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Preface

Since the emergence of computers, Mathematics and Computer Science have
been close partners. The boundary between these two sciences is not well defined,
which leads to a very productive emulation. Wide areas are common to Mathe-
matics and Computer Science: analysis of algorithms, trees, combinatorics, opti-
mization, performance evaluation, discrete probabilities, computational statistics,
... These common domains are what we call here Mathematics and Computer
Science (MCS). Perhaps it is not the most appropriate name; we shall let the two
communities eventually decide for a more convenient appellation.

This book produces a collection of original articles, which reflect the state of
the art of MCS. It is divided in five parts.

Trees and Analysis of Algorithms.

Antos and Devroye consider a binary search tree for an ordinary random walk;
they prove that the asymptotic probability distribution of the height normalized
by v/2n is the Erdés-Kac Rényi distribution. The paper of Chassaing, Marckert
and Yor gives a simple but subtle proof for the limit law of the couple height-
width in the case of binary trees. The next two papers concern other aspects of
binary search trees; Dekking, De Graaf and Mester study the positioning of arm
nodes and foot nodes on the tree, and Drmota obtains the asymptotic expectation
of the saturation level. Fill and Janson prove that the asymptotic distribution
of the standardized random number of comparisons used by Quicksort has an in-
finitely differentiable density f whose derivatives f(*) have superpolynomial decay.
Gittenberger generalizes results obtained by Panholzer and Prodinger for binary
trees to a larger class of rooted trees, the simply generated trees. The paper of
Jacquet, Szpankowski and Apostol is related to information theory; they consider
a universal prediction algorithm for mixing sources and prove that this predictor
is asymptotically optimal and that the prediction error is O (n~¢) for any € > 0.

Combinatorics and Random Generation.

The article of Bousquet, Chauve, Labelle and Leroux gives a new bijective proof
of the multivariate Lagrange inversion formula; the proposed bijection is easier
than former bijections to put into application, and leads to a combinatorial inter-
pretation of various enumeration formulas for rooted trees. Bousquet-Melou and
Schaeffer present a method to enumerate paths on the square lattice that avoid
a horizontal half-line; they prove that the corresponding generating functions are
algebraic of degree 8 over the field of rational functions and give new details on
the asymptotic of the number of paths of lenght n. This nice result allows them to
solve Kenyon’s questions. The paper of Denise, Rocques and Termier presents two
interesting alternatives of the recursive method for random generation of words of
context-free languages; thanks to this approach, they can generate words accord-
ing to exact frequencies or expected frequencies. Merlini, Sprugnoli and Verri find
a non abelian group structure for a subclass of generating trees; this is achieved
via a correspondence with monic, integer proper Riordan Array. In their article,
Pergola, Pinzani and Rinaldi introduce well-defined operations on the set of suc-



cession rules, which allow the use of succession rules instead of generating functions
in some combinatorial enumeration problems.

Algorithms and Optimization.

Two articles in this part deal with genetic algorithms. Berard and Bienveniie con-
sider a simplified context with finite population but develop a rigorous mathemat-
ical treatment, which leads to a detailed understanding of the effects of selection.
They obtain the convergence in law of the normalized population and a large
deviation principle. These results confirm numerical simulations and biological ex-
periments. Mazza and Piau consider the case of infinite population; the genetic
algorithm is modeled as a discrete-time measure valued dynamical system. This
Markov chain approach gives the asymptotic distribution and a large deviation
principle. The article of Dror, Fortin and Roucairol tackles the deterministic prob-
lem of transporting nondedicated commodities from a set of suppliers to a set of
customers with one vehicle of limited capacity. The authors give a VRP-like for-
mulation, the dimension of associated polytope and complex analysis of practical
complexity. The last article by Métivier, Saheb and Zemmari introduces and anal-
yses a randomized algorithm to get rendez-vous in a graph.

Performance evaluation.

Ben Mamoun and Pekergin introduce a class of Markov chains on finite state-
space, which have a closed form solution to compute steady-state distribution;
they also provide an algorithm to construct a bounding Markov chain in this
class. Dayar produces an efficient iterative aggregation-disaggregation algorithm
to compute the stationary vector of discrete-time stochastic automata networks
that are lumpable. Delcoigne and De La Fortelle state large deviation principles
for polling systems. The paper of Fayolle and Lasgouttes deals with a symmetrical
star-shaped network comprising N links and such that all routes are of lenght 2;
they are mainly concerned with policies that can be used to share the bandwidth
of the links between active connections. A functional analysis approach is used to
characterize the behaviour of the network.

Other topics.

This part contains articles on stochastic subjects, which either are relevant to sev-
eral previous parts (branching processes, generating functions, walk generations)
or introduce new mathematical topics related to computer science (Brownian ex-
cursion, random sentences). The first three articles deal with branching processes.
Geiger gives a new proof of Yaglom’s theorem for critical Galton-Watson branching
process. Liu presents an interesting survey on recent results concerning the branch-
ing measure, the exact Hausdorff measure and the exact packing measure, defined
on the boundary of the Galton-Waltson tree. Locherbach’s article concerns statis-
tical models for branching particle systems; an explicit version of the likelihood
ratio process and local asymptotic normality are derived. Louchard and Rocques
use tools from combinatorics, probability and singularity analysis to achieve a com-
plete asymptotic analysis of the cost of a Schréder walk generation algorithm; five
different probability distributions are observed in the study. Malyshev introduces



xi

a generalization of Gibbs distributions when the space (lattice, graph) is random.
These generalized distributions are well suited to study local probability structures
on graphs with random topology; this is a new connection between mathemati-
cal physics and computer science. Pemantle produces a nice asymptotic study for
meromorphic generating functions; deep tools and nontrivial technics from ana-
lytic geometry, sheaf cohomology and Stein spaces theory are used. In what he
calls a "speculative report”, Spencer presents approaches to obtain asymptotic
formula for the ultrahigh moments for Brownian excursion; the paper also con-
tains a conjecture and many indications for further research. Ycart and Rousset
consider probability distributions on a set of sentences; they show a zero-one law
for random sentences under these distributions.

All the articles in the present book were also presented as talks at the collo-
quium on MCS in Versailles, September 2000. Some of the speakers of the collo-
quium are unfortunately not represented here.

Although the content of this book is of high level, it also has a pedagogical
interest; it is intended for a large public, including graduate students, in Mathe-
matics and in Computer Science.

We hope this book will help to deepen the connections between Mathematics
and Computer Science and will be followed by many others on MCS.

D. Gardy, A. Mokkadem



Part 1

Trees and Analysis of
Algorithms



Trends in Mathematics, © 2000 Birkhauser Verlag Basel/Switzerland

Rawa Trees

ANDRAS ANTOS Institute of Communication Electronics, Technical University of
Budapest 1111 Stoczek u., Budapest XI, Hungary H-1521. antos@inf .bme.hu
Luc DEVROYE School of Computer Science, McGill University, 3480 University
Street, Montreal, Canada H3A 2K6. 1luc@cs.mcgill.ca

Abstract. A rawa tree is a binary search tree for an ordinary random walk 0, S1, S2, S3,
.., where S, = 3" | Xi and the X;’s are i.i.d. distributed as X. We study the height
H,, of the rawa tree, and show that if X is absolutely continuous with bounded symmetric
density, if X has finite variance, and if the density of X is bounded away from zero near
the origin, then Hn/\/2n tends to the Erdés-Kac-Rényi distribution.

Key words. Random binary search tree, probabilistic analysis, random walk, Catalan
constant, limit distributions.

Introduction

Binary search trees are the most common data structures for storing infor-
mation. Given a sequence S of real numbers and a real number z, let L(S,z)
denote the subsequence of S consisting of all numbers less than z and let R(S, z)
be the subsequence consisting of numbers greater than z. In particular, if S =
(So,S1,-..,Sn) are real numbers then the binary search tree for these data is re-
cursively defined as follows: it is a binary tree with root Sp, with left subtree the
binary search tree for L(S,Sp) and with right subtree the binary search tree for
R(S,Sp). Binary search trees permit searching in time bounded by the height of
the tree, where the height H, is the maximal path distance from any node to the
root (Knuth, 1973; Cormen, Leiserson and Rivest, 1990).

The standard random binary search tree is based on an i.i.d. sequence
(So,S1,---,5n) -

In that case, it is well-known (Robson, 1979, Devroye, 1986, 1987) that if the
common distribution is absolutely continuous, then

H, ~4.33107...logn

almost surely as n — oo. Rather little is known about H, when the defining
sequence is not i.i.d. We define a running average model for a generic random

variable X and an averaging parameter p € [0,00) as follows: let X;,..., X, be
i.i.d., distributed as X, and define Sy = 0 and
X, 4+ X,
PSR S L SN
npP
The running average random binary search tree is based on (Sp, S1, . . ., Sy). Within

this model, there are only two choices of practical interest, p = 1/2 and p = 0: for
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p =0, S, is just a partial sum of all X;’s with ¢ < n, and we obtain a binary search
for an ordinary random walk. We define a rawa tree 7, (or 7,(X)) as a binary
search tree based on (So,S1,. .., Sn) where Sp = 0,5, =31, X; and X1,...,X,
are i.i.d. distributed as X. We study H, for a large class of rawa trees. If X has
nonzero mean, the random walk will drift off, and the binary search tree has an
uninteresting shape and height H,, = ©(n). For this reason, and technical rea-
sons that will be encountered later, we restrict ourselves to nice random variables,
which are random variables with the following properties:

e A. X has a density, is symmetric about zero, and has a finite variance o2.
e B. The density f of X is bounded: ||f]|oo < 00.
e C. fis bounded away from 0 in a neighborhood of the origin: lim inf, o f(z) >
0.
Random variables satisfying A only will be called simple.

While the shape of 7,(X) indeed depends heavily on the distribution of X,
it is quite interesting that for all nice random variables, the limit behavior for H,,
is essentially identical.

THEOREM. Let X be a nice random variable, and let T,, be a rawa tree. Then, for
all ¢ > 0,

: Hy _
nan;oP{m<z} = L(z) ,

where L is the Erdés-Kac-Rényi distribution function

_1)" _(2n41)2x2 .
) = { # Tt Gl e S ita >0
0 otherwise.

Note that the limit law does not depend upon the distribution of X, yet the
shape of the rawa tree depends upon the distribution in a substantial manner. Also,
the Theorem does not exclude the possibility that there are symmetric random
variables with different limit laws. Other questions of a more universal nature may
be asked: for example, is EH,, > Q(+/n) for all X with a density? Is EH, = O(y/n)
for all X with a symmetric density? Binary search trees extract a lot of fine detail
from the underlying sequence in terms of permutations and other global properties.
They thus help in the understanding of the behavior of sequences.

In the figure below, we show six rawa trees to indicate possible pathways for
the proof.
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Figure 1. Six rawa trees are shown, from left to right, top to bottom: the random
variables X are normal, Laplace, s/+/|Us|, 1/U;, UyUsUsU,s and s(|Up| + 5Z),
where s is a random sign, Z is Bernoulli (1/3) and the U;’s are uniform [-1,1].
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Relationship between height and record sequences

The proof uses records in sequences. In a sequence s = (sg, $1, S2, - - .), W€ say
that s, is an up-record if s, = max{so, s1,...,S,} and that it is a down-record
if s, = min{so, $1,...,5n}. Let U(s) and D(s) be the number of up-records and
down-records in the sequence s. It is well-known (Devroye, 1988) that the path
distance from the node for S,, to the root in a binary search tree is

D’n = U(L(S<n’ Sn)a Sn) + D(R(S<na Sn)a Sn) -2
where S<,, = (S0, S1,---,Sn-1). Thus, the height of the binary search tree is

H, = lfg%XnDi = (U(L(S<i, S:), Si) + D(R(S<i, S:),8i) — 2 .

It is easy to see that
H, > H, 4 max (U(S<nt1), D(S<nt1)) = 1 .

The proof is based on the following two lemmas, proved in the remainder of the
paper.

LEMMA 1. Let X be a simple random variable. Then, for all z > 0,

lim P{\Z,Ln <x}=£(z),

n—oo

where L is the Erdés-Kac-Rényi distribution function.

LEMMA 2. Let X be a nice random variable. Then for all € > 0,
lim P{H, — H), >e/n}=0.

n—0o0

Records and ladder heights for random walks

We first consider the increasing ladder epochs and ladder heights for
SOaSIy' . 'aSna

where S = 0. The (increasing) ladder epochs are at 0 = Tp < T} < Tp < ---,
where

T; = 1nf{] >T; 1 Sj > STi—l} .
We say that St, is an up-record and call St, — S,_, = H7, an ascending ladder
height. Similarly, we have decreasing ladder epochs for consecutive minima. The
epochs are denoted by 0 = T§ < T{ < T3 < .... We say that Sy is a down-
record and call ST;’ - ST{_1 a descending ladder height. Define M, = maxi<n Si,
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M)}, = —min;<, S;. Let R, = max{k : T; < n} and R;, = max{k : T} < n}. The
R,, ascending ladder heights are denoted by Hi,...,Hr,. The absolute values of
the R;, descending ladder heights are denoted by Hj,...,Hp, . Note that R, =
U(So, S1,...,S,) — 1, R, = D(So, S1,...,S,) — 1 and H], = max(R,, R;,). We
define the distribution function

_J2®(z)-1 ifz>0
G(z) = {O otherwise,

where ® is the standard normal distribution function. Thus, G is the distribution
function of the absolute value of a standard normal random variable. Most of the
properties of this section are available in standard references such as Feller (1971,
chapter 12) or Spitzer (1976). The first half of proposition 2 is due to Erd6s and
Kac (1946). For more on L, see Rényi (1963). Feller (1971) and Spitzer (1976)
may be consulted for proposition 1 and for more properties of ladder heights and
ladder epochs in random walks.

PROPOSITION 1. Let X be a simple random variable. Then Hy,Ha, ... are inde-
pendent identically distributed with mean o/+/2. The same is true for H;, Hb, .. ..

PROPOSITION 2. Let X be a simple random variable. Then
MI

M M,, M!
n 5, "ﬁg;and——max( . ")£>£
ovn ovn ovn
Furthermore,
Rn L R L
- Gand = 5 G .
Van V2n

REMARK: EXPECTED VALUES. As G has expected value /2/m, and £ has ex-

pected value k % v,/32/73 = 0.930527. .., where v = 0.915965. .. is Catalan’s
constant (Z:’:O %5), it is possible to show that for simple random variables,

EM, ~oy/2n/m, EM, ~ o+/2n/%

and
E{max(M,, M})} ~ ko/n .
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PROPOSITION 3. Let X be a simple random variable. lim,,_, o R, = lim,_,o R, =
oo almost surely and ER,, = ©(y/n), ER,, = O(\/n).

The proof of the following routine fact is omitted.

LEMMA 3. If X1,Xos,... are ii.d. random variables with finite mean m, and if
R,, — oo almost surely, then Zﬁ__"l X;/R, — m almost surely. In particular, with
M, and R,, as in proposition 2, we have M, /R, — o /\/2 almost surely.

PROPOSITION 4. Let X be a simple random variable. Then, for all z,
oo <)
P{—<z;-PJ—=<z;, -0,
{ 2n ovn
R! M!
P <y —P L <z —0,
{ v2n } {U n }

P {——max%ﬁ") < x} -P {——~max(aj‘\4/"ﬁ’M’ll) < a:} 50,

and

PRroOOF. We only show the proof for the last statement. We may assume x > 0.
For arbitrary small € > 0

{max(R,, R,,) < V2nz}
= P{max(M,, M}) < (¢ + €)v/nz,max(R,, R,) < Vonz} +
+ P{max(M,, M.) > (¢ + €)\/nz, max(R,, R},) < V2nz}
P{max(M,, M) < (o + €)v/nz} +
Hi+...+Hr a+e} Hy+ ...+ Hp o+e
+P = > +P = >
il e

By Lemma 3, the last two terms tend to zero, so

lim sup P{max(R,, R,) < V2nz} < lim sup P{max(M,, M},) < (o + €)v/nz},

n—0o0 n-—00

IN

and by the continuity of the limit distribution of max(My, M;,) in Proposition 2

lim sup P{max(R,, R,) < V2nz} < limsup P{max(M,, M,,) < ov/nz} = L(z).
n— oo

n—0o0
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On the other hand for arbitrary small € > 0
P {max(M,, M}) < (0 —€)v/nz}
= P{max(R,,R.) < V2nz,max(M,, M}) < (¢ — €)y/nz} +
+ P{max(R,, R},) > V2nz,max(M,, M},) < (¢ — €)v/nz}
P{max(R,, R,,) < V2nz} +
+P{H1+"'+HR“ a—e}+P{’H'1+---+HlR'n<a—e}

<
Ry V2 R, V2

and by Lemma 3 the last two terms tend to zero, so

lim inf P{max(R,, R,) < V2nz} > liIr_l)iIlf P{max(M,, M}) < (o — €)y/nz} .
n—o00 n—o00

IA

By the continuity of £,
lim inf P{max(Rn, R;,) < V2nz} > lim inf P{max(M,, M) < ov/nz} = L(z)
n oo

n—o0

gives the result. []

COROLLARY. Let X be a simple random variable. For all z > 0
. / _
nlgr;o P{max(R,,R;)/V2n <z} = L(z) .

Note that this implies Lemma 1.

Concentration results for random walks

In this section, we study upper tail bounds for an empirical concentration
function for the random walk,

Qn(¢) =sup Z 1is.e(z,z+0)]
T =1

for a particular range of interval sizes ¢ roughly between 1//n and 1/ n'/3. Classical
concentration inequalities for S,, are nicely described by Petrov (1995, section 2.4).
For example, Petrov (1995, (2.71)) shows that there exists a positive constant A
(referred to below as Petrov’s constant) such that uniformly over all ¢,

Asup, P{X € [z,z + (]}

(1-sup, P{X € [z,z +{]}) '

where X is the generic summand in the random walk. In particular, if X has a
density f bounded by ||f||co, and €||f|lcc < 3/4, then

240 flloo
e

supP{S, € [z,z + (]} < 7

supP{S, € [z,z +{]} <
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We do not expect Q,(¢) to be substantially larger than n times the latter bound,
i.e., Qn(¢) should be O(¢+/n). This result, even without a tight constant, will suffice
for the present paper. Lemma 4 takes care of this.

LEMMA 4. Let X have density f, and let f be symmetric and bounded by || f||co-
Let £ > 0 be so small that {||f||cc < 3/4, and let A be Petrov’s constant. Then, if
Y, = 1s.¢lz,a+g) WE have

n 4
E (Z Y,-) < 543 max (16, X*n?)
i=1

where A = 2A||fl|oof-

ProOOF. Note that Y; is increasing in £. If A\\/n < 2, then we increase £ to make
Ay/n = 2. Thus, without loss of generality, we can assume that A\\/n > 2, and we
need only prove the inequality with 543A*n2 on the right-hand-side. We proceed
by repeated use of Petrov’s inequality. The following simple summation bounds
are easy to verify:

"1

Z \/E\/ﬁ < (2vn)?,

1<i1 <i2<n

< (2vn)?®,

Z 1

1<i;<i2<i3<n

1
< (2v/n)'.
ISI.l<izz<l:3<“§n\/1-1\/22—11\/13—12\/14—'13
Thus,
n 4
i=1

Il

Y. E{M,Y.Y,Y}

1<41,i2,13,84<n
24 Y E{YYLY,Yi}+36 Y E{Y,Y,Y)

1<i1<i2<i3<i4<n 1<i1<i2<i3<n

+14 Y E{YYo}l+ Y. E{¥y)

1<i1<i2<n 1<i;<n
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/\4
s 241§i1<i§3<i45n Vit (iz — i1) (i3 — i2) (14 — 13)
/\3
+30 1Si1<122:<,-35n Vi1 (i2 — 1) (i3 — i2)
+14 > X > 2
1<iy<ig<n V iy (i — 01) 1<i; <n Vit

< 24(20v/n)* 4 36(20v/n)® + 14(20v/n)? + (2Av/n)
< (22av/n)*(24 +36/4 + 14/16 + 1/64)
< 543(0n)! . O

LEMMA 5. Let f be a symmetric density bounded by || f||«, and assume that f
has finite variance o2. Let £ be a sequence of interval sizes depending upon n such
that n¢® = o(1). Then, for every € > 0,

lim P{Qn(6) > e/} =0.

PROOF. We may assume without loss of generality that né?> — oco. If not, we
increase ¢ artificially, which by virtue of the monotonicity of Q,(¢) with respect to
¢ is allowable. We partition R into intervals of length 2¢ each and let N; denote the
number of S;’s that land in the i-th interval, 1 < j < n. Clearly, Qn(¢) < 2max; N;.
Let B denote the set of interval indices for intervals that intersect [-n,n], and note
that |B| < 2+ n/¢. Let N denote the number of S;’s that fall outside [—n, n]. Let
n be so large that 2¢||f||co < 3/4. Define k = €/n/2. We have, if X denotes the
generic summand with density f,

PIN>k) < E(N}/k=Y P{S|>n}/k

j=1
SILB(S?) | S JE(X?)

- kn? N kn?

_ (n+1)0? < o?

N 2%kn — k

Let A be Petrov’s constant. By Lemma 4, if n is so large that 4A¢||f|lcov/n > 2,
P{maxN; >k} < |BlmaxP{N;2 k}
|BIE{N;'}
543| B (44 flot) 'r®
—— k4 *
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Thus,

P{Qn(6) 2 2k} < P{N >k} + P{maxN; > k}
O(1/k) + O (né?)
o(l).OJ

Il

The height of a rawa tree: proof of Lemma 2

Throughout this section, we set £ = 1/n/1%. Observe that the condition of
Lemma 5, nf3 — 0, holds. We call the depth D(z) of x the path distance from
x to the root for the binary search tree defined by Sy, Si,...,Sn,z. Consider the
collection C = {if : i integer}. Recalling the definition of @,(¢) from the previous
section, we note that the height H,, of the rawa tree satisfies

Hp < Qn(f) + max D(z) .

Fixz > 0.Let 1 <T; < T < --- be the epochs at which the random walk reaches
a maximum: so, T;4 is the first index greater than T; for which St,, > St,. We
define A(z) and B(z) as follows: let ¢ be the unique index for which St, < z <
St.,,, where St,,, is replaced by oo if T;4; > n (to take care of the rightmost
interval); then set A(z) = St, and B(z) = St,,,. A similar symmetric definition
is used for z < 0 with possibly A(z) = —oo. Observe that

Hn < Qnl) + zec:|A<31|i}|CB(z>|<ooD(w) '
For = > 0, there are no S;’s strictly in (A(xz), B(z)) with j < T;4,. We condition
on the history of the random walk up to T;+; and call it F. Note that D(z) is
bounded by the sum of 7 + 2 and the number of local left records, plus the number
of local right records. A local left record is a record value (maximum) among
those S;’s that fall in (A(z), ). Clearly, each value of j must exceed T;;;. A local
right record is a record value (minimum) among those S;’s that fall in (z, B(z)).
Observe that i + 1 < H;, if |A(z)| + |B(z)| < oo. Denoting by L(z) and R(z) the
number of local left records and local right records for z respectively, we see that
D(z) <i+ 2+ L(z) + R(z), and that

H,-H < 0+ ma. L(z) + a;
n = Hn < Qn(0 £€CA@) HB()] <00 (=) £€CHA(x)| +1B(x) <00

The proof is complete if we can show that for each € > 0,

lim P{Qn(0) > ev/n} =0,

lim P{ max
n—o0 z€C:|A(z)|+|B(z)| <00

L(x) >e\/ﬁ} =0,

and

lim P { max
n—o00 z€C:|A(z)|+]|B(z)|<o0

R(z) >e\/ﬁ} =0.
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The first part was shown in Lemma 5. We will show the second part involving
L(z), as the third part is similar.

