that we shall introduce language-schemas, in which the particular
kinds of complexity that we are interested in will be represented, but every-
thing else will be left schematic.

The ‘sentences’ of such a language-schema are similarly not really sen-
tences, but sentence-schemas, picking out particular patterns of sentence-
construction. We shall call them ‘formulae’. By taking several such formulae
as our premiss-formulae, and another asa conclusion-formula, we can rep-
resent an argument-schema, which again is a pattern of argument which
many particular arguments will exemplify. Then, in a new use of the word
‘valid, we may say that an argument-schema is to be counted as a valid
schema if and only if every actual argument that exemplifies it is a valid
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argument, in the sense defined earlier (i.e. it is impossible that all its pre-
misses should be true and its conclusion false). It is the validity of these
argument-schemas that we shall actually be concerned with. At least, that
is the basic idea, though in practice we shall set up our definitions a little
differently.

When any formal language is introduced, we shall specify what is to
count as an ‘interpretation’ of it. At the moment, we have introduced just
one such language, namely the language which has as its vocabulary just
the sentence-letters ‘P,‘Q)‘R...., and nothing else. In this very simple lan-
guage, each sentence-letter is a formula, and there are no other formulae.
Moreover, we have explained what is to count as interpreting a sentence-
letter, namely assigning to it either T or F as its value. So this tells us how
to interpret every formula of the language. We therefore know what it
would be to consider all interpretations of some specified set of formulae.
Suppose, then, that we take an argument-schema in this language. It will
consist of some set of sentence-letters, each of which is to be counted as a
premiss-formula, together with a single sentence-letter to be counted as
the conclusion-formula. Then we shall say that such an argument-schema
counts as a valid schema if and only if there is no interpretation in which each
of the premiss-formulae comes out true and the conclusion-formula comes
out false. (With the present very simple language, it is clear that this will
be the case if and only if the conclusion-formula is itself one of the premiss-
formulae.)

When the argument-schema is valid in this sense, then it will also be valid
in the sense first suggested, i.e. every actual argument that exemplifies the
schema will be a valid argument. Why so? Because when we consider ‘every
interpretation’ of the schema, we are thereby considering ‘every possibility’
for the arguments that exemplify the schema, and this in turn is because—
asI stressed in Section 1.1—we are assuming that a proposition must always
be either true or false, and there is no third possibility for it.

The formal languages that we shall actually be concerned with in the
remainder of this book are, of course, rather more complicated than the very
simple example just given, but the same general principles will continue to
apply. When the language is introduced, we shall specify what is to count as
an interpretation of it, and the aim will be to ensure that the permitted inter-
pretations cover all the possibilities. Provided that this is achieved, the res-
ults that we obtain for our formal or schematic languages by looking at all
interpretations of them will carry with them results about what is and is
not possible in the genuine languages that exemplify them. For example, if
we have a formula that is not true under any interpretation, then all the
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propositions exemplifying that formula will be propositions that cannot
possibly be true. This is the relationship required if the study of formal
languages is to be a significant contribution to the study of validity in argu-
ments, as classically conceived. But, for most of what follows, this relation-
ship will simply be assumed; it will be the formal languages themselves that
directly engage our attention.

1.3. The Turnstile

Just as an argument is valid (according to the classical definition) if and only
if its premisses entail its conclusion, so we may also say that an argument-
schema is a valid schema if and only if its premiss-formulae entail its conclu-
sion-formula. This uses the word ‘entails’ in a new way, to signify a relation
between formulae, and that is how the word will be used from now on. In
fact it proves more convenient to work with this notion of entailment, rather
than the notion of an argument-schema being valid, so I now introduce the
sign ‘=’ to abbreviate ‘entails’ in this sense. The sign is pronounced ‘turn-
stile’ But before I proceed to a formal definition it will be helpful to intro-
duce some further vocabulary, of the kind called ‘metalogical’

At the moment, our only formulae are the sentence-letters. Let us now
specify these a little more precisely as the letters in the infinite series

PQRP,Q,R,,Ps,...

These are schematic letters, taking the place of sentences which are or ex-
press propositions, and used to speak generally about all propositions. More
kinds of formulae will be introduced shortly. But whatever kind of formulae
is under consideration at any stage, we shall wish to speak generally about all
formulae of that kind, and for this purpose it will be useful to have some fur-
ther schematicletters which take the place of formulae. I therefore introduce
the small Greek letters

OV PV X 10250

in this role.3 Their function is like that of the sentence-letters, but at one
level up. For they take the place of formulae, while formulae take the place
of genuine sentences expressing propositions. I also introduce the capital
Greek letters

3 @y are spelled ‘phi) ‘psi, ‘chi’ respectively, and pronounced with a long 1’ in each case. The ‘<
in ‘chi’ is hard (as in Scottish ‘loch’).
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LA®,T...

whose role is to generalize, in an analogous way, not over single formulae
but over sets of formulae.4 Using this vocabulary we can say that the basic
notion to be defined is

I'=o,
where @ is any formula and T is any set of formulae. And the definition is

There is no interpretation in which every formula in I is true and the
formula @ is false.

Any sentence that exemplifies the schema T = @) with actual formulae in
place of the metalogical schematic letters ‘T” and ‘@), will be called a sequent.
A sequent, then, makes a definite claim, that certain formulae are related in
a particular way, and it is either true or false.

My introduction of the capital Greek letters T,‘A’,... was a little curt, and
indeed some further explanation is needed of how all our metalogical letters
are actually used in practice. As I have said, the turnstile ‘&=’ is to be under-
stood as an abbreviation for ‘entails’ Grammar therefore requires that what
occurs to the right of this sign is an expression that refers to a formula, and
what occurs to the left of it is an expression—or a sequence of expressions—
referring to several formulae, or to a set of formulae, or a sequence of for-
mulae, or something similar. But in standard practice the letter ‘@’ is used to
take the grammatical place, not of an expression which refers to a formula,
but of an expression which is a formula. Similarly the letter ‘T” is used to take
the grammatical place, not of an expression that refers to one or more for-
mulae, but of one or more expressions that are formulae. To illustrate this,
suppose that we wish to say that if you take any set of formulae I, and if you
form from it a (possibly) new set by adding the particular formula ‘P’ to its
members, then the result is a set of formulae that entails the formula ‘P’.
Apparently the correct way of writing this would be

TU{P}=P,
(where ‘U’ indicates the union of two sets, and the curly brackets round ‘P’

mean ‘the set whose only member is “P”’). But in practice we never do use
the notation in this way. Instead, we write just

IPE=P.

4 T'A}'@’ are spelled ‘gamma) ‘delta) ‘theta’ respectively, and the ‘¢’ in ‘theta’ is long. (The corres-
ponding lower-case Greek letters are Y,°5,'0)
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Similarly, if we wish to generalize and say that the same holds for any other
formula in place of ‘P’, then we write

Lo = o.

Supposing, then, that ‘=’ really does abbreviate the verb ‘entails’, the
notation that we actually use must be regarded as the result of the following
further conventions:

(1) where an expression to the left of ‘=’ specifies a set by using the sign
‘U’ of set union, this sign is always to be replaced by a comma;

(2) wherean expression to the left of ‘=’ specifies a set by listing its mem-
bers, and enclosing the list in curly brackets, the curly brackets are
always to be omitted;

(3) quotation marks, needed in English to form from a formula an
expression which refers to that formula, are always to be omitted.

So it comes about that in actual practice we avoid both the use of quotation
marks, and the explicitly set-theoretical notation, that the explanation of
‘=" as ‘entails’ appears to demand.

It may seem more natural, then, to adopt a different explanation of ‘=)
not as abbreviating the verb ‘entails) but simply as representing the word
‘therefore’. What grammar requires of an ordinary use of the word ‘there-
fore’ is that it be preceded by one or more whole sentences, stating the pre-
misses of the argument, and followed by another whole sentence, stating
its conclusion. Of course it would be quite wrong to enclose each of these
sentences in its own quotation marks. So when we abstract from this an
argument-schema, which many different arguments may exemplify, we
shall naturally do this just by writing formulae in place of the original sen-
tences, again without adding any quotation marks. And similarly when we
wish to generalize about our argument-schemas, we shall do this by using
‘@’ to take the place of any formula, and ‘T” to take the place of any sequence
of formulae. So the grammar thatis actually used with the turnstile, not only
in this book but (so far as [ am aware) in every other, is very much more nat-
ural if we take it to mean ‘therefore’ rather than ‘entails’.

There is of course a difference between the two interpretations. On the
first approach, whereby ‘=" means ‘entails, the schema T = ¢’ is a schema
whose instances are sentences which make a definite claim, true or false. On
the second, whereby ‘=" means ‘therefore), the schema T = @’ is a schema
whose instances are argument-schemas, such as ‘P; not both P and Q; there-
fore not Q. An argument-schema does not itself make any claim at all;

10
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rather, we may make claims about that schema, e.g. the claim that it is valid.
So, on this second approach, if one wishes to claim that the formulae I" entail
the formula ¢ one writes not

T'E=eo
but
T = @ is valid.

In practice, it makes very little difference which interpretation is adopted.
Some books use the one, others use the other, and in several cases the sign
appears to be being used in both ways at once. But no serious confusion
results.

In this book I shall adopt the first interpretation, and what is written to
the left of ‘= will be taken as indicating a set of formulae, even though that
may not be what the notation naturally suggests.

One reason for this—not a very important one—is that the order in
which the premiss-formulae are listed, and the number of times that any
formula occurs in the list, evidently make no difference to the correctness of
an entailment claim. This is automatically catered for if we say that what is
in question is the set of all the premiss-formulae, since it will still be the same
set whichever way we choose to list its members, so long as it is the same
members that are listed. (But of course we could obtain this result in other
ways too, as we shall do in Chapter 7.) The more significant reason is that
the notion of a set of premiss-formulae very naturally includes two cases
which we shall want to include, but which would be unnatural as cases of
arguments or argument-schemas. These are the case when we have infin-
itely many premisses, and the case when we have none at all. The idea of an
argument with no premisses—an ‘argument’ which begins with the word
‘therefore’ (i.e. ‘for that reason’) referring back to no statement previously
given as a reason—is certainly strange; so too is the idea of an argument with
so many premisses that one could never finish stating them, and so could
never reach the stage of drawing the conclusion. But if we are speaking
simply of what is entailed by this or that set of propositions (or formulae),
then these two cases are less strange. In any case I stipulate that they are to
beincluded: the set of formulae I may be infinite, and it may be empty. Both
cases are automatically covered by the definition already given.

It may be noted that, in accordance with our convention for omitting
curly brackets to the left of the turnstile, we shall write simply

F=o

11
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to say that the formula ¢ is entailed by the empty set of formulae, and its
definition can of course be simplified to

There is no interpretation in which @ is false.

At a later stage in the book (Chapter 7) I shall generalize the definition of
the turnstile so that what is to the right of it may also be a set of formulae,
and not just a single formula. I do not introduce that generalization now,
since in the earlier chapters there would be no use for it. But it is convenient
to introduce now what is, in effect, one special case of the generalization to
come later: we shall allow that what is to the right of the turnstile may be
either a single formula or no formula, and consequently a new definition is
needed now for the case where there is no formula to the right. It is easy to
see what this definition should be, namely

I'e=
is to mean
There is no interpretation in which every formula in " is true.

Any instance of the schema T =, with actual formulae in place of T, will
also be called a sequent.

It is worth noting at once that our definition includes the special case in
which I" is empty, so that in the notation we actually use there are no formu-
lae either to the right or to the left of the turnstile, and we are faced with just
this claim:

=.

This is a false claim. It says that there is no interpretation in which every for-
mula in the empty set is true. But there is such an interpretation, indeed any
interpretation whatever will suffice, including the interpretation in which
every sentence-letter is assigned F. For since there are no formulae in the
empty set anyway, it follows that there are none which are not true, in this
interpretation and in any other. (As always in logic, we understand ‘Every A
is B’ to mean the same as ‘There is no A which is not B, and so it is true if
there is no A at all.) Here we have reached our first result about ‘= namely
that when it stands by itself to make a claim about the empty set of formulae,
it is false. It is convenient to write ‘5’ in place of ‘==’ to express the negation
of what ‘= expresses. Using this convention, we can set down our result in
this way:

.
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But perhaps it is less confusing to express the point more long-windedly in
English: the empty sequent is false.

Further results about ‘&=’ are best postponed until we have introduced the
formulae to which it will relate. Meanwhile, let us summarize what has been
said so far. In logic we study sequents, which have the turnstile ‘=" as their
main verb. In the standard case, a sequent

TEo

will have several formulae to the left of the turnstile, and one formula to the
right, and in this case the turnstile abbreviates ‘entails’ But we also allow for
a sequent of the form

I'e=

with no formula on the right. In this case the turnstile can be read as ‘is
inconsistent’ And we allow too for a sequent of the form

=9

with no formula on the left. In this case we shall say that the sequent claims
that the formula ¢ is valid. Note that this is yet a third use of the word ‘valid’,
in which it is applied not to an argument, nor to an argument-schema, but
to a single formula. This is the only way in which the word will be used
henceforth. Despite these different ways of reading the turnstile in English,
depending on whether one or other side of the sequent is empty, neverthe-
less it is recognizably the same notion in each case. For every sequent claims:

There is no interpretation in which everything on the left is true and
everything on the right is false.
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The most elementary part of logic is often called ‘propositional logic’ (or
‘sentential logic’), but a better title for it is ‘the logic of truth-functors.
Roughly speaking, a truth-functor is a sign that expresses a truth-function,
so it is the idea of a truth-function that first needs attention.

2.1. Truth-Functions

Atruth-function is a special kind of function, namely a function from truth-
values to truth-values.

Functions in general may be regarded as rules correlating one item with
another. A function will be ‘defined on’ items of some definite kind (e.g.
numbers), and these items are the possible inputs to the function. To each

14
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such item as input, the function assigns another item (or possibly the same
item) as its output for that input. The outputs may be items of the same kind
as the inputs, or they may be items of a different kind. For example, the
expression ‘the square of ... expresses a function defined on numbers;
given any number x as input to the function, the function yields another
number, namely x2, as its output for that input. Similarly, the expression ‘the
father of . .  expresses a function defined on people; given any person x as
input, the function yields another person, namely the father of x, as its out-
put for that input. So the first is a function from numbers to numbers, and
the second a function from people to people. In each of these cases the out-
puts are items of the same kind as the inputs, but a function does not have to
be like this. For example, ‘the number of . . ’s children’ expresses a function
from people to numbers. The important thing about a function is just that
it does always have one and only one output for each input of the specified
kind. We call the input to the function an ‘argument’ to the function, and its
output for that input is called its ‘value’ for that argument. Thus the func-
tion expressed by ‘the square of . . .’ has the value 4 for the argument 2, the
value 9 for the argument 3, the value 16 for the argument 4, and so on.

A truth-function is a function which takes truth-values as arguments and
which yields truth-values as values; that is to say, it is a function from truth-
values to truth-values. A nice simple truth-function is the one which yields
F as value for T as argument and T as value for F as argument. It is briefly
specified by this truth-table:

Argument I Value
T F
F T

This is an example of a one-place truth-function (also called a unary, or
monadic, truth-function). There are not many one-place truth-functions.
(In fact there are only three others. Write down their truth-tables.) But there
are also two-place truth-functions (also called binary, or dyadic), and three-
placetruth-functions (also called ternary, or triadic), and so on indefinitely.
It is natural to think of a two-place function as taking two arguments simul-
taneously, and this is perfectly all right, so long as one distinguishes them
as the first argument and the second. Alternatively, one can think of a two-
place function as taking just one argument, where that one argument is an
ordered pair of items. In that case, the truth-functions should be described
as functions which take as arguments either single truth-values, or ordered
pairs of truth-values, or ordered trios of truth-values, and so on. (To express
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the point generally, it is usual to speak of ordered n-tuples.) But if we speak
in the first way, which is perhaps more natural, then the truth-functions are
functions which take as arguments one or more truth-values, in a specified
order. The values of a truth-function are always single truth-values.

For example, among the two-place truth-functions there is one specified
by the following truth-table:

First Second Value
argument argument

T T T
T F F
F T T
F F T

Among the three-place truth-functions there is one specified by the follow-
ing truth-table:

First Second Third Value
argument argument argument

=B Bie - M- B BN I B
el - I B - - B
o o T e ]
= oo A

It is clear that with the two-place function just specified the order of the
arguments does make a difference, for the function takes the value F only
when the first argument takes the value T, and the second takes the value E.
But, as it happens, the order of the arguments is irrelevant to the three-place
function just specified: it takes the value T when and only when all its three
arguments take the same value, and this does not depend upon which order
they are taken in.

In general, the number of n-place truth-functions is 22". Thus, as already
mentioned, there are 4 one-place functions. We can add that there are 16
two-place functions, 256 three-place functions, and so on. In the other dir-
ection there are 2 zero-place functions. Admittedly it is stretching the notion
of a function somewhat to suppose that there could be such a thing as a zero-
place function. Such a ‘function’ is not in any natural sense a ‘correlation),
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but it can be regarded as something that has an ‘output’ for a ‘zero input’. For
example, among functions from numbers to numbers one might regard a
particular numeral, say ‘2} as expressing a zero-place function; it requires no
number as input, and it yields the number 2 as output. Similarly among
functions from truth-values to truth-values one may regard as a sign for a
zero-place function any symbol that always takes the value T as its value,
without requiring any argument to enable it to do so, and similarly any sym-
bol that always takes the value F as its value. I shall shortly introduce signs
that work just like this.

EXERCISES

2.1.1. Write out the truth-tables of the following truth-functions:

(a) The three-place function which takes the value T if and only if just one of its
arguments takes the value T.

(b) The three-place function which takes the value T if and only if at least two of
its arguments take the value T.

(c) The three-place function that takes the value T if and only if its first argu-
ment takes the value F.

2.1.2. Describe the relation between the three-place function in 2.1.1(c) and the
two-place function that takes the value T if and only if its first argument takes the
value F. Can a two-place function be the same function as a three-place function?

2.1.3. Write out the truth-tables of all the two-place truth-functions. Estimate how
long it would take you to do the same for all the three-place truth-functions.

2.2. Truth-Functors

Given any proposition ‘P’ one can form from it another proposition which
is its negation. In English this is usually done by inserting the word ‘not’ in
some appropriate place in the sentence expressing it, though ambiguity is
better avoided by tediously writing out ‘It is not the case that’ at the front of
the sentence. In this book we shall use *—’ as our negation sign, written in
front of what it negates, as in = P’. (Some other books use - or ‘~’ instead.)
Similarly, given any propositions ‘P’ and ‘Q’ one can form from them
another proposition which is their conjunction. In English this is usually
done by writing the word ‘and’ between the two sentences in question,
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though again one can prevent some possible misunderstanding by using
instead the long-winded construction ‘It is the case both that . . . and that
.. . In this book we shall use ‘A’ as our conjunction sign, written between
what it conjoins, as in ‘P A Q. (Some other books use ‘&’ or  instead.)

A word such as ‘not’ or ‘and’, when used in this way, may be regarded as
expressing a function from sentences to sentences; for you supply it with
a sentence, or a pair of sentences, as input, and it forms from them a new
sentence as its output for that input. So we may call it a sentence-functor.
Clearly there is no end to the different ways of forming new sentences from
given sentences, but we shall at once confine our attention to those, such as
inserting ‘not’ or ‘and), that are truth-functional. This means simply that the
sentence-functor which gives a sentence as output for one or more sentences
as input corresponds to a truth-function, namely the truth-function which
yields the truth-value of the output sentence as its output when it is given
the truth-value(s) of the input sentence(s) as its input. A sentence-functor
which corresponds in this way to a truth-function will be called, simply, a
truth-functor.

Just as a truth-function is given by a truth-table, so too a corresponding
truth-functor is also characterized by the same truth-table. For example, the
negation sign ‘—’ has this truth-table:

P —P
T F
F T

And the conjunction sign ‘A’ has this truth-table.

P Q | PAQ
T T T
1 F F
F T F
F F F

This tells us that the negation ‘“— P’ is false when ‘P’ is true and true when ‘P’
is false; and that the conjunction ‘P A Q’ is true if both of its conjuncts are
true, and false otherwise. To put this kind of information succinctly, let us
write ‘|P|” as an abbreviation for ‘the truth-value of “P”’, and similarly for
any other letter in place of ‘P’. Let us also abbreviate ‘if and only if” simply to
“iff”. Then the information contained in these tables can also be put briefly
like this:

18



2.2. Truth-Functors TRUTH-FUNCTORS

|-P|=T  iff |P|=F
IPAQ|=T iff |P|]=T and |Q|=T

Notice that it is enough if we just spell out the conditions under which a
proposition is true, for it then follows that in all other conditions it will be
false, in view of our assumption that a proposition always is either true or
false.

In addition to the truth-functors ‘=’ and ‘A’ we shall also use ‘v, ‘=’ and
‘>’ as truth-functors which correspond, in a rough and ready way, to the
English words ‘or’, “if . . . then . . , and ‘if and only if". Their truth-tables are

P Q | PvQ P-Q PoQ
T T T T T
T F T F F
F T T T F
F F F T T

In view of the correspondence with English just noted, the same informa-
tion can also be given in this way:

[PvQ|=T iff |[P|]=T or |Q=T
[P— Q=T iff if |[P|=T then |Q|=T
P Q=T iff |P|=Tiff |Q =T

(In some other books one finds ‘D’ in place of ‘=’ and ‘=’ in place of ‘¢>’)
When two sentences are joined by ‘v’ we call the whole a disjunction and the
two sentences are its disjuncts; when they are joined by ‘-’ we call the whole
a conditional, the first sentence being its antecedent and the second its con-
sequent; when they are joined by ‘¢’ we call the whole a biconditional (and
there is no special name for its parts).

We sshall also use ‘T’ and ‘L’ as ‘zero-place truth-functors’, i.e. as sentences
which take a constant truth-value, the first being true in every possible situ-
ation and the second false. So their ‘truth-tables’ amount just to this:

T|=T |i|=F

Ifyou wish, you may think of “T” and ‘L’ as abbreviating some entirely famil-
iar propositions, the first necessarily true and the second necessarily false,
for example ‘0 = 0’ and ‘0 = 1. That is an approach which will give entirely
the right results for the purposes of this book. But from a more philosoph-
ical perspective one might well wish to quarrel with it. For it is very often
held that our other truth-functors are defined by their truth-tables, and so
have no other meaning than the truth-table gives to them. If that is so, then
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presumably “T” and ‘1’ should equally be regarded as defined by their truth-
tables, so that °1’ is a sentence with no other meaning than that what it says
is, in all possible situations, false. In that case, ‘L’ is a wholly unfamiliar sen-
tence. (And sois ‘T".)

Setting aside the rather odd case of “T” and ‘L), the other truth-functors
just listed are chosen partly because it proves convenient to have a short way
of expressing the truth-functions in question, and partly because they have
a rough correspondence (as noted) with familiar English expressions. No
doubt these two reasons are connected with one another, though one may
well debate just how this connection should be understood. (Does one of
the reasons given explain the other? If so, which way round does the ex-
planation go?) One may also debate upon how close the correspondence
is between these truth-functors and their English counterparts, and why it
is not perfect. But, as usual, we shall forgo the pleasures of such a debate,
since our concern is with the logical theory itself and not with its application
to English. From this perspective, there is certainly some arbitrariness in
choosing to introduce simple signs for just these truth-functions but not
others. In Sections 2.7 and 2.9 we shall explore some consequences that
would flow from selecting one set of truth-functors rather than another, but
although these introduce some constraints, they still leave a great deal of
freedom. So I do not in fact specify any definite list of truth-functors as the
ones to be employed. Instead, the treatment will be general enough to allow
for any choice of truth-functors, though the ones just listed will be the ones
most commonly employed in illustrations.

EXERCISES

2.2.1. Determine whether the following sentence-functors are truth-functors.
(Method: see whether it is possible to construct a complete truth-table for them.)

(a) Pbecause Q.

(b) EvenifP,still Q.

(¢) Johnbelieves that P.

(d) Either John believes that P or he does not.

2.2.2. Discuss the following proposals:
(a) that‘—’ and ‘not’ mean the same.
{b) that‘v’ and ‘or’ mean the same.
(c) that‘—’and ‘only if’ mean the same.
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2.3. Languages for Truth-Functors

We shall now introduce suitable formal languages for studying the effects
that truth-functors have on entailment. As already noted (p. 6), these are not
really languages, in the ordinary sense of the word, but rather language-
schemas. For they will be built from a vocabulary which includes some
truth-functors—it does not matter which—and otherwise only schematic
sentence-letters, together with brackets to show punctuation. The full list of
sentence-letters is the infinite list

P)Q)R’PI:QpRpPz,...

A formal language for truth-functors may contain all of these letters in its
vocabulary, or it may contain only some. If we take as an example the lan-
guage which contains them all, and which contains all the truth-functors of
the previous section, and nothing else, then this language is specified by the
following formation rules:

(1) Each sentence-letter is a formula.

(2) “T°and ‘L’ are formulae.

(3) Ifgisaformula, sois—@.

(4) If ¢ and yare formulae, so are (QAY), (Qv), (¢—V), (pV).
(5) Nothingelse is a formula.

It is easy to see how the rules are to be varied to accommodate different
choices of the initial vocabulary. For example, our rule (1) might just say:
“The letters “P”, “Q”, and “R” are formulae), and then in view of clause (5)
no other letters would be included in the language. Any or all of rules (2)—
(4) might be omitted, and some other truth-functor might be added. For
example, one might wish to consider a language with just the one truth-
functor “T* (to be introduced later, p. 58), so that in place of all of rules
(2)—(4) we should just have

If ¢ and y are formulae, so is (¢ Ty).

But so long as at least one expression is given outright as a formula by rule
(1) (or rule (2)), and so long as at least one truth-functor is introduced by a
rule with the form of rules (3) or (4), saying that that truth-functor may be
applied to any formulae to yield new formulae, then we shall have a language
with infinitely many formulae in it. For there is no upper bound on the
length of a formula, and indeed the rules will not allow of there being any
such bound.

The only limit on the length of a formula is that every formula must be of
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finitelength, and rule (5) is intended to be so understood that it has this con-
sequence. One should think of this rule as saying that there are no formulae
other than the ones that there have to be in order to satisfy the other rules. It
comes to the same thing to say that the set of formulae is the smallest set that
satisfies the other rules, because it is a subset of every set that satisfies them.
So, since we do not need formulae of infinite length in order to satisfy those
rules, there are none. On the contrary, every formula is built up by starting
with some atomic formulae, given by rules (1) and (2), and then applying
rules (3) and (4) to bind these together into successively longer and longer
formulae, until, after some finite number of applications, the last truth-
functor is added and the whole formula is completed.

The formulae that are formed along the way are called the subformulae of
the whole formula (and the whole formula is trivially counted as a subfor-
mula of itself). The subformulae of a given formula are just those parts of it
that are themselves formulae, except that for this purpose we do not count a
sentence-letter as having any parts smaller than itself. (For example, ‘P’ is
not a subformula of ‘P, and ‘P,’ is not a subformula of ‘P,,’.) We may add
that for each occurrence of a truth-functor in our whole formula there will
be a definite stage in the process of building up the whole at which it was first
incorporated, and that will be the stage when the shortest subformula con-
taining that occurrence was formed. This shortest subformula is called the
scope of the given occurrence, and the truth-functor concerned is said to be
the main functor of that subformula. It is easily seen that the punctuation
supplied by the brackets that figure in rule (4) ensures that each formula
does have a unique decomposition into subformulae, so that there is never
any ambiguity over the scope of an occurrence of a truth-functor.

Nevertheless, all these brackets are rather tedious in practice, and it is
convenient to have some conventions for omitting them. Without any am-
biguity we may always omit the outer pair of brackets in any formula that
begins and ends with a bracket. Where we have a continued conjunction,
asin

((@Ay)Ax) or (@AalywAay)
we may also omit the inner pair of brackets and write simply
@Ay AY.
This increases readability, and should not be misleading, since it will make

no difference which way the inner brackets are restored. The same conven-
tion applies to a continued disjunction

((pvy)vy or (pv(yvy)).
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Finally we may regard the functors — and < as ‘outranking’ A and v in the
sense that, where brackets are not shown, they should be restored in a way
that gives a larger scope to — or ¢, and a smaller scope to A and v, rather
than vice versa. Thus

vy —=X%
is to be understood as an abbreviation for

(pvy)—>x
and not for

oV (y—x)
Similarly,

pvyax) © (@vy)alevy)
is short for

(pvyay) © (ovy)alovy))
and not for any of the many other ways in which brackets might be restored.

It would be possible to avoid brackets altogether by a change in the nota-

tion for two-place truth-functors, i.e. by writing the functor before its two
arguments, rather than between them. That is, one writes ‘v ¢ ’ rather
than ‘@ v V), and similarly for any other two-place functor. In this notation
(which is known as Polish notation), the potential ambiguity in

vy —Y%
cannot be reproduced. For on one way of construing it (i.e. the correct way),
it is written as

VoYY
and on the other way it is written as

VoYY

But most people find this notation difficult to read, and in any case it will not
be used in this book.

EXERCISES

2.3.1.(a) Write formation rules for a language which contains all the sentence-
letters, but just one truth-functor, namely the three-place truth-functor «>(g,y,x),
which takes the value T when and only when ¢, W, and x each have the same value.
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(b) Outline an argument to show that in this language no formula has an even
number of sentence-letters. (A fully detailed argument for this conclusion would
require the method of Section 2.8. But you should be able to give the idea of an argu-
ment without reading that section.)

2.3.2. How many different ways are there of restoring brackets to the formula
PAQAQAP?

Why is it reasonable to say that it will not make any difference which way you choose
todoit?

2.4. Semantics for these Languages

An interpretation I of a formal language £ for truth-functors consists of:

(1) an assignment of a truth-value, either T or F, to each sentence-letter
in £. This assignment is arbitrary, i.e. any such assignment is allowed.
(2) an assignment of truth-values to all the remaining formulae in Z,
which is not arbitrary, but is calculated from the values assigned to
the sentence-letters in accordance with the truth-tables of the truth-
functors involved. For example, if the truth-functors of £ are just
—,A,V, then the interpretation of the remaining formulae is deter-
mined by the rules
|—¢|=T iff |[¢|=F
oAy =T iff |o|=T and |y|=T
lovy|=T iff |¢|=T or |y|=T.

Occasionally it will be useful to consider a non-standard interpretation,
which does not obey the stipulations (1) and (2) above. In such a case we
shall distinguish the interpretations obeying (1) and (2) as the standard
interpretations. But ‘interpretation’ will mean ‘standard interpretation’
unless there is some indication to the contrary.

The definitions of entailment, inconsistency, and validity for languages
for truth-functors are as given in the previous chapter (Section 1.3). For
example, a set of formulae T is inconsistent iff there is no (standard) inter-
pretation of any language for truth-functors in which all of those formulae
are interpreted as true. But it is perhaps easier to think of it in a slightly dif-
ferent way. We will say that the language of a set " of formulae is the language
which has as its vocabulary just the sentence-letters and truth-functors that
occur in I. Then the set T is inconsistent iff in every interpretation of the
language of T some formula in I is interpreted as false. Similarly I entails ¢
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iff, in every interpretation of the language of 'U{¢}, either some formula in
Tis false or the formula ¢ is true. Similarly again, ¢ is valid iff, in every inter-
pretation of the language of {0}, ¢ is true. The point that we are here relying
on is this: provided that we restrict attention to interpretations which do
interpret every sentence-letter, and every truth-functor, in the formulae we
are concerned with, then we may take it for granted that what is not true in
that interpretation is false, and that what is not false is true. Moreover, we
shall never need to consider interpretations which include more letters, or
more truth-functors, than occur in the formulae under consideration. For
the interpretation of the extra vocabulary cannot in any way affect the truth-
values of formulae which lack that vocabulary.

The most straightforward test for validity or entailment or inconsistency
is a truth-table test. So long as we may confine our attention to finite sets of
formulae, this test can always be applied and will always yield a definite
result. One begins by listing all the letters in the formula or formulae to be
tested, and then all the different ways of assigning truth-values to those let-
ters. For each assignation we shall construct a separate line of the truth-
table, so when we have 2 letters to consider there will be 4 lines in the table,
when we have 3 letters there will be 8 lines, and in general when we have n
letters there will be 27 lines. Each line thus represents one of the possible
interpretations for the language of the formula or formulae to be tested, and
we simply calculate the resulting truth-value for each whole formula in that
interpretation, using the tables already stipulated for the various functors
involved. The method of calculation is to work up from the shorter subfor-
mulae to the longer ones.

Here is a simple example to show that P—>(—P—Q) is a valid formula.
The table is

P Q | P - (—P = Q)
T T T T F T T
T F T T F T F
F T F T T T T
E F F T T F F

We have just two letters to consider, Pand Q, so we begin by writing these on
theleft, and underneath them the four possible interpretations. Then on the
right we write the formula we are interested in, and we begin by considering
its shortest subformulae, which are the letters Pand Q again. Under the first
occurrence of P, and under the occurrence of Q, we have simply repeated the
value they receive in each assignment. Under the second occurrence of P we
have written nothing, because in this case we have at once put in the values
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of the next longer subformula —P. These values are written under the main
truth-functor of —P, namely —. Using the truth-table for — we can now
calculate the values, in each line, of the next longer subformula—P->Q, and
again we write these values under its main truth-functor, namely —. Finally,
we are now in a position to calculate the values of the whole formula, which
we write under its main truth-functor, namely the first occurrence of — in
the formula. For ease of reading, this column is sidelined, since it is the goal
of the calculation. It turns out that only the value T occurs in this column,
which is to say that in every interpretation of the language of the formula
that formula is true, i.e. that the formula is valid.
Here is another example, to verify the entailment

P—R,Q—->R = (PvQ)—R.
The relevant table is

P PR Q—-R (PvQ)—R

~
el e - R N B
e R I R I A B
el eI W B e o B

el e B M B B R |
o o~

In this table we have saved ink by not bothering to repeat the value of a
single letter under that letter, but otherwise the procedure is just the same:
the value of each formula is calculated from the values of its shorter subfor-
mulae. The table shows that whenever the two premiss-formulae are both
true—i.e. in lines 1, 3, 5, 7, 8—the conclusion formula is true too; or equi-
valently (and easier to check) that whenever the conclusion formula is
false—i.e. in lines 2, 4, 6—then at least one of the premiss-formulae is also
false. This shows that the proposed entailment is indeed correct.

When setting out truth-tables, it is standard practice always to consider
the various interpretations in the order illustrated in my last two examples.
So, for instance, in a truth-table of 16 lines the column under the first letter
would consist of 8 occurrences of T followed by 8 occurrences of F; the col-
umn under the second letter would have 4 occurrences of T alternating with
4 occurrences of F; the column under the third letter would have pairs of T
alternating with pairs of F; and the column under the last letter would have
T alternating with F. Each column begins with T and ends with F, so that the
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first interpretation considered is that in which all the letters are interpreted
as true, and the last considered is that in which they are all interpreted as
false. A sequent which can be shown to be correct by the truth-table test is
called a tautologous sequent, and a single formula which can be shown to be
valid by this test is called a tautology.

Itis obvious that the task of writing out a full truth-table can become very
laborious, especially when there are many letters to be considered. So it is
natural to seek for some short cuts. One method which is often handy is this:
seek to construct just one line of the truth-table, which will falsify the sug-
gested entailment. If the construction succeeds, then obviously the entail-
ment is not correct; if the construction fails, then this will be because it runs
up against some obstacle which shows that no such construction could suc-
ceed. In that case, there is no falsifying line, and therefore the entailment is
correct. To apply this method, one works in the opposite direction to that
of the truth-tables, i.e. one calculates the values of subformulae from the
values of the longer formulae that contain them.

Here is an example, testing an entailment which involves four letters, and
which therefore would have 16 lines in its full truth-table. The finished dia-
gram which records the reasoning is this:

PR QoS k= (PvQ) — (RvS)
FTF FTEF T F FEFF
514 514 2 1 323

(The numbers on the bottom line are put in only to help in the explanation
of the reasoning.) We begin by writing down the entailment to be tested,
which has two premiss-formulae and one conclusion-formula. Then our
first step is to suppose that this suggested entailment is not correct, i.e.
we suppose that there is an interpretation which makes both the premiss-
formulae true, and the conclusion-formula false. We therefore put T under
the main functor of each premiss-formula, and F under the main functor of
the conclusion-formula. These three entries are labelled ‘1’ on the diagram.
Now there is nothing more that we can do with the premiss-formulae for
the time being, so for our second step we just consider the conclusion. We
observe that if the whole conditional (PvQ) — (RVS) is to be false, then its
antecedent PvQ must be true and its consequent RvS must be false, so we
write in T under the main functor of the first, and F under the main functor
of the second. These two entries are labelled 2’ on the diagram. The third
step then notes that if the disjunction RvS is to be false, then both Rand S
must be false, so F is entered twice more at the entries labelled 3’ We have
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now discovered that if there is an interpretation which falsifies our entail-
ment, it must be one in which both R and S are interpreted as false. So our
fourth step just writes in this information for the two premiss-formulae,
and allows us to complete the argument. For if the premiss P—R is to be
true, and the consequent R is now given as false, then the antecedent P must
be false as well. So as a fifth step we can write F under P, and by the same rea-
soning we can also write F under Q. But now we have reached an imposs-
ibility, for if P is false, and Q is false, then the disjunction PvQ must also be
false, and yet we had said at step 2 that it would have to be true. We therefore
underline the conflicting truth-values, and draw our conclusion: the pro-
posed entailment must be correct. For the attempt to find a falsifying inter-
pretation has run into a contradiction.

Reasoning by this method does not always work out quite so straight-
forwardly. Here is another example, which in this case does work out, but
which begins to show how problems may arise. Let us see whether the entail-
ment we have just tested also holds the other way round. In this case, our
diagram works out like this:

PvQR) > (RvS) E (PoRAQ-S)

TT T FTT TFEFF TT
A
45 1 467 323 1 9 8

Step 1 enters T for the left formula, and F for the right formula, as before. But
these values in fact do not determine any further values at all, so in order to
get any further we must now make an assumption. There are several assump-
tions that one could make. We shall explore later a method which makes
assumptions about the values of the individual sentence-letters. (This is
Quine’s method of truth-value analysis, introduced in Section 2.11.) But it
is more in keeping with the present method to make an assumption about
the value of a longer formula, in fact of a longest subformula that is not yet
assigned a value. So we choose to consider the conclusion-formula (P—R)
A (Q—S). Our initial supposition is that this conjunction is false. So it fol-
lows that one or other of the two conjuncts, P—R and Q—S, is false, but we
do not know which. We shall assume, then, that it is P—R that is false, mark-
ing this in on the diagram as step 2, but also labelling it ‘A’ for ‘Assumption’.
Now suppose that in following out the consequences of this assumption we
meet an impossibility, as we did with the last example. Then what we have
to do is to run the test again, this time making the alternative assumption
that Q—S is false. If both assumptions lead to an impossible distribution of
truth-values, then we know that there cannot be any falsifying interpreta-
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tion. But that is not what happens with the present example, as we soon see.
The assumption at step 2, that P—R is false, allows us to mark P as true and
R as false at step 3. Step 4 then carries this information across to the left for-
mula, and step 5 then notes that, since P is true, PvQ must be true too.
Combining this with the initial supposition that the left formula as a whole
is true, we deduce in step 6 that RvS must be true, and hence in step 7 that S
must be true. Step 8 then carries this information across to the other occur-
rence of S, and step 9 infers that the clause Q—S must therefore be true. At
this point we may stop. Admittedly, the value of Q has not yet been deter-
mined, and for completeness we should make some assumption about it.
But it is easily seen that we could make either assumption, and the rest of the
diagram will not be affected. So we have not run up against any impossibil-
ity. On the contrary, we have succeeded in constructing a line of the truth-
table in which the premiss-formula is true and the conclusion-formula is
false, thus showing that the proposed entailment is not correct.

As will be evident from these two examples, using this method requires
more thought than constructing a full truth-table, but it can save a great deal
of time. The method can also become rather complicated, if we are forced to
make several different assumptions, one after the other, in testing the same
entailment. But I shall not say any more about it at this stage, for in fact the
basic idea that we are using here will be developed into an elegant and fool-
proof procedure in Chapter 4, with a simple technique for handling a num-
ber of assumptions.

EXERCISES

2.4.1. Use truth-tables to determine whether the following sequents are correct.
(We use ‘¢ =l= y’ as short for ‘¢ = ¢’ and ‘y = ¢’)

(a) —(P—P) = (P—>—P)

(b) =(P-Q) v (P->—Q)

(¢) E(P>Q)v (R—P)

(d) P->Q A (PH>—Q) =

(e) (PEQ)A(PE—Q =

(f) P->(QvR) == (P-Q)v (P-R)

() (QvR) »P == (Q-P)v (R—>P)

(h) P> (QvR) == (PAQ)V (PAR) v (—PA—QA—R)

(i) P& (QVR) == (PAQAR) Vv (—PA—Q) v (mPA—R).

2.4.2. Without writing out a full truth-table, determine whether the following
sequents are correct. (Indicate your reasoning,.)
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(a) P>Q,Q—-R,R—SE=P->S

(b) PvQ,—(PAR),—(QAS) = —(RAS)

{(¢) P—->(QVR),R— (P—S),—(SAP) =Q—P
(d) P> (QVR),R — (P—S), —(S5AP) = P—Q.

2.5. Some Principles of Entailment

It is useful to be familiar with a number of general principles concerning
entailment (or inconsistency). We may first note three that are often called
‘structural’ principles, since they apply to formulae of any kind whatever,
and not just to formulae of the languages for truth-functors that we are
presently concerned with. They are called the principles of Assumptions, of
Thinning, and of Cutting.

2.5.A. Assumptions This is the principle that any formula entails itself,
ie.

o= 9.

(The reason why it is called the principle of assumptions will emerge in
Chapters 6 and 7.) When we bear in mind the definition of entailment in
terms of truth and falsehood in an interpretation, we see that this principle
depends just upon the fact that no interpretation assigns both T and F to the
same formula. It should be obvious enough that this is a fact, at least for
(standard) interpretations of a language of truth-functors. You might like to
reflect upon how it could be proved. (I give a proof in Section 2.8 below.)

2.5.B. Thinning This is the principle that if a set of premisses entails a
conclusion, and we add further premisses to that set, then the enlarged set
still entails the conclusion. We have two versions of this principle to record,
first for the ordinary case where our sequent has a conclusion, and second
for the special case where there is no conclusion

(a) If T=¢ then T,y ¢.
(b) If T= then T,y k.

(The principle is called “Thinning’ simply because thinning is a way of
weakening, and ‘T, y = ¢’ makes a weaker claim than does T = ¢’) In both
these versions the principle allows us, if we wish, to add an extra formula to
the left of the turnstile, so we may distinguish this as Thinning on the left.
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Later, when we come to consider sequents with more than one formula on
the right (in Chapter 7), a precisely analogous principle will allow us to add
an extra formula to the right of the turnstile, and this is Thinning on the
right. One special case of this can be stated now, namely where the number
of formulae on the right is increased from zero to one:

(¢c) f Tk then TEw.

One has only to consider the definition of the turnstile, in these various
contexts, and it is at once obvious that each of (a), (b), and (c) is a correct
principle.

2.5.C. Cutting This principle is a generalization of the point that entail-
ment is transitive, i.e. that if one formula entails a second, and the second
entails a third, then the first formula entails the third. The generalization
extends this to cover also entailments which have more than one premiss.
Again, we have two versions to record, one where our ‘third formula’ is in-
deed a formula, and one where it is instead the absence of any formula:

(a) f TE¢ and $,Al=y then DAFE VY
(b) f TE¢ and 0,AF= then [LAE.

(Ttis called the principle of Cutting because the intermediate conclusion ¢ is
‘cut out’) This principle is not quite so obvious as the preceding two, so I
here give a proof of version (a). (The modification to yield version (b) is
obvious.)

Assume, for reductio ad absurdum, that the principle is not correct, i.e.
that (for some I A,,y) we havel

T Q) dbAEY  (3) TAKEW

Then by assumption (3) there is an interpretation I'which assigns T to each
formula in T, and to each in A, but assigns F to y. We ask: what value does 1
assign to ¢? It may be that I assigns no value to ¢, but if so that can only be
because ¢ contains vocabulary which does not occur in I" or A or y, and is
not interpreted by I In that case, we can evidently expand the interpretation
I, by adding to it interpretations of the extra vocabulary of ¢, to form a new
interpretation I*. Since I* agrees with I on the interpretation of all the
vocabularyinI"and A and v, it will still be the case that I*assigns T to all for-
mulae in T, and T to all formulae in A, and F to y. But I* now does assign

! Recall that ‘b’ negates ‘=" So (3) means: not {T,A k= y).
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some value, either T or F, to ¢. However, by assumption (1) T k= ¢, so I+
cannot assign F to ¢ (since it assigns T to all in I"); and by assumption (2) ¢,A
=y, so I+ cannot assign T to ¢ (since it assigns T to allin Abut F to y). This
is a contradiction. It follows, then, that assumptions (1), (2), and (3) cannot
all be true, so that if (1) and (2) are true, then (3) must be false, as desired.

I now proceed to another principle which is not usually called ‘struc-
tural) though again it is a principle that continues to apply, whatever kinds
of formula are under consideration.

2.5.D. Uniform substitution for schematic letters Inthelogic of truth-
functors the only schematic letters that we have are sentence-letters, so
the principle concerns the substitution of arbitrary formulae in place of
sentence-letters. It says that if we have any correct sequent, and if we substi-
tute any formula for a sentence-letter in it—substituting the same formula
for every occurrence of the sentence-letter, all through the sequent—then
the result is again a correct sequent. It is useful to introduce a succinct nota-
tion for substitution. If ¢ and y are formulae, and P; is a sentence-letter, we
shall write ¢(y/P;) for the result of substituting an occurrence of the for-
mula y for each occurrence of the letter P; in ¢. (If there is no occurrence of
P; in ¢, then ¢(y/P;) is just ¢.) Similarly, if T" is a set of formulae, then we
shall write I'(y/P;) for the result of substituting an occurrence of  for each
occurrence of P; throughout all the formulae in I'. Then we may state our
principle in two versions, corresponding to the two kinds of sequent we are
recognizing:

(a) If T ¢ then T(Y/P;) = ¢(y/P,).
(b) If T'= then T'(W/P) .

The justification for the principle is obvious at once. If we have a correct
sequent containing a letter P;, then that sequent satisfies the truth-table
test whichever value is assigned to P;. But when we replace P; by a different
formula, still that formula as a whole can only take one of the values that
P; could take, and therefore the truth-table test must still be satisfied. That
means that the sequent is still correct.

Here are some simple illustrations. It is easily checked that the following
is a correct entailment:

P->—P B —P

We may therefore substitute any other formula for all the occurrences of Pin
this entailment, and the result will again be an entailment; for example:

32



2.5. Some Principles of Entailment TRUTH-FUNCTORS

lo—1l EF —L

Q-—Q = —Q
—P———P k= ~——P.

These result by substituting for P first 1, then Q, then —P, which are very
simple substitutions. But we may also substitute more complex formulae,
say PAQA—R, or (P——P)——P, to obtain

(PAQA—R) = —(PAQA—R) E —(PAQA—R)
((P—»>—P)——P) - —((P—»—P)—»—P) k= —((P>—P)—»—P)

To check the correctness of these last two sequents, it is a good deal easier to
note that they are substitution-instances of a simple sequent already known
to be correct, than it is to apply the truth-table test directly to them.

I now turn to consider principles of entailment that are specific to par-
ticular truth-functors. There is some embarrassment of riches here, for
many correct principles present themselves. But for definiteness I choose
one principle for each of the common truth-functors, which I will call the
basic principle for that functor.

2.5.E. Negation
o= iff TE.

2.5.F. Conjunction
F'=oay iff TF6¢ and TE=y.

2.5.G. Disjunction
Lovy k= iff Lo and Ly k=

2.5.H. The Conditional
'=¢-y iff LokEy.

Each of these is easily verified by considering the definition of the turnstile,
and of the truth-functor in question. For illustration I give just the argu-
ment for the basic negation principle.

First we observe that any interpretation that does not interpret the nega-
tion sign can of course be expanded to one that does, just by adding to it the
relevant clause for negation, and leaving everything else unchanged. And an
interpretation that does interpret the negation sign will assign T to —¢ iff it
assigns F to ¢. It follows that there is an interpretation which assigns T to all
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the formulae in T, and assigns T to —¢, iff there is an interpretation which
assigns T to all the formulae in T, and assigns F to ¢. In other words,

T—o b iff T8 o
But that is the same as to say,
Lok iff TH¢.

This basic principle for negation is only one of many useful principles
concerning negation, but in fact all the others can be deduced from it. I give
just a few examples. First, it implies, as we should expect, that a formula and
its negation are together inconsistent, i.e.

(a) 0, .

(To see this, put ¢ for I in the basic principle, and observe that the right-
hand side is then given by the principle of assumptions.) From this, by thin-
ning on the right, we also have the principle called ex falso quodlibet:2

() ¢ =y

From the same starting-point, i.e. from (a), we can also obtain the useful
principle of double negation. As a special case of (a) we have —¢, ——¢ k=,
and so by applying the basic principle to this (with ——¢ for I') we obtain

As a special case of (¢) we have ———¢ = —¢, and if we put this together
with (a), namely ¢,—¢ =, we can apply the principle of Cutting to ‘cut out’
the formula —¢. The result is ———0,¢ F=. So we now apply the basic prin-
ciple to this to obtain

(c) and (d) together tell us that any formula is logically equivalent to its
double negation. Finally, I observe that the basic principle also implies a
form of the law of excluded middle, telling us that if a conclusion y follows
both from ¢ and from —¢ then it must be true. Moreover, we can add extra
premisses I without disturbing this point, thus

(&) U T0F=wy and I,—¢ =y then T'=y.

2 Ex falso quodlibet means ‘from what is false there follows anything you like’ The principle is there-
fore misnamed, for the truth is that a contradictory premiss will imply anything you like, but a mere false-
hood will not.
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(Applying the basic principle once to the first antecedent, and twice to the
second, these become I',¢,—\ = and I,—y = ¢. From these two we may
‘cut out’ the formula ¢, and the result then follows by one or more applica-
tions of the basic principle.) There are many more useful principles con-
cerning negation. The position will be analysed in more detail in Sections
5.4 and 6.2.

Some deductions from the principles cited as ‘basic’ principles for con-
junction, disjunction, and the conditional are left as exercises. But I observe
here that the principle cited for disjunction may be regarded as having two
versions, one where there is a formula to the right of the turnstile, and one
where there is not:

(a) GovwEy iff TokEy and Ty kEy.
(b) Tovy = iff Tok= and Tyk=.

Given suitable principles for negation, either of these versions can be ob-
tained from the other. For example if, as I have proposed, we start with ver-
sion (b), then we may take the case in which I includes a negated formula
—x to deduce

OD—yovy = iff L—yx,0 = and D—y,y =

Applying to this our basic principle for negation, we at once have version
(a). The converse deduction is left as an exercise. If, then, we can assume
that suitable principles for negation are already present, it does not matter
whether we take version (a) or version (b) of this principle for disjunction,
and I prefer version (b) because it is nicely related to our basic principle for
conjunction (as Section 2.10 will show). But if we are not already given any
other principles which allow us to show that the two versions are equivalent,
then I think that all we could say is that each is equally basic. (For example,
itis version (b) that appears basic from the viewpoint of Chapter 4, but ver-
sion (a) that appears basic from the viewpoint of Chapter 6. Both versions
are special cases of the more general approach pursued in Chapter 7.)

The question of what to count as ‘basic’ principles for the truth-functors
will be taken up in more detail in Chapters 6 and 7. For the present, I set it
aside, in order to come to an important principle which is naturally associ-
ated with the biconditional, though it is not at all the same in character as the
principles proposed for the other truth-functors. In fact there are versions of
it which do not rely on the biconditional at all, as we shall see.

2.5.1. Interchange of equivalent formulae The gist of this principle is
that if two formulae are equivalent then either may be substituted for the
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other. In the strongest version of the principle, which I take first, formulae
are taken to be equivalent if (in a given interpretation) they have the same
truth-value. To state this more exactly, let ¢ and y be any two formulae; let
3(¢) be any formula which contains within itself one or more occurrences of
the formula ¢ as a subformula; let () be the result of substituting the for-
mula y in place of the formula ¢, at one or more occurrences in 8(¢). Then
the principle in question is

by = 8(0) < d(y).

The proof is straightforward. The principle claims that any interpretation
which verifies ¢y, and which also interprets §(¢), will verify 8(¢) <> 8(y).
An interpretation which verifies ¢<>y is one that assigns the same truth-
value to both formulae. But then it must follow that that interpretation also
assigns the same truth-value to 8(¢) and 3(y). For 8(¢) and 8(y) are exactly
alike, except that the one has ¢ in some places where the other has y. Butif ¢
and y have the same value, then this difference will not affect the calculation
of the values of 8(¢) and 8(y).

This is the basic form of the principle of interchange of equivalent for-
mulae. In practice, the principle is often used in a weaker form, which con-
fines attention to formulae which are logically equivalent, i.e. which have the
same truth-value in all interpretations. In this form the principle is

If =6 <y then = 5(¢) <> 8(y).

Itis clear that this follows (by the principle of Cutting) from the first version.
We may rephrase this derived form in a way which eliminates the truth-
functor <. For as a special case of our basic principle for the conditional we
have

Eo—oy iff ¢y
and hence also
ooy iff ¢y and yE=o.

Abbreviating the right-hand side of this to ‘¢ == ’, we may therefore write
the derived form of the principle in this way:

If ¢ == wy then 8(¢) == d(y).

There will be several applications of this form of the principle in what
follows.
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EXERCISES

2.5.1. Show that the basic principle for negation can in fact be deduced from

{a) o, =
(b) ¥ LoE=Ew and L= =y then Tk .

2.5.2. Fill a gap in the text by showing that version (a) of the disjunction principle
{p. 35) implies version (), given a suitable principle for negation.

2.5.3.(a) Show that the basic principle for conjunction implies

(1) oy = oAy,

(2) dAYE= o6 and oAy =y
((1) is known as the introduction rule for conjunction, (2) as the elimination rule.)
(b) Show that this deduction may be reversed, i.e. that (1) and (2) together imply
the basic principle for conjunction.

2.5.4.(a) Show that the basic principle for the conditional, together with a suitable
principle for negation (e.g. ex falso quodlibet), implies

(1) y = o>y and —0 = ¢oy

2) do-viEY.
((2) is known as Modus Ponens, and is the usual elimination rule for the condi-
tional; (1) is not usually regarded as a suitable introduction rule, since it involves
—as well as —.)
(b) Show that this deduction may be reversed.

2.5.5. Show that version () of the basic principle for disjunction implies the intro-
duction rule

o= ovy and yE= dvy.
Speculate upon what would be a suitable elimination rule, bearing in mind the de-
sideratum that an elimination rule for a given truth-functor should not also involve
any other truth-functor. (For the answer, see Sections 6.2 and 7.4.)

2.6. Normal Forms (DNF, CNF)

Itis often convenient to be able to confine one’s attention to languages which
contain only a limited number of truth-functors. In this section we shall
suppose that our language contains only T, L,—,A,V, and no other truth-
functors. We shall show that in this case we can without loss confine our
attention yet further, to formulae that are written in a specially tidy form.
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First, we can confine attention to formulae in which the negation sign is
always immediately followed by a sentence-letter, so that no other truth-
functor ever occurs in the scope of a negation sign. This is because every
formula in our language is logically equivalent to a formula obeying this
condition. To establish this point, we need only consider the laws

=7 == 1
—l == T
- ={p= 9

—(pAy) == —ev—y
—(pvy) == —pA—y.

(The first two have no special name; the third is of course the law of double
negation; the last two are called De Morgan’s laws, after the logician Augus-
tus de Morgan. You should check with a truth-table test that these laws are
indeed correct.) Now consider any occurrence of the negation sign that does
have some truth-functor in its scope. This means that it must be followed
either by T or by L or by another negation sign or by a bracket, introducing
a formula with either A or v as its main functor. In the first three cases that
occurrence of the negation sign can simply be deleted, at the same time
interchanging T and .L in the first two cases, and deleting the other negation
sign in the third case. In the remaining two cases we apply De Morgan’s laws,
exchanging the one negation sign outside the bracket for two that are inside
it, at the same time changing the A to v, or the v to A, whichever is appro-
priate. Then we look again at the two negation signs that result. Either they
are now followed immediately by sentence-letters, as desired, or if they
are not, then we apply the whole procedure once more. And we continue to
do this as often as is needed to bring every negation sign into the required
position.

It is clear that we must eventually reach the result desired. For in the first
three cases the negation sign disappears altogether, and in the other two the
negation sign is exchanged for two others, each of which has fewer truth-
functors in its scope (for there must be fewer truth-functors in @ than there
are in AW, and similarly with y). Finally, note that the formula we end with,
after making all these transformations, must still be logically equivalent to
the formula we began with. This, of course, is because each transformation
exchanges one subformula for another that is logically equivalent to it, and
we noted at the end of the last section that such an interchange of logically
equivalent subformulae must preserve the equivalence of the whole.

Having got the negation signs into the right position, we can now carry
out some further transformations. In particular we can rearrange the
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occurrences of A and Vv so that no conjunction sign has any disjunction in its
scope, or alternatively so that no disjunction sign has any conjunction in its
scope. The first is called disjunctive normal form (DNF), and the second is
conjunctive normal form (CNF). These transformations rely on the laws of
distribution, which are

onlyvy) == (eay)v(eay).
(ovwinx == (eax)v(yay).
ov(yay) == (ovy)al(evy).
(PAy)vy == (evidAa(yvy).

One uses the first pair to obtain DNF and the second pair to obtain CNE. Let
us concentrate just on the first, where our object is to ensure that no con-
junction sign has any disjunction in its scope. If any does, then there must be
somewhere a conjunction sign that immediately governs a disjunction, i.e.
that conjoins two formulae at least one of which s a disjunction, as in the
formulae on the left-hand side of the first pair of distribution laws. So we
replace this by the right-hand side. The result is that the conjunction sign is
split into two, but each of these has fewer disjunction signs in its scope than
the one we began with. So if we continue the procedure we must eventually
reach the desired position, where there are no disjunction signs in the scope
of any conjunction signs. And, as before, these transformations simply in-
terchange logically equivalent subformulae, so the formula that we end with
must be logically equivalent to the one that we began from. (The argument
in the case of CNF is exactly similar.)

At this point we may delete the superfluous brackets from a continued
conjunction, and from a continued disjunction (p. 22), and our whole
formula in DNF looks like this. It is as a whole a disjunction of one or more
disjuncts, where each of the disjuncts is a conjunction of one or more con-
juncts, and where each of the conjuncts is either an atomic formula—i.e. a
sentence-letter or T or .L—or the negation of an atomic formula. Let us
write +P; to indicate that there may or may not be a negation sign in front of
the atomic formula P;. Then the whole formula takes this form

(£P; A P A w)VEPLAEPIA L)V

A formulain CNF has the corresponding structure with Aand v everywhere
interchanged, i.e.

(P viPv . )ARP VIRV L)AL

But it should be noted that in this description of the structure of formulae in
DNF and CNF we have made use of the degenerate case of a ‘disjunction’
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which has only one ‘disjunct} and similarly of a ‘conjunction’ which has only
one ‘conjunct.

It follows that some formulae have both structures simultaneously, i.e.
they are both in DNF and in CNF. The simplest example is a formula which
is a single sentence-letter

P.

This formula is a disjunction of only one disjunct, where the disjunct is itself
a conjunction of only one conjunct, namely P. So itis in DNE Of course, we
can say the same thing the other way round too. This formula is a conjunc-
tion of only one conjunct, where the conjunct is itself a disjunction of only
one disjunct, namely P. So it is equally in CNF. Or one can make this point
in the terminology with which I began: in this formula, no occurrence of —
has any truth-functor in its scope; no occurrence of A has any v in its scope;
and no occurrence of v has any A in its scope. You should verify in a similar
way that both of the following formulae are also both in DNF and in CNF:

PA— Q/\R
Pv—QvR.

By contrast, of the following formulae the first is in DNF but not CNF, and
the second is in CNF but not DNF:

P \/(Q/\'—'IR)
(PvQ)A(Pv—R).

Finally, the following formulae are neither in DNF nor in CNF:

'—I(P/\Q)
(P/\(QV—IR) )V_IQ

The normal forms DNF and CNE, as characterized so far, can still be very
untidy. To introduce a greater tidiness we may start by rearranging each con-
junction, in a case of DNF, or each disjunction, in a case of CNF, so that in
each one the sentence-letters occur in alphabetical order. In view of the laws
of commutativity and associativity, namely

oAy == YA ovy == yve
ealyay) == (paydax  oviwvy) == (evy)vy,
the order in which the conjuncts or disjuncts are written makes no differ-
ence. This will bring to light any repetitions, where the same sentence-letter

occurs twice, and these may then be deleted in view of the laws of idempo-
tence, namely
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oA == ¢ ove =k~ o

It will also bring to light any case in which we have both a sentence-letter and
its own negation. These can then be simplified by the following laws of con-
tradiction and excluded middle:

oA == L ov—e == T.

The occurrences of T and L thus introduced, and any other occurrences of
T and L that there may be in our formula can then be eliminated (except in
one special case) by applying the laws

Iag H3= L Tve == T
lve == o Tap = 0.

For example, suppose that we have a formula in DNF, and one of the dis-
juncts contains the conjunction P; A —P;. We begin by replacing this by .,
using the law of contradiction. Then, if this is part of a longer conjunction,
we replace the whole conjunction by L, using the law next cited in the left
column. Thus L becomes one of the disjuncts in our overall disjunction. If
there are any other disjuncts, then this disjunct can simply be eliminated,
using the final law cited in the left column. If there are no other disjuncts,
our whole formula has already been reduced just to L, and we make no fur-
ther simplifications. Generalizing upon this, it is easy to see that any occur-
rence of | in a formula in DNF either can be eliminated or can replace the
whole formula. Using the laws cited in the right column, the same holds
for any occurrence of T. And, using both columns together, the same result
holds for formulae in CNF just as well as for formulae in DNF. We can always
assume, then, that our formulae do not contain either T or L, except in the
special case when T or L is the whole formula.

The final ‘tidying up’ operation is to transform the formula so that each
disjunct, in a case of DNF, or each conjunct, in a case of CNF, contains exactly
the same sentence-letters. This is done by applying the laws of elaboration:

o == (pAy)vV(oA—Y) ¢ == (ovy)A(pv—vy)

For example, suppose we have a formula in DNFE. We begin by listing all the
sentence-letters that occur anywhere in that formula, and we check to see
whether each disjunct contains one occurrence of each of them. If we find a
disjunct ¢ which lacks some letter, say P;, then we use the law of elaboration
in the left column to replace @ by (9AP;)v(9A—P)). (Each of the new dis-
juncts @AP; and pA—P; is then rearranged alphabetically.) By repeating this
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step as often as necessary, we can evidently expand each conjunction to the
desired length. Then we make one final step of simplification: if it now turns
out that any disjunct is repeated, we delete the repetition as superfluous (by
the law of idempotence), and we have now reached our goal. OQur formula is
now in perfect DNF, which is to say: it is in DNF; no disjunct is superfluous;
each disjunct contains the same sentence-letters; no disjunct contains the
same letter twice; the truth-functors T and L do not occur, except in the spe-
cial case where one of them is the whole formula. (Perfect CNF is defined
similarly, with ‘conjunct’ for ‘disjunct’ throughout.)

The method just explained is a method for transforming any formula,
step by step, into alogically equivalent formula in perfect DNF, or in perfect
CNEF, whichever is desired. The method relies throughout on the principle
that logically equivalent subformulae may be substituted for one another
and the results will also be logically equivalent. It has some quite interesting
applications, as will be shown later (Exercises 6.2.2 and 6.5.1). But in prac-
tice it can be very tedious indeed, so it is relevant that there is an alternative
method that is often quicker. This involves (a) constructing the full truth-
table for the formula in question, and then (b) simply reading the desired
normal form off the truth-table. I give first an example to show how this is
done, and afterwards a general description of the technique.

Suppose we have a formula ¢(P,Q,R), containing just the sentence-letters
P,Q,R, and we wish to find for it a logically equivalent formula in perfect
DNE. We first calculate its truth-table, which is, say, this

P Q R 9(P.QR)
T T T T
T T F F
T F T F
T F F T
F T T T
F T F F
F F T F
F F F T

We look down the truth-table to see in which rows the formula is true, i.e. in
this case rows 1, 4, 5, 8, and we ignore the others. For each such row we then
form a conjunction of the sentence-letters or their negations which corres-
ponds to the truth-values assigned to the letters in that row in this way: if the
letter P; is assigned T in that row, we write P;, and if it is assigned F, then we
write —P;. So in the present case we write down four such conjunctions,
namely
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PAQAR
PA—QA—R
—PAQAR
—PA—QA—R.

The point of this is that each formula we have written down is true if and
only if the letters are assigned the values in the corresponding rows of the
truth-table. Now our whole formula ¢(P,Q,R) is true if and only if the letters
are assigned values as in one or other of the four rows being considered, so it
is true if and only if one or other of the four conjunctions that we have writ-
ten down is true, i.e. if and only if the disjunction of those four conjunctions
is true. So finally we write down the disjunction of those four conjunctions,
namely

(PAQAR) v (PA—QA—R) v (MPAQAR) v (PA—QA—R).

This is the formula desired. As we have argued, it is logically equivalent to
the formula we began with, since it must have the same truth-table, and it is
in perfect DNE

Here is a general statement of the method. Consider any formula ¢
with sentence-letters Py,...,P,. List the interpretations of the sentence-letters
under which the whole formula is true. If there are none, then simply write
1, for this is a formula in perfect DNF that is logically equivalent to @. If there
are some, then form for each the corresponding conjunction =P, A £P)A ...
A 1P, where +P; is P; if P;is true in that interpretation, and —P; otherwise.
The disjunction of all these conjunctions is then the formula required.

The method is easily adapted to the case of CNF. Here what we need to do
is to consider the interpretations in which our formula is false. If there are
none, then we simply write T, and the task is done. If there are some, then
again we form the corresponding conjunctions for each. For example, in the
case of the formula @(P,Q,R) considered earlier there are four such conjunc-
tions, namely

P/\Q/\—1R
PA—QAR
~PAQA—R
—PA—QAR.

Now our formula ¢(P,Q,R) is false iff one of these conjunctions is true, and
hence it is true iff all of these conjunctions are false. We therefore form a for-

mula which says that they are false, namely by conjoining the negations of
them:
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—(PAQA—R) A —(PA—QAR) A —(—PAQA—R) A —(—PA—QAR).

This is logically equivalent to our original formula. Moreover, it is easily
transformed into a formula in perfect CNE, simply by applying De Morgan’s
laws (and double negation) to obtain

(—Pv—QVR) A (—PvQv—R) A (Pv—QVR) A (PvQv—R).

Thus for every formula there is a logically equivalent formula in perfect
DNE, and there is also a logically equivalent formula in perfect CNF, and
we have now proved this result in two ways, first by showing how to trans-
form any formula that is not already in the required form into one that is,
by systematically exchanging its subformulae for others that are logically
equivalent; and second by showing how to read the required normal form
off the truth-table. The first method yielded only a limited result, for we
began by restricting attention to a language that contained only the truth-
functors T,L,—,A,V. To remove the limitation, we should have to show that
any truth-functor whatever is equivalent to one that can be expressed in this
language. But that is just what the second method does. For any truth-
functor will have a truth-table, and the second method shows us how to find
an expression in our preferred language that has that same truth-table. It is
the second method, therefore, that yields the more significant result. The
next section will develop this further.

EXERCISES

2.6.1. Find perfect disjunctive normal forms for the following formulae, first by the
method of successive transformations, and then by constructing a truth-table and
reading the result off that

(a) —~((PA(—=PvL))v D)
(b) (Pv—Q) A (Qv—P)
(6) (PvQ) A (Pv—Q) A (—PvQ) A (mPv—Q).

Note that to deal with the last example you will need to restore the missing brackets;
restore them in whatever way seems likely to abbreviate labour. (You may wish to
experiment with this.) Note also that when applying the method of successive trans-
formations there is no need to follow the order used in the previous section. We
know that if that order is followed then the desired result must be reached in the
end, but a different order may well get there more quickly. (You may wish to experi-
ment on this point with example (a).)
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2.6.2. Show that, in a language with — and ¢ as its only truth-functors, every
formula is logically equivalent to one in which no occurrence of — has any truth-
functor in its scope.

2.7. Expressive Adequacy |

A set of truth-functors is said to be expressively adequate (or, sometimes,
functionally complete) iff, for every truth-function whatever, there is a
formula containing only those truth-functors which expresses that truth-
function, i.e. which has as its truth-table the truth-table specifying that
function. The method introduced in the last section, of reading off from a
truth-table a formula in perfect DNF, or in perfect CNF, establishes this
basic result on expressive adequacy:

The set of truth-functors {T,L,—,A,v,} is expressively adequate.

There is just one slight modification that needs to be made to the argument
already given.

Consider, for example, the two-place truth-function which always yields
the value F, whatever its arguments. The method given for writing a for-
mula in perfect DNF to fit this truth-table was that one should simply write
1. But L itself is a zero-place truth-functor, expressing a zero-place truth-
function and not a two-place truth-function. (It is logically equivalent to
any formula expressing our two-place function.) What is wanted, then, is a
formula containing two sentence-letters, say P and Q, which always takes
the value F, and the fact is that there is no such formula in perfect DNF. The
closest that we can come is

(P/\—-lP) A\ (QA'—| Q)

This is a formula in DNF, and it does have the right truth-table, but it is not
counted as being in perfect DNE, since it does not obey the condition that
no disjunct is to contain the same letter twice. However, the point is of no
importance if we are just concerned with expressive adequacy, for our for-
mula expresses the required truth-function perfectly well, even though it is
not in perfect DNF. An alternative way of dealing with this case is to note
that it is automatically covered by our method of finding a formula in per-
fect CNF to fit this truth-function. Generalizing this point, it is easy to see
that we can always find formulae whose only truth-functors are —,A,v, to
express any truth-function except for the two zero-place functions. It is only
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in these two special cases that T or L need to be used. Moreover, we noted
earlier that the whole notion of a zero-place function is somewhat artifi-
cial, and so it is usual to ignore these two cases when discussing expressive
adequacy. If we do ignore them, then clearly the basic result on expressive
adequacy can be stated more simply:

The set of truth-functors {-—,A,v} is expressively adequate.

Having obtained this basic result on expressive adequacy, it is easy to
obtain further positive results by showing how other sets of truth-functors
can be used to express the functions expressed by —,A,Vv. For example, the
set {—,A} is expressively adequate, since it can also express disjunction, and
the set {—,v} is expressively adequate, since it can also express conjunction.
To see this, we need only note these two logical equivalences:

ovy == —(—oa—y)
oAy == —(—ev—y).

(These are simple variations on De Morgan’s laws.) It is usual to say that the
first shows how to define v in terms of — and A, and the second shows how
to define A in terms of —and v, and this is a convenient way of talking. But
it is a somewhat loose use of the word ‘define) for we do not really mean
to claim that the formula on the left has the same meaning as the formula on
the right. (On the contrary, the usual view about the meaning of the truth-
functors, as stated earlier, is that each is defined by its own truth-table, inde-
pendently of any other truth-functor.) All that we mean to claim is that the
two formulae are logically equivalent, and so for most logical purposes they
behave as if they had the same meaning; in particular, by the principle allow-
ing interchange of equivalent formulae, either may be substituted for the
other whenever we wish.

The set of truth-functors {—,—} is also expressively adequate, for we can
define A and v in terms of it, e.g. thus:

ony == —(e—>—y)
ovy == eV,

One may note, incidentally, that these definitions can be reversed to yield
definitions of — in terms of —and A, and in terms of —and v

ooy == —(ea—y)
ooy == vy,

Another curiosity is that v can be defined in terms of — alone, and without
using —, by

46



2.7. Expressive Adequacy | TRUTH-FUNCTORS

ovy == (p-vy)-v.

But by contrast there is no way of defining A in terms of — alone (see
Exercise 2.9.2).

I observe finally that the set of functors {—, 1} is expressively adequate,
since — can be defined in terms of — and L by

- == ¢l

Thus whatever truth-functions can be expressed by — and — can also be
expressed by — and 1, and, as we have already observed, the set {—,—}
is adequate. Of all the two-membered sets mentioned so far, this set {—, L}
has a claim to be counted as the ‘most’ adequate, since it can express the
two zero-place truth-functions, which the others cannot. For one of them
is expressed by L on its own, and the other by —.1, i.e. by L—1, as the
definition of —tells us.

Now the sets {A,L} and {v,.L} are not adequate; nor is the set {—,&>}.
There are many ways of defining <> in terms of our other truth-functors, for
example:

ooy == (0YA(Y—e)
0oy == (AY)V(—oA—Y)
ooy == (evy)—(oAy).

However, there is no way of defining either A or v or — just in terms of <»
and —. But how are such negative claims to be established? Given one posit-
ive result on expressive adequacy, the method of obtaining further positive
results is simply to specify the needed definitions. But we do not yet have
a method of obtaining any negative results. Consequently, I break off the
discussion of expressive adequacy at this point in order to introduce the
method required.

EXERCISES

The truth-functor ¢+ is defined by this truth-table

¢ vy 9ty
T T F
T F F
F T T
F F F
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2.7.1. Define A in terms of ¢ and —, and deduce that the set {~,¢+} is express-
ively adequate.

2.7.2. Define 1 in terms of &- alone, and deduce that the set {—,&+} is expressively
adequate.

2.7.3. Define A in terms of < alone. (If you cannot solve this problem now, try
again when you have read Section 2.10.)

2.8. Argument by Induction

A well-known principle of argument in elementary arithmetic is the prin-
ciple of mathematical induction, which is this:

Suppose that the first number, 0, has a certain property; and suppose
also that if any number has that property, then so does the next; then it
follows that all numbers have the property.

When we speak of ‘all numbers’ here, we mean, of course, all those num-
bers that can be reached by starting with 0 and going on from each number
to the next some finite number of times. For example, negative numbers,
fractional numbers, or infinite numbers are not to count, but only those
numbers that are called the ‘natural’ numbers. I take it that it is sufficiently
obvious that the principle of induction is a correct principle for reasoning
about such numbers.

The principle as I have just stated it is the ordinary principle of (mathem-
atical) induction, but there is also another version of the principle, which is
called the principle of complete induction. This is a bit more difficult to
grasp. It may be stated thus:

Suppose that, for every number, if all the numbers less than it have a
certain property, then so does it; then it follows that every number has
the property.

It may help to see how this principle works if I begin by deducing it from the
ordinary principle of induction.
Assume as a premiss, then, that for some property P,

(1) For any number x, if every number less than x has P, then so does x.

We wish to show that it then follows that every number has the property P.
We shall show first that it follows that, for every number x, every number less
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than x has P. And we shall show this using the ordinary principle of induc-
tion. So we observe first:

(a) Every number less than 0 has P.

This is trivially true for every property, since there are no numbers less than
0. (Recall that negative numbers are not to count.) Here is something, then,
that holds for 0. Next we let # be any arbitrary number and assume that the
same thing holds for n, i.e. that

(b) Every number less than nhas P.

Taking x as # in our premiss (1), it then follows that # also has P. But further,
the numbers less than n+1 are just the numbers less than n together with n
itself, so this shows

(c) Every number less than n + 1 has P.

This establishes the premisses for an ordinary inductive argument. For in
(a) we have established our result for 0, and then in (b) we assumed the res-
ult for n and deduced in (c) that it must then hold for n + 1 as well. So by
ordinary induction it holds for all numbers, i.e.

(2) For every number x, every number less than x has P.
Finally, from (1) and (2) together we at once have the desired conclusion
(3) For every number x, x has P.

Thus we have shown that (1) implies (3), and that is the principle of com-
plete induction.

In logic we shall apply this principle in connection with some special uses
of numbers, and the first of these is the use of numbers to measure what we
call the length of a formula.3 (Other books sometimes speak instead of the
degree of a formula.) By this we mean simply the number of occurrences of
truth-functors in that formula. For example, the formula———Phaslength
3, since it contains three occurrences of truth-functors (each an occurrence
of the same functor); the formula P v (Q—R) has length 2, since it contains
only two occurrences of truth-functors (each an occurrence of a different
functor). (So the formula ———P counts as longer than the formula P v
(Q—R), despite the fact that it occupies less space on paper.) Now suppose
that we wish to show that all formulae have a certain property. Since every
formula is of some definite length, it will evidently be enough to prove:

3 Later we shall also argue by induction on the length of a proof.
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For all numbers x, all formulae of length x have the property.

In order to prove this by the principle of complete induction what we need
to do is to set up the inductive hypothesis, for an arbitrary number n,

(1) For all numbers y less than », all formulae of length y have the
property.
From this hypothesis we then seek to deduce that
(2) All formulae of length n have the property.

If the deduction succeeds, then—since n was arbitrary—we have estab-
lished the premiss for the induction, and our result is therefore proved.

As a matter of fact we shall not set out our inductive arguments in quite
this form, but in a simpler form which makes no explicit reference to num-
bers. For in order to deduce our consequence (2), what we need to do is to
take an arbitrary formula ¢ of length n, and to show that it has the property.
But the inductive hypothesis, from which we hope to deduce this, evidently
tells us that all formulae of length less than ¢ have the property, or in other
words that all formulae shorter than ¢ have the property. So this is the form
in which the inductive hypothesis will actually be stated, namely

(1") All formulae y shorter than ¢ have the property.
And from this hypothesis we then aim to deduce:
(2") The formula ¢ has the property.

In the deduction, ¢ is to be any arbitrary formula. If the deduction succeeds,
then it shows directly that (1°) implies (2’), and hence indirectly that (1)
implies (2). Since (1) implies (2) it follows, as we have seen, that all formu-
lae of any length have the property, or simply,

All formulae have the property.

So we shall not actually mention particular numbers in the course of the
argument, though it helps to think in terms of numbers when reflecting on
why this form of argument is justified.

In these arguments by (complete) induction on the length of a formula,
it will nearly always be necessary to distinguish, and to consider separately,
a number of different cases. The different cases will be the different pos-
sibilities for the structure of the formula ¢, and which these are will depend
upon which formulae our argument is intended to cover, i.e. on which lan-
guage is in question. Supposing that the language is that specified by the
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formation rules set out on p. 21, there will be four basic kinds of formulae to
consider:

(1) where ¢ is a sentence-letter;

(2) where ¢ iseither T or L;

(3) where ¢ is the negation of some formula, i.e. where ¢ is —y for some
formula y;

(4) where ¢ is the conjunction or disjunction of two other formulae, or
some other two-place truth-function of them; i.e. where ¢ is (y*y)
for some formulae y and %, and some two-place truth-functor *.

The formation rules specify that every formula must be of one or other of
these four kinds, because every formula is constructed by some finite num-
ber of applications of the formation rules, and the last rule applied must be
one of the four just listed.

In practice, we usually do not need to distinguish between cases (1) and
(2), but can roll them together under the case where ¢ is an atomic formula,
i.e. has no subformulae except itself. In this case, the inductive hypothesis
is generally useless. For where ¢ is a sentence-letter there are no formulae
shorter than ¢, and where ¢ is T or L it has no components shorter than itself,
which has much the same effect. The inductive hypothesis is useful in cases
(3) and (4). For if ¢ is —, then since y is shorter than ¢ we can assume that
the hypothesis holds of y; and, similarly, if ¢ is (y*y), then we can assume
that it holds both of yand of . It is quite often the case that we need to con-
sider separately the cases of (WAY), (Wvy), (W—), and so on. It sometimes
happens that we need to consider subcases within these, or (more usually)
subcases within the case in which ¢ is —. I proceed now to illustrate these
remarks by several examples of inductive arguments. All the examples in
this section will be arguments for results that should be obvious anyway. So
the interest is in seeing the technique at work, and is not (yet) in the new
results that one can prove by it.

I begin with a couple of theses that follow simply from the formation rules
given in Section 2.3.

2.8.A. Inany formula, the brackets pair uniquely.

By this I mean that there is one and only one function which pairs each
left-hand bracket with just one right-hand bracket, and each right-hand
bracket with just one left-hand bracket, and which satisfies the following
further conditions: (1) the pair of the pair of any bracket is itself; (2) any left-
hand bracket is always to the left of its paired right-hand bracket; (3) for any
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paired brackets x and y, a bracket that lies between x and y is paired with
another bracket that also lies between x and y, and (hence) a bracket that lies
outside x and y is paired with another bracket that also lies outside x and y.

The proof is by induction on the length of an arbitrary formula ¢. The
inductive hypothesis is

In any formula shorter than ¢, the brackets pair uniquely.
We distinguish cases thus:

Case (1): ¢ is atomic. Then ¢ contains no brackets, and there is nothing
to prove.

Case (2): ¢ is—y. Then yis a formula shorter than ¢, so by the induct-
ive hypothesis the brackets in y pair uniquely. But the brackets in ¢ just
are the brackets in y. So it follows that the brackets in ¢ pair uniquely.

Case (3): ¢ is (y+y) for some two-place truth-functor . Then yis a for-
mula shorter than ¢, so by the inductive hypothesis the brackets in y
pair uniquely with one another. The same holds for the brackets in .
The brackets in ¢ are just the brackets in v, and the brackets in ¢, and
the two outer brackets shown. So if we retain the pairing already given
for y and for %, and pair the two outer brackets with one another, then
clearly we have a pairing that satisfies the conditions. But no other pair-
ing would satisfy them. For by condition (3) the two outer brackets can
only be paired with one another, and by condition (2) no bracket in y
can be paired with any bracket in . For by this condition every right-
hand bracket in y must still be paired with a bracket in y, and by the
inductive hypothesis there is only one way of doing this, and it does not
leave any spare left-hand bracket in y to be paired with something in .

This completes the induction, and so establishes the desired result for all
formulae.

2.8.B. In any formula, the initial symbol is not a symbol of any of its
proper subformulae.

A ‘proper’ subformula is a subformula other than, and so shorter than, the
whole formula. By ‘the initial symbol’ I mean, more precisely, the first occur-
rence of a symbol. (For example —P is a proper subformula of ——P, and
both begin with a negation sign. But the first occurrence of the negation
sign in——P does not fall within any of its proper subformulae. By contrast,
the final occurrence of a symbol in ——P, namely the occurrence of P, is an
occurrence that falls within both of its proper subformulae.)
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The proof is by induction on the length of an arbitrary formula ¢. The
inductive hypothesis is

In any formula shorter than ¢, the initial symbol is not a symbol of any
proper subformula.

We distinguish cases as before:

Case (1): ¢ is atomic. Then ¢ has no proper subformula, so there is
nothing to prove.

Case (2): ¢ is—y. Suppose that there were a proper subformula —y of
-, beginning with the same occurrence of —. Then equally x would
be a proper subformula of vy, beginning with the same occurrence of
its initial symbol. But y is shorter than ¢, and so by the inductive hypo-
thesis this cannot happen.

Case (3): ¢ is (yry) for some two-place truth-functor *. By our first
result, the outer brackets in ¢ pair with one another, and cannot be
paired in any other way. Hence any subformula of ¢ that includes its
first left-hand bracket, i.e. its first occurrence of a symbol, must also
include its last right-hand bracket. But that is to say that it cannot be a
proper subformula of ¢, but must be the whole of ¢.

