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Preface

This book has been written primarily as an introductory text for graduate
students interested in algebraic graph theory and related areas. It is also
intended to be of use to mathematicians working in graph theory and com-
binatorics, to chemists who are interested in quantum chemistry, and in part
to physicists, computer scientists and electrical engineers using the theory of
graph spectra in their work. The book is almost entirely self-contained; only a
little familiarity with graph theory and linear algebra is assumed.

In addition to more recent developments, the book includes an up-to-date
treatment of most of the topics covered in Spectra of Graphs by D. Cvetković,
M. Doob and H. Sachs [CvDSa], where spectral graph theory was character-
ized as follows:

The theory of graph spectra can, in a way, be considered as an attempt to utilize
linear algebra including, in particular, the well-developed theory of matrices, for
the purposes of graph theory and its applications. However, that does not mean
that the theory of graph spectra can be reduced to the theory of matrices; on the
contrary, it has its own characteristic features and specific ways of reasoning fully
justifying it to be treated as a theory in its own right.

Spectra of Graphs has been out of print for some years; it first appeared
in 1980, with a second edition in 1982 and a Russian edition in 1984. The
third English edition appeared in 1995, with new material presented in two
Appendices and an additional Bibliography of over 300 items. The original
edition summarized almost all results related to the theory of graph spectra
published before 1978, with a bibliography of 564 items. A review of results
in spectral graph theory which appeared mostly between 1978 and 1984 can
be found in Recent Results in the Theory of Graph Spectra by D. Cvetković,
M. Doob, I. Gutman and A. Torgašev [CvDGT]. This second monograph,
published in 1988, contains over 700 further references, reflecting the rapid

ix
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x Preface

growth of interest in graph spectra. Today we are witnessing an explosion of
the literature on the topic: there exist several thousand papers in mathematics,
chemistry, physics, computer science and other scientific areas that develop
or use some parts of the theory of graph spectra. Consequently a truly com-
prehensive text with a complete bibliography is no longer practicable, and we
have concentrated on what we see as the central concepts and the most useful
techniques.

The monograph [CvDSa] has been used for many years both as an intro-
ductory text book and as a reference book. Since it is no longer available, we
decided to write a new book which would nowadays be more suitable for both
purposes. In this sense, the book is a replacement for [CvDSa]; but it is not a
substitute because Spectra of Graphs will continue to serve as a reference for
more advanced topics not covered here. The content has been influenced by
our previous books from the same publisher, namely Eigenspaces of Graphs
[CvRS2] and Spectral Generalizations of Line Graphs: on Graphs with Least
Eigenvalue −2 [CvRS7]. Nevertheless, very few sections of the present text
are taken from these more specialized sources. For further reading we recom-
mend not only the books mentioned above but also [BroCN], [Big2], [Chu2]
and [GoRo].

The spectra considered here are those of the adjacency matrix, the Lapla-
cian, the normalized Laplacian, the signless Laplacian and the Seidel matrix
of a finite simple graph. In Chapters 2–6, the emphasis is on the adjacency
matrix. In Chapter 1, we introduce the various matrices associated with a
graph, together with the notation and terminology used throughout the book.
We include proofs of the necessary results in matrix theory usually omitted
from a first course on linear algebra, but we assume familiarity with the funda-
mental concepts of graph theory, and with basic results such as the orthogonal
diagonalizability of symmetric matrices with real entries. Chapter 2 is con-
cerned with the effects of constructing new graphs from old, and graph angles
are used in place of walk generating functions to provide streamlined proofs
of some classical results. Chapter 3 deals with the relations between the spec-
trum and structure of a graph, while Chapter 4 discusses the extent to which
the spectrum can characterize a graph. Chapter 5 explores the relation between
structure and just one eigenvalue, a relation made precise by the relatively
recent notion of a star complement. Chapter 6 is concerned with spectral
techniques used to prove graph-theoretical results which themselves make no
reference to eigenvalues. Chapter 7 is devoted to the Laplacian, the normalized
Laplacian and the signless Laplacian; here the emphasis is on the Laplacian
because the normalized Laplacian is the subject of the monograph Spectral
Graph Theory by F. R. K. Chung [Chu2], while the theory of the signless
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Preface xi

Laplacian is still in its infancy. In Chapter 8 we discuss sundry topics that did
not fit readily into earlier sections of the book, and in Chapter 9 we provide a
small selection of applications, mostly outwith mathematics.

The tables in the Appendix provide lists of the various spectra, character-
istic polynomials and angles of all connected graphs with up to 5 vertices,
together with relevant data for connected graphs with 6 vertices, trees with
up to 9 vertices, and cubic graphs with up to 12 vertices. We are indebted to
M. Lepović for creating the graph catalogues for Tables A1, A3, A4 and A5,
and for computing the data. We are grateful to D. Stevanović for the graph dia-
grams that appear with these tables: they were produced using Graphviz (open
source graph visualization software developed by AT&T, www.graphviz.org/),
in particular, the programs ‘circo’ (Tables A1,A3,A5) and ‘neato’ (Table A4).
Table A2 is taken from Eigenspaces of Graphs.

Chapters 2, 4 and 9 were drafted by D. Cvetković, Chapters 1, 5 and 6
by P. Rowlinson, and Chapters 3, 7 and 8 by S. Simić. However, each of the
authors added contributions to all of the chapters, which were then re-written
in an effort to refine the text and unify the material. Hence all three authors
are collectively responsible for the book. We have endeavoured to find a style
that is concise enough to enable the extensive material to be treated in a book
of limited size, yet intuitive enough to make the book readily accessible to the
intended readership. The choice of consistent notation was a challenge because
of conflicts in the ‘standard’ notation for several of the topics covered; accord-
ingly we hope that readers will understand if their preferred notation has not
been used. The proofs of some straightforward results in the text are relegated
to the exercises. These appear at the end of the relevant chapter, along with
notes which serve as a guide to a bibliography of over 500 selected items.

D. CVETKOVIĆ

P. ROWLINSON

S. SIMIĆ
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1

Introduction

In Section 1.1 we define various types of graph spectra, and in Section 1.2
we introduce graph-theoretic notation and terminology which will be used
throughout the book. In Section 1.3 we establish the results from matrix theory
that will be required.

1.1 Graph spectra

Let G be a finite undirected graph without loops or multiple edges, and suppose
that its vertices are labelled 1, 2, . . . , n. If vertices i and j are joined by an
edge, we say that i and j are adjacent and write i ∼ j . We consider first
the spectrum of the (0, 1)-adjacency matrix A of G defined as follows: A =
A(G) = (ai j ) where

ai j =
{

1 if i ∼ j
0 otherwise.

Thus A is a symmetric matrix with zero diagonal; its entries may be taken as
0 and 1 in any field, but throughout this book the entries are treated as real
numbers. An example of a graph and its adjacency matrix is given in Fig. 1.1.

The eigenvalues of A are the n roots of the characteristic polynomial
det(x I − A), and so they are algebraic integers. They are independent of the
labelling of the vertices of G because similar matrices have the same char-
acteristic polynomial: if the labels are permuted we obtain a (0, 1)-adjacency
matrix A′ = P−1 AP where P is a permutation matrix. Accordingly we speak
of the characteristic polynomial of G, denoted by PG(x), and the spectrum
of G, which consists of the n eigenvalues of G. Since A is a symmetric
matrix with real entries, these eigenvalues are real. We usually denote them
by λ1, λ2, . . . , λn , and unless we indicate otherwise, we shall assume that

1
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2 Introduction

A =

⎛
⎜⎜⎜⎜⎝

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

⎞
⎟⎟⎟⎟⎠ G :

� �
� �
�

�
�

�
���

�
�

��
4 3

21

5

Figure 1.1 A labelled graph G and its adjacency matrix A.

λ1 ≥ λ2 ≥ · · · ≥ λn . Where necessary, we use the notation λi = λi (G)
(i = 1, 2, . . . , n). The largest eigenvalue λ1(G) is called the index of G. For
an integer k ≥ 0, the k-th spectral moment of G is

∑n
i=1 λ

k
i , denoted by sk .

Note that sk is the trace of Ak , and that the first n spectral moments determine
the spectrum of G.

The eigenvalues of A are the real numbers λ satisfying Ax = λx for
some non-zero vector x ∈ IRn . Each such vector x is called an eigenvector
of the matrix A (or of the labelled graph G) corresponding to the eigen-
value λ. The relation Ax = λx can be interpreted in the following way: if
x = (x1, x2, . . . , xn)

� then

λxu =
∑
v∼u

xv (u = 1, 2, . . . , n), (1.1)

where the summation is over all neighbours v of the vertex u. We note
two straightforward consequences of these equations, which are called the
eigenvalue equations for G.

Proposition 1.1.1. If the graph G has maximum degree �(G) then |λ| ≤
�(G) for every eigenvalue λ of G.

Proof. With the notation above, let u be a vertex for which |xu | is maximal.
Using Equation (1.1), we have:

|λ||xu | ≤
∑
v∼u

|xv| ≤ |�(G)||xu |.

Since xu 
= 0, the result follows. �

The second observation is left as an exercise for the reader.

Proposition 1.1.2. The graph G is regular (of degree r) if and only if the all-1
vector is an eigenvector of G (with corresponding eigenvalue r).

If λ is an eigenvalue of A then the set {x ∈ IRn : Ax = λx} is a sub-
space of IRn , called the eigenspace of λ and denoted by E(λ) or EA(λ). Such
eigenspaces are called eigenspaces of G. Of course, relabelling the vertices of
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1.1 Graph spectra 3

G will result in a permutation of coordinates in eigenvectors (and eigenspaces).
Since A is symmetric with real entries, it can be diagonalized by an orthogo-
nal matrix. Hence the eigenspaces are pairwise orthogonal; and by stringing
together orthonormal bases of the eigenspaces we obtain an orthonormal basis
of IRn consisting of eigenvectors (cf. Section 1.3). Moreover, the dimension
of EA(λ) is equal to the multiplicity of λ as a root of PG(x). In other words,
the geometric multiplicity of λ is the same as the algebraic multiplicity of λ;
accordingly we refer only to the multiplicity of λ. A simple eigenvalue is an
eigenvalue of multiplicity 1. If G has distinct eigenvalues μ1, μ2, . . . , μm with
multiplicities k1, k2, . . . , km respectively, we shall write μk1

1 , μ
k2
2 , . . . , μ

km
m for

the spectrum of G. (We often omit those Ki equal to 1.)

Example 1.1.3. For the graph G in Fig. 1.1 we have

PG(x) =

∣∣∣∣∣∣∣∣∣∣

x −1 0 −1 −1
−1 x −1 0 −1

0 −1 x −1 −1
−1 0 −1 x −1
−1 −1 −1 −1 x

∣∣∣∣∣∣∣∣∣∣
= x5 − 8x3 − 8x2 = x2(x + 2)(x2 − 2x − 4).

The eigenvalues in non-increasing order are λ1 = 1 + √5, λ2 = 0, λ3 = 0,
λ4 = 1−√5, λ5 = −2, with linearly independent eigenvectors x1, x2, x3, x4

and x5, where x1 = (1, 1, 1, 1,−1 + √5)�, x2 = (0, 1, 0,−1, 0)�, x3 =
(1, 0,−1, 0, 0)�, x4 = (1, 1, 1, 1,−1−√5)� and x5 = (1,−1, 1,−1, 0)�.

We have E(1 + √5) = 〈x1〉, E(0) = 〈x2, x3〉, E(1 −
√

5) = 〈x4〉 and
E(−2) = 〈x5〉, where angle brackets denote the subspace spanned by the
enclosed vectors. �

Example 1.1.4. The eigenvalues of an n-cycle are 2cos 2π j
n ( j = 0, 1, . . . ,

n− 1). One way to see this is to observe that an adjacency matrix has the form
A = P + P−1 where P is the permutation matrix determined by a cyclic per-
mutation of length n. If ω is an n-th root of unity then (1, ω, ω2, . . . , ωn−1)� is
an eigenvector of P with corresponding eigenvalue ω. Hence the eigenvalues
of A are the numbers ω + ω−1, where ωn = 1. Thus the largest eigenvalue is
2 (with multiplicity 1) and the second largest is 2cos 2π

n (with multiplicity 2).

The least eigenvalue is −2 (with multiplicity 1) if n is even, and 2cos (n−1)π
n

(with multiplicity 2) if n is odd. �

Example 1.1.5. The well-known Petersen graph (Fig. 1.2) has spectrum
31, 15, (−2)4. �
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Figure 1.2 The Petersen graph.

� �
� ��(a) � �
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�
�
�

(b) � �
� �
�

�
�

�
�
�

Figure 1.3 Two pairs of non-isomorphic cospectral graphs.

We say that two graphs are cospectral if they have the same spectrum;
clearly, isomorphic graphs are cospectral (in other words, the spectrum is
a graph invariant). However, cospectral graphs are not necessarily isomor-
phic: the non-isomorphic graphs shown in Fig. 1.3(a) share the spectrum
21, 03, (−2)1. This is an example with fewest vertices. Fig. 1.3(b) shows non-
isomorphic cospectral connected graphs with fewest vertices: their common
characteristic polynomial is (x−1)(x+1)2(x3− x2−5x+1). Various graphs
which are characterized by their spectrum, or by their spectrum together with
related algebraic invariants, are discussed in Chapter 4.

Symmetric matrices other than the (0, 1)-adjacency matrix A can be used to
specify a graph, and we mention next the spectra of those that feature in this
book. For a graph G with vertex set {1, . . . , n}, let D be the diagonal matrix
diag(d1, . . . , dn), where di denotes the degree of vertex i (i = 1, . . . , n). The
Laplacian matrix of a graph G is the matrix D− A, and the signless Laplacian
is the matrix D+ A; their spectra are discussed in Chapter 7. The Seidel matrix
of G is the matrix S = J− I−2A, where J denotes the all-1 matrix (of size n×
n); thus the (i, j)-entry of S is 0 if i = j , −1 if i ∼ j , and 1 otherwise. As far
as regular graphs are concerned, there is little to choose between these matrices
from the spectral point of view, for suppose that G is regular of degree r , and
that A has eigenvalues λ1, λ2, . . . , λn in non-increasing order. By Propositions
1.1.1 and 1.1.2, λ1 = r and the all-1 vector may be extended to an orthogonal
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1.1 Graph spectra 5

basis of IRn consisting of eigenvectors common to the matrices A, r I ± A and
J − I − 2A. Then we find that D ± A has eigenvalues

r ± r, r ± λ2, . . . , r ± λn ,

while S has eigenvalues

n − 1− 2r, −1− 2λ2, . . . , −1− 2λn .

Similar remarks apply to the generalized adjacency matrix y J − A discussed
in [DamHK]. For non-regular graphs, there is no simple relation between the
various spectra; Theorem 1.3.15 will provide some inequalities, but meanwhile
we give an explicit example.

Example 1.1.6. For the graph in Fig. 1.1, the eigenvalues of the Lapla-
cian are 5, 5, 3, 3, 0; the eigenvalues of the signless Laplacian are 1

2 (9 +√
17), 3, 3, 1

2 (9 −
√

17), 1; and the Seidel eigenvalues are 3, 1
2 (−1 +√

17),−1,−1, 1
2 (−1−√17). �

The Seidel matrix is of particular relevance to graph switching (often called
Seidel switching): given a subset U of vertices of the graph G, the graph
GU obtained from G by switching with respect to U differs from G as
follows. For u ∈ U, v 
∈ U the vertices u, v are adjacent in GU if and
only if they are non-adjacent in G. Suppose that G has adjacency matrix

A(G) =
(

AU B�
B C

)
, where AU is the adjacency matrix of the subgraph

induced by U , and B� denotes the transpose of B. Then GU has adjacency

matrix A(GU ) =
(

AU B
�

B C

)
, where B is obtained from B by interchanging

0 and 1. When G is regular, this formulation makes it straightforward (Exer-
cise 1.3) to find a necessary and sufficient condition on U for GU to be regular
of the same degree:

Proposition 1.1.7. Suppose that G is regular with n vertices and degree r .
Then GU is regular of degree r if and only if U induces a regular subgraph of
degree k, where |U | = n − 2(r − k).

Note that switching with respect to the subset U of the vertex-set is the same
as switching with respect to its complement. Switching is described easily in
terms of the Seidel matrix S of G: the Seidel matrix of GU is T−1ST where T
is the (involutory) diagonal matrix whose i-th diagonal entry is 1 if i ∈ U , −1
if i 
∈ U . Now it is easy to see that switching with respect to U and then with
respect to V is the same as switching with respect to (U \ V ) ∪̇ (V \ U ); it
follows that switching determines an equivalence relation on graphs. Note that

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.002
https:/www.cambridge.org/core


6 Introduction

switching-equivalent graphs have similar Seidel matrices and hence the same
Seidel spectrum. In view of the relation between spectrum and Seidel spectrum
for regular graphs, we have the following consequence:

Proposition 1.1.8. If G and GU are regular of the same degree, then G and
GU are cospectral.

1.2 Some more graph-theoretic notions

As usual, Kn,Cn and Pn denote respectively the complete graph, the cycle
and the path on n vertices. A connected graph with n vertices is said to be
unicyclic if it has n edges, for then it contains a unique cycle. If this cycle
has odd length, then the graph is said to be odd-unicyclic. A connected graph
with n vertices and n + 1 edges is called a bicyclic graph. The girth of a graph
G is the length of a shortest cycle in G. A complete subgraph of G is called
a clique of G, while a coclique is an induced subgraph without edges. The
complete bipartite graph with parts of size m and n is denoted by Km,n . A
graph of the form K1,n is called an n-claw or a star. (The term ‘star’ is used in
different contexts in Sections 3.4 and 5.1.) More generally, Kn1,n2,...,nk denotes
the complete k-partite graph with parts (colour classes) of size n1, n2, . . . , nk .

The m-dimensional hypercube is denoted by Qm ; its vertices are the 2m m-
tuples of 0s and 1s, and two such m-tuples are adjacent if and only if they
differ in just one place.

Vertices, or edges, are said to be independent if they are pairwise non-
adjacent. In the literature, a set of independent vertices is often referred to
as a stable set. Any set of independent edges in a graph G is called a matching
of G. A matching of G is perfect if each vertex of G is the endvertex of an
edge from the matching; perfect matchings are also called 1-factors. The cock-
tail party graph C P(n) is the unique regular graph with 2n vertices of degree
2n − 2; it is obtained from K2n by deleting a perfect matching. The degree
of a vertex v is denoted by deg(v) or dv . The least degree in G is denoted by
δ(G), the largest by �(G). An edge that contains a vertex of degree 1 is called
a pendant edge.

A regular graph of degree r is said to be r-regular, and a 3-regular graph is
called a cubic graph. A strongly regular graph, with parameters (n, r, e, f ), is
an r -regular graph with n vertices (0 < r < n − 1) such that any two adjacent
vertices have e common neighbours and any two non-adjacent vertices have
f common neighbours. For example, the Petersen graph (Fig. 1.2) is strongly
regular with parameters (10, 3, 0, 1). The restriction 0 < r < n − 1 simply
excludes the complete graphs and their complements.
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1.2 Some more graph-theoretic notions 7

A graph is called semi-regular bipartite, with parameters (n1, n2, r1, r2),
if it is bipartite (i.e. 2-colourable) and vertices in the same colour class have
the same degree (n1 vertices of degree r1 and n2 vertices of degree r2, where
n1r1 = n2r2).

If B is a collection of subsets of the set S then the incidence graph deter-
mined by B and S is the bipartite graph GB with vertex set B ∪̇ S, and
with an edge between x ∈ S and B ∈ B whenever x ∈ B. Thus if B is a
design with v points and b blocks, in which each block has k points and each
point lies in r blocks, then GB is a semi-regular bipartite graph with param-
eters (v, b, r, k). In this case, we call GB the graph of the design. Recall that
in a t-design with parameters (v, k, λ), any t points lie in exactly λ blocks;
and a symmetric design is a 2-design for which b = v > k (equivalently,
r = k < v).

The complement of a graph G is denoted by G, while mG denotes the graph
consisting of m disjoint copies of G. The subdivision graph S(G) is obtained
from G by inserting a vertex of degree 2 in each edge of G.

We write V (G) for the vertex set of G, and E(G) for the edge set of G. We
say that G is empty if V (G) = ∅, trivial if |V (G)| = 1, and null if E(G) = ∅.
A subgraph H with V (H) = V (G) is called a spanning subgraph of G. A
spanning cycle is called a Hamiltonian cycle, and a graph with such a cycle is
said to be Hamiltonian.

An automorphism of G is a permutation π of V (G) such that u ∼ v if and
only if π(u) ∼ π(v). Clearly, the automorphisms of G form a group (with
respect to composition of functions). We say that G is vertex-transitive if, for
any u, v ∈ V (G), there exists an automorphism π of G such that π(u) = v.

The union of disjoint copies of the graphs G and H is denoted by G ∪̇ H .
The join G�H of (disjoint) graphs G and H is the graph obtained from G ∪̇ H
by joining each vertex of G to each vertex of H . The graph K1 � H is called
the cone over H , while K2� H (= K1� (K1� H)) is called the double cone
over H . The graph K1 � Cn (n ≥ 3) is the wheel Wn+1 with n + 1 vertices;
thus the graph of Example 1.1.3 is the wheel W5.

If uv is an edge of G we write G − uv for the graph obtained from G
by deleting uv. More generally, if E is a set of edges of G we write G − E
for the graph obtained from G by deleting the edges in E . For v ∈ V (G),
G − v denotes the graph obtained from G by deleting the vertex v and all
edges incident with v. For U ⊆ V (G), G − U denotes the subgraph of G
induced by V (G)\U . If each vertex of G−U is adjacent to a vertex of U then
U is called a dominating set in G.

If u, v are vertices of a connected graph G then the distance between u and
v, denoted by d(u, v), is the length of a shortest u-v path in G.
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8 Introduction

Definition 1.2.1. The line graph L(H) of a graph H is the graph whose ver-
tices are the edges of H , with two vertices in L(H) adjacent whenever the
corresponding edges in H have exactly one vertex in common.

If G = L(H) for some graph H , then H is called a root graph of G. If
E(H) = ∅ then G is the empty graph. Accordingly, we take a line graph to
mean a graph of the form L(H), where E(H) is non-empty; note that we may
assume if necessary that H has no isolated vertices. If H is connected, then the
same is true of L(H). If H is disconnected, then each non-trivial component
of H gives rise to a connected component of L(H).

We mention a simple, but useful, observation (Exercise 1.10):

Proposition 1.2.2. If H is a connected graph and L(H) is regular, then H is
either regular or semi-regular bipartite.

The incidence matrix of the graph H is a matrix B whose rows and columns
are indexed by the vertices and edges of H , respectively. The (v, e)-entry
of B is

bve =
{

0 if v is not incident with e,
1 if v is incident with e.

Thus the columns of B are the characteristic vectors of the edges of H as
subsets of V (H). Now we find easily that

B�B = A(L(H))+ 2I. (1.2)

If A(L(H))x = λx then (λ + 2)x�x = x�B�Bx ≥ 0. Thus every eigenvalue
of L(H) is greater than or equal to −2; this is a notable spectral property of
line graphs.

The class of graphs with spectrum in the interval [−2,∞) also contains
the generalized line graphs, defined as follows. First we say that a petal is
added to a graph when we add a pendant edge and then duplicate this edge to
form a pendant 2-cycle. A blossom Bk consists of k petals (k ≥ 0) attached
at a single vertex; thus B0 is just the trivial graph. A graph with blossoms
(possibly empty) at each vertex is called a B-graph. Now we extend Definition
1.2.1 to the line graph of a B-graph Ĥ : vertices in L(Ĥ) are adjacent if and
only if the corresponding edges in Ĥ have exactly one vertex in common.
In particular, duplicate edges between two vertices of Ĥ are non-adjacent in
L(Ĥ); thus L(Bk) = C P(k). If G = L(Ĥ) then we call the multigraph Ĥ a
root graph of G.

Definition 1.2.3. Let H be a graph with vertex set {v1, . . . , vn}, and let
a1, . . . , an be non-negative integers. The generalized line graph G =
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Figure 1.4 Construction of a generalized line graph.

L(H ; a1, . . . , an) is the graph L(Ĥ), where Ĥ is the B-graph H(a1, . . . , an)

obtained from H by adding ai petals at vertex vi (i = 1, . . . , n). If not all ai

are zero, G is called a proper generalized line graph.

This construction of a generalized line graph is illustrated in Fig. 1.4.
An incidence matrix C = (cve) of Ĥ = H(a1, . . . , an) is defined as for H

with the following exception: if e and f are the edges between v and w in a
petal at v then {cwe, cw f } = {−1, 1}. (Note that all other entries in row w are
zero.) For example, an incidence matrix of the multigraph Ĥ from Fig. 1.4 is:⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 −1 1
−1 1 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Here the rows are indexed by 1, 2, . . . , 7 and the columns are indexed by
a, b, . . . , j .

With the incidence matrix C defined above, we have A(L(Ĥ)) = C�C−2I
and so λ(L(Ĥ)) ≥ −2. Note that the least eigenvalue is strictly greater than
−2 if and only if the rank of the matrix C is |V (Ĥ)|. Not all connected graphs
G with λ(G) ≥ −2 are generalized line graphs; however there are only finitely
many exceptions, and they are discussed in Section 3.4.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.002
https:/www.cambridge.org/core


10 Introduction

We conclude this section with several examples to illustrate how various
strongly regular graphs can be constructed from line graphs by switching. The
relation between the eigenvalues and the parameters of a strongly regular graph
will be discussed in Section 3.6. In particular, we shall see that the property of
strong regularity can be identified from the spectrum.

Examples 1.2.4. If we switch the graph L(K4,4) with respect to four inde-
pendent vertices, then we obtain another 6-regular graph on 16 vertices, called
the Shrikhande graph; it is strongly regular with parameters (16, 6, 2, 2). By
Proposition 1.1.8, this graph is cospectral with L(K4,4). If we switch L(K4,4)

with respect to the vertices of an induced subgraph L(K4,2) then we obtain
a 10-regular graph with 16 vertices, called the Clebsch graph; it is strongly
regular with parameters (16, 10, 6, 6).

These graphs are represented in Fig. 1.5. In Fig. 1.5(a), the vertices of
L(K4,4) are shown as the points of intersection of four horizontal and four
vertical lines, two vertices being adjacent in L(K4,4) if and only if the cor-
responding points are collinear. In Figs. 1.5(b) and 1.5(c), the white vertices
are those in switching sets which yield the Shrikhande and Clebsch graphs,
respectively. �

Example 1.2.5. If we switch a graph G with respect to the set of neighbours of
a vertex v, we obtain a graph H in which v is an isolated vertex. If G = L(K8)

then H − v is a 16-regular graph on 27 vertices which is called the Schläfli
graph Sch16; it is strongly regular with parameters (27, 16, 10, 8). �

Example 1.2.6. Let S1, S2, S3 be sets of vertices of L(K8) which induce
subgraphs isomorphic to 4K1, C5 ∪̇ C3 and C8, respectively. The graphs
Ch1,Ch2,Ch3 obtained from L(K8) by switching with respect to S1, S2, S3

respectively are called the Chang graphs. The graphs L(K8),Ch1,Ch2,Ch3

are regular of degree 12, and hence cospectral by Proposition 1.1.8.
They are pairwise non-isomorphic, and strongly regular with parameters
(28, 12, 6, 4). �

� � � �
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Figure 1.5 Construction of the graphs in Example 1.2.4.
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1.3 Some results from linear algebra

First we note that a graph is determined by eigenvalues and correspond-
ing eigenvectors in the following way. Let A be the adjacency matrix of
a graph G with vertices 1, 2, . . . , n and eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λn . If x1, x2, . . . , xn are linearly independent eigenvectors of A correspond-
ing to λ1, λ2, . . . , λn respectively, if X = (x1|x2| · · · |xn) and if E =
diag(λ1, λ2, . . . , λn), then AX = X E and so

A = X E X−1.

Since G is determined by A, we have the following elementary result:

Theorem 1.3.1. Any graph is determined by its eigenvalues and a basis of
corresponding eigenvectors.

Since A is a symmetric matrix with real entries there exists an orthogonal
matrix U such that U�AU = E . Here the columns of U are eigenvectors
which form an orthonormal basis of IRn . If this basis is constructed by stringing
together orthonormal bases of the eigenspaces of A then E = μ1 E1 + · · · +
μm Em , where μ1, . . . , μm are the distinct eigenvalues of A and each Ei has
block diagonal form diag(O, . . . , O, I, O, . . . O) (i = 1, . . . ,m). Then A has
the spectral decomposition

A = μ1 P1 + · · · + μm Pm (1.3)

where Pi = U EiU� (i = 1, . . . ,m). For fixed i , if E(μi ) has {x1, . . . , xd} as
an orthonormal basis then

Pi = x1x�1 + · · · + xdx�d (1.4)

and Pi represents the orthogonal projection of IRn onto E(μi ) with respect to
the standard orthonormal basis {e1, . . . , en} of IRn . Moreover,

∑m
i=1 Pi = I ,

P2
i = Pi = P�i (i = 1, . . . ,m) and Pi Pj = O (i 
= j). We shall also need

the observation that for any polynomial f , we have

f (A) = f (μ1)P1 + · · · + f (μm)Pm .

In particular, Pi is a polynomial in A for each i ; explicitly, Pi = fi (A) where

fi (x) =
∏

s 
=i (x − μs)∏
s 
=i (μi − μs)

. (1.5)

Next we mention an eigenvector technique which is often employed to
find the graphs with maximal or minimal index in a given class of graphs.
A Rayleigh quotient for A is a scalar of the form y�Ay/y�y where y is a
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12 Introduction

non-zero vector in IRn . The supremum of the set of such scalars is the largest
eigenvalue λ1 of A, equivalently

λ1 = sup{x�Ax : x ∈ IRn, ‖x‖ = 1}. (1.6)

This well-known fact follows immediately from the observation that
if {x1, . . . , xn} is an orthonormal basis of eigenvectors of A and if x =
α1x1 + · · · + αnxn then α2

1 + · · · + α2
n = 1, while

x�Ax = λ1α
2
1 + · · · + λnα

2
n, (1.7)

where Axi = λi xi (i = 1, . . . , n).
Note that for y 
= 0, we have y�Ay/y�y ≤ λ1, with equality if and only if

Ay = λ1y. More generally, Rayleigh’s Principle may be stated as follows:

if 0 
= y ∈ 〈xi , . . . , xn〉 then λi ≥ y�Ay/y�y,

with equality if and only if Ay = λi y; and

if 0 
= y ∈ 〈x1, . . . , xi 〉 then λi ≤ y�Ay/y�y,

with equality if and only if Ay = λi y.
Moreover, each eigenvalue λi (i = 1, . . . , n) can be characterized in

terms of subspaces of IRn as follows. Let U be an (n − i + 1)-dimensional
subspace of IRn , so that 〈x1, . . . , xi 〉 ∩ U 
= {0}. If x is a unit vector in this
intersection of subspaces then αi+1 = · · · = αn = 0 and so x�Ax ≥ λi by
(1.7). It follows that sup{x�Ax : x ∈ U, ||x|| = 1} ≥ λi . On the other hand,
by (1.7) again, this lower bound is attained when U = 〈xi , . . . , xn〉 because
in this case α1 = · · · = αi−1 = 0 for every vector in U . Hence for each
i ∈ {1, . . . , n} we have

λi = inf{sup{x�Ax : x ∈ U, ‖x‖ = 1} : U ∈ Un−i+1}, (1.8)

where Un−i+1 denotes the set of all (n− i + 1)-dimensional subspaces of IRn .

An n× n symmetric matrix M (with real entries) is said to be positive semi-
definite if all its eigenvalues are non-negative, equivalently x�Mx ≥ 0 for all
x ∈ IRn .

Theorem 1.3.2. Let M be a positive semi-definite matrix with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. Then

λ1+λ2+· · ·+λr = sup{u�1 Mu1+u�2 Mu2+· · ·+u�r Mur } (r = 1, 2, . . . , n),
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1.3 Some results from linear algebra 13

where the supremum is taken over all orthonormal vectors u1,u2, . . . ,ur . In
particular, λ1 + λ2 + · · · + λr is bounded below by the sum of the r largest
diagonal entries of M.

Proof. Let Mxi = λi xi (i = 1, 2, . . . , n), where x1, x2, . . . , xn are orthonor-
mal. Let U = (u1|u2| · · · |ur ), X = (x1|x2| · · · |xn) and u j =∑n

i=1 ci j xi ( j =
1, 2, . . . , r). Then U = XC , where C = (ci j ); moreover, I = U�U = C�C .
Using Equation (1.7), we have

r∑
j=1

u�j Mu j =
r∑

j=1

n∑
i=1

c2
i jλi =

n∑
1=1

⎛
⎝ r∑

j=1

c2
i j

⎞
⎠ λi .

Note that
∑r

j=1 c2
i j = bi , where bi is the i-th diagonal entry of CC�. Now

CC� and C�C have the same non-zero eigenvalues and so the spectrum of
CC� is 1r , 0n−r . By (1.7) again, bi = e�i CC�ei ≤ 1 (i = 1, 2, . . . , n). Now
we have:

r∑
j=1

u�j Mu j =
n∑

i=1

biλi , 0 ≤ bi ≤ 1,
n∑

i=1

bi = tr(CC�) = r,

and it follows that
∑r

j=1 u�j Mu j ≤ ∑r
j=1 λ j . Equality holds when ui =

xi (i = 1, 2, . . . , r), and so the first statement of the theorem is proved. For the
second statement, we may suppose without loss of generality that the r largest
diagonal entries of M are the first r diagonal entries; the assertion follows by
taking ui = ei (i = 1, 2, . . . , r). �

If M is a positive semi-definite matrix of rank r then there exists an
orthogonal matrix U such that

U�MU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θ1
. . .

θr
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where θ1 ≥ · · · ≥ θr > 0. Now this matrix can be written as X�X , where

X =
⎛
⎜⎝
√
θ1 . . . 0 0 . . . 0

0
. . . 0 0 . . . 0

0 . . .
√
θr 0 . . . 0

⎞
⎟⎠ ,
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14 Introduction

of size r × n. Thus M = Q�Q, where Q = XU�. If Q = (q1| · · · |qn)

then each column qi lies in IRr , and the (i, j)-entry of M is the scalar product
q�i q j . The matrix Q�Q is called the Gram matrix of the vectors q1, . . . ,qn .
We shall often make use of Gram matrices in the case that M = A − λI
and λ is the least eigenvalue of G; in this situation, the multiplicity of
λ is n − r .

Since in general a graph is not determined by its eigenvalues, it is nat-
ural to seek further algebraic invariants which might serve to distinguish
non-isomorphic cospectral graphs. For our first such definition, recall that
{e1, . . . , en} is the standard orthonormal basis of IRn . The mn numbers αi j =
||Pi e j || are called the angles of G; they are the cosines of the (acute) angles
between axes and eigenspaces. We shall assume that μ1 > · · · > μm . If also
we order the columns of the matrix (αi j ) lexicographically then this matrix is
a graph invariant, called the angle matrix of G. We shall see in the next chap-
ter that the spectrum of the vertex-deleted subgraph G − j is determined by
the spectrum of G and the angles α1 j , . . . , αmj . The basic relations between
angles are the following:

Proposition 1.3.3. The angles αi j of a graph satisfy the equalities

n∑
j=1

α2
i j = dim E(μi ),

m∑
i=1

α2
i j = 1. (1.9)

Proof. We have α2
i j =‖Pi e j‖2= e�j Pi e j , and so the numbers α2

i1,

α2
i2, . . . , α

2
in appear on the diagonal of Pi . Now

∑n
j=1 α

2
i j = tr(Pi )=

tr(Ei ) = dim E(μi ), and
∑m

i=1 α
2
i j = 1 because

∑m
i=1 Pi = I . �

Next we discuss the relation between eigenvalues, angles and walks in a
graph. By a walk of length k in a graph we mean any sequence of (not neces-
sarily different) vertices v0, v1, . . . , vk such that for each i = 1, 2, . . . , k there
is an edge from vi−1 to vi . The walk is closed if vk = v0. The following result
has a straightforward proof by induction on k.

Proposition 1.3.4. If A is the adjacency matrix of a graph, then the (i, j)-
entry a(k)i j of the matrix Ak is equal to the number of walks of length k that
start at vertex i and end at vertex j .

It follows from Proposition 1.3.4 that the number of closed walks of length
k is equal to the k-th spectral moment, since

∑n
j=1 a(k)j j = tr(Ak) =∑n

j=1 λ
k
j .

From the spectral decomposition of A we have

Ak = μk
1 P1 + μk

2 P2 + · · · + μk
m Pm (1.10)
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1.3 Some results from linear algebra 15

and so a(k)j j =
∑m

i=1 μ
k
i α

2
i j , where the αi j are the angles of G. In particular, the

vertex degrees a(2)j j are determined by the spectrum and angles.

We write j (or jn) for the all-1 vector in IRn , and j⊥ for the subspace of
vectors orthogonal to j. It follows from (1.10) that the number Nk of all walks
of length k in G is given by

Nk =
∑
u,v

a(k)uv = j�Akj =
n∑

i=1

μk
i ||Pi j||2, (1.11)

The numbers βi = ||Pi j||/√n (i = 1, . . . ,m) are called the main angles of G;
they are the cosines of the (acute) angles between eigenspaces and j. Note that∑m

i=1 β
2
i = 1 because j = ∑m

i=1 Pi j. The eigenvalue μi is said to be a main
eigenvalue if E(μi ) 
⊆ j⊥, equivalently Pi j 
= 0. In view of (1.11) we have the
following result.

Theorem 1.3.5. The total number Nk of walks of length k in a graph G is
given by

Nk = n
′μk
i β

2
i , (1.12)

where the sum 
′ is taken over all main eigenvalues μi .

We shall see in Chapter 2 that the spectrum of the complement G, the spec-
trum of the cone K1∇G and the Seidel spectrum of G are all determined by
the spectrum and main angles of G. A means of calculating main angles is
described in Section 6.7.

Now we turn to some more general results from matrix theory that have
implications for the spectra of graphs.

A symmetric matrix M is reducible if there exists a permutation matrix P

such that P−1 M P is of the form

(
X O
O Y

)
, where X and Y are square matri-

ces. Otherwise, M is called irreducible. If M = (mi j ), of size n × n, then we
define the graph G M as follows. The vertices of G M are 1, . . . , n, and distinct
vertices i, j are adjacent if and only if mi j 
= 0. Thus G M is connected if and
only if M is irreducible.

Theorem 1.3.6. Let M be an irreducible symmetric matrix with non-negative
entries. Then the largest eigenvalue λ1 of M is simple, with a correspond-
ing eigenvector whose entries are all positive. Moreover, |λ| ≤ λ1 for all
eigenvalues λ of M.

Proof. Let x = (x1, . . . , xn)
� be a unit eigenvector corresponding to λ1. Let

y = (y1, . . . , yn)
�, where yi = |xi | (i = 1, . . . , n). Then y�y = 1 and

y�My ≥ x�Mx = λ1. Hence y is also an eigenvector corresponding to λ1.
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16 Introduction

We show that no yi (and hence no xi ) is zero by considering adjacencies in
G M . The eigenvalue equations may be written:

λ1 yi = mii yi +
∑
j∼i

mi j y j (i = 1, . . . , n). (1.13)

If yi = 0 then by (1.10), y j = 0 for all j ∼ i . Since G M is connected, y j = 0
for all j , a contradiction. Now λ1 is a simple eigenvalue, for if dim E(λ1) > 1
then there exists an eigenvector with a zero entry in any chosen position. In
particular, E(λ1) is spanned by y (and x = ±y). Finally, if Mz = λz where
z�z = 1 and z = (z1, . . . , zn)

� then

|λ| = |z�Mz| = |
∑
i, j

zi mi j z j | ≤
∑
i, j

|zi | mi j |z j | ≤ λ1.

�

We say that a vector x = (x1, . . . , xn)
� is non-negative (positive) if each xi

is non-negative (positive); we write x ≥ 0, x > 0 respectively. In the situation
of Theorem 1.3.6, M has a unique positive unit eigenvector corresponding to
λ1, and this is called the principal eigenvector of M . In the case that M is the
adjacency matrix of a (labelled) connected graph G, we refer to this vector as
the principal eigenvector of G.

Corollary 1.3.7. Let M be an irreducible symmetric n × n matrix with non-
negative entries mi j , and let λ1 be the largest eigenvalue of M. For any positive
vector y = (y1, y2, . . . , yn)

�, we have

min
1≤i≤n

n∑
j=1

mi j y j

yi
≤ λ1 ≤ max

1≤i≤n

n∑
j=1

mi j y j

yi
. (1.14)

Either equality holds if and only if y is an eigenvector of M corresponding
to λ1.

Proof. Let x = (x1, x2, . . . , xn)
� be the principal eigenvector of M . Then

λ1

n∑
i=1

xi yi = yT Mx = xT My =
n∑

i=1

xi yi

(∑n
j=1 mi j y j

yi

)
. (1.15)

The inequalities follow, since
∑n

i=1 xi yi > 0. Let zi = λ1 yi −∑n
i=1 mi j y j (i = 1, . . . , n). If an equality holds in (1.14) then either all zi are

non-negative or all zi are non-positive. From (1.15), we have
∑n

i=1 xi zi = 0,
and so all zi are zero. In this situation, y is an eigenvector of M corresponding
to λ1, as required. �

If we apply Theorem 1.3.6 to the adjacency matrix of a graph, we obtain:
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1.3 Some results from linear algebra 17

Corollary 1.3.8. A graph is connected if and only if its index is a simple
eigenvalue with a positive eigenvector.

We can also use Theorem 1.3.6 to prove:

Proposition 1.3.9. For any vertex u of a connected graph G, we have λ1(G −
u) < λ1(G).

Proof. Let A =
(

A′ r
r� 0

)
, where A′ = A(G − u), and let x be a unit eigen-

vector of A′ corresponding to λ1(G − u). If y =
(

x
0

)
then y�y = 1 and

λ1(G − u) = y�Ay ≤ λ1(G). If equality holds then y is an eigenvector of A
corresponding to λ1(G); but this is a contradiction because y has a zero entry.

�

If we apply Corollary 1.3.8 to each component of an arbitrary graph G
which has index λ1(G), we can see that there is a non-negative eigenvector
corresponding to λ1(G). This vector may also be used in Rayleigh quotients
to obtain bounds for the index of modified graphs, as for example in the
following:

Proposition 1.3.10. If G − uv is the graph obtained from a connected graph
G by deleting the edge uv, then λ1(G − uv) < λ1(G).

Proof. Let x = (x1, . . . , xn)
� be a non-negative unit eigenvector of G − uv

corresponding to λ1(G − uv). Then

λ1(G − uv) = x�A(G − uv)x ≤ x�A(G)x ≤ λ1(G).

If λ1(G − uv) = λ1(G) then x is the principal eigenvector of G and hence has
no zero entries. Now x�A(G − uv)x = x�A(G)x − 2xu xv < λ1(G − uv), a
contradiction. �

Next we consider interlacing of eigenvalues.

Theorem 1.3.11. Let Q be a real n × m matrix such that Q�Q = I , and let
A be an n × n real symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λn. If the
eigenvalues of Q�AQ are μ1 ≥ · · · ≥ μm then

λn−m+i ≤ μi ≤ λi (i = 1, . . . ,m). (1.16)

Proof. Let x1, . . . .xn be orthonormal eigenvectors of A, and let y1, . . . , ym be
orthonormal eigenvectors of Q�AQ, taken in order. For each i ∈ {1, . . . ,m},
let zi be a non-zero vector in the subspace

〈y1, . . . , yi 〉 ∩ 〈Q�x1, . . . , Q�xi−1〉⊥.
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18 Introduction

Then Qzi ∈ 〈x1, . . . , xi−1〉⊥, and so (by Rayleigh’s Principle)

λi ≥ (Qzi )
�A(Qzi )

(Qzi )�(Qzi )
= z�i Q�AQzi

z�i zi
≥ μi .

The second inequality in (1.16) is obtained by applying the above argument to
−A and −Q�AQ. �

When the inequalities (1.16) are satisfied, we say that the eigenvalues μi

interlace the eigenvalues λ j .

Corollary 1.3.12. Let G be a graph with n vertices and eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn, and let H be an induced subgraph of G with m vertices. If
the eigenvalues of H are μ1 ≥ μ2 ≥ · · · ≥ μm then λn−m+i ≤ μi ≤ λi

(i = 1, . . . ,m).

Proof. Let V (G) = {1, . . . , n} and V (H) = {1, . . . ,m}. Then A(H) =
Q�A(G)Q, where Q� has the form (I | O), and so the result follows from
Theorem 1.3.11. �

The inequalities in Corollary 1.3.12 are known as Cauchy’s inequalities
and this result is generally known as the Interlacing Theorem. It is used fre-
quently as a spectral technique in graph theory. In particular, when H is a
vertex-deleted subgraph we have m = n − 1 and:

λn ≤ μn−1 ≤ λn−1 ≤ · · · ≤ λ2 ≤ μ1 ≤ λ1.

The next result is a further consequence of Theorem 1.3.11.

Corollary 1.3.13. Let A be a real symmetric matrix with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn. Given a partition {1, 2, . . . , n} = �1 ∪̇ �2 ∪̇ · · · ∪̇ �m with
|�i | = ni > 0, consider the corrresponding blocking A = (Ai j ), where Ai j is
an ni × n j block. Let ei j be the sum of the entries in Ai j and set B = (ei j/ni )

(Note that ei j/ni is the average row sum in Ai j .) Then the eigenvalues of B
interlace those of A.

Proof. Suppose that the vertex-block incidence matrix has columns
c1, . . . , cm , and let Q be the matrix with columns 1√

n1
c1, . . . ,

1√
nm

cm . Then

Q�Q = I , Q�AQ = B and the result follows from Theorem 1.3.11. �

If we assume that in each block Ai j from Corollary 1.3.13 all row sums are
equal then we can say more:

Theorem 1.3.14. Let A be any matrix partitioned into blocks as in Corol-
lary 1.3.13. Suppose that the block Ai j has constant row sums bi j , and
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1.3 Some results from linear algebra 19

let B = (bi j ). Then the spectrum of B is contained in the spectrum of A (taking
into account the multiplicities of the eigenvalues).

Proof. It is straightforward to check that if (x1, . . . , xm)
� is an eigenvec-

tor of B then

⎛
⎝ x1jn1

...
xmjnm

⎞
⎠ is an eigenvector of A corresponding to the same

eigenvalue. �

Theorem 1.3.12 will be used in Section 3.9 to provide a link between spec-
tral and structural properties of a graph. Next we establish the Courant–Weyl
inequalities, embodied in the following result; as usual, the eigenvalues here
are in non-increasing order.

Theorem 1.3.15. Let A and B be n × n Hermitian matrices. Then

λi (A + B) ≤ λ j (A)+ λi− j+1(B) (n ≥ i ≥ j ≥ 1),

λi (A + B) ≥ λ j (A)+ λi− j+n(B) (1 ≤ i ≤ j ≤ n).

Proof. Let {x1, . . . , xn}, {y1, . . . , yn}, {z1, . . . , zn} be orthonormal bases of
eigenvectors for A, B, A + B respectively. Suppose first that i ≥ j , and
consider the subspaces

V1 = 〈x j , . . . , xn〉, V2 = 〈yi− j+1, . . . , yn〉, V3 = 〈z1, . . . , zi 〉.
Since dim (V1 ∩ V2) ≥ dim V1 + dim V2 − n, we have

dim ((V1 ∩ V2) ∩ V3) ≥ dim V1 + dim V2 + dim V3 − 2n = 1,

and so V1 ∩ V2 ∩ V3 contains a unit vector x. Applying Rayleigh’s Principle,
we have:

λ j (A)+ λi− j+1(B) ≥ x�Ax+ x�Bx = x�(A + B)x ≥ λi (A + B).

When i ≤ j , we obtain the second inequality of the theorem by applying the
first inequality to −A and −B. �

Theorem 1.3.15 applies to a graph on n vertices specified as the edge-disjoint
union of two spanning subgraphs. For example, if A and B are the adjacency
matrices of G and G then A + B = J − I and so (for n ≥ 2) λ2(G) +
λn−1(G) ≥ λn(Kn) = −1, λ2(G)+ λn(G) ≤ λ2(Kn) = −1. We can also use
Theorem 1.3.15 to obtain inequalities that relate the spectrum of an adjacency
matrix A to the spectra of the Laplacian D − A, the signless Laplacian D + A
and the Seidel matrix J − I − 2A: we apply the theorem to A and D − A,
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to −A and D + A, and to 2A and J − I − 2A respectively. For example,
λk(D ± A) ≥ λn(A)± λn−k+1(A) and λk(J − I − 2A) ≥ −2λn−k+1(A)− 1.

Proposition 1.3.16. Let M be a symmetric n × n matrix with real entries. If

M =
[

P Q
Q� R

]
,

then

λ1(M)+ λn(M) ≤ λ1(P)+ λ1(R).

Proof. Let λ = λn(M). Then we have M − λI = S + T , where

S =
(

P − λI O
Q� O

)
, T =

(
O Q
O R − λI

)
.

Any non-zero eigenvalue of S is an eigenvalue of P − λI , and so the eigen-
values of S are real. Similarly, the eigenvalues of T are real. Using Theorem
1.3.15, we have

λ1(M)− λ = λ1(S + T ) ≤ λ1(S)+ λ1(T ) =
λ1(P − λI )+ λ1(R − λI ) = λ1(P)− λ+ λ1(R)− λ,

and the result follows. �

Using an induction argument, we obtain the following:

Corollary 1.3.17. Let M be a symmetric n × n matrix with real entries. If M
is partitioned into k2 blocks Mi j (of size ni × n j ) then

λ1(M)+ (k − 1)λn(M) ≤
k∑

i=1

λ1(Mii ).

Finally we prove a result on determinants required in Chapter 7. For an
n × m matrix R (n ≤ m), we write Rk1,...,kn for the matrix consisting of rows
k1, . . . , kn of R; and for an m × n matrix S (n ≤ m) we write Sk1,...,kn for the
matrix consisting of columns k1, . . . , kn of S. (Here, k1, . . . , kn are not neces-
sarily distinct.) If F is an n-element subset of {1, . . . ,m}, say F = {k1, . . . , kn}
where k1 < k2 < · · · < kn , then we write RF = Rk1,...,kn and SF = Sk1,...,kn .

Theorem 1.3.18 (The Binet–Cauchy Theorem). If R is an n × m matrix and
S is an m × n matrix (n ≤ m), then

det(RS) =
∑
|F |=n

det(RF ) det(SF ).
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Proof. Let R = (ri j ) and S = (si j ). We have

det(RS) =
∑
σ

sgn(σ )
n∏

i=1

⎛
⎝ n∑

k=1

rikskσ(i)

⎞
⎠

=
∑
σ

sgn(σ )

⎛
⎝ m∑

k1=1

r1k1 sk1σ(1)

⎞
⎠
⎛
⎝ m∑

k2=1

r2k2 sk2σ(2)

⎞
⎠ · · ·

⎛
⎝ m∑

kn=1

rnkn sknσ(n)

⎞
⎠

=
m∑

k1=1

m∑
k2=1

· · ·
m∑

kn=1

r1k1r2k2 · · · rnkn

∑
σ

sgn(σ )sk1σ(1)sk2σ(2) · · · sknσ(n)

=
m∑

k1=1

m∑
k2=1

· · ·
m∑

kn=1

r1k1r2k2 · · · rnkn det(S{k1,...,kn}).

Now det(S{k1,...,kn}) = 0 when k1, . . . , kn are not distinct, and so we
may take the sum over n-element subsets {k1, . . . , kn} of {1, . . . ,m}. Then
det(S{τ(k1),...,τ (kn)}) = sgn(τ ) det(S{k1,...,kn}) for any permutation τ of
k1, . . . , kn , and so

m∑
k1=1

m∑
k2=1

· · ·
m∑

kn=1

r1k1r2k2 · · · rnkn det(S{k1,...,kn})

=
∑
τ

∑
k1<k2<···<kn

sgn(τ )r1τ(1)r2τ(2) · · · rnτ(n) det(S{k1,...,kn})

=
∑
|F |=n

det(RF ) det(SF ).

�

Exercises

1.1 Prove Proposition 1.1.2.
1.2 By considering the nullspace of an all-1 matrix, or otherwise, show that

Kn (n > 1) has spectrum (n − 1)1, (−1)n−1.
1.3 Prove Proposition 1.1.7.
1.4 Show that L(K4,4) has spectrum 61, 26, (−2)9.
1.5 Let G be a graph with n vertices. Show that λ1(G) ≤ n−1, with equality

if and only if G = Kn .
1.6 Let G be a bipartite graph, with each edge joining a vertex in {1, . . . , k}

to a vertex in {k + 1, . . . , n}. Show that if (x1, . . . , xn)
� is an eigenvec-

tor of G corresponding to λ, then (x1, . . . , xk,−xk+1, . . . ,−xn)
� is an
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eigenvector of G corresponding to −λ. Deduce that the spectrum of a
bipartite graph is symmetric about 0.

1.7 Let G be a graph with p vertices of odd degree and q vertices of even
degree, where p and q have the same parity. Show that if G ′ is switching
equivalent to G then either G ′ has p vertices of odd degree and q vertices
of even degree, or G ′ has q vertices of odd degree and p vertices of even
degree [Sei2].

1.8 Show that for any graph G and any vertex v of G there exists a unique
switching-equivalent graph G ′ which has v as an isolated vertex [Sei3].

1.9 Let I (G) be the collection of graphs obtained by isolating in turn the
vertices of the graph G. Show that the graphs G1 and G2 are switching
equivalent if and only if I (G1) = I (G2) [BuCS1].

1.10 Prove Proposition 1.2.2.
1.11 Show that a regular connected generalized line graph is either a line graph

or a cocktail party graph.
1.12 Prove Proposition 1.3.4.
1.13 Suppose that G, G have adjacency matrices A, A. Show that if μ is

a non-main eigenvalue of G then EA(μ) ⊆ EA(−μ − 1). Provide an
example of proper inclusion.

1.14 Let G be a graph with adjacency matrix A and vertex degrees d1, . . . , dn .
Let d = (d1, . . . .dn). Then G is said to be harmonic if d is an eigenvector
of A. Show that both G and G are harmonic if and only if G is regular.

1.15 With the notation of Section 1.1, show that the vector (d1, . . . , dn)
� is

orthogonal to (i) E(0), and (ii) E(λ) for every non-main eigenvalue λ.
1.16 Show that no line graph has −2 as a main eigenvalue.
1.17 Show that if G is a strongly regular graph then each vertex-deleted

subgraph G − v (v ∈ V (G)) has exactly two main eigenvalues.
1.18 Show that in a connected graph G, the minimum degree of a vertex is

bounded above by the index of G.
1.19 Show that if (αi j ) is the angle matrix of the connected graph G then

(α11, . . . , α1n)
� is the principal eigenvector of G.

1.20 Show that if the graphs G,G ′ differ in only one edge then |λ1(G) −
λ1(G ′)| ≤ 1.

1.21 Use Theorem 1.3.15 to show that if the adjacency matrix of G has
eigenvalues λ1 ≥ · · · ≥ λn and the Laplacian of G has eigenvalues
ν1 ≥ · · · ≥ νn then

δ(G)− λi ≤ νn−i+1 ≤ �(G)− λi (i = 1, . . . , n).

State and prove an analogous result relating the eigenvalues of the
signless Laplacian to λ1, . . . , λn .
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1.22 Show that if A is a symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λn

then
λ1 − λn = sup{u�Au− v�Av},

where the supremum is taken over all pairs of orthonormal vectors
u, v [Mir].

Notes

For a background in graph theory and linear algebra, the reader is referred
to the monographs [Mer5] and [Str] respectively; earlier texts are [Har2] and
[Hal]. Most undergraduate texts on linear algebra discuss the orthogonal diag-
onalization of a matrix with real entries; a more advanced text is [Pra]. For
results on matrices (not necessarily symmetric) with non-negative entries,
[Gan, Vol. 2] is a standard reference. The interlacing property of the eigenval-
ues arising in Theorem 1.3.11 is taken from [Hae2]; Corollary 1.3.13 appears
in the earlier paper [Hae1]. Theorem 1.3.14 appears in [Hay] and [PeSa1]. The
proofs of Theorems 1.3.15 and 1.3.18 are taken from [Pra].

Line graphs are characterized by a collection of 9 forbidden induced sub-
graphs; see [Har2, Chapter 8] or the original proof by L. W. Beineke [Bei].
The concept of a strongly regular graph was introduced in 1963 by R. C. Bose
[Bos], and there is now an extensive literature on graphs of this type; see,
for example, [BroLi]. Generalized line graphs were introduced by A. J. Hoff-
man [Hof5] in 1970, and studied extensively by D. Cvetković, M. Doob and
S. Simić [CvDS1, CvDS2] in 1980. They were characterized by a collection
of 31 forbidden induced subgraphs in [CvDS1, CvDS2], and independently by
S. B. Rao, N. M. Singhi and K. S. Vijayan in [RaoSV]; a recent proof appears
in [CvRS8] and the monograph [CvRS7]. A survey of results concerning main
eigenvalues, together with an explanation of their relation to harmonic graphs
(Exercise 1.14), can be found in [Row16].

The modifications G − u, G − uv may be regarded as perturbations of G;
other perturbations are considered in Section 8.1.
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2

Graph operations and modifications

In this chapter we describe some procedures for determining characteristic
polynomials of graphs derived from simpler graphs by certain opera-
tions or modifications. Typically, we define an n-ary operation on graphs
G1,G2, . . . ,Gn (n = 1, 2, . . . ) to obtain a graph G, and then describe
relations between the spectra of G1,G2, . . . ,Gn and the spectrum of G.
In some important cases, the spectrum of G is determined by the spectra
of G1,G2, . . . ,Gn ; in other cases, additional invariants of G1,G2, . . . ,Gn

are required in the form of graph angles or walk generating functions. The
modifications considered include the deletion and addition of a vertex.

Naturally, several proofs rely simply on determinantal expansions, but oth-
ers require an interpretation of the coefficients in a characteristic polynomial,
and this is presented in Section 2.4. At the end of the chapter, in Section 2.6,
we use the theory we have developed to derive the spectra, or characteristic
polynomials, of several special classes of graphs.

2.1 Complement, union and join of graphs

The operations of complement, union and join are connected by the relation

G � H = G ∪̇ H .

First we consider the (disjoint) union of graphs. If G has adjacency matrix
A and H has adjacency matrix B, then the adjacency matrix of G ∪̇ H is the
direct sum

A +̇ B =
(

A O
O B

)
.

Consideration of determinants leads immediately to the following result.

24
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2.1 Complement, union and join of graphs 25

Theorem 2.1.1. The characteristic polynomial of the disjoint union of two
graphs is given by:

PG∪̇H (x) = PG(x)PH (x).

It follows that if G1,G2, . . . ,Gs are the components of the graph G, then
we have

PG(x) = PG1(x)PG2(x) · · · PGs (x).

If G is a regular graph, then the characteristic polynomial PG(x) of the
complement G of G can be expressed by means of PG(x) (and vice versa).
The relation is given by the following theorem.

Theorem 2.1.2. If G is a regular graph of degree r with n vertices, then

PG(x) = (−1)n
x − n + r + 1

x + r + 1
PG(−x − 1), (2.1)

i.e., if the eigenvalues of G are λ1 = r, λ2, . . . , λn, then the eigenvalues of G
are n − 1− r , −λ2 − 1, . . . ,−λn − 1.

Proof. If G has adjacency matrix A then G has adjacency matrix J − I − A.
Let x1, x2, . . . , xn be an orthogonal basis of IRn consisting of eigenvectors of
A, with x1 = j. Then we have Ax1 = rx1, (J − I − A)x1 = (n− 1− r)x1 and
(J − I − A)xi = (−1− r)xi (i = 2, . . . , n). �

In the general case, the spectrum of G does not determine the spectrum of
G; for example the complements of the cospectral graphs C4 ∪̇ K1, K1,4 are
not cospectral. However the spectrum of G is determined by the spectrum and
main angles of G:

Proposition 2.1.3. For any graph G with n vertices, the complement G of G
has characteristic polynomial

PG(x) = (−1)n PG(−x − 1)

(
1− n

m∑
i=1

β2
i

x + 1+ μi

)
. (2.2)

Proof. We use a multilinear determinantal expansion in conjunction with the
spectral decomposition of A (Equation (1.3)). The characteristic polynomial of
G is given by:

PG(x) = det((x + 1)I + A − J )

= det((x + 1)I + A)− j�adj((x + 1)I + A)j
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26 Graph operations and modifications

= (−1)n PG(−x − 1)(1− j�((x + 1)I + A)−1j)

= (−1)n PG(−x − 1)

(
1− n

m∑
i=1

β2
i

x + 1+ μi

)
. (2.3)

�

We may apply exactly the same argument to J − 2A − I to obtain:

Proposition 2.1.4. For any graph G with n vertices, the characteristic
polynomial SG(x) of the Seidel adjacency matrix of G is given by

SG(x) = (−2)n PG

(
−1

2
(x + 1)

)(
1− n

m∑
i=1

β2
i

x + 1+ 2μi

)
. (2.4)

We may also apply the argument to G ∪̇ H . By Proposition 2.1.1, the eigen-
values of G ∪̇ H are the eigenvalues of G or H (or both). We suppose that
G has n1 vertices and H has n2 vertices. The adjacency matrix of G ∪̇ H has
spectral decomposition(

A O
O B

)
= ξ1

(
P1 O
O Q1

)
+ · · · + ξs

(
Ps O
O Qs

)
,

where Pi represents the orthogonal projection IRn1 → EA(ξi ) and Qi rep-
resents the orthogonal projection IRn2 → EB(ξi ) (i = 1, . . . , s). Here,
EA(ξi ) = {0} if ξi is not an eigenvalue of G, and EB(ξi ) = {0} if ξi is not
an eigenvalue of H . As in Proposition 2.1.3 we have

P
G∪̇H

(x) = (−1)n1+n2 PG∪̇H (−x − 1)

×
(

1− n1

s∑
i=1

β2
i

x + 1+ ξi
− n2

s∑
i=1

γ 2
i

x + 1+ ξi

)
, (2.5)

where the non-zero βi are precisely the non-zero main angles of G and the
non-zero γi are precisely the non-zero main angles of H . The arguments here
extend to the disjoint union of arbitrarily many graphs. We note in passing that
the main angles δi of G ∪̇ H are given by:

(n1 + n2)δ
2
i = n1β

2
i + n2γ

2
i (i = 1, . . . , s).

This relation follows from the definition or from a comparison of
Equations (2.2) and (2.5).

We can rewrite Equation (2.5) using Propositions 2.1.1 and 2.1.3 to obtain:

P
G∪̇H

(x) = (−1)n2 PG(x)PH (−x − 1)+ (−1)n1 PG(−x − 1)PH (x)

− (−1)n1+n2 PG(−x − 1)PH (−x − 1). (2.6)
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2.1 Complement, union and join of graphs 27

Replacing G with G, and H with H , we obtain the following:

Theorem 2.1.5. Let G, H be graphs with n1, n2 vertices respectively. The
characteristic polynomial of the join G � H is given by the relation

PG�H (x) = (−1)n2 PG(x)PH (−x − 1)+ (−1)n1 PH (x)PG(−x − 1)

− (−1)n1+n2 PG(−x − 1)PH (−x − 1). (2.7)

Corollary 2.1.6. Let G, H be graphs with n1, n2 vertices respectively. Then

PG�H (x) = PG(x)PH (x)

(
1− n1n2

m∑
i=1

p∑
k=1

β2
i γ

2
k

(x − μi )(x − νk)

)

where G has distinct eigenvaluesμ1, . . . , μm with corresponding main angles
β1, . . . , βm, and H has distinct eigenvalues ν1, . . . , νp with corresponding
main angles γ1, . . . , γp.

Proof. The result follows from Theorem 2.1.5 and Proposition 2.1.3. �

From Proposition 2.1.3 and Theorem 2.1.5 we can also find an expression
for the characteristic polynomial of the cone over a graph G (i.e. the graph
obtained from G by adding a vertex adjacent to every vertex of G):

Proposition 2.1.7. The cone over G has characteristic polynomial

PK1�G(x) = PG(x)

(
x −

m∑
i=1

nβ2
i

x − μi

)
. (2.8)

Next we discuss the join of regular graphs. First we can deduce the following
from Proposition 2.1.2 and Theorem 2.1.5.

Theorem 2.1.8. If G1 is r1-regular with n1 vertices, and G2 is r2-regular with
n2 vertices, then the characteristic polynomial of the join G1�G2 is given by:

PG1�G2(x) =
PG1(x)PG2(x)

(x − r1)(x − r2)
((x − r1)(x − r2)− n1n2). (2.9)

Note that if G1�G2 is a regular graph, then both G1 and G2 are regular. On
the other hand, if G1 is r1-regular with n1 vertices, and G2 is r2-regular with
n2 vertices, then G1 � G2 is a regular graph if and only if r1 + n2 = r2 + n1.
In this situation, G1 � G2 has n(1) = n1 + n2 vertices and is regular of degree
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28 Graph operations and modifications

r (1) = r1+ n2 = r2+ n1. Hence, the relations n1− r1 = n2− r2 = n(1)− r (1)

hold, and from (2.9) we have

PG1�G2(x) = (x − r (1))(x + n(1) − r (1))
PG1(x)PG2(x)

(x − r1)(x − r2)
. (2.10)

This equation can now be used to determine P(G1�G2)�G3(x) from PGi (x)
(i = 1, 2, 3). The necessary condition for (G1 � G2) � G3 to be regular (of
degree r (2) and with n(2) vertices) is that n(1) − r (1) = n3 − r3 = n(2) − r (2);
in this case, from (2.9) and (2.10) we have

P(G1�G2)�G3(x) = (x − r (2))(x + n(1) − r (1))(x + n(2) − r (2))

× PG1(x)PG2(x)PG3(x)

(x − r1)(x − r2)(x − r3)
.

Continuing this reasoning, we arrive at the following result (where associativ-
ity of the join operation allows us to omit parentheses in G1�G2�· · ·�Gk).

Theorem 2.1.9 [FiGr]. Let G1,G2, . . . ,Gk be regular graphs; let Gi have
degree ri and ni vertices (i = 1, 2, . . . , k), where the relations n1 − r1 =
n2 − r2 = · · · = nk − rk = s hold. Then the graph G = G1 � G2 � · · · � Gk

has n = n1+ n2+· · ·+ nk vertices and is regular of degree r = n− s, so that
we have

PG(x) = (x − r)(x + n − r)k−1
k∏

i=1

PGi (x)

x − ri
. (2.11)

We conclude this section with some remarks on main angles and walk gener-
ating functions. From Propositions 2.1.3, 2.1.4 and 2.1.7, we see that, given the
eigenvalues of G, knowledge of the main angles of G is equivalent to knowl-
edge of the spectrum of G, or the spectrum of the Seidel matrix of G, or the
spectrum of the cone over G. On the other hand, given the eigenvalues of G,
knowledge of the main angles of G is equivalent to knowledge of the walk
generating function

HG(t) =
∞∑

k=0

Nktk, (2.12)

where Nk is the number of walks of length k in G. For by Theorem 1.3.5
we have

HG(t) = n
m∑

p=1

β2
p/(1− tμp). (2.13)

Accordingly we may write formulae (2.2) and (2.4) in the form:

PG(x) = (−1)n PG(−1− x)(1− (x + 1)−1 HG(−1/(1+ x))),
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2.2 Coalescence and related graph compositions 29

SG(x) = (−1)n2n PG(−(x − 1)/2)(1− (x + 1)−1 HG(−2/(x + 1)).

We can use the first equation to express the walk generating function in
terms of characteristic polynomials:

HG(t) = 1

t

⎧⎨
⎩(−1)n

PG

(
− t+1

t

)
PG

(
1
t

) − 1

⎫⎬
⎭ . (2.14)

This enables us to express HG in terms of HG , and HG1�G2 in terms of HG1

and HG2 :

Theorem 2.1.10. (i) HG(t) =
HG

( −t
t+1

)
t + 1− t HG

( −t
t+1

) ;

(ii) HG1∪̇G2
(t) = HG1(t)+ HG2(t);

(iii) HG1�G2(t) =
HG1(t)+ HG2(t)+ 2t HG1(t)HG2(t)

1− t2 HG1(t)HG2(t)
.

Proof. From Equation (2.14), we have

HG(t) =
1

t

⎧⎨
⎩(−1)n

PG

(
− t+1

t

)
PG

(
1
t

) − 1

⎫⎬
⎭ (2.15)

and

HG

( −t

t + 1

)
= − t + 1

t

⎧⎨
⎩(−1)n

PG

(
1
t

)
PG

(
− t+1

t

) − 1

⎫⎬
⎭ . (2.16)

The relation (i) follows by eliminating PG

(
− t + 1

t

)/
PG

(
1

t

)
from (2.15)

and (2.16). The relation (ii) is immediate from the definition (2.12). The third
relation follows from (i) and (ii) when we express G1�G2 as the complement
of G1 ∪̇ G2. �

2.2 Coalescence and related graph compositions

Here we discuss further examples of characteristic polynomials of graphs
constructed using various graph operations or modifications. The formulae
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30 Graph operations and modifications

obtained may be seen as reduction procedures for calculating the character-
istic polynomials concerned. In these formulae, the characteristic polynomial
of an empty graph should be interpreted as 1.

The proof of the first result is left as an exercise in evaluating determinants.

Theorem 2.2.1. Let G j denote the graph obtained from G by adding a
pendant edge at the vertex j . Then

PG j (x) = x PG(x)− PG− j (x). (2.17)

By iterating formula (2.17), the characteristic polynomial of a tree can easily
be computed. We may also apply Theorem 2.2.1 to the graph Gn

j obtained from
the connected graph G by adding a path of length n at the vertex j . We know
from Chapter 1 that if G is connected then λ1(Gu) > λ1(G), because G is a
vertex-deleted subgraph of the connected graph Gu . Thus if ρ jn is the index of
Gn

j then we have

λ1(G) < ρ j1 < ρ j2 < ρ j3 < · · · ,
while ρ jn ≤ �(Gn

j ) ≤ �(G) + 1 by Proposition 1.1.1. Hence the sequence
ρ j1, ρ j2, ρ j3, . . . converges to some limit ρ j > λ1(G).

Theorem 2.2.2 [Hof8]. Let Gn
j be the graph obtained from the connected

graph G by adding a path of length n at the vertex j , and let ρ jn be the index
of Gn

j . Suppose that ρ jn → ρ j > 2 as n →∞. Then ρ j is the largest positive
solution of the equation

1

2
(x +

√
x2 − 4)PG(x)− PG− j (x) = 0.

Proof. For fixed j , let fn(x) be the characteristic polynomial of Gn
j . Thus

f0(x) = PG(x) and by Theorem 2.2.1 we have

fn(x) = x fn−1(x)− fn−2(x) (n ≥ 2), f1(x) = x PG(x)− PG− j (x).

The solution of this linear recurrence relation is given by

(α(x)− β(x)) fn(x) = (α(x)PG(x)− PG− j (x))α(x)
n

− (β(x)PG(x)− PG− j (x))β(x)
n,

where α(x), β(x) = 1
2 (x ±

√
x2 − 4). If we divide this equation by α(x)n , set

x = ρ jn and let n →∞ then we obtain the result. �

We extend our deliberations to any graph with a cutvertex w. Such a graph
may be regarded as a coalescence G · H of two graphs G and H , obtained
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2.2 Coalescence and related graph compositions 31

from G ∪̇ H by identifying a vertex u of G with a vertex v of H . (Formally,
V (G · H) = V (G− u) ∪̇ V (H − v) ∪̇ {w} with two vertices in G · H adjacent
if they are adjacent in G or H , or if one is w and the other is a neighbour of u
in G or a neighbour of v in H .)

Theorem 2.2.3. Let G · H be the coalescence in which the vertex u of G is
identified with the vertex v of H. Then

PG·H (x) = PG(x)PH−v(x)+ PG−u(x)PH (x)− x PG−u(x)PH−v(x).
(2.18)

Proof. The graph G · H has adjacency matrix

⎛
⎝A′ r O

r� 0 s�
O s B ′

⎞
⎠, where

(
A′ r
r� 0

)
is the adjacency matrix of G and

(
0 s�
s B ′

)
is the adjacency matrix

of H . Now

PG·H (x) =
∣∣∣∣∣∣
x I − A′ −r O
−r� x −s�

O −s x I − B ′

∣∣∣∣∣∣ =
∣∣∣∣∣∣
x I − A′ −r O
−r� x −s�

O 0 x I − B ′

∣∣∣∣∣∣+
∣∣∣∣∣∣
x I − A′ 0 O
−r� x −s�

O −s x I − B ′

∣∣∣∣∣∣−
∣∣∣∣∣∣
x I − A′ 0 O
−r� x −s�

O 0 x I − B ′

∣∣∣∣∣∣ ,
and the result follows. �

We may consider a graph with a bridge as a special case of Theorem 2.2.3.
Let GuvH be the graph obtained from G ∪̇ H by adding an edge joining the
vertex u of G to the vertex v of H .

Theorem 2.2.4. The characteristic polynomial of GuvH is given by

PGuvH (x) = PG(x)PH (x)− PG−u(x)PH−v(x). (2.19)

Proof. We regard GuvH as a coalescence of Gu and H . Using Theorems 2.2.3
and 2.2.1 in turn, we obtain:

PGuvH (x) = PGu (x)PH−v(x)+ PG(x)PH (x)− x PG(x)PH−v(x)
= {x PG(x)− PG−u(x)}PH−v(x)+ PG(x)PH (x)

− x PG(x)PH−v(x),

and the result follows. �
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The next result deals with a special type of graph with several cutvertices.
Let G be a graph with n vertices, and let H be a graph with m vertices. The
corona G ◦ H is the graph with n+mn vertices obtained from G and n copies
of H by joining the i-th vertex of G to each vertex in the i-th copy of H (i =
1, . . . , n).

Theorem 2.2.5. Let G be a graph with n vertices, and let H be an r-regular
graph with m vertices. The characteristic polynomial of the corona G ◦ H is
given by

PG◦H (x) = PG

(
x − m

x − r

)
(PH (x))

n .

Proof. We may express PG◦H (x) in the form∣∣∣∣∣∣∣∣∣∣∣

x I − A −J1 −J2 · · · −Jn

−J�1 x I − B
−J�2 x I − B
...

. . .

−J�n x I − B

∣∣∣∣∣∣∣∣∣∣∣
where (i) A, B are the adjacency matrices of the graphs G, H respectively,
(ii) Jk is the n×m matrix in which each entry of the k-th row is 1 and all other
entries are 0.

For each k = 1, . . . , n let sk be the sum of rows n + (k − 1)m + 1,
n + (k − 1)m + 2, . . . , n + (k − 1)m + m, and subtract (x − r)−1sk from
the k-th row. We find PG◦H (x) =∣∣∣∣∣∣∣∣∣∣∣

(
x − m

x−r

)
I − A O O · · · O

−J�1 x I − B

−J�2 x I − B
.
.
.

. . .

−J�n x I − B

∣∣∣∣∣∣∣∣∣∣∣
= PG

(
x − m

x − r

)
(PH (x))

n .

�

As a special case of this result , we have PG◦K1(x) = xn PG

(
x − 1

x

)
. Thus

if λ1, . . . , λn are the eigenvalues of G, then 1
2

(
λi ±

√
λ2

i + 4

)
(i = 1, . . . , n)

are the eigenvalues of G ◦ K1.

We now turn our attention to the vertex-deleted subgraphs which feature in
Theorems 2.2.1 to 2.2.4. The formulae there can be refined by using graph
angles, introduced in Section 1.3.
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Proposition 2.2.6. Let G − j be the graph obtained from G by deleting the
vertex j and all edges containing j . Then

PG− j (x) = PG(x)
m∑

i=1

α2
i j

x − μi
.

Proof. Since the adjoint of x I − A is det(x I − A)(x I − A)−1, we have

adj(x I − A) = PG(x)
m∑

i=1

1

x − μi
Pi .

The result follows by equating diagonal entries in this matrix equation. �

Thus, given the spectrum of G, knowledge of the characteristic polynomials
of its vertex-deleted subgraphs is equivalent to knowledge of the angles of G.
Also, Theorem 2.2.1 yields:

PG j (x) = PG(x)

(
x −

m∑
i=1

α2
i j

x − μi

)
, (2.20)

while from Theorem 2.2.2 we obtain:

Proposition 2.2.7 [CvRo1]. Let Gn
j be the graph obtained from G by adding

a path of length n at vertex j , and let ρ jn be the index of Gn
j . Suppose that

ρ jn → ρ j > 2 as n → ∞. Then ρ j is the largest positive solution of the
equation

1

2
(x +

√
x2 − 4)−

m∑
i=1

α2
i j

x − μi
= 0.

Proof. By Theorem 2.2.2, ρ j is the largest positive solution of the equation

1

2

(
x +

√
x2 − 4

)
PG(x)− PG− j (x) = 0.

Moreover PG(ρ j ) 
= 0 since ρ j1 > μ1. The result therefore follows
immediately from Proposition 2.2.6. �

Restatements of Theorems 2.2.3 and 2.2.4 in terms of angles are left as
exercises (see Exercises 2.8 and 2.9).

As in the previous section, we may use walk generating functions for G in
place of angles of G when the spectrum of G is known. Let H G

j (t) be the
generating function for the number of closed walks of length k in G starting
(and terminating) at the vertex j . Thus H G

j (t) =
∑∞

k=0 a(k)j j t k where Ak =(
a(k)i j

)
. From Equation (1.10) we obtain
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a(k)j j =
m∑

i=1

α2
i jμ

k
i , (2.21)

and so

H G
j (t) =

∞∑
k=0

tk
m∑

i=1

α2
i jμ

k
j =

m∑
i=1

α2
i j/(1− μi t).

Now, for example, we have

PG− j (x) = 1

x
PG(x)H

G
j

(
1

x

)
,

and hence also
H G

j (t) = PG− j (1/t)/t PG(1/t).

Before we establish a general formula for the characteristic polynomial of a
graph modified by the addition of a vertex, we rewrite two of the results already
described. The formula (2.20) can be written in the form

PG j (x) = PG(x)

(
x −

m∑
i=1

‖Pi e j‖2

x − μi

)
, (2.22)

while (2.8) can be written in the form

PK1�G(x) = PG(x)

(
x −

m∑
i=1

‖Pi j‖2

x − μi

)
. (2.23)

These are special cases of the following result:

Theorem 2.2.8 [Row7]. Let G be a graph whose adjacency matrix A has
spectral decomposition A = ∑m

i=1 μi Pi . Let ∅ 
= S ⊆ V (G) = {1, 2, . . . , n}
and let G∗ be the graph obtained from G by adding one new vertex whose
neighbours are the vertices in S. Then

PG∗(x) = PG(x)

(
x −

m∑
i=1

σ 2
i

x − μi

)
, where σi = ‖

∑
k∈S

Pi ek‖.

Proof. Let r be the characteristic vector of S; that is, r = ∑
j∈S e j . Since

adj(x I − A) = det(x I − A)(x I − A)−1, we have

PG∗(x) =
∣∣∣∣ x −r�
−r x I − A

∣∣∣∣ = x det(x I − A)− r�adj(x I − A)r

= PG(x)

(
x −

m∑
i=1

‖Pi r‖2

x − μi

)
.

�
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2.3 General reduction procedures 35

2.3 General reduction procedures

In the previous section we considered graphs constructed in prescribed
fashion from smaller graphs. Here, for an arbitrary graph G, we discuss
relations between PG(x) and the characteristic polynomials of proper sub-
graphs of G.

Theorem 2.3.1 [Clar]. For any graph G, with V (G) = {1, . . . , n}, the
derivative of PG(x) is given by

P ′G(x) =
n∑

j=1

PG− j (x). (2.24)

Proof. The derivative of an n × n determinant is the sum of n determinants,
obtained by differentiating each row in turn. Let A be the adjacency matrix of
G, and A j the matrix obtained from A by deleting the j-th row and the j-th
column. Row-by-row differentiation of det(x I − A) yields

P ′G(x) =
n∑

j=1

det(x I − A j ) =
n∑

j=1

PG− j (x).

�

Some remarks are in order (see also Section 8.3):

(i) It follows from Theorem 2.3.1 that if we know the polynomials
PG− j (x) ( j ∈ V (G)), then we can determine PG(x) to within some con-
stant c. We can determine c if we also know one eigenvalue λ of G. In
particular, if some PG− j (x) has a repeated root λ, then by the Interlacing
Theorem, λ is an eigenvalue of G.

(ii) It is known (see [CvLe2]) that if G is a tree then PG(x) is determined by
the polynomials PG− j (x) ( j ∈ V (G)).

(iii) It is known (see [Tut1] or [LauSc, Section 10.3]) that, for any graph G,
PG(x) is determined by the vertex-deleted subgraphs G − j ( j ∈ V (G)).

We mention without proof an algorithm for the recursive computation of the
characteristic polynomial of a multigraph G (where loops and multiple edges
are allowed). Let G − [uv] denote the graph obtained from G by deleting all
edges between u and v, and let G∗ be the graph obtained from G − [uv] by
amalgamating u and v. If m is the number of edges between u and v then
(see [Row3]):

PG(x) = PG−[uv](x)+ m PG∗(x)+ m(x − m)PG−u−v(x)− m PG−u(x)

− m PG−v(x).
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36 Graph operations and modifications

This equation is called the deletion-contraction algorithm. Note that if G
is a graph then G∗ will have multiple edges precisely when u and v have
a common neighbour in G; hence the multigraph setting. Once again, the
equation is established by expanding the determinant which defines the char-
acteristic polynomial. For subsequent results we need to relate the coefficients
of PG(x) to the structure of G, and our starting point is the following result.
Here an elementary graph is a graph in which each component is K2 or a
cycle.

Theorem 2.3.2 [Har1]. If G is a graph with n vertices and adjacency matrix
A, then

det(A) = (−1)n
∑
H∈H

(−1)p(H)2c(H),

where H is the set of elementary spanning subgraphs of G, p(H) denotes the
number of components of H and c(H) denotes the number of cycles in H.

Proof. Consider a term sgn(π)a1,π(1)a2,π(2) · · · an,π(n) in the expansion of
det(A). If this term is non-zero then j ∼ π( j) for all j = 1, 2, . . . , n. Thus π is
fixed-point-free and can be expressed as a composition γ1γ2 · · · γt of disjoint
cyclic permutations of length at least 2. This expression determines an ele-
mentary spanning subgraph H in which the components isomorphic to K2 are
determined by the transpositions among the γi , and the cycles are determined
by the remaining γi . The sign of π is (−1)r , where r = ∑t

i=1(�(γi ) − 1)
and �(γi ) is the length of γi . Since t = p(H) and

∑t
i=1 �(γi ) = n, we

have sgn(π) = (−1)n−p(H). Finally, H arises from 2c(H) permutations with
the same sign as π , namely γ±1

1 γ±1
2 · · · γ±1

s γs+1 · · · γt , where s = c(H) and
γ1, γ2, . . . , γs are the γi of length > 2. �

Corollary 2.3.3 (Sachs’ Coefficient Theorem [Sac2]). Let PG(x) = xn +
c1xn−1 + · · · + cn−1x + cn, and let Hi be the set of elementary subgraphs of
G with i vertices. Then

ci =
∑

H∈Hi

(−1)p(H)2c(H) (i = 1, . . . , n).

Proof. The number (−1)i ci is the sum of all i × i principal minors of
A, and each such minor is the determinant of the adjacency matrix of an
induced subgraph on i vertices. An elementary subgraph with i vertices is con-
tained in exactly one such subgraph, and so the result follows by applying
Theorem 2.3.2 to each minor. �
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Theorem 2.3.4 [Sch2]. (i) For any vertex u of the graph G,

PG(x) = x PG−u(x)−
∑
v∼u

PG−u−v(x)− 2
∑

Z∈C(u)
PG−V (Z)(x), (2.25)

where C(u) denotes the set of all cycles containing u.
(ii) For any edge uv of the graph G,

PG(x) = PG−uv(x)− PG−u−v(x)− 2
∑

Z∈C(uv)
PG−V (Z)(x), (2.26)

where C(uv) denotes the set of all cycles containing uv.

Proof. (i) We follow the original proof of Schwenk by defining a one-to-one
correspondence H ↔ H ′ between elementary subgraphs that contribute to
a coefficient on the left-hand side of (2.25), and those that contribute to a
coefficient on the right-hand side. We distinguish three possibilities for an
elementary subgraph H of G on i vertices:

(a) if u 
∈ V (H) then H ′ = H , regarded as a subgraph of G − u;
(b) if u lies in a component K = K2 of H , then H ′ = H − V (K ), regarded

as a subgraph of G − V (K );
(c) if u lies in a cycle Z of H , then H ′ = H − V (Z), regarded as a subgraph

of G − V (Z).

Now, by applying Corollary 2.3.3 to each of the graphs that feature in (2.25),
we can show that if H contributes c to the coefficient of xn−i on the left, then
H ′ contributes c to the coefficient of xn−i on the right.

In case (a), H ′ contributes c to the coefficient of xn−1−i in PG−u(x), hence
contributes c to the coefficient of xn−i in x PG−u(x). (Note that H ′ does not
contribute to the coefficient of xn−i in the remaining terms.)

In case (b), H ′ is an elementary spanning subgraph of exactly one graph
G − u − v with v ∼ u, namely G − V (K ). Its contribution to the coefficient
of x (n−2)−(i−2) (= xn−i ) is (−1)p(H ′)2c(H ′) = −(−1)p(H)2c(H) = −c.

In case (c), H ′ is an elementary spanning subgraph of exactly one graph G−
V (Z) with Z ∈ C(u). If |V (Z)| = r , then the contribution of H ′ to the coef-
ficient of x (n−r)−(i−r) (= xn−i ) is (−1)p(H ′)2c(H ′) = − 1

2 (−1)p(H)2c(H) =
− 1

2 c.
(ii) The proof, by exactly the same method, is left to the reader. �
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Finally, we mention without proof the following consequence of Jacobi’s
Theorem on the minors of an adjoint matrix (see [Pra, Section 2.5]):

Theorem 2.3.5. Let u and v be vertices of the graph G, and let Puv be the set
of all u-v paths in G. Then

PG−u(x)PG−v(x)− PG(x)PG−u−v(x) =
⎛
⎝ ∑

P∈Puv

PG−V (P)(x)

⎞
⎠2

.

2.4 Line graphs and related operations

In this section we discuss the characteristic polynomials of line graphs and
generalized line graphs, along with some related graph operations.

If G is a regular graph, then the characteristic polynomial of L(G) can be
expressed in terms of the characteristic polynomial of G, as follows.

Theorem 2.4.1. If G is a regular graph of degree r , with n vertices and m (=
1
2 nr) edges, then

PL(G)(x) = (x + 2)m−n PG(x − r + 2).

Proof. Recall that B B� = A + r I and B�B = A(L(G)) + 2I , where A =
A(G) and B is the incidence matrix of G. The theorem follows from the fact
that B B� and B�B have the same non-zero eigenvalues. �

In the general case, we have:

B B� = A + D, B�B = A(L(G))+ 2I, (2.27)

where D is the diagonal matrix of vertex degrees. From these relations we
immediately obtain

PL(G)(x) = (x + 2)m−n QG(x + 2), (2.28)

where QG(x) is the characteristic polynomial of the signless Laplacian matrix
Q = A + D. Properties of the matrix Q and the corresponding spectrum will
be discussed in Chapter 7.

The next theorem shows that a relation between PG(x) and PL(G)(x) can
be established for certain non-regular graphs. Here we make use of the fact
that if M is a non-singular square matrix, then (writing |M | for det(M)) we
have: ∣∣∣∣ M N

P Q

∣∣∣∣ = |M | · ∣∣∣Q − P M−1 N
∣∣∣ . (2.29)
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Theorem 2.4.2 [Cve1]. Let G be a semi-regular bipartite graph with n1 inde-
pendent vertices of degree r1 and n2 independent vertices of degree r2, where
n1 ≥ n2. Then

PL(G)(x) = (x + 2)β PG(
√
α1α2)

√(
α1

α2

)n1−n2

,

where αi = x − ri + 2 (i = 1, 2) and β = n1r1 − n1 − n2.

