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Preface

This book has been written primarily as an introductory text for graduate
students interested in algebraic graph theory and related areas. It is also
intended to be of use to mathematicians working in graph theory and com-
binatorics, to chemists who are interested in quantum chemistry, and in part
to physicists, computer scientists and electrical engineers using the theory of
graph spectra in their work. The book is almost entirely self-contained; only a
little familiarity with graph theory and linear algebra is assumed.

In addition to more recent developments, the book includes an up-to-date
treatment of most of the topics covered in Spectra of Graphs by D. Cvetkovic,
M. Doob and H. Sachs [CvDSa], where spectral graph theory was character-
ized as follows:

The theory of graph spectra can, in a way, be considered as an attempt to utilize
linear algebra including, in particular, the well-developed theory of matrices, for
the purposes of graph theory and its applications. However, that does not mean
that the theory of graph spectra can be reduced to the theory of matrices; on the
contrary, it has its own characteristic features and specific ways of reasoning fully
justifying it to be treated as a theory in its own right.

Spectra of Graphs has been out of print for some years; it first appeared
in 1980, with a second edition in 1982 and a Russian edition in 1984. The
third English edition appeared in 1995, with new material presented in two
Appendices and an additional Bibliography of over 300 items. The original
edition summarized almost all results related to the theory of graph spectra
published before 1978, with a bibliography of 564 items. A review of results
in spectral graph theory which appeared mostly between 1978 and 1984 can
be found in Recent Results in the Theory of Graph Spectra by D. Cvetkovié,
M. Doob, I. Gutman and A. TorgaSev [CvDGT]. This second monograph,
published in 1988, contains over 700 further references, reflecting the rapid

X
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X Preface

growth of interest in graph spectra. Today we are witnessing an explosion of
the literature on the topic: there exist several thousand papers in mathematics,
chemistry, physics, computer science and other scientific areas that develop
or use some parts of the theory of graph spectra. Consequently a truly com-
prehensive text with a complete bibliography is no longer practicable, and we
have concentrated on what we see as the central concepts and the most useful
techniques.

The monograph [CvDSa] has been used for many years both as an intro-
ductory text book and as a reference book. Since it is no longer available, we
decided to write a new book which would nowadays be more suitable for both
purposes. In this sense, the book is a replacement for [CvDSa]; but it is not a
substitute because Spectra of Graphs will continue to serve as a reference for
more advanced topics not covered here. The content has been influenced by
our previous books from the same publisher, namely Eigenspaces of Graphs
[CvRS2] and Spectral Generalizations of Line Graphs: on Graphs with Least
Eigenvalue —2 [CvRS7]. Nevertheless, very few sections of the present text
are taken from these more specialized sources. For further reading we recom-
mend not only the books mentioned above but also [BroCN], [Big2], [Chu2]
and [GoRo].

The spectra considered here are those of the adjacency matrix, the Lapla-
cian, the normalized Laplacian, the signless Laplacian and the Seidel matrix
of a finite simple graph. In Chapters 2—6, the emphasis is on the adjacency
matrix. In Chapter 1, we introduce the various matrices associated with a
graph, together with the notation and terminology used throughout the book.
We include proofs of the necessary results in matrix theory usually omitted
from a first course on linear algebra, but we assume familiarity with the funda-
mental concepts of graph theory, and with basic results such as the orthogonal
diagonalizability of symmetric matrices with real entries. Chapter 2 is con-
cerned with the effects of constructing new graphs from old, and graph angles
are used in place of walk generating functions to provide streamlined proofs
of some classical results. Chapter 3 deals with the relations between the spec-
trum and structure of a graph, while Chapter 4 discusses the extent to which
the spectrum can characterize a graph. Chapter 5 explores the relation between
structure and just one eigenvalue, a relation made precise by the relatively
recent notion of a star complement. Chapter 6 is concerned with spectral
techniques used to prove graph-theoretical results which themselves make no
reference to eigenvalues. Chapter 7 is devoted to the Laplacian, the normalized
Laplacian and the signless Laplacian; here the emphasis is on the Laplacian
because the normalized Laplacian is the subject of the monograph Spectral
Graph Theory by F. R. K. Chung [Chu2], while the theory of the signless
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Preface xi

Laplacian is still in its infancy. In Chapter 8 we discuss sundry topics that did
not fit readily into earlier sections of the book, and in Chapter 9 we provide a
small selection of applications, mostly outwith mathematics.

The tables in the Appendix provide lists of the various spectra, character-
istic polynomials and angles of all connected graphs with up to 5 vertices,
together with relevant data for connected graphs with 6 vertices, trees with
up to 9 vertices, and cubic graphs with up to 12 vertices. We are indebted to
M. Lepovi¢ for creating the graph catalogues for Tables Al, A3, A4 and A5,
and for computing the data. We are grateful to D. Stevanovi¢ for the graph dia-
grams that appear with these tables: they were produced using Graphviz (open
source graph visualization software developed by AT&T, www.graphviz.org/),
in particular, the programs ‘circo’ (Tables A1,A3,AS5) and ‘neato’ (Table A4).
Table A2 is taken from Eigenspaces of Graphs.

Chapters 2, 4 and 9 were drafted by D. Cvetkovi¢, Chapters 1, 5 and 6
by P. Rowlinson, and Chapters 3, 7 and 8 by S. Simi¢. However, each of the
authors added contributions to all of the chapters, which were then re-written
in an effort to refine the text and unify the material. Hence all three authors
are collectively responsible for the book. We have endeavoured to find a style
that is concise enough to enable the extensive material to be treated in a book
of limited size, yet intuitive enough to make the book readily accessible to the
intended readership. The choice of consistent notation was a challenge because
of conflicts in the ‘standard’ notation for several of the topics covered; accord-
ingly we hope that readers will understand if their preferred notation has not
been used. The proofs of some straightforward results in the text are relegated
to the exercises. These appear at the end of the relevant chapter, along with
notes which serve as a guide to a bibliography of over 500 selected items.

D. CVETKOVIC
P. ROWLINSON
S. SimIC
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1

Introduction

In Section 1.1 we define various types of graph spectra, and in Section 1.2
we introduce graph-theoretic notation and terminology which will be used
throughout the book. In Section 1.3 we establish the results from matrix theory
that will be required.

1.1 Graph spectra

Let G be a finite undirected graph without loops or multiple edges, and suppose
that its vertices are labelled 1,2, ..., n. If vertices i and j are joined by an
edge, we say that i and j are adjacent and write i ~ j. We consider first
the spectrum of the (0, 1)-adjacency matrix A of G defined as follows: A =
A(G) = (a;j) where

C_frifi~g

Y {0 otherwise.
Thus A is a symmetric matrix with zero diagonal; its entries may be taken as
0 and 1 in any field, but throughout this book the entries are treated as real
numbers. An example of a graph and its adjacency matrix is given in Fig. 1.1.

The eigenvalues of A are the n roots of the characteristic polynomial

det(xI — A), and so they are algebraic integers. They are independent of the
labelling of the vertices of G because similar matrices have the same char-
acteristic polynomial: if the labels are permuted we obtain a (0, 1)-adjacency
matrix A’ = P~'AP where P is a permutation matrix. Accordingly we speak
of the characteristic polynomial of G, denoted by Pg(x), and the spectrum
of G, which consists of the n eigenvalues of G. Since A is a symmetric
matrix with real entries, these eigenvalues are real. We usually denote them
by A1, A2,..., A, and unless we indicate otherwise, we shall assume that
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b

Il
_ =0 = O
_—0 = O =
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—_—0 = O
O = e

4 3
Figure 1.1 A labelled graph G and its adjacency matrix A.

Al = A2 > --- > A,. Where necessary, we use the notation A; = X1;(G)
(i =1,2,...,n). The largest eigenvalue 1| (G) is called the index of G. For
an integer k > 0, the k-th spectral moment of G is Y ;_, )L;’.‘ , denoted by s.
Note that s, is the trace of A and that the first n spectral moments determine
the spectrum of G.

The eigenvalues of A are the real numbers A satisfying Ax = Ax for
some non-zero vector x € IR". Each such vector x is called an eigenvector
of the matrix A (or of the labelled graph G) corresponding to the eigen-
value L. The relation AX = Ax can be interpreted in the following way: if
X = (x1,x2, ..., )c,,)T then

M=) xy w=12.....n), (1.1)
v~u
where the summation is over all neighbours v of the vertex u. We note

two straightforward consequences of these equations, which are called the
eigenvalue equations for G.

Proposition 1.1.1. [f the graph G has maximum degree A(G) then |L| <
A(G) for every eigenvalue A of G.

Proof. With the notation above, let u be a vertex for which |x,| is maximal.
Using Equation (1.1), we have:

MIxal <7 Ixol < 1AG) .
v~u
Since x,, # 0, the result follows. O
The second observation is left as an exercise for the reader.
Proposition 1.1.2. The graph G is regular (of degree r) if and only if the all-1
vector is an eigenvector of G (with corresponding eigenvalue r ).

If X is an eigenvalue of A then the set {x € IR" : Ax = Ax} is a sub-
space of IR", called the eigenspace of A and denoted by £(1) or £4(A). Such
eigenspaces are called eigenspaces of G. Of course, relabelling the vertices of
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1.1 Graph spectra 3

G will result in a permutation of coordinates in eigenvectors (and eigenspaces).
Since A is symmetric with real entries, it can be diagonalized by an orthogo-
nal matrix. Hence the eigenspaces are pairwise orthogonal; and by stringing
together orthonormal bases of the eigenspaces we obtain an orthonormal basis
of IR" consisting of eigenvectors (cf. Section 1.3). Moreover, the dimension
of £4(1) is equal to the multiplicity of A as a root of Pg(x). In other words,
the geometric multiplicity of X is the same as the algebraic multiplicity of A;
accordingly we refer only to the multiplicity of A. A simple eigenvalue is an

eigenvalue of multiplicity 1. If G has distinct eigenvalues (1, u2, ..., i, with
multiplicities k1, k2, . . ., ky, respectively, we shall write ulfl, Mléz’ e Mﬁ;" for

the spectrum of G. (We often omit those K; equal to 1.)

Example 1.1.3. For the graph G in Fig. 1.1 we have

x -1 0o -1 -1

-1 x -1 0 -1

Pc(x)=1] 0 -1 x -1 -1
-1 0 -1 x -1

-1 -1 -1 -1 x

= x> —8x% — 8x% = x%(x +2)(x* — 2x — 4).

The eigenvalues in non-increasing order are A1 = 1 + V3, k= 0, A =0,
A =1— \/5, A5 = —2, with linearly independent eigenvectors X1, X2, X3, X4
and x5, where x; = (1,1,1,1, -1+ /57, x» = (0,1,0,—1,0)T, x3 =
(1,0,-1,0,00)", x4 = (1,1, 1,1, -1 — /5T and xs = (1, =1, 1, —1,0) .
We have £(1 + v/5) = (x1), £0) = (x2,%3), E(1 — /5) = (x4) and
E(—2) = (xs), where angle brackets denote the subspace spanned by the
enclosed vectors. O

Example 1.1.4. The eigenvalues of an n-cycle are ZCOS% G =0,1,...,
n — 1). One way to see this is to observe that an adjacency matrix has the form
A = P + P~! where P is the permutation matrix determined by a cyclic per-
mutation of length n. If w is an n-th root of unity then (1, w, .. w”_l)T is
an eigenvector of P with corresponding eigenvalue w. Hence the eigenvalues
of A are the numbers w 4+ w™!, where " = 1. Thus the largest eigenvalue is
2 (with multiplicity 1) and the second largest is 2(:052’7” (with multiplicity 2).
The least eigenvalue is —2 (with multiplicity 1) if n is even, and 2005@

(with multiplicity 2) if n is odd. |

Example 1.1.5. The well-known Petersen graph (Fig. 1.2) has spectrum
3115, (=2)%. ]
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Figure 1.2 The Petersen graph.

(a) o (b)

Figure 1.3 Two pairs of non-isomorphic cospectral graphs.

We say that two graphs are cospectral if they have the same spectrum;
clearly, isomorphic graphs are cospectral (in other words, the spectrum is
a graph invariant). However, cospectral graphs are not necessarily isomor-
phic: the non-isomorphic graphs shown in Fig. 1.3(a) share the spectrum
21,03, (—=2)!. This is an example with fewest vertices. Fig. 1.3(b) shows non-
isomorphic cospectral connected graphs with fewest vertices: their common
characteristic polynomial is (x — 1) (x + D2(x3 —x%2—5x+1). Various graphs
which are characterized by their spectrum, or by their spectrum together with
related algebraic invariants, are discussed in Chapter 4.

Symmetric matrices other than the (0, 1)-adjacency matrix A can be used to
specify a graph, and we mention next the spectra of those that feature in this
book. For a graph G with vertex set {1, ..., n}, let D be the diagonal matrix
diag(dy, ..., d,), where d; denotes the degree of vertexi (i = 1,...,n). The
Laplacian matrix of a graph G is the matrix D — A, and the signless Laplacian
is the matrix D + A; their spectra are discussed in Chapter 7. The Seidel matrix
of G is the matrix S = J—1—2A, where J denotes the all-1 matrix (of size n x
n); thus the (7, j)-entry of Sis 0ifi = j, —1if i ~ j, and I otherwise. As far
as regular graphs are concerned, there is little to choose between these matrices
from the spectral point of view, for suppose that G is regular of degree r, and
that A has eigenvalues A, A2, ..., A, in non-increasing order. By Propositions
1.1.1 and 1.1.2, A1 = r and the all-1 vector may be extended to an orthogonal
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1.1 Graph spectra 5

basis of IR" consisting of eigenvectors common to the matrices A, rI = A and
J — I —2A. Then we find that D + A has eigenvalues

rd&r,rxi ..., rxi,,
while S has eigenvalues
n—1-=2r, =1 =2k, ..., =1 =2A,.

Similar remarks apply to the generalized adjacency matrix yJ — A discussed
in [DamHK]. For non-regular graphs, there is no simple relation between the
various spectra; Theorem 1.3.15 will provide some inequalities, but meanwhile
we give an explicit example.

Example 1.1.6. For the graph in Fig. 1.1, the eigenvalues of the Lapla-
cian are 5,5, 3,3, 0; the eigenvalues of the signless Laplacian are %(9 +
\/1_7),3,3,%(9 — \/ﬁ), 1; and the Seidel eigenvalues are 3,%(—1 +
V1D, =1, =1, 3 (=1 = V17). O

The Seidel matrix is of particular relevance to graph switching (often called
Seidel switching): given a subset U of vertices of the graph G, the graph
Gy obtained from G by switching with respect to U differs from G as
follows. For u € U,v ¢ U the vertices u, v are adjacent in Gy if and
only if they are non-adjacent in G. Suppose that G has adjacency matrix

Ay BT : . .
AG) = ( BU c ), where Ay is the adjacency matrix of the subgraph
induced by U, and B' denotes the transpose of B. Then Gy has adjacency
=T
Ay B

matrix A(Gy) = , where B is obtained from B by interchanging

0 and 1. When G is regular, this formulation makes it straightforward (Exer-
cise 1.3) to find a necessary and sufficient condition on U for Gy to be regular
of the same degree:

Proposition 1.1.7. Suppose that G is regular with n vertices and degree r.
Then Gy is regular of degree r if and only if U induces a regular subgraph of
degree k, where |U| = n —2(r — k).

Note that switching with respect to the subset U of the vertex-set is the same
as switching with respect to its complement. Switching is described easily in
terms of the Seidel matrix S of G: the Seidel matrix of Gy is T~' ST where T
is the (involutory) diagonal matrix whose i-th diagonal entry is 1 if i € U, —1
if i ¢ U. Now it is easy to see that switching with respect to U and then with
respect to V is the same as switching with respect to (U \ V) U ((V\U);it
follows that switching determines an equivalence relation on graphs. Note that
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switching-equivalent graphs have similar Seidel matrices and hence the same
Seidel spectrum. In view of the relation between spectrum and Seidel spectrum
for regular graphs, we have the following consequence:

Proposition 1.1.8. If G and Gy are regular of the same degree, then G and
Gy are cospectral.

1.2 Some more graph-theoretic notions

As usual, K, C,, and P, denote respectively the complete graph, the cycle
and the path on n vertices. A connected graph with n vertices is said to be
unicyclic if it has n edges, for then it contains a unique cycle. If this cycle
has odd length, then the graph is said to be odd-unicyclic. A connected graph
with n vertices and n + 1 edges is called a bicyclic graph. The girth of a graph
G is the length of a shortest cycle in G. A complete subgraph of G is called
a cligue of G, while a coclique is an induced subgraph without edges. The
complete bipartite graph with parts of size m and n is denoted by K, ,. A
graph of the form K , is called an n-claw or a star. (The term ‘star’ is used in
different contexts in Sections 3.4 and 5.1.) More generally, K, n,,....n, denotes
the complete k-partite graph with parts (colour classes) of size ny, na, ..., ny.
The m-dimensional hypercube is denoted by Q,,; its vertices are the 2" m-
tuples of Os and 1s, and two such m-tuples are adjacent if and only if they
differ in just one place.

Vertices, or edges, are said to be independent if they are pairwise non-
adjacent. In the literature, a set of independent vertices is often referred to
as a stable set. Any set of independent edges in a graph G is called a matching
of G. A matching of G is perfect if each vertex of G is the endvertex of an
edge from the matching; perfect matchings are also called 1-factors. The cock-
tail party graph C P (n) is the unique regular graph with 2n vertices of degree
2n — 2; it is obtained from K>, by deleting a perfect matching. The degree
of a vertex v is denoted by deg(v) or d,. The least degree in G is denoted by
3(G), the largest by A(G). An edge that contains a vertex of degree 1 is called
a pendant edge.

A regular graph of degree r is said to be r-regular, and a 3-regular graph is
called a cubic graph. A strongly regular graph, with parameters (n, r, e, f), is
an r-regular graph with n vertices (0 < r < n — 1) such that any two adjacent
vertices have e common neighbours and any two non-adjacent vertices have
J common neighbours. For example, the Petersen graph (Fig. 1.2) is strongly
regular with parameters (10, 3, 0, 1). The restriction 0 < r < n — 1 simply
excludes the complete graphs and their complements.


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.002
https:/www.cambridge.org/core

1.2 Some more graph-theoretic notions 7

A graph is called semi-regular bipartite, with parameters (n1, no, r1, r2),
if it is bipartite (i.e. 2-colourable) and vertices in the same colour class have
the same degree (n; vertices of degree r| and ny vertices of degree r,, where
niry = nary).

If B is a collection of subsets of the set S then the incidence graph deter-
mined by B and S is the bipartite graph Gz with vertex set B U S, and
with an edge between x € S and B € B whenever x € B. Thus if Bis a
design with v points and b blocks, in which each block has k points and each
point lies in r blocks, then Gz is a semi-regular bipartite graph with param-
eters (v, b, r, k). In this case, we call G the graph of the design. Recall that
in a r-design with parameters (v, k, A), any ¢ points lie in exactly A blocks;
and a symmetric design is a 2-design for which b = v > k (equivalently,
r=k<v).

The complement of a graph G is denoted by G, while mG denotes the graph
consisting of m disjoint copies of G. The subdivision graph S(G) is obtained
from G by inserting a vertex of degree 2 in each edge of G.

We write V(G) for the vertex set of G, and E(G) for the edge set of G. We
say that G is empty if V(G) = 0, trivial if |V (G)| = 1, and null if E(G) = 0.
A subgraph H with V(H) = V(G) is called a spanning subgraph of G. A
spanning cycle is called a Hamiltonian cycle, and a graph with such a cycle is
said to be Hamiltonian.

An automorphism of G is a permutation 7 of V(G) such that u ~ v if and
only if w(u) ~ m(v). Clearly, the automorphisms of G form a group (with
respect to composition of functions). We say that G is vertex-transitive if, for
any u, v € V(G), there exists an automorphism 7 of G such that 7 (u) = v.

The union of disjoint copies of the graphs G and H is denoted by G U H.
The join G H of (disjoint) graphs G and H is the graph obtained from G U H
by joining each vertex of G to each vertex of H. The graph K| v H is called
the cone over H, while K, v H (= K| v (K1 v H)) is called the double cone
over H. The graph K| v C,, (n > 3) is the wheel W, with n 4 1 vertices;
thus the graph of Example 1.1.3 is the wheel Ws.

If uv is an edge of G we write G — uv for the graph obtained from G
by deleting uv. More generally, if E is a set of edges of G we write G — E
for the graph obtained from G by deleting the edges in E. For v € V(G),
G — v denotes the graph obtained from G by deleting the vertex v and all
edges incident with v. For U € V(G), G — U denotes the subgraph of G
induced by V(G) \ U. If each vertex of G — U is adjacent to a vertex of U then
U is called a dominating set in G.

If u, v are vertices of a connected graph G then the distance between u and
v, denoted by d(u, v), is the length of a shortest u-v path in G.
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8 Introduction

Definition 1.2.1. The line graph L(H) of a graph H is the graph whose ver-
tices are the edges of H, with two vertices in L(H) adjacent whenever the
corresponding edges in H have exactly one vertex in common.

If G = L(H) for some graph H, then H is called a root graph of G. If
E(H) = ¥ then G is the empty graph. Accordingly, we take a line graph to
mean a graph of the form L(H), where E(H) is non-empty; note that we may
assume if necessary that H has no isolated vertices. If H is connected, then the
same is true of L(H). If H is disconnected, then each non-trivial component
of H gives rise to a connected component of L(H).

‘We mention a simple, but useful, observation (Exercise 1.10):

Proposition 1.2.2. If H is a connected graph and L(H) is regular, then H is
either regular or semi-regular bipartite.

The incidence matrix of the graph H is a matrix B whose rows and columns
are indexed by the vertices and edges of H, respectively. The (v, e¢)-entry
of Bis

b — 0 if v is not incident with e,
Y 711 if v is incident with e.

Thus the columns of B are the characteristic vectors of the edges of H as
subsets of V (H). Now we find easily that

B'B = A(L(H)) +2I. (1.2)

If A(L(H))x = Ax then (A 4+ 2)x'x = x' B' Bx > 0. Thus every eigenvalue
of L(H) is greater than or equal to —2; this is a notable spectral property of
line graphs.

The class of graphs with spectrum in the interval [—2, co) also contains
the generalized line graphs, defined as follows. First we say that a petal is
added to a graph when we add a pendant edge and then duplicate this edge to
form a pendant 2-cycle. A blossom Bj consists of k petals (k > 0) attached
at a single vertex; thus By is just the trivial graph. A graph with blossoms
(possibly empty) at each vertex is called a B-graph. Now we extend Definition
1.2.1 to the line graph of a B-graph H: vertices in L(H) are adjacent if and
only if the corresponding edges in H have exactly one vertex in common.
In particular, duplicate edges between two vertices of H are non-adjacent in
L(H); thus L(By) = CP (k). If G = L(H) then we call the multigraph H a
root graph of G.

Definition 1.2.3. Let H be a graph with vertex set {vy,...,v,}, and let
ai,...,a, be non-negative integers. The generalized line graph G =
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4 J 4 h
6 e Y 5
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a f e

7 T, <
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b
H H=H(,0,0,2)
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. J
L(A) :
c d h
b
e 8
Figure 1.4 Construction of a generalized line graph.
L(H;ay,...,ay) is the graph L(I:I), where H is the B-graph H(ay, ..., a,)
obtained from H by adding a; petals at vertex v; (i = 1, ..., n). If not all g;

are zero, G is called a proper generalized line graph.

This construction of a generalized line graph is illustrated in Fig. 1.4.

An incidence matrix C = (cye) of H=H (ay, ..., ay) is defined as for H
with the following exception: if e and f are the edges between v and w in a
petal at v then {cye, cyyr} = {—1, 1}. (Note that all other entries in row w are
zero.) For example, an incidence matrix of the multigraph H from Fig. 1.4 is:

— oo oo OoO
— oo oo OoO
[=ReleNoRal
SO OO—=—~=O
SOO—=—=OO
SOO—=O—~O
SO~ = OO O
SO~ = OO O
O, O—, OO0
O~ O—= OO0

Here the rows are indexed by 1,2,...,7 and the columns are indexed by
a,b,...,jJ.

With the incidence matrix C defined above, we have A(L(I-AI V=C'Cc-2I
and so A(L(I:I )) > —2. Note that the least eigenvalue is strictly greater than
—2 if and only if the rank of the matrix C is |V(I:I )|. Not all connected graphs
G with A(G) > —2 are generalized line graphs; however there are only finitely
many exceptions, and they are discussed in Section 3.4.
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10 Introduction

We conclude this section with several examples to illustrate how various
strongly regular graphs can be constructed from line graphs by switching. The
relation between the eigenvalues and the parameters of a strongly regular graph
will be discussed in Section 3.6. In particular, we shall see that the property of
strong regularity can be identified from the spectrum.

Examples 1.2.4. If we switch the graph L(K4 4) with respect to four inde-
pendent vertices, then we obtain another 6-regular graph on 16 vertices, called
the Shrikhande graph; it is strongly regular with parameters (16, 6, 2, 2). By
Proposition 1.1.8, this graph is cospectral with L(K4 4). If we switch L(K4 4)
with respect to the vertices of an induced subgraph L(K4 ) then we obtain
a 10-regular graph with 16 vertices, called the Clebsch graph; it is strongly
regular with parameters (16, 10, 6, 6).

These graphs are represented in Fig. 1.5. In Fig. 1.5(a), the vertices of
L(K4.4) are shown as the points of intersection of four horizontal and four
vertical lines, two vertices being adjacent in L(Kj4 4) if and only if the cor-
responding points are collinear. In Figs. 1.5(b) and 1.5(c), the white vertices
are those in switching sets which yield the Shrikhande and Clebsch graphs,
respectively. O

Example 1.2.5. If we switch a graph G with respect to the set of neighbours of
a vertex v, we obtain a graph H in which v is an isolated vertex. If G = L(Kg)
then H — v is a 16-regular graph on 27 vertices which is called the Schildgfli
graph Sche; it is strongly regular with parameters (27, 16, 10, 8). a

Example 1.2.6. Let Sy, S2, S3 be sets of vertices of L(Kg) which induce
subgraphs isomorphic to 4Ky, Cs U C3 and Cg, respectively. The graphs
Chy, Chy, Chs obtained from L(K3g) by switching with respect to S1, S2, S3
respectively are called the Chang graphs. The graphs L(Kg), Chy, Cha, Chs
are regular of degree 12, and hence cospectral by Proposition 1.1.8.
They are pairwise non-isomorphic, and strongly regular with parameters
(28,12, 6,4). a

(a) b 9 * (c) ‘
1J
D
[] |

Figure 1.5 Construction of the graphs in Example 1.2.4.
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1.3 Some results from linear algebra

First we note that a graph is determined by eigenvalues and correspond-
ing eigenvectors in the following way. Let A be the adjacency matrix of

a graph G with vertices 1,2,...,n and eigenvalues A; > A; > ... >
An. If X1, X2, ..., X, are linearly independent eigenvectors of A correspond-
ing to A1, A,..., A, respectively, if X = (xq|x2|---|x,) and if E =

diag(Ay, A2, ..., Ay), then AX = XE and so
A=XEX".
Since G is determined by A, we have the following elementary result:

Theorem 1.3.1. Any graph is determined by its eigenvalues and a basis of
corresponding eigenvectors.

Since A is a symmetric matrix with real entries there exists an orthogonal
matrix U such that UT AU = E. Here the columns of U are eigenvectors
which form an orthonormal basis of IR”. If this basis is constructed by stringing
together orthonormal bases of the eigenspaces of A then £ = w1 Ey + -+ +
Wm Em, where (1, ..., u, are the distinct eigenvalues of A and each E; has
block diagonal form diag(O, ..., 0,1, 0,...0) (i =1,...,m). Then A has
the spectral decomposition

A=pPr+- 4 Py (1.3)
where P, = UE;UT (i = 1, ...,m). For fixed i, if £(u;) has {xq, ..., Xy} as
an orthonormal basis then

P; :xlx—ll——i—-~-—i—xdx;lr (1.4)

and P; represents the orthogonal projection of IR" onto £(u;) with respect to
the standard orthonormal basis {eq, ..., e,} of IR". Moreover, Zf"zl P =1,
P?=P =Pl (i=1,...,m)and P,P; = O (i # j). We shall also need
the observation that for any polynomial f, we have

fA) = f(n)Pr+ -+ f(um) Py
In particular, P; is a polynomial in A for each i; explicitly, P; = f;(A) where

HS;A,'(X — Ms)

fio = [Tooei (i = 125)°

(1.5)

Next we mention an eigenvector technique which is often employed to
find the graphs with maximal or minimal index in a given class of graphs.
A Rayleigh quotient for A is a scalar of the form y' Ay/y'y where y is a
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non-zero vector in IR". The supremum of the set of such scalars is the largest
eigenvalue A1 of A, equivalently

A1 =sup{x' Ax:x € R", ||x|| = 1}. (1.6)

This well-known fact follows immediately from the observation that
if {x1,...,X,} is an orthonormal basis of eigenvectors of A and if x =
a1X] + -+ oX, thenoc%+-~-+(x,% =1, while

X' AX = hjad + -+ A0, (1.7)

where Ax; = A;x; (i =1,...,n).
Note that for y # 0, we have y' Ay/y 'y < A1, with equality if and only if
Ay = L1y. More generally, Rayleigh’s Principle may be stated as follows:

if0£ye(x,....x,) theni; >y Ay/y'y,
with equality if and only if Ay = A;y; and
if0#ye(x,....x;) then}; <y' Ay/y'y,

with equality if and only if Ay = A;y.

Moreover, each eigenvalue A; (i = 1,...,n) can be characterized in
terms of subspaces of IR" as follows. Let U be an (n — i + 1)-dimensional
subspace of IR", so that (x1,...,x;) N U # {0}. If x is a unit vector in this
intersection of subspaces then «j1] = --- = «, = 0 and so xTAX > A by
(1.7). It follows that Sup{XTAX : x e U, [[x]| = 1} = A;. On the other hand,
by (1.7) again, this lower bound is attained when U = (x;, ..., X,) because
in this case @1 = --- = «;—; = 0 for every vector in U. Hence for each
i ef{l,...,n}wehave

A = inf{sup{x "Ax : x e U, |[x]| =1} : U € Up—_i11}, (1.8)

where U, ;11 denotes the set of all (n — i + 1)-dimensional subspaces of IR".
An n x n symmetric matrix M (with real entries) is said to be positive semi-

definite if all its eigenvalues are non-negative, equivalently x" Mx > 0 for all
x € IR".

Theorem 1.3.2. Let M be a positive semi-definite matrix with eigenvalues
M>Xy>---> A, Then

MAAr+- 4 = sup{ulTMu1+u2TMuz+~ . -+u,TMu,} r=12,...,n),
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where the supremum is taken over all orthonormal vectors uj, uy, ..., 0. In
particular, .1 + Ay + -+ + Ay is bounded below by the sum of the r largest
diagonal entries of M.

Proof. Let Mx; = A;x; (i = 1,2,...,n), where X1, X3, ..., X, are orthonor-
mal. Let U = (ug|up| - - [u,), X = (Xq[Xa| -+ [x,) andu; = Y7 ¢i5%; (j =
1,2,...,r). Then U = XC, where C = (c;;); moreover, | = U'u =cTc.
Using Equation (1.7), we have

r r n n r
Zu}—Mllj ZZZC%M :Z Cl-zj Ai.
j=1 j=li=1 1=1 \j=1
Note that Z;’:l cl.zj = b;, where b; is the i-th diagonal entry of CC ". Now
CCT and CTC have the same non-zero eigenvalues and so the spectrum of
CCTis17,0"". By (1.7) again, b; = ¢/ CCTe; <1 (i =1,2,...,n). Now
we have:

r n n
douiMu; = "biri, 0<b <1, Y b =t(CCT)=r,
j=1 i=1 i=1

and it follows that }7’_, ujl.—Muj < > =1 *j. Equality holds when u; =
x; (i =1,2,...,r),and so the first statement of the theorem is proved. For the
second statement, we may suppose without loss of generality that the r largest
diagonal entries of M are the first  diagonal entries; the assertion follows by
takingw; =e; (i =1,2,...,r). O

If M is a positive semi-definite matrix of rank r then there exists an
orthogonal matrix U such that

01

o

U'™MU =

0

where 6; > --- > 6, > 0. Now this matrix can be written as X TX, where

Vi ... 0 0 ... 0
X=10 . 0 o0 ... 0]
0 ... V& 0 ... 0
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of size r x n. Thus M = QTQ, where Q = XU'.If 0 = (qi]---|q,)
then each column q; lies in IR”, and the (i, j)-entry of M is the scalar product
q; q;. The matrix QT Q is called the Gram matrix of the vectors q, . .., qy.
We shall often make use of Gram matrices in the case that M = A — AJ
and A is the least eigenvalue of G; in this situation, the multiplicity of
Adsn —r.

Since in general a graph is not determined by its eigenvalues, it is nat-
ural to seek further algebraic invariants which might serve to distinguish
non-isomorphic cospectral graphs. For our first such definition, recall that

{e1, ..., e,} is the standard orthonormal basis of IR". The mn numbers «;; =
|| P;e;jl| are called the angles of G; they are the cosines of the (acute) angles
between axes and eigenspaces. We shall assume that p1y > --- > p,,. If also

we order the columns of the matrix (c;;) lexicographically then this matrix is
a graph invariant, called the angle matrix of G. We shall see in the next chap-
ter that the spectrum of the vertex-deleted subgraph G — j is determined by
the spectrum of G and the angles «, ..., a;j. The basic relations between
angles are the following:

Proposition 1.3.3. The angles «;; of a graph satisfy the equalities

n m
D of =dimEu). Y af=1. (1.9)
i=1

J=1

Proof. We have a?j=||Piej||2=e;.rP,-ej, and so the numbers ozizl,

ocizz, cee ozizn appear on the diagonal of P;. Now 27:1 ocizj = tr(P;) =
tr(E;) = dim E(u;), and Y ;L oeizj = 1because ) ;- P, = 1. O

Next we discuss the relation between eigenvalues, angles and walks in a
graph. By a walk of length k in a graph we mean any sequence of (not neces-
sarily different) vertices v, vy, ..., vx such that foreachi =1, 2, ..., k there
is an edge from v;_; to v;. The walk is closed if vy = vg. The following result
has a straightforward proof by induction on k.

Proposition 1.3.4. If A is the adjacency matrix of a graph, then the (i, j)-
entry al.(jl.() of the matrix A* is equal to the number of walks of length k that
start at vertex i and end at vertex j.

It follows from Proposition 1.3.4 that the number of closed walks of length
k is equal to the k-th spectral moment, since 27:1 a;’;) = tr(A¥) = Z'/’: 1 A];.
From the spectral decomposition of A we have

AR = kP 4Py 44 ik Py, (1.10)
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;];) =y, uf(xizj, where the «;; are the angles of G. In particular, the

vertex de @)
grees a
We write j (or j,) for the all-1 vector in IR", and j* for the subspace of
vectors orthogonal to j. It follows from (1.10) that the number Ny of all walks

of length & in G is given by

n
Ne=Yal) =iTa% =" ubl1 P, (1.11)
uv i=1

and so a

are determined by the spectrum and angles.

The numbers B; = || Pij||/~/n (i = 1, ..., m) are called the main angles of G;
they are the cosines of the (acute) angles between eigenspaces and j. Note that
> ,31.2 = 1 because j = > /", P;j. The eigenvalue j; is said to be a main
eigenvalue if £(u;) Z j*, equivalently P;j # 0. In view of (1.11) we have the
following result.

Theorem 1.3.5. The total number Ny of walks of length k in a graph G is
given by
Ny = n¥ ukg? (1.12)

where the sum ¥ is taken over all main eigenvalues ;.

We shall see in Chapter 2 that the spectrum of the complement G, the spec-
trum of the cone K1 VG and the Seidel spectrum of G are all determined by
the spectrum and main angles of G. A means of calculating main angles is
described in Section 6.7.

Now we turn to some more general results from matrix theory that have
implications for the spectra of graphs.

A symmetric matrix M is reducible if there exists a permutation matrix P

such that P~ M P is of the form <)0( g) , where X and Y are square matri-

ces. Otherwise, M is called irreducible. If M = (m;;), of size n x n, then we
define the graph GM as follows. The vertices of GM are 1, ..., n, and distinct
vertices i, j are adjacent if and only if m;; # 0. Thus GM is connected if and
only if M is irreducible.

Theorem 1.3.6. Let M be an irreducible symmetric matrix with non-negative
entries. Then the largest eigenvalue A1 of M is simple, with a correspond-
ing eigenvector whose entries are all positive. Moreover, |A| < Ay for all
eigenvalues ) of M.

Proof. Letx = (xq, ..., )cn)T be a unit eigenvector corresponding to Aj. Let
y = (b1,....,ya) , where y; = |x;|] G = 1,...,n). Theny'y = 1 and
y'My > x" Mx = A;. Hence y is also an eigenvector corresponding to ;.
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We show that no y; (and hence no x;) is zero by considering adjacencies in
GM . The eigenvalue equations may be written:

)\lyi=m,~,»y,~+2mijy,- (i=1,...n). (1.13)

J~i
If y; = 0 then by (1.10), y; = O for all j ~ i. Since GM is connected, yj=0
for all j, a contradiction. Now A is a simple eigenvalue, for if dimE(A) > 1
then there exists an eigenvector with a zero entry in any chosen position. In
particular, £(11) is spanned by y (and x = =y). Finally, if Mz = Az where

z'z=1andz=(z1,...,2,) " then
T
M =lz"Mz| =Y zimijzjl < Y |zl mij |zj] < A
i, i,j
O
We say that a vector x = (x, ..., x,) " is non-negative (positive) if each x;

is non-negative (positive); we write x > 0, x > 0 respectively. In the situation
of Theorem 1.3.6, M has a unique positive unit eigenvector corresponding to
A1, and this is called the principal eigenvector of M. In the case that M is the
adjacency matrix of a (labelled) connected graph G, we refer to this vector as
the principal eigenvector of G.

Corollary 1.3.7. Let M be an irreducible symmetric n X n matrix with non-
negative entries m;j, and let .y be the largest eigenvalue of M. For any positive
vectory = (¥1, Y2, - - -, yn)T, we have

min Y —2 <A < max ZL (1.14)

1<i<n £ Vi I<i<n % Vi

j=1 j=1

Either equality holds if and only if'y is an eigenvector of M corresponding
to Al.

Proof. Letx = (x1, x2,...,x,) " be the principal eigenvector of M. Then

- - > oimijy;
MY xiyi=y Mx=x"My=> xy <"—) (1.15)
i=1 i=1 !

The inequalities follow, since Y 7 ,x;y; > 0. Let z; = A1y —
Yo ymijyj (i =1,...,n).If an equality holds in (1.14) then either all z; are
non-negative or all z; are non-positive. From (1.15), we have Z?:l xizi =0,
and so all z; are zero. In this situation, y is an eigenvector of M corresponding
to A1, as required. O

If we apply Theorem 1.3.6 to the adjacency matrix of a graph, we obtain:
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Corollary 1.3.8. A graph is connected if and only if its index is a simple
eigenvalue with a positive eigenvector.

We can also use Theorem 1.3.6 to prove:

Proposition 1.3.9. For any vertex u of a connected graph G, we have A (G —
u) < r(G).

/

Proof. Let A = <A

o7 5), where A’ = A(G — u), and let x be a unit eigen-

vector of A’ corresponding to A1 (G — u). If y = (3) then y'y = 1 and
(G —u) = y' Ay < A1(G). If equality holds then y is an eigenvector of A
corresponding to A1 (G); but this is a contradiction because y has a zero entry.

O

If we apply Corollary 1.3.8 to each component of an arbitrary graph G
which has index A1(G), we can see that there is a non-negative eigenvector
corresponding to A1(G). This vector may also be used in Rayleigh quotients
to obtain bounds for the index of modified graphs, as for example in the
following:

Proposition 1.3.10. [f G — uv is the graph obtained from a connected graph
G by deleting the edge uv, then »1(G — uv) < A1(G).

Proof. Letx = (x1,...,x,)! bea non-negative unit eigenvector of G — uv
corresponding to A1(G — uv). Then

1(G —uv) =x" A(G — uv)x < x' A(G)x < 11(G).

If 1(G — uv) = A1(G) then x is the principal eigenvector of G and hence has
no zero entries. Now X' A(G — uv)x = x' A(G)x — 2x,x, < A1(G — uv), a
contradiction. O

Next we consider interlacing of eigenvalues.

Theorem 1.3.11. Let Q be a real n x m matrix such that Q' Q = I, and let
A be an n x n real symmetric matrix with eigenvalues A1 > --- > \,. If the
eigenvalues of QTAQ are | > -+ > [, then

Ip—mti S i <A ((=1,...,m). (1.16)
Proof. Letxy,....x, be orthonormal eigenvectors of A, and letyy, ..., y, be
orthonormal eigenvectors of QT AQ, taken in order. For eachi € {1, ..., m},

let z; be a non-zero vector in the subspace

Vi, -y 0O X1, .., QT xim)
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18 Introduction

Then Qz; € (X1, ... ,X;_| )J-, and so (by Rayleigh’s Principle)

- (02)TAQz) _ % QTAQn o

"7 (0z)T(Qm) gl T
The second inequality in (1.16) is obtained by applying the above argument to
—Aand —QTAQ. O

When the inequalities (1.16) are satisfied, we say that the eigenvalues u;
interlace the eigenvalues A ;.

Corollary 1.3.12. Let G be a graph with n vertices and eigenvalues ,; >
Ay > .-+ > Ay, and let H be an induced subgraph of G with m vertices. If
the eigenvalues of H are 1y > pp > -+ = [y then hy—myi < i < Aj
i=1,...,m).

Proof. Let V(G) = {1,...,n} and V(H) = {1,...,m}. Then A(H) =
Q" A(G)Q, where QT has the form (I | 0), and so the result follows from
Theorem 1.3.11. a

The inequalities in Corollary 1.3.12 are known as Cauchy’s inequalities
and this result is generally known as the Interlacing Theorem. It is used fre-
quently as a spectral technique in graph theory. In particular, when H is a
vertex-deleted subgraph we have m = n — 1 and:

A S fn—1 S Ap—1 - <A S up S Aq
The next result is a further consequence of Theorem 1.3.11.

Corollary 1.3.13. Let A be a real symmetric matrix with eigenvalues A1 >
Ay > - > Ay. Given a partition {1,2,...,n} = Ay U A, U---UA,, with
|A;| = n; > 0, consider the corrresponding blocking A = (A;;), where A;j is
an n; x nj block. Let e;j be the sum of the entries in A;; and set B = (e;j/n;)
(Note that e;j/n; is the average row sum in A;;.) Then the eigenvalues of B
interlace those of A.

Proof. Suppose that the vertex-block incidence matrix has columns

Ci, ..., ¢y, and let Q be the matrix with columns \/;;Tlcl’ e, \/%cm. Then
m

Q"0 =1, 0" AQ = B and the result follows from Theorem 1.3.11. 0

If we assume that in each block A;; from Corollary 1.3.13 all row sums are
equal then we can say more:

Theorem 1.3.14. Let A be any matrix partitioned into blocks as in Corol-
lary 1.3.13. Suppose that the block A;j has constant row sums b;j, and
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1.3 Some results from linear algebra 19

let B = (b;j). Then the spectrum of B is contained in the spectrum of A (taking
into account the multiplicities of the eigenvalues).

Proof. It is straightforward to check that if (x,..., xn) T is an eigenvec-
X ljn1

tor of B then : is an eigenvector of A corresponding to the same
xmjnm

eigenvalue. O

Theorem 1.3.12 will be used in Section 3.9 to provide a link between spec-
tral and structural properties of a graph. Next we establish the Courant—Weyl
inequalities, embodied in the following result; as usual, the eigenvalues here
are in non-increasing order.

Theorem 1.3.15. Let A and B be n x n Hermitian matrices. Then
Ai(A+B) < Aj(A) +Aj—jr1(B) (=i >j =1,

2i(A+B) = 1j(A) + himjun(B) (1 <i < j<n).

Proof. Let {x1,...,X,}, {y1,...,¥n}, {Z1,...,2,} be orthonormal bases of
eigenvectors for A, B, A + B respectively. Suppose first that i > j, and
consider the subspaces

V1:<Xj7"'vxl’l>’ sz(yi—j+ls~--ayn>’ V3:<le'--azi>'
Since dim (V; N V) > dim V| 4+ dim V> — n, we have
dim (Vi N Vo) N V3) > dim V| +dim Vo +dim V3 —2n =1,

and so V1 N V2 N V3 contains a unit vector X. Applying Rayleigh’s Principle,
we have:

Aj(A) 4+ Aimj+1(B) = X' AX+x' Bx =x' (A + B)x > 1;(A + B).

When i < j, we obtain the second inequality of the theorem by applying the
first inequality to —A and —B. |

Theorem 1.3.15 applies to a graph on n vertices specified as the edge-disjoint
union of two spanning subgraphs. For example, if A and B are the adjacency
matrices of G and G then A + B = J — I and so (for n > 2) A (G) +
In—1(G) = 1 (Ky) = —1, 22(G) + 1,(G) < 2 (K,) = —1. We can also use
Theorem 1.3.15 to obtain inequalities that relate the spectrum of an adjacency
matrix A to the spectra of the Laplacian D — A, the signless Laplacian D + A
and the Seidel matrix J — I — 2A: we apply the theorem to A and D — A,
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to —A and D + A, and to 2A and J — I — 2A respectively. For example,
M (D £ A) = hn(A) £ hniy1(A) and A (J — 1 —24) = =22, 41(A) — L.

Proposition 1.3.16. Let M be a symmetric n x n matrix with real entries. If
P 0
v=[gr %]

M M) + 2 (M) < 21 (P) + A1(R).

then

Proof. Let A = A, (M). Then we have M — LI = S + T, where

P—al 0 o 0
S=< o7 0)’ T=<0 R—u)-

Any non-zero eigenvalue of § is an eigenvalue of P — A1, and so the eigen-
values of § are real. Similarly, the eigenvalues of T are real. Using Theorem
1.3.15, we have

MM) =2 =2(S+T) =2(S)+10(T) =
AM(P = AD) 4+ A (R = Al) = A (P) = A 4+ A1 (R) — 4,

and the result follows. O
Using an induction argument, we obtain the following:

Corollary 1.3.17. Let M be a symmetric n x n matrix with real entries. If M
is partitioned into k* blocks M;j (of size nj x nj) then

k
M(M) + (k= Drg(M) <Y a1 (Mis).

i=1

Finally we prove a result on determinants required in Chapter 7. For an
n X m matrix R (n < m), we write Ry, .k, for the matrix consisting of rows
ki, ..., k, of R; and for an m x n matrix S (n < m) we write S¥t:* for the
matrix consisting of columns k1, ..., k, of S. (Here, k1, ..., k;, are not neces-
sarily distinct.) If F is an n-element subset of {1, ..., m},say F = {k1, ..., k,}
where ky < kp < -+ < k;, then we write Ry = Ry, .., and SF = gki-kn

.....

Theorem 1.3.18 (The Binet—Cauchy Theorem). If R is an n x m matrix and
S is an m x n matrix (n < m), then

det(RS) = Y det(Rp) det(S").
|Fl=n
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Proof. Let R = (r;;) and S = (s;;). We have

det(RS) = ngn(o) ]_[ (Z rikSka(i))

k=1

m m
= Z*gn(a) (Z rlklskla(l)) (Z erzskza(Z)) (Z rnk,,Skna(n))

ki=1 ko=1 ky=1

Z Z Z FlkyT2ky " Tk, ZSgn(U)Skla(l)Skzo(Z)  Skao (n)
o

ki=1ky=1
m m m

= Z Z Z FlkyT2ky - Tk, det(SK1Fndy
k=1

ki=1ky=1

Now det(S%1-k}y = (O when k,...,k, are not distinct, and so we
may take the sum over n-element subsets {ki,...,k,} of {I,..., m}. Then
det(Sttr*kD)—tkly = son(r) det(SH1-k}) for any permutation t of
ki, ..., k,,and so

m
Z Z Z FlkyT2ky - - Tk, det(SE1Faly

ki=1ky=1 kn=1
= N n(‘[) - det(S{kl ..... k,l})
gn(T)rie()r2e(2) =+ * Tnr(n)

T ki<ky<--<ky,

= Z det(Rp) det(SF).

|F|=n

Exercises

1.1 Prove Proposition 1.1.2.

1.2 By considering the nullspace of an all-1 matrix, or otherwise, show that
K, (n > 1) has spectrum (n — 1), (=1)*"L.

1.3 Prove Proposition 1.1.7.

1.4 Show that L(K}4 4) has spectrum 6!, 26, (—2)°.

1.5 Let G be a graph with n vertices. Show that 11 (G) < n— 1, with equality
if and only if G = K,,.

1.6 Let G be a bipartite graph, with each edge joining a vertex in {1, ..., k}
to a vertex in {k + 1, ..., n}. Show that if (x1, ..., x,) " is an eigenvec-
tor of G corresponding to A, then (xy, ..., Xk, —Xk+41, .- -, —x,) T is an


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.002
https:/www.cambridge.org/core

22
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Introduction

eigenvector of G corresponding to —X. Deduce that the spectrum of a
bipartite graph is symmetric about 0.

Let G be a graph with p vertices of odd degree and g vertices of even
degree, where p and g have the same parity. Show that if G’ is switching
equivalent to G then either G has p vertices of odd degree and g vertices
of even degree, or G’ has ¢ vertices of odd degree and p vertices of even
degree [Sei2].

Show that for any graph G and any vertex v of G there exists a unique
switching-equivalent graph G’ which has v as an isolated vertex [Sei3].
Let 1(G) be the collection of graphs obtained by isolating in turn the
vertices of the graph G. Show that the graphs G| and G, are switching
equivalent if and only if /(G1) = I (G3) [BuCS1].

Prove Proposition 1.2.2.

Show that a regular connected generalized line graph is either a line graph
or a cocktail party graph.

Prove Proposition 1.3.4.

Suppose that G, G have adjacency matrices A, A. Show that if p is
a non-main eigenvalue of G then £4(u) S &7(—p — 1). Provide an
example of proper inclusion.

Let G be a graph with adjacency matrix A and vertex degrees dy, . .., d,.
Letd = (dy, ....dy). Then G is said to be harmonic if d is an eigenvector
of A. Show that both G and G are harmonic if and only if G is regular.
With the notation of Section 1.1, show that the vector (d, ..., d)7 is
orthogonal to (i) £(0), and (ii) £(1) for every non-main eigenvalue A.
Show that no line graph has —2 as a main eigenvalue.

Show that if G is a strongly regular graph then each vertex-deleted
subgraph G — v (v € V(G)) has exactly two main eigenvalues.

Show that in a connected graph G, the minimum degree of a vertex is
bounded above by the index of G.

Show that if (c;;) is the angle matrix of the connected graph G then
(@11, ..., 01 ,,)—r is the principal eigenvector of G.

Show that if the graphs G, G’ differ in only one edge then |A;(G) —
MG = 1.

Use Theorem 1.3.15 to show that if the adjacency matrix of G has
eigenvalues A1 > --- > X, and the Laplacian of G has eigenvalues
vy > ---> v, then

8(G) —hi =vp—it1 =AG) -2 (G=1,...,n).

State and prove an analogous result relating the eigenvalues of the
signless Laplacian to Aq, ..., A,.
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1.22 Show that if A is a symmetric matrix with eigenvalues A; > --- > A,
then
AM— Ay = sup{uTAu — VTAV},

where the supremum is taken over all pairs of orthonormal vectors
u, v [Mir].

Notes

For a background in graph theory and linear algebra, the reader is referred
to the monographs [Mer5] and [Str] respectively; earlier texts are [Har2] and
[Hal]. Most undergraduate texts on linear algebra discuss the orthogonal diag-
onalization of a matrix with real entries; a more advanced text is [Pra]. For
results on matrices (not necessarily symmetric) with non-negative entries,
[Gan, Vol. 2] is a standard reference. The interlacing property of the eigenval-
ues arising in Theorem 1.3.11 is taken from [Hae2]; Corollary 1.3.13 appears
in the earlier paper [Hael]. Theorem 1.3.14 appears in [Hay] and [PeSal]. The
proofs of Theorems 1.3.15 and 1.3.18 are taken from [Pra].

Line graphs are characterized by a collection of 9 forbidden induced sub-
graphs; see [Har2, Chapter 8] or the original proof by L. W. Beineke [Bei].
The concept of a strongly regular graph was introduced in 1963 by R. C. Bose
[Bos], and there is now an extensive literature on graphs of this type; see,
for example, [BroLi]. Generalized line graphs were introduced by A. J. Hoff-
man [Hof5] in 1970, and studied extensively by D. Cvetkovi¢, M. Doob and
S. Simi¢ [CvDS1, CvDS2] in 1980. They were characterized by a collection
of 31 forbidden induced subgraphs in [CvDS1, CvDS2], and independently by
S. B. Rao, N. M. Singhi and K. S. Vijayan in [RaoSV]; a recent proof appears
in [CvRS8] and the monograph [CVRS7]. A survey of results concerning main
eigenvalues, together with an explanation of their relation to harmonic graphs
(Exercise 1.14), can be found in [Row16].

The modifications G — u, G — uv may be regarded as perturbations of G;
other perturbations are considered in Section 8.1.
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Graph operations and modifications

In this chapter we describe some procedures for determining characteristic
polynomials of graphs derived from simpler graphs by certain opera-
tions or modifications. Typically, we define an n-ary operation on graphs
G1,Gy,...,G, (n = 1,2,...) to obtain a graph G, and then describe
relations between the spectra of G, G2,..., G, and the spectrum of G.
In some important cases, the spectrum of G is determined by the spectra
of G, Gy, ..., Gy; in other cases, additional invariants of G, G2, ..., G,
are required in the form of graph angles or walk generating functions. The
modifications considered include the deletion and addition of a vertex.

Naturally, several proofs rely simply on determinantal expansions, but oth-
ers require an interpretation of the coefficients in a characteristic polynomial,
and this is presented in Section 2.4. At the end of the chapter, in Section 2.6,
we use the theory we have developed to derive the spectra, or characteristic
polynomials, of several special classes of graphs.

2.1 Complement, union and join of graphs
The operations of complement, union and join are connected by the relation
GvH=GUH.

First we consider the (disjoint) union of graphs. If G has adjacency matrix
A and H has adjacency matrix B, then the adjacency matrix of G U H is the

direct sum
. A O
win=(49)

Consideration of determinants leads immediately to the following result.

24
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2.1 Complement, union and join of graphs 25

Theorem 2.1.1. The characteristic polynomial of the disjoint union of two
graphs is given by:
Pgup(x) = PG (x) Py (x).

It follows that if G, G», ..., Gy are the components of the graph G, then
we have

PG (x) = Pg,(x)Pg,(x) - - Pg,(x).

If G is a regular graph, then the characteristic polynomial Pg(x) of the
complement G of G can be expressed by means of Pg(x) (and vice versa).
The relation is given by the following theorem.

Theorem 2.1.2. If G is a regular graph of degree r with n vertices, then

x—n+r+1
P=(x)=(-1)'——— P5(—x — 1), 2.1
a(x) = (=1 P— G ( ) 2.1
i.e., if the eigenvalues of G are .y = 1, A2, ..., Ay, then the eigenvalues ofE
aren —1—r, =iy —1,...,—A, — 1.

Proof. If G has adjacency matrix A then G has adjacency matrix J — I — A.

