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Preface

The purpose of this monograph is to introduce some new aspects to the
theory of harmonic functions and related topics. They are a fusion of
some recent developments in non-associative functional analysis, semi-
groups and harmonic analysis. More specifically, we study the algebraic
analytic structures of the space of bounded complex harmonic functions
on a locally compact group G and its non-commutative analogue, the
space of harmonic functionals on the Fourier algebra A(G). We show
that they are both the ranges of contractive projections on von Neu-
mann algebras and therefore admit Jordan algebraic structures which
are usually non-associative. This provides a natural setting to apply
new methods and results from non-associative analysis, semigroups and
Fourier algebras. We use these devices to study, among others, the
Poisson representation of bounded complex harmonic functions on G,
the semigroup structures of the Poisson space and the non-associative
geometric structures of the harmonic functionals.

This work was done during several mutual visits of the authors at the
University of Alberta and University of London, supported by EPSRC
and NSERC grants. All results are new, some of which have been pre-
sented at seminars and workshops in London, Oxford, Edmonton, Hong
Kong, Irvine, Toulouse and Oberwolfach. We thank warmly the audi-
ence at these institutions for their inspiration and hospitality. Above
all, we are grateful to our families for their constant support and en-
couragement.

Key words and phrases: Locally compact group. Harmonic function.
Liouville property. Poisson representation. Compact semigroup. Al-
most periodic function. Distal function. Harmonic functional. Fourier
algebra. Group von Neumann algebra. Banach algebra. Arens product.
C*-algebra. Jordan algebra. JB*-triple.

Work supported by EPSRC grant GR/M14272 and NSERC grant A7679
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1. Introduction

Let G be a Lie group and let ∆ be the Laplace operator on G . A
function f ∈ C∞(G) is harmonic if ∆f = 0 . It is well-known in this case that
there exists a family {σt}t>0 of absolutely continuous probability measures on
G such that f satisfies the following convolution equations

f = σt ∗ f (t > 0)

which motivates the following definition.
Let σ be a probability measure on a locally compact group G . A real

Borel function f on G satisfying the convolution equation

f(x) = σ ∗ f(x) =
∫

G

f(y−1x)dσ(y) (x ∈ G)

is called σ-harmonic . Harmonic functions on groups have been widely studied
for a long time and play important roles in analysis, geometry and probability
theory. Naturally one can also consider complex measures σ and the complex
σ-harmonic functions on G defined as above. The complex case, however, does
not seem to have been studied in as much detail and depth as the real case.

In this research monograph, we give a functional analytic approach to the
complex case by studying the algebraic and analytic structures of the space of
bounded complex σ-harmonic functions on a locally compact group G and
its non-commutative analogue, that is, the space of harmonic functionals on the
Fourier algebra A(G) . We show that both spaces are the ranges of contrac-
tive projections on von Neumann algebras and therefore admit Jordan algebraic
structures. This introduces a new aspect, namely, the non-associative algebraic
and geometric structures, to the theory of harmonic functions and harmonic
functionals. We exploit these structures to study the Poisson representation of
bounded complex harmonic functions, the semigroup structures of the Poisson
space and the non-associative geometric structures of the harmonic functionals.

C.-H. Chu and A.T.-M. Lau: LNM 1782, pp. 1–4, 2002.
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2 introduction

The first part of the monograph is concerned with complex harmonic functions
and is contained in Chapter 2. Harmonic functionals are discussed in Chapter 3
which is the second part of the monograph.

To outline our main ideas, we first review briefly some relevant background
of real harmonic functions, more details will be given later. For a probability
measure σ on a locally compact abelian group G , it is a well-known result
of Choquet and Deny [11,21] that every bounded continuous σ-harmonic func-
tion f on G is periodic and every point in the support of σ is a period,
in particular, if the support of σ generates a dense subgroup of G , then f

must be constant. Choquet and Deny have also shown that the positive (un-
bounded) σ-harmonic functions on an abelian group G are integrals of ex-
ponential functions, given that the support of σ generates a dense subgroup.
Similar results also hold for nilpotent groups [4,14,22,36,45]. Recently, results
of this kind have been extended to other classes of groups (see, for example,
[17,18,66]). On the other hand, given an absolutely continuous probability mea-
sure σ on a semisimple Lie group G with finite centre, Furstenberg [27] has
shown that the space of bounded uniformly continuous σ-harmonic functions
on G forms an abelian C∗-algebra in certain product from which he derived a
Poisson representation of bounded harmonic functions and investigated the deep
issue concerning the boundary theory of G . In fact, Furstenberg’s construction
of the abelian C∗-product is valid for probability measures on arbitrary locally
compact groups, as shown by Azencott [5], and this is the starting point of our
investigation for the complex case.

Let σ be a complex measure on a locally compact group G with ‖σ‖ =
1 . As usual, the Lebesgue spaces of the Haar measure on G are denoted by
Lp(G) for 1 ≤ p ≤ ∞ . We study the space of bounded complex σ-harmonic
functions on G via the duality of L1(G) and L∞(G) in the following way.
Let Jσ be the norm-closure of {σ̌ ∗ f − f : f ∈ L1(G)} . Then Jσ is a
closed right ideal of L1(G) and its annihilator J⊥

σ =
(
L1(G)/Jσ

)∗ is the space
{f ∈ L∞(G) : σ ∗ f = f} of bounded σ-harmonic functions on G . One
can define a contractive projection P : L∞(G) −→ J⊥

σ which, by results of
[26,59], induces an abelian C∗-algebraic structure on J⊥

σ and this structure
differs from that of L∞(G) in general. From this, we can derive, for abso-
lutely continuous σ, a Poisson representation of J⊥

σ as well as its subspace
J⊥

σ ∩ C�u(G) of (left) uniformly continuous harmonic functions, and study the
semigroup structures of the Poisson space which is the spectrum of J⊥

σ ∩C�u(G) .
The C∗-product we obtain coincides with the one defined in [5,27] mentioned
above when σ is a probability measure. Therefore our construction gives a
unified approach to the Poisson representation as well as some functional ana-
lytic insights. We will not, however, be concerned with the boundary theory for
G , but focus our attention on the semigroup properties of the Poisson space
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which are obtained by a fundamental structure theorem on compact semigroups
in [71] (see also [40, p.16] and [39, p.143]) and the details are given in Sections
2.3, 2.4 and 2.5. Further properties relating to almost periodic and distal func-
tions are discussed in the latter two sections. Many of our results are new even
when σ is a probability measure in which case Poisson spaces corresponding to
non-degenerate absolutely continuous measures on a second countable group G

are shown, in Theorem 2.6.1, to have the same semigroup structure if G acts
transitively on them.

We should point out that, for a probability measure σ , Paterson [64] has
also defined a contractive projection P : C�u(G) −→ J⊥

σ ∩C�u(G) which induces
a C∗-product on J⊥

σ ∩ C�u(G) . The product in this case is simpler because
the constant-1 function is harmonic. For complex measures σ , J⊥

σ need not
contain constant functions but the C∗-product can be defined in terms of an
extremal function in J⊥

σ and its explicit form for J⊥
σ ∩C�u(G) is given in The-

orem 2.2.17. Paterson [64] has also studied the case of a compact topological
semigroup G and the corresponding Poisson space for a non-degenerate prob-
ability measure σ . We note that Willis [83] has studied the Banach algebraic
structures of L1(G)/Jσ in detail, for a probability measure σ.

There is a non-commutative analogue of harmonic functions in the context
of Fourier algebras and group von Neumann algebras. The non-commutative
version of the duality between L1(G) and L∞(G) is that between the Fourier
algebra A(G) and the group von Neumann algebra V N(G) of a locally com-
pact group G . Given a complex function σ in the Fourier-Stieltjes algebra
B(G) ⊃ A(G) which acts on V N(G) , we define Iσ to be the norm-closure
of {σφ − φ : φ ∈ A(G)} in A(G) . Then Iσ is a closed ideal in A(G) and
its annihilator I⊥

σ = (A(G)/Iσ)∗ is the space {T ∈ V N(G) : σ.T = T} which
we call the σ-harmonic functionals on A(G) . The reason for this terminology
is that, if G is abelian and if σ = µ̂ is the Fourier transform of a mea-
sure µ on the dual group Ĝ , then I⊥

σ identifies with J⊥
µ̌ ⊂ L∞(Ĝ) where

dµ̌(x) = dµ(x−1). For arbitrary groups G , we can therefore view I⊥
σ ⊂ V N(G)

as a non-commutative analogue of J⊥
σ ⊂ L∞(G) . The space I⊥

σ was first stud-
ied by Granirer in [31]. We show that, for σ ∈ B(G) with ‖σ‖ = 1 , there is
a contractive projection P : V N(G) −→ I⊥

σ (see also [31]). In contrast to the
case of J⊥

σ , the space I⊥
σ need not form a C∗-algebra , but by results of [25,

48], P induces a Jordan algebraic structure on I⊥
σ which is therefore related to

infinite dimensional holomorphy and gives many interesting consequences. The
Banach algebraic properties of A(G)/Iσ are derived in Section 3.2. Although
L1(G)/Jσ is always an L1-space , A(G)/Iσ need not be a Fourier algebra.
We give necessary and sufficient conditions for A(G)/Iσ to be isometrically
isomorphic to the Fourier algebra of a locally compact group. The Jordan and
geometric structures of I⊥

σ are studied in Section 3.3. We show that I⊥
σ is a
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JW ∗ -algebra and determine when it is a von Neumann subalgebra of V N(G) ,
and when it is a Jordan subtriple of V N(G) . We give in Theorem 3.3.12 an
explicit form of the Jordan triple product in I⊥

σ which is the non-associative
counterpart of the C∗-product in J⊥

σ . We also explain briefly in this section
the relationship between Jordan triple systems and symmetric manifolds. By
[16], a connected component M of projections in I⊥

σ is a symmetric real an-
alytic Banach manifold. As in [16], we define an affine connection on M and
describe its geodesics. In Section 3.4, we study the Murray-von Neumann classi-
fication of I⊥

σ and we classify I⊥
σ by the geometric properties of its preduals.

We show that the types of I⊥
σ are invariant under linear isometries.

It will be of significant interest to study other properties of the Banach
algebras L1(G)/Jσ and A(G)/Iσ , such as cohomology and amenability, when
Jσ is a two-sided ideal of L1(G) . It will also be of interest to study further
semigroup properties and harmonic analysis of the Poisson space of a complex
measure on a locally compact group.

Recently, matrix-valued harmonic functions on groups have been studied
in [15] and shown to form a ternary Jordan algebra, that is, a Jordan triple
system, by the fact that they are the range of a contractive projection on a
non-abelian von Neumann algebra. This provides a new setting to extend the
results in this monograph as well as other well-known results on scalar-valued
harmonic functions.

Finally, we hope that the connection between Jordan algebras and har-
monic analysis can be developed further.



2. Harmonic functions on locally compact groups

In this Chapter, we study the space of bounded (left uniformly continuous)
σ-harmonic functions on a locally compact group G with respect to a complex
measure σ on G . We first show that, for ‖σ‖ = 1 , it is the range of a
contractive projection on L∞(G) and hence it has an abelian von Neumann
algebraic structure. Further we show that the von Neumann algebra product is
given by

(f × g)(x) = lim
α

∫
G

f(y−1x)u(y−1x)g(y−1x)dµα(y) (x ∈ G)

where µα belongs to the convex hull of {σn : n ≥ 1} and u is an extreme
point in the closed unit ball of the space. We derive a Poisson integral repre-
sentation of the σ-harmonic functions on a Poisson space Πσ and we show
that Πσ has a natural semigroup structure. Moreover, it is a compact left
topological semigroup. Consequently its minimal ideal is isomorphic to a simple
semigroup. We also discuss almost periodic and distal harmonic functions and
related compactifications. We end the Chapter with some examples as well as
supplementing Azencott’s result [5] by showing that Poisson spaces correspond-
ing to non-degenerate absolutely continuous measures on a second countable
group have the same semigroup structure under transitive action of the group.

C.-H. Chu and A.T.-M. Lau: LNM 1782, pp. 5–50, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



6 harmonic functions on locally compact groups

2.1. Preliminaries and notation

We denote throughout by G a locally compact group with identity e

and the left invariant Haar measure λ. Unless otherwise stated, all groups are
locally compact. By a measure on G, we mean a real or complex-valued regular
Borel measure (of totally bounded variation).

Let C0(G) be the Banach space of complex continuous functions on G

vanishing at infinity. Then its dual C0(G)∗ identifies with all the complex
regular Borel measures on G, also denoted by M(G). For σ ∈ M(G), its
norm ‖σ‖ is the total variation |σ|(G). We denote by M+(G) the cone of
positive measures in M(G). Let M1(G) = {σ ∈ M(G) : ‖σ‖ = 1} and
M1

+(G) = M1(G) ∩ M+(G). Given µ ∈ M+(G), its support is denoted by
supp µ. We note that if µ is absolutely continuous (with respect to λ ), then
the group generated by supp µ is open.

A measure µ ∈ M(G) is called non-degenerate if the semigroup generated
by supp |µ| is dense in G. If µ is non-degenerate, then it is adapted which
means that supp |µ| generates a dense subgroup of G. The following lemma is
known [41, p. 32], we include a proof for completeness.

Lemma 2.1.1. Let G be a locally compact group with µ ∈ M(G). Then
supp|µ| is σ-compact. If µ is adapted, then G is σ-compact.

Proof. Write S = supp|µ|. By regularity of µ, there exist compact sets

S1 ⊂ S2 ⊂ . . .

such that S =
∞∪

n=1
Sn. We can find open sets U1 ⊂ U2 ⊂ . . . such that

Sn ⊂ Un with Un compact. Let

Gn =
∞⋃

m=1

(Un ∪ U−1
n )m =

∞⋃
m=1

(
Un ∪ (Un)−1)m

where we note that U ⊂ U2U−1 for an open set U. Then (Gn) is an increasing
sequence of σ-compact clopen groups with Gn ⊃ Sn. It follows from S =
∞∪

n=1
Sn ⊂ ∞∪

n=1
Gn that S is σ-compact. Finally, if µ is adapted, the above

argument shows G =
∞∪

n=1
Gn which is σ-compact. �
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Lemma 2.1.2. If an abelian group G admits an adapted measure µ ∈ M(G),
then its dual group Ĝ is first countable.

Proof. The sets of the form

P (F, ε) = {χ ∈ Ĝ : |χ(x) − 1| < ε ∀x ∈ F}

where F is a compact subset of G and ε > 0, form a neighbourhood base
of the identity ι ∈ Ĝ (cf. [38,p.361]). Let G =

∞∪
n=1

∞∪
m=1

(
Un ∪ (Un)−1

)m

be as in Lemma 2.1.1, where Un is open and Un compact. Then the finite
intersections of the family

{
P

((
Un ∪ (Un)−1)m

,
1
k

)
: m,n, k ∈ IN

}

form a countable neighbourhood base at ι ∈ Ĝ. �

Given Borel functions f, h : G → C and σ ∈ M(G), we will adopt the
following notation whenever it is well-defined:

(f ∗ h)(x) =
∫

G

f(y)h(y−1x)dλ(y)

(σ ∗ f)(x) =
∫

G

f(y−1x)dσ(y)

(f ∗ σ)(x) =
∫

G

f(xy−1)�(y−1)dσ(y)

where � is the modular function on G. We also define

dσ̃(y) = �(y)dσ(y−1)

dσ̌(y) = dσ(y−1) = dσ∗(y) .

For the duality 〈 · , · 〉 : L1(G) × L∞(G) → C, we have

〈f ∗ σ, h〉 = 〈f, h ∗ σ̃〉

〈σ ∗ f, h〉 = 〈f, σ̌ ∗ h〉

where f ∈ L1(G), h ∈ L∞(G) and σ ∈ M(G).
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Let Jσ be the norm-closure of {σ̌ ∗ f − f : f ∈ L1(G)}. Then we have
J⊥

σ = {h ∈ L∞(G) : σ ∗ h = h}. We note that

{f ∗ σ − f : f ∈ L1(G)}⊥ = {h ∈ L∞(G) : h ∗ σ̃ = h}.

A Borel function h : G → C is called σ-harmonic (or harmonic if σ is
understood) if it satisfies the convolution equation

σ ∗ h = h.

The space J⊥
σ of (essentially) bounded harmonic functions will be our main

object of study in this chapter.

We first discuss briefly the case when J⊥
σ is trivial for a probability mea-

sure σ on G . The celebrated Choquet-Deny Theorem [11] states that, if G

is abelian, then the bounded σ-harmonic functions are constant if (and only
if) σ is adapted. For convenience, we say that G has the Liouville property
if given any non-degenerate absolutely continuous probability measure σ on
G, the bounded σ-harmonic functions on G are constant. It is well-known
that the compact groups [51] and nilpotent groups [4,14,22,36] have the Liouville
property. It has been shown in [45] that nilpotent groups of class 2 have the
stronger Liouville property in that one need not assume absolute continuity of
σ . It has also been shown in [17,18] recently that almost connected [IN]-groups
have the Liouville property. In fact, it is shown in [18] that if σ is nonsin-
gular with its translates, but not necessarily absolutely continuous, then every
bounded σ-harmonic function on an [IN]-group G is constant on each con-
nected component of G . We recall that a locally compact group G is called
an [IN]-group if the identity has a compact invariant neighbourhood. A group
G is called a [SIN]-group if every neighbourhood of the identity contains a com-
pact invariant neighbourhood which is equivalent to the fact that the left and
right uniform structures of G coincide. We note the following relevant result
[46,70] which shows that J⊥

σ is never trivial if G is non-amenable and σ a
probability measure. We recall that a locally compact group G is amenable
if there is a positive norm one linear functional on L∞(G) which is invariant
under left translation. Solvable groups and compact groups are amenable, but
the free group on two generators is not amenable.

Proposition 2.1.3. Given a locally compact group G , the following conditions
are equivalent:

(i) There is a probability measure µ on G such that the bounded µ -harmonic
functions are constant;
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(ii) G is amenable and σ -compact.

Let Ĝ be the dual space of G consisting of (equivalence classes of)
nonzero continuous irreducible representations π : G → U(Hπ) where U(Hπ)
is the group of unitary operators on the Hilbert space Hπ. For σ ∈ M(G)
and f ∈ L1(G), we define their Fourier transforms to be the following bounded
operators on Hπ :

σ̂(π) =
∫

G

π(x−1)dσ(x); f̂(π) =
∫

G

f(x)π(x−1)dλ(x).

Lemma 2.1.4. Let σ be a positive adapted measure on G and let α = σ(G).
Then α is not an eigenvalue of σ̂(π) for all π ∈ Ĝ\{ι} where ι is the
one-dimensional representation ι(x) ≡ Id.

Proof. We may assume α = 1. Suppose otherwise, that σ̂(π)ξ = ξ for some
unit vector ξ ∈ Hπ. Then

1 =
〈
σ̂(π)ξ, ξ

〉
=

∫
G

〈
π(x−1)ξ, ξ

〉
dσ(x)

=
∫

supp σ

Re
〈
π(x−1)ξ, ξ

〉
dσ(x).

If Re
〈
π(x−1)ξ, ξ〉 < 1 for some x ∈ suppσ, then the inequality holds in some

open neighbourhood V of x by continuity and hence

1 =
∫

V

Re
〈
π(x−1)ξ, ξ

〉
dσ(x) +

∫
G\V

Re
〈
π(x−1)ξ, ξ

〉
dσ(x)

< σ(V ) + σ(G\V ) = 1

which is impossible. So we have
〈
π(x−1)ξ, ξ

〉
= 1 for x ∈ suppσ which gives

π(x−1)ξ = ξ. It follows from the adaptedness of σ that π(x)ξ = ξ for all
x ∈ G contradicting π �= ι. �

We recall that a locally compact group G is called central if the quo-
tient group G/Z is compact where Z is the centre of G. Central groups are
unimodular and their irreducible representations are finite-dimensional. Given a
central group G, it has been shown in [35] that Ĝ admits a Plancherel measure
η with the following Fourier inversion formula for f ∈ L1(G) :

f(x) =
∫

Ĝ

(dimπ) tr
(
f̂(π)π(x)∗)dη(π) (2.1)
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whenever the function π �→ (dimπ)tr(f̂(π)π(x)∗) ∈ L1( Ĝ ) for x ∈ G .
The following lemma is straightforward.

Lemma 2.1.5. Given any locally compact group G with σ ∈ M(G) and
α ∈ C, the following conditions are equivalent for f ∈ L1(G) :

(i) σ ∗ f = αf ;
(ii) f̂(π)σ̂(π) = αf̂(π) for all π ∈ Ĝ.

We give below a proof, which is different from [51] but generalizes to central
groups, of the Liouville property of compact groups.

Lemma 2.1.6. Let σ be an adapted probability measure on a compact group
G and let f be a continuous function on G satisfying σ ∗ f = f. Then f is
constant.

Proof. Since G is compact, each π ∈ Ĝ is finite dimensional and π(x) =(
πij(x)

)
is a matrix. By the Peter-Weyl Theorem, we have in L2(G),

f =
∑
π∈Ĝ

∑
1≤i,j≤dim π

(dimπ)f̂(π)jiπij

where f̂(π)ij =
∫

G
f(x)πij(x−1)dλ(x). We have f̂(π)σ̂(π) = f̂(π) and by

Lemma 2.1.4, the matrix IHπ − σ̂(π) is invertible for π ∈ Ĝ\{ι} which gives
f̂(π) = 0 for π �= ι. So we have

f = f̂(ι) =
∫

G

f(x)dλ(x).

�

The following result generalizes Lemma 2.1.6.

Proposition 2.1.7. Let G be a central group and let σ be an adapted prob-
ability measure on G. If f ∈ L1(G) satisfies σ ∗ f = f and the function
π �→ (dimπ)tr(f̂(π)π(x)∗) ∈ L1( Ĝ ) for x ∈ G , then f is constant.

Proof. By Lemma 2.1.4, 1 is not an eigenvalue of the matrix σ̂(π) for all
π ∈ Ĝ\{ι}. So σ̂(π) − IHπ is invertible for such π. From Lemma 2.1.5, we
have f̂(π)

(
σ̂(π) − IHπ

)
= 0 which implies f̂(π) = 0 for all π ∈ Ĝ\{ι}. The

inversion formula in (2.1) therefore reduces to f(x) = f̂(ι)η{ι} for all x ∈ G.

�
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Remark 2.1.8. Let σ ∈ M(G) and α ∈ C with |α| > ‖σ‖ > 0. If f ∈ Lp(G)
with 1 ≤ p ≤ ∞ and σ ∗ f = αf, then f = 0. For if ‖f‖ > 0 , then we have
‖f‖ ≤ ‖σ‖‖f‖

|α| < ‖f‖ . Hence J⊥
σ = {0} if ‖σ‖ < 1 .

We note that central groups have the Liouville property as shown in [28;
Theorem 5.1]. We give an alternative proof below. The definition of a right
uniformly continuous function is given in the next section.

Proposition 2.1.9. Let σ be a non-degenerate probability measure on a cen-
tral group G and let f : G → IR be a bounded right uniformly continuous
σ-harmonic function. Then f is constant.

Proof. By [14; Lemma 1.1], we have

f(az) = f(a) (a ∈ G, z ∈ Z)

where Z is the centre of G. We can therefore define f̃ : G/Z → IR by
f̃(aZ) = f(a) for a ∈ G. Let σ̃ be the image measure on G/Z of σ under
the quotient map q : G → G/Z . Then σ̃ is non-degenerate and σ̃ ∗ f̃ = f̃ .

By compactness of G/Z, f̃ , and hence f, is constant. �

Example 2.1.10. We note that the Choquet-Deny Theorem does not hold for
complex measures. Define σ ∈ M1(IR) by

σ(S) =
1
2π

∫
S∩[0,2π]

eixdx

where S is a Borel subset of IR . Then supp |σ| = [0, 2π] , σ(IR) = 0 and
‖σ‖ = |σ|(IR) = 1

2π

∫ 2π

0 |eix|dx = 1 . Let f : IR −→ C be given by f(x) = eix .
Then f is a nonconstant bounded σ-harmonic frunction and σ ∗ f2 = 0 .

In the following section, we will derive a Poisson representation of bounded
σ-harmonic functions for σ ∈ M(G) with ‖σ‖ = 1.

2.2. Poisson representation of harmonic functions

In this section, we derive a Poisson representation for bounded uniformly
continuous complex harmonic functions on a locally compact group. This is
achieved by introducing an abelian C∗-algebraic structure on these functions
which enables us to use the Gelfand transform to obtain the Poisson space for the
representation. Such technique was first used by Furstenberg [27] for bounded
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σ-harmonic functions on a semisimple Lie group, and extended to locally com-
pact groups G by Azencott [5], where σ is an absolutely continuous probability
measure and the C∗-product of two uniformly continuous harmonic functions
f and h is given by the formula

(f · h)(x) = lim
n→∞

∫
G

f(y−1x)h(y−1x)dσn(y)

where σn is the n-times convolution of σ. For arbitrary locally compact
group G and complex measure σ ∈ M1(G), the constant functions need not
be σ-harmonic and the C∗-structure is obtained in a more elaborate way,
using the structure theory of contractive projections on abelian C∗-algebras,
but the C∗-structure thus obtained coincides with the one above in [5,27] if σ

is a probability measure. Therefore our construction gives a unified approach to
the Poisson representation as well as some functional analytic insights.

We have already mentioned that in the case of a probability measure σ ,
Paterson [63,64] has also obtained a Poisson space using a contractive projec-
tion, but the C∗-structure in this case is simpler as the constant-1 function is
σ-harmonic . For complex measures σ , we use Friedman and Russo’s result [26]
to obtain the C∗-structure in terms of an extremal harmonic function.

Let σ ∈ M(G) be absolutely continuous and let f ∈ L∞(G). Then
σ ∗ f is right uniformly continuous (cf. [38, 20.16]) and so is every bounded
σ-harmonic function on G where a function ϕ : G → C is right uniformly
continuous if for any ε > 0, there exists a neighbourhood U of the identity
such that xy−1 ∈ U implies |ϕ(x) − ϕ(y)| < ε. If we define the left and right
translates of ϕ through y by

(Lyϕ)(x) = ϕ(y−1x) = (δy ∗ ϕ)(x),

(Ryϕ)(x) = ϕ(xy) =
1

�(y)
(ϕ ∗ δy−1)(x)

then a function ϕ in L∞(G) is right uniformly continuous if, and only if,

‖Lyϕ− ϕ‖∞ → 0 as y → e

where ‖ · ‖∞ denotes the essential sup norm, ϕ is left uniformly continuous if
‖Ryϕ − ϕ‖∞ → 0 as y → e. Let Cb(G) denote the C∗-algebra of bounded
continuous functions on G and let C�u(G) [Cru(G)] be the C∗-subalgebra
of Cb(G) consisting of the left [right] uniformly continuous functions. We note
that C�u(G) = Cru(G) if, and only if, G is a [SIN]-group [61]. We introduce
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an algebraic product in the dual C�u(G)∗ as follows. For each m ∈ C�u(G)∗

and f ∈ C�u(G), we define m ◦ f ∈ L∞(G) by

〈ϕ,m ◦ f〉 = 〈f ∗ ϕ̌,m〉 (2.2)

where ϕ ∈ L1(G) and ϕ̌(x) = ϕ(x−1). Then we have

m ◦ f ∈ C�u(G) and (m ◦ f)(x) = 〈Rxf,m〉

for x ∈ G [54, Lemma 3]. Now, for m,n ∈ C�u(G)∗, we define their product
m ◦ n by

〈f,m ◦ n〉 = 〈m ◦ f, n〉 (2.3)

where f ∈ C�u(G). Then
(
C�u(G)∗, ◦)

is a Banach algebra and the product is
weak∗- continuous when the first variable is kept fixed. Given a ∈ G and the
point mass δa ∈ C�u(G)∗, we have δa ◦ f = La−1f and therefore δa ◦ δb = δab

for any b ∈ G. There is a linear isometry µ ∈ M(G) �→ µ̃ ∈ C�u(G)∗ where µ̃

is defined by

〈f, µ̃〉 =
∫

G

fdµ

for f ∈ C�u(G). We have µ̃ ∗ ν = µ̃ ◦ ν̃ for µ, ν ∈ M(G).
Let σ ∈ M(G) and let Jσ be the norm-closure of {σ̌∗f−f : f ∈ L1(G)},

as defined in Section 2.1. Then Jσ is a closed right ideal of L1(G) and if σ

is a probability measure, then Jσ is contained in the ideal

L1
0(G) =

{
f ∈ L1(G) :

∫
G

fdλ = 0
}
.