Given F, we may have largé values for L(z) if B(z) — A(z) is large. So, let G
be the event

~ A(@)] < wﬁ] ,

where § > 0 is to be picked as a function of €. Let G¢ denote its complement.
Clearly,

max
2€CH|A(2)|+]B(z)| <00

P{G°}

IN

P{m?x|xi| > 5\/5}
nP {|X1| > 6v/n}

B {XP 1, 500}
" %n

IN

IN

= o(1)
if E{X?} < oo. Thus, by Lemma 5,

max L(x) > ev/n
{IECiIA(I)IHB(w)I@O (@) 6\/_}

P{G°} + P{Qn(£) > (¢/3)V/n}
{G Qn(0) < (¢/3)V/n, max L(z) > e\/v—l}

2€C:|A(x)|+|B(x)| <00
o(1)

IN

IN

+ P U [Qu® < (e/3)vn|B(z) - A)| < 6v/n, L(z) > ev/n]

z€C:
A(z)|+[B(2)| <00

IN

o(1)

+ E Z 1[|B(z |<5\/—]P{Qn < (¢/3)v/n, L(z >e\/—]f}

z€C:
[A(z)|+|B(z)|<o0

We show that we can find § > 0 so that the last term is o(1).

Using the chain of inequalities for N in the proof of Lemma 5, we see that the
probability that there is one occurrence of |S;| > n? is bounded by the expected
number of such occurrences, which by Chebyshev’s inequality does not exceed

o2 /n2. Thus, with probability at least 1 — O(1/n?), the number of z € C with
|A(z)| + |B(z)| < oo is not more than 2+ 2n?/{ = O(n 24/10) By trivial bounding
then, it would suffice if we can show that for an approprlate choice of § > 0, and
uniformly over all z, and all histories F with |B(z) — A(z)| < dy/n,

P {Qn(é) < (¢/3)v/n, L(zx) > e\/ﬁ‘}‘} < exp (_cn1/10>
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for some ¢ > 0. We drop the conditioning in the notation. By condition (C) on
f (see the definition of nice random variables), we find a pair b > 0 and r > 0
such that inf|;|<, f(z) > b > 0. Any such pair will do. Then we partition [A(z), z]
into intervals of length r/2 starting from A(z), taking care not to cover z (thus
leaving an interval of length less than r that reaches z; call that interval I). Let J
be the rightmost interval. Replace J by JUI — [z — ¢, z] and I by [z — ¢, z]. Thus,
r—£€>|J| >r/2—-¢>r/3 for n large enough. Consider the following process:
a local left record S; arrives in one of the intervals (I and J excluded). At that
time, given that we are in an interval to the left of J, there is a probability of at
least (r/3)b that Sji1 hits one of the intervals to the right, J included. Picture
this as a success. Let the number of intervals up to and including J be k, and note
that k£ < 1+ 26y/n/r. Let N* be the number of local left records in the intervals
to the left of J. In what follows, we set m = |(¢/3)y/n]. [N* > m] implies that in
m such trials we had less than k successes. In other words,

P{N* > m} < P{binomial(m, br/3) < k} .

If we set k < mbr/7, then this probability is exp (—Q(y/n)), by Hoeffding’s in-
equality (Hoeffding, 1963). This condition is satisfied for n large enough when
§ = ebr? /43, which is the choice we will adopt. Let N’ be the number of local left
records in J. Here, we move to I with probability at least (1/2)b¢, so that by the
same argument,

P{N'>m} < P{binomial(m,bl/2) =0} = (1—bl/2)™
exp (—mbl/2) = exp (—Q (nl/lo)) .

Finally, let N be the number of local left records in I. This is clearly bounded by
Qnr(¢), uniformly over all z and all A(z), B(z). As L(z) < N* + N' + Qn(¢), we
see that

P{Qn(0) < (¢/3Vn,L(z) > e/} < P{N*>m}+P{N'>m}

— ep (-0 (w)) .

IN

This concludes the proof of Lemma 2. []
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The height and width of simple trees
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Abstract. The limit law of the couple height-width for simple trees can be seen as a
consequence of deep results of Aldous, Drmota and Gittenberger, and Jeulin. We give
here an elementary proof in the case of binary trees.

1 Introduction

Let Z;(t) denote the number of nodes at distance ¢ from the root of a rooted
tree t. The profile of the tree t is the sequence (Z;(t))i>o. The width w(t) and
height h(t) of the tree t are defined by:

w(t) = max{Z1)},
h(t) = max{i|Zi(t) > 0}.

Let Tt(?") denote the set of binary trees with n leaves (2n — 1 nodes), endowed with

the uniform probability, and let H{" (resp. W) be the restriction of A (resp.

w) to TS". One can also see H and W{" as the height and width of a Galton-
Watson tree with offspring distribution 0 or 2 with probability 1/2, conditioned
to have total progeny 2n — 1 (see [1, pp. 27-28]). Then, the limit law of the height
[15, 23] and of the width [7, 13, 25] are given by:

]fgw law
— 2V, 1.1
V@Z; n—-+o0o ( )
W = tev, (1.2)
V2n n-o+oo
where:
Pr(V <z)= Z (1 — 4k*z®) exp (—2k%z?) . (1.3)
—oo<k<+00

Connections between the distribution of V on one hand, the Brownian motion
and Jacobi’s Theta function on the other hand, are discussed in [5, 9, 20]. For
instance, let (e(s)) o<s<; denote a standard normalized Brownian excursion (see

Subsection 3.1). Then, the random variables
H= / b s
o €(s)

W = max e(s)
0<s<1

and

17
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satisfy
H
v iy e = (1.4)

The first identity is due to Chung [9], the second was first stressed in [4, p. 69].
The aim of this paper is to give a simple proof of the following theorem:

Theorem 1.1
HY WO\ e
Vv2n V2n | n—o+o

Note that the obvious negative correlation between helght and width of a tree
with given size n, is reflected in the dependence between jo and maxg<s<1 e(s)-

Previous results [15, 23] about height and width of 51mp1e trees belongs to the
foundations of computer science. Surprisingly, Theorem 1.1 does not seem to be
stated anywhere, though it can be deduced easily from deep results of Aldous on
one hand (about the continuum random tree [1, 2]) and on the other hand of
Drmota & Gittenberger [12], using a clever idea due to Aldous [3, Th. 3] again.
We felt that this consequence of [3, Th. 3] deserved to be pointed out, and that
the reader would welcome an ’elementary’ and direct proof.

Let ®(a, 7, 2) denote the confluent hypergeometric function, defined, for |z| <
+00,y#0,-1,-2,---, by:

where (A\) = (A\)(A+1)... (A+k—1). The joint law of (H, W) has been investigated
recently by Catherine Donati-Martin [11]. With the help of the agreement formula
for the Itd measure (see [4, 22] and [26]), she obtains the following results:

Theorem 1.2 For A > 0,a > 0,

A2 o2H T exp(2X)
B(Wexp (- 3577 ~ 7)) = ﬁcbz(l +a?/(20),2,20)’

> 1,Re(t) <0 and Re(s +t) > 1:

As a consequence, for Re(s )
54t—

5 +o0o  ptoo ASHE—245— (1+42¢t) exp(2/\)
EW*HY) =/ / / dad ).
( )=4/3 r( #)T (2L 21+ a2/(2)),2,20)

2 First proof of Theorem 1.1

Aldous [3, Th. 3] proves that, suitably rescaled, the depth-first walk and the
profile of a random rooted labeled tree with n nodes converges jointly to (2e,1/2),
where [ is the local time of the normalized Brownian excursion e, defined by:

/()l(:c)d:t:/O I[O,a](e(s))ds.
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Let H}J") (resp. WIE")) denote the restriction of h (resp. w) to the set of rooted
labeled trees with n nodes, endowed with the uniform probability. Invariance prin-
ciple yields at once that:

L
vn

For a general class of simple trees with n leaves, the proof of [3, Th. 3] is still
valid (see [2, Th. 23], and for binary trees, [17]), the limit being now (2: 2l). Here

o2 denotes the variance of the offspring distribution of the corresponding critical
Galton-Watson tree (see [1, p. 28, formula (8)] for the meaning of ¢ in term of
simple trees). In the special case of binary trees with n — 1 internal nodes and n
leaves, it yields:

(n) (n)y lew l
H™ w;™) = (20121tagxle(t), 221;\3{1(2:)).

m(H(") wiY) ey (2 max e(t), maxl(z)) (2.5)

Theorem 1.1 is deduced from (2.5) through Jeulin’s description of the local
time of Brownian excursion. Let (e(s))0 <s<p DE 2 normalized Brownian excursion

with local time (I(z)) .- Define

Ly) = /0 "i(z) do

W(t) = L71(t) = sup {y‘ /Oy I(z)dz < t}.

and

Jeulin [18] proved that the process (é(s)) o0<s<; defined by:

&(s) = 1(s)) (2.6)

is itself a normalized Brownian excursion (see also [4, p. 70] and interesting heuris-
tic arguments [1, pp. 47-48]). Taking the derivative in (t) = L™'(t), we obtain

[ —
¥ L’ow = 5 and

w():/o s

so Jeulin’s representation can be rewritten:

l(/o 2?&)) = 24(s). (2.7)

A direct consequence is the identity:

(2 max e(t), 1mgm())(l( )) = (/01 ds max 6(3))- (2.8)

0<t<1 é(s) 0<s<1
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The equality between first components of (2.8) follows from (2.7) because

B - 2.9
| 2% =¥(1) = max e(s), (2.9)
while the equality between second components follows by taking the maximum on
each side of (2.7). Thus, (2.5) is equivalent to Theorem 1.1. O
Thus Theorem 1.1 is a direct consequence of Jeulin’s representation [18], and
of [3, Theorem 3] which relies itself on two deep, but technical, papers [2, 12]. The
line of the second proof of Theorem 1.1 is close to that of [7, 25]: the profile of
the tree is seen as the breadth-first search random walk, changed of time, giving a
discrete converse of Jeulin’s representation. That the change of time has precisely
the form given by Jeulin, follows, in the discrete case, from a counting principle
due to Odlyzko [8, 21].

3 Second proof of Theorem 1.1

3.1 Brownian excursion and Bernoulli excursion

Let us call Bernoulli excursion of size 2n, any 2n-steps random walk w =
(Sk(w)) 4—g ... 5, that satisfy:

So(w) =0, Szn(w) =0, Sk+1 (w) = Sk(w) 1
and
Sk(w) >0 for ke {1,---,2n — 1}.

Let Es(2n) denote the set of Bernoulli excursions of size 2n, endowed with the
uniform probability. It is well known that

2n -1 1
Es(2n) = #T™ = _
#Es(2n) = #T5 n—-1)2n-1
is the n — 1** Catalan number: C,,_; (see [24, pp.220-221, and 256-257]). Note that
there is an obvious one-to-one correspondence between Bernoulli excursions and
Dyck paths.
Any Bernoulli excursion w defines a random element

S| 2nt]
V2n ’

of the set D([0,1]) of right continuous left limit functions, endowed with the Sko-
rohod topology. The weak limit of e, is called the normalized Brownian excursion
(see [16]). The normalized Brownian excursion e is usually defined by the following
path transformation of the standard linear Brownian motion B = (Bt):>o: let g
(resp. d) be the last zero of B before 1 (resp. after 1), and set

en(t) = 0<t <,

By it
e(t):%, 0<t<1.
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3.2 Breadth-first search correspondence

Let S, be the height of the queue at the kt” step of the breadth-first search of a
rooted binary tree t € TJ(B") (see [10, Section 23.2], and Figure (3.1) for an example).
Thenw = (Sk) ... 5, belongs to Es(2n), and this is a one-to-one correspondence
(for instance, one can adapt [24, p. 256, 6.19.d]). We explain below how to obtain
an expression of (h(t),w(t)) in term of functionals of the corresponding Bernoulli
excursion w. '

Figure 3.1 : Excursion - Binary tree
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The width

As already noted in [7, 19, 25], the profile of ¢ can be read on w: assuming
Sk(w) =0 for k > 2n + 1, we have

Zo(t) = Siw) =1
Zi(t) = 51+Zo(t)(w)
Z3(t) = Sitze)+zi(t)(W)
Zr+1(t) = Sl+Zo(t)+~"+Zk(t)(w)'
Set |
Ak) = 14+ Zo(t)+ -+ Zr-1(2),

Mon(w) = maxSi(w).

The triplet (S, Z,A) can be seen as the discrete version of (€,l, L) appearing in
Jeulin’s representation. Since

Wi (£) = max Sar) (@),
we obtain:
Man(w) > WS (),
but, actually, moderate variation of Sy (see Lemma 3.3) yields that:

Lemma 3.1

E[IW () - Man(@)l] = O(n*/*/logn).

The height
Set

¥ o= Y 5o

(k)

—1+inf{j|A(y) = 2k}.
We see easily that
HM (1) = ¥(n). (3.10)

The following Lemma can be seen as the discrete version of (2.9):
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Lemma 3.2
E[|HY (t) - ¥(n)]] = o(v/n).

Remark. Obviously, if the speed of a traveller at point y of the line is s(y), then
the duration t of the journey from point 0 to point z satisfies:

_ [Ty
t—/o o (3.11)

Lemma 3.2 can be seen as a stochastic analog of relation (3.11), as Hl(gn)(t) is
the time needed to go from point 0 to point 2n, doing one step (from A(k) to by
A(k + 1)) by time unit, so the speed at point A(k) is A(k + 1) — A(k) = Sx(x)-
This counting principle was used in [8, Section 2] and [21] in order to study the
average cost of some search algorithms.

3.3 Proofs of Lemmata 3.1 and 3.2

The proofs of Lemmata 3.1 and 3.2 rely on a property of moderate variation
of Bernoulli excursions, inherited from the simple symmetric random walk.
Let €.(2n) denote the set of Bernoulli excursions w = (Sk(w))x=o,... 2n Such that
for any I,k in the set {0,1,---,2n},

1Sk(W) — Si(w)| < ev/]k — [ log 7.

Lemma 3.3 For every 8 > 0 there exist ¢ > 0 such that, for n sufficiently
large:

Pr(Q.(2n)) > 1 -n7".

Proof : The lemma is easily proved for a simple symmetric random walk w =
(Sk(w))k=0,. 2n, using Chernoff bounds:

2
Vz >0, Vk, Pr(|Sk(w)| > ) < 2exp(—;—k)

(see for instance [8]). But Pr(Q(2n)) in Lemma 3.3 is just Pr(w € Q.(2n)|w €
Es(2n)), and in the other hand the probability that a simple symmetric random

walk w belongs to Es(2n)) is ©(n~%). Finally, choose A = (Q,(2n) in:

Pr(w € A|w € Es(2n)) < Pr(w € 4) < cn? Pr(w € A). O

~ Pr(w € Es(2n))
Proof of Lemma 3.1: We have

0 < B(Mon(w) = WV () = E(Men(w) — max Sage) (@)).
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We consider an index K (w) such that M, (w) = Sk(u)(w). There exists an integer
i(w) such that

AG@) < K <A@ +1).

Then,
E(Msy, — max Siky) < E(Sk — Saw)
< E(Ig /(K — A(3)) log(2n) + nlgg )
<

E(c\/M% log(2n)) +nPr(C,)
(»

o) 1/4(10gn))3/4)

for ¢ large enough. O
Proof of Lemma 3.2. For any positive integers [, k, such that k <1 < 2n — k,

we have
n 12 (é)(g’?—“;:kl-)

2

n—1

since % ( é ) is the number of positive paths from (0, 0) to (k,1), and 2—71’_—,6 ( 2"';_[
is the number of positive paths from (k,1) to (2n,0). We have
¥(n)—1 A(i+1)—1
TN TSR S
i=0  h=A(i)

Let a be a real number in |0, 1/2[. Then

¥(n)—1A(i+1)—1 2n—1

Z Z L,— |<2n1/2°‘+A + B,
; . Z(1)
=0 h=A(i)
where
\Il(n) 1A(i+1)-1
A, < Z Z ‘ ‘]]:Z(z)>(log1+£ n) H[n1/2 @ 2n~nl/2- a](h),
i=0  h=A(i)
F(n)—1A(i+1)—1 )
B, < Z Z ‘Z(Z) S 'HZ(1)<(logn)1+5 ]I[nl/? «2n—nl/2- "](h)

i=0  h=A(i)
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First,

E(B,) < E(#{hlh€ [n'/?>7*2n —n'/279), S, < (logn)'**})

2n—nl/2—« [|0g1+s n)

> Pr(Sh=1)
h=nl/2-—« =1

= O(log®*3 n)

IN

where the last equality follows from (3.12), Stirling formula and ( kljz) > (( k_kl) /2)-
Clearly,

HCQ¢(2n) (w)A" < nICQC(Zn) (w)
Finally, using the moderate variation property to bound
74
Z() Sl
we obtain:

Ig(am (@)An < (log™*/* n) ¥(n).

Lemma 3.2 follows, for ¢ large enough. O

3.4 Convergence of (¥(n), Ms,)
Lemmata 3.1 and 3.2 together yields that:

2= [ W) — (@), 31

= o(1).

Thus, the proof of Theorem 1.1 reduces to the proof of

Proposition 3.4

1 law ! 1
\/—5—5(‘1’(71),1\/1211) — (/0 oG5 ds,orgsagxle(S))-

We use the following Lemma [6, Th.4.2 p.25]:

Lemma 3.5 Let (Xn)n and (X3),0 be two families of R? valued r.v., de-
fined on the same probability space, such that:

(x(e)y, 28 x(

n—-+400
and

x(e) loy x

a—0
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Assume that

lim [lim sup P(| X, - X9||; > e)] =0
a—0

n—> 400

for each positive €. Then
X, 28 X
Proof of Proposition 3.4 : We have
Mo /V2n = Juax en(t)
and

¥(n) 11
Vo " I 2 ek

Define ¥(%)(n) by

2n—1

W) = g 3
Set
Xo = = (¥n), M),
X = = (1), Man),
. (/Olﬁds’onﬂlfgle(kg)),
x (@) (/01 H{:z—;)za} ds,oxélf.%(le(s)).

Proposition 3.4 is equivalent to
X, 28 X

The convergence of X to X(®) when n goes to 0o results from the continuity of

the functional. To conclude, it suffices to prove the two following lemmas:

Lemma 3.6 There ezists a positive constant Cy such that, for any a > 0,

2n—1
1 Is, <av
X —X@| = —FE DkSAVER ) Y g,
|| n n ||1 \/ﬁ (; Sk )_ 1a
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Lemma 3.7 There ezists a positive constant C2 such that, for any a > 0,

1
I1X - X@||; = E(/
0

]Ie(s)Sa

e(s)

Proof of Lemma 3.6 : Using Formula (3.12), we have

2n—1av2n

ds) < Csa.

(8t13)

2n—1 w
1 Is, <avin 1 P(Sk =1)
——E k _— —\Wk 7 °)
V2n (kz=:1 Sk ) V2n kX::l ; l
n av2n k 2n—k
< o n \/2—l(5_;_1)(2n2-k)1[k "
— . 2n—2 =
\/ﬁ( n—1 ) k=1 I=1 k(2’l’l - k)
- 1 aVv2n n l(%i)]l
S C—F= & k=1[2]-
n =1 k=1 2%k
Note that
() l
kg Lkt = P(Sk =)
l 11 o,
P(Sk -l)E = Ei;/o cos”(t) cos(lt)dt
w/2
= %/ sin(lt) cos*~1(t)sint dt for k > 1.
0
Thus,
1 E(2§_:l Iskga\/ﬁ) £ Z / sin(lt) smt —cos™t
V2n paet Sk —cost
c3 /2 (14 cost)(1 — cos™t),
= = !
Tn ,Z:; /0 sin(lt) pr
Let us expand this sum and bound its terms. Set
w/2 o
L = / sm(l.t) COStdt,
0 sint
_ sm(lt)
ho= /0 sint
We notice that
in((l -1)% in(3
Ji=I1+ SIH(( )2) and I; = Ji_1 + sin( 2 )

-1

l
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So J; and I; are uniformly bounded. We have

It /2 sin(lt
‘/ * sin(lt) s”tdt' < / ‘s"_l( ) cos™ ¢ dt
sint 0 sint
w/2
< l/ cos™ t dt

v lr()
2 F(n/2+1)

Due to Stirling formula, this last term is uniformly bounded for ! € {1, -- ,av/2n},
so the terms of the sum in (3.13) are uniformly bounded and the proof is complete.
O

Proof of Lemma 3.7 : According to [14, Prop. 3.4],

1
B( [ Ligcads) =1-2727,
[ Lo

we have:

1 I[ a
E(/ L(s—)gds) :/ 822" dq < 8a. O
o €(s) 0
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On the node structure of binary search trees

F.M. DEKKING AND S. DE GRAAF AND L.E. MEESTER Thomas Stieltjes Institute
for Mathematics and Delft University of Technology
F.M.Dekking@its.tudelft.nl

Abstract. The erternal nodes of a binary search tree are of two types: arm nodes
whose parents have degree 2, and foot nodes whose parents have degree 1. We study the
positioning of these two types on the tree. We prove that the conditional distribution of
the insertion depth of a key given that it is inserted in a foot node equals that of the
conditional distribution given that it is inserted in an arm node shifted by 1. We further
prove that the normalized path length of the arm nodes converges almost surely to % times
the limit distribution of the normalized path length of all external nodes.

1 Introduction

Let T, be the binary search tree generated by a sequence of keys (K3, ..., K,). As
usual we assume that all n! permutations of the keys have the same probability.
Let £, be the set of external nodes of T,, i.e., the elements of &, are the children
of the leaves of T,, and one of these nodes will receive the next key K, 4. The set
. can be split in a natural way into a set £2 containing the arm nodes, external
nodes whose parents have degree 2, and the set £’ of foot nodes whose parents
have degree 1. It has been known for a long time [2] that the expected values of
the cardinality of £2, respectively £F, are 1(n + 1) and 2(n + 1). In our work we
study the question of how these foot and arm nodes are distributed over the tree.
Clearly, foot nodes will occur further from the root of the tree than arm nodes,
since foot nodes cannot occur at level 1 (except in 77), and arm nodes cannot occur
at the highest level. Rather surprisingly, this property is in some sense the only
restriction that prevents the foot and arm nodes from being identically distributed.

Let U, be the insertion depth of key K,4;. It is well-known [3] that U, is
distributed as By + ... + B,,_1, where the By are independent Bernoulli random
variables with parameter p; = 7:% We consider the insertion depth of K, given
that K4 is inserted in an arm node, and prove

[Un| Kni1 € EA] £ 14+ By + ... Booy,

where as before the By, are independent Bernoulli random variables with parameter
pr- We also prove that

[Un| Kns1 €EF1 22+ By +...Boy.

To prove these results we define UA = Unlik,, cca) and Uf = Unlik, ,,ceF), and
determine in Section 2 the joint probability generating function:

n—1
ESU'/“ th _ 1 k+2s

) k4ot
3° U %42

%52

2 n
+ §t2
k

31
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In sections 3 and 4 we consider almost sure properties of the distribution
of the arm and foot nodes over 7, by studying the total path length X/ of the
arm nodes and X7 of the foot nodes. Well-studied is X, = XA + XF, the total
path length of all external nodes, which equals the number of comparisons needed
to quicksort n different numbers. It was shown by [5] (see also [6]) that Z, =
nl? (X»—EX,) is an L2-bounded martingale, which hence converges almost surely
to a limiting random variable Z, the ‘quicksort distribution’. The corresponding
normalized arm node path length Z7 = - (X2 — EX/) and foot node path
length ZF = =5 (X} — EXF) are not martingales. In fact we show that the only

sequences a = (@) 3 and b = (b,)S2 5 which turn

M, =a,Z2 +b,ZF n=34,. .
into a martingale are linear combinations of the constant sequences (§) = ((1))
and the sequences (§) = (pn(?%)), where p, = n® — n. However, the martingales

corresponding to the second solution have unbounded variances. This follows im-
mediately from the asymptotics for the variances: as n — oo

7 2n? 32log’n

Ay _ ¢ £ L 22
Var(Za) =5+ o7 ~ B
28 812  32log’n

F a2 2> O 2
Var(Zo) =5+ 57 ~

We furthermore show that the path lengths Z4 and Z[F are negatively correlated
for n < 168 and positively correlated for n > 169. In fact the correlation between
2Z4 and Z[ tends to 1 as n — oo. This is related to our final result, which gives
a self-similarity result for binary search trees.