Proof. We have

QG(x) = |x I − A − D| =
∣∣∣∣ (x − r1)In1 −K�

−K (x − r2)In2

∣∣∣∣ ,
where K is an n2 × n1 matrix. Making use of (2.29), we have:

|x I − A − D| = (x − r1)
n1

∣∣∣∣(x − r2)In2 − K
In1

x − r1
K�
∣∣∣∣

= (x − r1)
n1−n2

∣∣∣(x − r1)(x − r2)In2 − K K�
∣∣∣

= (x − r1)
n1−n2 PK K� ((x − r1)(x − r2)) , (2.30)

where we write PM (x) for the characteristic polynomial of a matrix M . Now
PK K�(x) can be expressed in terms of the characteristic polynomial of A.
We have

A =
(

O K�
K O

)
, A2 =

(
K�K O
O K K�

)

and PK�K (x) = xn1−n2 PK K�(x). Thus PA2(x) = xnl−n2 PK K�(x)
2. On the

other hand, since the eigenvalues of A2 are the squares of the eigenvalues of
A, and the latter are symmetric about 0 (see Exercise 1.6 and Theorem 3.2.3),
we have PA2(x2) = PA(x)2. Accordingly we obtain

PK K�(x) =
√

PA2(x)

xn1−n2
= √xn2−n1 PA(

√
x). (2.31)

Combining expressions (2.28), (2.30) and (2.31), we obtain the required
formula. �

Corollary 2.4.3. If G is a semi-regular bipartite graph with parameters
(n1, n2, r1, r2) (n1≥ n2) and if λ1, λ2, . . . , λn2 are the first n2 largest eigen-
values of G, then

PL(G)(x) = (x − r1 − r2 + 2)(x − r1 + 2)n1−n2(x + 2)n1r1−n1−n2+1

×
n2∏

i=2

((x − r1 + 2)(x − r2 + 2)− λ2
i ).
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Proof. The largest eigenvalue λ1 is given by λ1 = √r1r2 because(
O K�
K O

)(√
r1jn1√
r2jn2

)
= √r1r2

(√
r1jn1√
r2jn2

)
.

Moreover, G contains at least n1 − n2 eigenvalues equal to 0, because K has
rank at most n2. Now the result follows from Theorem 2.4.2 when we expand
(x − r1 + 2)(x − r2 + 2)− λ2

1. �

Next we determine the characteristic polynomials of graphs obtained from
regular graphs by other unary operations.

Recall that the subdivision graph S(G) of a graph G is the graph obtained
by inserting a new vertex into every edge of G. The subdivision graph is a
bipartite graph whose adjacency matrix is of the form(

O B�
B O

)
,

where B is the incidence matrix of G. Using Equations (2.27) and (2.29)
we have

PS(G)(x) =
∣∣∣∣ x Im −B�
−B x In

∣∣∣∣ = xm
∣∣∣∣x In − B

1

x
Im B�

∣∣∣∣ = xm−n|x2 In − B B�|.

If G is r -regular then B B� = A+ r I , and so we arrive at the following result:

Theorem 2.4.4. If G is a graph with n vertices and m edges then

PS(G)(x) = xm−n QG(x
2).

In particular, if G is r-regular, then

PS(G)(x) = xm−n PG(x
2 − r). (2.32)

Let R(G) be the graph obtained from G by adding, for each edge uv, a new
vertex whose neighbours are u and v. Thus the adjacency matrix of R(G) is of
the form (

O B�
B A

)
.

Theorem 2.4.5 [Cve4]. If G is a regular graph of degree r with n vertices and

m

(
= 1

2
nr

)
edges, then
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PR(G)(x) = xm−n(x + 1)n PG

(
x2 − r

x + 1

)
. (2.33)

Proof. We have

PR(G)(x) =
∣∣∣∣ x Im −B�
−B x In − A

∣∣∣∣ = xm ·
∣∣∣∣x In − A − 1

x
B B�

∣∣∣∣
= xm−n · |x2 In − x A− A− r In| = xm−n · |(x2− r)In − (x + 1)A|

= xm−n(x + 1)n PG

(
x2 − r

x + 1

)
.

�

Next, let Q(G) be the graph obtained from G by inserting a new ver-
tex into each edge of G, and joining by edges those pairs of new vertices
which lie on adjacent edges of G. The adjacency matrix of Q(G) is then of
the form (

O B
B� C

)
,

where C = A(L(G)). Arguments similar to those above lead to the following
result:

Theorem 2.4.6 [Cve4]. Let G be a graph with n vertices and m edges. Then

PQ(G)(x) = xn−m(x + 1)m PL(G)

(
x2 − 2

x + 1

)
. (2.34)

In the case that G is regular, we may apply Theorem 1.4.1 to obtain:

Corollary 2.4.7. If G is a regular graph of degree r then

PQ(G)(x) = (x + 2)m−n(x + 1)n PG

(
x2 − (r − 2)x − r

x + 1

)
. (2.35)

Consideration of Q(G), R(G) and S(G) leads us naturally to the investiga-
tion of total graphs: the total graph T (G) of a graph G is the graph whose
vertices are the vertices and edges of G, with two vertices of T (G) adjacent if
and only if the corresponding elements of G are adjacent or incident. Thus the
adjacency matrix of T (G) has the form(

A B
B� C

)
.
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If G is r -regular with n vertices and m edges, we have

PT (G)(x) =
∣∣∣∣∣ x I + r I − B B� −B

−B� x I + 2I − B�B

∣∣∣∣∣
=
∣∣∣∣∣ (x + r)I − B B� −B

−(x + r + 1)B� + B�B B� (x + 2)I

∣∣∣∣∣
=
∣∣∣∣∣ (x + r)I − B B� + 1

x+2 B(−(x + r + 1)B� + B�B B� O

−(x + r + 1)B� + B�B B� (x + 2)I

∣∣∣∣∣
= (x + 2)m

∣∣∣∣x I − A + 1

x + 2
(A + r I )(A − (x + 1)I

∣∣∣∣
= (x + 2)m−n

∣∣∣A2 − (2x − r + 3)A + (x2 − (r − 2)x − r)I
∣∣∣ .

It follows that if λ1, . . . , λn are the eigenvalues of A then

PT (G)(x) = (x + 2)m−n
n∏

i=1

(
λ2

i − (2x − r + 3)λi + x2 − (r − 2)x − r
)

= (x + 2)m−n
n∏

i=1

(
x2 − (2λi + r − 2)x + λ2

i + (r − 3)λi − r
)
.

Thus we have the following theorem.

Theorem 2.4.8 [Cve3]. Let G be a regular graph of degree r (r > 1) having
n vertices and m edges. If the eigenvalues of G are λ1, . . . , λn, then T (G) has
m − n eigenvalues equal to −2 and the following 2n eigenvalues:

1

2

(
2λi + r − 2±

√
4λi + r2 + 4

)
(i = 1, . . . , n).

In discussing the eigenvalues of T (G) arising in Theorem 2.4.8, we shall
consider only connected graphs. Note that −r ≤ λi ≤ r (i = 1, . . . , n), and
consider the functions

f1(x) = 1

2

(
2x + r − 2+

√
4x + r2 + 4

)
,

f2(x) = 1

2

(
2x + r − 2−

√
4x + r2 + 4

)
.

Suppose first that r > 2. Both functions are increasing on the interval [−r, r ];
the first one maps this interval onto [−2, 2r ], the second onto [−r, r−2]. Thus
the eigenvalues of T (G) lie in the interval [−r, 2r ] (an observation that holds
also for r = 1). The largest eigenvalue is, naturally, equal to 2r , while r − 2
always lies in the spectrum. The smallest eigenvalue is equal to −r if and only
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if G is bipartite (see Theorem 3.2.4). The multiplicity of the eigenvalue −2 in
T (G) is equal to m − n + m(−r)+ m(−1), where m(λ) is the multiplicity of
the eigenvalue λ in G.

Now suppose that r = 2. In this case the function f2(x) has a minimum
at x = −7/4. Since f2(−7/4) = −9/4, the smallest eigenvalue of T (G) is
greater than−9/4. Equality can never hold, since an eigenvalue of a graph can-
not be rational non–integral number. But, since the eigenvalues of a connected
regular graph G of degree 2 with n vertices are 2 cos 2π

n i (i = 1, 2, . . . , n)
(see Example 1.1.4), there exist graphs G for which the smallest eigenvalue of
T (G) is arbitrarily close to the lower bound −9/4.

Lastly, the case r = 1 is quite simple: G has eigenvalues 1, −1, and T (G)
has eigenvalues 2, −1, −1.

Turning now to generalized line graphs, we give a result which, in one
special case, yields the whole spectrum. No general formula is known.

Theorem 2.4.9. Let G be a graph having vertex degrees d1, d2, . . . , dn.
If a1, a2, . . . , an are non-negative integers such that di + 2ai = d, i =
1, 2, . . . , n, then

PL(G;a1,a2,...,an)(x) = xa(x + 2)m−n+a PG(x − d + 2), where a =
n∑

i=1

ai .

Proof. An incidence matrix of L(G; a1, a2, . . . , an) has the form

C =

⎛
⎜⎜⎜⎜⎜⎝

B L1 L2 . . . Ln

O M1 O . . . O
O O M2 . . . O
...

...
...

. . .
...

O O O . . . Mn

⎞
⎟⎟⎟⎟⎟⎠

where B is the incidence matrix of G; Li is an n × 2ai matrix in which all
entries of the i-th row are 1, and all other entries are 0; and Mi is an ai × 2ai

matrix of the form (I | − I ). We have C�C = A + 2I , where now A is the
adjacency matrix of L(G; a1, a2, . . . , an), and the theorem follows from the
fact that C�C and CC� have the same non-zero eigenvalues. �

2.5 Cartesian type operations

Next, we consider a very general graph operation called NEPS (non-complete
extended p-sum) of graphs.
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Definition 2.5.1. Let B be a set of non-zero binary n-tuples, i.e. B ⊆
{0, 1}n\{(0, . . . , 0)}. The NEPS of graphs G1, . . . ,Gn with basis B is the
graph with vertex set V (G1) × · · · × V (Gn), in which two vertices, say
(x1, . . . , xn) and (y1, . . . , yn), are adjacent if and only if there exists an n-tuple
β = (β1, . . . , βn) ∈ B such that xi = yi whenever βi = 0, and xi is adjacent
to yi (in Gi ) whenever βi = 1.

Clearly the NEPS construction generates many binary graph operations in
which the vertex set of the resulting graph is the Cartesian product of the vertex
sets of the graphs on which the operation is performed. We mention some
special cases in which a graph is the NEPS of graphs G1, . . . ,Gn with basis B.
In particular, for n = 2 we have the following familiar operations:

(i) the sum G1 + G2, when B = {(0, 1), (1, 0)};
(ii) the product G1 × G2, when B = {(1, 1)};

(iii) the strong product G1 ∗ G2, when B = {(0, 1), (1, 0), (1, 1)}.
(A variety of terms for these particular constructions can be found in the
literature.)

The notion of NEPS arises in a natural way when studying spectral
properties of graphs obtained by binary operations of the type mentioned
above.

The adjacency matrix of a NEPS can be expressed in terms of the adjacency
matrices of the constituent graphs by means of the Kronecker product of matri-
ces. We define this product below, and note the properties which enable us to
describe the spectrum of a NEPS.

Definition 2.5.2. The Kronecker product A ⊗ B of matrices A = (ai j )m×n

and B = (bi j )p×q is the mp × nq matrix obtained from A by replacing each
element ai j with the block ai j B.

Thus the entries A⊗ B consist of all the mnpq possible products of an entry
of A with an entry of B. The Kronecker product is an associative operation,
and the following relations are well known (see, for example, [MaMi], p. 18
and p. 8). For square matrices A and B, we have

tr (A ⊗ B) = tr A · tr B, (2.36)

while

(A ⊗ B) · (C ⊗ D) = (AC)⊗ (B D) (2.37)

whenever the products AC and B D exist.
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Starting from (2.37) and using induction, we obtain

(A1 ⊗ · · · ⊗ An) · (B1 ⊗ · · · ⊗ Bn) · · · (M1 ⊗ · · · ⊗ Mn)

= (A1 B1 · · ·M1)⊗ · · · ⊗ (An Bn · · ·Mn). (2.38)

The proof of the next result is left as an exercise.

Theorem 2.5.3. Let A1, . . . , An be adjacency matrices of graphs G1, . . . ,Gn,
respectively. The NEPS G with basis B of graphs G1, . . . ,Gn has as adjacency
matrix the matrix A given by

A =
∑
β∈B

Aβ1 ⊗ · · · ⊗ Aβn
n . (2.39)

Here A0
k is the identity matrix of the same size as Ak, and A1

k = Ak .

One consequence of Theorem 2.5.3 is the following result.

Theorem 2.5.4. If λi1, . . . , λiki are the eigenvalues of Gi (i = 1, . . . , n), then
the spectrum of the NEPS of G1, . . . ,Gn with basis B consists of all possible
values �i1,...,in where

�i1,...,in =
∑
β∈B

λ
β1
1i1
· · · λβn

nin
(ih = 1, . . . , kh; h = 1, . . . , n). (2.40)

Proof. Let xi j ( j = 1, . . . , ki ) be linearly independent eigenvectors of Gi ,
with Ai xi j = λi j xi j (i = 1, 2, . . . , n; j = 1, 2, . . . , ki ). Consider the
vector

x = x1i1 ⊗ · · · ⊗ xnin .

Using Theorem 2.5.3, we see that Ax = �i1,...,in x. In this way, we find
k1k2 · · · kn linearly independent eigenvectors, and hence all k1k2 · · · kn eigen-
values. �

Thus if λ1, . . . , λn and μ1, . . . , μm are the eigenvalues of G and H ,
respectively, then:
λi + μ j (i = 1, . . . , n; j = 1, . . . ,m) are the eigenvalues of G + H ;
λiμ j (i = 1, . . . , n; j = 1, . . . ,m) are the eigenvalues of G × H ;
λi +μ j +λiμ j (i = 1, . . . , n; j = 1, . . . ,m) are the eigenvalues of G ∗H .

Example 2.5.5. We have L(Km,n) = Km + Kn . Since Kn has spectrum
n − 1, (−1)n−1 we obtain m+n−2, (n−2)m−1, (m−2)n−1, (−2)(m−1)(n−1)

for the spectrum of L(Km,n). �
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2.6 Spectra of graphs of particular types

In this section we shall determine the characteristic polynomials and spectra
of certain graphs making use of the results described in this chapter. Some of
the results of this section are well known in matrix theory, but we will deduce
them using methods more consistent with the theory we have developed.

1. For the null graph G with n vertices, we see immediately that PG(x) =
xn ; in other words, the spectrum consists of n eigenvalues equal to 0.

2. The complete graph Kn with n vertices is the complement of the graph
of the previous example, and by Theorem 2.1.2 we have PKn (x) = (x − n +
1)(x + 1)n−1, that is, the spectrum of Kn consists of the eigenvalue n − 1 and
n − 1 eigenvalues equal to −1.

3. Each component of a regular graph G of degree 1 is isomorphic to the
graph K2, with characteristic polynomial x2 − 1. If G has 2k vertices, then by
Theorem 2.1.1 we have PG(x) = (x2 − 1)k .

4. The complement of the graph kK2 above is the regular graph H of
degree n − 2 with n = 2k vertices (i.e. the cocktail party graph C P(k)).
By Theorem 2.1.2, its characteristic polynomial is PH (x) = (x − 2k + 2)xk

(x + 2)k−1.
5. For the complete bipartite graph Kn1,n2 , we exploit the relation Kn1,n2 =

G1 � G2, where G1, G2 are graphs which consist of n1, n2 isolated vertices,
respectively. Since PG1(x) = xn1 and PG2(x) = xn2 , Theorem 2.1.4 yields
PKn1,n2

(x) = (x2 − n1n2) · xn1+n2−2. Thus the spectrum of the graph Kn1,n2

consists of
√

n1n2,−√n1n2 and n1 + n2 − 2 eigenvalues equal to 0. If n1 =
n and n2 = 1, we obtain a star with n + 1 vertices, and its characteristic
polynomial is PK1,n (x) = (x2 − n)xn−1.

6. As already determined in Example 1.1.4, the spectrum of a cycle Cn con-

sists of the numbers 2 cos
2π

n
j ( j = 1, . . . , n). Now cos

2π

n
j ( j = 1, ..., n)

are the roots of Tn(x)− 1, where Tn(x) is a Chebyshev polynomial of the first
kind, defined by

cos nθ = Tn(cos θ).

Explicitly,

Tn(x) =
[n/2]∑
k=0

(−1)k
n

n − k

(
n − k

k

)
2n−2k−1xn−2k,

an expression which may be derived from the recurrence relation Tk+1(x) =
2xTk(x)− Tk−1(x) (k ≥ 1). Thus PCn (x) = 2 (Tn (x/2)− 1), that is,

PCn (x) = −2+
[n/2]∑
k=0

(−1)k
n

n − k

(
n − k

k

)
xn−2k .
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2.6 Spectra of graphs of particular types 47

7. By applying Theorem 2.2.3 we can deduce from the previous result the
characteristic polynomial and spectrum of the path Pn with n vertices. All
vertex-deleted subgraphs of Cn are isomorphic to the path Pn−1. Therefore,

PPn−1(x) =
1

n
P ′Cn

(x), and so

PPn (x) =
[n/2]∑
k=0

(−1)k
(

n − k

k

)
xn−2k .

Chebyshev polynomials of the second kind are defined by

Un(cos θ) = sin(n + 1)θ

sin θ
.

Thus T ′n(cos θ) = nUn−1(cos θ), and so PPn (x) = Un(x/2). It follows that the

spectrum of the path Pn consists of the numbers 2 cos
π

n + 1
j ( j = 1, . . . , n).

8. The complete multipartite graph Kn1,...,nk is the complement of the graph
G = Knl ∪̇ · · · ∪̇ Knk . We may extend the formula (2.5) to such a graph G, to
obtain

PG(x) = (−1)n PG(−1− x)

{
1−

k∑
i=1

ni

(x + 1)+ (ni − 1)

}
.

where n = n1 + · · · + nk . Since

PG(x) = (x + 1)n−k(x − n1 + 1) · · · (x − nk + 1),

we readily obtain:

PKn1,...,nk
(x) = xn−k

(
1−

k∑
i=1

ni

x + ni

)
k∏

j=1

(x + n j ),

or

PKn1,...,nk
(x) =

k∑
i=0

(1− i)Si xn−i ,

where S0 = 1 and for i ∈ {1, . . . , k}, Si is the i-th elementary symmetric
function of the numbers n1, . . . , nk .

9. Interesting graphs can be obtained if we consider the sum of two paths, or
of a path and a cycle, or of two cycles.

The sum of two paths having m and n vertices respectively is the graph of
an m × n lattice, represented in Fig. 2.1. According to Theorem 2.5.4, the
spectrum of this graph consists of all numbers of the form

2 cos
π

m + 1
j + 2 cos

π

n + 1
k ( j = 1, . . . ,m; k = 1, . . . , n).
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Figure 2.1 The sum of two paths.

The sum of the cycle Cm and the path Pn gives the graph of an analogous
lattice on a cylinder which can be obtained from the graph of Fig 2.1 (with
m + 1 instead of m) by identifying the vertices of the first row with the cor-
responding vertices of the last row. The spectrum of this graph consists of the
numbers

2 cos
2π

m
j + 2 cos

π

n + 1
k ( j = 1, . . . ,m; k = 1, . . . , n).

In similar fashion, the sum of two cycles is the graph of a square lattice on a
torus, and its spectrum consists of the numbers

2 cos
2π

m
j + 2 cos

2π

n
k ( j = 1, . . . ,m; k = 1, . . . , n).

If we consider the strong product instead of the sum, we obtain the graphs
corresponding to modified square lattices, in which ‘diagonals’ are added to
each ‘square’. Again, the spectra can be easily determined.

10. The graph of a k-dimensional (finite) lattice is a graph G whose vertices
are all the k-tuples of numbers 1, . . . , n, with two k-tuples adjacent if and only
if they differ in exactly one coordinate. For n = 2, G is just the hypercube Qk .
For k = 2 the graph G is just L(Kn,n), and for k = 3 we obtain the cubic
lattice graph. In the general case, G is the sum of k graphs, each isomorphic to
Kn . Now the sum G1+· · ·+Gk is a NEPS whose basis consists of all k-tuples
of the numbers 0, 1 in which exactly one number 1 appears. By Theorem 2.5.4,
the eigenvalues of G1+· · ·+Gk are the numbers λ1i1 +· · ·+λkik , where λ j i j

is an eigenvalue of G j . In the case that each G j is isomorphic to Kn , we find
that the eigenvalues of G are the numbers λ j = n(k − j)− k with multiplicity

p j =
(

k

j

)
(n − 1) j ( j = 0, 1, . . . , k).
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11. The Möbius ladder Mn is the graph with 2n vertices 1, . . . , 2n in which
the following pairs of vertices are adjacent:

( j, j + 1), j = 1, . . . , 2n − 1,
(1, 2n),
( j, j + n), j = 1, . . . , n.

In other words, the adjacency matrix A of Mn is a circulant 2n × 2n matrix
whose entries in the first row are equal to 0 except for 1 in the second,
(n + 1)-th, and (2n)-th columns. Thus A = P + Pn + P2n−1, where P is the
permutation matrix determined by a cyclic permutation of length 2n. Therefore
(cf. Example 1.1.4) the spectrum of Mn consists of numbers

λ j = e
2π j
2n i +

(
e

2π j
2n i
)n +

(
e

2π j
2n i
)2n−1

(i = √−1; j = 1, . . . , 2n),

that is,

λ j = 2 cos
π

n
j + (−1) j ( j = 1, . . . , 2n),

a formula similar to those above, but obtained without invoking the results of
this chapter.

Exercises

2.1 For the graph G of Example 1.1.3, find PG(x) by using the fact that
G ∼= K1,2,2.

2.2 Show that the Petersen graph (Example 1.1.5) is isomorphic to L(K5),
and use this fact to determine its spectrum.

2.3 Prove Proposition 2.1.4.
2.4 Let G j be the multigraph obtained from G by adding a loop at vertex j .

Show that

PG j (x) = PG(x)

(
1−

m∑
i=1

α2
i j

x − μi

)
.

2.5 Prove Theorem 2.2.1.
2.6 Let G be a graph with a pendant edge uv. Show that 0 has the same

multiplicity as an eigenvalue of G and G − u − v.
2.7 Let G j , G ′j be the B-graphs obtained from the B-graph G by adding, at

the vertex j , a pendant edge and a petal, respectively. Show that

PL(G ′j )(x) = −2x PL(G j )(x)− 2x2 PL(G)(x).

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.003
https:/www.cambridge.org/core


50 Graph operations and modifications

2.8 Let F be the graph obtained from G ∪̇ H by introducing an edge between
the vertex u of G and the vertex v of H . Show that

PF (x) = PG(x)PH (x)

{
1−

m∑
i=1

p∑
k=1

α2
iuδ

2
kv

(x − μi )(x − νk)

}
,

where α1u, . . . , αmu are the angles of G at u, and δ1v, . . . , δpv are the
angles of H at v.

2.9 Let F be the coalescence of graphs G and H obtained by identifying
the vertex u of G with the vertex v of H . Show that (in the notation of
Exercise 2.8)

PF (x) = 1

x
PG(x)PH (x)

{
1−

(
1− x

m∑
i=1

α2
iu

x −μi

)(
1− x

p∑
k=1

γ 2
kv

x − νk

)}
.

2.10 Let F · G be the coalescence whose vertex w is obtained by identifying
the vertex u of F with the vertex v of G. Show that

1

H F ·G
w (t)

= 1

H F
u (t)

+ 1

H G
v (t)

− 1.

2.11 Prove by induction on k that the k-th derivative of the characteristic
polynomial of a graph G is given by the formula

P(k)G (x) = k!
∑
|S|=k

PG−S(x),

where the summation runs over all k-subsets S of V (G).
2.12 Verify the deletion-contraction algorithm [Row3].
2.13 Use the deletion-contraction algorithm to prove that if the graph H is

obtained from the graph G by subdividing the edge uv then

PH (x) = PG(x)+(x−1)PG−uv(x)−PG−u(x)−PG−v(x)+PG−u−v(x).

2.14 Let T be a tree with 2k vertices. Use Corollary 2.3.3 to show that the
constant term in PT (x) is (−1)k or 0 according as T does or does not
have a perfect matching.

2.15 Prove Theorem 2.3.4(ii).
2.16 Let G be an r -regular graph with n vertices such that both G and G are

connected. Show that

PG− j (x)

PG(x)
+ PG− j (−x − 1)

PG(−x − 1)
= 1

(x − r)(x + n − r)
.

2.17 Prove Theorem 2.5.3.
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2.18 Show that (i) if G is a bipartite graph then K2 × G = 2G, (ii) if G is a
connected non-bipartite graph then K2×G is a connected bipartite graph.

2.19 Let λ be a simple eigenvalue of the graph G. Show that E(λ) is spanned
by a vector (x1, . . . , xn)

� such that x2
j = |PG− j (λ)| ( j = 1, . . . , n)

[CvRS9].

Notes

A majority of the results in this chapter, some with different proofs, can be
found in Chapter 2 of [CvDSa] or Chapter 4 of [CvRS2], along with ref-
erences to the original papers. The characteristic polynomials of a join of
graphs (Theorem 2.1.5) and a complete multipartite graph (Section 2.6) were
originally derived by means of walk generating functions. Sachs’ Coefficient
Theorem (Corollary 2.3.3) was proved independently by Spialter [Spia] and
Milić [Mil]. Theorems 2.2.1, 2.2.3 and 2.2.4 can be obtained as consequences
of the deletion-contraction algorithm (see [Row3]). Formula (2.23) appears in
[Cve4], while [Mnu] contains a generalization of Theorem 2.4.4 to the k-th
subdivision graph Sk(G) (obtained from G by inserting k vertices of degree 2
in each edge).

A survey of characteristic polynomials of modified graphs is given in
[Row11]. Local modifications of a graph may be regarded as graph pertur-
bations (see Section 8.1), and the resulting perturbations of eigenvalues are
discussed in [Row5, Row6] and [CvRS2, Chapter 6]. Corollary 2.4.7 corrects
Equation (2.37) of [CvDSa]. A review of results on NEPS can be found in
[CvSi1].
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3

Spectrum and structure

In this chapter we consider various relations between the structure of a graph
and its spectrum. We saw in Chapter 1 that the spectrum of a graph does not
determine the graph up to isomorphism; nevertheless, often significant infor-
mation on graph invariants or properties can be extracted from the spectrum.
We consider constraints on certain eigenvalues as well as the role of further
spectral invariants such as graph angles.

3.1 Counting certain subgraphs

The following result, noted in Chapter 1 as a consequence of Proposition 1.3.4,
plays a basic role in counting certain subgraphs of a graph with spectrum λ1 ≥
λ2 ≥ · · · ≥ λn .

Theorem 3.1.1. The number of closed walks of length k in a graph G is equal
to sk , where

sk =
n∑

i=1

λk
i , (3.1)

the k-th spectral moment of G.

Clearly s1 = 0 (equivalently, G has no loops). If G has e edges and t
triangles, then s2 = 2e and s3 = 6t . To see this, note first that a closed
walk of length 2 traverses an edge, while the edge i j accounts for two
closed walks of length 2, namely i j i and j i j . Secondly, a closed walk of
length 3 traverses a triangle, and each triangle accounts for six closed walks
of length 3 (there are three choices of starting point and two choices of
orientation).

52
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3.1 Counting certain subgraphs 53

Accordingly, we have:

(i) the number of vertices is equal to the number of eigenvalues (with
repetitions);

(ii) the number of edges is equal to 1
2 s2;

(iii) the mean degree is 1
n s2;

(iv) the number of triangles is equal to 1
6 s3;

(v) the average number of triangles containing a given vertex is 1
2n s3.

These observations explain why graphs are often ordered lexicographi-
cally by the sequence (s0, s1, . . . , sn−1), as in Tables A3 and A4 of the
Appendix. (Recall that s0, s1, . . . , sn−1 determine the spectrum and hence all
other spectral moments.)

When k ≥ 4, a closed walk of length k can trace more than one type of
subgraph; for example, when k = 4 we have three possible types, namely
K2, P3 and C4. Moreover, when traversing P3, the number of v-v walks of
length 4 depends on v. To take this fact into consideration, we use graph angles
(which are graph invariants related to the vertices): Equation (1.10) yields the
following ‘local’ counterpart of Theorem 3.1.1.

Theorem 3.1.2. The number nk( j) of closed walks of length k starting (and
terminating) at vertex j of a graph G is given by

nk( j) =
m∑

i=1

α2
i jμ

k
i . (3.2)

An immediate consequence is that the degree of any vertex, and the number
of triangles incident with any vertex, can be extracted from the eigenvalues and
angles of a graph. In such situations we say that the corresponding invariant (or
property) is E A-reconstructible.

Theorem 3.1.3. The degree d j of vertex j , and the number t j of triangles
containing vertex j of a graph G, are given by

d j =
m∑

i=1

α2
i jμ

2
i , t j = 1

2

m∑
i=1

α2
i jμ

3
i .

Proof. This follows from (3.2) since n2( j) = d j and n3( j) = 2t j . �

Remark 3.1.4. Let f be the number of subgraphs of G isomorphic to P3.
Counting pairs of edges containing a given vertex, we find that f =∑n

i=1

(di
2

)
.

Now it follows from Theorem 3.1.3 that f is E A-reconstructible. �
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Figure 3.1 Graphs from Theorem 3.1.5.

The next two results show that the number of quadrangles (4-cycles), and
the number of pentagons (5-cycles) are also E A-reconstructible.

Theorem 3.1.5 [CvRo1]. The number q of quadrangles in a graph G is
given by

q = 1

8

m∑
i=1

n∑
j=1

α2
i jμ

2
i

(
μ2

i + 1− 2
m∑

h=1

α2
h jμ

2
h

)
.

Proof. We first claim that s4 = 2e+4 f +8q , where f (as above) is the number
of paths of length 2 in G. To see this, note that the subgraph traversed by a
closed walk of length 4 is K2 or P3 or C4. For each of these graphs, Fig. 3.1
shows the number of closed walks of length 4 starting at each vertex (and
traversing the graph). The total number of closed walks of length 4 traversing
the graph is 2, 4 or 8 respectively.

Now e and s4 are determined by the spectrum of G, while f is E A-
reconstructible (see Remark 3.1.4). Accordingly, q is E A-reconstructible, and
the explicit formula is a matter of algebraic manipulation (Exercise 3.1). �

Theorem 3.1.6 [CvRo1]. The number p of pentagons in a graph G is given by

p = 1

10

m∑
i=1

n∑
j=1

α2
i jμ

3
i

(
μ2

i + 5− 5
m∑

h=1

α2
h jμ

2
h

)
.

Proof. Arguing as in the proof of the previous theorem, we have s5 = 30t +
10s + 10p, where t is the number of triangles and s the number of subgraphs
consisting of a triangle and one pendant edge. Note that s = ∑n

j=1 t j (d j −
2), where d j and t j are given by Theorem 3.1.3. The result now follows by
algebraic manipulation (Exercise 3.2). �
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3.2 Regularity and bipartiteness

We know from Chapter 1 that vertex degrees are not determined by the spec-
trum of a graph (see Fig. 1.3). On the other hand, we can tell from the spectrum
whether or not all vertex degrees of G are the same, and if they are, we can
find the degree of regularity.

Theorem 3.2.1 [ColSi]. Let λ1 be the index of the graph G, and let d and �
be its average degree and maximum degree, respectively. Then

d ≤ λ1 ≤ �.
Moreover, d = λ1 if and only if G is regular. For a connected graph G, λ1 = �
if and only if G is regular.

Proof. For the first inequality, recall that the index of G is given by Equa-
tion (1.6):

λ1 = sup{x�Ax : x ∈ IRn, ||x|| = 1},
where A is the adjacency matrix of G. Taking x = 1√

n
(1, 1, . . . , 1)�, we see

that λ1 ≥ d. Moreover, by Rayleigh’s Principle, equality holds if and only if
x = 1√

n
(1, 1, . . . , 1)� is an eigenvector of G. But the latter holds if and only

if G is regular (Proposition 1.1.2).
The second inequality follows from Proposition 1.1.1, while if G is r -regular

then λ1 = r (= �) by Proposition 1.1.2.
Now suppose that G is connected and λ1 = �. Let x = (x1, x2, . . . , xn)

�
be an eigenvector corresponding to λ1. By Theorem 1.3.6 we may assume that
all entries of x are positive. Let xu = maxi {xi }. Now the equation

�xu =
∑
v∼u

xv (3.3)

shows that deg(u) = � and xv = xu for all v ∼ u. Repetition of the argument
shows that that all vertices have degree � (and that G has the all-1 vector as
an eigenvector). Thus G is regular. �

Since nd = tr(A2) we immediately obtain the following:

Corollary 3.2.2. A graph G is regular (of degree λ1) if and only if

nλ1 = λ2
1 + λ2

2 + · · · + λ2
n .

Thus regularity can be recognized from the spectrum. Next we show that
the same is true of bipartiteness. If G is bipartite on U ∪̇ V , then G has an
adjacency matrix of the form
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A =
(

O P
Q O

)
,

where Q = P�; here, the non-zero row entries of P correspond to edges
incident with vertices from U , while the non-zero row entries of Q correspond
to edges incident with vertices from V . Now suppose that μ is an eigenvalue
of G, and that

x =
(

y
z

)
is an arbitrary eigenvector from E(μ). Consequently, we have Pz = μy and
Qy = μz. Consider next the vector

x′ =
(

y
−z

)
.

We have

Ax′ =
(

O P
Q O

)(
y
−z

)
=
(−Pz

Qy

)
=
(−μy
μz

)
= −μx′.

This shows not only that −μ is an eigenvalue of G, but also that E(−μ)
and E(μ) have the same dimension. Thus we have proved (in answer to
Exercise 1.6) that the spectrum of a bipartite graph is symmetric about 0.

We will now prove that the converse is true. Accordingly, let G be a graph
whose spectrum is symmetric about 0. Then all the odd spectral moments of
G are zero; in particular, G has no cycles of odd length (by Theorem 3.1.1).
Hence G is bipartite, and we have the following result (rediscovered many
times in the literature).

Theorem 3.2.3. A graph G is bipartite if and only if its spectrum is symmetric
with respect to the origin.

For connected graphs we have a substantially stronger result:

Theorem 3.2.4. A connected graph G is bipartite if and only if λ1 = −λn.

Proof. In the light of Theorem 3.2.3, it remains to prove that if λ1 = −λn then
G is bipartite. This is a consequence of a theorem of Frobenius [Gan, Vol. 2,
p. 53], but we can also argue as follows.

The largest eigenvalue of A2 is λ2
1, and it is not a simple eigenvalue. By

Theorem 1.3.6, A2 is reducible, say with bipartition U ∪̇ V ; then G has no
U -V walks of length 2. Suppose by way of contradiction that U has adjacent
vertices u1 and u2, and let v ∈ V . Let w0w1 · · ·wm be a shortest path from
u1 to v, and let k be least such that wk+1 ∈ V . If k > 0 then wk−1wkwk+1
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3.2 Regularity and bipartiteness 57

is a U -V walk of length 2. If k = 0 then u2w0w1 is a U -V walk of length 2,
a contradiction. Therefore, U is independent; similarly V is independent. This
completes the proof. �

We conclude this section by discussing cycles of shortest length. We define
the odd-girth of G, denoted by og(G), as the length of the shortest odd cycle.

The following theorem is stated in terms of the characteristic polynomial
PG(x). (Although knowledge of PG(x) is equivalent to knowledge of the
spectrum of G, computational considerations can make for differences in
practice.)

Theorem 3.2.5 [Sac2]. Let xn + c1xn−1 + c2xn−2 + · · · + cn−1x + cn be the
characteristic polynomial of a graph G. Then the odd girth of G is equal to
the index of the first non-zero coefficient from the sequence c1, c3, c5, . . .; the
number of cycles of this length is equal to − 1

2 ch, where h = og(G).

Proof. Recall from Corollary 2.3.3 that

ci =
∑

H∈Hi

(−1)p(H)2c(H) (i = 1, 2, . . . , n),

where Hi is the set of all elementary subgraphs on i vertices (subgraphs of G
whose components are either cycles or isomorphic to K2), p(H) is the number
of components of H , and c(H) is the number of cycles in H .

Thus if og(G) = 2k + 1 then c2l+1 = 0 whenever l < k because then no
elementary subgraph has an odd number of vertices. In the case that k = l, an
elementary subgraph must be an odd cycle, and so c2k+1 = −2s(G), where
s(G) is the number of cycles of length og(G). The result follows. �

A natural question now arises. Is it possible to identify (from the character-
istic polynomial) the length of the shortest even cycle, and to find the number
of such cycles? The answer is no. To see this, consider again the smallest pair
of cospectral graphs shown in Fig. 1.3(a): K1,4 has no cycle, while C4 ∪̇ K1

has just one, which is even.
However, the following theorem of Sachs can sometimes be of use. Observe

first that if G has girth g then for i < g we have

ci =
{

0 if i is odd
(−1)qbq if i = 2q,

where bq is the number of elementary subgraphs consisting of q disjoint copies
of K2.
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For i = g, elementary subgraphs can be of two types, either disjoint copies
of K2 (arising only when g is even) or one copy of Cg . Accordingly, we define

ĉi =
{

ci if i is odd
ci − (−1)qbq if i = 2q

, (3.4)

for i = 1, 2, . . . , n. Then ĉi = 0 for i < g, and −ĉg is equal to twice the
number of cycles of length g. Thus we have proved:

Theorem 3.2.6. If ĉi is given by (3.4) then the girth g of G is equal to the index
of the first non-zero coefficient from the sequence ĉ1, ĉ2, ĉ3, . . .; the number of
cycles of this length is equal to − 1

2 ĉg.

For regular graphs we can say more. As observed in [Sac1], if G is r -regular
with n vertices and girth g then for q < g, bq can be expressed in terms of q,
n and r . Therefore we have:

Theorem 3.2.7 [Sac2]. If G is a regular graph, then the girth of G is
determined by its characteristic polynomial (and hence by the spectrum).

With a more detailed analysis, we can obtain the following result, stated
without proof.

Theorem 3.2.8 [Sac2]. Let G be an r-regular graph with n vertices and
girth g. If h ≤ min{n, 2g − 1} then the number of cycles in G of length
h is determined by r and the coefficients c1, c2, . . . , ch in the characteristic
polynomial of G.

3.3 Connectedness and metric invariants

In general, connectedness is a property not determined by the spectrum of a
graph. (For instance, K1,4 is connected, while C4 ∪̇ K1 is not.) Nevertheless,
for some classes of graphs, we can deduce whether or not G is connected.
Indeed, this is true for regular graphs, as we now demonstrate.

We have already seen in Corollary 3.2.2 that regularity can be recognized
from the spectrum. Moreover the degree of a regular graph G is just the index
of G (Proposition 1.1.2). By Theorem 1.3.6, each component of G contributes
one to the multiplicity of r , and so we have the following result:

Theorem 3.3.1. If G is r-regular then its index is equal to r , and the number
of components of G is equal to the multiplicity of r .

In the general case, it follows from Theorem 1.3.6 that the number of com-
ponents with index λ1 is equal to the multiplicity of λ1. In Corollary 1.3.8 we
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3.3 Connectedness and metric invariants 59

noted a general condition for an arbitrary graph to be connected: a graph is con-
nected if and only if its index is of multiplicity one with a positive eigenvector.
This result can be seen in the context of angles as follows

Lemma 3.3.2. Vertices belonging to the components whose index coincides
with the index of a graph are EA-reconstructible.

Proof. We show that the vertices in question are precisely those vertices j for
which α1 j 
= 0. First, if j does not lie in a component with index λ1 then every
vector in E(λ1) has j-th entry 0, and so e j is orthogonal to E(λ1), equivalently,
α1 j = 0. On the other hand, if j does lie in a component with index λ1 then
by Theorem 1.3.6 there exists an eigenvector corresponding to λ1 whose j-th
entry is non-zero, and so α1 j 
= 0. �

Theorem 3.3.3. The property of a graph being connected, or disconnected, is
EA-reconstructible.

Proof. By the previous lemma we can reconstruct all vertices belonging to
the components with index λ1. If the number of these vertices is less than the
number of vertices of the whole graph, then the graph is is not connected; oth-
erwise, the same conclusion holds when the index is not a simple eigenvalue.
Only in the remaining case is the graph connected. �

Remark 3.3.4. In view of Equation (1.9), we may now reformulate Corollary
1.3.8 as follows: a graph is connected if and only if

∑n
j=1 α

2
1 j = 1 and α1 j 
=

0 ( j = 1, . . . , n). �

If we restrict ourselves to connected graphs we can ask more: for example,
we can ask how large is the diameter, and we can pose the same question for
the eccentricities of the vertices. (Recall that the diameter diam(G) of a con-
nected graph G is the maximum distance between two vertices of G, while the
eccentricity ecc(u) of a vertex u is the maximum distance of a vertex from u.)

Theorem 3.3.5. If G is a connected graph with precisely m distinct eigenval-
ues then

diam(G) ≤ m − 1.

Proof. Assume the contrary, so that G has vertices s and t at distance m.
The adjacency matrix A of G has minimal polynomial of degree m, and so
we may write Am = ∑m−1

k=0 ak Ak . This yields the required contradiction
because the (s, t)-entry on the right is zero, while the (s, t)-entry on the left is
non-zero. �

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.004
https:/www.cambridge.org/core


60 Spectrum and structure

For upper bounds on the eccentricities in a connected graph, we make use
of the angle matrix (αi j ):

Theorem 3.3.6. Let u be a vertex in the connected graph G. If m(u) is the
number of non-zero entries in the u-th column of the angle matrix of G, then

ecc(u) ≤ m(u)− 1.

Proof. Suppose by way of contradiction that e ≥ m(u), where e = ecc(u).
From the spectral decomposition of the adjacency matrix A of G we have

Ak = μk
1 P1 + μk

2 P2 + · · · + μk
m Pm (k = 0, 1, 2, . . .). (3.5)

Suppose that v is a vertex of G at distance e from u. Then the (u, v)-entry of
Ak is zero for all k ∈ {0, 1, . . . , e − 1}. Let x j be the (u, v)-entry of Pj ( j =
1, 2, . . . ,m). Comparing (u, v)-entries in (3.5) (for k = 0, 1, . . . , e − 1) we
obtain a system of e equations in the m unknowns x1, x2, . . . , xm , which
reads

m∑
j=1

μk
j x j = 0 (k = 0, 1, . . . , e − 1).

Note next that x j = (Pj eu)
�(Pj ev), which is zero if α ju = 0. Accordingly,

the above system reduces to a system of e equations in m(u) unknowns. The
system consisting of the first m(u) equations has a Vandermonde determinant,
and so all the remaining x j are also zero. From (3.5), we see that the (u, v)-
entry of Ak is zero for all k. Hence G is not connected, a contradiction. �

3.4 Line graphs and related graphs

We saw in Chapter 1 that the spectrum of any generalized line graph is bounded
from below by −2. However not every graph with this spectral property is a
generalized line graph (see Exercise 3.8), and an early problem in spectral
graph theory was to describe all the graphs whose spectrum lies in [−2,∞).
This problem has received much attention from researchers over the years, and
the graphs in question are now very well understood.

Definition 3.4.1. An exceptional graph is a connected graph, other than a
generalized line graph, with least eigenvalue ≥−2.

In this section we explain (without proofs of all the details) why there are
only finitely many exceptional graphs. We go on to discuss the multiplicity of
−2 as an eigenvalue of a generalized line graph, and to describe the graphs
with least eigenvalue greater than −2.
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3.4 Line graphs and related graphs 61

Let A be the adjacency matrix of a graph with n vertices and least eigenvalue
≥ −2. Suppose that the multiplicity (possibly zero) of −2 is n − r , so that
A + 2I is a positive semi-definite matrix of rank r . As we saw in Section 1.3,
A+2I = Q�Q for some r×n matrix Q. In other words, if Q = (q1| · · · |qn),
then A+2I is the Gram matrix of the vectors q1, . . . ,qn . Note that ||qi || =

√
2

and for i 
= j , we have

q�i q j = 1 if i ∼ j, q�i q j = 0 if i 
∼ j.

Thus if �i is the line (1-dimensional subspace) in IRr spanned by qi then the
angle between �i and � j (i 
= j) is 60◦ if i ∼ j , and 90◦ if i 
∼ j .

Accordingly, we should investigate sets of lines at angles of 60◦ and 90◦
(through the origin) in Euclidean space, and we call such sets line systems.
For fixed r , any line system in IRr is finite. This can be seen as follows, by
considering the points at which the lines intersect the unit sphere centred at the
origin: the distance between any two such points cannot be less than 1, and so
these points have disjoint neighbourhoods of fixed positive area on the surface
of the sphere.

A line system L is decomposable if it can be partitioned into two subsets L1

and L2 such that every line in L1 is orthogonal to every line in L2; otherwise, L
is indecomposable. Note that, with the notation above, the system {�1, . . . , �n}
is indecomposable if and only if G is connected.

A star is a set of three coplanar coincident lines such that the angle between
any pair of them is 60◦. A system L of lines is star-closed if for any two lines
�, �′ in L, the third line from the star determined by � and �′ also lies in L.

Theorem 3.4.2. Any line system in IRr is contained in a star-closed line
system in IRr .

Proof. Let L be a line system in IRr , and consider any pair of lines in L at
60◦, say 〈x〉, 〈y〉 where x�x = y�y = 2 and x�y = −1. We show that if
〈x + y〉 
∈ L then we may add 〈x+y〉 to obtain a larger line system (necessarily
also in IRr ); note that (x + y)�(x + y) = 2. If 〈u〉 is any line of L other than
〈x〉, 〈y〉 then we may choose u so that u�u = 2 and u�(x + y) ∈ {0, 1, 2}.
If however u�(x + y) = 2 then (u − x − y)�(u − x − y) = 0 and we have
the contradiction u = x + y. Thus 〈u〉 makes an angle of 60◦ or 90◦ with
every line of L and so it may be added to L to form a line system L′. If L′ is
not star-closed then the procedure may be repeated. In view of the finiteness
property noted above, we obtain a star-closed line system in IRr after finitely
many steps. �

For any line � in a line system L of size n, there are two vectors of length
√

2
lying along �. The set of 2n such vectors arising from L is called a root system,
a term borrowed from the theory of Lie algebras. For any root system R, we
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write R for the line system determined by R. In 1976, Cameron, Goethals,
Seidel and Shult [CamGSS] classified the indecomposable star-closed systems
of lines as follows.

Theorem 3.4.3. To within an orthogonal transformation, the only indecom-
posable star-closed line systems are An, Dn, E6, E7 and E8, where

(i) An = {ei−e j : ei , e j ∈ IRn+1, i 
= j, 1 ≤ i, j ≤ n+1} (n = 2, 3, . . .),
(ii) Dn = {±ei ± e j : ei , e j ∈ IRn, i 
= j, 1 ≤ i, j ≤ n} (n = 2, 3, . . .),

(iii) E8 = D8 ∪ { 1
2

∑8
i=1 εi ei : εi = ±1,

∏8
i=1 εi = 1},

(iv) E7 = {u ∈ E8 : u is orthogonal to a fixed vector in E8 },
(v) E6 = {u ∈ E8 : u is orthogonal to a fixed star in E8 }.

Several remarks are in order. First, the group of symmetries of E8 acts tran-
sitively on vectors and on stars, and so E7 and E6 are well defined. Secondly,
An−1 ⊆ Dn (n = 2, 3, . . .). Also, |An| = n(n + 1), |Dn| = 2n(n − 1),
|E8| = 240, |E7| = 126 and |E6| = 72.

We say that a graph G is represented in the root system R if its adjacency
matrix A satisfies A+ 2I = Q�Q where the columns of Q lie in R. Proofs of
the next two theorems are left as exercises.

Theorem 3.4.4. A graph has a representation in An if and only if it is the line
graph of a bipartite graph with n + 1 vertices.

Theorem 3.4.5. A graph has a representation in Dn if and only if it is a
generalized line graph.

As a consequence, we have:

Theorem 3.4.6. All exceptional graphs are representable in the root sys-
tem E8.

It follows that there are only finitely many exceptional graphs. In principle,
they can be found by identifying all the subsets S of E8 with the property
that any two vectors in S have scalar product 0 or 1. (It suffices to find the
maximal subsets with this property, since every exceptional graph is an induced
subgraph of a graph determined by such a maximal subset.) This forbidding
computation was circumvented by Cvetković, Lepović, Rowlinson and Simić
who used the star complement technique described in Chapter 5 to determine
the maximal exceptional graphs. There are only 473 such graphs and they are
described in the paper [CvLRS2], published in 2002. The regular exceptional
graphs are discussed in Chapter 4.

An exceptional graph without −2 as an eigenvalue has at most 8 vertices
because it has a representation in E8 and A + 2I is non-singular. It turns out
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that there are 573 such graphs: 20 with 6 vertices, 110 with 7 vertices, and 443
with 8 vertices. We denote these families of graphs by G6, G7, G8 respectively;
they are listed in [CvRS7, Appendix A2]. In order to complete the description
of all graphs with least eigenvalue greater than −2, we go on to investigate the
eigenspace of −2 for generalized line graphs.

Recall from Section 1.2 that if A is the adjacency matrix of the generalized
line graph L(Ĥ) then A + 2I = C�C where C is a vertex–edge incidence
matrix of the B-graph Ĥ . It follows (Exercise 3.9) that the eigenspace of L(Ĥ)
corresponding to −2 is just the nullspace of C :

Lemma 3.4.7. Let C be a vertex–edge incidence matrix of Ĥ . The non-
zero vector x is an eigenvector for L(Ĥ) corresponding to −2 if and only
if Cx = 0.

Consequently −2 is the least eigenvalue of L(Ĥ) if and only if Cx = 0 for
some non-zero vector x. More generally, the multiplicity of −2 as an eigen-
value of L(Ĥ) is just the nullity of C . In the case of line graphs we can
therefore use the following result:

Lemma 3.4.8 [Sac3, Nuff]. Let B be the vertex–edge incidence matrix of a
connected graph H with n vertices, n > 1. Then

rank(B) =
{

n − 1 if H is bipartite,
n if H is non-bipartite.

(3.6)

Proof. Let B = (bi j ), with rows B1, . . . , Bn , and assume that the rows are
linearly dependent, say

c1 B1 + · · · + cn Bn = 0 and (c1, . . . , cn) 
= (0, . . . , 0). (3.7)

If two vertices vs and vt are joined by the edge e j then bs j = bt j = 1, while
bkj = 0 for all k 
= s, t . Consequently, from (3.7) we obtain cs = −ct .

It follows that for any path i1i2 . . . ik starting at a vertex for which ci1 =
c 
= 0, the coefficients ci1 , ci2 , . . . , cik are alternately c and −c. Since H is
connected we deduce that H is bipartite and that dim{x ∈ IRn : x�B = 0} = 1.
The result follows. �

Let mG(λ) denote the multiplicity of λ as an eigenvalue of the graph G.
From Lemmas 3.4.7 and 3.4.8 we have the following result.

Theorem 3.4.9. Let H be a connected graph with n vertices and m edges.
Then

mL(H)(−2) =
{

m − n + 1 if H is bipartite,
m − n if H is non-bipartite.

(3.8)
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Recall that we write λ(G) for the smallest eigenvalue of a graph G. It fol-
lows from Theorem 3.4.9 that if H is a unicyclic graph with cycle Z then
λ(H) = −2 if Z has even length, and λ(H) > −2 if Z has odd length. Thus
we have:

Corollary 3.4.10 [Doo1]. Let H be a connected graph. Then λ(L(H)) > −2
if and only if H is a tree or an odd-unicyclic graph.

Corollary 3.4.11. Let H be a (connected) graph with diameter d. Then

−2 ≤ λ(L(H)) ≤ −2 cos
π

d + 1
,

and these bounds are best possible.

Proof. It remains to consider the second inequality. Since the diameter of
L(H) is not less than d − 1, L(H) has a path Pd as an induced subgraph.
By the Interlacing Theorem we have λ(L(H)) ≤ λ(Pd) = −2 cos π

d+1 , and
equality holds when H = Pd+1. �

To obtain an analogue of (3.8) for generalized line graphs, we can proceed
in the same way as above:

Lemma 3.4.12. Suppose that C is an incidence matrix of a connected B-graph
H(a1, a2, . . . , an) for which (a1, a2, . . . , an) 
= (0, 0, . . . , 0). Then

rank(C) = n +
n∑

i=1

ai . (3.9)

Proof. Let C = (ci j ), with rows C1, . . . ,Cr , where r = n+∑n
i=1 ai . To show

that these rows are linearly independent, suppose that c1C1 + · · · + cr Cr = 0.
Our multigraph contains vertices h and i joined by two edges, say j-th and k-
th. From Section 1.2 we know that, without loss of generality, chj = chk = 1,
ci j = −cik = 1 and cl j = clk = 0 for all l 
= i, h. It follows that ch = ci = 0.
Tracing paths from h as in the proof of Lemma 3.4.8, we find that c1 = · · · =
cr = 0. The lemma follows. �

Now from Lemmas 3.4.7 and 3.4.12 we obtain the following analogue of
Theorem 3.4.9.

Theorem 3.4.13 [CvDS2]. Suppose that H is a connected graph with n ver-
tices and m edges. If Ĥ = H(a1, a2, . . . , an), where (a1, a2, . . . , an) 
=
(0, 0, . . . , 0), then

mL(Ĥ)(−2) = m − n +
n∑

i=1

ai . (3.10)
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It follows that if G is a generalized line graph without −2 as an eigenvalue,
then either G is a line graph (and Corollary 3.4.10 applies) or G = L(Ĥ)where
Ĥ is a tree with just one petal attached. Now we can complete the description
of graphs whose eigenvalues lie in the interval (−2,∞):
Theorem 3.4.14 [DooCv]. If H is a connected graph with least eigenvalue
greater than −2 then one of the following holds:

(a) H = L(K ) where K is a tree, or a tree with a single petal attached, or an
odd-unicyclic graph;

(b) H is one of the 573 graphs in G6 ∪ G7 ∪ G8.

3.5 More on regular graphs

In this section we discuss the significance of the second largest eigenvalue, and
the eigenvalue with second largest modulus, as invariants of regular graphs. We
also consider the Hoffman polynomial of a regular graph and the mean degree
of an arbitrary induced subgraph of a regular graph.

3.5.1 The second largest eigenvalue

The second largest eigenvalue of a connected regular graph plays an impor-
tant role in determining the graph structure. This phenomenon was observed
in 1976, in respect of connected cubic graphs, by Bussemaker, Čobeljić,
Cvetković and Seidel [BuČCS]. For each n ≤ 14, the connected cubic
graphs with n vertices were ordered lexicographically by their spectrum
(λ1, λ2, . . . , λn); since λ1 = 3 throughout, λ2 plays the primary role. It
can be observed from Table A5 in the Appendix that for small values of
λ2 the graphs have a more ‘round’ shape (smaller diameter, higher con-
nectivity and girth), while for large values of λ2 the graphs have a more
‘path-like’ shape (larger diameter, lower connectivity and girth). A par-
tial explanation of these empirical observations was offered in 1978 by
Cvetković:

Theorem 3.5.1 [Cve7]. Let G be an r-regular graph on n vertices. Let v be
any vertex of G and let d̄ be the average vertex degree of the subgraph induced
by the vertices not adjacent to v. Then

d̄ ≤ r
λ2

2 + λ2(n − r)

λ2(n − 1)+ r
.
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Proof. We partition V (G) into three parts, consisting of v, the vertices adja-
cent to v, and the vertices not adjacent to v. If we partition the adjacency matrix
A of G into corresponding blocks then the average row sums in the blocks form
the matrix

B =
⎛
⎝0 r 0

1 r − ν − 1 ν

0 r − d d

⎞
⎠ ,

where ν is the mean number of edges from a vertex adjacent to v to vertices not
adjacent to v. Counting in two ways the total number of such edges, we have
rν = (n − 1− r)(r − d). By Corollary 1.3.13, the eigenvalues of B interlace
those of A. Since B has characteristic polynomial (x−r)(x2−(d−ν−1)x−d),
and this must be non-positive at x = λ2, we have

λ2
2 − (d − ν − 1)λ2 − d ≥ 0.

Now the result follows by substituting (n − 1 − r)(r − d)/r for ν in this
inequality. �

In Theorem 3.5.1, the upper bound for d decreases as λ2 decreases.
Now a decrease in d reduces the number of edges in the subgraph H1

induced by the vertices not adjacent to v (and hence brings edges closer
to v). Moreover, when d decreases, so does r − ν − 1, the average vertex
degree in the subgraph H2 induced by the neighbours of v. Thus we have
fewer edges in H1 and H2, and more edges between these subgraphs: this
phenomenon corresponds intuitively to the graph assuming a more ‘round’
shape.

The cubic graphs for which the second largest eigenvalue is maximal were
identified in [BGI]; for each even n ≥ 4, there is a unique such graph Gn with
n vertices. The graph G4 is necessarily K4, G6 is the prism K3 + K2, and
G8 is the first graph with 8 vertices in Table A5 of the Appendix. The graphs
Gn (n ≥ 10) are illustrated in Fig. 3.2.

Finally we note without proof a result of Nilli [Nil]: if G is a connected r -
regular graph which contains two edges whose distance apart is at least 2k +
2 then

λ2(G) ≥ 2
√

r − 1

(
1− 1

k + 1

)
+ 1

k + 1
. (3.11)

(The distance between two edges is the length of a shortest path whose terminal
vertices are vertices of the edges in question.)
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Figure 3.2 (a) The graph Gn for n ≡ 2 (mod 4).
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Figure 3.2 (b) The graph Gn for n ≡ 0 (mod 4).

3.5.2 The eigenvalue with second largest modulus

Here we discuss a relation between �(G), the second largest modulus of an
eigenvalue of a connected regular graph G, and an expansion property of G.
For X ⊆ V (G) let N (X) be the set of vertices of G adjacent to some vertex
of X . The expansion of a graph is defined in many ways in the literature, but
the essential requirement of G as a ‘good’ expander is that for any X ⊆ V (G),
N (X) should be suitably ‘large’ in comparison with |X |. This concept is made
precise (for arbitrary graphs) in Chapter 7; here we establish a lower bound for
|N (X)|/|X | in regular graphs.

For any X, Y ⊆ V , let e(X, Y ) be the number of ordered edges with the first
endvertex in X and the other in Y . Thus

e(X, Y ) = |{(u, v) ∈ V (G)2 : u ∼ v, u ∈ X and v ∈ Y }|,
and edges whose endvertices are both in X ∩ Y are counted twice.

Lemma 3.5.2. Let G be a connected r-regular graph on n vertices, with eigen-
values λ1(= r), λ2, . . . , λn. Let X, Y be subsets of V (G) with |X | = αn and
|Y | = βn. If � = maxi {|λi | : λi 
= ±r} then

|e(X, Y )− αβrn| ≤ �n
√
(α − α2)(β − β2).

Proof. Let x and y be the characteristic vectors of the sets X and Y , and let A
be the adjacency matrix of G. Note that x�Ay = e(X, Y ). Define v = x − αj
and w = y − βj, where j is the all-1 vector in IRn . Since each of (αj)�Ay,
x�A(βj), (αj)�A(βj) is equal to αβrn, we have

v�Aw = e(X, Y )− αβrn.
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68 Spectrum and structure

On the other hand, since the vectors v,w lie in j⊥ we have

|v�Aw| ≤ �|v�w| ≤ �‖v‖‖w‖ = �n
√
(α − α2)(β − β2).

This completes the proof. �

Theorem 3.5.3 [Tan]. Let G be a connected r-regular graph on n vertices,
with eigenvalues λ1(= r), λ2, . . . , λn. If � = maxi {|λi | : λi 
= ±r} then for
any X ⊆ V (G),

|N (X)|
|X | ≥ r2

�2 + (r2 −�2)
|X |
n

.

Proof. We apply Lemma 3.5.2 to X and Y , where Y = V (G) \ N (X).
Note that e(X, Y ) = 0, and so if |X | = αn, |Y | = βn, then αβrn ≤
�n
√
(α − α2)(β − β2). Hence

αβr2 ≤ �2(1− α − β + αβ),
equivalently,

β ≤ �2(1− α)
�2 + (r2 −�2)α

,

Now we have

|N (X)| = (1− β)n ≥ |X |r2

�2 + (r2 −�2)α
,

and we are done. �

It follows that if� is small compared with r then G is a good expander. How
small can � be? A good indication is provided by the following result of Alon
and Boppana (cf. [LuPS, Proposition 4.2]). For fixed r > 1, let (Gm)m∈IN be
a family of connected r -regular graphs such that |(V (Gm)| → ∞ as m →∞.
Then

lim inf
m→∞ �(Gm) ≥ 2

√
r − 1. (3.12)

This explains the importance of the following class of graphs:

Definition 3.5.4. A Ramanujan graph is a connected r -regular graph G for
which �(G) ≤ 2

√
r − 1.

An infinite family of Ramanujan graphs {X p,q} was first constructed by
Lubotzky, Phillips and Sarnak [LuPS] in 1988. Here, p and q are distinct
primes, both congruent to 1 mod 4, such that p is non-square mod q. The
graph X p,q is realized as a certain vertex-transitive bipartite graph of degree
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3.5 More on regular graphs 69

p + 1 with q(q2 − 1) vertices. In fact, infinite families of Ramanujan graphs
of degree r exist whenever r − 1 is a prime power (see [Mor2]). Finally we
note that the inequality (3.11) restricts the diameter of a Ramanujan graph G
for which �(G) < 2

√
r − 1.

3.5.3 Miscellaneous results

Here we note two properties of regular graphs required in subsequent sections.
For any graph G with adjacency matrix A, the adjacency algebra of G con-
sists of all matrices of the form f (A), where f (x) is a polynomial with real
coefficients. Hoffman identified the following characteristic property of the
adjacency algebra of a regular connected graph.

Theorem 3.5.5 [Hof3]. The all-1 matrix J belongs to the adjacency algebra
of the graph G if and only if G is regular and connected.

Proof. Suppose first that J lies in the adjacency algebra A of G. Then AJ =
J A, and so G is regular. If G is not connected then consider vertices u and v
lying in different components of G. By Proposition 1.3.3, the (u, v)-entry of
f (A) is zero for all f (x) ∈ IR[x]; hence J 
∈ A, a contradiction.

Conversely, suppose that G is r -regular and connected. Then G has index r
and the minimal polynomial of A has the form (x − r)g(x). Since Ag(A) =
rg(A), each column of g(A) lies in the eigenspace E(r). Since G is connected,
E(r) is spanned by the all-1 vector j (cf. Theorem 1.3.5), and so g(A) has the
form (c1j| · · · |cnj). Since g(A) is a symmetric matrix, c1 = · · · = cn . Thus
g(A) = cJ for some c, and the result follows. �

The above proof shows that h(A) = J where h(x) = c−1g(x); the poly-
nomial h(x) is called the Hoffman polynomial of G. If μ1 = r, μ2, . . . , μm

are the distinct eigenvalues of G, then the only non-zero eigenvalue of g(A) is∏m
i=2(r − μi ). Hence

∏m
i=2(r − μi ) = cn, and so

h(x) = n
m∏

i=2

x − μi

r − μi
,

and we have the following formula for J :

Corollary 3.5.6. If G is an r-regular connected graph on n vertices, with
distinct eigenvalues μ1 = r, μ2, . . . , μm then

J = n
m∏

i=2

A − μi I

r − μi
.
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70 Spectrum and structure

The final result of this section can be regarded as a generalization of
Theorem 3.5.1.

Theorem 3.5.7. Let G be an r-regular graph with eigenvalues r(= λ1) ≥
λ2 ≥ · · · ≥ λn. Let G1 be an induced subgraph of G with n1 vertices and
mean degree d1. Then

n1(r − λn)

n
+ λn ≤ d1 ≤ n1(r − λ2)

n
+ λ2. (3.13)

Proof. We partition V (G) into V (G1) and its complement, and consider the
corresponding blocking of the adjacency matrix of G. The average row sums
in the blocks form the matrix

B =
⎛
⎝ d1 r − d1

(r − d1)n1
n − n1

r − (r − d1)n1
n − n1

⎞
⎠ .

The eigenvalues of B are r and d1− (r−d1) n1/ (n−n1). By Corollary 1.3.13
we have λn ≤ d1 − (r − d1) n1/ (n − n1), and the first inequality in (3.13)
follows.

In order to prove the second inequality, we consider the complements
G, G1. The graph G is a regular graph on n vertices of degree n − 1 − d,
and by Theorem 2.1.2 its least eigenvalue is −λ2 − 1. The graph G1 is an
induced subgraph of G with n1 vertices and mean degree n−1−d1. If we now
apply the first inequality of (3.13) to G and G1 we obtain the second inequality
in (3.13). �

3.6 Strongly regular graphs

Recall from Chapter 1 that a strongly regular graph with parameters (n, r, e, f )
is an r -regular graph on n vertices in which any two adjacent vertices have
exactly e common neighbours and any two non-adjacent vertices have exactly
f common neighbours. Strongly regular graphs are important in relation to
algorithms designed to determine whether or not two graphs are isomorphic
(the ‘graph isomorphism problem’), since they often represent the hardest case
to deal with. At the same time, they are very well suited to investigation by
spectral techniques, not least because (as we show below) knowledge of their
spectrum is equivalent to knowledge of their parameters.

To exclude the complete graphs and their complements, we assume through-
out that 0 < r < n − 1. We have seen that the Petersen graph is a strongly
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3.6 Strongly regular graphs 71

regular graph with parameters (10, 3, 0, 1). Some examples of infinite families
of strongly regular graphs are given below.

Examples 3.6.1. (i) For n > 3, the triangular graph T (n) = L(Kn) is

strongly regular with parameters
(

1
2 n(n − 1), 2n − 4, n − 2, 4

)
.

(ii) For n > 1, the lattice graph L(Kn,n) is a strongly regular graph with
parameters (n2, 2n − 2, n − 2, 2). �

Example 3.6.2. Let G F(q) be a field with q elements, where q ≡ 1 mod 4.
The Paley graph P(q) is the graph whose vertices are the elements of G F(q),
with u ∼ v if and only if u − v is a square in G F(q). (Note that the
condition q ≡ 1 mod 4 ensures that u − v is a square if and only if
v − u is a square.) The graph P(q) is strongly regular with parameters(

q, 1
2 (q − 1), 1

4 (q − 5), 1
4 (q − 1)

)
. �

Example 3.6.3. Let � be a finite group of permutations of the set V . Then �
has a natural action on V 2, given by

γ : (u, v) �→ (γ (u), γ (v)) (γ ∈ �).
We say that (�, V ) is a permutation group of rank s if � has s orbits on V 2.
(The orbits include the ‘diagonal’ orbit D = {(v, v) : v ∈ V }, and the per-
mutation groups of rank 2 are precisely the doubly transitive groups.) Suppose
that � is of even order with rank 3, and let D, O1, O2 be the orbits of (�, V 2).
Since |�| is even, � contains an involution τ . Let a, b be points of V inter-
changed by τ . Without loss of generality, (a, b) ∈ O1. Then (b, a) ∈ O1 and
it follows that (u, v) ∈ O1 if and only if (v, u) ∈ O1. Now we may define a
graph G with V (G) = V and u ∼ v if and only if (u, v) ∈ O1. It is easy to
see that G is strongly regular, with � as a subgroup of its automorphism group.
Such a graph is called a rank 3 graph. Note that the graph obtained in the same
way from O2 is just the complement of G. For an explicit example, we may
take � to be the alternating group on {1, 2, 3, 4, 5} and V to be the set of 10
unordered pairs in {1, 2, 3, 4, 5}. Then without loss of generality, O1 consists
of disjoint pairs, and O2 consists of intersecting pairs; in this case, G is the
Petersen graph and G = L(K5). �

It is a simple matter (Exercise 3.11) to check that if G is a strongly regular
graph with parameters (n, r, e, f ) then its complement G is strongly regular
with parameters (n̄, r̄ , ē, f̄ ), where

n̄ = n, r̄ = n − r − 1, ē = n − 2− 2r + f, f̄ = n − 2r + e.

A strongly regular graph G is primitive if both G and G are connected;
otherwise G is imprimitive. It is straighforward to show (Exercise 3.12) that
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72 Spectrum and structure

a strongly regular graph G is imprimitive if and only if G or G is a complete
multipartite graph of the form Km,m,...,m .

The parameters of strongly regular graphs are not independent. Indeed, if
we consider a fixed vertex u and count in two ways the edges vw such that u
is adjacent to v but not to w, then we find

r(r − e − 1) = (n − r − 1) f. (3.14)

Some other conditions on parameters will be discussed later.
From the definition of strongly regular graphs, we see that the adjacency

matrix A satisfies

A2 = eA + f (J − A − I )+ r I, (3.15)

or equivalently

A2 + ( f − e)A + ( f − r)I = f J. (3.16)

Since AJ = r J , it follows from (3.16) that

(A − r I )(A2 + ( f − e)A + ( f − r)I ) = O. (3.17)

The following theorem of Shrikhande and Bhagwandas gives a spectral
characterization of the strongly regular graphs.

Theorem 3.6.4 [ShrBh]. Let G be a connected regular graph of degree
r > 0. Then G is strongly regular if and only if it has exactly three distinct
eigenvalues, say μ1 = r , μ2 = s and μ3 = t . In this situation,

e = r + s + t + st, f = r + st, n = (r − s)(r − t)

r + st
.

Proof. Suppose that G is strongly regular. Ifμ2 is the only eigenvalue different
from r then r + (n − 1)μ2 = 0. Thus μ2 is rational and hence an integer. But
0 < r < n − 1, and so we have a contradiction. From (3.17), we know that
the minimal polynomial of G has degree at most 3, and so G has exactly three
distinct eigenvalues.

Conversely, suppose that G is a connected r -regular graph, with exactly
three distinct eigenvalues r, s, t . By Theorem 3.5.6 we have a relation of the
form

a A2 + bA + cI = J (a 
= 0) (3.18)

where s, t are the roots of the quadratic ax2+bx+c. It follows that the number
of walks of length 2 between vertices i and j is 1−b

a if i ∼ j , and 1
a if i 
∼ j .
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Therefore G is strongly regular. From Theorem 3.5.6 we have

a = n

(r − s)(r − t)
, b = −n(s + t)

(r − s)(r − t)
, c = nst

(r − s)(r − t)
. (3.19)

Equating diagonal entries in (3.18), we find that ar + c = 1, and so

n(r + st) = (r − s)(r − t). (3.20)

The formulae for e and f now follow from (3.17) and (3.18) since e = 1−b
a

and f = 1
a . �

Theorem 3.6.4 gives the parameters of a strongly regular graph in terms of
eigenvalues. In the reverse direction, we have:

Theorem 3.6.5. The distinct eigenvalues of a connected strongly regular
graph with parameters (n, r, e, f ) are r, s, t , where

s, t = 1

2
(e − f )±√� and � = (e − f )2 + 4(r − f ).

Their respective multiplicities are 1, k, l where

k, l = 1

2

{
n − 1∓ 2r + (n − 1)(e − f )√

�

}
.

Proof. Since G is connected and r -regular, r is an eigenvalue of multiplicity
1. Eigenvectors corresponding to other eigenvalues are orthogonal to the all-
1 vector, and so from (3.17) we see that s, t are the roots of the quadratic
x2 + ( f − e)x + ( f − r). Their multiplicities k, l are determined from the
equations

1+ k + l = n, r + ks + lt = 0.

Here the first equation is obtained by counting eigenvalues, and the second by
summing eigenvalues. �

Theorem 3.6.5 provides a nice feasibility condition for the parameters of a
strongly regular graph: the parameters must be such that k and l are positive
integers. (In practice, this condition turns out to be very powerful.) Further, if
� is not a perfect square, then k = l since 2r + (n − 1)(e − f ) is necessarily
0; in this situation, a strongly regular graph is called a conference graph. For
example, the Paley graph of Example 3.6.3 is a conference graph. Since

√
� =

s − t , we have:

Theorem 3.6.6. If G is a strongly regular graph with parameters (n, r, e, f )
and eigenvalues r, s, t , then one of the following holds:
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(a) G is a conference graph;
(b) each eigenvalue of G is an integer and (e − f )2 + 4(r − f ) = (s − t)2.

So far a complete characterization of parameters of strongly regular graphs
is not known. We conclude this section by giving a further condition on mul-
tiplicities and a further condition on eigenvalues. In each case we use the fact
that, in the light of (3.15), the matrices I, A, J − I − A form a basis for the
adjacency algebra.

Theorem 3.6.7. Let G be a primitive strongly regular graph on n vertices,
with eigenvalue multiplicities 1, k, l. Then

n ≤ min
{

1
2 k(k + 3), 1

2 l(l + 3)
}
.

Proof. Let P represent the orthogonal projection of IRn onto the eigenspace
of dimension k. From (1.5) we know that P is a quadratic polynomial in A;
hence, using (3.16), we can express P in the form

P = α I + βA + γ (J − I − A)

for some α, β, γ ∈ IR. Using Theorem 3.6.5, we find (Exercise 3.14):

α = k

n
, β = ks

nr
, γ = −k(s + 1)

n(n − r − 1)
. (3.21)

In particular, α 
= β and α 
= γ . Since P has spectrum 1k, 0n−k , we may
write P = H�H , where H has size k × n and rank k. Thus if H has columns
h1, . . . ,hn then

h�i h j =
⎧⎨
⎩
α if i = j
β if i ∼ j
γ if i 
∼ j, i 
= j .

Now let� be the sphere in IRk with equation ‖x‖ = α, and define fi : �→
IR by

fi (x) = (h�i x− β)(h�i x− γ )
(α − β)(α − γ ) (i = 1, . . . , n).

Each fi lies in V1 ⊕ V2, where V1 is the space of all homogeneous linear
functions �→ IR and V2 is the space of all homogenoeus quadratic functions
�→ IR. Note that the constant functions lie in V2 because α2 = x2

1 +· · ·+ x2
n

for all (x1, . . . , xn)
� ∈ �. Also, dim(V1⊕ V2) = k +

(
k + (k2)) = 1

2 k(k + 3).

The functions f1, . . . , fn are linearly independent because fi (h j ) = δi j . It
follows that n ≤ 1

2 k(k + 3). Similarly, n ≤ 1
2 l(l + 3). �
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The bound for n in Theorem 3.6.7 is known as the absolute bound for
strongly regular graphs, since it is independent of α, β, γ (cf. [Sei4]). Graphs
that attain the bound are called extremal strongly regular graphs. Only five such
graphs G are known: in these cases, G or G is one of C5, Sch16, McL112. Here,
Sch16 is the Schläfli graph of Example 1.2.5, and McL112 is the McLaughlin
graph, the unique strongly regular graph with parameters (275, 112, 30, 56).
This last graph is a rank 3 graph (and the corresponding rank 3 group has
order 1, 796, 256, 000); it was first constructed in [McL], and an alternative
construction is described in [CamLi, Chapter 4].

For the next result, we require the following observation: since the adjacency
algebra A of a strongly regular graph G has {I, A, J − I − A} as a basis, A
is closed under Hadamard multiplication. (If the matrices (xi j ), (yi j ) have the
same size then their Hadamard product is (xi j yi j ), denoted by (xi j ) ◦ (yi j ).) In
the notation of Chapter 1, the projection matrices P1, P2, P3 form a basis for
A (cf. Equation (1.10)), and so

Pi ◦ Pj =
3∑

i=1

qi jk Pk

for some qi jk ∈ IR. The real numbers qi jk are called the Krein parameters
of G; note that qi j1, qi j2, qi j3 are eigenvalues of Pi ◦ Pj . Since Pi ◦ Pj is a
principal submatrix of the positive semi-definite matrix Pi ⊗ Pj , it too is a
positive semi-definite matrix. Thus qi jk ≥ 0 for all i, j, k.

With notation as in the proof of Theorem 3.6.7, for P = P2 we have

P ◦ P = α2 I + β2 A + γ 2(J − I − A),

with eigenvalues

q221 = α2 + β2r + γ 2(n − r − 1),

q222 = α2 + β2s + γ 2(−s − 1),

q223 = α2 + β2t + γ 2(−t − 1).

These may be expressed in terms of n, r, s and k using (3.21); we find that

q222 = k2

n2

{
1+ s3

r2
− (s + 1)3

(n − r − 1)2

}
.

From (3.20) we have n − r − 1 = −r(s + 1)(t + 1)

r + st
and so

n2r2(t + 1)2q222 = k2(r − s){r(t2 + 2t − s)+ s(t2 − 2st − s)}. (3.22)
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It follows from (3.21) that r(t2 + 2t − s)+ s(t2 − 2st − s) ≥ 0: this is the
first inequality of Theorem 3.6.8 below. The second inequality is derived by
interchanging s and t (i.e. by taking P = P3).

Theorem 3.6.8[Sco]. The eigenvalues r, s, t of any primitive strongly regular
graph of degree r satisfy the inequalities

(i) (r + s)(t + 1)2 ≥ (s + 1)(r + s + 2st),
(ii) (r + t)(s + 1)2 ≥ (t + 1)(r + t + 2st).

The inequalities of Theorem 3.6.8 are known as the Krein inequalities. To
describe the implications of equality here, we define the subconstituents asso-
ciated with a vertex u of a strongly regular graph G: the first subconstituent is
the regular subgraph of G induced by the neighbours of u, and the second sub-
constituent of u is the regular subgraph of G induced by the non-neighbours
of u. It can be shown that if the first bound of Theorem 3.6.8 is attained then
r = k, while if the second is attained then r = l. In either case, one of the
following holds: (a) G is a 5-cycle; (b) in G or G, all the first subconstituents
are null graphs, and all the second subconstituents are strongly regular; (c) all
subconstituents of G are strongly regular.

3.7 Distance-regular graphs

Let G be a connected graph of diameter d , and for i ∈ {0, 1, . . . , d}, let
�i (u) denote the set of vertices at distance i from the vertex u. We say that
G is distance-regular if there exist non-negative integers b0, b1, . . . , bd−1 and
c1, c2, . . . , cd such that for any two vertices u, v at distance i ,

bi = |�i+1(u) ∩ �1(v)| (i = 0, . . . , d − 1),

ci = |�i−1(u) ∩ �1(v)| (i = 1, . . . , d).

Thus v has exactly bi neighbours at distance i + 1 from u, and ci neighbours
at distance i − 1 from u. The array

{b0, b1, . . . , bd−1; c1, c2, . . . , cd}
is called the intersection array for G. Note that c1 = 1 and G is regular of
degree b0; we write r = b0. Hence the number of neighbours of v at distance
i from u is ai , where

ai = r − bi − ci (i = 1, . . . , d − 1) and ad = r − cd .
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3.7 Distance-regular graphs 77

Note also that the distance-regular graphs of diameter 2 are precisely the
connected strongly regular graphs.

The class of distance-regular graphs clearly includes the distance-transitive
graphs: these are the connected graphs with the property that for any vertices
u, v, u′, v′ with d(u, v) = d(u′, v′) there exists an automorphism which maps
u to u′ and v to v′.

Examples 3.7.1. (i) The Petersen graph is distance-transitive with intersec-
tion array {3, 2; 1, 1}. The skeleta of the Platonic solids are also distance-
transitive: the arrays are {3; 1} for the tetrahedron, {4, 1; 1, 4} for the
octahedron, {3, 2, 1; 1, 2, 3} for the cube, {5, 2, 1; 1, 2, 5} for the icosahedron,
and {3, 2, 1, 1, 1; 1, 1, 1, 2, 3} for the dodecahedron.
(ii) The Johnson graph J (n,m) has as its vertices the m-subsets of an n-set X ;
two such subsets are adjacent in J (n,m) if they have exactly m−1 elements in
common. Thus J (n,m) = J (n, n − m), J (n, 1) = Kn and J (n, 2) = L(Kn).
The graph J (n,m) is distance-transitive with diameter d = min{m, n−m} and
parameters

bi = (m − i)(n − m − i) (i = 0, . . . , d − 1), ci = i2 (i = 1, . . . , d).

(iii) An example of a distance-regular graph that is not distance-
transitive is the strongly regular graph defined as follows. The vertices are
u1, . . . , u13, v1, . . . , v13 and the edges are given by:

ui ∼ u j if and only if |i − j | ≡ 1, 3 or 4 mod 13,
vi ∼ v j if and only if |i − j | ≡ 2, 5 or 6 mod 13,
ui ∼ v j if and only if |i − j | ≡ 0, 1, 3 or 9 mod 13.

The intersection array is {10, 6; 1, 4}. �

If we let |�i (u)| = ki and count in two ways the edges between �i (u) and
�i+1(u), we find that

k0 = 1, k1 = r, ki+1 = ki bi

ci+1
(i = 1, 2, . . . , d − 1). (3.23)

We may illustrate these parameters in a diagram as shown in Fig. 3.3.
The parameters in an intersection array are subject to a number of con-

straints, the simplest of which are the following:

Proposition 3.7.2. For any distance-regular graph with intersection array
{r, b1, . . . , bd−1; 1, c2, . . . , cd}, we have

(i) 1 ≤ c2 ≤ c3 ≤ · · · ≤ cd ,

(ii) r ≥ b1 ≥ b2 ≥ · · · ≥ bd−1,
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Figure 3.3 A representation of a distance-regular graph.

(iii) for each j ∈ {2, . . . , d}, rb1 · · · b j−1/c2c3 · · · c j is an integer (=
|� j (v)|).

Proof. (i) Let d(u, v) = i + 1 ≤ d , and consider a path uw . . . v of length
i + 1. Since �i−1(w) ∩ �1(v) ⊆ �i (u) ∩ �1(v), we have ci ≤ ci+1.
(ii) Let d(u, v) = i < d , and consider a path uw . . . v of length i . Since
�i+1(u) ∩ �1(v) ⊆ �i (w) ∩ �1(v), we have bi ≤ bi−1.
(iii) The third assertion follows from (3.23) by induction on i . �

For any graph we can define distance matrices A0, A1, . . . as follows: the
(i, j)-entry of Ah is 1 if d(i, j) = h, and 0 otherwise. (Thus A0 = I and
A1 = A.) For a distance-regular graph G, it is straightforward to show by
induction on k that, for each non-negative integer k, the (i, j)-entry of Ak

depends only on d(i, j) (Exercise 3.16). In other words, each Ak is a linear
combination of A0, A1, . . . , Ad ; equivalently, the adjacency algebra A of G
has {A0, A1, . . . , Ad} as a basis. Since I, A, A2, . . . , Ad are linearly indepen-
dent, {I, A, . . . , Ad} is another basis for A. Thus the minimal polynomial m A

of A has degree d + 1 and G has precisely d + 1 distinct eigenvalues.
Now consider the linear transformation τ of A given by: X �→ X A (X ∈ A).

The matrix of τ with respect to {I, A, . . . , Ad} is just the companion matrix of
m A; but the matrix B of τ with respect to {A0, A1, . . . , Ad} has a tridiagonal
form, because

Ai A = bi−1 Ai−1 + ai Ai + ci+1 Ai+1 (0 < i < d) and

A0 A = 0A0 + 1A1, Ad A = bd−1 Ad−1 + ad Ad . (3.24)

It follows from (3.24) that

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
r a1 c2

b1 a2 .
b2 . .

. . .
. . cd−1
. ad−1 cd

bd−1 ad

⎞
⎟⎟⎟⎟⎟⎟⎠ .
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3.7 Distance-regular graphs 79

Note first that A and B share the same distinct eigenvalues μ1, . . . , μd+1,
because m B = mτ = m A. Secondly, if the polynomials v0(x), . . . , vd(x) are
defined recursively by:

v0(x) = 1, v1(x) = x,

ci+1vi+1(x)+ (ai − x)vi (x)+ bi−1vi−1(x) = 0 (0 < i < d) (3.25)

then it follows from (3.24) by induction on i that Ai = vi (A) (i =
0, 1, . . . , d). In other words, B determines the transition matrix from
{A0, A1, . . . , Ad} to {I, A, A2, . . . , Ad}. Hence B determines the inverse tran-
sition matrix (whk), where Ak = ∑d

h=0whk Ah (k = 0, 1, . . . , d). Since
tr(A0) = n, while tr(Ah) = 0 for h ∈ {1, . . . , d}, we have

∑d+1
i=1 m(μi )μ

k
i =

nw0k (k = 0, 1, . . . , d), where m(μi ) denotes the multiplicity of μi as an
eigenvalue of A. It is clear from these d + 1 equations that the multiplicities
m(μi ) are determined by B. Consequently we have:

Theorem 3.7.3. The spectrum of a distance-regular graph G is determined by
the intersection array for G.

We shall determine the multiplicity m(μi ) explicitly in terms of
k0, k1, . . . , kd and an eigenvector of B corresponding to μi . (Note that all the
eigenspaces of B are one-dimensional.)

Lemma 3.7.4. For j = 1, 2, . . . , d + 1, let v j = (v0(μ j ), v1(μ j ), . . . ,

vd(μ j ))
� and u j = K−1v j , where K = diag(k0, k1, . . . , kd). Then v j is

an eigenvector of B and u j is an eigenvector of B�, both corresponding to the
eigenvalue μ j .

Proof. We have directly from (3.24) that Bv j = μ j v j . From (3.22) we have
BK = K B�, and so B�u j = B�K−1v j = K−1 Bv j = K−1(μ j v j ) =
μ j u j . �

Theorem 3.7.5. With the notation above, the eigenvalue μi of a distance-
regular graph on n vertices has multiplicity

m(μi ) = n

v�i K−1vi
.

Proof. It follows from Lemma 3.7.4 that u�i v j = 0 when i 
= j , because
μi u�i v j = u�i Bv j = μ j u�i v j . Now let ui = (ui0, ui1, . . . , uid)

� and vi =
(vi0, vi1, . . . , vid)

�. Note that ui0 = 1 because k0 = 1 and vi0 = v0(μi ) = 1.
We calculate in two ways the trace of the matrix

Mi =
d∑

j=0

ui j A j .
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First, since A1, . . . , Ad have zero diagonal, we have tr(Mi ) = ui0tr(A0) = n.
Secondly, since A j = v j (A), the eigenvalues of A j are v j (μ1), . . . , v j (μd+1),
with multiplcities m(μ1), . . . ,m(μd+1), and so tr(A j ) =∑d+1

k=1 m(μk)v j (μk).
Hence

tr(Mi ) =
d∑

j=0

ui j

d+1∑
k=1

m(μk)vk j =
d+1∑
k=1

m(μk)u�i vk = m(μi )u�i vi ,

and the result follows. �

Since m(μ j ) is a positive integer, Theorem 3.7.5 imposes a further restric-
tion on the parameters of an intersection array. For example [Big2, p. 168] there
is no distance-regular graph with intersection array {3, 2, 1; 1, 1, 3}, an array
not excluded by Theorem 3.7.2. Further necessary conditions on the parame-
ters of an intersection array, analogous to the Krein inequalities of Theorem
3.6.8, arise from the fact that A is closed under Hadamard multiplication. For
these and other constraints the reader is referred to the monograph by Brouwer,
Cohen and Neumaier [BroCN].

We note that, in contrast to the situation for strongly regular graphs, the
property of distance-regularity (of diameter > 2) cannot in general be identi-
fied from the spectrum. Haemers and Spence [HaeSp] show that while there is
a unique distance-regular graph with intersection array {13, 6, 1; 1, 6, 13}, it is
one of no fewer than 515 graphs of diameter 3 which share the same spectrum,

namely {131,
√

13
7
, (−1)13, (−√13)7}. On the other hand there are four non-

isomorphic distance-regular graphs with intersection array {7, 6, 4; 1, 3, 7};
they have spectrum {71, 214, (−2)14, (−7)1} and they are the only graphs with
this spectrum.

Finally we mention the Bannai–Ito conjecture [BanIt, p. 237], which asserts
that for fixed r > 2 there are only finitely many distance-regular graphs of
degree r . This has been confirmed for r ∈ {3, 4} by Bannai and Ito themselves,
and for r ∈ {5, 6, 7} by Koolen and Moulton [KooMo2].1

3.8 Automorphisms and eigenspaces

Recall that an automorphism of a graph G is a permutation π of V (G) such
that u ∼ v if and only if π(u) ∼ π(v). The group of all automorphisms of G
is denoted by Aut(G), and the order of Aut(G) is a measure of the symmetry
of G. Vertices in the same orbit of Aut(G) are said to be similar.

1 The Babbai–Ito conjecture has now been confirmed for all r > 2 by Bang, Koolen and
Moulton.
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3.8 Automorphisms and eigenspaces 81

Symmetries are commonly used as a tool in the study of mathematical struc-
tures, and the symmetric features of graphs are often revealed by an appropriate
geometric representation. For example, the graph C5 can be viewed as a reg-
ular pentagon, whose symmetries consist of five rotations and five reflections.
Although the full group of automorphisms of the Petersen graph P (the group
S5) is not readily identified from a single diagrammatic representation, the
standard drawing of P (Fig. 1.2) shows that it too has a symmetry of order
5. For both C5 and P , the presence of an automorphism of order 5 guarantees
the existence of a multiple eigenvalue. This follows from Theorem 3.8.4 below
and illustrates the flavour of the results in this section.

