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Preface 

Since the emergence of computers, Mathematics and Computer Science have 
been close partners. The boundary between these two sciences is not well defined, 
which leads to a very productive emulation. Wide areas are common to Mathe­
matics and Computer Science: analysis of algorithms, trees, combinatorics, opti­
mization, performance evaluation, discrete probabilities, computational statistics, 
... These common domains are what we call here Mathematics and Computer 
Science (MCS). Perhaps it is not the most appropriate name; we shall let the two 
communities eventually decide for a more convenient appellation. 

This book produces a collection of original articles, which reflect the state of 
the art of MCS. It is divided in five parts. 

Trees and Analysis 01 Algorithms. 
Antos and Devroye consider a binary search tree for an ordinary random walk; 
they prove that the asymptotic probability distribution of the height normalized 
by ffn is the Erd6s-Kac Renyi distribution. The paper of Chassaing, Marckett 
and Yor gives a simple but subtle proof for the limit law of the couple height­
width in the case of binary trees. The next two papers concern other aspects of 
binary search trees; Dekking, De Graaf and Mester study the positioning of arm 
nodes and foot nodes on the tree, and Drmota obtains the asymptotic expectation 
of the saturation level. Fill and Janson prove that the asymptotic distribution 
of the standardized random number of comparisons used by Quicksort has an in­
finitely differentiable density I whose derivatives I(k) have superpolynomial decay. 
Gittenberger generalizes results obtained by Panholzer and Prodinger for binary 
trees to a larger class of rooted trees, the simply generated trees. The paper of 
Jacquet, Szpankowski and Apostol is related to information theory; they consider 
a universal prediction algorithm for mixing sources and prove that this predictor 
is asymptotically optimal and that the prediction error is 0 (n- f ) for any £. > o. 

Combinatorics and Random Generation. 
The article of Bousquet, Chauve, Labelle and Leroux gives a new bijective proof 
of the multivariate Lagrange inversion formula; the proposed bijection is easier 
than former bijections to put into application, and leads to a combinatorial inter­
pretation of various enumeration formulas for rooted trees. Bousquet-Melou and 
Schaeffer present a method to enumerate paths on the square lattice that avoid 
a horizontal half-line; they prove that the corresponding generating functions are 
algebraic of degree 8 over the field of rational functions ~nd give new details on 
the asymptotic of the number of paths of lenght n. This nice result allows them to 
solve Kenyon's questions. The paper of Denise, Rocques and Termier presents two 
interesting alternatives of the recursive method for random generation of words of 
context-free languages; thanks to this approach, they can generate words accord­
ing to exact frequencies or expected frequencies. Merlini, Sprugnoli and Verri find 
a non abelian group structure for a subclass of generating trees; this is achieved 
via a correspondence with monic, integer proper Riordan Array. In their article, 
Pergola, Pinzani and Rinaldi introduce well-defined operations on the set of suc-
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cession rules, which allow the use of succession rules instead of generating functions 
in some combinatorial enumeration problems. 

Algorithms and Optimization. 
Two articles in this part deal with genetic algorithms. Berard and Bienvenue con­
sider a simplified context with finite population but develop a rigorous mathemat­
ical treatment, which leads to a detailed understanding of the effects of selection. 
They obtain the convergence in law of the normalized population and a large 
deviation principle. These results confirm numerical simulations and biological ex­
periments. Mazza and Piau consider the case of infinite population; the genetic 
algorithm is modeled as a discrete-time measure valued dynamical system. This 
Markov chain approach gives the asymptotic distribution and a large deviation 
principle. The article of Dror, Fortin and Roucairol tackles the deterministic prob­
lem of transporting nondedicated commodities from a set of suppliers to a set of 
customers with one vehicle of limited capacity. The authors give a VRP-like for­
mulation, the dimension of associated polytope and complex analysis of practical 
complexity. The last article by Metivier, Saheb and Zemmari introduces and anal­
yses a randomized algorithm to get rendez-vous in a graph. 

Performance evaluation. 
Ben Mamoun and Pekergin introduce a class of Markov chains on finite state­
space, which have a closed form solution to compute steady-state distribution; 
they also provide an algorithm to construct a bounding Markov chain in this 
class. Dayar produces an efficient iterative aggregation-disaggregation algorithm 
to compute the stationary vector of discrete-time stochastic automata networks 
that are lumpable. Delcoigne and De La Fortelle state large deviation principles 
for polling systems. The paper of Fayolle and Lasgouttes deals with a symmetrical 
star-shaped network comprising N links and such that all routes are of lenght 2; 
they are mainly concerned with policies that can be used to share the bandwidth 
of the links between active connections. A functional analysis approach is used to 
characterize the behaviour of the network. 

Other topics. 
This part contains articles on stochastic subjects, which either are relevant to sev­
eral previous parts (branching processes, generating functions, walk generations) 
or introduce new mathematical topics related to computer science (Brownian ex­
cursion, random sentences). The first three articles deal with branching processes. 
Geiger gives a new proof of Yaglom's theorem for critical Galton-Watson branching 
process. Liu presents an interesting survey on recent results concerning the branch­
ing measure, the exact Hausdorff measure and the exact packing measure, defined 
on the boundary of the Galton-Waltson tree. Locherbach's article concerns statis­
tical models for branching particle systems; an explicit version of the likelihood 
ratio process and local asymptotic normality are derived. Louchard and Rocques 
use tools from combinatorics, probability and singularity analysis to achieve a com­
plete asymptotic analysis of the cost of a Schroder walk generation algorithm; five 
different probability distributions are observed in the study. Malyshev introduces 
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a generalization of Gibbs distributions when the space (lattice, graph) is random. 
These generalized distributions are well suited to study local probability structures 
on graphs with random topology; tttis is a new connection between mathemati­
cal physics and computer science. Pemantle produces a nice asymptotic study for 
meromorphic generating functions; deep tools and nontrivial technics from ana­
lytic geometry, sheaf cohomology and Stein spaces theory are used. In what he 
calls a "speculative report", Spencer presents approaches to obtain asymptotic 
formula for the ultrahigh moments for Brownian excursion; the paper also con­
tains a conjecture and many indications for further research. Y cart and Rousset 
consider probability distributions on a set of sentences; they show a zero-one law 
for random sentences under these distributions. 

All the articles in the present book were also presented as talks at the collo­
quium on MCS in Versailles, September 2000. Some of the speakers of the collo­
quium are unfortunately not represented here. 

Although the content of this book is of high level, it also has a pedagogical 
interest; it is intended for a large public, including graduate students, in Mathe­
matics and in Computer Science. 

We hope this book will help to deepen the connections between Mathematics 
and Computer Science and will be followed by many others on MCS. 

D. Gardy, A. Mokkadem 
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Rawa Trees 

ANDRAS ANTOS Institute of Communication Electronics, Technical University of 
Budapest 1111 Stoczek u., Budapest XI, Hungary H-1521. antos(Qinf. bme . hu 
Luc DEVROYE School of Computer Science, McGill University, 3480 University 
Street, Montreal, Canada H3A 2K6. luc(Qcs .mcgill. ca 

Abstract. A rawa tree is a binary search tree for an ordinary random walk 0, 8 1 , 82, 83, 
... , where 8 n = L~=1 Xi and the Xi's are i.i.d. distributed as X. We study the height 
Hn of the rawa tree, and show that if X is absolutely continuous with bounded symmetric 
density, if X has finite variance, and if the density of X is bounded away from zero near 
the origin, then Hn/V'2ri tends to the Erdffs·Kac-Renyi distribution. 

Key words. Random binary search tree, probabilistic analysis, random walk, Catalan 
constant, limit distributions. 

Introduction 

Binary search trees are the most common data structures for storing infor­
mation. Given a sequence S of real numbers and a real number x, let L(S,x) 
denote the subsequence of S consisting of all numbers less than x and let R(S, x) 
be the subsequence consisting of numbers greater than x. In particular, if S = 
(So, Sl, ... , Sn) are real numbers then the binary search tree for these data is re­
cursively defined as follows: it is a binary tree with root So, with left subtree the 
binary search tree for L(S, So) and with right subtree the binary search tree for 
R(S, So). Binary search trees permit searching in time bounded by the height of 
the tree, where the height Hn is the maximal path distance from any node to the 
root (Knuth, 1973; Cormen, Leiserson and Rivest, 1990). 

The standard random binary search tree is based on an i.i.d. sequence 

(SO,Sl, ... ,Sn) . 

In that case, it is well-known (Robson, 1979, Devroye, 1986, 1987) that if the 
common distribution is absolutely continuous, then 

Hn '" 4.33107 ... log n 

almost surely as n --+ 00. Rather little is known about Hn when the defining 
sequence is not i.i.d. We define a running average model for a generic random 
variable X and an averaging parameter p E [0,00) as follows: let Xl, . .. , X n be 
Li.d., distributed as X, and define So = 0 and 

Xl + ... +Xn 
Sn = ,n 2: l. 

nP 

The running average random binary search tree is based on (So, Sl, ... , Sn). Within 
this model, there are only two choices of practical interest, p = 1/2 and p = 0: for 

3 



4 Mathematics and Computer Science 

p = 0, Sn is just a partial sum of all Xi'S with i ::; n, and we obtain a binary search 
for an ordinary random walk. We define a rawa tree Tn (or Tn(X)) as a binary 
search tree based on (50 ,51, ... , Sn) where So = 0, Sn = L7=1 Xi and Xl' ... ' Xn 
are Li.d. distributed as X. We study Hn for a large class of rawa trees. If X has 
nonzero mean, the random walk will drift off, and the binary search tree has an 
uninteresting shape and height Hn = 6(n). For this reason, and technical rea­
sons that will be encountered later, we restrict ourselves to nice random variables, 
which are random variables with the following properties: 

• A. X has a density, is symmetric about zero, and has a finite variance a 2 • 

• B. The density 1 of X is bounded: 11/1100 < 00. 

• C. 1 is bounded away from 0 in a neighborhood of the origin: lim infx.j.o I(x) > 
o. 

Random variables satisfying A only will be called simple. 

While the shape of Tn(X) indeed depends heavily on the distribution of X, 
it is quite interesting that for all nice random variables, the limit behavior for Hn 
is essentially identical. 

THEOREM. Let X be a nice random variable, and let Tn be a rawa tree. Then, for 
all x> 0, 

lim P { ~ < x} = .c(x) , 
n-+oo v2n 

where.c is the Erdos-Kac-Renyi distribution function 

if x > 0 
otherwise. 

Note that the limit law does not depend upon the distribution of X, yet the 
shape of the rawa tree depends upon the distribution in a substantial manner. Also, 
the Theorem does not exclude the possibility that there are symmetric random 
variables with different limit laws. Other questions of a more universal nature may 
be asked: for example, is EHn ~ O(Jn) for all X with a density? Is EHn = O(Jn) 
for all X with a symmetric density? Binary search trees extract a lot of fine detail 
from the underlying sequence in terms of permutations and other global properties. 
They thus help in the understanding of the behavior of sequences. 

In the figure below, we show six rawa trees to indicate possible pathways for 
the proof. 
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Figure 1. Six rawa trees are shown, from left to right , top to bottom: the randdm 
variables X are normal, Laplace, s/yIj"V;T, 1/U1 , U1U2U3U4 and s(IU11 + 5Z), 
where s is a random sign, Z is Bernoulli (1/3) and the U;'s are uniform [-1,1]. 
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Relationship between height and record sequences 

The proof uses records in sequences. In a sequence S = (so, Sl, S2, ... ), we say 
that Sn is an up-record if Sn = max{ So, Sl, ... ,sn} and that it is a down-record 
if Sn = min{so,sl, ... ,Sn}' Let U(s) and D(s) be the number of up-records and 
down-records in the sequence s. It is well-known (Devroye, 1988) that the path 
distance from the node for Sn to the root in a binary search tree is 

where S<n = (So, Sl, ... ,Sn-d· Thus, the height of the binary search tree is 

Hn = max Di = max (U(L(S<i' Si), Si) + D(R(S<i' Si), Si)) - 2 . 
l:<::.:<::n l:<::.:<::n 

It is easy to see that 

Hn 2 H~ ~f max (U(S<nH), D(S<nH)) - 1 . 

The proof is based on the following two lemmas, proved in the remainder of the 
paper. 

LEMMA 1. Let X be a simple random variable. Then, for all x > 0, 

lim P { ~ < x} = £(x) , 
n-->oo V 2n 

where £. is the Erdos-Kac-Renyi distribution function. 

LEMMA 2. Let X be a nice random variable. Then for all E > 0, 

lim P{Hn - H~ > Eyn} = 0 . 
n-->oo 

Records and ladder heights for random walks 

We first consider the increasing ladder epochs and ladder heights for 

where So = O. The (increasing) ladder epochs are at 0 = To < T1 < T2 < 
where 

Ti = inf{j > Ti- 1 : Sj > STi_l} . 

We say that STi is an up-record and call STi - STi_l = llTi an ascending ladder 
height. Similarly, we have decreasing ladder epochs for consecutive minima. The 
epochs are denoted by 0 = To < T{ < T~ < .... We say that ST! is a down­
record and call ST! - ST' a descending ladder height. Define Mn ~ maxi<n Si, 

J ,-1 -
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M~ = -mini<::nSi. Let Rn = max{k: Tk::; n} and R~ = max{k: T~::; n}. The 
Rn ascending ladder heights are denoted by HI, ... , HRn' The absolute values of 
the R~ descending ladder heights are denoted by H~, ... , H~, . Note that Rn = 
U(SO,Sl"",Sn) -1, R~ = D(SO,SI, ... ,Sn) -1 and H~ =n max(Rn,R~). We 
define the distribution function 

Q(x) = {2cI>(X) - 1 if x > ~ 
o otherwIse, 

where cI> is the standard normal distribution function. Thus, Q is the distribution 
function of the absolute value of a standard normal random variable. Most of the 
properties of this section are available in standard references such as Feller (1971, 
chapter 12) or Spitzer (1976). The first half of proposition 2 is due to Erdos and 
Kac (1946). For more on 1:, see Renyi (1963). Feller (1971) and Spitzer (1976) 
may be consulted for proposition 1 and for more properties of ladder heights and 
ladder epochs in random walks. 

PROPOSITION 1. Let X be a simple random variable. Then H l , H 2 , ... are inde­
pendent identically distributed with mean a-j,,/2. The same is true for H~, H~, .... 

PROPOSITION 2. Let X be a simple random variable. Then 

Mn cr.. M~ cr.. 
r,;; -+ 'd , r,;; -+ 'd , 

avn av n 
and max(~M~) ~ 1:. 

a n 

Furthermore, 
Rn C R~ c 
M:: -+ Q and M:: -+ Q . 

v2n v2n 

REMARK: EXPECTED VALUES. As Q has expected value v'2/7r, and I: has ex­

pected value '" ~f 'Yv'32/7r3 = 0.930527 ... , where 'Y = 0.915965 ... is Catalan's 

constant O=~=O (~~~I~2)' it is possible to show that for simple random variables, 

EMn~av'2n/7r,EM~~av'2n/7r 

and 
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PROPOSITION 3. Let X be a simple random variable. lim,,---too R" = limn---too R~ = 
00 almost surely and ER" = e ( y'n), ER~ = e ( y'n). 

The proof of the following routine fact is omitted. 

LEMMA 3. If X I ,X2 , ... are i.i.d. random variables with finite mean m, and if 
R" -t 00 almost surely, then "L:!:;I Xd R" -t m almost surely. In particular, with 
Mn and R" as in proposition 2, we have M"jRn -t aj>/2 almost surely. 

PROPOSITION 4. Let X be a simple random variable. Then, for all x, 

and 

P {Jin < x} -P {a~ < x} -t 0, 

P {Jin < x} -P {a~ < x} -t 0, 

P { maX(Rn, R~) } _ P {maX(Mn, M~) } 0 rn::: < x r,;; < x -t . 
y2n ayn 

PROOF. We only show the proof for the last statement. We may assume x > o. 
For arbitrary small E > 0 

P 

< 

{max(Rn,R~) < V2ri"x} 

P{max(Mn, M~) < (a + E)v'nX, max(Rn, R~) < V2ri"x} + 
+ P{ max(Mn, M~) ::::: (a + E)v'nX, max(Rn, R~) < V2ri"x} 

P{ max(Mn, M~) < (a + E)v'nX} + 

+P n> __ +P n { HI + ... + HR a + E } { H~ + ... + H~, 
Rn >/2 R~ 

>--a + E} 
>/2 

By Lemma 3, the last two terms tend to zero, so 

lim sup P{max(Rn, R~) < V2ri"x} :::; lim sup P{max(Mn, M~) < (a + E)v'nX}, 
,,---too n---too 

and by the continuity of the limit distribution of max(Mn, M~) in Proposition 2 

limsupP{max(Rn,R~) < V2ri"x}:::; limsupP{max(Mn,M~) < av'nx} = £(x). 
n---too n---too 
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On the other hand for arbitrary small E > 0 

P {max(Mn,M~) < (a- - E)y'nX} 

P{max(Rn,R~) < ffnx,max(Mn,M~) < (a - E)y'nX} + 

+P{max(Rn,R~) ~ ffnx,max(Mn,M~) < (a - E)y'nX} 

< P{max(Rn,R~) < ffnx} + 

{ HI + ... + HRn a - E} {H~ + ... + H~~ a - E} 
+ P R < In + P R' < In 

n v2 n v2 

and by Lemma 3 the last two terms tend to zero, so 

liminfP{max(Rn,R~) < ffnx} ~ liminfP{max(Mn,M~) < (a - E)y'nX} . 
n---t(X) n-+oo 

By the continuity of £, 

liminfP{max(Rn,R~) < ffnx} ~ liminfP{max(Mn,M~) < ay'nx} = £(x) 
n-+oo n--+oo 

gives the result. D 

COROLLARY. Let X be a simple random variable. For all x > 0 

lim P{max(Rn, R~)/ffn < x} = £(x) . 
n--+oo 

Note that this implies Lemma 1. 

Concentration results for random walks 

9 

In this section, we study upper tail bounds for an empirical concentration 
function for the random walk, 

n 

Qn(C) = sup L l[S;E[x,x+fll 
x i=1 

for a particular range of interval sizes C roughly between 1/ yin and l/nl / 3 . Classical 
concentration inequalities for Sn are nicely described by Petrov (1995, section 2.4). 
For example, Petrov (1995, (2.71)) shows that there exists a positive constant A 
(referred to below as Petrov's constant) such that uniformly over all C, 

P {S [ DJ} AsuPxP{XE[x,x+C]} 
sup n E x, x + 1: < , 

x - y'n(1 - sUPx P{X E [x, x + C]}) 

where X is the generic summand in the random walk. In particular, if X has a 
density 1 bounded by 1111100, and £1111100 ::; 3/4, then 

supP{Sn E [x,x+C]}::; 2A~"00 
x n 
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We do not expect Qn(£) to be substantially larger than n times the latter bound, 
i.e., Qn(£) should be O(£Vn). This result, even without a tight constant, will suffice 
for the present paper. Lemma 4 takes care of this. 

LEMMA 4. Let X have density I, and let 1 be symmetric and bounded by 1111100. 
Let £ > 0 be so small that £1111100 ::; 3/4, and let A be Petrov's constant. Then, if 
Yi = l[siE[x,xHll, we have 

where A = 2A1111100f. 

PROOF. Note that Yi is increasing in £. If AVn < 2, then we increase £ to make 
AVn = 2. Thus, without loss of generality, we can assume that AVn ~ 2, and we 
need only prove the inequality with 543A4n2 on the right-hand-side. We proceed 
by repeated use of Petrov's inequality. The following simple summation bounds 
are easy to verify: 

n 1 
~ . /7 ::; 2vn , 
i=l yZ 

Thus, 

~ E {¥i l Yi2 Yi3 ¥i4 } 
1:$il,i2,i3,i4:$n 

24 ~ E {¥i l ¥i2 ¥i3 Yi4 } + 36 
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LEMMA 5. Let 1 be a symmetric density bounded by 1111100' and assume that 1 
has finite variance a2 . Let £ be a sequence of interval sizes depending upon n such 
that n£3 = 0(1). Then, for every f > 0, 

lim P{ Qn(£) 2 fVn} = ° . 
n--+oo 

PROOF. We may assume without loss of generality that n£2 --+ 00. If not, we 
increase £ artificially, which by virtue of the monotonicity of Qn (£) with respect to 
£ is allowable. We partition R into intervals of length 2£ each and let Ni denote the 
number of 51's that land in the i-th interval, 1 :::; j :::; n. Clearly, Qn(£) :::; 2 maxi N i . 

Let B denote the set of interval indices for intervals that intersect [-n, n], and note 
that IBI :::; 2 + n/£. Let N denote the number of S1's that fall outside [-n, n]. Let 
n be so large that 2£1111100 :::; 3/4. Define k = ffo/2. We have, if X denotes the 
generic summand with density I, 

n 

PiN 2 k} < E{N}/k = L P{ISjl :::: n}/k 
j=l 

< 
L:7=1 E{S]} 

kn2 

(n + 1)a2 a2 
-'----'--- < - . 

2kn - k 

Let A be Petrov's constant. By Lemma 4, if n is so large that 4A£llllloofo :::: 2, 

P{max Ni > k} < 
iEB -

< 

< 

IBI maxP{Ni :::: k} , 
IBIE{Nf} 

k4 
5431BI (4AIIIII00£)4n 2 

k4 
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P {N 2: k} + P {rp.axB Ni 2: k} 
.E 

O(I/k) + 0 (n(3 ) 

0(1) . D 

The height of a rawa tree: proof of Lemma 2 

Throughout this section, we set f = l/n4/ 1o • Observe that the condition of 
Lemma 5, nf3 -t 0, holds. We call the depth D(x) of x the path distance from 
x to the root for the binary search tree defined by So, S1, ... , Sn, x. Consider the 
collection C = {if: i integer}. Recalling the definition of Q n (f) from the previous 
section, we note that the height Hn of the rawa tree satisfies 

Fix x > O. Let 1 ::; Tl < T2 < ... be the epochs at which the random walk reaches 
a maximum: so, TiH is the first index greater than Ti for which STi+l > STi. We 
define A(x) and B(x) as follows: let i be the unique index for which STi ::; x < 
STi+l' where STi+l is replaced by 00 if THI > n (to take care of the rightmost 
interval); then set A(x) = STi and B(x) = STi+l. A similar symmetric definition 
is used for x < 0 with possibly A(x) = -00. Observe that 

Hn ::; Qn(f) + max D(x) . 
XEc:IA(xll+IB(xll<oo 

For x > 0, there are no Sj's strictly in (A(x), B(x)) with j ::; T iH . We condition 
on the history of the random walk up to TiH and call it F. Note that D(x) is 
bounded by the sum of i + 2 and the number of local left records, plus the number 
of local right records. A local left record is a record value (maximum) among 
those Sj's that fall in (A(x), x). Clearly, each value of j must exceed TH1 . A local 
right record is a record value (minimum) among those Sj's that fall in (x,B(x)). 
Observe that i + 1 ::; H~ if IA(x)1 + IB(x)1 < 00. Denoting by L(x) and R(x) the 
number of local left records and local right records for x respectively, we see that 
D(x) ::; i + 2 + L(x) + R(x), and that 

Hn - H~ < Qn(f) + max L(x) + max R(x) . 
- xEc:IA(x)I+IB(x)l<oo xEc:IA(x)I+IB(xll<oo 

The proof is complete if we can show that for each € > 0, 

lim P {Qn(f) > €vn} = 0, 
n-+oo 

lim P { max L(x) > €vn} = 0 , 
n-+oo xEc:IA(x)I+IB(x)l<oo 

and 

lim P { max R(x) > €vn} = 0 . 
n-+oo xEc:IA(x)I+IB(x)l<oo 
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The first part was shown in Lemma 5. We will show the second part involving 
L (x), as the third part is similar. 

Given F, we may have large values for L(x) if B(x) - A(x) is large. So, let G 
be the event 

[ max IB(x) - A(x)1 :::; JyTi] , 
xEc:IA{xll+IB{xll<oo 

where J > 0 is to be picked as a function of E. Let GC denote its complement. 
Clearly, 

P{GC } < P {mtx IXil > JyTi} 

< nP {IXII > JyTi} 

E {Xr1[IX11>Ofo]} 
< n J2n 

0(1) 

if E {Xl} < 00. Thus, by Lemma 5, 

P { max L(x) > EyTi} 
xEc:IA(xll+IB{xll<CXJ 

< P{GC } + P{QnU!) > (E/3)yTi} 

+P {G, Qn(£) :::; (E/3)yTi, max L(x) > EyTi} 
xEC: IA{xl 1+IB(xll<CXJ 

< 0(1) 

+ P { .~ [Qn(£) :::; (E/3)yTi, IB(x) - A(x)1 :::; JyTi, L(x) > Ev'n]} 
IA{xll+IB{xll<oo 

< 0(1) 

+ E { ?;. l[IB{xl-A(Xll:Sofo] P {Qn(£) :::; (E/3)yTi, L(x) > EyTiIF}} . 

IA(xll+IB(xll<oo 

We show that we can find J > 0 so that the last term is 0(1). 

Using the chain of inequalities for N in the proof of Lemma 5, we see that the 
probability that there is one occurrence of ISj I > n 2 is bounded by the expected 
number of such occurrences, which by Chebyshev's inequality does not exceed 
(J2 /n2. Thus, with probability at least 1 - O(1/n2), the number of x E C with 
IA(x)1 + IB(x)1 < 00 is not more than 2 + 2n2/£ = O(n24 / IO ). By trivial bounding 
then, it would suffice if we can show that for an appropriate choice of J > 0, and 
uniformly over all x, and all histories F with IB(x) - A(x)1 :::; J,fii, 

P {Qn(£):::; (E/3)yTi,L(x) > EyTiIF}:::; exp (_cnl/lO) 
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for some c > O. We drop the conditioning in the notation. By condition (C) on 
f (see the definition of nice random variables), we find a pair b > 0 and r > 0 
such that inflxl~r f(x) 2: b > O. Any such pair will do. Then we partition [A(x), xl 
into intervals of length r/2 starting from A(x), taking care not to cover x (thus 
leaving an interval of length less than r that reaches Xi call that interval 1). Let J 
be the rightmost interval. Replace J by J U I - [x - £, xl and I by [x - £, xl. Thus, 
r - £ 2: IJI 2: r/2 - £ 2: r/3 for n large enough. Consider the following process: 
a local left record 5j arrives in one of the intervals (I and J excluded). At that 
time, given that we are in an interval to the left of J, there is a probability of at 
least (r/3)b that 5j +! hits one of the intervals to the right, J included. Picture 
this as a success. Let the number of intervals up to and including J be k, and note 
that k :::; 1 + 26v'n/r. Let N* be the number of local left records in the intervals 
to the left of J. In what follows, we set m = L(f/3)v'nJ. [N* > ml implies that in 
m such trials we had less than k successes. In other words, 

P{N* > m}:::; P{binomial(m,br/3) < k} . 

If we set k < mbr/7, then this probability is exp(-O(v'n)), by Hoeffding's in­
equality (Hoeffding, 1963). This condition is satisfied for n large enough when 
8 = fbr 2 /43, which is the choice we will adopt. Let N' be the number of local left 
records in J. Here, we move to I with probability at least (1/2)b£, so that by the 
same argument, 

P{N' > m} < P{binomial(m, b£/2) = O} = (1 - b£/2)m 

< exp (-mb£/2) = exp ( -0 (nl/lO)) . 
Finally, let Nil be the number of local left records in I. This is clearly bounded by 
Qn(£), uniformly over all x and all A(x), B(x). As L(x) :::; N* + N' + Qn(£), we 
see that 

P{Qn(£) :::; (f/3)y'ri, L(x) > fy'ri} < P{N* > m} + P{N' > m} 

exp (-0 (nl/lO)) . 
This concludes the proof of Lemma 2. 0 
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The height and width of simple trees 
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Abstract. The limit law of the couple height-width for simple trees can be seen as a 
consequence of deep results of Aldous, Drmota and Gittenberger, and Jeulin. We give 
here an elementary proof in the case of binary trees. 

1 Introduction 

Let Zi(t) denote the number of nodes at distance i from the root of a rooted 
tree t. The profile of the tree t is the sequence (Zi(t))i>O. The width w(t) and 
height h(t) of the tree t are defined by: -

w(t) 

h(t) 

Let T~n) denote the set of binary trees with n leaves (2n -1 nodes), endowed with 

the uniform probability, and let H1n ) (resp. W~n)) be the restriction of h (resp. 

w) to T~n). One can also see H1n ) and W~n) as the height and width of a Galton­
Watson tree with offspring distribution 0 or 2 with probability 1/2, conditioned 
to have total progeny 2n -1 (see [1, pp. 27-28]). Then, the limit law of the height 
[15, 23] and of the width [7, 13, 25] are given by: 

H(n) law B 
-----* 2V, 

ffn n-++oo 
(1.1) 

W(n) law B 
-----* V, 

ffn n-++oo 
(1.2) 

where: 

Pr(V :S x) = L (1 - 4k2x 2 ) exp (-2k2x 2 ) . (1.3) 
-oo<k<+oo 

Connections between the distribution of V on one hand, the Brownian motion 
and Jacobi's Theta function on the other hand, are discussed in [5, 9, 20]. For 
instance, let (e(s))0<S<1 denote a standard normalized Brownian excursion (see 
Subsection 3.1). Then,-the random variables 

and 

[1 ds 

H = 10 e(s) 

17 
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satisfy 

(1.4) 

The first identity is due to Chung [9], the second was first stressed in [4, p. 69]. 
The aim of this paper is to give a simple proof of the following theorem: 

Theorem 1.1 

B B aw (H (n) w(n)) I 

In:: , In:: ----t (H, W). 
V 2n V 2n n--++oo 

Note that the obvious negative correlation between height and width of a tree 
with given size n, is reflected in the dependence between Jo1 e1:) and maxo:-=;s:Sl e(s). 

Previous results [15, 23] about height and width of simple trees belongs to the 
foundations of computer science. Surprisingly, Theorem 1.1 does not seem to be 
stated anywhere, though it can be deduced easily from deep results of Aldous on 
one hand (about the continuum random tree [1, 2]) and on the other hand of 
Drmota & Gittenberger [12], using a clever idea due to Aldous [3, Th. 3] again. 
We felt that this consequence of [3, Th. 3] deserved to be pointed out, and that 
the reader would welcome an 'elementary' and direct proof. 

Let c))(a, 'Y, z) denote the confluent hypergeometric function, defined, for Izl < 
+00,'Y#0,-1,-2,···, by: 

+00 () k 
~ a kZ 

c))(a,'Y,z) = ~ -( ) k! 
k=O 'Y k 

where (,x)k = (,x)(,x+l) ... (,x+k-l). The joint law of (H, W) has been investigated 
recently by Catherine Donati-Martin [11]. With the help of the agreement formula 
for the Ito measure (see [4, 22] and [26]), she obtains the following results: 

Theorem 1.2 For,\ ~ 0, a ~ 0, 

( ( ,x2 a 2 H)) F exp(2'\) 
E Wexp - 2W2 - 2W = V"2 c))2(1 + a 2 /(2,x), 2, 2,x)" 

As a consequence, for Re(s) > 1, Re(t) < 0 and Re(s + t) > 1: 

F 25+~-' r+oo r+ oo ,\s+t-2a -(1+2t) exp(2,x) 
E(WS Ht) = V"2 f( -t)r( ~) io io c))2(1 + a 2 /(2,x), 2, 2,\) da d'\. 

2 First proof of Theorem 1.1 

Aldous [3, Th. 3] proves that, suitably rescaled, the depth-first walk and the 
profile of a random rooted labeled tree with n nodes converges jointly to (2e, l/2), 
where 1 is the local time of the normalized Brownian excursion e, defined by: 

loa l(x) dx = 101 
I[O,aj {e(s))ds. 
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Let Hin ) (resp. wt)) denote the restriction of h (resp. w) to the set of rooted 
labeled trees with n nodes, endowed with the uniform probability. Invariance prin­
ciple yields at once that: 

1 (n) (n)) law ( () 1 ( )) ;;; H L ,W L --+ 2 max e t , - max l x . 
v n 09::;1 2 x~O 

For a general class of simple trees with n leaves, the proof of [3, Th. 3) is still 

valid (see [2, Th. 23), and for binary trees, [17)), the limit being now (~ , ¥). Here 

172 denotes the variance of the offspring distribution of the corresponding critical 
Galton-Watson tree (see [1, p. 28, formula (8)) for the meaning of 17 in term of 
simple trees). In the special case of binary trees with n - 1 internal nodes and n 
leaves, it yields: 

1 ( (n) W(n)) law ( () 1 l( )) M:: H B' B --+ 2 max e t , - max x . 
v 2n o::;t::;1 2 x~O 

(2.5) 

Theorem 1.1 is deduced from (2.5) through Jeulin's description of the local 
time of Brownian excursion. Let (e(s))0<8<1 be a normalized Brownian excursion 

with local time (l(x))x~o' Define - -

L(y) = loy l(x) dx 

and 

'I/;(t) = L -l(t) = sup {yiIoY l(x)dx < t}. 

Jeulin [18) proved that the process (e( s)) 0::;8::;1 defined by: 

_ 1 
e(s) = "2l('I/;(s)) (2.6) 

is itself a normalized Brownian excursion (see also [4, p. 70) and interesting heuris­
tic arguments [1, pp. 47-48)). Taking the derivative in 'I/;(t) = L-1(t), we obtain 
,/,1 _ 1 _ 1 and 
'f/ - L'o1j; - 2;; 

rt du 
'I/;(t) = 10 2 e(u) , 

so Jeulin's representation can be rewritten: 

2 e( s). 

A direct consequence is the identity: 

( 2 max e(t), -21. max l(x)) = ( t _d(S) , max e(s)). 
0::; t::; 1 x~O 10 e s 0::;8::;1 

(2.7) 

(2.8) 
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The equality between first components of (2.8) follows from (2.7) because 

11 ds 
2 _( ) = 1/1(1) = max e(s) , 

o e s O:::;s::;1. 
(2.9) 

while the equality between second components follows by taking the maximum on 
each side of (2.7). Thus, (2.5) is equivalent to Theorem 1.1. 0 

Thus Theorem 1.1 is a direct consequence of Jeulin's representation [18), and 
of [3, Theorem 3] which relies itself on two deep, but technical, papers [2, 12]. The 
line of the second proof of Theorem 1.1 is close to that of [7, 25]: the profile of 
the tree is seen as the breadth-first search random walk, changed of time, giving a 
discrete converse of Jeulin's representation. That the change of time has precisely 
the form given by Jeulin, follows, in the discrete case, from a counting principle 
due to Odlyzko [8, 21]. 

3 Second proof of Theorem 1.1 

3.1 Brownian excursion and Bernoulli excursion 

Let us call Bernoulli excursion of size 2n, any 2n-steps random walk w = 
(Sk(W))k=0,. .. ,2n that satisfy: 

So(w) = 0, S2n(W) = 0, Sk+I (w) = Sk(W) ± 1 

and 

Sk(W) > 0 for k E {I, .. · ,2n - I}. 

Let Es(2n) denote the set of Bernoulli excursions of size 2n, endowed with the 
uniform probability. It is well known that 

# E (2 ) = #T(n) = (2n - 1) _I_ 
s n B 1 2 l' n- n-

is the n _lth Catalan number: Cn - 1 (see [24, pp.220-221, and 256-257]). Note that 
there is an obvious one-to-one correspondence between Bernoulli excursions and 
Dyck paths. 

Any Bernoulli excursion W defines a random element 

(t) -_ Sl2ntJ 0 1 en I<C' ~ t ~ , 
v2n 

of the set D([O, 1]) of right continuous left limit functions, endowed with the Sko­
rohod topology. The weak limit of en is called the normalized Brownian excursion 
(see [16]). The normalized Brownian excursion e is usually defined by the following 
path transformation of the standard linear Brownian motion B = (Bt}t>o: let 9 
(resp. d) be the last zero of B before 1 (resp. after 1), and set -

e(t) = Bg+t(d-g) , 
Jd-g 

O~t~1. 



The height and width of simple trees 21 

3.2 Breadth-first search correspondence 

Let Sk be the height of the queue at the kth step of the breadth-first search of a 
rooted binary tree t E T~n) (see [10, Section 23.2], and Figure (3.1) for an example). 
Then w = (Sk) k=O, ... ,2n belongs to Es(2n), and this is a one-to-one correspondence 
(for instance, one can adapt [24, p. 256, 6.19.d]). We explain below how to obtain 
an expression of (h( t), w( t)) in term offunctionals of the corresponding Bernoulli 
excursion w. 

1\(0) I\(l) 1\(2) 1\(3) 1\(4) 1\(5) 

Figure 3.1 : Excursion - Binary tree 
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The width 

As already noted in [7, 19, 25], the profile of t can be read on w: assuming 
Sk(W) = 0 for k 2: 2n + 1, we have 

Zo(t) Sl(W) = 1 

Zl (t) Sl+zo(t)(w) 
Z2(t) Sl+ZO(t)+Zl (t) (w) 

Zk+1 (t) Sl+Zo(t)+-+Zk(t) (w). 

Set 

A(k) 1 + Zo(t) + ... + Zk-l(t), 

M2n(W) maxSk(w). 
k 

The triplet (S, Z, A) can be seen as the discrete version of (ii, I, L) appearing in 
Jeulin's representation. Since 

we obtain: 

but, actually, moderate variation of Sk (see Lemma 3.3) yields that: 

LeIllIlla 3.1 

The height 

Set 

We see easily that 

'l1(k) 

W(k) 

2k-l 1 

~ Sj(W) , 

-1 + inf{j I A(j) = 2k}. 

The following Lemma can be seen as the discrete version of (2.9): 

(3.10) 
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Lemma 3.2 

Remark. Obviously, if the speed of a traveller at point y of the line is s(y), then 
the duration t of the journey from point 0 to point x satisfies: 

r dy 
t = 10 s(y)" (3.11) 

Lemma 3.2 can be seen as a stochastic analog of relation (3.11), as H1n )(t) is 
the time needed to go from point 0 to point 2n, doing one step (from A(k) to by 
A(k + 1)) by time unit, so the speed at point A(k) is A(k + 1) - A(k) = SA(k)' 
This counting principle was used in [8, Section 2] and [21] in order to study the 
average cost of some search algorithms. 

3.3 Proofs of Lemmata 3.1 and 3.2 

The proofs of Lemmata 3.1 and 3.2 rely on a property of moderate variation 
of Bernoulli excursions, inherited from the simple symmetric random walk. 
Let nc(2n) denote the set of Bernoulli excursions w = (Sk(W))k=O, ... ,2n such that 
for any l, k in the set {O, 1"" ,2n}, 

Lemma 3.3 For every !3 > 0 there exist c > 0 such that, for n sufficiently 
large: 

Proof: The lemma is easily proved for a simple symmetric random walk w = 
(Sk(w)h=o, ... ,2n, using Chernoff bounds: 

x 2 
Vx ~ 0, Vk, Pr(lSk(w)1 > x) :::; 2exp(- 2k) 

(see for instance [8]). But Pr(nc(2n)) in Lemma 3.3 is just Pr(w E nc(2n)1 w E 
Es(2n)), and in the other hand the probability that a simple symmetric random 
walk w belongs to Es(2n)) is e(n-~). Finally, choose A = Cnc(2n) in: 

Pr(w E A) 3 

Pr(w E A I wE Es(2n)) :::; Pr(w E Es(2n)) :::; cln 2 Pr(w E A). D 

Proof of Lemma 3.1: We have 
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We consider an index K(w) such that M2n(W) = SK(w)(W). There exists an integer 
i(w) such that 

Then, 

for c large enough. 0 

A(i) ~ K ~ A(i + 1). 

< E( lIoccy'(K - A(i)) log(2n) + nlIcoJ 

< E(cy'M2n log(2n)) +nPr(COc ) 

o ( n 1/ 4 (log n))3/4), 

Proof of Lemma 3.2. For any positive integers I, k, such that k ~ I ~ 2n - k, 
we have 

n 12 (k~l 
Pr(Sk = I) = k(2n _ k) -2 (3.12) 

since t ( k~l ) is the number of positive paths from (0,0) to (k, I), and 2nl_k ( ;~_-;:_~ ) 
2 -2-

is the number of positive paths from (k, I) to (2n, 0). We have 

,j,(n)-l A(Hl)-l 

(n) _ - _" " 1 
HE - lJ1(n) - ~ ~ Z(i)· 

i=O h=A{i) 

Let a: be a real number in ]0,1/2[. Then 

,j,(n)-l A{Hl)-l 2n-l 

I " " 1 "~I < 2n1/ 2 - o +A +B ~ ~ Z(i) - ~ Sh - n n 
i=O h=A(i) h=l 

where 

,j,{n)-l A{i+l)-l 1 1 

< L L I Z(i) - Sh IIIZ(i)~(lOgl+< n) lI[nl/2-a,2n_nl/2-u](h), 

i=O h=A(i) 

q,(n)-l A(Hl)-l 1 1 

< L L I Z(i) - Sh III Z (i)::O(logn)1+< lI[nl/2-a,2n_nl/2-a](h). 
i=O h=A(i) 
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First, 

2n_n1 / 2 - a [IOg1+< n] 

< L L Pr(Sh = I) 
h=n1 / 2 - a 1=1 

= O(log3+3e n) 

where the last equality follows from (3.12), Stirling formula and (k'2) 2: ((k-~)/2). 
Clearly, 

Finally, using the moderate variation property to bound 

we obtain: 

Lemma 3.2 follows, for c large enough. 0 

3.4 Convergence of (w(n), M2n ) 

Lemmata 3.1 and 3.2 together yields that: 

Thus, the proof of Theorem 1.1 reduces to the proof of 

Proposition 3.4 

1 law (11 1 ) tiC (q,(n), M 2n ) -+ -( ) ds, max e(s) . 
v2n 0 e s 0:::;89 

We use the following Lemma [6, ThA.2 p.25]: 

Lemma 3.5 Let (Xn)n and (X!.a))n,a be two families of lR? valued r.v., de­
fined on the same probability space, such that: 

and 
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Assume that 

lim [lim sup P(IIXn - x~a) lit ~ f)] = 0 
a--+O n--++oo 

for each positive f. Then 

Proof of Proposition 3.4: We have 

and 

"IJ1(n) 1 2n-l 1 

ffn = 2n ~ en(k/2n)· 

Define "IJ1(a)(n) by 

Set 

1 2n-l [ 
"IJ1(a)(n) = - L {en>a}. 

2n en(k/2n) 

x(a) 
n 

x = 

X(a) 

k=1 

1 
fiC ("IJ1(n), M2n ), 

v 2n 

. ~("IJ1(a)(n),M2n), 
v 2n 

11 1 
( -() ds, max e(s)), 

o e s 0::=;s::9 

( 11 [{e(s»a} ( )) 
() ds, max e s . 

o e s 0::=;s9 

Proposition 3.4 is equivalent to 

X law X 
n --t . 

The convergence of X~a) to x(a) when n goes to 00 results from the continuity of 
the functional. To conclude, it suffices to prove the two following IE!mmas: 

Lemma 3.6 There exists a positive constant C1 such that, for any a> 0, 
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Lemma 3.7 There exists a positive constant C2 such that, for any a > 0, 

lo ll! 
IIX - x(a)lh = E( e(s)::;a dS) ~ C2 a. 

o e(s) 

Proof of Lemma 3.6 : Using Formula (3.12), we have 

Note that 

Thus, 

1 
IP'(Sk = l)"k 

1 1 10211" -k - cosk(t) cos(lt)dt 
27r 0 

21011"/2 
- sin(lt) COSk- 1 (t) sin t dt for k :::: 1. 
7r 0 

< 
av'2nIo11"/2 1 n t C3 • - cos 

r;;; L sm(lt) sin t dt 
v n 0 I-cost 

1=1 

av'2nIo11"/2 (1 )(1 n ) c~ L sin(lt) + cos t . - cos t (&13) 
v n 1=1 0 sm t 

Let us expand this sum and bound its terms. Set 

We notice that 

1011" /2 sin( it) cos t d 
. t, 

o smt 

1011" /2 sin (it) 
-. -dt. 

o smt 

sin((l- 1H) sin(¥) 
JI = [1-1 + Z _ 1 and It = JI - 1 + -Z-· 
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So JI and II are uniformly bounded. We have 

11"/2 sin(lt) n dl --cos t t 
o sin t 

< r/2
1 sin(lt) I cosn t dt 

Jo sin t 

< 110"/2 cosn t dt 

yIif 1 r(~) 
2 r(n/2 + 1) 

Due to Stirling formula, this last term is uniformly bounded for 1 E {I, ... ,a ffn}, 
so the terms of the sum in (3.13) are uniformly bounded and the proof is complete. 
D 

Proof of Lemma 3.7: According to [14, Prop. 3.4]' 

11 
-2a2 E( 0 ITe(s)S;a dS) = 1- 2e , 

we have: 

r1 IT ra 
E(Jo ~(~r dS) = Jo 8e-2a2 da ~ 8a. D 

References 

[1] D. Aldous, (1991) The continuum random tree II: An overview, Stochastic 
analysis, Proc. Symp., Durham. UK 1990, Lond. Math. Soc. Lect. Note Ser. 
167,23-70. 

[2] D. Aldous, (1993) The continuum random tree III, Ann. of Probab. 21, No.1, 
248-289. 

[3] D. Aldous, (1998) Brownian excursion conditionned on its local time, Elect. 
Comm. in Probab., 3 , 79-90. 

[4] P. Biane, M. Yor, (1987) Valeurs principales associees aux temps locaux brown­
iens, Bull. Sci. Maths 111,23-101. 

[5] P. Biane, J. Pitman, M. Yor, (1999) Probability laws related to the Ja­
cobi theta and Riemann zeta junctions, and Brownian excursions, (see 
http://www .stat. berkeley.edu/ """'pitman/) 

[6] P. Billingsley, (1968) Convergence oj Probability Measures. John Wiley & 
Sons, Inc., New York-London-Sydney. 

[7] P. Chassaing, J.F. Marckert, (1999) Parking junctions, empirical processes 
and the width oj rooted labeled trees, preprint Elie Cartan, Universite Nancy 
I. 



The height and width of simple trees 29 

[8] P. Chassaing, J.F. Marckert, M. Yor, (1999) A Stochastically Quasi-Optimal 
Search Algorithm for the Maximum of the Simple Random Walk, to appear 
in Ann. of App. Prob. 

[9] K.L. Chung, (1976) Excursions in Brownian motion, Ark. fOr Math., 14, 155-
177. 

[10] T. H. Cormen, C. E. Leiserson, & R. L. Rivest, (1990) Introduction to algo­
rithms, MIT Press, Cambridge, MA; McGraw-Hill Book Co., New York. 

[11] C. Donati-Martin, (1999) Some remarks about the identity in law for the 

Bessel bridge J; r1:) (l~) 2 sUPs::;t r(s), prepub. Toulouse. 

[12] M. Drmota, B. Gittenberger, (1997) On the profile of random trees, Random 
Structures Algorithms 10, no. 4, 421-451. 

[13] M. Drmota, B. Gittenberger, (2000) The width of Galton- Watson trees, 
preprint. 

[14] R.T. Durrett, D.L. Iglehart, (1977) Functionals of Brownian meander and 
Brownian excursion, Ann. Probab. 5, 130-135. 

[15] P. Flajolet, A. Odlyzko, (1982) The average height of binary trees and other 
simple trees, J. Compo and Sys. Sci., Vol. 25, No.2. 

[16] 1.1. Gikhman, A.V.Skorohod, (1969) Introduction to the theory of random 
processes, W.B. Saunders, Philadelphia. 

[17] W. Gutjahr, G. Ch. Pflug, (1992) The asymptotic contour process of a binary 
tree is Brownian excursion, Stochastic Proc. Appl. 41, 69-90. 

[18] Th. Jeulin, (1980) Semi-martingales et grossissement d'une filtration, Lecture 
Notes in Mathematics, 833, Springer-Verlag. 

[19] D.G. Kendall, (1951) Some problems in the theory of queues, J. of the Roy. 
Stat. Soc. B 13, 151-185. 

[20] G. Louchard, (1984) Kac 's formula, Levy's local time and Brownian excursion, 
J. Appl. Prob. 21 , 479-499. 

[21] A.M. Odlyzko, (1995) Search for the maximum of a random walk, Ran. Struct. 
Alg., Vol. 6, p. 275-295. 

[22] J. Pitman, M. Yor, (1996) Decomposition at the maximum for excursions and 
bridges of one-dimensional diffusions, Ito's stochastic calculus and probability 
theory. Springer. 293-310. 

[23] A. Renyi, G. Szekeres, (1967) On the height of trees, J. Aust. Math. Soc. 7, 
497-507. 

[24] R. P. Stanley, (1999) Enumerative combinatorics. Vol. 2., Cambridge Studies 
in Advanced Mathematics, 62. Cambridge University Press, Cambridge. 



30 Mathematics and Computer Science 

[25J L. Takacs, (1993) Limit distributions for queues and random rooted trees, J. 
Appl. Math. Stoch. Ana., 6 , No.3, p.189 - 216. 

[26J D. Williams, (1990) Brownian motion and the Riemann zeta-function, Disor­
der in physical systems, Clarendon press, Oxford, 361-372. 



Trends in Mathematics, © 2000 Birkhiiuser Verlag Basel/Switzerland 

On the node structure of binary search trees 
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Abstract. The external nodes of a binary search tree are of two types: arm nodes 
whose parents have degree 2, and foot nodes whose parents have degree 1. We study the 
positioning of these two types on the tree. We prove that the conditional distribution of 
the insertion depth of a key given that it is inserted in a foot node equals that of the 
conditional distribution given that it is inserted in an arm node shifted by 1. We further 
prove that the normalized path length of the arm nodes converges almost surely to ~ times 
the limit distribution of the normalized path length of all external nodes. 

1 Introd uction 

Let Tn be the binary search tree generated by a sequence of keys (KI' ... ,Kn). As 
usual we assume that all n! permutations of the keys have the same probability. 
Let t:n be the set of external nodes of Tn, i.e., the elements of t:n are the children 
of the leaves of Tn, and one of these nodes will receive the next key Kn+l' The set 
t:n can be split in a natural way into a set t:: containing the arm nodes, external 
nodes whose parents have degree 2, and the set t:! of foot nodes whose parents 
have degree 1. It has been known for a long time [2] that the expected values of 
the cardinality of t::, respectively t:!, are t(n + 1) and ~(n + 1). In our work we 
study the question of how these foot and arm nodes are distributed over the tree. 
Clearly, foot nodes will occur further from the root of the tree than arm nodes, 
since foot nodes cannot occur at level 1 (except in Ii), and arm nodes cannot occur 
at the highest level. Rather surprisingly, this property is in some sense the only 
restriction that prevents the foot and arm nodes from being identically distributed. 

Let Un be the insertion depth of key Kn+l' It is well-known [3] that Un is 
distributed as Bo + ... + B n - I , where the Bk are independent Bernoulli random 
variables with parameter Pk = k!2' We consider the insertion depth of Kn+l given 
that Kn+l is inserted in an arm node, and prove 

where as before the Bk are independent Bernoulli random variables with parameter 
Pk. We also prove that 

To prove these results we define U: = Unl[Kn+1Et:~1 and U! = Unl[Kn+1Et:!"], and 
determine in Section 2 the joint probability generating function: 

31 
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In sections 3 and 4 we consider almost sure properties of the distribution 
of the arm and foot nodes over Tn by studying the total path length X~ of the 
arm nodes and X: of the foot nodes. Well-studied is Xn = X~ + X:, the total 
path length of all external nodes, which equals the number of comparisons needed 
to quicksort n different numbers. It was shown by [5] (see also [6]) that Zn = 
n~1 (Xn -EXn) is an L2-bounded martingale, which hence converges almost surely 
to a limiting random variable Z, the 'quicksort distribution'. The corresponding 
normalized arm node path length Z~ = n~1 (X~ - EX~) and foot node path 

length Z: = n~1 (X: - EX:) are not martingales. In fact we show that the only 
sequences a = (an );;='=3 and b = (bn );;='=3 which turn 

into a martingale are linear combinations of the constant sequences (b) = (( I )) 
and the sequences (b) = (Pn( 31 )), where Pn = n 3 - n. However, the martingales 
corresponding to the second solution have unbounded variances. This follows im­
mediately from the asymptotics for the variances: as n -+ 00 

We furthermore show that the path lengths z~ and Z: are negatively correlated 
for n ~ 168 and positively correlated for n 2: 169. In fact the correlation between 
2Z~ and Z: tends to 1 as n -+ 00. This is related to our final result, which gives 
a self-similarity result for binary search trees. 

Theorem Almost surely limn-+oo Z~ = ~Z, limn-+oo Z:; 
quicksort distribution. 

~Z, where Z is the 

2 Where are the arm nodes? Distributional re­
sults. 

We will determine the joint probability generating function 

00 

G (s t) = Esu,1 tU: = '"' skt1p(UA = k UF = i) n , ~ n' n . 
k,I=O 

The definition of U~ and U: implies that 

P(U: = k,U; = i,Kn+l E £:) = 0 when if:; 0, and 

P(U: = k, U; = i, Kn+l E £;) = 0 when k f:; O. 
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Since also clearly U:; ~ nand U; ~ n, we can simplify Gn to 

n 

Gn(s, t) = Z)skp(U:; = k) + tkp(U; = k)]. 
k=l 

Let Fn be the a-field generated by the first n keys, let X;;'k be the number of arm 
nodes, and let X; k be the number of foot nodes of Tn at level k. We then have 
for k ~ 1 ' 

XA 
P(U: = k 1 Fn) = P(Un = k, Kn+1 E £: 1 Fn) = ~, (1) 

n+1 

P(U; = k 1 Fn) = P(Un = k, Kn+1 E £; 1 Fn) = X;'k , (2) 
n+1 

and find 

XA X F 

P(UA = k) = E~ and P(UF = k) = E~. 
n n+1 n n+1 

(3) 

Hence we obtain 

Writing An(s, t) for the simultaneous generating function of (~i~) and (~r~), 
the previous equation reduces to 

We will derive a recursion for Gn(s, t). Observe that 

(4) 

Using 

and 

E(XA 1 F I:F) = {X;;'k . P(U; = II Fn) if 1 =P k, 
n+1,k [Un =1] n (X;;'k + 1) . P(U; = k 1 Fn) if 1 = k, 
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we obtain 

n 

E(X:+1,k I Fn) = L X:'k . P(U: = I I Fn) + (X:'k - l)P(U: = k I Fn) 
1# 

n 

+ L X:'k . P(U; = I I Fn) + (X:,k + l)P(U; = k I Fn) 
1# 

= X:'k - P(U: = k I Fn) + P(U; = k I Fn). 

Applying equations (1) and (2) this yields 

nXA XF 
E(XA I:F) = ~+~. 

n+1,k n n + 1 n + 1 

In a similar fashion one derives 

(n - l)XF XA X F 
E(XF I Fn) = n,k + 2 n,k-l + 2 n,k-l. 

n+1,k n + 1 n + 1 n + 1 

(5) 

(6) 

Let Xn,k = X:'k + X;'k be the number of external nodes at level k in Tn. Substi­
tuting equation (5) and (6) in equation (4) and writing X: k- 1 + X:, k-l = Xn,k-l 
~~ , , 

= '" Sk ~ + ~ + tk n,k + 2~ . n+l [(nXA XF) ((n - l)XF X )] 
L.. n+1 n+1 n+1 n+1 
k=l 

Taking the terms together and shifti~ the index of the last term, and writing 
r n (s) for the generating function of ( n~: ), we obtain 

(n + 2)E(An+l (s, t) I Fn) 

n+l [XA XF] n+l [ X ] n [ X] = L(n - 1) sk~ + tk~ + L sk~ + L 2tk+l~ 
n+1 n+1 n+1 n+1 

k=l k=l k=l 

= (n - l)An(s, t) + r n(s) + 2tr n(t). 

Taking expectations we arrive at the following recursion 

It is well-known [3] that Er n(s) = rrz~~ ~:;"22s for n ~ 1. Note that G1 (s, t) = t. 
The solution to the recursion is, for n ~ 2 

n-l n-l 
G ( ) - 1 II k + 2s 2 2 II k + 2t 

n s, t - 3"s k + 2 + 3"t k + 2 . 
k=2 k=2 

(7) 
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Directly from this expression we obtain 

[Un I Kn+1 E £;;] 4. 1 + B2 + ... B n- I , 

where the Bk are independent Bernoulli variables with parameter Pk = k!2' Sim­
ilarly, for the foot nodes we obtain 

[Un I Kn+1 E £:] 4. 2+B2 + ... B n- I · 

3 Variances and covariances of total path lengths. 

In order to obtain further characterisations of the positions of the arm and foot 
nodes we introduce the total path length X;; of arm nodes and X! of foot nodes, 
defined by X;; = L:~=I kX;;'k and X! = L:~=I kX!:,k' In this section we determine 
the covariance matrix of these random variables. 

If the next key is inserted in an arm node, we loose an arm node at depth 
Un, and get two foot nodes at depth Un + 1. If the next key is inserted in a foot 
node, we get a new arm node and loose two foot nodes at level Un, and get two 
new foot nodes at level Un + 1. Therefore 

and 

XA _ XA = {-Un, if Kn+I E £;;, 
n+I n U 'f K cF n, 1 n+I E "n , 

xF _XF ={2Un+ 2, n+I n 2 , 
if Kn+1 E £;;, 
if Kn+1 E £!. 

-+ (UA) -+ (XA) Let Un= u~ and Xn= x~ . We have 

-+ -+ (-1 1) -+ (0) X n+1 - X n = 2 0 Un + 2 . 

(8) 

(9) 

(10) 

It is convenient to normalize the total path lengths. Let Z;; = n~I (X;; - EX;;), 
F _ 1 F F -+ _ (z;;) _ -+ . Zn -n+1(Xn -EXn ),Zn- z:; ,and~n-Var((n+1)Zn)bethecovanance 

-+ -+ 
matrix of (n + 1) Zn. In terms of Zn equation (10) becomes: 

-+ -+ -+ -+ 
(n + 2) Zn+1= (n + 1) Zn +C(Un -E Un), 

where C = (-,} ~). In order to use this relation to express ~n+1 in terms of ~n 
-+ -+ -+ -+ 

and Var(Un) we note that the mixed terms in Var((n + 1) Zn +C(Un -E Un)) 
simplify as follows: 

E(n + 1) Zn (Un -E UnfCT = (n + l)E(E(Zn (Un -E Unf I Fn))CT 

-+ -+ -+ T 
= (n + l)E(Zn E(Un -E Unl Fn))C 

-+-+ TIT 
= (n + l)E(ZnZn T)C = --~nC . 

n+1 
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Hence, we find 

1 T ,--+ T 
~n+l = ~n + --(~nC + C~n) + Cvar(Un)C . 

n+1 

We can rewrite this covariance matrix recursion to three recursions: one for VnA = 
Var(Z;;), one for V! = Var(Z:), and one for Cn = Cov(Z;;, Z:). We obtain 

(n + 2?VnA+1 = (n2 - l)VnA + 2(n + l)Cn + Var(U': - U:), (11) 

(n + 2)2V::'1 = (n + 1)2V!) + 4(n + l)Cn + 4Var(U:), (12) 

(n + 2)2Cn+1 = n(n + l)Cn + 2(n + l)VnA 

+ (n + 1)V! - 2Var(U:) + 2Cov(U:, U':). (13) 

This system of recursions, equations (11), (12), and (13), can be solved. We start 
by creating a new recursion from the first two recursions, equations (11) and (12): 
take twice equation (11), and add equation (12). We have 

(n + 2)2(2V:+l + V!+1) 

= 2(n2 - l)VnA + 4(n + l)Cn + 2Var(U': - U:) 

+ (n + 1)2V! + 4(n + l)Cn + 4Var(U:). 

Remembering that Vn = VnA + 2Cn + V!, or 

8(n + l)Cn = 4(n + l)Vn - 4(n + l)VnA - 4(n + 1)V!, 

we can use this to eliminate the covariance term from the recursion: 

(n + 2)2 (2V:+1 + V!+1) 

= (2(n2 - 1) - 4(n + l))VnA + 2Var(U~" - U:) 

+ ((n + 1)2 - 4(n + l))V! + 4Var(U:) + 4(n + l)Vn. 

This expression simplifies to 

(n + 2)2(2Vn~1 + V!+1) 

= 2(n2 - 2n - 3)VnA + (n2 - 2n - 3)V! 

+ 2Var(U': - U:) + 4Var(U:) + 4(n + l)Vn 

= (n + l)(n - 3)(2VnA + V!) + 4(n + l)Vn + 2Var(U': - U:) + 4Var(U:). 

Defining Rn = 4(n + l)Vn + 2Var(U! - U;;) + 4Var(U;;), we can rewrite this as 

(n + 2)2 (2VnA+1 + V::.1 ) = (n + l)(n - 3)(2VnA + V!) + Rn. (14) 

We can solve this recursion. Recalling that Var(X) = G1:(l) +G~(1) - (G~(1))2, 
we can use equation (7) to find, for n > 2, 

A _ 176 4 (2) 46 8 2 
Var(Un) - 27 - 3Hn+1 - 27Hn+1 + g(Hn+1) , and 

F _ 146 8 (2) 4 8 2 
Var(Un) - 81- "3Hn+1 - 27Hn+l + g(Hn+1) , 
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where we used the notation Hn = L~=l i- and H~2) = L~=l b. From (7) we can 
also obtain 

A F 80 52 8 2 
COv(Un, Un) = - 81 + 27Hn+l - g(Hn+d . 

This leads to the conclusion that 

_ 1204 88 (2) 236 32 2 
Rn - (28n + ---z7) - (16n + 3' )Hn+1 - gHn+1 + 3'(Hn+d . 

Using Maple1 we find that the solution to (14) is, for n > 2, 

2v.A + v.F = _2_ 7875n + 14858 _ ~ 5n + 9 H(2) 
n n 3375 n + 1 15 n + 1 n+1 

1372 32 2 

225(n + 1) Hn+1 + 15(n + 1) (Hn+d· (15) 

Using this result, we can simplify the recursion for Cn, equation (13). This yields 

where 

Sn = (n + 1)(2VnA + V:) - 2Var(U,1) + 2Cov(U,1, U:) 

_ (14 n 25148) _ (~n 32)H(2) 784 _ 64( )2 
- 3 + 10125 3 + 15 n+1 + 675 Hn+1 45 Hn+1 . 

Again, using Maple, we find the solution to recursion (16), for n > 2: 

15750n3 + 10534n2 - 5216n - 1500 _ ~ 5n + 1 H(2) 
Cn = 10125n(n + 1)2 45 n + 1 n+l 

(16) 

872 32 2 

+ 675(n + 1) Hn+1 - 45(n + 1) (Hn+1)' (17) 

It is interesting to note that Cn < 0 for n :s 168 and Cn > 0 for n 2: 169. 
The quickest way to calculate VnA and V: is now to use (14), (17), the relation 
V. = v.A + 2C + v.F and the known expression for V. = 7n±6 - 4H(2) _ 2Hn ±1 n n n n , n n±l n+l n±l 
(see [3], page 90). We obtain 

v.A _ 7875n3 + 25841n2 + 17966n - 3000 _ 20n + 52 H(2) 
n - 10125n(n + 1)2 45(n + 1) n+1 

1022 32 2 

675(n + 1) Hn+1 + 45(n + 1) (Hn±d, (18) 

and 

v.F _ 31500n3 + 84716n2 + 53216n - 6000 _ 80n + 112 H(2) 
n - 10125n(n + 1)2 45(n + 1) n+1 

2072 32 2 

675(n + 1) Hn+1 + 45(n + 1) (Hn+d· (19) 

1 We have verified these results by hand. 



38 Mathematics and Computer Science 

We thus find that as n -+ 00 

V. (ZA) _ ~ 21l"2 3210g2 n 
ar . n 9 + 27 45 n 

V. (ZF) _ 28 81l"2 '" 3210g2 n 
ar n 9 + 27 45 n ' 

C (ZA ZF) _ 14 41l"2 '" _ 3210g2 n 
ov n' n 9 + 27 45 n . 

4 Where are the arm nodes? Almost sure results. 

The normalized total path length Zn has an interesting asymptotic behaviour 
described by the following result. 

Theorem 15, 61 The random variables Zn = n~l (Xn - EXn) form a martingale 

wi,th zero mean and second moment2 EZ; = 7 - 2f + OeO~n). Hence Zn -+ Z 
in £2 and almost surely for some random variable Z (which we call the quicksort 
distribution) . 

This raises the question whether a linear combination of Z~ and Z;: can be a 
martingale, i.e., whether there exist sequences ofreal numbers a = (an)~=3 and b = 
(bn)~=3' such that the random variables Mn = anZ~ + bnZ;: form a martingale. 
Because zt = zt = Z[' = zf = 0, we can let the sequences start at n = 3. Now, 
a direct computation shows that (Mn) is a martingale iff, for n ~ 3, 

where Cl and C2 can be chosen freely. Defining Pn = n 3 - n, we thus find that, for 
n ~ 3, 

is a martingale. We see that Mn is a linear combination of two martingales: Zn 
and Pn(2Z~ - Z;:). However, as follows from the results of the previous section, 
the martingales corresponding to the second solution have unbounded variance. 

As we cannot use the £2-martingale convergence theorem, we will use another 
approach to. prove the theorem stated in Section 1. Since Z~ + Z;: = Zn and 
Zn' -+ Z a.s. a.ccording to the theorem above, it suffices to show that, as n -+ 00, 

Wn = 2Z~ - Z;: -+ 0 a.s. If we can prove that 

00 

L Var(Wn) < 00, 

n=l 

then Wn. -+ 0 almost surely by the Borel-Cantelli lemma. 

2R.egnier made a sman Illistake. The order is not, as she wrote, O( ~), but O( lo~ n). 
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Using the results from the previous section, we find 

A A F F 32 log2 n 
Var(Wn) = 4Var(Zn) - 4Cov(Zn, Zn) + Var(Zn) ...... 5-n-' 

The sum of the variances diverges. However, we see that I:~=l Var(Wn2) is finite, 
so Wn 2 -+ 0 almost surely, as n -+ 00. 

To prove that Wn ~. 0, we will show that the intermediate terms behave well: 
writing Wn2+j = Wn2 + Tn,j, we will prove that sUPo::;j9n ITn,jl ~. O. 
For 0 :::; j :::; 2n, 

so that 

Tn,j = Wn2+j - Wn2 = 2Z~2+j - Z;:2+j - (2Z~2 - Z;:2) 

= 2(Z~2+j - Z~2) - (Z;:2+j - Z;:2), 

We consider the arm node term in the right hand side of (20) 

IZ A ZA I -. I X~2+j - EX~2+j X~2 - EX~21 sup n2+· - n2 - sup . -
O::;j::;2n J O::;j::;2n n2 + J + 1 n2 + 1 

< sup . J _ _ n_ + sup . J _ __ n_ . I X~2+' XA21 I EX~2+' EXA21 
- O::;j9n n2 + J + 1 n2 + 1 O::;j::;2n n2 + J + 1 n2 + 1 

(21) 

The part with the expectations can be calculated. From equation (3) it follows 
that EX: = n~l EU:, and from (7) we obtain that EU: = ~ I:~;:: k!2' So we 
obtain, for n 2: 2, 

1 n 2 +j-l 2 4n 

= o;~J>2n:3 L k + 2 :::; 3(n2 + 2)" 
- - k=n2 

The first part of the right hand side of (21) can be simplified by noting that 

n2.+j _ __ n_2_ < n2+j ~ n 2 + . JXn2 . I XA XA I IX A X A I . A 
n 2 + J + 1 n2 + 1 - n2 + J + 1 (n2 + J + 1)(n2 + 1) 

(22) 

We denote the height of Tn by Dn. Clearly X~2 :::; Xn2 :::; (n2 + 1)Dn2, hence for 
the right most term in (22) we obtain 

j X A2 2nXnA2 2n D. 
sup . . n < --- < -- 2 

O::;j::;2n (n2 + j + 1)(n2 + 1) - n2 + 1 - n2 + 1 n' 
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To bound the middle term in (22), we note that by equation (8), 

IX:+! - X:I = Un ~ Dn, 

and thus, using that (Dn) is increasing, for 0 ~ j ~ 2n, 

n 2 +j_l n 2+j_l 

IX:2+j - X:21 ~ L Ixt+! - xtl ~ L Dk ~ 2nD(n+!)2. 

Substituting these three bounds in (22) and (21) we obtain 

Combining this inequality with the well-known convergence result I~nn --+ oX almost 
surely [4, 1), leads to 

For the foot nodes we proceed similarly, and find that the foot node term in (20) 
also tends to 0 almost surely. This finishes the proof of SUPO~j 9n IT n,j I --+ 0 almost 
surely, hence we have Wn --+ 0, and thus 

z: --+ ~z, and Z;; --+ ~Z almost surely. 
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The Saturation Level in Binary Search Tree 
MICHAEL DRMOTA Institut fur Geometrie, TU Wien, Wiedner Hauptstrasse 
8-10/118, A-1040 Wien, Austria. drmota@tuwien.ac. at 

Abstract. Let H~ denote the saturation level in binary search trees. It is shown that 
EH~ = c' log n + 0 ((log n)1/2 log log n), where c' = 0.373 ... < 2 is the solution of the 

equation (~) c' = e. The methods used rely on the analysis of a retarded differential 
equation of the form <I>'(u) = -ex- 2<1>(u/aY with ex> 1. 

1 Introd uction 

Let us consider the usual probabilistic model for binary search trees (see Mahmoud 
[7] for a description and an overview of the state of the art). The saturation level 
H~ of a binary search tree is defined to be maximal level h' such that for all levels 
h up to h' there are no external nodes, i.e. the binary search has 2h (internal) 
nodes for all levels h ~ h' but less than 2h '+1 (internal) nodes at level h' + 1. For 
example, if follows from Biggins [1] that 

H' 
__ n_ -+ 1 a.s., 
c/logn 

where c' = 0.373 ... < 2 is the solution of the equation (~;) c' = e. (It can also 
be shown that EH~ '" c' log n, compare with Mahmoud [7].) Quite recently, the 
author [6] could prove the following property for EH~ and for EIH~ - EH~lk. 

Theorem 1 Let Zh(X) (h ~ 0) be recursively defined by zo(x) == 1 and by 

Zh+l(X) := 1 + foX Zh(t) C ~ t - Zh(t)) dt (h ~ 0). 

Then the expected value EH~ of the saturation level of binary search trees is given 
by 

EH~ = max{h: zh(1- n-1) ~ n/2} + 0(1) 

and all centralized moments of H~ are bounded: 

EIH~ - EH~lk = 0(1) (n -+ (0). 

(n -+ (0) (1) 

(2) 

Note that (1) is quite implicit. It does not reprove the limiting relation EH~ '" 
c' log n. For this purpose we have to discuss the functions Zh (x) in more detail. 
(Interestingly, it is not necessary to know the asymptotic behaviour of EH~ to 
prove boundedness of the variance etc., compare with [6].) The purpose of this 
paper is to extend the methods of [6] to obtain proper bounds for Zh(X) and to 
prove the following quantified limiting relation. 

Theorem 2 The expected value EH~ of the saturation level of binary search trees 
is given by 

EH~ = c/logn + 0 ((logn)1/2 loglogn) . (3) 

41 
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It is very likely that the error term 0 ((logn)I/2 loglogn) in (3) is not opti­
mal. It might be expected that there is a constant d' such that 

EH~ = c'logn + d'loglogn + 0(1). 

The method presented below is adapted from that used in [5] and [6] to treat the 
height of binary search trees. (For results and references concerning the height of 
binary search trees we refer to [8, 2, 3, 10, 5, 9].) 

Before we start with the proof we want to mention that the functions Zh(X) 
introduced in Theorem 1 are just the generating functions of the probabilities 
P[H~ ::; n]: 

Zh(X) = L P[H~ ::; n] xn. 
n2:0 

The paper is organized in the following way. In section 2 we prove an upper 
bound for Zh(X) yielding an lower bound for EH~. Sections 3 and 4 are devoted to 
the analysis of an integral equation. Those results will be then applied in section 5 
to provide a lower bound for Zh(X) which finally yields an upper bound for EH~ 

2 A lower bound for EH~. 

Interestingly, a lower bound for EH~ is much easier to obtain than an upper bound. 
We can use the following lemma. 

Lemma 1 For 0 ::; x < 1 we have 

( )
k 

h log _1_ 

Z (x) < 2h '""' I-x 
h - ~ k! 

k=O 

Proof. Obviously, we have equality for h = O. Now we use the inequality 

(4) 

and proceed by induction. <:; 

Corollary Let h = c'logn + 2(I~C') log log n + r. Then 

uniformly for r = 0(1). 

Thus, it follows from Theorem 1 that 

" c' 
EHn 2: c logn + 2(1 _ c') log log n - C1 (5) 

for some constant C 1 > O. 
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3 An Integral Equation 

Our aim is to find proper solutions cI)(u) of the (retarded) differential equation 

1 (U)2 cI)'(u) = --cI) -
a 2 a 

(6) 

with 
a ~ ao = el/ C' = 14.59 ... 

Interestingly there is an explicit solution 

1 + U I / 4 1/4 
cI)(u) = e-U 

u 
(7) 

with a = 16. This function was used to prove Theorem 1 in [61. However, if we 
want to get more then we need solutions for every a > ao. 

Instead of solving (6) directly we consider a related integral equation. In fact, 
we will prove the following relations. 

Lemma 2 Let a > ao = el/c' and let /3 > c' - 1 be the solution of the equation 

2a f3 = /3 + 1. 

Then there exists a function "IJI(y), y ~ 0 with the following properties: 

1. "IJI(y) = 1- yf3 + 0((1- (a/ao)CI-I)-lycl-l) as y --t 00 with an O-constant 
independent of a. 

2. "IJI(y) ::; e-C(",)y-~ for'Y = log2/(log(a/2)) and y ::; yo(a), where C(a) and 
yo(a) can be chosen in a way that C(a) = exp(-cI(a - ao)-1/2Iog((a­
ao)-l)) and yo(a) = exp(c2(a-ao)-1/2Iog((a-ao)-I)) for some constants 
CI,C2 > o. 

3. 0::; "IJI(y) ::; 1, 0 ::; y < 00, is strictly increasing. 