The annihilator J⊥
σ = (L1(G)/Jσ)∗ is the right-translation invariant subspace

of L∞(G) consisting of the (essentially) bounded σ-harmonic functions on
G. If σ is a probability measure, then evidently Jσ = L1

0(G) if, and only if,
dim J⊥

σ = 1, in other words; the bounded σ-harmonic functions are constant.
The algebraic structure of L1(G)/Jσ has been studied in detail in [83] when σ

is a probability measure.

Definition 2.2.1. Let σ ∈ M(G). We denote by H(σ) the closed subspace of
L∞(G) consisting of (left and right) uniformly continuous σ-harmonic func-
tions on G.
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We have H(σ) ⊂ J⊥
σ ∩ C�u(G) and they are equal if σ is absolutely

continuous since, as remarked before, absolute continuity of σ implies that the
σ-harmonic functions are right uniformly continuous.

Lemma 2.2.2. Given σ ∈ M(G), then J⊥
σ ∩C�u(G) is weak∗-dense in J⊥

σ .

Proof. Let {ϕα} be a bounded approximate identity in L1(G) and let f ∈ J⊥
σ .

Then f ∗ ϕ̌α ∈ J⊥
σ ∩ C�u(G) and for ψ ∈ L1(G), we have

〈ψ, f〉 = lim
α

〈ψ ∗ ϕα, f〉 = lim
α

〈ψ, f ∗ ϕ̌α〉.

�
To obtain a Poisson representation of H(σ) we need to turn J⊥

σ into an
abelian C∗-algebra, but for this we cannot use the pointwise product in L∞(G)
since J⊥

σ is not closed with respect to this product except in the trivial case.

Lemma 2.2.3. Let σ be a probability measure on G and let h ∈ J⊥
σ be

continuous such that h2 ∈ J⊥
σ . Then h is constant on the subgroup generated

by supp σ.

Proof. It suffices to show that h(sx) = h(x) for all x ∈ G and s ∈ supp σ.
Let x ∈ G and consider hx(·) = h(·x). Then σ ∗ h ∈ Cb(G). We have
h(x) =

∫
G
h(y−1x)dσ(y) =

∫
G
hx(y−1)dσ(y). Since h2 ∈ J⊥

σ , we have

h2(x) =
∫

G

h2
x(y−1)dσ(y) =

( ∫
G

hx(y−1)dσ(y)
)2

which forces hx(s−1) = constant c, say, for all s ∈ suppσ. Indeed, if c2 =∫
G
h2

x(y−1)dσ(y) �= 0, then
∫

G
F (y)dσ(y) = 1 where F (y) = 1

chx(y−1). As∫
G
F 2(y)dσ(y) + 1 = 2 and 2F ≤ F 2 + 1, we have 2F = F 2 + 1 a.e. [σ]

which gives F = 1 a.e. [σ] and hx(s−1) = c on supp σ. It follows that
h(x) =

∫
G
cdσ = c = h(s−1x) for all s ∈ supp σ. �

Corollary 2.2.4. Let σ be an adapted probability measure on G. The follow-
ing conditions are equivalent:

(i) H(σ) is a subalgebra of L∞(G);
(ii) H(σ) = C 11 where 11 is the constant-1 function.

To introduce a C∗-product in H(σ) ⊂ J⊥
σ for σ ∈ M1(G) , usually

different from the L∞(G)-product, we construct a contractive projection

P : L∞(G) → J⊥
σ
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(that is, a surjective linear contraction satisfying P 2 = P ) and use the structure
theory of P, developed in [26,59], to give J⊥

σ an abelian C∗-algebraic struc-
ture. If σ is absolutely continuous, this yields readily a Poisson representation
of J⊥

σ and hence of H(σ) = J⊥
σ ∩C�u(G). We note that, however, H(σ) need

not be a subalgebra of J⊥
σ and that the group G may not act continuously

on the Poisson space for the representation. But if the identity of J⊥
σ falls into

H(σ), then H(σ) is a subalgebra of J⊥
σ and the group action is continuous.

In particular, if σ is a probability measure, then the constant-1 function is the
identity lying in J⊥

σ ∩C�u(G) which becomes a C∗-subalgebra of J⊥
σ and our

C∗-product coincides with the product defined in [5,27].
Let σ ∈ M1(G). We now construct a contractive projection P : L∞(G) −→

J⊥
σ .

Proposition 2.2.5. Let σ ∈ M1(G). Then there is a contractive projection
Pσ : L∞(G) → J⊥

σ satisfying Pσ(σ ∗ f) = σ ∗ Pσ(f) for all f ∈ L∞(G).

Proof. Let Tσ : L∞(G) → L∞(G) be the convolution operator Tσ(f) = σ ∗ f
and let G be the closed convex hull of {Tn

σ : n ≥ 1} in L∞(G)L∞(G) where
L∞(G) is equipped with the weak∗-topology. Then for each f ∈ L∞(G), the
orbit G(f) = {T (f) : T ∈ G} is a weak∗-compact convex set in L∞(G) and
therefore Tσ : G(f) → G(f) has a fixed-point, that is, G(f) ∩ J⊥

σ �= ∅. By [55,
Theorem 2.1], there exists Pσ ∈ G such that Pσ(f) ∈ J⊥

σ for f ∈ L∞(G).
This defines a map Pσ : L∞(G) → J⊥

σ which is contractive since ‖σ‖ = 1. For
f ∈ L∞(G), we have Pσ(σ ∗f) = σ ∗Pσ(f) since Pσ ∈ co {Tn

σ : n ≥ 1}. Given
h ∈ J⊥

σ , we have Tn
σ (h) = h for all n ≥ 1. Hence Pσ(h) = h, that is, Pσ is

a projection onto J⊥
σ . �

Remark 2.2.6. From the above construction of Pσ, we see that Pσ commutes
with the right translations, that is, Pσ(Rxf) = RxPσ(f) for all x ∈ G. Also,
there is a net (µα) in the convex hull of {σn : n ≥ 1} such that (µα ∗
f) weak∗-converges to Pσ(f) for all f ∈ L∞(G). By the Mackey-Arens
Theorem [69], the net (µα) can be chosen such that (µα ∗ f) converges to
Pσ(f) uniformly on weakly compact sets in L1(G).

Remark 2.2.7. Let 11 be the constant-1 function in L∞(G). Then Pσ(11) is a
constant function in L∞(G) and since σ ∗Pσ(11) = Pσ(11), we have Pσ(11) = 11
if σ(G) = 1; but Pσ(11) = 0 if σ(G) �= 1.

We note that Proposition 2.2.5 gives the following partial proof of Corollary
2.2.8 (see also [64, p.249]).

Corollary 2.2.8. If there exists σ ∈ M1
+(G) such that J⊥

σ = C11 , then G is
amenable.
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Proof. Let Pσ : L∞(G) −→ J⊥
σ = C11 be the contractive projection in Proposi-

tion 2.2.5. Then the functional m : L∞(G) −→ C defined by Pσ(f) = m(f)11
for f ∈ L∞(G) is a right-invariant mean.

Let A be a unital abelian C∗-algebra and let P : A → A be a con-
tractive projection. Lindenstrauss and Wulbert [59] have shown that the range
P (A) is linearly isometric to a unital abelian C∗-algebra if, and only if, the
closed unit ball of P (A) contains an extreme point. In [26], Friedman and
Russo show that the result remains true without A being unital and they also
construct an explicit C∗-structure on P (A) as follows. Let u be an extreme
point of the closed unit ball of P (A). For f, g ∈ P (A), define

f ×
u
g = P (fu∗g)

f� = P (uf∗u).

Then
(
P (A),×

u
, �

)
is an abelian C∗-algebra with identity u and the original

norm.

Corollary 2.2.9. Let σ ∈ M1(G). Then J⊥
σ is linearly isometric to an

abelian von Neumann algebra.

Proof. This follows from the above remarks since J⊥
σ is a dual space and its

closed unit ball contains extreme points.
The above corollary implies immediately that L1(G)/Jσ is isometrically

isomorphic to some L1-space which gives an alternative proof of part of [83,
Theorem 2.1] as well as extending it to the case of complex σ .

We note that the extreme points of the closed unit ball of L∞(G) are
exactly the unitaries, that is, functions taking values in the unit circle T . Hence
a function u : G −→ T satisfying σ ∗ u = u is an extreme point of the closed
unit ball of J⊥

σ .
From now on, we fix an extreme point u of the closed unit ball of J⊥

σ .

Then J⊥
σ is an abelian von Neumann algebra with identity u , under the fol-

lowing product and involution:

f ×
u
g = Pσ(fūg)

f∗ = Pσ(uf̄u).

If σ is a probability measure, then 11 ∈ J⊥
σ and we will take u = 11 in which

case we have the product f × g = Pσ(fg) and involution f∗ = Pσ(f̄). By
the Banach-Stone Theorem, the product f × g is the same as the one defined
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in [5,27] as the pointwise limit of the sequence (σn ∗ fg). We will show that
f × g is also the weak∗-limit of (σn ∗ fg). We first proceed to the Poisson
representation of J⊥

σ with absolutely continuous σ.

Let J⊥
σ be equipped with the above abelian von Neumann algebraic struc-

ture in which the identity is u. Let Σσ be the pure state space of J⊥
σ so that

J⊥
σ is isometrically ∗-algebraic isomorphic to C(Σσ) via the Gelfand map

f ∈ J⊥
σ �→

�
f ∈ C(Σσ) where

�
f (s) = s(f) for s ∈ Σσ. We also write 〈f, s〉

for s(f) and note that Σσ is a Stonean space.
For x ∈ G, the right-translation Rx : J⊥

σ → J⊥
σ induces an isometry

�
f ∈ C(Σσ) �→ Rx ·

�
f ∈ C(Σσ) where Rx ·

�
f =

�

Rxf. By the Banach-Stone
Theorem, there is a homeomorphism τx : Σσ → Σσ such that

〈Rxf, s〉 =
�

Rxf(s) =
�

Rxu(s)
�
f
(
τx(s)

)

= 〈Rxu, s〉
�
f
(
τx(s)

)
(2.4)

where |〈Rxu, s〉| = 1 for all s ∈ Σσ.

Lemma 2.2.10. For x ∈ G and s ∈ Σσ, we have 〈Rxu, s〉R∗
x(s) ∈ Σσ.

Proof. It suffices to show that 〈Rxu, s〉R∗
x(s) is a multiplicative functional on

J⊥
σ . Let f, g ∈ J⊥

σ . Then

〈f ×
u
g, 〈Rxu, s〉R∗

x(s)〉 = 〈Rxu, s〉 〈Rx(f ×
u
g), s〉

= 〈Rxu, s〉 〈Rxu, s〉
�

f ×
u
g

(
τx(s)

)

=
�
f
(
τx(s)

) �
g
(
τx(s)

)
= 〈Rxu, s〉 〈f,R∗

x(s)〉 〈Rxu, s〉 〈g,R∗
x(s)〉

by (2.4). �

Lemma 2.2.11. The map (x, s) ∈ G× Σσ �→ x · s ∈ Σσ, defined by

x · s = 〈Rx−1u, s〉 R∗
x−1(s),

is a group action.
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Proof. Let x, y ∈ G and s ∈ Σσ. We show that y · (x · s) = (yx) · s. Write
t = x · s. Then

y · (x · s) = 〈Ry−1u, t〉 R∗
y−1(t)

= 〈Ry−1u, 〈Rx−1u, s〉 R∗
x−1(s)〉 R∗

y−1

( 〈Rx−1u, s〉 R∗
x−1(s)

)
= 〈Rx−1u, s〉 〈Ry−1u,R∗

x−1(s)〉 〈Rx−1u, s〉 R∗
y−1R∗

x−1(s)

= 〈Rx−1Ry−1u, s〉 R∗
(yx)−1(s) = (yx) · s.

�

Notation 2.2.12. For x ∈ G and s ∈ Σσ, we write 〈Rxu, s〉 = eiθ(x,s) where
θ : G× Σσ → [0, 2π).

Now we have the Poisson representation of J⊥
σ .

Proposition 2.2.13. Let σ ∈ M1(G) be absolutely continuous. Then there
exists a complex Borel measure ν̃σ on Σσ such that for each f ∈ J⊥

σ , we
have

f(x) =
∫

Σσ

�
f (x−1 · s)eiθ(x,s)dν̃σ(s) (x ∈ G).

Proof. Since σ is absolutely continuous, we have J⊥
σ ⊂ Cru(G) and we can

define a measure ν̃σ on Σσ by

ν̃σ(
�
f ) = f(e)

for
�
f ∈ C(Σσ). Then for f ∈ J⊥

σ and x ∈ G, we have, from (2.4),

f(x) = Rxf(e) = ν̃σ(
�

Rxf)

=
∫

Σσ

�

Rxf(s)dν̃σ(s)

=
∫

Σσ

〈Rxu, s〉 〈f,R∗
xs〉 〈Rxu, s〉 dν̃σ(s)

=
∫

Σσ

�
f (x−1 · s)eiθ(x,s)dν̃σ(s).

�
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We now consider the space J⊥
σ ∩C�u(G). Let ω : (J⊥

σ )∗ → (
J⊥

σ ∩C�u(G)
)∗

be the restriction map. We define an equivalence relation ∼ on Σσ by

s ∼ s′ ⇐⇒ ω(s) = ω(s′) and 〈Rxu, s〉 = 〈Rxu, s
′〉 ∀x ∈ G.

Let Πσ = Σσ/ ∼ be equipped with the quotient topology which is compact, and
let νσ be the image measure on Πσ of ν̃σ by the quotient map Σσ → Σσ/ ∼ .

The group action G×Σσ → Σσ defined in Lemma 2.2.11 induces a group action
G × Πσ → Πσ given by x · [s]∼ = [x · s]∼ for x ∈ G and [s]∼ ∈ Πσ. Given

f ∈ J⊥
σ ∩ C�u(G) and x ∈ G, we regard

�

Rxf as a function on Πσ by the
following well-defined identification

�

Rxf([s]∼) = 〈Rxf, [s]∼〉 = 〈Rxf, s〉.

Likewise we write

eiθ(x,[s]∼) = 〈Rxu, [s]∼〉 = 〈Rxu, s〉

for x ∈ G and [s]∼ ∈ Πσ.

Remark 2.2.14. If u ∈ J⊥
σ ∩ C�u(G), then Πσ identifies with ω(Σσ) and the

above group action can be written as x · t = 〈Rx−1u, t〉 R∗
x−1(t) for (x, t) ∈

G× Πσ.

Proposition 2.2.15. Let σ ∈ M1(G) be absolutely continuous. Then there
exists a complex Borel measure νσ on Πσ and a function θ : G×Πσ → [0, 2π)
such that for each f ∈ H(σ), we have

f(x) =
∫

Πσ

�
f (x−1 · t)eiθ(x,t)dνσ(t) (x ∈ G).

Proof. Let f ∈ H(σ) and let νσ be defined as above. Then, by Proposi-



20 harmonic functions on locally compact groups

tion 2.2.13, we have

f(x) =
∫

Σσ

〈Rxf, s〉 dν̃σ(s)

=
∫

Πσ

〈Rxf, [s]∼〉 dνσ([s]∼)

=
∫

Πσ

〈Rxu, [s]∼〉 〈Rxf, [s]∼〉 〈Rxu, [s]∼〉 dνσ([s]∼)

=
∫

Πσ

�
f (x−1 · [s]∼)eiθ(x,[s]∼)dνσ([s]∼)

for x ∈ G. �

Although the spaces Σσ, Πσ and the group action are constructed in
terms of the chosen identity u ∈ J⊥

σ , they are unique in the following sense. Let
v ∈ J⊥

σ be another extreme point of the unit ball such that (J⊥
σ , ×

v
, ∗

v
, ‖ · ‖∞)

is an abelian C∗-algebra isomorphic to C(Σv
σ) via the Gelfand map where

Σv
σ ⊂ (J⊥

σ )∗. Then the identity map from (J⊥
σ , ×

u
, ∗

u
) to (J⊥

σ , ×
v
, ∗

v
) is an

isometry and hence there is a homeomorphism τ : Σv
σ → Σσ such that, for

f ∈ J⊥
σ with

�
f ∈ C(Σσ), we have

�
f
(
τ(t)

)
= 〈u, t〉 〈f, t〉 (t ∈ Σv

σ).

Further, the homeomorphism is equivariant, that is, for x ∈ G, we have τ(x ·
t) = x · τ(t) where

x · t = 〈Rx−1v, t〉 R∗
x−1(t)

and x · τ(t) = 〈Rx−1u, τ(t)〉 R∗
x−1

(
τ(t)

)
.

If u and v are in J⊥
σ ∩C�u(G), then Πσ and Πv

σ are equivariantly homeo-
morphic as above.

Definition 2.2.16. Given an absolutely continuous measure σ ∈ M1(G), we
call Πσ and νσ, constructed above, the Poisson space and the Poisson measure
for σ, with respect to u. The reference to u is often understood and omitted.
If σ is a probability measure, we will always choose u = 11.

The Poisson representation points to an interesting and relevant object
of study, namely, the Poisson space Πσ which should reveal useful structural
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information about H(σ) and J⊥
σ . We will show some interesting properties

of Πσ and H(σ) in the case of the extreme point u ∈ J⊥
σ falling into H(σ)

which occurs, for instance, when σ is a probability measure and u chosen to
be the constant-1 function in H(σ). We note that, for absolutely continuous
σ, J⊥

σ = H(σ) if G is a [SIN]-group and in this case, Πσ is a Stonean space
by Corollary 2.2.9.

Assuming and fixing u ∈ J⊥
σ ∩C�u(G) for the rest of this section, we first

investigate the C∗-structure of J⊥
σ ∩ C�u(G).

Theorem 2.2.17. Let σ ∈ M1(G) and u ∈ J⊥
σ ∩C�u(G). Then J⊥

σ ∩C�u(G)
is an abelian C∗-algebra and there is a net {µα} in the convex hull co {σn :
n ≥ 1} such that the C∗-product is given by

(f ×
u
g)(x) = lim

α

∫
G

f(y−1x)ū(y−1x)g(y−1x)dµα(y)

for f, g ∈ J⊥
σ ∩C�u(G) and x ∈ G. In fact, µα ∗ (fūg) → f ×

u
g uniformly on

compact subsets of G.

Proof. Let f, g ∈ J⊥
σ ∩C�u(G). Since u ∈ C�u(G) and Pσ commutes with right

translations by Remark 2.2.6, we see that f ×
u
g = Pσ(fūg) and f∗ = Pσ(uf̄u)

are in C�u(G). Hence J⊥
σ ∩C�u(G) is a C∗-subalgebra of J⊥

σ . Write h = fūg

and let Kh = {
n∑

i=1
λiLxih : xi ∈ G,

n∑
i=1

|λi| ≤ 1}. Denote by Kh the pointwise

closure of Kh. We show that

Kh = {µ ◦ h : µ ∈ Cb(G)∗ and ‖µ‖ ≤ 1} ⊂ C�u(G)

where µ ◦ h is defined in (2.2) and µ ◦ h ∈ C�u(G) with (µ ◦ h)(x) = 〈Rxh, µ〉
for x ∈ G. Let k ∈ Kh be the pointwise limit of a net kα =

∑
i

λα
i Lxα

i
h in Kh.

Let µα =
∑
i

λα
i δ(xα

i
)−1 . Then we have µα ∈ Cb(G)∗ and ‖µα‖ ≤ 1. Passing

to a subnet, we may assume that (µα) weak∗-converges to some µ ∈ Cb(G)∗

with ‖µ‖ ≤ 1. Then for y ∈ G, we have

(µ ◦ h)(y) = lim
α

(µα ◦ h)(y) = lim
α

〈Ryh, µα〉 = lim
α
kα(y) = k(y).

Therefore k = µ ◦ h. Conversely, given µ ∈ Cb(G)∗ with ‖µ‖ ≤ 1, it is the
weak∗-limit of a net (µα) of the form µα =

∑
i

λα
i δxα

i
with

∑
i

|λα
i | ≤ 1. As

before, µ ◦ h is the pointwise limit of µα ◦ h ∈ Kh.

Next we show that Kh is equicontinuous. Let ε > 0. Then there is a
neighbourhood V of e such that v−1u ∈ V implies ‖Ruh−Rvh‖ < ε which
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gives |(µ ◦ h)(v) − (µ ◦ h)(u)| ≤ ‖Ruh − Rvh‖ < ε for all µ ∈ Cb(G)∗ with
‖µ‖ ≤ 1.

By Remark 2.2.6, there is a net (µα) in co {σn : n ≥ 1} such that
µα ∗ h weak∗-converges to Pσ(h) = f ×

u
g. We have µα ∗ h = µ̌α ◦ h ∈

Kh. We can regard µα ∈ Cb(G)∗, and by taking a subnet, assume that (µ̌α)
weak∗-converges to some µ̌ ∈ Cb(G)∗ with ‖µ̌‖ ≤ 1. Then (µ̌α ∗ h) is a net
in Kh converging pointwise to µ̌ ◦ h ∈ Kh. By Ascoli’s theorem, (µα ∗ h)
converges to µ̌ ◦ h on compact subsets of G. So

〈f, µα ∗ h〉 → 〈f, µ̌ ◦ h〉

for continuous functions f on G with compact support which are norm-dense
in L1(G). As Kh is bounded by ‖h‖∞ in L∞(G), we have (µα∗h) converges
to µ̌◦h in the weak∗-topology of L∞(G). Hence f×

u
g = µ̌◦h which completes

the proof. �

Corollary 2.2.18. Let σ be an absolutely continuous probability measure on
G. Then the C∗-product in H(σ) is given by f × g = weak∗- lim

n→∞ σn ∗ fg
for f, g ∈ H(σ).

Proof. Since σ is a real measure, we have the involution f∗ = Pσ(f̄) = Pσ(f) =
f̄ for f ∈ H(σ). By [5,27], H(σ) is an abelian C∗-algebra with product
(f · g)(x) = lim

n→∞ (σn ∗ fg)(x) for x ∈ G. By the Banach-Stone Theorem, we

have f × g = Pσ(fg) = f · g. As in the above proof, (σn ∗ fg) converges
pointwise, and hence weak∗, to f × g ∈ Kfg by equicontinuity. �

Now we investigate the action of G on the Poisson space Πσ. For each
x ∈ G, the homeomorphism τx : Σσ → Σσ in (2.4) induces a weak∗-continuous
algebra homomorphism τ̃x : J⊥

σ → J⊥
σ given by

〈τ̃xf, s〉 = 〈Rxu, s〉 〈Rxf, s〉 (f ∈ J⊥
σ , s ∈ Σσ) (2.5)

which is a ‘perturbation’ of the right translation Rx by Rxu. Given u ∈ C�u(G)
and f ∈ J⊥

σ ∩ C�u(G), we have τ̃x(f) ∈ J⊥
σ ∩ C�u(G). We also note that, for

f ∈ J⊥
σ , we have f ∈ C�u(G) if, and only if, the map x ∈ G �→ τ̃xf ∈ J⊥

σ is
continuous with respect to the norm-topology of J⊥

σ .

Proposition 2.2.19. Let σ ∈ M1(G) be absolutely continuous and u ∈ H(σ).
Then the group action

(x, s) ∈ G× Πσ �→ 〈Rx−1u, s〉 R∗
x−1(s) ∈ Πσ
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is jointly continuous. If the group action G×Σσ → Σσ is separately continuous,
then J⊥

σ ⊂ C�u(G), that is, J⊥
σ = H(σ).

Proof. For u, f ∈ C�u(G), we have ‖Rxu − u‖ → 0 and ‖Rxf − f‖ → 0 as
x → e. It follows that the group action G×Πσ → Πσ is separately continuous,
and hence jointly continuous by compactness of Πσ [23].

Now if the action G × Σσ → Σσ is separately continuous, then it is
jointly continuous. Let f ∈ J⊥

σ . To show f ∈ C�u(G), we show that the map
x ∈ G �→ τ̃xf ∈ J⊥

σ is continuous. Let (xα) be a net converging to x. Suppose
‖τ̃xαf − τ̃xf‖ � 0. Then there is a subnet (xβ) such that

‖τ̃xβ
f − τ̃xf‖ ≥ ε > 0 for all β.

Let sβ ∈ Σσ be such that ‖τ̃xβ
f − τ̃xf‖ = |〈τ̃xβ

f − τ̃xf, sβ〉|. There is a subnet
(sγ) of (sβ) weak∗-converging to some s ∈ Σσ. The jointly continuous group
action gives the following contradiction:

0 < ε ≤ | 〈Rxγ
u, s〉 〈Rxγ

f, sγ〉 − 〈Rxu, sγ〉 〈Rxf, sγ〉 |

−→ | 〈Rxu, s〉 〈Rxf, s〉 − 〈Rxu, s〉 〈Rxf, s〉 | = 0.

So ‖τ̃xαf − τ̃xf‖ → 0 and f ∈ C�u(G). �

Example. In general J⊥
σ �= J⊥

σ ∩ C�u(G). Let σ ∈ M1(G) be the natural
extension of the Haar measure on a compact normal subgroup H of G. Then
J⊥

σ = L∞(G/H) as the σ-harmonic functions are constant on the cosets of H.
Since J⊥

σ ∩ C�u(G) = C�u(G/H), we have J⊥
σ = J⊥

σ ∩ C�u(G) if, and only if,
G/H is discrete or equivalently, H is open.

Given u ∈ J⊥
σ ∩ C�u(G), then J⊥

σ ∩ C�u(G) is a C∗-subalgebra of J⊥
σ

and Πσ = ω(Σσ) is the pure state space of J⊥
σ ∩ C�u(G) which can be seen

from the fact that the pure states of an abelian C∗-algebra are exactly the
multiplicative states. We end this section with the following description of the
state space S

(
J⊥

σ ∩ C�u(G)
)

of J⊥
σ ∩ C�u(G).