As usual, let G be a graph with vertex-set V (G) = {1, 2, . . . , n} and adja-
cency matrix A = (ai j ). For any permutation π of {1, 2, . . . , n}, let P(π)
be the permutation matrix (δπ(i) j ). Note that P(π)−1 = P(π)� and that the
map π �→ P(π) is a monomorphism from the symmetric group Sn into the
multiplicative group of orthogonal n × n matrices.

Let A′ be the adjacency matrix of G obtained when the vertices 1, 2, . . . , n
are relabelled π(1), π(2), . . . , π(n). Then A′ = P(π)�AP(π) because the
(i, j)-entry of P(π)�AP(π) is

∑
h

∑
k

δπ(h)i ahkδπ(k) j = aπ−1(i)π−1( j).

Since π is an automorphism of G if and only if A′ = A, we have:

Proposition 3.8.1. The permutation π is an automorphism of G if and only if
A = P(π)�AP(π), equivalently P(π)A = AP(π).

It follows that if λ is an eigenvalue of G and x ∈ EA(λ) then for each
automorphism π of G we have

AP(π)x = P(π)Ax = λP(π)x.

Thus each eigenspace is P(π)-invariant for every π ∈ Aut(G); we say sim-
ply that the eigenspaces are invariant under the automorphism group. Clearly,
if x and P(π)x are linearly independent eigenvectors, then λ is a multiple
eigenvalue. This simple observation is crucial to what follows.

Lemma 3.8.2. If λ is a simple eigenvalue of G, and if x is an eigenvector
corresponding to λ then P(π)x = ±x for each π ∈ Aut(G).

Proof. Since x and P(π)x are linearly dependent eigenvectors in IRn , we have
P(π)x = cx for some c ∈ IR. Since ‖P(π)x‖ = ‖x‖, we have c = ±1. �
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Theorem 3.8.3 [PeSa2]. Let G be a vertex-transitive graph with n vertices of
degree r , and let λ be a simple eigenvalue of G. If n is odd then λ = r; if n is
even then λ = 2k − r for some k ∈ {0, 1, . . . , r}.
Proof. Let x = (x1, x2, . . . , xn)

� be an eigenvector of G corresponding to λ.
If π is an automorphism of G such that π( j) = i then xi is the j-th entry of
P(π)x. By Lemma 3.8.2, xi = ±x j . Since G is vertex-transitive, it follows
that all entries of x have the same absolute value.

Suppose first that n is odd. If λ 
= r then E(λ) ⊥ E(r) and so
∑n

i=1 xi = 0.
But this sum cannot vanish under the established conditions, and consequently
λ = r is the only possibility.

Assume now that n is even. For a fixed vertex i , suppose that i has k neigh-
bours j such that x j = xi , and r − k neighbours j such that x j = −xi . From
the i-th eigenvalue equation, we have

λxi =
∑
j∼i

x j = kxi − (r − k)xi ,

whence λ = 2k − r , as required. This completes the proof. �

Theorem 3.8.4 [Mow, PeSa2]. If G is a graph with an automorphism of order
greater than 2, then G has a multiple eigenvalue.

Proof. Suppose by the way of contradiction that all eigenvalues are simple.
If x is an eigenvector of G, then, by Lemma 3.8.2, P(π)2x = x for every
automorphism π of G. Since IRn has a basis of eigenvectors, we have P(π)2 =
I . Hence π2 is the identity permutation for every automorphism π , contrary to
assumption. �

The proof of Theorem 3.8.4 shows that if all eigenvalues of G are sim-
ple, then every non-identity automorphism has order 2, equivalently Aut(G)
is an elementary abelian 2-group. To describe the general situation, let U be
an orthogonal matrix such that U�AU = D = diag(λ1, . . . , λn), and let
O(k) denote the multiplicative group of k × k orthogonal matrices. If π ∈
Aut(G) then U�P(π)U commutes with D. Hence if the distinct eigenvalues
μ1, . . . , μm have multiplicities k1, . . . , km then U�P(π)U has the block-
diagonal form X1(π) +̇ · · · +̇ Xm(π), where Xi (π) ∈ O(ki ). Accordingly,
we have:

Proposition 3.8.5. If G has eigenvalue multiplicities k1, . . . , km then Aut(G)
is isomorphic to a subgroup of O(k1)× · · · × O(km).

When some eigenvalues are simple, we can obtain some additional informa-
tion on Aut(G) by counting the non-real eigenvalues of P(π). We denote the
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3.9 Equitable partitions, divisors, main eigenvalues 83

number of such eigenvalues byw(π). Thus if π is a t-cycle thenw(π) is t−1 if
t is odd, and t−2 if t is even. If π = π1π2 · · ·π j as a product of disjoint cycles
then w(π) =∑k

i=1w(πi ). Now suppose that G has n − r simple eigenvalues
(0 ≤ r < n). With appropriate ordering of the columns of U , U�P(π)U has
the block-diagonal form X (π) +̇ er+1(π) +̇ · · · +̇ en(π), where each ei (π)

is ±1. The non-real eigenvalues of P(π) are necessarily eigenvalues of X (π)
and so number at most r . Hence w(π) ≤ r and each constituent cycle πk of π
has length at most r + 2. We deduce the following result:

Proposition 3.8.6 [Row1]. If G has n−r simple eigenvalues then the order of
any automorphism of G divides the least common multiple of 2, 3, 4, . . . , r+2.

Finally, we mention without proof two upper bounds for the number s of
simple eigenvalues of a graph on vertices. First, s is at most the largest power
of 2 that divides n [SaSt]; secondly, if Aut(G) has no orbit on which it acts as
an elementary abelian 2-group then s ≤ 5

9 n [Row1].

3.9 Equitable partitions, divisors and main eigenvalues

Equitable partitions and divisors represent a powerful tool in spectral graph
theory. In particular we shall see how to exploit regularity properties of a graph
to obtain part of the spectrum, including the main eigenvalues.

Definition 3.9.1. Given a graph G, the partition V (G) = V1 ∪̇ V2 ∪̇ · · · ∪̇ Vk is
an equitable partition if every vertex in Vi has the same number of neighbours
in Vj , for all i, j ∈ {1, 2, . . . , k}.

Clearly, every graph has a trivial equitable partition, in which each cell is
a singleton. For the existence of a non-trivial equitable partition, some local
regularity is required. For example, in a complete multipartite graph the usual
colouring gives rise to an equitable partition in which the cells are the colour
classes. In general, it is often convenient to assign different colours to the cells
of an equitable partition. Then the subgraphs induced by the vertices of the
same colour are regular, while edges joining the vertices from two different
cells give rise to a semi–regular bipartite graph. In view of this colouring, an
equitable partition is sometimes called a colouration.

Suppose now that � is an equitable partition V (G) = V1 ∪̇ V2 ∪̇ · · · ∪̇ Vk ,
and that each vertex in Vi has bi j neighbours in Vj (i, j ∈ {1, 2, . . . , k}). Let
D� be the directed multigraph with vertices V1, V2, . . . , Vk and bi j arcs from
Vi to Vj . We call D� the divisor of G with respect to �. The matrix (bi j ) is
called the divisor matrix of �, denoted by B�.
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�1 �3 �6
�4 �7

�2 �5
�

�
��

�
�

�� � : {1}, {2, 3, 4}, {5, 6, 7}

�′ : {1}, {2, 3}, {4}, {5, 6}, {7}

Figure 3.4 Two equitable partitions of a graph.

Example 3.9.2. Fig. 3.4 shows a graph and two of its equitable partitions. The
corresponding divisor matrices are:

B� =
(

0 3 0
1 0 1
0 1 0

)
, B�′ =

⎛
⎜⎜⎝

0 2 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0

⎞
⎟⎟⎠ .

It is clear from Fig. 3.3 that, for any vertex u in a distance-regular graph of
diameter d, the sets �i (u) (i = 0, 1, . . . , d) form an equitable partition. (The
corresponding divisor matrix is the transpose of the matrix B considered in
Section 3.7.) Also, for any graph G, the orbits of Aut(G), or of any subgroup
of Aut(G), form an equitable partition (Exercise 3.18); the first partition in
Example 3.9.2 is such a partition.

For any partition � of V (G) with cells V1, V2, . . . , Vk , let C� be the
n × k matrix whose columns are the characteristic vectors of V1, V2, . . . , Vk .
We call C� the characteristic matrix of �. Note that C��C� =
diag(|V1|, |V2|, . . . , |Vk |).

Proposition 3.9.3. Let G be a graph with adjacency matrix A. If � is an
equitable partition of G, with divisor matrix B and characteristic matrix C,
then

AC = C B, B = (C�C)−1C�AC.

Proof. It suffices to note that if i ∈ Vh then the (i, j)-entry of both AC and
C B is bhj . �

The following theorem characterizes the equitable partitions:

Theorem 3.9.4. Let G be a graph with adjacency matrix A, and let � be a
partition of G with characteristic matrix C. Then � is an equitable partition
of V (G) if and only if the column space of C is A-invariant.
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Proof. If � is an equitable partition then, in the notation of Proposition 3.9.3,
AC = C B, and so the column space of C is A-invariant. Conversely, if the
column space of C is A-invariant then there exists a matrix B = (bi j ) such
that AC = C B. Equating entries in this matrix equation, we find that each
vertex in the h-th cell of � is adjacent to bhj vertices in the j-th cell. �

We can now prove the first of the two main results on divisors.

Theorem 3.9.5. The characteristic polynomial of any divisor of a graph
divides the characteristic polynomial of the graph.

Proof. We use the notation of Proposition 3.9.3. Let C∗ be an n × (n − k)
matrix whose columns are vectors which extend the columns of C to a basis of
IRn . Then there exists matrices X and Y such that

AC∗ = C X + C∗Y.

From this equation and Proposition 3.9.3 we obtain:

A (C | C∗) = (C | C∗)
(

B X
O Y

)
.

Since (C | C∗) is invertible, it follows that det(x I − A) = det(x I − B) det
(x I − Y ). �

Remark 3.9.6. In the situation of Theorem 3.9.5, we have AC = C B and
hence

f (A)C = C f (B) (3.26)

for any polynomial f (x) ∈ IR[x]. In particular, we have

(x I − A)Cv = C(x I − B)v

for all v ∈ IRn . Since Cx = 0 if and only if x = 0, it follows that v is an
eigenvector of B if and only if Cv is an eigenvector of A.

Since the column space of C is A-invariant, it has a basis consisting of k
eigenvectors of A. Each such eigenvector has the form Cv, and so its entries are
constant on each cell of the underlying equitable partition �. We may choose
n − k further eigenvectors of A orthogonal to the column space of C , and the
entries of such vectors sum to zero on each cell of �. �

The second main result on divisors of a graph G concerns the main eigenval-
ues of G. Recall that the eigenvalueμi is a main eigenvalue of G if E(μi ) is not
orthogonal to the all-1 vector j. In the notation of Chapter 1, this is equivalent
to the condition Pi j 
= 0.
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86 Spectrum and structure

Definition 3.9.7. Let G be a graph whose distinct eigenvalues areμ1, . . . , μm .
The main part of the spectrum of G is the subset M of {μ1, . . . , μm} consisting
of the main eigenvalues of G, and we define

MG(x) =
∏
μi∈M

(x − μi ).

Note that cospectral graphs need not have the same main part of the spec-
trum; for example the graphs K1,4, C4 ∪̇ K1 are cospectral and −2 is a main
eigenvalue of the first graph but not the second. On the other hand, it follows
from Proposition 2.1.3 that if G1 and G2 are cospectral graphs with cospectral
complements then G1 and G2 share the same main part of the spectrum.

Lemma 3.9.8. Let f (x) ∈ IR[x]. Then f (A)j = 0 if and only if MG(x)
divides f (x).

Proof. We may use the spectral decomposition of A to express f (A)j as an
element of E(μ1) ⊕ E(μ2) ⊕ · · · ⊕ E(μm):

f (A)j = f (μ1)P1j+ f (μ2)P2j+ · · · + f (μm)Pmj,

where the i-th summand is 0 if μi 
∈ M. Hence f (A)j = 0 if and only if
f (μi ) = 0 for each μi ∈M. The result follows. �

The second main result on divisors is the following.

Theorem 3.9.9. The characteristic polynomial of any divisor of a graph G is
divisible by MG(x).

Proof. Let B be a divisor matrix, with characteristic polynomial f (x). By
Equation (3.26), we have f (A)Cjk = C f (B)jk , where jk is the all-1 vector
in IRk . Now Cjk = j, while f (B) = O (by the Cayley–Hamilton Theorem).
Hence f (A)j = 0, and the result follows from Lemma 3.9.8. �

Corollary 3.9.10. If Aut(G) has s orbits on V (G) then G has at most s main
eigenvalues.

Proof. The orbits of Aut(G) constitute an equitable partition � for which
det(x I − B�) has degree s. By Theorem 3.9.9, det(x I − B�) is divisible by
MG(x). The result follows because MG(x) has degree |M|. �

The largest eigenvalue μ1 always belongs to M because E(μ1) contains an
eigenvector whose entries are non-negative. Hence we have:

Corollary 3.9.11. Any divisor of a graph G has the index of G as an
eigenvalue.
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3.10 Spectral bounds for graph invariants 87

In an r -regular graph, every eigenspace other than E(r) is orthogonal to j,
and so we have:

Corollary 3.9.12. The graphs with exactly one main eigenvalue are precisely
the regular graphs.

It is an open problem to determine the graphs with exactly s main eigen-
values, where s > 1. To describe one of the known results for the case s = 2,
recall that a harmonic graph is a graph for which the vector d of vertex-degrees
is an eigenvector. If Ad = μd then we say that G is μ-harmonic. In this
situation, μ = μ1 ∈ ZZ because μ is rational, while the entries of d are non-
negative. Further, if G has no isolated vertices, then for any vertex v of G, μ is
the mean degree of the neighbours of v. The graph of Fig. 3.4 is 2-harmonic.

Proposition 3.9.13. Let G be a non-trivial connected graph with index μ.
Then G is harmonic and non-regular if and only if the main eigenvalues of G
are μ and 0.

Proof. Note that d = Aj 
= 0, while the relation Ad = μd may be written
as (A2 − μA)j = 0. Hence G is harmonic and non-regular if and only if
(A2−μA)j = 0 and Aj 
= μj. By Lemma 3.9.8, G is harmonic and non-regular
if and only if MG(x) = x(x − μ). �

3.10 Spectral bounds for graph invariants

In this section we give some further bounds on non-spectral invariants in terms
of graph eigenvalues. The existence of such bounds provides some justification
for ordering graphs lexicographically by spectrum: small changes in eigen-
values will restrict changes to the relevant structural invariants. (See also the
remarks in Section 3.5.)

Here we discuss the stability number, the clique number and the chromatic
number (all defined below). Spectral bounds for these invariants are of interest
in the context of complexity: the problem of determining each of the invariants
is NP-complete, whereas the spectral bounds can be determined in polynomial
time.

The stability number (or independence number) of a graph G is denoted by
α(G): this is the largest number of pairwise non-adjacent vertices in G.

Theorem 3.10.1. Let G be a graph on n vertices. Let n+ and n− denote the
number of positive and negative eigenvalues of G respectively. Then

α(G) ≤ min{n − n+, n − n−}.
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Proof. A set of s independent vertices in G induces a null subgraph H . By the
Interlacing Theorem (applied to the adjacency matrix A of G) we have

λn−s+i (G) ≤ λi (H) ≤ λi (G) (i = 1, 2, . . . , s).

It follows that 0 ≤ λs(G), and so n− ≤ n − s. If we apply the same argument
to the matrix −A in place of A, we find that n+ ≤ n − s. Thus s ≤ min{n −
n+, n − n−}, as required. �

Note that the bound in Theorem 3.10.1 is attained by a complete graph.
For regular graphs the following bound was obtained (but not published) by
Hoffman.

Theorem 3.10.2. If G is a regular graph with spectrum λ1 ≥ · · · ≥ λn, then

α(G) ≤ n
−λn

λ1 − λn
.

Proof. From Theorem 3.5.7 (the left-hand inequality), we have

|V (H)| ≤ n
d̄ − λn

λ1 − λn

for any induced subgraph H with mean degree d̄ . If H is a null graph then
d̄ = 0 and the result follows. �

The clique number of G, denoted by ω(G), is the number of vertices in the
largest clique of G. Thus ω(G) = α(G).
Theorem 3.10.3. Let m−, m0, m+ denote the number of eigenvalues of a
graph G which are less than, equal to, or greater than −1, respectively. Let
s = min{m− + m0 + 1,m0 + m+, 1 + ρ}, where ρ is the index of G. Then
ω(G) ≤ s. If s = m− + m0 + 1 and the eigenvalues greater than −1 exceed
m− + m0 then ω(G) ≤ s − 1.

Proof. Suppose that G contains a clique on k vertices. Then by the Interlacing
Theorem we have

λn−k+1 ≤ k − 1 ≤ λ1 = ρ, (3.27)

λn−k+i ≤ −1 ≤ λi (i = 2, . . . , k). (3.28)

From (3.28) we have k ≤ m−+m0+1 and k ≤ m0+m+. From the right-hand
side of (3.27) we have k ≤ 1 + ρ. Hence k ≤ s. If k = s = m− + m0 + 1
then (again by interlacing) k − 1 ≥ λ∗, where λ∗ denotes the least eigenvalue
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3.10 Spectral bounds for graph invariants 89

greater than −1. In this situation λ∗ ≤ m− + m0, and the last assertion of the
theorem follows. �

Note that the upper bound s in Theorem 3.10.3 is attained in the complete
multipartite graph mKn (for which m− = m−1, m0 = 0 and m+ = mn−m+
1). For a spectral lower bound on ω(G), we make use of the Motzkin–Straus
inequality:

Lemma 3.10.4 [MotSt]. If G is a graph with adjacency matrix A then

max{x�Ax : x ≥ 0, j�x = 1} = 1− 1

ω(G)
.

Proof. Let x = (x1, . . . , xn)
� and let S be the simplex {x ∈ IRn : x ≥

0, j�x = 1}. We write F(x) = x�Ax and f (G) = max{F(x) : x ∈ S}. If the
vertices 1, . . . k induce a largest clique, and if we set x1 = · · · = xk = 1/k,
xk+1 = · · · = xn = 0, then

f (G) ≥ 2

(
k

2

)
1

k2
= 1− 1

k
= 1− 1

ω(G)
.

The reverse inequality is proved by induction on n. If n = 1 then f (G) = 0
and ω(G) = 1. Now suppose that n > 1 and the result holds for graphs with
n − 1 vertices. If the maximum f (G) is attained on a hyperplane xi = 0 then,
applying the induction hypothesis to G ′ = G − i , we have

f (G) = f (G ′) = 1− 1

ω(G ′)
≤ 1− 1

ω(G)
.

Otherwise, the maximum f (G) is attained at a point c = (c1, c2, . . . , cn)
�

with all ci > 0. If we apply the method of Lagrange multipliers (with multiplier
θ ) to the function

F(x1, x2, . . . , xn)− θ(x1 + x2 + · · · + xn − 1),

we find that F1(c) = F2(c) = · · · = Fn(c) = θ , where Fi (x) = ∂F/∂xi . If G
is not complete, say vertices 1 and 2 are non-adjacent, then for any c ∈ IR, we
have

F(x1 − c, x2 + c, x3, . . . , xn) = F(x)− c(F1(x)− F2(x)).

Taking c = c1 we find that

F(0, c1 + c2, c3, . . . , cn) = F(c).

Thus the maximum f (G) is attained on x1 = 0 and the result follows as before.
Finally, if G is complete then n = ω(G) and the Cauchy–Schwarz inequality
yields:
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F(x) = (x1 + · · · + xn)
2 − x2

1 − · · · − x2
n = 1− ‖x‖2 ≤ 1− 1

n . �

Theorem 3.10.5 [Nik1]. If G is a graph with n vertices and m edges then

λ1(G) ≤
√

2m
ω(G)− 1

ω(G)
, equivalently ω(G) ≥ 2m

2m − λ2
1

.

Proof. Let y = (y1, . . . , yn) be a unit eigenvector of G corresponding to
λ1(G). By the Cauchy–Schwarz inequality, we have

λ1(G)
2 =

⎛
⎝2
∑
i∼ j

yi y j

⎞
⎠2

≤ 4m
∑
i∼ j

y2
i y2

j .

Applying Lemma 3.10.4 to the vector x = (y2
1 , . . . , y2

n)
�, we have

2
∑
i∼ j

y2
i y2

j ≤
ω(G)− 1

ω(G)
,

and the result follows. �

We mention without proof a related result of Bollobás and Nikiforov
[BolNi]: if G has n vertices and ks(G) denotes the number of cliques in G
with s vertices then

kr+1(G) ≥
(
λ1(G)

n
− 1+ 1

r

)
r(r − 1)

r + 1

(n

r

)r+1
.

A k-colouring of the graph G is an assignment of k colours to the vertices
of G such that adjacent vertices have different colours. The chromatic number
of G, denoted by χ(G), is the smallest k for which G has a k-colouring. The
spectral upper bound for χ(G) which follows is an improvement on the well-
known inequality χ(G) ≤ 1+�(G).
Theorem 3.10.6 [Wilf]. For any graph G we have χ(G) ≤ 1+ λ1(G).

Proof. Suppose that k = χ(G). We may delete vertices from G as necessary
to obtain an induced subgraph H such that χ(H) = k and χ(H − v) = k − 1
for any vertex v of H . In a (k − 1)-colouring of H − v, all k − 1 colours are
represented among the neighbours of v (for otherwise the (k− 1)-colouring of
H − v may be extended to a (k − 1)-colouring of H ). Thus δ(H) ≥ k − 1.
Using Theorem 3.2.1 and interlacing, we have

k ≤ δ(H)+ 1 ≤ λ1(H)+ 1 ≤ λ1(G)+ 1,

and the result follows. �
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Theorem 3.10.7 [Hof6]. Let G be a graph with n vertices and at least one
edge. Then

χ(G) ≥ 1+ λ1(G)

|λn(G)| .

Proof. Let k = χ(G) and consider a partition of V (G) into k colour classes.
Each colour class is an independent set, and so (with an appropriate labelling of
vertices) the adjacency matrix A(G) has a block form in which all the diagonal
blocks Aii are zero matrices. By Corollary 1.3.17 we have

λ1(G)+ (k − 1)λn(G) ≤
k∑

i=1

λmax(Aii ) = 0.

Since G has at least one edge, we have λn(G) < 0 (for example by interlacing).
The result follows on division by |λn(G)|. �

The bound in Theorem 3.10.7 is attained in any non-trivial complete graph.
Note that always |V (G)| ≤ χ(G)α(G), and so for regular graphs, Theorem
3.10.7 follows from Theorem 3.10.2.

Since χ(G) ≥ ω(G), Theorem 3.10.5 provides another lower bound for
χ(G). Finally, we mention without proof a further bound from [Nik4]: for any
graph G with n vertices,

χ(G) ≥ 1+ λ1(G)

ν1(G)− λn(G)
,

where ν1(G) is the largest eigenvalue of the Laplacian matrix of G.

3.11 Constraints on individual eigenvalues

We have already seen that, in general, the spectrum of a graph does not deter-
mine the graph completely. Nevertheless it can often happen that just a single
eigenvalue can provide considerable structural information. In what follows we
examine some such situations, with a focus on the largest and second largest
eigenvalues. Graphs with least eigenvalue ≥ −2 were investigated in Section
3.4; the general relationship between graph structure and a single eigenvalue
is discussed in Chapter 5.

3.11.1 The largest eigenvalue

The largest eigenvalue of a graph is always non-negative. For a connected
graph G, the largest eigenvalue is equal to 0 if and only if G = K1; it is
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Figure 3.5 The Smith graphs.

equal to 1 if and only if G = K2; and it is equal to
√

2 if and only if G = K1,2.
All these conclusions follow from the Interlacing Theorem. In addition, there
is no graph whose largest eigenvalue lies in the intervals (0, 1) and (1,

√
2).

On the other hand, there are infinitely many graphs whose largest eigenvalue
lies in the interval (

√
2, 2). We show that these graphs are proper subgraphs of

the Smith graphs, i.e. the graphs whose largest eigenvalue is equal to 2.

Theorem 3.11.1 [Smi]. The connected graphs whose largest eigenvalue does
not exceed 2 are precisely the induced subgraphs of the graphs shown in
Fig. 3.5, where the graphs are labelled with a subscript that denotes the
number of vertices.

Proof. In Fig. 3.5, the vertices of each graph are labelled with the entries of
an eigenvector corresponding to the eigenvalue 2. Since all these entries are
positive each graph in Fig. 3.5 has 2 as the largest eigenvalue.

Any connected graph may be constructed from K1 by adding vertices
successively and maintaining connectedness at each stage. As we saw in
Proposition 1.3.9, λ1 increases strictly with the addition of each vertex. Hence
if G is a connected graph with λ1(G) ≤ 2 then G is either a cycle Cn or a tree;
moreover K1,4 is the only possible tree with a vertex of degree greater than
3. If the maximum degree is 3, then either G is Yn or G has a unique vertex
of degree 3 with three paths attached. In the second case, either G is F7 or
one of the three paths has length 1. If one path has length 1 then either G is
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Figure 3.6 The graphs T (p, q, r) and Q(p, q, r).

F8 or a second path has length less than 3. In the latter case, G is an induced
subgraph of F9 or F8. Finally, if the maximum degree of a vertex in G is 2
then G is a path and hence an induced subgraph of some Cn . This completes
the proof. �

It is interesting to see what happens if the upper bound for λ1 is extended a

little beyond 2. The next bound considered in the literature is
√

2+√5 ≈
2.05817, and then the structure of the graphs in question is still relatively
simple, as we now describe.

Let T (p, q, r) and Q(p, q, r) be the graphs depicted in Fig. 3.6. Then
we have:

Theorem 3.11.2 [BroNe, CvDG]. If G is a connected graph whose largest
eigenvalue lies in the interval (2,

√
2+√5 ) then G is one of the following

graphs:

(a) T(p,q,r) for p = 1, q = 2, r > 5, or p = 1, q > 2, r > 3, or p = 2,
q = 2, r > 2, or p = 2, q = 3, r = 3;

(b) Q(p,q,r) for (p,q,r) ∈ {(2, 1, 3), (3, 4, 3), (3, 5, 4), (4, 7, 4), (4, 8, 5)},
or p > 1, r > 1, q ≥ q∗(p, r), where (p, r) 
= (2, 2) and

q∗(p, r) =
{

p + r i f p > 3,
2+ r i f p = 3,
−1+ r i f p = 2.

It is also worth mentioning that, while
√

2+√5 cannot be an eigenvalue of

any graph, any real number α greater than
√

2+√5 is a limit point for graph
indices. In other words, there is a sequence of graphs G1,G2, . . . such that the
sequence λ1(G1), λ1(G2), . . . converges to α (see [She]).

More recently, the number 3
2

√
2 ≈ 2.12312 was considered by Woo and

Neumaier as the ‘next’ bound for the index:
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Theorem 3.11.3 [WoNe2]. If G is a graph with index at most 3
2

√
2 then G is

one of the following:

(a) a tree of maximum degree 3 such that all vertices of degree 3 lie on a path,
(b) a unicyclic graph of maximum degree 3 such that all vertices of degree 3

lie on a cycle,
(c) a tree of maximum degree 4 such that all vertices of degree 2 lie on a path.

Note that the converse of Theorem 3.11.3 is false in general. An interesting
bound beyond 3

2

√
2 has not yet been identified.

3.11.2 The second largest eigenvalue

In this subsection we give a survey (mostly without proofs) of results that
describe, for various values of α, the graphs G such that λ2(G) ≤ α. Always
λ2(G) ≥ −1, with equality if and only if G is complete. Indeed, if G is not
complete then G has K1,2 as an induced subgraph, and we have λ2(G) ≥ 0 by
interlacing.

Proposition 3.11.4 [Smi]. The non-trivial connected graphs G with λ2(G) =
0 are precisely the complete multipartite graphs other than the graphs
Kn (n > 1).

Proof. Let G be a connected graph which is not complete. If G is not a
complete multipartite graph then G has K2 ∪̇ K1 as an induced subgraph H .
Considering a shortest path in G between the two components of H , we see
that G has K1 � (K2 ∪̇ K1) or P4 as an induced subgraph. Since both of these
graphs have second largest eigenvalue greater than 0 (see Table A1), we have
λ2(G) > 0 by interlacing.

If G is a complete multipartite graph then we can use the Courant–Weyl
inequalities to show that λ2(G) = 0. By Theorem 1.3.15 we have λ2(G) +
λn(G) ≤ −1; the claim follows since the components of G are complete
graphs, and one of them is non-trivial. �

We state the following result without proof:

Theorem 3.11.5 [CaoHo]. The connected graphs G with 0 < λ2(G) <
1
3 are

the graphs Hn = (n − 3)K1 � (K2 ∪̇ K1) (n ≥ 4).

This remarkable result shows that the graphs Hn are determined by the sec-
ond largest eigenvalue. Note also that limn→∞ λ2(Hn) = 1/3, while 1/3 itself
is not a graph eigenvalue.
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The question arises as to whether there are any wider classes of graphs
whose structure is, to some extent, determined by larger upper bounds on the
second largest eigenvalue. It turns out that

√
2 − 1 is a good choice of upper

bound in this respect, because the graphs which arise can be described explic-
itly. They were found independently by Li [Li] and Petrović [Pet2]; details
appear in [PetRa, Chapter 3]. The next bound, a more natural one, is the golden

section σ =
√

5−1
2 . Since λ2(P4) = σ and λ2(2K2) = 1, neither P4 nor 2K2 is

an induced subgraph of a graph G for which λ2(G) < σ . We denote by C the
class of graphs without P4 or 2K2 as an induced subgraph. If G ∈ C then either
G has an isolated vertex or G is not connected (Exercise 3.25). It follows that
C can be defined recursively as follows:

(i) K1 ∈ C;
(ii) if G ∈ C then G ∪̇ K1 ∈ C;

(iii) if G1,G2 ∈ H then G1 � G2 ∈ C.

Now we introduce some more terminology. The graphs G with λ2(G) ≤ σ
(the σ -property) will be called σ -graphs. The graphs G for which λ2(G) <
σ , λ2(G) = σ and λ2(G) > σ will be called σ−-graphs, σ 0-graphs and
σ+-graphs, respectively. Note that any σ−-graph belongs to C, but not vice
versa. The class C was introduced in [Sim7], where each graph G from C is
represented by a weighted rooted tree TG (called an expression tree for G),
defined recursively as follows:

any subgraph H = (((H1 � H2)� · · · )� Hm) ∪̇ nK1 (m ≥ 0, n > 0) of G is
represented by a subtree TH with a root v of weight n whose neighbours in TH are
the roots v1, v2, . . . , vm of the subtrees representing H1, H2, . . . , Hm respectively.

Example 3.11.6. If G = (((((K1�K1) ∪̇ K1)�K1)�K1)�K1) ∪̇ 3K1, then
the corresponding expression tree is depicted in Fig. 3.7(a). In Fig. 3.7(b) we
represent the same graph by a diagram in which a line between two circled sets
of vertices denotes that each vertex inside one set is adjacent to every vertex
inside the other set. �

It turns out that these weighted trees can be used to categorize σ−-graphs:
the weighted tree of any such graph is of one of the nine types illustrated in
Fig. 3.8. This result was used in [Sim6] to prove the existence of a finite family
of minimal forbidden (induced) subgraphs for the σ−-property; except for 2K2

and P4, they belong to the class C. Details of such a family may be found in
[Sim6]. Some of these minimal forbidden subgraphs have a huge number of
vertices (see [Sim6, CvSi4]), and to date the divisor technique and a computer
search have proved insufficient to identify all those of the last type illustrated
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Figure 3.7 An expression tree and associated diagram.

in Fig. 3.8. On the other hand, some arbitrarily large families of σ−-graphs are
described in [Sim8].

Now we turn our attention to σ -graphs. It was first observed in [CvSi2] that,
apart from complete multipartite graphs and subgraphs of C5, the structure
of such a graph G can be specified in relation to a triangle of G (see [CvRS2,
Chapter 9] or [PetRa, Chapter 3]). There exists a finite set of minimal forbidden
subgraphs for the σ -property, but such a set remains to be constructed. The
following result provides some additional information:

Theorem 3.11.7. If H is a minimal forbidden subgraph for the σ -property,
then either

(a) H is one of the graphs 2K2, J1, J2, J3, J4 (see Fig. 3.9), or
(b) H belongs to the class C.

The problem of finding the graphs G with λ2(G) ≤ 1 is attributed to Hoff-
man. Cvetković [Cve8] showed that if G is such a graph then either G has girth
at most 6, or G is a tree of diameter at most 4. Petrović [Pet1] showed that the
bipartite graphs which arise fall into seven classes, three of them infinite:

Theorem 3.11.8. Let G be a connected bipartite graph. Then λ2(G) ≤ 1 if
and only if G is an induced subgraph of a graph illustrated in Fig. 3.10.

Fig. 3.10 depicts three infinite families of graphs and four individual graphs.
In all cases, encircled vertices form a co-clique, and a full line between co-
cliques indicates a complete bipartite subgraph. Parallel broken lines between
the vertices of two co-cliques indicate a graph obtained from some Kn,n by
deleting n independent edges. Parallel full lines between the vertices of two
co-cliques indicate a graph of the form nK2.

As a consequence of Theorem 3.11.8, the bipartite graphs with λ2 ≤ 1 can
be characterized by a family of 12 forbidden subgraphs (see [Pet1] or [PetRa,
Chapter 3]).
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Figure 3.8 Expression trees for σ−-graphs.
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Figure 3.9 Some graphs from Theorem 3.11.7.

By Theorem 1.3.13, we have λ2(G)+λn−1(G) ≥ −1 and λ2(G)+λn(G) ≤
−1. These inequalities provide a natural link between the graphs with λ2 ≤ 1
and the graphs with least eigenvalue ≥ −2:
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(a) λn(G) = −2.074, λ2(G) = 0.753
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G

(b) λn(G) = −2.136, λ2(G) = 1.082

Figure 3.11 Examples related to Theorem 3.11.9.

Theorem 3.11.9 [Cve8]. Let G be a graph on n vertices with λ2(G) ≤ 1.
Then either

(a) λn(G) ≥ −2, or
(b) λn(G) < −2 and λn−1(G) ≥ −2.

Conversely, if λn(G) ≥ −2 then λ2(G) ≤ 1.

A graph which satisfies condition (b) may or may not have λ2(G) ≤ 1:
see the graphs in Fig. 3.11, where in each case λn(G) and λ2(G) are as shown.
Note that if a graph has λn(G) = −2 with multiplicity at least 2, then λn(G) =
λn−1(G), and so necessarily λ2(G) = 1.

Since EG(λ)∩ j⊥ = EG(−1−λ)∩ j⊥ for any eigenvalue λ of G, we can say
a little more by way of a converse in Theorem 3.11.9:
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Figure 3.12 The graphs from Theorem 3.11.12.

Theorem 3.11.10 [Cve8]. Let G be a graph on n vertices. Then:

(i) if G is a graph with λn(G) > −2 then λ2(G) < 1;
(ii) if G is a graph with λn(G) = −2 then λ2(G) ≤ 1, with strict inequality if

and only if −2 is a simple main eigenvalue of G.

We conclude this subsection with two general results. The first applies to
trees, and is due to Neumaier:

Theorem 3.11.11 [Neu]. If T is a tree with λ2(T ) ≤ λ then either

(a) there exists a vertex v of T such that λ1(T − v) ≤ λ, or
(b) there exists an edge uv of T such that T − uv = T1 ∪̇ T2 where

λ1(T1 − u) < λ < λ1(T ) and λ1(T2 − v) < λ < λ1(T ).

Taking λ = 2 in Theorem 3.11.11, we see that if T is a tree with λ2(T ) ≤ 2
then either an edge or a vertex may be deleted to obtain subtrees that have
index at most 2 and are therefore of the very restricted type described in The-
orem 3.11.1. A similar approach is used by Neumaier and Seidel [NeuSe] to
investigate arbitrary graphs G with λ2(G) ≤ 2: such graphs are called reflex-
ive graphs because of their relation to automorphism groups of certain lattices
generated by reflections. More on reflexive graphs can be found in [PetRa,
Chapter 3].

The second general result is due to Howes:

Theorem 3.11.12 [How]. For an infinite set of graphs G, the following
statements are equivalent.

(i) There exists a real number α such that λ2(G) ≤ α for every G ∈ G.
(ii) There exists a positive integer s such that for each G ∈ G, the graphs

(Ks ∪̇ K1)� Ks, (sK1 ∪̇ K1,s) � K1, (Ks−1 ∪̇ sK1) � K1, Ks ∪̇ K1,s ,
2K1,s , 2Ks and the graphs in Fig. 3.12 (each obtained from two copies of
K1,s by adding extra edges) are not induced subgraphs of G.
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Exercises

3.1 Derive the formula given in Theorem 3.1.5.
3.2 Provide the details required to complete the proof of Theorem 3.1.6.
3.3 Let G be an r -regular graph, and let c(i) be the number of cycles in G of

length i (i = 3, 4, 5). Show that, in the notation of Corollary 2.3.3,

c(3) = −1

2
c3, c(4) = 1

4
(c2

2 + 2rc2 − c2 − 2c4),

c(5) = 1

2
(c2c3 + 3rc3 − 3c3 − c5).

3.4 Show that the eigenvalues and angles of a graph G determine whether or
not G is a tree.

3.5 Let G be a graph with index λ1 and adjacency matrix A. Show that G
is connected if and only if for any λ > λ1, each entry of (I − 1

λ
A)−1 is

positive.
3.6 Prove Theorem 3.4.4.
3.7 Prove Theorem 3.4.5.
3.8 Show that the Petersen graph is not a generalized line graph. Find a

representation of this graph in E6.
3.9 Prove Lemma 3.4.7.

3.10 Let T = Y6 (the corona K2 ◦ 2K1). Show that if the cubic graph G is the
edge-disjoint union of subgraphs isomorphic to T , then 0 is an eigenvalue
of G.

3.11 Show that if G is a strongly regular graph with parameters (n, r, e, f )
then its complement G is strongly regular with parameters (n̄, r̄ , ē, f̄ ),
where

n̄ = n, r̄ = n − r − 1, ē = n − 2− 2r + f, f̄ = n − 2r + e.

3.12 Show that a strongly regular graph G is imprimitive if and only if G or
G is a complete multipartite graph of the form Km,m,...,m .

3.13 Show that if n ≥ 2m then the distinct eigenvalues of the Johnson graph
J (n,m) are (m − i)(n − m − i) − i , with multiplicity

(n
i

) − ( n
i−1

)
(i =

0, 1, . . . ,m).
3.14 Verify Equations (3.21).
3.15 Verify the properties claimed for the graph constructed in Example

3.7.1(i).
3.16 Show that a connected graph is distance-regular if and only if for each

positive integer k, the number of i- j walks of length k depends only on
d(i, j).
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3.17 By finding an appropriate eigenvector, show that there is no distance-
regular graph with intersection array {3, 2, 1; 1, 1, 3}.

3.18 Show that the orbits of any group of automorphisms of a graph G form
an equitable partition of G.

3.19 Prove that if the vertices u, v are similar then the angles αiu , αiv coincide
for each i ∈ {1, . . . ,m}.

3.20 Let π be an automorphism of a graph G. Show that if π has s cycles
of odd length and t cycles of even length (when written as a product of
disjoint cycles) then the number of simple eigenvalues of G is at most
s + 2t .

3.21 Let G be a graph whose characteristic polynomial is irreducible over the
rationals. Show that G has no non-trivial automorphisms.

3.22 Prove that K2 is the only non-trivial vertex-transitive graph without
multiple eigenvalues.

3.23 Show that if a graph G has mean degree d and just two main eigenvalues,
μ1 and μ j ( j > 1), then [Row16]

1

n

n∑
i=1

(di − d)2 = (μ1 − d)(d − μ j ).

3.24 Let G be a non-trivial connected graph with index μ. Show that G is a
semi-regular bipartite graph if and only if the main eigenvalues of G are
μ and −μ [Plo, Row16].

3.25 Let G be a graph with neither P4 nor 2K2 as an induced subgraph. Show
that either G has an isolated vertex or G is not connected.

3.26 Let G be a graph with spectrum λ1 ≥ λ2 ≥ · · · ≥ λn . Show that if G is
not complete then [Hof6]:

χ(G) ≥ n + λ2 − λ1

1+ λ2
.

3.27 (a) Let λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n be the eigenvalues of the graph G, and let
k = χ(G). Show that λ∗1 + λ∗2 + · · · + λ∗k−1 + λ∗n ≤ 0.
(b) Show that if further G is k-colourable in such a way that two vertices
are adjacent if and only if they have different colours, then equality holds
in (a).

3.28 Let G be a graph with eigenvalues λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n . Show that if G
has independence number α(G) and clique number ω(G), then

λ∗α(G)+1 ≥ 0, λ∗n−α(G) ≤ 0, λ∗n−ω(G)−1 ≤ −1, λ∗ω(G)+1 ≥ −1.
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Notes

Analogues of Theorem 3.5.3, concerning similar measures of expansion for
arbitrary graphs, appear in Chapter 7 in the context of the Laplacian spectrum.
A proof of the relation (3.17) is given in the monograph [DavSV], along with
a self-contained treatment of the Ramanujan graphs of Lubotzky, Phillips and
Sarnak [LuPS]. Cubic Ramanujan graphs are discussed in [Chi], and the girth
of Ramanujan graphs is investigated in [BigBo].

All rank 3 permutation groups (and by implication all rank 3 graphs) are
known as a consequence of the classification of finite simple groups (see
[Cam2]). Among strongly regular graphs, the rank 3 graphs are relatively rare;
a compilation of strongly regular graphs may be found in [Hub]. Those with
strongly regular subconstituents are investigated in [CamGS]. Some further
feasibility conditions for the existence of strongly regular graphs with pre-
scribed parameters can be found in [BroLi]. The absolute bound and the Krein
inequalities for strongly regular graphs are special cases of general inequalities
for association schemes (see [BroCN, Chapter 2]).

Distance-regular graphs arose in a paper of Biggs [Big1] and a good intro-
duction to the topic may be found in his monograph [Big2], a secondary source
for Example 3.7.1(iii). The monograph [BroCN] is the standard reference for
a comprehensive treatment, with 800 references. For graphs in the follow-
ing categories, it lists all the arrays which pass all known feasibility tests for
distance-regularity : (i) graphs with diameter ≥ 5 and at most 4096 vertices,
(ii) non-bipartite graphs with diameter 4 and at most 4096 vertices, (iii) primi-
tive graphs with diameter 3 and at most 1024 vertices. (In this context, a graph
with diameter d is primitive if each of A1, A2, . . . , Ad is the adjacency matrix
of a connected graph.) For a survey of distance-transitive graphs, see [Coh].

For a survey of graph automorphisms, see [Cam3]. The proofs of The-
orem 3.9.9 and its corollaries are taken from [Row16], a survey of main
eigenvalues which includes a discussion of the cases MG(x) = x2 − μ2,
MG(x) = x(x2−μ2). Theorem 3.9.9 was first established in [Cve6] by means
of walk-generating functions. The concept of a divisor has been exploited in
coding theory; see [CvLi].

Graphs whose spectra conform to prescribed conditions (such as those inves-
tigated in Section 3.11) are said to be spectrally constrained; such graphs
are the subject of the monograph [PetRa]. The second largest eigenvalue of
line graphs and generalized line graphs is discussed in [PetMi1] and [PetMi2]
respectively. A survey of results on λ2 may be found in [CvSi3]. In view of the
relation λ2(G) + λn(G) ≤ −1, there is a natural link between lower bounds
for λn and upper bounds for λ2. An analogue of Theorem 3.11.12 for graphs

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.004
https:/www.cambridge.org/core


Notes 103

whose least eigenvalue is bounded below may be found in [Hof8]. Graphs
with least eigenvalue ≥ −√3 are determined in [CvSt]; those with least eigen-
value ≥ −1 − √2 are discussed in [Hof7] and [WoNe1]. The graphs with
maximal least eigenvalue, among the connected non-complete graphs with a
prescribed number of vertices, are determined in [Hon3]. The graphs with min-
imal least eigenvalue, among the connected graphs with prescribed numbers
of vertices and edges, are discussed in Section 8.2. The corresponding prob-
lem concerning the maximal index is investigated in Section 8.1. The graphs
with maximal index, among the graphs with a prescribed number of edges, are
determined in [Row4]; see also [CvRS2, Chapter 3], where graphs with maxi-
mal index in various classes of graphs are described. A survey of results on the
index of a graph may be found in [CvRo3].

Non-regular graphs with just three eigenvalues are discussed in [BriMe],
[Dam2], [MuKl], and regular graphs with just four eigenvalues are investigated
in [Dam1], [DamSp].

For a discussion of NP-completeness in a combinatorial context, see [BruRy,
pp. 245–8].
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4

Characterizations by spectra

In this chapter we discuss several instances of the following problem:
Given the spectrum, or some spectral characteristics of a graph, determine

all graphs from a given class of graphs having the given spectrum, or the given
spectral characteristics.

In some cases, the solution of such a problem can provide a characteriza-
tion of a graph up to isomorphism (see Section 4.1). In other cases we can
deduce structural details (see also Chapter 3). Non-isomorphic graphs with the
same spectrum can arise as sporadic exceptions to characterization theorems or
from general constructions. Accordingly, Section 4.2 is devoted to cospectral
graphs; we include comments on their relation to the graph isomorphism prob-
lem, together with various examples and statistics. We also discuss the use of
other graph invariants to strengthen distinguishing properties. In particular, in
Section 4.3, we consider characterizations of graphs by eigenvalues and angles.

4.1 Spectral characterizations of certain classes of graphs

In this section we investigate graphs that are determined by their spectra. The
three subsections are devoted to (i) elementary characterizations, (ii) charac-
terizations of graphs with least eigenvalue −2, and (iii) characterizations of
special types. In the case of (i), a graph is uniquely reconstructed from its spec-
trum, while in cases (ii) and (iii) various exceptions occur due to the existence
of cospectral graphs.

4.1.1 Elementary spectral characterizations

We say that a graph G is characterized by its spectrum if the only graphs
cospectral with G are those isomorphic to G.

104
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4.1 Characterizations of certain classes of graphs 105

Note first that this condition is satisfied by graphs which are characterized by
invariants (such as the number of vertices and edges) which can be determined
from the spectrum. Examples include the complete graphs and graphs with one
edge, together with their complements. Given the spectrum spec(G) of a graph
G we can always establish whether or not G is regular (see Corollary 3.2.2);
moreover, if G is regular, the largest eigenvalue is the degree of regularity (see
Proposition 1.1.2). It follows that if G or G is regular of degree 1 then G is
characterized by its spectrum.

Regular graphs of degree 2 are unions of cycles. As we saw in Example
1.1.4, the eigenvalues of the cycle Cn are the real parts of the n-th roots of 2n ,
i.e. the numbers

2 cos
2π

n
j ( j = 0, 1, . . . , n − 1).

The largest eigenvalue is λ1 = 2 (which arises when j = 0) and the second

largest is two-fold: λ2 = λ3 = 2 cos
2π

n
(which arises when j = 1 and j =

n− 1). Suppose now that G = Cn1 ∪̇ · · · ∪̇ Cnk . Then the eigenvalues of G are
the numbers

2 cos
2π

ni
j ( j = 0, 1, . . . , ni − 1; i = 1, . . . , k).

Given spec(G), we can first establish (as above) that G is regular of degree 2.
From the second largest eigenvalue in spec(G), we can determine the length
m of the largest cycle in G. Now we eliminate the eigenvalues of Cm and (if
eigenvalues remain) repeat the process. Proceeding in this way, we can identify
the lengths of all cycles of G, and thereby determine G up to isomorphism.
Accordingly, we have the following theorem:

Theorem 4.1.1 [Cve1]. Any regular graph of degree 2 is characterized by its
spectrum.

Remark 4.1.2. From the spectrum of a regular graph G we can find the spec-
trum of G (see Theorem 2.1.2), and so it follows from Theorem 4.1.1 that any
n-vertex graph which is regular of degree n−3 is characterized by its spectrum.
This result was proved for connected multigraphs by Finck [Fin]. �

It is also straightforward to show that a graph of the form mKn is char-
acterized by its spectrum, a fact established in complementary form by
Finck:

Theorem 4.1.3 [Fin]. For each positive integer n, the complete multipartite
graph Kn,n,...,n is characterized by its spectrum.

The next result, however, does not admit a transition to the complement.
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106 Characterizations by spectra

Theorem 4.1.4 [Cve1]. The spectrum of the graph G is n1 − 1, . . . , nk −
1, 0s, (−1)n1+···+nk−k if and only if G = Kn1 ∪̇ · · · ∪̇ Knk ∪̇ sK1.

It follows from Theorem 3.1.11 that the path Pn is characterized by its spec-
trum (Exercise 4.6); the same is true of Pn , but the proof cannot be described
as elementary (see [DooHa]). A lollipop graph is obtained from Pn (n ≥ 4) by
adding an edge joining non-adjacent vertices of degrees 1 and 2. It has recently
been shown, in a long proof, that every lollipop graph is characterized by its
spectrum [HaeLZ, BouJo].

We continue with two examples where the Interlacing Theorem (Corollary
1.3.12) is sufficient to obtain a spectral characterization. In each case the pre-
scribed spectrum lies in the interval in [−2, 4], and so any graph with an
eigenvalue less than −2 (or greater than 4) is forbidden as an induced sub-
graph. In the next subsection we discuss more general results obtained using
our knowledge of the regular graphs with least eigenvalue ≥ −2.

Proposition 4.1.5. L(C6) is characterized by its spectrum.

Proof. Suppose that G is a graph with the spectrum of L(C6), namely
4, 2, 12, (−1)2, (−2)3. By Corollary 3.2.2, G is 4-regular. For u ∈ V (G), let
G(u) denote the subgraph of G induced by the neighbours of u. By Theorem
3.1.1, the average number of edges in the subgraphs G(u) is less than three.
Thus there exists a vertex v of G with |E(G(v))| ≤ 2. Consider the vertex v
along with its four neighbours. In order to avoid an induced subgraph on five
or six vertices with least eigenvalue less than −2, it must be the case that G(v)
consists of two independent edges.

Let G(v)∗ denote the subgraph induced by v and its neighbours, and let H
be the subgraph induced by the remaining four vertices of G. Note that (i)
there are eight edges between G(v)∗ and H , (ii) no vertex of H is adjacent to
three vertices of G(v)∗, again because of forbidden subgraphs. It follows that
H is a 4-cycle. The remaining edges can be added in only two ways to avoid
forbidden subgraphs: one yields L(C6) and the other yields L(K3,3) (whose
spectrum is 4, 14, (−2)4).

This completes the proof. �

Proposition 4.1.6. Let H8 denote the cubic graph on eight vertices formed by
taking two copies of the graph on four vertices with five edges and adding two
appropriate edges. Then L(H8) is characterized by its spectrum.

Proof. Suppose that G is a graph with the spectrum of L(H8), namely
4, 1 + √5, 2, 04, 1−√5, (−2)4. As before, let G(u) denote the subgraph of
G induced by the neighbours of u (u ∈ V (G)). By Theorem 3.1.1 the aver-
age number of edges in the subgraphs G(u) is three. Let us suppose first that

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.005
https:/www.cambridge.org/core


4.1 Characterizations of certain classes of graphs 107

every subgraph G(u) has three edges. Then each G(u) is K1,3, K3 ∪̇ K1 or
P4. Suppose that v is a vertex for which G(v) is K1,3, and let w be one of the
vertices of degree 1 in G(v). Then G(w) has fewer than three edges, contrary
to assumption. If G(v) is K3 ∪̇ K1, then G(u) is K3 ∪̇ K1 for every vertex u. In
this case, each vertex lies in exactly one complete graph with four vertices, and
G consists of three disjoint copies of K4 together with six edges. There is only
one regular graph with this property, and it is the line graph of a semi-regular
bipartite graph, with spectrum 4, (1+√2)2, 03, (1−√2)2, (−2)4. If G(u)
is P3 for every u, then there is only one way to complete the graph avoiding
forbidden subgraphs, and the spectrum is 4, (1+√3)2, 03, (1−√3)2, (−2)4.

These contradictions show that there is a vertex v such that G(v) has
fewer than three edges, and as in Proposition 4.1.5, G(v) has two independent
edges.

Now Fig. 4.1 illustrates all the possible ways of adding further vertices
adjacent to neighbours of v. In each case, it is straightforward to complete
the graph. Among the graphs obtained in this way, only L(H8) has the given
spectrum. �

In the last proof, details of the completions are left to the reader. To prove
that a completed graph does not have the given spectrum, it suffices here to
count the numbers of triangles, quadrilaterals and pentagons (see Chapter 3).1
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Figure 4.1 The graphs from Proposition 4.1.6.

1 The graphs can be completed by hand or by the use of graph editing computer packages such
as ‘newGRAPH’ (www.mi.sanu.ac.yu/newgraph/), where interactive facilities enable
the spectrum of each extension to be calculated.
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4.1.2 Graphs with least eigenvalue –2

Most spectral characterization theorems are related to graphs with least eigen-
value −2, reflecting the fact that such graphs are well understood: we saw in
Section 3.4 that there are only finitely many such graphs which are connected
but not generalized line graphs, and these are called exceptional graphs (see
also Chapter 5). We have also seen that the properties of regularity, and then
connectedness, can be established from the spectrum. In this section we show
how knowledge of the regular exceptional graphs leads to spectral character-
izations of connected regular graphs with least eigenvalue −2. The regular
exceptional graphs were determined in 1976 with the aid of a computer; they
are not listed here but can be found in [CvRS7, Table A3]. However, the
first general results, which we state without proof, were obtained by Hoffman
[Hof1, Hof2] in the early 1960s.

Theorem 4.1.7. If n 
= 8 then L(Kn) is characterized by its spectrum.
Note that L(Kn) is a regular graph of degree 2n− 4 on n(n− 1)/2 vertices,

with spectrum 2n−4, (n−4)n−1, (−2)n(n−3)/2.

Theorem 4.1.8. If n 
= 4 then L(Kn,n) is characterized by its spectrum.
See Example 2.4.5 for the spectrum of L(Kn,n).
In Theorem 4.1.7 the exceptions which arise when n = 8 are the three Chang

graphs described in Example 1.2.6. Similarly, the only exception in Theorem
4.1.8 when n = 4 is the Shrikhande graph, introduced in Example 1.2.4. The
Shrikhande graph and the Chang graphs are exceptional graphs. Since they
are obtained by Seidel switching (as noted in Chapter 1), one might think
that many other exceptional graphs cospectral with regular line graphs can
be constructed in the same way. In fact, the possibilities are severely restricted
by the following theorem, which relates the divisor concept to switching in
graphs.

Theorem 4.1.9 [Cve6]. If a regular graph G of degree r with n vertices can be
switched into a regular graph of degree r∗, then r∗−n/2 is an eigenvalue of G.

Proof. If G has the stated property in respect of a switching set S of size
t (0 < t < n) then S and its complement determine a divisor with adjacency
matrix ⎛

⎝r − 1
2 (n − t − r∗ + r) 1

2 (n − t − r∗ + r)

1
2 (t − r∗ + r) r − 1

2 (t − r∗ + r)

⎞
⎠ .

The eigenvalues of this matrix are r and r∗ − n/2, and by Theorem 3.9.5, they
are eigenvalues of G. The result follows. �
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Since a rational eigenvalue of a graph is an integer, we have:

Corollary 4.1.10. If n is odd then G cannot be switched into another regular
graph.

Corollary 4.1.11. If the r-regular graph G can be switched into a regular
graph of the same degree and if q is the least eigenvalue of G, then r−n/2 ≥ q,
i.e. n ≤ 2r − 2q. Since q ≥ −r , we have r − n/2 ≥ −r , i.e. r ≥ n/4.

Example 4.1.12. There is no cospectral pair of non-isomorphic cubic graphs
with fewer than 14 vertices. Accordingly it follows from Corollary 4.1.11 that
the existence of (non-isomorphic) cospectral cubic graphs cannot be explained
by switching. �

Example 4.1.13. If L(Ks) (s > 1) can be switched to another regular graph of
the same degree then by Corollary 4.1.11, 2s − 4− s(s − 1)/4 ≥ −2, whence
s ≤ 8. (The three Chang graphs arise when s = 8.) �

We extend the argument of Example 4.1.13 to any regular line graph L(G)
where G is connected and non-trivial; there are two cases.

(1) If G is regular of degree r with n vertices then L(G) is of degree 2r − 2
and has nr/2 vertices. If L(G) can be switched into another regular graph
of the same degree then 2r − 2− nr/4 is an eigenvalue of L(G). Clearly,
2r − 2− nr/4 ≥ −2, which implies n ≤ 8.

(2) Let G be semi-regular bipartite with parameters (n1, n2, d1, d2). Then
L(G) has n1d1 (= n2 d2) vertices and degree d1 + d2 − 2. Therefore,
we have

d1 + d2 − 2− n1 d1/2 ≥ −2, n1 d1 ≤ 2 (d1 + d2) ,

n1 ≤ 2 (1+ d2/d1) = 2 (1+ n1/n2), 1/n1 + 1/n2 ≥ 1/2 .

Without loss of generality, n1 ≤ n2. If n1 = 1, then L(G) = Kn2 , a graph
characterized by its spectrum. Doob [Doo3] proved that also L(K2,n2) is char-
acterized by its spectrum; for n2 > 16, this follows from Theorem 4.1.18
below. Accordingly, we suppose that n1 ≥ 3. The possibilities for (n1, n2) are
then (3, 3) (ruled out by Theorem 4.1.2) and (3, 4), (3, 5), (3, 6), (4, 4). In
particular, n1 + n2 ≤ 9 and G has at most 18 edges.

In view of the bounds on the number of vertices established in cases (1) and
(2), it is straightforward to identify the graphs which arise. We shall see that all
graphs cospectral with a connected regular line graph can be constructed from
line graphs by switching. For future reference we illustrate four examples in
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Figure 4.2 Some graphs whose line graphs are switched into exceptional graphs.

Fig, 4.2; here, each of (a), (b), (c), (d) is a graph H in which the bold edges
denote vertices in the switching set for L(H). The graphs obtained by switch-
ing are denoted by G6,G9,G69,G70 respectively (the numbers chosen for
consistency with [CvRS7, Table A4].)

It can also happen that two non-isomorphic regular line graphs have the
same spectrum, and the following theorem specifies the possibilities.

Theorem 4.1.14 [BuCS1, BuCS2]. Let L(G1), L(G2) denote cospectral, con-
nected, regular line graphs of the connected graphs G1, G2. Then one of the
following holds:

(a) G1 and G2 are cospectral regular graphs with the same degree,
(b) G1 and G2 are cospectral semi-regular bipartite graphs with the same

parameters,
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(c) {G1,G2} = {H1, H2}, where H1 is regular and H2 is semi-regular bipar-
tite; in addition there exist positive integers s > 1 and t < 1

2 s, and real

numbers λi , 0 ≤ λi < t
√

s2 − 1, i = 2, 3, . . . , 1
2 s(s − 1), such that H1

has s2 − 1 vertices, degree st , and the eigenvalues

st, ±
√
λ2

i + t2, −t (of multiplicity s);

H2 has s2 vertices, parameters n1 = 1
2 s(s + 1), n2 = 1

2 s(s − 1),

r1 = t (s − 1), r2 = t (s + 1), and the eigenvalues ±t
√

s2 − 1, ±λi , 0
(of multiplicity s).

Proof. We know that if the graph G is connected and the line graph L(G) is
regular then either G is regular or G is a semi-regular bipartite graph. If G1 and
G2 from the theorem are both regular or both semi-regular bipartite we have
cases (a) and (b) of the theorem; this follows readily from Theorems 2.4.1,
2.4.2 and Corollary 2.4.3.

Suppose therefore that {G1,G2} = {H1, H2} where H1 is regular non-
bipartite of degree r with n vertices, H2 is semi-regular bipartite with param-
eters (n1, n2, r1, r2), and n1 > n2. Since L(H1) and L(H2) are cospectral
they must have the same degree, the same number of vertices and the same
multiplicity of the eigenvalue −2. This yields the following relations

r1 + r2 − 2 = 2r − 2, n1r1 = nr

2
(= n2r2),

n1r1 − n1 − n2 + 1 = nr

2
− n,

which may be rewritten as follows:

r = r1 + r2

2
, (4.1)

nr = 2n1r1 = 2n2r2, (4.2)

n = n1 + n2 − 1. (4.3)

If we use (4.1) and (4.3) to substitute for r and n in (4.2), we obtain:

n1 − n2 = r1 + r2

r2 − r1
. (4.4)

Let λ1, λ2, . . . , λn2 be the first n2 largest eigenvalues of H2. From
the proof of Corollary 2.4.3, we know that H2 has also the eigenvalues
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112 Characterizations by spectra

−λ1,−λ2, . . . ,−λn2 and n1 − n2 eigenvalues equal to 0, where λ1 = √r1r2.
Since the sum of squares of eigenvalues is twice the number of edges we have

2r1r2 + 2
n2∑

i=2

λ2
i = 2n1r1,

equivalently,
n2∑

i=2

λ2
i = n1r1 − r1r2. (4.5)

Now, by Theorem 2.4.1 and Corollary 2.4.3, the eigenvalues of H1 are 1
2 (r1 +

r2)with multiplicity 1 (largest eigenvalue), 1
2 (r1−r2)with multiplicity n1−n2

and ±
√
λ2

i + 1
4 (r1 − r2)2 (i = 2, 3, . . . , n2). The sum of eigenvalues must

be 0 and this yields again the relation (4.4). Considering the sum of squares
we have(

r1 + r2

2

)2

+ (n1 − n2)

(
r1 − r2

2

)2

+ 2
n2∑

i=2

(
λ2

i +
(r1 − r2)

2

4

)
= 2n1r1.

Using (4.5), we obtain:

n1 + n2 =
(

r1 + r2

r2 − r2

)2

. (4.6)

Let s = r1 + r2

r2 − r1
. Then s is an integer greater than 1, and relations (4.4) and

(4.6) yield

n1 = s2 + s

2
and n2 = s2 − s

2
.

By Equation (4.1), r1 and r2 are of the same parity, and since r2 > r1 we
can take r2 = r1 + 2t , where t is a positive integer. Then

r1 = t (s − 1) and r2 = t (s + 1).

Since r1 ≤ n2 and r2 ≤ n1 we see that t ≤ s/2. If we now express the
spectra of H1 and H2 in terms of s, t and the λi , the proof of the theorem is
complete. �

Remark 4.1.15. When s = 2 we have H1 = K3 and H2 = K1,3, but then
L(H1) and L(H2) are not only cospectral, but also isomorphic. (By a theorem
of Whitney [Whi], {K3, K1,3} is the only pair of non-isomorphic connected
graphs having isomorphic line graphs.) When s = 3, H2 is the graph shown
in Fig. 4.2(c); but then H1 does not exist. For s = 4 and t = 2 we have
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H2 = K10,6 and H1 = L(K6) and, of course, L(K10,6) and L(L(K6)) are
cospectral but not isomorphic. In the case s = 4, t = 1, H2 belongs to the
design with the parameters v = 6, b = 10, r = 5, k = 3, λ = 2, and H1 is the
Petersen graph. For higher values of s, in the known examples H2 is the graph
of a 2-design. It would be interesting to know whether there exists a pair of
graphs H1, H2 such that (i) H2 is not the graph of a 2-design, and (ii) H1, H2

satisfy the conditions of Theorem 4.1.14(iii) with s > 4. �

Now we turn again to exceptional graphs. We start with the following
definition.

Definition 4.1.16. G is the set of all connected regular graphs, whose adja-
cency matrix has least eigenvalue −2, and which are neither line graphs nor
cocktail-party graphs.

Note that a regular generalized line graph is either a line graph or a cocktail-
party graph (Exercise 1.11), and so G is just the set of exceptional regular
graphs. Hoffman [Hof5] posed the problem of determining G, and he and Ray-
Chaudhuri [HofRa3] showed that graphs in G cannot have degree ≥ 17. As
exceptional graphs, the graphs in G have a representation in the root system E8

(see Chapter 3), and we use this fact to prove the following:

Theorem 4.1.17 [CamGSS, Theorem 4.4]. Any graph in G has at most 28
vertices, and degree at most 16.

Proof. If A is the adjacency matrix of an r -regular graph G in G then the
matrix I + 1

2 A has rank at most 8 since G has a representation in E8. Hence
the positive semi-definite matrix

I + 1

2
A − r + 2

2n
J

has rank at most 7, and is therefore expressible in the form Q�Q, where

Q = (q1| · · · |qn), of size 7 × n. Let Qi = 1

α
qi q�i (i = 1, . . . , n), where

α = 1 − r+2
2n . Thus Qi represents the orthogonal projection of IR7 onto the

line spanned by the vector qi (i = 1, . . . , n). These n projections lie in the
space of symmetric linear maps IR7 → IR7, and with respect to the inner
product

〈Qi , Q j 〉 = α2tr(Qi Q j ) = (qi
�qj)

2,

their Gram matrix is(
1− r + 2

2n

)2

I +
(

1

2
− r + 2

2n

)2

A +
(

r + 2

2n

)2

(J − I − A).
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Since this matrix must be positive semi-definite, each eigenvalue λ of A other
than r satisfies:(

1− r + 2

2n

)2

+
(

1

2
− r + 2

2n

)2

λ+
(

r + 2

2n

)2

(−1− λ) ≥ 0,

equivalently:
λ(n − 2r − 4) ≥ −2(2n − 2r − 4). (4.7)

We distinguish two cases: (a) n − 2r − 4 ≥ 0, (b) n − 2r − 4 < 0.
In case (a), (4.7) is a strict inequality because λ ≥ −2 ; then the vectors

q1, . . . ,qn are linearly independent, and so n ≤ 28, r ≤ 12.
In case (b), (4.7) becomes

λ ≤ 2(2n − 2r − 4)

2r + 4− n
.

Now A has −2 as an eigenvalue of multiplicity at least n − 8. If the remaining
eigenvalues are r > λ2 ≥ · · · ≥ λ8 then we have:

0 = tr(A) = r + (n − 8)(−2)+
8∑

i=2

λi ≤ r − 2n + 16+ 14(2n − 2r − 4)

2r + 4− n
.

In particular, we have r ≤ 17 when n = 28 and r ≤ 16 when n ≤ 27 (Exercise
4.7). To see that n ≤ 28, consider the positive semi-definite matrix I + 2

3 A −
1
3 (J − I ), in which the non-diagonal entries are±1/3. This is the Gram matrix
of n vectors in IR8 which determine n equiangular lines: the angle between
any two of them is cos−1(1/3). However, the maximal number of equiangular
lines in IR8 is 28 (see Section 6.6), and so n ≤ 28; moreover, any set of 28
equiangular lines in IR8 span a 7-dimensional subspace. Hence if n = 28 then
I + 1

2 A has rank at most 7, and so λ8 = −2. In this case,

0 = tr(A) = r + 21(−2)+
7∑

i=2

λi ≤ r − 42+ 12(52− 2r)

2r − 24
,

whence r 
= 17. �

We can now extend Theorem 4.1.8 as follows:

Theorem 4.1.18 [Cve1, Doo1]. If m+n ≥ 19 and if {m, n} 
= {2s2+ s, 2s2−
s}, where s is a positive integer, then L(Km,n) is characterized by its spectrum.

Proof. As before, we may assume that m > 1 and n > 1; then the eigenvalues
of L(Km,n) are m + n − 2, m − 2, n − 2, 2 with multiplicities 1, n − 1, m −
1, mn−m−n+1 respectively. (This follows from Theorems 2.1.8 and 2.4.1.)
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Now let G be a graph with the same spectrum as L(Km,n). We know from
Corollary 3.2.2 and Theorem 1.3.6 that G is a regular connected graph. More-
over, it has degree ≥ 17 and least eigenvalue −2. We conclude that G is a line
graph, say G = L(H), where H has no isolated vertices. Since G is regular,
H is either a regular graph or a semi-regular bipartite graph.

Suppose first that H is regular of degree r . Then 2(r − 1) = m + n − 2,
whence m + n is even and r = 1

2 (m + n). The number q of edges in H is the
number of vertices in G, namely mn. Now the number of vertices of H is 2q/r ,
or 4mn/m + n. By considering the multiplicity of −2 as a root of PL(H)(x) as
given by Theorem 2.4.1 we find that − 1

2 (m + n) is an eigenvalue of H with
multiplicity

mn − m − n + 1−
(

mn − 4
mn

m + n

)
= 1− (m − n)2

m + n
.

We deduce that m = n, for otherwise {m, n} = {2s2+s, 2s2−s}, contrary to
assumption. Accordingly, the result in this case follows from Theorem 4.1.8.

Secondly, let H be a semi-regular bipartite graph with parameters
(n1, n2, r1, r2), where n1 > n2. Then n1r1 = n2r2 = mn and r1+ r2 = m+n.
By Corollary 2.4.3, r1 − 2 is an eigenvalue of L(H), and a comparison with
the eigenvalues of G yields three possibilities: (1) r1 = m, (2) r1 = n, (3)
r1 = m + n. The third cannot arise because r2 
= 0, while in cases (1) and (2)
we have H = Km,n , as required. �

Note that if m > 2 and n > 2, only case (a) in the proof of Theorem 4.1.17 is
pertinent, and so then L(Km,n) is characterized by its spectrum when m+ n ≥
15. We shall see shortly how knowledge of the graphs in G enables Theorem
4.1.18 to be extended to deal with all the cases in which m + n ≤ 18. The
graphs in G were determined by Bussemaker, Cvetković and Seidel [BuCS2],
partly by means of a computer search for representations in E8 (see [CvRS7,
Section 4.4]). The report [BuCS1] contains a table of all 187 graphs from G;
this table is reproduced in a slightly different form in the monograph [CvRS7,
Table A3].

In view of our earlier remarks, we have the following result.

Theorem 4.1.19. Any regular connected graph with least eigenvalue −2 is a
line graph, or a cocktail party graph, or one of the of the 187 graphs in G.

We can now make our characterization theorems more precise by inspect-
ing the graphs in G. We find that (i) there are exactly 17 regular connected
line graphs L(G) for which there exists an exceptional graph cospectral with
L(G), (ii) there are exactly 68 graphs which are not line graphs but which are
cospectral with a regular connected line graph, (iii) each of these 68 graphs is
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obtained from a regular connected line graph by switching. The 68 graphs are
listed in [CvRS7, Table A4]; in the paper [CvRa] they are constructed in such
a way that these results can be verified without recourse to a computer.

The following is a refinement of Theorem 4.1.18.

Theorem 4.1.20 [BuCS1, BuCS2]. L(Km,n) is characterized by its spectrum
unless

(a) m = n = 4, where the graph G69 provides the only exception,
(b) m = 6, n = 3, where the graph G70 provides the only exception,
(c) m = 2t2 + t , n = 2t2 − t , and there exists a symmetric Hadamard matrix

of order 4t2 with constant diagonal.

Proof. Graphs cospectral with L(Km,n) may or may not be line graphs. If
they are not line graphs, then they can be identified immediately from the list
of graphs in G, and we have cases (a) and (b) of the theorem. The exceptions
which are line graphs are described by Theorem 4.1.14: from n1 = r1 = m
and n2 = r2 = n we have t = 1

2 s and n1 = 2t2 + t , n2 = 2t2 − t . Since
the eigenvalues of Km,n are ±√mn and 0, the spectrum of the graph H1

in Theorem 4.1.14 consists of eigenvalues 2t2, ±t , and its adjacency matrix
A satisfies A2 = t2(I + J ). Replacing the zeros of A by (−1)s, and bor-
dering the matrix with (−1)s, we obtain a symmetric Hadamard matrix with
diagonal −I . This completes the proof. �

We can extend this characterization to general 2-designs. If D is a design
with incidence graph H(D) then we refer to L(H(D)) as the line graph of D.

Theorem 4.1.21 [BuCS2]. Let G1 be the line graph of a 2-design with param-
eters v, k, b, r, λ. Let G2 be a graph with the same spectrum as G1. Then one
of the following holds:

(a) G2 is the line graph of a 2-design having the same parameters;
(b) (v, k, b, r, λ) = (3, 2, 6, 4, 2) and G2 is the graph G6;
(c) (v, k, b, r, λ) = (4, 3, 4, 3, 2) and G2 is the graph G9;
(d) (v, k, b, r, λ) = (4, 4, 4, 4, 4) and G2 is the graph G69;
(e) (v, k, b, r, λ) = (3, 3, 6, 6, 6) and G2 is the graph G70;
(f) v = 1

2 s(s− 1), k = t (s− 1), b = 1
2 s(s+ 1), r = t (s+ 1), λ = 2t (st−t−1)

s−2 ,

where s and t are integers with st even, t ≤ 1
2 s, (s−2)|2t (t−1), and G2 =

L(H) where H is a regular graph on s2 − 1 vertices with the eigenvalues
st , ±√ts(s − 1− t)(s − 2)−1, −t of multiplicities 1, 1

2 (s − 2)(s + 1),
1
2 (s − 2)(s + 1), s, respectively.
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4.1 Characterizations of certain classes of graphs 117

The following theorem summarizes many of the previous results, and it can
be proved without the aid of a computer (see [CvDo1]).

Theorem 4.1.22 [CvDo2]. The spectrum of a graph G determines whether or
not it is a regular, connected line graph except for 17 cases. In these cases G
has the spectrum of L(H) where H is one of the 3-connected regular graphs
on 8 vertices or H is a connected, semi-regular bipartite graph on 6 + 3
vertices.

4.1.3 Characterizations according to type

We can identify two further sorts of characterization theorems involving graph
spectra.

1. There are certain families of graphs, defined in terms of graph struc-
ture, which have the property that different graphs from the same family have
different spectra. In view of Theorem 4.1.1, the regular graphs of degree
2 constitute such a family. Further examples include (i) vertex-transitive
graphs with a prime number of vertices [Tur1], (ii) starlike trees (obtained
from stars by subdividing edges) [LepGu], (iii) the family H of all bicyclic
Hamiltonian graphs (cycles with one chord). Indeed, different graphs in H
which have the same number of vertices are distinguished by their indices
(see [SimKo]).

2. A family G of graphs may be spectrally determined in the follow-
ing (weaker) sense: if G ∈ G and H is cospectral with G then H ∈ G.
We describe without proof three such families in terms of their structural
properties.

Theorem 4.1.23 (cf. [Hof4]). Let G be the line graph of a projective plane
of order n. If the graph H is cospectral with G then it is the line graph of a
projective plane of order n.

Theorem 4.1.24 (cf. [HofRa1]). Let G be the line graph of an affine plane of
order n. If the graph H is cospectral with G then H is the line graph of an
affine plane of order n.

Theorem 4.1.25 (cf. [HofRa2]). Let G be the line graph of a symmetric design
with parameters (v, k, λ) 
= (4, 3, 2). If the graph H is cospectral with G then
H is the line graph of a design with the same parameters.

Further examples of such spectral characterizations may be found in [Cve13]
and [Doo2].
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4.2 Cospectral graphs and the graph isomorphism problem

Cospectral graphs are often called isospectral graphs in the literature, and the
term ‘(unordered) pair of isospectral non-isomorphic graphs’ is denoted by
PING. More generally, the term ‘set of isospectral non-isomorphic graphs’
is denoted by SING. We say that a SING is trivial if it consists of just one
graph, and that different members of a SING are cospectral mates. Example
1.2.4 includes a PING on 16 vertices, and Example 1.2.6 gives a SING on 28
vertices. Further examples arise in the context of characterization theorems in
Section 4.1.

In this section we review what is known about cospectral graphs. Subsection
4.2.1 surveys examples of cospectral graphs, and some constructions of PINGs
are discussed in Subsection 4.2.2. Enumeration results for cospectral graphs
are described in Subsection 4.2.3, where (together with the spectrum of the
adjacency matrix) the spectra of other graph matrices are treated. Subsection
4.2.4 contains a comparison of the characterizing properties of various graph
invariants.

4.2.1 Examples of cospectral graphs

The literature contains various examples of PINGs (and, more generally, of
SINGs). Their importance lies in the following observations:

(1) For every pair of non-isomorphic graphs one can find a set of charac-
teristic properties that are different for the two graphs. Therefore, every
PING points to properties of graphs that are not uniquely determined by
the spectrum.

(2) The existence of a PING rules out various possibilities in the search for
families of graphs with the property that different graphs from the same
family have different spectra.

In [Har1], Harary states that his conjecture, that isospectrality implies the
isomorphism of graphs, was disproved by Bose, who described a PING with
16 vertices. According to [Har1], Bruck and Hoffman also found PINGs with
16 vertices. In [ColSi], Collatz and Sinogowitz had already noted that the spec-
trum of a graph does not determine the graph up to isomorphism. They gave an
example of two isospectral trees with eight vertices and different sets of vertex
degrees. Turner [Tur2] gives a PING consisting of 12-vertex trees which have
the same vertex degree sequence; the author expresses his pessimism concern-
ing the possibility of distinguishing even graphs of restricted type by means of
their spectra.
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4.2 Cospectral graphs and the isomorphism problem 119

Given two graphs G and H , we say that G is smaller than H if |V (G)| <
|V (H)|, and in the case |V (G)| = |V (H)|, if |E(G)| < |E(H)|. Any set of
graphs has one or several smallest graphs in the above order of graphs. Since
graphs in any SING have the same number of vertices and the same number
of edges, we can compare SINGs as well in the above sense. For example,
Fig. 1.2 shows the smallest PING (with five vertices) and the smallest PING
consisting of connected graphs (with six vertices). The smallest PING con-
sisting of regular graphs (with ten vertices) is illustrated in Fig. 4.8. From the
first of these examples we see that in general we cannot determine from the
spectrum whether or not a graph is connected. This example has been general-
ized in [Cve1] as follows. The graph having as components s isolated vertices
and one complete bipartite graph Kn1,n2 has eigenvalues

√
n1n2,−√n1n2 and

n1 + n2 − 2 + s numbers equal to 0. Now consider a graph with spectrum√
m,−√m and n− 2 numbers equal to 0 (m a natural number). This spectrum

belongs to each graph of the above type whose parameters n1, n2, s satisfy the
equations n1 + n2 + s = n, n1n2 = m.

Among other things, the paper [HarKMR] gives the smallest triplet of con-
nected cospectral graphs (Fig. 4.3), while in [GoHMK] we find the smallest
cospectral graphs with cospectral complements (Fig. 4.4) and the smallest
cospectral forests (K1,3 ∪̇ K2 and P5 ∪̇ K1).

The paper [DAGT] includes a discussion of some cospectral graphs relevant
to chemistry, methods for recognizing cospectrality and certain properties of
eigenvectors in cospectral graphs. If the eigenvalues of a graph (with multiplic-
ities) appear among the eigenvalues of another graph then these graphs are said
to be subspectral. Several cases of subspectral graphs are reviewed, with an
observation that in many cases the smaller graph appears as a fragment of the
larger one.

Among PINGs the least eigenvalue cannot exceed the smallest root of x2 −
x − 4 (approximately −1.5616), and the unique smallest PING for which this
value is attained is shown in Fig. 4.5. This follows from Theorem 3.4.14 (see
[CvLe5]).
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Figure 4.3 Three cospectral graphs.
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Figure 4.4 Cospectral graphs with cospectral complements.
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Figure 4.5 The smallest PING with largest least eigenvalue.

Fisher, who encountered cospectral graphs when investigating the vibration
of membranes [Fis] (see Section 9.1), considered connected planar graphs with
no vertex of degree 1. He constructed an infinite sequence of PINGs with 5n
vertices (n = 3, 4, . . .) consisting of such graphs. An infinite sequence of
sets of mutually non-isomorphic isospectral graphs was also given by Bruck
[Bruc].

A construction for cospectral graphs with cospectral complements will be
described in the next subsection (see Theorem 4.2.1). We shall also discuss
a well-known theorem of Schwenk [Sch1], which states that almost all trees
have a cospectral mate.

4.2.2 Constructions of cospectral graphs

Many methods for constructing cospectral graphs are described in the liter-
ature, and we have already seen in Proposition 1.1.8 how one can produce
cospectral regular graphs using Seidel switching. From a PING consisting
of regular graphs of degree greater than 2, we can construct another PING
with more vertices by taking the line graphs of the graphs in question (see
Theorem 2.4.1).

Several other graph operations and modifications, as described in Chapter 2,
can also be used to produce SINGs. One of the simplest ways is to use Theorem
2.1.1: if a SING with n vertices is known, then a SING with m vertices (m > n)
can easily be constructed by adding an arbitrary graph with m − n vertices as
a new component in each of the two graphs.

More generally, for two SINGs S and P we define the composition S # P
by S # P = {G ∪̇ H : G ∈ S, H ∈ P}. Then S # P is a SING.
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4.2 Cospectral graphs and the isomorphism problem 121

A SING S is called reducible if each graph in S contains a component
isomorphic to a fixed graph; otherwise, S is called irreducible. A reducible
non-trivial SING can be reduced to an irreducible one by extracting com-
ponents common to each graph in the SING. Accordingly, reducible SINGs
are not normally recorded in tables such as those found in [CvLe1, CvLe3].
However, reducible SINGs are not without interest, as the following examples
demonstrate. The reducible PING {K1,4 ∪̇ K2,C4 ∪̇ K1 ∪̇ K2} extends to the
irreducible SING {K1,4 ∪̇ K2,C4 ∪̇ K1 ∪̇ K2, Y6 ∪̇ K1}, where Y6 is the tree on
six vertices with index 2 (see Fig. 3.5). Another interesting irreducible SING
from [CvLe3, CvLe5] is the quadruple shown in Fig. 4.6: this is the union
of two reducible PINGs (the first and second graph, and the third and fourth
graph).

The procedures described above have been formalized in [CvLe4] to decribe
an algebra of SINGs using formal linear combinations of graphs and of their
spectra. This generalizes a technique used in [CvGu1] to characterize the
SINGs in the set S of all graphs whose largest eigenvalue does not exceed 2.
The main result of [CvGu1] is that any bipartite graph in S is cospectral with a
union of paths and 4-cycles. Examples include two PINGs already mentioned,
namely {K1,4 , C4 ∪ K1} and {K1,3 ∪ K2 , P5 ∪ K1}.

In addition, the results from [CvGu1] enable us to decide whether a finite
family of reals from the interval [−2, 2] is the spectrum of a graph, and an
algorithm is given which constructs all graphs having this spectrum. This result
is significant since, in general, we do not know any reasonable algorithm (that
is, an algorithm essentially different from an exhaustive search) for deciding
whether there is a graph with a given spectrum.

Next, we prove a theorem which provides a construction for cospectral trees
with cospectral complements.

Theorem 4.2.1 [GoMK1]. Let G be an arbitrary rooted graph. Let S and T
be rooted trees as shown in Fig. 4.7. Then the coalescences G · S and G ·T are
not isomorphic (unless the root of G is isolated) but are cospectral and have
cospectral complements.

Proof. Consider S, T as the tree H rooted at u, v respectively. The graphs
H − u and H − v are isomorphic, and so G · S and G · T are cospectral
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Figure 4.6 An irreducible SING.
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Figure 4.7 The construction for Theorem 4.2.1.

by Theorem 2.2.3. Since PH−u(x) = PH−v(x), the angles of H at u coincide
with those at v; that is, αiu = αiv (i = 1, . . . ,m) in the notation of Proposition
2.2.6. For k ∈ IN , let nk(u) be the number of u-u walks of length k in H . By
Proposition 3.1.2, nk(u) = nk(v), and it follows that G · S and G · T have
the same walk-generating function. Now Equation (2.14) shows that G · S and
G · T are cospectral. �

Similar techniques are used to prove Scwhenk’s important result [Sch1]
that almost all trees have a cospectral mate. We describe this result in more
detail.

Definition 4.2.2. A branch of a tree at a vertex v is a maximal subtree con-
taining v as an endvertex. The union of one or more branches at v is called a
limb at v.

Considered in its own right, a limb at the vertex v is a rooted tree, with v as
its root. Schwenk proved that the proportion of trees on n vertices which avoid
a specified limb tends to zero as n tends to infinity. Moreover, the number of
trees on n vertices which do not contain a specified limb depends only on the
number of edges of the limb.

Definition 4.2.3. Vertices u and v in cospectral (not necessarily non-
isomorphic) graphs G and H are said to be cospectral if PG−u(x) =
PH−v(x).

Schwenk observed that vertices u and v in the tree T of Fig. 4.8 are cospec-
tral but lie in different orbits of the automorphism group of T . Using Theorem
2.2.3 again, we see that the graphs G1 and G2 of Fig. 4.8 are cospectral, what-
ever the rooted graph G. Now, Schwenk’s argument was that almost all trees
are of the form G1 and hence have a (non-isomorphic) cospectral mate G2.
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Figure 4.8 Schwenk’s construction.

Definition 4.2.4. If v is a vertex in a graph G, then the pair (d, e), where d
is the degree of v and e is the sum of degrees of all neighbours of v in G, is
called the degree pair of v.

Note that in a tree T , the sequence of vertex degree pairs (di , ei ) is deter-
mined by the eigenvalues and angles of T , because n2(i) = di and n4(i) =
d2

i − di + ei . Now the graphs G1 and G2 in Fig. 4.8 have different sequences
of vertex degree pairs, and hence different angles. The significance of this
observation is that all of the cospectral graphs constructed by Schwenk can
be distinguished by angles. In Subsection 4.3.2 we shall see to what extent
trees are better characterized if not only the eigenvalues but also the angles
are known. The results include an algorithm for constructing all the trees with
prescribed eigenvalues and angles.

4.2.3 Statistics of cospectral graphs

It seems that PINGs with a large number of vertices are a common occurrence:
this was suggested by Baker on the basis of statistical evidence presented
in [Bak2]. The table in [CvLe3] of cospectral graphs with least eigenvalue
−2 contains 201 irreducible SINGs with at most 8 vertices; this number
includes 178 pairs, 20 triplets and 3 quadruples of cospectral graphs. The paper
[GoMK1] presents the results of a computational study of graph spectra: the
characteristic polynomials of all graphs with at most 9 vertices are computed,
and the cospectral graphs identified. Statistics are given for cospectral graphs
in various classes of graphs. The data is extended to cospectral graphs on 10
vertices in [Lep1]. Before we give the results for graphs on 11 vertices we need
a definition.

Let S be a finite set of graphs, and let S ′ be the set of graphs in S which
have a cospectral mate in S. The ratio rS = |S ′|/|S| is called the spectral
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uncertainty of S (with respect to the adjacency matrix). The papers [DamHa4],
[HaeSp] provide spectral uncertainties rn, sn, tn of the sets of all graphs on n
vertices for n ≤ 11 with respect to the adjacency matrix, the Laplacian and the
signless Laplacian, respectively:

n 4 5 6 7 8 9 10 11

rn 0 0.059 0.064 0.105 0.139 0.186 0.213 0.211
sn 0 0 0.026 0.125 0.143 0.155 0.118 0.090
tn 0.182 0.118 0.103 0.098 0.097 0.069 0.053 0.038

For the Seidel matrix of a graph G, the corresponding ratios are 1 for all
n > 1, because we can use Seidel switching to construct from G a graph with
the same Seidel spectrum but with a different number of edges.

We see that for n ≥ 7 we have tn < rn . In addition, the sequence tn is
decreasing for n ≤ 11 while the sequence rn is increasing for n ≤ 10. This is
a basis for believing that the Q-spectrum (discussed in Chapter 7) provides a
means of studying graphs that is more effective than the adjacency spectrum.
Given the direct relation between the Q-spectrum of a graph and the spec-
trum of its line graph (see Chapter 1), this in turn indicates that the theory of
graphs with least eigenvalue −2 is important for the whole theory of graph
spectra.

4.2.4 A comparison of various graph invariants

We have now encountered many counterexamples to the early conjecture that a
graph is determined, to within isomorphism, by its spectrum. Had the conjec-
ture been valid, it would have provided a polynomial algorithm for the solution
of the graph isomorphism problem, that is, the problem of deciding whether
two graphs are isomorphic. As things stand, the algorithmic complexity of this
problem is not known. The problem belongs to the class NP but it is not known
whether it is NP-complete or belongs to the class P (see, for example, [Cve10]
or [BruRy, pp. 245–8]).

A set of graph invariants (which might consist of numbers, vectors, matri-
ces, etc.) is called complete if it determines any graph to within isomorphism.
Although the spectrum of a graph does not, in general, constitute a complete set
of invariants, complete sets of invariants do exist. For instance, it is clear that
a graph G is determined up to isomorphism by the largest (or least) binary
number obtained by concatenation of the rows (or the rows of the upper
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triangle) of an adjacency matrix of G. However, the known algorithms for
computing such an invariant are exponential.