4· loy "IJI(z)"IJI(y - z) dz = y"IJI(y/a), (0::; y < 00). 

Proof. We first observe that for a > ao = el /c' the equation 

2af3 = /3 + 1 (8) 

has two negative solutions /31, /32 with /31 < /30 = c' - 1 = -0.626· .. < /32. The 
solution we are interested in is /3 = /32 > /30. For a = ao there is only one solution 
/3 = /30 < 0 and for a < ao there are no negative solutions. It is also an easy 
exercise to show that for a > ao we have 

/3=/30+ 
2(c')2(1 c') 
~-'--...:.-----.:..Ja - ao + O(a - ao). 

ao 

Now let :F denote the set offunctions "IJI(y), y > 0, with the following prop­
erties: 
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1. lJI(y) = 1 - y(3 + O(y(30) as y --+ 00. 

2. IJI(O) = O. 

3. O:S lJI(y) :S 1, 0 :S y < 00. 

4. lJI(y),O:S y < 00, is strictly decreasing. 

It is clear that F with the distance 

d(1JI1, 1J1 2 ) := sup 1(1JI1(y) -1JI2 (y))y-(3°1 
y>o 

is a complete metric space. Now we show that the operator I, defined by 

1 lay 
(IIJI)(y) := - lJI(z)lJI(o:y - z) dz 

o:y 0 

is a contraction on F. 
Firstly, we prove that IIJI E F for all IJI E :F. Suppose that IJI E :F. Then 

Since 
ray z(3 dz = ..:....( o:~y-,-)(3-,+_1 

io (3 + 1 

it immediately follows that 

(I1JI)(y) 
1 lay 

- lJI(z)lJI(o:y - z) dz 
o:y 0 

( ) (3+1 
1 - 2 o:y + O(y(30) 

o:y((3 + 1) 

1 - y(3 + O(y(30). 

Furthermore, it is clear that (IIJI)(O) = 0 and 0 :S (I1JI)(y) :S 1. Finally, by 
using the representation 

(I1JI)(y) = 11 lJI(o:yx)lJI(o:y(l - x)) dx 

it is also clear that (I1JI)(y) is increasing (if lJI(y) is increasing). 
Now suppose that 1JI1,1JI2 E F with d(1JI1,1JI2 ) = 8. Then it follows from 

o :S IJI j (y) :S 1 that 

IIJI 1 (z) IJI 1 (o:y - z) - IJI 2 (z ) IJI 2 (o:y - z) I 

:S 11JI 1 (z) - 1J1 2 (z)1 + 11JI 1 (o:y - z) - 1J1 2 (o:y - z)1 
:S 8 (z(3o + (o:y - z )(30 ) 
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and consequently 

2 lay < 8- z/3o dz 
ay 0 

2a/3o 8 __ y/3o 
,80 + 1 

which implies 

with 

L = 2a/3o = (~) /30 < 1. 
,80 + 1 ao 

Thus, f : F -+ F is as contraction. 
By Banach's fixed point theorem there exists a unique fixed point IJI E F. By 

definition, this fixed points satisfies properties 1., 3., and 4. of Lemma 2. 
If we start with 

lJIo(Y) = max{l- y/3,O} 

and define iteratively IJI k+l := fIJI k then the fixed point is the limit IJI = lim IJI k 
k-too 

and we have 

d(lJIo, IJI) = 0 C ~ L) , 
which directly translates to the precise estimate in 1. 

In order to prove 2. we set 

\j1(y) := e-cy--Y 

with 'Y = log2/log(a/2). Since 'Y > 1 we surely have 

ll Y - -- lJI(z)lJI(y - z) dz < 
y 0 

! {Y\j1(Y/2)2dz 
y 10 
\j1(y/2)2 

\j1 (y / a). 

Thus, if we know that IJI k (y) :S IJI (y) for y :S Yo then it follows that (fIJI k) (y) = 
IJI k+l (y) :S IJI (y) for y :S Yo / a. However, there is an a-priori bound for all IJI k of 
the form 

IJIk(Y) :S 1- y/3 + G'(l- (a/ao)C'-l)-ly/3o. 

Hence, if we choose G and Yo appropriately (i.e., as proposed) then we can assure 
that lJIo(y) :S lJI(y) for y :S Yo and (a-priori) IJIk(Y) :S \j1(y) for Yo/a :S y :S Yo· 
Thus, 2. follows by induction. <> 

Corollary Let IJI (y) be as in Lemma 2 then the Laplace transform 

<I>(u) = 100 
lJI(y)e-UY dy 

is an analytic function for ~u > 0 and satisfies the following properties. 
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1. 4>(u) and and u4>(u) are decreasing for real u > O. 

2. 1 - u4>(u) = r(,B + l)u-!3 + 0 ((1- (a/ao)C'-1 )-IUl-C') as u -+ 0+. 

3. 4>(u) = O(e-C(a)u'l') as u -+ 00, where "(' > 0 and C(a) is of the form stated 
in Lemma 2. 

Proof. It is clear that the Laplace transform 4>(u) is an analytic function for ~u > o. 
Moreover, since 4>(y) is non-negative, it follows by definition that 4>(u) is decreas-
ing. 

By partial integration we get for any u > 0 

u4>(u) = - 1000 W/(y)e- UY dy. 

Since w/(y) > 0 for y > 0 it also follows that u4>(u) is decreasing for u > 0, too. 
Next, the expansion 4>(y) = 1- y!3 + O(y!3o) as y -+ 00 directly translates to 

1 r((J+l) ( c'-1 -1 1 ) 
4>(u) = ;: - u!3+l + 0 (1 - (a/ao) ) u!3o+l 

as u -+ 0+. 
Finally the integral equation for W (y) induces the proposed differential equa­

tion for 4>(u). 0 

4 Auxiliary Functions 

We will now work with the auxiliary functions 

(9) 

where h is a real parameter. 
The properties of 4> (u) can be translated to corresponding properties of Zh (x). 

The proof is immediate. The idea behind is that theses functions imitate the 
original functions Zh (x). 

Lemma 3 The functions Zh(X), h ~ 0, 0 ~ x < 1, defined by (9) satisfy 

1. 0 < Zh(O) < 1. 

2. 0 ~ Zh(X) ~ 1/(1 - x) for 0 ~ x < 1. 

3. Zh (x) is strictly increasing for 0 ~ x < 1. 

4. Z~+1 (x) = Zh(X) (_2_ -Zh(X)). 
I-x 
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We will also make use of the following property of the functions Zh(X). 

Lemma 4 For every non-negative integer h and for every (real) D there exists 
0< Xh,D < 1 such that 

(10) 

and 
(Xh,D < X < 1). (11) 

Furthermore 
(12) 

Proof. We proceed by induction. Since ZD(X) is strictly increasing and satisfies 
0< ZD(O) < 1 and limx--+l- ZD(X) = 00 the assertion is surely true for h = O. Now 
suppose that (10) and (11) are satisfied for some h ~ 0, i.e. the difference 

has a unique zero Xh,D > 0 such that i5h,D(X) > 0 for 0 ~ x < Xh,D and i5h,D(X) < 0 
for x > Xh,D' Now we have 

Z~+l(X) - Z~+l+D(X) 

Zh(X) (1: x - Zh(X)) - Zh+D(X) (1: x - Zh+D(X)) 

i5h,D(X) C : x - Zh(X) - Zh+D(X)) . 

Hence, i5h+l,D(X) is increasing for 0 ~ x < Xh,D and decreasing for x > Xh,D' 
Since <>h+l,D(O) > 0 and limx --+ CXl i5h +1 ,D(X) = -00 there exists a unique zero 
Xh+l,D > Xh,D of i5h+l,D(X) such that i5h+l,D(X) > 0 for 0 ~ x < Xh+l,D and 
i5h+l,D(X) < 0 for x > Xh+l,D' <> 

Finally, we can provide a uniform upper bound for Zh(X), 

Lemma 5 Let a > ao and Zh(X) be defined by (9). Then we have 

< f(11 + l)ai3d '" (11 + l)k (log _1_) k 
~ k! 1- x 
k2:0 

+ 0 ( 1 a(c'-l)h '" (c')k (10 _1 )k) 
1 - (a/ao)C'-l ~ k! g 1 - x 

k2:0 

uniformly for all real h and all 0 ~ x < 1. 

Proof. Firstly we note that the inequality 
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is valid for all u ~ O. Thus, by definition 

which proves the lemma. 0 

5 An upper bound for EH~. 

For every integer h ~ 0 we will now use a special chosen 

This a is associated with 

(J = (Jh = C' - 1 + ~ + a (.!.) VFi h 

(for some do > 0), the solution> c' - 1 of the equation 2a,B = (J + 1. Hence, for 
every integer h ~ 0 there is a function 'It(y) = 'lth(y) (guaranteed by Lemma 2) 
satisfying 

'lth(Y) = 1 - y,B + a (hyC'-l) (13) 

as y -t 00 and and its Laplace transform <I>(u) = <I>h(U) with 

(14) 

as u -t 0+ and a-constants which are uniform in h. Thus, (13) and (14) are only 
significant for 

resp. for 

where d l , d2 > 0 are appropriately chosen constants. 
The key lemma for the proof of an lower bound of Zh(X) is the following one. 

Lemma 6 For every real number d and for every integer h ~ 0 we have 

for all 0 ~ x < 1. 

< f((Jh + 1) (_2_) h+d '" ((Jh + l)k (log _1_) k 
(Jh + 1 ~ k! 1 - x 

k?h 

+ a (h (~) h (l-c')d '" (c')k (1 _1 ) k) 
c' a h ~ k! og 1 - x 

k?h 
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Proof. For h = 0 this inequality is just Lemma 5. Now we can proceed by induction. 
We only have to observe that Zh+d(O) < 1= Zh(O) and that 

Z~+1+d(X) - z~+l (x) = (I ~ x - Zh+d(X) - Zh(X)) (Zh+d(X) - Zh(X)) 

and that 
2 2 

-- - Zh+d(X) - Zh(X) ~ --. 
I-x I-x 

(The proof is quite similar to that of Lemma I). ¢ 

The next lemma uses this estimate to get a lower bound for Zh(X) at a specific 
value. 

Lemma 7 There exists a constant Do > 0 such that 

Proof. We use Lemma 6 with x = 1- e-h/Uh+l) and 

where Do > 0 will be chosen in the sequel. We directly get (after some algebra) 

and similarly 

Since 

( 2 )h+d ((jh+1)k ( 1)k 
13h + I :L k! log 1 - X 

k?h 

1 
( 

f.l 1 ) Do"fh log h 
'" 2"eh /(i3h+ 1) fJh; 

h (~) h (l-c')d '" (c')k (1 _1_)k 
c' a h L...J k! og 1 - X 

k?h 

(
13 + 1) ~(Do"fh logh) «eh /(i3h+l)h _h __ 

2 

c'-I 1 d4 --> +-
13h - ..jh 

(for some constant C4 > 0) it follows that there exists Do > 0 such that 

h (Ph: 1) ~(1J,v'Ii I"h) = 0 Wh: 1 tv'lil"h) 
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as h ---+ 00. 

In a similar way we can discuss Zh+d(X). By definition (and after some alge­
bra) we get 

if Do is sufficiently large. Consequently 

( 
1 ) ( (3 1 ) Do Vh log h 

Zh(X) > f((3h + 1) 1-"2 eh/({3h+ 1) h: (1 + 0(1» 

> _c_eh/({3h+l) _"'h __ f( ') ((./ + 1)DOVh logh 

3 2 

as proposed. <:; 

Corollary Set 

h' = ((3 1~ I - Do Vh log h - l. 
h + ogah 

Then we have 

for x ~ 1 - e- h /({3dl). 

Proof. As in the proof of Lemma 7 it follows that 

(3 1 ((3 1) DoVh log h 
Zh' (1 - e-h/({3h+l») h: f((3h + 1)eh/({3h+1) ~ (1 + 0(1» 

< f((3~ + 1) eh/({3d1) ((3h: 1) DoVh logh 

Thus, 
Zh' (1 - e-h/({3h+l») ~ Zh (1 - e-h/({3h+ 1») 

and consequently, by Lemma 4 

for x ~ 1 - e-h/({3h+1). <:; 

Now we can complete the proof of Theorem 2. For given n > 1 choose a 
constant Dl > 0 such that 

h := [c'logn + Dl(logn)1/21og1ogn] 
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is large enough that 

for 
_ 1 h/((!3h+1)loga:h)-Dov'lilogh 

U - -Oh 
n 

(Here we use 3. of the Corollary of Lemma 2.) Hence it follows that for h' 
h/(((Jh + l)logoh) - Dov'h logh 

Thus, by Theorem 1 we get 

EH~ :::; c'logn + Ddlogn)1/2loglogn. 

This completes the proof of Theorem 2. 
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Abstract. Using Fourier analysis, we prove that the limiting distribution of the stan­
dardized random number of comparisons used by Quicksort to sort an array of n numbers 
has an everywhere positive and infinitely differentiable density f, and that each deriva­
tive f(k) enjoys superpolynomial decay at ±oo. In particular, each f(k) is bounded. Our 
method is sufficiently computational to prove, for example, that f is bounded by 16. 

Key words. Quicksort, density, characteristic function, sorting algorithm, Fourier 
analysis, rapidly decreasing Coo function, tempered distribution, integral equation. 
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1 Introduction and summary 

The Quicksort algorithm of Hoare [7] is "one of the fastest, the best-known, 
the most generalized, the most completely analyzed, and the most widely used 
algorithms for sorting an array of numbers" [2]. Quicksort is the standard sorting 
procedure in Unix systems, and Philippe Flajolet, a leader in the field of analysis 
of algorithms, has noted that it is among "some of the most basic algorithms-the 
ones that do deserve deep investigation" [4]. Our goal in this introductory section 
is to review briefly some of what is known about the analysis of Quicksort and 
to summarize how this paper advances that analysis. 

The Quicksort algorithm for sorting an array of n numbers is extremely 
simple to describe. If n = 0 or n = 1, there is nothing to do. If n ~ 2, pick a 
number uniformly at random from the given array. Compare the other numbers to 
it to partition the remaining numbers into two subarrays. Then recursively invoke 
Quicksort on each of the two subarrays. 

Let Xn denote the (random) number of comparisons required (so that Xo = 
0). Then Xn satisfies the distributional recurrence relation 

n ~ 1, 

where £ denotes equality in law (i.e., in distribution), and where, on the right, 

Un is distributed uniformly on the set {I, ... ,n}, X; f= Xi> and 

Un; Xo,··· ,Xn- 1 ; XQ', ... ,X~_l 

are all independent. 

lResearch supported by NSF grant DMS-9803780, and by the Acheson J. Duncan Fund for 
the Advancement of Research in Statistics. 
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As is well known and quite easily established, for n 2:: 0 we have 

J.Ln := EXn = 2(n + l)Hn - 4n '" 2n In n, 

where Hn := E~=l k-1 is the nth harmonic number and", denotes asymptotic 
equivalence. It is also routine to compute explicitly the standard deviation of Xn 

(see Exercise 6.2.2-8 in [9]), which turns out to be '" nJ7 - j7r2 . 

Consider the standardized variate 

n2::1. 

Regnier [11] showed using martingale arguments that Yn -t Y in distribution, 
with Y satisfying the distributional identity 

c y = UY + (1 - U)Z + g(U) =: hy,z(U), (1.1) 

where 

g(u) := 2u In u + 2(1 - u) In(l - u) + 1, (1.2) 

and where, on the right of £, in (1.1), U, Y, and Z are independent, with Z £, Y and 
U '" unif(O, 1). RosIer [12] showed that (1.1) characterizes the limiting law C(Y), 
in the precise sense that F := C(Y) is the unique fixed point of the operator 

e = C(V) r-t se:= C(UV + (1- U)V* + g(U)) 

(in what should now be obvious notation) subject to 

EV=O, VarV < 00. 

Thus it is clear that fundamental (asymptotic) probabilistic understanding 
of Quicksort's behavior relies on fundamental understanding of the limiting dis­
tribution F. In this regard, RosIer [12] showed that 

the moment generating function (mgf) of Y is everywhere finite, (1.3) 

and Hennequin [5] [6] and RosIer showed how all the moments of Y can be pumped 
out one at a time, though there is no known expression for the mgf nor for the 
general pth moment in terms of p. Tan and Hadjicostas [15] proved that F has a 
density f which is almost everywhere positive, but their proof does not even show 
whether f is continuous. 

The main goal of this paper is to prove that F has a density f which is 
infinitely differentiable, and that each derivative f(k)(y) decays as y -t ±oo more 
rapidly than any power of Iyl-l: this is our main Theorem 3.1. In particular, it 
follows that each f(k) is bounded (cf. Theorem 3.3). 

Our main tool will be Fourier analysis. We begin in Section 2 by showing 
(see Theorem 2.9) that the characteristic function ¢ for F has rapidly decaying 
derivatives of every order. Standard arguments reviewed briefly at the outset of 
Section 3 then immediately carry this result over from ¢ to f. Finally, in Section 4 
we will use the boundedness and continuity of f to establish an integral equation 
for f (Theorem 4.1). As a corollary, f is everywhere positive (Corollary 4.2). 
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Remark 1.1. (a) Our method is sufficiently computational that we will prove, 
for example, that I is bounded by 16. This is not sharp numerically, as Figure 4 
of [15] strongly suggests that the maximum value of I is about 2/3. However, in 
future work we will rigorously justify (and discuss how to obtain bounds on the 
error in) the numerical computations used to obtain that figure, and the rather 
crude bounds on I and its derivatives obtained in the present paper are needed as 
a starting point for that more refined work. 

(b) Very little is known rigorously about I. For example, the figure discussed 
in (a) indicates that I is unimodal. Can this be proved? Is I in fact strongly 
unimodal (Le., log-concave)? What can one say about changes of signs for the 
derivatives of I? 

(c) Knessl and Szpankowski [8] purport to prove very sharp estimates of the 
rates of decay of I(y) as y -+ -00 and as y -+ 00. Roughly put, they assert that 
the left tail of I decays doubly exponentially (like the tail of an extreme-value 
density) and that the right tail decays exponentially. But their results rely on 
several unproven assumptions (as noted in their paper). Among these, for example, 
is their assumption (59) that 

Ee->'Y ~ exp( o:.x In.x + (3.x + ,In.x + 8) as .x -+ 00 

for some constants 0:(> 0),(3",8. (Having assumed this, they derive the values of 
0:, " and 8 exactly, and the value of (3 numerically.) 

2 Bounds on the limiting Quicksort characteristic 
function 

We will in this section prove the following result on superpolynomial decay of the 
characteristic function of the limit variable Y. 

Theorem 2.1. For every real p 2:: 0 there is a smallest constant 0 < Cp < 00 such 
that the characteristic function <p(t) := EeitY satisfies 

1<p(t)1 ~ cpltl-P for all t E R. (2.1) 

These best possible constants cp satisfy eo = 1, Cl/2 ~ 2, C3/4 < V8if, Cl ~ 41[, 
C3/2 < 187, c5/2 < 103215, c7/2 < 197102280, and the relations 

Cl / PI < cl / P2 0 < p < p . PI - P2 ' 1 _ 2, 

Cp+1 ~ 2P+lc~+(l/P)p/(p - 1), 

C < 2P2+6p > 0 
P - , P . 

p> 1; 

(2.2) 

(2.3) 

(2.4) 

[The numerical bounds are not sharp (except in the trivial case of eo); they 
are the best that we can get without too much work, but we expect that substantial 
improvements are possible.] 
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Proof. The basic approach is to use the fundamental relation (1.1). We will first 
show, using a method of van der Corput [1, 10], that the characteristic function of 
hy,z(U) is bounded by 2Itl-1 / 2 for each y, z. Mixing, this yields Theorem 2.1 for 
p = 1/2. Then we will use another consequence of (1.1), namely, the functional 
equation 

¢(t) = l~o ¢(ut) ¢((1 - u)t) eitg(u) du, t E R, (2.5) 

or rather its consequence 

1¢(t)1 ::; l~ol¢(ut)II¢((l- u)t)1 du, (2.6) 

and obtain successive improvements in the exponent p. 

We give the details as a series of lemmas, beginning with a standard calculus 
estimate [10]. Note that it suffices to consider t > 0 in the proofs because ¢( -t) = 
¢(t) and thus I¢( -t)1 = 1¢(t)l. Note also that the best constants satisfy cp = 
SUPt>o tPI¢(t)1 (although we do not know in advance of proving Theorem 2.1 that 

these are finite), and thus c~/p = SUPt>o tl¢(tW/p, which clearly satisfies (2.2) 
because 1¢(t)1 ::; 1. 

Lemma 2.2. Suppose that a function h is twice continuously differentiable on an 
open interval ( a, b) with 

h'(x) 2: c > 0 and h"(x) 2: 0 for x E (a, b). 

Then 

I rb eith(x) dxl ::;! for all t > O. 
}x=a ct 

Proof. By considering subintervals (a+c:, b-c:) and letting c: --+ 0, we may without 
loss of generality assume that h is defined and twice differentiable at the endpoints, 
too. Then, using integration by parts, we calculate 

rb 
eith(x) dx = ~ rb [!£eith(X)] ~ 

}x=a it }x=a dx h'(x) 

- - -- - eith(x) d --1 { eith(x) Ib lb ( 1 )} 
- it h'(x) x=a x=a h'(x)' 
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So 

I rb ith(x) I 1 {( 1 1) rb I ( 1 ) I } Jx=a e dx::::; t h'(b) + h'(a) + Jx=a d h'(x) dx 

= ~ { (h'~b) + h'~a)) + l:a [-d (h'~X))] dX} 

= ~ {(h'~b) + h'~a)) + (h'~a) - h'~b))} 
2 2 

=--<-. 
th'(a) - ct 

Lemma 2.3. For any real numbers y and z, the random variable hy,zCU) defined 
by (1.1) satisfies 

Proof. We will apply Lemma 2.2, taking h to be hy,z. Observe that 

and that 

1 
h~,z(u) = 0 if and only if u = Qy,z := e ) E (0,1). 

1 + exp 2 (y - z) 

Let t > 0 and "( > O. If in Lemma 2.2 we take a := Qy,z + ,,(r1/ 2 and b := 1, and 
assume that a < b, then note 

h'(u) = h~,zCu) = l u h~,zCx) dx 2: 8(u - Qy,z) 2: 8,,(C1/ 2 for all u E (a, b). 
X=Oll,Z 

So, by Lemma 2.2, 

Trivially, 

so we can conclude 

D 
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This result is trivially also true when a = O:y,z + ,,/e 1 / 2 ~ b = 1, so it holds for all 
t, "/ > O. The optimal choice of,,/ here is "/opt = 1/2, which yields 

li~",y,z eithy,z(u) dul ::; C 1/ 2 for all t > O. 

Similarly, for example by considering u H h(1 - u), 

Ifo"'Y'Z eithy,z(u) dul ::; C 1 / 2 for all t > 0, 

and we conclude that the lemma holds for all t > 0, and thus for all real t, 0 

Lemma 2.4. For any real t, 1¢>(t}1 ::; 2Itl-1/ 2 . 

Proof. Lemma 2.3 shows that 

and thus 

1¢>(t)1 = IEeithY,Z(U) I ::; EIE(eithY,Z(U) I y,Z)I::; 2Itl- 1 / 2. 0 

The preceding lemma is the case p = 1/2 of Theorem 2.1. We now improve 
the exponent. 

Lemma 2.5. Let 0 < p < 1. Then 

[f(1 - p)]2 2 

C2p::; f(2 _ 2p) Cpo 

Proof. By (2.6) and the definition of cp , 

1¢>(t)1 ::; i~o c~lutl-PI(1 - u)tl-P du = c~ltl-2P i~o u-P(I- u)-P du, 

and the result follows by evaluating the beta integral. 

In particular, recalling r(1/2) = -.jii, Lemmas 2.4 and 2.5 yield 

47r 
1¢>(t)1 ::; ItT· 

o 

(2.7) 

This proves (2.1) for p = 1, with C1 ::; 47r, and thus by (2.2) for every p ::; 1 with 
cp ::; (47r)P; applying Lemma 2.5 again, we obtain the finiteness of cp in (2.1) for 
all p < 2. Somewhat better numerical bounds are obtained for 1/2 < p < 1 by 
taking a geometric average between the cases p = 1/2 and p = 1: the inequality 

t > 0, 

shows that cp ::; 22P7r2p-1, 1/2 ::; p ::; 1. In particular, we have C3/4 ::; J87f, and 

thus, by Lemma 2.5, C3/2 ::; 87r1/2 [f(I/4)]2 < 186.4 < 187. 



Limiting Quicksort Density 59 

Lemma 2.6. Let P > 1. Then 

cp+1 ::; 2P+1C~+(1/P)p/(p - 1). 

Proof. Assume that t 2: 2c~/P. Then, again using (2.6), 

14>(t)1 ::; l~o min C::)P' 1) min C(1 ~pu)tjP' 1) du 

/.
C!/Pt- 1 c /.1-C!/Pt- 1 c2 

= 2 p du + p du 
u=o [(1 - u)t]p u-C1/Pt-1 [u(1 - u)t2]p - P 

< 2p +1 {cl+(l/P)C(P+1) + _1_c2t-2P [c1/Pt-1] -(P-l)} 
- P p-1P P 

= 2p+1 C1+(1/p) -P-t-(P+1). 
P p-1 

We have derived the desired bound for all t 2: 2c~/p. But also, for all 0 < t < 2c~/P, 
we have 

2p+1 Cl+(1/p) _P_C(p+l) > _P- > 1 > 1"'(t)1 
P p-1 -p-1- _'+' , 

so the estimate holds for all t > O. o 
Lemma 2.6 completes the proof of finiteness of every cp in (2.1) (by induc­

tion), and of the estimate (2.3). The bound for C3/2 obtained above now shows 
(using Maple) that C5/2 < 103215, which then gives C7/2 < 197102280. 

We can rewrite (2.3) as 

c1/(P+1) < 2c1/ p 1 + -- < 2cl /p exp ( 1) l/(p+l) (1) 
p+l - P p-1 - p (p-1)(p+1) 

_ lip ( 1 _ 1 ) 
- 2cp exp 2(p _ 1) 2(p + 1) . 

Hence, by induction, if p = n + ~ for a nonnegative integer n, then 

where C := 2-5/2e8/l5c~~~ < 30.6 < 25 , using the above estimate of C5/2. Conse­

quently, c~/p < 2p+5 when p = n + ~. For general p > 3/2 we now use (2.2) with 

Pl = p and P2 = fp - ~l + ~, obtaining c~/p < 2P2 +5 < 2p+6; the case P ::; 3/2 

follows from (2.2) and the estimate c~~~ < 33 < 26 . This completes the proof 
of (2.4) and hence of Theorem 2.1. 0 
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Remark 2.7. We used (1.1) in two different ways. In the first step we conditioned 
on the values of Y and Z, while in the inductive steps we conditioned on U. 

Remark 2.8. A variety of other bounds are possible. For example, if we begin 
with the inequality (2.7), use (2.6), and proceed just as in the proof of Lemma 2.6, 
we can easily derive the following result in the case t ~ 81f: 

321f2 ( (t) ) 321f2 In t 1¢(t)1 ::; T In 41f + 2::; t2 for all t ~ 1.72. (2.8) 

The result is trivial for 1.72 ::; t < 81f, since then the bounds exceed unity. 

Since Y has finite moments of all orders [recall (1.3)], the characteristic func­
tion ¢ is infinitely differentiable. Theorem 2.1 implies a rapid decrease of all deriva­
tives, too. 

Theorem 2.9. For each real p ~ 0 and integer k ~ 0, there is a constant Cp,k 
such that 

Proof. The case k = 0 is Theorem 2.1, and the case p = 0 follows by 1¢(k)(t)1 ::; 
EIYl k . The remaining cases follows from these cases by induction on k and the 
following calculus lemma. 0 

Lemma 2.10. Suppose that 9 is a complex-valued function on (0,00) and that 
A, B,p > 0 are such that Ig(t)1 ::; Arp and Ig"(t) I ::; B for all t > O. Then 
Ig'(t)1 ::; 2vABt-p/2. 

Proof. Fix t > 0 and let 8 = arg(g'(t». For s > t, 

Re(e-i9g'(s» ~ Re(e- i9g'(t)) -Ig'(s) - g'(t)1 ~ Ig'(t)l- B(s - t) 

and thus, integrating from t to tl := t + (lg'(t)IIB), 

if! 

Re(e- i9 (g(tl) - get»~) ~ t (lg'(t)l- B(s - t») ds 

= (tl - t)lg'(t)l- ~B(tl - t)2 = Ig'(t)1 2 /(2B). 

Consequently, 

and the result follows. o 
In other words, the characteristic function ¢ belongs to the class S of in­

finitely differentiable functions that, together with all derivatives, decrease more 
rapidly than any power. (This is the important class of test functions for tem­
pered distributions, introduced by Schwartz [14); it is often called the class of 
rapidly decreasing Coo functions.) 
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3 The limiting Quicksort density f and its deriva­
tives 

We can now improve the result by Tan and Hadjicostas [15] on existence of a 
density I for Y. It is an immediate consequence of Theorem 2.1, with p = 0 
and p = 2, say, that the characteristic function ¢ is integrable over the real line. 
It is well-known-see, e.g., [3, Theorem XV.3.3]-that this implies that Y has a 
bounded continuous density I given by the Fourier inversion formula 

I(x) = - e-ttx ¢(t) dt, x E R. 1 100 
. 

211" t=-oo 
(3.1) 

Moreover, using Theorem 2.1 with p = k + 2, we see that tk¢(t) is also integrable 
for each integer k ~ 0, which by a standard argument (cf. [3, Section XV.4]) shows 
that I is infinitely smooth, with a kth derivative (k ~ 0) given by 

I(k) (x) = - (-it)k e-itx ¢(t) dt, 1 100 

211" t=-oo 
x E R. (3.2) 

It follows further that the derivatives are bounded, with 

(k ~ 0), (3.3) 

and these bounds in turn can be estimated using Theorem 2.1. Moreover, as is 
well known [14], [13, Theorem 7.4], an extension of this argument shows that the 
class S discussed at the end of Section 2 is preserved by the Fourier transform, 
and thus Theorem 2.9 implies that IE S: 

Theorem 3.1. The Quicksort limiting distribution has an infinitely differen­
tiable density function I. For each real p ~ 0 and integer k ~ 0, there is a constant 
Cp,k such that 

o 
For numerical bounds on I, we can use (3.3) with k = 0 and Theorem 2.1 

for several different p (in different intervals); for example, using p = 0, 1/2, 1, 
3/2,5/2,7/2, and taking h = 4, t2 = 411"2, t3 = (187/(411"))2, t4 = 103215/187, 
ts = 197102280/103215, 

1 100 1100 

J(x) ~ 211" t=-oo 1¢(t)1 dt =:; t=O 1¢(t)1 dt 

~ - min(l, 2C1/ 2 , 411"C1 , 187C3/ 2 , 103215 C 5/ 2 , 197102280 C 7 / 2 ) dt 1100 

11" t=o 

= ~ (lh dt + lt2 2C1/ 2 dt + l t3 411"C 1 dt + lt4 187 C 3/ 2 dt 
11" t=O t=h t=t2 t=t3 

+ l:5t4 103215 C 5/ 2 dt + l:5 197102280 C 7/ 2 dt) 

~ 18.2. 
(3.4) 
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Remark 3.2. We can do somewhat better by using the first bound in (2.8) over 
the interval (103.18,1984) instead of (as above) Theorem 2.1 with p = 1, 3/2, 5/2, 
7/2 over (103.18, t3), (t3, t4), (t4, t5), (t5, 1984), respectively. This gives 

f(x) < 15.3. 

Similarly, (3.3) with k = 1 and the same estimates of 1¢>(t)1 as in (3.4) yield 

1 100 1100 

1i'(x)1 :S 21f t=-oo It II ¢>(t) I dt =;: t=o tl¢>(t)1 dt < 3652.1, 

which can be reduced to 2492.1 by proceeding as in Remark 3.2. The bound can 
be further improved to 2465.9 by using also p = 9/2. 

Somewhat better bounds are obtained by using more values of p in the es­
timates of the integrals, but the improvements obtained in this way seem to be 
slight. We summarize the bounds we have obtained. 

Theorem 3.3. The limiting Quicksort density function f satisfies maxx f(x) < 
16 and maxx 1f'(x)1 < 2466. 0 

The numerical bounds obtained here are far from sharp; examination of Fig­
ure 4 of [15J suggests that max f < 1 and max If'l < 2. Our present technique can­
not hope to produce a better bound on f than 4/1f > 1.27, since neither Lemma 2.3 
nor (2.6) can improve on the bound 1¢>(t)1 :S 1 for It I :S 4. Further, no technique 
based on (3.3) can hope to do better than the actual value of (21f)-1 ft:-CXlI¢>(t)1 dt, 
which from cursory examination of Figure 6 of [15J appears to be about 2. 

4 An integral equation for the density f 
Our estimates are readily used to justify rigorously the following functional equa­
tion. 

Theorem 4.1. The continuous limiting Quicksort density f satisfies (pointwise) 
the integral equation 

f(x) = t ( f(y) f (x - g(u) - (1 - U)y) .!. dydu, 
}U=O}YER u u 

xE R, 

where g(.) is as in (1.2). 

Proof. For each u with 0 < u < 1, the random variable 

uY + (1 - u)Z + g(u) (4.1) 

[with notation as in (1.1)J has the density function 

fu(x) := ! f(z) f (x - g(u) - (1 - u)z) .!. dz, 
zER u u 

(4.2) 
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where the integral converges for each x since, using Theorem 3.3, the integrand is 
bounded by f(z)(maxf)/u ~ 16f(z)/u; dominated convergence using the conti­
nuity of f and the same bound shows further that fv. is continuous. 

This argument yields the bound fv.(x) ~ 16/u, and since fv. = Ii-v. by 
symmetry in (4.1), we have fv.(x) ~ 16/ max(u, 1 - u) ~ 32. This uniform bound, 
(1.1), and dominated convergence again imply that f01 fv.(x) du is a continuous 
density for Y, and thus equals f(x) for every x. 0 

It was shown in [15] that f is positive almost everywhere; we now can improve 
this by removing the qualifier "almost." 

Corollary 4.2. The continuous limiting Quicksort density function is every­
where positive. 

Proof. We again use the notation (4.2) from the proof of Theorem 4.1. Fix x E R 
and u E (0,1). Since f is almost everywhere positive [15], the integrand in (4.2) is 
positive almost everywhere. Therefore fv.(x) > O. Now we integrate over u E (0,1) 
to conclude that f(x) > O. 0 

Alternatively, Corollary 4.2 can be derived directly from Theorem 4.1, with­
out recourse to [15]. Indeed, if f(yo) > 0 and Uo E (0,1), set x = yo+g(yo); then the 
integrand in the double integral for f(x) in Theorem 4.1 is postive for (u,y) equal 
to (uo, Yo), and therefore, by continuity, also in some small neighborhood thereof. 
It follows that f(yo + g(uo)) > O. Since Uo is arbitrary and the image of (0,1) 
under g is (-(21n2 -1), 1), an open interval containing the origin, Corollary 4.2 
follows readily. 

Remark 4.3. In future work, we will use arguments similar to those of this paper, 
together with other arguments, to show that when one applies the method of 
successive substitutions to the integral equation in Theorem 4.1, the iterates enjoy 
exponential-rate uniform convergence to f. This will settle an issue raised in the 
third paragraph of Section 3 in [15]. 
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Abstract. We derive asymptotic results on the distribution of the number of descendants 
in simply generated trees. Our method is based on a generating function approach and 
complex contour integration. 

1 Introduction 

The aim of this note is to generalize some recent results for binary trees by Pan­
holzer and Prodinger [15] to a larger class of rooted trees. The number of descen­
dants of a node j is the number of nodes in the subtree rooted at j, and the number 
of ascendants is the number of nodes between j and the root. Recently, Panholzer 
and Prodinger [15] studied the behavior of these parameters in binary trees dur­
ing various traversal algorithms. The case of binary search trees was treated by 
Martinez, Panholzer and Prodinger [14]. In this paper we will study the number of 
descendants in simply generated trees (defined below). The number of ascendants 
is already treated in [1] and [10]. 

Let us start with a description of the traversal algorithms we will investigate. 
In the binary case there are basically three traversal algorithms. All of them are 
recursive algorithms treating the left subtree before the right subtree. They differ 
with respect to the visit of the root: first (preorder), middle (inorder), and last 
(postorder). We will study the number of descendants in simply generated trees 
during preorder and postorder traversal. Since the outdegree of any node in a 
simply generated tree need not be equal to zero or two, inorder traversal cannot 
be well defined for that class of trees. 

Let us recall the definition of simply generated trees. Let A be a class of 
plane rooted trees and define for TEA the size ITI by the number of nodes of 
T. Furthermore there is assigned a weight w(T) to each TEA. Let an dEmote the 
quantity 

an = L w(T) 
ITI=n 

Besides, let us define the generating function (GF) corresponding to A by a(z) = 
L:n>O anzn. According to Meir and Moon [13] we call a family of trees simply 
generated if its GF satisfies a functional equation of the form a(z) = zcp(a(z)), 
where cp(t) = L:i>O CPi ti with CPi 2': 0, CPo > O. 

Let nk(T) denote the number of nodes vET with outdegree k (the outdegree 
of v is the number of edges incident with v that lead away from the root). Then 

IThis research has been supported by the Austrian Science Foundation FWF, grant PI0187-
MAT, and by the Stiftung Aktion Osterreich-Ungarn, grant 34oeu24. 
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we can equivalently define simply generated trees as trees with weight 

w(T) = II cpZk(T). (1) 
k2':O 

Another correspondence which was pointed out by Aldous [IJ is considering 
simply generated trees as representations of Galton-Watson branching processes 
conditioned on the total progeny. Under this point of view the offspring distribution 
induces the weights (1) (for more details see [IJ or also [4]). 

In order to prove our results we will employ a generating function approach 
and singularity analysis in a similar fashion as used in [7J. For an introduction to the 
combinatorial techniques see e.g. [8, 11J. For an extensive presentation of marking 
techniques in combinatorial constructions with applications to random mappings 
see [5, 6J. Random mapping statistics similar to the tree statistics studied in this 
paper can be found in [2, 9J. 

2 Main results and Preliminaries 

Choose a tree with n nodes at random (according to the distribution induced by 
(1)) and let aj(n) and wj(T) denote the number of descendants of the jth node 
during preorder and postorder traversal, respectively, of the tree. We will study 
the distributions of these random variables and prove the following theorem: 

Theorem 2.1 Assume that cp(t) has a positive radius of convergence R and that 
the equation tcp'(t) = cp(t) has a minimal positive solution 7 < R. Then we have 
for j rv pn: 

v'2 y'f-=p 
Ea·(n) rv ---Vri 

J av-rr vP 
v'2 vP and Ew(n) rv -----Vri 

J a v-rr y'f-=p 

where a 2 = 72 cp" (7) / cp( 7). The variances satisfy the asymptotic relations 

() v'2 ( y'f-=p .;-:;--:) 3/2 Vara· n rv -- --- - arcsm V 1 - p n 
J av-rr vP 

and 

() v'2 ( vP .;-:;--: 7r) 3/2 Varw· n rv -- --- + arcsm V 1 - p - - n . 
J a v-rr y'f-=p 2 

Furthermore a local limit theorem holds: Let the singularity of a(z) on the circle 
of convergence be denoted by Zo = 1/ cp' (7), then we have 

(2) 
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amTz{j' (1 + 0 (m l~g2 n) ), m '5: j, 

1 (1 + 0 (2-) + 0 (mlOg2 n)), m '5: j, (3) 
aV2nm3 m n 

uniformly for m « n/ log2 n. 

Remark 1 Note that if simply generated trees are viewed as conditioned branching 
processes, then a2 is just the variance of the offspring distribution. 

Remark 2 Note that here an interesting phenomenon occurs: the distributions in 
the local limit theorem do not depend on j. This is no contradiction to the formulas 
for expectation and variance, since on the one hand the variances are very large 
(Varaj(n) » (Eaj(n))2) and thus the knowledge of the expectation tells us only 
little about the distribution. On the other hand due to the heavy tail in (2) and (3) 
the local limit theorem cannot be used to derive expressions for the moments. 

Let us first set up the generating functions for the preorder case. Therefore 
denote the by ankm the (weighted) number of trees with n nodes such that the 
jth node Xj has m descendants. We are interested in the generating function 

( ) ~ njm a1 z,u,v = L...J ankmZ u v . 
n,j,m~O 

It is easier to work with 

a~m)(Z,u) = [vm]a1(z,u,V), 

where the symbol [xn]f(x) denotes the coefficient of xn in the formal power series 
f(x). Thus we will build this function now: Note that there is a unique path 
connecting Xj with the root. To each of these nodes there are attached subtrees 
of the whole tree. The path itself and those subtrees which lie left from the path 
contains only nodes which are traversed before Xj, while the nodes in the subtrees 
on the right-hand side from the path are traversed after x j. Thus a node with 
degree i on this path and iI subtrees on the left-hand side and h subtrees on the 
right-hand side contributes zU'Pia(ZU )jl a(z)h to the generating function. Summing 
up over all possible configurations we get 

where 

A. ( ) ~ ~ ()jl ()j a(zu) - ua(zv)/v '1'1 z, U, V = zu L 'Pi L...J a zu a zv 2 = --'---:-'---,----':--'-:--
i~l 3l+h=i-1 a(zu) - a(zv) 

The postorder case can be treated in an analogous way. In this case we get 

m+l m _(m)() u z am 
a1 z,u = 

1- ¢1(Z,U, l)/u 
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3 Proof of Theorem 2.1 

Since the generating functions for the preorder and the postorder case are so closely 
related it suffices to consider the preorder case. 

3.1 The Expected value of l:tj(n) 

We have 

Eaj(n) ~[ n j] "" (m)( ) _ ~[ n j]zu(a(zu) - a(z»a'(z) 
= z u ~ mal z, u - z u ( )( ) 

an > an azu-l 
m_O 

1 n j u(a(zu) - a(z» 
= an [z u ] (u -1)(1- zcp'(a(z))) (4) 

In order to compute this coefficient we will use Cauchy's integral formula 
with the following integration contour. Let z run through the contour r 0 = r 01 U 
r 02 U r03 U r 04 defined by 

r01 = {z=zo(I+~)I~t~Oundltl=l} 

r 02 = {z = Zo (1 + ~) I ~t = 1 und 0 ~ ~t ~ log2 n } 
= r 02 

= {zllzl=zoll+IOg2:+il ( log2 n + i) } und arg 1 + n ~ larg(z)1 ~ 7r . 

and since the location of the singularity changes when z varies, the appropriate 
contour for u is r 1 = r ll U r 12 U r 13 U r 14 defined by 

r ll { u = (1 + j) I ~s ~ -R(t) and Is + R(t) + I(t)il = 1 } 
r 12 = {u = (1 + j) I ~s = -I(t) + 1, -R(t) ~ ~s and lui ~ 11 + log2 f + i I} 

r 13 = {u = (1 + j) I ~s = -I(t) - 1, -R(t) ~ ~s and lui ~ 11 + log2 f + i I} 

r 14 = {ullul=ll+IOg2f+il and arguE [-7r,argZ13]U[argZ12,7r]}, 

where 

R(t)=max(o,~~t) and I(S, ... ,sp,t)=max(n2/3,~~t) 

and Za denotes the point of ra with maximal absolute value. For convenience, 
set 'Yo = r01 U r 02 U r03 and 'Y1 = r ll U r 12 U r 13 · 

Now we use well known expansions (see e.g. [13]) for the tree function a(z) 
and related functions in order to get the local behaviour of the integrand near its 
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singularity: we have for z -+ Zo inside the domain {z : I z I ~ Zo + c, arg( 1 - z / zo) i-
7r} for some c > 0 the local expansions 

(5) 

and 

z~/(a(z)) = 1-aV2Jl- ~ + 0 (11 - ~ I) (6) 

Inserting this into (4) yields for z E 'Yo and u E 'Y1 

1 11 u(a(zu) - a(z)) du dz 
an(27ri)2 ")'0 ")'1 (u - 1)(1 - z~/(a(z))) uH1 zn+l 

1 11 (A -J-~ -j)~ _t_s dtds 

= anz(i(27ri)2 ")'0 ")'1 !!'aV2 G e nj 
J Y-:;; 

x (1+0(1~1+lll)) 
= T 11 A -A -t{1-j/n)-v dtd 

anz(ia2 y'n(27ri)2 ")'0 ")'0 (v _ *) Rev 

x (1 + 0 Co: n + IO~2 j) ) 
Extending the integration contour to 00 (call the new contour 'Y and expanding 
the denominator into a series and using the fact (Hankel's representation of the 
Gamma function, see e.g. [16]) that for any positive constant A and integers k, l, 
one of which is nonnegative, we have 

i i tkvle-tA-v dtdv = 0, 

yields after some elementary calculations 
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where we used again Hankel's representation 

1 j( )-a -sd 1 
27ri , -8 e 8 = f(o:) 

as well as 
1 sin7r(k+1/2) (_l)k 

f( -k + 1/2)f(k + 1/2) 7r 7r 

and an = T/(1zrr.j27rn3 (1 + 0 (l/vn)) which can be easily obtained by applying 
[7, Theorem 3.1] to (5). (7) is already the desired expression, thus what remains 
to be shown is that the integrals where z E f04 or u E f14 are negligibly small. 
On f04 and f14 the estimates lul- j - 1 « e- 1og2 j and Izl-n-l « z;;ne- 10g2 n, 
respectively, hold. Moreover, observe that we have l/lu-II ::; 1/j « l/n along the 
integration contour. Furthermore, a(z) (and hence 1/(1- zcp'(a(z))) is analytic in 
the set surrounded by the integration contour. This in conjunction with (6) yields 
1/(1 - zcp'(a(z)) « n and therefore 

a~J J 
(z,u)Ero xr, \'0 x" 

« n 7 /2 e - log2 n-log2 j 

u(a(zu) - a(z)) du dz 
(u - 1)(1 - zcp'(a(z))) u j +1 zn+1 

(u - 1)(1 - zcp'(a(z))) uj +1 zn+1 = 0 (a~ J J 
(z,u)E,o x" 

u(a(zu) - a(z)) du dZ) 

which completes the proof. 

3.2 The Variance (sketch) 

We need an expression for the second moment. We have 

E .( )2 _ ~[ n j]uz2al/(z)(a(zu) - a(z)) 
0:] n - z u (1) ( ) an u - a z 

By elementary calculations we get 

al/(z) = 2cp'(a(z))cp(a(z)) + zcpl/(a(z))cp2(a(z)) 
(1 - zcp'(a(z)))2 (1 - zcp'(a(z)))3 

and thus 

Eo: .(n)2 = ~[znuj] (2uzCP'(a(z))(a(zu) - a(z)) + uza(z)cpl/(a(z))(a(zu) - a(z))) 
J an (u - 1)(1 - zcp'(a(z)))2 (u - 1)(1 - zcp'(a(z)))3 

Obviously, the dominant singularity in this expression comes from the second term. 
Proceeding as in the previous section and using zcpl/(a(z)) '" (12/T for z -t Zo gives 

~[znuj]2uzcp'(a(z))(a(zu) - a(z)) 
an (u - 1)(1 - zcp'(a(z)))2 
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and we are done. 

3.3 The distribution (sketch) 

We need to evaluate 

P{ ( ) - }- 1 [n j m] ( )_ 1 [n j]uzmam(a(zu)-a(z)) 
O!j n - m - - z u v al z, u, v - - z u ( )( ) . 

an an a z u - 1 

We use the same integration contour as in the previous sections and get for m « 
n/ log2 n 
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xl: (*) k !! (_t)k+l/2(_V)-k-l e-t(1-j/n)-v dtdv 

k?O 'Y 'Y 

am V2 (1 + 0 (m log2 n / n ) ) (j / n ) k 1 
= - az~ mann3/2(1 - j /n)3/2 ~ 1 - Un r( -k - 1/2)r(k + 1) 

am (1+0 (mlog2n/n)) ~(j/n )k('-3/2) 
- V21raz~-mann3/2(1- j/n)3/2 ~ 1- j/n k 

= V21r a_m / (1 + 0 (m log2 n / n ) ) 
27raz~ mann3 2 

= 1 (1+0(~)+o(mIOg2n)) 
av27rm3 m n 

as desired. 

4 Concluding remarks 

It would be interesting to get also expressions for the joint distributions of 
(ajl (n), ... , ajd (n)) and joint moments, as were derived in [1, 10] for the num­
ber of ascendants. But since an invariance property similar to [10, Lemma 3.3]) is 
not true in this case, we are not able to derive a general and simple shape for the 
generating functions which occur when we compute these joint distributions. The 
method presented here only in principle allows us to compute these joint distri­
butions and joint moments, but the expressions we would encounter are terribly 
involved. 
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Abstract. We consider here an universal predictor based on pattern matching. For a 
given string Xl, X2, ... , X n , the predictor will guess the next symbol Xn+l in such a way 
that the prediction error tends to zero as n -+ 00 provided the string xf = Xl, X2, • •• , Xn is 
generated by a mixing source. We shall prove that the rate of convergence of the prediction 
error is O(n-e) for any c > O. In this preliminary version, we only prove our results 
for memoryless sources and a sketch for mixing sources. However, we indicate that our 
algorithm can predict equally successfully the next k symbols as long as k = 0(1). 

1 Introduction 

Prediction is important in communication, control, forecasting, investment and 
other areas. We understand how to do optimal prediction when the data model is 
known, but one needs to design universal prediction algorithm that will perform 
well no matter what the underlying probabilistic model is. More precisely, let 
X I ,X2 , ... be an infinite random data sequence, and let a predictor generate a 
sequence Xl, X 2 , .•.• We consider only nonanticipatory predictors so that Xi is 
determined by Xl, ... ,Xi-I. We say that a predictor is asymptotically consistent 
if 

lim IPr{Xn+l = aIXI , ... ,Xn} - Pr{Xn+l = aIXI , ... , Xn}1 = 0 
n-+oo 

for all symbols a belonging to a finite alphabet A. 
We say that an universal predictor is optimal if Pr{Xi f:. Xi} is minimized 

for all i. When the probabilistic model is known, an optimal predictor is known to 
be (cf. [6]) 

In most cases, the probabilistic model of data is unknown. For such model we 
define the optimal predictor N(X i ) as above, that is, 

An universal asymptotically optimal predictor Xn is such that 

IThis work was supported by Purdue Grant GIFG-9919. 
2 Additional support by the ESPRIT Basic Research Action No. 7141 (ALCOM II). 
3This author was additionally supported by NSF Grants NCR-9415491 and C-CR-9804760. 
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for all a E A. It is known that in a class of stationary data models, there exists 
at least one universal optimal predictor. Among them, one should look for an 
universal predictor with the speed of convergence as fast as possible (cf. [9]). 

A large body of useful research on universal prediction was done in the last 
fifty years (cf. [1,4,8,9, 10, 11, 12, 14, 15, 16, 19]). There exist predictors based 
on arithmetic coding (cf. [14, 15]), Rissanen MDL (cf. [11, 12]), nonparametric 
universal predictors (cf. [4]), context-weighting, and so forth. In this paper, we 
consider a modified prediction algorithm based on pattern matching that was 
described in Ehrenfeucht and Mycielski [3]. This predictor seems to be performing 
well in practice, however, there is not yet a theoretical justification available (cf. 
[10]). The algorithm described in [3] is as follows: Let the sequence Xl, ... , Xn be 
given (i.e., it is a realization of a random sequence Xl, ... , Xn), and we are asked to 
predict Xn+l. Let Dn := n-f. be maximal such that Xl, ... ,Xn = Xl-i, ... ,Xn-i for 
some 1 :S i :S n. In other words, we find the maximal suffix of Xl, XlH, . .. , Xn that 
occurs earlier in the sequence Xl, ... , X n . Then, we take the smallest i (the most 
recent occurrence), say I, for which we found the longest match, and set XnH = 
Xn-IH (cf. [3]). It was conjectured in [3, 6] that this is an optimal predictor. 
However, Jacquet [5] proved that the above algorithm is a good density estimator 
but not an optimal predictor. More precisely, Jacquet proved that for memoryless 
sources Pr{XnH = a} = Pr{Xn-I+I = a} for all a E A. 

In this paper, we modified the above algorithm to make it asymptotically 
optimal predictor. Briefly, we consider a fractional maximal suffix, say of length 
aDn for 1/2 < a < 1. We shall show that such a shorter suffix occurs O(nl - a ) 

times in the strings X I, ... , X n. We find all occurrence of such shorter suffixes, 
called further markers, in Xl, ... ,Xn and then apply majority rule to all symbols 
that occur just after the markers (i.e., we select the most likely symbol). We shall 
prove that such a predictor is asymptotically optimal for mixing sources and the 
rate of convergence is O(n-E) for any E: > O. 

2 Main Results 

We start with a precise description of our prediction algorithm. We assume that a 
sequence xl = Xl, ... , Xn is given. Our goal is to predict the next symbol XnH such 
that the error of the prediction is as small as possible. To formalize this criterion, we 
asume that xl is a realization of a random sequence Xl := Xl, ... , Xn generated 
by a source, and the prediction sequence Xl is also random. The prediction error 
is then the probability Pr{ Xn+l -I- X n+1 } that should be minimized. 

Let us fix a < 1. The prediction algorithm discussed in this paper works in 
four steps: 

1. Find the largest suffix of xl that appears somewhere in the string Xl. We 
call this the maximal suffix and we denote its length by Dn. 

2. Take an a fraction of the maximal suffix. Its length is kn = r aDn 1. Such a 
suffix occurs Ln times in the string xl and we call these substrings markers. 
The marked position is a position that occurs just after the end of a marker. 
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3. Create a subsequence consisting of all symbols that occur at the marked 
positions. We shall call such a subsequence the sampled sequence. 

4. Set xn+l to the symbol that occurs most frequently in the sampled sequence. 
If there is a tie, break it arbitrary. 

The algorithm just described will be further called the Sampled Pattern 
Matching predictor, or in short SPM predictor. 

Before we proceed, let us consider an example. Below the text and the max­
imal suffix defined in Step 1 is shown 

SLJZGGDLI YGSJSLJZ IKGSSLJZIDSLJZJG~ YGSJSLJZ I 

where the maximal suffix and its copy are framed. Observe that D40 = 8. We set 
0: = 0.5 to get the suffix SLJZ that is used to find all markers. They are shown 
below: 

I SLJZ !gGDLYGSJI SLJZ IKGsl SLJZ IKLJZJGZYGSJI SLJZ I 

The sampled sequence is GKK, thus the SPM predicts X41 = K. 
The prime goal of this paper is to prove asymptotic optimality of the SPM 

algorithm. To formulate it precisely, we need some additional notation. We assume 
that xi.' is a realization of a random sequence XI' generated by a probabilistic 
source. We assume that the source is a mixing source that can be defined as 
follows: 

(MX) (STRONGLY) "p-MIXING SOURCE 

Let R~ be a a-field generated by Xk=m for m :::; n. The source is called 
mixing, if there exists a bounded function "p(g) such that for all m, g ~ 1 
and any two events A E Rf and B E R'::+g the following holds 

(1 - "p(g))Pr{A}Pr{B} :::; Pr{AB} :::; (1 + "p(g))Pr{A}Pr{B}. (2) 

If, in addition, limg -+oo "p(g) = 0, then the source is called strongly mixing. 
Hereafter, we consider only strongly "p mixing sources and we shall call them 
mixing sources. 

To simplify the presentation of our results we introduce 8-discriminant dis­
tribution. 

Definition 1 Let 8 > o. A distribution over a finite alphabet of size V with vector 
probability (pi)i~V is said to be 8-discriminant if: 

• There is only one integer i max such that Pimax = maxi {Pi}; 

• For all j =I i max we have Pi < Pimax - 8. 

We apply this definition to text sources. 
We say that a string Xi' is 8-discriminant if the distribution of Xn+l condi­

tioned on Xi' is 8-discriminant. Furthermore, we say that the source is asymptoti­
cally 8-discriminant if the probability that XI' is not 8-discriminant tends to zero 
when n --+ 00. 
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For example, it is easy to see that memory less and Markov sources are 8-
discriminant for some 8 > 0 depending on the model. We denote JLn = p(Xr 
is not 8-discriminant), the rate at which JLn tends to zero depends on the prob­
abilistic model. For 8-discriminant memoryless sources JLn = tjJ(n) = 0 for all 
n ~ 1. For Markov sources we have JLn = 0 when n > 1. More generally, Markov 
sources of memory K have JLn = 0 as soon as n K which is lower than tjJ(n) which 
exponentially decays but is non-zero. 

Our main results is summarized next. It asserts that the SPM predictor 
is asymptotically optimal for 8-discriminant mixing sources. Extension to non­
discriminant sources is possible and will be discussed in the final version of the 
paper. 

Theorem 1 For all a> 1/2 and 8> 0 the pattern matching predictor is asymp­
totically optimal for 8-discriminant mixing sources. More precisely, for any c > 0 
and large n 

for all a E A. 

Remark. Our proof, presented in the next section, shows that the optimality of 
the SPM predictor can be extended to a larger class of predictors. Namely, instead 
of predicting only symbol Xn+l we can predict the next m symbols x~tr' as long 
as m = 0(1) (and even this can be relaxed). This modified algorithm works in a 
similar manner except that we consider m marked positions after each marker, and 
apply the majority rule to the sampled sequence built over the modified alphabet 
of cardinality v m . 

We did perform some experiments on DNA and protein sequences using the 
SPM predictor. We provide a detailed discussion in the final version of the paper 
while here we only present some of our conclusions. 

Proteins are sequences of amino acids over an alphabet of size twenty, while 
DNA sequences are built over four bases. The following two experiments summarize 
our findings: 

• We analyzed the protein human adenovirus of length 807 with relative fre­
quencies of amino acids vary from 0.7% to 11 %. Over 100 predictions were 
done with the relative prediction success of 22%. This is a very good score. 
When we reduced the alphabet to ten (by lumping similar amino acids), the 
relative frequencies vary from 0.7% to 17%. The prediction success was 23%. 
Finally, we reduced the alphabet to a binary alphabet (i.e., polar/nonpolar 
alphabet) with relative frequencies 43% and 57%. This time we predicted 
three symbols at a time with the prediction success of 54% . 

• We considered a DNA sequence of length 10603 with relative frequencies 
vary from 24% to 26%. The prediction success was 29%. 
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3 Proof of the Main Result 

We prove here are main results. We start with a memory less source and later 
extend it to mixing sources. 

3.1 Memoryless Source 

We start with some technical lemmas. 

Lemma 1 The length Dn of the maximal suffix for a memoryless source is IO~ n 
with high probability for n --+ 00, where h is the entropy of the alphabet (h = 
- LiPdogpJ More precisely, 

{ logn· lOgn} (lOgn) nl~~Pr (l-e)-h-<Dn «l+e)-h- =1-0 7 

for any e > O. 

Proof. Follows from Szpankowski [17]. This is also true for more general sources 
(e.g., mixing sources). • 

The next lemma is at the heart of our proof. 

Lemma 2 For all 1::' there is I:: > 0 such that the probability that a string Xl 
contains two markers of length greater than a lo~ n that are separated by less than 

dogn symbols is 0(nl - 2o+ c ') for a> !. 

Proof. We shall use the Asymptotic Equipartition Property (AEP) (cf. [2, 18]). It 
asserts that for any given e, the set of all strings of length n can be partition into 
the set of good states 9n and the set of bad states Bn such that the probability of 
being in the bad states tends to zero when n --+ 00, while for strings xl' E 9n the 
probability P(x],) = Pr{ Xl = xl'} for fixed n is between 2- h (1+c )n and 2-h (1-c)n. 

For sources satisfying the so called Blowing-up Property Marton and Shields [7] 
proved that the convergence rate in the AEP is exponential, that is, P(Bn ) con­
verges exponentially fast to zero for such processes. In passing, we mention that 
Marton and Shields also shown in [7] that aperiodic Markov sources, finite-state 
sources, and m-dependent processes satisfy the blowing-up property. 

We also define for a given e > 0, the e-overlap set On that consists of strings 
of length n that overlap with themselves on more than en. We will use the fact 
that for all I:: > 0 the probability P( On) tends to zero exponentially fast. 

Let now k = f aDn 1 such that Dn 2: (1- 1::) k logn. We also set d = fdogn 1· 
We investigate the probabilities of the following two events: 

• £1 : A marker is at distance smaller than d from the suffix X;:_k of length k; 

• £2 : Two markers are within distance smaller than d. 
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Let Wk E Ak be a word of length k. The probability P(E1) of E1 is equal to 

P(E1) = 2:= Pr{3o<j9+d: X~~~_i = X~_k = wd· 
wkEAk 

Then, using the overlap condition, we arrive at 

P( C ) < P(O ) '"' P {::J . X n- k+d- i - xn Xn - } (4) 01 _ k + ~ r ::Ji::;2d· n-2k+2d-i - n-k+d' n-k - Wk . 
wk¢OdE ) 

By the AEP property we have 

P(Ed < P(Ok) + P(Bk-d) 

'"' P {::J . X n- k+d- i - xn _ } + ~ r ::Ji::;2d· n-2k+2d-i - n-k+d - Wk-d 

< P(Ok) + P(Bk- d) 

'"' '"' P {X n- k +d - i xn } + ~ ~ r n-2k+2d-i = n-k+d = Wk-d . 
Wk-dE9k-d i::;2d 

For a word Wk-d E gk-d the probability P(Wk) ~ 2-(1-E)(k-d)h, and therefore 

< P(Ok) + P(Bk-d) + 2dognTh(1-E)(k-d) 

< P(Ok) + P(Bk- d) + n-a+O(E) 

where the last line follows after setting k = ai log nand d = E log n. 
The probability P(E2 ) of E2, formally satisfies the following identity 

P(E2) = I: Pr{3m <n30<j9+d: x::~Lj = X;;:_k = X~_k = wd· (5) 
wkEAk 

Using the same arguments as above we conclude that 

< P(Ok) + P(Bk-d) + 2ndognT2h(1-E)(k-d) 

< P(Ok) + P(Bk- d) + n l - 2a+O(E) 

where the last line is a consequence of the values of k and d. The proof follows 
since for memoryless sources P(Bk ) decays exponentially fast with k. • 

In passing we observe that the main arguments of the above proof remain 
valid for mixing sources. 

Now, we show that the number Ln of markers is O(n1- a) with high proba­
bility. 
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Lemma 3 The number Ln of markers is such that there exists e > 0 and e' > 0 
so that 

for large n. 

Proof. Let Ln be the number of non-overlapping markers that may occur only at 
positions that are an integer multiply of k. Let also Wk E Ak be the suffix of Xf 
of length k. Observe that Ln ~ Ln and the number Ln of nonoverlapping mark­
ers is binomially distributed B(n/ k, P( Wk» with mean P( wk)n/ k and variance 
(1- P(Wk»P(wk)n/k. Given that Wk E {h such that P(Wk) ~ n-(l+c)a, we use 
Chebyshev's inequality to yield (for properly chosen e') 

< 

< 

< 

_ n1-(1-c)a 

Pr{Ln ~ k (1 - en 
Pr{Ln ~ E[Lnl- JneVar(Lnn 

k 
en1-(1+c)a· 

Since P(Wk ¢ gk) = O(n-c ) for memoryless sources, the proof is complete. • 

To proceed we need to introduce the important notion of stable strings and 
then paired strings. 

Definition 2 A string Xl is stable if a modification of any sampled symbol does 
not change the positions of all markers in the new string. 

We observe that a string is stable with high probability as stated below. 

Lemma 4 A string is stable with probability 1 - O(n-c ). 

Proof: By changing a symbol on a marked position we either create new 
markers that overlap with the previous marker or delete existing markers that 
were overlapping with the previous marker. From Lemma 2 we know that a string 
of length n contains overlapping markers with probability O(n-c ), thus a string is 
stable with probability 1 - O(n-c ). • 

Using stable strings, we define now an important notion of paired strings that 
are used to define an orbit of strings. 

Definition 3 A string Xf is paired to a string if if 

• Xf and Xf are both stable strings; 

• Xf and Xf have their markers at the same positions; 

• Xl and Xl match on every positions except the sampled symbols. 

Definition 4 An orbit for Xf is the set of the strings paired to Xf. 
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Let Ln(:F) be the number of markers in a string XI' E :F. Clearly, the cardi­
nality of the orbit :F is VLn(F) where Ln(:F) is the number of markers in Xr E :F. 

The next lemma summarizes our knowledge about the sampled sequence. 

Lemma 5 Let:F be an orbit of size VLn(F). Under the condition that the string 
Xr belongs to:F, the sampled sequence is i.i.d. with probability Pi for symbol i EA. 

Proof. Since Xr is generated by a memoryless source, the distribution of the sam­
pled sequence is just equivalent to the joint distribution of Ln(:F) symbols at fixed 
marked positions in Xr. More precisely, let ii, i2 , ••• , it be the marked positions, 
l being a short-hand notation for Ln(:F). The sampled sequence is X i1 X i2 ... X it . 
Observe that all the other values Xj for j rt {il , ... , il} are fixed when Xr belongs 
to the orbit:F. We denote by X(:F)11- 1 the fixed substring Xt1-1, X(:F)!:~ll-l the 

fixed substring X::+~-l, and X(:F)~+1 the fixed substring X~+l when Xr E :F. 
We have 

P {X . X. - IXn 'T"} _ P(X(:F)~1Xl ... X(:F)~:=-11+lXlX~+l) 
r >1 ••• >t - Xl ... Xl 1 E.r - p(Xr E :F) . (6) 

Since Xr is generated by a memory less source source, we have 

Pr{X(:F)11Xl ... XlX(:F)~+l} = P(X(:F)~1)P(Xl)·· .P(Xl)P(X(:F)~+l'w) (7) 

Furthermore, p(Xr E :F) = P(X(:F)~1 ... P(X(:F)11) thus 

n P(Xl) ... P(Xl)p(Xr E :F) 
P(Xi1 ... Xii = Xl ... xllXl E:F) = p(XI' E :F) (8) 

that yields the desired result. • 

To complete the proof we need a simple fact that will allow us to conclude 
that the sampled sequence contains i max with high probability. 

Lemma 6 The probability that Xn = i max under the condition that XI' belongs 
to an:F is 1 - O({3Ln(F)) for some {3 > 1. 

Proof. It suffices to show that i max occurs in the sampled sequence with probabil­
ity 1- (31 for Ln(:F) = i. But the sampled sequence is Li.d. of length O(nl - a ), thus 
any symbol i E A occurs with probability Pi and the convergence is exponential. In 
particular, i max occurs with probability Pmax > Pi for all i :f. i max . By a standard 
large deviation estimate (e.g., Chernoff's bound), we prove the lemma. • 

Now we are ready to prove Theorem 1. The unconditional probability that 
the predictor does not predict i max satisfies the inequality: 

Pr{Xn :f. i max } ~ Pr{Xr is not stable} 

+Pr{Xr is paired and Xn :f. i max } 

< O(n-c) + L P(:F)O({3Ln(F)) 
F 

< O(n-C) + O(E[{3Ln]) 



An Universal Predictor Based on Pattern Matching 83 

where the second line follows from Lemma 4. But by Lemma 3 

This completes the proof of Theorem 1 for memory less sources. 

3.2 Mixing Sources 

In this conference version of the paper, we provide only a sketch of the proof for 
the mixing model. 

In the sequel we set k = r'Y log n 1 for some 'Y > O. We consider the distribution 
of X n+1 under the condition X;;_k' IfWk is a string oflength k, we denote in(wk) = 
argmaxi{P(Xn+1 = i/X;;_k = Wk)}' 

We will use the following easy and technical lemma. 

Lemma 7 We consider a 8-discriminant distribution over an alphabet of size V 
and a string of length £ from a memoryless source based on this distribution. i max 

is the most likely symbol. For all 8 > 0 there exists a non-negative w < 1 such 
that the probability that the most frequent symbol in the string is equal to i max is 
O(w l ). 

In order to prove Theorem 1 for mixing sources, we use similar definitions 
and lemmas as for the memory less sources. However, we need some important 
modifications. We start with a generalization of stable and paired strings. 

Definition 5 A string Xl is k-stable if a modification of the k marked symbols 
after a marker does not change the positions of markers in the new string. 

Definition 6 A string Xl is k-paired to a string Xl if 

• X and X are both k-stable strings; 

• X and X have their markers at the same positions; 

• X and X match on every positions except the marked symbols. 

Lemma 1 to Lemma 4 of previous section are easy to extend to mixing model. 
In Lemma 3 we set 'Y < ~. We now rephrase Lemma 5. We consider an orbit F 
such that all markers are of lengths greater than k = r'Y log n 1, therefore each 
marked symbol is proceeded by a full copy of a suffix of Xl of length k. This will 
allow us to reduce the model to the memoryless one. This is stated below in a 
rather vague form (details will be provided in the final version). 

Lemma 8 Under the condition that Xl E F, the probability distribution of the 
marked sequence is within the factor (1±O(1j1(k))Ln(F) form the memoryless model 
{i. e., the probability of any event in the mixing model is equal the probability of 
the same event under the memoryless model modulo the multiplicative factor (1 ± 
O(1j1(k))Ln(F) ). 
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Using above and Lemma 7 we have 

Pr{Xn i- i max } < Pr{Xn is not k-stable or is not 8-discriminant} 

+ Pr{Xn is k-paired and 8-discriminant and Xn i- imax(Xn)} 

< O(n-E:) + /In + L P(F)O((1 + 'Ij;(Ln(F)))w)Ln(:F)) 
:F 

< O(n-E) + /In + O(E[((1 + 'Ij;(k))w)Ln]) = O(n-E:)) + /In. 

This gives a sketch of the proof of Theorem 1 for mixing sources. 
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Abstract. In [12], Goulden and Kulkarni propose a bijective proof of a form of the 
Lagrange-Goad's multivariable inversion formula [9]. In this paper, we propose a new bi­
jective proof of this formula, simpler than Goulden and Kulkarni's proof and we illustrate 
the interest of this proof in the enumeration of multisort rooted trees such that the edges 
partition is given. 

1 Introduction 

Lagrange's inversion formula for formal power series is a classical tool in enu­
merative combinatorics (see for example [11, 2]). In 1960, Good [9] proposed an 
extension that could handle the case of multivariable formal power series, called 
the Lagrange-Good's formula, and is well adapted for the enumeration of multi­
sort (or multicolored) structures. It has been extensively used by Goulden and 
Jackson [13, 10, 11]. Let d ~ 1 be a fixed integer, x = (Xl, ... ,Xd) be a vector of 
formal variables, n = (nl,'" ,nd) a vector of integers and let xn = X~' .•• X~d • 
For a given multivariable formal power series h(x), the coefficient of xn in h(x) 
is denoted by [xn]h(x). There are several forms of Lagrange-Good's formula, and 
we give the most classical in the following theorem. 

Theorem 1 Let F(x), Rl (x), ... , Rd(X) be d + 1 multivariable formal power se­
ries such that Ri(O) =I- ° for i E [d], 0 = (0, ... ,0) and Ai(t) = tiRi(A(t)) for 
i E [d]. Then we have the implicit form of Lagrange-Good's formula 

(1) 

where c5i ,j = 1 if i = j and ° otherwise, and the explicit form 

In [8] Gessel gives a bijective proof of formula (1). This proof is also given 
in the terms of the theory of combinatorial species in [2, Section 3.2], where it 

89 
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appears as a natural generalization of the proof of the Lagrange's inversion for­
mula in one variable due to Labelle [15]. In [7], Ehrenborg and Mendez give a 
combinatorial proof of (2) in the case of formal power series in an infinity of vari­
ables, in which the determinant in the right-hand-side of (2) is computed using 
an involution. The first direct bijective proof is due to Goulden and Kulkarni [12]. 
In fact, Goulden and Kulkarni show that formula (2) is equivalent to a form of 
Lagrange-Good's inversion which can be called arborescent, based on the notion 
of derivative according to a rooted tree (which can also be called arborescence). 

Definition 1 Let 9 be a directed graph having S = {I, ... ,d} as set of vertices 
and A as set of (directed) edges, x and rex) two vectors of formal variables and 
formal power series indexed by S. We define the derivative of rex) according to 9 
by 

8~(x) = II {( II 8~') hex)} , 
9 jES (i,j)EA ' 

where (i, j) stands for an edge directed from the vertex i to the vertex j. 

Theorem 2 Let F(x), Rl (x), ... , Rd(X) be d + 1 formal power series such that 
Ri(O) =I- 0 for i E [d] and A;(t) = tiRi(A(t» for i E [d]. Then we have 

(3) 

where n - 1 = (nl - 1, ... , nd - 1), the sum being taken over all rooted trees 
T having {O, 1, ... , d} as set of vertices, rooted in 0, and in which all edges are 
directed towards O. 

Goulden and Kulkarni prove this formula by establishing a bijection between 
rooted trees on d sorts (or d colors) and some endofunctions on d sorts, which 
is an extension of the classical bijection between "vertebrates" and endofunctions 
[14, 15]. This arborescent form of Lagrange-Good's inversion formula has been 
independently discovered by Bender and Richmond [1], who notice that the deter­
minant appearing in the right-hand-side of (2) can cause problems if one wants to 
obtain asymptotical informations about the coefficients in the Ai'S. On the other 
hand, the arborescent formulation (3) contains only positive terms and therefore 
is better suited for an asymptotical analysis. 

The interest of bijective proofs for Lagrange-Good's inversion formula is at 
least twofold. First, they give a better understanding of the combinatorial signifi­
cation of the enumerative formulas that one obtains when applying them. Second, 
a bijection usually leads to an algorithm for random or exhaustive generation. 
This then justifies the research for simple and efficient proofs of Lagrange-Good's 
formula (at least from an algorithmic point of view). 

In this paper, we first propose a new bijective proof of formula (3). The 
bijection that we describe here is based on the same principle as Goulden and 
Kulkarni's bijection [12], namely the manipulation of multisort rooted trees and 
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endofunctions, and has similar properties from an algorithmic point of view. How­
ever, it has two advantages: it is easier to put into application and the proof of 
its validity is immediate. In a second step, we show that this bijection, combined 
with the Matrix-Tree Theorem, leads to a combinatorial interpretation of various 
enumeration formulas for rooted trees with a given edges partition, and also, a 
version of Lagrange-Good's formula due to Goulden and Jackson [13] (see also [11, 
Section1.2.13]). 

