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Preface

This monograph is the outcome of our work on probabilistic combinatorial optimiza-
tion since 1994. The first time we heard about it, it seemed to us to be a quite strange
scientific area, mainly because randomness in graphs is traditionally expressed by
considering probabilities on the edges rather than on the vertices. This strangeness
was our first motivation to deal with probabilistic combinatorial optimization. As our
study progressed, we have discovered nice mathematical problems, connections with
other domains of combinatorial optimization and of theoretical computer science, as
well as powerful ways to model real-world situations in terms of graphs, by represent-
ing reality much more faithfully than if we do not use probabilities on the basic data
describing them, i.e., the vertices.

What is probabilistic combinatorial optimization? Basically, it is a way to deal
with aspects of robustness in combinatorial optimization. The basic problematic is the
following. We are given a graph (let us denote it by G(V, E), where V is the set of its
points, called vertices, and FE is a set of straight lines, called edges, linking some pairs
of vertices in V'), on which we have to solve some optimization problem II. But, for
some reasons depending on the reality modelled by G, II is only going to be solved
for some subgraph G’ of G (determined by the vertices that will finally be present)
rather than for the whole of G. The measure of how likely it is that a vertex v; € V
will belong to G’ (i.e., will be present for the final optimization) is expressed by a
probability p; associated with v;. How we can proceed in order to solve II under this
kind of uncertainty?

A first very natural idea that comes to mind is that one waits until G’ is specified
(i.e., it is present and ready for optimization) and, at this time, one solves IT in G”.
This is what is called re-optimization. But what if there remains very little time for
such a computation? We arrive here at the basic problematic of the book. If there is no
time for re-optimization, another way to proceed is the following. One solves II in the
whole of G in order to get a feasible solution (denoted by .S), called a priori solution,
which will serve her/him as a kind of benchmark for the solution on the effectively
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present subgraph G’. One has also to be provided with an algorithm that modifies S
in order to fit G’. This algorithm is called modification strategy (let us denote it by M).
The objective now becomes to compute an a priori solution that, when modified by M,
remains “good” for any subgraph of G (if this subgraph is the one where II will be
finally solved). This amounts to computing a solution that optimizes a kind of expec-
tation of the size of the modification of S over all the possible subgraphs of G, i.e.,
the sum of the products of the probability that G’ is the finally present graph multi-
plied by the value of the modification of S in order to fit G’ over any subgraph G’
of G. This expectation, depending on both the instance of the deterministic prob-
lem II, the vertex-probabilities, and the modification strategy adopted, will be called
the functional. Obviously, the presence-probability of G’ is the probability that all of
its vertices are present.

Seen in this way, the probabilistic version PII of a (deterministic) combinatorial
optimization problem IT becomes another equally deterministic problem IT’, the solu-
tions of which have the same feasibility constraints as those of II but with a different
objective function where vertex-probabilities intervene. In this sense, probabilistic
combinatorial optimization is very close to what in the last couple of years has been
called “one stage optimisation under independent decision models”, an area very pop-
ular in the stochastic optimization community.

What are the main mathematical problems dealing with probabilistic consideration
of a problem II in the sense discussed above? We can identify at least five interesting
mathematical and computational problems dealing with probabilistic combinatorial
optimization:

1) write the functional down in an analytical closed form;

2) if such an expression of the functional is possible, prove that its value is poly-
nomially computable (this amounts to proving that the modified problem II’ belongs
to NP);

3) determine the complexity of the computation of the optimal a priori solution,
i.e., of the solution optimizing the functional (in other words, determine the computa-
tional complexity of IT');

4) if TI' is NP-hard, study polynomial approximation issues;

5) always, under the hypothesis of the NP-hardness of II’, determine its complex-
ity in the special cases where II is polynomial, and in the case of NP-hardness, study
approximation issues.

Let us note that, although curious, point 2 in the above list in neither trivial nor sense-
less. Simply consider that the summation for the functional includes, in a graph of
order n, 2" terms (one for each subgraph of G). So, polynomiality of the computation
of the functional is, in general, not immediate.
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Dealing with the contents of the book, in Chapter 1 probabilistic combinatorial op-
timization is formally introduced and some old relative results are quickly presented.

The rest of the book is subdivided into two parts. The first one (Part I) is more
computational, while the second (Part II) is rather “structural”. In Part I, after for-
mally introducing probabilistic combinatorial optimization and presenting some older
results (Chapter 1), we deal with probabilistic versions of four paradigmatic combi-
natorial problems, namely, PROBABILISTIC MAX INDEPENDENT SET, PROBABILIS-
TIC MIN VERTEX COVER, PROBABILISTIC LONGEST PATH and PROBABILISTIC MIN
COLORING (Chapters 2, 3, 4 and 5, respectively). For any of them, we try, more or
less, to solve the five types of problems just mentioned.

As the reader will see in what follows, even if, mainly in Chapters 2 and 3, several
modification strategies are used and analyzed, the strategy that comes back for all
the problems covered is the one consisting of moving absent vertices out of the a
priori solution (it is denoted by MS for the rest of the book). Such a strategy is very
quick, simple and intuitive but it does not always produce feasible solutions for any of
the possible subgraphs (i.e., it is not always feasible). For instance, if it is feasible for
PROBABILISTIC MAX INDEPENDENT SET, PROBABILISTIC MIN VERTEX COVER and
PROBABILISTIC MIN COLORING, this is not the case for PROBABILISTIC LONGEST
PATH, unless particular structure is assumed for the input graph. So, in Part II, we
restrict ourselves to this particular strategy and assume that either MS is feasible, or, in
case of unfeasibility, very little additional work is required in order to achieve feasible
solutions. Then, for large classes of problems (e.g., problems where feasible solutions
are subsets of the initial vertex-set or edge-set satisfying particular properties, such as
stability, etc.), we investigate relations between these problems and their probabilistic
counterparts (under MS). Such relations very frequently derive answers to the above
mentioned five types of problems. Chapter 7 goes along the same lines as Chapter 6.
We present a small compendium of probabilistic graph-problems (under MS). More
precisely we revisit the most well-known and well-studied graph-problems and we
investigate if strategy MS is feasible for any of them. For the problems for which this
statement holds, we express the functional associated with it and, when possible, we
characterize the optimal a priori solution and the complexity of its computation.

The book should be considered to be a monograph as in general it presents the
work of its authors on probabilistic combinatorial optimization graph-problems. Nev-
ertheless, we think that when the interested readers finish reading, they will be per-
fectly aware of the principles and the main issues of the whole subject area. Moreover,
the book aims at being a self-contained work, requiring only some mathematical ma-
turity and some knowledge about complexity and approximation theoretic notions.
For help, some appendices have been added, dealing, on the one hand, with some
mathematical preliminaries: on sets, relations and functions, on basic concepts from
graph-theory and on some elements from discrete probabilities and, on the other hand,
with elements of the complexity and the polynomial approximation theory: notorious
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complexity classes, reductions and NP-completeness and basics about the polynomial
approximation of NP-hard problems. We hope that with all that, the reader will be
able to read the book without much preliminary effort. Let us finally note that, for
simplifying reading of the book, technical proofs are placed at the end of each chap-
ter.

As we have mentioned in the beginning of this preface, we have worked in this
domain since 1994. During all these years many colleagues have read, commented,
improved and contributed to the topics of the book. In particular, we wish to thank
Bruno Escoffier, Federico Della Croce and Christophe Picouleau for having working
with, and encouraged us to write this book. The second author warmly thanks Elias
Koutsoupias and Vassilis Zissimopoulos for frequent invitations to the University of
Athens, allowing full-time work on the book, and for very fruitful discussions. Many
thanks to Stratos Paschos for valuable help on ISTEX.

Tender and grateful thanks to our families for generous and plentiful support and
encouragement during the task.

Finally, it is always a pleasure to work with Chantal and Sami Menasce, Jon Lloyd

and their colleagues at ISTE.

Cécile Murat and Vangelis Th. Paschos
Athens and Paris, October 2005



Chapter 1

A Short Insight into Probabilistic
Combinatorial Optimization

1.1. Motivations and applications

The most common way in which probabilities are associated with combinatorial
optimization problems is to consider that the data of the problem are deterministic (al-
ways present) and randomness carries over the relation between these data (for exam-
ple, randomness on the existence of an edge linking two vertices in the framework of
arandom graph theory problem ([BOL 85]) or randomness on the fact that an element
is included to a set or not, when dealing with optimization problems on set-systems or,
even, randomness on the execution time of a task in scheduling problems). Then, in
order to solve an optimization problem, algorithms (probabilistic or, more frequently,
deterministic) are devised, and the mathematical expectation of the obtained solution
is measured. A main characteristic of this approach is that probabilities do not inter-
vene in the mathematical formulation of the problems but only in the mathematical
analysis performed in order to get results.

More recently, in the late 1980s, another approach to the randomness of combina-
torial optimization problems was developed: probabilities are associated with the data
describing an optimization problem (for a particular datum, we can see the probability
associated with it as a measure of how much this datum is likely to be present in the
instance to be finally optimized) and, in this sense, probabilistic elements are explic-
itly included in the formulations of these problems. Such formulations give rise to
what we will call probabilistic combinatorial optimization problems. Here, the objec-
tive function is a form of carefully defined mathematical expectation over all possible
instances of size less than, or equal to, a given initial size.
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The fact that, when dealing with probabilistic combinatorial problems, random-
ness lies in the presence of the data means that the underlying models are very suit-
able for the modelling of natural problems, where randomness is the quantification of
uncertainty, or fuzzy information, or inability to forecast phenomena, etc.

For instance, in several versions of satellite shot planning problems, the uncertainty
concerning meteorological conditions can be quantified by a system of probabilities.
The optimization problems derived are, as we will see later in this chapter, clearly
of probabilistic nature. If, on the other hand, during a salesman’s tour, some clients
need not to be visited, he should omit them from his tour and if the fact that a client
has to be visited or not is modelled in terms of probabilities-systems, then a proba-
bilistic traveling salesman problem arises!. For similar or other reasons, starting from
a transportation, or computer, or any other kind of network, we encounter problems
like probabilistic shortest path problem? or probabilistic longest path problem3, prob-
abilistic minimum spanning tree problem?, etc. Also, in industrial automation, the
systems for foreseeing workshops’ production give rise to probabilistic scheduling,
or probabilistic set covering or probabilistic set packing, etc. Finally, in computer
science, mainly when dealing with parallelism or distributed computation, probabilis-
tic combinatorial optimization problems very frequently have to be solved. For in-
stance, modeling load-balancing with non-uniform processors and failures possibility

1. Given a complete graph on n vertices, denoted by K, with positive distances on its edges,
the minimum traveling salesman problem consists of minimizing the cost of a Hamiltonian
cycle (see section A.2 in Appendix A), the cost of such a cycle being the sum of the distances
of its edges.

2. Given an edge-weighted directed or undirected graph G(V, E, ) and either a fixed vertex s
(first version), or two fixed vertices s and ¢ (second version), the objective for the first version
is to determine minimum-weight paths from s to any other vertex of G for the second version,
the objective is to determine a minimum-weight path from s to ¢, the weight of a path being
the sum of the weights of its edges; the most famous variants of these versions are the ones
where G is assumed directed; in this case, the three most-known polynomial algorithms solving
the first version of the problem are the ones of Dijkstra ([DIJ 59]), under the assumption that
edge-weights are non-negative, and of Bellman ([BEL 57]), under the assumption that the input-
graph contains no circuit; no algorithm is known for the second version of the problem that is
solved as a special case of the first version; a third version of the shortest path problem, where
we search for shortest paths for any pair of vertices, is polynomially solved by the algorithm of
Floyd ([FLO 62]).

3. Given a graph G(V, E), an edge-weight function w : E — Q, and two specific vertices s
and ¢, the longest path problem consists of determining a maximum total-weight simple path
from s to t, the total weight of a path being the sum of the weights of its edges.

4. Given an edge-weighted undirected graph G(V, E, ), the objective is to determine a
minimum-weight tree spanning V, the weight of such a tree being the sum of the weights
of its edges; the most famous polynomial algorithm solving this problem is the one of
Kruskal ([KRU 56]).
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becomes a probabilistic graph partitioning problem; also in network reliability theory,
many probabilistic routing problems are met ([BER 90b]).

In all, models of probabilistic nature are very suitable and appropriate real-life
problems where randomness is a constant source of concern and, on the other hand,
the study of the problems derived from these models are very attractive as mathe-
matical abstraction of real systems. Another reason motivating work on probabilistic
combinatorial optimization is the study and the analysis of the stability of the optimal
solutions of deterministic combinatorial optimization problems when the considered
instances are perturbed. For problems defined on graphs, more particularly, these per-
turbations are simulated by the occurrence, or the absence, of subsets of vertices (see,
for example, [PEE 99] where probabilistic combinatorial optimization approaches and
concepts are used to yield robust solutions for an on-line traffic-assignment problem).

Informally, given a combinatorial optimization graphd-problem II, defined on a
graph G(V, E), an instance of its probabilistic counterpart, denoted by PTI, is built by
associating a probability p; with any vertex v; in V. This probability is considered as
the presence-probability of v; in the subgraph of G on which II will be finally solved.
Problem PII expresses the fact that II will, eventually, have to be solved not on the
whole G, but rather on some of its subgraphs that will be specified very shortly before
the solution in this subgraph is required.

In order to illustrate the issue outlined above, we will consider in what follows
four examples of models that give rise to probabilistic combinatorial optimization
problems.

EXAMPLE 1.1.— Probabilistic traveling salesman. A repair company has to perform
a minimum-length daily tour visiting n potential clients. This is the classical (de-
terministic) traveling salesman problem, denoted by MIN TSP in what follows. It is
formally defined as follows: given a set C' of n cities and distances d(c;, ¢;) € Q, for
any pair (c;,¢;) € C x C, i # j, MIN TSP consists of determining a tour of C, i.e.,
a permutation o : {1,...,n} — {1,...,n}, minimizing the length of the tour, i.e.,
the quantity d(cq(n), o (1)) + Z;:ll d(Co(i); Co(i+1)). MIN TSP is commonly modeled
in terms of a complete graph, denoted by K, (see section A.2 of Appendix A) on n
vertices (representing the cities). Edge (v;, v;) is weighted by d(c;, ¢;) and an optimal
solution is a Hamiltonian cycle (section A.2 of Appendix A) of minimum total length
(or distance), the length of a cycle being the sum of the distances on its edges. But,
if we assume that any client will not need to be repaired every day, then this implies
that, a given date, only a subset of clients need to be effectively visited; this subset
changes from day to day. What can be done is that a client ¢ can be assigned, for a

5. In this book, only graph-problems are considered; for probabilistic combinatorial optimiza-
tion problems defined on other data structures, the interested reader can be referred, for example,
to [BEL 93] where some scheduling problems, as well as the bin-packing problem, are studied.



18  Probabilistic Combinatorial Optimization

random day, with a repairing-probability p;; this probability is independent from the
probabilities dealing with the other clients. We thus get a version of the probabilistic
traveling salesman problem (initially introduced and studied in [JAI 85, JAI 88a]).

EXAMPLE 1.2.— Probabilistic coloring. Consider for a given University-fall a list
of potential classes that students can follow: any student has to choose a sublist of
such classes. For any of them, one knows the title, the teaching professor and the
time slot assigned to it, each such slot being proposed by the professor in charge. A
class will only take place if the number of students having chosen it is above a given
threshold. So, nobody knows a priori if a particular class will take place before the
closing of students’ registrations (we can reasonably assume that the choice of any
student is dependent on the contents of the course and of the teacher). On the other
hand, one can, for example, by looking at statistics on the behavior of the students
during past years, assign probabilities on the fact that a particular class will really
take place, the mandatory courses being assigned with probability 1. The problem
for the University planning services is how many rooms need to be assigned to the
set of courses. This problem is typically an instance of probabilistic coloring if one
considers courses as vertices and if one links two such vertices if the corresponding
classes cannot take place in the same room (because they are planned with the same
professor, or are assigned with overlapping time slots). This type of graph is known
by the term incompatibility graph. Here, an independent set, i.e., a potential color,
corresponds to a set of “compatible classes”, i.e., to classes that can be assigned with
the same room. The number of colors used in such a graph represents the total number
of rooms assigned to the set of classes considered. The probabilities resulting from
the statistical analysis on the former students’ behavior are the presence probabilities
for the vertices (i.e., the probabilities that the corresponding classes will really take
place).

EXAMPLE 1.3.— Probabilistic independent set. Consider a planning aiding process
for realizing satellite shots. One associates a vertex with any shot requested and one
links two vertices if they correspond to shots that cannot be realized on the same orbit.
But a shot realized under, for example, strong cloud cover cannot be used for the
purposes for which it has been requested. Using meteorological forecasting, one can
assign to any shot requested a probability that it will be usable. This problem has been
modelled in [GAB 97] (see also [GAB 94]) as a maximum independent set and if one
takes into account probabilities associated with meteorological forecasting, then one
has to solve a probabilistic version of it.

EXAMPLE 1.4.— Probabilistic longest path. For the satellite shot planning problem
dealt in Example 1.3, one can use another graph-representation (see [GAB 97] for
details) where an arc models the possibility of successive realization of its two end-
points. Then, the satellite shot planning can be represented as a particular longest path
problem. Integration of probabilities associated, for instance, with meteorological
forecasting to this model gives rise to a probabilistic longest path.
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1.2. A formalism for probabilistic combinatorial optimization

We have already mentioned that the probabilistic version of an optimization prob-
lem models the fact that, given an instance of the problem, only a subinstance of it
will eventually be solved. Since we do not know which is this subinstance, the most
natural approach that comes in mind is to optimally solve any particular subinstance
of the problem at hand (following the probabilities on its vertices, any such subin-
stance is more or less likely to be the one where optimization has to be effectively
performed). Such an approach, called reoptimization in [BER 90b, BER 93, JAI 93],
can be very much time- and space-consuming, in particular when the initial problem
is NP-hard. Indeed, given a graph G(V, E) of order n (i.e., |V| = n), there exist 2"
subsets of ' and consequently 2" subgraphs, induced by these subsets, any of them
candidate to be the instance effectively under consideration. For an NP-hard problem
(this remains true even for a polynomial problem), the amount of time needed to solve
any of these instances to the optimum can be huge so that reoptimization becomes
practically unrealistic.

This is the main reason for which another, more realistic, approach is used and this
will be dealt in this book. It is called an a priori optimization and has been introduced
in [JAI 85, BER 88]. Informally, instead of reoptimizing any subinstance, the under-
lying idea of an a priori optimization consists of determining a solution of the whole
(initial) instance, i.e., the one where all data are present, called an a priori solution,
and to apply a strategy, called a modification strategy, making it possible to adapt as
quickly as possible the a priori solution to the subinstance that must effectively be
solved. The choice of this strategy depends strongly on the application modelled by
the problem.

Consider a graph G(V, E) instance of a combinatorial optimization problem II,
a feasible solution S, for IT in G, a subset V' of V' and the subgraph G[V’] of G
induced by V’. A modification strategy M is an algorithm transforming S in order to
get a feasible II-solution for any such G[V']. Obviously, it is assumed that if M is
applied on G (i.e., if V/ = V), then S remains unchanged. Also, one can suppose that
application of M in the final instance is possible, in the sense that there exists sufficient
time for its achievement.