Theorem Almost surely lim, o0 Z7 = $Z, limy0 ZE = 2Z, where Z is the
quicksort distribution.

2 Where are the arm nodes? Distributional re-
sults.

We will determine the joint probability generating function
A F o
Gn(s,t) =EsUtV = Y~ sk'P(US = k,UF =1).
k=0
The definition of U2 and UF implies that

P(UA = k,UF =1,K,41 € €2) = 0 when | #0, and
P(U2A = k,UF =1,Kny1 € EF) = 0 when k #0.
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Since also clearly U2 < n and U < n, we can simplify G, to
Gn(s,t) = Y _[s*P(US = k) + t*P(UY = k)].
k=1
Let F,, be the o-field generated by the first n keys, let X ;:‘ « be the number of arm

nodes, and let X F be the number of foot nodes of 7, at level k. We then have
fork>1

)sAk
PUS = k| Fa) = P(Un = b, K1 € E8 | Fo) = %, M

XF
PUF =k | Fo) =PUn =k, Knt1 € EF | Fn) = :’“1 (2)

and find
XA XF

A _ _ n,k F n,k

PUS =k) = E 1 and P(U, =k) = E-—n+ T (3)

Hence we obtain
A F
Xn k Xn k

XF "
t kE nk kE n,k -E k K k > )
(5, Z[ +t n+1 ;Sn+1+t n+1

A F
Writing A,(s,t) for the simultaneous generating function of ( lf) and (X" £),
the previous equation reduces to

Gn(s,t) = EAn(s,t).

We will derive a recursion for G(s,t). Observe that

n+1
_ Xn+1 k n+1,k
E(An+1(37t)|}—n)—E(’;[s n+2 +i n—+—2]lf)
- (4)
E(XA x| Fa)  GEBXE 4] fn>]

n+1
k k n+
_ , , ,
S [T Ty

k=1

Using
XA PUA=1|F) ifl#k
E(Xi i plpamy | Fa) =3 0% " i ’
(Xos1k [U,;‘—l]| ) {(X;:k—l)'P(UfZan) if | =k,

and

XA P(UF =1|Fp) ifl £k
EXA 1 - fn = nk n " ’
(X1 e liwr=y | Fn) {(X:k+1).P(Uf:k|fn) if1 =k,
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we obtain
E(X1 x| Fo) = ZX ' PUR =1 Fo) + (X2 —D)P(UL =k | Fn)
£k

+2XnkP F =1 Fa) + (X2 + DPUE = k| F)
I£k
=X —PU2A =k | F) + PUF =k | Fn).

Applying equations (1) and (2) this yields

nXA XF
E XA — n,k n,k .
(Xap | Fa) = 28 4 0k (5)
In a similar fashion one derives
n—-1)XF XA XF
E(XE 4| Fo) = i RV INPR NS PSSy (6)

n+1 n+1 n+1

Let Xp x = XAk + X  be the number of external nodes at level k in 7;,. Substi-
tuting equation (5) and (6) in equation (4) and writing Xn k1 +Xf:k_1 = Xp k-1
yields

(n + 2)E(An+1(su t) l ‘7:")
- ni:l X Xk (DX o Xt )]
n+ 1 n +1 n+1 n+1

Taking the terms together and shiftin Xg the index of the last term, and writing
I'n(s) for the generating function of (52£), we obtain

n+1

(n+2)E(Ans1(s,t) | Fn)

n+1 X XF n+1 n
- 2 (n—1) e D e s ggh+1 Xnk
+l n+1 et n+1 pars n+1

= (n —1)An(s,t) + Tn(s) + 2tTy(2).
Taking expectations we arrive at the following recursion

(n + 2)Gny1(s,t) = (n = 1)Gn(s,t) + ETn(s) + 2ET,(t).

It is well-known [3] that EI',(s) = Z;é ’j;‘f; for n > 1. Note that G;(s,t) = t.

The solution to the recursion is, for n > 2

1 k+2s 2
Gl ) = 35 ] [ 53+ 1=I ™
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Directly from this expression we obtain
[Un| Knt1 € EA] 214 By +... Bay,

where the By are independent Bernoulli variables with parameter py = 2. Sim-
ilarly, for the foot nodes we obtain

[Un| Kny1 € EF] 224 By + ... Boy.

3 Variances and covariances of total path lengths.

In order to obtain further characterisations of the positions of the arm and foot
nodes we introduce the total path length X of arm nodes and X[ of foot nodes,
defined by X7 = > p_, kX7, and XF =370 kX[, In this section we determine
the covariance matrix of these random variables.

If the next key is inserted in an arm node, we loose an arm node at depth
Un,, and get two foot nodes at depth U, + 1. If the next key is inserted in a foot
node, we get a new arm node and loose two foot nodes at level Uy, and get two
new foot nodes at level U,, + 1. Therefore

~Up, if Kny € EA
XA _ XA — ny n+1 no 8
n+1 n {Un, if Kn+1 € 51153 ( )
and
U, +2, if Kppy €EA
XF  _xF = ’ no 9
et n {2, if Kn+1 € 55 ( )
Let Un= (Up) and )_fn— (i’;) We have
4 = -1 1\ =~ 0

It is convenient to normalize the total path lengths. Let Z2 = 5 (X7 — EX}),
ZF = 25 (XY - EXF) Zn= (Z: ), and ¥, = Var((n+1) Z») be the covariance

matrix of (n + 1) Zn. In terms of Zn equation (10) becomes:
- — — —
(n+2) Zny1=(m+1) Zn +C(Un —EUn),

where C = (3! {). In order to use this relation to express En 1 in terms of ¥,
+

and Var(Un) we note that the mixed terms in Var((n + 1) Zn +C’(Un -E U,,))
simplify as follows:

E(n +1) Zn (Un ~E Un)TCT = (n + VE(E(Zn (Un —~E Un)T | F2))CT

= (n + I)E(Zn E(Un -E Unl fn))CT

_ -5 - T _ 1 T
=(n+1)E(Z.Z,T)C" = —n+12n0 )
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Hence, we find
1 T o (13 \AT

We can rewrite this covariance matrix recursion to three recursmns one for VA =
Var(Z2), one for V,F' = Var(ZF'), and one for C,, = Cov(Z2, ZF). We obtain

(n +2) V,{?H (n? —=1)VA +2(n +1)C, + Var(UF - UA), (11)
(n+2)2V,E | = (n+1)*V,F) + 4(n +1)Cp, + 4Var(U2), (12)
(n+2)2Cpy1 =n(n +1)Cp +2(n + 1)VA

+ (n+ 1)V,F — 2Var(U2) + 2Cov(UA, UF). (13)
This system of recursions, equations (11), (12), and (13), can be solved. We start
by creating a new recursion from the first two recursions, equations (11) and (12):
take twice equation (11), and add equation (12). We have

(n+2)*2V4, + Vi)
=2(n? - )VA +4(n + 1)C, + 2Var(UF — UA)
+ (n+1)2VF +4(n + 1)Cp, + 4Var(UA).
Remembering that V,, = VA +2C, + V,F', or
8(n+1)C, = 4(n + 1)V, —4(n + )VA —4(n + 1)VF,

we can use this to eliminate the covariance term from the recursion:

(n+2)2(2Vi + Vi)
= (2(n®> = 1) — 4(n + 1))V,A + 2Var(UF - U2)
+ ((n+1)% = 4(n + 1))VF + 4vVar(U2) + 4(n + 1)V,,.

This expression simplifies to

(n+2)*(2V,4 nt+1 T Vnﬂ—l)
=2(n® - 2n - 3)VA + (n? — 2n - 3)VF
+2Var(UF — Uf) + 4Var(U2) + 4(n + 1)V,
= (n+1)(n—-3) 2V, + V,[) + 4(n + 1)V, + 2Var(UF — UZ) + 4Var(U2).

Defining R, = 4(n + 1)V, + 2Var(UF — UA) + 4Var(UA), we can rewrite this as

(n+2)2Q2VA, +ViE ) = (n+1)(n—-3)2VA + VF) + R,. (14)
We can solve this recursion. Recalling that Var(X) = G’ (1) + G'x (1) — (G'x (1))?,
we can use equation (7) to find, for n > 2,

176 4 46 8
Var(Uf!) = 27 3H7(z‘i)1 27Hn+1 + §(Hn+1)2, and

146 8 4 8
Var(UF) = - gﬂ,gzzl ~ g7 Hni1 + §(Hn+1)2,
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where we used the notation H, = Y p_; § and HY =37, 2z From (7) we can
also obtain
80 52

81+ —H, - (Hn+1)2.

Cov(U2,UF) =

This leads to the conclusion that
236 32

1204
777 g e g (Hea )

Using Maple! we find that the solution to (14) is, for n > 2,

88
R, = (28n + 16n + —)H,‘[ill

2 7875n+14858 8 5n+9 (s

3375 n+1 T 15n+1
1372 32

T2t "Mt BT

VA +VF =

(Hn41)?. (15)

Using this result, we can simplify the recursion for C,, equation (13). This yields
(n+2)*Cpy1 =n(n+1)Cp + Sp, (16)
where

S, =(n+1)2VA+ VF) - 2Var(UA) +2Cov(UA, UF)
25148 784 64
= (= z o Hpi1 — — (Hny1)2
G+ To1s) ~ ( ) mi + g = g5 (i)
Again, using Maple, we find the solution to recursion (16), for n > 2:

15750n3 + 10534n2 — 5216n — 1500 8 5n + ].H(g)
10125n(n + 1)2 4541

872 b5 32
675(n+1) "' 45(n+1)
It is interesting to note that C,, < 0 for n < 168 and C,, > 0 for n > 169.
The quickest way to calculate V;* and V,f' is now to use (14), (17), the relation
Vi = VA4 2C, +V,F, and the known expression for V;, = 77:’:16 4H ,(12421 %{i
(see [3], page 90). We obtain

Ch =

+ (Hnt1)® (17)

7875n3 + 25841n? 4+ 17966n — 3000 201 + 52 _ (2)

VA

n = 10125n(n + 1)2 T 15(n+1)
1022 32
- H — 2 (Hnp1)?, (18
B vt e ) (18)
and
yF _ 31500n® + 84716n? + 53216n — 6000 80n +112 ¢
n 10125n(n + 1)2 45(n +1) " nH!

2072 32

T Emr )t m(Hn+1)2' (19)

1'We have verified these results by hand.
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We thus find that as n — oo

o2 2 log?
Var(zg)_g+_”_ 32log"n

27 T 45 n
28  8x2 32log’n
Fy _ “® > O 2e
Var(Zo) =5+ 57 ~ 50
14 4n? 32log’n
A Py _ 1% 4T 92 )
Cov(Z},Z,) 9 + 57 YT

4 Where are the arm nodes? Almost sure results.

The normalized total path length Z, has an interesting asymptotic behaviour
described by the following result.

Theorem [5, 6] The random variables Z, = HLH(X" — EX,) form a martingale

with zero mean and second moment? EZ2 = 7 — 22 4 O(1%6") Hence Z, — Z
in L? and almost surely for some random variable Z (which we call the quicksort
distribution).

This raises the question whether a linear combination of Z2 and ZF can be a
martingale, i.e., whether there exist sequences of real numbers a = (a,)325 and b =
(bn)22_3, such that the random variables M, = a,Z2 + b,ZF form a martingale.
Because Z{! = Z3' = ZF = ZF =0, we can let the sequences start at n = 3. Now,
a direct computation shows that (M) is a martingale iff, for n > 3,

(Z:) =c (}) + c2(n® — n) (_21> )

where ¢; and ¢y can be chosen freely. Defining p, = n® — n, we thus find that, for
n > 3,

M, =cZ, + czpn(2Z,’:‘ - Z,f)

is a martingale. We see that M, is a linear combination of two martingales: Z,
and p,(2Z4 — ZF). However, as follows from the results of the previous section,
the martingales corresponding to the second solution have unbounded variance.

As we cannot use the L2-martingale convergence theorem, we will use another
approach to prove the theorem stated in Section 1. Since Z2 + ZF = Z, and
Z, — Z a.s. according to the theorem above, it suffices to show that, as n — oo,
W, =2Z2 - ZF — 0 a.s. If we can prove that

i Var(W,,) < oo,

n=1

then W, — 0 almost surely by the Borel-Cantelli lemma.

2Régnier made a small mistake. The order is not, as she wrote, O(%), but O(l%‘lﬂ).
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Using the results from the previous section, we find

Var(W,,) = 4Var(Z2) — 4Cov(Z4, ZF) + Var(ZF) ~ =

32 log® n
mant

The sum of the variances diverges. However, we see that ) -, Var(W,2) is finite,
so Wp,2 — 0 almost surely, as n — oo.
To prove that W, “3 0, we will show that the intermediate terms behave well:
writing Wy2; = Wp2 + T, j, we will prove that supg<;<an |Tn,;l % 0.
For 0 < j < 2n,
Tpj=Wpryj — W =220, - 25, — (225 - ZF)
= 2(anJrJ zZ4) - (anﬂ zZE

so that

sup |Tnjl <2 sup |25, — Zh|+ sup |25, — Z52| (20)
0<j<2n 0<j<2n . 0<5<2n

We consider the arm node term in the right hand side of (20)

A A
sup |Z ) ZA2| = sup Xn2+J EXn2+] _ an - Ean
o<j<en + " 0<j<2n n?+j+1 n2 +1
A A
< sup X"Z“ _ X + sup EX"2+’ _ BX . (21
o<j<on |P2+Jj+1 n?4+1| ogi<om|n?+j+1 n?+1

The part with the expectations can be calculated. From equation (3) it follows
that EX/! = -A-EU/, and from (7) we obtain that EU;! = 3 Lyt =3 So we
obtain, for n > 2,

EXn2_+_] EX,;?Q

su = sup |EUA EU
()Sjspgn n2+j+1 n2+1 ()Sjspgnl n?+j 2|
1 Wil 2 4n
= sup < < .
05ioon 3 k+2 - 3n2+2)

k=n2

The first part of the right hand side of (21) can be simplified by noting that

A
Xn"’+J X5

n2+j+1 n2+1

A
Xn2_+_] an
n2+j+1

JX

(n?+j+1)(n2+1) 22)

We denote the height of T, by D,. Clearly X ;“2 < X2 < (n? + 1)D,,2, hence for
the right most term in (22) we obtain
| XA 2n XA 2n
sup I n 5 < “n? o 2n -D,2
o<j<en (M2 47+ n2+1) " n2+1 ~n?+1
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To bound the middle term in (22), we note that by equation (8),
|X7?+1 - X;?l = Un S Dna

and thus, using that (D) is increasing, for 0 < j < 2n,

n24j—1 n24j—1
XAy, - XA1< Y X4 - X< ) Di<2nD(nyrye.
k=n?2 k=n?

Substituting these three bounds in (22) and (21) we obtain

2nD 1)2 2nD2 4n
ZA_ . - zA| < 24D X :
18 1y~ 200 < PR B

D,

fogn A almost

Combining this inequality with the well-known convergence result
surely [4, 1], leads to

a.s.
sup |Z;;‘2+]- -Z4H %o
0<j<2n

For the foot nodes we proceed similarly, and find that the foot node term in (20)
also tends to 0 almost surely. This finishes the proof of supy< j<2y, [Tn,;j| — 0 almost
surely, hence we have W,, — 0, and thus

Z2 - 17, and ZF — 27 almost surely.

References

[1] Luc Devroye. A note on the height of binary search trees. J. Assoc. Comput.
Mach., 33(3):489-498, 1986.

[2] H. M. Mahmoud. The expected distribution of degrees in random binary search
trees. Comput. J., 29(1):36-37, 1986.

[3] Hosam M. Mahmoud. FEvolution of random search trees. John Wiley & Sons
Inc., New York, 1992. A Wiley-Interscience Publication.

[4] B. Pittel. Asymptotical growth of a class of random trees. Ann. Probab.,
13(2):414-427, 1985.

[5] Mireille Régnier. A limiting distribution for quicksort. RAIRO Inform. Théor.
Appl., 23(3):335-343, 1989.

[6] Uwe Rosler. A limit theorem for “Quicksort”. RAIRO Inform. Théor. Appl.,
25(1):85-100, 1991.



Trends in Mathematics, © 2000 Birkhauser Verlag Basel/Switzerland

The Saturation Level in Binary Search Tree
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Abstract. Let H!, denote the saturation level in binary search trees. It is shown that
EH}, = c'logn + O ((logn)'/? loglogn), where ¢' = 0.373... < 2 is the solution of the

equation (i—f)c = e. The methods used rely on the analysis of a retarded differential
equation of the form & (u) = —a~2®(u/a)?® with a > 1.

1 Introduction

Let us consider the usual probabilistic model for binary search trees (see Mahmoud
[7] for a description and an overview of the state of the art). The saturation level
H! of a binary search tree is defined to be maximal level A’ such that for all levels
h up to h' there are no external nodes, i.e. the binary search has 2" (internal)
nodes for all levels h < b’ but less than 2" *! (internal) nodes at level A’ + 1. For
example, if follows from Biggins [1] that

2e

where ¢/ = 0.373... < 2 is the solution of the equation (F)C’ = e. (It can also

be shown that EH! ~ c'logn, compare with Mahmoud [7].) Quite recently, the
author [6] could prove the following property for EH,, and for E|H;, — EH, LS

Theorem 1 Let zx(x) (h > 0) be recursively defined by zo(x) = 1 and by

() =1+ [ (o) (it - zh(t>) dt (h>0).

Then the expected value EH], of the saturation level of binary search trees is given
by

EH! = max{h:z,(1 —n"') <n/2} + O(1) (n — 00) (1)
and all centralized moments of H], are bounded:
E|H, -EH,|*=0(1) (n— o). 2)

Note that (1) is quite implicit. It does not reprove the limiting relation EH;, ~
¢'logn. For this purpose we have to discuss the functions z;(z) in more detail.
(Interestingly, it is not necessary to know the asymptotic behaviour of EH,, to
prove boundedness of the variance etc., compare with [6].) The purpose of this
paper is to extend the methods of [6] to obtain proper bounds for zp(x) and to
prove the following quantified limiting relation.

Theorem 2 The expected value EH), of the saturation level of binary search trees
1s given by
EH! =c'logn+ O ((logn)l/2 log log n) . (3)

41
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It is very likely that the error term O ((logn)!'/2 loglogn) in (3) is not opti-
mal. It might be expected that there is a constant d’ such that

EH, = c'logn + d'loglogn + O(1).

The method presented below is adapted from that used in [5] and [6] to treat the
height of binary search trees. (For results and references concerning the height of
binary search trees we refer to [8, 2, 3, 10, 5, 9].)

Before we start with the proof we want to mention that the functions z,(x)
introduced in Theorem 1 are just the generating functions of the probabilities
P[H], <n]:

zp(z) = Z P[H, < n]z"
n>0

The paper is organized in the following way. In section 2 we prove an upper
bound for zp(z) yielding an lower bound for EH},. Sections 3 and 4 are devoted to
the analysis of an integral equation. Those results will be then applied in section 5
to provide a lower bound for z;(x) which finally yields an upper bound for EH},

2 A lower bound for EH].

Interestingly, a lower bound for EH], is much easier to obtain than an upper bound.
We can use the following lemma.

Lemma 1 For 0 <z <1 we have

zn(z) < 2h Z —(—gl—z)

k=0

Proof. Obviously, we have equality for h = 0. Now we use the inequality

ha(0) = 20(0) (125 - 5@ € e @) (@

and proceed by induction. <

Corollary Let h=c'logn + ﬁ loglogn +r. Then
a(1-3) < (2)
1--]<Kn

Thus, it follows from Theorem 1 that

uniformly for r = O(1).

!

c
EH > 1 —
n2>C ogn+2(1_c,)

loglogn — C; (5)

for some constant C; > 0.
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3 An Integral Equation

Our aim is to find proper solutions ®(u) of the (retarded) differential equation
1 u\ 2
! = e — —
®'(u) = a2q)(a) (6)

with /
a>ap=¢e’" =1459...

Interestingly there is an explicit solution

1+ ul/4 1/4
= eTU
u

3 (u) (7)

with @ = 16. This function was used to prove Theorem 1 in [6]. However, if we
want to get more then we need solutions for every a > ayp.
Instead of solving (6) directly we consider a related integral equation. In fact,

we will prove the following relations.

Lemma 2 Let a > ag = €'/¢ and let B > c' — 1 be the solution of the equation
207 =+ 1.

Then there ezists a function ¥(y), y > 0 with the following properties:

1 ¥(y) =1-9% + O((1 = (a/ao)* )1y ~1) as y = oo with an O-constant
independent of a.

2. U(y) < e €@ for v = log2/(log(a/2)) and y < yo(a), where C(a) and
Yo(a) can be chosen in a way that C(a) = exp(—ci(a — ap)~'/?log((a —
o)1) and yo(a) = exp(ca(a—ag) /% log((a—ag)™1)) for some constants
c1,c0 > 0.

3. 0<¥(y) <1,0< y < oo, is strictly increasing.
y
b [ 9@ - 2)ds = y2(/a), (0 5y < o)
0

Proof. We first observe that for a > ag = e!/¢ the equation
20° = +1 (8)

has two negative solutions £;,02 with 81 < By =c¢ —1 = —0.626--- < B5. The
solution we are interested in is § = 2 > fy. For a = ag there is only one solution
B = Bo < 0 and for @ < ap there are no negative solutions. It is also an easy
exercise to show that for a > ay we have

2(')2(1 - ¢

B = 0o+ )\/a—ao+(’)(a—-a0).

Qo

Now let F denote the set of functions ¥(y), y > 0, with the following prop-
erties:
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L ¥(y)=1-yP +O(y®) as y — oo.

2. T(0) = 0.

3. 0<¥(y)<1,0<y < 0.

4. ¥(y), 0 <y < 00, is strictly decreasing.

It is clear that F with the distance

d(P1, ¥2) := sup |(¥1(y) — 2(y))y |
y>0
is a complete metric space. Now we show that the operator I, defined by

1Y) (y) := aiy /an U(z)P(ay — z)dz

is a contraction on F.
Firstly, we prove that I¥ € F for all ¥ € F. Suppose that ¥ € F. Then

U(2)¥(ay —2) =1-(2° + (ay — 2)%) + O(z%) + O((ay — z)P0).

Since

oy B+1

it immediately follows that

IB)y) = a—ly /0 Y () ¥(ay - 2)dz
_ (ay)?*! )

= 1-y?+0@E%).