Although it would be useful if a complete set of invariants were computable
in polynomial time, no such set has been identified to date, and pessimism has
been expressed in the literature concerning this question [ReCo]. Optimists
point to the fact (see Theorem 1.3.1) that a graph is determined by its eigenval-
ues and eigenspaces, both of which can be found in polynomial time, but this
is to ignore the non-invariant nature of eigenspaces: the components of eigen-
vectors are ordered according to a labelling of vertices. Nevertheless the study
of eigenspaces has enabled us to extend spectral techniques in graph theory;
some of the results (such as those concerning graph angles and star comple-
ments) are included in this book, and others may be found in the monographs
[CvRS2] and [CvRS7].

Let us consider the extent to which various graph invariants determine graph
structure.

1. The vertex degrees. The family of vertex degrees can be calculated read-
ily from the adjacency matrix or from other common graph representations.
In general this can be regarded as a set of local invariants which says little
about the graph structure. In the particular case that all degrees are 1, the graph
is determined uniquely; if all degrees are 1 or 2 then several non-isomorphic
graphs may arise, each graph being a union of paths and cycles. For larger
degrees, there are few general conclusions. Hakimi [Hak] provided a polyno-
mial algorithm for determining whether or not a family of integers is a family
of vertex degrees for a graph; the algorithm may be adapted to determine in
exponential time all the graphs which arise.

2. The spectrum. In general, the eigenvalues depend on structural details
beyond the vertex degrees. For example, consider again the spectral character-
ization of a regular graph G of degree 2 (Theorem 4.1.1). Given the spectrum
of G, we first establish that G is regular of degree 2, and so we know the fam-
ily of vertex degrees. But the spectrum tells us more: from the second largest
eigenvalue we can determine the length of the largest cycle in G. Gradually,
by analysing the whole spectrum we can find the lengths of all cycles of G,
and thereby determine G up to isomorphism, in contrast to the case where
only the degrees are given. The importance of this result has been demon-
strated in [CvCK3] in relation to the Travelling Salesperson Problem (see
Section 9.4).

It seems that those graph-theoretical invariants which contain significant
structural information (and are therefore useful for the graph isomorphism
problem) can be obtained by solving some kind of optimization problem: graph

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.005
https:/www.cambridge.org/core


126 Characterizations by spectra

eigenvalues can be obtained by considering extremal values of the Rayleigh
quotient of the adjacency matrix, while angles can be obtained as extrema of
the scalar product of vectors of a standard othonormal basis of IRn with unit
eigenvectors. See [CvRS2, Chapter 8] and [CvCK3] for other examples of such
invariants (called ‘highly informative’ in [CvCK3]).

3. A binary number. The ordering of vertices which yields a characterizing
binary number (as described above) can be considered as a canonical vertex
ordering. One can consider several variations of this idea but it turns out that
the known algorithms for determining the invariant that characterizes the graph
are exponential (cf. [ReCo], [Bab2]). Here a high price has been paid: we have
an invariant which tells us everything about the graph but is time consuming to
compute. Nevertheless the extremal binary number has been used repeatedly
and successfully to recognize graphs.

From the point of view of practical computation it is usually not necessary
to know whether the graph isomorphism problem is NP-complete or belongs
to P. Experience has shown that any reasonable algorithm for testing graph
isomorphism performs well on average; however, the problem has great theo-
retical significance. Leaving aside the implications for complexity theory, one
can say that to understand the difficulties arising in the graph isomorphism
problem is to understand the difficulties that emerge in treating graph theory
problems in general.

Having acquainted ourselves with these three examples we might be inclined
to believe that spectral invariants provide a good balance between the oppos-
ing reqirements of graph invariants, and to conclude that this accounts for the
appeal of spectral graph theory as an area of research.

4.3 Characterizations by eigenvalues and angles

In this section we treat the problem of constructing all graphs with prescribed
eigenvalues and angles. Although graphs cannot, in general, be characterized
by eigenvalues and angles, for certain classes of graphs (for example, trees,
unicyclic graphs, bicyclic graphs, tree-like cubic graphs) it is possible to con-
struct all the graphs in a given class with prescribed eigenvalues and angles.
Details may be found in [CvRS2, Chapter 5]. Here we first discuss cospec-
tral graphs with the same angles (Subsection 4.3.1). In Subsection 4.3.2 we
describe an algorithm for constructing all the trees with prescribed eigenvalues
and angles. In Subsection 4.3.3 we discuss some instances of characterization
by eigenvalues and angles.
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Figure 4.9 A pair of cospectral regular graphs.

4.3.1 Cospectral graphs with the same angles

The following example shows that a graph may not be determined by its angles,
main angles and spectrum.

Example 4.3.1. The two graphs depicted in Fig. 4.9 are non-isomorphic, but
they are both 4-regular and have the same eigenvalues, the same angles and
the same main angles. The ten vertices are labelled so that the angle sequences
(α1 j , α2 j , . . . , αmj ) coincide for j = 1, 2, . . . , 10; equivalently, for each j ,
the graphs obtained by deleting the vertex j are cospectral. �

It has been shown by a computer search (see [CvLe1]) that graphs with
fewer than 10 vertices are characterized by their eigenvalues and angles. How-
ever, there are 58 pairs of cospectral graphs on 10 vertices with the property
that the graphs within each pair have the same angles. Moreover, they also have
the same main angles (a fact for which we do not have an explanation), and no
multiple eigenvalue is a main eigenvalue. By Proposition 2.1.3, the characteris-
tic polynomial of a complementary graph G is determined by the characteristic
polynomial and the main angles of G, and this explains why 29 of the 58 pairs
are the complements of those from the other 29 pairs.

A construction described in the next subsection shows that there is an infi-
nite series of cospectral trees with the same angles. The trees in the smallest
example given there have 35 vertices, but an exhaustive computer search has
revealed that the following example is the sole example among trees with at
most 20 vertices (see [CvLe1]). The trees from this pair have 19 vertices, and
it is surprising that there are no examples with 20 vertices.

Example 4.3.2. Fig. 4.10 shows the smallest pair of cospectral trees T1 and T2

with the same angles. The subtree T , identified by the bold lines in Fig. 4.10,
is well known in constructions of cospectral graphs, mainly because the graphs
T − 4 and T − 7 are cospectral (cf. Fig. 4.8).
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Figure 4.10 Cospectral trees with the same angles.

The vertices in T1 and T2 are labelled so that T1− i is cospectral with T2− i ,
for i = 1, 2, . . . , 19. Note that although T1 − 5 and T2 − 5 both have two
components with 10 and 8 vertices, the components are not cospectral. In T1−5
the components have the following spectra (where non-integer eigenvalues are
given to three places of decimals):

±2.074, ±1.4142, ±0.835, 02 and ±2.222, ±1.240, ±0.726, 02.

On the other hand, in T2 − 5 the two components have spectra

±2.222, ±1.414, ±1.240, ±0.726, 02 and ±2.074, ±1.414, ±0.835, 02.

If we delete vertex 6, the components even have different numbers of vertices,
yet T1 − 6 and T2 − 6 are still cospectral. �

If we try to generalize this example, we encounter difficulties. Suppose that
we form the graph H1 by attaching any two rooted graphs K and L at vertices
4 and 7 of T , and then form H2 by interchanging L and K . The formula (2.18)
shows that the following pairs are cospectral: H1 and H2, H1 − i and H2 − i
for i = 4, 7 or any vertex i in K or L . However, for other values of i , the pairs
are not cospectral, except in the special case illustrated in Fig. 4.10.

An exhaustive search for cospectral graphs on 10 vertices [Lep1] shows that
there exists a set Q of 21 cospectral graphs with 10 vertices and 20 edges. The
complements of these graphs are also cospectral (and they have 25 edges).
Computations show also that, in both cases, the graphs are distinguished
by their angles (see [Cve11]). We reproduce here some data concerning the
graphs in Q.
Spectrum:

4.3803 1.6861 1.1620 0.5423 0 0 −1.2950 −1.5260 −2.2864 −2.6631.

Coefficients of the characteristic polynomial:

1 0 −20 −18 84 76 −119 −72 56 0 0.
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4.3 Characterizations by eigenvalues and angles 129

Main angles:

0.9563 0.0248 0.0659 0.1505 0.2070 0.0436 0.1086 0.0185 0.0323.

These huge sets of cospectral graphs should perhaps be exploited in exper-
iments to order graphs by their angles, for the following reason. Experience
shows that it is appropriate to order graphs first by their eigenvalues or spec-
tral moments; see the Appendix for examples, and [CvPe2] for an explanation.
Then cospectral graphs remain to be ordered, and it is natural to use angles for
this purpose because they determine the vertex degrees.

4.3.2 Constructing trees

As we noted in Chapter 3, the number of vertices and the number of edges in
a graph G are determined by the spectrum of G. It now follows from Theorem
3.3.3 that given the eigenvalues and angles of G we can tell whether or not
G is a tree. Here we present an algorithm for constructing all trees with given
eigenvalues and angles. The algorithm is based on the following result, known
as the Reconstruction Lemma.

Lemma 4.3.3 [Cve9]. Given a limb R of a tree T at a vertex i which is adja-
cent to a unique vertex of T not in R, that vertex is among the vertices j for
which PT− j (x) = gR

i (x), where

gR
i (x) =

PR(x)

PR−i (x)2
{PR(x)PT−i (x)− PR−i (x)PT (x)}. (4.8)

Proof. Let S denote the maximal limb of T at j not containing i , as shown in
Fig. 4.11. From Theorem 2.2.4 we have

PT (x) = PR(x)PS(x)− PR−i (x)PS− j (x). (4.9)

Clearly, PT−i (x) = PR−i (x)PS(x) and PT− j = PR(x)PS− j (x). By eliminat-
ing PS(x) and PS− j (x) we obtain (4.8). �

By specifying that R consists only of vertex i , so that PR(x) = x and
PR−i (x) = 1, we obtain the following result.

� ��

��

�

��

R Si j
T

Figure 4.11 Construction of a tree.
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130 Characterizations by spectra

Proposition 4.3.4. If i is a vertex of degree 1 in a tree T , then the neighbour
of the vertex i is among those vertices j such that PT− j (x) = fi (x), where

fi (x) = x2 PT−i (x)− x PT (x).

Now we describe the reconstruction algorithm (let us call it Algorithm EA),
which provides a means of constructing all trees with prescribed eigenvalues
and angles. Note that examples from Subsection 4.3.1 show that, in general,
trees are not EA-reconstructible (as defined in Section 3.1). Indeed we shall
see that almost all trees have non-isomorphic mates with the same eigenvalues
and angles.

Algorithm EA [Cve9]. Let T be a tree with prescribed eigenvalues and angles.
First we use Theorem 3.1.3 to find the degrees of vertices in T , and then we
begin to construct possible edges as follows. For each vertex i of degree 1 we
choose a neighbour j from the set Ai = { j ∈ V (T ) : PT− j (x) = fi (x)} (cf.
Proposition 4.3.4). The number of times an individual vertex j is chosen as a
neighbour of an endvertex is bounded above by the degree of j . Now let T ′ be
the graph obtained from T by deleting all endvertices. A vertex of degree 1 in
T ′ is necessarily one of the vertices j chosen above and in this case we may
apply Lemma 4.3.3 to the limb R at j consisting of all pendant edges at j . The
neighbour of j in T ′ lies in the set B R

j = {k ∈ V (T ′) : PT−k(x) = gR
j (x)}

(see (4.8)), and for each such j we choose a neighbour k ∈ B R
j . Continuing in

this way we may construct a tree by successive construction of limbs provided
that (i) at each stage there are vertices j of degree 1 in the subtree T ′′ which
remains to be constructed, and (ii) the corresponding sets B R

j are non-empty.
If T ′′ is non-trivial and one or other of these requirements is not met, then the
algorithm proceeds with a different choice of neighbours at the previous stage.
If T ′′ is trivial then a tree T has been constructed and the algorithm is repeated
with a new choice of neighbour. Using such a backtracking algorithm one
constructs a collection of trees which includes all those with the given eigen-
values and angles. Finally one excludes those which do not have the specified
eigenvalues. �

Let us consider how big a step has been made in determining the structure of
trees by the introduction of angles. The difference is that now we can construct
all of the trees in question, while without angles that seems not to be possible
in a reasonable way. This is related to the fact that we know exactly which fea-
tures are responsible for the existence of non-isomorphic trees with the same
eigenvalues and angles. Indeed, in the notation of Fig. 4.11, non-isomorphic
trees can arise as follows.
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4.3 Characterizations by eigenvalues and angles 131

(1) The limb R may be replaced with a cospectral limb R′ such that
PR−i (x) = PR′−i (x).

(2) The choice of neighbours j with given PT− j (x) may not be unique.

In view of (1), we may use four copies of the tree T from Fig. 4.8 to con-
struct the trees T1, T2 shown in Fig. 4.12, where H denotes a rooted tree.
For any choice of H , the trees T1 and T2 are non-isomorphic and have the
same eigenvalues and angles. Corresponding vertices (i.e. vertices for which
the vertex-deleted subgraphs in T1 and T2 are cospectral) are denoted by the
same numbers for some specific vertices.

The construction illustrated in Fig. 4.12 also shows that almost all trees are
not characterized by eigenvalues and angles (cf. p. 122). It also shows (e.g. by
reference to the vertices labelled 2 in T1 and T2) that eigenvalues and angles do
not determine degree sequences of vertices. (The degree sequence of a vertex
v consists of the degrees of the neighbours of v, in non-increasing order.)

If, in applying the reconstruction algorithm, we know the degree sequences
in T (in particular, if we know the vertex-deleted subgraphs of T ) then the
choice in (2) above is limited to the extent that the trees in question are deter-
mined up to cospectral limbs with a constant degree sequence of the root.
We do not know of an example of non-isomorphic cospectral trees G1,G2

for which there exists a bijection θ : V (G1) → V (G2) such that for each
v ∈ V (G1), the vertices v and θ(v) are cospectral with the same degree
sequence.

It is well known that a tree is in fact (uniquely) reconstructible from its
vertex-deleted subgraphs. Also, the characteristic polynomial of a tree is recon-
structible from the characteristic polynomials of vertex-deleted subgraphs (see
Section 8.3). The reconstruction algorithm can be used to construct all trees
for which only the characteristic polynomials of vertex-deleted subgraphs are
specified.

� �������
� � � �� � � � � �

���� � ���� ���
��� � � � �
�

T1

�������
�

�
�

�
��

�� ��
�� �

�
�
��

��������

�
�

��

�� �
�
�
��

�
�
��

��

��
��

H

108

3

9 11

12

4
5

6 7

� ����� �
� � �� � � � �
���

���� ���� �
��� � �
� � � �
�

T2

�������
�

�
�

��
�
�
�
��

��������

�
�

��

��

��
�
�
�
��

�
�
�
�
��

��
��

H

108

3

9 11

12

4
5 7

6

Figure 4.12 More cospectral trees with the same angles.
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4.3.3 Some characterization theorems

Graphs which appear in the Hückel molecular orbital theory from quantum
chemistry have vertex degrees at most 3 (see Section 9.2). In this subsection
we show that many of these chemically interesting graphs are characterized by
eigenvalues and angles. Excluded from our considerations are the cubic graphs
corresponding to fullerenes. An algorithm for constructing all graphs with the
eigenvalues and angles of a prescribed fullerene is given in [CvFRS].

One of the basic tools is the algorithm EA for reconstructing trees from
eigenvalues and angles described in previous subsection. The essence of this
algorithm is that we can reconstruct an edge of a tree if we know the structure
of the tree on one side of the edge. More generally, we can reconstruct a bridge
of a graph if we know the structure of the graph on one side of the bridge.

We start with a result related to trees obtained from three paths, each rooted
at one of its endvertices, by identifying the roots.

Proposition 4.3.5. A forest in which each component has exactly one vertex
of degree 3, others being of smaller degree, can be reconstructed uniquely from
eigenvalues and angles.

Proof. We apply Algorithm EA repeatedly, starting from a vertex of degree
1 and traversing the path connecting this vertex to the vertex of degree 3. We
reconstruct this path uniquely, thereby identifying its length and the terminal
vertex (of degree 3). �

Next we consider the set S of graphs with largest eigenvalue λ1 ≤ 2. The
connected graphs in S with λ1 = 2 are shown in Fig. 3.5. Note that Y5(= K1,4)

is the only example with a vertex of degree 4. Further, Yn (n > 5) has two
vertices of degree 3, while all other connected graphs in S have at most one
vertex of degree 3 (see Theorem 3.11.1).

Cospectral graphs in the set S are very frequent, and an algorithm to find
all graphs cospectral with a given graph from S is described in [CvGu1] (see
also Subsection 4.2.2). However, if we know angles as well as eigenvalues, the
situation is much improved; indeed, graphs in S are E A-reconstructible. To
prove this, we need the following observation:

Lemma 4.3.6. Let the eigenvalues and angles of a graph G be given. Given
also the vertex-set of G̃, where G̃ is a union of components of G, we can find
the eigenvalues and angles of G̃.

Proof. For any vertex j of G̃, the number of j- j walks of length k in G̃ is the
same as the number of j- j walks of length k in G, namely a(k)j j =

∑m
i=1 α

2
i jμ

k
i .

Now the spectral moments of G̃ are
∑

j∈V (G̃) a(k)j j (k = 0, 1, 2, . . .), and these

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.005
https:/www.cambridge.org/core


Exercises 133

determine the spectrum of G̃. Moreover, a(k)j j =
∑t

i=1 α̃i j μ̃
k
i (k = 0, 1, 2, . . .),

where μ̃1, ..., μ̃t are the distinct eigenvalues of G̃ and α̃i j is the angle of G̃
corresponding to μ̃i and j . These equations now determine α̃1 j , . . . , α̃t j ( j ∈
V (G̃)). �

Theorem 4.3.7 [Cve11]. A graph whose largest eigenvalue does not exceed 2
is characterized by its eigenvalues and angles.

Sketch proof. As in the proof of Theorem 4.1.1, we first identify some compo-
nents of the graph G in question, then extract them and consider what remains.
Suppose first that λ1(G) = 2. The non-zero angles in the angle sequence (α1 j )

determine the vertices j belonging to components whose index is equal to 2.
By Lemma 4.3.6 we can calculate the characteristic polynomial and angles
of the subgraph consisting of these components. Components isomorphic to
K1,4 can be recognized by vertices of degree 4 and then Algorithm EA shows
which vertices of degree 1 are adjacent to vertices of degree 4. In a similar way
we can treat components with two vertices of degree 3. Simple calculations
show that if j is a vertex of degree 3 in Yk (k > 5) then α1 j = 1/

√
k − 3 and

this enables us to find the length of the path connecting two such vertices of
degree 3. Components isomorphic to F7, F8 or F9 (see Fig. 3.5.) can also be
easily identified using Algorithm EA as in the proof of Proposition 4.3.5. The
remaining vertices are of degree 2 and they belong to cycles; for a vertex j of
an s-cycle we have α1 j = 1/

√
s.

Finally, if components with index 2 are extracted or are not present, then
we consider the graph G̃ that remains. By Lemma 4.3.6, we can determine
the eigenvalues and angles of G̃. Each non-trivial component of G̃ is either a
path or a tree of the type described in Proposition 4.3.5. Isolated vertices are
recognized directly, while Algorithm EA identifies the paths. For what is left
of the graph we apply Proposition 4.3.5. �

It is possible to prove that graphs from some other classes of graphs, which
are of interest in the Hückel theory, are characterized up to isomorphism by
eigenvalues and angles (cf. [CvFRS]).

Exercises

4.1 Show that graphs with four vertices are characterized by their spectra.
4.2 Show that a connected graph with just two distinct eigenvalues is

complete.
4.3 Show that the Petersen graph is characterized by its spectrum.
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4.4 Show that the complement of the Clebsch graph is the unique graph with
spectrum 5, 110, (−3)5.

4.5 Prove Theorem 4.1.3.
4.6 Use Theorem 3.1.11 and Corollary 2.3.3 to prove that the path Pn is

characterized by its spectrum.
4.7 Deduce the following from Equation (4.7): r ≤ 17 when n = 28 and

r ≤ 16 when n ≤ 27.
4.8 A partial graph of a graph G is the union of some components of G. A

SING S is weakly reducible if there is a graph H such that any graph in S
contains a partial graph cospectral with H . If G is not weakly reducible
it is called strongly irreducible. Prove that a SING is irreducible and
strongly irreducible if it contains a connected graph.

4.9 We say that a SING P is relevant to the SING S, denoted by P % S,
if some graph G in P is cospectral with a partial graph of a graph in S.
(Any such graph G is called a basis of (P,S).) Prove that If P % S and
S % P , then P and S are cospectral.

4.10 If P % S, then for any basis G of (P,S) (see Exercise 4.9) we can
define the expansion E(S,P,G) of S by P through the basis G as fol-
lows. The graphs in E(S,P,G) are those obtained from S by replacing
a partial graph isomorphic to G with a graph from P . Prove that the set
E(S,P,G) is a SING.

Notes

The problem of characterizing graphs with least eigenvalue −2 was one of the
earliest problems in the theory of graph spectra. As we saw in Section 3.4,
the problem was essentially settled by Cameron, Goethals, Seidel and Shult
[CamGSS], who established a link between such graphs and the theory of root
systems. Every exceptional graph is an induced subgraph of one of 473 max-
imal exceptional graphs initially found with the aid of a computer [CvLRS2];
the underlying theory is described in Section 5.4, and full details are given
in the monograph [CvRS7]. A refinement of Theorem 4.1.17, also with a
computer-free proof, was given by Brouwer, Cohen and Neumaier [BroCN,
Theorem 3.12.2]; their result appears as Theorem 4.1.5 of [CvRS7].

Few spectral characterizations emerged in the 1980s and 1990s. Early results
on cospectral graphs were surveyed in the thesis [Cve1] of 1971. Another
review of cospectral graphs appeared in the same year, written by Harary, King,
Mowshowitz and Read [HarKMR]. A third review of cospectral graphs in 1971
appeared in the paper [BalHa], which gives a PING consisting of trees on 12
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vertices with the same degrees, the maximum degree being 4. Since these trees
are relevant to chemistry the authors justify in this way the main message of the
paper, expressed by its title: the characteristic polynomial does not uniquely
determine the topology of a molecule.

The expository article [GoHMK] contains a list of smallest PINGs in various
classes of graphs. We have restricted our attention to undirected graphs without
loops or multiple edges. It is relatively easy to construct PINGs for other kinds
of graphs. For example, all digraphs without cycles have a spectrum containing
only numbers equal to zero [Sed].

Concerning the result of Schwenk [Sch1] that almost all trees have a
cospectral mate, his construction of cospectral graphs uses not only cospectral
vertices but also the notion of unrestricted vertices: these are vertices at which
arbitrary graphs may be attached without destroying vertex-cospectrality. Both
concepts feature in general procedures for constructing PINGs described in
[HeEl2]. This paper describes methods for constructing graphs with such
vertices, and discusses cospectral graphs with cospectral complements.

Graphs with cospectral vertices are called endospectral graphs [Ran]. From
Section 4.2 we see that the study of endospectral graphs is closely related to
the study of cospectral graphs. Some constructions of endospectral trees are
given in [RanKl], while the endospectral trees with at most 16 vertices have
been found by a computer search [KMSTKR].

Other references concerning cospectral graphs are [Ach], [Bab1],
[Bab3],[Bak1], [Bens], [Cha1], [Cha2], [Chao], [Con1], [Cou], [CvGu1],
[DAGT], [DinKZ], [Doo5], [Doo8], [FaGr], [GoMK2],[Hei], [Herm], [Hern1],
[Hern2], [HeEl1], [Hof1],[Jia], [KoSu], [KrPa1], [KrPa2], [LiWZ], [Mey],
[RanTŽ], [Sch4], [Sei1], [SimmMe], [StewMa] and [ZiTR]. Graphs cospec-
tral with respect to the generalized adjacency matrix y J − A are discussed in
[DamHK].

More spectral characterizations of line graphs appear in [Doo3], [Doo4],
[Doo6] and [RaoRa]. Some spectral characterizations of distance-regular
graphs may be found in [DamHa3]. For some investigations concerning com-
plete sets of invariants, see [BalaPa], [BosMe], [Kri], [Mas], [RiMW] and
[Tur2]. Characterizations of certain trees by their Laplacian spectrum may be
found in [OmTa] and [WaXu].
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5

Structure and one eigenvalue

In Chapters 3 and 4 we have concentrated on the relation between the structure
and spectrum of a graph. Here we discuss the connection between structure
and a single eigenvalue, and for this the central notion is that of a star com-
plement. In Section 5.1 we define star complements both geometrically and
algebraically, and note their basic properties. In Section 5.2 we illustrate a
technique for constructing and characterizing graphs by star complements. In
Section 5.3 we use star complements to obtain sharp upper bounds on the mul-
tiplicity of an eigenvalue different from −1 or 0 in an arbitrary graph, and
in a regular graph. In Section 5.4 we describe how star complements can be
used to determine the graphs with least eigenvalue −2, and in Section 5.5 we
investigate the role of certain star complements in generalized line graphs.

5.1 Star complements

Let G be a graph with vertex set V (G) = {1, . . . , n} and adjacency matrix
A. Let {e1, . . . , en} be the standard orthonormal basis of IRn and let P be the
matrix which represents the orthogonal projection of IRn onto the eigenspace
E(μ) of A with respect to {e1, . . . , en}. Since E(μ) is spanned by the vec-
tors Pe j ( j = 1, . . . , n) there exists X ⊆ V (G) such that the vectors
Pe j ( j ∈ X) form a basis for E(μ). Such a subset X of V (G) is called
a star set for μ in G. The terminology reflects the fact that the vectors
Pe1, . . . , Pen form a eutactic star: in general, such a star consists of vectors
which are an orthogonal projection of pairwise orthogonal vectors of the same
length.

Proposition 5.1.1. Let G be a graph with μ as an eigenvalue of multiplicity
k > 0. The following conditions on a subset X of V (G) are equivalent:

136
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5.1 Star complements 137

(i) X is a star set for μ;
(ii) IRn = E(μ)⊕ V , where V = 〈ei : i 
∈ X〉;

(iii) |X | = k and μ is not an eigenvalue of G − X.

Proof. ((i) ⇒ (ii)) Since dim E(μ) = k and dim V = n − k, it suffices to
show that E(μ) ∩ V = {0}. Accordingly, let x ∈ E(μ) ∩ V . Then x = Px and
x�e j = 0 for all j ∈ X . Hence x�(Pe j ) = x�(P�e j ) = (Px)�e j = 0 for all
j ∈ X . Thus x ∈ 〈Pe j : j ∈ X〉⊥ = E(μ)⊥ and so x = 0.
((ii) ⇒ (iii)) Suppose that IRn = E(μ) ⊕ V . We consider an adjacency

matrix A of G in the form

(∗ ∗
∗ A′

)
, where A′ is the adjacency matrix of

G − X . Suppose that A′x′ = μx′. If y =
(

0
x′
)

, then

Ay =
(∗ ∗
∗ A′

)(
0
x′
)
=
( ∗
μx′
)
.

Now let x ∈ V . Then x� has the form (0�|z�), and x�Ay = μz�x′ = μx�y.
Hence (A − μI )y ∈ V⊥. On the other hand, if x ∈ E(μ), then x�Ay =
x�A�y = (Ax)�y = (μx)�y = μx�y and so (A − μI )y ∈ E(μ)⊥. Hence
(A − μI )y ∈ V⊥ ∩ E(μ)⊥ = (E(μ) + V)⊥, which is the zero subspace.
Therefore, y ∈ E(μ). But y ∈ V , and since E(μ) ∩ V = {0} we have y = 0.
Hence x′ = 0 and μ is not an eigenvalue of G − X .
((iii) ⇒ (i)) Here, it suffices to prove that 〈Pe j : j ∈ X〉 = E(μ).

Suppose, by way of contradiction, that 〈Pe j : j ∈ X〉 ⊂ E(μ). Then there
is a non-zero vector x ∈ E(μ) ∩ 〈Pe j : j ∈ X〉⊥. Thus x�Pe j = 0 for
all j ∈ X . Hence (Px)�e j = (x�P)e j = 0 for all j ∈ X . Consequently
Px ∈ 〈e j : j ∈ X〉⊥ = 〈es : s 
∈ X〉 = V . But x = Px and so we have a

non-zero vector x ∈ E(μ) ∩ V . Since x =
(

0
x′
)

with x′ 
= 0 it follows that x′

is an eigenvector of G − X , a contradiction. �

Here G − X is the subgraph of G induced by the complement of X ; it is
called the star complement for μ corresponding to X . (Star complements for μ
are sometimes called μ-basic subgraphs, as in [Ell].) It is clear from the defini-
tions that star sets and star complements exist for any eigenvalue of any graph.
Statement (iii) of Proposition 5.1.1 provides a characterization of star sets and
star complements which is often the most useful in practice. For instance, the
claims in the following example are easily verified in this way.

Example 5.1.2. In Fig. 5.1, the vertices of the Petersen graph are labelled with
eigenvalues in such a way that the vertices labelled μ form a star set for μ.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.006
https:/www.cambridge.org/core


138 Structure and one eigenvalue

� �

� �

� �
� �

�
�

�
�

�
�

�
�

��

�
�
�

�
�

�

�
�
�
�
�
�
��

�
�
�
�
�
�

	
	
	
	
	
	















�
�

�
�

��
���












���

�
�

�
��

1

1 1

1 1

−2 −2

−2 −2

3

Figure 5.1 The Petersen graph (Example 5.1.2).

For example, −2 is an eigenvalue of multiplicity 4, and if we delete the four
vertices labelled −2 we obtain a subgraph H consisting of a 5-cycle with a
single pendant edge attached. Since H does not have −2 as an eigenvalue, this
subgraph is a star complement for −2. �

Remark 5.1.3. It can be shown (see [CvRS2, Chapter 7]) that if G is a
graph with μ1, . . . , μm as its distinct eigenvalues then V (G) has a partition
X1 ∪̇ · · · ∪̇ Xm such that Xi is a star set for μi (i = 1, . . . ,m). Such a partition
is called a star partition, and in this context the star sets Xi are called star
cells. Each star partition determines a basis for IRn consisting of eigenvectors
of an adjacency matrix. The finite number of bases obtained in this way may
be ordered lexicographically, and an extremal basis is determined uniquely by
G. These ideas were introduced as a means of investigating the complexity of
the graph isomorphism problem. �

Proposition 5.1.4. Let X be a star set for μ in G, and let X = V (G) \ X.
(i) If μ 
= 0 then X is a dominating set for G;
(ii) If μ 
= −1 or 0 then X is a location-dominating set for G – that is, the
X-neighbourhoods of distinct vertices in X are distinct and non-empty.

Proof. The matrix P , which represents the orthogonal projection of IRn onto
E(μ), is a polynomial function of the adjacency matrix A (see Section 1.1),
and so AP = P A. For each vertex u of G we have

μPeu = APeu = P Aeu = P(
∑
i∼u

ei ) =
∑
i∼u

Pei . (5.1)
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5.1 Star complements 139

For part (i), we have to show that any vertex u in X is adjacent to a vertex
in X . Since μ 
= 0, we know from Equation (5.1) that the vectors in {Peu}∪
{Pei : i ∼ u} are linearly dependent. Since the vectors Pe j ( j ∈ X) are
linearly independent, it follows that there is a vertex adjacent to u which lies
outside X .

For part (ii), let �(u) be the set of neighbours of u in X . Suppose by way of
contradiction that u and v are vertices in X with the same neighbourhoods in
X . From equation (5.1) and its counterpart for v we have

μPeu − μPev −
∑

j∈�(u)
Pe j +

∑
j∈�(v)

Pe j = 0.

This is a relation on vectors in {Pe j : j ∈ X}. Since these vectors are linearly
independent, it follows that either (a) μ = 0, u 
∼ v and u, v have the same
neighbourhoods in G, or (b) or μ = −1, u ∼ v and u, v have the same closed
neighbourhood in G, contrary to assumption. �

In case (a) above, u and v are called duplicate vertices, and in case (b),
co-duplicate vertices.

It follows from Proposition 5.1.4(ii) that there are only finitely many graphs
with a prescribed star complement for an eigenvalue μ 
= 0 or −1, for if
|X | = t then |X | < 2t . This exponential bound will be improved to a
quadratic bound in the next section. If μ = 0 or −1 then |X | cannot be
bounded by a function of t : this can be seen by considering K2 ∪̇ (n − 2)K1

(with μ = 0) or Kn (with μ = −1). Alternatively, when μ = 0 or −1
we can add arbitrarily many duplicate or co-duplicate vertices: this corre-
sponds to repeating rows (and corresponding columns) of A − μI without
increasing the rank of A − μI . It can be shown that if μ ∈ {−1, 0}
and G has no duplicate or co-duplicate vertices then n is at most O(2t/2)

(see [KotLo]).
It follows from Proposition 5.1.4(i) that if μ 
= 0 and G − X is connected

then G is connected. In the reverse direction, a connected graph always has
a connected star complement for each eigenvalue. In fact we can establish
a stronger result (Theorem 5.1.6), and to prove it, we require the following
observation.

Lemma 5.1.5. If the column space of the symmetric matrix

(
C D�
D E

)
has the

columns of

(
C
D

)
as a basis, then the columns of C are linearly independent.
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Proof. Since each column of

(
D�
E

)
is a linear combination of the columns of(

C
D

)
, there exists a matrix L such that D� = C L , equivalently D = L�C .

Thus if Cx = 0 then

(
C
D

)
x = 0, whence x = 0 as required. �

Theorem 5.1.6. Let μ be an eigenvalue of the connected graph G, and let K
be a connected induced subgraph of G not having μ as an eigenvalue. Then G
has a connected star complement for μ containing K .

Proof. Let |V (K )| = r . Since G is connected we may label its vertices
1, . . . , n so that each vertex after the first is adjacent to a predecessor. Since K
is connected we may take 1, . . . , r to be the vertices of K . Let A be the adja-
cency matrix of G, with columns c1, . . . , cn , and let {ck : k ∈ Y } be the basis
of the column space of μI − A obtained by deleting each column which is a
linear combination of its predecessors. Note that {1, . . . , r} ⊆ Y because μ is
not an eigenvalue of K . By Lemma 5.1.5, the principal submatrix of μI − A
determined by Y is invertible. Since |Y | = codim E(μ), Y is a star set for μ
and the subgraph H induced by Y is a star complement for μ.

We prove that H is connected by showing that each vertex y of Y with y > 1
is adjacent to a previous vertex j of Y . We take j to be the least element of
{1, . . . , n} such that j is adjacent to y in G. Then j < y and the y-th entry of
c j is −1. On the other hand, the y-th entry of each ci (i < j) is 0, and so c j is
not a linear combination of its predecessors. Thus j ∈ Y as required. �

The next result, which establishes the basic property of star complements, is
known as the Reconstruction Theorem and its converse.

Theorem 5.1.7. Let X be a set of k vertices in the graph G, and suppose that

G has adjacency matrix

(
AX B�
B C

)
, where AX is the adjacency matrix of the

subgraph induced by X. Then X is a star set for μ in G if and only if μ is not
an eigenvalue of C and

μI − AX = B�(μI − C)−1 B. (5.2)

In this situation, the eigenspace ofμ consists of the vectors

(
x

(μI − C)−1 Bx

)
,

where x ∈ IRk.

Proof. Suppose first that X is a star set for μ. Then μ is not an eigenvalue of
C , and we have

μI − A =
(
μI − AX −B�
−B μI − C

)
,
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5.2 Construction and characterization 141

where μI − C is invertible. In particular, if |V (G)| = n then the matrix
(−B | μI − C) has rank n−k; but μI − A also has rank n−k and so the rows
of (−B | μI −C) form a basis for the row space of μI − A. Hence there exists
a k × (n − k) matrix L such that

(
μI − AX | − B�

) = L (−B | μI − C).
Now μI − AX = −L B, −B� = L (μI − C) and Equation (5.2) follows by
eliminating L .

Conversely, if μ is not an eigenvalue of C and Equation (5.2) holds, then it
is straightforward to verify that the vectors specified lie in E(μ). They form
a k-dimensional space, and, by interlacing, the multiplicity of μ is exactly k.
Hence X is a star set for μ. �

Note that if X is a star set for μ then the corresponding star complement
H(= G − X) has adjacency matrix C , and Equation (5.2) tells us that G is
determined by μ, H and the H -neighbourhoods of vertices in X . If μ 
= −1 or
0 then by Proposition 5.1.4(ii), there is a one-one correspondence between the
vertices in X and their H -neighbourhoods. To find all the graphs with a pre-
scribed star complement for μ, we have to find all solutions AX , B of Equation
(5.2), givenμ and C . In this situation, let |V (H)| = t and define a bilinear form
on IRt by

〈〈x, y〉〉 = x�(μI − C)−1y (x, y ∈ IRt ).

If we denote the columns of B by bu (u ∈ X) and equate matrix entries in
Equation (5.2), we obtain the following consequence of Theorem 5.1.7.

Corollary 5.1.8. Suppose that μ is not an eigenvalue of the graph H, where
|V (H)| = t . There exists a graph G with a star set X for μ such that G− X =
H if and only if there exist (0, 1)-vectors bu (u ∈ X) in IRt which satisfy

(i) 〈〈bu,bu〉〉 = μ for all u ∈ X, and
(ii) 〈〈bu,bv〉〉 ∈ {−1, 0} for all pairs u, v in X.

In this situation, u∼ v when 〈〈bu,bv〉〉= −1 and u 
∼ v when 〈〈bu,bv〉〉= 0.

5.2 Construction and characterization

In this section we give four basic examples to illustrate the use of Corol-
lary 5.1.8 in constructing graphs with a prescribed star complement H for
a prescribed eigenvalue μ. Note that if only H is prescribed then there
are only finitely many possibilities for μ: they can be identified from all
possible one-vertex extensions of H , as in Example 5.2.8 below. The exam-
ples serve to illustrate how star complements have been used in the litera-
ture to characterize certain graphs. In practice it is often convenient to write
Equation (5.2) in the form
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m(μ)(μI − AX ) = B�m(μ)(μI − C)−1 B (5.3)

where m(x) is the minimal polynomial of C . This is because m(μ)(μI −C)−1

is given explicitly as follows. The proof is left to the reader.

Proposition 5.2.1. Let C be a square matrix with minimal polynomial

m(x) = xd+1 + cd xd + cd−1xd−1 + · · · + c1x + c0.

If μ is not an eigenvalue of C then

m(μ)(μI − C)−1 = adCd + ad−1Cd−1 + · · · + a1C + a0 I

where ad = 1 and for 0 < i ≤ d,

ad−i = μi + cdμ
i−1 + cd−1μ

i−2 + · · · + cd−i+1.

If G has H as a star complement for μ, with a corresponding star set X
of size k, then the deletion of any r vertices in X results in a graph with μ
as an eigenvalue of multiplicity k − r . The reason is that the multiplicity of
an eigenvalue changes by 1 at most when any vertex is deleted (see Corollary
1.3.12). It follows that each induced subgraph G − Y (Y ⊂ X) also has H as
a star complement for μ. Moreover any graph with H as a star complement
for μ is an induced subgraph of such a graph G for which X is maximal,
because H -neighbourhoods determine adjacencies among vertices in a star set.
Accordingly, in determining all the graphs with H as a star complement for μ,
it suffices to describe those for which a star set X is maximal. By Proposition
5.1.4(ii), such maximal graphs always exist when μ 
= −1 or 0.

Example 5.2.2. We begin with the simple problem of finding the graphs that
have a 5-cycle 123451 as a star complement H for −2. In the notation of
Proposition 5.2.1, C is the circulant matrix with first row 01001, μ = −2 and
m(x) = (x − 2)(x2 + x − 1). Here m(μ) = −4 and the proposition yields

4(2I + C)−1 = C2 − 3C + 3I =

⎛
⎜⎜⎜⎜⎜⎝

5 −3 1 1 −3
−3 5 −3 1 1

1 −3 5 −3 1
1 1 −3 5 −3
−3 1 1 −3 5

⎞
⎟⎟⎟⎟⎟⎠ .

Now we apply Corollary 5.1.8(i). From Equation (5.3) we know that
〈〈bu,bu〉〉 = −2 if and only if b�u (C2 − 3C + 3I )bu = 8. In this situation
the neighbours of u in H constitute a set S such that the i-th entry of bu is 1 if
i ∈ S, 0 if i 
∈ S. Accordingly we have to find the subsets S of {1, 2, 3, 4, 5}
such that the sum of entries in the principal submatrix of C2 − 3C + 3I
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5.2 Construction and characterization 143

determined by S is equal to 8. It is straightforward to verify that this occurs
precisely when |S| = 4. All five possiblities for S occur simultaneously in
L(K5), which is therefore the unique maximal graph that arises. The graphs
with a 5-cycle as a star complement for −2 are therefore the induced sub-
graphs of L(K5) containing C5. Since C5 = L(C5), these graphs are just the
graphs L(G), where G is a Hamiltonian graph on five vertices. �

The arguments of Example 5.2.2 can be generalized to show that for any odd
t > 3, L(Kt ) is the unique maximal graph with a t-cycle as a star complement
for −2. Determination of the possible subsets S requires substantial effort in
the general case. An inspection of L(Kt ) reveals easily that such sets include
those consisting of two pairs of consecutive vertices on the t-cycle, and the
work lies in proving that there are no other possibilities for S. The graphs in
which the path Pt is a star complement for −2 have also been determined:
when t ≥ 3 and t 
= 7, 8, such graphs are precisely the line graphs of bipartite
graphs with t + 1 vertices (other than Pt+1) which have a Hamiltonian path.

In Example 5.2.2, there was no need to apply part (ii) of Corollary 5.1.8
because we had prior knowledge of a graph in which all possible vertices were
added to the prescribed star complement. We cannot expect that a unique max-
imal graph always exists, and in the general case, where a graph H occurs as
a star complement for an eigenvalue μ, it is useful to consider a compatibility
graph defined as follows. The vertices are those bu for which 〈〈bu,bu〉〉 = μ,
and bu is adjacent to bv if and only if 〈〈bu,bv〉〉 ∈ {−1, 0}. It is convenient to
represent the edge bubv by a full line if 〈〈bu,bv〉〉 = −1, and by a broken line if
〈〈bu,bv〉〉 = 0. If each vertex bu is labelled instead with the H -neighbourhood
of u, then this same graph is called the extendability graph �(H, μ). Note
that when μ 
= −1 or 0 there is a one-one correspondence between cliques
in �(H, μ) and graphs with H as a star complement for μ; moreover, the full
lines in a clique determine the subgraph induced by the corresponding star set.
In particular, if we use a computer to find the maximal graphs with H as a star
complement for μ, we can invoke an algorithm for finding the maximal cliques
in a graph. The next example illustrates the procedure in a small case.

Example 5.2.3. Here we find the graphs having a 5-cycle 123451 as a star
complement H for 1. In this case, Proposition 5.1.11 yields

(I − C)−1 = 3I − C2 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 −1 −1 0
0 1 0 −1 −1
−1 0 1 0 −1
−1 −1 0 1 0
−0 −1 −1 0 1

⎞
⎟⎟⎟⎟⎟⎠ .
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Figure 5.2 The extendability graph �(C5, 1).
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Figure 5.3 The maximal graphs with C5 as a star complement for 1.

First, we apply Corollary 5.1.8(i). From Equation (5.2) we know that
〈〈bu,bu〉〉 = 1 if and only if b�u (3I − C2)bu = 1. Now we have to find
the subsets S of {1, 2, 3, 4, 5} such that the sum of entries in the principal
submatrix of 3I − C2 determined by S is equal to 1. It is straightforward to
verify that this occurs if and only if S consists of a single vertex or three con-
secutive vertices of the 5-cycle. Next we apply part (ii) of Corollary 5.1.8 to
construct the extendability graph �(C5, 1) shown in Fig. 5.2. The automor-
phism group of �(C5, 1) has three orbits of maximal cliques (with 2, 3 and
5 vertices). These determine the three maximal graphs illustrated in Fig. 5.3,
where the vertices of H are circled. The Petersen graph has already featured in
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5.2 Construction and characterization 145

Example 5.2.2. Alternatively, its occurrence here could have been predicted
from Example 5.1.2, where C5 is a star complement for−2 in L(K5): since−2
is not a main eigenvalue of L(K5), we deduce from Proposition 2.1.3 that C5

is a star complement for−(−2)−1 in L(K5) – that is, C5 is a star complement
for 1 in the Petersen graph. �

For characterizations among regular graphs, the following result is very
useful in restricting the vectors bu that need to be considered.

Proposition 5.2.4 [CvRS3]. If μ is a non-main eigenvalue of G then, in the
notation of Corollary 5.1.8,

〈〈bu, j〉〉 = −1 for all u ∈ X.

Proof. Here the all-1 vector in IRn is orthogonal to E(μ). From the spec-
ification of E(μ) in Theorem 5.1.7 we deduce that 〈〈bu, j〉〉 = −1 for
all u ∈ X . �

Example 5.2.5. Proposition 5.2.4 tells us that if G is r -regular and μ 
= r
then, for each u ∈ X , −1 is the sum of entries in the columns of (μI − C)−1

indexed by the H -neighbourhood of u. Thus if we restrict G to be regular in
Example 5.2.3, the only candidates for an H -neighbourhood are the singletons
of V (H). It follows that the Petersen graph is characterized among regular
graphs by a 5-cycle as a star complement for 1. �

The procedures illustrated above are known collectively as the star comple-
ment technique for constructing and characterizing graphs with a prescribed
star complement for a prescribed eigenvalue. We give a further example of
the technique which illustrates the purely combinatorial nature of the argu-
ments when the star complement H is essentially devoid of structure. Here the
H -neighbourhood of a vertex u is denoted by �H (u).

Example 5.2.6. Suppose that K8 is a star complement H for −2. In this sit-
uation we have C = J − I , m(x) = (x + 1)(x − 7) and Equation (5.3)
becomes

9(2I + AX ) = B�(9I − J )B.

Equating (u, u)-entries here, we have 18 = 9h − h2, where h = |�H (u)|.
Hence h = 3 or 6. Equating non-diagonal entries, we find that the fol-
lowing conditions on H -neighbourhoods are necessary and sufficient for the
simultaneous addition of two vertices u and v:

if |�H (u)| = |�H (v)| = 3 then |�H (u) ∩�H (v)| ∈ {1, 2};
if |�H (u)| = 3 and |�H (v)| = 6 then |�H (u) ∩�H (v)| ∈ {2, 3};
if |�H (u)| = |�H (v)| = 6 then |�H (u) ∩�H (v)| ∈ {4, 5}.
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146 Structure and one eigenvalue

Note that the third condition is satisfied automatically because there �H (u)
and �H (v) are 6-subsets of an 8-set. For the maximal graphs G with K8 as a
star complement for −2, we need to find the maximal families of 3-sets and
6-sets satisfying the other two conditions. We give just three of many examples
of such a family F .

(a) F consists of all 28 subsets of V (H) of size 6; in this case, the maximal
graph G is the graph obtained from L(K9) by switching with respect to K8.

(b) F consists of all 21 subsets of size 3 containing a fixed vertex of H ; in this
case, G is the cone over L(K8).

(c) F consists of all 7 subsets of size 6 not containing a fixed vertex w of
H , together with 7 subsets of size 3 which form the lines of a geometry
PG(3, 2) on V (H) \ {w}; in this case, G is the unique smallest maximal
graph that arises. �

In order to describe the general form of a maximal family of neighbourhoods
in Example 5.2.6, we give some further definitons. Suppose that F is a family
of 3-subsets of {1, 2, . . . , 8}, and let F (2) be the family of 2-sets which are con-
tained in some 3-set of F . We say that F is an intersecting family if U∩V 
= ∅
for all U, V ∈ F ; and such a family F is complete if there does not exist an
intersecting family of 3-sets F0 such that F ⊂ F0 and F (2) = F (2)

0 . (For
example, if F = {138, 157, 568} then F is not complete because we can take
F0 = F ∪ {158}.) The final result of this section shows that a maximal excep-
tional graph with K8 as a star complement for−2 is determined by a complete
intersecting family of 3-subsets of {1, 2, . . . , 8}, and vice versa. Here we take
V (H) = {1, 2, . . . , 8} and write i j for the complement of {i, j} in V (H).

Theorem 5.2.7 [Row14]. Let G be a graph with K8 as a star complement for
−2, say H = G − X ∼= K8. Then G is a maximal exceptional graph if and
only if the family of H-neighbourhoods �H (u) (u ∈ X) has the form F3 ∪F6

where F3 is a complete intersecting family of 3-sets and F6 = {i j : i j 
∈ F (2)
3 }.

Proof. First suppose that G is a maximal exceptional graph, and let F3 be
the family of H -neighbourhoods of size 3. From the remarks above we know
that F3 is an intersecting family. If i j 
∈ F (2)

3 then the 6-set i j intersects each
member of F3 in at least two elements. Now the maximality of X ensures first
that the H -neighbourhoods include every such 6-set, and secondly that F3 is
complete.

Conversely, if the family of H -neighbourhoods has the form given then X ,
and hence G, is maximal. Moreover G is exceptional because a graph obtained
from K8 by adding a vertex of degree 3 or 6 is itself exceptional. �
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In Example 5.2.6(a), F3 = ∅, and in Example 5.2.6(b), F6 = ∅. It has been
shown by computer that there are exactly 363 maximal graphs with K8 as a
star complement for −2 [Lep2]; all are maximal exceptional graphs as defined
in Section 5.4.

We complete this section with two examples which illustrate the situation
in which a star complement is prescribed but an associated eigenvalue is not.
Recall that a graph H can be a star complement for only finitely many values
of μ, since then μ is an eigenvalue of a graph obtained from H by adding
a vertex. In our illustrations (and in Exercise 5.7) the star complement is a
complete bipartite graph, and so we begin with some remarks on the general
case H ∼= Kr,s (r + s > 2).

If V (H) has the bipartition R ∪̇ S, where |R| = r and |S| = s, then we say
that a vertex u added to H is of type (a, b) if the H -neighbourhood �H (u) of
u consists of a vertices in R and b vertices in S. If H has adjacency matrix C
then C has minimal polynomial x(x2 − rs), and μ(μ2 − rs)(μI − C)−1 =
(μ2 − rs)I + μC + C2 by Proposition 5.2.1. Thus μ(μ2 − rs) 
= 0 and we
may write Equation (5.2) in the form

μ(μ2 − rs)(μI − AX ) = B�{(μ2 − rs)I + μC + C2}B. (5.4)

Now suppose that u, v are distinct vertices in X of types (a, b), (c, d)
respectively. If we let AX = (ai j ) and equate (u, v)-entries in Equation (5.4)
we obtain

−μ(μ2 − rs)auv = (μ2 − rs)ρuv + μ(ad + bc)+ acs + bdr, (5.5)

where ρuv = |�H (u) ∩�H (v)|.
Theorem 5.2.8. If G is a graph with K1,5 as a star complement for some
multiple eigenvalue μ 
= −1 then μ = 1 and G is an induced subgraph of the
Clebsch graph.

Proof. We write H + u for the subgraph induced by X ∪ {u}. Since μ 
= 0,
H + u is connected by Proposition 5.1.4(i). From the spectra [CvDGT] of the
11 connected graphs H + u (corresponding to the 11 possible types (a, b) 
=
(0, 0)) we find that the only non-zero eigenvalue common to non-isomorphic
graphs is −1. Thus μ arises as a multiple eigenvalue only when all vertices in
X are of the same type, (a, b) say. In this situation, if we equate diagonal and
non-diagonal entries in Equation (5.4) we obtain

μ2(μ2 − 5) = (μ2 − 5)(a + b)+ 2μab + 5a2 + b2 (5.6)

and
−μ(μ2 − 5)auv = (μ2 − 5)ρuv + 2μab + 5a2 + b2. (5.7)
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148 Structure and one eigenvalue

On subtracting Equation (5.7) from Equation (5.6), and dividing by μ2 − 5,
we obtain μ2 + μauv = a + b − ρuv . Note that a + b − ρuv ∈ {1, 2}. Sup-
pose by way of contradiction that μ is not an integer. If μ2 
∈ ZZ then auv = 1,
a + b − ρuv = 1 and μ = 1

2 (−1 ± √5); if μ2 ∈ ZZ then auv = 0 and
μ = ±√2. But none of the 11 graphs H + u has ±√2 or 1

2 (−1 ± √5)
as an eigenvalue. Accordingly μ ∈ ZZ . The only integer other than −1 or 0
to be found among the eleven spectra is 1, which arises as an eigenvalue of
H + u precisely when u is of type (0, 2). Now the solutions of Equation (5.7)
are given by (auv, ρuv) ∈ {(0, 1), (1, 0)}. Thus all

(1
0

) (5
2

)
= 10 possible ver-

tices may be included in X : in this case X induces a Petersen graph because
u ∼ v if and only if the 2-element subsets �H (u),�H (v) of the 5-element
set of endvertices in H are disjoint. The 16-vertex graph so obtained is nec-
essarily the complement of the Clebsch graph, since a strongly regular graph
with parameters (16, 5, 0, 2) has K1,5 as a star complement for 1. Note that
foreknowledge of this example shows that �(K1,5, 1) ∼= K10 and obviates
the need to solve Equation (5.2). We conclude that the complement of the
Clebsch graph is the unique maximal graph with K1,5 as a star complement
for a multiple eigenvalue different from −1. �

The last theorem of this section illustrates the use of Proposition 5.2.4.

Theorem 5.2.9. Let G be an r-regular graph with n vertices. If G has
K1,s (s > 1) as a star complement for μ then one of the following holds:

(a) μ = ±2, r = s = 2 and H is a 4-cycle;
(b) μ = 1

2 (−1±√5), r = s = 2 and H is a 5-cycle;
(c) μ ∈ IN , r = s and G is strongly regular with parameters ((μ2 + 3μ)2,

μ(μ2 + 3μ+ 1), 0, μ(μ+ 1)).

Proof. By Proposition 5.1.4(i), G is connected since μ 
= 0. If μ = r then
n = 4 by Corollary 1.3.8, and we have r = s = 2, G = C4. Accordingly we
suppose that μ 
= r and consider a vertex in X of type (a, b) 
= (0, 0); note
that a2 = a. From Proposition 5.2.4 we have

−μ(μ2 − s) = aμ2 + aμs + bμ2 + bμ, (5.8)

and from Corollary (5.1.8) we have

μ2(μ2 − s) = aμ2 + 2μab + b2 + (μ2 − s)b. (5.9)

Equations (5.8) and (5.9) yield just two possibilities:

a = 0, b = μ2+μ 
= 0, s = μ(μ2+3μ+1) or a = 1, μ = −1, b ∈ {1, s}.
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5.2 Construction and characterization 149

Thus if μ = −1 then the central vertex of H is adjacent to all other vertices,
and this contradicts the regularity of G since other vertices of H have degree
less than n−1. It follows that μ 
= −1 and the central vertex of H is adjacent
to no vertices in X ; in particular, r = s = μ(μ2 + 3μ + 1). All vertices in X
are of type (0, μ2+μ), and counting in two ways the edges between X and H
we have

|X |(μ2 + μ) = μ(μ2 + 3μ+ 1)(μ3 + 3μ2 + μ− 1),

whence |X | = (μ2+3μ+1)(μ2+2μ−1) and n = |X |+s+1 = (μ2+3μ)2.
From Equation (5.7) we have

ρuv =
{

0 if u ∼ v
μ if u 
∼ v . (5.10)

If X induces a clique then |X | − 1 = r − μ2 − μ, whence

(μ+ 1)(μ+ 2)(μ2 + μ− 1) = 0.

Therefore, either μ = −2 and we have case (a), or μ = 1
2 (−1 ±√5) and we

have case (b). If X does not induce a clique then it follows from (5.10) that
μ ∈ IN . In this situation, let k = |X |, and let θ1, . . . , θr be the eigenvalues of
G other than μ and r . We have

r∑
i=1

θi + kμ+ r = 0 and
r∑

i=1

θ2
i + kμ2 + r2 = nr = (1+ k + r)r.

It follows that if θ = 1
r

∑r
i=1 θi then

r∑
i=1

(θi − θ)2 =
r∑

i=1

θ2
i − rθ

2 = k(r − μ2 − k
r μ

2 − μ).

On expressing r and k in terms of μ, we find that r − μ2 − k
r μ

2 − μ = 0.
Hence θi = θ (i = 1, . . . , r) and G has just three distinct eigenvalues. By
Theorem 3.6.4, G is strongly regular, and we have case (c) of the Theorem.
This completes the proof. �

In case (c) of Theorem 5.2.9, let D = {�H (u) : u ∈ X}. If μ = 1 then D
consists of all 2-subsets of X , and so the star complement technique yields a
unique graph G, necessarily the complement of the Clebsch graph. If μ = 2
then D is a Steiner system S(3, 6, 22): this is a design with 22 points and 77
blocks of size 6, with the property that any 3 points lie in a unique block.
By a Theorem of Witt [Witt], there is only one such design, and so again
G is unique. Here G is the Higman–Sims graph, the strongly regular graph
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150 Structure and one eigenvalue

with parameters (100, 22, 0, 6) first constructed from S(3, 6, 22) in [HiSi].
Accordingly, we have:

Corollary 5.2.10. Let G be a regular graph with K1,s (s > 1) as a star com-
plement for μ. If μ = 1 then G is the Clebsch graph. If μ = 2 then G is either
a 4-cycle or the Higman–Sims graph.

Note that conversely, if d ∈ IN and if G is a strongly regular graph with
parameters ((d2 + 3d)2, d(d2 + 3d + 1), 0, d(d + 1)) then G has, as a star
complement for d, the star induced by the closed neighbourhood of a vertex.
Thus our proofs establish both the existence and uniqueness of strongly regular
graphs with parameters (16, 5, 0, 2) and (100, 22, 0, 6). It is shown in [KasÖs]
that there is no strongly regular graph with parameters (324, 57, 0, 12) (the
case d = μ = 3).

5.3 Bounds on multiplicities

We saw in Section 5.1 that if a graph G has a star complement with t vertices,
for an eigenvalue μ 
= −1 or 0, then |V (G)| < t + 2t . Here we first improve
this upper bound to one which is a quadratic function of t .

Theorem 5.3.1 [BelRo]. Let G be a graph with n vertices, and let μ be an
eigenvalue of G, μ 
∈ {−1, 0}. If the eigenspace of μ has codimension t then
either

(a) n ≤ 1
2 t (t + 1) or

(b) μ = 1 and G = K2 or 2K2.

Proof. Suppose first that G is connected. Using the notation of Theorem 5.1.7,
we let S = (B|C−μI ), with columns su (u = 1, . . . , n). Using Equation (5.2),
we see that

μI − A = S�(μI − C)−1S,

and so, for all vertices u, v of G,

〈〈su, sv〉〉 =
⎧⎨
⎩
μ if u = v
−1 if u ∼ v .
0 otherwise

We define quadratic functions F1, . . . , Fn as follows:

Fu(x) = 〈〈su, x〉〉2 (x ∈ IRt ).

It is easily checked that if k = dim E(μ) and x = (xk+1, . . . , xn)
� then

Fu(x) = x2
u (u = k + 1, . . . , n).
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5.3 Bounds on multiplicities 151

We show that F1, . . . , Fn are linearly independent unless μ = 1 and
G = K2. If μ is the index of G, then k = 1 and Fu(x) = x2

u (u = 2, . . . , n). If
F1, . . . , Fn are linearly dependent, then, since F1 is the square of a linear func-
tion, F1 must be a multiple of one of F2, . . . , Fn , say of Fv . The continuity of
the functions x �→ 〈〈s1, x〉〉 and x �→ 〈〈sv, x〉〉 ensures that 〈〈s1, x〉〉 is a constant
multiple of xv , and therefore s1 is a multiple of the v-th column of μI −C . But
the entries of s1 and of C are all either 0 or 1; and since μ 
= −1, 0, we deduce
that the vertices 1 and v are adjacent to each other but to no other vertices of
G. Since G is connected we have G = K2 and μ = 1.

Now let μ1 be the index of G, and consider the case in which μ 
= μ1. Let w
be an eigenvector of G corresponding to μ1, with all entries of w positive. Let
w = (w1, . . . , wn)

�, and let w∗ = (wk+1, . . . , wn)
�. Since w lies in E(μ)⊥,

it follows from Theorem 5.1.7 that

〈〈su,w∗〉〉 = −wu (u = 1, . . . , n).

Suppose that
∑

u αu Fu = 0, that is,
∑

u αu〈〈su, x〉〉2 = 0 for all x ∈ IRt .
Taking x = si , we obtain μ2αi +∑u∼i αu = 0 (i = 1, . . . , n). Thus

(μ2 I + A)a = 0, where a = (α1, . . . , αn)
�.

From
∑

u αu〈〈su, x + y〉〉2 = 0, we obtain
∑

u αu〈〈su, x〉〉〈〈su, y〉〉 = 0 for all
x, y ∈ IRt . Taking x = si and y = w∗, we obtain μαiwi −∑u∼i αuwu =
0 (i = 1, . . . , n). Thus

(μI − A)a′ = 0, where a′ = (α1w1, . . . , αnwn)
�.

Because μ 
= −1, 0, we have μ 
= −μ2, and so a�a′ = 0, that is, α2
1w1 +

· · · + α2
nwn = 0. It follows that αu = 0 for all u, and so F1, . . . , Fn are

linearly independent. Now the functions Fu lie in the space of all homogeneous
quadratic functions on IRt , and since this space has dimension 1

2 t (t + 1), we
have n ≤ 1

2 t (t + 1).
Finally, suppose that G is not connected. It is clear that, for any vertex u,

Fu(x) involves only those entries of x which correspond to vertices in the same
component as u. Thus, if in each component the Fu are linearly independent,
then all the Fu are linearly independent. It follows that the bound holds except
possibly when G = r K2 for some r . In this case n = 2r, t = r , and the
inequality holds whenever r ≥ 3. This completes the proof. �

The bound in Theorem 5.3.1 is attained in the graph obtained from L(K9)

by switching with respect to K8: here μ = −2 and t = 8. Apart from a few
trivial exceptions, the bound is not attained in any regular graph; in fact, if G
is regular and t > 2, the bound can be reduced by 1, as we now show.
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152 Structure and one eigenvalue

Theorem 5.3.2 [BelRo]. Let μ be a non-main eigenvalue of a graph with n
vertices, and let t be the codimension of E(μ). If μ 
∈ {−1, 0} and t > 2 then

n ≤ 1

2
t (t + 1)− 1 = 1

2
(t − 1)(t + 2).

Proof. Since μ is non-main, we have jn ∈ E(μ)⊥, and it follows from Theo-
rem 5.1.7 that 〈〈su, j〉〉 = −1 (u = 1, . . . , n), where j denotes the all-1 vector
in IRt . Consider the function F(x) = 〈〈j, x〉〉2. We will show that F does
not belong to the span of F1, . . . , Fn . Suppose, by way of contradiction, that
F = ∑u βu Fu , i.e. 〈〈j, x〉〉2 = ∑u βu〈〈su, x〉〉2 for all x ∈ IRt . By considering
〈〈j, x+ y〉〉2, we see that

〈〈j, x〉〉〈〈j, y〉〉 =
∑

u

βu〈〈su, x〉〉〈〈su, y〉〉

for all x, y ∈ IRt . Taking x = y = si , we have 1 = μ2βi +∑u∼i βu (i =
1, . . . , n), that is,

jn = (μ2 I + A)b, (5.11)

where b = (β1, . . . , βn)
�. Next, taking x = si , y = j, we obtain

−〈〈j, j〉〉 = −μβi +∑u∼i βu (i = 1, . . . , n), that is,

〈〈j, j〉〉jn = (μI − A)b. (5.12)

From (5.11) and (5.12),

(μ+ μ2)b = (1+ 〈〈j, j〉〉)jn

Since μ + μ2 
= 0, b is a scalar multiple of jn , say b = βjn , so that βu = β

(u = 1, . . . , n). Thus

β2(
∑

u

〈〈su, x〉〉〈〈su, y〉〉)2 = 〈〈j, x〉〉2〈〈j, y〉〉2 = β2
∑

u

〈〈su, x〉〉2
∑

u

〈〈su, y〉〉2.

From (5.11) we know that β 
= 0, and so a Cauchy–Schwarz bound
is attained. It follows that 〈〈su, x〉〉 = α〈〈su, y〉〉 (u = 1, . . . , n), for some
α = α(x, y). Then 〈〈su, x− αy〉〉 = 0 for all u, that is,

s�u (μI − C)−1(x− αy) = 0 (u = 1, . . . , n).

It follows that (C − μI )(μI − C)−1(x− αy) = 0, whence x = αy. Since this
holds for all x, y ∈ IRt , t must be 1, contrary to assumption. Thus F does not
belong to the subspace spanned by F1, . . . , Fn . Since t > 2, it follows from
the proof of Theorem 5.3.1 that F1, . . . , Fn are linearly independent. Hence
F, F1, . . . , Fn are linearly independent, and we have n + 1 ≤ 1

2 t (t + 1), as
required. �
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Theorem 5.3.3 [BelRo]. The regular graphs attaining the bound of Theorem
5.3.2 are precisely the extremal strongly regular graphs.

Proof. First let G be an extremal strongly regular graph with eigenvalues
r, μ′, μ of multiplicities 1, k′, k, where 1 < k′ ≤ k. Thus if G has n vertices
then n = 1

2 k′(k′ + 3). If t = n− k then k′ = t − 1 and so n = 1
2 (t − 1)(t + 2),

as required.
For the converse, we give a proof due to B. Tayfeh-Rezaie. If G is a reg-

ular graph that attains the bound of Theorem 5.3.2, then every homogeneous
quadratic function on IRt is a linear combination of F1, F2, . . . Fn and F . In
particular,

〈〈x, x〉〉 =
n∑

u=1

εu Fu(x)+ γ F(x), (5.13)

for some scalars ε1, ε2, . . . , εn and γ . It follows that

〈〈x, y〉〉 =
n∑

u=1

εu〈〈su, x〉〉〈〈su, y〉〉 + γ 〈〈j, x〉〉〈〈j, y〉〉. (5.14)

Let e = (ε1, ε2, . . . , εn)
�. Taking x = si , y = −j (i = 1, 2, . . . , n) in (5.14),

we find that

(μI − A) e = (1− γ 〈〈j, j〉〉) j. (5.15)

Taking x = si in (5.13), we find that

(μ2 I + A) e = (μ− γ ) j. (5.16)

From (5.15) and (5.16) we see that (μ2 + μ)e is a scalar multiple of j. Since
μ2 +μ 
= 0, e = ε j for some ε. Now, taking x = si , y = s j (i 
= j) in (5.14),
we have

〈〈si , s j 〉〉 = ε
n∑

i=1

〈〈su, si 〉〉〈〈su, s j 〉〉 + γ.

It follows that if i 
∼ j then 0 = εa(2)i j + γ , where A2 = (a(2)i j ). Since G is not

complete, we deduce that ε 
= 0, and a(2)i j = −ε−1γ when i 
∼ j . Similarly, if

i ∼ j then a(2)i j = 2μ− ε−1(γ + 1), and the result follows. �

The five known extremal strongly regular graphs are described in Section 3.6.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.006
https:/www.cambridge.org/core


154 Structure and one eigenvalue

5.4 Graphs with least eigenvalue −2

We denote the least eigenvalue of a graph G by λ(G). We noted in Chapter 1
that if G is a generalized line graph then λ(G) ≥ −2. On the other hand, we
saw in Chapter 3 that not every graph whose spectrum is contained in [−2,∞)
is a generalized line graph; examples include the Chang graphs (Examples
1.2.6 and 4.1.13), the Clebsch graph (Example 1.2.4), the Petersen graph and
the wheel W6. Recall that a graph G is said to be exceptional if (i) G is
connected, (ii) λ(G) ≥ −2, and (iii) G is not a generalized line graph. Determi-
nation of the exceptional graphs was an early problem in spectral graph theory,
attributed to A. J. Hoffman in the early 1960s. In 1976, root systems were used
to show that an exceptional graph has at most 36 vertices [CamGSS]. In 1979
the exceptional graphs G with λ(G) > −2 were determined independently of
root systems [DooCv]: in Chapter 3 we noted that there are 573 such graphs
(20 with 6 vertices, 110 with 7 vertices and 443 with 8 vertices, comprising the
families G6, G7, and G8). In 1980, generalized line graphs were characterized
by a collection H of 31 forbidden induced subgraphs; the forbidden graphs
with least eigenvalue greater than −2 are precisely the graphs in G6, while the
other 11 forbidden graphs have least eigenvalue less than−2. In this section we
describe briefly how star complements can be used to find all the exceptional
graphs from the 443 exceptional graphs in G8.

Theorem 5.4.1 [CvRS5]. Let G be a graph with least eigenvalue −2. Then G
is exceptional if and only if it has an exceptional star complement for −2.

Proof. Suppose that G has an exceptional star complement H for−2. Then G
is not a generalized line graph. By Proposition 5.1.4(i), G is connected because
H is connected, and so G is exceptional. Conversely, suppose that G is excep-
tional. Then G contains an induced subgraph F from the family H identified
above. Since λ(G) ≥ −2 we know from interlacing that F is necessarily one
of the 20 exceptional graphs in G6. By Theorem 5.1.6, G has a connected star
complement H for −2 which contains F as an induced subgraph. Thus H is
exceptional, and the theorem follows. �

In Theorem 5.4.1, the candidates for an exceptional star complement are (by
interlacing) precisely the 573 exceptional graphs with least eigenvalue greater
than −2. These graphs have at most 8 vertices, a fact which follows either
from Theorem 3.4.6 or from their explicit determination independently of root
sytems. In any case, we can now see from Theorem 5.3.1 that an exceptional
graph has at most 36 vertices.

If G is a maximal exceptional graphs then G is a maximal graph with some
prescribed exceptional star complement H for −2. In the reverse direction,
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5.5 Graph foundations 155

it turns out that if G is a maximal graph with a prescribed exceptional star
complement H for −2 then G is a maximal exceptional graph only if H has
8 vertices. Accordingly, to find the maximal exceptional graphs, it suffices to
consider exceptional star complements with 8 vertices, and so there are 443
possibilities. For each of these, Lepović used a computer implementation of
the star complement technique to determine the maximal exceptional graphs
which arise. There are only 473 such graphs, and the distribution of the number
of vertices is as follows:

number of vertices 22 28 29 30 31 32 33 34 36
number of graphs 1 1 432 25 7 3 1 2 1

It transpires that 363 of these graphs have K8 as a (non-exceptional) star
complement for −2; for example, the unique largest graph and the unique
smallest graph are the graphs with 36 and 22 vertices which feature in Exam-
ples 5.2.5(a) and (c) respectively. The remaining 110 graphs are among the
430 maximal exceptional graphs which are cones over a graph switching-
equivalent to L(K8). In addition to these 430 graphs, there are a further 37
graphs with maximal degree 28, while the remaining 6 examples have maximal
degree less than 28 (see [CvRS6]).

5.5 Graph foundations

Let G be a generalized line graph, say G = L(Ĥ), where Ĥ is a B-graph.
Let μ be an eigenvalue of G, and let Y be a set of edges of Ĥ . We say that Y
is a line star set for μ in Ĥ if it is a star set for μ in L(Ĥ). In this situation,
Ĥ − Y (the spanning subgraph of Ĥ obtained by deleting the edges in Y ) is
the corresponding line star complement for μ in Ĥ . A line star complement
for −2 is called a foundation for Ĥ . We first discuss foundations for simple
graphs (i.e. B-graphs without petals).

Example 5.5.1. The graph L(K5) has spectrum 6, 14, (−2)5, and a star
complement for −2 has the form L(F) where the foundation F is one of
the graphs of Fig. 5.4. Here the graphs are shown in increasing order of
index. �

Theorem 5.5.2. (i) Let H be a connected graph. Then the least eigenvalue of
L(H) is greater than −2 if and only if H is a tree or an odd-unicyclic graph.
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Figure 5.4 The foundations for K5.

(ii) Let H be a connected bipartite graph such that L(H) has least eigen-
value −2. Then the subgraph F of H is a foundation of H if and only if F is a
spanning tree for H.

(iii) Let H be a connected non-bipartite graph such that L(H) has least
eigenvalue −2. Then the subgraph F of H is a foundation of H if and only if
F is a spanning subgraph in which each component is an odd-unicyclic graph.

Proof. Part (i) follows from Theorem 3.4.14, and so we suppose that H is a
connected graph which is neither a tree nor an odd-unicyclic graph. Suppose
that H has n vertices and m edges. Let E be a set of k edges in H , and let
F = H − E . If F is a foundation for H then k is the minimum number of
edges whose removal from H results in a graph whose line graph has least
eigenvalue greater than −2. From Theorem 3.4.9, we see that if H is bipartite
then k = m − n + 1 and F is a spanning tree, while if H is non-bipartite then
k = m − n and each component of F is odd-unicyclic.

To prove that, conversely, a graph of the type specified in (ii) and (iii) is
a foundation, we shall identify k linearly independent vectors ve (e ∈ E) in
EL(H)(−2). Thus −2 has multiplicity at least k in L(H). By interlacing, this
multiplicity is precisely k, and so H − E is a foundation for H .

The vectors ve (e ∈ E) are constructed as follows. Here we fix e and let
xl (l ∈ E(H)) be the coordinates of ve. If H is bipartite then F + e contains a
unique cycle Z , and Z is of even length. We take xl to be 1 and−1 for alternate
edges l of Z , with xe = 1, and we define xl = 0 for all l 
∈ E(Z); see Fig. 5.5.

If H is not bipartite and the addition of e to F creates an even cycle Z ,
then Z is the only even cycle in F + e and we repeat the construction above.
Otherwise, the addition of e creates either an odd cycle or a link between two
components of F . In either case, some component of F+e has just two cycles,
say Z and Z ′; they have odd length and are edge-disjoint. Let P be the unique
path of least length (possibly zero) between a vertex of Z and a vertex of
Z ′. If P has non-zero length then we take xl to be 2 and −2 for alternate
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Figure 5.5 A construction for eigenvectors of a line graph.

edges l of P . Then we take xl = ±1 for l ∈ E(Z) ∪ E(Z ′) as shown for the
dumbbell shape in Fig. 5.5. Finally we define xl = 0 for all remaining edges
l of H . Reversing all signs if necessary, we may take xe > 0 to determine ve

uniquely. In all cases, it is straightforward to check that ve is an eigenvector
of L(H), with corresponding eigenvalue −2. These eigenvectors are linearly
independent because, for each e ∈ E , the f -entry of ve is non-zero only for
f = e. This completes the proof. �

We call the vectors ve (e ∈ E) the eigenvectors of L(H) constructed from
F . In case (i) of Theorem 5.5.2, H itself is the unique foundation of H . From
the proof in cases (ii) and (iii), we have the following:

Corollary 5.5.3. The eigenspace of −2 for a line graph L(H) has as a basis
the set of eigenvectors constructed from any foundation of H.

We now turn to generalized line graphs that are not line graphs, and in this
context the following definitions will be helpful. An orchid is a graph which is
either odd-unicyclic or a tree with one petal; an orchid garden is a graph whose
components are orchids.

Example 5.5.4. Let Ĥ be the B-graph consisting of a triangle with single
petals added at two vertices. The graph Ĥ and all non-isomorphic foundations
of Ĥ are shown in Fig. 5.6. Note that each foundation is an orchid garden. �

Theorem 5.5.5. Let Ĥ be a connected B-graph with at least one petal. (Thus
L(Ĥ) is a generalized line graph which, in general, is not a line graph.)
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(i) The graph L(Ĥ) has least eigenvalue greater than −2 if and only if Ĥ is
an orchid.

(ii) Suppose that the least eigenvalue of L(Ĥ) is −2. Then F is a foundation
of Ĥ if and only if F is an orchid garden which spans Ĥ .

Proof. The proof mirrors that of Theorem 5.5.2, and part (i) follows from The-
orem 3.4.14. To prove part (ii), let m = |E(H)|, where Ĥ = H(a1, . . . , an),
and let F = Ĥ − E where E is a set of k edges in Ĥ . If F is a founda-
tion then k is the minimum number of edges whose removal from Ĥ results
in a B-graph whose least eigenvalue is greater than −2. By Theorem 3.4.13,
k = m − n +∑n

i=1 ai , and F is an orchid garden.
Conversely, if F is an orchid garden then we can identify k linearly inde-

pendent vectors ve (e ∈ E) in EL(Ĥ (−2). By interlacing, −2 has multiplicity

exactly k in L(Ĥ), and so F is a foundation for Ĥ .
It remains to construct the vectors ve (e ∈ E). We fix e and let xl (l ∈ E)

be the coordinates of ve. We use the term supercycle to mean either an odd
cycle or a petal. There are m − n +∑n

i=1 ai edges of Ĥ not in F , and three
possibilities arise when such an edge e is added to the orchid garden F : (1) the
edge creates an even cycle, (2) the edge creates a supercycle (that is, it creates
an odd cycle or a petal), (3) the edge joins a vertex of one orchid to a vertex of
another orchid. We now ascribe weights xl to the edges of Ĥ as follows.

In case (1) all weights are 0 except for 1 and −1 alternately on edges of
the even cycle. In cases (2) and (3), F + e contains a unique shortest path P
between vertices of two different supercycles, and we first ascribe weights of
2 and −2 alternately to the edges of P . To within a choice of sign, weights are
ascribed to the edges of the two supercycles as illustrated in Fig. 5.7, and all
remaining weights are 0. (In all cases the construction may be seen as ascribing
weights ±1 alternately to the edges in a closed walk, with the assumption that
double edges are assigned the same value; in edges traversed twice, the values
are added.)

In each case, we choose signs so that xe > 0. The weights xl of edges in
Ĥ are taken as coordinates of a vector ve whose entries are indexed by the
corresponding vertices of L(Ĥ). It is straightforward to check that each such
vector is an eigenvector of L(Ĥ) corresponding to−2. These m−n+∑n

i=1 ai
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Figure 5.7 A construction for eigenvectors of a generalized line graph.

vectors are linearly independent because each of the aforementioned closed
walks contains an edge not present in any of the others (as in the proof of
Theorem 5.5.2). �

Again we call the vectors ve (e ∈ E) the eigenvectors constructed from
F . In case (i) of Theorem 5.5.6, Ĥ itself is the unique foundation for Ĥ . In
case (ii) our arguments establish the following result (formulated to subsume
Corollary 5.5.3):

Theorem 5.5.6. The eigenspace for the eigenvalue −2 of a generalized line
graph has as a basis the set of eigenvectors constructed from any foundation
of the corresponding root multigraph.

Remark 5.5.7. We can construct a foundation F for the B-graph H(a1, . . . ,

an) from a foundation F ′ of H as follows. If H is not bipartite then F ′ is an
orchid garden which spans H and we may take F to consist of F ′ together
with ai (single) pendant edges attached at vertex vi (i = 1, . . . , n). If H is
bipartite then F ′ is a tree which spans H : here we first modify F ′ by adding
ai pendant edges at vertex vi (i = 1, . . . , n) and then obtain F by replacing
one of these pendant edges by a double edge. In general, not all foundations
for H(a1, . . . , an) can be constructed in this way. �

Finally, for future reference (see Subsection 9.3.2), we give two simple
results that arise as corollaries of the above proofs. Here an odd dumbbell is a
B-graph consisting of two supercycles connected by a path (possibly of zero
length).

Corollary 5.5.8. A connected generalized line graph L(Ĥ) has least eigen-
value −2 if and only if Ĥ contains an even cycle or an odd dumbbell.

Corollary 5.5.9. The edge e of the B-graph Ĥ lies in an even cycle or an
odd dumbbell if and only if there exists an eigenvector x ∈ EL(Ĥ)(−2) such
that xe 
= 0.
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Exercises

5.1 Find a star partition for (i) Km,n , (ii) L(Kn).
5.2 Show that the multiplicity of any eigenvalue of a non-trivial tree T is

bounded above by the number of endvertices of T .
5.3 Use Theorem 2.2.4 to show that if u, v are adjacent vertices in a star set

then uv is not a bridge.
5.4 Let μ be a non-zero eigenvalue of the graph G, and let X be a star set

for μ in G with corresponding star complement H . Show that if H is
2-connected then one of the following holds:

(a) G is 2-connected;
(b) μ 
= −1 and G has a pendant edge at a vertex of H ;
(c) μ = −1 and G has a cutvertex v in H whose neighbours in X induce

a complete subgraph which is a component of G − v.

5.5 Use the Reconstruction Theorem to find, for given t ∈ IN , the values of
μ for which Kt arises as a star complement for μ.

5.6 Consider the graphs with K1,5 as a star complement for−1 (cf. Theorem
5.2.7). Show that there are two maximal such graphs without co-duplicate
vertices. (One has 15 vertices, the other 16 vertices.)

5.7 Show that the complement of the Schläfli graph is the unique maximal
graph with K2,5 as a star complement for a multiple eigenvalue other
than −1 [JaRo].

5.8 Find in terms of n, μ and r the parameters of the strongly regular graphs
which arise in Theorem 5.3.3.

5.9 Let X be a star set for the eigenvalue μ in the graph G, and let H =
G − X . The vertex u of X is said to be amenable to switching if μ is an
eigenvalue of the graph obtained from H+u by switching with respect to
{u}. Suppose that μ is non-main and that every vertex in X is amenable to
switching. Show that if G ′ is obtained from G by switching with respect
to a subset of X then μ is a non-main eigenvalue of G ′ and X is a star set
for μ in G ′ [RowJa].

5.10 Let H be a graph with t vertices such that−2 is an eigenvalue of K1�H
but not of H . Let �∗(H ;−2) be the subgraph of �(H ;−2) induced
by the (0, 1)-vectors b such that 〈〈b, j〉〉 = −1 (cf. Proposition 5.1.4).
Show that �∗(H ;−2) has a perfect matching, say b1c1, . . . ,bmcm , with
bi + ci = j (i = 1, . . . ,m). Deduce that any two graphs with t + m
vertices having H as a star complement for the non-main eigenvalue −2
are switching-equivalent [CvRS9].
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5.11 Let Ĥ be a connected B-graph with at least one petal, such that L(Ĥ)
has least eigenvalue −2. Show that −2 is a main eigenvalue if and
only if Ĥ has an odd cycle or two petals connected by a path of odd
length.

5.12 Prove Corollaries 5.5.8 and 5.5.9.

Notes

The star complement technique has its origins in the Schur complement of
a principal submatrix (see [Pra, p. 17]); its application in a graph-theoretical
context was noted independently by Ellingham [Ell] and Rowlinson [Row8]
in 1993. Some consequences of the Reconstruction Theorem are discussed in
[BelCRS1]. A survey of star complements appears in [Row13], and a database
of some 1500 examples is described in [CvLRS1]. Subsequent papers include
a characterization of the Hoffman–Singleton graph [HofSi] among regular
graphs (see Section 6.4 and [RowSc]), and a reduction to a combinatorial prob-
lem in the case of extremal strongly regular graphs with an independent set of
maximal size [Row15]. Theorem 5.2.9 is a stronger version of a result which
appeared in [Row12], where the degree of regularity was prescribed and strong
regularity was not established. Regular graphs with regular star complements
are investigated in [Row10].

Further dominating properties of star complements are discussed in [Row9]
and [LiuRo]. The relation between star complements and switching is
discussed in [CvRS9] and [RowJa]. Several generalized line graphs (and
their complements) are characterized by star complements in [CvRS5]. In
[BelLMS], the authors investigate the possible star complements for −2 in
graphs for which −2 is the least eigenvalue. Odd cycles and paths as star
complements for −2 are treated in [Bel3], [Bel4] and [BelSi]. The determina-
tion of the maximal exceptional graphs is described in [CvLRS2], and treated
comprehensively in the monograph [CvRS7]. The relation of star partitions
to the complexity of the graph isomorphism problem is discussed in [CvRS2,
Chapter 8] and [CvRS1].
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6

Spectral techniques

This chapter is devoted to structural results which do not refer to eigenvalues
but which are proved using spectral techiniques. We include classical results
such as the Friendship Theorem and constraints on Moore graphs, as well
as more recent results concerning graph homomorphisms. We also discuss
decompositions of complete graphs, generalized quadrangles and equiangu-
lar lines. In the final section, we calculate the number of walks of given length
in graphs of a particular type.

6.1 Decompositions of complete graphs

An r-decomposition of the graph G is a set of r spanning subgraphs
H1, . . . , Hr such that each edge of G lies in exactly one of the Hi . For exam-
ple, it is easy to see that K7 is the edge-disjoint union of three 7-cycles. Is K10

(which has 45 edges) the edge-disjoint union of three copies of the Petersen
graph (which has 15 edges)? This question was posed by Schwenk in the
American Mathematical Monthly (Problem 6434(b) of June-July 1983). The
following simple argument involving eigenspaces shows that the answer is
‘no’. If K10 has such a decomposition then

A + B + C + I = J (6.1)

where each of A, B,C is an adjacency matrix of a Petersen graph. Since EA(1)
and EB(1) are 5-dimensional subspaces of the 9-dimensional space j⊥, there
exists a non-zero vector x ∈ EA(1) ∩ EB(1) such that Jx = 0. From Equation
(6.1) we have Ax+Bx+Cx+x = 0, whence Cx = −3x. This is a contradiction
because −3 is not an eigenvalue of C .

We can extend the above argument from the Petersen graph to an arbitrary
strongly regular graph G, and thereby obtain the following result.

162
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6.1 Decompositions of complete graphs 163

Theorem 6.1.1 [Row2]. Let G be a connected strongly regular graph with
parameters (n, r, e, f ). If Kn is the edge-disjoint union of three spanning sub-
graphs isomorphic to G then there exists a positive integer k such that, with a
consistent choice of sign,

n = (3k ± 1)2, r = 3k2 ± 2k, e = k2 − 1 and f = k2 ± k.

Proof. By Theorem 3.6.5, G has eigenvalues r, μ2, μ3 with multiplicities
1, k2, k3 where

μ2, μ3 = 1

2

(
e − f ±

√
(e − f )2 + 4(r − f )

)
and

k2, k3 = 1

2

{
(n − 1)± (n − 1)( f − e)− 2r√

(e − f )2 + 4(r − f )

}
.

If Kn has a 3-decomposition as described in the statement of the theorem then
a consideration of degrees shows that n − 1 = 3r . It follows that k2 
= k3

for otherwise f − e = 2r/(n − 1) = 2
3 . Equation (6.1) holds with each of A,

B, C now an adjacency matrix of G. On repeating the original argument with
μ2 in place of the eigenvalue 1 we find that −2μ2 − 1 is an eigenvalue of
C . This eigenvalue is different from r because a corresponding eigenvector is
orthogonal to j; and different from μ2 because μ2 
= − 1

3 . Hence −2μ2 − 1 =
μ3 and on expressing k2 in the form

k2 = 1

2

{
3r − 3r(μ2 + μ3)+ 2r

μ2 − μ3

}
(6.2)

we see that k2 = 2r, k3 = r . It follows from (6.2) that 3(μ2 + μ3) + 2 =
μ3 − μ2. Similarly, if k3 > k2 then μ2 and μ3 are interchanged and we have
3(μ2 + μ3)+ 2 = μ2 − μ3. Hence always

(3e − 3 f + 2)2 = (e − f )2 + 4(r − f ). (6.3)

For any strongly regular graph, we have r(r − e − 1) = (n − r − 1) f by
Equation (3.14). Since here n−1 = 3r , we have r = 2 f +e+1, and it follows
from (6.3) that

( f − e + 1)2 = e + 1.

Thus e has the form k2 − 1 and the result follows. �

In the terminology of Mesner [Mes] a strongly regular graph which satisfies
the conclusions of Theorem 6.1.1 with n = (3k + 1)2 is a graph of negative
Latin square type N Lk(3k + 1). If n = (3k − 1)2 then the graph is called by
Bose and Shrikhande [BosSh] a pseudo net graph of type Lk(3k − 1).
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164 Spectral techniques

Remark 6.1.2. Suppose for definiteness that k2 > k3 in the proof of Theorem
6.1.1. Our eigenspace argument shows that EA(μ2)∩ EB(μ2) ⊆ EC (μ3). Now
dim EC (μ3) = r and dim(EA(μ2) ∩ EB(μ2)) = dim EA(μ2)+ dim EB(μ2)−
dim(EA(μ2) + EB(μ2)) ≥ 2k2 − (n − 1) = r . Hence EC (μ3) = EA(μ2) ∩
EB(μ2). Similarly EB(μ3) = EC (μ2) ∩ EA(μ2) and EA(μ3) = EB(μ2) ∩
EC (μ2). Since EA(μ2) ∩ EA(μ3) = {0}, we have EA(μ3) ∩ EB(μ3) = {0}
and, on comparing dimensions, EC (μ2) = EA(μ3)⊕ EC (μ3). Therefore,

IRn = 〈j〉 ⊕ EA(μ3)⊕ EB(μ3)⊕ EC (μ3). (6.4)

If k3 > k2 then μ2 replaces μ3 in (6.4).
The disposition of the various eigenspaces ensures that the matrices A, B,

C are simultaneously diagonalizable and so they commute: in terms of edge-
colourings of Kn this means that if we use three different colours c1, c2, c3

for the three subgraphs isomorphic to G then for any two vertices u, v and
any two colours ci , c j the number of u-v walks of length 2 coloured ci , c j

is the same as the number of u-v walks of length 2 coloured c j , ci . This is
not generally the case for a 3-decomposition of Kn into isomorphic regu-
lar subgraphs as may be seen from the following decomposition of K7 into
three 7-cycles: if the vertices of K7 are labelled 1,2,3,4,5,6,7 and the cycles
12345671, 14275361, 13746251 are coloured blue, red, green respectively then
the walk 153 is coloured green-red, but there is no walk from 1 to 3 coloured
red-green. �

The following class of examples illustrates Theorem 6.1.1.