2 A bijective proof of formula (3) 

In order to prove (3), we work in the context of the theory of species, and more 
precisely, of multisort species (see [2, 14, 15]). In a first step, we slightly modify 
formula (3) in order to take into account the fact that we are manipulating labelled 

structures and exponential generating functions. If we denote n! = rr~=l nil, then 
we obtain the following formula, which is equivalent to (3), 

(4) 

2.1 Multisort rooted trees and endofunctions. 

We now give a combinatorial interpretation of both sides of this identity. First, 
we introduce for i E [d], the species Xi of singletons of sort i, a vector R = 
(Rl , ... ,Rd) of species on d sorts having generating exponential functions (Rdx), 
... ,Rd(X)), and a species F on d sorts having generating exponential function 
F(x). Using F and R we construct two new species F(AR) and End"},R' 

Definition 2 We denote by AR,i the species of R-enriched rooted trees (on 
d sorts): for j E [d], there is an Rrstructure on the fiber (the set of sons) of a 
vertex of sort j, and the root is of sort i. These species hence verify the functional 
equations AR,i = XiRi(AR), which is the translation, in terms of species, of the 
equations Ai(t) = tiRi(A(t)) of the Lagrange-Good's formula. 

The species F(AR) of (F, R)-enriched rooted trees is the species of F-assemb­
lies of AR,i-structures. The set of F(AR)-structures having ni elements of sort i, 
for i E [d], is denoted by F(AR)[n]. 

In the rest of this paper, a (F, R)-enriched rooted tree over [n] will be repre­
sented as a rooted tree on {O}U[n], rooted at 0, such that there is a F-structure on 
the fiber of O. We denote by k i the kth element of sort i. Figure 1 gives an example 
of a (F, R)-enriched rooted tree over [n] = [4,3,1]. By convention, all edges in a 
rooted tree are directed towards the root and the enrichment on the fiber of an 
element (which is determinated by its sort) is represented by an arc of a circle. For 
example the fiber of 21 is the set {Il' 12 } and is embedded into a Rl-structure, 
while the fiber of 0 is embedded into a F-structure. 

By recalling that, for a species G on d sorts, nl[xll]G(x) = IG[n]l, we can 
interpret the left-hand-side of (4) in the following way. 
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• sort I 

o sort 2 

o sort 3 

Figure 1: A F(AR)-structure. 

Lemma 1 

Definition 3 A (F, R)-enriched partial endofunction over [n] is a function f of 
[n] into {O} U [n] in which each fiber f-I(U) is embedded into a Ri-structure if u 
is of sort i (i E [d]) and into a F-structure if u = O. We denote by End~ R[n] the 
set of (F, R)-enriched partial endofunctions over [n]. ' 

Definition 4 Let f E End~,R[n]. We call graph of sort.s of f, denoted by G(J), 
the directed graph having [d] U {O} as set of vertices and having, for i E [d]' a 
directed edge from i to j -:J 0 (resp. from i to 0), if and only if Ii is in the fiber of 
an element of sort j (resp. in the fiber of 0) . 

One usually represents a partial endofunction I by a directed graph: there is 
a directed edge from u to v if I(u) = v. For example, if d = 3 and [n] = [4,4,3]' the 
following figure represents a partial endofunction I E End~ R[n] and its related 
graph of sorts G(J). ' 

, I 

:0-2< 
: 3 

Figure 2: A End~ R-structure and its graph of sorts. 

Definition 5 A partial endofunction I E End~,R[n] is said to be restricted if 
G(J) is a rooted tree, rooted at 0, and in which all edges are directed towards 
the root. We denote by End~R[n] the set of (F, R)-enriched restricted partial 
endofunctions over [n]. ' 

The partial endofunction given in Figure 2 is therefore a restricted partial 
endofunction. From now on, unless stated otherwise, we use the terms F-rooted 
tree for (F, R)-enriched rooted tree and endofunction for (F, R)-enriched restricted 
partial endofunction. 

The following lemma gives a combinatorial interpretation of the right-hand­
side of (4) in terms of endofunctions (see [12,5] for a proof of this lemma). 
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Lemma 2 

(n - 1)![xn - 1fL 8(F, R~~T' ,R~d) = IEnd~,R[nJl, 
T 

the sum being taken over all rooted trees T having {O, 1, ... , d} as set of vertices, 
rooted in 0, and in which all edges are directed towards O. 

We deduce from Lemmas 1 and 2 that in order to prove formula (4) it is 
sufficient to show that 

F(AR)[n] :::: End~R[n], 

which can be considered as an expression of the arborescent form of Lagrange­
Good's inversion formula in terms of species. In the rest of this section, devoted to 
a bijective proof of this combinatorial identity, which will be illustrated using an 
example, we call minimal elements of {O}U[n] the set Min([nJ) = {II, 12 , ... ,Id}. 

2.2 From F-rooted trees to endofunctions. 

Let A E F(AR)[n] be a F-rooted tree. We call skeleton of A, denoted by S(A), 
the set of paths starting from an element of Min([nJ) and ending at the root O. 
S(A) is then a rooted tree having 0 as root and in which all the leaves are in the 
set {II, h, ... ,Id}. 

7 . ..6<13 
.0<.. 6 ···. --06 

~~ ~ 7 2 
... 2 ......c~---08 

~"" 0<'.5 4......c2 
'0 :···0<' 6 \ 

5 .... \ ··.-·· .. ®------2 
~4 'oS3 

"04 '0--09 

)--1_1 
~--l~6------1 

~-ol 
• sort 1 
o sort 2 
o ort 3 
® sort 4 

Figure 3: A F-rooted tree and its skeleton. 

The first step in the transformation of A into an endofunction fA belonging 
to End~R[n] consists in isolating S(A). In a second step, for each leaf Ii in S(A) 
(covered' according to the increasing order of their sort), we denote by C i the path 
going from Ii to the closest ancestor of Ii belonging to another path Cj with j < i 
(or to 0 if i = 1). In our example, 

CI =Ot-73 t-53 t-I I , 

C2 = 0 t- 23 t- 52 t- 13 t- 12, 

C4 = 52 t-42 t-61 t-14 . 

In a third step, each path C; of length 1; is transformed into a biword Bi of 
length li - 1 in the following way: for each element u in Ci different from Ii, if its 
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predecessor (on the path starting from Ii) is the element kj, then we perform the 
transformation 

*j 

u +- k j ---+ .j.. , 
u 

which indicates that in the fiber of u, k j will be replaced by an element of sort 
j, possibly different from kj . We concatenate the B/s, which results in a single 
biword, denoted by B(A): 

( 
*3 

B(A) = ~ 
*3 

.j.. 
o 

*2 *3 *2 *2 *1 
.j.. .j.. .j.. .j.. .j.. 
23 52 13 52 42 

Finally, for i E [dj, we replace the *i'S in B(A) by the elements of S(A) of sort i 
taken by increasing order. We then obtain the biword B'(A): 

B'(A) = (7 7 
o 73 53 

From this biword, one can define an endofunction fA over [n] in the following way: 
for each u E [n], if u E S(A), then fA(u) is the image of u in B'(A), otherwise 
fA (u) is the father of u in A. In our example, we obtain the following endofunction 
fA· 

Figure 4: The endofunction fA. 

It remains to show that the partial endofunction fA is indeed restricted. We 
call biletter (u, v) an element 

u 
.j.. 
v 

of B(A) or B'(A) (u can then be of the form *j or kj ). By construction, we can 
say that: 

• in B (A), at the left of a biletter (*i, kj ), there always exists a biletter (* j , u); 

• in B'(A), for a biletter (Ii, u), either u = 0, or u = kj and in the latter 
case, there exists, at the left of (Ii, u), a biletter (1 j, v) (this can be deduced 
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from the previous remark and from the fact that in order to go from B(A) 
to B'(A), one replaces the *i's by the elements of S(A) of sort i taken in 
increasing order); 

• the first biletter in B(A) is of the form (li,O). 

We then deduce that G(JA) is a rooted tree, having root 0 and in which all edges 
are directed towards 0, which proves that fA belongs to End~,R[n]. 

We define the skeleton of lA, denoted by S(JA), in the following way: S(JA) 
includes the elements of all cycles in I A and all paths starting from elements 
belonging to Min([n]) and ending either at 0, or in a cycle in IA (u E S(JA) if 
there is k 2: 1 such that I~(u) = u or if there are k 2: 0 and i E [d] such that 
u = 1~(li)). 
Property 1 An element u ¢ Min([n]) appears k times in B(A) (in the bottom 
line of B(A)) if and only if there exists a maximal subset {i l , ... , ik} of [d] such 
that for j = 1, ... , k, u E Gij . 

Property 2 An element u belongs to S(JA) if and only if it belongs to S(A), and 
its degree dS(fA)(U) in S(JA) is equal to its degree dS(A)(U) in S(A) (in particular, 
the leaves of S (J A) are the leaves of S (A)). 

2.3 From endofunctions to F -rooted trees. 

Let I E End~,R[n] be an endofunction. The first step of the transformation of I 
into a F-rooted tree AI in F(AR)[n] consists in isolating its skeleton S(J). Let I 
be the endofunction I A in Figure 4. 

I 4 6 
~--o ___ 1 5 7 2 
~ __ I 0--0--0--0 I 

Figure 5: The skeleton of I. 

We recall that for each element u of S(J), we denote by dS(f)(u) the degree of u 
in S(J). We then create a set P(J) and a multiset M(J): 

• P(J) contains all the elements of S(J) different from 0, 

• for each u E S(J), M(J) contains k occurrences of u if and only if there are 
k elements v in S(J) such that I(v) = u (i.e. dS(f)(u) = k). 

In our example we have M(J) = {0,0,61,42,52,52,13,23,53,73} and P(J) = 
{II, 61,12,42,52,13,23,53,73, I4}. Now let 1 be the number of leaves in S(J) and 
li\, ... , Iii these leaves, with il < ... < il (here, 1 = 3, i l = 1, i2 = 2 and i3 = 4). 
We perform the following transformations on the skeleton of I (the other edges of 
I are not modified): 

• for j from 1 to l, let u = lij and repeat 
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1. let v be the greatest element in P(f) of the same sort as u, 

2. suppress in I the edge I(v) +- v and add the edge I(v) +- u, 

3. suppress v of P(f), one occurrence of I(v) in M(f), and let u = I(v), 

as long as u ¥- a and u ¢ M(f). 

We then have to show that the structure AI obtained in this way is a F-rooted tree. 
By definition of the skeleton of an endofunction, and from the fact that the only 
modifications made on I to obtain AI concern its skeleton, it suffices to show that 
S(f) is transformed into a directed rooted tree with root a and in which all edges 
are directed towards O. This comes from the fact that for each step j = 1, ... , I the 
previous algorithm creates a path starting at Ii; and ending either at a (at least 
one of the paths created in this way ends at 0), or at an element which also belongs 
to a path created during a subsequent step (in our example, we create successively 
the paths a+- 73 +- 53 +- 11, a +- 23 +- 52 +- 13 +- hand 52 +- 42 +- 61 +- 14). 
Finally, it remains to verify that AlA = A and that IA/ = I. It is a consequence 
of Properties 1 and 2 and of the following facts: 

• during the transformation of A into lA, we replace all elements *j of B(A) 
by the elements of S(A) of sort j taken in increasing order; 

• during the transformation of I into AI, we remove from P(f) the elements 
of sort j in decreasing order. 

By construction, this bijection has the property (also verified in the bijection 
of Goulden and Kulkarni [12]) that the structure of the fibers of the elements is 
preserved. We will make use of this property of fiber structure preservation in the 
next section. 

Property 3 Let I be an endofunction in Enc1'}R[n] and u any element of {O}U[n]. 
For all i E [dJ, the restriction of 1-1 (u) to the eiements of sort i and the restriction 
of the fiber of u in AI to the elements of sort i have the same cardinality. 

3 Rooted trees with a given edges partition 

In this last section, we apply the previous bijection to the enumeration of rooted 
trees having a given edges partition. The results in this section are already present, 
implicitly or explicitly, in [13, 10]. However, the simple combinatorial proofs we give 
here illustrate well the fact that restricted partial endofunctions are structures that 
are easier to describe and enumerate than rooted trees, whence one of the interests 
of a bijective proof of Lagrange-Good's formula. 

Let M be a square matrix of size (d + 1) x (d + 1), M = (mi,j)05",i,j5",d, and 
A a F-rooted tree over [n]. We say that M is the edges partition of A if there is, 
in A, mi,j (resp. mi,o) edges (recall that all edges are directed towards the root) 
going from an element of sort i to an element of sort j (resp. to 0). We say that 
a matrix M = (mi,j)05",i,j5",d is a valid edges partition lor [n] if it verifies that for 

all j E [dJ, mO,j = 0, and for all i E [dJ, E;=o mi,j = ni. We denote by mj the 
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vector corresponding to the ith column (mO,i, ml,i, ... , md,i) in the matrix M and 
M! = I1;,j mi,j!. Moreover, we denote by F(AR)[n]M the set of F-rooted trees 
over [n] having M as edges partition. We naturally extend the notion of edges 
partition to endofunctions and we denote by En~,R[n]M the set of endofunctions 
having M as edges partition. 

Proposition 1 Let M be a a valid edges partition for [n] and 6(M) the matrix 
(6i ,jn i - mi,jh~i,j~d: 

(n - 1)' d 
jF(AR)[n]MI = det(6(M)) M! 'jF[moli IT IR~i[mill· (5) 

i=l 

Proof. By virtue of the bijection between F-rooted trees and endofunctions de­
scribed in the previous section, and by Property 3 (fiber structure preservation), 
we have F(AR)[n]M ~ End~R[n]M' In order to give an interpretation to the de­
terminant appearing in the right-hand-side of (5), we use the Matrix-Tree Theorem 
for directed graphs (see [11, Section 3.3.24] for example): 

• let A = (Ai,j h~i,j~m the adjacency matrix of a directed labelled graph 9 
having m vertices: the number of directed spanning trees of 9 having root 
C E [m] in which all edges are directed towards c is given by 

({ m } ) det 6· . " A' k - A' . 't,1 L...J 't, 'I.,J 

k=l l~i,j~m,i#-c,j#c 

Let M be a valid edges partition for [n], and T a rooted tree over {O} U [d] 
compatible with M (there cannot be an edge from ito j if mi,j = 0). To compute 
the number of endofunctions / in End~R[n] having T as graph of sorts, we note 
that for i E [d], if r has an edge from i to j (j E {O} U [d]), we have 

( ni - 1 ) mi,j ( ni ) 

mi,O,'" ,mi,j-l,mi,j -1,mi,j+l, ... ,mi,d = ~ mi,O,'" ,mi,j,'" ,mi,d 

choices for the sort of the images of the elements of sort i different from Ii, while 
for Ii, the sort of its image /(l i ) is fixed by T (its image is of sort j). We deduce 
that the number of endofunctions of End~,R[n]M over [n] having T as graph of 
sorts is 

( II mi,j) (rr ~. (m. .~~ m. ) IR~i[mi]l) IF[moll· (6) 
(i,j)ET i=l' .,0, , .,d 

Now, let TM be the set of rooted trees over {O} U [d] rooted at 0 that are com­
patible with M. By the Matrix-Tree Theorem we can say that det (6(M)) 

LTETM (TI(i,j)ET mi,j ) , which, combined with (6), let us deduce that 

IEnd~,R[n]MI =det(6(M)) (rr{~( . ni .) IR~i[mi]I}) jF[mo]l, 
i=l n. m.,o,···, m.,d 
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which implies (5). 0 

We then immediately deduce a combinatorial proof of a version of Lagrange­
Good's formula due to Goulden and Jackson [13) (see also [11, Section1.2.13)) and 
used, among other, in [13, 10). 

Corollary 1 Let F(x), Rl (x), ... ,Rd(X) be d + 1 multivariable formal power se­
ries such that Ri(O) =I- 0 and Ai(t) = tiRi(A(t)) for i E [d). Then we have 

[tn)F(A(t)) = (11 ~i) ~ det (6(M)) (11 [Xrn;)Ri (x)ni ) [xlllO)F(x), 

the sum being taken over all valid edges partitions M f01' [n). 

A F-rooted tree over [n) is an ordered (resp. unordered) rooted tree, with 
root of sort k, if the fiber of 0 only contains one element, of sort k, and if the fiber 
of every element different from 0 is embedded into a structure of totally ordered 
set L (resp. unordered set E). A matrix M is a valid edges partition for rooted 
trees over [n] having root of sort k if and only if M is a valid edges partition for 
[nJ, mk,O = 1 and for all i E [d) different from k, mi,O = O. For i E [d), let us denote 

qj = 2:~=1 mi,j, and, for a matrix P, cofk,k(P) the determinant of P where the 
kth line and the kth column have been deleted. 

Corollary 2 Let M be a valid edges partition for rooted trees over [n]. The number 
of multisort ordered rooted trees over [n) having root of sort k and M as edges 
partition is 

cofk,k(6(M)) (n + ~~ 1)!. (7) 

The number of multisort unordered rooted trees over [n) having root of sort k and 
M as edges partition is 

(8) 

Proof. These results are direct consequences of Proposition 1 and of the following 
remark: by definition, if A is a rooted tree having root of sort k, in the graph of 
sorts of fA, the root 0 has exactly one son, and this son is the element 1k. So by 
the Matrix-Tree Theorem, we can say that det(6M) = cofk,k(6(M)). 

Then it suffices to remark that the number of Ln'-structures (we recall that 
L is the species of totally ordered sets) over [mil is 

.,(ni +qi -1) q,. , 
qi 

to prove (7), and to remark that the number of En'-structures (we recall that E 
is the species of unordered sets) over [mil is n;i to prove (8). 0 

A matrix P = (pi,j h'::;i,j is called the degrees partition of a rooted tree A 
on [n] if the number of elements of A of sort i having degree j (the degree of an 
element is the number of elements in its fiber) is Pi,j (this notion can naturally be 
extended to the endofunctions). A matrix P is a valid degrees partitions for rooted 
trees over [n] if it verifies that for i E [d), L,j?o Pi,j = ni and qi = L,F?O jPi,j' 
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Corollary 3 Let M be a valid edges partition for rooted trees over [n] having root 
of sort k, and P a valid degrees partition for rooted trees over [n]. The number of 
multisort ordered rooted trees over [n] having root of sort k, M as edges partition 
and P as degrees partition is 

f (J:(M)) q!n!(n - I)! 
co k,k U M!P!' (9) 

The number of multisort unordered rooted trees over [n] having root of sort k, M 
as edges partition and P as degrees partition is 

q!n!(n - I)! II 1 
cofk,d6(M)) M!P! j!P"j' 

i,j?l 

(10) 

Proof. The proof of these two formulas is similar to the proof of Corollary 2. The 
only difference is the fact that the number of Ln'-structures on [mil such that Pi,j 
elements have degree j is 

o 
By noticing that ordered rooted trees are asymmetric structures, we obtain, 

from the two previous corollary, the formulas for the corresponding problem for 
unlabelled ordered rooted trees, by dividing (7) and (9) by n!. 

4 Conclusion 

In this paper, we presented a simple bijective proof of the multivariable Lagrange­
Good's inversion formula and we illustrated its usefulness in the problem of the 
enumeration of multi sort rooted trees. Using the same kind of reasoning (but with 
some variations), we are able to give a combinatorial explanation on two formulas 
enumerating m-ary cacti (a family of planar maps involved in the classification of 
complex polynomials, see [3] for example) and to deduce from this explanation a 
uniform random generation algorithm for these structures [4, 5]. 

However, there is a problem we were not able to solve: design a proof of 
the arborescent form of the Lagrange-Good's formula involving unlabelled struc­
tures and ordinary generating functions. Among all the proofs of the multivariable 
Lagrange-Good's formula, as far as we know, the only "unlabelled proof" is due 
to Chottin and is limited to the case of two variables series (d = 2) [6]. Such a 
proof would be of great interest, especially in the design of exhaustive generation 
algorithms of multi sort unlabelled combinatorial structures (like cacti for exam­
ple). We can think to solve this problem by using the theory of linear species [14]. 
Indeed, in [14], Joyal gives, in the case of one variable series, an unlabelled analog 
to the proof of Labelle using linear species. It would be interesting to extend this 
proof to the multivariable case. 

Acknowledgments. We thank Gilles Schaeffer for many fruitful discussions. 
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Abstract. We present a method, based on functional equations, to enumerate paths on 
the square lattice that avoid a horizontal half-line. The corresponding generating functions 
are algebraic, and sometimes remarkably simple: for instance, the number of paths of 
length 2n + 1 going from (0,0) to (1,0) and avoiding the nonpositive horizontal axis 
(except at their starting point) is C2n+1 , the (2n + l)th Catalan number. 

More generally, we enumerate exactly all paths of length n starting from (0,0) and 
avoiding the nonpositive horizontal axis. We then obtain limit laws for the coordinates 
of their endpoint: in particular, the average abscissa of their endpoint grows like fo (up 
to an explicit multiplicative constant), which shows that these paths are strongly repelled 
from the origin. 

We derive from our results the distribution of the position where a random walk, 
starting from a given point, hits for the first time the horizontal half-line. 

1 Introduction 

In January 1999, Rick Kenyon posted on the "domino" mailing-list the following 
e-mail: 

"Take a simple random walk on Z2 starting on the y-axis at (0,1), 
and stopping when you hit the nonpositive x-axis. Then the probabil­
ity that you end at the origin is 1/2. 
Since this result was obtained from a long calculation involving irra­
tional numbers, I wonder if there is an easy proof? By way of compar­
ison, if you start at (1,0) the probability of stopping at the origin in 
2 - )2." 

This mail led Olivier Roques, a graduate student at LaBRI, to investigate the 
number of such walks of fixed length: he soon conjectured that exactly 4n Cn walks 
of length 2n+ 1 go from (0,1) to (0,0) without hitting the nonpositive x-axis before 
they reach their endpoint, where Cn = e:)/(n + 1) is the nth Catalan number. 
Similarly, he conjectured that, if the starting point is chosen to be (1,0), then the 
number of walks is even more remarkable, being C2n+1 . Let us mention that these 
conjectures directly imply Rick Kenyon's results. 

We attack them by studying the problem in its full generality: denoting by 
ai,j(n) the number of n-step walks starting from (0,0), ending at (i,j), and avoid­
ing the forbidden half-axis (walks on the slit plane), we give a closed form expres-
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- - ---x 

Figure 1: A path on the slit plane joining (0,0) to (1,0). 

sion for the generating function 

S(x,y;t) = LLLai,j(n)xiyitn, 
iEZ iEZ n::::O 

which turns out to be algebraic. Our approach is based on a functional equation, 
which is trivial to establish, but tricky to solve (Section 4). 

From this three-variate generating function, we can compute the generating 
function for walks ending at a prescribed position (i,j): this proves O. Roques's 
conjectures (Section 2), and allows us to study R. Kenyon's question for any start­
ing point (Section 3). This gives the (bounded) solution of a discrete Dirichlet 
problem on the square lattice, with boundary conditions on the negative x-axis 
(see [12, Section 1.4] for definitions). We also study the asymptotic properties of 
n-step walks on the slit plane: for instance, we prove and quantify their tran­
sience (the point (1,0) is only visited with probability 2 - v'2). We show that 
their endpoint lies, on average, at distance Vn from the origin. More precisely, 
this endpoint, normalized by Vn, converges in law towards an explicit distribution 
(Section 5). 

Our method can be applied to similar problems: in particular, we can change 
the "forbidden" axis into the half-line x = y, x ~ 0, as explained in the full version 
of the paper [3]. 

Let us mention that two simple proofs of the C2nH result have been given 
recently [2, 4], the former being bijective. Moreover, the series S(l, 1; t) has already 
been studied in the literature [12, Chap.2] but, to our knowledge, only asymptotic 
results had been obtained so far. See also [6] for numerical simulations. 
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2 Main results 

2.1 The complete generating function 

We consider paths (or walks) on the square lattice made of four kinds of steps: 
north, east, south and west. Let n ~ 0, and (i,j) E Z x Z \ {(k,O) : k < OJ. We 
denote by ai,j(n) the number of walks of length n on the square lattice that start 
from (0,0), end at (i,j), and never touch the horizontal half-axis {(k,O) : k:5 O} 
once they have left their starting point: we call them paths on the slit plane. Fig. I 
shows such a walk, with (i,j) = (1,0) and n = 59. We denote bya(n) the number 
of paths of length n on the slit plane, starting from (0,0), regardless of their 
endpoint. 

Let Sex, y; t) be the generating function for paths on the slit plane, counted 
by their length and the position of their endpoint: 

Sex, y; t) Sex, y) = :L:L:L ai,j(n)xiyjtn, 
iEZ jEZ n~O 

1+ t(x + y + y) + e(x2 + 2xy + 2xy + xy + xy + y2 + y2) 

+ (5x + x3 + 4y + 4y + y3 + y3 + 3xy2 + 3xy2 + 3x2y + 3x2y 

+ x 2y + x 2y + 2xy2 + 2xy2)t3 + O(t4) 

with x = x-I, Y = y-l. We shall prove that this series is algebraic of degree 8 over 
the field of rational functions in x, y and t. 

Theorem 1 The generating function Sex, y; t) for paths on the slit plane is 

( ) (1 - 2t(1 + x) + vI- 4t)I/2 (1 + 2t(I- x) + VI + 4t)1/2 
S X y. t = ~----=-----=----:-,-------:'------'---':""""'-=--'---'------"---

" 2[I-t(x+x+y+y)] 

This series is algebraic of degree 8. When x = y = 1, it specializes to 

S(II. ) = "'"' ( ) n = (1 + v'f=-"4i)1/2(I +-/f+4t)1/2 
, ,t L...J ant 2(1 _ 4t)3/4 ' 

n~O 

so that the asymptotic growth of the number of paths of length n on the slit plane 
is 

( ) ""' VI + v'2 4n -1/4 
a n 2f(3/4) n . 

In other words, the probability that a random walk on the square lattice, starting 
from (0,0), has not met the forbidden half-line after n steps is asymptotic to cn-1/ 4 

with c = VI + v'2/2/f(3/4). The decay in n-1/ 4 was known [10, 12, p.71], but 
the details of the asymptotic behaviour seem to be new. 



104 Mathematics and Computer Science 

2.2 Paths ending at a prescribed ordinate 

We would like to enumerate paths on the slit plane ending at a prescribed point 
(i,j). Let 

5i,j(t) == 5i,j = L ai,j(n)tn 

n2:0 

be the corresponding generating function. This series is obtained by extracting the 
coefficient of xiyj from 5(x, y; t). As i and j belong to Z, rather than N, this is not 
an obvious task. In particular, let us underline that the algebraicity of 5(x, y; t) 
does not imply that 5i,j(t) is algebraic. This is clearly shown by the enumeration of 
paths starting from (0,0) in the (unslit) plane. The complete generating function 
is 1/[1- t(x + x + y + 17)]. It is rational, hence algebraic. However, for i, j 2: 0, the 
coefficient of xiyj in this series is 

L Cm:i+ j ) Cmm+:t j )t2m+i+j, 
m2:0 

which is transcendental: the coefficient of tn grows like 4n In, up to a multiplica­
tive constant, revealing a logarithmic singularity in the generating function that 
implies its transcendence (see [9] for a discussion on the possible singularities of 
an algebraic series). 

In constrast, we shall prove that for any i and j, the series 5 i ,j (t) is algebraic. 
Our first step will be to extract from 5 (x, y; t) the coefficient of yj. Before 

we state our result, let us introduce a few notations. 

Notations. Given a ring IL and n indeterminates Xl, ... , X n , we denote by 
• IL[Xl' ... ,xn ] the ring of polynomials in Xl, ... ,Xn with coefficients in IL, 
• IL[[Xl , ... ,xnll the ring of formal power series in Xl, ... ,Xn with coefficients 

in IL, 
and if IL is a field, we denote by 

• IL(Xl' ... ,xn ) the field of rational functions in Xl, ... ,Xn with coefficients 
in IL. 

It will be convenient to express the series 5i ,j (t) in terms of the following 
power series in t: 

_ Jf+4t - 1 _ "'(2 4n C _ C ) 2n+l 
U - ~ - L' n 2n+l t . 

vI - 4t + 1 n2:0 

Note that u is quartic over Q(t): 

u(l - u2 ) 
t- --,--'---::-:--::-

- (1 +u2 )2' 

This equation allows us to write any rational function in t as a rational function 
in u. Moreover, the generating function of Catalan numbers, 

C(t) = 1- vT=4t = '" _1_ (2n) tn, 
2t L n + 1 n 

n2:0 
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satisfies 

C(t) = 1 + U 2 , C( -t) = 1 + u2 and tC(t)C( -t) = u, 
1-u l+u 

so that Q(u) = Q(t, VI - 4t, VI + 4t). Also, let 

~(x) = [1- x(C(t) -1)][1 +x(C(-t) -1)] = (1- xu ~ ~~) (I-XU ~ ~~). 
Corollary 2 Let j E Z. The generating function for paths on the slit plane ending 
at ordinate j is 

S () '"' ( ) i n M(x)j 
j x,t = ~ ai,j n x t = fAT:::\ 

iEZ,n2:0 V ~(x) 

where 

( ) = M( . ) _ 1 - t(x + x) - J[l - t(x + x + 2)] [1 - t(x + x - 2)] 
M x - x, t - 2t . 

The generating function st(x; t) for paths on the slit plane ending at ordinate 
j and at a positive abscissa is of the form 

S+( . ) - '"' ( ) i n _ f( ) g(x, u) 
j x, t - ~ ai,j n x t - x, u + fAT:::\' 

i>O,n>O V ~(x) 

where f(x,u) and g(x,u) are Laurent polynomials in x with coefficients in Q(u). 
Similarly, the generating function Sj (x; t) for paths on the slit plane ending at 
ordinate j and at a non-positive abscissa is of the form 

Sj-(x;t) = L ai,j(n)xitn = Sj(x;t) = f(x,u) +g(x,u)J~(x), 
i~O,n2:0 

with the same conditions on f (x, u) and g (x, u). The series st and Sj can be 
computed explicitely. For instance, 

S(j(x; t) 1 -1 
J ~(x) , 

st(x;t) 1 [l-t(X+X) 1 _] 
2" tJ ~(x) - t(l + u2) + X , 

Sl(x; t) = 1 [1 - JK(i)] 
2" t(l + u2 ) - X - U . 

Sketch of the proof. We start from the expression of S(x, y; t) given in Theo­
rem 1: 

S x .t _ tJ~(x) 
(,y, )-u[l-t(x+x+y+y)]' 

and convert the denominator 1/[1 - t(x + X + y + y)] into partial fractions of y . 

• 
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2.3 Paths ending at a prescribed position 

The series Sj(x;t) and S;(x;t) can now be expanded in x (resp. x), and their 
form implies the following result. 

Corollary 3 For all i and j, the generating function Si,j(t) = L:n ai,j(n)tn for 
paths on the slit plane ending at (i,j) belongs to Q(u) =: Q(t,Jl-4t,J1+4t), 
and can be computed explicitely. It is either quadratic, or quartic over Q( t). In 
particular, 

S (t) = _u_ = 1 - J1 - 16t2 = ""' 4nC en+1 
0,1 1 _ u2 8t ~ n , 

n::O:O 

and 
S () - u(l + u2) _ 2 - y'f=4t - v'f+4t _ ""' C 2n+1 

1,0 t - 1 _ U2 - 4t - ~ 2n+1 t , 
n::O:O 

as conjectured by O. Roques. Some other values are 

S_ (t) = ~ = v'f+4t - y'f=4t - 4t = ! ""' C t 2n 
1,1 1 _ u2 8t 2 ~ 2n , 

n::O:1 

Sl,l (t) 
u2(2 - u2) 1 - 24t2 + 4tv'f+4t - 4ty'f=4t - J1 - 16t2 

(1 - u2 )2 32t2 

2":(4n - 1Cn + C2n /2)t2n . 

n::O:1 

Proof. Expanding in x (or x) the series S(j(x;t), Si(x;t) and Sl(x;t) given in 
the previous corollary provides the expressions of SO,l, Sl,O, S-l,l and S1,1' In 
theory, the series Si,j could be rational, but this can be ruled out by a simple 
asymptotic argument on the numbers ai,j (n). 

• 
Using our results, we can actually enumerate walks starting from any point 

of the nonpositive x-axis. This will be useful in the following section. 

Corollary 4 Let a\~J(n) be the number of paths of length n that go from (-k, 0) 
to (i, j) and do not meet the nonpositive horizontal axis once they have left their 
starting point. Let 

Di,j(x; t) = L a\~J(n)xktn 
k,n::O:O 

be the corresponding generating function. Then the series Di,j(x; t) can be com­
puted from the partial sections 

stj(x;t) = LXkSi+k,j(t) 
k::O:O 

through the following relation, valid for any i, j: 

stj(x; t) = Di,j(x; t) + xstj(x; t)D1,0(:C; t). (1) 
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Proof. Let P be a path joining (0,0) to (i + k, j) in the slit plane. Such paths are 
counted by stj(x;t). If P does not meet the segment [1,k] = {(e,O): 1 :::; e:::; k}, 
then P is isomorphic to a path joining (-k, 0) to (i, j) in the slit plane. This gives 
the term Di,j(x; t) in the right-hand side of (1). Otherwise, let (e,O) be the leftmost 
point of [1, k] that belongs to P. We can split P into two factors: from (0,0) to 
the last time (e,O) is reached, we get a path that is isomorphic to a path going 
from (-e + 1,0) to (1,0) in the slit plane; this corresponds to the coefficient of 
X l - l in Dl,o(x; t). The second factor goes from (0, e) to (i + k, j) and is isomorphic 
to a path going from (0,0) to (i + k - e, j) in the slit plane; it corresponds to the 
coefficient of x k - l in stj (x; t). This completes the proof of Relation (1). 

• 
2.4 Walks on the slit plane are transient 

It is well-known that the random walk on the square lattice is recurrent: any 
given point (i,j) of the lattice is visited by the walk with probability 1. In more 
enumerative terms, the proportion of walks of length n visiting (i, j) tends to 1 as 
n goes to infinity. This is no longer the case for walks on the slit plane. 

Corollary 5 Let ben) denote the number of walks of length n on the slit plane 
that visit the point (1,0). Then, as n goes to infinity, 

ben) In 
a(n) -+ 2 - v 2 < 1. 

Proof. A walk visiting (1,0) can be seen in a unique way as the concatenation 
WI W2 of a walk WI going from (0,0) to (1,0), and a walk W2 starting from (1,0), 
that not only avoids the horizontal half-axis but also the point (1,0) itself. This 
implies that 

L b(n)tn = Sl,o(t)S(I, 1; t), 
n 

and the result follows, as Sl,0(1/4) = 2 - .../2. 
• 

3 The hitting distribution of a half-line 

The above results allow us to solve a number of probabilistic questions "a la 
Kenyon". Let (i,j) be a point of Z2 not belonging to the forbidden half-axis. 
A random walk starting from (i,j) hits this half-axis with probability 1. The 
probability that the first hitting point is (0,0) is 

""' a· ·(n) 
Pi,j = ~ t~n = Si,j(I/4). 

n~O 

More precisely, ai,j(n)/4n is the probability that this event occurs after n steps. 
Corollary 3 implies that Pi,j E Q[J2]. In particular, we find PO,l = 1/2 and Pl,O = 
2 - .../2, as stated in R. Kenyon's e-mail. 
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More generally, given k ~ 0, one can ask about the probability p~~ that the 
first hitting point is (-k, 0). Using the notations of Corollary 4, 

LP~~Jxk = Di,j(xj 1/4), 
k~O 

and this series can be computed explicitely. 
Let us, for instance, derive the distribution of the hitting abscissa for a walk 

starting from (1,0). Using Relation (1) with (i,j) = (1,0), we express D1,0(xj t) 
in terms of sto(Xj t) = st(Xj t)/x: 

D (x· t) _.!. st(Xj t) 
1,0 , - x 1 + st(x; t)· 

The value of st(Xj t) is given in Corollary 2. Hence the probability distribution of 
the hitting abscissa for random walks starting from (1,0) is 

D (X· 1/4) =.!. st(Xj 1/4) 
1,0, x 1 + st(Xj 1/4) 

Observe that the smallest singularity of this series is at x = 1, and that p~kb 
decays like k- 3 / 2 as k -+ 00. This asymptotic behaviour actually holds for all 
starting points: 

Proposition 6 For any starting point (i,j), the probabilities p~~J decay like k-3/ 2 

as k goes to infinity. 

The proof is based on Corollaries 2 and 4. Equivalently, the study of the dominant 
singularity of Di,j(Xj 1/4)/(1 - x) shows that the probability that the hitting ab­
scissa is smaller than -k decays like k- 1/ 2 . This is related to the (already known) 
fact that the probability that a random walk starting from the origin reaches a 
point at distance k of the origin before it hits the horizontal half-line also decays 
like k- 1/ 2 [10, 12, Chap.2j. 

4 Derivation of the complete generating function 

4.1 Functional equations 

We obtain a functional equation for the series Sex, Yj t) defined in Section 2.1 by 
saying that a path of length n is obtained by adding a step to another path of 
length n - 1. However, when generating paths via this procedure, one must be 
careful not to produce paths ending on the forbidden half-line. This gives: 

SeX, y) = 1 + t(x + X + y + y)S(x, y) - tx - tSl,O - 2tS1 (x), 
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where, as above, 

n~O i::;O,n~O 

That is, 

[1 - t(X + X + y + 17)] 8(x, y) = 1 - t(x + 81,0 + 281" (x)). (2) 

Observe that this equation is equivalent to a recurrence relation defining the 
numbers ai,j(n) by induction on n: hence, this equation completely determines the 
series 8(x,y), and in particular its sections 81,0 and 81" (x). 

However, we found some difficulties working with Eq. (2), because 8(x,y) 
involves simultaneously positive and negative exponents of y. Instead, we are going 
to work with the series 

T(x,Yjt) =T(x,y) = Lai,j(n)xiyliltn, 
i,j,n 

which, by symmetry of the model, contains as much information as 8 (x, y) itself. 
Again, one writes easily a functional equation for the series T (x, y): 

[1 - t(x + X + y + 17)] T(x, y) = 1 - t[x + 81,0 + 281" (x) + (y - y)80 (x)], (3) 

with 
80 (x) = L ai,o(n)xitn. 

i~O,n~O 

The combinatorial part of the proof is now achieved. What we shall do from 
now on to solve Eq. (3) resorts to algebra. 

4.2 First application of the kernel method 

Let us call K(x, y) := [1 - t(x + X + y + 17)] the kernel of the functional equation 
(3). The principle of the kernel method is to cancel the kernel so as to obtain 
certain relations between the sections that occur on the right-hand side of the 
equation. See [7, 8, 11] for early uses of this method, and [1, 5] for more recent 
developments. 

Here, the kernel K(x, y), as a rational function of y, it has two roots. One of 
them is a formal power series in t with coefficients in Z [x, x], and will be denoted 
M(x): 

M() 1- t(x + x) - J(I- t(x + X))2 - 4t2 .( -) 2 ( 2 -2) 3 O( 4) 
X = 2t = t+ x+x t + x +3+x t + t . 

Observe that T(x, M(x)) is a well-defined series belonging to Z[x, x][[tlJ. Let us 
replace y by M(x) in Eq. (3): the kernel vanishes, and we obtain 

0= 1- t [x + 8 1,0 + 281" (x) + (M~X) - M(X)) 80 (X)] . (4) 
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4.3 From linear to algebraic equations 

The series M(x) is defined as one of the roots of the kernel K(x, y) = 1 - t(x + 
X + y + y). We eliminate M(x) between (4) and the equation K(x, M(x)) = 0 and 
obtain 

[1-t(x+x+2)][I-t(x+x-2)]80(x)2 -4t2 S1 (X)2 

+4t(l- tx - t81,0)81 (x) - (1- tx - t81,0)2 = O. 

Now, remember that 80 (x) is a formal power series in t and x, while S1(X) is a 
formal power series in t and x. Thanks to the absence of terms involving simulta­
neously a series in x and a series in x, we can easily extract the nonnegative part of 
the above equation, that is, the terms in Xi with i ;::: O. This forces us, however, to 
introduce the generating function 80,1 for paths on the slit plane ending at (0,1). 
We obtain: 

[1-t(x+x+2)][I-t(x+x-2)]80(x)2 -4t2 81,080,1 -(1-2t80,1)2 - (l-tx-tSl,0)2 + 1 = O. 
(5) 

The extraction of the negative part yields, after dividing by 4t: 

-tS1(X)2 + (1- tx - tS1,0)81 (x) + 80,dt80,1 + t81,0 - 1] = O. (6) 

4.4 Second application of the kernel method 

Let us focus on Eq. (5). Its kernel [1 - t(x + X + 2)][1 - t(x + X - 2)], as a rational 
function of x, has four roots. Two of them are formal power series in t. With the 
notations used in Section 2.2, these two roots are 

l+u 
C(t) -1 = u-­

l-u 
and 

l-u 
1 - C( -t) = u --. 

l+u 

Replacing x by these roots in Eq. (5) provides two relations between the unknown 
functions SI,O and 80 ,1, from which we compute: 

U 
SO,1 = -1--2 -u 

and 
8 _ u(1 + u 2 ) 

1,0 - 1- u2 . 

4.5 The complete solution 

We now replace 8 1,0 and 80,1 by their values in Eqs. (5) and (6). This yields, with 
the notations of Section 2.2, 

1 
80 (x) = -'l/=~=( x=) 

and - 1 [1 - J ~(X)l 
81 (x) ="2 t(1 + u2) - X - U . 



Counting paths on the slit plane 111 

Having computed So(x), SI (x) and SI,O, we can now express the series S(x, y) 
and T(x, y) using Eqs. (2) and (3). In particular, we obtain 

S x .t _ tJ6(x) 
( ,y, ) - u[I - t(x + X + y + y)) 

which completes the proof of Theorem 1. 

• 

5 The limit distribution of the endpoint 

We wish to describe the distribution of the endpoint of a random path in the 
slit plane. More precisely, when all paths of length n are taken equally likely, the 
endpoint becomes a random variable (Xn , Yn). With the notations used in the 
previous sections, 

Pr«X 1':) = (i .)) = [xiyjtn)s(x, Yi t) = ai,j (n) . 
n, n ,} [tn]S(I, Ii t) a(n) 

By expanding the series S(x, Yi t), we can plot the histograms of Xn and Yn . This 
suggests to normalize by Vn (Fig. 2) and that the normalized random variable 
(Xn/ Vn, Yn/ Vn) converges in distribution. 

Figure 2: The convergence of VnPr(Xn = i) and VnPr(Yn = i) against i/Vn, for 
n = 2,3, . . . ,10,20, 30, ... ,100. 

We have, indeed, proved the existence of a limit law, and obtained a (big) 
expression for its density. However, comparing with the corresponding continuous 
problem (a Brownian motion conditioned so that it avoids a half-line) suggests 
that this expression can be simplified. Let us simply state a result on the average 
abscissa of the endpoint: 

f(3/4) 
< Xn >'" r(I/4),fii,· 

The behaviour in Vn had been observed numerically [6], and is also known to hold 
in the corresponding continuous model. 
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Abstract. Let L be a context·free language on an alphabet X = {Xl,X2, ... ,Xk} and n 
a positive integer. We consider the problem of generating at random words of L with re­
spect to a given distribution of the number of occurrences of the letters. We consider two 
alternatives of the problem. In the first one, a vector of natural numbers (nl, n2, ... , nk) 
such that nl + n2 + ... + nk = n is given, and the words must be generated uniformly 
among the set of words of L which contain exactly ni letters Xi (1 :5 i :5 k). The second 
alternative consists, given v = (Vl, ... , Vk) a vector of positive real numbers such that 
Vl + ... + Vk = 1, to generate at random words among the whole set of words of L of 
length n, in such a way that the expected number of occurrences of any letter Xi equals 
nVi (1 :5 i :5 k), and two words having the same distribution of letters have the same 
probability to be generated. For this purpose, we design and study two alternatives of the 
recursive method which is classically employed for the uniform generation of combina­
torial structures. This type of "controlled" non-uniform generation can be applied in the 
field of statistical analysis of genomic sequences. 

1 Introduction 

The problem of uniform random generation of combinatorial structures has been 
extensively studied in the past few years. To our knowledge, random generation 
according to a given distribution was much less treated (except for random num­
bers, for which one finds an abundant literature -see [3] for example). We are 
interested here in a problem of this type. Let L be a language on an alphabet 
X = {Xl, X2, ... , x d, and n an integer. Let us denote Ln the set of words of L 
of length n. The problem consists in generating words of Ln while respecting a 
distribution of the letters given by a vector of k positive numbers. We consider 
two alternatives: 

1. Generation according to exact frequencies. The distribution of the num­
ber of letters of any word must respect exactly a given vector of integers 
(nI, . .. , nk). In other words, we generate words uniformly at random in a 
subset of Ln constituted of all the words w E Ln such that Iwl xi = ni for all 
i E {1,2, .. . ,k}. 

2. Generation according to expected frequencies. The words must respect on 
average a distribution given by a vector v = (VI, • .. , Vk) such that VI + ... + 
Vk = 1. More precisely, we generate words at random in such a way that 

113 
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(a) any word of Ln has a positive probability to be generated; 

(b) for all i E {I, 2, ... , k}, the expected number of occurrences of Xi in 
the words is equal (or asymptotically equivalent) to nv;: if p(w) is the 
probability of the word w to be generated by the algorithm, we must 
have LWELn Iwlxip(w) "-' nVi; 

(c) two words having the same distribution of letters have the same prob­
ability of being generated. 

These generation schemes lead to applications in genomics. An important 
problem in the field of analysis of genomes consists in determining whether some 
properties observed in genomic sequences are biologically significant or not. The 
main idea is as follows: if a property observed in natural sequences is really relevant 
from a biological point of view, one should not observe it significantly in random 
sequences. Thus for example, in order to evaluate the biological significance of 
similarities between proteinic sequences of different organisms, one compares the 
scores of their alignments with scores obtained on random sequences [15, 14]. 
Similarly, the comparison of the frequencies of certain motifs in natural and random 
sequences can contribute to determine if these motifs are biologically relevant 
[7,22,23]. 

Traditionally, sequences are generated according to purely statistical consid­
erations. The fundations of these models and the first algorithms of generation 
were described in [8]. The parameters which are taken into account are the fre­
quencies of nucleotides (letters in DNA) or oligonucleotides (factors) of fixed length 
[ observed in a natural sequence which is taken as reference. Thus for example, 
for l = 2 and the natural sequence aatgtaacgt, the frequencies are aa = 2, at = 1, 
tg = 1, gt = 2, ta = 1, ac = 1 and cg = 1. Random sequences are generated 
with respect to these frequencies, either exactly (generation according to exact 
frequencies) or in average (generation according to expected frequencies). 

In this last case, the generation is carried out according to a Markov chain of 
order [-1: the sequence is generated letter by letter and, at any step, the probabil­
ity of generating a given letter depends on the [ - 1 previous letters. The process is 
clearly linear according to the length of the sequence. In fact, in this model, recent 
works [17, 20] allow to compute analytically some parameters (expected number 
of occurrences, variance, etc) concerning the frequencies of appearance of given 
motifs in random sequences. This allows to avoid the generation of a large num­
ber of sequences, and to obtain exact values of the required parameters. However, 
random generation remains useful when the studied properties do not relate to 
relatively simple motifs. 

Random generation according to exact frequencies is a more difficult problem 
if one wishes the generation to be uniform among all the allowed sequences. This 
problem is solved in linear expected time in [13]. One of the main ideas is the fact, 
stated in [8], that it can be reduced to the generation of a random Eulerian trail 
in a directed graph. An implementation of the algorithm is presented in [1]. 

These methods do not handle syntactic constraints: the words are generated 
in X*. But it is of interest to generate words in particular languages because 
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genomic sequences can be syntactically constrained. In this context, the aim of 
our work is to generate more "realistic" random sequences by taking into account 
syntactic criteria as well as statistical ones. 

Our approach is based on the so-named recursive method, which was initi­
ated by Nijenhuis and Wilf [18] and then generalized and formalized by Flajolet, 
Zimmermann and Van Cutsem [9]. Section 2 is devoted to a short presentation of 
this methodology within the framework of the context-free languages. We present 
in section 3 a simple adaptation which allows to generate words in exact frequen­
cies of the letters. In section 4, we focus on generation according to expected 
frequencies. 

2 Uniform generation 

The general methodology of uniform random generation of decomposable struc­
tures (which include context-free languages) is presented in detail in [9]. Some 
variations which deal with the special case of context-free languages are studied 
in [16] and [10]. We present here a simple version of the method. The reader will 
find more powerful alternatives in the referenced papers. 

The starting point is a non-ambiguous context-free grammar in Chomsky 
Normal Form: any right member of a rule is either the empty word c, or a letter 
of X, or a non-terminal symbol, or a product (concatenation) of two non-terminal 
symbols. Moreover, any non-terminal symbol can be left member of at most two 
rules; and in this case each right member is a single non-terminal symbol. 

The first stage consists in counting words: for any non-terminal symbol T 
and for all 0 ~ j ~ n, the number T(j) of words of length j which derive from T 
is computed. This can be done by using recurrence relations that result directly 
from the rules of the grammar: 

T-+c =} T(O) = 1 ; (1) 

T -+ Xi =} T(I)=I; (2) 

T -+ T' IT" =} T(n) = T'(n) + T"(n) ; (3) 

T -+ T'T" =} T(n) = L T'(n')T"(n"). (4) 
n'+n"=n 

Note that, since the generating series of any context-free language is holonomic, 
these same coefficients can be calculated by using linear recurrences. This leads to 
faster computations (see [10] for example). 

This preprocessing stage is done only once, whatever the number of words 
of size n (or less) than one wishes to generate. A random word is generated by 
carrying out a succession of derivations starting from the axiom of the grammar. 
At each step, a derivation is chosen with the appropriate probability. Suppose 
for instance that, at a given step of generation of a word of length j, one has to 
choose a rewriting rule for the symbol T. If T -+ T' I Til, one chooses to generate 
a word of length j either deriving from T' with probability T'(j)/T(j), or deriving 
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from T" with probability T" (j) /T(j). If T -t T'T", one chooses an integer h 
with probability T'(h)T"(j - h)/T(h), and then one generates a word of length 
h deriving from of T', concatenated to a word of length i - h deriving from T". 
Details of the process are given in [9]. 

The best algorithms derived from this method carry out the generation of 
a word of length n in O(n) arithmetic operations after a preprocessing stage in 
O(n2 ) [16], or the generation of a word in O(nlogn) arithmetic operations after 
a preprocessing stage in O(n) [10]. Note however that the coefficients which are 
computed are extremely large, so the bit complexity is a more accurate measure 
for these algorithms, as discussed in [2]. 

The above method applies obviously to rational languages. In this particular 
case, a slightly different approach makes it possible to carry out a generation 
in O(n) arithmetic operations with' a preprocessing stage in O(n) too [12]. We 
consider a regular grammar of the language, in which any rule has the shape 
T -t Tl I ... I Tm , where either Ti = xTj or Ti = x (x E X), or Ti = c. The 
T (.) 's are computed using the following recurrences: 

(5) 

where 

Ti = xTj => Ti(n) = Tj(n - 1) (6) 

Ti = x => Ti(n) = 1 if n = 1 j Ti(n) = 0 otherwise. (7) 

Ti = c => Ti(n) = 1 if n = 0 j Ti(n) = 0 otherwise. (8) 

The generation stage is processed like in the general case. Here, each step simply 
consists in choosing a letter with an appropriate probability. This is equivalent to 
build a path of length n in a deterministic finite-state automaton of the language. 

3 Generation according to exact frequencies 

Let (nl' n2,' .. , nk) be a vector of integers such that nl + n2 + ... + nk = n. Our 
goal is to generate uniformly at random a word of Ln which contains exactly ni 
letters Xi, for all 1 ~ i ~ k. 

The principle of the method that we describe here is a natural extension of 
the general outline given in the previous section. The method is implicit ely used 
in works like [5], were the problem of randomly generating structures while fixing 

. more than one parameter is adressed. Our goal is simply to formalize the method 
within the framework of the generation of words with fixed numbers of letters in 
context-free languages. 

Like above, the grammar is supposed to be in Chomsky Normal Form. For 
any non-terminal symbol T, we note T(it,h, ... ,ik) the number of words which 
derive from T and which contain it letters Xl, i2 letters X2, ... , ik letters Xk· 
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The preprocessing stage consists in computing a table of the T(it,h, ... ,jk) for 
o ~ it ~ nl, ... , 0 ~ jk ~ nk. We use the following recurrences: 

T --» c 

T --» Xi 

T --» T' I Til 

T --» T'T" 

::::} T(O, .. . ,0) = 1 ; (9) 

::::} T(O, ... ,0,1,0, ... ,0) = 1 if ni = 1. ; (10) 

::::} T(nl, ... ,nk)=T'(nl, ... ,nk)+T"(nl, ... ,nk); (11) 

::::} T(nl, ... ,nk) = 2: T'(n~, ... ,nDT"(n~, ... ,n%). (12) 

n~+n~=nl 

n;+n~=n2 

Like above, each step of the generation stage consists in choosing a rewriting rule 
of the current symbol T. Suppose that, at a given step of generation of a word 
of distribution j = (il, ... ,jk), one has to choose a rewriting rule for the symbol 
T. If T --» T' I Til, one generates a word of distribution j deriving from T' with 
probability T'(j)jT(j), or deriving from Til with probability T"(j)jT(j). If T --» 
T'T", one chooses a vector h = (hI, ... , hk) with probability T'(h)T"(j -h)jT(h), 
then one generates a word deriving from T' having distribution h, concatenated 
to a word deriving from Til having distribution j - h. 

The rational case is similar: 

where 

Ti=xmTj ::::} Ti(nl, ... ,nm, ... "nk)=Tj (nl, ... ,nm -1, ... ,nk); 

Ti = Xm ::::} Ti(O, ... , 0,1,0, ... ,0) = 1 if nm = 1 ; 

Ti = C ::::} Ti(O, ... , 0) = 1. 

The bottleneck of this method lies in its strong complexity in time and mem­
ory: it requires the computation of a table of 8(nln2 ... nk) values. Moreover, in 
the nonrational case, the multiple convolutions of the formula (12) imply a very 
slow generation stage too. On the other hand, if the language is rational, the gener­
ation is carried out in linear arithmetic complexity (but the problem of computing 
the table remains). Thus the method is feasible for an alphabet of limited size. 
It can also be extended to an alphabet of any size, provided that the number of 
constraints is limited. For example, instead of fixing (nl, n2, ... , nk), one may fix 
only (nl, ... ,nj) with j < k. 

4 Generation according to expected frequencies 

In this section, we consider the problem of generating words of Ln at random in 
such a way that each word is generated with positive probability p(w), and the 
vector of expected distributions of letters equals the given vector v. More precisely: 

p( w) > 0 Vw E Ln (13) 
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and 
1 '"" . ~ ~ IwlxiP(w) '"" Vi "It E {I, 2, ... , k}. (14) 

wELn 

Moreover, two words having the same letters distribution must be equally gener­
ated: 

(lwl xi = Iw'lxi Vi E {I, 2, ... , k}) * p(w) = p(w'). (15) 

Our method consists in assigning a weight to each letter of the alphabet. For this 
purpose, we define a weight function 7r : X -+ m~. It naturally acts on X*: 

7r(w) = II 7r(xi)lw1z i , 

l:'Si:'Sk 

and on any finite language, in particular on Ln: 

7r(Ln) = L 7r(w). 
wELn 

If the algorithm is such that 

7r( w) 
p(w) = 7r(Ln)' Vw E Ln, (16) 

then the larger the weight of any given letter is (with regard to the weights of the 
other letters), the more this letter will occur in a random sample. On the other 
hand, formula (16) implies conditions (13) and (15). 

Now we have to solve two problems: 

1. find a function 7r satisfying (14), providing that(16) is respected; 

2. design a generation algorithm which satisfies (16). 

Let us look first at the second point. Suppose that 7r is given. In order to gen­
erate words with the required distribution (16), we use the methodology presented 
in section 2, but now the rule 

T -+ Xi * T(l) = 7r(Xi)' 

stands in for the rule (2). For the particular case of rational languages, the rules 

Ti = xTj * Ti(n) = 7r(x)Tj (n - 1) 

Ti = X * Ti(n) = 7r(x) if n = 1 ; Ti(n) = 0 otherwise. 

stand in for (6) and (7). 
The generation process works exactly like the uniform one of section 2. In 

this way, the probability that a word w occurs will be proportional to its weight 
7r( w). 
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Now we have to find a function 1r which satisfies (14). Let us consider the 
following generating function: 

L'IT(t, x) = L 1r(w)tlwlxtwl"l ... X~WIZk, 
wEL 

where x = (Xl,X2,"" Xk). 

For all i E {I, ... ,k}, the expected number of occurrences of Xi in the words 
generated by the algorithm is equal to nJ.Li(1r), where 

with 

EWELn Iwl xi 1r(w) 

n1r(Ln) 

r ( ) - aL'IT(t,~)( 1) 'IT,Xi t - a t, 
Xi 

= 
[tn]r 'IT ,Xi (t) 

[tn]r'IT (t) 
(17) 

Now our problem consists in finding a function 1r such that J.Li(1r) = Vi for all 
i E {I, ... , k}. Two cases have to be considered, whether L is rational or (non 
rational) context-free. Let us look first at the latter. 

4.1 The context-free case 

loFrom a more general theorem due to Drmota [4, Theorem 1, p.I07], we immediatly 
state 

Theorem 1 Let y = F(t,y,x) be a set of equations coming from a weighted 
context-free grammar, where y = (Yl, Y2, ... ,YN) is the vector of generating func­
tions for the non terminal symbols and F(t,y,x) = (F1(t,y,x), ... ,FN(t,y,x». 
Suppose that 

• F(O,y,x) = 0 and F(t,O,x) i= 0; 

• the system of equations is not linear in y; 

• the system of equations is simple, i.e there exists a set of N (k+I)-dimensional 
cones Ci ~ JRk+l such that, for any (n, ml,' .. ,mk) E Cj with n, ml, ... , 
mk large enough, the coefficient of the term tnx~l ... X~k is positive; 

• the grammar is strongly connected, i.e each non terminal symbol can be 
reached from any other non terminal symbol. 

Under these assumptions, if the system of equations 

{ y = F(t, y, 1) 
o = det(I - Fy(t,y, 1» 

where F y is the matrix (~) , admits a positive solution (Yo, to), then 
Y, l$i,i$N 
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for any 1 ::; i ::; k, where t(x) is a solution of 

{ ~ F(t, y, x) 
det(I - Fy(t,y,x» 

(18) 

such that t(l) = to. 

Now, in order to solve our problem, we just have to take the generating 
function L1I"(t, x) as the first component of the vector y. However, Theorem 3 does 
not apply to rational languages neither to context-free languages which generating 
series is rational, because in these cases the system of equations is linear. 

Here is an example of application. We consider the problem of generating 
rooted plane trees (see [19] for example) with n edges, setting the expected number 
of leaves at ILn (0 < J.t < 1). A classical bijection turns this problem into the 
problem of generating words oflength 2n belonging to the language defined by the 
grammar S -t aSbS + aSb + cdS + cd. The factor cd represents a leaf of the tree. 
We can now modify the expected number of leaves in a random tree by associating 
a weight 7r1 > 0 to the letter c : S -t aSbS + aSb + 7r1 cdS + 7r1 cd. This weighted 
grammar satisfies the conditions of Theorem 1 and thus we get 

xy2 + xy + 7rIZIXY + 7rIZIX 

2xy + x + 7rIZIX. 

(Since letters are paired, we consider only a's and c's.) Solving the system (18) 
gives 

7r1 = C ~ J.tr with 0 < J.t < l. 

This means that in order to generate a word (resp. rooted plane tree) with 2n 
letters (resp. n edges) having J.tn letters c (resp. leaves) on average, we have to set 
7r1 = (J.t/(1 - J.t»2. 

In fact, this example is particularly simple. In general, we may be unable to 
solve numerically the system (18) because of the unknown function 7r. Thus for 
instance, our method fails to generate words of the language defined in [4, p.112] 
with a given expected number of letters a and b, since we have to solve an algebraic 
equation of degree five whose coefficients depend of the unknown weights. Morever, 
Theorem 1 only applies to strongly connected grammars. 

4.2 The rational case 

In this section, we show that we can solve the problem of generating word according 
to given frequencies for a whole class of rational languages. If L is a rational 
language, the functions r 11" ,Xi (t) and r 11" (t) defined in (17) are rational fractions. 
Therefore the nth coefficients of their Taylor series at t = 0 depend on the zeros 
of their denominators (see for example [11, chap. 7]). If we are only interested in 
the expected number of letters in the words of length n as n goes to infinity, we 
just need to know the dominant singularity of each series, that is the real zero of 
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smallest modulus of their denominator, say s, and its multiplicity v. Let us recall 
that, from Pringsheim's theorem, at least one of the dominant singularities of the 
generating function of any rational language is real positive. 

However, in our problem, the denominator depends on the unknown variables 
7r(Xi). Hence, we encounter a priori the same difficulty as in the context-free case: 
that of solving a possibly high degree context-free equation in the variable s with 
unknown coefficients, in others words without the help of numerical approximation. 
However, thanks to the following proposition, we will be able to find a solution. 

Proposition 2 Let L be a mtionallanguage on the alphabet X = {Xl, X2, ... ,Xk}. 
Let 7r a weight function on X. Assume that s is the unique real pole of smallest 
modulus of r rr(t) (resp. of r rr,Xi (t)), with multiplicity v. It follows that fLi (S7r) = 
fLi (7r) for any i E {l, ... , k}, and the unique real pole of smallest modulus of r srr (t) 
(resp. of rsrr,Xi (t)) is 1, with mutiplicity v. 

Proof. Under the assumption of Proposition 2, the denominator Q(t) of r rr(t) can 
be written as Q(t) = (t - s)V P(t) where the modulus of each root of P(t) is greater 
than s. Hence, the denominator of rsrr(t) is Q(ts) = (ts - s)V P(ts) and it follows 
that 1 is the unique root of smallest modulus of Q(ts), with multiplicity v. 0 

The above Proposition means that if there exists a weight function leading 
to the required frequency then there exists another weight function 7r, leading also 
to the required frequencies, such that the series of interest are singular at 1. 

We shall now derive sufficient conditions for the series involved in Proposition 
2 to have the same dominant pole with same multiplicity. This is the purpose of 
the following Theorem. 

Theorem 3 Let L be a mtionallanguage defined on the alphabet X = {Xl, ... ,Xk} 
and A the finite minimal deterministic automaton which recognizes L. Let C = 
{C1 , ... ,C f} the set of non trivial strongly connected components of A. Assume 
that for any i E {1,"', f}, Ci is aperiodic (in the sense of Markov chains). Under 
this assumption, for any weighting function 7r, we have 

• Lrr(t, 1) has an unique pole of smallest modulus and multiplicity v . 

• fLi( 7r) > 0 for any i E {l,' .. , k} as n goes to infinity. 

This result can be proved with the help of the Perron-Frobenius theorem on 
the properties of the eigenvalues of irreducible and primitive matrix (see [19, 17].) 

Corollary 4 Under the assumption of Theorem 3, each series r rr(t) and r rr,Xi (t) 
for i E {I, ... , k} has an unique pole of smallest modulus and multiplicity v + 1. 

Using the above results, We design below an algorithm in order to find a 
weight function 7r which gives the required frequencies as in (14) . 

1. Compute the series Lrr(t,x), rrr(t) and rrr,xi(t) for i E I, ... ,k (in which 
7r(Xi) are parameters which values are unknown). Let s the unique dominant 
pole of these series. 



122 Mathematics and Computer Science 

2. Set s = 1 and take v as in Theorem 3. Compute the asymptotic values, say 
ili(7r) , of each fti(7r) according to (17) and using ([21)[Theorem 4.1]). This 
can be done since Corollary 4 ensures that all series have the same unique 
dominant pole. 

3. Solve the following algebraic system: 

= VI 

= Vk-l 

o 

in the unknown variables (7r(xt} , 7r(X2), ... ,7r(Xk)), where D ... (t, x) is the 
denominator of the series L ... (t,x). (The last equation forces 1 to be a pole 
of the series.) 

4. Look for a solution of the above system such that 

• each 7r(Xi) is positive; 

• the pole of smallest modulus of L ... (t, 1) is 1. (In step 3, we have forced 
1 to be a pole, but not the dominant one!) 

The system of step 3 above can be solved with numerical techniques (using GB [6] 
for example) If we don't find a solution that holds for the step 4 of the algorithm, 
then, from Proposition 2, no suitable weight function 11' exists. 

Let us show how the algorithm works by taking a language involved in ge­
nomics. An ORF ("Open Reading Frame") in a sequence of DNA is a particular 
word which represents a "putative proteinic gene". In some simple organisms, one 
can approximate the "language of ORFs" by the following rational language: 

L = atg«X3 \ {taa, tag, tga} )*)(taa + tag + tga), 

where X = {a, c, g, t}. The minimal automaton of L has got an unique strongly 
connected component, which contains all the letters of X. 

l,From the regular expression above, we find the generating function 

L( ) atgx(2tgax + taax) 
x,a,c,g,t =( ( )3 ) 1- a+c+g+t x+taax+2tgax 

where the coefficient of xn is the number of words of length 3n in order to respect 
the primitivity condition. The series L(x, a, c, g, t) has an unique pole of smallest 
modulus, iI' which is simple. Taking for instance the trivial weight function, say 
11'0=1, we find the root of L(x,a, 1, 1) to be p(a) = a3+8a2!25a+27. Expanding p(a) 
at a=l, we get 

1 44 2 
p(a) = 61 - 3721 (a - 1) - O(a - 1) and ila = 44/183. 
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In a similar way, the frequency of the other letters of X are Jic = 16/61; Jig = 
46/183; Jit = 15/61. This means for example that an uniform random word of L 
has got 44 n/183 letters a on average. 

We are now looking for a weight function 7r such that the frequencies of nu­
cleotides are the same as those of the chromosome III of Saccharomyces cerevisiae 
(brewers' yeast), say v = (0.307 ;0.193 ;0.193 ;0.307). Proceeding as above, but 
now with the series 

L () atgx7r(atg)(tgax27r(tga) + taax7r(taa)) 
71" x, a, c, g, t = (1- (a7r(a)+c7r( c) + g7r(g) H7r(t))3x + taax7r(taa) + 2tgax7r(tga)) 

we express (setting s = 1) Jia(7r), Jic(7r), Jig(7r), Jit(7r) as functions of 7r(a), 7r(c), 
7r(g), 7r(t). With the help of the formal calculus software Maple, we solve the 
system 

0.307 
0.193 
0.193 

= 0.307 
o 

and we find the following: 7r(a) = 0.31632; 7r(c) = 0.16991; 7r(g) = 0.18396; 7r(t) = 
0.32707. One can observe that the weights of the letters are close to the frequencies. 
This is because the language L is not much constrained in the sense that only few 
patterns are forbidden. Hence, if we take 7r = v, we find Jia(7r) = 0.29484 ... ; 
Jic(7r) = 0.20648 ... ; Jig (7r) = 0.19351 ... ; Jit(7r) = 0.30519 .... A statistical test 
was processed to evaluate the sigificance of differences between 7r and J.L values. We 
carried out the "conformity to a law" X2 test on occurrences of all four nucleotides 
in a sequence of same length as yest chromosome III, according to values of 7r 
and J.L. We got the X2 value 0.04425 which confirms that there is no significant 
difference between 7r and J.L. 

5 Conclusion 

To our knowledge, we present for the first time algorithms of random generation 
of words wich take into account both statistical and syntactic criteria. 

The generation algorithm in exact frequencies presented in section 3 has 
a restricted sphere of activity since the complexity strongly increases with the 
number of statistical parameters. Moreover, it does not allow to deal with the 
frequencies of patterns of length > 1. However, if only few parameters are to be 
considered, the algorithm works well. Thus for instance, in the field of genomics, 
the "GC-content", i.e the sum of frequencies of letters 9 and c, is of great interest 
in some analysis. 

The method given in section 4 for generating according to expected frequen­
cies is much more efficient. After computing once and for all the weight function, 
the complexity is identical to the one of uniform generation algorithms. Unfortu­
nately, in the context-free case we are only able to deal with low degree functional 
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equations. In the case of rational languages, numerical techniques and tools (like 
GB [6]) allow to find the suitable weight function in most cases. Moreover, the 
method can be easily generalised to pattern frequencies, by modifying the au­
tomaton or the grammar like in [17]. 
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Abstract. We find an algebraic structure for a subclass of generating trees by introducing 
the concept of marked generating trees. In these kind of trees, labels can be marked or 
non marked and the count relative to a certain label at a certain level is given by the 
difference between the number of non marked and marked labels. The algebraic structure 
corresponds to a non commutative group with respect to a product operation between two 
generating trees. Hence we define the identity generating tree and the inverse of a given 
generating tree. 

1 Introduction 

The concept of a proper Riordan Array (pRA, for short) is very useful in Com­
binatorics. The infinite triangles of Pascal, Catalan, Motzkin and Schroder are 
important and meaningful examples of pRA's, but many applications have been 
proposed and developed, thus proving the effectiveness of a Riordan Array ap­
proach to many combinatorial problems (see, e.g. [3,4,5,9, 10)). Without doubt, 
the relevance of pRA 's derives from the fact that a pRA D is completely and univo­
cally described by a couple of formal power series (fps, for short): D = (d(t), h(t)), 
which can be seen as generating functions of sequences related to the array. This 
implies that a Riordan Array approach to a problem can take advantage from the 
concept of generating function and from the well-understood apparatus of formal 
power series. For example, this may concern the extraction of coefficients and the 
computation of asymptotic values, when fps are considered as analytic functions. 

The algebraic structure of pRA's was one of the first properties pointed out 
(see, e.g., [8, 9)). In fact, they constitute a group by the usual row-by-column 
product, and this product can be easily defined through the fps describing the 
pRA's involved in the operation. Besides, a pRA D and its inverse fJ are related 
by the Lagrange Inversion Formula, which therefore becomes a fundamental tool 
in the theory and the practice of pRA's. 

Recently, Merlini and Verri [5] pointed out an important connection between 
pRA's and generating trees. Generating trees are becoming more and more im­
portant in Combinatorics (see e.g., [1, 11, 12]), as a device to represent the devel­
opment of many classes of combinatorial objects, which can then be counted by 
counting the different labels in the various levels of the tree. The proved relation 
between pRA's and generating trees allows to combine the counting capabilities 
of both approaches and thus improve our understanding of the problem under 
consideration. Therefore, we feel that a further, more deep insight to both pRA's 
and generating trees is worth studying, and this is the aim of the present paper. 

There are two problems to which we dedicate our attention: 

1. The definition of a pRA does not impose conditions on the fps involved, ex­
cept that they should be invertible. On the other hand, it is clear that a fps 
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with real coefficients (where real is intended as opposed to integer) cannot 
be seen as a counting generating function. We have important combinatorial 
examples of pRA's with rational coefficients, as the triangles related to Stir­
ling numbers of both kinds (see e.g., [9, 10]). However, in general, only pRA's 
with integer coefficients can have a direct combinatorial interpretation. So, 
we will restrict our attention to fps f(t) = L~o fktk having fo = 1 and 
!k E Z, for every kEN. These fps will be called monic, integer fps, and we 
will prove a number of their properties. Consequently, we define monic, inte­
ger pRA 's as pRA's whose elements are in Z and those in the main diagonal 
are 1. These arrays are the main object of our investigations. 

2. Several different combinatorial interpretations can be found for monic, in­
teger pRA's, if we can assign a combinatorial meaning to negative values. 
As a matter of fact, we show that a combinatorial interpretation is possible 
through a suitable variant of generating trees. To this purpose, we introduce 
the concept of a marked label to be considered together with usual labels: 
generating trees can be extended to deal with negative values if we consider 
a node labelled k as opposed to a node labelled k (Le., labelled with a marked 
k) and imagine that they annihilate each other. As far as we know, the con­
cept of marked labels has been implicitly used for the first time in [5]; the 
same concept has been used in [2] in relation with the definition of the ECO­
systemes signes. A quite different approach can be found in [6] where the 
authors deal with what they call coloured rules; these correspond to generat­
ing trees in which nodes with the same label can have various colours; what 
makes this approach different is the fact that these labels don't annihilate 
each other and the count relative to a level in the tree is exactly the number 
of nodes at that level. 

By introducing marked labels, the correspondence between the extended gen­
erating trees and monic, integer pRA's becomes effective. We wish to point 
out that, as a consequence of this correspondence, we are in a position to 
define the product of two generating trees, the inverse of a given generat­
ing tree and the identity generating tree, three concepts that can be rather 
surprising. 

The structure of this paper is straight-forward. In Section 2. we develop the 
concept of a monic, integer fps and that of a monic, integer pRA. Then we show 
some general properties of pRA's to relate them to generating trees: these new 
properties mainly concern the A- and Z-sequences of a pRA, are valid in the 
general case, but will then be used in the monic, integer case. In Section 3. we give 
our main theorem, relating extended generating trees to monic, integer pRA's; 
finally, we show a number of examples, illustrating some applications of the main 
theorem and the two new concepts of the inverse and the product of generating 
trees. In order to safe space we omit all Theorem proofs in this paper. 
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2 Riordan Arrays 

Let :F = C[t] be the integral domain of formal power series over the complex field. 
Usually, in Combinatorics we refer to this domain because its algebraic structure 
is well-known. However, only a proper subset of :F has a direct interest: when we 
use fps as counting generating functions, we implicitly assume that their coeffi­
cients are (positive) integer numbers or, at most, are rational numbers in the case 
of exponential generating functions. Obviously, during some computations, more 
general situations can arise; the reader can think of signed binomial coefficients, 
signed Stirling numbers and Bernoulli numbers. However, the set of fps with in­
teger coefficients has so a direct combinatorial relevance that it is interesting to 
isolate and try to characterise them in some algebraic way. In particular, we wish 
to study fps with integer coefficients when the to coefficient is 1. 

Let Z = Z[t] be the set of fps f(t) = l::~o fktk such that fo = 1 and 
fk E Z, for every k > O. As we are now going to see, this set has a rather rich alge­
braic structure and constitutes the basis of a number of interesting developments 
concerning proper Riordan Arrays and generating trees. 