Furthermore, it is clear that (I¥)(0) = 0 and 0 < (I¥)(y) < 1. Finally, by
using the representation

(IT)(y) = /0 ¥(ayz)¥(oy(l - 7)) de

it is also clear that (I¥)(y) is increasing (if ¥(y) is increasing).
Now suppose that ¥;,¥, € F with d(¥;,¥2) = 4. Then it follows from
0 < ¥;(y) <1 that

|¥1(2)¥1 (ay — 2) — ¥2(2)¥a(ay — 2)|
SP1(2) = Pa(2)| + |¥1(ay — 2) — a(ay — 2)|
<6 (2% + (ay — 2))
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and consequently

2 [
5— / 2P0 dz
ay Jo

- 5 2aP0 yﬂ"
Bo+1

[(1%1)(y) — (1'¥2)(y)]

IN

which implies
d(IV,,1¥,) < Ld(¥;,¥5)

2050 Bo
L= = g) <1
Bo+1 Qg
Thus, I : F — F is as contraction.
By Banach'’s fixed point theorem there exists a unique fixed point ¥ € 7. By

definition, this fixed points satisfies properties 1., 3., and 4. of Lemma 2.
If we start with

with

Wo(y) = max{1 — y°,0}
and define iteratively ¥y := IV then the fixed point is the limit ¥ = klim Uy,
—00
and we have

(T, ) = O (fli) ,

which directly translates to the precise estimate in 1.
In order to prove 2. we set

-7

T(y) = O
with v = log 2/ log(a/2). Since v > 1 we surely have
1V
— ¥(y/2)"dz
YJo
= T(y/2)?
= Y(y/a).

Thus, if we know that ¥x(y) < ¥(y) for y < yo then it follows that (I¥x)(y) =
Uy 1(y) < ¥(y) for y < yo/a. However, there is an a-priori bound for all ¥y of

the form

IN

i /Oy V(2)¥(y — 2z)dz

Ti(y) <1-9° +C'(1 = (a/ao) )1y

Hence, if we ch_gose C and yo appropriately (i.e., as propgsed) then we can assure
that Wo(y) < ¥(y) for y < yo and (a-priori) ¥k(y) < ¥(y) for yo/a < y < Yo
Thus, 2. follows by induction.

Corollary Let ¥(y) be as in Lemma 2 then the Laplace transform

(e o]
3= [ wwedy
0

is an analytic function for Ru > 0 and satisfies the following properties.
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1. ®(u) and and u®(u) are decreasing for real u > 0.

2. 1—ud(u) =T(B+1DuP+0 ((1 - (a/ao)cl_l)_lul‘cl) as u — 0+.

3. ®(u) = O(e_c(o‘)"7,) as u — 0o, where y' > 0 and C(a) is of the form stated
in Lemma 2.

4 ()= - <1>(3)2.

a? \a

Proof. It is clear that the Laplace transform ®(u) is an analytic function for ®u > 0.
Moreover, since ®(y) is non-negative, it follows by definition that ®(u) is decreas-
ing.

By partial integration we get for any u > 0

ud(u) = —/ U'(y)e ™ dy.
0
Since ¥'(y) > 0 for y > 0 it also follows that u®(u) is decreasing for u > 0, too.

Next, the expansion ®(y) = 1 —y? + O(y?°) as y — oo directly translates to

2w =1-TCED 1 00~ (/a0 ) i )

as u — 0+.
Finally the integral equation for ¥(y) induces the proposed differential equa-
tion for ®(u). ¢

4 Auxiliary Functions

We will now work with the auxiliary functions

2u(a) 1= 1 (1- a"(1 - 2)2(a"(1 - 2))), (9)

where h is a real parameter.

The properties of ®(u) can be translated to corresponding properties of 2, (z).
The proof is immediate. The idea behind is that theses functions imitate the
original functions zp(z).

Lemma 3 The functions Z,(x), h > 0, 0 <z < 1, defined by (9) satisfy
1. 0< 7,(0) < 1.
2.0<Z(z)<1/(1-xz) for0<z < 1.

3. Zp(x) 1s strictly increasing for 0 < z < 1.

4 2y (2) = 24 () (1 f - - Zh(z)).
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We will also make use of the following property of the functions z4(z).

Lemma 4 For every non-negative integer h and for every (real) D there exists
0 < Th,p <1 such that

2h.+D($) < Zh(CL') (0 <z < Eh,D) (10)
and
zn(z) < Zp+p(2) (Tnp <z <1). (11)
Furthermore
Zh41,D > Th,D- (12)

Proof. We proceed by induction. Since Zp(z) is strictly increasing and satisfies
0 < 2p(0) < 1 and lim,,1— Zp(x) = oo the assertion is surely true for h = 0. Now
suppose that (10) and (11) are satisfied for some h > 0, i.e. the difference

6n,0() := 2n(z) — Zn+D()

has a unique zero Ty p > 0 such that é,,p(z) > 0for 0 <z < zs,p and On,p(z) <0
for z > =, p. Now we have

6;L+1,D(z) = 2;1+1(5”)_5;¢+1+D(37)

(@) (125 - 2n(@)) - hen(o (1 - shent@))

On,p(x) (% —zp(x) — 2h+D(a:)> .

Hence, dp41,p() is increasing for 0 < z < Zp,p and decreasing for z > T, p.
Since 84+1,p(0) > 0 and limz o0 Sa41,0(x) = —oo there exists a unique zero
Th41,D > Th,D of 6h+1,D(1') such that 5h+1,D(1:) > 0for 0 < r < Tpt1,p and
5h+1,D(1') < 0 for z > Thy1,D- O

Finally, we can provide a uniform upper bound for Z(z).

Lemma 5 Let a > ag and zp(z) be defined by (9). Then we have

k k
fne) < T@+naey LD (logl—i—z)

k>0

1 " (c)* 1 \*
RN (b )1 >/
* O\ T (afag 1 > los

£>0
uniformly for all real h and all 0 <z < 1.

Proof. Firstly we note that the inequality

1-ud(uw) <TB+1uP+0 ((1 - (a/aO)C’-l)—lul-C')
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is valid for all u > 0. Thus, by definition

T(8+1) ‘o ((1 - (a/aO)C’-l)—1>

zn(z) < (1 — z)B+1aph (1—z)¢al@—Dh

which proves the lemma. {

5 An upper bound for EH].

For every integer h > 0 we will now use a special chosen

1
a=qap =09+ —.
h 0 h

This «a is associated with

do 1
8= ﬂh—-c_1+\/f_),+0(ﬁ)

(for some dp > 0), the solution > ¢/ — 1 of the equation 2a° = 8 + 1. Hence, for
every integer h > 0 there is a function ¥(y) = ¥, (y) (guaranteed by Lemma 2)
satisfying

Tn(y) = 1-y° + 0 (hy ") (13)

as y = oo and and its Laplace transform ®(u) = &, (u) with
() = 1= T8+ u +0 (hu'!) (14)

as u = 0+ and O-constants which are uniform in h. Thus, (13) and (14) are only

significant for

y > edn/_logh

resp. for

u< e—-dz\/E logh,

where d;,d; > 0 are appropriately chosen constants.
The key lemma for the proof of an lower bound of zj(z) is the following one.

Lemma 6 For every real number d and for every integer h > 0 we have

h+d C1\k k
Zhid(z) —zp(z) < T(Bn+1) (ﬂhi—l) Z(ﬂh;l) (10g11x>

k>h

+ O h(g) uc)dZ(C)"( 1x>'°

k>h

forall0<z<1.
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Proof. For h = 0 this inequality is just Lemma 5. Now we can proceed by induction.
We only have to observe that 2,44(0) < 1 = 2,(0) and that

2

fhra(@) = 2h2(0) = (s = shea(0) = () ) (rralo) — 2(a)

d that
and tha 5 9

=2~ zhta(z) — 2n(z) <

(The proof is quite similar to that of Lemma 1). ¢

1-2z

The next lemma uses this estimate to get a lower bound for z,(z) at a specific
value.

Lemma 7 There exists a constant Dy > 0 such that

N 1 DoVh log h
2h (1 _ e—h/(ﬁh+1)) > _(;._).eh/(ﬁh+1) ('Bh;— )

Proof. We use Lemma 6 with z = 1 — e~*/(8x+1) and

1
d=-h(1————— ) — DoVh logh,
( (ﬂh+1)logah) oV log

where Dy > 0 will be chosen in the sequel. We directly get (after some algebra)

() B ()

k>h

~ Lon/aar1) (ﬂh_“_
2

DoVh log h
)

and similarly

h(—) (1cdl§(c)k< 1iz>k

£=1(Dov/E log h)
« h/Bnt1)), (ﬂh + 1) e
2

Since ‘1 p
C o4 Y

Br Vh

(for some constant ¢4 > 0) it follows that there exists Dy > 0 such that

By +1 (Do Vh log h) By +1 DoVh logh
() ((2)
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as h = oo.
In a similar way we can discuss Z+4(z). By definition (and after some alge-
bra) we get

h+d ,
Zh+a(T) ) +0 (he’“'/(ﬁ'*“)agl‘c )(’““’))

F(ﬂh+1)eh([3h+l

DoVh log b
ﬂ"“) (1+ o(1))

F(ﬂh + l)eh/(ﬁh+1) (______
2

if Dy is sufficiently large. Consequently

5 (1+0(1))

)DO\/E log h

DoVh logh
Zp(z) > T(Bn+1) (1 - -;-) ot/ (Br+1) (ﬂh + 1)

v

L) h/(onr) (Bnt1
3 2

as proposed. {

Corollary Set
h
h=————— —DoVhlogh-1.
(,Bh + 1) log Qap 0 8
Then we have
zn(x) 2 Zp (z)

for x <1 — e R/ (Bnt1),

Proof. As in the proof of Lemma 7 it follows that

Vh log h
1 1) Povhlos
Ep (1 - e—h/(ﬂh“)) = ﬂ—h2i—F(ﬂh +1)eh/Brt1) (-ﬁ—'%> (1 +0(1))

DoV log h
Meh/(ﬁhﬂ) (,Blz_+_1> ovi o8
3 2 ’

IN

Thus,
E7Y (1 _ e_h/(ﬁh+l)) <z (1 _ e—h/(ﬁh+l))

and consequently, by Lemma 4
Zp(z) < zn(z)

for z < 1— e h/Brtl) ¢

Now we can complete the proof of Theorem 2. For given n > 1 choose a
constant D, > 0 such that

h := [c'logn + D (logn)'/? loglogn]
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is large enough that
udp(u) <

| =

for

u = laZ/((ﬁh'Fl) log an)—DoV'h log h

n
(Here we use 3. of the Corollary of Lemma 2.) Hence it follows that for h' =
h/((Bn + 1) log a) — Dov'h logh

zn(1=n"Y) > 2z (1 —n"1) = n(l — udpy(u)) > Zn

Thus, by Theorem 1 we get
EH! < c'logn + D, (logn)!/?loglogn.

This completes the proof of Theorem 2.
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Abstract. Using Fourier analysis, we prove that the limiting distribution of the stan-
dardized random number of comparisons used by Quicksort to sort an array of n numbers
has an everywhere positive and infinitely differentiable density f, and that each deriva-
tive f®) enjoys superpolynomial decay at +oo. In particular, each % is bounded. Our
method is sufficiently computational to prove, for ezample, that f is bounded by 16.

Key words. Quicksort, density, characteristic function, sorting algorithm, Fourier
analysis, rapidly decreasing C*° function, tempered distribution, integral equation.
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1 Introduction and summary

The Quicksort algorithm of Hoare [7] is “one of the fastest, the best-known,
the most generalized, the most completely analyzed, and the most widely used
algorithms for sorting an array of numbers” [2]. Quicksort is the standard sorting
procedure in Unix systems, and Philippe Flajolet, a leader in the field of analysis
of algorithms, has noted that it is among “some of the most basic algorithms—the
ones that do deserve deep investigation” [4]. Our goal in this introductory section
is to review briefly some of what is known about the analysis of Quicksort and
to summarize how this paper advances that analysis.

The Quicksort algorithm for sorting an array of n numbers is extremely
simple to describe. If n = 0 or n = 1, there is nothing to do. If n > 2, pick a
number uniformly at random from the given array. Compare the other numbers to
it to partition the remaining numbers into two subarrays. Then recursively invoke
Quicksort on each of the two subarrays.

Let X, denote the (random) number of comparisons required (so that Xy =
0). Then X, satisfies the distributional recurrence relation

XnéXU"_l + X, y, +n—1, n>1,

where £ denotes equality in law (i.e., in distribution), and where, on the right,
U is distributed uniformly on the set {1,...,n}, X7 £ X, and
Un; Xg,...,Xn_l; 3,..., ;_1

are all independent.

1Research supported by NSF grant DMS-9803780, and by the Acheson J. Duncan Fund for
the Advancement of Research in Statistics.
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As is well known and quite easily established, for n > 0 we have
pn =EX, =2(n+1)H, —4n ~ 2nlnn,

where H,, := > p_, k™! is the nth harmonic number and ~ denotes asymptotic
equivalence. It is also routine to compute explicitly the standard deviation of X,

(see Exercise 6.2.2-8 in [9]), which turns out to be ~ ny/7 — 2.
Consider the standardized variate

Y, = (Xn — pn)/n, n>1.

Régnier [11] showed using martingale arguments that Y, — Y in distribution,
with Y satisfying the distributional identity

YEUY + (1 -U)Z + g(U) =: hy z(U), (1.1)
where

g(u) :==2ulnu+2(1 — u)In(1l — u) + 1, (1.2)

and where, on the right of £in (1.1),U,Y, and Z are independent, with Z £y and
U ~ unif(0,1). Rosler [12] showed that (1.1) characterizes the limiting law £(Y),
in the precise sense that F' := £(Y') is the unique fixed point of the operator

G=L(V)» SG:=LUV+1Q-U)V*+g(U))
(in what should now be obvious notation) subject to
EV =0, VarV < oo.

Thus it is clear that fundamental (asymptotic) probabilistic understanding
of Quicksort’s behavior relies on fundamental understanding of the limiting dis-
tribution F'. In this regard, Rosler [12] showed that

the moment generating function (mgf) of Y is everywhere finite, (1.3)

and Hennequin [5] [6] and Rosler showed how all the moments of Y can be pumped
out one at a time, though there is no known expression for the mgf nor for the
general pth moment in terms of p. Tan and Hadjicostas [15] proved that F has a
density f which is almost everywhere positive, but their proof does not even show
whether f is continuous.

The main goal of this paper is to prove that F' has a density f which is
infinitely differentiable, and that each derivative f(*)(y) decays as y — +0o0 more
rapidly than any power of |y|™!: this is our main Theorem 3.1. In particular, it
follows that each f*) is bounded (cf. Theorem 3.3).

Our main tool will be Fourier analysis. We begin in Section 2 by showing
(see Theorem 2.9) that the characteristic function ¢ for F' has rapidly decaying
derivatives of every order. Standard arguments reviewed briefly at the outset of
Section 3 then immediately carry this result over from ¢ to f. Finally, in Section 4
we will use the boundedness and continuity of f to establish an integral equation
for f (Theorem 4.1). As a corollary, f is everywhere positive (Corollary 4.2).
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Remark 1.1. (a) Our method is sufficiently computational that we will prove,
for example, that f is bounded by 16. This is not sharp numerically, as Figure 4
of [15] strongly suggests that the maximum value of f is about 2/3. However, in
future work we will rigorously justify (and discuss how to obtain bounds on the
error in) the numerical computations used to obtain that figure, and the rather
crude bounds on f and its derivatives obtained in the present paper are needed as
a starting point for that more refined work.

(b) Very little is known rigorously about f. For example, the figure discussed
in (a) indicates that f is unimodal. Can this be proved? Is f in fact strongly
unimodal (i.e., log-concave)? What can one say about changes of signs for the
derivatives of f?

(c) Knessl and Szpankowski [8] purport to prove very sharp estimates of the
rates of decay of f(y) as y & —oo and as y — oco. Roughly put, they assert that
the left tail of f decays doubly exponentially (like the tail of an extreme-value
density) and that the right tail decays exponentially. But their results rely on
several unproven assumptions (as noted in their paper). Among these, for example,
is their assumption (59) that

Ee Y ~exp(aAln A+ A+ yIn X + 6) as A & o©

for some constants a(> 0), 8,7,d. (Having assumed this, they derive the values of
a, v, and & exactly, and the value of 3 numerically.)

2 Bounds on the limiting Quicksort characteristic
function

We will in this section prove the following result on superpolynomial decay of the
characteristic function of the limit variable Y.

Theorem 2.1. For every real p > 0 there is a smallest constant 0 < ¢, < 0o such
that the characteristic function ¢(t) := Ee'Y satisfies

|p(t)] < cplt|™P forallt € R. (2.1)

These best possible constants c, satisfy co = 1, c1/2 < 2, c3/4 < V8w, c1 < 4m,
c3/2 < 187, c5/2 < 103215, ¢7/9 < 197102280, and the relations

P <l 0<pr <o (2.2)
cpi1 < P Pp/(p—1),  p> 1 (2.3)
¢, < ps0. (2.4)

[The numerical bounds are not sharp (except in the trivial case of co); they
are the best that we can get without too much work, but we expect that substantial
improvements are possible.]
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Proof. The basic approach is to use the fundamental relation (1.1). We will first
show, using a method of van der Corput [1, 10], that the characteristic function of
hy,.(U) is bounded by 2|t|~/2 for each y, 2. Mixing, this yields Theorem 2.1 for

= 1/2. Then we will use another consequence of (1.1), namely, the functional
equation

o(t) = / 1_O¢(ut) #((1 —u)t) e du, teR, (2.5)

or rather its consequence

6(t)] < / 16wt 161 = wo)] du (2.6)

and obtain successive improvements in the exponent p.

We give the details as a series of lemmas, beginning with a standard calculus
estimate [10]. Note that it suffices to consider ¢ > 0 in the proofs because ¢(—t) =
#(t) and thus |[¢(—t)| = |#(t)|. Note also that the best constants satisfy ¢, =
sup;so t?|¢(t)| (although we do not know in advance of proving Theorem 2.1 that
these are finite), and thus ci/? = SUP;so t|#(t)|1/P, which clearly satisfies (2.2)
because |¢(t)| < 1.

Lemma 2.2. Suppose that a function h is twice continuously differentiable on an
open interval (a,b) with

h'(z)>c>0 and Ah"(z) >0 forz € (a,b).
Then

< z for all t > 0.
ct

b
/ Cith(2) gy
r=a

Proof. By considering subintervals (a+¢,b—¢) and letting € — 0, we may without
loss of generality assume that & is defined and twice differentiable at the endpoints,
too. Then, using integration by parts, we calculate

b b
/ eith(z) dr = l/ ieith(m) dx
z=a it z=a dz hl(z)

; b
_ l eith(z) _/b Jith(z) g 1
it | H@ |pea  Jrma @) [
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So

b
/ eith(z) dr
r=a

f J (i)
{ (h«b) * hf?@) ¥ /b: [”d (h'(lz)) } dx}
[

Lemma 2.3. For any real numbers y and z, the random variable hy ,(U) defined
by (1.1) satisfies

|E€ith”"(U)| < 2|t|_1/2.
Proof. We will apply Lemma 2.2, taking h to be hy .. Observe that

. 11 2
—_ — — >
hy . (u) 2(u+1—u) a =) >8 forue€ (0,1)

and that

[y

hy .(u) =0 if and only if u=ay, . = € (0,1).

1+ exp (%(y — z))

Let t > 0 and v > 0. If in Lemma 2.2 we take a := oy, + 4t~1/2 and b := 1, and
assume that a < b, then note

h'(u) = hy ,(u) = / hy . (z)dz > 8(u — ay,;) > 8yt~1/2 for all u € (a,b).

T=0y,z

So, by Lemma, 2.2,

1
/ pithy.s(u) gy, [Byt~1/2)~1 = A
u=ory, . +yt=1/2

<
hS 4y

N

Trivially,

oy Ayt
/ ezthy‘,(u) du < ’)’t—l/2,
u

=Qy,z

so we can conclude

< [(@y)~t + A2

1
/ ezth!,,z(u) du
u=ay,;
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This result is trivially also true when a = a,, , +yt~'/2 > b = 1, so it holds for all
t,v > 0. The optimal choice of 7 here is vy,pt = 1/2, which yields

1
/ eithv:) gyl < 4=1/2 forallt > 0.
u=ay,,
Similarly, for example by considering u — h(1 — u),
ay,z
/ etthv.=(v) 4o, < t—1/2 for all t > 0,
0

and we conclude that the lemma holds for all ¢ > 0, and thus for all real ¢. O
Lemma 2.4. For any real t, |p(t)| < 2|t|71/2.

Proof. Lemma 2.3 shows that
[E (eitnrz @) |v,2)| < o[t 1/2
and thus
16(0)] = [Bettra®)] < BB(c 2@ |y, Z)| < 212, 0

The preceding lemma is the case p = 1/2 of Theorem 2.1. We now improve
the exponent.

Lemma 2.5. Let 0 < p < 1. Then

ra-pl°,
re-2p *

Proof. By (2.6) and the definition of c,,

C2p <

1 1
16(0)] < / lut|P|(1 - w)t| P du = 2Jt] 2 / wP(1 - u) P du,

u=0

and the result follows by evaluating the beta integral. O
In particular, recalling I'(1/2) = /7, Lemmas 2.4 and 2.5 yield

4

190 < - (27)

This proves (2.1) for p = 1, with ¢; < 4, and thus by (2.2) for every p < 1 with
¢p < (4m)P; applying Lemma 2.5 again, we obtain the finiteness of ¢, in (2.1) for
all p < 2. Somewhat better numerical bounds are obtained for 1/2 < p < 1 by
taking a geometric average between the cases p = 1/2 and p = 1: the inequality

()] < (2671/2)2 2P (4mt ™)~ = %P 1P >0,

shows that ¢, < 2%P72P~1  1/2 < p < 1. In particular, we have cs/a < V8w, and
thus, by Lemma 2.5, c3/, < 87%/2[T'(1/4)]” < 186.4 < 187.
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Lemma 2.6. Let p > 1. Then

Ccpp1 < 2PHT/P)p/(p —1).

Proof. Assume that t > 20,,/ P Then, again using (2.6),

i< [ min (2, )min(K—l_c—’;W,l) du

cl/py—1
» t

Cp 1 c;/"t c;?’
- 2/u:o (1= w)ip "“*/,,:c;m-l - wep @

2 c;’+(l/p) CZ /1/2 du

12 __
[1 _ c,l,/pt—l]p tpt1 t2P Jy=ct/rpr [u(1 — u)]P

IN

2 2 c 1/2
< 2 210/ D) _,,/ v g
= /zp T e f gt

< gptl § H(/P)= (o)) 1 ct—zp[l/pt—l]_(”_”

— 2p+lc’1)+(1/p) t—(p+1)

p—1
We have derived the desired bound for all ¢ > 2¢h/”. But also, for all 0 < ¢t < 2057,

we have

9p+1,1+(1/p) -t s P S 9>
g/ L) > P > 12 1600
so the estimate holds for all ¢t > 0. O

Lemma 2.6 completes the proof of finiteness of every ¢, in (2.1) (by induc-
tion), and of the estimate (2.3). The bound for c3/, obtained above now shows
(using Maple) that c5/o < 103215, which then gives c7/2 < 197102280.

We can rewrite (2.3) as

o) < et 4 LYV gpep(— L
‘pHl “ ( +p—1) = eXp((p—l)(10+1))
1 1
=2c\/? - .

“p exP(?(p—l) 2(p+1))

Hence, by induction, if p =n + % for a nonnegative integer n, then

c;)/l’ < 2"02;26(1/3)“1/5) =C2,

where C := 2_5/268/1502§2 < 30.6 < 25, using the above estimate of c5/,. Conse-
quently, c;,/p < 2P%5 when p = n + $. For general p > 3/2 we now use (2.2) with
p = pand p, = [p— 2] + 2, obtaining cb/P < 9p2+5 < 9PF6; the case p < 3/2
follows from (2.2) and the estimate cgg < 33 < 28. This completes the proof
of (2.4) and hence of Theorem 2.1. 0O
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Remark 2.7. We used (1.1) in two different ways. In the first step we conditioned
on the values of Y and Z, while in the inductive steps we conditioned on U.