Let x1, X2, .. ., X, be an orthogonal basis of IR" consisting of eigenvectors of
A, with x; = j. Then we have Ax; = rx;, (J —1 — A)x; = (n— 1 —r)x; and
J—-—1-Ax=(-1—-r)Xx; (i=2,...,n). O

In the general case, the spectrum of G does not determine the spectrum of
G for example the complements of the cospectral graphs C4 U K1, K 1,4 are
not cospectral. However the spectrum of G is determined by the spectrum and
main angles of G:

Proposition 2.1.3. For any graph G with n vertices, the complement G of G
has characteristic polynomial

m 132
P= =(=D"Pg(—x =D [1—- —t ). 2.2
=(x) = (=1)" P (—x )( ”§x+1+m> 2.2)

Proof. We use a multilinear determinantal expansion in conjunction with the
spectral decomposition of A (Equation (1.3)). The characteristic polynomial of
G is given by:
Pg(x) =det((x + DI + A= J)
=det((x + DI + A) —j adj((x + I + A)j
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= (=1)"Pg(—x — (1 —j ((x + DI+ A)7'j)

=(=D"Pg(=x —1) (1 —-ny —+—1]. (2.3)
; x4+ 1+ pi

We may apply exactly the same argument to J — 2A — [ to obtain:

Proposition 2.1.4. For any graph G with n vertices, the characteristic
polynomial Sg(x) of the Seidel adjacency matrix of G is given by

1 m
S(;(x)z(—Z)”Pg(—E(x—i-l))( Z +1+2 ) (2.4)

We may also apply the argument to G U H. By Proposition 2.1.1, the eigen-
values of G U H are the eigenvalues of G or H (or both). We suppose that
G has n; vertices and H has n; vertices. The adjacency matrix of G U H has
spectral decomposition

A O\ _ 0 P 0
0B€10Q+.+€SOQS,

where P; represents the orthogonal projection R" — E4(&) and Q; rep-
resents the orthogonal projection IR"? — Ep(&) (i = 1,...,s). Here,
Ea(&) = {0} if & is not an eigenvalue of G, and Ep(§;) = {0} if & is not
an eigenvalue of H. As in Proposition 2.1.3 we have

= (- 1)”1+”2PGUH( x—1)

B? a e
< [1- S 4 ), @5

where the non-zero f; are precisely the non-zero main angles of G and the

Peog™®)

non-zero y; are precisely the non-zero main angles of H. The arguments here
extend to the disjoint union of arbitrarily many graphs. We note in passing that
the main angles 8; of G U H are given by:

(n14+n2)87 =i +my? G(=1,...,s).

This relation follows from the definition or from a comparison of
Equations (2.2) and (2.5).

We can rewrite Equation (2.5) using Propositions 2.1.1 and 2.1.3 to obtain:
= (=D Pg(0) P (—x — 1) + (=D Pg(—x — 1) Pg(x)

— (=)™ P (—x — 1) Py (—x — 1). (2.6)

Poog™) =
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2.1 Complement, union and join of graphs 27

Replacing G with G, and H with H, we obtain the following:

Theorem 2.1.5. Let G, H be graphs with ny, ny vertices respectively. The
characteristic polynomial of the join G 57 H is given by the relation

Poyn(x) = (—=1)"? PG (x) Pg(—x — 1) + (=1)"" Py (x) Pg(—x — 1)
— (=" Pe(—x — D) Pg(—x — ). 2.7

Corollary 2.1.6. Let G, H be graphs with ny, ny vertices respectively. Then

Z IBizykz
(x = pui)(x —vg)

1 k=1

l

m
PgyH(x) = Pg(x) Py (x) (1 —niny
where G has distinct eigenvalues (L1, ... , Ly, With corresponding main angles
B1, ..., Bm, and H has distinct eigenvalues vy, ... ,v, with corresponding
main angles yy, ..., Vp.

Proof. The result follows from Theorem 2.1.5 and Proposition 2.1.3. o

From Proposition 2.1.3 and Theorem 2.1.5 we can also find an expression
for the characteristic polynomial of the cone over a graph G (i.e. the graph
obtained from G by adding a vertex adjacent to every vertex of G):

Proposition 2.1.7. The cone over G has characteristic polynomial

P96 () = Po(x) [x =) —— . 28)

X — Wi
e i

Next we discuss the join of regular graphs. First we can deduce the following
from Proposition 2.1.2 and Theorem 2.1.5.

Theorem 2.1.8. If G is r1-regular with ny vertices, and G» is ry-regular with
ny vertices, then the characteristic polynomial of the join G|y G is given by:

Pg,(x) PG, (x)

()G —rp T O ). (2.9)

PG]VGQ(-X) =

Note that if G v G2 is a regular graph, then both G and G, are regular. On
the other hand, if G is rj-regular with n| vertices, and G» is rp-regular with
ny vertices, then G| v G» is a regular graph if and only if r| + ny = r» 4+ nj.
In this situation, G; v G has n'V) = n; + n, vertices and is regular of degree
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rO = r| + 1y = rp +n;. Hence, the relations ny —r; = np —rp = n® — @
hold, and from (2.9) we have

B r(l)) PG. (X)PGz(x)

— (y _ D (1)
PGvG,(x) =(x —r"")(x+n G—r)G—1)

(2.10)

This equation can now be used to determine P(G,vG,)vG;(X) from Pg, (x)
(i = 1,2,3). The necessary condition for (G| v G2) v G3 to be regular (of
degree r@ and with n® vertices) is that nV — r) = 3 — 3 = 0@ — @,
in this case, from (2.9) and (2.10) we have

PGi96yv6; (1) = (¢ = rP) e + 0V — D) +0® @)
Pg,(x) Pg, (x) PG, (x)
(=) =) —r3)’

Continuing this reasoning, we arrive at the following result (where associativ-
ity of the join operation allows us to omit parentheses in G| v G2 v - - - vV Gg).

Theorem 2.1.9 [FiGr]. Let G, Gy, ..., Gy be regular graphs; let G; have
degree r; and n; vertices (i = 1,2, ...,k), where the relations ny — ry =
np —ry=---=ng —rr =s hold. Then the graph G = G, v G2 vV --- v G
hasn = ny+ny+ - - -+ ny vertices and is regular of degree r = n — s, so that
we have

PG, (x)

k
Po(x)=(x =r)(x+n—r"T] Q2.11)
i=1

We conclude this section with some remarks on main angles and walk gener-
ating functions. From Propositions 2.1.3, 2.1.4 and 2.1.7, we see that, given the
eigenvalues of G, knowledge of the main angles of G is equivalent to knowl-
edge of the spectrum of G, or the spectrum of the Seidel matrix of G, or the
spectrum of the cone over G. On the other hand, given the eigenvalues of G,
knowledge of the main angles of G is equivalent to knowledge of the walk
generating function

Hg(t) = Z Nitk, (2.12)
k=0

where Ny is the number of walks of length k£ in G. For by Theorem 1.3.5
we have

Ho(t)=n)_ By/(1—1ip). 2.13)
p=1

Accordingly we may write formulae (2.2) and (2.4) in the form:

Pg(x) = (=1)"Po(—=1 —x)(1 = (x + D)™ Ho(=1/(1 + x))),
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So(x) = (=1)"2" P (—(x — 1)/2)(1 — (x + 1)~ Ho(=2/(x + 1)).

We can use the first equation to express the walk generating function in
terms of characteristic polynomials:
S AES
re (-)

1 n G

Ho(t) = - 1 (=D 1

o (7)

This enables us to express Hg in terms of Hg, and Hg, v, in terms of Hg,
and Hg,:

—1}. (2.14)

| Ho (1)
Theorem 2.1.10. (i) Hg(1) = ;
t+1—1tHg (z:k_tl>

(i) Hg,o6,(1) = He, (1) + Hg, (1)

HG] (t) + HGz(t) + 2tHG1 (t)HGz(t)
1 —t2Hg, (t)Hg, (1) ’

(i) Hg,y6,(1) =

Proof. From Equation (2.14), we have

He(r) = - (—1)”w 1 (2.15)
S e
and
(1
Hg <t:r_t1> _ il (—1)"PG—<’) —1t. (2.16)

t+1 1
The relation (i) follows by eliminating Pg <—%>/PG (;) from (2.15)

and (2.16). The relation (ii) is immediate from the definition (2.12). The third
relation follows from (i) and (ii) when we express G| 7 G as the complement
of G; U G,. O

2.2 Coalescence and related graph compositions

Here we discuss further examples of characteristic polynomials of graphs
constructed using various graph operations or modifications. The formulae
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obtained may be seen as reduction procedures for calculating the character-
istic polynomials concerned. In these formulae, the characteristic polynomial
of an empty graph should be interpreted as 1.

The proof of the first result is left as an exercise in evaluating determinants.

Theorem 2.2.1. Let G; denote the graph obtained from G by adding a
pendant edge at the vertex j. Then

Pg;(x) = xPg(x) — Pg—j(x). (2.17)

By iterating formula (2.17), the characteristic polynomial of a tree can easily
be computed. We may also apply Theorem 2.2.1 to the graph G;'. obtained from
the connected graph G by adding a path of length n at the vertex j. We know
from Chapter 1 that if G is connected then A1 (G,) > A1(G), because G is a
vertex-deleted subgraph of the connected graph G,,. Thus if pj, is the index of
G;? then we have

AM(G) < pj1 <pjp<pi3< -,
while pj, < A(G;'.) < A(G) + 1 by Proposition 1.1.1. Hence the sequence

Pj1, Pj2, Pj3, - - . converges to some limit p; > A1(G).

Theorem 2.2.2 [Hof8]. Let G’} be the graph obtained from the connected
graph G by adding a path of length n at the vertex j, and let p;, be the index
of G?. Suppose that pj, — p;j > 2 asn — oo. Then p; is the largest positive
solution of the equation

%(x +vVx2 —4)Ps(x) — Pg—j(x) =0.

Proof. For fixed j, let f,(x) be the characteristic polynomial of G’}. Thus
Jfo(x) = Pg(x) and by Theorem 2.2.1 we have

() = xfa—1(x) = fu—2(x) (n 2 2), fi(x) =xPs(x) — PG—;(x).
The solution of this linear recurrence relation is given by

(a(x) = B(x)) fu(x) = (a(x) PG (x) — Pg—j(x))er(x)"
— (B(x)Pg(x) — Pg—j(x)B(x)",

where o (x), B(x) = %(x + +/x2 — 4). If we divide this equation by a(x)", set
X = pj, and let n — oo then we obtain the result. a

We extend our deliberations to any graph with a cutvertex w. Such a graph
may be regarded as a coalescence G - H of two graphs G and H, obtained
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from G U H by identifying a vertex u of G with a vertex v of H. (Formally,
V(G-H)=V(G—u)UV(H—v) U {w} with two vertices in G - H adjacent
if they are adjacent in G or H, or if one is w and the other is a neighbour of u
in G or a neighbour of v in H.)

Theorem 2.2.3. Let G - H be the coalescence in which the vertex u of G is
identified with the vertex v of H. Then

PG.g(x) = P6(x)Pg—y(x) + PGy (x) Py (x) — x PGy (x) Pp—y(x).

(2.18)
A r O

Proof. The graph G - H has adjacency matrix [r' 0 s’ |, where
O s B

T

A’ . . . . . .
<rT g) is the adjacency matrix of G and (2 ; /) is the adjacency matrix

of H. Now
xI — A —r (0]
Pg.p(x) = —r' X —sT =
0] —s xI — B’

xI — A" —r (0] xI —A" 0 0} xI—A" 0 0

-r" x  =s' |+| =r" x =s" |=| =rT x =sT [,

0} 0 x/-—B (0] —s xI — B’ 0 0 xI — B

and the result follows. O

We may consider a graph with a bridge as a special case of Theorem 2.2.3.
Let GuvH be the graph obtained from G U H by adding an edge joining the
vertex u of G to the vertex v of H.

Theorem 2.2.4. The characteristic polynomial of GuvH is given by

PGuvr (x) = PG (x) Py (x) — PG—u(x) Py (x). (2.19)

Proof. We regard Guv H as a coalescence of G, and H. Using Theorems 2.2.3
and 2.2.1 in turn, we obtain:

PGuvn (x) = Pg,(x) Py_y(x) + PG (x) Py (x) — x PG (x) Py —y(x)
={xPs(x) — P6—u(x)} Py—v(x) + Pg(x) Py (x)
— xPg(x) Py —y(x),

and the result follows. O
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The next result deals with a special type of graph with several cutvertices.
Let G be a graph with n vertices, and let H be a graph with m vertices. The
corona G o H 1is the graph with n 4+ mn vertices obtained from G and n copies
of H by joining the i-th vertex of G to each vertex in the i-th copy of H (i =
1,...,n).

Theorem 2.2.5. Let G be a graph with n vertices, and let H be an r-regular
graph with m vertices. The characteristic polynomial of the corona G o H is
given by

Pgon (x) = Pg (x - L) (Py ()"

X —r

Proof. We may express Pgop (x) in the form

xI —A —-Ji - —Jn
-J' xI-B
—J,' xI — B

-7’ xI —B
where (i) A, B are the adjacency matrices of the graphs G, H respectively,
(i) J is the n x m matrix in which each entry of the k-th row is 1 and all other
entries are 0.
For each k = 1,...,n let s; be the sum of rows n + (k — 1)m + 1,
n+k—Dm+2,....,n+ (k— 1)m + m, and subtract (x — r)~Ls; from
the k-th row. We find Pgopg (x) =

(x—%)I—A ) o . o0

—Jr xI—B

_j2T xI — B :PG<X—L>(PH(X))n'

X —r
-7 xI — B

O
As a special case of this result , we have Pgox, (x) = x" Pg (x — %) Thus

if A1, ..., A, are the eigenvalues of G, then% (Ai + ,/Al.z + 4) (i=1,...,n)
are the eigenvalues of G o K.

We now turn our attention to the vertex-deleted subgraphs which feature in
Theorems 2.2.1 to 2.2.4. The formulae there can be refined by using graph
angles, introduced in Section 1.3.
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Proposition 2.2.6. Let G — j be the graph obtained from G by deleting the
vertex j and all edges containing j. Then

2

m
PG—j(x) = Pg(x) 1
! ; X — [

Proof. Since the adjoint of x/ — A isdet(x] — A)(x] — A)~L, we have

m
1
adj(x] — A) = Po(x) ) P
i YT
The result follows by equating diagonal entries in this matrix equation. O

Thus, given the spectrum of G, knowledge of the characteristic polynomials
of its vertex-deleted subgraphs is equivalent to knowledge of the angles of G.
Also, Theorem 2.2.1 yields:

m o2
PG.(x) =P - v, 2.20
G;(x) = Pg(x) (x ;x_m) (2.20)

while from Theorem 2.2.2 we obtain:

Proposition 2.2.7 [CvRol]. Let G’} be the graph obtained from G by adding
a path of length n at vertex j, and let pj, be the index of G;?. Suppose that
Pjn — pj > 2 asn — oo. Then p; is the largest positive solution of the

equation
2

1 - o
§(x+\/x2—4)—z L——)

X — Wi
im i

Proof. By Theorem 2.2.2, p; is the largest positive solution of the equation

1
> (x +/x2 —4) P (x) — Pg_;(x) = 0.

Moreover Pg(p;) # O since p;; > . The result therefore follows
immediately from Proposition 2.2.6. a

Restatements of Theorems 2.2.3 and 2.2.4 in terms of angles are left as
exercises (see Exercises 2.8 and 2.9).

As in the previous section, we may use walk generating functions for G in
place of angles of G when the spectrum of G is known. Let HjG (t) be the
generating function for the number of closed walks of length k in G starting
(and terminating) at the vertex j. Thus HjG (t) = Z,fio a;];.)tk where A% =

(ag.‘)). From Equation (1.10) we obtain


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.003
https:/www.cambridge.org/core

34 Graph operations and modifications

<") Za, ik (2.21)

and so ”
HE (1) —Z Z%,M, > af /(= ).
k=0 i=1 i=1

Now, for example, we have
1 6 (1
Po_j(x)=—-Pc(X)H; | - |,
X X
and hence also
HY (1) = P—j(1/1)/1PG(1/1).

Before we establish a general formula for the characteristic polynomial of a
graph modified by the addition of a vertex, we rewrite two of the results already
described. The formula (2.20) can be written in the form

[ Piej1?
P, (x) = Po(x) [x =Y ———, (2.22)
i X T
while (2.8) can be written in the form
Il Pjl?
Pk v6(x) = PG (x) (x - Z P (2.23)
_ 1

These are special cases of the following result:

Theorem 2.2.8 [Row7]. Let G be a graph whose adjacency matrix A has
spectral decomposition A =y /L | i Pi. Let § # S € V(G) = {1,2,...,n}
and let G* be the graph obtained from G by adding one new vertex whose
neighbours are the vertices in S. Then

2

m o
Pg«(x) = Pg(x) (x — E E —1M> , where o; = || E Pieg]l.
1

i=1 keS

Proof. Let r be the characteristic vector of S; that is, r = Y jes € Since
adj(x] — A) = det(x] — A)(x] — A)~!, we have

el
Pge(x)=| " xlr_A '=xdet(xI—A)—rTadj(xI—A)r
m 2
| Pl
= Ps(x)|x — .
(-
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2.3 General reduction procedures

In the previous section we considered graphs constructed in prescribed
fashion from smaller graphs. Here, for an arbitrary graph G, we discuss
relations between Pg(x) and the characteristic polynomials of proper sub-
graphs of G.

Theorem 2.3.1 [Clar]. For any graph G, with V(G) = {l,...,n}, the
derivative of Pg(x) is given by

PG(x) =Y Po_j(x). (2.24)
j=1

Proof. The derivative of an n x n determinant is the sum of n determinants,
obtained by differentiating each row in turn. Let A be the adjacency matrix of
G, and A; the matrix obtained from A by deleting the j-th row and the j-th
column. Row-by-row differentiation of det(x/ — A) yields

Pi(x) =) det(x] — Aj) =Y Pg_j(x).
j=I j=I

Some remarks are in order (see also Section 8.3):

(1) It follows from Theorem 2.3.1 that if we know the polynomials
Pg_j(x) (j € V(G)), then we can determine Pg (x) to within some con-
stant c. We can determine ¢ if we also know one eigenvalue A of G. In
particular, if some Pg_;(x) has a repeated root A, then by the Interlacing
Theorem, A is an eigenvalue of G.

(i1) Itis known (see [CvLe2]) that if G is a tree then Pg(x) is determined by
the polynomials Pg_;(x) (j € V(G)).

(ii1) It is known (see [Tutl] or [LauSc, Section 10.3]) that, for any graph G,
Pg(x) is determined by the vertex-deleted subgraphs G — j (j € V(G)).

We mention without proof an algorithm for the recursive computation of the
characteristic polynomial of a multigraph G (where loops and multiple edges
are allowed). Let G — [uv] denote the graph obtained from G by deleting all
edges between u and v, and let G* be the graph obtained from G — [uv] by
amalgamating # and v. If m is the number of edges between u and v then
(see [Row3]):

PG (x) = PG—[uv)(x) + mPg+(x) +m(x —m)Pg_y—y(x) — mPg_y(x)
—mPg_y(x).
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This equation is called the deletion-contraction algorithm. Note that if G
is a graph then G* will have multiple edges precisely when u and v have
a common neighbour in G; hence the multigraph setting. Once again, the
equation is established by expanding the determinant which defines the char-
acteristic polynomial. For subsequent results we need to relate the coefficients
of Pg(x) to the structure of G, and our starting point is the following result.
Here an elementary graph is a graph in which each component is K, or a
cycle.

Theorem 2.3.2 [Harl]. If G is a graph with n vertices and adjacency matrix
A, then
det(A) = (—=1)" Y (=12,
HeH
where 'H is the set of elementary spanning subgraphs of G, p(H) denotes the
number of components of H and c(H) denotes the number of cycles in H.

Proof. Consider a term sgn(w)ai »(1)d2,7(2) - - - dn,z(») in the expansion of
det(A). If this term is non-zero then j ~ m(j) forall j = 1,2, ..., n. Thus m is
fixed-point-free and can be expressed as a composition y|ys - - - y; of disjoint
cyclic permutations of length at least 2. This expression determines an ele-
mentary spanning subgraph H in which the components isomorphic to K> are
determined by the transpositions among the y;, and the cycles are determined
by the remaining y;. The sign of 7 is (—1)", where r = Z;Zl(é(yi) )
and £(y;) is the length of y;. Since + = p(H) and Z;Zlﬁ(m) = n, we
have sgn() = (—1)""P)_Finally, H arises from 2¢(*/ ) permutations with
the same sign as 7, namely ylilyzil e ysilys_H -+ ¥, where s = ¢(H) and
Y1, V2, - - ., Vs are the y; of length > 2. |

Corollary 2.3.3 (Sachs’ Coefficient Theorem [Sac2]). Let Pg(x) = x" +
c1x" V- ey 1x + ¢y, and let H; be the set of elementary subgraphs of
G with i vertices. Then

c= 3 (PR =1, ),
HeH;

Proof. The number (—1)'¢; is the sum of all i x i principal minors of
A, and each such minor is the determinant of the adjacency matrix of an
induced subgraph on i vertices. An elementary subgraph with i vertices is con-
tained in exactly one such subgraph, and so the result follows by applying
Theorem 2.3.2 to each minor. O
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Theorem 2.3.4 [Sch2]. (i) For any vertex u of the graph G,

PG(x) = xPgu(¥) = Y Pous(¥) =2 Y Po_vizp(x), (225
v~u 7eC(u)

where C(u) denotes the set of all cycles containing u.
(ii) For any edge uv of the graph G,

PG(x) = PGun(x) = PGu—v(®) =2 Y Po_v(z)(x), (2.26)
ZeC(uv)

where C(uv) denotes the set of all cycles containing uv.

Proof. (i) We follow the original proof of Schwenk by defining a one-to-one
correspondence H <> H' between elementary subgraphs that contribute to
a coefficient on the left-hand side of (2.25), and those that contribute to a
coefficient on the right-hand side. We distinguish three possibilities for an
elementary subgraph H of G on i vertices:

(a) ifu ¢ V(H) then H = H, regarded as a subgraph of G — u;

(b) if u lies in a component K = K, of H, then H = H — V(K), regarded
as a subgraph of G — V(K);

(c) if u liesinacycle Z of H, then H' = H — V(Z), regarded as a subgraph
of G —V(2).

Now, by applying Corollary 2.3.3 to each of the graphs that feature in (2.25),
we can show that if H contributes ¢ to the coefficient of x” ' on the left, then
H' contributes c to the coefficient of x"~* on the right.

In case (a), H’' contributes ¢ to the coefficient of x" =1~ in Pg_,(x), hence
contributes ¢ to the coefficient of x”~ in x Pg_,(x). (Note that H' does not
contribute to the coefficient of x”~/ in the remaining terms.)

In case (b), H' is an elementary spanning subgraph of exactly one graph
G —u — v with v ~ u, namely G — V(K). Its contribution to the coefficient
of x(=2=(=2) (= xn=iy g (_l)p(H’)ZC(H’) = —(=1)PH)cH) —

In case (c), H' is an elementary spanning subgraph of exactly one graph G —
V(Z) with Z € C(u). If |V(Z)| = r, then the contribution of H' to the coef-
ﬁclient of x=N=E=r) (= yn=i) jg (—1)PHI2H) = L (—1)ptH)pcH) =
— EC.

(ii) The proof, by exactly the same method, is left to the reader. a
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Finally, we mention without proof the following consequence of Jacobi’s
Theorem on the minors of an adjoint matrix (see [Pra, Section 2.5]):

Theorem 2.3.5. Let u and v be vertices of the graph G, and let P, be the set
of all u-v paths in G. Then
2

PG (X) PG—y(x) = Pa(¥) PG—uv(®) = | Y Pg_vip)(x)
PePyy

2.4 Line graphs and related operations

In this section we discuss the characteristic polynomials of line graphs and
generalized line graphs, along with some related graph operations.

If G is a regular graph, then the characteristic polynomial of L(G) can be
expressed in terms of the characteristic polynomial of G, as follows.

Theorem 2.4.1. If G is a regular graph of degree r, with n vertices and m (=
%nr) edges, then

PrLG)(x) = (x +2)" " Pg(x —r +2).

Proof. Recall that BBT = A+ rI and B'B = A(L(G)) + 21, where A =
A(G) and B is the incidence matrix of G. The theorem follows from the fact
that BB and B B have the same non-zero eigenvalues. a

In the general case, we have:
BB =A+D, B'B=A(LG))+2I, (2.27)

where D is the diagonal matrix of vertex degrees. From these relations we
immediately obtain

Priy(x) = (x+ 2)" Qg (x +2), (2.28)

where Q¢ (x) is the characteristic polynomial of the signless Laplacian matrix
Q = A + D. Properties of the matrix Q and the corresponding spectrum will
be discussed in Chapter 7.

The next theorem shows that a relation between Pg(x) and Pp(G)(x) can
be established for certain non-regular graphs. Here we make use of the fact
that if M is a non-singular square matrix, then (writing |M| for det(M)) we

have:
M N

_ . _ -1
p o |=M ‘Q PM~'N|. (2.29)
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Theorem 2.4.2 [Cvel]. Let G be a semi-regular bipartite graph with n inde-
pendent vertices of degree r1 and ny independent vertices of degree r>, where
ny > na. Then

ny—ny
o]
Pr(6)(x) = (x + 2)P Pg (Jaraz) (a—2) :
whereaj =x —ri +2 (0 =1,2)and B =niry —ny — no.

Proof. We have

(x =11y, —KT

QG(X)=|x1—A—D|=‘ e G
ny

where K is an ny x n matrix. Making use of (2.29), we have:

I
(x —r)l, — K—"—KT
X — T

u—nxx—mmu—KKW

[xI —A—D|=(x—r)"

=(x—r)""

= (x —r)" T Py ((x —r)(x — 1)), (2.30)

where we write Pys(x) for the characteristic polynomial of a matrix M. Now
Py x7(x) can be expressed in terms of the characteristic polynomial of A.

We have . -
A 0O K A= K'K O .
K O (0] KK

and Pprg(x) = x"7"2Pp 1 (x). Thus Pya(x) = x™ ™2 PKKT(X)z. On the
other hand, since the eigenvalues of A% are the squares of the eigenvalues of
A, and the latter are symmetric about 0 (see Exercise 1.6 and Theorem 3.2.3),
we have P> (x2) = Pa(x)2. Accordingly we obtain

Pt () = o 229 i by (). 2.31)

xnhi—n2

Combining expressions (2.28), (2.30) and (2.31), we obtain the required
formula. O

Corollary 2.4.3. If G is a semi-regular bipartite graph with parameters
(ny,n2,r1,1r2) (ny =n2) and if Ay, Ao, ..., Ay, are the first ny largest eigen-
values of G, then

PL)(x) = (x —r1 —ra 4 2)(x — ri +2)" 72 (x 42yt
ny

< [T =+ —r+2) —2).
i=2
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Proof. The largest eigenvalue A; is given by A = /r|r because

(0 6 ) () =vmm (V)

Moreover, G contains at least n| — ny eigenvalues equal to 0, because K has
rank at most 2. Now the result follows from Theorem 2.4.2 when we expand
(x—r+2(x—r2+2) — A% O

Next we determine the characteristic polynomials of graphs obtained from
regular graphs by other unary operations.

Recall that the subdivision graph S(G) of a graph G is the graph obtained
by inserting a new vertex into every edge of G. The subdivision graph is a
bipartite graph whose adjacency matrix is of the form

0 BT
B 0O )’

where B is the incidence matrix of G. Using Equations (2.27) and (2.29)
we have

I, —-BT
PS(G)(X) = x_lr; oI = x" — xm—n|x21n _ BBT|
n

1
xI, — B—1,B"
X

If G is r-regular then BBT = A +r1, and so we arrive at the following result:

Theorem 2.4.4. If G is a graph with n vertices and m edges then
Ps6)(x) = x" " Qg (x).
In particular, if G is r-regular, then

PsGy(x) = x" " Pg(x* —r). (2.32)

Let R(G) be the graph obtained from G by adding, for each edge uv, a new
vertex whose neighbours are u and v. Thus the adjacency matrix of R(G) is of

the form
O BT
B A )’

Theorem 2.4.5 [Cve4]. If G is a regular graph of degree r with n vertices and
1
m (: 5”) edges, then
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PR (.X) = Xm "(x + l)nPG (2 33)
© x+1 ' '
Proof. We have

xI, —BT
—-B xI,—A

=" L —xA—A—rL| = X" (P = 1), — (x + DA]|
2 _
zxm—n(x + 1)”PG (x r>.

1
‘:xW xI,—A— —BB'
X

Priy(x) = ‘

x+1
O

Next, let Q(G) be the graph obtained from G by inserting a new ver-
tex into each edge of G, and joining by edges those pairs of new vertices
which lie on adjacent edges of G. The adjacency matrix of Q(G) is then of

the form
0O B
BT C)’

where C = A(L(G)). Arguments similar to those above lead to the following
result:

Theorem 2.4.6 [Cved]. Let G be a graph with n vertices and m edges. Then

_ x2
PoGy(x) =x"""(x + D" Pr) < o ) . (2.34)

In the case that G is regular, we may apply Theorem 1.4.1 to obtain:
Corollary 2.4.7. If G is a regular graph of degree r then

X2—r=Dx—r
x+1 '

Poicy(x) = (x+2)""(x + )" Pg ( (2.35)

Consideration of Q(G), R(G) and S(G) leads us naturally to the investiga-
tion of total graphs: the total graph T (G) of a graph G is the graph whose
vertices are the vertices and edges of G, with two vertices of 7'(G) adjacent if
and only if the corresponding elements of G are adjacent or incident. Thus the
adjacency matrix of 7'(G) has the form

(i 2)
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If G is r-regular with n vertices and m edges, we have

P ) xI +rI —BB' -B
T(G)WX) =
© -BT xI+2I— BB
| @+n1-BBT —-B
| =x+r+DBT+BTBBT  (x+2)1
| @+n1-BBT + LB(~(+r+ )BT +BTBBT 0
| —«xc+r+ )BT +B"BBT (x+2)1
1
=(x+2)" xl—A+—(A+r1)(A—(x+1)1‘
x+2
= (x 42y A2—(2x—r+3)A+(x2—(r—2)x—r)I‘.
It follows that if A1, ..., A, are the eigenvalues of A then

Proy® = +2" " [] (,\% Q=43 P — (= 2x — r)
i=1
— (x+2)m—"]_[(x2—(2xi+r—2)x+,\l.2+(r—3)x,- —r).
i=1

Thus we have the following theorem.

Theorem 2.4.8 [Cve3]. Let G be a regular graph of degree r (r > 1) having
n vertices and m edges. If the eigenvalues of G are A1, . .., A,, then T (G) has
m — n eigenvalues equal to —2 and the following 2n eigenvalues:

1
5(2)»1+r—2i\/4)»,-+r2+4> G=1,....n).

In discussing the eigenvalues of 7' (G) arising in Theorem 2.4.8, we shall
consider only connected graphs. Note that —r < A; <r (i =1,...,n), and
consider the functions

1
f](x)z§<2x+r—2+\/4x+r2+4>,

1
f2(X)=§<2x—|—r—2_ 4x+r2+4),

Suppose first that » > 2. Both functions are increasing on the interval [—r, r];
the first one maps this interval onto [—2, 2r], the second onto [—r, r —2]. Thus
the eigenvalues of 7' (G) lie in the interval [—r, 2r] (an observation that holds
also for r = 1). The largest eigenvalue is, naturally, equal to 2r, while r — 2
always lies in the spectrum. The smallest eigenvalue is equal to —r if and only
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if G is bipartite (see Theorem 3.2.4). The multiplicity of the eigenvalue —2 in
T(G)isequaltom —n 4+ m(—r) + m(—1), where m(A) is the multiplicity of
the eigenvalue X in G.

Now suppose that r = 2. In this case the function f>(x) has a minimum
at x = —7/4. Since f>(—7/4) = —9/4, the smallest eigenvalue of T(G) is
greater than —9/4. Equality can never hold, since an eigenvalue of a graph can-
not be rational non—integral number. But, since the eigenvalues of a connected
regular graph G of degree 2 with n vertices are 2 cos 27”1' (i=12,...,n)
(see Example 1.1.4), there exist graphs G for which the smallest eigenvalue of
T (G) is arbitrarily close to the lower bound —9/4.

Lastly, the case r = 1 is quite simple: G has eigenvalues 1, —1, and 7(G)
has eigenvalues 2, —1, —1.

Turning now to generalized line graphs, we give a result which, in one
special case, yields the whole spectrum. No general formula is known.

Theorem 2.4.9. Let G be a graph having vertex degrees dy, dy, ...,d,.
If ay, az, ...,a, are non-negative integers such that d; + 2a; = d, i =
1,2,...,n, then

n
PL(G:ay.ap....ap)(*) = x4 (x + 2)ynntapo(xy —d+2), wherea = Zai.

i=1

Proof. An incidence matrix of L(G; ay, as, ..., a,) has the form
B L L, ... L,
o M O ... O
C = O 0 M, ... O
o 0 0 ... M,

where B is the incidence matrix of G; L; is an n x 2a; matrix in which all
entries of the i-th row are 1, and all other entries are 0; and M; is an a; X 2a;
matrix of the form (I | — I). We have CTC = A + 21, where now A is the
adjacency matrix of L(G;ay, az, ..., a,), and the theorem follows from the
fact that CT C and CCT have the same non-zero eigenvalues. a

2.5 Cartesian type operations

Next, we consider a very general graph operation called NEPS (non-complete
extended p-sum) of graphs.
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Definition 2.5.1. Let B be a set of non-zero binary n-tuples, i.e. B C
{0, 1}"\{(0, ..., 0)}. The NEPS of graphs G, ..., G, with basis B is the
graph with vertex set V(G1) x --- x V(G,), in which two vertices, say
(x1,...,xy)and (y1, ..., yn), are adjacent if and only if there exists an n-tuple
B = (B1,-..,Bn) € Bsuch that x; = y; whenever 8; = 0, and x; is adjacent
to y; (in G;) whenever 8; = 1.

Clearly the NEPS construction generates many binary graph operations in
which the vertex set of the resulting graph is the Cartesian product of the vertex
sets of the graphs on which the operation is performed. We mention some
special cases in which a graph is the NEPS of graphs G1, ..., G, with basis B.
In particular, for n = 2 we have the following familiar operations:

(i) the sum G| + G, when B = {(0, 1), (1, 0)};
(ii) the product G| x G, when B = {(1, D};
(iii) the strong product G| * G, when B = {(0, 1), (1, 0), (1, 1)}.

(A variety of terms for these particular constructions can be found in the
literature.)

The notion of NEPS arises in a natural way when studying spectral
properties of graphs obtained by binary operations of the type mentioned
above.

The adjacency matrix of a NEPS can be expressed in terms of the adjacency
matrices of the constituent graphs by means of the Kronecker product of matri-
ces. We define this product below, and note the properties which enable us to
describe the spectrum of a NEPS.

Definition 2.5.2. The Kronecker product A ® B of matrices A = (a;j)mxn
and B = (b;j) pxq 1s the mp x ng matrix obtained from A by replacing each
element a;; with the block a;; B.

Thus the entries A ® B consist of all the mnpg possible products of an entry
of A with an entry of B. The Kronecker product is an associative operation,
and the following relations are well known (see, for example, [MaMi], p. 18
and p. 8). For square matrices A and B, we have

r(A® B) = trA - tr B, (2.36)

while
(A® B)-(C®D)=(AC)® (BD) (2.37)

whenever the products AC and B D exist.
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Starting from (2.37) and using induction, we obtain

(A® @A) (BI® @By (M ® - ®M,)
:(AlBl"‘Ml)®"‘®(Aan"'Mn)~ (238)

The proof of the next result is left as an exercise.

Theorem 2.5.3. Let Ay, ..., A, be adjacency matrices of graphs G1, ..., G,
respectively. The NEPS G with basis B of graphs G1, . .., G, has as adjacency
matrix the matrix A given by

A=Y A®.. @Al (2.39)
BeB

Here Ag is the identity matrix of the same size as Ag, and A,lc = Ag.

One consequence of Theorem 2.5.3 is the following result.

Theorem 2.5.4. If X1, ..., Aix; are the eigenvalues of G; (i =1, ..., n), then
the spectrum of the NEPS of Gy, ..., G, with basis B consists of all possible
values Aj, . ...;, where

.....

o _ZAIH A =1k k=100 0. (2.40)

Proof. Let x;; (j = 1,...,k;) be linearly independent eigenvectors of G;,
with A;x;; = A% (0 = 1,2,...,n;j = 1,2,...,k;). Consider the
vector

X =X, - ® Xy,

Using Theorem 2.5.3, we see that Ax = A; . ;X. In this way, we find
kiks - - - k, linearly independent eigenvectors, and hence all k1k» - - - k,, eigen-

values. U

Thus if Ay,..., A, and p@y, ..., u, are the eigenvalues of G and H,
respectively, then:

Ai+pj@=1,...,n; j=1,...,m) are the eigenvalues of G + H;
Aipj (i =1,...,n; j=1,..., m) are the eigenvalues of G x H;
Ai -HL/-H»zM]( 1,...,m ]_1 ., m) are the eigenvalues of G x H.

Example 2.5.5. We have L(K,, ,) = K,, + K,. Since K, has spectrum
n—1,(=D)"Tweobtainm+n—2, (n—2)""1, (m—2)""1, (=2)m=be-D
for the spectrum of L(Ky; ). O
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2.6 Spectra of graphs of particular types

In this section we shall determine the characteristic polynomials and spectra
of certain graphs making use of the results described in this chapter. Some of
the results of this section are well known in matrix theory, but we will deduce
them using methods more consistent with the theory we have developed.

1. For the null graph G with n vertices, we see immediately that Pg(x) =
x"; in other words, the spectrum consists of n eigenvalues equal to 0.

2. The complete graph K, with n vertices is the complement of the graph
of the previous example, and by Theorem 2.1.2 we have Pk, (x) = (x —n +
D(x + )", that is, the spectrum of K, consists of the eigenvalue n — 1 and
n — 1 eigenvalues equal to —1.

3. Each component of a regular graph G of degree 1 is isomorphic to the
graph K>, with characteristic polynomial x> — 1. If G has 2k vertices, then by
Theorem 2.1.1 we have Pg(x) = ()c2 — 1)]‘.

4. The complement of the graph kK, above is the regular graph H of
degree n — 2 with n = 2k vertices (i.e. the cocktail party graph C P (k)).
By Theorem 2.1.2, its characteristic polynomial is Py (x) = (x — 2k + 2)xk
(x +2)F 1,

5. For the complete bipartite graph K, n,, we exploit the relation K, ,, =
G1 v G2, where G, G, are graphs which consist of ny, ny isolated vertices,
respectively. Since Pg,(x) = x"! and Pg,(x) = x"2, Theorem 2.1.4 yields
PK,,M2 x) = ()c2 — niny) - xM+T22 Thys the spectrum of the graph K, ,,
consists of \/niny, —/ninz and n| + np — 2 eigenvalues equal to 0. If n =
n and np = 1, we obtain a star with n + 1 vertices, and its characteristic
polynomial is Pk, ,(x) = (x2 —n)x" L

6. As already determined in Example 1.1.4, the spectrum of a cycle C,, con-

sists of the numbers 2 cos —nj (j=1,...,n). Now cos —nj (G=1,..n)
are the roots of 7,,(x) — 1, v,v1here T, (x) is a Chebyshev polynomial of the first
kind, defined by
cos nf = T, (cos 0).
Explicitly,
[n/2]

n (n—k
Tn(x) — Z(_l)k ( )Zn_2k_l.xn_2k,
P n—k\ &k

an expression which may be derived from the recurrence relation Ty41(x) =
2xTi(x) — Tx—1(x) (k = 1). Thus Pc,(x) = 2(T,, (x/2) — 1), that is,

[n/2] 0 In—k
P =24 (=D =2k,
Cn(X) +k=()( ) n—k( k )x
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7. By applying Theorem 2.2.3 we can deduce from the previous result the
characteristic polynomial and spectrum of the path P, with n vertices. All
vertex-deleted subgraphs of C,, are isomorphic to the path P,_;. Therefore,

1
Pp,_ (x) = ;Pén (x), and so

(n/2]

Pp,x) = ) (=1 <” ;k>x”—2k.

k=0
Chebyshev polynomials of the second kind are defined by
i 1o
Ul’l (COS 9) — W—+) .
sin 6
Thus 7)) (cos 0) = nU,—;(cos0), and so Pp, (x) = Uy,(x/2). It follows that the

TAUES )

8. The complete multipartite graph K, ... », is the complement of the graph
G =Ky, U -+ UK,,. We may extend the formula (2.5) to such a graph G, to
obtain

. F14
spectrum of the path P, consists of the numbers 2 cos
n

k
n
Ps(x) = (=1)"Pg(=1—x) {1 — ' :
5 (x) = (=1)" Po( x)! §<x+1)+(m—1>}
where n = nj + - -- + nyg. Since

Pox) =+ D" o —ni+ 1) (x —nmg + ),

we readily obtain:

i1 T j=1
or
Koy (X) = Z(l —i)Six",
where So = 1 and for i € {l,...,k}, S; is the i-th elementary symmetric
function of the numbers ny, ..., ng.

9. Interesting graphs can be obtained if we consider the sum of two paths, or
of a path and a cycle, or of two cycles.

The sum of two paths having m and n vertices respectively is the graph of
an m x n lattice, represented in Fig. 2.1. According to Theorem 2.5.4, the
spectrum of this graph consists of all numbers of the form

2 cos

T, T
Jj +2cos
1 n

Tk U= lmik= 1),
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| — -

Figure 2.1 The sum of two paths.

The sum of the cycle C,, and the path P, gives the graph of an analogous
lattice on a cylinder which can be obtained from the graph of Fig 2.1 (with
m + 1 instead of m) by identifying the vertices of the first row with the cor-
responding vertices of the last row. The spectrum of this graph consists of the
numbers

T

2 . .
2cos — j + 2cos lk G=1,....mk=1,...,n).
m

n—+
In similar fashion, the sum of two cycles is the graph of a square lattice on a
torus, and its spectrum consists of the numbers

2 2
2cos—j+2cos—k (j=1,....mk=1,...,n).
m n

If we consider the strong product instead of the sum, we obtain the graphs
corresponding to modified square lattices, in which ‘diagonals’ are added to
each ‘square’. Again, the spectra can be easily determined.

10. The graph of a k-dimensional (finite) lattice is a graph G whose vertices
are all the k-tuples of numbers 1, .. ., n, with two k-tuples adjacent if and only
if they differ in exactly one coordinate. For n = 2, G is just the hypercube Qy.
For k = 2 the graph G is just L(K, ,), and for k = 3 we obtain the cubic
lattice graph. In the general case, G is the sum of k graphs, each isomorphic to
K,,. Now the sum G| + - - - + G is a NEPS whose basis consists of all k-tuples
of the numbers 0, 1 in which exactly one number 1 appears. By Theorem 2.5.4,
the eigenvalues of G| + - - - + Gy are the numbers Ay;, +- - - + Ag;, , Where Ajij
is an eigenvalue of G . In the case that each G is isomorphic to K,,, we find
that the eigenvalues of G are the numbers A; = n(k — j) — k with multiplicity

k -
pi = <j>(n—1)J (j=0,1,....k).
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11. The Mobius ladder M,, is the graph with 2n vertices 1, ..., 2n in which
the following pairs of vertices are adjacent:

(G, j+D, j=1,....2n—1,
(1,2n),
(J,j+n), j=1,...,n.

In other words, the adjacency matrix A of M, is a circulant 2n x 2n matrix
whose entries in the first row are equal to O except for 1 in the second,
(n 4 1)-th, and (2n)-th columns. Thus A = P + P" + P?"~! where P is the
permutation matrix determined by a cyclic permutation of length 2n. Therefore
(cf. Example 1.1.4) the spectrum of M,, consists of numbers

27 . 2rj A\ i\ 2n—1
aj=ed 4 (e3) 4 (e3) (=+—T: j=1,...2n),

that is,
T .
Aj=2cos—j+ (=1 (j=1,...,2n),
n

a formula similar to those above, but obtained without invoking the results of
this chapter.

Exercises

2.1 For the graph G of Example 1.1.3, find Pg(x) by using the fact that
G=Ki22.

2.2 Show that the Petersen graph (Example 1.1.5) is isomorphic to L(K5s),
and use this fact to determine its spectrum.

2.3 Prove Proposition 2.1.4.

2.4 Let G/ be the multigraph obtained from G by adding a loop at vertex j.

Show that
m aiZ'
Pgi(x) = PG(x) (1—2 ! )

X — Wi
izl Hi

2.5 Prove Theorem 2.2.1.

2.6 Let G be a graph with a pendant edge uv. Show that 0 has the same
multiplicity as an eigenvalue of G and G — u — v.

2.7 Let Gj, G/j be the B-graphs obtained from the B-graph G by adding, at
the vertex j, a pendant edge and a petal, respectively. Show that

PL(G})(X) = —2xPL(Gj)(x) — 2x2PL(G)(x).
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2.8

2.9

2.10

2.11

2.12
2.13

2.14

2.15
2.16

2.17

Graph operations and modifications

Let F be the graph obtained from G U H by introducing an edge between
the vertex u of G and the vertex v of H. Show that

U o? 6,%
Pp(x) = Pg(x) Py (x) {1 — —
;,; (x — pi)(x —ve)
1= =
where ayy, ..., oy, are the angles of G at u, and 61, ..., ), are the
angles of H at v.
Let F be the coalescence of graphs G and H obtained by identifying
the vertex u of G with the vertex v of H. Show that (in the notation of
Exercise 2.8)

Pr(x) = *PG(X)PH(X) {1_ (1_xzx—u ) (1_xzxy—kvvl<>}.

i=1
Let F' - G be the coalescence whose vertex w is obtained by identifying
the vertex u of F with the vertex v of G. Show that

1 1 1
HEG@t)  HF(1r) + HG (1)

Prove by induction on k that the k-th derivative of the characteristic
polynomial of a graph G is given by the formula

PP =k > Po_s(x),

|S|=k
where the summation runs over all k-subsets S of V(G).
Verify the deletion-contraction algorithm [Row3].

Use the deletion-contraction algorithm to prove that if the graph H is
obtained from the graph G by subdividing the edge uv then

Py (x) = Pc(x)+(x—1)PG_yy(x)— PGy (x)— PGy (X)+ PG —y—y(X).

Let T be a tree with 2k vertices. Use Corollary 2.3.3 to show that the
constant term in Pr(x) is (=¥ or 0 according as T does or does not
have a perfect matching.

Prove Theorem 2.3.4(ii).

Let G be an r-regular graph with n vertices such that both G and G are
connected. Show that

Pg_j(x) Pg_ ]( x_l)_ 1
Pg(x) Pe(—x—1)  (x—rx+n—r)

Prove Theorem 2.5.3.
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2.18 Show that (i) if G is a bipartite graph then K, x G = 2G, (ii)) if G is a
connected non-bipartite graph then K, x G is a connected bipartite graph.

2.19 Let A be a simple eigenvalue of the graph G. Show that £(1) is spanned
by a vector (x1,...,%x,) " such that sz. = |Pg;M (j =1,...,n)
[CVRS9].

Notes

A majority of the results in this chapter, some with different proofs, can be
found in Chapter 2 of [CvDSa] or Chapter 4 of [CvRS2], along with ref-
erences to the original papers. The characteristic polynomials of a join of
graphs (Theorem 2.1.5) and a complete multipartite graph (Section 2.6) were
originally derived by means of walk generating functions. Sachs’ Coefficient
Theorem (Corollary 2.3.3) was proved independently by Spialter [Spia] and
Mili¢ [Mil]. Theorems 2.2.1, 2.2.3 and 2.2.4 can be obtained as consequences
of the deletion-contraction algorithm (see [Row3]). Formula (2.23) appears in
[Cve4], while [Mnu] contains a generalization of Theorem 2.4.4 to the k-th
subdivision graph S; (G) (obtained from G by inserting k vertices of degree 2
in each edge).

A survey of characteristic polynomials of modified graphs is given in
[Row11]. Local modifications of a graph may be regarded as graph pertur-
bations (see Section 8.1), and the resulting perturbations of eigenvalues are
discussed in [Row5, Row6] and [CVRS2, Chapter 6]. Corollary 2.4.7 corrects
Equation (2.37) of [CvDSa]. A review of results on NEPS can be found in
[CvSil].
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Spectrum and structure

In this chapter we consider various relations between the structure of a graph
and its spectrum. We saw in Chapter 1 that the spectrum of a graph does not
determine the graph up to isomorphism; nevertheless, often significant infor-
mation on graph invariants or properties can be extracted from the spectrum.
We consider constraints on certain eigenvalues as well as the role of further
spectral invariants such as graph angles.

3.1 Counting certain subgraphs

The following result, noted in Chapter 1 as a consequence of Proposition 1.3.4,
plays a basic role in counting certain subgraphs of a graph with spectrum A; >
A2 = = Ay

Theorem 3.1.1. The number of closed walks of length k in a graph G is equal
to s, where

n
sk= Y M, (3.1)
i=1

the k-th spectral moment of G.

Clearly s; = 0 (equivalently, G has no loops). If G has e edges and ¢
triangles, then s, = 2e and s3 = 6¢. To see this, note first that a closed
walk of length 2 traverses an edge, while the edge ij accounts for two
closed walks of length 2, namely iji and jij. Secondly, a closed walk of
length 3 traverses a triangle, and each triangle accounts for six closed walks
of length 3 (there are three choices of starting point and two choices of
orientation).

52
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Accordingly, we have:

(i) the number of vertices is equal to the number of eigenvalues (with
repetitions);
(ii) the number of edges is equal to %sz;
(iii) the mean degree is %sz;
(iv) the number of triangles is equal to %S3;
(v) the average number of triangles containing a given vertex is ﬁs}

These observations explain why graphs are often ordered lexicographi-
cally by the sequence (sg,Si,...,S,—1), as in Tables A3 and A4 of the
Appendix. (Recall that sg, 51, ..., s,—1 determine the spectrum and hence all
other spectral moments.)

When k > 4, a closed walk of length k can trace more than one type of
subgraph; for example, when £ = 4 we have three possible types, namely
K>, P3 and C4. Moreover, when traversing Pz, the number of v-v walks of
length 4 depends on v. To take this fact into consideration, we use graph angles
(which are graph invariants related to the vertices): Equation (1.10) yields the
following ‘local’” counterpart of Theorem 3.1.1.

Theorem 3.1.2. The number ni(j) of closed walks of length k starting (and
terminating) at vertex j of a graph G is given by

m(j) =Y el (3.2)
i=1

An immediate consequence is that the degree of any vertex, and the number
of triangles incident with any vertex, can be extracted from the eigenvalues and
angles of a graph. In such situations we say that the corresponding invariant (or
property) is E A-reconstructible.

Theorem 3.1.3. The degree d; of vertex j, and the number t; of triangles
containing vertex j of a graph G, are given by

m m
1
_ 2 2 L 23
dj = 2 ik, 1= 5 § o -
i1 i=1

Proof. This follows from (3.2) since n2(j) = d; and n3(j) = 2t;. O

Remark 3.1.4. Let f be the number of subgraphs of G isomorphic to Ps.
Counting pairs of edges containing a given vertex, we find that f = )/, (%’)
Now it follows from Theorem 3.1.3 that f is E A-reconstructible. O
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2

Figure 3.1 Graphs from Theorem 3.1.5.

The next two results show that the number of quadrangles (4-cycles), and
the number of pentagons (5-cycles) are also E A-reconstructible.

Theorem 3.1.5 [CVRol]. The number q of quadrangles in a graph G is
given by

1 m n m
g=g) D i (u«?+ 1 —220113,#%)'

i=1 j=1 h=1

Proof. We first claim that s4 = 2e+4 f+8¢, where f (as above) is the number
of paths of length 2 in G. To see this, note that the subgraph traversed by a
closed walk of length 4 is K> or P3 or C4. For each of these graphs, Fig. 3.1
shows the number of closed walks of length 4 starting at each vertex (and
traversing the graph). The total number of closed walks of length 4 traversing
the graph is 2, 4 or 8 respectively.

Now e and s4 are determined by the spectrum of G, while f is EA-
reconstructible (see Remark 3.1.4). Accordingly, g is E A-reconstructible, and
the explicit formula is a matter of algebraic manipulation (Exercise 3.1). O

Theorem 3.1.6 [CvRol]. The number p of pentagons in a graph G is given by

1 v 2.3 2 - 2 .2
p=1g 2] 2 ki (1w +5=5) e )

i=1 j=1 h=1

Proof. Arguing as in the proof of the previous theorem, we have ss = 30t +
10s + 10p, where ¢ is the number of triangles and s the number of subgraphs
consisting of a triangle and one pendant edge. Note that s = Z';: 1ti(dj —
2), where d; and ¢; are given by Theorem 3.1.3. The result now follows by
algebraic manipulation (Exercise 3.2). a
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3.2 Regularity and bipartiteness

We know from Chapter 1 that vertex degrees are not determined by the spec-
trum of a graph (see Fig. 1.3). On the other hand, we can tell from the spectrum
whether or not all vertex degrees of G are the same, and if they are, we can
find the degree of regularity.

Theorem 3.2.1 [ColSi]. Let A1 be the index of the graph G, and let d and A
be its average degree and maximum degree, respectively. Then

d<xr <A.

Moreover, d = )y ifand only if G is regular. For a connected graph G, »y = A
if and only if G is regular.

Proof. For the first inequality, recall that the index of G is given by Equa-
tion (1.6):
A =sup{x' Ax : x € R", ||x|| = 1},

where A is the adjacency matrix of G. Taking x = \/Lz(l, 1,..., l)T, we see

that A; > d. Moreover, by Rayleigh’s Principle, equality holds if and only if
X = Ln(l, 1,..., 1)T is an eigenvector of G. But the latter holds if and only
if G is regular (Proposition 1.1.2).

The second inequality follows from Proposition 1.1.1, while if G is r-regular
then A1 = r (= A) by Proposition 1.1.2.

Now suppose that G is connected and A1 = A. Letx = (x1, x2, ..., x,,)T
be an eigenvector corresponding to A1. By Theorem 1.3.6 we may assume that
all entries of x are positive. Let x;, = max;{x;}. Now the equation

Ax, =) x, (3.3)
v~

shows that deg(u) = A and x, = x,, for all v ~ u. Repetition of the argument
shows that that all vertices have degree A (and that G has the all-1 vector as
an eigenvector). Thus G is regular. ]

Since nd = tr(A%) we immediately obtain the following:
Corollary 3.2.2. A graph G is regular (of degree A1) if and only if
nhp =23 403442
Thus regularity can be recognized from the spectrum. Next we show that

the same is true of bipartiteness. If G is bipartite on U U V, then G has an
adjacency matrix of the form
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A o P ’
Q0 O
where Q = PT; here, the non-zero row entries of P correspond to edges

incident with vertices from U, while the non-zero row entries of Q correspond
to edges incident with vertices from V. Now suppose that p is an eigenvalue

of G, and that
X = (y)
z

is an arbitrary eigenvector from &(u). Consequently, we have Pz = py and
Qy = pz. Consider next the vector

X = (_Y) .
(5 )0 () -() -

This shows not only that —u is an eigenvalue of G, but also that £(—u)
and £(u) have the same dimension. Thus we have proved (in answer to
Exercise 1.6) that the spectrum of a bipartite graph is symmetric about 0.

We will now prove that the converse is true. Accordingly, let G be a graph
whose spectrum is symmetric about 0. Then all the odd spectral moments of
G are zero; in particular, G has no cycles of odd length (by Theorem 3.1.1).
Hence G is bipartite, and we have the following result (rediscovered many
times in the literature).

We have

Theorem 3.2.3. A graph G is bipartite if and only if its spectrum is symmetric
with respect to the origin.

For connected graphs we have a substantially stronger result:

Theorem 3.2.4. A connected graph G is bipartite if and only if \| = —X,,.

Proof. In the light of Theorem 3.2.3, it remains to prove thatif . = —X,, then
G is bipartite. This is a consequence of a theorem of Frobenius [Gan, Vol. 2,
p. 53], but we can also argue as follows.

The largest eigenvalue of A? is )\%, and it is not a simple eigenvalue. By
Theorem 1.3.6, A? is reducible, say with bipartition U U V; then G has no
U-V walks of length 2. Suppose by way of contradiction that U has adjacent
vertices u and uy, and let v € V. Let wow; - - - w,, be a shortest path from
1y to v, and let k be least such that wyy| € V. If k > 0 then wy_jwrwi4
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is a U-V walk of length 2. If k = 0 then uowow; is a U-V walk of length 2,
a contradiction. Therefore, U is independent; similarly V is independent. This
completes the proof. O

We conclude this section by discussing cycles of shortest length. We define
the odd-girth of G, denoted by 0g(G), as the length of the shortest odd cycle.