For x ∈ G, we define ūδx ∈ C�u(G)∗ by

〈f, ūδx〉 = 〈ūf, δx〉 = ū(x)f(x)

for f ∈ C�u(G). We also write ūδx for its restriction to J⊥
σ ∩ C�u(G).



24 harmonic functions on locally compact groups

Proposition 2.2.20. Let σ ∈ M1(G) and u ∈ J⊥
σ ∩ C�u(G). Then S

(
J⊥

σ ∩
C�u(G)

)
= co {ūδx : x ∈ G} and Πσ ⊂ {ūδx : x ∈ G}− where the first and

last bar ‘−’ denote the weak∗-closure and ‘co’ denotes the convex hull.

Proof. We have {ūδx : x ∈ G} ⊂ S
(
J⊥

σ ∩ C�u(G)
)

since (ūδx)(u) = 1 = ‖ūδx‖
and u is the identity of the C∗-algebra J⊥

σ ∩ C�u(G). Conversely, let s ∈
S

(
J⊥

σ ∩ C�u(G)
)

and let s̃ ∈ C�u(G)∗ be a norm-preserving extension of s.

Define us̃ ∈ C�u(G)∗ by

(us̃)(f) = s̃(uf)

for f ∈ C�u(G). Then (us̃)(1) = s(u) = 1 = ‖us̃‖, that is, us̃ is a state of
C�u(G) and hence us̃ ∈ co {δx : x ∈ G}. Therefore s̃ ∈ co {ūδx : x ∈ G}.
The second assertion follows from Milman’s theorem. �

We note that the intersection Πσ ∩ {ūδx : x ∈ G} is most likely empty as
the following result shows.

Proposition 2.2.21. Let σ ∈ M1(G) and u ∈ J⊥
σ ∩C�u(G). Then Πσ∩{ūδx :

x ∈ G} �= ∅ if, and only if, f ×
u
g = fūg for all f, g ∈ J⊥

σ ∩C�u(G), in which

case Πσ = {ūδx : x ∈ G}−.

Proof. Let s = ūδx ∈ Πσ for some x ∈ G. Then for any y ∈ G, a direct
computation gives ūδxy−1 = y · s ∈ Πσ. Hence {ūδz : z ∈ G}− ⊂ Πσ and they
are therefore equal. Let f, g ∈ H(σ) and consider f ×

u
g, fūg ∈ C�u(G). For

every z ∈ G, we have 〈f ×
u
g, ūδz〉 = 〈f, ūδz〉 〈g, ūδz〉 = ū(z)f(z)ū(z)g(z) and

so δz(f ×
u
g) = f(z)ū(z)g(z) = δz(fūg). Therefore f ×

u
g = fūg.

Conversely, the condition f ×
u
g = fūg implies that ūδx is multiplicative

on the C∗-algebra J⊥
σ ∩ C�u(G) for x ∈ G, that is, ūδx ∈ Πσ. �

If σ is a probability measure with u = 11, then the involution in J⊥
σ ∩

C�u(G) is the complex conjugation and the above result can be stated as follows.

Corollary 2.2.22. Let σ be a probability measure on G. Then Πσ ∩ {δx :
x ∈ G} �= ∅ if, and only if, J⊥

σ ∩ C�u(G) is a C∗-subalgebra of L∞(G).
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2.3. Semigroup structures of the Poisson space

Given σ ∈ M1(G), the space J⊥
σ of bounded σ-harmonic functions is

right-translation invariant. We first examine the case when J⊥
σ is also left-

translation invariant. The motivation for such consideration is that, in this
case, the Poisson space Πσ admits a semigroup structure which is the main
object of study in this section. We note that Paterson [64] has also studied a
certain semigroup structure of Πσ in the case when G is a compact topological
semigroup and σ is a non-degenerate probability measure.

We observe that J⊥
σ is left-translation invariant if, and only if, J⊥

σ ∩
C�u(G) is so. This follows from the fact that J⊥

σ ∩ C�u(G) is weak∗-dense
in J⊥

σ and that left translation is weak∗-continuous. Evidently, if σ is central
which means that

∫
G
h(xy)dσ(y) =

∫
G
h(yx)dσ(y) for all h ∈ L∞(G), then

J⊥
σ is translation invariant. The following lemma is easily verified.

Lemma 2.3.1. Let σ ∈ M(G). The following conditions are equivalent:

(i) J⊥
σ is translation invariant;

(ii) Jσ is a two-sided ideal in L1(G);
(iii) For every h ∈ J⊥

σ ∩ C�u(G), we have

∫
G

h(y−1x)dσ(y) =
∫

G

h(xy−1)dσ(y).

Given that J⊥
σ is also left-translation invariant, the quotient L1(G)/Jσ

is a Banach algebra and the dual (J⊥
σ )∗ =

(
L1(G)/Jσ

)∗∗ is also a Banach
algebra with the second Arens product ◦ defined as follows:

(i) For f ∈ J⊥
σ and p = ψ + Jσ ∈ L1(G)/Jσ, define p · f ∈ J⊥

σ by

〈q, p · f〉 = 〈φ ∗ ψ, f〉

where q = φ+ Jσ ∈ L1(G)/Jσ.

(ii) For f ∈ J⊥
σ and m ∈ (J⊥

σ )∗, define m ◦ f ∈ J⊥
σ by

〈p,m ◦ f〉 = 〈p · f,m〉

for p ∈ L1(G)/Jσ.

(iii) For m,n ∈ (J⊥
σ )∗, define m ◦ n ∈ (J⊥

σ )∗ by

〈f,m ◦ n〉 = 〈m ◦ f, n〉
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for f ∈ J⊥
σ .

We note that, in the above definition, p·f = f ∗ψ̌ ∈ J⊥
σ ∩C�u(G) and that

m◦f ∈ J⊥
σ ∩C�u(G) for f ∈ J⊥

σ ∩C�u(G). We also have (m◦f)(x) = 〈Rxf,m〉
for x ∈ G [54, Lemma 3]. It follows that the restriction map ω : (J⊥

σ )∗ →(
J⊥

σ ∩C�u(G)
)∗ is an algebra homomorphism where

(
J⊥

σ ∩C�u(G)
)∗ is equipped

with the Banach algebra product as defined in (2.3).

Lemma 2.3.2. Let u be the identity in J⊥
σ . The following conditions are

equivalent:

(i) u is a multiplicative functional on L1(G)/Jσ;

(ii) u is a continuous character on G;

(iii) u−1(0) = {ϕ + Jσ ∈ L1(G)/Jσ : 〈ϕ, u〉 = 0} is a two-sided ideal in
L1(G)/Jσ;

(iv) {ϕ + Jσ ∈ L1(G)/Jσ : 〈ϕ, u〉 = 1 and ϕ + Jσ ≥ 0} is a semigroup in
L1(G)/Jσ where ϕ + Jσ ≥ 0 means that 〈ϕ, f〉 ≥ 0 for every f ∈ J⊥

σ

with f ≥ 0.

Proof. (i) =⇒ (ii). Lift u to a multiplicative linear functional u′ on L1(G)
via the quotient map. For ϕ,ψ ∈ L1(G), we have

∫
G

u′(ϕ)ψ(y)u(y)dλ(y) = u′(ϕ)u′(ψ) = u′(ϕ ∗ ψ)

=
∫

G

(ϕ ∗ ψ)(x)u(x)dλ(x)

=
∫∫

G

�(y−1)ϕ(xy−1)ψ(y)u(x)dλ(x)dλ(y)

=
∫

G

u′(�(y−1)Ry−1ϕ
)
ψ(y)dλ(y)

which gives

u′(ϕ)u(y) = u′(�(y−1)Ry−1ϕ
)

(2.6)

for λ-almost all y ∈ G and that u is continuous λ-almost everywhere on
G since the map y ∈ G �→ �(y−1)Ry−1ϕ ∈ L1(G) is continuous. We may
therefore assume that u is continuous everywhere and (2.6) holds for all y ∈ G.
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It follows that

u′(ϕ)u(xy) = u′(�(y−1x−1)Ry−1x−1ϕ
)

= u′(ϕ)u(x)u(y)

for all x, y ∈ G and u is a character on G as ‖u‖∞ = 1.

(i) =⇒ (iv). If 〈ϕ, u〉 = 〈ψ, u〉 = 1 for ϕ,ψ ∈ L1(G), then 〈(ϕ+ Jσ) ∗ (ψ +
Jσ), u〉 = 〈ϕ, u〉 〈ψ, u〉 = 1 = ‖(ϕ+ Jσ) ∗ (ψ + Jσ)‖.

(iv) =⇒ (i). Since u is multiplicative on the semigroup which generates
L1(G)/Jσ, u is multiplicative on L1(G)/Jσ. �

We note that J⊥
σ contains a character of G if, and only if, σ is of the

form u.σ1 where u is a character and σ1 is a probability measure. Indeed,
let u ∈ J⊥

σ be a character and let dσ1(x) = u(x−1)dσ(x) . Then σ1 is a
probability measure since

∫
G
u(x−1)dσ(x) = σ ∗ u(e) = u(e) = 1 . Conversely,

if σ is of the above form, then σ ∗ u = u by simple calculation.
We assume in the remaining section that σ ∈ M1(G) and J⊥

σ is trans-
lation invariant with identity u which is a continuous character on G .

We will show that Πσ has a natural semigroup structure under the above
assumption. We first recall some basic definitions.

A semigroup S is called a left zero semigroup if all of its elements are left
zeros which means that xy = x for all x, y ∈ S. Similarly S is called a right
zero semigroup if xy = y for all x, y ∈ S. By a left [right] group we mean a
semigroup which is (isomorphic to) a direct product of a group and a right [left]
zero semigroup. The (possibly empty) set of idempotents of a semigroup S is
denoted by E(S).

Let X,Y be nonempty sets and G be a group. Let K = X × G × Y.

Given a map δ : X × Y → G, we define a sandwich product on K by

(x, g, y) ◦ (x′, g′, y′) =
(
x, gδ(y, x′)g′, y′).

Then (K, ◦) is a simple semigroup (i.e. K has no non-trivial two-sided ideal)
and any semigroup isomorphic to a simple semigroup of this kind is called a
paragroup.

Let S be a compact semigroup. It is called a left topological semigroup if
the translations x �→ sx (s ∈ S) are continuous. S is called a semitopological
semigroup if its multiplication is separately continuous. It is called a topological
semigroup if the multiplication is jointly continuous.
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Now we are ready to show some semigroup properties of the Poisson space
Πσ. Let

Dσ = {u δx : x ∈ G}−.

We have shown in Proposition 2.2.20 that Πσ ⊂ Dσ.

We note that Dσ ⊂ (
J⊥

σ ∩ C�u(G)
)∗ and the latter is a Banach algebra

with the product ◦ defined in (2.3). We equip Dσ with the weak∗-topology.

Theorem 2.3.3. Let J⊥
σ be translation invariant with identity u which is a

continuous character on G . Then (Dσ, ◦) is a compact left topological semi-
group and (Πσ, ◦) is a closed subsemigroup of Dσ with idempotents. Further,
the following conditions hold:

(i) Πσ has a minimal ideal K and

K � E(pΠσ) × pΠσp× E(Πσp)

where p is any idempotent of K and pΠσ = {p◦s : s ∈ Πσ} with similar
definition for pΠσp and Πσp. Also, E(pΠσ) is a right zero semigroup,
E(Πσp) is a left zero semigroup and pΠσp = pΠσ ∩ Πσp is a group.

(ii) The minimal ideal K need not be a direct product, but is a paragroup with
respect to the natural map

δ : E(pΠσ) × E(Πσp) → pΠσp : (x, y) �→ x ◦ y.

(iii) For any idempotent p ∈ K, pΠσ is a minimal right ideal and Πσp is a
minimal left ideal.

(iv) The minimal right ideals in Πσ are closed and homeomorphic to each
other.

Proof. Since u is multiplicative, we have for x, y ∈ G,

(u δx) ◦ (u δy) =
(
u (x)δx

) ◦ (
u (y)δy

)
= u (xy)δxy

by (2.3). Let m ∈ Dσ and a ∈ G, with m = w∗ − lim
α
u δxα . Then for

f ∈ J⊥
σ ∩ C�u(G),

lim
α

〈
f,

(
u δxα

) ◦ (u δa)
〉

= lim
α

〈
u (a)Raf, u δxα

〉
= 〈u (a)Raf,m〉 = 〈f,m ◦ u δa〉.
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So m ◦ u δa ∈ Dσ. Let n ∈ Dσ with n = w∗ − lim
β

u δxβ
. Then for f ∈

J⊥
σ ∩ C�u(G), we have

〈f,m ◦ n〉 = 〈m ◦ f, n〉
= lim

β

〈
m ◦ f, u δxβ

〉

= lim
β

〈
f, m ◦ u δxβ

〉

since m◦f ∈ J⊥
σ ∩C�u(G). Hence m◦n = w∗ − lim

β
m◦u δxβ

∈ Dσ and (Dσ, ◦)

is a compact left topological semigroup.

To see that Πσ is a subsemigroup of Dσ, we need to show that s, s′ ∈ Πσ

implies s ◦ s′ ∈ Πσ. For this, it suffices to show that s ◦ s′ is multiplicative on
the abelian C∗-algebra J⊥

σ ∩C�u(G) by the remarks before Proposition 2.2.20.
Let f, g ∈ J⊥

σ ∩ C�u(G) and a ∈ G. Then we have

s ◦ (f ×
u
g)(a) =

〈
Ra(f ×

u
g), s

〉
=

〈
RaPσ(f u g), s

〉
=

〈
Pσ

(
Ra(f u g)

)
, s

〉
=

〈
u(a)Pσ

(
(Raf)u (Rag)

)
, s

〉
=

〈
u (a)(Raf ×

u
Rag), s

〉
= u (a)

〈
Raf, s

〉 〈
Rag, s

〉
.
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Now let s′ = w∗ − lim
β
u δyβ

. Then

〈
f ×

u
g, s ◦ s′〉 =

〈
s ◦ (f ×

u
g), s′〉

= lim
β

〈
s ◦ (f ×

u
g), u δyβ

〉
= lim

β
u (yβ)

(
s ◦ (f ×

u
g)(yβ)

)
= lim

β
u (yβ)

〈
Ryβ

f, s
〉
u (yβ)

〈
Ryβ

g, s
〉

= lim
β

〈
s ◦ f, u δyβ

〉 〈
s ◦ g, u δyβ

〉
=

〈
f, s ◦ s′〉 〈

g, s ◦ s′〉
which gives s ◦ s′ ∈ Πσ. It follows that Πσ is a compact left topological
semigroup and has an idempotent [23]. The structure stated in the theorem now
follows from [71]. �

Having shown that Πσ is a semigroup above, one can, in principle, reduce
the later arguments concerning the semigroup properties of Πσ , whenever u ∈
J⊥

σ is a character, to the case in which σ is a probability measure in the
following way. We can write σ = u.σ1 where σ1 is a probability measure on
G , and define a linear isometry T : J⊥

σ ∩ C�u(G) −→ J⊥
σ1

∩ C�u(G) by

(Tf)(x) = u(x−1)f(x)

for f ∈ J⊥
σ ∩ C�u(G) and x ∈ G . Then the dual map T ∗ satisfies T ∗(δx) =

uδx for x ∈ G and restricts to semigroup homeomorphisms τ : Dσ1 −→ Dσ

and τ : Πσ1 −→ Πσ such that τ is equivariant:

τ(x.s) = x.τ(s) (x ∈ G, s ∈ Πσ1)

where x.s = R∗
x−1(s) and x.τ(s) = 〈Rx−1(u), τ(s)〉R∗

x−1(τ(s)) . Although it is
simpler to deduce the semigroup results for Πσ1 , we prefer a direct approach
involving u to avoid lengthy conversion of the results for σ1 to those for σ

via τ .

Example 2.3.4. If G is a compact group, then Dσ = {u δx : x ∈ G}− =
{u δx : x ∈ G} since the map x ∈ G �→ u δx ∈ (J⊥

σ )∗ is continuous. By
Proposition 2.2.21, we have Πσ = Dσ which is now a compact group and a
homomorphic image of G.
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Example 2.3.5. If G = (Z ,+) and σ = δ0, then J⊥
σ = �∞(Z) and Πσ =

β Z is the Stone-Čech compactification of Z. In fact, for any locally compact
group G, we have J⊥

δe
= L∞(G) and Πδe is the spectrum of C�u(G) which

has been studied in [57].

Example 2.3.6. If G = SL(2, IR) and σ is a non-degenerate spread out
probability measure on G, then Πσ = G/K is the circle S1 where K is
the compact subgroup of rotations (cf.[68, p. 211]). We recall that a measure
σ is spread out if there exists n ∈ IN such that σn and λ are not mutually
singular.

2.4. Almost periodic harmonic functions

Having studied the uniformly continuous bounded σ-harmonic functions and
their Poisson space Πσ, we now consider the smaller class of almost periodic
harmonic functions and their algebraic structures.

A function f ∈ L∞(G) is called almost periodic (resp. weakly almost
periodic) if the set Rf = {Rxf : x ∈ G} of its right translates is relatively
compact in the norm topology (resp. weak topology) of L∞(G). The defini-
tion is equivalent to saying that the set of left translates Lf = {Lxf : x ∈ G}
is relatively compact. The almost periodic and weakly almost periodic func-
tions form C∗-subalgebras of L∞(G), and will be denoted by AP(G) and
WAP(G) respectively. Let Cu(G) = C�u(G) ∩ Cru(G). It is well-known that
AP(G) ⊂ WAP(G) ⊂ Cu(G). See also [9]. If u ∈ J⊥

σ is a continuous char-
acter on G , then it also belongs to AP(G) in which case J⊥

σ ∩ AP(G) is a
C∗-subalgebra of J⊥

σ . We have the following more general result.

Proposition 2.4.1. If the identity u ∈ J⊥
σ is in AP(G), then J⊥

σ ∩ AP(G)
is a C∗-subalgebra of J⊥

σ . The same result holds for WAP(G).

Proof. Let f, g ∈ J⊥
σ ∩ AP(G). We need to show that f ×

u
g ∈ J⊥

σ ∩ AP(G),

that is, Rf×
u

g = {Rx(f ×
u
g) : x ∈ G} is relatively compact in J⊥

σ . For x ∈ G,

let τ̃x : J⊥
σ → J⊥

σ be the algebra homomorphism as defined in (2.5):

〈τ̃xf, s〉 = 〈Rxu, s〉 〈Rxf, s〉

for s ∈ Πσ. Since u ∈ AP(G), {Rxu : x ∈ G} is relatively compact in
J⊥

σ ∩ C�u(G) � C(Πσ) and it follows from the above identity and the Arzelà-
Ascoli Theorem that {τ̃xf : x ∈ G} is relatively compact in J⊥

σ ∩ C�u(G).
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Another application of the Arzelà-Ascoli Theorem to the identity

〈 τ̃x(f ×
u
g), s〉 = 〈 τ̃xf, s〉 〈 τ̃xg, s〉 (s ∈ Πσ)

(see the proof of Lemma 2.2.10) implies that { τ̃x(f ×
u
g) : x ∈ G} is relatively

compact in J⊥
σ ∩ C�u(G). Finally

〈Rx(f ×
u
g), s〉 = 〈Rxu, s〉 〈 τ̃x(f ×

u
g), s〉 for s ∈ Πσ

again implies that {Rx(f ×
u
g) : x ∈ G} is relatively compact in J⊥

σ ∩ C�u(G).

Hence f ×
u
g ∈ AP(G).

For the case of u ∈ WAP(G), we note that for bounded sequences in
C(Πσ), weak convergence is the same as pointwise convergence. Using the
same identities as before, one can show that {Rx(f ×

u
g) : x ∈ G} is relatively

weakly compact in J⊥
σ ∩ C�u(G) whenever f, g ∈ J⊥

σ ∩ WAP(G). �

Given u ∈ J⊥
σ ∩C�u(G), we have shown in Theorem 2.2.17 that there is a

net {µα} in the convex hull co {σn : n ≥ 1} such that (µα∗fug) converges to
f×

u
g in the weak∗-topology σ

(
L∞(G), L1(G)

)
, for every f, g ∈ J⊥

σ ∩C�u(G).

Lemma 2.4.2. (i) Given u ∈ WAP(G) and the net {µα} in Theorem 2.2.17,
then the net (µα ∗ fug) converges weakly to f ×

u
g for every f, g ∈ J⊥

σ ∩
WAP(G).

(ii) Given u ∈ AP(G), the net µα ∗ fug norm-converges to f ×
u
g for

every f, g ∈ J⊥
σ ∩ AP(G).

Proof. It suffices to show (i). Similar arguments apply to (ii). Let h = fug

and Kh = {
n∑

i=1
λiLxih : xi ∈ G,

n∑
i=1

|λi| ≤ 1}. Then µα ∗ h ∈ Kh as in The-

orem 2.2.17, where the pointwise closure Kh is compact in the weak topology
of C�u(G) since h ∈ WAP(G). Hence the weak topology agrees with the
weak∗-topology of Kh which completes the proof. �

Definition 2.4.3. Whenever J⊥
σ ∩WAP(G) or J⊥

σ ∩AP(G) is a C∗-subalgebra
of (J⊥

σ ,×
u
), we denote their respective pure state spaces by Πw

σ and Πa
σ. In

this case, the action of G on them is understood to be the natural one induced
by the action (x, t) ∈ G× Πσ �→ x · t = 〈Rxu, t〉R∗

x−1(t).
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Let X be a compact Hausdorff space with uniformity U . An action of
G on X is equicontinuous if for any y ∈ X and U ∈ U , there exists V ∈ U
such that (x, y) ∈ V implies (a · x, a · y) ∈ U for all a ∈ G.

Let u ∈ J⊥
σ ∩ C�u(G) � C(Πσ). We recall that the weak∗ topology

on
(
J⊥

σ ∩ C�u(G)
)∗ is defined by the seminorms nf : s �→ |〈f, s〉| where

f ∈ J⊥
σ ∩ C�u(G) and s ∈ (

J⊥
σ ∩ C�u(G)

)∗
. Since 〈 τ̃xf, s〉 = 〈f, x−1 · s〉 for

f ∈ J⊥
σ ∩ C�u(G) and s ∈ Πσ, by (2.5), we see that the action of G on Πσ

(always equipped with the weak∗-topology) is equicontinuous if, and only if,
{ τ̃xf : x ∈ G} is equicontinuous in C(Πσ) for each f ∈ J⊥

σ ∩ C�u(G). This
leads to the following result.

Proposition 2.4.4. Let u ∈ J⊥
σ ∩ C�u(G). If the action of G on Πσ is

equicontinuous, then J⊥
σ ∩ C�u(G) = J⊥

σ ∩ AP(G). If u ∈ AP(G), then the
action of G on Πa

σ is equicontinuous.

Proof. Let f ∈ J⊥
σ ∩ C�u(G). Then the equicontinuity of the action implies

that { τ̃xf : x ∈ G} is equicontinuous in C(Πσ), and hence relatively compact
since it is bounded. So f ∈ AP(G) by arguments similar to the proof of
Proposition 2.4.1.

Given u ∈ AP(G), then for each f ∈ J⊥
σ ∩ AP(G) � C(Πa

σ), the set
{ τ̃xf : x ∈ G} is relatively norm-compact in C(Πa

σ), and in particular, equicon-
tinuous. Therefore G acts on Πa

σ equicontinuously as before. �

Let Sσ be the state space of J⊥
σ ∩ C�u(G) and let G act on Sσ via

(x, t) �→ x · t = 〈Rx−1u, t〉R∗
x−1(t). Given u ∈ WAP(G), we let Sw

σ be the
state space of the C∗-algebra J⊥

σ ∩WAP(G). The above action of G induces
a natural action on Sw

σ .

Proposition 2.4.5. (i) There is a locally convex topology T for the dual pair(
J⊥

σ ∩WAP(G)
)∗ and J⊥

σ ∩WAP(G) such that the action of G on (Sw
σ , T )

is equicontinuous.
(ii) If there is a locally convex topology T on the dual pair

(
Jσ ∩C�u(G)

)∗

and J⊥
σ ∩C�u(G) such that the action of G on (Sσ, T ) is equicontinuous, then

J⊥
σ ∩ WAP(G) = J⊥

σ ∩ C�u(G).

Proof. (i) For f ∈ J⊥
σ ∩WAP(G), define a seminorm pf on

(
J⊥

σ ∩WAP(G)
)∗

by

pf (t) = sup {| 〈 τ̃xf, t〉 | : x ∈ G}.

Let T be the locally convex topology on
(
J⊥

σ ∩ WAP(G)
)∗ defined by the

seminorms {pf : f ∈ J⊥
σ ∩WAP(G)}. Since f ∈ WAP(G) implies that { τ̃xf :
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x ∈ G} is relatively compact in J⊥
σ ∩ WAP(G), it follows from Mackey-Arens

Theorem [69] that T is a topology for the dual pair
(
(J⊥

σ ∩ WAP(G))∗, (Jσ ∩
WAP(G))

)
and G acts equicontinuously on (Sw

σ , T ).
(ii) As in (2.4), for each x ∈ G, there is a map τx : Sσ → (

J⊥
σ ∩C�u(G)

)∗

such that

〈Rxu, s〉 〈f, τx(s)〉 = 〈Rxf, s〉

for f ∈ J⊥
σ ∩ C�u(G) and s ∈ Sσ. Write E =

(
J⊥

σ ∩ C�u(G)
)∗ and let

G = {τx : x ∈ G} ⊂ ESσ . Then the convex hull co G has the same clo-
sure co G in (E,w∗)Sσ and in (E, T )Sσ . Since the action of G on (Sσ, T )
is equicontinuous, the family G is equicontinuous in (E, T )(Sσ,T ). Therefore
co G consists of continuous maps from (Sσ, T ) to (E, T ) which are also con-
tinuous maps from (Sσ, w

∗) to (E,w∗) , by convexity of Sσ . Hence the closure
G in (E,w∗)Sσ consists of maps continuous from (Sσ, w

∗) to (E,w∗). Let
f ∈ J⊥

σ ∩ C�u(G) ≈ C(Πσ). Then the map γ ∈ G �→ fγ ∈ C(Πσ), where
fγ(s) = 〈f, γ(s)〉 for s ∈ Πσ, is continuous in the weak topology of C(Πσ).
Therefore {fγ : γ ∈ G} is weakly compact in C(Πσ) and it follows from
{τ̃xf : x ∈ G} ⊂ {fγ : γ ∈ G} that f ∈ WAP(G). �

We do not know if Sσ can be replaced by Πσ in Proposition 2.4.5 (ii).

Proposition 2.4.6. Given that u ∈ WAP(G) (resp. AP(G)), then there is
a G-invariant probability measure on Πw

σ (resp. Πa
σ).

Proof. Let T be the locally convex topology on
(
J⊥

σ ∩WAP(G)
)∗ defined by

the seminorms {pf : f ∈ J⊥
σ ∩ WAP(G)}, as in the proof of Proposition 2.4.5.

We observe that the action of G on (Sw
σ , T ) is distal, that is, given a net

(aα) in G with lim
α

(aα · s − aα · t) = 0 in the topology T , we have s = t.