The following lemma describes the algebraic properties of the Cauchy prod-
uct. 

Lemma 2.1 Let· (or the simple juxtaposition) denote the Cauchy product; then 
(Z,') is a commutative group. • 

Generating functions are a device to deal with sequences of numbers, in the 
sense that we study a fps f(t) = l::~o fktk instead of studying the sequence 
{fo, II, h, ... }. When we pass from one dimensional sequences to two dimensional 
ones {dn,k }n,kEN, a relevant concept is given by proper Riordan Arrays. They are 
defined by a couple offps (d(t), h(t)), having d(t), h(t) E :F, and the generic element 
of the two dimensional sequence induced by the pRA is dn,k = [tn]d(t)(th(t))k. 
Many combinatorial triangles are examples of pRA's, like the Pascal, Catalan, 
Motzkin and Schroder triangles. In all these cases the elements are integer and 
those in the main diagonal are 1. Therefore, it seems appropriate to study monic, 
integer pRA's, and we can prove that these arrays are strictly related to fps in Z. 
Actually, we have: 

Theorem 2.2 Let D = (d(t), h(t)) be a pRA: D is a monic, integer pRA if and 
only if d(t) and h(t) are monic, integer fps. • 

If R denotes the set of pRA's, it is well-known that (R, *), where * is the usual 
row-by-column product, is a non-commutative group, called the Riordan group. 
Actually, the operation * can also be given in terms of the fps involved in the 
definition of the pRA's. More specifically, let D = (d(t), h(t)) and E = (f(t),g(t)) 
be two pRA's; the generic element in F = D * E is: 

j j 

= [tn]d(t) 2)th(t))j[tj]f(t)(tg(t))k = [tn]d(t)f(th(t))(th(t)g(th(t)))k. 
j 
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This is just the generic element of a pRA: 

(d(t), h(t)) * (J(t), get)) = (d(t)f(th(t)), h(t)g(th(t))). 

This shows that R is closed under * and by setting (d(t), h(t))*(d(t), k(t)) = (1,1), 
the neutral element with respect to *, or d(t)d(th(t)) = 1 and h(t)k(th(t)) = 1 we 
find: 

dey) = [dtt) I y = th(t)] 

This notation means that we should first solve the functional equation y = 
th(t) in t in order to find a function t = t(y), and exactly the solution for which 
teO) = 0, and then substitute this fps into l/d(t) in order to find dey) = l/d(t(y)): 
this fps is the d function in the inverse pRA, i.e. in the pRA jj such that D * jj = 
(1,1) = I. An analogous proc~dure should be followed to find k(t). The existence 
and uniqueness of d and k is garanted by the fact that the functional equation 
y = th(t) has a unique solution t = t(y) with teO) = 0 if and only if h(O) =P o. An 
important result is: 

Theorem 2.3 If D is a monic integer pRA, then also it.s inverse jj is such. • 

The way to represent a pRA by means of a couple offps: D = (d(t), h(t)) is not the 
only method to deal with this sort of infinite triangles. In 1978 Rogers [7] proved 
that pRA have a remarkable property: every element dn+l,kH not belonging to 
column 0 or row 0, can be expressed as a linear combination of the elements in 
the previous row, starting with the element in column k: 

00 

dn+l,k+l = aOdn,k + a1dn,k+l + a2 dn,k+2 + ... == L ajdn,k+j. 
j=O 

The sum is actually finite and the sequence A = {ao, al, a2, ... } is independent 
of n and k, that is, it characterizes the whole triangle, except for column 0 and 
row 0; A is called the A-sequence of the pRA. Actually, column 0 is given by the 
function d(t), and row 0 is all composed of 0, except for the element do,o = do, 
which is determined by d(t). In this way, the pRA D can be represented by the 
couple (d(t), A(t)), if A(t) is the generating function of the A-sequence. It can be 
shown that A(t) is univocally determined by the function h(t), and we have: 

h(t) = A(th(t)) or A(y) = [h(t) Iy := th(t)] (2.1) 

The elements of column 0 can also be expressed in terms of all the elements of the 
previous row, but obviously the dependence should start with the same column o. 
In this case, we can show that a new sequence exists: Z:= {ZO,Zl,Z2, ... }, called 
the Z-sequence of the pRA, such that: 

00 

dn+l,o = zodn,o + zldn,l + Z2 dn,2 + ... = L zjdn,j. 
j='O 



An Algebra for Proper Generating Trees 131 

The sum is obviously finite, the Z-sequence can have no relation with the A­
sequence, and, in fact, it depends on both the d(t} and h(t} functions: for Z(t}, 
the generating function of the Z-sequence, we have: 

d t _ do,o 
( ) - 1 - tZ(th(t)) or (2.2) 

where do,o = do. At this point, we have a third characterisation of pRA: a pRA 
D is uniquely determined by the triple (do,o,A(t},Z(t}), where A(t} and Z(t} are 
the generating functions of the A- and Z-sequences of D. By the previous lemma, 
it is now immediate to observe that a monic integer pRA corresponds to a monic­
integer A-sequence, and vice versa if also d(t} E Z[t]. Instead, the Z-sequence is 
integer, but it can be non-monic; in fact, from the second formula in (2.2) we see 
that Zo is related to d1 and not to do. It can be interesting to see how the A- and 
Z-sequences are changed when we perform operations on pRA, essentially when 
we invert one triangle or when we multiply two triangles. Let us begin with the 
A-sequence, whose inversion is particularly easy: 

Theorem 2.4 Let D = (d(t), h(t}} be a pRA and [) = (d(t) , h(t}} its inverse. 
Then A(t} = 1/h(t}. • 

More interesting is the case of row-by-column product: 

Theorem 2.5 Let D = (d(t), h(t}}, E = (e(t), k(t)) be two pRA and F = (f(t), g(t)) 
their product. If AD(t},AE(t} and AF(t} are the generating functions of the corre­
sponding A-sequences, we have: 

AF(t} = AE(t} [AD(Y}I t = yk(y}]. 

• 
An example is in order here. Let D be the Pascal triangle and E the Catalan 
triangle, so that we have 

D- (_1 _1) 
- 1-t'1-t 

E = (1- vT=4t 1- vT=4t) 
2t ' 2t 

and AD(t} = 1 + t, AE(t} = 1/(1 - t}. Numerically we have: 

( t 11 )*( ~ 1 1 1331 553 
1 4 6 4 1 14 14 9 

) ( 

1 
2 

= 5 
1 15 

-4 1 51 

1 ) 4 1 
14 6 1 
50 27 8 1 

In this case, the equation t = yk(y} is t = (1 - ~) /2 and its solution is 
y = t - t2 , so that AD(Y} = 1 + y = 1 + t - t2 and 

1 + t - t2 
AF(t} = = 1 + 2t + t2 + t3 + t4 + .... 

1-t 

This is immediately checked against the numerical values just obtained. 
For what concerns the Z-sequence, we can prove: 
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Theorem 2.6 Let D = (d(t), h(t» and jj = (d(t), h(t» its inverse pRA; then if 
Z(t), Z(t) are the generating functions of the corresponding Z-sequences, we have 

Z t _ do - d(t) _ -Z(th(t» 
( ) - doth(t) - h(t)(l - tz(th(t»' 

• 
For the row-by-column product we have: 

Theorem 2.7 Let D = (d(t), h(t», E = (e(t), k(t» be two pRA with Z-sequences 
Zv(t) and ZE(t). Then if F = D * E, the Z-sequence of this product is 

• 
3 Generating trees 

In the paper by Merlini and Verri [5], it is shown that a particular subset of gener­
ating trees has a correspondence with some pRA's. In fact, they define an infinite 
matrix {dn,k}n,kEN to be associated to a generating tree with root (c) (AGT matrix 
for short) if dn,k is the number of nodes at level n with label k + c and show that, 
under suitable conditions, this matrix corresponds to a pRA, and vice versa. This 
result allows us to use the Riordan Array approach to obtain a variety of counting 
results on problems which can be described by such generating trees. In the present 
paper we extend the correspondence between generating trees and pRA's to the 
whole group of monic integer pRA's. The primary difficulty in doing so is the fact 
that coefficients in pRA's can be negative, and this requires a particular interpre­
tation of the labels in a generating tree. The idea is rather simple, but effective. 
Since, as we are going to show, the construction of the generating tree related to 
a given monic integer pRA requires the concept of the A-and Z -sequences, the 
results obtained in the previous section will be important in applying the theory. 

In order to specify a generating tree we have to specify a label for the root 
and a set of rules explaining how to derive from the label of a parent the labels 
of all of its children. For example, Figure 3.1 illustrates the upper part of the 
generating tree which corresponds to the following specification: 

{ root: (2) 
rule: (k) ---t (k)(k + 1) 

(3.3) 

The first triangle in Table 3.1 illustrates the AGT matrix associated to the 
generating tree specification (3.3). Our main result is given by Theorem 3.3, 
which extends Theorem 3.9 in [5]. The concept of a generating tree is extended to 
deal with marked labels: a label is any positive integer, generated according to the 
generating tree specification; a marked label is any positive integer, marked by a 
bar, for which appropriate rules are given in the specification: 
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Figure 3.1: The Pascal generating tree: specification (3.3) 

1 2 3 4 1 2 3 4 

1 1 1 1 -1 1 
2 1 2 1 2 1 -2 1 
3 1 3 3 1 3 -1 3 -3 1 
4 1 4 6 4 1 4 1 -4 6 -4 1 

Table 3.1: The Pascal triangle and its inverse 

Definition 3.1 A marked generating tree is a rooted labelled tree (the labels can 
be marked or non-marked) with the property that if Vi and V2 are any two nodes 
with the same label then, for each label I , Vi and V2 have exactly the same number 
of children with labell. To specify a generating tree it therefore suffices to specify: 

1) the label of the root; 

2) a set of rules explaining how to derive from the label of a parent the labels of 
all of its children. 

From here on we will use the term "generating tree" to denote a marked generating 
tree. 

A simple example is given by the following generating tree specification: 

rule: {
root: (2) 

(k) 
(k) 

~ (k)(k + 1) 
~ (k)(k + 1) 

(3.4) 

The first 4 levels of the corresponding generating tree are shown in Figure 3.2. 

Figure 3.2: The inverse of Pascal generating tree: specification (3.4). 

The idea is that marked labels kill or annihilate the non-marked labels with 
the same number, i.e. the count relative to an integer j is the difference between the 
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number of non-marked and marked labels j at a given level. This gives a negative 
count if marked labels are more numerous than non-marked ones. Thus we can 
extend the concept of an AGT matrix in the following way: 

Definition 3.2 An infinite matrix {dn,dn,kEN is said to be "associated" to a 
marked generating tree with root (c) (ACT matrix for short) ifdn,k is the difference 
between the number of nodes at level n with label k + c and the number of nodes 
with label k + c. By convention, the level of the root is O. 

The second triangle in Table 3.1 corresponds to the AGT matrix associated to the 
specification (3.4). 

Before stating our main result we introduce the following notations for gen­
erating tree specifications. 

(x) = (x); 

(x)P = (x)··· (x), P? 0 
'---..--" 

P 
(x)P = (x)··· (x), p < 0 

'---..--" 
-P 

(x)p = (x)P, p> 0 

(x)p = (x)-P, P < 0 

IT~~o(k - j)O:j = (k)o:o(k - 1)0:1 ••• (k - i)O:i 

We note that (x)O is the empty sequence. We can finally state the following 
important theorem which relates monic integer pRA's with marked generating 
trees: 

Theorem 3.3 Let c EN, aj, bk E Z, Vj ? 0 and k ? c, ao = 1, and let 

rule: {
root: (c) 

(k) 
(li) 

-+ (C)b k ITk~tC(k + 1 __ j)a j 

-+ (c)h IT;~tc (k + 1 .- j)a j 

(3.5) 

be a marked generating tree specification. Then, the ACT matrix associated to 
(3.5) is a monic integer pRA D defined by the triple (do, A, Z), such that 

Vice versa, if D is a monic integer pRA defined by the triple (1, A, Z) with aj, Zj E 
Z, Vj ? 0 and ao = 1, then D is the ACT matrix associated to the generating tree 
specification (3.5) with bc+j = Zj - aj+l, Vj ? O. • 

A generating tree corresponding to the specification (3.5) will be called a proper 
generating tree. 

Since monic integer pRA's constitute a non-commutative group with respect 
to the usual row by colum product, as we have seen in Section 2, an important con­
sequence of Theorem 3.3 is that we can define the product of two proper generating 
trees and the inverse of a proper generating tree: 
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Definition 3.4 Given two generating tree specifications tl and t2 of type (3.5) 
and the corresponding AGT matrices Tl and T2, we define the generating tree 
specification product of hand h as the specification t3 having T3 = Tl * T2 as 
AGT matrix. 

Definition 3.5 Given a generating tree specification tl of type (3.5) and the cor­
responding AGT matrix T1 , we define the generating tree specification inverse of 
tl as the specification t2 having T2 = T1- 1 as AGT matrix. 

To complete the definition of the algebraic structure of generating trees we only 
need to define an identity: 

Definition 3.6 The identity generating tree specification tJ is the one having the 
identity matrix I as AGT matrix. The specification and the corresponding gener­
ating trees are shown in (3.6) and Figure 3.3. 

{ root: 
rule: 

(c) 
(k) -+ (k + 1) 

Figure 3.3: The identity generating tree 

(3.6) 

For example, specification (3.4) is the inverse of (3.3), as can be easily verified 
by using formulas in Section 2. In fact, for the Pascal triangle we have do = 1, A = 
{I, 1,0,0, ... } and Z = {I, O,O, ... } and for its inverse do = 1, A = {I, -1,0,0, ... } 
and Z = {-1,0,0, ... }. 

In what follows, we examine some other generating tree specifications, very 
well known in literature, by finding for each of them the corresponding inverse. 
We leave to the reader the necessary algebraic computations, which can be easily 
performed by hand or by some symbolic system. 

The first specification is related to Motzkin numbers M j = {I, 1, 2, 4, 9, ... } = 
[tjj(1 - t - VI - 2t - 3t2)/(2t) : 

{ root: (1) 
rule: (k) -t (1) ... (k - 1)(k + 1) 

(3.7) 

(we observe that (1) -+ (2)) and a partial generating tree is illustrated in Figure 
3.4. The specification inverse of (3.7) is the following: 

{
root: (1) 
rule: (~) 

(k) 
-+ (k + 1) TIi=2(k + 1- j)Mi-2 

-+ (k + 1) TI j =2(k + 1 - j)Mi-2 

(3.8) 
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Figure 3.4: The Motzkin generating tree: specification (3.7) 

Figure 3.5: The inverse of Motzkin generating tree: specification (3.8) 

and is illustrated in Figure 3.5. Finally, Table 3.2 shows the AGT matrices asso­
ciated to the specifications (3.7) and (3.8). 

The following example is related to the Catalan numbers Cj = {1, 1, 2, 5,14, ... } = 
j!l (~). In fact, specification (3.9), illustrated in Figure 3.6, has the Catalan tri­
angle as AGT matrix (see the first triangle in Table 3.3). 

{ root: 
rule: 

(2) 
(k) ~ (2) ... (k)(k + 1) (3.9) 

We point out that specification (3.9) represents the product between the speci­
fication (3.3) and the specification (3.7). Figure 3.7 gives the inverse of Catalan 
generating tree; the AGT matrix is shown in Table 3.3. 

{ root: (2) 
rule: (k) ~ (k + 1) nt~~(k + 1 - j)cj_1 (3.10) 

(k) ~ (k + 1) nj~~(k + 1 - j)Cj-l 

1 2 3 4 1 2 3 4 

1 0 1 1 0 1 
2 1 0 1 2 -1 0 1 
3 1 2 0 1 3 -1 -2 0 1 
4 3 2 3 0 1 4 0 -2 -3 0 1 

Table 3.2: The Motzkin triangle and its inverse 
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Figure 3.6: The Catalan generating tree: this is the product between the Pascal 
and the Motzkin trees: specification (3.9) 

Figure 3.7: The inverse of Catalan generating tree: specification (3.10) 

The last example is related to the Fibonacci numbers F j = {I, 1,2,3,5,8, ... } = 
[tjj1/(1 - t - t2 ). We give the two specifications (3.11) and (3.12), illustrated in 
Figures 3.8 and 3.9 respectively, and the corresponding AGT matrices in Table 
3.4. 

{ root: (2) 
(3.11) rule: (k) -+ (2)k-l(k + 1) 

r~' 
(2) 

rule: (k) -+ (2Y2k-3(k + 1) (3.12) 
(IC) -+ (2)F2k-3(k + 1) 

1 2 3 4 1 2 3 4 

1 1 1 1 -1 1 
2 2 2 1 2 0 -2 1 
3 5 5 3 1 3 0 1 -3 1 
4 14 14 9 4 1 4 0 0 3 -4 1 

Table 3.3: The Catalan triangle and its inverse 
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Figure 3.8: The odd Fibonacci generating tree: specification (3.11) 

Figure 3.9: The inverse of odd Fibonacci generating tree: specification (3.12) 
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Abstract. In this paper we introduce a system of well-defined operations on the set of 
succession rules. These opemtions allow us to tackle combinatorial enumemtion problems 
simply by using succession rules instead of genemting functions. Finally we suggest seveml 
open problems the solution of which should lead to an algebmic chamcterization of the 
set of succession rules. 

1 Introduction 

A succession rule 0 is a system having the form: 

where b, k E N+ , and ei : N+ ~ N+; (b) is the axiom and (k) ---+ (e1 (k))(e2(k)) 
... (ek(k)) is the production; (b), (k), (ei(k)), are called labels of O. The rule 0 can 
be represented by means of a generating tree, that is a rooted tree whose vertices 
are the labels of 0; (b) is the label of the root and each node labelled (k) produces 
k sons labelled (e1 (k)), ... , (ek (k)) respectively. We refer to [4] for further details 
and examples. A succession rule 0 defines such a sequence of positive integers 
{fn}n~O, that fn is the number of the nodes belonging to the generating tree 
defined by 0 and lying at level n. By convention the root is at level 0, so fo = 1. 
The function fn(x) = Ln>o fnxn is the generating function derived from O. 

The concept of succession rules was first introduced in [6] by Chung and al. 
to study reduced Baxter permutations; later, West applied succession rules to the 
enumeration of permutations with forbidden subsequences [11]. Moreover, they 
are a fundamental tool used by the ECO method [4], which is a general method 
for the enumeration of combinatorial objects consisting essentially in the recursive 
construction of a class of objects. A generating tree is then associated to a certain 
combinatorial class, according to some enumerative parameter, so that the number 
of nodes appearing on level n of the tree gives the number of n-sized objects in the 
class. In [1] the relationships between structural properties of the rules and the 
rationality, algebraicity or trascendance of the corresponding generating function 
are studied. We wish to point out that in the present paper we deal with "pure" 
succession rules [4], instead of generalizations [2], or specializations [7]. 

Two rules 0 1 and O2 are said to be equivalent, 0 1 ~ O2 , if they define the 
same number sequence, that is In1 (x) = In2 (x). For example, the following rules 
are equivalent and define Schroder numbers ([5]): 

IThis work was partially supported by MURST project: Modelli di calcolo innovativi: metodi 
sintattici e combinatori. 
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{ (2) 
(2k) ..... (2)(4)2 ... (2k)2 (2k + 2), 

{ (2) 
(k) ..... (3) ... (k)(k + 1)2, 

where the power notation is used to express repetitions: (h)i stands for (h) repeated 
i times. 

Starting from classical succession rules we define coloured rules in the follow­
ing way: a rule 0 is coloured when there are at least two labels (k) and (J.:) having 
the same value but different productions. For example, it is easily proved, that the 

2 

sequence 1,2,3,5,9,17,33, ... , 2n- 1 + 1, having f(x) = 1~3~+~x2 as generating 
function, can only be described by means of coloured rules, such as: 

0' : { 
(2) 
(1) ..... (2) 
(2) ..... (1)(2) 
(2) ..... (2)(2). 

A succession rule 0 is finite if it has a finite number of different labels. The number 
sequences {an,dn, defined by the recurrences: 

t(-l)j(~)an-j'k = 0 
j=O J 

kEN, 

having (l~x)k as generating function, have finite succession rules: 

(k) 
(1) ..... (1) 

O(k) : 
(2) ..... (1)(2) 
(3) ..... (1)(2)(3) 

(k) ..... (1)(2)(3) ... (k - l)(k:). 

Moreover, let {anln be the sequence of integers satisfying the recurrence: 

subject to the initial conditions ao = 1, al = b E N+; every term of the sequence 
is a positive number, if k + h > O. In this case, the sequence {an}n is defined by 
the finite succession rule: 

{

(b) 
o b' (b) ..... (k)b-l(k + h) 

:Fk,h • (k) ..... (k)k-l(k + h) 
(k + h) ..... (k)k+h-l(k + h). 

(1) 

Finite succession rules play an important role in enumerative combinatorics, 
such as in the enumeration of restricted classes of combinatorial objects ([8)). 
Moreover, we can regard any finite succession rule 0 as a particular PDOL system 
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([9)), (~, P, wo), where the alphabet ~ is the set of labels of 0, P is the set of its 
productions and Wo E ~. These remarks lead to the solution of two open problems 
for finite succession rules: 

Equivalence. Let 0 1 and O2 be two finite succession rules having hI and h2 labels 
respectively, then 0 1 ~ O2 , if and only if the first hI + h2 terms of the two 
sequences defined by 0 1 and O2 coincide. 

For example, the number sequences defined by 0' and by 0F2 (the rule for 
1.1 

Fibonacci numbers) coincide for the first 4 terms, but not for the fifth, so the rules 
are not equivalent. 

Generating functions. The function f(x) is the generating function of a finite 
succession rule iff: 

1. f(x) = ~f:l, with P(x), Q(x) E Z[xJ, and Q(O) = P(O) = 1; 

2. ~(f(x) - 1) - f(x) is N-rational. 

Roughtly speaking, N-rational functions are the generating functions of reg­
ular languages, and their analytic characterization is given by Soittola's Theorem 
[9] (for further details see [3)). We are so ensured that each generating function of a 
finite succession rule is the generating function of a regular language, while the con-

verse does not hold. For example, let g(x) = l-iox and h(x) = (1_9~)(ttz~6~:IX2); 
h(x) is a rational function having all positive coefficients (see [3] for the proof) but 
it is not N-rational, since the poles of minimal modulus are complex numbers. Let 

(2) 

f(x) is N-rational, since it is the merge of the two functions kl (x) and k2 (x), each 
of them having a real positive dominating root, x = 10. This proves the existence 
of a regular language having f(x) as its generating function. Moreover, it is clear 
that f(x) defines a strictly increasing sequence of positive numbers. Neverthless 
~(f(x) - 1) - f(x) is not N-rational, since it is a merge of g(x) and h(x), and 
h(x) is not N-rational. Thus there are no finite succession rules having f(x) as its 
generating function. The previous problems remain still open in the case of not 
finite succession rules. 

2 Operations on succession rules 

A n-ary operation 0 on the set S of all succession rules is said to be well-defined 
if the equivalences 0 1 ~ O~, ... On ~ O~ imply 0(01 , ... , On) ~ o(O~, ... , O~). 
Our aim is to determine a set of well-defined operations on S, in order to build an 
algebraic system on S. 

Let 0 and 0' be two succession rules, defining the sequences {fn}n and {gn}n, 
and having f(x) and g(x) as generating functions, respectively. In the sequel we 
deal with 0 and 0' having the following general forms: 
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(a) (b) 
(h) "'" (el(h))(e2(h)) ... (eh(h)), (k) ~ .. (Cl (k)) (C2 (k)) ... (cd k) ). 

2.1 Sum of succession rules 

Given two succession rules 0 and 0', their sum, 0 EB 0', is the rule defining the 
sequence {hn}n so that ho = 1 and hn = fn +gn, if n > 0, and having f(x)+g(x)-l 
as generating function. Let (a) "'" (Ad ... (Aa) and (b) "'" (Bd ... (Bb) be the 
productions for the axiom (a) in 0 and (b) in 0', then the following succession 
rule: 

o EB 0' : 

gives the sequence {hn}n. 

2.2 Bisection of succession rules 

Given a succession rule 0, its bisection, denoted as ~, is the rule defining the 

sequence {hn}n, and having !(..fi)+!(-..fi) as generatin,g function. Let (a) "'" 
(Ad ... (Aa) be the production for the axiom (a), and s = Al + ... + Aa, then 
(s) is the axiom for ~. Let ei(h) "'" ei(h) ... e~i(h)(h) be the production for ei(h), 

i = 1, ... ,h, and g(h) = el (h) + ... + eh(h), then the rule for ~ is: 

{ (s) 
(g(h)) "'" (g(et{h))) ... (g(e!,(h)(h))) ... (g(e~(h))) ... (g(eZh(h/h))). 

ExaIllple 2.1 

i) Bisection of the rule for the Fibonacci numbers. By applying the previous defi­
nition we obtain: 

{ 
(2) 
(1) "'" (2) 
(2) "'" (1)(2), 

{ 
(3) 
(2) "'" (2)(3) 
(3) "'" (2) (3)(3). 

ii) Bisection of the rule for Catalan numbers. We start from the rule Oc, 

{ (2) 
(h) "'" (2)(3) ... (h)(h + 1); 

the axiom for ~ is (5); moreover, g(h) = 2 + 3 + ... h + h + 1 = h2t3h, so the 

rule for Catalan numbers of even index, (1,5,42,429, ... , 2T'~2 (~~!i)) is: 



A set of well-defined operations on succession rules 145 

2.2.1 Product of succession rules 

Given the rules 0 and 0', their product 0 0 0', is the succession rule defining 
the sequence {L:k<n fn-k9dn, and having f(x) . 9(X) as generating function. Let 
(b) """' B1 ... Bb be-the production of (b), then: 

000' : 

This statement is easily proved as follows: let t(x) = f(x) . 9(x), and tn the 
number of nodes at level n in the generating tree of 0 0 0'. The statement clearly 
holds for n = 0, to = 1 = f090, and for n = 1, t1 = h90 + f091 = a + b. Figure 1 
shows the generating tree for the rule 0 0 0'; the number of nodes at level n of 
the tree can be considered as a sum of n + 1 terms, which are as follows: 
- 9n = f09n; indeed this is the number of nodes at level n in 0' generating tree, 
which is a proper subtree of 0 0 0' having the axiom as its root. 
- h9n-1; indeed, by construction, the generating tree of 0 0 0' has h subtrees, 
isomorphic to 0', the roots of which lie at level 1; each of them has 9n-1 nodes 
at level n of 0 0 0' generating tree. Generally, at level n of 0 0 0' generating 
tree, there are fi times the nodes at level n - i of 0' generating tree (that is 9n-i 
nodes), 0 ~ i ~ n. 

( b + ~---------------------------jOgO 

....... .rb+K---

Figure 1: The generating tree for 00 0'. 

Thus the total number of nodes at level n of 0 0 0' generating tree is tn = 
f09n + ... + fn90. As the product is commutative, 000' and 0' 0 0 are equivalent 
rules but of a different shape. 
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Example 2.2 i) Product of Catalan and Fibonacci numbers. The succession rule 
obtained by applying the operation 0 to the rules for Catalan and Fibonacci 
numbers is as follows: 

{ 
(4) 
(k + 2) .".. (1)(2)(4)(5) ... (k)(k + 1) 
(1) .".. (2) 
(2) .".. (1)(2), 

and it defines the number sequence 1,4,12,35,95, .... 

ii) The rule for the square Catalan numbers. The rule obtained is: 

,-,2 . 
HC' { 

(4) 
(~+ 2) ::: l,2) (31(4)(5) ... (k) (k + l)(k + 2)(k + 3) 
(k) .".. (2)(3) ... (k)(k + 1). 

which can be easily simplified as the following nice rule: 

,-,2 . 
HC' { (4) 

(k) .".. (2)(3) ... (k)(k + 1). 

2.3 The Star of a succession rule 

The star of the succession rule 0, denoted as 0*, is the rule defining the number 
sequence having I-Jo(x) = 1 + fo(x) + fJ(x) + ... + r(x) + ... = Ln~o ft;(x) 
as generating function, where fo(x) = f(x) - 1. Let (a) be the axiom and (a) .".. 
Al ... Aa the production of (a). The rule 0* is: 

{
(a) 

0* : (a) .".. (AI + a) ... (Aa + a) 
(h + a) .".. (AI + a) ... (Aa + a)(eI(h) + a)(e2(h) + a) ... (eh(h) + a). 

The proof is similar to the one given for the product of two succession rules. 

Example 2.3 The star of Schroder numbers. We start from the rule Os: 

{ (2) 
(2k).".. (2)(4)2 ... (2k)2(2k + 2), and obtain Os: 

{ 
(2) 
(2) .".. (4)(6) 
(2k + 2) .".. (4)2(6)3 ... (2k + 2)2(2k + 4). 
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2.4 An application of rule operations to enumerative com­
binatorics 

A Grand Dyck path is a a sequence of rise and fall steps (( 1, 1) and (1, -1) respec­
tively) in the plane N x Z, running from (0,0) to (2n, 0). 
Let us determine a succession rule that enumerates Grand Dyck paths according 
to their semilenght, by applying some operations to succession rules. Grand Dyck 
paths are in bijection with Grand Dyck words, which are generated by the following 
non-ambiguous grammar: 

{ 
S -t aAbSlbBaSlt 
A -t aAbAlt 
B -t bBaBlt, 

where a encodes a rise step, and b a fall step; its generating function is f(x) = 
v'1~4X' Let fD(X) be the generating function for Dyck words, enumerated by Cata­
lan numbers. We can write f(x) as: 

1 
f~)= . 

1 - [(fD(X) - 1) + (fD(X) - 1)] 

Thus the rule n for Grand Dyck paths can be obtained as n = (ne EB ne)', where 
ne represents the rule for Catalan numbers: 

ne : { (I) 
(h) .,... (2)(3) ... (h)(h + 1). 

(3) 

By applying sum and star operations, we obtain the following rule: 

n: { (2) 
(h) .,... (3)(3)(4) ... (h)(h + 1). 

(4) 

It should be noticed that this is the same rule found in [8] and which recur­
sively constructs the class of Grand Dyck paths according to the ECO method. 

2.5 Partial sum of a succession rule 

Let n be a succession rule, defining the sequence {fn}n and having f(x) as gen­
erating function. The partial sum ~n, is the rule defining the sequence {Fn}n = 

{ L::<n h} . We can obtain ~n by means of the product operation, since F(x) = 
J_ n 

L::n Fn xn = l~X . f(x). Thus: 

{ (I) 
where n1 (1) .,... (1) is the natural rule for the sequence In = 1, "In. By applying 

the product operation we get: 
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{
(a + 1) 

~O : (1) -v-> (1) 
(h + 1) -v-> (1)(e1(h) + 1)(e2(h) + 1) ... (eh(h) + 1). 

For example, the rule Oc for Catalan numbers leads to the rule: 

{ (3) 
~Oc : (1) -v-> (l)(h + 1) -v-> (1)(3)(4) ... (h + l)(h + 2), 

giving the sequence 1,3,8,22,64, ... 

3 Other operations 

Let 0 and 0' be succession rules, and as usual, {fn}n and {gn}n their sequences, 
with their respective generating functions f(x) and g(x). The Hadamard product of 
o and 0', denoted as 0 8 0', is the rule defining the sequence {f ngn} n. Generally, 
it is not so simple to determine the generating function f(x) 8 g(x), but the 
Hadamard product of two N-rational series was proved to be N-rational ([9]). 

We start by giving an example of how to construct the rule 0 8 0' in the 
case of finite rules. Let 0 be the rule for the Pell numbers., {I, 2, 5, 12,29, ... }, and 
0' the rule for the Fibonacci numbers having an odd index, {I, 2, 5,13,34, ... }, 

0: { 
(2) 
(2) -v-> (2) (3) 
(3) -v-> (2)(2)(3), 

0' : { 
(2) 
(2) -v-> (2)(3) 
(3) -v-> (2)(3)(3). 

For each label (h) of 0 and (k) of 0', (h· k) is a label of the rule 080', 
and it is coloured only if there is already another label having the same value; the 
axiom is (a· b), where (a) and (b) are the axioms of the rules; if the productions 
of (h) and (k) are: 

(h) -v-> (C1) ... (Ch) 

(k) -v-> (ed ... (ek), 

then the production of (h· k) is: 

(h· k) -v-> (C1 . e1) ... (C1 . ek) ... (Ch . ed··· (Ch . ek). 

Going ba~k to our example, the labels of 080' are (2·2) = (4), (2·3) = (6), 
(3·2) = (6), (3·3) = (9). For instance, the production for the label (4) is: 

(4) = (2·2) -v-> (2·2)(2·3)(3·2)(3·3) = (4)(6)(6)(9). 

In the same way we obtain: 
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080' : 1 
(4) 
(4) ~ (4)(6)(6)(9) 
(6) ~ (4)(6)(6)(6)(9)(9) 
(6) ~ (4)(4)(6)(6)(6)(9) 
(9) ~ (4)(4)(6)(6)(6)(6)(6)(9)(9). 
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The rule 0 8 0' has ij labels, being i and j the numbers of labels of 0 and 
0' respectively. The method we described above enables us to obtain the product 
080' for finite rules, and it also proves that the Hadamard product of two finite 
rules is a finite rule. Some problems arise when attempting to find a general 
formula for the Hadamard product of two rules 0 and 0' having each an infinite 
number of labels. Generally speaking, the best we can do is to write a finite rule 
Ok which approximates the rule 0 8 0' with the required precision, depending on 
the parameter k E N+ (see [8]). 

Neverthless there are some cases when the application of the previously de­
fined operation on succession rules becomes particularly easy and helpful. 

(1) Let kEN; the rule Ok is a rule for the sequence {Fn}n = {kn fn}n; since the 
generating function F(x) = L:n Fnxn = f(x) 8 l~kx' we have: 

where 0 1 is the rule for {kn}n, that is: 

by applying the operation 8 we get: 

For example, let us take into consideration the rule 0 for Motzkin numbers 
{I, 1,2,4,9,21, ... , M n , .. . }: 

0: { (I) 
(h) ~ (1)(2) ... (h - l)(h + 1); (5) 

for k = 2 we get the rule O2 giving the sequence {I, 2, 8, 32,144, ... , 2n M n , ... }: 
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(2) The rule [n+ 1jO defines the sequence Fn = (n+ 1)fn, n E N. As the generating 
function is F(x) = :En Fn xn = f(x) . (l!x)2' we have: 

[n+1jO=080', 

where 0' is the rule for the sequence n + 1, that is: 

0' : {~~~ "'" (1)(2) 
(1) "'" (1), 

so we obtain: 

[n + 1jO : 

For example, let 0 be the rule for Pell numbers, then: 

[n + 1jO : ! (4) 
(2) "'" (2)(3) 
(3) "'" (2)(2)(3) 
(4) "'" (2)(3)(4)(6) 
(6) "'" (2)(2)(3)(4)(4)(6). 

Let Gn be the number of Grand Dyck paths having semilength nand Cn the 
nth Catalan number. As usual, let Oc be the rule (3) for Catalan numbers, 
and Og the rule defining the sequence {Gn }. From the combinatorial identity 
Gn = (n + 1)Cn1 we have: 

Og = [n + 1jOc, 

and thus 

Og : {~~~. "'" (2)(3) ... (h)(h + 1) 
(2h) "'" (2)(3) ... (h)(h + 1)(4)(6) ... (2h)(2h + 2), 

is a rule counting {Gn }, equivalent to (4). 

Moreover it is easy to prove the following property. 

Proposition 3.1 Let 0 be a rule defining the sequence {fn}n. Then a rule 0' 
defining a sequence {gn}n, such that fn = gn - rgn-l, f01· n > 1, exists: 
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3.1 Open problems 

There are several open problems related to the definition of an algebra on suc­
cession rules and arising from the operations we have introduced. Below the most 
interesting problems are mentioned: 

• Equivalence. Is there a criterion allowing us to establish whether two given 
succession rules are equivalent simply by working on their labels, that is, 
with no need to determine the corresponding generating functions? 

• Subtmction. Given two rules 0 and 0', defining the sequences Un} and {gn} 
respectively, such that in> gn for each n > 0, let OeO' be the rule defining 

{ I ifn=O 
the sequence {hn}n such that hn = in _ gn otherwise. 

The construction of the rule 0 1 e O2 constitutes an open problem. 

• Inversion. Let {fn}n be a non decreasing sequence of positive integers. Is 
there a method allowing us to decide whether a succession rule defining the 
sequence {in}n exists and, in this case, to find it? We remark that this 
problem can be solved for finite rules. 

3.2 A Conjecture 

Conjecture: if a succession rule has a mtional genemting junction, then it is 
equivalent to a finite succession rule. It is sufficient to prove that each rational 
generating function of a succession rule satisfies the properties of the generating 
functions of finite rules established in Section 1. If the conjecture proves true, 
rational functions such as (2) cannot be the generating functions of any succession 
rule. For example, let n be the rule, studied in [1], whose set of labels is the whole 
set of prime numbers: 

0: 

where Pn denotes the nth prime number, and qn and rn are two primes such that 
2pn - Pn+l + 3 = qn + rn; its generating function is rational, i(x) = 1-~;;!~X2' 
thus, according to our conjecture, a finite succession rule 0' equivalent to 0 can 
be found: 

0': { 
(2) 
(2) 'V"t (2)(3) 
(3) 'V"t (2)(3)(4) 
(4) 'V"t (2)(3)(4)(4). 

It should be noticed that the rule 0' was further exploited in [8], being the 4-
approximating rule for Catalan numbers, and it describes a recursive construction 
for Dyck paths whose maximal ordinate is 4. 
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Abstract. We study the asymptotic behaviour of a mutation-selection genetic algorithm 
on the integers with finite population, defined by a simple random walk and the fitness 
function f(x} = x. We prove the convergence in law of the normalized population and a 
large deviations principle. 

Key words. genetic algorithm, convergence in law, large deviations, population dynam­
ics, random walks, interacting particle systems. 

1 Introduction 

1.1 Motivation 

Genetic algorithms were formally introduced by Holland [6J in 1975 as an opti­
mization method based on a biological analogy with the natural mechanisms of 
evolution, and they are now a very popular tool for practically solving hard com­
binatorial optimization problems. Broadly speaking, a genetic algorithm describes 
a finite population of individuals evolving under the effect of several "genetic" 
operators: 

• selection: the population is randomly resampled from the previous one. Indi­
viduals with high fitness are more likely to be selected, whereas individuals 
with low fitness tend to be eliminated; 

• mutation: the individuals are subject to random mutations; 

• mating: a new population of "offsprings" is created from pairs of individuals 
of the previous population. 

In the combinatorial optimization setting, individuals are feasible solutions, 
and the fitness of an individual is measured by the function to be maximized. 
Thus, the selection operator directs the evolution towards a fitness increase, while 
mutation and mating preserve the population diversity, and allow the algorithm to 
visit large parts of the space of solutions. However, despite the success encountered 
by genetic algorithms in practical applications, and the numerous experimental 
studies devoted to them, few rigorous results are available about their behaviour. 

In [3J, R. Cerf obtained asymptotic convergence results for genetic algorithms 
with rare transitions. 

In [8], Y. Rabinovich and A. Wigderson studied the convergence speed of 
several genetic algorithms defined on binary strings, and the divergence speed of 
some algorithms defined on the integers. The algorithm we study belongs to the 
latter category. We are here in a very simplified context, so our results do not 
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apply to complex optimization situations. However, in this setting, we can get a 
detailed understanding of the effects of selection through a rigorous mathematical 
treatment. 

Moreover, this model has been used in biology to study the evolution of pop­
ulation of viruses (cf. L. Tsimring, H. Levine and D. Kessler [9]). In that context, 
D. Bonnaz applied theoretical physics methods to get predictions concerning the 
behaviour of the model (asymptotics of mean and variance of the population), sup­
ported by numerical simulations and biological experiments. Our results confirm 
these predictions mathematically. 

1.2 Description of the model 

The main object of our study is a mutation-selection genetic algorithm on the 
integers with finite population, defined by a simple random walk and the fitness 
function I(x) = x. 

Let p E N* . Let Xn = (X~i)h~i~P be the Markov chain with state space NP 
starting from Xo = (1, ... ,1) and defined by the following transitions: 

1. selection step: Xn --+ X~ 

If Xn = (0, ... ,0), then X~ = (1, ... ,1). Else, the Xji), 1 :::; i :::; p, are cho­

sen randomly and independently among the {X~i), 1:::; i :::; p}'s according 

to the probability law 

P 

where Sn = L X~i) . 
i=,l 

2. mutation step: X~ --+ Xn+l 

The p particles X~(i) evolve independently, each of them performs one step 
of a simple random walk on Z (symmetric, to the nearest neighbours) and 

their new positions are the X~11' 1 :::; i :::; p. 

The population at time n is formed by the p individuals X~l), ... , X~p). Thus, 
the number of individuals in a generation is kept fixed during the time-evolution of 
the population. Note that, at a given time, there may be several individuals taking 
the same value. The choice Xn = (0, ... ,0) --+ X~ = (1, ... ,1) is arbitrary and 
the point here is to prevent individuals from taking negative values. We could have 
suitably modified the mutation operator instead. 

We use the following notations: 

We define the diameter of x E NP as d(x) = SUPl~i,j~.p IXi - xii. 
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1.3 Statement of the results 

In this paper, we focus on the asymptotic behaviour of (Xn) as n goes to infinity, 
with fixed p. 

Theorem (X~l), ... ,X[['))/v/n converges in law to (1, ... ,1b-p, where IP 
stands for a random variable whose law is the same as the law at time t = 1 of a 
(2p - I)-dimensional Bessel process starling from zero. 

Theorem For aliI:::; i :::; p, the sequence (X~i) In) satisfies a large deviatio1J,s 
principle on [0, I], with the same rate function as in the case of a simple reflected 
random walk: 

1 
J(a) = "2 [(1 - a) log(1 - a) + (1 + a) log(1 + a)]. 

These results clearly show the effect of selection: when we normalize the pop­
ulation by v/n, it behaves like a random point in Il4 whose limiting law diverges 
from the reflected normal law (that we would get without selection) as the popula­
tion size increases, giving more and more weight to large values. However, when we 
normalize by n, we get the same large deviations result as in the case of a simple 
reflected r,andom walk, so the effect of selection cannot be seen on that scale. 

We point out that these results differ strikingly from those of C. Mazza and 
D. Piau [7] about the infinite-population version of the model. Indeed, they found 
a linear growth rate of average fitness with time, as opposed to our v/n scaling 
factor. A satisfactory explanation of this phenomenon is still lacking. 

1.4 Contents 

In section 2, we give two preliminary results about the behaviour of the cloud of 
particles: 

• a stochastic minorization of the process by a coupled process that tends to 
infinity in probability, 

• a stochastic majorization of the diameter of the cloud. 

In section 3, we give several technical lemmas. 
Section 4 is devoted to the detailed exposition of the convergence in law of the 

differences (Theorem 1) and of the normalized cloud (Theorem 2 and Corollary 7). 
The large deviations principle (Theorem 3) is presented in section 5. For the sake 
of brevity, we just sketch the proofs here, and we refer to [I] for detailed arguments. 

2 Two preliminary results 

The following lemma shows that the cloud of particles Xn is minorized stochas­
tically by a mutation-selection process Yn with uniform selection. We note that, 
for fixed n, each y~i) follows the same probability law as the position at time n of 
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a simple reflected random walk. However, for fixed i, the process (y~i))n is not a 
simple reflected random walk. 

Lemma 1 There is a process Yn = (y~i)h~i~P such that: 

• for all n ~ 1 and 1 :::; i :::; p, we have y~i) :::; X~i) 

• for all n ~ 1 and 1 :::; i :::; p, y~i) follows the same probability law as the 
position at time n of a simple symmetric reflected random walk on N with 
transition probabilities Po-+o = PO-+1 = 1/2. 

Corollary 2 For aliI:::; i :::; p, y~i) tends to infinity in probability, that is: 

VK> 0, 1. 

Proof 
We construct a coupling between X and y, where Y is a mutation-selection 

process with constant fitness function (uniform selection), whose mutation steps 
are given by a simple symmetric reflected random walk on N with transition prob­
abilities Po-+o = PO-+1 = 1/2. We check that we can couple pathwise the mutation 
and selection steps of X and Y so as to constantly preserve the relation y~i) :::; X~i). 

o 
The following lemma provides a stochastic majorization of the diameter of 

the cloud. 

Lemma 3 For all n E N*, there is a geometric random variable Gn , with param­
eter pl-p, such that d(Xn) :::; 2Gn . 

Proof 
We note that the conditional probability qn knowing Fn for the selection step 

between Xn and X~ to give the same value to all the X~(i) 's is given by 

if Xn =1= (0, ... ,0), 

if Xn = (0, ... ,0). 

Hence we have: qn ~ p1-p . 

We can then construct a geometric random variable Gn with parameter p1-p 

that dominates the time interval between n and the last time before n when the 
selection step gives the same value to all the X~(i) 'so Noting that a mutation step 
cannot increase the diameter by more than 2, the diameter d(Xn) cannot exceed 
2Gn · 

o 
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3 Technical lemmas 

The following result stems from Corollary 2 and Lemma 3, and will be of con­
stant use in the sequel: the transition probabilities of the selection step can be 
approximated by those corresponding to a uniform selection. 

Lemma 4 For 1 ~ a,b ~ p, we have: 

and 

where the sequences (An(a, b,P»n and (Bn(a,p»n are bounded in every LS-space, 
1 ~ s < 00. 

We shall use the next two lemmas for deducing the asymptotic behaviour of 
some moments from approximate recursion relations. 

Lemma 5 If (Un)n~O is a sequence of complex numbers satisfying a recursion 
relation of the form: 

Un+! = aUn + (3nq + o(nq), 

where lal < 1, (3 E IR. and q E N, then 

Un = -1 (3 n q + o(nq). 
-0 

Lemma 6 If (un)n~o is a sequence of real numbers satisfying a recursion relation 
of the form: 

Un+l = an'" + Un + o(n"'), 

where a E IR. and 0 ~ 0, then 

a 
U = __ n",+l + o(n"'+l). 

n 1 +0 

4 Convergence in law 

We start with a result about the behaviour of the unnormalized differences of 
particles positions: 

Theorem 1 For all 1 ~ i :f:. j ~ p, the sequence X~i) - X~) converges in law to 
a random variable A whose law is given by 

(1 - a)80 + I)l - a)n-1a(82n + 8_2n }a/2, 
n~l 
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where a = ,jP/(,jP + 1) and a = 2/(,jP + 1). The variable Do may be written as 
Do = 2ZG, where the law of the random variable Z is 

and G is a geometric random variable independent from Z: P [G = n] = (l-a)n-l a 
for n ~ 1. 

Proof 

Let t E IR and 1 ~ i =j:. j ~ p. 

Let 

Using Lemma 4, we approximate the transition probabilities of the selection 
step by uniform ones, and we get a recursion relation of the form: 

where, for fixed t, In(t) -+ 0 as n -+ +00. 
This relation, together with Lemma 5 (setting a 

p-l cos2 t and q = 0), shows that, for fixed t, 

n-++oo p - (p - 1) cos2 t . 

According to Levy's Theorem (cf. [5]), the result follows. 

cos2 t.(p - 1)/p, j3 

o 

Theorem 2 Fn/ y'n converges in law to "{p, where 'Yp stands for a random variable 
whose law is the same as the law at time t = 1 of a (2p - I)-dimensional Bessel 
process starting from zero. 

The use of characteristic functions does not seem to be appropriate here, so 
we use the method of moments: we estimate recursively the even-order moments 
of Fn. 

Proof 

We shall prove by induction on h that E((Fn /y'n)2h) tends to "(p,h as n goes 
to infinity, for hEN. This is obvious for h = O. Let h ~ 1, and suppose the result 
established for all q ~ h - 1. We have to show that E((Fn /y'n)2h) converges. To 
see this, we shall show that (E(F~il) - E(F~h))/nh-l converges. 
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E (F~~l - F~h I Fn) = E ((Fn + flFn)2h - F~h I Fn) 

= e1h)F~h-lE (flFn I Fn) 

+e:)F~h-2E ((flFn)2 I Fn) (1) 

+ ~ elh) F~h-IE ((flFn)' I Fn). 
, , ... 

(*) 

The induction hypothesis and the preceding lemmas imply that the expecta­
tion of the term (*) is o(nh - 1 ), so we only have to evaluate the first two terms. To 
achieve this, we write explicitly the conditional expectations E (flFn I Fn) and 
E ((flFn)2 I Fn). Then, approximating the transition probabilities of two consec­
utive selection steps thanks to Lemma 4, and using the induction hypothesis, we 
note that the expectations we have to evaluate satisfy recursion relations similar 
to those of Lemma 5, so we finally get: 

E (F~~l - F~h) = [2(p - l)h + h(2h - 1)]1'p,h_lnh- 1 + o(nh-l). 

From Lemma 6, we then deduce that E((Fn/Vii)2h) converges to 

1'p,h = [2(p - 1) + (2h - l)hp,h-l, 

so the proof by induction is complete. Moreover, the sequence (-yp,h)h~O satisfies 
Carleman's condition (cf. [5]): 

+00 
'" -1/2h L..J 1'p,h = +00, 
h=l 

hence, the convergence of moments gives us the convergence in law of Fn/ Vii. 
We now identify the limiting law 1'p. We have: 

h 

1'p,h = E1';h = II (2(p - 1) + (2i - 1)). 
i=l 

These are the even-order moments of the symmetric law with density 

Jp(x) = 1 X 2(p-l) e-x2 /2 
"fi1f 1 x 3 x 5 x ... x (2p - 3) 

Hence, the symmetrization of the law of 1'p is the law with density JP- Noting that 
the law of 1'p is supported by Il4, it has a density given by 
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o 
We check that for p = 1, 'Yp follows a normal law. 

Corollary 7 (X~l), ... ,X!r))I...;n converges in law to (1, ... ,Ihp. 

5 Large Deviations 

Theorem 3 For aliI ~ i ~ p, the sequence (X~i) In) satisfies a large deviations 
principle on [0,1] with the same rate junction as in the case of a simple reflected 
random walk: 

1 
J(a) = "2 [(1 - a) log(I - a) + (1 + a) log(I + a)]. 

Proof 
We shall prove that, for all t ~ 0, we have: 

1 X(l) 
lim -logE(et n ) = log cosh(t) , 

n-++oo n 

and the result will be a consequence of the Gartner-Ellis theorem (cf. [4]). 
We note that: 

(2) 

where 

(3) 

We first show that 0 ~ mn(t) ~ 3 for n ~ no, so we get the following bounds: 

\In ~ no. 

These estimates together with Lemma 4 and the Holder inequality allow us 
to prove that mn(t) -+ 0 as n -+ +00. 

o 

6 Conclusion 

This paper confirms mathematically the results of [2], and provides much more de­
tailed information. Several important aspects of the asymptotic behaviour of the 
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algorithm studied are now understood (role of selection, of population size). How­
ever, the question of non-asymptotic behaviour (when the number of iterations 
depends in some way of the population size) remains open, and further investi­
gation in this direction would certainly lead us to a better understanding of the 
difference we observed between the finite and infinite-population models. The law 
of (Xn)n~O as a stochastic process is also an interesting object. 

Moreover, one can think of many variants and generalizations of the algorithm 
we presented (using other fitness functions, other types of mutation, or including 
mating), and the results we obtained incite us to go on studying simplified models 
of genetic algorithms in order to improve our understanding of their behaviour, 
and especially the respective roles of parameters and genetic operators. 
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Abstract. Given a single discrete and non dedicated commodity, we consider the de­
terministic problem of transporting such commodities from a set of suppliers to a set 
of customers with one vehicle of limited capacity Q. We give a VRP-like formulation, 
dimension of associated polytope as well as complex analysis of practical complexity in 
terms of number of feasible solutions. From a heuristic viewpoint, a dynamic program­
ming algorithm is given to retrieve in polynomial time, the best solution in an exponential 
neighborhood. 

Key words. redistribution, routing problem, dynamic programming 

1 Introduction 

Given a single discrete and non dedicated commodity, we consider the deterministic 
problem of transporting such commodities from a set of suppliers (or surplus nodes) 
to a set of customers (or shortage nodes) with one vehicle of limited capacity Q. 
The problem is to find a minimal length feasible tour that pickups commodities at 
supplier points and delivers them at customer points without violating the capacity 
of the vehicle. The tour must begin and end at a depot, and could visit each point 
(supply or demand) more than once except the depot (exactly one). Without 
loss of generality, we consider only unit surplus/shortage nodes in order to avoid 
multiple visits of arcs and nodes in underlying graph; upto a pseudo-polynomial 
clique expansion of demand nodes, the non unit demand problem turns into a unit 
demand problem. Furthermore, the overall demand is assumed to be balanced to 
prevent adding dummy nodes. 

Let REDQ(S2n, D) redistribution problem under unit demand assumption, 
capacity Q and distance matrix D; let V = N+ U N- U {O} the set of surplus, 
shortage and depot nodes, we assume the underlying graph G to be complete on 
surplus and shortage nodes while the depot is ingoing (resp. outgoing) to every 
surplus (resp. shortage) node. G = (V, K 2n X 0) where IN+I = IN-I = n. Some­
times we will use + 1 (resp. -1) instead of surplus (resp. shortage) naming and 
refer to parity for membership to one or the other sets. 

In section 2 we address complexity issues for REDQ(S2n, D) problem; in sec­
tion 3 we give dimension of REDQ(S2n, D) polytope and finally in section 4, given 
z, a feasible solution, we retrieve in polynomial time the best solution within an ex­
ponential neighborhood associated with z under relaxation of capacity constraint 
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(it is known from meta heuristics that non feasible solutions may help to escape 
from a local optimum so that this assumption should be considered in a loosely 
restricti ve sense). 

2 Complexity issues under unit demand 

2.1 Unit Capacity Q = 1 

Under unit capacity, the vehicle should go from the depot to a surplus node, 
then to a shortage node etc until completion of tour; removing the depot from 
both endpoints then, w.l.o.g. we may fix shortage nodes of RED1 (S2n,D) in even 
location so that the following decision problems are NP-hard. 

where TSP(EO, D) stands for the traveling salesman problem over even-odd per­
mutations which is NP-hard [DW97] through the following transformation. 

00 0 00 00 00 00 ex;, 00 00 00 

00 00 D[l,2] 00 D[l,3] 00 D[L4] 00 D[l,5] 
00 00 00 0 00 00 oc 00 00 00 

D[2,1] 00 00 00 D[2,3] 00 D[2,4] 00 D[2,5] 

D' 
00 00 00 00 00 0 oc 00 00 00 

D[3,1] 00 D[3,2] 00 00 00 D[3,4] 00 D[3,5] 
00 00 00 00 00 00 oc 0 00 00 

D[4,1] 00 D[4,2] 00 D[4,3] 00 00 00 D[4,5] 
00 00 00 00 00 00 00 00 00 0 

D[5,1] 00 D[5,2] 00 D[5,3] 00 D[4,5] 00 00 

Figure 1: TSP(EOlO , D') :s d iff TSP(S5, D) :s d 

2.2 Capacity Q > 1 

2.2.1 Dyck excursions 

Counting number of circuits amounts to count Dyck words of height at most 
capacity. Let C be a class then the sequence class O'{ C} is defined as the infinite 
sum 

O'{C} {f} + C + (C x C) + (C x C x C) + ... 

where {f} is a void structure (or a structure of null size). This sequence operation 
is analogous to Kleene star operation C* for monoid. Let V = {-I, + I} be our 
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alphabet of unit demands, then the ordinary generating function to count the 
number of circuit fulfilling the capacity constraint is given by 

n 

where evenness allows to assign only one z for both -1, +1 demand nodes. We 
acknowledge Ph. Flajolet [FS93] for pointing out this elegant fashion for counting 
those circuits; it's a different instance from the genuine counting of average height 
in trees by de Bruijn et a1. [dBKR72]. For small values of q and n, expansion of 
continued fraction leads to the recurrence: 

n 

'" cq Cq-1 
~ 2(n-;) 2(;-1) 
;=1 

We follow hereafter, the complete counting expansion (see [FS96] pages 51--
53) to reach a direct expression in q and n. 

The continued fraction suggests to write it as a quotient of 2 polynomials, 
Fq+~ (z) . •• namely cq(z) = Fq+ (z) leadmg to the recurrence and the assoClated solutlOn : 

where Fq(z) are known as the Fibonacci polynomials due to their values for z = 
-1. 

The actual values are related to the Catalan's numbers through the generat­
ing function of trees with n nodes C(z) = node x a{C(z)} 

C(z) 

1 (2n) 
n + 1 n 

1- JI=4Z 
2 

Then, both generating functions are related by using the quotient y(z) 
....QEL _ 1-y'I="4Z 
1-C(z) - 1+v'1-4z 

c - Cq-2 
n 2n 
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qn n 

Q 1 2 3 4 5 6 7 8 9 10 
1 1 1 1 1 1 1 1 1 1 1 
2 1 2 4 8 16 32 64 128 256 512 
3 1 2 5 13 34 89 233 610 1597 4181 
4 1 2 5 14 41 122 365 1094 3281 9842 
5 1 2 5 14 42 131 417 1341 4334 14041 
6 1 2 5 14 42 132 428 1416 4744 16016 
7 1 2 5 14 42 132 429 1429 4846 16645 
8 1 2 5 14 42 132 429 1430 4861 16778 
9 1 2 5 14 42 132 429 1430 4862 16795 
10 1 2 5 14 42 132 429 1430 4862 16796 

' . 

Figure 2: number of tours under small capacity and length 

where the second equality is thrown from complex analysis [FS96] and is valid as 
soon as n > q - 2 

c - C q- 2 n 2n 
_1_ r 1 - y(z ) yq(z) dz = _1_ r (1 - y)2 (1 + y)2n .!!:JL 
2i7r ir 1 + y(z) 1 - yq(z ) zn+2 2i7r ir 1 - yq yn+2 

[yn+l](l - 2y + y2)(1 + y)2n Lyjq 
j?O 

Asymptotic behavior comes as o(pn) where p is the smallest singularity, here 
z = 1/4, therefore number of circuits tends to o(4n) as n grows to infinity. 

2.2.2 Dyck walks in a strip [0, Q] 

Let u be a parameter to count the load in vehicle, then the transition from state 
(zn, uq) to (zn+l, uq') comes from either a pickup move (formally u 1) or a delivery 

q =6 

q ;;;;; 5 
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move (formally u-1). Assuming Cn counts number of walks from (0,0) to (zn, uq ) 

then recurrence is: 

Cn+l (u) = (u + u-1 )cn(u) - U-1[U-1](u + u-1 )cn(u) - uQ+l[uQ+l](u + u-1 )cn( u) 

= (u + u-1)cn(u) - u-1[uO]cn(u) - uQ+l[uQ]cn(u) 

where [u-1]f(u) denotes the coefficient of u-1 in formal expression f(u) and the 
negative terms account for walks outside the strip [0, Q]. Notice that the strip 
condition nullifies [U- 2]cn(u) and [uQ+2]cn(u). 

Multiplying by zn+l both sides and summing over every term zncn(u) yields 

the generating function C(z, u) = L zncn(u) counting number of walks of a given 
n 

length to a given load. 

18QC 
C(z, u) = co(u) + z(u + u-1 )C(z, u) - zu-1C(z, 0) - zuQ+1 Q! 8uQ (z,O) 

18Q C 
(u - zu2 - z)C(z,u) = co(u)u - zC(z,O) - zuQ+2 Q! 8uQ (z,O) 

using [uklf(u) = ~ ~(O); any intialload may be considered through co(u) while 
in standard formulation we consider an empty truck co(u) = UO = l. 

Consider C(z, 0), ~~fj (z, 0) as unknowns in above equation then solving u -
zu2 - Z = ° in u gives 2 solutions 

1- J1- 4z2 
2z 

1 + J1- 4z2 
2z 

from which we could solve a system of 2 linear equations to retrieve the unknowns 
in terms of z : 

zC(z, 0) 

18Q C 
z Q! 8uQ (z, 0) 

and finally get the formal generating function : 

C(z, u) 
co(u) ( u~+l(z) - u~+l(z) Q+2 U2(Z) - Ul(Z) ) 

u - zu2 - Z U - u~+2(z) _ u~+2(z) - U u~+2(z) _ U~+2(z) 

The generating function of walks is given by any uk , i.e. assigning u = 1 

C(z,l) 
co(u) ( u~+l(z) - u~+l(z) U2(Z) - Ul(Z) ) 
1 - 2z 1 - U~+2(Z) _ U~+2(Z) - U~+2(Z) _ U~+2(Z) 

co(u) (1 _ z(l + y(z)) 1 - yQ+l(z) _ zQ+l(1 + y(z))Q+l 1- y(z) ) 
1 - 2z 1 - yQ+2(Z) 1 - yQ+2(Z) 
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where y(z) = :~~=l = !~~. By grouping terms, it yields 

C(z, 1) = ( ) "'2i i ()"'2i Hi(I+y(z))(I-yQ+l(z)) 
Co u ~ z - Co u ~ z 1 _ Q+2 (z) 

i20 i20 Y 

-eo(u) '" 2izQ+l+i (1 + y(z))Q+l(I - y(z)) 
~ 1 - yQ+2(z) 

Win n 

Q 1 2 3 4 5 6 7 8 9 10 
1 1 1 1 1 1 1 1 1 1 1 
2 2 4 8 16 32 64 128 256 512 1024 
3 2 5 13 34 89 233 610 1597 4181 10946 
4 2 6 18 54 162 486 1458 4374 13122 39366 
5 2 6 19 61 197 638 2069 6714 21794 70755 
6 2 6 20 68 232 792 2704 9232 31520 107616 
7 2 6 20 69 241 846 2977 10490 36994 130532 
8 2 6 20 70 250 900 3250 11750 42500 153750 
9 2 6 20 70 251 911 3327 12190 44744 164407 
10 2 6 20 70 252 922 3404 12630 46988 175066 

Figure 3: number of walks under small capacity and length 

On the other hand, the number of excursions is retrieved through assigning 
u=O 

C(z,O) 
eo(u) U~+l(z) - U~+l(Z) 
-Z-U~+2(Z) - u~+2(z) 

(1 + VI - 4z2)Q+l - (1 - VI - 4Z2)Q+l 
2eo(u) (1 + VI - 4Z2)Q+2 - (1- VI - 4Z2)Q+2 
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Of course, last expression looks like Cq(z) provided we substitute Z2 to z in the 
latter to relax evenness simplification. 

C(z, u) 
co(u) ( (1 + VI - 4Z2)Q+1 - (1 - VI - 4z2)Q+1 

u - 2z ~---;=::=::::;::=;i-;:;-;-;;-~--c==;=~:;-;-;;-
u - u 2z - z (1 + Vl- 4Z2)Q+2 - (1- Vl- 4Z2)Q+2 

2Q+2 Q+2 Q+1 VI - 4z2 ) 
- U z 

(1 + VI - 4Z2)Q+2 - (1 - VI - 4z2)Q+2 

3 Dimension of redistribution polytope 

For any V ~ V of REDQ (S2n, D), V = V \ V will denote the complementary of V 
in V; then redistribution is formulated as: 

subject to 

min 2:: 2:: dijXij 

iEV JEV 

2:: Xij + 2:: Xji 2, i E V 
JEV JEV 

2:: Xij - 2:: Xji 0, i E V 
JEV JEV 

2:: Xij < 2 min(lV+ I, IV-I) 
i E V+ ~ N+ 
j E V- ~ N-

Xij E {O,l} 

(1) 

(2) 

(3) 

where dij is the distance between nodes i and j as given by D. For sake of con­
ciseness we denote REDQ the redistribution polytope. 

3.1 Dimension of linear relaxation 

Let REDQ/IR be the linear relaxation of binary constraints Xij E {OJ I}. Summing 
over all i E V degree (1) and flow (2) equalities shows there are related by the 2 
equalities 

2(2n + 1) 
iEV JEV iEV JEV 

2:: 2:: Xij - 2:: 2:: Xji 0 
iEV JEV iEV JEV 

therefore dim(REDQ/IR ) = I variables I - 2(2n + 1) + 2 so that dim(REDQ) < 
I variables I - 4n. 
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• unit capacity Q = 1; number of variables reduces to 2n( n + 1) since a surplus 
(resp. shortage) node is connected to a shortage (resp. surplus) node or the 
depot; therefore dim(REDQ) :S 2n(n - 1) . 

• capacity Q > 1; from G = (V, K2n X 0) we get I variables I = 2n(2n -1) + 2n = 
4n2 yielding dim(REDQ) :S 4n(n - 1). 

3.2 The result 

Proposition 3.1 Redistribution polytope has dimension either dim(REDf) = 2n(n-
1) for unit capacity or dim(REDQ) = 4n(n - 1). 

Proof. let L:i L:j aijXij = ao an equation satisfied by any solution to redistri­
bution problem; we will show that it is a linear combination of degree and flow 
equalities in order to prove the result. 

First, given a sequence of nodes i, j, k, l, m in a solution of redistribution 
problem, we claim that there exist 

1. a solution that contains i, l, k,j, m under mild assumptions (for instance, j, l 
both belong to N+ or N-; then after simplifying remaining terms, we get 

2. 2 solutions that contain i, l, m, j, k and i, j, m, l, k where memberships afford 
the pairs (j, k), (l, m) to be swapped, leading to 

It is easy to check that those 4 solutions exist even for the simplest case n = 2, Q = 
1.From previous 2 equalities, we derive: 

implying that a is linear in i and j; therefore exist some 13i, (3j such that 

aij (3i + (3j 

Second, using L: j Xij = 1 from degree and flow constraints fulfilled in any 
point i, we could rewrite our equality as 

Just take the alternating sequence of surplus and shortage nodes as a partic­
ular solution and apply it to above equality; then, we obtain 

Altogether, equality rewrites as L:i L: j ((3i + (3j)Xij == 2 L:i (3i, hence the re-
quired linear combination in degree and flow equalities. 0 
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4 Searching an exponential neighborhood 

4.1 Notations 

A feasible solution of REDQ (S2n, D) is denoted P E S2n, its cost D(p) and 
is composed of excursions (PI, P2, ... ,Pc); given a point k E [1,2nJ, its image 
under permutation P is kP. A transposition (ki' k j ) has standard meaning of 
permutation group theory, while a left circular shift (composition of adjacent 
transpositions) (ki' kj ) 0 (kj, kI) 0 (kl' km) 0 (km, kn) or in disjoint cycle notation 
(km, kn)(kl' km)(kj , k1) (ki' kj ) is abbreviated by its cycle representation (ki ... kn) 
and correspondingly for a right circular shift (kn' km) 0 (km, k1) 0 (kl' k j ) 0 (kj, ki ), 
in disjoint cycle notation (kj, ki ) (kl' kj ) (km, k1) (kn, km) its shortcut (kn ... ki ) con­
sistent with composition of transpositions. Notice, the additive representation of 
taking the image under a given permutation p, (kn p = kiP so that the reverse 
permutation is denoted -P and identity 0; it will make further formulae more 
readable than multiplicative representation, in particular we will take benefit from 
ki = k?P to shrink notation. 

Provided all points involved in an independent (ordering meaningless) compo­
sition of consecutive transposition do not overlap, the notation (ki' kj)l = (ki' kj ) 0 

(kf, kj) ... 0 (k!p, k~P) extends transposition to chain of points under p. The same 

extension applies to circular shift in the same fashion e.g. either (kn ... kd or 
(kn ... kd under the non overlapping chain condition. 

In the sequel, we consider dense sets of consecutive transposition, or other­
wise stated, composition of a given permutation p through sequence of disjoint 
circular shifts po (ki ... ki ) 0 (kj ... kD o ... under the restriction that all excursions 
occur in the operation; a excursion occurs either once when its selected point ap­
pears within one shift only, or twice if two distinct points occur at any endpoint 
of 2 consecutive shifts like in above example (2 consecutive shifts may have same 
or reverse direction). Burkard and Deineko [BD94) name this set dense since it 
amounts to extend composition of p by either left side or right side while consecu­
tively choosing points in increasing order of excursions PI, P2 ... This neighborhood 
comes from the nice properties 

(ki ... kj-d 0 (k j- I , kj ) 

(kj- I , kj ) 0 (k j- I ... ki ) 

(ki ... kj ) 

(kj ... ki ) 

together with their chain counterpart (under non overlapping condition). 

(ki ... kj-d 0 (kj- I , kd 

(kj- I , kd 0 (k j- I ... kd 

4.2 Patching on same parity points 

(ki ... kj)l 

(k j ... kd 

We assume that only points with same parity (member of either N+ or N-) are 
ripple shifted to discard feasibility checking on the corresponding transformation. 
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Let us consider the sequence of differential cost associated with a left shift 

D(p 0 (ki ... kj-d) 

dkj_1kf - d kj _ 1k:, + d kjk ,; - d kjkj 

D(p 0 (ki ... k j - 2 )) 

D( rho circ(ki' k i+1)) - D(p) 

where opening, closing and incremental terms are emphasized (underlined, over­
lined and in bold face respectively). Hereafter, we will keep emphasized notation 
for ease of reading but no meaning is attached to it. 

Introducing I5kjki = d kjk ,; - dkjkj then a separation property appears while 
summing up consecutive lines above, after cancellation of terms with opposite sign 
and using ~(ki ... kj-d for partial sums 

~(ki ... kj) 

D(p 0 (ki ... kj )) - D(p) 

D(po(kj_i,kj )) -D(p) 

Correspondingly, right shift yields 

~(kj ... k;) 

D(p 0 (k j ... kd) - D(p) 

D(p 0 (kj, kj-d) - D(p) 

~(ki ... kj-d + I5kj_lkj 

~(ki ... kj) + I5kjki 

I5kj_1kj + I5kjkj_1 

~(kj_1 ... k;) + I5kjkj_l 

~(kj ... k;) + 8kikj 

I5kjkj_1 + I5kj_1kj 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Then the dynamic programming applies in a straigthforward fashion by in­
troducing minimization in the course of summation. First, let ~kj kj define the 
best differential cost obtained by patching excursion Pi upto excursion Pj; second, 
let ~k'_lkj be the best differential cost obtained by using transposition (kj-i,kj ) 
between excursions pj-i and Pj, it comes either by ending a shift or breaking the 
dense set and restarting a new shift. 

~(ki ... kj) 

~(kj ... k;) 

min ~(ki ... kj-d + I5kj_lkj 
k j _ 1 Ep,-l 

k . min ~(kj_1 ... ki) +l5kjkj_l 
,-lEpj-1 

{

15k . k· + min ~k' k' 
~ kj_1I- k ,-lEp,-1 ,-I ,-I 

min. ~(kj_1 .. k;) + I5kikj 
ki EPi ,.=1. .. J-2 

(10) 

(11) 

(12) 
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(13) 

(14) 

where the only subtlety relies on the exchange of the last increment and open­
ing/closing terms between D.kjkj and D.kj_lkj(D.kjkj_l resp.) compared to original 
recurrence: in the latter, we dealt with excursions upto k - 1 so that the last incre­
ment (closing term resp.) should be introduced in the former for a closing (single 
transposition (k j - I , kj ) resp.) in order to fulfill recurrence/separation property. 

At end, the best differential cost from a given permutation P is retrieved from 
min D.keke and the actual shifted points along excursions PI to Pc through tracing 

keEPe 
back the best differential cost. 

Proposition 4.1 Best differential cost for point patching along excursion PI to 
excursion Pc can be solved in O(n2 lPmaxl) time and O(4n2) space. 

Proof. There are 4n2 elements D.k;kj where the actual shift is retrieved from 
the relative position of k i and kj; from which O(n2 ) require at most IPmaxl = 
max1lpjl. Only closing recurrences D.kj_lkj pay more and at most L~-I IPil ~ 
2n, but since we consider only same parity exchange, they are no more than 

c 

2(I:~ IPi-II/2IPil/2) ~ IPmaxl/2 L IPil ~ nlpmaxl· o 

Proposition 4.2 Best differential cost for point patching along excursion PI to ex-
c 

cursion Pc is retrieved within an exponential neighborhood of size tiPIllp21 II (lPk-ll+ 
k=3 

Proof. Let Sk be the number of shifts examined when point patching along 
excursion PI to excursion Pk; clearly S2 = IPIllp21/4. Let us suppose Sk-I to be 
known, there are (IPk-II-1)lpkl different opening ways to compose excursion Pk-I 

with Pk and 21Pkl different ways to increment or to close current shift. Altogether, 
it yields Sk = (lPk-11 + l)lpklsk-1 0 

It is worth noting that Burkard and Deineko requirement of patching all 
excursions in order, comes from the TSP they are dealing with; but for excursion 
patching, it is compulsory, so that the dynamic programming recurrence becomes 

D.(k; ... kj) 

D.(kj ... k;) 

k . min D.(k; ... kj_tl +tlkj_lkj 
,-1 EPj-l 

k min D.(kj_l ... k;j + tlkjkj_l 
j-l Epj-l 

{ 

tlk,_lk, + min D.k'k' 
--- k' Ep.,,=l. .. )-I 

mJn. D.(kj_l ... k;) + tlk;kj 
k, Ep, ,,-1. .. )-2 

(15) 

(16) 

(17) 
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{ 

rSkjkj_l + I min. t1k;k; 
--- kiEpi,t=l. .. J-l 

. m~n. t1(k; ... kj_tl + rSkjk ; 
k, Ep, ,t-1. .. J-2 

(18) 

(19) 

where skipping implicitly underlies the disjoint condition kj_l f; kj - 1 whenever 
best patching happens to be up to pj-l and where possibly no transposition occurs 
between pj-l and Pj' Clearly, time complexity remains in the same bound. 

Notice that from feasibility assumption, endpoints of any excursion may be 
shifted since they all have + 1 parity. However, cumulative load along patching 
may be addressed in the same way to keep track of feasibility interchange ... 

5 Concluding remarks 

We addressed a generic redistribution problem from a complexity point of view; 
both polyhedral dimension and dynamic programming approach were set in a usual 
framework (VRP or TSP-like) and are appealing to study further facet defining 
equalities. In the past, we already experiment a combined transportation and TSP 
formulation whose lagrangian relaxation leads to difficult step length adjustment 
(resulting in a low speed of convergence even with small sized instances). With this 
formulation, a Branch-and-Cut strategy seems more promising on the one hand; 
an efficient dynamic programming upper bound was given on the other hand, to 
fill the gap. 