Remark 2.8. A variety of other bounds are possible. For example, if we begin
with the inequality (2.7), use (2.6), and proceed just as in the proof of Lemma 2.6,
we can easily derive the following result in the case t > 8:

3272 t 32721Int
l6(8)] < =5 (m(a) + 2) < =T forallt> 172 (2.8)

The result is trivial for 1.72 < ¢t < 8, since then the bounds exceed unity.

Since Y has finite moments of all orders [recall (1.3)], the characteristic func-
tion ¢ is infinitely differentiable. Theorem 2.1 implies a rapid decrease of all deriva-
tives, too.

Theorem 2.9. For each real p > 0 and integer k > 0, there is a constant cp
such that

|¢(k)(t)| < cpilt|7P forallt € R.

Proof. The case k = 0 is Theorem 2.1, and the case p = 0 follows by |¢(¥)(t)| <
E|Y|¥. The remaining cases follows from these cases by induction on k and the
following calculus lemma. a

Lemma 2.10. Suppose that g is a complez-valued function on (0,00) and that
A,B,p > 0 are such that |g(t)] < At™P and |g"(t)] < B for allt > 0. Then
lg'(t)] < 2VABt=?/2.

Proof. Fix t > 0 and let 8 = arg(g’(t)). For s > t,
Re(e™g'(s)) > Re(e™¢'(t)) ~ 19'(s) — ¢'()| > |¢'(t)] = B(s — 1)
and thus, integrating from ¢ to ¢, :=t + (|¢'(¢)|/B),
t1

Re(e=(g(t2) — 9(1))) > / (I (t)] - B(s — 1)) ds

= (t = t)lg' ()] - 3B(tr —t)* = g'(t)*/(2B).

Consequently,
lg'(t)[?/(2B) < |g(t)] + |g(t1)| < 24t77,
and the result follows. O

In other words, the characteristic function ¢ belongs to the class S of in-
finitely differentiable functions that, together with all derivatives, decrease more
rapidly than any power. (This is the important class of test functions for tem-
pered distributions, introduced by Schwartz [14]; it is often called the class of
rapidly decreasing C™ functions.)
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3 The limiting Quicksort density f and its deriva-
tives

We can now improve the result by Tan and Hadjicostas [15] on existence of a
density f for Y. It is an immediate consequence of Theorem 2.1, with p = 0
and p = 2, say, that the characteristic function ¢ is integrable over the real line.
It is well-known—see, e.g., [3, Theorem XV.3.3]—that this implies that Y has a
bounded continuous density f given by the Fourier inversion formula

1 *° ;
f(z) = —/ e " ¢(t)dt, € R. (3.1)
2m t=—o00
Moreover, using Theorem 2.1 with p = k + 2, we see that t*¢(t) is also integrable
for each integer k > 0, which by a standard argument (cf. [3, Section XV .4]) shows
that f is infinitely smooth, with a kth derivative (k > 0) given by

oo
f®(z) = 1 / (-it)ke " ¢(t)dt, z€R. (3.2)
27 Jt=—oo
It follows further that the derivatives are bounded, with

1
(k) < —
sgplf (z)] < 27r/

t=—

[}

lt*lg)ldt (k> 0), (3.3)

and these bounds in turn can be estimated using Theorem 2.1. Moreover, as is
well known [14], [13, Theorem 7.4], an extension of this argument shows that the
class S discussed at the end of Section 2 is preserved by the Fourier transform,
and thus Theorem 2.9 implies that f € S:

Theorem 3.1. The Quicksort limiting distribution has an infinitely differen-
tiable density function f. For each real p > 0 and integer k > 0, there is a constant
Cp,i such that

|F® (z)| < Cplz|™® for all z € R. O

For numerical bounds on f, we can use (3.3) with ¥ = 0 and Theorem 2.1
for several different p (in different intervals); for example, using p = 0, 1/2, 1,
3/2, 5/2, 7/2, and taking t; = 4, to = 4n?, t3 = (187/(4m))?, t4 = 103215/187,
ts = 197102280/103215,

o0 oo

f@ < g [ ewna=1 [ jowla

oo

L[ min(1, 267172, 4nt=1, 18767212, 103215 £75/2, 197102280 £~7/2) dit

T Jt=0
1 t1 t2 t3 121

= —(/ dt+/ 2t=1/2 dt+/ 47rt_1dt+/ 187¢73/2 4t
T \Jt=0 t=t; t=ty t=t3

ts [e’e)
+ / 103215¢75/2 4t + / 197102280¢~7/2 dt)
t

=t4 t=ts

IN

18.2.
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Remark 3.2. We can do somewhat better by using the first bound in (2.8) over
the interval (103.18,1984) instead of (as above) Theorem 2.1 with p = 1, 3/2, 5/2,
7/2 over (103.18,t3), (t3,t4), (ta,ts), (ts,1984), respectively. This gives

f(z) < 15.3.

Similarly, (3.3) with k = 1 and the same estimates of |¢(t)| as in (3.4) yield

(oo}

oo
r@i<g [ emld=1 [ e < 3o,
27 Ji= oo T Jt=0
which can be reduced to 2492.1 by proceeding as in Remark 3.2. The bound can
be further improved to 2465.9 by using also p = 9/2.

Somewhat better bounds are obtained by using more values of p in the es-
timates of the integrals, but the improvements obtained in this way seem to be
slight. We summarize the bounds we have obtained.

Theorem 3.3. The limiting Quicksort density function f satisfies max, f(z) <
16 and max, |f'(z)| < 2466. O

The numerical bounds obtained here are far from sharp; examination of Fig-
ure 4 of [15] suggests that max f < 1 and max |f'| < 2. Our present technique can-
not hope to produce a better bound on f than 4/ > 1.27, since neither Lemma 2.3
nor (2.6) can improve on the bound |¢(t)| < 1 for |¢t| < 4. Further, no technique
based on (3.3) can hope to do better than the actual value of (27)~! ‘I;:—m'¢(t)| dt,
which from cursory examination of Figure 6 of [15] appears to be about 2.

4 An integral equation for the density f

Our estimates are readily used to justify rigorously the following functional equa-
tion.

Theorem 4.1. The continuous limiting Quicksort density f satisfies (pointwise)
the integral equation

_r v glu) - (1L—wy) 1
s = [ 101 )idvds,  wem,

u
where g(-) is as in (1.2).
Proof. For each u with 0 < u < 1, the random variable
uY + (1 —u)Z + g(u) (4.1)

[with notation as in (1.1)] has the density function

— z—g(u) - (1-u)z\ 1
fulz) == n (2) f ( ) -dz, (4.2)

u
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where the integral converges for each z since, using Theorem 3.3, the integrand is
bounded by f(z)(max f)/u < 16f(z)/u; dominated convergence using the conti-
nuity of f and the same bound shows further that f, is continuous.

This argument yields the bound f,(z) < 16/u, and since f, = fi—u by
symmetry in (4.1), we have f,(z) < 16/ max(u, 1 — u) < 32. This uniform bound,
(1.1), and dominated convergence again imply that fol fu(z) du is a continuous
density for Y, and thus equals f(z) for every z. |

It was shown in [15] that f is positive almost everywhere; we now can improve
this by removing the qualifier “almost.”

Corollary 4.2. The continuous limiting Quicksort density function is every-
where positive.

Proof. We again use the notation (4.2) from the proof of Theorem 4.1. Fix z € R
and u € (0,1). Since f is almost everywhere positive [15], the integrand in (4.2) is
positive almost everywhere. Therefore f,(z) > 0. Now we integrate over u € (0,1)
to conclude that f(z) > 0. O

Alternatively, Corollary 4.2 can be derived directly from Theorem 4.1, with-
out recourse to [15]. Indeed, if f(yo) > 0 and ug € (0,1), set = yo+g(yo); then the
integrand in the double integral for f(z) in Theorem 4.1 is postive for (u,y) equal
to (uo, o), and therefore, by continuity, also in some small neighborhood thereof.
It follows that f(yo + g(ug)) > 0. Since uo is arbitrary and the image of (0,1)
under g is (—(2In2 — 1), 1), an open interval containing the origin, Corollary 4.2
follows readily.

Remark 4.3. In future work, we will use arguments similar to those of this paper,
together with other arguments, to show that when one applies the method of
successive substitutions to the integral equation in Theorem 4.1, the iterates enjoy
exponential-rate uniform convergence to f. This will settle an issue raised in the
third paragraph of Section 3 in [15].
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Abstract. We derive asymptotic results on the distribution of the number of descendants
in simply generated trees. Our method is based on a generating function approach and
complez contour integration.

1 Introduction

The aim of this note is to generalize some recent results for binary trees by Pan-
holzer and Prodinger [15] to a larger class of rooted trees. The number of descen-
dants of a node j is the number of nodes in the subtree rooted at 7, and the number
of ascendants is the number of nodes between j and the root. Recently, Panholzer
and Prodinger [15] studied the behavior of these parameters in binary trees dur-
ing various traversal algorithms. The case of binary search trees was treated by
Martinez, Panholzer and Prodinger [14]. In this paper we will study the number of
descendants in simply generated trees (defined below). The number of ascendants
is already treated in [1] and [10].

Let us start with a description of the traversal algorithms we will investigate.
In the binary case there are basically three traversal algorithms. All of them are
recursive algorithms treating the left subtree before the right subtree. They differ
with respect to the visit of the root: first (preorder), middle (inorder), and last
(postorder). We will study the number of descendants in simply generated trees
during preorder and postorder traversal. Since the outdegree of any node in a
simply generated tree need not be equal to zero or two, inorder traversal cannot
be well defined for that class of trees.

Let us recall the definition of simply generated trees. Let A be a class of
plane rooted trees and define for T € A the size |T| by the number of nodes of
T. Furthermore there is assigned a weight w(T') to each T' € A. Let a,, denote the

quantity
an= Y w(T)
|T|=n

Besides, let us define the generating function (GF) corresponding to A by a(z) =
Y >0 @n2". According to Meir and Moon [13] we call a family of trees simply
generated if its GF satisfies a functional equation of the form a(z) = z¢(a(2)),
where ¢(t) = 3,5, @;it* with ¢; > 0,90 > 0.

Let ng(T) denote the number of nodes v € T with outdegree k (the outdegree
of v is the number of edges incident with v that lead away from the root). Then

1This research has been supported by the Austrian Science Foundation FWF, grant P10187-
MAT, and by the Stiftung Aktion Osterreich-Ungarn, grant 34oeu24.
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we can equivalently define simply generated trees as trees with weight

w(T) = [] o ™. (1)

k>0

Another correspondence which was pointed out by Aldous [1] is considering
simply generated trees as representations of Galton-Watson branching processes
conditioned on the total progeny. Under this point of view the offspring distribution
induces the weights (1) (for more details see [1] or also [4]).

In order to prove our results we will employ a generating function approach
and singularity analysis in a similar fashion as used in [7]. For an introduction to the
combinatorial techniques see e.g. [8, 11]. For an extensive presentation of marking
techniques in combinatorial constructions with applications to random mappings
see [5, 6]. Random mapping statistics similar to the tree statistics studied in this
paper can be found in [2, 9].

2 Main results and Preliminaries

Choose a tree with n nodes at random (according to the distribution induced by
(1)) and let a;j(n) and w;(T') denote the number of descendants of the jth node
during preorder and postorder traversal, respectively, of the tree. We will study
the distributions of these random variables and prove the following theorem:

Theorem 2.1 Assume that p(t) has a positive radius of convergence R and that
the equation ty'(t) = @(t) has a minimal positive solution 7 < R. Then we have

for j ~ pn:

V2 l_p\/ﬁ and Ew;(n) ~ V2 P Vn

Eaj(n) ~ — —

o b NNy

where 02 = 729" (1) /¢(T). The variances satisfy the asymptotic relations

Vara;(n) ~ % ( > i/; P _ arcsin V13- p) n%/?

and

2
Varw;(n) ~ % (\/1\/:% +arcsiny/1 —p — g) n®/2.

Furthermore a local limit theorem holds: Let the singularity of a(z) on the circle
of convergence be denoted by zo = 1/¢'(7), then we have

P{aj(n)=m} = am:gl <1 +0 (@))

(o) o (M)

~
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2 log? .
Plom=mp = L (140(MEL)) g

= ﬁ(1+0(%)+0(z&10%2")), m < j, (3)

uniformly for m < n/log®n.

Remark 1 Note that if simply generated trees are viewed as conditioned branching
processes, then o2 is just the variance of the offspring distribution.

Remark 2 Note that here an interesting phenomenon occurs: the distributions in
the local limit theorem do not depend on j. This is no contradiction to the formulas
for expectation and variance, since on the one hand the variances are very large
(Varo;(n) > (Eaj(n))2) and thus the knowledge of the expectation tells us only
little about the distribution. On the other hand due to the heavy tail in (2) and (3)
the local limit theorem cannot be used to derive expressions for the moments.

Let us first set up the generating functions for the preorder case. Therefore
denote the by ankm the (weighted) number of trees with n nodes such that the
jth node z; has m descendants. We are interested in the generating function

ai(z,u,v) = Z Ankmz V™.

n,j,m>0
It is easier to work with
agm)(z,u) = [v™ai(z,u,v),

where the symbol [z"]f(z) denotes the coefficient of 2" in the formal power series
f(z). Thus we will build this function now: Note that there is a unique path
connecting x; with the root. To each of these nodes there are attached subtrees
of the whole tree. The path itself and those subtrees which lie left from the path
contains only nodes which are traversed before z;, while the nodes in the subtrees
on the right-hand side from the path are traversed after z;. Thus a node with
degree i on this path and j; subtrees on the left-hand side and j» subtrees on the
right-hand side contributes zup;a(zu) a(z)?? to the generating function. Summing
up over all possible configurations we get
C(m) . uz™am,
0’1 (z,u)_ 1—¢1(z,u,1)’

where
a(zu) — ua(zv) /v
a(zu) — a(zv)

$1(2,u,v) = zuz% Z a(zu)’a(zv)?? =

121 Jitj2=i—-1
The postorder case can be treated in an analogous way. In this case we get

d(m)(z u) = —__um+lzmam
1 ’ 1-¢1(z,u,1)/u
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3 Proof of Theorem 2.1

Since the generating functions for the preorder and the postorder case are so closely
related it suffices to consider the preorder case.

3.1 The Expected value of o;(n)

We have
@ = L T e o zula(zu) — a(2)d(2)
Ea; (n) 3 oz = Lol 200
1 ulaew) —a(2)
= a e TNy @

In order to compute this coefficient we will use Cauchy’s integral formula
with the following integration contour. Let z run through the contour I'g = I'g; U
Foz U F03 U F04 defined by

FOI = {z:zO(l+ )‘?Rt<0und|t|—1}
t
Lo = {z:zo(l+;>‘%t=1und0§%t§log2n}
Tos = Toz
] 2 . ] 2 .
Toa = {z |z| = 2o 1+og—:-_f~_£ und arg(1+0ng+z)§|arg(z)|§7r}.

and since the location of the singularity changes when z varies, the appropriate
contour for u is 'y = T'y; UT2 UT'13 UT 4 defined by

Iy, = {u = (1 + 5) Rs < —R(t) and |s + R(¢) + I(t)i| = 1}
2 . .
Ty = {u: (1+j—_) s=—I(t)+1,—R(t) < Rs and |u|<‘ plogiti }
J
s log®j +i
N = Su= 1+3 Ss=—-I(t) —1,—R(t) < Rs and |u| < 1+—j——
2 . .
I'g = {u ] ‘l-f- M and argu € [—w,argzlg]u[argzlz,ﬂ]},
where

R(t) = max (O, f—léRt) and I(s,---,8p,t) = max <n2/3, %%t)

and 2y denotes the point of I'y; with maximal absolute value. For convenience,
set, Yo = F01 U Foz U F03 and " = F11 U F12 U F13.

Now we use well known expansions (see e.g. [13]) for the tree function a(z)
and related functions in order to get the local behaviour of the integrand near its
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singularity: we have for z — z¢ inside the domain {z : |z| < z¢ +¢,arg(l — z/2g) #
m} for some £ > 0 the local expansions
) )

T‘[ 1——+0(‘1—-z—
) ©)

Pa(z) =1-0av2 1—%+0(|1——

20

a(z) =1 —

and

Inserting this into (4) yields for z € y9 and u € 7,
/ u(a(zu) — a(z)) du dz
an(2mi)? Jyy Jyy (u = 1)(1 = z¢'(a(2))) uit? zn+!

— (V=5 - —*) o duds

anzy(2mi)? /., a\/_ /_ nj

x<1+0('1‘+ f))
n J
[-L— [-2
= u L e=t0=3/m=v gt dy
2 /n(2mi)? 31
anzfoy/n(2mi)? /., Jy, i)

x (1+0(——l°g n, log” ]>>
n i

Extending the integration contour to oo (call the new contour v and expanding
the denominator into a series and using the fact (Hankel’s representation of the
Gamma function, see e.g. [16]) that for any positive constant 4 and integers k,{,

one of which is nonnegative, we have

/ / thote A~V dt dv = 0,
Yy

yields after some elementary calculations

t v
T Vom VT —a-j/m—o
—_— _— dtd
anz6‘02\/ﬁ(27ri)2/ / (U %),/ 1 v

Yo
OIS
- _J
k>0 n
X (—w)* V2 (—p) k1 2ev =V gy dy (1 4+ O e~ tlog’n
/1 CRICES)

T i\ G\ k —llog?n
g nla) (05) (o)

\/_ n —1log®n
:U\/_V\/]_/_Jn/ \/_(1+0( ! )), (7)

3 .

- a 2"02\/ (271) Z
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where we used again Hankel’s representation

27”/( s) % °ds = T_)

1 sinm(k+1/2)  (=1)F

[(—k+1/2)T'(k+1/2) T T oo

and a, = 7/02fvV2mn3(1 + O (1/4/n)) which can be easily obtained by applying
[7, Theorem 3.1] to (5). (7) is already the desired expression, thus what remains
to be shown is that the integrals where z € g4 oru € I'14 are negligibly small
On To4 and T4 the estimates |u|=i~! & e~ 106”7 and |z|~ "1 « z5"e~log"n,
respectively, hold. Moreover, observe that we have 1/|u—1| < 1/j < 1 /n along the
integration contour. Furthermore, a(z) (and hence 1/(1 — z¢'(a(2))) is analytic in
the set surrounded by the integration contour. This in conjunction with (6) yields
1/(1 — 2¢'(a(z)) < n and therefore

1 u(a(zu) — a(z)) du dz

an (u = 1)(1 - 2¢'(a(2))) wit! 27+l

(2,u)€ToxT'1\ 70 XM

as well as

oo n_lox2 7
<<n7/2e log“ n—log* j

u(a(zu) —a(2))  du dz
an / / (u—1)(1 - 2¢'(a(z))) uitl zntl

(z,u)€v0 XM

which completes the proof.

3.2 The Variance (sketch)

We need an expression for the second moment. We have

uzza"( )(a(zu) — a(2))

Bay(n)? = [z D

By elementary calculations we get

2¢'(a(x))ela(z) | 2¢"(a(2)¢"(a(2)

)= N ga@)? T (1= 29 (a()?

and thus

Ea;(n [ nyi) (2UZ<P (a(2))(a(zu) —a(2)) | uza(2)¢"(a(2))(a(zu) —a(Z))>

(u —1)(1 - 2¢'(a(2)))? (u —1)(1 - 2¢'(a(2)))?
Obviously, the dominant singularity in this expression comes from the second term.
Proceeding as in the previous section and using z¢"(a(z)) ~ 02 /7 for z — 2z gives

2uw a(2))(a(zu) — a(z))
(u = 1)(1 - z¢'(a(2)))?

["]]
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= (-4 - V-5-3) St sdtds

o ) )=
Tan2(2m1)2 /oy Joy s 2v/203 (- )3/2

B

— V___V__' —t(l j/n)— v dtd
2a,28 02(2m /ro/'r v

o (v— _1 t)a/z

~_ J k=1 _—t(1—j/n) /_ k=1
2anz"a2(2m’)2k;0<n) _/( )" e dt [ (-1)(-v) e Ydv

2‘1n2002(271'7,)2\/'k§)( ) /( tk 3/2o—t(1-3/n) gt
X/(—l)(—-v)‘k"l/?e—v dv
k 1)k j —k-1/2
) (—k+1/2) (1 g)

= - + V1 n | 1+ arctan ————
2an230? anz"027r j/n i/ ( V31— j/")

T

= - +
20,2502 2anzoa27r\/_§>-%<

S I

= T Gy ( - +arctan —t—— j/TL - E)
i T=jjn 2
= 3/2\/_ ( V1-j/n _ arcsiny/1 —]/n)
iln

and we are done.

3.3 The distribution (sketch)

We need to evaluate

P {aj(n) =m} = %[z"ufv”]m(z,u,v) = %[z"ui]“zma:(i‘)lgzu_) ;)a(z))

We use the same integration contour as in the previous sections and get for m <«
n/log®n

_am\/§ // (H_ \/—__%) e—v—t=3/n) gt d
v Jy

v_ 4
2
X (1+O (e""’gz"/Q) +0 (Llog n))
n

amV2 (1 + O (mlog’ n/n))
oz Mann’/?(2mi)?
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-\ k
x (l) / /(_t)k+1/2(_U)—k—le—t(l—j/n)~v dt dv
k>0 \" vy

_am\/i 1+ O (mlog®n/n)) Z ( j/n ) 1
T 0zl Maan3/2(1 — j/n)3/? o \1-i/n) T(-k-1/2T(k+1)
am (1+ O (mlog® n/n)) > ( j/n )’“ (-3/2)

 V2mozp Mann®2(1 - j/n)32 g \1=j/n) \ k

a
- \/ﬁaz{)’_’?"a n3/2 (1+0 (mlog®n/n))
n

- (0 (3) o (")

as desired.

4 Concluding remarks

It would be interesting to get also expressions for the joint distributions of
(aj,(n),...,a;,(n)) and joint moments, as were derived in [1, 10] for the num-
ber of ascendants. But since an invariance property similar to [10, Lemma 3.3]) is
not true in this case, we are not able to derive a general and simple shape for the
generating functions which occur when we compute these joint distributions. The
method presented here only in principle allows us to compute these joint distri-
butions and joint moments, but the expressions we would encounter are terribly
involved.
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Abstract. We consider here an universal predictor based on pattern matching. For a
given string x1,%2,...,ZTn, the predictor will guess the next symbol xn4+1 in such a way
that the prediction error tends to zero as n — oo provided the string ©7 = ©1,%2,...,Tn 18
generated by a mizing source. We shall prove that the rate of convergence of the prediction
error is O(n™°) for any € > 0. In this preliminary version, we only prove our results
for memoryless sources and a sketch for mizing sources. However, we indicate that our
algorithm can predict equally successfully the next k symbols as long as k = O(1).

1 Introduction

Prediction is important in communication, control, forecasting, investment and
other areas. We understand how to do optimal prediction when the data model is
known, but one needs to design universal prediction algorithm that will perform
well no matter what the underlying probabilistic model is. More precisely, let
X1, Xz,... be an infinite random data sequence, and let a predictor generate a
sequence Xl,Xz, .... We consider only nonanticipatory predictors so that X; is
determined by Xi,...,X;_1. We say that a predictor is asymptotically consistent
if
nll’n;o [Pr{Xn+1 = a|X1,..., Xpn} —Pr{X,p1 = a|X,,..., X} =0

for all symbols a belonging to a finite alphabet A.