Indeed, for any ε > 0 and f ∈ J⊥
σ ∩ WAP(G), there exists α0 such that

pf (aα0 · s−aα0 · t) < ε, in other words, sup{|〈τ̃xf, aα0 · s−aα0 · t〉| : x ∈ G} < ε

and for x = aα0 ∈ G, we have |〈f, s − t〉| < ε which gives s = t. By Ryll-
Nardzewski fixed point theorem, there exists ϕ ∈ (

J⊥
σ ∩ WAP(G)

)∗ such that
ϕ(u) = 1 = ‖ϕ‖ and a · ϕ = ϕ for all a ∈ G. So the probability measure on
Πw

σ representing ϕ is the required G-invariant measure. The case for Πa
σ is

proved similarly. �

We have studied conditions in which the Poisson space Πσ coincides with
Πa

σ or Πw
σ . We now study their relationships further under the condition that

J⊥
σ is translation invariant.

Definition 2.4.7. We call a semitopological semigroup S amenable if Cb(S)
has an invariant mean µ, that is, there exists a positive µ ∈ Cb(S)∗ such
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that ‖µ‖ = 1 and µ(sf) = µ(fs) = µ(f) for f ∈ Cb(S) and s ∈ S, where
sf(t) = f(st) and fs(t) = f(ts) for t ∈ S.

Given g ∈ J⊥
σ ∩ WAP(G) ⊂ J⊥

σ ∩ C�u(G) and m ∈ (
J⊥

σ ∩ WAP(G)
)∗
,

we can define, as in (2.2), m ◦ f ∈ J⊥
σ ∩ WAP(G) by

m ◦ f(x) = 〈Rxf,m〉

for x ∈ G. Then
(
J⊥

σ ∩ WAP(G)
)∗ is a Banach algebra in the following

product

〈f,m ◦ n〉 = 〈m ◦ f, n〉

where f ∈ J⊥
σ ∩ WAP(G) and m,n ∈ (

J⊥
σ ∩ WAP(G)

)∗
. Let Dw

σ be the
restriction to J⊥

σ ∩ WAP(G) of the functionals in Dσ = {uδx : x ∈ G}− (cf.
Theorem 2.3.3).

Theorem 2.4.8. Let J⊥
σ be translation invariant with identity u which is a

continuous character on G . Then
(i) (Dw

σ , ◦) is a compact semitopological semigroup where the product ◦ is
that of

(
J⊥

σ ∩ WAP(G)
)∗ defined above;

(ii) (Πw
σ , ◦) is an amenable closed subsemigroup of Dw

σ .

(iii) If (Πσ, ◦) is a compact semitopological semigroup, then J⊥
σ ∩WAP(G) =

J⊥
σ ∩ C�u(G).

Proof. (i) Arguments similar to those in the proof of Theorem 2.3.3 show that
(Dw

σ , ◦) is a semigroup. We show that multiplication in Dw
σ is separately con-

tinuous. Let f ∈ J⊥
σ ∩WAP(G) and write uLf = {u(x)Lxf : x ∈ G}. Let γ ∈

Dw
σ with γ = w∗ − lim

α
uδxα . Then γ ◦f(x) = 〈Rxf, γ〉 = lim

α
〈Rxf, u(x)δxα〉 =

lim
α
u(x)Lxαf(x) for x ∈ G. So γ ◦ f is in the pointwise closure of uLf . But

uLf is relatively weakly compact as f ∈ WAP(G), the pointwise and weak
topology agree on the weak-closed convex hull of uLf . Now let (γα) be a net
in Dw

σ w∗-converging to γ ∈ Dw
σ . Then (γα◦f) converges to γ◦f pointwise

in uLf , and hence weakly. Therefore, for any γ′ ∈ Dw
σ , we have

〈f, γα ◦ γ′〉 = 〈γα ◦ f, γ′〉 → 〈γ ◦ f, γ′〉 = 〈f, γ ◦ γ′〉

which gives separate w∗-continuity of ◦ on Dw
σ .

(ii) We show that Πw
σ is amenable. By the proof of Proposition 2.4.6,

there exists ϕ ∈ C(Πw
σ )∗ such that ϕ(u) = 1 = ‖ϕ‖ and a · ϕ = ϕ for all

a ∈ G. Hence for f ∈ J⊥
σ ∩ WAP(G) � C(Πw

σ ) and a ∈ G, we have

〈f, ϕ〉 = 〈f, a · ϕ〉 = 〈Rau, ϕ〉 〈Raf, ϕ〉 = u(a) 〈Raf, ϕ〉
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by multiplicativity of u. Let t ∈ Dw
σ . By separate continuity of ◦, we can

define ft ∈ C(Πw
σ ) by ft(s) = 〈f, s ◦ t〉 for s ∈ Πw

σ . Then for t = uδa, we
have

ft(s) = u(a) 〈f, s ◦ δa〉 = u(a) 〈s ◦ f, δa〉 = u(a)(s ◦ f)(a) = u(a) 〈Raf, s〉.

Hence 〈ft, ϕ〉 = u(a) 〈Raf, ϕ〉 = 〈f, ϕ〉.
We note that the set {ft : t ∈ Dw

σ } is weakly compact in C(Πw
σ ) since

it is bounded and pointwise compact, by compactness of Dw
σ and continuity

of the map t ∈ Dw
σ �→ ft ∈ C(Πw

σ ). It follows that, given s ∈ Πw
σ with s =

w∗ − lim
α
uδaα

, then fuδaα
→ fs weakly and 〈fs, ϕ〉 = lim

α
〈fuδaα

, ϕ〉 = 〈f, ϕ〉.
Analogous to the proof of Proposition 2.4.6, we can find ψ ∈ C(Πw

σ )∗

such that ψ(u) = ‖ψ‖ = 1, and

〈f, ψ〉 = u(a) 〈Laf, ψ〉

for f ∈ J⊥
σ ∩ WAP(G) and a ∈ G. As above, for t ∈ Dw

σ , we define tf ∈
C(Πw

σ ) by tf(s) = 〈f, t◦s〉 for s ∈ Πw
σ and obtain 〈tf, ψ〉 = 〈f, ψ〉 by similar

arguments.
Now we define µ ∈ C(Πw

σ )∗ by

µ(f) = 〈ψ · f, ϕ〉

where ψ · f ∈ C(Πw
σ ) is defined by

(ψ · f)(s) = 〈fs, ψ〉

for s ∈ Πw
σ . Then it is straightforward to verify that µ is an invariant mean.

(iii) Suppose multiplication in Πσ is separately continuous. We show
that J⊥

σ ∩ C�u(G) = J⊥
σ ∩ WAP(G). Let f ∈ J⊥

σ ∩ C�u(G) ≈ C(Πσ). We
show that {u(a)Raf : a ∈ G} is relatively weakly compact which would imply
f ∈ WAP(G). As in (ii), separate continuity implies that the set {ft : t ∈ Πσ}
is pointwise compact in C(Πσ) and therefore the pointwise closed convex hull
K = co {ft : t ∈ Πσ} is weakly compact. To complete the proof, it suffices
to show that u(a)Raf ∈ K for all a ∈ G. By Proposition 2.2.20, uδa =
w∗ − lim

α
µα where µα =

∑
j

λα
j s

α
j is a convex combination of the pure states
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sα
j ∈ Πσ. It follows that, for s ∈ Πσ,

〈u(a)Raf, s〉 = 〈s ◦ f, uδa〉

= lim
α

〈s ◦ f,
∑

j

λα
j s

α
j 〉

= lim
α

〈
∑

j

λα
j fsα

j
, s〉

which gives u(a)Raf ∈ K. �
As in the case of J⊥

σ ∩ WAP(G), we can define the multiplication ◦ on(
J⊥

σ ∩AP (G)
)∗ which then becomes a Banach algebra.

Theorem 2.4.9. Let J⊥
σ be translation invariant with identity u which is a

continuous character on G. Then (Πa
σ, ◦) is a compact group and there is a

continuous homomorphism from G onto a dense subgroup of Πa
σ.

Proof. As before, let Da
σ be the restriction of {uδx : x ∈ G}− to J⊥

σ ∩AP (G).
Then (Da

σ, ◦) is a compact semitopological semigroup. We show Da
σ is a group.

Since f ∈ J⊥
σ ∩ AP(G) implies that uLf = {u(x)Lxf : x ∈ G} is relatively

norm-compact in J⊥
σ ∩ AP(G) � C(Πa

σ), by arguments similar to those in the
proof of Theorem 2.4.8(i) with the fact that sα → s in Πa

σ implies sα◦f → s◦f
in norm, one can show that the multiplication ◦ is jointly continuous in Da

σ.

As ({uδx : x ∈ G}, ◦) is a group dense in Da
σ, it follows that (Da

σ, ◦) is a
group [40, p. 13].

We note that the restriction map Πw
σ → Πa

σ is a continuous homomor-
phism and since Πw

σ is amenable by Theorem 2.4.8, Πa
σ is also amenable. By

[8, p. 87], the minimal two-sided ideal K in Πa
σ must be a compact group.

Let θ be the identity of K. Then θ = θ ◦ θ = θ ◦ θ̃ where θ̃ is the identity of
Da

σ. By cancellation, θ̃ = θ and hence Πa
σ = K is a group with identity θ.

Finally we observe that, given s ∈ Πa
σ, we have s ◦ uδs = u(x)R∗

x(s) =
〈Rxu, s〉R∗

x(s) ∈ Πa
σ by multiplicativity of u and Lemma 2.2.10. Therefore we

can define a continuous map h : G → Πa
σ by h(x) = θ◦uδx for x ∈ G. Then h

is a homomorphism since h(xy) = u(xy)δxy = (θ◦uδx)◦uδy = (θ◦uδx)◦(θ◦uδy).
Since Πa

σ ⊂ {uδx : x ∈ G}−, we have h(G) dense in Πa
σ. �

We conclude this section by showing that Πa
σ is (isomorphic to) the min-

imal two-sided ideal of Πw
σ .

Theorem 2.4.10. Let J⊥
σ be translation invariant with identity u which is a

continuous character on G. Then Πa
σ is topologically isomorphic to the mini-

mal two-sided ideal M of Πw
σ .
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Proof. The restriction map r : Πw
σ → Πa

σ is easily seen to be a continuous
homomorphism. We show that r restricts to the required isomorphism on M.

By [8, p. 87], M is a compact group with identity θ say. We note that
M ◦ uδx ⊂ M for every x ∈ G. Indeed, we have θ ◦ uδx ∈ Πw

σ as before and
s ∈ M implies

s ◦ uδx = (s ◦ θ) ◦ uδx = s ◦ (θ ◦ uδx) ∈ M

since M is an ideal in Πw
σ . Therefore, as in Theorem 2.4.8, we can define a

continuous homomorphism h : G → M by h(x) = θ ◦ uδs with h(G) dense
in M.

The map h induces a linear isometry f ∈ C(M) �→ f · h ∈ Cb(G) with
range in J⊥

σ ∩ AP(G) where we define (f · h)(x) = u
(
x−1f(h(x))

)
for x ∈ G.

To see the latter, we first show that f · h ∈ AP(G). For t ∈ M, define
ft ∈ C(M) by ft(s) = f(s ◦ t) for s ∈ M. Then for x ∈ G, we have

Rs(f · h) = u(x−1)fh(x) · h.

Since M is compact, the set {ft · h : t ∈ M} is norm-compact in Cb(G) and
so is its subset {fh(x) · h : x ∈ G}−. It follows that {Rx(f · h) : x ∈ G} is
relatively norm-compact in Cb(G) and f ·h ∈ AP(G). To see that f ·h ∈ J⊥

σ ,

we let f̃ ∈ C(Πw
σ ) � J⊥

σ ∩ WAP(G) be an extension of f ∈ C(M). Then for
x ∈ G, we have

(σ ∗ f · h)(x) =
∫

G

(f · h)(y−1x)dσ(y)

=
∫

G

u(x−1y)f
(
h(y−1x)

)
dσ(y)

=
∫

G

u(x−1y) 〈f, θ ◦ uδy−1x〉 dσ(y)

=
∫

G

u(x−1y)u(y−1x) 〈f̃ , θ ◦ δy−1x〉 dσ(y)

=
∫

G

(θ ◦ f̃)(y−1x)dσ(y)

= θ ◦ f̃(x) = u(x−1) 〈f, θ ◦ uδx〉 = (f · h)(x)

since θ ◦ f̃ ∈ J⊥
σ . So f · h ∈ J⊥

σ .
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Now we show that the restriction map r is injective on M. Let s, t ∈ M

with s �= t. Then there exists f ∈ C(M) with f(s) �= f(t). Note that
f · h = θ ◦ f as (f · h)(x) = u(x−1)f(θ ◦ uδx) = (θ ◦ f)(x) for x ∈ G. Since
f · h ∈ J⊥

σ ∩ AP(G) � C(Πa
σ), we have 〈f · h, r(s)〉 = 〈f · h, s〉 = 〈θ ◦ f, s〉 =

〈f, θ ◦ s〉 = 〈f, s〉 �= 〈f, t〉 = 〈f · h, r(t)〉 which gives r(s) �= r(t).
Finally, for x ∈ G, we have r(θ ◦ uδx) = r(θ) ◦ uδx and r(θ) is the

identity of Πa
σ. So r(M) contains the dense subset {r(θ) ◦ uδx : x ∈ G} of

Πa
σ which implies that r is onto Πa

σ. �

2.5. Distal harmonic functions

In this section, we study harmonic functions which are distal. Let f ∈
C�u(G) and let Rf denote the pointwise closure of Rf = {Rxf : x ∈ G}. We
call f a right distal function if the action (x, h) ∈ G × Rf �→ Rxh ∈ Rf is
right distal which means that, if h1, h2 ∈ Rf and

lim
α
Rxαh1 = lim

α
Rxαh2 (pointwise)

then h1 = h2. We note that AP(G) ⊂ D(G), but the reverse inclusion is
false, for instance, the function f(n) = exp (2πin2θ) is distal on Z, but not
almost periodic if θ is irrational (cf. [50]). The set D(G) of all right distal
functions on G forms a translation invariant C∗-subalgebra of C�u(G). If
J⊥

σ is left-translation invariant, then so is J⊥
σ ∩D(G).

As before, we assume that the identity u ∈ J⊥
σ is a continuous character.

Then u ∈ J⊥
σ ∩D(G). Let S = {µ ∈ (

J⊥
σ ∩D(G)

)∗ : ‖µ‖ = µ(u) = 1} be the
state space of J⊥

σ ∩D(G) and let

ρ :
(
J⊥

σ ∩ C�u(G)
)∗ → (

J⊥
σ ∩D(G)

)∗

be the restriction map. Let Πd
σ = ρ(Πσ) which is w∗-compact.

Since ρ is onto by the Hahn-Banach Theorem, we see that S is the
w∗-closed convex hull of Πd

σ and hence Πd
σ contains the extreme points of S.

Lemma 2.5.1. Let s ∈ Πd
σ and f ∈ J⊥

σ ∩ D(G). Then the function (s ◦
f)(x) = 〈Rxf, s〉 is in J⊥

σ ∩D(G).

Proof. We have s ◦ f ∈ J⊥
σ as before. We show that s ◦ f ∈ D(G). Let

s̃ ∈ Πσ be such that ρ(s̃) = s. By Proposition 2.2.20, s̃ is the w∗-limit
of a net (u δxα

)α with xα ∈ G. We note that s̃ admits an extension to
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˜̃s ∈ C�u(G)∗ such that ˜̃s (11) = lim
β
u(xβ) for a subnet (xβ) of (xα), and

that (δxβ
) w∗-converges to some θ ∈ (

J⊥
σ ∩ C�u(G)

)∗
. Then s̃ = ˜̃s (11)θ and

s ◦ f = s̃ ◦ f = ˜̃s (11)(θ ◦ f) ∈ D(G) by [8, Theorem 4.6.3]. �

It follows from Lemma 2.5.1 that (Πd
σ, ◦) is a compact left topological

semigroup where the product ◦ is defined, as before, by

〈f, s ◦ t〉 = 〈s ◦ f, t〉

for f ∈ J⊥
σ ∩D(G) and s, t ∈ Πd

σ.

Theorem 2.5.2. Let J⊥
σ be translation invariant with identity u which is a

continuous character on G. Then Πd
σ is a compact left topological semigroup

such that

s ◦ ε ◦ θ = s ◦ θ

for s, θ ∈ Πd
σ and for any idempotent ε in Πd

σ.

(i) If Πd
σ has a right identity, then Πd

σ is isomorphic to a direct product of
a left zero semigroup and a group.

(ii) If Πd
σ has a left identity, then Πd

σ is isomorphic to a direct product of a
right zero semigroup and a group.

(iii) If Πd
σ has an identity, then it is a group.

Proof. Let s̃, θ̃ ∈ Πσ with ρ(s̃) = s and ρ(θ̃) = θ. Since {t ∈ Πσ : ρ(t) =
ε} is a closed subsemigroup of Πσ, it contains an idempotent ε̃ such that
ρ(ε̃) = ε. Let f ∈ J⊥

σ ∩ D(G). Since {u δx : x ∈ G} is weak∗-dense in Πσ

by Proposition 2.2.20, (s̃ ◦ ε̃) ◦ f and s̃ ◦ f are in the pointwise closure of
{u (x)Lx−1f : x ∈ G}. Since (s̃◦ ε̃)◦ ε̃◦f = (s̃◦ ε̃)◦f, we have (s̃◦ ε̃)◦f = s̃◦f
because f is distal. Consequently, 〈f, s̃◦ ε̃◦u δx〉 = 〈f, s̃◦u δx〉 for all x ∈ G.

Passing to weak∗-limit, we have 〈f, s̃ ◦ ε̃ ◦ θ̃〉 = 〈f, s̃ ◦ θ̃〉. As f ∈ J⊥
σ ∩D(G)

was arbitrary, we have s ◦ ε ◦ θ = s ◦ θ.
(i) If Πd

σ has a right identity, then by above, we have ε ◦ θ = θ for every θ

in Πd
σ and every idempotent ε in Πd

σ. By Ruppert’s result [71], Πd
σ cannot

have any proper left ideal and is therefore isomorphic to a direct product of a
left zero semigroup and a group (cf. [8, 1.2.19]). (ii) is proved similarly and
(iii) follows from (i) and (ii). �

Remark. If σ is a probability measure in Theorem 2.5.2 and J⊥
σ a C∗-subalgebra

of L∞(G), then Πd
σ is a group since δe is an identity of Πd

σ in this case.
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Given s ∈ Πσ with s = w∗ − lim
α
u (xα)δxα as in Proposition 2.2.20, we

noted in the proof of Lemma 2.5.1 that s admits an extension to s̃ ∈ C�u(G)∗

such that s̃(11) = lim
β
u (xβ) for a subnet (xβ) of (xα). We write s(11) =

s̃(11) = lim
β
u(xβ).

Let f ∈ J⊥
σ ∩C�u(G) and let Lf be the pointwise closure of Lf = {Lxf :

x ∈ G}. Suppose J⊥
σ is also left-translation invariant. Then Lf ⊂ J⊥

σ and
the set

Lσ
f = {s(11)(s ◦ f) : s ∈ Πσ}

is contained in Lf since for s = w∗ − lim
α
u (xα)δxα and x ∈ G, we have

s(11)(s ◦ f)(x) = lim
β
u(xβ) 〈Rxf, u (xβ)δxβ

〉

= lim
β

(
Lx−1

β
f
)
(x).

Note that for a ∈ G, we have La−1

(
s(11)(s ◦ f)

)
= t(11)(t ◦ f) where t =

〈Rau, s〉R∗
as ∈ Πσ.

Given f ∈ J⊥
σ ∩ C�u(G), we call f left σ-distal if the action (x, h) ∈

G× Lσ
f �→ Lx−1h ∈ Lσ

f is left distal which means that, for h1, h2 ∈ Lσ
f ,

lim
α
Lxαh1 = lim

α
Lxαh2 (pointwise)

implies h1 = h2.

Lemma 2.5.3. Let J⊥
σ be translation invariant with identity u which is a

continuous character. Let G act transitively on Πσ. Then Πσ is isomorphic
to a direct product of a right zero semigroup and a group.

Proof. Let R be a minimal right ideal of Πσ and let p ∈ Πσ be an idempotent
such that R = pΠσ. For x ∈ G, we have

x · p = 〈Rx−1u, p〉 (
p ◦ δx−1)

and hence x·p = x·(p◦p) = 〈Rx−1u, p〉 (
p◦(p◦δx−1)

)
= 〈Rx−1u, p〉 〈Rx−1u, p〉 (

p◦
(x · p)) = p ◦ (x · p) ∈ R. Given s ∈ Πσ, we have s = x · p ∈ R for some
x ∈ G by transitivity of the group action. So R = Πσ and Πσ has no proper
right ideal. By Theorem 2.3.3, Πσ has an idempotent and it follows from
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[8, Theorem 1.2.19] that Πσ is isomorphic to a direct product of a right zero
semigroup and a group. �

Theorem 2.5.4. Let J⊥
σ be translation invariant with identity u which is a

continuous character. If G acts transitively on Πσ, then every f ∈ J⊥
σ ∩

C�u(G) is left σ-distal.

Proof. Let f ∈ J⊥
σ ∩ C�u(G). By Lemma 2.5.3, we have Πσ � E ×H where

E is a right zero semigroup and H is a group. Hence for s, t ∈ Πσ and for
any idempotent p ∈ Πσ, we have

s ◦ p ◦ t = s ◦ t.

Let h1, h2 ∈ Lσ
f with lim

α
Lx−1

α
h1 = lim

α
Lx−1

α
h2 pointwise. We need to show

h1 = h2. Let h1 = s1(11)(s1 ◦ f) and h2 = s2(11)(s2 ◦ f) for some s1, s2 ∈ Πσ.

Passing to a subnet, we may assume that the net (u δxα)α w∗-converges to
some θ ∈ Dσ ⊂ (

J⊥
σ ∩ C�u(G)

)∗
. Then

〈Rxh1, θ〉 = lim
α

〈Rxh1, u δxα〉

= lim
α
u(xα)Lx−1

α
h1(x)

= lim
α
u(xα)Lx−1

α
h2(x)

= 〈Rxh1, θ〉

for every x ∈ G which gives θ ◦ h1 = θ ◦ h2, that is,

s1(11)θ ◦ (s1 ◦ f) = s2(11)θ ◦ (s2 ◦ f).

Hence for any µ ∈ Dσ, we have

s1(11) 〈s1 ◦ f, θ ◦ µ〉 = s2(11) 〈s2 ◦ f, θ ◦ µ〉.

Since u is a character, we have Πσ ◦ (u δx) ⊂ Πσ for x ∈ G and hence Πσ is
a closed right ideal of Dσ. So Πσ contains an idempotent q such that q ◦Dσ

is a minimal right ideal of Dσ (cf. [71]).
In particular, we have q ◦ Dσ = q ◦ (θ ◦ Dσ). Now, for any t ∈ Πσ, we

have

s1(11) 〈s1 ◦ f, t〉 = s1(11) 〈f, s1 ◦ f〉
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= s1(11) 〈f, s1 ◦ q ◦ t〉

= s1(11) 〈s1 ◦ f, q ◦ t〉

= s1(11) 〈s1 ◦ f, q ◦ θ ◦ t′〉 for some t′ ∈ Dσ

= s1(11) 〈θ ◦ q ◦ (s1 ◦ f), t′〉

= s1(11) 〈s1 ◦ f, θ ◦ (q ◦ t′)〉

= s2(11) 〈s2 ◦ f, θ ◦ (q ◦ t′)〉

= s2(11) 〈s2 ◦ f, t〉

which gives h1 = h2. �

As in the case of left σ-distal functions, we can define a left distal function
f ∈ J⊥

σ ∩ C�u(G) by the left distal action of G on Lf , given that J⊥
σ is

left-translation invariant. If Πσ ∩ {u δx : x ∈ G} �= ∅, then we have Πσ =
{u δx : x ∈ G}− by Proposition 2.2.21, and Lf = Lσ

f for if g = lim
α

Lx−1
α
f

pointwise on G, then a subnet of (u δxα
) w∗-converges to some θ ∈ Πσ and

g = θ(11)(θ ◦ f) ∈ Lσ
f . Therefore, in this case, the left distal functions and the

left σ-distal functions in J⊥
σ ∩ C�u(G) coincide.

Theorem 2.5.5. Let J⊥
σ be translation invariant with identity u which is a

continuous character. The following conditions are equivalent:

(i) Πσ is isomorphic to a direct product of a right zero semigroup and a
group;

(ii) Πσ has a left identity and every f ∈ J⊥
σ ∩ C�u(G) is left σ-distal.

Proof. (i) ⇒ (ii). Let Πσ � E ×H where E is a right zero semigroup and
H is a group with identity θ. Then the proof of Theorem 2.5.4 implies that
every f ∈ J⊥

σ ∩C�u(G) is left σ-distal. Pick any s ∈ E. Then (s, θ) is a left
identity as (s, θ)(t, w) = (st, θw) = (t, w) for (t, w) ∈ E ×H.

(ii) ⇒ (i). Analogous to Theorem 2.5.2(i). �

2.6. Transitive group actions on Poisson spaces

Given a spread out probability measure σ on G, Azencott [5] has studied
the Poisson space Πσ in detail and in particular, he has shown that given two
such non-degenerate measures σ1 and σ2, their Poisson spaces Πσ1 and Πσ2
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are equivariantly homeomorphic if G acts transitively on them. In this section,
we supplement Azencott’s results by applying our previous results on Πσ to the
case when σ is a probability measure. We show, for instance, that the above
homeomorphism of Azencott also preserves the semigroup structure.

We assume, throughout this section, that J⊥
σ is left-translation invariant

and that σ is an absolutely continuous probability measure with u = 11. Then
every f ∈ J⊥

σ ∩ C�u(G) = H(σ) has the Poisson representation

f(x) =
∫

Πσ

�
f (x−1 · s)dνσ(s) (x ∈ G)

where f ∈ H(σ) �→
�
f ∈ C(Πσ) is the Gelfand map which is a surjective linear

isometry and we denote its inverse map by
�
f �→

�
f · νσ. The group action is

given by x · t = R∗
x−1(t) for (x, t) ∈ G× Πσ. We also define x ·

�
f ∈ C(Πσ) by

(x ·
�
f )(t) =

�
f (x · t) for t ∈ Πσ.

Theorem 2.6.1. Let σ1 and σ2 be absolutely continuous probability measures
on a second countable group G such that

∞∪
n=1

supp σn
1 =

∞∪
n=1

supp σn
2 . Then

Πσ1 and Πσ2 are isomorphic as compact left topological semigroups if G acts
transitively on them.

Proof. By [5, Théorème II.4], there exists a homeomorphism ρ : Πσ1 → Πσ2

such that ρ(x · s) = x · ρ(s) for x ∈ G and s ∈ Πσ1 . Then ρ induces an

isometry, by composition,
�
f ∈ C(Πσ2) �→

�
f ◦ ρ ∈ C(Πσ1) which we will denote

by ρ∗. Let s, t ∈ Πσ1 . We need to show ρ(s◦ t) = ρ(s)◦ρ(t). Let f ∈ H(σ2).
Then we have 〈f, ρ(s) ◦ ρ(t)〉 = 〈ρ(s) ◦ f, ρ(t)〉 where, for x ∈ G, we have

(
ρ(s) ◦ f)

(x) = 〈Rxf, ρ(s)〉

= 〈f,R∗
x

(
ρ(s)

)〉
= 〈f, x−1 · ρ(s)〉

= 〈
�
f , ρ(x−1 · s)〉 = ρ∗(

�
f )(x−1 · s).