This completes the induction, and so establishes the result.

I'postpone to the exercises a further result about the syntax of our formu-
lae, resting upon the results 2.8.A-B already reached. Here I turn to another
example of an inductive argument, this time based upon the semantics
introduced in Section 2.4.

2.8.C. Inany interpretation 7, every formula of the language interpreted
is assigned one and only one truth-value.

Take any interpretation 7 of a language for truth-functors, and assume for
simplicity that the language is specified by some subset of the formation
rules on p. 21. Let ¢ be any formula in that language. We prove the result by
induction on the length of ¢. The inductive hypothesis is

To any formula shorter than ¢, I assigns a unique truth-value.

We distinguish four cases according to the four kinds of formation rule on
p-21.

Case (1): ¢ is a sentence-letter. Then, by definition of an interpretation,
Iassigns to ¢ either T or F, but not both.

53



TRUTH-FUNCTORS 2.8. Argument by Induction

Case (2): ¢ is T or L. Then it is stipulated that I assigns T (and only T)
to T, and assigns F (and only F) to L.

Case (3): ¢ is —y. By the inductive hypothesis I assigns either T or F,
but not both, to y. Then it is stipulated that I assigns to ¢ either For T
(respectively), but not both.

Case (4): ¢ is (y+y), for some two-place truth-functor . By the induc-
tive hypothesis I assigns unique truth-values to y and to x. Hence, by
whatever is the truth-table for », it is stipulated that I also assigns a
unique truth-value to ¢.

This completes the induction.

Finally I take up an example from Section 2.6, namely the first step of the
procedure for reducing any formula to an equivalent formula in DNF or in
CNF. This argument should be compared with the informal argument given
earlier.

2.8.D. If the language of ¢ contains no truth-functors other than
T, L,—,A,V, then there is a formula logically equivalent to ¢ in which no
occurrence of — has any other occurrence of a truth-functor in its scope.

We assume throughout that our language contains only the five truth-
functors listed. To introduce a convenient abbreviation, let us call a for-
mula ‘satisfactory’ if no occurrence of — in it has any other occurrence of a
truth-functor in its scope. Then we have to show that any formula ¢ is logic-
ally equivalent to some satisfactory formula. The proof is by induction on
the length of ¢. The inductive hypothesis is

For any formula y shorter than ¢ there is a logically equivalent for-
mula ¥’ which is satisfactory.

We distinguish cases as expected, but within case (2) for negation we must
further distinguish a variety of subcases. It is in these subcases that the work
of the argument is done.

Case (1): ¢ is atomic. Then ¢ contains no occurrence of —, and there-
fore is already satisfactory.

Case (2): ¢ is —yr. We distinguish five subcases, being the five possibil-
ities for the formula .
Subcase (a): W is a sentence-letter. Then ¢, i.e. —, is already
satisfactory.

Subcase (b): yis T or 1. Then 0, i.e. —, is equivalent either to L or
to T (respectively), and these are each satisfactory.
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Subcase (c): ¥ is —y. Then ¢ is logically equivalent to ¥, and y is
shorter than ¢. Hence by inductive hypothesis Y, is logically equiva-
lent to some satisfactory formula’y’. So ¢ is also equivalent to ).

Subcase (d): y is y;AY2. Then by De Morgan’s law ¢ is logically
equivalent to —);V—),. Moreover, —y,, and —, are each shorter
than ¢. So by inductive hypothesis there are logically equivalent
satisfactory formulae (—y,)" and (—,)’. Hence ¢ is logically equi-
valent to (—;)"Vv(—y2)’, and this also is satisfactory.

Subcase (e): Wisy; vV —)- The argument is as in subcase (d), with A
and v interchanged.

Case (3): ¢ is yxy, for * either A or v. By inductive hypothesis there are
logically equivalent formulae ¥’ and y¢” which are satisfactory. Hence ¢
is equivalent to y’+x’, which also is satisfactory.

In view of the restricted language that we are here considering, this com-
pletes the review of all possible cases, and so establishes our result.

The following exercises offer a few further examples where the reader may
practise the technique of arguing by induction. But we are now in a position
to turn to something more interesting, and in particular to take up once
more the topic of expressive adequacy.

EXERCISES

2.8.1. Return to Exercise 2.3.1, and give an inductive argument for the result there
stated.

2.8.2. Showthatin every non-atomic formula there is one and only one occurrence
of a truth-functor which does not fall within any proper subformula of that for-
mula. (This is the main truth-functor of the formula.) [You will need to use the
results 2.8.A and 2.8.B established in the text.]

2.8.3.(a) Show that the principle of distribution can be strengthened, first to
O A (yivyavevyy,)  =E 0 (0ay) v (0AY,) V.. v (0AY,)
and then further to

(01vhve V) A (v vevy,)

== (0iAy) v (01AY) V.. v (9 AY,)
VA(92A01) V ($2AY,) Vo v (B,1,,)
Vo

v (¢mAWl) v (¢m’\‘|’z) V..V (¢mAWn)-

55



TRUTH-FUNCTORS 2.9. Expressive Adequacy |

[Method: in this case use the ordinary principle of mathematical induction, apply-
ing it to nin the first case and to m in the second. (That is: show that the first princi-
ple holds when # is 1, and show that if it holds when # is any number, then it also
holds when # is the next greater number. Deduce that it holds whatever number n
may be. Similarly for the second principle.)]

(b) Using this strengthened principle of distribution, give an inductive argument
to establish the second stage of the procedure in Section 2.6 for reducing a formula
to an equivalent in DNE That is, show that an equivalent formula can always be
found in which no occurrence of A has any occurrence of v in its scope. [You may
assume that the language is restricted as in Section 2.6; you will need to use 2.8.D,
verifying the first stage of the procedure.]

2.9. Expressive Adequacy il

In Section 2.7 we saw how to show that various sets of truth-functors are
expressively adequate, but we had no method of showing that any are not.
We now have such a method. Let us start with an extremely simple example.
It is fairly obvious that the set which consists just of the one functor A, and
nothing else, will not be adequate. But how is this to be proved?

In this case the basic idea is very simple. The truth-table for Ahasa Tin its
first row, since the conjunction of two true formulae is itself true. It follows
that in any formula whose only truth-functor is A, however long and com-
plex it may be, the top row of the truth-table must be T. But this means that
we can easily specify a truth-function which cannot be expressed by such a
formula, namely any which has F and not T in the top row of its truth-table.
A simple example is evidently the one-place truth-function of negation, so
let us concentrate just on this. A formula which expresses a one-place truth-
function is one that uses only a single sentence-letter, perhaps occurring
many times over. So if negation could be expressed in terms of A alone, then
there would be a formula built up just from occurrences of a single letter, say
P, and occurrences of A, which had the same truth-table as —P. But, as we
have just said, there can be no such formula, since any that is built up in the
way specified must take the value T when P takes the value T.

That last assertion is, in practice, sufficiently obvious to pass without
proof. But if proof is desired, then we can easily supply it, arguing by induc-
tion on the length of the formula. We aim to prove:

If ¢ contains only occurrences of Pand of A, then [¢| = Tif |P| = T.

The inductive hypothesis is
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If y is shorter than ¢, and y contains only occurrences of P and of A,
then |y|=Tif|P|=T.

We have two cases to consider, which exhaust the relevant possibilities:

Case (1): is aletter. Then if ¢ contains only occurrences of Pand of A,
¢ must be the letter P. So, of course, |¢| = Tif |P| = T.

Case (2): ¢ is yay. Then if ¢ contains only occurrences of P and of
A, the same must be true of \yy and of %, which are shorter than ¢. Hence,
by the inductive hypothesis, if |P| =T then |y| = T and || = T. Hence,
by truth-tables, if |P| = T then |yay| =T, ie. |¢| = T.

This completes the induction, and so establishes the required conclusion.
It also illustrates the general method of establishing a negative result on
expressive adequacy, namely: find some property which must be possessed
by every formula containing only the truth-functors in question, no matter
how long, but which is not possessed by all formulae whatever. Once a suit-
able property is discovered, it will usually be easy to prove, by induction on
the length of the formula, that it is suitable.

It is easy to see that a single one-place truth-functor, such as negation,
cannot possibly be expressively adequate on its own. For if we only have one-
place truth-functors to play with, then we cannot construct any formula
which contains more than one sentence-letter. We have just argued that
the two-place truth-functor A is not expressively adequate on its own, and
exactly the same reasoning applies also to v,—,¢>, as you should check. This
raises the question: is there any two-place functor that is adequate on its
own? The answer turns out to be yes; in fact there are just two such functors.

For the reason just given, we can rule out as inadequate all functors which
have T in the first row of their truth-tables. For a precisely similar reason,
we can also rule out all functors which have F in the last row of their truth-
tables. This leaves us just four candidates to consider, which for the moment
we shall label f}, f;, f3, and f;, and which have these truth-tables:

¢ v | Ay | AW | AW | LW
T T F F F F
T F T T F F
F T T F T F
F F T T T T

But a brief consideration of the tables for £, and f; should show that neither
of these could be adequate, for they are in fact equivalent to one-place func-
tors. In fact
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L) == =y, fioy) == 0.

There would be many ways of demonstrating that this must make them
inadequate. Perhaps the simplest would be this: any formula that contains
only occurrences of P and of f,, or only occurrences of P and of f3, must be
equivalent either to P or to —P. That is, it must express a one-place function
that is contingent, i.e. that has both a T and an F in its truth-table. (You are
invited to work out an inductive argument for this claim.) Hence no such
formula can express either the one-place tautologous function expressed by
Pv—P, or the one-place contradictory function expressed by PA—P.

We have shown, then, that only the truth-functors given above as f; and
f4 could be, on their own, expressively adequate. They are usually called the
stroke functors, written as T and {, so let us reintroduce them in the more
familiar notation

o v | oy | oly
T T F F
I F T F
FOOT T B
F T T T

d is the denial of ‘or’, expressed in English by ‘neither . . . nor . . , and use-
fully abbreviated just to ‘nor’. T is the denial of ‘and’, and so sometimes
abbreviated, by analogy, to ‘nand’. (T is also written just as |, and called in
particular the Sheffer stroke, after Professor Sheffer, who first drew attention
to it.) Of course, it needs to be argued separately that these are adequate by
themselves, but this only requires us to draw attention to the relevant defin-
ing equivalences, namely

—o == ¢To —¢ == olo
ony == Ty TOTY)  oay == ©do) I (wly)
ovy == 0T TwTy)  ovy == (@dy) L (o).

In consequence, it would be possible to choose one of the stroke functors,
say T, and to conduct the whole of one’s investigation of the logic of truth-
functions using just this one truth-functor and no other. But it would not be
particularly convenient.

It turns out, then, that none of the familiar truth-functors A,v,—,¢> is
expressively adequate on its own, though there are two other two-place
truth-functors that are. We have also seen that the familiar functors A,v,—
do each yield an adequate set when taken together with negation. But we
have not yet considered the set {—,¢->}. It turns out that in terms of-mand <>
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one can express every one-place truth-function, but only half the two-
place functions, namely those that have an even number of Ts and Fs in
their truth-tables. That is to say, a formula which contains only occurrences
of P, of Q, of —, and of <> must have an even number of Ts and Fs in its
truth-table when that truth-table is considered as the table for a two-place
truth-function. The reason for adding the last condition is this. The for-
mula P, or the formula Q¢>—Q), are formulae satisfying our constraint, but
of course they may be considered as expressing one-place truth-functions.
So considered, the formula P has just one T in its truth-table. But we shall
insist upon looking at it differently, as having the following truth-table with
two Ts:

o B B B S e
RS- R R Ve
oo | N

Taking this proviso for granted, let us just say, for brevity, that all formulae
of the kind in question ‘have an even truth-table’.

As will be expected, the proof is by induction on the length of the for-
mula ¢. Our inductive hypothesis is

If yis shorter than ¢, and contains only occurrences of P,Q,—,¢>, then
y has an even truth-table.

We wish to show that the same holds of ¢. We have three cases to consider:

Case (1): ¢ is a letter. So if ¢ contains only occurrences of P,Q,—,¢>,
then ¢ must be either the letter P or the letter Q. We have already
explained that in this case ¢ has an even truth-table.

Case (2): § is —y. So if ¢ contains only occurrences of P,Q,—,¢>, then
so does y, which is shorter than ¢. Hence by the inductive hypothesis y
has an even truth-table. But the truth-table for —y has as many Ts as
the table for y has Fs, and as many Fs as the table for y has Ts. It follows
that the table for —, i.e. for ¢, must also be even.

Case (3): ¢ is ye>y. So if ¢ contains only occurrences of P,Q,—,¢, then
so do y and y, which are shorter than ¢. Hence by the inductive
hypothesis both y and y have even truth-tables. If in fact y has four Ts
inits table, then the table for y¢>y is simply that for y; and if y has four
Fs then the table for y<>y is that for —Y. So in either of these cases the
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table for y¢>y is certainly even; similarly, if y has either four Ts or four
Fs in its table. The cases remaining to be considered, then, are those
where each of y and  have two Ts and two Fs. We can distinguish these
as follows. Either (1) the two Ts in each table are opposite one another;
or (2) the two Ts in one table are opposite two Fs in the other; or (3) one
T in one table is opposite a T in the other, and the other T in that table
is opposite an F in the other. Inspection shows that in case (1) the table
for y<oy has four Ts, in case (2) it has four Fs, and in case (3) it has two
Ts and two Fs. In all cases, then, the table for W<y, i.e. for ¢, is even.

This completes the induction, and so establishes the result. (It is perhaps the
first time in this book so far that we have used induction to prove a point that
was not very obvious to unaided intuition.)

The result that we have just established about the set of functors {—,¢>}
can be quite significantly improved. The argument can easily be extended to
show that in terms of —and <> one can express only those three-place func-
tions that have an even truth-table, and similarly for four-place functions,
and so on. It happens to be true, but would not be easy to prove by a similar
argument, that of three-place functions one can express with—and <> only
those with a number of Ts that is divisible by 4 (i.e. either 0 or 4 or 8). But still
one cannot express all such functions, so this does not give a very close de-
scription of what can be expressed using just — and . For this we need a
rather different line of argument.

Let us first consider what can be expressed by <> alone. There are two cru-
cial points here. The first is that «» is both commutative and associative, i.e.

oy =FE yed

do(yey) == (poy)ox.
We are familiar with the fact that, because A and v are both commutative
and associative, the order and grouping of a continued conjunction or dis-
junction makes no difference, and can be varied at will. The same therefore
applies to ¢<>: order and bracketing are immaterial. (The associativity of <>
is not altogether expected. You should check it by a truth-table test.) The
second point is that <> is not idempotent, as A and v are, but instead obeys
these simple laws:

00 == T

Ted == 9.
When we put these points together we can infer the following result:

Any formula whose only truth-functor is < is equivalent to one in
which each letter occurs either just once or not at all. (And if the
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formula is equivalent to one in which no letter occurs at all, then it is
equivalentto T.)

The argument is simple. Suppose a formula ¢, whose only truth-functor is
<>, contains more than one occurrence of some letter, say P;. Then by rear-
ranging the order and the bracketing we can form an equivalent formula of
the pattern (P;<>P;)<>y, where y lacks two occurrences of P; but otherwise
contains just the same letters as ¢. But this formula is equivalent to Ty,
which in turn is equivalent to y if the formula y exists (i.e. if there are letters
in ¢ other than the two displayed occurrences of P;), and otherwise is equi-
valent just to T. In this way we can always remove from a formula ¢ any pair
of occurrences of the same letter, still preserving equivalence. By repeated
steps of the same manceuvre we can evidently find a formula equivalent to ¢
in which no letter occurs more than once. (You are invited to state this argu-
ment as an induction on the length of ¢.)

It follows that the one-place truth-functions that can be expressed by for-
mulae containing only the functor < are just the two expressed by

T, P.

The two-place functions are just the four expressed by
T,P,Q, Pe>Q.

The three-place functions are just the eight expressed by
T, P, Q, R, P&Q, Q3R, P&R, (PQ)R.

And so on. To put it another way, for each n there is just one n+1-place
function that can be expressed, and is not equivalent to some n-place
function.

Let us now turn to consider the effect of adding occurrences of the nega-
tion sign. Here again we begin by noting some significant equivalences,
namely

po—y =HE —(vevy)
ey == (o).

These equivalences show that the placing of a negation sign makes no differ-
ence. For example, a negation sign that is placed somewhere in the middle
of a formula which otherwise contains only <> can always be brought to
the front of it by successive applications of these equivalences. So in particu-
lar, if we have several negation signs in the formula, then they can each be
brought to the front so that the formula begins with a string of negation
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signs. Then, by double negation, they can be cancelled in pairs, until either
one or none is left. So it follows that

Any formula whose only truth-functors are > and — is equivalent to
one in which each letter occurs either once or not at all, and — occurs
either once or not at all.

(Again, you may like to reflect upon how this result could be more rigor-
ously proved by an inductive argument.) The truth-functions that can be
expressed by <> and — together are, then, just those that can be expressed
by ©, together with their negations. This leaves very many truth-functions
that cannot be expressed.

EXERCISES

2.9.1. Lety be the two-place truth-functor of exclusive disjunction, so that [pvy] is
T iff just one of |¢] and || is T. Let 3 be the analogous three-place truth-functor, so
that [vs(0,w,))] is T iff just one of |¢|, |y}, |x| is T. Show that v; cannot be defined in
terms of v alone. [Hint: v can be defined in terms of ¢ and —. Use the result in the
text.]

2.9.2.(a) Show that A cannot be defined in terms of — alone. [Method: show by
induction that no formula containing only occurrences of P,Q,—, has a truth-table
with more than two Fs.]

(b) Show that A can be defined in terms of — and ¢, and hence deduce that <>
cannot be defined in terms of — alone.

(c) Just which two-place truth-functions can be expressed in terms of — alone?

2.9.3. Let us call a truth-function ‘positive’ iff the top row of its truth-table is T.

(a) Show that all truth-functions which can be expressed by A and — are positive.
(b) Show that all positive truth-functions can be expressed by A and —. [Method:
consider how to form a formula in perfect CNF that expresses the truth-function,
and show how—if the truth-function is positive—all occurrences of —in that for-
mula can be exchanged for occurrences of —. Thus the function is expressed in
terms of ~3,A,V. Finally observe that v can be defined in terms of — alone.]

2.10. Duality

At several places in this chapter, but particularly in Section 2.6 on DNF and
CNF, you must have noticed that there is a kind of correspondence between
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A and v. Roughly speaking, to any law for A there will be a corresponding
law for v and vice versa. This is because A and v are, as we say, duals of one
another. In this section I give a brief treatment of the duality of A and v in
particular; in the exercises there is an invitation to think of duality more
generally.

Let us confine attention to formulae with no truth-functors other than
—,A,V. For any such formula ¢, we shall say that its dual formula ¢P is the
formula obtained just by interchanging A and v throughout ¢. The first
point to prove about duality is this:

First duality theorem. Let ¢ be the result of writing a negation sign
immediately in front of every sentence-letter in ¢. Then

0P == —d.

The proofis a straightforward induction on the length of the formula ¢. The
hypothesis of induction is

If y is shorter than ¢, then yP =f= —y.
We have four cases to consider, thus:

Case (1): ¢ is a letter. Then

P = ) case hypothesis
== =0 double negation
= —0 case hypothesis

Case (2): ¢ is—y. Then

o0 = ()P case hypothesis
= —(yP) definition of D
== —(—y) inductive hypothesis
= (=) definitionof ~
-0 case hypothesis

Case (3): ¢ is yAy. Then

oo = (yAyx)P case hypothesis
= (yPvyP) definition of D
== (—yv—y) inductive hypothesis
== —(yay) De Morgan
= —(yay) definition of ~
= —0 case hypothesis
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Case (4): ¢ is yvy. Then

o0 = (yvx)P case hypothesis
= (yPAYD) definition of D
== (—ya—y) inductive hypothesis
== —=(yvy) De Morgan
= —(yvy) definitionof ~
= —0 case hypothesis

This completes the induction, and so establishes the result.
Without pausing to comment on this, I proceed at once to the next the-
orem, which follows easily from it.

Second duality theorem. If ¢ = y then yP = ¢P.
The proof is straightforward:

Assume ¢ =y
Then ¢ =y by uniform substitution of —P; for P;
Hence —yk=—¢ by contraposition
So finally yP = ¢D by the first duality theorem.

We may at once note a corollary
Third duality theorem: if ¢ == y then ¢P == yP.

The ‘correspondences’ that were striking in Section 2.6 were mainly in-
stances of the third theorem, since the laws there in question were mainly
equivalences. But we have already met some instances of the second the-
orem, for example

PAQEP PEPvQ
PE= PAP PvPE=P.

1 note here one further example. It is obvious that ¢PD = ¢, so the second
duality theorem can evidently be improved to

o=y iff D= ¢P.

Now let us recall a central case of our basic principle for conjunction (p. 33)
xEoAy iff xE=¢ and xE vy

Since ¢,\y,y may here be any formulae, it follows that
%P = ¢PAYP  iff P k=P and xP = yP,

But (¢PAYP) = (¢vy)P. Applying this, and applying our second duality the-
orem, we therefore have
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ovwkEy iff o=y and yEy.

So it emerges that, in virtue of the second duality theorem, a central case of
our basic principle for conjunction implies the corresponding central case
of our basic principle for disjunction (and, incidentally, vice versa).

EXERCISES

2.10.1. Recall the truth-functor ¢ defined in the exercises to Section 2.7. It is dual
to —. Thus if ¢ is any formula containing only the functors —,—,¢-, and if ¢D is
formed from ¢ by interchanging — and ¢, then we again have

If ¢ =y then yP = ¢D.
Verify this assertion.

2.10.2. Compare the truth-tables of A and v, and of — and ¢. In the light of this
comparison, devise a general definition of duality. What truth-functors are dual to
¢>,T,—,.L? How are we to understand the dual of a three-place truth-functor?

2.10.3. In the light of your answer to Exercise 2.10.2 state the three theorems
on duality in a more general way, without any restriction on the languages to be
considered.

2.11. Truth-value Analysis

In his Methods of Logic (1952) W. V. Quine introduced a way of simplifying
formulae which can often assist understanding. He called it ‘the method of
truth-value analysis, and we may state its basic principle in this way. Let
¢(T/P) be the result of substituting T for all occurrences of P in ¢; similarly,
let 9(_L/P) be the result of substituting L for all occurrences of Pin ¢. Then
by the principle allowing interchange of equivalent formulae, we have

PoT = o o(T/P)
P&l = ¢ o(L/P).

And, of course, it is obvious that
E (PoT)v(Pol).

We may therefore analyse a formula into two alternatives, one got by substi-
tuting T for some letter within it, and the other by substituting L. The point
of this is that a formula containing T or . can always be simplified in such a
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way that either those symbols are eliminated altogether, or they become the
whole formula. The laws by which this is done are very obvious, and we have
had many of them already. I simply list them

AT == ¢ AL == L
TAp == ¢ Ing == L
ovT == T ovL == o
Tvy == T Lvg == ¢
O0—>T == T o¢->L == —¢
T-¢ == ¢ l—o¢ == T
0T =H= ¢ >l == —o

Ty == ¢ Lleo == —o
—T == 1 =L == T

(You might like to construct an inductive argument, using these laws, to
show formally that any formula containing T or L is either equivalent to T
or L, or equivalent to some shorter formula lacking T and L.)

Here is an example of such simplification (taken from Quine 1952: 24-7).
Consider the formula

((PAQ) vV (—PA—R)) = (Q&R).
Substituting T for P, we obtain

((TAQ) v (—TA—R)) = (QeR).
By the laws noted above, this simplifies to

((TAQ) v (LA—=R)) — (QeR)
(Qvl) = (QeR)
Q — (QeR).

To finish off this line of investigation let us now suppose4 in addition (a) that
Qis true and (b) that Qs false. This yields

(a) T—=(TeR) (b) 1>(1LeR)
TR T
R

Thus in case (b) the whole formula will be true, irrespective of the value
of R, and in case (a) the formula is equivalent to R, and hence true or false
according as R is true or false. Now we go back to the original formula and
substitute L for P, to obtain

4 Note that we choose to make assumptions about Q, rather than R, because Q occurs more often than
R in the formula under consideration. This abbreviates labour.
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((LAQ) v (—mLA—R)) > (QeR).
This then simplifies to

((LAQ) v (TA—R)) — (Q&R)
(Lv—R) = (Q&R)
—R = (Q(—)R)

To finish off this line of investigation, let us now add the assumptions (a)
that R is true and (b) that R is false.5 This yields

(a) = T—=(QeT) (b) =1—>(Qel)

1—=(QeT) T—{(Qel)
T QL)
—Q.

Thus in case (a) the whole formula is again true, irrespective of the value of
Q, and in case (b) the formula is equivalent to —Q, and hence true or false
according as Qs false or true. What this analysis has shown is that the whole
truth-table of our formula is as follows:

P Q R ((PAQ) v (—PA—R)) > (QeR)
T T T T
T T F F
T F T T
T F F T
F T T T
F T F F
F F T T
F F F T

But it has shown this without the tedium of having to calculate separately
the values of each of the subformulae in each of the eight rows. This is a real
saving of effort when the formula we are concerned with contains four or
more distinct sentence-letters (see Exercise 2.11.2(a)).

Another point worth observing is that this truth-value analysis gives us a
further way of showing that every formula has an equivalent in DNF. In fact
our assumptions about the truth and falsehood of Pled us to this equivalent
for the whole formula

(PA(Q—(QeR))) v (—P A (—R—>(QeR)).

5 Note that this time R occurs more often than Q.
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Our further assumptions, about Q in the first disjunct and R in the second,
then led us to this further equivalent

(PAQAR) v (PA—1Q) v (—PAR) v (—PA—QA—R).

This is, of course, an equivalent in DNF, and could easily be improved to an
equivalent in perfect DNF if that was wanted.

A final point to notice is the relevance of this technique to a well-known
result about truth-functional logic, namely:

The interpolation theorem. If ¢ = v, then there exists a formula , con-
taining only the sentence-letters common to both ¢ and v, such that
¢ =y and x = y. (The formulay is called an ‘interpolant’.)

Suppose, for example, that ¢ = , and that some letter, say P, occurs in ¢ but
not in y. Then if we substitute either T for P, or L for P, throughout the
sequent ¢ k= y, we shall not alter the formula y. Hence, by the principle of
uniform substitution for sentence-letters, we may infer

o(T/P) F y
o(L/P) = .

And so, by the basic principle for disjunction
o(T/P) v ¢{L/P) = .

But we also have, as an evident corollary of the principle underlying truth-
value analysis,

¢ = o(T/P) v 6(L/P)).

It follows that ¢(T/P) v ¢(.L/P) is suited for the role of an interpolant, and
of course it does not contain the letter P, which was present in ¢ but notin .
There may be another letter present in ¢ but not in y, and hence present
in ¢(T/P) v 6(L/P) but not in y, but if so we repeat the same procedure to
find an interpolant, lacking that letter, between ¢(T/P) v ¢(L/P) and y. By
sufficiently many repetitions of this manceuvre we must eventually reach,
as desired, an interpolant %, which contains only those letters in ¢ that are
alsoiny,

Two points may be noted about this argument. First, the formula ¢{T/P)
v ¢ (L/P) will certainly be more complex than the formula ¢ with which we
began, but it will also be capable of simplification, as we have seen. Either it
will reduce to T or to L, or all occurrences of T and L can be eliminated from
it. Second, therefore, in the extreme case in which ¢ and y have no sentence-
letters in common, the interpolant formed by this method must reduce
either to T or to L. So we have
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Either 0T, TEy or 0L LEw.

In the first case,  is a tautology; in the second case, ¢ is inconsistent.

EXERCISES

2.11.1. Use truth-value analysis to show that the following formulae are valid:
(a) (P->Q) v (Q-P)
(b) (PoQ) Vv (P—Q)
() (PQ) v {(QeR) v (PoR).

2.11.2. Use truth-value analysis to determine under what conditions the following
formulae are true, and under what conditions they are false:

(a) (PAQ)WV(PA—R)V(—PAR)V(—PAS)V(—QAR)V(—RA—S)
() ((((PvQA(PV—Q))IV(—PAQ)) <> Q) — ((PAR)V(PA—R)).

Use your analysis for (b) to find a formula in DNF equivalent to it.

2.11.3. Find aninterpolant, containing only theletters common to the premiss and
conclusion, and not containing T or L, for the following entailments:

(@) (—Q-P)>-Q F (R>—Q)—>—Q

(b) =((P>R)v—Q) = (QOR) > S

() —((P-Q) = (—R-Q)) = (Pv—R) A (Sv—P).

2.11.4, Suppose that ¢ I= y, and that every sentence-letter in ¢ is also in y, but not
conversely. Then the method given for finding an interpolant cannot be applied.
Has something gone wrong? Explain.
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3.1. Names and Extensionality

The logic to be studied in this chapter is standardly called ‘predicate logic’,
as the logic of the last chapter is standardly called ‘propositional logic’. But
a much better name for it is the logic of quantifiers, or, more fully, the logic
of ‘elementary’ or ‘first-order’ quantifiers. However, there is a more basic
notion to be considered before we can come to the quantifiers, and that is
the idea of a name, or more generally of a logical subject. For the elementary,
or first-order, quantifiers take the place of names, and sentences containing
these quantifiers are most easily understood in terms of the simpler sen-
tences that result from them, when the quantifiers are dropped and names
restored in their place. However, there is no agreement amongst philo-
sophers on what is to count as a name, or logical subject, and this is not the
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place to explore the issues involved. I therefore offer only a bare outline of
what are, from the logician’s point of view, the crucial assumptions.

The paradigm of a name is an ordinary proper name, written (in English)
with an initial capital, whose role is to make a singular reference to a particu-
lar object of some kind, e.g. the name of a person, a place, a ship, a hurric-
ane, or whatever. What is important about names, for logical purposes, is
this job of singular reference that they perform. So we generalize the idea
and say that any other expression too may be counted as a name, for our
purposes, if it too performs the same job. I think there would be general
agreement that demonstrative expressions, such as ‘this book’ or ‘that chair’,
may be so counted, though, of course, they are not ordinarily thought of
as ‘names’, But there is no agreement on other examples. In particular there
is a category of expressions called ‘definite descriptions’ on which philo-
sophers are deadlocked. I shall return to this topic in Chapter 8, but mean-
while I simply leave the question open. The important thing about a name
is that it is an expression used to make a singular reference to a particular
object; just which expressions do play this role must for the time being
remain undetermined.

An expression that is commonly used as a name may nevertheless be
functioning in some different way in a particular context. To take a simple
example, consider the sentence

‘Horace’ rhymes with ‘Doris’ and with ‘Maurice’.

The three expressions here quoted are standardly used as names that refer
to people, but it is clear that that is not their role here. On the contrary, we
say that in this sentence the name ‘Horace’ is not being used at all, but only
mentioned, and the different name ‘“Horace”” is being used to refer to it. In
other words, ““Horace”” is functioning here, as it usually does, as a name of
‘Horace’, whereas ‘Horace’ is not functioning as aname at all. The important
point is that for our purposes we do not count an expression as a name
unless it is actually functioning as a name in whatever context is under con-
sideration, i.e. unless it is, in that context, being used to refer to a particular
object. By an extension of the same idea, we do not count anything as a repe-
tition of the same name unless it is, in the context, being used to refer to the
same object. And this implies that an expression is not counted as a name
unless it succeeds in referring to an object, i.e. unless there really is an object
to which it refers.

This is the first assumption that we make about names, i.e. that they
always do refer. (In Chapter 8 I shall consider abandoning this assumption,
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but for the time being it is imposed.) There is also a second assumption,
which may naturally be regarded as an extension of the first: for logical pur-
poses, it is only the object referred to that is important, and not the name
that is used to refer to it. To put this more precisely: the truth-value of a pro-
position which contains a name will (usually) depend upon which object
that name refers to, but it will never depend upon which name is being
used to refer to it; consequently, any other name with the same reference
could have been used instead, and the truth-value of the whole would not
be affected. That is, if two names each refer to the same object, then in any
proposition which contains either of them the other may always be substi-
tuted in its place, and the truth-value of the proposition will be unaltered.
This assumption is called the Principle of Extensionality.

Any natural language will abound with counter-examples to this prin-
ciple. To adapt what must count as the case best known to philosophers (see
Frege 1892/1960), it is true (given a suitable understanding of ‘Ancient’) that

The Ancient Egyptians did not know that the Morning Star and the
Evening Star are the same heavenly body.

Now in fact the expressions ‘the Morning Star’ and ‘the Evening Star’ are
names of the same heavenly body, to wit the planet Venus. So, according
to the principle of extensionality, it should always be possible to substitute
either for the other without affecting truth-value. Accordingly, it should be
equally true that

The Ancient Egyptians did not know that the Morning Star and the
Morning Star are the same heavenly body.

But this conclusion is manifestly absurd. Nor can one say that this apparent
counter-example arises only because we have taken as names the expres-
sions ‘the Morning Star’ and ‘the Evening Star, whereas these expressions
are not really names (but, say, disguised descriptions). For with any two
names ‘a’ and ‘b, which are in fact names of the same object, it will surely be
possible to know that a = a without knowing that a = b. What is causing the
trouble in this example is not the particular names involved, but the kind of
claim that is being made by the sentence as a whole.

There are many other examples of this phenomenon in an ordinary lan-
guage. They are cases where we have a name which is apparently being used
to refer to something, but where it makes a difference if we substitute some
other name with the same reference. In such a case, the function that the
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name is performing cannot just be to refer to that object; it must be play-
ing some other role as well, which a different name might fail to play, even
though it too referred to the same object. So the name is not being used
purely to refer. We shall say, in such a case, that the name does not occur
extensionally. Where, however, the substitution of any other name with the
same reference must preserve the same truth-value, there the name does
occur extensionally. For logical purposes, it is only the extensional occur-
rences of names that we shall count as being occurrences of names. (I
observe in parenthesis that it is common to find names occurring non-
extensionally where they occur in a clause which specifies what is going on
in someone’s mind—e.g. what he knows, believes, fears, doubts, is thinking
of, and so on. The same phenomenon also occurs when we are concerned
with what is necessary, or possible, or probable; or with the question of how
some fact is to be explained, or some conduct justified; and in other cases
t00.)

EXERCISES

3.1.1. The names in italics in the following sentences do not occur there as names,
from a logical point of view. Explain why not.

(a) Many people have painted pictures of Pegasus.
(b) Itisnot likely that King Arthur existed.

(c) The Popeis usually an Italian.

(d) Triesteis no Vienna.

(e) Giorgionewas so-called because of his size.

3.1.2, Discuss whether the names in italics in the following sentences do occur
there as names, from a logical point of view. (Be prepared to find that some ex-
amples are ambiguous, and that we can accept them as using names when taken in
one way, but not when taken in another.)

(a) George Eliot was Mary Ann Evans.

(b) Atthetime, no one knew that George Eliot was Mary Ann Evans,

(¢) There are some who believe that Shakespeare was Bacon.

(d) Oedipus did not know that Laius was his father.

(e) No oneis afraid of Dr Jekyll.

(f) Itis mostimprobable that Dr Jekyll is a murderer.

(g) The Morning Star and the Evening Star might have turned out to be different
planets.

(h) The police took no action because it was Prince Charles who was driving.
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3.2. Predicates, Variables, Quantifiers

A simple way of approaching the modern! notion of a predicate is this: given
any sentence which contains a name, the result of dropping that name and
leaving only a gap in its place is a predicate. Given a suitable context, the sen-
tence as a whole will express some proposition, true or false, about some
object. The name refers to the object, and the rest of the sentence, i.e. the
predicate, says something about it, something that will be either true of the
object, or false of the object, as the case may be. (And as we commonly say,
for short, that sentences themselves are true or false, so we shall similarly
speak of predicates themselves being true of certain objects and false of
others.) It should be noted that this way of speaking already presupposes
that the name we began with occurred extensionally, for we do not allow for
theidea that a predicate may be ‘true of” an object under one name, but ‘false
of” it under another. On the contrary, the predicate is either true or false of
the object itself, without room for any further qualification. So, if we remove
from a sentence a non-extensional occurrence of a name, then what is left is
not to be counted as a predicate, for our purposes.

In fact it will not quite do to say, as I have just done, that a predicate is just
a sentence with a gap in it. Some simple one-place predicates may be re-
garded in this way, without creating any problem, but more will need to be
said as soon as we move on to consider sentences with several gaps in them.
These can arise either because we began with a sentence containing several
names, and dropped more than one of them; or because we began with a
sentence containing the same name several times over, and dropped that
name at more than one of its occurrences; or, of course, from any mixture of
these two reasons. To avoid the ambiguity that can result, we shall never in
fact write a simple gap, but will always mark that gap by writing in it a letter
that is called a variable. As variables we introduce the following alphabet

UV W X0, 2, e

The point of marking a gap in this way is that two gaps which are each
marked with the same variable must each be filled by the same name, if we
are to form a sentence containing the predicate in question; whereas gaps
which are marked by different variables may be filled by different names.

A sentence which contains some variables in place of names is called an
open sentence, so in practice we shall use open sentences to represent our

1 Note that the use of the words ‘subject’ and ‘predicate’ from Aristotle to Kant was very different from
that introduced here.
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predicates. An open sentence which contains just one variable, occurring
one or more times, represents a one-place (or monadic) predicate, true or
false of single objects; one obtains a genuine sentence from it and a single
name, upon substituting that name for all occurrences of its variable. An
open sentence which contains just two variables replacing names repres-
ents a two-place (or dyadic) predicate—also called a dyadic relation—true
or false of ordered pairs of objects; one obtains a genuine sentence from it
and a pair of names, by substituting the first name of the pair for all occur-
rences of the first variable, and the second name for all occurrences of the
second variable. (Note that, as a special case, the first name of the pair might
happen to be the same name as the second.) The generalization is obvious:
an open sentence containing just n distinct variables replacing names? rep-
resents an n-place predicate, true or false of ordered n-tuples of objects. Two
special notes may be added to this statement. (1) It is convenient to count
the generalization as covering zero-place predicates; these are represented by
‘open’ sentences with no variables replacing names, i.e. they are just ordin-
ary sentences. (2) There is no need to distinguish between the ‘one-tuple’ of
an object and the object itself, so we shall not bother to do so.
As schematic letters to take the place of names we shall use the alphabet

a,b,c,d,e,a,...
As schematic letters for predicates we shall use
F,G,H,P,Q,R,S,T,Fy,...

A predicate-letter will be followed by one or more name-letters, as in ‘Fa’
or ‘Gab), to stand in for a sentence containing those names; or by one or
more variables, as in ‘Fx’ or ‘Gxy, to stand in for the corresponding open
sentences; or by a mixture of the two, as in ‘Gxb’. For official purposes each
predicate-letter is regarded as having some definite numeral superscripted,
so that F represents only the n-place predicates, needing to be followed by
n-tuples of name-letters or variables.3 But in practice we shall always omit
these superscripts, for since a predicate-letter is always followed by some
definite number of name-letters and variables, this itself allows us to recon-
structits superscript. There is, however, one point arising from the omission
to which it is worth drawing attention. Both ‘Fa’ and ‘Fab’ will be counted as
formulae, and therefore so also is ‘Fa A Fab’. But, despite appearances, this
formula does not contain the same predicate-letter twice over. For the first

2 The qualification ‘replacing names’ is essential. It restricts attention to free occurrences of variables.
(See further pp. 79-80).

3 Ann-tuple is a series of n items, not necessarily distinct (cf. p. 16 above). E.g. (a,b,a,c,a) is a 5-tuple.
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occurrence of ‘F’ is short for ‘F!, and the second is short for ‘F2, and these
are different predicate-letters.

We have now introduced names, variables, and predicates, which form
the auxiliary vocabulary needed to express quantification, so we can pro-
ceed to the quantifiers themselves. For the time being# we shall recognize
only two quantifiers, namely the universal quantifier ‘V’, which does the
work of the English ‘all’ or ‘every’ or ‘any’, and the existential quantifier ‘3,
which does the work of the English ‘some’ or ‘. (The inverted ‘A’ is in-
tended to suggest ‘All’; the reversed ‘E’ is intended to suggest the Existence
expressed by ‘there is @’ or ‘there are some’.) But from a grammatical point of
view our quantifiers V and 3 do not work in the same way as their English
counterparts.

If we begin with an open sentence, containing (say) just the one variable
x and no other, then in English one could form an ordinary sentence from it
in two main ways: either one could replace the variable x by a name, or one
could replace it by a quantifying expression such as ‘everything’ or ‘some-
thing’ or ‘all men’ or ‘some girls’ But in logic we never write a quantifier in
the same position as one could write a name. On the contrary, we do not
replace the variable x by a quantifier, but we prefix a quantifier which, as we
say, binds that variable. (The point of this departure from natural languages
is that it makes clear what the scope of the quantifier is.) We show which vari-
able a quantifier is binding by writing that variable itself immediately after
the quantifying expression V or 3. Thus one writes ‘“Vx’ for the universal
quantifier binding the occurrences of ‘¢’ in what follows, or Jy’ for the
existential quantifier binding the varjable )y’ in what follows; and so on. The
closest analogue to this in English is to prefix a phrase such as ‘Everything is
such that’ or ‘Something is such that} and then to replace the subsequent
occurrences of the relevant variable by occurrences of the pronoun it} all
governed by the opening prefix. So it comes about that English sentences
such as

All men are mortal
Some girls wear blue stockings

are rephrased in our logical notation as

Vx(if x is a man then x is mortal)
Jx(x is a girl and x wears blue stockings)

and are represented in our schematic language by formulae such as

4 The situation will alter in Section 8.1.
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Vx(Fx — Gx)
Ix(Fx A Gx).

As in the case of the truth-functors, there is plenty of room for debate over
the relation between the quantifiers of logic and their analogues in ordinary
languages, but that is not a topic for the present book.

EXERCISE

3.2.1. Briefly explore the topic that is not for this book. Let us label the four state-
ments thus:

(1) All men are mortal.

(2) Some girls wear blue stockings.

(3) Vx(xisaman— xismortal).

(4) 3x(xisa girl A x wears blue stockings).

Consider the following arguments for saying that (1) does not mean the same as (3),
and that (2) does not mean the same as (4):

(a) (2) implies that more than one girl wears blue stockings; (4) does not.

(b) (2) implies that there are also girls who do not wear blue stockings; (4) does
not.

(c) (1) implies (or presupposes) that there are men; (3) does not.

(d) Indeed, (3) is true if there are no men; (1) is not,

(e) (1) is about men and nothing else; (3) is apparently about all objects. So the
two have different subject-matters.

(f) In fact there is no saying what (3) is about, since its domain is just left
unspecified. (And the specification “all objects’ is no help, for ‘object’ is so
vague a word that we do not know what is to count as an object for this pur-
pose.) Thus (3) has no clear domain of quantification, whereas (1) does; for
(1) quantifies just over men.

How good are these arguments? Would it be possible to meet them by adopting
more complex versions of (3) and (4)?

3.3. Languages for Quantifiers

In order to study the effect of quantifiers upon entailment we shall again
concentrate on so-called formal’ languages—i.e. schematic languages—
in which definite quantifiers occur, but no definite names or predicates.
We shall allow definite truth-functors to occur too, so that the languages in
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question are really schematic languages for truth-functors and quantifiers,
and the languages of the previous chapter will be a special case of those to be
introduced now. The vocabulary from which the languages are built there-
fore consists of

name-letters: a,b,¢,d,e,ay,...
variables: u,v,w,x,y,2,u,...
n-place predicate-letters: Fn, Gn, Hn, Pn,Qn R S5, Tn Fyn, .. (for n=0).

(The zero-place predicate-letters are the sentence-letters of the previous
chapter.) It is convenient to add here a further definition:

The terms of a language are its name-letters and its variables together.

In addition to this vocabulary the languages may contain any desired truth-
functors (which will add brackets to the notation) and either none, or one,
or both of the quantifiers V and 3.

For definiteness, let us suppose that we wish to include both quantifiers in
our language, but of truth-functors only —,A,v. Then the formation rules
are:

(1) An n-place predicate-letter, followed by n terms, is a formula.
(2) If¢isaformula, sois—¢.

(3) If ¢ and y are formulae, so are (pAy) and (Pvy).

(4) If¢isaformula, and & a variable, VE¢ and JE¢ are formulae.
(5) There are no other formulae.

Apart from variations in the truth-functors and quantifiers that may be
included in the language, we also permit variations in the name-letters, vari-
ables, and predicate-letters: the language may contain only some, or per-
haps none, of those listed. For example, we may consider a language which
has no name-letters (as several authors do), or one which has only the one-
place predicate-letters, and so on.

The formation rules just given have some rather unnatural consequences.
One might, indeed, look askance even at rule (1), which provides for the
atomic formulae. For this rule allows as a formula not only schematic expres-
sions such as ‘Fa’, which take the place of sentences containing names, but
also expressions such as ‘Fx’, which take the place of open sentences. An open
sentence, however, is not a proper sentence; it cannot express any definite
proposition, and it makes no sense to assign it a truth-value. Do we want
such a thing to be counted as a formula? But a far more serious difficulty
arises with rule (4), which says that if ¢ is any formula whatever then we can
always form another formula by adding a prefix such as ‘Vx’ or Iy, whether
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or not there are any further occurrences of ‘x’ or ‘y’ in the formula, to be
bound by this prefix. So, for example, the following count as formulae:
‘Vx P, ‘JyFxx’, ‘VxIxVxFa’, and so on. But these are expressions which cor-
respond to no English sentences or open sentences; it is natural to say that
they make no sense at all.

To consider this point more accurately, we need some further definitions:

(6) The scope of an occurrence of a quantifier (or a truth-functor) is the
shortest formula in which it occurs.

(7) An occurrence of a quantifier V or 3, immediately followed by an
occurrence of the variable &, as in VE or &, is said to be &-binding.5

(8) An occurrence of a variable £ in a formula ¢ is free in ¢ iff it is not in
the scope of any £-binding quantifier in ¢; otherwise it is bound in ¢.

(9) A closed formula is one in which no variable occurs free; a formula
which is not closed is open.

(10) Anoccurrence of a quantifier VE or 3& is vacuous iff its scope is VEW
or A&y, and the variable € does not occur free in .

A vacuous quantifier, then, is one which is §-binding but which fails to bind
any occurrence of &, except for the occurrence which forms part of the quan-
tifying prefix itself. All the examples of quantifiers in the apparently ‘sense-
less’ formulae just noted are vacuous.

In some books the formation rules are so arranged that formulae with
free variables, and formulae with vacuous quantifiers, are not counted as
formulae at all. It is easy to see how to achieve this. We restrict formation
rule (1) to

(1') An n-place predicate-letter, followed by n name-letters, is a formula,

and we allow the introduction of variables only with rule (4), at the same
time as we provide for the quantifiers that bind them. Further, to ensure that
these quantifiers should not be vacuous, we now phrase rule (4) in this way:

(4) If ¢ is a formula containing a name o, and if §(/ox) is what results
upon substituting the variable & for all occurrences of o in ¢, then
VEO(E/a) and FEG(E/ar) are formulae, provided that ¢(E/a) is not
itself a formula.6

5 Tuse the small Greek letters ‘€’ and ‘C’ (‘xi’ and ‘zeta) with long ‘i’ and long ‘¢’) as metalogical sym-
bols to stand in for any variables.

6 Tuse the small Greek letters ‘o) (‘alpha) ‘beta’, ‘gamma’, with a long ‘¢’ in ‘beta’) as metalogical
symbols to stand in for any name-letters.
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Notice that the proviso ensures that at least one occurrence of € in ¢(£/0) is
a free occurrence, not already bound by any &-binding quantifier in ¢(&/at),
so that the newly prefixed quantifier cannot be vacuous.” So on these re-
vised rules no formula is allowed to contain a free variable or a vacuous
quantifier.

But there is a price to pay. From one point of view it is convenient not to
count open formulae as formulae, namely because they cannot be assigned
truth-values. But on the other hand we cannot just ignore open formulae,
since one frequently needs to say things about them, and they must be given
some name or other. Since in fact the name ‘open formula’ (corresponding
to ‘open sentence’) is now well established, it seems perverse not to use it.
But then one might as well go along with what the name implies, and accept
that open formulae are indeed formulae. When necessary, one can always
explicitly restrict attention to such formulae as are not open, but closed.
There is no similar motivation for accepting formulae with vacuous quan-
tifiers. Apart from one or two very recherché purposes,8 these are for the
most part just a nuisance, for one has to keep remembering that sensible-
looking rules which apply to all normal quantifiers may not apply to them.
But in order to rule them out, while still accepting open formulae as formu-
lae, it turns out that the rules of formation must be given in a much more
complicated form, which it is not worth stating here.% I therefore return
to rules (1)—(5) as first stated, which do permit vacuous quantifiers, but I
adopt a ruling about them which renders them harmless. The ruling is that
avacuous quantifier alters nothing, i.e. if§ does not occur free in ¢, then V&g
and JE¢ are each logically equivalent to ¢.

Having decided what a language for quantifiers is to be, our next task is to
say what counts as an interpretation for such a language. This is the task of
the next section. Before we come to that I pause here to introduce a notation
for substitution that will be convenient in what follows. If ¢ is any formula,
o any name, and & any variable, then ¢(0/€) is to be the formula that results
from ¢ upon substituting occurrences of the name c for every occurrence of
the variable § in ¢ that is free in ¢. If€ has no free occurrence in ¢, then ¢(a/)
is just ¢ itself. Similarly, $(€/ct) is to be the formula that results from ¢ upon
substituting for each occurrence of ot in ¢ an occurrence of § that is free in ¢.
If either there are no occurrences of o in ¢, or there is one such that, when an

7 Qbserve that we cannot explicitly use the notion of a ‘free occurrence’ when framing rule (4), for at
this stage that notion has not been defined.

8 For example, vacuous quantifiers in the logic of one-place predicates are a useful model for ‘vacu-
ous’ modal operators in the modal logic S5.

9 One must simultaneously define both what counts as a formula and what counts as a free occurrence
in that formula.
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occurrence of & is substituted for it, that occurrence is bound in ¢, then in
either case ¢(&/au) is just ¢ itself. The point is that this notation concerns the
substitution of names for free variables, and vice versa; if we wish to con-
sider substitution of or for bound variables (as on p. 103), then we must say
so explicitly.

EXERCISES

3.3.1. Letuscallaformula ‘sensible’ iff it contains no vacuous quantifiers. Allowing
reasonable conventions for omitting brackets, which of the following expressions
are (a) formulae, (b) closed formulae, (c) sensible formulae? Give reasons.

(1) Fax (6) IxVyFyx A VxdzFzy

(2) VxFax — Fax (7) Vx{Fab A Ga — 3x(Fxb A Gx))
(3) Vx(Fax —> 3xFax) (8) Vx(Fab A Ga — JxFxb A Gx)
(4) Vx(3yFry — Fxy) (9) FxATJyFxy

(5) Va(VyFyy &= Faa) (10) Vx(P - Fx) =P — VxFx

3.3.2. Argue in detail that any expression which is counted as a formula on the
revised rules (17) and (4°) of p. 79 is also counted as a formula which is both closed
and sensible on the rules originally given on p. 78. [Method: use induction on the
length of the expression, noting that length is now to be measured by the number of
occurrences of truth-functors and quantifiers.]

3.3.3. Compare rule (4") with this rule:

(4”) If ¢ is a formula containing a name-letter o, and if ¢(§/xx) is what results
upon substituting the variable & for all occurrences of o in ¢, then VEG(E/ar)
and 3&¢(&/o) are formulae, provided that & does not already occur in ¢.

(Several books adopt (1”) and (4”), in place of (1’) and (4’).) Show that there are
expressions which are permitted as formulae by (4”) but not by (4”), and discuss
whether they should be permitted.

3.3.4. The main logical symbol in a formula is that symbol in it, either truth-
functor or quantifier, which has the whole formula as its scope. Prove that in any
formula, apart from atomic formulae, there is always one and only one such sym-
bol. [Method: adapt Exercise 2.8.2.]

3.4. Semantics for these Languages

What is to count as an interpretation of a language which contains names,
predicates, and quantifiers, as well as truth-functors, is very much more
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complicated than it was when only the truth-functors needed to be con-
sidered. There are also, as we shall see, two rather different methods of
providing such interpretations. The method that I give first is I think the
simpler: it concentrates just on truth-values, as in the previous chapter, and
consequently it ignores open formulae altogether. It is this method that 1
shall use in subsequent discussions. But since most books these days use a
different method, I shall give a brief outline of this too.

We may start with what is common to both methods. An interpretation
for a language of the kind that we are now interested in will always begin
with the selection of a domain, to be what is called ‘the domain of the inter-
pretation’. (We abbreviate this to D.) It is also called ‘the domain of dis-
course, since it is thought of as containing all the things that the language in
question can speak about. What we choose as the domain is arbitrary; it can
be any set of things whatever, finite or infinite, with this one proviso: it can-
not be empty. I comment briefly on some consequences of this proviso in
this section and the next, but I shall not examine its merits until Chapter 8.
For the present it is simply a stipulation on what is to count as a (standard)
interpretation.

The next step is to provide an interpretation, on that domain, of the name-
letters and predicate-letters in our language. This means that for each name-
letter in the language we must specify some object of the domain for it to be
the name of. Since one of our central assumptions about names was that a
name must succeed in naming something, we are not permitted to interpret
any name-letter as lacking in denotation, but otherwise there are no restric-
tions. For example, we may, if we wish, interpret all the names as naming the
same object in the domain, or we may interpret them as all naming differ-
ent objects, and so on. Similarly, we interpret the predicate-letters on the
domain by saying which objects in the domain they count as true of. More
accurately, we interpret a zero-place predicate-letter, i.e. a sentence-letter,
just by assigning it a truth-value, T or E. We interpret a one-place predicate-
letter by assigning it some set of objects from the domain which it is true
of. (It is then also specified as false of all other objects in the domain.) Any
set of objects from the domain is permitted; in particular we may include
all the objects in the domain, which interprets the predicate-letter as true
of everything; or we may interpret it as true of nothing, or anything in
between. We interpret a two-place predicate-letter by assigning to it some
set of the ordered pairs that can be formed from members of the domain;
and so on.

In order to have a brief notation, for any symbol ¢ let us write || for the
‘semantic value’ assigned to the symbol 6 by whatever interpretation is in
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question. (If we need to distinguish different interpretations, say 7and J, we
shall add suitable subscripts as in |6}, and |6| ;) Also, where Dis the domain
of the interpretation, let us write D (for n>0) for the set of all n-tuples that
can be formed from the objects of that domain. Then we can say: an inter-
pretation Ifor a language £ for quantifiers, will always specify

(1) Anon-empty domain .

(2) For each name-letter o in £ some object in D as its denotation (i.e.
what it names). Thus o] € D.

(3) For each zero-place predicate-letter @0 in £ a truth-value.!0 Thus
|®0] =T or |®0]| = K11

(4) For each n-place predicate-letter @7 in £ (n>0), a set of n-tuples
formed from the objects in D as its extension (i.e. what it is true of).
Thus |®n| C Dn.

These clauses (1)—(4) concern the interpretation of the non-logical vocabu-
lary of £, which will be different from one interpretation to another. We now
need to consider the interpretation of the logical vocabulary of £, and this is
not chosen arbitrarily, but is designed to conform to the intended meaning
of the logical signs. It is therefore the same for all interpretations of the same
language.

Let us suppose, again, that we are dealing with a language which contains
just —,A,V as truth-functors, and V and 3 as quantifiers. There is also an-
other piece of ‘logical vocabulary’ that needs explanation, and that is the
significance of writing name-letters immediately after a predicate-letter in
an atomic formula. So we also need a clause which tells us how atomic for-
mulae are to be evaluated. In the first method that I give, we confine atten-
tion throughout to closed formulae, so that the atomic formulae that are
relevant are just those that contain name-letters but no variables. The obvi-
ous clause is this:

(5) |DraB..y|=T iff (Job|Blo.fy]) € |On.12

10 Tuse the capital Greek letter ‘@’ (‘phi’) as a metalogical symbol to stand in for any predicate-letter.
(Fadd that ‘€’ abbreviates ‘is a member of” and ‘C’ abbreviates ‘is a subset of .}

11 We could avoid a special clause for zero-place predicates in this way. We may suppose that 20 is the
set of 0-tuples that can be formed from members of 9, and that there is just one such 0-tuple, namely ‘the
empty tuple’ (i.e. the empty sequence) which is represented by ( ). Then 20={( )}, and if|®0| C D¢ then
either |9 = {{ )} or [®9] = { } (i.e. the empty set). For a continuation of this approach, see n. 12.

12 If this clause is intended to include zero-place predicate-letters (cf. n. 11), then in their case it is
interpreted as meaning

oo =T iff ()e]oo].

Thus a sentence-letter is true if its value is {{ )}, and false ifits value is { }. (I am indebted to Dana Scott
for this ingenious suggestion.)
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In words, this says: an atomic formula consisting of an n-place predicate-
letter followed by # names counts as true (in the interpretation in question)
iff the n-tuple formed by taking the objects which are the denotations of the
names (in that interpretation), in the order in which the names occur in
the formula, is a member of the set of n-tuples which is the extension of the
predicate-letter (in that interpretation). It is long-winded to say it, but the
thought is surely very simple. We may add to this the expected clauses for
the truth-functors, namely (in the present case)

(6) [—o| =T iff |o|#T
(7)(a) [pay|=T iff |§|=T and |y|=T
(b) lovel=T iff o|=T or [y|=T.

This brings us, then, to the problem of what we are to say about the
quantifiers.

Let us suppose that Vx¢(x) and 3x¢(x) are closed and sensible formulae,
so that x, but only x, occurs free in ¢(x). Then the basic idea is evidently this:
Vx¢(x) is to count as true iff the predicate represented by the open sentence
d(x) is true of all the objects in the domain; and similarly 3x¢(x) is to count
as true iff that predicate is true of some object in the domain. But this way of
putting things evidently introduces a difficulty. In clauses (5)—(7) we have
been working towards a definition of true for our language, but have not said
anything about being true of. Either, then, we must think of some way of ex-
plaining the truth-values of quantified sentences in terms of the truth of
their simpler instances, or we must go back and revise clauses (5)—(7) so that
they are concerned, not—or not only—with truth, but also with being true
of. My first method takes the first course, and my second method takes the
second.

The first method starts from the thought that if Vx¢(x) is true, then so is
every simpler formula ¢(a) obtained from it by substituting some name o
for the occurrences of x that are free in ¢(x). Provided that the interpretation
we are concerned with has assigned a name to each object in the domain,
then we can also say conversely that if every formula ¢(a) is true, then so is
Vx¢(x). But this proviso is not something that we can take for granted. In
many cases it is not fulfilled, and in some cases it could not be, since there
may be more objects in the domain than there are name-letters,!3 The solu-
tion to this problem is not to try to ensure an adequate supply of names, but
just to think of the many ways of interpreting a single name-letter. The idea

13 There are as many name-letters as there are natural numbers; Cantor proved that there are more
real numbers than there are natural numbers.
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is, roughly speaking, that Vx¢(x) is true iff ¢(at) is true for every way of inter-
preting the name-letter o. Let us try to put this more precisely.

We are trying to settle the truth-values of quantified sentences in an in-
terpretation I. To do this we need also to consider other interpretations
which are variants of I In particular, for any name o, let us say that I, is an
o-variant of I iff I, does interpret the name o, and it differs from I either
not atall or just on the interpretation that it assigns to o and in no other way.
This may be because I does not assign any interpretation to o whereas I,
does, or because the two assign different interpretations. In all other ways,
however, the two interpretations are to be the same. It should be noted here
that, for any name o, and any interpretation I, there always is at least one o.-
variant interpretation I,. This would not be true if we had permitted the
domain of an interpretation to be empty. For if we have a language which
contains no name-letters, then it can be interpreted on an empty domain;
truth-values may be assigned arbitrarily to its sentence-letters, and all other
predicate-letters are assigned the empty set as their extension. But this is an
interpretation which has no o-variant interpretation for any name o. For
an o-variant interpretation does assign a denotation to the name &, which
cannot be done if at the same time the domain has to be kept empty. As
things are, however, we are debarring the empty domain, so this problem
does not arise.

The idea, then, is to specify the truth-value of a quantified formula V&¢
in terms of the truth-values of its singular instances ¢(ct/E), not only in
the interpretation I that we began with, but also in variant interpretations
which treat the substituted name differently.!4 We must, then, specify that
the substituted name should be one that does not already occur in VE¢p. For
we want to hold all the symbols in VE¢ to their existing interpretation while
nevertheless considering other interpretations for the name that is intro-
duced in place of the quantified variable. There is no problem about this,
for no single formula can already contain all the name-letters that there are.
This leads us, then, to adopt the following clauses for the quantifiers:

(8)(a) |VEG|; =T iff forevery name o notin ¢, and every a-variant
interpretation I, [¢(0/E)|;, = T.

(b) [FE], =T iff for some name o not in ¢, and some o-variant
interpretation I, [¢p(a/E)|, =T.

An alternative formulation, which is quite easily seen to yield the same
results, is this:

14 This method is used in Mates (1972: 60 £f.).
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(8”) Let B be the alphabetically earliest name that is not in ¢. Then
(a) |VEO|,=T iff foreveryp-variantinterpretation I, |p(B/&)] Is
=T.

(b) [F€¢|, =T iff forsome B-variantinterpretation Iy, |0(B/E)] "
=T

For the fact is that for any two names o and B, neither of which occur in ¢,
the a-variant interpretations of ¢(a/E) exactly match the B-variant inter-
pretations of §(B/E), and all of the first will be true (or false) iff all of the sec-
ond are also. (I give a proof of this claim in the next section, as 3.5.C.)

This completes the account of an interpretation, according to the first
method. Clauses (1)—(8) have specified what an interpretation is in a way
that ensures that the interpretation assigns a definite truth-value, T or F,
to every closed formula of the language being interpreted. In this method,
open formulae are simply ignored. They cannot significantly be assigned
truth-values, and no other kinds of values have been considered for them.
(Because it concentrates entirely on truth-values, the method is said to give
a recursion on truth.15) I now pass on to the second method, which does
assign values of a kind to open formulae.

As I explained the problem initially it was this. A simple quantification cre-
ates a closed formula from an open formula. So apparently the truth-value
of the quantification should be determined by the ‘value’ of the open for-
mula that is quantified. But an open formula simply does not have a truth-
value. What kind of value, then, does it have?

Well, the suggestion that we shall pursue is basically this: an open formula
can be regarded as having a truth-value if at the same time we artificially
treat its free variables as if they were names. Of course there will be many
ways of so treating the variables, i.e. of assigning them denotations. But if we
can specify what value the formula has for each possible way of assigning
denotations to its free variables, then this can be regarded as assigning a
non-arbitrary value to the formula itself. In effect, it assigns to the formula
an extension, for to speak of those ways of assigning objects to the variables
that make the formula true is much the same as to speak of those n-tuples of
objects that the formula counts as true of. But it is not quite the same. For
our technique will specify extensions in a way which also allows us to calcu-
late the extensions of complex formulae from the extensions of their simpler
components. A simple illustration will make clear how this works.

15 It is called a recursion because—very roughly—it determines the truth-values of complex formu-
lae by going back to the truth-values of their simpler components (or instances).
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Let us take a simple two-place predicate-letter F. The interpretation will
specify an extension for this letter; let us suppose it is just the pair of objects
{(a,b) and nothing else. Then it is natural to say that this pair (a,b) can equal-
ly well be regarded as the extension, in this interpretation, of the open for-
mula ‘Fxy’. But it is then equally natural to say that the same pair is the
extension of the open formula ‘Fyx’ Considered as open formulae, which
may be true of, or satisfied by, pairs of objects, there is surely no significant
difference between ‘Fxy’ and ‘Fyx’. For it does not matter which variables we
use to mark the gaps in an open sentence; all that is significant is whether the
various gaps are filled by the same variables or different variables. But then,
if we are to say that the extensions of ‘Fxy’ and ‘Fyx’ are the same, we cannot
suppose that the extensions of the two conjuncts of a conjunction determine
the extension of the conjunction itself. For clearly the conjunctions ‘Fxy A
Fxy’ and ‘Fxy A Fyx’ need not have the same extensions as one another. On
the contrary, in the interpretation given, the first has the extension {a,b)
again, while the second has a null extension (assuming that a # b). To keep
track of this kind of thing, our ways of assigning objects to variables will not
lose sight of which variables are involved where. So we shall have one assign-
ment which assigns a to ‘x’ and b to ‘y’, and this assignment satisfies ‘Fxy’ but
not ‘Fyx’. There will also be another assignment which assigns b to ‘x” and
a to ‘¥, and this assignment satisfies ‘Fyx’ but not ‘Fxy’ But there will be
no assignment of objects to variables that satisfies both ‘Fxy’ and ‘Fyx’) and
hence no assignment that satisfies the conjunction ‘Fxy A Fyx Let us now
put this idea more precisely.

We suppose given an interpretation I, which specifies a domain, and the
interpretation on that domain of the name-letters and predicate-letters
in our language L. In fact, let us begin with the simplifying assumption
that £ contains no name-letters, so that all formulae are built up just from
predicate-letters and variables. We now introduce the idea of an assignment
s of denotations to the variables of £, i.e. a function which, for each variable
& of £ as input, yields as output some object s(§) of the domain D of the
interpretation 1. We shall speak of such an assignment s in I as satisfying a
formula, meaning by this that the formula comes out true (in the interpre-
tation I) when each variable & that occurs free in that formula is taken as
denoting s(§).16 We give a recursive definition of satisfaction (abbreviating
‘satisfies’ to ‘sats’) which starts in the expected way:

16 An alternative method, adopted in Tarski’s pioneering work of 1931, and still employed in many
books, is this. We take the infinitely many variables of £ to be alphabetically ordered, and we consider
the infinite sequences (allowing repetitions) of objects from the domain. We then stipulate that the nth
variable of the alphabet is always to be taken as denoting the nth member of any sequence, and with this
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(1) ssats ®E,8,..8, iff (s(§),8(E2),..-8(Ep)) € |@n].17
(2) ssats—¢ iff not (ssats¢).
(3) ssatsoAy iff (ssats¢) and (ssatsy).

ssatspvy iff (ssatsd) or (ssatsy).

To state the clause for the quantifiers we now introduce the idea of one
assignment being a variant on another. In particular, given an assignmentss,
and a particular variable £, an assignment s; will be a §-variant on s iff either
itis s or it differs from s just in the denotation it assigns to § and in no other
way. Then the quantifier clauses are

(4) ssats VEQ iff forevery&-variant sg onss, sg sats ¢
ssats3&¢ iff forsome&-variantsg ons, sg sats 9.

These clauses specify what it is for any assignment s to satisfy any formula ¢
of £, whether ¢ is closed or open. In fact they ensure that a closed formula is
either satisfied by all assignments or by none, so we can now complete our
account of the interpretation Iby adding: for any closed formula ¢

|¢],=T iff foreverysin I ssatso.

Now let us go back to remove the simplification imposed earlier, that
the language should contain no name-letters. If we do have name-letters to
take into consideration, it turns out that the simplest way of doing so is to
enlarge our assignments of denotations to variables so that they also include
assignments of denotations to names. But, of course, there will be this very
clear difference: within a given interpretation I, every assignment s of de-
notations will assign the same denotation to each name-letter o interpreted
by I, namely |of; but they will differ from one another by assigning different
denotations s(€) to the variables £. Each assignment s, then, is to be a func-
tion from the terms of the language (i.e. its name-letters and its variables) to
the objects in the domain of the interpretation. To each term 7 it assigns a
denotation s(t) but in such a way that18

for a name-letter o, always s(o) = |olf;
for a variable &, s(&) is an arbitrary member of D.

convention we can speak directly of a formula being satisfied by a sequence of objects. (But the sequences
in question are infinitely long.) See Tarski (1956, ch. 8), which contains an English translation including
corrections.

17 For the case of zero-place predicate-letters, see nn. 11 and 12 earlier. We have
ssats @0 iff { )€ [®9].
18 ] yse the small Greek letter v’ (“tau’) as a metalogical symbol to stand in for any term.
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To accommodate this ruling into the overall scheme, we therefore generalize
clause (1) above so that it deals with all atomic formulae, both those con-
taining names and those containing variables:

(1) ssats®rty..t, iff (s(T)),....s(1,)) € [P1].

The other clauses (and the definition of truth in terms of satisfaction) re-
main unchanged.

I bring this section to a close with a brief remark on entailment and incon-
sistency. Now that we have defined what an interpretation is, and what truth
in an interpretation is, there is no problem over defining these notions. A set
of formulae I' is inconsistent, i.e. I'k=, iff (a) all the formulae in the set are
closed (so that there are interpretations in which they have truth-values),
and (b) there is no interpretation in which they are all true. A set of for-
mulae I entails a formula ¢, i.e. =9, iff (a) ¢ and all the formulae in T" are
closed, and (b) there is no interpretation in which all the formulae in T are
true and the formula ¢ is false. As a special case of this, a formula ¢ is valid,
i.e.F=¢,iff (a) ¢ is closed, and (b) there is no interpretation in which ¢ is false.
This is equivalent to saying: in every interpretation of the language of ¢, ¢ is
true. For if ¢ is closed, then in every interpretation of its language it must
receive one, and only one, of the two truth-values.

On our second method of explaining what an interpretation is, it may
seem reasonable to say that it is not only closed formulae that can be true.
For truth was defined as satisfaction by all assignments, and this is a notion
that applies to open formulae too. In fact this suggestion treats an open for-
mula, standing alone, as identical with what is called its universal closure, i.e.
the result of prefixing to it (in any order!?) enough universal quantifiers to
bind all its free variables. For the one will count as true (in a given inter-
pretation) iff the other does. Now there would be no harm in extending the
notion of truth in this way, so long as we take validity as our basic semantic
notion, and either we do not talk of entailment and inconsistency at all, or
we define them in terms of validity (as on p. 123). That is, it does no harm to
count certain open formulae as valid, namely those whose universal clos-
ures are valid. But it can lead to a breakdown in expected relationships if we
apply this idea to entailment or to inconsistency as these notions are ordin-
arily understood. For example, if the open formula Fx is true when and only

19 Since we speak of the universal closure of a formula, we should strictly speaking specify some
definite order, say alphabetical. But the order will make no difference to the truth-conditions of the
formula,
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when its universal closure VxFx is true, then according to the usual defini-
tion of entailment it must hold that

Fx = VxFx.
On the other hand it does not hold that

= Fx — VxFx.

For the universal closure of this formula is Vx(Fx —» VxFx), which is cer-
tainly not valid. Similarly with inconsistency. It will hold that

Fx,—VxFx =
but not
Fx A —VxFx k.

These seem to me to be very paradoxical results. Some authors avoid
them by revising the usual definitions of entailment and inconsistency so
that these are now defined in terms of satisfaction rather than truth (e.g.
Newton-Smith 1985: 193), but it is surely more straightforward to prevent
the problem arising in the first place by insisting that it is only closed for-
mulae that have truth-values. At any rate, that is the course that I shall take,
and I shall not count = as defined in application to open formulae.

EXERCISES

Throughout these exercises suppose that we are given some interpretation I which
is specified in the second way, with a recursion on satisfaction, as on pp. 86-9. (This
set of exercises is the only part of the book that will work with interpretations
specified in this way.) To abbreviate labour, assume that the only logical symbols in
the language of I are —,AV.

3.4.1. Let 6(1;) and ¢(1,) be any formulae which result from one another upon
replacing some free occurrences of 7, by free occurrences of 1, or vice versa. (If 7;is
aname-letter, every occurrence counts vacuously as ‘free’.) Let sbe an assignment in
I of denotations to terms in which s(t;) = s(1,). Prove

ssats 0(t;) iff ssatsd(Ty).

[Method: use induction on the length of ¢(t;). The inductive hypothesis should be
that the result holds for all formulae y(1,) shorter than ¢(t,) and all assignments s
in 1. It may help to compare the analogous result for a semantics specified in the first
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way, by a recursion on truth, which is proved in the next section as 3.5.B, but you
will find that the present proof is much simpler than that one.]

3.4.2. Provethat, if ¢ is a closed formula, then ¢ is satisfied either by all assignments
in 7 or by none. [Method: induction on the length of ¢. In the clause for V you will
need to introduce a new name in place of the quantified variable, so that the induct-
ive hypothesis can be brought to bear, and to use Exercise 3.4.1.]

3.4.3. Let I be an interpretation specified in the first way, with a recursion on
truth rather than satisfaction, as on pp. 84~6. Suppose that I and I* have the same
domain, and the same interpretation on that domain of all name-letters and pre-
dicate-letters in ¢. Using the result of Exercise 3.4.2 prove that

If ¢ isclosed, then |¢|; =|d|~

3.5. Some Lemmas on these Semantics

From now on I shall assume that our semantics is specified in the first way,
by a recursion on truth rather than on satisfaction. This seems to me to be
the more natural and direct approach. But even so it is quite tricky to work
with, so T here insert a short section which illustrates in some detail how this
is done. I prove three lemmas which will be put to use in the next section.
You will see that the claims to be argued for are very straightforward, but in
the second case the argument is quite complex.

The first two arguments will proceed by induction on the length of a
formula, and as you will know (unless you have skipped the exercises) the
length of a formula is now defined as the number of occurrences of truth-
functors and quantifiers that it contains. To save labour, I shall therefore
assume that we are dealing with a language that contains only —,A,V as its
logical symbols. You will find that further cases can easily be argued in the
same way as these. (Or you may rely upon the fact that other truth-functors
and quantifiers may be defined in terms of these.)

My first lemma is something which was obvious enough to go without
saying in languages for truth-functors, but now deserves a proper treatment:

3.5.A. Lemma on interpretations. If two interpretations I and J have
the same domain, and the same interpretations (on that domain) of all
the name-letters and predicate-letters in a (closed) formula ¢, then they
also assign the same value to ¢.

The proof, as I have said, is by induction on the length of the formula ¢,
which we assume to be a closed formula. So assume also that Iand 7 are
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interpretations with the same domain, which assign the same values to all
the letters in ¢. We must show that they assign the same value to ¢, i.e. that
[6]; = 6], The hypothesis of induction is

For all closed formulae y shorter than ¢, and all interpretations K; and
K, with the same domain, which assign the same values to all the let-

ters in W, W], = |W]
We have four cases to consider.

Case (1): ¢ is atomic, i.e. it consists of an n-place predicate-letter fol-
lowed by # name-letters. Since I and J assign the same values to all
these letters, the result follows at once from the clause for evaluating
atomic formulae (i.e. clause (5) on p. 83).

Case (2): ¢ is—. Since I and 7 assign the same values to all the letters
in ¢, they also assign the same values to all the letters in v, which is
shorter than ¢. Hence by the inductive hypothesis we have |y, = [y ,.
So the result follows by the clause for evaluating negations (i.e. clause
(6) on p. 84).

Case (3): ¢ is WAY. As in case (2), the inductive hypothesis implies [y];
= |y|, and [x|; = || »» so the result follows by the clause for conjunc-
tions (i.e. clause (7) on p. 84).

Case (4): ¢ is VEy. Assume first that |V Ey|, = F. By the clause for quan-
tifications (i.e. clause (8) on p. 85), this means that for some name o
not in y, and some o-variant interpretation I, of I, we have [y(a/8)|,,
= F. Now let X be an interpretation which agrees in all respects with 7,
except that it interprets the name o as I, does. Since I and J agree on
all letters in W(o/E), except possibly on o, it follows that I, and X agree
on all letters in y(ot/E), and so by the inductive hypothesis we have
|w(o/E)| « = E. But also, K is an ai-variant on %, and so by the clause for
quantifications we also have |VEy|, =F.

Thusif ||, = F then |¢|, = F. By an exactly similar argument, if |¢|, =
F then ||, = E. This establishes the desired result |¢|; = |9| ;.

This completes the induction.

My second lemma shows that our semantics does obey the principle of
extensionality discussed earlier, in Section 3.1. That is, if o and 3 are name-
letters which are assigned the same denotation in some interpretation I,
then either may be substituted for the other, at one or more places in a for-
mula, without changing the value of that formula in I. To state this more
concisely, let ¢(c) be any closed formula containing the name o, and let $(j3)
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result from it upon replacing some occurrences of o in ¢(c) by occurrences
of B.20 Then the lemma is

3.5.B. Lemma on extensionality. If |o|;=|B|; then |o(ct)|; = |o(B)|~

The proof is by induction on the length of the formula ¢(ar). The inductive
hypothesis is

For all formulae (o) shorter than ¢(at), for all name-letters o and B,
and for all interpretations 7: if |o| ; = |B|;» then |y(a))|; = [W(B)}

We have four cases to consider, but the argument for the last case has to be
somewhat roundabout. We assume |o|; = |B|

Case (1): ¢(av) is atomic; it might be for example ®30fy. Then ¢(B) is
®3BPy. Since we are given that |a]; = |B|, it evidently follows that

(ot Bl sl¥l 2> = <IBl 1) o [¥] -

Applying the clause for atomic formulae, it at once follows that
|@3aBY|; = |®3PBY|;. The same reasoning evidently applies to any
atomic formula, so we may conclude that [¢(ct)|; = |0(B)] as desired.

Case (2): ¢(o) is —y(a). By inductive hypothesis we have |y(a)|; =
|w(B)| ;> and so the result follows by the clause for negations.

Case (3): ¢(a) is y(a) A (), where o may perhaps be present in only
one of the conjuncts. Then by inductive hypothesis we have |y(a)|; =
[w(B)|; and |x()|; = |x(B)|,» where again B may perhaps be present in
only one of these formulae. This makes no difference to the argument,
for in either case the result follows by the clause for conjunctions.

Case (4): ¢(a) is VEWY(a). Assume |VEW(a)|; = F. That is to say: there
is some name v, which is not in y(a), and some y-variant interpreta-
tion £, of I, such that |y(a)(Y/€)| r,= E. We have two cases to consider,
according as the name v s or is not in y(f). Suppose first that it is. In
that case y can only be § itself (since it is in W(B) but not in y(a)). It
follows that B is not in y(o), and what we are given is that there is a
P-variant interpretation Ig of I'such that

(a) [w()(B/E)|;p=F.
We shall show that in that case there is also a suitable y-variant, using a

new name Yother than f3, so that this case reduces to the other case first
distinguished.

20 Thus ¢(ot) is ¢"(ov/€) and ¢(B) is ¢’(B/E) for some formula ¢’ which contains free occurrences of &
just where ocand P are to be interchanged.
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Consider a new name 7, not in y(o) or Wy(B), and a new interpreta-
tion I, which agrees with I3 on the interpretation of all the symbols in
the language of I, but which also interprets the name yso that [y}, =
|Bl 7> and hence |y];5, = |B| ;5 Now Iy, and I agree on the interpreta-
tion of all the symbols in y(ot)(B/E). Hence by lemma 3.5.A on inter-
pretations we have

(5) I (BIE) 1y = (W) (B/E)] 1
And by the inductive hypothesis we have

(©) [W(o)(B/E)] 15, = IW()(¥E) 1y
Further, let 7, be an interpretation which is just like I3, except thatin 7,
the name B is interpreted as in 7and not as in 3. Now we are given that
B does not occur in y(o), nor therefore in y(a)(y/§). Hence I, and I,
agree on all the symbols in that formula, and so by the lemma on inter-
pretations we have

(d) () (VE) s, = W) (VE)s,
Thus I, is the required interpretation. For by construction it is a
y-variant on 1, and if we put together the four equations (a)—(d), we at
once have

(&) [()(¥E)],,=E.

It is now easy to complete the proof. In either of the cases first dis-
tinguished, equation (e) holds for some name ynot in ¢(j3). And since
I, agrees with 7 on the denotations of cvand  we have |ol| 7, = [B|,, and
so by inductive hypothesis

) Ww)WE) 1, = wBYVE

Putting (e) and (f) together we have: there is a name ynot occurring in
®(B), and a y-variant interpretation L of Z such that

(® WP Ve, =F

But in view of the clause for the universal quantifier, that is to say
IVEW(B)|; =F

Conditionalizing this whole argument so far, what we have shown is

If |o(aw)|; =F then |¢(B)|;=F.
Interchanging o and B throughout the argument, we equally have

And therefore finally

|¢(05)|1 = M’(B)II‘
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This completes the induction.

The awkward part of this last argument was to show that if we are given
some result with one new name in place of a quantified variable, then we
can always obtain the same result with any other new name instead. It is
worth recording this point explicitly. Perhaps the most useful way of doing
so is by noting that it allows us to give an alternative statement of the truth-
conditions for quantified formulae, in terms of their singular instances:21

3.5.C. Lemma on alternative semantics for the quantifiers.

|VE|; =T iff, for some name-letter o not in ¢, for all a-variants I, of 1,
[o(0/E)] s, =T.

|3&0|, =T iff, for every name-letter a not in ¢, for some o-variant I, of I,

M)(a/&)lhx =T.

I shall show that these semantics for V are equivalent to those first given (in
clause (8) on p. 85), leaving the application to 3 as an exercise. Now it is
obvious that if V€@ is true according to the original semantics, then it is also
true according to these alternative semantics, since it is obvious that what
holds for all name-letters not in ¢ must also hold for some. (This depends
upon the point that there must be some name-letters that are not in ¢, what-
ever formula ¢ may be.) Suppose, then, that VE¢ is false in some interpreta-
tion I according to the original semantics. That is to say: suppose that there
is some name-letter, say B, not occurring in ¢, and some B-variant inter-
pretation Iy of 1, such that

(a) 10(B/E)] =F:

We have to show that VE¢ is also false according to the alternative semantics,
i.e. that for any name-letter o not in ¢ there is an o-variant interpretation I,
such that |¢p(a/E)|,, =F

Let & be any name not in ¢ other than B. Let Iy, be an interpretation
exactly the same as Iy, except that it assigns to o the same denotation as I
assigns to 3. Now since o is not in ¢, it is not in ¢(B/E) either, so I3 and I,
agree on all the symbols in ¢(B/E). Hence by lemma 3.5.A on interpretations
we have

() 16(B/EM 1= |0(BIE)] 15,

Further, since o and [} are assigned the same denotation in Iz,, by lemma
3.5.B. on extensionality we have

21 Compare the further alternative given on p. 86. (It is clear that the present argument also establishes
the correctness of that alternative.)
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(©) 16(B/E) o = [0(/E)| 15,

Finally, let I, be an interpretation exactly the same as Ig,, except that it
assigns to J whatever denotation (if any) it was assigned in 7. Then since § is
not in ¢, it is not in ¢(0/g) either, so I, and I, agree on all the symbols in
¢(o/E). Hence by the lemma on interpretations we have

(d) 16(0/E)] 1, = |0(0/E)] e

Moreover, I, is by construction an o-variant of I So putting (a)-(d) to-
gether, I is an a-variant of I such that

(e) |o(a/E)|, =F.

This completes the proof.

We are now ready to move on to some principles of entailment for our
languages with quantifiers which extend those given in Section 2.5 for lan-
guages with truth-functors.

EXERCISES

3.5.1. Extend the argument for 3.5.A, by adding new clauses to the induction, so
that the result is proved also for languages containing v and 3.

3.5.2. The argument for clause (4) of the induction proving 3.5.B establishes that
IVEw(0)], = VEw(B) -

Use the equivalence noted below as 3.6.E to show how that argument also estab-
lishes the result for 3 in place of V.