Example 6.1.3. Let IK be a finite field of order q = p2h , where h ∈ IN and
p is a prime congruent to 2 mod 3. Let g be a generator for the multiplica-
tive group of IK , and let H = 〈g3〉. The subgroup H has index 3 in 〈g〉 and
consists of all the non-zero cubes in IK . Since −1 ∈ H we may define (undi-
rected) graphs Gi (i = 0, 1, 2), with vertices the elements of IK , as follows:
vertices u and v are adjacent in Gi if and only if u − v ∈ Hgi (i = 0, 1, 2).
The map x �−→ xgi (x ∈ IK ) is an isomorphism G0 → Gi , and it follows that
G0,G1,G2 constitute a 3-decomposition of Kq . Moreover G0 is strongly reg-
ular because any pair of adjacent vertices may be mapped to 0, g3, and any pair
of non-adjacent vertices may be mapped to 0, g, by an automorphism of IK .
Thus there are infinitely many graphs G which satisfy the hypotheses of Theo-
rem 6.1.1. (The smallest connected example is the complement of the Clebsch
graph, which arises as G0 when q = 16.)

We can use the relation between parameters given by Theorem 6.1.1 to find
the number of solutions of the Fermat equation x3 + y3 = z3 in the field IK .
Note that e = k2−1 where k = 1

3 (p
h−1) if h is even and k = 1

3 (p
h+1) if h is

odd. Now for given u ∈ H , e is the number of solutions (v,w) of the equation
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u + v = w (v,w ∈ H). It follows that the number of solutions (u, v, w)
of the equation u + v = w (u, v, w ∈ H) is e|H |. Each element of H has
3 cube roots in IK and so the number of non-trivial solutions (x, y, z) of the
equation x3 + y3 = z3 (x, y, z ∈ IK ) is f3(p2h), where f3(p2h) = 27e|H | =
(p2h − 1)(p2h − 2(−p)h − 8). �

If Kn is the edge-disjoint union of subgraphs (not necessarily spanning sub-
graphs) isomorphic to the graph G then (i) 1

2 n(n−1) is divisible by the number
of edges in G and (ii) n − 1 is divisible by the greatest common divisor of the
degrees of vertices in G. An asymptotic converse was proved by R. M. Wilson
[Wils]: given a graph G then for large enough n satisfying conditions (i) and
(ii), Kn is the edge-disjoint union of subgraphs isomorphic to G. Note that
if G is regular of degree r then conditions (i) and (ii) reduce to the single
requirement that r divides n − 1.

For our next observation on the decomposition of a complete graph, we
make use of the following more general result, attributed to H. S.Witsenhausen.

Lemma 6.1.4. Let G be a graph with n+ positive eigenvalues and n− negative
eigenvalues. If G has an r-decomposition into complete bipartite graphs then
r ≥ max{n+, n−}.
Proof. Here the adjacency matrix A of G is A1 + · · · + Ar , where Ai is the
adjacency matrix of a complete bipartite graph Gi (i = 1, . . . , r). Thus if Gi is
determined by the bipartition V (G) = Ui ∪̇ Vi then Ai = ui v�i +vi u�i , where
ui , vi are the characteristic vectors of Ui , Vi respectively (i = 1, . . . , r).

Now suppose by way of contradiction that r < n+. Then the eigen-
vectors of A corresponding to positive eigenvalues span a subspace V+ of
dimension greater than r . Hence V+ contains a non-zero vector w orthog-
onal to u1, . . . ,ur . Now w�Aw = 0, a contradiction. We obtain a similar
contradiction if r < n−. �

Theorem 6.1.5. If Kn has an r-decomposition into complete bipartite graphs
then r ≥ n−1.

Proof. The result follows immediately from Lemma 6.1.4 because Kn has
n − 1 negative eigenvalues. �

6.2 Graph homomorphisms

The topic of graph homomorphisms forms a natural sequel to the previous
section, because we can give an alternative solution to the original problem
concerning K10 in this context. A homomorphism from the graph G to the
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graph H is a function σ : V (G) → V (H) that maps edges to edges; that is,
if i, j are adjacent vertices of G, then σ(i), σ ( j) are adjacent vertices of H .
In this situation, let S be the matrix whose rows are indexed by V (G), whose
columns are indexed by V (H), and whose (i, u)-entry is 1 if σ(i) = u, and 0
otherwise. Thus if V (H) = {1, . . . , k} then

S�S = diag( |σ−1(1)|, . . . , |σ−1(k)| ),
while the (u, v)-entry of S�A(G)S is the number N (u, v) of edges between
σ−1(u) and σ−1(v). We say that σ is uniform, with parameters p, q, if each
vertex of H is the image of precisely p vertices of G, and each edge of H is
the image of precisely q edges of G.

Theorem 6.2.1. Let G, H be graphs with n,m vertices respectively. If there
exists a uniform homomorphism from G to H, with parameters p, q, then

λn−m+i (G) ≤ q

p
λi (H) ≤ λi (G) (i = 1, . . . ,m). (6.5)

Proof. We have S�S = pI and S�A(G)S = q A(H). Thus if Q = 1√
p S then

Q�Q = I and Q�A(G)Q = q
p A(H). Now the result follows by applying

Theorem 1.3.11 to A(G) and q
p A(H). �

If K10 is the edge-disjoint union of three copies of the Petersen graph P ,
then there is a natural uniform homomorphism σ from G = 2P to H = P
with p = 2 and q = 1. (In each of 2P and P , we may colour the edges of one
Petersen graph red, and the edges of the other green; then σ maps red edges to
red edges and green edges to green edges.) Now P = L(K5), with spectrum
6, 14, (−2)5, while 2P has spectrum 32, 110, (−2)8. Since λ12(G) = λ2(H) =
1, the eigenvalues of 1

2 A(H) do not interlace those of A(G) in accordance with
(6.5). Thus there is no 3-decomposition of K10 into Petersen graphs.

In the case of a uniform homomorphism from a regular graph G to a regular
graph H , the inequalities (6.6) may be recast in terms of the eigenvalues of
the Laplacian D − A, or of the signless Laplacian D + A. If the eigenvalues
of D − A are denoted by ν∗i in non-decreasing order, and the eigenvalues of
D + A are denoted by ξ∗i in non-decreasing order then the inequalities (6.5)
yield

ν∗i (G) ≤
q

p
ν∗i (H) and ξ∗i (G) ≤

q

p
ξ∗i (H) (i = 1, . . . ,m). (6.6)

These inequalities may be generalized to the case of an arbitrary homomor-
phism σ from a graph G onto a graph H without isolated vertices, as follows.
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Let pσ be the smallest of the numbers σ−1(u) (u ∈ V (H)), and let qσ be the
largest of the numbers N (u, v). Then

ν∗i (G) ≤
qσ

pσ
ν∗i (H) and ξ∗i (G) ≤

qσ

pσ
ξ∗i (H) (i = 1, . . . ,m),

where again m = |V (H)|. These are among the spectral inequalities estab-
lished in [DanHa1] and [DanHa2].

We conclude this section with a second application of Theorem 6.2.1, this
time to designs. Recall that a 2-(v, k, λ) design consists of a family B of
k-subsets (or blocks) of a v-subset V such that any two elements (or points)
of V lie in precisely λ blocks. If |B| = b then each point lies in r blocks,
where bk = vr and r(k − 1) = (v − 1)λ. Note that r ≥ λ. Let G be the graph
whose components are the complete graphs on {B} × B (B ∈ B), let H be the
complete graph on V , and define σ(B, u) = u (u ∈ V ). Then σ is a uniform
homomorphism from G to H with parameters r, λ.

Example 6.2.2. Using the homomorphism σ defined above, we prove Fisher’s
inequality: if k < v then b ≥ v. We have G = bKk and H = Kv . Thus if
b < v then λv−b+1(H) = −1 and λkb−b+1(G) = −1. Applying Theorem
6.2.1 (with n = bk, m = v, i = v − b+ 1)), we have λ

r (−1) ≤ (−1), that is,
r ≤ λ. Hence r = λ, and so k = v, contrary to assumption. �

6.3 The Friendship Theorem

For our third application, consider an acquaintance graph with n vertices rep-
resenting n persons (n > 1). An edge between two vertices indicates that the
two persons are acquainted. The Friendship Theorem is often formulated as
follows: if any two persons have exactly one common acquaintance then one
person is acquainted with everybody else. It is easy to see that then the acquain-
tance graph must be a windmill, that is a graph of the form K1� r K2 (r ∈ IN ).
The complete result may be stated as follows.

Theorem 6.3.1. Let G be a non-trivial graph in which any two vertices have
a unique common neighbour. Then G is a windmill.

Proof. Let A(G) = A = (ai j ), and let A2 = (a(2)i j ). Thus our hypothesis is

that a(2)i j = 1 whenever i 
= j . Since a(2)i i is the degree di of vertex i , we have

A2 − D = J − I, (6.7)
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where, as usual, D is the diagonal matrix of vertex degrees and J is an all-1
matrix. It follows that A commutes with J + D − I , and hence that

AJ + AD = J A + D A. (6.8)

Equating (i, j)-entries in Equation (6.8), we have di + ai j d j = d j + di ai j , or

(di − d j )(ai j − 1) = 0.

Since ai j = 1 whenever di 
= d j , we label vertices with the same degree
consecutively to obtain A in the form

A =

⎛
⎜⎜⎝

∗ Jk1,k2 · · · Jk1,kr

Jk2,k1 ∗ · · · Jk1,kr

· · · · · · · · · · · ·
Jkr ,k1 Jkr ,k2 · · · ∗

⎞
⎟⎟⎠ ,

where k1, . . . , kr are the frequencies of the distinct degrees.
We may suppose that k1 > 1 because any non-trivial connected graph has (at

least) two vertices of the same degree. Then a(2)12 ≥ n− k1, and since a(2)12 = 1,
we conclude that k1 ≥ n − 1. Moreover, either (a) k1 = n − 1, r = 2 and
k2 = 1, or (b) k1 = n, r = 1 and all vertices have the same degree. We
consider these cases in turn.

In case (a), A has the form

A =
(

A∗ j
j� 0

)
.

Our hypothesis ensures that each row of A∗ has exactly one entry equal to 1,
and so without loss of generality,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 1
1 0 0 0 · · · 0 1
0 0 0 1 · · · 0 1
0 0 1 0 · · · 0 1
· · · · · · · · · · · · · · · · · · · · ·
1 1 1 1 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

This is the adjacency matrix of a windmill.
In case (b), G is regular, say of degree d , and we have D = d I , AJ = d J .

It follows from Equation (6.7) that

(A − d I )(A2 − (d − 1)I ) = O.

We may suppose that G is not complete (and hence that d > 2), because
the only complete graph that satisfies our hypothesis is K3 (a windmill).
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From Theorem 3.6.5, we know that G is strongly regular, with eigenvalues
d,
√

d − 1,−√d − 1 of multiplicities 1, k, l, where

k, l = 1

2

(
n − 1∓ d√

d − 1

)
.

Thus

n − 2k − 1 = d
√

d − 1

d − 1
. (6.9)

It is easy to see that there is no value of d (d > 2) for which the right-hand
side of (6.9) is an integer. Thus the windmill K3 is the only graph that arises in
case (b), and the proof is complete. �

6.4 Moore graphs

A Moore graph is a graph with diameter d and girth 2d + 1, for some d > 1.
The 5-cycle and the Petersen graph are two of the three known examples with
d = 2; we describe the third example later in this section.

Lemma 6.4.1. A Moore graph is regular.

Proof. Let G be a Moore graph with diameter d . We show first that any two
vertices u, v of G at distance d have the same degree. Let P(u, v) be the
unique path of length d from u to v, and let w be any neighbour of v not on
P(u, v). Then d(u, w) = d and the path P(u, w) includes a neighbour w′ of
u not on P(u, v). Different w determine different w′, and so deg(v) ≤ deg(u).
Similarly, deg(u) ≤ deg(v).

Next, let Z be a cycle of length 2d + 1 in G. If x, y are adjacent vertices
of Z then there exists a vertex z of Z such that d(x, z) = d(y, z) = d, and so
deg(x) = deg(y). It follows that all vertices of Z have the same degree.

Finally, consider a vertex t not on Z , and a shortest path, of length j say,
from t to Z . We may add d − j consecutive edges of Z to this path to reach a
vertex t ′ of Z at distance d from t . Then deg(t) = deg(t ′), and it follows that
all vertices of G have the same degree. �

It can be shown that a Moore graph G is even distance-regular (Exercise
6.3), and this is the first step in a proof that d = 2 unless G is an odd cycle
of length > 5. We omit this proof, but show instead that there are at most four
possibilities for the degree of a Moore graph G with d = 2. Note that in this
case, if G is r -regular with n vertices then n = r2 + 1, because the number of
vertices at distance 2 from a given vertex is r(r − 1).
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Theorem 6.4.2. If G is a Moore graph of diameter 2 then G is r-regular, with
r ∈ {2, 3, 7, 57}.

Proof. For any two non-adjacent vertices u, v, there exists a unique walk of
length 2 between u and v. It follows that the adjacency matrix A of G satisfies

A2 + A − (r − 1)I = J.

Since also (A − r I )J = O , G is strongly regular with eigenvalues r, μ2, μ3,
where μ2, μ3 are the roots of x2 + x − (r − 1). Thus μ2, μ3 = 1

2 (−1 ± s),
where s = √4r − 3. If k2, k3 are the multiplicities of μ2, μ3 then (considering
spectral moments) we have

1+ k2 + k3 = r2 + 1 and r + k2μ2 + k3μ3 = 0. (6.10)

It follows that

k2 + k3 = r2 and s(k2 − k3) = r2 − 2r.

If 4r − 3 is not a perfect square then s is irrational and necessarily k2 = k3,
r2 = 2r . In this case, r = 2.

If 4r − 3 is a perfect square, then we substitute 1
4 (s

2+ 3) for r in (6.10) and
eliminate k3 to obtain

s5 − s4 + 6s3 − 2s2 + (9− 32k2)s − 15 = 0.

It follows that the integer s is a divisor of 15. Since r > 1, we have s > 1.
Hence s ∈ {3, 5, 15}, and so r ∈ {3, 7, 57} in this case. �

If n is the number of vertices in an r -regular Moore graph G (of diameter
2) then the possibilities for (r, n) are (2, 5), (3, 10), (7, 50) and (57, 3250). It
is not known whether the last possibility arises. The 5-cycle and the Petersen
graph are the unique Moore graphs with parameters (r, n) = (2, 5), (3, 10)
respectively, and the unique Moore graph with (r, n) = (7, 50) is the Hoffman–
Singleton graph HoS, which we now describe. For this purpose, recall that the
Fano plane is the unique 2-(7, 3, 1) design illustrated in Fig. 6.1, where the
blocks are represented by the circle and the straight lines. The graph HoS
may be constructed as follows, where a heptad is a set of 7 triples which
may be taken as the blocks of a Fano plane whose points are 1, 2, 3, 4, 5, 6, 7.
The vertices of HoS are the 15 heptads in an orbit of the alternating group
A7 together with the 35 triples in {1, 2, 3, 4, 5, 6, 7}. There are edges in HoS
between disjoint triples, and between a heptad and each of its triples.

We note that HoS has an induced subgraph H0 illustrated in Fig. 6.2,
where the vertices of degree 1 and 7 are the 15 independent heptads. Now
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Figure 6.1 The Fano Plane.
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Figure 6.2 The graph H0.

the spectrum of H0 is 31,
√

2 6, 08, (−√2)6, (−3)1, while that of HoS is
71, 228, (−3)21. Thus H0 is a star complement for 2 in HoS. It can be shown
that HoS is the unique regular graph with such a star complement (see
[RowSc]).

An r -regular graph of diameter 2 has at most r2 + 1 vertices, because the
number of vertices at distance 2 from a given vertex is at most r(r − 1); and
when this bound is attained, the graph has girth 5. On the other hand, an
r -regular graph of girth 5 has at least r2 + 1 vertices, and when this bound
is attained, the graph has diameter 2. Thus a Moore graph is extremal in both
contexts. The technique used to prove Theorem 6.4.2 may be extended to prove
the following.

Theorem 6.4.3 [Brow]. There is no r-regular graph of girth 5 on r2 + 2
vertices.

Proof. Suppose that G is an r -regular graph of girth 5 with n = r2+2 vertices.
Then r is even, and the number of vertices at distance ≤ 2 from any given
vertex v is r2 + 1. Accordingly, there is just one further vertex, v∗ say, in G,
and d(v, v∗) = 3. Since v∗∗ = v, we may label the vertices of G so that

A2 + A − r I = J − B − I, (6.11)

where B is a direct sum of matrices

(
0 1
1 0

)
. Now J − B − I is the adja-

cency matrix of a cocktail-party graph, with spectrum n − 2, 0
n
2 ,−2

n
2−1. On

diagonalizing A and J simultaneously, we now see from (6.11) that G has 1
2 n

eigenvalues λ satisfying
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λ2 + λ− r = 0, that is, λ = 1

2
(−1± s) where s = √4r + 1,

and 1
2 n − 1 eigenvalues λ satisfying

λ2 + λ− r + 2 = 0, that is, λ = 1

2
(−1± t) where t = √4r − 7.

There are four cases to consider.
Case 1: s and t both rational. Here, s and t are odd positive integers such that
s2−t2 = 8, and so s = 3, t = 1. Then r = 2 and G is a 6-cycle, a contradiction
since G has girth 5.
Case 2: s and t both irrational. Here s/t is irrational, for otherwise st is an
integer such that (st)2 = (4r − 3)2 − 16 and again s = 3, t = 1, r = 2. Thus
s and t are linearly independent over the rationals. Therefore the eigenvalues
1
2 (−1± s) appear in pairs, and the eigenvalues 1

2 (−1± t) appear in pairs. This
is impossible since one of 1

2 n, 1
2 n − 1 is odd.

Case 3: s is irrational and t is rational. In this case, the eigenvalues 1
2 (−1± t)

are integers and (since tr(A) = 0) it follows that the eigenvalues 1
2 (−1 ± s)

sum to an integer. This sum is − 1
4 n since the eigenvalues 1

2 (−1± s) appear in
pairs. Thus 4 divides n and we have the contradiction r2 ≡ 2 mod 4.
Case 4: s is rational and t is irrational. Here the eigenvalues 1

2 (−1± t) appear
in pairs and so their sum is − 1

4 n + 1
2 . Now let 1

2 (−1+ s) have multiplicity m.
Since tr(A) = 0 we have

r + m
1

2
(−1+ s)+

(
1

2
n − m

)
1

2
(−1− s)− 1

4
n + 1

2
= 0. (6.12)

Since n = r2+ 2 and r = 1
4 (s

2− 1), we obtain a quintic equation from (6.11):

s5 + 2s4 − 2s3 − 20s2 + (33− 64m)s + 50 = 0. (6.13)

Thus s divides 50. The only possibilities for (s,m, r) (s > 1) arising from
(6.12) are (5, 12, 6) and (25, 6565, 156). In both cases, tr (A3) 
= 0, a
contradiction since G has no triangles. �

6.5 Generalized quadrangles

A generalized polygon is a bipartite graph with diameter d and girth 2d for
some integer d > 1. A refinement of the arguments used to prove Lemma
6.4.1 shows that if G is a generalized polygon with minimal degree δ(G) > 2
then G is either regular or semi-regular. In this situation, the only possible
values of d are 3, 4, 6 and 8 (and all arise): the proof of this result, obtained by
Feit and Higman [FeHi] in 1964, is outwith the scope of this book. It can also
be shown that always δ(G) ≥ 2, and if δ(G) = 2 then one of the following
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holds: (a) G is an even cycle, (b) G is the k-fold subdivision of multiple edges
between two vertices, (c) G is the k-fold subdivision of a generalized polygon
G ′ with δ(G ′) > 2.

We say that a generalized polygon G has order (s, t) if the vertices in the
two parts of V (G) have degrees s + 1 and t + 1. The terminology reflects the
fact that the incidence graph on the points and lines of a projective plane of
order s is a generalized polygon G with d = 3 and order (s, s). Similarly,
the incidence graph on the vertices and edges of a d-cycle is a generalized
polygon of order (1, 1); this is just a 2d-cycle, constructed as the total graph
of a d-cycle.

A generalized quadrangle is a generalized polygon with d = 4. We show in
Theorem 6.5.4 that if a generalized quadrangle has order (2, t) then the only
possible values of t are 1, 2 and 4, and that a unique graph arises in each case.
We begin by determining constraints on s and t for any generalized quadrangle
G of order (s, t). Let V (G) = S ∪̇ T , where vertices in S have degree s + 1
and vertices in T have degree t + 1. Let G∗ be the graph with V (G∗) = T ,
and with vertices p, q adjacent if and only if p, q are at distance 2 in G.

Lemma 6.5.1. The graph G∗ is strongly regular with parameters

((s + 1)(st + 1), s(t + 1), s − 1, t + 1).

Proof. Let p ∈ T , and let �i (p) be the set of vertices of G at distance i from p
in G (i = 1, 2, 3, 4). Since G is bipartite with diameter 4, these sets are inde-
pendent and |�1(p)| = t+1, |�2(p)| = s(t+1), |�3(p)| = st (t+1). Counting
in two ways the edges between �3(p) and �4(p), we have |�4(p)|(t + 1) =
|�3(p)|s, and so |�4(p)| = s2t . Hence |V (G∗)| = 1 + |�2(p)| + |�4(p)| =
(s + 1)(st + 1), and each vertex of G∗ has degree |�2(p)| = s(t + 1).

If p, q are adjacent vertices of G∗ then q ∈ �2(p) and p, q have a unique
common neighbour, x say, in G. Now the common neighbours of p and q in
G∗ are precisely the s − 1 vertices other than q in �2(p) ∩ �1(x).

Finally, suppose that p, q are non-adjacent vertices of G∗, and let �1(p) =
{x1, . . . , xt+1}. Then q ∈ �4(p) and for each i ∈ {1, . . . , t + 1}, there exists a
unique q-xi path in G of length 3, say qyi qi xi . Now the vertices q1, . . . , qt+1

are distinct and they are all the common neighbours of p and q in G∗. �

Note that the generalized quadrangle G is determined by the graph G∗: the
vertices of S may be identified with the maximal cliques of G∗, since the neigh-
bours of a vertex of S induce a clique in G∗, and the vertices of any non-trivial
clique in G∗ have a unique common neighbour in G. Thus we construct G as
the incidence graph on the vertices and maximal cliques of G∗.

Lemma 6.5.2. If G is a generalized quadrangle of order (s, t) then the
eigenvalues of G∗ are s(t+1), s−1 and−t−1, with respective multiplicities
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1,
st (s + 1)(t + 1)

s + t
,

s2(st + 1)

s + t
.

Proof. The result follows from Theorem 3.6.5 when we take n = (s + 1)
(st + 1), r = s(t + 1), e = s − 1 and f = t + 1. �

Since the multiplicities here are integers, Lemma 6.5.2 imposes a constraint
on s and t . The Krein inequalities provide a further restriction:

Lemma 6.5.3. If G is a generalized quadrangle of order (s, t) with s > 1 and
t > 1, then s ≤ t2 and t ≤ s2.

Proof. If we apply the Krein inequalities (Theorem 3.6.8) to the graph G∗, we
obtain

(s2 − t)(t + 1)(s − 1) ≥ 0 and (t2 − s)(s + 1)(t − 1) ≥ 0.

The result follows since s > 1 and t > 1. �

Theorem 6.5.4. If there exists a generalized quadrangle of order (2, t) then
t ∈ {1, 2, 4}. Conversely, if (s, t) ∈ {(2, 1), (2, 2), (2, 4)} then there exists a
unique generalized quadrangle of order (s, t).

Proof. By Lemma 6.5.3, we have t ≤ 4. Taking s = 2 in Lemma 6.5.2, we see
that for the multipicities of the eigenvalues of G∗ to be integers, t+2 must be a
divisor of 12. Hence t ∈ {1, 2, 4}. In these cases G∗ has parameters (9, 4, 1, 3),
(15, 6, 1, 3), (27, 10, 1, 5) respectively. We have seen in Chapter 3 that in each
case there exists a unique strongly regular graph with the given parameters.
Since G∗ determines G, we are done. �

From Chapter 3, the graphs G∗ that arise in Theorem 6.5.4 are L(K3,3),
L(K6) and Sch10(= Sch16). Setting s = 2 in the proof of Lemma 6.5.1, we
see that G has (2t + 1)(t + 4) vertices. In each case, a maximal clique of G∗
has s + 1 = 3, vertices and so G is the incidence graph on the vertices and
triangles of G∗. In this way we obtain generalized quadrangles with 15, 30 and
72 vertices respectively as the only generalized quadrangles of order (2, t).

6.6 Equiangular lines

Distinct concurrent lines in the Euclidean space IRt are said to be equiangular
if the angle between any two of them is the same. For example, the six lines
through antipodal pairs of vertices of an icosahedron are equiangular; the angle
between any two of them is cos−1(1/

√
5).
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Let L be a system of n equiangular lines in IRt at angle α > 0, and let
u1, . . . ,un be unit vectors along the lines of L. The Gram matrix of these
vectors has the form

(u�i u j ) = (cosα)T + I,

where T is the Seidel matrix of a graph H with vertices 1, . . . , n. For i 
= j ,
the (i, j)-entry of T is ±1 according as the angle between ui and u j is acute
or obtuse. If ui is replaced with −ui for each i ∈ U then the system of lines is
unchanged but H is replaced with HU , the graph obtained from H by switching
with respect to U . Thus L determines a switching class S(L) of graphs on n
vertices.

If the vectors u1, . . . ,un are linearly dependent, we say that the lines are
dependent. In this case, the Gram matrix (u�i u j ) is singular, and so−1/cosα is
an eigenvalue of T ; it is the least eigenvalue of T because the matrix (u�i u j ) is
positive semi-definite. Note also that if n > t , then the multiplicity of−1/cosα
is at least n − t .

Conversely, if an n × n Seidel matrix T has least eigenvalue −ρ with mul-
tiplicity k then T + ρ I is a positive semi-definite matrix of rank t = n − k.
Hence T +ρ I = C�C for some matrix C of size t×n. Thus C�C is the Gram
matrix of n vectors in IRt ; these vectors have length

√
ρ and the angle between

any two of them is cos−1(±1/ρ). The columns of C are linearly dependent
and determine n equiangular lines in IRt . Consequently we have:

Proposition 6.6.1 [LinSe]. There is a one-to-one correspondence between
the switching classes of graphs on n vertices and the dependent sets of n
equiangular lines.

The following result gives a restriction on the angle α between sufficiently
dense equiangular lines.

Theorem 6.6.2. If IRt contains n equiangular lines at angle α, and if n > 2t
then 1/cosα is an odd integer.

Proof. We have seen that −1/cosα is an eigenvalue of T with multiplic-
ity at least n − t . Here, n − t > 1

2 n and so −1/cosα is an integer, m say.
Further, −1/cosα is a multiple eigenvalue of T and so j⊥ contains an eigen-
vector x with eigenvalue m. Now x is an eigenvector of the adjacency matrix
1
2 (J − I − T ) with eigenvalue − 1

2 (m + 1). Since this rational eigenvalue is
necessarily an integer, m is odd and the theorem is proved. �

Our example of six equiangular lines determined by an icosahedron in IR3

shows that Theorem 6.6.2 cannot be improved in general. It is also the case
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that IR3 cannot contain more than six equiangular lines; more generally, we
have:

Theorem 6.6.3. If L is a system of n equiangular lines in IRt then
n ≤ 1

2 t (t + 1).

Proof. With α and u1, . . . ,un as above, define functions f1, . . . , fn on the
unit sphere in IRt by

fi (x) = (ui
�x)2 − cos2 α (i = 1, . . . , n).

We have fi (u j ) = δi j sin2 α, and so f1, . . . , fn are linearly independent. On
the other hand, all fi lie in the space of functions of the form

∑t
i=1 ai xi +∑

i< j bi j xi x j (ai , bi j ∈ IR) because 1 = x2
1 + · · · + x2

t . This space of

homogeneous quadratic functions IRt → IR has dimension t + (t
2

)
, and so

n ≤ 1
2 t (t + 1). �

Let v(t) be the maximal number of equiangular lines in IRt ; clearly, t ≤
v(t) ≤ 1

2 t (t + 1). We show next how strongly regular graphs can be used
to construct systems of equiangular lines, thereby obtaining improved lower
bounds for v(t). To exclude trivial cases, we suppose that n > t > 1; in
particular, α < π/2 and our lines are dependent.

Suppose that the eigenvalues of the Seidel matrix T above are η1 ≥ η2 ≥
· · · ≥ ηn . Since (u�i u j ) has rank ≤ n − t , we have ηt+1 = · · · = ηn = −ρ,
where ρ = 1/cosα. Since tr T = 0 and tr T 2 = n(n − 1), we have

η1+· · ·+ηt−(n−t)ρ = 0 and η2
1+· · ·+η2

t +(n−t)ρ2 = n(n−1). (6.14)

Let η = 1
t (η1 + · · · + ηt ). It follows from (6.14) that

t
∑

(ηi − η)2 = n(n − 1)t − n(n − t)ρ2.

Hence ρ2(n − t) ≤ t (n − 1), with equality if and only if η1 = · · · = ηt .
The case of equality is of particular interest, and in this situation we say that L
is extremal. Thus L is extremal if and only if the graphs in S(L) have exactly
two Seidel eigenvalues. (Recall that swtiching-equivalent graphs have the same
Seidel spectrum.) If L is extremal then the distinct eigenvalues of T are η and
−ρ, and we have:

tη − (n − t)ρ = 0 and tη2 + (n − t)ρ2 = n(n − 1).

On eliminating t from these equations, we find that

n = 1+ ηρ.
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The next result provides the link with strongly regular graphs; here
‘strongly regular with r = 2 f ’ means ‘strongly regular with parameters
(n − 1, 2 f, e, f )’.

Theorem 6.6.4. The line system L is extremal if and only if the switching class
S(L) contains a graph K1 ∪̇ G, where G is strongly regular with r = 2 f .

Proof. [⇒] We show a little more, namely that for any vertex v of H , the
graph H ′ obtained from H by switching with respect to the neighbourhood of
v has the required form. Clearly H ′ = K1 ∪̇ G for some graph G, and we may
take T to be the Seidel matrix of H ′. If v is taken as the first vertex of H ′ then

T =
(

0 j�
j S

)
, (6.15)

where S is the Seidel matrix of G. We show that G is strongly regular with r =
2 f . Note that T 2 =

(
n − 1 j�S

Sj J + S2

)
, and since T has minimal polynomial

x2 − (η − ρ)x − ηρ, we have

Sj = (η − ρ)j and J + S2 − (η − ρ)S − ηρ I = O.

Writing S = J − I − 2A, we see from the first of these equations that G is
regular of degree r = 1

2 (n−2+ρ−η) = 1
2 (ρ−1)(η+1). Since AJ = J A =

r J , the second equation yields

4A2 + 2(η − ρ + 2)A − (ρ − 1)(η + 1)I = (ηρ + η + ρ)J.
Hence G is strongly regular with r − f = 1

4 (ρ − 1)(η + 1); in particular,
r = 2 f . Note that the eigenvalues of G other than r are the roots of (2x+η+1)
(2x − ρ + 1), namely − 1

2 (η + 1) and 1
2 (ρ − 1).

[⇐] For the converse, suppose that G is strongly regular with parameters
(n − 1, r, e, f ), where r = 2 f . Let r, λ, μ be the distinct eigenvalues of G. If
S is the Seidel matrix of G then we may take the Seidel matrix of K1 ∪̇ G to
be the matrix T of (6.15). Now S has n−2 linearly independent eigenvectors x
in j⊥ with corresponding eigenvalues−1−2λ or−1−2μ. Hence T has n−2

linearly independent eigenvectors

(
0
x

)
, also with corresponding eigenvalues

−1−2λ or−1−2μ. To see that there are two further eigenvectors of the form(
1
aj

)
, note that

(
0 j�
j S

)(
1
aj

)
=
(

a(n − 1)
{1+ a(n − 2− 2r)}j

)
.
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Thus

(
1
aj

)
is an eigenvector of T , with corresponding eigenvalue

θ = a(n − 1), if and only if θ is a solution of the equation

x2 − x(n − 2− 2r)− (n − 1) = 0. (6.16)

We express the coefficients here in terms of λ and μ. First, recall that these
eigenvalues are the roots of x2 − (e − f )x − (r − f ), and since r = 2 f we
have λ + μ = e − f , f = −λμ. Secondly, the parameters of G satisfy (see
Section 3.6):

r(r − e − 1) = f (n − 2− r).

Using the relation r = 2 f once more, we deduce that n−2−r = r−2e−2 =
−2λ − 2μ − 2. Now n − 1 = 3r − 2e − 1 = 4 f + (2 f − 2e) − 1 =
−4λμ− 2λ− 2μ− 1, and (6.16) becomes:

x2 + (2λ+ 2μ+ 2)x + (2λ+ 1)(2μ+ 1) = 0.

Therefore the remaining two eigenvalues are also −1− 2λ or −1− 2μ. Since
T has just two eigenvalues, L is extremal. �

For an extremal system L of equiangular lines, we have tη − (n − t)ρ = 0,
equivalently,

(n − 2t)ρ = t (λ− ρ).
It follows that either (a) n = 2t and η = ρ, or (b) n 
= 2t and λ, ρ are
integers (each being an eigenvalue of T of unique multiplicity). In case (a),
T 2 = (n − 1)I , that is, T is an n × n symmetric conference matrix . Such
matrices can exist only when n ≡ 2 (mod 4) and n−1 is the sum of two squares
(see [Bele] or [LinSe]); they exist when n − 1 is a prime power congruent to
1 mod 4 and for some other values of n. In case (b), the positive integers η, ρ
are odd integers because (as we saw in the proof of Theorem 6.6.4) − 1

2 (η+ 1)
and 1

2 (ρ − 1) are eigenvalues of an adjacency matrix. Note also that ρ > 1
and η > 1 because t > 1: this follows from the equations tη = (n − t)ρ and
n = 1+ ηρ. If we eliminate n from these equations, we obtain:

t = ρ2 + ρ − ρ3

ρ + η .

Thus for given ρ in case (b), there are only finitely many possibilities for η,
hence for t and n. We list the feasible parameters when ρ < 7. Note that there
are no symmetric conference matrices with n = 22 or 34; and that the cases
(ρ, η) ∈ {(3, 15), (5, 115)} are excluded by Theorem 6.6.3.
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6.7 Counting walks 179

n 6 10 14 16 18 26 28 30 36 38 42 46 76 96 126 176 276
t 3 5 7 6 9 13 7 15 15 19 21 23 19 20 21 22 23
ρ
√

5 3
√

13 3
√

17 5 3
√

29 5
√

37
√

41
√

45 5 5 5 5 5
η
√

5 3
√

13 5
√

17 5 9
√

29 7
√

37
√

41
√

45 15 19 25 35 55

In all of these cases except n = 76 and n = 96, a strongly regular graph with
the requisite parameters is known to exist, and so the corresponding system
of equiangular lines exists. Since any such system in IRt may be embedded
isometrically in IRt+1, we may extract lower bounds �t for v(t) as follows:

t 2 3 4 5 6 7 . . . 14 15 16 17 18 19 20 21 22 23
�t 3 6 6 10 16 28 . . . 28 36 40 48 48 72 90 126 176 276

secα 2
√

5 3 3 3 3 . . . 3 5 5 5 5 5 5 5 5 5

Here α is the angle corresponding to a known example of �t equiangu-
lar lines in IRt . In the cases t = 7, 8, . . . , 13, it is known that v(t) = �t ;
moreover any set of 28 equiangular lines in IR13 at angle cos−1(1/3) span a
7-dimensional subspace [LemSe, Theorems 4.5 and 4.6].

We conclude by mentioning one general existence result: for any odd prime
power q there exists an equiangular system of lines with n = q3 + 1, t =
q2 − q + 1, ρ = q, η = q2 and α = cos−1(1/q). Thus �t > t

√
t in this case.

The result is a consequence of the following example, described without proof
of the details.

Example 6.6.5. Let V be the vector space of triples over G F(q2), where q is
an odd prime power. For x = (x1, x2, x3)

� and y = (y1, y2, y3)
� in V , define

h(x, y) = x1 yq
1 + x2 yq

2 + x3 yq
3 .

Let � be the set of 1-dimensional subspaces 〈x〉 of V such that h(x, x) = 0.
Then |�| = q3 + 1. Next, let � be the set of 3-subsets {〈x〉, 〈y〉, 〈z〉} of � for
which h(x, y)h(y, z)h(z, x) is a square in G F(q2). Now fix 〈x〉 ∈ �, and let G
be the graph with V (G) = �\{〈x〉} and vertices 〈y〉, 〈z〉 adjacent if and only if
{〈x〉, 〈x〉, 〈z〉} ∈ �. Then G is strongly regular with parameters (n−1, r, e, f ),
where n − 1 = q3, r = 1

2 (q − 1)(q2 + 1), e = 1
4 (q

3 − 3q2 + 3q − 5) and
f = 1

4 (q − 1)(q2 + 1). The eigenvalues of G are r, 1
2 (q − 1),− 1

2 (q
2 + 1). �

6.7 Counting walks

In this section we show how to calculate the number of walks of prescribed
length in a graph, and we illustrate the technique by finding a formula for the
number of walks that can be traversed by a king in k moves on a chessboard.
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180 Spectral techniques

Recall from Equation (1.8) that the number of walks of length k in a graph
G is given by

Nk =
m∑

i=1

μk
i ||Pi j||2.

In practice it is convenient to reformulate this expression as follows. Let
{u1, . . . ,un} be an orthonormal basis of IRn , with Auh = λhuh (h =
1, . . . ., n), and let

j = γ1u1 + · · · + γnun .

Then Pi j is the sum of those γhuh for which λh = μi . Thus ‖ Pi j‖2=∑h{γ 2
h :

λh = μi } and we have

Nk =
n∑

h=1

γ 2
h λ

k
h where γh = j�uh (h = 1, . . . , n). (6.17)

Example 6.7.1. For a path Pn with adjacency matrix⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
1 0 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 0 1
0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

we have λh = 2 cos hπ
n+1 (h = 1, . . . , n). It is easy to verify that the numbers√

2
n+1 sin hiπ

n+1 (i = 1, . . . , n) are the entries uih of the normalized eigenvector
uh corresponding to λh . Thus

γh =
√

2

n + 1

n∑
i=1

sin
hiπ

n + 1
,

which is 0 for even h, and cot
hπ

2(n + 1)
for odd h. It follows from (6.17) that

Nk = 2k+1

n + 1

[ n+1
2 ]∑

l=1

cot2
2l − 1

n + 1

π

2
cosk 2l − 1

n + 1
π. (6.18)

�

The number Nk in (6.18) is the number of all zig-zag lines in the plane
which (i) consist of segments of length

√
2 with direction

(±1
1

)
, (ii) start from

one of the points (0, 0), (1, 0), . . . , (n−1, 0) and, without leaving the rectangle
{(x, y) ∈ IR2 : 0 ≤ x ≤ n − 1, 0 ≤ y ≤ k}, terminate in one of the points
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6.7 Counting walks 181

(0, k), (1, k), . . . , (n − 1, k). (The calculation of this number arises in certain
problems in the theory of the function spaces.) If instead we wish to know the
number of walks of length k in the integer lattice on {(x, y) ∈ ZZ2 : 0 ≤ x ≤
n1− 1, 0 ≤ y ≤ n2− 1} then we need to calculate Nk for the graph Pn1 + Pn2 .

Another interpretation of (6.18) is as the number of possible walks in k
moves by a king on a one-dimensional chessboard. For a two-dimensional
chessboard of size n1 × n2, we need to calculate Nk for the graph Pn1 ∗ Pn2 .

Both the sum Pn1 + Pn2 and the strong product Pn1 ∗ Pn2 are examples
of the NEPS considered in Section 2.5, and so we extend our remarks to an
arbitrary non-complete extended p-sum G of graphs G1, . . . ,Gs , say with
basis B. For an orthonormal basis of eigenvectors of G we may take the vectors
u1i1 ⊗ · · · ⊗ usis , where the vectors u j i j form an orthonormal basis of IRn j

consisting of eigenvectors of G j . We have

j�(u1i1 ⊗ · · · ⊗ usis ) = γ1i1 . . . γsis ,

where γ j i j is the sum of entries of u j i j . Hence the number of walks of length
k in G is given by:

Nk =
∑

i1,...,is

γ 2
1i1
. . . γ 2

sis

(∑
B
λ
β1
1i1
. . . λ

βs
sis

)k

,

where
∑

B denotes the sum over all (β1, . . . , βs) ∈ B.
For an s-dimensional chessboard of size n1 × · · · × ns , we have G j = Pn j

and B = {0, 1}s \ {(0, . . . , 0)}. Then the number of possible walks traversed
by a king in k moves is given by:

Nk =
∑

i1,...,is

γ 2
1i1
. . . γ 2

sis

⎛
⎝−1+

s∏
j=1

(λ j i j + 1)

⎞
⎠k

,

where

γ 2
j i j
= 2

n j + 1
cot2

2i j − 1

n j + 1

π

2
and λ j i j = 2 cos

2i j − 1

n j + 1
π.

We make one remark on the number a(k)j j of walks of length k starting and
terminating at a given vertex j in an arbitrary graph G. From Equation (2.21)
we have

a(k)j j =
m∑

i=1

μk
i ||Pi e j ||2.

Proceeding as before, and with the same notation, we may reformulate this
equation as
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182 Spectral techniques

a(k)j j =
n∑

h=1

u2
jhλ

k
h .

The calculation of a(k)j j when G = Pn is left as an exercise.

We conclude with two results of a different nature, concerning
∑n

h=1 a(k)jh

and a(k)i j .

Theorem 6.7.2 [Wei]. Let Nk( j) be the number of walks of length k start-
ing at the vertex j of a non-bipartite connected graph G with vertices

1, 2, . . . , n. Let sk( j) = Nk( j) ·
(∑n

j=1 Nk( j)
)−1

. Then, as k → ∞, the

vector (sk(1), sk(2), . . . , sk(n))� approaches an eigenvector corresponding to
the index of G.

Proof. As before, let {u1, . . . ,un} be an orthonormal basis of IRn such that
Auh = λhuh , and let γh = j�uh (h = 1, . . . , n). Here we take λ1 ≥
λ2 ≥ · · · ≥ λn , with u1 the principal eigenvector of G. The vector under
consideration is (j�Akj)−1 Akj, or

γ1λ
k
1x1 + γ2λ

k
2x2 + · · · + γnλ

k
nxn

γ 2
1 λ

k
1 + γ 2

2 λ
k
2 + · · · + γ 2

n λ
k
n

.

By Theorems 1.3.6 and 3.2.4 we have γ1 > 0 and λ1 > |λh | for all h > 1.
Consequently the vector (γ 2

1 λ
k
1 + · · · + θ2

nλ
k
n)
−1γhλ

k
huh approaches γ−1

1 uh if
h = 1, and approaches 0 if h > 1. The result follows. �

Note that Theorem 6.7.2 holds also for connected regular bipartite graphs
because then γn = 0 (by Proposition 1.1.2) while λ1 > |λi | for all i ∈
{2, . . . , n − 1}.

The following result has a similar proof.

Theorem 6.7.3 [LiFe]. Let G be a connected non-bipartite graph with index
λ1 and principal eigenvector (x1, x2, . . . , xn)

�. For fixed vertices i and j , the
number of i- j walks of length k is asymptotic to λk

1xi x j as k →∞.

Exercises

6.1 Show that K55 is not the edge-disjoint union of three copies of L(K11).
6.2 Show that, for a uniform homomorphism from a regular graph G to a

regular graph H , equations (6.5) and (6.6) are equivalent.
6.3 Show that a Moore graph is distance-regular.
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Notes 183

6.4 Verify that HoS is a Moore graph.
6.5 Verify that the graph H0 illustrated in Fig. 6.2 is an induced subgraph of

HoS.
6.6 Verify that the spectrum of the graph H0 (Fig. 6.2) is 31,

√
2 6,

08, (−√2 )6,−31, and that the spectrum of HoS is 71, 228,−321.
6.7 Find the parameters and eigenvalues of the possible strongly regular

graphs on 76 and 96 vertices that arise in Section 6.6.
6.8 Find a formula for the number of walks of length k in an n-cycle.
6.9 Find a formula for the number of j- j walks of length k in the path Pn .

6.10 Prove Theorem 6.7.3.
6.11 Show that the Petersen graph is non-Hamiltonian by applying the

Interlacing Theorem to its line graph [GoRo].

Notes

The first part of Section 6.1 is taken from [CvRS2, Chapter 9]. Generaliza-
tions of Theorem 6.1.1 may be found in [Dam3]. Example 6.1.2 appears in
[Row2], while the examples in Section 6.2 appear in [DanHa2] in the con-
text of Laplacian eigenvalues. The proof of Lemma 6.1.4 is taken from course
notes of Brouwer and Haemers. The proof of Theorem 6.3.1 is derived from a
discussion of the ‘ordered love problem’ in [Ham, Section 7]. One of the first
proofs of the Friendship Theorem can be found in [ErRS].

A proof that a Moore graph other than an odd cycle has diameter 2 may be
found in [Big2, Chapter 23], along with references to the original papers and an
alternative construction of the Hoffman–Singleton graph HoS. The uniqueness
of HoS as a Moore graph of diameter 2 and degree 7 is established in [HofSi,
Section 5]. Aschbacher [Asch] proved that a Moore graph of diameter 2 and
degree 57 cannot be a rank three graph, and subsequently G. Higman showed
that such a graph cannot be vertex-transitive (see [Cam1, Section 3.7]).

The basic properties of generalized polygons are established in [GoRo,
Section 5.6]. Generalized quadrangles may be defined in terms of partial lin-
ear spaces: see [GoRo, Section 5.4]. More details of those constructed from
L(K3,3), L(K6) and Sch10 can be found in [BroCN, Section 1.15]. Further
examples are constructed in [GoRo, Section 5.5]. A discussion of equiangular
lines in the context of two-graphs may be found in [GoRo, Chapter 11]. Our
treatment of extremal sets of equiangular lines is based on notes of lectures
by Seidel on geometrical configurations. The results of Section 6.7 appear in
[CvRS2, Section 2.2].
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7

Laplacians

Let A be the adjacency matrix of a graph, and D the diagonal matrix of vertex
degrees. In this chapter we discuss the Laplacian L = D − A, the signless

Laplacian Q = D + A, and the normalized Laplacian L̂ = D− 1
2 L D− 1

2

(defined initially for graphs without isolated vertices). In the literature, L is
also referred to as the Kirchhoff matrix or admittance matrix, Q is sometimes
called the co-Laplacian, and L̂ the correlation matrix or transition matrix. The
Laplacian arises naturally in the study of electrical circuits, and the normal-
ized Laplacian is closely related to random walks on a graph (Section 7.7).
Both L and L̂ have a strong pedigree as discrete analogues of certain operators
in differential geometry, and they are well suited to the spectral investigation
of expansion and separation properties of a graph. We have already noted in
Section 4.2 some evidence that the spectra of L and Q can be more effective
than the spectrum of A in distinguishing non-isomorphic graphs.

7.1 The Laplacian spectrum

Let L (= LG) be the Laplacian matrix of a graph G with n vertices and m
edges. We write νi (= νi (G)) for the i-th largest eigenvalue of L , so that

ν1(G) ≥ ν2(G) ≥ · · · ≥ νn(G).

We show first that L is a positive semi-definite matrix by assigning an arbi-
trary orientation to the edges of G. The vertex–arc incidence matrix of the
corresponding digraph )G is the n × m matrix R = (rie) where

rie =
⎧⎨
⎩
−1 if i is an initial vertex of the arc e,
0 if i and e are not incident,
+1 if i is a terminal vertex of the arc e.

184
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7.1 The Laplacian spectrum 185

We refer to R as the gradient matrix of )G (and a gradient matrix of G).
It is straightforward to verify that L = R R�, whatever the orientation of

G. Hence L is a positive semi-definite matrix, and so all its eigenvalues are
non-negative. Note that νn = 0 since Lj = 0, where j is the all-1 vector in IRn .

Since j is an eigenvector, L has n − 1 linearly independent eigenvectors in
j⊥. This is an attractive feature of L which means that we need not dwell on
main eigenvalues, and that we can deal easily with complements:

Proposition 7.1.1. We have νn(G) = 0 and νi (G) = n − νn−i (G) (i =
1, 2, . . . , n − 1).

Proof. Let {x1, x2, . . . , xn} be an orthogonal basis of IRn such that LGxi =
νi xi (i = 1, 2, . . . , n) and xn = j. Since LG = nI−LG−J we have LGxn = 0
and LGxi = (n − νi )xi (i = 1, 2, . . . , n − 1). The result follows. �

When n > 1, Rayleigh’s Principle yields the following expression for
νn−1(G):

νn−1(G) = inf
x∈IRn\{0}, x⊥j

x�Lx
x�x

. (7.1)

In addition we have

x�Lx = x�R R�x = ‖RT x‖2 =
∑

uv∈E

(xu − xv)
2, (7.2)

and consequently

νn−1(G) = inf
x∈IRn\{0}, x⊥j

∑
uv∈E(G)(xu − xv)2∑

v∈V (G) x2
u

. (7.3)

Now
∑

uv∈E(G)(xu − xv)2 = 0 if and only if, for each component H of G, the
entries xu (u ∈ V (H)) are the same. Such a non-zero vector exists in j⊥ if and
only if G has more than one component. Hence νn−1(G) 
= 0 if and only if G
is connected, and by considering components in the general case, we have:

Theorem 7.1.2. The multiplicity of 0 as an eigenvalue of LG is equal to the
number of components in G.

Thus the spectrum of L , unlike the spectrum of A, determines the number
of components in a graph. In what follows, we shall explore some parallels
between the Laplacian spectrum and the adjacency spectrum. By considering
the trace of L , we obtain:

ν1 + ν2 + · · · + νn = d1 + d2 + · · · + dn,
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186 Laplacians

where d1, d2, . . . , dn are the vertex degrees. Thus the number m of edges is
determined by the Laplacian spectrum:

m = 1

2
(ν1 + ν2 + · · · + νn). (7.4)

Since L is positive semi-definite, Theorem 1.3.2 yields:

Theorem 7.1.3. Let G be a graph with Laplacian eigenvalues ν1 ≥ ν2

≥ · · · ≥ νn. If the vertex degrees of G are d1 ≥ d2 ≥ · · · ≥ dn then

k∑
i=1

νi ≥
k∑

i=1

di (k = 1, 2, . . . , n), (7.5)

with equality when k = n.

Remarks 7.1.4. (i) From (7.4) we see that

n − 1

n
νn−1(G) ≤ d̄ ≤ n − 1

n
ν1(G),

where d̄ denotes the mean degree. These two inequalities were improved by
Fiedler [Fie1] as follows (see Exercise 7.10):

νn−1(G) ≤ n

n − 1
δ and ν1(G) ≥ n

n − 1
�, (7.6)

where δ and� are minimum and maximum degree, respectively. It is shown in
[GroMe2] that if G is not a null graph then ν1 ≥ � + 1; equality holds if and
only if � = n − 1. Further bounds for ν1 and νn−1 are discussed in Sections
7.3 and 7.4.
(ii) The inequalities (7.5) are strengthened in [Gro] as follows. Let G be a non-
trivial connected graph with d1 ≥ d2 ≥ · · · ≥ dn , and let tk be the number of
components of the subgraph G induced by the vertices 1, 2, . . . , k. Then

k∑
i=1

νi ≥ tk +
k∑

i=1

di (k = 1, 2, . . . , n − 1). �

We say that two graphs are L-cospectral if they have the same Laplacian
spectrum. From what we have seen so far, we know that L-cospectral graphs
have the same numbers of vertices, edges and components; the smallest pair
of L-cospectral graphs is shown in Fig. 7.1 (see the Appendix, Table A1).
Further examples of L-cospectral graphs may be constructed using the results
on characteristic polynomials that appear later in this section.
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Figure 7.1 The smallest pair of L–cospectral graphs.

Next observe that we cannot invoke an analogue of the Interlacing Theorem
when we delete vertices because a principal submatrix of L is not the Lapla-
cian matrix of the corresponding induced subgraph. However we do have an
analogue in respect of edges:

Theorem 7.1.5. If e is an edge of the graph G and G ′ = G − e then

0 =νn(G
′) = νn(G)≤ νn−1(G

′)≤ νn−1(G)≤ · · ·≤ ν2(G)≤ ν1(G
′)≤ ν1(G).

Proof. If L is the Laplacian of G − e then the Laplacian of G has the form
L + M , where M is positive semi-definite of rank 1; the largest eigenvalue of
M is 2, and all other eigenvalues are 0. The result now follows by applying the
Courant–Weyl inequalities (Theorem 1.3.15) to the matrix L + M . �

If the graph H is obtained from G by deleting k edges (k < n), then k
applications of Theorem 7.1.5 yield the interlacing property

νi+k(G) ≤ νi (H) ≤ νi (G) (i = 1, 2, . . . , n − k).

A special case of Theorem 7.1.5 was noted in [So]: if G ′ = G − uv, where
u and v are co-duplicate vertices then ν j (G − uv) = ν j (G) − 2 for some
j , while νi (G − uv) = νi (G) for all i 
= j . In the general case, we have∑n

i=1 νi (G)−∑n
i=1 νi (G−e) = 2 by (7.4), and so always ν j (G) > ν j (G−e)

for at least one value of j .
Next we point out that the divisor technique (Section 3.9) can be used in

the Laplacian context. Recall that if G is a graph with an equitable partition
V (G) = V1 ∪̇ V2 ∪̇ · · · ∪̇ Vk then, for every i, j ∈ {1, 2, . . . , k}, there exists a
number di j such that each vertex in Vi is adjacent to exactly di j vertices in Vj .

Theorem 7.1.6. Let V1 ∪̇ V2 ∪̇ · · · ∪̇ Vk be an equitable partition of the graph
G, with parameters di j (i, j ∈ {1, 2, . . . , k}), and let B be the k × k matrix
(bi j ) defined by
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bi j =
{ −di j i f i 
= j,∑k

s=1 dis − di j i f i = j.
.

If ν is an eigenvalue of B then ν is also an eigenvalue of LG.

Proof. Let By = νy, where y = (y1, y2, . . . , yk)
�. Suppose that |V (G)| = n

and define x = (x1, x2, . . . , xn)
� by the relation: if v ∈ Vi then xv = yi . Now

LGx = νx, for if v ∈ Vi then

(LGx)v = deg(v)xv −
∑
u∼v

xu =
k∑

j=1

di j yi −
k∑

j=1

di j y j = (By)i = νyi = νxv.

This completes the proof. �

Following [CvDSa], we write CG(x) for det(x I − LG), called the Laplacian
characteristic polynomial or L-polynomial of the graph G. We conclude this
section by expressing the L-polynomials of certain compound graphs in terms
of the L-polynomials of the constituent graphs. The first observation reflects a
simple property of determinants.

Theorem 7.1.7. If G is the disjoint union of graphs G1,G2, . . . ,Gk then

CG(x) =
k∏

i=1

CGi (x).

For the complement of a graph, we have immediately from Proposi-
tion 7.1.1:

Theorem 7.1.8 [Kel1, Kel2]. If G is a graph with n vertices then

CG(x) = (−1)n−1 x

n − x
CG(n − x).

Since the join G1 � G2 is the complement of G1 ∪̇ G2, three applications
of Theorem 7.1.7 yield:

Theorem 7.1.9. If G1,G2 are graphs with n1, n2 vertices respectively, then

CG1�G2(x) =
x − n1 − n2

(x − n1)(x − n2)
CG1(x − n2)CG2(x − n1).

For the line graph L(G), subdivision graph S(G) and total graph T (G) of a
regular graph G, the following formulae (see [Fie1]) are straightforward ana-
logues of corresponding results in Chapter 2. (The first formula is found also
in [Vah].)

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.008
https:/www.cambridge.org/core


7.2 The Matrix-Tree Theorem 189

Theorem 7.1.10. Let G be an r-regular graph with n vertices and m
edges. Then

(i) CL(G)(x) = (x − 2r)m−nCG(x);
(ii) CS(G)(x) = (−1)m(2− x)m−nCG(x(r+2−x));

(iii) CT (G)(x) = (−1)m(r+1−x)n(2r+2−x)m−nCG(
x(2r+2−x)

r+1−x ).

Theorem 7.1.11. Let G be a semi-regular bipartite graph with n vertices, m
edges and parameters (n1, n2, r1, r2). Then n = n1 + n2, m = n1r1 = n2r2

and
CL(G)(x) = (−1)m(r1 + r2 − x)m−nCG(r1 + r2 − x).

For graphs obtained as NEPS, fewer results carry over from A to L , but we
can deal with sums by observing that LG+H has the form LG ⊗ I + I ⊗ L H .
Accordingly, we have:

Theorem 7.1.12 [Fie1]. If G has m vertices and H has n vertices then the
Laplacian eigenvalues of G + H are the mn numbers

νi (G)+ ν j (H) (i = 1, 2, . . . ,m; j = 1, 2, . . . , n).

7.2 The Matrix-Tree Theorem

We shall see that, for any graph G, the eigenvalues of LG determine the number
of spanning trees in G. This number is called the complexity of G, denoted by
τ(G). The result follows from a classical theorem of algebraic graph theory
known as the ‘Matrix-Tree Theorem’. This theorem says that for any connected
graph G, all cofactors of LG are equal, and their common value is τ(G).

We write L = LG and assume first that G is connected. It is easy to see that
the cofactors of L are all the same: we have L adj(L) = det(L)I = O , where
the adjoint adj(L) is the matrix of cofactors. Since G is connected, we know
from the proof of Theorem 7.1.1 that the nullspace of L is spanned by the all-1
vector j. Thus each column of adj(L) is a scalar multiple of j. Since adj(L)
is symmetric, adj(L) has the required form α J , where J is the all-1 matrix. It
remains to be shown that α = τ(G).
Lemma 7.2.1. Let R be the gradient matrix of a non-trivial oriented tree. If
R′ is obtained from R by deleting any row then det(R′) = ±1.

Proof. The proof is by induction on the number n of vertices in a non-trivial
oriented tree T . The result is immediate if n=2 and so we assume that n>2.
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190 Laplacians

Suppose that R′ is obtained from R by deleting row v, and let u be a neighbour
of v. We take V (T ) = {1, 2, . . . , n}, with v = n, u = n−1. Without loss of
generality, we assume that the last column of R is indexed by the edge uv.

Let R∗ be the (n−1) × (n−2) matrix obtained from R by adding the n-th
row to the (n−1)-th row and then deleting the last row and column. Then R∗
is the gradient matrix of the oriented tree T ∗ obtained from T by contracting
the edge uv to a vertex v∗. Now det(R′) = ± det(R′′) where R′′ is obtained
from R∗ by deleting row v∗. By our induction hypothesis, det(R′′) = ±1, and
so det(R′) = ±1. The result follows. �

Theorem 7.2.2 (The Matrix-Tree Theorem). If L is the Laplacian matrix of
a graph G then each cofactor of L is equal to τ(G), the number of spanning
trees of G.

Proof. If G is not connected then τ(G) = 0, while each cofactor of L is 0
because L has rank at most n−2. Accordingly, we suppose that G is connected.

Let R be a gradient matrix of G, and for any set F of n − 1 edges of G, let
R(F) be the n×(n−1)matrix consisting of the columns of R indexed by F . For
any vertex i , let Ri (F) be the matrix obtained from R(F) by deleting row i ,
and let Ri be the matrix obtained from R by deleting row i . The i-th diagonal
entry of adj(L) is det(Ri R�i ), and by the Binet–Cauchy formula (Theorem
1.3.18) we have

det(Ri R�i ) =
∑

F

det(Ri (F)) det(Ri (F)
�). (7.7)

We show that for a fixed set F of n − 1 edges, we have det(Ri (F)) = ±1 if
the edges of F determine a spanning tree in G, and det(Ri (F)) = 0 otherwise.

Suppose first that F does not determine a spanning tree of G. Then some
subset of F , say C , forms a cycle in G. Without loss of generality we may
assume that all edges of C are oriented to create a directed cycle. Then the
sum of the corresponding columns of R(F) is zero, and so det(Ri (F)) = 0
as required. On the other hand, if F determines a spanning tree T , then it
has R(F) as a gradient matrix, and so det(Ri (F)) = ±1 by Lemma 7.2.1. It
follows that the number of non-zero summands in (7.7) is τ(G), and each such
summand is equal to 1. Hence the diagonal entries of adj(L) are all equal to
τ(G). We have already seen that all entries of adj(L) are the same, and so the
result follows. �

Corollary 7.2.3. Let CG(x) be the characteristic polynomial of the Laplacian
matrix of G. Then
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7.2 The Matrix-Tree Theorem 191

τ(G) = (−1)n−1

n
C ′G(0) =

1

n
�n−1

i=1 νi (G).

Proof. If G is not connected then τ(G) = 0, ν2 = 0 and C ′G(0) = 0. In
the case that G is connected, we use the fact that det(x I − Ri R�i ) is the
(i, i)-cofactor of x I − L . Then the result follows from Theorem 7.2.2 because
C ′G(x) =

∑n
i=1 det(x I − Ri R�i ). �

For many classes of graphs the number of spanning trees can be cal-
culated directly, but almost all existing results can be derived using spec-
tral techniques. For regular graphs, we can reformulate Corollary 7.2.3 in
terms of the characteristic polynomial or eigenvalues of the adjacency matrix
(cf. [Hut]):

Proposition 7.2.4. For an r–regular graph G we have

τ(G) = 1

n
P ′G(r) =

1

n

n∏
i=2

(r − λi ).

In the following examples, we use Proposition 7.2.4 in conjunction with
characteristic polynomials given in Section 2.6.

Examples 7.2.5. (i) For complete graphs, we have Cayley’s formula [Cay]:

τ(Kn) = nn−2.

(ii) For cocktail party graphs, we have:

τ((C P(k)) = 22k−2(k − 1)kkk−2.

(iii) If G is the k-dimensional lattice of size n (that is, the k-fold sum Kn+ · · ·+
Kn) then [Cve2]:

τ(G) = nnk−k−1
k∏

i=1

i
(ki )(n−1)i

.

(iv) For Möbius ladders, we have (cf. p. 49):

τ(Mn) = 1

2n

2n−1∏
j=1

(
3− 2 cos

π j

n
− (−1) j

)
.

(v) Let G be a graph with eigenvalues λ1, . . . , λn , and let G(2) = G + K2. By
Theorem 2.5.4 the eigenvalues of G(2) are λ1+1, . . . , λn+1, λ1−1, . . . , λn−1,
and so

PG(2) (x) = PG(x − 1)PG(x + 1).
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192 Laplacians

If G is regular of degree r with n vertices then G(2) is regular of degree r + 1
with 2n vertices, and Proposition 7.2.4 yields

τ(G(2)) = 1

2n
P ′G(2) (r + 1) = 1

2n
P ′G(r)PG(r + 2) = 1

2
τ(G)PG(r + 2).

Now let G = Cn , so that G(2) is the graph of an n-faced prism. Clearly,
τ(Cn) = n. Since PCn (x) = 2Tn(

x
2 ) − 2, where Tn(x) is the Chebyshev

polynomial of the first kind, we obtain

τ(C (2)
n ) = nTn(2)− n.

(vi) To find the number of spanning trees in a complete bipartite graph,
recall that

Km,n = Km∪̇Kn .

The Laplacian spectrum of Km∪̇Kn is 02,mm−1, nn−1, and by Proposition
7.1.1 its complement has Laplacian spectrum 0,m + n, nm−1,mn−1. Finally,
using Corollary 7.2.3 we obtain

τ(Km,n) = mn−1nm−1.

�

We can also deal with graphs in which all vertices but one have a fixed
degree r ; such graphs are called nearly r-regular, and the vertex not of degree
r is called the exceptional vertex.

Proposition 7.2.6 [CvGu2]. Let G be a nearly regular graph of degree r
and let H be the subgraph obtained by removing the exceptional vertex. Then
τ(G) = PH (r).

Proof. If L is the Laplacian of G, and the i-th vertex of G is exceptional then
the i-th diagonal entry of adj(L) is CH (0), and this is equal to PH (r). �

For instance, the wheel Wn+1 is a nearly regular graph, obtained from
Cn by adding a vertex adjacent to all others. Applying Proposition 7.1.14 in
conjunction with Example 7.1.13(v) we obtain (cf. [Nos]):

τ(Wn+1) = 2Tn(
3
2 )− 2.

Next consider a plane graph G, with dual G∗. The inner dual G∗∗ is obtained
from G∗ by deleting the vertex corresponding to the infinite region of G. It is
well known that G and its dual G∗ have the same number of spanning trees
[Big2, p. 43]. In the case that each finite region of G is bounded by an r -cycle,
G∗ is nearly r -regular, and so we may apply Proposition 7.2.6 to G∗ to obtain:

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.008
https:/www.cambridge.org/core


7.3 The largest eigenvalue 193

Proposition 7.2.7 [CvGu2]. Let G be a plane graph, and let G∗∗ be its inner
dual. If every finite region of G is bounded by an r-cycle then τ(G) = PG∗∗(r).

More recently, Hammer and Kel’mans [HaKe] have investigated the Lapla-
cian eigenvalues of threshold graphs; such graphs are constructed from a
trivial graph by the successive addition of vertices adjacent to no other ver-
tex or all other vertices. In this case, the Laplacian spectrum is close to the
degree sequence (cf. Equation (7.5)), and the number of spanning trees can be
expressed in terms of vertex degrees.

The Matrix-Tree Theorem was generalized by Kel’mans and Chelnokov,
who gave an interpretation of the coefficients of CG(x) in terms of spanning
subforests of G:

Theorem 7.2.8 [KelCh]. If CG(x) = xn + c1xn−1 + · · · + cn−1x then

ci = (−1)i
∑

|E(F)|=i

p(F) (i = 1, 2, . . . , n − 1),

where the sum is taken over all spanning forests F, and p(F) is the product of
the numbers of vertices in the components of F.

We state, also without proof, a version for multigraphs due to Kel’mans.
(Here, the amalgamation of vertices with a common neighbour results in
multiple edges.)

Theorem 7.2.9 [Kel3]. If CG(x) = xn + c1xn−1 + · · · + cn−1x then

ci = (−1)i
∑

U⊆V, |U |=n−i

τ(G[U ]) (i = 1, 2, . . . , n − 1),

where G[U ] is obtained from G by amalgamating all vertices of U.

7.3 The largest eigenvalue

Since the supremum of x�Lx/x�x (x 
= 0) is attained when x is orthogonal
to j, we have:

ν1(G) = sup
x∈IRn\{0}, x⊥j

∑
uv∈E (xu − xv)2∑

v∈V x2
u

.

For an alternative formula due to Fiedler, observe first that if x =
(x1, . . . , xn)

� ∈ j⊥ then

∑
u∈V

∑
v∈V

(xu − xv)
2 = 2n

n∑
i=1

x2
i ,
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and so

ν1(G) = 2n sup
x∈IRn\{0}, x⊥j

∑
uv∈E (xu − xv)2∑

u∈V
∑
v∈V (xu − xv)2

. (7.8)

Secondly, if x ∈ IRn \ 〈j〉 then x = x′ + αj for some α, where x′ is a non-zero
vector orthogonal to j. But now the quotient in (7.8) has the same value when
x is replaced with x′, and so

ν1(G) = 2n sup
x∈IRn\〈j〉

∑
uv∈E (xu − xv)2∑

u∈V
∑
v∈V (xu − xv)2

. (7.9)

The following inequalities for ν1 follow directly from Rayleigh’s Principle,
using the relation

ν1(G) = sup
x∈IRn\{0}

x�Lx
x�x

.

Theorem 7.3.1 [Moh2]. If G1 and G2 are graphs with the same vertex set (but
not necessarily with disjoint edge sets) then

max{ν1(G1), ν1(G2)} ≤ ν1(G1 ∪ G2) ≤ ν1(G1)+ ν1(G2).

Corollary 7.3.2. If H is a spanning subgraph of G, then

ν1(H) ≤ ν1(G).

Since ν1(G) + νn−1(G) = n, Theorem 7.1.2 yields the following upper
bound for ν1:

Proposition 7.3.3. If G is a graph on n vertices, then

ν1(G) ≤ n,

with equality for a connected graph G if and only if G is not connected.

Sometimes we obtain a better bound as follows:

Theorem 7.3.4 [AnMo]. For any graph G,

ν1(G) ≤ max{du + dv : u ∼ v}.

Proof. Since R R�(= L) and R�R have the same non-zero eigenvalues, there
exists a non-zero vector y such that ν1y = R�Ry. Let ye be the entry of y with
maximum modulus, and let e be the arc hk. We have

ν1 ye =
∑

f

(∑
i

rieri f

)
y f ,
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while rieri f 
= 0 if and only if the vertex i is common to the the arcs e and f .
Therefore,

ν1 ye =
∑

f

rh f y f +
∑

f

rk f y f ,

whence ν1|ye| ≤ dh |ye| + dk |ye|. The result follows. �

The last bound can be expressed in the form ν1(G) ≤ 2+max{deg(e) : e ∈
E(G)}, where deg(e) denotes the degree of the edge e in G. This was improved
in [LiZh1] to:

ν1(G) ≤ 2+max{√deg(e)deg( f ) : e, f ∈ E(G), e 
= f }.
Next, let mv be the average degree of the neighbours of the vertex v.

The following bound (see [Mer4]) is in many situations better than that of
Theorem 7.3.4:

ν1(G) ≤ max{du + mv : u ∼ v}.
This in turn can be improved as follows:

Theorem 7.3.5 [LiZh2]. For any graph G on n vertices,

ν1(G) ≤ max
i∼ j

di (di + mi )+ d j (d j + m j )

di + d j
.

Proof. Let y be a unit eigenvector of R�R corresponding to ν1, and let z be
obtained from y by taking absolute values of entries. If B is the incidence
matrix of G then B�B = A(L(G))+ 2I and we have

ν1 = y�R�Ry ≤ z�B�Bz ≤ λ1(A(L(G))+ 2I ).

Now let w be the vector with entries du + dv (uv ∈ E(G)), and write �(u) for
the neighbourhood of u (u ∈ V (G)). The entry of (A(L(G) + 2I )w indexed
by the edge i j is∑
u∈�( j)\{i}

(du+d j )+
∑

v∈�(i)\{ j}
(di+dv)+2(di+d j ) = di (di+mi )+d j (d j+m j ).

If G is connected then we may apply Corollary 1.3.7 to (A(L(G) + 2I ) to
obtain

λ1(A(L(G))+ 2I ) ≤ max
i∼ j

di (di + mi )+ d j (d j + m j )

di + d j
.

and the result follows. If G is not connected then it suffices to invoke the result
for each component of G. �
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We mention without proof several results in similar vein. The first two
bounds were obtained by Zhang [Zha], and the third by Das [Das2]:

ν1(G) ≤ max
{√

di (di + mi )+ d j (d j + m j ) : i ∼ j
}
,

ν1(G) ≤ max
{

2+
√

di (di + mi − 4)+ d j (d j + m j − 4)+ 4 : i ∼ j
}
,

ν1(G) ≤ max

{
1

2

(
di + d j +

√
(di − d j )2 + 4mi m j

)
: i ∼ j

}
.

For upper bounds in which the maximum is taken over vertices rather than
edges we have the following, which are due to Zhang [Zha], Li and Pan [LiPa],
and Guo [Guo1] respectively:

ν1(G) ≤ max
1≤i≤n

{
di +

√
di mi

}
,

ν1(G) ≤ max
1≤i≤n

{√
2di (di + mi )

}
,

ν1(G) ≤ max
1≤i≤n

{
1

2

(
di +

√
d2

i + 8di mi

)}
.

We have already noted in Remark 7.1.4 that ν1(G) ≥ 1 +�(G) for a non-
null graph G . Here we establish a lower bound which follows from a general
result for Hermitian matrices [Mir, Theorem 2]:

Theorem 7.3.6. If G is a graph with vertex degrees d1, . . . , dn and adjacency
matrix (ai j ), then

ν1(G) ≥ max

{√
(di − d j )2 + 4ai j : i, j ∈ V (G), i 
= j

}
.

Proof. Consider the principal submatrix M =
(

di −ai j

−a ji d j

)
of the Lapla-

cian D − A. Let ν′1, ν′2 be the eigenvalues of M , with ν′1 ≥ ν′2. By interlacing,
we have ν1(G) ≥ ν′1 and ν′2 ≥ νn(G). Hence ν′2 ≥ 0 and

ν1(G) ≥ ν′1 − ν′2 =
√
(di − d j )2 + 4a2

i j .

The result follows since a2
i j = ai j . �
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7.4 Algebraic connectivity

For reasons explained further below, the second smallest eigenvalue νn−1(G) is
usually called the algebraic connectivity of G, denoted by a(G). From Propo-
sition 7.1.1 we know already that 0 ≤ a(G) ≤ n, that a(G) = 0 if and only if
G is not connected, and that a(G) = n if and only if G is complete. Moreover,
if G is r -regular then a(G) = r−λ2(G), and in this case we have already noted
a connection between λ2(G) and the connectivity of G (see Section 3.5).

Always a(G) = n−ν1(G), and so the results of the previous section provide
bounds on the algebraic connectivity of G in terms of G. In this section we
investigate bounds for a(G) in terms of G. From Equation (7.1), we have:

a(G) = inf
x∈IRn\{0}, x⊥j

x�Lx
x�x

.

Now the following expression for a(G) is derived in exactly the same way as
Equation (7.9):

a(G) = 2n inf
x∈IRn\〈j〉

∑
uv∈E(G)(xu − xv)2∑

u∈V (G)
∑
v∈V (G)(xu − xv)2

. (7.10)

This last equation may be rewritten as

a(G) = inf
x∈IRn\〈j〉 sup

t∈IR

∑
uv∈E(G)(xu − xv)2∑

u∈V (G)(xu − t)2
. (7.11)

since
∑

u∈V (G)(xu − t)2 is least when t is the mean of the xu .

Examples 7.4.1. a(Pn) = 2(1−cos πn ), a(Cn) = 2(1−cos 2π
n ), a(Qm) =

2, a(Km,n) = min{m, n} and a(Kn) = n (n > 1). �

Theorem 7.4.2 [Fie1]. If G1 and G2 are edge-disjoint graphs with the same
vertex set then

a(G1)+ a(G2) ≤ a(G1 ∪ G2).

Proof. Let G = G1 ∪ G2, with Laplacian LG , and write U = {x ∈ IRn :
‖x‖ = 1, x ⊥ j}. By (7.1) we have

a(G) = min
x∈U

x�LGx = min
x∈U

(x�LG1 x+ x�LG2 x) ≥
min
y∈U

y�LG1y+min
z∈U

z�LG2 z = a(G1)+ a(G2).

�

We deduce the following useful property of algebraic connectivity:

Corollary 7.4.3. If H is a spanning subgraph of G, then a(H) ≤ a(G).
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Theorem 7.4.4. If u and v are two non–adjacent vertices of a graph G on n
vertices, then

a(G) ≤ 1
2 (du + dv).

In particular, if G is not complete then a(G) ≤ n − 2.

Proof. Let y = (y1, y2, . . . , yn)
� be defined as follows:

yi =
⎧⎨
⎩

1 if i = u,
−1 if i = v,

0 otherwise.

Now y�j = 0 and the result follows by substituting the vector y in (7.3). �

The interest in the parameter a(G) stems from the following inequalities
which relate it to the vertex connectivity and edge connectivity of G. Recall
that the vertex connectivity κ(G) is the smallest number of vertices whose
removal results in a disconnected or trivial graph, and the edge connectivity
κ ′(G) is the smallest number of edges whose removal results in a disconnected
graph. Always, κ(G) ≤ κ ′(G) ≤ δ(G) [Har2, Theorem 5.1].

Proposition 7.4.5. For any graph G and any U ⊆ V (G), we have

a(G) ≤ a(G −U )+ |U |.

Proof. Let G ′ = G − U , V (G) = {1, . . . , n} and V (G ′) = {1, . . . , k}.
From (7.3) we know that a(G ′)=∑uv∈E(G ′)(yu − yv)2 for some unit
vector (y1, . . . , yk)

� orthogonal to the all-1 vector in IRk . If x = (y1, . . . ,

yk, 0, . . . , 0)� then x ⊥ j and so

a(G) ≤
∑

uv∈E(G)

(xu − xv)
2.

Hence

a(G) ≤
∑

uv∈E(G ′)
(yu − yv)

2 +
∑
u∈U

∑
v∼u

y2
v ≤ a(G ′)+ |U |.

�

In particular, if G is connected then a(G− v) ≥ a(G)− 1 for all v ∈ V (G).

Corollary 7.4.6. For any non-complete graph G we have a(G) ≤ κ(G).

Proof. In Proposition 7.4.5, take U to be a set of κ(G) vertices whose removal
results in a disconnected graph. �
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Proposition 7.4.7. If T is a tree with diameter d then

a(T ) ≤ 2

(
1− cos

π

d + 1

)
.

Proof. The tree T can be constructed from the path Pd+1 by adding pendant
edges. By Theorem 7.1.5, the addition of a pendant edge does not increase
the algebraic connectivity, and so a(T ) ≤ a(Pd+1). Since a(Pd+1) = 2(1 −
cos π

d+1 ), the result follows. �

Remarks 7.4.8. Fiedler [Fie1] established the followiing lower bound, where
n = |V (G)|:

a(G) ≥ 2κ ′(G)
(

1− cos
π

n

)
.

Note that 1 − cos(π/n) > π2/2n2. Oshikiri [Osh] obtained the sharp lower
bound

a(G) ≥ 2
κ ′(G)

n
.

�

The following result provides another upper bound for a(G); it can also be
viewed as an upper bound on the diameter of a graph (cf. Theorem 7.5.11).

Theorem 7.4.9 [Nil]. If G is a connected graph with maximum degree � and
diameter d, then

a(G) ≤ �− 2
√
�− 1+ 2

√
�− 1− 1⌊ d

2

⌋ .

7.5 Laplacian eigenvalues and graph structure

In this section we will examine how Laplacian eigenvalues are related to cer-
tain graph invariants or properties which, in most situations, are NP-hard to
determine. If S and T are disjoint subsets of V (G), then we define

E(S, T ) = {st ∈ E(G) : s ∈ S, t ∈ T }.
If S ∪̇ T is a bipartition of V (G) then E(S, T ) is called an edge cut of G.
We write S = V (G) \ S and define the (edge) boundary ∂S of S as the edge-
set E(S, S). Note that if S 
= ∅ and x is the characteristic vector of S, then
x�Lx =∑uv∈E (xu − xv)2 and (7.2) yields

x�Lx
x�x

= |∂S|
|S| . (7.12)

This explains why Laplacian eigenvalues are closely related to edge cuts.
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7.5.1 Separation problems

Our first result provides bounds on the number of edges we need to delete to
separate a set of vertices from the rest of the graph.

Theorem 7.5.1. If G is a graph wth n vertices (n ≥ 2) and ∅ 
= S ⊂ V (G),
then

νn−1(G)
|S||S|

n
≤ |∂S| ≤ ν1(G)

|S||S|
n

.

Proof. Again let x be the characteristic vector of S. Since
∑

uv∈E (xu−xv)2 =
|∂S| and

∑
u∈V

∑
v∈V (xu − xv)2 = 2|S||S|, the upper bound follows from

(7.9) and the lower bound from (7.10). �

It follows from this theorem that the number ν1 − νn−1 restricts the range
of the cardinality of the cut ∂S. If this number is small, then for sets S of fixed
size, all boundaries ∂S have approximately the same cardinality. As noted by
Mohar [Moh4], this is the case for random graphs, and it explains why some
algorithms dealing with cuts perform well on randomly chosen graphs. An
application of Theorem 7.5.1 will be given in Section 7.6 in the context of
graph expansion.

The max-cut problem is to find

mc(G) = max{|∂S| : ∅ 
= S ⊂ V },
and the min-cut problem is defined analogously; both problems are NP-hard.
The bipartition width is defined as

bw(G) = min{|∂S| : S ⊂ V, |S| =
⌊n

2

⌋
}.

Thus determination of bipartition width, itself an NP-hard problem, is a
restricted version of the min-cut problem. From Theorem 7.5.1 it is straight-
forward to derive the following bounds:

Corollary 7.5.2 [MohPo1]. Let G be a graph on n vertices. Then

mc(G) ≤ n

4
ν1(G).

Corollary 7.5.3. Let G be a graph on n vertices. Then

bw(G) ≥
{

n
4νn−1(G) if n is even,

n2−1
4n νn−1(G) if n is odd.
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7.5.2 Metric problems

We first address the problem of estimating the diameter of a graph by spectral
means. We find basic upper and lower bounds and note without proof just some
of the improved bounds which appear in the literature. We also establish an
upper bound for the distance between two sets of vertices. For our first bound
we require the following lemma:

Lemma 7.5.4 [Moh3]. Let G be a graph with n vertices, and for each pair
u, v of distinct vertices of G, choose a shortest u-v path Puv . Then any edge of
G lies in at most 1

4 n2 of the paths Puv .

Proof. For fixed e ∈ E(G), let He be the graph on V (G) with u ∼ v if and
only if e ∈ E(Puv). A graph with n vertices and no triangles has at most 1

4 n2

edges (see [Har2, Theorem 2.3]), and so it suffices to show that He has no
triangles. Suppose by way of contradiction that uvw is a triangle in He, and
orient the paths Puv, Puw, Pvw from u to v, u to w, v to w respectively. Two
of these paths, say Puw and Pvw, include e in the same direction, say from x
to y where e = xy. Thus d(u, y) > d(u, x) and d(v, y) > d(v, x). Hence
d(u, v) ≤ d(u, x) + d(x, v) < d(u, x) + d(y, v), and secondly d(u, v) <
d(u, y)+ d(x, v). It follows that e 
∈ E(Puv), a contradiction. �

Theorem 7.5.5 [Moh3]. If G is a connected graph on n vertices, then

diam(G) ≥
⌈

4

n a(G)

⌉
.

Proof. Let x = (x1, x2, . . . , xn)
T be an eigenvector of G corresponding to

a(G). Since x ⊥ j, we have from (7.10):

2n
∑

uv∈E(G)

(xu − xv)
2 = a(G)

∑
u∈V (G)

∑
v∈V (G)

(xu − xv)
2. (7.13)

As in Lemma 7.5.4, we choose a shortest u-v path Puv for each pair of distinct
vertices u, v. Now xu − xv is expressible in the form

∑
i j∈E(Puv)

(xi − x j ) and
the Cauchy–Schwarz inequality yields

(xu − xv)
2 ≤ d(u, v)

∑
i j∈E(Puv)

(xi − x j )
2.

We write d = diam(G) and if e = i j , we write q(e) = (xi − x j )
2. Thus

(xu − xv)
2 ≤ d

∑
e∈E(Puv)

q(e).
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Now let

χuv(e) =
{

1 if e ∈ E(Puv),

0 otherwise.

We have∑
u∈V (G)

∑
v∈V (G)

(xu − xv)
2 ≤ d

∑
u∈V (G)

∑
v∈V (G)

∑
e∈E(G)

q(e)χuv(e)

= d
∑

e∈E(G)

q(e)
∑

u∈V (G)

∑
v∈V (G)

χuv(e). (7.14)

By Lemma 7.5.4,
∑

u∈V (G)
∑
v∈V (G) χuv(e) ≤ 2( 1

4 n2), and so the result
follows from (7.13) and (7.14). �

Turning to upper bounds for the diameter, we note first the Laplacian
counterpart of Theorem 3.3.5:

Proposition 7.5.6. If G is a connected graph with r distinct eigenvalues in its
Laplacian spectrum, then diam(G) ≤ r − 1.

This is proved in the same way as the analogous result for the adjacency
matrix A, that is by considering entries in mG(A), where mG(x) is the mini-
mal polynomial of A (Exercise 7.16). As an extension of this method, we can
consider a polynomial pt (x) of degree t : if each entry of pt (L) is positive then
diam(G) ≤ t . The next result is proved in this way (cf. [Chu2], [DamHa1]).

Theorem 7.5.7. If G is a connected graph on n vertices, and G 
= Kn, then

diam(G) ≤ 1+
⌊

log (n − 1)

log ν1+νn−1
ν1−νn−1

⌋
.

Proof. Note that since G 
= Kn , we have νn−1 < ν1 by Corollary 7.4.6.
Let {x1, . . . , xn} be an orthonormal basis of IRn such that Lxi = νi xi (i =
1, . . . , n) and

√
nxn = j. Let u, v be distinct vertices of G, and let

eu =
n∑

i=1

ai xi , ev =
n∑

i=1

bi xi .

Note that an = bn = 1/
√

n. Now let

pt (x) =
(

1− 2x

ν1 + νn−1

)t

.
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We have |pt (νi )| ≤ (1− ν)t (i = 1, . . . , n−1), where ν = 2νn−1
ν1+νn−1

. Using the
Cauchy–Schwarz inequality, we can now derive a lower bound for the (u, v)-
entry of pt (L):

e�u pt (L)ev = pt (0)anbn +
n−1∑
i=1

pt (νi )ai bi ≥ anbn −
∣∣∣∣∣
n−1∑
i=1

pt (νi )ai bi

∣∣∣∣∣
≥ 1

n
− (1− ν)t

√√√√n−1∑
i=1

a2
i

n−1∑
i=1

b2
i =

1

n
− (1− ν)t n − 1

n
. (7.15)

To complete the proof, we observe that this last term is positive whenever t
exceeds log (n − 1)/ log ν1+νn−1

ν1−νn−1
. �

If we take

pt (x) =
Tt

(
ν1+νn−1−2x
ν1−νn−1

)
Tt

(
ν1+νn−1
ν1−νn−1

) ,

where Tt is a Chebyshev polynomial of the first kind, we obtain:

Theorem 7.5.8 [ChuFM]. If G is a connected graph on n vertices, and G 
=
Kn, then

diam(G) ≤ 1+
⌊

cosh−1 (n − 1)

cosh−1 ν1+νn−1
ν1−νn−1

⌋
.

We establish one upper bound for the distance between two sets of vertices;
here d(X, Y ) = min{d(u, v) : u ∈ X, v ∈ Y }.
Proposition 7.5.9 [AloMi2]. Let G be a connected graph on n vertices, with
maximum degree �. Let X, Y be (disjoint) non-empty subsets of V (G) with
d(X, Y ) = ρ > 1. If |X | = an and |Y | = bn, then

ρ2 ≤ �

a(G)

(
1

a
+ 1

b

)
(1− a − b).

Proof. We define yv (v ∈ V (G)) by

yv = 1

a
− 1

ρ

(
1

a
+ 1

b

)
min{d(v, X), ρ}.
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Then yv = 1
a if v ∈ X and yv = − 1

b if v ∈ Y ; moreover, |yu− yv| ≤ 1
ρ
( 1

a + 1
b )

whenever u ∼ v. Now let x = (x1, . . . , xn)
�, where xv = yv − α and α =

1
n

∑
v∈V (G) yv . Then x ⊥ j and, making use of (7.3), we have:

a(G)n

(
1

a
+ 1

b

)
≤ a(G)

((
1

a
− α
)2

na +
(

1

b
+ α
)2

nb

)

≤ a(G)
∑

v∈V (G)

x2
v ≤

∑
uv∈E(G)

(xu − xv)
2

=
∑

uv∈E(G)

(yu − yv)
2. (7.16)

Now yu = yv when uv ∈ E(X)∪E(Y ), while the condition ρ > 1 ensures that
any edge outwith E(X)∪ E(Y ) is incident with at least one of the n(1−a−b)
vertices in V (G) \ (X ∪̇ Y ). It follows from (7.16) that

a(G) ≤ 1

ρ2

(
1

a
+ 1

b

)
(1− a − b)�

as required. �

Corollary 7.5.10. With the notation of Theorem 7.5.9,

b ≤ 1− a

1+ a(G)
�

aρ2
. (7.17)

Proof. Since a > 0, b > 0 and a + b ≤ 1, we have 1
a + 1

b ≤ 1
ab . Hence

a(G) ≤ �

ρ2ab
(1− a − b),

which is equivalent to (7.17). �

Corollary 7.5.10 will be used in the next section, in the context of graph
expansion. Here we note without proof that Alon and Milman [AloMi2] make
repeated use of Corollary 7.5.10 to obtain the following bound on the diameter
of a graph.