Write h = ρ∗(
�
f )·νσ1 ∈ H(σ1). Then ρ∗(

�
f )(x−1 ·s) = 〈h, x−1 ·s〉 = 〈h,R∗

x(s)〉 =
〈Rxh, s〉 = (s ◦ h)(x) so s ◦ h = ρ(x) ◦ f ∈ H(σ2) ∩H(σ1). The group action
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induces the following action on the Poisson measure

(x · νσ2)(
�
f ) =

∫
Πσ2

�
f (x−1 · s)dνσ2(s).

By [5, Théorème II.4 and Lemme II.7], there is a sequence (xn) in G such
that t = w∗ − lim

n
xn · νσ1 and ρ(t) = w∗ − lim

n
xn · νσ2 . It follows that

〈f, ρ(s) ◦ ρ(t)〉 = 〈s0h, ρ(t)〉

= lim
n

〈s ◦ h, xn · νσ2〉

= lim
n

〈
�

s ◦ h · νσ2 , xn〉

= lim
n

〈s ◦ h, xn〉

= lim
n

〈
�

s ◦ h · νσ1 , xn〉

= 〈s ◦ h, t〉 =
�
h(s ◦ t)

= ρ∗(
�
f )(s ◦ t) = 〈f, ρ(s ◦ t)〉.

Hence ρ(s ◦ t) = ρ(s) ◦ ρ(t). �

Proposition 2.6.2. Let σ be a probability measure and let G act transitively
on Πw

σ . Then Πw
σ is a compact topological group and J⊥

σ ∩ WAP (G) = J⊥
σ ∩

AP (G).

Proof. As in the proof of Lemma 2.5.3, one can show that Πw
σ has no proper

right ideal and therefore coincides with its minimal two-sided ideal K which is
a compact topological group with identity θ say. Let f ∈ J⊥

σ ∩ WAP (G) �
C(Πw

σ ). Then for s ∈ Πw
σ , we have

〈Rxf, s〉 = 〈f,R∗
xs〉

= 〈f, x−1 · s〉

= 〈f, x−1 · (s ◦ θ)〉

= 〈f, s ◦ (x−1 · θ)〉 = fx−1·θ(s)
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where, as in the proof of Theorem 2.4.8, we define ft(s) = 〈f, s◦ t〉 for t ∈ Πw
σ .

Therefore we have

{Rxf : x ∈ G} ⊂ {ft : t ∈ Πw
σ }

and the latter is norm compact in C(Πw
σ ) by continuity of the map t ∈ Πw

σ �→
ft ∈ C(Πw

σ ). So f ∈ AP (G). �

Corollary 2.6.3. Let G be a semi-simple connected Lie group and let σ be an
absolutely continuous probability measure on G such that J⊥

σ is left-translation
invariant. Then every weakly periodic σ-harmonic function on G is constant.

Proof. By [27], G acts transitively on Πσ, and by [76; p. 184], we have
AP (G) = C11.

Proposition 2.6.4. Let σ1 and σ2 be absolutely continuous non-degenerate
probability measures on a second countable group G such that J⊥

σ1
and J⊥

σ2

are left-translation invariant. Then the compact topological groups Πa
σ1

and
Πa

σ2
are topologically isomorphic if G acts transitively on them.

Proof. The arguments in the proof of [5; Théorème II.4] can be used to show
that there exists an equivariant homeomorphism ρ : Πa

σ1
→ Πa

σ2
. The rest of

the proof is similar to that of Theorem 2.6.1. �

2.7. Examples

In contrast to the Choquet-Deny Theorem [11] asserting the absence of
nonconstant bounded σ-harmonic functions on abelian groups for adapted
probability measure σ, we have seen in Example 2.1.10 that nonconstant bounded
σ-harmonic functions on IR exist for complex adapted measures σ with
‖σ‖ = 1. Nevertheless, in this example, we still have dim J⊥

σ = 1, as shown
below.

Lemma 2.7.1. Let G be a locally compact abelian group and let σ be a com-
plex adapted measure on G with ‖σ‖ = 1 =

∫
G
χ(−x)dσ(x) for some χ ∈ Ĝ.

Then dim J⊥
σ = 1.

Proof. Let dµ(x) = χ(−x)dσ(x). Then ‖µ‖ = 1 = µ(G) and µ is an adapted
probability measure on G. Therefore dim J⊥

σ = 1 since f(x) ∈ J⊥
σ if, and

only if, χ(−x)f(x) ∈ J⊥
µ = C11 which implies J⊥

σ = Cχ. �
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Let C(IR) denote the space of complex continuous functions on IR . One
can describe J⊥

σ ∩ C(IR) completely, for σ ∈ M(IR) with compact support,
using the results of Schwartz [73] for mean periodic functions on IR which are
the complex continuous functions f satisfying σ ∗ f = 0 for some nonzero
complex measure σ on IR with compact support. We note that J⊥

σ = J⊥
σ ∩

C(IR) if σ is absolutely continuous.

Lemma 2.7.2. Let σ ∈ M(IR) have compact support. Then

J⊥
σ ∩ C(IR) = lin

( {
eiαx : α ∈ IR and

∫
IR
e−iαxdσ(x) = 1

}
∪ {0}

)

where the closure ‘ − ’ is taken in the uniform topology on compact sets in IR.

Proof. Let σ1 = σ − δ0 where δ0 is the point mass at 0. Let f ∈ J⊥
σ . Then

σ1 ∗ f = 0 and by Schwartz’s result [73, Théorème 6], we have

f ∈ lin {p(x)eiαx : α ∈ C and p(x)eiαx ∈ τ(f)}

where τ(f) denotes the closed linear span of {Rxf : x ∈ IR} in the uniform
topology on compact sets in IR and p(x) is a polynomial. If p(x)eiαx ∈
τ(f), then σ1 ∗ p(x)eiαx = 0 which occurs if, and only if, either p(x) = 0 or
σ̂1(α) = σ̂ ′

1(α) = · · · = σ̂
d(p)
1 (α) = 0 where σ̂′

1, . . . , σ̂
d(p)
1 are the derivatives

of the Fourier transform σ̂1(α) =
∫
IR e

−iαxdσ1(x) (α ∈ C) and d(p) is the
degree of p(x). But p(x)eiαx ∈ L∞(IR) implies that d(p) = 0 and α ∈ IR.
As σ̂ = σ̂1 + δ̂0, the result follows. �

Let σ be a probability measure on IR. Then the subgroup S of IR
generated by supp σ is either dense in IR or equal to dZ where d is the
largest positive number such that |x|

d ∈ Z for all x ∈ suppσ. By Choquet-Deny
Theorem, every point in S is a period of any bounded continuous σ-harmonic
function on IR. It follows that dimJ⊥

σ = 1 or dimJ⊥
σ = ∞. On the other

hand, if σ is a probability measure on Z and σ �= δ0, then the subgroup
of Z generated by supp σ is equal to dZ where d ∈ IN and it follows that
dimJ⊥

σ = d.

Example 2.7.3. Let a, b ∈ IR with a > b > 0. Let σ = 1
2δa + 1

2δb. Then by
the above remarks, we have J⊥

σ = C11 if a
b is irrational, and dimJ⊥

σ = ∞ if
a
b is rational. In the latter case, we have

J⊥
σ ∩ C(IR) = lin{eiαx : α ∈ IR, e−iαa + e−iαb = 2}
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by Lemma 2.7.2. For instance, if 2a = 3b and b = 1, then J⊥
σ ∩ C(IR) =

lin{e−4nπix : n ∈ Z}.
Example 2.7.4. Let σ ∈ M1(IR) be the measure

dσ(x) =
1
2π
eiβxχ[0,2π]dx (β ∈ IR).

Then, for α ∈ IR, we have

σ̂(α) =




1 if α = β

e2πi(β−α)−1
2πi(β−α) �= 1 if α �= β.

Therefore J⊥
σ = {ceiβx : c ∈ C}.

Remark 2.7.5. We note from Lemma 2.7.1 and Lemma 2.7.2 that if σ is a
complex adapted measure on IR with compact support and ‖σ‖ = 1, then
there is at most one α ∈ IR such that σ̂(α) = 1. This is not the case without
adaptedness as shown in Example 2.7.3. For another example, the measure
σ = −iδπ has unit norm and σ̂(n) = 1 if n is an odd integer. The next
example shows the existence of an adapted signed measure σ on IR of unit
norm such that σ̂(α) �= 1 for all α ∈ IR and hence J⊥

σ = {0}.

Example 2.7.6. Let dσ(x) = ϕ(x)dx be the measure on IR given by

ϕ(x) =

{ −x if − 1 ≤ x ≤ 1

0 otherwise.

Then ‖σ‖ = 1, σ(IR) = σ̂(0) = 0 and for α ∈ IR\{0}, σ̂(α) = 2i
α ( sin α

α −
cosα) �= 1. By Lemma 2.7.2, we have J⊥

σ = {0} whereas J⊥
|σ| = C11 by

Choquet-Deny Theorem.

Example 2.7.7. Let αn = |αn|eiθn be such that
∑∞

n=1 |αn| = 1 where the
sequence (θn) is convergent and generates a dense subgroup of IR , for instance,

αn = 6e
i
n

n2π2 . Then the bounded continuous solutions of the following functional
equation

f(x) =
∞∑

n=1

αnf(x− θn)
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are {ceix : c ∈ C} . Indeed, let σ =
∑
αnδθn . Then ‖σ‖ = 1 and σ is

adapted with compact support. For α ∈ IR , we have

σ̂(α) =
∞∑

n=1

αne
−iαθn =

∞∑
n=1

|αn|ei(1−α)θn .

Since σ̂(1) = 1 , we have J⊥
σ ∩ C(IR) = {ceix : c ∈ C}.

We give an example of ‖σ‖ > 1.

Example 2.7.8. Let σ ∈ M(IR) be defined by dσ(x) = ψ(x)dx + dδ0(x)
where

ψ(x) =

{
sinx for 0 ≤ x ≤ 2π

0 otherwise.

Then σ(IR) = 1, ‖σ‖ = 5 and σ̂(α) = 1 if, and only if, α ∈ Z\{1}. By
Lemma 2.7.2, we have J⊥

σ ∩ C(IR) = lin
{
eiαx : α ∈ Z\{1}}

.

Example 2.7.9. Given µ, ν ∈ M+(G), we denote their lattice infimum by
µ ∧ ν . Let σ be a probability measure on G . A neighbourhood V of the
identity is called σ -admissible if there exist � ∈ N and ε > 0 such that

‖(σ� ∗ δa) ∧ (σ� ∗ δb)‖ > ε

for a−1b ∈ V. Using martingale arguments, it has been shown in [17] recently
that whenever x−1y belongs to such a neighbourhood V, then f(x) = f(y)
for every bounded σ-harmonic function f on G . If σ is nonsingular with
its translates, but not necessarily absolutely continuous, then every compact
invariant neighbourhood of the identity is σ -admissible [18]. It follows that, for
such a measure σ on an [IN]-group G, every bounded σ-harmonic function is
constant on each connected component of G, so dim J⊥

σ ≤ κ where κ is the
cardinality of the set of connected components of G . This result is also valid
for non-degenerate absolutely continuous σ where we note that, if κ is finite
or more generally, if G is almost connected which means that the quotient
of G by the connected component Ge of the identity e is compact, then
J⊥

σ = C11 since each harmonic function on G induces naturally one on G/Ge

and Lemma 2.1.6 applies.
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Remark 2.7.10. Let G be a compact group and σ ∈ M(G). As in the proof
of Lemma 2.1.6, if f ∈ J⊥

σ , then

f =
∑

1∈Sp(σ̂(π))

∑
1≤i,j≤dim π

(dimπ)f̂(π)jiπij

and it follows that dimJ⊥
σ ≤ ∑

1∈Sp(σ̂(π))(dimπ)2 where π ∈ Ĝ and Sp

denotes the spectrum.



3. Harmonic functionals on Fourier algebras

In this Chapter, we introduce and study a non-commutative analogue of
harmonic functions, namely, the harmonic functionals on Fourier algebras. Let
B(G) be the Fourier-Stieltjes algebra of G and let A(G) be the Fourier
algebra which is a closed ideal of B(G) . The dual of A(G) is the group
von Neumann algebra V N(G) . Given σ ∈ B(G) with ‖σ‖ = 1 , the σ -
harmonic functionals on A(G) are defined to be the elements of the space
I⊥
σ = {T ∈ V N(G) : σ ·T = T} . We show that I⊥

σ is the range of a contractive
projection P on V N(G) and therefore it is a ternary Jordan algebra, that is,
a Jordan triple system. We show further that it is a JW ∗ -algebra and that P

is completely positive. The Jordan triple product for harmonic functionals with
compact support is given by

2{R,S, T} = w∗ − lim
α
µα · (RS∗T + TS∗R)

where µα belongs to the convex hull of {σn : n ≥ 1} . We study the Jordan
structure of I⊥

σ and the boundary components of its open unit ball which is
a symmetric Banach manifold. We describe the Murray-von Neumann classifi-
cation of I⊥

σ in terms of the convex geometry of its predual. We also study
the annihilator Iσ of I⊥

σ in A(G) and the Banach algebraic properties of the
quotient A(G)/Iσ .

C.-H. Chu and A.T.-M. Lau: LNM 1782, pp. 51–89, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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3.1. Fourier algebras

Our objective is to study the harmonic functionals on Fourier algebras.
We first review some basic definitions and results concerning Fourier algebras in
this section.

Let G be a locally compact group. We recall that the group C∗ -algebra
C∗(G) of G is the completion of L1(G) with respect to the norm

‖f‖c = sup
π

{‖π(f)‖}

where the supremum is taken over all ∗-representations π : L1(G) → B(Hπ),
the latter being the von Neumann algebra of bounded linear operators on the
Hilbert space Hπ. We will denote throughout by ρ : G → B(

L2(G)
)

the left
regular representation of G :

ρ(x)h(y) = h(x−1y)
(
x, y ∈ G, h ∈ L2(G)

)
.

The unitary representation ρ can be extended to a ∗-representation of L1(G),
also denoted by ρ :

ρ(f)h = f ∗ h (
h ∈ L2(G)

)
.

The reduced group C∗-algebra C∗
r (G) is the norm closure of ρ

(
L1(G)

)
in

B(
L2(G)

)
. We can further extend ρ to a representation ρ̃ of C∗(G). Al-

though ρ is injective on L1(G), ρ̃ need not be an isomorphism and in fact,
ρ̃ is injective if, and only if, G is amenable. The group von Neumann algebra
V N(G) of G is the ultraweak closure of ρ

(
L1(G)

)
in B(

L2(G)
)

and is also
the ultraweak closure of the linear span of ρ(G) in B(

L2(G)
)
.

A function ϕ : G −→ C is called positive definite if

n∑
i,j=1

λiλjϕ(xix
−1
j ) ≥ 0

for any λ1, . . . , λn ∈ C and x1, . . . , xn ∈ G . A continuous positive definite
function on G is of the form ϕ(·) = (π(·)η, η) , and vice versa, where {π,H}
is a continuous unitary representation of G and η ∈ H . Also, if ϕ ∈ L∞(G) ,
then ϕ is continuous positive definite if, and only if, it is a positive linear
functional of L1(G) , that is, 〈ϕ, f∗ ∗ f〉 ≥ 0 for all f ∈ L1(G) . Let P (G)
be the subset of Cb(G) consisting of all continuous positive definite functions
on G and let P 1(G) = {ϕ ∈ P (G) : ϕ(e) = 1}. The linear span B(G) of
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P 1(G) in Cb(G) can be identified with the dual of C∗(G) via the duality
〈 ·, · 〉 : C∗(G) ×B(G) → C where

〈f, ϕ〉 =
∫

G

f(t)ϕ(t)dλ(t)

for f ∈ L1(G) and ϕ ∈ B(G). In this duality, P (G) is precisely the set
of positive linear functionals on C∗(G) [24; p. 192]. Moreover, B(G) is a
commutative semi-simple Banach algebra, called the Fourier-Stieltjes algebra of
G, with pointwise multiplication and the dual norm

‖ϕ‖ = sup
{ ∣∣∣ ∫

G

f(t)ϕ(t)dλ(t)
∣∣∣ : f ∈ L1(G), ‖f‖c ≤ 1

}

(see [24; Proposition 2.16]). Let A(G) be the subspace of B(G) consisting of
all functions ϕ of the form

ϕ(x) =
(
ρ(x)h|k) (

x ∈ G, h, k ∈ L2(G)
)

where (·|·) denotes the inner product in L2(G). Then A(G) is a closed ideal
of B(G) and is called the Fourier algebra of G. We note that A(G) ⊂ C0(G),
A(G)∩Cc(G) is dense in A(G) ,where Cc(G) denotes the space of continuous
functions on G with compact support, and the dual A(G)∗ is isometrically
isomorphic to V N(G) on which the ultraweak topology coincides with the
w∗-topology σ

(
V N(G), A(G)

)
[24; p. 210].

If G is abelian with dual group Ĝ, then C∗(G) ∼= C0(Ĝ) ∼= C∗
r (G)

and the positive definite functions on G are precisely the Fourier transforms
of positive bounded measures on Ĝ, so B(G) =

(
M(Ĝ)

)∧
. Also A(G) =(

L1(Ĝ)
)∧ and V N(G) ∼= L∞(Ĝ).

There is a natural action of A(G) on V N(G) given by

〈ψ,ϕ · T 〉 = 〈ϕψ, T 〉 (
ϕ,ψ ∈ A(G), T ∈ V N(G)

)
where 〈 ·, · 〉 is the duality between A(G) and V N(G). Given σ ∈ B(G) and
T ∈ V N(G), we define σ · T ∈ V N(G) by

〈ϕ, σ · T 〉 = 〈σϕ, T 〉

for ϕ ∈ A(G). We note that

〈ϕ, ρ(x)〉 = ϕ(x)
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for ϕ ∈ A(G) and x ∈ G. Thus ρ(x) is the ‘evaluation’ functional of A(G)
at x and is multiplicative.

As in [24; p. 225], we define the support of T ∈ V N(G), supp T, to
be the set of x ∈ G such that ρ(x) is the w∗-limit of a net (ϕα · T ) with
ϕα ∈ A(G). We have, by [24; 4.4],

suppT = {x ∈ G : ϕ(x) = 0 for ϕ ∈ A(G) with ϕ · T = 0}.

By [24; 4.9], if suppT = {x0}, then T is a complex multiple of ρ(x0).
We write A(G) · V N(G) = {ϕ · T : ϕ ∈ A(G), T ∈ V N(G)} and

V Nc(G) = {T ∈ V N(G) : suppT is compact}. Then the norm-closure V Nc(G)
coincides with the closed linear span

span
(
A(G) · V N(G)

)
which is a C∗-algebra since

supp (T1T2) ⊂ (suppT1)(suppT2) and suppT ∗ = (suppT )−1.

If G is amenable, then span
(
A(G) · V N(G)

)
= A(G) · V N(G) by Cohen’s

factorization theorem [38; 32.22]. If G is abelian, then spanA(G) · V N(G)
identifies with the C∗-algebra of bounded uniformly continuous functions on
Ĝ and is denoted by UCB(Ĝ) in [33].

We denote by Pρ(G) the closure of P (G) ∩ Cc(G) in B(G) with re-
spect to the compact open topology. Let Bρ(G) be the linear span of Pρ(G)
in B(G). Then Bρ(G) is a closed ideal in B(G) containing A(G) and(
C∗

r (G)
)∗ = Bρ(G) [24; 2.1 and 2.6].

3.2. Harmonic functionals and associated ideals

In this section, we introduce the concept of harmonic functionals as a non-
commutative analogue of harmonic functions and we study the ideals associated
with these functionals.

To motivate our definition, consider an abelian group G and a measure
σ ∈ M(Ĝ) with Jσ equal to the norm closure of {σ̌ ∗ f − f : f ∈ L1(Ĝ)} as
defined in Section 2.1. Let ν be the Fourier transform of σ̌. Then Jσ has
Fourier transform Ĵσ equal to the norm closure of {νϕ − ϕ : ϕ ∈ A(G)}. If
we write Iν = Ĵσ where ν ∈ B(G), then I⊥

ν = {T ∈ V N(G) : ν · T = T}
and identifies with J⊥

σ = {h ∈ L∞(Ĝ) : σ ∗ h = h}. This leads to the following
natural definition.
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Definition 3.2.1. Let G be a locally compact group and let σ ∈ B(G). We
define Iσ to be the norm-closure of {σϕ − ϕ : ϕ ∈ A(G)} and we call the
elements in

I⊥
σ = {T ∈ V N(G) : σ · T = T}

the σ-harmonic functionals on A(G) or simply harmonic functionals if σ is
understood.

By the above remarks, we can view I⊥
σ ⊂ V N(G) as a non-commutative

analogue of J⊥
σ ⊂ L∞(G) . We note that Iσ is a closed ideal in A(G) and

(A(G)/Iσ)∗ = I⊥
σ . Our main objective in the sequel is to study the structures

of A(G)/Iσ and I⊥
σ . In this section, we study the ideal Iσ and the quotient

algebra A(G)/Iσ.
We will always assume ‖σ‖ ≥ 1 for if ‖σ‖ < 1, we have I⊥

σ = {0} as
T ∈ I⊥

σ implies ‖T‖ = ‖σ · T‖ ≤ ‖σ‖ ‖T‖. Let

B1(G) = {σ ∈ B(G) : ‖σ‖ = 1}.

Lemma 3.2.2. Let G be amenable and σ ∈ B1(G). Then Iσ has a bounded
approximate identity.

Proof. By amenability, A(G) has a bounded approximate identity [58] {ϕα}α∈Λ

which can be chosen such that ϕα ≥ 0 and ϕα(e) = 1 for all α ∈ Λ

[53]. Let σn = 1
n

n∑
k=1

σk for n = 1, 2, . . . . Then ‖σn‖ ≤ 1. We show that

{ϕα−σnϕα}α,n is a bounded approximate identity in Iσ. First σnϕα−ϕα ∈ Iσ
as A(G) is an ideal in B(G).

Given ψ ∈ A(G), we have

‖(σψ − ψ) − (σψ − ψ)(ϕα − σnϕα)‖
= ‖(ψϕα − ψ) + σ(ψ − ψϕα) + (σσn − σn)ψϕα‖

≤ ‖ψ − ψϕα‖ + ‖σ(ψ − ψϕα)‖ + ‖σσn − σn‖ ‖ψϕα‖

≤ 2‖ψ − ψϕα‖ +
1
n

‖ψϕα‖

which tends to 0 as n, α → ∞ by boundedness of {ϕα}. �

Let A(G)0 = {ϕ ∈ A(G) : ϕ(e) = 0}. Then A(G)0 is a closed ideal
in A(G) with co-dimension one. Further, A(G)0 has a bounded approximate
identity if, and only if, G is amenable [52; Corollary 4.11].
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Lemma 3.2.3. Let G be a locally compact group. Then A(G)0 is the closed
linear span of {Iσ : σ ∈ A(G) ∩ P 1(G)}.
Proof. Let I be the closed linear span of {Iσ : σ ∈ A(G) ∩ P 1(G)}. Then
I ⊂ A(G)0. It suffices to show that I has co-dimension one, equivalently, that
I⊥ = C 111 where 111 is the identity of V N(G). Let T ∈ I⊥. Then σ · T = T

for all σ ∈ A(G) ∩ P 1(G). Let (σα) be a net in A(G) ∩ P 1(G) such that
suppσα ↓ {e}. Then supp (σα · T ) ⊂ suppσα gives suppT = {e}. Therefore
T is a complex multiple of ρ(e) = 111. �

Lemma 3.2.4. Let G be first countable. Then A(G)0 = Iσ for some σ ∈
A(G) ∩ P 1(G).

Proof. Let (ϕα) be a net in A(G) ∩ P 1(G) such that ‖σϕα − ϕα‖ → 0 for
each σ ∈ A(G) ∩ P 1(G) [67]. Then ‖(σϕ − ϕ) · ϕα‖ = ‖ϕ(σϕα − ϕα)‖ → 0
for σ ∈ A(G) ∩ P 1(G) and ϕ ∈ A(G). Let ε > 0 and ϕ1, . . . , ϕn ∈ A(G)0.
By the above and Lemma 3.2.3, there exists ϕβ ∈ A(G) ∩ P 1(G) such that
‖ϕiϕβ‖ < ε for i = 1, . . . , n. It follows from ϕβϕi − ϕi ∈ Iϕβ

that

d(ϕi, Iϕβ
) = inf {‖ϕi − ψ‖ : ψ ∈ Iϕβ

} < ε

for i = 1, . . . , n. Since G is first countable, A(G) is norm separable [29;
Corollary 6.9]. So the conditions of Lemma 1.1 in [83] are satisfied and by
Remark 3 in [83, p. 210], there exists σ ∈ A(G)∩P 1(G) such that Iσ = A(G)0.

�

Theorem 3.2.5. A first countable group G is amenable if,and only if, Iσ has
a bounded approximate identity for every σ ∈ B1(G).

Proof. The necessity has been proved in Lemma 3.2.2. The converse follows
from Lemma 3.2.4 and the previous remark that amenability of G is equivalent
to A(G)0 having a bounded approximate identity. �

We are going to prove a non-commutative analogue of Proposition 2.1.3.
We prove a simple lemma first.

Lemma 3.2.6. Let σ ∈ P 1(G). The following conditions are equivalent:

(i) Iσ = A(G)0;
(ii) I⊥

σ = C 111;
(iii) For x ∈ G, σ(x) = 1 implies x = e.
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Proof. (i) ⇐⇒ (ii). This is clear from Iσ ⊂ A(G)0 and A(G)⊥
0 = C 111.

(ii) =⇒ (iii). Let σ(x) = 1. Then σ · ρ(x) = ρ(x) since 〈ϕ, σ · ρ(x)〉 =
〈σϕ, ρ(x)〉 = σ(x)ϕ(x) = ϕ(x) = 〈ϕ, ρ(x)〉 for all ϕ ∈ A(G). Hence ρ(x) ∈
I⊥
σ = C 111 gives x = e.

(iii) =⇒ (ii). Let T ∈ I⊥
σ . We show that suppT = {e}. Otherwise, there

exists x ∈ suppT\{e} and hence a net (ϕα) in A(G) such that (ϕα · T )
w∗-converges to ρ(x).

Choose ψ ∈ A(G) with ψ(x) = 1. Then σ · (ϕα · T ) = ϕα · T for all α

and

1 = ψ(x) = 〈ψ, ρ(x)〉

= lim
α

〈ψ,ϕα · T 〉

= lim
α

〈ψ, σ · (ϕα · T )〉

= 〈ψ, σ · ρ(x)〉 = σ(x)ψ(x) = σ(x) �= 1

which is a contradiction. So suppT = {e} and T ∈ C 111. �

The following result should be compared with Proposition 2.1.3.