3.5.3. In a similar way, extend the argument given for 3.5.C to cover as well as V.

3.6. Some Principles of Entailment

It is easy to see that the so-called ‘structural’ principles of pp. 30-2 apply
to our languages for quantifiers just as well as to our languages for truth-
functors. These were

3.6.A. The principle of Assumptions (ASS)
3.6.B. The principle of Thinning (THIN)
3.6.C. The principle of Cutting (CUT).
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Nothing more needs to be said about the proofs of the first two, which are
the same as before in each case, but it is useful to add something here about
the third.

If you look back to the proof of CUT given on pp. 31-2, you will see that
it relies on this assumption:

An interpretation I which interprets a set of formulae T, but does not
interpret a formula ¢, can always be expanded to an interpretation I+
which assigns the same values to the formulae in I" and assigns some
value to ¢ as well.

The assumption would not have been correct if we had allowed an inter-
pretation to have an empty domain of discourse. For, as I have noted
(p. 85), if the formulae in I" contain no name-letters, then they can all be
interpreted on an empty domain, whereas if ¢ does contain a name-letter,
then it cannot be. But changing the domain from an empty one to a non-
empty one may well disturb the values assigned to the formulae in I'. (For
example, the two formulae 3xFx and dx—Fx can both be false only if the
domain is empty.) As things are, however, we are not permitting a domain
to be empty, so every formula can be interpreted on every domain, and this
obstacle is avoided. It then follows from our lemma 3.5.A on interpretations
that the assumption just cited is satisfied by our semantics for quantifiers,
and CUT can therefore be proved in the same way as before.

I now move on to four principles for the quantifiers, though each has
two versions, one for V and one for 3. Since entailment is defined only for
closed formulae, it must of course be assumed that all the formulae here
mentioned are closed. The first principle states that vacuous quantification
achieves nothing:

3.6.D.(a) If & isnotfreein ¢,VED == ¢.
(b) If & isnotfreein ¢, 3o == ¢.

The second shows how each quantifier may be defined in terms of the other:

3.6.E.(a) 3td == —VE—o.
(b) VEO == —3E—0.

The third is usually called the elimination rule for V, paired with the intro-
duction rule for 3, and the final one is the introduction rule for V, paired
with the elimination rule for 3:
3.6.E(a) V& = o(a/E).
(b) 6(a/E) = 3Eo.
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3.6.G.(a) If I'=¢ then T k= VEO(E/a), provided o does not occur in
T.
(b) If ;¢ = then T, F&d(E/a) k=, provided o does not occur in
T.22

I give proofs just of the first version in each case. Using the fact that 3 can
be defined in terms of V, as 3.6.E states, the second version can always be
derived from the first. Or the second version can be argued directly from the
semantics for 3, by an entirely parallel argument.

Proof of 3.6.D(a)

Itis sufficient to prove here that if § is not free in ¢ then ¢ = V@, for the con-
verse will follow as a special case of 3.6.F, to be proved later. Assume, then,
that 7 is any interpretation in which ¢ is true. We have to show that V&g is
also true in 7, i.e. that for every name o not in ¢, and every o-variant inter-
pretation I, $(0/E) is true in I,,. Since & is not free in ¢, ¢(ot/E) just is ¢, so
the problem is to prove that ¢ is true in I,. But this follows at once from our
lemma on interpretations, for I and I, agree on the interpretation of all the
letters in ¢, since they differ only on a, and et is not in ¢.

Proof of 3.6.E(a)

Consider any interpretation I which does interpret V,3,—, and all the let-
ters in ¢. Then |—VE—0|, = T iff |[V&—0|, = F i.e. iff for some name o not
in ¢, and some a-variant interpretation I, we have |—¢(a/E)|, =F But
since | (a/€)| = F iff [p(at/E)| = T, this is just the condition for |3&¢|, = T.

Proof of 3.6.F(a)

Assume that I does interpret the name o, and that |VE¢|, = T. Let B be any
name other than o, and not occurring in ¢. Then for every B-variant inter-
pretation Iz we have |¢(8/8)];, = T. Choose in particular the interpretation
I which assigns to B the same interpretation as I assigns to o.. Then |B|, =
|ot|; = Jou| S0 by the lemma on extensionality we have

l¢(B/§)|IB= |¢(0°/E..)|1;3-
But also, B does not occur in ¢, nor therefore in ¢p(o/), so I and Ig have the
same interpretation for all the symbols in ¢(o/§). Hence by the lemma on
interpretations we have

22 As with the principle for Disjunction (p. 35), 3.6.G(b) is to be regarded as carrying with it the more
usual form of 3-elimination:

IfT; ¢ k= w then I 3Ed(E/a) b= w, provided that o does not occur inTorin .
{The reason why this is called an ‘elimination’ rule will become clear in Ch. 6.)
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(/8] gy = lo(a/E)| ;-

Putting these two equations together we may evidently infer |¢(a/E)|, =T,
as required.

Proofof 3.6.G(a)

Assume that T = ¢, and that o does not occur in I', and let I be any inter-
pretation such that all the formulae in I" are true in 1. We have to show that
VED(E/o) is also true in 1. Using our lemma on alternative semantics for the
quantifiers, it will be sufficient to show that there is some name § not in
o(&/ar) such that ¢(§/a) (B/E) is true in every B-variant Iz of I. And for this it
will be sufficient to show that, in particular, ¢(&/a)(a/€) is true in every o~
variant interpretation I, for clearly o does not occur in ¢(&/ct). But since ¢
is a closed formula, the formula ¢(&/at) contains a free & wherever and only
where ¢ contains o, so the formula ¢(&/o)(a/E) is just the formula ¢ again.
Hence what has to be shown is just that ¢ is true in every «-variant inter-
pretation I,. And this is simple. For it is given that o does not occur in any
formula in T, so by the lemma on interpretations I and I, assign the same
value to all formulae in T, and hence all formulae in I are true in every inter-
pretation I,. But it is also given that I" entails ¢, so ¢ too must be true in every
such interpretation.

All further entailments involving quantifiers can in fact be deduced from
the principles 3.6.A~G, as we shall eventually establish (in Chapter 7). By
way of illustration, I give a deduction of just one further entailment at this
stage, since it will be needed as a lemma for what is to follow. It is

Lemma. VE(devy) = VEG & VEW.

The derivation may be given thus. Choosing some name o which does
not occur in ¢ or in y, by two applications of the principle 3.6.F for
V-elimination we have

VE(poy) E (doy)(0/E)
VED = o(afE).

Next we note that (pc>y)(a/€) is the same as ¢p(at/E) «> y(a/E), so by a
simple truth-functional inference we obtain from this

VE(0oy),VED = y(o/E).

But we began by choosing a name o that does not occur in the premisses to

this entailment, so we may now apply the principle 3.6.G for V-introduction
and infer
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VE(9pe>y),VED = VEWY.

Applying our basic principle for the conditional, this may also be written in
the form

VE(9y) = VEO — V.

By an entirely similar argument we also have

VE(9ery) = VEy — VE.

And we have only to put these two together to obtain our desired conclu-
sion. I leave it to you as an exercise to find a similar argument to justify this
similar entailment:

VE(poy) =380 & Ry

We are now in a position to move on to the two remaining principles to be
introduced in this section, namely the principle of uniform substitution for
schematic letters, and the principle of interchange of equivalent formulae.
These principles hold for our languages with quantifiers just as they did for
our languages for truth-functors, but they are now very much more com-
plicated to state and to justify. I begin with the interchange of equivalent
formulae.

In the languages for truth-functors of the last chapter, there was no distinc-
tion to be made between open and closed formulae, for all formulae were
closed. Consequently, the principle allowing for interchange of equivalent
formulae was there confined to closed formulae, which makes it very simple
to state and to prove. But now we have open formulae to consider as well,
for they too can be equivalent to one another, and if so then they too can
be interchanged while preserving the equivalence of the whole. If ¢ and y
are open formulae, then they are interpreted as equivalent iff the universal
closure of the biconditional formed from them is interpreted as true. Thus
if the free variables in ¢ are just x and y, and the same holds for v, then to
say that ¢ and y are equivalent in an interpretation I is just to say that
VxVy(¢p<>W) is true in T (and to say that ¢ and y are logically equivalent is to
say VxVy(¢c>V) is true in all interpretations, i.e. is valid). More generally,
where ¢ and y are any formulae, with any number of free variables &;...,, [
shall write

Vgl'gn((’)(—)\")

to signify the closure of their biconditional. (If ¢ and v are both closed for-
mulae, then n=0.)
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Now, equivalent formulae may be substituted for one another, preserving
truth-value. To state this succinctly, let ¢ and y be any formulae, whether
closed or open, and let 8(¢) be any closed formula containing ¢ as a subfor-
mula, and 8(y) be the result of interchanging ¢ and y at one or more places
in 8(¢). Then the basic principle that we require can be stated in this way:

3.6.H. V§,..E, (dpvy) = 6(9) © S(y).

If we had adopted the semantics on pp. 86—9 based on the notion of sat-
isfaction, then it would at once be obvious that this entailment is correct.
For if two formulae are equivalent in a certain interpretation, then it is
easy to see that they must be satisfied by all the same assignments in that
interpretation. Consequently, they must make the same contribution to the
values of any longer formula that contains them. (That is the analogue of
the justification given on p. 32, for the simple version of this principle that
applies in quantifier-free languages.) But as things are, the semantics that we
have adopted assigns no values to open formulae, so our justification must
be more roundabout. For the sake of later developments (Exercise 6.2.2) |
shall here give an argument by induction, namely an induction on the num-
ber of occurrences of truth-functors and quantifiers that are in 8(¢) but not
in .

In fact, it turns out to be convenient to prove slightly more than 3.6.H
as just formulated. Let ¢” be any formula resulting from ¢ by substituting
name-letters for zero or more of the variables free in ¢ (substituting the
same name-letter for each occurrence of the same variable), and let y' result
from y by the same substitutions. Then what we shall prove is

VE..En(0y) = 8(9") &> 8(y").
The hypothesis of induction is

If 6(¢") is shorter than 8(¢”) then

VE..En(dy) = 0(¢") <> 8(y").

We shall again suppose that the language we are concerned with contains
only —,A,V as its logical vocabulary, so that we have four cases to consider.

Case (1): 8(¢”) is no longer than ¢, i.e. 8(¢") is ¢". Then since 5(¢") is
closed (by hypothesis), ¢’ is closed, and therefore it must result from ¢
by substituting name letters for the variables (if any) that are free in ¢.
So the entailment to be established in this case is

V& ..£(0y) F= (9e2w) (0y/E1, 0o/ E . s fE ).
But this is obviously a correct entailment, as may be shown by re-
peated use of the principle of V-elimination.
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Case (2): 8(¢") is —0(¢"). Then by inductive hypothesis we have
VE,..L.(dow) = 6(¢) & 8(y)
and by a simple truth-functional inference we have
8(¢") < 8(y") F=—06(¢") > —B(y").
From these two the result evidently follows, by CUT.
Case (3):8(¢")is0,(0") A 8,(¢"), where ¢” may perhaps be missing from
one of the conjuncts. (This will not affect the argument.) Then by in-
ductive hypothesis we have
VE .. (0>y) = 8,(0") & 0,(y")
VE..Ln(0y) = 6,(¢7) & 0,(y").
From this the result follows by a simple truth-functional inference, as
in case (2).
Case (4): 3(¢") is VEO(¢”). Let P be a new name, not occurring in 6(¢")
ot 8(y’). (Note that it follows that § does not occur in ¢ or in y.) Then
by inductive hypothesis we have
VE..E(dy) = (8(97))(B/0) «» (8(yw")) (B/D).
That is
VEL..£x(0ow) = (8(¢) <> 0(y"))(B/O).
Since B does not occur in the premiss, we may apply V-introduction to
this to obtain
VE,..£, (0 = VE(0(0") < 80y")) (B0 (L/B).
But since B does not occur in (8(¢") <> 0(y)), this is just
VE,..En(dy) = VE(6(¢") & 6(y)).
And we have already proved as a lemma (pp. 99-100)
VE(B(9") ¢ 8(y") = VEB(9") &> VEB(Y).
So the desired result now follows by CUT.

This completes the induction.

I remark that in the statement of this principle we have required §(¢") and
3(y’) to be closed, as this simplifies the argument above. But we could allow
them to be open formulae, with free variables {,...(,,, and in this case the
correct statement of the principle will be

3.6.H.(a) VE,..&,(0>y) = VE,..L0,(8(¢") & 8(y")).

It is easy to see how this version can be established from what we have
already. For if in (8(¢") <> 8(y’)) we write new name-letters in place of the
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free variables, then we have an entailment that is an instance of 3.6.H, as
already established. But then by repeated applications of V-introduction
these name-letters can be restored to variables, and universally quantified,
as the new version requires.

As before, there is a weaker version of this principle, stating that logically
equivalent formulae may be interchanged, i.e.

3.6.H.(b) If = VE,. £ (0c>y) then k= V... (5(¢") © 8(y)).

From this weaker version (which in practice is more often useful) we can
again eliminate the functor < if we wish, but I leave that as an exercise.

It is worth mentioning one simple corollary of his principle of inter-
change, namely that we may always in roduce an alphabetic change of
bound variable. Consider first any formula that begins with a quantifier,
say QE0(E), where Q is either V or 3. Let ¢(£) be the result of substituting
occurrences of the different variable £ for all free occurrences of § in ¢(£),
assuming that the substituted occurrences re free in ¢(), and that ¢(&)
does not already contain any free occurrences of {. Thus ¢(€) contains £ free
wherever and only where ¢({) contains { free. In that case it is easy to see
that

QEH(E) == QLo(8),

for the truth-conditions for each form la are exactly the same. B the prin-
ciple of interchange, then, we have

8(QEN(E)) == 3(QLH(L))

for any added matter 8. And, as we have seen, the result can also be general-
ized to cover the case where Q&¢(§), and hence Q{((), are open formulae,
containing other variables free. So we may say that, in any context what-
ever, one bound variable may always be exchanged for another (by ‘reletter-
ing’), so long as the same bondage links are preserved. This operation of
relettering is quite often useful, as we shall see in the next section.

Our final principle in this section is that which permits uniform substitution
for schematic letters throughout a sequent. In the logic of truth-functors we
had only one kind of schematic letter to consider namely the sentence-
letters, and so again the principle was simple to state and to prove. We now
have two kinds of schematic letters, i.e. name-letters and predicate-letters,
and the principle of substitution holds for both of these. So we must take it
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in two parts. I consider first substitution for name-letters, since this is very
straightforward. For the only expression that we have, that is of the same
syntactical category as a name-letter, is another name-letter; and thus the
principle simply permits us to substitute one name-letter for another. (The
position will become a little more interesting in Chapter 8, where complex
name-symbols will be introduced.) But substitution for a predicate-letter is
amore complex operation, as we shall see.

Iwrite I'(B/av) for the result of substituting the name-letter B for all occur-
rences of the name-letter o throughout all the formulae in T, and ¢(B/e) for
the result of making the same substitution in the formula ¢. We can now
state the principle required in two versions, according to the two kinds of
sequent that we are recognizing.

3.6.1.(a) Uniform substitution for name-letters.

(1) If TE= ¢ then T'(B/o) = ¢(B/ar).
(2) If Tk then T'(B/a) k=.

I sketch a proof just for the second case.

Assume that I'(B/o) 4. That is, there exists an interpretation I such that,
for all formulae y in T, |y(B/a)|; = T. Let I, be an o-variant of I, agreeing
with Iin all respects, except that I, interprets o as having the same denota-
tion as does f in I. Now o does not occur in y(B/eat), and hence by the lemma
on interpretations we have [y(B/o)|,, = |w(B/o)|;. Moreover, |o|;, = |B| 1,
and the formulae y and y(B/a) result from one another by interchanging o
and P at suitable places. Hence by the lemma on extensionality |yw(B/o)], =
||, Putting these equations together, ||, = T. That is to say: there is an
interpretation, namely I, such that, for all formulae y in T, |y|;, = T. In
other words, T" H.

This argument shows: if I'(B/cr) ¥, then I” b, Contraposing, we have our
result.

Turning to substitution for predicate-letters, we must first pause to explain
what the relevant operation is. An n-place predicate-letter is immediately
followed by a series of # terms (either name-letters or variables), but it may
be followed by different terms at different occurrences in the same formula.
When we substitute for the predicate-letter, we are not at the same time sub-
stituting for the terms that follow it, so they must be preserved (in the right
order) even though the predicate-letter is replaced by something else. Of
course, this presents no problem if the predicate-letter is simply replaced
by another predicate-letter, but in fact we have more interesting substitu-
tions to consider. We said earlier (pp. 74-5) that an open sentence, with n
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free variables, represents an n-place predicate. Similarly, an open formula,
with n-free variables, is a complex schematic expression for complex n-place
predicates of a certain structure. For example, the open formula

Exy A —Fyx

represents such complex predicates as can be obtained by substituting genu-
ine open sentences in place of its atomic parts, as in

xloves y A —yloves x
xmarried y A —y married x
x weighs more than y A —y weighs more than x.
etc.

Clearly, what holds for all two-place predicates also holds for all two-place
predicates of this particular structure. That is to say that if we have a cor-
rect sequent, which holds no matter what two-place predicate a letter G is
taken to be, and if we substitute for that letter G the open formula Fxy A
— Fyx, then the result must again be a correct sequent. In a word, the substi-
tutions to be considered are these: for a zero-place predicate-letter (i.e. a
sentence-letter), we may substitute any formula with zero free variables (i.e.
any closed formula); and for an n-place predicate-letter (1>0), we may sub-
stitute any open formula with n free variables. In the course of substituting
an open formula for a predicate-letter, the free variables of that formula will
disappear, to be replaced by the terms immediately following the predicate-
letter on that occurrence. More precisely, the free variables of the open for-
mula must be ordered in some way, say alphabetically, and we shall let this
ordering correspond to the natural ordering of the terms immediately fol-
lowing an occurrence of the predicate-letter, namely from left to right.
Then, each occurrence of the predicate-letter is replaced by the open sen-
tence in question, and the alphabetically first free variable of the open sen-
tence is replaced by the first from the left of the terms following the predicate
letter at that occurrence, the second by the second, and so on. Here is an
example. Suppose we begin with a sequent which claims (correctly) that an
asymmetrical relation must be irreflexive:

VxVy(Fxy — —Fyx) = Vx—Fxx.

For the schematic letter F in this sequent we then substitute the open
sentence

dz(Fxz A Fzy).
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Theresult is
VxVy(dz(Fxz A Fzy) — —3z(Fyz A Fzx)) = Vx—3z(Fxz A Fzx).

Since the original sequent was in fact a correct sequent, so too is this one
obtained from it by substitution.

There is one caveat that needs to be entered. Variables immediately fol-
lowing a predicate-letter are, of course, free in the atomic formula so
formed. When an open sentence is substituted for the predicate-letter, and
the variables following the predicate-letter are substituted into that open
sentence at appropriate positions, they must remain free in the open sentence
so formed. If the result of a substitution would be that some previously free
variables become bound by quantifiers in the open sentence, then the sub-
stitution cannot be performed. For example, in the sequent

VxVy(Fxy — —Fyx) = Vx—Fxx

one cannot substitute for the schematic letter the open formula
Ay(Fxy A Fyz).

The result could only be
VxVy(Ay(Fxy A Fyy) = —3y(Fyy A Fyx)) = Vx—3y(Fxy A Fyx).

But in this first formula the two atomic subformulae Fyy each contain an
occurrence of y that should be bound by the initial quantifier Vy, if the over-
all structure of the formula is to be preserved, whereas it has instead got cap-
tured by the nearer occurrence of the quantifier 3y. This is illegitimate, and
there is no way of substituting just that open formula for the schematic let-
ter in that particular context. (Instead, one must first ‘reletter’ the bound
variables of the open formula.)

To have a succinct notation, let us write ®» for an n-place predicate-
letter, o~ for a formula with n variables free, and y(¢n/®») for the result of
substituting the formula for the letter, according to the method just given,
throughout the formula y. We assume that the substitution is a legitimate
one. Similarly, we may write I'(¢/®") for the result of making such a substi-
tution in every formula in . Then our principle may again be stated in two
versions:

3.6.1.(b) Uniform substitution for predicate-letters.

(1) If T =y then T(¢#/®n) k= y(¢n/®n).
(2) If T = then T'(¢7/dr) E=.

I give a proof just for the second version.
The proof will make the simplifying assumption that the letter ®” does
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not occur in the formula ¢~ that is substituted for it. This restricted form of
the principle in fact implies its unrestricted form, as we may see in this way.
Let W7 be a new n-place predicate-letter, different from @7 and not occur-
ring in ¢~ or in any formula in T". Then by the restricted principle we may first
substitute ¥ for @ throughout all the formulae in I', and next substitute ¢~
for W, The result of these two steps of substitution is just the same as the
result of substituting ¢» for @~ directly. Let us come now to the proof.

Assume that T'(¢n/®n) ¥, i.e. that there is an interpretation I such that,
for all formulae y in T, [w(¢7/®")|,=T. Now the interpretation I must assign
some extension to the open formula ¢7, i.e. a set of n-tuples from the domain
which ¢7 may be counted as true of. Let us suppose that the free variables
of ¢, in alphabetical order, are xy,...,x,,. Then in our second method of
defining an interpretation (pp. 86—9) the relevant n-tuples are just the n-tuples
(s(xy5...,8(x,,)) for those assignments s that satisfy ¢ in I Alternatively, if we
retain our first way of defining interpretations, we must first substitute new
names d,...,4,, not already occurring in ¢, for its free variables xy,...,x,,
thus forming the closed formula ¢*. Then the n-tuples that we require are
just those n-tuples {|ay|,...,|a,,|) formed from the denotations of these names
in all interpretations which (1) agree with I on all symbols other than the
names dp,...,a,, and (2) make ¢* true. We can therefore introduce a new
interpretation 7, which agrees with Iin all respects except that it assigns this
set of n-tuples to the predicate-letter & as its extension. Since we are assum-
ing that ®” does not occur in ¢~, this leaves unchanged the interpretation of
all symbols in T'(¢pn/dn), so that we have |y(¢r/®n)|, =T, for all win T". But
also, we have constructed 7 so that ¢» and ®~ have the same extension in it,
i.e. they are equivalent formulae. That is, we have as true in J

V1. X, (07 > On),
Moreover, y differs from y(¢n/®n) just by having @ at some places where
the other has ¢~. So, by our principle for interchanging equivalent formulae,

it follows that y and y(¢/®n) are equivalent in 7. Hence |y|, = T forallyin
T, and therefore I' B, as desired. This completes the proof.

EXERCISES

3.6.1. Establish the principles 3.6.D(b)—G(b} left unproved in the text.

3.6.2. The following diagram shows what entailments hold between formulae con-
structed from the quantifiers, and otherwise just one occurrence of Fx, one occur-
rence of Gx, and one occurrence of A.
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Vx(Fx A Gx)

VxFx A VxGx

N

VxFx A IxGx IxFx A VxGx

e

% A Gx)

/A

AxFx A IxGx

Construct similar diagrams first for v, then for —. [Method for v: by substitution
for predicate-letters we may put —F for F, and —G for G, in the above entailments.
Then the result emerges by noting that each quantifier can be defined in terms of the
other, together with —, and that v can be defined in terms of A and —. The method
for — is similar.]

3.6.3.(a) Using the principles for V-introduction and V-elimination (3.6.F-G)
show that the following formulae are valid:

(1) VxVyFExy — VyVxFxy.

(2) IxFyFxy — dy-dxFxy.

(3) IxVyFxy — Vy3xFxy.
(Observe that (1) and (2) do not follow from the principle allowing alphabetic
change of bound variable.)
(b) Referring to the semantics for the quantifiers, show that the following formula
is not valid:

(4) Vx3yFxy — JyVxFxy
(If you are stumped, see p. 133.)

3.6.4. Using 3.6.3.(a), show that any string of universal quantifiers, however long,
may be rearranged in any desired order, preserving equivalence: (@) when that string
appears at the beginning of a formula, and (b) when it appears at any other place in
a formula. [Method: for part (a) it will be sufficient to show that any two adjacent
quantifiers may be interchanged, i.e. that (for n < 0, m < 0)

VELENVXVIWVEL.E i = VEL.E VYAV ..Cu0.
Using V-introduction and V-elimination this can be shown to follow from
VAV E 1 L0 /E 10 fE) = VYAV 0000/ ,.,00,/E,)

(for any names y,...,t,, not already in ¢). Using substitution for predicate-letters,
this in turn can be shown to follow from 3.6.3(a). For part (b), use the principle of
interchange of equivalent formulae, i.e. 3.6.H.]
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3.7. Normal Forms (PNF)

The techniques of the last chapter (Section 2.5) for forming disjunctive or
conjunctive normal forms are obstructed by the presence of quantifiers, But
we can restore them, at least partially, if we first consider ways of separat-
ing quantifiers from truth-functors. The most straightforward result here is
this. A formula is said to be in prenex normal form (PNF) iff all its quantifiers
occur in a block at the beginning, so that no quantifier is in the scope of any
truth-functor. We can now show that every formula is equivalent to some
formula in PNF.

The idea of the proof is to demonstrate that a quantifier which occurs
somewhere in the middle of a formula can always be moved one step to the
left, and by sufficiently many such steps we can bring all the quantifiers as far
to the left as possible, so that they do all occur in a block at the beginning. So
we must begin by establishing, as lemmas, the various equivalences needed
to show that a single shift to the left is always possible. For this purpose let
us suppose that the truth-functors we are dealing with are just—,A,v. Then
the lemmas required are

1(a) —VEO == FE—d (b) —3Ed == VE—o
and, where £ is not free in y,

2a) wAVEO == VE(WwAQ) (b)) wAIEH=l=TE(y A )
3(a) wv VEO == VE(W Vo)  (b) yv &Y== TE(y v ¢).

The proofs of 1(a) and 1(b) have in effect been given in the previous section,
since they are obvious consequences of the interdefinability of the two quan-
tifiers. But the point of listing them again here is, I hope, clear: 1(a) shows
how a universal quantifier governed by a negation sign can be ‘shifted to the
left’ by exchanging it for an existential quantifier governing a negation sign,
and 1(b) does the same for the existential quantifier. Similarly, 2(a) and 3(a)
show how a universal quantifier governed by a conjunction or a disjunction
sign can again be shifted to the left, while 2(b) and 3(b) do this for the exis-
tential quantifier. (We are taking it for granted here that conjunction and
disjunction are commutative, so what holds for y A V¢ will also hold for
VEG A )
Here is a simple example. Suppose that we start with the formula

IxFx A AxGx A —Ix(Fx A Gx).

Using lemma 2(b), the leftmost quantifier can then be moved to the front
without more ado, to get
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Ix(Fx A dxGx A—TJx(Fx A Gx)).

Now we cannot move the second occurrence of 3x to the left just as things
are, since its variable x does occur free in the clause Fx, and so the quantifier
would come to capture the x in Fx, which it must not. So as a preliminary we
must reletter the next quantifier before we can move it. And while we are at
it we shall reletter the third quantifier as well, since this too will need to be
done at some time. So we rewrite the formula as

Fx(Fx A yGy A —3Jz(Fz A Gz)).

Now the quantifier dy can be moved to the left quite straightforwardly, using
lemma 2(b) once more, to get

dx3y(Fx A Gy A —3z(Fz A Gz)).

Finally, we may move the quantifier 3z. The first move takes it past the nega-
tion sign, using lemma 1(b), to get

IxIy(Fx A Gy AVz—(Fz A G2)).
The second move then places it where we want it, using lemma 2(a):
AxFyVz(Fx A Gy A—(Fz A Gz)).

This is the desired formula in PNE. It is equivalent to the original, because
each step of the transformation has replaced a part of our formula by an
equivalent part.

Incidentally, this example also illustrates the general point that a formula
in PNF is usually difficult to understand, and comprehensibility is improved
by pushing the quantifiers into a formula, as far as they will go, not by pulling
them all out to the front. The formula that we began with was easy to under-
stand: it said that something is F and something is Gbut nothing is both. But
it takes some practice to see that the formula in PNF that we ended with is
also saying the same thing. PNF, then, does not much help with comprehen-
sion, but it does have other uses, as we shall see (e.g. in Section 3.9). Let us
now come back to our proof.

In order to prove that lemmas 2(a)-3(b) are correct, one could, of course,
use the technique extensively employed in the previous section, of going
back to the semantics originally given for the quantifiers. But perhaps it is
more instructive to show how the results can be deduced from principles
of entailment that we have already introduced and justified. This involves
in each case giving first a proof from left to right (L—R) and then a proof
from right to left (R—L) for each equivalence. As it turns out, the proofs are
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in all cases perfectly straightforward, invoking only the standard introduc-
tion and elimination rules for A,v,V,3, except in the one case of 3(a), R—L,
which in fact cannot be proved in this way. (This point is established in
Exercise 6.3.4. Meanwhile, see Exercises 2.5.1 and 2.5.3 for the standard
introduction and elimination rules for A and v.)

Proof of 2(a)
L—R. By V-elimination we have V& = ¢(a/E). Here we choose o so that it
does not occur in y or in ¢, and we note that ¢(ot/E)(E/at) is therefore just ¢.
Employing principles for A, it easily follows that y A VEO = y A ¢(a/E),
and hence by V-introduction y A VE¢ = VE(y A ¢(a/E) ) (E/ar). But the con-
sequent here is VE(y A ¢), as required.

R—L. By V-elimination we have VE(y A 0) = (¢ A 0)(0/E). We choose
o so that it does not occur in ¢ or in , and by hypothesis & does not occur
in y, so that (W A ¢)(a/€) is y A 0(at/E). Employing principles for A, this
entailment can be split up into two, namely VE(y A ¢) =y and VE(y A 0)
= ¢(o/E). We apply V-introduction to the second, to obtain VE(y A ¢) =
V&o, and then we put the two entailments back together again to obtain our
result.

Proof of 2(b)

L—R. By A-introduction we have y, $(a/€) = y A ¢(at/E), and by I-intro-
duction we have y A ¢(a/E) = FE(y A ¢(a/E))(E/a). Choosing o so that it
does not occur in ¢ or in y, and applying CUT to these entailments, we
therefore have v, ¢(o/) = 3E(y A ¢). We have only to apply 3-elimination
to this, and conjoin the two antecedents, and we have what we want.

R—L. The argument is similar to 2(a), R—L. Choosing o so that it does
not occur in y or in ¢, we have both y A ¢(0/§) = v and y A ¢(a/€) =
¢(/€). Applying F-introduction to the second, we obtain y A d(a/&) =
J&¢. Then we add the two entailments together, to get W A ¢(at/E) =y A
3&0, and finally we apply 3-elimination to this to get our result.

Proofof 3(a)
L—R. The proof is exactly similar to 2(a), L—R.

R—L. Expressing v in terms of — and —, it is sufficient to show that
VE(—vy — ¢) = —y — VEb, and for this in turn it is sufficient to show that
VE(—y — §),—y = VEd. Now we have VE(—y — ¢) = —wy — ¢(a/E) by
V-elimination (and the fact that  does not occur free in y), and by our prin-
ciple for the conditional we therefore have V&(—wy — 6), —y = ¢(a/E).
Choosing o so that it does not occur in ¢ or y, we may apply V-introduction
to this, and so complete the argument.
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Proof of 3(b)

This is left as an exercise.

Having established our lemmas, we may now proceed to the main the-
orem. But it is convenient to establish this stronger version, which holds for
the limited language we are presently considering:23

For every formula ¢ there is a logically equivalent formula ¢P in PNE,
and no longer than ¢.

The proof is by induction on the length of the formula ¢. The inductive
hypothesis is

For every formula y shorter than ¢, there is a logically equivalent for-
mula WP which is (a) in PNF and (b) no longer than the formula y.

Since our language contains only —,A,v,V,3, we have six cases to consider,
but A and v can conveniently be treated together, and so can V and 3. So the
six cases reduce to four.

Case (1): ¢ is atomic. Then ¢ is already in PNF, and there is nothing to
prove.

Case (2): ¢ is —wy. By inductive hypothesis there is a formula yPin PNE,
logically equivalent to y, and shorter than ¢. So

o == —yP.
If WP contains no quantifiers, then —y? is already in PNF, and we have

our result. Otherwise yP begins with some quantifier, say Q, and we
have

¢ == —QEy.
Hence by lemma 1, taking Q" to be V if Q is 3, and 3if Q is V, we have
¢ == Q'E_,—lx
But —y(0/&) is the same length as Q&y, i.e. as yP, and so by induct-
ive hypothesis is shorter than ¢. Hence, using the inductive hypothesis

again, there is a formula (—y(a/€) )P in PNE, no longer than —y(a./€),
such that

—x(a/&) =lk= (—ix(a/E))P.
Hence
QE—y == Q& (—y)P.

23 ] owe this suggestion to Rowland Stout.
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But then Q’§(—)?P is in PNF, and equivalent to ¢, and no longer than
¢, as desired.

Case (3): ¢ is Y »\,, where » is either A or v. By inductive hypothesis
there are formulae (y;)P and (y,)? in PNF, equivalent to y; and y,,
and no longer than they are. So

o == (WP * (W)P,

where the right-hand formula is no longer than ¢. If neither of (y;)P
nor (,)P contains a quantifier, then this formula is already in PNE,
as desired. Otherwise one of them, say (y,)P, contains an initial quan-
tifier, say Q, and we have

¢ == (y1)P » QEx.

Since ¢ is a closed formula, so is ()P, and therefore € does not occur
free in (y;)P. Hence by lemma 2 or 3, as appropriate,

o == QE((w1)P x ).

But (y;)P » x(a/E) is shorter than ¢, so applying the inductive hypo-
thesis again there is a logically equivalent formula ((y)? » x(o/E))P,
also shorter than ¢, and in PNF. Hence by interchange of equivalents

¢ == QE((W1)P » X)P.
This is the formula desired, since it is in PNF and no longer than ¢.

Case (4): ¢ is QEy, where Q is either V or 3. By inductive hypothesis
there is a formula (y(0/€))P in PNF, no longer than y(o/€), and logic-
ally equivalent to it. Hence by interchange of equivalents

QGy == QE(y)P

and the right-hand formula is in PNE, and no longer than ¢, as desired.

This completes the proof.

It may be remarked that we needed to use the point that the PNF equi-
valent of a formula is the same length as it in order to apply the inductive
hypothesis twice over within a single case (in Cases (2) and (3)). This point
is correct for a language with —, A,V as its only truth-functors. It would also
be correct if we added some further truth-functors such as — and T. But it
would not hold in all cases, in particular not if a truth-functor such as <> was
included. For example, there is no PNF equivalent of

P« VxFx
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that contains no more than one occurrence of a quantifier and one of a
truth-functor. In order to find a PNF equivalent for this formula one must
first express <> in other terms, for example in terms of —,A,V, as

(P AYXFx) v (—P A —VxFx).
Successive transformations on this then yield

(P A VxFx) v (—P A dx—Fx)
Vx(P A Fx) v Ax(—P A —Fx)
Vx((P A Fx) v Ax(—P A —Fx))
Vx((P A Fx) v 3y(—P A —Fy))
VxAy((P A Ex) v (—P A—Fy)).

Two distinct quantifiers are essential (and, incidentally, the truth-func-
tional part cannot be expressed just in terms of <»). The general result, then,
is just this: whatever the truth-functors in a formula, it always has an equi-
valent in PNE, and we can always find such an equivalent by first express-
ing its truth-functors in terms of more straightforward ones. But the PNF
equivalent may have to be longer than the formula we began with.

I also remark that once all the quantifiers have been placed at the front,
then the quantifier-free part of the formula that follows them may, of course,
be manipulated in the same way as in truth-functional logic. For example, it
may be reworked into DNF, or CNF, or any other form that seems useful for
the purpose at hand.

EXERCISES

3.7.1. Restore the missing proof oflemma 3(b). [You will need to use the basic prin-
ciple for disjunction (2.5.G), and the introduction and elimination rules for 3.]

3.7.2. For each of the following formulae, find an equivalent formula in PNF:

(a) dxFxv —VxFx.

(b) (Vx(Fx = Gx) A 3x(Fx A Hx)) — 3x(Gx A Hx).
(¢) Vx(Fx A Gx) <> (VxFx A VxGx).

(d) 3xVydzFxyz — IxVyIzFyzx.

3.7.3. Our lemmas show that in any formula the quantifiers can always be driven
out, so that no truth-functor has any quantifier in its scope. Why do they not also
show that all quantifiers can be driven in, so that no quantifier has any truth-
functor in its scope?
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3.7.4.(a) The text asserts that there is no formula which contains just one occur-
rence of a (two-place) truth-functor, just one occurrence of a quantifier (V or 3),
and is in PNF and equivalent to

P > VxFx.

Verify this assertion. [A tedious method is to verify it one by one for each of the six-
teen possible two-place truth-functors. Can you think of any short cuts?]

(b) What other two-place truth-functors are there, in place of <> above, for which
the same result holds?

(¢) Canyou generalize the result to truth-functors of three or more places?

3.8. Decision Procedures I: One-Place Predicates

In the logic of truth-functors the procedure of drawing up a full truth-table
is a decision procedure for validity. This means that it is a procedure you
can apply to any formula whatever, to determine whether it is valid, and it
will always provide the answer in a finite number of steps. There is no such
decision procedure for the general logic of quantifiers—a point which we
shall explore more fully in Section 3.10. There are, however, decision proced-
ures for special cases, i.e. for formulae of this or that special kind. The most
generally known of these special cases is the case of one-place (or monadic)
predicate-letters. There is a procedure one can apply to any formula in which
the only predicate-letters to appear are one-place letters, and which will
determine, in a finite number of steps, whether that formula is valid or not.

The procedure has two stages, and the first of them is the reverse of the
procedure for forming PNEF. To form PNF one ‘drives the quantifiers out’ so
that they all end up at the beginning of the formula. Our decision procedure
begins by ‘driving the quantifiers in’, so that at the end of the process no
quantifier is in the scope of any other quantifier, but on the contrary in the
scope of a quantifier one finds only open formulae with their free variable
bound by that quantifier. Let us call this an elementary quantification. An
elementary quantification, then, is a closed formula with one quantifier at
the beginning and no other quantifiers. Examples would be

Vx(Fx—Gx) dx(Fxa—Gx) Vy((FyAGya—Hy)—>—Fy).

It is clear that if two-place predicates are present, there need not be any way
of paraphrasing a formula so that it contains only elementary quantifica-
tions. For example, the formula

Vx3yFxy
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is not elementary, since the first quantifier, Vx, has another quantifier in its
scope. (Also the second quantifier, 3y, has a free x within its scope.) More-
over, there is clearly no way of finding a formula that is equivalent to this one
and that does contain only elementary quantifications. The procedure of
‘driving the quantifiers in), then, is not generally applicable. Of course, there
are many formulae in which quantifiers can be ‘driven in’ to some extent,
and it is nearly always useful to do so for increased comprehensibility. But it
is only when predicate-letters of two (or more) places are absent that we can
guarantee to drive the quantifiers in so far that only elementary quantifica-
tions remain.

For simplicity let us suppose that our language contains only —,A,v,¥,3.
(Other truth-functors must therefore be re-expressed in these terms.) The
relevant laws that we need for driving quantifiers in are then lemmas 2(a)—
3(b) of the previous section (in particular 2(b) and 3(a)) and in addition

4(a) VEQ AVEY == VE@ AY) () 3Eo v Iy ==L (0 v ).

Proof of these laws is left as an exercise. (It may be noted that 2(a) is actually
a special case of 4(a), for when y does not contain & free then y == VEy.
Similarly 3(b) is a special case of 4(b).) Since our object now is to drive the
quantifiers in rather than to drive them out, we shall apply these equival-
ences from right to left. Looked at in this way, 4(a) tells us that a universal
quantifier may be ‘distributed through’ a conjunction, and then law 2(b) of
the previous section tells us that it may be ‘confined to’ the relevant part of a
disjunction, i.e. that part in which its variable occurs free. (This may involve
reordering the disjuncts, so as to bring together those that contain the relev-
ant free variable.) It follows that if we have a universal quantifier which is
followed by a quantifier-free open formula in CNE then by these two opera-
tions the universal quantifier may be driven in as far as it will go, so that
in the resulting quantifications the atomic formulae within the scope of a
quantifier all contain its variable free. If, then, these atomic formulae con-
tain only one-place predicates, and hence no other names or variables, the
resulting quantifications must be elementary. In a similar way, if we have an
existential quantifier followed by a quantifier-free formula in DNF, then by
law 4(b) we may distribute the existential quantifier through the disjunction
so that each of the resulting quantifiers governs a conjunction, delete any
occurrences that then become vacuous, and by law 3(a) confine the remain-
ing quantifiers to that part of the conjunction that contains the relevant
variables.
Here is a very simple example. Suppose we begin with the open formula
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Jx(Fx > Gy).

We first express the quantifier-free part in DNE, e.g. thus:
Ax((Fx A Gy) v (—Fx A—Gy)).

Distributing the quantifier through the disjunction yields
Ax((Fx A Gy) v Ix(—Fx A —Gy)).

Then we confine each resulting quantifier to the relevant part of its conjunc-
tion, to obtain

(3xEx A Gy) v (Fx—Fx A Gy).

This is the desired result, since each of the quantifications shown is now
elementary.

It is now simple to describe a recipe by which quantifiers can always
be driven in to form elementary quantifications. We may suppose that the
formula we begin with is in PNE. Then we start with the rightmost quan-
tifier, i.e. the quantifier which has no other quantifier in its scope, but is fol-
lowed by a quantifier-free formula. If this quantifier is V, we express what
follows it in CNF, and if it is 3 we express what follows it in DNF. Then we go
through the operations just described, to move that quantifier in as far as it
will go, which will result in the formation of one or more elementary quan-
tifications. Next we go back to the rightmost quantifier that is still left in the
prefix. Its scope will not be quantifier-free, but all the quantifications that
it contains will be elementary. Henceforth we treat these elementary quan-
tifications as if they were atomic formulae. That is, if the quantifier we are
now considering is V, then we express what follows it in a form which would
be CNE, if the elementary quantifications were atomic formulae. Similarly
with 3 and DNF. The operation of distributing the quantifier through, and
then confining its scope to the open formulae which contain its variable, is
evidently not affected by the presence of other elementary quantifications
already formed. For we have noted that an elementary quantification must
be a closed formula, and therefore cannot interfere with the rearrangement
of any remaining open formulae. Having dealt in this way with the second
quantifier in the prefix (counting from the right), we can then go back and
deal with the third, and so on until all are exhausted. At each stage, when
expressing the scope of a quantifier in CNF or in DNF, as appropriate, we
treat all the elementary quantifications in it as if they were atomic formulae,
and we take the quantifiers in such an order that the only quantifications to
be found within the scope of the quantifier that we are dealing with are ele-
mentary. Clearly any formula can be transformed in this way, so long as it
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does not contain predicate-letters of two (or more) places. So this completes
the first stage of our operation.

The recipe just given can be extremely tedious to apply in practice, so for
practical purposes it pays to be familiar with more ways of driving quan-
tifiers in than I have mentioned, and to think all the time whether some
step can usefully be abridged. I illustrate this point with the quite complex
example

JxVyVz( ((Fx—>Gy)—Hx) — ((Fz—Gx)—Hz)).

According to the recipe, our first task is to eliminate — in favour of —,A,v.
Using the definition of — in terms of —and v, this leads to

AxVyVz(—(—(—Fx v Gy) v Hx) v (—(—Fz v Gx) v Hz)).

Applying some obvious simplifications, so that the negation sign comes to
govern only atomic formulae, we can rewrite this as

AxVyVz(((—Fx v Gy) A—Hx) v ((Fz A —Gx) v Hz)).

We now look at the first quantifier to be moved in, namely Vz. A glance at the
formula shows that z is not free in the first main disjunct, so the quantifier
could be shifted at once to the second main disjunct, to form

AxVy(((—Fx v Gy) A —Hx) v Vz((Fz A —Gx) v Hz)).

Then the next problem would be to put into CNF the now reduced scope of
the quantifier Vz. To continue with this line of thought, for the moment, one
would notice next that y is not free in the second disjunct, so the scope of the
quantifier Vy can be restricted to the first disjunct only, and by a couple of
further moves it can in fact be confined to the atomic formula Gy without
mote ado. But let us come back to the directions of the recipe. It says that,
before we do anything with the quantifier Vz, we must first put into CNF the
whole of the long formula that follows it. This is a tedious operation, invol-
ving several applications of the law of distribution, but if we persevere with
it we come up with

AxXVVz[(—Fx v Gy v Fz v Hz) A (—FEx v Gy v —Gx v Hz)
A (—Hx v Fz v Hz) A (—Hx v —Gx v Hz)].

We now distribute ¥z through this whole conjunction, to get

AxVy[Vz(—Fx v Gy v Fz v Hz) AVz(—Fx v Gy v —Gx v Hz)
AVz(—Hx v Fzv Hz) AVz(—Hx v —Gx v Hz)].

Finally, the several occurrences of Vz are confined to the relevant parts of
their disjunctions, yielding
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AxVy[(—Fx v Gy v Yz(FzvHz)) A (—Fx v Gy v —Gx v VzHz)
A (—Hx v Vz(FzvHz)) A (—Hx v —Gx v VzHz)].

This has dealt with the quantifier Vz, according to the recipe, so we now turn
our attention to the next quantifier to be moved in, namely Vy. This requires
to be followed by a formula in CNF, if we count elementary quantifications
as atomic formulae, and mercifully that is what we already have. So we dis-
tribute Vy through the conjunction, deleting its occurrences where it would
be vacuous, thus obtaining

Ix[Vy(—Ex v Gy v Vz(FzvHz)) A Vy(—Fx v Gy v —Gx v VzHz)
A (—Hx v Vz(FzvHz)) A (—Hx v —Gx v VzHz)].

Then we confine this quantifier to the relevant parts of the disjunctions it
governs, to get

Ax[(—Fx v VyGy v Vz(FzvHz)) A (—Fx v VyGy v —Gx v VzHz)
A (—Hx v Vz(FzvHz)) A (—mHx v —Gx v VzHz)].

Finally, we turn our attention to the quantifier 3x. To deal with this, we must
now re-express the whole of its scope in DNF, treating the elementary quan-
tifications within it as atomic formulae. After some considerable labour, we
come up with this result:

Ax[(—Fx A —Hzx) v (VyGy A —Hx) v (Vz(FzvHz) A VzHz)
v (Vz(FzvHz) A —Gx)].

Distributing the existential quantifier through this disjunction, and delet-
ing it where it is vacuous, we get

dx(—Fx A —Hx) v 3x(VyGy A —Hx) v (Vz(FzvHz) A VzHz)
v 3x(Vz(FzvHz) A —Gx).

Finally, we confine the quantifier dx to the relevant parts of the conjunctions
that it governs, and we reach

Jx(—Fx A —Hx) v (VyGy A Ax—Hx) v (Vz(FzvHz) A VzHz)
v (Vz(FzvHz) A Ix—Gx).

This completes the first stage of our procedure, following the recipe.

At the start of this example of how to follow the recipe, I pointed out some
simplifications that could be made. You are invited to follow these through.
But I here introduce a further kind of simplification, whereby we do not
bother (until we have to) to re-express our formula in terms of —,A,v. For
quantifiers can be moved in and out directly over —, without any initial
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paraphrasing. Answering to laws 23 of the previous section, we have, pro-
vided £ is not free in y,

Y—-VEY == VE(y—¢)  y—dEd == FE(y—)
VEo—y == F(p-y)  FEhpoy == VE(OoW).

And answering to law 4 of this section, we have

3E(0—y) == VE—IL).

Applying these laws to our formula, without any prior transformation into
DNF or CNF, we may at once carry out the following reductions:

AxVYVz[ ((Fx—Gy)—Hx) = ((Fz—Gx)—Hz)]
AxVy[((Fx—>Gy)—Hx) — Vz((Fz—Gx)—>Hz)]
Jx[Iy((Fx—Gy)—Hx) — Vz((Fz—Gx)—Hz)]
Ax[(Vy((Fx—Gy)—Hx) — Vz((Fz—Gx)—Hz)]
Ax[(Fx—VyGy)—Hx) — Vz((Fz—>Gx)—Hz)]
[Vx((Fx—VyGy)—>Hx) — IxVz((Fz—Gx)—Hz)).

To make further progress we must now do something along the lines of
introducing a CNF to follow the two universal quantifiers Vx and Vz. Here
is a suitable equivalence to apply:

(0—=v)—>E == (—0E) A (y—0).

Making use of this, and distributing the universal quantifiers through the
conjunctions thus formed, we can then continue with the previous laws in
order to complete our task:

Vx({(—Fx—Hx) A (VyGy—Hx)) — 3xVz((—Fz—Hz) A (Gx—Hz))
(Vx(—Fx—Hx) A Vx(VyGy—Hx)) — 3x(Vz(—Fz—Hz)
A Vz(Gx—Hz))
(Vx(—Fx—Hx) A (VyGy—VxHx)) — (Vz(—Fz—Hz)
A dx(Gx—VzHz))
(Vx(—Fx—Hx) A (YyGy—VxHx)) — (Vz(—Fz—Hz)
A (VxGx—VzHzZ)).

This is the required result, since all the quantifications are now elementary.
At first sight, it may not look very like the result that we first reached by fol-
lowing the recipe, but in fact only a little calculation is needed to show that
the two are equivalent, the first being, in fact, the natural DNF transform of
the second.

The moral is that there are many ways of moving the quantifiers into a
formula. For practical purposes, it is best to be familiar with a number of
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relevant laws, and to apply them in whatever order best promises to reduce
labour. But a set of rules, which one should always follow, and which will
always minimize labour, would have to be very complex indeed.

We now come to the second stage of the decision procedure, which
aims to decide the validity of formulae in which all the quantifications are
elementary. It will simplify matters if we begin by supposing that the for-
mula does not contain either name-letters or sentence-letters, so that its
only atomic formulae are those formed from a one-place predicate and a
variable. Different atomic formulae may contain different variables, but in
fact there is no need for this, since each quantification is isolated from every
other. So clarity is introduced by relettering all the variables in the same way,
say as x, and we will suppose this done. This in itself can often enable one to
see at a glance that the formula we are concerned with is or is not valid. For
example, the formula we reached in our second example of how to drive
quantifiers in (i.e. not following the recipe) is at once seen to be a tautology
when the variables are relettered in this way, since it has the overall form
¢ — ¢. The formula we reached by following the recipe is not quite a tauto-
logy under this treatment, but it would quickly become one as soon as we
take the next step of the reductive procedure.

This next step is to rewrite all occurrences of the universal quantifier V&
as occurrences of —3&—, so that it is only the existential quantifier that
appears. At the same time we can simplify the quantifier-free formula that
is the scope of a quantifier so that it is a conjunction of atomic formulae or
their negations. Let us call this a basic elementary quantification. If we have
been following the recipe, any existential quantification reached at the end
of the first stage will already be of this form, and any universal quantification
reached then will have as its scope a disjunction of atomic formulae or their
negations. So at the same time as converting the universal quantifier to an
existential one, we need only apply De Morgan’s law to obtain the desired
result. For example, the clause

Vz{Fz v Hz),

which forms part of the result we reached by applying the recipe, is trans-
formed thus

Vx(Fx v Hx)
—3Ax—(Fx v Hx)
—|3x(—-|Fx A —1Hx).

If we have not been following the recipe, then a little more work may be
needed at this stage. Once all the quantifiers have been made into existential
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quantifiers, we shall need to express the scope of each quantifier in DNF,
and then distribute the existential quantifier through any disjunction signs
that turn up. The result so far, then, is that our formula has been trans-
formed into a truth-function of basic elementary quantifications, i.e. for-
mulae which contain an existential quantifier governing a conjunction of
atomic formulae or their negations.

The final transformations needed are analogous to those required to
change a formula in ordinary DNF into perfect DNF, except that we are
applying these transformations within the elementary quantifications.
Within each quantification we order the atomic formulae alphabetically,
and at the same time delete any repetitions. If a quantification contains both
an atomic formula and its negation, then that whole quantification is re-
placed by L. Then we list all the predicate-letters that occur anywhere in our
formula, and ensure that every basic elementary quantification contains
every predicate-letter. If a quantification is missing some letter, then within
the scope of the quantifier we apply the law of development, i.e.

¢ == (GAW)VIOATY)
to add the missing letter, and immediately distribute the quantifier (which
is existential) through the disjunction so formed. When this process is com-
pleted, and all the same predicate-letters appear in each basic elementary
quantification, our transformations are finished. The formula is now writ-
ten in a form which can be mechanically tested for validity.

The test is essentially a truth-table test, in which each basic elementary
quantification is treated as an atomic formula. For example, if we are con-
sidering just three predicate-letters, say F, G, H, then our basic elementary
quantifications will be such formulae as

Jx(Fx A Gx A Hx)
Jx(Fx A Gx A —Hx)
Ax(Fx A —Gx A Hx).

It is convenient at this point (or, indeed, earlier) to adopt a shortened way
of writing these basic elementary quantifications. For any predicate-letter
®, let us write ® in place of —®, and simply drop all occurrences of x and of
A as no longer needed. So the three examples above would simply become

3(FGH)

A(FGH)

3(FGH).
Our formula is thus a truth-function of basic elementary quantifications
such as these. To evaluate the formula as a whole, then, we need only
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consider two possibilities for each such quantification: either it is true, or it
is false. But we need to make one modification to a standard truth-table. If
it so happens that our formula with the three letters E G, H contains every
one of the eight possible basic elementary quantifications, then in drawing
up the truth-table we omit the very last line which represents the situation
in which every one of these eight possible quantifications is false. For that
situation would only be possible if nothing existed at all, i.e. if the domain of
discourse was empty. But we have already said that this is not a situation we
permit, and therefore the last line of the truth-table does not represent any
genuine possibility. So we omit it.

The same applies when our formula contains some other number of
predicate-letters. If it also contains the maximum number of basic element-
ary quantifications that can be formed from those letters, so that each one
figures in the truth-table, then we ignore the last line of the truth-table when
testing for validity. That is, the formula is valid if, on the truth-table test, it
is true in every line except the last, and it is invalid if it is false in some line
other than the last. The reason for this claim is, I hope, obvious; if the for-
mula is false in some line (other than the last), then we can easily construct
an interpretation in which it is false, for this only requires us to choose a
domain, and extensions for the predicate-letters on that domain, which
verify the elementary quantifications counted as true in that line, and fals-
ify those counted false. This is entirely straightforward. (There will be one
element in the domain for each elementary quantification that is to be true,
and no others). On the other hand if the formula comes out true in every
line, except possibly the last, then no such falsifying interpretation is pos-
sible. Consequently, the formula must be valid.

I remark at this point that truth-tables may be used to test not just single
formulae but also any finite sequents (as was observed on pp. 25~6). The point
still applies in the present context. Given any finite sequent to be tested for
correctness, we can if we wish express it as a single formula to be tested for
validity, since

Ck¢ iff =CM)—o
T iff =—CD),

where C(I') is the conjunction of all the formulae in T". But there is no need
to invoke this roundabout procedure. All that we need to do is to re-express
each formula in our sequent as a truth-function of basic elementary quan-
tifications, and then the truth-table test can be applied directly to that whole
sequent, with the same modification as before: if our sequent happens to
contain all the possible basic elementary quantifications that can be formed
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FGH

A

from its predicate-letters, then the last line of the truth-table, in which all of
these are assigned F, is disregarded.

There is an interesting connection between the decision procedure just
explained and the method of Venn diagrams, which is a traditional method
for testing the validity of syllogisms. Syllogisms are arguments which in-
volve three predicates, which we may represent by E G, H, and a Venn dia-
gram consists of three interlocking circles—one for F, one for G, and one
for H—which between them divide the universe into eight compartments,
answering to the eight possible basic elementary quantifications with three
predicate-letters, as in the figure. The top left circle represents the things that
are F, the top right circle the things that are G, and the bottom circle the
things that are H. A syllogism is made up of three propositions, i.e. two pre-
misses and one conclusion, which each take a very simple form: either ‘All F
are G or ‘No Fare G or ‘Some Fare G’ or ‘Some F are not G. Consequently,
one can test a syllogism by mapping onto the diagram the information
contained in its premisses, and then observing whether this includes the
information contained in the conclusion. The information is written on
the diagram by marking suitable compartments of the universe as empty
or non-empty, and that is exactly what we do when we consider the case
of a basic elementary quantification being false or being true. But there are
two significant ways in which our procedure is more general than this tra-
ditional use of Venn diagrams. First, even if we confine our attention to
sequents which use only three predicate-letters, still many of them are much
more complicated than syllogisms, and there need not be any way of map-
ping these more complicated statements onto the diagram. Truth-tables
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suffer from no such limitation. Second, our method is, of course, applicable
no matter how many predicate-letters are involved, whereas diagrams for
larger numbers of predicate-letters do become very unwieldy. (But they are
not impossible, as Lewis Carroll (1896) showed.)

I end by remarking that a different version of this decision procedure will
be given in the next chapter (Section 4.8), which is altogether simpler to
apply in practice. The first stage of the procedure is the same in each case,
namely to drive the quantifiers in until no quantifier is within the scope
of any other. But in the next chapter there will be no need for any further
manipulation of the formula; it can then be tested directly.

EXERCISES

3.8.1.(a) Supply proofs for lemmas 4(a) and 4(b) on p. 116.
(b) Verify the lemmas for — stated on p. 120. [Method: express — in terms of —
and v, and use lemmas already established. ]

3.8.2. The four valid syllogistic moods in what Aristotle called “the first figure’ are
these:

(a) AliFare G (b) AllFareG
All Gare H No Gare H
AllFare H No Fare H

(¢) SomeFareG (d) Some Fare G
AllGare H No Gare H
Some Fare H Some F are not H.

Express each of these as a sequent in a suitable language for quantifiers, and test
it for validity. [Note that the sequents to be tested already have all their quantifiers
driven in, so only the second stage of the procedure of this section is required. For
practice, carry this stage out in full, even though it is already clear what the result
must be.]

3.8.3. Test the following formulae for validity:

{a) Vzdy3x[—Fxv Gyv Hyv (Fz A —Gz A —Hz)].
(b) Iz V[ (Fw—Gz) - (Fx>Gy)l.

() Vx(Fx—Vy(Fy—o((Gx—Gy) v VzFz))).

(d) J2VyVx|Fx—(Fy—(Gz—(Hy—>Fx)))].

Use any convenient method of driving the quantifiers in. If at any point it becomes
clear what the result of the test must be, you may stop at that point, giving a brief
explanation of why the result is now clear.
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3.8.4. In the text, the decision procedure was restricted to formulae lacking
sentence-letters and lacking name-letters. Show how these restrictions can be re-
moved. [Sentence-letters are easy to accommodate; name-letters are more difficult.
The simple idea of treating the atomic formula ‘Fa’ as just another sentence-letter
will not do. Why not? (A solution for name-letters will automatically emerge from
the methods of the next section.))

3.9. Decision Procedures Il: Vi-Formulae

There are various special decision procedures for special classes of formulae.
In this section I give another, which applies to all formulae in PNF where the
quantifiers in the prefix are arranged in a special way, namely with all uni-
versal quantifiers preceding all existential quantifiers. These are called V3-
formulae. This new procedure is more general than the one given in the last
section, for any formula which contains only one-place predicate-letters
is equivalent to an V3-formula (Exercise 3.9.1), but there are other V3-
formulae as well. Besides, the method of argument in this case is rather dif-
ferent from the last, being more closely related to the semantics for these
formulae.

I begin with alemma on the semantics of quantifier-free closed formulae,
i.e. formulae which are built up just from predicate-letters and name-letters:

Lemma on quantifier-free formulae. If ¢ is a closed formula without
quantifiers which is not a tautology, then there is an interpretation in
which ¢ is false, and which has in its domain just one element for each
distinct name-letter in ¢, and nothing else.

Proof. 1f ¢ is not a tautology, then there is a way of assigning truth-values
to the atomic formulae in ¢ which makes ¢ false. Let 4 be such an assign-
ment. Then we can construct an interpretation I to mirror 4as follows. We
select a domain with as many elements as there are name-letters in ¢.24 We
interpret each name-letter in @ as denoting one of these elements, assigning
a different denotation to each different letter. We interpret each predicate-
letter ®~ in ¢ on this domain, by setting {x,,...,x,,) € [®*| iff there are name-
letters oty,...,0,;, in @ such that x; = |0y |,....x,, = |ot,|, and the atomic formula
dray...0, is true in the assignment 4. (This is unambiguous, since no two
names in ¢ name the same element.) Then I is so specified that it must

24 [f ¢ contains no name-letters (because all of its predicate-letters are zero-place letters), then select
any one-element domain. But I shall generally ignore this degenerate case in what follows.
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assign to each atomic formula the same value as 4 does, and hence @ is false
in I. This completes the proof.

An evident corollary of this lemma is that a quantifier-free closed for-
mula is valid (i.e. true in every interpretation) iff it is a tautology. For our
lemma tells us that if it is not a tautology, then it is not valid, and it is easy to
see that if it is a tautology, it must be valid. Consequently, there is certainly
a decision procedure for determining the validity of such quantifier-free
formulae, for example the truth-table test. The technique of the procedure
to be developed in this section is to reduce the question of the validity of an
V3-formula to the question of the validity of a related quantifier-free for-
mula. We shall build up to this step by step, making further use of the initial
lemma, which allows us to restrict our attention to interpretations with nice
small domains.

Our first step concerns formulae which begin just with a string of exist-
ential quantifiers. As a useful abbreviation, let us agree to write such a string
by just writing the first occurrence of 3 and suppressing all the others. For
example, we shall abbreviate

dxdydz to Hxyz
and similarly,
VxVyVz to Vxyz

Any string of existential quantifiers, then, may be represented by 3x;...x,,.
Using this abbreviation, our first step is

(1) If ¢ is quantifier-free, contains no name-letters, and only the vari-
ables x,...,x,,, then

= 3x..x,e iff = oe(alxy,...alx,).

Proof. L—oR. Assume b @(a/x;,...,alx,). Then as we have observed this
formula is not a tautology, so by our lemma there is an interpretation I'with
a domain of just one element in which it is false. Suppose that 3x;...x, is
true in I By the semantics for 3, applied #n times, this means that there are
(distinct) name-letters o.y,...,0,,, and an interpretation I* which is just like
I except perhaps in the denotation it assigns to these names, such that
@(0L/%15...,00,/%,) is true in I*. But in fact I* must assign the same denota-
tion to all these names as I assigns to the name g, since I and 7* have the
same domain, and there is only one element in that domain. Moreover, I*
interprets the name g, either because a is one of the names «,,...,0,,,, or if not
because it inherits the interpretation of a from I Thus by the lemma on
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extensionality we may substitute a for each of a,...,0,,, and deduce that
©(a/xy,...,a/x,) is true in I*. But this is impossible. For the same formula is
now false in I and true in 7*, though those interpretations agree with one
another on all the letters in that formula, which contradicts our lemma on
interpretations. So the supposition must be rejected, and 3x;...x,0 is not
true in 1. Hence ¥ Jx,...x,0, as desired.

R—L. By repeated applications of 3-introduction (3.6.F) we have

o(alxy,...alx,) =3x,..x,0.

From this the desired result follows by CUT.

This completes the proof of our first step, which shows how one very
simple kind of quantified formula can be ‘reduced’ to a quantifier-free
formula—not in the sense that the two formulae are logically equivalent,
for that is certainly not the case here, but in the sense that the one is valid iff
the other is, so that when we are testing for validity we can do so by applying
a familiar test to the quantifier-free formula. I now proceed to the second
step, which removes the restriction on name-letters that was imposed in

step (1).

(2) If @ is quantifier-free, and contains only the name-letters ay,...,d,,,
and only the variables x4,...,x,,, then
Edx.xe iff B V(e(ailx)),
where V(¢(a;/x;) is the disjunction of all the ways of substituting the
names d,,...,4,, for the variables x;,...,x,,.

To illustrate, if @ contains just the variables x,y, and just the name-letters 4,b,
then V(g(a;/x;)) is

o(a/xaly) v oa/xbly) v o(b/x,aly) v ¢(b/x,b/y).

If ¢ also contains the name-letter ¢, then we must add five more clauses to
this disjunction, namely

o(c/xaly) v o(c/x,bly) v o(c/x.cly) v @(b/xc/y) v @(a/x,c/y).
Similarly, for yet more name-letters, or more variables.
Proof. L—R. Assume b~ V(¢(a;/x;). Then this formula is not a tautology,
so by our lemma there is an interpretation /in which it is false, which has a
domain of just m elements, with each different name a; denoting a different

element of this domain. Suppose also that 3x;...x,@ is true in 1 Then this
yields a contradiction, just as in step (1). For it implies that there are names
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0.),...,00, and an interpretation I* which is like 7 except perhaps for the de-
notations of these names, such that @(at,/x;,...,0.,,/x,,) is true in I'*. But every
element of the domain is denoted by one of the names ay,...,4,,, so by the
lemma on extensionality it must be possible to replace each name o,; by one
of the original names a;, while preserving truth-value in I*. But this means
that I* interprets some disjunct of V(¢(a;/x;)) as true, whereas I interprets
each disjunct as false, which is impossible. We conclude, then, that 3x;...x,,¢
is not true in 7, and hence ¥ Jx;...x,®.

R—L. By several applications of 3-introduction, for each disjunct of
V(¢(a;/x;)) we have

o(a;/x) = 3x;...x,0.
It follows by our principle for disjunction that
V(o(a;/x)) = 3x;...x,9.

From this the desired result follows by CUT.

Step (2) just established is in effect the result that we are aiming at, for a
universally quantified formula is valid iff the result of replacing the univer-
sally quantified variables by new name-letters, not already occurring in that
formula, is also valid. Our final step (3) applies this point to the question at
hand:

(3) Ifthe name-letters a,,...,a,, do not already occur in @, then
B VY dmdrex,e  iff = Jx..x,00@1/915 o 0m Vi)

Proof. L—R.By repeated applications of V-elimination we have

VY1V 3% X, ® = %00 %,0(A1/ Y 15ee sl Vi) -

From this the result follows by CUT.
R—L. This follows by repeated applications of V-introduction, for the
special case where I is null.

As step (3) states, then, an V3-formula is valid iff the 3-formula which
results from it, upon replacing its universally quantified variables by new
names, is also valid. And as step (2) states, this 3-formula is valid iff a cer-
tain quantifier-free disjunction is also valid, namely one formed by substi-
tuting the names already in it for its existentially quantified variables, in all
possible ways. And as we began by remarking, a quantifier-free formula can
always be tested for validity in a mechanical way, e.g. by a truth-table. As
special cases we note that where only universal quantifiers are present, step

129



QUANTIFIERS 3.9. Decision Procedures |i: V3-Formulae

(3) by itself gives us a ‘reduction’ to a quantifier-free formula, and where
only existential quantifiers are present, we have a similar ‘reduction’ using
either step (1) or step (2), depending on whether our formula is also free of
name-letters.

Here is a simple example to illustrate how this test works in practice.
Consider the formula

VxVydzaw(((Rxy A Fy A —=Fz) v (Rxy A Fy A G2)) = (Rxw A Gw)).

To test this for validity we first replace the universally quantified variables
x,y by new names, not already occurring in the formula, to obtain

FzAw(((Rab A Fb A —Fz) v (Rab A Fb A Gz)) = (Rxw A Gw)).

We next consider whether there is any way of replacing the remaining exist-
entially quantified variables z, w by the names already present, so that the
resulting formula is a tautology. In this case there is, namely by putting b
both for z and for w, to obtain

((Rab A Fb A —Fb) v (Rab A Fb A Gb)) — (Rab A Gb).

We can therefore stop our test at this point, for since this formula is valid by
a truth-table test, it follows, by the reasoning we have rehearsed, that the
original formula is also valid. If, however, there had been no one way of sub-
stituting our existing names for the variables z, w to yield a tautology, the
next step would have been to consider whether the disjunction of two or
more ways of substituting names for the variables would yield a tautology. If
it had turned out that the disjunction of all four possible ways of substitut-
ing a, b for z, w failed to yield a tautology, then we could have concluded that
the original formula was not valid. But it has to be admitted that the final
formula to be tested would have been uncomfortably long. In general, if this
method is going to yield a positive result, then by taking a little thought one
can usually obtain that result quite quickly, but to establish a negative result
is generally rather tedious.

EXERCISES

3.9.1.(a) Show that,if@isaformulawith-—,A,v asits only truth-functors, and with
all its quantifiers fully driven in (i.e. so that no quantifier has any other in its scope),
then the quantifiers in ¢ can be brought to the front in any desired order. [Method:
show first that any one quantifier can be brought to the front, leaving the others
where they were. Then generalize this result.]
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(b) Deduce that for any formula which contains only one-place predicate-letters
there is an equivalent V3-formula.

3.9.2. Test the following formulae for validity by first finding an equivalent V3-
formula:

(a) Vxyz(Rxy A Ryz — Rxz) A (Vxy(Rxy — Ryx) — VxRxx.

(b) Vxyz(Rxy A Ryz — Rxz) A Vx—Rxx — Vxy(Rxy — —Ryx).

(c) Vxy{Rxy —> Ryx) — Jx—Vy(Ryx — —Rxy).

(d) IxVy(FzRzz — Rxy) — VxIy(Ryx — 3zRzz).

3.9.3. In the previous section it was observed that the decision procedure there
discussed, for formulae with only one-place predicates, could automatically be
extended to all finite sequents with only one-place predicates. Formulate a similar
extension, to finite sequents, of the present procedure for V3-formulae.

3.9.4.(a) Prove by any available means (e.g. by using the rules 3.6.F-G for V-intro-
duction and V-elimination) that for any formula ¢(x,y) containing just x and y free

Vx3yo(x,y) = Vx(ye(x,y) — Fx) — VxEx.
(b) Show that, if F does not occur in @ (x,y), then
If = Vx(Jyo(x,y) — Fx) o VxFx then = Vxdye(x,y).

{Note that the entailment in part () is not an equivalence. (This can be checked by
testing a suitable V3-formula.) So part (b) does not follow in this way, and some
other method of argument is needed. (You may go back to first principles, invoking
the semantics given in Section 3.4; but a quicker method is to consider a substitu-
tion for the predicate-letter F.)]

(¢) Deduce from parts (a) and (b) that if y contains only two quantifiers (and only
~A,V,— as truth-functors), then there is an IV-formula y* such that = y iff =
y*. (An3V-formula is a formula in PNF with all existential quantifiers precedingall
universal quantifiers.) [Method: find an 3V-formula that is equivalent to the longer
formula above.]

{d) Generalize your result in (c) to show that for any formula y, no matter how
many quantifiers it contains, there is an 3V-formula y* such that k= y iff = y*,
[Note. An 3V-formula is also said to be a formula in Skolem normal form. The
result (d) was used by Godel (1930) in his original completeness proof for the logic
of quantifiers.]

3.10. The General Situation:
Proofs and Counter-examples

When we were concerned just with languages for truth-functors, there was
asimple and effective procedure, applicable to any formula whatever, which
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would determine in a finite number of steps whether that formula was valid
or not. The process of drawing up a truth-table is just such a procedure. It
is mechanical, in the sense that it needs no intelligence to apply it, for one
could easily programme a machine to go through all the steps required. And
it must yield a verdict, one way or the other, after some calculable number of
steps. There is no such procedure which works for all the formulae of our
languages for quantifiers. In the previous two sections we have given proced-
ures for certain special cases, dealing only with restricted classes of formu-
lae, but these cannot be extended to deal with all the formulae now available.
In a word: there is no decision procedure for this class of formulae, as was
first proved by Church (1936). (The proof, however, uses techniques which
go beyond anything treated in this book, so it will not be reproduced here.)

Consequently, when faced with an arbitrary formula, we need to consider
separately (a) whether there is a proof that it is valid, and (b) whether there
is a proof that it is not, and there is no guarantee that we shall find either the
one or the other in any specifiable number of steps. In fact, as we shall see in
the next chapter, it is possible to give a procedure which searches for a proof
of the validity of any desired formula, and which can be guaranteed to find a
proof if the formula is in fact valid. But we do not know before we start how
many steps of the procedure may be required. So after we have taken 1,000
steps—or even 10,000—we still do not know whether perhaps the next step
will find a proof, or whether after all there is no proof, since the formula
simply is not valid. In practice, therefore, it pays to consider also how to
prove that a formula is not valid, i.e. how to find an interpretation in which
that formula is false. (This is called finding a counter-example to the for-
mula.) But here there is no routine that we can follow, even in principle.
That is, there is no mechanical procedure which can be guaranteed to find
a counter-example if there is one. The only technique that we can follow
is to think about what the formula means, and hence to think up a situation
in which it would be false.

The construction of counter-examples is easily illustrated in simple cases.
For example, consider the formula

Vx(Fx v Gx) = (VxFx v VxGx).

To show that this is not a valid formula, all that we have to do is to point to
the interpretation 7in which the domain consists of just two objects aand b,
and Fis interpreted as true of one of them, while G is interpreted as true of
the other. That is
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D ={ab}
|F| ={a}
|G| ={b}.

On this interpretation it is stipulated that Fx v Gxistrue of 4, since Fxis true
of a, and that it is true of b, since Gx is true of b. Hence Fx v Gx s true of all
members of this domain, which is to say that Vx(Fx v Gx) is interpreted as
true. But VxFx is not interpreted as true, since Fx is not true of b, and sim-
ilarly VxGx is not interpreted as true, since Gx is not true of a. Hence VxFx
v VxGx is not true in this interpretation. Thus we have the left-hand side
true and the right-hand side false, which is to say that the whole formula is
interpreted as false. Since, then, there is an interpretation in which this for-
mula is false, we conclude that it is not valid.

Many other simple formulae will yield to a similar approach, for example

VxdyFxy — dyVxFxy.

Again, we need only a two-membered domain, and our interpretation of F
can be that it relates each member of that domain to itself and to nothing
else. Thus

D ={a,b}
|F| = {(a,a), (b,b)}.

Letting the name-letter a denote the object a of the domain, and similarly
for b, we thus have Faa and Fbb both interpreted as true. Hence we also have
as true both 3yFay and JyFby, and therefore in addition VxJyFxy. But on the
other hand VxFxa is not interpreted as true (since Fba is not true) and sim-
ilarly VixFxb is not true (since Fab is not). So in this interpretation JyVxFxy
is not true, and we therefore have our counter-example. For the left-hand
side of our formula is true and the right-hand side is false.

In simple examples such as these we need only consider interpretations
with a domain of just two elements to provide a counter-example. (You
should verify that a domain of just one element will not provide a counter-
example in either case.) With slightly more complex formulae it may be
necessary to consider domains of three or four elements, as the exercises
will show. But sometimes we need to take an interpretation with an infinite
domain in order to specify a counter-example, and it is this which prevents
there being a mechanical procedure for searching for a counter-example.
(For we can easily devise a procedure which searches for a finite counter-
example, and can be guaranteed to find one if one exists, namely by running
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through all the possibilities. A more practical procedure of this kind is given
in the next chapter.) Yet the formulae which only have infinite counter-
examples need not be very complicated.

Here is a simple example

Vxyz(Rxy A Ryz — Rxz) AVx—Rxx — —WVxIyRxy.

This formula says that if a relation R is transitive and irreflexive then it can-
not also be serial, so a counter-example must construct a transitive and irre-
flexive relation that is serial. Now suppose that we have any element a; in the
domain. Since R is to be serial, we must then have {a;,a,) in the extension of
R, for some element a, of the domain; and since R is to be irreflexive, a, can-
not be the same element as a,. But then, since R is to be serial, we must also
have {a,,a5) in the extension of R, for some element a5 of the domain; and
since R is to be transitive, that means that we must also have {a;,a;) in its
extension; and then, for the same reason as before, a; cannot be the same
element as a, or as a,. Generalizing upon this argument, for any element 4;
in the domain there must be another, a;, |, which is not the same as a; or as
any of the predecessors of g;. But that evidently implies that the domain
must be infinite, and it must contain an element 4; for every natural number
i. Given such a domain, we do, of course, have a falsifying interpretation. For
example, we may take the domain simply to be the natural numbers (which
I abbreviate to N), and the relation to be the ‘less than’ relation on that
domain. Thus

D = {x:x € N}
[R] = {¢x,y):x<y}.

On this interpretation R is transitive and irreflexive and serial, as required.

The skill of finding counter-examples in this way must simply be acquired
by practice. Although in some cases there is a recipe that can be applied, as
with the V3-formulae of the last section, there is no recipe that covers all
the cases, as I have said. (It is worth noting, incidentally, that our last two
examples are each formulae which have no V3-equivalent.) In practice
much the same applies to the skill of finding proofs. Although in this case
there are recipes that one could follow, it is extremely tedious to do so, and
only a machine will tolerate this tedium. To find proofs with reasonable
facility it is again necessary to think about what the formulae mean, and to
employ one’s intuitive grasp of what follows from what, and why. Thus,
intelligence is needed in either case. But let us now turn our attention from
counter-examples, which show that a formula is not valid, to proofs, which
establish the opposite result.
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From now on our proofs will be ‘formal’ proofs, belonging to some spe-
cified system of proofs. The system will lay down particular rules of proof,
and a proof in that system must use just those rules and no others. It will
be a requirement on any system of proof that there is an effective way of tell-
ing whether what we have is a proof in that system, i.e. a mechanical test
to determine whether any particular array of formulae is or is not to count
as a proof. It is for this reason that such systems of proof are called ‘formal’
systems: one does not need any understanding of the formulae involved
in order to say what counts as a proof in the system, or to check whether this
or that is an example. For the same reason, it used to be customary to count
the rules of proof as part of the ‘syntax’ of a language, as opposed to its
‘semantics), namely because one could in principle operate these rules with-
out knowing what the language was supposed to mean. But, as we have said,
that is not how it works in practice, and in any case it is quite wrong to sug-
gest that a system of proof is constitutive of the language it applies to. On the
contrary, we shall see in the following chapters that there are several systems
of proof, quite different from one another, that each apply to the same lan-
guages, namely our schematic languages for quantifiers.

The decision procedures that we have given in this chapter (Sections 3.8
and 3.9) and in the last (Sections 2.4 and 2.11) are themselves systems of
proof, or could easily be presented as such. But our topic from now on will
be proof systems that aim to be adequate for all formulae of our languages
for quantifiers without exception. So we shall want them to provide proofs
of all the formulae that are in fact valid, and only of those. Where S is any
such system of proof, we shall write -5 ¢ to mean that there is a proof of the
formula @ in the system S. Then to say that only the formulae which are valid
can be proved in S is to say

If 5o then =¢.

A system S which satisfies this condition is said to be sound. Conversely, to
say that all the formulae which are valid can be proved in S is to say

If = ¢ then Fgo.

A system which satisfies this condition is said to be complete. As it will turn
out, all the systems that we shall consider will be both sound and complete,
as desired. But whereas it is usually a simple matter to prove that a given sys-
tem is sound, the proof of completeness is more complicated.

I remark here that in fact complete systems of proof have already been
introduced in the treatment so far. As we shall see more fully later (in
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Chapters 5-7), the basic principles for the truth-functors given in Section
2.5, together with the principles for the quantifiers given in Section 3.6, can
easily be given a ‘formal’ presentation in which they do form a complete
proof procedure for the languages that concern us. But that will emerge in
due course. The proof procedure that I begin with in the next chapter will
take a different line—one where it is more easy to see that any formula that
has no proof, as specified in this procedure, must be an invalid formula.

Throughout this section so far [ have simplified the discussion by concen-
trating on just one kind of sequent, namely a sequent = ¢ with no formula
on the left and one on the right. Such a sequent says that its one formula is
a valid formula, i.e. true in every interpretation of its vocabulary. Thus I
have spoken simply of proving formulae to be valid, and of proving them
to be invalid, as if validity were the only property to be considered. But in
fact we have other sequents to consider too, namely those sequents I' = ¢
which also have formulae on the left, and assert an entailment; and those
I' =, which have no formulae on the right, and assert an inconsistency. It
is obvious that the strategy of providing a counter-example to disprove a
sequent can equally well be applied to these sequents too. It is also the case
that a proof may be directly aimed at establishing the correctness of one or
other of these kinds of sequents, rather than the simple kind of sequent con-
sidered so far. (In fact the system of proof to be studied in Chapter 4 focuses
on sequents of the form I' =, the system studied in Chapter 5 focuses on
sequents = @, and the system in Chapter 6 on sequentsI" k= ¢.) We therefore
have alternative ways of formulating the conditions for soundness and com-
pleteness, namely for soundness:

If THgo then T'E=o,
If Tty then Tk,

and for completeness

If Tk @ then T'Hg o,
If TE=  then Tk

Now provided that we may restrict our attention to the case where I'is a
finite set of formulae, these various conditions are likely to be equivalent to
one another. As we have already remarked (p. 123), where I is finite we may
consider the single formula C(I'), which is the conjunction of all the formu-
laein T, and clearly

IT'=oe iff E=C(I)—e¢
T'E iff E=—=C).
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This shows that entailment and inconsistency can both be defined in terms
of validity. Conversely, validity can, of course, be defined in terms of entail-
ment, since it is a special case of entailment (with I null), and it can also be
defined in terms of inconsistency, since

E=o iff —ok.

We may add that entailment and inconsistency can be defined in terms of
one another, since

T'E=e iff ok
Lok iff TE—e.

(The last defines T = for all cases where T is non-empty. If we are rely-
ing on it as a definition, then we also need the supplementary information
that where I is empty the sequent I = is false (see p. 12) above).) Thus
all the various kinds of sequents using the turnstile = (which is called the
semantic turnstile) may be defined in terms of one another, so long as we are
confining our attention to finite sequents.

One would expect that, if S is any satisfactory system of proof, then the
same relationships between different kinds of sequent will also hold for
sequents using the turnstile g (which is called the syntactic turnstile, for
reasons already mentioned and deplored). For example, one expects that

e iff F;C()-0,
F I—S lff l—s '“‘IC(F),

and so on. Whether this is so will depend upon the features of the system S
being considered. For example, if S is a system for a language which does not
contain a conjunction sign, or a conditional, or a negation, then obviously
the two relations just noted cannot hold in S. But if we set aside this kind
of consideration, assuming that our system contains all the usual logical
vocabulary, then it is reasonable to say that a satisfactory system S must
either contain these relations already, or allow us to introduce them by de-
fining the turnstile - for new contexts not already considered in S. In that
case it will not matter whether soundness and completeness are defined for
S in terms of one kind of sequent rather than another, for all the definitions
will be equivalent. At any rate, this equivalence will certainly hold for the
major systems of proof that we shall be considering in what follows.

But all this depends upon the point that we are assuming a restriction
to finite sequents, and discounting those in which the set I" on the left is an
infinite set. But why should this be a reasonable assumption? This is a prob-
lem that we shall tackle in the next chapter.
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EXERCISES

3.10.1. Find counter-examples to the following sequents:
(a) Vxyz(Rxy A Ryz — Rxz) = Vxyz(—Rxy A —Ryz — —Rxz).
(b) Vxyz(Rxy A Ryz — Rxz), Vxy(Rxy ~> Ryx) I= Vxyz(—Rxy A—Ryz >
~1Rxz).
(¢) 3xFx, Vx(Fx — Jy(Rxy A Fy)), Vx(Fx — Jy(Rxy A —Fy)) = Vxy(Rxy —
(Fx v Fy)) v Vx(Fx — JyRyx).
[Note: for (a) and (b) you may if you wish use the method of finding an equival-
ent V3-formula; but this method is unnecessarily long-winded, and anyway is not
available for (¢).]