EXAMPLE 1.1. (CONTINUED) — Revisit the repairing company dealt in Example 1.1.
Assume that for several material reasons, its staff do not wish to reoptimize the daily
tours for its vehicles. A possible way to plan these tours is the following. One com-
putes firstly a feasible tour 7" including the whole set of the clients is computed; this is
the a priori solution mentioned just above. A possible modification strategy in order
to compute the effective tour for a given day is to drop absent clients (i.e., clients that
do not ask for intervention during this day); then, it suffices to visit the present ones
following the order induced by the a priori tour T'.
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In practice, the a priori approach corresponds to a behavior observed for the real
problem; the modification strategy algorithmically models this behavior. The choice
of a modification strategy depends strongly on the real-world application modelled. In
order to illustrate this, consider the following example inspired from a vehicle routing
problem studied in [BER 90b, BER 92, BER 96].

EXAMPLE 1.5.— The problem studied in [BER 90b, BER 92, BER 96] consists of
determining a shortest distance tour through n clients under several constraints, for
example, limits on vehicle capacities together with assumptions that any of the vehi-
cles have to retrieve different quantities of different objects from any client, etc. If any
on day d only a subset of the clients has to be visited, then for modifying an a priori
tour to fit these present clients, two modification strategies could be used depending
on when clients’ demands become available:

— In the first strategy, denoted by M1, a vehicle, following the a priori tour, visits
all the clients but it only serves the ones having asked for service on day d. When
the vehicle is saturated, i.e., its capacity is attained and it returns to the depot before
continuing with the next client.

— The second strategy, denoted by M2, differs from M1 by the fact that the vehicle
only visits (following the a priori tour) clients having asked for services on day d
(returning to the depot when saturated and then continuing with the next client).

In order to illustrate differences between the two strategies, consider an a priori tour
(0,1,2,3,4,5,6,0) and assume that depot is vertex 0 and that vehicle has capacity 30.
At day d, the clients 1, 4 and 6 need not to be visited and that the demands for clients 2,
3 and 5 are 20, 10 and 20, respectively. The results for the two strategies above are
shown in Figure 1.1.

0 0
(a) Strategy M1 (b) Strategy M2

Figure 1.1. Application of modification strategies M1 and M2 for the
probabilistic vehicle routing problem with capacity constraints
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As one can see, under strategy M1 (Figure 1.1(a)), the route realized by the vehicle
will be (0, 1,2, 3,0), then (0,4, 5, 6,0), while the route under M2 (Figure 1.1(b)) will
be (0,2, 3,0), then (0, 5,0).

There exists an important difference between these two strategies:

— M1 models situations where demand of a particular client becomes clear (or
known) only once it has been visited;

— M2 corresponds to situations where clients’ demands are known in advance, i.e.,
before the vehicle starts the route.

A basic operational and computational feature of the a priori optimization ap-
proach is that the optimization problem considered has to be solved only once; next,
the only “tool” needed is a quick modification strategy which is able to adapt the a pri-
ori solution to the subinstance to be effectively optimized. In this way, computational
time is not really a serious problem.

The question now is: “what is the measure of an a priori solution?”. Let S be a
feasible solution for IT on G(V, E), M be a modification strategy for S and V' be a
subset of V. Denote by S(V’, M) the solution for IT in G[V’], obtained from S by ap-
plying M and by m(G[V’], S(V',M)) its value. A reasonable requirement for S(V"’, M)
is that m(G[V’], S(V',M)) is as close as possible to the value of an optimal solution
for IT in G[V'], denoted by opt(G[V’]). Since, on the other hand, we do not know a
priori, which will be the subinstance to be solved, we will use as evaluation-measure
for S its expectation. Denote by Pr[V’] the probability of presence of the vertices
of V', hence the probability of G[V’] and set Pr[v;] = p;, the presence-probability
of v; € V; then:

Pr(v']= [T »: T (0 —py) [1.1]

v €V gV

In particular, when p; = p, for any v; € V, then [1.1] becomes:
Pr(v) ="'l (1 - p)VI7IVl

The measure (i.e., the objective function) of S for PII, also called functional in what
follows, is defined as:

m(G,SM) = E(G,S,M) = > m(G[V'],S(V' M) Pr[V] [1.2]

VIcv

where Pr[V"’] is defined by [1.1].
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In standard complexity-theoretic language, the problems studied in this book be-
long to the class NPO. Informally, an NPO problem is an optimization problem, the
decision versions of which is in NP (see also Appendix B). More formally now, an
NPO problem can be defined as follows.

DEFINITION 1.1.— A problem II in NPO is a quadruple (I, Solr, m, goal(Il))
where:
— 11y is the set of instances of 11 (and can be recognized in polynomial time);
—given I € Iy, Solr(I) is the set of feasible solutions of I; the size of a feasible

solution of I is polynomial in the size |I| of the instance; moreover, one can determine
in polynomial time if a solution is feasible or not;

—given I € Iy and S € Solu(I), mu (I, S) denotes the value of the solution S of
the instance I; mr is called the objective function, and is computable in polynomial
time;

— goal(IT) € {min, max}.

We can now give a formal definition for probabilistic combinatorial optimization
problems (under the a priori optimization assumption), derived from Definition 1.1.

DEFINITION 1.2.— Let I = (Zy, Solr, m, goal(Il)) be an NPO problem as
in Definition 1.1. The probabilistic version of 11, denoted by PII, is a six-tuple
((Zr1, Pr), Solrr, goal(IT), M, Eyy), where:

— I is as in Definition 1.1 and Pr is the set of all the vectors Pr of the presence-
probabilities of the data representing I € I; the pair (Ir,Pr) is the instance-
set of PII and the couple I,Pr[I], I € Z, Pr € Pr is an instance of PII; Soly
and goal(Il) are as in the corresponding items of Definition 1.1;

— M is an algorithm, called modification strategy, such that, given an instan-
ce (I,Pr[I]) of II, a solution S € Sol(I1,Pr[I]) and any subinstance I' of I, it modi-
fies S in order to produce a feasible solution S(I',M);

— Eny is the functional of S and is defined (analogously to [1.2]) as:
Epu(1,S.M) =Y m(I',S(I',M)) Pr[I'] [1.3]
I'CI
where Pr(I'] is defined (analogously to [1.1]) as:

Pr(r'| = [] Pridi] J] (x —Prld;])
diel d; ¢1
where d;, d; draw data of I and Pr[d;] and Pr[d;] their presence probabilities respec-
tively.

One can see that Definition 1.2 implies that modification strategy M is part of the
definition of the problem. In this sense, two distinct strategies M1 and M2, associated
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with the same NPO problem II, give rise to two distinct probabilistic problems PII;
and PII,, respectively, since changing a modification strategy changes the functional.
In other words, distinct modification strategies lead to distinct objective functions.

The modification strategy used most frequently until now is the one consisting of
dropping absent data out of the a priori solution and of taking the remaining elements
of it as a solution for the effective instance. This simple strategy, denoted by MS for the
rest of this chapter, is feasible for numerous problems (this is the case of all the prob-
lems dealt in this monograph and for the ones dealt in [AVE 94, AVE 95, BEL 93,
BER 88, BER 89, BER 90b, JAI 85, JAI 88a, JAI 88b, JAI 92, SEG 93]) but not for
any problem. Let us take for example the case of the probabilistic minimum indepen-
dent dominating set (also called the minimum maximal independent set). Here, given
an a priori maximal independent set .S, dropping the absent vertices out from .S does
not necessarily result in a maximal independent set for the present subgraph.

As we will see in the next chapters, in particular under strategy MS and in the cases
where the optimum a priori solution has a closed combinatorial characterization, the
derived probabilistic problems can be equivalently stated as “deterministic combi-
natorial optimization problems” under particular and sometimes rather non-standard
objective functions.

Let us note also that a priori optimization under strategy MS corresponds to the
following robustness model for combinatorial optimization. Consider a generic in-
stance I of a combinatorial optimization problem II. Assume that II is not to be
necessarily solved on the whole I, but rather on a (unknown a priori) subinstance
I’ C I. Suppose that any datum d; in the data-set describing I has a probability p;,
indicating how d; is likely to be present in the final subinstance I’. Consider finally
that once instance I’ is specified, the solver has no opportunity to solve directly in-
stance I’. In this case, there certainly exist many ways to proceed. Here we deal with
a simple and natural way where one computes an initial solution .S for IT in the entire
instance I and, once I’ becomes known, one removes from S those elements of S that
do not belong to I’ (providing that this deletion results in a feasible solution for I”)
thus giving a solution S’ fitting I’. The objective is to determine an initial solution .S
for I such that, for any subinstance I’ C I presented for optimization, the solution S’
respects some predefined quality criterion (for example, optimal for I’, or achieving,
say, constant approximation ratio, etc.).

Let us note that a measure analogous to the ones of [1.2] or, more generally,
of [1.3] can be obtained also for the reoptimization approach. Consider a probabilistic
combinatorial optimization graph-problem PII, derived from an optimization graph-
problem II and let G(V, E) be a generic instance for the latter problem. Set n = |V|
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and consider a vector (p1, . . ., p, ) of presence-probabilities on the vertices of V. Then
the functional E*(G) of the reoptimization for PII is defined as:

E*(G)= Y m(G[V'],8 (V) Pr[V'] [1.4]

VIcV
where S*(V”) is an optimal solution for IT in G[V’], and Pr[V’] is as in [1.1].

1.3. The main methodological issues dealing with probabilistic combinatorial
optimization

1.3.1. Complexity issues

1.3.1.1. Membership in NPO is not always obvious

As one can see from [1.3] computation of functional’s value is not a priori polyno-
mial, since this expectation carries over all the possible subsets of the initial data-set.
So, with respect to Definition 1.1, probabilistic versions of NPO problems do not
trivially belong to NPO too. As we will see in the next chapters, when dealing with
strategy MS sketched at the end of section 1.2, we succeed by more or less simple
algebraic manipulations to show that functionals associated with it can be polyno-
mially computed. This is the case for the problems dealt with in the next chapters
as well as for the problems studied in [AVE 95, AVE 94, BEL 93, BER 88, BER 8§89,
BER 90a, BER 90b, JAI 85, JAI 88a, JAI 92, JAI 88b, SEG 93]. The basic idea un-
derlying such a simplification is the following: instead of computing the value of the
solution induced by any subinstance (recall that there exist an exponential number of
subinstances of a given initial instance), one tries to determine, for any element of
the a priori solution, the number of subinstances for which this element remains part
of this solution. Even if this simplification technique works for numerous problems
(associated with strategy MS), we will see in Chapters 2 and 3 that it quickly attains its
limits once one tries to enrich MS with elementary operations improving its result. In
particular, we will see that matching MS with natural greedy improvement techniques
largely complicates the corresponding functionals in such a way that it is not obvious
that their computation can be performed in polynomial time.

1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization
problems

Obviously, for any probabilistic combinatorial optimization graph-problem PII
defined on a graph G(V, E), if p; = 1, forany v; € V, then PII coincides with IT in the
sense that for any a priori solution S for PII, its functional has the same value as the
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objective value of S seen as solution of II. This remark implies that if the functional®
is computable in polynomial time and if II is NP-hard, then PII, being a generalization
of II, is also NP-hard. Conversely, if II is polynomial, then no immediate result can
be deduced for PII.

Consider for instance two classical polynomial problems, the shortest path prob-
lem for fixed departure- and arrival-vertices s and ¢, respectively, and the minimum
spanning tree problem. A probabilistic version for the former one is defined and stud-
ied in [JAI 92]. There, the input graph is complete, its vertices are independent and
uniformly distributed in the unit square, some vertices are always present (i.e., they
have probability 1), in particular s and ¢, and the rest of the vertices all have the same
presence probability. Given an a priori solution, the adopted modification strategy
consists of removing the absent vertices from this solution (this is not a problem since
the input graph is assumed complete). As it is proved in [JAI 92], this version of prob-
abilistic shortest path problem is NP-hard. The same holds for the minimum spanning
tree problem ([BER 88, BER 90a]). For this problem, the input is the same as for
shortest path. The modification strategy considered is the following: given an a priori
tree 7' and a subgraph G[V'] of the input-graph, we consider the subtree of T restricted
to the vertices of V' together with some vertices of V' \ V' (and the edges of T inci-
dent to these vertices) in order to guarantee connectivity of the induced subtree. This
probabilistic version of minimum spanning tree is NP-hard.

When the deterministic version II of a probabilistic problem PII is NP-hard, an
interesting mathematical problem is to determine the complexity of PII for the classes
of instances where II is polynomial. Here also, results for the probabilistic problem
are, very frequently, opposite to the ones for its (deterministic) support. For instance,
as we will see in Chapter 5, the probabilistic versions of many coloring problems
studied there are NP-hard, even for graph-classes for which deterministic coloring is
polynomial.

Another interesting fact that will be clear in the next chapters (mainly in Chapters 4
and 5) is the role that the specific probability-system considered plays in complexity or
approximation behaviors of the problems dealt. For instance, the fact that one assumes
identical or distinct vertex-probabilities can completely change the complexity of a
problem or its approximability.

Notice that an analogous fact can be established for the probabilistic traveling
salesman, even when the input-graph K, (the complete graph on n vertices) has iden-
tical vertex-probabilities. Denote by T an optimal a priori tour in K, (i.e., an optimal

6. Recall that a probabilistic combinatorial optimization problem is always defined (see Defi-
nition 1.2) with respect to some modification strategy M that strongly affects the mathematical
expression of its functional; for simplicity, when no confusion arises, this fact will be omitted.
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solution of probabilistic traveling salesman under MS) and by 7{; an optimal tour for
the deterministic counterpart. In [JAI 85], counter-examples are given showing that
T* # T§. In [BEL 93], it is shown that if n is odd (n = 2k + 1), then:

I—(1—pnt
E (K,,T*,MS) > p*m (K, T%) —————— 1.5
( )20 (K T g 5]
From [1.5], one can deduce the following two estimations:
m (K, T*) — m (K, T§) < 1 —p? [L.6]
m(Kang) p?
E (K, T} MS) — E (K, T* MS 1 —p?
( 0 ) ( ) < p [1.7]
E (K,,T*,M8S) p?

The bounds given in [1.6] and [1.7] show that T} constitutes a good approximation
for T™ only in the case where p is large, i.e., when the probabilistic version becomes
“close” to the deterministic one.

1.3.2. Solution issues

As we have already mentioned, the solution of probabilistic problems is not triv-
ially deduced from the one of their deterministic (original) counterpart. In particular,
optimal solution of the latter is very bad for the former.

This is, for example, the case for probabilistic traveling salesman in [JAI 85]. This
is also the case for probabilistic coloring in bipartite graphs as mentioned above at the
end of section 1.3.1.2. An absolutely vital step to take in order to solve a probabilis-
tic combinatorial optimization problem is the characterization of its optimal a priori
solution. This, as we will see later, is not always trivial for some modification strate-
gies. Then, based upon this characterization, one can try to estimate the complexity
of computing this solution.

1.3.2.1. Characterization of optimal a priori solutions

For numerous combinatorial optimization problems, it is possible to characterize
the optimal a priori solution in terms of parameters of the initial input-graph. For
example, as we will see in Chapters 2, 3 and 4, under MS, the optimal a priori solu-
tion for the problems covered there (probabilistic independent set, probabilistic vertex
covering and probabilistic longest path where the solution is measured according to
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the number of its vertices, respectively) is the optimal solution of the corresponding
weighted problem where vertex-weights are the corresponding probabilities. Then the
complexity of the probabilistic problem is the same as the complexity of its weighted
deterministic counterpart.

But there exist, conversely, functionals (always associated with MS) for which pre-
cise characterization of the optimal a priori solution in terms of input-graph parame-
ters is not possible. This is mainly due to the fact that the weight of a vertex (seen as
function of its probability) depends on the a priori solution itself and, consequently, it
cannot be independently defined as a parameter depending only on the structure of the
input-graph. For example, as we will see in Chapter 4, under the modification strat-
egy MS, the functional of the probabilistic longest path (in transitive graphs) where the
solution is measured with respect to the sum of the weights on its arcs and for an a
priori solution S = (0,1,...,k k4 1) (where 0,...,k + 1 are the vertices of the a
priori path) is expressed as:

k
E(G,S,M8) = > pipipad(i,i+1)
=0

k=1 k+1 j—1
+ Z Z PiPj ( H (1 —pz)> d(i, 5) [1.8]

=0 j=142 l=i+1

where d(i, j) is the weight (distance) of arc (4, j). As one can see from [1.8], if one
tries to express this probabilistic problem in terms of some weighted version of its sup-
port, then one has to assign distance p;p;d(i, j) to an arc (4, j) (of distance d(i, ) in
the initial graph) if it belongs to the a priori solution; otherwise, the distance of (i, j)
would be equal to p;p; f;.lﬂ (1—p;))d(i, 7). This latter distance depends on S since
it takes into account probabilities of vertices [ lying between ¢ and j in .S. A corollary
of this fact is that although the longest path problem is polynomial in transitive di-
rected acyclic graphs (dags), this result does not hold (until now) for its probabilistic
counterpart just discussed.

The same phenomenon appears for the probabilistic shortest path (under MS), con-
sidered in section 1.3.1.2 of Chapter 4. Number, arbitrarily, the vertices of I,, (recall
that the input-graph is assumed to be complete and that some vertices are always
present, i.e., they have probabilities equal to 1) and let a path S = (0,1,...,k + 1)
from s to ¢ (i.e., s is numbered by 0 and ¢ by k£ + 1) be an a priori solution for proba-
bilistic shortest path in K,,. Let dg(i,i + 7 + 1) = Y o _, d(be, bet1), where by = i,
bsx1 =1+ r+ 1and (by,...,bs) is the sequence of vertices always present between
(t+1,...,i+7); let W be the number of present vertices between the ones having a
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presence probability p different from 1. As it is shown in [JAI 92]:

E (K,,S,M8) =
k—2n-2 (n—_Q—T) k—1—r
oY IR P (W =n—j) Y ds(iyi+r+1)
r=0 j=r (J) i=1
k—1n—1 (n—1—r
YD )Pr(W= 7) (ds(0,7 +1) +ds(k — 1k + 1))
(5)
r=0 j=r J
= ()
+ ) PrV =n = )ds(0.k+1) [1.9]
j=k \J

As we can see in [1.9], the distances one could assign to the arcs strongly depend
on the a priori solution and, consequently, no precise characterization of this solution
is possible.

1.3.2.2. Polynomial subcases

The identification of polynomial restrictive cases for NP-hard problems is always
an interesting issue in complexity theory. It is also the case for probabilistic combi-
natorial optimization. The most common approach for such an issue is to start from
polynomial instances for the deterministic support and to study if property guarantee-
ing polynomial solution there remains valid for the probabilistic counterpart.

Consider, for instance, the traveling salesman problem and its probabilistic version
under MS. As it is shown in [BER 79], matrices of the form c;; = a; + b; (called
constant matrices) are the only ones where all the permutations of vertices have the
same length. Based upon this result, it is shown in [BER 88] (see also [BEL 93]) that
the constant matrices are the only ones that have the same expectation for any a priori
tour T and this expectation is equal to p(1 — (1 — p)"~1)m(K,,T). So, in the case of
constant matrices, the probabilistic traveling salesman is polynomial under identical
vertex-probabilities.