References 
[BD94] R. E. Burkard and V. Deineko. Polynomially solvable cases of the traveling 

salesman problem and a new exponential neighborhood. Technical Report 1, 
Technische Universitt Graz, Austria, July 1994. 

[dBKR72] N. G. de Bruijn, D. E. Knuth, and S. O. Rice. The average height of planted 
trees, pages 15-22. Academic press, 1972. 

[DFNR99] M. Dror, D. Fortin, E. Naudin, and C. Roucairol. Heuristics for the redis­
tribution of a single commodity. In MIC'99, July 1999. Angras de Reis, 
Brazil. 

[DW97] 

[FS93] 

[FS96] 

V. Deineko and G. J. Woeginger. A study od exponential neighborhoods for 
the travelling salesman problem and for the quadratic assignment problem. 
Technical Report 05, Technische Universitt Graz, Austria, July 1997. 

Ph. Flajolet and R. Sedgewick. The average case analysis of algorithms: 
Counting and generating functions. Technical Report RR1888, INRIA Roc­
quencourt, France, April 1993. 

Ph. Flajolet and R. Sedgewick. The average case analysis of algorithms: Mellin 
transfoem asymptotics. Technical Report RR2956, INRI A Rocquencourt, 
France, August 1996. 



Trends in Mathematics, © 2000 Birkhiiuser Verlag Basel/Switzerland 

On the rate of escape of a mutation-selection algo­
rithm 
CHRISTIAN MAZZA AND DIDIER PIAU LaPCS, UFR de Mathimatiques, Universite 
Claude Bernard Lyon-I, 43 Bd du ll-Novembre-1918, 69622 Villeurbanne Cedex, 
France. [mazza,piau]@jonas.univ-lyonl.fr 

Abstract. We consider a genetic algorithm associated with mutation and selection, 
modeled as a measure valued dynamical system on the integers. A simple symmetric 
random walk induces the mutation and the fitness is linear. We prove that the rate of 
escape of the fitness is of order the number of iteration steps, in a strong sense, since a.s. 
convergence and LP convergence hold. Furthermore, the normalized algorithm converges 
in law, and a large deviations principle hold. 

Key words. Genetic algorithms, dynamical systems. 

1 Introd uction 

Finite population genetic algorithms, introduced in Holland [8], are widely used 
in applications. They are relevant in many areas, for instance biology, computer 
science, optimisation and signal processing. Mathematically speaking, genetic al­
gorithms are Markov chains on product spaces EP, where E is the state space and 
p ~ 1 is the size of the running population. Generic genetic algorithms are the 
various combination of three basic operators: mutation, mating and selection. 

Despite the successes of these algorithms in the applications and numerous 
experimental studies, few rigorous results on their behaviour are available. 

Del Moral and Guionnet [3, 4, 5] study the infinite population limit of 
mutation-selection algorithms, in connection with nonlinear filtering. In partic­
ular, these authors show that the empirical law on E of the population x(n) at 
a discrete time n ~ 0 converges, when p goes to infinity, toward the solution of 
a dynamical system with values on the space of probability measures on E. This 
dynamical system is the composition of a selection operator Wand a mutation 
operator M. For a given fitness f ~ 0 and a law Ji such that Ji(J) E (0, +00), the 
selection replaces Ji by the law W(Ji) such that, for any bounded g, 

(1) 

Hence, W(Ji) favors, more than Ji, the states of high fitness. An equivalent descrip­
tion of W is that:-..if X is a random variable of law Ji, then W(Ji) is the law of a 
random variable X such that 

E(g(X)) = E(J(X)g(X))/E(J(X)), 

for any bounded function g. The mutation replaces Ji by M (Ji) : = Ji Q, where 
Q is the mutation kernel. The dynamical system (Jin)n?O takes then the form 
Jin+l := W(M(Jin)). 

Similar dynamical systems are considered in computer science [12], and in 
biology [7]. In the mating step, one can replace the linear kernel K by a quadratic 
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operator, but the dynamical system is then much harder to analyze from the 
mathematical point of view. Rabinovich and Wigderson [11) get significant results 
about several examples of this combination of selection and mating. We refer the 
reader to Mazza and Piau [10), where similar results are proved for a new class of 
dynamical systems, generated by Mandelbrot martingales. 

In this paper, we consider a mutation-selection operator on the integer line, 
with fitness I(x) = IxI- This model is the infinite population version of models 
used in biology to describe the evolution of populations of RNA viruses, see [9) 
and the references therein. Eq. (1) defines the selection W, and a random walk 
induces the mutation M by the convolution of a given probability measure v. That 
is, one sets M(J.L) = J.L * v. Obviously, this is a much simplified setting, and our 
aim is to understand the role of selection in the convergence to equilibrium, i.e., 
in this case, to infinity. 

Assuming, for further simplicity, that v = ~(L1 +6+1), and that the dynam­
ics starts from 61 , we prove that the mean fitness at epoch n behaves like 2n / 7r. 

The convergence holds a.s. and in every LP space, P 2: 1. In addition, we prove 
that a large deviations principle and a central limit theorem hold, see Theorem 1. 

Notice, about the linear growth these results demonstrate, that the mean 
fitness of the random walk, without selection, is of order Vii. The best possible 
fitness that the random walk can reach after n steps being n + 1, our mutation­
selection algorithm has the best possible order. Furthermore, we mention that 
Berard and Bienvenue [2) study the finite population version of this algorithm. 
They prove that, in this case, the growth is of order Vii (in a precise sense, see 
[2]). The transition finite population/infinite population is not fully understood 
yet. 

We state our results in Section 2 as Theorem 1. Section 3 proves some tech­
nical lemmas, which we use in Section 4 for the proof of Theorem 1. 

2 Results 

We study the measure valued dynamical system 

Pn+1 = W(Pn * v), with I(x) = 1;z;I, 

where * is the convolution of probability measures. We focus on the case of the 
simple symmetric random walk on the integers, where v = ~(L1 +6+1). As stated 
in the introduction, this is the infinite population version of a simple model for the 
evolution of populations of RNA viruses considered in [9), where mutants move 
in fitness space according to a reflected random walk on {a, 1, 2, ... }. Our study 
sheds some light on the heuristic and experimental results presented in [9). We are 
interested in the mean fitness at epoch n, i.e. 

Recall that (Xn)n is any sequence of random variables, such that Pn is the law of 
X n . We prove the following results. 
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Theorem 1 Consider the mutation-selection dynamics, where the mutation is 
based on the simple symmetric random walk starting at +1, and the selection on 
the fitness function f(x) = Ixl· 

(1) The mean fitness at epoch n increases linearly in the following sense: 
E(f(Xn))/n converges to 2/7r. 

(2) The sequence (Xn/n)n satisfies a large deviations principle of good rate 
function 

J(a):= sup [log(2u) - a logtan(7ru/2)]. 
uE(O,I) 

(3) Since J(a) > 0 for every a =f:. 2/7r, a consequence is that Xn/n converges 
to 2/7r a.s. Furthermore, Xn/n converges to 2/7r in every space LP, p ~ 1, and 
the reduced random variable (Xn - (2/7r) n)/.;n converges in law to a centered 
Gaussian law of variance 4/7r2 • 

Thus, selection has a rather strong effect, since, by the central limit theorem, 
the mean fitness of the classical (reflected) random walk, which corresponds to 
mutations without selection, is of order .;n. 

3 Lemmata 

3.1 Multiplicative functionals of a Markov chain 

Recall that, for a given fitness f, W is defined by (1). Let Q be an irreducible 
stochastic matrix. For a given measure 1/, we consider the dynamical system defined 
by Po := 1/ and Pn+l := W(pnQ). The following classical lemma relates the value 
Pn of the dynamical system to the law of the Markov chain of transition matrix 
Q. 

Lemma 1 Let (Yn)n~O be a Markov chain of transition matrix Q and initial law 
1/, and l(A) be the indicator function of the set A. Then, 

n 

where Zn:= II f(Yk). 
k=l 

We introduce Li.d. random variables (ckh of law 1/. We assume that the random 
walk starts from So = +1, and that the initial law Po is 151 . We set 

n 

Sn:= 1+ LCk, 
k=l 

and we let Xn be any random variable of law Pn. Hence, Xo = 1 a.s., and Lemma 1 
yields 

( ) _ E(l(Sn = x) Zn) 
Pn x - E(Zn) 

n 

with Zn:= II ISkl· 
k=1 

(2) 
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3.2 A decomposition 

Since the random walk starts from So = +1, one can drop the absolute value signs 
in (2). Since en+l is centered and independent of everything else in the expectations 
of (2), one can add it to Sn in the numerator of (2). This yields 

The following decomposition of Vn is our starting point. 

Lemma 2 (1) For n ~ 0, call ~n the set of functions 

cp: {O,I, .... ,n} -+ {O,I, ... ,n}, 

such that cp(k) ~ k for every k. For cp E ~n, let CPi be the cardinal of cp-l (i). Then, 

Vn = L e(cp), where c(cp):= e'fl .. ·e~n. 
CPE~n 

(2) Moreover, Vn is the cardinal of Wn, where Wn C ~n is the set of functions cp 
such that CPi is even for every i ~ 1. 
(3) The sequence (vn)n is uniquely defined by 

1/(1- sins) = L Vn sn In!, lsi < 1f/2. 
n~O 

We state separately a consequence of this lemma. Recall that Bernoulli numbers 
(Bn)n>o and Euler numbers (En)n>o can be defined as the coefficients of the 
expansions, see p. 804 of [1]: -

One can write V2n as a multiple of B 2n+2 and V2n+l as a multiple of E 2n+2. Since 
precise estimates of Bernoulli and Euler numbers are known, one gets: 

Lemma 3 Let v~ := 2 (2/1f)n+2 (n + I)!. Then, Vn = v~ (1 + Wn), where Wn "-J 

(-1)n/3n+2. 

4 Proof of Theorem 1 

Lemma 3 yields an equivalent of the mean fitness Pn(f), i.e. Part (1) of Theorem 1, 
since 

Pn(f) = Vn+l/vn "-J v~+l/v~ "-J (2/1f) n. 

We now compute the Laplace transform of Pn, defined, for any t, by 



Selection in a genetic algorithm. 181 

Using the expansion of Vn in Lemma 2, one has to evaluate, for 'P E <fin, 

E(f:('P) exp(t Sn)) = e t (sinh t)d(cp) (cosh t)n-d(cp), 

where d( 'P) is the number of indices i E {I, 2, ... ,n} such that 'Pi is odd. Hence, 
~n(t) is a simple function of gn(tanh t), where gn is the generating function of d(·). 
It turns out that gn may be computed with the help of the function g introduced 
in Lemma 2. One gets 

~n(t) et (cosh t)n gn(tanh t)/vn 

(cosh t) -1 g(n) (s) /Vn = (cos s) . g(n) (s) / g(n) (0), 

where sin s = tanh t. Here, s is a function of t, whose sign is the sign of t, and 
which may be defined by lsi < 7r /2 and by any of the following three relations: 

tanh t = sin s, cosh t = 1/ cos s, sinh t = tan s. (3) 

Lemma 3 then yields an equivalent of ~n(t) (we skip the details and refer the reader 
to [lO]): 

for any t, when n goes to infinity. Setting 

.\(t):= lim n-1 log~n(t) = -log(l - 2s/7r), 
n--++oo 

one sees that .\(t) is always finite. Secondly, since the support of Xn is a subset of 
[1, n + 1], the sequence of the laws of Xn/n is exponentially tight. Finally, since 
t 1-+ s is smooth, the function .\ itself is smooth. Hence, a Gartner-Ellis type 
theorem, see Corollary 4.6.14 of [6], shows that Xn/n satisfies the large deviations 
principle 

limsupn- 1 logP(Xn E nF) < 
liminf n-1 logP(Xn E nU) > 

- inf{I(a) ; a E F}, 

- inf{I(a) ; a E U}, 

for any closed set F and any open set U of the real line. The action I is a good 
rate function and I is the Fenchel-Legendre transform of .\, i.e. 

I(a) := sup (at - .\(t)) = sup (at + log(l - 2s/7r)) , 

where the supremum is over all the real numbers t, and where s is still related to 
t through (3). 

One gets the convergence in law of X~ := n-1/ 2 ((7r /2) Xn - n) with the same 
methods, through the estimation of 

with T := 7r t/2. Then, 'T}n(t) converges to exp(e/2), a fact which ends the proof 
of Theorem 1. 
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Randomized Rendezvous 
YVES METIVIER, NASSER SAHEB AND AKKA ZEMMARI LaBRI, Universite 
Bordeaux I - ENSERB, 351 cours de la Liberation 33405 Talence, France. 

Abstract. In this paper we propose and analyze a randomized algorithm to get ren­
dezvous in an anonymous graph. We examine in particular the probability to obtain at 
least one rendezvous and the expected number of rendezvous. We study the rendezvous 
number distribution in the cases of chain graphs, rings and complete graphs. 

Key words. randomized algorithm, analysis of algorithm, graph, rendezvous. 

1 Introduction 

We consider an asynchronous distributed network of anonymous processors with 
an arbitrary topology; processors communicate by exchanging messages. It is rep­
resented as a connected graph where vertices represent processors, and two vertices 
are connected by an edge if the corresponding processors have a direct communica­
tion link. We consider systems with asynchronous message passing: a process sends 
a message to another processor by depositing the message in the corresponding 
channel, and there is no fixed upper bound on how long it takes for the message 
to be delivered. 

In synchronous message passing, the sender and the receiver must both be 
ready to communicate. A communication takes place only if the participant pro­
cessors are waiting for the communication: this is termed a rendezvous. 

Angluin [1] proved that there is no deterministic algorithm to implement syn­
chronous message passing in an anonymous network that passes messages asyn­
chronously (see [16]). 

In this paper, we consider the following distributed randomized procedure. 
Every message will be a single bit: 

Each vertex v repeats forever the following actions: 
the vertex v selects one of its neighbours c( v) chosen at random; 
the vertex v sends 1 to c( v); 
the vertex v sends 0 to its neighbours different from c( v); 
the vertex v receives messages from all its neighbours. 
(* There is a rendezvous between v and c(v) if v receives 1 from c(v) *) 
Our analysis is based on the consideration of rounds: in order to measure the 

performance of the algorithm in terms of the number of rendezvous taking place, 
we assume that at some instant each node sends and receives messages. Thus this 
parameter of interest, which is the (random) number of rendezvous, is the maxi­
mal number (i.e. under the assumption that all nodes are active) authorized by the 
algorithm. We believe that in many real cases similar approaches and computa­
tions may be applied to measure the complexity and performances of randomized 
distributed algorithms. 

The first investigations, related to the number of rendezvous, are carried out 
on the properties of the expected number of rendezvous. We get the asymptotic 
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lower bound 1- e -1/2 for the probability of a success in a round. It follows that the 
algorithm is a Las Vegas one. Sharper lower bounds are obtained for the classes 
of graphs with bounded degrees. As a direct consequence of the definitions, we 
compute easily the probability of a rendezvous for vertices, from which we derive 
the expected waiting time for a vertex to get a rendezvous. Elementary computa­
tions provides the expected waiting time between two rendezvous for edges. We 
also study the rather surprising effect of adding a new edge on the number of 
rendezvous. It is shown that the impact is not monotone. In some cases it is pos­
itive in others negative, both on the expected number of rendezvous and on the 
probability of a success. The asymptotic distribution of the rendezvous number 
is fully characterized for the class of complete graphs and that of ring graphs. 
Further investigations, being the subject of forthcoming studies, show that the 
introduced randomized algorithm has a good performance whenever it is applied 
in lowly linked networks. In the case of highly linked ones, it can be improved if 
one introduces messages using more than one bit. 

Many problems have no solution in distributed computing [11]. The introduc­
tion of randomization makes possible tasks that admit no deterministic solutions; 
for instance, the election problem in an anonymous network. The impossibility 
result on the election problem comes from the fact that the symmetry between 
the processors cannot be broken in an anonymous network that passes messages 
asynchronously. 

Many papers and results are based on the same model. During a basic com­
putation step, two adjacent vertices exchange their labels and then compute new 
ones: for example, in [1] an election algorithm is given for complete graphs or in 
[5, 12] election algorithms are given for prime rings (rings having a prime size). In 
these cases, our randomized algorithm may be considered as a basic step for the 
implementation of these algorithms in an anonymous asynchronous system where 
processors communicate with asynchronous message passing. 

General considerations about randomized distributed algorithms may be found 
in [16] and some techniques used in the design for the analysis of randomized al­
gorithms are presented in [14, 8, 9]. 

Our paper is organized as follows. Section 2 contains basic notions. Section 
3 gives general results. Section 4 studies the probability to get at least one ren­
dezvous in particular cases. Section 5 provides a uniform lower bound for the 
success probability. Section 6 is devoted to the rendezvous number distribution on 
special classes of graphs. We only sketch the proofs and we refer the reader to [13] 
for more details. 

2 Basic Notions and Notation on Graphs 

We use standard terminology of graph theory [3]. A simple graph G = (V, E) is 
defined as a finite set V of vertices together with a set E of edges which is a set 
of pairs of different vertices, E ~ {{v, v'} I v, v' E V, v =J v'}. The cardinality 
of V is called the size of the graph. A tree is a connected graph containing no 
cycles. A forest is a graph whose connected components are trees. A quasi-tree 7 is 
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a connected graph containing precisely one cycle. A quasi-forest is a graph whose 
connected components are quasi-trees. In this paper we consider only simple (i.e. 
without loop) and connected graphs. 

3 First Results 

Let G = (V, E) be a connected simple graph of size n > 1. The purpose of this 
section is to provide a formal basis for the randomized procedure described in the 
introduction and to give simple general results on its analysis. 

3.1 Definition and Characterization of a Call 

Definition 1. Let G = (V, E) be a graph .. A call over G = (V, E) is a function c 
from V into itself which maps each v E V to one of its neighbours. 

Let c be a call, according to the definition, there is a rendezvous if and only 
if there exist two vertices v and w such that c(v) = wand c(w) = v. A call c 
over G = (V, E) will be a success, if there is at least one rendezvous. Otherwise it 
will be a failure. It is convenient to represent a call cover G by a directed graph 
Gc = (V, A), where A contains an arc from v to w if and only if w = c(v). Clearly 
Gc is a simple graph whose vertices are all of outer degree 1. It has, therefore, 
n = IVI arcs. Moreover it is easy to see that: 

Lemma 1. Let c be a call over the graph G. Then c is a failure if and only if G c 

has no cycle of length 2. 

Lemma 2. If G = (V, E) is a tree then any call over G is a success. 

If we consider the case of Kn the complete graph of size n, a call corresponds 
to the combinatorial notion of endofunctions [4]. 

Obviously there is a one-to-one correspondence between the set of calls over 
Kn and the set of endofunctions on {I, ... , n} without fix-point. A call is a success 
(resp. a failure) if and only if it corresponds to an endofunction without a fix-point 
containing at least one cycle of length 2 (resp. without cycles of length 2). 

It is also easy to see that a failure call corresponds to a quasi-forests with 
cycles of length greater than 2, see [13]. 

3.2 Probability of Success on a Graph 

We assume that all the adjacent vertices to v have the same chance equal to cdvJ to 
be chosen, where d( v) is the degree of the vertex v. Thus any edge e = {v, w} E E 
has a probability d?V) to be the bearer of the unique message of v to w. The 
adjacent vertices v and ware said to meet each other, if v and w contact one 
other: there is a rendezvous. Throughout this study it is assumed that each vertex 
behaves independently in a memoryless manner. 
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Each vertex v has d( v) possible choices, consider now the probability measure, 
which assigns to each call over G the probability 0:( G) equal to: 

1 
o:(G) = II d(v)· 

vEV 

Let s(G) be the probability of a success and I(G) that of a failure. From 
Lemma 1, we deduce: 

Lemma 3. We have I(G) = o:(G)N(G) and s(G) = 1- o:(G)N(G), where N(G) 
is the number of calls cover G for which Gc has no cycle of length 2. 

The probability f(G) may be obtained using quasi-forests. Let F(G) be the 
set of spanning quasi-forests of G, if ¢ is a spanning quasi-forest of G then i¢i 
denotes the number of quasi-trees of ¢. With these notations and using the char­
acterization of failures by means of quasi-forests we obtain 

f(G) = II -f-( 2: 21<1>1). 
vEV (v) <l>EF(G) 

In order to get an exact expression for the probability distribution of the 
number of rendezvous for a random call, we consider matchings. A matching over 
G = (V,E) is a subset M of E such that for any pair e and e' in M, ene' = 0. 
We associate to a matching M the rendezvous corresponding to meetings between 
end-points of edges of the matching, this set of rendezvous is by definition the 
rendezvous over the matching M. Let e = {v, w} be an edge, e{l) denotes the 
event of a rendezvous over e and e(O) the complementary. The probability of a 
rendezvous over e is Pr(e{1») = Pr({v,w}(l») = d(v)~(w). Let M = {e1' ... ,ed be 
a matching, in the same manner the probability Pr(M) of the rendezvous over M 
is 

( ) - (1) (1) (1») _ II 1 - II (1») 
PrM-Pre1 I\e2 1\···l\ek - d(v)d(W)- Pre. 

{v,w}EM eEM 

For the integer k, a k-matching over G is a matching of cardinality k. Let Mk 
denote the set of all k-matchings. Let qk = 2:MEMk Pr(M), k = 0,1, ... , L n/2 J. 
According to this definition, it should be noted that qo = 1. By a straightforward 
application of the principle of inclusion-exclusion, we have: 

Proposition 1. Let the sequence qk,k = 0,1, ... , Ln/2J be defined as above for the 
connected graph G of size n. Then, for the integer I in the above stated range, the 
probability of having at least 1 rendezvous over G is P, = 2:o~i~ln/2J-I( -l)iql+i. 

In particular the probability of a success is s(G) = PI = 2:o:Si:Sln/2J-1 (-l)iqi+1. 

It is possible also to derive rather simple expressions for the probability s(G) 
of success and subsequently that of the expected number of necessary calls in the 
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case of special classes of graphs. For instance: 

Example 1. Let G be a ring graph (cycle) of size n 2: 2. The number N(G), used 
in Lemma 3, is equal to 2. Hence f(G) = 2nl_! and s(G) = 1- 2 n1_ 1 • The expected 

number of necessary calls to get a success is thus 2::~~1. 

The impact of the addition of an edge on the probability of success is not 
monotone . 

• If we add an edge to a tree the probability of the success decreases . 

• The graph G of Figure 1, due to H. Austinat and V. Diekert [2], shows that 
the addition of an edge may increase this probability. In fact, for this graph, 
we have s(G) = 1156/1600 = 0.7225. Let G' denote the graph obtained from 
G by adding the edge {I, 2}. Then we have s(G') = 4742/6400 = 0.7409 .... 

2 

5.-+-......,.-...... 6 

7 

Figure 1 

3.3 Expected Time Between Successive Rendezvous 

For a vertex v the probability p( v) of a rendezvous involving this vertex can be 
computed easily thanks to the independence of the choice for vertices and thanks 
to the fact that events associated to rendezvous over incident edges are disjoint: 

'"' (1)) __ 1_ '"' _1_ 
p(v) = L...J Pr(e - d(v) L...J d(w)· 

e incident with v w adjacent to v 

LFrom this formula it is clear that p( v) = 1 if and only if all w adjacent to v are 
leaves. We get the expected number of calls to get a rendezvous for v: 

d(v) 
1 

L d(w) 
w adjacent to v 

Thus, for a graph of degree at most d, the expected time between two suc­
cessive rendezvous for a vertex is bounded by d. 
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The expected time between two successive rendezvous on an edge e = {v, w} 
is d(v)d(w). Once more, if we consider a graph of bounded degree this value is 
bounded by cP. 

3.4 Expected Number of Rendezvous 

Let X be the number of rendezvous of a call over G, the expected number of ren­
dezvous over G, denoted M(G), is E(X), the expected value of X. This parameter 
may be considered as a measure of the degree of parallelism of the rendezvous 
algorithm. We have: 

Proposition 2. The expected number of rendezvous over the graph Gis: 

1 
M(G) = L d(v)d(w)· 

{v,w}EE 

Consider the following particular cases. 

Example 2. If G is a complete graph of size n 2: 2, we have M(G) = (~) (n~1)2 = 
n 

2(n-l) . 

Example 3. If G is a cycle of size n 2: 2, we have M(G) = ~. 

- lEI Example 4. If G = (V, E) has a degree bounded by d then M (G) 2:: 7J:t". 

If we consider the case of a tree T of size n with degrees bounded by d, we 
get M (T) 2: ~. In the case of regular graphs of size n and of degree d, we have 
M(T) = ;'d. 

We are interested by the impact of the addition of an edge on M (G). The 
above examples illustrate the fact that the number of edges does not necessarily 
favour the events of rendezvous. Nevertheless, Figure 2 and Figure 3 show that 
the expected number of rendezvous is not monotone with respect to the additions 
of new edges. 

112 • 

on I"' 
114 · '" · ". I 

"I 

• 

"I 
1/4 

1/4 1/4 

M(G)=7/4 
Figure 2 

M(G)=312 

Proposition 3 gives a lower bound for the number of rendezvous expectation. 
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M(G)=8/5 M(G)=1318 
Figure 3 

Proposition 3. For a given fixed positive integer n, the complete graph Kn min­
imizes the expected number of rendezvous over graphs of size n. The minimal ex­
pected value realized by Kn is 2(n~1). 

Proof. Given a graph G = (V, E), if we denote by M(G) the expected number of 
rendezvous in G, we have M(G) = ~ L:vEV p(v), where p(v) is as in Section 3.3. 

Since p(v) = d/v) L d(~)' and dew) ~ n - 1, we have p(v) 2: n~l· Summing 
{w,v}EE 

on all vertices, we get M(G) 2: 2(n~1). By Example 2, if G is the complete graph 

of size n, M(G) = 2(n~1). D 

4 Probability of Success in Particular Cases 

In this section we study the probability of getting at least one rendezvous over the 
graph. The considered graphs are special classes of graphs. Let e be an edge, we 
recall that e(1) denotes the event of a rendezvous over e and e(O) the complementary 
event. 

4.1 Graphs with Bounded Degrees 

We start by the case where G = (V, E) is a graph of degree at most d. The follow­
ing proposition gives a lower bound for the failure probability. 

Proposition 4. Let G = (V, E) be a d-bounded degree graph, and s( G) denote its 
success probability. Then we have 

s(G) 2: 1- (1- ~)IEI. 

Proof. A straightforward computation based on conditional probabilities, (see 
[13]). 

D 
The above bound becomes very interesting if the ratio lEI over d is important. 

Indeed, the above formula shows that f(G) ~ e~. 
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In particular in the case of d-regular graphs G, we have lEI = ~d and there­
fore: 

Corollary 1. Let G be a d-regular graph, the failure probability f(G) satisfies 
f(G) ::::: eT,i-. 

4.2 Complete Graphs 

For this class of graphs we have: 

Proposition 5. Let Kn be the complete graph of size n, then: 

• s(Kn) = Lk::::1 (_1)k+1 k!2k(~~2k)! (n_11)2k' 

• s(Kn) is asymptotically 1 - e-1/2, 

• and the expected number of necessary calls to get a success is asymptotically 
,fi/(,fi - 1). 

Proof. For a fixed k, the k-matchings of Kn are all of the same probability qk = 
(n_11)2k. On the other hand, an easy computation yields their number which is 

I 
k!2k(~:"-2k)!. We have thus: 

_ '""' kH n! 1 
s(Kn) - L.,,( -1) k!2k(n _ 2k)! (n - l)2k· 

k::::1 

The expected number of necessary calls to get a success is s(in). The above ex­
pression is difficult to compute. Nevertheless, if we use a combinatorial reasoning, 
we can estimate it asymptotically. 

As we saw in Section 3.1, a call cover G is a failure, if Gc is without cycle of 
length 1 or 2. A translation of specifications of types shows that the exponential 
generating function F(z) of the number of such graphs is F(z) = c(t(z)), where 
t(z) = zet(z) is the EGF(exponential generating function) of number of labeled 
trees and c(z) = 1~Ze-z-z2/2 that of the number of cycles of length at least 3, 
see [7]. The unique singularity of F(z) = c(t(z)) is Zo := lie, since t(zo) = 1 
iff Zo = lie. In [6, 7], the authors show that t(z) '" 1 - 21/2~. Hence 
F(z) '" .J-.3 (1- ez)-1/2. From which, we get easily [zn]F(z) '" J-.3 en bo. This 

y2e- y2e- ywn 
yields the number offailure calls N(Kn) on the complete graph Kn. In order to get 
the failure probability over Kn, we have to divide N(Kn) by (n _1)n which is the 
total number of calls over Kn. Using the Stirling formula, we derive f(Kn) '" e-1/2 , 

or s(Kn) '" 1- e-1/ 2 • And the expected number of necessary calls to get a success 

is asymptotically $-1. 0 

5 Lower Bound for the Probability of Success 

Proposition 4 gives a lower bound for the success probability if the graph is of 
maximum degree d. Corollary 1 shows how this bound is important if d is small 
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enough in comparison with n. But this bound becomes uninteresting if d is too 
large and lEI is not large enough. It is therefore interesting to find a uniform bound 
which does not depend on d or on lEI. The goal of this section is to give such a 
bound. Indeed, we have the following theorem: 

Theorem 1. The probability s( G) of a success in a call over any graph G = (V, E) 

is bounded from below by 1 - e-M(G), where M(G) denotes the expected number 
of rendezvous in G. 

Proof. It is easy to see that f(G) ~ f1::1 (1 - Pr(e~l) )). By virtue of Proposition 

2, we have Z=::l Pr(e~l)) = M(G). 

Thus, the bound on f(G) is maximal when Pr(e~1)) = M~G), Vi = 1, ... , m. 
Hence, 

f(G) 

D 

Corollary 2.(Robson1) The probability s( G) of a success call over any graph 
G = (V, E) is lower bounded by 1 - e- 1/ 2 . 

Remark 1. In spite of this corollary and Proposition 5, which asserts that f(Kn) ~ 
e- 1/ 2 , it is not known whether or not the complete graph Kn minimizes the prob­
ability of success on graphs of size n. 

Remark 2. The above theorem shows that the algorithm is a Las Vegas one. 

6 Rendezvous Number Distribution 

The previous study can be refined by determining the distribution of the ren­
dezvous number in a given graph. It seems also interesting to evaluate the asymp­
totic behaviour of this random variable for graphs of large size. Let us consider for 
instance star, complete and chain graphs. For the first class of graphs the number 
of rendezvous is always 1. For the second class it takes value in the integer interval 
[0, ~l and its mathematical expectation is 2(nn_ 1). For the third class it takes value 

in [1, ~ 1 with the mathematical expectation nt1. Although the computation of the 
distribution is feasible in principle, no simple method is available and a standard 
technique based on a direct numbering is quite complicated. 

As a first attempt in this direction we calculate the asymptotic distribution 
of the rendezvous number for the two extreme cases of complete graphs and chain 
graphs (which is the same as for ring graphs). We show in the case of complete 
graphs, as n grows to infinity, this random number remains an integer finite valued 
random variable with a distribution which will be determined in the sequel; the 
same study for chain graphs reveals a quite different behaviour: the expected 

1 A first direct proof of the corollary was provided by J. M. Robson [15] 
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rendezvous number grows and the normalized random variable tends in law to 
a normal distribution. 

6.1 Rendezvous Number in Ring and Chain Graphs 

We start with the study of chain graphs for which the rendezvous number distribu­
tion can easily be computed. We then prove that this number for the ring graphs 
is asymptotically the same as in the case of chain graphs. Let G = (V, E) be a 
chain of size n and let Xn denote the random variable which counts the number of 
rendezvous in G. In this section we are interested in the asymptotic distribution 
of this r.v. It is supposed that all vertices are active. We first prove the following 
lemma which provides an exact expression for the probability of exactly k ren­
dezvous on the graph. 

Lemma 5. For any integer k, the probability of having exactly k rendezvous is 

1 (n-1) Pr(Xn = k) = 2n-2 2k _ 1 . 

Proof. Let ¢n(x) be the ordinary generating function for the r.v. X n, i.e. ¢n(x) = 
2:%':o Pr(Xn = k)xk. It is technically convenient to consider also generating func­
tion 'lj;n-l (x) for another r.v. which counts the rendezvous number on the chain 
graph whenever one of the endpoints is passive. A combinatorial reasoning shows 
that we have the following recurrences 

!¢n-l (x) + !X'lj;n-l (x), '<In 2: 2 
!'Ij;n-l(X) + !¢n-l(X), '<In 2: 2 

with ¢l(X) = 'lj;l(X) = 1. A straightforward technique provides the solution 

¢n(X)= 2VX (l+VX)n _ 2VX (l-VX)n, 
l+VX 2 1-VX 2 

from which we get easily [xk]¢n(x) = 2}-2 {2~-::'\}' The lemma follows. o 

The above generating function can be used to compute interesting parame­
ters of X n . We have in particular: 

Corollary 3. The variance of the random variable Xn defined above is equal to 
n-l 
16 

More interesting, the generating function ¢n(x) can be used to show that 
asymptotic behaviour of this r. v. is normal. Indeed, we have the following theorem. 

Theorem 2. The normalized variable defined by Yn = (4Xn - n)/vn, has a 
distribution which tends to the normal distribution N(O, 1), i.e. for any real interval 
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[a,b] 

1 lb 2 Pr(a < Yn :::; b) --t /0 e-z /2dx, as n --t 00. 
v21r a 

Proof. For any integer k let j = 2k -1, and I = n - 2k + 1. Lemma 5 shows that 

1 n! (l)i(l)1 
Pr(Xn = k) = 2j!l! 2 2 

By the Stirling formula we have Pr(Xn = k) '" ,A;m(*)i (¥,-)I and In Ui / (¥,-)l 
is equivalent to - z22 

, where x = 40t. The theorem is now proved by the same 

reasoning as [10], p. 22. D 

The case of ring graphs has been the subject of numerous studies in distrbu­
tive algorithms. We prove the following theorem on the asymptotic behaviour of 
the rendezvous number over a ring graph, by using the fact that this number is 
asymptotically the same as the number of rendezvous over a chain graph, see [13]. 
Let the r.v. Zn denote the rendezvous number in a ring graph of size n. 

Theorem 3. Define the normalized r.v. by Vn = 4z},in. Then, as n --t 00: 

1 lb 2 Pr(a < Vn :::; b) --t /0 e- x /2dx, for any real interval [a, b]. 
v21r a 

6.2 Rendezvous Number in Complete Graphs 

In this section, we are interested in the asymptotic behaviour of the rendezvous 
number in complete graphs. Here G = (V, E) is a complete graph, Xn the random 
variable which counts the rendezvous number on G. We first prove: 

Lemma 6. Let m be any nonnegative integer. As n --t 00, the probability of having 
at least m rendezvous over G, Pr(Xn ~ m) tends to Ek~m(-l)k+m~. 

Proof. From Proposition 1, and using the same argument as in the proof of the 
first point of Proposition 5, the probability of having at least m rendezvous over 
Gis 

P (X ) _ '" ()k+m n! 1 
r n ~ m - L.J -1 k!2k(n _ 2k)! (n _1)2k' 

k~m 

Using the Stirling formula, we get easily the assertion. D 

It is now easy to derive a simple characterization of the asymptotic distribu­
tion: 
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Theorem 4. For every positive integer m, the probability for Xn to be equal to m 
tends to 2(~r - m!;m - 2(-1)m2:k<m(-1)k~ and Pr(Xn = 0) to live, as 
n -+ 00. 

Proof. Let X denote lim X n. Then Pr(X = m) = Pr(X ~ m) -Pr(X ~ m+1). 
n-+oo 

Using Lemma 6, the theorem follows. 0 
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Abstract. In this paper, we define a particular class of transition probability matrices for 

discrete time Markov chains, and demonstrate that there exists a closed form solution to 
compute the steady state distribution for this class of Markov chains. We give an algorithm 
to compute a monotone and bounding matrices in the sense of the :5:st ordering that 
belongs to this particular class, for a given stochastic matrix P. Therefore, it is possible 
to compute the bounds in the sense of the :5:st ordering on the stationary distribution of 

P through the closed-form solution applied to the bounding matrix. 

Key words. Markov chains, Stochastic Comparison Method, :5:st ordering, stationary 

distribution. 

1 Introd uction 

In performance evaluation studies, it is usual to have Markovian models in order to 
be able to compute numerically transient and steady-state distributions. Therefore 
the considered performance measures defined as functionals of these distributions 
can be quantitatively evaluated. However the state space size of Markovian models 
grows exponentially with the size of model parameters. Because of this state space 
explosion problem, the numerical solution of the Markovian models are generally 
limited to the small values of model parameters. The stochastic comparison ap­
proach is proposed in order to overcome this problem. Intuitively, this approach 
consists in analyzing" simpler" models than the underlying one in order to com­
pute bounds on the performance measures. In fact "simpler" models in the context 
of the Markov chains may be the models on a reduced state space size, or models 
having special numerical solutions. In [8], [1 J an algorithm to construct a mono­
tone bounding Markov chain on a reduced size state space is given. In [6], the 
state space reduction by taking into account the dynamic of the underlying model 
to compute stochastic bounds is explained. The numerical solutions of the Nearly 
Completely Decomposable (NCD) Markov chains by the stochastic comparison ap­
proach is considered in [9],[2J. In [4], [5J some ofthe proposed Markovian bounding 
models have special structures letting to have matrix-geometric solutions. In this 
paper we define a class of Markov chains having a closed form solution to compute 
steady-state distribution. The application of the stochastic comparison approach is 
to construct a bounding Markov chain having this special form for a given matrix. 
Therefore the steady-state of the underlying Markov chain is not computed by 
applying classical numerical methods, but its bounding distribution is computed 
through the closed-form solution of the bounding chain. 

197 
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The stochastic comparison method has been largely applied in different areas 
of the applied probability: economics, reliability, queueing networks. There exist 
several stochastic ordering, and in this paper we apply the strong C:;st) ordering 
which is also known as the first order stochastic dominance, sample-path stochastic 
ordering (~d) [7). 

The paper is organized as follows: in section 2, we give some preliminaries 
on the stochastic comparison method. In section 3, we define the class of Markov 
chains having a closed form solution and give the algorithm to compute bounding 
Markov chains having this special structure. Finally, we conclude by giving some 
perspectives to extend this work. 

2 Preliminaries 

A time-homogeneous discrete time Markov chains ({Xn,n ~ O}) may be defined 
by its one-step probability transition matrix, P and its initial state (Xo). The 
stationary probability distribution (probability vector), 7r is computed by resolving 
the following linear equation system: 

(1) 

The complexity order to compute the stationary vector is then O(N3) where N is 
the state space size of the Markov chain. 

Here we state the basic definitions and theorems for further informations we 
refer to [7). 

Definition 1 Let X and Y be two random variables taking values on a totally 
ordered space E. 

X ~st Y {:=:} Ef(X) ~ Ef(Y) 

V non decreasing function f : E -+ R whenever the expectations exist. 

In fact, in the case of the finite state space this is equivalent to the following 
definition. 

Definition 2 Let X and Y be two random variables taking values on the finite 
state space E = {I, 2, .. ·, n}, and p = [Pl'" Pi'" Pn), q = [ql'" qi'" qn) be 
probability vectors such that 

Pi = Prob(X = i) and qi = Prob(Y = i) for 1 ~ i ~ n. 

X ~st Y (p ~st q) if and only if 

n n 

:~::>i ~ L qi for j = n, n - 1, ... , 1. 
i=j i=j 

We use the following definition to compare Markov chains (definition 4.1.2 of 
[[7), p.59j). 
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Definition 3 Let {Xn, n ~ O} and {Yn, n ~ O} be two discrete time Markov 
chains. Then {Xn' n ~ O} is smaller than {Yn, n ~ O} in the sense of the strong 
stochastic order, symbolically {Xn} jst {Yn} if 

'Vn~O 

It is shown in Theorem 4.2.5 of [[7], p.65]) that monotonicity and comparability 
of the probability transition matrices of time-homogeneous Markov chains yield 
sufficient conditions to compare them stochastically. 

Theorem 1 Let P and Q be stochastic matrices which are respectively the prob­
ability transition matrices of time-homogeneous Markov chains {Xn, n ~ O} and 
{Yn,n ~ O}. Then {Xn} jst {Yn} if 

• Xo ~8t Yo 
• mono tonicity of at least one of the probability transition matrices holds, that 

is, 

eitherP[i, *] ~8t prj, *] or Q[i, *] ~st Q[j, *] 'Vi,j such that i ~ j, 

• comparability of the transition matrices holds (P ~8t Q), that is, 

P[i, *] ~st Q[i, *] 'Vi. 

The following lemma let to compare the stationary distributions of Markov chains 
which can be considered as the limiting case (TIp = limn-too X(n». 

Lemma 1 Let Q be a ~st-monotone, upper bounding matrix for P, 

if the steady-states (7rp, 7rQ) exist. 

3 Class of Markov chains having a closed-form 
solution to compute the stationary distribution 

Let us first define a class of time-homogeneous Markov chains (probability transi­
tion matrices) that will be called class C. 

Definition 4 A stochastic matrix P = (pi,j h:-:; i,j:-:; n belongs to class C , if for each 
column j there exists a real constant Cj satisfying the following conditions: 

PHI,j = Pi,j + Cj, 1 ~ i ~ n -1, 

which is equivalent to 

P· . = PI . + (i - 1) c· ~J ~ J' 1 ~ i,j ~ n. (2) 
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In fact, the stochastic matrices of class C are defined by their first row and a set 
of real constants Cj, 1::; j ::; n. Since P is a stochastic matrix, the sum of 
elements in each row must be equal to 1, thus 2:7=1 Cj = 0. The regular form 
of class C matrices lets to have a closed-form solution to compute the stationary 
distribution. In the following theorem we give this closed-form solution for class 
C matrices. 

Theorem 2 Let P = (Pi,jhSi,jSn be a stochastic matrix in class C with Pl,l f:. 1. 
If the stationary vector 7r = (7rl' 7r2, ... ,7r n) exists, then for each j, 1::; j ::; n 

2:7=1 j Pl,j - 1 
7rj = Pl,j + Cj n 

1 - 2:j =1 j Cj 
(3) 

Proof. Since the stationary vector exists, and P belongs to class C 

n n n n 

7rj = I: 7ri Pi,j = Pl,j I: 7ri +Cj I:(i -1) 7ri = Pl,j +Cj 2)i -1) 7ri, 1::; j ::; n 
i=l i=l i=l 

Let E[7r) denote the expectation of the stationary distribution, thus 

7rj = Pl,j + Cj (E[7r) - 1), l::;j::;n 

and 
n n n 

(4) 
j=l j=l j=l 

Let us now show by contradiction that the denominator of the closed-form solution 
equation 3 is not equal to zero. If 2:7=1 jCj = 1, it follows from equation 4 that 

2:7=1 jPl,j = 1. We rewrite this equation as 2:7=2 (j - l)Pl,j + 2:7=1 Pl,j = 1. 
Since the row sum is equal to 1, 2:7=2(j - l)Pl,j = 0. Thus for each j, 2 ::; j ::; 
n (j - 1) Pl,j = 0, which implies that Pl,j = 0, 2 ::; j ::; nand Pl,l = 1. That 
contradicts with the hypothesis that Pl,l f:. l. 

Therefore it follows from equation 4 that 

[) 2:7=1 j (Pl,j - Cj) 2:~=1 k Pl,k - 1 
E 7r = ,\,n. and 7rj = Pl,j + Cj ,\,n ,1 ::; j ::; n 

1 - L..j=l J Cj 1 - L..k=l k Ck 

Let us remark that theorem 2 can be applied when matrix P is irreducible, 
or there is only one closed irreducible class. Moreover the case Pl,l f:. 1 is not 
restrictive, since this case can be avoided in the construction of the upper bound 
(see section 4). 

We now give the following proposition to define the conditions in terms of Cj 

for a class C matrix to be monotone in the sense of the ::;st ordering. 

Proposition 1 Let P be a stochastic matrix belonging to class C . P is ::;sr 
monotone if and only if 2:~=j Ck ::::: 0, Vj E {I, ... ,n}. 
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Proof. The :'Sst-monotonicity of matrix P is equivalent to P[i, *] ~st P[i + 
1, *], 't/ i E {I, ... , n - I}. Since PEe it follows from equation 2 

n n 

P :'Sst monotone 't/ i, LPi,k:'S LPi+l,k, 1:'S j :'S n 
k=j k=j 

n n 

¢:::} 't/ i, LPi,k:'S L(Pi,k + Ck), 1:'S j :'S n 
k=j k=j 

n 

¢:::} L Ck :::: 0, 1:'S j :'S n. 
k=j 

4 Algorithm to compute a monotone upper bound­
ing class C matrix 

In fact a large number of the probability transition matrices that arising from real 
applications do not belong to class C . However the closed-form solution for the 
stationary distribution of this class makes it interesting for the resolution of large 
size Markov chains. Therefore, we give the following algorithm to construct a :'Sst­
monotone, upper bounding matrix Q which belongs to class C for an irreducible 
matrix P. The stationary distribution of Q, ITQ can be computed through the 
closed-form solution (eq. 2) and provides :'Sst upper bounds on the stationary 
distribution of P (ITp :'Sst ITQ). 

Notice that since the upper bounding matrix Q belongs to class C , we must 
determine its first row ql,j, 1:'S j :'S n, and the coefficients for the columns 
Cj, 1:'S j :'S n. In the following algorithm, the construction is done from the right 
to the left to satisfy the ~st comparability conditions (P :'Sst Q), and from up to 
down to satisfy :5:sr monotonicity conditions on Q. 

Algorithm 

column n: determine ql,n, and Cn: 

ql,n [ 
1 

max --
l:Si:Sn-l n - i 

((n - l)Pi,n - (i - 1))] 

[ max (Pi'~ - ql,n)] + 
2:Si:Sn Z - 1 

column j: For j := n - 1 downto 2 Determine ql,j, and Cj 

ql,j [ max 9(i)] + 
l:Si:Sn-l 

n 
-ql' L max(--,_l a+-
n - l' J 

k=j+1 
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where, 

g(i) 1 [n n] ~ = i L Pi,k - L qi,k 
k=j k=j+l 

i-I 
+--­

n - i [ t qn,k -1] 
k=j+l 

colUIlln 1: Normalize the elements of the first column to have sum rows=l: 

n 

qi,l 1- Lqi,j; 1:S i:S n 
j=2 

Let us give the following example to illustrate the computing of the upper 
bound. Let P be a matrix which does not belong to class C , and Q its upper 
bounding matrix computed through the proposed algorithm. 

( 
0.5 0.1 0.4) 

P = 0.7 0.1 0.2 
0.3 0.2 0.5 

( 
0.5 0.1 

Q = 0.4 0.15 
0.3 0.2 

0.4 ) 0.45 
0.5 

Since C3 = 0.05, C2 = 0.05 Cl = -0.1, Q belongs to class C . The correspond­
ing stationary distributions are: 

Irp = (0.4456; 0.1413; 0.4130) IrQ = (0.3941; 0.1529; 0.4529) 

Irp -Sst IrQ 

We first give the following lemma to state the properties of the entries of 
matrix Q and Cj, whose proof is given in appendix. 

LeIllIlla 2 Let q1,j, Cj 1:S j :S n be computed from the previous algorithm for 
an irreducible stochastic matrix P. Then the following conditions are satisfied: 

1. 2:~=j Ck 2: 0, 1:S j :S n, 

2. for each i, ",n . < ",n . 
0k=j P"k _ 0k=j q"k, 1 :S j :S n, 

3. for each i, qi,j 2: 0, 1:S j :S n, 

4· for each i, 2:~=j qi,k :S 1, 2:S j :S n. 

Let us give the main theorem on the properties of the bounding matrix Q 
computed from the given algorithm. 

TheoreIll 3 Let P = (Pi,j h 5, i,j 5, n be an irreducible stochastic matrix and Q = 
(qi,j h5,i,j5,n be the bounding matrix of P computed through the previous algorithm. 
Then the following assertions hold: 
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1. Q is a stochastic matrix, 

2. Q is a class C matrix, 

3. P jst Q, 

4· Q is ~st monotone. 

Proof. 

{ 1 ~ qi,j ~ 0, 1 ~ i,j ~ n 
1. Q is a stochastic matrix {=:> "n q .. _ 1 1 <_ ,; <_ n 

Uj=l ',) -, • 

The proof follows from the third and the fourth condition of lemma 2, and 
the construction of the first column of the algorithm to normalize the sum 
row of the bounding matrix. 

2. It must be proven that equations 2 are satisfied to have a class C matrix. 
These are satisfied by construction of columns j (2 ~ j ~ n). By construc­
tion of the first column, for each i E {I,· .. , n}: 

n 

qi,l = 1- Lqi,j 
j=2 

thus Cl = - E7=2 Cj. 

n 

1- L(ql,j + (i - 1) Cj) 
j=2 

n 

ql,l - (i -1) LCj 
j=2 

3. P jst Q {=:> P[i, *] ~st Q[i, *] Vi. This follows from the second condition 
of lemma 2. 

4. The ~st -monotonicity of class C matrix which is given in proposition 1 
follows from the first condition of lemma 2. 

Let us remark that a ~st-monotone lower bounding matrix can be constructed 
in a similar manner. Moreover the given upper bounding algorithm can be also 
used to compute lower bound by permuting state i to state n - i + 1. 

4.1 Complexity of the algorithm 

The stationary distribution of a class C matrix is computed with a complex­
ity O(n), where n is the state space size. However the construction of the ~st­
monotone upper bounding matrix is O(n2 ) in the worst case without taking into 
account any optimization in the case of sparse matrices. Therefore, computing 
stochastic bounds through class C monotone, upper bounding matrix time com­
plexity has a complexity O(n2 ). Thus the complexity is considerably reduced com­
paring to the classical complexity O(n3 ) (eq. 1). 

On the other hand, by construction of monotone upper bounding matrices, 
the computed bounding matrix may not be irreducible even the original matrix is 
irreducible [1] ,[2] . However the bounding matrices have one essential class of states, 
so the computed bounding stationary distribution have a sense. We omit here the 
detailed proof, but emphasize that by construction of the bounding matrix, it can 
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be shown easily that for each i < n, there exists a transition to greater states, i.e. 
l:7=i+l qij > O. Therefore there is only one essential class for the bounding matrix 
Q. 

5 Conclusion 

In this paper, we define a class of Markov chains having a closed-form solution to 
compute the stationary distribution. The transition probability matrices of this 
class can described through their first row and a constant Cj for each column j, 
and the stationary distribution is computed through these parameters with a com­
plexity O(n), where n is the state space size. In order to apply the nice property of 
this class, we give an algorithm to construct a :Sst-monotone, upper bounding class 
C matrix. Therefore, the stochastic bounds on the stationary distribution can be 
computed with a complexity of O(n2 ). The extension of this work is two-fold: first 
we consider different stochastic ordering relations, second we are looking for other 
class of Markov chains having" simpler" solution on the stationary distribution. 
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Appendix 
Proof of lemma 2: The proof is done in two steps. First, we show by 

induction on j E {2, ... , n} that the conditions of the lemma hold, then include 
the case j = 1. 

basic step: k = n The first condition (cn 2: 0) follows from the construction of 
column n. Let us now show that the second condition is satisfied (qi,n 2: Pi,n, 1 ~ 
i ~ n) 

_ [ (Pi,n - ql,n)] + > Pi,n - ql,n 
Cn - max. ., 

2:Si:Sn l - 1 - l - 1 
2<i<n 

Thus, qi,n = ql,n + (i - 1) Cn 2: Pi,n, 2 ~ i ~ n. 
Now let us consider the first row, f(i) = n~i ((n - I)Pi,n - (i - 1)), so 

ql n = max f(i) > f(l) = PI n > 0 
, l::;i::;n-l - 1 -

(5) 

which completes the proof for the second condition. The third condition (Qi,n 2: 
0, 1 ~ i ~ n) holds since Ql,n 2: 0 and Cn 2: O. Since Pi,n ~ 1, 1 < i < n 
then f(i) ~ 1, 1 ~ i ~ n. It follows from equation 5 that Ql,n ~ 1. On the other 
hand, we have 

Ql > _1_. ((n - l)p' - (i - 1)) 1 < i < n - 1 ,n _ n-z l,n , _ 

n-i Q > p' _ i=l 1 < i < n - 1 n-l 1,n - t,n n-l' -_ 

(1 i-I) > i-I 1 < i < n - 1 - n-l Ql,n - Pi,n - n-l' 

~-=-~ (1 - Q1,n) 2: Pi,n - Q1,n, 1 ~ i < n - 1 
1-QI,n > Pi,n-Ql,n 2 < i < n - 1 
n-1 - ,-1' --

Moreover, 
Pn,n - Ql,n < 1 - Ql,n 

n-1 n-1 

thus 
max (Pi'~ - Q1,n) < 1 - Q1,n 

2:Si:Sn l - 1 - n - 1 

Since Ql,n ~ 1 we have 

l,From equations 6 and 7 

1 - Q1,n 

o ~ n-l 

1-Ql,n l-Ql,n < < ---,---='--'-
n-l i-I' 

2<i<n 

(6) 

(7) 
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which implies that qi,n ~ 1, 2 ~ i ~ n and completes the proof for the fourth 
condition. 

induction step: Suppose that the conditions hold for k, n 2: k 2: j + 1 and 
let us show that they hold also for k = j. 

1. Cj 2: at - 2::Z=i+l Ck ==> 2::Z=j Ck 2: at 2: 0 

2. 

3. 

Cj > 

==> 2::Z=j Ck 
==> 2::Z=j ql,k + (i - 1) 2::Z=j Ck 
==> 2::Z=j qi,k 

> 
> 
> 

On the other hand, 

ql,j > maxl<i<n-l g(i) 

> g(1) ~ [2::Z=jPl,k - 2::Z=j+l ql,k] 

> 2::Z=j Pl,k 

Cj = max( -ql,j, at - 2::Z=j+l Ck) 2: -ql,j 
c·>-q,,; 2<i<n 

J - ,-I ' --

qi,j 2: 0, 2 < i < n 

Moreover, by construction ql,j 2: O. 

4, It suffices to show that the following inequality holds 

1 - ql,j - 2::Z=j+l qn,k 
C < ----------~~---
J- n-l (8) 

Indeed, this inequality implies 2::Z=j qn,k ~ 1. On the other hand we have 

shown that 2::Z=j Ck 2: 0, so for all i E {I, .. " n - I}, 

n n n n 

L qi,k = L qn,k - (n - i) L Ck ~ L qn,k ~ 1 
k=j k=j k=j 

Let now show inequality 8. For all i E {2, ... ,n - I}, we have 

ql,j 2: ~=-! (2::Z=j Pi,k - 2::Z=i+l qi,k) + ~=-li (2::Z=j+l qn,k - 1) 

(1 i-I) i-I ",n ==> - n-l ql,j - n-l L.k=j+l qn,k 
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So, 

max (EZ=j(Pi,k - ql,k)) _ ~ 
2<i<n-l i-I ~ 
- - k=j+l 

1 - ql,j - EZ=j+l qn,k 
Ck :::; ------"--"--'-=--­

n-l 

On the other hand we can easily prove that 

Hence, 

EZ=j (Pn,k - ql,k) Ln 1 - ql,j - EZ=i+l qn,k 
----''------ - Ck :::; ------''---''--'--'---

n-l n-l 

n 

k=j+l 

k=i+l 

1 - ql,j - EZ=j+l qn,k 
Ck :::; --------"--'---­

n-l 

We also show that 

to conclude that 

~ 1 - ql,j - EZ=j+l qn,k 
~ Ck:::; n -1 

k=j+l 

1 - ql,j - EZ=j+l qn,k 
Ck :::; ----=-----"--"--'-=--­

n-l 

We can easily verified that equation 10 is equivalent to 

n 

ql,j :::; 1 - L ql,k 
k=j+l 

207 

(9) 

(10) 

(11) 

(12) 

Let show this inequality by contradiction. Suppose that 3 i E {I, ... , n - I} 
such that g(i) > 1 - EZ=i+1 ql,k. Then g(i) > 1 - EZ=j+l ql,k 

n-l ",n > n-i - L...k=j+l ql,k 
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",n ",n i-I ",n 1 n-i ",n 
{:=:? 6k=j Pi,k - 6k=j+l qi,k + n-l 6k=j+l qn,k > . - n-l 6k=j+l ql,k 

1 n-i ",n > - n-l 6k=j+l ql,k 

",n + i-n ",n 1 n-i ",n 
{:=:? 6k=j Pi,k n-l 6k=j+l ql,k > - n-l 6k=j+l ql,k 

{:=:? L~=j Pi,k > 1 
which contradicts with the fact that P is stochastic. 

It follows from definition of Cj and inequality 11 that to complete the proof 
we must show the following 

In fact, this inequality is equivalent to 

n 

(2 - n) ql,j :::: 1 - 2: qn,k 

k=j+l 

(13) 

(14) 

By induction hypothesis 0 :::: 1 - L~=j+l qn,k and we have already shown 
that ql,j ~ 0 so (2 - n) ql,j :::: 0 . 

Now consider the case j = 1. The first and second conditions follows from 
L~=l Ck = O. For the last two conditions, since 0 :::: L~=2 qi,k :::: 1, 1:::: i :::: n 
and qi,l = 1 - L~=2 qi,k, we have 0 :::: qi,l :::: 1 'if 1 :::: i :::: n. 
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Effects of Reordering and Lumping in the 
Analysis of Discrete-Time SANs 
TUGRUL DAYAR1 Department of Computer Engineering, Bilkent University, 06533 
Bilkent, Ankara, Turkey. tugrul<Ocs. bilkent. edu. tr 

Abstract. In a recent paper [13J, it is shown that discrete-time stochastic automata net­
works (SANs) are lumpable under rather general conditions. Therein, the authors present 
an efficient iterative aggregation-disaggregation (lAD) algorithm geared towards comput­
ing the stationary vector of discrete-time SANs that satisfy the conditions of lumpability. 
The performance of the proposed lAD solver essentially depends on two parameters. The 
first is the order in which the automata are lined up, and the second is the size of the 
lumped matrix. Based on the characteristics of the SAN model at hand, the user may 
have some flexibility in the choice of these two parameters. In this paper, we give rules of 
thumb regarding the choice of these parameters on a model from mobile communications. 

Key words. Stochastic automata networks, discrete-time Markov chains, lumpability, 
iterative aggregation-disaggregation 

1 Introd uction 

Stochastic Automata Networks (SANs) [19, 20, 22, 21, 23, 11, 25, 12, 26, 6, 2, 
4, 9, 27, 28, 3, 10, 13) comprise a methodology for modeling Markovian systems 
that have interacting components. The methodology is based on decomposing the 
system to be investigated into its components and modeling each component in­
dependently. Afterwards, interactions and dependencies among components are 
introduced and the model finalized. The two advantages of SANs that result from 
this divide-and-conquer approach are the following. Each component can be mod­
eled much easier compared to the global system due to state space reduction. 
Storage space allocated for components is minimal compared to the case in which 
transitions from each global state are stored explicitly. However, all this comes at 
the expense of longer analysis time [12, 26, 2, 6, 4, 9, 27, 3, 13). 

A discrete-time system of N components can be modeled by a single stochas­
tic automaton for each component. With this decompositional approach, the global 
system ends up having as many states as the product of the number of states of the 
individual components. See [25, Ch. 9) for detailed information regarding SANs. 
When there are E synchronizing events in the system, automaton k denoted by 
A(k) has the corresponding transition probability matrix Pe(k) that represents the 
contribution of A(k) to synchronization e E {O, 1, ... , E - I} (see [10, p. 333)). 
For convenience, we number the automata and synchronizing events starting from 
o. The underlying discrete-time MC (DTMC) corresponding to the global system 
can be obtained from 

E-1 N-1 

P= L ®p~k). (1) 
e=O k=O 

IThis work is supported by TUBiTAK-CNRS grant. 
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We refer to the tensor representation in equation (I) associated with the DTMC 
as the descriptor of the SAN. Assuming that A(k) has nk states, the global system 
has n = rrf=~l nk states. When there are transition probabilities in p~k) that are 
functions of the global state of the system rather than only A(k), tensor products 
become generalized tensor products [23]. We consider the form of the descriptor 
in equation (I) rather than the one in [19] since it is compact and easier to work 
with. 

The difficulty associated with discrete-time SANs is that the matrices p~k) 
are relatively dense compared to their continuous-time counterparts implying a 
larger number of floating-point arithmetic operations in the generalized descriptor­
vector multiply algorithm (see [9, p. 404]) used in iterative solvers. Generally, the 
underlying DTMC of a discrete-time SAN is a dense matrix as opposed to the 
generator corresponding to a continuous-time SAN. Therefore, discrete-time SANs 
can be used to tackle even small systems composed of interacting components but 
that have dense DTMCs since the underlying MC is not generated and stored 
during SAN analysis. 

In the next section, we provide information about the wireless ATM model 
that is investigated. In the third section, we discuss the results in [13] related to 
ordering and lumping of automata. In the fourth section, we provide results of 
numerical experiments, and in the fifth section, we conclude. 

2 The model 

The application considered in [13] is a multiservices resource allocation policy 
(MRAP) that integrates three types of service over a time division multiple access 
(TDMA) system in a mobile communication environment. We have the constant 
bit rate (CBR) service for two types of voice calls (i.e., handover calls from neigh­
boring cells and new calls), the variable bit rate (VBR) service for two types of 
calls as in CBR service, and the available bit rate (ABR) service for data transfer. 
A single cell and a single carrier frequency is considered, and the system is modeled 
as a discrete-time SAN in which state changes occur at TDMA frame boundaries. 
Regarding the events that take place in the system, the following assumptions are 
made. Data packet and call arrivals to the system happen at the beginning of a 
frame, and data packet transmissions finish and calls terminate at the end of the 
frame. Since each data packet is small enough to be transmitted in a single slot of 
a TDMA frame, in a particular state of the system it is not possible to see slots 
occupied by data packets. 

Now, let us move to the parameters of the model. Data is queued in a FIFO 
buffer of size B and has the least priority. The arrival of data packets is modeled 
as an on-off process. The process moves from the on state to the off state with 
probability a and vice versa with probability {3. The load offered to the system 
is defined as A = {3/ {a + {3). Assuming that the time interval between two con­
secutive on periods is t, the burstiness of such an on-off process is described by 
the square coefficient of variation, Se = Var{t)/[E{t}F. In terms of A and Se, 
{3 = 2A{I- A)/{Se + 1- A) and a = {3(I- A)/ A. When the on-off process is in the 
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on state, we assume that i E {O, 1,2, 3} data packets may arrive with probability 
Pdi. The mean arrival rate of data packets is defined as p = I:~=1 i X Pdi. Hence, 
the global mean arrival rate of data packets is given by r = Ap. If the number of 
arriving data packets exceeds the free space in the buffer plus the number of free 
slots in the current TDMA frame, the excess packets are dropped. 

Handover CBR requests have priority over new CBR calls and they respec­
tively arrive with probabilities Ph and Pn. Similarly, the probabilities of VBR new 
call and handover arrivals during a TDMA frame have geometrical distributions 
with parameters Pvn and Pvh, respectively. We do not consider multiple handover 
or new CBR/VBR call arrivals during a TDMA frame since the associated prob­
abilities with these events are small. Each CBR/VBR call takes up a single slot 
of a TDMA frame but may span multiple TDMA frames. When all the slots are 
full, incoming CBR/VBR calls are rejected. The number of CBR calls that may 
terminate in a TDMA frame depends on the number of active CBR calls, but 
can be at most M, and hence is modeled as a truncated binomial process with 
parameter Ps. 

On the other hand, a VBR connection is characterized by a state of high 
intensity and a state of low intensity. In the former, the VBR source transmits data 
with its peak rate, whereas in the latter, its transmission rate is lower. The reduced 
transmission rate in the low intensity state in fact means that at some instances 
of time the slot in a TDMA frame allocated to the VBR connection is not used. A 
VBR connection moves from the high intensity state to the low intensity state with 
probability O:v and vice versa with probability f3v· In terms of Av = f3v/(O:v + f3v) 
and its square coefficient of variation Se v' we have f3v = 2Av (1- Av) / (Be v + 1-Av) 
and O:v = f3v (1 - Av) / Av. When in the low intensity state, the VBR connection 
moves from the case of a busy slot to the case of an empty slot with probability 
Pempty and vice versa with probability Pbusy. State changes of a VBR connection 
after it is set up are assumed to take place at the end of a TDMA frame. We further 
assume that when a VBR connection is set up as either a new call or a handover, 
it is in the high intensity state. However, the connection can terminate in any 
state of the VBR source. We also assume that when a VBR connection changes 
its state from high intensity to low intensity, it enters the state with a busy slot. 
The number of VBR calls that may terminate in a TDMA frame depends on the 
number of active VBR calls and the duration of each VBR call is assumed to be 
a geometric process with parameter Pvs. 

Each TDMA frame that gives CBR, VBR, and ABR service consists of C 
slots reserved for CBR traffic and V slots reserved for VBR traffic. ABR traffic can 
be pushed into any reserved, but unused slots. Hence, data packets can be trans­
mitted in the idle slots among the C reserved for CBR traffic, in the idle slots 
among the V reserved for VBR traffic, and in those slots among the V that are in 
the low intensity state but are empty. The SAN model consists of (3+ V) automata 
and 9 synchronizing events. States of all automata are numbered starting from O. 
We denote the state index of automaton k by sA(k). Automaton A(O) represents 
the data arrival process and has two states that correspond to the on and off states 
of the data source. Transitions in this automaton happen independently of other 
automata. Automaton A(1) represents the portion of the TDMA frame reserved 
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for CBR calls and has (C + 1) states. Automaton A (2) represents the data buffer 
and has (B + 1) states, where B is the buffer size. Transitions of this automata 
depend on A(O) and A(1). Automata A(3) through A(2+V) represent the V slots 
reserved for VBR traffic. Each automaton corresponding to VBR traffic has four 
states. State 0 of the automaton corresponds to the case of an idle slot, i.e., the 
VBR connection is not active. State 1 corresponds to the state of high intensity 
state, states 2 and 3 correspond to the state of low intensity. Particularly, state 2 
indicates that the slot is busy and state 3 indicates that it is empty. Each automa­
ton A(k), k E {4, 5, ... , V + 2}, that models VBR traffic depends on the automata 
A(3) ,A(4), ... , A(k-I) since we assume that arriving VBR calls are dispatched to 
slots starting from the smallest indexed VBR automaton. We remark that the au­
tomata of the SAN that handle CBR and VBR arrivals are mutually independent. 
Hence, the set of synchronizing events are given by Cartesian product, and eab 

denotes the synchronizing event that is triggered by a CBR arrivals and b VBR 
arrivals for a, bE {O, 1, 2}. 

The probability matrices associated with the automata are all relatively dense 
except the ones that correspond to the data buffer when sA (0) = O. See [13] for 
a detailed description of the system. In passing, we remark that the discrete-time 
SAN model of the system has a global state space size of n = 2(C + 1)(B + 1)4v. 
For the problem with (C, V, B) = (8,2,15), A = 0.1, Se = 1, (PdO,Pdl,Pd2,Pd3) = 
(0.05,0.1,0.25,0.6) (amounting to an average of p = 2.5 packet arrivals during a 
TDMA frame), (Pn,Ph,Ps) = C(5 X 10-6 ,10-5 ,5 x 10-6 ), Av = 0.5, Sev = 10, 
(Pempty,Pbusy) = (0.9,0.1), (Pvn,Pvh,Pvs) = V(5 x 10-6 ,10-5 ,5 x 10-6 ), and at 
most 2(= M) CBR departures during a TDMA frame, we have n = 4,608 and 
nz = 1,618,620 (number of nonzeros larger than 10-16 is 1,174,657). Here nz 
denotes the number of nonzeros in the underlying DTMC. 

We refer to the rejection of an existing call as dropping and to the rejection 
of a new call or packet as blocking. The performance measures of interest are the 
dropping probabilities of handover CBR and handover vnR calls, the blocking 
probabilities of new CBR calls and new VBR calls, and the blocking probability 
of data packets. Once the steady state vector of the descriptor is computed, each 
of the performance measures may be determined [13]. [n this work, the aim is 
not to present values of performance measures for a set of parameters, but rather 
is to discuss the implications on the lAD solver of reordering the automata and 
choosing the size of the lumped matrix. Therefore, we constrain ourselves to re­
porting solution times and iteration counts in section 4. Now, let us summarize 
the theoretical results in [13]. 

3 Reordering and Lumping 

The automata of some discrete-time SANs can be reordered and then renumbered 
so that transitions of A (k) for k E {I, 2, ... , N -I} depend (if at all) on the states of 
the lower indexed automata A(O), A(1), ... , A(k-l) (the functional dependency be-
ing represented by A(k) [A(O) , A(1), ... ,A(k-I)]) (see [9] for details). Note that there 
must exist at least one automaton (in our case, it is A (0)) that is independent of all 
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the other automata for such an ordering to be possible. In our model, such an or­
dering of automata is possible, and it implies that the automaton A (2) be placed in 
the last position and the automata A(k), k E {3, 4, ... , V +2}, be placed in any po­
sition other than the last as long as they are ordered according to increasing index 
among themselves. Hence, one possibility is A (0), A (1), A (3), A (4), ... ,A (V +2), A (2). 

Now, let us assume that the automata are reordered as described and renum­
bered from ° to (N - 1). To such an ordering of automata correspond block par­
titionings of the form 

(2) 

in which all the blocks P ij are square, of order n~=-~ nk, and K = n;;=~l nk for 
any m E {I, 2, ... , N - I}. Hence, for the given ordering of automata, there are 
(N - 1) different such partitionings which vary between one that has no diagonal 

blocks of order n~=-;.l nk and one that has n~=~2 nk diagonal blocks of order nN-l' 

Each of the (N - 1) block partitionings is lump able as stated in the next theorem 
of [13]. 

Theorem 1 A discrete-time SAN of N automata and E synchronizing events 
whose automata are reordered and renumbered so that A(k) [A(O) , A(l), ... , A(k-l)J, 

k E {I, ... , N - I}, and that has the descriptor in equation (1) with equal row 

sums in each p~k) for k = 0, 1, ... , N - 1 and e = 0,1, ... , E - 1 is lumpable with 
respect to the partitioning in equation (2) for any mE {1, 2, ... , N - 1}. 

Now, we state the more relaxed version of Theorem 1 in [13] for the case of 
cyclic functional dependencies. 

Definition 1 Let G(V, [) be the directed graph (digraph) corresponding to a 
discrete-time SAN in which the vertex Vk E V represents A(k) and the edge (Vk' vt} 
E E if transitions in A(k) depend on the state of A(l) (i.e., A(k) [A(l)]). Then the 
SAN is said to contain cyclic functional dependencies if and only if the digraph has 
at least one strongly connected component (SeC) composed of multiple automata. 

Detailed description of the see algorithm for digraphs can be found in [1, pp. 
191-197]. 

Theorem 2 A discrete-time SAN of N automata A(k), k = 0,1, ... , N - 1, and 
E synchronizing events that contains cyclic functional dependencies among its 
automata is lumpable if the digraph corresponding to the SAN has more than one 

sec and each p~k) has equal row sums for k = 0,1, ... , N - 1 and e = 0,1, ... , 
E-1. 

Assuming that P is lumpable with respect to the partition in (2) and is 
irreducible, in [13] the following modified form of Koury-McAllister-Stewart's lAD 
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algorithm [15] is proposed for computing the stationary probability vector 7r (i.e., 
7rP = 7r, 117r11 = 1). The convergence analysis of the KMS algorithm is based on 
the concept of near complete decomposability (NCD) [18]. In [16] and [24], it is 
shown that fast convergence is achieved if the degree of coupling, 11F11oo, is small 
compared to 1, where P = F+diag(Pll ,P22 , ... ,PKK). 

Algorithm 1. lAD algorithm for discrete-time SANs 

1. Let 7r(O) = (7riO) , 7r~O) , ... , 7r~») be a given initial approximation of 7r. Set 
it = 1. 

2. Aggregation: 

(a) Compute the lumped matrix L of order K with ijth element 
lij = max(Piju). 

(b) Solve the singular system 7(I - L) = 0 subject to 1171h = 1 for 
7 = (71, 72, ... , 7K). 

3. Disaggregation: 

(a) Compute the row vector 

(b) Solve the K nons in gular systems of which the ith is given by 

(it)(l _ p .. ) _ b(it) 
7ri U - i 

for 7rjit) , i = 1,2, ... ,K, where 

b(it) _ '" (it)p .. + '" (it)p .. 
i - ~ Zj Jt ~ 7rj Jt· 

j>i j<i 

4. Test 7r(it) for convergence. If the desired accuracy is attained, then stop and 
take 7r(it) as the stationary probability vector of P. Else set it = it + 1 and 
go to step 3. 

In [17], the convergence of a framework of lAD methods is studied. The lAD 
algorithm considered is different in that there is no requirement of NCDness on the 
partitioning. Furthermore, a number of relaxations (i.e., smoothings) of the power 
method kind is performed at the fine level. The authors prove that the errors at 
the fine and coarse levels are intimately related, and for a strictly positive initial 
approximation, the lAD approximation converges rapidly to the stationary vector 
as long as one is very precise in computing at the coarse level and a sufficiently high 
number of smoothings is performed at the fine level. Numerical results on randomly 
generated stochastic matrices with varying degrees of coupling and having equal 
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orders of blocks which are all tridiagonal show that convergence is practically 
independent of the degree of coupling. 

The motivation behind proposing Algorithm 1 rather than block Gauss-Seidel 
(BGS) for discrete-time SANs is that the partitioning in (2) is a balanced one with 
equal orders of blocks and the aggregate matrix needs to be formed only once due 
to lumpability. See [8] for recent results on the computation of the stationary 
vector of Markov chains. 