We say that an universal predictor is optimal if Pr{X; # X} is minimized
for all i. When the probabilistic model is known, an optimal predictor is known to
be (cf. [6])

X; = argmax Pr{X; = a|X1,..., Xi21}.
a€A

In most cases, the probabilistic model of data is unknown. For such model we
define the optimal predictor N(X;) as above, that is,

N(X;) := argmax Pr{X; = a|X;,..., X;-1}.
a€A

An universal asymptotically optimal predictor X, is such that

lim [Pr{N(Xn1) =alXy,..., Xa} - Pr{X,s1 =a|lX1,..., X} =0 (1)

1This work was supported by Purdue Grant GIFG-9919.
2 Additional support by the EsPRIT Basic Research Action No. 7141 (ALcom II).
3This author was additionally supported by NSF Grants NCR-9415491 and C-CR-9804760.
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for all a € A. It is known that in a class of stationary data models, there exists
at least one universal optimal predictor. Among them, one should look for an
universal predictor with the speed of convergence as fast as possible (cf. [9]).

A large body of useful research on universal prediction was done in the last
fifty years (cf. [1, 4, 8, 9, 10, 11, 12, 14, 15, 16, 19]). There exist predictors based
on arithmetic coding (cf. [14, 15]), Rissanen MDL (cf. [11, 12]), nonparametric
universal predictors (cf. [4]), context-weighting, and so forth. In this paper, we
consider a modified prediction algorithm based on pattern matching that was
described in Ehrenfeucht and Mycielski [3]. This predictor seems to be performing
well in practice, however, there is not yet a theoretical justification available (cf.
[10]). The algorithm described in [3] is as follows: Let the sequence z1,...,z, be
given (i.e., it is a realization of a random sequence X1, ..., X, ), and we are asked to
predict z,,+1. Let D, := n—¢ be maximal such that zy,...,z, = z4_;, ..., Tp_; for
some 1 < ¢ < n. In other words, we find the maximal suffix of z;, z¢41,. .., z, that
occurs earlier in the sequence z1,...,z,. Then, we take the smallest ¢ (the most
recent occurrence), say I, for which we found the longest match, and set z,4; =
ZTn_r+1 (cf. [3]). It was conjectured in [3, 6] that this is an optimal predictor.
However, Jacquet [5] proved that the above algorithm is a good density estimator
but not an optimal predictor. More precisely, Jacquet proved that for memoryless
sources Pr{X,41 = a} =Pr{X,_141 =a} foralla € A.

In this paper, we modified the above algorithm to make it asymptotically
optimal predictor. Briefly, we consider a fractional maximal suffix, say of length
aD,, for 1/2 < a < 1. We shall show that such a shorter suffix occurs O(n!=%)
times in the strings Xi,..., X,. We find all occurrence of such shorter suffixes,
called further markers, in X,, ..., X, and then apply majority rule to all symbols
that occur just after the markers (i.e., we select the most likely symbol). We shall
prove that such a predictor is asymptotically optimal for mixing sources and the
rate of convergence is O(n~¢) for any € > 0.

2 Main Results

We start with a precise description of our prediction algorithm. We assume that a
sequence T} = 1, ..., T, is given. Our goal is to predict the next symbol z,, 1 such
that the error of the prediction is as small as possible. To formalize this criterion, we
asume that z7 is a realization of a randorr} sequence X' = X;,..., X, generated
by a source, and the prediction sequence X7 is also random. The prediction error
is then the probability Pr{X,;; # X,41} that should be minimized.

Let us fix a < 1. The prediction algorithm discussed in this paper works in
four steps:

1. Find the largest suffix of 27 that appears somewhere in the string z7. We
call this the mazimal suffiz and we denote its length by D,,.

2. Take an o fraction of the maximal suffix. Its length is k, = [aD,]. Such a
suffix occurs Ly, times in the string z} and we call these substrings markers.
The marked position is a position that occurs just after the end of a marker.
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3. Create a subsequence consisting of all symbols that occur at the marked
positions. We shall call such a subsequence the sampled sequence.

4. Set 41 to the symbol that occurs most frequently in the sampled sequence.
If there is a tie, break it arbitrary.

The algorithm just described will be further called the Sampled Pattern
Matching predictor, or in short SPM predictor.
Before we proceed, let us consider an example. Below the text and the max-

imal suffix defined in Step 1 is shown

SLJZGGDL| YGSJSLJZ [KGSSLJZIDSLJZJGZ YGSJSLJZ

where the maximal suffix and its copy are framed. Observe that D4y = 8. We set
a = 0.5 to get the suffix SLJZ that is used to find all markers. They are shown
below:

[sLiz|eGDLYGS)[ SLIZ [KGY[ SLIZ ]| KLIZIGZYGSJ[SLIZ]

The sampled sequence is GKK, thus the SPM predicts z4; = K.

The prime goal of this paper is to prove asymptotic optimality of the SPM
algorithm. To formulate it precisely, we need some additional notation. We assume
that z7 is a realization of a random sequence X{' generated by a probabilistic
source. We assume that the source is a mixing source that can be defined as
follows:

(MX) (STRONGLY) %-MIXING SOURCE

Let R}, be a o-field generated by X' = for m < n. The source is called
mizing, if there exists a bounded function ¥(g) such that for all m,g > 1
and any two events A € RT* and B € R}y, ; the following holds

(1 -4(9))Pr{A}Pr{B} < Pr{AB} < (1 +¢(g))Pr{A}Pr{B}.  (2)

If, in addition, limy,o %(g) = 0, then the source is called strongly mixing.
Hereafter, we consider only strongly ¥ mixing sources and we shall call them
miTIng sources.

To simplify the presentation of our results we introduce §-discriminant dis-
tribution.

Definition 1 Let § > 0. A distribution over a finite alphabet of size V' with vector
probability (p;)i<v is said to be d-discriminant if:

o There is only one integer imax such that p; .. = max; {pj};
e For all j # imax we have p; <p;... —90.

We apply this definition to text sources.

We say that a string X' is §-discriminant if the distribution of X,,4; condi-
tioned on X} is §-discriminant. Furthermore, we say that the source is asymptoti-
cally é-discriminant if the probability that X is not d-discriminant tends to zero
when n — oo.
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For example, it is easy to see that memoryless and Markov sources are §-
discriminant for some § > 0 depending on the model. We denote p, = P(X}
is not d-discriminant), the rate at which u,, tends to zero depends on the prob-
abilistic model. For é-discriminant memoryless sources pu, = ¥(n) = 0 for all
n > 1. For Markov sources we have y, = 0 when n > 1. More generally, Markov
sources of memory K have u, = 0 as soon as n K which is lower than ¢¥(n) which
exponentially decays but is non-zero. .

Our main results is summarized next. It asserts that the SPM predictor
is asymptotically optimal for é-discriminant mixing sources. Extension to non-
discriminant sources is possible and will be discussed in the final version of the

paper.

Theorem 1 For all « > 1/2 and § > 0 the pattern matching predictor is asymp-
totically optimal for §-discriminant mizing sources. More precisely, for any e > 0
and large n

Pr{N(Xn41) = a|lX1,..., Xp} = Pr{Xpn41 = a|X1,..., Xp} = ptn + O(n™°) (3)

for alla € A.

Remark. Our proof, presented in the next section, shows that the optimality of
the SPM predictor can be extended to a larger class of predictors. Namely, instead
of predicting only symbol z,; we can predict the next m symbols z‘gﬂ" as long
as m = O(1) (and even this can be relaxed). This modified algorithm works in a
similar manner except that we consider m marked positions after each marker, and
apply the majority rule to the sampled sequence built over the modified alphabet

of cardinality V™.

We did perform some experiments on DNA and protein sequences using the
SPM predictor. We provide a detailed discussion in the final version of the paper
while here we only present some of our conclusions.

Proteins are sequences of amino acids over an alphabet of size twenty, while
DNA sequences are built over four bases. The following two experiments summarize
our findings:

e We analyzed the protein human adenovirus of length 807 with relative fre-
quencies of amino acids vary from 0.7% to 11%. Over 100 predictions were
done with the relative prediction success of 22%. This is a very good score.
When we reduced the alphabet to ten (by lumping similar amino acids), the
relative frequencies vary from 0.7% to 17%. The prediction success was 23%.
Finally, we reduced the alphabet to a binary alphabet (i.e., polar/nonpolar
alphabet) with relative frequencies 43% and 57%. This time we predicted
three symbols at a time with the prediction success of 54%.

e We considered a DNA sequence of length 10603 with relative frequencies
vary from 24% to 26%. The prediction success was 29%.
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3 Proof of the Main Result

We prove here are main results. We start with a memoryless source and later
extend it to mixing sources.

3.1 Memoryless Source

We start with some technical lemmas.

Lemma 1 The length D,, of the mazimal suffiz for a memoryless source is 1—0,5—"
with high probability for n — oo, where h is the entropy of the alphabet (h =
— >, pilogp;). More precisely,

lim Pr{(l _olog o pr o (1+e)1°g"} -1-0 (l"g”)
n—oo h h

nE

for any € > 0.

Proof. Follows from Szpankowski [17]. This is also true for more general sources
(e.g., mixing sources). ]

The next lemma is at the heart of our proof.

Lemma 2 For all €' there is ¢ > 0 such that the probability that a string X'
contains two markers of length greater than alﬁ,glﬂ that are separated by less than

elogn symbols is O(n'~2%*<") for a > 1.

Proof. We shall use the Asymptotic Equipartition Property (AEP) (cf. [2, 18]). It
asserts that for any given €, the set of all strings of length n can be partition into
the set of good states G, and the set of bad states B, such that the probability of
being in the bad states tends to zero when n — oo, while for strings z7 € G, the
probability P(z7) = Pr{X] = z7} for fixed n is between 2~"(1+<)" and 2-h(1=€)n,
For sources satisfying the so called Blowing-up Property Marton and Shields [7]
proved that the convergence rate in the AEP is exponential, that is, P(B,) con-
verges exponentially fast to zero for such processes. In passing, we mention that
Marton and Shields also shown in [7] that aperiodic Markov sources, finite-state
sources, and m-dependent processes satisfy the blowing-up property.

We also define for a given € > 0, the e-overlap set O, that consists of strings
of length n that overlap with themselves on more than en. We will use the fact
that for all ¢ > 0 the probability P(O,) tends to zero exponentially fast.

Let now k = [aD,] such that D, > (1—¢)# logn. We also set d = [elogn].
We investigate the probabilities of the following two events:

e & : A marker is at distance smaller than d from the suffix X_, of length k;

e &, : Two markers are within distance smaller than d.
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Let wy € A* be a word of length k. The probability P(&;) of &, is equal to
P(E)= ) Pr{docjckra: XpTh_; =X, = wi}.
wi €A
Then, using the overlap condition, we arrive at
PE) S PO+ Y Pr{dicoa: XPTRG = X0 0 X0 = wi). (4)
wk¢0k(e)

By the AEP property we have

P(&) < P(Ok)+ P(Bk-a)
+ Z Pr{3i<2q : Xs:gljf{di—i =X} jtd = Wk—d}

Wk—qd€EGk—d

P(Ox) + P(Bg-a)

§ " § : n—k+d—i _ n _
+ Pr{Xn—2k+2d—i —Xn,—k+d —wk—d}~
Wi—d€Gr—_q 1<2d

IA

For a word wg_4 € Gg_q4 the probability P(wy) < 2~ (=) (k=dh 4nd therefore

P(&) < PO+PBeg)+ Y dP(wig)?
Wk—d€Gk—_da

< P(Ok) + P(Bk_d) + 2¢ logn2_h‘(1_5)("‘d)
< P(Ok) + P(By_g) +n~o+0)

where the last line follows after setting k = a;‘l— logn and d = elogn.
The probability P(€;) of &;, formally satisfies the following identity

P(&)= Y Pr{3ncndocjckra: Xpii_,=Xm  =XI,=w}. (5)
wi €Ak

Using the same arguments as above we conclude that

P(&) < P(Ok) + P(Bk-a) + Z ndP(wg—q)>
Wk—d€Gr—d
< P(Op) + P(Bk_d) + 2nelog n2~2h(1-€)(k—d)
< P(Ok) + P(Bk_d) + pl—2a+0(e)

where the last line is a consequence of the values of k and d. The proof follows
since for memoryless sources P(By) decays exponentially fast with k. ]

In passing we observe that the main arguments of the above proof remain
valid for mixing sources.

Now, we show that the number L,, of markers is O(n'~®) with high proba-
bility.
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Lemma 3 The number L, of markers is such that there exists € > 0 and &' > 0
so that

Pr{L, < n'"® ¢} = O(n®~'*%)
for large n.

Proof. Let L,, be the number of non-overlapping markers that may occur only at
positions that are an integer multiply of k. Let also w; € A* be the suffix of X7
of length k. Observe that En < L, and the number f/n of nonoverlapping mark-
ers is binomially distributed B(n/k, P(wy)) with mean P(wg)n/k and variance
(1 — P(wg))P(wi)n/k. Given that wg € Gi such that P(wy) > n~ (1) we use
Chebyshev’s inequality to yield (for properly chosen €')

1-(1—-¢€) '

Pr{L, < n'~0-)2(1 ¢} < Pr{L,< f—k—(l —e)}
< Pr{L, < E[L,] — \/neVar(L,)}
k
S 6n1—(1+5)01 .
Since P(wy ¢ Gr) = O(n~°) for memoryless sources, the proof is complete. [ ]

To proceed we need to introduce the important notion of stable strings and
then paired strings.

Definition 2 A string X7 is stable if a modification of any sampled symbol does
not change the positions of all markers in the new string.

We observe that a string is stable with high probability as stated below.

Lemma 4 A string is stable with probability 1 — O(n~°).

Proof : By changing a symbol on a marked position we either create new
markers that overlap with the previous marker or delete existing markers that
were overlapping with the previous marker. From Lemma 2 we know that a string
of length n contains overlapping markers with probability O(n~¢), thus a string is
stable with probability 1 — O(n™¢). n

Using stable strings, we define now an important notion of paired strings that
are used to define an orbit of strings.

Definition 3 A string X' is paired to a string )?{‘ if
o X7 and X7 are both stable strings;
o X and X{’ have their markers at the same positions;
e X[ and )?{‘ match on every positions except the sampled symbols.

Definition 4 An orbit for X' is the set of the strings paired to X]'.
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Let L,(F) be the number of markers in a string X7* € F. Clearly, the cardi-
nality of the orbit F is V2~(*) where L, (F) is the number of markers in X} € F.
The next lemma summarizes our knowledge about the sampled sequence.

Lemma 5 Let F be an orbit of size VE~(F). Under the condition that the string
X7 belongs to F, the sampled sequence is i.i.d. with probability p; for symboli € A.

Proof. Since X7 is generated by a memoryless source, the distribution of the sam-
pled sequence is just equivalent to the joint distribution of L, (F) symbols at fixed
marked positions in XJ*. More precisely, let i1, i2,...,i; be the marked positions,
¢ being a short-hand notation for L,(F). The sampled sequence is X;, X;, ... X;,.
Observe that all the other values X for j ¢ {i1,...,4} are fixed when X]* belongs
to the orbit F. We denote by X (F)%~! the fixed substring X!, X(}‘);:rl_l the
fixed substring X;*t, ™", and X(F)},, the fixed substring X?*,, when X} € F.
We have

P(X(F)iay... X (Pl izeXP,)
P(XP e F)

PI‘{X,'I...X,'l=.’L‘1....’L‘['X{l€.7:}= . (6)

Since X7 is generated by a memoryless source source, we have
Pr{X(F)}o1...2eX (F)},11} = P(X(F)T)P(1) - Pleg) PX (F)}, y1'w) ()
Furthermore, P(X] € F) = P(X(F)}* --- P(X(F)}') thus

P(z1)-- - P(zy)P(X} € F)
P(XP e F)

that yields the desired result. ]

P(Xi, ... Xs, =1 ... XD € F) = (8)

To complete the proof we need a simple fact that will allow us to conclude
that the sampled sequence contains imax With high probability.

Lemma 6 The probability that Xn = imax under the condition that X' belongs
to an F is 1 — O(BL(P) for some B > 1.

Proof. It suffices to show that imax occurs in the sampled sequence with probabil-
ity 1— B¢ for L,(F) = £. But the sampled sequence is i.i.d. of length O(n'~%), thus
any symbol ¢ € A occurs with probability p; and the convergence is exponential. In
particular, imax Occurs with probability pmax > p; for all i # inmax. By a standard
large deviation estimate (e.g., Chernoff’s bound), we prove the lemma. [ |

Now we are ready to prove Theorem 1. The unconditional probability that
the predictor does not predict imax satisfies the inequality:

Pr{X, # imax} < Pr{X} is not stable}
+Pr{ X7} is paired and X, # tmax }
O(n~)+ Y _ P(F)O(B*)

]:

IN

IN

O(n™%) + O(E[8""])
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where the second line follows from Lemma 4. But by Lemma 3
E[f"] < Pr{L, <n'"* ¢} + 8" " = 0(no177).

This completes the proof of Theorem 1 for memoryless sources.

3.2 Mixing Sources

In this conference version of the paper, we provide only a sketch of the proof for
the mixing model.

In the sequel we set k = [ylogn] for some y > 0. We consider the distribution
of X,,4+1 under the condition X?_, . If wy is a string of length k, we denote in(wi) =
arg max;{P(Xn4+1 = 4| X, = wi)}.

We will use the following easy and technical lemma.

Lemma 7 We consider a §-discriminant distribution over an alphabet of size V
and a string of length £ from a memoryless source based on this distribution. imax
is the most likely symbol. For all § > 0 there exists a non-negative w < 1 such
that the probability that the most frequent symbol in the string is equal t0 imax 5
O(wh).

In order to prove Theorem 1 for mixing sources, we use similar definitions
and lemmas as for the memoryless sources. However, we need some important
modifications. We start with a generalization of stable and paired strings.

Definition 5 A string X' is k-stable if a modification of the k marked symbols
after a marker does not change the positions of markers in the new string.

Definition 6 A string X[ is k-paired to a string )?1" if
e X and X are both k-stable strings;
e X and X have their markers at the same positions;

e X and X match on every positions except the marked symbols.

Lemma 1 to Lemma 4 of previous section are easy to extend to mixing model.
In Lemma 3 we set v < . We now rephrase Lemma 5. We consider an orbit F
such that all markers are of lengths greater than k = [ylogn], therefore each
marked symbol is proceeded by a full copy of a suffix of X' of length k. This will
allow us to reduce the model to the memoryless one. This is stated below in a
rather vague form (details will be provided in the final version).

Lemma 8 Under the condition that X € F, the probability distribution of the
marked sequence is within the factor (1£0((k))E»F) form the memoryless model
(i.e., the probability of any event in the mizring model is equal the probability of
the same event under the memoryless model modulo the multiplicative factor (1 +

O(p(k) 7).



84 Mathematics and Computer Science

Using above and Lemma 7 we have

Pr{X’n #imax} < Pr{X, is not k-stable or is not d-discriminant}
+ Pr{X, is k-paired and é-discriminant and Xn # tmax(Xn)}
< O(M™) +pn + ) P(FO((L + $(Ln(F)))w) )
F
< 0O(n™%) + pn + OE[((1 + 9(k))w) ")) = O(n™¢)) + pin.

This gives a sketch of the proof of Theorem 1 for mixing sources.
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Abstract. In [12], Goulden and Kulkarni propose a bijective proof of a form of the
Lagrange-Good’s multivariable inversion formula [9]. In this paper, we propose a new bi-
jective proof of this formula, simpler than Goulden and Kulkarni’s proof and we illustrate
the interest of this proof in the enumeration of multisort rooted trees such that the edges
partition is given.

1 Introduction

Lagrange’s inversion formula for formal power series is a classical tool in enu-
merative combinatorics (see for example [11, 2]). In 1960, Good [9] proposed an
extension that could handle the case of multivariable formal power series, called
the Lagrange-Good’s formula, and is well adapted for the enumeration of multi-
sort (or multicolored) structures. It has been extensively used by Goulden and
Jackson [13, 10, 11]. Let d > 1 be a fixed integer, x = (z1,... ,Z4) be a vector of
formal variables, n = (nq,...,nq) a vector of integers and let x™ = z7* ---z}°.
For a given multivariable formal power series h(x), the coefficient of x™ in h(x)
is denoted by [x™]h(x). There are several forms of Lagrange-Good’s formula, and
we give the most classical in the following theorem.

Theorem 1 Let F(x), Ry(x),..., R4(x) be d + 1 multivariable formal power se-
ries such that R;(0) # 0 fori € [d], 0 = (0,...,0) and A;(t) = t;R;(A(t)) for
i € [d]. Then we have the implicit form of Lagrange-Good’s formula

F(A(t))
OR;(t)
det ((51,]‘ - tia—t]‘>dxd

where §;; =1 if i = j and O otherwise, and the explicit form

[t"] = [x"]F(x)R"(x), (1)

[tP]F(A(t)) = [x™]F(x)R"(x) det (5i,j - ﬁ a’;;(j"))d ; (2)

In [8] Gessel gives a bijective proof of formula (1). This proof is also given
in the terms of the theory of combinatorial species in [2, Section 3.2], where it

89
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appears as a natural generalization of the proof of the Lagrange’s inversion for-
mula in one variable due to Labelle [15]. In [7], Ehrenborg and Méndez give a
combinatorial proof of (2) in the case of formal power series in an infinity of vari-
ables, in which the determinant in the right-hand-side of (2) is computed using
an involution. The first direct bijective proof is due to Goulden and Kulkarni [12].
In fact, Goulden and Kulkarni show that formula (2) is equivalent to a form of
Lagrange-Good’s inversion which can be called arborescent, based on the notion
of derivative according to a rooted tree (which can also be called arborescence).

Definition 1 Let G be a directed graph having S = {1,... ,d} as set of vertices
and A as set of (directed) edges, x and f(x) two vectors of formal variables and
formal power series indexed by S. We define the derivative of f(x) according to G
by

of 1o}
e IR A

j€S (i5ea "
where (i, ) stands for an edge directed from the vertexr i to the verter j.

Theorem 2 Let F(x), Ry(x),..., R4(x) be d + 1 formal power series such that
R;(0) #0 fori € [d] and A;(t) = t;R;(A(t)) for i € [d]. Then we have

("] F(A(t)) = (H )[ = ‘12 LB 3)

=1

where n —1 = (n; — 1,...,n4 — 1), the sum being taken over all rooted trees
T having {0,1,..., d} as set of vertices, rooted in 0, and in which all edges are
directed towards 0.

Goulden and Kulkarni prove this formula by establishing a bijection between
rooted trees on d sorts (or d colors) and some endofunctions on d sorts, which
is an extension of the classical bijection between “vertebrates”and endofunctions
[14, 15]. This arborescent form of Lagrange-Good’s inversion formula has been
independently discovered by Bender and Richmond [1], who notice that the deter-
minant appearing in the right-hand-side of (2) can cause problems if one wants to
obtain asymptotical informations about the coefficients in the A;’s. On the other
hand, the arborescent formulation (3) contains only positive terms and therefore
is better suited for an asymptotical analysis.

The interest of bijective proofs for Lagrange-Good’s inversion formula is at
least twofold. First, they give a better understanding of the combinatorial signifi-
cation of the enumerative formulas that one obtains when applying them. Second,
a bijection usually leads to an algorithm for random or exhaustive generation.
This then justifies the research for simple and efficient proofs of Lagrange-Good’s
formula (at least from an algorithmic point of view).

In this paper, we first propose a new bijective proof of formula (3). The
bijection that we describe here is based on the same principle as Goulden and
Kulkarni’s bijection [12], namely the manipulation of multisort rooted trees and
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endofunctions, and has similar properties from an algorithmic point of view. How-
ever, it has two advantages: it is easier to put into application and the proof of
its validity is immediate. In a second step, we show that this bijection, combined
with the Matrix-Tree Theorem, leads to a combinatorial interpretation of various
enumeration formulas for rooted trees with a given edges partition, and also, a
version of Lagrange-Good’s formula due to Goulden and Jackson [13] (see also [11,
Section1.2.13]).