Proposition 3.2.7. Let G be a locally compact group. The following condi-
tions are equivalent:

(i) There exists σ ∈ P 1(G) such that I⊥
σ = C 111;

(ii) G is first countable.

In the above case, σ can even be chosen from A(G).

Proof. By Lemma 3.2.4, we have (ii) =⇒ (i).
(i) =⇒ (ii). By Lemma 3.2.6, there exists σ ∈ P 1(G) ⊂ Cru(G) such that
σ(x) �= 1 for x �= e. We first note that a net (xα) in G converges to e if, and
only if, σ(xα) → σ(e). Indeed, the latter implies that (xα) is eventually in a
compact neighbourhood of e, and if xα � e, there is a subnet (xβ) converging
to some x �= e. But σ(x) = lim

β
σ(xβ) = σ(e) = 1 which is impossible.

Let C be a compact neighbourhood of e and let K = {Laσ : a ∈ C} be
the left translations of σ by C. Then K is compact in the sup-norm topology
of Cru(G) since the map a ∈ C �→ Laσ ∈ Cru(G) is continuous. It follows
that K has a norm-dense sequence (ψn) and that a net xα → x in C if,
and only if, ψn(xα) → ψn(x) for all n. So C is metrizable and G is first
countable. �
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Now we are going to study the quotient algebra A(G)/Iσ. We first find
sufficient conditions for A(G)/Iσ to be a Fourier algebra, more precisely, to be
isomorphic to the Fourier algebra of a locally compact group. Given an ideal I
in A(G), we define its zero set to be the closed set

Z(I) = {x ∈ G : ϕ(x) = 0 for all ϕ ∈ I}.

Lemma 3.2.8. For every σ ∈ B(G), we have Z(Iσ) = {x ∈ G : σ(x) = 1}.
In particular, if σ ∈ P 1(G), then Z(Iσ) is a closed subgroup of G.

Proof. If σ(x) = 1, then (σϕ−ϕ)(x) = 0 for all ϕ ∈ A(G) and so x ∈ Z(Iσ).
If σ(x) �= 1, pick ψ ∈ A(G) such that ψ(x) = 1. Then (σψ−ψ)(x) �= 0 and
x /∈ Z(Iσ). If σ ∈ P 1(G), then {x ∈ G : σ(x) = 1} is a subgroup of G by
[38; 32.7]. �

Remark 3.2.9. We note that x ∈ Z(Iσ) if, and only if, ρ(x) ∈ I⊥
σ . Indeed,

given ρ(x) ∈ I⊥
σ , pick ψ ∈ A(G) with ψ(x) = 1, then 〈σψ − ψ, ρ(x)〉 = 0

implies σ(x) = 1. The converse has been shown in the proof of Lemma 3.2.6
(ii) =⇒ (iii).

Notation. For σ ∈ B(G) , we write Zσ = Z(Iσ) = σ−1{1} .

Given a subset S of V N(G) , we denote by S′ its commutant in V N(G) .

Proposition 3.2.10. Let σ ∈ B(G). The following conditions are equivalent:

(i) Z(Iσ) is a subgroup of G;
(ii) I⊥

σ is a unital ∗-subalgebra of V N(G).

In the above case, I⊥
σ = {ρ(x) : x ∈ Z(Iσ)}′′ is the von Neumann algebra

generated by ρ
(
Z(Iσ)

)
and further, there is an isometric algebra isomorphism

Ψ from A(G)/Iσ onto the Fourier algebra A
(
Z(Iσ)

)
such that Ψ{ϕ + Iσ :

σ ∈ A(G) ∩ P (G)} = A
(
Z(Iσ)

) ∩ P (
Z(Iσ)

)
.

Proof. (i) =⇒ (ii). Let T ∈ V N(G). By [75], we have T ∈ {ρ(x) : x ∈ Z(Iσ)}′′

if, and only if, suppT ⊂ Z(Iσ). By the double commutant theorem, {ρ(x) :
x ∈ Z(Iσ)}′′ is the w ∗ -closed linear span of ρ(Z(Iσ)) which is contained in
I⊥
σ by Remark 3.2.9. We show that they are equal. Let T ∈ I⊥

σ . We show
suppT ⊂ Z(Iσ). Let x ∈ suppT. Then there is a net (ϕα) in A(G) such
that (ϕα · T ) w∗-converges to ρ(x). As ϕα · T ∈ I⊥

σ , we have ρ(x) ∈ I⊥
σ

and x ∈ Z(Iσ).
(ii) =⇒ (i). Since I⊥

σ �= {0}, we have Iσ �= A(G) and so Z(Iσ) �= ∅ [24;
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3.38]. Given x, y ∈ Z(Iσ), we have ρ(xy−1) = ρ(x)ρ(y)∗ ∈ I⊥
σ and hence

xy−1 ∈ Z(Iσ).
Now let H = Z(Iσ) be a subgroup of G and define Ψ : A(G)/Iσ →

A(H) by restriction:

Ψ(ϕ+ Iσ) = ϕ
∣∣
H
.

Since I⊥
σ = {ρ(x) : x ∈ H}′′, given ϕ ∈ A(G), we have ϕ ∈ Iσ if, and only

if, ϕ
∣∣
H

= 0 by the bi-polar rule. By [37, Theorem 1b], every ψ ∈ A(H) has a
norm-preserving extension to ϕ ∈ A(G). The above two remarks imply that Ψ
is an isometric isomorphism. Finally, given ϕ ∈ A(G) ∩ P (G), clearly ϕ

∣∣
H

∈
A(H) ∩ P (H). Conversely, for ψ ∈ A(H) ∩ P (H), it has a norm-preserving
extension to ϕ ∈ A(G). Then Ψ(ϕ+ Iσ) = ψ and ‖ϕ‖ = ‖ψ‖ = ψ(e) = ϕ(e)
implies ϕ ∈ P (G). �

Remark 3.2.11. We note that in the above theorem, {ϕ+Iσ : ϕ ∈ P (G)∩A(G)}
is the set of normal positive functionals of the von Neumann algebra I⊥

σ . In
contrast to Corollary 2.2.4, if σ ∈ P 1(G), then I⊥

σ is always a subalgebra of
V N(G).

We next consider the case in which the zero set Zσ has a group structure
but need not be a subgroup of G. We make use of [81] to determine when
A(G)/Iσ is isometrically isomorphic to the Fourier algebra A(Zσ).

We recall that the spectrum of A(G), the set of nonzero multiplicative
linear functionals on A(G) equipped with the w∗-topology, is homeomorphic
to G via the homeomorphism x ∈ G �→ ρ(x) (cf. [24; 3.34]). It follows from
this and

(
A(G)/Iσ

)∗ = I⊥
σ that the spectrum of A(G)/Iσ is homeomorphic to

the zero set Zσ and the Gelfand map on A(G)/Iσ is a norm-decreasing algebra
homomorphism from A(G)/Iσ onto a subalgebra of C0(Zσ). The composite
of the Gelfand map with the quotient map

A(G) → A(G)/Iσ → C0(Zσ)

is simply the restriction map ϕ ∈ A(G) �→ ϕ
∣∣
Zσ

∈ C0(Zσ).

Now we are ready to give necessary and sufficient conditions for A(G)/Iσ
to be a Fourier algebra of a group. Clearly a necessary condition is that the
zero set Zσ = Z(Iσ) should have a group structure since it is the spectrum of
A(G)/Iσ.
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Theorem 3.2.12. Let σ ∈ B(G) and σ(e) = 1. The following conditions are
equivalent:

(i) A(G)/Iσ is isometrically algebraically isomorphic to a Fourier algebra of
a locally compact group;

(ii) the following two conditions hold:
(α) I⊥

σ is a von Neumann algebra in some product × and involution
#;
(β) ρ(Zσ) is a group of unitaries in (I⊥

σ ,×,#) with identity ρ(e) and
I⊥
σ is the w ∗ -closed linear span of ρ(Zσ).

Proof. We note that σ(e) = 1 implies e ∈ Zσ and ρ(e) ∈ I⊥
σ .

(i) =⇒ (ii). This is clear for if Ψ : A(G)/Iσ → A(H) is an isometric iso-
morphism onto the Fourier algebra A(H) of a group H, then the dual map
Ψ∗ : V N(H) → I⊥

σ induces a von Neumann algebraic structure on I⊥
σ and

maps the spectrum H of A(H) onto the spectrum ρ(Zσ) of A(G)/Iσ.
(ii) =⇒ (i). Let (I⊥

σ ,×,#) be a von Neumann algebra with identity 111 =
ρ(e) and predual A(G)/Iσ. Then ρ(Zσ) is a locally compact group in the
w∗-topology. We show that the algebra A(G)/Iσ satisfies the conditions (i)-
(vi) in [81; Theorem 6] and hence A(G)/Iσ is isometrically isomorphic to the
Fourier algebra A

(
ρ(Zσ)

)
. These conditions are shown below as (i′)-(vi′).

(i′) Let P = {ϕ + Iσ ∈ A(G)/Iσ : 〈ϕ + Iσ, ρ(e)〉 = ‖ϕ + Iσ‖}. Then
A(G)/Iσ is the linear span of P. Indeed, A(G)/Iσ is the linear span of the
set of positive normal functionals of (I⊥

σ ,×,#) which is just P.

(ii′) Write [ϕ] = ϕ + Iσ for ϕ ∈ A(G). Let Aut denote the set of
isometric algebra automorphisms of A(G)/Iσ and let

TTT = {Λ ∈ Aut : ‖ [ϕ] − eiθΛ[ϕ] ‖2 + ‖ [ϕ] + eiθΛ[ϕ] ‖2 ≤ 4‖ [ϕ] ‖2

∀ [ϕ] ∈ A(G)/Iσ and θ ∈ IR}.

For z ∈ Zσ, define Lz : A(G)/Iσ → A(G)/Iσ by

〈Lz[ϕ], T 〉 = 〈ϕ, ρ(z) × T 〉 (
[ϕ] ∈ A(G)/Iσ, T ∈ I⊥

σ

)
.
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Then the dual map L∗
z : I⊥

σ → I⊥
σ is just the left translation (w.r.t. ×)

by ρ(z) and is therefore an isometry. So Lz is an isometry. For [ϕ1], [ϕ2] ∈
A(G)/Iσ and x ∈ Zσ, we have

〈Lz( [ϕ1] [ϕ2] ), ρ(x) 〉 = 〈Lz[ϕ1ϕ2], ρ(x) 〉

= 〈ϕ1ϕ2, ρ(z) × ρ(x) 〉

= 〈ϕ1ϕ2, ρ(y) 〉 (
(ρ(Zσ),×) is a group)

= ϕ1(y)ϕ2(y)

= 〈ϕ1, ρ(z) × ρ(x) 〉 〈ϕ2, ρ(z) × ρ(x) 〉

= 〈Lz[ϕ1], ρ(x) 〉 〈Lz[ϕ2], ρ(x) 〉 .

Since I⊥
σ is the w ∗ -closed linear span of ρ(Zσ), we have shown Lz ∈ Aut.

We next show that Lz ∈ TTT . First, let [ϕ] ∈ A(G)/Iσ be a positive (normal)
state of the von Neumann algebra (I⊥

σ ,×,#) and let

〈 [ϕ], T 〉 =
(
πϕ(T )ξϕ | ξϕ

)
(T ∈ I⊥

σ )

where πϕ : I⊥
σ → B(Hϕ) is the GNS-representation induced by [ϕ] and ξϕ ∈

Hϕ is a cyclic vector with ‖ξϕ‖ = 〈 [ϕ],111 〉 = 1.
Let S, T ∈ I⊥

σ with ‖S‖, ‖T‖ ≤ 1. Then

| 〈 [ϕ] − eiθLz[ϕ], S 〉|2 + | 〈 [ϕ] + eiθLz[ϕ], T 〉 |2

=
∣∣ (
πϕ(S)ξϕ|ξϕ

) − eiθ
(
πϕ(ρ(z) × S)ξϕ|ξϕ

) ∣∣2
+

∣∣ (
πϕ(T )ξϕ|ξϕ

)
+ eiθ

(
πϕ(ρ(z) × T )ξϕ|ξϕ

) ∣∣2
=

∣∣ (
πϕ(S)ξϕ|ξϕ − eiθπϕ(ρ(z)#)ξϕ

) ∣∣2
+

∣∣ (
πϕ(T )ξϕ|ξϕ + eiθπϕ(ρ(z)#)ξϕ

) ∣∣2
≤ ‖πϕ(S)ξϕ‖2

∥∥ξϕ − eiθπϕ

(
ρ(z)#

)
ξϕ

∥∥2

+ ‖πϕ(T )ξϕ‖2
∥∥ξϕ + eiθπϕ

(
ρ(z)#

)
ξϕ

∥∥2

≤ ∥∥ξϕ − eiθπϕ

(
ρ(z)#

)
ξϕ

∥∥2 +
∥∥ξϕ + eiθπϕ

(
ρ(z)#

)
ξϕ

∥∥2

= 2‖ξϕ‖2 + 2
∥∥eiθπϕ

(
ρ(z)#

)
ξϕ

∥∥2 ≤ 4
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by the parallelogram law in Hϕ.

Next, for any [ψ] ∈ A(G)/Iσ, let [ψ] = [ϕ]V be the polar decomposition
where V is a partial isometry in the von Neumann algebra (I⊥

σ ,×,#) and [ϕ]
is a positive functional of I⊥

σ with

〈 [ψ], T 〉 = 〈 [ϕ], T × V 〉

for T ∈ I⊥
σ . Then we have

‖ [ψ] − eiθLz[ψ] ‖2 + ‖ [ψ] + eiθLz[ψ] ‖2

= ‖ [ϕ]V − eiθLz[ϕ]V ‖2 + ‖ [ϕ]V + eiθLz[ϕ]V ‖2

= ‖ ( [ϕ] − eiθLz[ϕ] )V ‖2 + ‖ ( [ϕ] + eiθLz[ϕ] )V ‖2

≤ ‖ [ϕ] − eiθLz[ϕ] ‖2 + ‖ [ϕ] + eiθLz[ϕ] ‖2 ≤ 4‖ [ϕ] ‖2.

Hence we have shown that Lz ∈ TTT . Let Gσ be a maximal group in TTT con-
taining {Lz : z ∈ Zσ}. Then we can define a map � : Gσ → ρ(Zσ) by

�(Λ) = Λ∗(111)

where Λ∗(111) is multiplicative on A(G)/Iσ and hence in ρ(Zσ). In fact, � is
surjective for if z ∈ Zσ, then �(Lz) = ρ(z) since

〈 [ϕ], �(Lz) 〉 = 〈 [ϕ], L∗
z(111) 〉

= 〈L2[ϕ], ρ(e)〉

= 〈 [ϕ], ρ(z) × ρ(e) 〉

= 〈 [ϕ], ρ(z) 〉

for [ϕ] ∈ A(G)/Iσ
. Given that �(Λ) = �(Λ′) , we have (Λ′Λ−1)∗(111) = 111 and as

in the proof of [81, Proposition 5], one deduces that Λ′Λ−1 is the identity map
on A(G)/Iσ , so Λ = Λ′ and � is injective (which gives Gσ = {Lz : z ∈ Zσ} ).
It follows from [81, Proposition 4] that � is a homeomorphism and condition
(ii) in [81; p. 155] is satisfied.
(iii′) and (iv′). A(G)/Iσ is a commutative Banach algebra such that {ϕ+Iσ :
ϕ
∣∣
Zσ

∈ Cc(Zσ)} is dense in it. Indeed, given ϕ + Iσ ∈ A(G)/Iσ, there is a
sequence (ϕn) in A(G)∩Cc(G) norm-converging to ϕ. Then ϕn

∣∣
Zσ

∈ Cc(Zσ)
and (ϕn + Iσ) converges to ϕ+ Iσ in A(G)/Iσ.
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(v′). Since I⊥
σ is the w ∗ -closed linear span of ρ(Zσ), Kaplansky’s density

theorem gives

‖ϕ+ Iσ‖ = sup
{ ∣∣∣ ∑

i

αiϕ(xi)
∣∣∣ : αi ∈ C, xi ∈ Zσ and

∥∥∥∑
i

αiρ(xi)
∥∥∥ ≤ 1

}

for ϕ+ Iσ ∈ A(G)/Iσ.
(vi′). Let K ⊂ U ⊂ Zσ where K is compact and U is open in Zσ. Then
there exists ϕ+ Iσ ∈ A(G)/Iσ such that |ϕ| ≤ 1, ϕ(x) = 1 for x ∈ K and
ϕ(x) = 0 for x ∈ Zσ\U. This property of A(G) is well-known [24; 3.2].

Now by [81; Theorem 6], A(G)/Iσ is isometrically isomorphic to the
Fourier algebra A

(
ρ(Zσ)

)
. �

3.3. Jordan structures of harmonic functionals

We will now develop a structure theory for the space I⊥
σ of harmonic

functionals for σ ∈ B1(G). Several results are non-commutative analogues of
those for J⊥

σ with σ ∈ M1(G). In fact, I⊥
σ has non-associative Jordan struc-

ture whereas J⊥
σ is always (isometric to) a commutative von Neumann algebra.

Jordan theory therefore plays a prominent role in our present development.
Our first task is to show that I⊥

σ is the range of a contractive projection
on V N(G) and hence admits a Jordan structure. By a contractive projection
P : V N(G) → I⊥

σ we mean a surjective linear map such that P 2 = P and
‖P‖ ≤ 1.

Proposition 3.3.1. Let σ ∈ B(G) and ‖σ‖ = 1. Then there is a contrac-
tive projection P : V N(G) → I⊥

σ satisfying σ · P (T ) = P (σ · T ) for every
T ∈ V N(G). If there is a w∗-w∗-continuous projection Q : V N(G) → I⊥

σ

satisfying σ ·Q(T ) = Q(σ · T ), then P = Q.

Proof. For n = 1, 2, . . . , define Λn : V N(G) → V N(G) by Λn(T ) = σn ·T for
T ∈ V N(G). Then Λn is w∗-w∗-continuous and contractive. Let B

(
V N(G)

)
be the locally convex space of bounded linear maps from V N(G) to itself,
equipped with the weak∗-operator topology. Let K be the closed convex hull
of {Λn : n = 1, 2, . . . } in B

(
V N(G)

)
. Then K is compact. Define a map

Φ : K → K by Φ(Λ) = σ · Λ. Then Φ is affine and continuous. By Markov-
Kakutani fixed-point theorem, there exists P ∈ K such that Φ(P ) = P. Then
P : V N(G) → I⊥

σ is the required projection. If Q : V N(G) → I⊥
σ is a

w∗-w∗-continuous projection and σ ·Q(T ) = Q(σ · T ) for T ∈ V N(G), then
QΛ = ΛQ for all Λ ∈ co {Λn : n = 1, 2, . . . } and hence QP = PQ. Therefore
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Q(T ) = PQ(T ) = QP (T ) = P (T ) for T ∈ V N(G). �
We refer to [31] for a result similar to Proposition 3.3.1. We will give some

criteria for the above projection P to be w∗-w∗-continuous. By Remark 3.2.11,
I⊥
σ is a von Neumann subalgebra of V N(G) if σ ∈ P 1(G). The following result

may be of some independent interest.

Proposition 3.3.2. Let σ ∈ P 1(G). Then the projection P : V N(G) → I⊥
σ ⊂

V N(G) in Proposition 3.3.1 is completely positive.

Proof. We recall that a linear map Φ between C∗-algebras A and B is called
completely positive if the maps Φn : Mn(A) → Mn(B) are all positive for
n = 1, 2, . . . , where Mn(A) denotes the n × n matrix algebra over A and
Φn is defined by Φn

(
(aij)

)
=

(
Φ(aij)

)
. A ∗-homomorphism is completely

positive and maps of the form a ∈ A �→ v∗av ∈ B are also completely positive
for any bounded linear map v from a Hilbert space on which B acts to the
one acted on by A .

By [65; Theorem 6.4] and by the construction of P above, it suffices to
show that the map Λ : V N(G) → V N(G) defined by

Λ(T ) = σ · T (
T ∈ V N(G)

)
is completely positive.

Let π : G → B(Hπ) be a cyclic representation such that σ(x) =
(
π(x)ξ|ξ)

for x ∈ G. Identify L2(G) as a closed subspace of L2(G) ⊗ Hπ via the
embedding h ∈ L2(G) V�→ h ⊗ ξ ∈ L2(G) ⊗ Hπ. Let f ∈ L1(G) and
h, k ∈ L2(G). We have

(
σ · ρ(g)h|k) =

∫
G

(
ρ(x)h|k)σ(x)f(x)dx

=
∫

G

(
ρ(x)h|k) (

π(x)ξ|ξ)f(x)dx

=
∫

G

(
(ρ⊗ π)(x)(h⊗ ξ)|k ⊗ ξ

)
f(x)dx

=
(
(ρ⊗ π)(f)(h⊗ ξ)|k ⊗ ξ

)
=

(
(ρ⊗ π)(f)V h|V k)

=
(
V ∗(ρ⊗ π)(f)V h|k)

so Λ
(
ρ(f)

)
= σ · ρ(f) = V ∗(ρ⊗ π)(f)V.
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We identify L1(G) with ρ
(
L1(G)

)
in V N(G). Since ρ

(
L1(G)

)
is norm-

dense in C∗
r (G), the ∗-homomorphism ρ ⊗ π : ρ

(
L1(G)

) → B(
L2(G) ⊗Hπ

)
extends to a ∗-homomorphism τ : C∗

r (G) → B(
L2(G) ⊗Hπ

)
such that

Λ(T ) = V ∗τ(T )V
(
T ∈ C∗

r (G)
)
.

Hence the restriction map

Λr = Λ
∣∣
C∗

r (G) : C∗
r (G) → V N(G)

is completely positive. Since C∗
r (G) is w∗-dense in V N(G), the matrix

C∗-algebra Mn

(
C∗

r (G)
)

is also w∗-dense in Mn

(
V N(G)

)
and by Kaplan-

sky’s density theorem, the positive cone Mn

(
C∗

r (G)
)
+ is w∗-dense in the

cone Mn

(
V N(G)

)
+. Therefore the positivity of the map Λr

n : Mn

(
C∗

r (G)
) →

Mn

(
V N(G)

)
implies the positivity of Λn : Mn

(
V N(G)

) → Mn

(
V N(G)

)
for

n = 1, 2, . . . , that is, Λ is completely positive. �

Proposition 3.3.3. Let σ ∈ B(G). If there is a w∗-w∗-continuous bounded
projection P : V N(G) → I⊥

σ satisfying ϕ · P (T ) = P (ϕ · T ) for ϕ ∈ A(G)
and T ∈ V N(G), then the zero set Zσ is open.

Proof. Let P : V N(G) → I⊥
σ be such a projection. Then it is the dual map of

a continuous linear map P∗ : A(G)/Iσ → A(G) between the preduals. For each
x ∈ Zσ, pick ϕx ∈ A(G) such that ϕx(x) �= 0. To show that Zσ is open, we
only need to establish

Zσ =
⋃

x∈Zσ

{y ∈ G : P∗(ϕx + Iσ)(y) �= 0}.

First observe that x ∈ Zσ implies ρ(x) ∈ I⊥
σ and P∗(ϕx + Iσ)(x) = 〈P∗(ϕx +

Iσ), ρ(x) 〉 = 〈ϕx + Iσ, P (ρ(x)) 〉 = 〈ϕx + Iσ, ρ(x) 〉 = ϕx(x) �= 0.
Let P∗(ϕx+Iσ)(y) �= 0. We show y ∈ Zσ. Otherwise, y /∈ Zσ and we can

find ψ ∈ Iσ such that ψ(y) = 1 by [38; 39.15]. It follows that ψϕx + Iσ = Iσ
and

0 = 〈P∗(ψϕx + Iσ), ρ(y) 〉

= 〈ψϕx + Iσ, P
(
ρ(y)

) 〉

= 〈ϕx + Iσ, ψ · P (
ρ(y)

) 〉

= 〈ϕx + Iσ, P
(
ψ · ρ(y)) 〉
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= 〈ϕx + Iσ, P
(
ρ(y)

) 〉 (by ψ(y) = 1)

= P∗(ϕx + Iσ)(y) �= 0

which is impossible. So y ∈ Zσ and Zσ is open. �

We have the following converse to Proposition 3.3.3 if the zero set Zσ

is a subgroup of G. The proof below also shows that the projection P in
Proposition 3.3.1 has a simple form if Zσ is an open subgroup of G.

Corollary 3.3.4. Let σ ∈ B(G) and let Zσ be a subgroup of G. The follow-
ing conditions are equivalent:

(i) Zσ is open;
(ii) There is a w∗-w∗-continuous contractive projection P : V N(G) → I⊥

σ

such that ϕ · P (T ) = P (ϕ · T ) for ϕ ∈ A(G) and T ∈ V N(G).

Proof. We only need to prove (i) =⇒ (ii). Since Zσ is an open subgroup, the
characteristic function χ

Zσ
belongs to P (G). Define P : V N(G) → V N(G)

by

P (T ) = χ
Zσ

· T (
T ∈ V N(G)

)
.

Write σ1 = χ
Zσ
. Then clearly P is a w∗-w∗-continuous contractive projection

from V N(G) onto I⊥
σ1

satisfying ϕ ·P (T ) = P (ϕ · T ) . But Zσ1 = σ−1{1} =
Zσ implies I⊥

σ1
= I⊥

σ by Proposition 3.2.10. �

We have seen in Corollary 2.3.8 that the space of σ-harmonic functions
J⊥

σ is isometric to an abelian von Neumann algebra via the contractive pro-
jection P : L∞(G) → J⊥

σ on the abelian von Neumann algebra L∞(G). In
the non-commutative case of σ-harmonic functionals I⊥

σ , the existence of a
contractive projection on the generally non-commutative von Neumann algebra
V N(G) endows I⊥

σ with a non-associative algebraic structure, namely, the
Jordan triple structure which involves a ternary product and is more elaborate
than the associative binary product in J⊥

σ . To exploit this ternary structure
and to show some interesting connections to geometry, we give below a brief in-
troduction to the theory of Jordan triples and background. We will only consider
algebras over the complex field.
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Jordan structures occur in symmetric Banach manifolds and operator alge-
bras. A Jordan algebra is a commutative, but not necessarily associative, algebra
whose elements satisfy the Jordan identity

a(ba2) = (ab)a2.

A Jordan triple system is a complex vector space Z with a Jordan triple product

{·, ·, ·} : Z × Z × Z → Z

which is symmetric and linear in the outer variables, conjugate linear in the
middle variable and satisfies the Jordan triple identity

{
a, b, {x, y, z}}

=
{ {a, b, x}, y, z} − {

x, {b, a, y}, z} +
{
x, y, {a, b, z} }

.

A Jordan algebra with involution ∗ is a Jordan triple system with the usual
Jordan triple product

{a, b, c} = (ab∗)c+ (b∗c)a− (ca)b∗.

A complex Banach space Z is called a JB∗-triple if it is a Jordan triple system
such that for each z ∈ Z, the linear map

z � z : v ∈ Z �→ {z, z, v} ∈ Z

is Hermitian with non-negative spectrum and ‖z� z‖ = ‖z‖2. A JB∗-triple Z
is called a JBW ∗-triple if it is a dual Banach space, in which case its predual
is unique, denoted by Z∗, and the triple product is separately w∗-continuous.
The second dual Z∗∗ of a JB∗-triple is a JBW ∗-triple.