Let us give another example of polynomial subcases always dealing with the prob-
abilistic traveling salesman. Call a matrix C' small, if there exist two vertex-vectors, @
and b such that ¢i;j = min{a;,b;}, 4,7 = 1,...,n. A small matrix where a;’s
and b;’s are all distinct is called small with distinct values. In this case, let d; be
the i- th smallest value between the 2n values ay, and b;. Let D = {d;,...,d,},

={dnt1,...,doptandd = Y7, d;. We set Dy = {z {ai,bi} C D}, Dy = {i:
{al,b } C D}, Da ={i:a; €D, b € D}and Dy = {i : b; € D,a; € D}. Asitis
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shown in [LAW 85], the traveling salesman problem is polynomial when dealing with
small matrices. In particular, the value of the optimal tour is equal to d if and only
if D satisfies one of the following conditions:

1) Dy # 0
2)D ={a1,...,an};
3) D= {br,...,bn}.

Otherwise, the value of the optimal tour equals d’ = d — d,, + d,, 41, if and only if
D' = DU{dp41}\ {d,} satisfies one of the following conditions:

a) D) # (), where D} is defined analogously to Ds;
b) D' ={a1,...,an};
C) D = {b17~ . ,bn}

Based upon the above, it is proved in [BEL 93] that, in the case of identical vertex-
probabilities, if C' is a small matrix with distinct values, then, setting ¢ = 1 — p:

- BE(K,, T*,M8) = p(1 — ¢"~1)d, if and only if conditions 2 and 3 are verified;

— if conditions 1, 2 and 3 are not verified then:

- B(K,, T*,M8) = p(1 — ¢ 1)d', if and only if D’ verifies conditions a)
and b);

- BE(K,, T*,M8) = p(1 — ¢" Y)min{d + dpyo — dn,d — dp_1 + dpy1}, if
and only if D’ does not verify conditions a), b) and ¢) and either one of the following
conditions (cl), (c2) is satisfied: (c1) D U {d,+2} \ {d,.} satisfies condition b) or c)
and d+d,12—d, < d—dp_1+dnt1;(c2) DU{d,+1}\{d,—1} satisfies condition b)
orc)andd+dpyo —dp 2 d—dp—1 +dpi1.

If one of the two basic items above is satisfied, then T* = 1§} and, following the
results of [LAW 85], the probabilistic traveling salesman is polynomial.

In the next chapters of this book, several polynomial subcases are given for the
problems covered. Let us note that, in general, when optimal a priori solutions of
probabilistic problems coincide with optimal solutions of their deterministic supports,
then a priori optimization coincides with reoptimization.

1.3.2.3. Exact solutions and polynomial approximation issues

Whenever problems considered are NP-hard, or they cannot be proved polynomial,
then they can be obviously solved by optimal algorithms even if these algorithms are
exponential. In Chapter 5 we present such algorithms for probabilistic coloring in
restrictive cases of bipartite graphs as trees and chains. But, dealing with effective so-
lution of probabilistic combinatorial optimization problems, this monograph focuses
on polynomial approximation of the problems studied.
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In general, there exist three types of polynomial approximation results obtained
for a probabilistic combinatorial optimization problem:

1) one measures, for a given optimization problem, the quality of the a priori
optimization with respect to the reoptimization; for some modification strategy M, this
can be done by means of the ratio E(G, S,M)/E*(G), where E(G, S,M) and E*(G)
are given by [1.2] and by [1.4], respectively;

2) one measures the quality of a solution S obtained in the (deterministic) support
and without taking into account any probabilistic concept, when used as an a priori
solution for the probabilistic counterpart (for a fixed modification strategy M); this is
done by means of the ratio E(G, S,M)/E(G, S*,M), where S* is the optimal a priori
solution (associated with M) and both E(G, S,M) and E(G, S*,M) are given by [1.2];

3) finally, one measures the quality of an a priori solution S, explicitly built for
the probabilistic problem’; this quality is measured by the ratio of item 2.

For item 1, the interested reader can be referred to [JAI 93], which deals with the
probabilistic traveling salesman and probabilistic minimum spanning tree, both prob-
lems defined on complete graphs with identical vertex probabilities and with vertices
uniformly distributed on R?, under strategy MS.

For item 2, that is somewhat closer to the spirit of this book than item 1, we quote
the study performed in [BER 88]. There, dealing with probabilistic traveling salesman
under the same assumptions as in [JAI 93] also, the a priori tour T' considered is the
one computed by the celebrated Christofides’ algorithm ([CHR 76]). This algorithm,
based upon a minimum spanning tree computation on K,,, achieves an approximation
ratio 2 for the traveling salesman problem in metric spaces. It is shown in [BER 88]
that, denoting by 7™, an optimal a priori tour (i.e., an optimal a priori solution), then:

E (K,,T,Mu8)

E (K,,T*,M8)
where D is the diameter of the minimum spanning tree intermediately computed by
the Christofides’ algorithm.

<2D

This result has been improved in [BEL 93] (under the same assumptions for the
input graph and always under MS). It is proved that if X is a random variable repre-
senting the number of present vertices and verifying Pr(X < n —%k — 1) = 0 and
Pr(X =n— k) > 0, then:

E(K,,T,M8) 3 k*(k+1)
- [ 14+ — 1.10
E (K, T 18) 2( T2 [1.10]

7. In other words, S is constructed by an algorithm taking more or less into account the proba-
bilistic nature of the problem covered.
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As one can see from [1.10], the ratio achieved is constant and tends to 3/2 for
n — o0.

Approximation results presented in next chapters deal with item 3. For this reason,
no example for this item is presented in this chapter.

1.4. Miscellaneous and bibliographic notes

In order to characterize the optimal a priori solution for a probabilistic combina-
torial optimization problem, one has to rewrite the associated functional in an explicit
(and hence intuitive) way. Whenever this is not possible, a statement about the com-
plexity of its computation is impossible too. In this case, an interesting approach is to
compute explicit (and non-trivial) bounds for it. The same holds for reoptimization.
A complementary issue is the study of the asymptotic behavior for both a priori and
reoptimization approaches. This is done in [BER 90b] for the probabilistic traveling
salesman problem, the probabilistic minimum spanning tree problem, the probabilistic
Steiner tree problems, the probabilistic vehicle routing problem® and the probabilis-
tic facility location problem!0, under the assumptions that input-graphs are complete,
vertex probabilities are identical (p; = p, for any v; € V') and vertices are uniformly
distributed in R2.

The result of [BER 90b] dealing with the asymptotic analysis of reoptimization is
the following. Let kg, II standing for traveling salesman, minimum spanning tree and
minimum Steiner tree, be constants ([STA 79, HAI 85]) for which, with probability 1,
lim,, 0o m(Kyp, T)/+/n = k11, Where T is some feasible solution for IT. Then, with
probability 1:

lim ECPHTS(H) = K]‘[\/];

n—o0

8. Given a connected graph G(V, E), a length function d on its edges, and a set N C V,
the objective is to determine an optimal Steiner tree, i.e., a minimum-length tree spanning all
vertices in IV (the length of a tree is given by d(T") = }_ (1) d(€)).

9. The general version of this problem is defined as follows: we are given a graph G(V, E)
together with a length [(e), for any e € E, asubset E’ C FE and a subset V' C V/; the objective
is to determine a minimum-length cycle of G that visits any vertex in V' exactly once and
traverses any edge in E’, the length of such a cycle being the sum of the lengths of its edges.
10. Given a complete graph K, on a set V of n vertices, costs ¢(v;,v;), vi,v; € V, that are
symmetric and satisfy the triangle inequality, a set F' C V' of locations where a facility may
be built, a non-negative cost f(v), v € V, of building a facility at v and, for any location v, a
non-negative demand d(v), the objective is to determine a set F C F' minimizing the quantity

Dver F0) + Xuer Doev dw)e(u,v).



32 Probabilistic Combinatorial Optimization

Furthermore, if E[r] is the expected radial distance from the depot!! to a vertex of
the input-graph for the vehicle routing problem and C(n) is the vehicle capacity, then,
with probability 1, the following holds:

lim M =2E[rlp ifC(n) =o0(y/n)

n—oo

lim —K) = Ky/D if C(n) = Q(y/n)

n—oo

where k is the constant of [STA 79, HAI 85] for the traveling salesman.

Finally, for any vertex 4, the following holds, with probability 1, for the probabilis-
tic facility location problem:

Er (K,
P —jﬁ IR

where Ef(K,,), is the functional of the reoptimization approach when the server’s
location vertex is ¢ (the functional associated with the reoptimization depends, for the
probabilistic facility location problem, on this vertex).

For the a priori optimization approach, it is proved in [BER 90b] that there exist
quantities cpry (p), II' standing for traveling salesman and minimum spanning tree,
such that, when dealing with an optimal a priori solution S*, then with probability 1:

li EPH’ (Kn,S*,MS) _ ( )
nl—{go \/ﬁ = cpip

Furthermore, for probabilistic vehicle routing, the following hold with probabil-
ity 1:

tim COIEWELS M) _ 9B if C(n) = o (y/n)
:hféo M — kprr if C(n) = Q (v/n)
lim COEESD — 2By if C(n) = o (v/n) Y
:h_£ M = cpr(p) if C(n) = Q(vn)

where II and IT’ in the subindices of  and c in the second and fourth line of [1.11],
respectively, stand both for the traveling salesman, C'(n) and E[r] are as above and M1
and M2 are the modification strategies for probabilistic vehicle routing discussed in
example 1.5 (page 20).

11. Located to the point (0, 0) of R?.
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Finally, for probabilistic facility location problem and for any ¢, the following hold,
with probability 1:

. E(K,,S*MS) (i
nlgigo ( n ) (0) = cprr(p)

where II’ in the subindex of ¢ stands always for the traveling salesman.

Let us note that in [BER 90b], it is conjectured that:
— for IT standing for the traveling salesman, cpr1(p) = K11/P:
— for IT standing for the minimum spanning tree, cpr(p) = Kpir\/D-

Furthermore, [JAI 85], establishes the following bounds for cpr(p), II standing
for the traveling salesman: r1,/p < cpri(p) < min{s, 0.92,/p}.

Another very interesting issue, covered only marginally in the literature until now,
is the study of conditions under which the a priori approach and the reoptimization
one are equivalent, i.e., identifying classes of instances for which S* = S, where S
and S* are the optimal solution of the deterministic problem and the optimal a pri-
ori solution of its probabilistic derivation (under some modification strategy M). This
equivalence induces a kind of solution’s stability in the sense that if, following M, we
modify S§ to fit the present subinstance of the problem at hand, then the solution so
obtained is optimal for this subinstance.

The interested reader can find in [BEL 93] some interesting results concerning the
probabilistic traveling salesman under MS. For this problem, equivalence between the
a priori approach and the reoptimization approach means that if V' is the set of present
vertices, then the tour induced by removing the V'\ V' absent ones from 7 is optimal
for the graph K, [V].

Revisit the results about the traveling salesman presented in section 1.3.2.2. Based
upon [LAW 85], one can construct an optimal solution for the traveling salesman in
a small matrix. Then, since any submatrix of a small matrix is a small matrix itself,
it is possible to construct optimal solutions for traveling salesman and for any vertex-
subset V' of the initial input-graph. So, one can verify if, for any V", the tour induced
by T§ is optimal for K,,[V’] or not. Consider, for example, the case where condition 1
is verified and, moreover, |Dy| = 1 and D, = (. Since |D3| = |Dyl, one can
suppose Do = {1} and Dy = {n}. Under these assumptions, the following is shown
in [BEL 93]. Let C be a small matrix. Then T = T, if and only if ((d,, = b1) V
((dn = a1) A (dn—1 = b1))) A ((dns1 = an) V ((dng1 = bp) A (dnt2 = an))). In
this case:

E (Kn)T*aMS) =p (1 - (1 - p)n71> d/ - p2 (dn-‘rl - dn)

Furthermore, let C' be a small matrix and consider the following conditions:
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( D (dy 5&))[;1) A ((dn # a1) V (dn—1 # b1)) A ((dnt1 = an) V ((dny1 = by) A
n+2 = An 5

2) ((dn = bl) \ ((dn = al) A (dn—l = bl))) A (dn+1 7é an) A ((dn+1 7é
bn) \ (dn+2 # an))-

Then, setting ¢ = 1 — p, if 1 above is verified, we get:

n—2

E(K,,T*,M8)=p (1 — q"_l) (d+ an) —p* Z q" max {an_,b1}
r=0

On the other hand, if 2 is verified, then:

n—2

E(K,,T*,u8) =p (1 - qnil) (d—b1) +p2 Z q" min {a,, by}
r=0

We conclude this section with an approximation result that cannot be classified in
the personal classification, about approximation results which has been proposed in
section 1.3.2.3.

In [BER 88], the following is shown. If m (K, S;) is the optimal solution value
for a deterministic graph-problem II, if m(kK,, S) is the value of the solution com-
puted by an approximation algorithm assumed to solve II, if, for an instance G of II, p
is the presence probability of its vertices, if II stands for the minimum traveling sales-
man, the minimum spanning tree and the vehicle routing problem and if:

m (K, S)
m(Kn,55) 7

(all the three problems represented by II are minimization ones), then for any mod-
ification strategy M, and under the assumptions on the instances met throughout this
chapter (graphs are complete and vertices are uniformly distributed in R?):

E{ m (Kn, S5) ] <P

E(K,,S;M| ~p
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Chapter 2

The Probabilistic Maximum Independent Set

In this chapter, we study the complexity of optimally solving probabilistic maximum
independent set problem using several a priori optimization strategies, as well as the
complexity of approximating optimal solutions.

An instance of PROBABILISTIC MAX INDEPENDENT SET is a pair (G, ﬁr) and
is obtained by associating with each v; € V an “occurrence” probability p; and by
considering a modification strategy M transforming a feasible independent set S of G
into an independent set for the subgraph of G induced by a set V' C V. The objec-
tive for PROBABILISTIC MAX INDEPENDENT SET is to determine the a priori solu-
tion S maximizing the functional F (G, S, M) defined as (definition 1.2 in Chapter 1)
Zv/gv m(V’, S(V',M)) Pr[V'].

Except for its theoretical interest, PROBABILISTIC MAX INDEPENDENT SET has
also concrete applications. In [GAB 97], some aspects of the satellite shots planning
problem are studied. A graph-theoretic modelling for this problem is proposed there
and it is proved that, via this modelling, the solution of the problem studied becomes
the computation of a maximum independent set in a type of graph called a “conflict
graph” in which a vertex represents a shot to be realized. However, it is not taken into
account that shots realized under strong cloud-covering are not operational. Conse-
quently, in order to compute an exploitable an operational solution, it is essential to
also model weather forecasting. This can be done by associating probability p; with
vertex v; of the conflict graph; the higher the vertex-probability, the more operational
the shot taken. In this way, we naturally obtain a model leading to a probabilistic
combinatorial optimization problem. Such a model for the satellite shots planning
problem allows, given an a priori MAX INDEPENDENT SET-solution, computation of
the expected number of operational shots.



38  Probabilistic Combinatorial Optimization

There exist two interpretations of such an approach, each one characterized by its
proper modification strategy:

— the plan is firstly executed and one can know only after the plan’s execution if a
shot is operational; in this case, one retains only the operational ones among the shots
realized; this, in terms of PROBABILISTIC MAX INDEPENDENT SET, amounts to an
application of strategy M1 introduced in section 2.1;

— weather forecasting becomes a certitude just before the plan’s execution; in this
case, starting from an a priori MAX INDEPENDENT SET-solution, one knows the ver-
tices of this solution corresponding to non-operational shots, one discards them from
the a priori solution and, finally, one renders the survived solution maximal by com-
pleting it by new vertices corresponding to operational shots; this amounts to appli-
cation of other strategies, for example the ones denoted by M2, M3, M4, or M5 in the
sequel and introduced in section 2.1.

Let us note that the probabilistic extension of the model of [GAB 97] can also be
used to represent another concept, modelled in terms of PROBABILISTIC MAX INDE-
PENDENT SET, where randomness on vertices this time represents probabilities that
the corresponding shots are requested. Shot-probability equal to 1 means that this
shot has already been requested, while shot-probability in [0,1] means that the corre-
sponding shot will eventually be requested just before its realization. The correspond-
ing PROBABILISTIC MAX INDEPENDENT SET can be effectively solved by applying
strategy M2 ([MUR 97]), M3, M4, or M5.

In what follows we consider maximal a priori independent sets and use five mod-
ification strategies, Mi, i = 1,...,5. For M1 and M5 we express their functionals in
a closed form, we prove that they are computed in polynomial time, and we deter-
mine the a priori solutions that maximize them. For M2 and M3, the expressions for
the functionals are more complicated and it seems that they cannot be computed in
polynomial time. Due to the complicated expressions for these functionals, we have
not been able to characterize the a priori solutions maximizing them. Finally, for M4,
we prove that the functional associated can be computed in polynomial time, but we
are not able to precisely characterize the optimal a priori solution maximizing it. For
all the strategies proposed we also study the complexity of approximating optimal a
priori solutions.

We recall here that the strategies studied in fact introduce five distinct probabilistic
combinatorial optimization problems denoted in the sequel by PROBABILISTIC MAX
INDEPENDENT SET1, PROBABILISTIC MAX INDEPENDENT SET2, PROBABILISTIC
MAX INDEPENDENT SET3, PROBABILISTIC MAX INDEPENDENT SET4 and PROBA-
BILISTIC MAX INDEPENDENT SETS5, respectively. Finally, we study the probabilistic
version of a natural restriction of MAX INDEPENDENT SET, the one where the input
graph is bipartite.
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In this chapter, given a graph G(V, E) of order n, we sometimes denote by V' (G)
the vertex-set of G. We denote by S a maximal solution of MAX INDEPENDENT
SET of G, by S* a maximum independent set of GG, by «(G) its cardinality (see
section A.2 of Appendix A) and by S an optimal PROBABILISTIC MAX INDEPEN-
DENT SET-solution (optimal a priori solution). By I'(V'), V' C V, we denote the
set Uy,ev/I'(vi); by Pr[v;] = p;, we denote the fact that the presence probability
of a vertex v; € V equals p;. As adopted in Appendix A (section A.2), given a set
V' C V, we denote by G[V'](V’, EY,) the subgraph of G induced by V"’ (obviously,
there are 2™ such graphs). Given a maximal solution .S of MAX INDEPENDENT SET
(the a priori solution) in G, we denote by S(V') the set SN V",

2.1. The modification strategies and a preliminary result

In what follows we denote by GREEDY the classical greedy MAX INDEPENDENT
SET-algorithm. It works as follows:

1) set S = (;

2) order the vertices of V' in non-decreasing degree-order;

3) include in S a minimum-degree vertex vy of G;

4) delete {vg} UT(vg) from G together with any edge incident to these vertices;
5) repeat Steps 2 to 3 until all vertices are removed;

6) output S.

Moreover, we denote by SIMGREEDY a simplified version of GREEDY where after re-
moving a vertex and its neighbors, the algorithm does not reorder the vertices of the
surviving graph, i.e., it does not re-execute Step 2.