2 A bijective proof of formula (3)

In order to prove (3), we work in the context of the theory of species, and more
precisely, of multisort species (see [2, 14, 15]). In a first step, we slightly modify
formula (3) in order to take into account the fact that we are manipulating labelled
structures and exponential generating functions. If we denote n! = Hle n;!, then
we obtain the following formula, which is equivalent to (3),

nl{t"|F(A(t) = (n - DY I By aT SLY (4)
T

2.1 Multisort rooted trees and endofunctions.

We now give a combinatorial interpretation of both sides of this identity. First,
we introduce for ¢ € [d], the species X; of singletons of sort i, a vector R =
(Ry, ..., Ry) of species on d sorts having generating exponential functions (R; (x),
..., R4(x)), and a species F' on d sorts having generating exponential function
F(x). Using F and R we construct two new species F(Ar) and EndﬁR.

Definition 2 We denote by Ar,; the species of R-enriched rooted trees (on
d sorts): for j € [d], there is an Rj-structure on the fiber (the set of sons) of a
vertex of sort j, and the root is of sort i. These species hence verify the functional
equations Ar,; = X;R;(ARr), which is the translation, in terms of species, of the
equations A;(t) = t;R;(A(t)) of the Lagrange-Good’s formula.

The species F(ARr) of (F, R)-enriched rooted trees is the species of F-assemb-
lies of Ag ;-structures. The set of F(AR)-structures having n; elements of sort i,
for i € [d], is denoted by F(AR)[n].

In the rest of this paper, a (F, R)-enriched rooted tree over [n] will be repre-
sented as a rooted tree on {0} U[n], rooted at 0, such that there is a F-structure on
the fiber of 0. We denote by k; the k** element of sort i. Figure 1 gives an example
of a (F,R)-enriched rooted tree over [n] = [4,3,1]. By convention, all edges in a
rooted tree are directed towards the root and the enrichment on the fiber of an
element (which is determinated by its sort) is represented by an arc of a circle. For
example the fiber of 2; is the set {1;,12} and is embedded into a R;-structure,
while the fiber of 0 is embedded into a F-structure.

By recalling that, for a species G on d sorts, n![x"]G(x) = |G[n]|, we can
interpret the left-hand-side of (4) in the following way.
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]-.—)—9;) e sort |
( 2 ﬁ—e) o sort 2
{g—oi—)—f) o sort 3

Figure 1: A F(AR)-structure.

Lemma 1
nl[t"|F(A(t) = |F(AR)[n] .

Definition 3 A (F,R)-enriched partial endofunction over [n] is a function f of
[n] into {0} U [n] in which each fiber f~!(u) is embedded into a R;-structure if u
is of sort i (i € [d]) and into a F-structure if u = 0. We denote by Endy, g[n] the
set of (F,R)-enriched partial endofunctions over [n].

Definition 4 Let f € Endﬁ’R[n]. We call graph of sorts of f, denoted by G(f),
the directed graph having [d] U {0} as set of vertices and having, for ¢ € [d], a
directed edge from i to j # 0 (resp. from ¢ to 0), if and only if 1; is in the fiber of
an element of sort j (resp. in the fiber of 0).

One usually represents a partial endofunction f by a directed graph: there is
a directed edge from u to v if f(u) = v. For example, if d = 3 and [n] = [4, 4, 3], the
following figure represents a partial endofunction f € Enng[n] and its related
graph of sorts G(f).

1 :I 1
w3 bdled K
f<) ( = % ’
3

1
3 4

Figure 2: A End}, g-structure and its graph of sorts.

Definition 5 A partial endofunction f € End?’R[n] is said to be restricted if
G(f) is a rooted tree, rooted at 0, and in which all edges are directed towards
the root. We denote by EndﬁR[n] the set of (F,R)-enriched restricted partial
endofunctions over [n].

The partial endofunction given in Figure 2 is therefore a restricted partial
endofunction. From now on, unless stated otherwise, we use the terms F-rooted
tree for (F, R)-enriched rooted tree and endofunction for (F, R)-enriched restricted
partial endofunction.

The following lemma gives a combinatorial interpretation of the right-hand-
side of (4) in terms of endofunctions (see [12, 5] for a proof of this lemma).
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Lemma 2
_ O(F,R{",...,R}*)
CER NS 57—~ = |EndE gn]],
T
the sum being taken over all rooted trees T having {0,1,..., d} as set of vertices,

rooted in 0, and in which all edges are directed towards 0.

We deduce from Lemmas 1 and 2 that in order to prove formula (4) it is
sufficient to show that
F(AR)[n] =~ Endgg[n],
which can be considered as an expression of the arborescent form of Lagrange-
Good’s inversion formula in terms of species. In the rest of this section, devoted to
a bijective proof of this combinatorial identity, which will be illustrated using an
example, we call minimal elements of {0} U[n] the set Min([n]) = {1,1s,...,14}.

2.2 From F-rooted trees to endofunctions.

Let A € F(AR)[n] be a F-rooted tree. We call skeleton of A, denoted by S(A),
the set of paths starting from an element of Min([n]) and ending at the root 0.
S(A) is then a rooted tree having 0 as root and in which all the leaves are in the

set {11, 1o,... ,ld}.

Figure 3: A F-rooted tree and its skeleton.

The first step in the transformation of A4 into an endofunction f4 belonging
to Endj g [n] consists in isolating S(A). In a second step, for each leaf 1; in S(A)
(covered according to the increasing order of their sort), we denote by C; the path
going from 1; to the closest ancestor of 1; belonging to another path C; with j < ¢
(or to 0 if 4 = 1). In our example,

01:0(—73(—53(—11,
02:0923(—52(—13(—12,
C4=52(—42(—61(—14.

In a third step, each path C; of length [; is transformed into a biword B; of
length [; — 1 in the following way: for each element u in C; different from 1;, if its
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predecessor (on the path starting from 1;) is the element k;, then we perform the
transformation

*j
uek; — |,

u

which indicates that in the fiber of u, k; will be replaced by an element of sort
J, possibly different from k;. We concatenate the B;’s, which results in a single
biword, denoted by B(A):

*3 k3 k1 k3 kg k3 kg kg k1 ¥yg
BA= 4+ 4+ 4 L L L L 4 1 1.
0 73 53 0 23 59 13 5y 45 6;

Finally, for i € [d], we replace the x;’s in B(A) by the elements of S(A) of sort ¢
taken by increasing order. We then obtain the biword B'(A):

13 23 1; 53 1, 73 45 59 61 14
BA=( 4+ L 4+ L 4 L 1 4 1 1]
0 73 53 0 23 52 13 5y 49 6;

From this biword, one can define an endofunction f4 over [n] in the following way:
for each u € [n], if u € S(A), then f4(u) is the image of u in B'(A), otherwise
fa(u) is the father of u in A. In our example, we obtain the following endofunction

fa.

Figure 4: The endofunction f4.

It remains to show that the partial endofunction f4 is indeed restricted. We
call biletter (u,v) an element
u

!

v

of B(A) or B'(A) (u can then be of the form *; or k;). By construction, we can
say that:

e in B(A), at the left of a biletter (x;, k;), there always exists a biletter (*;,u);

e in B'(A), for a biletter (1;,u), either v = 0, or u = k; and in the latter
case, there exists, at the left of (1;,u), a biletter (1;,v) (this can be deduced
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from the previous remark and from the fact that in order to go from B(A)
to B'(A), one replaces the *;’s by the elements of S(A) of sort i taken in
increasing order);

e the first biletter in B(A) is of the form (1;,0).

We then deduce that G(f4) is a rooted tree, having root 0 and in which all edges
are directed towards 0, which proves that f4 belongs to EndﬁR[n].

We define the skeleton of fa, denoted by S(f4), in the following way: S(f4)
includes the elements of all cycles in f4 and all paths starting from elements
belonging to Min([n]) and ending either at 0, or in a cycle in f4 (u € S(fa) if
there is k > 1 such that f%(u) = u or if there are k > 0 and i € [d] such that
u= fA(1).

Property 1 An element u ¢ Min([n]) appears k times in B(A) (in the bottom
line of B(A)) if and only if there exists a maximal subset {i,...,ix} of [d] such
that for j =1,... ,k,u € Cj;.

Property 2 An element u belongs to S(f4) if and only if it belongs to S(A), and
its degree dg(s,)(u) in S(f4) is equal to its degree dg(4)(u) in S(A) (in particular,
the leaves of S(f4) are the leaves of S(A)).

2.3 From endofunctions to F-rooted trees.

Let f € End}%R[n] be an endofunction. The first step of the transformation of f
into a F-rooted tree Ay in F(Ar)[n] consists in isolating its skeleton S(f). Let f
be the endofunction f4 in Figure 4.

1 4 6
03 (P=——o0-—0-—0I
-—e]

Figure 5: The skeleton of f.

We recall that for each element u of S(f), we denote by ds(s)(u) the degree of u
in S(f). We then create a set P(f) and a multiset M(f):

e P(f) contains all the elements of S(f) different from 0,

e for each u € S(f), M(f) contains k occurrences of u if and only if there are
k elements v in S(f) such that f(v) = u (i.e. dg(s)(u) = k).

In our example we have M(f) = {0,0,61,42, 52,52, 13,23,53,73} and P(f) =
{1, 61, 12,42, 52,13, 23,53, 73, 14}. Now let | be the number of leaves in S(f) and
liy,- .., 1; these leaves, with iy < --- <4, (here, [ = 3,4, =1, i3 = 2 and i3 = 4).
We perform the following transformations on the skeleton of f (the other edges of
f are not modified):

e for j from 1 to /, let u = 1;; and repeat
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1. let v be the greatest element in P(f) of the same sort as u,
2. suppress in f the edge f(v) < v and add the edge f(v) + wu,
3. suppress v of P(f), one occurrence of f(v) in M(f), and let u = f(v),

as long as u # 0 and u ¢ M(f).

We then have to show that the structure Ay obtained in this way is a F-rooted tree.
By definition of the skeleton of an endofunction, and from the fact that the only
modifications made on f to obtain Ay concern its skeleton, it suffices to show that
S(f) is transformed into a directed rooted tree with root 0 and in which all edges
are directed towards 0. This comes from the fact that for each step j = 1,..., [ the
previous algorithm creates a path starting at 1;; and ending either at 0 (at least
one of the paths created in this way ends at 0), or at an element which also belongs
to a path created during a subsequent step (in our example, we create successively
the paths 0 « 73 « 53 (—‘11,0(—23(—-52(—13(— 15 and 52 + 45 «+ 6, (—14).
Finally, it remains to verify that A;, = A and that f4, = f. It is a consequence
of Properties 1 and 2 and of the following facts:

o during the transformation of A into f4, we replace all elements *; of B(.A)
by the elements of S(A) of sort j taken in increasing order;

o during the transformation of f into A¢, we remove from P(f) the elements
of sort j in decreasing order.

By construction, this bijection has the property (also verified in the bijection
of Goulden and Kulkarni [12]) that the structure of the fibers of the elements is
preserved. We will make use of this property of fiber structure preservation in the
next section.

Property 3 Let f be an endofunction in End g[n] and u any element of {0}U[n].
For all i € [d], the restriction of f~!(u) to the elements of sort ¢ and the restriction
of the fiber of u in Ay to the elements of sort ¢ have the same cardinality.

3 Rooted trees with a given edges partition

In this last section, we apply the previous bijection to the enumeration of rooted
trees having a given edges partition. The results in this section are already present,
implicitly or explicitly, in [13, 10]. However, the simple combinatorial proofs we give
here illustrate well the fact that restricted partial endofunctions are structures that
are easier to describe and enumerate than rooted trees, whence one of the interests
of a bijective proof of Lagrange-Good’s formula.

Let M be a square matrix of size (d + 1) x (d + 1), M = (m; ;)o<i j<d, and
A a F-rooted tree over [n]. We say that M is the edges partition of A if there is,
in A, m;; (resp. mip) edges (recall that all edges are directed towards the root)
going from an element of sort ¢ to an element of sort j (resp. to 0). We say that
a matrix M = (m; j)o<i j<d is a valid edges partition for [n] if it verifies that for
all j € [d], mo; = 0, and for all 7 € [d], Z?:o m;; = n;. We denote by m; the
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vector corresponding to the it" column (mg;,my ;,... ,mq4;) in the matrix M and
M! = [], ; m;;!. Moreover, we denote by F(Ar)[n],, the set of F-rooted trees
over [n] having M as edges partition. We naturally extend the notion of edges
partition to endofunctions and we denote by End}{’R[n] u the set of endofunctions
having M as edges partition.

Proposition 1 Let M be a a valid edges partition for [n] and 6(M) the matriz
(6:,5mi — My j)1<i,j<d’

d
(ARl = det(6(00) P (Pl [T 1B Il (9)

]
Proof. By virtue of the bijection between F-rooted trees and endofunctions de-
scribed in the previous section, and by Property 3 (fiber structure preservation),
we have F(AR)[n],, ~ Endgg[n],,. In order to give an interpretation to the de-
terminant appearing in the right-hand-side of (5), we use the Matrix-Tree Theorem
for directed graphs (see [11, Section 3.3.24] for example):

o let A = (A ;j)1<i,j<m the adjacency matrix of a directed labelled graph G
having m vertices: the number of directed spanning trees of G having root
¢ € [m] in which all edges are directed towards c is given by

m
det ({5i,j Z /\i,k} - Ai,j) .
k=1 1<4,j<m,i#c,j#c

Let M be a valid edges partition for [n], and 7 a rooted tree over {0} U [d]
compatible with M (there cannot be an edge from ¢ to j if m; ; = 0). To compute
the number of endofunctions f in Endj g [n] having 7 as graph of sorts, we note
that for ¢ € [d], if 7 has an edge from 7 to j (j € {0} U[d]), we have

m;o,--- ,m,»,j_l,mi,j — l,mi,j+1,... y M4, d n; mioy--- yMy 5y oo ,My 4

choices for the sort of the images of the elements of sort ¢ different from 1;, while
for 1;, the sort of its image f(1;) is fixed by T (its image is of sort j). We deduce
that the number of endofunctions of Endg g[n],, over [n] having T as graph of
sorts is

d .
IT me (Hnii(mio_’ff ) IR:“[min) Flmoll. (©)

(L.)ET =1

Now, let Ty be the set of rooted trees over {0} U [d] rooted at 0 that are com-
patible with M. By the Matrix-Tree Theorem we can say that det (6(M)) =

> TeTu (H(i’j)eﬁr m,v,]-) , which, combined with (6), let us deduce that

d .
[End g lnl| = det (3(31)) (H (s ™ ) [min}) [Flml,

=1
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which implies (5). m]

We then immediately deduce a combinatorial proof of a version of Lagrange-
Good’s formula due to Goulden and Jackson [13] (see also [11, Section1.2.13]) and
used, among other, in [13, 10].

Corollary 1 Let F(x), Ri(x),...,R4(x) be d + 1 multivariable formal power se-
ries such that R;(0) # 0 and A;(t) = t;R;(A(t)) for i € [d]. Then we have

d

d
11 ;1") 3 det (5(M)) (H[x'"*JRi(x)"i) ™| F(x),
: M =1

=1

[t"]F(A(t)) = (

the sum being taken over all valid edges partitions M for [n].

A F-rooted tree over [n] is an ordered (resp. unordered) rooted tree, with
root of sort k, if the fiber of 0 only contains one element, of sort k, and if the fiber
of every element different from 0 is embedded into a structure of totally ordered
set L (resp. unordered set E). A matrix M is a valid edges partition for rooted
trees over [n] having root of sort & if and only if M is a valid edges partition for
[n], mro = 1 and for all i € [d] different from k, m; o = 0. For i € [d], let us denote
g = Y%, mij, and, for a matrix P, cofy x(P) the determinant of P where the
kth line and the k** column have been deleted.

Corollary 2 Let M be a valid edges partition for rooted trees over [n]. The number
of multisort ordered rooted trees over [n] having root of sort k and M as edges
partition is

(n+q-1)!
—r (M
The number of multisort unordered rooted trees over [n] having root of sort k and
M as edges partition is

COfkyk (6(M))

a(p — 1)!
COfk,k(é(M))%- (8)
Proof. These results are direct consequences of Proposition 1 and of the following
remark: by definition, if A is a rooted tree having root of sort k, in the graph of
sorts of f4, the root 0 has exactly one son, and this son is the element 1;. So by
the Matrix-Tree Theorem, we can say that det(6M) = cofy x(6(M)).
Then it suffices to remark that the number of L™ -structures (we recall that
L is the species of totally ordered sets) over [m;] is

q_'(m +q; — 1)
1 ql b

to prove (7), and to remark that the number of E™ -structures (we recall that E
is the species of unordered sets) over [m;] is n* to prove (8). a
A matrix P = (p; j)i<i,; is called the degrees partition of a rooted tree A
on [n] if the number of elements of A of sort 7 having degree j (the degree of an
element is the number of elements in its fiber) is p; ; (this notion can naturally be
extended to the endofunctions). A matrix P is a valid degrees partitions for rooted
trees over [n] if it verifies that for i € [d], }°,5, pij =ni and g = 3° ;5 jpi ;-
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Corollary 3 Let M be a valid edges partition for rooted trees over [n] having root
of sort k, and P a valid degrees partition for rooted trees over [n]. The number of
multisort ordered rooted trees over [n] having root of sort k, M as edges partition
and P as degrees partition is

q'n!/(n —1)!

M'P! )

COfkyk (5(M))

The number of multisort unordered rooted trees over [n] having root of sort k, M
as edges partition and P as degrees partition is

gq'n!/(n — 1)! 1

cof,k (6(M)) 1\(4!13! 11 FTYR (10)
4,52

Proof. The proof of these two formulas is similar to the proof of Corollary 2. The

only difference is the fact that the number of L™ -structures on [mj] such that p; ;

elements have degree j is
n;
Dio, Di,ly, Pi2y---
O

By noticing that ordered rooted trees are asymmetric structures, we obtain,
from the two previous corollary, the formulas for the corresponding problem for
unlabelled ordered rooted trees, by dividing (7) and (9) by n!.

4 Conclusion

In this paper, we presented a simple bijective proof of the multivariable Lagrange-
Good’s inversion formula and we illustrated its usefulness in the problem of the
enumeration of multisort rooted trees. Using the same kind of reasoning (but with
some variations), we are able to give a combinatorial explanation on two formulas
enumerating m-ary cacti (a family of planar maps involved in the classification of
complex polynomials, see [3] for example) and to deduce from this explanation a
uniform random generation algorithm for these structures [4, 5].

However, there is a problem we were not able to solve: design a proof of
the arborescent form of the Lagrange-Good’s formula involving unlabelled struc-
tures and ordinary generating functions. Among all the proofs of the multivariable
Lagrange-Good’s formula, as far as we know, the only “unlabelled proof” is due
to Chottin and is limited to the case of two variables series (d = 2) [6]. Such a
proof would be of great interest, especially in the design of exhaustive generation
algorithms of multisort unlabelled combinatorial structures (like cacti for exam-
ple). We can think to solve this problem by using the theory of linear species [14].
Indeed, in [14], Joyal gives, in the case of one variable series, an unlabelled analog
to the proof of Labelle using linear species. It would be interesting to extend this
proof to the multivariable case.

Acknowledgments. We thank Gilles Schaeffer for many fruitful discussions.
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Counting paths on the slit plane (extended abstract)
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Abstract. We present a method, based on functional equations, to enumerate paths on
the square lattice that avoid a horizontal half-line. The corresponding generating functions
are algebraic, and sometimes remarkably simple: for instance, the number of paths of
length 2n + 1 going from (0,0) to (1,0) and avoiding the nonpositive horizontal azis
(except at their starting point) is Cant1, the (2n + 1)th Catalan number.

More generally, we enumerate ezactly all paths of length n starting from (0,0) and
avoiding the nonpositive horizontal azis. We then obtain limit laws for the coordinates
of their endpoint: in particular, the average abscissa of their endpoint grows like /v (up
to an ezplicit multiplicative constant), which shows that these paths are strongly repelled
from the origin.

We derive from our results the distribution of the position where a random walk,
starting from a given point, hits for the first time the horizontal half-line.

1 Introduction

In January 1999, Rick Kenyon posted on the “domino” mailing-list the following
e-mail:

“Take a simple random walk on Z?2 starting on the y-axis at (0,1),
and stopping when you hit the nonpositive z-axis. Then the probabil-
ity that you end at the origin is 1/2.

Since this result was obtained from a long calculation involving irra-
tional numbers, I wonder if there is an easy proof? By way of compar-
ison, if you start at (1,0) the probability of stopping at the origin in

92— \/5‘77

This mail led Olivier Roques, a graduate student at LaBRI, to investigate the
number of such walks of fixed length: he soon conjectured that exactly 4”C,, walks
of length 2n+1 go from (0, 1) to (0,0) without hitting the nonpositive z-axis before
they reach their endpoint, where C, = (**)/(n + 1) is the nth Catalan number.
Similarly, he conjectured that, if the starting point is chosen to be (1,0), then the
number of walks is even more remarkable, being Ca,,41. Let us mention that these
conjectures directly imply Rick Kenyon’s results.

We attack them by studying the problem in its full generality: denoting by
ai,j(n) the number of n-step walks starting from (0,0), ending at (7, j), and avoid-
ing the forbidden half-axis (walks on the slit plane), we give a closed form expres-

101



102 Mathematics and Computer Science

<

[ )

ﬂ

——e- 4 - - »

Figure 1: A path on the slit plane joining (0, 0) to (1,0).

sion for the generating function

S(x,y;t) =D D> aij(n)z'y’t",

i€Z jEZ >0

which turns out to be algebraic. Our approach is based on a functional equation,
which is trivial to establish, but tricky to solve (Section 4).

From this three-variate generating function, we can compute the generating
function for walks ending at a prescribed position (z, j): this proves O. Roques’s
conjectures (Section 2), and allows us to study R. Kenyon’s question for any start-
ing point (Section 3). This gives the (bounded) solution of a discrete Dirichlet
problem on the square lattice, with boundary conditions on the negative z-axis
(see [12, Section 1.4] for definitions). We also study the asymptotic properties of
n-step walks on the slit plane: for instance, we prove and quantify their tran-
sience (the point (1,0) is only visited with probability 2 — \/2). We show that
their endpoint lies, on average, at distance \/n from the origin. More precisely,
this endpoint, normalized by /n, converges in law towards an explicit distribution
(Section 5).

Our method can be applied to similar problems: in particular, we can change
the “forbidden” axis into the half-line x = y, r < 0, as explained in the full version
of the paper [3].

Let us mention that two simple proofs of the Ca,4; result have been given
recently [2, 4], the former being bijective. Moreover, the series S(1, 1;¢) has already
been studied in the literature [12, Chap.2] but, to our knowledge, only asymptotic
results had been obtained so far. See also [6] for numerical simulations.
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2 Main results

2.1 The complete generating function

We consider paths (or walks) on the square lattice made of four kinds of steps:
north, east, south and west. Let n > 0, and (¢,5) € Z x Z \ {(k,0) : k < 0}. We
denote by a; j(n) the number of walks of length n on the square lattice that start
from (0,0), end at (¢,7), and never touch the horizontal half-axis {(k,0) : £ < 0}
once they have left their starting point: we call them paths on the slit plane. Fig. 1
shows such a walk, with (7,5) = (1,0) and n = 59. We denote by a(n) the number
of paths of length n on the slit plane, starting from (0,0), regardless of their
endpoint.