Theorem 7.5.11. If G is a connected graph on n vertices, with maximum
degree �, then

diam(G) ≤ 2

⌊√
2�

a(G)
log2(n)

⌋
.
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7.5.3 Isoperimetric problems

The classical isoperimetric problem (in Euclidean space) is to find the maxi-
mum area with given perimeter, or the maximum volume with given surface
area. In a graph, an analogue is to find the maximum number of ver-
tices in a set with a boundary of prescribed cardinality. The isoperimetric
number (or conductance) of the non-trivial graph G is the minimum of
|E(S, T )|/min{|S|, |T |} taken over all bipartitions S ∪̇ T of V (G). In other
words,

i(G) = min
0<|S|≤ n

2

|∂S|
|S| , (7.18)

where n = |V (G)| ≥ 2. Since i(G) = 0 if and only if G is disconnected,
we usually consider only connected graphs in the context of isoperimetric
problems. If i(G) is small then a relatively large set can be separated by rel-
atively few edges, and so the isoperimetric number can be seen as a measure
of connectivity. It is also a measure of graph expansion, the topic of the next
section.

Examples 7.5.12. The isoperimetric number of some common graphs are:

i(Pn) = 1* n
2 , , i(Cn) = 2* n

2, , i(Qn) = 1, i(Kn) =
⌈ n

2

⌉
, i(Km,n) = -mn

2 .*m+n
2 , ,

i(Sn) = 1.
�

Remarks 7.5.13. In view of (7.12) we have

i(G) = min

{
x�Lx
x�x

: x ∈ {0, 1}n, 1 ≤ x�j ≤ n

2

}
.

Thus i(G) and ν2(G) are obtained by optimizing the same function on different
subsets of IRn . Also noteworthy is the fact that:

i(G) = inf
x∈IRn\〈j〉 sup

t∈IR

∑
uv∈E(G) |xu − xv|∑

u∈V (G) |xu − t | ,

which is very similar to (7.11), but with a different norm. Here the supremum
is attained not when t is the mean of the xv , but when t is a median value
(which is not necessarily uniquely determined). �

Before discussing spectral bounds for i(G) we note from the definition
(7.18) that when G is connected,

⌊ n
2

⌋−1 is a lower bound, while δ(G),
δ(L(G)),

⌈ n
2

⌉
are upper bounds. (The latter are obtained from (7.18) by taking

S to have cardinality 1, 2 and
⌈ n

2

⌉
, respectively.) We also have an upper bound

which is approximately half the mean vertex degree:
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Theorem 7.5.14 [Moh1]. For any graph with n vertices and m edges (n ≥ 2),

i(G) ≤ 2m
⌈ n

2

⌉
n(n − 1)

.

Proof. Fix r ∈ {1, . . . , ⌊ n
2

⌋}. For each edge e of G there exist 2
(n−2

r−1

)
subsets S

of V (G) of size r such that e ∈ E(S, S). Hence the mean of the corresponding
|∂S| is

m
2
(n−2

r−1

)(n
r

) = 2mr(n − r)

n(n − 1)
.

The result follows by taking r = ⌊ n
2

⌋
. �

Turning now to spectral spectral bounds, we establish upper and lower
bounds for the isoperimetric number in terms of algebraic connectivity.

Theorem 7.5.15 [Moh1]. For any graph G on n vertices (n ≥ 2),

i(G) ≥ a(G)

2
.

Proof. Suppose that i(G) = |∂S|
|S| (|S| ≤

⌊ n
2

⌋
). The lower bound of Theorem

7.5.1 shows that i(G) ≥ a(G) |S|n . Since |S| ≥ ⌈ n
2

⌉
, the result follows. �

Theorem 7.5.16 [Moh1]. Let G be a graph with maximum degree �. If G 
=
K1, K2, K3 then

i(G) ≤ √a(G)(2�− a(G)).

Proof. It is straightforward to verify the inequality when G = Kn (n ≥ 4),
and so we suppose that G is not complete. Then a(G) ≤ δ by Corollary 7.4.6.
If a(G) = δ then √

a(G)(2�− a(G)) ≥ √δ� ≥ δ ≥ i(G).

Accordingly, we suppose that a(G) < δ.
Let x = (x1, . . . , xn)

� be an eigenvector of LG corresponding to a(G), and
let U = {v ∈ V (G) : xv > 0}. Replacing x with −x if necessary, we may
assume that |U | ≤ 1

2 n. We define y1, . . . , yn by

yv =
{

xv if v ∈ U,
0 otherwise.
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Writing E(U ) for the set of edges joining vertices of U , we have

a(G)
∑
v∈U

x2
v =

∑
v∈U

(
dvxv −

∑
u∼v

xu

)
xv =

∑
v∈U

∑
u∼v

(xv − xu)xv

=
∑

uv∈E(U )

{(xv − xu)xv + (xu − xv)xu} +
∑

uv∈∂U

(xv − xu)xv

=
∑

uv∈E(G)

(yu − yv)
2 −

∑
uv∈∂U

xu xv. (7.19)

Similarly,

(2�− a(G)))
∑
v∈U

x2
v ≥

∑
v∈U

(
dvxv +

∑
u∼v

xu

)
xv

=
∑

uv∈E(G)

(yu + yv)
2 +

∑
uv∈∂U

xu xv. (7.20)

Let α =∑uv∈∂U xu xv . It follows from (7.19) and (7.20) that

a(G)(2�− a(G))

(∑
v∈U

y2
v

)2

≥
∑

uv∈E(G)

(yu − yv)
2
∑

uv∈E(G)

(yu + yv)
2

−α
⎛
⎝4

∑
uv∈E(U )

xu xv + α
⎞
⎠ .

Now α ≤ 0 and

4
∑

uv∈E(U )

xu xv + α = 2
∑

uv∈E(U )

xu xv +
∑
v∈U

xv
∑
u∼v

xu

= 2
∑

uv∈E(U )

xu xv +
∑
v∈U

(dv − a(G))x2
v ≥ 0.

Hence

a(G)(2�− a(G))

(∑
v∈U

y2
v

)2

≥
∑

uv∈E(G)

(yu − yv)
2
∑

uv∈E(G)

(yu + yv)
2.

Now let β =∑uv∈E(G) |y2
u− y2

v |. By the Cauchy–Schwarz inequality, we have

a(G)(2�− a(G))

(∑
v∈U

y2
v

)2

≥ β2

and so it suffices to show that β ≥ i(G)
∑
v∈U y2

v .
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Let 0 = t0 < t1 < · · · < tm be the different values taken by yv (v ∈ V (G)),
and define Vk = {v ∈ V (G) : yv ≥ tk} (k = 0, . . . ,m), Vm+1 = ∅. For
k = 1, . . . ,m we have |Vk | ≤ 1

2 |U | and so |∂Vk | ≥ i(G)|Vk | (k = 1, . . . ,m).
Therefore,

β =
m∑

k=1

(∑
{y2
v − y2

u : uv ∈ E(G), yu < yv = tk}
)
≥

m∑
k=1

∑
uv∈∂Vk

(t2
k − t2

k−1)

=
m∑

k=1

|∂Vk |(t2
k − t2

k−1) ≥ i(G)
m∑

k=1

|Vk |(t2
k − t2

k−1)

= i(G)
m∑

k=0

t2
k (|Vk | − |Vk+1|) = i(G)

∑
v∈V (G)

y2
v = i(G)

∑
v∈U

y2
v

This completes the proof. �

7.6 Expansion

There are several measures of expansion of graph which appear in the liter-
ature. In Section 3.5, we have already encountered such a measure in terms
of |N (S)|/|S| (S ⊂ V (G)). The isoperimetric number, defined in terms of
|∂S|/|S|, is a measure of edge expansion. Here, instead of the edge boundary
∂S, we shall use the vertex boundary δS, defined as the set of vertices out-
side S which are adjacent to some vertex inside S. Note that |δS| ≤ |∂S| ≤
|�(G)||δS|. The vertex expansion of G is defined by

j (G) = min
1≤|S|≤ n

2

|δS|
|S| .

The differences between the various measures of expansion which are used
is largely superficial, in that all conform to the general principle that expan-
sion in graphs of bounded degree is controlled by algebraic connectivity. In
the case of the isoperimetric number i(G), this property is made explicit in
Theorems 7.5.15 and 7.5.16. In Theorems 7.6.1 and 7.6.2 below we establish
an analogous property for j (G).

Theorem 7.6.1 [Alo1]. Let G be a non-trivial graph G with maximal degree
�. If a(G) ≥ ε ≥ 0 then

j (G) ≥ 2ε

�+ 2ε
. (7.21)
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Proof. We may take ε > 0, so that G is connected. Let n = |V (G)|, X ⊆
V (G), 1 ≤ |X | ≤ 1

2 n. If V (G) = X ∪̇ δX then clearly |δX |/|X | ≥ 1 >

2ε/�+ 2ε. Otherwise, we apply Corollary 7.5.10 to the non-empty sets A =
X and B = V (G) \ (X ∪̇ δX). Since d(A, B) = 2 and a(G) ≥ ε, we have

n − |X | − |δX |
n

≤ 1− |X |
n

1+ 4ε
�
|X |
n

, or
|δX |

n
≥
(

1− |X |
n

)(
1− 1

1+ 4ε
�
|X |
n

)
.

Since |X | ≤ 1
2 n, we deduce that

|δX |
|X | ≥

2ε
�

1+ 4ε
�
|X |
n

≥ 2ε

�+ 2ε
.

The result follows. �

Theorem 7.6.2 [Alo1]. If G is a non-trivial graph with j (G) ≥ c > 0 then

a(G) ≥ c2

4+ 2c2
. (7.22)

Proof. Let x = (x1, . . . , xn)
� be an eigenvector of LG corresponding to a(G),

and let U = {v ∈ V (G) : xv > 0}. Replacing x with −x if necessary, we may
assume that |U | ≤ 1

2 n. We define y1, . . . , yn by

yv =
{

xv if v ∈ U,
0 otherwise.

As in the proof of Theorem 7.5.16, we have

a(G) ≥
∑

uv∈E(G)(yu − yv)2∑
v∈V (G) y2

v

(7.23)

(cf. Equation (7.19)). To exploit this inequality, we apply the Max-flow Min-
cut Theorem (see, for example, [Gib, Chapter 4]) to the digraph (or flow
network) N defined as follows. The vertex set of N is {s} ∪̇ U ′ ∪̇ V ∪̇ {t},
where s is a source, t is a sink, V = V (G) and U ′ consists of vertices u′ in
one-one correspondence with vertices u of U . The arcs of N are su′ (u′ ∈ U ′),
u′u (u ∈ U ), u′v (v ∼ u ∈ U ) and vt (v ∈ V ). The capacity of each arc su′ is
1 + c, and all other arcs have capacity 1. The edges su′ (u′ ∈ U ′) form a cut
of capacity (1+ c)|U | separating s and t , and we show that no other edge cut
C separating s and t has lower capacity.

Let X = {u ∈ U : su′ 
∈ C}. For each w ∈ X , the cut C contains w′w
or wt , and for each w ∈ δX , C contains wt or the edges v′w (w ∼ v ∈ X).
Together, these number at least |X | + |δX |, and so the capacity of C is at least
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(1+ c)(|U |− |X |)+|X |+ |δX |. Since |δX | ≥ j (G)|X | ≥ c|X |, this is at least
(1+ c)|U |, as required.

In a maximum flow of (1 + c)|U | from s to t , let f (v1, v2) be the flow in
arc v1v2. Then f (s, u′) = 1 + c for all u ∈ U and 0 ≤ f (v1, v2) ≤ 1 for all
other arcs v1v2 of N . Note that

f (u′, u)+
∑
v∼u

f (u′, v) = 1+c ∀u ∈ U and f (v′, v)+
∑
u∼v

f (u′, v) ≤ 1 ∀v ∈U.

Now we define the function h : V 2 → [0, 1] by:

h(u, v) =
{

f (u′, v) if u ∈ U, v ∈ V and u ∼ v,
0 otherwise.

Note that∑
u∼v

h(v, u)+ f (v′, v) = 1+c ∀v ∈ U and
∑
u∼v

h(u, v)+ f (v′, v) ≤ 1 ∀v ∈ U,

while any sum of the form
∑
v∈V αv y2

v may be written as
∑
v∈U αv y2

v .
Now we have∑

uv∈E(G)

h(u, v)2(yu + yv)
2 ≤ 2

∑
uv∈E(G)

h(u, v)2(y2
u + y2

v )

= 2
∑
u∈V

(∑
v∼u

h(u, v)2
)

y2
u + 2

∑
v∈V

(∑
u∼v

h(u, v)2
)

y2
v

≤ 2(2+ c2)
∑
v∈V

y2
v . (7.24)

(Note that
∑
v∼u h(u, v)2 is maximized when the number of summands equal

to 1 is maximized.) Secondly,

∑
uv∈E(G)

h(u, v)(y2
u − y2

v ) =
∑
v∈V

(∑
u∼v

h(v, u)−
∑
u∼v

h(u, v)

)
y2
v ≥ c

∑
v∈V

y2
v .

(7.25)

Using (7.23) and the Cauchy–Schwarz inequality in conjunction with (7.24)
and (7.25), we have

a(G) ≥
∑

uv∈E(G)(yu − yv)2∑
v∈V y2

v

=
∑

uv∈E(G)(yu − yv)2
∑

uv∈E(G) h(u, v)2(yu + yv)2∑
v∈V y2

v

∑
uv∈E(G) h(u, v)2(yu + yv)2
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≥
(∑

uv∈E(G) h(u, v)(y2
u − y2

v )
)2

2(2+ c2)
(∑

v∈V y2
v

)2
≥ 1

4+ 2c2

(∑
uv∈E(G) h(u, v)(y2

u − y2
v )∑

v∈V y2
v

)2

≥ c2

4+ 2c2
.

This completes the proof. �

The inequalities of Theorems 7.6.1 and 7.6.2 are often couched in terms
of magnifiers and enlargers, defined as follows. An (n,�, c)-magnifier is a
non-trivial graph G with |V (G)| = n, �(G) = � and j (G) ≥ c. An
(n,�, ε)-enlarger is a non-trivial graph G with |V (G)| = n, �(G) = �

and a(G) ≥ ε. Thus Theorem 7.6.1 says that every (n,�, ε)-enlarger is an
(n,�, c)-magnifier, where c = ε/(�+2ε); and Theorem 7.6.2 says that every
(n,�, c)-magnifier is an (n,�, ε)-enlarger, where ε = c2/(4+ 2c2).

In general terms, a graph is a ‘good expander’ if some measure of expansion
is ‘large’. It is known that a random regular graph is, with high probability, a
good expander (see [MohPo3, Appendix B]) but the explicit construction of
graphs with a prescribed measure of expansion is a non-trivial problem out-
with the scope of this book; for constructional details, the reader is referred to
[DavSV], [GabGa], [Mar], [LuPS], [Mor1] and [Mor2].

The technical definition of an expander applies only to bipartite graphs and
employs a measure of expansion slightly different from those encountered
so far:

Definition 7.6.3. An (n,�, c)-expander is a bipartite graph G on two sets of
vertices, I (inputs) and O (outputs), with |I | = |O| = n and maximum degree
�, such that

(∀U ⊆ I )

(
|U | ≤ n

2
⇒ |δU | ≥

(
1+ c

(
1− |U |

n

)
|U |
))

.

If U denotes the complement of U in I then the condition becomes:

(∀U ⊆ I )

(
|U | ≤ n

2
⇒ |δU | ≥ |U | + c

|U ||U |
n

)
.

Example 7.6.4. Let G be a graph with V (G) = {v1, . . . , vn}. The
extended double cover of G is the bipartite graph D(G) with vertex set
{x1, . . . , xn} ∪̇ {y1, . . . , yn} and edge set {xi y j : i = j or i ∼ j}. In other
words, D(G) is the NEPS of G and K2 with basis {(0, 1), (1, 1)}.

In D(G) the boundary of a set {xi : i ∈ X} is {yi : i ∈ X} ∪̇ {y j : j ∈ δX},
of size |X | + |δX |. Thus if G is an (n,�, c)-magnifier then D(G) is a
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(2n, 1+�, 1+ c)-magnifier; moreover, D(G) is an (n, 1 + �, c)-expander.
By Theorem 7.5.1,

|δX | ≥ 1

�
|∂X | ≥ a(G)

�

|X ||X |
n

,

and so D(G) is also an (n, 1+�, c∗)-expander, where c∗ = a(G)/�. �

Expanders are used as models for robust networks in computer science,
where one objective is to construct a sequence of graphs (Gi ) such that

(i) Gi is an (ni ,�, c)-expander,
(ii) |V (Gi )| = ni →∞ and ni+1

ni
→ 1 as i →∞.

Note that as i → ∞, the edges of Gi become more sparse, while the
connectivity properties (quantified by c) are retained. It can be shown (see
[Alo1, Lemma 3.3]) that if G is an r -regular subgraph of Kn,n with a(G) = a
then G is an (n, r, c)-expander with c = (2ra − a2)/(r2 − ra + 1

2 a2). Thus
c > a/r and for good connectivity we want a(G) to be large. On the other
hand, in the case that the graphs Gi are all r -regular, we know from (3.12)
that lim supi→∞ a(Gi ) ≤ r − 2

√
r − 1. Accordingly, Ramanujan graphs (the

r -regular graphs with a(G) ≥ r − 2
√

r − 1) are best possible candidates for
the graphs Gi , and those described in Section 3.5 can indeed be used in this
context.

7.7 The normalized Laplacian matrix

Recall that if G is a graph without isolated vertices then its normalized Lapla-

cian is L̂ = D− 1
2 L D− 1

2 (= L̂G), where L is the Laplacian of G and
D = diag(d1, . . . , dn). By way of motivation, we point out the connection
between L̂ and random walks on G.

Remark 7.7.1. The transition matrix of a random walk on G is P = (pi j ),
where pi j is the probability of moving to vertex j from vertex i . Thus

pi j =
{

1
di

if i ∼ j, and

0 otherwise.

Hence P = D−1 A where A is the adjacency matrix of G. It follows that

L̂ = I − M where M = D
1
2 P D− 1

2 . Therefore the eigenvalues of P are

1 = ρ1 ≥ ρ2 ≥ · · · ≥ ρn
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7.7 The normalized Laplacian matrix 213

where ρi = 1 − ν̂n−i+1 (i = 1, 2, . . . , n) and ν̂i (= ν̂i (G)) is the i-th largest
eigenvalue of L̂ . The eigenvalue ρ2 is used to establish properties of ran-
dom walks on G. This remark is made precise in a more general context in
Subsection 9.4.2. �

The definition of L̂ may be extended to arbitrary graphs by taking L̂ = (l̂i j ),
where

l̂i j =

⎧⎪⎨
⎪⎩

1 if i = j and di 
= 0,
− 1√

di d j
if i and j are adjacent and,

0 otherwise.

Let T be the diagonal matrix whose i-th diagonal entry is 1/di if di 
= 0,

and 0 otherwise. Then L̂ = T
1
2 LT

1
2 and for any gradient matrix R we have

L̂ = R̂ R̂T , where R̂ = T
1
2 R. Hence all the eigenvalues of L̂ are non-negative.

Moreover the least eigenvalue νn of L̂ is 0 since (
√

d1,
√

d2, . . . ,
√

dn)
� is a

corresponding eigenvector.

If x = D
1
2 y, the Rayleigh quotient R(x) = x� L̂x/xT x may be written as

R∗(y) = yT Ly/yT Dy. Using (7.2) we obtain

R∗(y) =
∑

uv∈E(G)(yu − yv)2∑
v∈V (G) dv y2

v

. (7.26)

This form of the Rayleigh quotient enables us to give an alternative description
of the eigenvalues of L̂ . For the largest and second smallest eigenvalues we
have the following expressions, where d = Dj = (d1, d2, . . . , dn)

�:

ν̂1 = sup
y∈IRn\{o},y⊥d

∑
uv∈E(G)(yu − yv)2∑

v∈V (G) dv y2
v

, (7.27)

ν̂n−1 = inf
y∈IRn\{o},y⊥d

∑
uv∈E (yu − yv)2∑

v∈V dv y2
v

. (7.28)

Note that y ⊥ d if and only if x is orthogonal to (
√

d1,
√

d2, . . . ,
√

dn)
�. Also,

when G has isolated vertices, ν̂n−1 = 0 while the supremum of R(x) is attained

when x has the form D
1
2 y.

The basic properties of the spectrum of L̂ are summarized in the following
theorems.

Theorem 7.7.2 [Chu2]. Let G be a graph on n vertices (n ≥ 2). Then

(i)
∑n

i=1 ν̂i ≤ n with equality if and only if G has no isolated vertices;
(ii) if G 
= Kn then ν̂n−1 ≤ 1;
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(iii) if G has no isolated vertices, then ν̂n−1 ≤ n
n−1 with equality if and only if

G = Kn;
(iv) if G has no isolated vertices, then ν̂1 ≥ n

n−1 with equality if and only if
G = Kn;

(v) ν̂1 ≤ 2, with equality if and only if G has a non-trivial component which
is bipartite.

Proof. First, (i) follows from the relation tr(L̂) = tr (T
1
2 LT

1
2 ), since

tr (T
1
2 LT

1
2 ) is the number of non-isolated vertices. To prove (ii), let s and t

be non-adjacent vertices in G, and define z = (z1, z2, . . . , zn)
� by:

zi =
⎧⎨
⎩

dt if i = s,
−ds if i = t, and

0 otherwise.

Then z�d = 0 and R∗(z) = 1. Now ν̂n−1 ≤ 1 by (7.28).
The inequalities in (iii) and (iv) follow directly from (i) since ν̂n = 0. In

view of (ii), equality can hold only if G = Kn . But the normalized Laplacian
spectrum of Kn is 01, ( n

n−1 )
n−1, and so (iii) and (iv) are proved.

The inequality in (v) follows from (7.27) because we have, for y ⊥ d:

R∗(y) =
∑

uv∈E(G)(yu − yv)2∑
v∈V (G) dv y2

v

≤
∑

uv∈E(G) 2(y2
u + y2

v )∑
v∈V (G) dv y2

v

= 2.

If R∗(y) = 2 then yu = −yv whenever u ∼ v; then in some component H of
G, yu = −yv 
= 0 whenever u ∼ v, and the signs of yu (u ∈ V (H)) determine
a 2-colouring of H . Conversely if G has a non-trivial bipartite component with
parts U, V , we define y by:

yu =
⎧⎨
⎩

1 if u ∈ U,
−1 if u ∈ V,

0 otherwise.

Then y ⊥ d and R∗(y) = 2, whence ν̂1 = 2.
This completes the proof. �

Just as in Theorem 7.1.2, we have:

Theorem 7.7.3. The multiplicity of 0 as an eigenvalue of L̂G is equal to the
number of components in G.

Now we can show that the property of being bipartite is recognizable from
the spectrum of L̂:

Corollary 7.7.4. A graph G is bipartite if and only if the eigenvalue ν̂1(G) is
equal to 2, with the same multiplicity as ν̂n(G).
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7.7 The normalized Laplacian matrix 215

Proof. From the proof of Theorem 7.7.2(v) we see that, for a bipartite
connected graph, 2 is a simple eigenvalue because EL̂(2) is spanned by a
(1,−1)-vector. The result therefore follows from Theorem 7.7.3. �

Most results concerning the spectrum of L have analogues in the context of
L̂ , and we mention three without proof. For this purpose, we define the volume
of a subset S of V (G) by:

vol(S) =
∑
v∈S

dv.

When ∅ ⊂ S ⊂ V (G), we define:

hG(S) = |E(S, S)|
min{vol(S), vol(S)} ,

and this can be used to provide alternative definitions of expansion in a graph.
The analogue of the isoperimetric number i(G) is the Cheeger constant h(G),
defined by

h(G) = min∅⊂S⊂V (G)
hG(S).

The terminology is borrowed from spectral Riemannian geometry. It follows
from (7.28) that ν̂n−1(G) ≤ 2h(G) (Exercise 7.16). As an analogue of The-
orems 7.6.1, 7.6.2 (and of Theorems 7.5.15, 7.5.16) we have the Cheeger
inequality:

Theorem 7.7.5 [Che]. For any non-trivial connected graph G,

2h(G) ≥ ν̂n−1(G) ≥ 1

2
h(G)2.

The arguments for Theorems 7.5.7 and 7.5.8 may be extended to obtain

upper bounds for d(X, Y ) by considering (D
1
2 x)� pt (L̂)(D

1
2 y), where x, y

are the characteristic vectors of X, Y respectively (cf. Equation (7.15)). As
an analogue of Theorem 7.5.7, we obtain (see [Chu2], [Kir2]):

Theorem 7.7.6. Let G be a connected graph on n vertices (G 
= Kn), and let
X, Y be subsets of V (G). Then

d(X, Y ) ≤ 1+ *α(X, Y ),, where α(X, Y ) =
log
√

vol(X)vol(Y )
vol(X)vol(Y )

log ν̂1+ν̂n−1
ν̂1−ν̂n−1

.

Remark 7.7.7. Kirkland [Kir2] improved the bound in Theorem 7.7.6 as
follows: if Y 
= X, X (and G 
= Kn) then
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d(X, Y ) ≤ max{-α(X, Y )., 2}.
�

As an analogue of Theorem 7.5.8 we obtain (see [Chu2]):

Theorem 7.7.8. Let G be a connected graph on n vertices (G 
= Kn), and let
X, Y be subsets of V (G). Then

d(X, Y ) ≤ 1+ *β(X, Y ),, where β(X, Y ) =
cosh−1

√
vol(X)vol(Y )
vol(X)vol(Y )

cosh−1 ν̂1+ν̂n−1
ν̂1−ν̂n−1

.

Example 7.7.9. [Kir2] Let G = K p � Kq , so that the eigenvalues of L̂ are 0,
1 (with multiplicity p − 1), p+q

p+q−1 (with multiplicity q − 1) and 1 + p
p+q−1 .

Now suppose that p is even and let X, Y be disjoint sets of size 1
2 p such that

X ∪̇ Y is the independent set of vertices of degree q. Then d(X, Y ) = 2 while
α(X, Y ) = β(X, Y ) = 1. �

7.8 The signless Laplacian

In contrast to the Laplacian L = D − A, the signless Laplacian Q = D + A
of a graph G has so far featured very rarely in published papers. In this section
we survey the known properties of spectra of signless Laplacians and point
to the possibilities for developing a spectral theory of graphs based on this
matrix. The characteristic polynomial of Q is called the Q-polynomial of G,
denoted by QG(x). The spectrum and the eigenvalues of Q are called the Q-
spectrum and Q-eigenvalues respectively. Table A1 of the Appendix contains
the Q-spectra of the connected graphs with up to five vertices.

7.8.1 Basic properties of Q-spectra

Recall from Section 2.4 that if B is the incidence matrix of a graph G with n
vertices and m edges then

B B� = Q, B�B = A(L(G))+ 2I (7.29)

and so

PL(G)(x) = (x + 2)m−n QG(x + 2). (7.30)

In Theorem 2.4.4 we saw also that PS(G)(x) = xm−n QG(x2).
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7.8 The signless Laplacian 217

We denote the i-th largest eigenvalue of Q by ξi = ξi (G). Since Q is a
positive semi-definite matrix we have:

ξ1 ≥ ξ2 ≥ · · · ≥ ξn ≥ 0.

Observe that m = 1
2 tr (Q) = 1

2

∑n
i=1 ξi .

We call ξ1 the Q-index of G. If G is connected then Q is irreducible and
so Q has a unique positive unit eigenvector corresponding to ξ1; we call this
vector the principal Q-eigenvector of G.

Our first theorem concerns the least eigenvalue:

Theorem 7.8.1. Let G be a non-trivial connected graph with n vertices. Then
G is bipartite if and only if ξn(G) = 0. In this situation, 0 is a simple
Q-eigenvalue.

Proof. For a vector x� = (x1, x2, . . . , xn)
� we have Qx = 0 if and only if

B�x = 0. The latter holds if and only if xi = −x j whenever i ∼ j . Since G
is connected, it follows that if 0 is a eigenvalue of Q then EQ(0) is spanned
by a (1,−1)-vector x; then the signs of the xi determine a 2-colouring of G.
Conversely if G has a 2-colouring, and we define xi = ±1 accordingly, then
Qx = 0. �

Corollary 7.8.2. For any graph, the multiplicity of the Q-eigenvalue 0 is equal
to the number of components that are bipartite or trivial.

Remark 7.8.3. From the spectrum of the adjacency matrix, we know whether
a graph is bipartite (see Theorem 3.2.4), but not whether a graph is connected
(see Fig. 1.3(a)). The spectrum of the Laplacian tells us whether a graph is
connected (see Theorem 7.1.2), but not whether it is bipartite (see Fig. 7.1).
Given the Q-spectrum of a graph G, we see from Corollary 7.8.2, that if G is
connected, we can say whether G is bipartite; and if G is bipartite, we can say
whether G is connected. On the other hand, the spectrum of the normalized
Laplacian tells us whether G is connected (see Theorem 7.7.3) and whether G
is bipartite (see Corollary 7.7.4). �

In view of Remark 7.8.3, it is usual when discussing the relation between a
graph G and its Q-polynomial to specify the number of components in G.

Proposition 7.8.4. For any bipartite graph, the Q-polynomial coincides with
the L-polynomial.

Proof. With a suitable labelling of vertices, A has the form

(
O B�
B O

)
. Then

D + A = T−1(D − A)T , where T has the form

(
I O
O −I

)
. �
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Two graphs are said to be Q-cospectral if they have the same Q-polynomial.
By analogy with the definitions of PING and cospectral mate (see Chapter 4)
we introduce the notions of Q-PING and Q-cospectral mate with the obvious
meanings.

The graphs K1,3 and K3 ∪̇ K1 represent the smallest Q-PING; no other Q-
PINGs on four vertices exist. These graphs have the same line graph, namely
K3, with characteristic polynomial (x − 2)(x + 1)2. By (7.30) they have the
same Q-polynomial, namely x(x − 4)(x − 1)2. By Corollary 7.8.2, a graph G
with this Q-polynomial has exactly one bipartite or trivial component but (as
the examples show) G may or may not be connected, and may or may not be
bipartite.

There are two Q-PINGs on five vertices: one is provided by the graphs
K1,3 ∪̇ K1 and K3 ∪̇ 2K1 and the other by the graphs numbered 14 and 15
in Table A1 of the Appendix. Note that the smallest PING (Fig. 1.3(a)) and the
smallest PING consisting of connected graphs (Fig. 1.3(b)) are not Q-PINGs.
The paper [HaeSp] provides an example of two non-isomorphic (non-regular,
non-bipartite) graphs on 10 vertices which are cospectral, Q-cospectral and
L-cospectral, and which have cospectral complements.

Two graphs are called line-cospectral if their line graphs are cospectral.

Proposition 7.8.5. If two graphs are Q-cospectral, then they are line-
cospectral.

Proof. Since Q-cospectral graphs have the same number of vertices and the
same number of edges, their line-cospectrality follows from (7.30). �

However, line-cospectral graphs are not necessarily Q-cospectral, since
the root graphs of cospectral line graphs need not have the same num-
ber of vertices. Such an example of cospectral line graphs is given in
Fig. 7.2. Each of these graphs is a line graph with characteristic polynomial
x(x2 − x − 4)(x − 1)2(x + 1)2. The root graph of the first graph has Q-
polynomial x(x − 1)2(x − 2)(x − 3)(x2 − 5x + 2) while the root graph of the
second has Q-polynomial x2(x − 1)(x − 2)(x − 3)(x2 − 5x + 2).

This example suggests that the polynomial QG(x) may be more useful
than PL(G)(x). On the other hand, very few relations between QG(x) and the

� �
�
�
�
�

�
��

�
��

�
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�
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�
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�
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Figure 7.2 Cospectral line graphs.
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structure of G are known. Since we have just the opposite situation with eigen-
values of the adjacency matrix of a line graph, we may prefer to use PL(G)(x)
in spite of the fact that L(G) usually has more vertices than G.

However, we have seen that PL(G)(x) contains less information on the struc-
ture of G than QG(x). This disadvantage can be eliminated if, in addition to
PL(G)(x), we know the number of vertices of G. Then our information about
G is the same as that provided by QG(x), since QG(x) can be calculated by
formula (7.30), and either of the two polynomials can be considered.

In view of our remarks in this section, it is desirable when using the theory
of Q-eigenvalues in the study of a graph G to prescribe either

(a) QG(x) and the number of components of G or, equivalently,
(b) PL(G)(x), the number of vertices of G and the number of components of G.

For regular graphs, there is no need to specify of the number of components,
as the following result demonstrates.

Theorem 7.8.6. Let G be a graph with n vertices and m edges, and let ξ1

be its largest Q-eigenvalue. Then ξ1 ≥ 4m/n, with equality if and only if G
is regular. If G is regular then its degree is equal to 1

2ξ1, and the number of
components equals the multiplicity of ξ1.

Proof. We have j�Qj/j�j = 4m/n. Hence ξ1 ≥ 4m/n, with equality if and
only if j is an eigenvector of Q corresponding to ξ1. The first assertion follows
because Qj = ξ1j if and only if G is regular. The second assertion follows
from the analogous property of the adjacency matrix (see Corollary 1.3.8). �

The largest Q-eigenvalue is discussed further in Subsection 7.8.3.

7.8.2 Q-eigenvalues and graph structure

Our first result is an analogue of Proposition 1.3.4, which says that the (i, j)-
entry of A(G)k is the number of i- j walks of length k in G. We may regard
such a walk as an alternating sequence v0, e1, v1, e2, . . . , vk−1, ek, vk of ver-
tices and edges such that for each i = 1, . . . , k the vertices vi−1 and vi are
distinct endvertices of the edge ei .

In following this walk, a traveller traverses an edge from one endvertex to the
other. Suppose instead that, on reaching the mid-point of an edge, the traveller
is permitted to return to the initial endvertex. Then the basic constituent of a
walk is no longer an edge but a semi-edge: a semi-edge is followed by either
the other semi-edge in the same edge (in which case the traveller completes the
edge) or the same semi-edge (in which case the traveller returns to the initial
endvertex). We arrive at the following definition.
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Definition 7.8.7. A semi-edge walk of length k is an alternating sequence
v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices and edges such that for each i =
1, 2, . . . , k the vertices vi and vi+1 are endvertices (not necessarily distinct) of
the edge ei .

The following result has a straightforward proof by induction on k, or by
consideration of the adjacency matrix of the multigraph obtained by adding di

loops to the vertex i (i = 1, 2, . . . , n).

Theorem 7.8.8. Let Q be the signless Laplacian of a graph G. The (i, j)-entry
of the matrix Qk is equal to the number of semi-edge walks of length k starting
at vertex i and terminating at vertex j .

We write τk for the spectral moment
∑n

i=1 ξ
k
i (k = 0, 1, 2, . . . ). Since

τk = tr(Qk), it follows immediately from Theorem 7.8.8 that τk is equal to
the number of closed semi-edge walks of length k.

Corollary 7.8.9. Let G be a graph with n vertices, m edges, t triangles and
vertex degrees d1, d2, . . . , dn. We have

τ0 = n, τ1 =
n∑

i=1

di = 2m, τ2 = 2m+
n∑

i=1

d2
i , τ3 = 6t+3

n∑
i=1

d2
i +

n∑
i=1

d3
i .

Proof. The formulae for τ0 and τ1 are obvious. In the expression for τ2, the
first term counts the closed semi-edge walks which traverse an edge while the
second term counts those traversing two semi-edges. In the expression for τ3,
the terms are related to walks around a triangle, walks along one edge and one
semi-edge, and walks along three semi-edges. �

Alternatively, the formulae for τ2 and τ3 may be derived from the relations
tr(A + D)2 = trA2 + 2 tr AD + trD2 and tr(A + D)3 = trA3 + 3trA2 D +
3trAD2 + trD3.

Next we investigate the coefficients of the Q-polynomial. Let G be a
connected graph with n vertices and m edges where m ≥ n, and let

QG(x) =
n∑

j=0

p j xn− j = p0xn + p1xn−1 + · · · + pn .

A spanning subgraph of G whose components are trees or odd-unicyclic
graphs is called a TU-subgraph of G. Suppose that a T U -subgraph Y of G
consists of c unicyclic graphs and trees T1, T2, . . . , Ts . Then the weight w(Y )
of Y is defined by w(Y ) = 4c∏s

i=1(1 + |E(Ti )|). Note that isolated vertices
in Y do not contribute to w(Y ) and may be ignored. To obtain expressions for
the coefficients of QG(x) in terms of weights of the T U -subgraphs of G, we
require the following observation:
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Lemma 7.8.10. For a connected graph G with m edges,

(−1)m PL(G)(−2) =
⎧⎨
⎩

4 if G is odd unicyclic,
m + 1 if G is a tree,

0 otherwise.

Proof. By Corollary 3.4.10, L(G) has −2 as an eigenvalue unless G is a tree
or an odd-unicyclic graph. In these remaining two cases, let B be the incidence
matrix of G, so that (−1)m PL(G)(−2) = det(B�B) by (7.29). If G is odd-
unicyclic then it is a straightforward exercise to show (by induction on m) that
det(B) = ±2 and hence that (−1)m PL(G)(−2) = 4. If G a tree then (like any
bipartite graph) it has a gradient matrix R such that R�R = B�B. If Ri is
the matrix obtained from R by deleting the i-th row then det(Ri ) = ±1 by
Lemma 7.2.1. By the Binet–Cauchy formula (Theorem 1.3.18), det(B�B) =∑m+1

i=1 det(R�i Ri ) = m + 1, and this completes the proof. �

Theorem 7.8.11. With the above notation, we have p0 = 1 and

p j = (−1) j
∑
Y j

w(Y j ), j = 1, 2, . . . , n,

where the summation runs over all T U-subgraphs of G with j edges.

Proof. We first recall the formula of Exercise 2.11:

P(k)G (x) = k!
∑
|S|=k

PG−S(x), (7.31)

where the summation runs over all k-subsets S of V (G). Using a Maclaurin
expansion of PL(G)(x), we have from (7.30):

QG(x) = xn−m PL(G)(x − 2)

= xn−m
m∑

k=0

P(k)L(G)(−2)
xk

k!

= xn−m
m∑

k=m−n

xk 1

k! P
(k)
L(G)(−2).

Applying (7.31), we obtain

QG(x) = xn−m
m∑

k=m−n

xk
∑
|S|=k

PL(G)−S(−2). (7.32)

A subgraph L(G) − S is, of course, a line graph and it has −2 as an eigen-
value unless all components are line graphs of trees or of odd-unicyclic graphs.
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Thus it follows from Lemma 7.8.10 that∑
|S|=k

PL(G)−S(−2) =
∑
Ym−k

(−1)m−kw(Ym−k),

where, in the second sum, the summation runs over all T U -subgraphs Ym−k of
G with m − k edges. Now the formula (7.32) becomes

QG(x) = xn−m
m∑

k=m−n

xk(−1)m−k
∑
Ym−k

w(Ym−k),

By substituting j for m − k we obtain

QG(x) =
n∑

j=0

xn− j (−1) j
∑
Y j

w(Y j ).

This completes the proof. �

For j = 1 the only T U -subgraph Y1 is equal to K2, with w(Y1) = 2, and
we readily obtain p1 = −2m, thereby recovering the formula τ1 = 2m. For
j = 2, the possible T U -subgraphs Y2 are 2K2 and K1,2. Since w(2K2) = 4
and w(K1,2) = 3 we have p2 = 4a + 3b where a is the number of pairs of
non-adjacent edges and b is the number of pairs of adjacent edges in G. Since
a + b = m(m − 1)/2, we have the following result:

Corollary 7.8.12. With the notation above, p1=−2m and p2= a+ 3
2 m

(m− 1), where a is the number of pairs of non-adjacent edges in G.

An interlacing theorem holds for Q-eigenvalues in the same way as for
Laplacian eigenvalues. Exactly as in Theorem 7.1.5, the Q-eigenvalues of an
edge-deleted subgraph G − e interlace those of G:

Theorem 7.8.13. If e is an edge of the graph G and G ′ = G − e then

0 ≤ ξn(G
′) ≤ ξn(G) ≤ · · · ≤ ξ2(G

′) ≤ ξ2(G) ≤ ξ1(G
′) ≤ ξ1(G).

Theorem 7.8.13 may also be proved by applying Corollary 1.3.12 (the
Interlacing Theorem) to L(G). In fact, most of the results in this section are
obtained either by considering line graphs or by replicating arguments for the
adjacency matrix. We conclude this subsection by mentioning without proof
two results which exhibit characteristics peculiar to the signless Laplacian.

For a subset S of V = V (G), let emin(S) be the minimum number of edges
whose removal from the subgraph of G induced by S results in a bipartite
graph. Let cut(S) be the set of edges with one vertex in S and the other in the
complement V \ S. Thus |cut(S)| + emin(S) is the minimum number of edges
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whose removal from E(G) disconnects S from V \ S and results in a bipartite
subgraph induced by S. Let ψ = ψ(G) be the minimum over all non-empty
proper subsets S of V (G) of the quotient

|cut(S)| + emin(S)

|S| .

The parameter ψ was introduced in [DesRa] as a measure of non-bipartiteness.
It is shown that the value of ξn is controlled by ψ (cf. Theorem 7.8.1). In
particular, if G is connected then

ψ2

4�
≤ ξn ≤ 4ψ,

where � is the maximal vertex degree.
Secondly, let p be the number of endvertices in a graph, and let q be the

number of vertices adjacent to endvertices. It is proved in [Far] that the dif-
ference p − q is equal to the multiplicity of the root 1 of the permanental
polynomial per(x I − Q) of the signless Laplacian. Examples demonstrate that
there is no analogous result for the Laplacian or adjacency matrix.

7.8.3 The largest Q-eigenvalue

In this final subsection we establish various bounds on the largest eigenvalue
of the signless Laplacian. For the adjacency matrix of a graph G, we have

δ(G) ≤ λ1(G) ≤ �(G). (7.33)

For a connected graph G, equality holds in either place if and only if G is
regular. For ξ1(G), we have the following analogue, with a similar proof:

Proposition 7.8.14. For any graph G, we have 2δ(G) ≤ ξ1(G) ≤ 2�(G). For
a connected graph G, equality holds in either place if and only if G is regular.

Proof. We may assume throughout that G is connected. By Theorem 1.3.5, G
has a principal Q-eigenvector (x1, . . . , xn)

� such that x1 ≥ · · · ≥ xn > 0. The
corresponding eigenvalue equations yield:

ξ1x1 = d1x1 +
∑
i∼1

xi ≤ 2�x1 and ξ1xn = dn xn +
∑
j∼n

x j ≥ 2δxn,

where ξ1 = ξ1(G), δ = δ(G) and � = �(G). The first assertion follows.
If G is r -regular then ξ1(G) = 2r = 2δ = 2�. If ξ1 = δ or � then the n

eigenvalue equations force x1 = · · · = xn and d1 = · · · = dn . This completes
the proof. �
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Stronger inequalities can be obtained by applying (7.33) to the line
graph of G:

Theorem 7.8.15. Let G be a graph on n vertices, with vertex degrees
d1, d2, . . . , dn and largest Q-eigenvalue ξ1. Then

min (di + d j ) ≤ ξ1 ≤ max (di + d j ),

where (i, j) runs over all pairs of adjacent vertices of G. For a connected
graph G, equality holds in either place if and only if G is regular or semi-
regular bipartite.

Proof. The graph L(G) has index ξ1 − 2, while the edge i j has degree di +
d j − 2. By (7.33), we have

min (di + d j − 2) ≤ ξ1 − 2 ≤ max (di + d j − 2),

and the result follows. �

By applying Proposition 1.3.9 to the line graph of a connected graph G, we
can also see that ξ1(H) < ξ1(G) for any proper subgraph H of G.

Proposition 7.8.16. If ξ1 is the largest Q-eigenvalue of a graph G, then:

(i) ξ1 = 0 if and only if G has no edges;
(ii) ξ1 < 4 if and only if all components of G are paths;

(iii) for a connected graph G we have ξ1 = 4 if and only if G is a cycle
or K1,3.

Proof. Statement (i) is immediate, since G is a null graph if and only if all
Q-eigenvalues of G are zero.

The eigenvalues of L(Pn) = Pn−1 are 2 cos πn j ( j = 1, 2, . . . , n − 1) and
so by (7.30) the Q-eigenvalues of Pn are 2 + 2 cos πn j ( j = 1, 2, . . . , n).
Hence for paths we have ξ1 < 4. For cycles and for K1,3 we have ξ1 = 4. By
interlacing, these graphs are forbidden subgraphs in graphs for which ξ1 < 4,
and this completes the proof of (ii).

To prove the sufficiency in (iii) we use the strict monotonicity of the largest
Q-eigenvalue when adding edges to a connected graph. First, G cannot contain
a cycle Z unless G = Z . If G does not contain a cycle, it must contain K1,3

since otherwise G would be a path and we would have ξ1 < 4. Finally G must
be K1,3 since otherwise we would have ξ1 > 4. This completes the proof. �

The proof of the next proposition can now be left to the reader.

Proposition 7.8.17. The Q-index ξ1 of a connected graph on n vertices
satisfies the inequalities
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2+ 2 cos πn ≤ ξ1 ≤ 2n − 2.

The lower bound is attained for Pn, and the upper bound for Kn.

Exercises

7.1 Determine the Laplacian eigenvalues of the graphs in Fig. 7.1.
7.2 Prove that the Laplacian eigenvalues of Pn are 4 sin2 (

π(i−1)
2n )

(i = 1, 2, . . . , n).
7.3 Find the Laplacian spectrum of the lattice graph Pm + Pn .
7.4 Show that the Laplacian spectrum of a graph determines

∑n
i=1 d2

i , where
d1, . . . , dn are the vertex degrees.

7.5 Prove Theorem 7.2.3.
7.6 Prove Theorem 7.2.4.
7.7 Let G be an r -regular graph with n vertices and m edges. Show

that [Kel2]
τ(L(G)) = 2m−n+1rm−n−1τ(G).

7.8 Determine the number of spanning trees in the graph obtained from Kn

by removing m non-adjacent edges (2m ≤ n).
7.9 Prove that the skeleta of the Platonic solids have the following num-

bers of spanning trees: (i) tetrahedron, 24; (ii) cube and octahedron, 273;
(ii) icosahedron and dodecahedron, 293453.

7.10 Use (7.3) and (7.9) to establish the inequalities (7.6).
7.11 Verify the values of a(G) for the graphs G given in Examples 7.4.1.
7.12 Prove that for any r–regular graph G on n vertices,

νn−1(G) ≥ √r(1− on(1)).
(Hint: Consider the trace of the adjacency matrix of G.)

7.13 Verify the values of i(G) for the graphs G given in Examples 7.5.12.
7.14 Prove Proposition 7.5.6.
7.15 Prove that the normalized Laplacian spectrum of (i) Kn , (ii) Km,n ,

(iii) Pn , (iv) Cn is given by:

(i) 0, ( n
n−1 )

n−1;
(iii) 1− cos( πk

n−1 )

(k = 0, 1, . . . , n − 1);

(ii) 0m+n−2, 12;
(iv) 1− cos( 2πk

n−1 )

(k = 0, 1, . . . , n − 1).

7.16 Show that if G is a graph on n vertices (n ≥ 2) then ν̂n−1(G) ≤ 2h(G).
7.17 Determine the Q-eigenvalues of the following regular graphs:

(i) the complete graph Kn , (ii) the cycle Cn , (iii) the cocktail-party
graph C P(k).
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7.18 Use the results of Chapter 2 to determine the Q-eigenvalues of (i) the
path Pn , (ii) the complete bipartite graph Km,n .

7.19 Prove Theorem 7.8.8.
7.20 Prove Proposition 7.8.17.

Notes

Surveys of Laplacians include those by Merris [Mer1, Mer3] and Mohar
[Moh2, Moh4]. These articles, together with Chung’s monograph [Chu2]
on normalized Laplacians, show clearly that we have merely scratched the
surface of a topic which is both broad and deep. A geometric approach
to Laplacians is described in [Fie5]. The role of Laplacian eigenvalues in
combinatorial optimization is explored in [MohPo3] and [Moh5]. For more
examples of non-isomorphic graphs with the same Laplacian spectrum, the
reader is referred to three papers from 1977, namely [DinKZ], [Hat] and
[GoHMK], where this phenomenon was first noted. Characterizations of
certain trees by their Laplacian spectrum may be found in [OmTa] and
[WaXu].

The Matrix-Tree Theorem is attributed to Kirchhoff [Kirc] and Trent [Tre].
Further results on the enumeration of spanning trees can be found in [CvDSa,
Section 7.6] and the expository paper [Cve2]. Associated algorithms feature
in [JoMa], [JoSa1] and [JoSa2], while an extension to weighted graphs was
established by Fiedler and Sedláček [FieSe]. One problem which has received
considerable attention is the determination of connected graphs, with a pre-
scribed number of vertices and a prescribed number of edges, which have
the smallest or largest number of spanning trees; relevant references include
[BoLS], [Cheng], [Con1], [Kel4], [KelCh], [Shi] and [Wang]. Some bounds
for the complexity of a graph are obtained in [Das3], [Gri] and [GroMe1].
Other results concern spanning trees in random regular graphs [McK] and the
characterization of graphs in which each edge is contained in a constant num-
ber of spanning trees [God]. A proof of Theorem 7.2.8 may be found in [Big2,
Chapter 7]. The formula in Exercise 7.7 appears in [CvDSa, Theorem 7.24].

Further information on the largest Laplacian eigenvalue ν1 may be found
in in [BrHS], [Das1], [LiPa] and [ShuHW]. For changes in ξ1 resulting from
certain graph modifications, see Exercises 8.1, 8.2, 8.4 and 8.5.

The pioneering work on algebraic connectivity was undertaken by Fiedler
[Fie1, Fie2, Fie3, Fie4]. Related results concerning the diameter and other
metric invariants of a graph may be found in [Chu1], [DamHa2], [DelSo] and
[Moh3]. For a survey of results on algebraic connectivity, see [Abr].
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The bounds for mc(G) and bw(G) mentioned in Section 7.5 can be
improved by introducing certain correction functions; see [Bop] and [DedPo]
for more details. For an extension to weighted graphs, see [MohPo2] and
[MohPo3]. For a discussion of invariants that are NP-hard to determine, see,
for example, [GarJo].

The papers [Alo1], [AloMi1], [AloMi2] contain more information on expan-
sion properties; the article [Alo2] provides a useful overview. Theorems 7.7.6
and 7.7.8 appear in [Chu2] in a form which is not quite accurate; the corrected
versions are due to Kirkland (see [Kir2]).

Few papers treating the signless Laplacian can be found in the literature; it
appears that the only papers prior to 2003 which contain substantive results of
this sort are [Ded], [DesRa] and [Far]. More recent observations may be found
in [Cve14], [CvRS11], [CvRS10], [DanHa1], [DanHa2], [HaeSp] and [ZhWi],
while several new papers are in preparation. The papers [CvSi5], [CvSi6] lay
the foundations of a spectral theory of graphs based on the signless Laplacian.

The paper [CvRS11] discusses 30 computer-generated conjectures concern-
ing the Q-eigenvalues of a graph, and several of the conjectures are confirmed
there. A conjecture concerning a lower bound for the least Q-eigenvalue is con-
firmed in [CarCRS]. Further bounds for the largest Q-eigenvalue may be found
in [OLAH]. The Coefficient Theorem for Q-polynomials (Theorem 7.8.11),
for which we have given a recent proof from [CvRS10], features in [Ded] along
with some results on the reconstructibility of the Q-polynomial from the deck
of vertex-deleted subgraphs of G.
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Some additional results

This chapter is devoted to results which did not fit readily into earlier chapters.
Section 8.1 is concerned with the behaviour of certain eigenvalues when a
graph is modified, and with further bounds on the index of a graph. Section 8.2
deals with relations between the structure of a graph and the sign pattern of
certain eigenvectors. Results from these first two sections enable us to give a
general description of the connected graphs having maximal index or minimal
least eigenvalue among those with a given number of vertices and edges. In
Section 8.3 we discuss the reconstruction of the characteristic polynomial of
a graph from the characteristic polynomials of its vertex-deleted subgraphs.
In Section 8.4 we review what is known about graphs whose eigenvalues are
integers.

8.1 More on graph eigenvalues

In this section we revisit two topics which have featured in previous chap-
ters. The first topic concerns the relation between the spectrum of a graph
G and the spectrum of some modification G ′ of G. When the modification
arises as a small structural alteration (such as the deletion or addition of
an edge or vertex), the eigenvalues of G ′ are generally small perturbations
of those of G, and we say that G ′ is a perturbation of G. In Subsection
8.1.1, we use algebraic arguments to establish some general rules which deter-
mine whether certain eigenvalues increase or decrease under particular graph
perturbations.

Many articles in the area of spectral graph theory are concerned with vari-
ous bounds on the eigenvalues of graphs. We have already encountered some
bounds on λ1, ν1 and ξ1 in Chapters 1, 3 and 7. In Subsection 8.1.2, we provide
further bounds for λ1 as a sample from the extensive literature on this topic.

228
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8.1.1 Graph perturbations

We have already seen in Propositions 1.3.9 and 1.3.10 that the index of a graph
decreases when a vertex or edge is deleted. Similar arguments show that the
same is true of the largest eigenvalue of the signless Laplacian (Exercise 8.1):

Theorem 8.1.1. If G ′ is a graph obtained from a graph G by deleting any
vertex or any edge then λ1(G ′) ≤ λ1(G) and ξ1(G ′) ≤ ξ1(G); moreover, these
inequalities are strict when G is connected.

Note that, in general, the corresponding assertion fails for the Laplacian
because the arguments require matrix entries to be non-negative. However, for
bipartite graphs, results concerning ξ1 may be translated to analogous results
for ν1 by means of Proposition 7.8.4.

In considering perturbations G ′ of a graph G, we assume that G is connected
with n vertices, and that x = (x1, x2, . . . , xn)

� is its principal eigenvector (that
is, the unique positive unit eigenvector corresponding to the index of G). To
investigate the change in index we frequently invoke Rayleigh’s Principle: if
A, A′ are the adjacency matrices of G,G ′ respectively, then

λ1(G
′)−λ1(G) = max||y||=1

y�A′y− x�Ax ≥ x�A′x− x�Ax = x�(A′ − A)x.

(8.1)

In some cases, we investigate the behaviour of the index λ1 using character-
istic polynomials. We consider the following perturbations: (i) the relocation
of edges, (ii) local switching of two edges, (iii) the splitting of a vertex, (iv)
the subdivision of an edge. Most arguments apply also to ξ1, while the results
for (i) and (ii) have analogues for λn ; together they provide a useful tool for
re-arranging edges so that the largest or least eigenvalue of the resulting graph
is extremal in some family of graphs with prescribed numbers of vertices and
edges.

Theorem 8.1.2. Let G ′ be the graph obtained from a connected graph G by
relocating the edge rs to the position of a non-edge tu. If xt xu ≥ xr xs then
λ1(G ′) > λ1(G).

Proof. By (8.1) we have λ1(G ′) − λ1(G) ≥ �1, where �1 = x�(A′ − A)x.
Since �1 = 2(xt xu − xr xs), we have λ1(G ′) ≥ λ1(G). Equality holds if
and only if �1 = 0 and x is an eigenvector for G ′. But then the eigenvalue
equations do not hold for the vertices r , s, t and u of G ′. This contradiction
completes the proof. �

We record separately the important case of Theorem 8.1.2 in which u = r ;
in this situation, replacement of the edge rs with r t is called a rotation about r .
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Theorem 8.1.3. Let G ′ be the graph obtained from a connected graph G by
rotating the edge rs to the position of a non-edge rt . If xt ≥ xs then λ1(G ′) >
λ1(G).

Proof. Since xr > 0, the condition xt ≥ xs is equivalent to the condition
xt xr ≥ xr xs , and so the result follows from Theorem 8.1.2. �

A useful consequence of Theorem 8.1.3 applies to the principal eigenvector
x′ = (x ′1, x ′2, . . . , x ′n)� of G ′:

Corollary 8.1.4. In the situation of Theorem 8.1.3, if also G ′ is connected,
then x ′t > x ′s .

Proof. Suppose by way of contradiction that x ′t ≤ x ′s . We consider G ′ and
rotate the edge r t to the non–edge position rs. Then we obtain G, and by
Theorem 8.2.3 we have λ1(G) > λ1(G ′), a contradiction. �

We may generalize Theorem 8.1.3 as follows:

Theorem 8.1.5. Let s and t be two vertices of a connected graph G, and let
R be a set of vertices adjacent to s but not to t . Let G ′ be a graph obtained
from G by replacing the edge rs with rt for each r ∈ R. If xt ≥ xs then
λ1(G ′) > λ1(G).

The proof is left as an exercise: one can either extend the arguments for The-
orem 8.1.3 or make repeated use of Corollary 8.1.4. (Note that G ′ is obtained
from G by successive rotations about the vertices in R.) An exact analogue
of Theorem 8.1.5 holds for the largest eigenvalue of the signless Laplacian
(Exercise 8.2).

Example 8.1.6. Suppose that G is a graph with a non-pendant edge uv not
belonging to a triangle of G. Let G ′ be the graph obtained from G by contract-
ing the edge uv to a vertex w and adding a pendant edge at w. By rotating the
edges incident to u, or to v (according as xu ≤ xv , or xu ≥ xv), we deduce
from Theorem 8.1.5 that λ1(G ′) > λ1(G). �

We can use Theorem 8.1.5 in exactly the same way to prove the following
result, which is useful when we encounter a bridge in a graph whose index is
assumed to be maximal among the connected graphs with a prescribed number
of vertices and edges.

Theorem 8.1.7. Suppose that the non-pendant edge uv is a bridge in the con-
nected graph G. Let G ′ be the graph obtained from G by contracting uv to
a vertex w and adding a pendant edge at w. Then λ1(G ′) > λ1(G) and
ξ1(G ′) > ξ1(G).
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A nice application of this result is encountered when xu ≥ xv and the com-
ponent of G − uv containing v is a star with centre v. This situation arises
typically in graphs with a pendant tree (see the treatment of unicyclic graphs
in [Sim1]).

Corollary 8.1.8. Let G be a graph whose index is maximal among connected
graphs with a prescribed number of vertices and edges. Then G does not
contain any of the graphs 2K2, P4, C4 as an induced subgraph.

Proof. Suppose by way of contradiction that G contains a graph F ∈
{P4, 2K2,C4} as an induced subgraph, say with vertices r , s, t ,w. Without loss
of generality, xs = minv∈V (F) xv . Additionally, the structure of F allows us to
assume that r is a neighbour of s but not of t . Now let G ′ be the graph obtained
from G by rotating edge rs to r t . By Theorem 8.1.3, we have λ1(G ′) > λ1(G).
If G ′ is connected, this is a contradiction and we are done.

Accordingly, suppose that G ′ is not connected. By Theorem 8.1.7, rs is a
pendant edge, and we may suppose that deg(s) = 1.

We first observe that xu < xr for any vertex u ∈ V (G−r−s), for otherwise
we may replace rs with us to obtain a connected graph with larger index. Now
either F is the path srut or F consists of the two independent edges rs, tu. In
either case we may replace tu with tr to obtain a connected graph with larger
index. This final contradiction completes the proof. �

Remarks 8.1.9. (i) The graphs without 2K2, P4, C4 as an induced subgraph
are precisely the threshold graphs mentioned in Section 7.2 in the context
of Laplacian eigenvalues. They also known as nested split graphs (see, for
example, [ABCHRSS]) or stepwise graphs (see [CvRS2, Chapter 3]). They
are best visualized as graphs with a stepwise adjacency matrix: in such a
matrix (ai j ), the pattern of 0s and 1s has a stepped form determined by the
condition:

if i < j and ai j = 1 then ahk = 1 whenever h < k ≤ j and h ≤ i .

(ii) If G is a graph whose index is maximal among all graphs with just a pre-
scribed number of edges then again G is a threshold graph. This follows from
Corollary 8.1.8 because G has just one non-trivial component. To see this, let
H be a component with λ1(H) = λ1(G). Then we may rotate an edge from
a second component to construct a graph G ′ with an induced subgraph H ′
obtained from H by adding a pendant edge.

(iii) An exact analogue of Corollary 8.1.8 holds for the signless Laplacian
(Exercise 8.3). �
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Next we turn to local switching, which concerns two non-adjacent edges st
and uv such that s 
∼ v, t 
∼ u: we replace st, uv with sv, tu. Note that local
switching preserves degrees; moreover, if G1,G2 are graphs with the same
degree sequence then G1 can be transformed to G2 by a succession of local
switchings (see, for example, [Wes, p. 45]).

Theorem 8.1.10. Let G ′ be the graph obtained from a connected graph G
by the local switching of st, uv to sv, tu. If (xs − xu)(xv − xt ) ≥ 0 then
λ1(G ′) ≥ λ1(G), with λ1(G ′) = λ1(G) if and only if xs = xu and xv = xt .

Proof. By (8.1), λ1(G ′) − λ1(G) ≥ �1, where �1 = x�(A′ − A)x. Since
�1 = 2(xs − xu)(xv − xt ) we have λ1(G ′) ≥ λ1(G). Equality holds if and
only if �1 = 0 and x is an eigenvector of G ′. It remains to eliminate the
possibility that exactly one of the factors xs − xu, xv − xt is zero. Assume,
without loss of generality, that xs = xu , while xt 
= xv . Then the eigenvalue
equations hold (in respect of G ′) for the vertices t and v, but not for the vertices
s and u. This contradiction completes the proof. �

An analogue of Theorem 8.1.10 holds for the signless Laplacian
(Exercise 8.5).

In discussing two further perturbations of a connected graph, we use a com-
parison of vectors. Writing x 0 y to mean that x−y is a non-negative non-zero
vector, we have:

if y 0 0 and Ay 0 ρy then λ1 > ρ, (8.2)

and
if y 0 0 and Ay ≺ ρy then λ1 < ρ. (8.3)

In each case, the conclusion follows by taking the scalar product with the
principal eigenvector x.

Suppose first that G ′ is obtained from G by splitting the vertex v: thus if the
edges incident with v are vw (w ∈ W ) then G ′ is obtained from G − v by
adding two new vertices v1, v2 and edges v1w1 (w1 ∈ W1), v2w2 (w2 ∈ W2),
where W1 ∪̇ W2 is a non-trivial bipartition of W .

Theorem 8.1.11 [Sim2]. If G ′ is obtained from the connected graph G by
splitting a vertex then λ1(G ′) < λ1(G).

Proof. We may assume that G ′ is connected for otherwise G ′ has two com-
ponents each of which is a proper subgraph of G, with largest eigenvalue less
than λ1(G). Accordingly we may apply (8.3) to the adjacency matrix A′ of G ′.

Suppose that vertices are numbered so that vertex 1 of G splits into vertices
0, 1 of G ′. Let λ1 = λ1(G), and let y = (y0, y1, y2, . . . , yn)

� where y0 = x1
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and yi = xi (i = 1, . . . , n). Then A′y = (y′0, y′1, y′2, . . . , y′n)� where y′0 <
λ1 y0, y′1 < λ1 y1 and y′i = λ1 yi (i = 2, . . . , n). Thus A′y ≺ λ1y and by (8.3)
we have λ1(G ′) < λ1. �

The same result holds for the Q-index (Exercise 8.4).
Secondly we consider a graph obtained from the connected graph G by sub-

dividing an edge uv, that is by replacing uv with edges uw and wv, where w
is an additional vertex. We say that the walk v0v1 . . . vk+1 is an internal path
of G if one of the following holds:

(a) k ≥ 2, the vertices v0, v1, . . . , vk are distinct, vk+1 = v0, vi ∼ vi+1 (i =
0, . . . , k), deg(v0) ≥ 3 and deg(vi ) = 2 (i = 1, . . . , k);

(b) k ≥ 0, the vertices v0, v1, . . . , vk+1 are distinct, vi ∼ vi+1 (i = 0, . . . , k),
deg(v0) ≥ 3, deg(vk+1) ≥ 3 and deg(vi ) = 2 (i = 1, . . . , k).

Thus in case (a) the vertices v0, . . . , vk induce a cycle which is a proper sub-
graph, while in case (b) the vertices v0, . . . , vk+1 induce a path and lie in a
subgraph isomorphic to the graph Yk+6 of Fig. 3.5.

Theorem 8.1.12 [HofSm]. Let G be a connected graph with n vertices, and
let G ′ be the graph obtained from G by subdividing the edge e of a connected
graph G.

(i) If G 
= Cn and if e does not belong to an internal path then λ1(G ′) >
λ1(G).

(ii) If G 
= Yn and if e belongs to an internal path of G then λ1(G ′) < λ1(G).

Moreover, if G = Cn (n ≥ 3) or Yn (n ≥ 6) then λ1(G ′) = λ1(G) = 2.

Proof. We know that Cn (n ≥ 3) and Yn (n ≥ 6) have index 2 (see Theorem
3.11.1), and so we suppose that G 
= Cn, Yn . In case (i), G ′ has a proper sub-
graph isomorphic to G, and so λ1(G ′) > λ1(G) by Theorem 8.1.1. It remains
to consider case (ii).

Suppose first that e lies on an internal path v0, v1, . . . vk+1 of type (a), with
the vertices v0, v1, . . . , vk labelled 0, 1, . . . , k. Let x0, x1, . . . , xk be the corre-
sponding entries of the principal eigenvector x of G, and let λ1 = λ1(G). (It is
helpful to picture the components of x ascribed to the relevant vertices of G,
as in Fig. 3.5.) We have λ1xi = xi−1 + xi+1 (i = 1, . . . , k) where xk+1 = x0

and (by symmetry) x1 = xk, x2 = xk−1, and so on. Let e = uv. If k is even
then without loss of generality we may take u = 1

2 k, v = 1
2 k+1. Now let y be

obtained from x by inserting the additional entry xw equal to xu and xv . If A′ is
the adjacency matrix of G ′ then A′y and λ1y differ only in the w-th entries, for
which xu + xv = 2xw < λ1xw. Hence A′y ≺ λ1y and we have λ1(G ′) < λ1
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by (8.3). If k is odd then we may take u = 1
2 (k − 1), v = 1

2 (k + 1) and take
the new entry xw of y to be xv . Now λ1xv = 2xu and λ1 > 2, whence xu > xv ,
λ1xv > xu + xw and λ1xw > xu + xv . It follows that A′y ≺ λ1y and so again
λ1(G ′) < λ1 by (8.3).

Secondly, suppose that uv lies on an internal path of type (b), with ver-
tices labelled 0, 1, . . . , k + 1, and let x0, x1, . . . , xk+1 be the corresponding
entries of the principal eigenvector x of G. Reversing the path if neces-
sary we may assume that x0 ≤ xk+1. Let t be least such that xt =
min{x0, x1, . . . , xk+1} (thus t < k+1). Without loss of generality we let u = t,
v = t + 1.

Consider first the case t > 0: here we take y to be the vector obtained from
x by inserting an additional component xw equal to xt . We have xt−1 + xw ≤
xt−1 + xt+1 = λ1xt and xt + xt+1 < xt−1 + xt+1 = λ1xw, whence A′y ≺ λ1y
and λ1(G ′) < λ1 by (8.3). Accordingly we suppose that t = 0. Let S be the
set of neighbours of 0 other than 1, and let s = ∑ j∈S x j . If s ≥ x0 then we
construct y as above with xw = x0. We have s + xw ≤ s + x1 = λ1x0 and
x0 + x1 ≤ s + x1 = λ1x0 = λ1xw; moreover one of these inequalities is strict
for otherwise λ1 = 2, contradicting the fact that Yk+6 is a proper subgraph of
G. Hence A′y ≺ λ1y. Finally suppose that s < x0. In this case we construct
y from x by replacing x0 with s and inserting xw equal to x0. Now x0 + s <
2s < λ1s, and for any p ∈ S we have

∑
q∼p,q 
=0 xq + s <

∑
q∼p,q 
=0 xq +

x0 = λ1x p. Therefore, it follows again that A′y ≺ λ1y. This completes the
proof. �

The analogous result holds for the Q-index (Exercise 8.4). Hoffman and
Smith asked what happens to the index if we subdivide edges repeatedly by
inserting arbitrarily many vertices of degree 2; Theorem 2.2.2 answers this
question in a particular case (for the adjacency spectrum).

We have seen that we cannot expect our results on λ1 and ξ1 to extend to ν1

in general. We give one theorem which highlights the contrasting situation for
the Laplacian index.

Theorem 8.1.13 [Guo2]. Let v be a vertex of the connected graph G, and let
v1, v2, . . . , vk be the pendant vertices of G adjacent to v. Let G ′ be a graph
obtained from G by adding any q edges (0 ≤ q ≤ (k2)) between v1, v2, . . . , vk .
Then ν1(G ′) = ν1(G).

Proof. Let Ĝ be the graph obtained by adding all
(k

2

)
edges between

v1, v2, . . . , vk . By interlacing, we have ν1(G) ≤ ν1(G ′) ≤ ν1(Ĝ), and so it
suffices to show that ν1(G) ≥ ν1(Ĝ). We may assume that G 
= K1,k for
otherwise Ĝ = Kk+1 and we have ν1(G) = k + 1 = ν1(Ĝ).
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Let x be the unit eigenvector of Ĝ corresponding to ν1(Ĝ). The eigenvalue
equations for the vertices v1, v2, . . . , vk of Ĝ yield:

(k − ν1(Ĝ)+ 1)xi = xv +
k∑

j=1

x j (1 ≤ i ≤ k).

Thus, for 1 ≤ i < j ≤ k we have

(k + 1− ν1(Ĝ))(xi − x j ) = 0.

Since G 
= K1,k we have �(Ĝ) ≥ k + 1, and by Exercise 7.10, we have
ν1(Ĝ) > �(Ĝ). Hence ν1(Ĝ) > k + 1 and x1 = x2 = · · · = xk . Now
ν1(G) ≥ x�LGx = x�LĜx = ν1(Ĝ), as required. �

Before we introduce further techniques, we consider the behaviour of the
least eigenvalue λn of a graph under a perturbation. We use the following
analogue of (8.1):

λn(G
′)− λn(G) = min||y||=1

y�Ay− x�Ax ≤ x�(A′ − A)x, (8.4)

where x = (x1, x2, . . . , xn)
� is an eigenvector of unit length corresponding to

λn(G). We can use (8.4) to prove the following three theorems.

Theorem 8.1.14 [BelCRS2]. Let G ′ be the graph obtained from a graph G by
rotating the edge rs to the position of a non-edge rt . Then

(i) λn(G ′) < λn(G) if xr < 0 and xs ≤ xt , or xr = 0 and xs 
= xt , or
xr > 0 and xs ≥ xt ;

(ii) λn(G ′) ≤ λn(G) if xr = 0 and xs = xt .

Proof. From (8.4) we have λn(G ′) − λn(G) ≤ 2xr (xt − xs). We distinguish
two cases.

Case xr = 0. Then λn(G ′) ≤ λn(G). If xs 
= xt then λn(G ′) < λn(G). For
otherwise, if λn = λn(G ′) = λn(G), then x must be an eigenvector of G ′
corresponding to its least eigenvalue. Therefore, in G ′, we must have λn xr =∑
v∼r xv; but this cannot be the case when xs 
= xt . (Note that if xs = xt then

x is an eigenvector of G ′ corresponding to λn(G), but λn(G) is not necessarily
the least eigenvalue of G ′.)
Case xr 
= 0. Without loss of generality, xr > 0 (for otherwise we may replace
x by −x). If xt < xs then it follows at once that λn(G ′) < λn(G). Assume
next that xt = xs , so that certainly λn(G ′) ≤ λn(G). If λn = λn(G ′) = λn(G)
then, as above, x must be an eigenvector of G ′ corresponding to λn . This is
impossible since, in G ′, we have λn xu 
=∑v∼u xv for u equal to s (or t).

This completes the proof. �
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In view of the above arguments, we may safely leave the proof of the
following two results as exercises.

Theorem 8.1.15 [BelCRS2]. Let G ′ be the graph obtained from a graph G by
relocating the edge st to the position of a non-edge uv, where {s, t} ∩ {u, v} =
∅. Then

(i) λn(G ′) < λn(G) if xu xv < xs xt ;
(ii) λn(G ′) ≤ λn(G) if xu xv = xs xt , and in this situation, λn(G ′) = λn(G)

only if xs = xt = xu = xv = 0.

Theorem 8.1.16. Let G ′ be a graph obtained from a connected graph G by
the local switching of st, uv to sv, tu. If (xs − xu)(xv− xt ) ≤ 0 then λn(G ′) ≤
λn(G), with λn(G ′) = λn(G) only if xs = xu and xv = xt .

Analogues of Theorems 8.1.14–8.1.16 hold for the signless Laplacian (Exer-
cise 8.6). They are used in [CarCRS] to show that the connected non-bipartite
graph on n vertices (n > 3) with minimal least Q-eigenvalue is obtained from
a triangle by attaching a pendant path of length n − 3. Here we show how
our results are used to identify the trees and unicyclic graphs with extremal
eigenvalues.

Theorem 8.1.17. Among all trees with n vertices (n > 2), the path Pn has the
smallest index, and the star K1,n−1 has the largest index, with respect to the
adjacency, or Laplacian, or signless Laplacian spectrum.

Proof. For the adjacency index or Q-index, the proof easily follows by a
repeated application of Theorem 8.1.7 (either to decrease or to increase the
index). For the Laplacian index we may use the corresponding result for the
Q-index, in view of Proposition 7.8.4. �

Theorem 8.1.18. Among all unicyclic graphs with n vertices (n > 2) the
cycle Cn has the smallest index, and the graph K1,n−1 + e has the largest
index, with respect to the adjacency, or Laplacian, or signless Laplacian
spectrum.

Proof. Consider first the graphs with smallest index (with respect to the adja-
cency spectrum). The proof follows by repeated application of Theorem 8.1.1
and Theorem 8.1.12(ii), since the index decreases when an endvertex is deleted
and a vertex is inserted in some edge of the cycle. In view of Exercise 8.4, the
same argument applies to the Q-index. For the Laplacian index ν1, recall first
that ν1 = 4 for any cycle. Suppose that U is a unicyclic graph on n vertices,
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other than Cn . If n > 4 the cycle in U has an edge e such that U − e con-
tains a subtree T with degree sequence 3, 2, 1, 1, 1. By interlacing (Theorem
7.8.13), we have ν1(U ) ≥ ν1(T ) > 4. If n ≤ 4 then U = K1,3 + e, and we are
done.

For graphs with largest index or Q-index, the result follows immediately
from Corollary 8.1.8 and Remark 8.1.9(iii). For the Laplacian index, the
required result is a simple consequence of Proposition 7.1.1. �

For connected graphs with n vertices and m edges (m ≥ n + 2) we do not
have universal results analogous to Theorems 8.1.17 and 8.1.18. The bicyclic
graphs for which λ1 is smallest or largest are known; see [Sim3] (or [CvDSa]
p. 390) and [BruSo]. Most other results refer to graphs with largest index; in
particular, the tricyclic graphs with minimal index have not been determined.
Although the connected graphs with maximal index or maximal Q-index are
threshold graphs (see Remark 8.1.9(i)), in the general case it remains for
them to be identified within this class of graphs. More details can be found
in [ABCHRSS]. To investigate the graphs with minimal least eigenvalue, we
examine the sign-pattern of associated eigenvectors as described in Section 8.2.

We note that for the Laplacian spectrum, the graphs (with a fixed number
vertices) for which ν1 is maximal are precisely those whose complements are
not connected (see Proposition 7.1.1).

For the remainder of this section, we use characteristic polynomials to com-
pare indices of graphs which differ in the location of an edge. These results
(for the adjacency spectrum) are due primarily to Li and Feng, who exploited
the following observation:

Lemma 8.1.19 [LiFe]. If H is a proper spanning subgraph of the connected
graph G, then

PH (x) > PG(x) for all x ≥ λ1(G).

Proof. We first prove by induction on n = |V (G)| that for any spanning
subgraph H of an arbitrary graph G,

PH (x) ≥ PG(x) for all x ≥ λ1(G).

This clearly holds for n = 1; accordingly we suppose that n > 1 and the result
holds for graphs with n − 1 vertices. By Theorem 2.3.1 we have P ′G(x) =∑n

j=1 PG− j (x), and using a similar expression for P ′H (x), we find that

P ′H (x)− P ′G(x) =
n∑

j=1

(PH− j (x)− PG− j (x)).
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For each j , H − j is a spanning subgraph of G − j and so, by the induction
hypothesis,

PH− j (x) ≥ PG− j (x) for all x ≥ λ1(G − j). (8.5)

Since λ1(G − j) ≤ λ1(G), it follows that P ′H (x) − P ′G(x) ≥ 0 for all x ≥
λ1(G). Since λ1(H) ≤ λ1(G), we have PH (x) ≥ PG(x) for all x ≥ λ1(G). If
G is connected and H is a proper spanning subgraph, then λ1(H) < λ1(G) by
Proposition 1.3.10, and so PH (x) > PG(x) for all x ≥ λ1(G). �

Theorem 8.1.20 [LiFe]. Let G(k, l) (k, l ≥ 0) be the graph obtained from a
non-trivial connected graph G by attaching pendant paths of length k and l at
the same vertex v. If k ≥ l ≥ 1 then

λ1(G(k, l)) > λ1(G(k + 1, l − 1)).

Proof. By Theorem 2.2.1 we have

PG(k,l)(x) = x PG(k,l−1)(x)− PG(k,l−2)(x)

when l ≥ 2, and

PG(k+1,l−1)(x) = x PG(k,l−1)(x)− PG(k−1,l−1)(x)

when l ≥ 1. It follows that for k ≥ l ≥ 2 we have

PG(k,l)(x)− PG(k+1,l−1)(x) = PG(k−1,l−1)(x)− PG(k,l−2)(x). (8.6)

When k ≥ l, repeated use of (8.6) yields

PG(k,l)(x)− PG(k+1,l−1)(x) = PG(k−l+1,1)(x)− PG(k−l+2,0)(x).

By Theorem 2.2.1 again.

PG(k−l+2,0)(x) = x PG(k−l+1,0)(x)− PG(k−l,0)(x)

and
PG(k−l+1,1)(x) = x PG(k−l+1,0)(x)− PH (x),

where H is the graph G(k − l + 1, 0)− v. Thus

PG(k+1,l−1)(x)− PG(k,l)(x) = PH (x)− PG(k−l,0)(x).

Now H is a proper spanning subgraph of G(k− l, 0), and so by Lemma 8.1.19
we have

PG(k+1,l−1)(x)− PG(k,l)(x) > 0 for all x > λ1(G(k − l, 0)).
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Since G(k − l, 0) is a proper subgraph of G(k, l) we have λ1(G(k − l, 0)) <
λ1(G(k, l)). Hence PG(k+1,l−1)(x) is positive at λ1(G(k, l)), and the result
follows. �

For the signless Laplacian index we have the same result (Exercise 8.7),
while almost the same result holds for Laplacian index:

Theorem 8.1.21 [Guo2]. Let G(k, l) (k, l ≥ 0) be the graph obtained from a
non-trivial connected graph G by attaching pendant paths of length k and l at
the same vertex v. If k ≥ l ≥ 1 then

ν1(G(k, l)) ≥ ν1(G(k + 1, l − 1)),

with equality if and only if there exists an eigenvector of G(k, l) corresponding
to ν1(G(k, l)) with v-th entry 0.

In general, the inequality in Theorem 8.1.21 is not strict; however if G is
bipartite we do indeed have ν1(G(k, l)) > ν1(G(k − 1, l + 1)).

Some extensions of Theorem 8.1.20 can be found in [LiFe]. One of them
reads as follows (the proof is left as an exercise).

Theorem 8.1.22 [LiFe]. Let u, v be adjacent vertices of a connected graph G,
both of degree at least 2. Let G(k, l) (k ≥ 0, l ≥ 0) be the graph obtained from
G by attaching pendant paths of length k and l at u and v. If k ≥ l ≥ 1 then

λ1(G(k, l)) > λ1(G(k + 1, l − 1)).

In Theorem 8.1.22, the requirement that neither u nor v is an endvertex
is no real restriction, because Theorem 8.1.20 can be applied when uv is a
pendant edge.

Our next result concerns graphs of the form HvwK obtained from disjoint
graphs H, K by adding an edge joining the vertex v of H to the vertex w of K .
Recall that Hv denotes the graph obtained from H by adding a pendant edge
at vertex v.

Theorem 8.1.23 [ZhaZZ]. If PHu (x) < PHv (x) for all x > λ1(Hv) then
λ1(HuwK ) > λ1(HvwK ) for all vertices w of K .

Proof. Applying Theorem 2.2.4, we have PHuwK (x) = PH (x)PK (x) −
PH−u(x)PK−w(x).

Since
PHu (x) = x PH (x)− PH−u(x),

we obtain

PHuwK (x) = PH (x)PK (x)− PK−w(x)(x PH (x)− PHu (x)),
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and similarly for PHvwK (x). On subtraction we obtain

PHuwK (x)− PHvwK (x) = PK−w(x)(PHu (x)− PHv (x)).

If now x > λ1(HvwK ) then x > λ1(K − w) and so PK−w(x) > 0. By
hypothesis, PHu (x)− PHv (x) < 0, and the result follows. �

8.1.2 Bounds on the index

We have already provided some bounds on the eigenvalues of a graph (see
Chapters 1 and 3 for the adjacency spectrum, Chapter 7 for the Laplacian and
signless Laplacian spectrum). Note that always λ1 ≤ 1

2ξ1 and ν1 ≤ ξ1. In this
subsection, we discuss further bounds for λ1. Some bounds for λ2 and λn can
be found in the next section. Throughout we assume that G is a graph with
m edges and vertices 1, 2, . . . , n. As usual, di = deg(i), and A denotes the
adjacency matrix of G.

We begin with lower bounds for λ1, typically obtained as Rayleigh quotients
x�Ax/x� x. If we take x = (√d1,

√
d2, . . . ,

√
dn)

� then we obtain:

Proposition 8.1.24. For any graph G with m edges,

λ1(G) ≥ 1

m

∑
i∼ j

√
di d j . (8.7)

Close to this bound is a bound of Runge [Run], who proved that for a non-
trivial connected graph G,

λ1(G) ≥
√

m∑
i∼ j

1
di d j

(8.8)

(see also [Hofm], [HofWH], [SimSte]). In each of (8.7) and (8.8), equality
holds if and only if G is regular or semi-regular bipartite (Exercise 8.11).

We saw in Theorem 3.2.1 that λ1(G) is bounded below by the mean
degree. The Cauchy–Schwarz inequality shows that the following is a better
bound:

Theorem 8.1.25 [Hof1]. For any graph G with n vertices,

λ1(G) ≥
√

d2
1 + d2

2 + · · · + d2
n

n
. (8.9)

Proof. By Rayleigh’s Principle, λ1(G)2 ≥ j�A2j/j�j, where j is the all-
1 vector. Now j�A2j is the number N2 of walks of length 2 in G, and
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N2 = d2
1 + d2

2 + · · · + d2
n because there are d2

i such walks with i as the
mid-vertex. The result follows. �

For an upper bound (due originally to Hong) we can apply Corollary 1.3.7
to threshold graphs as follows.

Theorem 8.1.26 [Hon2]. For any connected graph we have

λ1(G) ≤
√

2m − n + 1, (8.10)

with equality if and only if G is a star K1,n−1 or a complete graph Kn.

Proof. By Corollary 8.1.8, it suffices to prove (8.10) in the case that G is
a threshold graph. Here the stepwise property of A (see Remark 8.1.9(i))
ensures that (A2j)i ≥ (A2j)k whenever di ≥ dk . By Corollary 1.3.7, we
have λ1(G)2 ≤ (A2j)1 = 2m − n − 1, with equality if and only if j is an
eigenvector of A2.

In the case of equality, let dn = d . Then the equation (A2j)1 = (A2j)n
becomes

∑n
i=2(di − d) = 0, whence di = d (i = 2, . . . , n). Since A is a

stepwise matrix, this is possible if and only if d is 1 or n − 1, that is, if and
only if G is K1,n−1 or Kn . �

Remark 8.1.27. For graphs with m edges (not necessary connected) we have
the following result of Stanley [Stan]:

λ1(G) ≤ 1

2
(
√

8m + 1− 1), (8.11)

with equality if and only if G consists of a complete graph and any num-
ber of isolated vertices. When m = (t

2

) + r (0 < r < t), let Gm be
the graph with m edges obtained from Kt by adding a vertex of degree r .
Rowlinson [Row4] showed that among the graphs with m edges, the maxi-
mal index is attained solely in those graphs with Gm as the unique non-trivial
component. �

For an upper bound in terms of degrees, we have:

Proposition 8.1.28 [BerZh]. For any connected graph G,

λ1(G) ≤ max
i∼ j

√
di d j . (8.12)

Proof. Let (x1, x2, . . . , xn)
� be the principal eigenvector of G, let xs =

maxi xi , and let xt = maxi∼s xi . From the eigenvalue equations for λ1, we
have

λ1xs ≤ ds xt and λ1xt ≤ dt xs,

whence λ2
1xs xt ≤ dsdt xs xt . The result follows. �
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Equality holds in (8.12) if and only if G is regular or semi-regular bipartite
(Exercise 8.12).

We note some further bounds which involve also the average degrees mi =
1
di

∑
j∼i d j (i = 1, . . . , n). The first two bounds are due to Favaron et al.

[FavMS1]. For any graph G without isolated vertices,

min
1≤i≤n

mi ≤ λ1(G) ≤ max
1≤i≤n

mi , (8.13)

and for any graph G,

min
1≤i≤n

√
mi di ≤ λ1(G) ≤ max

1≤i≤n

√
mi di . (8.14)

The bounds (8.13) are established by taking y = (d1, d2, . . . , dn)
� in Corol-

lary 1.3.7. Note that equality holds throughout if and only if G is harmonic. For
the bounds (8.14) we may apply Corollary 1.3.7 to the matrix A2, with y = j.

The upper bound in (8.13) was improved slightly by Das and Kumar
[DasKu]: for any connected graph G we have

λ1(G) ≤ max
i∼ j

√
mi m j , (8.15)

with equality if and only if G is either a regular graph or a bipartite graph for
which mi is constant on each colour class.

Finally, we mention some intriguing questions relating to the bounds from
Theorem 3.2.1: it is of interest to establish how far λ1(G) can be from d̄, or
from �, when G is non-regular. Both λ1(G) − d̄ and � − λ1(G) have been
considered as a measure of irregularity.

A lower bound for λ1(G)− d̄ was recently obtained by Cioabǎ and Gregory
[CiGr]: for a non-regular graph G,

λ1(G)− d̄ >
1

�+ 1
. (8.16)

A sharp upper bound was obtained by Bell [Bel2]: for any graph G,

λ1(G)− d̄ ≤ n

4
− 1

2
+ ε(n), (8.17)

where ε(n) = 1/4n if n is odd, and 0 if n is even.
For similar bounds on �− λ1(G), see [Ste3] and [CiGN].
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8.2 Eigenvectors and structure

We have already seen in Chapter 1 that a graph is connected if and only if it has
a simple largest eigenvalue with a corresponding eigenvector in which all com-
ponents are of the same (non-zero) sign (Corollary 1.3.8). Here we examine
how the sign pattern, or even zero-non-zero pattern, of other eigenvectors
influences connectedness.

We start by fixing some notation. For any vector x = (x1, x2, . . . , xn)
� ∈

IRn , let

P(x) = {i : xi > 0}, N (x) = {i : xi < 0}, Z(x) = {i : xi = 0}.
When G is a graph with V (G) = {1, 2, . . . , n}, we shall say that the vertex

i is positive, negative, or null (with respect to x) according as i belongs to
P(x), N (x) or Z(x), respectively. If U ⊆ V (G), then 〈U 〉 denotes the sub-
graph of G induced by the vertices in U . For any graph H , comp(H) denotes
the number of components of H .

The following lemma is a direct consequence of the Interlacing Theorem;
as usual, the eigenvalues λ1, λ2, . . . , λn are assumed to be in non-increasing
order.

Lemma 8.2.1 [Pow2]. Let B be a principal submatrix of the real symmet-
ric matrix A, and suppose that B = diag(B1, B2, . . . , Bk), where Bi (i =
1, 2, . . . , k) are irreducible matrices. If λ1(Bi ) ≥ β for each i , then λk(A) ≥
β, with equality only if λ1(Bi ) = β for each i .