The following theorem is stated in terms of the characteristic polynomial
Pg(x). (Although knowledge of Pg(x) is equivalent to knowledge of the
spectrum of G, computational considerations can make for differences in
practice.)

Theorem 3.2.5[Sac2]. Letx" 4+ c1x" 1 4+ cox" 2 4+ -+ - 4+ ¢cp_1x + ¢y, be the
characteristic polynomial of a graph G. Then the odd girth of G is equal to
the index of the first non-zero coefficient from the sequence c1, c3, cs, .. .; the
number of cycles of this length is equal to —%ch, where h = 0g(G).

Proof. Recall from Corollary 2.3.3 that

ci= Y (=P =12, n),
HeH,;

where H; is the set of all elementary subgraphs on i vertices (subgraphs of G
whose components are either cycles or isomorphic to K»), p(H) is the number
of components of H, and c¢(H) is the number of cycles in H.

Thus if og(G) = 2k + 1 then ¢4+ = 0 whenever / < k because then no
elementary subgraph has an odd number of vertices. In the case that k = [, an
elementary subgraph must be an odd cycle, and so cag+1 = —2s(G), where
s(G) is the number of cycles of length og(G). The result follows. o

A natural question now arises. Is it possible to identify (from the character-
istic polynomial) the length of the shortest even cycle, and to find the number
of such cycles? The answer is no. To see this, consider again the smallest pair
of cospectral graphs shown in Fig. 1.3(a): K 4 has no cycle, while C4 U K
has just one, which is even.

However, the following theorem of Sachs can sometimes be of use. Observe
first that if G has girth g then fori < g we have

o 0 if i is odd
T (=D9b, ifi =2q,

where b, is the number of elementary subgraphs consisting of g disjoint copies
of K>.
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For i = g, elementary subgraphs can be of two types, either disjoint copies
of K (arising only when g is even) or one copy of C,. Accordingly, we define

o cj if i is odd
L= . , 34
i {c,- —(=1)b, ifi=2g 34
fori = 1,2,...,n. Then ¢; = 0 fori < g, and —¢, is equal to twice the

number of cycles of length g. Thus we have proved:

Theorem 3.2.6. If ¢; is given by (3.4) then the girth g of G is equal to the index
of the first non-zero coefficient from the sequence ¢i, ¢3, C3, . . .; the number of
cycles of this length is equal to —%65,.

For regular graphs we can say more. As observed in [Sacl], if G is r-regular
with n vertices and girth g then for ¢ < g, b, can be expressed in terms of g,
n and r. Therefore we have:

Theorem 3.2.7 [Sac2]. If G is a regular graph, then the girth of G is
determined by its characteristic polynomial (and hence by the spectrum).

With a more detailed analysis, we can obtain the following result, stated
without proof.

Theorem 3.2.8 [Sac2]. Let G be an r-regular graph with n vertices and
girth g. If h < min{n, 2g — 1} then the number of cycles in G of length
h is determined by r and the coefficients ci, ca, ..., c in the characteristic
polynomial of G.

3.3 Connectedness and metric invariants

In general, connectedness is a property not determined by the spectrum of a
graph. (For instance, K 4 is connected, while Cy4 U K| is not.) Nevertheless,
for some classes of graphs, we can deduce whether or not G is connected.
Indeed, this is true for regular graphs, as we now demonstrate.

We have already seen in Corollary 3.2.2 that regularity can be recognized
from the spectrum. Moreover the degree of a regular graph G is just the index
of G (Proposition 1.1.2). By Theorem 1.3.6, each component of G contributes
one to the multiplicity of r, and so we have the following result:

Theorem 3.3.1. If G is r-regular then its index is equal to r, and the number
of components of G is equal to the multiplicity of r.

In the general case, it follows from Theorem 1.3.6 that the number of com-
ponents with index A; is equal to the multiplicity of A;. In Corollary 1.3.8 we
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noted a general condition for an arbitrary graph to be connected: a graph is con-
nected if and only if its index is of multiplicity one with a positive eigenvector.
This result can be seen in the context of angles as follows

Lemma 3.3.2. Vertices belonging to the components whose index coincides
with the index of a graph are EA-reconstructible.

Proof. We show that the vertices in question are precisely those vertices j for
which a1 # 0. First, if j does not lie in a component with index A then every
vector in £(A1) has j-th entry 0, and so e; is orthogonal to £(A1), equivalently,
aij = 0. On the other hand, if j does lie in a component with index A; then
by Theorem 1.3.6 there exists an eigenvector corresponding to A; whose j-th
entry is non-zero, and so a1 # 0. O

Theorem 3.3.3. The property of a graph being connected, or disconnected, is
EA-reconstructible.

Proof. By the previous lemma we can reconstruct all vertices belonging to
the components with index Aj. If the number of these vertices is less than the
number of vertices of the whole graph, then the graph is is not connected; oth-
erwise, the same conclusion holds when the index is not a simple eigenvalue.
Only in the remaining case is the graph connected. O

Remark 3.3.4. In view of Equation (1.9), we may now reformulate Corollary
1.3.8 as follows: a graph is connected if and only if Z’}zl ozfj =landoay; #
0 =1,...,n). a

If we restrict ourselves to connected graphs we can ask more: for example,
we can ask how large is the diameter, and we can pose the same question for
the eccentricities of the vertices. (Recall that the diameter diam(G) of a con-
nected graph G is the maximum distance between two vertices of G, while the
eccentricity ecc(u) of a vertex u is the maximum distance of a vertex from u.)

Theorem 3.3.5. If G is a connected graph with precisely m distinct eigenval-
ues then

diam(G) <m — 1.

Proof. Assume the contrary, so that G has vertices s and ¢ at distance m.
The adjacency matrix A of G has minimal polynomial of degree m, and so
we may write A" = Z:ol ay AF. This yields the required contradiction
because the (s, £)-entry on the right is zero, while the (s, 7)-entry on the left is

non-zero. O
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For upper bounds on the eccentricities in a connected graph, we make use
of the angle matrix (¢;;):

Theorem 3.3.6. Let u be a vertex in the connected graph G. If m(u) is the
number of non-zero entries in the u-th column of the angle matrix of G, then

ecc(u) <m(u) — 1.

Proof. Suppose by way of contradiction that e > m(u), where e = ecc(u).
From the spectral decomposition of the adjacency matrix A of G we have

AR =k Pk Py =0,1,2,000). (3.5)

Suppose that v is a vertex of G at distance e from u. Then the (u, v)-entry of
A¥is zero for all k € {0, 1,...,e — 1}. Let xj be the (u, v)-entry of P; (j =
1,2,...,m). Comparing (u, v)-entries in (3.5) (for k = 0,1,...,e — 1) we
obtain a system of e equations in the m unknowns xi, x2, ..., X;;, Which
reads

m
Zu’;x]:o k=0,1,...,e—1).
j=1

Note next that x; = (Pjeu)T(Pjev), which is zero if «j, = 0. Accordingly,
the above system reduces to a system of e equations in m(u) unknowns. The
system consisting of the first m (u) equations has a Vandermonde determinant,
and so all the remaining x; are also zero. From (3.5), we see that the (u, v)-
entry of Ak is zero for all k. Hence G is not connected, a contradiction. O

3.4 Line graphs and related graphs

We saw in Chapter 1 that the spectrum of any generalized line graph is bounded
from below by —2. However not every graph with this spectral property is a
generalized line graph (see Exercise 3.8), and an early problem in spectral
graph theory was to describe all the graphs whose spectrum lies in [—2, 00).
This problem has received much attention from researchers over the years, and
the graphs in question are now very well understood.

Definition 3.4.1. An exceptional graph is a connected graph, other than a
generalized line graph, with least eigenvalue > —2.

In this section we explain (without proofs of all the details) why there are
only finitely many exceptional graphs. We go on to discuss the multiplicity of
—2 as an eigenvalue of a generalized line graph, and to describe the graphs
with least eigenvalue greater than —2.
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Let A be the adjacency matrix of a graph with n vertices and least eigenvalue
> —2. Suppose that the multiplicity (possibly zero) of —2 is n — r, so that
A + 21 is a positive semi-definite matrix of rank r. As we saw in Section 1.3,
A+21 = QT Q for some r x n matrix Q. In other words, if Q = (qi|- - |qn),
then A+21 is the Gram matrix of the vectors q, . . . , q,. Note that ||q; || = v/2
and for i # j, we have

a/q; =1ifi ~j, q/q; =0ifi # .
Thus if ¢; is the line (1-dimensional subspace) in IR" spanned by q; then the
angle between £; and £; (i # j)is 60°if i ~ j, and 90°if i »* j.

Accordingly, we should investigate sets of lines at angles of 60° and 90°
(through the origin) in Euclidean space, and we call such sets line systems.
For fixed r, any line system in /R" is finite. This can be seen as follows, by
considering the points at which the lines intersect the unit sphere centred at the
origin: the distance between any two such points cannot be less than 1, and so
these points have disjoint neighbourhoods of fixed positive area on the surface
of the sphere.

A line system L is decomposable if it can be partitioned into two subsets £
and £; such that every line in £; is orthogonal to every line in £5; otherwise, £
is indecomposable. Note that, with the notation above, the system {{1, ..., {,}
is indecomposable if and only if G is connected.

A star is a set of three coplanar coincident lines such that the angle between
any pair of them is 60°. A system L of lines is star-closed if for any two lines
£, ¢" in L, the third line from the star determined by £ and ¢’ also lies in L.

Theorem 3.4.2. Any line system in IR" is contained in a star-closed line
system in IR".

Proof. Let £ be a line system in IR”, and consider any pair of lines in £ at
60°, say (x), (y) where x'x = y'y = 2 and x'y = —1. We show that if
(x +y) ¢ L then we may add (x+y) to obtain a larger line system (necessarily
also in IR"); note that (x +y) " (x +y) = 2. If (u) is any line of £ other than
(x), (y) then we may choose u so that u'u = 2 andu’ (x +y) € {0, 1,2}.
If howeveru' (x +y) = 2then (W —x—y)' (u—x —y) = 0 and we have
the contradiction u = x + y. Thus (u) makes an angle of 60° or 90° with
every line of £ and so it may be added to £ to form a line system L. If £’ is
not star-closed then the procedure may be repeated. In view of the finiteness
property noted above, we obtain a star-closed line system in IR" after finitely
many steps. O

For any line £ in a line system £ of size n, there are two vectors of length v/2
lying along £. The set of 21 such vectors arising from L is called a root system,
a term borrowed from the theory of Lie algebras. For any root system R, we
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write R for the line system determined by R. In 1976, Cameron, Goethals,
Seidel and Shult [CamGSS] classified the indecomposable star-closed systems
of lines as follows.

Theorem 3.4.3. To within an orthogonal transformation, the only indecom-
posable star-closed line systems are A,, D,, E¢, E7and Es, where

(i) Ay =1{ej—e;j:e,e; e R"Ti#£j 1<ij<n+tl) (n=23,...),
(ii) D, ={*e; *e;:e,e;cR", i#j 1<i,j<n} (n=273,..),
(i) Es=DsU{L 3% cei:e=%1, [P =1},

(iv) E7 = {u € Eg : u is orthogonal to a fixed vector in Eg },

(v) E¢ = {u € Eg :u is orthogonal to a fixed star in Eg }.

Several remarks are in order. First, the group of symmetries of Eg acts tran-
sitively on vectors and on stars, and so E7 and Eg are well defined. Secondly,
A1 € D, (n = 2,3,...). Also, |A,| = n(n + 1), |D,| = 2n(n — 1),
|Eg| =240, |E7] = 126 and |Eg| = 72.

We say that a graph G is represented in the root system R if its adjacency
matrix A satisfies A +27 = QT Q where the columns of Q lie in R. Proofs of
the next two theorems are left as exercises.

Theorem 3.4.4. A graph has a representation in A, if and only if it is the line
graph of a bipartite graph with n + 1 vertices.

Theorem 3.4.5. A graph has a representation in D,, if and only if it is a
generalized line graph.

As a consequence, we have:

Theorem 3.4.6. All exceptional graphs are representable in the root sys-
tem Eg.

It follows that there are only finitely many exceptional graphs. In principle,
they can be found by identifying all the subsets S of Eg with the property
that any two vectors in S have scalar product O or 1. (It suffices to find the
maximal subsets with this property, since every exceptional graph is an induced
subgraph of a graph determined by such a maximal subset.) This forbidding
computation was circumvented by Cvetkovié¢, Lepovi¢, Rowlinson and Simié
who used the star complement technique described in Chapter 5 to determine
the maximal exceptional graphs. There are only 473 such graphs and they are
described in the paper [CvLRS2], published in 2002. The regular exceptional
graphs are discussed in Chapter 4.

An exceptional graph without —2 as an eigenvalue has at most 8 vertices
because it has a representation in Eg and A + 2/ is non-singular. It turns out
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that there are 573 such graphs: 20 with 6 vertices, 110 with 7 vertices, and 443
with 8 vertices. We denote these families of graphs by Gg, G7, Gs respectively;
they are listed in [CvRS7, Appendix A2]. In order to complete the description
of all graphs with least eigenvalue greater than —2, we go on to investigate the
eigenspace of —2 for generalized line graphs.

Recall from Section 1.2 that if A is the adjacency matrix of the generalized
line graph L(H) then A +2I = C'C where C is a vertex—edge incidence
matrix of the B-graph H . It follows (Exercise 3.9) that the eigenspace of L(H)
corresponding to —2 is just the nullspace of C:

Lemma 3.4.7. Let C be a vertex—edge incidence matrix of H. The non-
zero vector X is an eigenvector for L(I-AI ) corresponding to —2 if and only
ifCx=0.

Consequently —2 is the least eigenvalue of L(H) if and only if Cx = 0 for
some non-zero vector X. More generally, the multiplicity of —2 as an eigen-
value of L(H) is just the nullity of C. In the case of line graphs we can
therefore use the following result:

Lemma 3.4.8 [Sac3, Nuff]. Let B be the vertex—edge incidence matrix of a
connected graph H with n vertices, n > 1. Then

1 ifHisbi .
rank(B) = n 1f l.S bzpart.lte, . (3.6)

n if H is non-bipartite.
Proof. Let B = (b;;), with rows By, ..., B,, and assume that the rows are

linearly dependent, say
caBi+---4+cB, =0 and (c1,....c) #O,...,0. (37

If two vertices vy and v, are joined by the edge ¢ then by; = b;; = 1, while
brj = O forall k # s, t. Consequently, from (3.7) we obtain ¢y = —¢;.
It follows that for any path i1is ... starting at a vertex for which ¢;, =

¢ # 0, the coefficients ¢;,, ¢j,, ..., ¢;, are alternately ¢ and —c. Since H is
connected we deduce that H is bipartite and that dim{x € R" : x' B = 0} = 1.
The result follows. O

Let mg (A1) denote the multiplicity of A as an eigenvalue of the graph G.
From Lemmas 3.4.7 and 3.4.8 we have the following result.

Theorem 3.4.9. Let H be a connected graph with n vertices and m edges.
Then

m—n+ 1 if H is bipartite,

m—n if H is non-bipartite. (3-8)

mpgy(=2) = {
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Recall that we write A(G) for the smallest eigenvalue of a graph G. It fol-
lows from Theorem 3.4.9 that if H is a unicyclic graph with cycle Z then
A(H) = —2if Z has even length, and A(H) > —2 if Z has odd length. Thus
we have:

Corollary 3.4.10 [Dool]. Let H be a connected graph. Then A(L(H)) > —2
if and only if H is a tree or an odd-unicyclic graph.

Corollary 3.4.11. Let H be a (connected) graph with diameter d. Then
b4
—2 < ML(H)) < —2co8s —,
<AL(H)) = s T

and these bounds are best possible.

Proof. It remains to consider the second inequality. Since the diameter of
L(H) is not less than d — 1, L(H) has a path P; as an induced subgraph.
By the Interlacing Theorem we have A(L(H)) < A(P;) = —2cos d%, and
equality holds when H = P;4. |

To obtain an analogue of (3.8) for generalized line graphs, we can proceed
in the same way as above:

Lemma 3.4.12. Suppose that C is an incidence matrix of a connected B-graph
H(ay, aa, ..., ay) for which (a1, aa, ...,a,) % (0,0,...,0). Then

rank(C) = n + Z a;. (3.9)

i=1

Proof. Let C = (¢;j), withrows Cy, ..., C,, where r = n—i—Z;‘:] a;. To show
that these rows are linearly independent, suppose that c;Cy + - - - + ¢, C, = 0.
Our multigraph contains vertices 4 and i joined by two edges, say j-th and k-
th. From Section 1.2 we know that, without loss of generality, ¢;; = cjx = 1,

¢ij = —cix = land ¢;j = ¢y = Oforalll # i, h. It follows that ¢, = ¢; = 0.
Tracing paths from £ as in the proof of Lemma 3.4.8, we find thatc; = --- =
¢, = 0. The lemma follows. O

Now from Lemmas 3.4.7 and 3.4.12 we obtain the following analogue of
Theorem 3.4.9.

Theorem 3.4.13 [CvDS2]. Suppose that H is a connected graph with n ver-
tices and m edges. If H = H(ay,ay,...,a,), where (aj,an,...,a,) #
0,0,...,0), then
n
mL(ﬁ)(—Z)zm—n+Zai. (3.10)

i=1
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It follows that if G is a generalized line graph without —2 as an eigenvalue,
then either G is a line graph (and Corollary 3.4.10 applies) or G = L(H) where
H is a tree with just one petal attached. Now we can complete the description
of graphs whose eigenvalues lie in the interval (—2, 00):

Theorem 3.4.14 [DooCv]. If H is a connected graph with least eigenvalue
greater than —2 then one of the following holds:

(a) H = L(K) where K is a tree, or a tree with a single petal attached, or an
odd-unicyclic graph;
(b) H is one of the 573 graphs in Gg U G7 U Gs.

3.5 More on regular graphs

In this section we discuss the significance of the second largest eigenvalue, and
the eigenvalue with second largest modulus, as invariants of regular graphs. We
also consider the Hoffman polynomial of a regular graph and the mean degree
of an arbitrary induced subgraph of a regular graph.

3.5.1 The second largest eigenvalue

The second largest eigenvalue of a connected regular graph plays an impor-
tant role in determining the graph structure. This phenomenon was observed
in 1976, in respect of connected cubic graphs, by Bussemaker, Cobelji¢,
Cvetkovi¢ and Seidel [BuCCS]. For each n < 14, the connected cubic
graphs with n vertices were ordered lexicographically by their spectrum
(A1, X2, ..., Ay); since A1 = 3 throughout, A, plays the primary role. It
can be observed from Table AS in the Appendix that for small values of
Ap the graphs have a more ‘round’ shape (smaller diameter, higher con-
nectivity and girth), while for large values of A, the graphs have a more
‘path-like’ shape (larger diameter, lower connectivity and girth). A par-
tial explanation of these empirical observations was offered in 1978 by
Cvetkovié:

Theorem 3.5.1 [Cve7]. Let G be an r-regular graph on n vertices. Let v be
any vertex of G and let d be the average vertex degree of the subgraph induced
by the vertices not adjacent to v. Then

A3+ do(n—r)

d<r .
A —1)+r
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Proof. We partition V(G) into three parts, consisting of v, the vertices adja-
cent to v, and the vertices not adjacent to v. If we partition the adjacency matrix
A of G into corresponding blocks then the average row sums in the blocks form
the matrix

0 r 0
B=|1 r—v—-1 v,
0 r—d d

where v is the mean number of edges from a vertex adjacent to v to vertices not
adjacent to v. Counting in two ways the total number of such edges, we have
rv = (n—1—r)(r —d). By Corollary 1.3.13, the eigenvalues of B interlace
those of A. Since B has characteristic polynomial (x —N2=(d—v—1)x—d),
and this must be non-positive at x = X, we have

A —(d—v—Drp—d=>0.

Now the result follows by substituting (n — 1 — r)(r — d)/r for v in this
inequality. a

In Theorem 3.5.1, the upper bound for d decreases as i, decreases.
Now a decrease in d reduces the number of edges in the subgraph H
induced by the vertices not adjacent to v (and hence brings edges closer
to v). Moreover, when d decreases, so does r — v — 1, the average vertex
degree in the subgraph H> induced by the neighbours of v. Thus we have
fewer edges in H; and H>, and more edges between these subgraphs: this
phenomenon corresponds intuitively to the graph assuming a more ‘round’
shape.

The cubic graphs for which the second largest eigenvalue is maximal were
identified in [BGI]; for each even n > 4, there is a unique such graph G, with
n vertices. The graph Gy is necessarily K4, Gg is the prism K3 + K>, and
Gy is the first graph with 8 vertices in Table A5 of the Appendix. The graphs
G, (n > 10) are illustrated in Fig. 3.2.

Finally we note without proof a result of Nilli [Nil]: if G is a connected r-
regular graph which contains two edges whose distance apart is at least 2k +
2 then

)»2(G)22«/r—1<1 —L>+L. @3.11)

(The distance between two edges is the length of a shortest path whose terminal
vertices are vertices of the edges in question.)
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Figure 3.2 (a) The graph G, forn = 2 (mod 4).

Figure 3.2 (b) The graph G,, for n = 0 (mod 4).

3.5.2 The eigenvalue with second largest modulus

Here we discuss a relation between A(G), the second largest modulus of an
eigenvalue of a connected regular graph G, and an expansion property of G.
For X € V(G) let N(X) be the set of vertices of G adjacent to some vertex
of X. The expansion of a graph is defined in many ways in the literature, but
the essential requirement of G as a ‘good’ expander is that for any X € V(G),
N (X) should be suitably ‘large’ in comparison with | X|. This concept is made
precise (for arbitrary graphs) in Chapter 7; here we establish a lower bound for
IN(X)|/|X| in regular graphs.

Forany X, Y C V,lete(X, Y) be the number of ordered edges with the first
endvertex in X and the other in Y. Thus

e(X,Y) ={(u,v) € V(G)Z:MNU, ue Xandv e Y},

and edges whose endvertices are both in X N Y are counted twice.

Lemma 3.5.2. Let G be a connected r-regular graph on n vertices, with eigen-
values A (=71), A2, ..., Ay. Let X, Y be subsets of V(G) with |X| = an and
Y| = Bn. If A = max; {|Ai| : Aj # £r} then

e(X. ¥) — aprn| < Any/(@ — oa2)(B — B2).

Proof. Let x and y be the characteristic vectors of the sets X and Y, and let A
be the adjacency matrix of G. Note that xT Ay = ¢(X, ¥). Define v = x — «j
and w = y — fj, where j is the all-1 vector in IR". Since each of («j) | Ay,
xTA(Bj), (ej) T A(Bj) is equal to afrn, we have

viAw = e(X,Y) — afrn.
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On the other hand, since the vectors v, w lie in jL we have

VT AW < AV W < AIVIIWE = Any (@ — ) (B — £2).

This completes the proof. O

Theorem 3.5.3 [Tan]. Let G be a connected r-regular graph on n vertices,
with eigenvalues A (=r), Ay, ..., Ao If A = max; {|X;| : A; # £r} then for
any X C V(G),
INCOI r?
Xl 7 A2+ (2 - A2

Proof. We apply Lemma 3.5.2 to X and Y, where ¥ = V(G) \ N(X).
Note that e(X,Y) = 0, and so if |X| = an, |Y| = fn, then afrn <
Any/(a — a?)(B — B2). Hence

afr? < A’(1—a — B +aB),

equivalently,
A1 —a)
ﬁ S NG G G N
A2+ (r? = A

Now we have

2
NG = (1= By = —— 2
A2+ (r?2 — A«

and we are done. O

It follows that if A is small compared with r then G is a good expander. How
small can A be? A good indication is provided by the following result of Alon
and Boppana (cf. [LuPS, Proposition 4.2]). For fixed r > 1, let (G,)memw be
a family of connected r-regular graphs such that |(V(G,,)| — oo asm — o0.
Then

liminf A(G,,) > 24/r — 1. (3.12)
m—0Q

This explains the importance of the following class of graphs:

Definition 3.5.4. A Ramanujan graph is a connected r-regular graph G for

which A(G) < 2v/r — 1.

An infinite family of Ramanujan graphs {X”-9} was first constructed by
Lubotzky, Phillips and Sarnak [LuPS] in 1988. Here, p and g are distinct
primes, both congruent to 1 mod 4, such that p is non-square mod ¢. The
graph X7 9 is realized as a certain vertex-transitive bipartite graph of degree
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p + 1 with g(¢*> — 1) vertices. In fact, infinite families of Ramanujan graphs
of degree r exist whenever r — 1 is a prime power (see [Mor2]). Finally we
note that the inequality (3.11) restricts the diameter of a Ramanujan graph G
for which A(G) < 2+/r — 1.

3.5.3 Miscellaneous results

Here we note two properties of regular graphs required in subsequent sections.
For any graph G with adjacency matrix A, the adjacency algebra of G con-
sists of all matrices of the form f(A), where f(x) is a polynomial with real
coefficients. Hoffman identified the following characteristic property of the
adjacency algebra of a regular connected graph.

Theorem 3.5.5 [Hof3]. The all-1 matrix J belongs to the adjacency algebra
of the graph G if and only if G is regular and connected.

Proof. Suppose first that J lies in the adjacency algebra A of G. Then AJ =
J A, and so G is regular. If G is not connected then consider vertices u and v
lying in different components of G. By Proposition 1.3.3, the (u, v)-entry of
f(A) is zero for all f(x) € IR[x]; hence J & A, a contradiction.

Conversely, suppose that G is r-regular and connected. Then G has index r
and the minimal polynomial of A has the form (x — r)g(x). Since Ag(A) =
rg(A), each column of g(A) lies in the eigenspace £(r). Since G is connected,
E(r) is spanned by the all-1 vector j (cf. Theorem 1.3.5), and so g(A) has the
form (c1j| - - - |cnj). Since g(A) is a symmetric matrix, ¢; = --- = ¢,. Thus
g(A) = cJ for some c, and the result follows. O

The above proof shows that #(A) = J where h(x) = ¢! g(x); the poly-
nomial i (x) is called the Hoffman polynomial of G. If vy = r, 2, ..., m
are the distinct eigenvalues of G, then the only non-zero eigenvalue of g(A) is

[T/, (r — wi). Hence [/, (r — i) = cn, and so

m
X = Wi
h(x)=n ,

and we have the following formula for J:

Corollary 3.5.6. If G is an r-regular connected graph on n vertices, with

distinct eigenvalues L1 =1, o, ..., iy then
m
A— il
J=n l_[ Hi
O T Wi
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The final result of this section can be regarded as a generalization of
Theorem 3.5.1.

Theorem 3.5.7. Let G be an r-regular graph with eigenvalues r(= A1) >
Ay > -+ > Ay Let Gy be an induced subgraph of G with ny vertices and
mean degree dy. Then

ni(r —in) ni(r —Az) n

+)\n§dl <
n n

A2 (3.13)

Proof. We partition V(G) into V(G) and its complement, and consider the
corresponding blocking of the adjacency matrix of G. The average row sums
in the blocks form the matrix

dy r—d

B=\o—apm ,_@¢—dn
n—nj n—ni

The eigenvalues of B are r and dy — (r —dj) n1/ (n —nyp). By Corollary 1.3.13
we have A, < dy — (r — dj)n1/ (n — ny1), and the first inequality in (3.13)
follows.

In order to prove the second inequality, we consider the complements
G, Gy. The graph G is a regular graph on n vertices of degree n — 1 — d,
and by Theorem 2.1.2 its least eigenvalue is —A, — 1. The graph G is an
induced subgraph of G with n; vertices and mean degree n — 1 —d; . If we now
apply the first inequality of (3.13) to G and G| we obtain the second inequality
in (3.13). O

3.6 Strongly regular graphs

Recall from Chapter 1 that a strongly regular graph with parameters (n, r, e, f)
is an r-regular graph on n vertices in which any two adjacent vertices have
exactly e common neighbours and any two non-adjacent vertices have exactly
f common neighbours. Strongly regular graphs are important in relation to
algorithms designed to determine whether or not two graphs are isomorphic
(the ‘graph isomorphism problem’), since they often represent the hardest case
to deal with. At the same time, they are very well suited to investigation by
spectral techniques, not least because (as we show below) knowledge of their
spectrum is equivalent to knowledge of their parameters.

To exclude the complete graphs and their complements, we assume through-
out that 0 < r < n — 1. We have seen that the Petersen graph is a strongly
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regular graph with parameters (10, 3, 0, 1). Some examples of infinite families
of strongly regular graphs are given below.

Examples 3.6.1. (i) For n > 3, the triangular graph T (n) = L(K,) is
strongly regular with parameters (%n(n —1,2n—4,n-2, 4).

(ii) For n > 1, the lattice graph L(K, ,) is a strongly regular graph with
parameters (nz, 2n —2,n —2,2). O

Example 3.6.2. Let GF(q) be a field with ¢ elements, where ¢ = 1 mod 4.
The Paley graph P(q) is the graph whose vertices are the elements of G F (q),
with u ~ v if and only if u — v is a square in GF(g). (Note that the

condition ¢ = | mod 4 ensures that u — v is a square if and only if
v — u is a square.) The graph P(q) is strongly regular with parameters
(4.3@-D. 5@ =9 2 - D). D

Example 3.6.3. Let I" be a finite group of permutations of the set V. Then I
has a natural action on V2, given by

v:iv) = (y),yw) (yel).

We say that (I', V) is a permutation group of rank s if I" has s orbits on V2.
(The orbits include the ‘diagonal’ orbit D = {(v,v) : v € V}, and the per-
mutation groups of rank 2 are precisely the doubly transitive groups.) Suppose
that I" is of even order with rank 3, and let D, Oy, O3 be the orbits of (I, Vz).
Since |I'| is even, I' contains an involution t. Let a, b be points of V inter-
changed by 7. Without loss of generality, (a, b) € O;. Then (b, a) € O and
it follows that (#, v) € Oj if and only if (v, #) € O1. Now we may define a
graph G with V(G) = V and u ~ v if and only if (u, v) € Oj. Itis easy to
see that G is strongly regular, with I" as a subgroup of its automorphism group.
Such a graph is called a rank 3 graph. Note that the graph obtained in the same
way from O, is just the complement of G. For an explicit example, we may
take I" to be the alternating group on {1, 2, 3,4, 5} and V to be the set of 10
unordered pairs in {1, 2, 3, 4, 5}. Then without loss of generality, O consists
of disjoint pairs, and Oy consists of intersecting pairs; in this case, G is the
Petersen graph and G = L(K5s). a

It is a simple matter (Exercise 3.11) to check that if G is a strongly regular
graph with parameters (1, 7, e, f) then its complement G is strongly regular
with parameters (1, 7, e, f ), where

n=n, r=n—r—1, e=n—-2-2r+ f, f:n—Zr—i—e.

A strongly regular graph G is primitive if both G and G are connected;
otherwise G is imprimitive. It is straighforward to show (Exercise 3.12) that
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a strongly regular graph G is imprimitive if and only if G or G is a complete
multipartite graph of the form K, ... m.-

The parameters of strongly regular graphs are not independent. Indeed, if
we consider a fixed vertex u and count in two ways the edges vw such that u
is adjacent to v but not to w, then we find

rr—e—1)=m—-—r— l)f (3.14)

Some other conditions on parameters will be discussed later.
From the definition of strongly regular graphs, we see that the adjacency
matrix A satisfies

A2=eA+ f(J—A—=1D) +rl, (3.15)
or equivalently
AP+ (f—A+(f—nI=fJ. (3.16)
Since AJ = rJ, it follows from (3.16) that
(A—rD)(A*+ (f—e)A+ (f —r)]) = 0. (3.17)

The following theorem of Shrikhande and Bhagwandas gives a spectral
characterization of the strongly regular graphs.

Theorem 3.6.4 [ShrBh]. Let G be a connected regular graph of degree
r > 0. Then G is strongly regular if and only if it has exactly three distinct
eigenvalues, say 1 =r, o = s and pu3 = t. In this situation,

e=r+s+t+st, f=r+st, n:w,
r+ st

Proof. Suppose that G is strongly regular. If 17 is the only eigenvalue different
from r then r 4+ (n — 1)y = 0. Thus o, is rational and hence an integer. But
0 < r < n — 1, and so we have a contradiction. From (3.17), we know that
the minimal polynomial of G has degree at most 3, and so G has exactly three
distinct eigenvalues.

Conversely, suppose that G is a connected r-regular graph, with exactly
three distinct eigenvalues r, s, . By Theorem 3.5.6 we have a relation of the
form

aA>+bA+cl=J (a#0) (3.18)

where s,  are the roots of the quadratic ax?+bx +c. It follows that the number
of walks of length 2 between vertices i and j is 1;—}7 if i ~ j, and % ifi # j.
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Therefore G is strongly regular. From Theorem 3.5.6 we have

n —n(s +1) nst
a=——7¥— b= , €= . (3.19
r—s)yr—1 r—s)r—1 r—s)r—1
Equating diagonal entries in (3.18), we find that ar + ¢ = 1, and so
nr+st)y=—5)F—1). (3.20)
The formulae for ¢ and f now follow from (3.17) and (3.18) since e = 1a;b
and f = % ]

Theorem 3.6.4 gives the parameters of a strongly regular graph in terms of
eigenvalues. In the reverse direction, we have:

Theorem 3.6.5. The distinct eigenvalues of a connected strongly regular
graph with parameters (n,r, e, f) arer, s, t, where

1
&t=§@—f)iJK and A= (e— )>+40 — f).
Their respective multiplicities are 1, k, | where

1
hl:—{n—1$

2r+m—1D(e—f)
7 .

VA

Proof. Since G is connected and r-regular, r is an eigenvalue of multiplicity
1. Eigenvectors corresponding to other eigenvalues are orthogonal to the all-
1 vector, and so from (3.17) we see that s, ¢ are the roots of the quadratic
x2 4+ (f —e)x + (f — r). Their multiplicities k, [ are determined from the
equations

l+k+Il=n, r+ks+I1t=0.

Here the first equation is obtained by counting eigenvalues, and the second by
summing eigenvalues. O

Theorem 3.6.5 provides a nice feasibility condition for the parameters of a
strongly regular graph: the parameters must be such that k and / are positive
integers. (In practice, this condition turns out to be very powerful.) Further, if
A is not a perfect square, then k = [ since 2r 4+ (n — 1)(e — f) is necessarily
0; in this situation, a strongly regular graph is called a conference graph. For
example, the Paley graph of Example 3.6.3 is a conference graph. Since v/A =
s — t, we have:

Theorem 3.6.6. If G is a strongly regular graph with parameters (n,r, e, f)
and eigenvalues r, s, t, then one of the following holds:
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(a) G is a conference graph;
(b) each eigenvalue of G is an integer and (e — f)2 +4@r - f)=(s— 2.

So far a complete characterization of parameters of strongly regular graphs
is not known. We conclude this section by giving a further condition on mul-
tiplicities and a further condition on eigenvalues. In each case we use the fact
that, in the light of (3.15), the matrices I, A, J — I — A form a basis for the
adjacency algebra.

Theorem 3.6.7. Let G be a primitive strongly regular graph on n vertices,
with eigenvalue multiplicities 1, k, l. Then

7 < min {%k(k +3), L+ 3)} .

Proof. Let P represent the orthogonal projection of /R" onto the eigenspace
of dimension k. From (1.5) we know that P is a quadratic polynomial in A;
hence, using (3.16), we can express P in the form

P=al +BA+y(J —1—A)

for some «, B, y € IR. Using Theorem 3.6.5, we find (Exercise 3.14):

w ﬁ_k_s k(s + D)

= = — 3.21
n nr Y nn—r—1) ( )

In particular, « # B and @ # y. Since P has spectrum 1%, 0", we may
write P = H H, where H has size k x n and rank k. Thus if H has columns
hy, ..., h, then
aifi=j
h/h; =g ifi ~j
y ifi &g, i#j.
Now let €2 be the sphere in IR with equation [|x|| = «, and define f; : @ —
IR by
(h/x = B)(h/x—y)
(@ = B)a—y)
Each f; lies in V| @ V,, where V| is the space of all homogeneous linear
functions 2 — IR and V> is the space of all homogenoeus quadratic functions
Q — IR. Note that the constant functions lie in V> because o = x7 +- - - +x2

forall (x1, ..., %) € Q. Also, dim(Vi @ V) =k + (k + (5)) = $k(k+3),
The functions fi, ..., f, are linearly independent because f;(h;) = §;;. It
follows that n < Sk(k + 3). Similarly, n < $1(I + 3). O

fix) =

G=1,...,n).
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The bound for n in Theorem 3.6.7 is known as the absolute bound for
strongly regular graphs, since it is independent of «, B, y (cf. [Sei4]). Graphs
that attain the bound are called extremal strongly regular graphs. Only five such
graphs G are known: in these cases, G or G is one of Cs, Schig, McLi1. Here,
Schie is the Schléfli graph of Example 1.2.5, and McLi1> is the McLaughlin
graph, the unique strongly regular graph with parameters (275, 112, 30, 56).
This last graph is a rank 3 graph (and the corresponding rank 3 group has
order 1, 796, 256, 000); it was first constructed in [McL], and an alternative
construction is described in [CamLi, Chapter 4].

For the next result, we require the following observation: since the adjacency
algebra A of a strongly regular graph G has {I, A, J — [ — A} as a basis, A
is closed under Hadamard multiplication. (If the matrices (x;;), (y;;) have the
same size then their Hadamard product is (x;;y;;), denoted by (x;;) o (y;;).) In
the notation of Chapter 1, the projection matrices Py, P>, P;3 form a basis for
A (cf. Equation (1.10)), and so

3
PioPj= Z%‘jkpk

i=1

for some g;jx € IR. The real numbers g;;; are called the Krein parameters
of G; note that g;;1, gij2, g;j3 are eigenvalues of P; o P;. Since P; o P; is a
principal submatrix of the positive semi-definite matrix P; ® P;, it too is a
positive semi-definite matrix. Thus g;jx > 0 for all 7, j, k.

With notation as in the proof of Theorem 3.6.7, for P = P, we have

PoP=d*1+p*A+y*(J —1— A),
with eigenvalues
g = o’ + B7r +y*(n—r —1),
g = o + pEs +yi(=s — ),
g3 =’ + Bt +y*(—t — 1),
These may be expressed in terms of n, , s and k using (3.21); we find that

k2 $3 (s +1)3
qo22 = 3 1 )

P2 n—r—1)2

s+ DaE+1D .
r 4+ st

From (3.20) wehave n —r — 1 = nd so

n2r2(t + 1) g0 = K2(r — ){r(t®> +2t —s) + s> — 25t —5)}.  (3.22)
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It follows from (3.21) that r(t? + 2t — s) + s(t> — 25t — s) > O: this is the
first inequality of Theorem 3.6.8 below. The second inequality is derived by
interchanging s and ¢ (i.e. by taking P = P3).

Theorem 3.6.8[Sco]. The eigenvalues r, s, t of any primitive strongly regular
graph of degree r satisfy the inequalities

Q) 4+ +D%= (s + D+ s+ 2s1),
(i) (r 4+ +D>> (¢ + D) +1 4+ 2s1).

The inequalities of Theorem 3.6.8 are known as the Krein inequalities. To
describe the implications of equality here, we define the subconstituents asso-
ciated with a vertex u of a strongly regular graph G: the first subconstituent is
the regular subgraph of G induced by the neighbours of u, and the second sub-
constituent of u is the regular subgraph of G induced by the non-neighbours
of u. It can be shown that if the first bound of Theorem 3.6.8 is attained then
r = k, while if the second is attained then r = [. In either case, one of the
following holds: (a) G is a 5-cycle; (b) in G or G, all the first subconstituents
are null graphs, and all the second subconstituents are strongly regular; (c) all
subconstituents of G are strongly regular.

3.7 Distance-regular graphs

Let G be a connected graph of diameter d, and for i € {0,1,...,d}, let
['; (u) denote the set of vertices at distance i from the vertex u. We say that
G is distance-regular if there exist non-negative integers by, b1, ..., by—1 and
c1, €2, ..., cq such that for any two vertices u, v at distance i,

bi =Lip1@)NT1()| (1 =0,....d—1),
c=FiciwyNnTi)| (=1,...,4d).

Thus v has exactly b; neighbours at distance i + 1 from u, and ¢; neighbours
at distance i — 1 from u. The array

{bo, b1, ..., bg—1;c1,C2,...,¢Cq}

is called the intersection array for G. Note that ¢c; = 1 and G is regular of
degree bg; we write r = by. Hence the number of neighbours of v at distance
i from u is a;, where

a =r—b;—c¢; (i=1,...,d—1) and az=r—cy.
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Note also that the distance-regular graphs of diameter 2 are precisely the
connected strongly regular graphs.

The class of distance-regular graphs clearly includes the distance-transitive
graphs: these are the connected graphs with the property that for any vertices
u,v,u’, v withd(u, v) = d(u’, v') there exists an automorphism which maps
utou and vtov'.

Examples 3.7.1. (i) The Petersen graph is distance-transitive with intersec-
tion array {3, 2; 1, 1}. The skeleta of the Platonic solids are also distance-
transitive: the arrays are {3;1} for the tetrahedron, {4, 1; 1,4} for the
octahedron, {3, 2, 1; 1, 2, 3} for the cube, {5, 2, 1; 1, 2, 5} for the icosahedron,
and {3,2,1,1,1; 1, 1, 1, 2, 3} for the dodecahedron.

(i1) The Johnson graph J (n, m) has as its vertices the m-subsets of an n-set X;
two such subsets are adjacent in J (n, m) if they have exactly m — 1 elements in
common. Thus J(n,m) = J(n,n —m), J(n, 1) = K,, and J(n, 2) = L(K,).
The graph J (n, m) is distance-transitive with diameter d = min{m, n—m} and
parameters

bi=m—iYn—m—i) (i=0,....d—1), c=i>@G=1,...,d).

(iii) An example of a distance-regular graph that is not distance-
transitive is the strongly regular graph defined as follows. The vertices are
ui,...,u13,v1, ..., v3 and the edges are given by:

u; ~uj ifand only if |i — j| = 1,3 or4 mod 13,
v; ~v; ifand only if |i — j| =2,50r 6 mod 13,
u; ~v; ifand only if |i — j| =0, 1,3 or 9 mod 13.

The intersection array is {10, 6; 1, 4}. O

If we let |T'; (u)| = k; and count in two ways the edges between I'; (#) and
I'i+1(u), we find that
kib;
k=1, ky=r, kiyy=— (=1,2,....,d—1). (3.23)
Ci+1
We may illustrate these parameters in a diagram as shown in Fig. 3.3.
The parameters in an intersection array are subject to a number of con-
straints, the simplest of which are the following:

Proposition 3.7.2. For any distance-regular graph with intersection array
{r,b1,...,bg_1;1,ca,...,cq}, we have

l<ecp=<cz=<--=Zcy,
(i)r=by=>by>--->by_y,


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.004
https:/www.cambridge.org/core

78 Spectrum and structure

u Ty (u) T (u) Tq(u)

Figure 3.3 A representation of a distance-regular graph.

(iii) for each j € {2,...,d}, rby---bj_1/coc3---cj is an integer (=

INICDE

Proof. (i) Let d(u,v) = i + 1 < d, and consider a path uw ... v of length
i+ 1.SinceI'j_j(w)NT'1(v) € Ti(w) NT'1(v), we have ¢; < ¢j+1.

(i) Let d(u,v) = i < d, and consider a path uw ...v of length i. Since
Civ1(w) NT1(v) € Ti(w) NT1(v), we have b; < b;—.

(iii) The third assertion follows from (3.23) by induction on i. a

For any graph we can define distance matrices Ao, A1, ... as follows: the
(i, j)-entry of Ay is 1 if d(i, j) = h, and O otherwise. (Thus Ag = I and
A1 = A.) For a distance-regular graph G, it is straightforward to show by
induction on k that, for each non-negative integer k, the (i, j)-entry of A*
depends only on d(i, j) (Exercise 3.16). In other words, each Ak is a linear

combination of Ag, Ay, ..., Ag; equivalently, the adjacency algebra A of G
has {Ag, Ay, ..., Ag} as a basis. Since I, A, A2, ..., A9 are linearly indepen-
dent, {1, A, ..., Ad } is another basis for A. Thus the minimal polynomial m 4

of A has degree d + 1 and G has precisely d + 1 distinct eigenvalues.

Now consider the linear transformation 7 of A givenby: X > XA (X € A).
The matrix of T with respect to {1, A, ..., A%} is just the companion matrix of
m 4; but the matrix B of t with respect to {Ag, Ay, ..., Ay} has a tridiagonal
form, because

AiA=bi_1A;i_1 +ajA; +ciy1Aiy1 (0<i<d) and
AgA =0Ag + 1A, AgA =by_1A4_1 +azA,. (3.24)

It follows from (3.24) that

0 1
r o ay ¢
bl an
B= b2
Cd—1
aq—1 €4

bo—1 aq
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Note first that A and B share the same distinct eigenvalues ui, ..., ild+1,
because mp = m; = m4. Secondly, if the polynomials vo(x), ..., vg(x) are
defined recursively by:

vo(x) =1, vi(x) =x,
Cit1Vi41(x) + (@; — X)v;(x) + bi—1vi—1(x) =0 (0O <i<d) (3.25)

then it follows from (3.24) by induction on i that A; = v;(A) (I =
0,1,...,d). In other words, B determines the transition matrix from
{Ag, A1, ..., Ag}to{l, A, A%, ..., Ad}. Hence B determines the inverse tran-
sition matrix (wpg), where A = ZZ:O wpkAp (k= 0,1,...,d). Since
tr(Ag) = n, while tr(A,) = 0 for i € {1,...,d}, we have > m(ui)pk =
nwor (k = 0,1,...,d), where m(u;) denotes the multiplicity of u; as an
eigenvalue of A. It is clear from these d + 1 equations that the multiplicities
m(u;) are determined by B. Consequently we have:

Theorem 3.7.3. The spectrum of a distance-regular graph G is determined by
the intersection array for G.

We shall determine the multiplicity m(u;) explicitly in terms of
ko, k1, ..., kg and an eigenvector of B corresponding to ;. (Note that all the
eigenspaces of B are one-dimensional.)

Lemma 3.74. For j = 1,2,...,d + 1, let v; = (vo(uj), vi(tj), ...,
va(u)' and w; = K~'v;, where K = diag(ko, ki, ..., kq). Then v; is
an eigenvector of B and w; is an eigenvector of B T, both corresponding to the
eigenvalue ;.

Proof. We have directly from (3.24) that Bv; = pu;v;. From (3.22) we have
BK = KB",andso BTu; = BTK™'v; = K7'Bv; = K~ '(uvj) =
Hjuj. a
Theorem 3.7.5. With the notation above, the eigenvalue n; of a distance-
regular graph on n vertices has multiplicity

m(pi) = <———.
;i v;rK—lvi
Proof. It follows from Lemma 3.7.4 that ul.Tv j = 0 wheni # j, because
u,-u;rvj = ulTij = ,uju;rvj. Now let w; = (ujo, ui1, ..., uig) and v; =
(vi0, Vi1, - - ., Vig) | . Note that u;o = 1 because ko = 1 and v;o = vo(u;) = 1.
We calculate in two ways the trace of the matrix

d
Ml' = ZuijAj.
Jj=0
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First, since Ay, ..., Az have zero diagonal, we have tr(M;) = u;otr(Ag) = n.
Secondly, since A; = v;(A), the eigenvalues of A are v;(u1), ..., vj(la+1),
with multiplcities m (i1, . . ., m(uas1), and so tr(A ;) = SV m(up)v;j ().
Hence

d d+1 d+1
w(My) = ) uij Y mGuovig = Y m(uw vie = m(ui)u] vi,
j=0 k=1 k=1
and the result follows. O

Since m (i ;) is a positive integer, Theorem 3.7.5 imposes a further restric-
tion on the parameters of an intersection array. For example [Big2, p. 168] there
is no distance-regular graph with intersection array {3, 2, 1; 1, 1, 3}, an array
not excluded by Theorem 3.7.2. Further necessary conditions on the parame-
ters of an intersection array, analogous to the Krein inequalities of Theorem
3.6.8, arise from the fact that A4 is closed under Hadamard multiplication. For
these and other constraints the reader is referred to the monograph by Brouwer,
Cohen and Neumaier [BroCN].

We note that, in contrast to the situation for strongly regular graphs, the
property of distance-regularity (of diameter > 2) cannot in general be identi-
fied from the spectrum. Haemers and Spence [HaeSp] show that while there is
aunique distance-regular graph with intersection array {13, 6, 1; 1, 6, 13}, itis
one of no fewer than 515 graphs of diameter 3 which share the same spectrum,
namely (13!, \/B7, (—1)13, (—«/E)7}. On the other hand there are four non-
isomorphic distance-regular graphs with intersection array {7, 6,4; 1,3,7};
they have spectrum {7', 214, (=2)4, (=7)!} and they are the only graphs with
this spectrum.

Finally we mention the Bannai—Ito conjecture [Banlt, p. 237], which asserts
that for fixed r > 2 there are only finitely many distance-regular graphs of
degree r. This has been confirmed for r € {3, 4} by Bannai and Ito themselves,
and for r € {5, 6, 7} by Koolen and Moulton [KooM02].1

3.8 Automorphisms and eigenspaces

Recall that an automorphism of a graph G is a permutation 7 of V(G) such
that u ~ v if and only if 7 («) ~ 7 (v). The group of all automorphisms of G
is denoted by Aut(G), and the order of Aut(G) is a measure of the symmetry
of G. Vertices in the same orbit of Aut(G) are said to be similar.

! The Babbai-Ito conjecture has now been confirmed for all » > 2 by Bang, Koolen and
Moulton.
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Symmetries are commonly used as a tool in the study of mathematical struc-
tures, and the symmetric features of graphs are often revealed by an appropriate
geometric representation. For example, the graph Cs5 can be viewed as a reg-
ular pentagon, whose symmetries consist of five rotations and five reflections.
Although the full group of automorphisms of the Petersen graph P (the group
S5) is not readily identified from a single diagrammatic representation, the
standard drawing of P (Fig. 1.2) shows that it too has a symmetry of order
5. For both Cs and P, the presence of an automorphism of order 5 guarantees
the existence of a multiple eigenvalue. This follows from Theorem 3.8.4 below
and illustrates the flavour of the results in this section.

As usual, let G be a graph with vertex-set V(G) = {1, 2, ..., n} and adja-
cency matrix A = (a;;). For any permutation 7 of {1,2,...,n}, let P(x)
be the permutation matrix (8, ;);). Note that P()~! = P(n) T and that the
map 7w +— P(x) is a monomorphism from the symmetric group S, into the
multiplicative group of orthogonal n x n matrices.

Let A’ be the adjacency matrix of G obtained when the vertices 1,2, ..., n
are relabelled 7 (1), 7(2), ..., 7(n). Then A’ = P(x)T AP (x) because the
(i, j)-entry of P(m)T AP (r) is

DD SnniankSx (] = Ax-1 iyl ()
h  k

Since 7 is an automorphism of G if and only if A" = A, we have:

Proposition 3.8.1. The permutation w is an automorphism of G if and only if
A = P(n) " AP(n), equivalently P(w)A = AP (r).

It follows that if X is an eigenvalue of G and x € E£4(1) then for each
automorphism 7 of G we have

AP(m)x = P(m)AXx = AP (m)x.

Thus each eigenspace is P (;r)-invariant for every m € Aut(G); we say sim-
ply that the eigenspaces are invariant under the automorphism group. Clearly,
if x and P (m)x are linearly independent eigenvectors, then A is a multiple
eigenvalue. This simple observation is crucial to what follows.

Lemma 3.8.2. If A is a simple eigenvalue of G, and if X is an eigenvector

corresponding to A then P(w)X = %X for each m € Aut(G).

Proof. Since x and P (;r)x are linearly dependent eigenvectors in /R", we have
P(mr)x = cx for some ¢ € IR. Since || P(7)x]| = |x||, we have ¢ = 1. O
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Theorem 3.8.3 [PeSa2]. Let G be a vertex-transitive graph with n vertices of
degree r, and let A be a simple eigenvalue of G. If n is odd then A = r; ifn is
even then A = 2k — r for some k € {0, 1,...,r}.

Proof. Letx = (x1, x2, ..., x,,)T be an eigenvector of G corresponding to A.
If 7 is an automorphism of G such that 7 (j) = i then x; is the j-th entry of
P(m)x. By Lemma 3.8.2, x; = =£x;. Since G is vertex-transitive, it follows
that all entries of x have the same absolute value.

Suppose first that n is odd. If A # r then E(A) L E(r) andso Y 7_, x; = 0.
But this sum cannot vanish under the established conditions, and consequently
A = r is the only possibility.

Assume now that n is even. For a fixed vertex i, suppose that i has k neigh-
bours j such that x; = x;, and » — k neighbours j such that x; = —x;. From
the i-th eigenvalue equation, we have

AX; = ij =kx; — (r —k)x;,

j~i

whence A = 2k — r, as required. This completes the proof. a

Theorem 3.8.4 [Mow, PeSa2]. If G is a graph with an automorphism of order
greater than 2, then G has a multiple eigenvalue.

Proof. Suppose by the way of contradiction that all eigenvalues are simple.
If x is an eigenvector of G, then, by Lemma 3.8.2, P(7)’x = x for every
automorphism 7 of G. Since IR" has a basis of eigenvectors, we have P ()% =
I. Hence 72 is the identity permutation for every automorphism 7, contrary to
assumption. a

The proof of Theorem 3.8.4 shows that if all eigenvalues of G are sim-
ple, then every non-identity automorphism has order 2, equivalently Aut(G)
is an elementary abelian 2-group. To describe the general situation, let U be
an orthogonal matrix such that UTAU = D = diag(r1, ..., Ay), and let
O (k) denote the multiplicative group of & x k orthogonal matrices. If m €
Aut(G) then U T P(7)U commutes with D. Hence if the distinct eigenvalues
Ui, ..., Um have multiplicities ki, ..., k, then U TP(JT)U has the block-
diagonal form X () +---4+ X,, (), where X;() € O(k;). Accordingly,
we have:

Proposition 3.8.5. If G has eigenvalue multiplicities ky, . . . , k;, then Aut(G)
is isomorphic to a subgroup of O (k1) X --- x O(ky).

When some eigenvalues are simple, we can obtain some additional informa-
tion on Aut(G) by counting the non-real eigenvalues of P (7). We denote the


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.004
https:/www.cambridge.org/core

3.9 Equitable partitions, divisors, main eigenvalues 83

number of such eigenvalues by w (7). Thus if 7 is a 7-cycle then w(w) ist—1 if
tisodd,andr—2ifriseven. If 7 = mym, - - - 7r; as a product of disjoint cycles
then w(r) = Zf: 1 w(mr;). Now suppose that G has n — r simple eigenvalues
(0 < r < n). With appropriate ordering of the columns of U, U " P(r)U has
the block-diagonal form X (7) + e, () + - -+ e, (), where each e; ()
is =1. The non-real eigenvalues of P (;r) are necessarily eigenvalues of X (;7)
and so number at most r. Hence w(r) < r and each constituent cycle my of
has length at most r + 2. We deduce the following result:

Proposition 3.8.6 [Row1]. If G has n —r simple eigenvalues then the order of
any automorphism of G divides the least common multiple of 2,3, 4, ..., r+2.

Finally, we mention without proof two upper bounds for the number s of
simple eigenvalues of a graph on vertices. First, s is at most the largest power
of 2 that divides n [SaSt]; secondly, if Aut(G) has no orbit on which it acts as
an elementary abelian 2-group then s < %n [Rowl].

3.9 Equitable partitions, divisors and main eigenvalues

Equitable partitions and divisors represent a powerful tool in spectral graph
theory. In particular we shall see how to exploit regularity properties of a graph
to obtain part of the spectrum, including the main eigenvalues.