The JB∗-triples form a large class of Banach spaces. They include for
instance, C∗-algebras, Hilbert spaces and spaces of rectangular matrices. In-
deed, a norm closed subspace Z of a C∗-algebra A is a JB∗-triple if z ∈ Z

implies zz∗z ∈ Z. In this case, the triple product is given by

{x, y, z} =
1
2

(xy∗z + zy∗x)

and Z is called a subtriple of A . The fact that Z is closed with respect to
the above triple product follows from the polarization formula:

16{x, y, z} =
∑

α4=1=β2

αβ(x+ αy + βz)(x+ αy + βz)∗(x+ αy + βz). (3.1)
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JB∗-triples also include the class of JB∗-algebras. A JB∗-algebra is a com-
plex Banach space which is also a Jordan algebra with involution ∗ satisfying
‖x∗‖ = ‖x‖ = ‖ {x, x∗, x} ‖1/3 where the triple product is given by

{x, y, z} = (xy∗)z + (zy∗)x− (xz)y∗.

Every C∗-algebra is a JB∗-algebra in the following Jordan product:

a ◦ b =
1
2

(ab+ ba).

A JB∗-subalgebra of a C∗-algebra , with respect to the product ◦ above,
is called a JC∗-algebra. A JB∗-algebra is called a JBW ∗-algebra if it is a
dual Banach space. JBW ∗-algebras which are isometric to JC∗-algebras are
called JW ∗-algebras.

Given a JB∗-triple Z, an element e ∈ Z is called a tripotent if {e, e, e} =
e. A tripotent e ∈ Z is called unitary if {eez} = z for all z ∈ Z. Tripotents
in C∗-algebras are exactly the partial isometries. If a JB∗-triple Z contains a
unitary tripotent u, then it is a JB∗-algebra in the following Jordan product
and involution:

x ◦ y = {x, u, y}, x∗ = {u, x, u}

with u as an identity. A JBW ∗-triple is the norm-closed linear span of its
tripotents.

In geometry, JB∗-triples arise as tangent spaces to complex symmetric
Banach manifolds which are infinite-dimensional generalization of the Hermitian
symmetric spaces classified by E. Cartan [10] in the 1930s using Lie groups. An
(analytic) Banach manifold is a manifold modelled locally on open subsets of Ba-
nach spaces such that the coordinate transformations are bianalytic maps. The
manifold is called real (complex) if the underlying Banach spaces are real (com-
plex). A Banach manifold M is symmetric if every point a ∈ M is an isolated
fixed-point of a symmetry sa : M → M which is a bianalytic map satisfying
s2a = Id. Given a connected complex symmetric manifold M and a ∈ M,

Kaup [48] has shown that the symmetry sa induces a Jordan triple structure
on the tangent space TaM at a. Further, if M is a bounded domain, that
is, a bounded open connected set in a complex Banach space, then TaM can
be given a norm such that TaM is a JB∗-triple and M is biholomorphically
equivalent to the open unit ball of TaM, as shown in [48]. Conversely, the open
unit ball of every JB∗-triple is a complex symmetric Banach manifold. Here
the crucial fact is that the geometry of a JB∗-triple is completely determined
by its triple product in that the surjective linear isometries between JB∗-triples
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are exactly the triple isomorphisms which are bijective linear maps preserving
the triple product [48,42]. Also, two JB∗-triples are isometric if, and only if,
their open unit balls are biholomorphically equivalent. We refer to [13,72,80] for
further references concerning JB∗-triples and symmetric Banach manifolds.

JB∗-triples also appear as the ranges of contractive projections on C∗-
algebras as shown in [25]. Using this result and Proposition 3.3.1, we show
below that I⊥

σ is a JW ∗-algebra and therefore its open unit ball is a complex
symmetric manifold. We denote by B(H) the von Neumann algebra of bounded
linear operators on a Hilbert space H.

Proposition 3.3.5. Let σ ∈ B(G) and ‖σ‖ = 1. Then I⊥
σ is a JW ∗-algebra.

Proof. Let P : V N(G) → I⊥
σ be the contractive projection in Proposition 3.3.1.

By [25], I⊥
σ is a JB∗-triple with the triple product

{u, v, w} =
1
2
P (uv∗w + wv∗u)

for u, v, w ∈ I⊥
σ , and moreover, I⊥

σ is isometric to a subtriple of a C∗-algebra.
Since I⊥

σ is a dual Banach space, it follows from [7; Corollary 9] that I⊥
σ is

isometric to a w∗-closed subtriple of B(H) for some Hilbert space H. Pick
any x ∈ Zσ. Then u = ρ(x) is a unitary element in V N(G). Therefore
w ∈ I⊥

σ implies {u, u, w} = P (w) = w and by the above remarks, I⊥
σ is a

JW ∗-algebra in the following Jordan product and involution:

v ◦ w = {v, u, w} =
1
2
P (vu∗w + wu∗v)

v# = {u, v, u} = P (uv∗u).

�

We will now study the Jordan structures of I⊥
σ in detail. We note that,

as the norm of I⊥
σ is always fixed, the triple structure of I⊥

σ is unique by the
previous remarks.

Definition 3.3.6. Given σ ∈ B(G) with ‖σ‖ = 1, we denote by Pσ :
V N(G) → I⊥

σ the contractive projection constructed in Proposition 3.3.1 and
if I⊥

σ �= {0}, we always fix a unitary element u ∈ I⊥
σ so that (I⊥

σ , u) is a
JW ∗-algebra with identity u, in the Jordan product ◦ and involution #
defined in Proposition 3.3.5.
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We note that I⊥
σ need not be a subtriple of V N(G) in general and we will

clarify this situation later. We first look at the case of I⊥
σ being a subalgebra

of V N(G) more closely.

Lemma 3.3.7. Let σ ∈ B(G) with ‖σ‖ = 1 and the induced projection Pσ :
V N(G) → I⊥

σ . The following conditions are equivalent:

(i) Pσ(111) = 111 where 111 is the identity of V N(G);
(ii) Pσ(111) �= 0;
(iii) σ(e) = 1;
(iv) I⊥

σ is a nontrivial subalgebra of V N(G);
(v) Zσ is a subgroup of G.

Proof. (i) ⇐⇒ (ii). Since Pσ(111) is in the w∗-closed convex hull of {σn · 111 :
n ∈ IN} and σn ·111 = σ(e)n111, we have Pσ(111) = α111 for some α ∈ C. Therefore
Pσ(111) �= 0 if, and only if, 111 ∈ I⊥

σ , that is, Pσ(111) = 111.
(i) ⇐⇒ (iii). From above, σ(e) = 1 implies that Pσ(111) = 111. The converse

follows from 111 = Pσ(111) = σ · Pσ(111) = σ · 111 = σ(e)111.
By Proposition 3.2.10 and Remark 3.2.11, it remains to show (iv) =⇒ (ii).

Suppose Pσ(111) = 0. Since I⊥
σ �= {0}, there exists a unitary u ∈ I⊥

σ . Then
u2 ∈ I⊥

σ and by the property of the contractive projection Pσ (cf.[72,p.229]),
we have

u2 = Pσ(u2) = Pσ(u111u) = Pσ(uPσ(111)∗u) = 0

which is impossible. �

Remark 3.3.8. In the proof of (iv) =⇒ (ii) above, we did not assume that I⊥
σ

is a ∗-subalgebra of V N(G) with identity 111 although the result implies this.
Given that I⊥

σ is a ∗-subalgebra of V N(G), we would have Pσ(vTw) =
vPσ(T )w for v, w ∈ I⊥

σ and T ∈ V N(G), by a well-known result of Tomiyama
[77]. We note that the condition ‖σ‖ = 1 in Lemma 3.3.7 is not assumed in
Theorem 3.2.12.

Proposition 3.3.9. Let σ ∈ B(G) and ‖σ‖ = 1. If I⊥
σ is a subtriple of

V N(G), then the zero set Zσ = σ−1{1} satisfies the following condition:

x, y, z ∈ Zσ implies xy−1z ∈ Zσ.

The converse holds if I⊥
σ is the w∗-closed linear span of ρ(Zσ).
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Proof. Let I⊥
σ be a subtriple of V N(G) and let x1, x2, x3 ∈ Zσ. We show

x1x
−1
2 x3 ∈ Zσ. Suppose not, we deduce a contradiction. Let T = ρ(x1) +

ρ(x2) + ρ(x3) ∈ I⊥
σ . Since I⊥

σ is a subtriple of V N(G), we have

∑
i,j,k

ρ(xix
−1
j xk) = TT ∗T ∈ I⊥

σ .

By [38; 39.15], we can choose ϕ ∈ Iσ such that ϕ(xix
−1
j xk) = 1 if xix

−1
j xk /∈

Zσ. It follows that

0 =
〈
ϕ,

∑
i,j,k

ρ(xix
−1
j xk)

〉
=

∑
xix

−1
j

xk /∈Zσ

ϕ(xix
−1
j xk) �= 0

which is a contradiction. Hence x1x
−1
2 x3 ∈ Zσ.

Conversely, suppose I⊥
σ = span ρ(Zσ) is the w∗-closed linear span of

ρ(Zσ). Recall that the triple product of V N(G) is defined by

{R,S, T} =
1
2

(RS∗T + TS∗R).

Given T ∈ I⊥
σ , we need to show TT ∗T ∈ I⊥

σ . If T =
∑
i

αiρ(xi) ∈ span ρ(Zσ),

then

TT ∗T =
∑
i,j,k

αiαjαkρ(xix
−1
j xk) ∈ span ρ(Zσ)

since Zσ satisfies the given condition. So the norm closure of span ρ(Zσ)
is a subtriple of V N(G) and standard arguments imply that the w∗-closure
span ρ(Zσ) is also a subtriple of V N(G). We give below these arguments for
completeness.

First note that for R,S, T ∈ span ρ(Zσ), the polarization formula (3.1)
implies {R,S, T} ∈ span ρ(Zσ). Now let T ∈ span ρ(Zσ) with T = w∗ −
lim
α
Tα and Tα ∈ span ρ(Zσ). Then T ∗ = w∗ − lim

α
T ∗

α and {Tγ , T, Tβ} =
1
2 (TγT

∗Tβ + TβT
∗Tγ) = w∗ − lim

α

1
2 (TγT

∗
αTβ + TβT

∗
αTγ) ∈ span ρ(Zσ) for

fixed β, γ. Next, {Tγ , T, T} = w∗ − lim
β

{Tγ , T, Tβ} ∈ span ρ(Zσ) for fixed γ.

Finally {T, T, T} = w∗ − lim
γ

{Tγ , T, T} ∈ span ρ(Zσ). �

Remark 3.3.10. We have seen that if Zσ is a subgroup of G, then I⊥
σ is the

w∗-closed linear span of ρ(Zσ). The latter is also true if Zσ is a spectral set
for A(G), for instance, a finite set. We recall that a closed subset E ⊂ G is
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called a spectral set for A(G) if the ideal {ϕ ∈ A(G) : ϕ(E) = {0}} is the only
closed ideal whose zero set is E.

We have seen in Chapter 2 that sharper results for harmonic functions can
be obtained by studying those functions which are uniformly continuous. Now
we investigate the non-commutative analogue of these functions. They are the
harmonic functionals belonging to spanA(G) · V N(G) as the latter identifies
with the bounded uniformly continuous functions on Ĝ when G is abelian
(cf. [32,33]). Results for J⊥

σ ∩ C
u(G) have non-commutative analogues for
I⊥
σ ∩ spanA(G) · V N(G).

Analogous to (2.2), given m ∈ (
spanA(G)·V N(G)

)∗ and T ∈ spanA(G)·
V N(G), we define m ◦ T ∈ A(G)∗ = V N(G) by

〈ϕ,m ◦ T 〉 = 〈ϕ · T,m〉 (
ϕ ∈ A(G)

)
.

Then we have m ◦ T ∈ spanA(G) · V N(G) which also contains the w∗-closed
convex hull KT of the set {ϕ · T : ϕ ∈ A(G), ‖ϕ‖ ≤ 1} (see [53, Lemma 5.1]).

By [56], there is a linear (into) isometry η ∈ Bρ(G) �→ η̃ ∈ (
spanA(G) ·

V N(G)
)∗ such that η̃(ϕ · T ) = 〈ϕ, η · T 〉 for ϕ ∈ A(G) and T ∈ V N(G).

Moreover, we have

〈m ◦ T, η̃〉 = 〈η̃ ◦ T,m〉 (3.2)

for m ∈ (
spanA(G) · V N(G)

)∗ and η ∈ Bρ(G).
Let P 1

ρ (G) = {η ∈ Pρ(G) : η(e) = 1} ⊂ Bρ(G) ⊂ B(G) and let P 1
ρ (G)

inherit the w∗-topology σ
(
B(G), C∗(G)

)
which coincides with the topology

σ
(
P 1

ρ (G), L1(G)
)

since P 1
ρ (G) is norm-bounded and L1(G) is norm-dense in

C∗(G). Let (ηα) be a net in P 1
ρ (G) w∗-converging to η ∈ P 1

ρ (G). Then
by [60,34], we have ‖ϕηα − ϕη‖ → 0 for all ϕ ∈ A(G) which implies that
η̃α(ϕ · T ) = 〈ϕ, ηα · T 〉 → 〈ϕ, η · T 〉 = η̃(ϕ · T ) for ϕ ∈ A(G) and T ∈ V N(G).
So η̃α → η̃ in the w∗-topology of (spanA(G) · V N(G)

)∗
. Conversely, if

η̃α → η̃ in the w∗-topology, then ηα → η in the topology σ
(
P 1

ρ (G), L1(G)
)
.

We write P̃ 1
ρ (G) = {η̃ : η ∈ P 1

ρ (G)}.

Lemma 3.3.11. Let T ∈ spanA(G) · V N(G) and let KT be the w∗-closed
convex hull of {ϕ · T : ϕ ∈ A(G), ‖ϕ‖ ≤ 1}. Then KT is equicontinuous on
P̃ 1

ρ(G).

Proof. Let (η̃α) be a net in P̃ 1
ρ(G) w∗-converging to η̃ ∈ P̃ 1

ρ(G). Let ε > 0.
We show

|〈s, η̃α〉 − 〈s, η̃〉| < ε (3.3)
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for all S ∈ KT , from some α onwards. It can be seen from the following
arguments that we may assume T ∈ A(G) · V N(G) with T = ϕ′ · T ′ where
ϕ′ ∈ A(G) and T ′ ∈ V N(G). By w∗-convergence of (ηα) and the above
remark, we have ‖ϕ′ηα − ϕ′η‖ → 0.

Let S ∈ KT . Then there is a net (ϕβ) in A(G) with ‖ϕβ‖ ≤ 1 such
that (ϕβ ·T ) w∗-converges to S. Now (ϕ̃β) is a net in

(
spanA(G) ·V N(G)

)∗

and we may suppose, passing to a subnet if necessary, that (ϕ̃β) w∗-converges
to m ∈ (

spanA(G) · V N(G)
)∗ say. For ϕ ∈ A(G), we have 〈ϕ,m ◦ T 〉 =

〈ϕ · T,m〉 = lim
β

〈ϕ · T, ϕ̃β〉 = lim
β

〈ϕβ , ϕ · T 〉 = lim
β

〈ϕ,ϕβ · T 〉 = 〈ϕ, S〉, that is,

S = m ◦ T. It follows that

|〈S, η̃α〉 − 〈S, η̃〉| = |〈m ◦ T, η̃α − η̃ 〉|

= |〈(η̃α − η̃) ◦ T,m〉| by (3.2)

= lim
β

|〈(η̃α − η̃ ) ◦ T, ϕ̃β〉|

= lim
β

|〈ϕβ , (η̃α − η̃) ◦ T 〉|

= lim
β

|〈ϕβ · T, η̃α − η̃〉|

= lim
β

|〈ηα − η, ϕβ · T 〉|

= lim
β

|〈ϕ′ηα − ϕ′η, ϕβ · T ′〉|

≤ ‖T ′‖ ‖ϕ′ηα − ϕ′η‖ → 0

which clearly yields (3.3). �

We now prove a non-associative analogue of Theorem 2.2.17.

Theorem 3.3.12. Let σ ∈ Bρ(G) and ‖σ‖ = 1. Then there exists a net (µα)
in the convex hull of {σn : n ∈ IN} such that for R,S, T ∈ I⊥

σ ∩V Nc(G), their
Jordan triple product is given by

2{R,S, T} = lim
α
µα · (RS∗T + TS∗R)

uniformly on compact subsets of P̃ 1
ρ(G). Further, if G is amenable, then the

above convergence holds for all R,S, T ∈ I⊥
σ ∩ spanA(G) · V N(G).
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Proof. By the construction of the projection Pσ : V N(G) → I⊥
σ in Propo-

sition 3.3.1, there is a net (µα) in the convex hull co {σn : n ≥ 1} such
that

〈ϕ, {R,S, T} 〉 = lim
α

〈
ϕ, µα ·

(1
2

(RS∗T + TS∗R)
) 〉

for ϕ ∈ A(G) and R,S, T ∈ I⊥
σ .

Let V = 1
2 (RS∗T + TS∗R) where R,S, T ∈ I⊥

σ ∩ V Nc(G). Then V =
ϕ ·V whenever ϕ ∈ A(G) and ϕ = 1 on supp V. Let KV be the w∗-closed
convex hull of {ϕ · V : ϕ ∈ A(G), ‖ϕ‖ ≤ 1}. Then KV is equicontinuous on
P̃ 1

ρ(G) by Lemma 3.3.11.
We first show that {R,S, T} ∈ KV . For this, it suffices to show µα · V ∈

KV for all α. We note that ‖µα‖ ≤ 1 and µ̃α ∈ (
spanA(G) · V N(G)

)∗

has a norm-preserving extension ˜̃µα ∈ V N(G)∗. Regarding A(G) ⊂ V N(G)∗

and by Goldstein’s theorem, there is a net (ϕβ) in A(G), with ‖ϕβ‖ ≤ 1,
w∗-converging to ˜̃µα. Then (ϕβ · V ) w∗-converges to (µα · V ) in V N(G),
that is, µα · V ∈ KV .

We now show that (µα ·V ) converges pointwise to {R,S, T} on P̃ 1
ρ(G).

Let ν̃ ∈ P̃ 1
ρ(G). Let ε > 0. By equicontinuity of KV , there is a w∗-neighbour-

hood N of ν̃ such that

| 〈W, ϕ̃ 〉 − 〈W, ν̃ 〉 | < ε

for all ϕ̃ ∈ N and W ∈ KV . Choosing a net in A(G) w∗-converging to ˜̃ν
as above, we can pick ϕ ∈ A(G) such that ϕ̃ ∈ N. There exists α0 such that
α ≥ α0 implies

| 〈ϕ, {R,S, T} 〉 − 〈ϕ, µα · V 〉 | < ε

and therefore

| 〈 {R,S, T}, ν̃ 〉 − 〈µα · V, ν̃ 〉 | ≤ | 〈 {R,S, T}, ν̃ 〉 − 〈 {R,S, T}, ϕ̃ 〉 |

+ | 〈 {R,S, T}, ϕ̃ 〉 − 〈µα · V, ϕ̃ 〉 |

+ | 〈µα · V, ϕ̃ 〉 − 〈µα · V, ν̃ 〉 | < 3ε.

This proves µα · V → {R,S, T} pointwise on P̃ 1
ρ(G). Since P̃ 1

ρ(G) is locally
compact and | 〈W, ν̃ 〉 | ≤ ‖V ‖ for all W ∈ KV and ν̃ ∈ P̃ 1

ρ(G), the conver-
gence is uniform on compact subsets of P̃ 1

ρ(G) by equicontinuity of KV (cf.
[49; p. 232]).
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Finally, if G is amenable, we have spanA(G) · V N(G) = A(G) · V N(G)
as remarked before and hence the above arguments apply to all R,S, T ∈ I⊥

σ ∩
spanA(G) · V N(G).

�
For amenable groups G, we have the following description of the “uni-

formly continuous” harmonic functionals.

Proposition 3.3.13. Let G be amenable and let σ ∈ B(G). Then

I⊥
σ ∩ (

A(G) · V N(G)
)

= I⊥
σ ∩ V Nc(G)

= {ϕ · T : ϕ ∈ A(G), T ∈ I⊥
σ }.

Proof. We first note that spanA(G) · I⊥
σ = I⊥

σ ∩ V Nc(G) . Indeed, if T ∈
I⊥
σ ∩ V Nc(G), then T = ϕ · T ∈ A(G) · I⊥

σ where ϕ ∈ A(G) and ϕ = 1
on supp T. Conversely, given ψ · S ∈ A(G) · I⊥

σ , choose a sequence (ψn)
in A(G) ∩ Cc(G) with ‖ψn − ψ‖ → 0. Then ‖ψn · S − ψ · S‖ → 0 and
ψn · S ∈ I⊥

σ ∩ V Nc(G).
To complete the proof, we need to show I⊥

σ ∩(
A(G) ·V N(G)

) ⊂ A(G) ·I⊥
σ .

Since G is amenable, the existence of a bounded approximate identity (uα) in
A(G) and Cohen’s factorization imply that A(G) · I⊥

σ = spanA(G) · I⊥
σ [38;

32.22]. Hence T ∈ I⊥
σ ∩ (

A(G) · V N(G)
)
, with T = ϕ · S where ϕ ∈ A(G)

and S ∈ V N(G), implies that uα · (ϕ · S) = uα · T ∈ A(G) · I⊥
σ and ϕ · S =

lim
α
uα · (ϕ · S) ∈ A(G) · I⊥

σ = A(G) · I⊥
σ . �

Proposition 3.3.14. Let σ ∈ B(G) and let Zσ be a subgroup of G. Then
I⊥
σ ∩ spanA(G) · V N(G) = I⊥

σ ∩ V Nc(G).

Proof. By Proposition 3.2.10, A(G)/Iσ identifies with the Fourier algebra A(Zσ).
Let Φ : V N(Zσ) → I⊥

σ be the induced isometric isomorphism. By [47;
Lemma 3.2], we have Φ

(
spanA(Zσ) · V N(Zσ)

)
= I⊥

σ ∩ spanA(G) · V N(G)
and Φ

(
V Nc(Zσ)

)
= I⊥

σ ∩ V Nc(G). Since spanA(Zσ) · V N(Zσ) = V Nc(Zσ) ,
we have I⊥

σ ∩ span A(G) · V N(G) = I⊥
σ ∩ V Nc(G) . �

Now we discuss some other algebraic and geometric consequences of the
Jordan structures of I⊥

σ .

Given σ ∈ B(G) and ‖σ‖ = 1, we embed the Banach algebra A(G)/Iσ
in its second dual

(
A(G)/Iσ

)∗∗ in the usual way, where the latter is equipped
with the first Arens product

ξ η = w∗ − lim
α

lim
β
ξαηβ
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where ξ, η ∈ (
A(G)/Iσ

)∗∗ are w∗-limits of the nets (ξα) and (ηβ) respec-
tively in A(G)/Iσ. The product ξ η is w∗-continuous in ξ for fixed η.

Then the algebraic centre Z of
(
A(G)/Iσ

)∗∗ coincides with the set { ξ ∈(
A(G)/Iσ

)∗∗ : η �→ ξ η is w∗-continuous}. A(G)/Iσ is Arens regular if Z =(
A(G)/Iσ

)∗∗
.

Proposition 3.3.15. Let σ ∈ B(G) and ‖σ‖ = 1. Given that A(G)/Iσ has
bounded approximate identity and Zσ is discrete, we have

(i) A(G)/Iσ coincides with the centre of
(
A(G)/Iσ

)∗∗;
(ii) A(G)/Iσ is Arens regular if, and only if, I⊥

σ is linearly isomorphic to a
Hilbert space.

Proof. (i) Since
(
A(G)/Iσ

)∗ = I⊥
σ is a JW ∗-algebra, its predual A(G)/Iσ

is isometrically isomorphic to a complemented subspace of the predual of a
von Neumann algebra, by [15; Theorem 2], and is therefore weakly sequentially
complete (cf. [74; Corollary 5.2]). Since Zσ is discrete, A(G)/Iσ is an ideal in(
A(G)/Iσ

)∗∗ [30, Theorem 3]. Hence A(G)/Iσ = Z by [6; Theorem 2.1(iii)].
(ii) Arens regularity of A(G)/Iσ is equivalent to reflexivity by (i). It is

well-known that a JB∗-triple is reflexive if, and only if, it is linearly isomorphic
to a Hilbert space (cf.[19]). �

Remark 3.3.16. It is unknown if (ii) above remains valid without the existence of
a bounded approximate identity in A(G)/Iσ, even in the special case of Iσ =
{0} where σ−1{1} = G. Also we do not know if Arens regularity of A(G)/Iσ
would actually imply that Zσ is finite in Proposition 3.3.15(ii). However, as
shown in [31], if G is a free group on two generators, then there is a closed ideal
I in A(G) which generalizes Iσ such that A(G)/I is linearly isomorphic to
an infinite-dimensional separable Hilbert space and hence Arens regular.

Finally in this section we study the geometry of I⊥
σ . We have already

noted that the open unit ball Uσ of I⊥
σ is a symmetric Banach manifold. The

classification of Uσ, or rather, of I⊥
σ , will be carried out in the next section.

We study here the geometry of certain components of the boundary of Uσ which
may be useful for the understanding of the boundary structure of Uσ. We first
consider the finite-dimensional case. The simplest example is that dim I⊥

σ = 2
in which case Uσ is a bidisc in C2 as will be seen presently.

By the structure theory of Jordan algebras (cf. [43]), if dim I⊥
σ < ∞,

then it is (isomorphic to) a finite �∞-sum of JW ∗-algebras, each of which is
one of the following Cartan factors:
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(i) Mn (n× n complex matrices)
(ii) A2n (2n× 2n antisymmetric complex matrices, n ≥ 2 )
(iii) Sn (n× n symmetric complex matrices, n ≥ 2 )
(iv) V (spin factor)

where V is a subspace of Mn , of dimension ≥ 3 , such that a ∈ V im-
plies that a∗ ∈ V and a2 is a scalar multiple of the identity matrix. Now
if dim I⊥

σ = 2, then I⊥
σ = C ⊕
∞ C since dim A2n,dim Sn,dim V > 2. So

Uσ = {(α, β) ∈ C 2 : |α|, |β| < 1}. If we take a discrete group G with an
element x satisfying x2 = e and if we let σ = χ{x,e} ∈ B(G), then ‖σ‖ = 1
and I⊥

σ = {αρ(x)+β111 : α, β ∈ C} which is 2-dimensional. One can find simple
examples of a non-abelian I⊥

σ . Indeed, if σ−1{1} is a subgroup, of order 6,
of G, then I⊥

σ is a von Neumann subalgebra of V N(G) and dim I⊥
σ = 6.

The above classification list implies that I⊥
σ is either C6 or C2 ⊕ M2, and

the latter occurs if σ−1{1} is non-abelian. It may be interesting to note that
dimension analysis also leads to the following result.

Lemma 3.3.17. Given x ∈ G with x2 �= e, then there does not exist σ ∈
B(G) satisfying both ‖σ‖ = 1 and σ−1{1} = {x, x2}.