In Algorithm 1, the lumped matrix L of order K = nZ'=~1 nk is computed 
at the outset and solved once for its stationary vector T. Note that the lumped 
matrix L is also lumpable if m > 1. These hint at the solver to be chosen at 
step 2 to compute T. Assuming that L is dense, one may opt for a direct solver 
such as Gaussian elimination (G E) (or the method of Grassmann-Taksar-Heyman, 
GTH, if L is relatively ill-conditioned) when K is on the order of hundreds. Else 

one may use lAD with a lumped matrix of order nZ'~~l nk, where 1 < m' < m 
(or lAD with an NCD partitioning if L is relatively ill-conditioned). In any case, 
sufficient space must be allocated to store L. As for the disaggregation phase 
(i.e., a BGS iteration), the right-hand sides b~it) at iteration it may be computed 

efficiently as shown in [13] at the cost of E(K - 2) vectors of length n:=-':' nk, that 
is roughly E vectors of length n. In summary, the proposed solver is limited by 
max(K2 , (E + 2)n) amount of double precision storage assuming that the lumped 
matrix is stored in two dimensions. The 2 vectors of length n are used to store the 
previous and current approximations of the solution. 

So far, we have assumed that the underlying DTMC of the given discrete­
time SAN is irreducible. Since this may not be the case, a state classification (SC) 
algorithm that partitions the global state space of a SAN into essential and tran­
sient subsets is implemented [13]. The inhibition of transient states is important in 
removing redundant computation from the lAD solver. However, the case of more 
than one partition of essential states is not considered since it hints at a modeling 
problem. 

Now, let us return to the model in section 2 and consider lumpable orderings 
of the automata. Since A (2) must be the last automaton in a lumpable order­
ing, there are (V + I)! ways in which A(D) may precede A(l) among the first 
(V + 2) automata. The same argument is true of A(D) succeeding A(l) among 
the first (V + 2) automata. Therefore, the requirement in Theorem 1 regarding 
functional dependencies implies that there are 2(V + I)! orderings that may be 
used. Hence, we have 12 lumpable orderings to choose from when V = 2 and 
48 lumpable orderings to choose from when V = 3. Since these are large num­
bers of orderings to investigate, we treat the VBR automata as a single entity and 
concentrate on only the 3! orderings of automata given by [(3,4, ... , V + 2),1,0,2]' 
[1,(3,4, ... ,V + 2),0,2]' [(3,4, ... ,V + 2),0,1,2]' [0,(3,4, ... ,V + 2),1,2]' 
[1,0, (3,4, ... , V + 2),2]' and [0,1, (3,4, ... , V + 2),2]. We name these orderings 
respectively 01,02, ... ,06' Regarding the lumping parameter, m, we choose values 
from the set {V -1, V, V + I} which implies that the largest lumped matrix formed 
in step 2 is of order 2(C + 1)4v and the smallest system to solve in step 3 is of 
order (B + 1). 
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We remark that a reordering of discrete-time automata corresponds to a 
symmetric permutation of the underlying DTMC. In other words, reordering of 
automata is equivalent to a renumbering of the global states in a SAN model. 
Since the objective of this study is to investigate the effects of reordering and the 
lumping parameter, m, on the convergence of Algorithm 1, we choose the integer 
parameters (C, V, B) so that the lumped matrix formed in step 2 can be solved 
accurately and rapidly using the GTH method as discussed in [7] and there is 
sufficient space to factorize in sparse format the K diagonal blocks in step 3(b) at 
the outset. Hence, we use sparse forward and back substitutions to solve the K 
nonsingular systems at each iteration of Algorithm 1 and do not need to employ 
any smoothings. 

4 Numerical results 

Algorithm 1 is implemented in C++ as part of the software package PEPS [22]. 
We time the solver on a Pentium III with 64 MBytes of RAM under Linux. In each 
experiment, we use a tolerance of 10-8 on the approximate error 117r(it) - 7r(it-1) 112 

in step 4 of Algorithm 1. The approximate residual 117r(it) - 7r(it) Pl12 turns out to 
be less than the approximate error upon termination in all our experiments. 

In the first set of experiments, we consider three variants of the problem 
(C, V, B) = (8,2,15), which has a state space size of n = 4,608 (see section 2). We 
set (PdO,Pd1,Pd2,Pd3) = (0.05,0.1,0.25,0.6), Av = 0.5, SCv = 10, (Pempty,Pbusy) = 
(0.9,0.1) in the first variant and (PdO,Pd1,Pd2,Pd3) = (0.4,0.3,0.2,0.1), Av = 0.5, 
SCv = 1, (Pempty,Pbusy) E {(O.g, 0.1), (0.5, 0.5)} in the last two variants. The other 
parameters are chosen as M = V, Sc = 1, A E {0.1, 0.3, 0.5, 0.7, 0.9}, (Pn,Ph,Ps) = 
C(5 X 10-6 ,10-5 ,5 x 10-6), and (Pvn,Pvh,Pvs) = V(5 X 10-6 ,10-5 ,5 x 10-6). The 
lump ability parameter assumes the values in {2, 3, 4}. The degree of coupling, 
11F11oo, associated with the partitioning in equation (2) for each DTMC is on 
the order of 10-1 and mostly close to 1.0. Hence, the lumpable partitionings we 
consider in Algorithm 1 for the first set of experiments are not NCD. However, the 
smallest degree of coupling we find for each DTMC using the algorithm in [5] is 
on the order of 10-5 . All this means that even though the lumpable partitionings 
we consider are not NCD partitionings, there exist highly NCD partitionings for 
each DTMC, and therefore they are all very ill-conditioned. 

The underlying DTMCs of the SAN models in the first set of experiments 
are reducible with a single subset of essential states and 224 transient states. It 
is argued in [13] that when a reducible discrete-time SAN has a single subset of 
essential states and each subset of the partition in equation (2) includes at least 
one essential state (which is the case in our experiments), the lumped matrix com­
puted in step 2 of Algorithm 1 is irreducible. With such a partitioning, if one 
starts in step 1 with an initial approximation having zero elements corresponding 
to transient states, successive computed approximations will have zero elements 
corresponding to transient states as well. In our experiments, we start with a 
positive initial approximation and observe that all elements that correspond to 
transient states become zero at the second iteration. Once the elements that cor-
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respond to transient states in an approximate solution become zero, they remain 
zero. Hence, there is no need to run the time consuming SC algorithm for each 
of the experiments, since the matrices in each of the three variants have the same 
nonzero structure. 

In the first variant, Algorithm 1 converges for the orderings 01 and 02 within 
34 iterations when m E {3, 4}, whereas for the other four orderings it converges 
within 34 iterations only when m = 4. In all other cases, Algorithm 1 does not 
converge within 250 iterations to the prespecified tolerance. A similar observation 
follows for the second and third variants if we replace the 34 respectively with 65 
and 120 (achieved in 04-06). Hence, the three variants of this problem seem to be of 
increasing difficulty as we move from the first to the third, although each one has 
highly NCD partitionings with degree of coupling on the same order of 10-5 . In 
Table 1, we present the results of numerical experiments with Algorithm 1 for the 
three variants using 01. Note that a smaller number of iterations may not imply 
a smaller solution time as in the first variant for A = 0.9. The best solution times 
are obtained with 01 (and 02) when m = 3 is used. For each of the six orderings, 
m = 4 gives a lumped matrix of order K = 288. For 01 and 02, m = 3 gives 
a lumped matrix of order K = 144. For the other four orderings, m = 3 gives 
lumped matrices of orders 32 and 72, which are both smaller than 144. For the 
six orderings, m = 2 gives lumped matrices of orders varying between 8 and 36. It 
takes nearly 0 seconds to solve the lumped matrix using GTH in all cases. Hence, 
the timing results in Table 1 are for the iterative part of Algorithm 1. 

TABLE 1. Solution times in seconds and # of iterations with 01 for 1st set of experiments. 

Variant m A = 0.1 A = 0.3 A = 0.5 A = 0.7 A = 0.9 
Time #it Time #it Time #it Time #it Time #it 

1 4 25 28 30 34 27 30 23 26 22 24 
3 8 18 9 21 8 17 9 20 12 27 
2 84 250+ 84 250+ 84 250+ 84 250+ 84 250+ 

2 4 48 51 52 56 41 44 35 38 61 65 
3 22 48 22 47 17 38 17 37 27 61 
2 84 250+ 84 250+ 84 250+ 84 250+ 84 250+ 

3 4 111 118 53 57 51 55 44 47 84 90 
3 51 114 23 52 22 49 20 45 40 89 
2 84 250+ 84 250+ 84 250+ 84 250+ 84 250+ 

In the second set of experiments, we consider the problem (0, V, B) = (3,3,15), 
which has a state space size of n = 8,192. We set (PdO,Pd1,Pd2,Pd3) = 
(0.05,0.1,0.25,0.6), Av = 0.5, SC v = 10, (Pempty,PbUSY) = (0.9,0.1), the other pa­
rameters being chosen as in the first set of experiments. The lumpability parameter 
assumes the values in {3, 4, 5}. Again, even though the lump able partitionings we 
consider are not NCD partitionings, there exist highly NCD partitionings for each 
DTMC, and therefore they are all very ill-conditioned. The underlying DTMCs of 
the SAN models in the second set of experiments are irreducible. 
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Algorithm 1 converges for the orderings 01 and 02 within 42 iterations when 
m E {4, 5}, whereas for the other four orderings it converges within 43 iterations 
(achieved in 04-06) only when m = 5. In all other cases, Algorithm 1 does not 
converge within 250 iterations to the prespecified tolerance. The best solution 
times are obtained with 01 and 02 when m = 4 is used. 

Regarding the ordering of automata, 01 and 02 are more advantageous than 
the other four orderings since they converge for more values of m. The orderings 
01 and 02 have A (0) and A (2) as the last two automata. These automata have 
transition probabilities of the same order. Furthermore, when m = N - 2 is used 
with 01 and 02, the lumped matrix is larger than one would have with the other 
four orderings. We believe these two factors influence the behavior of Algorithm 1 
for 01 and 02 when m = N - 2. Further experiments must be conducted to improve 
our confidence in this conjecture. 

5 Conclusion 

Experiments on a problem from mobile communications indicate that the per­
formance of Algorithm 1 for discrete-time SANs is sensitive to the ordering of 
automata and the choice of the lumpability parameter. Even though the coarse 
and fine level solutions are computed with high accuracy in our experiments, there 
are values of the lump ability parameter for which fast convergence of Algorithm 
1 is not witnessed. On the other hand, some partitionings converge in a smaller 
number of iterations than others. The value of the lumpability parameter deter­
mines the order of the coupling matrix. Numerical results imply that convergence 
may not be observed in a reasonable number of iterations when the order of the 
coupling matrix is smaller than the squareroot of the state space size. Hence, it is 
recommended for one to consider the largest permissible value of the lumpability 
parameter when using Algorithm 1. 
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FRANCK DELCOIGNE Universite Paris 10, UFR SEGMI, 200 avo de la Republique, 
92000 Nanterre, FRANCE. 
ARNAUD DE LA FORTELLE INRIA - Domaine de Voluceau, Rocquencourt, BP 
105, 78153 Le Chesnay Cedex, FRANCE. 

Abstract. We aim at presenting in shori the technical report [5}, which states a sample 
path large deviation principle for a rescaled process n-1Qnt, where Qt represents the joint 
number of clients at time t in a single server i-limited polling system with Markovian 
routing. The main goal is to identify the rate function. A so-called empirical generator 
is introduced, which consists of Qt and of two empirical measures associated with St, 
the position of the server at time t. The analysis relies on a suitable change of measure 
and on a representation of fluid limits for polling systems. Finally, the rate function is 
solution of a meaningful convex program. 

Key words. Large deviations, polling system, fluid limits, empirical generator, change 
of measure, contraction principle, entropy, convex program. 

1 Presentation of the model 

Consider a polling system consisting of N nodes attended by a single server and 
denote by S ~ {I, ... ,N} the set of nodes. At node i, arrivals of clients form 
a Poisson 'process with rate Ai. Each customer at node i requires service, whose 
duration is exponentially distributed with parameter Mi' Let Pi ~ Ad Mi, the in­
tensity factor at node i. When the server arrives at a busy node, say i, it serves 
one customer and then moves to some node, chosen via some ergodic routing ma­
trix P = (Pij)i,jES with invariant measure TJ = (TJi)iES' If it reaches an empty 
node, then it immediately switches to some other node, still chosen according to 
P. The switch-over time to go from node i to node j, for i,j E S, is exponentially 
distributed with mean Tij. All stochastic input sequences (inter arrival times, ser­
vices, switch-over times) are supposed to be mutually independent. When the joint 
number of clients and the position of the server at time 0 are respectively given 
by x = (Xl, ... ,XN) and s, Q(t,x,s) = (ql(t,X,S), ... ,qN(t,x,S)) and S(t,x,s) 
represent the joint number of clients at each node and the position of the server 
at time t. As a rule, we shall write S(t,x,s) = i if the server is serving some 
customer at node i and S(t,x, s) = ij if it is in transit between nodes i andj. Set 
So ~ S U S2, the state space of the server. Then 

Xx,.~{(Q(t,x,s),S(t,x,s)), t2:0} 

is a Markov process with generator R such that 

Rf(x,s) = L q(x,s;y,s')(f(y,s') - f(x,s)), Vex,s) E z~ x SO, 
(Y"/)EZ~ xSo 
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where f E B(Z~ x So) and 

q(x, S; y, s') 

Ai, if Y = X + ei, s' = s, \:Ii E S, 

lliPij, if Xi> O,S = i,y = X - fi,S' = ij, \:Ii,j E S, 

1 
if Xi> O,S = ji,y = x,s' = i, \:Ii,j E S, 

Tji 

1 
-Pil , ifxi=O,s=ji,y=x,s'=il, \:Ii,j,IES, 
Tji 

0, otherwise. 

Whenever no confusion arises, the initial state (x, s) will be dropped. 

Let us introduce now a definition and a notation which will be of constant use in 
the sequel: 

Definition 1.1 For every x = (Xl, ... ,XN) E ]R~, denote by A(x) the set of 
indices i such that Xi > 0. If A is a subset of S, the subset of]R~ 

{X E]R~ IXi > 0, \:Ii E A,Xi = 0, \:Ii E AC } 

is called face A. 

• For any set A, A C will denote its complementary. 

• For any space E, B(E), M(E), P(E), represent respectively the sets of 
bounded functions on E, of positive measures on E and of probability mea­
sures on E. 

• D ([0, TJ, ]RN) is the space of right continuous functions f : [0, T] --+ ]RN 
with left limits, endowed with the Skorokhod metric denoted by dd. 

2 Previous work 

A huge literature has been devoted to the study of polling systems because of their 
wide range of application. In [2, 8, 13], the necessary and sufficient conditions of 
ergodicity has been established for systems with one or several servers under a 
rich variety of service policies. However, the problem of determining the invariant 
measure for such systems is still open. Even, for limited policies, the mean waiting 
time can be computed only under symmetry assumptions [:3]. The reader is referred 
to [17J for an overview about polling systems. In the present paper, a sample path 
large deviation principle or a sample path LDP for the rescaled process n-IQnt is 
established. This could be a preliminary step in order to obtain large deviations 
estimates for the stationary distribution. In view of future applications, some par­
ticular attention is devoted to the computation of the rate function governing the 
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sample path LDP. All this program falls into the framework of LDP for Markov 
processes with discontinuous statistics i.e those for which the coefficients of their 
generator are not spatially continuous. 

It seems that one of the first paper dealing with such processes is [12], where large 
deviations problems for Jackson networks were investigated using partial differ­
ential equations techniques. Quite recently, the LDP for a large class of Markov 
processes with discontinuous statistics has been proved in [10]. Roughly speaking, 
the authors of [10] express the logarithm of large deviation probabilities as the 
minimal cost of some stochastic optimal-control problem, and the limit of the op­
timal cost is shown to exist by means of a sub-additivity argument. However, the 
rate function is not explicit. Note that in [11], an explicit upper bound of large 
deviations involving Legendre transforms is proved. While for Jackson networks 
and some processor sharing models this bound is tight [1], in general the problem 
of the lower bound remains open. It is worth emphasizing that in our case, Qt is 
not a Markov process so that the polling model does not satisfy the assumptions 
of [10]. Besides, the rate function can be explicitly described in terms of entropy 
functions. 

Until now, the identification of the rate function has been carried out in some par­
ticular cases and usually for low dimensional systems. In [6], using the contraction 
principle, the exponential decay of the stationary distribution of the waiting time 
is computed for a two dimensional tandem networks taking advantage that it can 
be expressed simply as a continuous function of the input processes. It should be 
noted that in this setting, a sample path LDP for processes with independent in­
crements over infinite intervals of time is needed [7]. General results were obtained 
in [9, 15] where the LDP has been established for random walks whose generator 
has a discontinuity along an hyperplane. These results are applied in [15] to com­
pute the exponential decay of the stationary distribution of ergodic random walks 
in Z~. Nevertheless, in such examples, there are at most two boundaries with 
co dimension one or two where discontinuity arise. Ultimately, the identification of 
the rate function governing the LDP for Jackson networks has been carried out in 
[1,14]. 

3 Local bounds, empirical generator and entropy 

Following [10], in order to get a sample path LDP for polling systems, the main 
step is to prove the forthcoming large deviations local bounds: 

Theorem 3.1 [Local bounds] Take x E ]R~ and D E ]RN such that Di = 0, 
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Vi E AC(x). Then, for any 7 satisfying Xi + Di7 > 0, Vi E A(x), 

limlimliminf! inf 10gIP [ sup IQ(t,y) -nx-Dtl <8n] 
0-+0 <-+0 n-+oo n Iy-nxl<m tE[O,nTj 

limlimlimsup! sup 10gIP [ sup IQ(t,y)-nx-Dtl <8n] 
0-+0 <-+0 n-+oo n Iy-nxl<m tE[O,nTj 

de! -7L(A(x), D). (1) 

Note that for Di = 0, Vi E AC(x), the conditions Xi + Di7 > 0, Vi E A(x) is 
equivalent to X + Dt lies in the face A(x), for all t E [0,7]. 

In establishing theorem 3.1, one must know in some sense how the different transi­
tion rates have to be modified in order that Qt follows a given drift D. This means 
that rather than studying Qt itself, we focus on the so called empirical generator 

G ~ (Nt L L Qt - Qo) E 9 
t t N" t, t ' 

where 

• Nt is the number of jumps of the server until time t; 

• Sn is the embedded process of the server just before it jumps. Note that it 
is not a Markov chain; 

1 n 

• Ln ~ :;:;: ~ 8s, E peSo) is the empirical measure of the process Sn; 
i=O 

• Lt ~ ~ lot 8su du E peSo) is the empirical measure of the process St. 

The set of empirical generators is denoted by 9. On the long run, exactly like 
the pair empirical measure for Markov chains, the empirical generator tends to 
be balanced: this is (2), which means that the server exits a node i as often as it 
goes toward i. The set of balanced generators will be denoted by 98. When the 
transitions are restrained to lie in the support of P (Le. aij = ° if Pij = 0), the 
set is denoted by 9s(P). 

Definition 3.2 (Generators) The set 9~ of balanced generators is defined by 
the triples (A, 7r, D) E M(So) x peSo) X IRA that verify 

_ d.f~ ai = aji 
jES 

ai < 
ai 

ai + Di > 

I:aij, 
jES 

ai, 

ai, 

0, 

Vi E S, 

Vi E AC, 

Vi E A, 

Vi E A. 

(2) 

(3) 

(4) 

(5) 

We denote by IRA, for the sake of simplicity, the subspace of D E IRN with Di = ° 
for i E AC. 
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The three elements of a generator (A, 1r, D) are, roughly speaking, the stationary 
measure 1r of the position of the server, the mean number A of transitions and 
the mean drift of the queues length D. Note that, in general, for each generator 
(A, 1r, D) corresponds a polling system, described by its intensities (Xi, iii, Tij, Pij ). 
The correspondence is given by 

1ri 

1rij 

aij 

A .. ~ aij 
'J - - . ai 

Theorem 3.3 [Generator's local bounds] 
Let A be a face and G = (1r, A, D) E g~. Then, 

lim liminf! logIP [Gt E B(G,I5), sup IQA(s) - sDI < tIS] 
';--+0 t--+oo t BE[O,t} 

lim lim sup !logIP [GtEB(G,I5), sup IQA(S)-SDI<tl5] 
';--+0 t--+oo t BE[O,t} 

-H(GIIR). 

(6) 

(7) 

(8) 

(9) 

In theorem 3.3, we prove large deviations bounds with a rate function H(.IIR) 
defined in definition 3.4, for a uniform version of G~, where G~ is the empirical 
generator associated to a localized polling system X A. The transition mechanism 
describing the evolution of XA is identical to X's except that the components 
indexed by A for XA can be negative. In order to prove this result, we use a 
change of measure (chosen in a restricted class) which gives rise to a new polling 
system, for which the fluid limits can be completely characterized, and this is a 
key ingredient in the proof of the lower bound, in the sense that it allows to invert 
the equations (6)-(9). Let us recall that, if {xn, n 2: O} is a sequence of Z~ 
such that IXn I --+ 00, then every limiting point in distribution of the sequence of 
processes Ixnl-1 XXn,s is called a fluid limit. This ensures that for D as in theorem 
3.1, after a suitable change of measure, X lies in any neighborhood of D. This way 
of reasoning is quite classical and was used among others in [14] for identifying 
the rate function governing the LDP for Jackson networks. However, owing to the 
presence of St, our approach has much more in common with the method used 
in [4] to prove the weak Sanov LDP for jump Markov processes in continuous 
time. Moreover, the function H(.IIR) governing the large deviations bounds for 
G~ appears as an entropy and is then easily seen to possess good properties. 

Definition 3.4 (relative entropy) Let R = (Ai, /-ti, Tij, Pij ) denotes the genera­
tor of the polling system, G = (A,1r,D) E g~ be a generator and (Xi,iii,Tij,Pij ) 
its representation as a polling system. The relative entropy of G with respect to R 
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H(GIIR) ~ L (Ip(XiIIAi) + 1fi Ip(jliIlJLi)) + L 1fijIp(fijlI1Tijl) + Hd(AIIP), 
iES i,jES 

where Hd(AIIP) ~ L aij log (~~~) and Ip(vIlA) ~ v log ~ - v + A. 
i,jES Z3 

This entropy has an easy interpretation in terms of information theory. The 
relative entropy can be defined as the mean information gain. H(.IIR) is decom­
posed in definition 3.4 as the sum of the information gains, first Ip(XiIlAi) for the 
arrivals, second Ip(j:iillJLd for the service times, multiplied by the time 1fi spent at 
each queue, third 1fijIp(fijlI1Tijl) for the transit times and fourth Hd(AIIP) for 
the routing. This natural interpretation leads to natural properties : 

Proposition 3.5 The relative entropy H(.IIR) is positive, finite, continuous and 
strictly convex on g~ (P); it is infinite otherwise; it is null if, and only if, G = R. 
It has compact level sets. 

Definition 3.6 The rate function L(A, D) is defined by 

L(A, D) ~ inf H(GIIR), VD E lRA, 
GE/;:l(D) 

(10) 

where fA: g~ t-+ ]RA is the projection fA (G) = D. For all x E lR:?', L(x, D) is 
defined to be L(A(x), D). 

Note that L(A, D) is a rate function derived by the contraction of H(.IIR), which 
is a good rate function (see proposition 3.5). Even though the corresponding LDP 
are not proved, since fA is linear, L inherits lots of good properties of H (see [4)). 

Proposition 3.7 The rate function L(A, D) is positive, finite, continuous and 
strictly convex with respect to D E ]RA; it is null if, and only if, D is the drift 
of the localized polling system; it has compact level sets. Moreover, the infimum 
G E g~ such that H(GIIR) = L(A, D) is reached at a unique point G(D) E g~(P), 
and G(D) is a continuous function of D. 

At this stage, as an application of a kind of contraction principle, one can get the­
orem 3.1. Since L(A,D) is the rate function derived from H(.IIR) by a contraction 
principle, many properties can be derived without much effort and it turns out that 
L(A, D) is solution of a convex program: (10). In general, for Markov processes in 
'1/:', the fluid limits cannot be characterized, even in the case of maximal spatial 
homogeneity. So, it seems that the sole traditional change of measure would be 
ineffective for the identification of the rate function in this general setting. 

1 Note that the relative entropy H( GIIR) is independent of A. 
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4 Sample path LDP 

The rate function Ir(.) for the sample path LDP is expressed as 

Ir('P) = { foT L ('P(t), cp(t)) dt, if 'P is absolutely continuous, (11) 

+00, otherwise. 

ReIllark 1 In theorem 4.1, it is proved that the rate function Ir(.) has the expected 
form given in (11). It is worth noting that in [10}, the rate function governing 
the LDP was defined as the lower semi-continuous regularization of a functional 
defined on the set of piecewise linear functions. Nevertheless, it was conjectured 
that the rate function takes a form like in (11). 

Set 

Q~,s ~ {~Q(nt, [nx], s), t ~ o}, 
and 

iI>x(K) = {IP E D([O,T],lR~): Ir(IP) SoK, 'P(O) = x}. 

Using the Markov property and the linear bounds, one deduces easily the large de­
viations bounds for the probability that the process evolves around some piecewise 
linear function, which are expressed using IT(')' Then, using various properties of 
the rate function Ir (.) and the exponential tightness of {Q~,s' n ~ I}, one can 
get the sample path LDP: 

TheoreIll 4.1 [SaIllple path LDP] The sequence {Q~,s, n ~ I} satisfies a LDP 

in D([O, T], lR~) with good rate function Ir(.): for every T > 0, x E lR~ and s, 

1. For any compact set C C lR~, UxEC iI>x(K) is compact in C([O, T], lR~), 

2. for each closed set F of D ([0, T], lR~), 

1 
lim sup -loglP [Q~,s E F] So - inf{Ir(4)), 4> E F,4>(O) = x}; 

n---7CXJ n 

3. for each open set ° of D ([0, TJ, lR~), 

1 
liminf -loglP [Q~ s E 0] ~ - inf{Ir(4)), 4> EO, 4>(0) = x}. 

n--+oo n ' 
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A nonlinear integral operator encountered in the 
bandwidth sharing of a star-shaped network 
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Abstract. We consider a symmetrical star-shaped network, in which bandwidth is shared 
among the active connections according to the "min" policy. Starting from a chaos prop­
agation hypothesis, valid when the system is large enough, one can write equilibrium 
equations for an arbitrary link of the network. This paper describes an approach based on 
functional analysis of nonlinear integral operators, which allows to characterize quanti­
tatively the behaviour of the network under heavy load conditions. 

1 Model description 

Consider a network comprising N links, where several data sources establish con­
nections along routes going through these links. The main concern here is about 
the policies that can be used to share the bandwidth of the links between active 
connections, and the effect of these policies on the dynamics of the network. 

In this paper, the network is star-shaped (see Figure 1) and all routes are of 
length 2, which is a reasonable model for a router. Each star branch contains two 
links ("in" and "out") and each route is isomorphic to a pair of links. 

Let r = (i, j) denote a route on links i and j, and R be the set of all possible 
routes (with cardinal N 2 /2). Connections are created on r according to a Poisson 
process with intensity 2A/N, so that the total arrival intensity on each link is A. 
A connection lasts until it has transmitted over the network its data, the volume 
of which follows an exponential law with mean v. Each link i, 1 ~ i ~ N, has a 
bandwidth equal to 1 and its load is p ~ AV. 

The state of the system at time t E IR is given by the number of active 
connections on each route (C~N)(t), r E R) ~ X(N)(t). The vector X(N)(t) is in 
general Markovian and 

xt)(t) ~ Lc;:V)(t) 
r3i 

is the total number of active connections on link i, VI ~ i ~ N. 
It is now necessary to describe how bandwidth allocation is achieved. The 

"max-min fairness" policy, popular in telecommunication models, being too difficult 
to be studied rigorously, this article focuses on the "min" policy, proposed by 
L. Massoullie and J. Roberts [5], in which a connection on (i,j) gets bandwidth 

(1.1) 

lThis work has been partly supported by a grant from France Telecom R&D. 
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connection .. ' 
~"" 

···· Iink 

Figure 1: The star-shaped network 

This allocation clearly satisfies the capacity constraints of the system, and 
can be shown to be sub-optimal with respect to max-min fairness. Its invariant 
measure equations are however too complicated to be solved explicitly. An efficient 
method in such situations is to study the model in so-called thermodynamical limit, 
using mean field analysis. 

In order to study the stationary behaviour of the network as N -t 00, the idea 
is to assume the conditions of chaos propagation, under which any finite number 
of links tend to become mutually independent. In this paper, this hypothesis will 
be considered as a heuristic, to be proved in further studies. Some rigorous studies 
of this type can be found in Vvedenskaya et al. [8] and Delcoigne et Fayolle [2]. 

From now on, p < 1 and the system is assumed to be in stationary state 
X = (cr , r E R). For all k 2: 0, the empirical measure of the number of links with 
k connections is 

Symmetry considerations imply that, for all i :::; N, IP(xt) = k) = IEaf). 
Besides, from the chaos propagation hypothesis, a law of large numbers is assumed 
to hold for af): 

ak ~f lim af) = lim IP(xt) = k) ~ IP(X = k). 
N-4OO N-4OO 

The af) 's, traditionally named mean field, drives the dynamics of the system. 
The following notation will also prove useful: 

-(N) ~ IEX(N) - '"' k (N) a - i - L a k , - def '"' k a = L ak· 
k>O k>O 



A nonlinear integral operator encountered in bandwidth sharing 233 

A heuristic computation (detailed in [3]), yields the following equations: 

£>0 

ak+l Uk+l = piiak, Vk ~ o. (1.2) 

While (1.2) resembles a "birth and death process" equation, it is in fact highly 
non-linear, due to the form of Uk and of ii. 

The purpose of this paper is to show how the asymptotic behaviour of the 
system (as p -+ 1) can be derived from the analytical study of the generating 
functions built from (1.2). This work is a part of the wider study [3], which also 
gives ergodicity conditions for any topology under the min and max-min policies, 
shows how equations like (1.2) are derived (also in the case where routes are longer 
than 2) and presents comprehensive numerical results. 

The main byproduct of Theorem 3.3, is the following asymptotic expansions, 
valid in a neighborhood of p = 1. 

1 
(l-p)2A' 

(1 - p)B exp [(1 _1 p)AJ, 

where A and B are non-negative constants. Moreover, if c(z, 1) and v(z, 1) are the 
solutions of the system of differential equations (3.5), then A can be written as 
follows: 

A = roo c(z, l)dz = lim zv'(z, 1) ~ 1.30. 10 z-too 

Since this system is numerically highly unstable, it has proven difficult (with 
the "Livermore stiff ODE" solver from MAPLE) to get a better estimate for A. 

2 An integral equation for the generating function 

Let C(r) (resp. D(r)), be the circle (resp. the open disk) ofradius r in the complex 
plane. 

Let a : z -+ a( z) be the generating function, a priori defined for z in the 
closed unit disk 

a(z) ~Lakzk. 
k~O 

Denoting a' the derivative of a, (1.2) can be rewritten as 

Lemma 2.1. 

(2.1) 
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(a) If (2.1) has a probabilistic solution, then, necessarily p < 1, and 

where K (p) is a positive constant, bounded \I p < 1. 

(b) The function 0: satisfies the nonlinear integral equation 

0:'(1)(1 - pz)o:(z) = -2~ r o:(w) 0:( ~) (1 dw )2 , (2.2) 
Z1r Je(r) W - W 

where Izl < p-l et r is an arbitrary positive number, with 1 < r < p-l. 

Proof. When (1.2) has a probabilistic solution, necessarily a = limm --+oo Um. There­
fore, \I€ > 0, there exists a number M(€) > 0, such that 

\1m ~ M(€), 

which implies that p < 1. Moreover, under the same existence hypothesis, one can 
write 

k _ 

-k II 0: O:kP = 0:0 - D ' 
1:;::00:- t+l 

(2.3) 

where Dl = 2:m>t(m - f)O:m. 
When f ~ 00, the convergence of the product in (2.3) is equivalent to the 

convergence of the series of general term Dt, which holds since 

De::; 0:0 L)m - f)(p + €)m, \If ~ M(€), 
m:;::t 

so that 2:t De behaves like 

'" '" ( )l+n _ P + € ~ ~ n p + € - (1- - €)3. 
e:;::On:;::O p 

Point (a) of the lemma is proven. Point (b) is an application of (a) and of an 
integral representation used by Hadamard, recalled below (see e.g. 17]). 

Let a and b be functions 

a(z) = L anzn, 
n:;::O 

b(z) = L bnzn, 
n:;::O 

analytic in the respective disks V(R) and V(R'). Then the function 
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has a radius of convergence greater than RR' and has the integral form 

1 f (Z)dW c(z)=-.- a(w)b --, 
2z1f L W W 

where £ is a closed contour containing the origin, and on which Iwi < 

R,I~I <R'. 

From (a), a has a radius of convergence at least equal to p-1: this property, 
used in Hadamard's formula, leads directly to (2.2). 0 

The following Lemma provides a finer description of a(z). 

Lemma 2.2. The function a is meromorphic and can be written as 

00 

L ai 
a(z) = .. 

p-' - Z 
i=l 

Moreover, for any sequence of circles C(Rn), such that 

one has la(Rn)1 = 0(1) as n -+ 00. 

1-p 
0< E < -1--' 

+p 

(2.4) 

Proof. The integral equation (2.2) allows for the analytic continuation of a in the 
whole complex plane. Indeed, from point (a) of Lemma 2.1, a is holomorphic in 
V(p-1) and its first singularity is a simple pole at the point z = p-1. An application 
of Cauchy's theorem to the integral in (2.2) leads to 

-.- = -.- + Residue(p-1), 1 j 1 j 
2z1f C(Rll 2z1f C(r) 

where R1 is defined above. Since a(w) and a(z/w) are analytic in the regions 

the integral is a function of z analytic in the ring-shaped area p-1 < Izl < p-2. 
The same holds for a, thanks to the left-hand side of (2.2). Equation (2.4) follows 
by recurrence. 

The second part of the lemma is obtained by application of Cauchy's theorem 
to the integral in (2.2) along the circle C(Rn): 

I ~ aia(zpi) 1 (Z) dw 
a (1)(1 - pz)a(z) - ~ (-i )2 = a(w) a - (1 )2· 

. P - 1 C(R ) W - W -z=:1 n 

One can make the analytic continuation of the above equality, the left-hand 
side of which is analytic in Izl :S R n , letting z reach the circle C(Rn) along a simple 
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curve which avoids the polar singularities p-i, i = 1, ... ,n. Bounding the modulus 
of the integral yields the inequality 

(pRn - l)M(Rn) :S Ani~~~l (M(Ri )) + DM(Rn) !c(Rn) 111~w~12' 
where D is a positive constant and An is bounded \In :S 00. By induction, 
limn--+oo M(Rn) = 0 follows easily, and the proof is completed. 0 

Combining (2.4) with (2.2), a straightforward computation of residues gives 

00 a. 00 a-a 'p-j 

a'(l)(l-pz)L _' = L (_(+)' J)( -)2' (2.5) . p'-z .. P 'J-z,l-pJ 
,=1 ',J=l 

Let a : z -+ a(z) be the generating function 

( ) clef ~ k 
a z = L...J ak+1 z , 

k2:0 

defined for z in a bounded domain of the complex plane, including the origin. 
Using point (a) of Lemma 2.1 and (2.4), the following relations hold 

(2.6) 

Since ao < 1 - p, the function a is thus analytic in the disk D(p). Identifying 
the coefficients of the power series in z in (2.5), one gets 

\lk 21. (2.7) 

It follows easily by recurrence that the ai's are of alternate signs, with a1 > O. 
Let 

f(t) ~ ~ (~)2 t j = t ~ jpi+l , P < 1, It I < p-2. (2.8) 
L...J 1 - pJ L...J 1 - tpJ+1 
j=l j=l 

Hadamard's formula, when applied in (2.7), implies the integro-differential 
equation 

, a(pz) 1 (Z) a (l)[a(pz) - a(z)] = -2-' - a(w)f - dw, 
Z7f C(r) W 

(2.9) 

valid in the domain {r:S p, Izl < p-2}. 
Taking the second form for f in (2.8), which in fact converges in the domain 

{p < 1, ~(z) :S O}, and applying Cauchy's theorem to the integral in (2.9), one 
obtains the functional equation 

a'(l) [a(pz) - a(z)] = a(pz)b(z), Izl:S p, p < 1, (2.10) 
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where 

00 

b(z) ~ z I>pi+l a (pi +1 z). 
j=l 
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From (2.10), let's make now the analytic continuation of a in the nested 
disks V(p-n), n 2: 1. It appears that a has no singularity at finite distance, and 
consequently is an integral function. From the general theory [7], it follows that a 
is completely characterized by its zeros and its order at infinity. 

Let zo be an arbitrary zero of a. From (2.10) again, a(p-izo) = 0 and the 
zeros of a form families of points in geometric progression with parameter p-l. 
It suffices to determine the zeros of smallest modulus, but, alas they do not have 
any explicit form and numerical schemes are highly unstable. However, from (2.6), 
b(l) = 0 /(1), so that (2.10) implies a(l) = 0 together with 

(2.11) 

3 On the asymptotic behaviour around p = 1 

In order to assess the practical value of the "min" policy, it is important to evaluate 
the system behaviour in heavy traffic conditions. The numerical calculations in [3] 
show that the distribution of any Xi is modal, which is not common in known 
models. 

In this section, it will be convenient to consider p not only as a parameter 
but as a plain variable. Therefore, in all quantities of interest, p will appear as an 
explicit variable, e.g. a(z,p), f(z,p) or ak(p). 

The fundamental ideas of the analysis will be given after the next lemma, 
which proposes a scaling-likely to be the only interesting one-for the function 
a(z, p). 

Let 

( ) def -al (p) 
~ p = (log p)3a/(l, p)' 

(def -ak(p) 
Ck p) = (logp)3a/(l,p)~(p)k' "Ik 2: 1, (3.1) 

00 

C(z, p) ~ L Ck+1 (p)Zk. 
i=O 

The reader will easily convince himself that the factor (1 - p)3 arises rather 
naturally; however the factor - log3 p has been chosen here, since it provides more 
compact formulas in the forthcoming results. 

Lemma 3.1. Let 

def (logp)2[ (Z ) V(Z, p) = 2. c(w, p)f -, p dw, 
Z1f C(l) W 
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The following functional relations hold: 

a(z,p) = at{p) c(z~(p),p), 

c(O, p) = 1, 

c(z,p) = c(pz,p)[1 + logpv(z,p)], 
00 

= c(pz, p) [1 + z(log p)3 L ipi+1c(pi+1 z, p)]. 
i=l 

(3.2) 

The coefficients Ck(p), k :;:, 1, are of alternate signs and the function c(z, p) 
has the following properties. 

(a) there exists only one solution c(z, p) of (3.2), which is integral with respect 
to z and bi-analytic in (z, p) in the region ° < p < 1. 

(b) Define 

g(t) ~f: ~: = rt -log(lu-U)dU, Viti ~ 1, 
j=l J 10 

denoted by some authors as dilog(l-t). Then c(z, 1) exists and satisfies the integro­
differential equation 

z oc(z, 1) = _ c(z., 1) r c(w,l)g(::')dw, 11'1= 1, Vizi ~ 1, (3.3) 
oz 2m lC(r) w 

which rewrites in the form 

z oc~~ 1) = -c(z, 1) l z 
c(w, 1) log (~) dw, 

which is equivalent to the non-linear differential system 

{ 

&(z, 1) 
z oz + c(z, l)v(z, 1) = 0, 

02v(z, l) ov(z,l) _ ( 1) 
Z OZ2 + OZ - c z, , 

with initial conditions 

v(O, 1) = 0, 
ov(z, l) 

OZ 
= 1, 

Iz=o 
c(O, 1) = 1. 

(3.4) 

(3.5) 

(c) Moreover, c(z, 1) is analytic in the open complex plane, except at a neg­
ative real point q, and c(z, 1) -=I- 0, Vz -=I- q U 00. 

Proof. The first three equations in (3.2) follow directly from the definition (2.7) 
and (2.10) of the coefficients ak(p), the fourth one coming from the analytic con­
tinua'bon of (2.9). Existence and uniqueness are simple consequences of the con­
volution equation (2.7). 

The properties relative to the morphology of c(z, p)" p ~ 1, are more intri­
cate. First, the reader will notice that (3.3) can be obtained rigorously from (2.7) 
or (2.8), but not from (3.2)! Then, there is a phase transition when p = 1. We will 
return to this topic in Section 4. 0 
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It is interesting to note that the function w(y) ~ v(eY ) + 1 satisfies the 
so-called Blasius [11 third-order differential equation 

Will (y) + w(y )w" (y) = 0, 

which arises in hydrodynamics to describe the stationary evolution of a laminar 
boundary layer along a flat plate! The explicit solution of this equation is still 
unknown, albeit it has been studied by many authors over the last decades (see 
e.g. [6]). 

Starting from Lemma 3.1, it is now possible to sketch the main ideas of the 
proposed method. The Gordian knot amounts to the evaluation of ~(p), defined 
in (3.1). This can be done via the anchoring equation 

c(~(p), p) = 0, (3.6) 

which follows from 2.11 and from the first equation of (3.2). From the structure 
of the third equation of (3.2), it appears that the smallest positive solution of 
c( u, p) = ° satisfies 

~ = (logp)2 L ipi+1c(upi+1 ,p), 
ulogp i~l 

the right-hand side of which is an analytic function, bounded in any compact set 
V p ::; 1: as p --+ 1, necessarily u --+ 00 and all positive zeros of the anchoring 
equation are sent to infinity. The key is to find the asymptotic behaviour in z of 
the various functions, in the cone ° ::; z ::; U(p), which contains ~(p): in this cone, 
c(z, p) is close to c(z, I)-in some sense-and 

v(z, p) ~ w(z, p) ~ log2 P L ipi+1c(Zpi+l, 1). 
i~l 

(3.7) 

Since w(z,I) has a logarithmic behaviour, ~(p) can be obtained by direct 
inversion. The sketch of the proof is outlined below. 

We will need the Mellin transform (see e.g. [4]) of c(z, 1), defined as 

c'(s) ~ 1000 xS-1c(x)dx. 

The behaviour of c(z, 1) in the region lR(z) > 0, given in Section 4, implies 
the existence of c' (s, 1), V s, lR( s) > ° and of all the moments of c( z, 1) on the 
positive real axis. 

Lemma 3.2. The function w(z, p) defined by (3.7) admits, Vz, lR(z) > 0, the 
asymptotic expansion 

ac'(I,I) 
w(z,p)=c'(I,I)log(pz)- as 

(3.8) 
+ (logp)2 [(logz)c)(z, p) + ll1(z, p)] + O(z-d), 

where d is an arbitrary positive number, c) and 111 are fluctuating functions of small 
amplitude for p i' 1, which vanish for p = 1. 
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Pmoj. From the Mellin transform inversion formulas, 

1 1<7+ioo [ log p ] 2 
w(z, p) = -2. . z~sc*(s + 1,1) -1 _ S ds, 

~7r <7~tOO P 
'tjuE(-l,O). (3.9) 

Let Sn ~ 2in7r 10g~1 p, 'tjn E Z. Cauchy's theorem can be applied to (3.9), by 
integrating along the vertical line ~(s) = d > 0, so that 

" [ oc*(sn + 1,1)] d w(z, p) = L...- z~Sn c*(sn + 1,1) log(pz) - as + O(z~ ). (3.10) 
nEZ 

The series above is equal to the sum of the residues, taken on the vertical line 
~(s) = 0, and is uniformly bounded, 'tj p ~ 1. Indeed, an integration by parts gives 
the inequality 

IC*(Sn + 1,1)1 = 1100 
ySnc(y, l)dy l ~ 1 r(~~s::; 1) 1100 

yklc(k)(y, l)ldy, 

where c(k) is the k-th derivative of c(z, 1) and r(x) is the usual Eulerian function. 
Since 

1 
r(sn+1) 1 < logkp 

r(sn+k+1) k!' 

the proof of (3.8) and of the lemma is concluded. 

TheoreIll 3.3. For some real number d > 1, the following expansions hold. 

p~(p) [ _ 1 _ ologc*(l, 1)] (1 0((1 )d)) 
exp logpc*(l,l) os + ogp , 

a'(l,p) = 1 d 

(logp)2c*(1, 1) + O((1ogp) ). 

Pmoj. From (3.6), ~(p) is solution of the equation in x 

1 + logpv(x, p) = 0. 

o 

(3.11) 

(3.12) 

A deep analysis, which is not included here, shows that this equation can be 
replaced by the locally equivalent equation 

1 + logpw(x,p) + O((logp)P) = 0, 

where p is a positive number, p > 1. Then, from Lemma ~{.2, 

(3.13) 

--1 1 = log(px)c*(l, 1) - OC*~l, 1) + 10g(px)<I>(x,p) + w(x,p) + O(x~d), 
ogp s 

(3.14) 

which implies (3.11). 
For the computation of a'(l,p), one uses the simple relation 

'( ) a1 pa 1,p =--a1, 
aD 

obtained by derivation of (2.2) at z = 0, and (3.12) follows. o 
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4 Remarks and complements 

It is important to note that one of the main technical difficulties of the problem, 
besides its strongly non-linear feature, comes from the phase transition which 
appears for p = 1. Actually, c(z,p) > 0 for 0 ~ z < ~(p) and c(~(p),p) = o. Then, 
for z » ~(p), c(z, p) has wild unbounded oscillations. In particular, this implies 
that 1000 c(x, p)dx does not exist. 

On the other hand, when p = 1, the c(z, 1) is no more an integral function: 
it has a singularity (which seems to be a pole of order 3) located on the negative 
real axis; it does not vanish for z 2 0, and the quantity 1000 c(x, l)dx = A is finite. 
In the half plane ~(z) > 0, the following expansions hold: 

c(z, 1) [ c*(I, 1) I 2 BI Dlogz (logz)] exp - 2 og z + og z + --2- + 0 -2- , 
Z z 

v(z,l) D log z (log z) 
c*(I, 1) logz + B + -Z-2- + 0 7 ' 

where Band D are some constants. 

Finally, iterating (3.2), one could improve some of the estimates given in the 
previous section, rewriting c( z, p) as 

I 

c(z,p) = C(Zpl+l,p) II [1 + logpv(zpi,p)), 
i=O 

where I is an arbitrary positive integer. The above product is uniformly convergent, 
VI ~ 00, for all z in a compact set of the complex plane, since it behaves like the 
series 

z(logp)3 L L ipi+k+lC(Zpi+k+l ,p). 
k2:0i2:1 

This series has its modulus bounded by Izp2c(pz,p)l, so that, from the maxi­
mum modulus principle, it converges uniformly. Then, one can choose I to ensure 

I. logz 
0< zp ~ 1, I.e. I ~ ---, 

logp 

and make use of the properties of the r function to estimate the product. 
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A new proof of Yaglom '8 exponential limit law 
JOCHEN GEIGERI Universitiit Frankfurt, Fachbereich Mathematik, 
Postfach 111932, D-60054 Frankfurt, Germany 

Abstract. Let (Zn)n?:O be a critical Galton- Watson branching process with finite vari­
ance. We give a new proof of a classical result by Yaglom that Zn conditioned on Zn > 0 
has an exponential limit law. 

Introduction 

Consider a Galton-Watson branching process (Zn)n~O starting with a single found­
ing ancestor at generation 0 where each particle independently has probability Pk 
of producing k offspring. Let J1, := 2:k kpk be the mean number of children per 
particle. The most basic and well-known fact about Galton-Watson processes is 
that the population gets eventually extinct if and only if J1, :::; 1 and PI "I- 1. In 
the critical case J1, = 1 the asymptotic behavior of the nth generation size Zn, if 
conditioned on non-extinction at generation n, is described by the following limit 
theorem due to Kesten, Ney and Spitzer [5]. The result was originally proved by 
Yaglom [12] under a third moment assumption. 

Theorem 1 Suppose that J1, = 1 and let 0 < a2 := 2:k k(k - I)Pk < 00. Then 

lim P(n- l Zn ~ x I Zn > 0) = exp( -2x/(2 ), x ~ o. 
n~oo 

Classical proofs of Yaglom's exponential limit law are by means of generating 
functions (see e.g. [1]). The purpose of this note is to give a proof of Theorem 1 
which explains the exponential limit law. Note that if Xl and X2 are independent 
copies of an exponential random variable X, and U a uniform random variable on 
[0,1] independent of the Xi, then 

(1) 

(See this by considering the ratio of the first and the second point of a homoge­
neous Poisson process on IR+ .) In the context of Theorem 1 the random variables 
U Xl and U X2 will be identified as the rescaled descendancies of the children of 
the most recent common ancestor (MRCA) of the particles at generation n. Given 
non-extinction at generation n there are asymptotically no more than two chil­
dren of the MRCA with a descendant at n. These children found independent 
Galton-Watson processes conditioned on non-extinction at n. The scaling factor 
U reflects the fact that the conditional distribution of the generation of the MRCA 
is asymptotically uniform. 

The harder part of our proof is to establish convergence in the first place 
which we do using the so-called contraction method [7,9, 11]. There we will make 
use of the fact that property (1) characterizes the exponential distribution. 

For a proof of Yaglom's limit law via some other characterization of the 
exponential distribution see [8]. 

1 Research supported by Deutsche Forschungsgemeinschaft 
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Identification of the limiting distribution 

Consider the random family tree T produced by the Galton-Watson branching 
process. We think of T as a rooted planar tree with the distinguishable offspring 
of each vertex ordered from left to right. On the event Zn > 0 decompose the nth 
generation size as 

N n 

Zn = LYn,j, (2) 
j=1 

where Yn,j is the number of descendants at generation n of the jth child of the 
MRCA having non-empty descendancy at n, and Nn is the number of those chil­
dren. To avoid separating the case where generation n consists of a single particle 
we define Nn = Yn,1 = 1, if Zn = L Let Hn be the generation of the MRCA and 
set 

Vn := n - Hn - 1, 

that is Vn + 1 is the distance to the MRCA. It is easy to see that given Nn = k 
and Vn = m, 0 ~ m ~ n - 1, the Yn,j are independent and identically distributed 
with 

C(Yn,j INn = k, Vn = m) = C(Zm I Zm > 0), 1 ~ j ~ k. (3) 

Denote by Z~ a random variable with distribution 

C(a~l Zn I Zn > 0), 

where an, n ~ 0, is a sequence of positive real numbers to be specified later. 
Furthermore, let (V:, N~) have distribution 

Then (2) and (3) imply the following identity in law. 

N: 
Z • d anv,.· L Z· 1 

n = -- nll' J"' n ~ , a n' 
n j=l 

(4) 

where for any i ~ 0 the Zi,j' j ~ 1, are independent copies of Z;, independent of 
(V:, N~), and we have set a-I Z-I,I := L 

A natural normalization is to choose 

an = E(Znl Zn > 0), n ~ o. 
The growth of the an is described by Kolmogorov's asymptotic (see e.g. Theo­
rem I.9.1 in [1]), 

(5) 

Since an grows linearly, the first factor on the right-hand side of (4) is asymptoti­
cally equivalent to V: which has a uniform weak limit (Proposition 3.2 in [3]), 

V; ~ U as n -t 00. (6) 
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Finally, for the asymptotic behavior of N~ note that taking expectations on either 
side of (4) yields 

1 = E (a:~* N~). (7) 

Since 1 = 2EU and N~ ~ 2 unless nV; = -1, relation (7) shows that the MRCA 
asymptotically has exactly two children with a descendant at generation n, 

d 
N~ -t 2 as n -t 00. (8) 

Passing to the limit n -t 00 in (4), we see from (5),(6) and (8), that if Z~ has a 
weak limit X, say, then X satisfies (1). 

Proof of convergence 

We now come to the question of convergence. The idea behind the contraction 
method is to view (1) as a fixed point equation and to use the recursive structure (4) 
of the law of Z~ to prove convergence towards this fixed point in some appropriate 
metric. 

Recall that the L 2 - Wasserstein (or Mallows) distance between two probability 
measures a and (3 on IR with finite second moment is defined as 

d2 (a,(3) := inf y'E(X - Y)2, 
x~Q;, Y~i3 

(9) 

where the infimum is over all pairs of random variables X and Y, where X has 
law a and Y has law (3. We record the following basic properties of d2 (see Section 8 
of [2] for a detailed discussion of such metrics). 

The infimum in (9) is attained. (10) 

d2 (an , a) -t 0 {::=:} an -t a weakly and Jx 2 a n(dx) -t Jx 2a(dx). (11) 

We will show that the d2-distance between C(Z~) and the exponential distribution 
with mean 1 goes to 0 as n -t 00 (note that Z~ has finite second moment due to 
the assumption a 2 < 00). 

Let Zn denote a random variable with distribution 

C(a;;-l Zn I Zn > 0, Nn = 2). 

By (2) and (3) we have 

Zn:1:: an\!,. (Z* - + Z* - ) n ~ 1, 
an nv",l nv",2' (12) 

where the Z~j are as in (4), independent of Vn having distribution 
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Using the representation of C(Zn) in (12) and the fact that EZ~ = 1 + a2n, it is 
easily shown that 

lim EZ; = 2 = lim a;;-2 E(Z; I Zn > 0). 
n-+oo n-+oo 

Consequently, by (8) and (11), 

d2(C(Zn), C(Z~)) -t ° as n -t 00. (13) 

We now proceed in much the same way as in the proof of Theorem 3.1 in [10]. 
Fix independent random variables Xl, X 2 and U, where the Xi have exponential 
distribution with mean 1 and U is uniform on [0, 1]. By (10), we can choose versions 
Vn and Zi,j' such that 

E(Vn - U)2 

E(Zi,j - Xj)2 

d2(C(Vn), C(U))2; 

d2(C(Zi),C(X))2, i 2': 0, j = 1,2. 

(14) 

(15) 

Write bn := d2(C(Z~), C(X))2. Using first (13) and then (1), (12) and the definition 
of d2 in (9), we have 

bn d2(C(Zn), C(X))2 + 0(1) 

< E( a;~ (Z~y",l + Z~y",2) - U(XI + X 2) f + 0(1) 

2E( anY.. Z*- _ UXI)2 + 
an nv",l 

2 E( anY.. Z· - - U Xl) (anY.. Z· - - U X2) + 0(1). (16) an nv",l an nv",2 

Since EXj = EZ· iT . = 1, the second term on the right-hand side of (16) equals 
nVn,J 

( a - )2 2E ;: - U , 

which vanishes as n -t 00 in view of (5),(6) and (14). Using first this argument 
again and then relation (15), we obtain 

bn < 2E( a;~ Z~y",l - UXlr + 0(1) 

2E( a;~ (Z~y",l - Xl) + Xl (a;~ - U) r + 0(1) 

= 2E( a;~ (Z~y",l - Xl) r + 0(1) 

n-l _ a. 2 

2 L P(nVn = i) ( ~) E(Z;'1 - Xt}2 + 0(1) 
i=O an 
n-l _ a. 2 

2 L P(nVn = i) (~) bi + 0(1). 
i=O n 

(17) 
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Combining (17) with (5) and (6) we deduce 

b := lim sup bn ::::; 2b lim sup EV; = 2b EU2 = 2b/3, 
n~oo n~oo 

which shows that bn -+ 0 as n -+ 00 and completes our proof of Theorem 1. 

We remark that our proof shows that property (1) characterizes the exponential 
distribution among distributions with finite second moment. In fact, if a random 
variable X with positive finite mean satisfies (1), then X is exponential ([6]; see [7] 
for a comprehensive treatment of fixed point equations of this type). We note 
that the proofs of (5) and (6) do not depend on Yaglom's exponential limit law. 
Elementary probabilistic proofs of these and other limit theorems can be found 
in [4]. 
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Abstract. We present some recent results concerning the branching measure, the exact 
Hausdorff measure and the exact packing measure, defined on the boundary of the Galton­
Watson tree. The results show that in good cases, these three measures coincide each 
other up to a constant, that the branching measure is homogeneous (it has the same local 
dimension at each point) if and only if a certain simple condition is satisfied, and that it 
is singular with respect to the equally splitting measure. Similar results on marked trees 
are also presented, and are applied to the study of flows in networks and to the search of 
exact gauges for statistically self-similar fractals in IRn . 

1 Introd uction and notations 

We study natural measures defined on the boundary of the genealogical tree of a 
supercritical Galton-Watson process. 

First, under simple conditions, we calculate the exact Hausdorff measure, 
show that it coincides with the branching measure up to a multiplicative constant, 
and obtain a similar result for the packing measure. 

Next, we investigate carefully the local dimensions of the branching mea­
sure, and we find its various critical exponents: its maximum and minimum local 
dimensions, its exact local dimension at typical points, etc. In particular we ob­
tain a criterion which enables us to know when exactly the branching measure is 
homogeneous: it has the same local dimension at any point. 

Then, we compare the branching measure with the equally splitting measure; 
in particular, we find that they are mutually singular. 

The study of the three measures enables us to obtain new geometrical de­
scriptions of the exponents of the tail probability of the limit variable of the natural 
martingale, considered by T.E. Harris [6] from the very beginning of the develop­
ment of the theory of branching processes. 

Finally, we give an extension of certain results to the marked trees, which 
enables us to determine the exact gauges (in the sense of Hausdorff or of packing) 
for a large class of statistically self-similar random fractals in IRn . 

Let us introduce some notations that we shall use in all the following. 

Set N* = {I, 2 ... }, N = {O} U N* and let U = {0} U U;:O=I (N*) n be the set 
of all finite sequences U = UI ... Un = (UI' ... , Un), containing the null sequence 
0. If U = UI ... Uk = (UI' ... , un) (Ui E N) is a finite sequence, we write lui = n 
and ulk = UI ... Uk, k :S n; by convention 101 = 0 and ulO = 0. If v = VI ... VI is 
another sequence, we write uv for the juxtaposition UI ... Un VI ... VI; by convention 
u0 = 0u = U for all u. We write U < u' or u' > U if u' = uv for some sequence v. 
These notations are extended in an obvious way to infinite sequences. 
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Let (0, F, P) be a probability space, and {Nu}uEI[] be a family of independent 
random variables, defined on (0, F, P), each distributed according to the law {Pn} 
on N. Let T = T(w) be the Galton-Watson tree with defining elements {Nu} [29]: 
we have 0 E T and, if u E T and i E N*, then the juxtaposition ui E T if and 
only if 1 ~ i ~ Nu . Let aT = {UIU2 ... : "In ~ O,Ul ... U n E T} be the boundary of 
T equipped with the ultra-metric 

d(u,v) = e-1u/\v l , 

where u /\ v is the common sequence of u and v: i.e. u /\ v = uln = vln with 
n = max{k EN: ulk = vlk}; by convention d(u,v) = 0 ifu = v. 

We are interested to the super-critical case. For simplicity, we write N = N0, 
m = EN, and we suppose that Po = 0, that N is not almost surely (a.s.) constant 
and that EN log N < 00. Therefore the limit 

Z = lim card {u E T: lui = n}/mn 
n-+oo 

exists a.s. with EZ = 1 and P(Z > 0) = 1. Let f.l (= f.lw) be the unique Borel 
measure on aT such that, for all balls Bu = {v E aT : u < v}, u E T, 

f.l(Bu) = m-1uIZu, where Zu = lim card{v E T: u 1<1 v, Ivl = n}; 
n-+oo m n - u 

in other words, 

(B ) - Z l' card{ vET: u < v, Ivl = n} 
f.l u - 1m . 

n-+oo card{v E T: Ivl = n} 

It will be useful to notice that Bu is a ball of diameter IBul = e- 1ul . The measure 
f.l is of mass Z; as in [21] and [22], we call it the branching measure on aT 
(or simply on T) because it describes the asymptotic proportion of the number of 
descendants of each individual u E T in the total population size of n-th generation 
(as n --+ 00), and it plays an essential role in the study of geometric measures on the 
Galton-Watson tree T. This measure is studied by many authors, see for example 
[11, 30, 9, 27, 24]. 

2 The exact Hausdorff measure 

If A C aT and if 9 : 114 --+ 114 is a gauge function (non-decreasing and right 
continuous with g(O) = 0), we write 

g-H(A) = lim inf{Lg(IUil) : A c U Ui , IUil ~ 8} 
8-+0. . 

t t 

for the Hausdorff measure of A under the gauge g. As (aT, d) is an ultra-metric 
space, the value of g-H(A) is invariant if we replace the Ui by balls Bu , u E T [15, 
Lemma 0]. 
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Hawkes [9] showed that if N has a geometric law on N*, then ¢>-H (8T) = Z 
a.s., where ¢>(t) = t a log log t and a = log m. In solving a conjecture of Hawkes, we 
have extended in [15] his result to the general case. To introduce our main result, 
let us define 

m:= ess sup N, f3+ = 1 -logmj logm, (1.1) 

r+ = sup {t?: 0: Eexp(tZ1//3+) < oo} = liminf _x- 1 //3+ logP{Z > x} (1.2) 
x-too 

(cf. [16] for the equality (1.2)). Then 1 < m < m :S 00, 0 < f3+ < 1 if m < 00 and 
f3+ = 1 if m = 00, and 0 :S r + :S 00. The following theorem gives the exact gauge 
of 8T in the sense of Hausdorff. 

Theorem 1.1 [15]. Let f3+ and r + be defined in (1.1) and (1.2), and write 
¢>+ (t) = t a (log log t )/3+. Then 

<p+-H (8T) = (r +)/3+ Z a.s. 

Moreover, 0 < r + < 00 if either of the following two conditions is satisfied: (a) 
m < 00; (b) Eexp(tN) < 00 for some but not all t > O. 

(By convention oa = O,ooa = 00 and ooa = 00 if 0 < a < 00.) The result 
shows that when the right tail probability P(Z > x) decreases exponentially, there 
is a gauge ¢>+ such that 0 < ¢>+-H(8T) < 00. When ENP = 00 for some p > 1, 
it is evident that r + = 0, so that ¢>+-H(8T) = 0, which means that the function 
¢>+ is too small to be a good gauge. In fact, in this case there exists an exponent 
0< 'Y < 00 such that, for 'l/Jb(t) = t a (1og t)b, we have 'l/Jb-H(8T) = 0 if b < 'Yand 
¢>b-H(8T) = 00 if b > 'Y [15]. 

More precisely, we can prove that the exact Hausdorff measure coincides with 
the branching measure up to a multiplicative constant: 

Theorem 1.2 [20]. Let ¢>+ be the function defined in Theorem 1.1. If either 
(a) or (b) of Theorem 1.1 is satisfied, then a.s. for all Borel set A c 8T, 

3 The exact packing measure 

In replying to a question of S.J.Taylor, we have shown in [20] a result similar to 
Theorem 1.1 for the packing measure (cf. [33]). 

If A c 8T and if g is a gauge, the g-packing pre-measure of A is by definition 

g-P (A) = lim sup{L g(IBul) : Bu are disjoint, Bu n A =I- 0 and IBul :S 8 }. 
6-t0+ 

u 

In general, g-P(.) is finite-additive but not a-additive. We define by 

u 
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the spherical g-packing measure of A. g-P*(.) is an outer measure. Its restriction 
to the class of Borel sets is a measure; when g-p(aT) < 00, this measure coincides 
with the g-premeasure on the class of finite unions of balls Bu [20]. 

When PI = 0, we write 

m:= essinf N, (3- = 1 -logmflogm, (2.1) 

r_ := sup {t ~ 0: Eexp(tZI/ fJ-) < oo} = liminf -x-I/fJ-IogP{Z < x}; (2.2) 
x---+o 

thus 1 < m < m < 00, -00 < (3- < 0 and 0 < r _ < 00. 
The following result is similar to Theorem 1.1: 
Theorem 2.1 [20]. Suppose that PI = O. Let f3- E (-00,0) and r _ E (0,00) 

be defined in (2.1) and (2.2), and set <P- (t) = t<>(log log t )fJ-. Then 

<p_-p*(aT) = (r _)fJ- Z a.s. 

The result shows that when PI = 0, i.e. when the left tail probability P(Z ::; 
x) decreases exponentially as x -+ 0, then there exists a gauge <p- such that 
0< <p_-p*(aT) < 00 a.s. The case where PI > 0 is also discussed in [20], but the 
situation is not yet quite clear. 

Just as in the case of Hausdorff measure, the exact packing measure also 
coincides with the branching measure up to a constant: 

Theorem 2.2 [20]. Under the conditions of Theorem 2.1, a.s. for all Borel 
sets A caT, 

4 Local dimensions of the branching measure 

Let 4(JL, u) and d(JL, u) be the lower and upper local dimensions of JL at u EaT: 

d( ) I· . f -logJL(Bu1n ) 
_ JL,U = Imlll , 

n---+oo n 
- . -logJL(Buln) 
d(JL, u) = hmsup . 

n---+oo n 

It is well-known that (cf. [9] and [27]) a.s. 

4(JL, u) = d(JL, u) = 0: for JL-almost all u E aT. (3.1) 

A natural question is to know when (3.1) holds for all u E aT. This question 
is solved in [22]; the answer will be given below. In the proof, more precise infor­
mations are given about the uniform bounds of 4(JL, u) and d(JL, u). To find these 
bounds, we are led to a study of asymptotic properties of 
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which is interesting by its own. To prove the asymptotic properties, we first estab­
lish an interesting result concerning the convergence of iterations of a probability 
generating function. 

Our results show that the branching measure behaves like the occupation 
measure of a stable subordinator or a Brownian motion if and only if the law of 
reproduction satisfies a certain condition. 

Another interesting question is to calculate the exact local dimension of J.t for 
J.t-almost all u E aT (the typical u). This question is also solved in [22]. 

Let us quote some results of [22]. We shall use the convention that 1/00 = 0, 
110 = 00 and log 00 = 00, and the following notations: 

P = 10g(1/pI) and P+ = sup{a ~ 1: ENa < oo}. 
- logm 

Then it is evident that p_ = 00 if and only if PI = 0, and that P+ = 00 if and only 
if ENa < 00 for all a > 1. By classic results on the limit variable Z (cf. e.g. [1]), 
. . ·f h I· log P(Z<x) d I·· f -log P(Z>x) It IS easy to ven y t at P- = Imx -+o log x an p+ = 1m m x-->(X) log x . 

Theorem3.1 [22].A.s.limn -+oo -Iogmn = (l+...!...)o:andliminfn-+oo -logMn 
n p__ n 

(1 1) If dd·· all I· - log P(Z>x) th I· -log Mn 
- p+ 0:. a ItlOn y p+ = Imx -+oo log x ' en a.s. Imn-+oo n = 

(1 - ...!... )0:. 
p+ 
The proof of the theorem uses the "first moment method" and the following 

result about the iteration of a probability generating function. 
Theorem 3.2 [22]. Let f(t) = ~~=o Pntn be a probability generating func­

tion, and write h(t) = f(t) and fn+l(t) = fUn(t» for n ~ 1. Let p and c be two 
numbers in (0,1]. Under the only condition Po = 0 and m := ~~=o nPn < 00, we 
have the following assertions: 

(i) if p > 11m, then there exist two constants 0 < ,x < 1 and 0 < K < 00 such 
that, for all n large enough, fn(1- cpn) ::; K,xn; 

(ii) if p = 11m, then liminfn fn(l- cpn) 2': e-c ; 

(iii) if p < 11m, then limn fn(l - cpn) = 1. 

If p < 1, the assertions are also valid for c > 1, so that for all 0 < c < 00. If 
p = 1, we need the hypothesis c ::; 1 to ensure that 1 - cpn 2': o. 

Part (a)(i) of the following theorem gives a necessary and sufficient condition 
under which a.s. there is no exceptional point in (3.1). 

Theorem 3.3 [22]. Suppose that EN1+f < 00 for some f > 0 and that 
- r -logP(Z>x) 

P+ - Imx -+oo log x • 

(a) We have the following assertions: 

(i) a.s. d(J.t, u) = d(J.t, u) = 0: for all u E aT if and only if P+ = p_ = 00; 

(ii) a.s. d(J.t, u) = 0: for all u E aT if and only if P+ = 00. 

(b) More precisely, we have: 
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(i) if P+ = P- = 00, then a.s. f1.(/-L, u) = d(/-L, u) = a for all u EaT; 

(ii) if P+ = 00 and P- < 00, then a.s. f1.(/-L, u) = a for all u E aT, and 
d(/-L, u) > a for some u EaT; 

(iii) if P+ < 00, then a.s. f1.(/-L, u) < a for some u EaT. 

(c) Moreover, a.s. SUPuE8T f1.(/-L, u) = a and infuE8T f1.(/-L, u) = (1 - IIp+)a. 

Part (b)(i), the conclusions for f1.(/-L,u) in Parts (b)(ii) and (c), and therefore 
the "if" parts of (a)(i) and (a)(ii), all hold without the conditions of the theorem. 

In the proof, in addition to the use of Theorem 3.1, to prove that a certain set 
is not empty, we construct a non-homogeneous Galton-Watson process by choosing 
"good" generations and "good" individuals ofthe initial process, and we prove that 
the new process is not extinct with positive probability. 

Part (b)(ii) shows that, when p+ = 00 and p_ < 00, the branching measure 
and the occupation measure of a stable process [10] have the same property that 
a.s. the lower local dimension is constant but the upper local dimension is not so. 
Parts (b)(i) and (b)(iii) show that in the other cases, a new phenomenon occurs 
for the branching measure compared with the stable occupation measure. 

The following result shows that Theorem 3.1 can be improved in the case 
where Z has an exponential right tail probability. 

TheoreIll 3.4 [22]. (a) Suppose that PI = 0. Let /1- and r _ be defined in 
(2.1) and (2.2), and let C_ := (alr_)IL (E (0,00)). Then liminfn-4oo m;mn = 

n -

C_ a.s.; ifadditionallyr_ = limx -4oo -log:;~Z<x},= 
x -

then limn-4oo m~mn = C_ a.s. 
n -

(b) Let fh and r + be defined in (1.1) and (1.2), and let C+ := (air +),6+ E [0,00]. 
Then limsuPn-4CXJ m:f3~n = C+ a.s.; if additionally r + = limx-4CXJ -lO!:;~!>x}, 
then limn-4oo m;:f3~n = C+ a.s. 

In Part (b), the first conclusion was first established in [25]; in the case where 
N has a geometric law (so that C+ = 1), the second conclusion was proved by 
Hawkes [9, Theorem 3]. Notice that the equalities about the limits can be written 
. h C I· . J.L(B u1n ) C d I· J.L(B u1n ) 
III t e lorm Imn-400 mllluE8T ¢+(IBulnil = - an Imn-4CXJ maxuE8T ¢+(IBulnl) = 
C+, where <p+ (t) = to< (log t ),6+; in this form the results are similar to asymptotic 
laws for a stable subordinator or for a Brownian motion: cf. [9, Theorem 1], [10, 
(3.1)]' [13, Theoreme 52,2, p.172], [8, Theorem 2] and [31, Lemma 2.3 and Corollary 
5.2]. 

The following theorem gives the exact uniform bounds of local dimensions 
of /-L. 

TheoreIll 3.5 [22]. (a) If r + = limx-4oo -lO!:;~!>x}, then 

. mn/-L(Buln) 
sup hm sup ,6 = C+ a.s. 

uE8T n-4OO n + 

(b) Suppose that PI = 0, that ENP < 00 for all p > 1, and that 



Branching Measure, Hausdorff and packing measures 257 

1· -logP{Z<x} th r - = lmx -+oo x 1 //3- , en 

. f 1· . f mnJ.L(Bu1n ) C In 1m In to = _ a.s. 
uE8T n-+oo nl-'-

Our last result of this section concerns the exact local dimension of J.L at 
typical points; it gives a precise estimation of large values of J.L(Bu1n ) for J.L-almost 
all u: 

Theorem 3.6 [22]. For P-almost all wEn and J.Lw-almost all u EaT, 

. mnJ.L(Buln) 1 
hmsup {3 =--a-. 

n-+oo (log n) + rl-'+ 
+ 

When N has a geometric law, the result was proved by Hawkes [9]. 
In view of the above results, it is then natural to calculate the Hausdorff 

dimensions of some sets of exceptional points; this has been done very recently in 
[32] and [26]. 

5 The branching measure and the equally split­
ting measure 

There is another natural measure on aT, called the equally splitting measure. 
It is the unique Borel measure v (= vw ) on aT such that v( aT) = 1 and, for all 
u E T with lui::::: 1, 

lul-l 1 
v(Bu) = II N· 

k=O ulk 

In other words, v is the probability measure on aT whose mass at each individual 
u E T is equally split to its descendants ui in the sense that for all 1 ~ i ~ N u , 

V(Bui) = v(Bu)JNu. 
O'Brien [30] proved that the branching measure J.L has no atom a.s.; A. Joffe 

[11] asked under which conditions the measure J.L could be absolutely continuous 
with respect to v. In replying to the question of Joffe, we proved with A. Rouault 
the following result: 

Theorem 4.1 [24]. A.s. the measures J.l and v have no atom, and are mu­
tually singular. 

Under classic moment conditions, we can compare precisely the two measures 
by calculating their Holder exponents at typical points: 

Theorem 4.2 [24]. Suppose that ENlogN < 00. Then: 

(a) For P-almost all wEn and J.Lw- almost all u E aT, as n -+ 00, 
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(b) For P-almost all wEn and vw-almost all U EaT, 

log J.tw (Bu1n ) 1 d 10gvw(Buln) El N 
-t - og m an -t - og . 

n n 

Of course, the first formula in (a) is nothing but (3.1). 
In fact, in [24], Theorems 4.1 and 4.2 are extended to marked trees; such an 

extension enables us to generalize a result of Kahane and Peyriere [12] concerning 
the dimension of the Mandelbrot measure for multiplicative cascades [28]. 

6 Marked trees 

Just as in the preceding section, the results of sections 1 and 2 can also be ex­
tended to marked trees: this time each vertex U E T is marked with a sequence 
of positive weights Aui , 1 ~ i ~ N u, where (Nu, Aul , Au2 , ... )UEIU is a family of 
independent random variables with values in N x Il4 x Il4 x ... , each distributed 
as (N, AI, A2 , .•• ). We can. also think that each edge linking the vertices ui and u 
is marked by the weight Aui , 1 ~ i ~ N u; or, equivalently, each vertex u = UI •.• U n 
is equipped with the weight 

(5.1) 

Suppose that for some 0: E (0,00), 

N N N N 

EL:A? = I,E(L:Af)log+(L:A?) < 00 and - 00 < EL:AilogA i < 0, 
i=l i=l i=l i=l 

(5.2) 
then Yn = LUET,lul=n X;:: (n ~ 1) is a positive martingale which converges a.s. to 
a random variable, also denoted by Z, satisfying EZ = 1. Similarly, for all U E lU, 
the limit 

Zu = lim 
n-+<Xl 

V=Vt ••• vnETu 

exists a.s. It is easy to verify that a.s. for all U E lU, XuZu = L~uI XuiZui . 
Therefore a.s. there exists a unique Borel measure, also denoted by J.t = J.tw, such 
that 

(5.3) 

or, equivalently, 

(B ) - Z 1· Llvl=n,vET,u<v Xv 
J.t u - 1m . 

n--+<Xl Llvl=n,vET Xv 

In [14], [19] and [23], we have used this measure to study flows in networks and 
exact gauges of random fractals in IRn. As in [21], we call J.t the generalized 
Mandelbrot measure because, when N = r is a constant ~ 2 and when the 
Ai are i.i.d., it coincides with the Mandelbrot measure for multiplicative cascades 
on r-ary trees [28, 12]. If EN < 00 and Ai = 1/ EN, it reduces to the branching 
measure; so we can also call it the generalized branching measure. 