Let S(z,y;t) be the generating function for paths on the slit plane, counted
by their length and the position of their endpoint:

S(z,y) = z Z Z ai ;(n)z'yit,

i€EZ JEZ n>0
= 1+tlx+y+7)+t2(2® + 2zy + 227 + Ty + 75 + y° + §°)
(52 + 2° + 4y + 47 + v° + 7° + 3zy? + 3x5% + 32%y + 3227
22y + 225 + 23y? + 225°)t3 + O(tY)

1l

S(z,y;t)

+
+
with £ = 27!, = y~!. We shall prove that this series is algebraic of degree 8 over

the field of rational functions in z,y and ¢.

Theorem 1 The generating function S(z,y;t) for paths on the slit plane is

(1-2t(1 +2) +vI=a)""? (1 +2t(1 - ) + VT T %)/

2l -tz +z+y+ 7))

S(z,y;t) =

This series is algebraic of degree 8. When x = y = 1, it specializes to

a (A+ VT =402 + V1 +41)'/2
S(1,1;¢8) = ) a(n)t oy 2(1_;)3/4 ) ,

n>0

so that the asymptotic growth of the number of paths of length n on the slit plane

18
Vi+v2
G(TL)NWZITL 1/4.

In other words, the probability that a random walk on the square lattice, starting
from (0, 0), has not met the forbidden half-line after n steps is asymptotic to cn~1/4
with ¢ = V1 + v/2/2/T(3/4). The decay in n~'/* was known [10, 12, p.71], but
the details of the asymptotic behaviour seem to be new.
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2.2 Paths ending at a prescribed ordinate

We would like to enumerate paths on the slit plane ending at a prescribed point
(7,7). Let
Sii(t) =Si; = Z a; j(n)t"
n>0

be the corresponding generating function. This series is obtained by extracting the
coefficient of z'y? from S(z,y;t). As i and j belong to Z, rather than N, this is not
an obvious task. In particular, let us underline that the algebraicity of S(z,y;t)
does not imply that S; ;(¢) is algebraic. This is clearly shown by the enumeration of
paths starting from (0, 0) in the (unslit) plane. The complete generating function
is 1/[1 —t(z + Z + y + §)]. It is rational, hence algebraic. However, for i, j > 0, the
coefficient of ziy’ in this series is

Z <2m+i+j) (2m+i+j)t2m+,-+j
m>0 m m+1
which is transcendental: the coefficient of t™ grows like 4" /n, up to a multiplica-
tive constant, revealing a logarithmic singularity in the generating function that
implies its transcendence (see [9] for a discussion on the possible singularities of
an algebraic series).
In constrast, we shall prove that for any ¢ and j, the series S; ;(t) is algebraic.
Our first step will be to extract from S(z,y;t) the coefficient of y7. Before
we state our result, let us introduce a few notations.

Notations. Given a ring L and n indeterminates z1,...,z,, we denote by

o Lz1,...,z,] the ring of polynomials in z, ..., T, with coefficients in L,

o L[[z1,...,xy,]] the ring of formal power series in z, ..., T, with coefficients
in L,
and if L is a field, we denote by

e I(z1,...,z,) the field of rational functions in z,...,z, with coefficients
in L.

It will be convenient to express the series S; ;j(t) in terms of the following

power series in ¢:

Vv1i+4t -1
u = \/—1-—-{_:-4t—+1 = Z(24ncn - C-’_)n+1)t2n+l.
n>0

Note that u is quartic over Q(¢):
u(l — u?)
(1+u?)?’

This equation allows us to write any rational function in ¢ as a rational function
in u. Moreover, the generating function of Catalan numbers,

11— T4t -y 1 (2n)tn
>0 n

2t n+1

C(t)
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satisfies

1+ u? 1+ u?
C(-t) =

1-u’ (=) 14+u

so that Q(u) = Q(t,v/1 — 4t,+/1 + 4¢). Also, let

A(z) = [1 - 2(C(t) - D][1 + 2(C(~t) — 1)] = (1_w i*u) <1~m :5)_

and tC(t)C(-t) = u,

C(t) =

Corollary 2 Let j € Z. The generating function for paths on the slit plane ending
at ordinate j s

: M(z)’
Sj(z7t) = ai,j(’n).’l?ltn = —
iezz,r;zo VA(z)
where
M(z) = M(z;t) = -tz +2) — VI -tz +z+ [0 -t +7 - 2)]

2t

The generating function Sj+ (z;t) for paths on the slit plane ending at ordinate
j and at a positive abscissa is of the form
9(z,u)

5w = Z szt = fle,w) + L2,

where f(z,u) and g(z,u) are Laurent polynomials in x with coefficients in Q(u).
Similarly, the generating function Sj— (z;t) for paths on the slit plane ending at
ordinate j and at a non-positive abscissa is of the form

Si(mt)= Y aij(n)it" = S (z;t) = f(z,u) + g(z,u)VA®@),
i<0,n>0

with the same conditions on f(z,u) and g(z,u). The series Sf and S; can be
computed explicitely. For instance,

S§(z;t) = Al(m) -1,
o 1[1-tz+7) 1 _
_ 1 1 RV/NE:
Sr@t) = 5 [t(l Fuz) u(z)

Sketch of the proof. We start from the expression of S(z,y;t) given in Theo-
rem 1:

t\/A(Z)
l—te+z+y+9)]

and convert the denominator 1/[1 — t(z + Z + y + §)] into partial fractions of y.
[

S(z,y;t) = "
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2.3 Paths ending at a prescribed position

The series S]?L (z;t) and S} (z;t) can now be expanded in z (resp. Z), and their
form implies the following result.

Corollary 3 For all i and j, the generating function S; ;(t) = > a;;(n)t" for
paths on the slit plane ending at (i,7) belongs to Qu) = Q(t, /1 — 4t,/1+ 4t),
and can be computed explicitely. It is either quadratic, or quartic over Q(t). In
particular,

1- \Y 1-— 16t2 — Z 4110 t2n+1

u
Soalt) = 175 = 8t

n>0

and

uw(l+u?) 2—-V1-4t—1+4t an+1
1-u? 4t - Zc2n+lt ’

n>0

S10(t) =

as conjectured by O. Roques. Some other values are

u? VI+dt—-/1-4t-4t 1 on
S—l,l(t) = T = 8F = 5X:C’2nt ,

n>1

w (2 —u?)  1-241% +4t/1+ 4t — 4t/T — 4t — /1 - 1612

Sialt) = (1—u2)? 322
= S (@ Ch + Con/2)E".
n>1

Proof. Expanding in = (or Z) the series Sg (z;t), Si (z;t) and S (z;t) given in
the previous corollary provides the expressions of Sp 1, S1,0, S—1,1 and Si,;. In
theory, the series S;; could be rational, but this can be ruled out by a simple
asymptotic argument on the numbers a; j(n).

[
Using our results, we can actually enumerate walks starting from any point
of the nonpositive z-axis. This will be useful in the following section.

Corollary 4 Let aEk]] (n) be the number of paths of length n that go from (—k,0)
to (i,j) and do not meet the nonpositive horizontal azis once they have left their
starting point. Let

D; j(z;t) = Z aE{c]]-(n)wkt"

k,n>0

be the corresponding generating function. Then the series D; j(x;t) can be com-
puted from the partial sections

Sti(@it) = 2k Sivk;(t)
k>0
through the following relation, valid for any i, j:
S;':j(z'; t) = D; j(z;t) + .z'S:j(z; t)D; o(z; t). (1)
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Proof. Let P be a path joining (0,0) to (i + k, j) in the slit plane. Such paths are
counted by S;f;(z;t). If P does not meet the segment [1,k] = {(¢,0) : 1 < £ < k},
then P is isomorphic to a path joining (—k,0) to (i, ) in the slit plane. This gives
the term D; j(x;t) in the right-hand side of (1). Otherwise, let (¢, 0) be the leftmost
point of [1, k] that belongs to P. We can split P into two factors: from (0,0) to
the last time (¢,0) is reached, we get a path that is isomorphic to a path going
from (=€ + 1,0) to (1,0) in the slit plane; this corresponds to the coefficient of
zt~1in D, ¢(z;t). The second factor goes from (0, ¢) to (i +k, j) and is isomorphic
to a path going from (0,0) to (i + k — £, j) in the slit plane; it corresponds to the
coefficient of z*~¢ in S;L ;(z;t). This completes the proof of Relation (1).

]

2.4 'Walks on the slit plane are transient

It is well-known that the random walk on the square lattice is recurrent: any
given point (7, j) of the lattice is visited by the walk with probability 1. In more
enumerative terms, the proportion of walks of length n visiting (¢, j) tends to 1 as
n goes to infinity. This is no longer the case for walks on the slit plane.

Corollary 5 Let b(n) denote the number of walks of length n on the slit plane
that visit the point (1,0). Then, as n goes to infinity,
b
——(n) —2-V2<1.
a(n)
Proof. A walk visiting (1,0) can be seen in a unique way as the concatenation
wyws of a walk wy going from (0,0) to (1,0), and a walk ws starting from (1,0),
that not only avoids the horizontal half-axis but also the point (1,0) itself. This
implies that
D b(n)t" = S1,0(t)S(1, 15 t),
n

and the result follows, as S; o(1/4) = 2 — V2.

3 The hitting distribution of a half-line

The above results allow us to solve a number of probabilistic questions “a la
Kenyon”. Let (i,5) be a point of Z? not belonging to the forbidden half-axis.
A random walk starting from (¢,7) hits this half-axis with probability 1. The
probability that the first hitting point is (0,0) is
Di,j = a—l’jp(l—n) = Si,]'(l/‘l).
n>0

More precisely, a; j(n)/4™ is the probability that this event occurs after n steps.
Corollary 3 implies that p; ; € Q[v/2]. In particular, we find py; = 1/2 and p; o =
2 - \/5, as stated in R. Kenyon’s e-mail.



108 Mathematics and Computer Science

More generally, given k > 0, one can ask about the probability p; (%] that the
first hitting point is (—k, 0). Using the notations of Corollary 4,

3 pllat = D; j(z;1/4),

k>0

and this series can be computed explicitely.

Let us, for instance, derive the distribution of the hitting abscissa for a walk
starting from (1,0). Using Relation (1) with (¢,7) = (1,0), we express D o(z;1)
in terms of S (z;t) = S (x;t)/=:

Sq (z;1)

1
D i) = — ————.
S TS W

The value of S (z;t) is given in Corollary 2. Hence the probability distribution of
the hitting abscissa for random walks starting from (1,0) is

Sg (2;1/4)
1+ S (x;1/4)

%[1—\/(1—1) (1—z<\/§—1)2)J.

Observe that the smallest singularity of this series is at £ = 1, and that p[k]

decays like k=3/2 as k — oco. This asymptotic behaviour actually holds for all
starting points:

1
Zp[k] ko DI,O(-'L'; 1/4):_
k>0 z

Proposition 6 For any starting point (i, j), the probabilities p[ I decay like k—3/?
as k goes to infinity.

The proof is based on Corollaries 2 and 4. Equivalently, the study of the dominant
singularity of D; ;j(x;1/4)/(1 — x) shows that the probability that the hitting ab-
scissa is smaller than —k decays like k~1/2. This is related to the (already known)
fact that the probability that a random walk starting from the origin reaches a
point at distance k of the origin before it hits the horizontal half-line also decays
like k~1/2 [10, 12, Chap.2).

4 Derivation of the complete generating function

4.1 Functional equations

We obtain a functional equation for the series S(z,y;t) defined in Section 2.1 by
saying that a path of length n is obtained by adding a step to another path of
length n — 1. However, when generating paths via this procedure, one must be
careful not to produce paths ending on the forbidden half-line. This gives:

S@,y)=1+tlx+&+y+7)S(x,y) —tT —tS1,0 — 2tS[ (),



Counting paths on the slit plane 109

where, as above,

Sio=Y ao()t® and S;(z)= Y ai(n)rit".

n>0 1<0,n>0
That is,
l-tlz+Z+y+79)]S(z,y) =1—-tZ+ S1,0 + 257 (2)). (2)

Observe that this equation is equivalent to a recurrence relation defining the
numbers a; j(n) by induction on n: hence, this equation completely determines the
series S(z,y), and in particular its sections S; o and Sy ().

However, we found some difficulties working with Eq. (2), because S(z,y)
involves simultaneously positive and negative exponents of y. Instead, we are going
to work with the series

T(z,y;t) =T(x,y) = Zalj n)x lelt"

,3,n

which, by symmetry of the model, contains as much information as S(z,y) itself.
Again, one writes easily a functional equation for the series T'(z,y):

l-tlz+z+y+9]T(z,y) =1—t[T+S10+25 () + T —y)Se(x)], (3)

with .
So(.’lf) = Z ai,o(n)w’tn.
i>0,n>0
The combinatorial part of the proof is now achieved. What we shall do from
now on to solve Eq. (3) resorts to algebra.

4.2 First application of the kernel method

Let us call K(z,y) :=[1—t(z + Z + y + )] the kernel of the functional equation
(3). The principle of the kernel method is to cancel the kernel so as to obtain
certain relations between the sections that occur on the right-hand side of the
equation. See (7, 8, 11] for early uses of this method, and [1, 5] for more recent
developments.

Here, the kernel K(z,y), as a rational function of y, it has two roots. One of
them is a formal power series in ¢ with coefficients in Z[z, Z], and will be denoted

M(z):

1-tz+2) — /(1 -t(z+1)) — 42
2t

Observe that T'(z, M (x)) is a well-defined series belonging to Z[z, Z|[[t]]. Let us
replace y by M(z) in Eq. (3): the kernel vanishes, and we obtain

M(z) = = t+(z+2) >+ (2 +3+22) 3 +0(t4).

0=1—t 2+ S0+ 25 (z) + (Vtx—) - M(x)) So(x)] . (1)
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4.3 From linear to algebraic equations

The series M(z) is defined as one of the roots of the kernel K(z,y) =1 — t(z +
Z+y+7y). We eliminate M (z) between (4) and the equation K (z, M (z)) = 0 and
obtain

[1-t(z+7+2)][1-t(z+2—2)]So(z)> —4t2S; (z)?

+4t(1 -tz — tS10)S; (z) — (1 — tT — tS10)* = 0.

Now, remember that Sy(z) is a formal power series in ¢ and z, while Sy (z) is a
formal power series in ¢t and Z. Thanks to the absence of terms involving simulta-
neously a series in x and a series in Z, we can easily extract the nonnegative part of
the above equation, that is, the terms in z* with 3 > 0. This forces us, however, to
introduce the generating function Sp ; for paths on the slit plane ending at (0, 1).
We obtain:

[1-t(z+Z+2)][1-t(x+5—2)]So(x)?—4t2S) 0S0,1 —(1—-2tSp 1 )2~ (1—tZ—1S1 0)2+1 = 0.
(5)

The extraction of the negative part yields, after dividing by 4t:

—tS7 (2)* + (1 — tZ — t51,0)Sy (x) + So1[tSo.1 +tS10 — 1] = 0. (6)

4.4 Second application of the kernel method

Let us focus on Eq. (5). Its kernel [1 — t(z + Z + 2)][1 — t(z + & — 2)], as a rational
function of z, has four roots. Two of them are formal power series in ¢. With the
notations used in Section 2.2, these two roots are

1+u 1-u
T and 1-C(-t)=u TTa

Cit)-1=u

Replacing z by these roots in Eq. (5) provides two relations between the unknown
functions S ¢ and Sp 1, from which we compute:

u
So1 = — =
’ 1—u? ’ 1—wu?

4.5 The complete solution

We now replace S; o and Sp,; by their values in Egs. (5) and (6). This yields, with
the notations of Section 2.2,

1

VA=)

So(z) =

and
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Having computed Sy (z), Sy (z) and Si 0, we can now express the series S(z, y)
and T'(z,y) using Egs. (2) and (3). In particular, we obtain

t\/A@)

l-tlz+Z+y+7)

S(z,y;t) = -

which completes the proof of Theorem 1.

5 The limit distribution of the endpoint

We wish to describe the distribution of the endpoint of a random path in the
slit plane. More precisely, when all paths of length n are taken equally likely, the
endpoint becomes a random variable (X,,Y,). With the notations used in the
previous sections, 4

[zyt")S(z,y; 1) _ ai(n)
(t"]S(1,1;t) a(n)

Pr((Xn,Yn) = (i,5)) =

By expanding the series S(z,y;t), we can plot the histograms of X,, and Y,,. This
suggests to normalize by /n (Fig. 2) and that the normalized random variable
(Xn/v/n,Y,/\/n) converges in distribution.

Figure 2: The convergence of /n Pr(X, = i) and v/nPr(Y,, = i) against i//n, for
n=2.3,...,10,20, 30,...,100.

We have, indeed, proved the existence of a limit law, and obtained a (big)
expression for its density. However, comparing with the corresponding continuous
problem (a Brownian motion conditioned so that it avoids a half-line) suggests
that this expression can be simplified. Let us simply state a result on the average

abscissa of the endpoint:
r'(3/4)
">~ ra vV

The behaviour in /n had been observed numerically [6], and is also known to hold
in the corresponding continuous model.
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Abstract. Let L be a contezt-free language on an alphabet X = {z1,z2,...,zx} and n
a positive integer. We consider the problem of generating at random words of L with re-
spect to a given distribution of the number of occurrences of the letters. We consider two
alternatives of the problem. In the first one, a vector of natural numbers (ni,n2,...,ng)
such that ny + na + -+ + ng = n 1s given, and the words must be generated uniformly
among the set of words of L which contain ezactly n; letters z; (1 < i < k). The second
alternative consists, given v = (vi,...,vx) a vector of positive real numbers such that
vy + -+ vr = 1, to generate at random words among the whole set of words of L of
length n, in such a way that the expected number of occurrences of any letter z; equals
nv; (1 <1 < k), and two words having the same distribution of letters have the same
probability to be generated. For this purpose, we design and study two alternatives of the
recursive method which is classically employed for the uniform generation of combina-
torial structures. This type of “controlled” mon-uniform generation can be applied in the
field of statistical analysis of genomic sequences.

1 Introduction

The problem of uniform random generation of combinatorial structures has been
extensively studied in the past few years. To our knowledge, random generation
according to a given distribution was much less treated (except for random num-
bers, for which one finds an abundant literature —see [3] for example). We are
interested here in a problem of this type. Let L be a language on an alphabet
X = {z1,z2,...,2k}, and n an integer. Let us denote L, the set of words of L
of length n. The problem consists in generating words of L,, while respecting a
distribution of the letters given by a vector of k positive numbers. We consider
two alternatives:

1. Generation according to ezxact frequencies. The distribution of the num-
ber of letters of any word must respect exactly a given vector of integers

(n1,...,nk). In other words, we generate words uniformly at random in a
subset of L,, constituted of all the words w € L,, such that |w|,, = n; for all
i€ {L,2,...,k}.

2. Generation according to expected frequencies. The words must respect on
average a distribution given by a vector v = (v1,...,v;) such that v; +...+
v = 1. More precisely, we generate words at random in such a way that

113
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(a) any word of L,, has a positive probability to be generated;

(b) for all ¢ € {1,2,...,k}, the expected number of occurrences of z; in
the words is equal (or asymptotically equivalent) to nwv;: if p(w) is the
probability of the word w to be generated by the algorithm, we must
have 3° ¢, [wle:p(w) ~ nvi;

(c) two words having the same distribution of letters have the same prob-
ability of being generated.

These generation schemes lead to applications in genomics. An important
problem in the field of analysis of genomes consists in determining whether some
properties observed in genomic sequences are biologically significant or not. The
main idea is as follows: if a property observed in natural sequences is really relevant
from a biological point of view, one should not observe it significantly in random
sequences. Thus for example, in order to evaluate the biological significance of
similarities between proteinic sequences of different organisms, one compares the
scores of their alignments with scores obtained on random sequences [15, 14].
Similarly, the comparison of the frequencies of certain motifs in natural and random
sequences can contribute to determine if these motifs are biologically relevant
[7, 22, 23].

Traditionally, sequences are generated according to purely statistical consid-
erations. The fundations of these models and the first algorithms of generation
were described in [8]. The parameters which are taken into account are the fre-
quencies of nucleotides (letters in DNA) or oligonucleotides (factors) of fixed length
l observed in a natural sequence which is taken as reference. Thus for example,
for [ = 2 and the natural sequence aatgtaacgt, the frequencies are aa = 2, at = 1,
tg =1,gt =2,ta =1, ac = 1 and c¢g = 1. Random sequences are generated
with respect to these frequencies, either exactly (generation according to exact
frequencies) or in average (generation according to expected frequencies).

In this last case, the generation is carried out according to a Markov chain of
order [ —1: the sequence is generated letter by letter and, at any step, the probabil-
ity of generating a given letter depends on the ! — 1 previous letters. The process is
clearly linear according to the length of the sequence. In fact, in this model, recent
works [17, 20] allow to compute analytically some parameters (expected number
of occurrences, variance, etc) concerning the frequencies of appearance of given
motifs in random sequences. This allows to avoid the generation of a large num-
ber of sequences, and to obtain exact values of the required parameters. However,
random generation remains useful when the studied properties do not relate to
relatively simple motifs.

Random generation according to exact frequencies is a more difficult problem
if one wishes the generation to be uniform among all the allowed sequences. This
problem is solved in linear expected time in [13]. One of the main ideas is the fact,
stated in [8], that it can be reduced to the generation of a random Eulerian trail
in a directed graph. An implementation of the algorithm is presented in [1].

These methods do not handle syntactic constraints: the words are generated
in X*. But it is of interest to generate words in particular languages because



Random generation of context-free languages 115

genomic sequences can be syntactically constrained. In this context, the aim of
our work is to generate more “realistic” random sequences by taking into account
syntactic criteria as well as statistical ones.

Our approach is based on the so-named recursive method, which was initi-
ated by Nijenhuis and Wilf [18] and then generalized and formalized by Flajolet,
Zimmermann and Van Cutsem [9]. Section 2 is devoted to a short presentation of
this methodology within the framework of the context-free languages. We present
in section 3 a simple adaptation which allows to generate words in exact frequen-
cies of the letters. In section 4, we focus on generation according to expected
frequencies.

2 Uniform generation

The general methodology of uniform random generation of decomposable struc-
tures (which include context-free languages) is presented in detail in [9]. Some
variations which deal with the special case of context-free languages are studied
in [16] and [10]. We present here a simple version of the method. The reader will
find more powerful alternatives in the referenced papers.

The starting point is a non-ambiguous context-free grammar in Chomsky
Normal Form: any right member of a rule is either the empty word €, or a letter
of X, or a non-terminal symbol, or a product (concatenation) of two non-terminal
symbols. Moreover, any non-terminal symbol can be left member of at most two
rules; and in this case each right member is a single non-terminal symbol.

The first stage consists in counting words: for any non-terminal symbol T’
and for all 0 < j < n, the number T'(j) of words of length j which derive from T
is computed. This can be done by using recurrence relations that result directly
from the rules of the grammar:

T—oe = T0O)=1,; (1)
Toz = T1)=1; (2)
T—T|T" = Tm)=T'(n)+T"(n); (3)
T-T'T' = Tn)= > T'@®)T"@0"). (4)

n'+n''=n

Note that, since the generating series of any context-free language is holonomic,
these same coefficients can be calculated by using linear recurrences. This leads to
faster computations (see [10] for example).

This preprocessing stage is done only once, whatever the number of words
of size n (or less) than one wishes to generate. A random word is generated by
carrying out a succession of derivations starting from the axiom of the grammar.
At each step, a derivation is chosen with the appropriate probability. Suppose
for instance that, at a given step of generation of a word of length j, one has to
choose a rewriting rule for the symbol T. If T — T' | T", one chooses to generate
a word of length j either deriving from T" with probability 7"(j)/T (j), or deriving
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from T" with probability T"(j)/T(j). f T — T'T", one chooses an integer h
with probability T'(h)T"(j — h)/T(h), and then one generates a word of length
h deriving from of 7", concatenated to a word of length j — h deriving from T".
Details of the process are given in [9)].

The best algorithms derived from this 