2.1.1. Strategy M1

Given an a priori MAX INDEPENDENT SET-solution S and a present subset V'’ C
V', modification strategy M1 consists of simply moving the absent vertices out of S,
i.e., of considering set S(V’) = S as solution for G[V’]. Observe that M1 is, for
PROBABILISTIC MAX INDEPENDENT SET, the strategy denoted by MS in Chapter 1.

EXAMPLE 2.1.— Consider the graph of Figure 2.1 and the a priori independent set
S =1{1,3,7,8}. Assuming that vertices 3 and 8 are absent, application of strategy M1
on the surviving graph produces as solution the set {1, 7} (Figure 2.2).

2.1.2. Strategies V2 and M3

Modification strategy M2 is a two-step method: it first applies M1 to obtain S(V"”);
next, it applies GREEDY on the graph G[V'] = G[V'\{S(V")UI'(S(V"))}] and, finally,
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LIS

7 8 9

Figure 2.1. A graph G, together with the a priori independent set {1, 3,7, 8}
(“white” vertices)

LIS

7

Figure 2.2. Application of strategy M1 on the present subgraph of G, with a
priori solution S (Figure 2.1); independent set produced: {1,7}

O

it retains the union of the two independent sets obtained as final MAX INDEPENDENT
SET-solution for G[V”]. It can be specified as follows:

D) set: S(V') = S(V/,M1), V' = V' \ {S(V)UT(S(V'))};
2) set S(V') = GREEDY(G[V]);
3) output S(V’/,M2) = S, = S(V') U S(V").

Strategy M3 is identical to M2 modulo the fact that, instead of GREEDY, algorithm
SIMGREEDY is executed at Step 2. The solution S(V’,M3) computed by strategy M3
will be denoted by S5.

EXAMPLE 2.2.— Consider again the graph G and the a priori independent set S of
Figure 2.1 (with absent vertex-set {3, 8}). Application of strategy M2 or M3 will first
produce solution S(V') = {1, 7} (Step 1). Then, application of Steps 2 and 3 will add
vertices 4 and 6 to S(V”). Finally, S}, = {1,4,6,7}.
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4
O

7 9

Figure 2.3. Application of strategy M2 on the present subgraph of G, with a
priori solution S (Figure 2.1); independent set produced: {1,4,6,7}

2.1.3. Strategy M4

Strategy M4 starts from S(V') and completes it with the isolated vertices (vertices
with no neighbors) of the graph G[V’]. It is specified as follows:

—set: S(V') = S(V',M1), Vi=V"\ {S(VHuT(S(V")};

—output S(V' M4) = S4 = S(V) U {v; € V' : () = 0}.
EXAMPLE 2.3.— Consider again the graph G and the a priori independent set S of
Figure 2.1 with vertices 3 and 8 absent. Application of strategy M4 will first produce
solution S(V') = {1,7} (first step). Then, application of the second step will add
to S(V') the isolated vertex 4. Finally, S} = {1,4,7}.
1 2 4
O

7 9

Figure 2.4. Application of strategy M4 on the present subgraph of G, with a
priori solution S (Figure 2.1); independent set produced: {1,4,7}

2.1.4. Strategy M5

Strategy M5 applies the natural relation between a vertex cover and an independent
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set in a graph, mentioned in Appendix A (section A.2), that a vertex cover (resp.,
independent set) is the complement, with respect to the vertex set of the graph, of an
independent set (resp., vertex cover). This strategy is specified as follows:

Dset: C=V\S,C(V)=CnV/

2)set R={v; € C(V') : T(v;) = 0};

3)set C(V')=C(V')\ R;

4) output S(V/,M5) = SL = V' \ C(V').

EXAMPLE 2.4.— Figure 2.5 illustrates the application of M5 in the graph G and the
a priori independent set .S of Figure 2.1, always supposing that vertices 3 and 8 are
absent. Step 1 will produce C(V') = {2,4,5,6,9}. Step 2 will compute R = {4},
while Step 3 results in C(V') = {2, 5,6, 9}. Finally, Step 4 will return S%, = {1,4,7}
(Figure 2.5).

7 9

Figure 2.5. Example of application of strategy M5 on the present subgraph G,
with a priori solution S (Figure 2.1); independent set produced: {1,4,7}

2.1.5. A general mathematical formulation for the five functionals

We establish in this section a general expression valid for the functionals of all the
five strategies studied in the chapter.

THEOREM 2.1.— Consider an a priori solution S of cardinality |S| for G; consider
strategies Mk, k = 1, ..., 5 Witheachvertexv; € V we associate a probability p;
and a random variable XMk’S, k=1, ..., 5 defined, forany V' CV, by:

%

X;V[k,S _

0 otherwise
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Then:

E (G, S, Mx) sz—l— Z Pr[XMkS } 2.2]

v; €S ;€(V\S)

In particular, if, for each vertex v; € V, p; = p, then:

E(G,5Mk)=p|S|+ Y Pr [kavs - 1} [2.3]
v, €(V\S)

Sil=>", X™5. So:

E(G,SMk) = > PrV|S|
VICcv
= > pr [V’]En:Xle’S = zn: > prv]xi®®
V'cv i=1 i=1V/'CV

_ N E(xS) -y S —
_ ; E(X%) ; Pr [ X = 1]
= ZPr [ XS — } (1{v esy + 1{v1¢5})
- ZPr [XMk - } L{v,es)

+) Pr [X?k’s = 1} Liv,¢sy
i=1

But, if v; € S, then necessarily ka’s = 1, VV’, such that v; € V’; so, for each
Vi € S
Pr [X?k’s = 1} =Dp;

and consequently:

E(G,S,Mk) = Zpl—l—zpr[ XS }1{%%5}

v, €S

Zpi + Z Pr {X?k’s = 1]

v; €S v €(V\S)
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If p; = p, v; € V, then the result of [2.3] is immediately obtained from [2.2]. 1}

Let us note that, as it can be easily deduced from the proof of Theorem 2.1, the
above result holds for any strategy which firstly determines S(V”), it next computes
an independent set S(V’) on G[V’], and it finally considers as solution for G[V’] the
set S(V') U S(V").

2.2. PROBABILISTIC MAX INDEPENDENT SET1
2.2.1. Computing optimal a priori solutions

From [2.1], we have XZP.“’S =0, Vu; ¢ S, and consequently, Pr[XMl’S =1] =0,

for v; € V'\ S; so, the following theorem is immediately derived for strategy M1.

THEOREM 2.2~ Given a graph G(V, E), an a priori solution S and the modifica-
tion strategy M1, then E(G,S,M1) = > s p;, and is computed in O(n). Optimal
PROBABILISTIC MAX INDEPENDENT SET/-solution S is a maximum-weight indepen-
dent set in a weighted version of G where vertices are weighted by the corresponding
probabilities. If p; = p, Yv; € V, then E(G,S,M1) = p|S|; in this case, S =G
and E(G, 5,M1) = pa(G).

The characterization of S given in Theorem 2.2 immediately introduces the fol-
lowing complexity result for PROBABILISTIC MAX INDEPENDENT SET].

THEOREM 2.3.— PROBABILISTIC MAX INDEPENDENT SET/ is NP-hard.
We now show that for p; = p, v; € V, a mathematical expression for E(G, S, M1)

can be built directly without applying Theorem 2.1 (used in next sections for the anal-
ysis of other strategies). Given that 0 < |S7] < |S|, we get:

[S|
1S =1S (VO 1gsar)=iy
=1

So, the functional for M1 can be written as:

[S]
E(GSut) = > PrVI]IS(V)Y Lyson—n
VICV i=1
[S]

= D iy Pr{VIlgswi=n

i=1 V/CV
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5]
Z<|f|)pz(1 )\S\ i
i=1
nels| ,
52 (1) o
7=0
= plS|

where in the last summation we count all the subgraphs G[V'] such that |S(V')| = ¢
and we add their probabilities; also, 37—, 151 ci Slpi(1 — pyn-Isl=i = 1.

The above proof for E(G,S,M1) can be generalized in order to compute every
moment of any order for M1. For instance:

E[(G:S,Ml)?} = Y eV

VIcv

S|

> () p = pisioisi + 1-p)

i=1

and, consequently:
Var (G, 5,11) = B (G, 5,40)°| = (B(G, 5,11))* = |S|p(1 - p)

So, for M1, the random variable representing the size |.S| of the a priori solution fol-
lows a binomial law with parameters |S| and p.

2.2.2. Approximating optimal solutions

In this section we show how, even if one cannot compute the optimal a priori
solution in polynomial time, one can compute a suboptimal solution, the value (ex-
pectation) of which is always greater than a factor times the value (expectation) of the
optimal solution. For this, we will propose in what follows well-known (in the theory
of polynomial approximation of NP-hard problems) polynomial algorithms comput-
ing “good” suboptimal solutions, and will show that, also in the probabilistic case,
these algorithms work well.

Recall that as we have already seen in section 2.2, PROBABILISTIC MAX INDE-
PENDENT SETI is equivalent to a weighted MAX INDEPENDENT SET-problem, where
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each vertex is weighted by the corresponding probability. Consequently, the following
theorem holds immediately.

THEOREM 2.4.— If there exists a polynomial time approximation algorithm 4 solving
MAX WEIGHTED INDEPENDENT SET within approximation ratio p, then 4 polynomi-
ally solves PROBABILISTIC MAX INDEPENDENT SET/ within the same approximation
ratio p.

In [DEM 99], an algorithm is developed for MAX WEIGHTED INDEPENDENT SET
achieving approximation ratio:

min logn 0] (n_ 5 )
3(A(G)+1)loglogn’
Using this algorithm in Theorem 2.4, one gets the following corollary.

COROLLARY 2.1.— PROBABILISTIC MAX INDEPENDENT SET1 can be approximated
within approximation ratio:

logn

min { 3(A(G) + Dloglogn’ (”_%) }

The characterization of PROBABILISTIC MAX INDEPENDENT SET] in terms of a
weighted MAX INDEPENDENT SET-problem draws not only issues for finding reason-
able a priori suboptimal solutions, but unfortunately limits the capacity of the problem
to be “well-approximated” since, via this characterization, all the negative results ap-
plying to MAX INDEPENDENT SET are immediately transferred to PROBABILISTIC
MAX INDEPENDENT SETI also. So, PROBABILISTIC MAX INDEPENDENT SETI is
hard to approximate within n¢~!, for any € > 0 ([HAS 99]).

2.2.3. Dealing with bipartite graphs
In this section we study the complexity of solving PROBABILISTIC MAX INDE-
PENDENT SET] in bipartite graphs. We show that, in this case, the problem dealt is

polynomial.

THEOREM 2.5.— PROBABILISTIC MAX INDEPENDENT SET1 is polynomial in bipar-
tite graphs.

Proof. Consider a bipartite graph B(V1, Va, E). Then, by Theorem 2.2:

v, €ES
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Therefore, the optimal a priori solution Sisa maximum-weight independent set in B
considering that its vertices are weighted by the corresponding presence probabili-
ties. Determining an optimal MAX INDEPENDENT SET-solution in a bipartite graph is
of polynomial complexity in both weighted ([BOU 84]) and unweighted ([HAR 69])
cases (in [BOU 84], the polynomiality of weighted MAX INDEPENDENT SET in a class
of graphs including the bipartite ones is proved). In the former case, this can be done
in O(n'/?|Eg|). Finally, note that the complexity of the computation of E(B, S, M1)
is O(n). |

2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3

2.3.1. Expressions for E(G, S,M2) and E(G, S, M3)

Let A; = 3 vcv, snvr =i Pr[V'][93]. Then, E(G,S,M2) can be easily written
as:

E(G,SmM2) = > Pr[V']|s)]
e
S|

= D> | 2 lusavri=ay | Pr(v7]Isy)
V/CV \i=0
S| 15|

S0 1 D SNETEY B ot 2
i=0 v/cv

|snv’|=i
Quantities 4;,i = 1,...,|S| (A9 = 0) are very natural and interesting from both

theoretical and practical points of view. For instance, formula for E(G, S,M2) given
by the expression above holds for every probability law; also, computing analytical
expressions for A; seems to be an interesting problem in combinatorial counting of
graphs; moreover, thanks to the simple relation between E(G,S,M2) and A;, i =
1,...,|S|, analytical expressions for the latter would produce explicit expressions for
the former. Unfortunately, [2.4], even intuitive and smart, does not give any hint which
would allow precise characterization of S.

In Proposition 2.1 below, the proof of which is in section 2.8.1 quantities A,(q)
and A, (g)—1 are explicitly computed, for the case of identical vertex-probabilities.
However, the explicit computation for A;s of lower index produces very long and
non-intuitive expressions.
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PROPOSITION 2.1.— Let IV(v) = T'(v) \ {T(v) NT(S*\ {v})}, €1 = {v € S*:

I(v) =0}, &4 = a(G) — ¢4, and p; = p, Yv; € V. Then:
Aae) = a(@p*@
Aney-1 = p™ 971 -p)

X | a(G)ly — by + a(G)l] — Z (1 —p)|F'(“)|

veES*
T/ (v)#0

2.3.2. An upper bound for the complexity of E(G, S, M2)

We shall now give an upper bound for the complexity of computing F(G, S, M2).
For this, we will analyze (as an intermediate step) strategy M3 introduced in sec-
tion 2.1.

Let G'(V',E') = G[V \ S],and let V' = {v1,...,v,_|g|} be the list of vertices
of G’ sorted in increasing-degree order; let us denote by V; the set of the 7 first vertices
of V' and let G, = G'[V;] (of course, for G the vertices of V; are not sorted in
increasing-degree order). Let us denote by S! the independent set found by M3 on
(the present subinstance of) G, and by s, its cardinality, ¢ = 1,...,n — |S|. The
expression for the functional associated with M3 is given in Theorem 2.6 just below
(its proof can be found in section 2.8.2).

THEOREM 2.6.— If E(s}) denotes the expectation of s, i = 1,...,n — |S|, then:
n—|S|
B ys) = S niPrlu T (s)
i=1

E(G, S,M3) E(G,SM1) + E (SZ—\S\)

Denoting by T(E(s],_5|)) and T(E(G,S,M3)) the computation times of E(s;, _g/)
and E(G, S,M3), respectively:

T8 () = 0 ()

T(E(G,8,M3)) = 0(2"—\5\)
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Strategy M3 is, as has been already noted, a simplified version of algorithm M2.
Moreover, there exist graphs where the two algorithms give the same results by per-
forming identical choices and deletions of vertices (for instance, consider a graph
on n isolated vertices). Consequently, computation time of M3 is a (worst-case) lower
bound for the one of M2 and the following theorem holds.

THEOREM 2.7— Let T(E(G, S,M2)) be the computational time of E(G,S,M2).
Then, T(E(G, S,M2)) = Q(T(E(G, S,M3))).

The result of Theorem 2.6 simply gives an upper bound on the complexity of
computing F(G,.S,M3) and does not prove that E(G, S,M3) is not computable in
polynomial time (if this was true, it would be a very interesting result since, in this
case, PROBABILISTIC MAX INDEPENDENT SET2 and PROBABILISTIC MAX INDE-
PENDENT SET3 would not belong to NPO; see section B.2 of Appendix B). In fact,
the result of Theorem 2.6 is based upon a particular recursion-formula and a par-
ticular way for computing it. In any case, one can easily prove that PROBABILIS-
TIC MAX INDEPENDENT SET2 is intractable (following the notation in the appendix
of [GAR 79], PROBABILISTIC MAX INDEPENDENT SET?2 is a kind of starry problem).

Indeed, if one can polynomially determine an optimal a priori solution S for PRO-
BABILISTIC MAX INDEPENDENT SET2, then one can simply consider an instance
of MAX INDEPENDENT SET as a PROBABILISTIC MAX INDEPENDENT SET2-instance
with p; = 1, Yo; € V. Itis easy to see that in this case, S = S* and the following
theorem immediately holds.

THEOREM 2.8.— Unless P=NP, PROBABILISTIC MAX INDEPENDENT SET2 is com-
putationally intractable.

2.3.3. Bounds for E(G, S,M2)

For lack of characterizing the complexity of computing E(G, S,M2), we build in
this section upper and lower bounds for it. They are given in Theorem 2.9.

THEOREM 2.9.— Let A be the maximum degree of G[V']. Then, on the hypothesis of
distinct vertex-probabilities:

‘71

E(G,SM2) = Y pi+ > Il »m Il (1_pi)|A+‘1
V; ES VICV v, eV’ v @V’ B [25]

B(G,SM2) < Yopi+ X I w I Q—p) |V

v; ES VICV v, eV’ 1)i$V’
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while, on the hypothesis of identical vertex-probabilities:

v/ n—|v'| [V']
E(G,S,M2) > p|S|+ ZC) V@~ -] IA—H 61
E(G,5,M2) < p|S|+ Z V'l - pyn V'l ‘f// ‘
Vda’s
Always under the latter hypothesis:
pn n(A(G) +p)
Ay +1 S PGS < = e
Proof. Observe first that the following expression holds for |S(V)]:
ISV < 1S5 < IS+ VNSV U@ (S ) v
= SV + ‘V’ [2.7]
Consequently, using [2.7], the following holds:
E(G,S5mM2) < > Pr[v ( \+‘V’)
\da%
< E(G,S,M1) Z Pr[V
VICV
v; €8 vicy

On the other hand, Pr[V'] =[], v pi [, gv'( — p;). The upper bound results
from the combination of [2.8] and the one for Pr[V ]

We now prove the lower bound for E(G, S,M2). Denote by S, the independent set
computed by M2 when applied to G[V'] and by |S5| its cardinality. We then have:

E(G, S,M2) = Zpl+ Z Pr [V/] 52’

v; €S VICV

= Zpi+ Z H Di H (1—pi)

v; €S VICV v, eV’ ’U,;QV/

Sg‘ [2.9]
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For |§2|, since the greedy algorithm implied by M2 provides a maximal indepen-
dent set, the following holds ([BER 73]): |Sa| > |[V'|/(A + 1). By substituting the
expression for |Sa| in [2.9], we obtain the lower bound claimed.

In the case where all the vertices have the same presence probability p, the follow-
ing holds:

Zpi = plS|

v, €S

pr (V'] = plV (@ = V]

and [2.6] follows immediately.

In order to obtain bounds implied by the last expression of the theorem (always
assuming identical occurrence probabilities), we use inequality |S| > n/(A(G) + 1).
Moreover, > ey IV (1 —p)" V' =1 (50, Yy pIV (1= p)"~ V1 > 0), and:

v

VLS (V) UT(S (V) < VIS (V)
= [VIAEAV)<IVASAY)] = [VAS] = n—|S]

S0, Yyucy V11 = p)" VIV < (0 = [S) Xy V(1 = p) IV =
n — |S| and combining the above inequalities, we obtain the claimed bounds. |

2.3.4. Approximating optimal solutions

2.3.4.1. Using argmax{)_, g Pi} as an a priori solution

Suppose that S = argmax{)_, csp; : S independent set of G'} is used as an a
priori solution for PROBABILISTIC MAX INDEPENDENT SET2 (recall that S cannot
be computed in polynomial time). Then, the following holds.