Our first theorem bounds, in terms of eigenvalues, the number of compo-
nents in a subgraph induced by the non-negative vertices associated with an
appropriate vector.

Theorem 8.2.2 [Pow2]. Let A be the adjacency matrix of a non-trivial
connected graph. If x is a vector such that for some real α

Ax ≥ αx, (8.18)

then

comp(〈P(x) ∪ Z(x)〉)) ≤ max{i : λi (A) > α}.

Proof. Suppose that

A =
(

B C
C� D

)
, x =

(
y
−z

)
,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.009
https:/www.cambridge.org/core


244 Some additional results

where the partitions are determined by the non-negative and negative vertices.
Next, let

B =
⎛
⎜⎝

B1 O
. . .

O Bk

⎞
⎟⎠ , y =

⎛
⎜⎝

y1
...

yk

⎞
⎟⎠ , C =

⎛
⎜⎝

C1
...

Ck

⎞
⎟⎠

where B1, . . . , Bk are irreducible. The hypothesis Ax ≥ αx implies that Bi yi−
Ci z ≥ αyi for each i . Since A is irreducible, no Ci is a zero matrix. Thus
Ci z ≥ 0 with strict inequality for some entry, and hence Bi yi ≥ αyi with strict
inequality for some entry. Therefore,

yi
�Bi yi > αyi

�yi (8.19)

and hence λ1(Bi ) > α for each i ∈ {1, 2, . . . , k}. By Lemma 8.2.1 we have
λk(A) > α, and so (by interlacing) k ≤ max{i : λi (A) > α}, as required. �

When the scalar α is positive, we can deduce a little more from the above
proof:

Corollary 8.2.3. If α > 0 in (8.18) then
(i) no component of 〈P(x) ∪ Z(x)〉 is trivial,
(ii) no component of 〈P(x) ∪ Z(x)〉 contains only vertices from Z(x).

Proof. If the i-th component is trivial, then Bi = 0 and (8.19) is contradicted.
If the i-th component contains vertices from Z(x) alone, then yi = 0, and
again (8.19) is contradicted. �

Some other corollaries can be deduced by taking α from different ranges,
for example 0 ≤ α < 1 or 1 ≤ α <

√
2 (see Exercise 8.14). Theorem 8.2.2

is essentially a graph-theoretical version of a theorem of Fiedler on irreducible
symmetric matrices, namely Theorem 2.1 of [Fie2], where the result is proved
for α = λs , s ≥ 2. Note that for α < λ1(A), 〈P(x) ∪ Z(x)〉 is non-empty
because otherwise x < 0, A(−x) ≤ α(−x) and we have λ1(A) ≤ α by
Rayleigh’s Principle.

The following variant of Theorem 8.2.2 provides an upper bound for the
number of components in 〈P(x)〉; in the case that α is not an eigenvalue of A
the bound is the same as for the number of components in 〈P(x) ∪ Z(x)〉. The
result demonstrates the role of null vertices in determining the components of
the subgraph induced by non-negative vertices.

Theorem 8.2.4 [Pow2]. In the notation of Theorem 8.2.2, with α as in (8.18),
we have

comp(〈P(x)〉) ≤ max{i : λi (A) ≥ α}.
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Proof. We may repeat the arguments for Theorem 8.2.2 with y > 0, z ≥ 0 to
show that Bi yi −Ci z ≥ αyi. In this situation, Ci z may be zero and so we have
only

Bi yi ≥ αyi (8.20)

for each i . Thus λ1(Bi ) ≥ α for each i , and the conclusion follows from
Lemma 8.2.1. �

The next result provides a spectral bound on the number of components of
any induced subgraph of a connected graph.

Theorem 8.2.5 [Pow2]. Let G be a connected graph, U a proper subset of
V (G), and δ the minimum vertex degree in 〈U 〉. Then

comp(〈U 〉) ≤ max{i : λi (A) ≥ δ}.

Proof. Let A be the adjacency matrix of a graph G and let B be the principal
submatrix of A corresponding to U . If B = diag(B1, B2, . . . , Bk), where the
Bi are irreducible, then Bi j ≥ δj, where j is the all-1 vector of appropriate size.
Thus λ1(Bi ) ≥ δ for each i . By Lemma 8.2.1, λk(A) ≥ δ, which is equivalent
to the assertion of the theorem. �

Remark 8.2.6. From the above theorem it follows immediately that

comp(H) ≤ max{i : λi (G) ≥ 0},

for any induced subgraph H of G. Similar results are due to Cvetković (see
[CvDSa, pp. 88–9]). �

In what follows we assume that equality holds in (8.18). In this case, both x
and −x are eigenvectors of A, and if we apply Theorem 8.2.2 to both of these
vectors when α = λ2, we obtain the following result.

Theorem 8.2.7 [Fie2]. Let G be a connected graph, and let x be an eigenvec-
tor corresponding to the second largest eigenvalue. Then both of the subgraphs
〈P(x) ∪ Z(x)〉, 〈N (x) ∪ Z(x)〉 are connected.

In the case that x is an eigenvector (x1, x2, . . . , xn)
� corresponding to an

eigenvalue α < λ1 one can obtain the following basic upper bound for the
number of null vertices. This in turn gives an upper bound for the multiplicity
of α (see Corollary 8.2.9).
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Theorem 8.2.8 [Pow2]. Let A be the adjacency matrix of a connected graph
with n vertices, n > 2. If Ax = αx, then

|Z(x)| ≤
⎧⎨
⎩

n − 2− 2α i f α > 0,
n − 2 i f − 1 < α ≤ 0,
n + 2− 2|α| i f α ≤ −1.

Proof. Let |Z(x)| = a, |P(x)| = b, |N (x)| = c. Note that since x is orthogo-
nal to the principal eigenvector, we have b ≥ 1 and c ≥ 1, whence a ≤ n − 2
whatever the value of α.

Let h and k be such that xh ≥ xi ≥ xk for all i . On comparing the h-th entries
of αx and Ax we obtain αxh ≤ (b − 1)xh , and similarly, α|xk | ≤ (c − 1)|xk |.
It follows that

α ≤ min{b, c} − 1, (8.21)

and hence that α ≤ 1
2 (b + c) − 1 = 1

2 (n − a) − 1. This gives the required
bound in the case that α > 0. From the equation Ax = αx we also deduce that
|α|xh ≤ c|xk | and |α||xk | ≤ bxh . Now we have

|α| ≤ √bc ≤ 1

2
(b + c) = 1

2
(n − a), (8.22)

and this gives the required bound in the case α ≤ −1. �

Corollary 8.2.9. Let α be an eigenvalue of a connected graph on n vertices.
If α has multiplicity m > 1 then

m ≤
⎧⎨
⎩

n − 1− 2α i f α > 0,
n − 1 i f − 1 < α ≤ 0,
n + 1− 2|α| i f α ≤ −1.

Proof. This bound follows from Theorem 8.2.8 because there exists an
eigenvector x corresponding to α with |Z(x)| = m − 1. �

We may use the foregoing arguments to establish bounds on λ2 and λn .

Proposition 8.2.10. If G is a connected graph on n vertices then

λ2(G) ≤
⌊n

2

⌋
− 1.

The bound is attained for all odd n > 1, and is asymptotically sharp for even n.

Proof. The bound follows from (8.21). If n = 2s+1 then the bound is attained
in the connected graph constructed from 2Ks ∪̇ K1 by adding two edges inci-
dent with an isolated vertex. If n = 2s and Gs is the graph constructed from
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2Ks by adding an edge, then λ2(Gs) = 1
2 (s−3+√s2 + 2s − 3), which tends

to s − 1 as s →∞. �

Secondly, (8.22) yields:

Proposition 8.2.11 [Con2]. If G is a connected graph with n vertices then

λn(G) ≥ −
√⌊n

2

⌋⌈n

2

⌉
.

Equality holds for G = K* n
2 ,,- n

2 ..

The least eigenvalue of any non-trivial complete graph is equal to −1. For
other graphs we have the following upper bound of Yong, stated without proof:

Theorem 8.2.12 [Yong]. If G is a non-complete connected graph with n
vertices (n ≥ 4) then

λn(G) < −1

2

(
1+

√
1+ 4

n − 3

n − 1

)
.

The following lemma will help us to describe the non-complete con-
nected graphs G with n vertices and m edges for which λn is minimal. For
the remainder of this section, G is such a graph, and x is any eigenvector
(x1, x2, . . . , xn)

� of G corresponding to λn .

Lemma 8.2.13. If Z(x) 
= ∅ then deg(u) = n − 1 for every vertex u ∈ Z(x).

Proof. Assume the contrary, and let r be a vertex in Z(x) such that deg(r) <
n − 1. Let Sr = {s ∈ V (G) : s ∼ r}, and Tr = {t ∈ V (G) : t 
∼ r, t 
= r}.
Note that Sr 
= ∅ because G is connected and non-trivial. Now choose a vertex
s from Sr and a vertex t from Tr . Let G ′ be the graph obtained from G by
rotating the edge rs to the position r t .

Assume first that G ′ is connected for any choice of s and t . If xs 
= xt for
some s and t then λn(G ′) < λn(G) by Theorem 8.1.14. This contradicts the
choice of G, and so xs = xt for any choice of s and t . But then xv = c for
any v 
= r , where c is a real constant. Now λn(G)xr = ∑v∈Sr

xv = deg(r)c.
Since deg(r) 
= 0 and xr = 0, we conclude that c = 0 and hence x = 0, a
contradiction.

Accordingly, suppose that, for some choice of s and t , the graph G ′ is not
connected. Then rs must be a bridge in G, and s, t lie in different components
Gs,Gt of G ′, respectively. Let t ′ be a vertex (if any) in Gs different from s.
Note that t ′ ∈ Tr , for otherwise there exists an r -s path in G avoiding the bridge
rs. If xs 
= xt ′ , then we obtain a contradiction by applying the argument above
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to t ′ instead of t (note that the corresponding graph G ′ is now connected).
Consequently, xu = xs for every u ∈ V (Gs). By the eigenvalue equation
for the vertex s, applied in G, we obtain λn(G)xs = (deg(s) − 1)xs , whence
xs = 0. Therefore, Gt contains a vertex u such that xu 
= 0. Now the graph G ′′
obtained from G by rotating sr to su is connected, and λn(G ′′) < λn(G) by
Theorem 8.1.14.

This final contradiction completes the proof. �

Theorem 8.2.14 [BelCRS2]. Let G be a connected graph whose least eigen-
value λn(G) is minimal among the connected graphs with n vertices and m
edges, where m <

(n
2

)
. Then λn(G) is a simple eigenvalue of G.

Proof. Suppose that λn(G) has multiplicity at least two. Then, for any vertex
u ∈ V (G), there exists an eigenvector x whose u-th entry is equal to zero (so
that u ∈ Z(x) and Z(x) 
= ∅). Since G is not complete, we may choose u to
be a vertex such that deg(u) < n − 1. Now we have a contradiction to Lemma
8.2.13, and the proof follows. �

As an immediate consequence of Theorem 8.2.14 we see that if G is not
complete then the partition of V (G) induced by the sign pattern of any eigen-
vector corresponding to λn(G) is unique (since only the role of negative and
positive vertices can be exchanged). Accordingly, in what follows we assume
that m <

(n
2

)
, and write P, N , Z for P(x), N (x), Z(x). If H = 〈P ∪ N 〉 and

K = 〈Z〉 then by Lemma 8.2.13, K is a complete graph and G = K � H .
To describe H , let H+ = 〈P〉, H− = 〈N 〉. Note that the subsets P and
N are non-empty since the eigenspaces of λn(G) and λ1(G) are orthogonal
and the latter is spanned by a positive eigenvector; in contrast, Z may be an
empty set.

Proposition 8.2.15. Both H+ and H− are threshold graphs.

Proof. Let P = {1, 2, . . . , k} where x1 ≤ x2 ≤ · · · ≤ xk . We shall prove
that jq ∈ E(G) implies that i p ∈ E(G) whenever 1 ≤ i ≤ j ≤ k and
1 ≤ p ≤ q ≤ k. Suppose by way of contradiction that

1 ≤ i ≤ j ≤ k, 1 ≤ p ≤ q ≤ k, jq ∈ E(G), i p /∈ E(G).

We delete jq and add i p, to obtain the graph G ′. Taking ‖x‖ = 1, we have
λn(G) = 2

∑
uv∈E(G) xu xv , and so

0 ≤ λn(G
′)− λn(G) = 2(xi − x j )x p + 2(x p − xq)x j ≤ 0,
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whence xi = x j , x p = xq . Moreover x is an eigenvector corresponding to
λn(G ′) = λn(G). This is a contradiction, since q has lost a neighbour from
P . Hence H+ is a threshold graph. In a similar way we can derive the same
conclusion for H−. �

Lemma 8.2.16. If P or N induces an edge i j , then pq ∈ E(G) for all p ∈
N , q ∈ P.

Proof. If the assertion is false, we can remove i j and add an edge between
V− and V+ to reduce 2
uv∈E(G)xu xv . �

Accordingly, we arrive at the following conclusion:

Proposition 8.2.17. If at least one of the graphs H− or H+ is not totally
disconnected then H = H− � H+; otherwise, H is a bipartite graph (not
necessarily a complete bipartite graph).

In addition, we have:

Lemma 8.2.18. If Z 
= ∅ then H = H− � H+.

Proof. If H 
= H−�H+ then we obtain a contradiction by applying Theorem
8.1.15 to four vertices chosen as follows. First, let p and q be two non-adjacent
vertices taken from N and P , respectively; secondly, choose i from Z and j
from N ∪ P . By Lemma 8.2.13, i is adjacent to j , and i j is not a bridge.
Moreover, x pxq < xi x j . If we replace the edge i j with pq then we obtain a
connected graph G ′ for which λn(G ′) < λn(G) by Theorem 8.1.16(i). This
contradicts the minimality of λn(G), and so every vertex of H− is adjacent to
every vertex of H+. �

It follows from Lemmas 8.2.13 and 8.2.18 that when Z 
= ∅, G has the
form K � L , where K and L are threshold graphs, the vertices of K are
non-negative, and those of L are non-positive. Here V (K ) = P ∪ X and
V (L) = N ∪ Y , where X ∪ Y is an arbitrary bipartition of Z . Combin-
ing this observation with Proposition 8.2.17, we obtain the following general
description of G:

Theorem 8.2.19 [BelCRS2]. Let G be a connected graph whose least eigen-
value is minimal among the connected graphs with n vertices and m edges
(n − 1 ≤ m <

(n
2

)
). Then G is either

(a) a bipartite graph, or
(b) a join of two threshold graphs (not both totally disconnected).
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8.3 Reconstructing the characteristic polynomial

Let G be a graph with vertices 1, 2, . . . , n. The family of n vertex-deleted
subgraphs G − 1,G − 2, . . . ,G − n is called the deck of G, denoted by
D(G). Ulam famously asked whether every graph with at least three vertices
is reconstructible (up to isomorphism) from its deck. The question remains
unanswered.

In spectral graph theory, we can consider also the polynomial deck (or p-
deck)

P(G) = {PG−1(x), PG−2(x), . . . , PG−n(x)}.
Now four questions arise when we ask whether D(G) or P(G) determine G
or PG(x). These four reconstruction problems were discussed by Schwenk
in [Sch3] (see also [CvDGT, Section 3.5] and [SchWi, Section 12]). In fact,
Tutte [Tut2] showed that PG(x) is reconstructible from D(G); an alternative
proof may be found in [LauSc, Chapter 10]. On the other hand, P(G) does not
determine G: the Clebsch graph and L(K4,4) have the same eigenvalues and
the same angles, hence (by Proposition 2.2.6) the same polynomial deck. (For
another instance of this phenomenon, see Example 4.3.1.) Here we discuss
the problem of reconstructing PG(x) from P(G). The problem was posed by
Cvetković in 1973 at the 18th International Scientific Colloquium in Ilmenau,
and it has not yet been resolved. The Polynomial Reconstruction Conjecture,
denoted by (P), states that for any graph G with at least three vertices, P(G)
determines PG(x).

It has been shown that the conjecture holds for graphs with up to 10 vertices
(a result attributed to B. McKay, obtained by a computer search).

We know from Theorem 2.3.1 that

P ′G(x) = PG−1(x)+ PG−2(x)+ · · · + PG−n(x), (8.23)

and so P(G) determines PG(x) to within an additive constant. If we know just
one eigenvalue of G, then the constant term can be calculated. In particular,
this is the case if some PG−i (x) has a repeated root λ, for then (by interlacing)
λ is an eigenvalue of G.

The following invariants (1)–(6) and properties (7)–(8) are reconstructible
from the polynomial deck:

(1) the numbers of vertices and edges;
(2) the vertex degree sequence;
(3) the length of the shortest odd cycle, and the number of such cycles;
(4) the number of closed walks of length k starting and terminating at the i-th

vertex;
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8.3 Reconstructing the characteristic polynomial 251

(5) the numbers of triangles, quadrangles and pentagons;
(6) the spectral moments s0, s1, . . . , sn−2;
(7) regularity (and strong regularity);
(8) bipartiteness.

The proofs of (1)–(8) are left to the reader (Exercise 8.15; see also [Cve12]).
For some classes of graphs, one of (1)–(8) suffices to reconstruct the charac-

teristic polynomial (or even the graph). For example, it was shown in [GuCv]
that (P) holds for regular graphs (Exercise 8.16) and various classes of bipar-
tite graphs such as trees without a perfect matching. For trees in general, the
problem was open for many years; here we show how the earlier result was
extended to the remaining trees (see [Cve12] and [CvLe2]). We denote by
σ(G) the set of distinct eigenvalues of a graph G.

Theorem 8.3.1 [CvLe2]. Let H be a graph with at least three vertices
and exactly two components. If these components have different numbers of
vertices, then the characteristic polynomial of H is determined by P(H).

Proof. Suppose by way of contradiction that there exists at least one graph
G 
= H such that PG(x) = PH (x)+ c (c 
= 0) and PG−i (x) = PH−i (x) (i =
1, 2, . . . , n). Let H1, H2 be the two components of H , with n1, n2 vertices
respectively, where n1 > n2. Clearly,

σ(H − u) = σ(H1) ∪ σ(H2 − u)
(
u ∈ V (H2)

)
. (8.24)

Since H − u has no multiple eigenvalues, the same is true of H1, and we let
σ(H1) = {λ∗1, λ∗2, . . . , λ∗n1

}, where λ∗1 > λ∗2 > · · · > λ∗n1
.

Let v be a fixed vertex of H2. Since |σ(H2 − v)| < n1 − 1, there exists at
least one index i = i0 (1 ≤ i0 ≤ n1 − 1) such that no eigenvalue of H2 − v
lies in the open interval (λ∗i0+1, λ

∗
i0
). Therefore,

(λ∗i0+1, λ
∗
i0
) ∩ σ(H − v) = ∅. (8.25)

Since PG−v(x) = PH−v(x), we know from (8.24) that λ∗i0
and λ∗i0+1 lie in

σ(G−v). By the Interlacing Theorem, there exists at least one eigenvalue α of
G in the interval (λ∗i0+1, λ

∗
i0
). Since PG(α) = 0 and PG(λ

∗
i0+1) = PG(λ

∗
i0
) =

c, there exist at least two eigenvalues α, β of G (not necessarily distinct) in
(λ∗i0+1, λ

∗
i0
).

Finally, using the interlacing theorem again, we see that G − v has at least
one eigenvalue γ ∈ [α, β] ⊆ (λ∗i0+1, λ

∗
i0
). Since σ(G − v) = σ(H − v), this

is a contradiction to (8.25). �

We can deal with more than two components in similar fashion:
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Theorem 8.3.2 [CvLe2]. If H is a graph with at least three components, then
the characteristic polynomial of H is determined by P(H).

Proof. Suppose that H has components H1, H2, . . . , Hk (k > 2). We may
assume that all eigenvalues of H are simple, for otherwise some H − v has a
multiple eigenvalue. Accordingly we take λ1(H1) > λ1(H2) > · · · > λ1(Hk).
It follows that(

λ1(H1), λ1(H2)
) ∩ σ(Hk − v) = ∅

(
v ∈ V (Hk)

)
,

and the proof now follows as before. �

In proving the next result, we make use of the fact (Exercise 2.14) that the
characteristic polynomial of a tree with n vertices has constant term (−1)n/2

or 0 (according as it does or does not have a perfect matching). We write e(G)
for the number of edges of the graph G.

Theorem 8.3.3 [CvLe2]. If T is a tree, then its characteristic polynomial is
determined by P(T ).

Proof. Let n = |V (T )| and suppose that H is a graph such that P(H) =
P(T ).

Consider first the case that n is odd. Applying Theorem 3.2.3 to PH−i (x) (=
PT−i (x)), we see that each H − i is bipartite. Hence either H is an odd cycle
or H is bipartite. In the former case, H is regular and so PH (x) = PT (x) by
Exercise 8.16. If H is bipartite with parts of size n1, n2 then we may suppose
that n1 > n2. Now for some vertex u of H , the graph H − u is bipartite with
parts of size n1, n2 − 1. Inspecting the rank of A(H − u), we see that H − u
has 0 as an eigenvalue of multiplicity at least n1 − (n2 − 1). Hence H has 0 as
an eigenvalue, and so again PH (x) = PT (x).

Now suppose that n is even, say n = 2k, and that PH (x) 
= PT (x). We
shall obtain a contradiction. If H is connected, it is a tree because e(H) =
e(T ). Since PH (0) 
= PT (0), we have {PH (0), PT (0)} = {(−1)k, 0}. We may
assume that PH (0) = 0 without loss of generality. By Exercise 2.6, if u is the
neighbour of an end vertex of H , then 0 is a multiple eigenvalue of H − u.
Then H has 0 as an eigenvalue and PH (x) = PT (x), contrary to assumption.
Hence H is not connected.

By Theorems 8.3.1 and 8.3.2, H has exactly two connected components H1

and H2, each with exactly k vertices. Since e(H) = e(T ) = 2k − 1, we know
that one component, say H1, is a unicyclic graph and the other component is a
tree. Let λ∗1 > λ∗2 > · · · > λ∗k be the eigenvalues of the tree H2. If there exist
a vertex v of H1 and an index i0 such that (λ∗i0+1, λ

∗
i0
) ∩ σ(H1 − v) = ∅, then
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the proof proceeds as in Theorem 8.3.1. Otherwise, for any vertex v of H1, the
eigenvalues γ1, . . . , γk−1 of H1 − v interlace those of H2 – that is,

γi ∈
(
λ∗i+1, λ

∗
i

) (
i = 1, 2, . . . , k − 1

)
. (8.26)

Now, because it has no multiple eigenvalues, the unicyclic graph H1 is not a
cycle, and so we may choose v to be an endvertex. Then H1 − v is unicyclic
and we have from (8.26) the contradiction

2 (k − 1) = 2e(H1 − v) =
k−1∑
i=1

γ 2
i <

k∑
i=1

(
λ∗i
)2 = 2e(H2) = 2(k − 1).

This completes the proof. �

Simić and Stanić [SimSta1] have shown that (P) holds for unicyclic graphs.
Further results on graphs with pendant vertices are proved by Sciriha et al.
[Sci1, SciFo]. The main feature of these results is that (P) holds if the number
of terminal vertices of the graph is sufficiently high; for example, (P) holds for
coronas of the form G ◦ K1.

The results of Section 3.4 can be used to show that (P) holds for graphs
whose vertex-deleted subgraphs have least eigenvalue ≥ −2 (see [Sim4,
Sim5] for connected graphs, and [SimSta1, SimSta2] for others). In par-
ticular, the characteristic polynomial of any line graph is reconstructible.
As a consequence of the latter observation, it was shown in [CvSi5] that
the Q-polynomial can be reconstructed from the polynomial deck deter-
mined by edge-deleted subgraphs. We mention in passing that the Q-
polynomial of a graph is reconstructible from the deck of vertex-deleted
subgraphs (see [Ded]), a result analogous to Tutte’s result for adjacency
spectrum.

A graph without P4 as an induced subgraph is called a cograph. It was
proved in [Roy] that 0 is an eigenvalue of a cograph G only if G contains
duplicate vertices, and−1 is an eigenvalue of G only if G contains co-duplicate
vertices. We know from Section 3.11 that graphs whose second largest eigen-

value is less than
√

5−1
2 are cographs. This observation was used in [BiySS]

to show that (P) holds for graphs whose vertex-deleted subgraphs have second

largest eigenvalue less or equal to
√

5−1
2 .

We note that Hagos [Hag] proved that for any graph G, PG(x) is recon-
structible from P(G) and P(G); then the same is true of PG(x). In view
of Proposition 2.1.3, this means that the eigenvalues and main angles of a
graph are determined by the eigenvalues and main angles of its vertex-deleted
subgraphs.
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Finally, let c = a + b
√

m and c = a − b
√

m, where a and b are non-
zero integers and m is a positive integer which is not a perfect square. The
conjugate adjacency matrix of a graph G has entries c and c for adjacent
and non-adjacent vertices, respectively, while diagonal entries are equal to
0. The characteristic polynomial of the conjugate adjacency matrix is called
the conjugate characteristic polynomial of G. It is proved in [Lep3] that the
conjugate characteristic polynomial of a graph is determined by the conjugate
characteristic polynomials of its vertex-deleted subgraphs.

8.4 Integral graphs

A graph is said to be integral if all the eigenvalues of an adjacency matrix are
integers. Since the eigenvalues of any graph are algebraic integers, an eigen-
value is an integer if and only if it is rational. Attractive examples of integral
graphs include strongly regular graphs (other than the conference graphs) and
the skeleta of the Platonic solids. By Theorem 2.1.2, the complement of any
regular integral graph is also integral.

The quest for integral graphs began in 1974 with a paper by Harary and
Schwenk [HarSc]. They identified some large collections of integral graphs,
and observed that various graph operations can be used to construct new inte-
gral graphs from old (cf. Chapter 2). As noted in [SteAFD], an application of
integral graphs was recently found in the context of quantum spin networks
(see [CDDEKL]).

In what follows, we consider only connected integral graphs, since the
spectrum of a disconnected graph consists of the spectra of its components.

Remark 8.4.1 [Cve5]. There are only finitely many connected integral graphs
whose vertices have bounded degree. For then the number of distinct eigenval-
ues is bounded (by Proposition 1.1.1), and this in turn bounds the diameter (by
Theorem 3.3.5). �

The connected integral non-regular graphs with maximum degree at most
3 were identified by Cvetković et al. [CvGT]; there are only 7 such graphs.
The cubic integral graphs were found (in part using a computer search) by
Bussemaker and Cvetković [BuCv], and independently (by hand) by Schwenk
[Sch2]. There are just 13 connected cubic integral graphs. Schwenk made
the important observation that a search for integral graphs can be restricted
to bipartite graphs as follows. If G is connected, non-bipartite and integral,
then G × K2 is connected, bipartite and integral, since the eigenvalues of
K2 are 1 and −1. Accordingly, if we know all connected bipartite integral
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8.4 Integral graphs 255

graphs, the non-bipartite integral graphs can be extracted from those which are
decomposable with respect to the above product.

Simić and Radosavljević [SimRa] determined all 13 connected non-regular
non-bipartite integral graphs with maximum degree 4. Such graphs have least
eigenvalue −2 and so the results of Section 3.4 can be exploited. The corre-
sponding problem for non-regular bipartite graphs, with some values avoided
in the spectrum, was investigated by a mixture of theoretical arguments and
computer search by Balińska et al. [BaSi1, BaSi2, BaSZ1]. The question was
finally resolved in full generality by Lepović et al. [LepSBZ]: using brute force
and a computer search which lasted more than a year, they showed that there
are exactly 93 connected non-regular bipartite integral graphs with maximum
degree 4.

There have been some attempts to find all the connected regular bipartite
graphs of degree 4. In such a graph, let 2k, q, h be the numbers of vertices,
quadrangles and hexagons. Considering the spectral moments s0, s2, s4, s6, we
see that the spectrum has the form

4, 3x , 2y, 1z, 02w,−1z,−2y,−3x ,−4,

where (by Theorem 3.1.1):

1+ x + y + z + w = k

16+ 9x + 4y + z = 4k

256+ 81x + 16y + z = 28k + 4q

4096+ 729x + 64y + z = 232k + 72q + 6h.

The solutions of these diophantine equations have been obtained by computer,
and some are reproduced in [CvSiS]; the largest putative graph that appears has
5040 vertices. The non-existence of graphs with some of the feasible spectra
from [CvSiS] was established in [Ste1, Ste2, SteAFD] (in [Ste2], graph angles
were used). In [CvSiS] just 65 graphs were identified; all those with at most 19
vertices have been generated by Balińska et al. [BaSZ2]. Substantial progress
was made in [SteAFD], where only 12 spectra remained unresolved for graphs
with more than 360 vertices (the largest having 560 vertices).

We now turn to small integral graphs. For 1 ≤ n ≤ 12 the number in of
connected integral graphs with n vertices is given in the following table.

n 1 2 3 4 5 6 7 8 9 10 11 12
in 1 1 1 2 3 6 7 22 24 83 113 236
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These results may be found in [BaCLS] for 1 ≤ n ≤ 10, and in [BaKSZ1,
BaKSZ2] for n = 11, 12. At the time of writing, the search for all connected
integral graphs with 13 vertices continues; to date, 547 such graphs have been
generated by a probabilistic algorithm of Balińska et al. [BaKSZ3].

From Tables A1 and A3 in the Appendix, we see that the 14 connected inte-
gral graphs with at most 6 vertices are K1, K2, K3, K4, C4, K5, 2K1 ∪ K3,
K1,4, K6, C P(3), C3+ K2, K3,3, C6 and the unique tree with degree sequence
3, 3, 1, 1, 1, 1 (the corona K2 ◦ 2K1). The 7 connected integral graphs with
7 vertices are S(K1,3), K1 � 3K2, L(K1,2 + K2), L(K3,3 − e), C3 ∪ C4,
C4 ∪ 3K1 and K7.

There are no cospectral (non-isomorphic) connected integral graphs with
fewer than 8 vertices. There is just one triplet of connected integral graphs on
8 vertices; there are three pairs on 9 vertices and ten pairs, one triplet, two
quadruplets and one quintuplet on 10 vertices. None of the graphs in these sets
is regular, and in all cases the cospectral graphs can be distingushed by angles.
We have already noted in Section 4.3 that the smallest cospectral graphs with
the same angles have 10 vertices and we find that there are no integral graphs
among the 58 pairs of such cospectral graphs.

Other results on integral graphs concern specific classes of graphs; for
example, there are many results on integral trees. One of the first is due to
Watanabe:

Theorem 8.4.2 [Wat]. The only integral tree with a perfect matching is K2.

Most of the early results on integral trees may be found in [BaCRSS], while
further results were collected by Wang [Wan1, Wan2]. Nearly all trees from
the literature have diameter at most 10; no construction of integral trees with
arbitrarily large diameter is known. Other results concern 3-partite graphs and
complete split graphs [HanMS]. Typically, the problem of integrality of graphs
is addressed by considering diophantine equations such as those mentioned
above.

We say that a graph G is L-integral (respectively, Q-integral) if all eigenval-
ues of the Laplacian (respectively, signless Laplacian) are integers. Note that
for the spectrum, L-spectrum and Q-spectrum of a regular graph, integrality
of one spectrum implies integrality of the other two. By (7.30), the graph G
is Q-integral if and only if its line graph L(G) is integral; such graphs are
investigated in [Sta] and [SimSta3].

A general observation from the literature on L-integral graphs is that
they appear to be more common than integral graphs. For example, all the
complete bipartite graphs Km,n are L-integral (and indeed Q-integral). More-
over, the class of L-integral graphs is closed with respect to the operations
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of complementation (Proposition 7.1.1), sum (Theorem 7.1.12) and join
(Exercise 8.16).

Finally we mention two interesting results proved by Merris [Mer2]. Recall
first that a graph is degree maximal if its degree sequence (d1 ≥ d2 ≥ · · · ≥ dn)

cannot be majorized by any other graphic sequence. Then we have: any degree
maximal graph is L-integral. Merris also showed that if u, v are co-duplicate
vertices of the L-integral graph G then G − uv is L-integral.

Exercises

8.1 Prove Theorem 8.1.1.
8.2 Prove Theorem 8.1.5, and also an analogue for the Q-index.
8.3 Show that a graph with maximal Q-index among the connected graphs

with a fixed number of vertices and a fixed number of edges is a threshold
graph [CvRS11].

8.4 State and prove analogues of Theorems 8.1.11 and 8.1.12 for the signless
Laplacian. [Hint: Use formula (7.30) for the first and Theorem 2.4.4 for
the second.]

8.5 Let G ′ be the graph obtained from a graph G by relocating edges st
and uv to the positions of non-edges sv and tu (‘local switching’). Let
(x1, x2, . . . , xn)

� be the principal Q-eigenvector of G. Prove that if
(xs − xu)(xv − xt ) ≥ 0 then ξ1(G ′) ≥ ξ1(G), with equality if and only if
xs = xu and xt = xv .

8.6 State and prove analogues of Theorems 8.1.14–8.1.16 for the signless
Laplacian [CarCRS].

8.7 Let G(k, l) (k ≥ 2, l ≥ 2) be the graph obtained from a non-trivial
connected graph G by attaching pendant paths of length k and l at the
same vertex v. Show that if k ≥ l ≥ 3 then ξ1(G(k, l)) > ξ1(G(k + 1,
l − 1)) [CvSi5].

8.8 Prove Theorem 8.1.22.
8.9 Use Corollary 1.3.5 to prove that

λ1(G)
r ≥ N2q+r

N2q
,

where q ≥ 0, r > 0 and Nk is the number of walks of length k in G
[Nik2].

8.10 Prove that for any graph G, λ1(G) ≥ √�(G).
8.11 Show that for each of (8.7), (8.8), equality holds if and only if G is regular

or semi-regular bipartite.
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8.12 Show that equality holds in (8.12) if and only if G is regular or semi-
regular bipartite [BerZh].

8.13 Prove Lemma 8.2.1.
8.14 With the notation of Section 8.2, suppose that Ax ≥ αx. Show that the

number of components in (〈P(x) ∪ Z(x)〉) is at most 1
2 (n − 1) when

0 ≤ α < 1, and at most 1
3 (n − 1) when 1 ≤ α < √2 [Pow2].

8.15 Prove that the invariants (1)–(6) and properties (7)–(8) of a graph G,
listed in Section 8.3, are determined by the polynomial deck of G.

8.16 Show that if G is a regular graph then PG(x) is reconstructible from
P(G).

8.17 Show that the join of two L-integral graphs is L-integral.

Notes

A survey of graph perturbations appears in [Row6], and the characteristic poly-
nomials of modified graphs are reviewed in [Row11]. The subdivision of an
edge always results in a topologically equivalent (or homeomorphic) graph,
and such graphs are discussed in [HofSm] and [SimKo]. The effect on the
Laplacian index ν1 of adding or deleting an edge is investigated in [Guo2].
Further results on the behaviour of eigenvalues under graph modifications may
be obtained by applying the analytical theory of matrix perturbations to the
adjacency matrix of G; see [CvRS2, Chapter 6].

A survey of results on the index λ1 of a graph may be found in [CvRo3], and
a survey concerning λ2 appears in [CvSi3]. Some bounds on λk are discussed in
[Hon1] and [Pow3]. For the largest eigenvalue of the Laplacian and of the sign-
less Laplacian, see [BrHS], [HonZh] and [CvRS11], [OLAH], respectively. For
connected graphs with prescribed numbers of vertices and edges, the maximal
index is investigated in [Bel1], [BruSo], [CvRo2], [SimMB], and the minimal
least eigenvalue is discussed in [BelCRS2], [BelCRS3].

Fiedler [Fie2] was the first to show that, for a connected graph, informa-
tion can be extracted from an eigenvector corresponding to the second largest
eigenvalue. Subsequent observations are due to Powers [Pow1, Pow2], and
more of his results appear in [CvRS2, Chapter 9].

Sections 8.3 and 8.4 bring up to date Sections 3.6 and 3.8 of [CvRo4].
For an introduction to polynomial reconstruction, see [Sci2]; and for a sur-
vey of integral graphs, see [BaCRSS]. The integral trees with at most 50
vertices are identified in [Bro], and the integral trees with index 3 are deter-
mined in [BroHae]. The L-integral graphs with maximal degree 3 are identified
in [Kir3], while addition of a vertex to preserve L-integrality is considered
in [Kir1].
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Applications

In this chapter we present a small selection of applications of the theory of
graph spectra. We limit ourselves to applications in physics, chemistry, com-
puter science and mathematics itself; although we devote a section to each of
these four subjects, the topics covered are not as compartmentalized as this
might suggest. The recurring themes of approximation and optimization are
found also in applications to many other scientific areas, including biology,
geography, economics and the social sciences.

9.1 Physics

We explain how the theory of graph spectra is used in treating the vibration
of a membrane and in a combinatorial enumeration problem which arises in
chemical physics.

9.1.1 Vibration of a membrane

In the approximate numerical solution of certain partial differential equations,
graphs and their spectra arise quite naturally. Consider, for example, the partial
differential equation

∂2z

∂x2
+ ∂2z

∂y2
+ λz = 0, (9.1)

that is, ∇z + λz = 0, where ∇ denotes the Laplacian operator. We seek solu-
tions z = z(x, y) subject to the boundary condition z(x, y) = 0 on a simple
closed curve � lying in the (x, y)-plane. The non-zero solutions are called
eigenfunctions, and they correspond to an infinite sequence of discrete val-
ues of λ called eigenvalues. For example, if � is the rectangle with vertices

259

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.010
https:/www.cambridge.org/core


260 Applications

(0, 0), (a, 0), (0, b), (a, b), the eigenvalues and corresponding eigenfunctions
(to within a scalar multiple) are given by

λi j = π2
(

i2

a2
+ j2

b2

)
, zi j = sin

iπ

a
x sin

jπ

b
y. (9.2)

To approximate z we consider the values only for a set of points (xi , yi )

which form a regular lattice (square, triangular or hexagonal) in the xy-plane.
The corresponding (infinite) graph has the points (xi , yi ) as vertices, with
edges joining points at minimal distance. The points (or vertices) lying in the
interior of � are called internal points (or vertices) and the other points (or ver-
tices) are called external. Let zi = z(xi , yi ). In view of the boundary condition,
we take zi = 0 for all external points.

We consider the case of a square lattice aligned with the co ordinate axes. Let
(x0, y0) be a fixed point of the lattice, let z0 = z(x0, y0), and let the values of z
at the neighbouring points (labelled 1, 2, 3, 4 in Fig. 9.1) be z1 = z(x0+h, y0),
z2 = z(x0 − h, y0), z3 = z(x0, y0 + h), z4 = z(x0, y0 − h). The value of
∂2z/∂x2 + ∂2z/∂y2 at the point (x0, y0) can, as usual, be approximated by

1

h2
(z1 + z2 + z3 + z4 − 4z0).

Equation (9.1) then becomes

(4− λh2)z0 = z1 + z2 + z3 + z4. (9.3)

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

(x0, y0)

12

3

4

Figure 9.1 Vertices of a membrane graph.
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Now we write ζ = 4 − λh2 and label the internal points 1, 2, . . . , n. In view
of (9.3) we have

ζ zi =
∑
j∼i

z j (i = 1, 2, . . . , n), (9.4)

where the summation is taken over all indices j corresponding to internal
points (x j , y j ) neighbouring (xi , yi ). (External points neighbouring (xi , yi )

are excluded since the value of z at such points is zero.) If G is the subgraph
of the lattice graph induced by the internal vertices, the equations (9.4) are just
the eigenvalue equations for G. If ζ1, . . . , ζn are the eigenvalues of G, then the
numbers

λ′i =
4− ζi

h2
(i = 1, . . . , n)

are approximate eigenvalues of Equation (9.1).
This procedure is often used in practical problems (see, for example, [Col])

to obtain approximate solutions of partial differential equations. We deal with
a vibrating membrane � held fixed along its boundary �. Its displacement
F(x, y, t) orthogonal to the (x, y)-plane at time t is given by the wave equation

∂2 F

∂t2
= c2

(
∂2 F

∂x2
+ ∂2 F

∂y2

)
, (9.5)

where c is a constant depending on the physical properties of the membrane
and of the tension under which the membrane is held. The harmonic vibrations
are given by solutions of the form F(x, y, t) = z(x, y)eiωt , where i= √−1.
If we substitute this expression in (9.5), we obtain

−ω2z(x, y) = c2
(
∂2z(x, y)

∂x2
+ ∂2z(x, y)

∂y2

)
,

and this is just Equation (9.1) with λ = ω2/c2. In this situation, G is called
the membrane graph.

Essentially the same graph G arises if, instead of a discrete approximation to
a contnuous model, we start with a discrete model. Here the membrane consists
of a set of atoms which in the equilibrium state lie at the points of a lattice, and
each atom acts on its neighbouring atoms by elastic forces. It is assumed that
all atoms have the same mass and that elastic forces are of the same intensity
for all neighbouring pairs of atoms. If zi (t) and z j (t) are displacements of
neighbouring atoms i and j at time t , the elastic force tending to reduce the
relative displacement between these atoms is

Fi j = −K
(
zi (t)− z j (t)

)
,

where K is a constant determined by the elastic properties of the membrane.
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The equation of motion of the k-th atom is

m
d2zk(t)

dt2
= −K

∑
j∼k

(
zk(t)− z j (t)

)
(9.6)

where m is the mass of an atom, and the summation is taken over the neigh-
bours of the k-th atom. For an external vertex j of the lattice graph, at which
there is no atom of the membrane, we have z j (t) = 0.

We can again consider pure harmonic oscillations and take zk(t) = zkeiωt ,
where i = √−1. If we insert this expression into (9.6) and do so for each atom
k, then we obtain the eigenvalue equations for the Laplacian matrix LG . Since
the lattice is 4-regular, the eigenvalues of LG are approximately 4 − ζi (i =
1, . . . , n).

Example 9.1.1. We consider the vibrations of a membrane whose perimeter
is the rectangle with vertices (0, 0), (a, 0), (0, b), (a, b). We take the points of
our lattice to be the points (ph, qh) (p, q ∈ ZZ ). Then G = Pm + Pn , where
m = - a

h −1. and n = - b
h −1.. From Section 2.6 we know that the eigenvalues

of G are

ζi j = 2 cos
π

m + 1
i + 2 cos

π

n + 1
j, (i = 1, 2, . . . ,m; j = 1, 2, . . . , n).

(9.7)
To within a scalar multiple, a corresponding eigenvector has coordinates

sin
π

m + 1
i p sin

π

n + 1
jq (p = 1, 2, . . . ,m; q = 1, 2, . . . , n). (9.8)

The approximate eigenvalues λ′i j of Equation (9.1) are therefore:

λ′i j =
4− ζi j

h2
= 2

h2

(
1− cos

π

m + 1
i + 1− cos

π

n + 1
j

)

= 4

h2

(
sin2 π

2(m + 1)
i + sin2 π

2(n + 1)
j

)
.

To compare λ′i j with the eigenvalue λi j of Equation (9.2), note that for
sufficiently large m and n (and fixed values of i and j) we may use the
approximation sin x ≈ x to obtain

λ′i j ≈
4

h2

(
π2i2

4(m + 1)2
+ π2 j2

4(n + 1)2

)
= π2

(
i2

((m + 1)h)2
+ j2

((n + 1)h)2

)

≈ π2
(

i2

a2
+ j2

b2

)
= λi j .

Hence λ′i j approximates λi j well if the distance h between the neighbouring
points of the lattice is small enough. We can see similarly that (9.8) gives a
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good approximation to the corresponding eigenfunction of (9.2): at the point
(x, y) = (ph, qh) we have

sin
π

m + 1
i p sin

π

n + 1
jq = sin

iπx

(m + 1)h
sin

jπy

(n + 1)h
≈ sin

iπx

a
sin

jπy

b
.

�

9.1.2 The dimer problem

The spectra of graphs, or the spectra of certain matrices which are closely
related to adjacency matrices, appear in a number of problems in statisti-
cal physics (see, for example, [Kast], [Mon], [Per]). We shall describe the
so-called dimer problem, which arises in the investigation of the thermody-
namic properties of a system of diatomic molecules (‘dimers’) adsorbed on the
surface of a crystal. The most favourable points for the adsorption of atoms
on such a surface form a two-dimensional lattice, and a dimer can occupy
two neighbouring points. It is required to count all the ways in which dimers
can be arranged on the lattice without overlapping each other, so that every
lattice point is occupied. In other words, the task is to determine the num-
ber k(m, n) of 1-factors in the graph Gm,n = Pm + Pn (Fig. 9.2). Since
k(m, n) = 0 when mn is odd, we assume without loss of generality that
n is even. When m = n the problem is equivalent to that of enumerating
the ways in which an n × n chess-board can be completely covered by 1

2 n2

dominoes.
For the enumeration of 1-factors one can make use of the permanent of a

square matrix, defined as follows. If A = (ai j ) is an n × n matrix then

per A =
∑
σ∈Sn

a1σ(1)a2σ(2) · · · anσ(n).

For properties of the permanent, see [BruRy, Chapter 7]. Note that per(A�) =
per A, and that the value of the permanent is unchanged when rows or columns
are permuted. However, the elementary row operation of adding a multiple
of one row to another row can change the value of the permanent, and this
accounts for the general computational difficulty in evaluating per A. Indeed,
the problem of computing the permanent is NP-complete (in fact, #P-complete;
see [BruRy, Chapter 7]). In Section 9.4 we discuss an efficient means of
approximating permanents of certain (0, 1)-matrices.

Given an n × n matrix A with non-negative entries, consider the weighted
bipartite graph G(A) which has n black vertices corresponding to the rows of
A, n white vertices corresponding to the columns of A, and an edge of weight
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ai j between the i-th black vertex and the j-th white vertex (i, j = 1, . . . , n).
If we define the weight w(F) of a perfect matching F to be the product of the
weights of its edges then

per A =
∑

F∈F(A)
w(F),

where F(A) is the set of all 1-factors of G(A). In particular, if A is a (0, 1)-
matrix then per A is the number of 1-factors of G(A). In the case that A is the
adjacency matrix of a bipartite graph G, say

A =
(

O B�
B O

)
,

we have per A = (per B)2, while per B is the number of 1-factors of G. Hence
we have the following:

Theorem 9.1.2. For a bipartite graph G with adjacency matrix A, we have

per A = k2,

where k is the number of 1-factors of G.

We shall now count the 1-factors in Pm + Pn using one of several possible
variants for transforming the permanent into a determinant. Let Gm,n = Pm +
Pn , and let Hm,n denote the digraph obtained from Gm,n by replacing every
edge by a corresponding pair of arcs of opposite orientation. In accordance
with Fig. 9.2, arcs may be described as horizontal or vertical. A circuit in a
digraph is a directed cycle of length ≥ 2. The following lemma, stated without
proof, can be established using arguments from [Per].

Pn

Pm

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

. . .

. . .

. . .

. . .

. . .

Figure 9.2 The graph Pm + Pn .
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Lemma 9.1.3. For every spanning collection L of circuits in Hm,n (n even)
we have

2c(L) ≡ h(L) mod 4,

where c(L) is the number of circuits in L, and h(L) is the number of horizontal
arcs in L .

Theorem 9.1.4. The number k of 1-factors in Gm,n (n even) is given by

k2 = det(Am ⊗ In + i Im ⊗ An),

where i = √−1 and As is the adjacency matrix of a path with s vertices.

Proof. From Section 2.5 we know that A(Gm,n) = Am⊗ In+ Im⊗An . Clearly,
1s from Am⊗ In correspond to vertical edges and 1s from Im⊗ An correspond
to horizontal edges of Gm,n . The matrix

A∗m,n = Am ⊗ In + i Im ⊗ An

differs from Am,n in that 1s corresponding to horizontal edges are multiplied
by i . Now

det Am,n =
∑

L

(−1)c(L),

where the summation runs over all spanning collections L of circuits in Hm,n .
Hence

det A∗m,n =
∑

L

(−1)c(L)i h(L).

By Lemma 9.1.3, we have i h(L) = (−1)c(L), and so det A∗m,n = per Am,n . The
result now follows from Theorem 9.1.2 �

Since A∗m,n(x⊗ y) = Amx⊗ y+ ix⊗ Any, the eigenvalues of A∗m,n are

2 cos
π

m + 1
j + 2i cos

π

n + 1
l ( j = 1, . . . ,m; l = 1, . . . , n),

and so

k2 =
m∏

j=1

n∏
l=1

(
2 cos

π

m + 1
j + 2i cos

π

n + 1
l

)

= 2mn
m∏

j=1

n/2∏
l=1

(
cos2 π

m + 1
j + cos2 π

n + 1
l

)
.

For n × n lattices with n = 2, 4, 6, 8 we have k = 2, 36, 6728, 12 988 816,
respectively. The last number is 24 · 9012 and this is the number of ways in
which an 8× 8 chess-board can be covered by 32 dominoes.
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In the general case, we have also (cf. [Per])

k ∼ e
mn
π

C (m →+∞, n →+∞),
where C (= 0.91596...) is Catalan’s constant.

9.2 Chemistry

One of the most important applications of the theory of graph spectra is in
chemistry, in treating unsaturated hydrocarbons by an approximating technique
called the Hückel molecular orbital theory. We first describe this technique and
then discuss the mathematical notion of graph energy which arises naturally
from the Hückel theory.

9.2.1 The Hückel molecular orbital theory

The equation of motion of a particle of mass m in a potential field of force
V = V (x, y, z) is

ih
∂ψ

∂t
= −h2

m

(
∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2

)
+ Vψ, (9.9)

where i = √−1, h is Planck’s constant and ψ is a complex-valued function
of x, y, z, t describing the state of the system. If the stationary states of the
system are �k = �k(x, y, z) with energy levels Ek then the general solution
of (9.9) is

ψ =
∑

k

ck�ke−i Ek t/h .

Here the functions �k satisfy the time-independent Schrödinger equation

Ĥ�k = Ek�k, (9.10)

where Ĥ is the Hamiltonian operator defined by

Ĥψ = −h2

m

(
∂2ψ

∂x2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2

)
+ Vψ.

The complex-value functions �k(x, y, z) are called wave functions and in the
context of molecules, they are known as molecular orbitals.

One of the basic goals of quantum chemistry is to describe the electronic
structure of a system of molecules. This requires the solution of (9.10) for
complicated molecular systems with many electrons, and various approxima-
tions are used. The Hückel theory applies to conjugated hydrocarbons, which
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9.2 Chemistry 267

we now describe. A hydrocarbon is a chemical compound composed of only
two elements – carbon (C) and hydrogen (H); there are single bonds between
a hydrogen atom and a carbon atom, while two carbon atoms may have single
or double bonds between them. We assume that in a hydrocarbon molecule all
carbon atoms have valency 4 (i.e. feature in 4 bonds) and all hydrogen atoms
have valency 1. Associated with each carbon atom are three σ -electrons local
to the atom and one π -electron. If a function�k satisfying (9.10) is normalized
so that

∫ ∫ ∫ |�k(x, y, z)|2dx dy dz = 1 then |�k(x, y, z)|2 is a probability
distribution for π -electrons in the molecule.

In a conjugated hydrocarbon, each carbon atom features in exactly one dou-
ble bond and two single bonds. The corresponding Hückel graph [GuPo] (or
carbon skeleton) has the carbon atoms as its vertices, with an edge between
atoms precisely when there is a single or double bond between them. Figure 9.3
shows the molecular structure of Styrene and the associated Hückel graph.

The Hückel theory assumes that the energy of electrons is determined simply
by the adjacencies in the Hückel graph. Then (9.10) can be expressed in matrix
form

Hw = λw, H = α I + βA, (9.11)

where α, β are constants and A is the adjacency matrix of the Hückel graph.
(The parameters α and β are called the Coulomb integral and the resonance
integral.) If λ1, . . . , λn are the eigenvalues of A, then the eigenvalues of H are

ε j = α + βλ j ( j = 1, . . . , n),

and ε j is a measure of π -electron energy in the j-th quantum state. Let
Hw j = ε j w j ( j = 1, . . . , n), where ε1 ≥ · · · ≥ εn . The eigenvec-
tors w1, . . . ,wn are taken as discrete approximations to molecular orbitals
�1, . . . , �n . It is assumed that n is even and that each of �1, . . . , �n/2

H

H H

H

H

HHH
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C

C
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Figure 9.3 The Styrene molecule and its Hückel graph.
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determines the distribution of two π -electrons (an assumption supported by
Pauli’s Principle, which implies that at most two π -electrons are associated
with any orbital). Accordingly the total π -electron energy is calculated as

ε = 2

n
2∑

j=1

ε j = 2

n
2∑

j=1

(α + βλ j ) = nα + 2β

n
2∑

j=1

λ j ,

where λ1 ≥ · · · ≥ λn . The significant part of this expression is the sum

2
∑ n

2
j=1 λ j , which we denote by E . Since

∑n
j=1 λ j = 0, we have the following

important observation:

Remark 9.2.1. If λn/2 ≥ 0 ≥ λn/2+1, then E =
n∑

j=1

|λ j |. �

By Theorem 3.2.3 the hypotheses of Remark 9.2.1 are satisfied when the
molecular multigraph, and hence also the Hückel graph G, is bipartite. (Then
our conjugated hydrocarbon is said to be alternant.) In this situation, the spec-
trum of G is symmetric about 0 and the eigenspaces EH (α + βλ) = EA(λ),
EH (α − βλ) = EA(−λ) are paired in the following sense (see Exercise 1.6):
with appropriate labelling,(

x
y

)
∈ EA(λ)⇐⇒

(
x
−y

)
∈ EA(−λ). (9.12)

In quantum chemistry the corresponding pairing of molecular orbitals is known
as the ‘Pairing Theorem’.

We shall explain the role of graph angles (cf. [Cve11]). As usual, we take
the distinct eigenvalues of G to be μ1, . . . , μm in decreasing order. Let xi =
(xi1, . . . , xin)

� (i = 1, . . . , n) be orthonormal eigenvectors of G, and define
Mp = { j : Ax j = μpx j }. By Equation (1.4), the angles αpq satisfy

α2
pq =

∑
j∈Mp

x2
jq (p = 1, . . . ,m).

In general, the π -electron charges are the numbers c2
q =

n∑
j=1

g j x2
jq (q =

1, . . . , n), where g j is the number of electrons ascribed to the j-th orbital. We
can write

c2
q =

m∑
p=1

∑
j∈Mp

g j x2
jq =

m∑
p=1

c2
pq

where c2
pq =

∑
j∈Mp

g j x2
jq . We call the numbers c2

pq partial electron charges.
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In our situation, we have g j = 2 for j ≤ n/2 and g j = 0 for j > n/2.
Moreover, it follows from (9.12) that if λ j = −λi then x2

iq = x2
jq (q =

1, . . . , n). Now, using also Propositon 1.3.3, we have

c2
q =

n/2∑
j=1

g j x2
jq = 2

n/2∑
j=1

x2
jq =

n∑
j=1

x2
jq =

m∑
p=1

α2
pq = 1.

This is a result of Coulson and Rushbrooke [CouRu] from 1940. Although this
result is of great importance in chemistry, electron charges in bipartite graphs
are of little mathematical interest since, unlike partial electron charges, they do
not provide any structural information.

For stable molecules, 0 is not an eigenvalue of G, and so m is even.
In this situation, the connection between partial charges and angles is
given by

c2
pq =

∑
j∈Mp

2x2
jq = 2α2

pq (p = 1, . . . ,m/2; q = 1, . . . , n).

Since paired eigenvalues have the same angle sequence, knowledge of par-
tial charges is equivalent to the knowledge of graph angles. The relation
between graph structure and graph angles has been explored in Chapters 1–4.
For example, Equation (2.21) tells us that the number of q-q walks in G of
length s is

∑m
p=1 α

2
pqμ

s
p. Taking s = 2, we see that the degree of vertex q is

given by

dq =
m/2∑
p=1

c2
pqμ

2
p.

In chemical terms, the partial π -electron charges for an atom and π -electron
energy levels determine the number of neighbouring carbon atoms. We can also
determine the number of quadrangles in the Hückel graph (Theorem 3.1.5), the
characteristic polynomials of vertex-deleted subgraphs (Proposition 2.2.6) and
other graph invariants. However, beyond the class of bipartite graphs under
consideration, partial charges appear less important from a mathematical point
of view.

9.2.2 Graph energy

Let G be a graph with n vertices and m edges (m > 0). The energy EG of G is
defined by

EG =
n∑

j=1

|λ j |,
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where λ1, λ2, . . . , λn are the eigenvalues of G. The energy of a graph was
defined by Gutman [Gut3] and has attracted much attention from researchers
in the last few years. We have seen in the previous subsection that in some
cases the energy defined in this way corresponds to the energy of a molecule
(cf. Remark 9.2.1). However, EG can be studied for any graph G independently
of the chemical context.

Since
∑n

j=1 λ
2
j = 2m, we have (e.g. by the Cauchy–Schwarz inequality):

Proposition 9.2.2 [McC]. For a graph G with n vertices and m edges,
EG ≤

√
2mn.

Numerous relations are known for EG , and we mention two without proof
(see [Gut1] and [Cou]). If G has adjacency matrix A then

2m − n(det A)2/n ≤ 2mn − E2
G ≤ (n − 1)

(
2m − n(det A)2/n

)
,

and if G has characteristic polynomial PG(x) then (with i = √−1):

EG = 1

π

∫ +∞

−∞
t−2 log

∣∣∣∣tn PG

(
i

t

)∣∣∣∣ dt.

It is known that for n ≤ 7, the graphs with maximal energy are the
complete graphs Kn , n = 1, 2, . . . , 7. The maximal values of energy for
graphs with n vertices have been determined heuristically by the system Auto-
GraphiX [CapCGH, CvGr] for n ≤ 12. The graph with maximal energy among
10-vertex graphs is L(K5). The n-vertex graphs with maximal energy, for an
infinite sequence of values of n, are determined in [KooMo1]; like L(K5),
these graphs are strongly regular, and the smallest such graph is the Clebsch
graph (Example 1.2.4). Indeed it is proved in [KooMo1] that for a graph G on
n vertices,

EG ≤ n

2
(1+√n),

with equality if and only if G is a strongly regular graph with parameters(
n, 1

2 n +
√

1
4 n, 1

4 n +
√

1
4 n, 1

4 n +
√

1
4 n

)
. Such strongly regular graphs exist

for n = 4τ 2 with τ = 2m (m ∈ IN ). By Theorem 3.6.5, the distinct eigenval-
ues of such a graph are τ(2τ + 1),±τ . The conjecture that, for any ε > 0, for
almost all n there exists a graph G on n vertices such that

EG ≥ (1− ε)n

2
(1+√n)

has been confirmed in a slightly improved form in [Nik3]. These results
suggest that graphs with maximal energy have a small number of distinct
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eigenvalues, but there are significant exceptions which seem to make the
maximal energy problem very difficult.

In what follows, we use a calculus approach to search for graphs with max-
imal energy in the class Gm,n of graphs with n vertices and m edges (m > 0).
Although our procedure provides a good heuristic, it is limited by the fact
that the maximum value of the continuous variable under consideration is not
necessarily attained in a graph.

We define

I = {1, . . . , n}, I+ = {i ∈ I : λi ≥ 0}, I− = {i ∈ I : λi < 0}.
Since m > 0, both I+ and I− are non-empty. Moreover the energy can be
represented in the form

E =
∑
i∈I+

λi −
∑
i∈I−

λi ,

while the eigenvalues satisfy the relations∑
i∈I

λi = 0,
∑
i∈I

λ2
i = 2m. (9.13)

We consider an auxiliary function of x1, . . . , xn involving these constraints:

F =
∑
i∈I+

xi −
∑
i∈I−

xi + α
∑
i∈I

xi + β
(∑

i∈I

x2
i − 2m

)
,

where α, β are Lagrange multipliers. The extremal values of the function E
satisfying (9.13) are found from:

∂F

∂x j
= ±1+ α + 2βx j = 0 ( j ∈ I ).

Here the first term in the sum is equal to +1 if j ∈ I+ and is equal to −1 if
j ∈ I−. We obtain

λ j = −α ∓ 1

2β
( j ∈ I ).

Now a graph has just two distinct eigenvalues if and only if it has the form
cKt (c ∈ IN ), and the maximal value of E is attained when n = ct and
m = 1

2 ct (t − 1). If m and n are not of this form then a graph in Gm,n with
maximal energy has at least three distinct eigenvalues. In this situation, we can
extend our procedure if we assume that some of the eigenvalues are prescribed,
say the eigenvalues λi (i ∈ K ). Let H be the set of graphs in Gm,n whose
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spectrum includes these eigenvalues. We write J = I \ K and extend our
notation so that

E =
∑
i∈J+

λi −
∑
i∈J−

λi +
∑

i∈K+
λi −

∑
i∈K−

λi

and ∑
i∈J

λi +
∑
i∈K

λi = 0,
∑
i∈J

λ2
i +

∑
i∈K

λ2
i = 2m.

Let

C+ =
∑

i∈K+
λi , C− =

∑
i∈K−

λi , C =
∑
i∈K

λi , D =
∑
i∈K

λ2
i .

We can write

F =
∑
i∈J+

xi−
∑
i∈J−

xi+C+−C−+α
(∑

i∈J

xi + C

)
+β

(∑
i∈J

x2
i + D − 2m

)
.

As before, the equations ∂F
∂x j
= 0 ( j ∈ J ) yield

λ j = −α ∓ 1

2β
( j ∈ J ).

Assuming that both sets J+ and J− are non-empty, we conclude that the
unknown eigenvalues take just two values (ξ, η say) in a graph with extremal
energy. (If J+ or J− is empty, our approach does not give a solution.) The
multiplicities p, q of ξ, η are such that p + q = |J | = n − |K |, and we
may formulate a Lagrange multiplier problem for each possible pair (p, q). In
this way we obtain |J | − 1 problems, one for each situation (|J+|, |J−|) =
(i, |J | − i) (i = 1, . . . , |J | − 1). For a given distribution of unknown positive
and negative eigenvalues, the solution of the corresponding Lagrange multi-
plier problem yields an upper bound on the maximal energy of graphs in Gm,n

with a corresponding distribution of eigenvalues. If we take the maximal value
of E over all such solutions, and that energy value is realized by a graph,
then we know we have a maximal energy graph in Gm,n . We denote by L this
procedure for extending a partial spectrum and maximizing E . Now we have:

Theorem 9.2.3 [CvGr]. let K be a family of real numbers, let G be a graph
with maximal energy in Gm,n, and suppose that the spectrum of G has all ele-
ments of K as eigenvalues. Let S(K) be the spectrum obtained from K by the
procedure L. Then every graph with spectrum S(K) is a graph in Gm,n with
maximal energy.
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An analagous result holds for minimal energy graphs. In practice, it is often
convenient to avoid explicit use of the procedure L by exploiting the fact that
there are just two distinct unknown eigenvalues. Indeed, in view of (9.13) we
have (in the notation above):

p + q = |J |, pξ + qη = −C, pξ2 + qη2 = 2m − D, (9.14)

where, without loss of generality, p ≤ q . For each solution p, q, ξ, η of (9.14)
with p ≤ q, we calculate E = p|ξ | + q|η| + C+ − C−, and then ask whether
there exists a graph with spectrum K ∪ {ξ p, ηq} when p, q, ξ, η determine the
maximum (or minimum) value of E .

Example 9.2.4 [CvGr]. To investigate the graphs with maximal energy among
the r -regular graphs with n vertices, we take m = 1

2rn and K = {r}. Note that
if E is maximized for values p, q, ξ, η that are attained in a graph G then G
is strongly regular by Theorems 3.2.1 and 3.6.4. For example, when n = 16
and r = 10 we have m = 80, C = 10, D = 100, and there are 14 solutions
of (9.14) with p ≤ q . We find that the largest value of E is 40, which arises
when p = 5, q = 10, ξ = 2 and η = −2. The corresponding spectrum arises
only in the Clebsch graph (cf. Theorem 5.2.8). We conclude that the Clebsch
graph has maximal energy among the 10-regular graphs on 16 vertices. We do
not obtain the graph(s) with minimal energy because the least value of E arises
for values of p, q, ξ, η that are not attained in a graph (e.g. because 1

6

∑
i λ

3
i is

not an integer). �

9.3 Computer science

We have already noted in Chapter 7 how graph spectra determine expansion
properties of a communication network, and we shall see in Section 9.4 how
graph spectra are related to the complexity of certain mathematical problems.
In the last decade there has been growing recognition that graph spectra have
further important applications in computer science, for example in internet
technologies, pattern recognition and computer vision. Here we describe an
elementary application in so-called interconnection topologies for multipro-
cessors, and a connection between generalized line graphs and the security of
statistical databases.

9.3.1 Load balancing

Let G be a connected graph with n vertices and Laplacian matrix L . Let
ζ1, . . . , ζm be the distinct eigenvalues of L; we take ζm = 0 but we
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do not assume any ordering of the positive eigenvalues ζ1, . . . , ζm−1. We
define

fk(x) =
k∏

i=1

(
1− x

ζi

)
(k = 1, . . . ,m − 1).

Then for any vector x ∈ IRn , we have

fk(L)x ∈ EL(ζk+1)⊕ · · · ⊕ EL(ζm) (k = 1, . . . ,m − 1). (9.15)

Since Lj = 0, we also have

j�x = j� fk(L)x (k = 1, . . . ,m − 1). (9.16)

These simple mathematical facts have an interesting application in the
design of multiprocessor computer networks. Such a network is modelled by
a graph G in which vertices denote processors and edges represent direct
communication links between processors. A job which is to be executed is
divided into elementary tasks assigned to particular processors. With the nota-
tion above, we take x = (x1, . . . , xn)

�, where xi is the number of tasks initially
allocated to the i-th processor. The idea of load balancing is to reallocate the
tasks in m− 1 steps to obtain a uniform distribution among the processors. We
define

x(0) = x, x(k) =
(

I − 1

ζk
L

)
x(k−1) (k = 1, . . . ,m − 1).

Thus x(k) = fk(L)x (k = 1, . . . ,m − 1). If x(k) = (x (k)1 , . . . , x (k)n )� then

x (k)i = x (k−1)
i − 1

ζk

∑
j∼i

(xi − x j ) (k = 1, . . . ,m − 1). (9.17)

Thus at the k-th step, the net flow of tasks from a processor i to a neighbour-
ing processor j is 1

ζk
(x (k−1)

i − x (k−1)
j ), the direction of flow determined by

sign. By (9.16) (or (9.17)), the total number of tasks is unchanged. By (9.15),
x(m−1) ∈ EL(ζm), and since EL(ζm) is spanned by j, the tasks are indeed uni-
formly distributed after m − 1 steps. In practice, the numbers x (k)i should be
integers; more importantly, the whole process is feasible only if, for some
ordering of ζ1, . . . , ζm−1, all x (k)i are non-negative. Nevertheless, this use of
the Laplacian underpins an optimal scheme for load balancing described in
[ElKM]. Complexity considerations show that efficiency depends essentially
on the parameter m�, where m is the number of distinct eigenvalues of L and
� is the maximum degree of G. The hypercubes Qk are used in [ElKM] to con-
struct an infinite family of graphs G(n) (n > 2) such that G(n) has n vertices,
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O(log2 n) distinct eigenvalues and maximum degree at most 3 log n+o(log n).
For further details the reader is referred to [DieFM] and [ElKM].

9.3.2 A problem in the security of statistical databases

We saw in Section 5.5 how certain subgraphs can be used to construct a basis
for the eigenspace of −2 in generalized line graphs. Here we explain how
essentially the same result emerged independently in the context of database
security. We may think of a database as an array in which rows (or records)
are indexed by individuals (say, the employees of a company) and columns are
indexed by attributes (such as salary, gender and address). To fix ideas, suppose
that individual salaries are treated as confidential, and that in accessing salary
data, users of the database are restricted to types of queries such as the sum,
average, maximum and minimum salary over a set of individuals. This set is
called the query set, and is specified in terms of attributes; for example, the
average salary of female employees might be requested. It is clear that in some
circumstances, individual data can be extracted from statistical data obtained
in this way. For example, the salary of a sole male employee can be calcu-
lated from the average salary of female employees, the average salary of all
employees and the number of employees of each gender. The general problem
is to identify sequences of query sets which do not allow confidential data to
be revealed. Such a sequence is said to be compromise-free, and a database is
secure if queries are restricted to compromise-free sequences. In practice there
is a trade-off between the number of query types and the proportion of possible
sequences that are compromise-free.

Several security mechanisms are described in the literature, but most of them
are either insecure or overly restrictive. One exception is the so-called ‘Audit
Expert’ first proposed in [ChOz] to deal principally with sums of quantifiable
attributes. The database security system keeps track of all previously answered
queries and each new query is answered only if the database remains secure.
For a mathematical formulation of Audit Expert, consider a database consisting
of n records. An answered request for a sum can be thought of as a linear
equation

β1x1 + β2x2 + · · · + βn xn = r

where βi = 1 if i is in the query set and βi = 0 otherwise; xi is the value of
the confidential attribute of the i-th individual, and r is the answer to the query.
Then a sequence of k answered queries can be viewed as a system of k linear
equations in n variables:

Qx = r

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.010
https:/www.cambridge.org/core


276 Applications

where Q = (βi j ), x = (x1, x2, . . . , xn)
� and r = (r1, r2, . . . , rk)

�. The
matrix Q is called the query matrix, and Q is said to be compromise-free
if and only if the corresponding sequence of query sets is compromise-free.
As observed in [ChOz], Q is compromise-free if and only if for each i ∈
{1, 2, . . . , n}, there exists a vector v = (v1, v2, . . . , vn)

� with vi 
= 0 such that
Qv = 0.

Now consider the case in which each individual features in at most two
queries; then Q is said to be restricted. In this situation, Q is the incidence
matrix of a graph G[Q], possibly with multiple edges, where queries corre-
spond to vertices and individuals correspond to edges. To cater for the situation
in which an individual features in only one query, we allow semi-edges in our
graph (cf. Fig. 9.4); semi-edges correspond to columns of Q having exactly
one non-zero entry. Thus G[Q] is obtained from a B-graph Ĥ by replacing
petals with semi-edges and then repeating edges if necessary. We modify the
definition of an odd dumbbell in G[Q] accordingly, replacing ‘petal’ with
‘semi-edge’. Note also that in G[Q] an even cycle may be a 2-cycle. Now
recall that if Ĥ has incidence matrix C then the eigenvectors of L(Ĥ) corre-
sponding to −2 are the non-zero vectors x such that Cx = 0 (see Section 1.2).
Moreover, a basis of EL(Ĥ)(−2) can be constructed from odd dumbbells and
even cycles (see Section 5.5), and in this situation, the non-zero entries of a
vector x are the weights shown in Fig. 5.7. In the case of G[Q], where an
odd dumbbell may have a semi-edge, and an even cycle may be a 2-cycle, a
non-zero vector x such that Qx = 0 is constructed as illustrated in Fig. 9.4.
In the example shown, we assign the weight of −2 to a semi-edge instead of
assigning weights of −1 to each edge of a petal.

With the interpretations above, we may now apply Corollary 5.5.9 to obtain
the following result.

Theorem 9.3.4 [Bra, BraMS]. The restricted query matrix Q is compromise-
free if and only if each edge of the graph G[Q] is contained in an even cycle
or an odd dumbbell.
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Figure 9.4 Constructing vectors from G[Q].
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9.4 Mathematics

There are many interactions between the theory of graph spectra and other
branches of mathematics. Here we illustrate one application in combinato-
rial optimization and another in combinatorial enumeration. In both cases, the
complexity considerations demonstrate the relevance to computer science.

9.4.1 The travelling salesperson problem

A salesperson wishes to pay one visit to each city on a given list, starting
and finishing at the same city; the problem is to minimize the cost of travel
(in time or money). The travelling salesperson problem (TSP) is therefore a
combinatorial optimization problem for a weighted complete digraph D, where
the weight di j of arc i j measures the cost of travelling from i to j . Here we
discuss only the symmetric travelling salesperson problem (STSP), where it is
assumed that di j = d ji for all i, j . Then the problem is to find a Hamiltonian
cycle of least weight in a weighted complete graph. Since weights can be made
arbitrarily large, the problem embraces that of determining whether a given
graph is Hamiltonian.

The travelling salesperson problem is one of the best-known NP-hard com-
binatorial optimization problems, and there is an extensive literature on both
its theoretical and practical aspects. The most important theoretical results
on TSP can be found in [LawLRS] (see also [CoCPS], [CvDM]). Many
algorithms and heuristics for TSP have been proposed, and for a review we
refer the reader to Laporte [Lap]. We shall mention here only one approach,
which applies semi-definite programming (SDP) to the problem of minimiz-
ing the weight of a Hamiltonian cycle. An upper bound for the least weight
is obtained by relaxing the STSP and exploiting a property of algebraic con-
nectivity (cf. [CvCK1, CvCK2]). The method can be used in an algorithm of
branch-and-bound type as first proposed by Christofides [Chr].

The crucial observation is the following, where hn = 2 − 2 cos(2π/n), the
algebraic connectivity of an n-cycle.

Theorem 9.4.1. Let G be a graph with n vertices, and let H be a 2-regular
spanning subgraph of G with Laplacian matrix L H . Let X = L H + α J − β I ,
where α and β are real parameters such that α > hn/n, 0 < β ≤ hn. Then H
is a Hamiltonian cycle in G if and only if the matrix X is positive semi-definite.

Proof. Let ν1 ≥ ν2 ≥ · · · ≥ νn = 0 be the eigenvalues of L H and let
x1, x2, . . . , xn be corresponding eigenvectors which are pairwise orthogonal,
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with xn = j. Then x1, x2, . . . , xn are linearly independent eigenvectors of
X with corresponding eigenvalues ν1 − β, ν2 − β, . . ., νn−1 − β, nα − β.
Since H is a union of disjoint cycles, either H is a Hamiltonian cycle (with
νn−1 = hn) or H is disconnected (with νn−1 = 0). In either case, νn−1 − β is
the smallest eigenvalue because nα > hn ≥ νn−1.

If H is a Hamiltionian cycle then νn−1 − β = hn − β ≥ 0 and X is semi-
definite. Conversely, if X is semi-definite then νn−1 ≥ β > 0 and so H is
connected by Theorem 7.1.2; therefore H is a Hamiltonian cycle. �

It follows from Theorem 9.4.1 that a spanning subgraph H of G is a
Hamiltonian cycle if and only if its Laplacian L H = (li j ) satisfies the
following conditions:

lii = 2 (i = 1, . . . , n), (9.18)

L H + α J − β I ≥ 0 when α > hn/n and 0 < β ≤ hn . (9.19)

If we introduce the matrix X = (xi j ) = L H + α J − β I , we can define a
discrete SDP model of STSP as follows:

minimize F(X) =
n∑

i=1

n∑
j=1

(
−1

2
di j

)
xi j + α

2

n∑
i=1

n∑
j=1

di j (9.20)

subject to

xii = 2+ α − β (i = 1, . . . , n), (9.21)

n∑
j=1

xi j = nα − β, (i = 1, . . . , n), (9.22)

xi j ∈ {α − 1, α} ( j = 1, . . . , n : i < j), (9.23)

X ≥ 0. (9.24)

Here X ≥ 0 means that the matrix X is symmetric and positive semi-definite,
while α and β are chosen as in Theorem 9.4.1. The matrix L = X + β I − α J
represents the Laplacian of a Hamiltonian cycle if and only if X satisfies
(9.21)–(9.24). Indeed, the constraints (9.21)–(9.23) ensure that L has the form
of a Laplacian with diagonal entries equal to 2, while condition (9.24) guaran-
tees that L corresponds to a Hamiltonian cycle. Therefore, if X∗ is an optimal
solution of problem (9.20)–(9.24) then L∗ = X∗ + β I − α J is the Laplacian
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(l∗i j ) of an optimal Hamiltonian cycle of G with the objective function
value

n∑
i=1

n∑
j=1

(
−1

2
di j

)
l∗i j = F(X∗).

A natural semi-definite relaxation of the travelling salesperson problem is
obtained when the discrete condition (9.23) is replaced by inequalities:

minimize F(X) (9.25)

subject to
xii = 2+ α − β (i = 1, . . . , n), (9.26)

n∑
j=1

xi j = nα − β (i = 1, . . . , n), (9.27)

α − 1 ≤ xi j ≤ α (i, j = 1, . . . , n; i < j), (9.28)

X ≥ 0. (9.29)

It is easy to see that the relaxation (9.25)–(9.29) can be expressed in the
standard form of an SDP problem. Indeed, the constraint (9.26) can be written
as Ai · X = 2 + α − β, where Ai · X denotes the Frobenius inner product
j�(Ai ◦ X)j, and Ai is a symmetric n × n matrix with 1 at position (i, i) and
all other entries equal to 0. Similarly, condition (9.27) is equivalent to Bi · X =
2(nα − β), where Bi has 2 at position (i, i), all remaining elements of the
i-th row and the i-th column are equal to 1, and all the other entries are zero.
Finally, condition (9.28) can be expressed as 2(α − 1) ≤ Ci j · X ≤ 2α, where
Ci j has 1 at the positions (i, j) and ( j, i) and zero elewhere. Since the SDP
problem (9.25)–(9.29) depends on parameters α and β it represents a class of
semi-definite relaxations of the STSP.

The SDP model (9.25)–(9.29) has an equivalent formulation in terms of
Laplacians as follows, where L is a symmetric matrix (li j ) with second
smallest eigenvalue νn−1(L).

minimize �(L) =
n∑

i=1

n∑
j=1

(
−1

2
di j

)
li j (9.30)

subject to
lii = 2 (i = 1, . . . , n), (9.31)
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n∑
j=1

li j = 0 (i = 1, . . . , n), (9.32)

−1 ≤ li j ≤ 0 (i, j = 1, . . . , n; i < j), (9.33)

νn−1(L) ≥ β. (9.34)

This continuous SDP model (9.30)–(9.34) yields a solution in polyno-
mial time, and provides a good approximation to an optimum solution for
the STSP.

9.4.2 Markov chains

Consider an infinite sequence X0, X1, X2, . . . of random variables in a time-
homogeneous Markov chain on a finite state space {1, . . . , n} with transition
matrix (pi j ). Thus pi j = Pr(Xt+1 = j |Xt = i), independent of time t .

Moreover, Pj = j and Ps = (p(s)i j ), where p(s)i j = Pr(Xt+s = j |Xt = i).

The distribution of Xt is given by the vector p(t) = (p(t)1 , . . . , p(t)n )
�, where

p(t)i = Pr(Xt = i) (i = 1, . . . , n).
The chain is ergodic if there exists a distribution p = (p1, . . . , pn)

�
such that

lim
s→∞ p(s)i j = p j > 0 for all i, j ∈ {1, . . . , n},

equivalently the chain is irreducible (any state can be reached from any other)
and aperiodic (gcd{s : p(s)i j > 0} = 1). In this situation, p(t) → p as t → ∞
whatever the initial state p(0). The distribution p is stationary since p�P = p�;
indeed, p is the unique vector such that p�P = p� and p�j = 1. The chain is
time-reversible if

pi j pi = p ji p j for all i, j ∈ {1, . . . , n}.
To investigate the convergence of p(t) to p we define the relative pointwise
distance after t steps by:

�(t) = max
i, j

|p(t)i j − p j |
p j

.

Theorem 9.4.2 [SinJe]. Let P be the transition matrix of a time-reversible
ergodic Markov chain, with eigenvalues 1 = ρ1 > ρ2 ≥ · · · ≥ ρn. If the
probabilities in the stationary state are p1, . . . , pn then
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�(t) ≤ ρt/pmin,

where ρ = max{|ρ2|, . . . , |ρn|} and pmin = min{p1, . . . , pn}.

Proof. Let D = diag(p1, . . . , pn) and Q = D
1
2 P− 1

2 . Since our chain is
time-reversible, Q is symmetric. Let x1, . . . , xn be orthonormal eigenvectors

of Q such that Qxi = ρi xi (i = 1, . . . , n) and x�1 = p�D− 1
2 . The spectral

decomposition of Q may be written

Q =
n∑

i=1

ρi xi x�i ,

and so we have

Pt = D−
1
2 Qt D

1
2 =

n∑
i=1

ρt
i (D

− 1
2 xi )(D

1
2 xi )

�

= jp� +
n∑

i=2

ρt
i (D

− 1
2 xi )(D

1
2 xi )

�.

It follows that if xi = (xi1, . . . , xin)
� (i = 2, . . . , n) then

p(t)jk = pk +
√

pk

p j

n∑
i=2

ρt
i xi j xik .

Using the Cauchy–Schwarz inequality, we deduce that

�(t) = max
j,k

|∑n
i=2 ρ

t
i xi j xik |√

p j pk
≤ ρt

∑n
i=2 |xi j ||xik |

pmin
≤ ρt

pmin
.

�

To specify the number of steps required to ensure that p(t) is close to p, we
define τ : IR+ → IN by:

τ(ε) = min{t ∈ IN : �(t ′) ≤ ε for all t ′ ≥ t}.

Corollary 9.4.3. With the above notation, τ(ε) ≤ (ln p−1
min + ln ε−1)/(1− ρ).

Proof. If ρs/pmin = ε then s = − ln(pminε)/ ln ρ−1 ≤ (ln p−1
min + ln ε−1)

/(1− ρ). �

In practice, we may usually replace P with 1
2 (I+P) because P and 1

2 (I+P)
have the same stationary distribution. Since the eigenvalues of 1

2 (I + P) are
non-negative, we shall now assume that ρn ≥ 0, so that ρ = ρ2.
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Let H be the undirected weighted graph (in general with loops) having adja-
cency matrix A = D P , i.e. (ai j ) = (pi j pi ) (cf. Remark 7.7.1). By analogy
with (7.18) the conductance of H is defined by

�(H) = min

{∑
i∈S, j 
∈S ai j∑

i∈S pi
: 0 <

∑
i∈S

pi <
1
2

}
.

Note that if P is replaced with 1
2 (I + P) then the conductance of H is halved.

Now let ν̃1 ≥ · · · ≥ ν̃n be the eigenvalues of the normalized Lapla-

cian D− 1
2 (D − A)D− 1

2 (= I − D
1
2 P D− 1

2 ). As in Theorem 7.7.5, we have
(cf. [SinJe, Lemma 3.3]):

2�(H) ≥ ν̃n−1 ≥ 1

2
�(H)2.

Since ρ = ρ2 = 1− ν̃n−1, it follows from Corollary 9.4.3 that

τ(ε) ≤ 2

�(H)2
(ln p−1

min + ln ε−1). (9.35)

In the mathematical modelling of a physical system, we often have a very
large state space, consisting of configurations of the system, and we want a
sample of the space distributed according to p. Here we are interested in the
situation where the states can be identified with combinatorial structures. We
can simulate the Markov chain from an initial state if the probabilities pi j are
computable locally, that is, if we can calculate pi j for any given states i and
j . If p is uniform, i.e. p = 1

n j, we can then obtain an approximation to the
number n of structures. For 0 < ε < 1 , an approximation of 1

n to within a

ratio of 1 + ε is guaranteed after at least τ
(

1
2 ε
)

steps, since for t ≥ τ
(

1
2 ε
)

we have

(1+ ε)−1 < 1− 1
2ε ≤

p(t)i j

( 1
n )

≤ 1+ 1
2ε < 1+ ε.

Example 9.4.4. We describe how the above technique is applied in [JeSi] to
approximate the number m(G) of perfect matchings in a dense bipartite graph
G: such a graph has 2k vertices, with colour classes of size k and minimum
degree δ(G) ≥ 1

2 k. We have seen in Subsection 9.1.2 that the problem of
determining m(G) is NP-hard, and equivalent to calculating the permanent of
a (0, 1)-matrix.

Let Mr (G) denote the set of matchings of size r in G. We take as state
space the set N = Mk(G) ∪Mk−1(G), and specify transitions as follows.
For any M ∈ N , choose an edge e = uv ∈ E(G) uniformly at random and
move to state M ′, where
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(i) if M ∈Mk(G) and e ∈ M then M ′ = M − e,
(ii) if M ∈Mk−1(G) and u, v are not matched in M then M ′ = M + e,

(iii) if M ∈ Mk−1(G), u is matched to w in M and v is not matched in M ,
then M ′ = (M − uw) + e; and if M ∈ Mk−1(G), v is matched to w in
M and u is not matched in M , then M ′ = (M − vw)+ e,

(iv) otherwise, M ′ = M .

Note that these transitions determine a time-reversible ergodic Markov
chain. For the reasons explained above, we replace the transition matrix
P = (pi j ) with 1

2 (I + P). A major result of [JeSi] asserts that the under-

lying graph H has conductance �(H) ≥ 1/12k6. Since also p−1
min = n ≤ 2k2

,
it follows from (9.35) that τ( 1

2ε) is bounded above by a polynomial function
fε(k). (In these circumstances the Markov chain is said to be rapidly mixing.)
One perfect matching in G can be found in polynomial time, and taken as
an initial state; moreover the pi j are locally computable in polynomial time.
Accordingly a simulation of the Markov chain yields an approximately uni-
form distribution in polynomial time. This distribution provides estimates for
|Mk(G)| + |Mk−1(G)|, |Mk(G)|/|Mk−1(G)| and hence also for |Mk(G)|.
Further details may be found in [JeSi]. �

Notes

The motivation for founding the theory of graph spectra came from appli-
cations in chemistry and physics. The paper [Huc] is considered to be
the first paper where graph spectra appear, though in an implicit form.
The first mathematical paper on graph spectra [ColSi] was motivated
by the membrane vibration problem and similar problems concerning oscil-
lations (see [Col],[Kac], [Rut]). More details on Hückel’s molecular orbital
theory may be found in the books [Bal], [CouLM], [Dia], [GrGT], [Gut7],
[GuTr], [Tri].

The dimer problem is not the only problem that can be reduced to the enu-
meration of 1-factors. Others include the famous Ising problem that arises in
the theory of ferromagnetism; see, for example, the books [Kast] and [Mon].
These texts include a discussion of the enumeration of walks of various kinds
in a lattice graph.

For the construction of a matrix A∗ from a matrix A such that per A =
det A∗, see [BruRy, Section 7.5]. A treatment of permanents and determi-
nants using digraphs can be found in [BruCv]. Various means of calculating
the number of 1-factors in P2m + P2n are described in [Per].
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Our technique for finding graphs with maximal energy in Gm,n was used
in [Gut4] to obtain an alternative proof of Proposition 9.2.2. The problem of
finding graphs with minimal energy appears to be easier, and there are sev-
eral recent results in this direction; see, for example, [Yan] and [Hua]. The
paper [Gut2] is a seminal article on graphs with extremal energy. The survey
papers [Gut5] and [Gut6] on graph energy are written for mathematicians and
chemists respectively.

Doob’s original description [Doo7] of the eigenspace of −2 for line graphs,
in terms of even cycles and odd dumbbells, appeared in 1973. For general-
ized line graphs, a description of E(−2) in terms of chain groups was given
by Cvetković, Doob and Simić [CvDS2] in 1981. In 1996, with their observa-
tions on even cycles and odd dumbbells in the context of database security,
Branković, Miller and Širáň [BraMS] implicitly shed further light on the
extension of Doob’s description to generalized line graphs. This was achieved
independently by Cvetković, Rowlinson and Simić in a paper [CvRS4] submit-
ted in 1998, in the context of graph foundations. The link between [BraMS] and
[CvRS4] was noted in [BraCv]. A refinement of Audit Expert (called ‘Hybrid
Audit Expert’) is considered in [Bra] and [BraMS]. Further combinatorial
questions relating to Audit Expert are investigated in [DemKM]

Semi-definite programming has many applications to various classes of opti-
mization problems (see e.g. [VanBo]); in particular, there is a growing interest
in the application of SDP to combinatorial optimization, where it is used to
obtain satisfactory bounds on an optimal objective function value; see [Goe]
for a survey. Semi-definite relaxations have recently been introduced for the
max-cut problem [GoeWi] and the graph colouring problem [KaMS].
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Appendix

This Appendix contains the following graph tables:

A1. The spectra and characteristic polynomials of the adjacency matrix,
Seidel matrix, Laplacian and signless Laplacian for connected graphs with at
most 5 vertices;

A2. The eigenvalues, angles and main angles of connected graphs with 2 to
5 vertices;

A3. The spectra and characteristic polynomials of the adjacency matrix for
connected graphs with 6 vertices;

A4. The spectra and characteristic polynomials of the adjacency matrix for
trees with at most 9 vertices;

A5. The spectra and characteristic polynomials of the adjacency matrix for
cubic graphs with at most 12 vertices.