Branching Measure, Hausdorff and packing measures 259 

We can equip 8T with the ultra-metric dc ( u, v) = C-IUAVI, with c > 1 given, 
and study the Hausdorff and packing measures of the support of p,: this is what 
we do in [12], [24] and [21]. 

We can also equip 8T with a distance associated with the weights X = (Xu)u, 
and study the Hausdorff and packing measures of 8T: this is what we are going 
to explain. This study is interesting due to its applications to the study of flows in 
networks and to that of random fractals in]Rn, as will be seen below. For simplicity, 
we suppose that 

P(N ~ 1,0 < Ai ~ 1 Vi E {I, ... , N}) = 1 and P(A1 = ... = AN = 1) < 1. (5.4) 

Thus Z > 0 a.s. and 
dx{u,v) = XuAv (5.5) 

is an ultra-metric on 8T (by convention dx (u, v) = 0 if u = v). In the following 
statements, we use this distance, and we write 

rb = sup{r ~ 0: Eexp{rZb) < oo}, -00 < b < 00, (5.6) 

which is equivalent to rb = liminfx-+oo -IOg:fz>x) if b ~ 0, and 

rb = lim infx-+D -log :~Z<X) if b < o. Of course 0 ~ rb ~ 00. Set 

(5.7) 

As in sections 1 and 2, we denote by cl>b-H the Hausdorff measure and by cl>b-P* 
the spherical packing measure, with the gauge cl>b, and we admit the' convention 
that ooa = 00 if a > O. 

Theorem 5.1 [23]. Assume (5.2) and (5.4). Then for all b > 0, a.s. 

(5.8) 

If additionally r1/b < 00, then a.s. for all Borel sets A C 8T, 

(5.9) 

According to the theorem, cl>b-H{8T) and r1/b are simultaneously zero, pos­
itive and finite, or infinite. It is therefore important to find the critical value of 
b > 0 such that 0 < r1/b < 00; the following result gives this value under some 
conditions. 

Theorem 5.2 [23]. Suppose that IINlloo < 00 and that 112:[:1 Tixll oo ~ 1 
for some x > O. Let 'Y > a be the least solution of the equation 112:[:1 Ti"Ylloo = 1, 
and set /3 = 1 - a/'Y. Then 

ifO<b</3, 
ifb = /3. (5.10) 
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We have also Tl/{3 < 00 if additionally there exist some constants 0 < J < 1, a ~ 0 
and c > 0 such that, for all x > 0 small enough, 

N 

P{L:T? > 1- x and Ti :::; J for all 1 :::; i:::; N} ~ cxa . (5.11) 
i=l 

There is an interesting interpretation of the above results in terms of flows 
in the network composed with the tree T and a capacity Cu > 0 assigned to each 
vertex U E T. A positive flow in the network is a function f : T ~ ll4 such 
that f(0) > 0 and that, for all U E T, f(u) = 2:~ul f(ui) and f(u) :::; Cu' If 
9 is a gauge, then g-H(aT) > 0 if and only if a positive flow is possible in the 
tree T with capacities Cu = g(Xu), u E T. (Using the famous "max-flow min­
cut" theorem [4), Falconer [2] proved that the positivity of the liminf of "cut-set 
sums" of g(Xu) is equivalent to the existence of a positive flow in the tree T with 
capacities Cu = g(Xu), u E T; we have observed in [14] that the liminf above is just 
g-H(aT). A simple and direct proof of the criterion is given in [22]. ) According to 
Theorem 5.2, under simple conditions, the gauge ¢{3 is the minimal function ¢ for 
which a positive flow is possible in the tree T with capacities Cu = ¢(Xu ), u E T: 

in other words, a flow is possible in the tree T with capacities Cu = ¢(3(Xu), u E 
T, and is impossible if the capacities are Cu = ¢(Xu) with ¢ less then ¢{3 in the 
sense that limHo ¢(t)/¢{3(t) = O. 

The following result for the packing measure is similar to that for the Haus­
dorff measure. 

Theorem 5.3 [19]. Suppose that the conditions (5.2) and (5.4) are satisfied, 
that N ~ 2 a.s. and that for some b < 0, 0 < Tl/b < 00 (b is necessarily unique). 
Then a.s. 

(5.12) 

for all Borel set A C aT, 
In some cases (for example, the case where the sequence {Ad is i.i.d. and 

independent of N, and the case where Ai = A2 = ... and independent of N) and 
under some conditions, we can calculate explicitly the critical value of b < 0 such 
that 0 < Tl/b < 00 [17, 18]. 

The results can be easily applied to the determination of exact gauges for 
some statistically self-similar random fractals in ~n, and thus enable us improve 
and generalize the results of Graf, Mauldin and Williams [5] and of Falconer [2, 3]., 
In fact, a Cantor-like fractal, constructed from an initial compact J0 c ~n and by 
a self-similar procedure, is naturally associated with a tree; thus a compact Ju of 
generation n gives birth to Nu new compacts JUi C Ju (1 :::; i :::; Nu) of generation 
n + 1. We are interested to the determination of exact gauges for the limit set 
K = nn2:1 UuET,lul=nJu in ~n. Each vertex u is equipped with the weight Xu = IJul 
= diameter of Ju' Writing AUi = IJuil/lJul, we can apply the preceding theorems to 
find exact gauges of aT equipped with the metric d(u,v) = XUI\V = IJul\vl. Notice 
that the exact gauges of aT depend only on the algebraic aspect (the diameters of 
generators) of the fractal K, which are therefore easier to calculate than those of 
K C ~n. However, under simple geometric conditions (which are often satisfied), 
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we can prove that the exact gauges of the boundary aT of the tree T are equal to 
those of the fractal K in ]Rn. (cf. [14, 19,23].) 

Acknowledgment. The author thanks a referee for valuable comments and remarks. 
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Abstract. We consider statistical models for finite systems of branching diffusions with 
immigrations. We give necessary and sufficient conditions for local absolute continuity of 
laws for such branching particle systems on a suitable path space and derive an explicit 
version of the likelihood ratio process. For ergodic parametric submodels, under assump­
tions which combine smoothness properties of the parametrization at a fixed parameter 
point {) and integrability of certain information processes with respect to the invariant 

measure of the process under {) or with respect to an associated Campbell measure, one 
deduces local asymptotic normality at {) (LAN({) )). Moreover, for null recurrent models, 
local asymptotic mixed normality (LAMN) at {) holds in situations where the right limit 

theorems for integrable additive functionals of the process are hand. These limit theorems 
follow from dividing the trajectory into independent pieces between successive returns to 

the void configuration and from limit theorems to stable processes. 

Key words. branching diffusions, particle systems, likelihood ratio processes, local asymp­
totic normality. 
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1 Basic assumptions on the model 

The theory of spatially branching particle systems originates in questions from 
population biology and has been widely developed, see for instance Wakolbinger 
(1995) and the references therein for a study of infinite systems of spatially branch­
ing diffusions and their long time behaviour. In this work we are concerned with 
statistical models for branching particle systems and restrict our attention to pro­
cesses with finite particle configurations where particles are moving in IRd in ac­
cordance with the following model assumptions: 
1. Within a system of 1 particles 

(
Xl,! ) 

XI- . 
- : , 

XI,1 

the i-th particle moves in IRd according to 

(1) 

with independent m-dimensional Brownian motions WI, . .. ,Wi and coefficients 
b(.,.) and 0-(.,.) which are Lipschitz continuous and symmetric with respect to the 

265 
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second component. We note a := (J(JT and suppose that a(xi, x) is invertible for 
all x = (Xl, . .. ,xl ) and all 1 ::::; i::::; l. 

2. A particle located at position xi E IRd at time t > 0 which belongs to a 
configuration x = (Xl, ... ,xl) of l particles dies with probability 

K,(xi,x)h+o(h) as h -+ 0 

in the small time interval (t, t + h); here K,(.,.) is a nonnegative function which is 
continuous with respect to both components and symmetric with respect to the 
second component x. 
At its death time the particle in position xi gives rise to a random number of 
offspring according to a position and configuration dependent reproduction law 

such that F(xi, x, {I}) = 0, F(xi, x, {O}) > 0; here x is the configuration of coex­
isting particles. The newborn particles start their motion at their parent's position 
in space. 

3. Additionally, there is immigration of new particles at a configuration de­
pendent rate c(x). At an immigration time, only one new particle immigrates, and 
it chooses its position in space randomly, according to a probability law v(x, dy) 
on IRd , depending on the configuration x of already existing particles. The im­
migration of particles into occupied positions in space is not allowed. We assume 
that c(~) > 0, where ~ is the void configuration of particles - as a consequence, 
~ will not be a trap for the particle process. 

Example 1. I-particle motions with mean field interaction have been con­
sidered - in a different context - in Sznitman (1991) and Meleard (1996) and can 
also be treated within our frame. Take Lipschitz functions b : IRd x IRd -+ IRd and 
(j : IRd x IRd -+ IRd x m; then (1) takes the form 

Example 2. Of interest in physics are interacting l-particle systems with 
interaction potential 

'IT (Xl , ... ,xl) = 'Yl L V(Xi - xj), 
1~i#j9 

d = 1, where V : IR -+ IR+ is a symmetric smooth pair potential function having 
compact support, with V(O) > 0 (cf. Spohn (1987)). In this case we take 

b(xi,x) := b(xi) - Di'IT(x) 

for some Lipschitz continuous function b : IR -+ IR, x = (Xl, ... ,xl). 

Example 3. Similarly, we can model branching mechanisms where the branch­
ing rate K,( xi, x) of a particle in position xi depends on the number of neighbours of 
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Xi in some given (finite) neighbourhood (branching with finite interaction range). 
Also, systems where the branching or the immigration activity depend just on the 
total population size can be treated in our context. 

Throughout this note we assume the following: 

Assumption 1. F((Xi, x), dn) ::; G(dn) in the sense of convolution of probability 
measures, where G (dn) E M 1 (iN 0) is a fixed reproduction law which does not 
depend on space and configuration, having finite mean offspring number. The 
immigration rates c(.) are bounded away from infinity, and the branching rates 
",(.,.) are both bounded away from zero and infinity. 

We introduce a canonical path space (0, A, IF) for branching particle sys­
tems. The set of all ordered finite particle configurations is S := u~o CJRd) I , with 
(JRd)O := {~}, the void configuration. We write l(x) := l if x E (JRd)1 for the 
number of particles within a configuration xES. Then the canonical path space ° will be a subset of the space D(JR+, S) of all cad lag functions taking values 
in S consisting of those functions 'IjJ E D(JR+, S) which have a strictly increas­
ing sequence of jump times tn, tn t 00, such that in between successive jumps 
the function 'ljJl[t n ,tn+,[ is continuous taking values in some fixed (JRd)1 for some 
l ~ O. At jump times (tn)n either a new particle is added to the already existing 
configuration of particles (we call this event immigration event) or one of the 
existing particles is replaced by some offspring particles or just removed from the 
configuration in case of a pure death (we call this event branching event). Let ¢> 
be the canonical process on 0, then A = a( ¢>t : 0 ::; t < 00) is the a-field generated 
by ¢> and IF := (Ftk::o, where Ft := nT>t a(¢>r : r ::; T). As a consequence of 
results obtained by Ikeda, Nasagawa and Watanabe (1968) on the construction of 
Markov processes by "piecing out" , we obtain the following 

Proposition 1. (Ikeda, Nasagawa and Watanabe (1968, theorem 2.2) 
For all xES there is a unique probability measure Qx on (0, A, IF), such that 
¢> under Qx is strongly Markov and satisfies the model assumptions 1.-3. stated 
above with ¢>o = x a.s. 

Remark. Note that assumption 1 ensures that no accumulation of jumps 
already at a finite time is possible (cf. Locherbach (1999b, proposition 5.13)). See 
also Ikeda and Watanabe (1970) and Locherbach (2000) for conditions for non­
explosion of branching diffusions. 

For statistical purposes, we are interested in the following question: If the 
underlying functions and probability measures b, "', F, c and v are unknown - is it 
then possible to draw any statistical inference on them based on observation of ¢> 
continuously in time? The first problem in this context which we address to is a 
Girsanov theorem: Suppose that another set of (b' , ",', F' , c', v') is given, satisfying 
all conditions made in 1.-3. and in assumption 1 above (a(.) is supposed to be fixed 
since we observe continuously in time) and write Q~ for the associated probability 
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measure on (n, A, IF). 

Theorem 1. 
a) We have Q~«Qx for all xES if (i)-(iii) hold for all x = (Xl, ... , xl) E S. 

(i) I\;(Xi,X) = 0 implies I\;'(xi,x) = 0 for all I :S i :S 1,1 > 0, and c(x) = 0 
implies c'(x) = o. 

(ii) F'((xi,x),dn)« F((xi,x),dn) for all I :S i:S 1,1 > O. 

(iii) v'(x,dy)« v(x,dy). 

We write ri(x) := a-l(b' - b)(xi, x) for aliI :S i :S I, I> 0, r := (r l , ... , rl). 
b) Under conditions (i)-(iii) of a), the likelihood ratio process of Q~ to Qx relative 
to IF is 

(2) 

with factor processes 

(LI) b' /b _ (vb' /b I < yb' /b > ) 
t - exp Lt - 2" t , (3) 

where yb' /b E M;;~(Qx, IF) with < yb' /b >t= J~ [rT ar] (1)s)ds, where r is chosen 
as in a) and 

( 
a(xl,x) 0 

a(xl, ... ,xl) := : .. . 

o .. . o 

where (Tl)j is the sequence of jump times of 1> which correspond to branching 

events, (! the position of the branching particle at time Tl, and where we interpret 

1>8 as measure on JRd by defining 1>8(1) := L.~~1) f(1)~, ~~8), 6.(1) := 0 for any 
measurable function f : JRd x S --+ JR. 

(L3)['/F = II ~(((.f,1>Tl-),{I~r)), (5) 
j~I,Tl~t 

with If the number of newborn particles at time Tl, and 
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with (Tj)j the sequence of jump times of 4> which correspond to immigration events 
and (f the position of the immigrating particle at time Tf. 

The proof is based on a consideration of 4> between successive jump events and 
using a Girsanov theorem for diffusions (cf. Jacod and Shiryaev (1987)) and for 
marked point processes (cf. Bremaud (1981) and Jacod (1975)) there. For details, 
we refer the reader to L6cherbach (1999b). See also Eisele (1981) for related results 
obtained under more restrictive conditions, in particular on the diffusion part of 
the branching process. 

2 Local asymptotic normality and local asymp­
totic mixed normality for branching particle sys­
tems 

We now turn to questions of parametric statistical inference of branching particle 
systems and suppose that the "characteristics" (biJ,,,,iJ, FiJ, ciJ , viJ) depend on some 
unknown finite dimensional parameter iJ E e c IRk open. We write Qx,iJ for the 
associated probability measure on (fl, A, IF). In this section our aim is to show 
that - when observing the process continuously in time up to time n and letting n 
tend to infinity - the sequence of models converges (in the sense of Le Cam) locally 
over shrinking neighbourhoods of a fixed parameter point iJ to a limit experiment 
which is a Gaussian shift experiment in the ergodic case (the sequence of models 
is termed local asymptotic normal at iJ - LAN(iJ) in this case) or a mixed 
normal experiment in some null recurrent cases (we speak of local asymptotic 
mixed normality - LAMN(iJ) in this situation). The notion LAN(iJ) is due 
to Le Cam (cf. Le Cam (1960)), the notion LAMN(iJ) to Jeganathan (1982). In 
both cases, thanks to the convolution theorem of Hajek (1970) and of Jeganathan 
(1982) we are able to determine the optimal behaviour of estimators. We start 
with a condition concerning the asymptotic behaviour of 4>. 

Assumption 2. We assume that 4> under Qx,iJ is invariant in the sense of Harris 
with recurrent point A and invariant measure miJ. If miJ(S) = 00, we assume 
further that for R := inf{Tn : n > 0, 4>Tn = A} either 
(i) .c(RIQ6.,iJ) belongs to the domain of attraction of a positive stable law with 
index 0:,0 < 0: < 1 (i.e. x I-t Q6.,iJ(R > x) is regularly varying at infinity with 
index -0:) 
or 
(ii) .c(RIQ 6.,iJ) is relatively stable (i.e. for Xn, n E IN, i.i.d., distributed according 
to .c(RIQ6.,iJ), there exists a sequence of normalizing constants an too such that 
Sn/an -t 1 in probability, Sn := L:~=1 Xi). 

Remarks. 
1. The invariant measure is given by miJ(A) = E6.,iJ (foR lA(4)sds) up to multipli­

cation by a constant, A E S. 
2. In case miJ(S) = 00, condition (i)-(ii) is necessary and sufficient for weak con-
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vergence of additive functionals of ¢ 

(weak convergence in D(JR+, JR) as n --+ 00, under Qx,fJ) 
where v(n) too as n --+ 00, with V continuous, having non-decreasing paths with 
Vo == 0, vt too as t --+ 00. For details, we refer the reader to Bingham, Goldie and 
Teugels (1987), Greenwood and Resnick (1979) and Touati (1988). 

Example 4. 
1. Assumption 2 holds with mfJ(S) < 00, if the dominating reproduction measure 
G(dn) of assumption 1 is sub critical. 
2. Assumption 2 holds with mfJ(S) = 00, if FfJ, ",fJ and cfJ are purely population 
size dependent such that the process (l(¢t))t is a birth-and-death process having 
strictly positive birth and death rates Ak and J.Lk everywhere and such that for all 
k ?: ko for some fixed ko, Ak = Gk + D and J.Lk = GK for 0 < D < G. In this case 
0: = 1 - DIG (cf. Karlin and McGregor (1961)). 

In order to obtain LAN or LAMN at 1), we have to assume that the parametriza­
tion of the model is sufficiently smooth at 1). For this purpose we introduce a 
Campbell measure mfJ on 8(JRd x S) which is associated to the invariant measure 
mt'J in the following way. For B E 8(JRd) and G E 8(S) we define 

where for xES x(B) := L:~~{ 1B(xi) is the number of particles of x in B. 

Remark. If d = 1, in purely position dependent situations (no interactions 
between coexisting particles), under regularity assumptions on drift and diffusion 
coefficient, H6pfner and L6cherbach (1999) show that m(· x S) as a measure on 
JR has a Lebesgue density u satisfying the following equation 

A*u - ",(1 - (!)u = -r 

where A * is the adjoint of the generator of the diffusion process driving each 
particle's motion, where (!(x) := L:k F(x, {k})k is the mean number of offspring 
to be produced in position x and where we suppose the immigration measure to 
be of the form c· v(dy) = r(y)dy independently of the configuration of already 
existing particles. 

We state the following smoothness condition. 

Assumption 3. 
1. The function ~ f-t ",~(.,.) is logarithmic differentiable in 1) with derivative kt'J : 
JRd x S --+ JRk in the following sense. 
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(i) For all {)' E e, for all y E IRd and z E S, 

for a function f{} : IRd x S x IR+ -+ IR+ such that f{}(y, z,.) is non-decreasing 
for every (y,z), limctof{}(y,z,c) = 0 for all (y,z) and f{}(.,.,c) measurable. We 
suppose further that 

J <Ps (",{) f{}(·,·, tS({)))) ds is locally integrable w.r.t. Qx,{} 

o 

for all xES, for some tS({)) > O. 

(ii) 

is locally integrable with respect to Qx,{} for all xES. 

(iii) We suppose that f{}(., .,tS({))) E L1(",{}if/;o'J) and that (k,U)T k,{) E L1(",UmU) 
component-wise. 

2. We assume analogous differentiability conditions for the other "characteristics" 
W-,F~,6,v~) of the process. For details, we refer to Locherbach (2000). 

We define a local scale given by 

if m{}(S) = 1, } 
if Q6.,u(R > .) E RV_ a , 0 < a < 1, 
if £(RIQ6.,u) is relatively stable, 

(7) 
where RV-a is the space of functions that vary regularly at infinity with index 
-a. Then we arrive at the following result. 

TheorelIl 2. At a point {) such that assumptions 2 and 3 hold, for {)n := 

{) + tSn({))h, h E IRk fixed, the log-likelihood ratio process logL{}n/{} of Qx,un to 
Qx,{} admits a decomposition 

(8) 

where Rn -+ 0 in Qx,{}-probability and M n,{} E M;oc(Qx,{}, (Fntk:~o) with 

(9) 

(weak convergence in D(IR+, IRk x IRkXk) as n -+ 00, under Qx,u). 
Here, the limit martingale Y is given as follows. Let B be a continuous k-dimensional 
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Gaussian martingale with covariance matrix J = J(tJ) where J(tJ) is the Fisher­
information matrix of the experiment, given as 

J(tJ) = (J1)(tJ) + (J2)(tJ) + (J3)(tJ) + (J4)(tJ) + (J5)(tJ) 

with (J1)(tJ) = I lRd X S[k!9(k!9)T]K!9(y, z)m!9(dy, dz). The other Fisher information 
matrices are given explicitly in Locherbach (2000, (3.44-45)) and correspond to 
the other "subexperiments" of the whole experiment, i.e. to the diffusion part, the 
reproduction part, the immigration rate part and the choice of the position in space 
of the immigrating particle. Then 

Y = B in case of relative stability or ergodicity (10) 

or 

Y = BoW''', < Y >= J. wa if QL::..,!9(R > .) E RV_a, 0 < a < 1. (11) 

Here, W a is the Mittag-Leffler-process of index a, the process inverse to the stable 
subordinator sa. 

Proof: The proof of the decomposition of the log-likelihood ratio process imitates 
a well-known scheme, see for instance the proof of theorem 1 in Luschgy (1992). 
The joint convergence of Mn,!9 together with its angle bracket follows from a mar­
tingale convergence theorem which has been obtained by Touati (1988) and which 
is based on a decomposition of the trajectory of cjJ into independent life-cycles and 
results concerning convergence to stable processes. We refer to L6cherbach (2000) 
for the details. 

Remark. Note that the techniques leading to LAN or LAMN can also be 
used to characterize - in a non-parametric context - an optimal rate of convergence 
of estimators. This approach has been presented in the problem of estimating the 
position dependent branching rate in H6pfner, Hoffmann and L6cherbach (2000) 
where exactly the same rates arise as in estimation problems related to classical 
diffusion processes. 
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Abstract. Using some tools from Combinatorics, Probability Theory, and Singularity 
analysis, we present a complete asymptotic probabilistic analysis of the cost of a Schroder 
walk generation algorithm proposed by Penaud et al.([13} }. Such a walk S(.) is made 
of northeast, southeast and east steps, but each east step is made of two time units {if 
we consider recording the time t on the abscissa and the moves on the ordinates}. The 
walk starts from the origin at time 0, cannot go under the time axis, and we add the 
constraint S(2n) = O. Five different probability distributions will appear in the study: 
Gaussian, Exponential, Geometric, Rayleigh and a new probability distribution, that we 
can characterize by its density Laplace Transform and its moments. 

1 Introd uction 

In [11], we have analyzed some asymptotic properties of an under diagonal walk 
generation algorithm (GA). This can be represented as a walk on a plane with 
northeast, southeast and east steps, under the condition that the walk cannot go 
under the x axis. 

As announced in [11], we intend to pursue this approach on other walks GA. 
In this paper, we analyze an algorithm proposed in [13J to generate Schroder walks 
of length 2n. Such a walk S(.) is also made of northeast, southeast and east steps, 
but each east step is made of two time units (if we consider recording the time t on 
the abscissa and the moves on the ordinates). As in [11], the walk starts from the 
origin at time 0, cannot go under the time axis, but now, we add the constraint 
S(2n) = O. We denote by Rn the number of S of length 2n. 

Let us say for completeness that {Rn}n>o was discovered by Schroder ([14]) 
looking at the generalized bracketing problem. Several combinatorial objects are 
enumerated by Rn , such as: the number of dissections of a convex polygon, planted 
rooted trees with n + 1 leaves whose nodes have a degree greater than one (some­
times called ordered hierarchies ([7]) in classification theory) and some string edit 
problems. 

Another walk will be used in the sequel: SL(.) is a left factor of a S i.e. a 
walk starting from the origin at time 0 and only constrained to remain above the 
time axis. We denote by Fn the number of SL of length n. 

The GA proposed in [13J proceeds as follows. Using a slightly different form 
of the cyclic lemma ([4]) and the Catalan factorization ([8]), the authors establish 
a mapping between a S(.) walk of length 2n, and (n + 1) SL(.) walks of length 
2n + 1 which end either by a southeast step or by an east step. Hence, sampling 
uniformly in this subset of SL leads to a Schroder walk with the uniform distribu­
tion. The first part of the GA given in [13], that we will call GA.1, uses a rejecting 
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method, which builds a walk step by step using some constant probability, such 
that the probability of a northeast step (resp. southeast step) is p (resp. p) and 
the probability of an east step is p2, where p is the positive root of the polynomial 
1 - 2p - p2. GA.1 is allowed to fail (and then has to restart) either if the walk 
crosses the time axis, or if the walk stops at time 2n + 2 or if it stops at time 2n + 1 
by a forbidden step (actually a northeast step). When GA.1 succeeds, it outputs 
a valid SL(.) walk of height h, defined as the difference between the number of 
northeast steps and the number of southeast steps. Then, in the last part of GA 
(GA.2), a procedure called lightning procedure in [13], based on Catalan factor­
ization, maps htl northeast steps into ¥ southeast steps, in order to make the 
walk ending at height -1. Finally, another combinatorial mapping, based on the 
cyclic lemma, maps the walk obtained previously in a Schroder walk. 

as 
The generating functions (GF) of Rn and Fn are given in [13J , respectively 

R(z) 

F(z) 

1 - z - \1'1 - 6z + Z2 
2z 

2 

1 - 2z - z2 + \1'1 - 6z2 + z4 

(1) 

(2) 

It is proved in [13J that the complexity of the proposed GA (in terms of 
number of used letters) is O(n). The purpose of this paper is to give a complete 
asymptotic (n -+ 00) precise probabilistic analysis of this G A (in terms of used 
letters and calls to a random generator). 

In the field of analysis of algorithms, the moments of cost distribution are 
usually the first steps in the complete study: asymptotic distributions of costs and 
related random variables (RV) are more informative and shed more light on their 
stochastic behaviour. 

Using some tools from Combinatorics, Probability Theory, and Singularity 
analysis, we obtain a surprising list of 5 different probability distributions: Gaus­
sian, Exponential, Geometric, Rayleigh and a new probability distribution, that 
we can characterize by its density Laplace Transform and its moments. 

Another useful G F: G (w, z) is related to the number Nt of transformed steps 
during the lightning procedure: marking these steps by w, we obtain (the proof is 
given in Sec 3.4), setting 
II := VI - 6z2 + z4, 

G( ) _ 2z(1 - z2 + II + 2WZ2) 
W,Z - (-1+z2 -1I+2JWz)(-1+z2 -1I-2JWz)" (3) 

The paper is organized as follows: Sec.2 presents the probabilistic aspects and 
the main results, Sec.3 gives some asymptotic analysis of several parameters and 
RV. Sec.4 is devoted to analysis of the GA. Sec.5 develops some simulation results 
and Sec.6 concludes the paper. An appendix provides rather technical proofs. 

The following probabilistic notations will be used in the sequel: 

• E : convergence in distribution, for n -+ 00. 
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• ===}n---+oo : weak convergence in the space of all right- continuous functions 
having left limits in R2 and endowed with the Skorohod metric do (see 
Billingsley, [2], Chapter III). 

• N(M, V) := the Normal (or Gaussian) RV with mean M and variance V. 

• Brownian Motion (BM) := Markovian Gaussian process, with mean E[BM(t)] = 
0, variance VAR[BM(t)] = t, and covariance 
E[BM(s) . BM(t)] = s(s ::; t) : see Ito, McKean, [10]. 

• GEOM(P) : geometric RV with probability distribution P(1 _ p)k-l. 

• Rayleigh: RV with density e-x2 / 2 xdx. 

• Exponential: RV with density e- X • 

The computer algebra system MAPLE has been quite useful for detailed compu­
tations and simulations. 

2 Probabilistic aspects and main results 

In this section we present the connections between S and some random walks 
(RW) and stochastic processes. We also summarize our main results. 

The G A is based on the fact that we can associate to each S a RW such that 
all S with the same lenght are endowed with the same probability. This amounts 
to define three time-space steps (up, down and horizontal) with probabilities: 

p .- Pr[Xi = 1,~ti = 1] = Pr[Xi = -I,~ti = 1], 

Pr[Xi = 0, ~ti = 2], (4) 

I, i.e. p = \1'2 -I,r = 3 - 2\1'2. 

S(i) is actually an Excursion, starting from 0, returning to 0 at time 2n and 
staying strictly positive for 0 < i < 2n. SL(i) is called a Meander, starting from 0 
, conditionned to stay strictly positive for 0 < i ::; n. 

Let us mention a third RW, the Bridge B(.) (with the same time-space steps) 
which has been used in [12], in connection with some string edit problems. There 
the only condition is that B(n) = O. The probabilites (4) have also been derived 
in [12]. It is also proved in the same paper that the number N h of horizontal steps 
in a Bridge such that B(n) = aVn, 
a = 0(1), is characterized by 

Nh - f.lh . n !2 N(O, I), n --+ 00, with 
ahVn 

f.lh = (2 - \1'2)/4, a~ = \1'2/16. 

(5) 

(6) 

Let us note that the asymptotic behaviour of Nh is independent of a. This is not 
the case for the number of up or down steps in the Bridge. Another result from 
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[12] is related to the unconditioned RW Y(.), endowed with 
(4) : 

21/4~nt]) ===} BM(t), n -+ 00, t C [0,1]. (7) 

We now present the main results of this paper. The following RV notations 
will be used in the sequel: 

• ibl := number of letters necessary to generate a Schroder walk, where we 
associate a letter to each time unit. 

• ib2 := number of calls to a random generator necessary to generate a Schroder 
walk. 

• T := number of trials in the rejecting procedure. 

• Nh:= number of horizontal steps in an Excursion or a Meander of length f. 

• Nr := number of Excursions generated before getting a length 2n Meander. 

• Nt := number of transformed steps in the ligthning procedure. 

• h := normalized(by l/ffn) height of the length 2n Meander. 

Our main results are summarized in Table 1. We give the asymptotic distri­
bution of the principal RV we have considered in the paper. 

RV 

T 

Nh 

Nr 

Nt/ffn ~ hj2 

Asymptotic characteristics(n -+ 00) 

Wl(a):= E[ exp(-aibI/2n)] '" !¢>1(a)/[1-1/2¢>1(a)] 
(¢>l is given in (27)) 

W2(a):= E[ exp(-aib2/2n)] = WI (Il s a) , 
(/1s is given in (16)) 

T '£ GEOM(1/2) 

N!/i::: h '£ N(O, l),f -+ 00 (/1h, ah are given in (6)) 

N 21 / 4 'D 
r~ '" Exponential RV 
v".n 

Nt/ffn '£ Rayleigh RV 
with density exp( -x2 2V2)4xV2 

Table 1: Asymptotic characteristics (n -+ 00). 
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3 Some asymptotic analysis 

In this section, we present a precise asymptotic analysis of several parameters and 
RV we need in the sequel. We analyze successively the Excursion, the Meander, 
R(z) and F(z), and the lightning procedure. A good introduction to the kind of 
techniques we need here can be found in Flajolet, Sedgewick [6). 

3.1 Excursions 

The hitting time to 0, To, starting from 1, has a probability generating function 
(PG F) F1 (z), which satisfies the equation: 

F1 = pz + pzFl + rz2 F1, hence 
F1(z) = (1 - p2 Z2 - (1 - 6p2Z2 + p4 Z4)1/2 /(2pz). 

It is simpler to substitute z2 = u in F1(z)·z = CP1(U), say, and we have Pr1[To = 
2n - 1) = [un)cptCu). Similarly, the PGF of PrdTo ~ 2n - 1) is given by CP2(U) = 
1-"'I(U) 

1-u . 

The dominant algebraic singularity of CP2 is given by 1. So we set 
u = 1 - c and expand CP2 into c. This gives a Puiseux series: 

By classical singularity analysis, we obtain immediately 

21/ 4 
Pr1[To ~ 2n - 1) = [Un)cp2(U) '" '-=' 

y7rn 
n --+ 00. 

To is of course directly related to the length of an Excursion. 

(8) 

Similarly, starting from CP1 (u), we derive: CP1 (u) '" 1 - 21/4y'e + O( y'e) and 

21/ 4 

Pr1 [To = 2n - 1) '" 2..fiin3 / 2' n --+ 00, (9) 

which is of course compatible with (8). 
A more interesting RV is the number Nh of horizontal steps in an Excursion 

of length 2n (we mark Nh with w). The PGF F2 (w, z) satisfies 

pz + pzF:j + rz2wF2' hence 
= [1 - p2 z2w - (1 - 2p2Z2w + p4 z4w2 - 4p2z2?/2)/(2pz). 

Substitute again z2 = u in F2 (w, z) . z = CP3 (w, u), say. The dominant singularity 
is now given by 

r(w) = (8V2 + 12 + 6w + 4wV2) - 4(17 + 12V2 + 12wV2 + 17w)1/2/(2w2) (10) 

and r(l) = 1. More precisely 
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../2/2 -1, 

5/4 - 13../2/16, 

69../2/64 - 25/16. 

Setting now u = r(w) - 10, we derive 

[2../2 - 2 + (2 - 3../2/2)(w - 1) + O((w - 1)2)]/(2p) 

1 + O(w - 1), w --+ 1, 

(11) 

-[2(3../2 - 4)1/2 + (3../2 - 4)1/2/4(w - 1) + O((w - 1)2)]/(2p) 

_21/4 + O(w - 1), w --+ 1, (12) 

[U n ]'P3(W, u) '" G% [1/r(wW y'r(w) , n --+ 00. 
-21m3 

Proceeding now as in Bender's Theorems 1 and 3 in [1], we set w = eis and 
expand In(l/r(w)). This leads to 

is(1 - ../2/2) - ../2/16s2 + 0(S3), s --+ 0, 

and finally, we obtain, normalizing by (9): 

Nh - n(1 - ../2/2) '£ N(O, 1), 

In../2/8 
n --+ 00, 

(13) 

(14) 

which is identical to (5) , even with different constaints. The total number M of 
steps in an excursion of length C is given by M = if + Nh, where if is the number 
of up and down steps. Hence if + 2Nh = C and, by (14), 

Nh - Cp,h '£ N(O 1) C 
v'eah ,,--+ 00, (15) 

(P,h, ah are given in (6)). Therefore, 

M -lp,s D In 
y'l '" N(O, 1), C --+ 00, where /-Ls = (1/2 + v2/4). 

lah 
(16) 

It is finally clear from (8), that the number Nr of returns to 0 before getting 
a length 2n Meander ( i.e. the number of Excursions) is such that 

Nr·2 1/ 4 D Vim '" Exponential, n --+ 00, 
7fn 

(17) 

with Probability Distribution Function (PDF) 1 - e-X • (Indeed, GEOM has an 
asymptotic distribution given by the Exponential RV). Actually, this corresponds 
to the local time of Y(.) at the origin. 
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3.2 Meanders 

Let us now turn to the length 2n Meander distribution. Reverting the time axis, 
this amounts to analyze the hitting time rJhl to 0 , starting from an height hV2n. 
The PGF is of course given by [Fl (z)]hffn (this is equivalent to the ladder epochs: 
see Feller[5], Chap.XII. 7). 

Setting again Z2 = u and u = 1 - c, we derive the PGF of 

To (hl = Ttl + hV2n as 

('PI (U))hffn rv (1- 21/4yE)hffn, c --+ o. 

Now we set u = e-O/ n . We obtain asymptotically 

_v'eh21/4.j2 
e , 

which means that To (h) /(2n) has, asymptotically, the density(wrt t): 

h21 / 4 exp( -h2 V2/(2t))/V27rt3 . 

(18) 

(We note that this is also true for rJhl/(2n) ). Setting t = 1 and normalizing, 
this leads to the asymptotic (normalized by 1/ V2n) Meander (of duration 2n) 
density, given by 

(19) 

This is the well known Rayleigh density, which gives the classical BM Meander 
density. So (19) could have been derived from (7). The GF approach will however 
be necessary in the next analysis. The moments of h are given by 

(20) 

Note that the Rayleigh distribution appears in other asymptotic analysis: for 
instance the number of trees in a random mapping and the number of points at 
distance d to a cycle are also asymptotically Rayleigh: see Drmota and Soria [3]. 

Let us now consider the number N h of horizontal steps in a Meander of 
length 2n. Again we derive (The proof is given in Appendix A) the distribution 
(14). The number M of steps is again characterized by (16). In Appendix A we 
prove also the asymptotic independence of N hand h. 

3.3 Rn and Fn 

The dominant algebraic singularity of R(z) (see (1)) is given by 
zi = 3 - 2V2 == p2. Standard analysis gives, with z = zi - c, 

R(z) V2 + 1 - 21/ 4 (3 + 2V2)yE + (17/2 + 6V2)c 

+ 21/ 4 ( -195V2 - 276)c3/ 2 /16 + O(c2 ), c --+ 0 

Hence 

(21) 



282 Mathematics and Computer Science 

with 
C4 = 21/ 4( V2 + 1)/(2J7f), C5 = -3.21/ 4(14 + 11 V2)/(64J7f). 

We use the fact that 

[ n](l _ )-0,..., n o
-

1 (1 0:(0: - 1) O(~)' 
Z Z r(o:) + 2n + n2)' n -+ 00. 

The dominant singularity of F(z) is given by the root (with smallest module) of 
the denominator, i.e. z~ = v'2 - 1 == p, and, with z = z~ - c, 

F(z),..., ~ / -V2/(4-2V2) + O(v'c) , c-+O. 
[(4-2 2)l2y'c] 

Hence 

n -+ 00. (22) 

To get more precise information on F2n and F2n- 1 , we extract from (2) their GF, 
given respectively by 

F+(z) F(z) + F( -z) 2(1-z2+!I) 
2 (1 - z2 + !I)2 - 4z2' 

with !I \11 - 6z2 + z4, 

F-(z) 
F(z) - F( -z) 4z 

2 (1 - Z2 + !IF - 4z2' 

Set again Z2 = u and u = zi - c, this leads to 

Hence 

Also 

Hence 

_1_[21/4 ( V2 + 2)/( 4Jffi) - (5 + V2)21/ 4 /(64J7fn3 / 2 ) 
zin 

+ O(n-5 / 2 )], n -+ 00. 

n -+ 00. 

(23) 

It is combinatorically proved in [13] that (n + l)Rn = F2n + F2n- 1 . This amounts 
to prove that F+(z) + [zF-](z) = R(u) + uR'(u), which is easily checked. It is 
easy to check that the first two terms of F2n + F2n- 1 coincide with the first two 
terms of (n + l)Rn. 
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3.4 Lightning Procedure 

First of all let us prove (3), the GF of Nt. Let h be the height ofthe walk sampled 
by the first part GA.1 of the GA given in [13], which is always odd, because 
the length of the walk is 2n + 1. A northeast step {( i, j), (i + 1, j + 1)} of the 
walk is said to be lighted iff there is no southeast step {(m,j + 1), (m,j)} in the 
walk, for m > i + 1. The lightning procedure simply transforms each lighted step 
whose height is less or equal than ~, into a southeast step. Note that there are 
exactly ~ lighted steps of height less or equal than ~ because lighted steps are 
precisely those which increase the height of the walk. Hence in order to establish 
(3), we consider the bivariate generating function F(w, z) of SL(.) walks, where 
z counts the length and w counts the height. l.From the functional equation for 
F(z), given in [13], we have 

F(w, z) = 1 + Z2 R(Z2)F(w, z) + wzF(w, z) + Z2 F(w, z), 

where R(Z2) is the generating function of S(.) walks according to their length. 
The walk given by GA.1 is either a walk of length 2n in which a southeast step is 
added, or a walk of length 2n - 1 in which a (two times units) east step is added. 
Hence, the bivariate GF for this walk is 

T( )_ zF(w,z)+F(w,-z) 2F(W,z)-F(w,-z) 
w,z -;; 2 + z 2 . 

Now, if we want w to count only the half-height (~), we obtain 

G(w,z) vwT(vw,z) 
2z(1 - Z2 + h + 2wz2) 

= 
(-1 + Z2 - h + 2VW z)( -1 + Z2 - 11 - 2VW z)' 

as announced before. 
Substitute Z2 = u in G(w, z)/ z = ct'4(W, u), say. Let us first note that, for w = 1, we 
recover the GF of (n+ l)Rn . Also, if w = 1, the dominant singularity of ct'4(1, u) is 
given by the root(with smallest module )ofthe denominator, i.e. u* = p2 = 3-2V2. 
The corresponding singularity of ct'4(W,U) is given by 

and r(l) = u* . More precisely, 

r(w) = u* + C6 (w - 1)2 + C7 (w - 1)3 + O((w - 1)4), W -t 1, with 

C6 = (1/2 - 3/8V2),C7 = (-1/2 + 3/8V2). 

As usual, we set u = r(w) - c. We obtain 

ct'4 CP5/(CP6 c) + 0(1), c -t 0, with 

CP5 (w - 1)[4 - 2V2 + (5 - 3V2)(w - 1) + O((w - 1)2)], W -t 1, 

CP6 = 4V2 + 6V2(w - 1) + O((w - 1)2), W -t 1, 



284 Mathematics and Computer Science 

0.1 
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0.06 

10 12 14 16 
xp 

Figure 1: Observed and asymptotic normalized distribution of Nt 

and 

(24) 

Set now w = ei~/../2Ti in (24). Normalizing by (n + l)Rn, this leads to the 
asymptotic equivalent 

This corresponds exactly to the Rayleigh density (19), with a 1/2 factor, i.e. 

Ntlffn '£ h/2, as expected. 

Let us check numerically our results. For n = 100, Fig;.l gives the asymptotic 
and observed normalized distribution of Nt (observed=circle, asymptotic=line). 
The observed one is extracted from [U lOO]CP4. The asymptotic one is given by 
exp( -x2 2J2)4xJ2. 

There is an obvious bias: this can be explained as follows. Proceeding as in 
Hwang [9] ,Theorem 2, we analyze CP7(w)/cp7(1), where CP7 is extracted from (24): 
CP7(W) = CP5/(s r(w)CP6). Set now w = eis in In[cp7(w)/cp7(1)] and expand into s. 
This gives the dominant term 
-'fis = -.3535539059381 .. . is = f3 . is, say and f3 is exactly the bias we have 
to reintroduce in Fig.1 (n = 100). This gives Fig.2, where the adjustment is now 
nearly perfect. 
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0.1 

10 12 14 16 

Figure 2: Observed and asymptotic normalized distribution of Nt, with bias 

4 Asymptotic Analysis of the Generation Algo­
rithm 

In this section, we provide a complete asymptotic probabilistic analysis of the 
GA. We consider successively the rejecting procedure, the Meander generation, 
the Algorithm total cost and the cost moments. 

4.1 Rejecting procedure 

l.From the first part of the algorithm, we see that we accept the Meander with 
probability 
P = AI/(Al + A2 + A3), where 

Ai .- (n + 1) Rnp2n+l , 

A2 .- F2np2n+2, (25) 

A3 .- F2np2n+l. 

Hence P '" !, n -t 00, by (21) and (22). An interesting alternative proof of this 
result is given in Appendix B, based on a renewal argument. 

The number T of trials to obtain a suitable walk is such that, asymptotically, 

T '£ GEOM(P) (26) 
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By (21) and (23), we obtain a more precise equivalent: 
P", 1/2 + (4 - 3v'2)/(32n) + O(1/n2 ). 

4.2 Meander Generation 

In terms of the number H1 of generated letters, the RV fit := Hd(2n) has been 
analyzed in [11], T2 : this is the cost of generating a Meander of length 2n. We 
have obtained the Laplace transform 

(1)1 (a) = E[exp( -aNd] '" e-a /[e-a + ..;rra erf( va)]' n --+ 00. (27) 

(This was established for a Motzkin path, but the analysis is similar). This cor­
responds to a length 1 Brownian Meander generation. In terms of the number H2 
of calls to the random generator we must use the total number of steps M in an 
Excursion or a Meander. But from (16), we see that only E(M) must be taken into 
account: the random (Gaussian) part is O( v'n) and is asymptotically negligible 

after normalizing by 1/(2n). Hence we obtain, with N2 := H2/(2n) : N2 ~ /-tsN1 
and 

4.3 Total Cost 

The total cost is made of two parts: the first part "'. is related to the Meander gener­
ation: its asymptotic normalized density Laplace transform, namely E[exp( -ai\;,)], 
where i\;, := "'./(2n), is given by 

'lI,(a) = P4>.(a)/[l- (1- P)4>,(a)], (29) 

where 4>, (a) = 4>1 or 4>2, according to the cost elementary unit: letter or step. 
The second part Nt is related to the ligthning procedure. The asymptotic 

normalized density of Nt/v'2ii is given by exp( -x2 2v'2)4xv'2. As Nt/v'2ii ~ 
h/2 , the moments of Nt are immediately derived from (20). The two costs are 
asymptotically independent. 

4.4 Moments 

The moments of 'lI1 or W2 are easily computed. For instance, under W1 , with 
P:=1/2, m1 := E(K-1) = 4, VAR(K-d = 32/3 and the third and fourth centered 
moments are given by /-t3 (i\;d = 352/5, /-t4(i\;d= 108544/105. We just expand 
eaffi1w.(a) into a . 

As a check, we extract from (21) the mean number of trials during the re­
jecting,technique: this is given by 

l/[(n + 1)Rnp2n+1] '" Cv'n, n --+ 00. 
4P 

(30) 
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The total mean number of letters used in a Meander generation is given by E1 + 
E2 + E3 + E4 , with E1 := (2n + 1)A1' E2 := (2n + 2)A2' E3 := (2n + 1)A3, 

n-1 . n-1 1 
E4 := P + ~)2i + 1)RiP2<+1 ~ 2C4P 2:= Vi ~ 2C4P2..jTi, n --+ 00. 

i=1 i=1 Z 

With (25), we obtain 

Multiplying by (30) leads to 8n = 2n.m1 as it should. 
D 

The moments of K,2 are given by (as 1£2 == /-L s 1£1 ) 
m1 = 2 + V2, VAR = 4 + 8V2/3,/-L3 = 22 + 77V2/5,/-L4 = 2~~~2 + 6;~4V2. 

5 Simulations 

We have done an extensive set of simulations, in order to check the quality of our 
asymptotic equivalents. For n = 2000, we have simulated N = 1000 generations. 
This has led to NET = 134.553 Excursions, N M = 2083 Meanders. To get rea­
sonably long Excursions, we have observed in detail N E = 11061 Excursions of 
length 2 100. 

The first picture Fig.3 gives (for n = 30) the RW S(i). 4 Meanders were 
generated. 

Fig.4 shows the Distribution Function (DF) of Nr : the number of returns to 
o (i.e. Excursions) before getting a length n=2000 Meander. According to (17), the 
limiting distribution is Exponential. The observations are based on N M generated 
Meanders. 

The DF of the Meander height h is given in Fig.5, based on N M generated 
Meanders. According to (19), the limiting distribution is Rayleigh. 

In Fig.6, we display the DF of Nh: the number of horizontal steps in Ex­
cursions, based on the N E Excursions of length 2 100. According to (15), the 
limiting distribution is Gaussian. 

We have also checked in Fig.7 the same DF for the N M Meanders. Again we 
obtain a limiting Gaussian DF. Fig.8 shows the DF ofT: the number of trials before 
getting a suitable Meander, based on N generations. According to (26), we obtain 
a GEOM(1/2) distribution. The fit is not as good as in our previous pictures. 
The observed frequency at 1 is .472. The corresponding standard deviation 0- = 
j1/(4N) = 0.016··· So the observed frequency falls within 1.770- of 1/2, which 
is statistically acceptable. 

In Fig.9, we give the observed and limiting Laplace transform \)i1 (0:) of the 
Meander generation cost (according to the number of generated letters). The fit 
with the expression given in (29) is quite good. 

Fig.10 shows the same observation for the steps cost (number of calls to the 
random generator). Here we consider \)i2(0:) . 
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Figure 3: S(i), n = 30. 
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0 . 6 

Figure 4: Nr : observed and limiting (exponential) DF. 
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Figure 5: h : Observed and limiting (Rayleigh) DF. 
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Figure 6: Nh in Excursions: observed and limiting (Gaussian) DF. 
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Figure 7: Nh in Meanders: observed and limiting (Gaussian) DF. 
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Figure 8: T : observed and limiting (GEOM(1/2)) DF. 
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Figure 9: Cost(letters) : observed and limiting (\[11 (0:) ) Laplace transform. 
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Figure 10: Cost(steps) : observed and limiting (\[12(0:) ) Laplace transform. 
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6 Conclusion 

Using various tools from Combinatorics, Probability Theory, and Singularity anal­
ysis, we have achieved a complete asymptotic probabilistic analysis of the cost of 
a Schroder walk generation algorithm proposed by Penaud et al. ([13] ). Five 
different probability distributions have been observed. We intend to pursue such 
approach in other generation algorithms found in the litterature. 
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A Appendix: Proof of (14) for Meanders. 

Proof Set T := TJh) /(2n). We must compute 

[U,6][CP3(W, u)]hv'2ri, 

where f3 is such that n . T = f3 - hffn/2. Now we analyze 

CP3(W, u) := (1 - p2uw)/(2p) - [G3(W,UW/2 /(2p), 

with 
G3 (W, u) := 1- 2p2uw + p4U 2W 2 - 4p2u. 

(31) 

(32) 

First, we set w = eis , u = e- IJ in the first part of (32). This leads to G4(S) + 
OG5 (s) + 0(02), with G4(s) = 1 - isp/2, G5 (s) = p/2 + O(s). 
We should be tempted to proceed immediately in the same way for G3 • But this 
is not correct: as we shall see, we need a more precise analysis, based on the GF. 
So we set u = 1 - r::, this gives 

G3 = [(-11 + 8V2) + (4V2 - 6)w + (17 - 12V2)w2] 

+ [(12 - 8V2) + (6 - 4V2)w + (-34 + 24V2)w2]c + 0(r::2 ), r:: --+ o. 
But, if cp(u) = ~Pkuk, then [uk][cp(ua)] = pkak. If we want to cancel the constant 
term G3 (w, 1) in G3 , we must choose a such that G3 (w, a) = 0, namely a = r(w) 
as given by (10). This leads to 

(h := G3 (w, r(w)u) = r::G6 (w) + o (r::2) , r:: --+ 0, 

with 
G6 = _2p4r(w)2w2 + 2p2r(w)w + 4p2r (W). 

Now we can set w = eis , u = e-IJ. This leads to 

and 

j(i;/(2p) = (21/ 4 + O(s))Vo + 0(03 / 2 ), 0 --+ O. 

Now setting u = r(w)u amounts to replace 0 in the first part of (32) by 0 -
[is( V2/2 -1) + 0(S2)], by (13). Therefore, we obtain, for the probability distribu­
tion of T, the asymptotic expression 

o --+ 0, 
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where cp(-1)(0) is the probability density corresponding to cp(O). This leads to 

{exp[h5n[-isp/2 - is(v'2/2 - I)p/2 + 0(S2) - (21/ 4 + O(s))V8 + 0(0)] 

}
(-1) 

-(nT + h5n/2) [is (v'2/2 - 1) + v'2/I6s2 + 0(S3)] ,0 --+ 0. 

First of all, the Vns term disappears( as it should). Setting now 0 = 0/ n, we obtain, 
asymptotically, for the 0 contribution: 

-VOh21/4..j2 
e , 

which is identical to (18). We are left with 

exp[nT[is(I - v'2/2) - v'2/16s2] + 0(ns3) + O( Vns2)], S --+ 0, 

which proves (14). • 

We observe that, asymptotically, for fixed T, Nh is conditionally independent of 
h. This can be explained probabilistically as follows. Let us return to the original 
RW Y(.). "From (5), in Y(n), 

D 
Nh '" nph + ahVn6, where 6 = N(O, 1). The number of up and down steps 
Nv = n - 2Nh '" n(I - 2ph) - 2ahVn6 and Y(n) '" L~v Vi, with Vi = ±I, with 
probability 1/2. Hence Y(n) '" VNv6, with 6 = N(O, 1) (independently of 6). 
So 

E(ei[xY(n)+yNhl ) E(e-Nv x 2 /2+ i yNh) 

E{exp[-x2/2(nv'2/2 - 2ahVn~d 
+iy(nph + ah Vn6)]} 

exp[-x2 /2nv'2/2 + iynph - a~n/2[x2 /i + y]2] 

exp(iynph) . exp[-x2 /2nv'2/2 -- naV2[x2/i + y]2]. 

Now we replace x by x/Vn and y by y/Vn in the second term. We are left, 
asymptotically, with exp[ _x2 /2v'2/2 - a~y2 /2]' which shows the asymptotic in­
dependence of Y(.) and Nh (incidentally, we recover (7)). 

B A ppendix: A Renewal Approach 

If we look only at the time displacement D, we have Pr[D = 1] = 2p, Pr[D = 2] = 
p2. The renewal theorem (for discrete RV) gives the following DF for the residual 
waiting time (see Feller [5],XI.4): H(j) = L~-1[I- F(k)]/m1, where F is the DF 
of D and m1 is its mean. We obtain H(O) = 0, H(l) = 1/m1, H(2) = 1. Now let 
Ph be the stationary distribution of an horizontal step covering time n (n --+ 00) 
and let Pv := 1 - Ph. We must have H(I) = Ph.I + Pv.2p, hence 
Ph = (2 - -12)/4, Pv = (2 + -12)/4. The asymptotic probability P of success is 
given by 
Ph + Pv . p = 1/2 as expected. 



Trends in Mathematics, © 2000 Birkhiiuser Verlag Basel/Switzerland 

Gibbs Families 
v. MALYSHEV l.N.R.I.A. Rocquencourt, Domaine de Voluceau, 78153 Le Chesnay 
Cedex, France 

Abstract. Gibbs random field is now one of the central objects in probability theory. 
We define a generalization of Gibbs distribution, when the space (lattice, graph) is not 
fixed but random. Moreover, randomness of the space is not given independently of the 
configuration but both depend on each other. We call such objects Gibbs families because 
they appear to parametrize sets of ordinary Gibbs distributions. Moreover, they are well 
suited to study local probability structures on graphs with random topology. First results 
of this theory are presented here. 

Gibbs random field [2, 3] is now one of the central objects in probability 
theory. Here we define a natural generalization of Gibbs distribution, when the 
space (lattice, graph) is not fixed but random. Moreover, randomness of the space 
is not given apriori and independently of the configuration but both depend on 
each other. We call the introduced objects Gibbs families because, as it will be 
shown, they parametrize sets of Gibbs distributions on fixed graphs. 

We present here the foundations of such theory. Two central definitions are 
given. The first one is Gibbs family on the set of countable spingraphs (spingraph 
is a graph with a function on its vertices) with the origin (a specified vertex). To 
deal with countable graphs where no vertex is specified we define the notion of 
empirical distribution. The conditional measure on the configurations of a given 
graph G gives standard Gibbs field on G with the same potential. We discuss some 
examples of Gibbs families. 

This paper is selfcontained, but it is a part of the series of papers by the 
author starting with [5] concerning new connections between computer science 
and mathematical physics. 

1 Definitions 

Spingraphs We consider non-directed connected (unless otherwise stated) 
graphs G (finite or countable) with the set V = V(G) of vertices and the set 
L = L( G) of links. The following properties are always assumed: between each 
pair of vertices there is 1 or 0 edges; each node (vertex) has finite degree (the 
number of edges incident to it). 

A subgraph of G is a subset Vi C V of vertices together with some links 
connecting pairs of vertices from Vi and inherited from L. A regular subgraph 
G(Vt} of G is a subset Vi C V of vertices together with ALL links connecting 
pairs of vertices from Vi and inherited from L. 

The set V of nodes is a metric space with the following metrics: the distance 
d( x, y) between vertices x, y E V is the minimum of the lengths of paths connecting 
these vertices. The lengths of all edges are assumed to be equal, say to some 
constant, assumed equal to 1. 

295 
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Spingraph a = (G, s) is a graph G together with a function s : V ~ S, where 
S is some set of spin values. Spingraphs are always considered up to isomorphisms. 
Isomorphism here is an isomorphism of graphs respecting spins. Denote QN (AN) 
- the set of equivalence classes (with respect to isomorphisms) of connected finite 
graphs (spingraphs) with N vertices. 

Spingraphs with the origin Define the annular neighbourhood 'Y(a, Vj a, b) 
to be the regular subgraph of a defined by the set V(-y(a,vja,b» = {v' : a :S 
d(v,v') :S b}. Od(V) = 'Y(a,vjO,d) is the d-neighborhood of v,O(v) = 01(V). Let 
Ro(G) = maxvEV(G) d(O,v) be the radius of graph G with respect to vertex O. 
Thus Rv(O(v» = 1. Radius of a graph is R(G) = minvEv(G) Rv(G). 

We will also consider graphs with one specified vertex, the origin. In this case 
isomorphisms are also assumed to respect the origin. When we want to emphasize 
that the graphs are given together with an origin v we shall write it as G(v), Q(v) 
etc. 

Let Q}S) (A~» - the set of equivalence classes of finite graphs (spingraphs) 
with respect to isomorphisms, with origin 0 and having radius N with respect to 
O. Further on, spingraph will mean its equivalence class. Let A(O) = UA~) be the 
set of all finite spingraphs with the origin O. 

a-algebra and free measure Let A be an arbitrary set of finite spingraphs 
a = (G, s). Let Q = Q(A) be the set of all graphs G such that there exists s with 
a = (G, s) E A. We assume always that if a = (G, s) E A then for any s' all (G, s') 
also belong to A. 

A is a topological space which is a discrete (finite or countable) union of 
topological spaces TG = SV(G), G E Q(A). We consider the Borel a-algebra on A. 
It is generated by cylindrical subsets A(G, Bv, v E V(G», G E Q, where Bv are 
some Borel subsets of S. A(G,Bv,v E V(G» is the set of all a = (G,s) such that 
G is fixed and functions (configurations) s(v) : V(G) ~ S are such that s(v) E Bv 
for all v E V(G). 

Let some nonnegative measure Ao on S be given. The following nonnegative 
measure AA (not necessarily a probability measure) on A 

AA(A(G,Bv,v E V(G») = II Ao(Bv) 
vEV(G) 

is called a free measure. 

(1) 

Regular potentials Potential is a function <P : UN AN ~ R U { +00 }, that 
is a function on the set of finite spingraphs invariant with respect to isomorphisms 
of spingraphs. We say that <P has a finite radius if <P(a) = 0 for all a with radius 
greater than some ro < 00. Unless otherwise stated we shall consider only radius 1 
case, that is ro = 1. Fix potential <P and measure Ao on S. The energy of spingraph 
a is defined as 

H(a) = L <p(f(B», a = (G, s) 
BCV(G) 

(2) 
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where the sum is over all subsets B of V(G), r(B) is the regular subgraph of 0 

with V(r(B)) = B. Gibbs A-family with potential <P is the following probability 
measure J-LA on A 

dJ-LA 1 
dAA (0) = Z- exp( -j3H(o)), 0 E A (3) 

assuming Z ¥ 0 and the stability condition 

Z = Z(A) = i exp( -j3H(o))dAA < 00 (4) 

Here j3 ~ 0 is the inverse temperature. 

Markov property The set A~ of countable spingraphs with the origin 
is a topological space. The basis of its open subsets is defined as follows. Let eN 
be an arbitrary open subset of the set A~) of all spingraphs with radius N with 
respect to the origin. Then the basis consists of sets of all countable spingraphs 
such that (for some N and some eN) their N-neighborhood of the origin belongs 
to eN' We again take the Borel a-algebra as the basic a-algebra. 

For notational convenience we give definition only for potential of radius 1. 
For any spingraph 0 with the origin 0 we call '}'( 0,0; N, N) its N -slice, '}'( 0,0; 0, N) 
- the N-interior, '}'(o, 0; N, 00) - the N-exterior parts. Note that N-slice and the 
exterior part may be non-connected. There are no links connecting (N -I)-interior 
and (N + I)-exterior parts of the graph: this will give us an analog of the Markov 
property. For given N and given some finite graph'}' (it may be non-connected) 
let A(:S N, '}') C A~) be the set of all finite connected spingraphs 0 having radius 
N with respect to the origin and such that'}' is the N-slice of o. 

Definition 1 We call measure J-L on Ai~,l a Gibbs family with regular potential <I> 

if, for any'}' and any N -exterior part with N -slice ,}" the conditional distribution 
on the set of spingraphs 0 having fixed exterior part (that is on N -neighborhoods 
with N -slice'}') coincides a.s. with the Gibbs family with potential <I> on A(:S N, '}'). 

In particular, it depends only on the spingraph '}' but not on the whole N­
exterior part. 

Boundary conditions Boundary condition is a sequence VN(-r) of mea­
sures on the set of finite (not necessary connected) spingraphs '}'. Intuitively - on 

N-slices. Gibbs family on A~) with boundary conditions VN+l(-r) is defined as 

J-LN(O) = Z-l(N,VN+l) L ! exp(-j3H(~))dvN+l(-r),O E A~) (5) 
{EA(a,'Y) 

where A(o, '}') is the set of all spingraphs from A~~l with (N + I)-slice'}' and 
N-interior part o. Note that A(o,,},) is finite for any a,'}'. 
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Non-regular potentials Gibbs family with non-regular potentiallP on A 
here is defined similarly but with the energy of a defined by the formula 

H(a) = L IP(-y), a = (G, s) (6) 
,Ca 

where the sum is over all (not necessary regular) subspingraphs 'Y of a. 
A particular case is the" chemical" potential. It is given by a function IP equal 

to a constant Zo for each vertex (independently of spins in this vertex), equal to a 
constant Zl for each link (independently of spins in both vertices of the link) and 
equal 0 otherwise. Then 

(7) 

where V(a), L(a) are the numbers of vertices and links in a. 

2 Limiting correlation functions 

Compactness Gibbs families on the set A~) of connected countable sp­
in graphs with fixed vertex 0 can be obtained as weak limits of Gibbs families 
on finite graphs. There are 3 sources of non-existence of limiting Gibbs families: 
non-existence of finite Gibbs families (see examples below), non-compactness of S, 
the distribution for a finite Gibbs family can be concentratred on the graphs with 
large degrees of vertices (ultraviolet problem). The assumptions of the following 
propostion correspond to this list, but the compactness could be proven under 
weaker conditions. 

Let A~)(r) C A~) be the set of countable spingraphs where each vertex has 
degree not greater than r. 

Proposition 1 Assume S to be compact. Assume that for all N there exists a 
Gibbs family with potentiallP on A~). Assume that IP has radius 1 and IP(O(v)) = 
00 if the degree of v is greater than some constant r. Then there exists a Gibbs 
family with potentiallP, with support on Ax> (r). 

Proof. Consider the Gibbs family /-tN on A~). Let [iN be an arbitrary prob­

ability measure on A~) such that its factor measure on A~) coincides with /-tN. 

Then the sequence [iN of measures on the set A~) is compact, that can be proved 
by the standard diagonal process by enumerating all possible N-neighborhoods. 
Moreover, any limiting point of iLN is a Gibbs family with potential IP. 

Generators To give examples of Gibbs families it is useful to introduce the 
following classes of graphs. Consider a set of "small" graphs G I, ... , G k of the same 
radius r with respect to a specified vertex O. Graph G is said to be generated by 
G I , ... ,Gk if each vertex of G has a neighborhood (of radius r) isomorphic to one 
of G I , ... , Gk. Let g(G I , ••• , Gk ) be the set of all graphs generated by G I , ... , Gk. 
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With each system Q(G1 , ..• ,Gk) and fixed S we associate the following class 
F(G1 , ..• , Gk) of potentials <1> = <1>(G, s) if G = Gi for some i = 1, ... , k, <1>(G, s) = 
00 for all other graphs with the same radius rand <1>( G, s) = 0 for all graphs with 
Ro(G) f. r. 

Nonexistence This class of potentials satisfies the previous compactness 
criteria if there exist Gibbs families on finite graphs. However this is not always 
the case. 

For example, consider the case k = 1, r = 1. If G1 is a finite complete 
graph then it is "selfgenerating" but there are no countable graphs generated 
by it. Introduce some graphs with radius 1: gk with k + 1 vertices 0,1,2,3, ... , k 
and k links 01,02, ... , Ok, and gk,k with k + 1 vertices 0,1,2,3, ... , k and 2k links 
01,02, ... , Ok, 12, 23, ... , k1. One can see after several iterations that the pentagon 
G1 = g5,5 cannot generate any countable graph. 

Gibbs families and Gibbs fields LFrom the following simple result it be­
comes clear why the introduced distributions are called Gibbs families. Let J-t be a 
Gibbs family with potential <1>. Assume that the conditions of the previous propo­
sition hold. Consider the measurable partition of the space A~) of spin graphs: 
any element Se of this partition is defined by a fixed graph G and consists of all 
configurations Se on G. 

Theorem 1 For any given graph G the conditional measure on the set of config­
urations Se is a.s. a Gibbs measure with the same potential <1>. 

Thus, any Gibbs family is a convex combination (of a very special nature) of 
Gibbs fields (measures) on fixed graphs, with the same potential, with respect to 
the measure v = v(p,) on the factor space A~) / {Sa} induced by p,. 

The following lemma reduces this result to the corresponding result for Gibbs 
families on finite graphs where it is a straightforward calculation. 

Lemma 1 Let J-t be a Gibbs family on A~) with potential <1>. Let vNb) be the 
measure on N -slices induced by J-t. Then J-t is a weak limit of Gibbs families on 
A~) with potential <1> and boundary conditions {vNb)}. 

Topological phase transition We say that Gibbs family with potential <1> 

is a pure Gibbs family if it is not a convex combination of Gibbs families with the 
same potential. If there are more than one pure Gibbs family with potential <1> we 
say that Gibbs family with potential <1> is not unique. Intuitively, nonuniqueness of 
Gibbs families can be of two kinds: due to the structure of configurations (inherited 
from usual Gibbs fields) and due to topology of the graph. The following example 
(using Cayley graphs of abelian groups) gives an example of a "topological phase 
transition" . . 

Let Ud,2 be the graph isomorphic to the 2-neighborhood of 0 on the lattice 
Zd. Then the following graphs belong to Q(Ud,2)' This is Zd itself and any of its 
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factorgroups Z(kl' ... , kd) with respect to some subgroup of Zd, generated by some 
vector (kl' ... , kd ), ki 2: l. 

Consider now Ising Gibbs fields on Z(kl' ... , kd) with some potential from 
F(Gd. More exactly, take S = {-I, I} and introduce the following potential <I>. 
<I> (Ud,2 , SUd,2) is equal to the energy of the configuration SUd,2 corresponding to the 
nearest neighbor Ising model on Ud ,2. For all other spingraphs 0: of radius 2 we 
put <I>(o:) = CXl, we put <I>(o:) = ° if the radius of 0: is different from 2. 

We know from statistical physics that for any such graph there is only one 
Gibbs field with potential <I> for (3 sufficiently small. The following theorem shows 
that the Gibbs family with potential <I> is not unique, however, each pure Gibbs 
family we found is a Gibbs field on the fixed graph. 

Theorem 2 For any (3 sufficiently small there are countable number of pure Gibbs 
families with potential <I>. 

Proof. An example (for d = 2) of a pure Gibbs family with potential <I> is the 
unique Gibbs field on Z x Zn for any n 2: 5. Consider the (unique) Gibbs random 
field J.L(n) with potential <I> on this infinite cylinder. Take the induced measure 
vN(J.L(n)) on N-slices, that is on non-connected union of two circular strips of 
length n. Using Lemma 1 take Gibbs families with potential <I> and boundary 
conditions vN(J.L(n)). Then the graph is uniquely defined (one can construct slice 
N -1, N - 2, ... by induction). Thus, this Gibbs family coincides the with the pure 
Gibbs field on the correponding graph. Another interesting possibility are Gibbs 
fileds on twisted cylinders, that is on the sets obtained from the strip Zx {I, 2, ... , k} 
if for each n we identify the points (n, 1) and (n + j, k). 

3 Empirical correlation functions 

We constructed probability measures on A~) in quite a standard way, using stan­
dard Kolmogorov approach with cylindrical subsets. However, one cannot use sim­
ilar approach to define a probability measure on the set Aoo of equivalence classes 
of countable connected spingraphs. The problem is that it is not at all clear how to 
introduce finite-dimensional distributions here, because the vertices are not enu­
merated (there is no coordinate system). Thus all Kolmogorov machinery fails. 
However one can propose an analog of finite-dimensional distributions. We call 
the resulting system an empirical distribution. 

Assume S to be finite or countable. Let us consider systems of numbers 

(8) 

i.e. f is an arbitrary finite spingraph with origin 0. We assume the following 
compatibility condition: for any k = 0,1,2, ... and any fixed graph fk of radius k 
we have 

L P(fHd = p(fk ), k = 0,1,2, ... (9) 
r k +1 
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where the sum is over all fk+1 ofradius k + 1 such that Ok(O, fk+d is isomorphic 
to fk. It is assumed that the summation is over equivalence classes of spingraphs. 

We assume also the following normalization condition 

(10) 

where fo is the vertex 0 with any possible spin on it. 

Definition 2 Any such system 7r is called an empirical distribution. 

One can also rewrite compatibility conditions in terms of conditional proba­
bilities 

L p(fk+1 I fk) = 1 (11) 
rk+l 

where the summation is as above and 

(12) 

Thus we consider A(O) as a tree where vertices are spingraphs and a link between 
fk+1 and fk exists iff rk is isomorphic to the k-neighborhood of 0 in r k+1' 

Examples of empirical distributions can be obtained via the following limiting 
procedure. Let /-IN - probability measure on AN. For any N and any r E A~O), Q E 
AN put 

(13) 

where n N (Q, r) is the number of vertices in Q having their k-neighborhoods iso­
morphic to r. Denote 7r N = {pN (r) }. 

Lemma 2 Assume that S is finite. Assume that for any r 

(14) 

as N -+ 00. Then any weak limiting point of 7r N is an empirical distribution. 

Proof. Note that for any no there exists such No = No(no) such that for 
any N > No numbers PN(f) satisfy compatibility conditions for all r with radius 
n < no. Finiteness of S implies compactness. 

Interesting question is how one could characterize empirical distributions 
which can be obtained via this limiting procedure. 
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Empirical Gibbs families Note that for a given 7r the numbers p(r) for 
all r with Ro(r) = N define a probability distribution 7rN on A~). For any n < N 
let 7rN,nb) be the probability that n-slice of r is equal to 'Y, and 7rN,n(r n) be the 
probability that the neighborhood On(r) of 0 is isomorphic to rn. 

For any 'Y and any r n with n-slice 'Y introduce conditional probabilities 

(r / ) - 7rN,n(r n) 
7rN,n n'Y - ( ) 

7rN,n 'Y 
(15) 

An empirical distribution 7r is an empirical Gibbs family with potential <I> if for 
any n < N, 'Y, r n the distribution 7rN,n(r n/'Y) is the Gibbs family with potential <I> 

on the set spingraphs r n with n-slice 'Y, that is 

(16) 

We see that in this case 7rN,n(r n/'Y) do not depend on N. 

Two-dimensional quantum gravity (or string in zero dimension) In 
the following examples there is no spin, the free measue is trivial, and the partition 
function contains summation over the corresponding graphs. 

We consider graphs corresponding to the set of all triangulations TN of two­
dimensional sphere with N triangles, where combinatorially isomorphic triangu­
lations are identified. Another way to specify such graphs is to use the poten­
tial <I> such that <I> ( 0 1 (v) = 00 if Od v) -::/:- gk,k for some , k ~ 2 .. Put also 
<I> (K5) = <I>(K3 ,3) = 00, where K5 is the complete graph with 5 vertices, K 3 ,3 

is the graph with six vertices 1,2,3,4,5,6 and all links (i,j),i = 1,2,3,j = 4,5,6 
(by Pontriagin-Kuratowski theorem this singles out planar graphs). In all other 
cases put <I> = O. This model is called in physics pure two-dimensional gravity or 
quantum string in zero dimensions. 

Theorem 3 There exists a unique limit p(r) = limN-+oc> PN(r). Moreover, p(r) 
is an empirical Gibbs family with potential <I>. 

Proof. We shall prove this by giving explicit expressions. Denote the number 
of triangulations with specified vertex 0 and fixed Od(O) = r d, let r d have u 
triangles and k boundary links (with both vertices on the d-slice). The external 
part is the triangulation of the disk with N - u triangles and also with k boundary 
links. The number D(N - u, k) of such triangulations (this follows from results by 
Tutte, see [4], pp.21, 25) has the following asymptotics as N -+ 00 

(17) 

Thus the probability of r (at vertex 0) is 

(18) 

where 
(19) 
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is the number of triangulations with N triangles. The function </> and constants 
c, a are known explicit ely but we do not need this. It can be proved (see similar 
statements in [4]) that probabilities for the case of specified origin and without it 
are asymptotically the same as N -t 00. 

Trees Trees cannot be characterized locally. That is they cannot be singled 
out from the set of all graphs via restrictions on subgraphs having radius not 
greater than some constant. It is interesting, however, that a local probabilistic 
characterization of trees can be given using Gibbs families. More exactly, one 
can define empirical Gibbs families with radius 1 potential and such that the 
distribution has its support on the set of trees. We give an example with p-regular 
trees. 

Consider the set AN,p of all p-regular graphs with N vertices, that is graphs 
with all vertices having degree p. Consider Gibbs family on AN,p with potential 
<J> == O. Otherwise speaking, we define Gibbs family on AN with the following 
potential <J>: <J> = 0 on all radius 1 graphs, where 0 has degree p, and <J> = 00 for 
all other radius 1 graphs. 