3.10.2. Consider the following axioms:
(1) JxyRxy.
(2) Vx—Rxx.
(3) Vxyz(Rxy A Ryz — Rxz).
(4) Vxy(Rxy — ¥Vz(Rxz v Rzy)).
(5) Vxy(Rxy —> Jz(Rxz A Rzy)).
(a) Show that any interpretation in which all these axioms are true must have an
infinite domain.
(b) Let ‘Axx’ abbreviate the conjunction of axioms (1)-(5), and consider the fol-
lowing sequents:
(1) Axx = VxTyRxy.
(i) Axxk=—Vx3yRxy.
(iii) Axx F=—Vxdy—Rxy.
(iv) Axx k= Vx(dyRxy v dyRyx).
(v) Axx = Vixy(Vz(Rxz — Ryz) v Vz(Ryz — Rxz)).
In each case, either provide a counter-example to show that the sequent is not cor-
rect, or argue (informally) that the sequent is correct. [Hint: it helps to notice that,
with R as ‘less than, the axioms are true of the rational numbers, and of several sub-
sets of the rationals.]

3.10.3. Argue that there can be no decision procedure for the validity of an arbit-
rary 3V-formula. [Compare Exercise 3.9.4.]
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4,1. Theldea 141
4.2. The Tableau Rules 147
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4.1. The ldea

A tableau proof is a proof by reductio ad absurdum. One begins with an
assumption, and one develops the consequences of that assumption, seek-
ing to derive an impossible consequence. If the proof succeeds, and an im-
possible consequence is discovered, then, of course, we conclude that the
original assumption was impossible. If the proof does not succeed, and no
impossible consequence comes to light, then in some cases we can conclude
that there is nothing wrong with the opening assumption. These are the
cases where it can be shown that the search for an impossible consequence
has been exhaustive, and would have found such a consequence if one ex-
isted. But not all cases are like this. Sometimes all that can be said is that
the proof has not yet succeeded, and we do not know whether it would suc-
ceed if carried further.
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The assumptions that are investigated in this way are assumptions that
certain formulae have certain truth-values. The simplest case is when we
assume that all the formulae in question are true. If this assumption turns
out to be impossible, then what we have shown is that the formulae are
together inconsistent. But we can also consider the assumption that all
the formulae are false, or that some are true and others false. For example,
to show that a suggested entailment ‘¢,0,,03, = is correct, one would
assume that ¢, ¢,, and ¢, are all true, and that y is false, and then show that
this combination of truth-values leads to an impossible consequence. The
impossible consequence that we seek to derive, in this case and in all others
too, is that one and the same formula would have to be both true and false.
(Compare pp. 53—4.)

The general method is to argue in this way: if such and such a formula is
to be true (or false), then also such and such shorter formulae must be true
(or false), and that in turn requires the truth (or falsehood) of yet shorter for-
mulae, and so on, until in the end we can express the requirement in terms
of the truth or falsehood of the shortest possible formulae, i.e. atomic for-
mulae. So we need a number of particular rules which state how the truth-
conditions for longer formulae carry implications for the truth or falsehood
of their shorter components. For example, it is obvious that if Ay is to be
true, then ¢ must be true, and so must . It is also obvious that if Ay is to
be false, then either ¢ must be false, or y must be. So if the original assump-
tion is that 9 Ay is true, then we ‘develop’ that assumption by adding that in
that case ¢ and y are true too. But if the original assumption is that Ay is
false, then the ‘development’ of that assumption requires us to distinguish
cases: one possibility is that ¢ is false, and we can further pursue this way of
developing the original assumption; another possibility is that y is false, and
we can pursue this case too. If both cases lead to an impossible consequence,
then we can infer that the original assumption was also impossible, i.e. that
dAY cannot be false. But of course it is necessary to consider both cases.

Initially, we shall express the assumption that the formula ¢ is true by
writing out ‘|¢| = T’, and similarly the assumption that it is false by ‘|¢| = F.
(Later, we shall introduce a more succinct style.) So the rule just noted for
the functor A may be graphically described in this way:

|¢A\4!II=T |¢Aw]| =F
[6]=T
jwj=T [o|]=F  |w]=F

We may add to this the dual rules for the functor v, namely
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[ovy]=T |ovy| =F
|o|=F
lo|=T |y|=T ly|=F

For each functor, one of the rules is a ‘branching’ rule, introducing two
distinct cases to be considered, while the other rule is a straightforward
‘non-branching’ rule, which simply adds consequences of the assumption
we begin with.

To give some idea of how a tableau proof works, let us at once proceed to
an example. Suppose that we wish to prove one of the laws of distribution,
namely

P A (QVR) = (PAQ) v (PAR).

Our initial assumption is that the formula on the left is true and that on the
right false. So we begin by writing down these assumptions, and adding a
line underneath them to show where the assumptions end. We then develop
these assumptions by using the rules for A and v just noted. The result is
tableau (P1) (P’ is for ‘proof’). Lines (1) and (2) contain the initial assump-
tions. In lines (3) and (4) we apply to line (1) the sole rule that applies to it,
namely the rule for |pAy| =T. In line (3) we have already reached an atomic
formula, so nothing more can be done with this, but we can apply a further
rule to line (4). So in line (5) we do this, and at this point the tableau divides
into two branches, each of which must now be separately pursued. At this
point also, the information contained in line (1) has been exhausted: it has
been broken down into a single consequence at line (3) and what is in effect
the disjunction of two ‘consequences’ at line (5). So we now turn our atten-
tion to the information contained in line (2). The relevant rule here is the
rule for |[pvy| = F, which entitles us to draw the two consequences |¢| = F
and |y| = F. These are therefore written in lines (6) and (7), and we have
written them in each of the two branches. One does not have to treat each
branch of a tableau in the same way; it is perfectly legitimate to apply one
rule in one branch and a different rule in another branch. With this particu-
lar example, however, there were no alternatives to choose between at lines
(6) and (7), though we now do have a choice at line (8). There is only one
rule that we can use, namely that for |p Ay| = E, but we can choose whether
to apply it to line (6) or to line (7). And here it pays to treat each branch dif-
ferently, applying the rule to line (6) in the left branch and to line (7) in the
right branch, so that is what we have done in line (8). This saves labour,
because in fact we need go no further, as we have already reached the desired
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Tableau (P1)

(1) P A (QVR)]| =T
2) [(PAQ) v (PAR)| =F

(3) |P|=T
(4) |QVR|=T

(5) Q=T IR|=T

(6) |PAQ|=F |PAQ|=F
7) |PAR|=F |PAR|=F

(8) [P|=F  |Q=F |P|=F  |R=F

result. In line (8) each of our two branches has been split once again, so that
the tableau now contains four branches, but at the same time each of the
four branches comes to contain a contradiction, and thus shows itself to
be impossible. The leftmost branch contains both |P| =T in line (3) and
|P| = Fin line (8); the next left contains both |Q] = T in line (5) and |Q| =F
in line (8); the case is entirely similar with the two right-hand branches.
Each branch therefore concludes with a double underline, meaning that
that branch is closed, because, for some formula ¢, it contains both |¢p| =T
and |¢| = F. A closed branch therefore represents an impossible assignment
of truth-values, and where every branch of a tableau is closed we can con-
clude that the assumptions from which the tableau begins must themselves
be impossible. Thus in the present case it is not possible to find an inter-
pretation for the letters P, Q, and R in which the formula P A (QVR) comes
out true and the formula (PAQ) v (PAR) comes out false. That is to say,
the entailment we set out to test has been shown to be correct.

Let us look at another example, namely the other half of the distribution
law we began with:

(PAQ) v (PAR)E=P A (QVR).

A suitable tableau is (P2). Again we begin in lines (1) and (2) with the
assumptions to be developed, and in line (3) we have applied to line (1) the
rule appropriate to it, namely that for |¢vy| = T. This splits the tableau into
two branches right from the beginning. In each branch lines (4) and (5) are
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Tableau (P2)

ey |(PAQ) v (PAR)|=T
(2) |P A (QVR)|=F

(3) |PAQl=T |PAR|=

) |P|=T |P|=
(5) Q=T IR|=T

(6) IP|=F  |QvR|=F [P|=F  |QvR|=

(7) |Q|=F Q|=
(8) |R|=F IR|=

obtained by applying the appropriate rule to line (3), and at this point the
first assumption has been developed as far as possible. So on each branch
we obtain line (6) by beginning to develop the assumption in line (2), and
this splits each branch into two, so that we now have four branches to con-
sider. But two of them can be closed off at once, since they each contain both
|P| = T and |P| = F, so we have only two that still need further development.
And that development, in lines (7) and (8), allows us to close both those
branches too, the one on the left because it contains both |Q] = T and |Q| =
F, the one on the right because it contains both |R| = T and |R| =

Finally, let us look at a tableau that does not close. Suppose we w1sh to test
the alleged entailment

(PAQ) vV RE=(PvQ) AR.

An appropriate tableau is (P3). Here we have first developed the assumption
inline (1), and this leads to a tableau with two branches, the left branch end-
ing in lines (4) and (5) with |P] =T and |Q| =T, the right branch ending
in line (3) with |R| = T. We then add to this the development of the assump-
tion in line (2), which divides the tableau further, so that we end with four
branches. Of course the leftmost branch is closed—indeed, closed ‘twice
over, as it were—since it assigns contradictory truth-values both to P and
to Q; and the rightmost branch is also closed. But the two middle branches
are unclosed (and therefore they do not end in a double-underline). Both of
these branches represent ways in which the original assumptions can be
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Tableau (P3)
(0 |(P/\Q)\/R|=T 1)
2) |(PvQ) AR|=F 2)
| |

(3) [PAQ|=T |R|=T (3)
(4) |P|=T |PvQ|=F  [R|=F (4)
(5) Q=T —

|P|=F (5)
©  [PvQl=F  |R|=F jQl=F ©)
(7) |P|=F
(8) |Q|=F

satisfied, i.e. either by the interpretation which sets [P} =T, |Q| =T, |R| = F
or by the interpretation which sets |P| = F, |Q| =E |R| = T.

The general structure of a semantic tableau is therefore this. It is a (finite)
array of propositions assigning truth-values to formulae, arranged in a tree
structure, where the tree has its ‘root’ at the top, and the ‘branches’ grow
downwards. At the root are the basic assumptions that the tableau will
develop. There must be at least one of these, if we are to have a tableau at all,
but there may be any (finite) number of them. These assumptionsat the root
of the tableau will constitute an initial segment of every branch of the
tableau, and the rest of the tableau will be developed from them by applying
the tableau rules. The rules are of two kinds, branching rules and non-
branching rules. The non-branching rules take this form: if a branch of the
tableau, as developed so far, contains a line assigning a truth-value to such
and such a kind of formula, then it may be extended by adding further lines
assigning such and such values to certain further formulae. The branching
rules, however, permit one to extend a branch, as developed so far, only by
splitting that branch into two (or more) branches, showing the same ini-
tial segment up to that point, but then diverging, as a value is assigned to
one formula (or formulae) on the one branch, and to another on the other.
Finally, a branch which assigns contradictory values to the same formula
may be closed (by writing a double-underline at its end), and once a branch
is closed it is not developed any further. A tableau in which every branch is
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closed is called a closed tableau. The significance of a closed tableau is
straightforward: it shows that the assumptions at its root cannot be jointly
satisfied. The significance of an unclosed tableau is less straightforward: in
some cases, as with the one example that we have seen so far, it shows that the
assumptions at its root can be jointly satisfied. But this is not so in all cases.
The question will receive further attention as we proceed.

EXERCISES

4.1.1. The tableau rules may be applied in any order. For example, we could always
have begun by developing the assumption in line (2), instead of that in line (1).
Experiment by varying the order in which the rules are applied in the tableaux
already given for the two laws of distribution. Do you notice anything useful? (For
the answer, see Section 4.4.)

4.1.2. Draw up two tableaux to verify the remaining two laws of distribution,
namely

Pv (QAR) == (PvQ) A (PAR).

4.2. The Tableau Rules

Rules for the truth-functors are extremely simple to discover. In effect, they
can just be read off the truth-tables, which tell us under what conditions a
compound formula is true or is false. I list the rules for the five commonest
truth-functors:

|—6|=T |—¢|=F
|o|=F lo|=T
I¢Au1| =T |oAy|=F
l6|=T
lw|=T || =F ly|=F
[ovyl=T |¢vy|=F
[¢|=F
|¢|=T ly|=T fy|=F
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o>y =T lo—>w|=F

|o|=T

[o|=F lw|=T ly|=F

[oe>y] =T lo>y|=F
[o] =T 6| =F lo|="T 6| =F
ly|=T |w|=F ly|=F ly|=T

To illustrate the principle, let us consider a functor which is less common,
for example <# (Exercise 2.7.1). The truth-table is

Voo oty
T T F
T F F
F T T
F F F

We see from this table that the one case in which ¢4y is true is the case in
which ¢ is false and y is true, so that is no problem. There are three cases in
which ¢4y is false, so one might perhaps expect to find that we need a rule
here which splits one branch into three. (There would be nothing wrong
with such a rule.) But in fact the three cases can be summed up in this way:
either ¢ is true or y is false. So the appropriate tableau rules are

o y|=T |oety|=F
|o|=F
hy|=T |6|=T |wl=F

I say no more, then, about finding appropriate tableau rules for the truth-
functors. Let us turn instead to the more difficult question of the quantifiers.

The rules for the truth-functors rely on facts of this kind: if a compound
formula receives such and such a value in some interpretation, then its com-
ponents must also receive certain values in the same interpretation. By con-
trast, the semantics for the quantifiers tell us that if a quantified formula
receives such and such a value in some interpretation, then there will be
another interpretation—related to the first but not identical to it—in which
a singular instance of that formula has a certain value. We have to be careful
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to ensure that changing from one interpretation to another does not upset
the working of the tableau.

For example, suppose that a formula 3¢ is true in some interpretation
I. This means that there will be some name o that is not in ¢, and some
o-variant interpretation I, in which the instance ¢(o/§) is true. The
o-variant interpretation I, will be just like the original interpretation I,
except that it assigns to o some denotation which may be different from the
denotation (if any) assigned to o by 1. Now we have seen (pp. 95-6) that it
follows from this criterion that if J€¢ is true in I then for every name o that
is not in ¢ there will be some a-variant interpretation in which ¢(a/€) is
true. But we must confine attention to names that are not in ¢, for all the
symbols that actually occur in ¢ must be held to their existing interpretation
in I, ifthe criterion is to do the work intended. This also has the consequence
that in the variant interpretation I, we have as true not only the desired
instance ¢(o/€) but also the original formula 3&¢.

Now let us consider this in the context of a semantic tableau. The tableau
begins at its root with a number of assumptions, each stating that some for-
mula has a certain truth-value. But what is being assumed is, in fact, that all
of these formulae can simultaneously receive the specified truth-values, i.e.
that there is some one interpretation which satisfies all these assumptions at
once. As the tableau is developed, we argue that if there is such an inter-
pretation, then it must satisfy certain further constraints, so that the hypo-
thesis being investigated, along each branch of the tableau, is that there is
some one interpretation that satisfies every one of the claims made on that
branch. Suppose, then, that one of these claims is that 3&¢ is true. If there is
an interpretation which verifies 3¢, then we know that there is also an
interpretation which verifies both 35¢ and ¢(c./€), for any name o that does
not occur in ¢. But why should we be entitled to assume that this latter inter-
pretation also satisfies all the other claims made along that branch? Well, the
answer is that we can assume this as long as the name o does not occur in any
of the claims already made on that branch. For the hypothesis is that we have
an interpretation I which satisfies claims about various other formulae, and
at the same time makes J&¢ true. So we pick any name o that does not occur
either in the other formulae, or in ¢. Then we know that there is some inter-
pretation I, which makes ¢(a/€) true. But I,, differs from I only in the inter-
pretation that it assigns to o, and in no other way, so by our lemma on
interpretations (3.5.A), I, assigns the same values as I to all the formulae
already on the branch. Thus, if T satisfies all claims made so far, then I, also
satisfies them, and in addition makes ¢(ct/§) true. This at once gives us the
following rule of development:
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|30l =T provided o does not already occur in any formula on the
branch in question
l0(o/E)| =T  (briefly: provided o.is new)

Let us now turn to the universal quantifier, where things are rather more
straightforward. Our first statement of the truth-condition for VE¢ was this:
VEd is true in an interpretation I iff for every name o not in ¢, and every o-
variant interpretation I, ¢(0/E) is true in I. But we have already noted that
this has as a consequence: if VE¢ is true in I, then also for every name o that
is in ¢, ¢(o/E) will also be true in L In fact ¢(a/E) will be true in I for any
name o in the language of I, while for names o that are not in the language
of I there will be a-variant interpretations in which ¢(a/€) is true. So we
evidently have a suitable tableau rule which goes like this: suppose that there
is an interpretation which satisfies all the claims made along a certain
branch, including the claim that VE¢ is true; then there is also an interpreta-
tion which satisfies all these claims and the claim that ¢(a/E) is true too, for
any name o whatever. It will be the same interpretation if a is in the language
of that interpretation (as it must be if « already occurs in some formula
along the branch), and otherwise it will be an o-variant interpretation,
adding o to the language. In brief, then, we may say

IVﬁ¢|I =T
lo(a/E)| =T

and there are no conditions on the name ot at all.

The appropriate rules for a quantified formula assumed to be false may
now be deduced, by relying on the relationship between the two quantifiers.
For example, if 3&¢ is false, then VE—¢ will be true, so we may develop the
assumption by adding, for any name o, that —¢(at/§) is true, i.e. that ¢(o/€)
is false. Similarly, if VE¢ is false, then 3&—¢ will be true, so we may develop
the assumption by adding, for some new name o that has not yet occurred
on the branch, that —¢(0/&) may be assumed to be true, i.e. that ¢(at/E) may
be assumed to be false. For ease of reference, I therefore set down here the

four quantifier rules:
IV&bI! =T |vg¢|| =F
[$(a/§)| =T |0(e/E)| = F
for any o provided o is new
l3§¢l| =T |3§¢,3 =P
[o(e/E)| =T [6(a/E)| = F

provided e isnew  foranya
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The justification of these rules for the quantifiers is a little more complex
than the justification of rules for the truth-functors at the beginning of this
section. But the rules themselves are simple enough to state and to apply.
There is, however, an important difference between the two kinds of rules,
which is this. The rules for the truth-functors reflect entailments which in
fact hold in both directions. For example, if — is to be true, then ¢ must
be false or y must be true, and conversely if ¢ is false or \ true, then ¢—>y
must be true. So one may say that this rule is a correct entailment, whether
it is read from top to bottom (as intended) or from bottom to top. But with
the rules for the quantifiers this is not so. The formula 3&¢ certainly does not
entail the formula ¢(a./€), for it is easy to see how the first may be true and
the second false. One has to remember here the condition that o. is to be a
new name, and the change of interpretation from I to I,. On the other hand,
in this case the rule does hold as an entailment when read upside-down,
from bottom to top. For if ¢(a/) is true, then clearly 3E¢ must be true too.
But with the universal quantifier it is the other way about, for V&¢ does en-
tail d(a/E), but not conversely. Thus ¢(a/E) does not by any means exhaust
the information in VE¢. This leads to complications, as we shall see.

EXERCISES

4.2.1.(a) There are two zero-place truth-functors, namely T and L. What are the
appropriate tableau rules for them?

(b) There are four one-place truth-functors. What are the appropriate rules for
them?

(c) Every truth-functor (except for the zero-place functors) can be expressed by a
formula in DNF. (See Section 2.7.) Show how, if we permit branching rules which
introduce many branches simultaneously, this yields a method for finding suitable
tableau rules for any arbitrary truth-functor.

4.2.2. Let § and T each be systems of tableau proof, differing just in this way: S has
the rule that a branch may be closed if it contains both || =T and |¢| = F for any
formula ¢, whereas T adopts this rule only for atomic formulae. Otherwise the two
share all the same rules, let us say just the rules for —,A,v given on p. 147,

(a) Show that, for any formula ¢ whose only truth-functors are —,A,v, a tableau
with assumptions |¢| = T and |¢| = F closes according to the rules of T. [Method: use
induction on the length of ¢.]

(b) Hence show that a tableau closes according to the rules of S iff it closes accord-
ingto the rules of T.
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4.3. A Simplified Notation

The notation we have used so far is more long-winded than it needs to be, so
before the method is put to serious use I shall introduce a simplification.
The notation so far uses explicitly semantical vocabulary, employing both
‘T’ and ‘F. This shows very clearly how it is related to the truth-tables of
Section 2.4, and in particular how it carries to completion the short-cut
method of truth-tables introduced on pp. 27-9. It also indicates how what is
essentially the same method can be extended to deal with quantifiers. At the
same time, because both “I” and ‘F’ are in play, the method can treat each
truth-functor and quantifier independently, with a pair of rules for each.
This gives us an elegant set of rules, and in fact contains a flexibility that will
be useful later on, in Chapter 7. So we shall later come back to what I shall
call the ‘original’ notation for semantic tableaux. But now I introduce a
briefer notation, which in practice saves a lot of writing, though at the cost
of some loss of elegance.

The leading idea behind the new notation is that we do not need to con-
sider both the truth and the falsehood of formulae, since a formula is false iff
its negation is true. This, of course, will lead to some rephrasing of the rules.
For example, the rule

loAy| =F
¢} =F ly|=F
will now be rephrased as
|“—:(¢A\V)’ =T
|—¢l=T |-y =T

Once all the rules are rephrased in this way, every line of the tableau will take
the form |¢| = T, and this can then be abbreviated simply to ¢. So we shall
rephrase the same rule once more, to

—(0nY)

- -y

By eliminating the explicitly semantical vocabulary in this way we obtain
a tableau that is very much more compact. For example, tableau (P1) with
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Tableau (P4)
PA{QVR)
—((PAQ) v (PAR))
P
QVvR
|
| l
Q R
I l
—(PAQ) —(PAQ)
—(PAR) - (PAR)
—P —Q —P —R

which we began will now be written as in tableau (P4). It is instructive to
compare the two, for ease of writing and for ease of reading. I note also that
in practice one very often omits the vertical lines that do not lead to branch-
ing, but merely indicate a new step of development, applying a new rule.
This saves a little space, though it then becomes less easy to reconstruct,
when reading the tableau, the rules that have been applied at each step. To
simplify this task of reconstruction, one might not only retain the vertical
lines, but also label each with the rule being applied at that step. (‘v’ will
indicate the rule for ¢vy, ‘v’ the rule for —(¢vy), and so on.) So (P4)
might be expanded to (P4’). Alternatively it might be contracted just to
(P4”).

Perhaps one who is just beginning an acquaintance with tableau proofs
might be helped by the longer form, but after a little practice you will find
that the shortest form offers no problems.

I add further that in practice it helps, when constructing a tableau, to ‘tick
off’ any formula to which a rule is being applied, so that one does not waste
time by applying the same rule to the same formula twice over. At least, this
can safely be done for all the rules for truth-functors, and for applications of
the rules for 3 and —V, provided that the rule has been applied in every
(unclosed) branch on which the formula lies. But it cannot be done with
applications of the rules for V and —3, since in these cases—but in these
cases only—one may need to apply the same rule to the same formula more
than once. (These points will be proved in what follows.) This ‘ticking-off’
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Tableau (P4")

P A (QVR)
—((PAQ) v (PAR))

P
QVvR
| © |
Q R
—1(PAQ) —(PAQ)
—1(PAR) —(PAR)
—P ——‘Q —P —R
Tableau (P4”)
P A{(QvR)
—((PAQ) v (PAR))
P
QvR
|
| |
Q R
—(PAQ) —(PAQ)
—i(PAR) ~1(PAR)
—P —Q —P —R
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procedure does indeed help when you are in the process of constructing a
tableau, for at each stage it shows you what you have dealt with and what
is still unused. But I have not illustrated it in this book, for it is of no
significance when you are looking at a completed tableau. If I had added
suitable ticks to the finished examples here given, the result would simply be
this: atomic formulae and their negations are never ticked (since no rule can
be applied to them); all other formulae are ticked (since my examples con-
tain nothing superfluous); except that formulae beginning with V or —3J are
never ticked, because—as I have said—in these cases the same rule may
need to be applied more than once.

For convenience I collect together below all the rules for developing a
tableau, in the new notation. (There is also, of course, a new rule for closing
branches: a branch may be closed if it contains both ¢ and —¢, for any for-
mula ¢.) It will be seen that the position of negation has now become rather
peculiar. In the case of all other truth-functors, and of the quantifiers, there
is now one rule for that functor (or quantifier) by itself, and one in which it
is preceded by a negation sign. But there is no rule for the negation sign by
itself, for the rule for |—¢| = T, changing it to |¢| = F, has now become a rule
to replace —¢ by —6, which is evidently pointless. The pleasing symmetry
of the rules when stated in the original notation has thus been destroyed,
and so has this rather nice feature: on the original rules the assumption that
a particular formula was true, or false, led to a consequence concerning the
truth or falsehood of its subformulae, in the case of a truth-functor, or of its
instances, in the case of a quantifier. But this feature is not preserved in the
new notation, because (for example) —¢ is not a subformula of p—>y, and
—¢(a/E) is not an instance of —VEP. The new notation, then, destroys sev-
eral elegant features of the original notation, but it is easy to check that the
two have just the same effect. That is, any tableau which is closed according
to the one set of rules is also closed according to the other.

It should be noted that in all cases these rules apply only to whole formu-
lae standing alone, and not to formulae which are merely parts of longer for-
mulae. Thus the rules in the left column can be used only to eliminate the
main functor, or quantifier, of a formula; and similarly the rules in the right
column can be used only to eliminate an initial negation sign, with all the
rest of the formula in its scope, and then the main functor in what follows it.

We now introduce the notation I" - to mean that there is a closed tableau,
drawn according to the rules here listed, whose initial formulae are all mem-
bers of the set I'. This is our basic notion of a tableau proof. But in terms of
it we can also define further notions, e.g.
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I'=¢ for I,k
and hence

¢ for —dh

Rules for developing a tableau

N

vy

=
<

Uadd

oy

—¢

=

‘v’|§¢
[¢(o/5) ]

forany e
B?q)
[9(c/&) ]

provided ouis new
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=1

—(9Ay)

—(pvy)
=0
-

—(60—>y)

-y
()

0 —0
B4 v

—1\1754)
[—¢(a/E) ]

provided o is new

—EI*&P
[—¢(a/E) ]

for any o0

o
-
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EXERCISES

4.3.1. Any tableau in the original notation has a unique translation into the new
notation, namely, for any formula ¢,

|¢| = T translates to ¢,
|6| = F translates to —.

Verify that under this translation a correct tableau in the old notation must become
a correct tableau in the new notation. [Method: check that each individual rule in
the old notation becomes a correct rule in the new notation.]

4.3.2. Atableauin the newnotation does not have a unique translation into the old
notation. Given a formula ¢ which does not begin with a negation sign, then we do
have a unique translation, namely

¢ translatesto |¢|=T.

But with a formula —¢ that does begin with a negation sign we have two alternat-
ives, namely

—¢ translatesto |—¢|=T
or to [¢|=F

Show that, if we always choose the second alternative, then our tableau in the new
notation translates into something that either is a correct tableau in the original
notation or can be transformed into one by adding lines | —¢| = T above lines |¢| =
F, and/or adding lines |¢| =T below lines |-¢] = F. [Notice that if —¢ occurs as
premiss to a rule of development, it must there be replaced by |¢| = E. If —¢ occurs
as conclusion to a rule, it may have to be replaced instead by |—¢| = T. So where we
have an occurrence that is used in both ways we may need to replace it by |[—¢| =T
above |¢| =F. The other point to think about is where a branch is closed because it
contains both ——¢ and —¢.]

4.4. Constructing Proofs

When we are concerned only with quantifier-free formulae, the construc-
tion of tableau proofs is a mechanical task, like truth-tables or truth-value
analysis. The essential point here is that, for any formula, there is only one
rule that can be applied to it, and we never need to apply that rule to it more
than once. The information contained in a formula is fully used up when the
rule applicable to it has been applied to it, in every branch on which it lies,
so once this has happened we never need to consider that formula again
in the development of the tableau, but can concentrate instead upon the
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shorter formulae obtained from it. Continuing in this way, we must eventu-
ally reach the shortest possible formulae, i.e. sentence-letters or their nega-
tions, to which no further rules can be applied. That is to say, we must reach
a situation where the tableau is completed, i.e. nothing more can be done, in
accordance with the rules, which is not a mere repetition of what has been
done already. Given a completed tableau, either it is closed, in which case the
set of formulae at its root is inconsistent, or it is not closed, in which case (as
the next section will demonstrate) the set of formulae at its root is consist-
ent. The tableau proofs thus provide us with a decision procedure for finite
sets of quantifier-free formulae, as do truth-tables and truth-value analysis.

There is therefore little scope for a display of ingenuity in the construc-
tion of such proofs, but perhaps it is worth mentioning one or two simple
ways of avoiding unnecessary work. Nothing is laid down about the order in
which the tableau rules are to be applied, so the freedom that one has in
proof-construction is just the freedom to choose one order rather than
another. The general principle is to minimize the number of branches in the
tableau, and the number of formulae in each branch. So one sensible rule of
thumb is to postpone the introduction of new branches by always applying
a non-branching rule before a branching rule, where that is possible. Some-
times the gain is hardly appreciable. For example, tableau (P5) is another
proof of the entailment

PA(QVR) E (PAQ) vV (PAR)

Tableau (P5)

P A (QvR)
—((PAQ) v (PAR))

|

P
QvR

|

—(PAQ)

—(PAR)
l

|
Q R
—P —Q —P —R
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already demonstrated several times. (P5) obeys the suggested maxim, and
may be compared with (P4), which does not. The only difference is that
the formulae —(PAQ) and —(PAR) are written only once in this proof, but
twice in the earlier proof. That is not much of an advantage, but it is some-
thing. But let us change to another example, the entailment

P—-Q,Q—>R,R—->S5FP-S.

Here are two proofs, (P6) obeying the suggested maxim, and (P7) flouting
it. Each is a perfectly satisfactory proof of the desired result, but clearly the
second demands more ink and more wristpower.

Another proof of this same sequent will illustrate a further point: where
it is necessary to apply several branching rules, the order in which they are
applied may make a difference. It is a good general principle that one should,
if possible, choose to apply first any rule that will lead to a branch that can be
closed at once. Obviously this minimizes the effect of branching. In tableaux
(P6) and (P7) the rule for — was applied to the three formulae

P—Q,Q—-R,R-S

in the order in which they are here listed, and this obeys the maxim. The
reverse order would have been equally good, as you are invited to check. But
if we disregard this maxim we again cover more paper, as you may see by
comparing (P6) with the further tableau (P8).

Tableau (P6)

P—-Q

Q-R

R—-S
—ﬂ(P—)S)

_T—
—|Pﬁ

P
S
Q
—
-Q R
— [
—R S
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Tableau (P7)
P—-Q
Q—-R
R—S
—(P-S)
—P

Tableau (P8)

N —_—n

—§
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Tableau (P9)
(n 3xVyFxy
(2) —VydxFxy
(3) VyFay
(4) —3IxFxb
(5) Fab
(6) —Fab

These examples have illustrated how we may obtain quite different-
looking tableaux by applying the same rules in a different order. All the dif-
ferent tableaux will in fact lead to the same result, provided that they are all
completed tableaux, in the sense explained. (This will be proved in the next
section.) So the choice of one order rather than another is simply a matter of
elegance and economy; nothing important will depend upon it. But when
we come to deal with quantified formulae, the case is rather different. This
is for two reasons: first, there is more than one way of applying the same
quantifier rule to the formula, for we may choose now this name-letter and
now that, when forming our singular instance; second, we may need to apply
the same rule more than once to the same formula, in order to get a closed
tableau. As a matter of fact we never do need to use the rule for 3, or for —v,
more than once on the same formula in the same branch; but this can hap-
pen with the rule for V, and for —3. Moreover, we cannot, in advance, set
any upper limit to the number of times that the same rule may need to be
applied to the same formula. This means that we cannot guarantee that a
completed tableau will ever be reached, and for that reason the tableau
method nolonger provides a decision procedure when quantifiers are involved.

Let us start with a simple proof of the entailment

IxVyFxy b= Vy3xFxy.

The tableau is (P9), in which I have (for brevity) omitted the vertical lines
marking each new step of development. In lines (1) and (2) we write down
the two formulae that are to be shown inconsistent. In line (3) the rule for 3
is applied to the formula in line (1), introducing the name a that has not
occurred earlier. In line (4) the rule for —V is applied to the formula in line
(2), and since this rule again requires that the name to be introduced has not
occurred earlier, we cannot use a again, but must choose a new letter. So here
the name introduced is b. Then in line (5) the rule for V is applied to the
formula in line (3), and in line (6) the similar rule for —3 is applied to the
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formula in line (4). In either of these rules we may use any name that we
wish, so in line (5) one might have put Faa or (e.g.) Facin place of Fab; sim-
ilarly, in line (6) one might have put —Fbb or —Fcb. If we had made any of
these choices, then, of course, the tableau would not have closed at this
point, so the choice of b in the first case and a in the second was made sim-
ply with a view to producing the required contradiction. This illustrates
how finding a proof can depend upon choosing the right names.
Now let us look at something more difficult. The converse entailment

VydxFxy b= IxVyExy

is not correct, as was noted earlier (Exercise 3.6.3(b)). But there are some
special cases of it that are correct, for example this one:

VyAx(FxAGy) = AxVy(FxaGy).

(This is because both premiss and conclusion are equivalent to xFx A
VyGy, as we may see by driving the quantifiers in.) A tableau proof of its cor-
rectness must apply the V-rule twice to the same formula, as in tableau
(P10).Inlines (3) and (4) we apply first the V-rule and then the 3-rule toline
(1). The name a chosen in line (3) is arbitrary; it could have been any other
name. The name b chosen in line (4) must be new; it could not have been a
again. Then lines (5) and (6) simply unpack the information in line (4). In
lines (7) and (8) we apply first the —3-rule then the —V-rule to line (2). In
line (7) we can choose whatever name we like, and we choose b because that

Tableau (P10)

(D Vydx(FxnGy)

(2) —AxVy(FxaGy)

(3) Ax(FxnGa)

(4) FbrGa

(5) Fb

(6) Ga

(7) —Vy(FbAGy)

(8) —{FbAGc)

l
| |

(9) —Fb —Ge
(10) S Ax(FxaGc)
(1) FdAGe
(12) Fd
(13) Ge
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gives us some chance of finding a contradiction with what has gone before.
Butinline (8), when for the same reason we should want to choose the name
a to put in place of y, we are not permitted to do so. A name introduced by
the —V-rule must be a new one, and so can be neither a nor b. At first sight,
one might think that this would block the proof, for evidently —(FbAGc) in
line (8) does not contradict FbAGa in line (4). But it turns out that the proof
is not blocked, for when we look back to see how the letter a first entered the
proof we find that it was arbitrarily chosen, as a result of applying the V-rule
to line (1). We therefore go back and apply the V-rule to line (1) again, this
time using ¢ instead of a, to obtain Ix(FxAGc) in line (10). This does give us
the required contradiction, but only after a few more steps in which yet
another (and irrelevant) name has to be introduced in line (11), as a result
of applying the 3-rule to line (10). By comparison with other methods of
proof, which we shall come to later, the tableau system must, I think, count
as the simplest. But even so it can turn out that proofs are not always simple
to discover, as this example illustrates.

Some general advice can be given. First, it generally pays to apply the rules
for 3 and for —V before applying those for V and —3, wherever this is pos-
sible. For wherever the introduction of a new name is required, it helps to
get that name onto the tableau at an early stage, so that we can take it into
account when it comes to applying an V rule or an—3 rule. Remember, too,
that there is never any need to apply the rules for 3 or —V more than once
in the same branch to the same formula; one new name is always enough.
(This will be proved in the next section.) Second, when one is choosing what
name to use when applying the rules for V and for —3, one can confine
attention to names that are already on the tableau, so long as there are some.
If there are none, and if we cannot introduce one by applying a rule for 3 or
—V, then one must use the rule for V or —3 with a new name in order to get
started. But there is never any need to introduce more than one new name in
this way. (This too will be proved in the next section.) Beyond this, there is
little one can say, by way of general advice, except to reiterate that the object
is to derive a contradiction in every branch, and names should be chosen in
whatever way seems likely to contribute to this. In the next section I give a
recipe for finding proofs which will always succeed if there is a proof to be
found. But in practice this recipe can lead to long and cumbersome proofs,
which a judicious choice of names would avoid. The best way of learning
how to find reasonably neat proofs is practice. I end this section with one
more ‘worked example, which again involves applying the same rule—in
this case the —3 rule—twice to the same formula. You should first pro-
vide your own commentary on this proof, before turning to the exercises to
acquire some of the needed practice.
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The proof shows that
= Ax(Fx — VxFx),
and it runs as follows
Tableau (P11)
(1) —3x(Fx — VxFx)
(2) —(Fa — VxFx)
(3) Fa
(4) —VxFx
(5) —Fb
(6) —(Fb — VxFx)
(7) Fb
(8) ~—WxFx
EXERCISES

4.4.1, Find tableau proofs to verify the following claims:

(a) P i (P>Q)—P

(b) PvQ-—(P-Q)—Q.

(¢} P&Q - (PvQ)—=>(PAQ).

(d) Ix(PAFx) - P A3xFx.

() Ix(Pv Fx) -+ Pv3xFx.

(f) Fx(Fxv Gx) - IxFxv IxGx.

(g) Vxy(Rxy - —Ryx) + Vx—Raxx.

(h) Vxyz(Rxy A Ryz — —Rxz) + Vx—Rxx.

(1) Vaxyz(Rxy A Ryz — Rxz), Vxy(Rxy — Ryx)

= Vx(3y(Rxy v Ryx) — Rxx).

(j) ¥xAy(Fx—Gy) = FyVx(Fx—Gy).

(k) Vady(Fxe>Gy) b+ IVx(Fx— Gy) A IVx(Gy—Fx).

() VaAy(FxoGy) —I yzVx((Fx—>Gy) A (Gz—>Fx)).

[Note. It is difficult to find from scratch a proof for (I} from left to right. The
search will be assisted by considering first a proof for (k), and asking how it could be
modified. A proof for (k) in turn should result readily enough from a proof for (j),
which may be modelled on the proof already given on p. 162 for the related sequent

Vx3y(FxAGy) = 3yVx(FxaGy).]

4.4.2, In place of the rules —V and —3 cited in the main text, one sometimes finds
these rules instead:
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—'\|7§¢ ‘ﬂl&b
X—o  VE—o
(a) Explain why these alternative rules should be counted as less elegant than those
in the text. [ Compare p. 152.] You may, for all that, find them easier to use.
(b) Suppose that we confined attention to languages whose only logical symbols
are —,A,V,V,3; that we adopted the alternative rules —V and —3 above; and also
these alternative rules for —A and —v.

—-|(¢/‘\\v) —1(l¢vw)

“0v—y oAy
Discuss the elegance of this alternative tableau system. Could the same principle be
applied to deal with a wider range of languages? [Hint: compare Section 2.10.]
(c) Show that wherever a tableau can be closed using the rules in the main text, it
can also be closed using these alternative rules instead.
(d) Show that wherever a tableau can be closed using the alternative rules it can also
be closed using the rules in the main text. [Hint: consider just the alternative rule
—A. This introduces a formula —¢v—y which was not present before. Now either
this formula is further developed in the course of the tableau, by using the v-rule, in
which case we can get the same effect by using the original —A rule; or it is not fur-
ther developed. But in thelatter case it may nevertheless be used to close the tableau,
if its negation —(—¢v—y) is also on the tableau. Consider how, with the original
rules, one could close a branch containing both —(dAy) and —(—dv—y).]

4.5. Soundness

Recall that, for the purposes of the present chapter, T means ‘there is a
closed tableau, conforming to the rules of development listed on p. 156, in
which every formula at the root is a formula in the set I Recall also that, as
always, ‘T =" means T is a set of closed formulae, and there is no (standard)
interpretation in which all of the formulae in I" are true’. We abbreviate this
last to ‘T is inconsistent’. Qur tableau system of proof is sound iff

If ©'+ then T'l=.
It is complete iff

If ©'= then T'H.

The purpose of this section and the next two is to prove that the system is
both sound and complete.
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The soundness of the system has in effect been proved in Section 4.2,
when its various rules were stated and justified, but let us now set out this
argument a little more formally. The tableau begins by assuming that the
formulae at its root are jointly consistent, so this is an assumption of the
form

I,

The tableau is developed by applying rules which say: if the set of formulae
on the branch so far is consistent, then (in the case of a non-branching rule)
so is the set that results by adding such and such a further formula, or (in the
case of a branching rule) so is one or other of two sets that result in this way.
For example, the rules for A are:

If oAy B then LoAw,0,W F.
If T—(0Ay) B then either [—(dAy),—¢ =
or L(0Ay),—y B

And the rules for V are:

If GVED B~ then LVED,O(a/E) ¥ forany o
If ,—VED B~ then TVEDG—d(a/E) B provided o
isnotinT"orin ¢.

(T represents all the other formulae on the branch, besides the one to which
the rule is being applied.) To show that the system is sound we have to show
that each of these rules is indeed a correct rule. To verify this point for the
truth-functors we need only consult their truth-tables, which is simple; to
verify it for the quantifiers requires a little more discussion, but that discus-
sion has been provided in Section 4.2. Let us take it, then, that this step is
accomplished. It follows, then, that if the set of formulae at the root of the
tableau is consistent, then there is at least one branch of the tableau such that
the set of all formulae on that branch is consistent. But suppose also that the
tableau closes. Then on every branch there occurs both some formula and
its negation, and a set containing both of these is not consistent. That is

Lo, .

Thus, if the tableau closes, the set of formulae at its root cannot be consist-
ent, which is the required result

If T then T k.
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I note, incidentally, that what our argument shows could be more fully
spelled out in this way: if there is at least one closed tableau for a given set of
formulae, that set is inconsistent. This will be important in what follows.

Meanwhile, I end this section with a brief remark on the notion of
consistency, as applied to systems of proof. There are two familiar ways
of explaining this notion. If S is any system of proof, then S is said to be
negation-consistent iff there is no formula ¢ such that

Fs ¢ and Hg—o.

And S is said to be absolutely consistent (or: consistent in the sense of Post
(1921)) iff it is not the case that for every formula ¢ we have

g ¢.

For most systems of proof it is quite easy to show that if they are consist-
ent in the one sense then they must also be consistent in the other, but
tableau systems in general are interesting examples of systems of proof in
which the two notions genuinely diverge. (This is shown in Exercise 4.5.1.)
But it is easy to see that any system that is sound must also be consistent
in both senses. Consistency is of independent interest only when we are
dealing with a system that is not sound (or not known to be sound). But
such systems do, of course, exist.

EXERCISE

4.5.1. Let S+ be a tableau system of proof, which includes all the rules listed in
Section 4.3, and in addition these two further rules to deal with the new two-place
sentence-functor ‘tonk’

) to?k v o (o t(l)nk )

¢ =
v -y
(a) Show that S+ is not negation-consistent. [Hint: consider the formula (P tonk
—P).]
(b) Show that S+ is absolutely consistent. {Hint: consider the formula—P.]
(¢} Deduce from (a) and (b) that this simple case of CUT does not hold for $+:
If l—s_‘_ ¢ and ¢I_S+ v then I_S+ V.
(d) Show that, if the above rules are to hold for ‘tonk], then it cannot be a truth-
functor. Could it be any other kind of sentence-functor?
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4.6. Completeness I: Truth-Functors

To show that the tableau system of proof is a complete system, we have to
show that

If ' then T'H.

The argument in this case is rather more complex, and I shall present it in
three stages. In this section we shall confine attention to the rules for the
truth-functors, and so we may assume that our language contains only
sentence-letters as schematic letters. The first stage of the argument will also
confine attention to sets I" of formulae that are finite. The second stage will
then show how to extend the argument to cover infinite sets of formulae,
and the third stage (in the following section) will show how the argument
may be extended to take account of the quantifiers.

It is helpful to begin by slightly modifying the definition of a completed
tableau. Let us say that a branch on a tableau is fully developed iff no rule
can be applied to any formula on the branch to generate a new formula not
already on the branch. Then we may count a tableau as completed iff every
branch on it is either closed or fully developed. (The point is that we are not
requiring closed branches to be fully developed.) Now, as we have observed
(pp. 157-8), for any finite set of quantifier-free formulae, there will always
be a completed tableau. We shall now argue that if there is at least one com-
pleted tableau for the set which is not closed, then the set is consistent.
Hence, if the set is inconsistent (i.e. if I" =), then every completed tableau for
it will be closed (i.e. I' ). Recall here that the soundness proof of the last
section also yielded the result that if the set of formulae is consistent, then
every tableau for it will be open. So this gives us our proof of a point that has
simply been assumed so far, namely that all the different completed tableaux
for the same set of formulae will give the same result, i.e. that either all of
them will be closed or none of them will be. But, at the present stage, this
point will be established only for quantifier-free formulae.

Let us turn to the proof. Suppose that we are given a completed tableau
with an open branch. (There may be several such branches, but just fix
attention on one.) We can then define an interpretation for the language of
the formulae on that branch under which all the formulae on that branch
are true, namely by stipulating, for each atomic formula P; in the language

|P;|;=T iff P;ison theselected branch.

This is a possible stipulation, for since the branch is open it does not contain
both P;and —P; if it contains P;, then P;is stipulated to be true; if it does not
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contain P, but P;is in the relevant language, then P; is stipulated to be false,
so —P; will be true. Now this interpretation verifies every formula on the
branch. We have just seen that it verifies both the atomic formulae that are
on the branch and any negations of atomic formulae that are on the branch.
Every other formula on the branch will have had a rule of development
applied to it, since the branch is fully developed. But, as we noted earlier
(p. 151), the rules of development for the truth-functors all have this fea-
ture: when the rule is applied to a complex formula, the simpler formulae
that result entail the complex formula they descend from. So if the simpler
formulae on the branch are all true, the complex formulae above them on
the branch must be true too. It follows that all the formulae on the branch
are true. (You are invited to set out this argument as a proper argument by
induction on the length of an arbitrary formula on the branch, and to do so
before you get to p. 172, where the task is done for you.) In particular, then,
the initial formulae at the root of the tableau are all true in this interpreta-
tion, and hence they form a consistent set. This completes the argument.
Any completed open tableau has a consistent set of formulae at its root. Any
finite set of quantifier-free formulae has a completed tableau. Hence any
such set which is inconsistent has a completed and closed tableau. That is

If T'= then ',

Reflection on this argument shows that there will be two difficulties in
extending it to cover quantified formulae as well: one is that when a for-
mula VE¢ is developed, the simpler formulae that result do not entail it; the
other is that we cannot guarantee that a completed tableau will be available.
(Indeed, we shall have to redefine ‘completed tableaw’ in order to make it
possible to have them, once quantifiers are included.) I shall deal with the
second problem first, showing how we can still push through the same kind
of argument even without a completed tableau. For this problem can be
raised, and solved, while we are still at the level of truth-functors. Let us still
suppose, then, that we have no quantifiers to deal with, but let us lift the
restriction to finite sets of formulae. Suppose that I is an infinite set of for-
mulae, and is inconsistent. Does it then follow that there is a closed tableau
for it? Since a tableau is itself a finite structure, by definition, this must mean:
does it follow that there is a closed tableau which has at its root some finite
subset of the whole set I'? The answer is yes. But in reaching this answer we
need in effect to consider an ‘infinite tableau, in so far as we do consider an
infinite series of finite tableaux, each extending the last.

Assume, then, that I" is an infinite set of formulae, each built up from
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truth-functors and sentence-letters. We may further assume that the for-
mulae in I may be ordered in an infinite list as the 1st, 2nd, 3rd, ... nth
... formula, and every formula in I is, for some finite number #, the nth for-
mula in this list.! We begin by considering just the first formulain T, and we
construct a completed tableau for this in the ordinary way; call this the first
tableau. Any branches in this tableau that are closed are closed for ever, and
we never add anything more to them. But if there are some open branches,
then we add to the root of the first tableau the second formula in I'—think
of it as being added above the formula that is already there—and we extend
the open branches so that we again have a completed tableau. This is the sec-
ond tableau. Again, any branch in this tableau that is closed is left undis-
turbed in further operations, but if there are some open branches then the
third formula from T is added at the root and the open branches are de-
veloped further so that they form the third tableau, which is a completed
tableau for all three of the formulae at its root. And so on. For each #, the nth
tableau (if there is one) contains the previous tableau as a part, and all its
open branches are fully developed. Now either at some stage in this series of
tableaux there is a closed tableau (in which case the series halts there) or at
no stage is there a closed tableau, and the series goes on for ever. In the first
case the set of formulae at the root of the closed tableau is an inconsistent set
(by the soundness proof given earlier), and since this set is a subset of the
set I then I is inconsistent. In the second case we must show that the set I"
is consistent, i.e. that there is an interpretation which verifies every formula
inT.

Looking at the matter intuitively, what we need is this. Consider our series
of tableaux as together forming one infinite tableau. Any closed branch in
this tableau is, of course, closed at some finite stage in the construction
of the tableau, and so contains only finitely many formulae after those in
the root. But if there was never a stage at which all branches closed, then
there must be some branch which contains infinitely many formulae after
the root, and it must be open. We can then use this infinite open branch to
define an interpretation which will verify all the formulae on the branch,
including those at the root, just as we did previously in the finite case.

Looking at the matter more precisely, let us say that a branch of the nth
tableau is satisfactory iff, for every m = n, there is an open branch of the mth
tableau of which it is a part. Then we have to show

1 Thisis the assumption that T"is a countably infinite set. This must be so, since each formula in " con-
tains only finitely many occurrences of truth-functors and sentence-letters, and there is only a countable
infinity of truth-functors and sentence-letters to begin with. It follows that the list of all formulaein T can
be constructed lexicographically.
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(1) There is a branch of the first tableau that is satisfactory.

(2) For each n, if there is a branch of the nth tableau that is satisfactory,
then there is a branch of the (n+1)th tableau that is satisfactory and
contains it as a part.

Proofof (1). Suppose not. Then for each branch of the first tableau there
is an m such that no open branch of the mth tableau contains it. Let us say,
in that case, that all descendants of that branch are closed by the mth tab-
leau. But each individual tableau is finite. So there are only finitely many
branches of the first tableau, say B;...B,. Each of these has all its descendants
closed by some stage, say stages m;...m; respectively. Let m; be the maximum
of m;...m;. Then each branch of the first tableau has all its descendants
closed by stage m;. But that is just to say that the mjth tableau is closed, and
this contradicts the original hypothesis.

Proofof (2). Suppose not. So some branch B of the nth tableau is satisfact-
ory, but no branch of the (n+1)th tableau containing B is satisfactory. That
is, every branch of the (n+1)th tableau containing 3 has all its descendants
closed by some stage. But, as before, there are only finitely many branches of
the (n+1)th tableau containing B, so we can take the maximum m; of these
stages, and every branch of the (n+1)th tableau containing B has all its des-
cendants closed by m;. But that means that B itself has all its descendants

closed by m;, contradicting the hypothesis that B is satisfactory.

We are now in a position to specify our infinite series of finite branches,
which will serve as the intuitive ‘infinite branch’ We pick some satisfactory
branch B, of the first tableau, for we have shown that there is one. (One
could make this definite by specifying a definite order in which the tableau
rules were to be applied, and then saying that we are to pick the first satis-
factory branch counting from the left.) We similarly pick some satisfactory
branch B, of the second tableau containing B, as a part, for again we have
shown that there is one. In general, for each n we pick a satisfactory branch
B,41 of the (n+1)th tableau, containing as a part the branch B, already
selected from the previous tableau. So we have an infinite set of selected
branches B, each contained in the next, and each open.

The proof then proceeds exactly as before. We specify an interpretation
1, for all the formulae in the language of T, by stipulating that for each
sentence-letter P; in that language

|P;J;=T iff P;isononeofthe selected branches B,
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For each branch B, this interprets all the formulae on that branch as true,
including therefore the first n formulae of T', which form its root. I give the
argument in more detail this time.
Let ¢ be an arbitrary formula on the branch B,. The inductive hypothesis
is
If y is shorter than ¢, and occurs on B,, then |y|,=T.

To abbreviate labour, I assume that the language under consideration con-
tains — and — as its only truth-functors. This gives us three cases to con-
sider, one of them with three subcases.
Case (1): ¢ is atomic. Then, by definition of I, if p occurson B,,, |¢|, = T.
Case (2): ¢ is —y.
Subcase (a): y is atomic. Assume —W occurs on B,. Then y does
not occur on any of the selected branches 8;. (For suppose y occurs
on B, and let B; be whichever is the longer of the two branches 3,
and B;. Then both y and —y occur on B, so B;is a closed branch,
contrary to hypothesis.) So, by the definition of I, |y|,;=F Hence
0, =—wl,=T.
Subcase (b): y is —y. Assume ¢, i.e. ——y, occurs on B,. Then,
since B, is fully developed, y also occurs on B,. Hence, since y is
shorter than —~y, by inductive hypothesis ||, =T. Therefore
o];=|——x|,=T.
Subcase (¢): y is ;2. Assume 9, i.e. —();—>¥3), occurs on B,
Then, since B, is fully developed, both 7y, and —y, occur on 3,
So by the inductive hypothesis |x;|,=|—yl;=T. Hence |¢|,=
(=%l =T
Case (3): ¢ is y—y. Assume ¢ occurs on B,. Then, since B, is fully
developed, either — or ¥, occurs on B,,. So, by inductive hypothesis,
either | =y, = Tor |x|,;=T. In either case |§|, = |y—x|,=T.

This completes the induction, and thereby establishes our result. For every
formula in I" is in the root of one of our tableaux (in fact the nth formula in
I"is in the root of the nth tableau and all later ones); thus every formulain I”
is true in I, and hence I is a consistent set. If I is inconsistent, then, it must
be because some finite subset of I is inconsistent, in which case it can be
proved inconsistent by a finite tableau, as we have seen.

I observe here that we have made use of the tableau system of proof
to establish a result that can be stated without reference to that system,
namely
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IfT" = then, for some finite subset I’ of I, T’ I=.

(For we showed thatif T =, then I -, But from the nature of a tableau proof
itis clear that if T i, then, for some finite subset I’ of I, " -. And, from the
soundness of the tableau system, if I'" -, then I'’ i=.) I shall comment on the
significance of this result in Section 4.8, when it has been extended to in-
clude languages with quantifiers. Meanwhile I add that, for quantifier-free
languages, it is relatively straightforward to prove the result directly, without
reference to any system of proof. The following exercise shows how.2

EXERCISE

4.6.1.(a) Show that,if P,,...,P, are all the letters in a formula ¢, and if £ P; is either P,
or —iP;, then

either %Pi,..,*P, ¢ or =+P,,..1P,FE-0.
[Simple consideration of truth-tables should suffice.]

(b) Let T =" mean ‘for some finite set I, included in T, I'” =>. Show that, for any
sentence-letter P;,

IfT,P; Eand I, P; = thenT k=,

[Hint: if I and T"” are both finite subsets of T, then so is their union T"UT".]

(¢) LetI"beany setofformulae, possibly infinite, and let Py, P,,...,B,,... bealist, pos-
sibly infinite, of all the letters in the formulae in I, Define a series of sets of formu-
lae T';, one for each letter P; on the list, by

ro = F
oo [TU P} i TP
17T, U {=P,,,} otherwise

(In words: begin with the given set I as I', and then extend it by running through
the series of all the letters occurring in it. For each letter P, add either P, or —P, to
the set of all formulae formed so far, by adding P, if the set formed so far (namely
T,.1), together with —P,, has a finite subset that is inconsistent; otherwise by add-
ing—P,.)

Assume I' B&. Using part (b), prove that, for each 1, T, . [Method: use ordinary
induction on n.]
(d) Define an interpretation Iby stipulating that, for each letter P,,

|P),=T iff P,ET,

Prove that for any formula ¢ in I we have ||, = T. [Method: let g be a formulain T,
containing just the letters P,...,P. Then by our construction, for some choice of £ P,
as P, or —P;, we have

2 T owe to Lawrence Fumagalli the form of the proof given here.
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{£P,... 2P0} € T}
This is a finite subject of T. Hence, using the result of part (c), it is consistent.
Hence, using the result of part (a) we have
tP,... kP = @.
It is easy to argue that this implies the desired result.]
(e) Observe that what is proved in (¢)~(d) is
If I'Ee then T B
Or in other words,
If T'= then T'E=.

4.7. Completeness lI: Quantifiers

When the language contains quantifiers, and the tableau rules include the
rules for quantifiers already given, it is easily seen that there cannot be any
completed tableaux in the sense of the previous section. For the quantifier
rules allow one to go on introducing new names ad infinitum. 1 begin then
by stipulating a special and restricted way in which those rules are to be
applied, namely in a cycle of three stages, thus:

(1) Apply the rules for the truth-functors until each branch is either
closed or as fully developed as it can be by using those rules, without
repetition.

(2) Apply the rules 3 and —V, introducing new names, as many times
as they can be applied to the formulae already on the tableau, except
that neither rule is ever to be applied more than once on the same
branch to the same formula.

(3) Apply the rules V and —3 as many times as they can be applied to the
formulae already on the tableau, but using only the names already on
the tableau, and never writing the same formula more than once in
the same branch. However, if there are no names already on the tab-
leau, then one new name, say 4, may be introduced on the first occa-
sion that either V or —3 is used.

We are to think of the rules as being applied in cycles: first the rules for truth-
functors, as in (1); then 3 and —V, as specified in (2); then V and —3, as
specified in (3). Then we go back to the beginning again and apply the rules
for truth-functors once more; then for 3 and —V, to any new formulae that
have appeared since the first stage; then for V and —3, to any new names
that have appeared; then the truth-functors again; and so on. Naturally, we
close off any branches as soon as it becomes possible to do so, and if at any
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stage all branches are closed, then, of course, work stops: we have reached
our goal. But it may also be that work stops because no tableau rule can be
applied, compatibly with the restrictions noted in (1)—(3). In either case
we shall say in a new sense that we have a completed tableau, this being one
in which every branch is either closed or fully developed, but where ‘fully
developed’ now means ‘developed as far as it can be by applying the rules
in the stipulated cycle, and conforming to the restrictions imposed on the
quantifier rules’

Here is a simple example of a tableau that is open but completed in this
new sense. Suppose someone proposes the following as an entailment:

3x(Fx—>Gx) = 3xFx — 3xGx.
We test this in tableau (P12), using the rules in the order suggested.

Tableau (P12)
Ax(Fx—Gx)
—(IxFx — IxGx)
AxFx (1)
—dxGx (1)
Fa—Ga (2)
Fb (2)
—Ga (3 )
—Gb (3)
|
| I
—Fa Ga (1)

At this stage we stop. The tableau has not closed, but no more rules can be
applied, compatibly with our restrictions. (I have noted on the right which
kind of rule is being applied at each step.) Now we notice that the open
branch of the tableau in fact provides a counter-example to the suggested
entailment, i.e. an interpretation in which both of the formulae at the root
of the tableau are true. It is an interpretation in which the domain has just
two members, say A and B, one denoted by a and the other by b, those being
the only names that occur on the tableau. We interpret the predicate-letters
on the open branch so as to make true the atomic formulae, or their neg-
ations, on that branch. Thus F is to be true of the object denoted by b, but
not of the object denoted by 4, while G is to be true of neither of these
objects. So our interpretation is
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D ={A,B}
la| =a
bl =8
|F| =

G| =@.2

It is easy to check, reading up the open branch, that on this interpretation
every formula on that branch is true, including the two formulae at its root.

Here is another example. It is easy to fall into the error of supposing that
a relation which is both transitive and symmetrical must also be reflexive,
i.e. that

Vxyz(Fxy A Fyz — Fxz), Vxy(Fxy — Fyx) &= VxFxx.

We draw up a suitable tableau (P13), using the rules in the order suggested.

Tableau (P13)
Vxyz(Fxy A Fyz — Fxz)
Vxyz(Fxy — Fyx)
—VxFxx
-1Faa (2)
Vyz(Fay A Fyz —> Faz) (3)
Vz(Faa A Faz — Faz) (3)
Faa A Faa — Faa (3
Vy(Fay — Fya) (3)
Faa — Faa (3)
—Faa Faa (1)
—(Faa A Faa) (D
—Faa —Faa (1)

This tableau is completed, according to the restrictions we have imposed. It
has two open branches, but both are alike in requiring the falsehood of the
atomic formula Faa, and no other atomic formulae appear. So it evidently

3 ‘QF isavariation on ‘{ }’ Both are symbols for the empty set.
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yields the following interpretation, in which all the formulae on its open
branches are true

D ={a}
o] =
|Fl=2.

Again it is easy to check that this interpretation yields the required result: all
three formulae at the root are true in it, the first two ‘vacuously), because
their antecedent clauses are true of nothing.

In these two examples it was simple enough to obtain a completed
tableau. Often it is extremely tedious. Here is just a slight variation on the
last example. Someone might suggest that if we add to the premisses of that
sequent the statement that the relation F is not empty, then the counter-
example just given will be ruled out, and perhaps the entailment will hold
after all. That is, he proposes the entailment

Vxyz(Fxy A Fxz — Fyz), Vxy(Fxy — Fyx), 3xyFxy = VxFxx.

This is not in fact a correct entailment, as a completed tableau would show.
But the tedium of writing out a completed tableau is now very considerable.
In the first two lines three names will be introduced, so there will then be 32
ways of applying the V rule to the second premiss, and 33 ways of applying it
to the first premiss, which adds thirty-six lines to the tableau. Each of those
thirty-six lines then has to be broken down by rules for the truth-functors,
and the tableau is quite unwieldy. In practice it is very much simpler to use
one’s wits to find a counter-example, rather than rely on this very cumber-
some procedure. (You are invited to do so.4) The only points that it may be
useful to note are (a) that there will be a completed tableau in this case, and
(b) that it will contain only three names. This tells us that if the entailment is
not correct, then there will be a counter-example to it in a domain of only
three objects, so we need not try to think about larger domains.

In these last remarks I have, of course, been simply assuming the general
principle that an open branch in a completed tableau will always yield an
interpretation that verifies every formula on the branch. It is time to prove
this. The interpretation is specified in this way. The domain is to have as
many members as there are names on the open branch, and each different
name is interpreted as denoting a different member of the domain. The
predicate-letters are interpreted so that if F is an n-place predicate-letter, it
is taken to be true of just those n-tuples {|a,],...,|a,|) that correspond to

4 It may be useful to recall that the correct form of this entailment is as given in Exercise 4.4.1(:).
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atomic formulae Fa,...a, which occur on the branch in question. The result
then is that the atomic formulae which occur on the branch are all inter-
preted as true, and the atomic formulae which do not occur on the branch
are all interpreted as false, just as in the earlier case when our only atomic
formulae were sentence-letters. So the inductive argument showing that on
this interpretation all the formulae on the branch are true begins as before,
with cases (1)—(3) on p. 172. We need to add two new cases for the quan-
tifiers, thus:

Case (4): ¢ is AEy. Assume ¢, i.e. FEY, occurs on the branch. Then, since
the branch is fully developed, y(0/€) also occurs on the branch, for
some name . So, by the inductive hypothesis, it is true in 7. But y(o/§)
=38y Hence [¢], = [3Cy|, = T.

Case (5): ¢ is VEy. Assume 9, i.e. VEW, occurs on the branch. Then for
every name o on the branch, y(o/&) also occurs on the branch, since
the branch is fully developed. So, by the inductive hypothesis, y(o/€)
is true in I for every suich name. But every object in the domain of the
interpretation is the denotation of some such name, so it follows that y
is true of every object in the domain. Hence VEy is true in I

We also need to add two new subcases under case (2), to cover —V and —3.
Ileave these as an exercise. When they are added the induction is completed.
On the new definition of a fully developed branch in a tableau, designed to
suit the case where quantifiers are present, it remains true that all the for-
mulae on a fully developed and open branch are true in some interpretation.

Notice that it does not yet follow that if I" is an inconsistent set of formu-
lae, true in no interpretation, then there must be a closed tableau for it. What
follows is that any fully developed branch of a tableau for it will be closed,
but we have not shown that there is a tableau for it in which all branches are
fully developed. The trouble is that there are some (finite) sets of formu-
lae for which there is no completed tableau, even in the new sense. Hereisa
very simple example, a tableau (P14) with one formula at its root, namely
Vx3yFxy. It is clear that, however far this tableau is continued, there is no
finite stage at which it will be completed. The key to the difficulty is to think
of what happens when this tableau is infinitely developed, for then it is clear
that we can read off an interpretation which verifies all the formulae on it. As
before, it will be an interpretation in which each name on the tableau names
a distinct member of the domain, so the domain will be infinite. But it is easy
to see that we can interpret F on this domain so that all the atomic state-
ments on the tableau are true, and therefore 3yFxy will be true for each name
in place of x, and so Vx3JyFxy will be true too. Thus, if we allow ourselves to
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Tableau (P14)
Vx3yFxy
AyFay (3)
Fab (2)
AyFby (3)
Fbc (2)

JyFey (3)

think in terms of infinite tableaux, the problem over there being no finite
tableau that is completed is easily overcome.

To prevent misunderstanding at this point, I pause to observe that we do
not have to invoke an infinite domain in order to find an interpretation in
which Vx3yFxy is true. On the contrary, there is a very simple interpretation
with a domain of one element that will serve this purpose, namely where Fis
interpreted as true of that one element and itself. But we shall not find that
interpretation by applying the tableau rules and then trying to read off an
interpretation in the way proposed. One might, therefore, introduce a more
complicated way of trying to read off an interpretation, roughly along these
lines: develop each branch of the tableau until either it closes or it is fully
developed or it begins to repeat itself, in the way that our example clearly
does. When this happens, seek for an interpretation in which two or more of
the names on the branch are taken to denote the same object. With this kind
of method, but much more carefully specified, one could find a verifying
interpretation with a finite domain wherever one exists. But as we have seen
(p. 134), there are cases where all the verifying interpretations have infinite
domains, so we must be able to take infinite domains into account some-
how. Provided that we do do this, it turns out that the simple method of
reading an interpretation off a fully developed branch, finite or infinite, is all
that we need. So I shall not introduce any more complicated method.5

The argument that we now need is just a matter of putting together the
ideas that we have developed so far. We wish to show that if I" is an incon-
sistent set of formulae—and for the moment we shall still assume I to be
finite—then there is a closed tableau with the formulae in T at its root. We
consider a tableau grown from the root I" by applying our rules in cycles, as
specified at the start of this section. We shall speak of the 1st, 2nd, ..., nth,
... stage of developing the tableau, each stage to contain one full cycle of

5 Ibriefly indicate just the initial steps towards such a method at the end of the chapter.
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applications of the rules. It may be noted that if a formula first appearson a
branch during the nth stage (including the case n = 0, for a formula at the
root of the tableau), then the appropriate rule is applied to it either during
the nth stage or during the n+1th stage, so that, in all cases except the rules
for V and for —3, by the end of the n+1th stage there is on the branch a
shorter formula that entails it. And where the relevant rule is V or —3 then
by the end of the n+1th stage the rule has been applied using every name that
is then on the branch. At subsequent stages, new names may be introduced
(by the rules for 3 and —V), but by the end of each stage the V rule and the
-3 rule will have been applied, using those names too, to any appropriate
formula on the branch. Now, we have these possibilities. It may be that at
some stage of developing the tableau we form a closed tableau. Then we can
infer that the set I" is inconsistent. Or it may be that at some stage we forma
completed tableau with an open branch. Then we can infer that the set I is
consistent, since a fully developed open branch always yields a verifying in-
terpretation, as we have seen. If neither of these proves to be the case, then
we may say—looking at the matter from an intuitive point of view—that the
development of the tableau will go on for ever, and will result in the forma-
tion of an infinite branch. In that case also the set I" is consistent, since again
an infinite branch also yields a verifying interpretation, when it is developed
in the stages we have specified. What we still have to prove is this last point.

We show that there is an infinite branch by the same technique as at the
end of the previous section. We can say that a branch of the tableau formed
at stage n is satisfactory if at each stage m = n it has some descendant branch
which is neither closed nor fully developed. Exactly as before we then show
that if the tableau is not completed at any stage then (a) there is a branch of
the tableau formed at stage 1 that is satisfactory, and (b) for each n, if there
is a satisfactory branch in the tableau formed at stage n, then there is also a
satisfactory branch, extending it, in the tableau formed at stage n+1. So it
follows that there is an infinite series of such satisfactory branches, each
extending the previous one, and we select some such series. Our interest is
now in the formulae that occur in the selected series of branches.

The language of those formulae will contain infinitely many names, and
to interpret it we take a domain which has one object for each name—dif-
ferent objects for different names—and no other objects. We then interpret
the predicate-letters on that domain so that all the atomic formulae that
occur on a branch of the selected series are interpreted as true, and all the
other atomic formulae as false. It then follows that all the formulae occur-
ring on the selected series of branches are interpreted as true. We have only
to note that any formula in the series must first appear at some stage, and
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will be developed by the end of the next stage, and all cases except that for V
and —3 fall into place at once. For in all these other cases the shorter formu-
lae which result from development entail the original. Moreover, no new
principle is needed for V and for —3, for if the formula VE¢ appears at some
stage, then for every name o the instance ¢(at/§) will appear at some stage
(namely at the stage when o first appears, if that was after the stage at which
VEo appeared, and otherwise at the stage after the one which introduced
VEd). Hence ¢(ou/E) is interpreted as true for every name o, and every object
in the domain is named by some name o, from which it follows that V&¢ is
also interpreted as true. The case is exactly similar for —3.

I do not delay to elaborate this proof more precisely, since no new prin-
cipleisinvolved. It follows that there is an interpretation which verifies every
formula occurring on any branch of the selected series. A fortiori there is an
interpretation which verifies the formulae at the root of the branch, namely
the formulae of the set T with which we began. So I' is consistent. Thus, if I’
is inconsistent, then it cannot be that the tableau for I" goes on for ever, and
it cannot be that the tableau stops with an open branch. Accordingly, the
tableau must stop with all branches closed. That is,

If I'= then ',

which was to be proved.

One last point should be made, before this section ends. In the last sec-
tion, we began with a completeness proof for the truth-functional case with
I finite, and then extended this to the case with I infinite, and in fact it was
the second case which took most of the work. In this section, where quan-
tifiers are also being considered, we have now achieved the result that we
want on the assumption that I is finite, but we have not yet said anything
about the case with I" infinite. So let us finally deal with this case, which can
actually be done very briefly indeed. We combine the techniques of both
sections by developing a series of tableaux in this way: The first tableau has
the first formula in T at its root, and employs just one cycle of our cycle of
rules. The second tableau adds to the root the second formula of T', and adds
a second cycle of our cycle of rules. And so on indefinitely. The nth tableau
will have the first n formulae in T at its root, and will result from having
applied the cycle of rules once to the nth formulain T, twice to the n—1th for-
mula in I...,n times to the first formula in T. There is one trifling change to
be made to the previous argument: since the set I"is presumed to be infinite,
we shall never be able to stop the development of the tableau on the ground
that we have reached a fully developed open branch. For when we add the
next formula in I to the root, that branch (probably) will not remain both
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open and fully developed. So there are only two possibilities to be con-
sidered: either we find a closed tableau at some stage, or the tableau goes on
for ever. But the proof that, in the second case, the set I must be consistent,
is exactly the same as before. I leave it to you to think through the detail.

EXERCISES

4.7.1. Complete the inductive argument on p. 178 by adding the new subcases
under case (2) to cover —V and —3.

4.7.2. Setout in greater detail the argument of the last paragraph above.

4.7.3.(a) Show that the number of non-equivalent formulae that can be con-
structed from truth-functors and a given finite stock of sentence-letters is finite.
[Hint: for each »n, how many n-place truth-functions are there?]

(b) Show that the same holds of the number of non-equivalent formulae that can
be constructed from truth-functors, quantifiers, variables, and a given finite stock
of one-place predicate-letters. [Hint: reflect on the implications of Section 3.8.]

{(c) Show that the point no longer holds when we include a single two-place
predicate-letter. [Hint: for each number n let us write

Rixy for Rxy
Rurlxy for Jz(Rvxz A Rzy).

Consider the infinitely many formulae JxyRnxy.|

4.8. Further Remarks on Completeness, Compactness,
and Decidability

Completeness The fact that our tableau system is both sound and com-
plete shows us that this method of proof does achieve all that we want it to
achieve, and no more. It also allows us to take over for the notion of prov-
ability by a tableau (i.e. for ) all those results that were established in Part I
for semantic entailment (i.e. for F=). For example, we can now take it for
granted that the Cut principle holds for tableau proofs, in the sense that

If T¢ and ¢,Ay then TAF .

Itis actually quite tricky to prove this directly for the tableau system, because
it is not in any straightforward way a consequence of the basic method of
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proof (as Exercise 4.5.1 reveals).6 We can also take it for granted that for each
formula there is a tableau proof that it has an equivalent in DNE, in CNE,
in PNF, and so on. But it was not for the sake of such results as these that
we originally needed this method of proof, for proof is not an end in itself.
Our ultimate concern is with the semantic notions of entailment, consist-
ency, validity, and so on, and proof is of value because it helps us to recog-
nize these, or to recognize them more simply. As you will have discovered,
in most ordinary cases a tableau proofis really quite simple to construct, and
certainly simpler than arguing directly from the specified semantics. Never-
theless, there are some by-products of our completeness proof which it is
worth elaborating in this section.”

Compactness Our completeness proof shows that both the logic of
truth-functors and the logic of quantifiers have this property:

If T = then for some finite subset IV of T, T =.

Since inconsistency and entailment are interdefinable, an equivalent formu-
lation is

If Tk= ¢ then for some finite subset I of T, T = ¢.

Alogic with this property is said to be compact.8 This means that if we have
an inconsistency or an entailment which holds just because of the truth-
functors and quantifiers involved, then it is always due to a finite number of
the propositions in question. For example, no consequence can be drawn
from an infinite set of assumptions that could not have been drawn from a
finite subset of them. This is surprising, for it is easy to mention examples
where all of infinitely many assumptions would be needed in order to jus-
tify some consequence. Here is a very simple one. Consider the infinite set
of assumptions

(1) aisnota parentof b;

(2) aisnota parent of a parent of b;

(3) aisnota parent of a parent of a parent of b;
etc.

6 For the curious, I outline a direct proof in the appendix to this chapter.

7 Here is one by-product which I shall not elaborate: our proof shows incidentally that any consistent
set of formulae has a verifying interpretation in which the domain has no more than denumerably many
members. This is of some significance when we are concerned with axioms whose intended interpreta-
tion has a non-denumerably infinite domain (as with axioms for the real numbers). But the present book
is not concerned with such axioms. (The remarks below on second-order logic are relevant to this point
too, for the point does not hold in second-order logic.)

8 The word ‘compact; in this use, is inherited from topology, where it is used with a somewhat sim-
ilar meaning.
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From all these assumptions together there follows
ais not an ancestor of b.

But the conclusion is not entailed by any finite subset of the assumptions.

The explanation, of course, is that this inference does not depend just on
the truth-functors and quantifiers in the premisses and the conclusion, but
also on the special relation between being a parent of and being an ancestor
of. But it should be noted that this explanation brings with it an interesting
consequence: the relation between being a parent of and being an ancestor
of cannot itself be defined by using only the truth-functors and the quan-
tifiers. For, if it could be so defined, then the definition could be added to
the set of assumptions, and we should have an impossible situation. (If the
definition is adequate, then the conclusion should follow from it, together
with all the infinitely many other assumptions. But then, by compactness,
the conclusion would also have to follow from a finite subset of those as-
sumptions, which is absurd.) As a matter of fact the relation in question can
be defined in what is called second-order logic, where we have not only the
familiar quantifiers, binding variables which take the place of names, but
also quantifiers which bind variables taking the place of predicates. This
gives the language a greater expressive power, and consequently second-
order logic is not compact. But elementary logic is compact, and so there are
many notions that we understand perfectly well but cannot express in its
vocabulary. Indeed, as things are at present, we cannot even define identity
(though a second-order logic can). Later, in Chapter 8, we shall add iden-
tity as a new primitive notion, and this will allow us to distinguish between
the different finite numbers while still preserving compactness. But, if I
may put the position roughly, and in very general terms, we cannot express
the distinction between what is finite and what is infinite without moving
essentially beyond the resources available in elementary logic.

Decidability Inany case where we can tell in advance that the formulae we
are concerned with will yield a completed tableau (according to the revised
definition on pp. 174-5), we know that we can get a definite decision, one way
or the other, by constructing that tableau in full. If we apply a little thought,
then the full tableau can almost certainly be abbreviated, but even without
thought the result can eventually be obtained just by plodding through the
cycles of moves specified by our recipe. And there are several cases where we
can tell in advance that there must be a completed tableau.

One such case is the case of formulae which have only one-place
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predicate-letters, as explored in Section 3.8. The decision procedure given
there had two main stages: first, the quantifiers were to be driven in so that
no quantifier was in the scope of any other, and second, the elementary
quantifications so formed were to be simplified in such a way that truth-
tables could then be applied. From our present position we still need the first
part of this procedure: begin by driving the quantifiers in. But thereafter all
that we need to do is to draw up a tableau in accordance with our suggested
recipe. For such a tableau must terminate. In fact any tableau formed in
accordance with this recipe will terminate unless on some branch it comes
to contain an V3-formula, i.e. a formula which has a universal quantifier
preceding an existential quantifier. That sort of formula will yield an infinite
tableau, as the example on p. 179 shows, but where no quantifier occurs
within the scope of any other it is easy to see that our recipe must yield a
completed tableau.

To prevent confusion, let me at once note that in Section 3.9 we gave
a decision procedure for testing V3-formulae. But that test was a test for
validity. The tableau technique is in the first instance a test for inconsistency.
Now to test a formula for validity is the same as to test its negation for incon-
sistency, and the negation of an V3-formula is of course (equivalent to) an
3V-formula. So the discussion of Section 3.9 showed that there is a way of
deciding on the inconsistency of any 3V-formula, and in fact our recipe for
constructing tableau proofs provides such a way. (It hardly differs, in prac-
tice, from the recipe provided in Section 3.9.)

The two decision procedures provided in Chapter 3, for formulae of
special kinds, are thus subsumed under the more general recipe for con-
structing tableau proofs provided here. In fact this recipe provides a useful
framework for considering further decision procedures for further special
kinds of formulae. Iillustrate this point by considering an inconsistency test
for one more special kind of formula, namely a formula which is in PNF and
which contains just one universal quantifier, and after that just one existen-
tial quantifier. Let us begin by supposing that the quantifier-free part fol-
lowing these two quantifiers contains only one two-place predicate-letter,
say F, and no other schematic letters. So our formula is

Vx3y f(Fxx, Fxy,Fyx,Fyy),

when ‘f” indicates some quantifier-free combination of the formulae that
follow it. We apply the quantifier rules for V and for 3 once each, to obtain
the quantifier-free formula

f(Faa,Fab,Fba,Fbb).
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The truth-functional rules are then applied to this. If the tableau closes, then
of course the original formula is inconsistent. If not, we distinguish cases.

In case (1) there is an open branch on which Faa and Fbb may be assigned
the same value. In that case, we are through, for the tableau will never close.
(a) There must be an interpretation with an infinite domain which verifies
our formula, and which would be given by continuing to apply the tableau
recipe ad infinitum. For if Faa and Fbb can be given the same value in an
interpretation which verifies

f(Faa,Fab,Fba,Fbb),

then also Fbb and Fcc can be given that same value again in an interpretation
which verifies

f(Fbb,Fbc,Fcb,Fcc),

and so on for ever. There is therefore no chance of the second step, or any
subsequent step, introducing a contradiction. Also (b), there must in fact be
an interpretation with a finite domain which verifies our formula. For if all
four of the atomic formulae can be given the same value in a verifying inter-
pretation, then we may identify a and b to obtain a one-element domain. If
Fab and Fba can be given the same value as one another (but not the same
value as Faa and Fbb), then we may identify a and c to obtain a two-element
domain. And finally if Fab and Fba need to be given different values, we may
still identify a and d (introduced in the next cycle of quantifier rules) to
obtain a three-element domain.

In case (2) every open branch at the end of the first cycle of development
is one on which Faa and Fbb need to be assigned different values. In that
case, we proceed to a second cycle, adding as above

f(Fbb, Fbc,Fcb, Fcc).

If this tableau closes, then, of course, the original formula is inconsistent. If
it does not, then the formula is consistent. For (a), there must be a verifying
interpretation with an infinite domain, obtained by growing the tableau ad
infinitum, which assigns alternating values to Faa, Fbb, Fcc, Fdd, etc. Also
(b), there must be one with a finite domain, which need not contain more
than four elements (identifying a and e, introduced in the fourth cycle of the
tableau rules), and which may contain less than four, given suitable truth-
values for Fab, Fba, Fbc, and Fcb.

In general, then, with formulae of this special kind all that we need are
two cycles of the tableau rules, and if the tableau has not closed by then, it
never will close, so our formula is consistent. But it is a rather special kind of
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formula that we have been concerned with. Some generalizations will be
indicated in the exercises that follow, but a full treatment of this topic is
beyond the scope of this book.

EXERCISE

4.8.1.(a) Show that it makes no difference to the argument of the last two pages if
we take the single predicate-letter to have some number of places other than two.
(b) Investigate in the same way the case of a formula made up of a single universal
quantifier, then a single existential quantifier, then a quantifier-free part containing
two predicate-letters, and no other schematic letters. [The answer is that if the tab-
leau has not closed after four cycles of the rules, then it never will close. In general,
if there are n predicate-letters then 27 cycles of the rules need to be investigated.]

(¢) Experiment with the case of a formula made up of a single universal quantifier,
then two existential quantifiers, then a quantifier-free part. (Begin, as before, by
assuming that it contains just one predicate-letter.)

4.9. Appendix: A Direct Proof of the Cut Principle

For the tableau system, the most convenient form in which to consider the Cut prin-
ciple is this:

If o and T,—¢+ then T'H.

(You are invited to check that this is equivalent to the more familiar version cited
on p. 182). The proof will be by induction on the length of the formula ¢, so to
save labour I shall assume that we are dealing with a language containing —,A,¥
as its only logical symbols. As a minor convenience I shall assume too that the rule
for closing branches is applied only to atomic formulae and their negations (cf.
Exercise 4.2.2). We shall need the following lemmas:

(1) If ——wy+ then Tyk.

(2) If Toay + then Lo,y .

(3) If T—(¢pAay)t= then ;0 and T—yh.

(4) If L&yt then L—wy(a/E) + forall names .

Lemmas (1)—(3) are very easily proved by considering the relevant tableau rules,
and I say no more about them. Lemma (4) is rather more tricky, and I set it at the
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end as an assisted exercise. Meanwhile, T assume that the lemmas are all available, so
that we can turn to the main proof.
The proofis by induction on the length of ¢, and the hypothesis of induction is

for all y shorter than ¢, and for all sets A, if A,y - and A,y - then A,

We have four cases to consider:

Case (1): ¢ is an atomic formula. We are given a closed tableau with I¢ at its
root, and another with I;—¢ at its root. We remove ¢ from the closed tableau
for I, and consider what remains. If this is still a closed tableau, we have our
result. If it is not, then any branches that have become open must contain —¢.
So we append to each of them the closed tableau for I',—¢, and the result must
be a closed tableau for I, as desired.