Definition 3.9.1. Given a graph G, the partition V(G) = Vi UV, U---U Vy is
an equitable partition if every vertex in V; has the same number of neighbours
inV;, foralli, je{l,2,..., k}.

Clearly, every graph has a trivial equitable partition, in which each cell is
a singleton. For the existence of a non-trivial equitable partition, some local
regularity is required. For example, in a complete multipartite graph the usual
colouring gives rise to an equitable partition in which the cells are the colour
classes. In general, it is often convenient to assign different colours to the cells
of an equitable partition. Then the subgraphs induced by the vertices of the
same colour are regular, while edges joining the vertices from two different
cells give rise to a semi-regular bipartite graph. In view of this colouring, an
equitable partition is sometimes called a colouration.

Suppose now that IT is an equitable partition V(G) = Vi U Vo U---U V,
and that each vertex in V; has b;; neighbours in V; (i, j € {1,2,...,k}). Let
Dy be the directed multigraph with vertices Vi, V2, ..., Vi and b;; arcs from
Vi to V;. We call Dy the divisor of G with respect to IT. The matrix (b;;) is
called the divisor matrix of I1, denoted by Bry.


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.004
https:/www.cambridge.org/core

84 Spectrum and structure

IM: {1},{2,3,4},{5.6,7}

I {13, {2, 3}, {4}, {5, 6}, {7}

Figure 3.4 Two equitable partitions of a graph.

Example 3.9.2. Fig. 3.4 shows a graph and two of its equitable partitions. The
corresponding divisor matrices are:

02100
03 0 1 0010
Bn=(10 1), Bpy=|1 0 0 0 1
01 0 01000
00100

It is clear from Fig. 3.3 that, for any vertex u in a distance-regular graph of
diameter d, the sets [';(u) (i = 0,1, ..., d) form an equitable partition. (The
corresponding divisor matrix is the transpose of the matrix B considered in
Section 3.7.) Also, for any graph G, the orbits of Aut(G), or of any subgroup
of Aut(G), form an equitable partition (Exercise 3.18); the first partition in
Example 3.9.2 is such a partition.

For any partition IT of V(G) with cells Vi, Vo, ..., Vi, let Cp be the
n x k matrix whose columns are the characteristic vectors of Vi, V,, ..., V..
We call Cp the characteristic matrix of Il. Note that C g Cn =
diag(|Vi1. [Val, ... [VkD.

Proposition 3.9.3. Let G be a graph with adjacency matrix A. If T1 is an
equitable partition of G, with divisor matrix B and characteristic matrix C,
then

AC=CB, B=(C'O)"'cTAc.

Proof. It suffices to note that if i € V), then the (7, j)-entry of both AC and
CB is by;. O

The following theorem characterizes the equitable partitions:

Theorem 3.9.4. Let G be a graph with adjacency matrix A, and let T1 be a
partition of G with characteristic matrix C. Then Il is an equitable partition
of V(G) if and only if the column space of C is A-invariant.
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Proof. If IT is an equitable partition then, in the notation of Proposition 3.9.3,
AC = CB, and so the column space of C is A-invariant. Conversely, if the
column space of C is A-invariant then there exists a matrix B = (b;;) such
that AC = CB. Equating entries in this matrix equation, we find that each
vertex in the i-th cell of I is adjacent to by; vertices in the j-th cell. O

We can now prove the first of the two main results on divisors.

Theorem 3.9.5. The characteristic polynomial of any divisor of a graph
divides the characteristic polynomial of the graph.

Proof. We use the notation of Proposition 3.9.3. Let C* be an n x (n — k)
matrix whose columns are vectors which extend the columns of C to a basis of
IR". Then there exists matrices X and Y such that

AC*=CX + C*Y.

From this equation and Proposition 3.9.3 we obtain:
B X
Acich=cicH(p y)
Since (C | C*) is invertible, it follows that det(x/ — A) = det(xI — B) det
xI —=7Y). O

Remark 3.9.6. In the situation of Theorem 3.9.5, we have AC = CB and
hence
f(AC =Cf(B) (3.26)

for any polynomial f(x) € IR[x]. In particular, we have
(xI —A)Cv=C(xI — B)v

for all v € IR". Since Cx = 0 if and only if x = 0, it follows that v is an
eigenvector of B if and only if Cv is an eigenvector of A.

Since the column space of C is A-invariant, it has a basis consisting of k
eigenvectors of A. Each such eigenvector has the form Cv, and so its entries are
constant on each cell of the underlying equitable partition [1. We may choose
n — k further eigenvectors of A orthogonal to the column space of C, and the
entries of such vectors sum to zero on each cell of IT. O

The second main result on divisors of a graph G concerns the main eigenval-
ues of G. Recall that the eigenvalue p; is a main eigenvalue of G if £(y;) is not
orthogonal to the all-1 vector j. In the notation of Chapter 1, this is equivalent
to the condition P;j # 0.
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Definition 3.9.7. Let G be a graph whose distinct eigenvalues are w1, .. ., .
The main part of the spectrum of G is the subset M of {1, ..., u;, } consisting
of the main eigenvalues of G, and we define

Mg = [T G- ).
nieM

Note that cospectral graphs need not have the same main part of the spec-
trum; for example the graphs K 4, C4 U K| are cospectral and —2 is a main
eigenvalue of the first graph but not the second. On the other hand, it follows
from Proposition 2.1.3 that if G| and G, are cospectral graphs with cospectral
complements then G| and G, share the same main part of the spectrum.

Lemma 3.9.8. Let f(x) € IR[x]. Then f(A)j = 0 if and only if Mg(x)
divides f(x).

Proof. We may use the spectral decomposition of A to express f(A)j as an
element of E(u1) ® E(ua) ® -+ & E(um):

FAJ = fu)Pij+ f(u2)Poj+ -+ f(im) P,
where the i-th summand is 0 if u; ¢ M. Hence f(A)j = 0 if and only if
f (i) = 0 for each u; € M. The result follows. a
The second main result on divisors is the following.

Theorem 3.9.9. The characteristic polynomial of any divisor of a graph G is
divisible by Mg (x).

Proof. Let B be a divisor matrix, with characteristic polynomial f(x). By
Equation (3.26), we have f(A)Cjr = Cf(B)jk, where ji is the all-1 vector
in IR*. Now Cji = j, while f(B) = O (by the Cayley—Hamilton Theorem).
Hence f(A)j = 0, and the result follows from Lemma 3.9.8. O

Corollary 3.9.10. If Aut(G) has s orbits on V(G) then G has at most s main
eigenvalues.

Proof. The orbits of Aut(G) constitute an equitable partition IT for which
det(x! — By) has degree s. By Theorem 3.9.9, det(xI — Bpy) is divisible by
Mg (x). The result follows because Mg (x) has degree | M. a

The largest eigenvalue 1| always belongs to M because £(ju1) contains an
eigenvector whose entries are non-negative. Hence we have:

Corollary 3.9.11. Any divisor of a graph G has the index of G as an
eigenvalue.
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In an r-regular graph, every eigenspace other than £(r) is orthogonal to j,
and so we have:

Corollary 3.9.12. The graphs with exactly one main eigenvalue are precisely
the regular graphs.

It is an open problem to determine the graphs with exactly s main eigen-
values, where s > 1. To describe one of the known results for the case s = 2,
recall that a harmonic graph is a graph for which the vector d of vertex-degrees
is an eigenvector. If Ad = ud then we say that G is p-harmonic. In this
situation, © = @1 € Z because p is rational, while the entries of d are non-
negative. Further, if G has no isolated vertices, then for any vertex v of G, u is
the mean degree of the neighbours of v. The graph of Fig. 3.4 is 2-harmonic.

Proposition 3.9.13. Let G be a non-trivial connected graph with index .
Then G is harmonic and non-regular if and only if the main eigenvalues of G
are w and 0.

Proof. Note that d = Aj # 0, while the relation Ad = pd may be written
as (A2 — A)j = 0. Hence G is harmonic and non-regular if and only if
(A2—pA)j = 0and Aj # j. By Lemma 3.9.8, G is harmonic and non-regular
if and only if Mg (x) = x(x — w). O

3.10 Spectral bounds for graph invariants

In this section we give some further bounds on non-spectral invariants in terms
of graph eigenvalues. The existence of such bounds provides some justification
for ordering graphs lexicographically by spectrum: small changes in eigen-
values will restrict changes to the relevant structural invariants. (See also the
remarks in Section 3.5.)

Here we discuss the stability number, the clique number and the chromatic
number (all defined below). Spectral bounds for these invariants are of interest
in the context of complexity: the problem of determining each of the invariants
is NP-complete, whereas the spectral bounds can be determined in polynomial
time.

The stability number (or independence number) of a graph G is denoted by
a(G): this is the largest number of pairwise non-adjacent vertices in G.

Theorem 3.10.1. Let G be a graph on n vertices. Let n™ and n™~ denote the
number of positive and negative eigenvalues of G respectively. Then

+

2(G) <min{n —n",n—n"}.
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Proof. A set of s independent vertices in G induces a null subgraph H. By the
Interlacing Theorem (applied to the adjacency matrix A of G) we have

An—s+i(G) = Ai(H) = 4i(G) (i =1,2,....5).

It follows that 0 < A4(G), and so n~ < n — s. If we apply the same argument
to the matrix —A in place of A, we find that nT <n —s.Thus s < min{n —

nt,n —n~}, as required. O

Note that the bound in Theorem 3.10.1 is attained by a complete graph.
For regular graphs the following bound was obtained (but not published) by
Hoffman.

Theorem 3.10.2. If G is a regular graph with spectrum A1 > - -+ > Ay, then

_An

a(G) <n .
)\1 - An

Proof. From Theorem 3.5.7 (the left-hand inequality), we have

d — hn

[V(H)| <n———

A — Ay
for any induced subgraph H with mean degree d. If H is a null graph then
d = 0 and the result follows. O

The cligue number of G, denoted by w(G), is the number of vertices in the
largest clique of G. Thus w(G) = a(G).

Theorem 3.10.3. Let m~, m®, m* denote the number of eigenvalues of a
graph G which are less than, equal to, or greater than —1, respectively. Let
s = min{m~ + mO+ 1,m0 +mt, 1+ p}, where p is the index of G. Then
w(G) < s.Ifs = m~ +m® + 1 and the eigenvalues greater than —1 exceed
m~ + m° then (G) <s — 1.

Proof. Suppose that G contains a clique on k vertices. Then by the Interlacing
Theorem we have

Mckil Sk —1<x =p, (3.27)

Mckai < —1 <X G=2,....k). (3.28)

From (3.28) we have k < m™ +mY+1and k < m® +m™. From the right-hand
side of (3.27) we have k < 1 + p. Hence k < s. If k = s = m™ +mY+1
then (again by interlacing) k — 1 > X, where A, denotes the least eigenvalue
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greater than —1. In this situation A, < m~ + mY, and the last assertion of the
theorem follows. O

Note that the upper bound s in Theorem 3.10.3 is attained in the complete
multipartite graph m K,, (for whichm~ =m—1, m* = 0and m* = mn—m+
1). For a spectral lower bound on w(G), we make use of the Motzkin—Straus
inequality:

Lemma 3.10.4 [MotSt]. If G is a graph with adjacency matrix A then

1
max{xTAx x>0, ij =1l}=1——F.
w(G)
Proof. Let x = (x1,...,x,)" and let S be the simplex {x € R" : x >
0, j'x = 1}. We write F(x) = x' Ax and f(G) = max{F(x) : x € S}. If the
vertices 1, ...k induce a largest clique, and if we set x| = -+ = xx = 1/k,

Xg41 = -+~ =X =0, then

f(G)>2(k)i—1—l—1—;
—\2/Jk2 kK o(G)’

The reverse inequality is proved by induction on n. If n = 1 then f(G) = 0
and w(G) = 1. Now suppose that n > 1 and the result holds for graphs with
n — 1 vertices. If the maximum f(G) is attained on a hyperplane x; = 0 then,
applying the induction hypothesis to G’ = G — i, we have

1

<] - —

(G ~ w(G)’

f(G)=fG)=1-

Otherwise, the maximum f(G) is attained at a point ¢ = (c1, c2, ..., c,,)T
with all ¢; > 0.1If we apply the method of Lagrange multipliers (with multiplier
) to the function

F(-xla-x25 "'7-xn) _e(xl +x2+'+xn - 1)7

we find that Fi(c) = F(¢c) = --- = F,(¢) = 0, where F;(x) = 0F/ox;. If G
is not complete, say vertices 1 and 2 are non-adjacent, then for any ¢ € IR, we
have

F(xp —c,xa4¢,x3,...,x) = F(X) — c(F1(X) = F2(x)).
Taking ¢ = ¢ we find that
F@,c1+c2,¢3,...,¢cn) = F(c©).

Thus the maximum f(G) is attained on x; = 0 and the result follows as before.
Finally, if G is complete then n = w(G) and the Cauchy—Schwarz inequality
yields:
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F) =@+ 4x)?—xf— - —xl=1-|x?<1-1 O

Theorem 3.10.5 [Nikl1]. If G is a graph with n vertices and m edges then

(G < |am @@ 1 valently o(G) > — 2"
m——, equivalently w > .
! - w(G) i Y 2m —A%

Proof. Lety = (y1,...,y,) be a unit eigenvector of G corresponding to
A1(G). By the Cauchy—Schwarz inequality, we have

2
MG =2 yivi | <4m) iy
i~

i~j

Applying Lemma 3.10.4 to the vector x = (yf, ey y,zl)T, we have
w(G) —1
2 232 < 7~
£V =06
i~j
and the result follows. a

We mention without proof a related result of Bollobds and Nikiforov
[BolNi]: if G has n vertices and ks(G) denotes the number of cliques in G
with s vertices then

r(G) 1\ r(r—1) /n\r+l
kes1(G) = (T— ) (—) .

1+ -
r r+1 r
A k-colouring of the graph G is an assignment of k colours to the vertices
of G such that adjacent vertices have different colours. The chromatic number
of G, denoted by x (G), is the smallest k for which G has a k-colouring. The
spectral upper bound for y (G) which follows is an improvement on the well-
known inequality x (G) < 1 + A(G).

Theorem 3.10.6 [Wilf]. For any graph G we have x(G) < 1+ A1(G).

Proof. Suppose that k = x(G). We may delete vertices from G as necessary
to obtain an induced subgraph H such that x (H) =k and x(H —v) =k — 1
for any vertex v of H. In a (k — 1)-colouring of H — v, all k — 1 colours are
represented among the neighbours of v (for otherwise the (k — 1)-colouring of
H — v may be extended to a (k — 1)-colouring of H). Thus §(H) > k — 1.
Using Theorem 3.2.1 and interlacing, we have

k<8(H)+1=<r(H)+1=:0(G)+1,

and the result follows. O
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Theorem 3.10.7 [Hof6]. Let G be a graph with n vertices and at least one
edge. Then

*1(G)

1A (G|

x(G) =1+

Proof. Let k = x(G) and consider a partition of V (G) into k colour classes.
Each colour class is an independent set, and so (with an appropriate labelling of
vertices) the adjacency matrix A(G) has a block form in which all the diagonal
blocks A;; are zero matrices. By Corollary 1.3.17 we have

k
2(G) + (k= DA(G) < D Amax(Ait) = 0.

i=1
Since G has at least one edge, we have 1,,(G) < 0 (for example by interlacing).
The result follows on division by |A,(G)]. O

The bound in Theorem 3.10.7 is attained in any non-trivial complete graph.
Note that always |V(G)| < x(G)a(G), and so for regular graphs, Theorem
3.10.7 follows from Theorem 3.10.2.

Since x(G) > w(G), Theorem 3.10.5 provides another lower bound for
x (G). Finally, we mention without proof a further bound from [Nik4]: for any
graph G with n vertices,

A1(G)
V1(G) = A (G)’

where v (G) is the largest eigenvalue of the Laplacian matrix of G.

x(G) =1+

3.11 Constraints on individual eigenvalues

We have already seen that, in general, the spectrum of a graph does not deter-
mine the graph completely. Nevertheless it can often happen that just a single
eigenvalue can provide considerable structural information. In what follows we
examine some such situations, with a focus on the largest and second largest
eigenvalues. Graphs with least eigenvalue > —2 were investigated in Section
3.4; the general relationship between graph structure and a single eigenvalue
is discussed in Chapter 5.

3.11.1 The largest eigenvalue

The largest eigenvalue of a graph is always non-negative. For a connected
graph G, the largest eigenvalue is equal to O if and only if G = Kj; it is
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Cp(n>3) Y, (n >5) Ys =Kj4
1
2 2 3
1 2 3 2 1 1 2 3 4 3 2 1 1 2 3 4 5 6 4 2
F7 Fg Fy

Figure 3.5 The Smith graphs.

equal to 1 if and only if G = K»; and it is equal to +/2 if and only if G = K.
All these conclusions follow from the Interlacing Theorem. In addition, there
is no graph whose largest eigenvalue lies in the intervals (0, 1) and (1, v/2).
On the other hand, there are infinitely many graphs whose largest eigenvalue
lies in the interval (+/2, 2). We show that these graphs are proper subgraphs of
the Smith graphs, i.e. the graphs whose largest eigenvalue is equal to 2.

Theorem 3.11.1 [Smi]. The connected graphs whose largest eigenvalue does
not exceed 2 are precisely the induced subgraphs of the graphs shown in
Fig. 3.5, where the graphs are labelled with a subscript that denotes the
number of vertices.

Proof. In Fig. 3.5, the vertices of each graph are labelled with the entries of
an eigenvector corresponding to the eigenvalue 2. Since all these entries are
positive each graph in Fig. 3.5 has 2 as the largest eigenvalue.

Any connected graph may be constructed from K; by adding vertices
successively and maintaining connectedness at each stage. As we saw in
Proposition 1.3.9, A1 increases strictly with the addition of each vertex. Hence
if G is a connected graph with 11 (G) < 2 then G is either a cycle C,, or a tree;
moreover K 4 is the only possible tree with a vertex of degree greater than
3. If the maximum degree is 3, then either G is Y, or G has a unique vertex
of degree 3 with three paths attached. In the second case, either G is F7 or
one of the three paths has length 1. If one path has length 1 then either G is
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p
e
q p—1 1 qg—1 I r—1
e e e —— e [ ——
r
—
— - Q(p.q.1r)
T(p.q,r)

Figure 3.6 The graphs T (p, q,r) and Q(p, q, 7).

Fg or a second path has length less than 3. In the latter case, G is an induced
subgraph of Fy or Fg. Finally, if the maximum degree of a vertex in G is 2
then G is a path and hence an induced subgraph of some C,,. This completes
the proof. O

It is interesting to see what happens if the upper bound for A; is extended a
little beyond 2. The next bound considered in the literature is v'2 + \/3 ~
2.05817, and then the structure of the graphs in question is still relatively
simple, as we now describe.

Let T(p,q,r) and Q(p, q,r) be the graphs depicted in Fig. 3.6. Then
we have:

Theorem 3.11.2 [BroNe, CvDG]. If G is a connected graph whose largest
eigenvalue lies in the interval (2,2 + /5 ) then G is one of the following
graphs:

(@ T(pgr)forp=1,9g=2r>50rp=149g>2r>30rp=2
gq=2r>2o0rp=2,q=3r=3;
(b) O(p.q.r) for (p.gr) € {(2,1,3),(3,4,3),(3,5,4),(4,7,4), 4,38,5)},
orp>1,r>1,q>q*(p,r), where (p,r) # (2,2) and
p+r if p>3,

g (p,ry=12+r ifp=3,
l4r ifp=2

It is also worth mentioning that, while v/2 4+ +/5 cannot be an eigenvalue of
any graph, any real number « greater than /2 + /5 is a limit point for graph
indices. In other words, there is a sequence of graphs G, G2, . .. such that the
sequence A1(G1), A1(G2), ... converges to o (see [She]).

More recently, the number %\/5 A~ 2.12312 was considered by Woo and
Neumaier as the ‘next’ bound for the index:
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Theorem 3.11.3 [WoNe2]. If G is a graph with index at most %«/5 then G is
one of the following:

(a) a tree of maximum degree 3 such that all vertices of degree 3 lie on a path,

(b) a unicyclic graph of maximum degree 3 such that all vertices of degree 3
lie on a cycle,

(¢) a tree of maximum degree 4 such that all vertices of degree 2 lie on a path.

Note that the converse of Theorem 3.11.3 is false in general. An interesting
bound beyond %\/E has not yet been identified.

3.11.2 The second largest eigenvalue

In this subsection we give a survey (mostly without proofs) of results that
describe, for various values of «, the graphs G such that 1,(G) < «. Always
A2(G) > —1, with equality if and only if G is complete. Indeed, if G is not
complete then G has K > as an induced subgraph, and we have 12(G) > 0 by
interlacing.

Proposition 3.11.4 [Smi]. The non-trivial connected graphs G with A»(G) =
0 are precisely the complete multipartite graphs other than the graphs
K, (n > 1).

Proof. Let G be a connected graph which is not complete. If G is not a
complete multipartite graph then G has K> U K as an induced subgraph H.
Considering a shortest path in G between the two components of H, we see
that G has K| v (K> U K1) or P4 as an induced subgraph. Since both of these
graphs have second largest eigenvalue greater than O (see Table A1), we have
A2(G) > 0 by interlacing.

If G is a complete multipartite graph then we can use the Courant—Weyl
inequalities to show that A,(G) = 0. By Theorem 1.3.15 we have A2(G) +
Mn (6) < —1; the claim follows since the components of G are complete
graphs, and one of them is non-trivial. a

We state the following result without proof:

Theorem 3.11.5 [CaoHo]. The connected graphs G with 0 < A2(G) < % are
the graphs H, = (n — 3)K; v (K> UK)) (n>4).

This remarkable result shows that the graphs H,, are determined by the sec-
ond largest eigenvalue. Note also that lim,,_, oc A2(H,) = 1/3, while 1/3 itself
is not a graph eigenvalue.
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The question arises as to whether there are any wider classes of graphs
whose structure is, to some extent, determined by larger upper bounds on the
second largest eigenvalue. It turns out that +/2 — 1 is a good choice of upper
bound in this respect, because the graphs which arise can be described explic-
itly. They were found independently by Li [Li] and Petrovi¢ [Pet2]; details
appear in [PetRa, Chapter 3]. The next bound, a more natural one, is the golden
section o = @ Since Ay (P4) = o and A(2K>) = 1, neither P4 nor 2K is
an induced subgraph of a graph G for which A2(G) < o. We denote by C the
class of graphs without P4 or 2K as an induced subgraph. If G € C then either
G has an isolated vertex or G is not connected (Exercise 3.25). It follows that
C can be defined recursively as follows:

(i) K1 €C;
(i) if G € Cthen G U K| € C;
(iii) if G;, G, € Hthen G; v G, € C.

Now we introduce some more terminology. The graphs G with 12(G) < o
(the o-property) will be called o-graphs. The graphs G for which A,(G) <
o, A(G) = o and X (G) > o will be called o™ -graphs, Go-graphs and
o t-graphs, respectively. Note that any o ~-graph belongs to C, but not vice
versa. The class C was introduced in [Sim7], where each graph G from C is
represented by a weighted rooted tree T (called an expression tree for G),
defined recursively as follows:

any subgraph H = (H; v Ho) vV ---) vV Hy) UnKy (m >0, n > 0) of G is
represented by a subtree Ty with a root v of weight n whose neighbours in 7y are
the roots vy, vy, ..., vy of the subtrees representing Hy, Hy, ..., Hy respectively.

Example 3.11.6. If G = (K1 v K1) UK1) v K1) vK1)v K1) U3K;, then
the corresponding expression tree is depicted in Fig. 3.7(a). In Fig. 3.7(b) we
represent the same graph by a diagram in which a line between two circled sets
of vertices denotes that each vertex inside one set is adjacent to every vertex
inside the other set. ]

It turns out that these weighted trees can be used to categorize o~ -graphs:
the weighted tree of any such graph is of one of the nine types illustrated in
Fig. 3.8. This result was used in [Sim6] to prove the existence of a finite family
of minimal forbidden (induced) subgraphs for the o~ -property; except for 2K»
and Py, they belong to the class C. Details of such a family may be found in
[Sim6]. Some of these minimal forbidden subgraphs have a huge number of
vertices (see [Sim6, CvSi4]), and to date the divisor technique and a computer
search have proved insufficient to identify all those of the last type illustrated
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()

(a) (b)

Figure 3.7 An expression tree and associated diagram.

in Fig. 3.8. On the other hand, some arbitrarily large families of o ~-graphs are
described in [Sim8].

Now we turn our attention to o -graphs. It was first observed in [CvSi2] that,
apart from complete multipartite graphs and subgraphs of Cs, the structure
of such a graph G can be specified in relation to a triangle of G (see [CVRS2,
Chapter 9] or [PetRa, Chapter 3]). There exists a finite set of minimal forbidden
subgraphs for the o-property, but such a set remains to be constructed. The
following result provides some additional information:

Theorem 3.11.7. If H is a minimal forbidden subgraph for the o -property,
then either

(a) H is one of the graphs 2K», Ji, Ja, J3, J4 (see Fig. 3.9), or
(b) H belongs to the class C.

The problem of finding the graphs G with 22(G) < 1 is attributed to Hoft-
man. Cvetkovi¢ [Cve8] showed that if G is such a graph then either G has girth
at most 6, or G is a tree of diameter at most 4. Petrovi¢ [Petl] showed that the
bipartite graphs which arise fall into seven classes, three of them infinite:

Theorem 3.11.8. Let G be a connected bipartite graph. Then 1> (G) < 1 if
and only if G is an induced subgraph of a graph illustrated in Fig. 3.10.

Fig. 3.10 depicts three infinite families of graphs and four individual graphs.
In all cases, encircled vertices form a co-clique, and a full line between co-
cliques indicates a complete bipartite subgraph. Parallel broken lines between
the vertices of two co-cliques indicate a graph obtained from some K, , by
deleting n independent edges. Parallel full lines between the vertices of two
co-cliques indicate a graph of the form nK>.

As a consequence of Theorem 3.11.8, the bipartite graphs with A < 1 can
be characterized by a family of 12 forbidden subgraphs (see [Petl] or [PetRa,
Chapter 3]).
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2m

m>0,2m+n<6

m 2m

2<m=<3 m>0,2m+n <55

Figure 3.8 Expression trees for o ~-graphs.

NIk Vel s

Figure 3.9 Some graphs from Theorem 3.11.7.

By Theorem 1.3.13, we have A12(G) +4,_1(G) > —1 and 12(G) +1,(G) <
—1. These inequalities provide a natural link between the graphs with A, < 1
and the graphs with least eigenvalue > —2:
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Figure 3.10 The graphs from Theorem 3.11.8.

Ql
Ql
[ ]

(@) A (G) = —2.074, 12(G) = 0.753 (b) A (G) = —2.136, 1(G) = 1.08
Figure 3.11 Examples related to Theorem 3.11.9.

Theorem 3.11.9 [Cve8]. Let G be a graph on n vertices with A2(G) < 1.
Then either

(@) 2 (G) > =2, 0r
() 1 (G) < =2 and r,—1(G) = —2.

Conversely, if A,(G) > —2 then 1> (G) < 1.

A graph which satisfies condition (b) may or may not have A2(G) < I:
see the graphs in Fig. 3.11, where in each case A, (G) and A»(G) are as shown.
Note that if a graph has A,,(G) = —2 with multiplicity at least 2, then A,(G) =
An—1(G), and so necessarily 1(G) = 1.

Since Eg(M) Njt = Eg(=1=2) Nj* for any eigenvalue A of G, we can say
a little more by way of a converse in Theorem 3.11.9:
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Figure 3.12 The graphs from Theorem 3.11.12.

Theorem 3.11.10 [Cve8]. Let G be a graph on n vertices. Then:

() if G is a graph with 1,(G) > —2 then »(G) < 1;
(i) if G is a graph with 7,,(G) = —2 then 2(G) < 1, with strict inequality if
and only if —2 is a simple main eigenvalue of G.

We conclude this subsection with two general results. The first applies to
trees, and is due to Neumaier:

Theorem 3.11.11 [Neu]. If T is a tree with A (T) < X then either

(a) there exists a vertex v of T such that A (T — v) < A, or
(b) there exists an edge uv of T such that T — uv = T; U T» where
M(T—u) <A< (T) and I(Th —v) <A < A(T).

Taking & = 2 in Theorem 3.11.11, we see that if T is a tree with A>(7T) < 2
then either an edge or a vertex may be deleted to obtain subtrees that have
index at most 2 and are therefore of the very restricted type described in The-
orem 3.11.1. A similar approach is used by Neumaier and Seidel [NeuSe] to
investigate arbitrary graphs G with A>(G) < 2: such graphs are called reflex-
ive graphs because of their relation to automorphism groups of certain lattices
generated by reflections. More on reflexive graphs can be found in [PetRa,
Chapter 3].

The second general result is due to Howes:

Theorem 3.11.12 [How]. For an infinite set of graphs G, the following
statements are equivalent.

(1) There exists a real number o such that 1>(G) < « for every G € G.

(i1) There exists a positive integer s such that for each G € G, the graphs
(Ks UK v K, (sK1 UKiy) v Ki, (Ke—1 UsKy) v Ky, Ky UKy,
2K, 2K and the graphs in Fig. 3.12 (each obtained from two copies of
K1 s by adding extra edges) are not induced subgraphs of G.
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Exercises

Derive the formula given in Theorem 3.1.5.

Provide the details required to complete the proof of Theorem 3.1.6.

Let G be an r-regular graph, and let ¢(i) be the number of cycles in G of
length i (i = 3,4, 5). Show that, in the notation of Corollary 2.3.3,

1 1
c(3) = 53 c(4) = Z(c% +2rcy —cr — 2c4),

1
c(5) = 5(6263 + 3rc3 — 3c3 — ¢5).

Show that the eigenvalues and angles of a graph G determine whether or
not G is a tree.

Let G be a graph with index A; and adjacency matrix A. Show that G
is connected if and only if for any A > X1, each entry of (/ — %A)_l is
positive.

Prove Theorem 3.4.4.

Prove Theorem 3.4.5.

Show that the Petersen graph is not a generalized line graph. Find a
representation of this graph in Eg.

Prove Lemma 3.4.7.

Let T = Y (the corona K o 2K1). Show that if the cubic graph G is the
edge-disjoint union of subgraphs isomorphic to 7', then 0 is an eigenvalue
of G.

Show that if G is a strongly regular graph with parameters (n, r, e, f)
then its complement G is strongly regular with parameters (i1, 7, &, f),
where

i=n, i=n—r—1, e=n—-2-2r+f f=n—2r+e.

Show that a strongly regular graph G is imprimitive if and only if G or
Gisa complete multipartite graph of the form K, ... .

Show that if n > 2m then the distinct eigenvalues of the Johnson graph
J(n,m) are (m — i)(n —m — i) — i, with multiplicity (}) — (,",) ( =
0,1,...,m).

Verify Equations (3.21).

Verify the properties claimed for the graph constructed in Example
3.7.1().

Show that a connected graph is distance-regular if and only if for each
positive integer k, the number of i-j walks of length k£ depends only on

d(i, j).
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By finding an appropriate eigenvector, show that there is no distance-
regular graph with intersection array {3, 2, 1; 1, 1, 3}.

Show that the orbits of any group of automorphisms of a graph G form
an equitable partition of G.

Prove that if the vertices u, v are similar then the angles «;,,, o, coincide
foreachi € {1,...,m}.

Let w be an automorphism of a graph G. Show that if 7 has s cycles
of odd length and ¢ cycles of even length (when written as a product of
disjoint cycles) then the number of simple eigenvalues of G is at most
s+ 2t.

Let G be a graph whose characteristic polynomial is irreducible over the
rationals. Show that G has no non-trivial automorphisms.

Prove that K, is the only non-trivial vertex-transitive graph without
multiple eigenvalues.

Show that if a graph G has mean degree d and just two main eigenvalues,
w1 and pj (j > 1), then [Row16]

1 - -
=Y di—d)’ = (1 —d)d — ).
i=1

Let G be a non-trivial connected graph with index p. Show that G is a
semi-regular bipartite graph if and only if the main eigenvalues of G are
u and —u [Plo, Row16].

Let G be a graph with neither P4 nor 2K as an induced subgraph. Show
that either G has an isolated vertex or G is not connected.

Let G be a graph with spectrum A; > A, > --- > A,. Show that if G is
not complete then [Hof6]:

n—+Ai— A

G) >
x(©) = 14+ A

(a) Let A} < 1] < --- < A be the eigenvalues of the graph G, and let
k = x(G).Show that A} + A5 +---+A;_; + A, < 0.

(b) Show that if further G is k-colourable in such a way that two vertices
are adjacent if and only if they have different colours, then equality holds
in (a).

Let G be a graph with eigenvalues AT < A5 <--- < A;. Show thatif G
has independence number «(G) and clique number w (G), then

A+ =200 Mg 200 Miwi-1 =1 Ay = 1
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Notes

Analogues of Theorem 3.5.3, concerning similar measures of expansion for
arbitrary graphs, appear in Chapter 7 in the context of the Laplacian spectrum.
A proof of the relation (3.17) is given in the monograph [DavSV], along with
a self-contained treatment of the Ramanujan graphs of Lubotzky, Phillips and
Sarnak [LuPS]. Cubic Ramanujan graphs are discussed in [Chi], and the girth
of Ramanujan graphs is investigated in [BigBo].

All rank 3 permutation groups (and by implication all rank 3 graphs) are
known as a consequence of the classification of finite simple groups (see
[Cam?2]). Among strongly regular graphs, the rank 3 graphs are relatively rare;
a compilation of strongly regular graphs may be found in [Hub]. Those with
strongly regular subconstituents are investigated in [CamGS]. Some further
feasibility conditions for the existence of strongly regular graphs with pre-
scribed parameters can be found in [BroLi]. The absolute bound and the Krein
inequalities for strongly regular graphs are special cases of general inequalities
for association schemes (see [BroCN, Chapter 2]).

Distance-regular graphs arose in a paper of Biggs [Bigl] and a good intro-
duction to the topic may be found in his monograph [Big2], a secondary source
for Example 3.7.1(iii). The monograph [BroCN] is the standard reference for
a comprehensive treatment, with 800 references. For graphs in the follow-
ing categories, it lists all the arrays which pass all known feasibility tests for
distance-regularity : (i) graphs with diameter > 5 and at most 4096 vertices,
(i1) non-bipartite graphs with diameter 4 and at most 4096 vertices, (iii) primi-
tive graphs with diameter 3 and at most 1024 vertices. (In this context, a graph
with diameter d is primitive if each of A1, As, ..., Ag is the adjacency matrix
of a connected graph.) For a survey of distance-transitive graphs, see [Coh].

For a survey of graph automorphisms, see [Cam3]. The proofs of The-
orem 3.9.9 and its corollaries are taken from [Row16], a survey of main
eigenvalues which includes a discussion of the cases Mg(x) = x% - uz,
Mg (x) = x(x> — pu?). Theorem 3.9.9 was first established in [Cve6] by means
of walk-generating functions. The concept of a divisor has been exploited in
coding theory; see [CvLi].

Graphs whose spectra conform to prescribed conditions (such as those inves-
tigated in Section 3.11) are said to be spectrally constrained; such graphs
are the subject of the monograph [PetRa]. The second largest eigenvalue of
line graphs and generalized line graphs is discussed in [PetMil] and [PetMi2]
respectively. A survey of results on A may be found in [CvSi3]. In view of the
relation A2(G) + A,(G) < —1, there is a natural link between lower bounds
for A, and upper bounds for X,. An analogue of Theorem 3.11.12 for graphs
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whose least eigenvalue is bounded below may be found in [Hof8]. Graphs
with least eigenvalue > —+/3 are determined in [CvSt]; those with least eigen-
value > —1 — /2 are discussed in [Hof7] and [WoNel]. The graphs with
maximal least eigenvalue, among the connected non-complete graphs with a
prescribed number of vertices, are determined in [Hon3]. The graphs with min-
imal least eigenvalue, among the connected graphs with prescribed numbers
of vertices and edges, are discussed in Section 8.2. The corresponding prob-
lem concerning the maximal index is investigated in Section 8.1. The graphs
with maximal index, among the graphs with a prescribed number of edges, are
determined in [Row4]; see also [CVRS2, Chapter 3], where graphs with maxi-
mal index in various classes of graphs are described. A survey of results on the
index of a graph may be found in [CvRo03].

Non-regular graphs with just three eigenvalues are discussed in [BriMe],
[Dam2], [MuKl], and regular graphs with just four eigenvalues are investigated
in [Dam1], [DamSp].

For a discussion of NP-completeness in a combinatorial context, see [BruRy,
pp- 245-8].
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Characterizations by spectra

In this chapter we discuss several instances of the following problem:

Given the spectrum, or some spectral characteristics of a graph, determine
all graphs from a given class of graphs having the given spectrum, or the given
spectral characteristics.

In some cases, the solution of such a problem can provide a characteriza-
tion of a graph up to isomorphism (see Section 4.1). In other cases we can
deduce structural details (see also Chapter 3). Non-isomorphic graphs with the
same spectrum can arise as sporadic exceptions to characterization theorems or
from general constructions. Accordingly, Section 4.2 is devoted to cospectral
graphs; we include comments on their relation to the graph isomorphism prob-
lem, together with various examples and statistics. We also discuss the use of
other graph invariants to strengthen distinguishing properties. In particular, in
Section 4.3, we consider characterizations of graphs by eigenvalues and angles.

4.1 Spectral characterizations of certain classes of graphs

In this section we investigate graphs that are determined by their spectra. The
three subsections are devoted to (i) elementary characterizations, (ii) charac-
terizations of graphs with least eigenvalue —2, and (iii) characterizations of
special types. In the case of (i), a graph is uniquely reconstructed from its spec-
trum, while in cases (ii) and (iii) various exceptions occur due to the existence
of cospectral graphs.

4.1.1 Elementary spectral characterizations

We say that a graph G is characterized by its spectrum if the only graphs
cospectral with G are those isomorphic to G.

104
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Note first that this condition is satisfied by graphs which are characterized by
invariants (such as the number of vertices and edges) which can be determined
from the spectrum. Examples include the complete graphs and graphs with one
edge, together with their complements. Given the spectrum spec(G) of a graph
G we can always establish whether or not G is regular (see Corollary 3.2.2);
moreover, if G is regular, the largest eigenvalue is the degree of regularity (see
Proposition 1.1.2). It follows that if G or G is regular of degree 1 then G is
characterized by its spectrum.

Regular graphs of degree 2 are unions of cycles. As we saw in Example
1.1.4, the eigenvalues of the cycle C, are the real parts of the n-th roots of 2",
i.e. the numbers

2
2cos—j (j=0,1,....,n—1).
n

The largest eigenvalue is A; = 2 (which arises when j = 0) and the second

2
largest is two-fold: Ap = A3 = 2cos il (which arises when j = 1 and j =
. n .
n — 1). Suppose now that G = C,,; U---U C,,. Then the eigenvalues of G are

the numbers

2
2c08 i G=0,1,....ni—1:i=1,....k.
-

1
Given spec(G), we can first establish (as above) that G is regular of degree 2.
From the second largest eigenvalue in spec(G), we can determine the length
m of the largest cycle in G. Now we eliminate the eigenvalues of C,, and (if
eigenvalues remain) repeat the process. Proceeding in this way, we can identify
the lengths of all cycles of G, and thereby determine G up to isomorphism.
Accordingly, we have the following theorem:

Theorem 4.1.1 [Cvel]. Any regular graph of degree 2 is characterized by its
spectrum.

Remark 4.1.2. From the spectrum of a regular graph G we can find the spec-
trum of G (see Theorem 2.1.2), and so it follows from Theorem 4.1.1 that any
n-vertex graph which is regular of degree n —3 is characterized by its spectrum.
This result was proved for connected multigraphs by Finck [Fin]. o

It is also straightforward to show that a graph of the form m K, is char-
acterized by its spectrum, a fact established in complementary form by
Finck:

Theorem 4.1.3 [Fin]. For each positive integer n, the complete multipartite
graph Ky, ... n is characterized by its spectrum.

The next result, however, does not admit a transition to the complement.
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Theorem 4.1.4 [Cvel]. The spectrum of the graph G isn; — 1,...,ny —
1, 0%, (=D)m++mu=k if and only if G = Ky, U---U Ky, UsKj.

It follows from Theorem 3.1.11 that the path P, is characterized by its spec-
trum (Exercise 4.6); the same is true of P,, but the proof cannot be described
as elementary (see [DooHal). A lollipop graph is obtained from P, (n > 4) by
adding an edge joining non-adjacent vertices of degrees 1 and 2. It has recently
been shown, in a long proof, that every lollipop graph is characterized by its
spectrum [HaeLZ, BouJo].

We continue with two examples where the Interlacing Theorem (Corollary
1.3.12) is sufficient to obtain a spectral characterization. In each case the pre-
scribed spectrum lies in the interval in [—2, 4], and so any graph with an
eigenvalue less than —2 (or greater than 4) is forbidden as an induced sub-
graph. In the next subsection we discuss more general results obtained using
our knowledge of the regular graphs with least eigenvalue > —2.

Proposition 4.1.5. L(Cg) is characterized by its spectrum.

Proof. Suppose that G is a graph with the spectrum of L(Cg), namely
4,2,12, (=1)2, (=2)3. By Corollary 3.2.2, G is 4-regular. For u € V(G), let
G (u) denote the subgraph of G induced by the neighbours of u. By Theorem
3.1.1, the average number of edges in the subgraphs G(u) is less than three.
Thus there exists a vertex v of G with |E(G(v))| < 2. Consider the vertex v
along with its four neighbours. In order to avoid an induced subgraph on five
or six vertices with least eigenvalue less than —2, it must be the case that G (v)
consists of two independent edges.

Let G(v)* denote the subgraph induced by v and its neighbours, and let H
be the subgraph induced by the remaining four vertices of G. Note that (i)
there are eight edges between G (v)* and H, (ii) no vertex of H is adjacent to
three vertices of G (v)*, again because of forbidden subgraphs. It follows that
H is a 4-cycle. The remaining edges can be added in only two ways to avoid
forbidden subgraphs: one yields L(Cg) and the other yields L(K33) (whose
spectrum is 4, 14, (=2)%.

This completes the proof. ]

Proposition 4.1.6. Let Hg denote the cubic graph on eight vertices formed by
taking two copies of the graph on four vertices with five edges and adding two
appropriate edges. Then L(Hg) is characterized by its spectrum.

Proof. Suppose that G is a graph with the spectrum of L(Hs), namely
4,1+ +/5,2,0% 1—+/5, (—=2)*. As before, let G(u) denote the subgraph of
G induced by the neighbours of u (# € V(G)). By Theorem 3.1.1 the aver-
age number of edges in the subgraphs G () is three. Let us suppose first that
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every subgraph G (u) has three edges. Then each G(u) is K13, K3 U K, or
Py4. Suppose that v is a vertex for which G (v) is K 3, and let w be one of the
vertices of degree 1 in G(v). Then G (w) has fewer than three edges, contrary
to assumption. If G (v) is K3 U K1, then G(u) is K3 U K for every vertex u. In
this case, each vertex lies in exactly one complete graph with four vertices, and
G consists of three disjoint copies of K4 together with six edges. There is only
one regular graph with this property, and it is the line graph of a semi-regular
bipartite graph, with spectrum 4, (1 4+ +/2)2, 03, (1 —+/2)2, (=2)*. If G(u)
is P3 for every u, then there is only one way to complete the graph avoiding
forbidden subgraphs, and the spectrum is 4, (1 +\/§)2, 03, (1— «/§)2, (—2)4.

These contradictions show that there is a vertex v such that G(v) has
fewer than three edges, and as in Proposition 4.1.5, G (v) has two independent
edges.

Now Fig. 4.1 illustrates all the possible ways of adding further vertices
adjacent to neighbours of v. In each case, it is straightforward to complete
the graph. Among the graphs obtained in this way, only L(Hg) has the given
spectrum. U

In the last proof, details of the completions are left to the reader. To prove
that a completed graph does not have the given spectrum, it suffices here to
count the numbers of triangles, quadrilaterals and pentagons (see Chapter 3).!

v v

VoS

Figure 4.1 The graphs from Proposition 4.1.6.

I The graphs can be completed by hand or by the use of graph editing computer packages such
as ‘newGRAPH’ (www.mi . sanu.ac.yu/newgraph/), where interactive facilities enable
the spectrum of each extension to be calculated.
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4.1.2 Graphs with least eigenvalue -2

Most spectral characterization theorems are related to graphs with least eigen-
value —2, reflecting the fact that such graphs are well understood: we saw in
Section 3.4 that there are only finitely many such graphs which are connected
but not generalized line graphs, and these are called exceptional graphs (see
also Chapter 5). We have also seen that the properties of regularity, and then
connectedness, can be established from the spectrum. In this section we show
how knowledge of the regular exceptional graphs leads to spectral character-
izations of connected regular graphs with least eigenvalue —2. The regular
exceptional graphs were determined in 1976 with the aid of a computer; they
are not listed here but can be found in [CvRS7, Table A3]. However, the
first general results, which we state without proof, were obtained by Hoffman
[Hof1, Hof2] in the early 1960s.

Theorem 4.1.7. Ifn # 8 then L(K,) is characterized by its spectrum.
Note that L(K},) is a regular graph of degree 2n — 4 on n(n — 1) /2 vertices,
with spectrum 2n—4, (n—4)"~1, (=2)"n=3)/2,

Theorem 4.1.8. Ifn # 4 then L(K, ) is characterized by its spectrum.

See Example 2.4.5 for the spectrum of L(K,, ).

In Theorem 4.1.7 the exceptions which arise when n = 8 are the three Chang
graphs described in Example 1.2.6. Similarly, the only exception in Theorem
4.1.8 when n = 4 is the Shrikhande graph, introduced in Example 1.2.4. The
Shrikhande graph and the Chang graphs are exceptional graphs. Since they
are obtained by Seidel switching (as noted in Chapter 1), one might think
that many other exceptional graphs cospectral with regular line graphs can
be constructed in the same way. In fact, the possibilities are severely restricted
by the following theorem, which relates the divisor concept to switching in
graphs.

Theorem 4.1.9 [Cve6]. Ifa regular graph G of degree r with n vertices can be
switched into a regular graph of degree r*, then r* —n /2 is an eigenvalue of G.

Proof. If G has the stated property in respect of a switching set S of size
t (0 <t < n) then S and its complement determine a divisor with adjacency
matrix

r—%(n—t—r*—i—r) %(n—t—r*—i—r)
%(t—r*—}—r) r—%(t—r*+r)

The eigenvalues of this matrix are r and r* — n/2, and by Theorem 3.9.5, they
are eigenvalues of G. The result follows. O
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Since a rational eigenvalue of a graph is an integer, we have:

Corollary 4.1.10. If n is odd then G cannot be switched into another regular
graph.

Corollary 4.1.11. If the r-regular graph G can be switched into a regular
graph of the same degree and if q is the least eigenvalue of G, thenr—n/2 > q,
i.e.n <2r —2q. Sinceq > —r, we haver —n/2 > —r, i.e. v > n/4.

Example 4.1.12. There is no cospectral pair of non-isomorphic cubic graphs
with fewer than 14 vertices. Accordingly it follows from Corollary 4.1.11 that
the existence of (non-isomorphic) cospectral cubic graphs cannot be explained
by switching. O

Example 4.1.13. If L(K;) (s > 1) can be switched to another regular graph of
the same degree then by Corollary 4.1.11, 2s —4 — s(s — 1)/4 > —2, whence
s < 8. (The three Chang graphs arise when s = 8.) O

We extend the argument of Example 4.1.13 to any regular line graph L(G)
where G is connected and non-trivial; there are two cases.

(1) If G is regular of degree r with n vertices then L(G) is of degree 2r — 2
and has nr/2 vertices. If L(G) can be switched into another regular graph
of the same degree then 2r — 2 — nr/4 is an eigenvalue of L(G). Clearly,
2r — 2 —nr/4 > —2, which implies n < 8.

(2) Let G be semi-regular bipartite with parameters (n1, ns, di, d2). Then
L(G) has n1d; (= nydp) vertices and degree di + da — 2. Therefore,
we have

di+dy—2—n1d /2> -2, nidy <2(d +d),
ny <2 +dy/dy) =2 +ny/ny), 1/ni+1/ny>1/2.

Without loss of generality, ny < n.If ny = 1, then L(G) = K,,, a graph
characterized by its spectrum. Doob [Doo3] proved that also L(K? ,,) is char-
acterized by its spectrum; for ny > 16, this follows from Theorem 4.1.18
below. Accordingly, we suppose that n1 > 3. The possibilities for (n1, no) are
then (3, 3) (ruled out by Theorem 4.1.2) and (3, 4), (3,5), (3,6), (4,4). In
particular, n1 + n2 < 9 and G has at most 18 edges.

In view of the bounds on the number of vertices established in cases (1) and
(2), it is straightforward to identify the graphs which arise. We shall see that all
graphs cospectral with a connected regular line graph can be constructed from
line graphs by switching. For future reference we illustrate four examples in
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(a) (b)

(c) (d)

Figure 4.2 Some graphs whose line graphs are switched into exceptional graphs.

Fig, 4.2; here, each of (a), (b), (c), (d) is a graph H in which the bold edges
denote vertices in the switching set for L (H ). The graphs obtained by switch-
ing are denoted by G6, G9, G69, G70 respectively (the numbers chosen for
consistency with [CVvRS7, Table A4].)

It can also happen that two non-isomorphic regular line graphs have the
same spectrum, and the following theorem specifies the possibilities.

Theorem 4.1.14 [BuCS1, BuCS2]. Let L(G1), L(G>) denote cospectral, con-
nected, regular line graphs of the connected graphs G, Go. Then one of the
following holds:

(a) Gy and G» are cospectral regular graphs with the same degree,
(b) Gy and G, are cospectral semi-regular bipartite graphs with the same
parameters,
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(©) {G1, Gy} = {Hy, H2}, where H\ is regular and H; is semi-regular bipar-
tite; in addition there exist positive integers s > 1 and t < %s, and real
numbers Aj, 0 < A < ta/s2—1,1 =2,3,..., %s(s — 1), such that H;
has s2 — 1 vertices, degree st, and the eigenvalues

st, :I:,/)\i2 + 12, —t (of multiplicity s);

H> has s* vertices, parameters ny = %s(s + 1), np = %s(s — 1),
ri = t(s — 1), ro = t(s + 1), and the eigenvalues +t~/s> — 1, £1;, 0
(of multiplicity s).

Proof. We know that if the graph G is connected and the line graph L(G) is
regular then either G is regular or G is a semi-regular bipartite graph. If G| and
G, from the theorem are both regular or both semi-regular bipartite we have
cases (a) and (b) of the theorem; this follows readily from Theorems 2.4.1,
2.4.2 and Corollary 2.4.3.

Suppose therefore that {G|, G2} = {H, H»} where H; is regular non-
bipartite of degree r with n vertices, H» is semi-regular bipartite with param-
eters (n1,no,ry,r2), and ny > ny. Since L(Hy) and L(H>) are cospectral
they must have the same degree, the same number of vertices and the same
multiplicity of the eigenvalue —2. This yields the following relations

ritro—2=2r—-2, niry = n—;(z nara),

nr
n1r1—n1—n2+1=7—n,

which may be rewritten as follows:

rir+nr
= —", 4.1
7 5 4.1
nr =2n1r; = 2nyr, “4.2)
n=n;+ny—1. 4.3)

If we use (4.1) and (4.3) to substitute for » and n in (4.2), we obtain:

ry+r
no—ny =212 (4.4)
r —r
Let A1, A2,...,A,, be the first ny largest eigenvalues of H. From

the proof of Corollary 2.4.3, we know that H, has also the eigenvalues


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.005
https:/www.cambridge.org/core

112 Characterizations by spectra

—XA1, —A2, ..., —Ayu, and n; — ny eigenvalues equal to 0, where A1 = /rir.
Since the sum of squares of eigenvalues is twice the number of edges we have

ny
2riry + ZZK% =2nyry,
i=2

equivalently,

ny
ZA? =niry —rirn. “4.5)

Now, by Theorem 2.4.1 and Corollary 2.4.3, the eigenvalues of H| are %(r 1+
ro) with multiplicity 1 (largest eigenvalue), %(rl —rp) with multiplicity n; —n»

and j:,/)\i2 + le(rl —r)?% (i = 2,3,...,n2). The sum of eigenvalues must
be 0 and this yields again the relation (4.4). Considering the sum of squares
we have

2
(n;—rz) +(n1—n2)< r2> +ZZ()»2 r2) ):2n1r1.

Using (4.5), we obtain:

2
ra+r
n1+n2=< ! 2) . (4.6)
r—rp
re+r . . .
Lets = . Then s is an integer greater than 1, and relations (4.4) and
r —r
(4.6) yield
s+ 52—
np = and ny = 7

By Equation (4.1), r; and r, are of the same parity, and since r, > r; we
can take rp = rq + 2t, where ¢ is a positive integer. Then

ri=t(s—1) and rp, =t(s +1).

Since ri < nj and rp < n| we see that t < s/2. If we now express the
spectra of H; and H> in terms of s, ¢ and the };, the proof of the theorem is
complete. a

Remark 4.1.15. When s = 2 we have H; = K3 and H, = K| 3, but then
L(Hp) and L(H>) are not only cospectral, but also isomorphic. (By a theorem
of Whitney [Whi], {K3, K3} is the only pair of non-isomorphic connected
graphs having isomorphic line graphs.) When s = 3, H> is the graph shown
in Fig. 4.2(c); but then H; does not exist. For s = 4 and r = 2 we have
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Hy = Ko and H = L(Kg) and, of course, L(K19,6) and L(L(Kg)) are
cospectral but not isomorphic. In the case s = 4, t = 1, H, belongs to the
design with the parameters v = 6, b = 10,r =5,k =3, A = 2, and H is the
Petersen graph. For higher values of s, in the known examples H> is the graph
of a 2-design. It would be interesting to know whether there exists a pair of
graphs Hy, Hp such that (i) H; is not the graph of a 2-design, and (ii) H, H>
satisfy the conditions of Theorem 4.1.14(iii) with s > 4. O

Now we turn again to exceptional graphs. We start with the following
definition.

Definition 4.1.16. G is the set of all connected regular graphs, whose adja-
cency matrix has least eigenvalue —2, and which are neither line graphs nor
cocktail-party graphs.

Note that a regular generalized line graph is either a line graph or a cocktail-
party graph (Exercise 1.11), and so G is just the set of exceptional regular
graphs. Hoffman [Hof5] posed the problem of determining G, and he and Ray-
Chaudhuri [HofRa3] showed that graphs in G cannot have degree > 17. As
exceptional graphs, the graphs in G have a representation in the root system Eg
(see Chapter 3), and we use this fact to prove the following:

Theorem 4.1.17 [CamGSS, Theorem 4.4]. Any graph in G has at most 28
vertices, and degree at most 16.

Proof. If A is the adjacency matrix of an r-regular graph G in G then the
matrix [ + %A has rank at most 8 since G has a representation in Eg. Hence
the positive semi-definite matrix

1 r—+2
I+ -A—
+2 2n

J

has rank at most 7, and is therefore expressible in the form QTQ, where
1

0O = (qi]---1qn), of size 7 x n. Let Q; = —q,-q;r (i=1,...,n), where
o

a=1- % Thus Q; represents the orthogonal projection of IR onto the

line spanned by the vector q; (i = 1,...,n). These n projections lie in the

space of symmetric linear maps IR’ — IR’, and with respect to the inner
product

(0i, Q) = *w(0:0)) = (g qj)%,

their Gram matrix is

r4+2\? 1 r+2\? r4+2\2
1— I+ (=— A J—1—A).
( 2n> +<2 Zn) +<2n)( )
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Since this matrix must be positive semi-definite, each eigenvalue A of A other
than r satisfies:

r+2\? (1 r+2)? r+2\°
11— — — A —1—-2) >0,
( 2n ) +<2 2n> +< 2n )( )z

equivalently:

An —2r —4) > —2(2n — 2r — 4). A7)

We distinguish two cases: (a)n —2r —4 > 0,(b)n —2r —4 < 0.