Proof. Suppose there exists σ ∈ B(G) satisfying the given conditions, then
I⊥
σ = span {ρ(x), ρ(x2)} is an abelian von Neumann algebra. We deduce a

contradiction by showing that I⊥
σ is a Cartan factor. For this, we show that

I⊥
σ does not contain nontrivial triple ideal. A (closed) subspace J ⊂ I⊥

σ is a
triple ideal if {I⊥

σ , I
⊥
σ , J} ⊂ J. Since ‖σ‖ = 1, there is a contractive projection

Pσ : V N(G) → I⊥
σ .

We show that no 1-dimensional subspace of I⊥
σ is an ideal. First, Cρ(x)

is not an ideal because {ρ(x2), ρ(x), ρ(x)} = ρ(x2) /∈ Cρ(x). Likewise Cρ(x2)
is not an ideal. Next let u = αρ(x) + βρ(x2) and J = Cu, where α, β ∈
C\{0}. Then {ρ(x), ρ(x2), u} = α{ρ(x), ρ(x2), ρ(x)} + β{ρ(x), ρ(x2), ρ(x2)} =
αPσ

(
ρ(x)ρ(x2)∗ρ(x)

)
+ βρ(x) = αPσ(111) + βρ(x) = βρ(x) /∈ J, by Proposi-

tion 3.3.7. So J is not an ideal either. �
As dim I⊥

σ increases, it can be seen that the geometric complexity of Uσ

increases rapidly. We will study the connected components of projections in I⊥
σ .

These are symmetric Banach manifolds contained in the boundary of Uσ. In
the following, we no longer restrict to finite dimensions.

Henceforth we assume that I⊥
σ �= {0}. As in Definition 3.3.6, given

σ ∈ B(G) with ‖σ‖ = 1, we fix a unitary u ∈ I⊥
σ such that (I⊥

σ , u) is
a JW ∗-algebra with identity u and there is an involution preserving isome-
try which carries I⊥

σ onto a JW ∗-subalgebra A of B(Hu) for some complex
Hilbert space Hu, and maps u to the identity 111u in B(Hu). The Jordan
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product ◦ in A is given by

a ◦ b =
1
2

(ab+ ba)

and the triple product by

{a, b, c} =
1
2

(ab∗c+ cb∗a)

where the product and involution in the right-hand side are those in B(Hu).
We will identify I⊥

σ with A in the sequel and work with the latter.
An element p ∈ A is a projection if p = p∗ = p2. Let P be the set of all

projections in A, equipped with the relative topology. Then P is contained in
the boundary of Uσ and is the union of its connected components. We study
below the geometry of these components. We note that, in I⊥

σ , P identifies
with the set {p ∈ I⊥

σ : p = Pσ(up∗u) = Pσ(pu∗p)} ⊂ V N(G), here the adjoints
u∗ and p∗ are taken in V N(G) .

Let p ∈ P. The operator p� p : A → A has eigenvalues 0, 1
2 , 1 and

we have the following Peirce decomposition of A :

A = A2(p) ⊕ A1(p) ⊕ A0(p)

where Ak(p) is the k
2 -eigenspace for k = 0, 1, 2. The projection Pk(p) : A →

Ak(p) is called the Peirce k-projection and is given by

P2(p)(a) = pap

P1(p)(a) = pa+ ap− 2pap

P0(p)(a) = (111u − p)a(111u − p).

Let A1(p)s = {a ∈ A : a∗ = a = ap + pa} be the self-adjoint part of A1(p).
For a ∈ A1(p)s, we define the linear map ka = 2(a� p − p� a) : A → A,
where (a�p)(·) = {a, p, ·}. Then ka is a Jordan ∗-derivation :

ka(x∗) = ka(x)∗, ka(x ◦ y) = x ◦ ka(y) + ka(x) ◦ y

for x, y ∈ A. Therefore exp tka =
∞∑

n=0

tnkn
a

n! is a Jordan ∗-automorphism of A
for t ∈ IR.

Let M be a connected component of P. Then (exp ka)(M) = M and it
has been shown in [16] that M is a real analytic Banach manifold and the local
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chart at a point p ∈ M is given by the map a ∈ A1(p)s �→ exp ka(p) ∈ M,

where A1(p)s identifies with the tangent space TpM at p. Further, M is
a symmetric manifold with symmetry at p ∈ M given by Sp = Id − 2P1(p) :
M → M.

Lemma 3.3.18. The manifold M is path-connected.

Proof. Given p ∈ M, let

Kp = {q ∈ M : q can be joined to p by a continuous path}.

Using the local chart at p, it can be shown easily that Kp is open. But
M\Kp = ∪

q/∈Kp

Kq is open. So M = Kp by connectedness of M. �

Remark 3.3.19. It follows from the above lemma and [82; Proposition 5.2.10]
that the projections in M are unitarily equivalent in B(Hu).

We next define an affine connection on M and describe the geodesics in
M. We fix some notation first. Let TM be the tangent bundle which is the
disjoint union ∪

p∈M
TpM of tangent spaces. A vector field on M is a section

of TM, that is, a map X : M → TM such that X(p) ∈ TpM. Since TpM
identifies with A1(p)s ⊂ A, we can think of X as an A-valued map and
we denote by X (M) the space of real analytic vector fields on M. Given
X ∈ X (M) and f ∈ C∞(M), we define

(Xf)(p) =
d

dt
f
(
p+ tX(p)

)∣∣
t=0.

Note that fX denotes the vector field (fX)(p) = f(p)X(p). An affine con-
nection on M is a map

∇ : X (M) × X (M) → X (M)

with ∇(X,Y ) , usually written ∇XY, satisfying the following conditions:

(i) ∇X(Y1 + Y2) = ∇XY1 + ∇XY2

(ii) ∇fX1+gX2Y = f∇X1Y + g∇X2Y

(iii) ∇X(fY ) = f∇XY + (Xf)Y.
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Definition 3.3.20. Given X,Y ∈ X (M), we define

(∇XY )(p) = P1(p)
(
Y ′(p)(X(p))

)

where Y ′(p) : A → A is the Fréchet derivative of Y at p, and P1(p) : A →
A1(p) is the Peirce 1-projection.

It has been shown in [16] that ∇ is a torsion free affine connection on
M.

Proposition 3.3.21. Let M be a connected component of projections in (I⊥
σ , u).

Given p ∈ M and a tangent vector v ∈ TpM, the ∇-geodesic at p with ini-
tial tangent vector v is given by

γp,v(t) = (exp tkv)(p) (t ∈ IR)

where kv = 2(v� p− p� v).

Proof. We identify I⊥
σ with A ⊂ B(Hu) as above and we do the computation

in A. Write γ(t) = (exp tkv)(p). We need to show

(∇γ̇ γ̇)
(
γ(t)

)
= 0.

We have γ̇(t) = (exp tkv)
(
kv(p)

)
and

γ̈(t) = (exp tkv)
(
k2

v(p)
)

= (exp tkv)
(
kv(v)

)

where v = pv+ vp gives kv(p) = v− pvp and k2
v(p) = kv(v) = 2(vpv− pv2p).

By Definition 3.3.20, we have

(∇γ̇ γ̇)
(
γ(t)

)
= P1

(
γ(t)

((
γ̇(t)′(γ(t))(γ̇(t))

)
= P1

(
γ(t)

)(
γ̈(t)

)
= P1

(
(exp tkv)(p)

)
(exp tkv)

(
kv(v)

)
.

Since exp tkv is a triple automorphism of A, the last term above is equal to
(exp tkv)P1(p)

(
kv(v)

)
and direct calculation gives P1(p)

(
kv(v)

)
= 0 which

completes the proof. �
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In case M contains a rank-one projection in B(Hu), we have a more
explicit description of the geodesics. Let p ∈ M be rank-one, that is, there
exists a unit vector ξ ∈ Hu such that

p(·) = (·|ξ) ξ

where (·|·) is the inner product in Hu. By Remark 3.3.19, every projection in
M is also rank-one in B(Hu). We can define a map v ∈ TpM = A1(p)s �→
v(ξ) ∈ {ξ}⊥ where v = vp + pv implies that v(ξ) is in the orthogonal com-
plement {ξ}⊥ of {ξ}. Further, the above map is a linear homeomorphism, not
necessarily surjective, as simple computation gives

‖v(ξ)‖ ≤ ‖v‖ ≤ 2‖v(ξ)‖.

In fact, we have ‖v(ξ)‖ = ‖vp‖ = ‖pv‖. It follows that TpM is a real Hilbert
space in the inner product

〈〈v1, v2〉〉p = 2 Re ( v1(ξ)|v2(ξ) ).

We can therefore define a Riemannian metric g on M by

g(X,Y )p = 〈〈X(p), Y (p)〉〉p

for X,Y ∈ X (M) and p ∈ M. As in [16], one can show that ∇ is compatible
with g, and is therefore the Levi-Civita connection on M. Also, using similar
arguments involving Jordan arithmetic as in [16], the ∇-geodesic at p ∈ M
with initial tangent vector v ∈ TpM can be expressed as

γp,v(t) = cos(2‖pv‖t)p+
sin(2‖pv‖t)

2‖pv‖ v +
1 − cos(2‖pv‖t)

2‖pv‖2 v2

which is contained in the closed real Jordan subalgebra of (I⊥
σ , u) generated

by p and v. One can deduce that the Riemann distance between p, q ∈ M is√
2 sin−1 ‖p− q‖.
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3.4. Classification of harmonic functionals

The Murray-von Neumann classification of rings of operators [62] is fun-
damental in the theory of operator algebras and has been extended to Jordan
algebras [79] and Jordan triples [43,44].

In this section, we study the Murray-von Neumann classification of the har-
monic functionals I⊥

σ in terms of the linear geometry of its predual A(G)/Iσ.
We show that the classification of I⊥

σ is completely determined by the facial
structures of its normal state space in A(G)/Iσ. By fixing a unitary element
u ∈ I⊥

σ as before, we can identify (I⊥
σ , u) with a JW ∗-subalgebra A of some

B(H) containing the identity operator 111 : H → H. We will show that the
classification of I⊥

σ does not depend on the choice of u. In fact, we prove our
classification results for the general case of arbitrary JW ∗-algebras and obtain
the results for I⊥

σ as special case.
We begin with the classification of JW ∗-algebras. Throughout A de-

notes a JW ∗-subalgebra of the algebra B(H) of bounded linear operators on
some Hilbert space H in which the Jordan product ◦ is defined by

a ◦ b =
1
2

(ab+ ba)

and the Jordan triple product is given by

{a, b, c} =
1
2

(ab∗c+ cb∗a)

and also, the identity of A is the identity operator 111 : H → H. Let

A = {a ∈ A : a∗ = a}

be the self-adjoint part of A. Then A = A + iA and (A, ◦) is a real Jordan
Banach algebra, called a JW -algebra. Two elements a, b ∈ A are said to
operator commute if TaTb = TbTa where Ta : A → A is defined by Ta(x) =
a ◦ x and Tb is defined likewise. Clearly TaTb = TbTa is equivalent to a ◦ (b ◦
c) = (a ◦ c) ◦ b for all c ∈ A. The centre Z of A is defined by

Z = {a ∈ A : a ◦ (x ◦ y) = (a ◦ y) ◦ x for all x, y ∈ A}.

Its self-adjoint part Z is the centre of A. A is called a factor if Z = C 111.
We note that A is uniformly generated by projections which determine its
classification.
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A projection p ∈ A is called abelian if (pAp, ◦) is an associative Jordan
algebra in which case it is an abelian von Neumann algebra. Two projections
p, q ∈ A are equivalent, denoted by p ∼ q, if there exist s1, . . . , sn ∈ A such
that s2j = 111 for j = 1, . . . , n and sn . . . s1ps1 . . . sn = q. By [79; p. 23], we
have p ∼ q if, and only if, 111− p ∼ 111− q. We equip A with the usual ordering
≤ in B(H). A JW ∗-algebra A is called modular if every projection p ∈ A
has the following property:

given a projection q ≤ p with q ∼ p, then q = p

(cf. [79; Proposition 14]). A projection p ∈ A is called modular if (pAp, ◦) is
modular. We note that abelian projections are modular. The projections in the
centre are called the central projections. A is called properly non-modular if it
has no nonzero modular central projection.

A JW ∗-algebra A is of type I if every nonzero central projection in A
dominates a nonzero abelian projection; A is of type II if it has no nonzero
abelian projection and every nonzero central projection in A dominates a
nonzero modular projection; A is of type III if it has no nonzero modular
projection. A type II1 JW ∗-algebra is one that is type II and modular. A
type II and properly non-modular JW ∗-algebra is said to be of type II∞. Our
definition of types for A = A + iA coincides with that for the JW -algebra A
given in [79].

It is not obvious that the types of JW ∗-algebras are invariant under
linear isometries although this will be an immediate consequence of our char-
acterization of types in terms of the geometry of the normal state space. We
note that it has been shown in [44; p. 57] that linear isometries preserve types
II and III, using the nontrivial fact that JW ∗-algebras of these types generate
von Neumann algebras of the same types. Our unified geometric approach does
not require this fact.

As in [79; Theorem 13], one can show that every JW ∗-algebra decomposes
uniquely into direct summands of types I, II1, II∞ and III. Complexifying the
result in [79; Theorem 26], one has the following important characterization of
modular JW ∗-algebras.

Lemma 3.4.1. A JW ∗-algebra A is modular if, and only if, it has a unique
faithful normal centre-valued trace, that is, there is a unique w∗-continuous
linear map � : A → Z satisfying the following conditions:

(i) �(a) ≥ 0 for a ≥ 0;
(ii) �(a) = 0 and a ≥ 0 imply a = 0;
(iii) �(a ◦ z) = �(a) ◦ z for z ∈ Z;
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(iv) �(sa∗s) = �(a)∗ for s ∈ A with s2 = 111
(v) �(111) = 111.

We note that a ◦ z = az for z ∈ Z. We also note that a von Neumann
algebra A is finite if, and only if, (A, ◦) is a modular JW ∗-algebra with
Jordan product a ◦ b = 1

2 (ab + ba). The type of a von Neumann algebra A
is the same as that of the JW ∗-algebra (A, ◦). Obviously, even if I⊥

σ is a
von Neumann subalgebra of V N(G), it need not inherit the type of V N(G),
for instance, they could have different dimensions. However, if I⊥

σ is a subal-
gebra of V N(G), then finiteness of V N(G) passes onto I⊥

σ and the image
of the centre of V N(G) under Pσ : V N(G) → I⊥

σ is contained in the centre
of I⊥

σ by Remark 3.3.8. Further, if σ−1{1} is an open subgroup of G, then
Corollary 3.3.4 implies that Pσ is w∗-continuous in which case I⊥

σ is type I
if V N(G) is, and if V N(G) contains no type III summand, then I⊥

σ does
not contain such either (cf. [78]).

Example 3.4.2. If G is a countable discrete group in which every conjugacy
class, except the identity class, is infinite, then V N(G) is a type II1 factor.
The group Gp of all finite permutations of an infinite countable set is such
a group and as in Section 3.3, we can find σ ∈ B(Gp) such that I⊥

σ is a
2-dimensional abelian subalgebra of V N(Gp).

We note that V N(G) is finite if, and only if, G is a [SIN]-group. We
next characterize the modularity of I⊥

σ by its normal state space.
We recall that a continuous linear functional on a JBW ∗-triple Z is

normal if it is additive on orthogonal tripotents, that is, f(
∑
α
eα) =

∑
α
f(eα)

for any orthogonal family {eα} of tripotents in Z where the sum is taken with
respect to the w∗-topology σ(Z,Z∗) and two tripotents eα, eβ are orthogonal if
eα�eβ = 0. The w∗-continuous linear functionals on Z are exactly the normal
functionals [42; Proposition 3.19]. In the case of JW ∗-algebras, the normal
functionals are exactly the ones which are additive on orthogonal projections
[42; Proposition 3.18]. A continuous linear functional f of a JW ∗-algebra A
is called a state if ‖f‖ = 1 = f(111). Let

N = {f ∈ A∗ : ‖f‖ = 1 = f(111)}

be the normal state space of A. It is a norm-closed convex subset of A∗. A
face F of N is called a split face if there is a face F ′ of N, disjoint from F,

such that each f ∈ N\(F ∪ F ′) has a unique representation

f = αg + (1 − α)h
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where 0 < α < 1, g ∈ F and h ∈ F ′. Split faces are norm-closed. Given a
projection p ∈ A, the set F = {f ∈ N : 〈f, p〉 = 1} is a norm-closed face of
N, and all norm-closed faces of N are of this form. Moreover, F identifies
with the normal state space of pAp and it is a split face if, and only if, p

is a central projection (cf. [3; Theorem 11.5] and [2; Proposition 4.11]). We
define an affine symmetry of F to be an affine bijection ζ : F → F such that
ζ(K) = K for every split face K of F. We will denote by Sym (F ) the set
of all affine symmetries of F.

A linear functional f on A = A + iA is self-adjoint if f = f∗ where
f∗ : A → C is defined by f∗(a) = f(a). The self-adjoint part of A∗, denoted
by A∗ = {f ∈ A∗ : f∗ = f}, is a real Banach space partially ordered by the
cone C = ∪

α≥0
αN and is the predual of A. We have A∗ = C − C and the

norm of A∗ is additive on C. Given an affine bijection ζ : N → N, we can
extend it naturally to a linear order-isomorphism ζ̃ : A∗ → A∗. Further, ζ̃ is
an isometry since (A∗, C) is a base norm space with base N which implies
that for each f ∈ A∗, we have

‖f‖ = inf {α+ β : f = αg − βh, α, β ≥ 0, g, h ∈ N}

(cf. [1; p. 36]). Let ζ∗ : A → A be the dual map of ζ̃. Then ζ∗ is a
surjective linear isometry and ζ∗(111) = 111. By [84; Theorem 4], ζ∗ is a Jordan
automorphism. It follows that the complexified map Φζ = ζ∗ + iζ∗ : A → A is
a Jordan ∗-automorphism.

A linear functional f on A is called a trace if it satisfies f(a) = f(sas)
for all a ∈ A and s ∈ A with s2 = 111. If A is modular with centre-valued
trace � : A → Z, then for any linear functional ρ of Z, the composite ρ ◦ �
is clearly a trace of A. In fact, every trace f of A is of this form. To see
this, let ρ = f |Z be the restriction of f to Z. Given a ∈ A, let Ka be
the norm-closed convex hull of {sn . . . s1as1 . . . sn : sj ∈ A, s2j = 1} in A.

Then by [79; Lemma 31], Ka ∩ Z = {�(a)}. Since f(Ka) = {f(a)}, we have
(ρ ◦ �)(a) = f(�(a)) = f(a).

Lemma 3.4.3. Let A be a modular JW ∗-algebra with normal state space N.

Let f ∈ N be a trace. Then f is a fixed-point of the symmetries of N.

Proof. Let ζ : N → N be a symmetry and let Φζ = ζ∗ + iζ∗ : A → A be
the Jordan ∗-automorphism defined above. Let � : A → Z be the unique
centre-valued trace. We have f = ρ ◦ � where ρ = f |Z is a normal state of Z.
We first show that Φζ fixes the centre of Z. Since Z is uniformly generated
by its projections, it suffices to show that Φζ(p) = p for all projections p in
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Z. Let F = {f ∈ N : 〈f, p〉 = 1}. Then F is a split face of N as remarked
before. The complementary face of F is F ′ = {f ∈ N : 〈f, p〉 = 0}. For every
f ∈ N\(F ∪ F ′), we have

f = αg + (1 − α)h

where 0 < α < 1, g ∈ F and h ∈ F ′. Since ζ leaves F and F ′ invariant,
we have ζ(g) ∈ F and ζ(h) ∈ F ′ which gives

〈f, p〉 = 〈αg + (1 − α)h, p〉 = α = 〈αζ(g) + (1 − α)ζ(h), p〉

= 〈ζ(f), p〉 = 〈f, ζ∗(p)〉 = 〈f,Φζ(p)〉.

This proves Φζ(p) = p. Next we show that � ◦ Φζ : A → Z is a faithful
normal centre-valued trace. Since Φζ preserves the Jordan product and leaves
Z fixed, we have, for a ∈ A and z ∈ Z,

(� ◦ Φζ)(a ◦ z) = �
(
Φζ(a) ◦ Φζ(z)

)
= �

(
Φζ(a) ◦ z) = �

(
Φζ(a)

) ◦ z.

For s ∈ A and s2 = 111, we have Φζ(s)2 = Φζ(s2) = 111 and

(� ◦ Φζ)(sas) = �
(
Φζ(s)Φζ(a)Φζ(s)

)
= �

(
Φζ(a)

)
.

It follows that �◦Φζ is a faithful normal centre-valued trace and by uniqueness
of �, we have � ◦ Φζ = � which implies that, for a ∈ A,

〈ζ(f), a〉 = 〈f,Φζ(a)〉 = 〈ρ ◦ �,Φζ(a)〉 = ρ
(
� ◦ Φζ(a)

)
= 〈ρ ◦ �, a〉 = 〈f, a〉

that is, ζ(f) = f. �

Modularity of a JW ∗-algebra A can be characterized by the geometric
property that there are sufficiently many fixed points of the affine symmetries
of its normal state space N. To make this precise, a subset S of a norm-
closed face F = {f ∈ N : 〈f, p〉 = 1} ⊂ N is said to be separating in F if
for any nonzero positive a ∈ pAp, there exists f ∈ S such that 〈f, a〉 > 0.
‘Sufficiently many fixed-points’ means that the fixed-points are separating in
N .
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Lemma 3.4.4. Let A be a JW ∗-algebra with normal state space N. Then
A is modular if, and only if, the set of fixed-points of the affine symmetries of
N is separating.

Proof. Let A be modular with the faithful normal centre-valued trace � : A →
Z. The set

{ρ ◦ � : ρ is a normal state of Z} ⊂ N

is separating in N and by Lemma 3.4.3, each ρ ◦ � is a fixed-point of ζ ∈
Sym (N).

To prove the converse, we first note that every fixed-point f of Sym (N)
is a trace. Indeed, given s ∈ A with s2 = 111, the map ζ : N → N defined
by ζ(h)(·) = h(s · s) is an affine symmetry since for any central projection
p ∈ A, 〈h, p〉 = 1 implies 〈ζ(h), p〉 = 〈h, sps〉 = 1, in other words, ζ{h ∈
N : 〈h, p〉 = 1} = {h ∈ N : 〈h, p〉 = 1}. Hence ζ(f) = f gives f(a) = f(sas)
for all a ∈ A. For each a ∈ A, let Ka be the norm-closed convex hull of
{sn . . . s1as1 . . . sn : sj ∈ A, s2j = 1} in A. By [79; Theorem 25], Ka ∩ Z
is non-empty. To complete the proof, we need only show that Ka ∩ Z is a
singleton which will then define the required centre-valued trace on A. Suppose
there exist x, y ∈ Ka ∩Z and x �= y. Representing Z as continuous functions
on a compact Hausdorff Stonean space, we can easily find a projection q ∈ Z
and α > 0 such that either xq > yq + αq or yq > xq + αq. Assuming the
former say, then there is, by assumption, a fixed point f of Sym (N) such that
f(xq) > f(yq) + αf(q). But f(xq) = f(qxq) = f(x) = f(a) = f(y) = f(yq)
which gives a contradiction. So Ka ∩Z is a singleton and the proof is complete.

�

It is well-known that a JW ∗-algebra A is associative if, and only if, its
normal state space N is simplicial, that is, N is a simplex: given any α ≥ 0
and f ∈ A∗, (αN + f) ∩N is either empty or of the form βN + g for some
β ≥ 0 and g ∈ A∗. Given two projections p, q ∈ A, it is clear that p ≤ q if,
and only if,

{f ∈ N : 〈f, p〉 = 1} ⊂ {f ∈ N : 〈f, q〉 = 1}.

Now putting the above results and remarks together, we obtain the following
characterization of types of A in terms of the facial structures of the normal
state space N. The following extends the main result in [12].



88 harmonic functionals on fourier algebras

Theorem 3.4.5. Let A be a JW ∗-algebra with normal state space N. Then
we have

(i) A is of type I if, and only if, every split face of N contains a simplicial
face;

(ii) A is of type II1 if, and only if, N has no simplicial face and the fixed
points of Sym (N) are separating;

(iii) A is of type II∞ if, and only if, N has no simplicial face and Sym (F )
has no fixed-point for every split face F ⊂ N, but F contains a norm-
closed face F1 in which the fixed-points of Sym (F1) are separating;

(iv) A is of type III if, and only if, Sym (F ) has no fixed-point for every
norm-closed face F of N.

In particular, the result holds for I⊥
σ and its normal state space for σ ∈ B(G)

and ‖σ‖ = 1.

Proof. We have (ii) by Lemma 3.4.4. For (iii), we only need to show that A has
no modular central projection if, and only if, Sym (F ) has no fixed-point for
every split face F ⊂ N. Indeed, if A has a nonzero modular central projection
z, then zAz is modular with normal state space Nz = {f ∈ N : 〈f, z〉 = 1}
which is a split face of N and Lemma 3.4.3 implies that Sym (Nz) has a
fixed-point. Conversely, given a split face F = {f ∈ N : 〈f, p〉 = 1} for some
central projection p ∈ A, if Sym (F ) has a fixed-point f0 ∈ F, then f0 is
a trace of pAp(= Ap) as in the proof of Lemma 3.4.4. There is a smallest
central projection q ∈ A, called the central support of f0 (cf. [2; §5]) such
that 〈f0, q〉 = 1. Since Fq = {f ∈ N : 〈f, q〉 = 1} is a split face in F, an
affine symmetry of Fq extends to one of F. Since f0 is faithful on qAq, qAq
is modular by Lemma 3.4.4, that is, q is a modular central projection in A.
Alternatively, modularity of qAq follows from the fact that a JW ∗-algebra is
modular if it admits a faithful normal trace.

Similar arguments apply to (iv) by observing the correspondence between
the norm-closed faces of N and the projections in A, and using the support
projection (cf. [2; §5]) instead of the central support of a fixed-point f0 of
Sym (F ) as in the proof of (iii). �

Corollary 3.4.6. Let Φ : A → B be a surjective linear isometry between two
JW ∗-algebras A and B. Then A and B have the same type.

Proof. By uniqueness of predual, Φ is w∗-w∗-continuous (cf. [42; Corol-
lary 3.22]) and induces a norm continuous affine bijection Φ∗ : NB → NA
between the normal state spaces of B and A, and by Theorem 3.4.5, Φ pre-
serves the types. �
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Corollary 3.4.7. Let σ ∈ B(G) and ‖σ‖ = 1. Let u, v ∈ I⊥
σ be unitaries in

V N(G) . Then (I⊥
σ , u) and (I⊥

σ , v) have the same type.

Finally we note that the type structures of I⊥
σ are also related to some

interesting Banach space properties of A(G)/Iσ. By [19; Theorem 2], we have
that I⊥

σ is an �∞-direct sum of type I factors if, and only if, A(G)/Iσ has
the Radon-Nikodym property. Also, by [20; Theorem 20], I⊥

σ is type I modular
if, and only if, A(G)/Iσ has the Dunford-Pettis property.
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