THEOREM 2.10.— Approximation ofS' by the solution:

S = argmax { Z p; : S independent set ofG}

v, €S

guarantees approximation ratio bounded below by:

Pmin 1
max ,
14+ pmax A(G)+1
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Proof. By [2.9] (proof of Theorem 2.9), and since |Ss| < a(G), we get:

Sm < B@SM2) = Y pi+ > Pr[V 5*2‘
v; €S v, €S V'CcVv
< a(G) | pmax+ D Pr[V]] = G)(1+pmax) [2.10]
VICVv

Since S = argmax{)_, s p;: S independent set of G}, then:

E(G.S5M2) 2 Y pi= Y pi>pmnc(G) [2.11]

v, €S v; ES*

Note now that [2.10] holds also for E(G, S ,M2); consequently, combining [2.10]
and [2.11] we obtain:

E(G,S5 M2) o Puin(G) _ Pmin

- Z = [2.12]
E (G7 S, M2) (1 + Pmax) @(G) 1+ Pmax

On the other hand, note that from [2.2]:

E (G,S,Mz) <> [2.13]

v; €V

and from the left-hand side of [2.5]:

E(G,8M2) > > p; [2.14]

v, €S

A combination of [2.13] and [2.14] gives:

E (G, S,M2) o T,Egpi N 1

E (G,S,Mz) g viZE:VPi T AG) +1

[2.15]

where the last inequality (observe that S is maximal) is the weighted version of Turan’s
Theorem ([TUR 41)).

Expressions [2.12] and [2.15] conclude the theorem. |
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2.3.4.2. Using approximations of MAX INDEPENDENT SET

The set S considered in the previous section cannot be computed in polynomial
time. Instead, suppose that one uses a polynomial time approximation algorithm A
(achieving approximation ratio p) for (unweighted) MAX INDEPENDENT SET in order
to compute a solution S’ (obviously, we can suppose that S’ is maximal) on G where
vertex-probabilities are omitted. Then, [2.11] in the proof of Theorem 2.10 becomes

E (G7 S/7M2) 2 Pmin ‘Sl‘ 2 pminpa(G)

and using the same arguments as in Theorem 2.10, the following theorem can be
proved.

THEOREM 2.11.— [f there exists a polynomial time approximation algorithm 4 solv-
ing MAX INDEPENDENT SET within approximation ratio p, then algorithm 4 polyno-
mially solves PROBABILISTIC MAX INDEPENDENT SETZ2 within approximation ratio:

ma. { 1 ( Pmin > }
X b)
AG) 1\ T+ pc ) ©

If A is the algorithm of [DEM 99], then:

— in the case of fixed vertex-probabilities, PROBABILISTIC MAX INDEPENDENT
SET2 can be approximately solved in polynomial time within ratio:

min {O <3 AG) l—io-ng)Llog logn) 0 (n7) }

— in the case where probabilities depend on n, PROBABILISTIC MAX INDEPEN-
DENT SET2 is polynomially approximable within ratio:

ma 1 Pmin O ( min logn et
“VAG) + 17\ 1+ pa 3(A(G) + 1) loglogn’

2.3.5. Dealing with bipartite graphs

In this section we focus ourselves on bipartite graphs and study complexity of
PROBABILISTIC MAX INDEPENDENT SET?2 in this class of instances.

THEOREM 2.12.— Consider a bipartite graph B(V1,Va, Eg). Then:
E(BWM2)= > pi+ > p |[ (1-p)
v, €V1 v;€Va  wv;el(v;)

and can be computed in polynomial time. Consequently, in bipartite graphs, whenever
color-class Vi (or V) is considered as an a priori solution, PROBABILISTIC MAX
INDEPENDENT SET2 belongs to NPO.

Proof. Let us first note the following:
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— if all the vertices of V; are absent, then the solution provided by M2 is exactly the
present vertices of the color-class V5;

—if all the vertices of V; are present, then, despite the state of the set V5, the
solution of the present subinstance of B is exactly the color-class V71;

—in the case where a part of the vertices of V; is present, the final solution
for B[V'] will eventually include some vertices of Vx.

Applying the result of Theorem 2.1, we get:

EBVM2)= > p+ Y Pr [X?Q’Vl — 1} [2.16]

v €V v, €Va

(recall that Pr[X"*% = 1] represents the probability that vertex v; ¢ S will be chosen
when applying M2).

Note also that Pr[X w2V = 1], v; € Va, depends only on the present vertices
of T'(v;); consequently, it does not depend on the other elements of V5. Henceforth,
insertion of the elements of V5 is performed independently of each other and v; €
Vo will be introduced in the solution for B[V'] only if I'(v;) N V1[V’] = 0. So,

Vi
Pr[Xif"2 L= 1] =p; H'ujel“('w)(l —pj)-

Replacing this expression for Pr[X>"* = 1] in [2.16], we obtain the result
claimed for E(B,V;,M2). One can see that this expression implies the computation
of E(B, V;,M2) in at most O(n?) steps. |

From the proof of Theorem 2.12, one can see how the particular structure of the
bipartite graph intervenes in a significant way to simplify the expression for the func-
tional and, consequently, its computation. Expression [2.16] holds thanks to the fact
that the vertex set of B can be partitioned into two independent sets.

COROLLARY 2.2.— Suppose Pr[v;] = p, v; € V4 U V3, denote by n; and ny the sizes
of V7 and V5, respectively, and suppose that ny > ns. Then:

E (B7V17M2 = pni +p Z ‘F(vl
v, EVa

Naturally, E(B, V1, M2) is computable in O(n?).

From Corollary 2.2 we can obtain the following framing of E(B, Vi, M2) for the
case of identical vertex-probabilities:

E (B, Vi,M1) + nop(1 — p)2B) < E(B,Vi,M2)
< E(Ba V17M1) +’n’2p(1 7p)6(B)
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So, for regular bipartite graphs (i.e., the ones where A(B) = §(B) = A):

E(B,Vi,M2) = E (B, V1,M1) + nop(1 — p)&

Consider S = argmax{)_, -qp; : S independent set of B} as an a priori so-
lution for PROBABILISTIC MAX INDEPENDENT SET2. Then, considering vertex-
probabilities as vertex-weights and using the result of [BOU 84], S can be computed
in polynomial time. Furthermore:

> Di
E(B,SM2)> Y pi> " — 2.17]

’Uieg

Using [2.17] together with [2.13], approximation ratio 1/2 is immediately yielded.

PROPOSITION 2.2.— S = argmax{)_, ¢ p;: S independent set of B} is a polyno-

mial time approximation of S achieving approximation ratio 1/2 for PROBABILISTIC
MAX INDEPENDENT SET2 in bipartite graphs.

Obviously, from Theorem 2.12 and the discussion just above, the same approxi-
mation ratio can be yielded if one uses argmax{>_, . pi, > p;} as an a priori
solution.

v; EVa

2.4. PROBABILISTIC MAX INDEPENDENT SET4
2.4.1. An expression for E(G, S,M4)

Recall that strategy M4 starts from S(V’) and completes it with the isolated vertices
of the graph G[V"]. In Proposition 2.3 below (its proof is in section 2.8.3), we give a
polynomially computable expression for the functional associated with M4.

PROPOSITION 2.3.— Given a graph G(V, E), an a priori independent set S and
the modification strategy M4, then, setting I's(v;) = I'(v;) NS and Ty g(v;) =
L) N (V\S):

EGSM) = > pi+ Y om [ G-p)

v; €S v; €(V\S) wv;€lg(vs)

< 1 1-p [ (-m) [2.18]

v €Ty 5 (vi) v €T s (vg)
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E(G, S,M4) can be computed in polynomial time. If p; = p, for all v; € V, then:

E(G,5.M4) = p|S|+ Z p(1 — p)Ts @l
v, €(V\S)

< 11 (1—p(1—p)lfs<“k>|) [2.19]

v €0y s (Vi)

2.4.2. Using S* or argmax{} . g Pi} as an a priori solution

Expression [2.18], although polynomial, does not allow precise characterization of
the optimal a priori solution S associated with M4. In Theorem 2.13 below (the proof
of which is given in section 2.8.4), we restrict ourselves to the case of identical vertex
probabilities and suppose that S*, a maximum-size independent set of G, is used as an
a priori solution!. Our objective is to estimate the ratio E(G, S*,M4)/E(G, S, M4).

THEOREM 2.13.— Under identical vertex-probabilities:
E(G,57,M4) _ a(G) (1 e 7p)A(G)) + (1= p)AO > a(G)

=

E (G, 3, M4) n
The ratio o(G) /n is always bounded below by 1/(A(G) + 1).

For instance, if G is cubic, i.e., A(G) = 3, then «(G) > n/4 and:
E(G,S*M4) _ 1 f .1
PGSl ra-p>

E (G, 3 M4)
If in addition p = 1/2, then E(G, S*,M4)/E(G, S,M4) > 11/32.

The result of Theorem 2.13 can be easily extended to the case where vertex-
probabilities are distinct and S = argmax{}_, c¢p; : S independent set of G} is
used as an a priori solution. Moreover, without loss of generality, one can suppose
that S is maximal. Then, one easily gets from [2.18]:

E(GSma) < Ypi+ Y wmo= > p [2.20]

v; €8 v;€(V\S) eV

E(G,S,m4) > Zpi [2.21]
’z)iES'

1. Recall once more that such an independent set cannot be computed in polynomial time.
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Combining the above expressions, we obtain:

E(G,5,m) PR oo

E (GS M4) g UiZG:VPi T AG)+1

where the last inequality is the weighted version of Turan’s theorem.

Finally, let us note that the same approximation ratio can be obtained if one treats
vertex probabilities as weights and uses as an a priori solution the one computed by
the greedy MAX INDEPENDENT SET-algorithm. In the weighted case, this algorithm
iteratively chooses the vertex maximizing the ratio “vertex-weight over vertex-degree”
and eliminates its neighbors. In this case, if S’ is the independent set computed, we
have ([PAS 97]):

> i

v €V

E ' M4) > i 2
(G,S'Ma)> > p AG) 11

v; €S’

and using [2.20], approximation ratio bounded below by 1/(A(G)+1) is immediately
concluded.

2.4.3. Dealing with bipartite graphs

The particular structure of a bipartite graph B(Vy, Vs, E) does not allow refine-
ment of the result of Proposition 2.3 in order to obtain a better characterization of the
a priori solution maximizing E(G, S, M4) and of the complexity of its computation.

However, if argmax{|V|,|V2|} is used as an a priori solution, then [2.18] can
be simplified. Plainly, let us revisit it and suppose, without loss of generality, that
Vi = argmax{|V1|, |V2|}. So, we have S = V; and V' \ S = V4. Consequently, for
v; € Vo, T'(v3) N Vo = '\ g(v;) = () and the term HUkEFV\S('Ui)((l —pr) +pr(l —
1, ers o) (1 = p1))) (the last product of [2.18]), computed on an empty set takes, by
convention, value 1. So, dealing with bipartite graphs, [2.18] becomes:

EBWM) =Y pi+ > pn [ (1-p) [2.22]

v;€EVYL vi€Va v €Ty, (vi)

In what follows, we will prove that if we use the color-class:

argmax{ Z Dis Z Pz}

v, €EV] v, EVy
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as a priori solution for PROBABILISTIC MAX INDEPENDENT SET4, then it is solved
within approximation ratio 1/2.

Indeed, let V] = zaurgmax{z:mGV1 Di, ZuieVQ p;}. Then, by [2.22], we get:

Epi

v, €EVIUVy

v, €V1

[2.23]

Combining [2.23] with [2.20], we obtain:

Pi
v EVIUVy

E(B,ViWa) _ "yt

1
E(B,S*,M4) > pi 2
v, EV1UV,

The same worst case approximation ratio is also achieved if one sees probabilities
as weights and considers the maximum-weight independent set (of total weight at
least equal to Zvievl p;; this set can be found in polynomial time ([BOU 84])) as an
a priori solution and the following theorem concludes the discussion above.

THEOREM 2.14.— Given a bipartite graph B, the vertex-set:

argmaX{ > vy pi}

v;€V1 v, €Va

as well as any maximum independent set> of B are polynomial approximations of
PROBABILISTIC MAX INDEPENDENT SET4 achieving approximation ratio bounded
below by 1/2.

Note finally that for the case of identical vertex-probabilities, the result of Theo-
rem 2.14 could be obtained by direct combination of expressions [2.20] and [2.21].
2.5. PROBABILISTIC MAX INDEPENDENT SET5
2.5.1. In general graphs

Recall that strategy M5 considers the restriction C'(V”) of an a priori vertex cover in
the present subgraph G[V'] of G, it removes the isolated vertices (if any) from C'(V"),
and it finally takes the complement, with respect to V', of the resulting set.

2. Recall that a maximum independent set can be computed in polynomial time in a bipartite
graph.
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THEOREM 2.15.— Given a graph G(V, E), an a priori independent set S and the
modification strategy M5, then:

E(G,Sm8) =Y "pi+ > p J[ (1-p [2.24]

v, €S v; €(V\S)  wv;€l(vs)

E(G, S,M5) is computable in polynomial time.

Proof. Steps 1 to 3 of modification strategy M5 in section 2.1 constitute a modification
strategy, denoted by M in what follows, for probabilistic vertex cover problem. For
an a priori vertex cover C, the functional associated with M is (see Chapter 3 for a
detailed computation):

E(G.Cmy=> p—> p [] (-p) [2.25]

v, €C v;€C w;el(vy)

Using [2.25], we have the following for E(G, S, M5):

BE(G,SM5) = > Pr(V][Si = > Pr[V](V'|—|C (V)
VICV VIV
= > Pr[V]IV[- > Pr[V 78]
VICV VICV

— Z Pr [V’] Z 1{vi€V’} —E(G,V\S, M)

VICV v EV

= Z Z Pr[V 1{1, ev’} - E(G,V\ SN

v, €V V/CV
= sz‘— Z pi + Z Di H (1—pj;)
v, €V v, €(V\S) v, €(V\S) v; €T (v;)
= Y opi+ >, » J[ d-p)
v, €S v; €(V\S) wv;el(vy)

and the proof of the theorem is complete. |
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Expression [2.24] can be rewritten as:

E(G,SM8) = > pi— > pit+ Y. pi |[ (1-p)
v EV v;€(V\S) vi€(V\S)  wv;el(vi)
= sz'* Z pi|1— H (1-pj)
v EV v €(V\S) v €0 (v;)

Since, for a graph G, quantity », y p; is constant, maximization of F(G, S, M5)
becomes equivalent to the minimization of >, ¢\ ) Pi(1 — I, erg (1 — Pj))-
But S being a maximal independent set, V'\ .S is a minimal vertex covering of G, and
in order to find the vertex covering C' minimizing the quantity:

Yom|t- I a-py)

v; €C v; €T (vy)

one has simply to consider each vertex v; € V' as weighted by the weight:

w; =p; [ 1— H (1—pj)

v; €T(v;)

and to search for a minimum-weight vertex cover. Consequently the following theo-
rem characterizes the a priori solution maximizing E(G, S, M5).

THEOREM 2.16.— The a priori solution S maximizing E(G, S,M5) is the complement,
with respect to 'V, of a minimum-weight vertex cover of G where every vertex v; is
weighted by a weight p;(1 — ijer(vi)(l — pj)). Consequently, PROBABILISTIC
MAX INDEPENDENT SETS is NP-hard.

In other words, Theorem 2.16 establishes that, as in the case of PROBABILISTIC
MAX INDEPENDENT SET1, PROBABILISTIC MAX INDEPENDENT SETS is equivalent
to a MAX WEIGHTED INDEPENDENT SET. Since weights do not intervene in the ratio
obtained in [DEM 99], Corollary 2.1 holds also for PROBABILISTIC MAX INDEPEN-
DENT SETS.

2.5.2. In bipartite graphs

Since maximum-weight independent is polynomial in bipartite graphs ([BOU 84]),
so is minimum-weight vertex covering. So the following theorem immediately holds.
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THEOREM 2.17.— The a priori solution S maximizing E(B, S,M5) is the complement,
with respect to V1 U Vs, of a minimum-weight vertex cover of B where every vertex v;
is weighted by a weight p;(1 — ij eF(v,:)(l — pj)). Consequently, PROBABILISTIC
MAX INDEPENDENT SET) is polynomial for bipartite graphs.

2.6. Summary of the results

Dealing with the quality of the solutions obtained, we have the following relation
for a fixed a priori solution S:

E(G,8,M) < E(G,S,M5) < E(G, S,M4) < E (G, S, M2) [2.26]

First inequality in [2.26] is obvious and follows from Theorem 2.2 and [2.24] in
Theorem 2.15. In order to prove the second inequality, observe that (using [2.18]):

(1= I a-m|=0

v €5 (vk)

and consequently:

EG.SMa) = Y pi+ > wmx [ a-p)

v; €S v, €(V\S) v;€lg (vy)

X H (1—pk)

v €Ly 5 (vs)

dopit > pix 11 (1-p)

vi€S v €(V\S) v;€(Ds(v) Ul v\ 5(v:))
= Yopi+ >, px J[ (-p)
v; €S v, €(V\S) v; €T(v;)

= E(G,S,M5)

WV

Last inequality in [2.26] is due to the fact that for every subgraph G[V’], the cardi-
nality of the solution computed applying M2 will be greater than the one of the solution
computed applying M4 since GREEDY (called by M2) will add in the solution produced
by applying M4 the isolated vertices of G[V"] (at least).
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|| Variant 1 Variant 2 Variant4  Variant 5
T(E) O(m) O 1) 0(n?) O (n?)
S MAX WIS(GY)  hard 7 MAX WIS(GY)
Complexity NP-hard ? ? NP-hard

Table 2.1. Complexities of computing functionals and characterizations and
complexities of computing a priori solutions for several variants of
probabilistic independent set in general graphs

|| Variant 1 Variant 2 Variant4  Variant 5
T(E) O(n) ? O (n?) O (n?)
S MAX WIS(BY) 2 7 MAX WIS(BY)
Complexity | ? ? P

Table 2.2. Complexities of computing functionals and characterizations and
complexities of computing a priori solutions for several variants of
probabilistic independent set in bipartite graphs

Tables 2.1 and 2.2 summarize the main results of this chapter about the complex-
ities of computing the functionals and the ones of computing the a priori solutions

H S H Approximation ratio
Variant 1 The one computed in [DEM 99] r
The one computed in [DEM 99] max { ( - f‘;“ﬂx) r, a7 é) = }
[DEM 99], probabilities independent of n r
Variant 2
argmax{zwes pi} max { 1}:‘;}%, W }
S*, identical probabilities @
argmax{zmes pi} A(é)Jrl
Variant 4
The output of the greedy algorithm W
Variant 5 The one computed in [DEM 99] r

Table 2.3. Approximating a priori solutions in general graphs;
r = min{O(log n/(3(A(G) 4 1) loglogn)), O(n~*/°)}
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I S | Approximation ratio
Variant 2 argmax{)_, ¢pi} %
Variant 2| argmax{}_, cv, Pi> X _y.cv, Pi} 3
Variant 4 argmax{)_, copi} 3
Variant 4 argmax{zzyiev1 Di, ZviEVQ pi} %

Table 2.4. Approximating a priori solutions in bipartite graphs

maximizing them. In this tables, we denote by G} (resp. B;) a graph G (resp., a
bipartite graph B) whose vertices are weighted by their corresponding probabilities,
by G}, (resp., B,) a graph (resp., bipartite graph) whose vertex v; is weighted by
the quantity p;(1 — ijef(vi)(l —p;)), 1 < i < n, by T(E) the time needed for
the computation of the functional E' and, for economy, by MAX WIS(G) (resp., MAX
WIS(G;", ), the fact that the a priori solution maximizing the functional is a maximum-
weight independent set in G}’ (resp., GG}). Finally, G and B denote general and bi-
partite graphs, respectively, and question marks denote open questions. Dealing with
entry (T'(E),Variant 2) of Table 2.2, recall that the complexity of computing the func-
tional for PROBABILISTIC MAX INDEPENDENT SET2 is polynomial if the set:

argmax {| V1|, [V2|}

is used as an a priori solution.