Case (2): ¢ is —y. So we are given that ,—y - and I;——y . By lemma (1)
the latter implies that T,y . So by the inductive hypothesis we have I'}-, as
desired.

Case (3): ¢ is WAY. So we are given that [,y Ay Fand I,—(yAay) . By lemmas
(2) and (3) it follows that Ty, - and that I,—wy . It is obvious from the
structure of tableaux that thinning applies, so from the latter we also have
I,—w,x . Hence by the inductive hypothesis Iy . But also, applying lemma
(3) again to our premiss, we have I,—, . Hence by the inductive hypothesis
once more we have I' -, as desired.

Case (4): ¢is YEw. Sowe are given that there is a closed tableau for I', V&y, and
(applying lemma (4)) that I,—y(a/E) - for all names o.. We take the closed
tableau for I V&, remove Y&y from its root, and consider what remains. If it
is still a closed tableau, then we are through. If not, then that is because one or
more branches contain one or more occurrences of y(o/€) for one or more
names o, We consider any such branch which has an occurrence of such a for-
mula y(o/E) with no further occurrence below it. Letting A be the set of for-
mulae on this branch between I" and this occurrence of w(o/E), omitting VEy,
we consider the branch as a tableau with all the formulae T A,y(at/E) in its root.
So considered, it is clear that it must be a closed tableau. Thus LAy (a/E) .
But we also have by lemma (4) that I—wy(o/g) i, and hence by thinning that
LA—y(a/E) . So by inductive hypothesis [A |, i.e. there is a closed tableau
with T;A at its root. We therefore substitute this for all the branch below [}A,
and the occurrence of y(a/&) has been eliminated. Continuing the same pro-
cedure, we work up the tableau, from the bottom, eliminating in turn each
occurrence of a formula y(o/&) for some name o, The result is to form a closed
tableau for I, as desired.

This completes the induction, and so provides the required proof.
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EXERCISE

4.9.1.(a) Let T(B/a) be the result of substituting the name B uniformly for all
occurrences of o throughout all the formulae in I'. Show that

If T'+ then T(B/a) .

[If we assume the soundness and completeness of the tableau system, then, of
course, this is just an application of 3.6.1(a). But we can also argue that point dir-
ectly, from the structure of the tableau rules. First, if B already occurs in T}, it is easy
to see that substituting } for o throughout the closed tableau for I' cannot upset the
operation of the quantifier rules, and so must still leave a correct closed tableau.
Second, the same applies if B does not already occur in T or anywhere else in the
closed tableau for I'. So the substitution might upset the quantifier rules only in case
B does occur somewhere in the tableau, but not in I and the problem is to say what
to do in this case.]

{b) Provelemma (4) above, i.c.

If L—vVEy - then I,—y(o/E) - for all names o..

[In the closed tableau with I,~VEy at its root the —V rule may have been applied
several times to —VEy, yielding various instances, say — (B, /), —w(B,/E),...,
—y(B,/E). Removing —VEy from the root, and adding these various instances
instead, we evidently obtain a closed tableau showing that T,—wy(B, /£), —w(B,/E),
v W(B,/E) . Recalling that each of the names B; must be new, and hence do not
occurinT, the desired result then follows by part (a).]

(¢) Show that the converse of lemma (4) is also correct, i.e. that

If G—wy(a/,) -, forall names o, then I',—VEy .
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5.1. Theldea

The idea of using semantic tableaux to provide a proof procedure is a recent
invention. (In effect it stems from work done by Gentzen (1934), but the
main ideas were first clearly presented by Beth (1955). The tree format used
in the last chapter is due to Jeffrey (1981).) Originally proofs in elementary
logic were quite differently conceived.

One of the great achievements of Greek mathematics was the introduc-
tion of ‘the axiomatic method, most famously in Euclid’s Elements, but by
no means confined to that work. The method results quite naturally from
reflection upon the idea of a proof. For in an ordinary proof one shows that
some proposition is true by showing that it follows from premisses that are
already accepted as true, and this will lead the theoretician to ask whether
those premisses could be proved in their turn. Pressing this question, one is
led to the idea of the ‘basic premisses’ of the subject, from which all other
propositions must be proved, but which must themselves be accepted
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without proof. These, then, are the axioms of the subject. It was recognized
by Aristotle that there must be such axioms for any subject that could be ‘sci-
entifically’ pursued; and it was Euclid’s achievement to have found a set of
axioms from which almost all the mathematics then known could be de-
duced. In fact the axioms need some supplementation if the deduction is to
confirm to modern standards of rigour, but that is of small importance. The
Greeks had, apparently, supplied mathematics with a clear ‘foundation’

Over the succeeding centuries mathematics grew and developed in many
ways, but it was not until the nineteenth century that interest turned once
more to the question of ‘foundations’. By then it was quite clear that Euclid’s
work would no longer suffice, and this led to a renewed search for the basic
premisses of the subject. At the same time some mathematicians became in-
terested in the principles oflogic, which governed the deductions from these
premisses, and an interest in both topics at once led Frege to the ‘logicist’
theory of the foundations of mathematics. This theory is that mathematics
has no special axioms of its own, but follows just from the principles of logic
themselves, when augmented by suitable definitions. To argue in detail for
this theory Frege had first to supply an adequate account of the principles of
logic, which he did in his Begriffsschrift of 1879. This epoch-making work
was the first presentation of what we now think of as modern logic, and in it
Frege supplied a set of axioms, i.e. basic premisses, for logic itself. No doubt
he was led to present the foundations of logic in this way at least partly
because it was a well-known way of presenting the foundations of other dis-
ciplines, especially parts of mathematics. But nowadays it does not strike us
as at all natural for logic.

Logic has always been regarded as concerned with correct inference, and
so it is natural to expect that it will take as its basic notion the relation of
entailment between premisses and conclusion. In fact the proof technique
of the last chapter did not conform to that expectation entirely. For the
original version aims to show, quite generally, that certain combinations of
truth-values are impossible, and while this includes entailment as a special
case, it is not directly focused upon it. And the revised version, which one
uses in practice, is naturally seen just as a technique for proving incon-
sistency. Equally a proof technique that is founded on axioms does not
conform, since an axiom is basically a claim that something is true. More
particularly, an axiom of logic claims that something is logically true, and
hence a necessary truth. So when we employ ‘formal’ (i.e. schematic) lan-
guages in our logic, an axiom will claim that some formula is such that all its
instances are logically true, i.e. that the formula comes out true under all
(possible) interpretations of its non-logical symbols, which is to say that it is
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avalid formula. So here the basic use of the turnstile has one formula on the
rightand none on theleft. Of course, facts about entailment will follow from
this, for, as we know,

Prres@n =Y = (915 (@a o).

But we do not work with entailment from the beginning. Our axioms are
single formulae, not sequents of several formulae.

We shall lay down infinitely many axioms, which we do by using axiom-
schemas. For example, our first axiom-schema will be

o—(y—0),

and to say that this is an axiom-schema is to say that every formula that can
be obtained from it, by substituting some definite formula for ¢ and some
definite formula for v, is an axiom. Clearly, there are infinitely many such
formulae, and we count them all as axioms. But despite this prodigality with
the axioms, we must also lay down at least one rule of inference, to allow us
to make deductions from the axioms. Since the axioms state that certain
selected formulae are valid, the sort of rule that we need will be a rule telling
us that if such and such formulae are valid, then so also is such and such
another formula. By tradition, axiomatic systems almost always adopt here
a version of Modus Ponens, which in this context is also called the rule of
detachment, namely

If =@ and =@y then =y

An axiomatic system may also adopt other rules, but the general idea is
to keep the rules of inference to a minimum, so that it is the axioms rather
than the rules which embody the substantial assumptions. Finally, a proof
in such a system is just a finite sequence of formulae, each of which is either
an axiom or a consequence of preceding formulae by one of the stated rules
of inference. It is a proof of the last formula in the sequence. (Note that it fol-
lows at once that there is a proof of each axiom, namely the ‘sequence’ of for-
mulae which consists just of that axiom and nothing else.)
The syntactic turnstile is used in the context

Fo

to mean ‘There is a proof of ¢ (i.e. in the system currently being con-
sidered). Another way of saying the same thing is ‘@ is a theorem’. When the
proof system is being formally presented, independently of any semantic
considerations, we use ‘" in place of ‘=" to state the axioms and the rules of
inference.
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EXERCISE

5.1.1. Older axiom systems proceeded not from axiom-schemas but from single
axioms, but in addition they adopted as a further rule of proof the principle of
uniform substitution for schematic letters (2.5.D and 3.6.I). Now to lay down an
axiom-schema is the same as to lay down a single axiom together with a licence to
apply the principle of substitution to it. (Why, exactly?) So one could say that the
difference between the two approaches is that older systems allowed one to apply
substitution at any point in a proof, whereas our approach confines its application
to axioms. Consider how one might try to show that the two approaches are equi-
valent, in the sense that each yields exactly the same theorems. {In effect one has to
show that a proof containing a step of substitution applied to a non-axiom can
always be replaced by one which eliminates that step, and instead applies substi-
tution only to axioms. The obvious suggestion is: make the same substitution in
every formula earlier in the proof. In fact this gives the right answer for formulae
that lack quantifiers, but complications can arise when quantifiers are present.
Explain. (Recall Exercise 4.9.1.)]

5.2. Axioms for the Truth-Functors

One of the interests in an axiomatic presentation of elementary logic is the
economy that can be achieved in the rules and axioms. When combined
with the very simple and straightforward structure of proofs in such a
system, this can be a considerable help in the investigation of what can and
cannot be proved in the system. But economy can be carried too far. For
example, it is possible to take a language which contains just one truth-
functor, e.g. one of the stroke functors, and to set down just one axiom and
one rule for that language, and nevertheless to provide thereby a complete
basis for all of truth-functional logic. (See the appendix to this chapter.) But
it is horribly difficult to learn to manipulate such a system. We shall, then,
aim for a compromise, seeking to economize where it is relatively simple to
do so, but not at the cost of losing intelligibility. We may economize on the
language, by taking just —,—,V as our logical symbols (— because of its
connection with Modus Ponens, — because it is the natural partner to —,
and V for a reason which will become clear in Section 5.6). We shall adopt
two axiom-schemas which concern — alone, and are deliberately chosen so
as to simplify a crucial proof (Section 5.3); one further axiom-schema for —
(somewhat arbitrarily chosen); and two more axiom-schemas for V, of
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which one is very natural and the other is chosen to simplify a crucial proof.
Some other possible axiomatizations will be mentioned in the course of the
chapter. But I postpone the axioms for V to Section 5.6, so that we can begin
by confining attention just to the logic of truth-functors.

We shall take, then, a language with — and — as its only logical symbols.
For this language there will be three axiom-schemas, each generating infin-
itely many axioms, namely

(A1) Fo—-(y—0).
(A2) F(@—(y—x)) = (W) — (9—)).
(A3) F(—o—->—w) = (Y—0).
and there will be one rule of inference:
DET: If ¢ and + ¢—wy then F .

It is very easily seen that this system is sound, i.e. that every provable for-
mula is valid:

If ¢ then = o.

In effect we have only to observe that each axiom is valid, and that the one
rule of inference preserves validity, and that yields the result at once. To put
this argument more fully, we argue by induction on the length of a proof to
show that every proof has a valid formula as its last line. Consider, then, any
arbitrary proof , with a formula @ as its last line. The hypothesis of induc-
tion is

Every proof shorter than Phas a valid last line,

and we have to show that ¢ must therefore be a valid formula. Since Pis a
proof, we have two cases to consider.

Case (1): @ is an axiom. It is easily checked by the tables that every
axiom is valid, and this yields our result at once.

Case (2): @ is a consequence, by detachment, of two earlier lines in .
From the definition of a proof it is clear that any initial segment of a
proof is itself a proof, and of course a (proper) initial segment of Pis a
proof shorter than . Hence any line in #, other than the last line, is the
last line of some proof shorter than %. So, by the hypothesis of induc-
tion, it is valid. But it is easily checked that the rule of detachment,
applied to valid formulae, yields only valid formulae as results. Hence
¢ must be valid.

This completes the argument.
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I remark at this point that our system is also complete, i.e. that for any for-
mula @ of the language,

If = ¢ then F¢.

But I postpone a proof of this claim to Section 5.4. Meanwhile, I turn to a
different topic, the independence of our three axiom-schemas.

Clearly, our axiom-schemas will not be economically chosen if one of
the axiom-schemas is superfluous, in that all the axioms generated from it
could be obtained as theorems by using only the other axioms. We have to
show that this is not the case. In other words we have to show (a) that from
axiom-schemas (A1) and (A2) together one cannot deduce all the instances
of axiom-schema (A3); in particular one cannot deduce the instance

(—P—>—=Q) = (Q—-P).

(If one could deduce this instance, then one could also deduce every other.
Why? Consider Exercise 5.1.1.) Similarly, we have to show (b) that there is
an instance of axiom-schema (A2) that cannot be deduced from (A1) and
(A3) together; and (¢) that there is an instance of axiom-schema (A1) that
cannot be deduced from axioms (A2) and (A3) together. Now one can show
that some formula can be deduced by actually producing the deduction.
But how are we to show that a given formula cannot be deduced? The gen-
eral method is this: one finds some property possessed by every permitted
axiom, and preserved by the rule of inference, but not possessed by the for-
mula in question.

The independence of axiom-schema (A3) is easily established in this way.
We have observed that, on the standard interpretations of — and —, every
axiom is valid and the rule of inference preserves validity. Evidently, this
need not be true for non-standard interpretations of these symbols. In par-
ticular, consider this non-standard interpretation: — is to be interpreted
as usual, but — is to be interpreted so that —@ always has the same truth-
value as ¢. (In other words, we interpret — as we standardly interpret ——.)
Under this interpretation it is clear that all instances of (A1) and (A2) re-
main ‘valid} and that the rule of inference preserves ‘validity’, since — is not
affected. But a typical instance of (A3), such as

(—P->—Q) - (Q—P)
is now given the same interpretation as
(P—Q) - (Q—P)

and so it is not ‘valid’ (It takes the value F when |P| = Fand |Q| = T.) It fol-
lows that this instance of (A3) cannot be deduced from (A1) and (A2) by the
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rule of inference. For everything that can be so deduced is not only valid
under the standard interpretation of — and —, but also ‘valid’ under the
non-standard interpretation just given.

A slightly different way of putting the same argument is this. Consider
a transformation f which transforms each formula of our language into
another, by erasing all the negation signs. That is, fis a function from for-
mulae to formulae which obeys these conditions

(1) f(P;) =P, for P;an atomic formula.

(2) flo—=vy) = (@) =AW)).
(3) f(—o) = flo).

Then we argue as follows: if g isan instance of (A1) or (A2), then f{¢) is valid
(under the standard interpretation of all the signs involved). (This is because
f() is also an instance of the same axiom-schema.) Also, if () is valid, and
Hlo—w) is valid, then f{vy) is valid too. So it follows that if ¢ is any formula
deducible, by the rule of inference, from (A1) and (A2), then o) is valid.
But we have seen that if @ is a typical instance of axiom-schema (A3), then
() is not valid. It follows that ¢ cannot be so deduced.

It was relatively easy to show the independence of (A3), because this
schema contains a new symbol, —, that is not present in the other schemata.
It is rather more difficult to show the independence of (A1) and (A2). We
may begin by looking for some non-standard interpretation of —, on which
(A2) is not counted as ‘valid’, but (A1) and (A3) are still ‘valid) and the rule
of inference still preserves ‘validity’; or vice versa (A1) is not ‘valid’ but (A2)
and (A3) still are. However, if we confine our attention to the interpretations
that can be given in terms of the usual two-valued truth-tables, we shall not
find one. (And this remains true even if (A3) is ignored. On the usual two-
valued truth-tables, any interpretation of — that verifies one of (A1) and
(A2) also verifies the other.) We must, then, look to a non-standard inter-
pretation which goes beyond the usual, two-valued, truth-tables.

The usual ploy here is to introduce three-valued tables. These can be
thought of in various ways, but for present purposes this approach will
be adequate: we shall retain the familiar values T and E but we shall add
another value, which we shall think of as ‘between’ those two, and which we
shall call N (for ‘Neither’). (This is intended simply as a helpful prop for
thought. But for the formal technique to work it does not matter in the
slightest whether the supposed ‘values’—T,EN—can be given an interpre-
tation which makes any kind of sense. Compare the tables given in Exercise
5.2.2(c).) Asbefore, a formula will count as ‘valid’ iff it always takes the value
T, on our tables, whatever the values of its sentence-letters. It follows from

196



5.2. Axioms for the Truth-Functors AXIOMATIC PROOFS

this that when ¢ and y both take the value N then ¢—y must not take the
value N (for if it did neither of (A1) and (A2) would be valid). To deal with
this point, it is natural to say that even when we have three values to con-
sider we shall preserve the principle that ¢ — takes the value T whenever ¢
and v take the same value. It is also fairly natural to preserve the principles
that @ —v takes the value T whenever y takes the value T, and whenever ¢
takes the value F, and that it takes the value F when @ is T and v is F. These
decisions have already filled in most of the places in our new three-valued
tables. In fact we have

‘
P>y T N F yhichl = | T N F
T T F abbreviate to T T F
s {N T T N T T
F T T T F T T T

(The table on the left is, I hope, self-explanatory, and thus explains the
briefer table on the right that I shall use henceforth.) We still have two ques-
tions to consider, namely the value of @— (1) when |¢| = T and |y| = N,
(2) when |@| = Nand |y| = E. There is a further restriction to be observed in
case (1), namely that we cannot here have |p—y| = T. For if we do have T
here, then the rule of inference will not preserve validity. We may observe
also that there is no point in considering tables with T in case (2), for such
tables will be equivalent to the standard two-valued tables, with N and F
taken to be the same value.

With so much by way of initial scene-setting, we now have to resort to
tedious experiment. The four tables left for consideration are:

O - | T N F Im - | T N F
T T N F T T F F
N T T N N T T E
F T T T F T T T
(I - T N F (V) » | T N F
T T N F T T F F
N T T F N T T N
F T T T F T T T

We first try these tables simply on typical instances of (A1) and (A2),
namely
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(1) P>(Q—-P)
(2) (P-(Q—R)) = ((P-Q) - (P-R)).

We find that on table I we have (1) valid and (2) invalid (forif |P| = |Q| = N
and |R| = F, then (2) takes the value N); on table II we have (1) invalid and
(2) valid (for if |P| = N and |Q| = T, then (1) takes the value N); on table
I both (1) and (2) are valid; on table IV both (1) and (2) are invalid (for
if |[P| = N and |Q| = T, then (1) takes the value N, and if |P| = [Q| = N and
|R| = F, then (2) takes the value F). For present purposes, then, the tables of
interest are I and II, since the other two do not discriminate between our
first two axioms.

We must now add a suitable three-valued table for the negation sign. The
natural candidates to consider are these three:

(V) — (VD) — (VII) —
T I3 T F T F
N N N F N T
F T F T F T

It turns out that V will serve our purpose perfectly well, for a typical instance
of (A3), namely

(3) (—P-—Q) = (Q—-P),

is valid both on tables I and V and on tables II and V. Thus axiom-schema
(A1) isindependent of (A2) and (A3), since on tables IT and V together both
(A2) and (A3) are valid while (A1) is not; and (A2) is independent of (A1)
and (A3), since on tables I and V together both (A1) and (A3) are valid while
(A2) is not. The argument requires us also to observe that on any of these
tables the rule of detachment preserves validity. (I remark, incidentally, that
our tables give us another proof that (A3) is independent of (A1) and (A2),
since on tables Il and VI both (A1) and (A2) are valid while (A3) is not. The
same applies to tables IIl and VIL)

Unfortunately, there is little that one can say by way of advice on finding
independence proofs such as these. For the most part, it is a tedious matter
of experiment by trial and error. Moreover, there are, in principle, no limits
on the complexity of the tables that may be needed: one cannot guarantee
that if axioms are independent, then this can be shown by n-valued tables
for any specified 1, and it may be much more effective to use a different kind
of semantics altogether. I give only a very brief indication here of how this
might be done. The interpretations for — that we have been considering
have been, in an extended sense, truth-functional. But there is no need to
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limit attention to such interpretations. For example, suppose that P—>Q
is to be interpreted as ‘it is a necessary truth that if P then Q. Then it should
be possible to see that axiom-schema (A1) is not correct for this interpreta-
tion, while (A3) certainly is correct (given the standard interpretation for
—), and (A2) is somewhat difficult to think about, but might be correct.
Moreover, the rule of detachment preserves correctness. So here is a differ-
ent way of trying to show that (A1) is independent of (A2) and (A3). But
some knowledge of modal logic would be required to carry this line of argu-
ment through with full rigour.!

I end this section with one further application of our three-valued tables.
One might have expected that axioms (A1) and (A2) between them would
be enough for the deduction of every theorem in which — is the sole logical
symbol, and that (A3) would have to be used only for theorems containing
—. This is not the case. For a counter-example, consider the thesis known as
Peirce’s law:

((P~Q)—>P) — P,

As a truth-table check will show, this thesis is valid on the standard inter-
pretation of —. As will be proved in Section 5.4, our system is complete, so
this thesis is provable in it. But it cannot be proved from axiom-schemas
(A1) and (A2) alone. For we have noted that whatever can be proved just
from those schemas must also be ‘valid’ on the three-valued table III, but
Peirce’s law is not. On those tables, it has the value N when |P| =N and
|Q| = E I shall come back to the significance of this point on several occa-
sions hereafter.

EXERCISES

5.2.1. Prove the assertion (p. 196) that any interpretation of — on the usual two-
valued truth-tables will verify either both or neither of axiom-schemas (A1) and
(A2). [Of course, this can be done by tediously trying each of the sixteen possible
interpretations in turn. But see if you can find a shorter method of argument.]

5.2.2. Aswill be shown in Section 5.4, in place of our axiom-schema (A3) we could
have used this alternative (A3’) instead:

(A%): (—o->Yy) =3 ((Ho—>—vy) > o).

1 The factis that, under the suggested interpretation for —, (A2) and (A3) are valid in the modal logic
$4, and so is anything that can be deduced from them by the rule of detachment, while (A1) is not valid
in any modal logic.
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(a) Showthat(A3’)isindependent of (A1) and (A2). [The same argument as works
for (A3) will also work for (A3).]

(b) Show that (Al) is independent of (A2) and (A3’). [Use table VII in place of
table V.]

(¢) Show that no combination of tables I-VII will demonstrate that (A2) is inde-
pendent of (A1) and (A3"), but that the following unexpected tables will do the
trick:

mZ A
wg ] e |
s Bz~ R 4
w1~ i | Tt
mZ A
ZZ 2z

5.3. The Deduction Theorem

So far, we have established various results about what cannot be proved
from this or that set of axioms, but we have not shown that anything can be
proved. This will now be remedied. As we have observed, the most straight-
forward way of showing that something can be proved is by actually giving a
proof of it, and we will begin with an example. Here is a proof of the simple
theorem P—P.

—P—P
1. (P-((P>P)—P)) » ((P—(P—P)) » (P-DP)) A2
2. P> ((P—P)—P) Al
3. P—>(P—P) Al
4, (P—(P—P)) — (P-P) 1,2
5. P—P 3,4

On the right we have noted the justification for each line of the proof. Thus
the first line is an instance of axiom-schema (A2) and the second and third
are instances of axiom-schema (A1). The fourth line follows by the rule
of detachment from lines (1) and (2) earlier, and the fifth line follows sim-
ilarly from lines (3) and (4). It is standard practice always to furnish a jus-
tification for each line of a proof, so that it can easily be checked that indeed
itis a proof. Now let us note two things about this proof.

First, it is obvious that by the same proof as we have used to prove P—>P
one could also prove any substitution-instance of that theorem, e.g.
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Q—Q
(P-Q)—>(P-Q)
—(P->Q)->—(P->Q)
etc.

All one has to do to find a proof of the substitution-instance is to make the
same substitutions all the way through the original proof. It is clear that this
argument holds quite generally, so we can say that in our axiomatic system
uniform substitution for schematic letters preserves provability, i.e.

A substitution-instance of a theorem is itself a theorem.

To save having to cite this principle explicitly every time that we wish to
use it, in future we shall very seldom cite actual theorems of the system, or
give actual proofs of them, but will cite theorem-schemas (like our axiom-
schemas), and give proof-schemas to establish them. So the above proof
would be given with the schematic ¢ in place of the definite formula P
throughout, and would be taken as establishing the theorem-schema

Lemma.\— ¢p—0.

(But, to avoid prolixity, we shall often in practice refer to theorem-schemas
simply as theorems, and to axiom-schemas as axioms).

A second point to note about the proof just given is that it is remarkably
roundabout. When seeking for a proof of the simple theorem P— P, how
would one know that anything as complicated as line (1) would be needed?
What principles are there that can guide one to the right axioms to use in
the first place? Well, the answer is that the problem of finding proofs can be
very much simplified if we begin by looking for a different kind of proof
altogether, namely a proof from assumptions.

We shall use T @’ to mean “there is a proof of @ from the set of assump-
tions I', and we define this as short for ‘there is a finite sequence of for-
mulae such that each of them is either an axiom, or a member of T, or a
consequence of previous formulae by one of the specified rules of inference;
and the last formula in the sequence is @’ It is worth noting at once that from
this definition there follow without more ado the three ‘structural’ prin-
ciples of Assumptions, Thinning, and Cutting, namely

ASS: oo
THIN: If T ¢ then Ly o
CUT: IfTt¢ and ¢,Ay then TAR .

These follow independently of how the rules of inference are specified. For
example, to verify the principle of Assumptions we have only to note that
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the sequence consisting of the single formula ¢ and nothing else is, by the
definition, a proof of ¢ from the assumption ¢. The other two principles are
proved equally simply. But let us now come to the question of specifying
rules of inference.

Rules of inference for use in proofs from assumptions need not be the
same as those specified for axiomatic proofs, but they should have the
axiomatic rules as a special case, namely the case where there are no assump-
tions. Thus at present our axioms are (A1)—(A3) as specified in the last sec-
tion, and as our rule of inference we now take Modus Ponens in its most
general form, which is usually written as

0,0V .

But since we are licensed to apply this rule within proofs from assumptions,
a more precise formulation is

If THo and T @—y then T .

It is therefore not the same rule as the rule of detachment that we began
with, but a more general rule. For the rule of detachment is the special case
of this rule in which T is null, i.e. in which there are no assumptions.
Consequently, proofs in the axiomatic system that we began with are special
cases of proofs from assumptions in general, namely the cases in which there
are no assumptions.

Now, it is very much easier to look for proofs from assumptions than it is
to look for proper axiomatic proofs. Yet also, every proof from assumptions
can be transformed into a proper axiomatic proof in this sense: a proof of y
from the assumptions @y,...,9,,, showing that

Q1P

can be transformed to a proof showing that
P1eesPr1 F @Y,

and this in turn can be transformed to show that
ProersPr2 = Q= (9r>Y)

and by repeating such transformations as often as necessary we eventually
get a proof from no assumptions showing that

= @1 (9 > (. (@,W)..)).
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This last is called the conditionalization of the sequent with which we began.
To establish the claim, we prove what is called the Deduction Theorem, which
states that

If oy then THoe—-wy.

(Compare 2.5.H.)
The argument is by induction on the length of the proof showing that
I . So let Pbe such a proof. The hypothesis of induction is

Any proof shorter than 2 showing that I,¢ -y can be transformed
into a proof showing that I' - ¢—, for any formula .

We have three cases to consider, according to the three possible justifications
for the line y in the proof.

Case (1): y is an axiom. Then y—(¢—y) is also an axiom. So by
Modus Ponens ¢—v is provable on no assumptions. So we have (by
Thinning) a proof that I' - ¢g—.

Case (2): y is an assumption.

Subcase (a): y is @. Then @—V is 9— @, and so is provable on no
assumptions. (Lemma, proved above.) So we have (by Thinning) a
proof that ' @—.

Subcase (b): y is in I'. Then there is a proof (by Assumptions, and
Thinning) that I' - y. Add to this proof the lines y—(¢—y) and
¢—>V. The first adds an axiom, and the second a consequence by
Modus Ponens of two previous lines. So the result is a proof showing
that T @—y.

Case (3): y is a consequence by Modus Ponens of two previous lines
x and x—V. Then by inductive hypothesis there are proofs showing
that I' = @—yx and I' - ¢ —(x—). Put these proofs together and add
the lines (9—=(x—y)) - ((9—%) = (9—=V)), (9—x) = (9—>),
and @— . The first adds an axiom, and the second and third add con-
sequences of previous lines by Modus Ponens. So the result is a proof
showing that '~ o— .

This completes the argument. It may be noted that axioms (A1) and (A2),
together with their consequence ¢— ¢, are exactly the premisses needed
to push the argument through. The axioms were chosen precisely for this
purpose.

Let us illustrate the use of the deduction theorem by proving, with its
help, some simple sequents. A nice easy example is
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Oy, Yo oy

1. ooV ASS
2. Y=y, ASS
3.0 ASS(6)
4.y 1,3,MP
5. % 2,4,MP

6. 90—y 3-5,Deduction theorem

The citation ‘ASS’ as a justification is short for ‘Assumption’. We begin the
proof by writing as the first two lines the assumptions in the sequent we
are trying to prove. Then in line (3) we introduce an auxiliary assumption,
which will be discharged (i.e. will no longer be an assumption) by the time
we have got to the end of this proof. When we introduce it, we simply write
‘ASS’ in justification; the line through ‘ASS’ will be added later, in fact when
we come to line (6), at which the assumption is discharged. Lines (4) and (5)
are then simple applications of Modus Ponens (abbreviated to MP) to pre-
vious lines. By the time that we have reached line (5) what we have shown is

P, YK, 9 X
At this stage we cite the deduction theorem, which tells us that our proof so
far may be transformed into another proof which shows that

O, Y=y = o).

We do not write that other proof out, but simply rely on the fact that that
other proof does exist, as the deduction theorem has shown. Consequently,
at line (6) we write the desired conclusion ¢—, we discharge the assump-
tion ¢ by putting a line through its original justification ‘ASS’, and we add
the tag (6) to show at what point this assumption was discharged. Finally,
in justification of line (6) we cite the line at which ¢ was introduced as an
assumption, the line at which the conclusion j was obtained, and the deduc-
tion theorem itself. (In future I shall abbreviate the citation ‘Deduction the-
orem’ simply to ‘D’ In many books this important principle is called ‘the
rule of Conditional Proof’, abbreviated to ‘CP’. We shall meet another name
for it in the next chapter.)

I remarked that when we apply the deduction theorem we do not write
out a further proof, but just rely on the fact that it exists. Of course, the proof
of the deduction theorem shows us how to write out such a proof if we wish
to, but the proof found by that method is usually quite unnecessarily round-
about. Lillustrate by applying the method to the proof just given, adding to
each original assumption two extra lines, showing that it can be prefaced by
©—, and replacing other lines by proofs which show that they too can be
prefaced by ¢ —. The result is this:
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P, Y oY

1. ooy ASS

la. (9—=y) = (9—=>(9—y)) Al

1b. o= (p—>V) 1,1a,MP
2. ¥y ASS

2a. (y—y) = (0—=>(y—y)) Al

2b. ¢—(y—y) 2,2a,MP
3a. ¢ Lemma

4a. (9=(0—V)) = ((9—0)—>(e—>vy)) A2

4b. (¢—9)—>(9—>V) 1b,4a,MP
4c. 9>V 3a,4b,MP
5a. (9—=(y—x)) = ((p—=>y)—=>(9—Y)) A2

5b. (¢—y) = (¢—) 2b,5a,MP
5¢. @Y 4¢,5b,MP

It is to be noted that lines (1a), (1b), (3a), (4a), (4b) were all added to the
original proof in order to obtain ¢ —V in line (4c). This was all quite unne-
cessary, since @—V is one of the assumptions to the proof anyway. So we
may obviously simplify the proof in this way:

OO, Y -9y

1. ooV ASS
2. ¥y ASS
3. (y—x) = (0=>(y—y)) Al
4. o—=>(y—-y) 2,3,MP
5. (p—=>(y—=x)) o ((p-w)>(9—x)) A2
6. (9oY)—=>(9p—>Y) 4,5,MP
7. ¢ 1,6, MP

This is the simplest proof of the result, not using the deduction theorem,
that I am aware of. It is only one line longer than our original proof, which
did use the deduction theorem. But it is much more difficult to find.

The point can be made yet more obvious if we introduce a further step of
complication, and consider the sequent

PV = (W)= (9—-Y).

If we may make use of the deduction theorem, then the proof of this is
extremely simple. We repeat the original proof given on p. 204 and add one
further use of the deduction theorem at the end, discharging assumption
(2). This assures us that there is a proof of the sequent which does not use
the deduction theorem. But when one tries to find such a proof, it turns out
to be very complicated indeed, as you are invited to discover. One can, of
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course, continue the lesson yet further by considering proofs, with and
without the deduction theorem, of the sequent

F(o—>w) = ((y—x)—=(e—y).

Use of the deduction theorem greatly simplifies the search for proof (or,
more strictly, the task of showing that there is a proof). Once this theorem is
available, there is usually no difficulty in finding a proof (or, a proof that
there is a proof) of any sequent whose proof depends simply on axioms (A1)
and (A2). Some simple examples are suggested in the exercises to this sec-
tion. I postpone to the next section the use of axiom (A3). Meanwhile, 1
bring this section to an end with some further reflections upon the content
of our axioms (A1) and (A2).

We have seen that from axioms (A1) and (A2), together with the rule
Modus Ponens, one can prove the deduction theorem:

If oy then T'~@-owy.

The converse is also true. Given the deduction theorem (as stated here), and
Modus Ponens, one can prove (A1) and (A2). Here is a proof of (Al):

Fo—(y—o¢)
L.y ASS(3)
2.9 ASS(4)
3. y—o9 1-2,D

4, 9> (y—0) 2-3,D

When the proof is set out like this, it may seem to be something of a cheat. In
lines (1) and (2) we introduce two assumptions. Then in line (3) we infer
that if the first is true, so is the second, and discharge the first, so that this
conclusion depends only on the second. But, of course, we have not, in any
intuitive sense, deduced the second assumption from the first, and so this
step is certainly unexpected. It is, however, entirely in accordance with the
deduction theorem as we have stated it. For the two-line proof which con-
sists of first  and then @, with each line entered as an assumption, is a proof
showing that W, I ¢. (Compare the remark earlier on ¢ - ¢.) Since the
order of the premisses makes no difference, we can also say that it is a proof
showing that @, y @. To this we apply the deduction theorem, as stated, to
infer that ¢ - y—>@, and that is exactly what line (3) records. The further
step of the deduction theorem in line (4) is then completely straightforward.

This shows that axiom (Al) does indeed follow from the deduction
theorem, as stated. Axiom (A2) follows also, if we allow Modus Ponens to be
used too, as this proof shows:
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= (9= (y—y)) = ((p—>y)>(9—Y))

L. e—=>(y—>Y) ASSO)
2. 0oV ASS(®)
3. ¢ ASS(7)
4. Y-y 1,3,MP
5 vy 2,3,MP
6. x 4,5,MP
7. 90— 3-6,D
8. (9—=y)—(9—y) 2-7,D
9. (p—=>(y—>x)) = ((9oy)=(e—x)) 18D

In the presence of Modus Ponens, then, (A1) and (A2) are together equival-
ent to the deduction theorem. It may also be noted that Modus Ponens is
itself equivalent to the converse of the deduction theorem, namely

If THo@—y then Dok y.

To see that Modus Ponens follows from this principle we have only to con-
sider the special case in which I is the formula ¢ —. Then the left-hand
side is simply a case of the principle of Assumptions, so we may infer the cor-
rectness of the right-hand side, which is Modus Ponens. As for the argument
in the other direction, if we suppose that I' = ¢— v, and we also assume that
¢ —VY,¢ -, then by an application of CUT it follows at once that ;¢ - .
We may conclude that the assumptions about — that are stated in axioms
(A1) and (A2) of the axiomatic system, together with the rule of inference
Modus Ponens, are actually equivalent to this assumption (namely 2.5.H):

I'e-y iff ek wy.

Whatever follows from the one will therefore follow from the other also.
But we have observed (at the end of Section 5.2) that not all truths about —
do follow from the assumptions in question. Even when our attention is
focused just on —, we cannot ignore the effect of our axiom (A3).

EXERCISES

5.3.1. Use the deduction theorem to prove the following:
(a) Fo—0.
(b) o> (o—>y) oy
© o= (y=x)Fy—(e—=%).
(d) (9>v)-x -y
(& ((9=y)=y) = x-o-).
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5.3.2. Find a proof, not using the deduction theorem, of the sequent

P2y (W—=p) > (0.
[Method: begin with the seven-line proof on p. 205, adding to it a use of the deduc-
tion theorem as a final step, Then eliminate that use by the method employed in
proving the deduction theorem, and simplify the result by omitting superfluous
detours. This should yield a proof of thirteen lines, using three instances of each
axiom-schema.]

5.3.3. To axioms (A1) and (A2) add a further axiom:

(P) = ((9—-y)—0¢) = ¢.
(a) Observethatthe proofofthe deduction theorem is not affected by adding a new
axiom,
(b) Using the new axiom (and the deduction theorem, and Modus Ponens) prove
the sequent

(p->y) >y (y—0)—0.
(c) Show that this sequent is not provable from (A1) and (A2) alone. [Hint: recall
the last paragraph of Section 5.2.]

5.4. Some Laws of Negation

Our axiom (A3) for negation was somewhat arbitrarily chosen. There are
many other useful and important laws for negation that might perfectly
well be used in its place. To begin with, we may note that there are four laws
which are together known as the laws of contraposition, namely

(1) o—»yE—Yy—>—0.
(il) >y FEy—=—0.
(iii) @y E—Y—0.
(iv) =@y Ey—-e.

It is easily seen that any of these can be deduced from any of the others, given
in addition the two laws of double negation, namely

(0] = 1.
1P = Q.

Now in fact our axiom (A3) corresponds to the fourth law of contraposi-
tion above, and—as we shall see—both the laws of double negation can be
deduced from this. But in place of (A3) we could have had an axiom corres-
ponding to the first law of contraposition, together with two further axioms
corresponding to the two laws of double negation. Or we could have had
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axioms corresponding to the second law of contraposition plus the second
law of double negation; or the third law of contraposition plus the first law
of double negation. For in either case we should have been able to deduce
from these the axiom that we do have, as may easily be checked. But on the
other hand there was no need to start from any version of the laws of con-
traposition, as I now demonstrate. I first give a series of deductions from the
axiom (A3) that we have in fact adopted, but I then point out how this series
shows that quite different starting-points could have been adopted.

The deductions will assume as background both the rule Modus Ponens
(cited as MP) and the deduction theorem (cited as D). In view of my re-
marks at the end of the last section, I shall count the sequents

Fo—o
o-y—o

as following from the deduction theorem alone. I shall also suppose that our
axiom (A3) may be cited without more ado in the form

=Y Y—0.
With so much by way of preliminaries, let us now proceed to the deductions.
(T1) ¢—ovy (EFQ)

.o ASS
2. - ASS
3. my—o— 2,D
4. o—vy 3,A3
5.y 1,4,MP

Ilabel the sequent proved ‘(T1)}, short for ‘theorem 1’ 1 also put in brackets
the label ‘EFQ;, short for ex falso quodlibet, which is the usual name for this
law.2 The proof is, I think, perfectly straightforward. So let us proceed.

(T2) —p—oH9 (CM*)

1. —o—0 ASS

2. —¢ ASS(5)
3.0 1,2,MP
4. —ﬂ(—v(p—)q)) 2,3,T1
3. —-nq)——)—1(—1(p——>(p) 2-4,D
6. (9—¢9)>0 5,A3

7. @ 1,6,MP

2 The labelis inaccurate; it means ‘from what is false there follows anything you like} but it should say
‘from a contradiction, not ‘from what is false’
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The label ‘CM’ stands for consequentia mirabilis; I have added an asterisk to
distinguish this version from the perhaps more usual version proved as (T4)
below. The proof is perhaps rather unexpected; in lines (2) and (3) we have
reached a contradiction, so we may employ the result already established
as (T1) to infer any formula that we like. We cunningly choose the nega-
tion of our first assumption. We then apply the deduction theorem, dis-
charging our second assumption, and this allows us to bring the axiom to
bear, so yielding the desired conclusion. Two points should be noted about
the use of the result (T1) within the proof of (T2). First, we have taken a
substitution-instance of (T1) as first stated, writing —(—@—¢) in place
of y. This is a perfectly legitimate procedure, as I have already remarked
(p- 201). Second, since (T1) is not itself one of the initially stated rules of
inference, the sequence of lines (1)—(4) does not satisfy the original defini-
tion of a proof from assumptions (p. 201). It should be regarded, rather, as
a proof that there is a proof in the original sense, namely one got by insert-
ing the original proof of (T1) into the proof of (T2) at this point. So, if the
proof of ('T2) were to be written out more fully, its first four lines would be

replaced by

1. —9p—0 ASS

2. =@ ASS5)
3.0 1,2,MP
4a. ——(—Q—Q) >0 2,D
4b. 9—>—(—9—0) 4a,A3
4c. —(—0—0) 3,4b,MP

The citation of one result already proved, within the proof of a further res-
ult, is therefore—like citations of the deduction theorem—an indication
that there is a proof, but not itself part of that proof. When we are working
from a small number of initial axioms, use of this technique is in practice
unavoidable. Itis also a convenient way of showing what can be proved from
what; in the present case, it may be noted that axiom (A3) will never be cited
again in this series of deductions. All the further results can be obtained just
from (T1) and (T2) as ‘basic premisses.

(T3) ——opHo (DNE)
L — ASS

2. —Q ASS4)
3. 9 1,2,T1
4. —p—0Q 2-3,D
5. ¢ 4,T2
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(‘DN’ abbreviates ‘double negation’ and ‘DNE’ is ‘double negation elimina-
tion’)

(T4) ¢g>—ot—¢@ (CM)

1. p—>—0 ASS
2, ¢ ASS(5)
3.0 2, T3
4. =0 1,2,MP
5. >0 2-4,D
6. —¢ 5,T2

(T5) -y, 9—>—yH—@ (RAA)

1. p—vy ASS
2. gy ASS
3.0 ASS(?)
4. vy 1,3,MP
5.y 2,3,MP
6. —@ 4,5,T1
7. >0 3-6,D
8. — 7,T4

‘RAA’ abbreviates ‘reductio ad absurdum’. (For a strengthened form of RAA,
as CM* is stronger than CM, see Exercise 5.4.2.) Note here that (T1), (T2),
and (T4) will not be used again in the following proofs, which depend only
on (T3) and (T5).

(T6) ¢—>—ykFy——e (CON(ii))

l. p——vy ASS
2. vy ASS(5)
3. ooV 2,D
4. —¢ 1,3,T5
5. y—>—@ 2-4,D

(‘CON’ abbreviates ‘contraposition’)

(T7) Qo——0 (DNI)

1. ¢ ASS

2. 19— D

3. ¢/ 2,16
4. ——Q 1,3,MP
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(‘DNT abbreviates ‘double negation introduction’.)

(T8) P>YH——yY—— (CON(i))

1. o—vy ASS
2.9 ASS(5)
3. y 1,2,MP
4, vy 3,17
5. 9p>——vy 2-4,D
6. —myY—>— 5T6

(T9) —@—yk—y—¢ (CONiii))

1. —@—y ASS
2. -y ASS(6)
3. =y 2,D
4. @ 1,3,T5
5. ¢ 4,13
6. Y- 2-5,D

(T10) 9—>y,—e—->yhy (TND)

1. o>y ASS
2. 50>V ASS
3. —yY——0Q 1,T8
4, y—>——0 2,18
5 ——y 3,4,T5
6.y 5,13

“TND’ abbreviates ‘tertium non datur’, which is another name for the law
of excluded middle (LEM). (Literally “TND’ means ‘A third (possibility) is
not given’.) Properly speaking, LEM is ¢v~—¢, and so requires v in its for-
mulation, and is not yet available. What is here named TND is perhaps best
viewed as a consequence of LEM, since it says in effect that if a conclusion y
can be got both from ¢ as assumption and from —@ as assumption then it
must be true, which, of course, is because those two assumptions between
them exhaust the possibilities. Given standard rules for v, as in Section 5.7
below, one can very swiftly deduce TND as stated here from LEM as pro-
perly formulated.

I now introduce some reverse deductions. First, CM, which was used in
the proof of RAA, is in fact a special case of RAA, as the following proof

shows:
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CM: ¢——ok—0
1. g>»>—¢@  ASS
2. >0 D
3. —@ 1,2,RAA(=T5)

In a similar way CM* is a special case of TND:

CM*: —p—0ok¢
1. —9—>0@ ASS
2. 9—0 D
3. ¢ 1,2,TND(=T10)

This latter is rather more significant, since it shows that whatever can
be deduced from CM* (=T2) can also be deduced from TND (=T10)}, and
several important theses were deduced from CM*. Another quite significant
reverse deduction is that EFQ, which was our first theorem, could have been
obtained instead from the third law of contraposition, which was (T9):

EFQ: o,—oHvy
.o ASS
2. —9 ASS
3. —y—e 1,D
4. QoY 3,CON(iii) (=T9)
5.y 2,4, MP.

I now add two of the points made at the outset of this section, that from
CON(ii) with DNE, or from CON(iii) with DNI, it is possible to recover the
original axiom (A3). Here are proofs.
(A3) o>y y—e

1. —@—=>—y ASS

2. Y>>0 1,CON(i) (=T6)
3.y ASS(6)

4, ——@ 2,3,MP

5.0 4,DNE(=T3)

6. y—>o 3-5,D

(A3) —o>— Wy y—0
1. —po—y ASS
2. 9 —y—0 1,CON(iii) (=T9)
3.y ASS(6)
4, ——y 3,DNI(=T7)

213



AXIOMATIC PROOFS 5.4. Some Laws of Negation

5. ¢ 2,4,MP
6. y—o¢ 3-5,D

The results of all these deductions may conveniently be surveyed in the fol-
lowing diagram (where the arrows indicate that the sequent at the pointed
end of the arrows may be proved from the sequents at the other end of those
arrows, assuming the rules MP and D as background rules).
From this diagram one can at once read off that each of the following sets
of basic axioms would be equivalent to the single axiom (A3):
(a) TND(=T10)+EFQ(=T1)
OV, TPy Y
ooy
(b) CM*(=T2)+EFQ(=T1)
aand Tl
Oy
(¢) TND(=T10)+RAA(=T5)
PoY, MYy
OV, 9—>— Yk —
(d) DNE(=T3) + RAA(=T5)
——Q @
PV, >y —0
(e) DNE(=T3)+CON(i)(=T6)
1P - ¢
P> = Yy——0
(f) CONC(iii)(=T9) +DNI(=T7)
10—y b= —Y—>0
0] = 1P
(g) CON(iii)(=T9) +CM*(=T2)
QY Y0
=@
(h) CONC(ii1)(=T9) + CON(i)(=T6)
PP Y@
Oy - Y19

There are yet other combinations which are again equivalent, not only
those that can be read off the diagram as it stands, but also some that would
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l l »( CM
‘ Lr

A

y
@N (i

)
A

/

[

be revealed by complicating the diagram still further. This matter is further
explored in the exercises.

EXERCISES

5.4.1. Many books choose DNE and RAA as their basic assumptions on negation.
The diagram shows that all the theses we have considered can be obtained from this
basis, but often the route suggested is rather indirect.
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(a) Using DNE and RAA asbasic assumptions, give direct proofs of EFQ, CM*, and
CON(i), not relying on any other thesis.
(b) Using the same assumptions, give a proof of Peirce’s law

= ((p—w)—>0) - 0.
5.4.2. Show that the single thesis RAA*, namely

F(=9-y) = (oY) - ¢),
is equivalent to the single axiom (A3) that we have adopted. [It is easy to deduce
RAA* from RAA and DNE. For the converse deduction, perhaps the simplest plan

is to deduce both EFQ and CM* directly from RAA*. The argument can then be
concluded by relying on the results presented on the diagram.]

5.4.3. Suppose that we define negation by putting
—e for o—l.

(a) Without adding any extra assumptions about L, show that the following theses
are immediate consequences of the definition: CM, RAA, CON(ii), DN, CON().
(b) Addinga further assumption about 1, namely

1y,

show that EFQ may then be counted a consequence of the definition.

(c) Independently of these suggestions for defining negation, show that if just EFQ
and RAA are assumed as basic principles for negation, then CM, DNI, CON({i),
CON(ii) can all be deduced.

5.4.4. What is called intuitionist logic differs from the classical two-valued logic
primarily over its treatment of negation. Atany rate, an intuitionistlogic3 for — and
- can be axiomatized by adding to our axiom-schemas (A1) and (A2) two further
axiom-schemas for negation, corresponding to EFQ and RAA, i.e.

= @ (—9—-y)

(e y)>((9—>—y)——9).
Alternatively, it can be axiomatized by defining—in terms of |, and adding to (A1)
and (A2) the single axiom-schema

L.
Thus intuitionist logic contains all the theses of the previous exercise (i.e. CM, DNI,
CON(i)~(ii), in addition to EFQ and RAA).

Show that it does not contain any of the other theses on the diagram (i.e. CM*,
DNE, CON(iii)—(iv), TND). [Argue first that it is sufficient to show that it does not
contain DNE. Then show that tables III and VI of Section 5.2 verify all intuitionist
axioms (and Modus Ponens), but do not verify DNE.]

3 See also n. 8 in the Appendix to this chapter.
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5.5. A Completeness Proof

We shall now show that the three axioms (A1)~(A3), together with the rule
MP, form a complete basis for truth-functional logic. As we noted long ago,
—> and — are together expressively adequate (p. 46), i.e. can express every
truth-function. Also, as we showed in the last chapter, the logic of truth-
functions is compact (pp. 173—4), so that sequents with infinitely many
formulae on the left introduce nothing new. Moreover, if we are confining
attention to finite sequents, then we can also confine our attention fur-
ther to those with #no formula on the left, since any finite sequent can be
exchanged for its conditionalization (pp. 202—3). To prove the completeness
of our system, then, it is sufficient to show that, for any formula o,

If =¢ then Fo.

That is what we shall now show.

The idea of the proof is this. If the formula @ is valid then it is a truth-table
tautology, i.e. it comes out true in every row of the truth-table. We shall
show that our deductive system can mirror the truth-table calculations.4
Suppose that we have a formula ¢ which contains just the sentence-letters
P,,...,P,, and no others. Then a row of the truth-table says that, for a given
assignment of truth-values to the letters P,...,P,, the formula ¢ takes a cer-
tain value. We can say the same thing by means of a sequent of the form

+P,,.. P, 10,

where P, is either P; or —P;, depending on whether P, takes the value T or
the value F in that row, and similarly *¢ is either ¢ or —¢, depending on
whether ¢ then takes the value T or F in that row. Let us say that this sequent
is the sequent that corresponds to that row of the truth-table. Our complete-
ness proof will show as a first step that for each row of any truth-table the
corresponding sequent is provable in our deductive system. Then as a sec-
ond step it will show that a tautology, which comes out true in every row of
its truth-table, is provable on no assumptions at all. For convenience I list
here the lemmas that will be needed about our system. For the first part of
the proof they are

1) ot=——0.

(2) o-y—0.

(3) —ot 9o

(4) ¢,y —(e—oy).

4 This proofis due to Kalmar (1934-5).
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Of'these, (1) was proved as (T7) of the previous section; (2) is an immediate
consequence of the deduction theorem; (3) results by applying the de-
duction theorem to (T1) of the previous section; and the proof of (4) may
safely be left as an exercise. In the second part of the proof we shall need a
version of TND, and the most convenient form is this:

(5) If Koty and [ty then T .

This is obtained by applying the deduction theorem to (T10) of the prev-
ious section. I remark here that since lemmas (1)—(5) are the only features of
the deductive system that are needed for this completeness proof, it follows
that any other system which contains (1)—(5)—including the system which
consists just of (1)—(5) and nothing else (except the structural rules)—is
equally complete, in the sense that it suffices to yield a proof, on no assump-
tions, of every tautology. (But we would need to add the rule MP if we are
to ensure that from a proof of the conditionalization of a sequent, we can
always construct a proof of the sequent itself.)

As the first stage of the proof we need to show this. Let the letters Py,...,P,
be the letters in a formula ¢. Consider any assignment of truth-values to
those letters. Let £P; be P; or —P; according as P, is assigned the value T or
the value F in that assignment. Then we must establish

(a) If @is true on this assignment, then +Py,...,P, - ¢.
(b) If @is false on this assignment, then £P,,..., P, = —0.

The proofis by induction on the length of the formula ¢. We have three cases
to consider:
Case (1): @ is atomic, say P;. Then what has to be shown is
(a) PP,
(b) — P+ —P.
This is immediate.
Case (2): @ is —. Then the letters in @ are the same as those in y. (a)

Suppose @ is true on the assignment. Then  is false, and by inductive
hypothesis we have

+P,..,tP, ——y
i.e. iPl,...,iPn }'_ (P

as required. (b) Suppose ¢ is false. Then w is true, and by inductive
hypothesis

+Pp,. kP, -y,
Hence, by lemma (1)
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ﬂl""’i—Pn l'— —1—|\|I
i.e. iPl,...,iPn |"‘ [

as required.

Case (3): @ is y—Y. Then the letters in y and in  are subsets of those
in @, say P;...,P; and Py,...,P; respectively. (a) Suppose ¢ is true on
the assignment. Then either v is false or y is true, and by inductive
hypothesis

1Py tPi—y or ZP,..tPky
+P,..2P,—y or *P,,..,+P,F x (by THIN)
s 1Py,...2P,  y—y (bylemmas (2) and (3))
ie. tP,.. 1P, @,asrequired.

(b) Suppose @ is false on the assignment. Then yis true and y is false,
and by inductive hypothesis

iPi,...,in ~ ' and iPk,...,iPl e ) 4

+Py..tP, -y and +P,,...,2P, ——y (by THIN)
s 1P, P - —(y—y) (bylemma (4))
ie. £P,,...xP, - o, as required.

This completes the induction, and therefore completes the first stage of our
proof. So we now move on to the second stage.

Suppose that @ is a tautology. If there are n letters in ¢, then there are 2»
rows in the truth-table for ¢, and for each of them there is a corresponding
sequent which is provable. We consider these sequents in the order of the
corresponding rows of the truth-table, and take them in pairs. Each pair has
the form

4Py tP, 1, Py 0.
+P,..tP, i, —P, - .

Applying lemma (5) to each pair, we infer in each case
iPl""’iPn-—l f— Q.

This leaves us a set of 27-1 provable sequents, covering every assignment
of truth-values to the sentence-letters P;,...,P,_;, but no longer containing
the letter P, on the left. By taking these in pairs, and applying lemma (5) to
each pair, as before, we obtain a set of 27-2 provable sequents, covering every
assignment of truth-values to the letters P;,...,P,,_,, but no longer containing
the letters P, or P,_; on the left. By continuing this manceuvre, as often as
necessary, we eventually reach the provable sequent - @, with no sentence-
letters on the left. This completes the argument.
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EXERCISES

5.5.1. Let I be the intuitionist logic specified in Exercise 5.4.4, and let -; mean
provability in that logic.
(a) Establish the lemmas

¢ - ——0.

¢ v—e.

—1Q 7 9.

¢y ().
Deduce that the first stage of our completeness proof holds also for intuitionist
logic.
(b) Establish the lemma

If T,¢ b ——wy and I[,—¢ F; ——wy then T ——y.

Deduce that the second stage of our completeness proof can be modified to yield
this result:

If =¢ then ; ——g.

5.5.2.(a) Show that an axiomatic system S which contains EFQ is absolutely con-
sistent iff it is negation-consistent, i.e.

forall ¢,Fg¢ iff forsome @, and Hg—@.

(b) Show that if we add to the axioms (A1)-(A3) any new axiom-schema of our
language, not already provable from those axioms, then the result is an incon-
sistent system. (That is, the axioms (A1)-(A3) are ‘complete in the sense of Post
(1921)’) [Since (A1)-(A3) are complete, any axiom-schema not provable from
them must be non-tautologous. So it has to be shown that any non-tautologous
schema has an inconsistent substitution-instance. ]

5.6. Axioms for the Quantifiers

By being very generous over what to count as an axiom, it is possible to pre-
sent a logic for the quantifiers which still contains no rule of inference other
than the familiar rule Modus Ponens. (See the appendix to this chapter.) But
it does complicate matters quite noticeably, since the Deduction Theorem
is then much more difficult to establish. Consequently, the more usual way
of extending axioms (A1)—(A3), so as to cover quantifiers as well as truth-
functors, adds not only new axioms but a new rule of inference also. The
simplest such rule to add is the rule of generalization, in this form:
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GEN: If - ¢ then + VEop(&/0).
As well as this new rule, one adds also these two axiom-schemas:

(A4) FVEp — ¢(a/t).
(A5) +VE(y—9) — (W—VEY), provided £ is not free in .

Aswe shall eventually see (but not until Chapter 7), this provides a complete
basis for the logic of quantifiers.

There is room for some variation in the statement of the rule GEN and the
axiom (A4). As I have just set down these theses, ¢ represents any formula, §
any variable, and o any name-letter. This formulation evidently presumes
that name-letters do occur in the language we are considering, and it also
presumes that we are confining attention to closed formulae, so that no vari-
ables occur free in a finished formula. If open formulae are to be permitted
too, then in (A4) o should be replaced by 7, standing in for any term (i.e.
name-letter or variable). We may also write T in place of o in the rule GEN,
though in fact this will not make any difference to the theorems that can be
proved, except when name-letters do not occur in the language. (For in that
case the rule can only be applied where @ contains a free variable.) It should
also be noted that GEN and (A4), as stated here, do allow for there to be
vacuous quantifiers. For example, if ¢ lacks the letter o, but - ¢, then
according to GEN we shall also have b~ V&g for any variable  whatever.
(Recall that if @ lacks o then @(&/a) is @.) If formulae with vacuous quan-
tifiers are not wanted, then a restriction should be added to GEN to prevent
this. But note also that if vacuous quantifiers are permitted, then it is easy to
show, from the rules and axioms, that they add nothing. For if is not free in
¢, then from (A4) we have at once

FVép—o.
Conversely, from GEN we have

FVE(9—0),
and hence by (A5) and MP

Fo—oVEe.

Thus ¢ and V&g are provably equivalent, if the quantifier is vacuous.

The new axioms and rules are sound, as I shall show shortly; that is, they
are all correct under the intended interpretation. We can also choose un-
intended interpretations which make some correct and some incorrect, in
ways which will show their mutual independence. For example, if we inter-
pret the universal quantifier so that VE¢ is always counted as false, for every
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formula ¢, then the two axioms are correct, but the rule GEN is clearly
incorrect. This shows that GEN is independent of the rest of the system, i.e.
that there are formulae which cannot be proved on the basis of (A1)-(A5),
with MP, but can be proved if GEN is added to this basis. (The formula
Vx(Fx—Fx) is an example.) Equally, if we interpret the quantifier so that
VEo is always counted as true, then GEN and (A5) remain correct, but (A4)
does not, and this shows the independence of (A4). Finally, if we take a as
our only name-letter, and interpret VE@ to mean the same as ‘@(a/€) is a
necessary truth) then GEN and (A4) remain correct, but (A5) does not,
since there is now no way in which the proviso on (A5) can be used to pre-
vent unwanted inferences. I should perhaps add that the earlier arguments
to show that (A1)—(A3) were independent of one another can easily be car-
ried over to show that each of (A1)—(A3) is independent of all the rest of the
enlarged system containing (A4)—(A5) and GEN in addition. To see this, we
may again take a as our only name-letter and interpret V&g to mean just
¢(a/t), so that the quantifiers are doing no work at all. Then GEN is a trivi-
ality, and the axioms each take the form - ¢—@, which is verified by all the
tables that we considered.

We shall naturally want to extend the deduction theorem so that we are
entitled to use proofs from assumptions with formulae involving quanti-
fiers. Now there is no problem here over the addition of two new axioms,
(A4) and (A5). The proof given earlier in Section 5.2 relies upon the fact that
the system does contain the axioms (A1) and (A2), but it does not matter to
that proof what other axioms there might be in the system. So we can add as
many more axioms as we like without in any way disturbing the deduction
theorem. But with rules of inference the position is different, for the earlier
proof relies on the fact that the system does have the rule MP, and on the fact
that it has no other rule. For it presumes that in a proof from assumptions
every line must be either an assumption or an axiom or a consequence of
previous lines by the rule MP. If there are other rules to be considered too, for
example GEN, then there are further cases that need to be considered.

As a matter of fact, the rule GEN cannot itself be used within proofs from
assumptions. It is instructive here to bring out the contrast between gener-
alization on the one hand and on the other hand the original rule of detach-
ment. These rules are

DET: If ¢ and F¢—y then .
GEN: If ¢ then H VE@(E/o).

Each of them is framed as a rule for use in proofs from no assumptions,
which is how axiomatic proofs were first conceived. But the rule of detach-
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ment can immediately be liberalized into Modus Ponens, which is designed
to be used in proofs from assumptions:

MP: If TH¢ and T @—y then TH .

On the other hand, the rule of generalization certainly cannot be liberalized
in a similar way, to

2 If T~ then TH VEp(E/a).

To take a simple counter-example, the sequent
FatFa

is, of course, correct, but if we apply the suggested rule to it, then we obtain
Fa b VxFx,

which is certainly not correct. (From the assumption that a is F it evidently
does not follow that everything else is F as well.) The reason why GEN, as
first stated, is a correct rule could be put like this: if you can prove some for-
mula containing the name a on no assumptions, then in particular you have
made no assumptions about a4, so a could be anything. That is, we could in
the same way prove the same point about anything else. So our formula
must hold of everything whatever, and that is what the rule GEN says. But
the important premiss to this reasoning is not that the formula is proved on
no assumptions at all, but rather that it is proved on no assumptions about
a; that is what allows us to add ‘a could be anything’ The right way, then, to
liberalize the rule GEN, so that it can be used in proofs from assumptions,
is this:

(VI) If T+ @, and if a does not occur in T, then T'— VEop(E/a).

(The label {(VI)’ stands for ‘universal quantifier introduction), cf. 3.6.G.) It
will be seen that just as DET is a special case of MP, namely the case where
there are no assumptions, so also GEN is the same special case of (VI). Con-
sequently, a proof from no assumptions that uses the rule (V1) is at the same
time a proper axiomatic proof using only the rule GEN.

‘We can now return to the deduction theorem. A proof from assumptions
isnow to be a finite sequence of formulae, each of which is either an assump-
tion, or one of the axioms (A1)—(A5), or a consequence of previous for-
mulae either by the rule MP or by the rule (VI). The deduction theorem
states that if we have a proof from assumptions showing that I ¢ - , then
this can be transformed into another proof showing that I'~ ¢—y. By
repeated steps of this transformation, any proof from assumptions can

223



AXIOMATIC PROOFS 5.6. Axioms for the Quantifiers

therefore be transformed into a fully conditionalized proof, which is then an
axiomatic proof as first defined. To prove the deduction theorem we must
invoke axioms (A1) and (A2) to cover a case where the rule MP is applied,
and axiom (A5) to cover a case where the rule (V1) is applied. The proof is
just the same as before (p. 203), except for the extra case for the rule (VI),
which is this:

Case (4): vy is VEy (E/a), obtained from a previous line by the rule
(VI). Note that, since (V1) was applicable, the name o does not occur
either in I or in @. By inductive hypothesis there is a proof showing
that I" - @—>x. Since o is not I', we may apply (V1) to this, to obtain a
proof showing that I' - V&(@—y)(E/a). Since a is not in ¢, this last
formula is VE(@—y (E/a)), where € is not free in @. So we may add
the axiom VE(@—y(&/a)) — (9—VEY(E/n)), and apply MP to get
@—-VEY(E/a), i.e. p—>y. The result is a proof showing that I' = ¢—y.

This establishes the deduction theorem.

I proceed at once to an illustration of its use. Given the rule (V1), all that
was needed to establish the deduction theorem was an application of the
axiom (A5). Itis also true conversely that, given (V1) and the deduction the-
orem, we can now deduce (A5) (though we also need to call on (A4) in the
proof).

(A5) = VE(p—v) — (0> VEW), provided & is not free in ¢

1. VE(p—v) ASS(10)

2. VE(9— ) — (9> w)(o/E) A4; choose o so that it is not in ¢
or V.

3. (o—>y)(a/E) 1,2,MP.

4. o—>y(o/€) This is line (3), assuming & is not
freein @.

5. ¢ ASS(9)

6. y(a/E) 4,5,MP

7. VEw(o/E)(E/ar) 6,VL ais not in lines (1) or (5)

8. VEy This is line (7), since ot is not in

9. p—VEy 5-8,D

10. VE(@—Y) — (¢—VEY) 1-9,D

This proof-schema shows that, once we are given the deduction theorem,
the basis consisting of the axiom (A4) with the rule (V1) is equivalent to our
original basis consisting of (A4) and (A5) and the rule GEN. That is why I
did not pause to prove the soundness of (A4), (A5), and GEN when they
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were first introduced, for the soundness of (A4) and (V1) has been proved
already, on pp. 97-9.

Some features of this proof-schema deserve comment. Since it is a
schema, and not an actual proof of a particular formula, it contains things
which would not appear in an actual proof. The most obvious example is
that what is written on line (3) is different from what is written on line (4),
though the actual formula represented is exactly the same in each case. The
same applies to lines (7) and (8). Since this kind of thing can be very dis-
tracting to one who is not already familiar with proofs of this sort, it is bet-
ter, to begin with, to practise on actual proofs with actual formulae. This
also eliminates such things as the instruction ‘choose o so that it is not in ¢
or v’ attached to line (2), for instead of putting in the instruction, we simply
conform to it. For example, here is something more like a genuine proof of
an instance of (A5):

Vx(P->Fx) — (P—>VxFx)

1. Vx(P—Fx) ASS(8)

2. Vx(P—Fx) — (P—Fa) Ad

3. P>Fa 1,2,MP

4, P ASS(7)

5. Fa 3,4,MP

6. VxFx 5,V1; ais notinlines (1) or (4)
7. P>V xFx 4-6,D

8. Vx(P—Fx) — (P—-VxFx) 1-7,D

Herelines (1)-(6) do constitute a genuine proof from assumptions, though,
of course, lines (7) and (8) merely indicate that this can be transformed into
a proof from no assumptions; they do not carry out that transformation.
Nevertheless, the proof now looks more like the kind of examples that
we have had earlier in this chapter, except that the justification for line (6)
is untypically long. This is because the rule (V1) is a conditional rule, for
it allows you to introduce a universal quantifier on the condition that the
name that is to be generalized does not occur in the assumptions to the
proof. So whenever the rule is applied one must look back at all the previ-
ous lines labelled ‘Assumption), and check that this condition is indeed satis-
fied. (Assumptions which have already been discharged can, of course, be
ignored.) When one has grown used to checking in this way, then no doubt
one can save time by not bothering to write in explicitly that the condition is
satisfied, but still the check must, of course, be done.

I close this section with two more examples of proofs involving quanti-
fiers, to establish a thesis first used earlier on p. 120, namely
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—WVx—1(Fx—Gx) —— VxFx = —Vx—Gx.
(But here I have to write ‘“—Vx—’ in place of the shorter ‘Ix’ used earlier.)

(a) —Vx—(Fx—>Gx) - VxFx — —Vx—Gx

1. —Vx—(Fx—Gx) ASS
2. VxFx ASS(11)
3. Vx—Gx ASS(8)
4. Fa 2,A4,MP
5. —Ga 3,A4,MP
6. —(Fa—Ga) 4,5,Exercise 5.5.1(a)
7. ¥Vx—(Fx—>Gx) 6,V1; ais not in lines (1)—(3)
8. Vx—Gx — Vx—(Fx—Gx) 3-7,D
9. —Vx—(Fx—Gx) — —Vx—Gx 8,CON(1)

10. ——;Vx—wa 1,9,MP

11. VxFx — —Vx—Gx 2-10,D

(b) VxFx — —Vx—Gxt—Vx—(Fx—>Gx)

1. VxFx — —Vx—Gx ASS
2. Vx—(Fx—Gx) ASS(8)
3, —(Fa—Ga) 2,A4, MP
4. Fa 3,Exercise 5.5.1(a)
5. —Ga 3,Exercise 5.5.1(a)
6. VxFx 4,V1; ais notin lines (1)—(2)
7. Vx—Gx 5,VI; aisnotinlines (1)—(2)
8. Vx—{Fx—Gx) — Vx—Gx 2—-7,.D
9. —Vx—1Gx — —Vx—(Fx—Gx) 8, CON()

10, —Vx—Gx 1,6,MP

11. —Vx—(Fx—Gx) 9,10,MP.

These proofs should be studied before turning to the exercises that follow.

EXERCISES

5.6.1. Provide proofs of the following. (You may use in the proofs any sequent that
has been proved earlier in this chapter—or indeed, in view of the completeness of
the axioms for — and —, any sequent that can be established by truth-tables.)

(a) Vx(Fx—Gx) = VxFx — VxGx.
(b) Vx(Fx—Gx) b —Wx—Fx — —Vx—Gx.
(¢) Vx(P-Fx) -+ P — VxFx.
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(d) Vx(Fx—P) —i— ~—N¥x--Fx — P.
(e) —Vx—VyFxy & Vy—Vx—Fxy.

[If (e) proves difficult, then try it again after reading the next section. ]

5.6.2. (continuing 5.5.2). Assume (as is the case) that our axiom-schemas (Al)-
(A5), together with MP and GEN, form a complete basis for the logic of quantifiers.
Show that it is nevertheless not true that if we add to them any further axiom-
schema of the language, not already provable from them, then the resultis an incon-
sistent system. [Hint: consider the schema V&p v VE—¢.]

5.7. Definitions of Other Logical Symbols

As we have noted (p. 46), the zero-place truth-functors T and L cannot
strictly be defined in terms of any other truth-functors. But usually one does
not speak so strictly, and accepts definitions such as

T for P-P.
1 for —(P—P).

It is easily seen that these definitions give rise to the rules characteristic of T
and L, namely

o T.
1o

It may also be noted that if 1 is available, then this gives us a simple way of
defining sequents with no formula on the right, for we may abbreviate

'~ for 'L

Putting these definitions together, we obtain the ‘structural’ rule of Thin-
ning on the right

If TH then TH .
We can also, if we wish, restrict EFQ to this
EFQ": ¢—oH 1.
And a rather nice form of reductio ad absurdum becomes available, namely
RAA” If ot L then TH—g.

This will be used in what follows. Notice that, like applications of the deduc-
tion theorem, this is a rule that discharges an assumption. For if ¢ was an
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assumption, and from it we obtain a contradiction L, then we can infer —¢@
and drop ¢ from the assumptions. (The justification of this form of RAA is
left as an exercise.)

The functors T and 1 may be regarded as something of a luxury; at any
rate they have little work to do in the usual applications of logical theory to
test actual arguments. Here the functors A and v are very much in demand,
and we may, of course, define them in terms of — and — by putting

oAy for —(@—>—v).
ovy for —o—oW.

But we shall not be able to do much with these functors until we have proved
for them some suitable rules. In the case of A, the rules are these:

(AD) oyt oay  (AE) @AY 0, oAy

(The labels ‘(Al)’ and ‘(AE)’ are short for ‘A-introduction’ and ‘A-elimina-
tion’.) These rules (once we have proved them) are to be used in proofs from
assumptions in just the way that the various rules for negation were used in
Section 5.3. Proofs are as follows. (These proofs use RAA and EFQ in the
new forms, and in addition DNE and the principle —¢ - ¢—, for which I
cite EFQ plus one step of the deduction theorem.)

(AD @y oAy

.o ASS

2.y ASS

3. Q> ASS(6)

4. 4y 1,3,MP

5. L 2,4,EFQ’

6. = (@) 3-5,RAA’

7. OAY 6,DefA
(AE) oAyHo

1. oAy ASS

2. = (@) 1,Defa

3. ¢ ASS(6)

4, Q> 3,EFQ,D

5 1 2,4,EFQ’

6. ——Q 3-5, RAA’

7. @ 6,DNE
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(AE) eAyy

1. oAy ASS

2. _"I((P—)"ﬂqf) l,Def/\
3. —y ASS(6)

4. p——y 3,D

5 1 2,4,EFQ’
6. Ty 3-5,RAA’
7.y 6,DNE

In the case of v, it is easy to state suitable introduction rules, namely

(VD) o ovy, y = ovy.

It is more difficult to frame a suitable ‘elimination’ rule to accompany these.
For the moment, I shall put it in this way:

(VE) @,y ovy—y.

(But a different version, which more clearly justifies the title ‘(VE), will be
introduced shortly.) Here are proofs:

(VD) o-ovy
l.o ASS
2. Q=Y LEFQ,D
3. pvy 2,Defv
(VD) yEovy
Ly ASS
2. -y LD
3. pvy 2,Defv
(VE) 9-=xy—xFovy—y
1. o>y ASS
2. y—y ASS
3. ovy AS$S(10)
4. ooV 3,Defv
5. <@ ASS(®)
6. W 4,5MP
7. % 2,6,MP
8. o>y 5-7,D
9. % 1,8, TND
10. ovy—>y 3-9,D
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This has shown that our axioms (A1)~(A3), together with suitable def-
initions of A and v, will allow us to deduce suitable rules for using those
functors in proofs. The reverse is also true. That is, if we add to the original
axioms the introduction and elimination rules for A and v, then we can
deduce the defining equivalences. ( The proof of this is left as an exercise.)

Finally in this chapter let us consider the definition of 3, namely

3& fOI‘ —-IVE;—t

We shall show that this definition yields these rules:

@D o(a/f)+35e

(FE) If Kot vy, andifoisnotinT oriny, then LIE@(E/o) -y

Here are proofs:
@D e(a/8) Ko
1. @(ot) ASS
2. VE&—o ASS(5)
3. —¢(a/E) 2,A4,MP
4, L 1,3,EFQ’
5. W&o 2-4,RAA’
6. &g 4,Def3
(JE) IfT,ot ythen ,3E@(&/at) -, provided atis notin I or in
1.T ASS
2. oE/o) ASS
3. ——:‘v’&-w(p(iloc) 2,D€f3
4. —y ASS()
5. ¢ ASS(®)
6. 1,5,Hypothesis
7. L 4,6
8. —¢ 5-7,RAA’
9. VE—o(&/a) 8,VI; o is not in lines (1),(2),(4)
10. L 3,9,EFQ’
11, ——y 4-10, RAA’
12. y 11,DNE
EXERCISES

5.7.1. Show thatthe deductions of this section can be reversed, i.e. that if we assume
as premisses the rules (AI),(AE),(VI),(VE),(3I),(FE), then we can deduce from

them equivalences corresponding to the definitions of A,v,d, namely
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oAy —A= (o).
ovy A= ooy
JEe - —VE—e.

5.7.2. Consider an axiomatic system which has — as its only truth-functor, the rule
of detachment as its only rule, and the following three axiom-schemas:

1. p—={(y—0).

2. (p=>(y—1)) = ((p=>y)—>(0-Y)).

3. ((o—¥)—0) oo
You may assume that proof from assumptions is defined, and the deduction the-
orem proved (using axioms (1) and (2)). Introduce the functor v by defining

ovy for (9—y)—>v

and prove the following:
4. o= ovy
5. ovy —yve [See Exercise 5.3.3.]
6. O,V yvy
7. 9o%(9-y) oy [Use3.]
8. 9oxY—ox - (evy)—oy [Use7.]
9. (pvy)vy = ov(yvy) [Use 4,5,8.]

10. If oty and T @vy then Ty

11. If ;o5 then Tk yvi{o—vy)

12, If THyvy then THyxv(p—v) [Use6.]
13. If Lyt y and '+ o@vy then ooy y [Use 6,10.]

This is the beginning of a proof to show that axioms (1)—(3) form a complete basis
for all valid sequents whose only truth-functor is —. To assist comprehension, let us
write ‘T A’ to mean ‘from the set of formulae in I" there is a proof of the disjunc-
tion of all the formulae in A" Then (5) and (9) tell us that the order and grouping of
the disjunction represented by A may be ignored, and (10)~(13) may be rewritten
thus:

10" If oA and T'H@,A then THA

11’ If o A then T g—y,A

12" If T wy,A then TH@—oy,A

13 If Ly A and TH ¢,A then o—ykA.

(As usual we write @,A as short for {9} W A.) To see how the proof continues from
here, consult Exercise 7.4.5.

5.7.3. Add to the system of the previous exercise the truth-functor L, and a single
axiom-schema for it, to give the following set of axiom-schemas:

1. o> (y—0).
2. (9—=>(W—>y)) = ((9>y)>(e—Y)).

3. ({(p—>¥)>0) > 9.
4. 1l—>e.
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Define negation by putting
—p for o—1

Show that this set of axioms is a complete basis for the logic of truth-functors.
[Method: show that from (3) and (4) and the definition one can deduce both EFQ
and CM*.]

The first axiomatization of logic was in Frege’s Begriffsschrift of 1879. His axioms for
the truth-functors were>

1. o> (w—0).

2. (9->(y—x)) = ((p—=y)=(9—Y)).
(= (=) = (W= (e-y).

4. (p—>Y) = (—y—-—0).

5. P> Q.

6. p—=——Q.

W

It was later shown that his third axiom was superfluous, since it can be derived from
the first two (Zukasiewicz 1936). Another early axiomatization, which became
widely known, was that of Russell and Whitehead’s Principia Mathematica (vol. i,
1910}, which takes - and v as its basic vocabulary, but at once introduces — by the
usual definition. The axioms are

1. ovop — 0.

2. Y - OV

3. ovy S yve.

4. ev{yvy) = (evy)vy.

5. (y—=3) = (pvy—evy).
1t was later shown that the fourth axiom was superfluous (Bernays 1926), and in
fact with minor changes elsewhere both (3) and (4) can be rendered superfluous
(Rosser 1953). But in any case this is an unsatisfying set of axioms, for their purport
is reasonably clear only when (as here) one uses both — and v in the formulation.
But officially, the primitive notation is just—and v, and when — is replaced by this
primitive notation the axioms seem very arbitrary indeed.

In almost all cases,b axioms for the truth-functors are designed to be used with
the rule of detachment as the sole rule of inference, and that rule is naturally

5 Strictly speaking, Frege did not use axiom-schemas, as here, but single axioms and a rule of substi-
tution. (The idea of an axiom-schema was due to J. von Neumann (1927).) I have consistently ignored
this distinction in this appendix.

6 An exception is noted below, where axioms and rules are designed for the stroke functor.
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formulated with —. One therefore expects to find — in the primitive vocabulary,
and playing an important role in the axioms. If this is granted, then there are broad-
ly speaking two approaches to choose between. One may aim for economy in the
axioms, by restricting the language. In that case one will naturally choose alanguage
with just — and —, or just — and L. Or one may say that it is much more convenient
in practice to have a richer language, and a correspondingly rich set of axioms, I
pursue each of these suggestions in turn.

The system in — and — that we have used in this chapter is easily seen to be a
descendant of Frege’s original system. It retains his first two axioms for — alone,
omitting his third as superfluous, and adds to these one further axiom for nega-
tion. We have already explored (in Section 5.4) various other possibilities for the
negation axioms, and do not need to add anything more here. A variation is to add
axioms for L rather than for —, and here we find that a single axiom which will do
by itselfis

((p>L)>L)—> 0.

This yields a nicely economical system (which is used by Church 1956).

There is nothing in this general approach that forces us to retain Frege’s first two
axioms. It is true that they are very convenient, since they are just what we need to
prove the deduction theorem (which was not known to Frege),” and this is a great
help in finding proofs. But (4) this theorem can of course be postponed, if other
axioms prove more attractive, and (b) there is the objection that these two axioms
for — are not strong enough as they stand, since they do not suffice by themselves
for the proof of all correct sequents concerning — on its own (cf. Exercise 5.3.3). In
response to (a) there are various sets of axioms known to be equivalent to Frege’s
first two, for example this set of three:

L. 9= (y—0).

2. (9—>(e—V)) = (9—v).

3. (9—W) = ((y—>y) = (9—%)).

(See Exercise 5.8.2.) But I am not aware of any set that seems more simple or more

attractive than Frege’s own pair. In response to (b) the most straightforward sug-
gestion is just to add to Frege’s pair a further axiom, for example Peirce’s law:

((p—v)—0) > 0.

This provides a set of three axioms for — which do suffice for the deduction of
all correct sequents whose only functor is —. (See Exercises 5.7.2. and 7.4.5.) An
alternative with the same effect is to allow Peirce’s law to replace the second axiom
in the trio just cited, to yield

L. = (y—0)
2. ((p—>y)—0) >0
3. (9->y) = ((y—>x) = (9—Y))

7 Itisdue to Herbrand (1930).
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(Lukasiewicz and Tarski 1930). As it turns out, we can provide a single axiom which
is adequate on its own for all correct sequents whose only functor is —, namely

((p—>y)—>%) = (x—=9)> (> 0))

(Lukasiewicz 1948). But this does not exactly strike one as a perspicuous axiom, and
itis not at all easy to work with. Finally I add here that if we do adopt axioms for —
which suffice for the deduction of all valid sequents in —, then we need add only
one simple axiom for L to obtain a complete system, namely

1-0.

The axiom system adopted in this chapter can obtain many results for — without
calling upon its axiom for negation, but not all, as we have seen. One could shift this
balance in the other direction by strengthening the negation axioms, relying even
more upon them for results which concern — alone, and consequently weakening
the axioms for —. An interesting system which does just this is based on the three
axioms

(0—=v) = ((y—=%) = (%))

(m9—0)—¢

P (—0—=Y)
(Lukasiewicz 1936). Pursuing this direction further, and making no attempt to
distinguish between axioms for — and axioms for —, we can in fact make do with a
single axiom, namely

((((@1292) = (> )>¥) =) = (x—=01) (¥ 1—01))

{Meredith 1953). Like all single axioms, it is neither perspicuous nor easy to work
with.

(This is perhaps the place to mention that the first single axiom for the logic of
truth-functors was found as long ago as 1917, by J. Nicod. His axiom is formulated
for the Sheffer stroke (p. 58), and is

(0, T(@:Toa) T T T 1 T{ (wTe2) T (0, Tw) T, Tw) ).

This axiom is designed to be used, not with the usual rule of detachment for —, but
with a special rule for the Sheffer stroke, namely

If —¢ and FoT(yTy) then Fx.

(This is a generalization of the usual rule, for Detachment itself corresponds to the
special case of this where y and y are identified.) Since Nicod, some other versions
of his single axiom have been found, which are equally long but perhaps do have a
marginally better claim to elegance. But in any case single axioms seem to me to be
a mere curiosity.)

To sum up on ~» and —, or — and L, it will be seen that although there is plenty
of choice on which axioms to adopt, there is no choice which stands out as the most
simple and straightforward, or the most elegant, or the one that most reveals our
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understanding of the functors involved. There is nothing here to rival the simple
and very obvious rules of the semantic tableaux:

lo—y|=T lo—>y|=F
lo| =T
lo|=F |y|=T ly| = F
|| =T |—o| =F
|
|o| = F lo| =T

This awkward situation will gradually be improved during the next two chapters.
now turn to a brief account of the alternative approach to axiomatization.

We may wish to consider from the start a richer language with more truth-
functors, and a correspondingly richer set of axioms for those functors. For ex-
ample, the following rather nice set is used by Kleene (1952):

L ¢—=>(y—9).