Theorem 4 pN(fk) have limits p(fk) = 1 for p-ary tree of height k, and 0 oth-
erwise. / 

Proof. The case <J> = 0 can be reduced to combinatorics. To prove the theorem 
we need some techniques from graph enumeration. 

Lemma 3 The asymptotics of the number Cp(N) of connected p-regular graphs 
with N vertices 

C (N) '" (pN - l)(pN - 3) ... 
p N!(p!)N 

(20) 

Proof. We use a combinatorial method to prove this lemma. Such method 
is known and was applied to other situations. It consists of several statements, 
see [1], section 9.4. We call graph labelled if both vertices and legs are labelled 
(enumerated). The scheme of the proof is the following: 

1. Number of labelled p-regular graphs is (pN - l)(pN - 3) .... 

2. Almost all labelled p-regular graphs are connected. 

3. Almost all p-regular graphs are asymmetric. 

4. It follows from 1-3 that almost all p-regular graphs are connected. 

In the same way on can show that the number of p-regular graphs with no 
cycles of length q at vertex 0, is equal asymptotically to the number of all graphs. 
It follows that the probability that in a vertex there are no cycles tends to 1 as 
N -t 00. 

An interesting problem is to generalize this result for the case with S = 
{ -1,1} and Ising type interaction. 
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Generating functions with high-order poles are 
nearly polynomial 
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Abstract. Consider the problem of obtaining asymptotic information about a multi­
dimensional array of numbers a r , given the generating function F(z) = L:r arzr . When F 
is meromorphic, it is known how to obtain various asymptotic series for ar in decreasing 
powers of Irl. The purpose of this note is to show that, when the pole set of F has 
singularities of a certain kind, then there can be only finitely many terms in such an 
asymptotic series. As a consequenr,;e, in the presence of a singularity of this kind, the 
whole asymptotic series for ar is an effectively computable object. 

Key words. Asymptotic, automatic coefficient extraction, meromorphic, multiple point, 
Cauchy integral formula, convolution. 
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13P10. 

1 Introd uction 

Given a generating function F(z) = L:~o arzr, analytic in a neighborhood of 
the origin, it is usually possible to obtain a good explicit approximation for ar . 

The transfer method of Flajolet and Odlyzko [FlaOdl90], for example, translates 
information about F near a singularity automatically into asymptotic information 
about ar . 

The corresponding problem in more dimensions, when r is replaced by a 
multi-index, r, is much harder. Even rational functions, whose approximation the­
ory in one dimension is trivial, are not well understood. The paper [CohElkPro96], 
for example, spends many pages deriving asymptotics by hand for an array {arst} 
whose generating function is, up to minor changes, 

F(x,y,z)='"'arstXryszt = X+:l 1 • 
~ (1 )(1 +y+y z + Z2) r,s,t - yz - 2 

The body of literature dealing with the problem of multivariate coefficient extrac­
tion in a systematic way is quite small. The purpose of this note is to shed some 
light on coefficient approximation for a class of meromorphic generating functions 
to be defined shortly. 

1 Research supported in part by National Science Foundation grant # DMS 9803249 
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The problem of finding an asymptotic expression for a r falls naturally into 
two steps. The first is to find the correct exponential rate, namely a homogeneous 
function ,,(r) of degree 1 for which 

logar = (1 + o(l))'f(r). (1.1) 

This step is geometric and amounts to finding an appropriate point on the variety 
V of poles of F. This step, which is not the main concern of this paper, will be 
discussed in Section 2. 

If the first step can be carried out, the next step is to find an asymptotically 
valid expression (or better yet, a complete asymptotic series) for ar . This step is 
analytic. All known methods involve complex variable methods, namely contour 
integration or Fourier transforms. When this step can be carried out, one typically 
finds something like 

00 

ar '" exp(,,(r)) L bj (r) 
j=O 

where" is homogeneous of degree 1 and {b j } j20 is a sequence of homogeneous 
functions whose degrees decrease, typically as (1- j)/2 for some IE Z. An example 
of the leading term asymptotic (the j = 0 term) is given by F(z, w) = 1/(1 - z­
w - zw) = L a(r,s)ZrWs which generates the number of lattice paths from (0,0) to 
(1', s) that go north, east or northeast. Here the leading term asymptotic is given 
by 

( >/1'2+s2_8)~r(>/1'2+82_1')~S {l r=~1'8~ 
ars '" l' 8 V 2:;;: V (1' + 8 - >/1'2 + 82)2>/1'2 + 8 2 ' 

(1.2) 
so ,,(1',8) is the logarithm of the first two terms and bo is the product of the last 
two terms, with I = -1. 

Generally, if F is expressed as the quotient of analytic functions G / H, the 
function" is determined by H, as is 1 in nondegenerate cases. As G varies, the 
space of possible asymptotic series will be quite large: even holding r fixed in 
projective space, any set of values for bo, . .. , bN will typically be possible, and the 
possible values of the sequence {bj }j20 will typically form an infinite-dimensional 
vector space. In some cases, however, the possible sequences {bj }j20 wql form 
a finite vector space, and what is more, will consist of terminating sequences. 
Furthermore, each bj will then be a polynomial function of r, whence the whole 
asymptotic expansion up to terms of exponentially smaller order is a finite object. 
This is the topic of the present note. 

The methods herein are more algebraic than geometric or analytic, and are 
not useful for computing the coefficients {b j }j20. The point is to find out a priori 
how many coefficients one has to compute for a complete asymptotic expansion, 
thus enabling computation algorithms such as those in [PemWilOObj to terminate. 
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This introductory section concludes with an imprecise statement of the main re­
sult of the paper. Section 2 gives some background on the determination of the 
correct exponential order. Section 3 sets forth the remaining notation and states 
the main theorem, Theorem 3.1, along with examples and corollaries. Section 4 
shows how a local ring of analytic functions maybe be extended over a poly disk 
and characterizes when partial fraction expansions are available in the local and 
global rings. Section 5 finishes the proof of Theorem 3.1. 

Some notation in use throughout the paper is as follows. Say that g(r) = 
oexph(r) if g(r)/h(r) = O(e-01rl ) for some r5 > O. The function F is always taken to 
be analytic on a neighborhood of the origin in Cd. The formal power series L:r arzr 
that represents F will then converge near the origin and its domain of convergence 
is denoted V; here and throughout, zr := Z[l ... Z~d. In order to accommodate 
functions such as the generating functions for self-avoiding walks and percolation 
probabilities, which are meromorphic near the origin but not necessarily near in­
finity [ChaCha86, CamChaCha91], the natural hypothesis that F be meromorphic 
will be weakened as follows. Let z be a point on the boundary of V where F is 
singular and let D(z) be the closed polydisk {w: IWjl::; IZjl,j = 1, ... ,d}. As­
sume that F is meromorphic in a neighborhood n of D(z), and express F = G/H 
in this neighborhood (such a global choice is always possible). In particular, z is 
assumed to be a pole of F. 

Let V denote the analytic variety where H vanishes. We say that z is a 
multiple point of V if near z, V is locally the union of smooth manifolds. We say 
that the point z is a complete multiple point if in addition, the common intersec­
tion of these manifolds is locally the singleton {z}. Define 

d 

l'(r, z) = - L rj log IZjl· (1.3) 
j=1 

As discussed later, when z is a multiple point of Von the boundary of the domain 
of convergence, V, then 

logar 1 
----t 
l'(r,z) 

as r varies over a certain cone C n (Z+)d. The cone C depends on H but not on G. 

The main result of this paper is as follows. Assume C = C(H) has non-empty 
interior. Then there is a finite dimensional vector space W of polynomials in r 
such that for any G analytic in a neighborhood of D(z) there is aPE W with 

ar = exp(f'(r, z)) (P(r) + oexp(I)) . (1.4) 

Contrast this to (1.2), which is only the leading term, to see what complications 
are avoided when P is a polynomial. This result will be stated more precisely as 
Theorem 3.1 after the appropriate terminology has been introduced. This theorem 
does not address the possibility that P is always zero, but in fact this is ruled out 
by results of [PemWilOOb, PemWilOOc]. 
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2 The exponential order of ar 

The problem of determining the exponential order of ar is completely solved only 
when d ::; 2 and the coefficients ar are assumed to be nonnegative. This section 
summarizes most of what is known about determining the exponential order. 

If one is interested only in those ar with r on the diagonal, then rela­
tively powerful results may be obtained. When d = 2, the generating function 
{(z) = Er arrzr may be extracted analytically [HauKla71], reducing the prob­
lem to one dimension. A rational two-variable function has an algebraic diago­
nal [Fur67], so for nice two-variable functions, extraction of the diagonal is ef­
fective and asymptotics may then be obtained. In more than two dimensions, no 
analytic expression for the diagonal is available [Sta99], but the diagonal is still D­
finite [Lip88) and a recursion for the diagonal may be effectively derived [ChySal96), 
which allows the derivation of asymptotics by solving difference equations with 
polynomial coefficients. This has in fact been implemented [LeyTsaOO) and has no 
problem running on a standard laptop (circa 1999) when the inputs are reason­
able. The methods used in these cases, though superficially analytic, are really 
algebraic and may be carried out over formal power series rings and modules over 
the Weyl algebra. The methods may, in theory, be applied to other rays such as 
{ars : s = 2r}, but unfortunately, they are inherently non-uniform in sir, and may 
not therefore be applied when the direction of the ray is a changing parameter. 

When the direction of r varies, all known results require analytic methods. 
To review what is known here, begin by defining a function dir = dir F on V. The 
function dir takes values in Cpd-l and may be multi-valued. 

If z is a simple pole and no Zj vanishes, then dir(z) = dirF(z) is the single 
value (Zl ~H , ... , Zd ~H), which is a nonzero element of Cd and thus defines an 

vZl vZd 

element of Cpd-l. Under the additional assumption that z is on the boundary of 
V, an equivalent definition of dir(z) is the normal to the support hyperplane at 
(log Izd, ... , log IZdl) of the (convex) logarithmic domain of convergence 10gV := 
{x E Rd : (e"'l, ... ,e"'d) E V}. If z is a manifold point of V but not a simple 
pole, then H is not square-free and dir(z) may be defined by replacing H with its 
radical. In the above cases, dir is single-valued. The remaining case is when z is 
not a manifold point of Vi in this case, define dir(z) as the set of limit points of 
dir(w) as w -t z along manifold points of V. When z is on the boundary of V, 
this is again the set of normals to support hyperplanes (log IZll, ... , log IZdl) of the 
logarithmic domain of convergence, logV, but is now, in general, multi-valued. 

An illustration will help to clarify the definition of dir. Suppose H = (1 -
(2/3)z - (1/3)w)(1 - (1/3)z - (2/3)w) so that V is the union of two lines, as in 
figure 1. As z varies linearly from (0,3) to (1,1), not including (1,1), the quantity 
dir(z) is single-valued and goes from slope 00 to slope 2. The value of dir(l, 1) 
is the cone of slopes between 2 and 1/2. As z varies linearly from (1,1) to (3,0), 
the quantity dir(z) is once more single-valued and goes from slope 1/2 to slope O. 
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The remaining points of V do not concern us, since they are not on the boundary 
of the domain of convergence of F. 

For each z E V, and each (. > 0, the asymptotic inequality 

(2.1) 

is immediate from Cauchy's integral formula. In fact more is true: 
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Lemma 2.1 lfz E V is on the boundary ofD and r varies over a compact subset 

of the complement of dir(z), then ar = oexp(z-r). 

PROOF: Let r be a fixed direction not in dir(z). Since the hyperplane through 
x := (log IZll, ... , log IZdl) normal to r is not a support hyperplane to logD, there 
is a y in the interior of logD with y . r > x . r. From (2.1) we see that ar = 
0((1 + E)lr1e-y·r) for any E > O. Choosing E small enough, the conclusion follows 
for fixed directions. The rate of decay (the 8 in the definition of oexp) may be 
chosen continuously in r, so the uniformity over compact sets follows. 0 

In particular, the true exponential rate for ar is at most 1'(r, z) = - "L:=l rj log IZj I 
for any z. This is minimized precisely when r E dir(z). One might hope that the re-
verse inequality holds in this case, namely, that log ar = (-1+0(1)) "L:=l Tj log IZjl 

for z E V n aD such that r E dir(z). Indeed this is conjectured always to hold 
when F has nonnegative coefficients, which is the case of greatest combinatorial 
interest. Results in this direction are as follows. 

Pemantle and Wilson [Pem WilOOa, Theorem 6.3] show that if F has nonneg­
ative coefficients, then for every r there is always a z E V n aD with r E dir(z). 
The argument consists of generalizing the example in figure 1. 

When z E aD is a smooth point of V and r E dir(z), there are several 
known proofs that 1'(r, z) is the correct exponential rate for ar . Bender and Rich­
mond [BenRic83] proved this in 1983, under some additional hypotheses, and also 
derived the leading term asymptotic. A different proof in a more general framework 
is given in [Pem WilOOa]; see also the book [FlaSedOO]. When z is a singular point 
of V, less is known. The preprint [PemWilOOb] shows that 1'(r,z) is the correct 
exponential order when z E aD is a multiple point and r E dir(z). As a conse­
quence, if one assumes ar 2: 0, one has complete knowledge of the exponential 
order. Another consequence is that Theorem 3.1 is non-trivial (meaning that Pis 
not identically zero). The case where d 2: 3 and z is some singularity other than a 
multiple point is addressed in a manuscript in preparation [CohPemOO]. 

3 Statement of results 

The definition of an isolated point may be made precise by the introduction of 
local rings. Let n be any open set containing a point z and let ~z be the complex 
algebra of germs of analytic functions in d complex variables, Wl, ... ,Wd at z. This 
is naturally identified with the set of power series in (w - z) that converge in some 
neighborhood of z [GunRos65, Theorem 1 of Ch. II]. The ring ~z is a noetherian 
UFD and is a local ring, with the maximal ideal M consisting of functions vanish­
in~ at z. Any hEM may be factored uniquely into powers of irreducible factors 
ITj=l h;j with each h j EM. This corresponds to the decomposition of the variety 
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V(h) locally as the union of Vj, where Vj is the zero set of hj' Taking h = H, the 
denominator of F, the point Z E V = V(H) is defined to be a multiple point if 
each h j has non-vanishing linear part. It is a complete multiple point if, in addi­
tion, the common intersection of the sets Vj (locally a hyperplane arrangement) 
is the singleton {z}. 

Given complete multiple point, Z E V(H), let dirj(z) be the limit of dir(w) 
as w -+ Z in Vj . This is the normal to Vj in logarithmic coordinates. The set dir( z) 
is simply the convex hull of {dirj(z) : 1 :s j :s k}. Let C denote the cone dir(z) 
and for 5 ~ {1, ... , k}, let C(5) denote the convex hull of {dirj(z) : j E 5}. Define 
5 to be the family of sets 5 ~ {1, ... , k} for which njEs Vj -I- {z}, that is, the 
intersection is a variety Vs of dimension at least 1. By convention, 0 E 5. It follows 
that if 5 E 5, then for j E 5, each Vj contains Vs, so each dirj(z) is normal to 
Vs in logarithmic coordinates, implying that C(5) is a subspace of co dimension at 
least 1. Let U = USES C(5). The main result may now be stated as follows. 

Theorem 3.1 Let H be analytic on D(z) and have a complete multiple point at z 

which is the only zero of H on the closed polydisk D(z). Let h~' , ... , h~k, V1 , ... , Vk 

be the local factorization of H at z and define dir j, C, C (5) and 5 as above. Assume 

C = dir(z) has non-empty interior. Then there exists a finite-dimensional complex 

vector space W of polynomials in r such that for every function G analytic in 

a neighborhood of D(z) and any compact subcone C1 of C \ U, the coefficients of 

F := G/ H are given by 

ar = z-r (P(r) + E(r)) 

with PEW and E = 0exp (1) uniformly on C1 . 

Remark: The set U contains the boundary of C but also possibly some hyperplanes 
in the interior of C. Thus it is possible for C \ U to be disconnected. In this case, it 
can happen that ar is approximated by two different polynomials on two different 
sub cones of C \ U. 

The steps of the proof are as follows. (1) locally, F may be expanded by 
partial fractions when G is in a certain ideal, 8'z, the quotient by which is finite­
dimensional (Lemma 4.1). (2) this is true globally in a neighborhood of D(z) (The­
orem 4.5). (3) the partial fraction summands are oexp(z-r) on C \ U (Lemma 5.2). 
(4) the coset representatives for analytic functions modulo 8'z have coefficients in 
a finite vector space of polynomials. Steps (1) and (2) are carried out in Section 4 
and steps (3) and (4) are carried out in Section 5. Two examples serve to illustrate 
the use of the theorem. 
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Example 1 (d = 2) 

When d = 2, any singular point z E aD n V is a complete multiple point. 
This follows from the fact that the leading terms of the expansion of H near z 
are all of the same homogeneous degree, which is proved in [Pem WilOOa, Theorem 
6.1]. Unless the branches of V near z all intersect tangentially, the cone dir(z) will 
have non-empty interior, and the hypotheses of Theorem 3.1 will be satisfied. 

If k is the number of factors of H near z, and z is a complete multiple point, 
then k 2: d. The simplest case, when k = d, is worth mentioning as a separate 
corollary. The proof will be given in Section 5 after the proof of Theorem 3.1. 

Corollary 3.2 Under the assumptions of Theorem 3.1, suppose k = d and each 

nk = 1. Then W is one-dimensional, consisting only of constants. 

Example 2 (crossing lines) 

Consider the example in figure 1, where H = (1 - (2/3)z - (1/3)w)(1 -
(1/3)z - (2/3)w). The leading term asymptotic is computed in [PemWilOOb] to be 

ar,s = 6 + O(lrJ)-l 

for 1/2 < r/s < 2. Further terms are increasingly time-consuming to compute. 
From Corollary 3.2 we see that in fact there are no more terms of the same ex­
ponential order. In this case there is a more elementary method of obtaining a 
first-order approximation to a rs . Because H factors globally, it is possible to rep­
resent ar,s as a two-dimensional convolution, resulting in a sum of products of 
binomial coefficients. A bivariate central limit approximation then recovers the 
leading term without too much trouble, but gives no indication that ar,s is in fact 
exponentially well approximated by the constant 6. 

Example 3 (peanut) 

Suppose H = 19 - 20z - 20w + 5z2 + 14zw + 5w2 - 2z2w - 2zw2 + Z 2W 2 • The 
real part of the zero set is shown in figure 2. The point (1,1) is on the boundary 
of D, and dir(l, 1) is the set 1/2 ~ r / s ~ 2. Thus by Corollary 3.2, we have again 

ar,s = C + oexp(l) 

where the constant C is proportional to G(I, 1). This example illustrates that it 
is the local nature of the singularity that allows us to apply Theorem 3.1 and its 
corollaries: H factors in the local ring at (1,1), but does not factor globally. 
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If F = G / H has a partial fraction representation as "£;=1 (gj / hj ), then clearly G 
vanishes at z. Amplifying on this, for S E S we define hs = fliEsc h;i, so that 

hs 1 
H - fljES h;i . 
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Let ~z be the ideal in ~z generated by {h s : S E S}. The following lemma 
is a local version of the main result of this section, namely the partial fraction 
representation, Theorem 4.5. 

Lemma 4.1 The quotient ~z/~z is a finite-dimensional complex vector space. 

Equivalently, there is a finite-dimensional vector space V ~ ~z such that for all 

g E ~z, 

with go E V and each gs E ~z. 

g = go + L gshs 
SES 

( 4.1) 

PROOF: First observe that z is an isolated element of V(~z). Indeed, if not, then 
some variety A of dimension at least 1 containing z is in V(~z). The (possibly 
empty) set SA of j for which A ~ Vj is in S, so hSA E ~z and hSA does not vanish 
on A, contradicting A ~ V(~z). 

The local ring ~z is noetherian [GunRos65, Theorem 9, Ch. IIB] and satisfies 
the Nullstellensatz (see the discussion after Corollary 16 of Ch. IIE on page 90 
of [GunRos65]). From the Nullstellensatz, it follows that the radical of ~z is M, 
the maximal ideal of ~z. From the noetherian property, it follows that the radical 
of an ideal is finite-dimensional over the ideal, hence ~z/~z is finite-dimensional 
over ~z/M ~ C. 0 

To transfer (4.1) to the global setting requires a formulation in terms of 
sheaves. Let w be a neighborhood of z in which the factors hj are analytic, and 
in which n;=l Vj = {z}. Since V does not intersect the interior of D(z), the 
intersection of Vj with ow is disjoint from D(z) and it follows that we may choose 
a neighborhood n of D(z) containing no such intersection point. 

Lemma 4.2 Fix any x E D(z) \ {z}. There are functions hi analytic on n for 

which the following hold: 

(1) each hi is analytic on n; 

(2) hi = u· hj with u a unit in ~z; 

(3) hi(x) f. 0. 

PROOF: Fix j for the entire proof. Let Fj be the sheaf over n of ideals < hj >. 
That is, when wE wand hj(w) = 0, then (Fj)w is the germs offunctions divisible 
by hj at w, while when w tI. w or wE w with hj(w) f. 0, then (Fj)w is all analytic 
germs at w. The definition of (Fj)W is potentially ambiguous when wE ow is in 
the interior of n, but since hj is nonzero here, there is no problem. 
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The sheaf :1"j is a subsheaf of the structure sheaf 0, hence coherent, so by 
Cartan's Theorem A (see [GraRem79, page 96-97]) there is a map 'ljJj from some 
(Jl onto :1"j, where 0 is the sheaf of germs of analytic functions (the structure 
sheaf) on 0 and 1 ~ 1. Denote the 1 generators of 0 1 by Ii, i ~ I. 

Surjectivity of 'ljJj is a local property, but since each Ii is a global section of 
0 1, each lij := 'ljJj (Ii) is an analytic function defined globally on 0. Surjectivity 
at z implies that hj is in the image of 'ljJj, which is the ideal generated by the 
functions lij at z as i varies. Thus for some functions Ui in a neighborhood of z, 

(4.2) 

Surjectivity at any other point implies that I;j do not simultaneously vanish any­
where that hj does not. By definition of 'ljJj, each ]ij is in the ideal generated 
by hj and hence may be written as uijhj in ~z. If each Uij E M, then each 
]ij EM· < h j > contradicting the fact that hj is in the ideal generated by the 
]ij. Thus for some i, ]ij ¢ M· < hj >. 

Given x, if there is an i with ]ij ¢ M· < hj > and ]ij (x) f:- 0, then the 
lemma is proved with h'J := ]ij and U = Uij. If not, then choose i and if so that 
I;j ¢ M· < hj > and 1;, j (x) f:- O. Since it was not possible to choose i = if, we 
know that ]ij(X) = 0 and Ui'j EM. It follows that Uij + Ui'j ¢ M and the lemma 
is proved with h'J := ]ij + ]i'j. 0 

Corollary 4.3 There is a finite collection {ho: : a E A} analytic on a neighbor­

hood 0] D(z) such that for each S E S and each wE D(z) \ {z} there is an a E A 

with 

(4.3) 

with U a unit 0] ~z. 

PROOF: Fix S E S. The function hs := ITjEsc(hj)n j satisfies (4.3) for all W in 
some neighborhood N x of x. It also satisfies (4.3) for all w in some neighborhood 
N of z. By compactness of D(z), we may choose finitely many x for which the 
collection of sets Nx covers D(z) \ N. Taking the union of such collections over 
S E S proves the corollary. 0 

Lemma 4.4 Let 0 be a polydisk containing z and let {ho: : a E A} be a finite 

collection of functions analytic in fl. Suppose an analytic function g on 0 is rep­

resented as Eo: g~ho: in a neighborhood of each x where each g~ is analytic. Then 

0: 

with g~ analytic in o. 
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PROOF: This is a straightforward application of Cartan's Theorem B. A sketch of 
the argument is as follows. Define sheaves over ° by F = alAI and 9 =< hOt : 0: E 
A >. The map "I : F -+ 9 defined by TJ(jOt : 0: E A) = LOt fOthOt is a surjection of 
sheaves. The space of global sections of a sheaf is the zeroth cohomology group, 
and HO(O, F) maps onto HO(O, Q) only if the coboundary map from HO(O, Q) to 
HI (0, £) is trivial, where £ is the kernel of "I. By Cartan's Theorem B ([GunRos65, 
Theorem 14, Ch. VIllA]), since £ is a subsheaf of alAI and ° is a Stein space, 
the cohomology groups Hq(O,£) vanish when q ~ 1. Hence the coboundary map 
is trivial, and there is a global section (gOt: 0: E A) of F mapping by "I to g. 0 

Let !R now denote the ring of functions analytic beyond D(z), that is, func­
tions f for which there exists a neighborhood of D(z) on which f is analytic. 
Putting together the lemmas of this section yields the following result. 

Theorem 4.5 Let H be analytic on D(z) and have a complete multiple point at 

z which is the only zero of H on the closed disk D(z). Let h~l, ... , h~k, VI' ... ' Vk 

be the local factorization of H in a neighborhood of z, and let S be the family of 

subsets S of {I, ... , k} such that z is not isolated in nsEs Vj • Then there is a 

finite subset {hOt: 0: E A} of!R, each localizing to hs times a unit in !Rz for some 

S E S, and having the following property. 

There is a finite-dimensional vector subspace V* of!R such that each G E !R 

may be written as 

(4.4) 

with go E V* and the dimension of V* equal to the dimension of !Rz/C;Sz. 

PROOF: The {hOt: 0: E A} is constructed in Corollary 4.3. Choose coset represen­
tatives for a basis of !Rz/C;Sz and let V* be their span. We need only to verify the 
representation property (4.4). By construction, if G E !R, then G may be written 
as go + 9 with go E V* and the germ (g)z in C;Sz. Evidently, the dimension of V* 
is equal to the dimension of !Rz/C;Sz, which is finite by Lemma 4.1. 

We now verify the hypotheses of Lemma 4.4. In a neighborhood of z, we 
know from (4.3) that the functions {hOt: 0: E A} generate C;Sz. Hence there is a 
representation 9 = Lg~hOt. In a neighborhood of any other x E D(z) some hOt is 
nonzero, so there is trivially a representation 9 = L g~hOt. Applying Lemma 4.4, 
it follows that 9 E C;S. 0 
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5 Finite-dimensional shift-invariant spaces of ar­

rays must be polynomial 

For this section we fix a compact subcone Cl ~ C \ U with non-empty interior. 

Let W(d) denote the set of complex valued functions on (Z+)d. For each 
G E ~, let br;G be the coefficients of the expansion 

G(w) '" r 
H(w) = ~ br;Gz . 

r 

Denote by qG the element of W (d) mapping r to br;G. Thus q is a correspondence 
between certain meromorphic functions and coefficient arrays. If S is a subset of 
~, let qs denote {q/ : f E S}. Let X ~ W(d) denote the vector space q'R and 
let E ~ X denote the subspace of functions from (Z+)d to C that are oexp(l) 
uniformly on Cl. For 1 ::; j ::; d, define a linear map aj : W(d) -t W(d) by 
ajb(r) = b(r - ej) where ej is the vector whose ith component is dij and f(r) is 
defined to be zero if r has a negative component. 

Recall that <J denotes the ideal in ~ generated by {hOi : a E A}. The next 
two lemmas state the properties that will be used of the correspondence q. The 
proof of the first one is trivial and is omitted. 

Lemma 5.1 The map 9 I-t qg is linear over C and 

o 

Lemma 5.2 

PROOF: Since E is a vector space, it suffices to show that qgho. E z-r E for each 
a E A. This is equivalent to br;gho./H = oexp(z-r) on Cl' Each hOi is chosen as h~ 
for some S E S and x E D(z). For such an S, the pole set of the meromorphic 
function gha / H is a subset of the set V. Thus z is on the boundary of the domain 
of convergence of gha / H. In a neighborhood of z, the pole set of gha / H is simply 
the union of the sheets {Vj : j E S}. Thus dirJZ!!.a (z) = C(S). We have chosen 

H 

the cone Cl to avoid C(S), so the conclusion of Lemma 2.1 yields the exponential 
decay of zr qghQ on Cl , and establishes the lemma. 0 

The ideal M contains all functions of the form 1 - Wj/Zj. Write (1 - w/z)r 

to denote n~=l (1- Wj/Zjr i and similarly write (1- a/zY to denote the product 
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of the operators (1 - CTjJZjYj. Since M is the radical of ~z, some power of each 
(1 - WjJZj) annihilates 'iRzJ~z and hence the set F := {r : (1 - wJz)r ~ ~z} is 
finite. From Lemmas 5.1 and 5.2, we see that for any r ~ F and any G E 'iR, 

(5.1) 

The final lemma is as follows. 

Lemma 5.3 Let Y ~ W(d) be a finite-dimensional subspace such that there is 

a finite set F for which r ~ F implies (1 - CT Jz)ry ~ z-r E. Then for each 

fEY there is a polynomial 9 whose terms have multidegrees in F, and for which 

f - gz-r E z-rE. 

Assuming this for the moment, the proof of Theorem 3.1 can be finished as 
follows. 

PROOF OF THEOREM 3.1: Let Y be the space qv', where V· is as in the conclusion 
of Theorem 4.5. By the conclusion of that theorem, for any G E 'iR, we may write 
Gu = go + ESES gshs· By linearity of q, we have written qa as the coefficients 

of goJI1;=1(hj)nj plus terms of the form qgshs ' By Lemma 5.2 these latter terms 
are in z-r E. According to (5.1), the hypotheses of Lemma 5.3 are satisfied, and 
the conclusion of this lemma then proves Theorem 3.1. 0 

PROOF OF COROLLARY 3.2: The dimension of V· is constructed in the proof of 
Theorem 4.5 to equal the dimension of 'iRzJ~z. This is at most the cardinality of F, 
though it may be less. In the case where each nj = 1 and the surfaces Vj intersect 
transversely at z, the ideal ~z contains d independent linear polynomials, so is 
equal to M. Hence IFI is the singleton {OJ and W contains only constants. 0 

It remains to prove Lemma 5.3. 

PROOF OF LEMMA 5.3: Replacing each function f in W(d) by z-r f, it suffices to 
prove the lemma for the case z = 1. 

Proceed by induction on IFI. If IFI = 1 then F = {OJ. In this case, for each 
fEY and i ~ k, the function Ei := (1 - CTi)f is in E. The cone C1 has nonempty 
interior, which implies that C1 n Zd has a co-finite subset C' which is a connected 
subgraph of the integer lattice. For any r ~ 8 E C1 , there is an oriented path 
10,11, ... ,11 connecting r to 8 in G', where l = E:=1(Si - ri). (An oriented path 
takes steps only in the increasing coordinate directions.) Then 

1 1 

f(8) - f(r) = Lf(-yj) - f(-yj-d = LEm(j)(-yj-d 
j=1 j=1 
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where m(j) = i if "Ij-1 and "Ij differ by ei. Sending s to infinity, we see that 
lims -+oo f(s) exists and 

00 I 

fer) = lim f(s) + " fbj) - fbj-d = - "£m(j)bj-d 
s-+oo ~ ~ 

j=l j=l 

where "I connects r to infinity. Thus on C', f is a constant plus a tail sum of 
functions in E, and the conclusion is true with 9 = lims -+oo f(s), the constant 
polynomial. 

The induction step is similar. Let Fi = {r : r + ei E F}. Fix f E X. 
The space (1 - O"i)X satisfies the hypotheses of the lemma with Fi in place of 
F. Since lFil < IFI, we may apply the induction hypothesis to conclude that 
(1 - O"i)f = gi + £i where gi is a polynomial with multi-degrees in Fi and £i E E. 
For any r ~ s E (Z+)d, and any oriented path "I from r to s, we have 

I 

f(s) - fer) = 2: fbj) - fbj-d 
j=l 

I I 

= - 2: gm(j) ("Ij-1) - 2: £m(j) bj-d . 
j=l j=l 

If r, sEC' then we have already seen that, as a function of s, the last contribution 
I:~=1 £m(j) bj - d is equal to a function C (r) plus a term decaying exponentially 
in s. Fixing r E C' so that the set of s E C1 not greater than or equal to r is finite, 
it remains to show that 

I 

pes) := fer) + 2: gm(j) bj-d 
j=l 

defines a polynomial in s whose terms have multi degrees in F. 

We see from the equation 

(5.2) 

that 
(1 - O"i)gj = (1- O"j)gi + £ 

where £ = (1 - O"j)£i) - (1 - O"i)£j. By (5.2), £ is a polynomial, and since it is 
exponentially small it must vanish entirely. Thus for x E Zd, we see that gi(X) + 
9 j (x + ei) = 9 j (x) + gi (x + e j ). It follows that the sum defining p is invariant under 
switching the order of two steps in the path "I, and hence is independent of the 
choice of"f. Choosing "I to take first 81 - T1 steps in direction e1, then S2 - T2 steps 
in direction e2 and so on, we may write 

k Si-ri 

pes) = fer) + L L -gj(81, ... ,Sj-l,Ti + t -1,Tj+1, ... ,Tk). 
j=l t=l 
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Each of the inner sums is the sum to Si - ri of a polynomial with multi-degrees in 
Fi , which is well known to be a polynomial with multi-degrees in F. Hence p(s) is 
a polynomial with multi-degrees in F and the proof is done. D 

Acknowledgements: Many thanks to Andrei Gabrielov for patiently explaining 
to me everything in Section 4. Thanks to Henry Cohn for several conversations 
and to Bernd Sturmfels for further help with the algebra. 
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Ultrahigh Moments for a Brownian Excursion 
JOEL H. SPENCER Courant Institute, New York University, 251 Mercer Street, 
New York, NY 10012. spencer©cs.nyu.edu 

Note: This is a somewhat speculative report, describing approaches to a problem 
which have not been put on a rigorous foundation. 

1 The Exact Problem 

Let Xl, ... ,Xn be i.i.d., each with distribution minus one plus a Poisson with mean 
one. Set So = 1, Si = Si-l + Xi, the result of a walk with steps Xi beginning at 
1. We condition on Sn = 0 and Si > 0 for i < n, that the excursion first hits 0 at 
time n. Set M = L~l (Si -1). We seek an asymptotic formula for E[(~)] where 
k = k(n). 

The application is to graph theory. Let c(n, k) denote the number of connected 
labeled graphs with n vertices and n - 1 + k edges. Then [2] E[ (~)] = n n-2 c( n, k). 
An asymptotic formula for c(n, k) was found by Bender, Canfield and McKay [1] 
in 1990. Hopefully one can get an alternate (simpler?) proof of this formula from 
the straight probability problem and also finding where the "weight" of E[ (~)] 
comes from gives insight into the nature of the random connected graph. 

If k > (~ + E)n In n then a classic result of Erdos and Renyi gives that almost 
all graphs on n vertices, k edges are connected so that E[ (~)] ~ n 2-n (~) with 
N = G). Hence we restrict ourselves to k < (~ + E)n In n. 

We shall consider the asymptotics of the k-th moment, E[Mk]. This is asymp­
totic to E[(M)k] for k = o(n) and differs from E[(Mh] by a calculatable constant 
when k = 8(n). For E[Mk] there is no longer a natural upper bound for k. 

There are four basic regions: k constant, k -+ 00 but k = o(n), k = 8(n), 
n« k. 

2 The region k constant 

This was done in [2]. We scale time by n and distance by n l / 2 getting a brownian 
excursion with f(t) = Sntn-l/2. Then M ~ Ln3/2 where L = J; f(t)dt is the mean 
distance from the origin in a brownian excursion. Then E[Mk] ~ n3k /2 E[Lk] where 
the E[Lk] are the moments of L which have been calculated by G. Louchard in 
1984. This matches a known 1977 paper of E.M. Wright in which the asymptotic 
number of connected graphs with n vertices, n - 1 + k edges was found. 

3 The region k ---+ 00 but k = o( n) 

Now scale time by n and distance by n l / 2 kl / 2 so that an excursion is associated 
with the function f(t) = Sntn-l/2k-l/2. Now moving from f(t) to f(t + dt) = 
f(t) + l' (t)dt corresponds to the original walk moving l' (t)(nk)1/2dt in n· dt steps. 

323 
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With k = o(n) this is not a very large deviation and the step size can be consid­
ered just to have mean zero and standard deviation one so that the probability is 
exp[-(f'(t)2k/2) . dt] for the walk to go this distance. Letting Pr[j] denote (non­
rigorously!) the probability that the excursion follows path f we have Pr[j] '" 
exp[-k J; f'(t)2/2 . dt]. Such paths have value n3k/2kk/2 exp[k In[f01 f(t)dtlJ. Ig­
noring the scaling terms, taking logs, and dividing by k we set 

iJ!(f) = In[11 
f(t)dt]-1

1 
f'(t)2/2. dt 

so that the bigger iJ!(f) is the larger the contribution to E[Mk] of excursions of 
shape f. 

This leads to a calculus of variations problem. Fixing J01 f(t)dt we want to 

minimize J01 f'(t? /2· dt. The solution is a parabola f(t) = at(l - t). Such f have 

iJ!(f) = In(a/6) - a6
2 which is maximized at a = v'3. Plugging back in this f gives 

that E[Mk] is roughly n3k/2kk/2(1/12e)k/2. 
Suppose now k -+ 00 slowly. We outline an argument to give an asymptotic 

formula for E[Mk] and thus an asymptotic formula for c(n, k). However, making 
this argument rigorous presents a daunting technical challenge and we should note 
that we were guided by the already calculated value of c(n, k). 

We shall calculate probabilities for the unrestricted random walk with step 
size Poisson of mean one minus one and introduce the conditioning at the end. 
Split the excursion of time n into s equal parts. Define (1 by n/s = (12 for con­
venience. Set ao = 1, as = 0 and, for 0 < i < s, ai = v'3v'kfof(l - f) and 
consider those walks that at time iN /8 are at position ai. (That is, the walk 
follows the parabola given by the Calculus of Variations solution. We ignore in­
tegrality here and throughout this outline.) Now consider in general a walk of 
length M with each step of distribution Poisson of mean one, minus one. For a 
wide range of m the probability that the total distance is m is asymptotic to 
(27fM)-1/2 e-m2 /2M. This is natural from the approximation by Brownian mo­
tion but also can be computed directly as the total distance is Poisson of mean 
M minus M. Then the probability of the walk passing through these points is 
asymptotically (27f(12)-s exp[2::0<i<s -(ai - ai_d 2/2(12]. 

Of course, the paths don't have to go precisely through the a:8. Set SUM = 
2:::=0 ai· We consider those paths such that the sum of their values at the iN /8 is 
precisely SUM. We parametrize them by considering the walks that at time iN / s 
are at position ai + Zi and requiring Zo = Zs = 0 (so the path begins and ends at the 
right place) and 2:::=0 Zi = 0 (so that SUM remains the same. These probabilities 
are as above except that exp[-(ai - ai_d/2(12] is replaced by exp[-(ai - ai-l + 
Zi - zi_d2 /2(12. Now in the cross terms Zi will have a coefficient of -ai+l - 2ai + 
ai-I. As the ai give a parabola this coefficient is constant (i.e., independent of 
i) and so with 2:: i Zi = 0 the total contribution of the cross terms is a factor of 
one! [This is not serendipitous but rather reflects the parabola being the solution 
of the Calculus of Variations problem.] One is left with an additional factor of 
exp[2:: i -(Zi -Zi_l)2 /2(12]. To calculate this set bi := zi -Zi-l for 1 ~ i ~ s so that 
the factor is exp[2:: i -bU2(12]. As an unrestricted sum over all possible integers 
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b1 , ... , bs this would split into s identical products, each of which is asymptotically 
ay'2ir to give (27m2)s, which conveniently cancels the factor when all Zi = O. But 
the sum is now restricted to Li bi = 0 (so that Zs = 0) and Li ibi = 0 (so 
that Li Zi = 0). We may think of the bi as weighted with a normal distribution 
with variance a 2. Then Li bi has variance sa2 = n and is precisely zero with 
weight (27fn)-1/2. The variable Li(i - s11 )bi is then orthogonal and has variance 
a2 Li (i - ~)2 '" a 2 S3 /12 = s2n/12 so that it is precisely zero with weight 
(27fns2/12)-1/2. Together, the total probability of all paths running through these 
points is (27fn)-l s -1yT2 times exp[Li -(ai - ai_1)2/2a2]. 

A path going through such points is likely to have M close to SUM 1f, ef­
fectively approximating the integral (as M is the sum over all values) by the 
trapezoidal rule. We'll make the assumption (which we do not justify rigorously) 
that we can asymptotically replace M by SUM .1f. Now we are in the Brown­
ian calculation and the contribution is n 3k/2(k/12e)k/2 (the main term) times the 
(27fn)-l s -1yT2 factor. 

The sum of the values at the iN / s need not, of course, be precisely SUM 
and this gives another factor. Suppose SUM is replaced by SUM(v'3 + f)/v'3. 
This changes the parabola by replacing v'3 by 0: := v'3 + f. The main factor has 
a term o:k e -ko: 2 /6 (the remaining terms independent of 0:) which is maximized at 
0: = v'3. The logarithm divided by k is then In 0: - 0:2 /6 '" Co -lf2 by Taylor Series, 
with Co the value at the maximum. When SUM is multiplied by (v'3 + f) / v'3 the 
contribution is then multiplied by exp[-kf2/3]. Setting "( := f(2k/3)1/2 we have 
that when SUM has ,,(n1/ 2s(3/2)1/2/6 added to it the contribution is multiplied 
by exp[-"(2/2]. This would give an extra factor of (27f)1/2 but with the scaling 
factor the extra factor is (27f)1/2n 1/2s (3/2)1/2/6 = s(7fn/12)1/2. Note this cancels 
the previous S-l factor and now the total contribution is n 3k/2(k/12e)k/2 (the 
main term) times (n7f)-1/2/2. 

While we have required our paths to begin at one and end at zero we have 
not yet introduced the requirement that they not otherwise touch the X -axis. 
This factor comes in at the beginning and at the end. At the beginning we have 
conditioned essentially on slope f := v'3Vkn-1/2 so it is as if each step was Poisson 
with mean (1 + f) minus one. The probability that such a walk never hits the 
origJ is [not an easy problem!] asymptotically 2f so this gives an additional factor 
of 2 3k/n. At the end, looking backwards, we start at zero and each step is one 
minus Poisson with mean 1- f. Here the probability that such a walk never returns 
to the origin (i.e., goes positive and stays positive forever) is asymptotic to f giving 
an additional factor of J3k/n - so the total additional factors are 6k/n giving 
now a total contribution of n 3k/2(k/12e)k/2 times 3k7f-1/ 2n-3/2. 

Finally, the actual expectation is in the space conditional on the walk being an 
excursion so we must divide by the probability that the unrestricted walk really is 
an excursion. Remarkably, this has an exact value in relatively simple form. First, 
the total distance is Poisson with mean n minus n and so the probability this 
is precisely -1 is the probability that Poisson of mean n has value n - 1 which 
is e-n nn - 1 /(n - 1)!. Now we claim that given the walk ends at the origin the 
probability that it is an excursion (i.e., hadn't hit the origin before) is precisely 
l/n. We may think of balls labelled 1, ... , n - 1 each being independently and 
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uniformly places on one of the positions 1, . .. , n and letting Xi be the number of 
balls in position i. We set Wo = 1 and Wi = Wi- 1 + Xi - 1. There are precisely 
nn-2 cases when this is an excursion as they are in bijective correspondence with 
labelled trees T on 0, 1, ... , n-1 as follows: apply breadth-first search to T starting 
at 0, adding new vertices in numerical order. When vertex j is discovered at "time" 
i place ball j into position j. As there are n n-1 possible placements of the balls the 
probability is l/n as claimed. Thus the exact probability that the unrestricted walk 
is an excursion is e-nn n- 1/n!. This is asymptotic to (27f)-1/2 n -3/2 by Stirling's 
formula. 

Dividing by this final term, E[MkJ '" n 3k /2(k/12e)k/2 ·3V2k. 
This yields Corollary 2 of [lJ (noting their Wk --+ 1 and that their c(n, n + k) 

is our c(n, k + 1)) as 

c(n, k) = nn-2 E[ (~) J '" nn-2n 3k/2(e/12k)k/2 ·3k1/ 27f-I/2 

4 A Parking Approach 

Here we examine a somewhat different approach which in some rough sense at­
tempts to move from a Brownian Bridge to a Brownian Excursion. Place balls 
1, ... , n -1 independently and uniformly into boxes 1, ... , n. Let Yj, 1 :S j :S n -1, 
be the position of the j-th ball. Let Xi, 1 :S i :S n, the number of balls in the i­
th box minus one, the number of j with Yj = i minus one. Set 50 = 1 and 

5 i = 1 + 2:1=1 Xl· Let PARK be the event that 5 i > 0 for all 1 :S i < n - that 
for each such i there are at least i balls in the first i boxes. Note that the joint 
distribution of the Xi conditional on PARK is identical to the distribution de­
fined at the top of this paper. [Generally, if WI, ... , Wa are independent Poissons 
of mean one and we condition on WI + ... + Wa = b it is equivalent to throwing b 
balls into a boxes and letting Wi be the number of balls in the i-th box.J We set 
M = 2:~=I (5i - 1) as before. We observe that 

M = t (~- Yj) 
j=1 

(Both formulae give M = 0 when there is one ball in each of the first n - 1 boxes. 
Both formulae go down (up) by one when a single ball is moved one space to the 
left (right). Hence both formulae are always equal.) 

Our original problem is then reformulated as that of estimating E[(~) IP ARKJ. 
For PARK to hold there can be no ball in the final, n-th, box. Hence we may think 
of the n - 1 balls being placed independently and uniformly in the first n - 1 boxes, 
so that the Yj are independent and uniform on 1, ... ,n - 1. Observe that M now 
is the sum of independent identically distributed distributions which have a simple 
form and are of zero mean. Thus the calculation of the factorial moments of M is 
attackable by standard techniques. The 5i form a bridge, with 50 = 5n - 1 = 1. The 
event PARK, that all intermediate 5 j ~ 1, turns this into an excursion. What is 
the affect on these moments of the conditioning by PARK? 
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Conjecture: Let k = k(n) satisfy k(n) ~ 00 and k(n) = o(n). Then 

where f = (3k)I/2n- 1 . (Here (~) is understood to be zero if M is negative.) 
Here is the motivation. The calculus of variation discussed previously gives 

that the contribution to the k-th moment of M is concentrated around the ex­
cursion Sj = (3k)I/2j(n - j)n-2. In the region around zero this curve has slope 
f. The number 1 + Xl of balls in the l-th box is averaging 1 + f. It is "as if' the 
1 + Xl were independent Poisson Poisson distributions with mean 1 + f. As such 
the escape probability (in an infinite process with step size Xl (which is Poisson 
mean 1 + f minus one) where you start at one and die if you hit zero) would be 
~ 2f. Around n - 1 (the right hand end) the curve has slope -f and it is "as if' 
the 1 + Xl had independent Poisson distributions with mean 1 - f. As such the 
escape probability (in an infinite process with step size -Xl (which is one minus 
Poisson mean 1 - f) where you start at one and die if you go hit or cross zero -
looking at the process in reverse time) would be ~ ef. This gives the two extra 
factors. 

5 The region k = 8(n) 
We set k = en and consider c a positive constant, n ~ 00. 

We scale time by n and distance by n so that an excursion is associated with 
the function f(t) = Snt/n. (Note f(t) ::; 1 tautologically as Xi 2: -1 and Sn = 0.) 
Now moving from f(t) to f(t+dt) = f(t) + 1'(t)dt corresponds to the original walk 
moving l' (t)n . dt in n . dt steps. This is in the realm of large deviations and we can 
no longer think of the steps Xi as simply having mean zero and standard deviation 
one. Letting Um = Y1 + ... + Ym with the Y; i.i.d. with distribution minus one plus 
Poisson of mean one, standard methods give Pr[Um ~ am] = exp[(h(a) + o(1))m] 
where h(a) = a - (a + 1) In(a + 1) and the domain of definition is a 2: -1. In 
our case this is exp[nh(f'(t))dt] so that Pr[f] '" exp[n fol h(f'(t))dt]. Such paths 

have value n2cn exp[en InUol f(t)dtlJ. Ignoring the scaling terms, taking logs, and 
dividing by n we set 

iJ!(f) = cIn[10
1 

f(t)dt]-10
1 

j'(t) - (f'(t) + 1)ln(f'(t) + 1)dt 

This leads to a calculus of variations problem. Fixing fol f(t)dt we want to 

minimize J01 1'(t) - (f'(t) + 1) In(f'(t) + 1)dt. The solution is a function of the form 

1 - e-bt 

f(t) = 1 -b - t -e 

where b is positive. (One can check that as b ~ 0 this curve approaches a parabola 
symmetric about t = ~ so that this solution meshes with the k = o(n) solution.) 
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This gives 

We select b = b(c) to maximize the right hand side, it does not appear to have a 
closed form, and let z = z(c) denote the maximal value. Then E[Mcn] is roughly 
n2cnenz(c) . 

6 The region n « k 

Here E[Mk] = [~2 (1 + o(l))Jk. We note M :S ~2 tautologically, since the best M 
can do is jump to n - 1 on the first step and slide back down to zero one step at 
a time. Conversely, for any fixed s the probability of having'" n/(s + 1) steps s 
followed by ns / (s + 1) steps -1 is (3-n for some calculatable (3 = (3( s) but then its 

2 2 
k-th root is negligible and M = ~ S~l which is within an arbitrary factor of ~ . 

This region meshes with the k = cn region as when c·-+ 00 b = b(c) '" 2c ~ 00 

and f approaches the spike function f(t) = 1 - t, the original walk jumping from 
50 = 1 to 5i '" n with i = o(n). 

7 Two Questions 

1. Can the above be made rigorous? 
2. Can the estimates be improved to give an asymptotic formula? 
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Abstract. We consider the set of sentences in a decidable fragment of first order logic, 
restricted to unary and binary predicates, expressed on a finite set of objects. Probability 
distributions on that set of sentences are defined and studied. For large sets of objects, it is 
shown that under these distributions, random sentences typically have a very particular 
form, and that all monotone symmetric properties of these random sentences have a 
probability close to 0 or 1. 

1 Introduction 

Description logics (DL) are decidable fragments of first order logic with equal­
ity, which have recently received significant attention because of their relevance 
for modeling a wide variety of applications. A description logic is restricted to 
unary predicates (referred to as concepts), representing sets of objects, and binary 
predicates (called roles), representing relationships between objects. Various log­
ical constructors can be used for defining concepts by imposing some restrictions 
on the number of fillers of a role, or on the concepts to which fillers of a certain 
role have to belong. Inference problems within DLs have been extensively studied 
and a whole family of DL systems have been implemented and used for building 
a variety of applications (see e.g. [16] for a survey on DLs, and http://dl.kr.org/ 
for the official description logics home page). In this paper, we consider sets of 
DL ground sentences that are referred to as Aboxes in the DL community. Given 
a set of concept definitions (called a Tbox) , an Abox asserts facts about objects 
in the form of concept facts and role facts. A concept fact C(o) states that the 
object specified by the constant 0, is an instance of the concept C, while a role 
fact R(o, 0') states that the two objects 0, 0' are related by the role R. 

For example, the following definition of a concept named C models the set 
of persons such that all of their children are male, and have at most 3 children, in 
the form of the sentence: 

C := person n (Vchild.male) n (::; 3 child). 

This definition illustrates some standard DL constructors: conjunction, number re­
strictions and type restrictions. Relatively to that concept definition, we may have 
an Abox containing the facts child(Bob, Jacky) and C(Bob): child(Bob, Jacky) is 
a role fact saying that Jacky is Bob's child, and C(Bob) is a concept fact saying 
that Bob is an instance of the concept C. From those facts, other facts can be 
logically inferred: for instance, we can infer the new concept fact male(Jacky) as 
a logical consequence of the definition of concept C. 

329 
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This study was motivated by the need for generating random benchmarks for 
DL systems. The advantage of generating random benchmarks is twofold. Firstly, it 
is a way to provide a great number of artificial knowledge bases whose structure and 
distribution can be tuned in order to possibly account for some known real-world 
distributions. Secondly, it makes it possible to perform average-case complexity 
analysis for DL algorithms, also called probabilistic analysis [11]. 

In this paper, we define and study probability distributions on the set of all 
satisfiable Aboxes associated to a given Tbox and a given set of objects. These 
distributions are obtained by conditioning products of Bernoulli measures on facts 
(definition 3.1). In practical applications the number of objects is usually larger by 
several order of magnitudes than the number of concepts and roles. It is therefore 
natural to study the asymptotics of our distributions as the number of objects 
tends to infinity. The concept definitions appearing in a Tbox entail exclusion 
rules between facts of any satisfiable Abox associated with it. It turns out that 
exclusion rules have a dramatic effects on the structure of 'typical' random Aboxes, 
for large object sets. Some concept facts totally disappear while the Abox tends to 
be almost deterministic, in the sense that all reasonable properties are either true 
or false with a probability tending to one. This zero-one law is the main result 
of the article. Similar results were known to hold for random graphs or other 
structures involving a high degree of independence (see for instance [17, 10]). 

The paper is organized as follows. In section 2, we define Aboxes and their 
main logical property, satisfiability. The probability distributions on satisfiable 
Aboxes are the object of section 3. In section 4, we introduce a particular case that 
turns out to provide an asymptotic pattern for the general case. This particular 
case concerns Aboxes for which exclusion rules involve only concept facts, and 
are therefore called role-free. A zero-one law for probability distributions on role­
free sets of Aboxes is stated in theorem 4.1, which is our main result. Finally the 
asymptotic properties of general random Aboxes is studied in section 5. There it 
will be shown that a typical random Abox with a large number of objects resembles 
a role-free random Abox, and therefore has almost deterministic properties. 

2 Satisfiable A boxes 

We now formally define the syntax and semantics of the Aboxes that we consider 
in this paper. They are related to a fixed Tbox T which is a set of concept defini­
tions in the At-CN description logic which is one of the most expressive decidable 
implemented description logic. 

Concept expressions in At-CN are defined using the following syntax (A 
denotes a primitive concept name, C and D represent concept expressions and R 
denotes a role name): 

C,D -t AI 
CnDICUDI 
""CI 
VR.CI 
3R.C 1 

c:: nR) 1 (S nR) 

(primitive concept) 
(conjunction, disjunction) 
(complement) 
(type restriction) 
(existential quantification) 
(number restrictions) 
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A Tbox is a set of concept definitions, which are statements of the form 
ON := D, where ON is a concept name and D is a A£CN concept expression. 
We assume that a concept name appears on the left-hand side of at most one 
definition. A concept name A is said to depend on a concept name B if B appears 
in the concept definition of A. We consider concept definitions that do not have 
cycles in the dependency relation. 

The semantics of the constructors is defined via interpretations in the stan­
dard way of first order logic. An interpretation I contains a non-empty domain VI. 
It assigns a unary relation over VI to every concept name, and a binary relation 
over VI x VI to every role name. The interpretations of concept expressions are 
uniquely defined by the following equations: (~S denotes the cardinality of a set 
S): 

(C n D/ = CI n D I , 

(C U D)I = CI U D I , 
(-,C)I = VI \ CI , 
(VR.C)I = {d E VI I Ve[(d,e) E RI ~ e E CI ]} 
(3R.C/ = {d E VI I 3e[(d, e) E RI 1\ e E CI ]} 
(~ nR)I = {d E VI I He I (d,e) E RI} ~ n} 
(::; nR)I = {d E VI I He I (d,e) E RI}::; n} 

An interpretation I is a model of a Tbox T if C I = DI for every concept 
definition 0 := D in T. We say that C is subsumed by D w.r.t. T if 01 ~ DI in 
every model I of T. 

Given a fixed finite set of objects (constants) 0, and given a Tbox T, an 
Abox is a set of facts of the form 0(0) (concept facts) or R(o, 0') (role facts), such 
that 0,0' E A. Given an Abox A, we extend an interpretation with a mapping 'lj;I 
from the objects appearing in A to VI. An interpretation I is said to be a model 
of A if whenever O(a) E A then 1j/(a) E 01, and whenever R(a, b) E A then 
('Ij;I(a),'Ij;I(b)) E RI. 

An Abox is satisfiable if it has a model, i.e, there exists an interpretation in 
which the conjunction of its facts is true. In the rest of the paper, we focus on 
satisfiable Aboxes since only satisfiable Aboxes are meaningful to capture realistic 
properties of data. 

It is important to note that the concept definitions appearing in a Tbox 
entail exclusion rules between facts of any satisfiable Abox associated with T. For 
instance, the presence of the concept definition: 

0:= person n (Vchild.male) n (:s 3child) 

in a Tbox imposes exclusion rules between the fact 0(0), the role facts child(o, 0'), 
and possibly the concept facts involving the object 0'. For instance, in a satisfiable 
Abox, we cannot have simultaneously the facts 0(0), child(o,od, child(0,02), 
child(o, 03), child(o, 04). Similarly, the facts 0(0), child(o,od, -,male(ol) cannot 
appear together in a satisfiable Abox. 

Finally, note that since the semantics of DLs is defined in terms of interpre­
tations in the standard way of first order logic, they obey the so-called open world 
assumption. The open world assumption leaves the possibility open that other 
unknown facts might be true besides those explicitly mentioned in the Abox. 
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3 Probability distribution on Aboxes 

The set of objects 0 = {01' ... ,On} is fixed for the rest of this section. 

Let c and r be the numbers of concepts and roles in T iFrom now on, A 
will denote the set of all 2cn+rn2 Aboxes, and A c A will denote the set of all 
satisfiable Aboxes, relative to the Tbox T and the set of objects O. We want to 
define a family of product-type probability distributions on A. To this end, we 
associate to each concept C a probability Pc and to each role R a probability 
PR, all being strictly positive and lesser than 1. The parameters Pc and PR may 
depend on the number of objects n. The set A is first endowed with a product of 
Bernoulli distributions with parameters Pc and PR, then the distribution on A is 
defined by conditioning. 

Definition 3.1 Let us consider on A the product of Bemoulli distributions, de­
noted by JP, and defined for all A E A by: 

JP[A) IIp~A(C(O)) (1- pc)l-llA(C(o)) 

c,o 

II llA(R(o,o')) (1 _ )l-llA(R(O,o')) 
PR PR . 

(3.1) 

R,o,o' 

We call conditional product distribution (CPD) with parameters Pc and PR, C, R E 
T the distribution IP on A defined for all A E A by: 

IP[A) = ~[Al . 
IP[A) 

In formula (3.1), the first product extends over all concepts C E T and all objects 
o E O. The second product extends over all roles RET and all couples of objects 
(0, 0') E 0 x O. The notation n. A (.) is standard for the indicator function of the set 
A (1 if the element belongs to A, 0 else). Consider the event "C(o) E A". Under 
the distribution JP, it has probability Pc, whatever ° E O. Similarly the event 
"R(o, o') E A" has probability PR, whatever (0,0'). Moreover all these events are 
mutually independent. When exclusion rules are present, A is only a subset of A, 
and independence between facts no longer holds. Notice that due to combinatorial 
explosion, JP[A) cannot be explicitly computed in general. Nevertheless we shall 

see that explicitly computing JP[A) can be avoided in an asymptotic description 
(section 5). 

In the particular case where all the probabilities PR and Pc are equal to 1/2, 
then all satisfiable Aboxes have the same probability under IP: IP[A) = 1/~A. 

4 Role-free sets 

This section deals with very particular Aboxes, namely those for which exclusion 
rules only concern concept facts. 
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Definition 4.1 Let T be a Tbox, and A be the set of Aboxes associated to T and 
a given set of objects O. The set A is said to be role-free if any role fact R(o,o') 
can be added to a satisfiable Abox, while preserving satisfiability. 

In particular, if A is role free, then T cannot contain any concept defined by an 
upper-bound cardinality restriction (C =:S kR), nor by a type restriction (C' = 
\fRC). If A is role-free, then the distribution IP of Definition 3.1 has a particularly 
simple product-type structure, which is described in Proposition 4.2. The main 
result, Theorem 4.1 proves that any symmetric monotone property of a random 
role-free Abox is either true or false with a probability close to 1 as the number 
of objects tends to infinity. Obviously, role-free sets of Aboxes are not the most 
interesting from the point of view of applications. However, it will be proved in 
section 5 that as the number of objects tends to infinity, most CPD's on general 
sets of Abox tend to resemble those described here in the role-free case. 

We first need to define the decomposition of an Abox. 

Definition 4.2 Let A be an Abox. 

1. Let ° be an object. We call object-component of A associated to ° the Abox, 
denoted by A (0), which is the subset of A containing only those facts of type 
C(o), for all C. 

2. Let R be a role. We call role-component of A associated to R the Abox, 
denoted by A R , which is the subset of A containing only those facts of type 
R( 0,0'), for all 0,0'. 

Note that in Definition 4.2, some of the components may be empty. Obviously 

{A(O),oEOjAR,Rrole ET}, 

is a partition of A, and A is uniquely defined by the (r+n)-tuple of its components. 
So the mapping that associates to a given Abox the (r+n)-tuple of its components 
is one-to-one, and it will be referred to as decomposition. For each object 0, denote 
by A(o) the set of all satisfiable Aboxes containin/?i, only concepts facts of type 
C(o). For each role R, denote by AR the set of all 2n Aboxes containing only role 
facts of type R(o,o'). Role-free sets of Aboxes are actually Cartesian products of 
A(o),s and AR'S. 

Proposition 4.1 The set A is role-free if and only the decomposition maps it onto 
the Cartesian product of all A(o) 's and AR 'so Moreover, Let rjJ(o,o') be the mapping 
defined on A(o), with values in A(o'), defined by: 

C(o) E A {::::::} C(o') E rjJ(O,O') (A) . 

If A is role-free, then all mappings rjJ(o,o') are one-to-one. 

Regarding CPD's, Proposition 4.1 yields probabilistic independence of compo­
nents. Proposition 4.2 below describes the structure of CPD's on role-free sets of 
Aboxes. 
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Proposition 4.2 For each object 0, denote by po) the conditional probability dis­
tribution of IP over A(o). For each role R, denote by IPR the conditional probability 
distribution of IP over A R. If A is role-free then: 

1. If A E A is any satisfiable Abox with decomposition 
{A(o), 0 EO, A R , R role E T}, then: 

oEO RET 

2. Let 0 and 0' be two objects. Then for all A E A(o): 

3. Let R be a role. Let A E AR be any Abox containing m facts. Then: 

IPR[AJ = p'Jl:(l - PR)n2 -m . 

Thus in the decomposition of a random Abox under IP, all components are 
independent random Aboxes (item 1). All object-components are identically dis­
tributed, up to identification of objects (item 2). In each role-component, any role 
fact R(o, 0') occurs with probability PR and all these facts are independent (item 
3). 

In order to further understand the structure of CPD's on role-free sets of 
Aboxes, some properties of the marginal distributions po) and IPR are worth 
pointing out. Let us begin with g:>(0). 

Let C be the set of concepts in T. To an Abox A E A(o), one can uniquely 
associate a boolean vector, indexed by C, that will be denoted by 1I. A . For all 
C E C, 

11. (C) = {I if C ( 0) E A , 
A 0 if C(o) ¢ A . 

Since the distributions po) do not depend on 0 (item 2 of Proposition 4.2), they 
all induce the same distribution, denoted by IP, on boolean vectors. 

IP[1I. A J = ~ IT p~A(C)(1_ pc)l-D.A(C) , 

CEC 

where Z denotes the normalizing constant, Le.: 

Z = L IT p~A(C)(l - pc)l-D.A(C) . 

AEA(o) CEC 

In the particular case where no exclusion rule involves concepts, all Aboxes are sat­
isfiable, and the distribution IP is a product of Bernoulli distributions on {O, l}c. 
In the general case, IP is only a truncation of that product of Bernoulli distri­
butions. It has already appeared in a different context as the reversible measure 
of some resource sharing models (see [7]). Indeed, one can interpret concepts as 
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components in a system, and a boolean vector as a pattern of activity: IA(C) = 1 
if component C is active, IA(C) = 0 if it is inactive. The parameter PC should 
be seen as the proportion of time that component C spends in the active state, 
in the absence of constraints. However, components need their share of common 
resources to be active, so that in certain subsets, all components cannot be active 
at the same time. These constraints are the exclusion rules of the Tbox. 

The particular case where all exclusion rules are binary, and all parameters 
Pc are equal, has been studied in more depth ([18, 8, 9]). It is connected to an in­
teresting combinatorial problem, that of finding stable sets of an undirected graph. 
By "binary exclusion rules", we mean that two concepts may be mutually exclu­
sive but it is impossible to find k 2: 2 concepts, any two of them are compatible 
but all k are not. Define an undirected graph structure, the vertices of which are 
the concepts in T. The edges join two concepts if and only if they are mutually 
exclusive. This graph will be referred to as the exclusion graph. Now if A is a 
satisfiable Abox, then a concept can be represented in A only if its neighbors on 
the exclusion graph are not. In other terms, the boolean vector IA is a "stable 
vector" of the graph ([9]). Determining maximal stable vectors (satisfiable Aboxes 
of maximal cardinality) was proved to be an NP-hard problem by Karp [13]. When 
all pc's are equal, the probability distribution IP is the reversible measure of the 
so called Philosophers' Process (cf. [18]) derived from a classical resource sharing 
model of Dijkstra ([5]). It has been completely characterized in the case of ladder 
graphs in [8]. In the case where all pc's are equal to 1/2, the normalizing constant 
Z is proportional to the total number of stable sets of the exclusion graph. Recur­
sive combinatorial methods allow to compute it for special classes of graphs (see 
[9]). Apart from these classes of graphs, very little can be said in general of the 
distribution IP. 

It is understood in our models that the number of concepts is relatively small 
compared to the number of objects. It is reasonable to expect that the cardinality 
of the A (0) 's is not too high, and that it is possible to explicitly compute the 
distribution IP, at least numerically. Once this has been done, then due to the 
independence of components, the probability of most events concerning concept 
facts can be explicitly computed. As an example, fix a concept C and consider the 
event "C(o) E A". Let 7rc denote its probability under po). Consider now in a 
random Abox with distribution IP, the total number of facts of type C(o), for all 
o E O. That number is a random variable. Under the role-free assumption, it is easy 
to derive from proposition 4.2 that its distribution is binomial, with parameters 
nand 7rC. If n is large, it can be approximated by a Gaussian distribution with 
mean n7rc, and variance n7rc(1- 7rc). 

Let us now turn to role components. Under the role-free hypothesis, the 
situation is quite simple. The set AR contains all possible 2n2 Aboxes formed 
with role facts involving R only. It will be interesting to identify such an Abox 
to the edge set of a directed graph (or digraph) with vertex set O. If A EAR, 
and 0,0' E 0, define an edge pointing from 0 to 0' if and only if R(o,o') E A. 
Thus, to each element of AR can be associated in a one-to-one manner a directed 
graph with vertex set O. (Notice that in our case, contrarily to other models, loops 
are not excluded). Through that correspondence, the distribution IPR can be read 
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as that of a random digraph, with independent edges and edge probability PRo 
Since the founding paper by Erdos and Renyi [6], random undirected graphs have 
been extensively studied and all sorts of asymptotic results are now available (see 
Bollobas [1] or Spencer [17] as general references). Random digraphs, in spite of 
their numerous applications, have aroused lesser interest. Part of the reason is the 
belief, supported by some general results, that most asymptotic properties known 
for random graphs can be adapted to random digraphs. One of the most famous 
examples is the emergence of the so called giant component around PR = lin (see 
[12] for graphs and [14, 15] for digraphs). 

Random graphs and digraphs are well known examples of the so called "0 - 1 
laws", according to which most propositions on a large random system with a 
high degree of independence are either true or false with probability close to 1. At 
first, properties were restricted to first order logics. The celebrated Glebskii-Fagin 
theorem states that in a random (undirected) graph with fixed edge probability, 
any property of first order logics has a probability tending either to 1 or to 0 as 
n tends to infinity. That theorem was later extended by Shelah and Spencer to 
random graphs with edge probability P = kn -a, if a is any irrational (positive) 
number. 

We shall rather focus here on monotone properties for which some recent 
results by Friedgut and Kalai [10] and Bourgain [3] equally apply to random graphs 
and digraphs, as well as other problems such as the phase transition in the k­
satisfiability of random clauses. Let N be an integer and consider the set E = 
{O, l}N. A subset F of E is said to be monotone if: 

71 E F ===} ( E F, 'V( ~ 71 , 

where the ordering is taken componentwise. A property on E is monotone if the 
set F of those elements of E for which it is true is itself monotone. Translated in 
terms of Aboxes, a property is monotone if, being true for A, it remains true for 
any other Abox containing A. Under the open world hypothesis, non-satisfiability 
is a monotone property. 

Another requirement imposed to our properties is symmetry with respect to 
permutations of objects. If (J is such a permutation, and A is an Abox, we define 
the Abox (J.A by: 

C(o) E A {::::::} C((J(o)) E (J.A 

and 
R(o,o') E A {::::::} R((J(o),(J(o')) E (J.A. 

A set of Aboxes is said to be symmetric if it contains all (J.A's as long as it contains 
A. A property is symmetric if the set of Aboxes for which it is true is symmetric. 

Although the recent results of Bourgain [3] seem to indicate that symmetry 
could be superfluous in some cases, we believe that it is natural enough to impose 
it for properties of Aboxes. Notice that we do not impose symmetry through 
permutations of concepts or roles. Here are a few examples of monotone symmetric 
properties. 

1. Pl: All objects are related by R to at least k other objects. 
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2. P2: For any two objects 0 and 0', there exists a path of relations of length k 
linking 0 to 0'. 

3. P3 : There exists k objets all related to each other by role R and for which 
concepts C1 and C2 are true. 

The zero-one law that will be stated below concerns mainly the case where the 
parameters PR and PC are constant. However in that case random Aboxes contain 
mostly role facts, and are very unrealistic. It would be of greater interest to let 
the parameters depend on n. This will be the object of future work. Theorem 4.1 
is essentially an extension of Theorem 1.1 of Friedgut and Kalai [10]. 

Theorem 4.1 Assume that A is role free. Let P be any symmetric monotone 
proposition. For f > 0, denote by V, the subset of those elements Pc, PR of 
[o,l]c+r such that, under the CPD IP, the probability that a random Abox satisfies 
P is between f and 1 - f.. There exists a constant ,,(, depending only on the Tbox, 
such that the diameter of the set V. is lesser than ,,(log(I/2f)/logn. 

Since the diameter of the set V. tends to 0 as n tends to infinity, it turns out that 
for most values of the parameters, the probability that a random Abox satisfies P 
will be either close to 0 (lesser than f), or close to 1 (larger than 1 - f). 

5 Random Aboxes with large object sets 

The CPD of definition 3.1 depends on parameters associated to the elements of 
the Tbox, namely the values of the probabilities Pc and PRo In the Tbox T, some 
concepts may be defined by cardinality or type restrictions. The cardinality re­
strictions do not depend on the number of objects. In this section, we shall study 
the asymptotic properties of a random Abox under distribution IP, as the number 
n of objects tends to infinity. Recall from Definition 3.1 that IP is the conditional 
measure on A of a product of Bernoulli distributions iF. For the measure iF, the 
average number of concept facts is n E Pc, whereas the average number of role 
facts is n 2 EPR. This is an indication that role facts should be predominant in 
a random Abox. The predominance of role facts has dramatic consequences on 
the structure of random Aboxes. Some concepts, in particular those defined by 
cardinality restrictions (S kR), disappear whereas the others tend to be indepen­
dent of roles. Actually, the distribution IP is close to another CDP, on a particular 
role-free set of Aboxes. The precise approximation statement is given in Theorem 
5.1, which is the main result of this section. Before that, we need to define an 
intermediary role-free set of Aboxes, between A and A (the notations are those of 
section 3). 

Definition 5.1 Let A be a set of Aboxes, A(o) and AR its images through the 
coordinates of the decomposition operator of Definition 4.2. We call role-free com­
pletion of A the image through inverse decomposition of the Cartesian product: 
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The idea of role-free completion is to separate exclusion rules between concepts, 
from constraints between concepts and roles. Denote by Al the subset mapped by 
decomposition onto the Cartesian product xoA(o): it could have been defined as 
the set of those elements of A that contain no role fact. Exclusion rules between 
concepts reduce Al to a strict subset of {O, l}cn. On the other hand, no restriction 
appears between roles in the AR's: each of them has all possible 2n2 elements. 

We first need to identify those concepts that tend to disappear. 

Definition 5.2 A concept C is called evanescent if the probability that a random 
A box under distribution IP contains at least one concept fact C (0) tends to 0 as n 
tends to infinity. 

The following result describes evanescent concepts. 

Proposition 5.1 

• Any cardinality-restriction concept ~ kR is evanescent. 

• Any type-restriction concept VRC is evanescent. 

• If C is evanescent, then 3RC is evanescent. 

• If CI and C2 are evanescent, then CI U C2 is evanescent. 

• If CI or C2 are evanescent, then CI n C2 is evanescent. 

Evanescent concepts tend to disappear from random Aboxes, whereas non evanes­
cent ones tend to be independent of roles. More precisely, the distribution IP 
becomes close to another CPD JP' on the role free completion of A, in which 
evanescent concepts are absent. 

Theorem 5.1 Let T be a Tbox, and Pc, PR be the parameters of a CPD IP on 
A. Define new parameters p~ by: 

I {O Pc = 
Pc 

if C is evanescent, 
else. 

Denote by JP' the CPD on the role-free completion A' of A, with parameters p~ 
and PR. Then as n tends to infinity, the distribution IP tends to JP' in the sense 
that: 

lim sup IIP[B]- JP'[B] I = 0 . 
n--->oo BEA 

6 Conclusion 

A natural probability distribution on sets of Aboxes associated to a given Tbox 
has been defined. Its parameters are fixed probabilities attached to the elements 
of the Tbox. As the number of objects tends to infinity, some concepts tend to 
disappear from random Aboxes, the others become independent of roles. The result 
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is quasi-deterministic, in the sense that any monotone symmetric assertion on the 
random Abox is either true or false with a probability tending to one. 

Under the fixed parameters hypothesis studied here, random Aboxes con­
tain mostly role facts and they are not very realistic from the point of view of 
applications. A more interesting situation could be obtained by letting the role 
probabilities PR tend to 0 as the inverse of the number of objects. This will be the 
theme of future researches. 
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