In Table 2.3, r stands for min{O(logn/(3(A(G) + 1)loglogn)), O(n=*/%)}.
Here, as well as in Table 2.4, a summary of the main approximation results in gen-
eral and in biparite graphs, respectively, is presented. Let us note that the approx-
imation ratio in the line for Variant 5 of Table 2.3 is directly obtained with argu-
ments exactly analogous to the ones of Corollary 2.1 in section 2.2.2, considering
pi(1— ijer(vi)(l — p;)) as vertex-weight forv;, i = 1,...,n.

2.7. Methodological questions

As we have seen, PROBABILISTIC MAX INDEPENDENT SET1 and PROBABILISTIC
MAX INDEPENDENT SETS can be expressed as particular versions of MAX WEIGHTED
INDEPENDENT SET. Then, one can ask her/himself if mathematical expectation is
the best and most representative functional in order to represent the objective func-
tion of this problem. Let us take, for instance, PROBABILISTIC MAX INDEPENDENT
SET1. Obviously, considering mathematical expectation maxg Zv,',ev 1{v;es)Pi as
the functional to be maximized is a fair and natural assumption. But, other func-
tionals could be considered, depending on the nature and the context of the natural
application modeled in terms of the problem dealt. For example, consider an applica-
tion where vertices represent a gain in a game. A venturous player’s behavior would
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consist of maximizing its chances, i.e., in finding the maximum cardinality indepen-
dent set and then taking into account probabilities in order to re-adjust the solution
computed. A more conservative player’s behavior would be, on the other hand, to
minimize the risks, i.e., to minimize the probability of having small gains, this be-
havior being, possibly, expressed by maxg Zuiev 1{vieS:p;>po}» Where pg is some
threshold-probability, or yet by ming ZmEV\S 1{v;ev\S:pi<po}- In these cases also,
there exist many details to be discussed concerning the role played by the probabili-
ties. In all, for PROBABILISTIC MAX INDEPENDENT SET1 (this remains true for all the
other probabilistic independent set-variants dealt in this chapter) a solution including,
for example, 10 vertices any of probability 0.9 is not the same as a solution includ-
ing 90 vertices of probability 0.1, even if the mathematical expectations are identical
for the two solutions. In fact, it is the context of the application (modeled in proba-
bilistic terms) and the judicious choice of the algorithm that will determine which of
the two solutions is the best for a given application.

Commonly, a combinatorial optimization problem models a concrete real-world
application. In order to solve it, one has to determine a solution that satisfies a certain
optimality criterion. In the framework of decision theory, one can interpret a feasible
solution as a kind of decision. The choice of the optimality criterion determines the
underlying probabilistic combinatorial optimization problem in the sense that different
criteria induce distinct such problems. Several criteria can be provided; for example,
the cost’s expectation, the utility’s expectation, the minimum gain, the maximum re-
gret, etc. From a decisional point of view, the great difficulty is to choose which
criterion is the most representative of the behavior and the preferences of a decision
maker. When dealing with probabilistic combinatorial optimization graph-problems,
any of the 2" possible subgraphs of the initial graph represents a possible state of
nature.

As we have seen in Chapter 1, PROBABILISTIC MAX INDEPENDENT SET can
model a satellite shot planning problem. The decision here amounts to choosing, in
a random universe, a certain number of shots to be realized. The optimality criterion
we have used until now consists of maximizing the expected number of shots. We
have seen above that, under some modification strategies, this criterion allows us to
interpret vertex-probabilities in terms of vertex-weights and to reduce the probabilistic
problem to a particular kind of weighted one. As we will see in the next chapters, for
a certain number of problems this trend to reduce probabilities to weights is closely
linked to the particular optimality criterion chosen. However, this particular point of
view may be somewhat restrictive. We will sketch in this section how optimal solu-
tion evolves when other criteria, more “classical” in decision theory, are used. For
simplicity, we will restrict ourselves to the modification strategies M1 and M2. Let us
note that even if our discussion deals here with PROBABILISTIC MAX INDEPENDENT
SET, its corollaries apply to any other of the problems studied in this book.



The Probabilistic Maximum Independent Set 65

2.7.1. Maximizing a criterion associated with gain

In this case, one has first to define a notion of gain associated with a solution and
a subgraph of the initial input-graph. Given a graph G(V, E), a subset V' C V,
an a priori solution S for G and a modification strategy M, the gain g(G[V’], S, M),
associated with G[V'], S and M, is determined by the value of the solution of G[V']
induced by the application of M to S. Then, we study two criteria commonly used in
decision theory: the minimum gain and the maximum gain.

2.7.1.1. The minimum gain criterion

This criterion, associated with an a priori solution S, will be denoted by f,(.S)
and will be defined as:

fy(5) = min {g(G[V'], 5,1} = min {g (G [V'] 5, 1)}

It expresses a certain conservatism of the decision maker since it amounts to evaluating
a solution (decision) from a worst case performance point of view. With such criterion,
one tends to consider the least risky of the possible decisions. An optimal solution S*
for this criterion is one verifying: f,(S*) = maxg{f;(S)}. This value does not
represent the real gain associated with S*. In order to determine it, one has to compute,
for a given state V' of nature, the gain g(G[V'], S*,M).

2.7.1.1.1. Using modification strategy M1

In this case, the gain considered is defined as:
g(GV'],8M)=[SNV'| [2.27]

Hence, the minimum gain criterion associated with S is given by:

f5(8) = min {g(G[V'],5,M1)} = min {|V'N 5[} =0

Consequently, all the feasible a priori solutions are equivalent under this criterion,
since they all have the same value. In other words, for a decision maker, all the
solutions are identical because, for any of them, there exists at least a graph G[V"] for
which the solution induced is empty. So, any feasible solution under the criterion at
hand, is an optimal one.
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2.7.1.1.2. Using modification strategy M2

Recall that, as we have seen in section 2.1, strategy M2 completes the solution com-
puted by M1, in order to make it maximal for the inclusion. Using notations adopted
previously, the gain associating with M2 can be expressed as:

g(GV'],8.M2) = SN V| + ]s (v)

In this case, the criterion of the minimum gain becomes:

j

} [2.28]

f(8) = min {g(@V].Sm2)} = min {ISNV|+]s (V)

= miy{lsnvivs (V)

Here, if V' = () is a feasible state of nature for the application modelled, then
fg(S) = 0. If not, then the optimal solution S* verifies:

From an operational point of view, use of M2 assumes that one precisely knows
set V', since one has also to know the subgraph G[V'].

fq(S*) = mgmx{ min {’(S nvHyus (f/’)

VICV

What can be concluded from the discussion above is that minimum gain criterion
seems to be quite senseless. In order to remedy this, one has then to make some more
restrictive hypotheses on V’. For instance, we can assume that the feasible states of
nature correspond to subgraphs whose orders are fractions of the order of the initial
graph. But, in this case, one loses the hypothesis that vertex-probabilities are mutually
independent.

2.7.1.2. The maximum gain criterion

This criterion, associated with an a priori solution S and denoted by f9(S), can
be defined as:

f9(8) = max {g(G[V'],SM)} = max {g(GV'],S,m)}

It corresponds to an optimistic behavior of the decision maker, since she/he evalu-
ates a solution from a best case performance point of view. A solution S* is optimal
for this criterion, if it verifies f9(S*) = maxgs{f9(95)}.
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2.7.1.2.1. Using strategy M1

Using [2.27], the value of a solution .S, under the criterion of maximum gain is
given by:

F(8) = max {g(G[V'], §;M1)} = max {|SNV'[} = 5|

For the optimal solution S*, under the criterion at hand we have:
7(8%) = max {£2(S)} = mac{| S}
i.e., S* is a maximum independent set of the initial graph G.

2.7.1.2.2. Using strategy M2

In an analogous way as for [2.28], the value of an a priori solution S for the
maximum gain criterion is expressed by:

£(8) = max {9 (G V'), 5.42)} = maxc {[ (S0 V) US (V)

} [2.29]

PROPOSITION 2.4.— The solution S* maximizing f9(S) in [2.29] is a maximum in-
dependent set of the initial graph G.

Proof. We first prove that, given a maximum independent set S* of G and any subset

V'CV:

(S*NV)U S* (f/’) < |S*] 2.30]

Indeed, in the opposite case, there would exist a subgraph G[V"’] of G such that
[(S*NV)uUS*(V")| > |S*|, i.e., G]V'] should contain an independent set .Sy such
that |Sp| > |S™|, a contradiction since S* is supposed to be maximum for G.

On the other hand, one can easily show that, for any V' C V, if S* C V’, then:

(S NV)U S* (f/’) — |S*] [2.31]

Combination of [2.30] and [2.31] concludes that, for a maximum independent
set S* of G, f9(S*) = maxy cy{|(SNV)US(V')|} =|5*|.
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It remains now to show that f9(S*) = maxg{f9(S)}. Let us notice that, for
any S, f9(S*) = f9(S) if and only if |S*| > maxycy{|(SN V') U S(V’)|}. This
last inequality is always verified since, a contrario, there would exist a set 1y C V
and an a priori solution Sy for G[Vp] such that |Sy| > |S*|, a contradiction since S*

has been assumed to be maximum. The equivalence above concludes the proof. |

It should be noted that [2.30] is not systematically verified if S* is not maximum.
For instance, consider a bipartite graph B(V1, Va, E), with | V3| > |Vi] andset S = V3
(obviously, S is maximal but not maximum). If we consider V' = V5, we have:
(SN VYUSV")| = |(Vi NVa)UVa| = |Va| > |Vi|. Hence, for a non-maximum
solution S, we do not necessarily have f9(S) = |S].

What is interesting to notice from the discussion in this section is that, in the oppo-
site to what has been observed previously, when the functional was used as optimality
criterion, the maximum gain criterion induces that both strategies M1 and M2 admit the
same optimal a priori solutions.

2.7.2. Minimizing a criterion associated with regret

For any subgraph G[V’] induced by a subset V' of V, the best possible gain asso-
ciated with it and with a modification strategy M is defined by:

g (G V'], M) = max {g (G V'], S;M)} = opt (G [V'])

Then, the regret associated with a graph G[V"], an a priori solution S and a modi-
fication strategy M is given by:

r(G[V'],8,M) =opt (G [V']) = g (G[V'], S, M)

For any G[V"], this regret determines what one loses by choosing S as an a priori
solution instead of the one for which its modification via M would result in opt(G[V']).

2.7.2.1. The maximum regret criterion

For an a priori solution S, this criterion is given by:

fr(s) = nax {T (G [V/] 7S’M)}

VICV

Once more, f7(S) evaluates a solution S following a worst case point of view.
The decision maker whose behavior fits this criterion estimates an action by placing
her/himself in the most unfavorable configuration; one considers the maximum regret
one risks getting by choosing S.
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Maximum regret seems to be reasonable criterion when no complete information
is available about how likely is any of the different states of nature, or when the de-
cision has to be made only once. One of the major difficulties appearing when using
maximum regret consists of determining, for any subgraph G[V”], the best possible
solution. A solution S* is considered optimal for the maximum regret criterion if it
verifies:

7187 = min (77(8)) = min { e (9" (G V)00 = 9 G V'], 5.0 }

2.7.2.1.1. Using strategy M1

Under modification strategy M1, g*(G[V'],M1) = maxg{|SNV’|} = opt(G[V"]).
Indeed, we can always find a solution S such that, S restricted to G[V’] corresponds to
an optimal solution for this subgraph. Note that this is not the same a priori solution S
of G that always provides the optimal solution for any subgraph G[V].

For an a priori solution S and a subgraph G[V] of the initial graph G, the regret
associated with M1 is defined as: r(G[V’], S,M1) = opt(G[V']) — |S N V'|. Conse-
quently, the corresponding maximum regret is:

T — ! Ml
f7(S) max {r (G[V'],5,11)}

= max {opt (GV']) ~ 1SNV}

Let S* = argming{f"(S)}. Then, f"(S*) is defined by:
15 = min{7(S))

= min {‘r/r}g}‘c/ {opt (G[V']) = |SN V’|}} [2.32]

2.7.2.1.2. Using strategy M2

Obviously, with analogous arguments as in section 2.7.2.1.1, we have dealing with
strategy M2: ¢*(G[V'],M2) = maxg{|S N V’| + [S(V")|} = opt(G[V’]). So, the
regret associated with an a priori solution S, a subgraph G[V”’] and with M2 is defined
by: 7(G[V'],8,M2) = opt(G[V']) — (]S N V’| +|S(V’)]) and, consequently, the
maximum regret associated with .S can be expressed as:

15 g e 00— (50145 (7
£7(8) = max {opt (@ V') = (IS V| + |5 (V

Note that the a priori solution dealing with M2 is “better” than the one dealing
with M1, since r(G[V'], S,M2) = r(G[V'], S,M1) — |S(V")|. This implies that regret
under M2 is less important than under M1.
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2.7.3. Optimizing expectation

The reader has certainly already noticed that in both of sections 2.7.1 and 2.7.2,
the probabilistic nature of the problems dealt is not taken into account. Indeed, the
use of criteria like the ones discussed there supposes that decision space is either not
probabilistic, or that the randomness of this space is badly quantifiable or not quantifi-
able at all. If these are not the cases, using such criteria amounts to impoverishing the
real models.

So, one has to build criteria taking into account as well as possible the probabilistic
nature of the decision space. A natural criterion is then the mathematical expectation
of the gain.

Let g(G[V'], S,M) be the gain associated with a subgraph G[V'] of G induced
by a set V! C V, an a priori solution S and a modification strategy M. Then, the
mathematical expectation of the gain, denoted by E¢ (S, M) is defined by:

Ey(SM)= > g(G[V'],S,M)Pr[V] [2.33]
VICV

where Pr[V’] denotes the occurrence-probability of the subgraph G[V’]. Note that
what has been done in this chapter moves, in fact, around [2.33], considering that the
gain of a solution is its size.

Dealing with expectation of the regret, as this notion has been expressed and used
in section 2.7.2, the following holds:

= > opt(GIVNPr[V]= > g(G[V'],SM)Pr[V'] [2.34]

V'cv 4%

Since the first term in [2.34] is independent from the a priori solution .S under consid-
eration, this expression becomes:

min {E, (S, 1)} = VZC:V opt (G [V']) Pr [V'] — max { (S, 1)} [2.35]
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2.8. Proofs of the results
2.8.1. Proof of Proposition 2.1

In order to determine A, (¢, we first need the following preliminary lemma.
LEMMA 2.1.- IfS C V', then |S| = |S|.

Proof. By definition of M2, |S5| = [S(V')| +|S(V")|. Butif S C V", then S(V') = S
and this implies S(V') UT(S(V')) = S UT(S). Moreover, the maximality of S

implies that S UT'(S) = V; and consequently, S(V’) = 0. So, |S5| = [S(V")| = ||
and this completes the proof of Lemma 2.1. |

Determining Ay ()

For A, () we have |S* N'V'| = a(G) and, by Lemma 2.1:
m(G[V'],8" (V' ,M2)) = a(G)

Therefore:

Aoy = a(G) > PV
\s*rxflg\:a(c)

n—a(G)

= a(G)p™ Y <n B C.V(G)>pi(1 —p)m @

7
=0

= oGP

where, in the above expression, the term p®() represents the fact that the a(G) ver-
tices of S* are all presentin V' (S*NV’ = S*) and the term Z?;OQ(G) cr9pi1—
p)" (&)~ stands for all possible choices for the rest of the elements of V' (as we have
already seen, this term equals 1).

Determining Aq(G)—1

Consider an element v of S* and note that since S* is a maximum independent
set, I (v) is either empty, or a clique on at least one vertex (if not, S* could be aug-
mented to (S* \ {v}) UT"(v)). Consequently, considering that v is the element of S*
which is absent from V', and denoting by S; the output of M2 when called with a
priori solution S*, we have:
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—if V' NT'(v) = (), then the independent set S* \ {v} remains a maximal one
for G[V'], s0|S5]| = a(G) — 1;

—if V' N T’ (v) # 0, then the independent set S* \ {v} (included in G[V']) can be
augmented by exactly one element of I (v), so |.S5| = a(G).

We now study the two following cases with respect to I (v), namely IV (v) = (

and IV (v) # 0.

I'(v) =0
Here, |S5| = a(G) — 1 and the following holds:

S PeVIsi = (@) -1 Y Pr[V

v/Ccv v/cv
(s*\{v})CV’ (s*\{v})CV’
n—a(G)
- pa@=1(] _ n—a(G)\ ; 1 — p)n—a(G)—i
p (1-p) ; < . )=

= p" D1 -p)

Consequently:

> PrVIS5] = (a(G) — 1) p* @1 - p)
vicv
(S*\{vhHcVv/

I'(v) # 0
Here, we study the following two subcases: V' NT7(v) = @ and V' N TV (v) # 0.

V' nT(v) = 0.
In this case, |S5| = a(G) — 1 and, moreover, no vertex of I''(v) is contained
in V. We so get:

> P[] = p @71 p)(1 - p)T )
v/icv

(s*\{vpcv’

v/nr/(v)=0

= PO (1 preln [236]
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V' NnI'(v) #0.
For the case covered: |S5| = a(G) and V' contains at least one vertex of I/ (v);
hence:

S PV =p O 1= p) 1= (1 p)T) [2.37]

v/Ccv
(s*\{vpcv’
v/Nr/ (v)#£0

Consequently, when IV (v) # () we have combining expressions [2.36] and [2.37]
together with expressions for |S3| of the two subcases:

S PeVISi =@ =) [a(@) - 1 =) (238
vicv
(8*\{vhHcv’

This concludes the study of case I (v) # (0.

By summing [2.38] over all elements of 5*, we get:

Avey-1 = Z Z Pr[V'][S5] 1i(s\{v})cviy
veES* VICV

= > > PrVNISiI1gswneviy
veS* V/ICV

x (Lrrwy=03 + L wy203)
= 0 (@)= 1)p" D1 - p)
+ Y O a-p) (@) - a-p)" )
e,
= 0 (@)= 1)p™ D1 - p)
T (0(@) — ) D1~ p)a(C)
@7 1-p) Y a-pr

vES™
I (v)#0

x| ~tita@’~ 3 a-pl'
T
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p* D1 - p)

< |~ ta@@+a)- Y a-pIT®)

vES™
T/ (v)#0

This concludes the proof of the proposition.