In case (a), (4.7) is a strict inequality because A > —2 ; then the vectors
qi, - .., qy are linearly independent, and son < 28, r < 12.

In case (b), (4.7) becomes

- 2(2n — 2r —4).
2r+4—n

Now A has —2 as an eigenvalue of multiplicity at least n — 8. If the remaining
eigenvalues are r > Ay > --- > \g then we have:

8
O=tr(A)=r+(n—8)(—2)+Zki§r—2n+16+
=2

14020 — 2 — 4)
2r+4—n

In particular, we have » < 17 whenn = 28 and r < 16 when n < 27 (Exercise
4.7). To see that n < 28, consider the positive semi-definite matrix / + %A —
%(] — I), in which the non-diagonal entries are £1/3. This is the Gram matrix
of n vectors in IR® which determine n equiangular lines: the angle between
any two of them is cos~!(1/3). However, the maximal number of equiangular
lines in IR® is 28 (see Section 6.6), and so n < 28; moreover, any set of 28
equiangular lines in IR® span a 7-dimensional subspace. Hence if n = 28 then

I+ %A has rank at most 7, and so Ag = —2. In this case,
0= tr(A) = r +21(=2) + ix <y _dpy 22720
—rA= I S R A T
whence r # 17. |

We can now extend Theorem 4.1.8 as follows:

Theorem 4.1.18 [Cvel, Dool]. Ifm+n > 19 and if {m, n} # {2s*+s, 2s% —
s}, where s is a positive integer, then L(K,, ») is characterized by its spectrum.

Proof. As before, we may assume that m > 1 and n > 1; then the eigenvalues
of L(K,y.n) atem +n —2,m —2,n — 2,2 with multiplicities 1, n — 1, m —
1, mn —m —n+ 1 respectively. (This follows from Theorems 2.1.8 and 2.4.1.)
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Now let G be a graph with the same spectrum as L (K, ). We know from
Corollary 3.2.2 and Theorem 1.3.6 that G is a regular connected graph. More-
over, it has degree > 17 and least eigenvalue —2. We conclude that G is a line
graph, say G = L(H), where H has no isolated vertices. Since G is regular,
H is either a regular graph or a semi-regular bipartite graph.

Suppose first that H is regular of degree r. Then 2(r — 1) = m +n — 2,
whence m + n is even and r = %(m + n). The number g of edges in H is the
number of vertices in G, namely mn. Now the number of vertices of H is 2q/r,
or 4mn/m + n. By considering the multiplicity of —2 as a root of Py y)(x) as
given by Theorem 2.4.1 we find that —%(m + n) is an eigenvalue of H with
multiplicity

mn (m—n)2
mn—m-n—+1—|mn—4 =1 - — .

m+n m+n

We deduce that m = n, for otherwise {m, n} = {2s2+s, 252 —s}, contrary to
assumption. Accordingly, the result in this case follows from Theorem 4.1.8.

Secondly, let H be a semi-regular bipartite graph with parameters
(n1,no,r1,r2), where ny > np. Thenniry =norp =mnandri+ry =m-+n.
By Corollary 2.4.3, ri — 2 is an eigenvalue of L(H), and a comparison with
the eigenvalues of G yields three possibilities: (1) r; = m, (2) r1 = n, (3)
r1 = m + n. The third cannot arise because r, 7# 0, while in cases (1) and (2)
we have H = K, ,, as required. O

Note thatif m > 2 and n > 2, only case (a) in the proof of Theorem 4.1.17 is
pertinent, and so then L(K,, ,) is characterized by its spectrum when m +n >
15. We shall see shortly how knowledge of the graphs in G enables Theorem
4.1.18 to be extended to deal with all the cases in which m +n < 18. The
graphs in G were determined by Bussemaker, Cvetkovi¢ and Seidel [BuCS2],
partly by means of a computer search for representations in Eg (see [CVRS7,
Section 4.4]). The report [BuCS1] contains a table of all 187 graphs from G;
this table is reproduced in a slightly different form in the monograph [CvRS7,
Table A3].

In view of our earlier remarks, we have the following result.

Theorem 4.1.19. Any regular connected graph with least eigenvalue —2 is a
line graph, or a cocktail party graph, or one of the of the 187 graphs in G.

We can now make our characterization theorems more precise by inspect-
ing the graphs in G. We find that (i) there are exactly 17 regular connected
line graphs L(G) for which there exists an exceptional graph cospectral with
L(G), (ii) there are exactly 68 graphs which are not line graphs but which are
cospectral with a regular connected line graph, (iii) each of these 68 graphs is
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obtained from a regular connected line graph by switching. The 68 graphs are
listed in [CvRS7, Table A4]; in the paper [CvRa] they are constructed in such
a way that these results can be verified without recourse to a computer.

The following is a refinement of Theorem 4.1.18.

Theorem 4.1.20 [BuCS1, BuCS2]. L(K, ) is characterized by its spectrum
unless

(a) m = n = 4, where the graph G69 provides the only exception,

(b) m = 6, n = 3, where the graph G70 provides the only exception,

(c) m =22+ 1, n = 2r% — 1, and there exists a symmetric Hadamard matrix
of order 41> with constant diagonal.

Proof. Graphs cospectral with L(K,, ,) may or may not be line graphs. If
they are not line graphs, then they can be identified immediately from the list
of graphs in G, and we have cases (a) and (b) of the theorem. The exceptions
which are line graphs are described by Theorem 4.1.14: from n; = ri = m
and np = rp = n we have t = %s and ny = 2t2 +t, np = 2t2 — ¢. Since
the eigenvalues of K, , are +./mn and 0, the spectrum of the graph H,
in Theorem 4.1.14 consists of eigenvalues 2%, &, and its adjacency matrix
A satisfies A2 = 12(I + J). Replacing the zeros of A by (—1)s, and bor-
dering the matrix with (—1)s, we obtain a symmetric Hadamard matrix with
diagonal —1. This completes the proof. O

We can extend this characterization to general 2-designs. If D is a design
with incidence graph H (D) then we refer to L(H (D)) as the line graph of D.

Theorem 4.1.21 [BuCS2]. Let G| be the line graph of a 2-design with param-
eters v, k, b, r, .. Let Gy be a graph with the same spectrum as G. Then one
of the following holds:

(a) Gy is the line graph of a 2-design having the same parameters,

) (v, k,b,r, 1) =3,2,6,4,2) and G is the graph G6;

(©) (v,k,b,r,A) = (4,3,4,3,2) and G, is the graph G9;

(d) (v, k,b,r, ) = (4,4,4,4,4) and G is the graph G69;

(e) (v,k,b,r,A) = (3,3,6,6,06) and G, is the graph G70;

O v=1Isc—Dk=1Gs—1,b=1LsGs+1),r=r1(s+1),r=2020
where s and t are integers with st even, t < %s, (s=2)|2t(t—1), and G, =
L(H) where H is a regular graph on s* — 1 vertices with the eigenvalues

st, :I:\/ts(s —1—=1)(s —2)~1, —t of multiplicities 1, %(s —2)(s + 1),

%(s —2)(s + 1), s, respectively.
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The following theorem summarizes many of the previous results, and it can
be proved without the aid of a computer (see [CvDol]).

Theorem 4.1.22 [CvDo2]. The spectrum of a graph G determines whether or
not it is a regular, connected line graph except for 17 cases. In these cases G
has the spectrum of L(H) where H is one of the 3-connected regular graphs
on 8 vertices or H is a connected, semi-regular bipartite graph on 6 + 3
vertices.

4.1.3 Characterizations according to type

We can identify two further sorts of characterization theorems involving graph
spectra.

1. There are certain families of graphs, defined in terms of graph struc-
ture, which have the property that different graphs from the same family have
different spectra. In view of Theorem 4.1.1, the regular graphs of degree
2 constitute such a family. Further examples include (i) vertex-transitive
graphs with a prime number of vertices [Turl], (ii) starlike trees (obtained
from stars by subdividing edges) [LepGu], (iii) the family H of all bicyclic
Hamiltonian graphs (cycles with one chord). Indeed, different graphs in H
which have the same number of vertices are distinguished by their indices
(see [SimKo]).

2. A family G of graphs may be spectrally determined in the follow-
ing (weaker) sense: if G € G and H is cospectral with G then H € G.
We describe without proof three such families in terms of their structural
properties.

Theorem 4.1.23 (cf. [Hof4]). Let G be the line graph of a projective plane
of order n. If the graph H is cospectral with G then it is the line graph of a
projective plane of order n.

Theorem 4.1.24 (cf. [HofRal]). Let G be the line graph of an affine plane of
order n. If the graph H is cospectral with G then H is the line graph of an
affine plane of order n.

Theorem 4.1.25 (cf. [HofRa2]). Let G be the line graph of a symmetric design
with parameters (v, k, ) # (4, 3, 2). If the graph H is cospectral with G then
H is the line graph of a design with the same parameters.

Further examples of such spectral characterizations may be found in [Cvel3]
and [Doo2].
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4.2 Cospectral graphs and the graph isomorphism problem

Cospectral graphs are often called isospectral graphs in the literature, and the
term ‘(unordered) pair of isospectral non-isomorphic graphs’ is denoted by
PING. More generally, the term ‘set of isospectral non-isomorphic graphs’
is denoted by SING. We say that a SING is trivial if it consists of just one
graph, and that different members of a SING are cospectral mates. Example
1.2.4 includes a PING on 16 vertices, and Example 1.2.6 gives a SING on 28
vertices. Further examples arise in the context of characterization theorems in
Section 4.1.

In this section we review what is known about cospectral graphs. Subsection
4.2.1 surveys examples of cospectral graphs, and some constructions of PINGs
are discussed in Subsection 4.2.2. Enumeration results for cospectral graphs
are described in Subsection 4.2.3, where (together with the spectrum of the
adjacency matrix) the spectra of other graph matrices are treated. Subsection
4.2.4 contains a comparison of the characterizing properties of various graph
invariants.

4.2.1 Examples of cospectral graphs

The literature contains various examples of PINGs (and, more generally, of
SINGs). Their importance lies in the following observations:

(1) For every pair of non-isomorphic graphs one can find a set of charac-
teristic properties that are different for the two graphs. Therefore, every
PING points to properties of graphs that are not uniquely determined by
the spectrum.

(2) The existence of a PING rules out various possibilities in the search for
families of graphs with the property that different graphs from the same
family have different spectra.

In [Harl], Harary states that his conjecture, that isospectrality implies the
isomorphism of graphs, was disproved by Bose, who described a PING with
16 vertices. According to [Harl], Bruck and Hoffman also found PINGs with
16 vertices. In [ColSi], Collatz and Sinogowitz had already noted that the spec-
trum of a graph does not determine the graph up to isomorphism. They gave an
example of two isospectral trees with eight vertices and different sets of vertex
degrees. Turner [Tur2] gives a PING consisting of 12-vertex trees which have
the same vertex degree sequence; the author expresses his pessimism concern-
ing the possibility of distinguishing even graphs of restricted type by means of
their spectra.


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.005
https:/www.cambridge.org/core

4.2 Cospectral graphs and the isomorphism problem 119

Given two graphs G and H, we say that G is smaller than H if |V(G)| <
|V(H)|, and in the case |V(G)| = |V(H)|, if |E(G)| < |E(H)|. Any set of
graphs has one or several smallest graphs in the above order of graphs. Since
graphs in any SING have the same number of vertices and the same number
of edges, we can compare SINGs as well in the above sense. For example,
Fig. 1.2 shows the smallest PING (with five vertices) and the smallest PING
consisting of connected graphs (with six vertices). The smallest PING con-
sisting of regular graphs (with ten vertices) is illustrated in Fig. 4.8. From the
first of these examples we see that in general we cannot determine from the
spectrum whether or not a graph is connected. This example has been general-
ized in [Cvel] as follows. The graph having as components s isolated vertices
and one complete bipartite graph K, », has eigenvalues \/nina, —,/ninz and
ny + np — 2 4+ s numbers equal to 0. Now consider a graph with spectrum
/m, —/m and n — 2 numbers equal to O (m a natural number). This spectrum
belongs to each graph of the above type whose parameters ny, n», s satisfy the
equations ny +ny + s =n, niny = m.

Among other things, the paper [HarKMR] gives the smallest triplet of con-
nected cospectral graphs (Fig. 4.3), while in [GoHMK] we find the smallest
cospectral graphs with cospectral complements (Fig. 4.4) and the smallest
cospectral forests (K13 U K, and Ps U K1).

The paper [DAGT] includes a discussion of some cospectral graphs relevant
to chemistry, methods for recognizing cospectrality and certain properties of
eigenvectors in cospectral graphs. If the eigenvalues of a graph (with multiplic-
ities) appear among the eigenvalues of another graph then these graphs are said
to be subspectral. Several cases of subspectral graphs are reviewed, with an
observation that in many cases the smaller graph appears as a fragment of the
larger one.

Among PINGs the least eigenvalue cannot exceed the smallest root of x> —
x — 4 (approximately —1.5616), and the unique smallest PING for which this
value is attained is shown in Fig. 4.5. This follows from Theorem 3.4.14 (see
[CvLe5)).

Figure 4.3 Three cospectral graphs.
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SR

Figure 4.4 Cospectral graphs with cospectral complements.

Figure 4.5 The smallest PING with largest least eigenvalue.

Fisher, who encountered cospectral graphs when investigating the vibration
of membranes [Fis] (see Section 9.1), considered connected planar graphs with
no vertex of degree 1. He constructed an infinite sequence of PINGs with 5n
vertices (n = 3,4, ...) consisting of such graphs. An infinite sequence of
sets of mutually non-isomorphic isospectral graphs was also given by Bruck
[Bruc].

A construction for cospectral graphs with cospectral complements will be
described in the next subsection (see Theorem 4.2.1). We shall also discuss
a well-known theorem of Schwenk [Schl], which states that almost all trees
have a cospectral mate.

4.2.2 Constructions of cospectral graphs

Many methods for constructing cospectral graphs are described in the liter-
ature, and we have already seen in Proposition 1.1.8 how one can produce
cospectral regular graphs using Seidel switching. From a PING consisting
of regular graphs of degree greater than 2, we can construct another PING
with more vertices by taking the line graphs of the graphs in question (see
Theorem 2.4.1).

Several other graph operations and modifications, as described in Chapter 2,
can also be used to produce SINGs. One of the simplest ways is to use Theorem
2.1.1: if a SING with n vertices is known, then a SING with m vertices (m > n)
can easily be constructed by adding an arbitrary graph with m — n vertices as
a new component in each of the two graphs.

More generally, for two SINGs S and P we define the composition S ¢ P
bySoP={GUH : GeS8, HeP}).ThenS ¢ P isaSING.


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.005
https:/www.cambridge.org/core

4.2 Cospectral graphs and the isomorphism problem 121

A SING S is called reducible if each graph in S contains a component
isomorphic to a fixed graph; otherwise, S is called irreducible. A reducible
non-trivial SING can be reduced to an irreducible one by extracting com-
ponents common to each graph in the SING. Accordingly, reducible SINGs
are not normally recorded in tables such as those found in [CvLel, CvLe3].
However, reducible SINGs are not without interest, as the following examples
demonstrate. The reducible PING {K 4 UKy, C4 UK U K>} extends to the
irreducible SING {K 4 UKs, C4 UK UK>, Ye UK }, where Yj is the tree on
six vertices with index 2 (see Fig. 3.5). Another interesting irreducible SING
from [CvLe3, CvLeS5] is the quadruple shown in Fig. 4.6: this is the union
of two reducible PINGs (the first and second graph, and the third and fourth
graph).

The procedures described above have been formalized in [CvLe4] to decribe
an algebra of SINGs using formal linear combinations of graphs and of their
spectra. This generalizes a technique used in [CvGul] to characterize the
SINGs in the set S of all graphs whose largest eigenvalue does not exceed 2.
The main result of [CvGul] is that any bipartite graph in S is cospectral with a
union of paths and 4-cycles. Examples include two PINGs already mentioned,
namely {K14,C4UK;}and {K13UK>, PsUK]|}.

In addition, the results from [CvGul] enable us to decide whether a finite
family of reals from the interval [—2, 2] is the spectrum of a graph, and an
algorithm is given which constructs all graphs having this spectrum. This result
is significant since, in general, we do not know any reasonable algorithm (that
is, an algorithm essentially different from an exhaustive search) for deciding
whether there is a graph with a given spectrum.

Next, we prove a theorem which provides a construction for cospectral trees
with cospectral complements.

Theorem 4.2.1 [GoMKI1]. Let G be an arbitrary rooted graph. Let S and T
be rooted trees as shown in Fig. 4.7. Then the coalescences G - S and G - T are
not isomorphic (unless the root of G is isolated) but are cospectral and have
cospectral complements.

Proof. Consider S, T as the tree H rooted at u, v respectively. The graphs
H — u and H — v are isomorphic, and so G - § and G - T are cospectral

<o < L

Figure 4.6 An irreducible SING.
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Figure 4.7 The construction for Theorem 4.2.1.

by Theorem 2.2.3. Since Py_,(x) = Py_y(x), the angles of H at u coincide
with those at v; that is, «j, = o (i = 1, ..., m) in the notation of Proposition
2.2.6. For k € IN, let ni(u) be the number of u-u walks of length k in H. By
Proposition 3.1.2, ni(u) = ni(v), and it follows that G - S and G - T have
the same walk-generating function. Now Equation (2.14) shows that G - S and
G - T are cospectral. ]

Similar techniques are used to prove Scwhenk’s important result [Schl]
that almost all trees have a cospectral mate. We describe this result in more
detail.

Definition 4.2.2. A branch of a tree at a vertex v is a maximal subtree con-
taining v as an endvertex. The union of one or more branches at v is called a
limb at v.

Considered in its own right, a limb at the vertex v is a rooted tree, with v as
its root. Schwenk proved that the proportion of trees on n vertices which avoid
a specified limb tends to zero as n tends to infinity. Moreover, the number of
trees on n vertices which do not contain a specified limb depends only on the
number of edges of the limb.

Definition 4.2.3. Vertices # and v in cospectral (not necessarily non-
isomorphic) graphs G and H are said to be cospectral if Pg_,(x) =
Py —y(x).

Schwenk observed that vertices u and v in the tree 7" of Fig. 4.8 are cospec-
tral but lie in different orbits of the automorphism group of 7. Using Theorem
2.2.3 again, we see that the graphs G| and G, of Fig. 4.8 are cospectral, what-
ever the rooted graph G. Now, Schwenk’s argument was that almost all trees
are of the form G and hence have a (non-isomorphic) cospectral mate G».
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S

u v

Gy G)

Figure 4.8 Schwenk’s construction.

Definition 4.2.4. If v is a vertex in a graph G, then the pair (d, ¢), where d
is the degree of v and e is the sum of degrees of all neighbours of v in G, is
called the degree pair of v.

Note that in a tree 7', the sequence of vertex degree pairs (d;, ¢;) is deter-
mined by the eigenvalues and angles of 7, because n(i) = d; and na(i) =
dl.2 — d; + ¢;. Now the graphs G| and G in Fig. 4.8 have different sequences
of vertex degree pairs, and hence different angles. The significance of this
observation is that all of the cospectral graphs constructed by Schwenk can
be distinguished by angles. In Subsection 4.3.2 we shall see to what extent
trees are better characterized if not only the eigenvalues but also the angles
are known. The results include an algorithm for constructing all the trees with
prescribed eigenvalues and angles.

4.2.3 Statistics of cospectral graphs

It seems that PINGs with a large number of vertices are a common occurrence:
this was suggested by Baker on the basis of statistical evidence presented
in [Bak2]. The table in [CvLe3] of cospectral graphs with least eigenvalue
—2 contains 201 irreducible SINGs with at most 8 vertices; this number
includes 178 pairs, 20 triplets and 3 quadruples of cospectral graphs. The paper
[GoMK1] presents the results of a computational study of graph spectra: the
characteristic polynomials of all graphs with at most 9 vertices are computed,
and the cospectral graphs identified. Statistics are given for cospectral graphs
in various classes of graphs. The data is extended to cospectral graphs on 10
vertices in [Lep1]. Before we give the results for graphs on 11 vertices we need
a definition.

Let S be a finite set of graphs, and let S’ be the set of graphs in S which
have a cospectral mate in S. The ratio rg = |S’|/|S] is called the spectral
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uncertainty of S (with respect to the adjacency matrix). The papers [DamHa4],
[HaeSp] provide spectral uncertainties ry,, s,, t,, of the sets of all graphs on n
vertices for n < 11 with respect to the adjacency matrix, the Laplacian and the
signless Laplacian, respectively:

n 4 5 6 7 8 9 10 11

rn 0 0.059 0.064 0.105 0.139 0.186 0.213 0.211
s, 0 0 0.026 0.125 0.143 0.155 0.118 0.090
t, 0.182 0.118 0.103 0.098 0.097 0.069 0.053 0.038

For the Seidel matrix of a graph G, the corresponding ratios are 1 for all
n > 1, because we can use Seidel switching to construct from G a graph with
the same Seidel spectrum but with a different number of edges.

We see that for n > 7 we have f, < r,. In addition, the sequence 1, is
decreasing for n < 11 while the sequence r;, is increasing for n < 10. This is
a basis for believing that the Q-spectrum (discussed in Chapter 7) provides a
means of studying graphs that is more effective than the adjacency spectrum.
Given the direct relation between the Q-spectrum of a graph and the spec-
trum of its line graph (see Chapter 1), this in turn indicates that the theory of
graphs with least eigenvalue —2 is important for the whole theory of graph
spectra.

4.2.4 A comparison of various graph invariants

We have now encountered many counterexamples to the early conjecture that a
graph is determined, to within isomorphism, by its spectrum. Had the conjec-
ture been valid, it would have provided a polynomial algorithm for the solution
of the graph isomorphism problem, that is, the problem of deciding whether
two graphs are isomorphic. As things stand, the algorithmic complexity of this
problem is not known. The problem belongs to the class NP but it is not known
whether it is NP-complete or belongs to the class P (see, for example, [Cvel0]
or [BruRy, pp. 245-8]).

A set of graph invariants (which might consist of numbers, vectors, matri-
ces, etc.) is called complete if it determines any graph to within isomorphism.
Although the spectrum of a graph does not, in general, constitute a complete set
of invariants, complete sets of invariants do exist. For instance, it is clear that
a graph G is determined up to isomorphism by the largest (or least) binary
number obtained by concatenation of the rows (or the rows of the upper
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triangle) of an adjacency matrix of G. However, the known algorithms for
computing such an invariant are exponential.

Although it would be useful if a complete set of invariants were computable
in polynomial time, no such set has been identified to date, and pessimism has
been expressed in the literature concerning this question [ReCo]. Optimists
point to the fact (see Theorem 1.3.1) that a graph is determined by its eigenval-
ues and eigenspaces, both of which can be found in polynomial time, but this
is to ignore the non-invariant nature of eigenspaces: the components of eigen-
vectors are ordered according to a labelling of vertices. Nevertheless the study
of eigenspaces has enabled us to extend spectral techniques in graph theory;
some of the results (such as those concerning graph angles and star comple-
ments) are included in this book, and others may be found in the monographs
[CvRS2] and [CVRST7].

Let us consider the extent to which various graph invariants determine graph
structure.

1. The vertex degrees. The family of vertex degrees can be calculated read-
ily from the adjacency matrix or from other common graph representations.
In general this can be regarded as a set of local invariants which says little
about the graph structure. In the particular case that all degrees are 1, the graph
is determined uniquely; if all degrees are 1 or 2 then several non-isomorphic
graphs may arise, each graph being a union of paths and cycles. For larger
degrees, there are few general conclusions. Hakimi [Hak] provided a polyno-
mial algorithm for determining whether or not a family of integers is a family
of vertex degrees for a graph; the algorithm may be adapted to determine in
exponential time all the graphs which arise.

2. The spectrum. In general, the eigenvalues depend on structural details
beyond the vertex degrees. For example, consider again the spectral character-
ization of a regular graph G of degree 2 (Theorem 4.1.1). Given the spectrum
of G, we first establish that G is regular of degree 2, and so we know the fam-
ily of vertex degrees. But the spectrum tells us more: from the second largest
eigenvalue we can determine the length of the largest cycle in G. Gradually,
by analysing the whole spectrum we can find the lengths of all cycles of G,
and thereby determine G up to isomorphism, in contrast to the case where
only the degrees are given. The importance of this result has been demon-
strated in [CvCK3] in relation to the Travelling Salesperson Problem (see
Section 9.4).

It seems that those graph-theoretical invariants which contain significant
structural information (and are therefore useful for the graph isomorphism
problem) can be obtained by solving some kind of optimization problem: graph
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eigenvalues can be obtained by considering extremal values of the Rayleigh
quotient of the adjacency matrix, while angles can be obtained as extrema of
the scalar product of vectors of a standard othonormal basis of /R with unit
eigenvectors. See [CVRS2, Chapter 8] and [CvCK3] for other examples of such
invariants (called ‘highly informative’ in [CvCK3]).

3. A binary number. The ordering of vertices which yields a characterizing
binary number (as described above) can be considered as a canonical vertex
ordering. One can consider several variations of this idea but it turns out that
the known algorithms for determining the invariant that characterizes the graph
are exponential (cf. [ReCo], [Bab2]). Here a high price has been paid: we have
an invariant which tells us everything about the graph but is time consuming to
compute. Nevertheless the extremal binary number has been used repeatedly
and successfully to recognize graphs.

From the point of view of practical computation it is usually not necessary
to know whether the graph isomorphism problem is NP-complete or belongs
to P. Experience has shown that any reasonable algorithm for testing graph
isomorphism performs well on average; however, the problem has great theo-
retical significance. Leaving aside the implications for complexity theory, one
can say that to understand the difficulties arising in the graph isomorphism
problem is to understand the difficulties that emerge in treating graph theory
problems in general.

Having acquainted ourselves with these three examples we might be inclined
to believe that spectral invariants provide a good balance between the oppos-
ing reqirements of graph invariants, and to conclude that this accounts for the
appeal of spectral graph theory as an area of research.

4.3 Characterizations by eigenvalues and angles

In this section we treat the problem of constructing all graphs with prescribed
eigenvalues and angles. Although graphs cannot, in general, be characterized
by eigenvalues and angles, for certain classes of graphs (for example, trees,
unicyclic graphs, bicyclic graphs, tree-like cubic graphs) it is possible to con-
struct all the graphs in a given class with prescribed eigenvalues and angles.
Details may be found in [CvRS2, Chapter 5]. Here we first discuss cospec-
tral graphs with the same angles (Subsection 4.3.1). In Subsection 4.3.2 we
describe an algorithm for constructing all the trees with prescribed eigenvalues
and angles. In Subsection 4.3.3 we discuss some instances of characterization
by eigenvalues and angles.
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Figure 4.9 A pair of cospectral regular graphs.

4.3.1 Cospectral graphs with the same angles

The following example shows that a graph may not be determined by its angles,
main angles and spectrum.

Example 4.3.1. The two graphs depicted in Fig. 4.9 are non-isomorphic, but
they are both 4-regular and have the same eigenvalues, the same angles and
the same main angles. The ten vertices are labelled so that the angle sequences
(1), 02j, ..., 0y;) coincide for j = 1,2, ..., 10; equivalently, for each j,
the graphs obtained by deleting the vertex j are cospectral. O

It has been shown by a computer search (see [CvLel]) that graphs with
fewer than 10 vertices are characterized by their eigenvalues and angles. How-
ever, there are 58 pairs of cospectral graphs on 10 vertices with the property
that the graphs within each pair have the same angles. Moreover, they also have
the same main angles (a fact for which we do not have an explanation), and no
multiple eigenvalue is a main eigenvalue. By Proposition 2.1.3, the characteris-
tic polynomial of a complementary graph G is determined by the characteristic
polynomial and the main angles of G, and this explains why 29 of the 58 pairs
are the complements of those from the other 29 pairs.

A construction described in the next subsection shows that there is an infi-
nite series of cospectral trees with the same angles. The trees in the smallest
example given there have 35 vertices, but an exhaustive computer search has
revealed that the following example is the sole example among trees with at
most 20 vertices (see [CvLel]). The trees from this pair have 19 vertices, and
it is surprising that there are no examples with 20 vertices.

Example 4.3.2. Fig. 4.10 shows the smallest pair of cospectral trees 77 and 7>
with the same angles. The subtree 7', identified by the bold lines in Fig. 4.10,
is well known in constructions of cospectral graphs, mainly because the graphs
T —4and T — 7 are cospectral (cf. Fig. 4.8).
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9
1 2 3 4 5 I 7 8 1 2 3 4 5
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11 14 18 18
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Figure 4.10 Cospectral trees with the same angles.

The vertices in 77 and 7> are labelled so that 77 —i is cospectral with 7> —1i,
fori = 1,2,...,19. Note that although 77 — 5 and 7> — 5 both have two
components with 10 and 8 vertices, the components are not cospectral. In 771 —5
the components have the following spectra (where non-integer eigenvalues are
given to three places of decimals):

+2.074, £1.414%, £0.835, 0% and +2.222, +1.240, £0.726, 0.
On the other hand, in 7> — 5 the two components have spectra
+2.222, +1.414, £1.240, £0.726, 0> and +2.074, +1.414, +0.835, 0.

If we delete vertex 6, the components even have different numbers of vertices,
yet 71 — 6 and T, — 6 are still cospectral. a

If we try to generalize this example, we encounter difficulties. Suppose that
we form the graph H; by attaching any two rooted graphs K and L at vertices
4 and 7 of T, and then form H» by interchanging L and K. The formula (2.18)
shows that the following pairs are cospectral: H| and Hp, H] —i and Hy — i
fori = 4,7 or any vertex i in K or L. However, for other values of i, the pairs
are not cospectral, except in the special case illustrated in Fig. 4.10.

An exhaustive search for cospectral graphs on 10 vertices [Lep1] shows that
there exists a set Q of 21 cospectral graphs with 10 vertices and 20 edges. The
complements of these graphs are also cospectral (and they have 25 edges).
Computations show also that, in both cases, the graphs are distinguished
by their angles (see [Cvell]). We reproduce here some data concerning the
graphs in Q.

Spectrum:

4.3803 1.6861 1.1620 0.5423 0 0 —1.2950 —1.5260 —2.2864 —2.6631.
Coefficients of the characteristic polynomial:

1 0 =20 —-18 84 76 —-119 =72 56 0 O.
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Main angles:
0.9563 0.0248 0.0659 0.1505 0.2070 0.0436 0.1086 0.0185 0.0323.

These huge sets of cospectral graphs should perhaps be exploited in exper-
iments to order graphs by their angles, for the following reason. Experience
shows that it is appropriate to order graphs first by their eigenvalues or spec-
tral moments; see the Appendix for examples, and [CvPe2] for an explanation.
Then cospectral graphs remain to be ordered, and it is natural to use angles for
this purpose because they determine the vertex degrees.

4.3.2 Constructing trees

As we noted in Chapter 3, the number of vertices and the number of edges in
a graph G are determined by the spectrum of G. It now follows from Theorem
3.3.3 that given the eigenvalues and angles of G we can tell whether or not
G is a tree. Here we present an algorithm for constructing all trees with given
eigenvalues and angles. The algorithm is based on the following result, known
as the Reconstruction Lemma.

Lemma 4.3.3 [Cve9]. Given a limb R of a tree T at a vertex i which is adja-
cent to a unique vertex of T not in R, that vertex is among the vertices j for
which Pr_j(x) = giR (x), where

Pr(x)

R _
800 = Pr_i(x)?

{Pr(x)Pr—i(x) — Pr—i(x)Pr(x)}. (4.3)

Proof. Let S denote the maximal limb of 7" at j not containing i, as shown in
Fig. 4.11. From Theorem 2.2.4 we have

Pr(x) = Pr(x)Ps(x) — Pr—_i(x)Ps_;(x). (4.9)
Clearly, Pr_;(x) = Pgr—i(x)Ps(x) and Pr_; = Pgr(x)Ps—;(x). By eliminat-
ing Ps(x) and Ps_;(x) we obtain (4.8). O

By specifying that R consists only of vertex i, so that Pr(x) = x and
Pr_i(x) = 1, we obtain the following result.

T

Figure 4.11 Construction of a tree.
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Proposition 4.3.4. Ifi is a vertex of degree 1 in a tree T, then the neighbour
of the vertex i is among those vertices j such that Py_j(x) = f;(x), where

fi(x) = x*Pr_i(x) — x Pr(x).

Now we describe the reconstruction algorithm (let us call it Algorithm EA),
which provides a means of constructing all trees with prescribed eigenvalues
and angles. Note that examples from Subsection 4.3.1 show that, in general,
trees are not EA-reconstructible (as defined in Section 3.1). Indeed we shall
see that almost all trees have non-isomorphic mates with the same eigenvalues
and angles.

Algorithm EA [Cve9]. Let T be a tree with prescribed eigenvalues and angles.
First we use Theorem 3.1.3 to find the degrees of vertices in 7', and then we
begin to construct possible edges as follows. For each vertex i of degree 1 we
choose a neighbour j from the set A; = {j € V(T) : Pr—_;(x) = fi(x)} (cf.
Proposition 4.3.4). The number of times an individual vertex j is chosen as a
neighbour of an endvertex is bounded above by the degree of j. Now let T’ be
the graph obtained from 7 by deleting all endvertices. A vertex of degree 1 in
T’ is necessarily one of the vertices j chosen above and in this case we may
apply Lemma 4.3.3 to the limb R at j consisting of all pendant edges at j. The
neighbour of j in T’ lies in the set BJR ={k e V(T') : Prx(x) = gf (x)}
(see (4.8)), and for each such j we choose a neighbour k € B f. Continuing in
this way we may construct a tree by successive construction of limbs provided
that (i) at each stage there are vertices j of degree 1 in the subtree T which
remains to be constructed, and (ii) the corresponding sets BJR are non-empty.
If T” is non-trivial and one or other of these requirements is not met, then the
algorithm proceeds with a different choice of neighbours at the previous stage.
If T” is trivial then a tree T has been constructed and the algorithm is repeated
with a new choice of neighbour. Using such a backtracking algorithm one
constructs a collection of trees which includes all those with the given eigen-
values and angles. Finally one excludes those which do not have the specified
eigenvalues. O

Let us consider how big a step has been made in determining the structure of
trees by the introduction of angles. The difference is that now we can construct
all of the trees in question, while without angles that seems not to be possible
in a reasonable way. This is related to the fact that we know exactly which fea-
tures are responsible for the existence of non-isomorphic trees with the same
eigenvalues and angles. Indeed, in the notation of Fig. 4.11, non-isomorphic
trees can arise as follows.
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(1) The limb R may be replaced with a cospectral limb R’ such that
Pr—i(x) = Pgr—;(x).
(2) The choice of neighbours j with given Pr_;(x) may not be unique.

In view of (1), we may use four copies of the tree 7' from Fig. 4.8 to con-
struct the trees 77, 7> shown in Fig. 4.12, where H denotes a rooted tree.
For any choice of H, the trees 77 and 7> are non-isomorphic and have the
same eigenvalues and angles. Corresponding vertices (i.e. vertices for which
the vertex-deleted subgraphs in 77 and 7, are cospectral) are denoted by the
same numbers for some specific vertices.

The construction illustrated in Fig. 4.12 also shows that almost all trees are
not characterized by eigenvalues and angles (cf. p. 122). It also shows (e.g. by
reference to the vertices labelled 2 in 7} and 7>) that eigenvalues and angles do
not determine degree sequences of vertices. (The degree sequence of a vertex
v consists of the degrees of the neighbours of v, in non-increasing order.)

If, in applying the reconstruction algorithm, we know the degree sequences
in T (in particular, if we know the vertex-deleted subgraphs of T) then the
choice in (2) above is limited to the extent that the trees in question are deter-
mined up to cospectral limbs with a constant degree sequence of the root.
We do not know of an example of non-isomorphic cospectral trees G, G2
for which there exists a bijection 6 : V(G1) — V(G>) such that for each
v € V(Gy), the vertices v and 0(v) are cospectral with the same degree
sequence.

It is well known that a tree is in fact (uniquely) reconstructible from its
vertex-deleted subgraphs. Also, the characteristic polynomial of a tree is recon-
structible from the characteristic polynomials of vertex-deleted subgraphs (see
Section 8.3). The reconstruction algorithm can be used to construct all trees

for which only the characteristic polynomials of vertex-deleted subgraphs are
specified.

Figure 4.12 More cospectral trees with the same angles.
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4.3.3 Some characterization theorems

Graphs which appear in the Hiickel molecular orbital theory from quantum
chemistry have vertex degrees at most 3 (see Section 9.2). In this subsection
we show that many of these chemically interesting graphs are characterized by
eigenvalues and angles. Excluded from our considerations are the cubic graphs
corresponding to fullerenes. An algorithm for constructing all graphs with the
eigenvalues and angles of a prescribed fullerene is given in [CVFRS].

One of the basic tools is the algorithm EA for reconstructing trees from
eigenvalues and angles described in previous subsection. The essence of this
algorithm is that we can reconstruct an edge of a tree if we know the structure
of the tree on one side of the edge. More generally, we can reconstruct a bridge
of a graph if we know the structure of the graph on one side of the bridge.

We start with a result related to trees obtained from three paths, each rooted
at one of its endvertices, by identifying the roots.

Proposition 4.3.5. A forest in which each component has exactly one vertex
of degree 3, others being of smaller degree, can be reconstructed uniquely from
eigenvalues and angles.

Proof. We apply Algorithm EA repeatedly, starting from a vertex of degree
1 and traversing the path connecting this vertex to the vertex of degree 3. We
reconstruct this path uniquely, thereby identifying its length and the terminal
vertex (of degree 3). O

Next we consider the set S of graphs with largest eigenvalue A1 < 2. The
connected graphs in S with A; = 2 are shown in Fig. 3.5. Note that Y5(= K1 4)
is the only example with a vertex of degree 4. Further, Y, (n > 5) has two
vertices of degree 3, while all other connected graphs in S have at most one
vertex of degree 3 (see Theorem 3.11.1).

Cospectral graphs in the set S are very frequent, and an algorithm to find
all graphs cospectral with a given graph from S is described in [CvGul] (see
also Subsection 4.2.2). However, if we know angles as well as eigenvalues, the
situation is much improved; indeed, graphs in S are E A-reconstructible. To
prove this, we need the following observation:

Lemma 4.3.6. Let the eigenvalues and angles of a graph G be given. Given
also the vertex-set of G, where G is a union of components of G, we can find
the eigenvalues and angles of G.

Proof. For any vertex j of G, the number of j-j walks of length k in G is the

same as the number of j-j walks of length k in G, namely a;ll;) =y, aizj ,uf.‘ .
~ k

Now the spectral moments of G are Z.ieV(G) a§j) (k=0,1,2,...), and these
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determine the spectrum of G. Moreover, aﬁ.];) = Z§:1 ajj ,&f.‘ (k=0,1,2,...),

where i1, ..., fi; are the distinct eigenvalues of G and @;; is the angle of G
corresponding to fi; and j. These equations now determine &y, ..., q;; (j €
V(G)). O

Theorem 4.3.7 [Cvell]. A graph whose largest eigenvalue does not exceed 2
is characterized by its eigenvalues and angles.

Sketch proof. As in the proof of Theorem 4.1.1, we first identify some compo-
nents of the graph G in question, then extract them and consider what remains.
Suppose first that A1(G) = 2. The non-zero angles in the angle sequence (1 ;)
determine the vertices j belonging to components whose index is equal to 2.
By Lemma 4.3.6 we can calculate the characteristic polynomial and angles
of the subgraph consisting of these components. Components isomorphic to
K 4 can be recognized by vertices of degree 4 and then Algorithm EA shows
which vertices of degree 1 are adjacent to vertices of degree 4. In a similar way
we can treat components with two vertices of degree 3. Simple calculations
show that if j is a vertex of degree 3 in Y; (k > 5) then o;; = 1/+/k — 3 and
this enables us to find the length of the path connecting two such vertices of
degree 3. Components isomorphic to F7, Fg or Fy (see Fig. 3.5.) can also be
easily identified using Algorithm EA as in the proof of Proposition 4.3.5. The
remaining vertices are of degree 2 and they belong to cycles; for a vertex j of
an s-cycle we have a1 ; = 1/4/s.

Finally, if components with index 2 are extracted or are not present, then
we consider the graph G that remains. By Lemma 4.3.6, we can determine
the eigenvalues and angles of G. Each non-trivial component of G is either a
path or a tree of the type described in Proposition 4.3.5. Isolated vertices are
recognized directly, while Algorithm EA identifies the paths. For what is left
of the graph we apply Proposition 4.3.5. O

It is possible to prove that graphs from some other classes of graphs, which
are of interest in the Hiickel theory, are characterized up to isomorphism by
eigenvalues and angles (cf. [CVvFRS]).

Exercises

4.1 Show that graphs with four vertices are characterized by their spectra.

4.2 Show that a connected graph with just two distinct eigenvalues is
complete.

4.3 Show that the Petersen graph is characterized by its spectrum.
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4.4 Show that the complement of the Clebsch graph is the unique graph with
spectrum 35, 110, (—3)5.

4.5 Prove Theorem 4.1.3.

4.6 Use Theorem 3.1.11 and Corollary 2.3.3 to prove that the path P, is
characterized by its spectrum.

4.7 Deduce the following from Equation (4.7): r < 17 when n = 28 and
r <16 whenn < 27.

4.8 A partial graph of a graph G is the union of some components of G. A
SING S is weakly reducible if there is a graph H such that any graph in S
contains a partial graph cospectral with H. If G is not weakly reducible
it is called strongly irreducible. Prove that a SING is irreducible and
strongly irreducible if it contains a connected graph.

4.9 We say that a SING P is relevant to the SING S, denoted by P - S,
if some graph G in P is cospectral with a partial graph of a graph in S.
(Any such graph G is called a basis of (P, S).) Prove that If P - S and
S P, then P and S are cospectral.

4.10 If P + S, then for any basis G of (P, S) (see Exercise 4.9) we can
define the expansion E(S, P, G) of S by P through the basis G as fol-
lows. The graphs in E(S, P, G) are those obtained from S by replacing
a partial graph isomorphic to G with a graph from P. Prove that the set
E(S,P, G)is a SING.

Notes

The problem of characterizing graphs with least eigenvalue —2 was one of the
earliest problems in the theory of graph spectra. As we saw in Section 3.4,
the problem was essentially settled by Cameron, Goethals, Seidel and Shult
[CamGSS], who established a link between such graphs and the theory of root
systems. Every exceptional graph is an induced subgraph of one of 473 max-
imal exceptional graphs initially found with the aid of a computer [CVLRS2];
the underlying theory is described in Section 5.4, and full details are given
in the monograph [CvRS7]. A refinement of Theorem 4.1.17, also with a
computer-free proof, was given by Brouwer, Cohen and Neumaier [BroCN,
Theorem 3.12.2]; their result appears as Theorem 4.1.5 of [CVRS7].

Few spectral characterizations emerged in the 1980s and 1990s. Early results
on cospectral graphs were surveyed in the thesis [Cvel] of 1971. Another
review of cospectral graphs appeared in the same year, written by Harary, King,
Mowshowitz and Read [HarKMR]. A third review of cospectral graphs in 1971
appeared in the paper [BalHa], which gives a PING consisting of trees on 12


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.005
https:/www.cambridge.org/core

Notes 135

vertices with the same degrees, the maximum degree being 4. Since these trees
are relevant to chemistry the authors justify in this way the main message of the
paper, expressed by its title: the characteristic polynomial does not uniquely
determine the topology of a molecule.

The expository article [GoHMK] contains a list of smallest PINGs in various
classes of graphs. We have restricted our attention to undirected graphs without
loops or multiple edges. It is relatively easy to construct PINGs for other kinds
of graphs. For example, all digraphs without cycles have a spectrum containing
only numbers equal to zero [Sed].

Concerning the result of Schwenk [Schl] that almost all trees have a
cospectral mate, his construction of cospectral graphs uses not only cospectral
vertices but also the notion of unrestricted vertices: these are vertices at which
arbitrary graphs may be attached without destroying vertex-cospectrality. Both
concepts feature in general procedures for constructing PINGs described in
[HeEI2]. This paper describes methods for constructing graphs with such
vertices, and discusses cospectral graphs with cospectral complements.

Graphs with cospectral vertices are called endospectral graphs [Ran]. From
Section 4.2 we see that the study of endospectral graphs is closely related to
the study of cospectral graphs. Some constructions of endospectral trees are
given in [RanKl], while the endospectral trees with at most 16 vertices have
been found by a computer search [KMSTKR].

Other references concerning cospectral graphs are [Ach], [Babl],
[Bab3],[Bakl1], [Bens], [Chal], [Cha2], [Chao], [Conl], [Cou], [CvGul],
[DAGT], [DinKZ], [Doo5], [Doo8], [FaGr], [GoMK2],[Hei], [Herm], [Hern1],
[Hern2], [HeEll], [Hof1],[Jia], [KoSu], [KrPal], [KrPa2], [LiWZ], [Mey],
[RanTZ], [Sch4], [Seil], [SimmMe], [StewMa] and [ZiTR]. Graphs cospec-
tral with respect to the generalized adjacency matrix yJ — A are discussed in
[DamHK].

More spectral characterizations of line graphs appear in [Doo3], [Doo4],
[Doo6] and [RaoRa]. Some spectral characterizations of distance-regular
graphs may be found in [DamHa3]. For some investigations concerning com-
plete sets of invariants, see [BalaPa], [BosMe], [Kri], [Mas], [RIMW] and
[Tur2]. Characterizations of certain trees by their Laplacian spectrum may be
found in [OmTa] and [WaXu].
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Structure and one eigenvalue

In Chapters 3 and 4 we have concentrated on the relation between the structure
and spectrum of a graph. Here we discuss the connection between structure
and a single eigenvalue, and for this the central notion is that of a star com-
plement. In Section 5.1 we define star complements both geometrically and
algebraically, and note their basic properties. In Section 5.2 we illustrate a
technique for constructing and characterizing graphs by star complements. In
Section 5.3 we use star complements to obtain sharp upper bounds on the mul-
tiplicity of an eigenvalue different from —1 or O in an arbitrary graph, and
in a regular graph. In Section 5.4 we describe how star complements can be
used to determine the graphs with least eigenvalue —2, and in Section 5.5 we
investigate the role of certain star complements in generalized line graphs.

5.1 Star complements

Let G be a graph with vertex set V(G) = {1, ..., n} and adjacency matrix
A. Let {eq, ..., e,]} be the standard orthonormal basis of IR" and let P be the
matrix which represents the orthogonal projection of IR" onto the eigenspace
E(n) of A with respect to {er, ..., e,}. Since £(u) is spanned by the vec-
tors Pej (j = 1,...,n) there exists X C V(G) such that the vectors
Pe; (j € X) form a basis for £(u). Such a subset X of V(G) is called
a star set for u in G. The terminology reflects the fact that the vectors
Peq, ..., Pe, form a eutactic star: in general, such a star consists of vectors
which are an orthogonal projection of pairwise orthogonal vectors of the same
length.

Proposition 5.1.1. Letr G be a graph with u as an eigenvalue of multiplicity
k > 0. The following conditions on a subset X of V(G) are equivalent:

136
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(i) X is a star set for ju;
(i) R"=E(n) @V, whereV = (e; :i & X);
(iii) |X| = k and p is not an eigenvalue of G — X.

Proof. ((i) = (ii)) Since dim £(u) = k and dim V = n — k, it suffices to
show that £(u) NV = {0}. Accordingly, let x € £(u) N V. Then x = Px and
x'e; =0forall j € X. Hence x' (Pe;) =x' (P e;) = (Px)"e; =0 forall
Jj€X. Thusx e (Pe; : j€ X))t =E&()*t and sox = 0.

((il) = (iii)) Suppose that IR" = E£(u) & V. We consider an adjacency

matrix A of G in the form <: ;), where A’ is the adjacency matrix of

G — X. Suppose that A'X' = ux'. Ify = (3,), then

o= () R)= ()

Now let x € V. Then x" has the form (0" |z"), and x" Ay = uz'x' = ux'y.
Hence (A — ul)y € Vt. On the other hand, if x € £(u), then x' Ay =
x"ATy = (Ax)Ty = (ux) Ty = ux"y and so (A — ul)y € E(u)*. Hence
(A —puly € VENEWT = (E(w) + V)L, which is the zero subspace.
Therefore, y € £(u). Buty € V, and since £(u) NV = {0} we havey = 0.
Hence x’ = 0 and w is not an eigenvalue of G — X.

((iii)) = (1)) Here, it suffices to prove that (Pe; : j € X) = &(w).
Suppose, by way of contradiction, that (Pe; : j € X) C &(u). Then there
is a non-zero vector x € £(u) N (Pe; : j € X)L, Thus XTPej = 0 for
all j € X. Hence (Px)Tej = (XTP)ej = 0 for all j € X. Consequently
Pxe(ej:je X)L = (e,:s5s ¢ X) = V.Butx = Pxand so we have a

non-zero vector x € £(u) N V. Since x = (::,) with X" # 0 it follows that x’

is an eigenvector of G — X, a contradiction. O

Here G — X is the subgraph of G induced by the complement of X; it is
called the star complement for 1 corresponding to X. (Star complements for p
are sometimes called p-basic subgraphs, as in [Ell].) It is clear from the defini-
tions that star sets and star complements exist for any eigenvalue of any graph.
Statement (iii) of Proposition 5.1.1 provides a characterization of star sets and
star complements which is often the most useful in practice. For instance, the
claims in the following example are easily verified in this way.

Example 5.1.2. In Fig. 5.1, the vertices of the Petersen graph are labelled with
eigenvalues in such a way that the vertices labelled p form a star set for .
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1 1
Figure 5.1 The Petersen graph (Example 5.1.2).

For example, —2 is an eigenvalue of multiplicity 4, and if we delete the four
vertices labelled —2 we obtain a subgraph H consisting of a 5-cycle with a
single pendant edge attached. Since H does not have —2 as an eigenvalue, this
subgraph is a star complement for —2. a

Remark 5.1.3. It can be shown (see [CVRS2, Chapter 7]) that if G is a
graph with @y, ..., u,, as its distinct eigenvalues then V(G) has a partition
X1 U---U X,, such that X; is a star set for u; (i = 1, ..., m). Such a partition
is called a star partition, and in this context the star sets X; are called star
cells. Each star partition determines a basis for IR" consisting of eigenvectors
of an adjacency matrix. The finite number of bases obtained in this way may
be ordered lexicographically, and an extremal basis is determined uniquely by
G. These ideas were introduced as a means of investigating the complexity of
the graph isomorphism problem. a

Proposition 5.1.4. Let X be a star set for i in G, and let X = V(G) \ X.

() If u # 0 then X is a dominating set for G;

(i) If w # —1 or O then X is a location-dominating set for G — that is, the
X-neighbourhoods of distinct vertices in X are distinct and non-empty.

Proof. The matrix P, which represents the orthogonal projection of /R" onto
E(w), is a polynomial function of the adjacency matrix A (see Section 1.1),
and so AP = P A. For each vertex u of G we have

1Pe, = APe, = PAe, = P() €)=Y Pe. (5.1)

i~u i~u
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For part (i), we have to show that any vertex u in X is adjacent to a vertex
in X. Since & # 0, we know from Equation (5.1) that the vectors in {Pe, }U
{Pe; : i ~ u} are linearly dependent. Since the vectors Pe; (j € X) are
linearly independent, it follows that there is a vertex adjacent to # which lies
outside X.

For part (i), let I' (1) be the set of neighbours of u in X. Suppose by way of
contradiction that u# and v are vertices in X with the same neighbourhoods in
X. From equation (5.1) and its counterpart for v we have

uPe, —puPe, — Y Pej + Y  Pe;=0.
jel ) jel (v)

This is a relation on vectors in {Pe; : j € X}. Since these vectors are linearly
independent, it follows that either (a) © = 0, u % v and u, v have the same
neighbourhoods in G, or (b) or © = —1, u ~ v and u, v have the same closed
neighbourhood in G, contrary to assumption. O

In case (a) above, u and v are called duplicate vertices, and in case (b),
co-duplicate vertices.

It follows from Proposition 5.1.4(ii) that there are only finitely many graphs
with a prescribed star complement for an eigenvalue u # 0 or —1, for if
|X| = ¢ then |X| < 2'. This exponential bound will be improved to a
quadratic bound in the next section. If © = 0 or —1 then |X| cannot be
bounded by a function of ¢: this can be seen by considering K, U (n — 2)K;
(with ¢ = 0) or K,, (with u = —1). Alternatively, when © = 0 or —1
we can add arbitrarily many duplicate or co-duplicate vertices: this corre-
sponds to repeating rows (and corresponding columns) of A — pl without
increasing the rank of A — /. It can be shown that if © € {—1,0}
and G has no duplicate or co-duplicate vertices then n is at most O(2//?)
(see [KotLo]).

It follows from Proposition 5.1.4(i) that if & # 0 and G — X is connected
then G is connected. In the reverse direction, a connected graph always has
a connected star complement for each eigenvalue. In fact we can establish
a stronger result (Theorem 5.1.6), and to prove it, we require the following
observation.

T

Lemma 5.1.5. Ifthe column space of the symmetric matrix (D r

) has the

columns of <g> as a basis, then the columns of C are linearly independent.
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T

Proof. Since each column of <DE ) is a linear combination of the columns of
C . . .

( D>’ there exists a matrix L such that DT = CL, equivalently D = LTC.

Thus if Cx = 0 then (g) x = 0, whence x = 0 as required. d

Theorem 5.1.6. Let 1 be an eigenvalue of the connected graph G, and let K
be a connected induced subgraph of G not having (v as an eigenvalue. Then G
has a connected star complement for |1 containing K.

Proof. Let |V(K)| = r. Since G is connected we may label its vertices
1, ..., n so that each vertex after the first is adjacent to a predecessor. Since K
is connected we may take 1, ..., r to be the vertices of K. Let A be the adja-
cency matrix of G, with columns ¢y, ..., ¢,, and let {c; : k € Y} be the basis
of the column space of / — A obtained by deleting each column which is a
linear combination of its predecessors. Note that {1, ..., r} € Y because u is
not an eigenvalue of K. By Lemma 5.1.5, the principal submatrix of ul — A
determined by Y is invertible. Since |Y| = codim £(u), Y is a star set for
and the subgraph H induced by Y is a star complement for 1.

We prove that H is connected by showing that each vertex y of ¥ with y > 1
is adjacent to a previous vertex j of Y. We take j to be the least element of
{1,...,n} such that j is adjacent to y in G. Then j < y and the y-th entry of
¢; is —1. On the other hand, the y-th entry of each ¢; (i < j) is 0, and so ¢; is
not a linear combination of its predecessors. Thus j € Y as required. a

The next result, which establishes the basic property of star complements, is
known as the Reconstruction Theorem and its converse.

Theorem 5.1.7. Let X be a set of k vertices in the graph G, and suppose that
T

Ax
G h dj tri
as adjacency matrix < 2 C

subgraph induced by X. Then X is a star set for v in G if and only if i is not
an eigenvalue of C and

>, where Ay is the adjacency matrix of the

wl —Ax = BT (ul — C)~'B. (5.2)

X
In this situation, the eigenspace of u consists of the vectors ,
genspace of | f (wj—CYUh>

where x € IRX.
Proof. Suppose first that X is a star set for x. Then p is not an eigenvalue of

C, and we have
wl —Ax =BT
[ —A=
’ ( -B  ul-C)’


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.006
https:/www.cambridge.org/core

5.2 Construction and characterization 141

where ul — C is invertible. In particular, if |V(G)| = n then the matrix
(=B | uI — C) hasrank n — k; but I — A also has rank n — k and so the rows
of (—B | uI — C) form a basis for the row space of uI — A. Hence there exists
ak x (n — k) matrix L such that (1] — Ay | —B") = L(—B|ul —C).
Now ul — Ax = —LB, —B" = L (uI — C) and Equation (5.2) follows by
eliminating L.