2. (@—=(y—yx)) = ({(p—>y)>(0—x)).
3. QAY—Q.

4. oAy,

5. 9= (Y- oAY).

6. p—oVY.

7. Y—OVY.

8. (9—%) = ((y—x) = (pvy—y)).
9. (9—>y) = ((¢—>—y) = —9).

10. ——9—e.

Here axioms (1) and (2) are our standard (but incomplete) axioms for —, and
axioms (9) and (10) are a standard pair of axioms for —. But (3)-(5) add new
axioms for A, and (6)—(7) add new axioms for v. (We could restore the symmetry
between these two new sets of axioms by rewriting (5) as

5. (9—vy) = ((9—>%) = (0>yAY)).

This would make no difference to the resulting theorems.) Axioms in this style were
first introduced by Hilbert and Bernays (1934). (Their version adopts the modi-
fication just suggested, and it also has different but equivalent versions of axioms
(1)—(2) and (9)-(10).) I observe here merely that the proposed axioms for A and v
lead very directly into the methods pursued in the next chapter, so I reserve further
comment until then.8

Turning to the quantifiers, almost all systems adopt our axiom (A4):

8 The full version of intuitionist logic, without quantifiers, is given by axioms (1)—(9), with EFQ in
place of (10). The version used earlier in Exercises 5.4.3 and 5.4.4 is a truncated version, since it does not
include A and v, and in intuitionist logic these cannot be defined in terms of ~ and —.
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Ve — o(a/E).

Then there is a choice, either to add also our axiom (A5) and the simple rule GEN,
or to add a more complex rule from which both of these are deducible, namely

If -o—y then ¢ — VE@(/0), provided that o.is not in @.

(Frege himself adopted both this and GEN, but in his system GEN is superfluous.)
The existential quantifier can then be defined in terms of the universal one, or it can
be introduced by a dual pair of one axiom and one rule:

= o(a/g) — JEe.
If =o-»>vy then +3Ep(E/0) — w, provided that ais notin y.

This technique is again closely related to that which will be pursued in the next
chapter.

A different approach altogether is taken by Quine in his Mathematical Logic
(1951), ch. 2. Just as one may assume the rule of substitution for all theorems, or one
may in effect confine it to axioms, i.e. by adopting axiom-schemata, so also one may
adopt the rule of generalization for all theorems (as we did in Section 5.6), or one
may in effect confine it to axioms. The broad idea is that all ways of applying gener-
alization to one’s initial axioms are taken to yield further axioms. The result is that
many more formulae are accepted as axioms, but the only rule of inference is the
familiar rule of detachment. As a matter of fact Quine is forced to proceed along
these lines, because of two other decisions that he has taken for philosophical rea-
sons: in his system there are no name-letters, and open formulae are not permitted
to occur as axioms or as theorems. This means that there are not actually any for-
mulae in the system to which one could apply the rule of generalization. So what
Quine takes as axioms are, roughly speaking, the formulae you would have obtained
by applying generalization to axioms containing name-letters, if only such axioms
had been permitted.

In more detail, Quine dispenses with separate axioms for the truth-functors by
simply adopting every truth-table tautology as an axiom. But also he allows an open
formula to count as a truth-table tautology, and he adopts as further axioms the
universal closures of all such formulae. To state this economically, let us temporar-
ily take over Quine’s special usage of -, whereby for any formula @, open or closed,
‘+ ¢’ means ‘the closure of ¢ is a theorem’. (Of course, if @ is already closed, then the
closure of ¢ is @ itself.) Then we may say that in Quine’s system there are four kinds
of axioms, as follows

1. If @ is tautologous, H @.
2. = VE(p—oy) = (VE—VEY).
3. ¢ > V&g, provided & is not free in ¢.

4. =VEp — o(L/E).

(@(4/E) must contain  free wherever @ contains £ free). And the sole rule of infer-
ence is detachment, which we can state in this way.
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1If ¢ and v are closed formulae, then if - @ and— @—>, thenb .

Quine goes on to prove that the rule also holds where ¢ and y are open, but
this takes some proving, as is clear when we remember the special meaning here
attached to i—. But I cannot here describe how his deductions go.

EXERCISES

5.8.1. Consider Church’s system for — and ., which has these three axioms:

L o=>(y—0).

2. (9 (y-x)) = ((p=>¥)->(9—-x)).

3. ((p—»L)»1l)—>e.
Show how to modify the completeness proof of Section 5.5 to prove that in this sys-
tem every valid formula whose only truth-functors are — and L is a theorem.

5.8.2. Consider the system given by these three axioms:

L ¢—(y—9).
2. (p—(9—>W)) - (9—y).
3. (o) = ((y—x) = (9—%)).
In this system, prove the following theorems:

4. 9= ((9>y)->v).

5. (9> (y—x)) = (y—=(9—).

6. (y—x) = ((p—>y) = (0—-%)).

7. (0= (y—-y)) = ((9—>y)>(9—Y)).
Deduce that this system is equivalent to that given by our axioms (A1) and (A2).
[Hints: we cannot assume that the deduction theorem applies to this system until
we have proved (7), so this exercise calls for genuinely axiomatic proofs to be con-
structed. Since this is far from easy, I give some help. Here is a proof of (4) in a much
abbreviated form:

o> ((0>y)—>¢) from (1)
= ((¢>vy) = ((¢—>y)->y))  from (3)
= ((9—>y)>vy) from (2)

Show how to reconstruct the full proof from this sketch. To construct a similar
sketch for (5) you will need to use

[o—=>(w—x)] = [((y—=x)—-%) = (9] from (3)
[(((y—>x)—=%) = (9= ] = [y—{(9—y)] from (4) and (3)

Given (5), it is easy to prove (6) from (3). The proof of (7) begins by stating (5) and
then using this instance of (6):

[y=(0—>x)] = [(9—=W) = (9= (9—x))].

237



AXIOMATIC PROOFS 5.8. Appendix: Some Alternative Axiomatizations

5.8.3. Consider the system given by these three axioms:

L 0—=(y—0).

2. ((9>y)—0) > 0.

3. (0—=y) = ((p=x)=>(0—%))-
In this system, prove the theorem

4. (9—=(9->y) = (9—W).
Deduce, using the previous exercise, that the deduction theorem holds for this sys-
tem. [Hint: you will need this instance of axiom (2) ]:

[(9=¥)>y) = (9-¥)] = (9—W).

5.8.4. Consider the system got by adding, to any basis that is adequate for the truth-
functors, these two further rules of inference:

L. If @—y then - VE@(E/a) — v, provided that & is not free in .

2. lf-@—wythent @ — VEy(E/a), provided that o does not occur in ¢.
Show that this system is equivalent to the system of Section 5.6, which instead adds
the two axioms (A4) and (A5) and the rule GEN.
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6.1. The ldea

Axiomatic proofs are hard to construct, and often very lengthy. So in prac-
tice one does not actually construct such proofs; rather, one proves that there
is a proof, as originally defined. One way in which we make use of this tech-
nique is when we allow ourselves to use, in a proof, any theorem that has
been proved already. For officially this is short for writing out once more, as
part of the new proof, the whole of the original proof of that theorem.
Another way is when we are explicitly relying on the deduction theorem,
and so are actually concerned with a proof from assumptions, and not an
axiomatic proof as first defined. Proofs from assumptions are much easier to
find, and much shorter. A third way is when we introduce new symbols by
definition, for in practice one will go on at once to derive new rules for the
new symbols, and these will usually be rules for use in proofs from assump-
tions. So it comes about that, after a few initial moves, the development of
an axiomatic system will scarcely ever involve writing out real axiomatic
proofs, but will rely on a number of short cuts.

The main idea behind what is called ‘natural deduction’ is to abandon
the axiomatic starting-point altogether, and instead to begin with what I
have just been calling the ‘short cuts’. The most important point is that in
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natural deduction one takes the notion of a proof from assumptions as a
basic notion, and works simply with it. Such proofs are not thought of as
abbreviating some other and more basic kind of proofs, but are the primary
objects of study. So from the beginning our basic rules will be rules for use
in proofs from assumptions, and axioms (as traditionally understood) will
have no role to play. That is the most crucial feature of all systems of nat-
ural deduction. But there are several other features too that are nowadays
expected and desired.

First, the truth-functor — will no longer have any special prominence. In
axiomatic treatments it almost always does, both because the main rule of
inference, namely detachment, is a rule for —, and because there are only a
very few formulae that one might naturally think of adopting as axioms and
that do not have — (or <) as their main functor. (The only obvious excep-
tions are the laws of excluded middle and non-contradiction, i.e. = @v—¢
and = —(@A—).) But we shall now have no axioms, and put no special
weight on detachment (or Modus Ponens). Instead, we shall have separate
rules for each truth-functor of the language to be employed, so that there
will not only be rules for —, but also for —,A,V, and any other functor that
is desired. To illustrate, a very natural principle for A is this: given both ¢ and
 as premisses, one may infer Ay. If we try to phrase this as an axiom, then
probably the simplest way is this:

F o= (y—ony).

Here, of course, we use — as well as A. But evidently the principle can also be
formulated as a rule of inference which does not use —. As a rule for use in
axiomatic systems it would be

If ¢ and vy then F@Ay.

(In this form it is called ‘the rule of adjunction’) But for use in proofs from
assumptions we shall adopt the more general version

If T—@ and Ay then AR @Ay,

Given the structural rules ASS and CUT in the background, it is easy to show
that this is actually equivalent to the simpler version

Py = ony.

Let us come back to the task of giving a general characterization of what
is nowadays called ‘natural deduction’. I have said so far (1) that the basic
notion is that of a proof from assumptions, (2) that there will accordingly be
no axioms (as traditionally understood) but a number of rules of inference
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for use in such proofs, and (3) that we shall expect to find, for each truth-
functor or quantifier in the language being considered, rules that specific-
ally concern it, and no other truth-functor or quantifier. Now (3) is more a
requirement of elegance than a condition on what can be counted as nat-
ural deduction, and certainly systems have been proposed which one would
wish to call systems of natural deduction even though they do not entirely
conform to it. The same applies to this further elaboration of (3): for each
truth-functor or quantifier concerned, there will be one or two rules that are
counted as its introduction rules, and one or two that are counted as its elim-
ination rules, and no other rules. Again, there are well-known systems which
do not entirely conform to this, but it is what one expects nowadays. We can
illustrate by continuing with our example of the functor A. This has just one
introduction rule, henceforward called (AI), namely the rule already stated

(AD) oW oAy
It has a pair of elimination rules, each (for brevity) called (AE), namely

(AE) oAy, oy .

And there are no other rules for A. Moreover, we may add here a fourth
requirement on systems of natural deduction, which is certainly a require-
ment of elegance and nothing more, for in fact I know of no system which
succeeds in conforming to it without exception. This is (4)(a) that the intro-
duction and elimination rules for any one sign be complete for that sign,
in the sense that all correct sequents involving only that sign be provable
from those rules alone; and (b) that combining the introduction and elim-
ination rules for any two or more signs yields a system complete for those
signs together, again in the sense that all correct sequents containing only
those signs be provable from those rules alone.

Finally, I add two more requirements, of which it is evident that there is
no fully objective way of telling whether they are satisfied or not. These are:
(5) that the rules for each sign be ‘natural in the sense that inferences drawn
in accordance with them strike us as ‘natural’ ways of arguing and inferring;
and (6) that so long as the sequent that we are trying to prove is ‘not too
complicated) there should be a proof of it which is ‘reasonably short’ and
uses only the rules initially adopted. As we observed earlier, in an axiomatic
system it is necessary in practice to proceed in a cumulative fashion: after
a brief initial development, one’s proofs seldom go back to the original ax-
ioms, but rely instead on other results that have been proved already. Con-
sequently, the tools that one has available for use in constructing proofs will
vary, depending on how far the development of the system has gone. But the
idea is that in natural deduction this should not be necessary, and every
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proof should rely just on the handful of rules first given as the rules of the
system, even in practice. In other words, the initial rules should themselves
be natural, and it should be natural to use them, and only them, in all one’s
deductions. That is primarily what we mean by ‘natural’ deduction.

As we shall see, there is some conflict between these requirements of nat-
uralness and the requirements of elegance noted earlier.

EXERCISE

6.1.1, Usingjust the rules (Al) and (AE), and setting out proofs as in Chapter 5, give
proofs of

(a) PAQ —I—= QAP.
(b) PA(QAR) —= (PAQ)AR.
(c) P - PAP.

6.2. Rules of Proof I: Truth-Functors

There are several different ways of setting out proofs in a natural deduction
system. I begin with an approach which is likely to be unfamiliar, but which
has been claimed to be specially ‘natural’, whereby a proof is not a linear
sequence of formulae but a two-dimensional array of them, arranged in a
tree structure. The structure has just one formula at its root, which is at the
bottom. (This time, trees do not grow upside-down, as they did in Chapter
4.) The formula at the root is the formula that is proved by that proof, i.e.
it is the conclusion to the sequent established by the proof. The branches
spread upwards from it, representing the trains of reasoning needed to reach
the conclusion, and each branch has as its topmost formula an assumption
to the proof. So, as we follow the proof downwards, we begin with assump-
tions at the top, and whenever a one-premiss rule of inference is applied
(such as (AE)) the conclusion is written directly below the premiss, whereas
when we apply a two-premiss rule (such as (AI)) we take one premiss from
one branch and the other from another, and bring the two branches to-
gether at that point. A proof, then, is a finite array of formulae with just one
at the bottom, having none below it, and one or more at the top, having
none above them. Apart from these topmost formulae, every formula is
placed under one or two others, and follows from them by one of the stated
rules of inference. And the whole structure is a tree, which means that for
each occurrence of a formula in the structure, except the lowest, there is one
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and only one formula that is directly below it. Consequently, any occurrence
of a formula in the structure is linked with the lowest occurrence by one and
only one route.

This is only a preliminary description of our two-dimensional proofs, for
further complications will be added as we proceed, concerning the dischar-
ging of assumptions. But already we can see (a) that this definition auto-
matically satisfies the principle of Assumptions

oo
since the single formula @ is a proof of itself from itself; and (b) that it also
satisfies the Cut principle

If '~¢ and @,AF vy then TAR .

For suppose that we have a tree, formed according to the rules, which has ¢
at its root and only members of I" at its topmost positions; and suppose that
we have another tree, formed according to the rules, with y at its root and at
its topmost positions only the formula ¢ and otherwise members of A. Then
we have only to place the first tree on top of the second, at any point where
the second had ¢ as a topmost formula, and the result is a tree with y at its
root and only formulae in I' or in A at its topmost positions. And if the ori-
ginal trees conformed to the stated rules of inference, then so must the new
tree formed from them both.!

The remaining ‘structural’ principle is the principle of Thinning, and this
is not automatically satisfied by the present definition of what a proof is. If
we think of the principle in its usual form, namely

If T'-¢@ then Lyt o,

then apparently we can argue that it is satisfied in this way: a proof which
has as assumptions only formulae in I' must automatically be a proof which
has as assumptions only formulae which are either y or in ", But in fact this
does not give us what we want, since it does not allow us to use the principle
within proofs, or in other words it does not give us a way of actually adding
a further assumption y to an existing proof. For if the proof is to remain
a tree structure, then the added assumption y must actually be linked,
via some rule of inference, to the rest of the structure, and the argument just
suggested gives us no way of doing this. I shall therefore add Thinning
as a basic rule of inference to all natural deduction systems. As is easily
checked, since we do have both ASS and CUT in the background, the rule
can be simply stated in this form:

1 At least, this must be so when the only rules concerned are rules for the truth-functors, as may be
verified by inspection of those rules, as they are introduced. But the position with quantifiers is more
complex. See Exercise 6.3.3.
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THIN: @,y ¢.

In some systems that we shall consider, this rule will be deducible from the
other rules, and in some it will not. (For example, if we are given the rules for
A, then we may easily deduce it by one step of (Al) followed by one step of
(AE).) But Ishall assume that it is always present.

Let us now look at some examples of proofs in this two-dimensional
structure. First let us restate the rules for A in a vertical form, with the prem-
iss or premisses written above a horizontal line, and the conclusion below it.
For that is how the rules will actually appear in these structures, i.e. as

WY wpY Y
PAY L4 ¥

Then if we wish to show that A is associative, i.e. that

PAlwAY) E(QAy)AY,
all that we need to do is to fit the rules together in this way
- (AE) oAlyAY)
(ap) YA (ap) ¥ (AE) PA(YAY)
(a1 v (nE) V2%
(AD) ony
(PAw)Ax

This is a proof with three branches, but each begins with the same for-
mula as assumption, so it nevertheless proves a sequent which has just one
premiss.

I remark here that in this proof each application of a rule has been
labelled, to the left of the line separating premisses and conclusion, to show
which ruleit is that is being applied at each point. When one is not yet famil-
iar with proofs constructed in this style, it is probably helpful if such labels
are put in explicitly, and so I shall do so in this section and the next. But in
fact they are superfluous, for if we do have a correctly constructed proof,
then there cannot be any doubt about which rule is being applied at any
given stage. So, since these labels do clutter up the page quite noticeably, one
soon learns to omit them in practice.

The rules for A are extremely simple to work with, so let us at once move
on to something a little more tricky, namely the rules for v. There is no prob-
lem over the two introduction rules, which mirror the two elimination rules
for A in an obvious way, namely
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w2 v
ovy ovy

But we have (at present2) no way of stating an elimination rule for v which
is at all similar to the simple introduction rule for A. Instead, our rule is in
effect this:

If oty and Ay then TAQevyy.
It is not unreasonably counted as an ‘elimination’ rule because, when you

present it in a form suitable for our two-dimensional proof trees, it looks
like this:

—(n —(n
0 v
(VE) k4 i x (n)

Think of it in this way. Suppose that we are given a premiss @V, stated on
the left, and we wish to know what can be deduced from it. Then we intro-
duce the extra assumption @, in the middle of the diagram, and see what can
be deduced from that. We also introduce the extra assumption y, on the
right of the diagram, and see what can be deduced from that. Suppose that
we find a conclusion y that can be deduced from each of these assumptions.
Then we write the proof of ) from ¢, and the proof of y from v, in place of
the vertical dots of the diagram, and we are ready to apply our step of (VE).
The rule tells us that, since % can be obtained both from ¢ and from v, it
can also be obtained from @vy. So we now write ) once more, but beneath
the line representing this step of (VE), i.e. beneath @vy, and at the same
time we discharge the two assumptions @ and y by drawing a horizontal
line above each of them. From this point onwards, ¢ and v are no longer
assumptions to the proof. Instead the assumptions are: first, vy, which we
are imagining to be given as a premiss; next, any further assumptions T’
which may have been used, in addition to @ itself, in the deduction of  from
¢; and finally, any further assumptions A that may have been used, in addi-
tion to y itself, in the deduction of y from . (Of course, vy might not
have been given as a premiss, but deduced from some further assumptions,

2 The situation will alter in the next chapter.
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say ©. In that case the whole proof is a deduction of % from all the assump-
tions ©,1;A.) Finally, when we discharge the assumptions ¢ and y by draw-
ing lines above them, we label those lines (on the right) with a numeral n, to
show that this is the nth set of assumptions to be discharged in the proof, and
at the same time we attach the same label to the line representing the step of
(VE), which shows when those assumptions were discharged. Thus the part
of the proof that is between two lines labelled n does depend on the assump-
tions labelled n—i.e. either on @ or on W, as the case may be—but what
comes below the second such line does not. (I remark incidentally that
whereas one soon learns to omit the labels to the left of each line, one must
not omit the labels on the right showing which assumptions are discharged
when; it is essential to keep this feature of the proof firmly in mind.)

Here is an example of how to use these rules for v, namely a proof to show
that v, like A, is associative:

(pvy)vy Foviyvy)
ovy ov(yvy W

— (1) (VD) —
yvy X

@) D (W) i)

ovy ov(yvy) ov(yvy) yvy

vy P vV R ey
(vE) @

oV (yvy)

Notice that this begins with three proofs, using only (VI), to show that the
desired conclusion follows from each of ¢, y, % taken singly. Then at the first
step of (VE), labelled (1), it is inferred that the conclusion also follows from
vy, and the assumptions ¢ and y are discharged, while vy isintroduced
in their place. Finally, at the second step of (VE), labelled (2), it is inferred
that the conclusion follows from the desired assumption (v y)vy, and the
assumptions vy and  are discharged, so that this is the only remaining
assumption.

Before leaving A and v, here are two further examples of proofs, using all
four of the rules introduced so far, to establish one of the laws of distribution

ov(yay) —I= (evyla(evy).

These proofs should be studied before proceeding. Notice that in the first
of them we used the assumption ¢ twice when showing that the desired
conclusion followed from it and similarly the assumption yay. But that
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does not matter: at the final step of (VE) we discharge both occurrences of
each assumption. Notice also that in the second we can obtain our conclu-
sion readily enough from ¢ as assumption, but we cannot obtain it from
as assumption without using y as a further assumption. Consequently, at
the first step of (VE), labelled (1), we can discharge ¢ and y, but y is still out-
standing. So at this stage the desired conclusion is obtained from the given
premiss (on theleft) and from y as a further assumption. But y is discharged
at the second step of (VE), labelled (2).

Let us come now to — and —. It is usual to adopt for — the two rules which
in the previous chapter were called the deduction theorem and Modus
Ponens. They are now given new names, i.e. (—I) and (—E) respectively,
and may be stated as

(n)
¢
ES A (—p) 2 27
() y

Note that the first is a rule that discharges an assumption, so the same tech-
nique applies as with (VE). When the assumption is discharged, we draw a
line over it, labelling it with the numeral # to show that it is the nth assump-
tion discharged in the proof, and we attach the same label to the line of (—1I)
to show where that assumption is discharged. (If ¢ was used several times as
an assumption in the proof of y, then we discharge all of those occurrences
of ¢ at once.)

Since the task of constructing proofs from these two rules is essentially
the same as that practised extensively in the previous chapter, it need not
be illustrated here. As we have noted, these rules (—1I) and (—E) are to-
gether equivalent to what was called in Chapter 2 the basic principle for —,
namely

Lok vy iff T'-oeowy.

As we have also noted (p. 199), the two rules together do not actually suffice
for the deduction of all correct sequents whose only truth-functor is —, and
from our present perspective there is no very obvious way of putting this
right. We could, of course, add a further rule, but the simplest suggestion
here seems to be to add Peirce’s law, e.g. in the form
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(m)
Py
P)— (n)
¢

No one can pretend, however, that this is a very natural rule to add. The situ-
ation here is essentially the same as it was in the last chapter.

Very much the same applies to rules for negation. All the axioms for nega-
tion that we considered in the last chapter can be rewritten as rules for nega-
tion in the new style of this chapter, with the occurrences of — eliminated.
For example, our single axiom for negation, namely

F (=o—>—y)—=>(y—e),
can be rephrased as a rule for natural deduction in this way:

—(n)
-0

oNiw) ¥ Y

¢

This says: suppose you have a deduction of —y from —¢; then if you add the
premiss \, you may discharge the premiss —¢ of this deduction, and infer ¢
as conclusion. The relation between this version and the original axiom is,
I hope, clear: if you do have a deduction of — from —, then by (—1) you
have a deduction of —@——y which no longer has ¢ as a premiss.

Clearly the other versions of contraposition may also be rephrased in the
same way. I add here suitable rephrasings of the other laws of negation that
were mentioned in Section 5.4.

(n)

(n)

-

(M) ﬁ(“; (n) (cm)—?

(n)
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- (n) - (1) —(n) (1)
® @ —g —
(RAA)— Vi raay Y = w
‘—|(p (p
—(n) —— (1)
¢ —¢
(BEQ)— 2 (TND) — Y
y
(DNI) @ (DNE) e
1P (0]

Against the background of the standard structural rules (including THIN),
all the deductive relations between these principles that were diagrammed
on p. 215 continue to hold when they are rephrased in this way, but with one
important exception. On p. 209 I gave a proof of CM* from CON(iv) and
EFQ, and when we try to repeat this proof in the new format the best that we
can do is this:

— ) —@)
- —P
. . —©)
(1) “; (1) (EFQ) — — :“’)
(CON iv) ——2 , o)

But this proof uses (—1) in addition. As it happens, reliance on the rules for
— can be eliminated from all the other deductions given in Section 5.4,
as you are invited to check. But in this particular case the use of a negated
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conditional resists elimination, and so far as I am aware there is no alternat-
ive deduction which would avoid the difficulty.

The result, then, is that in the new setting our original axiom CON(iv)
will no longer serve as the sole rule for negation, for it needs help from the
rules for —. If we wish for a single rule, the obvious one to choose is RAA*,
for this is still adequate by itself. But, as I have said, the usual procedure in
natural deduction is to look for a pair of rules, with one as ‘introduction’
rule and the other as ‘elimination’ rule. Consequently, many books adopt
RAA and DNE in these respective roles, though RAA is not at all natur-
ally described as an introduction rule. My own preference is for the pair
TND and EFQ, with TND counted as the ‘introduction’ rule. For I have
already observed (p. 212) that it is the nearest that we can get, without using
Vv, to what is a clear introduction rule, namely the law of excluded middle
~ @v—9.3 Moreover, EFQ forms a natural pair with this, since it is again the
nearest that we can get to the dual law of non-contradiction in the form
©A—9 . But whatever pair of rules we choose for negation, and however
‘natural’ we find them as rules for use in inferring one thing from another,
still there will inevitably be this ‘unnatural’ feature of the system: there are
many rules for negation which are very useful in constructing proofs, and to
be confined to just two of these—one for ‘introducing’ and one for ‘elimin-
ating'—will certainly not seem to be a ‘natural’ restriction.

To summarize: the standard rules for A are a shining example of how the
ideal of natural deduction may be met, and the standard rules for v are not
far behind. It is true that the rule (VE) strikes one at first as rather complex,
but familiarity breeds contentment, and the rule does do exactly the job that
is required (Exercise 6.2.2). But with — and — the situation is less appeal-
ing. The trouble with the suggested rules for — is that we have too many to
choose from, that no choice stands out as specially ‘natural’, and that what-
ever we do choose it will be ‘unnatural’ to be deprived of the others. By con-
trast, with — there is a pair of rules which it is very natural to choose, but
then it turns out that those two are not strong enough to do all the work
required of them. Either, then, we must add some further and rather ‘unnat-
ural’ rule for —, or we must put up with the inelegance that the theory of —
must rely upon that of —if it is not to remain incomplete.

For ease of reference, I end this section with a summary statement of the
rules for the truth-functors that I shall assume in what follows. They are:

3 Also, in the terminology of the next chapter, TND is a rule for eliminating on the left, and such rules
correspond quite naturally to rules for introducing on the right.
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A
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—{(n) —(n)
¢ y
WD, (VD) wpT¥ XX
vy vy X
(n)
¢
(=) — () e s Y
oY v
— (n) — (n)
P P
(TND) YV @t
v
EXERCISES

6.2.1.(a) Devise suitable natural deduction rules for ¢, first allowing yourself to
use — in formulating the rules, and then eliminating — so that only <> appears in

the rules.
(b) Prove from these rules

(1) Foeo.
(2) 9y i yero.
(3) 9> (yy) - (@ W)o).

(¢) Deduce that, if the only truth-functor in ¢ is ¢, then I- @, according to these
rules, iff &= . [Hint: recall pp. 60-1 of Chapter 2.]
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6.2.2. Let S be the system for natural deduction which contains just A and v as
truth-functors, and the standard rules (AL),(AE),(VI),(VE).

(a) Show that, if T k= @, and the only truth-functor in T or in @ is A, then '~ @.
[Hint: you will need to show that the premiss implies that every sentence-letter in ¢
occurs in some formulainI'.]

(b) Show that, if T = @, and the only truth-functor in " or in @ is v, then " ¢.
[Hint: you will need to show that the premiss implies that there is some formula in
T such that every sentence-letter in it occurs in ¢.]

(¢) Prove

OV(YAY) s—s (evy)a(evy).

(d) Let8(y) result from 8(¢) upon substituting y for one or more occurrences of @
in 8(¢). Prove

If g5y then 8(9) g5 d(y).

[Use induction on the number of truth-functors in 8(¢) but not in ¢. Compare
pp. 101-2.]

(e) Deduce from (c) and (d) that for every formula ¢ whose only truth-functors are
Aand v there is a formula ¢’ in CNF such that

95 is¢'.
(f) Usingparts (b) and (e), show that, if T = ¢, and the only truth-functors in T or
in @ are A and v, then I' =g @. [Hint: ¢, A@; = Wy, AVY, iff 01,0, = v, and ¢,,9, =
V]

6.2.3. Lets S be a system for natural deduction which contains just A and — as
truth-functors, and just the rules (AI),(AE),(DNE),(DNI),(EFQ).

(a) Show that, if " = ¢, and the only truth-functor in T or in ¢ is —, then T @.
[For the method, compare parts (a) and (b) of the previous exercise.]

(b) Despite part (a), and the previous exercise, show that it is not true that if T = ¢,
and the only truth-functors in T or in @ are A and —, then T I~ . [Hint: note that
no rule in S discharges assumptions, and consider the fact that = —(PA—P).]

6.2.4.(a) LetS contain just the rules (Al),(AE),(TND),(EFQ). Show that, if T = ¢,
and the only functors in ¢ are A and —, then I" i~ ¢. [Method: mimic the com-
pleteness proof of Section 5.5.]

(b) Do the same for a system S’ which contains just the rules (vI),(VE),(TND),
(EFQ), and THIN. [Method as before.] Was it necessary to be given THIN in addi-
tion to the other rules?

6.2.5.(a) LetS, contain just the rules (AI),(AE},(vI),(VE) and in addition
s, 0v—9, g —(oA—e).

Show that S, is not complete. [Hint: interpret —¢ as always true.]
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(b) LetS$, contain the rules (AI),(AE),(VI),(VE), the structural rule for Thinning on
the right (p. 227), and in addition

s, OV, 9ATQ s,
Show that S, is complete. [Use Exercise 6.2.4.]

6.3. Rules of Proof lI: Quantifiers

The rules for the quantifiers V and 3 are essentially those reached in the last
chapter (Sections 5.6 and 5.7). For the universal quantifier we have

(VI) If T @ then I' VE@(E/at), provided isnotinT.
(VE) VEo o(a/t).

And for the existential quantifier,

@D o(a/g) - 3.
(FE) If T,y then L;AE@(E/a) F v, provided ais notin T or in .

When we restate these in a form suited for our two-dimensional proofs, the
rules for V are entirely straightforward:

VEe
VEp(E/a) o(0/E)

provided o.is not in any
assumption on which @ rests

(VD)

But the elimination rule for 3 takes a form which may be somewhat unex-
pected; it resembles (VE):

—{(n)
®

/ Jeo(E/ '
(/) A Ep(E/a) v
o 1\

provided that o is not in y, nor in
any assumption used in the deriva-
tion of y from @, except for @ itself.

(3D (n)
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When using these rules it is essential to observe the restrictions in (VI) and
(3E), stating that a name-letter that is to be generalized upon must not
occur in any of the assumptions of the proof. For this purpose, an ‘assump-
tion’ means, of course, an undischarged assumption, i.e. one not dis-
charged at the stage of the proof at which (VI) or (3E) is being applied. Note
also that, by the definition of our substitution-notation (pp. 80-1), o can-
not occur in VE@(&/at) or in IE@(E/at), exceptin the trivial case when @(&/ o)
is Q.

Let us at once illustrate these rules with some examples. Here are two very
simple proofs concerning V and A, to demonstrate the law

Vx(PAFx) —+ P A VxFx:

(a) Vx(PAFx)F P A VxFx

Vx(PAFx)
(VE)
Vx(PAFx) PAFa
(VE) (AE)
(nE) —2L4 (V1) — 22
VxFx
(AD
P A VxFx
(b) P A VxFxt— Vx(PAFx)
P A VxFx
(AE) ———
P A VxFx VxFx
(AE) (VE) ————
(AD) Fa
PAFa
vl) ———
Vx(PAFx)

In each case the proof begins by using (VE) and (AE) to remove the occur-
rences of V and A in the premiss, and then it continues by using (V1) and
(Al to put them back again, but in a different order. Notice that in each case
the name a is introduced by (VE), so it does not occur in the assumptions of
the proof, and there is therefore no obstacle to applying (V1).

Now let us consider the analogous law with 3 in place of V, i.e.

Jdx(PAFx) —i— P A 3xFx.
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The general tactic of the proof is entirely the same, but the prooflooks more
complicated, because of the more complex form of the rule (3E):

(a) Fx(PAFx)— P A 3xFx

0

) (B
(AE) PaFa (/;I) Fa
AF) 2
P JxFx
Ix(PAFx) (D P A JdxFx
(3E) (1)
P AdxFx
(b) P AAxFxt+ 3x(PAFx)
(AE) P A dxFx 1
4 P Fa( )
(AD)———
P A dxFx PAFa
(B — % SRENT
@B xFx x(PAFx W
Ix(PAFx)

Proof (a) is entirely straightforward: there are no extra assumptions used
in the proof of P A 3xFx from PAFa, so when we apply (JE) in the last step
we only need to check that a is not in the conclusion. Proof (b) is alittle more
interesting, for here we do have an extra assumption, P A dxFx, used in the
proof of our conclusion from Fa. So when applying (3JE) in the last step we
have to check that a is not in either the extra assumption or the conclusion.
Notice here that this means that we have to apply (3I) before we can apply
(3E); if we had tried to use these rules the other way round, the check would
not be satisfied.

To bring out the necessity of these various restrictions on name-letters, I
here give three little examples of incorrect proofs, the first two purporting to
establish the sequent

JxFx - VxFx,
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and the third purporting to establish, what comes to the same thing,

IxFx, Ix—FxH 1.
(a) dxFxt VxFx (b) IxFxk VxFx
E_ () AxFx Ec; W
(VD) (JE) — (1)
3E) dxFx VxFx N ) Fa
( VxFx VxFx
(¢) IxFx,Ax—Fx+— L
. )F_a (1) - (2)
E AxFx Q 1 W
(3E) L Jx—Fx
(3E)
L

In proof (a) the step of (V1) is wrong, for it generalizes upon the name a in
Fa at a stage when Fa is itself an undischarged assumption. Consequently,
the condition for (V1) is not satisfied. (But the following step of (3E) is per-
fectly correct.) In proof (b) the step of (JE) is wrong, The proof has set up
the assumption Fa, and deduced from it, in a one-line proof, the conclusion
Fa. That in itself is perfectly all right. But if (JE) is to be applied, then the
name a introduced in the assumption Fa must not occur in the conclusion
derived from it, which in this case it manifestly does. (But the following step
of (V1) is in this example perfectly correct.) Finally, in proof (c) the first step
of (JE), labelled (1), is wrong. When this step occurs, the proof of 1 from Fa
has used an extra assumption, —Fa, which at this stage is not yet discharged.
Consequently, the condition for applying (JE) requires that a should not
occur in —Fa, but of course it does. (By contrast, the second step of (IE) is
perfectly correct, for the extra assumption Fa has been discharged by the
time that this second step is taken.)

Let us now look at a rather more complicated proof, designed to establish
the thesis

Vx3y(FxaGy) b 3yVx(FxAGy)
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(compare p. 162). The proof is this:

(1)
VxAy(FxaGy) FanGh
(VE) =2 (R @)
dy(FanGy) Fa FeaGb
(dE) (1) (AE)
Fa Gb
(AD)
FanGb
(VI)V (FxAGb) Vx3y(FxanG
x(Fxa x A
@ —d=AGh) (vE) 2NxNGy)
FyVx(ExaGy) Ay(FenGy)
(3E) (2)
yVx(FxaGy)

The first application of (JE), in the top left corner, establishes that
Vx3y(FxAGy) b Fa. It should be noted here that it was necessary to choose
anew name b, other than the name a already occurring in 3y(FaaGy), when
setting up our assumption FaAGb. For if we had used the same name a
again, and had set up the assumption FaanGa, then this would be a formula
that is not properly related to dy(FaaGy). That is, there is no name o such
that FaAGy is the result of substituting y for o in FaaGa. Moreover, since we
did choose the new name b in our assumption, then all that we had to ensure
was that that name b did not also occur in the conclusion derived from it. It
does not matter at all that there is a different name a that occurs both in the
assumption and in the conclusion derived from it, for it is b and not a that is
taking the place of the existentially quantified variable y. I remark also that
after this first step of (3E) the assumption FaaGb is discharged, so after this
step the name a no longer occurs in the assumptions of the proof. Con-
sequently, we may apply (V1) to it at any time we like. We could indeed have
applied (V1) at once, to prove the sequent Vx3y(FxAGy) - VxFx.

Just as the argument in the top left part of our proof could easily be modi-
fied to show that VxFx follows from our premiss, so equally the argument in
the bottom right part could easily be modified to show that JyGy also fol-
lows. We have only to alter it in this way:
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(2)

. FeaGb
((AHI; Gb VxTy(FxaGy)
EWe I(FenG
@E) yGy y(FcnGy) 2)

JyGy

Then the result that we want could be obtained by adding to these two
proofs a proof of the sequent

VxFx, AyGy = FyVx(FxaGy).

You may like to work out this version of the proof, which is more long-
winded but conceptually simpler. Meanwhile, let us return to the proof as
first given.

We have Fa from the left side of the proof and Gb from the right, so
we bring them together before applying (VI). Notice that, to legitimize this
application, it was necessary for us to choose some letter other than a to sub-
stitute for x when applying (VE) in the right side of the proof. For at the stage
when (V1) is applied, the earlier assumption FaAGb has been discharged,
as we have said, but the later assumption FcAGb has not. So if this had con-
tained a instead of ¢, the proof would have failed at this point. Of course, we
could also have chosen a new letter, say d, to substitute for y, rather than the
same letter b as we had used earlier. But in this case there was no need. For all
that is necessary is to ensure that the letter chosen for the assumption is not
the letter a, does not already occur in y(FcAGy), does not occur in the con-
clusion to be derived from that assumption, namely 3yVx(FxAGy), and
does not occur in the auxiliary assumption used in the derivation, namely
Vx3y(FxAGy) at the top left corner of the proof.

You will notice that in these examples of proofs with quantifiers the
sequents to be proved have contained only the functor A, and the quanti-
fiers, and the proofs have used only the rules for A, and for the quantifiers. In
fact the point holds generally: any correct sequent which contains only A
and the quantifiers can be proved by these rules, as will be shown in Section
7.5. You would not expect the same point to hold for — and the quantifiers,
since, as we have noted, the usual rules for — are not complete, even for
sequents which contain only —. You might have expected the point to
hold for v and the quantifiers, but the expectation is disappointed. There are
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correct sequents whose only logical symbols are v and ¥ which cannot be
proved just from the rules for v and V. A simple example is

Vx(PvFx) P v VxFx.

Here is a simple proof of the sequent which in addition makes use of the
negation rules (EFQ) and (TND):

v —(1) —(2)
(vE) ZPVEx) @rq— % — W
PvFa Fa Fa

(VE) (1)

(VD) = —@)
VxFx p
M) ——— (vI)
Pv VxFx P v VxFx
(TND) (2)
Pv VxFx

Here is another proof, which this time makes use of the definition of v in
terms of — and —, and otherwise only the rules for — and V. (Of course, to
prove the definition one would have to use a negation rule.)

Vx(PvFx)

Pv VxFx

But there is no proof which uses only the four rules (VI),(VE),(VI),(VE)
(Exercise 6.3.4). Indeed, so far as I know, there are no natural deduction
rules for v alone, and for V alone, which are individually sound and jointly
sufficient for the proof of this sequent.
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EXERCISES

6.3.1. Give natural deduction proofs of the following sequents:

(a) Vx(Fx A Gx) —i VxFx A VxGx.

(b) Ix(Fxv Gx) — AxFx v IxGx.

(6) 3x(Fx—Gx) —i— VxFx—3xGx.

(d) Vx3y(Fx v Gy) -+ yVx(Fx v Gy).

[Warning: you will need to use a negation rule in the proofs of (¢) R—L and (d)
L—R. Feel free to use any such rule you find convenient. ]

6.3.2.(a) Let ¢(a) be the result of substituting a for some occurrences of x in @(x),
not excluding bound occurrences of x. Show by means of an example that the fol-
lowing rule is not sound:

¢(a) = 3xg(x).

(b) Let ¢(x) be the result of substituting x for some, but not necessarily all, occur-
rences of a in @(a). Show by means of an example that the following rule is not
sound:

If T,¢(a) - v then T, 3x(x) -y, provided that a does not occur in T or in .

(¢) Let@(x) be the result of substituting x for all occurrences of a in @(a), but with-
out regard to whether the substituted occurrences of x are free in ¢{x). Show that the
rule in part (b) is still not sound.

6.3.3. Show that the Cut principle holds for natural deduction proofs using the
quantifier rules. [Hint: see the argument on p. 243, with its footnote, and recall
Exercise 4.9.1(a).]

6.3.4, Consider the following unexpected interpretation for formulae containing
just v and V. There are to be two ‘worlds’, which we call w, and w,. (If it helps, you
may think of the formulae true in w, as representing what we know now, and the
formulae true in w, as representing what we will know later.) The worlds may con-
tain different domains of objects, and a formula containing a name is interpreted at
aworld only if the name is interpreted as denoting some object in the domain of that
world. We stipulate that any object in the domain of w; must also be in the domain
of w,, and that any atomic formula that is interpreted as true at w, must also be
interpreted as true at w,, but not vice versa. For v, we further stipulate that, for
either world w;,

Qv is true at w; iff @ is true at w; or yis true at w;.
For V, we have a more complicated clause:

VE@ is true at w, iff for any name o not in @, and for any interpretation of o
on the domain of w,, (/) is true at w,.
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VEg is true at wy iff (1) for any name o.not in g, and for any interpretation of
o on the domain of wy, @(a/€) is true at wy; and (2)VEp is
true at w,.

(So, if you like to think of it this way, V&g is taken to mean (1) everything we now
know of satisfies @, and (2) everything we will know of will also satisfy ¢.) Finally, we
say that " &= @ iff, for any way of interpreting ¢ and all the formulae in T at each
world w,, if all the formulae in I" are interpreted as true at w;, then @ is interpreted as
true at w;.

(a) Prove as alemma that, for any formula @, if ¢ is true at wy, then @ is true at w,.
[Method: use induction on the length of ¢.]

(b) Verify that the four rules (vI),(VE),(V1),(VE) are all sound on this interpreta-
tion. [Hint: you will need to use part (a) when verifying (VI).] Deduce that any
sequent that is provable from these four rules must be sound on this interpretation.
{c) Hence show that the sequent

Vx(PvFx) P v VxFx

is not provable from these four rules. [Hint: consider an interpretation in which the
domain of w, is {a} and the domain of w, is {a,b}. Let Fabe true at w;, and hence also
at w,, Let Pbe true at wy, but not at wy. Let Fb be not true at w,.]

[Note. The method of this exercise is a very special case of a much more general
result proved by Kripke (1965) for intuitionist logic.]

6.4. Alternative Styles of Proof

The two-dimensional proofs pursued so far are only one of many possible
styles of proof using the rules of natural deduction. They have the advantage
that the overall structure of the proof is easily seen, except perhaps that the
places where assumptions are first introduced and then discharged do not
stand out quite as clearly as they might. (Ideally, one might draw in different
colours each pair of lines marking the discharge of an assumption and the
place where it is discharged.) But, as you will have discovered, it can often be
tedious to write out such a proof, since one often finds that the same pre-
miss, and the same initial deductions from it, have to be written out again
and again at the top of a number of different branches. This sort of thing is
never needed when a proofiis taken to be a linear sequence of formulae as in
the last chapter.

Even a fully axiomatic proof, with no assumptions, can be given a two-
dimensional presentation in a tree structure, if we desire it. In this case, the
topmost formula of each branch would be required to be an axiom, and all
the rest of the proof would consist of pairs of branches being brought
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together by a step of Modus Ponens. Again it might be said that such a pre-
sentation clarifies the structure of the proof, and again it can be replied that
it increases the labour of writing the proof out. Since in this case the labour
is already very considerable, and since tree structures for axiomatic proofs
would quickly become very unwieldy, they are never adopted in practice.
Much the same applies to the proofs from assumptions that were employed
in the last chapter. They could have been defined as tree structures, but were
in fact defined as linear sequences of formulae, since such proofs are in prac-
tice easier to write out. When the only rule of inference is Modus Ponens, the
branches of a tree proof soon spread too wide for comfort.

Now the official position in the last chapter was indeed that Modus
Ponens, and later Generalization, were the only rules of inference, and that
there was no such thing as a proof which discharges assumptions. The de-
duction theorem was not officially regarded as a rule for use in proofs, but
as a theorem about proofs, telling us that if there is a proof of some formula
from a certain set of assumptions, then there is also a proof of a related for-
mula from a reduced set of assumptions. But although this was the official
position, we did in practice use this theorem as if it were a rule for dischar-
ging assumptions within a proof, and that was why our deductions could
be so nice and compact. Yet our proofs still remained linear sequences of
formulae, and not two-dimensional arrays. Could we not generalize this
approach? The answer is that so long as the rules for the quantifiers are not
yet added there is no difficulty. The procedure that we used before, of
labelling a line with ‘ASS” when it is introduced as an assumption, and then
crossing out that label when the assumption is discharged, could perfectly
well be written into the definition of what is to count as a proof. But there
is also an alternative procedure, used in several elementary books, which
appears to be an improvement on this. For the proof is given just a little
more structure than a straightforward linear sequence of formulae, and as a
result it certainly contains more information.4

To begin with, let us simplify by supposing that we have just one rule dis-
charging assumptions, say (—I). Then the idea is that when a formula is
introduced as an assumption, and is later to be discharged, that formula
is written at the head of a new column in the proof, slightly to the right of the
existing column of formulae. (The new column can be set off by drawing a
vertical line to its left.) All subsequent deductions are then written in the
new column, until the assumption that heads it (say @) is discharged. When
this happens the new column is closed, and we revert to the original column,

4 This style of proof is used in Quine (1952).

263



NATURAL DEDUCTION 6.4. Alternative Styles of Proof

beginning with the formula (say ¢— ) which results upon discharging that
assumption. The idea is that what is written in the new column depends
upon the assumption that heads it, whereas what is written in the original
column does not, so that we can see at a glance what parts of the proof
depend upon that assumption. The procedure may be iterated. As the proof
proceeds, a new column may be opened, then brought to a close, and later
another new column may be opened. More interestingly, a new column
may be opened, to the right of the original, and then before it is closed an-
other new column may be opened to its right, and so on indefinitely. This,
of course, represents the introduction of several assumptions, the second
being introduced before the first is discharged. But in that case one must be
careful to introduce the assumptions in the right order, so that the last to be
introduced is the first to be discharged, and so on. Thus on each discharge
work shifts back to the left by just one column.

Here is a simple example. Suppose (for variety) that we wish to verify the
rule of inference cited for the Sheffer stroke on p. 234, namely

o, 0Ty Ty .

Suppose also that we wish to do this in a system whose rules are given in
terms of — and —, say as (—1),(—E),EFQ,CM*, where this last is formu-
lated as in the previous chapter (p. 209). We therefore regard the stroke
functor as defined in terms of — and —, by abbreviating

oty for @—o—y.
Then we can set out a simple proof in the new style like this:

@ T T x

1. ¢ ASS
2. oT(yTy) ASS
3. g——(y——y) 2,Def T
4, —(y——y) 1,3,»E
5. —y ASS
6. v ASS
7. Y 5,6,EFQ
8. Y-y 67,1
9, v 4,8,EFQ
10. —y-ovy 5-9,—I1
11. ¢ 10,CM*

This notation for proofs is only very slightly different from that used in
the last chapter, and it is very easy to rewrite all the proofs of that chapter in
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the new style, as you may check. But there is certainly some gain in clarity.
The new style is only partly linear, because its ‘line’ of formulae is further
distinguished into various ‘sublines) but it shares with fully linear proofs the
advantage that one does not have to keep writing out the same premiss over
and over again. At the same time, it also has something of the advantage of a
two-dimensional proof, in that it shows more clearly what assumptions are
being used in any part of the proof.

There is no serious difficulty in extending this style of proof to allow for
several rules which discharge assumptions. At any rate, there is no problem
over further rules which discharge just one assumption, for example CM*
as formulated in this chapter (p. 249). (In the example just given, this would
allow one to omit line (10), for the subdeduction inlines (5)-(9) would then
justify the conclusion in line (11) without any intermediate step.) As an-
other example, for this style of proof the rule RAA would be formulated as
follows: if in a column headed by an assumption ¢ there occurs both a for-
mula y and its negation —, then @ may be discharged, i.e. the column may
be closed, and —@ entered in the column next to the left. When we turn to
consider rules which discharge two assumptions at once, such as (VE) or
TND, the situation is not quite so tidy, for the proper method would be to
allow for two parallel right-hand columns to be opened and closed simultan-
eously. But this does, of course, destroy the close approximation to a genu-
inely linear structure, and one might therefore be tempted to avoid such
rules altogether. (For example, (VE) might be formulated as on p. 229.) In
any case, I shall not pursue this problem further, for when quantifier rules
are added we soon discover that this style of setting out proofs is really only
a half-way house.

The source of the trouble is that the technique does not really give us, as
at first it seems to, all the information we need about what assumptions are
being relied on at any stage of the proof. This is because the convention is
that, at any line, one may invoke as a premiss any formula above that line,
either in the same column or in any column to the left. And you cannot tell,
just by looking at the proof-diagram, which columns to the left of a given
column have been used in the deductions in that column. Thus, to go back
to the very simple example just given, you cannot tell, from the structure
of the proof as displayed, that the conclusion of the third column does rest
upon the assumption heading the second column, but does not rest upon
either of the assumptions introduced in the first column. By contrast, the
conclusion of the second column does rest upon both the assumptions of
the first column. This kind of thing would be perfectly clear if our proof had
been given as a two-dimensional tree structure, in this way:
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1) —©
(Def) oo @)y TV
(=E)? (“Hﬁ("’ﬁ_"‘) (D) —* ()
(EFQ) y—>—1x) Yoy
(sh— ()
(o) 2V
v

For, with this kind of proof, if you wish to know what assumption a given
formula rests on, all that you have to do is to trace its ancestry upwards, and
the answer appears at once.

One does not really notice this lack of information in the (quasi-)linear
proofs until the quantifier rules are added, because until then it never mat-
ters. That is, so far as the rules for truth-functors are concerned, you can
suppose that every line in the proof rests on all the (undischarged) assump-
tions above it, and no problem will appear. But with the rules (V1) and (JE)
the situation changes; these rules impose conditions upon the names occur-
ring in the assumptions on which a given line rests, and it is just those
assumptions that need to be checked, and not any other assumptions that
may be used somewhere in the proof but not here. Consequently, we do
need to know just what the assumptions are that are used in the proof of this
or that particular line. Proofs set out as tree structures yield this information
at once, but the linear or quasi-linear structures considered so far do not. (I
mean that they do not yield this information at a glance; of course, one can
always recover it by actually tracing through all the details of the proof.)

I think, then, that the best way of setting out natural deduction proofs
in a linear form is one in which each line of the proof is accompanied by
an explicit statement of the assumptions on which it rests.5 We can do this
by writing, to the left of the line number, the numbers of those lines that
contain the relevant assumptions. To illustrate, here is a proof of the same
sequent once more, this time with the assumptions of each line explicitly
noted.

o, oTyTx) x
1 (1) ¢ ASS
2 ) ¢T(yTy) ASS
2 (3) p——=(y——y)  2,DefT
1,2 (4) "ﬂ(\{l——)"l%) 1,3,—E

5 This style of proof is used in Lemmon (1965).
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5 (5) Y ASS

6 (6) v ASS

5,6 (7) — 5,6,EFQ
5 (8) y——y 6-7,-1

1,2,5 (9) v 4,8,EFQ
1,2 (10) ¢ 5-9,CM*

You will observe: (1) that an assumption is always entered as resting on itself;
(2) that when we apply a rule which does not discharge assumptions, the
conclusion is entered as resting upon all of the assumptions that any of its
premisses rest on; (3) that when we apply a rule which does discharge an
assumption, that assumption is dropped from what is entered on the left. In
the light of these comments it should be clear how to formulate each nat-
ural deduction rule as a rule for use in proofs of this kind. I give just one
example in detail, namely the rule (VE), which is the most complex of all the
rules for truth-functors:

(VE). Givenaline ¢V, and a line % which has ¢ amongst its assump-
tions, and another line y which has y amongst its assumptions, we may
enter a further line y whose assumptions are (1) those of the line pv v,
(2) those of the line % which has ¢ as assumption, minus the assump-
tion @ itself, (3) those of the line i which has y as assumption, minus
the assumption W itself. (And in justification for this step we cite, on
the right, (1) the line v, (2) the lines in which y is derived from o,
(3) the lines in which y is derived from v, and finally (VE).)

I end this section with two further examples of proofs presented in this
style, with all assumptions explicitly noted on the left. They rewrite in this
linear form the two proofs of a law of distribution given earlier in tree form
on p. 247. You should carefully compare the two versions, and make sure
that you see how to translate any proof written in the one style into a corres-
ponding proof written in the other style.

Henceforth, when I speak of thelinear style of proof for natural deduction,
I shall mean this last style of proof, with all the assumptions noted explicitly
on the left. When looking for a proof you may find it helpful to use the quasi-
linear style introduced earlier, for that style does reveal something of the
structure of the proof, and it is conveniently succinct. Or you may prefer
to work explicitly with the two-dimensional tree structures that we began
with, where the full structure is evident at a glance. But once the proof is
found it can always be written out, for official purposes, in this last, and fully
explicit, linear form. We shall build upon this point in the next chapter.
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6.4. Alternative Styles of Proof

(@) ov(yAy) - (ovy)a(ovy)
1 (1) ev(yay)

2 2) ¢

2 (3) ovy

2 (4) ovy

2 (5) (ovy)a(ovy)
6 (6) yAay

6 (7) vy

6 (8) ovy

6 (9) x

6 (10) ovy

6 (11) (evy)a(evy)
1 (12) (evy)a(evy)

(B) (ovy) A (@vy) = ov(yAay)

L (1) (pvy)a(evy)
1 (2) ovy

1 (3) vy

4 @Wo

4 (5) ov(yay)

6 (6w

7 (D) y

6,7 (8) yay

6,7 (9) ov(way)
1,7 (10) ov(yay)
1 (11) ov(yAx)

ASS
ASS
2,v1
2,vI
3,4,A1
ASS
6,AE
7,vI
6,AE
9,vl
8,10,A1
1,2-5,6~11,vE

ASS

LAE

1,AE

ASS

4,vI

ASS

ASS

6,7,A1

8,vI
2,4-5,6-9,VE
3,4-5,7-10,vE

EXERCISES

6.4.1.(a) Rewrite your answers to Exercise 5.7.1 as proofs in the two-dimensional

tree style for natural deduction.

(b) Rewrite your answers to Exercise 6.3.1 as proofs in the linear style for natural

deduction.

6.4.2.(a) First using the pair of negation rules DNE and RAA, and then using
instead the pair TND and EFQ, give proofs in the linear style of

(1) VxFx-—At~—3x—Fx.
(2) dxFx—~Vx—Fx.
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(b) Using any negation rules you find convenient, give proofs in the linear style of

(1) VxFx—>VxGx - Ax(Fx—Gx).
(2) dxFx—»dxGx F Ix(Fx—Gx).
(3) IxEx—>VxGx = Vx(Fx—Gx).
(4) - 3x(Fx—>VyFy).

6.4.3.(a) Give a full definition of ‘a proof in the linear style for natural deduction’.
[The definition starts ‘A proof is a finite sequence of formulae which . . . After this
general characterization, which must say something about how the assumptions are
recorded, it goes on to state the particular rules of inference in a form suited to this
style of proof. For this purpose, take the rules to be those given in a different form
on p. 252 for the truth-functors, and on p. 254 for the quantifiers. |

(b) Verify that, on your definition of a proof in part {a), the Cut principle and the
principle of Assumptions are automatically satisfied, whatever rules are adopted for
the truth-functors. (Ignore here any complications that may be introduced by the
quantifier rules (Exercise 6.3.3).)

6.4.4. Give an explicit recipe for rewriting any proof given in the two-dimensional
tree structure as a linear proof.

6.5. Interim Review

I think that a majority of elementary books on logic written in the last
twenty or thirty years have used some form of natural deduction as their
proof procedure. The prevalence of this method is understandable, given
that the very first treatments of logic from a modern point of view were
axiomatic treatments. For, as we have seen, these are very unwieldy as they
stand, but much simplified by the deduction theorem, allowing us to use
proofs from assumptions in place of full axiomatic proofs. Given this break-
through, the main ideas behind natural deduction then come quite read-
ily to mind, as one tries to simplify yet further the complexities involved in
the original way of doing things. In any case, it is easy to see that the two
methods are closely related to one another. If we begin from axioms, we shall
at once wish to develop from them what are in effect the methods of nat-
ural deduction; and if we begin from natural deduction it is extremely easy
to re-establish the original axioms. But how do they each compare with the
method of semantic tableaux, which we began with in Chapter 4?2

The first contrast that strikes one is that with semantic tableaux there are
recipes for proof-construction that we can operate, whereas with natural
deduction there are not. To take first the logic of truth-functors, we know
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in advance that this is decidable by truth-tables, and we have also seen how
the semantic tableaux yield another decision procedure for it. For, so long as
we are dealing only with quantifier-free formulae, there can be only finitely
many steps before a completed tableau is reached, and a completed tableau
must provide either a proof or a counter-example. By contrast, the rules
for natural deduction do not at first seem to yield any decision procedure.
When looking for a proof of a sequent, the best that we can do is to work
simultaneously in both directions, thinking forward from the premisses, to
see what can be deduced from them, and thinking backwards from the con-
clusion, to see what it can be deduced from. Pursuing both these procedures
at once, we hope that they will meet in the middle and so provide the desired
proof. But failure to find a proof in this way certainly does not imply that
there is no proof, and even if in fact there is no proof, still our failure to find
one need not be of any help in the search in the other direction, i.e. for a
counter-example.

Now in fact there are decision procedures that one can extract from the
natural deduction rules for the truth-functors, or indeed from the original
axioms for those functors. One of them is given by our completeness proof
for the axioms, in Section 5.5. It can easily be adapted to a completeness
proof for the natural deduction rules instead (cf. Exercise 6.2.4). The strat-
egy of the argument here was to show how to mimic, with our rules of proof,
just the same steps as one would use when drawing up an ordinary truth-
table. So it would certainly be possible to devise a recipe for applying the
natural deduction rules which was bound to lead to a decision, one way or
the other, namely by following through all the steps of the completeness
proof, one by one, until we had in effect constructed the truth-table. But
that would be a complete waste of time, since it is much simpler just to write
out the truth-table directly. Much the same applies to other recipes that one
might construct, using the natural deduction rules, for determining the cor-
rectness or otherwise of any quantifier-free sequent. This can certainly be
done (Exercises 6.5.1 and 6.5.2), but the recipes are quite cuambersome in
practice, and one might just as well draw up a truth-table in the ordinary
way. By contrast, the decision procedure given by the semantic tableaux is
worth having on its own account, for it is often shorter than a full truth-table
would be.

Similar remarks apply to the logic of quantifiers. Here the method of
semantic tableaux does offer a recipe of a kind, i.e. one which will give a
definite result, one way or the other, for many simple sequents, and which is
at least a guide to the construction of proofs or counter-examples in other
cases. (This is all that one can ask of a recipe for the logic of quantifiers.) So
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far, no such recipe has emerged for the method of natural deduction. Nor
can we say in this case that one has only to look to a completeness proof to
provide one. For (a) it will be noted that I have not yet given any complete-
ness proof in this case; I add (b) that the kind of completeness proof that is
usually offered these days (due to Henkin 1949) is highly non-constructive,
and so gives us no hint of how a practical recipe might be discovered;é and
finally (c) Ishallin fact offer a different completeness proofin the next chap-
ter, but that will merely show how the methods of natural deduction can be
made to do all the work that semantic tableaux are capable of. In so far as it
does provide something by way of a recipe, then, it merely tells us how to
mimic in natural deduction what we can already do more conveniently in
semantic tableaux.

I conclude that on this question of how to find proofs the semantic
tableaux allow us to offer much more by way of guidance than does natural
deduction. You may perhaps reply that natural deduction has a different but
compensating advantage: because its methods really do reflect how we ‘nat-
urally’ think, it allows us to construct very ‘natural’ proofs, and it is easier to
find a ‘natural’ proof than an ‘unnatural’ one. But here I suspect that ‘nat-
ural’ just means ‘familiar, and any method will become familiar if you prac-
tise it enough.

The next chapter will bring about a reconciliation between the methods
of natural deduction pursued in this chapter and the method of semantic
tableaux pursued earlier. It will do so by showing how each can be refor-
mulated as what is called a ‘sequent calculus’, and by showing the relation
between these sequent calculi. At the same time, the various problems of ele-
gance affecting our rules for natural deduction will be easily overcome in the
new setting.

EXERCISES

6.5.1. Consider a system S which has—,A,v asits onlylogical symbols, and rules of
natural deduction for them as on p. 252.

(a) Show that for each formula ¢ of S there is a formula ¢’ in CNF such that
© g5 @". [Recall Exercise 6.2.2(c)~(e).]

(b) Hence show that S is complete, in the sense that if ¢ is any formula of S, and

6 Godel’s original completeness proof of 1930 was rather more constructive. The same might be said,
even more warmly, of some of its more modern descendants (e.g. Kleene 1952). But they will not be
explored in this book.
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if = @, thenl— . [Hint: complete this sentence ‘A formula in CNF is a tautology iff
R

(¢) Hence show that S is also complete in the sense that if ¢ and all the formulae
inT are formulae of S, and if T = @, then T g ¢. [ You may confine attention to the
case where I' is finite. ]

6.5.2. Show how to modify the argument of 6.5.1 so that it uses DNF rather than
CNE [Hint: use perfect DNF. (Incidentally, what would have happened if we had
tried to use perfect CNF in 6.5.17).]

6.5.3. Let S be a system for —,A,v,V,3, with the usual natural deduction rules for
these signs, but with only one-place predicate letters and no name-letters. Qutline
an argument to show that S is complete. [Recall Section 3.8.]
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7.5. Comparison of Systems 299

7.6. Reasoning with Gentzen Sequents 307
7.1. The ldea

Let us think, in a general way, about what happens in a natural deduction
proof. As a whole the proof is an array of formulae, which we say establishes
some sequent {namely the sequent which has on its left all the formulae
which are undischarged assumptions in the proof, and on its right the single
formula proved at the bottom of the proof). Moreover, the rules of inference
too are rules about sequents. A proof always starts with an assumption, say
@, and if we add nothing more, then this itself counts as the proof of a
sequent, namely

ot o.

So the rule which allows us to get started is a rule which tells us directly
that all sequents of this kind are correct. The other rules are all conditional,
for they tell us that if certain sequents are correct, then so also is a further
sequent, for example Modus Ponens in the form

If '@ and A @—vy then LA .
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So what happens in a proof is that we begin with certain sequents known
to be correct, and we deduce that certain other sequents must therefore be
correct. The proof proceeds by establishing one sequent after another, for at
every step there is some sequent which is there established.

The idea of a sequent calculus is that it keeps an explicit record of just
what sequent is established at each point of a proof. It does this by means of
a new kind of proof in which every line is itself the sequent proved at that
point in the proof. So a proof in a sequent calculus is not a linear sequence
or other array of formulae, but a matching array of whole sequents. That is the
basic idea.

Now we are familiar with sequents which have the (syntactic) turnstile -~
as their main verb; these are interpreted as claiming the existence of a proof,
in whatever system of proof is currently being considered. We are also famil-
iar with sequents which have the semantic turnstile = as their main verb;
these make a claim about interpretations, namely that there is no inter-
pretation which makes what is on the left true and what is on the right false.
But neither of these signs has been allowed to occur in a proof. By conven-
tion, when we do have whole sequents occurring in a proof they are written
not with = as their main verb, nor with -, but instead with the new sign =.
But the intended interpretation is that in which = is taken to mean the same
as the familiar turnstile =, Consequently, = has the same syntax as =; it
cannot occur within a formula but only between formulae, i.e. with some
(or none) to the left and at the moment with just one to the right. There are,
however, a couple of small changes that we must now make in our account
of what a sequent is, and it is convenient to associate them with the change
of notation.

The changes are required because it is a generally accepted condition on
what can be counted as a proof that there must always be a mechanical de-
cision procedure which can be applied to tell us whether or not an array of
symbols is a proof.! An evident corollary of this is that a proof must be finite.
Now a finite array of formulae is as a whole a finite structure, to which a de-
cision procedure can be applied, because each formula is itself finite. But
in a sequent calculus a proof is an array of sequents, not of formulae, so we
must now insist that the sequents to be considered are themselves finite.
That is the first change. Hitherto a sequent has been regarded as having a set
of formulae on the left, and there has been no bar on infinite sets, but for the
purposes of the present chapter they are debarred. As we saw in Chapter 4,
nothing is actually lost thereby. For the compactness theorem (Section 4.8)

1 In more advanced logic this condition is sometimes relaxed; but in elementary logic it is universally
obeyed.
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tells us that if we do have an infinite set of formulae which entails some for-
mula @, that is always because it has a finite subset which entails ¢. The sec-
ond change is a further elaboration of the first. While we regard a sequent as
having a set of formulae on its left, we must accept that there are all kinds of
ways of specifying such sets. For example, one could specify the set as: ‘all
formulae which will ever be written down by any person born on a Thurs-
day’. No doubt that is a finite set, so a sequent given in this way would pass
our first condition. But if proofs are to be certifiable as such by a mechanical
decision procedure, then they clearly cannot be allowed to contain sequents
given in this kind of way. We must instead require that what occurs to the left
of = is to be a finite list, consisting of zero or more formulae, written out in
full and separated by commas. In this chapter, the Greek letters ‘TA,... will
be used to represent such lists.

We may continue, if we like, to think of these lists of formulae as tacitly
surrounded by curly brackets {. . .}, so that their role is still to specify a set.
But now that we have come so far why should we not go one step further, and
say that what is to the left of the = is not a set at all, but simply a finite
sequence of zero or more formulae separated by commas? The answer is that
we can perfectly well take this further step, though it does bring with it the
need for an explicit statement of two further rules of inference. When a set is
specified by listing its members, then the order in which the members are
listed makes no difference, and any repetitions in the list may automatically
be discounted. This is because sets are the same iff their members are the
same, and different listings may yet list the same members. But if we are no
longer thinking in terms of sets, and are working with lists directly, then we
cannot continue with the attitude that it simply goes without saying that
order and repetition are irrelevant. This is not a problem. It just means that
we have to say it, instead of letting it go without saying. So we shall need two
new rules of inference, the rule of Interchange (INT), which allows us to
change the order of the formulae in the list, and the rule of Contraction,
(CONTR), which allows us to delete a repetition.

It is customary to present a sequent calculus as a system in which proofs
have the structure of trees, in the same way as we did first present natural
deduction (in Section 6.2). At the topmost position on each branch there
will therefore be a sequent which, according to the rules, can be asserted out-
right. This will therefore be an instance of the rule of assumptions. Every
other position in the proof will be occupied by a sequent which is deduced
from other sequents, the sequents that it is deduced from being written
immediately above it, and separated from it by a horizontal line. We may
therefore set out our basic rules of inference in the same way. Here, then, are
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the so-called ‘structural’ rules of inference, i.e. rules which do not concern
any particular truth-functors or quantifiers.

(ASS) ——
=9

I'=>¢

(THIN)
Ny=¢

I'=o CADY

(CUT)
DAy

LoyA=y

(INT)
Ly,¢,A=y

(CONTR) 02X
Lo=y

Whether one lists INT and CONTR explicitly as rules, or whether one lets
them go without saying, is very much a matter of taste. (My own taste is to
say that they should be listed as rules that are needed in theory, but then to
let them go without saying in practice, since it is so very tedious to putina
separate step each time that one of them should, in theory, be invoked.) In
any case, every sequent calculus will certainly conform to INT and CONTR,
whether or not they are officially listed. But of the other rules one can only
say that you would expect a sequent calculus to contain each of them (either
as a basic rule or as derived from other basic rules). They all are basic rules
in the system to be considered in the next section. But, as we shall see later
on, there are sequent calculi in which they are either modified or lacking
altogether.

EXERCISES

7.1.1.(a) Starting with an instance of ASS, and using suitable steps of THIN and
INT, given in full, establish the sequent

BQ—P—Q,R=—Q.

(b) By suitable steps of INT and CONTR, given in full, establish the following rule
of inference
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OV0,, ¥ = 19
XY= "0
(¢) Generalize your arguments in parts {a) and (b) to show that, however the for-
mulae to the left of = may be listed initially, (1) the order of the list may be re-
arranged in any desired way, and (2) repetitions may be introduced or eliminated in

any desired way, still leaving a sequent that is interdeducible with the one initially
given.

7.1.2. Arule such as (Al) is sometimes formulated in this way.
' I'svy
I'= oAy
and sometimes in this way
'=¢ A=y
LA= oAy

Show that, if T and A are both finite, then each of these formulations may be
deduced from the other. [For the argument in one direction you will need THIN
and INT; for the other direction you will need INT and CONTR.]

7.2. Natural Deduction as a Sequent Calculus

Itis very simple to rewrite the natural deduction rules given in the last chap-
ter as rules for a sequent calculus. We may adopt all the structural rules just
noted, and then we may reproduce the rules for truth-functors and quan-
tifiers, as given on pp. 252—4, in this form:2

I'=¢ A=y = oAy T'= oAy
(A) ————— (AE) )

A= oAb T'=¢ 'y

= r= I'sevy Ap=y Gy=
(vI) ¢ ’ v (VE) VY A9 =) Y =X

I'=sovy TI'=evy LAO=y

Lo= I'se A=0¢—>

I'=s oy TA= vy

2 Observe that the versions of (VE) and (3E) given here are more complex than those cited previ-
ously. The added complexity gives no further power (Exercise 7.2.1), but is adopted here because it better
matches the way that (VE) and (3E) are actually used in natural deductions.
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o= A, = I'= A
(TND) PmY A=Y (EFQ) LEPe A=
FA=vy LA= v
I'= 'V

40 =% (VE) ___.__E(P_

= VEp(E/o) = o(a/t)
provided aisnotinT"
an o(0./E) (k) Eo(E/a) A=y

= 3o LA= vy

provided o.is notin A or y

Given the familiar rules formulated in this new way, and given also the
basic idea that a proofin a sequent calculus records, at each stage, the whole
sequent that has been proved at that stage, it is really very easy to see how a
proof, originally written as a proofin natural deduction, may now be rewrit-
ten as a proof in this sequent calculus. I give just one example for a detailed
analysis. Turn back to the proof given on p. 258 of the sequent

Vx3y(FxaGy) b JyVx(FxaGy).

This proof is rewritten as a sequent calculus proof below. You will observe
that, to save clutter, I have omitted the small signs to the left of each hori-
zontal line saying which rule of inference is being applied at that line. As an
exercise, restore those signs. It will be seen that the structure of this proof
is exactly the same as the structure of the proof given on p. 258, on which
it is modelled. Indeed the two proofs correspond perfectly, step by step,3
and this is not just an accident which happens to hold for this particular
example but not for others. It should be perfectly clear that the point holds
quite generally. Since it really is very simple to rewrite a natural deduction
proof as a proof in the corresponding sequent calculus, one could at this
point pass on without more ado to the next topic. But perhaps it will be use-
ful if I make two further observations at this point.

The first is that it is evidently very tedious to write out a proof in our
sequent calculus, and especially if the proof is to be given in a tree structure.
But we have already seen that tree proofs may be collapsed into linear proofs,
and that much ink is saved thereby, so can we not apply the same idea to
these new sequent calculus proofs too? The answer is that we certainly can,
and that this does indeed economize on ink and paper. But this answer

3 The correspondence would not be perfect if steps of interchange and contraction had been put in
explicitly. As an exercise, put themin.
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VxIy(FxaGy) = VxIy(FxaGy) FanGbhb = FanGb
Vxdy(FxaGy) = Iy(FanGy) FanGb= Fa FenGb = FeaGh
Vx3y(FxAGy) = Fa FeAGhb=Gb
Vx3y(FxAGy),FenGb = FanGb
Vx3y(FxAGy),FcAGb = Vx(FxAGb) Vxdy(FxaGy) = VxIy(FxaGy)
Vxdy(FxAGy),FeaGb = JyVx(FxAGy) Vx3y(FxAGy) = Iy(FcnGy)

Vx3y(FxnGy) => JyVx(FxrGy)

sninofen uanbag e se uolonpaq [eMeN ‘g'2

NMNOIVO ININD3S
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can be improved to one which is perhaps more interesting, namely that our
existing method of writing natural deduction proofs in a linear form is
already a way of writing the corresponding sequent calculus proofs in linear
form. Iillustrate the point with the same sequent as example. A linear proof,
drawn up according to the method of Section 6.4, would look like this:

Vx3y(FxaGy) - AyVx(FxAGy)
1 (1) Vxdy(FxaGy) ASS

1 (2) Fy(FanGy) 1,VE

3 (3) FanGb ASS

3 (4) Fa 3,AE

1 (5) Fa 2,3-4,3J8
1 (6) Jy(FeaGy) 1,VE

7 (7)) FcaGh ASS

7 (8) Gb 7,AE

1,7 (9) FanGb 5,8,Al
1,7 (10) Vx{(FxAGb) 9,VI

1,7 (11) JyVx(FxaGy) 10,41
1 (12) JyVx(FxaGy) 6,7-11,7E

Because each line in this proof contains, on the left, an explicit mention
of the assumptions that the formula in that line rests on, we can easily see
each line as being itself a sequent, namely the sequent which has the listed
assumptions to its left and the formula displayed to its right. When we look
at the proof in this way, we see that it is already a proof in a sequent calculus,
and the justification for each line is unaffected. In fact it is just short for this
explicit sequent calculus version:

(1) Vx3y(FxAGy) = VxIy(FxaGy) ASS

(2) VxTy(FxaGy) = Jy(FarGy) L,LVE

(3) FanGb = FanGb ASS

(4) FanGb—= Fa 3,AE

(5) Vx3y(FxaGy) = Fa 2,3-4,1E

(6) VxIy(FxaGy) = Jy(FeaGy) 1,VE

(7) FcaGb = FeaGb ASS

(8) FcaGb= Gb 7,AE

(9) VxIy(FxaGy),FenGb => FanGb 5,8,A1
(10) Vxdy(FxaGy),FcnGb = Vx(FxAGb) 9,VI
(11) Vx3y(FxaGy),FcAGb = FyVx(FxaGy) 10,31
(12) VxIy(ExaGy) = FyVx(FxAGy) 6,7-11,3E
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Given a natural deduction proof in the linear form, then, it is even more
simple to rewrite it as a linear proof in the corresponding sequent calculus.
In fact it is so simple that we may perfectly well count the original proofasa
proof in the sequent calculus, but one that uses a convenient technique of
abbreviation. For practical purposes, this is by far the best approach. But for
most of the present chapter we shall not be too much concerned over what
is convenient in practice, for one does not usually introduce a sequent cal-
culus for that purpose. Rather, the interest is theoretical. As we shall see, a
sequent calculus is a useful tool for comparing two systems that at first look
utterly different. And for this purpose it is probably more helpful to stick to
the original way of writing a proof, namely as a tree structure.

A second point, worth adding here, concerns sequents with no formula
on the right. If we start from the perspective of natural deduction, we might
expect such sequents to be defined in terms of the more familiar sequents
with just one formula on the right. The simplest method of doing this is to
suppose that the language already contains the symbol L, with its own rule
of inference

I'=>1
(L) .
I'=se

Then clearly we can define
I'= asshortfor I'= L.

Alternatively, if L is not available, but we do have (say) A and —, then we
could instead define

I'= asshortfor I'= PA—P.

It is artificial to pick on some particular contradictory formula to play
this role, for no good ground could be given for choosing one rather than
another, but in practice it works perfectly well. As a further alternative,
we may, of course, accept sequents with no formula on the right as part
of our primitive vocabulary, extending the usual structural rules to cover
such sequents. Thus Thinning, Cutting, Interchange, and Contraction are
to apply as before both when there is a formula on the right and when there
is not, and there is also to be a new rule of Thinning on the right, which takes
this form:

I'=

Ir=¢
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EXERCISES

7.2.1.(a) Assuming the standard structural rules, show that the rules (VE) and (3E)
given above are interdeducible with these more familiar versions, which are rules
for introducing on the left:

Lo=y Ay= Lo=
VE) 9=y Ay=y ar) b=V
LAQvY =% LAeE/o) = ¢

provided atisnotin T orin y

(b) Assuming the standard structural rules again, show that the rule (VE) given
above is interdeducible with this rule for introducing on the left:

Io(a/k) =y

(VE) .
LV = v

(c) Consider once more the sequent

Vady(FxaGy) = JyVx{FxaGy).

Construct a proof of this sequent using (3E’) and (VE’) in place of (3E) and (VE),
and not using CUT.

7.2.2. Letus write a double horizontal line to signify that the sequent below the line
follows from the ones above and conversely that the ones above each follow from the
one below. Then what were called in Section 2.5 the ‘basic principles’ for A,v,—,—
may be formulated thus:

I's=>¢ anp =Wy o=y anp Ly=7y

I'= oAy Lovu=yx
o=y I'se
I'= ooy L—e=

Assuming all the standard structural rules for a sequent calculus, show that these
rules are interdeducible with the ones given in this section.

7.2.3. Consider asequent calculus which has all the standard structural rules and in
addition just this one pair of rules:

I'=>¢ anp I'sSy

LoTy =
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(a) Give an interpretation of T under which this rule is sound.
(b) Define —,A,V in terms of 7T, and show how to prove, in this calculus, the rules
for —,A,v given in this section.

7.3. Semantic Tableaux as a Sequent Calculus

The sequent calculus of the last section was designed to fit proofs in a nat-
ural deduction system. In this section we shall find a sequent calculus to fit
proofs by semantic tableaux. I begin by considering the tableau proofs that
we actually use in practice, in which negation plays a special role. But in the
next section I shall be concerned with the tableau rules as originally formu-
lated in Section 4.2, using an explicitly semantical vocabulary. This will lead
us to something very much more elegant. But it is more sensible to begin
with the method used in practice, since that is likely to be more familiar.

At a first glance, the method of a sequent calculus seems not to apply
to tableau proofs. For the method is that each step of the new proof records
the sequent that is proved at the corresponding step of the original proof,
but the individual steps of a tableau proof do not establish any sequent at
all. Indeed, no sequent is established until the final step of the proof, when
the last branch is closed, and until then we are simply exploring a hypo-
thesis. Nevertheless, the hypothesis being explored can certainly be stated
as a hypothesis about a sequent, and that is enough for us to be able to bring
the method to bear. The sequents in question are sequents which have no
formula on the right.

In more detail, a tableau proof begins with a (finite) list of formulae at its
root, say I, and it puts forward the hypothesis that these formulae are con-
sistent, i.e. not inconsistent. That is, the hypothesis, is

.

This is the negation of a sequent. When we then go on to develop the
tableau, we argue that if these formulae which we have so far are consistent,
then so too is the result of adding to them some further formulae, shorter
than the ones we began with. But here we need to distinguish between
branching and non-branching rules, for a branching rule will say that if
these formulae that we have already are consistent, then either the result of
adding this or the result of adding that must remain consistent. To illustrate,
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let us just look at the rules for A. Using our present notation for when one
sequent follows from another, but applying it now not only to sequents but
also to their negations, we may say that the two rules for A are these:

LoAy & L—(pAy) #
LoAay,out  L—(@Ay),—@# or L(@Ay),—yk=

Clearly, all the other tableau rules can be similarly formulated, but firstlet us
introduce some simplifications.

The left-hand rule has the formula g Ay repeated in the bottom line, and
similarly the right-hand rule repeats — (@A) in each bottom line. But this
is superfluous. (a) It is superfluous from a semantic point of view, for the
rules would be equally correct if these repetitions were dropped; and (b) it
is superfluous from the point of view of reflecting what actually happens
in a tableau proof. For once a formula @Ay has been developed (in every
branch on which it lies), and replaced by the simpler formulae ¢ and v, we
never do go back to the original conjunction ¢ Aw. It plays no further role in
the growth of the tableau and the closing of branches. Exactly the same
applies to a formula —(@AW); once it has been replaced by —¢ in one
branch, and — in another, it is never referred to again. So we may simplify
the rules just stated in this way:

NN Lo L—(oay) ¥
Lo,y b Lok OorR L—wht

A further simplification turns these rules upside-down, by contraposition,
and thus presents them as rules concerning sequents, and not the negations
of sequents. For it is clear that B follows from A iff the negation of A follows
from the negation of B. So we obtain

Lok L—okE= LyE
Loayk= L—(pAy) =

Notice that at the same time the anomalous ‘or’ which had appeared on the
bottom of the rule for (—A) has now become an ordinary ‘aANDp’ on the top
line, and so may be omitted in the usual way.

For convenience I gather together here all the tableau rules for truth-
functors, treated in the same way, i.e. by first omitting repetitions as super-
fluous and then turning them upside-down. At the same time, since it is now
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agenuine sequent calculus that is being put forward, I write => in place of F=.
The rules become:

(BS) —
Lo—o =
Lo,y = [—o= L—wy=
A — (=)
Dony = Lo(pay) =
To= Ly= By =
(V) —— (=) —————
Dovy = L—(evy) =
IL—¢e= Ly= Lo—y=
() ————— () ——————
Lo-oy= L(o—vy) =
Lo=
(—)
I‘,—ﬂﬁ(b =

The rule that I have put at the top, called ‘BS’ for ‘basic sequent,, is, of course,
the rule for closing branches. All the other rules are introduction rules, and
there are no elimination rules. This, of course, corresponds to the fact that,
in their original setting, all the tableau rules are elimination rules, allow-
ing us to replace a longer formula by its shorter components. So, when one
turns them upside-down, they naturally become introduction rules. And
since at the moment our sequents have no formulae on the right, they must
be rules for introducing on the left.

Now the point is that any tableau proof can be rewritten as a proof in this
sequent calculus, simply by turning the whole thing upside-down. Let us
begin with a very simple example. Here is a tableau proof of Peirce’s law:

=((P->Q)—>P)—>P
—,((P—->Q|)—>P)—>P

(P-»Q)—>P
—P

4
S
4
L
I~ —
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When we analyse this proof we see that what it is saying, step by step, is
this:

Assume —(((P—->Q)—>P)->P)F

Then (P—Q)—P—PH
Soeither —(P->Q),—PK or P—PF
hence P—Q,—PF but this is not so
but this is not so.

Turning the reasoning upside-down, we find that it is a piece of reasoning in
our sequent calculus, going like this:

(BS) ———
P—Q—P=
(=) —— (BS)
(=) ~1(P—Q),—P = P—P=
%
(P->Q)—P—P =
(=)

—(((P->Q)—P)—>P) =

Each branch begins with what we are now calling a basic sequent, and each
transition is made in accordance with one of the rules (—) or (——) as now
formulated. (Again, I am omitting occurrences of interchange.) I shall give
arather longer example in a moment, but first I pause to consider the quan-
tifier rules.