2.8.2. Proof of Theorem 2.6

The following expression holds for the expectation of s}, =1,...,n —|S|:
E (s}) = E (s}]v; present) p; + E (s}|v; absent) (1 — p;) [2.39]

Moreover, for strategy M3 we have the following relation, setting Sy = 0, I'(S}) =
0 and s, = 0:

[2.40]

3

! { Si 1 if I' () N S;_y #0
/
Si—1

5= +1 otherwise

So, using [2.40], we get: E(s}|v; present) = E(s}_;) + Pr[['(v;) N S{_; = 0];
consequently, using also [2.39]:

E(s;) = piEl (si-1) +piPr[vi ¢ T (Si_1)] + (1= pi) B (si-1)

Since E(s() = 0:

=
—
»
<
ND
|

ijPr Uj ¢F( J— 1)]

j=1

n—|S]

E (8;_\5\) = ; piPr(vi ¢ T (Si_y)]

Now, let V" = f(V') = V' \ {S(V') UT(S(V'))} and let s(G[V"]) be the
cardinality of the solution provided by M3 when applied in graph G[V"], V" C V.
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This set represents the subset of vertices of V'’ which are contained neither in S,
nor in the neighbor-set of S(V’). Consequently, M3 will be applied on G[V"]; so
IS4 = 1S(V")| 4+ s(G[V"]) and, consequently:

E(G,SM3) = > Pr[V][S(V)|+ Y  Pr[V]s(G[V"])
V'CV VICV
= E(G,SM)+ Y Pr[V]s(G[V"])
V'CV

= B(GSM)+ Y [ Y Lpwn—vey | PrVs(GIV)

VICV \V/CV

= B(GSM)+ Y > Pr[V]s(GV"])

vVicv o vicv
f(vh)=v"

Since PI‘[V”] = ZV’QV,f(V’)ZV” Pr[V’], we get:

E(G,5M3) = E(G,SM)+ > Pr[V']s(G[V"])
\ %

= E(G, S,Ml) + E (Sln—\S\)

Let us now introduce the random variable C'; representing the solution of PROBA-
BILISTIC MAX INDEPENDENT SET3 whenever we consider only the present vertices
of V;, i.e., when we apply the greedy algorithm implied by strategy M3 in the graph
induced by the present vertices of V;:

Ci_1 v; 18 absent
Ci=< Ci_1 v; is present and T (v;) N Cij_1 #
Ci;—1 U{v;} w;ispresentand I’ (v;) NCi_q =0
We then have E(s;, ) = Z;:l‘sl pi Pr[[(v;) N Ci—1 = 0].

In order to prove the result of the theorem, we prove that the quantity Pr[I"(v;) N
C;—1 = ()] is not computable in polynomial time. Indeed:

Pr [F (’Uz) N C’L—l = @] - (1 *pi_l) Pr [F (’UZ) N Cl'_g - @]
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+ (Pic1 Pr(T(v;) NCi—g = 0] Pr (T (v;—1) N Ci—a # 0])

b (pia Pr[T (09) N (Cis U {vi_1}) = 0] Pr [T (vi_1) 1 Cs_s = 0))
— (1= pia)Pr[T ()N Cis = 0]
+ (Pi—1 PrI'(v;)) N Ci—z = 0] (1 = Pr [ (vi—1) N Ci—2 = {]))
+ Pi—1 Pr{l (v;) N (Cima U {vi—1}) = 0] Pr [ (vi—1) N Ci—2 = 0])
Pr [T (v;) NCi—g =]

— (pi—1 PrT (v;) NCi—a = 0] Pr [T (vi—1) N Ci—a = 0))

+ (Pi—1 Pr(I' (vi) N (Ci—2 U{vi—1}) = O] Pr[I" (vi—1) N Ci—2 = 0])

On the other hand:

Pr{l* (v;) N (Ci—2 U{vi—1}) = 0] =

Pr[(T (v;) N Ci—2) U (T (v;) N{vi-1}) = 0]
Pr[(I" (vi) N Ci—z = 0) N (I (vi) N {vi—1} = 0)]
= Pr(l'(v;) NCi—g = 0] Lir(v,)n{v,_1}=0}

Consequently:
Pr [P (Uz) NC;_1 = @] =Pr [ (Uz) NCi_g = @]
— (Pic1 Pr(l (vi) N Cip = 0] Pr [ (vie1) N Cig = 0])
+(pi_1PI'[F( )ﬂCl QZQ]P[ ( )ﬂCZ 2:®]

XL (oi)nfvs_1}=0})

Let t;_1(v;) be the computational time of Pr[I’'(v;) N C;_1 = (]. By the above
equalities we easily deduce that:

ti— 1( )_tz 2(vz)+tz 2(”1 1) [2.41]

In order to compute recurrence relation given in [2.41], at each step we need to know
two terms of the precedent step; so for the computation of Pr[['(v;) N C;—1 = 0],
we need 2! computations and expression for T'(E(G, S, M3)) immediately follows.
The proof of the theorem is now complete.
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2.8.3. Proof of Proposition 2.3

Set B; = Pr[XEM’S = 1]. Then

= > PrVIig, s

VICcv

Let v; be any vertex of V'\ S and let V'’ be any subset of V' containing v;. Obviously:

v; €8} <=  w;isolatedin G {f/']

= (vi eq@ [V’D A (vi has lost all its neighbors in V’)

Since v; ¢ S, v; € v’ only if v; does not belong to the neighborhood of any vertex
inS(V'),1e

v; € G {f/’} — Tg(v)NV' =0 [2.42]

On the other hand, all the neighbors of v; in G[V’] have been removed if and only
if Ty g (vi) N V' = (. This last condition is satisfied only if every vertex of Cys(vs)
is either absent, or (being present) has been removed from V' because it belonged to
the neighborhood of a vertex in S(V”'). In all:

Tys () NV =0 <= VYou; € Ty\g () ((vy is absent ) v
((vj is present) A [2.43]
(Jui, € ' (vj) NS : vy is present)))

From [2.42] and [2.43] and the discussion above, we get (assuming that v; €
VA 9):

B = > Pr[V’ Minesy = ZPr[V/]l{ - }

"% VICV Dy s(vi)nV/=0

= Z PI' 1{ EG[V’]} {FV\S(Ul)mV/ Q}

VICcv

- Z Prv’ {{ iyovi={v;} } {Py\s(wi)nV'=0}

"% Lg(vi)nV/=0



78  Probabilistic Combinatorial Optimization

Z Pr V] 1 twynv = (w33 Lrs (wonv/=03
V/'CV

x I (Mvengi=oy + Lvngei=(o, 1 Lvars ) 20))

v €Ly s(vi)

= p JI (-ps)

v €5 (Vi)

< JI (a=-p)+pi (1= ] -m) [2.44]

v; €Ly 5(vs) v €ls(vy)

Replacing the second term of [2.2] by [2.44], we easily obtain [2.18].

Moreover, one can see that computation of E(G, S, M4) in [2.18] takes at most n?
multiplications. Also, setting p; = p, Vv; € V, we immediately obtain [2.19].
2.8.4. Proof of Theorem 2.13

Set |T's(vi)| = ki, [Ty s(vi)| = [T'(vs)| — k;. Then, [2.19] becomes:

E(G,Sma) = plS[+ Y pl-p*
v, €(V\S)

< I  @-pa-p™) [2.45]

v €Ty \ 5 (vs)

Also, note that Vk, kr, < A(G) — 1 (v; and v are in V' \ S and v;u, € E)
and E(G, S,M4) is increasing in k. Then, using [2.45]:

E(G,S,M4) <pl$

[2.46]

| > pa-pt I (1-p-pA@)

w,e(V\S') UkGFv\g('Uz‘)

T (vs)|—k;

H X wenr (-

nie(V\8)
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< plS|+ Y p(lfp(lfp)A(G)’l)‘F(w [2.47]
v;€(V\S)
< pl8[+ (n=[8))p (1-p1 -0 O71) < pn [2.48]

where in [2.47] is used the fact that 1 —p < 1 — p(1 — p)2(©)~1 and in [2.48] the fact
that |[(v:)] > 1.

On the other hand, if we consider S* as an a priori solution, we get:
E (G, S*,M4) = pa(G)

+ > pa-p I  (-p-p™)

v, €(V\S*) vE €T\ g% (vi)
> pa(@)+ | >, p-p" [ (-p [2.49]
v; €(V\S*) v €Ly g% (v4)

v, €(V\S*)
= pa(G)+ > pl—pr

v, €(V\5*)
> pa(G)+ (n—a(G)) p(1 — p)>
= pa(G) (1 -1 —p)A(G)) +pn(1 —p)>©@ [2.50]

where in [2.49] the fact is used that 1 — p(1 — p)k* > 1 — p.

Combining expressions [2.48] and [2.50], we get:

E(G,S",14) _ a(G)

E (G, S, M4) n (1 —(1- p)A(G)) +(1—p)A© > a

that concludes the proof of the theorem.
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Chapter 3

The Probabilistic Minimum Vertex Cover

This chapter is complementary to Chapter 2 since we study the probabilistic vertex
covering problem that is, as we have seen in Chapter 2 (see also Appendix A), comple-
mentary to the probabilistic independent set problem. Despite this complementarity
(and simultaneously because of it), the results that we present have their own interest.

Given a graph G(V, E) together with a probability-vector associating a presence
probability Pr[v;] = p; with any vertex v; € V and a modification strategy M, the
objective for MIN PROBABILISTIC VERTEX COVER is to determine:

C = argmin{E(G, C,M)}
cec(a)

where C(G) denotes the set of vertex covers of G, and the functional E(G, C,M) is
expressed as:
E(G,Cm) = > Pr[V]|C (V' M)

VICV
with Pr[V'] = [[;cy pi HiGV\V’(l - pi)-

In this chapter we devise three modification strategies denoted by M1, M2 and M3,
and study their corresponding functionals. For M1 and M2, we produce explicit ex-
pressions for their functionals, expressions allowing us to completely characterize the
solutions minimizing these functionals. On the contrary, the expression for the func-
tional associated with M3 is not quite explicit in order to allow achievement of similar
results. Therefore, we give bounds for this functional and study their quality. We recall
once more that the three strategies in fact introduce three distinct probabilistic PROB-
ABILISTIC MIN VERTEX COVER-variants, denoted in the sequel by PROBABILISTIC
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MIN VERTEX COVERI, PROBABILISTIC MIN VERTEX COVER2 and PROBABILISTIC
MIN VERTEX COVERS3, respectively.

In what follows, given a graph G(V, E) of order n, we denote by C' a vertex
cover of GG and by Cii= 1,2, 3 the optimal PROBABILISTIC MIN VERTEX COVER-
solutions associated with M1, M2 and M3, respectively. Given a vertex cover C' of G
and a subset V! C V, we will set C(V') = C NV’ and C(V') = (V\C)NV".
Finally, when dealing with MIN WEIGHTED VERTEX COVER, we will denote by w;
the weight of v; € V.

3.1. The strategies M1, M2 and M3 and a general preliminary result
3.1.1. Specification of M1, M2 and M3

3.1.1.1. Strategy M1

Given a vertex cover C and a vertex-subset V' C V, strategy M1 consists of simply
moving vertices of C'\ V"’ (the absent vertices of C') out of C' and of retaining C| =
C(V') = C NV’ as vertex cover of G[V']. In other words, M1 is the strategy (dealing
with PROBABILISTIC VERTEX COVER) denoted by MS in Chapter 1.

It is easy to see that C' constitutes a vertex cover for G[V[; in the opposite case,
there would be at least an edge (v;,v;) of G[V'] for which neither v; nor v; would
belong to C'{. But, since (v;,v;) € E and C'is a vertex cover for G, at least one of v;,
vj, say v;, belongs to C' and, consequently, to C'{. Therefore v; is part of the vertex
cover for G[V"], thus contradicting the statement that edge (v;,v;) is not covered
in G[V'].

EXAMPLE 3.1.— Consider the graph of Figure 2.1, the a priori vertex cover C =
{2,4,5,6,9} and assume that vertices 3, 5 and 8 are absent. Then strategy M1 will
produce a vertex cover C'; = {2,4,6,9} (the black vertices of Figure 3.1).

1 2 4
°

7 9

Figure 3.1. Application of strategy M1 on G', with a priori solution C
(“black” vertices of Figure 2.1); vertex cover produced: {2,4,6,9}
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3.1.1.2. Strategy M2

The second strategy studied in this paper is a slight improvement of M1 since one
removes isolated vertices from C]. It works as follows:

—set: C1 — CNV', R={v; € C| : T(v;) NV’ = 0};
—output C4 = C] \ R.
EXAMPLE 3.2.— Consider again the data of Example 3.1. The first item of strategy M2

will produce Cf = {2,4,6,9} and R = {4}. Then, the second item of M2 will return
Ch =1{2,6,9} (Figure 3.2).

1 2 4
O

7 8 9

Figure 3.2. Application of strategy M2 on G', with a priori solution C
(“black” vertices of Figure 2.1); vertex cover produced: {2,6,9}

3.1.1.3. Strategy M3

Strategy M3 is a further improvement of M2 since it removes from C/, vertices all
the neighbors of which belong to C4. In all, strategy M3 works as follows:

-set C4 = C(G[V'],M2);
— range the vertices in CY in increasing order with respect to their degrees; let C%
be the cover so obtained;

—fori = 1to |Cj]: if, forevery v; € T'(v;)NV’, v; € C3, thenset C; = C5\{v; };
— output C.

It is easy to see that the vertex cover C% computed by strategy M3 is minimal (for
the inclusion) for G[V].

EXAMPLE 3.3.— Consider once more the data of Example 3.1. The first item of
strategy M3 will produce C, = {2,6,9}, while the third item will drop 9 out of CY.
Hence, C} = {2,6} (Figure 3.3).
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1 2

Ox

7 9

Figure 3.3. Application of strategy M3 on G', with a priori solution C
(“black” vertices of Figure 2.1); vertex cover produced: {2,6}

3.1.2. A first expression for the functionals

We establish in this section a general result about the functional. This result is
analogous to the one in Theorem 2.1 of Chapter 2.

Consider any strategy where starting from C{ reduces it by removing some of its
vertices (if possible) in order to obtain smaller feasible vertex covers. Clearly, M1, M2
and M3 are such strategies. Then, the following proposition provides a first expression
for functionals E(G, C,M1), E(G, C,M2) and E(G, C,M3).

PROPOSITION 3.1.— Consider an a priori vertex cover C of G and strategies M1,

M2 and M3. With each vertex v; € V associate a probability p; and a random vari-
able X?k’c, k =1,2,3, defined, forany V' C V, by:

XMk’C _ { 1 l.fUi € C (G [V’] ,Mk)

0 otherwise

Then, E(G,C,Mk) = Y, _ Pr[X™¢ =1].

v,€C

Proof. The linearity of the functional implies:

3 Xﬁ‘w] -3 P {sz"c - 1}

v, €C v; €C

E(G,C,Mk) = FE

that concludes the proof. |

3.2. PROBABILISTIC MIN VERTEX COVER1

The following result, characterizing the complexity of PROBABILISTIC MIN VER-
TEX COVERI, can be deduced by a straightforward application of Proposition 3.1.
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THEOREM 3.1~ E(G,C,M1) = ZWEC p; and C; = argmincEC(G){Zwecpi}.
In other words, Cy is a minimum-weight vertex cover of G where the vertices of V.
are weighted by their corresponding presence-probabilities. In the case of identical
vertex-probabilities, E(G,C,M1) = p|C| and Cy is a minimum vertex cover of G.
Consequently, PROBABILISTIC MIN VERTEX COVER/ is NP-hard.

Proof. By strategy M1, if v; € C, then v; € CYf, for all subgraphs G[V’'] such that
v; € V'. Consequently, Pr[X|"“ = 1] = p;, Vo; € C and the result follows from
Proposition 3.1.

Let us now consider GG with its vertices weighted by their corresponding probabil-
ities and denote the so obtained instance of MIN WEIGHTED VERTEX COVER by G .
The total weight of every vertex cover of G, is Zwe ¢ pi and the optimal weighted
vertex cover of (G, is the one for which the sum of the weights of its vertices is the
smallest over all vertex covers of G,,. Such a vertex cover also minimizes E(G, C,M1)
and, consequently, constitutes an optimal solution for PROBABILISTIC MIN VERTEX
COVERI.

Ifpi=p 1 <i<nthend, .opi =), ccp = plC|and, consequently,
the vertex cover minimizing this last expression is the one minimizing |C], i.e., a
minimum vertex cover of G.

Expression EUI_ cc Pi (which represents the objective value of PROBABILISTIC
MIN VERTEX COVERI) can be computed in O(n) and, therefore, PROBABILISTIC
MIN VERTEX COVER1 belongs to NPO. Furthermore, by the correspondence between
this problem and MIN WEIGHTED VERTEX COVER, the former is hard for NPO and
this completes the proof of Theorem 3.1. |

Let us revisit the case p; = p, 1 < 7 < n. Since Z'U'EC sz,c can be seen either

as a binomial random variable, or as the sum of |C| Bernoulli random variables, then:

E

E(G,C,M1)

ZX?i’C] = p|C]|

v, €C

Var (G,C,M1) = Var(Z X?LC) = p(1-p)|C]|

v, €C

So, as in Chapter 2, dealing with M1 and identical vertex-probabilities, the random
variable representing the size |C| follows a binomial law with parameters |C| and p.
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3.3. PROBABILISTIC MIN VERTEX COVER2

We recall that strategy M2 consists in removing the isolated vertices from C. Then,
the following theorem holds.

THEOREM 3.2.— The functional E(G,C,M2) of PROBABILISTIC MIN VERTEX CO-
VERZ2 can be expressed as:

E(G,C,M2) Zpi - H (1—-pj)
v, €C v; €T (vy)
Coisa minimum-weight vertex cover of G, where, for every v; € V:
=pi 1= J] (-p)
v; €T (v;)

Consequently, PROBABILISTIC MIN VERTEX COVER?2 is NP-hard.

Proof. Note that Pr[ X} O = = 1] is just the probability that v; is present and at least
one of its neighbors is also present; consequently:

Pr(xC =] =pi 1= ] (- [3.1]
v; €T (v;)

Thus, starting from Proposition 3.1 we get:

E(G,C,MQ):ZPr{X?ZC:l}:Zpi 1— H (1—pj)

v; €C v, €C v; €l(v;)

It is easy to see that E(G, C,M2) can be computed in O(n?); consequently, PROB-
ABILISTIC MIN VERTEX COVER2 is in NPO. With a reasoning completely similar to
the one of Theorem 3.1, one can immediately deduce that:

Cy = argmin Zpl — H (1—p;)

Cec(a) v; €C v; €T(v;)

i.e., a minimum-weight vertex cover of G, where, for v; € V:

w; =p; | 1— H (1—-p))

v; €T(v;)
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The only characteristic of numbers w; is that they are all smaller than 1.