Conversely, if u is not an eigenvalue of C and Equation (5.2) holds, then it
is straightforward to verify that the vectors specified lie in £(u). They form
a k-dimensional space, and, by interlacing, the multiplicity of p is exactly k.
Hence X is a star set for . O

Note that if X is a star set for p then the corresponding star complement
H(= G — X) has adjacency matrix C, and Equation (5.2) tells us that G is
determined by w, H and the H-neighbourhoods of vertices in X. If u # —1 or
0 then by Proposition 5.1.4(ii), there is a one-one correspondence between the
vertices in X and their H-neighbourhoods. To find all the graphs with a pre-
scribed star complement for 1, we have to find all solutions Ay, B of Equation
(5.2), given p and C. In this situation, let |V (H)| = t and define a bilinear form
on IR" by

(x.y) =x"(ul =)y (x.y € R).

If we denote the columns of B by b, (# € X) and equate matrix entries in
Equation (5.2), we obtain the following consequence of Theorem 5.1.7.

Corollary 5.1.8. Suppose that u is not an eigenvalue of the graph H, where
|V(H)| = t. There exists a graph G with a star set X for i such that G — X =
H if and only if there exist (0, 1)-vectors b, (u € X) in IR" which satisfy

1) (by,b,) = uforallu € X, and
@) (by,by) € {—1, 0} for all pairs u, v in X.

In this situation, u ~ v when ((b,,, b,)) = —1 and u % v when ((b,, b,)) = 0.

5.2 Construction and characterization

In this section we give four basic examples to illustrate the use of Corol-
lary 5.1.8 in constructing graphs with a prescribed star complement H for
a prescribed eigenvalue . Note that if only H is prescribed then there
are only finitely many possibilities for p: they can be identified from all
possible one-vertex extensions of H, as in Example 5.2.8 below. The exam-
ples serve to illustrate how star complements have been used in the litera-
ture to characterize certain graphs. In practice it is often convenient to write
Equation (5.2) in the form
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m(u)(ul — Ax) = B 'm(u)(ul —C)"'B (5.3)

where m (x) is the minimal polynomial of C. This is because m () (ul — o)~!
is given explicitly as follows. The proof is left to the reader.

Proposition 5.2.1. Let C be a square matrix with minimal polynomial

d+1 d—1

m(x) =x —l—cdxd—l—cd_]x +---4c1x + cp.

If i is not an eigenvalue of C then
m(u)(ul — )™ ' =ayC? +ag_1C7 4 a1 C +apl
where ag = 1 and for 0 <i <d,

ag—i = ' +eapt M W T4 eamig

If G has H as a star complement for p, with a corresponding star set X
of size k, then the deletion of any r vertices in X results in a graph with u
as an eigenvalue of multiplicity kK — r. The reason is that the multiplicity of
an eigenvalue changes by 1 at most when any vertex is deleted (see Corollary
1.3.12). It follows that each induced subgraph G — Y (¥ C X) also has H as
a star complement for . Moreover any graph with H as a star complement
for p is an induced subgraph of such a graph G for which X is maximal,
because H-neighbourhoods determine adjacencies among vertices in a star set.
Accordingly, in determining all the graphs with H as a star complement for
it suffices to describe those for which a star set X is maximal. By Proposition
5.1.4(ii), such maximal graphs always exist when p #= —1 or 0.

Example 5.2.2. We begin with the simple problem of finding the graphs that
have a 5-cycle 123451 as a star complement H for —2. In the notation of
Proposition 5.2.1, C is the circulant matrix with first row 01001, © = —2 and
m(x) = (x —2)(x%> +x — 1). Here m (1) = —4 and the proposition yields

41 +0)7'=c?-3c+31=| 1 -3 5 -3 1

Now we apply Corollary 5.1.8(i). From Equation (5.3) we know that
{(by, b,)) = —2 if and only if bMT(C2 — 3C + 3I)b, = 8. In this situation
the neighbours of u in H constitute a set S such that the i-th entry of b, is 1 if
i €S, 0ifi € S. Accordingly we have to find the subsets S of {1, 2, 3,4, 5}
such that the sum of entries in the principal submatrix of C> — 3C + 31
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determined by S is equal to 8. It is straightforward to verify that this occurs
precisely when |S| = 4. All five possiblities for S occur simultaneously in
L(K5), which is therefore the unique maximal graph that arises. The graphs
with a 5-cycle as a star complement for —2 are therefore the induced sub-
graphs of L(Ks) containing Cs. Since C5 = L(Cjs), these graphs are just the
graphs L(G), where G is a Hamiltonian graph on five vertices. O

The arguments of Example 5.2.2 can be generalized to show that for any odd
t > 3, L(K;) is the unique maximal graph with a ¢-cycle as a star complement
for —2. Determination of the possible subsets S requires substantial effort in
the general case. An inspection of L(K,) reveals easily that such sets include
those consisting of two pairs of consecutive vertices on the 7-cycle, and the
work lies in proving that there are no other possibilities for S. The graphs in
which the path P, is a star complement for —2 have also been determined:
when 1 > 3 and ¢ # 7, 8, such graphs are precisely the line graphs of bipartite
graphs with 7 + 1 vertices (other than P;1) which have a Hamiltonian path.

In Example 5.2.2, there was no need to apply part (ii) of Corollary 5.1.8
because we had prior knowledge of a graph in which all possible vertices were
added to the prescribed star complement. We cannot expect that a unique max-
imal graph always exists, and in the general case, where a graph H occurs as
a star complement for an eigenvalue p, it is useful to consider a compatibility
graph defined as follows. The vertices are those b, for which (b, b,)) = u,
and b, is adjacent to b, if and only if {(b,, b)) € {—1, 0}. It is convenient to
represent the edge b, b, by a full line if ((b,, b,)) = —1, and by a broken line if
{(by, by)) = 0. If each vertex b,, is labelled instead with the H-neighbourhood
of u, then this same graph is called the extendability graph T"(H, jt). Note
that when © # —1 or O there is a one-one correspondence between cliques
in I'(H, 1) and graphs with H as a star complement for p; moreover, the full
lines in a clique determine the subgraph induced by the corresponding star set.
In particular, if we use a computer to find the maximal graphs with H as a star
complement for i1, we can invoke an algorithm for finding the maximal cliques
in a graph. The next example illustrates the procedure in a small case.

Example 5.2.3. Here we find the graphs having a 5-cycle 123451 as a star
complement H for 1. In this case, Proposition 5.1.11 yields

1 0 -1 -1 0
0 1 0 —1 -1
I-C)'=31-c*=|-1 0o 1 0 -1
-1 -1 0 1 0
0 -1 -1 0 1
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{4,5,1}

(3,4, 5} {2,3,4}

Figure 5.2 The extendability graph I'(Cs, 1).

(@) (b) ©

Figure 5.3 The maximal graphs with Cs as a star complement for 1.

First, we apply Corollary 5.1.8(i). From Equation (5.2) we know that
{(by,b,) = 1if and only if b (3] — C*)by = 1. Now we have to find
the subsets S of {1, 2, 3,4, 5} such that the sum of entries in the principal
submatrix of 3/ — C? determined by S is equal to 1. It is straightforward to
verify that this occurs if and only if S consists of a single vertex or three con-
secutive vertices of the 5-cycle. Next we apply part (ii) of Corollary 5.1.8 to
construct the extendability graph I'(Cs, 1) shown in Fig. 5.2. The automor-
phism group of I'(Cs, 1) has three orbits of maximal cliques (with 2, 3 and
5 vertices). These determine the three maximal graphs illustrated in Fig. 5.3,
where the vertices of H are circled. The Petersen graph has already featured in
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Example 5.2.2. Alternatively, its occurrence here could have been predicted
from Example 5.1.2, where Cs is a star complement for —2 in L(K5): since —2
is not a main eigenvalue of L(Ks), we deduce from Proposition 2.1.3 that Cs
is a star complement for —(—2) — 1 in L(Ks) —that is, C5 is a star complement
for 1 in the Petersen graph. O

For characterizations among regular graphs, the following result is very
useful in restricting the vectors b, that need to be considered.

Proposition 5.2.4 [CvRS3]. If i is a non-main eigenvalue of G then, in the
notation of Corollary 5.1.8,

{(by,j) =—1 forall u e X.

Proof. Here the all-1 vector in IR" is orthogonal to £(u). From the spec-
ification of £(u) in Theorem 5.1.7 we deduce that (b,,j) = —1 for
allu € X. O

Example 5.2.5. Proposition 5.2.4 tells us that if G is r-regular and © # r
then, for each u € X, —1 is the sum of entries in the columns of (u/ — C)~!
indexed by the H-neighbourhood of u. Thus if we restrict G to be regular in
Example 5.2.3, the only candidates for an H -neighbourhood are the singletons
of V(H). It follows that the Petersen graph is characterized among regular
graphs by a 5-cycle as a star complement for 1. a

The procedures illustrated above are known collectively as the star comple-
ment technique for constructing and characterizing graphs with a prescribed
star complement for a prescribed eigenvalue. We give a further example of
the technique which illustrates the purely combinatorial nature of the argu-
ments when the star complement H is essentially devoid of structure. Here the
H-neighbourhood of a vertex u is denoted by Ay ().

Example 5.2.6. Suppose that Ky is a star complement H for —2. In this sit-
uation we have C = J — I, m(x) = (x + 1)(x — 7) and Equation (5.3)
becomes

921 + Ax) = B' (91 — J)B.

Equating (u, u)-entries here, we have 18 = 9h — h2, where h = |Ag ).
Hence i = 3 or 6. Equating non-diagonal entries, we find that the fol-
lowing conditions on H-neighbourhoods are necessary and sufficient for the
simultaneous addition of two vertices u and v:

if [Ag)| =]Ag )| =3then |Ag ) N Ax(v)| € {1,2};
if [Ag(m)| =3 and |Ag(v)] = 6then |[Ag(m) N Ay (v)| € {2,3};
if |Ag(m)| = |Ag ()] =6then |Ay ) N Ag(v)| € {4, 5}.
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Note that the third condition is satisfied automatically because there Ay (u)
and Ay (v) are 6-subsets of an 8-set. For the maximal graphs G with Kg as a
star complement for —2, we need to find the maximal families of 3-sets and
6-sets satisfying the other two conditions. We give just three of many examples
of such a family F.

(a) F consists of all 28 subsets of V (H) of size 6; in this case, the maximal
graph G is the graph obtained from L(K9) by switching with respect to K3.

(b) F consists of all 21 subsets of size 3 containing a fixed vertex of H; in this
case, G is the cone over L(Kg).

(c) F consists of all 7 subsets of size 6 not containing a fixed vertex w of
H, together with 7 subsets of size 3 which form the lines of a geometry
PG(@3,2) on V(H) \ {w}; in this case, G is the unique smallest maximal
graph that arises. O

In order to describe the general form of a maximal family of neighbourhoods
in Example 5.2.6, we give some further definitons. Suppose that F is a family
of 3-subsets of {1, 2, ..., 8}, and let 7 @ be the family of 2-sets which are con-
tained in some 3-set of F. We say that F is an intersecting family if UNV # @
forall U,V € F; and such a family F is complete if there does not exist an
intersecting family of 3-sets Fo such that 7 C Fp and F @ = ]—"(52). (For
example, if F = {138, 157, 568} then F is not complete because we can take
Fo = F U {158}.) The final result of this section shows that a maximal excep-
tional graph with Kg as a star complement for —2 is determined by a complete
intersecting family of 3-subsets of {1, 2, ..., 8}, and vice versa. Here we take
V(H) ={1,2,...,8} and write i for the complement of {i, j} in V (H).

Theorem 5.2.7 [Row14]. Let G be a graph with Ky as a star complement for
—2,say H = G — X = Kg. Then G is a maximal exceptional graph if and
only if the family of H-neighbourhoods Ay (u) (u € X) has the form F3 U Fg
where F3 is a complete intersecting family of 3-sets and Fe = {ij : ij & .7:3(2) }.

Proof. First suppose that G is a maximal exceptional graph, and let F3 be
the family of H-neighbourhoods of size 3. From the remarks above we know
that F3 is an intersecting family. If ij ¢ .7-"3(2) then the 6-set i intersects each
member of 73 in at least two elements. Now the maximality of X ensures first
that the H-neighbourhoods include every such 6-set, and secondly that F3 is
complete.

Conversely, if the family of H-neighbourhoods has the form given then X,
and hence G, is maximal. Moreover G is exceptional because a graph obtained
from Kg by adding a vertex of degree 3 or 6 is itself exceptional. O
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In Example 5.2.6(a), 73 = @, and in Example 5.2.6(b), F¢ = @. It has been
shown by computer that there are exactly 363 maximal graphs with Kg as a
star complement for —2 [Lep2]; all are maximal exceptional graphs as defined
in Section 5.4.

We complete this section with two examples which illustrate the situation
in which a star complement is prescribed but an associated eigenvalue is not.
Recall that a graph H can be a star complement for only finitely many values
of u, since then w is an eigenvalue of a graph obtained from H by adding
a vertex. In our illustrations (and in Exercise 5.7) the star complement is a
complete bipartite graph, and so we begin with some remarks on the general
case H =K, (r +s > 2).

If V(H) has the bipartition R U S, where |R| = r and |S| = s, then we say
that a vertex u added to H is of trype (a, ) if the H-neighbourhood Ay (u) of
u consists of a vertices in R and b vertices in S. If H has adjacency matrix C
then C has minimal polynomial x(x2 —rs), and p(u? — rs)(nl — C)~! =
(u2 = rs)l + uC + C? by Proposition 5.2.1. Thus w(u? —rs) # 0 and we
may write Equation (5.2) in the form

p(u® = rs)(ul — Ay) = BT {((0* —=rs) +uC+C*)B.  (54)

Now suppose that u, v are distinct vertices in X of types (a, b), (c,d)
respectively. If we let Ax = (a;;) and equate (u, v)-entries in Equation (5.4)
we obtain

—,u(pcz —rs)ay, = (/L2 — r8)puy + n(ad + be) + acs + bdr, 5.5)
where p,y = [Ap () N Ag(v)].

Theorem 5.2.8. If G is a graph with K| 5 as a star complement for some
multiple eigenvalue u # —1 then p = 1 and G is an induced subgraph of the
Clebsch graph.

Proof. We write H + u for the subgraph induced by X U {u}. Since 1 # 0,
H + u is connected by Proposition 5.1.4(i). From the spectra [CvDGT] of the
11 connected graphs H + u (corresponding to the 11 possible types (a, b) #
(0, 0)) we find that the only non-zero eigenvalue common to non-isomorphic
graphs is —1. Thus u arises as a multiple eigenvalue only when all vertices in
X are of the same type, (a, b) say. In this situation, if we equate diagonal and
non-diagonal entries in Equation (5.4) we obtain

W —=5) = (u? = 5)(a+b) +2uab + 54> + b* (5.6)

and
—p(1? = 5)ayy = (U* = 5)puy + 2pab + 5a* + b*. (5.7)
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On subtracting Equation (5.7) from Equation (5.6), and dividing by u,z -5,
we obtain ,u2 + payy =a + b — pyy. Note thata + b — pyy € {1, 2}. Sup-
pose by way of contradiction that s is not an integer. If u*> € Z then a,, = 1,
a+b— pw=1landp = 1(~1£+5);if u> € Z then a,, = 0 and
n = j:ﬁ. But none of the 11 graphs H + u has +/2 or %(—1 + \/3)
as an eigenvalue. Accordingly u € Z. The only integer other than —1 or 0
to be found among the eleven spectra is 1, which arises as an eigenvalue of
H + u precisely when u is of type (0, 2). Now the solutions of Equation (5.7)
are given by (auy, puy) € {(0, 1), (1,0)}. Thus all () (3) = 10 possible ver-
tices may be included in X: in this case X induces a Petersen graph because
u ~ v if and only if the 2-element subsets Ay (1), Ay (v) of the 5-element
set of endvertices in H are disjoint. The 16-vertex graph so obtained is nec-
essarily the complement of the Clebsch graph, since a strongly regular graph
with parameters (16, 5,0, 2) has K 5 as a star complement for 1. Note that
foreknowledge of this example shows that I'(Kj 5, 1) = Kjo and obviates
the need to solve Equation (5.2). We conclude that the complement of the
Clebsch graph is the unique maximal graph with K s as a star complement
for a multiple eigenvalue different from —1. O

The last theorem of this section illustrates the use of Proposition 5.2.4.

Theorem 5.2.9. Let G be an r-regular graph with n vertices. If G has
K1 s (s > 1) as a star complement for | then one of the following holds:

(@) w==x2,r =5 =2and H is a 4-cycle;

®) u= %(—1 +5),r=s=2and Hisa 5-cycle;

(¢) w € IN, r = s and G is strongly regular with parameters ((u* + 3u)?,
1?43+ 1), 0, (e + 1)

Proof. By Proposition 5.1.4(i), G is connected since ; # 0. If © = r then
n = 4 by Corollary 1.3.8, and we have r = s = 2, G = C4. Accordingly we
suppose that  # r and consider a vertex in X of type (a, b) # (0, 0); note
that a> = a. From Proposition 5.2.4 we have

—u(uz —5) = a,u2 +aps + buz +bu, (5.8)
and from Corollary (5.1.8) we have
wr(u? —s) = ap® + 2uab + b> + (u* — 5)b. (5.9)
Equations (5.8) and (5.9) yield just two possibilities:

a=0, b=p’4+pn #0, s=uw’3u+)ora=1, u=—1, bef{l,s)
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Thus if © = —1 then the central vertex of H is adjacent to all other vertices,
and this contradicts the regularity of G since other vertices of H have degree
less than n— 1. It follows that © # —1 and the central vertex of H is adjacent
to no vertices in X; in particular, r = s = u(u® + 3 + 1). All vertices in X
are of type (0, u” + ), and counting in two ways the edges between X and H
we have

IXI(0* + ) = p(u? + 3+ D + 32 +n = 1),
whence |X| = (W2 4+3u+D(u2+2u—1andn = |X|+s+1 = (u2+3p)%

From Equation (5.7) we have

Oifu ~v
Puv = {U« ifu Lo (5.10)

If X induces a clique then |X| — 1 = r — u®> — j, whence

(1 + D +2)u* +p—1)=0.

Therefore, either u = —2 and we have case (a), or u = %(—1 + 4/5) and we
have case (b). If X does not induce a clique then it follows from (5.10) that
@ € IN. In this situation, let k = | X|, and let 6y, ..., 6, be the eigenvalues of
G other than p and r. We have

r r
Z€i+ku+r=0 and Zé’iz—l—kuz—i-rz:nr:(l—}-k—i-r)r.
i=1 i=1
It follows that if = 1 3™7_, 6; then

r

r
- —2
Y 6 =07 =) 6} —r6 =k(r— = Fu’ - .
i=1 i=1

On expressing r and k in terms of u, we find that r — w? — é,uz —u = 0.

Hence §; = 6 (i = 1,...,r) and G has just three distinct eigenvalues. By
Theorem 3.6.4, G is strongly regular, and we have case (c) of the Theorem.
This completes the proof. m|

In case (c) of Theorem 5.2.9,let D = {Ag(u) : u € X}. If w = 1 then D
consists of all 2-subsets of X, and so the star complement technique yields a
unique graph G, necessarily the complement of the Clebsch graph. If © = 2
then D is a Steiner system S(3, 6, 22): this is a design with 22 points and 77
blocks of size 6, with the property that any 3 points lie in a unique block.
By a Theorem of Witt [Witt], there is only one such design, and so again
G is unique. Here G is the Higman—Sims graph, the strongly regular graph
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with parameters (100, 22, 0, 6) first constructed from S(3, 6, 22) in [HiSi].
Accordingly, we have:

Corollary 5.2.10. Let G be a regular graph with K| 5 (s > 1) as a star com-
plement for . If 1 = 1 then G is the Clebsch graph. If i1 = 2 then G is either
a 4-cycle or the Higman—Sims graph.

Note that conversely, if d € IN and if G is a strongly regular graph with
parameters ((d? 4+ 3d)?,d(d* + 3d + 1),0,d(d + 1)) then G has, as a star
complement for d, the star induced by the closed neighbourhood of a vertex.
Thus our proofs establish both the existence and uniqueness of strongly regular
graphs with parameters (16, 5, 0, 2) and (100, 22, 0, 6). It is shown in [KasOs]
that there is no strongly regular graph with parameters (324,57, 0, 12) (the
cased = pu = 3).

5.3 Bounds on multiplicities

We saw in Section 5.1 that if a graph G has a star complement with ¢ vertices,
for an eigenvalue u # —1 or 0, then |V (G)| < t + 2'. Here we first improve
this upper bound to one which is a quadratic function of 7.

Theorem 5.3.1 [BelRo]. Let G be a graph with n vertices, and let i be an
eigenvalue of G, nu & {—1, 0}. If the eigenspace of | has codimension t then
either

@n<3t@t+1or

) =1and G = K, or 2K>.

Proof. Suppose first that G is connected. Using the notation of Theorem 5.1.7,
welet S = (B|C—pul), withcolumns s, (u = 1, ..., n). Using Equation (5.2),
we see that

wl —A=S8"(ul —C)7's,

and so, for all vertices u, v of G,

w ifu=v
(sussu) = {—1 ifu~v
0 otherwise

We define quadratic functions F1, ..., F; as follows:
Fu(x) = (s..x)>  (xe R".

It is easily checked that if k = dim £(u) and X = (xg41, ..., xy) T then
F,(x)=x2w=k+1,...,n).
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We show that Fi,..., F, are linearly independent unless © = 1 and
G = K. If pis the index of G, thenk = 1 and F,(x) = x,f (u=2,...,n).If
F1, ..., F, are linearly dependent, then, since F7 is the square of a linear func-
tion, F1 must be a multiple of one of F3, ..., Fy, say of F,. The continuity of
the functions x — ((s1, x)) and x — ((s,, X)) ensures that {(s1, X)) is a constant
multiple of x,,, and therefore s; is a multiple of the v-th column of I — C. But
the entries of s; and of C are all either O or 1; and since u # —1, 0, we deduce
that the vertices 1 and v are adjacent to each other but to no other vertices of
G. Since G is connected we have G = K> and n = 1.

Now let w1 be the index of G, and consider the case in which u # 1. Let w
be an eigenvector of G corresponding to 1, with all entries of w positive. Let
w = (wy,...,w,)",and let w* = (Wk+15 -+ s wy) . Since w lies in E(M)J-,
it follows from Theorem 5.1.7 that

(s, W) =—w, (@=1,...,n).

Suppose that )", o, F, = 0, thatis, >, o, (S, x)2 = 0 for all x € IR".
Taking x = s;, we obtain ,uzozi +Y o, =0 (G =1,...,n). Thus

u~1
(/LZI + A)a=0, where a=(xq,..., ot,,)T.

From ), ot ((Su, X + y)2 = 0, we obtain D o ul(Su, X) sy, y) = 0 for all
X,y € IR'. Taking x = s; and y = w*, we obtain puo;w; — D i Gy Wy =
0 (i=1,...,n). Thus

(ul — A)a’ =0, where a’ = (@ w1, ..., duwy) .

Because u # —1,0, we have u # —/,LZ, and so a'a’ = 0, that is, alzwl +
cee a,zlw,, = 0. It follows that o, = O for all u, and so Fy, ..., F, are
linearly independent. Now the functions F, lie in the space of all homogeneous
quadratic functions on IR?, and since this space has dimension %t(l + 1), we
have n < 1t(t + 1).

Finally, suppose that G is not connected. It is clear that, for any vertex u,
F, (x) involves only those entries of x which correspond to vertices in the same
component as u. Thus, if in each component the F), are linearly independent,
then all the F,, are linearly independent. It follows that the bound holds except
possibly when G = rK» for some r. In this case n = 2r, t = r, and the
inequality holds whenever r > 3. This completes the proof. a

The bound in Theorem 5.3.1 is attained in the graph obtained from L(Kg)
by switching with respect to Kg: here © = —2 and r = 8. Apart from a few
trivial exceptions, the bound is not attained in any regular graph; in fact, if G
is regular and ¢ > 2, the bound can be reduced by 1, as we now show.
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Theorem 5.3.2 [BelRo]. Let i be a non-main eigenvalue of a graph with n
vertices, and let t be the codimension of E(u). If u € {—1,0} and t > 2 then

nf%t(l—i—l)—l:%(t—l)(t—{—m.

Proof. Since u is non-main, we have j, € £(u)*, and it follows from Theo-

rem 5.1.7 that ((s,,j) = —1 (u = 1, ..., n), where j denotes the all-1 vector
in IR'. Consider the function F(x) = ({j,x))2. We will show that F does
not belong to the span of F Ty oves Fy. Suppose, by way of contradiction, that

F=2. '3” us 1. ((J, x)) Z Bu((su, x))? for all x € IR'. By considering
G, x + y)2, we see that

G X YD =D Bullsus X su y)

for all X,y € IR'. Taking x = y = s;, we have 1 = u?B; + Youmi Bu (@ =
1,...,n), thatis,

in = (W*T + A)b, (5.11)
where b = (B, ..., ﬁn)T. Next, taking x = s;, y = j, we obtain
— (.Y = —mBi + >~ Bu (i =1,...,n),thatis,
> 3Njn = (uI — A)b. (5.12)

From (5.11) and (5.12),

(1 + pHb = 1+ G, iNin

Since w4+ u? # 0, b is a scalar multiple of j,, say b = Sj,, so that B, = S
(u=1,...,n). Thus

B (Z sus XD (s YN = (G, x)* (G y)* = B Z su X072 ((su, ¥).

From (5.11) we know that 8 # 0, and so a Cauchy—Schwarz bound
is attained. It follows that ((s,, X)) = a((s,,y) (u = 1,...,n), for some
o = a(x,y). Then ((s,, x — ay)) = 0 for all u, that is,

s (ul —O) 'x—ay) =0 w=1,...,n).

It follows that (C — ul)(ul — O 'x— ay) = 0, whence x = ay. Since this
holds for all x,y € IR’, t must be 1, contrary to assumption. Thus F does not

belong to the subspace spanned by Fi, ..., F,. Since t > 2, it follows from
the proof of Theorem 5.3.1 that Fi, ..., F, are linearly independent. Hence
F, Fy,..., F, are linearly independent, and we have n + 1 < %t(t + 1), as

required. O
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Theorem 5.3.3 [BelRo]. The regular graphs attaining the bound of Theorem
5.3.2 are precisely the extremal strongly regular graphs.

Proof. First let G be an extremal strongly regular graph with eigenvalues
r, ', w of multiplicities 1, k’, k, where 1 < k’ < k. Thus if G has n vertices
thenn = 1k'(k'+3).1ft =n —k thenk’ =t — landson = 5(t — 1)(t +2),
as required.

For the converse, we give a proof due to B. Tayfeh-Rezaie. If G is a reg-
ular graph that attains the bound of Theorem 5.3.2, then every homogeneous
quadratic function on IR’ is a linear combination of Fy, F>, ... F, and F. In
particular,

(%) =Y eFu(® +y F(), (5.13)
u=1
for some scalars €1, €3, ..., €, and y. It follows that
(x,y) = Zéu {(sus XN (su> Y) + v (G, XN G, YD (5.14)
u=1

Lete = (€1, €, ...,€,) . Takingx =s;, y=—j(i =1,2,...,n)in (5.14),
we find that

(ul —A)ye=~1-y{{.iMiJ (5.15)
Taking x = s; in (5.13), we find that
W+ A)e=(n—yp)ij (5.16)

From (5.15) and (5.16) we see that (1% + p)e is a scalar multiple of j. Since
w? + i # 0, e = € j for some €. Now, taking X = s;,y = s;j (i #j)in(5.14),
we have

(51870 =€ {(5u, si) {(sur 870 + v

i=1

()

It follows that if i % j then 0 = €a;;” +v, where A2 = (al.(jz)). Since G is not

complete, we deduce that € # 0, and al.(jz) = —e 'y wheni # j. Similarly, if
2

i ~ j then a;; = 21 — €~ Y(y + 1), and the result follows. O

The five known extremal strongly regular graphs are described in Section 3.6.
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5.4 Graphs with least eigenvalue —2

We denote the least eigenvalue of a graph G by A(G). We noted in Chapter 1
that if G is a generalized line graph then A(G) > —2. On the other hand, we
saw in Chapter 3 that not every graph whose spectrum is contained in [—2, 00)
is a generalized line graph; examples include the Chang graphs (Examples
1.2.6 and 4.1.13), the Clebsch graph (Example 1.2.4), the Petersen graph and
the wheel Wg. Recall that a graph G is said to be exceptional if (i) G is
connected, (i) A(G) > —2, and (iii) G is not a generalized line graph. Determi-
nation of the exceptional graphs was an early problem in spectral graph theory,
attributed to A. J. Hoffman in the early 1960s. In 1976, root systems were used
to show that an exceptional graph has at most 36 vertices [CamGSS]. In 1979
the exceptional graphs G with A(G) > —2 were determined independently of
root systems [DooCv]: in Chapter 3 we noted that there are 573 such graphs
(20 with 6 vertices, 110 with 7 vertices and 443 with 8 vertices, comprising the
families Gg, G7, and Gg). In 1980, generalized line graphs were characterized
by a collection H of 31 forbidden induced subgraphs; the forbidden graphs
with least eigenvalue greater than —2 are precisely the graphs in G, while the
other 11 forbidden graphs have least eigenvalue less than —2. In this section we
describe briefly how star complements can be used to find all the exceptional
graphs from the 443 exceptional graphs in Gg.

Theorem 5.4.1 [CVvRSS5]. Let G be a graph with least eigenvalue —2. Then G
is exceptional if and only if it has an exceptional star complement for —2.

Proof. Suppose that G has an exceptional star complement H for —2. Then G
is not a generalized line graph. By Proposition 5.1.4(i), G is connected because
H is connected, and so G is exceptional. Conversely, suppose that G is excep-
tional. Then G contains an induced subgraph F' from the family H identified
above. Since A(G) > —2 we know from interlacing that F is necessarily one
of the 20 exceptional graphs in Ge. By Theorem 5.1.6, G has a connected star
complement H for —2 which contains F as an induced subgraph. Thus H is
exceptional, and the theorem follows. O

In Theorem 5.4.1, the candidates for an exceptional star complement are (by
interlacing) precisely the 573 exceptional graphs with least eigenvalue greater
than —2. These graphs have at most 8 vertices, a fact which follows either
from Theorem 3.4.6 or from their explicit determination independently of root
sytems. In any case, we can now see from Theorem 5.3.1 that an exceptional
graph has at most 36 vertices.

If G is a maximal exceptional graphs then G is a maximal graph with some
prescribed exceptional star complement H for —2. In the reverse direction,
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it turns out that if G is a maximal graph with a prescribed exceptional star
complement H for —2 then G is a maximal exceptional graph only if H has
8 vertices. Accordingly, to find the maximal exceptional graphs, it suffices to
consider exceptional star complements with 8 vertices, and so there are 443
possibilities. For each of these, Lepovi¢ used a computer implementation of
the star complement technique to determine the maximal exceptional graphs
which arise. There are only 473 such graphs, and the distribution of the number
of vertices is as follows:

number of vertices 22 28 29 30 31 32 33 34 36
number of graphs I 1 432 25 7 3 1 2 1

It transpires that 363 of these graphs have Kg as a (non-exceptional) star
complement for —2; for example, the unique largest graph and the unique
smallest graph are the graphs with 36 and 22 vertices which feature in Exam-
ples 5.2.5(a) and (c) respectively. The remaining 110 graphs are among the
430 maximal exceptional graphs which are cones over a graph switching-
equivalent to L(K3g). In addition to these 430 graphs, there are a further 37
graphs with maximal degree 28, while the remaining 6 examples have maximal
degree less than 28 (see [CVRS6]).

5.5 Graph foundations

Let G be a generalized line graph, say G = L(H), where H is a B-graph.
Let u be an eigenvalue of G, and let Y be a set of edges of H.We say that Y
is a line star set for p in H if it is a star set for M in L(ﬁ). In this situation,
H — Y (the spanning subgraph of H obtained by deleting the edges in Y) is
the corresponding line star complement for 1 in H. A line star complement
for —2 is called a foundation for H. We first discuss foundations for simple
graphs (i.e. B-graphs without petals).

Example 5.5.1. The graph L(Ks) has spectrum 6, 14, (—2)5, and a star
complement for —2 has the form L(F) where the foundation F is one of
the graphs of Fig. 5.4. Here the graphs are shown in increasing order of
index. =

Theorem 5.5.2. (i) Let H be a connected graph. Then the least eigenvalue of
L(H) is greater than —2 if and only if H is a tree or an odd-unicyclic graph.
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SIUNES

(a) (c) (d)

Figure 5.4 The foundations for Ks.

(ii) Let H be a connected bipartite graph such that L(H) has least eigen-
value —2. Then the subgraph F of H is a foundation of H if and only if F is a
spanning tree for H.

(iii) Let H be a connected non-bipartite graph such that L(H) has least
eigenvalue —2. Then the subgraph F of H is a foundation of H if and only if
F is a spanning subgraph in which each component is an odd-unicyclic graph.

Proof. Part (i) follows from Theorem 3.4.14, and so we suppose that H is a
connected graph which is neither a tree nor an odd-unicyclic graph. Suppose
that H has n vertices and m edges. Let E be a set of k edges in H, and let
F = H — E. If F is a foundation for H then k is the minimum number of
edges whose removal from H results in a graph whose line graph has least
eigenvalue greater than —2. From Theorem 3.4.9, we see that if H is bipartite
then k = m —n + 1 and F is a spanning tree, while if H is non-bipartite then
k = m — n and each component of F' is odd-unicyclic.

To prove that, conversely, a graph of the type specified in (ii) and (iii) is
a foundation, we shall identify k linearly independent vectors v, (¢ € E) in
Erm)(—=2). Thus —2 has multiplicity at least k in L(H). By interlacing, this
multiplicity is precisely k, and so H — E is a foundation for H.

The vectors v, (e € E) are constructed as follows. Here we fix ¢ and let
x; (I € E(H)) be the coordinates of v,. If H is bipartite then F + e contains a
unique cycle Z, and Z is of even length. We take x; to be 1 and —1 for alternate
edges [ of Z, with x, = 1, and we define x; = O for all/ ¢ E(Z); see Fig. 5.5.

If H is not bipartite and the addition of e to F creates an even cycle Z,
then Z is the only even cycle in F' + e and we repeat the construction above.
Otherwise, the addition of e creates either an odd cycle or a link between two
components of F. In either case, some component of F + e has just two cycles,
say Z and Z’; they have odd length and are edge-disjoint. Let P be the unique
path of least length (possibly zero) between a vertex of Z and a vertex of
Z'. If P has non-zero length then we take x; to be 2 and —2 for alternate
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1 +1
-1 F1

(even cycle)
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+1

(odd cycle) (odd cycle)

Figure 5.5 A construction for eigenvectors of a line graph.

edges [ of P. Then we take x; = +1 forl € E(Z) U E(Z') as shown for the
dumbbell shape in Fig. 5.5. Finally we define x; = O for all remaining edges
I of H. Reversing all signs if necessary, we may take x, > 0 to determine v,
uniquely. In all cases, it is straightforward to check that v, is an eigenvector
of L(H), with corresponding eigenvalue —2. These eigenvectors are linearly
independent because, for each e € E, the f-entry of v, is non-zero only for
f = e. This completes the proof. |

We call the vectors v, (e € E) the eigenvectors of L(H) constructed from
F. In case (i) of Theorem 5.5.2, H itself is the unique foundation of H. From
the proof in cases (ii) and (iii), we have the following:

Corollary 5.5.3. The eigenspace of —2 for a line graph L(H) has as a basis
the set of eigenvectors constructed from any foundation of H.

We now turn to generalized line graphs that are not line graphs, and in this
context the following definitions will be helpful. An orchid is a graph which is
either odd-unicyclic or a tree with one petal; an orchid garden is a graph whose
components are orchids.

Example 5.5.4. Let H be the B-graph consisting of a triangle with single
petals added at two vertices. The graph H and all non-isomorphic foundations
of H are shown in Fig. 5.6. Note that each foundation is an orchid garden. O

Theorem 5.5.5. Let H be a connected B-graph with at least one petal. (Thus
L(H) is a generalized line graph which, in general, is not a line graph.)


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.006
https:/www.cambridge.org/core

158 Structure and one eigenvalue

A AN o\ I

Figure 5.6 A B-graph and its foundations.

(i) The graph L(I:I ) has least eigenvalue greater than —2 if and only if H is
an orchid.

(i1) Suppose that the least eigenvalue of L(H ) is —2. Then F is a foundation
of H if and only if F is an orchid garden which spans H.

Proof. The proof mirrors that of Theorem 5.5.2, and part (i) follows from The-
orem 3.4.14. To prove part (ii), let m = |E(H)|, where H = H(ay,...,ay,),
and let F = H — E where E is a set of k edges in H.If Fisa founda—
tion then k is the minimum number of edges whose removal from H results
in a B-graph whose least eigenvalue is greater than —2. By Theorem 3.4.13,
k=m—n+>"_,a,and F is an orchid garden.

Conversely, if F is an orchid garden then we can identify k linearly inde-
pendent vectors v, (¢ € E) in £ LA (—2). By interlacing, —2 has multiplicity

exactly k in L(ﬁ ), and so F is a foundation for H.

It remains to construct the vectors v, (¢ € E). We fix e and let x; (I € E)
be the coordinates of v,. We use the term supercycle to mean either an odd
cycle or a petal. There are m —n + Y ;_; a; edges of H not in F, and three
possibilities arise when such an edge e is added to the orchid garden F: (1) the
edge creates an even cycle, (2) the edge creates a supercycle (that is, it creates
an odd cycle or a petal), (3) the edge joins a vertex of one orchid to a vertex of
another orchid. We now ascribe weights x; to the edges of H as follows.

In case (1) all weights are O except for 1 and —1 alternately on edges of
the even cycle. In cases (2) and (3), F + e contains a unique shortest path P
between vertices of two different supercycles, and we first ascribe weights of
2 and —2 alternately to the edges of P. To within a choice of sign, weights are
ascribed to the edges of the two supercycles as illustrated in Fig. 5.7, and all
remaining weights are 0. (In all cases the construction may be seen as ascribing
weights £1 alternately to the edges in a closed walk, with the assumption that
double edges are assigned the same value; in edges traversed twice, the values
are added.)

In each case, we choose signs so that x, > 0. The weights x; of edges in
H are taken as coordinates of a vector v, whose entries are indexed by the
corresponding vertices of L(H). 1t is straightforward to check that each such
vector is an eigenvector of L(H) corresponding to —2. Thesem —n+ ) /_, a;
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Figure 5.7 A construction for eigenvectors of a generalized line graph.

vectors are linearly independent because each of the aforementioned closed
walks contains an edge not present in any of the others (as in the proof of
Theorem 5.5.2). O

Again we call the vectors v, (e € E) the eigenvectors constructed from
F. In case (i) of Theorem 5.5.6, H itself is the unique foundation for H.In
case (ii) our arguments establish the following result (formulated to subsume
Corollary 5.5.3):

Theorem 5.5.6. The eigenspace for the eigenvalue —2 of a generalized line
graph has as a basis the set of eigenvectors constructed from any foundation
of the corresponding root multigraph.

Remark 5.5.7. We can construct a foundation F for the B-graph H (ay, ...,
a,) from a foundation F’ of H as follows. If H is not bipartite then F’ is an
orchid garden which spans H and we may take F to consist of F’ together
with a; (single) pendant edges attached at vertex v; (i = 1,...,n). If H is
bipartite then F’ is a tree which spans H: here we first modify F’ by adding
a; pendant edges at vertex v; (i = 1,...,n) and then obtain F by replacing
one of these pendant edges by a double edge. In general, not all foundations
for H(ay, ..., ay) can be constructed in this way. O

Finally, for future reference (see Subsection 9.3.2), we give two simple
results that arise as corollaries of the above proofs. Here an odd dumbbell is a
B-graph consisting of two supercycles connected by a path (possibly of zero
length).

Corollary 5.5.8. A connected generalized line graph L(H) has least eigen-
value —2 if and only if H contains an even cycle or an odd dumbbell.

Corollary 5.5.9. The edge e of the B-graph H lies in an even cycle or an
odd dumbbell if and only if there exists an eigenvector X € £ L 131)(_2) such
that x, # 0.


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.006
https:/www.cambridge.org/core

160

51
5.2

5.3

54

5.5

5.6

5.7

5.8

5.9

5.10

Structure and one eigenvalue

Exercises

Find a star partition for (i) K, , (ii)) L(K}).

Show that the multiplicity of any eigenvalue of a non-trivial tree T is
bounded above by the number of endvertices of 7.

Use Theorem 2.2.4 to show that if u, v are adjacent vertices in a star set
then uv is not a bridge.

Let © be a non-zero eigenvalue of the graph G, and let X be a star set
for u in G with corresponding star complement H. Show that if H is
2-connected then one of the following holds:

(a) G is 2-connected;

(b) u # —1 and G has a pendant edge at a vertex of H;

(¢) = —1and G has a cutvertex v in H whose neighbours in X induce
a complete subgraph which is a component of G — v.

Use the Reconstruction Theorem to find, for given ¢ € IN, the values of
w for which K, arises as a star complement for p.

Consider the graphs with K 5 as a star complement for —1 (cf. Theorem
5.2.7). Show that there are two maximal such graphs without co-duplicate
vertices. (One has 15 vertices, the other 16 vertices.)

Show that the complement of the Schlifli graph is the unique maximal
graph with K> 5 as a star complement for a multiple eigenvalue other
than —1 [JaRo].

Find in terms of n, u and r the parameters of the strongly regular graphs
which arise in Theorem 5.3.3.

Let X be a star set for the eigenvalue p in the graph G, and let H =
G — X. The vertex u of X is said to be amenable to switching if u is an
eigenvalue of the graph obtained from H +u by switching with respect to
{u}. Suppose that u is non-main and that every vertex in X is amenable to
switching. Show that if G’ is obtained from G by switching with respect
to a subset of X then y is a non-main eigenvalue of G” and X is a star set
for 1 in G’ [RowlJa].

Let H be a graph with ¢ vertices such that —2 is an eigenvalue of K| v H
but not of H. Let I'*(H; —2) be the subgraph of I'(H; —2) induced
by the (0, 1)-vectors b such that ((b, j)) = —1 (cf. Proposition 5.1.4).
Show that I'*(H; —2) has a perfect matching, say bicy, ..., b, ¢, with
b; +¢;, = j (i = 1,...,m). Deduce that any two graphs with t + m
vertices having H as a star complement for the non-main eigenvalue —2
are switching-equivalent [CVRS9].
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5.11 Let H be a connected B-graph with at least one petal, such that L(H)
has least eigenvalue —2. Show that —2 is a main eigenvalue if and
only if H has an odd cycle or two petals connected by a path of odd
length.

5.12 Prove Corollaries 5.5.8 and 5.5.9.

Notes

The star complement technique has its origins in the Schur complement of
a principal submatrix (see [Pra, p. 17]); its application in a graph-theoretical
context was noted independently by Ellingham [EII] and Rowlinson [Row§]
in 1993. Some consequences of the Reconstruction Theorem are discussed in
[BelCRS1]. A survey of star complements appears in [Row13], and a database
of some 1500 examples is described in [CvLRS1]. Subsequent papers include
a characterization of the Hoffman—Singleton graph [HofSi] among regular
graphs (see Section 6.4 and [RowSc]), and a reduction to a combinatorial prob-
lem in the case of extremal strongly regular graphs with an independent set of
maximal size [Row15]. Theorem 5.2.9 is a stronger version of a result which
appeared in [Row12], where the degree of regularity was prescribed and strong
regularity was not established. Regular graphs with regular star complements
are investigated in [Row10].

Further dominating properties of star complements are discussed in [Row9]
and [LiuRo]. The relation between star complements and switching is
discussed in [CVRS9] and [RowlJa]. Several generalized line graphs (and
their complements) are characterized by star complements in [CVRSS5]. In
[BelLMS], the authors investigate the possible star complements for —2 in
graphs for which —2 is the least eigenvalue. Odd cycles and paths as star
complements for —2 are treated in [Bel3], [Bel4] and [BelSi]. The determina-
tion of the maximal exceptional graphs is described in [CVLRS2], and treated
comprehensively in the monograph [CvRS7]. The relation of star partitions
to the complexity of the graph isomorphism problem is discussed in [CVRS2,
Chapter 8] and [CVRS1].
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Spectral techniques

This chapter is devoted to structural results which do not refer to eigenvalues
but which are proved using spectral techiniques. We include classical results
such as the Friendship Theorem and constraints on Moore graphs, as well
as more recent results concerning graph homomorphisms. We also discuss
decompositions of complete graphs, generalized quadrangles and equiangu-
lar lines. In the final section, we calculate the number of walks of given length
in graphs of a particular type.

6.1 Decompositions of complete graphs

An r-decomposition of the graph G is a set of r spanning subgraphs
Hi, ..., H, such that each edge of G lies in exactly one of the H;. For exam-
ple, it is easy to see that K7 is the edge-disjoint union of three 7-cycles. Is K¢
(which has 45 edges) the edge-disjoint union of three copies of the Petersen
graph (which has 15 edges)? This question was posed by Schwenk in the
American Mathematical Monthly (Problem 6434(b) of June-July 1983). The
following simple argument involving eigenspaces shows that the answer is
‘no’. If K19 has such a decomposition then

A+B+CH+1=1J 6.1)

where each of A, B, C is an adjacency matrix of a Petersen graph. Since 4 (1)
and Ep(1) are 5-dimensional subspaces of the 9-dimensional space j*, there
exists a non-zero vector X € £4(1) N Ep(1) such that Jx = 0. From Equation
(6.1) we have Ax+ Bx+Cx+x = 0, whence Cx = —3x. This is a contradiction
because —3 is not an eigenvalue of C.

We can extend the above argument from the Petersen graph to an arbitrary
strongly regular graph G, and thereby obtain the following result.

162
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Theorem 6.1.1 [Row2]. Let G be a connected strongly regular graph with
parameters (n,r, e, f). If K, is the edge-disjoint union of three spanning sub-
graphs isomorphic to G then there exists a positive integer k such that, with a
consistent choice of sign,

n=0Bk+1)? r=3k>+2, e=k>—land f = k> + k.

Proof. By Theorem 3.6.5, G has eigenvalues r, o, n3 with multiplicities
1, ko, k3 where

1
Mz,m:§<e—fi\/(e—f)2+4(r—f)>

and

ky, k3 =

%{(n_l)i (n=1)(f —e) =2 }

Ve— )2 +40—f)

If K, has a 3-decomposition as described in the statement of the theorem then
a consideration of degrees shows that n — 1 = 3r. It follows that k> # k3
for otherwise f —e =2r/(n — 1) = % Equation (6.1) holds with each of A,
B, C now an adjacency matrix of G. On repeating the original argument with
o in place of the eigenvalue 1 we find that —2u, — 1 is an eigenvalue of
C. This eigenvalue is different from r because a corresponding eigenvector is
orthogonal to j; and different from o because oy # —%. Hence —2u, — 1 =
3 and on expressing k> in the form

_1 {3r ~ 3r(ua+p3) +2r}
2 M2 — 3

we see that k = 2r, k3 = r. It follows from (6.2) that 3(uy + u3) +2 =
u3 — wo. Similarly, if k3 > ko then wy and w3 are interchanged and we have
3(u2 + p3) + 2 = up — u3. Hence always

Be—3f+2)2=(e— > +40 — ). (6.3)

For any strongly regular graph, we have r(r —e — 1) = n —r — 1) f by
Equation (3.14). Since here n — 1 = 3r, we have r = 2 f + e+ 1, and it follows
from (6.3) that

ky (6.2)

(f—e+1)?>=e+1.

Thus e has the form k> — 1 and the result follows. O

In the terminology of Mesner [Mes] a strongly regular graph which satisfies
the conclusions of Theorem 6.1.1 with n = (3k + 1)? is a graph of negative
Latin square type NL;(3k + 1). If n = (3k — 1)? then the graph is called by
Bose and Shrikhande [BosSh] a pseudo net graph of type Ly (3k — 1).
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Remark 6.1.2. Suppose for definiteness that k> > k3 in the proof of Theorem
6.1.1. Our eigenspace argument shows that E4 (u2) N Ep(u2) € Ec(u3). Now
dim Ec(u3) = r and dim(E4 (n2) N Ep(n2)) = dim E4(2) + dim Ep(u2) —
dim(Ea(n2) + Ep(u2)) > 2k — (n — 1) = r. Hence Ec(uz) = Ea(pna) N
Ep(2). Similarly Eg(u3z) = Ec(uz) N Ea(uz) and E4(u3) = Ep(uz) N
Ec(uz). Since E4(n2) N Ea(nz) = {0}, we have E4(uz) N Ep(uz) = {0}
and, on comparing dimensions, Ec(u2) = £4(3) & Ec(u3). Therefore,

R" = (j) ® Ea(13) ® Ep(3) ® Ec(u3). (6.4)

If k3 > kp then u; replaces 3 in (6.4).

The disposition of the various eigenspaces ensures that the matrices A, B,
C are simultaneously diagonalizable and so they commute: in terms of edge-
colourings of K, this means that if we use three different colours cy, 2, c3
for the three subgraphs isomorphic to G then for any two vertices u, v and
any two colours ¢;, ¢; the number of u-v walks of length 2 coloured c¢;, c;
is the same as the number of u-v walks of length 2 coloured c;, ¢;. This is
not generally the case for a 3-decomposition of K, into isomorphic regu-
lar subgraphs as may be seen from the following decomposition of K7 into
three 7-cycles: if the vertices of K7 are labelled 1,2,3,4,5,6,7 and the cycles
12345671, 14275361, 13746251 are coloured blue, red, green respectively then
the walk 153 is coloured green-red, but there is no walk from 1 to 3 coloured
red-green. a

The following class of examples illustrates Theorem 6.1.1.

Example 6.1.3. Let /K be a finite field of order ¢ = p>", where h € IN and
p is a prime congruent to 2 mod 3. Let g be a generator for the multiplica-
tive group of K, and let H = (g3). The subgroup H has index 3 in (g) and
consists of all the non-zero cubes in K. Since —1 € H we may define (undi-
rected) graphs G; (i = 0, 1, 2), with vertices the elements of IK, as follows:
vertices u and v are adjacent in G; if and only if u — v € Hg' (i =0, 1,2).
The map x — xg' (x € IK) is an isomorphism Gy — G;, and it follows that
Go, G1, G constitute a 3-decomposition of K. Moreover Gy is strongly reg-
ular because any pair of adjacent vertices may be mapped to 0, g3, and any pair
of non-adjacent vertices may be mapped to 0, g, by an automorphism of K.
Thus there are infinitely many graphs G which satisfy the hypotheses of Theo-
rem 6.1.1. (The smallest connected example is the complement of the Clebsch
graph, which arises as Go when g = 16.)

We can use the relation between parameters given by Theorem 6.1.1 to find
the number of solutions of the Fermat equation x> + y3 = z3 in the field K.
Note thate = k2 —1 where k = %(ph—l) if hisevenand k = %(ph+1) if i is
odd. Now for given u € H, e is the number of solutions (v, w) of the equation
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u+v =w (v,w € H). It follows that the number of solutions (u, v, w)
of the equation u +v = w (u,v,w € H) is e|H|. Each element of H has
3 cube roots in /K and so the number of non-trivial solutions (x, y, z) of the
equation x> + y3 =23 (x, y, z € K) is f3(p*"), where f3(p*") = 27e|H| =
(P*" = D™ —2(=p)" - 8). O

If K, is the edge-disjoint union of subgraphs (not necessarily spanning sub-
graphs) isomorphic to the graph G then (i) %n(n —1) is divisible by the number
of edges in G and (ii) n — 1 is divisible by the greatest common divisor of the
degrees of vertices in G. An asymptotic converse was proved by R. M. Wilson
[Wils]: given a graph G then for large enough »n satisfying conditions (i) and
(i1), K, is the edge-disjoint union of subgraphs isomorphic to G. Note that
if G is regular of degree r then conditions (i) and (ii) reduce to the single
requirement that r divides n — 1.

For our next observation on the decomposition of a complete graph, we
make use of the following more general result, attributed to H. S.Witsenhausen.

Lemma 6.1.4. Let G be a graph with n™ positive eigenvalues and n™ negative
eigenvalues. If G has an r-decomposition into complete bipartite graphs then
r>max{nT,n"}.

Proof. Here the adjacency matrix A of G is A + --- + A,, where A; is the

adjacency matrix of a complete bipartite graph G; (i = 1, ..., r). Thusif G; is
determined by the bipartition V(G) = U; UV, then A; = u; viT +v; uiT, where
u;, v; are the characteristic vectors of U;, V; respectively (i = 1,...,r).

Now suppose by way of contradiction that r < n™'. Then the eigen-
vectors of A corresponding to positive eigenvalues span a subspace V* of
dimension greater than r. Hence V' contains a non-zero vector w orthog-
onal to uj,...,u,. Now w' Aw = 0, a contradiction. We obtain a similar
contradiction if r < n™. a

Theorem 6.1.5. If K,, has an r-decomposition into complete bipartite graphs
thenr > n—1.

Proof. The result follows immediately from Lemma 6.1.4 because K, has
n — 1 negative eigenvalues. a

6.2 Graph homomorphisms

The topic of graph homomorphisms forms a natural sequel to the previous
section, because we can give an alternative solution to the original problem
concerning Ko in this context. A homomorphism from the graph G to the
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graph H is a function o : V(G) — V(H) that maps edges to edges; that is,
if 7, j are adjacent vertices of G, then o (i), o(j) are adjacent vertices of H.
In this situation, let S be the matrix whose rows are indexed by V (G), whose
columns are indexed by V (H), and whose (i, u)-entry is 1 if (i) = u, and 0
otherwise. Thus if V(H) = {1, ..., k} then

STS = diag(|o '), ..., lo 7 ®)]),

while the (u, v)-entry of STA(G)S is the number N (u, v) of edges between
o~ (u) and o~ (v). We say that o is uniform, with parameters p, g, if each
vertex of H is the image of precisely p vertices of G, and each edge of H is
the image of precisely g edges of G.

Theorem 6.2.1. Let G, H be graphs with n, m vertices respectively. If there
exists a uniform homomorphism from G to H, with parameters p, q, then

Dnemsi(G) < Lai(H) < (G) (i =1,....m). 6.5)
P

Proof. We have 'S = pl and ST A(G)S = gA(H). Thus if Q = JLES then
Q"0 =1Tand QTAG)Q = %A(H). Now the result follows by applying
Theorem 1.3.11 to A(G) and %A(H). O

If Ko is the edge-disjoint union of three copies of the Petersen graph P,
then there is a natural uniform homomorphism ¢ from G = 2P to H = P
with p =2 and ¢ = 1. (In each of 2P and P, we may colour the edges of one
Petersen graph red, and the edges of the other green; then o maps red edges to
red edges and green edges to green edges.) Now P = L(Ks), with spectrum
6, 14, (—2)°, while 2P has spectrum 32, 110, (=2)8. Since A12(G) = 1,(H) =
1, the eigenvalues of %A(H ) do not interlace those of A(G) in accordance with
(6.5). Thus there is no 3-decomposition of K¢ into Petersen graphs.

In the case of a uniform homomorphism from a regular graph G to a regular
graph H, the inequalities (6.6) may be recast in terms of the eigenvalues of
the Laplacian D — A, or of the signless Laplacian D + A. If the eigenvalues
of D — A are denoted by v} in non-decreasing order, and the eigenvalues of
D + A are denoted by £ in non-decreasing order then the inequalities (6.5)
yield

G < LoxH) and &G < Ler(H) i =1.....m).  (6.6)
p p

These inequalities may be generalized to the case of an arbitrary homomor-
phism o from a graph G onto a graph H without isolated vertices, as follows.
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Let p, be the smallest of the numbers oY) (u € V(H)), and let q° be the
largest of the numbers N (u, v). Then

(@) < Lopn and g6 < Leran G=1,..m),
Po Po

where again m = |V (H)|. These are among the spectral inequalities estab-
lished in [DanHal] and [DanHaZ2].