If we formulate the tableau rules for V as we first formulated the rules for
A, we obtain these:

LVEe L—VEp b
M)y————— (V)
LVEp,p(a/f) b L~ VEQ,—o(a/E) B

provided aisnotinI"orin ¢

Now the repetitions of VE@ and —VE¢ on the bottom lines are again super-
fluous from the semantic point of view; each rule would remain a correct
rule if these repetitions were simply omitted. With the rule for —V on the
right we can add, as before, that such an omission would in addition reflect
the structure of a tableau proof. For it is again true that once a formula
—VE@hasbeen developed, by dropping the quantifier VE and puttinga new
name o in place of the variable &, then we never need to go back to that for-
mula —VEg again, and it plays no further role in growing the tableau. So in
this case there is no problem over dropping the repetition. But with the V
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rule on the left there is a problem, since we have seen that in a tableau proof
the same formulae VE@ may have to be used several times over, first with one
name and then with another. So in this case we have a choice: we can drop
the repetition to obtain a simpler rule, but remembering that it does not fit
so closely the structure of a tableau proof, or we can keep the repetition
because sometimes it will be useful. The choice is merely a matter of taste,
for the two rules to which we would be led as rules of a sequent calculus are

) Lo(a/§) = ) LVEe.e(a/€) =
I\VEe = Vo =

Itis easily seen that these two rules are interdeducible. I show on the left how
¥, can be obtained, given V, and on the right how V, can be obtained,
given V.

(CONTR) _’._(P_’_fé?i () LVSHPG) =
LVép = | IEY

I choose, then, to adopt the simpler rule (V;) as the official rule in the
sequent calculus, though remembering that the analysis of a tableau proof
may be more complex than this simple form suggests. (There is a similar
choice over the rule for —3, where I choose in the same way.)

The four quantifier rules for our sequent calculus are therefore these.

Lo(a/g) = Lo =
) ¢(a/t) (=) —¢
LVip = LVE(E/a) =
provided cisnotin I
Lo= I 18) =

@—a (g PR =

LIEpElo) = L—d8e =
provided aisnotinT

I have made a small change in the formulations of the rules (3) and (—V),
in order to simplify the statement of the provisos attached to those rules,
but otherwise these rules are obtained in the same way as those for the
truth-functors, i.e. just by deleting repetitions and then turning them
upside-down.

When we transform a whole tableau proof, by turning it upside-down,
and writing each step as an application of these sequent rules, we need to be
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wary of the discrepancy just noted between the form of the rules (V) and
(—3) and the actual procedure of the proof. Where the original tableau
proof was a simple one, with the V-rule and the —3-rule never applied
more than once to the same formula, there is no problem; we just follow the
simple recipe already illustrated, and everything comes out right. But where
one of these rules is applied more than once, in our analysis of the proof we
carry down the formula it is applied to until we reach the last application of
the rule. The result is that when this analysis is turned upside-down to
become a sequent proof, an extra step of contraction will be needed at the
end. Lillustrate the position by returning once more to the sequent

Vxdy(FxaGy) = yVx(FxaGy).

A tableau proof of this is given in (P15). Notice that in this proof the V-rule

Tableau (P15)
Vxdy(FxaGy)
—3dyVx(FxAGy)
Fy(FenGy)
FenGb
Fc
Gb
—Vx(FxAGb)
—{FanGb)
l
| |
—Fa —Gb
Jy(FanGy) =
FanGd
Fa
Gd

is applied twice to the first formula in the root, once as the very first step in
the development, and then again just after the branch. Bearing this in mind,
the analysis is:
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Assume Vx3y(FxAGy),—dyVx(ExaGy) #

= Vay(FxaGy),3y(FcAGy),—JyVx(FxaGy) ¥
- Vx3y(FxAGy), FeAGb,—3yVx(FxaGy) b

~. Vx3y(FxaGy),Fc,Gb,—3yVx(FxAGy) ¥

~. VxAy(FxAGy),Fc,Gb,—WVx(FxAGb)

-~ Vx3Ay(ExaGy),Fc,Gb,—(FanGb) B

-~ either Vx3y(FxAGy),Fc,Gb,—Fa F#
. Iy(FanGy),Fc,Gb,—Fa ¥
. FanGd,Fc,Gb,—Fa #
.. Fa, Gd,Fc,Gb,—Fa
but this is not so

or Vx3y(FxAGy),Fc,Gb, —~Gb
but this is not so.

We now turn the analysis upside-down to obtain our proof in the sequent
calculus, at the same time writing = for =. This yields:

Fa,Gd,Fc,Gb,—Fa =

FanGd,Fc,Gb—Fa =

Ay(FanGy),Fc,Gb,—Fa =

Vx3y(FxaGy),Fc,Gb,—Fa = Vx3y(FxaGy),Fc,Gb,—Gb =
Vx3y(FxAGy),Fc,Gb,—(FanGb) =
Vx3y(FxAGy),Fc,Gb,—Vx(FxaGb) =
Va3y(FxaGy),Fc, Gb,—3yVx(FxAGy) =
Vxdy(FxAGy),FceAGh,—3yVx(FxAGy) =
VxAy(FxaGy),Ay(FeaGy),—3yVx(FxaGhb) =
Vx3y(FxAGy), Vx3y(FxAGy),—yVx(FxAGy) =
Vady(ExnGy),—3yVx(FxaGy) =

As you may check, each branch begins with a basic sequent, and each sub-
sequent line follows from the line above it by the rules stated (except that

steps of interchange have again been passed over in silence, and there is a
final step of contraction).
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EXERCISES

7.3.1. Rewrite six of your answers to Exercise 4.4.1 as proofs in the sequent calculus
of this section.

7.3.2. Let S be the sequent calculus which contains just the rule for basic sequents
and for the truth-functors as formulated in this section, the rules (3) and (—V) asin
this section, the rules (V) and (—3) formulated without deleting the repetition, and
interchange. Note that § does not contain ASS, THIN, CUT, or CONTR.

(a) Say how the changes to (V) and (—3) affect the recipe for rewriting tableau
proofs as proofs in S.

(b) Show that every proof in S can be rewritten as a tableau proof of the same
sequent. [Method: use induction on the length of the proofin S, working upwards
from the bottom of the proof.]

7.3.3. Let S belike S of the previous exercise, except that it does not contain the rule
BS for basic sequents but instead the rules ASS and THIN, with ASS in the form

(ASS)
¢ =

Show that all the same sequents are provable in S and in §’. [Method: it is easy to
prove BS as a derived rule of S'; for the converse, show that any use of THIN in §’ can
be driven up the proof until it is applied to an instance of ASS. ]

7.3.4. Let S” be the system S of Exercise 7.3.2, except that in place of (A) it has these
two rules:

Lo= Iy=

Loay =~ Loay =
and in place of (—v) it has these two rules:

I,—o = I—y =

T(pvy) = Le(ovy) =
and in place of (——>) it has these two rules:

Lo= I—y =
L(e—w) = Tle-y) =

(a) Show that any sequent that can be proved in $” can also be proved in S. [Hint:
use the result of the previous exercise on thinningin S.]

(b) Show that, if we add to S” the rule of contraction, then every sequent provable
in S is also provable in the expanded §”.
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(c) Show that, if we do not expand S” by adding contraction, then itis not true that
every sequent provable in § is provable in §”. [Hint: consider the sequent

PA—P =,

This is not a basic sequent. So if it is provable in S” there is a previous line in the
proof. What could it be? (Note that only correct sequents are provable in §”.))

(d) Show that, if we expand S by adding the rule of contraction, then no new
sequents become provable. [For the simplest argument, use Exercise 7.3.2 and the
reasoning which is applied to CUT on p. 182.]

7.4. Gentzen Sequents; Semantic Tableaux Again

We could pursue straightaway the comparison already hinted at between the
sequent calculus corresponding to natural deduction and that correspond-
ing to the tableau system. But at the moment negation is still playing a very
special role in the tableau rules, and this is distracting. So I first adopt a new
sequent calculus for the tableau system, which involves the use of a new kind
of sequent altogether.

It is not an unreasonable suggestion that the unwanted occurrences of
negation in many of the tableau rules can be removed if we recall that in the
tableau system we abbreviate

I'=>¢ for L[—o=.

Applying this transformation to the rule for basic sequents, and to all the
—-rules, they become

(BS) ————
)E<p=>q>

I'=s>e I'>y
(A
I'= oAy

(—N) ?

Lo=vy
—)—
F:)(p——)\i}
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I'=¢

(V)
I'= VepE/a)
provided atis notin I"

I' = o(a/E)

(—3)
I'= JEo

In every case, this turns a complex and unfamiliar negation rule into a sim-
pler and more familiar rule, for introducing on the right, with no super-
fluous intrusion of negations. But there is one case, namely (—v), to which
the transformation cannot be applied, since it would lead to a sequent with
two formulae to the right of =. It is true that one might try to avoid this
by reformulating (—v) as in Exercise 7.3.4, but we noted then that that
introduced further complications of its own. So what we shall do now is to
enlarge the notion of a sequent, so that it may have any (finite) number of
formulae on the left and any (finite) number on the right. Such sequents are
called Gentzen sequents, for they were introduced by Gerhard Gentzen
(1934).

Theidea, then, is thatI" = A will be a sequent, where both I'and A may be
lists of several formulae (or of none). The intended interpretation is that
such a sequent will count as correct iff there is no interpretation which
makes all the formulae in T" true and all the formulae in A false. Since I" and
A are both constrained to be finite, this comes to the same thing as saying
that the conjunction of all the formulae in I" entails the disjunction of all
the formulae in A. (For this purpose we may, if we wish, take the ‘empty
conjunction’ as the formula T and the ‘empty disjunction’ as the formula L.)
So such a sequent is always equivalent to one with just one formula on either
side. That, of course, always was the case with the sequents we have con-
sidered previously. But just as previously we could set out our rules with sev-
eral formulae on the left, without needing occurrences of A to bind them
together into one, so now we can do the same on the right as well, without
binding the several formulae together by occurrences of v. This restores the
symmetry between A and v that was so clearly missing in the natural deduc-
tion approach, and it gives us a great freedom to formulate elegant rules for
the truth-functors and quantifiers, as we shall see. But as a preliminary let us
first notice the structural rules for a sequent calculus employing these new
(Gentzen sequents,

So far as the standard rules are concerned, Assumptions will remain as
before, Thinning and Interchange and Contraction will be extended so that
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they apply to both sides of a sequent, and Cut will be reformulated in a more
powerful way, suited to the more complex sequents now available. That is to
say, the standard structural rules are now these:

(ASS) ———
=9
I'=A I'=SA
(THIN) (THIN) ————
Lo=A I'=g,A
Ii=0A Tyo=>A
(CUT) 1= ¢4 150 2
L = ApA,
Loy,A=0 I'=A0y,0
I i i (INT) 2%
Ly,0,A= 0 I'= Avy,0,0
Loo=A I'= ¢,0,A
(CONTR) 2 =2 (CONTR) i
To=A '=¢A

If we wish to adopt a rule for basic sequents, in place of Assumptions and
Thinning, then that rule must also be extended as Thinning has been ex-
tended, i.e. to

(BS) ——— .
Lo= ¢,A

These are the structural rules that one expects to find holding in a Gentzen
sequent calculus, either adopted as primitive rules of the system or derived
from other rules. (For example, thinning on the left is derivable from the
natural deduction rules for A, as we noted long ago; thinning on the right
will now be derivable from the symmetrical rules for v; cutting may well be
derivable from the rules for —, depending on just what rules are adopted
here.) But in particular cases a calculus may be specified which lacks one or
more of these rules. However, all the calculi that will be considered here will
contain Interchange as a primitive rule, and to avoid clutter I shall continue
to leave the applications of this rule tacit.

I briefly illustrate the new freedoms with a few examples. The standard
natural deduction rules for A are formulated as rules for introducing and
eliminating on the right, and we could already have formulated a similar
pair of rules for v, for introducing and eliminating on the left. But the dual-
ity of these rules can now be brought out much more clearly. To obtain a
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succinct formulation, let us again use a double horizontal line to signify that
the inference holds both from top to bottom and from bottom to top. Then
these rules are

I'=>¢,A AND T'=wyA Le=A Anp Ly=>A

I = @ay,A Lovy = A

(Previously we had to require A to be null in the rule for A, and to be a single
formula in the rule for v, and this destroyed the symmetry.) A more sig-
nificant improvement, however, is that we can now give a much simpler pair
of rules for A, which introduce it and eliminate it on the left, and can match
these with an equally simple pair of rules for v, which introduce it and elim-
inate it on the right:

Loy=A I'=oywA

oAy = A U= ovy,A

As is familiar, the rules for A may be reformulated once more in this even
simpler way:

QY =OAY  QAY =@, PAY = .

And these rules too can now be matched by dual rules for v:

VY =0y 9= 0VY, Y= QVy.

As you are invited to discover, all these various ways of framing rules for A
and for v are equivalent to one another, given the standard structural rules
in the background.

The situation with — is similarly improved, as Exercises 7.4.3 and 7.4.5
will show. But perhaps the most welcome liberation comes with the rules for
—, for the pair TND and EFQ can now be put in this simple way:

=@, @0, =,

These rules are adequate by themselves. So also would be either of these
pairs of rules, the first for introducing and eliminating on the left, and the
second for introducing and eliminating on the right

I'= ¢,A Le=A

L—o=A I'=—0,A
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While we had to require A to be empty, we had the oddity that the pair on
the left was not adequate, though the pair on the right was adequate. (See
Exercises 7.2.2(b) and 7.4.3.) This, I hope, is sufficient illustration of how
the new style of sequent allows us much more freedom in the formulation of
rules for truth-functors, and a considerable increase in elegance. But let us
now come back to the question with which this section began, of how to
improve our formulation of the tableau rules as a sequent calculus.

Our first formulation of the method of semantic tableaux in Sections
4.1-2 made overt use of semantical vocabulary, with formulae being explic-
itly assigned a truth-value, T or F. This was clumsy in practice, so in Section
4.3 we introduced an equivalent but abbreviated version, which eliminated
the semantical vocabulary, but at the cost of giving a special role to negation.
Let us now return to the original version, which may be somewhat long-
winded but is also very much more elegant, as we noted at the time. In the
original version truth and falsehood are symmetrically treated, and there
is no special role for negation. How, then, should we formulate suitable
sequent calculus rules to fit the original version of the semantic tableaux?

At the root of the tableau we have a set of formulae, some assigned the
value T and some assigned the value E. This represents the hypothesis that
truth-values can indeed be assigned as indicated. But if the proof is success-
ful, it shows that this hypothesis runs into a contradiction, and hence that
truth-values cannot be assigned as indicated. Now suppose we write ‘on the
left’ all those formulae assigned the value T in the root, and ‘on the right’ all
those assigned the value E Then what is proved is that there is no interpreta-
tion which gives T to all those on the left and F to all those on the right. In
other words, what is proved is the Gentzen sequent which has on its left
all the formulae assigned T in the root and on the right all the formulae
assigned Fin the root. And it is not just the result of the whole proof that can
be seen in this way, for indeed each step of the proof can be seen as reason-
ing about Gentzen sequents. We begin with the hypothesis that a certain
Gentzen sequent is not correct, and the steps of developing this hypo-
thesis are inferences that in that case certain further sequents are not correct
either. The case of negation provides a convenient example. Suppose that
our hypothesis so far is that a formula —@ is true, that certain other formu-
laeT"are all true, and that other formulae A are all false. Applying the rule for
negation then represents this inference:

Suppose L—o A
Then I'# oA

Similarly, if our hypothesis had been that —¢ is false, then applying the
negation rule would be inferring thus:
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Suppose I'# —@,A
Then Lo # A

(Notice that, as in Section 7.3, we have deleted from these inferences the
superfluous repetition of —@.) It is clear that all the original tableau rules
can be rephrased in this way.

When we do reformulate all the rules thus, and then turn them upside-
down so that they become rules of a standard sequent calculus, the result is
this:

BS) ——
o= ¢A
Loy=A II'=¢A T=2yA
(A=) ¥ 22 (on) ke
Loay = A I' = oAy, A
Loe=>A Ly=A I'= o,y,A
vy =2 A ) T
Lovy = A I's pvy,A
I'=>0A Ty=A Do=wy,A
(—==) A hd (=) ____(_'_)__\l_!___
Lo—sy=A I'= ¢—>y,A
I'=eA Lo=A
L= A I'=—0,A
Lo(a/§) = A '=¢,A
(v DO = 4 (oy) LA
LVEY = A I'= VE@(E/a),A
provided aisnotinI"or A
o=A I'= o(a/t),A
LHEe(G/o) = A I'=>3Ep,A

providedaisnotinTor A

As before, all our rules are introduction rules, but they now pair nicely into
rules for introducing on the left, labelled (+=>), and on the right, labelled
(=>#), for each truth-functor or quantifier *. Also, the negation sign is no
longer playing any special role, but occurs only in the pair of rules that deal
with it. This calculus, then, represents in a much nicer way the principles
that are at work in a tableau proof. As before we do not have the structural
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rules ASS and THIN, but instead the rule BS, which does the same work.
Also, as before we do not have the rule CUT, since tableau proofs do not use
any such rule. For this reason, the calculus is known as Gentzen’s cut-free
sequent calculus. Finally, the rules do include INT, if we need to state that
rule separately, and as formulated here they need to include CONTR. But, as
in Exercise 7.3.2, we could avoid this by reformulating (V=) and (=3) in
this way:

,. LVEQp,0(a/8) = A ,. = o(a/E),3E0.A
(V=) 3=9)
LVEp = A I'= 3e,A

Given this reformulation, and for completeness adding INT explicitly, the
rules stated here exactly match the rules of the original tableau system, so it
is easy to argue that whatever sequents can be proved in the one system can
also be proved in the other.

EXERCISES

7.4.1. Rewrite the proof, given on p. 162, of the sequent
VxIy(FxaGy) = yVx(FxAGy)
as a proof in Gentzen’s cut-free sequent calculus.

7.4.2. Assuming all the standard rules for a calculus of Gentzen sequents, verify
the assertion made in the text, that the various sets of rules cited for A and for v on
p. 294 are interdeducible.

7.4.3. Assuming all the standard structural rules, show that the Gentzen rules
(—=>) and (=—>) are interdeducible with each of the following sets:

I'=¢,A anp Ly=A

(a)
Lo—»y=A

LDo=yA
(b) ——————
I' = ¢—-y,A
(©) y=0-y =000V QoYY

7.4.4. Assuming all the standard structural rules, consider this pair of rules for
negation:
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Lo=A
F:>—\(p,A.

(a) Suppose first that in these rules A is required to be empty. Show that in that case
the sequent ——P = P is not provable. [Method: consider this three-valued table
for negation:

o -
1 0
v 0
0 1

(Compare table VI on p. 198.) Count a sequent I => y as correct iff the minimum
of the values of the formulae in I" is less than or equal to the vatue of y. Verify that
on this interpretation the structural rules remain sound, and the two rules for —are
both sound, but the proposed sequent is not correct.]

(b) Allowing A to be non-empty, prove the sequent——P = P. [Hint: you will find
it useful to use CUT on = P,—P and —P = ——1—P.]

(¢} Show that the pair of rules in question is equivalent to the Gentzen pair (—=>)
and (=>~). [For the argument in one direction you will need part (b); for the other
direction you will need P = ——P.}

7.4.5. (This exercise continues Exercise 5.7.2.) Let GC be a sequent calculus for
Gentzen sequents whose only truth-functor is —. It has the standard structural
rules and in addition just (—»=>) and (=>-).

(a) Show that (=) can equivalently be replaced by the pair of rules

Le=A I'=yA

= ¢—=y,A I'= ¢o—oy,A

(b) Let @ be a formula with — as its only truth-functor, and consider any assign-
ment of truth-values to the letters in @. Let I"be the set of letters assigned T, and A be
the set of letters assigned E. Prove:

If @ is true on this assignment, then I' = ¢,A is provable in GC.
If ¢ is false on this assignment, then I',¢ = A is provable in GC.

[Method: use induction on the length of ¢.]

(¢) Deduce from (b) that if ¢ is a tautology, with — as its only truth-functor, then
= @ is provable in GC.

(d) Deduce from (c) thatif T" = A, and if — is the only truth-functor in " and in A,
then " = A is provable in GC. [Hints: (1) you can define v in terms of —; (2) you
will need to derive the following two further rules of GC:
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I'= g-yA I'= (9-y)-yA

HLeo=wyA I'= o,w,A

Note, incidentally, that a rather quicker proof of this same result is contained in the
reasoning that immediately follows.]

7.5. Comparison of Systems

As we showed in Chapter 4, the tableau system provides a complete proof
procedure: every correct sequent can be proved in it. Qur argument in
Chapter 4 was directed to the second version of the tableau system, more
convenient in practice, but giving a special role to negation. But it is easily
shown that whatever can be proved in the second version of the tableau sys-
tem can also be proved in the first (Exercises 4.3.1 and 4.3.2), so it follows
that the first version of the tableau system is complete too. It is also clear that
whatever can be proved in the first version of the tableau system can also
be proved in Gentzen’s cut-free sequent calculus, since we have just seen
how the two correspond, rule for rule. It follows that this sequent calculus
is also complete. Admittedly there is a difference between the two systems
over what is to count as a sequent. Gentzen’s system has sequents I' = A,
where there may be many formulae on the right, whereas the second tableau
system (to which our completeness proof applied) is primarily concerned
with sequents I' = which have no formulae on the right. But, provided that
standard rules for negation are available, this difference is of no importance.
For if we let —A stand for the set of formulae which are the negations of the
formulae in A we have

L—AE iff TEA

Any system, then, which can prove all correct sequents of the one sort can
automatically prove all correct sequents of the other sort too.

Not only are the first tableau system, and Gentzen’s cut-free sequent cal-
culus, complete as wholes; they are also complete part by part, in the way we
desired, but did not achieve, for our system of natural deduction. That is: the
rules for each logical sign are by themselves complete for all sequents con-
taining that sign and no other, and the various combinations of these rules
are complete for all sequents containing the corresponding combinations
of logical signs. This point is especially clear for the tableau rules, for when
we are drawing up a tableau for a given set of formulae there simply is no
opportunity to use any rules other than the rules for the logical signs in those
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formulae. Other rules just cannot be brought to bear. The same applies too
to Gentzen’s corresponding sequent calculus, because every rule in that cal-
culus is an introduction rule, and so a sign that is introduced into the proof
at any point cannot later be got rid of. It must therefore appear in the final
sequent proved. (Note here that we rely not just on the point that no sign is
furnished with an elimination rule of its own, but also on the fact that CUT
is absent;4 for CUT is a kind of general elimination rule.)

Now we have not yet proved that the rules for natural deduction in
Chapter 6 are complete—complete, that is, for the sequents standardly con-
sidered in natural deduction, namely those with just one formula on the
right. (I shall call these ‘natural deduction sequents’.) If our concern were
simply with the completeness of that system as a whole, then we could
abbreviate labour by observing that we do already have an independent
proof that its rules for truth-functors are complete. This is because other
truth-functors can be defined in terms of — and —, the natural deduction
rules for — and — are easily shown to imply the three axioms and the one
rule of inference of our axiomatic system of Section 5.2, and that axio-
matic system was proved to be complete in Section 5.5. (We also showed
in Exercise 6.2.4 that the natural deduction rules for A and — form a com-
plete system, and again other truth-functors can be defined in terms of A
and —.) Since, then, the natural deduction rules for the truth-functors are
both sound and complete, and since the tableau rules for the truth-functors
are likewise both sound and complete, it follows that whatever can be
proved with the one set of rules can also be proved with the other. So the only
task remaining would be to compare the quantifier rules of the two systems,
and in particular to show that the natural deduction rules for the quantifiers
imply those of Gentzen’s cut-free system. Now, if we may assume the rules
for negation as background rules, this is very simple. For in that case any
Gentzen sequent (save for the empty sequent) may be reformulated as a nat-
ural deduction sequent, by the method just indicated. And if we do confine
attention just to these sequents, then the rules (VI) and (3I) for natural
deduction are just the same as the rules (=V) are (=3) of Gentzen’s system,
while the rules (VE) and (JE) are easily shown to be interdeducible with
(V=>) and (3=>), as we observed in Exercise 7.2.1. So it follows that our nat-
ural deduction rules are also a complete set, and whatever can be proved in
either system can also be proved in the other.

4 Gentzen proved that adding CUT to his cut-free system would not increase the provable sequents
(his ‘cut-elimination’ theorem). A version of that proof, but applied directly to tableaux, is given in the
appendix to Chapter 4.
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These last remarks compare the two systems as wholes, but it is instruct-
ive also to compare them part by part, and for this purpose I begin by not-
ing an interesting feature of the Gentzen system. If we restrict attention to
sequents in which every formula is in prenex normal form (PNF), then any
sequent provable in Gentzen’s system also has a proof in which all applica-
tions of quantifier rules come after all applications of rules for truth-
functors. In addition, all applications of the rule for basic sequents can be
confined to atomic formulae, so that no quantifiers get introduced in this
way. Such a proof therefore contains a sequent called the midsequent which
is quantifier-free, and such that all sequents following it are obtained just by
applying the rules for V and 3, and perhaps contraction. I outline the proof
of this point, leaving many of the details as an exercise.

First we show that the rule for basic sequents can be confined to atomic
formulae. The argument is by induction on the length of the formulae intro-
duced by a use of that rule. We have two kinds of case to consider, (a) when
the formula is the main formula of that rule, i.e. the one which appears on
both sides of =, (b) when the formula is an extra formula, appearing on one
side of the sequent only. For illustration, I give two clauses of the induction,
for A and for V, first for case (a) and second for case (b) with the extra for-
mula on the right.5 (It will be seen that the argument for case (b) is merely
half of that for (a).)

Replace by
) (BS)———— (B
OO O s O Tyova o
A
F)\V’x = WAX’A
(A=) ————
LWAYL = YALA
.. BS) ——— BS
(@) (B8) o §v=)>> Tw(a/) = y(a/t)A
LLVEY = y(o/E),A
(=V)
LVEy = VEy,A

Choose o so thatitisnotinTor Aor y

5 It may be noted that case () merely repeats what has already been proved as Exercise 4.2.2.
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b)(i) (BS)—— BS BS
B )F=>A,WAX ( )FﬁA,\y ( )T:>A,x
(=A)
U= Ayay
b)) BS) ——— BS) —
(b)) | )I‘=>A,V§q1 ( )F:A,w(a/é)
(2V)
I'= AVEy

Choose o so thatitisnotin I or Aor y

(It should be noted that steps of interchange have been left tacit through-
out.) The other cases are all equally simple, as you are invited to discover.

With this point established, we now need to show that the proof can be
rearranged further, so that all rules for truth-functors precede all rules for
quantifiers. But this point is very obvious once we note that, by hypothesis,
the formulae are all in PNF. So once a quantifier is prefixed to a formula, no
truth-functor is ever applied to that formula. (Only further quantifiers can
be prefixed to it.) Consequently, that formula must be what is called a side
formula in any subsequent application of a rule for truth-functors, i.e. one
that is not itself altered by the inference. This makes it obvious that the rules
could have been applied in the reverse order. For example, our proof may
have an application of (V=>) followed by one of (A=) in this way:

Lo(a/E)uyx = A
LVEy,x = A
LVEQ,WAY = A

(V=>)
(A=>)

It is evident at once that this can be replaced by

Lo(o/8)y,x = A
Lo(a/E),yny = A
LVEgwArL = A

(A=)
(V=)

(Again, steps of interchange are left tacit.) The position is entirely similar
with the other cases, and it is clear that by successive transformations of this
kind the desired position must eventually be reached.

Now let us come to our comparison between the rules of natural deduc-
tion and the rules of Gentzen’s sequent calculus. The argument at the begin-
ning of this section, showing that the natural deduction system is complete,
can easily be extended to yield this result: for any combination of truth-
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functors and quantifiers, the natural deduction rules for these signs, plus the
natural deduction rules for negation, form a complete set of rules for nat-
ural deduction sequents containing just those signs. But here it is essential
to include a separate mention of the negation rules. In fact we have already
seen, in Chapter 5 (p. 199), that the standard rules for — are not by them-
selves complete for —, but need supplementing by the negation rules. We
also saw in Exercise 6.3.4 that the same holds for the combination of logical
signs, v and V. Besides, the method of argument that we are here employing
depends upon using negation to transform Gentzen sequents into natural
deduction sequents, and so would not be available without the rules for
negation. So from here onwards I set negation to one side, and consider both
systems without their negation rules.

It turns out that the two limitations already mentioned are the only lim-
itations of the natural deduction rules. Combinations including — but not
—will not be complete, and need no further exploration. Considering, then,
just A,v,V,3, we already know that the combination of v with V is not com-
plete, but we shall find that all other combinations are. That is, the natural
deduction rules for A,v,3 are complete, both severally and jointly, for nat-
ural deduction sequents containing any combination of these logical signs,
and the same is true of the rules for A,3,V. I prove these points in order. In
each case my argument will assume that we are dealing with sequents in
PNE, so that the Gentzen proof may be assumed to contain a quantifier-free
midsequent. But this is no real restriction, for it is easily checked that the
natural deduction rules for A,v,3 suffice to show that every formula con-
taining only those logical signs has an equivalent in PNFE and similarly with
the rules for A,3,V.

A, v,3. We have already noted that the rules for A and v are complete
for those signs, both severally and jointly (Exercise 6.2.2; another proof is
outlined in Exercise 7.5.2). Consider, then, any correct natural deduction
sequent I' = @, containing only A,v,3 as logical signs. Since the sequent is
correct, there is a proof of I' = ¢ in Gentzen’s sequent calculus, and we may
assume that this proof has a quantifier-free midsequent, say I'" = A. It is
easily seen that A cannot be empty, so let us write 8 for the single formula
which is the disjunction of all formulae in A. ThenI"” = §is a correct natur-
al deduction sequent, containing only A and v as logical signs, and hence is
provable by the natural deduction rules for A and v. So what we have to

¢ The standard natural deduction rules without negation are all correct for intuitionist logic (see
Ch. 5 n. 8 and Exercises 5.4.3, 5.4.4, and 6.3.4). Consequently what follows is, in a way, a comparison be-
tween intuitionist logic and classical logic, excluding negation.
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show is that the Gentzen proof from the midsequent I => A to the final
sequent I = ¢ can be matched by a corresponding proof in natural deduc-
tion from I = 8 to I' = ¢. The Gentzen proof will contain just applica-
tions of (3=>), which alter the formulae in I, applications of (=3), which
alter the formulae in A, and otherwise only interchanges and contractions.

From the natural deduction rules for v we easily deduce that v is asso-
ciative, commutative, and idempotent. This ensures that interchanges and
contractions within A can be matched by corresponding changes within the
disjunction 8. From the rules (VE), (3I), (vI) we easily deduce this rule in
natural deduction:

T=o(a/E) vE
I'=3tevs

This ensures that changes to formulae in A brought about by applying (=3)
can be matched in natural deduction by corresponding changes to the
disjunction 8. And, of course, changes to formulae in I'” brought about by
applying (3=>) can equally be brought about by applying (JE), since these
are the same rule. It follows that each step of the Gentzen proof, from the
midsequent on, can be matched in natural deduction, and this is the desired
result.

I observe that this argument establishes that the rules for A,v,3 are
together complete for sequents containing all three of these signs, and that
the rules for v,d are complete for sequents containing these two signs. It
does not, in fact, establish the completeness of the rules for A,3, since the
argument relies upon the rules for v for its method of transforming Gentzen
sequents to natural deduction sequents. But the case for A,3 will be a con-
sequence of the next argument, which uses a different method.

A, V, 3. Assume that I" = @ is a correct sequent, containing only A,V,3 as
logical signs. Then as before there is a proof of it in the Gentzen sequent cal-
culus, with a quantifier-free midsequent, say I" = A. But in this case we
show that we can confine attention to just one formula in A. For first, if there
are several formulae in A, then it is clear from the form of the rules (=V)
and (=3) that as the proof proceeds each of these formulae must be trans-
formed eventually into the conclusion ¢ of the final sequent, and then they
are amalgamated by contraction. And second, since the midsequent I = A
contains only A, it is quite easy to show (Exercise 7.5.3) that there must be at
least one formula in A, say ¢, such that I” = ¢’ is also provable. We can
therefore take this as our midsequent, and discard any other formulae in A,
so that the proof from the midsequent on uses natural deduction sequents
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throughout. But we have already observed that in this context the quantifier
rules of natural deduction, and of Gentzen’s calculus, are interdeducible
with one another. This completes the argument.

We may conclude that the two failures of completeness already noted—
namely in the rules for —, and in the rules for v and V together—are the
only two weaknesses of this kind in the standard natural deduction system.
I accordingly end this section with a brief reflection upon them.

It may be said that the position with the rules for — is not particularly dis-
turbing. From a philosophical point of view one can argue that — is a poor
reflection of the ‘if” that occurs in natural languages, and that it is hardly
surprising if the natural deduction rules (attempting to be ‘natural’) fit ‘if’
better than —. The sequents which are correct for —, but not provable from
these rules, do indeed strike one as somewhat ‘unnatural’ (i.e. unnatural for
‘if”). Besides, from the logician’s point of view it may be said that the defect
in the standard rules is quite easily remedied, simply by adopting other and
stronger rules instead (e.g. Exercise 7.5.4). These other rules do not strike us
as being particularly natural, but why should that matter? By contrast, the
position with v and V is altogether more unsettling. There is no good philo-
sophical reason for supposing that the meaning which the logician attaches
to these symbols is in some way suspect, and in this case the defect appears
not to be remediable. In the setting provided by natural deduction, there is
no way (so far as I am aware) of formulating separate rules for v and for V,
which are both sound and complete for those two symbols when taken
together.

The blame for this must fall on the general setting provided by natural
deduction, i.e. on the fact that it restricts attention to sequents with just one
formula on the right. It must be admitted that this is a very natural way to
think of an argument, a proof, an inference, and so on. Such a thing, we say,
may have many premisses, but it can only have one conclusion. However, we
have now seen that this very natural way of thinking introduces an asym-
metry which is seldom pleasing (e.g. with the rule (VE)) and in this parti-
cular case distinctly unwanted. If things are to be presented both neatly and
effectively, then we need the extra expressive power that Gentzen sequents
give us. I do not mean that we also need the particular way of reasoning with
such sequents that is given by Gentzen’s cut-free calculus. That calculus can
be useful for particular purposes, as we have seen, mainly because its use of
structural rules can be so tightly restricted. But there are also other and more
liberal ways of reasoning with Gentzen sequents, as illustrated at the begin-
ning of Section 7.4. My claim is just that the sequents themselves, with
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several formulae on the right, need to be available to us if we are to be able to
say what we wish to.

It is true that these sequents are not very familiar to most people, but
that, of course, is remediable. It is also true that we do think of an argument
as having just one conclusion, and if we sometimes speak of there being
several conclusions, we mean that the premisses imply each of these con-
clusions. This is not what a Gentzen sequent says. Rather, it represents an
argument that distinguishes cases in this way: given these premisses, it may
be that P, or it may be that Q; we cannot say which, but it must be one or the
other. Finally, it is true that logicians have not, on the whole,” paid much
attention to practical ways of reasoning with Gentzen sequents; they tend—
as I have done so far—to consider them only in the context of a sequent cal-
culus, and, of course, a sequent calculus is in practice a very cuambersome
method of writing proofs. But this too is something that can be remedied, as
my next section will show.

EXERCISES

7.5.1. Prove the assertion in the text that, for any combination of truth-functors
and quantifiers, the natural deduction rules for those signs, plus the natural deduc-
tion rules for negation, form a complete set of rules for natural deduction sequents
containing only the logical signs in question. [Method: the argument on p. 300
shows that, given negation, the natural deduction rules for the quantifiers imply the
corresponding Gentzen rules; you need to apply the same line of thought to the
truth-functors.]

7.5.2. Assume that the natural deduction rules for A are complete for all natural
deduction sequents with A as their only logical symbol, and similarly for v (Exercise
6.2.2). Show that the two sets of rules together are complete for all natural deduc-
tion sequents containing both A and v, but no other logical symbols. [Method:
transform every correct Gentzen sequent into a natural deduction sequent by re-
placing the several formulae on the right by the single formula that is their disjunc-
tion. Then show that the natural deduction rules imply the corresponding Gentzen
rules under this transformation, and infer that any Gentzen proof involving just
these logical symbols can be matched by a natural deduction proof.]

7.5.3. Show that, if " = A, and the only logical symbol in this sequent is A, then
there is some formula @ in A such that T" = ¢. [Method: use induction on the num-

7 An exception is Shoesmith and Smiley (1978). My discussion in the next section is indebted to their
much more thorough treatment.
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ber of occurrences of A in A. For the case where there are none, the argument is
straightforward; for the case where there is one or more, note that

F'=oay,A iff TE@A and T'=y,All
7.5.4. Consider a sequent calculus for natural deduction which in place of the rule
(—E) has this rule:
Lesy=0 A= -y

(*) TAS g

{a) Deduce from (») alone the sequent
(P»(P‘)X ﬁ X'

(b) Usingboth this and (—1), deduce further from () the sequent
(9->y)—>o=0.

(c) Argue from (a) and (b) that the two rules (—1) and (x) are by themselves com-
plete for —. [Method: use Exercises 5.7.2 and 7.4.5.]

7.6. Reasoning with Gentzen Sequents

In natural deduction, as first presented in Chapter 6, proofs have a tree
structure with the branches growing upwards. By contrast, the tableau
proofs of Chapter 4 have a tree structure with branches growing down-
wards. When reasoning in practice with Gentzen sequents, and avoiding
the labour of a full sequent calculus, one needs proofs which branch both
upwards and downwards. The structure as a whole is a proof of the sequent
which has on its left all the highest formulae of the structure, with noth-
ing above them, and which has on its right all the lowest formulae of the
structure, with nothing below them. So far as I am aware, the first person
to propose proofs of this kind was W. C. Kneale (1956). Before we con-
sider details of just what structure such a proof should have, let us look at a
simple example to get the general idea.

Asin natural deduction, Kneale’s rules are presented as rules for the intro-
duction and the elimination of whatever logical sign is involved. Let us
begin just with his rules for A and v, which correspond to the Gentzen
sequents

O Y= 0y PAY =@, OAY =y
P=0VvYy, Y= o0vy VY = G\.
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If we rephrase these in the form in which they will actually be used in proofs,
and take over the familiar titles from natural deduction, they are

A A
an? Y (g 22 OrY
Ay ¢y
\4
w2, Y ™Y
VY ovy ® ¥

Evidently (Al), (AE), and (VvI) are entirely familiar, but this version of (VE)
is new, and exploits the new idea that proofs may branch downwards as well
as upwards. To see the rules in action, let us begin by considering a proof of
the distribution law:

(pvy)A(QVY) = ov(yAY).

Since we are now dealing in Gentzen sequents, the gist of this law may be
simplified to
PVY,PVY = QYAY.
A proof of the simplified version is this:
ovy ovX
¢ v X L4
YAY

We can reconstruct from this a proof of the original version, which has just
one sequent on either side, by adding extra steps on the top and on the bot-
tom, thus:

(ovy)A(ovy) (ovy)A(@VY)
ovYy VY
¢ v X o
OV(YAY) YAY ov(yAy)
ov(yay)

You should compare this proof with the proof in natural deduction given on
p- 247. It ought to be clear that while the basic idea of the proof is the same
in each case, the present version has a structure which is easier to take in.
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After this one example, let us come back to the general question of what
structure a proof in this system must have. Something must be said on this
point in order to rule out such obviously fallacious ‘proofs’ as the simple
structure

VY
ony
or the slightly more complex but equally fallacious structure

ovy

vy
® v P v
PAY PAY

To deal with this kind of fallacy, Kneale stipulates that ‘in the working out of
{proofs] it is essential that token formulae which are already connected,
either directly by one single horizontal line or indirectly through several
horizontal lines, should not be connected again in any way’ (Kneale and
Kneale 1962: 543). This is a simple ruling, and it does ensure that only cor-
rect sequents can be proved.

Since these structures are unfamiliar, I shall now describe them in more
detail. Let us say that a position in a proof at which a formula may be writ-
ten is a ‘node’ in the proof. Then a proof-structure is a finite array of nodes
and horizontal lines obeying these conditions:

(1) The structure may consist of just one single node and nothing more.
But if there is more than one node, then every node is immediately
above a line, or immediately below a line, or both. Moreover, every
line is immediately below one or two nodes, or immediately above
one or two nodes, or both. A node that is not immediately below any
lineis called a highest node; a node that is not immediately above any
line is called a lowest node.

(2) A path in the proof-structure is an alternating series of nodes and
lines, beginning with a node, and such that: (a) no node or line
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occurs more than once in the series; (b) every node, except the last, is
followed by a line that is immediately above or below it, and every
line is followed by a node that is immediately above or below it. It is
said to be a path between its first member and its last. Then Kneale’s
ruling on the structure of proofs can be put in this way: between any
two nodes in the proof-structure, there is one and only one path.

Finally, a proof is a proof-structure in which every node is occupied by a for-
mula, in such a way that the several formulae immediately above and below
the same horizontal line are related to one another in one of the ways spe-
cified by the various rules of inference. It is a proof of the sequent which has
on its left all the formulae at its highest nodes, and on its right all the formu-
lae at its lowest nodes.

It can be shown that, given rules of inference that are correct, any sequent
proved by such a proof must also be correct (Exercise 7.6.2). But unfortu-
nately it is not true that all correct sequents can be proved by such a proof.
To see the difficulty let us consider another of the laws of distribution:

(pAW)V(@AR) = oA(YVY).

We expect the proof to split into two parts, one showing that
(Ay)V(ory) = ¢

and the other showing that
(@AYIV(QAY) = YV

There is no problem about the proof of these two parts individually. Here
they are:

(PAY)v(ony)
PAY OAY
o 9

(pAy)Vv(oAy)
PAY ony,
v X
yvx yvx
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But when we seek to put the two together, to form a proof of the sequent we
desire, there is no evident way of doing so. The only suggestion that comes
to hand is this:

(eAW)V(oAY)
(eAy)V(oAy)
ory oY,
ony v X oA
o wvx wvy )
oA(wvY) on(yvy)

But, as we have observed, this is not a permitted proof structure.

The cause of the difficulty is quite straightforward: the rules do not allow
us to perform a contraction within a proof. We apply contraction when we
report one of these diagrammatic proofs as establishing this or that sequent;
for example, the proof

(pAw)v(pAay)
oAy onY
0 0

is taken as establishing the sequent

(eAy)V(oax) = o,

even though the proof-structure has two lowest nodes, while the sequent
has only one formula on the right. So at this point we are in effect employ-
ing a contraction (on the right). But at the moment we have no way of doing
this within a proof.

The remedy is therefore equally straightforward: we must liberalize the
rules so that contractions are allowed. As a ‘structural’ rule for all proofs in
the new notation, I therefore set down

> (.’
® 0 ¢
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(Here ‘CL is short for ‘contraction on the left, and ‘CR’ for ‘contraction
on the right’.) To illustrate how the new rules work, we may now finish our
proof of the sequent

(@AY)IV(pAY) = oA(wvy).
Here is the result:

(@Aw)v(oAy)
(pAy)v(pay) (@Ay)V(opAY)
QAY  QAY OAY @AY
¢ ¢ v X

% %
(CR)WX Yvx

(p e ———
] Yy

oA(yvY)

(CR)

In this proof the individual proofs of the two sequents

(eAy)vioay) =0
(@Ay)v(ony) = yvy

are reproduced once each, and each of them is taken to end with a step of
(CR). They are then tied together with a single step of (AI) at the bottom of
the proof, and to bring out the fact that each has the same premiss they are
also tied together with a step of (CL) at the top.

The intended use of these new rules (CL) and (CR) does, of course,
conflict with the account given earlier of what a proof-structure is, so we
must revise it in this way. Retaining the same definition of a path between
two nodes, clause (2) must now be modified to this:

(2’) Between any two nodes in the proof-structure there is at least one
path; and there is more than one path only if at least one of the lines
in each path is a step of contraction.

An alternative way of saying the same thing would be this: the result of de-
leting from a proof all horizontal lines marking steps of contraction will
fragment the whole structure into a number of substructures, and these
substructures must then be proof structures as originally defined.
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With contraction now catered for in the definition of a proof-structure,
let us turn briefly to the other structural rules. Interchange is automatically
covered by the fact that, when we have a rule of inference which has two sep-
arate formulae above the line, or two separate formulae below, we allow
those formulae to occur in either order. That is, we make no distinction here
between the left and the right positions. Assumption is also a consequence
of the definition of a proof, since a formula ¢ standing on its own is a proof,
namely a proof of the sequent ¢ = ¢. Cutting too is built into the account,
in the same way as with natural deduction, since one can always put one
proof on top of another. But we are missing any automatic provision for
Thinning. I therefore adopt two rules which explicitly provide it, the first
for thinning on the left and the second for thinning on the right.

(TL) u (TR) e
¢ y

¢

Of course, the first is provable from the rules for A, and the second is prov-
able from the rules for v, but we may wish to consider systems which lack
either A or v.

Let us now return to the rules for the truth-functors. For ease of refer-
ence I repeat here the rules for A and v that we have seen already, and 1
add rules for — and — that are again taken from Kneale (with a trivial
modification).

w2 Y (AR Y Y
N ¢ v
(\/I) _L’ i (VE)M
VY ovy ¢ v
_9
(1) , ¥ opt ¥
© 9y 9oy
) (—p) 2 ¢
o —¢

The rules for — are worth a brief comment. The first introduction rule

takes an unexpected form; that is because it is aiming to have the same effect
as the more natural rule
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-0
'l d

but to do so without explicitly using a negation sign. Given the rule (—E) we
can easily deduce the more natural version thus:

- ¢ 'and

And the converse deduction is just as easily done using (—I). I observe incid-
entally that we could apply the same transformation to the familiar rule
(—E), and our rules for — would then be

—@ y oy
N

Comparing these rules with those for v we see at once how — might be
defined in terms of v and —, or how v may be defined in terms of — and —.

1 give just one example of a proof using the rules for —, namely a proof to
establish Peirce’s law, in the form

= ((¢—Y)—>0)—>0.

Since this sequent has no formula on the left, it is clear that we must use the
first rule (—I) to obtain it;8 in fact we use this rule twice, and the other two
rules for — once each.

(—1) (=)
((p—=¥)—=0)—>0 . (p—>y)—0 Oy

¢
(E)
R 27 |

(—I)

(p>y)—>0)—>0

(To save clutter, I have omitted a final step of contraction). You are encour-
aged to try some further proofs in this system in the exercises.
Let us now turn to the quantifiers, and first V. Supposing that we are still

8 Observe that none of these rules allow for the discharge of an assumption. That technique was
forced on us in natural deduction by the limitation to sequents with only one formula on the right; but
it is now no longer needed.
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aiming to copy the idea behind the rules for natural deduction, so that what
is wanted is an introduction rule and an elimination rule, then clearly we
can take over the familiar elimination rule, and our problem will be to find
a suitable proviso for the introduction rule®

o Vo
V) —— VE) ——
( )V&p(&/a) ( )w(a/&)

provided . ..?

Now the ordinary rule (VI) of natural deduction corresponds to the rule
(=V) formulated for Gentzen sequents, which is this:

I'so,A

T'= VEp(E/a),A
provided a.is notinT or A

This naturally leads to the following proviso: when seeking to apply (VI) we
must ensure that the name o to be generalized upon does not occur in the
formulae that are then either at the highest nodes of the proof, or at the low-
est nodes, except, of course, for the displayed formula ¢ that is to be gener-
alized.10 But this is still not sufficiently clear. For to judge whether the rule,
as now formulated, has been correctly applied, we need to know at what
stage in the construction of the whole proof it was applied, and we cannot
tell this just by looking at the finished proof.
To see the problem, consider the following suggested proof:

(=D

@En—= (v
dxFx Yx—Fx

—Fa

If the order of the three steps in this proof is taken to be first (—I), then (V1),
then finally (31), then the step of (V1) must be condemned as incorrect. For
when it is applied the name g still occurs in a formula at a lowest node,
namely in Fa. Butif instead the order is taken to be first (—1), then (31), then
finally (1), there is nothing to object to. But we cannot tell, just by locking
at the finished proof, what the order was supposed to be. Nor can we say that

9 Kneale’s own rules for the quantifiers are quite unclear, so I pay them no attention here.

10 Ifthe same formula ¢ that we wish to generalize is at several lowest nodes, then either we must bring
all these together by contraction before applying (1), or—to save the need for this—we may allow our-
selves to generalize several occurrences of the same formula simultaneously. In that case it is all formu-
lae at highest nodes and all other formulae at lowest nodes that must lack the relevant name.
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so long as there is some way of looking at the proof which would validate a
given step of (VI), then that step is correct. For consider now the alleged
proof

(=)

(VI) Fa (VI) -1 Fa
VxFx

Vx—Fx

For each of these two applications of (VI), taken singly, there is some way of
validating it, namely by taking it as the last of the three steps of the proof. But
the proof as a whole is not correct, for they cannot both be the last step, and
whichever we choose to be the last step then the other was not a correct
application of (V1).

If we look for a feasible way of writing proofs, which will ensure that these
complexities are brought into the open, then I think the best plan is to say
that when a step of (V1) is to be applied, the whole of what is taken to be the
proof at that stage is encircled, say with a dotted line, which coincides with
the solid line marking that step of (VI). We then check to see that the high-
est nodes in that circle do not contain the name to be generalized upon, nor
do any of the lowest nodes except the onel! to which (V1) is to be applied.
Thus our correct proof above should be marked as on the left and not as on
the right

‘| IxFx ,”  Vx—Fx IxFx Vx—Fx

Our final and incorrect proof could only be marked in this way with circles
that intersect, as in

|~ o |
'VxFx 5{ Vx—Fx |
! . N s

- _—— =

We shall avoid fallacies of this sort simply by stipulating that our dotted cir-
cles must never intersect.
To give just one simple illustration, here is a proof of the sequent

Vx(Fx v P) = VxFx v P,

11 Orperhaps more than one, so long as all the nodes to which (V1) is simultaneously applied contain
the same formula. See previous note.
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which proved so awkward in a natural deduction setting. Now the proof is
perfectly straightforward:

(vl) VxFxv P

Finally, let us turn briefly to 3. Here, of course, the introduction rule
is perfectly straightforward, and it is the elimination rule that needs a pro-
viso. When we consider what this proviso ought to be, in the light of our
reflections on (1), and taking into account the relevant rule in the Gentzen
sequent calculus, we see that it calls for a revision in the way we have been
thinking of an elimination rule. We have been thinking of it, as we did in nat-
ural deduction, as a rule for eliminating a sign, considering the proof as
something that starts from the top and proceeds downwards. But now our
proofs are in principle symmetrical upwards and downwards, and they can
equally well be thought of as starting from the bottom and proceeding
upwards. Seen in this way, what we have been calling an ‘elimination’ rule is
simply a rule for introducing in the upwards direction. Given this perspect-
ive, the correct formulation for (3E) presents no problem: it must refer to a
completed proof below it, just as (V1) refers to a completed proof above it.

So the position that we reach is this. The four quantifier rules, diagram-
matically presented, are

oy — & Ve

V) ——— VE
A )Vétp(&/a) )w(alﬁ)
an o(a/t) 3E) 3&9(&/0&)

Bl .

Let us say that an ‘end formula’ of a proof is a formula that is either a highest
or a lowest formula of it. Then the provisos on (V1) and (IE) are

Provided that the dotted line encircles a proof in which o does not
occur in any end formula, except the displayed end formula ¢.
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And there is a general proviso on the dotted circles, namely
Dotted circles cannot intersect one another.

The system of rules thus provided is, as you are invited to argue, both sound
and complete.

To give a simple example of a proof using the 3 rules, I consider the
sequent

dAxFx A P= dx(Fx A P).

This sequent is dual to the sequent in V and v just considered, and you will
see that the proofs of the two are also now dual to one another:

IxEx A P
(AE) —————

IxFx . JxFx A P
@8 (AR
i ( I) ‘a P |
| A I
| Fa n P |
[ (3 |
1 " 3x(Fx A P) o

To give a more complex example, using rules for both 3 and V, I return to
our old friend, the sequent

Vx3y(Fx A Gy) = JyVx(Fx A Gy).

A tableau proof of this sequent was given on p. 162, and then rewritten as a
proofin Gentzen’s cut-free sequent calculus as Exercise 7.4.1. There was also
a natural deduction proof on p. 258. Here is another proof, in the system of
this section

e e

e o e

' Wx3y(Fx A Gy) \\ Vxdy(Fx A Gy)
| N _—
Jy(Fa A Gy) \\\\ __ y(FanGy)
FanGb ~~_ FanGb k
|
«

|
|
i
I
|
1
1
I
|
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The proof should not be read from top to bottom, nor from bottom to top,
but outwards from the middle. Its innermost stage is the encircled part
proving the sequent Fa A Gb = Fa. We apply (3E) to this, thus proving the
sequent Jy(Fa A Gy) = Fa. After a couple more steps we come to the next
encircled part, proving the sequent Vx3y(Fx A Gy),Gb = Fa A Gb. We
apply (V1) to this, to obtain Vx3y(Fx A Gy),Gb = Vx(Fx A Gb). A couple
more steps added to this proof yields the last part of the whole proof to be
encircled, which has established the sequent Vx3y(Fx A Gy),Fa A Gb =
AyVx(Fx A Gy). One application of (E) to this, and a final step of (VE),
then yields the sequent we want. (If desired, we could have finished off with
a step of contraction on the left, at the top of the whole proof.)

EXERCISES

7.6.1. Find proofs of the following sequents () in the tableau system of Section 4.3,
(b) in the natural deduction system of Sections 6.2 and 6.3, (c) in the system of the
present section:

(1) (P-Q)>Q = (Q—P)>P.

(2) P-(QvR) = (P->Q)VR.

(3) VxFx—3dxGx = Jx(Fx—Gx).

(4) Vxdy(Fx v Gy) = yVx(Fx v Gy).

In which system is it easiest to find proofs? Which system yields the tidiest proofs?
[Warning: In each case the natural deduction proofs will have to use some negation
rules; use any that seem convenient. ]

7.6.2. Show that the proof system of this section is sound. [Method: Argue the case
first for quantifier-free ‘Kneale proofs, in which contraction is not allowed. (Use
induction on the number of horizontal lines in the proof; note where you need to
use the hypothesis that no two nodes are connected by more than one path.) Then
expand the argument to allow for contraction as well, and finally add the quantifier
rules.]

7.6.3. Show that the proof system of this section is complete. [Method: show that
whatever can be proved in Gentzen’s cut-free sequent calculus can also be proved in
this system. |
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8.1. ldentity

We shall use ‘a=b’ as short for ‘a is the same thing as b’ The sign = thus
expresses a particular two-place predicate, and since we generally write a
predicate-symbol in front of the name-letters that fill its gaps, you might
have expected the same here. Very occasionally this can be convenient (Exer-
cise 8.1.2), but it is confusing to have the same sign ‘=" appearing in these
two roles. So let us say that officially the letter ‘I’ is the identity predicate,
and it is to have just the same grammar as the familiar two-place predicate-
letters. For example, ‘Iab’ is a formula. But almost always we shall ‘abbrevi-
ate’ this formula to ‘a=b’. Similarly, we shall abbreviate the formula ‘“—Iab’ to
‘a#b.

It is easy to see how to incorporate the new symbol into our formal
languages. First, the formation rules are extended, so that they include a
clause stating that, if T, and 1, are any terms (i.e. names or variables) then
Itt, (or 1, = 1,) is a formula. Second, the intended meaning of this symbol
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is reflected in a suitable rule for interpretations of the language. An inter-
pretation Iis said to be a normal interpretation iff it satisfies the condition
that, for any name-letters ocand B,

lo=8|;=T iff |oj,= 1Bl

Alternatively, if our interpretations are specified by a recursion on satisfac-
tion rather than truth, then the relevant condition is

osatsT; =1, iff o(1)=o0(1,).

Given this intended interpretation, it is clear that we have as correct theses
for identity

= o=a
o= = @(a/€) <> o(B/E).

(Recall that the consequent of the second thesis means: if you start with a
formula containing occurrences of o, and substitute f for some, but not
necessarily all, of those occurrences, then the two formulae have the same
truth-value.) These two together are usually taken as the basic principles for
identity. With scant regard for history, the second of them is often called
Leibniz’s law, but the first has no special name (except that once upon a time
it was called ‘the’ law of identity).

It is easy to see how these two theses may be used to furnish rules of proof
for identity. For example, in an axiomatic system we could adopt the two
axiom-schemas

H o=0
Fo=B — (p(a/E) <> @(B/E)).

In a tableau system we could adopt the rules

o= o=f
o(0/8) o (/)
o=
o(B/E) o(a/&)

(Here the left rule means that, for any name ¢, you may introduce the for-
mula o=0 at any point on any branch.) Similarly, in a natural deduction sys-
tem we could adopt the rules

o= o(o/E) a=B o(p/L)
opE) T (alt)

E— =B
o=0
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There are alternative rules that one may adopt instead (Exercise 8.1.1), but
these just suggested are probably the most convenient and the most usual.

It is quite straightforward to show that these rules are complete for iden-
tity. That is, every correct sequent with identity as its only logical symbol can
be proved from these rules alone, and every correct sequent containing
identity and other logical symbols can be proved from these rules for iden-
tity and the rules for the other symbols, provided that those other rules are
complete for the other symbols. The simplest tactic is to modify the argu-
ment given in Chapter 4 to show the completeness of the tableau rules. That
argument involved a particular recipe to be followed in the construction of
tableaux, a recipe which involved a cycle of three stages, namely (1) apply the
rules for truth-functors in all possible ways, but without repetitions, (2)
apply the rules for 3 and for —V, but only once to each formula, (3) apply the
rules for V and —3 in all possible ways, but without introducing any new
name-letters. (There is an exception to (3): if the first time that we come to
(3) there are no name-letters already on the branch, then just one name
may be introduced arbitrarily, in order to get started.) Now that we have
rules for identity present as well, we add a fourth stage to this cycle, namely:
(4) apply the identity rules in all possible ways to all name-letters already on
the branch. This means (a) introduce o=o for any name-letter o on this
branch, (b) if o=p is on the branch, then substitute B for o in all possible
ways in all formulae on the branch containing o, and (c) also substitute o for
B in all possible ways in all formulae on the branch containing B. Since we
have a general restriction that no formula is ever to be written more than
once on the same branch, this stage (4) applying the identity rules must ter-
minate. When it does, we start the whole fourfold cycle again, and go on
repeating it ad infinitum unless either the tableau closes or no further moves
are possible.

I briefly recapitulate the proof already given in more detail in Chapter 4.
Either the procedure finds a closed tableau at some stage, or it does not. If it
does, then in view of the soundness of the rules of proof we know that the set
of formulae I at the root of the tableau is inconsistent, i.e. T" k=, If it does not,
then we are left with an open branch, either a finite open branch, if the pro-
cedure has halted, or otherwise an infinite open branch. (Strictly speaking,
this should be an infinite series of finite open branches, each extending the
last. But it is easier to think in terms of a single infinite branch.) Whichever
of these is the case, I argued that there is an interpretation showing that I" b,
i.e. an interpretation which has a domain with one item for each name on
the branch, and which assigns truth to each atomic formula on the branch.
For it follows from this that it also assigns truth to all formulae on the
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branch, and hence to all formulae in I'. Now we again need a small modi-
fication: wherever o= is on the branch, the interpretation is to assign to o
and to B the same member of the domain as their denotation. So it is a nor-
mal interpretation, treating identity as it should be treated. And there can-
not be any obstacle to this stipulation, since we have ensured that, wherever
o=P is on the branch, the result of interchanging o and B in any formula on
the branch is again a formula on the branch, and therefore the two are alike
in truth-values (for both are true).

The notion of identity has many uses. One, of course, is in the analysis of
arguments expressed in ordinary language, but I set that aside, since the
subject is not treated in this book. Another is in the classification of rela-
tions, and another in the definition of what may be called ‘numerical quan-
tifiers’. I shall now say a little about each of these. But there are also others,
and the whole of this chapter is concerned with identity in one way or
another.

A relation such as ‘xis taller than y’ is called a quasi-ordering relation. This
means that it is transitive, asymmetrical, and in addition satisfies this fur-
ther thesis: if x is taller than y, but not taller than z, then zis taller than y. That
is, for ‘R’ as ‘taller than’ we have

(1) Vxyz(Rxy A Ryz — Rxz)

(2) Vxy—(Rxy A Ryx)

(3) Vxyz(Rxy A—Rxz — Rzy).
It may be noted, incidentally, that an equivalent version of the third condi-
tion is

Vxyz(—Rxz A —Rzy — —Rxy).

That is, this third condition states that the negation of R is transitive. In view
of these three conditions, we may define ‘x is the same height as y’ for ‘x is
neither taller nor shorter than y) i.e.

(4) Vxy(x=y <> —Rxy A —Ryx).
Then we can prove that being the same height as must be an equivalence
relation, i.e. it must be transitive, symmetrical, and reflexive:

(5) Vxyz(x=y A y=z — x=z)

(6) Vay(x=y — y=x)

(7) Vx(x=x).
Many relations that naturally strike one as ‘ordering’ relations, in that they
can be regarded as arranging things in an ‘order’ from less to more, are of
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this type. But a fully (or totally) ordering relation, arranging things in a lin-
ear order, is one in which the relation = defined above is in fact identity.

To secure this result we replace clause (3) above by the stronger clause (3)
stating that R is connected, namely

(3") Vxy(x#y — Rxy v Ryx).

A relation R which satisfies (1)—(3"), must also satisfy the original (1)—(3), as
I now show. I give what is called an ‘informal’ proof. This is not a proof in
any particular proof system. The general idea is that one may use any rule of
proof that is ‘sufficiently obvious), and there is quite a lot of ordinary English
in the proof, explaining what is going on at each step. Here it is:

If R satisfies (1) and (3’), then R satisfies (3).
Proof. Assume R satisfies (1) and (3"), and suppose for reductio ad absur-

dum that R does not satisfy (3). This means that there are objects a,b,c such
that

(a) Rab A —Rac A —Rcb.

Considering the second clause, —Rac, and observing that by (3) Ris con-
nected, we have

(b) a=cv Rca.

Bringing in the first clause of (4), and applying distribution, we then have
(¢) (a=c A Rab) v (Rca A Rab).

Applying Leibniz’s law to the first disjunct, this yields
(d) Rcb v (Rca A Rab).

Observing that by (1) R is transitive, and applying this to the second dis-
junct, we infer

{e¢) Rcb v Rcb,
ie.
(f) Rcb.

But this contradicts the third clause of our premiss (a). So we have our
reductio, and the result is proved.

There is much more that could be said about ordering relations—a little
of it will emerge from Exercise 8.1.2—but I do not pursue this topic further.
Instead I mention another important way in which identity is used in the
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classification of relations, namely in the definition of what is called a one~
one relation. This is the amalgamation of two simpler conditions. We say
that a relation R is one-many iff

Vxyz(Rxz A Ryz — x=y).
and it is many—one iff
Vxyz(Rzx A Rzy — x=y).

(You will see that ‘one-many’ means, in effect ‘for anything on the right
there is at most one on the left, whereas ‘many—one’ means ‘for anything on
the left there is at most one on the right’.) A one-one relation is one that
satisfies both of these conditions, i.e. it is both one-many and many-one. A
neat way of amalgamating the two conditions is

Vxyzw(Rxz A Ryw — (x=y <> z=w)).

These ideas will recur in what follows, so I do not develop them any further
now. Let us turn instead to our other topic involving identity, namely the
‘numerical quantifiers’

To say that there is at least one thing x such that Fx we need only use an
existential quantifier.

JdxFx.

To say that there are least two such things we need identity as well, as in
dx(Fx A y(Fy A y#x)).

Similatly, to say that there are at least three we need a formula such as
Ix(Fx A Ay(Fy A y#x A Jz(Fz Azy A 2#%))).

Itis clear that there is a pattern in these formulae. Using ‘3,,x’ to mean “there
[P 4]

are at least n things x such that} and using ‘n” for ‘the number after r” we can
sum up the pattern in this way:

,x(Fx) ¢> dxFx

3,,x(Fx) <> 3x(Fx A 3,.y(Fy A y#x)).
One can use this pattern to define any specific numeral in place of .
Interestingly, we find the same pattern when we look into ‘exactly #’ rather

than ‘at least #’. If we represent ‘there are exactly n things x such that’ by the
simple ‘nx’, we have

0x(Fx) ¢» —dxFx
n'x(Fx) > 3x(Fx A ny(Fy A y#x)).
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Using these definitions, one can represent in ‘purely logical’ vocabulary
such apparently ‘arithmetical’ theses as

2x(ExAGx) A 3x(Fxan—Gx) — 5x(Fx).

One can prove such theses too, by ‘purely logical’ means, assuming that our
rules for identity are counted as a part of ‘pure logic’ But we shall leave it to
the philosophers to dispute about the relationship between this thesis and
the genuinely arithmetical thesis

2+3=5.

As my final topic in this section I consider what is called the ‘pure theory of
identity’. In this theory the language is restricted to one that contains truth-
functors and quantifiers as usual, the identity predicate, but no other spe-
cified predicates nor any schematic predicate-letters. Thus every atomic
formula in the language is built from the identity predicate and two terms.
This theory is decidable. That is, there is a decision procedure which we can
apply to determine whether any given sequent in the language of the theory
is oris nota correct sequent. The crucial point is that there is a procedure for
driving the quantifiers in, until no quantifier is in the scope of any other,
except that for this purpose we count a numerical quantifier as a single quan-
tifier. (Of course, when the numerical quantifier is analysed in terms of the
familiar quantifiers and identity, then it will turn out to contain one quan-
tifier within the scope of another.)

Here is a recipe for driving the quantifiers in. In practice there will be
many short cuts that one can exploit, as we observed when considering
a similar recipe for a language containing only one-place predicate-letters
(Section 3.7). But here I pay no attention to short cuts, and just give the basic
recipe. We may assume for simplicity that we start with a formula in which
all quantifiers are existential. We begin with an innermost quantifier, i.e. one
which has no further quantifiers in its scope, and we express the quantifier-
free formula that is the scope of that quantifier in DNF. Using the law

Jdx(e(x) v y(x)) == Txo(x) v Ixy(x),

we distribute the existential quantifier through the disjunction. Then, using
the law

Ax(e A y(x)) == @ A 3xy(x)
provided x is not free in @,

we confine each resulting quantifier to that part of the conjunction that
contains the variable bound by it. The result is that each quantifier, say Jx,
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comes to govern a conjunction of clauses x=y; and xzy;. If one of these
clauses is x#x, we replace the whole by L; if all the clauses are x=x, we re-
place the whole by T; otherwise we delete any clauses x=x, so that the vari-
ables y; in question are all other than x. We then consider two cases.

Case (1): Some positive identity occurs in the scope of 3x, so by re-
arrangement we have,

Ix(x=y; n @(x)),
where @(x) is either lacking or contains a conjunction of identities and

non-identities each containing the variable x.
Since we have

= Jx(x=y;)
Ix(x=y; A @(x)) == 9(y;)
in the first case we replace the whole just by T, and in the second by

¢(y;), 1.e. by the result of substituting y; for x throughout ¢(x). In either
case the quantifier Jx has been eliminated.

Case (2): All the clauses in the scope of Ix are negative. Say, for the sake
of illustration, that there are three of them, and we have

Fxc(sxtyy A X2y A X#EY3).

Then we replace the whole by the disjunction of the following five
clauses:

Y1=y2 A ya=y3 A px(x=x)

Y1=V2 A iy A J3x(x=x)

V1%V A Y=ys A ax(x=x)

Y1#Y2 A Y1=y3 A 3x(x=x)

YIEV2 A Yi#EY3 A Yo # 3 A x(x=x).
The disjunction is found by considering what relations of identity and
non-identity could hold between the variables y,—y; and then saying in
each case how many objects there must be if there is to be something x
different from all of them. (As you may check, the number of disjuncts
in the disjunction grows quickly as the number of distinct variables y;
increases.)

In this way the quantifier Jx, which had several variables y; other than
x within its scope, is either eliminated altogether (in case (1)) or replaced
by a number of numerical quantifiers which have no occurrences of y; in
their scopes. In subsequent operations, these new formulae with numerical
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quantifiers are treated as atomic formulae. Bearing this in mind, we can
therefore drive in the next innermost quantifier, and then the next, treating
each in turn in the same way. The result will be that either all the quantifiers
have been eliminated altogether, so that the whole formula has become a
truth-function just of the formula T, or we are left with a truth-function of
clauses of the form 3, x(x=x). The final step, then, is to devise a way of test-
ing sequents composed of formulae of this kind, but I leave this final step to
you.

This method just described is very tedious in practice, but has some the-
oretical interest, (a) because it illustrates how the method of driving quan-
tifiers in can sometimes be applied even where we have two-place predicates
to consider, and (b) because the method can be extended to some more
interesting cases, as you are invited to discover (Exercise 8.1.5).

EXERCISES

8.1.1. Consider the identity rules as given for natural deduction.
(a) Show that we do not need to assume both of the rules given as (=E), since either
can be deduced from the other if (=I) is given. [Hint: A proof using just one step
each of (=I) and (=E) will show that a=p F f=0.]
(b) Show that, in the presence of (=E), (3I), and (JE), the rule (=I) may be replaced
by

F 3E(E=a).
(c) Show that, in the presence of (3I), (JE), and standard rules for the truth-
functors, the stated rules for identity may be replaced by this pair:

o(a/8) —— FE(E=a A 9).

8.1.2. Let us write R for the negation of the relation R, RUS for the disjunction of
two relations R and S, and RN S for their conjunction. In connection with this nota-
tion, let us also use I for the identity relation. Thus

Vxy(Rxy <> —Rxy)
Vxy(RUS)xy ¢ Rxy v Sxy)
Vxy(RNS)xy <> Rxy A Sxy)
Vxy(Ixy & x=y).
The conditions for R to be an ordering relation were given as
Ris transitive Vxyz(Rxy A Ryz — Rxz)
Ris asymmetrical Vxy~(Rxy A Ryx)
Ris connected Vxy(x#y — Rxy v Ryx).

Let us say more precisely that these conditions define an ordering in the sense of <,
or briefly a <-ordering, since they are evidently satisfied by < among numbers. But
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the associated relation < can also be said to be, in its different way, an ordering rela-
tion. It satisfies the analogous conditions
Ris transitive Vxyz(Rxy A Ryz — Rxz)
Ris antisymmetrical Vxy(Rxy A Ryx — x=y)
Ris strongly connected ~ Vxy(Rxy v Ryx).
Let us say that these conditions define a <-ordering.
(a) Prove, informally if you wish,
(1) Risa<-orderingiff R isa <-ordering.
(2) RNTisa<-orderingiff RUI is a <-ordering.
(b) Refute
(1) Risa<-orderingiff RUIisa <-ordering.
(2) Risa=-orderingiff RNTisa <-ordering.
[Hint: for part (a) the example of an informal proof given in the text will be useful. ]

8.1.3.(a) What would be wrong with the following scheme for defining the numer-
ical quantifier ‘there are at least n’?
I x(Fx) & 3xFx
3,/x(Fx) <> 3,x(Fx A 3y(Fy A y#x)).
(b) Suppose that new numerical quantifiers V,, are defined by the scheme
Vox(Fx) ¢> Vx—Fx
Vo x(Fx) 3 Vx(—Fx v V,y(Fy A y#x)).
What is the right interpretation of these quantifiers?

8.1.4. Fill in two details omitted from the decision procedure outlined for the pure
theory of identity, namely
(a) How should one replace the formula

Ax(xy)
by a formula in which y is not in the scope of any quantifier?
(b) Give a decision procedure for sequents in which every formula is a truth-
function of numerically quantified formulae 3,x(x=x). [Hint: If you use the argu-
ment on pp. 122-3 as a model, notice that if n=m then

3, x(x=x) = 3, x(x=x)
If you prefer, you may use the argument on p. 185 as a model].
8.1.5.(a) Show how the decision procedure for the pure theory of identity can be
extended so that it becomes a decision procedure for the theory of identity and one-
place predicates together.

(b) The theory of dense order without first or last elements is given by the follow-
ing axioms (cf. Exercise 3.10.2):

(1) Axy(x<y).
(2) Vx—(x<x).
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(3) Vaayz(x<y A y<z —> x<2).

(4) Vxy(xzy = x<y v y<x).

(5) Vaxy(x<y — Jz(x<z A 2<y)).

(6) Vx(Iy(x<y) A Jy(y<x)).
Show that this theory is decidable, by showing how the quantifiers in any formula of
the theory may be driven in, and so eliminated. [Hints: according to the axioms of
the theory

(1) We may replace clauses —{(x<y) by (x=y v y<x).

(2) We may replace clauses —(x=y) by (x<y v y<x).

(3) We may replace a clause such as

Fne(y1<x A 125X A X<21 A X<2;)

by the disjunction of the three clauses
Y1<Va A Y2<2) A Y22,
Yimya A Y22y A Ya<z
Y21 A Y12 A Y12,
Please note that these three hints do not cover all cases.]

8.2. Functions

Functions were briefly mentioned in Section 2.1. I now give a more formal
treatment, but one that relies upon a convenient simplification.

We said originally that a function would be defined upon a certain
domain of objects, so that if you take any object from that domain as the
input to the function, then the function will yield just one object as its out-
put for that input. In the received terminology, the inputs to a function are
called its arguments, and the output for a given input is called the value
of the function for that argument. So the chief characteristic of a func-
tion, then, is that it has one and only one value for each of its appropriate
arguments. But usually we allow that not everything need be counted as an
appropriate argument for the function, i.e. that the function need not be
defined for all arguments whatever, but only for arguments of a suitable
kind. The simplification to be imposed is that we shall not allow this; on the
contrary, all functions are to be taken as ‘defined everywhere), or in other
words every function is to have one and only one value for any object what-
ever taken as argument, i.e. any object from the whole domain that our
quantifiers range over. (Another way of saying the same thing is that all our
functions are to be total, rather than partial, functions.) It must be admitted
that this assumption is not very realistic, and it introduces a problem which
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will underlie most of the rest of this chapter. But the reason for imposing it
is that it enables us to extend our formal languages to include functional
expressions in a very simple way.

A function may take any number of arguments. The simplest kind of
function is a one-place function, which takes just one object at a time as
argument, and yields a value for that one argument. An example from arith-
metic would be the function expressed by ‘the square of . . ; an example
from every day would be the function expressed by ‘the father of .. . But
there are also two-place functions, such as that expressed by ‘the sumof ...
or ‘the product of . . . in arithmetic, and again there are three-place func-
tions, and so on. (Functions of more than two places are usually complex,
and put together from several simpler functions. For example, the arithmet-
ical expression ‘(x+y)-Z" indicates a three-place function, which we could
express in words as ‘the result of multiplying the sum of x and y by 2. But
there is nothing to stop one introducing simple three-place functions if
there is a need for them.) In the other direction, we can, if we wish, speak of
zero-place functions, but this is just a new-fangled name for a familiar item.
For a zero-place function is something which cannot take any argument, but
just has a single value, and that is to say that it has the same role as a name.
Names, then, can be regarded as expressing zero-place functions if one
wishes, but we already have a perfectly good notation for names, and do not
need a new one. We do, however, need a new notation to represent other
functions.

We shall use the letters

ﬂg’h’fhgl)hl,fz, oee

as schematic function-letters. They take the place of particular expres-
sions for functions, just as our schematic name-letters and predicate-letters
take the place of particular names and predicates. For official purposes we
shall regard each function-letter as furnished with a superscripted numeral
(greater than 0) to show how many places that function has. But, as with
predicate-letters, we shall always omit these superscripts in practice, since
the rest of the notation will convey this information. The arguments to
the function will be written in a pair of round brackets to the right of the
function-letter, separated by commas where there is more than one argu-
ment. So our function-letters will appear in contexts such as

fla), glab), g(f(a),b).

The last example should be noted. If we start with the name a, and supply it
as argument to the one-place function £, then the resulting expression f{a) is
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in effect another name, but a complex one. (We can read ‘f(a)’ as ‘the fof a’.)
So it can then be supplied as argument to another function, or to the same
function again, and so on indefinitely. In this way we can now form very
complex names indeed. And by starting with a variable in place of a name-
letter we can also form what might be called ‘complex variables’, though that
is not the usual terminology.

For example, consider the arithmetical expression

3x2+2x+ 1.
Suppose that we use

flxy) for xt+y
glxy) for x-y.

Then this expression can be analysed as

f(f(g(3,8(x,x)),8(2,%)),1).

If you put in a particular numeral in place of the variable x, then the whole
expression becomes a complex name of some number. Butif you leave xasa
variable, then you have an expression that behaves just like a complex name,
except that it contains a free variable within it. So you obtain an open sen-
tence by putting this expression into the gap of a one-place predicate, for
example, the predicate . .= 0. Then you can form a closed sentence by
adding a quantifier to bind the free variable, as in

x[f(f(g(3,8(x.x)),8(2,%)),1) = 0].
Returning to the familiar notation, this just says
dx[3x2+2x+1=0].

Evidently much of school mathematics is concerned with procedures for
discovering the truth-value of sentences such as these.

Of course, in the particular case nothing is gained by using the new letters
f:8-.. to re-express what is already expressed perfectly well by the familiar
notation of mathematics. The example does illustrate how in mathematics
one does use functional expressions in quite complex ways, but the main
purpose of the letters f,g,... is not to ‘abbreviate’ particular functional ex-
pressions, but to act as schematic letters standing in for any such expres-
sions. They allow us to frame general logical laws that apply to all functions
without exception. To see how they do this we must see how such schematic
letters can be added to the logical framework that we have already.

First we add function-letters to the vocabulary of our language. Using
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these letters, we now add to the formation rules (p. 78) a recursive charac-
terization of what is to count as a term, which goes like this:

(1) A name-letter is a term.

(2) Avariableisaterm,

(3) Ifonis an n-place function-letter (n>0), and if 1y,...,T,, is a series of n
terms (not necessarily distinct), then 67 (14,...,1,,) is a term.

(4) There are no other terms.

The other formation rules remain as before, except that when complex
terms become available it increases clarity if the predicate-letters are sup-
plied with brackets and commas, as the function-letters are. This means that
the clause for atomic formulae should now be rephrased in this way:

If @7 is an n-place predicate-letter (or is the two-place identity predic-
ate I2), and if 1,,...,T,, is a series of n terms, not necessarily distinct, then
@ (14,...,T,) is a formula.

(Of course, we can for simplicity omit these extra brackets and commas
when there is no need for them.) It is to be observed that formulae given by
this rule are still called atomic formulae, since they do not have any proper
subformulae, but nevertheless they may now be very complicated, if the
terms that they contain are complicated.

The intended interpretation for a function-letter is, of course, that it be
interpreted as a function defined on the domain D of the interpretation, i.e.
a function yielding an object in that domain as value for each object, or
series of objects, from the domain as argument(s). Where 67 is a function-
letter, we use |67|, for the value that the interpretation I assigns to 6. Then
what we have just said is that |67|, is to be a function from D} into D;. The
relevant clause for evaluating expressions containing function-letters is
simply

|67(T150T)| 1= 107 (71| oo Tl 1)

This merely spells out the original intention in an obvious way.

Let us now turn to the rules of inference, and for definiteness let us
concentrate first on the natural deduction rules. Just as name-letters enter
into the rules of inference only as part of the quantifier rules, so too with
function-letters. But there is no need to make any alteration in the rules (V1)
and (3E), which are rules involving a name-letter stipulated to be new, i.e.
one that does not occur in the assumptions to the proof (nor—in the case of
(3E)—in the conclusion). For the point of this stipulation is to ensure that
the name-letter may be interpreted as naming anything in the domain, and
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that is why these rules are correct rules. So if we were to extend the rule, by
allowing it to apply not only to name-letters but also to the complex terms
built up from name-letters and function-letters, we should again have to
ensure that these complex terms could be interpreted as naming anythingin
the domain. Now this could be done, by stipulating that every name-letter
and every function-letter in the complex term had to be new. But there
would be no point in doing so, since it merely complicates the statement of
the rule without allowing us to prove any more with it. So in the case of (VI)
and (JE) we shall make no change in the rules, and they remain as rules for-
mulated just for names. The change comes in the simpler rules (VE) and
(31), which were initially formulated just for name-letters, but with no con-
ditions on these name-letters. So there is nothing to prevent us from general-
izing these rules so that they apply to all terms, however complex, and we
shall do so. They are therefore restated in this way:

(VE) Vo @n o(t/€)

o(t/5) 38
where T may now be any term at all.

But there is one qualification to be made here. I am assuming that only
closed formulae may occur in a deduction, since the semantic turnstile = is
defined only for closed formulae, and each step of a deduction should estab-
lish a semantically correct sequent. In that case, one must, of course, require
that the term 7 figuring in these rules be a closed term, i.e. a term such that no
variable occurs free in it. (This means, in the present context, a term such
that no variable at all occurs in it, for at present we have no way of binding a
variable within a term.) But, as I have noted, in some books open formulae
may figure in deductions, and in that case 7 in these rules is permitted to
contain free variables. On this approach we must further stipulate that the
term 1 be so chosen that all occurrences of variables that are free in T remain
free in o(1/€), or in other words that the variables in T do not get captured by
quantifiers already in ¢. If this is not observed, then fallacies will result. For
example, (VE) does not allow us to infer from the contingent premiss

Vix3y(xzy)
to the impossible conclusion
Fy(y#y)-
Similarly, then, it must not allow us to infer from the necessary premiss

Vx3y(x=y)
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to the contingent conclusion

I (f(y)=y).

I add briefly that what has been said about the natural deduction rules
(V1) and (3E), namely that they remain unchanged, applies also to the cor-
responding tableau rules (—V') and (3), and to the corresponding Gentzen
rules (=>V) and (3=»). Similarly, what has been said about the natural de-
duction rules (VE) and (31), namely that they are liberalized by writing T in
place of 0, applies also to the corresponding tableau rules (V) and (—3), and
to the corresponding Gentzen rules (V=) and (=3).

It turns out, then, that the result of admitting function letters is that the
language becomes very much more complicated, but the rules of inference
are scarcely affected. There is one small liberalization, but that is all. How-
ever, the reason why we have been able to keep these rules so simple is that
we have been relying on the assumption noted at the beginning of this
section, namely the assumption that every function is always defined for
every argument. So far as concerns our ordinary and everyday use of func-
tional expressions, this assumption is wholly unrealistic. For example, ‘the
father of . . . is very naturally viewed as a functional expression, but we cer-
tainly do not suppose that absolutely everything has a father. Rather, we say
that this function is defined only for certain kinds of argument (e.g. per-
sons) but not for others (e.g. stones). The case is the same in mathematics
too, where functions have a very important role to play, as we have seen.
Naturally, in arithmetic we are only concerned with whether such functions
as addition, subtraction, multiplication, and so on, are defined for numbers;
we do not bother about whether they happen to be defined for other things
too. This is compatible with the proposed logic, provided that our intended
domain of quantification contains only the numbers, as in arithmetic it will
do. However, not all arithmetical functions are defined even for all numbers
as arguments. As every schoolboy knows, an exception is ‘x divided by y}
since division by zero is not defined, and all kinds of fallacies result from
ignoring this point.

Where we have a function that is not defined for certain arguments, it is
always possible to introduce a surrogate function that is defined for all argu-
ments, by stipulating arbitrarily what value the function is to have in the
cases hitherto undefined. For example, suppose that f(x,y) abbreviates ‘the
number which results upon dividing x by y. Then, as we have said, f(x,y) is
not defined for y=0, and it is equally not defined if x or y is not a number at
all. But we could introduce the surrogate function f” by setting
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o) { flx.,y), if xand y are both numbers, and y # 0
xy) =

0 otherwise.
Then we have
f14,2)=f"(6,3)=2.
And in addition
f14,0) =f"(the moon,3) = f(the moon, the sun) =0.