In Tables A1 and A2, the graphs are given in the same order as in Table
1 in the Appendix of [CvDSa]. In Table A1, the spectra and coefficients for
the characteristic polynomials with respect to the adjacency matrix, Laplacian,
signless Laplacian and Seidel matrix, appear in consecutive lines. Table A2,
which is taken from [CvPe2], was also published in [CvRS3]. This table con-
tains, for each graph, the eigenvalues (first line), the main angles (second
line) and the vertex angle sequences, with vertices labelled as in the diagrams
alongside. Vertices of graphs in Table A2 are ordered in such a way that the
corresponding vertex angle sequences are in lexicographical order. Since sim-
ilar vertices have the same angle sequence, just one sequence is given for each
orbit.

In Tables A3, A4 and A5, the the spectra and coefficients for the characteris-
tic polynomials are listed in consecutive lines. Table A3 comes from the paper
[CvPe1], and here graphs are ordered lexicographically by spectral moments.
In Table A4, the trees with up to 9 vertices are also ordered by spectral
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moments. The corresponding data for trees with up to 10 vertices appear in
[CvDSa, Table 2]; there the trees are ordered by characteristic polynomials.
In Table A5, taken from [BuČCS], the graphs are ordered lexicographically
by spectrum. The same information appears in [CvDSa, Table 3], but with the
graphs in a different order.

A.1 TABLE A1

The spectra and characteristic polynomials of the adjacency matrix, Seidel
matrix, Laplacian and signless Laplacian for connected graphs with at most
5 vertices

01 1.0000 -1.0000 1 0 -1
2.0000 0.0000 1 -2 0
2.0000 0.0000 1 -2 0
1.0000 -1.0000 1 0 -1

02 2.0000 -1.0000 -1.0000 1 0 -3 -2
3.0000 3.0000 0.0000 1 -6 9 0
4.0000 1.0000 1.0000 1 -6 9 -4
1.0000 1.0000 -2.0000 1 0 -3 2

03 1.4142 0.0000 -1.4142 1 0 -2 0
3.0000 1.0000 0.0000 1 -4 3 0
3.0000 1.0000 0.0000 1 -4 3 0
2.0000 -1.0000 -1.0000 1 0 -3 -2

04 3.0000 -1.0000 -1.0000 -1.0000 1 0 -6 -8 -3
4.0000 4.0000 4.0000 0.0000 1 -12 48 -64 0
6.0000 2.0000 2.0000 2.0000 1 -12 48 -80 48
1.0000 1.0000 1.0000 -3.0000 1 0 -6 8 -3

05 2.5616 0.0000 -1.0000 -1.5616 1 0 -5 -4 0
4.0000 4.0000 2.0000 0.0000 1 -10 32 -32 0
5.2361 2.0000 2.0000 0.7639 1 -10 32 -40 16
2.2361 1.0000 -1.0000 -2.2361 1 0 -6 0 5

06 2.1701 0.3111 -1.0000 -1.4812 1 0 -4 -2 1
4.0000 3.0000 1.0000 0.0000 1 -8 19 -12 0
4.5616 2.0000 1.0000 0.4384 1 -8 19 -16 4
2.2361 1.0000 -1.0000 -2.2361 1 0 -6 0 5

07 2.0000 0.0000 0.0000 -2.0000 1 0 -4 0 0
4.0000 2.0000 2.0000 0.0000 1 -8 20 -16 0
4.0000 2.0000 2.0000 0.0000 1 -8 20 -16 0
3.0000 -1.0000 -1.0000 -1.0000 1 0 -6 -8 -3

08 1.7321 0.0000 0.0000 -1.7321 1 0 -3 0 0
4.0000 1.0000 1.0000 0.0000 1 -6 9 -4 0
4.0000 1.0000 1.0000 0.0000 1 -6 9 -4 0
3.0000 -1.0000 -1.0000 -1.0000 1 0 -6 -8 -3

09 1.6180 0.6180 -0.6180 -1.6180 1 0 -3 0 1
3.4142 2.0000 0.5858 0.0000 1 -6 10 -4 0
3.4142 2.0000 0.5858 0.0000 1 -6 10 -4 0
2.2361 1.0000 -1.0000 -2.2361 1 0 -6 0 5
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10 4.0000 -1.0000 -1.0000 -1.0000 -1.0000 1 0 -10 -20 -15 -4
5.0000 5.0000 5.0000 5.0000 0.0000 1 -20 150 -500 625 0
8.0000 3.0000 3.0000 3.0000 3.0000 1 -20 150 -540 945 -648
1.0000 1.0000 1.0000 1.0000 -4.0000 1 0 -10 20 -15 4

11 3.6458 0.0000 -1.0000 -1.0000 -1.6458 1 0 -9 -14 -6 0
5.0000 5.0000 5.0000 3.0000 0.0000 1 -18 120 -350 375 0
7.3723 3.0000 3.0000 3.0000 1.6277 1 -18 120 -378 567 -324
2.3723 1.0000 1.0000 -1.0000 -3.3723 1 0 -10 8 9 -8

12 3.3234 0.3579 -1.0000 -1.0000 -1.6813 1 0 -8 -10 -1 2
5.0000 5.0000 4.0000 2.0000 0.0000 1 -16 93 -230 200 0
6.8284 3.0000 3.0000 2.0000 1.1716 1 -16 93 -250 312 -144
2.5616 1.0000 1.0000 -1.5616 -3.0000 1 0 -10 4 17 -12

13 3.2361 0.0000 0.0000 -1.2361 -2.0000 1 0 -8 -8 0 0
5.0000 5.0000 3.0000 3.0000 0.0000 1 -16 94 -240 225 0
6.5616 3.0000 3.0000 2.4384 1.0000 1 -16 94 -256 321 -144
3.0000 1.5616 -1.0000 -1.0000 -2.5616 1 0 -10 -4 17 12

14 3.0861 0.4280 -1.0000 -1.0000 -1.5141 1 0 -7 -8 0 2
5.0000 4.0000 4.0000 1.0000 0.0000 1 -14 69 -136 80 0
6.3723 3.0000 2.0000 2.0000 0.6277 1 -14 69 -152 148 -48
2.3723 1.0000 1.0000 -1.0000 -3.3723 1 0 -10 8 9 -8

15 3.0000 0.0000 0.0000 -1.0000 -2.0000 1 0 -7 -6 0 0
5.0000 5.0000 2.0000 2.0000 0.0000 1 -14 69 -140 100 0
6.3723 3.0000 2.0000 2.0000 0.6277 1 -14 69 -152 148 -48
3.3723 1.0000 -1.0000 -1.0000 -2.3723 1 0 -10 -8 9 8

16 2.9354 0.6180 -0.4626 -1.4728 -1.6180 1 0 -7 -6 3 2
5.0000 4.4142 3.0000 1.5858 0.0000 1 -14 70 -146 105 0
6.1249 3.0000 2.6367 1.2384 1.0000 1 -14 70 -158 161 -60
2.2361 2.2361 0.0000 -2.2361 -2.2361 1 0 -10 0 25 0

17 2.8558 0.3216 0.0000 -1.0000 -2.1774 1 0 -7 -4 2 0
5.0000 4.0000 3.0000 2.0000 0.0000 1 -14 71 -154 120 0
5.7785 3.0000 2.7108 2.0000 0.5107 1 -14 71 -162 160 -48
3.3723 1.0000 -1.0000 -1.0000 -2.3723 1 0 -10 -8 9 8

18 2.6855 0.3349 0.0000 -1.2713 -1.7491 1 0 -6 -4 2 0
5.0000 4.0000 2.0000 1.0000 0.0000 1 -12 49 -78 40 0
5.7785 2.7108 2.0000 1.0000 0.5107 1 -12 49 -86 64 -16
3.0000 1.5616 -1.0000 -1.0000 -2.5616 1 0 -10 -4 17 12

19 2.6412 0.7237 -0.5892 -1.0000 -1.7757 1 0 -6 -4 3 2
4.4812 4.0000 2.6889 0.8299 0.0000 1 -12 50 -82 40 0
5.4679 2.9128 2.0000 1.2011 0.4182 1 -12 50 -90 68 -16
2.5616 1.0000 1.0000 -1.5616 -3.0000 1 0 -10 4 17 -12

20 2.5616 1.0000 -1.0000 -1.0000 -1.5616 1 0 -6 -4 5 4
5.0000 3.0000 3.0000 1.0000 0.0000 1 -12 50 -84 45 0
5.5616 3.0000 1.4384 1.0000 1.0000 1 -12 50 -92 77 -24
2.5616 1.0000 1.0000 -1.5616 -3.0000 1 0 -10 4 17 -12

21 2.4812 0.6889 0.0000 -1.1701 -2.0000 1 0 -6 -2 4 0
4.6180 3.6180 2.3820 1.3820 0.0000 1 -12 51 -90 55 0
5.1149 2.7459 2.6180 1.1392 0.3820 1 -12 51 -94 71 -16
3.0000 1.5616 -1.0000 -1.0000 -2.5616 1 0 -10 -4 17 12

22 2.4495 0.0000 0.0000 0.0000 -2.4495 1 0 -6 0 0 0
5.0000 3.0000 2.0000 2.0000 0.0000 1 -12 51 -92 60 0
5.0000 3.0000 2.0000 2.0000 0.0000 1 -12 51 -92 60 0
4.0000 -1.0000 -1.0000 -1.0000 -1.0000 1 0 -10 -20 -15 -4
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23 2.3429 0.4707 0.0000 -1.0000 -1.8136 1 0 -5 -2 2 0
5.0000 3.0000 1.0000 1.0000 0.0000 1 -10 32 -38 15 0
5.3234 2.3579 1.0000 1.0000 0.3187 1 -10 32 -42 23 -4
3.3723 1.0000 -1.0000 -1.0000 -2.3723 1 0 -10 -8 9 8

24 2.3028 0.6180 0.0000 -1.3028 -1.6180 1 0 -5 -2 3 0
4.3028 3.6180 1.3820 0.6972 0.0000 1 -10 33 -40 15 0
4.9354 2.6180 1.5374 0.5272 0.3820 1 -10 33 -44 23 -4
2.2361 2.2361 0.0000 -2.2361 -2.2361 1 0 -10 0 25 0

25 2.2143 1.0000 -0.5392 -1.0000 -1.6751 1 0 -5 -2 4 2
4.1701 3.0000 2.3111 0.5188 0.0000 1 -10 34 -44 15 0
4.6412 2.7237 1.4108 1.0000 0.2243 1 -10 34 -48 27 -4
2.3723 1.0000 1.0000 -1.0000 -3.3723 1 0 -10 8 9 -8

26 2.1358 0.6622 0.0000 -0.6622 -2.1358 1 0 -5 0 2 0
4.4812 2.6889 2.0000 0.8299 0.0000 1 -10 34 -46 20 0
4.4812 2.6889 2.0000 0.8299 0.0000 1 -10 34 -46 20 0
3.3723 1.0000 -1.0000 -1.0000 -2.3723 1 0 -10 -8 9 8

27 2.0000 0.6180 0.6180 -1.6180 -1.6180 1 0 -5 0 5 -2
3.6180 3.6180 1.3820 1.3820 0.0000 1 -10 35 -50 25 0
4.0000 2.6180 2.6180 0.3820 0.3820 1 -10 35 -50 25 -4
2.2361 2.2361 0.0000 -2.2361 -2.2361 1 0 -10 0 25 0

28 2.0000 0.0000 0.0000 0.0000 -2.0000 1 0 -4 0 0 0
5.0000 1.0000 1.0000 1.0000 0.0000 1 -8 18 -16 5 0
5.0000 1.0000 1.0000 1.0000 0.0000 1 -8 18 -16 5 0
4.0000 -1.0000 -1.0000 -1.0000 -1.0000 1 0 -10 -20 -15 -4

29 1.8478 0.7654 0.0000 -0.7654 -1.8478 1 0 -4 0 2 0
4.1701 2.3111 1.0000 0.5188 0.0000 1 -8 20 -18 5 0
4.1701 2.3111 1.0000 0.5188 0.0000 1 -8 20 -18 5 0
3.0000 1.5616 -1.0000 -1.0000 -2.5616 1 0 -10 -4 17 12

30 1.7321 1.0000 0.0000 -1.0000 -1.7321 1 0 -4 0 3 0
3.6180 2.6180 1.3820 0.3820 0.0000 1 -8 21 -20 5 0
3.6180 2.6180 1.3820 0.3820 0.0000 1 -8 21 -20 5 0
2.5616 1.0000 1.0000 -1.5616 -3.0000 1 0 -10 4 17 -12
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1. 2. 3. 4. 5.

6. 7. 8. 9. 10.

11. 12. 13. 14. 15.

16. 17. 18. 19. 20.

21. 22. 23. 24. 25.

26. 27. 28. 29. 30.
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A.2 TABLE A2

The eigenvalues, angles and main angles of connected graphs with 2 to
5 vertices

1. 1.0000 −1.0000
1.0000 0.0000

1,2. 0.7071 0.7071

2. 2.0000 −1.00002

1.0000 0.0000
1,2,3. 0.5774 0.8165

3. 1.4142 0.0000 −1.4142
0.9856 0.0000 0.1691

1. 0.7071 0.0000 0.7071
2,3. 0.5000 0.7071 0.5000

4. 3.0000 −1.00003

1.0000 0.0000
1,2,3,4. 0.5000 0.8660

5. 2.5616 0.0000 −1.0000 −1.5616
0.9925 0.0000 0.0000 0.1222

1,2. 0.5573 0.0000 0.7071 0.4352
3,4. 0.4352 0.7071 0.0000 0.5573

6. 2.1701 0.3111 −1.0000 −1.4812
0.9695 0.1663 0.0000 0.1803

1. 0.6116 0.2536 0.0000 0.7494
2,3. 0.5227 0.3682 0.7071 0.3020
4. 0.2818 0.8152 0.0000 0.5059

7. 2.0000 0.00002 −2.0000
1.0000 0.0000 0.0000

1,2,3,4. 0.5000 0.7071 0.5000

8. 1.7321 0.00002 −1.7321
0.9659 0.0000 0.2588

1. 0.7071 0.0000 0.7071
2,3,4. 0.4082 0.8165 0.4082

9. 1.6180 0.6180 −0.6180 −1.6180
0.9732 0.0000 0.2298 0.0000

1,2. 0.6015 0.3717 0.3717 0.6015
3,4. 0.3717 0.6015 0.6015 0.3717
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10. 4.0000 −1.00004

1.0000 0.0000
1,2,3,4,5. 0.4472 0.8944

11. 3.6458 0.0000 −1.00002 −1.6458
0.9957 0.0000 0.0000 0.0930

1,2,3. 0.4792 0.0000 0.8165 0.3220
4,5. 0.3943 0.7071 0.0000 0.5869

12. 3.3234 0.3579 −1.00002 −1.6813
0.9861 0.0837 0.0000 0.1432

1,2. 0.5100 0.1378 0.7071 0.4700
3,4. 0.4390 0.4294 0.7071 0.3505
5. 0.3069 0.7702 0.0000 0.5590

13. 3.2361 0.00002 −1.2361 −2.0000
0.9960 0.0000 0.0898 0.0000

1. 0.5257 0.0000 0.8507 0.0000
2,3,4,5. 0.4253 0.7071 0.2629 0.5000

14. 3.0861 0.4280 −1.00002 −1.5141
0.9567 0.2306 0.0000 0.1774

1. 0.5236 0.3610 0.0000 0.7717
2,3,4. 0.4820 0.2297 0.8165 0.2196

5. 0.1697 0.8435 0.0000 0.5097

15. 3.0000 0.00002 −1.0000 −2.0000
0.9798 0.0000 0.0000 0.2000

1,2. 0.5477 0.0000 0.7071 0.4472
3,4,5. 0.3651 0.8165 0.0000 0.4472

16. 2.9354 0.6180 −0.4626 −1.4728 −1.6180
0.9839 0.0000 0.0738 0.1629 0.0000

1. 0.5590 0.0000 0.3069 0.7702 0.0000
2,3. 0.4700 0.3717 0.5100 0.1378 0.6015
4,5. 0.3505 0.6015 0.4390 0.4294 0.3717

17. 2.8558 0.3216 0.0000 −1.0000 −2.1774
0.9898 0.1363 0.0000 0.0000 0.0416

1,2. 0.4912 0.3870 0.0000 0.7071 0.3301
3,4. 0.4558 0.1312 0.7071 0.0000 0.5244
5. 0.3192 0.8161 0.0000 0.0000 0.4817

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.011
https:/www.cambridge.org/core


292 Appendix

18. 2.6855 0.3349 0.0000 −1.2713 −1.7491
0.9602 0.1692 0.0000 0.0486 0.2170

1. 0.5825 0.2835 0.0000 0.4008 0.6478
2. 0.5237 0.3506 0.0000 0.7611 0.1534

3,4. 0.4119 0.2004 0.7071 0.2834 0.4581
5. 0.2169 0.8464 0.0000 0.3153 0.3704

19. 2.6412 0.7237 −0.5892 −1.0000 −1.7757
0.9550 0.1833 0.2319 0.0000 0.0262

1,2. 0.5371 0.1655 0.1955 0.7071 0.3820
3. 0.4747 0.5030 0.3529 0.0000 0.6301
4. 0.4067 0.4573 0.6636 0.0000 0.4303
5. 0.1797 0.6950 0.5989 0.0000 0.3549

20. 2.5616 1.0000 −1.00002 −1.5616
0.9802 0.0000 0.0000 0.1979

1. 0.6154 0.0000 0.0000 0.7882
2,3,4,5. 0.3941 0.5000 0.7071 0.3077

21. 2.4812 0.6889 0.0000 −1.1701 −2.0000
0.9850 0.1223 0.0000 0.1220 0.0000

1,2. 0.5299 0.1793 0.5000 0.4325 0.5000
3. 0.4271 0.5207 0.0000 0.7392 0.0000

4,5. 0.3578 0.5765 0.5000 0.1993 0.5000

22. 2.4495 0.00003 −2.4495
0.9949 0.0000 0.1005

1,2. 0.5000 0.7071 0.5000
3,4,5. 0.4082 0.8165 0.4082

23. 2.3429 0.4707 0.0000 −1.0000 −1.8136
0.9506 0.1587 0.0000 0.0000 0.2667

1. 0.6359 0.2414 0.0000 0.0000 0.7331
2,3. 0.4735 0.4560 0.0000 0.7071 0.2606
4,5. 0.2714 0.5128 0.7071 0.0000 0.4042

24. 2.3028 0.6180 0.0000 −1.3028 −1.6180
0.9444 0.0000 0.2582 0.2035 0.0000

1,2. 0.5651 0.3717 0.0000 0.4250 0.6015
3. 0.4908 0.0000 0.5774 0.6525 0.0000

4,5. 0.2454 0.6015 0.5774 0.3263 0.3717

25. 2.2143 1.0000 −0.5392 −1.0000 −1.6751
0.9370 0.2828 0.2021 0.0000 0.0347

1. 0.6037 0.0000 0.4762 0.0000 0.6394
2,3. 0.4972 0.3162 0.3094 0.7071 0.2390
4. 0.3425 0.6325 0.3620 0.0000 0.5930
5. 0.1547 0.6325 0.6714 0.0000 0.3540

26. 2.1358 0.6622 0.0000 −0.6622 −2.1358
0.9762 0.0742 0.0000 0.1835 0.0885

1. 0.5573 0.4352 0.0000 0.4352 0.5573
2,3. 0.4647 0.1845 0.7071 0.1845 0.4647
4. 0.4352 0.5573 0.0000 0.5573 0.4352
5. 0.2610 0.6572 0.0000 0.6572 0.2610
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27. 2.0000 0.61802 −1.61802

1.0000 0.0000 0.0000
1,2,3,4,5. 0.4472 0.6325 0.6325

28. 2.0000 0.00003 −2.0000
0.9487 0.0000 0.3162

1. 0.7071 0.0000 0.7071
2,3,4,5. 0.3536 0.8660 0.3536

29. 1.8478 0.7654 0.0000 −0.7654 −1.8478
0.9530 0.0785 0.0000 0.2638 0.1267

1. 0.6533 0.2706 0.0000 0.2706 0.6533
2. 0.5000 0.5000 0.0000 0.5000 0.5000

3,4. 0.3536 0.3536 0.7071 0.3536 0.3536
5. 0.2706 0.6533 0.0000 0.6533 0.2706

30. 1.7321 1.0000 0.0000 −1.0000 −1.7321
0.9636 0.0000 0.2582 0.0000 0.0692

1. 0.5774 0.0000 0.5774 0.0000 0.5774
2,3. 0.5000 0.5000 0.0000 0.5000 0.5000
4,5. 0.2887 0.5000 0.5774 0.5000 0.2887
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A.3 TABLE A3

The spectra and characteristic polynomials of the adjacency matrix for con-
nected graphs with 6 vertices

001 5.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
1 0 -15 -40 -45 -24 -5

002 4.7016 0.0000 -1.0000 -1.0000 -1.0000 -1.7016
1 0 -14 -32 -27 -8 0

003 4.4279 0.3757 -1.0000 -1.0000 -1.0000 -1.8035
1 0 -13 -26 -15 2 3

004 4.3723 0.0000 0.0000 -1.0000 -1.3723 -2.0000
1 0 -13 -24 -12 0 0

005 4.2015 0.5451 -1.0000 -1.0000 -1.0000 -1.7466
1 0 -12 -22 -9 6 4

006 4.1623 0.0000 0.0000 -1.0000 -1.0000 -2.1623
1 0 -12 -20 -9 0 0

007 4.1190 0.6180 -0.4316 -1.0000 -1.6180 -1.6874
1 0 -12 -20 -4 8 3

008 4.0678 0.3616 0.0000 -1.0000 -1.2446 -2.1848
1 0 -12 -18 -3 4 0

009 4.0000 0.0000 0.0000 0.0000 -2.0000 -2.0000
1 0 -12 -16 0 0 0

010 4.0514 0.4827 -1.0000 -1.0000 -1.0000 -1.5341
1 0 -11 -20 -9 4 3

011 3.8951 0.3973 0.0000 -1.0000 -1.2924 -2.0000
1 0 -11 -16 -2 4 0

012 3.8590 0.7792 -0.3791 -1.0000 -1.4758 -1.7832
1 0 -11 -16 1 10 3

013 3.8284 1.0000 -1.0000 -1.0000 -1.0000 -1.8284
1 0 -11 -16 3 16 7

014 3.8201 0.4594 0.0000 -1.0000 -1.0000 -2.2795
1 0 -11 -14 0 4 0

015 3.7785 0.7108 0.0000 -1.0000 -1.4893 -2.0000
1 0 -11 -14 4 8 0
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016 3.7664 0.0000 0.0000 0.0000 -1.2828 -2.4836
1 0 -11 -12 0 0 0

017 3.7321 0.4142 0.2679 -1.0000 -1.0000 -2.4142
1 0 -11 -12 3 4 -1

018 3.7136 0.6180 0.0000 -0.4829 -1.6180 -2.2307
1 0 -11 -12 5 4 0

019 3.7105 0.4408 0.0000 -1.0000 -1.3842 -1.7670
1 0 -10 -14 -1 4 0

020 3.6903 0.7534 -0.5784 -1.0000 -1.0000 -1.8653
1 0 -10 -14 0 8 3

021 3.6262 0.5151 0.0000 -1.0000 -1.0000 -2.1413
1 0 -10 -12 1 4 0

022 3.5926 0.6180 0.1589 -1.0000 -1.6180 -1.7515
1 0 -10 -12 4 6 -1

023 3.5616 1.0000 -0.5616 -1.0000 -1.0000 -2.0000
1 0 -10 -12 5 12 4

024 3.5344 1.0827 -0.4071 -1.0000 -1.5111 -1.6990
1 0 -10 -12 7 14 4

025 3.5141 0.6694 0.0000 -0.5284 -1.4782 -2.1769
1 0 -10 -10 5 4 0

026 3.4979 0.7299 0.1505 -1.0000 -1.1876 -2.1907
1 0 -10 -10 6 6 -1

027 3.4679 0.9128 0.0000 -0.7989 -1.5818 -2.0000
1 0 -10 -10 8 8 0

028 3.4495 0.6180 0.6180 -1.4495 -1.6180 -1.6180
1 0 -10 -10 10 8 -5

029 3.4609 0.3493 0.0000 0.0000 -1.3387 -2.4715
1 0 -10 -8 4 0 0

030 3.3885 0.8019 0.1873 -0.5550 -1.5758 -2.2470
1 0 -10 -8 9 4 -1

031 3.3723 1.0000 0.0000 -1.0000 -1.0000 -2.3723
1 0 -10 -8 9 8 0

032 3.3923 0.3254 0.0000 0.0000 -1.0000 -2.7177
1 0 -10 -6 3 0 0

033 3.4037 0.4897 0.2512 -1.0000 -1.2827 -1.8619
1 0 -9 -10 3 4 -1
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034 3.3839 0.7424 0.0000 -1.0000 -1.3279 -1.7985
1 0 -9 -10 4 6 0

035 3.3539 1.0000 -0.4765 -1.0000 -1.0000 -1.8774
1 0 -9 -10 5 10 3

036 3.2618 1.3399 -1.0000 -1.0000 -1.0000 -1.6017
1 0 -9 -10 9 18 7

037 3.3723 0.0000 0.0000 0.0000 -1.0000 -2.3723
1 0 -9 -8 0 0 0

038 3.3234 0.3579 0.0000 0.0000 -1.6813 -2.0000
1 0 -9 -8 4 0 0

039 3.2948 0.7347 0.0000 -0.5975 -1.2927 -2.1392
1 0 -9 -8 5 4 0

040 3.2814 0.7719 0.0000 -0.5125 -1.5408 -2.0000
1 0 -9 -8 6 4 0

041 3.2361 1.0000 0.0000 -1.0000 -1.2361 -2.0000
1 0 -9 -8 8 8 0

042 3.2361 0.6180 0.6180 -1.2361 -1.6180 -1.6180
1 0 -9 -8 9 6 -4

043 3.2227 1.0000 0.1124 -1.0000 -1.5266 -1.8085
1 0 -9 -8 9 8 -1

044 3.1819 1.2470 -0.4450 -0.5936 -1.5884 -1.8019
1 0 -9 -8 10 12 3

045 3.1888 0.8347 0.0000 -0.6272 -1.0000 -2.3962
1 0 -9 -6 6 4 0

046 3.1692 0.7282 0.2798 -0.4663 -1.5058 -2.2052
1 0 -9 -6 8 2 -1

047 3.1149 0.7459 0.6180 -0.8608 -1.6180 -2.0000
1 0 -9 -6 11 4 -4

048 3.0868 1.1558 0.1096 -1.0000 -1.1736 -2.1787
1 0 -9 -6 11 8 -1

049 3.1413 0.4849 0.0000 0.0000 -1.0000 -2.6262
1 0 -9 -4 4 0 0

050 3.0922 0.7020 0.0000 0.0000 -1.2855 -2.5086
1 0 -9 -4 7 0 0
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051 3.0000 1.0000 0.0000 0.0000 -2.0000 -2.0000
1 0 -9 -4 12 0 0

052 3.0000 0.0000 0.0000 0.0000 0.0000 -3.0000
1 0 -9 0 0 0 0

053 3.1774 0.6784 0.0000 -1.0000 -1.0000 -1.8558
1 0 -8 -8 3 4 0

054 3.1642 0.6180 0.2271 -1.0000 -1.3914 -1.6180
1 0 -8 -8 4 4 -1

055 3.0965 1.1169 -0.5089 -1.0000 -1.0000 -1.7045
1 0 -8 -8 6 10 3

056 3.1020 0.3443 0.0000 0.0000 -1.3228 -2.1235
1 0 -8 -6 3 0 0

057 3.0478 0.8214 0.0000 -0.7562 -1.0000 -2.1129
1 0 -8 -6 5 4 0

058 3.0437 0.6180 0.3285 -0.5482 -1.6180 -1.8241
1 0 -8 -6 6 2 -1

059 3.0143 0.8481 0.1967 -0.7248 -1.4780 -1.8563
1 0 -8 -6 7 4 -1

060 2.9809 1.0420 0.0000 -0.7062 -1.5371 -1.7796
1 0 -8 -6 8 6 0

061 2.9474 1.1593 0.0000 -1.0000 -1.2859 -1.8208
1 0 -8 -6 9 8 0

062 2.8422 1.5069 -0.5069 -1.0000 -1.0000 -1.8422
1 0 -8 -6 11 14 4

063 2.9439 0.6648 0.0000 0.0000 -1.3684 -2.2403
1 0 -8 -4 6 0 0

064 2.9327 0.7272 0.3088 -0.6570 -1.0000 -2.3117
1 0 -8 -4 6 2 -1

065 2.8951 1.0000 0.0000 -0.6027 -1.0000 -2.2924
1 0 -8 -4 7 4 0

066 2.9032 0.8061 0.0000 0.0000 -1.7093 -2.0000
1 0 -8 -4 8 0 0

067 2.8529 1.0554 0.1830 -0.6611 -1.2718 -2.1584
1 0 -8 -4 9 4 -1
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068 2.8136 1.0000 0.5293 -1.0000 -1.3429 -2.0000
1 0 -8 -4 11 4 -4

069 2.7913 1.0000 0.6180 -1.0000 -1.6180 -1.7913
1 0 -8 -4 12 4 -5

070 2.7321 1.4142 0.0000 -0.7321 -1.4142 -2.0000
1 0 -8 -4 12 8 0

071 2.7964 0.8532 0.0000 0.0000 -1.1955 -2.4541
1 0 -8 -2 7 0 0

072 2.7411 0.7103 0.6180 -0.2314 -1.6180 -2.2200
1 0 -8 -2 10 -2 -1

073 2.8284 0.0000 0.0000 0.0000 0.0000 -2.8284
1 0 -8 0 0 0 0

074 2.7321 0.7321 0.0000 0.0000 -0.7321 -2.7321
1 0 -8 0 4 0 0

075 2.8136 0.5293 0.0000 0.0000 -1.3429 -2.0000
1 0 -7 -4 4 0 0

076 2.7913 0.6180 0.0000 0.0000 -1.6180 -1.7913
1 0 -7 -4 5 0 0

077 2.7537 0.7727 0.3064 -0.6093 -1.3293 -1.8942
1 0 -7 -4 6 2 -1

078 2.7321 1.0000 0.0000 -0.7321 -1.0000 -2.0000
1 0 -7 -4 6 4 0

079 2.7093 1.0000 0.1939 -1.0000 -1.0000 -1.9032
1 0 -7 -4 7 4 -1

080 2.7093 1.0000 0.1939 -1.0000 -1.0000 -1.9032
1 0 -7 -4 7 4 -1

081 2.7056 1.0561 0.0000 -0.5600 -1.3504 -1.8513
1 0 -7 -4 7 4 0

082 2.6554 1.2108 0.0000 -1.0000 -1.0000 -1.8662
1 0 -7 -4 8 6 0

083 2.6287 1.2297 0.1397 -1.0000 -1.3198 -1.6783
1 0 -7 -4 9 6 -1

084 2.4142 1.7321 -0.4142 -1.0000 -1.0000 -1.7321
1 0 -7 -4 11 12 3
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085 2.5991 0.7661 0.4669 -0.3848 -1.3053 -2.1420
1 0 -7 -2 7 0 -1

086 2.5616 1.0000 0.0000 0.0000 -1.5616 -2.0000
1 0 -7 -2 8 0 0

087 2.5395 1.0825 0.2611 -0.5406 -1.2061 -2.1364
1 0 -7 -2 8 2 -1

088 2.5035 1.2644 0.0000 -0.5767 -1.0000 -2.1912
1 0 -7 -2 8 4 0

089 2.4383 1.1386 0.6180 -0.8202 -1.6180 -1.7566
1 0 -7 -2 11 2 -4

090 2.5576 0.6772 0.0000 0.0000 -0.6772 -2.5576
1 0 -7 0 3 0 0

091 2.5243 0.7923 0.0000 0.0000 -0.7923 -2.5243
1 0 -7 0 4 0 0

092 2.4142 1.0000 0.4142 -0.4142 -1.0000 -2.4142
1 0 -7 0 7 0 -1

093 2.3914 0.7729 0.6180 0.0000 -1.6180 -2.1642
1 0 -7 0 9 -4 0

094 2.5141 0.5720 0.0000 0.0000 -1.0000 -2.0861
1 0 -6 -2 3 0 0

095 2.4458 0.7968 0.0000 0.0000 -1.3703 -1.8723
1 0 -6 -2 5 0 0

096 2.4142 0.6180 0.6180 -0.4142 -1.6180 -1.6180
1 0 -6 -2 6 0 -1

097 2.3799 1.0000 0.2914 -0.7510 -1.0000 -1.9202
1 0 -6 -2 6 2 -1

098 2.3342 1.0996 0.2742 -0.5945 -1.3738 -1.7397
1 0 -6 -2 7 2 -1

099 2.2784 1.3174 0.0000 -0.7046 -1.0000 -1.8912
1 0 -6 -2 7 4 0

100 2.2283 1.3604 0.1859 -1.0000 -1.0000 -1.7746
1 0 -6 -2 8 4 -1

101 2.2882 0.8740 0.0000 0.0000 -0.8740 -2.2882
1 0 -6 0 4 0 0
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102 2.2470 0.8019 0.5550 -0.5550 -0.8019 -2.2470
1 0 -6 0 5 0 -1

103 2.2361 1.0000 0.0000 0.0000 -1.0000 -2.2361
1 0 -6 0 5 0 0

104 2.1753 1.1260 0.0000 0.0000 -1.1260 -2.1753
1 0 -6 0 6 0 0

105 2.1149 1.0000 0.6180 -0.2541 -1.6180 -1.8608
1 0 -6 0 8 -2 -1

106 2.0000 1.0000 1.0000 -1.0000 -1.0000 -2.0000
1 0 -6 0 9 0 -4

107 2.2361 0.0000 0.0000 0.0000 0.0000 -2.2361
1 0 -5 0 0 0 0

108 2.0743 0.8350 0.0000 0.0000 -0.8350 -2.0743
1 0 -5 0 3 0 0

109 2.0000 1.0000 0.0000 0.0000 -1.0000 -2.0000
1 0 -5 0 4 0 0

110 1.9319 1.0000 0.5176 -0.5176 -1.0000 -1.9319
1 0 -5 0 5 0 -1

111 1.9021 1.1756 0.0000 0.0000 -1.1756 -1.9021
1 0 -5 0 5 0 0

112 1.8019 1.2470 0.4450 -0.4450 -1.2470 -1.8019
1 0 -5 0 6 0 -1
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1. 2. 3. 4. 5.

6. 7. 8. 9. 10.

11. 12. 13. 14. 15.

16. 17. 18. 19. 20.

21. 22. 23. 24. 25.

26. 27. 28. 29. 30.

31. 32. 33. 34. 35.

36. 37. 38. 39. 40.
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41. 42. 43. 44.

45. 46. 47. 48.

49. 50. 51. 52.

53. 54. 55. 56.

57. 58. 59. 60.

61. 62. 63. 64.

65. 66. 67. 68.

69. 70. 71. 72.
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73. 74. 75. 76.

77. 78. 79. 80.

81. 82. 83. 84.

85. 86. 87. 88.

89. 90. 91. 92.

93. 94. 95. 96.

97. 98. 99. 100.
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101. 102. 103. 104.

105. 106. 107. 108.

109. 110. 111. 112.
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A4. TABLE A4
The spectra and characteristic polynomials of the adjacency matrix for trees
with at most 9 vertices

01 1.0000 -1.0000

1 0 -1

02 1.4142 0.0000 -1.4142

1 0 -2 0

03 1.7321 0.0000 0.0000 -1.7321

1 0 -3 0 0

04 1.6180 0.6180 -0.6180 -1.6180

1 0 -3 0 1

05 2.0000 0.0000 0.0000 0.0000 -2.0000

1 0 -4 0 0 0

06 1.8478 0.7654 0.0000 -0.7654 -1.8478

1 0 -4 0 2 0

07 1.7321 1.0000 0.0000 -1.0000 -1.7321

1 0 -4 0 3 0

08 2.2361 0.0000 0.0000 0.0000 0.0000 -2.2361

1 0 -5 0 0 0 0

09 2.0743 0.8350 0.0000 0.0000 -0.8350 -2.0743

1 0 -5 0 3 0 0

10 2.0000 1.0000 0.0000 0.0000 -1.0000 -2.0000

1 0 -5 0 4 0 0

11 1.9319 1.0000 0.5176 -0.5176 -1.0000 -1.9319

1 0 -5 0 5 0 -1

12 1.9021 1.1756 0.0000 0.0000 -1.1756 -1.9021

1 0 -5 0 5 0 0

13 1.8019 1.2470 0.4450 -0.4450 -1.2470 -1.8019

1 0 -5 0 6 0 -1

14 2.4495 0.0000 0.0000 0.0000 0.0000 0.0000 -2.4495

1 0 -6 0 0 0 0 0

15 2.2882 0.8740 0.0000 0.0000 0.0000 -0.8740 -2.2882

1 0 -6 0 4 0 0 0

16 2.1753 1.1260 0.0000 0.0000 0.0000 -1.1260 -2.1753

1 0 -6 0 6 0 0 0

17 2.1358 1.0000 0.6622 0.0000 -0.6622 -1.0000 -2.1358

1 0 -6 0 7 0 -2 0

18 2.1010 1.2593 0.0000 0.0000 0.0000 -1.2593 -2.1010

1 0 -6 0 7 0 0 0

19 2.0529 1.2086 0.5700 0.0000 -0.5700 -1.2086 -2.0529

1 0 -6 0 8 0 -2 0
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20 2.0000 1.4142 0.0000 0.0000 0.0000 -1.4142 -2.0000

1 0 -6 0 8 0 0 0

21 2.0000 1.0000 1.0000 0.0000 -1.0000 -1.0000 -2.0000

1 0 -6 0 9 0 -4 0

22 1.9696 1.2856 0.6840 0.0000 -0.6840 -1.2856 -1.9696

1 0 -6 0 9 0 -3 0

23 1.9319 1.4142 0.5176 0.0000 -0.5176 -1.4142 -1.9319

1 0 -6 0 9 0 -2 0

24 1.8478 1.4142 0.7654 0.0000 -0.7654 -1.4142 -1.8478

1 0 -6 0 10 0 -4 0

25 2.6458 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -2.6458

1 0 -7 0 0 0 0 0 0

26 2.4885 0.8986 0.0000 0.0000 0.0000 0.0000 -0.8986 -2.4885

1 0 -7 0 5 0 0 0 0

27 2.3583 1.1994 0.0000 0.0000 0.0000 0.0000 -1.1994 -2.3583

1 0 -7 0 8 0 0 0 0

28 2.3344 1.0000 0.7420 0.0000 0.0000 -0.7420 -1.0000 -2.3344

1 0 -7 0 9 0 -3 0 0

29 2.3028 1.3028 0.0000 0.0000 0.0000 0.0000 -1.3028 -2.3028

1 0 -7 0 9 0 0 0 0

30 2.3028 1.3028 0.0000 0.0000 0.0000 0.0000 -1.3028 -2.3028

1 0 -7 0 9 0 0 0 0

31 2.2216 1.2399 0.7261 0.0000 0.0000 -0.7261 -1.2399 -2.2216

1 0 -7 0 11 0 -4 0 0

32 2.2059 1.3376 0.5870 0.0000 0.0000 -0.5870 -1.3376 -2.2059

1 0 -7 0 11 0 -3 0 0

33 2.1490 1.5434 0.0000 0.0000 0.0000 0.0000 -1.5434 -2.1490

1 0 -7 0 11 0 0 0 0

34 2.1889 1.0000 1.0000 0.4569 -0.4569 -1.0000 -1.0000 -2.1889

1 0 -7 0 12 0 -7 0 1

35 2.1566 1.3138 0.7892 0.0000 0.0000 -0.7892 -1.3138 -2.1566

1 0 -7 0 12 0 -5 0 0

36 2.1358 1.4142 0.6622 0.0000 0.0000 -0.6622 -1.4142 -2.1358

1 0 -7 0 12 0 -4 0 0

37 2.1120 1.4964 0.5481 0.0000 0.0000 -0.5481 -1.4964 -2.1120

1 0 -7 0 12 0 -3 0 0

38 2.1010 1.2593 1.0000 0.0000 0.0000 -1.0000 -1.2593 -2.1010

1 0 -7 0 13 0 -7 0 0

39 2.0953 1.3557 0.7376 0.4773 -0.4773 -0.7376 -1.3557 -2.0953

1 0 -7 0 13 0 -7 0 1

40 2.0743 1.4142 0.8350 0.0000 0.0000 -0.8350 -1.4142 -2.0743

1 0 -7 0 13 0 -6 0 0
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41 2.0421 1.5202 0.7203 0.0000 0.0000 -0.7203 -1.5202 -2.0421

1 0 -7 0 13 0 -5 0 0

42 2.0000 1.6180 0.6180 0.0000 0.0000 -0.6180 -1.6180 -2.0000

1 0 -7 0 13 0 -4 0 0

43 2.0285 1.3213 1.0000 0.3731 -0.3731 -1.0000 -1.3213 -2.0285

1 0 -7 0 14 0 -9 0 1

44 2.0000 1.4142 1.0000 0.0000 0.0000 -1.0000 -1.4142 -2.0000

1 0 -7 0 14 0 -8 0 0

45 1.9890 1.4863 0.8135 0.4158 -0.4158 -0.8135 -1.4863 -1.9890

1 0 -7 0 14 0 -8 0 1

46 1.9499 1.5637 0.8678 0.0000 0.0000 -0.8678 -1.5637 -1.9499

1 0 -7 0 14 0 -7 0 0

47 1.8794 1.5321 1.0000 0.3473 -0.3473 -1.0000 -1.5321 -1.8794

1 0 -7 0 15 0 -10 0 1

48 2.8284 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -2.8284

1 0 -8 0 0 0 0 0 0 0

49 2.6762 0.9153 0.0000 0.0000 0.0000 0.0000 0.0000 -0.9153 -2.6762

1 0 -8 0 6 0 0 0 0 0

50 2.5396 1.2452 0.0000 0.0000 0.0000 0.0000 0.0000 -1.2452 -2.5396

1 0 -8 0 10 0 0 0 0 0

51 2.5243 1.0000 0.7923 0.0000 0.0000 0.0000 -0.7923 -1.0000 -2.5243

1 0 -8 0 11 0 -4 0 0 0

52 2.4972 1.3281 0.0000 0.0000 0.0000 0.0000 0.0000 -1.3281 -2.4972

1 0 -8 0 11 0 0 0 0 0

53 2.4495 1.4142 0.0000 0.0000 0.0000 0.0000 0.0000 -1.4142 -2.4495

1 0 -8 0 12 0 0 0 0 0

54 2.3968 1.2665 0.8069 0.0000 0.0000 0.0000 -0.8069 -1.2665 -2.3968

1 0 -8 0 14 0 -6 0 0 0

55 2.3761 1.4142 0.5952 0.0000 0.0000 0.0000 -0.5952 -1.4142 -2.3761

1 0 -8 0 14 0 -4 0 0 0

56 2.3268 1.6080 0.0000 0.0000 0.0000 0.0000 0.0000 -1.6080 -2.3268

1 0 -8 0 14 0 0 0 0 0

57 2.3761 1.0000 1.0000 0.5952 0.0000 -0.5952 -1.0000 -1.0000 -2.3761

1 0 -8 0 15 0 -10 0 2 0

58 2.3467 1.3335 0.8455 0.0000 0.0000 0.0000 -0.8455 -1.3335 -2.3467

1 0 -8 0 15 0 -7 0 0 0

59 2.3344 1.4142 0.7420 0.0000 0.0000 0.0000 -0.7420 -1.4142 -2.3344

1 0 -8 0 15 0 -6 0 0 0

60 2.3073 1.5356 0.5645 0.0000 0.0000 0.0000 -0.5645 -1.5356 -2.3073

1 0 -8 0 15 0 -4 0 0 0

61 2.2361 1.7321 0.0000 0.0000 0.0000 0.0000 0.0000 -1.7321 -2.2361

1 0 -8 0 15 0 0 0 0 0
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62 2.2882 1.4142 0.8740 0.0000 0.0000 0.0000 -0.8740 -1.4142 -2.2882

1 0 -8 0 16 0 -8 0 0 0

63 2.2552 1.5582 0.6970 0.0000 0.0000 0.0000 -0.6970 -1.5582 -2.2552

1 0 -8 0 16 0 -6 0 0 0

64 2.2638 1.2793 1.0000 0.4883 0.0000 -0.4883 -1.0000 -1.2793 -2.2638

1 0 -8 0 17 0 -12 0 2 0

65 2.2470 1.4142 0.8019 0.5550 0.0000 -0.5550 -0.8019 -1.4142 -2.2470

1 0 -8 0 17 0 -11 0 2 0

66 2.2361 1.4142 1.0000 0.0000 0.0000 0.0000 -1.0000 -1.4142 -2.2361

1 0 -8 0 17 0 -10 0 0 0

67 2.2361 1.4142 1.0000 0.0000 0.0000 0.0000 -1.0000 -1.4142 -2.2361

1 0 -8 0 17 0 -10 0 0 0

68 2.2164 1.5121 0.8952 0.0000 0.0000 0.0000 -0.8952 -1.5121 -2.2164

1 0 -8 0 17 0 -9 0 0 0

69 2.1940 1.5904 0.8106 0.0000 0.0000 0.0000 -0.8106 -1.5904 -2.1940

1 0 -8 0 17 0 -8 0 0 0

70 2.1679 1.6616 0.7345 0.0000 0.0000 0.0000 -0.7345 -1.6616 -2.1679

1 0 -8 0 17 0 -7 0 0 0

71 2.1358 1.7321 0.6622 0.0000 0.0000 0.0000 -0.6622 -1.7321 -2.1358

1 0 -8 0 17 0 -6 0 0 0

72 2.2361 1.0000 1.0000 1.0000 0.0000 -1.0000 -1.0000 -1.0000 -2.2361

1 0 -8 0 18 0 -16 0 5 0

73 2.2059 1.3376 1.0000 0.5870 0.0000 -0.5870 -1.0000 -1.3376 -2.2059

1 0 -8 0 18 0 -14 0 3 0

74 2.1753 1.4142 1.1260 0.0000 0.0000 0.0000 -1.1260 -1.4142 -2.1753

1 0 -8 0 18 0 -12 0 0 0

75 2.1753 1.4142 1.1260 0.0000 0.0000 0.0000 -1.1260 -1.4142 -2.1753

1 0 -8 0 18 0 -12 0 0 0

76 2.1646 1.5280 0.8536 0.5009 0.0000 -0.5009 -0.8536 -1.5280 -2.1646

1 0 -8 0 18 0 -12 0 2 0

77 2.1646 1.5280 0.8536 0.5009 0.0000 -0.5009 -0.8536 -1.5280 -2.1646

1 0 -8 0 18 0 -12 0 2 0

78 2.1169 1.6398 0.9110 0.0000 0.0000 0.0000 -0.9110 -1.6398 -2.1169

1 0 -8 0 18 0 -10 0 0 0

79 2.1169 1.6398 0.9110 0.0000 0.0000 0.0000 -0.9110 -1.6398 -2.1169

1 0 -8 0 18 0 -10 0 0 0

80 2.1358 1.4142 1.0000 0.6622 0.0000 -0.6622 -1.0000 -1.4142 -2.1358

1 0 -8 0 19 0 -16 0 4 0

81 2.1192 1.4142 1.1590 0.4071 0.0000 -0.4071 -1.1590 -1.4142 -2.1192

1 0 -8 0 19 0 -15 0 2 0

82 2.1120 1.4964 1.0000 0.5481 0.0000 -0.5481 -1.0000 -1.4964 -2.1120

1 0 -8 0 19 0 -15 0 3 0
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A.4 Table A4 309

83 2.0840 1.5718 1.0000 0.4317 0.0000 -0.4317 -1.0000 -1.5718 -2.0840

1 0 -8 0 19 0 -14 0 2 0

84 2.0840 1.5718 1.0000 0.4317 0.0000 -0.4317 -1.0000 -1.5718 -2.0840

1 0 -8 0 19 0 -14 0 2 0

85 2.0743 1.6180 0.8350 0.6180 0.0000 -0.6180 -0.8350 -1.6180 -2.0743

1 0 -8 0 19 0 -14 0 3 0

86 2.0608 1.5984 1.0946 0.0000 0.0000 0.0000 -1.0946 -1.5984 -2.0608

1 0 -8 0 19 0 -13 0 0 0

87 2.0356 1.6907 0.8841 0.4648 0.0000 -0.4648 -0.8841 -1.6907 -2.0356

1 0 -8 0 19 0 -13 0 2 0

88 2.0000 1.7321 1.0000 0.0000 0.0000 0.0000 -1.0000 -1.7321 -2.0000

1 0 -8 0 19 0 -12 0 0 0

89 2.0529 1.4142 1.2086 0.5700 0.0000 -0.5700 -1.2086 -1.4142 -2.0529

1 0 -8 0 20 0 -18 0 4 0

90 2.0421 1.5202 1.0000 0.7203 0.0000 -0.7203 -1.0000 -1.5202 -2.0421

1 0 -8 0 20 0 -18 0 5 0

91 2.0153 1.5480 1.1429 0.4858 0.0000 -0.4858 -1.1429 -1.5480 -2.0153

1 0 -8 0 20 0 -17 0 3 0

92 2.0000 1.6180 1.0000 0.6180 0.0000 -0.6180 -1.0000 -1.6180 -2.0000

1 0 -8 0 20 0 -17 0 4 0

93 1.9616 1.6629 1.1111 0.3902 0.0000 -0.3902 -1.1111 -1.6629 -1.9616

1 0 -8 0 20 0 -16 0 2 0

94 1.9021 1.6180 1.1756 0.6180 0.0000 -0.6180 -1.1756 -1.6180 -1.9021

1 0 -8 0 21 0 -20 0 5 0
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310 Appendix

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12.

13. 14. 15. 16.

17. 18. 19. 20.
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21. 22. 23. 24.

25. 26. 27. 28.

29. 30. 31. 32.

33. 34. 35. 36.

37. 38. 39. 40.
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312 Appendix

41. 42. 43.

44. 45. 46.

47. 48. 49.

50. 51. 52.

53. 54. 55.
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56. 57. 58.

59. 60. 61.

62. 63. 64.

65. 66. 67.

68. 69. 70.
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314 Appendix

71. 72. 73.

74. 75. 76.

77. 78. 79.

80. 81. 82.
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83. 84. 85.

86. 87. 88.

89. 90. 91.

92. 93. 94.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.011
https:/www.cambridge.org/core


A.5 TABLE A5

The spectra and characteristic polynomials of the adjacency matrix for cubic graphs with at most 12 vertices

001 3.0000 -1.0000 -1.0000 -1.0000
1 0 -6 -8 -3

002 3.0000 1.0000 0.0000 0.0000 -2.0000 -2.0000
1 0 -9 -4 12 0 0

003 3.0000 0.0000 0.0000 0.0000 0.0000 -3.0000
1 0 -9 0 0 0 0

004 3.0000 2.2361 1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -2.2361
1 0 -12 -8 38 48 -12 -40 -15

005 3.0000 1.7321 1.0000 0.4142 -1.0000 -1.0000 -1.7321 -2.4142
1 0 -12 -4 38 16 -36 -12 9

006 3.0000 1.5616 0.6180 0.6180 0.0000 -1.6180 -1.6180 -2.5616
1 0 -12 -2 36 0 -31 12 0

007 3.0000 1.0000 1.0000 1.0000 -1.0000 -1.0000 -1.0000 -3.0000
1 0 -12 0 30 0 -28 0 9

008 3.0000 1.0000 1.0000 0.4142 0.4142 -1.0000 -2.4142 -2.4142
1 0 -12 0 34 -16 -20 16 -3

009 3.0000 2.7785 1.0000 0.0000 0.0000 -0.2892 -1.0000 -1.0000 -2.0000 -2.4893
1 0 -15 -8 63 64 -37 -56 -12 0 0

010 3.0000 2.5616 1.0000 1.0000 0.0000 -1.0000 -1.0000 -1.5616 -2.0000 -2.0000
1 0 -15 -8 71 64 -101 -104 44 48 0
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011 3.0000 2.4381 1.2470 0.7255 -0.1485 -0.4450 -1.0000 -1.5350 -1.8019 -2.4801
1 0 -15 -6 69 48 -96 -76 30 26 3

012 3.0000 2.4142 1.7321 0.0000 0.0000 -0.4142 -1.0000 -1.7321 -2.0000 -2.0000
1 0 -15 -8 71 68 -93 -132 -36 0 0

013 3.0000 2.4142 1.3429 0.0000 0.0000 -0.4142 -0.5293 -1.0000 -2.0000 -2.8136
1 0 -15 -4 63 36 -61 -56 -12 0 0

014 3.0000 2.1466 1.2831 1.0000 0.0000 -0.3683 -1.0000 -1.6053 -2.0000 -2.4562
1 0 -15 -4 71 28 -121 -48 64 24 0

015 3.0000 2.1149 1.6180 0.6180 -0.2541 -0.3820 -0.6180 -1.6180 -1.8608 -2.6180
1 0 -15 -4 69 32 -105 -64 23 20 3

016 3.0000 2.0777 1.3094 0.8019 0.0000 -0.4260 -0.5550 -1.2941 -2.2470 -2.6670
1 0 -15 -2 67 12 -96 -22 35 12 0

017 3.0000 2.0000 1.0000 1.0000 1.0000 -1.0000 -1.0000 -2.0000 -2.0000 -2.0000
1 0 -15 -4 75 24 -157 -36 144 16 -48

018 3.0000 2.0000 1.0000 1.0000 0.0000 0.0000 -1.0000 -1.0000 -2.0000 -3.0000
1 0 -15 0 63 0 -85 0 36 0 0

019 3.0000 1.9354 1.6180 0.6180 0.6180 -0.6180 -1.4626 -1.6180 -1.6180 -2.4728
1 0 -15 -4 73 28 -141 -52 99 16 -21

020 3.0000 1.9032 1.2470 1.2470 -0.1939 -0.4450 -0.4450 -1.8019 -1.8019 -2.7093
1 0 -15 -2 69 12 -116 -24 54 26 3

021 3.0000 1.8794 1.8794 1.0000 -0.3473 -0.3473 -1.5321 -1.5321 -2.0000 -2.0000
1 0 -15 -6 75 48 -144 -114 75 68 12

022 3.0000 1.8794 1.2631 1.0000 0.5157 -0.3473 -1.1826 -1.5321 -2.0000 -2.5962
1 0 -15 -2 71 8 -132 -2 91 -8 -12

023 3.0000 1.6180 1.6180 1.0000 -0.3820 -0.3820 -0.6180 -0.6180 -2.6180 -2.6180
1 0 -15 0 65 -4 -85 -20 35 20 3
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024 3.0000 1.6180 1.6180 0.6180 0.6180 -0.6180 -0.6180 -1.6180 -1.6180 -3.0000
1 0 -15 0 65 0 -105 0 55 0 -9

025 3.0000 1.6180 1.3028 1.0000 0.6180 -0.3820 -0.6180 -1.6180 -2.3028 -2.6180
1 0 -15 0 69 -12 -117 36 59 -12 -9

026 3.0000 1.5616 1.0000 1.0000 1.0000 0.0000 -1.0000 -2.0000 -2.0000 -2.5616
1 0 -15 0 71 -16 -133 64 76 -48 0

027 3.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -2.0000 -2.0000 -2.0000 -2.0000
1 0 -15 0 75 -24 -165 120 120 -160 48

028 3.0000 2.8323 1.9052 0.6180 0.5014 0.0000 -1.0000 -1.0000 -1.0000 -1.6180 -1.8814 -2.3574
1 0 -18 -10 109 112 -223 -326 58 196 9 -36 0

029 3.0000 2.8208 1.4322 0.6180 0.5602 0.0000 0.0000 -1.0000 -1.0000 -1.6180 -2.1891 -2.6240
1 0 -18 -6 105 60 -211 -122 146 52 -39 0 0

030 3.0000 2.8192 1.4142 1.2427 0.0000 0.0000 0.0000 -1.0000 -1.4142 -1.6719 -2.0000 -2.3901
1 0 -18 -8 109 84 -240 -220 172 168 0 0 0

031 3.0000 2.8192 1.2427 0.7321 0.0000 0.0000 0.0000 0.0000 -1.0000 -1.6719 -2.3901 -2.7321
1 0 -18 -4 101 36 -176 -40 84 0 0 0 0

032 3.0000 2.7093 1.7321 1.0000 0.4142 0.1939 -1.0000 -1.0000 -1.0000 -1.7321 -1.9032 -2.4142
1 0 -18 -8 111 88 -260 -264 199 232 -42 -48 9

033 3.0000 2.6628 1.3646 1.1935 0.4928 0.2950 -0.4033 -1.0000 -1.2950 -1.7695 -2.1935 -2.3474
1 0 -18 -6 111 60 -271 -152 273 124 -97 -18 9

034 3.0000 2.6554 1.6751 1.2108 0.5392 0.0000 -1.0000 -1.0000 -1.0000 -1.8662 -2.0000 -2.2143
1 0 -18 -8 113 88 -280 -280 244 296 -36 -72 0

035 3.0000 2.6554 1.2784 1.2108 0.3174 0.0000 0.0000 -1.0000 -1.0000 -1.7046 -1.8662 -2.8912
1 0 -18 -4 105 44 -228 -104 184 72 -36 0 0

036 3.0000 2.6458 1.7321 1.0000 1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.7321 -2.6458
1 0 -18 -8 111 96 -268 -336 207 416 30 -168 -63
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037 3.0000 2.6180 2.0000 1.3028 0.3820 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -2.0000 -2.3028
1 0 -18 -10 113 120 -263 -434 90 468 209 -48 -36

038 3.0000 2.5887 1.4142 1.0000 0.5463 0.0000 0.0000 -0.5463 -1.4142 -2.0000 -2.0000 -2.5887
1 0 -18 -4 109 36 -256 -64 228 16 -48 0 0

039 3.0000 2.5758 1.8019 0.8127 0.4450 0.0000 0.0000 -1.0000 -1.2470 -2.0000 -2.0000 -2.3885
1 0 -18 -6 111 62 -265 -166 213 92 -60 0 0

040 3.0000 2.5758 1.4909 0.8127 0.0000 0.0000 0.0000 0.0000 -1.0000 -1.6566 -2.3885 -2.8342
1 0 -18 -2 103 18 -201 -26 105 0 0 0 0

041 3.0000 2.5616 2.0000 1.0000 0.0000 0.0000 0.0000 -1.0000 -1.5616 -2.0000 -2.0000 -2.0000
1 0 -18 -8 113 88 -272 -272 176 192 0 0 0

042 3.0000 2.5616 1.8422 0.5069 0.0000 0.0000 0.0000 0.0000 -1.5069 -1.5616 -2.0000 -2.8422
1 0 -18 -4 105 44 -216 -104 96 0 0 0 0

043 3.0000 2.5616 1.5616 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.5616 -2.5616 -3.0000
1 0 -18 0 97 0 -144 0 0 0 0 0 0

044 3.0000 2.5616 1.3028 1.3028 1.0000 0.0000 -1.0000 -1.0000 -1.0000 -1.5616 -2.3028 -2.3028
1 0 -18 -6 113 64 -295 -202 334 252 -135 -108 0

045 3.0000 2.5529 1.6337 1.2577 0.4733 0.1582 -1.0000 -1.0000 -1.0000 -1.4733 -1.9688 -2.6337
1 0 -18 -6 111 68 -275 -220 257 236 -61 -54 9

046 3.0000 2.5471 1.4142 1.1865 0.4993 0.0000 0.0000 -1.0000 -1.3331 -1.4142 -2.2581 -2.6418
1 0 -18 -4 109 40 -260 -100 248 72 -72 0 0

047 3.0000 2.5226 2.0000 1.1164 0.3653 0.0000 -1.0000 -1.0000 -1.0000 -1.6557 -2.0000 -2.3485
1 0 -18 -8 113 92 -276 -312 188 300 16 -48 0

048 3.0000 2.5200 1.6408 1.2220 0.6180 0.0000 -0.4344 -1.0000 -1.4418 -1.6180 -2.1084 -2.3982
1 0 -18 -6 113 64 -291 -198 294 204 -83 -48 0

049 3.0000 2.5141 2.5141 0.5720 0.5720 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -2.0861 -2.0861
1 0 -18 -12 111 144 -216 -480 -117 256 138 -36 -27
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050 3.0000 2.5141 2.1701 0.5720 0.4142 0.3111 -1.0000 -1.0000 -1.0000 -1.4812 -2.0861 -2.4142
1 0 -18 -8 111 92 -252 -292 119 180 -34 -36 9

051 3.0000 2.5141 1.7321 1.4812 0.5720 -0.3111 -1.0000 -1.0000 -1.0000 -1.7321 -2.0861 -2.1701
1 0 -18 -8 115 92 -300 -332 263 420 30 -108 -27

052 3.0000 2.5141 1.6554 1.0000 0.5720 0.2108 -1.0000 -1.0000 -1.0000 -1.0000 -2.0861 -2.8662
1 0 -18 -4 107 48 -248 -152 219 144 -70 -36 9

053 3.0000 2.5141 1.4812 1.0000 0.5720 0.4142 -0.3111 -1.0000 -1.0000 -2.0861 -2.1701 -2.4142
1 0 -18 -4 111 36 -276 -76 279 44 -106 0 9

054 3.0000 2.5100 2.0198 0.6180 0.3750 0.0000 0.0000 -1.0000 -1.3929 -1.6180 -1.8314 -2.6806
1 0 -18 -6 109 68 -247 -198 146 88 -39 0 0

055 3.0000 2.5088 1.6751 0.8671 0.5392 0.0000 0.0000 -1.0000 -1.0000 -1.7520 -2.2143 -2.6239
1 0 -18 -4 109 40 -256 -100 216 56 -60 0 0

056 3.0000 2.3931 1.4142 1.2250 1.0000 0.0000 -0.3061 -1.0000 -1.4142 -1.7190 -2.0000 -2.5931
1 0 -18 -4 113 40 -304 -116 360 128 -152 -48 0

057 3.0000 2.3877 1.5321 1.3028 0.4790 0.3473 -0.3071 -1.0000 -1.2141 -1.8794 -2.3028 -2.3455
1 0 -18 -4 113 38 -298 -102 326 88 -119 -6 9

058 3.0000 2.3717 1.7672 1.1561 0.3728 0.0000 0.0000 -1.0000 -1.3121 -1.5365 -2.2080 -2.6113
1 0 -18 -4 111 42 -278 -126 261 102 -63 0 0

059 3.0000 2.3601 1.5037 1.1922 0.4654 0.0000 0.0000 -0.4592 -1.3337 -1.7681 -2.2438 -2.7166
1 0 -18 -2 109 16 -263 -26 234 4 -39 0 0

060 3.0000 2.3429 2.0000 0.7321 0.4707 0.0000 0.0000 -1.0000 -1.0000 -1.8136 -2.0000 -2.7321
1 0 -18 -4 109 44 -256 -128 188 64 -48 0 0

061 3.0000 2.3358 1.8174 0.8794 0.0000 0.0000 0.0000 0.0000 -1.3473 -1.5217 -2.5321 -2.6316
1 0 -18 -2 107 18 -237 -42 153 0 0 0 0

062 3.0000 2.3234 1.5616 1.0000 0.0000 0.0000 0.0000 0.0000 -0.6421 -2.0000 -2.5616 -2.6813
1 0 -18 0 105 -8 -216 40 96 0 0 0 0
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063 3.0000 2.3083 1.5096 1.1682 1.0953 0.0000 -0.2624 -1.0000 -1.4773 -1.7886 -2.1975 -2.3557
1 0 -18 -4 115 38 -322 -110 401 122 -179 -48 0

064 3.0000 2.2855 1.7495 1.2414 0.6180 0.1939 -0.4206 -1.0000 -1.3735 -1.6180 -2.0733 -2.6029
1 0 -18 -4 113 42 -302 -134 334 140 -123 -30 9

065 3.0000 2.2793 1.5909 1.3028 0.4496 0.0000 0.0000 -1.0000 -1.0000 -1.5508 -2.3028 -2.7689
1 0 -18 -2 109 20 -267 -62 254 60 -63 0 0

066 3.0000 2.2735 1.8996 1.4378 0.4288 0.1334 -1.0000 -1.0000 -1.0000 -1.6694 -2.1401 -2.3636
1 0 -18 -6 115 68 -311 -248 317 308 -57 -66 9

067 3.0000 2.2735 1.4378 1.3226 0.5450 0.4288 -0.2707 -1.0000 -1.0000 -1.9016 -2.1401 -2.6952
1 0 -18 -2 111 16 -287 -32 309 20 -117 6 9

068 3.0000 2.2724 1.2470 1.2470 1.1573 0.0000 -0.4450 -0.4450 -1.6295 -1.8019 -1.8019 -2.8003
1 0 -18 -2 111 18 -293 -42 333 44 -120 -36 0

069 3.0000 2.2706 2.0000 1.2470 0.5191 0.0000 -0.4450 -1.0000 -1.4511 -1.8019 -2.0000 -2.3387
1 0 -18 -6 115 66 -309 -226 309 244 -68 -48 0

070 3.0000 2.2671 1.6055 1.1604 0.5996 0.0000 0.0000 -0.5301 -1.3007 -2.0000 -2.2071 -2.5947
1 0 -18 -2 111 14 -281 -18 269 -4 -60 0 0

071 3.0000 2.2643 1.9421 0.8019 0.6180 0.3741 -0.4325 -0.5550 -1.6180 -1.7818 -2.2470 -2.3663
1 0 -18 -4 113 38 -294 -98 290 44 -95 -6 9

072 3.0000 2.2361 1.7913 1.0000 0.6180 0.0000 0.0000 -1.0000 -1.0000 -1.6180 -2.2361 -2.7913
1 0 -18 -2 109 20 -267 -58 250 40 -75 0 0

073 3.0000 2.2361 1.4142 1.4142 1.0000 0.0000 0.0000 -1.4142 -1.4142 -2.0000 -2.0000 -2.2361
1 0 -18 -4 117 36 -344 -96 468 80 -240 0 0

074 3.0000 2.2361 1.4142 1.4142 0.0000 0.0000 0.0000 0.0000 -1.4142 -1.4142 -2.2361 -3.0000
1 0 -18 0 105 0 -236 0 180 0 0 0 0

075 3.0000 2.2240 1.9563 1.2409 0.2091 0.0000 0.0000 -1.0000 -1.3383 -1.7098 -1.8271 -2.7551
1 0 -18 -4 111 46 -282 -154 257 142 -39 0 0
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076 3.0000 2.2240 1.4413 1.2409 0.5669 0.0000 0.0000 -0.4851 -1.0000 -1.7098 -2.5231 -2.7551
1 0 -18 0 107 -6 -246 26 201 -14 -39 0 0

077 3.0000 2.1955 1.5321 1.3028 1.0646 0.3473 -0.6982 -1.0000 -1.4527 -1.8794 -2.1092 -2.3028
1 0 -18 -4 117 38 -346 -118 482 148 -283 -66 45

078 3.0000 2.1701 1.7321 1.4812 0.4142 0.3111 -0.3111 -1.0000 -1.4812 -1.7321 -2.1701 -2.4142
1 0 -18 -4 115 40 -320 -128 371 136 -126 -12 9

079 3.0000 2.1326 1.7321 1.3563 1.0000 0.0681 -1.0000 -1.0000 -1.0000 -1.7321 -1.9432 -2.6138
1 0 -18 -4 115 44 -328 -164 419 244 -198 -120 9

080 3.0000 2.1227 1.7625 1.3417 0.3859 0.0000 0.0000 -0.5634 -1.4832 -1.6673 -2.1829 -2.7159
1 0 -18 -2 111 18 -285 -50 277 40 -48 0 0

081 3.0000 2.1227 1.5085 1.3417 0.6796 0.3859 0.0000 -0.8258 -1.6673 -2.0000 -2.1829 -2.3623
1 0 -18 -2 115 10 -325 10 397 -76 -148 48 0

082 3.0000 2.1202 1.7640 1.2206 0.6938 0.2329 -0.3963 -1.0000 -1.0000 -1.7858 -2.0615 -2.7878
1 0 -18 -2 111 20 -291 -64 317 72 -121 -18 9

083 3.0000 2.1149 2.0000 1.3028 1.0000 -0.2541 -1.0000 -1.0000 -1.0000 -1.8608 -2.0000 -2.3028
1 0 -18 -6 117 68 -335 -262 398 392 -127 -192 -36

084 3.0000 2.0907 1.5840 1.2396 1.0800 0.1488 -0.3751 -1.0000 -1.2642 -1.6543 -2.1413 -2.7082
1 0 -18 -2 113 18 -313 -56 390 74 -184 -36 9

085 3.0000 2.0821 1.9653 1.1852 0.7538 0.1612 -0.3944 -1.0000 -1.3668 -1.7957 -2.2014 -2.3894
1 0 -18 -4 115 40 -320 -128 375 136 -154 -36 9

086 3.0000 2.0814 1.4142 1.2470 1.1533 0.4586 -0.4450 -1.0000 -1.4142 -1.8019 -2.1080 -2.5853
1 0 -18 -2 115 14 -333 -26 453 12 -256 0 36

087 3.0000 2.0664 2.0000 1.4142 0.2222 0.0000 0.0000 -1.0000 -1.4142 -1.6522 -2.0000 -2.6364
1 0 -18 -4 113 44 -300 -152 300 160 -48 0 0

088 3.0000 2.0647 1.6058 1.1935 1.0000 0.2950 -0.1803 -1.0000 -1.2950 -2.0948 -2.1935 -2.3953
1 0 -18 -2 115 12 -327 -12 413 -16 -193 18 9
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089 3.0000 2.0545 1.7321 1.3028 0.7631 0.0000 0.0000 -1.0000 -1.2346 -1.7321 -2.3028 -2.5831
1 0 -18 -2 113 16 -307 -42 354 36 -135 0 0

090 3.0000 2.0000 2.0000 2.0000 0.0000 0.0000 -1.0000 -1.0000 -1.0000 -2.0000 -2.0000 -2.0000
1 0 -18 -8 117 96 -316 -384 240 512 192 0 0

091 3.0000 2.0000 2.0000 1.4142 0.7321 0.0000 -1.0000 -1.0000 -1.0000 -1.4142 -2.0000 -2.7321
1 0 -18 -4 113 48 -308 -188 348 264 -112 -96 0

092 3.0000 2.0000 2.0000 1.3028 1.3028 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -2.3028 -2.3028
1 0 -18 -6 117 72 -339 -306 414 532 -99 -324 -108

093 3.0000 2.0000 2.0000 1.0000 0.0000 0.0000 0.0000 0.0000 -1.0000 -2.0000 -2.0000 -3.0000
1 0 -18 0 105 0 -232 0 144 0 0 0 0

094 3.0000 2.0000 2.0000 0.7321 0.7321 0.0000 0.0000 -1.0000 -1.0000 -1.0000 -2.7321 -2.7321
1 0 -18 0 105 0 -228 -24 180 16 -48 0 0

095 3.0000 2.0000 1.8136 1.0000 0.7321 0.0000 0.0000 -0.4707 -1.0000 -2.0000 -2.3429 -2.7321
1 0 -18 0 109 -8 -264 40 220 -32 -48 0 0

096 3.0000 2.0000 1.6935 1.3028 1.0000 0.3297 -1.0000 -1.0000 -1.0000 -1.3297 -2.3028 -2.6935
1 0 -18 -2 113 20 -315 -78 410 120 -227 -60 36

097 3.0000 2.0000 1.5616 1.5616 0.0000 0.0000 0.0000 0.0000 -1.0000 -2.0000 -2.5616 -2.5616
1 0 -18 0 109 -8 -260 32 192 0 0 0 0

098 3.0000 2.0000 1.5616 1.4142 0.7321 0.0000 0.0000 -1.0000 -1.0000 -1.4142 -2.5616 -2.7321
1 0 -18 0 109 -4 -272 4 284 8 -96 0 0

099 3.0000 2.0000 1.5616 1.0000 1.0000 0.0000 0.0000 0.0000 -2.0000 -2.0000 -2.0000 -2.5616
1 0 -18 0 113 -16 -304 112 304 -192 0 0 0

100 3.0000 2.0000 1.4142 1.4142 1.0000 0.0000 0.0000 -1.0000 -1.4142 -1.4142 -2.0000 -3.0000
1 0 -18 0 109 0 -288 0 340 0 -144 0 0

101 3.0000 2.0000 1.3028 1.3028 1.0000 1.0000 -1.0000 -1.0000 -1.0000 -2.0000 -2.3028 -2.3028
1 0 -18 -2 117 12 -355 -18 534 8 -387 0 108
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102 3.0000 1.9673 1.5764 1.3645 0.7475 0.0000 0.0000 -0.4399 -1.1971 -2.1268 -2.2119 -2.6799
1 0 -18 0 111 -10 -286 54 277 -54 -63 0 0

103 3.0000 1.9653 1.5772 1.1852 1.0000 0.2920 -0.3944 -0.4781 -1.3668 -1.6677 -2.3894 -2.7235
1 0 -18 0 111 -8 -292 40 323 -48 -118 0 9

104 3.0000 1.9338 1.4142 1.3204 1.0000 0.3505 0.0000 -0.7752 -1.4142 -2.0000 -2.1586 -2.6709
1 0 -18 0 113 -12 -312 76 368 -128 -136 48 0

105 3.0000 1.9032 1.7321 1.0000 1.0000 0.4142 -0.1939 -1.0000 -1.0000 -1.7321 -2.4142 -2.7093
1 0 -18 0 111 -8 -292 40 327 -56 -138 24 9

106 3.0000 1.8164 1.5321 1.3028 1.1355 0.3473 -0.1623 -1.0000 -1.1188 -1.8794 -2.3028 -2.6708
1 0 -18 0 113 -10 -314 54 386 -76 -179 30 9

107 3.0000 1.8136 1.5616 1.4142 1.0000 0.0000 0.0000 -0.4707 -1.4142 -2.0000 -2.3429 -2.5616
1 0 -18 0 113 -12 -308 68 340 -88 -96 0 0

108 3.0000 1.7321 1.7321 1.0000 1.0000 1.0000 -1.0000 -1.0000 -1.0000 -1.7321 -1.7321 -3.0000
1 0 -18 0 111 0 -316 0 447 0 -306 0 81

109 3.0000 1.7321 1.4812 1.4812 1.0000 0.4142 -0.3111 -0.3111 -1.7321 -2.1701 -2.1701 -2.4142
1 0 -18 0 115 -16 -328 104 387 -176 -102 24 9

110 3.0000 1.7321 1.4812 1.2143 1.0000 1.0000 -0.3111 -1.0000 -1.5392 -1.7321 -2.1701 -2.6751
1 0 -18 0 115 -12 -340 76 479 -148 -282 84 45

111 3.0000 1.5616 1.4142 1.4142 1.0000 1.0000 0.0000 -1.4142 -1.4142 -2.0000 -2.0000 -2.5616
1 0 -18 0 117 -16 -360 112 532 -256 -304 192 0

112 3.0000 1.5321 1.5321 1.3028 1.3028 0.3473 0.3473 -1.0000 -1.8794 -1.8794 -2.3028 -2.3028
1 0 -18 0 117 -18 -354 126 486 -272 -207 162 -27
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1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.
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19. 20. 21.

22. 23. 24.

25. 26. 27.

28. 29. 30.

31. 32. 33.
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34. 35. 36.

37. 38. 39.

40. 41. 42.

43. 44. 45.

46. 47. 48.
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49. 50. 51.

52. 53. 54.

55. 56. 57.

58. 59. 60.

61. 62. 63.
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64. 65. 66.

67. 68. 69.

70. 71. 72.

73. 74. 75.

76. 77. 78.
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79. 80. 81.

82. 83. 84.

85. 86. 87.

88. 89. 90.

91. 92. 93.
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94. 95. 96.

97. 98. 99.

100. 101. 102.

103. 104. 105.

106. 107. 108.
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109. 110. 111.

112.
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survey on integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 13
(2002) 42-65 (Erratum: loc. cit. 15 (2004), 112).
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ing all integral graphs on 11 vertices, Computer Science Center Report No. 469,
Technical University of Poznań (1999/2000).
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[CvGu2] Cvetković D., Gutman I., A new spectral method for determining the number
of spanning trees, Publ. Inst. Math. (Beograd) 29 (1981), 49–52.
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Graphs, Cambridge University Press (Cambridge), 2004.
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Pěst. Mat. 83 (1958), 214–225.

[Fin] Finck H.-J., Vollstandiges Produkt, chromatische Zahl und characteristisches
Polynom regulärer Graphen II, Wiss. Z., T. H. Ilmenau 11 (1965), 81–87.

[FiGr] Finck H.-J., Grohmann, G., Vollstandiges Produkt, chromatische Zahl und
characteristisches Polynom regulärer Graphen I, Wiss. Z., T. H. Ilmenau 11
(1965), 1–3.

[Fis] Fisher M., On hearing the shape of a drum, J. Combin. Theory 1 (1966), 105–125.
[GabGa] Gabber O, Galil Z., Explicit constructions of linear-sized superconcentrators,

J. Comput. Syst. Sci. 22 (1981), 307–420.
[GarJo] Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the

Theory of N P-Completness, Freeman (San Francisco), 1979.
[Gan] Gantmacher F. R., The Theory of Matrices, Chelsea (New York), 1959.
[Gib] Gibbons A., Algorithmic Graph Theory, Cambridge University Press

(Cambridge), 1985.
[God] Godsil C. D. Equiarboreal graphs, Combinatorica 1 (1981), 163–167.
[GoHMK] Godsil C. D., Holton D. A., McKay B. D., The spectrum of a graph, in

Combinatorial Mathematics V (ed. Little C. H. C.), Lecture Notes in Math. 622,
Springer-Verlag (Berlin) 1977, pp. 91–117.

[GoMK1] Godsil C. D., McKay B. D., Some computational results on the spectra of
graphs, in Combinatorial Mathematics IV, Proc. 4th Australian Conf. held at the
Univ. of Adelaide, Aug. 27-29, 1975 (eds. Casse L. R. A., Wallis W. D.), Springer-
Verlag (Berlin) 1976, pp. 73–92.

[GoMK2] Godsil C. D., McKay B. D., Constructing cospectral graphs, Aequationes
Math. 25 (1982), 257–268.

[GoRo] Godsil C., Royle G., Algebraic Graph Theory, Springer (New York), 2001.
[Goe] Goemans M., Semidefinite programming in combinatorial optimization, Math.

Program. 79 (1997), 143–161.
[GoeWi] Goemans M., Williamson D. P., Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming, J. ACM
42 (1995), 1115–1145.

[GrGT] Graovac A., Gutman I., Trinajstić N., A Topological Approach to the Chem-
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(xi j ) ◦ (yi j ), 75
A(G), 1
A ⊗ B, 44
An , 62
A +̇ B, 24
Aut(G), 80
a(G), 197

a(k)i j , 14
B-graph, 8
Bk , 8
B�, 83
bw(G), 200
B, 44
C P(n), 6
CG (x), 188
Cn , 6
Ch1,Ch2,Ch3, 10
comp(H), 243
cut(S), 222
Dn , 62
D�, 83
dv , 6
deg(v), 6
diam(G), 59
D(G), 250
E(G), 7
E(S, T ), 199
E6, E7, E8, 62
EG , 269
e1, . . . , en , 11
e(X, Y ), 67
emin(S), 222
ecc(u), 59
E(λ),EA(λ), 2

F (2), 146
G � H , 7
G · H , 30
G ∪̇ H , 7
G(A), 263
G − E , 7
G −U , 7
G − uv, 7
G − v, 7
G6,G9,G69,G70, 110
G = L(H ; a1, . . . , an), 9
G[Q], 276
G ◦ H , 32
G∗, 192
G(2), 191
G∗∗, 192
GU , 5
G j , 30
Gn

j , 30
G1 ∗ G2, 44
G1 + G2, 44
G1 × G2, 44
G[U ], 193
GB , 7
G, 113
G6, G7, G8, 63
H(a1, . . . , an), 9
H+, H−, 248
H8, 106
HG (t), 28
HoS, 183
h(G), 215
hG (S), 215
Ĥ�k , 266
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360 Index of symbols

I (G), 22
i ∼ j , 1
i(G), 205
in , 255
j, 15
j (G), 208
Kn , 6
Kn1,n2,...,nk , 6
ks (G), 90
L(H), 8
L(Ĥ), 8
LG , 184
L, 61
MG (x), 86
m(G), 282
m(x), 142
mG, 7
mG (λ), 63
mc(G), 200
N (X), 67
N (x), 243
Nk , 15
Nk , 15
nk ( j), 53
O(k), 82
og(G), 57
(P), 250
P(π), 81
P(x), 243
PM (x), 39
Pn , 6
PG (x), 1
Q(G), 41
Q(p, q, r), 93
QG (x), 38
Qm , 6
Q, 128
R(G), 40
S(G), 7
Sch10, 174
Sch16, 10
Sk (G), 51

SG (x), 26
sk , 2
spec(G), 105
S #P , 120
T (G), 41
T (p, q, r), 93
Tn(x), 46
t j , 53
Un(x), 47
V (G), 7
v(t), 176
Wn+1, 7
w(F), 264
X p,q , 68
〈x〉, 3
〈x1, x2〉, 3
〈〈x, y〉〉, 141
x 0 y, 232
Yn , 92
Z(x), 243

�(G), 2
�i (u), 76
α(G), 87
αi j , 14
βi , 15
δS, 208
δ(G), 6
κ ′(G), 198
κ(G), 198
λi (G), 2
λ1, λ2, . . . , λn , 1
μ1, μ2, . . . , μm , 11
∇z, 259
νi (G), 184
σ(G), 251
τ(G), 189
τk , 220
ξi (G), 217
ν̂i (G), 213
G, 7
∂S, 199
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Index of terms

absolute bound, 75
adjacency algebra, 69
algebraic connectivity, 197
algorithm

reconstruction, 130
amenable to switching, 160
angle, 14

main, 15
automorphism, 7

B-graph, 8
Bannai-Ito conjecture, 80
binary number, 124
Binet-Cauchy Theorem, 20
bipartition width, 200
blossom, 8
boundary, 199
branch, 122

carbon skeleton, 267
Cauchy’s inequalities, 18
Cayley’s formula, 191
characteristic polynomial, 1

conjugate, 254
Chebyshev polynomial

first kind, 46
second kind, 47

chessboard, 181
chromatic number, 90
circuit, 264
claw, 6
clique, 6
clique number, 88
coalescence, 30

coclique, 6
cograph, 253
colouration, 83
colouring, 90
complexity of a graph, 189
conductance, 205
cone, 7
conjugated hydrocarbon, 266
connectivity

edge, 198
vertex, 198

corona, 32
cospectral graphs, 4
cospectral mates, 118
Coulomb integral, 267
Courant-Weyl inequalities, 19
cut, 199
cycle

Hamiltonian, 7

deck, 250
polynomial, 250

decomposition, 162
degree sequence, 131
deletion-contraction, 36
design, 7

line graph of, 116
symmetric, 7

diameter, 59
dimer, 263
distance matrix, 78
divisor, 83
dominating set, 7
double cone, 7
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362 Index of terms

dumbbell, 157
odd, 159

E A-reconstructible, 53
eccentricity, 59
edge expansion, 208
eigenspace, 2
eigenvalue

main, 15
eigenvalue equations, 2
eigenvector, 2

principal, 16
endospectral graphs, 135
enlarger, 211
equiangular lines, 174

extremal system, 176
equitable partition, 83
eutactic star, 136
expander, 67
expansion, 208
extended double cover, 211

1-factor, 6
Fano plane, 170
Fisher’s inequality, 167
forests

cospectral, 119
foundation, 155
Friendship Theorem, 167

generalized polygon, 172
order, 173

generalized quadrangle, 173
girth, 6
graph

acquaintance, 167
bicyclic, 6
Chang, 10
Clebsch, 10
cocktail party, 6
compatibility, 143
complete k-partite, 6
complete multipartite, 47
conference, 73
cubic, 6, 65
cubic lattice, 48
degree maximal, 257
dense bipartite, 282
distance-regular, 76
distance-transitive, 77
dual, 192

elementary, 36
empty, 7
exceptional, 60
extendability, 143
Hückel, 267
Hamiltonian, 7
harmonic, 22, 87
Higman-Sims, 149
Hoffman-Singleton, 161, 170
homeomorphic, 258
integral, 254
Johnson, 77
Latin square, 163
lattice, 48, 71
lollipop, 106
McLaughlin, 75
membrane, 261
Moore, 169
nearly r -regular, 192
nested, 231
null, 7
odd-unicyclic, 6
Paley, 71
partial, 134
Petersen, 3
primitive, 102
pseudo net, 163
r -regular, 6
Ramanujan, 68
rank 3, 71
reflexive, 99
root, 8
Schläfli, 10
semi-regular bipartite, 7
Shrikhande, 10
Smith, 92
spectrally constrained, 102
split, 231
stepwise, 231
strongly regular, 6

extremal, 75
subdivision, 7
threshold, 193, 231
total, 41
triangular, 71
trivial, 7
unicyclic, 6
vertex-transitive, 7

graph of design, 7
graph representation, 62
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Hadamard product, 75
heptad, 170
Hoffman polynomial, 69
homomorphism, 165

uniform, 166
Hückel theory, 266
hypercube, 6

imprimitive, 71
independence number, 87
independent edges, 6
independent vertices, 6
index, 2
inner dual, 192
inner product

Frobenius, 279
interlacing, 17
Interlacing Theorem, 18
intersecting family, 146

complete, 146
intersection array, 76
isospectral graphs, 118

join, 7

Krein inequalities, 76
Kronecker product, 44

L-polynomial, 188
limb, 122
limit point, 93
line graph, 8
line star complement, 155
line system, 61

decomposable, 61
star-closed, 61

local switching, 232
location-dominating set, 138

magnifier, 211
main part of spectrum, 86
Markov chain, 280

aperiodic, 280
irreducible, 280
rapidly mixing, 283
time-homogeneous, 280
time-reversible, 280

matching, 6
perfect, 6

matrix

adjacency, 1
conjugate, 254
generalized, 5

admittance, 184
angle, 14
block, 18
characteristic, 84
co-Laplacian, 184
conference, 178
correlation, 184
divisor, 83
gradient, 185
Gram, 14
incidence, 8, 9
Kirchoff, 184
Laplacian, 4
normalized Laplacian, 184
positive semi-definite, 12
reducible, 15
Seidel, 4
stepwise, 231
transition, 184

max-cut, 200
membrane, 259
min-cut, 200
Möbius ladder, 49
molecular orbital, 266
Motzkin-Straus inequality, 89
multiplicity, 3
multiplicity bounds, 150

NEPS (non-complete extended
p-sum), 43

number
isoperimetric, 205

odd-girth, 57
operator

Hamiltonian, 266
Laplacian, 259

orchid, 157
orchid garden, 157
ordering graphs, 53, 65, 87, 285

path
internal, 233

pendant edge, 6
permanent, 263
perturbation, 228
petal, 8
PING, 118

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518
https://www.cambridge.org/core


364 Index of terms

plane
affine, 117
projective, 117

Platonic solids, 77
polynomial reconstruction, 250
primitive, 71
problem

graph isomorphism, 124
product of graphs, 44

Q-index, 217
query set, 275

Rayleigh quotient, 11
Rayleigh’s Principle, 12
Reconstruction Lemma, 129
Reconstruction Theorem, 140
resonance integral, 267
root graph, 8
root system, 61
rotation of edge, 229

Sachs’ Coefficient Theorem, 36
Schrödinger equation, 266
semi-definite programming, 277
semi-edge, 219
signless Laplacian, 4
SING, 118

composition, 120
reducible, 121
relevant, 134
strongly irreducible, 134
weakly reducible, 134

spectral decomposition, 11
spectral moment, 2
spectral uncertainty, 124
spectrum, 1
splitting a vertex, 232
stability number, 87
stable molecule, 269
stable set, 6
star, 6
star cell, 138
star closure, 61
star complement, 136, 137
star partition, 138
star set, 136

Steiner system, 149
strong product, 44
subconstituents, 76
subdivision, 233
subgraph
μ-basic, 137
spanning, 7

subspectral graphs, 119
sum of graphs, 44
supercycle, 158
switching, 5
switching-equivalence, 6
σ–graph, 95
σ–property, 95

travelling salesperson, 125, 277
trees

isospectral, 118
T U -subgraph, 220

union, 7

valency, 267
vertex

external, 260
internal, 260
negative, 243
null, 243
positive, 243

vertex boundary, 208
vertex expansion, 208
vertices

adjacent, 1
co-duplicate, 139
cospectral, 122
duplicate, 139
similar, 80
unrestricted, 135

volume, 215

walk, 14
closed, 14

walk generating function, 28
walk length, 14
wave function, 266
wheel, 7
windmill, 167
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