We conclude this section with a second application of Theorem 6.2.1, this
time to designs. Recall that a 2-(v, k, A) design consists of a family B of
k-subsets (or blocks) of a v-subset V such that any two elements (or points)
of V lie in precisely A blocks. If |B| = b then each point lies in r blocks,
where bk = vr and r(k — 1) = (v — 1)A. Note that r > A. Let G be the graph
whose components are the complete graphs on {B} x B (B € B), let H be the
complete graph on V, and define o (B, u) = u (u € V). Then o is a uniform
homomorphism from G to H with parameters r, A.

Example 6.2.2. Using the homomorphism o defined above, we prove Fisher’s
inequality: if k < v then b > v. We have G = bKj; and H = K,. Thus if
b < vthen hy_py1(H) = —1 and Agp—p+1(G) = —1. Applying Theorem
6.2.1 (withn = bk, m = v, i = v —b+ 1)), we have 2(—1) < (1), that s,
r < A.Hence r = X, and so k = v, contrary to assumption. O

6.3 The Friendship Theorem

For our third application, consider an acquaintance graph with n vertices rep-
resenting n persons (n > 1). An edge between two vertices indicates that the
two persons are acquainted. The Friendship Theorem is often formulated as
follows: if any two persons have exactly one common acquaintance then one
person is acquainted with everybody else. It is easy to see that then the acquain-
tance graph must be a windmill, that is a graph of the form K; v r K> (r € IN).
The complete result may be stated as follows.

Theorem 6.3.1. Let G be a non-trivial graph in which any two vertices have
a unique common neighbour. Then G is a windmill.

Proof. Let A(G) = A = (a;j), and let A% = (al.(f)). Thus our hypothesis is
2

that ai(;) = 1 whenever i # j. Since a;;" is the degree d; of vertex i, we have

A’—D=1J—-1, 6.7)
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where, as usual, D is the diagonal matrix of vertex degrees and J is an all-1
matrix. It follows that A commutes with J + D — I, and hence that

AJ+AD =JA + DA. (6.8)
Equating (i, j)-entries in Equation (6.8), we have d; + a;;d; = d; + d,a;j, or
(di —dj)(aij — 1) =0.

Since a;; = 1 whenever d; # d;, we label vertices with the same degree
consecutively to obtain A in the form

* Jkl,kz ‘]kl,kr
A= iy * Tk ’
ki ko e
where ki, ..., k, are the frequencies of the distinct degrees.

We may suppose that k1 > 1 because any non-trivial connected graph has (at
least) two vertices of the same degree. Then a%) > n — kyq, and since a%) =1,
we conclude that k; > n — 1. Moreover, either (a) kf = n — 1, r = 2 and
ko = 1, 0or (b) ki = n, r = 1 and all vertices have the same degree. We
consider these cases in turn.

In case (a), A has the form

A%
A= .
(7 5)

Our hypothesis ensures that each row of A* has exactly one entry equal to 1,
and so without loss of generality,

0O 1 0 0 0 1
I 0 0 O 0 1
A 0O 0 0 1 0 1
0O o0 1 0 0 1
1 1 1 I -~ 1 0

This is the adjacency matrix of a windmill.
In case (b), G is regular, say of degree d, and we have D = dI, AJ = dJ.
It follows from Equation (6.7) that

(A—dI)(A* = d - DI) = 0.

We may suppose that G is not complete (and hence that d > 2), because
the only complete graph that satisfies our hypothesis is K3 (a windmill).
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From Theorem 3.6.5, we know that G is strongly regular, with eigenvalues

d,d—1,—+/d — 1 of multiplicities 1, k, [, where

1 d
k,l==-|n-—1 .
2( + d—l)

k1= V41 (6.9)

n — — = .
d—1

It is easy to see that there is no value of d (d > 2) for which the right-hand

side of (6.9) is an integer. Thus the windmill K3 is the only graph that arises in

case (b), and the proof is complete. O

Thus

6.4 Moore graphs

A Moore graph is a graph with diameter d and girth 2d + 1, for some d > 1.
The 5-cycle and the Petersen graph are two of the three known examples with
d = 2; we describe the third example later in this section.

Lemma 6.4.1. A Moore graph is regular.

Proof. Let G be a Moore graph with diameter d. We show first that any two
vertices u, v of G at distance d have the same degree. Let P(u, v) be the
unique path of length d from u to v, and let w be any neighbour of v not on
P(u, v). Then d(u, w) = d and the path P(u, w) includes a neighbour w’ of
u not on P (u, v). Different w determine different w’, and so deg(v) < deg(u).
Similarly, deg(u) < deg(v).

Next, let Z be a cycle of length 2d + 1 in G. If x, y are adjacent vertices
of Z then there exists a vertex z of Z such that d(x, z) = d(y, z) = d, and so
deg(x) = deg(y). It follows that all vertices of Z have the same degree.

Finally, consider a vertex ¢ not on Z, and a shortest path, of length j say,
from ¢ to Z. We may add d — j consecutive edges of Z to this path to reach a
vertex ¢’ of Z at distance d from . Then deg(¢) = deg(¢’), and it follows that
all vertices of G have the same degree. O

It can be shown that a Moore graph G is even distance-regular (Exercise
6.3), and this is the first step in a proof that d = 2 unless G is an odd cycle
of length > 5. We omit this proof, but show instead that there are at most four
possibilities for the degree of a Moore graph G with d = 2. Note that in this
case, if G is r-regular with n vertices then n = r2 + 1, because the number of
vertices at distance 2 from a given vertex is r(r — 1).
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Theorem 6.4.2. If G is a Moore graph of diameter 2 then G is r-regular, with
ref{2,3,7,57}.

Proof. For any two non-adjacent vertices u, v, there exists a unique walk of
length 2 between u and v. It follows that the adjacency matrix A of G satisfies

AP+ A—@r=-DI=J.

Since also (A —rI)J = O, G is strongly regular with eigenvalues r, @y, 43,
where (2, u3 are the roots of x24+x— (r — 1). Thus uy, u3 = %(—1 =+ 5),
where s = /4r — 3. If ky, k3 are the multiplicities of >, n3 then (considering
spectral moments) we have

l+k +k3=r>+1 and r+ koo + k3puz = 0. (6.10)
It follows that
ko +ks=r> and s(ks —k3) =r> —2r.

If 4r — 3 is not a perfect square then s is irrational and necessarily kp = k3,
r2 = 2r. In this case, r = 2.

If 4r — 3 is a perfect square, then we substitute %f(s2 + 3) for r in (6.10) and
eliminate k3 to obtain

5% — st + 65> — 257 4+ (9 — 32ky)s — 15 = 0.

It follows that the integer s is a divisor of 15. Since r > 1, we have s > 1.
Hence s € {3, 5, 15}, and so r € {3, 7, 57} in this case. O

If n is the number of vertices in an r-regular Moore graph G (of diameter
2) then the possibilities for (r, n) are (2, 5), (3, 10), (7, 50) and (57, 3250). It
is not known whether the last possibility arises. The 5-cycle and the Petersen
graph are the unique Moore graphs with parameters (r,n) = (2,5), (3, 10)
respectively, and the unique Moore graph with (r, n) = (7, 50) is the Hoffman—
Singleton graph HoS, which we now describe. For this purpose, recall that the
Fano plane is the unique 2-(7, 3, 1) design illustrated in Fig. 6.1, where the
blocks are represented by the circle and the straight lines. The graph HoS
may be constructed as follows, where a heptad is a set of 7 triples which
may be taken as the blocks of a Fano plane whose points are 1, 2, 3,4,5,6, 7.
The vertices of HoS are the 15 heptads in an orbit of the alternating group
A7 together with the 35 triples in {1, 2, 3, 4, 5, 6, 7}. There are edges in HoS
between disjoint triples, and between a heptad and each of its triples.

We note that HoS has an induced subgraph Hy illustrated in Fig. 6.2,
where the vertices of degree 1 and 7 are the 15 independent heptads. Now
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Figure 6.1 The Fano Plane.

Figure 6.2 The graph Hy.

the spectrum of Hy is 3!, V2 6, 03, (=v/2)0, (=3)!, while that of HoS is
71,228, (—3)21. Thus H is a star complement for 2 in HoS. It can be shown
that HoS is the unique regular graph with such a star complement (see
[RowSc]).

An r-regular graph of diameter 2 has at most 7> + 1 vertices, because the
number of vertices at distance 2 from a given vertex is at most »(r — 1); and
when this bound is attained, the graph has girth 5. On the other hand, an
r-regular graph of girth 5 has at least 7> + 1 vertices, and when this bound
is attained, the graph has diameter 2. Thus a Moore graph is extremal in both
contexts. The technique used to prove Theorem 6.4.2 may be extended to prove
the following.

Theorem 6.4.3 [Brow]. There is no r-regular graph of girth 5 on r> + 2
vertices.

Proof. Suppose that G is an r-regular graph of girth 5 with n = r>+2 vertices.
Then r is even, and the number of vertices at distance < 2 from any given
vertex v is > 4 1. Accordingly, there is just one further vertex, v* say, in G,
and d (v, v*) = 3. Since v™* = v, we may label the vertices of G so that

A>+A—rlI=J—B—1, (6.11)

. . . 0 1 . .
where B is a direct sum of matrices ( | O)' Now J — B — I is the adja-

cency matrix of a cocktail-party graph, with spectrum n — 2, 07, -25"! On
diagonalizing A and J simultaneously, we now see from (6.11) that G has %n
eigenvalues A satisfying
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1
A2+ A —r=0, thatis, A = 5 (=1 s) where s = Var +1,
and %n — 1 eigenvalues A satisfying

1
M 4+A—r+2=0, thatis, h=o(=1%£0 where t = /4r — 7.

There are four cases to consider.
Case 1: s and t both rational. Here, s and ¢ are odd positive integers such that
s2—t2=8,andsos =3, =1.Thenr =2and G is a 6-cycle, a contradiction
since G has girth 5.
Case 2: s and t both irrational. Here s/t is irrational, for otherwise st is an
integer such that (st)? = (4r —3)2 — 16 and agains = 3,¢t = 1,r = 2. Thus
s and ¢ are linearly independent over the rationals. Therefore the eigenvalues
%(—1 =+ 5) appear in pairs, and the eigenvalues %(—1 =+ ¢) appear in pairs. This
is impossible since one of %n, %n — 11s odd.
Case 3: s is irrational and t is rational. In this case, the eigenvalues %(—1 +1)
are integers and (since tr(A) = 0) it follows that the eigenvalues %(—1 + )
sum to an integer. This sum is — %n since the eigenvalues %(—1 =+ 5) appear in
pairs. Thus 4 divides n and we have the contradiction > = 2 mod 4.
Case 4: s is rational and t is irrational. Here the eigenvalues %(—1 +t) appear
in pairs and so their sum is —%n + % Now let %(—1 + s) have multiplicity m.
Since tr(A) = 0 we have

1 1 1 1 1
r+m§(—l+s)+<§n—m> E(—l—s)—zn+§:0. (6.12)

Sincen = r>+2andr = 4—1L(s2 — 1), we obtain a quintic equation from (6.11):
57 4+ 25% — 253 — 2052 + (33 — 64m)s + 50 = 0. (6.13)

Thus s divides 50. The only possibilities for (s, m,r) (s > 1) arising from
(6.12) are (5,12,6) and (25,6565, 156). In both cases, tr(A%) # 0, a
contradiction since G has no triangles. a

6.5 Generalized quadrangles

A generalized polygon is a bipartite graph with diameter d and girth 2d for
some integer d > 1. A refinement of the arguments used to prove Lemma
6.4.1 shows that if G is a generalized polygon with minimal degree §(G) > 2
then G is either regular or semi-regular. In this situation, the only possible
values of d are 3, 4, 6 and 8 (and all arise): the proof of this result, obtained by
Feit and Higman [FeHi] in 1964, is outwith the scope of this book. It can also
be shown that always §(G) > 2, and if §(G) = 2 then one of the following
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holds: (a) G is an even cycle, (b) G is the k-fold subdivision of multiple edges
between two vertices, (c) G is the k-fold subdivision of a generalized polygon
G’ with §(G’) > 2.

We say that a generalized polygon G has order (s, t) if the vertices in the
two parts of V(G) have degrees s + 1 and ¢ + 1. The terminology reflects the
fact that the incidence graph on the points and lines of a projective plane of
order s is a generalized polygon G with d = 3 and order (s, s). Similarly,
the incidence graph on the vertices and edges of a d-cycle is a generalized
polygon of order (1, 1); this is just a 2d-cycle, constructed as the total graph
of a d-cycle.

A generalized quadrangle is a generalized polygon with d = 4. We show in
Theorem 6.5.4 that if a generalized quadrangle has order (2, ¢) then the only
possible values of ¢ are 1, 2 and 4, and that a unique graph arises in each case.
We begin by determining constraints on s and ¢ for any generalized quadrangle
G of order (s,1). Let V(G) = S U T, where vertices in S have degree s + 1
and vertices in T have degree ¢ + 1. Let G* be the graph with V(G*) = T,
and with vertices p, ¢ adjacent if and only if p, g are at distance 2 in G.

Lemma 6.5.1. The graph G* is strongly regular with parameters

s+ D(@st+1),s(t+1),s—1,t+1).

Proof. Let p € T,and let I'; (p) be the set of vertices of G at distance i from p
in G (i = 1,2,3,4). Since G is bipartite with diameter 4, these sets are inde-
pendentand [T (p)| = t+1, |T2(p)| = s(t+1), |[I'3(p)| = st(t+1). Counting
in two ways the edges between I'3(p) and ['4(p), we have [T4(p)|(t + 1) =
IT3(p)ls, and so |T4(p)| = s*t. Hence [V(G*)| = 1 + [M2(p)| + ITa(p)| =
(s + 1)(st + 1), and each vertex of G* has degree |I'2(p)| = s(t + 1).

If p, g are adjacent vertices of G* then ¢ € I'2(p) and p, ¢ have a unique
common neighbour, x say, in G. Now the common neighbours of p and ¢ in
G* are precisely the s — 1 vertices other than ¢ in I'2(p) N1 (x).

Finally, suppose that p, ¢ are non-adjacent vertices of G*, and let '} (p) =

{x1,...,x/41}. Then g € T'4(p) and foreachi € {1, ..., + 1}, there exists a
unique g-x; path in G of length 3, say ¢y;q;x;. Now the vertices q1, ..., gr+1
are distinct and they are all the common neighbours of p and ¢ in G*. o

Note that the generalized quadrangle G is determined by the graph G*: the
vertices of S may be identified with the maximal cliques of G*, since the neigh-
bours of a vertex of S induce a clique in G*, and the vertices of any non-trivial
clique in G* have a unique common neighbour in G. Thus we construct G as
the incidence graph on the vertices and maximal cliques of G*.

Lemma 6.5.2. If G is a generalized quadrangle of order (s,t) then the
eigenvalues of G* are s(t + 1), s — 1 and —t — 1, with respective multiplicities
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sts+ D@ +1)  s2(st+1)
s+t ’ s+t

Proof. The result follows from Theorem 3.6.5 when we take n = (s + 1)
(st+1),r=s@t+1),e=s—1land f =1+ 1. a

Since the multiplicities here are integers, Lemma 6.5.2 imposes a constraint
on s and 7. The Krein inequalities provide a further restriction:

Lemma 6.5.3. If G is a generalized quadrangle of order (s, ) with s > 1 and
2

t>1,thens <t*andt < s2.
Proof. If we apply the Krein inequalities (Theorem 3.6.8) to the graph G*, we
obtain

>=0Dt+Ds—-1)>0 and @ —s)(s+DE—1)>0.

The result follows since s > 1 and ¢ > 1. O

Theorem 6.5.4. If there exists a generalized quadrangle of order (2,t) then
t € {1,2,4}. Conversely, if (s,t) € {(2,1), (2,2), (2,4)} then there exists a
unique generalized quadrangle of order (s, t).

Proof. By Lemma 6.5.3, we have r < 4. Taking s = 2 in Lemma 6.5.2, we see
that for the multipicities of the eigenvalues of G* to be integers, # +2 must be a
divisor of 12. Hence ¢ € {1, 2, 4}. In these cases G* has parameters (9, 4, 1, 3),
(15,6, 1, 3), (27, 10, 1, 5) respectively. We have seen in Chapter 3 that in each
case there exists a unique strongly regular graph with the given parameters.
Since G* determines G, we are done. d

From Chapter 3, the graphs G* that arise in Theorem 6.5.4 are L(K33),
L(Kg) and Schig(= m). Setting s = 2 in the proof of Lemma 6.5.1, we
see that G has (2r + 1)(¢ + 4) vertices. In each case, a maximal clique of G*
has s + 1 = 3, vertices and so G is the incidence graph on the vertices and
triangles of G*. In this way we obtain generalized quadrangles with 15, 30 and
72 vertices respectively as the only generalized quadrangles of order (2, 7).

6.6 Equiangular lines

Distinct concurrent lines in the Euclidean space IR! are said to be equiangular
if the angle between any two of them is the same. For example, the six lines
through antipodal pairs of vertices of an icosahedron are equiangular; the angle
between any two of them is cos~t(1 / ﬁ),
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Let £ be a system of n equiangular lines in /R’ at angle & > 0, and let
ug,...,u, be unit vectors along the lines of £. The Gram matrix of these
vectors has the form

(u/u;) = (cosa)T + 1,

where T is the Seidel matrix of a graph H with vertices 1, ...,n. Fori # j,
the (i, j)-entry of T is £1 according as the angle between u; and u; is acute
or obtuse. If u; is replaced with —u; for each i € U then the system of lines is
unchanged but H is replaced with Hy;, the graph obtained from H by switching
with respect to U. Thus £ determines a switching class S(£) of graphs on n
vertices.

If the vectors uy, ..., u, are linearly dependent, we say that the lines are
dependent. In this case, the Gram matrix (ulTu ;j) is singular, and so —1/cos « is
an eigenvalue of T'; it is the least eigenvalue of T because the matrix (u;'—u j)is
positive semi-definite. Note also that if n > ¢, then the multiplicity of —1/cos «
is at least n — 1.

Conversely, if an n x n Seidel matrix T has least eigenvalue —p with mul-
tiplicity k then 7' 4 pl is a positive semi-definite matrix of rank t = n — k.
Hence T+ pI = C T C for some matrix C of size ¢ x n. Thus C " C is the Gram
matrix of n vectors in IR'; these vectors have length ,/p and the angle between
any two of them is cos™!(£1/p). The columns of C are linearly dependent
and determine n equiangular lines in IR’. Consequently we have:

Proposition 6.6.1 [LinSe]. There is a one-to-one correspondence between
the switching classes of graphs on n vertices and the dependent sets of n
equiangular lines.

The following result gives a restriction on the angle « between sufficiently
dense equiangular lines.

Theorem 6.6.2. If IR! contains n equiangular lines at angle o, and if n > 2t
then 1/cosa is an odd integer.

Proof. We have seen that —1/cos« is an eigenvalue of 7 with multiplic-
ity at least n — t. Here, n — t > %n and so —1/cos« is an integer, m say.
Further, —1/cos o is a multiple eigenvalue of 7' and so j- contains an eigen-
vector X with eigenvalue m. Now X is an eigenvector of the adjacency matrix
%(J — I — T) with eigenvalue —%(m + 1). Since this rational eigenvalue is
necessarily an integer, m is odd and the theorem is proved. O

Our example of six equiangular lines determined by an icosahedron in IR3
shows that Theorem 6.6.2 cannot be improved in general. It is also the case
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that JR3 cannot contain more than six equiangular lines; more generally, we
have:

Theorem 6.6.3. If L is a system of n equiangular lines in IR' then
n< it +1).

Proof. With « and uy, ..., u, as above, define functions fi, ..., f,, on the
unit sphere in IR’ by

fix) = (ui—rx)2 — cos’« (i=1,...,n).

We have fi(u;) = §;; sin? a, and so fi, ..., f, are linearly independent. On
the other hand, all f; lie in the space of functions of the form Z;:l aix' +
Yiojbijxixj (ai,bij € IR) because 1 = xi + --- 4 x7. This space of
homogeneous quadratic functions /R’ — IR has dimension ¢ + (g), and so
n<te@+0. O

Let v(¢z) be the maximal number of equiangular lines in IR'; clearly, t <
v(t) < %t(r + 1). We show next how strongly regular graphs can be used
to construct systems of equiangular lines, thereby obtaining improved lower
bounds for v(z). To exclude trivial cases, we suppose that n > ¢ > 1; in
particular, @ < 7/2 and our lines are dependent.

Suppose that the eigenvalues of the Seidel matrix 7" above are n; > 1y >

- > ny. Since (u;ruj) has rank < n — ¢, we have ;4.1 = --- = n, = —p,
where p = 1/cosa. Since tr7 = 0 and tr 72 = n(n — 1), we have

M+ Am—n—0p=0 and ni+-F5;+n—1)p" =n(n—1). (6.14)

Letn = %(771 + -+ -+ n). It follows from (6.14) that
£y (i =n)* =nm— Dt —nn—1)p’.

Hence p*(n — 1) < t(n — 1), with equality if and only if n; = -+ = n;.
The case of equality is of particular interest, and in this situation we say that £
is extremal. Thus L is extremal if and only if the graphs in S(£) have exactly
two Seidel eigenvalues. (Recall that swtiching-equivalent graphs have the same
Seidel spectrum.) If £ is extremal then the distinct eigenvalues of T are 1 and
—p, and we have:

m—m—0p=0 and >+ m—0)p>=nn-1).

On eliminating ¢ from these equations, we find that

n=1+4np.
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The next result provides the link with strongly regular graphs; here
‘strongly regular with » = 2f° means ‘strongly regular with parameters

(n—1,2f,e f).

Theorem 6.6.4. The line system L is extremal if and only if the switching class
S(L) contains a graph Ky U G, where G is strongly regular withr = 2 f.

Proof. [=] We show a little more, namely that for any vertex v of H, the
graph H’ obtained from H by switching with respect to the neighbourhood of
v has the required form. Clearly H' = K| U G for some graph G, and we may
take T to be the Seidel matrix of H'. If v is taken as the first vertex of H’ then

T
T:(? JS>, (6.15)

where S is the Seidel matrix of G. We show that G is strongly regular with r =
— iT
2f. Note that T2 = (n Sj ! JJ +5:92>, and since 7 has minimal polynomial
x2 — (n — p)x — np, we have
Si=m—pj and J+8*—@0-p)S—nel=0.

Writing S = J — I — 2A, we see from the first of these equations that G is
regular of degree r = %(n —24+p—n) = %(,0 —1D(n+1).Since AJ = JA =
rJ, the second equation yields

447+ 2 —p+2)A— (o — D+ DI = (np +n+ p)J.

Hence G is strongly regular with r — f = %(p — 1)(n + 1); in particular,

r = 2 f. Note that the eigenvalues of G other than r are the roots of 2x+n+1)
(2x — p + 1), namely —%(n + 1) and %(p —1).

[<] For the converse, suppose that G is strongly regular with parameters
(n—1,r,e, ), wherer = 2f. Letr, A, u be the distinct eigenvalues of G. If
S is the Seidel matrix of G then we may take the Seidel matrix of K1 U G to
be the matrix T of (6.15). Now S has n —2 linearly independent eigenvectors x
in j- with corresponding eigenvalues —1 — 2 or —1 — 2. Hence T has n — 2

linearly independent eigenvectors (2), also with corresponding eigenvalues

—1—2Xx or —1 —2u. To see that there are two further eigenvectors of the form

( 1,), note that
aj
0 j' 1) a(n—1)
j S aj ] \{l4+amn—-2-2r}j)"
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Thus <lj> is an eigenvector of 7, with corresponding eigenvalue
a

0 = a(n — 1), if and only if 0 is a solution of the equation
x2—x(n—-2-2r)—(n—1)=0. (6.16)

We express the coefficients here in terms of A and p. First, recall that these
eigenvalues are the roots of x2— (e — f)x —(r — f),and since r = 2f we
have A + u = e — f, f = —Au. Secondly, the parameters of G satisfy (see
Section 3.6):

rr—e—1)=f(m—2-—r).

Using the relation 7 = 2 f once more, we deduce thatn —2—r =r —2e—2 =
2L —2u—2.Nown —1=3r—2e—1 =4f4+ Q2f —2) — 1 =
—4ipm — 2% — 2 — 1, and (6.16) becomes:

X2+ Q420+ 2)x 4+ QL+ D2u+1) =0.

Therefore the remaining two eigenvalues are also —1 — 24 or —1 — 2. Since
T has just two eigenvalues, £ is extremal. d

For an extremal system £ of equiangular lines, we have tn — (n — t)p = 0,
equivalently,

(n—=20p =1t —p).

It follows that either (a) n = 2t and n = p, or (b) n # 2t and A, p are
integers (each being an eigenvalue of 7 of unique multiplicity). In case (a),
T2 = (n — 1)1, that is, T is an n X n symmetric conference matrix . Such
matrices can exist only when n = 2 (mod 4) and n — 1 is the sum of two squares
(see [Bele] or [LinSe]); they exist when n — 1 is a prime power congruent to
1 mod 4 and for some other values of n. In case (b), the positive integers 7, p
are odd integers because (as we saw in the proof of Theorem 6.6.4) —%(’7 +1)
and %(p — 1) are eigenvalues of an adjacency matrix. Note also that p > 1
and > 1 because ¢ > 1: this follows from the equations tn = (n — t)p and
n = 1+ np. If we eliminate n from these equations, we obtain:

p—p

t=p2+

Thus for given p in case (b), there are only finitely many possibilities for 7,
hence for ¢ and n. We list the feasible parameters when p < 7. Note that there
are no symmetric conference matrices with n = 22 or 34; and that the cases
(p,n) € {(3,15), (5, 115)} are excluded by Theorem 6.6.3.
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n| 6 10 14 16 18 26 28 30 36 38 42 46 76 96 126 176 276
t13 5 7 6 9 13 7 15 15 19 21 23 19 20 21 22 23
o3 3 V13 3 V1T 5 3 29 5 V37 JAl V45 5 5 5 55
n|V5 3 V1305 V17T 5 9 V29 7 V37 VAl 45 15 19 25 35 55

In all of these cases except n = 76 and n = 96, a strongly regular graph with
the requisite parameters is known to exist, and so the corresponding system
of equiangular lines exists. Since any such system in IR’ may be embedded
isometrically in IR’ 1 we may extract lower bounds ¢; for v(z) as follows:

t 2 3 4 5 6 7 ... 14 15 16 17 18 19 20 21 22 23
12 36 6 10 16 28 ... 28 36 40 48 48 72 90 126 176 276
seca [2 453 3 3 3 ... 3 5 5 5 5 5 5 5 5 5

Here « is the angle corresponding to a known example of ¢; equiangu-
lar lines in IR'. In the cases t = 7,8, ..., 13, it is known that v(¢) = £;;
moreover any set of 28 equiangular lines in R'> at angle cos~!(1/3) span a
7-dimensional subspace [LemSe, Theorems 4.5 and 4.6].

We conclude by mentioning one general existence result: for any odd prime
power ¢ there exists an equiangular system of lines with n = ¢ + 1, ¢t =
g>—q+1,p=q,n=q?and a = cos~!(1/g). Thus £, > t4/7 in this case.
The result is a consequence of the following example, described without proof
of the details.

Example 6.6.5. Let V be the vector space of triples over G F(¢?), where g is
an odd prime power. For x = (x1, x2, x3) T and y = (1, y2, y3)—r in V, define

h(x,y) = x1y] + x5 +x3y%.

Let Q2 be the set of 1-dimensional subspaces (x) of V such that 4 (x, x) = 0.
Then |Q| = ¢> + 1. Next, let A be the set of 3-subsets {(x), (y), (z)} of Q for
which h(x, y)h(y, z)h(z, X) is a square in GF(qz). Now fix (x) € Q, and let G
be the graph with V(G) = Q\ {(x)} and vertices (y), (z) adjacent if and only if
{(x), (x), (z)} € A. Then G is strongly regular with parameters (n — 1, r, e, f),
where n — 1 = g%, r = (g — D(@®> + 1), e = 1(¢> — 3¢> + 3¢ — 5) and
f=1(@—1)(g*+ 1). The eigenvalues of G are r, 1(qg — 1), —3(¢> + 1). O

6.7 Counting walks

In this section we show how to calculate the number of walks of prescribed
length in a graph, and we illustrate the technique by finding a formula for the
number of walks that can be traversed by a king in k moves on a chessboard.
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Recall from Equation (1.8) that the number of walks of length k in a graph

G is given by

m

N = > uflIPijlI>.

i=1
In practice it is convenient to reformulate this expression as follows. Let
{uy,...,u,} be an orthonormal basis of IR", with Au, = ipu, (h =
1,....,n),and let

=y +---+yu,.

Then P;j is the sum of those yjuy, for which A, = ;. Thus || P;j||*= Zh{yh :
A = ui} and we have

n
Ni = vk, where yp =jluy (h=1,....n). (6.17)
h=1

Example 6.7.1. For a path P, with adjacency matrix

0 1 0O ... 0

1 0 1 ... 0

o ... 1 0 1

0O ... 0 1 0
we have A, = 2cos +1 (h =1,...,n). Itis easy to verify that the numbers
n—%—l sin ;”7”1 (i =1,...,n) are the entries u;;, of the normalized eigenvector

uy, corresponding to Aj;. Thus

[ 2 & . hin
Yh = n+l;smn+l’

h
which is O for even A, and COtZ(—ZI) for odd A. It follows from (6.17) that
n

[n-H]

AR S Q21

= cot CcosS
n—i—ll:1 n+12 n~|—1

(6.18)

|

The number Ny in (6.18) is the number of all zig-zag lines in the plane
which (i) consist of segments of length /2 with direction (ill) (i) start from
one of the points (0, 0), (1, 0), ..., (n—1, 0) and, without leaving the rectangle
{(x,y) € R2:0<x<n-—10< y < k}, terminate in one of the points
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0,k), (1,k),...,(n —1,k). (The calculation of this number arises in certain
problems in the theory of the function spaces.) If instead we wish to know the
number of walks of length k in the integer lattice on {(x,y) € Z%:0 < x <
ny—1,0 <y < np — 1} then we need to calculate Ny for the graph P, + P,,.

Another interpretation of (6.18) is as the number of possible walks in k
moves by a king on a one-dimensional chessboard. For a two-dimensional
chessboard of size ny x ny, we need to calculate Ny for the graph P, * P,.

Both the sum P, + P,, and the strong product P,, * P,, are examples
of the NEPS considered in Section 2.5, and so we extend our remarks to an
arbitrary non-complete extended p-sum G of graphs Gy, ..., Gy, say with
basis B. For an orthonormal basis of eigenvectors of G we may take the vectors
uy, ® --- @ uy;,, where the vectors uj; i form an orthonormal basis of IR"/
consisting of eigenvectors of G ;. We have

jT(llu. ® - @ Uyi) = Viiy - -+ Vsiy»

where y;j;; is the sum of entries of u;;. Hence the number of walks of length
k in G is given by:

k
2 s
Ne= ) iy -V, <ZM,.~ m) ’
[y

where ZB denotes the sum over all (B4, ..., Bs) € B.

For an s-dimensional chessboard of size ny x --- x ng, we have G; = Pnj
and B = {0, 1}° \ {(0, ..., 0)}. Then the number of possible walks traversed
by a king in k moves is given by:

k
R SR N R p (P I
i1seemsis J=1
where
2 2i; — 1 20 —1
Vj2i~ = cot? 2 T and Aji; = 2cos Vo
Ionj+1 nj+12 ! nj+1

We make one remark on the number a': i ) of walks of length k starting and
terminating at a given vertex j in an arbitrary graph G. From Equation (2.21)

we have
k
aly) Zu,upe,n

Proceeding as before, and with the same notation, we may reformulate this
equation as
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n
(k) _ 2 4k
a;; = u; WA

h=1
The calculation of aj.];) when G = P, is left as an exercise.

We conclude with two results of a different nature, concerning Y _, aj.];l)

®
ij

Theorem 6.7.2 [Weil. Let Ni(j) be the number of walks of length k start-

ing at the vertex j of a non-bipartite connected graph G with vertices
-1

lﬂquhmw)=MU%@jﬁMQO.Mmaw—»mme

vector (si (1), sp(2), ..., Sk (n))T approaches an eigenvector corresponding to
the index of G.

and a

Proof. As before, let {uy, ..., u,} be an orthonormal basis of IR" such that
Aup, = Apup, and let y; = jTuh (h = 1,...,n). Here we take A; >
Ay = .-+ > X,, with u; the principal eigenvector of G. The vector under
consideration is (j T AXj)~! AXj, or
Y1 )»]fxl + Vz)nlﬁxz + 4 vk x,
VM +ysAs
By Theorems 1.3.6 and 3.2.4 we have y; > O and A1 > |Ap| forall A > 1.

Consequently the vector (ylzklf 44 ngﬁ)_lyhkﬁuh approaches yfluh if

h = 1, and approaches 0 if 4 > 1. The result follows. O

Note that Theorem 6.7.2 holds also for connected regular bipartite graphs
because then y,, = 0 (by Proposition 1.1.2) while A; > [A;| for all i €
{2,....,n—1}.

The following result has a similar proof.

Theorem 6.7.3 [LiFe]. Let G be a connected non-bipartite graph with index
A1 and principal eigenvector (x1, X2, ..., x,) . For fixed vertices i and j, the
number of i-j walks of length k is asymptotic to A’l‘x,-xj as k — oo.

Exercises

6.1 Show that K5 is not the edge-disjoint union of three copies of L(K11).

6.2 Show that, for a uniform homomorphism from a regular graph G to a
regular graph H, equations (6.5) and (6.6) are equivalent.

6.3 Show that a Moore graph is distance-regular.
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6.4 Verify that HoS is a Moore graph.
6.5 Verify that the graph H) illustrated in Fig. 6.2 is an induced subgraph of
HoS.
6.6 Verify that the spectrum of the graph Hy (Fig. 6.2) is 3',v/2 ©,
08, (—«/5 )6, —3! and that the spectrum of HoS is 71,028 321
6.7 Find the parameters and eigenvalues of the possible strongly regular
graphs on 76 and 96 vertices that arise in Section 6.6.
6.8 Find a formula for the number of walks of length & in an n-cycle.
6.9 Find a formula for the number of j-j walks of length k in the path P,.
6.10 Prove Theorem 6.7.3.
6.11 Show that the Petersen graph is non-Hamiltonian by applying the
Interlacing Theorem to its line graph [GoRo].

Notes

The first part of Section 6.1 is taken from [CVRS2, Chapter 9]. Generaliza-
tions of Theorem 6.1.1 may be found in [Dam3]. Example 6.1.2 appears in
[Row2], while the examples in Section 6.2 appear in [DanHa2] in the con-
text of Laplacian eigenvalues. The proof of Lemma 6.1.4 is taken from course
notes of Brouwer and Haemers. The proof of Theorem 6.3.1 is derived from a
discussion of the ‘ordered love problem’ in [Ham, Section 7]. One of the first
proofs of the Friendship Theorem can be found in [ErRS].

A proof that a Moore graph other than an odd cycle has diameter 2 may be
found in [Big2, Chapter 23], along with references to the original papers and an
alternative construction of the Hoffman—Singleton graph HoS. The uniqueness
of HoS as a Moore graph of diameter 2 and degree 7 is established in [HofSi,
Section 5]. Aschbacher [Asch] proved that a Moore graph of diameter 2 and
degree 57 cannot be a rank three graph, and subsequently G. Higman showed
that such a graph cannot be vertex-transitive (see [Cam1, Section 3.7]).

The basic properties of generalized polygons are established in [GoRo,
Section 5.6]. Generalized quadrangles may be defined in terms of partial lin-
ear spaces: see [GoRo, Section 5.4]. More details of those constructed from
L(K3,3), L(Ke) and Schio can be found in [BroCN, Section 1.15]. Further
examples are constructed in [GoRo, Section 5.5]. A discussion of equiangular
lines in the context of two-graphs may be found in [GoRo, Chapter 11]. Our
treatment of extremal sets of equiangular lines is based on notes of lectures
by Seidel on geometrical configurations. The results of Section 6.7 appear in
[CVRS2, Section 2.2].
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Laplacians

Let A be the adjacency matrix of a graph, and D the diagonal matrix of vertex
degrees. In this chapter we discuss the Laplacian L = D — A, the signless
Laplacian Q = D + A, and the normalized Laplacian [ = D*LD:
(defined initially for graphs without isolated vertices). In the literature, L is
also referred to as the Kirchhoff matrix or admittance matrix, Q is sometimes
called the co-Laplacian, and L the correlation matrix or transition matrix. The
Laplacian arises naturally in the study of electrical circuits, and the normal-
ized Laplacian is closely related to random walks on a graph (Section 7.7).
Both L and L have a strong pedigree as discrete analogues of certain operators
in differential geometry, and they are well suited to the spectral investigation
of expansion and separation properties of a graph. We have already noted in
Section 4.2 some evidence that the spectra of L and Q can be more effective
than the spectrum of A in distinguishing non-isomorphic graphs.

7.1 The Laplacian spectrum

Let L (= Lg) be the Laplacian matrix of a graph G with n vertices and m
edges. We write v; (= v;(G)) for the i-th largest eigenvalue of L, so that

vi(G) =2 12(G) = -+ = v (G).

We show first that L is a positive semi-definite matrix by assigning an arbi-
trary orientation to the edges of G. The vertex—arc incidence matrix of the
corresponding digraph G is the n x m matrix R = (r;,) where

—1 if i is an initial vertex of the arc e,
rie = 1 0 if i and e are not incident,
+1 if i is a terminal vertex of the arc e.

184
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We refer to R as the gradient matrix of G (and a gradient matrix of G).

It is straightforward to verify that L = RRT, whatever the orientation of
G. Hence L is a positive semi-definite matrix, and so all its eigenvalues are
non-negative. Note that v, = 0 since Lj = 0, where j is the all-1 vector in R".

Since j is an eigenvector, L has n — 1 linearly independent eigenvectors in
j*. This is an attractive feature of L which means that we need not dwell on
main eigenvalues, and that we can deal easily with complements:

Proposition 7.1.1. We have v,(G) = 0 and vi(G) = n — v,—i(G) (i =
1.2.....n—1)

Proof. Let {x;, x>, ..., X,} be an orthogonal basis of IR" such that Lgx; =
vix; i =1,2,...,n)andx, =j.Since L = nl—Ls—J wehave Lzx, =0
and Lgx; = (n —vp)x; (i = 1,2, ..., n — 1). The result follows. O

When n > 1, Rayleigh’s Principle yields the following expression for
vn-1(G):

. x| Lx
vp—1(G) = inf - (7.1)
xeR™M\[0}, x1j X'Xx
In addition we have
x'Lx=x"RR'x = [R"x[> = > (xy — x,)% (7.2)
uvek
and consequently
(tu — xp)?
va1(G) = inf Lk @) ~ . (7.3)

xeRN\O)L xLj Y cyiGy X

Now Zuve EG) (x, — xp)? = 0if and only if, for each component H of G, the
entries x,, (u € V(H)) are the same. Such a non-zero vector exists in jL if and
only if G has more than one component. Hence v,_1(G) # 0 if and only if G
is connected, and by considering components in the general case, we have:

Theorem 7.1.2. The multiplicity of O as an eigenvalue of L is equal to the
number of components in G.

Thus the spectrum of L, unlike the spectrum of A, determines the number
of components in a graph. In what follows, we shall explore some parallels
between the Laplacian spectrum and the adjacency spectrum. By considering
the trace of L, we obtain:

Vit =ditdattdy,
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where di, d, ..., d, are the vertex degrees. Thus the number m of edges is
determined by the Laplacian spectrum:

1
m:z(v1+v2+~-+vn). (7.4)

Since L is positive semi-definite, Theorem 1.3.2 yields:

Theorem 7.1.3. Let G be a graph with Laplacian eigenvalues vi > 13
> ... > vy, If the vertex degrees of G are d| > d» > - -- > d, then

k k
Zvide,- k=1,2,...,n), (7.5)
i=1 i=1

with equality when k = n.

Remarks 7.1.4. (i) From (7.4) we see that

n— n—1

1 _
vp-1(G) =d <

v1(G),

where d denotes the mean degree. These two inequalities were improved by
Fiedler [Fiel] as follows (see Exercise 7.10):

Ve 1(G) < —2—5 and v (G) > ——A, (7.6)
n—1 n—1

where § and A are minimum and maximum degree, respectively. It is shown in
[GroMe?2] that if G is not a null graph then v; > A + 1; equality holds if and
only if A = n — 1. Further bounds for v; and v,_; are discussed in Sections
7.3 and 7.4.

(i1) The inequalities (7.5) are strengthened in [Gro] as follows. Let G be a non-
trivial connected graph with dy > d» > --- > d,,, and let #; be the number of
components of the subgraph G induced by the vertices 1, 2, ..., k. Then

k

k
Sviza+Y di k=1.2.....n—1). O
i=1

i=1

We say that two graphs are L-cospectral if they have the same Laplacian
spectrum. From what we have seen so far, we know that L-cospectral graphs
have the same numbers of vertices, edges and components; the smallest pair
of L-cospectral graphs is shown in Fig. 7.1 (see the Appendix, Table Al).
Further examples of L-cospectral graphs may be constructed using the results
on characteristic polynomials that appear later in this section.
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Figure 7.1 The smallest pair of L—cospectral graphs.

Next observe that we cannot invoke an analogue of the Interlacing Theorem
when we delete vertices because a principal submatrix of L is not the Lapla-
cian matrix of the corresponding induced subgraph. However we do have an
analogue in respect of edges:

Theorem 7.1.5. If e is an edge of the graph G and G' = G — e then
0=v,(G) = 1p(G) = Vu-1(G) = V—1(G) = - = 12(G) = vi(G) = 11 (G).

Proof. If L is the Laplacian of G — e then the Laplacian of G has the form
L + M, where M is positive semi-definite of rank 1; the largest eigenvalue of
M is 2, and all other eigenvalues are 0. The result now follows by applying the
Courant—Weyl inequalities (Theorem 1.3.15) to the matrix L 4+ M. O

If the graph H is obtained from G by deleting k edges (k < n), then k
applications of Theorem 7.1.5 yield the interlacing property

Vitk(G) =vi(H) =vi(G) (=12,....n—k).

A special case of Theorem 7.1.5 was noted in [So]: if G’ = G — uv, where
u and v are co-duplicate vertices then v;(G — uv) = v;(G) — 2 for some
J, while v;(G — uv) = v;(G) for all i # j. In the general case, we have
Y vi(G)=Y7_ vi(G—e) =2by (7.4), and so always v; (G) > v;(G —e)
for at least one value of ;.

Next we point out that the divisor technique (Section 3.9) can be used in
the Laplacian context. Recall that if G is a graph with an equitable partition
V(G) =V UV, U --. UV then, forevery i, j € {1,2,...,k}, there exists a
number d;; such that each vertex in V; is adjacent to exactly d;; vertices in V.

Theorem 7.1.6. Let Vi U Vo U - . UV be an equitable partition of the graph
G, with parameters d;j (i, j € {1,2,...,k}), and let B be the k x k matrix
(bij) defined by
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—d;; ifi#J,
bij = —k oo
D=1 dis—dij ifi=j.
If v is an eigenvalue of B then v is also an eigenvalue of L¢.
Proof. Let By = vy, where y = (y1, y2, ..., yx) | . Suppose that |V (G)| = n

and define x = (x, X2, ..., X,) " by the relation: if v € V; then x, = y;. Now
Lgx = vx, for if v € V; then

u~v

k k
(LGX)y = deg()x, — Y xy = Y _dijyi — Y _dijyj = (By)i = vyi = vx,.
j=1 j=1

This completes the proof. ]

Following [CvDSa], we write Cg (x) fordet(x/ — Lg), called the Laplacian
characteristic polynomial or L-polynomial of the graph G. We conclude this
section by expressing the L-polynomials of certain compound graphs in terms
of the L-polynomials of the constituent graphs. The first observation reflects a
simple property of determinants.

Theorem 7.1.7. If G is the disjoint union of graphs G1, Ga, ..., Gy then
k
Cox) =[] Cq ).
i=1

For the complement of a graph, we have immediately from Proposi-
tion 7.1.1:

Theorem 7.1.8 [Kell, Kel2]. If G is a graph with n vertices then

Cox) = (="' ——=Cg(n - x).

n—x

Since the join G| v G is the complement of G| U G, three applications
of Theorem 7.1.7 yield:

Theorem 7.1.9. If G, Gy are graphs with ny, ny vertices respectively, then

X—ny—nn
Cg,(x —n2)Cq,(x — ny).

Cove:) = G —m)

For the line graph L(G), subdivision graph S(G) and total graph 7(G) of a
regular graph G, the following formulae (see [Fiel]) are straightforward ana-
logues of corresponding results in Chapter 2. (The first formula is found also
in [Vah].)
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Theorem 7.1.10. Let G be an r-regular graph with n vertices and m
edges. Then

(i) Cr)(x) = (x = 2r)""Cq(x);
(i) Csiy(x) = (=D"Q2 —x)""Cq(x(r+2—x));
(i) Cr(g)(x) = (—1)"(r+1—x)"Q2r+2—x)"~"Cq(XEE220),
Theorem 7.1.11. Let G be a semi-regular bipartite graph with n vertices, m
edges and parameters (ny,no, r1,1r2). Then n = ny + ny, m = njry = nora
and
Cr)(x) = (=D"(r1 +r2 —x)" " Cg(r1 + r2 — x).

For graphs obtained as NEPS, fewer results carry over from A to L, but we
can deal with sums by observing that L has the form Lg ® I + 1 ® Ly.
Accordingly, we have:

Theorem 7.1.12 [Fiel]. If G has m vertices and H has n vertices then the
Laplacian eigenvalues of G + H are the mn numbers

vi(G)+vi(H) (=1,2,...,m; j=1,2,...,n).

7.2 The Matrix-Tree Theorem

We shall see that, for any graph G, the eigenvalues of L determine the number
of spanning trees in G. This number is called the complexity of G, denoted by
7(G). The result follows from a classical theorem of algebraic graph theory
known as the ‘Matrix-Tree Theorem’. This theorem says that for any connected
graph G, all cofactors of L are equal, and their common value is 7(G).

We write L = L and assume first that G is connected. It is easy to see that
the cofactors of L are all the same: we have L adj(L) = det(L)I = O, where
the adjoint adj(L) is the matrix of cofactors. Since G is connected, we know
from the proof of Theorem 7.1.1 that the nullspace of L is spanned by the all-1
vector j. Thus each column of adj(L) is a scalar multiple of j. Since adj(L)
is symmetric, adj(L) has the required form «J, where J is the all-1 matrix. It
remains to be shown that « = 7(G).

Lemma 7.2.1. Let R be the gradient matrix of a non-trivial oriented tree. If
R’ is obtained from R by deleting any row then det(R') = +1.

Proof. The proof is by induction on the number n of vertices in a non-trivial
oriented tree 7. The result is immediate if » =2 and so we assume that n > 2.
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Suppose that R’ is obtained from R by deleting row v, and let u be a neighbour
of v. We take V(T) = {1,2,...,n}, withv = n, u = n—1. Without loss of
generality, we assume that the last column of R is indexed by the edge uv.
Let R* be the (n—1) x (n—2) matrix obtained from R by adding the n-th
row to the (n— 1)-th row and then deleting the last row and column. Then R*
is the gradient matrix of the oriented tree 7* obtained from T by contracting
the edge uv to a vertex v*. Now det(R’) = +det(R”) where R” is obtained
from R* by deleting row v*. By our induction hypothesis, det(R”) = %1, and
so det(R’) = =1. The result follows. O

Theorem 7.2.2 (The Matrix-Tree Theorem). If L is the Laplacian matrix of
a graph G then each cofactor of L is equal to t(G), the number of spanning
trees of G.

Proof. If G is not connected then 7(G) = 0, while each cofactor of L is 0
because L has rank at most n—2. Accordingly, we suppose that G is connected.

Let R be a gradient matrix of G, and for any set F' of n — 1 edges of G, let
R(F) be the n x (n—1) matrix consisting of the columns of R indexed by F. For
any vertex i, let R; (F) be the matrix obtained from R(F) by deleting row i,
and let R; be the matrix obtained from R by deleting row i. The i-th diagonal
entry of adj(L) is det(R; RiT ), and by the Binet—Cauchy formula (Theorem
1.3.18) we have

det(R;R;") = Z det(R; (F)) det(R; (F)T). (1.7)
F

We show that for a fixed set ' of n — 1 edges, we have det(R; (F)) = %1 if
the edges of F determine a spanning tree in G, and det(R; (F)) = 0 otherwise.

Suppose first that ' does not determine a spanning tree of G. Then some
subset of F, say C, forms a cycle in G. Without loss of generality we may
assume that all edges of C are oriented to create a directed cycle. Then the
sum of the corresponding columns of R(F) is zero, and so det(R;(F)) = 0
as required. On the other hand, if F' determines a spanning tree 7', then it
has R(F) as a gradient matrix, and so det(R;(F)) = £1 by Lemma 7.2.1. It
follows that the number of non-zero summands in (7.7) is 7(G), and each such
summand is equal to 1. Hence the diagonal entries of adj(L) are all equal to
7(G). We have already seen that all entries of adj(L) are the same, and so the
result follows. O

Corollary 7.2.3. Let Cg(x) be the characteristic polynomial of the Laplacian
matrix of G. Then
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(_l)n_l / 1 n—1
7(G) = ———C(0) = —T1'-} ;(G).
n n

Proof. If G is not connected then t(G) = 0, v, = 0 and C’G 0 =0.In
the case that G is connected, we use the fact that det(x/ — R; RI.T) is the

(i, i)-cofactor of xI — L. Then the result follows from Theorem 7.2.2 because
CL(x) =" det(x] — R;R]). O

For many classes of graphs the number of spanning trees can be cal-
culated directly, but almost all existing results can be derived using spec-
tral techniques. For regular graphs, we can reformulate Corollary 7.2.3 in
terms of the characteristic polynomial or eigenvalues of the adjacency matrix
(cf. [Hut)):

Proposition 7.2.4. For an r—regular graph G we have

n

1 1
°(G) = —PG(r) =~ []e =2

i=2
In the following examples, we use Proposition 7.2.4 in conjunction with
characteristic polynomials given in Section 2.6.
Examples 7.2.5. (i) For complete graphs, we have Cayley’s formula [Cay]:
7(K,) =n""2.
(ii) For cocktail party graphs, we have:
T((CP(k) =222 (k — D"k 2,

(ii1) If G is the k-dimensional lattice of size n (that is, the k-fold sum K,,+ - - -+
K,) then [Cve2]:

k ,
©(G) =n""*T] jen
i=1
(iv) For Mobius ladders, we have (cf. p. 49):

2n—1

T(M,) = % I1 <3—200s%j - (—1)f'>.
j=1

(v) Let G be a graph with eigenvalues Ap, ..., A,, and let G® =G + K». By
Theorem 2.5.4 the eigenvalues of G@ are A +1, ..., A+ A—1, ..., A, —1,
and so

Psoy(x) = Pg(x — 1) Pg(x + 1).
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If G is regular of degree r with n vertices then G is regular of degree r + 1
with 2n vertices, and Proposition 7.2.4 yields

1 1 1
@)y — _ —
WG = PLo(r+1) = o Pe(r)PG(r +2) = FTG) PG +2).

Now let G = C,, so that G is the graph of an n-faced prism. Clearly,
7(Cy) = n. Since Pc,(x) = 2T,(5) — 2, where T, (x) is the Chebyshev
polynomial of the first kind, we obtain

(C?) = nT,(2) — n.

(vi) To find the number of spanning trees in a complete bipartite graph,
recall that

Km,n - KmL:JKn-

The Laplacian spectrum of K,,UK, is 0>, m™ ! n"~! and by Proposition

7.1.1 its complement has Laplacian spectrum 0, m + n, nm=t mn-l Finally,
using Corollary 7.2.3 we obtain

T(Kmn) = m"
O

We can also deal with graphs in which all vertices but one have a fixed
degree r; such graphs are called nearly r-regular, and the vertex not of degree
r is called the exceptional vertex.

Proposition 7.2.6 [CvGu2]. Let G be a nearly regular graph of degree r
and let H be the subgraph obtained by removing the exceptional vertex. Then
©(G) = Py (r).

Proof. If L is the Laplacian of G, and the i-th vertex of G is exceptional then
the i-th diagonal entry of adj(L) is Cy (0), and this is equal to Py (r). a

For instance, the wheel W, is a nearly regular graph, obtained from
C, by adding a vertex adjacent to all others. Applying Proposition 7.1.14 in
conjunction with Example 7.1.13(v) we obtain (cf. [Nos]):

t(Woi) = 2T5(3) — 2.

Next consider a plane graph G, with dual G*. The inner dual G** is obtained
from G* by deleting the vertex corresponding to the infinite region of G. It is
well known that G and its dual G* have the same number of spanning trees
[Big2, p. 43]. In the case that each finite region of G is bounded by an r-cycle,
G* is nearly r-regular, and so we may apply Proposition 7.2.6 to G* to obtain:
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Proposition 7.2.7 [CvGu2]. Let G be a plane graph, and let G** be its inner
dual. If every finite region of G is bounded by an r-cycle then T1(G) = Pg»(r).

More recently, Hammer and Kel’mans [HaKe] have investigated the Lapla-
cian eigenvalues of threshold graphs; such graphs are constructed from a
trivial graph by the successive addition of vertices adjacent to no other ver-
tex or all other vertices. In this case, the Laplacian spectrum is close to the
degree sequence (cf. Equation (7.5)), and the number of spanning trees can be
expressed in terms of vertex degrees.

The Matrix-Tree Theorem was generalized by Kel’mans and Chelnokov,
who gave an interpretation of the coefficients of Cg(x) in terms of spanning
subforests of G:

Theorem 7.2.8 [KelCh]. IfCg(x) = x" + c1x™ ' 4+ -+ + ¢,_1x then
=" Y pF) (i=12...n-1),
|E(F)|=i

where the sum is taken over all spanning forests F, and p(F) is the product of
the numbers of vertices in the components of F.

We state, also without proof, a version for multigraphs due to Kel’mans.
(Here, the amalgamation of vertices with a common neighbour results in
multiple edges.)

Theorem 7.2.9 [Kel3]. If Cg(x) = x" +c1x" ' 4+ -« 4 ¢c,_1x then
a=ED" Y Gy (=12....n-1),

Ucv, |U|=n—i

where Gy is obtained from G by amalgamating all vertices of U.

7.3 The largest eigenvalue

Since the supremum of x' Lx/x ' x (x # 0) is attained when x is orthogonal
to j, we have:

2
Xy — X
U](G) — sup ZuveE( u > U)
xeR"\{0}, xLj Zueru

For an alternative formula due to Fiedler, observe first that if x =
(X1,...,xp) " € jL then

n

Z Z(xu — xv)2 =2n le-z,

ueVveV i=1
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and so .
v1(G) =2n sup Luper Cu ~ X0) 2
X€RMN 0}, xLj Duev 2ovey Xu — Xy)

(7.8)

Secondly, if x € IR" \ (j) then x = X’ + «j for some «, where X’ is a non-zero
vector orthogonal to j. But now the quotient in (7.8) has the same value when
x is replaced with X', and so

— 2
v1(G) =2n sup ZuveE(xu Xy) N
XER™\G) ZL‘EV Zvev(xu — Xy)

The following inequalities for v follow directly from Rayleigh’s Principle,
using the relation

(7.9)

x| Lx
v1(G) = sup ——
xelR"\{0} X X

Theorem 7.3.1 [Moh2]. If G| and G, are graphs with the same vertex set (but

not necessarily with disjoint edge sets) then

max{vi(G1), vi(G2)} <= vi(G1UG2) <vi(Gy) +v1(Go).

Corollary 7.3.2. If H is a spanning subgraph of G, then
vi(H) < vi(G).