But one has no sympathy with such surrogate functions. It is very much
more natural to say that there is #no number which can be obtained upon
dividing 4 by 0, and nothing which counts as the result of dividing the moon
by the sun. And it is surely perverse to suppose that the ‘nothing’ which
comes from the latter division is ‘the same thing’ as the perfectly good num-
ber which results upon dividing 0 by 4.

The assumption that all functions are everywhere defined is, then, some-
thing that one would much rather do without. Yet we cannot easily abandon
it, for if we do, then the simple rules of inference for function-letters must be
abandoned too. This is because the rules of inference for name-letters are
based upon the assumption that a name does always stand for something, as
we noted way back in Section 3.1. And our present rules of inference treat
functional expressions such as f(a) as complex name-symbols, not differ-
ing in any important way from a simple name-letter. Consequently, these
rules just assume that f(a) does always stand for something, and without this
assumption they would not be correct. Now you might say that the initial
assumption about names is unrealistic, and we should seriously consider
whether we can do without it. I shall take up this question from Section 4
onwards. But you might instead say that the present trouble arises only be-
cause functional expressions have been treated as if they were names, and
that this is the point that needs revision. I take up this suggestion in the next
section.

EXERCISES

(These exercises are exercises in applied logic, using function symbols.)

8.2.1. The theory of groups can be presented as having in its vocabulary just iden-
tity and a single two-place function f(x,y) which we write as ‘x-y’. The usual laws for
identity apply, and in addition these three axioms:
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(A1) Vxyz(x(y-z) = (xy)2)
(A2) Vxydz(x=2zy)
(A3) Vxydz(x=y2).

In this theory, prove

(1) a=ac t c=cc. [UseIz(c=za).]

(2) c=cc,d=dd = ¢=d. [Usedz(c=d-z), Iw(d = w-c).]

(3) a=ac b b=bc [Use(l1),(2),and Az(b = b-z).]

(4) = 1xVy(y = yx). [Recall that ‘1x” means ‘there is exactly one x such that’. It is
easily shown from (3) that there is at least one, and from (2) that there is at
most one.]

Given the result (4) we are evidently entitled to introduce a name for the unique
entity x such that Vy(y = y-x). We shall call it ‘1’. Thus we have

(4) B Vyly=y-1).
Continue to prove

(5) a=ca b c=cc [Similarto (1).]

(6) b~ a-1=1-a.[Use(2), (4), (5).]

(7) a-b=1 = b-a=1.[Theproofgoesvia (b-a)-(b-a) =b-a, and the result follows
from this by (2) and (4").]

(8) ab=1,ac=1 + b=c. [Use(6)and (7).}

(9) b= Vxly(x-y=1).[Use (8) and (A3).].

Given this result, we are evidently entitled to introduce a one-place function f{x),

to represent the fact that for each x there is one and only one item f(x) such that
x:f(x) = 1. We shall write f(x) as x-1, so we have

9= Vx(xx-1=1),

I remark incidentally that the constant 1 is called the identity of the group, and the
function x-! the inverse function of the group.

8.2.2. (continuing 8.2.1). Suppose that the axioms for a group are given as

Vayz(x:(y-2) = (xy)-2)

Vx(x=x1)

Vx(xx-1=1).
(These axioms simply assume the existence of the constant 1 and the inverse func-
tion x-1 just proved.) Prove from these axioms the original axioms (A1)—(A3) of
Exercise 8.2.1. [You will need to establish a couple of lemmas on the way, but I leave
you to find them.]

8.2.3. Consider a theory which is supposed to axiomatize elementary arithmetic. It
has in its vocabulary a constant 0, a one-place function f(x) which we write as x’,
meaning the number after x, and two two-place predicates, namely = and <. We
assume the usual laws for identity and in addition these eight axioms:
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(A1) Vx(x'#0).

(A2) Vxp(x'=y — x=y).

(A3) Vx(x20— Jy(x=")).
(A4) Vxyz(x<y A y<z — x<2).
(A5) Vxy—(x<y A y<x).

(A6) Vx—(x<0).

(A7) Vxy(x<y — x'<y).

(A8) Vxy(x<y &> (x=y v x<y)).

(a) Prove, informally if you wish, that the axioms imply
(9) Vady(x<y A Vz(x<z—> y=z v y<2)).
(b) Show by an interpretation that the axioms do not imply
(10) Vxy (x2y - x<y v y<x).

[Hint: an interpretation that verifies (A1)~(A8) must contain a set of eleme ts cor-
responding to the natural numbers, i.e. with a first member (to interpret 0) a d for
each member a next (to interpret x”), and the relation < must be connected on *his
set. But consider how to add further elements to the interpretation, still satisfyir,,
axioms (A1)—(A8), but not connected with the elements that correspond to the natural
numbers.1]

(¢} Suppose that we add (10) to the axioms (A1)—(A8) as a further axiom. Show
that in that case the axiom (A2) becomes superfluous.

(d) Show that, even if (10) is added to the axioms, still there is an interpretation in
which all the axioms are true and yet this domain does not have the intended struc-
ture of the natural numbers. [Hint: your answer to part (b) will also answer this.]

I remark as an aside that no set of axioms which we can formulate in elementary
logic will constrain an interpretation to have just the structure of the natural num-
bers. (That is a consequence of the compactness theorem; the discussion on pp.
1834 may give a suggestion as to how it might be proved.)

8.3. Descriptions

A functional expression such as ‘the father of 4’ is a special case of what is
called a definite description. This is a singular noun-phrase, beginning with
the definite article ‘the} which one might naturally think of as purporting to
refer to just one thing. (In a sentence such as “The seventh child is most like-
ly to have second sight’, the phrase ‘the seventh child’ is a definite description

1 Further hint, to be consulted if really needed:

“1980yu1 pauSis e Jjasyr st PqUINU [edn
-1eU OU JeY) Jwnsse pue ‘s12831u1 PauBis 9y pue SISQUINU [EINIEU 3y Y10 JO ISISU0D O} UTBUIOP ST e,

341



EXISTENCE AND IDENTITY 8.3. Descriptions

if, in the context, there is some particular child that is referred to, but not if
the remark is intended as a generalization over all seventh children.) We can
form a definite description out of any one-place predicate ‘Fx’ by adding a
suitable prefix at the front, as in ‘the thing x such that Fx’ Functional expres-
sions are expressions of this kind, but in their case the object is always de-
scribed by means of a one-many relation that it bears to some other object
(or pair of objects, etc.) For example, ‘the father of @’ is easily seen as short
for ‘the thing x such that x fathered 4, and similarly ‘a + b’ is easily seen as
short for ‘the number x which results upon adding a and b’ Definite de-
scriptions do quite often have this structure, but they do not have to. For
example, ‘the only man here with a blue beard’ is a perfectly good definite
description, but it is not naturally seen as involving any one—many relation.

It is quite natural to suppose that one uses a definite description only
when one believes that, in the context, it describes one and only one thing.
But (a) alittle reflection shows that there are clear exceptions to this gener-
alization. For example, one who says “There is no such thing as the greatest
prime number’ is using the definite description ‘the greatest prime number’,
but not because he believes that there is some one thing that it describes.
Besides (b) even if the speaker does believe that his description singles out
some one thing, still he may be mistaken. For example, I may say to some-
one, in all sincerity, ‘I saw your dog in the park yesterday, chasing squirrels’
The expression ‘your dog is clearly a definite description (short for ‘the dog
that belongs to you’), and no doubt I would not have said what I did unless I
believed that the person in question owned a dog. But I may have got it all
wrong, and perhaps that person has never owned a dog. In that case I have
made a definite claim, but a false claim, for I could not have seen your dog if
in fact there is no such thing.

Even in ordinary speech, then, we do in fact use definite descriptions
which fail to refer. And if we are going to admit descriptions into our logic,
then we certainly cannot overlook this possibility. For you can form a defin-
ite description out of any one-place predicate whatever, by prefixing to it the
words ‘the x such that), but it would be idiotic to suppose that every one-
place predicate is satisfied by exactly one object. So although a definite
description looks like a name (a complex name), and in many ways behaves
like a name, still it cannot be a name if names must always refer to objects.
We therefore need some other way of handling these expressions, and it was
Bertrand Russell (1905) who first provided one.

Russell introduces the notation

(1x:Fx)
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to represent ‘the x such that Fx’ (The symbol 1 is a Greek iota, upside-
down.) In his symbolism this expression can take the place of a name, as in
the formula

G(1x:Fx).

But although the expression behaves like a name in this way, still Russell’s
theory is that it is not really a name. For the expression is introduced by a
definition which stipulates that this whole formula is short for

Fy(Vx(Fx <> x=y) A Gy).

That is, the formula makes this complex claim: “There is one and only one
thing such that F (it), and in addition G (that thing)’. Consequently, when
the definite description is not uniquely satisfied, the whole formula is false.

That is only a rough outline of Russell’s theory, and we soon see that more
is needed. For consider the formula

—G(1x:Fx).

Here we must choose whether to apply the proposed analysis just to the part
G{(1x:Fx), ot to the whole formula. In the first case the — remains at the
front, undisturbed by the analysis, and we obtain

—3Ay(Vx(Fx <> x=y) A Gy).
In the second case the — s itself taken into the analysis, and we get
y(Vx(Fx <> x=y) A —Gy).

In the first case we say, for obvious reasons, that the — has major scope
(or wide scope), and the definite description has minor scope (or narrow
scope); in the second case we say that the definite description has major
scope, and the — has minor scope. Evidently it can make a difference
whether we assign the scope in one way or the other. So this at once reveals
an important way in which definite descriptions differ from names on this
theory, for in orthodox logic names are not regarded as having scope,
whereas on Russell’s theory definite descriptions certainly do. We need,
then, some way of representing these scopes in our formal notation.

Russell had his own way (which I shall come to in a moment), but I think
that nowadays the preferred method is to say that it was a mistake in the first
place to allow definite descriptions to take the place of names. After all, if
they have scopes while names do not, this must lead to trouble. So the sug-
gestion is that the main idea behind Russell’s analysis is much better pre-
sented if we ‘parse’ definite descriptions not as names but as quantifiers, for
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we all know that quantifiers must have scopes. On this proposal, the definite
article ‘the’ is to be treated as belonging to the same category as the acknow-
ledged quantifier-expressions ‘all’ and ‘some’. In English all three of these
expressions occur in prefixes to noun-clauses which can take the place of
names, but which in standard logical notation are pulled to the front of the
open sentences which represent their scopes, precisely in order to reveal
what the scope is. We can think of the analysis in this way. If we start with

All men are mortal,

then the scope of the quantifying phrase ‘all men’ may be explicitly repres-
ented in this way:

(VY men x)(x is mortal).

And then the structure of this quantifying phrase itself may be revealed by
rewriting it in this form:

(Vx:xis a man)(x is mortal),

where the colon ‘.’ abbreviates ‘such that’. We can repeat the same sugges-
tions both for ‘3 representing ‘some’, and for the new quantifier ‘T which I
now introduce as representing ‘the’ when regarded as a quantifier. (‘T is, of
course, a capital Greek iota, written both upside-down and back to front, as
befits a quantifier.) So we now have sentences of the pattern

(Vx:Fx)(Gx).
(3x:Fx)(Gx).
(Ix:Fx)(Gx).

The prefixes are to be read, respectively, as

For all x such that Fx
For some x such that Fx
For the x such that Fx.

These prefixes are restricted quantifiers, and as a final step they in turn may
be analysed in terms of the unrestricted quantifiers used in elementarylogic.
Upon this analysis, the three sentence-patterns we began with are trans-
formed into

Vx(Fx — Gx).
Ax(Fx A Gx).
Ax(Vy(Fy <> y=2) A Gx).

If ‘the’ is regarded in this way as a quantifier, then, of course, it will make
a difference whether we write — before or after (Ix:Fx), just as it makes a
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difference whether we write it before or after (Vx:Fx) and (3x:Fx). But I
remark here that in the case of I it makes a difference only when the definite
description is not uniquely satisfied. Let us borrow Russell’s notation once
more, and abbreviate

IxVy(Fy ¢ y=2)
to
E!(1x:Fx)
(E? is for ‘exists’). Then it is perfectly simple to prove that

Elax:Ex) = (Ix:Fx)(—Gx) < —(Ix:Fx)(Gx).

El(1x:Fx) = (Ix:Fx)(P A Gx) <> P A (Ix:Fx)(Gx).

El(ax:Fx) = (Ix:Fx)(Gx A Hx) ¢ (Ix:Gx)(Gx) A (Ix:Fx)(Hx).
E!l(ax:Fx) = (Ix:Fx)Vy(Rxy) <> Vy(IxFx)(Rxy).

In fact the last three of these sequents hold without the premiss E/(1x:Fx),
but in place of the first we then have

—E!/(1x:Fx) = —(Ix:Fx)(Gx)
and hence also
—E!l(1x:Fx) F= —(Ix:Fx)(—Gx).

From a technical point of view, there is nothing wrong with the definition
ofIjustintroduced, but it is extremely tedious in practice. I illustrate with a
couple of examples from arithmetic. Suppose that we have a couple of three-
place predicates representing addition and multiplication thus:

Sxyz: adding x and y yields z.
Pxyz: multiplying x and y yields z.

From these we can, of course, form the definite description quantifiers

(1z:Sxyz)
(Iz:Pxyz).

And we can use these to analyse arithmetical sentences containing ‘+* and **’,
For example, the simple statement

a+b=b+a
can be analysed in this way:

(Ix:Sabx) (Iy:Sbay)(x=y).
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This is already a little unexpected, but—one might say—perhaps we could
get used to it. Consider, then, something just a bit more complicated, such
as

a(b+c)=a-b+ a-c.
After some thought, one sees that the analysis must be this:
(Ix:Sbex) (Ty:Paby)(1z:Pacz) (Tu: Paxu) (1v:Syzv) (u=v).

And with the present notation there appears to be no way of introducing any
simplifications.

Contrast with this what the position would have been if we had retained
the original symbol 1, conceived as an operator which produces from an
open sentence, not a quantifier, but a (complex) name. We could then have
written

a+b=b+a
in the simpler form
(1x:Sabx) = (1x:Sbax).

And we could indeed have returned to the original notation, which is sim-
pler still, by saying: let us abbreviate

a+b for (1x:Sabx).

This abbreviation is available with (1x:Sabx), since in this expression the
variable x is bound by the prefix 1x, and no occurrences of x outside the
expression are relevant to its interpretation. Hence an abbreviation may
omit the variable x altogether. But we cannot do the same with the quantifier
(Ix:Sabx), since this quantifier is used to bind further occurrences of x. Con-
sequently, if an abbreviation omits x from (Ix:Sabx), then the rest of the for-
mula must fall into confusion. Thus the quantifying notation, apparently
needed in order to represent scopes explicitly, also prevents one from using
the simple and traditional notation of ordinary mathematics.

Russell himself proposed an ingenious way out of the difficulty. Sup-
pose that we begin with definite descriptions construed as variable-binding
quantifiers. Thus, to continue with the same example, the description ‘the x
such that Sabx’ occurs in contexts of the kind

(Ix:Sabx) (-—x—x—).

Then, to obtain Russell’s own notation, for each subsequent occurrence of x,
bound by (Ix:Sabx), we write instead the namelike expression (1x:Sabx). At
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the same time we write 1 in place of I in the original quantifier, but change
its surrounding brackets to square brackets, in order to show which occur-
rences of this expression are quantifiers and which are not. Thus we reach

[1x:Sabx] (—(1x:Sabx)—(1x:Sabx)—).

This is the notation Russell uses himself, and, as I have indicated, it is easily
seen as just a variation on the natural way of representing descriptions as
quantifiers. But in practice it has two great advantages. First, there isnowno
obstacle to abbreviating a definite description in a way that omits its variable
x. Thus, in place of the formula above we may write simply

[a+b](—(a+b)—(a+b)—).

Second, we may introduce a convention by which the initial quantifying ex-
pression [1x:Sabx| or {a+b] may be omitted altogether. Russell’s basic idea
here is that such a quantifier may be omitted when its scope is the smallest
possible, i.e. when its scope is an atomic formula, but it must be shown
explicitly when it includes in its scope either truth-functors or other quan-
tifiers. In practice, however, he also allows the omission of a description-
quantifier when its scope contains other description-quantifiers. Thus he
would omit both description-quantifiers from

[a+b][b+al((at+b) = (b+a))
and he would omit all five from
[b+c]{a-bl{a-c]la-(b+0)] [(a-b) + (a-0)]((a:(b+c)) = ((a-b) + (a:c))).

To avoid ambiguity, then, we need further conventions to tell us in what
order the description-quantifiers are to be restored when more than one
has been omitted, and this order must take account of the fact that a com-
plex description may contain another description inside itself, as the second
example illustrates. But I shall not delay to formulate such conventions. The
basic idea is,  hope, clear enough.

Russell’s own procedure, then, is a very ingenious way of getting the
best of both worlds. In practice, definite descriptions are for the most part
treated as names, since this is by far the most convenient notation, but
in theory they are treated as quantifiers, since in theory they are assigned
scopes, and quantifiers have scopes whereas names do not. Moreover, the-
ory and practice fit quite nicely with one another, because in contexts
where we need to make serious use of descriptions we always assure ourselves
first that the descriptions are uniquely satisfied. And when a description is
uniquely satisfied then it does behave like a name, since all ways of assigning
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its scope are equivalent to one another.2 But the theory will still accom-
modate descriptions that are not uniquely satisfied, just because in theory
they are quantifiers and not names.

Despite Russell’s ingenious compromise, I think one still feels that there
is a tension in this theory, just because descriptions are officially introduced
in one way but then treated as much as possible in a different way. The need
for this tension arises because, although descriptions do behave very much
as names do, still we began by saying that they could not actually be names,
since a description can fail to refer but a name cannot. But it is now time to
look once more at that very basic assumption: why must we say that a name
cannot lack a reference?

EXERCISES

8.3.1. Prove by an informal argument, with just enough detail to be convincing,
that the following formulae are all equivalent. (Hence any of them might have been
used to provide a Russellian analysis of ‘the Fis G’)

(1) dx(Vy(Ey ¢> y=x) A Gx)

(2) dxVy(Fy > y=x) A Vx(Fx —Gx)

(3) VxVy(ExaFy — x=y) A 3x(Fx A Gx).
8.3.2.(a) Prove, by any means you like, the sequents cited on p. 345.

(b) Show in detail how these justify the claim that, where a definite description is
uniquely satisfied, all ways of assigning its scope are equivalent.

8.3.3. Taking the domain to be the real numbers, use the definite description quan-
tifier I, and the predicates Sxyz and Pxyz of p. 345, to give an analysis of
(1) a+(b+c) = (a+b)+c.
(2) (at+b)2=a2+2ab+ b2
(B)a, c_ ad+b-c
b 'd~ bd

Is (3), in your analysis, a true statement?

8.4. Empty Names and Empty Domains

A name is said to be empty if it denotes nothing, and we assumed at the
beginning of Chapter 3 that names could not be empty. That is, we did not

2 For some qualifications that seem to be needed here, see the appendix to this chapter.
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allow name-letters to be interpreted as empty. Equally, we did not allow the
domain of an interpretation to be empty. These decisions are connected, for
if domains are allowed to be empty, then one must also allow names to be
empty, as I now show.

Assume, for reductio, that a domain may be empty but that names must
not be. Now in an empty domain it is clear that any formula beginning with
an existential quantifier must be interpreted as false. Retaining the usual
relation between 3 and V, it then follows that any formula beginning with
a universal quantifier must be interpreted as true. It is, as one says, ‘vacu-
ously’ true. It should be observed that this ruling does fit with the semantics
originally given for the quantifiers on p. 85. For if I is an interpretation with
an empty domain, then there is no variant interpretation I, for any name o..
This is because a variant interpretation I, must retain the same domain as 7,
but must also interpret o, and it cannot do both if the domain of I is empty
but o cannot be interpreted as empty. But the semantics for 3 says that 3¢
is to be interpreted as true in 7 iff there is a variant interpretation I, which

.. »and we have just said that in an empty domain there is no such variant.
Similarly, the semantics for V says that VEg is to be interpreted as true in 7
iff for all variant interpretations I..., and this is vacuously the case if I has
an empty domain. In an empty domain, then, V@ is always true and & is
always false.

With this understanding it is clear that the sequent

VxFx = Fa

remains correct, even if we include interpretations with an empty domain.
For still there is no interpretation which makes VxFx true and Fa false. To be
sure, an interpretation with an empty domain will always make VxFx true,
but it cannot make Fa false, for since a has no interpretation on an empty
domain, neither does Fa. In an entirely similar way the sequent

Fa &= dxFx

remains correct, for again there is no interpretation which makes Fa true
and 3xFx false. By the Cut principle, you expect it to follow that the sequent

VxFx = JxFx

must also be correct, and yet clearly this cannot be so, since the empty do-
main provides a counter-example. So one has to conclude that, in the situ-
ation envisaged, the Cut principle must fail. And in fact if you look back
to the proof of that principle given on pp. 31-2 and p. 97, you will see that it
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requires an assumption which cannot be satisfied if we have empty domains
but no empty names.

Not only does the Cut principle fail in this situation, but so also does what
one might well call ‘the oldest rule in the book’, namely Modus Ponens. We
need only a small modification of the example to make this point. By the
same reasoning as before, the two sequents

= Fav—Fa
= (Fa v —Fa)— dx(Fx v —Fx)

remain correct, even if empty domains are permitted, as you may easily
check. But their consequence by Modus Ponens, namely

= 3x(Fx v —Fx),

is no longer correct in this situation. These results seem to me to be wholly
intolerable,3 and I infer that any proposal that leads to them must therefore
be rejected. In particular, then, we must reject the proposal that domains
can be empty whereas names cannot.

The reason why this proposal led to an intolerable result was because it
implies that there are formulae—i.e. those containing name-letters—which
can only be interpreted on some of the permitted domains, but not on all.
This situation is avoided if both names and domains may be interpreted as
empty. For in that case a name can be interpreted on the empty domain,
namely by interpreting it as denoting nothing. On this proposal the sequent

= (Fa v —Fa) - 3x(Fx v —Fx)

is no longer correct. To see this clearly, take ‘Fa’ as abbreviating ‘a exists.
Then on any domain Fa v —Fa will be true, for if a is interpreted as denot-
ing something in that domain, then Fa will be true, and if a is interpreted
as not denoting—which it must be, if the domain is empty—then —Fa will
be true. But yet there is an interpretation in which 3x(Fx v —Fx) is false,
namely one with an empty domain. In a similar way, both of the sequents

VxFx = Fa
Fa = 3xFx

must be rejected as incorrect, if names may be empty as well as domains,
as you are invited to work out for yourself. The two ‘intolerable’ results just
mentioned are thus prevented on the new proposal. More generally you
will find that the proof of the Cut principle originally given on p. 97 is now
rescued.

3 One has to admit that the results are accepted in Hodges (1977).
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I conclude that if empty domains are permitted, then empty names must
be permitted too. There is no equally strong argument for the converse con-
ditional, that if empty names are permitted, then empty domains must be
permitted too, but only a challenge: what motive might there be for allow-
ing the one but not the other? This, however, brings us to what is obviously
the main question: what positive motives are there for allowing either? Well,
in each case the chief motive is that this represents a genuine possibility that
should not be ignored. I offer three lines of argument for this conclusion.
The first is a tricky line of argument, running into several problems and
open to some quite plausible objections, which I shall not explore in any
detail. So here I merely sketch the argument, since I think that it does have
some force, but I do not pretend that what I say here adds up to a conclusive
case. The second and third lines of argument are altogether more straight-
forward, and I think it is clear that they make a very strong case.

1. The first argument begins from the premisses (a) that logic is by tra-
dition supposed to be an a priori science, i.e. one that needs no assistance
from empirical enquiry, but also (b) that logic is used in the practical assess-
ment of real arguments. Now, when we are aiming to test a real argument,
the first thing that we need to do is to determine the domain of discourse
of the argument, i.e. the domain over which the quantifiers employed are
intended to range, and in practice one chooses different domains for differ-
ent arguments. For example, one can often say that, for the purposes of this
argument, only people need be included in the domain, or only items of fur-
niture, or only cities, or whatever it may be. One can tell what the domain is
supposed to be just by understanding what is being said at each point in the
argument. But then, if the evaluation of the argument is to proceed a priori,
we should not be relying upon our empirical knowledge when selecting a
domain. Yet if domains have to be non-empty, then this cannot be avoided,
for we cannot know a priori that there are people, or bits of furniture, or
cities, and so on. A similar argument evidently applies to names. One can-
not tell a priori whether a name that is being used as the name of a per-
son really does denote a person, since one cannot tell a priori whether that
alleged person does exist. Hence if our logic requires that an expression can
be counted as a name only when it does denote something, then the logical
testing of an argument cannot after all be an a priori process, as it was sup-
posed to be.

This line of argument is open to various objections. One might try to
avoid the point about domains by saying that logic never requires us to con-
fine attention to this or that special domain, and we can always take the

351



EXISTENCE AND IDENTITY 8.4. Empty Names and Empty Domains

domain to be ‘everything whatever’ if we wish to. Then it can be added that,
for logical purity, the domain should always be taken in this way, just be-
cause we can know a priori that there is at least something. But this reply
raises many problems. For example, it could be argued (i) that logic does
require one to confine attention to a special domain if the predicates (and
functions) being considered are only defined on that special domain; (ii)
that we cannot in fact make sense of the alleged domain of ‘everything what-
ever’; (iii) that even if we can make sense of this domain, still our knowledge
that it is non-empty cannot be a priori. I shall not pursue these problems any
further.

Turning to the point about names, one might say that philosophers are
now familiar with several theories of names, and some of them do seem
to have the consequence that one cannot understand a name unless it does
denote something. From this it may be inferred that one cannot understand
a name without knowing that it denotes something, and hence that this
knowledge must count as a priori. Again there are many problems. For
example, (i) the inference from ‘understanding requires that the name de-
notes’ to ‘understanding requires knowing that the name denotes’ is surely
questionable; (ii) whether it follows that this knowledge is a priori is also
questionable, and must depend upon a detailed account of what a priori
knowledge is; anyway (iii) the position invites this general response: if one
cannot understand a genuine name without understanding that it is non-
empty, then there can be only very few expressions that qualify as genuine
names—perhaps only demonstratives such as ‘this. Once more, I shall not
pursue these problems any further.

I remark finally about this line of argument that in any case one might
wish to question the premiss upon which it is based. It certainly is part of the
tradition that the study of logic contrasts with, say, the study of physics, on
the ground that logic is a priori and physics is not. But there are plenty of
philosophers nowadays who would call this tradition into question. I pass
on, then, to my two other lines of argument, which do not invoke the notion
of a priori knowledge.

2. The second argument retains the premiss that we are supposed to be
able to apply our logic to test ordinary arguments for validity. Now, as I said
in Section 1.2, an argument is a valid argument iff it is not possible for all
its premisses to be true and its conclusion false. But in logic we do not study
particular propositions, and particular arguments built from them, but pro-
ceed schematically, by working with formulae and sequents. A sequent is
not itself a particular argument, but is rather a general pattern of argument,
which actual arguments may exemplify. The idea is that if in our logic we can
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show that a certain pattern of argument is a correct pattern, then it should
follow that all arguments exemplifying that pattern are correct, i.e. valid,
arguments. But how is this supposed to follow? Well, we count a pattern of
argument as a correct pattern if there is no interpretation which makes all
the premisses true and the conclusion false, and this is supposed to imply
that in any argument of that pattern there is no possible situation in which
all its premisses are true and its conclusion is false. The implication evid-
ently depends upon the point that the interpretations considered in logic do
exhaust all the possible situations for an actual argument. But this will not
be so if interpretations are not permitted to have empty domains or empty
names. For it s possible that there should have been nothing in the domain
specified, whatever the specification, and it is possible that a named object
should not have existed. These are genuine possibilities, even if we know
(perhaps, in some cases, a priori) that they do not obtain in fact.

Someone may say: but why should we bother to take into account these
possibilities which we know are not realized? I take this to be a proposal
to amend the definition of validity for arguments, by building in a clause
saying that a possibility can be ignored if it is known (or anyway, if it is well
known?) that it is not realized. But this is quite contrary to the spirit of logic.
We can see this clearly if we look back to an interesting episode in the devel-
opment of the subject. It is well known that Aristotle’s system of syllogistic
logic accepted as correct some laws which nowadays we reject, for example

F= (Some Fs are G) or (Some Fs are not G),

The explanation is that Aristotle was failing to take into account the possib-
ility of there being no Fs at all. So we say today that several of the argument-
patterns which he accepted as correct are not actually correct, for they need
the extra premiss

There are some Fs.

We may concede to him that very often this extra premiss would state only
what was well known both to the arguer and to his audience, and so it would
be unsurprising if in practice it was often omitted. After all, in practice we
often do omit all kinds of premiss as too obvious to need an explicit state-
ment. But still we should insist that logic alone cannot certify the argument
to be correct until the extra premiss is explicitly put in. So too, it seems to
me, with the possibility of a whole domain of quantification being empty,
and of a named object failing to exist. What is still today the standard logic
ignores these possibilities, but that means that it is sometimes mistaken in
which arguments it counts as valid. For some of these arguments require
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extra premisses, stating that a named object does exist, or that at least some-
thing exists, if they are to be valid in the proper sense. Again we may concede
that in practice these extra premisses very often go without saying, since
they are well known to all participants. But that should not prevent us from
insisting that pure logic can certify such an argument to be valid only if the
missing premisses are explicitly putin.

3. My third argument no longer concerns the practical application of
logic in testing ordinary arguments, but the role that elementary logic has as
forming the basis on which to build more advanced logics. Here I briefly
consider just one such more advanced logic, namely modal logic, which
studies the two sentence-functors ‘it is possible that” and ‘it is necessary that’
These are abbreviated to ‘0’ and ‘01’ respectively. One sets out such a logic by
first assuming the appropriate elementarylogic, and then adding more rules
or axioms to deal with the modal sentence-functors. A standard rule for this
purpose, adopted in many systems, is the so-called rule of necessitation,
stating that what can be proved is necessary:

If - then F Og.

But this rule is clearly incorrect if as our underlying elementary logic we take
the logic studied up to this point, which does not permit empty names. For
in this logic we have, for any name a,

F dx(x=a).
But we do not want
= O3x(x=a).

For even though Margaret Thatcher does exist—and even if the name
‘Margaret Thatcher, used as we use it, would not have existed unless
Margaret Thatcher had existed—still it is not a necessary truth that
Margaret Thatcher exists. On the contrary, it is evidently possible that she
should not have done. (For she would not have existed if her mother had
died at the age of 10, and that is something that might have happened). An
entirely similar point holds about empty domains. In the logic studied up to
now we have, e.g.

b Ax(x=x).
But we do not want
= O3x(x=x).
For it is a possibility that nothing should have existed at all.
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It may be replied to this argument that the rule of necessitation is not
sacrosanct, and there is in principle no reason why we should not retain
our existing elementary logic and modify or abandon this rule. That is, no
doubt, an avenue that one might explore. But it is surely a more straightfor-
ward course to modify the elementary logic so that only necessary truths can
be proved in it. The rest of this chapter presents such a modification.

EXERCISES

8.4.1. Lookbackto the proofin section 3.7 that for every formula there is an equiv-
alent formula in PNE

(a) Explain where that proof breaks down if empty domains are permitted.

{(b) Show that this Lreakdown cannot be repaired, i.e. that there is a formula which
has no equivalent in PNF, if empty domains are permitted.

(c) Do you think this provides a good argument for saying that empty domains
should not be permitted?

8.4.2. If you know of any philosophical arguments in favour of the dictum ‘exist-
ence is not a predicate), consider whether those arguments show that the trad-
itional logic is right to discount the possibility of a named object not existing.

8.5. Extensionality Reconsidered

In Section 3.1 I introduced two principles about names which underlie
the whole treatment of names in the traditional logic. One was that a name
always has a denotation, and I have just been arguing that this principle
should be rejected. The other was the principle of extensionality, that if two
different names denote the same object, then they behave as if they were the
same name, i.e. either may be substituted for the other in any context. This
is reflected, of course, in the adoption of Leibniz’s law,

a=b= (Fa < Fb),

as a principle governing identity. I noted at the time that in a natural lan-
guage there would be many occurrences of names that seemed to conflict
with this principle, but said that for the purposes of elementary logic these
must just be set aside. For we cannot recognize anything as an occurrence of
aname unless the principle of extensionality applies to it. But if we decide to
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jettison the first principle, that names must always have denotations, then
what becomes of the second?

Well, since there do seem to be many exceptions to this second principle,
one might wish to jettison it as well. And there would be good reason to do
so if we were trying to develop a more advanced logic concerning what is
necessary or possible, or what is knowable a priori, or simply what is known
or believed or held probable or something of the sort. For in such contexts
as these the principle of extensionality very frequently seems to fail. But that
is not our present task. At the moment we are simply considering the ordin-
ary and straightforward areas of language which one usually regards as sub-
ject only to elementary logic, and not needing an advanced treatment. Is
there any need to say that in these simple contexts extensionality must be
abandoned once empty names are permitted?

There is not. On the contrary, there is a great need to retain the principle
so far as possible, for, as I pointed out (p. 74), it is built into the ordin-
ary semantics for elementary logic. For example, when a name-letter is
interpreted as denoting something, then all that we provide by way of an
interpretation is the object denoted. Similarly, all that we provide by way of
interpretation for a one-place predicate-letter is the set of objects that it is
true of. There is nothing in this simple apparatus that could explain how
a predicate might be ‘true of’ an object under one name but not under an-
other, and it would clearly be going beyond the confines of elementary logic
if we tried to introduce a more complex apparatus. I conclude that exten-
sionality must be retained when we are dealing with names that do denote,
so the problem is: how are we to explain extensionality for names that do not
denote? I think the answer is quite straightforward. If the truth-value of a
predication depends only on what the name denotes, so that it must remain
the same for any other name denoting the same thing, then when it turns
out that the name denotes nothing, that fact itself must determine the truth-
value. So the truth-value will remain the same for any other name that also
denotes nothing.

To illustrate, consider the simple predicate ‘x is a horse’. It is undeniable
that if in place of ‘x” we have a name that denotes something, then whether
the whole is true or not depends only on whether the thing denoted is a
horse. And it cannot possibly happen that two names denote the same thing,
but one of them denotes a horse and the other does not. So the principle of
extensionality is certainly satisfied in this case. It is also satisfied with names
that denote nothing, if we say—as seems to me very reasonable—that only
what exists can be a horse. Thus it is not true that Jupiter is a horse, princip-
ally because Jupiter does not exist, though in this case one may wish to add
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that even if he did exist, he still would not be a horse. (Here is an interest-
ing question for philosophers: how do you know that?) Equally, it is not
true that Pegasus is a horse, and again this is because Pegasus does not exist
(and never did). Here one is tempted to say that if Pegasus had existed he
would have been a horse. By the same token, he would have been winged. So
there would have been a winged horse. But as things are, there are no winged
horses, since Pegasus is not a horse. And this is simply because Pegasus does
not exist (now, or at any other time).

Two comments may be made at once. First, there are people who will pro-
test that ‘Pegasus is a horse’ should be accepted as true, and one must admit
that we do often talk in this way. When our discourse is about fictional char-
acters, it appears that we take a domain of quantification that includes these
characters, and we count it as true that P if the relevant story says (or
implies) that P, and as false that P if the relevant story says (or implies) that
—P. From a logical point of view, however, one cannot take this proposal
seriously, since it must lead to a breakdown in elementary logical laws. Thus
Pv—Pwill not be true when the relevant story says nothing either way, and,
worse, PA—P will be true when the relevant story is inconsistent. So we
would do better to say that this way of talking is really a shorthand. We talk
as if we took it to be true that P when all that we really mean—or should
mean—is that it is true that it is said in the story that P. To apply this to the
example in hand, we should continue to insist that

Pegasus is a horse

is not true, but we add that there is a related statement which #s true, namely
It is said in Greek mythology that Pegasus is a horse.

The two statements are, of course, different statements, and the first would
follow from the second only if whatever is said in Greek mythology is true.
But the fact is that most of what is said in Greek mythology is not true, and
this includes the claim ‘Pegasus is a horse’.

Second, there are people who, when persuaded that ‘Pegasus is a horse’
is not true, think that the same should therefore apply to ‘Pegasus is not
a horse’ Their thought is that neither of these can be true if Pegasus does
not exist. But I see no reason to agree. For negation is so defined that ‘“—P’
counts as true in any situation in which ‘P’ is not true, and so in the present
situation “—(Pegasus is a horse)’ is true. If this is rejected, then certainly
the familiar logic can no longer be upheld, and we would apparently need
a ‘third truth-value) i.e. ‘neither true nor false’ But such a reaction is
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surely too extreme. Observe, first, that we must certainly reject the perfectly
general principle that nothing can be true of a unless a exists, for when a does
not exist it is quite clear that “—(a exists)’ is true of a. It follows that when ‘Fa’
implies ‘a exists, and the truth is that —(a exists), then also the truth is that
—Fa. People who are still uneasy about this may perhaps be placated by this
suggestion: perhaps they are understanding ‘Pegasus is not a horse’ not as
the negation of ‘Pegasus is a horse’, but as equivalent to

(Pegasus exists) A —(Pegasus is a horse).

Certainly, this is no more true than ‘Pegasus is a horse’4

To return to the original question concerning extensionality, I propose
that this principle be preserved in an elementary logic which admits empty
names by the ruling that all empty names are to behave alike, i.e. that substi-
tuting any one for any other will always leave truth-values unchanged. The
suggested elucidation of this is that where ‘F’ represent an atomic predicate,
such as . . . is a horse) then ‘Fa’ will be false whenever ‘a’ denotes nothing.
The truth-values of more complex sentences containing ‘@’ will then be
determined in the usual way by the truth-values of their atomic compo-
nents; in particular, if ‘Fa’ is false when ‘a’ denotes nothing, then “—Fa’ will
be true when ‘a’ denotes nothing. I observe here that this gives the right
result when ‘Fa’ is ‘a exists’. This is an atomic statement, so by the suggested
ruling, when ‘@’ denotes nothing we shall have ‘a exists’ as false and “—(a
exists)’ as true. This is evidently as it should be.

This ruling has an effect upon what sentences of ordinary language we
can accept, for logical purposes, as made up from a predicate and a name.
For example, consider a sentence

John is painting a picture of a.

It is quite easy to see this sentence as satisfying the principle of exten-
sionality when the name ‘a’ does denote something, but we still have a prob-
lem when it does not. Previously we had to say that we cannot count this as
a sentence of the form ‘Fa’ when ‘a’ fails to refer, since our stipulation was
that all names must refer. Now we do not rule it out on this ground, but we
must still rule it out nevertheless. For ‘Pegasus’ refers to nothing, and so
does ‘Jupiter’, so if we accept

4 Philosophers will note at this point that I am making no distinction between on the one hand say-
ing or implying that Pegasus exists, and on the other hand presupposing this point. That is a fair com-
ment, but one which I do not propose to discuss. Presupposition can have no place in elementary logic.

358



8.5. Extensionality Reconsidered EXISTENCE AND IDENTITY

John is painting a picture of Pegasus
as containing the name ‘Pegasus’, then we must also accept
John is painting a picture of Jupiter

as obtained from it by substituting one empty name for another. But then
our extensionality principle would require us to say that the two sentences
must have the same truth-values, which is wholly paradoxical, since it is
clear that a picture of Pegasus is not at all the same thing as a picture of
Jupiter. The result then is that for the purposes of elementary logic we still
cannot accept ‘John is painting a picture of Pegasus’ as made up from a name
‘Pegasus’ and a predicate ‘John is painting a picture of . . .

This situation is common. Where previously we had to say that an appar-
ent example of name-plus-predicate structure could not be accepted at face
value, just because the name was empty, so now we quite often have to reach
the same conclusion, but on the different ground that empty names do not
all behave alike in that context. But this does not happen always, and there
are some sentences which we can now recognize as having the form ‘Fa’ but
could not have done before. The simplest and most prominent examples are
the sentences

—(a exists).

Previously we had to say that no such sentence was of the form ‘Fa’, because
we required that, for any admissible sentence ‘Fa,

Fa =3 xFx.

Naturally, this does not hold for “—(a exists)’ in place of ‘Fa’. But with our
revised conception it no longer has to.

Let us move on, then, to consider just what rules of inference do hold on
the revised conception.

EXERCISE

8.5.1. Consider the sentence
John is writing a story about King Arthur.

Do we have to say that this sentence means one thing if King Arthur did exist, buta
different thing if there was no such person?
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8.6. Towards a Universally Free Logic

A ‘“free’ logic is one in which names are permitted to be empty. A ‘univer-
sally free’ logic is one in which the domain of an interpretation may also be
empty, and our object now is to formulate such a system. In this section I
approach the topic by asking how the familiar rules of inference need to be
modified for this purpose. For definiteness, I shall concentrate attention
upon the rules required for a tableau system of proof.

AsIargued on pp. 3578, the rules for the truth-functors are not affected
by the new view of names and domains, so we may turn at once to the quan-
tifier rules. The familiar tableau rules are

V2|§<p —1V|§<p HT,tp —E‘if;(P
e(t/e)  —o(a/f) e/l  —e(t/l)
[ O —
provided oL is new

But the intended interpretation is now that the quantifiers range only over
existing things (as before), whereas the terms are not so restricted, and this
means that each rule requires a modification. First, the two outer rules need
to be weakened. For, if T is a term that fails to denote, then from the prem-
iss that all existing things satisfy ¢ it will not follow that 7 satisfies ¢. (For a
clear counter-example take @(7/€) as ‘T exists’) So here we need to add the
extra premiss that T exists, if the inference is to remain sound. The same
evidently applies to the rule for —3. By contrast, the two inner rules can be
strengthened. For example, the premiss to the 3 rule tells us that there exists
something satisfying ¢, and we argue as before that we can therefore intro-
duce a name o for that thing, provided that the name is a new name, i.e. one
that has not already been used for anything else. It then follows as before that
o satisfies ¢, but now we can also add something further, namely that o
exists. Abbreviating ‘o exists’ to ‘Elar, our four rules therefore need modify-
ing in this way:

Vo —VEo 3o —3Ee
En | | Ent
| Elo Elo |
o(t€)  —e/t) o)  —e(t/E)
;..___W___—J
provided o is new

So far this is all very straightforward, and all free logics are in agreement.
It is easy to see that the quantifier rules do need modifying in these ways, and
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that the modified rules are sound under the revised conception. Hence we
cannot prove from them any sequents which must now be counted as incor-
rect, such as

VxFx &= dxFx
or

= dx(Fx v —Fx)
or indeed

= dxElx.

But we can prove some new sequents which are correct on the new concep-
tion, such as

= VxE!x.

The next thing to ask, therefore, is whether we can prove all such sequents,
i.e. whether the new quantifier rules are complete for the new conception.

The answer to this depends upon what exactly the new conception is.
In particular, I have argued in the last section that the principle of exten-
sionality should be extended to empty names by requiring that all empty
names behave alike, and this is a thesis that can certainly be formulated in
the vocabulary now being used, thus

EXT: —E!t;,—E!lt, = o(11/€) ¢ o(1,/€)

(‘EXT’ is for ‘extensionality’) But we certainly cannot prove this principle
from the quantifier rules already stated. Now some free logics do not adopt
this principle EXT, and they may count the four quantifier rules already
given as complete. But I have argued that EXT should be adopted, and since
we cannot prove it from what we have already, on my conception these four
rules are not complete. Suppose, then, that EXT is added as a new rule of
inference. Will that give us a complete system? Well, in a sense, yes.5 But our
present rules use E! as a primitive and undefined predicate, because they do
not yet say anything about identity. Once we add identity, however, E! will
surely be definable, for we expect it to be true that

Elt == (€ =1).

So before I come back to the question of completeness, I now proceed to
consider what rules we ought to have for identity in a free logic. (On this
question there is no general agreement amongst logicians.)

5 Butalso, in a sense, no. The position will be clarified in the following section.
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The principle of extensionality for names that do denote objects holds
under the new conception just as much as it did under the old. So we maylay
it down that

LL: 1 =1, = ¢(1,/€) <> ¢(1,/E)

(‘LL is for ‘Leibniz’s law’). On this there is universal agreement, so far as
know. But it is not so clear whether we should retain the other principle for
identity,

=1=1

for all terms T whatever, or whether we should say that only existent things
can be identical with anything, and hence that only they can be self-
identical.

We should observe first that EXT has this implication: if even non-
existent things are still counted as self-identical, then all non-existent things
must be counted as identical with one another. For, as an instance of EXT, we
have

—Ela,—E!lb = (a=a ¢> a=b).

If, then, a=a holds for all names a whatever, whether or not a exists, we can
infer

—Ela,—E!b = a=b.

This apparently says that there is at most one non-existent thing. As such, it
isa principle well suited to the approach whereby a name that appears to de-
note nothing is always treated, despite appearances, as denoting something
—either some arbitrarily chosen and familiar object, such as the number 0,
or perhaps a specially invented object called ‘the null object’ (This ‘null
object’ must then be a member of all domains, even those that we think of as
empty, since it must be possible to interpret a name-letter on any domain.)
But such an approach is hardly attractive. I have already noted (pp. 338-9)
that we obtain unwanted truths if we suppose that what appears to name
nothing does actually name an arbitrarily chosen but familiar object. We do
not get this consequence with ‘the null object;, since it is not a familiar object
already figuring in familiar truths. On the contrary, it is a wholly unfamiliar
object, invented just to be the thing that all otherwise empty names denote.
As such, one must admit that it is technically convenient, and a neat way
of upholding the principle that all empty names behave alike. But, at the
same time, it is sheer fantasy, and we do not actually need any such fant-
asy. We can perfectly well say that a name may be interpreted as denoting
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nothing, without having to suppose that this ‘nothing’ is really something,
but a strange thing.

If we do dispense with the fantasy, then the suggestion that all non-
existent things are identical with one another will get no support in this way,
and I think that it gets no support in any other way either. But there is an
argument against it. For I have said that a good general principle is that
when F represents an atomic predicate, and a a name that denotes nothing,
then Fa is to be false. This principle seems to me to work very well for a wide
range of simple atomic predicates. But then we have only to add that iden-
tity is to be regarded as a simple atomic predicate, and we have a definite
ruling on the present issue: if a does not exist, then a=b is always to be false,
whatever b may be; hence as a special case a=a is false too.6

Now the sequent

b=a = a=a

is provable just from LL by itself. Hence by the quantifier rules we already
have a proof of

dx(x=a) = a=a.

The decision that a=a is to be true only when a exists now allows us to affirm
the converse

(*) a=a = dx(x=a).

It follows that either a=a or 3x(x=a) would do equally well as our analysis of
Ela. Tt turns out, however, that there is an advantage in choosing the first.
For if we write 1=t in place of E/t (and a=a. in place of E!ov) in the quantifier
rules as formulated on p. 360, then it turns out that (+) is deducible, where-
as if we write 3§(E=1) instead, then (*) will be needed as a separate postulate.
I therefore adopt this decision. We shall have as a definition

Elt for 1=t1.

Our basic rules will then be the four quantifier rules of p. 360, but with E!
eliminated in favour of its definition, and in addition just EXT and LL as
further rules. In the context of a tableau system of proof, these are formu-
lated as

6 One might claim that identity should not be regarded as a simple atomic predicate. In a second-order
logic it may be defined thus:

a=b for VF(Fa«s Fb).

On this definition it is not atomic, and a=a is always true, whether or not a exists. (Similarly, a=b is true
if neither a nor b exists.)
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T#T) T1#Ty T1=Ty T1=Ty

7T, T#T, o(1,/8) o(1,/6)
(p(ri/?’;) 0(1,/8) l
P(1,/€) o(1,/8)

This completes our combined theory frr quantifiers and identity together.

o(1/€) o(1,/8)

I remark here that some free logics adopt the principle that, if @~ is any
atomic predicate-letter, thenfor1 <i < n

Pdn(1y,...,7,) = El,

I think, however, that this is due to a confusion. I have already said that I
think this is a very reasonable thesis where ®# is an atomic predicate, but
predicates are not the same as predicate-letters. On the contrary, the role
of the predicate-letter is to take the place of all kinds of predicates, and not
only atomic ones. That is why the principle of uniform substitution for
predicate-letters is a correct principle.

A similar principle that is sometimes proposed applies this idea to
function-letters. The suggestion is that if 67 is any n-place function-letter,
then we should have, for 1 <i=<n,

Elon(1y,..,7,) = Elt;.

But I think that this suggestion too should be rejected. No doubt many
familiar functions do obey the proposed condition that they are defined—
i.e. have a value which exists—only for arguments which themselves exist.
But there seems to be no reason to insist that all functions whatever must be
like this. For example, it is often useful to introduce, for any predicate, its
corresponding ‘characteristic function. The definition takes this form:
given a predicate F—a one-place predicate, for simplicity—we introduce
the corresponding function fdefined so that

f(v)=1 if F(x)
f(t) =0 if —F(7).

Such a function must provide a counter-example to the proposed principle.
For, as we have said, even where T does not exist, still either F(t) or —F(1)
will be true, so in any case f(t) will be defined. I shall not, then, add any fur-
ther principles of this sort.

In fact I prefer not to add function-letters at all, since there is nothing that
can be laid down as a general principle to say when a function is or is not
defined for a given argument. So the system that I have been considering so
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far is one in which the only closed terms are simple name-letters, and there
is therefore no practical distinction between the letters T and o. But I shall
now proceed to add definite descriptions as further terms. As I have noted,
functions are a special case of descriptions, so if descriptions are available,
then we do not need to make any further provision for functions. And be-
cause a definite description necessarily has an internal structure, it is easy to
say when there is such a thing as it describes, namely when the description is
uniquely satisfied.

Since our system allows names to be empty, the chief objection to treating
definite descriptions as (complex) names has now disappeared, and I shall
therefore treat them in this way. Accordingly, given any formula ¢ contain-
ing a free occurrence of the variable &, the expression (1&:¢) will be a term.
Since all occurrences of & in this term are bound (by the initial prefix 1§, if
they are not already bound in @), the term will be a closed term provided
that there are no other variables free in ¢. In that case, the rules that have
been stated as applying to all terms T will apply to it. If we wish to allow our
rules to apply also to open formulae, which may contain open terms, then as
before (p. 337) we need to make sure that the substitution-notation is so
explained that all occurrences of variables that are free in T remain free in
¢(t/E). Once this is done, the extension presents no further problem. If we
wish to allow for vacuous occurrences of the prefix 1&, i.e. occurrences in
which it is attached to a formula @ containing no free occurrences of €, then
this is harmless. In nearly all cases it will lead to a term (1&:¢) that does not
denote, though there is one exception (Exercise 8.6.4). Finally, the obvious
principle for when a definite description has a denotation, is this:

El(1&¢) & LVE(e & =E).

A stronger principle from which this follows, and which I adopt as an
axiom-schema governing descriptions, is this:

(PD) VL(E=(1&:9) <> VE( > L=E)).

(‘PD’ is for ‘principle of descriptions’) Considered as a rule of inference
for the tableau system, the rule is that any instance of this principle may be
added to the root of any tableau.

In the following section I set out the system that we have just reached in a
more formal manner, give an explicit account of the intended semantics,
and outline a completeness proof with respect to that semantics. It will be
convenient to have a name for the system; I shall call it the system B (‘B’ for
‘Bostock’).
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EXERCISES

8.6.1.(a) Using the tableau rules for quantifiers and for identity as formulated for
the system B on pp. 360 and 364, prove

(1) F Vx(x=x).

(2) a=a —— Fx(x=qa).

(3) Ix(x#x) +.

(4) Vx(x#£x) & VxFx.

(b) Show that the following are not provable from these rules:

(5) Vx(x#x)
(6) a#a .

8.6.2. Rewrite the tableau rules given in this section as rules for use in natural
deduction. [Method: first express the tableau rules as rules for a Gentzen sequent
calculus, as in Sections 7.3 and 7.4, and then consider how they may be restricted to
sequents with just one formula on the right.]

8.6.3.(a) Explain why vacuous quantifiers in the system B can make a difference,
and we no longer have

If€ is not free in ¢ then V& == .

[Hint: Consider the implications of part (4) of Exercise 8.6.1(a).]

(b) Inthelight of this explanation, say where exactly the proof on p. 98 would break
down for the system B.

(c) State a new rule for vacuous quantifiers, suited to the system B.

8.6.4. Let @ be a closed formula, so that in the term (1&:9) the prefix 1€ binds no
variable. Show that, according to the principle PD, the formula E!(1§:¢) is true inan
interpretation Iiff (1) the domain of I contains one and only one object, and (2) ¢
is interpreted as true in L

8.7. A Formal Presentation

To give a formal presentation of the system B, we must begin by specifying
its language. The vocabulary is

name-letters: a,b,cd.eay,...

variables: EATAUSTRTE ST

predicate-letters: Pn,Qn, RS, Tn Fn,Gr,Hn, Py,... (n=0)
predicate: I for identity, usually written =

366



8.7. AFormal Presentation EXISTENCE AND IDENTITY

truth-functors: “HAN e
quantifiers: v,3
term-forming operator: 1

(Brackets are also used as punctuation, to show grouping.) The formation
rules, which simultaneously define both what a term is and what a formula
is, are:

(1)(a) Aname-letterisaterm.
(b) Avariable is a term.
(2)(a) If @~ is an n-place predicate-letter, and if 1y,...,T,, is a series of n
terms (not necessarily distinct), then ®»(1y,...,1,,) is a formula.
(b) If 1, and 1, are terms, then I(t;, T,) is a formula (but we usually
write T, = T,).
(3)  If@andyare formulae, so are —@, (QAY), (QVy),...
(4) Ifg@isaformulaand& avariable, then V&g and & are formulae.
(5)  If@isaformulaand§ avariable, then (1£:¢) is a term.
(6) There are no other terms or formulae.

On this account open formulae, and open terms, are accepted as being for-
mulae and terms, and they are also permitted to contain vacuous occur-
rences of V, 3, and 1. But I shall confine attention to closed formulae and
closed terms in what follows, since open formulae will receive no inter-
pretation, and will not figure in the rules of inference. We could if we wished
confine attention further to formulae and terms lacking vacuous occur-
rences of V, 3, and 1, for nothing of importance would be lost thereby.

The next task is to explain what counts as an interpretation of these terms
and formulae. We define what it is for 7 to be an interpretation of a language
L containing some, but not necessarily all, of the vocabulary just listed. This
will be the case iff:

(1) Thereis a domain D;of the interpretation I. This may be any set you
like, including the empty set.

(2) Each name-letter o in £ is interpreted by I either as denoting some
element |o|; of D, or as denoting nothing. In the latter case we say
that |o|, is a gap.

(3) Each n-place predicate-letter @ of £ is a assigned by I a set |®7|; of
n-tuples as its extension.” The members of these n-tuples must be
either members of D), or gaps.

7 For the application of this clause to zero-place predicate-letters, see Sect. 3.4 nn. 11 and 12.
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This interprets the non-logical vocabulary of £. Turning to the logical voca-
bulary, to deal with atomic formulae we have:
(4) For any predicate-letter @~ and any series of a n closed terms 15,...,T,,,
|®(Ty,t)| =T Aff (| Ty] sl Tl ) € @]

To deal with the truth-functors we have

(5) For any closed formulae ¢ and v,
|—ol, =T iff |o|#T
loayl, =T iff |o|,=T and |y|;=T
lovyl, =T iff ||;=T or |y|,=T
etc.

To deal with the quantifiers we again need the notion of an interpretation I,
which is an o-variant interpretation of the interpretation 1. An o-variant
interpretation is exactly like I except perhaps in the interpretation that it
assigns to o, and in addition it must interpret o as denoting some member
of the domain D, i.e. it cannot interpret o as denoting nothing. (Hence, if
I has an empty domain, there are no a-variant interpretations of 1.) Then
we have

(6) Forany formula ¢ with at most one free variable &,

|VEp|; =T iff foranyname o notin¢,and foranyc-variant
interpretation I, of I,

I(P(a/a)ha = T’

|F&p|,=T iff for some name o not in ¢, and for some
o-variant interpretation I, of I,

I(P(a'/EJ)IIa = T‘
The clause for identity is the obvious one:

(7) For anytermsT; and 1,,

|ti=1,;=T iff bothTt, and,are interpreted in I as denot-
ing something, and

1Tl r =172l
And finally the clause for the description-operator is this:

(8) For any formula ¢ with at most one free variable &: if there is some
name o not in ¢, and some o-variant interpretation I, of I, such that

|VE(9 > E=a)],, = Tthen

|0&:0)| ;= ot
If there is not, then |(1&:9)| is a gap.
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(This means that if there is just one object in the domain that satisfies @, then
(1€:¢) denotes that object; if there is not, then it denotes nothing.)

This completes the definition of an interpretation, so we can now say
what it is for a sequent in this language to be a correct sequent. For simpli-
city, I confine attention to those sequents that are basic from the tableau
point of view, namely with no formulae on the right. The definition is, as
expected,

I'E= iff everyformulainT is closed, and there is no interpretation
in which every formula in I is true.

We can now turn from questions of semantics to questions of proof, first
defining I -, and then considering the relation between = and . But I take
this in two stages, beginning with the subsystem which does not yet include
the description operator.

As in the previous section, I shall concentrate just on the tableau rules of
proof. The standard rules for the truth-functors, and the rule for closing
branches, are taken over unchanged from p. 156: I do not repeat them here.
The rules for the quantifiers are as given on p. 360, but with E! eliminated
according to its proposed definition. For ease of reference, I repeat them
here:

Ve —VEp 3o —3Ce
=t | | =1
| a=0. o=0 I
o(tE)  —p(o/l)  o(a/f)  —e(t/E)
_
provided o is new

The rules for identity (and for non-existence) are as on p. 364. Again, 1
repeat them for ease of reference:

171#1'1 T]¢Tl T1=T, T1=Ty
TETy ¥ o(1,/8) 0(12/8)
o(1/8)  o(t,/E) |
l | 0(T,/E) o(7/8)
o(r/l)  o(ny/E)

All of these rules are to be taken as applying to closed formulae only; open
formulae do not occur in proofs, since they equally do not appear in the
sequents that those proofs establish. It is easily seen that each rule is sound,
with respect to the semantics specified, so I spend no more time upon that
point.
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One might have expected that together they would form a complete
set of rules for the system with quantifiers and identity, but without the
description-operator, because of the way that the semantics has been set up
to mirror them closely. But in fact they do not. The cause of the trouble is not
that the rules do not contain enough information, but that tableau proofs
are limited to a very strict form which does not include any analogue to
the Cut rule for natural deduction. Here is an example of a simple sequent
which is a correct sequent according to the semantics specified, but which is
not provable from the rules just given:

a#a, Fa, —Fb, VxFx F=.

It is easily checked that the sequent is not provable, for when one sets out to
draw up a tableau with these four formulae at its root one finds that there is
no tableau rule at all which can be applied. But it is also easy to see that the
sequent is correct, for it must be the case either that b=>b or that b#b. If b=b,
then by the V rule we cannot have both —Fb and VxFx; but if b#b then by
EXT we cannot have all of a#a, Fa, —Fb. The remedy is clear: we must allow
ourselves to introduce the alternative hypotheses b=b and b#b within the
course of a tableau proof.
This is done by introducing a further rule:

'—*J_‘_T

=T T#T

which has exactly this effect. (As we shall see, the rule may be confined, if we
wish, to terms T that already occur on the branch in question.) I observe that
the rule is an analogue, in the tableau system, to a special case of the Cut rule.
For, seen in terms of a sequent calculus, the rule says

I
=17 orR LAt #

Turning this upside-down, and removing negation signs to obtain a rule for
a Gentzen sequent calculus, it becomes

INt=t=>A I'=1=1,A
IT'=>A

I shall therefore call this rule CUT=, i.e. a Cut rule for =.

With the addition of the new rule CUT=we do now have a complete basis
for the system B with quantifiers and identity, but without the description-
operator. I give a brief outline of the completeness proof, leaving the details
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to you (Exercise 8.7.1), since the general strategy is by now familiar. The
proof will follow the lines of the completeness proof of Chapter 4, as ex-
tended in Section 8.2, by providing a recipe for constructing tableau proofs
which must yield either a closed tableau or an open branch leading to an
interpretation verifying all the formulae on that branch. So in particular the
interpretation verifies all the formulae at the root of the tableau, showing
them to be consistent. The recipe is this:

Initial step: Apply the rule CUT= to all name-letters occurring in the for-
mulae at the root of the tableau. After this initial step the rule CUT= need
never be applied again. (This is because the recipe will not allow the intro-
duction of any further name-letters except by application of the rules (3)
and (—V), and for a letter o introduced in this way it is already specified that
o=0L.)

Subsequent cycle of rules: With the restriction that no formula is ever to be
written more than once on the same branch, continue to apply the remain-
ing rules in this fourfold cycle:

(1) Apply the rules for truth-functors in all possible ways.

(2) Apply the rules (3) and (—V) in all possible ways, with the restriction
that they are not to be applied more than once on the same branch to
any formula.

(3) Apply the rules (V) and (—3) in all possible ways. (Note that the new
form of these rules ensures that they can only be applied to names
already on the branch.)

(4) Apply the rules EXT and LL in all possible ways.

This procedure must lead either to a closed tableau or to a tableau with an
open branch—either a finite branch, if at some stage no more rules can be
applied, or to an infinite branch (if we may speak in this way). If the result
is an open branch, then we use it to construct an interpretation in this way.
For each name o on the branch, either o=a. or 0@ is on the branch. If azo
is on the branch, then o is interpreted as denoting nothing, and on this
interpretation the semantics ensures that a=a is interpreted as false, and
hence oa is interpreted as true. If o=a is on the branch, then « is inter-
preted as denoting something, and if o=f is also on the branch, then o and
B are interpreted as denoting the same thing. (Note here that if o= is on the
branch, then so are o=ct and =, since these each result by applying LL to
a=P.) Thus if a=P is on the branch, then by the semantics it is interpreted as
true. The domain of the interpretation is then to consist just of one object
for each name o such that o=ot is on the branch, with the rider that the same
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object is used both for a.and for B iff o=p is on the branch. Extensions for the
predicate-letters that occur in some formula on the branch are then con-
structed so as to ensure that an atomic formula is interpreted as true iff that
formula is on the branch, i.e. by including (|ot},...,Jot,,|) in the extension of
D iff dr(o1y,...,00,) is on the branch. This cannot lead to any contradiction,
for we have ensured that (a) if o is interpreted as denoting something, then
|oj=|B| only if o=P is on the branch, and so by LL ®~(_..,0,...) is on the branch
iff ®n(...,,...) is also on the branch; and (b) if o is interpreted as denoting
nothing, so that |0 is a gap, then for any other name B such that |B| is also
a gap we have both a#o and B#B on the branch, and so again by EXT
dn(...,0,...) is on the branch iff ®#(...,,...) is on the branch.

I make one further remark at this point. It may happen that there are no
names ¢ on the branch at all. In that case, by our stipulation, the domain
of the interpretation is to be taken as empty. The only atomic formulae that
can occur on the branch are then zero-place predicate-letters, i.e. sentence-
letters, and any such sentence-letter is to be interpreted as true. All other
atomic formulae are interpreted as false. Moreover, the only quantified for-
mulae to occur on the branch must be ones that begin either with V or with
—d, and we have already noted that all such formulae are interpreted as true
in an empty domain.

The rest of the argument is a straightforward induction on the length of
the formula ¢ to show that every formula ¢ on the branch is interpreted as
true in this interpretation. I leave this to you.

I now come to consider the full system B, which contains in addition the
description-operator 1. But I shall proceed somewhat obliquely, first intro-
ducing a new constant name, say *, with the fixed interpretation that x
denotes nothing. (Thus * corresponds in a way to L. It is stipulated that L
does not, in any situation, state a truth; and similarly it is stipulated that »
does not, in any situation, denote an object.) You may think of *, if you wish,
as short for a definite description such as (1x:x#x), but at present I am pur-
suing an approach in which » is introduced as a constant before descriptions
are generally available. It is clear that we need one new rule of inference to
govern the constant , namely that *#+ may be introduced into a proofatany
stage. It is also clear that the completeness proof just outlined may be
extended to show that, if we add the new constant * to the system just con-
sidered, and the new rule for it, then the extended system is also complete.

The point of this is that, with the new constant * available, we may intro-
duce the description-operator by an explicit definition. The basic thought
here is that for any formula y with a free occurrence of { the formula
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y((1&:9)/0)

must be equivalent to

AE(E=(1€:9) A y) v (AL(E=(16:9)) A w(+/)).

This is provable just from the rules already introduced for quantifiers and
identity, provided that those rules are taken to apply not just to name-letters
but also to terms such as (1€:9). But we can go on to eliminate (1£:¢) from
this formula by applying our principle PD for descriptions, since this allows
us to substitute for one another

=(1&9) and VE(¢ <> &=0).

So we obtain, as equivalent to the original

A(VE(P & &=0) A W) Vv (—FEVE(p & E=) A w(+/0)).

The suggestion is that y((1&:9)/C) be defined as an abbreviation for this.

As it stands, such a proposed definition is ambiguous, for the same reason
as before (p. 343), e.g. because it does not tell us whether, in a formula such
as —y((1&:9)/C), the — is to be taken into the definition or left outside it.
In the system B this ambiguity is of no importance, for whichever choice
we make the results are equivalent, but a proper definition should be unam-
biguous. To remove the ambiguity we may stipulate first that the defini-
tion is to apply only where the initial formula v is an atomic formula. But
another ambiguity is that even an atomic formula may contain several
descriptions, as in

(1x:Fx) = (1x:Gx)

or it may contain the same description several times, as in
(1x:Fx) = (1x:Fx)

or it may indeed contain one description inside another, as in
(1xx=(1y:Gy)) =a.

Again, all ways of applying the definition would actually yield equivalent
results in the system B, but still we should stipulate some definite way of
applying it. Let us say, then, that in any atomic formula containing descrip-
tions the leftmost occurrence of 1 is to be eliminated first, in accordance
with the definition proposed. If, when this is done, there are still further
occurrences of 1, then again we look for the atomic formulae that contain
them, and once more we eliminate the leftmost occurrence in each atomic
formula in accordance with the definition proposed. Proceeding in this way,
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we must in the end eliminate all occurrences of 1, and in such a way that we
end with a formula equivalent to the original.

It follows that one way of introducing descriptions into the system B is by
adding the new constant » and the suggested definition. This is easily shown
to be a completebasis for descriptions, since we can argue thus. Take any cor-
rect sequent containing some descriptions. By the definition suggested the
descriptions can be eliminated from this sequent, leaving us with another
correct sequent containing only the vocabulary of B, without descriptions
but with * added. But we have already observed that B, with * but without
descriptions, is complete. So the correct sequent with descriptions elimin-
ated is provable in it. And hence the correct sequent that we began with,
including descriptions, is also provable when the definition of descriptions
is added.

It follows further that if, instead of adding the new constant » and the
definition, we add the principle PD as an axiom, then again we have a system
that is complete for B with descriptions. For (1) in this setting the rules of B
are taken as applying to terms (1£:¢) as well as to simple name-letters; (2) we
may define * as, say, (1x:x#x), and the rule - *#+ is then provable from PD;
and (3) it follows that from PD we can prove an equivalence corresponding
to the definition of the last paragraph. Hence whatever can be proved from
the constant * and the definition can also be proved from PD. Since the for-
mer system is complete, it therefore follows that the latter is too.

[he full system B, then, contains the eight rules initially specified for
quantifiers and identity, the extra rule CUT= needed to loosen a little the
very strict strait-jacket of a tableau proof, and the axiom PD for descriptions.
These rules define " —3. As I remarked earlier, it is clear the rules are indi-
vidually sound with respect to the semantics given, and we have now shown
that they are together a complete set of rules. Thus

Tty iff Tk

This completes my exposition of the system B.

EXERCISES

8.7.1. Fill in the details of the completeness proof outlined for B with quantifiers
and identity but without descriptions.

8.7.2. With descriptions counted as terms, and with PD added as an axiom, prove

(1) g (Lexzx) # (1xx#x).
(2) y(1/0) pp FLUE=T A y) v (—FE(E=T) A y((1xx#x)/C))).
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8.8. Appendix: A Note on Names, Descriptions, and
Scopes

A standard assumption in logic is that names do not have effective scopes. For ex-
ample, it does not make any difference whether we see the formula—Fa as obtained
by first supplying the name a as subject to the predicate F, and then negating the
result, or as obtained by first negating the predicate F and then supplying the name
a as subject to this complex predicate. We may look at it either way. On Russell’s
analysis of definite descriptions, this gives us a clear contrast between names and
descriptions, for it is a feature of his analysis that descriptions must have scopes. To
use the same example, if we see the formula —F(1x:Gx) as got by first supplying
(1x:Gx) as subject to the predicate F, and then negating the result, the whole will be
true if (1x:Gx) fails to exist and F represents an atomic predicate. But if we see it as
got by first negating the predicate F, and then supplying (1x:Gx) as subject to this
complex predicate, we get the opposite result. This is the difference between

(Ix:Fx)(—Gx) and —(Ix:Fx)(Gx).

This point suggests the following thought. If it is really true that definite descrip-
tions have scopes whereas names do not, then Russell must be right to claim that
definite descriptions are not names. If, however, this is not really true, then it does
no harm to treat descriptions as complex names, which is what the system B does.

Now, provided that names are allowed to be empty, as descriptions evidently can
be, this question cannot be decided at the level of elementary logic. For, as I have
pointed out (Exercise 8.3.2), in elementary logic when we assign the scope of a
description in one way rather than another, this can make a difference only if the
description is empty, and the difference that it then makes is just that some versions
imply that the description is not empty whereas others do not. (Thus, concerning
the examples of the last paragraph, the first implies that (1x:Gx) is not empty, and
the second does not; on the contrary it is true if F is atomic and (1x:Gx) is empty.)
But we can get exactly the same effect with names, not by assigning them scopes, but
by including or excluding explicitly existential clauses. For example, the distinction
just noted for a description (1x:Gx) can be reproduced for a name a as the distinc-
tion between

Ela A—Fa and -(Ela A Fa).

Thus all the work that could be done, in elementary logic, by making scope-
distinctions either for names or for descriptions, can equally well be done instead
by adding explicitly existential clauses at appropriate points in the formula. I con-
clude that, at the level of elementary logic, there is no call to assign scopes either to
names or to descriptions.

It may be replied that, when we move to a more complex level of discourse, where
we cannot make do just with the resources of elementary logic, the advantage of
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Russell’s analysis of descriptions becomes clear. For example, Kripke (1980: 48—9)
has argued that, where a is a name, the sentence

It might not have been that a=a

is unambiguous, and always false. But if in place of the name a we take a description
(1x:Fx), then—he says—we must make a distinction. The proposition

It might have been that (Lx:Fx)—(x=x)

is always false: there is no possibility of there being one and only thing which is Fbut
not self-identical. But, in contrast, it is very often true to say

(Ix:Fx)(It might have been that —(Iy:Fy) (x=y)).

This is true because it means that, concerning the one and only thing that is F, it
might not have been the one and only thing that is F—either because it might not
have been F or because something else as well might have been F. But—he claims—
there is no similar point to be made about a name a: we cannot say that, concerning
the thing that is g, it might not have been a.

For the sake of argument, let us grant that Kripke is essentially right on this point.
Nevertheless, one might still find the point unimpressive, since there are many
other non-extensional contexts where—at least at first sight—scope-distinctions
seem to be needed just as much for names as for descriptions. To adapt an example
of Quine’s (1960: 141-56), consider the sentence

Ralph believes that the man in the brown hat is a spy.

This may be taken in two ways. It can be understood as saying that Ralph believes to
be true what is said by the whole sentence ‘the man in the brown hat is a spy’, or as
saying that Ralph believes to be true of a certain person what is expressed by the
predicate ‘that he is a spy’, where the person in question is in fact the one man here
in a brown hat, though Ralph may be unaware of this fact. The distinction is that in
the first case the words ‘the man in the brown hat’ are taken as part of the report of
what Ralph believes, whereas in the second case they are the speaker’s way of refer-
ring to a particular person, which need not also be Ralph’s way of referring to him.
In the jargon, the sentence is said to be understood de dicto in the first case and de re
in the second. Now at first sight it is tempting to say that the distinction is one of
scope. In the first case we have

Ralph believes that {Ix:x is wearing a brown hat) (xis a spy)
and in the second case we have
(Ix:x is wearing a brown hat) Ralph believes that (x is a spy).

But here one must notice that exactly the same ambiguity occurs when we have a
name in place of the description, as in

Ralph believes that Bernard J. Ortcutt is a spy.

Again, the name ‘Bernard J. Ortcutt’ may be taken as reporting part of the con-
tent of Ralph’s belief, or it may be taken as the speaker’s way of telling us who is the
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object of Ralph’s belief. Should we conclude, then, that in contexts such as these
both names and descriptions should be assigned scopes?

Quine, for one, would not wish to look at it in this way. On his suggestion the
ambiguity is better viewed, not as a question of the scope of the name or descrip-
tion, but as an ambiguity in the prefix ‘Ralph believes that. We can construe this
prefix as an operator that forms a sentence from a sentence, or we can construe it
as an operator that forms a sentence from a name and a predicate taken separately,
where only the predicate represents what is believed, and the name is used to say
what it is believed of. In the second case, then, the more perspicuous rendering is

Ralph believes, of Bernard J. Ortcutt, that he is a spy.

As Quine insists, we must be able to understand belief-sentences both in the one
way and in the other. Belief is what he calls a ‘multigrade relation;, relating a be-
liever either to a sentence, or to an object and a one-place predicate, or perhaps to
two objects and a two-place predicate, and so on.

It is a question for philosophical disputation whether Quine’s way of looking at
these sentences is better or worse than the way which assigns scope to referring ex-
pressions, or whether the apparent disagreement between these two approaches is
one that disappears on a closer analysis. I shall not here take this dispute any further,
But in any case we can say that contexts of this kind provide no motive for distin-
guishing names from descriptions. Bearing this in mind, let us look back once more
to Kripke’s case for saying that descriptions do have scopes whereas names do not.
Clearly Quine would wish to distinguish between

(1) It might have been that a was nota.
(2) It might have been, concerning a, that it was not a.

The first takes ‘it might have been that’ to be operating on a whole sentence, where-
as the second takes it to be operating on a name and a predicate taken separately.
Now for the sake of argument we may agree with Kripke that (1) is always false,
whereas (2) may be true where ‘@’ is a description, but not where ‘@’ is a name.8 But
this, we may suggest, is a peculiar feature of the way that names interact with modal
operators such as ‘it might have been that) and is to be explained by the fact that
names are what Kripke calls ‘rigid designators’. This means (roughly) that names
continue to designate the same thing as we shift our attention from one possible
situation to another, whereas most descriptions do not. But this point by itself
would not prevent us from saying that descriptions may be treated as complex
names, for it does not in any way imply that descriptions have scopes whereas
names do not. On the contrary, the only ‘scope-distinction’ that is here envisaged is
adistinction in how the prefix ‘it might have been that’ is to be understood, and this
has no tendency to show that definite descriptions are not complex names.

8 Actually, one could perfectly well claim that (2) will be true wherever ‘a’ is a name that might have
been empty. To avoid this objection, change the example to

It might have been, concerning a, that it existed but was not a.
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List of Axioms and Rules of Inference

1. Structural Rules

I give the rules here in their most general form (cf. p. 293).
Assumptions (ASS) ¢kF=¢

Thinning (THIN)
ontheleft If T=A then T,0F=A
ontheright If '=A then T'F@A

Cutting (CUT) If T1FE@,A; and Ty A, then T\l E=ALA,

Interchange (INT)
ontheleft If Io,y,AF©O then I'y,p,A=0
ontheright If TE=AQY,0 then I'k=Ay,0,0

Contraction (CONTR)
ontheleft If I,0,pF=A then T,oFA
ontheright If I'=¢,p,A then Tk g@,A

Until Gentzen sequents become available (in Sect. 7.4) the rules are re-
stricted to cases where no more than one formula appears on the right. For
purposes of a sequent calculus (Ch. 7) we interpret ‘T, ‘A), . . . as schematic
letters for finite sequences of formulae, and it becomes necessary to state
INT and CONTR explicitly. For other purposes these letters may be taken as
representing sets of formulae, in which case INT and CONTR go without
saying. If desired, one may replace ASS and THIN by

Basic Sequents (BS) T,oF=@,A

2. Basic Principles for Truth-Functors (p. 33) and
Quantifiers (pp. 97-8)

Negation =k iff Tke¢
Conjunction F'=eay iff TEe and Ty
Disjunction LoevwwkE iff T,okE and Ty
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Conditional I'=ep—oy iff ToFy

V-introduction (VI) If I'=¢ then T'k=VEQ(E/a)
provided o does not occurin T’

V-elimination (VE) V&= o(a/€)

J-introduction (1)  @(a/E) =T

J-elimination (FE)  If Iok= then ILFE@(E/a) =
provided ot does not occurin T’

Once Gentzen sequents become available, ‘A’ may be added on the right in
all cases. This makes a real difference in the case of the conditional, and of
(VI); cf. pp. 305—6. Until then, it is useful to give two versions of the princi-
ples for disjunction and for 3-elimination, one as stated here and the other
with a single formula on the right. If there is something further on the right,
then the restrictions on (V1) and (3E) must add that o should not occur in it.
When complex terms become available (as in Sect. 8.2), we may generalize
(VE) and (31) by writing ‘v’ in place of ‘o, and adding ‘provided 1 is closed’

3. Tableau System

[ give the rules here in the simplified form which is most convenient in prac-
tice (p. 156), and in practice one omits the labels shown here.

-1

é@
(Y
oY —(pAy)
—Q —Y
¢
L4
vy —(pvy)
¢ v
-
-y
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ooV ~(e—W)
—!(p—é—:’y #—)
¢
-y
VEe —VEe
i
p(o/E) —1p(a/E)
forany o provided o is new
e —3Ee
o(o/E) —¢(a/€)
provided o is new forany o
¢
-
4. Axiomatic System (pp. 194, 221)
Axioms: (Al) Fo—=(y—0)
(A2) = (9—>(y—)) )= ((9—>y)>(9—Y))
(A3) = (—9>—y)>(y—0)
(A4) FVEe— o(a/E)
(A5) FVE(y—¢)>(y—>VEg)

Rules: DET
GEN

provided & is not free in y

If ¢ and F@—vy then
If ~¢ then HVEo(E/a)

For use in proofs by assumptions, the rule DET is generalized to

Modus Ponens (MP) IfT'H¢ and I'~¢@—y then 'y

And the rule GEN is generalized to (VI), as in (2) above, but with ‘+ for ‘=",

387



LIST OF AXIOMS AND RULES OF INFERENCE

5. Natural Deduction System

I formulate the rules here in a way that is neutral between tree proofs and
linear proofs (see pp. 277--8).

(Al)  If T¢ and AWy then T,AF @Ay

(AE) If THo@Ay then T'¢@ and 'y

(vI) TF¢ or Ty then THovy

(VE) IfThHevy and Aoty and O,y y then A0y
(1) If Iy then TH oy

(—=E) H T't¢ and A @—y then ')Ay

The rules for quantifiers are (V1), (VE), (1), (3E) as given in (2) above, but
with ‘" in place of ‘=), and with one formula supplied on the right for (3E).

6. Gentzen’s Cut-Free Sequent Calculus

This is a reformulation of the original rules for a tableau system (pp. 147,
150) but turned upside down and presented as rules for a sequent calculus
(p. 296).

(BS)
Lo = 9,A
roy=A I'=s>¢A T=2yA
(A=) — (=nA)
- Doay = A I' = oAy,A
e=A T,y=A I'=o,y,A
(v=) (=mVv)———
Lovy= A I'= ovy,A
I'=>¢0A Ly=A Teo=yA
(=) (=)
To—>y=A I'= ¢oW,A
I'=¢,A Te=A
(—=)——— ()
L—ep=A I'=—0,A
Lo(a/g) = A I'=eA
(V=) @(o/E) (=V) @
LvEp= A I'= VE&p(E/a),A
provided atisnotinI"or A
Ne=A I'= ¢(a/€),A
I EeElo) = A I' = JEo.A

provided eisnotinT or A
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The structural rules INT and CONTR, as given in (1) above, should be
added. But note that the system does not contain ASS, except as a special
case of BS, or THIN or CUT. The last is important.

7. ldentity

There are many ways of formulating rules or axioms (pp. 324, 331). For
definiteness I give here a pair of axioms, more economical than those cited

o=o
o=B — (p(x/E) — o(B/E))

8. Free Logic (System B)

I give a formulation suited for tableau proofs (in the simplified notation).
The rules for the truth-functors are as usual. The rules for the quantifiers are
(p. 360)

VEe —VEe o —3Ee
Eh | ] Eh
Elo Elo
o(tg)  —o(a/k)  oa/f)  —e(t/E)
The proposed definition of E!is (p. 363)
Elr for 1=t

So, under this definition, these rules involve identity. The remaining rules
for identity, using the same definition, are LL and EXT, which may be for-
mulated (more economically than on p. 364) as

T,=1, —El,;
o(1,/8) —Elt,
o(1,/8)
(1,/€)
O (1,/8)

To complete the system, for tableau purposes, it is important also to add the

rule CUT =

Elt —ERt
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The system may be complicated by adding a constant, *, for ‘the constant
empty name’. The rule governing it is simply

I

—Eh

Or, better, it may be complicated by adding a description operator, 1, and
this principle for descriptions (PD)

|
V(L=(1&:0) & YE(PL=E))
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atomic formulae 51,78, 336

basic elementary quantification 121
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Church, A. 132,233,237
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commutativity 40, 60
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341

completed tableaux 158, 160, 168-9,
174-7
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241,251-4,259-62,271-2,298-9,
300-6,318-19, 325-6,370-4

conditional 19

conditionalization 203,217
conjunction 17-18
conjunctive normal form (CNF) 37-44
connected relations 327
contraposition (CON) 208,249
consequentia mirabilis (CM) 209-15,
249-51
consistency:
of a proof system 167
of a set of formulae 12-~13,24-5,136-7
counter-examples 132-4, 138
cut elimination 300 n.
cut principle 30-1, 96-7, 187-8, 349-50,
370
cycle (of applications of tableau rules) 174,
185-7,325-6, 371

decision procedures 115-32, 158, 160,
184-7,329-33

deduction theorem 203-6,222—4,248

definite descriptions 341-8, 365, 372-9

definition 46

De Morgan’s laws 38, 46

dense ordering 332-3

detachment 192-4

discharge of assumptions 204, 227, 245-6,
314 n.

disjunction 19

disjunctive normal form (DNF) 37-44,
67-8

distribution 39, 55

division 338, 348

domain (of an interpretation) 77, 82-3; see
also empty domains

double negation (DN) 34, 208-15, 249

duality 62-5

IV-formulae 131,138

elaboration 41

elementary quantification 115-25
elimination rules 241, 285

empty domains 82, 85, 97, 123, 349-55
empty names 71-2, 82, 348-59
entailment 5,8-10,24-5, 136-7
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extensionality 72-3, 348--59, 361, 3757
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