Since v1(G) + v,_1(G) = n, Theorem 7.1.2 yields the following upper
bound for v;:

Proposition 7.3.3. If G is a graph on n vertices, then
v1(G) <n,

with equality for a connected graph G if and only if G is not connected.
Sometimes we obtain a better bound as follows:

Theorem 7.3.4 [AnMo]. For any graph G,
v1(G) < max{d, +d, : u ~ v}.
Proof. Since RR" (= L) and R R have the same non-zero eigenvalues, there

exists a non-zero vector y such that v;y = R Ry. Let y, be the entry of y with
maximum modulus, and let e be the arc 1k. We have

ViYe = Z (Zrierif> Yfs

Fo\
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while r.riy # 0 if and only if the vertex i is common to the the arcs e and f.

Therefore,
V1Ye = Zrhfyf + Zrkfyf,
f f
whence vi|y.| < dj|ye| + di|ye|. The result follows. O

The last bound can be expressed in the form v{(G) < 2 + max{deg(e) : e €
E(G)}, where deg(e) denotes the degree of the edge e in G. This was improved
in [LiZh1] to:

vI(G) < 2+ max{y/deg(e)deg(f) : e, f € E(G), e # f).

Next, let m, be the average degree of the neighbours of the vertex v.
The following bound (see [Mer4]) is in many situations better than that of
Theorem 7.3.4:

v1(G) < max{d, +my : u ~ v}.

This in turn can be improved as follows:
Theorem 7.3.5 [LiZh2]. For any graph G on n vertices,

b1(G) < max di(di +mi) +d;(dj +mj)
i~j d,'—i-dj

Proof. Let y be a unit eigenvector of R R corresponding to vy, and let z be
obtained from y by taking absolute values of entries. If B is the incidence
matrix of G then B B = A(L(G)) + 2I and we have

vi =y R"Ry <z"B"Bz < 1;(A(L(G)) + 2I).

Now let w be the vector with entries d,, + d, (uv € E(G)), and write I" (1) for
the neighbourhood of u (# € V(G)). The entry of (A(L(G) + 21)w indexed
by the edge ij is

Yo @etd) Y (ditd)+2(ditd)) = diditmi)+d;(dj+m)).
uel (H\i} vel(O\{/}

If G is connected then we may apply Corollary 1.3.7 to (A(L(G) + 21) to
obtain

di (d; N+di(d; .
AM(A(L(G)) +21) < max i(di +mi) +dj( /+m1).
i~j d’+dl

and the result follows. If G is not connected then it suffices to invoke the result
for each component of G. a
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We mention without proof several results in similar vein. The first two
bounds were obtained by Zhang [Zha], and the third by Das [Das2]:

11 (G) < max{\/d,-(di bmi)+did;+mp) i~ j],

vl(G)fmax{2+\/di(di+mi —4) +d;(d; +mj—4)+4:i~j},

1
V1(G) < max {z <d,~ +d; + \/(di —d;)? +4m,~m(,~> T~ j} .

For upper bounds in which the maximum is taken over vertices rather than
edges we have the following, which are due to Zhang [Zha], Li and Pan [LiPa],
and Guo [Guol] respectively:

v1(G) < max {di +\/M}

1<i<n

V1(G) < max {,/2d,»(di n mi)} ,

1<i<n

1
vi(G) = max {E (d,- +Jd? + Sd,»m,-)} .

We have already noted in Remark 7.1.4 that v{(G) > 1 + A(G) for a non-
null graph G . Here we establish a lower bound which follows from a general
result for Hermitian matrices [Mir, Theorem 2]:

Theorem 7.3.6. If G is a graph with vertex degrees dy, . . ., d, and adjacency
matrix (a;j), then

v(G) > max{,/(d,- —dj)? +4a;;:i,j€V(G), i # j}.

d,' —a,-j

Proof. Consider the principal submatrix M = ( ) of the Lapla-

—a .

Ji J
cian D — A. Let v{, v} be the eigenvalues of M, with v] > v}. By interlacing,
we have v1(G) > v} and v) > v,(G). Hence vj > 0 and

vi(G) = v — vy =\ /(d; — d))? + 4af;.

The result follows since a?j = ajj. =
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7.4 Algebraic connectivity

For reasons explained further below, the second smallest eigenvalue v,,_1 (G) is
usually called the algebraic connectivity of G, denoted by a(G). From Propo-
sition 7.1.1 we know already that 0 < a(G) < n, that a(G) = 0 if and only if
G is not connected, and that a(G) = n if and only if G is complete. Moreover,
if G is r-regular then a(G) = r —12(G), and in this case we have already noted
a connection between 1, (G) and the connectivity of G (see Section 3.5).
Always a(G) = n—v1(G), and so the results of the previous section provide
bounds on the algebraic connectivity of G in terms of G. In this section we
investigate bounds for a(G) in terms of G. From Equation (7.1), we have:

x| Lx

m To -
xeR"\{0}, x1j X X

a(G) =

Now the following expression for a(G) is derived in exactly the same way as
Equation (7.9):

2
ZuveE(G)(xM - Xy)

a(G) =2n inf . (7.10)
xeR\G) Y_ucv(G) 2ovev(G)Fu — Xv)?
This last equation may be rewritten as
(e — x0)?
a(G) = inf  sup Luner@) i ~ X (7.11)

X€R"™\(j) teIR uev(G)Xu — n* -
since ZueV(G)(xu — 1)? is least when 7 is the mean of the x,,.

Examples 7.4.1. a(P,) = 2(1 —cos %), a(Cy) = 2(1 —cos 27”), a(Qn) =
2, a(Ky ) =min{m,n}and a(K,) =n (n > 1). O

Theorem 7.4.2 [Fiel]. If G| and G, are edge-disjoint graphs with the same
vertex set then
a(G1) +a(Gz) <a(G1UGy).

Proof. Let G = G| U G, with Laplacian Lg, and write U = {x € IR" :
x| =1, x L j}. By (7.1) we have

a(G) = minxTLGx = min(xTLGlx + XTLGZX) >
xeU xeU

miny' Lg,y +minz' LG,z = a(Gy) + a(G»).
yeU zelU

We deduce the following useful property of algebraic connectivity:

Corollary 7.4.3. If H is a spanning subgraph of G, then a(H) < a(G).


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511801518.008
https:/www.cambridge.org/core

198 Laplacians

Theorem 7.4.4. If u and v are two non—adjacent vertices of a graph G on n
vertices, then

a(G) < 3(dy + dy).

In particular, if G is not complete then a(G) <n — 2.

Proof. Lety = (y1, y2,..., y») ' be defined as follows:
1 ifi =u,
vi=4—1 ifi=w,

0  otherwise.

Now y'j = 0 and the result follows by substituting the vector y in (7.3). O

The interest in the parameter a(G) stems from the following inequalities
which relate it to the vertex connectivity and edge connectivity of G. Recall
that the vertex connectivity «(G) is the smallest number of vertices whose
removal results in a disconnected or trivial graph, and the edge connectivity
«'(G) is the smallest number of edges whose removal results in a disconnected
graph. Always, «(G) < «'(G) < §(G) [Har2, Theorem 5.1].

Proposition 7.4.5. For any graph G and any U C V (G), we have

a(G) <a(G-U)+|U|.

Proof. Let G’ = G - U, V(G) = {1,...,n} and V(G") = {1,...,k}.
From (7.3) we know that a(G’):ZuUeE(G,)(yu — y)? for some unit
vector (yq, ..., yk)T orthogonal to the all-1 vector in RF. If x = (6 P
yk,O,...,O)TthenxJ_jandso

aG) < Y ()
uveE(G)
Hence

aG) < Y Gu—y)?+ Y. Y yi<aG)+U|

uveE(G’) uel v~u
O

In particular, if G is connected then a(G —v) > a(G) — 1 forall v € V(G).

Corollary 7.4.6. For any non-complete graph G we have a(G) < k(G).

Proof. In Proposition 7.4.5, take U to be a set of k (G) vertices whose removal
results in a disconnected graph. a
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Proposition 7.4.7. If T is a tree with diameter d then

a(T) <2|1—cos il .
d+1

Proof. The tree T can be constructed from the path P;1; by adding pendant
edges. By Theorem 7.1.5, the addition of a pendant edge does not increase
the algebraic connectivity, and so a(7') < a(Py4+1). Since a(Py41) = 2(1 —
cos dﬂ?)’ the result follows. O

Remarks 7.4.8. Fiedler [Fiel] established the followiing lower bound, where
n=1[V(G)l: .
a(G) = 2'(G) (1 — cos —) .
n
Note that 1 — cos(r/n) > m%/2n*. Oshikiri [Osh] obtained the sharp lower
bound

a(G) > K@)
n

O

The following result provides another upper bound for a(G); it can also be
viewed as an upper bound on the diameter of a graph (cf. Theorem 7.5.11).

Theorem 7.4.9 [Nil]. If G is a connected graph with maximum degree A and
diameter d, then

a(G) < A—2JA -1+ 2—”AL;J1_1.
5

7.5 Laplacian eigenvalues and graph structure

In this section we will examine how Laplacian eigenvalues are related to cer-
tain graph invariants or properties which, in most situations, are NP-hard to
determine. If S and 7T are disjoint subsets of V (G), then we define

ES,T)={ste E(G):5€ S, teT}.

If S U T is a bipartition of V(G) then E(S, T) is called an edge cut of G.
We write S = V(G) \ S and define the (edge) boundary 3S of S as the edge-
set E(S, 3). Note that if S # @ and x is the characteristic vector of S, then
X' Lx =), cp(xy — xy)? and (7.2) yields

x"Lx [0S
x'x  |S|°

(7.12)

This explains why Laplacian eigenvalues are closely related to edge cuts.
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7.5.1 Separation problems

Our first result provides bounds on the number of edges we need to delete to
separate a set of vertices from the rest of the graph.

Theorem 7.5.1. If G is a graph wth n vertices (n > 2) and @ # S C V(G),

then B _
|S11S] |S1IS]
V-1 (G)—— =< |9S8] = vi(G)——.
n n
Proof. Again let x be the characteristic vector of S. Since ), . (xy —xp)? =
0S| and Y, oy D pey (u — xy)? = 2|S||S], the upper bound follows from
(7.9) and the lower bound from (7.10). a

It follows from this theorem that the number v; — v, _; restricts the range
of the cardinality of the cut 9. If this number is small, then for sets S of fixed
size, all boundaries 0 have approximately the same cardinality. As noted by
Mohar [Moh4], this is the case for random graphs, and it explains why some
algorithms dealing with cuts perform well on randomly chosen graphs. An
application of Theorem 7.5.1 will be given in Section 7.6 in the context of
graph expansion.

The max-cut problem is to find

mc(G) = max{|dS]| : @ £S C V},

and the min-cut problem is defined analogously; both problems are NP-hard.
The bipartition width is defined as

. n
bw(G) = min{|dS| : SC V. |S| = bJ}.

Thus determination of bipartition width, itself an NP-hard problem, is a
restricted version of the min-cut problem. From Theorem 7.5.1 it is straight-
forward to derive the following bounds:

Corollary 7.5.2 [MohPol]. Let G be a graph on n vertices. Then

me(G) < %vl (G).

Corollary 7.5.3. Let G be a graph on n vertices. Then

TVn—1(G) if n is even,
moly, ((G) ifnisodd.

bw(G) = {
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7.5.2 Metric problems

We first address the problem of estimating the diameter of a graph by spectral
means. We find basic upper and lower bounds and note without proof just some
of the improved bounds which appear in the literature. We also establish an
upper bound for the distance between two sets of vertices. For our first bound
we require the following lemma:

Lemma 7.5.4 [Moh3]. Let G be a graph with n vertices, and for each pair
u, v of distinct vertices of G, choose a shortest u-v path Py,. Then any edge of
G lies in at most }Tnz of the paths P,y.

Proof. For fixed e € E(G), let H, be the graph on V(G) with u ~ v if and
only if e € E(P,y). A graph with n vertices and no triangles has at most %nz
edges (see [Har2, Theorem 2.3]), and so it suffices to show that H, has no
triangles. Suppose by way of contradiction that uvw is a triangle in H,, and
orient the paths Py, Pyw, Pyyw from u to v, u to w, v to w respectively. Two
of these paths, say P,y and Py, include e in the same direction, say from x
to y where e = xy. Thus d(u,y) > d(u,x) and d(v,y) > d(v, x). Hence
du,v) < du,x)+dx,v) < d(u,x)+ d(y,v), and secondly d(u,v) <
d(u,y) +d(x,v). It follows that e &€ E(P,,), a contradiction. O

Theorem 7.5.5 [Moh3]. If G is a connected graph on n vertices, then

diam(G) > ’7’1 a(G)—‘ .

Proof. Let x = (x1, x2, ..., xn)T be an eigenvector of G corresponding to
a(G). Since x L j, we have from (7.10):

20 ) u—w)?=aG) Y Y u—w)h (7.13)

uveE(G) ueV(G)veV(G)

As in Lemma 7.5.4, we choose a shortest u-v path P,, for each pair of distinct
vertices u, v. Now x, — X, is expressible in the form ZiieE(Pw)(xi — x;) and
the Cauchy—Schwarz inequality yields

(u—2)° <d,v) Y (5 —x)>

iJ€E(Pyy)

We write d = diam(G) and if e = ij, we write g(e) = (x; — xj)z. Thus

u—x)?<d Y qlo).

e€E(Pyy)
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Now let
@ |1 ifee ERuw),
Xuvi€) = 0  otherwise.

We have

YooY =)t =d Y Y > @l

ueV(G)veV(G) ueV(G)veV(G) eecE(G)

=d Y ql&) Y, Y Kwle). (7.14)
¢€E(G) ueV(G) veV(G)

By Lemma 7.5.4, ZMGV(G) ZUGV(G) Xuv(€) < 2(%112), and so the result
follows from (7.13) and (7.14). |

Turning to upper bounds for the diameter, we note first the Laplacian
counterpart of Theorem 3.3.5:

Proposition 7.5.6. If G is a connected graph with r distinct eigenvalues in its
Laplacian spectrum, then diam(G) <r — 1.

This is proved in the same way as the analogous result for the adjacency
matrix A, that is by considering entries in mg(A), where mg(x) is the mini-
mal polynomial of A (Exercise 7.16). As an extension of this method, we can
consider a polynomial p;(x) of degree ¢: if each entry of p;(L) is positive then
diam(G) < ¢. The next result is proved in this way (cf. [Chu2], [DamHal]).

Theorem 7.5.7. If G is a connected graph on n vertices, and G # K, then

Vi+va—i
V1—Vn—1

diam(G) < 1 + Lw—_l)J .

Proof. Note that since G # K,, we have v,_; < v; by Corollary 7.4.6.
Let {x1, ..., X,} be an orthonormal basis of IR" such that Lx; = v;x; (i =
1,...,n) and 4/nx, = j. Let u, v be distinct vertices of G, and let

n n
€, = E a;x;, €, = E bix;.
i=1 i=1

Note that a, = b, = 1//n. Now let

) (1 2x )t
X) = _— .
pr V1 + Vp—1
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We have |[p,(v))| < (1—v) (i=1,...,n—1), where v = vzi’; L Using the
Cauchy—Schwarz inequality, we can now derive a lower bound for the (u, v)-

entry of p;(L):

n—1

e, pr(L)ey = pi(0)anby + Y pr(vi)aib; > anby —
i=1

n—1
> pi(viaib;

i=1

n—1 n—1

> a; szz——(l—)’ — . (7.15)

i=1 i=1

L a—wy
n

A%

To complete the proof, we observe that this last term is positive whenever ¢
exceeds log (n — 1)/ log :1+:" ! O
If we take
T, (u1+u:,_1—2x)
pe(x) = N wrheet
Tt (V1+Vn71 )

VI —Vn—1

where T; is a Chebyshev polynomial of the first kind, we obtain:

Theorem 7.5.8 [ChuFM]. If G is a connected graph on n vertices, and G #
K,, then

1 .
diam(G) < 1 + LMJ .

We establish one upper bound for the distance between two sets of vertices;
here d(X,Y) = min{d(u,v) :u € X,v e Y}

Proposition 7.5.9 [AloMi2]. Let G be a connected graph on n vertices, with
maximum degree A. Let X, Y be (disjoint) non-empty subsets of V(G) with
d(X,Y)=p> LIf|X| =anand |Y| = bn, then

e (1+1)(1—a—b)
“a(G)\a b '

Proof. We define y, (v € V(G)) by

1 1 /1 1 .
Yy = — — — <_ + —) min{d (v, X), p}.
a pl\a b
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Thenyv=alifveXandyU_ Lif v € Y; moreover, |y — |_[1)(a+b)

whenever u ~ v. Now let x = (xl, o xn) T, where x, = y—aand @ =
% ZUGV(G) yy. Then x L j and, making use of (7.3), we have:

(5 =0 (G e nae () )
aGn|—-—+-)<aG||-—a) na+|-4+a ) nb
a b a b

<a@G) Y xp = Y (u—x)?

veV(G) uveE(G)

Y Gu—y)t (7.16)

uveE(G)

Now y, = y, whenuv € E(X)UE(Y), while the condition p > 1 ensures that
any edge outwith E(X)U E(Y) is incident with at least one of the n(1 —a — b)
vertices in V(G) \ (X U Y). It follows from (7.16) that

a(G)<L l—l—l (1—a—->b)A
~p2\a b

as required. O

Corollary 7.5.10. With the notation of Theorem 7.5.9,

1—a

Proof. Sincea > 0,b > 0anda + b < 1, we have % + }7 < ab Hence

b),

which is equivalent to (7.17). g

Corollary 7.5.10 will be used in the next section, in the context of graph
expansion. Here we note without proof that Alon and Milman [AloMi2] make
repeated use of Corollary 7.5.10 to obtain the following bound on the diameter
of a graph.

Theorem 7.5.11. If G is a connected graph on n vertices, with maximum
degree A, then

. A
diam(G) <2 L 2(G) logz(n)J .
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7.5.3 Isoperimetric problems

The classical isoperimetric problem (in Euclidean space) is to find the maxi-
mum area with given perimeter, or the maximum volume with given surface
area. In a graph, an analogue is to find the maximum number of ver-
tices in a set with a boundary of prescribed cardinality. The isoperimetric
number (or conductance) of the non-trivial graph G is the minimum of
|E(S, T)|/ min{|S|, |T|} taken over all bipartitions S U T of V(G). In other
words,

. . |0S]
i(G) = min

—, 7.18
o0<Is|=4 |S| 719

where n = |V(G)| > 2. Since i(G) = 0 if and only if G is disconnected,
we usually consider only connected graphs in the context of isoperimetric
problems. If i (G) is small then a relatively large set can be separated by rel-
atively few edges, and so the isoperimetric number can be seen as a measure
of connectivity. It is also a measure of graph expansion, the topic of the next
section.

Examples 7.5.12. The isoperimetric number of some common graphs are:
i(Py) = 37> 1(Co) = [, 1(Q0) = 1,i(Kn) =[], i(Kin.) = %

i(Sy) =1. -

Remarks 7.5.13. In view of (7.12) we have

T

i(G)=min{XTX - x e {0, 1}, 15ij§f}.
X'X 2

Thus i (G) and v (G) are obtained by optimizing the same function on different
subsets of IR". Also noteworthy is the fact that:

|y, — xyl
i(G)= inf sup Luver() Pu — ,
xeR"\(j) te IR uev(G) |xy, — t]

which is very similar to (7.11), but with a different norm. Here the supremum
is attained not when ¢ is the mean of the x,, but when ¢ is a median value
(which is not necessarily uniquely determined). O

Before discussing spectral bounds for i(G) we note from the definition
(7.18) that when G is connected, L%J ! is a lower bound, while §(G),
S(L(G)), Pﬂ are upper bounds. (The latter are obtained from (7.18) by taking
S to have cardinality 1, 2 and [%—| , respectively.) We also have an upper bound
which is approximately half the mean vertex degree:
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Theorem 7.5.14 [Mohl]. For any graph with n vertices and m edges (n > 2),

m 5]

Oy

Proof. Fixr € {1,...,|%]}. Foreachedge e of G there exist 2(:!:%) subsets S
of V(G) of size r such that e € E(S, S). Hence the mean of the corresponding
|0S] is
-2
251 2mrn—r)
" nn—1)

r

The result follows by taking r = | 4 |. O

Turning now to spectral spectral bounds, we establish upper and lower
bounds for the isoperimetric number in terms of algebraic connectivity.

Theorem 7.5.15 [Mohl]. For any graph G on n vertices (n > 2),

i(G) > @

Proof. Suppose that i (G) = % (IS| < |5 ])- The lower bound of Theorem

7.5.1 shows that i (G) > a(G)@. Since |S| > |_%-| the result follows. a

Theorem 7.5.16 [Mohl]. Let G be a graph with maximum degree A. If G #
K1, Ky, K3 then

i(G) < Va(G)2A — a(G)).

Proof. It is straightforward to verify the inequality when G = K,, (n > 4),
and so we suppose that G is not complete. Then a(G) < § by Corollary 7.4.6.
If a(G) = § then

Va(G)2A = a(G)) = VEA = § > i(G).

Accordingly, we suppose that a(G) < §.

Letx = (x1,...,x,) bean eigenvector of L corresponding to a(G), and
let U = {v € V(G) : x, > 0}. Replacing x with —x if necessary, we may
assume that |U| < %n We define yq, ..., y, by

_Jxy ifv e U,
Y =10 otherwise.
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Writing E(U) for the set of edges joining vertices of U, we have

a(G) ng = Z (dvxv - qu> Xy = Z Z(xv — X)Xy

velU velU u~v velU u~v

Z {(xy — x)xp + (xy — X)X} + Z (Xy — X)Xy

uveE(U) uvedl
= Y Gu=»)’— ) xux. (7.19)
uveE(G) uvedlU
Similarly,
QA—aG) Y xp = (dvxu + qu) Xy
velU velU u~v

Y ettt Y mw. (7.20)

uveE(G) uvedlU

Leta =), cor XuXv. It follows from (7.19) and (7.20) that

2
a(G)(2A — a(G)) (Zﬁ) > Y Gu—w)’ Y Gut )’

velU uveE(G) uveE(G)

—a |4 Z XXy +
uveE(U)

Now a < 0 and

4 Z XuXy +a =2 Z x,,x,,—i-vaqu

uveE(U) uveE(U) velU u~v
=2 > xxy+ Y (dy—aG)x; = 0.
uveE(U) velU
Hence
2
a(G)2A - a(G)) (Z y5> > Y Gu—)? Y Out )t
velU uveE(G) uveE(G)

Nowlet B =), ,c EG) y,f — )’5 |. By the Cauchy—Schwarz inequality, we have

2
a(G)(2A — a(G)) (Z yﬁ) > 2

velU

and so it suffices to show that 8 > i(G) Y, . y%.
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Let0 =1y <t <--- <t be the different values taken by y, (v € V(G)),
and define V;, = {v € V(G) : y, = &} (k = 0,...,m), Vjy41 = 0. For
k=1,...,mwehave |Vi| < %|U| and so |0 V| = i(G)|Vi| (k =1, ..., m).
Therefore,

=2 (0= 2w e EG v <m=1)2 Y 3 @ -ity)

k=1 k=1 uvedVy
m
=D 1OVRl(f — 1)) >z(G>Z|vk|(rk -5y
k=1 k=1
m
=i(G) Y Vil = Vi) =i(G) > yi=i(G)Y y;
k=0 veV(G) velU
This completes the proof. a

7.6 Expansion

There are several measures of expansion of graph which appear in the liter-
ature. In Section 3.5, we have already encountered such a measure in terms
of IN(S)|/IS| (S C V(G)). The isoperimetric number, defined in terms of
[0S]|/|S], is a measure of edge expansion. Here, instead of the edge boundary
dS, we shall use the vertex boundary 85, defined as the set of vertices out-
side S which are adjacent to some vertex inside S. Note that |§S] < [3S]| <
[A(G)]|8S]. The vertex expansion of G is defined by

j(G) = min @
1=<is1=4 S|

The differences between the various measures of expansion which are used
is largely superficial, in that all conform to the general principle that expan-
sion in graphs of bounded degree is controlled by algebraic connectivity. In
the case of the isoperimetric number i (G), this property is made explicit in
Theorems 7.5.15 and 7.5.16. In Theorems 7.6.1 and 7.6.2 below we establish
an analogous property for j(G).

Theorem 7.6.1 [Alol]. Let G be a non-trivial graph G with maximal degree
A. If a(G) > € > 0 then

2
j(G) = —=
A+ 2¢’

(7.21)
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Proof. We may take € > 0, so that G is connected. Let n = |V(G)|, X
V(G), 1 < |X] < %n If V(G) = X U 8X then clearly [6X|/|X| > 1
2¢ /A + 2e. Otherwise, we apply Corollary 7.5.10 to the non-empty sets A =
Xand B=V(G)\ (X U 8X). Since d(A, B) = 2 and a(G) > €, we have

L2 (O et~ (R (A
n _1+4_€@’ o n n _1_|_4_€ﬁ '

A n A n

VN

Since | X| < %n, we deduce that

18X _ Z 2
|X|_1+4K€|nﬁ_A+2€'

The result follows. O

Theorem 7.6.2 [Alol]. If G is a non-trivial graph with j(G) > ¢ > 0 then

2
C
G)> ——. 7.22
4G = 4+ 2c2 (7.22)
Proof. Letx = (x1,...,x,) " bean eigenvector of L corresponding to a(G),
andlet U = {v € V(G) : x, > 0}. Replacing x with —x if necessary, we may
assume that |U| < %n We define y1, ..., y, by

_)xy ifveU,
=10 otherwise.

As in the proof of Theorem 7.5.16, we have

ZuveE(G) Yu — YU)Z
ZUGV(G) i

(cf. Equation (7.19)). To exploit this inequality, we apply the Max-flow Min-
cut Theorem (see, for example, [Gib, Chapter 4]) to the digraph (or flow
network) N defined as follows. The vertex set of N is {s} U U’ U V U {r},
where s is a source, ¢ is a sink, V = V(G) and U’ consists of vertices u’ in
one-one correspondence with vertices u of U. The arcs of N are su’ (u’ € U’),
w'u (uelU),u'v(w~ueU)and vt (v € V). The capacity of each arc su’ is
1 + ¢, and all other arcs have capacity 1. The edges su’ (u’ € U’) form a cut
of capacity (1 4 ¢)|U| separating s and ¢, and we show that no other edge cut
C separating s and ¢ has lower capacity.

Let X = {u € U : su’ ¢ C}. For each w € X, the cut C contains w'w
or wt, and for each w € §X, C contains wt or the edges v'w (w ~ v € X).
Together, these number at least | X| + |6 X, and so the capacity of C is at least

a(G) > (7.23)
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(1+o)(U|—=1X])+1X|+8X]. Since |§X| > j(G)|X| > c|X]|, this is at least
(1 4+ ¢)|U], as required.

In a maximum flow of (1 + ¢)|U]| from s to t, let f(vy, v2) be the flow in
arc vivy. Then f(s,u’) = 1 +cforallu € U and 0 < f (v, v) < 1 forall
other arcs vj v, of . Note that

fa, “)+Z f@W',v) =14c Yu € Uand f(v/, v)+z f@W',v) <1VveU.
v~u u~v
Now we define the function & : V2 — [0, 1] by:

fw,v) ifueU,veVandu ~ v,
0 otherwise.

h(u,v) = {

Note that

Zh(v, u)+f(v',v) = l4cVv € U and Zh(u, V4 f,v) < 1VveU,

u~v u~v

while any sum of the form }_, _,, &y y2 may be written as Y, _,; oty y2.
Now we have

> h@ v Outy)* <2 > h@. ) (v + D)

uveE(G) uveE(G)
=2)" (Z h(u, v)2> a2y (Z h(u, v)2> y2
ueV \v~u veV \u~v
<22+cH Y yr (7.24)
veV
(Note that vau h(u, v)? is maximized when the number of summands equal

to 1 is maximized.) Secondly,

> RO -y =) (Zh(v, W) — > h, v>) ezcy v

uveE(G) veV \u~v u~v veV

(7.25)

Using (7.23) and the Cauchy—Schwarz inequality in conjunction with (7.24)
and (7.25), we have

Y wver) Ou — y)?

Dvev Vo
Y iveE ) u = ¥0)> Lver ) M, > Gu + 30)?
B Dvev Vi Zuver Gy W, v)*u + yu)?

a(G) =
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2
<ZuveE(G) hu, v)(yg — y%))
=
20+ (Lyer 32)’
1 <ZuveE(G)h(uv V)(y2 — y5)>2 _ c?

> .
SRR v 7 212
This completes the proof. m|

The inequalities of Theorems 7.6.1 and 7.6.2 are often couched in terms
of magnifiers and enlargers, defined as follows. An (n, A, c)-magnifier is a
non-trivial graph G with |V(G)] = n, A(G) = A and j(G) > c. An
(n, A, €)-enlarger is a non-trivial graph G with |V(G)| = n, A(G) = A
and a(G) > €. Thus Theorem 7.6.1 says that every (n, A, €)-enlarger is an
(n, A, c)-magnifier, where ¢ = €/(A +2¢); and Theorem 7.6.2 says that every
(n, A, c)-magnifier is an (n, A, €)-enlarger, where € = ¢%/(4 + 2¢2).

In general terms, a graph is a ‘good expander’ if some measure of expansion
is ‘large’. It is known that a random regular graph is, with high probability, a
good expander (see [MohPo3, Appendix B]) but the explicit construction of
graphs with a prescribed measure of expansion is a non-trivial problem out-
with the scope of this book; for constructional details, the reader is referred to
[DavSV], [GabGa], [Mar], [LuPS], [Morl] and [Mor2].

The technical definition of an expander applies only to bipartite graphs and
employs a measure of expansion slightly different from those encountered
so far:

Definition 7.6.3. An (n, A, c¢)-expander is a bipartite graph G on two sets of
vertices, I (inputs) and O (outputs), with |/| = |O| = n and maximum degree
A, such that

U C 1) (|U| S UE (1 +c<1 _ %) IUI>>.

If U denotes the complement of U in I then the condition becomes:

Ul||lU
YU C 1) (|U| < ’2—’ = |8U| > |U| +c"nJ).

Example 7.6.4. Let G be a graph with V(G) = {vf,...,v,}. The
extended double cover of G is the bipartite graph D(G) with vertex set
{x1, ..., x,} U {y1....,yn} and edge set {x;y; : i = jori ~ j}. In other

words, D(G) is the NEPS of G and K, with basis {(0, 1), (1, 1)}.
In D(G) the boundary of aset {x; :i € X}is{y; :i € X} U {yj 1] €dX},
of size |X| + [6X]|. Thus if G is an (n, A, ¢)-magnifier then D(G) is a
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(2n, 1 4+ A, 1 4 ¢)-magnifier; moreover, D(G) is an (n, 1 + A, c)-expander.
By Theorem 7.5.1,
a(G) |IX|IX|
A n
and so D(G) is also an (1, 1 + A, ¢*)-expander, where ¢* = a(G)/A. O

1
6X] = ~19X] =

Expanders are used as models for robust networks in computer science,
where one objective is to construct a sequence of graphs (G;) such that

(i) Gjisan (n;, A, c)-expander,
(ii) |V(G;)| = n; — oo and ";I—Jlrl — lasi — oo.

Note that as i — o0, the edges of G; become more sparse, while the
connectivity properties (quantified by c¢) are retained. It can be shown (see
[Alol, Lemma 3.3]) that if G is an r-regular subgraph of K, , with a(G) = a
then G is an (n, r, c)-expander with ¢ = (2ra — a®)/(r? —ra + %az). Thus
¢ > a/r and for good connectivity we want a(G) to be large. On the other
hand, in the case that the graphs G; are all r-regular, we know from (3.12)
that limsup;_, ., a(G;) < r — 2+/r — 1. Accordingly, Ramanujan graphs (the
r-regular graphs with a(G) > r — 24/r — 1) are best possible candidates for
the graphs G;, and those described in Section 3.5 can indeed be used in this
context.

7.7 The normalized Laplacian matrix

Recall that if G is a graph without isolated vertices then its normalized Lapla-
cian is L = D_%LD_% (= ig), where L is the Laplacian of G and
D = diag(dy, ..., d,). By way of motivation, we point out the connection
between L and random walks on G.

Remark 7.7.1. The transition matrix of a random walk on G is P = (p;}),
where p;; is the probability of moving to vertex j from vertex i. Thus

4+ ifi~ j, and
Pij =\ ~ .
0  otherwise.
Hence P = D~ 'A where A is the adjacency matrix of G. It follows that

[ =1 — M where M = D2 PD™ . Therefore the eigenvalues of P are

l=p1>2p>->py
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where p; = 1 — V,—;11 (i = 1,2,...,n) and V; (= V;(G)) is the i-th largest
eigenvalue of L. The eigenvalue p; is used to establish properties of ran-
dom walks on G. This remark is made precise in a more general context in
Subsection 9.4.2. o

The definition of L may be extended to arbitrary graphs by taking L= (lAi.,'),

where
1 ifi=j and d; #0,

lij=3— Jid; if i and j are adjacent and,

0 otherwise.

Let T be the diagonal matrix whose i-th diagonal entry is 1/d; if d; # 0,
and 0 otherwise. Then . = TZLT? and for any gradient matrix R we have
L = RRT, where R = T2 R. Hence all the eigenvalues of L are non-negative.
Moreover the least eigenvalue v, of L is 0 since (v/di, V/da, ..., /dy) | is a
corresponding eigenvector.

Ifx = D%y, the Rayleigh quotient R(x) = xTix/xTx may be written as
R*(y) =y Ly/y" Dy. Using (7.2) we obtain

ZuveE(G) Yu — )’v)z
ZveV(G) dyy}

This form of the Rayleigh quotient enables us to give an alternative description

R*(y) =

(7.26)

of the eigenvalues of L. For the largest and second smallest eigenvalues we
have the following expressions, where d = Dj = (dy, d>, ..., dn)T:

> uwvee6) u — »)?

D] = sup , (7.27)
yeR"\{o}.y Ld ZUEV(G) dyy}
2
b =  inf  2weEOu =) (7.28)

yeR"\fo)yld > _y dyy?

Note thaty L d if and only if x is orthogonal to (\/dy, v/da, . . ., «/dn)T. Also,
when G has isolated vertices, U, = 0 while the supremum of R(x) is attained

when x has the form D%y.
The basic properties of the spectrum of L are summarized in the following
theorems.

Theorem 7.7.2 [Chu2]. Let G be a graph on n vertices (n > 2). Then

(i) Y-, Vi < n with equality if and only if G has no isolated vertices;
(i) if G # K, then v, < 1;
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(iii) if G has no isolated vertices, then V, | < 25 with equality if and only if

G=K,;
(v) if G has no isolated vertices, then V1 > -5 with equality if and only if
G=K,;

(v) 1 <2, with equality if and only if G has a non-trivial component which
is bipartite.

Proof. First, (i) follows from the relation tr(i) = tr (T%LT%), since
1
tr (T2LT?) is the number of non-isolated vertices. To prove (ii), let s and ¢
be non-adjacent vertices in G, and define z = (21, 22, ..., 2,) | by:
dt ifi = S,
zi=14—dy ifi =1, and

0 otherwise.

Thenz'd = 0 and R*(z) = 1. Now D,_; < 1 by (7.28).

The inequalities in (iii) and (iv) follow directly from (i) since v, = 0. In
view of (ii), equality can hold only if G = K,,. But the normalized Laplacian
spectrum of K, is 0!, ( #)”_1, and so (iii) and (iv) are proved.

The inequality in (v) follows from (7.27) because we have, fory L d:

R*(y) = > uwverG)Vu — o) - D uwveEG) 2052+ ¥) _»
ZveV(G) dvy,% ZUGV(G) dv)’%
If R*(y) = 2 then y, = —y, whenever u ~ v; then in some component H of
G, y, = —yy # 0 whenever u ~ v, and the signs of y, (u € V(H)) determine
a 2-colouring of H. Conversely if G has a non-trivial bipartite component with

parts U, V, we define y by:

1 ifueUl,
yvu=13—-1 ifueV,
0 otherwise.

Theny L dand R*(y) = 2, whence ¥y = 2.
This completes the proof. O

Just as in Theorem 7.1.2, we have:

Theorem 7.7.3. The multiplicity of O as an eigenvalue of I:G is equal to the
number of components in G.

Now we can show that the property of being bipartite is recognizable from
the spectrum of L:

Corollary 7.7.4. A graph G is bipartite if and only if the eigenvalue V1 (G) is
equal to 2, with the same multiplicity as v, (G).
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Proof. From the proof of Theorem 7.7.2(v) we see that, for a bipartite
connected graph, 2 is a simple eigenvalue because £;(2) is spanned by a
(1, —1)-vector. The result therefore follows from Theorem 7.7.3. O

Most results concerning the spectrum of L have analogues in the context of
L, and we mention three without proof. For this purpose, we define the volume
of a subset S of V(G) by:

vol(S) = Zdv.
ves
When ¥ C S C V(G), we define:
|E(S, S)|
min{vol(S), vol(S)}’

hg(S) =

and this can be used to provide alternative definitions of expansion in a graph.
The analogue of the isoperimetric number i (G) is the Cheeger constant h(G),
defined by

h(G) = min
e

hg(S).
cV(G)

The terminology is borrowed from spectral Riemannian geometry. It follows
from (7.28) that D,_1(G) < 2h(G) (Exercise 7.16). As an analogue of The-
orems 7.6.1, 7.6.2 (and of Theorems 7.5.15, 7.5.16) we have the Cheeger
inequality:

Theorem 7.7.5 [Che]. For any non-trivial connected graph G,

21(G) > Dy—1(G) > %h(G)Z.

The arguments for Theorems 7.5.7 and 7.5.8 may be extended to obtain
upper bounds for d(X, Y) by considering (D%X)Tp,(i)(D%y), where X,y
are the characteristic vectors of X, Y respectively (cf. Equation (7.15)). As
an analogue of Theorem 7.5.7, we obtain (see [Chu2], [Kir2]):

Theorem 7.7.6. Let G be a connected graph on n vertices (G # K, ), and let

X, Y be subsets of V(G). Then
log / vol(X)vol(Y)
d(X,Y) <1+ |a(X,Y)], where a(X,Y) = — Y Yolvold)

Remark 7.7.7. Kirkland [Kir2] improved the bound in Theorem 7.7.6 as
follows: if Y # X, X (and G # K,,) then
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d(X,Y) <max{[a(X, Y)T], 2}.

As an analogue of Theorem 7.5.8 we obtain (see [Chu2]):

Theorem 7.7.8. Let G be a connected graph on n vertices (G # K,), and let

X, Y be subsets of V(G). Then
—1 1(X)vol(Y)
cosh v 3§1<x>3§1<y>

1 D1+Du—1
V1—Vp—1

d(X,Y) <1+ |B(X,Y)], where B(X,Y) =
cosh™

Example 7.7.9. [Kir2] Let G = K_p v K, so that the eigenvalues of L are 0,
1 (with multiplicity p — 1), pfq’i ; (with multiplicity ¢ — 1) and 1 + #.
Now suppose that p is even and let X, Y be disjoint sets of size % p such that
X UY is the independent set of vertices of degree g. Then d(X, Y) = 2 while

a(X,Y)=6(X,Y)=1. O

7.8 The signless Laplacian

In contrast to the Laplacian L = D — A, the signless Laplacian Q = D + A
of a graph G has so far featured very rarely in published papers. In this section
we survey the known properties of spectra of signless Laplacians and point
to the possibilities for developing a spectral theory of graphs based on this
matrix. The characteristic polynomial of Q is called the Q-polynomial of G,
denoted by Q¢ (x). The spectrum and the eigenvalues of Q are called the Q-
spectrum and Q-eigenvalues respectively. Table Al of the Appendix contains
the Q-spectra of the connected graphs with up to five vertices.

7.8.1 Basic properties of O-spectra

Recall from Section 2.4 that if B is the incidence matrix of a graph G with n
vertices and m edges then

BB = Q, B'B=A(L(G)) +2I (7.29)

and so
Prc)(x) = (x+2)""Qc(x +2). (7.30)

In Theorem 2.4.4 we saw also that Pg(g)(x) = x"" Q¢ (x?).
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We denote the i-th largest eigenvalue of Q by & = &;(G). Since Q is a
positive semi-definite matrix we have:

1 2&6>--->§>0.

Observe that m = %tr (0) = % Yo &

We call & the Q-index of G. If G is connected then Q is irreducible and
so Q has a unique positive unit eigenvector corresponding to &1; we call this
vector the principal Q-eigenvector of G.

Our first theorem concerns the least eigenvalue:

Theorem 7.8.1. Let G be a non-trivial connected graph with n vertices. Then
G is bipartite if and only if &,(G) = 0. In this situation, 0 is a simple
Q-eigenvalue.

Proof. For a vector x| = (x1,x2, ..., xn)—r we have Ox = 0 if and only if

BTx = 0. The latter holds if and only if x; = —x j Whenever i ~ j. Since G
is connected, it follows that if O is a eigenvalue of Q then £¢(0) is spanned
by a (1, —1)-vector x; then the signs of the x; determine a 2-colouring of G.
Conversely if G has a 2-colouring, and we define x; = %1 accordingly, then
Ox=0. O

Corollary 7.8.2. For any graph, the multiplicity of the Q-eigenvalue O is equal
to the number of components that are bipartite or trivial.

Remark 7.8.3. From the spectrum of the adjacency matrix, we know whether
a graph is bipartite (see Theorem 3.2.4), but not whether a graph is connected
(see Fig. 1.3(a)). The spectrum of the Laplacian tells us whether a graph is
connected (see Theorem 7.1.2), but not whether it is bipartite (see Fig. 7.1).
Given the Q-spectrum of a graph G, we see from Corollary 7.8.2, that if G is
connected, we can say whether G is bipartite; and if G is bipartite, we can say
whether G is connected. On the other hand, the spectrum of the normalized
Laplacian tells us whether G is connected (see Theorem 7.7.3) and whether G
is bipartite (see Corollary 7.7.4). O

In view of Remark 7.8.3, it is usual when discussing the relation between a
graph G and its Q-polynomial to specify the number of components in G.

Proposition 7.8.4. For any bipartite graph, the Q-polynomial coincides with
the L-polynomial.

BT
Proof. With a suitable labelling of vertices, A has the form <g 0 > Then

1
D+ A=T"YD— AT, where T has the form (0 OI). O
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Two graphs are said to be Q-cospectral if they have the same Q-polynomial.
By analogy with the definitions of PING and cospectral mate (see Chapter 4)
we introduce the notions of Q-PING and Q-cospectral mate with the obvious
meanings.

The graphs K 3 and K3 UK, represent the smallest Q-PING; no other Q-
PINGs on four vertices exist. These graphs have the same line graph, namely
K3, with characteristic polynomial (x — 2)(x + 1)2. By (7.30) they have the
same Q-polynomial, namely x(x — 4)(x — 1)2. By Corollary 7.8.2, a graph G
with this Q-polynomial has exactly one bipartite or trivial component but (as
the examples show) G may or may not be connected, and may or may not be
bipartite.

There are two Q-PINGs on five vertices: one is provided by the graphs
K3 U K; and K3 U 2K, and the other by the graphs numbered 14 and 15
in Table A1 of the Appendix. Note that the smallest PING (Fig. 1.3(a)) and the
smallest PING consisting of connected graphs (Fig. 1.3(b)) are not Q-PINGs.
The paper [HaeSp] provides an example of two non-isomorphic (non-regular,
non-bipartite) graphs on 10 vertices which are cospectral, Q-cospectral and
L-cospectral, and which have cospectral complements.

Two graphs are called line-cospectral if their line graphs are cospectral.

Proposition 7.8.5. If two graphs are Q-cospectral, then they are line-
cospectral.

Proof. Since Q-cospectral graphs have the same number of vertices and the
same number of edges, their line-cospectrality follows from (7.30). a

However, line-cospectral graphs are not necessarily Q-cospectral, since
the root graphs of cospectral line graphs need not have the same num-
ber of vertices. Such an example of cospectral line graphs is given in
Fig. 7.2. Each of these graphs is a line graph with characteristic polynomial
x(x2 — x —4)(x — D2(x + 1)2. The root graph of the first graph has Q-
polynomial x (x — 1D2(x —2)(x — 3)(x% — 5x + 2) while the root graph of the
second has Q-polynomial 22— Dx —2)(x = 3)(x2 —5x +2).

This example suggests that the polynomial Qg (x) may be more useful
than P (G)(x). On the other hand, very few relations between Qg (x) and the

Figure 7.2 Cospectral line graphs.
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structure of G are known. Since we have just the opposite situation with eigen-
values of the adjacency matrix of a line graph, we may prefer to use Py (G)(x)
in spite of the fact that L(G) usually has more vertices than G.

However, we have seen that P () (x) contains less information on the struc-
ture of G than Q¢ (x). This disadvantage can be eliminated if, in addition to
PrG)(x), we know the number of vertices of G. Then our information about
G is the same as that provided by Qg (x), since Q¢ (x) can be calculated by
formula (7.30), and either of the two polynomials can be considered.

In view of our remarks in this section, it is desirable when using the theory
of Q-eigenvalues in the study of a graph G to prescribe either

(a) Q¢ (x) and the number of components of G or, equivalently,
(b) Pr(c)(x), the number of vertices of G and the number of components of G.

For regular graphs, there is no need to specify of the number of components,
as the following result demonstrates.

Theorem 7.8.6. Let G be a graph with n vertices and m edges, and let &
be its largest Q-eigenvalue. Then & > 4m/n, with equality if and only if G
is regular. If G is regular then its degree is equal to %51, and the number of
components equals the multiplicity of &.

Proof. We have j' Qj/j'j = 4m/n. Hence & > 4m/n, with equality if and
only if j is an eigenvector of Q corresponding to &;. The first assertion follows
because Qj = &;j if and only if G is regular. The second assertion follows
from the analogous property of the adjacency matrix (see Corollary 1.3.8). O

The largest Q-eigenvalue is discussed further in Subsection 7.8.3.

7.8.2 (Q-eigenvalues and graph structure

Our first result is an analogue of Proposition 1.3.4, which says that the (i, j)-
entry of A(G)* is the number of i-j walks of length k in G. We may regard
such a walk as an alternating sequence vy, €1, V1, €2, ..., Vk—1, €k, U of ver-
tices and edges such that for each i = 1, ...,k the vertices v;_; and v; are
distinct endvertices of the edge e;.

In following this walk, a traveller traverses an edge from one endvertex to the
other. Suppose instead that, on reaching the mid-point of an edge, the traveller
is permitted to return to the initial endvertex. Then the basic constituent of a
walk is no longer an edge but a semi-edge: a semi-edge is followed by either
the other semi-edge in the same edge (in which case the traveller completes the
edge) or the same semi-edge (in which case the traveller returns to the initial
endvertex). We arrive at the following definition.
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Definition 7.8.7. A semi-edge walk of length k is an alternating sequence

V1, €1, V2, €2, ..., Uk, €k, Vg+1 Of vertices and edges such that for each i =
1,2, ..., k the vertices v; and v; 4 are endvertices (not necessarily distinct) of
the edge ;.

The following result has a straightforward proof by induction on k, or by
consideration of the adjacency matrix of the multigraph obtained by adding d;
loops to the vertex i (i = 1,2, ...,n).

Theorem 7.8.8. Let Q be the signless Laplacian of a graph G. The (i, j)-entry
of the matrix Q is equal to the number of semi-edge walks of length k starting
at vertex i and terminating at vertex j.

We write 7i for the spectral moment Y ;_, Sik (k =0,1,2,...). Since
7 = tr(QY), it follows immediately from Theorem 7.8.8 that 7; is equal to
the number of closed semi-edge walks of length &.

Corollary 7.8.9. Let G be a graph with n vertices, m edges, t triangles and
vertex degrees dy, do, ... ,d,. We have

n n n n
w=n 1=y d=2m n=2m+y df, 5=604+3) d}+) d;.
i=1 i=1 i=1 i=1

Proof. The formulae for 7y and | are obvious. In the expression for 17, the
first term counts the closed semi-edge walks which traverse an edge while the
second term counts those traversing two semi-edges. In the expression for 73,
the terms are related to walks around a triangle, walks along one edge and one
semi-edge, and walks along three semi-edges. O

Alternatively, the formulae for t and 3 may be derived from the relations
tr(A + D)2 = rA%2 4+ 2tr AD + trD? and tr(A + D)3 = trA® + 3trA%D +
3trAD? 4 trD?.

Next we investigate the coefficients of the Q-polynomial. Let G be a
connected graph with n vertices and m edges where m > n, and let

n
Q¢ x) = ijxn_j = pox" + pix" "'+ + py.
j=0

A spanning subgraph of G whose components are trees or odd-unicyclic
graphs is called a TU-subgraph of G. Suppose that a TU-subgraph Y of G
consists of ¢ unicyclic graphs and trees 77, T3, ..., Ts. Then the weight w(Y)
of Y is defined by w(Y) = 4¢ ]_[‘le(l + |E(T;)|). Note that isolated vertices
in Y do not contribute to w(Y) and may be ignored. To obtain expressions for
the coefficients of Q¢ (x) in terms of weights of the 7'U-subgraphs of G, we
require the following observation:
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Lemma 7.8.10. For a connected graph G with m edges,

4 if G is odd unicyclic,
(=D"Pr(=2)={m+1 if Gisatree,
0 otherwise.

Proof. By Corollary 3.4.10, L(G) has —2 as an eigenvalue unless G is a tree
or an odd-unicyclic graph. In these remaining two cases, let B be the incidence
matrix of G, so that (—=1)" PrG)(=2) = det(BT B) by (7.29). If G is odd-
unicyclic then it is a straightforward exercise to show (by induction on m) that
det(B) = %2 and hence that (—1)" PrG)(—=2) = 4. If G a tree then (like any
bipartite graph) it has a gradient matrix R such that RTR = BT B. If R; is
the matrix obtained from R by deleting the i-th row then det(R;) = %1 by
Lemma 7.2.1. By the Binet-Cauchy formula (Theorem 1.3.18), det(B ' B) =
ZmH det(RTR ) = m + 1, and this completes the proof. o

Theorem 7.8.11. With the above notation, we have py = 1 and

pi=ED Y wyy, j=12,....n,

¥
where the summation runs over all T U -subgraphs of G with j edges.

Proof. We first recall the formula of Exercise 2.11:

PP =k Y Po_s(x), (7.31)
1S|=k

where the summation runs over all k-subsets S of V(G). Using a Maclaurin
expansion of Py )(x), we have from (7.30):

Oc(x) = X"_'"PL(G)(X -2

k
® x
X ZPL(G)( 2

m
k
o 3 gl

k=m—n
Applying (7.31), we obtain
m
Qg(x) =x""" Z x* Prc)-s(=2). (7.32)
k=m—n |S|=k

A subgraph L(G) — S is, of course, a line graph and it has —2 as an eigen-
value unless all components are line graphs of trees or of odd-unicyclic graphs.
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Thus it follows from Lemma 7.8.10 that

D Proy-s(=2) = Y (=" w ¥,

IS|=k Yin—k

where, in the second sum, the summation runs over all 7 U -subgraphs Y, of
G with m — k edges. Now the formula (7.32) becomes

QG(x) =x""" Y " =1y w¥p),

k=m—n Yin—k

By substituting j for m — k we obtain

QG(x) =Y x"7(=1)/ Y w(y)).
=0

Yj
This completes the proof. ]

For j = 1 the only TU-subgraph Y is equal to K>, with w(Y;) = 2, and
we readily obtain p; = —2m, thereby recovering the formula r; = 2m. For
Jj = 2, the possible T'U-subgraphs Y> are 2K, and K. Since w(2K3) = 4
and w(Kj2) = 3 we have p» = 4a + 3b where a is the number of pairs of
non-adjacent edges and b is the number of pairs of adjacent edges in G. Since
a + b =m(m — 1)/2, we have the following result:

Corollary 7.8.12. With the notation above, p;=—2m and p)=a+ %m
(m — 1), where a is the number of pairs of non-adjacent edges in G.

An interlacing theorem holds for Q-eigenvalues in the same way as for
Laplacian eigenvalues. Exactly as in Theorem 7.1.5, the Q-eigenvalues of an
edge-deleted subgraph G — e interlace those of G:

Theorem 7.8.13. If e is an edge of the graph G and G' = G — e then
0<&(G) <&(G) < - <&(G) <&u(G) <&(G) <&(G).

Theorem 7.8.13 may also be proved by applying Corollary 1.3.12 (the
Interlacing Theorem) to L(G). In fact, most of the results in this section are
obtained either by considering line graphs or by replicating arguments for the
adjacency matrix. We conclude this subsection by mentioning without proof
two results which exhibit characteristics peculiar to the signless Laplacian.

For a subset S of V = V(G), let enin(S) be the minimum number of edges
whose removal from the subgraph of G induced by S results in a bipartite
graph. Let cut(S) be the set of edges with one vertex in S and the other in the
complement V \ S. Thus |cut(S)| + emi»(S) is the minimum number of edges
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whose removal from E(G) disconnects S from V \ S and results in a bipartite
subgraph induced by S. Let = 1 (G) be the minimum over all non-empty
proper subsets S of V(G) of the quotient

[cut(S)| + emin(S)
N

The parameter ¥ was introduced in [DesRa] as a measure of non-bipartiteness.
It is shown that the value of &, is controlled by ¥ (cf. Theorem 7.8.1). In
particular, if G is connected then
2
Voshi=ay,
where A is the maximal vertex degree.

Secondly, let p be the number of endvertices in a graph, and let ¢ be the
number of vertices adjacent to endvertices. It is proved in [Far] that the dif-
ference p — ¢q is equal to the multiplicity of the root 1 of the permanental
polynomial per(x/ — Q) of the signless Laplacian. Examples demonstrate that
there is no analogous result for the Laplacian or adjacency matrix.

7.8.3 The largest QO-eigenvalue

In this final subsection we establish various bounds on the largest eigenvalue
of the signless Laplacian. For the adjacency matrix of a graph G, we have

8(G) = 1(G) = A(G). (7.33)

For a connected graph G, equality holds in either place if and only if G is
regular. For &1 (G), we have the following analogue, with a similar proof:

Proposition 7.8.14. For any graph G, we have 26 (G) < £1(G) < 2A(G). For
a connected graph G, equality holds in either place if and only if G is regular.

Proof. We may assume throughout that G is connected. By Theorem 1.3.5, G
has a principal Q-eigenvector (xi, ..., x,,)T such that x; > --- > x,, > 0. The
corresponding eigenvalue equations yield:

Eixy =dix) + in <2Ax; and &1x, = dyx, + ij > 26xp,
i~1 j~n
where & = £1(G), § = 6(G) and A = A(G). The first assertion follows.
If G is r-regular then &£ (G) = 2r = 26 = 2A. If &, = § or A then the n
eigenvalue equations force x; = --- = x, and d; = - - - = d,,. This completes
the proof. a
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Stronger inequalities can be obtained by applying (7.33) to the line
graph of G:

Theorem 7.8.15. Let G be a graph on n vertices, with vertex degrees
di,da, ...,d, and largest Q-eigenvalue &1. Then

min (d; +d;) < & <max (d; +dj),

where (i, j) runs over all pairs of adjacent vertices of G. For a connected
graph G, equality holds in either place if and only if G is regular or semi-
regular bipartite.

Proof. The graph L(G) has index & — 2, while the edge ij has degree d; +
d;j —2.By (7.33), we have

min (d; +d;j —2) <& —2 <max (d; +d; —2),
and the result follows. O

By applying Proposition 1.3.9 to the line graph of a connected graph G, we
can also see that £ (H) < &1(G) for any proper subgraph H of G.

Proposition 7.8.16. If&; is the largest Q-eigenvalue of a graph G, then:

(1) & = 0ifand only if G has no edges;
(i) &, < 4 if and only if all components of G are paths;
(iii) for a connected graph G we have & = 4 if and only if G is a cycle
or K 3.

Proof. Statement (i) is immediate, since G is a null graph if and only if all
Q-eigenvalues of G are zero.

The eigenva