Consider an instance (G, w) of MIN WEIGHTED VERTEX COVER, where vertex
weights are all greater than 1. Divide them by, say M, a number greater than the
maximum-value component of . We thus obtain an instance (G, ') where, obvi-
ously, all components of «w’ are smaller than 1. It is easy to see that every weighted
vertex cover of (G, w’) of value W’ can be directly transformed into a weighted vertex
cover of (G, W) of value MW'. Conversely, every weighted vertex cover of (G, W)
of value W can be directly transformed into a weighted vertex cover of (G, ') of
value /M. Therefore, PROBABILISTIC MIN VERTEX COVER2 is NP-hard, and the
proof of the theorem is complete. |

The characterizations for the a priori solutions for PROBABILISTIC MIN VER-
TEX COVERI and PROBABILISTIC MIN VERTEX COVER2 given by Theorems 3.1
and 3.2, respectively, allow us to derive immediate approximation results for them. In-
deed, MIN WEIGHTED VERTEX COVER is approximable within ratio bounded above
by 2 ([AUS 99, BAR 85, PAS 97]). Since both problems are weighted vertex cover
versions, they can also be approximately solved within ratio 2.

3.4. PROBABILISTIC MIN VERTEX COVER3
3.4.1. Building E(G, C,M3)

Recall that M3 consists of removing from C/ both the isolated vertices and the
vertices all the neighbors of which belong to C'{. Consequently, the solution C3(V")
computed by M3 is minimal.

PROPOSITION 3.2.— The functional of PROBABILISTIC MIN VERTEX COVER3 can
be expressed as:

B(G,cm3) = > pi[1- J[ (-py)

v; €C v; €T (vy)

= > > PV ugon Lvinome o)

v, €C V/CV
v, eV’

X 1{v'mé[r(vi)]:®} (3:2]

Proof. Since X?B’C = 1 implies XZMQ’C =1, we have:

Pr (x>0 = 1] = Pr[X1?€ = 1] = Pr [XPC 1A XPC =0 133)
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We now calculate Pr[X?r‘)’c =1A X?E”C = 0]. X?Q’C = 1 implies that I'(v;) =
C[T'(vs)] U CI'(v;)] must intersect V'. Then, X' = 1A X" = 0 implies
V' NC(v;)] = 0and V' N C[T(v;)] # 0. So:

Pr [ X2C = 1A X = 0| =

Z Pr [V’] l{vlgcé}l{vlﬂc[r(vl)]#@} I{V’ﬂé[r(vi)]:@} [34]
e
From Proposition 3.1 and [3.1], [3.3] and [3.4], the proposition follows. |

3.4.2. Bounds for E(G, C,M3)
Let us first note that from Theorems 3.1, 3.2 and Proposition 3.2, we have:
E(G,C,M3) < E(G,C,M2) < E(G,C,M1)
Since the result of Proposition 3.2 does not allow the achievement of a precise charac-
terization of C'3, we give in the following theorem bounds (computable in polynomial

time) for F (G, C,M3). The proof of this theorem can be found in section 3.6.1.

THEOREM 3.3.— The following inequalities hold for E(G, C,M3):

E@GCcM3) > Y opi|l1—- ] -p)

v, €C v; ECT(v;)]

EGCcm3) < Y opi1- J[ (-p)

v; €C v; €T (vy)

Ifp; =p, Yv; € V and é¢ = min,, cc{|T'(v;)|}, then:
p(IC] = max {|CI(1 = )@, (1 = p)* }) > B(G, C,m3) > p?|C]|

The upper bound for E(G,C,M3) is attained for the bipartite graphs when consider-
ing one of the color classes as an a priori solution.
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3.5. Some methodological questions

As in Chapter 2, we pose here also some methodological questions dealing with
the use of the expectation as measure for PROBABILISTIC MIN VERTEX COVER.

What does “minimizing the expectation” mean? In order to minimize the func-
tional, we have rather to choose vertices of weak probability, i.e., vertices very proba-
bly absent, and, in this case, we construct solutions including elements unlikely to be
present. For PROBABILISTIC MIN VERTEX COVER, in order to minimize the expec-
tation of a cover C, i.e., ming Z,Ui cv 1{“60} pi, an eventual algorithm should try to
introduce in the solution vertices of weak p;. On the other hand, if a vertex v; has small
presence probability, then it is very likely that all of its incident edges will be absent
even if their second endpoint has large probability to be present (we always admit the
hypothesis that the modification strategy includes a step of removing the absent ver-
tices and the edges incident to these vertices). Consequently, in order to cover these
“improbable” edges, using small probability vertices (thus keeping the functional’s
value low) is not senseless. However, a solution constituted in great majority from
small probability vertices is no more meaningful.

Of course, it is possible to try to overcome these ambiguities by defining other
types of functionals. For example, one can try to minimize the expected size of a
solution, all the elements of which have probabilities greater than a given threshold
probability py. For example, consider objective:

mci'n 2/ 1{viEC:pi>P0} ol
v; €

With this kind of functional, we answer, eventually, the problem of the functional’s
meaning, but other problems arise. For instance, have all of the edges at least one end-
point of strong probability? If this is not the case, then some edges may remain uncov-
ered (we are thus faced with unfeasible solutions). Covering them by adding (perhaps
greedily) low probability vertices, we build an artificial functional since these last ver-
tices will not be taken into account in [3.5]. On the other hand, one can observe that
there exists another problem with this expression, because p;s’ values do not actively
intervene in the functional’s value. One can then propose a modification, for example
ming Zm cv 1{1”60:1,,52170} p;, but even in this case, the drawbacks mentioned above
always persist.

Let us show that alternative ways to define functional for PROBABILISTIC VERTEX
COVER do not lead to identical results. In what follows, we do not restrict ourselves
to the case of a priori optimization.

Consider the graph G(V, E) of Figure 3.4. With any vertex v; € V, we associate
probability p;, ¢ = 1,...,14. Set: p; = 0.1, po = 0.3, p3 = 0.3, p4 = 0.6, p5 = 0.7,
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1 V2 U3 V4 Us
Ve
1) vs
(%4
) V10 V11 V12 V13 V14

Figure 3.4. A graph together with a minimum vertex cover (white vertices)

Pe = 09, pr = 08, ps = 02, P9 = 01, P10 = 01, P11 = 0]., P12 = 01, P13 = 05,
p1a = 0.4

Given a vertex covering C' for G, we can define (at least) the following four func-
tionals:

E(G,C) = Z Liv,ecypi
v, €V

EQ(GaC) = Z 1{vi€C:pi2po}
v eV

E3(G50) = Z 1{vieC:pi2po}pi
v, €V

E4(G,C) = Z 1{’Ui€C}'
v €V

Consider now a minimum vertex cover C* = {vq, v4, vg, V7, Vs, V14 Of G. We
then have:
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Considering py = 0.5, we have for E5(G, C*) and E3(G, C*), respectively:

Consider next another vertex cover Cy = {va, v4, v7, Vs, Vg, V10, V11, V12, V13 | (the
white vertices in Figure 3.4). Then:

By (G,Cy) = 27
B (G,Ch) = 2
B (G,Cy) = 14
Ei(G,C) = 9

For E5 and Es3, only vertices with probability greater than or equal to pg will
be taken into account in the computation. Consequently, we can work on the sub-
graph of GG induced by these vertices, the edges not contained in this subgraph being
covered by vertices with presence probability smaller than py. So, optimizing E5
or E3 amounts to working only on the subgraph considered. For py = 0.5, for ex-
ample, the subgraph considered, denoted by G’, is the one induced by the vertex-
set {v4,v5,v6,07,v13}. Let Co = {vs,vg} be a vertex cover for G’. We have
Ey(G,C5) = Ey(G',Cs) = 2 and, consequently, Co = argmin{F>}. But Cj is
not optimal for E3. Indeed, let C5 = {v4, v7} be another minimum vertex covering
for G'; then minc{F3(G,C)} = E3(G,C5) = 1.4 < 1.6 = E5(G,C3); so, the
solution minimizing Fs does not minimize F3 and vice versa. Furthermore, let us
remark that argmin{ F5} is a minimum size covering for G’ and, also, optimizing F3
on G becomes optimizing E; on G'.

In all, with respect to the functionals considered, a solution minimizing one of
them does not necessarily minimize the other ones. Rather, all of the four function-
als tend to choose vertices of low probability, but the role played by the threshold
probability pg on the choice of the solutions seems to be important.

3.6. Proofs of the results
3.6.1. Proof of Theorem 3.3

The upper bound is obvious since it is nothing else than the expression of Theo-
rem 3.2 for E(G, C,M2).
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In order to prove the lower bound, set:

=D PV Moy Ly ner ol Lvineir )=o) [3.6]
v/icv
v; EV/

(see the last term of [3.2] in Proposition 3.2). Then:

A <Y PrV winemon Lvncir(—o}

v/cv
v, €V’
< Y Pr(VI(I = Lwinore) —0}) L{vineir =0}
vicv
v, €V
< pi IIT a-»)
v; ECT(v;)]
- II a-») JI @G-pp
v;€CII(v3)] v; EC[T'(vi)]
< pi II a-»0- II -»)
v; ECIT(v;)] v; €T (vy)

Combining the expression for A; above with the expression for E(G, C,M3) of
Proposition 3.2, we easily get the lower bound claimed.

Let us now suppose that p;, = p, Vv; € V. Then the expression for E(G, C,M3)

becomes:
E(G,C,M3) =p|C|—p Y _ (1—p)TC = " 4

v;€C v; €C

with 0 < A; < p((1 — p)ICIC@)Il — (1 — p)IP@)I) Since 4; > 0, we have:

E(G,C,M3) < p|lC|—p Z (1 — p)TCo)l

v, eC
Using, Vi, |T'(v;)| < A(G), we get:

B(G,C,M3) < p (IC] - [CI(1 - p)>@) 3.7]
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Note that:

P Z |F(U1)| = p(1 _p)5c Z (1 p)\r(vi)\—5c
v, €C v; €C
Z (1 _p)\r(vi)\*5c > 1
v, €C

because there exists at least a vertex v;, € C with |I'(v;, )| = d¢. Consequently:
E(G,C,M3) < p(IC] - (1-p)°) [3.8]

Combining [3.7] and [3.8], one immediately obtains the upper bound claimed.

For identical vertex-probabilities, the lower bound for E(G, C, M3) becomes:

C[I'(v;)]| = 1. Using the latter inequality
|(1 = (1—p)) = p?|C|, thus proving the

plCI (1= (1 - p)lCTC

Since C' is minimal, C[T'(v;)] # 0, i
in the former one we get E(G, C,M3) > p|
lower bound claimed.

Consider now a bipartite graph B(V1, Va2, E/) and one of its color classes, say color
class V4, as an a priori solution. Note that Vv; € Vi, T'(v;) = Vi[T'(v;)] C Va.
Consequently, the upper and lower bounds for E (B, Vi, M3) coincide.

3.6.2. On the the bounds obtained in Theorem 3.3

We now show that there exist instances of PROBABILISTIC MIN VERTEX COVER
for which E(G, C,M3), computed in Proposition 3.2, can be arbitrarily close to, or
arbitrarily far from, the bounds given by Theorem 3.3.

Let G(V, E) be a graph consisting of a clique K, (on £ vertices) and of an inde-
pendent set S on o vertices; moreover consider that any vertex of K is linked to any
vertex of S. Let us suppose that all the vertices of G have the same probability p
and consider C' = V(K,), the vertex-set of Ky, as an a priori solution. Finally set
n=4{¢+o0.
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For v; € C we have C[['(v;)] = V(K;) \ {v;} and C[T'(v;)] = S. Then, [3.2]
becomes:

EGcM3) = S p->p [ a-»

v;eC v;€C v €l (vy)

_ Z Z Pr[V/]l{vi¢C§}

v, €C V/ICV
v, eV’

X Lvrinv (ko\ v ) #0} L{vins=0 [3.9]

Let V(K;) = {v1,v2,vs,...,v¢} (the degrees of the vertices of V(K) are all
equal) and let S = {vgy1,Vp42, V043, ..,V . In step 4, strategy M3 tests if vertex v;
can be removed.

Revisit now the third term of [3.9] (the double sum). This term deals with in-
stances G[V'] such that V' C V (K,)\{v;}, in other words, instances where all present
vertices are elements of V(Kj), i.e., they are also part of C. Since v; € V(Ky),
L(v;) N V' C CNV'. Thus, vertex v; € C can be removed only if the following two
conditions hold:

— v; 1s not isolated;

—for j < i, v ¢ V’; this is because, in the opposite case, v; would be removed
at step j < i, i.e., before v;; in such a case, since (v;, vj) € E(Ky), v; should not be
removed.

Consequently, 1{,,¢cs1 = 1{v/n{v;,v00,05,....0:_, }=0} and for a fixed index ¢, [3.6]
becomes:

Ai Z Pr [VI] Lvrn{or,ve,vs,. 01} =0}

v/Ccv
v, eV’

X Livrav(ko\foi}£03 L {v/ns=0}

vicv v/n{vy,ve,v5,...,v;_1 }=0
viev’ v/n
{vit1vit2 vigs. - vp}#0

= Z Pr [V’] 1{ Vie{or}={or} } 1{V’ﬂS:(B}

i—1 4 n
= J[a-pp(1t- ] a-»| [] @-»
j=1 j=it1 j=t+1

= (1- p)i_lp (1 —(1- p)f—(i+1)+1) (1— p)n—(€+1)+1

= (1-p~'p(1-(1-p"~Ha-p*
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So we have:

A= D p(@-pmt -1 -pt)

v, €C i=1
— n /-1 Z 1 o 7p£ 17 ) —1
= 1-p T (1-p-—(1=-p ) —pl(1—p"*
= (1-p)" =0 -p"—ptA-p"" [3.10]

Note that computation of A;s in the expression above is polynomial and, conse-
quently, the whole computation for E(G, C,M3) is also polynomial.

Combining now [3.9] and [3.10], we get:

E(G,C,M3)

Zp Zp II a-»

i=1 v, el (v;)
—(A=p)" = =p)" —pt1—p"")
= p—tlp(l—p)" ' —(1—p"*
+(1=p)"+pl(l—p"
= p-(1-p"*(1-01-p"

For facility, set:

e(t.p,n) = fp—(1-p)"F (1-(1-p)) [3.11]
b(l,p,n) = tp(1—(1-p)" ) [3.12]
B(t,p,n) p(1—(1=p" [3.13]

and note that [3.12] and [3.13] are, respectively, the lower and upper bounds of Theo-
rem 3.3 for E(G, C,M3).
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We now study the difference (B — ¢)(¢, p,n) ([3.11] and [3.13]). We have:
(B=e)(t,p,n) =(1—p)" " = (1=p)" —tp(1 —p)" ' <1 [3.14]
Set z = 1 — p. Then, [3.14] becomes:

(B—e)(l,z,n) = z" ' —a"—0(1—2z)z" !
2" (0= 1)z — bt
"t (1+(¢— Dzt — Exe_l)

L P | [3.15]

N

Set f(z) =1+ (¢ — 1)af — £x*=1. Then, f'(z) = £({ — 1)(z*~! —2'72) < 0.
Consequently, f(z) is decreasing in = € [0, 1], therefore f(x) > f(1) = 0 and the
following holds:

0< D(t,n) Y (B —e)t,p,n) [3.16]

Revisit [3.15] and set g(z) = "¢ — 2"~ ! in [0,1]. First remark that g(0) =
g(1) = 0. Moreover, ¢'(z) = (n — £)z" "1 — (n — 1)2"~2 and:

So, g(x) increases with z, in [0, z;9), while it is decreasing in z in (x¢, 1]. Hence:

n—1

(B —e)(t,z,n) < g(z) < g (w0) = ("‘€>_ - (”_ﬁ)z__l [3.17]

n—1 n—1

By [3.16] and [3.17], the following framing holds for D (¢, n):

0< D(t;n) % (B=e)(t,p,m) < (”_f) - (”_5) T pag)

n—1 n—1

Note that the upper bound of [3.18] is quite tight for D(¢, n). Let us now estimate
this bound for several values of ¢:
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—if¢ =1, then D(¢,n) = 0;
—-ifl < ¢ < n(e.g., ¢ =o0(n)),thenlim, . D¢, n)=0;
—if £ = An, for a fixed \ < 1, then:

- In(1—X
lim D(An,n) = T (1= _ i

n—oo
and this limit’s value is a fixed positive constant;

—if, finally, £ = n — 1, then lim,,—o, D(n — 1,n) = 1.

Let us now study the difference (e — b)(¢, p, n). We first have:

(e=b)(tp,n) = tp(l—p)" " =1 —p)""+(1—-p)"
< (-1)(A-p"t=1-pn [3.19]

Set z = 1 — p. Then, [3.19] becomes:

(e—=b)(l,x,n) = (1 —x)z" " -z 4 an

(0 —1)a"= — =t g

"t (xl —lz+ (L -1))

< (U—1) (2" —an [3.20]

Set h(x) = xf — fx + (£ — 1). Then, W'(z) = £(x*~' — 1) < 0, so, h(z) is
decreasing in z € [0, 1] and, consequently, A(x) > h(1) = 0; hence:

0<d(t,n) % (e —b)(t,p,n) [3.21]

Revisit [3.20] and set ¢(x) = 2" ~¢ — 2"~ “+1. Then:
(x)=(n—0z"1 —(n—L+1)z""

and:
n—=/¢

/ = =
¢ (x0) =0 <= 9 o
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So, ¢(x) increases in [0, z¢) and decreases in (zg, 1]. Hence, in [0,1]:

(e=b)(t,x,mn) < (£—1) <”7€)"_2<1 n_f)

n—f0+1 T n—l+1
1
< -1 (n—2) ln(l—n_;) 22
(£—1e +1 T [3.22]
So, from [3.21] and [3.22], we get the following:
0<d(t,n) < (—1)em W) L [3.23)
’ n—~0+1

As previously, we estimate bounds in [3.23] for several values of ¢:
—if¢ =1, thend(¢,n) = 0;

—if £ = o(n), then lim,,_, o d(¢,n) = 0;

—if ¢ = An, for a fixed A < 1, then:

A —1 n(l—k)hl(l—m) ~>

< -
dOnn) S T 1 1\

and this last value is a fixed constant;
—if, finally, £ = n — 1, then d(n — 1,n) ~ n/4.

It can be seen that for £ = o(n), E(G, C,M3) tends (for n — o00) to both b(¢, n, p),
and B(¢,n,p). This is due to the fact that o(n)/ lim, (B — b)(¢,n,p) ~ 0.

In all, we have exhibited instances of PROBABILISTIC VERTEX COVER3 and a pri-
ori solutions for these instances for which, for n — oo, the distance of E(G, C,M3)
from the bounds given in Theorem 3.3 can take an infinity of values being either
arbitrarily close to or arbitrarily far from them. The way E(G, C,M3) has been com-
puted in this chapter (Proposition 3.2 of section 3.4.1) is not the only one of its kind.
There would be many other ones (even if we do not see which). But for our way,
it seems very unlikely that the bounds computed could be generally improved in or-
der that the new bounds hold for any graph. So, if we continue adopting Proposi-
tion 3.2 for F(G,C,M3), we think that it is very interesting to search for bounds
of E(G, C,M3) on particular classes of graphs and, perhaps, under particular systems
of vertex-probabilities.



Chapter 4

The Probabilistic Longest Path

In this chapter, we study a restrictive but very frequently handled version of PROB-
ABILISTIC LONGEST PATH, the one defined on graphs that are directed acyclic and
transitive. The general longest path problem, denoted by LONGEST PATH in what fol-
lows, is defined as follows: consider a directed graph G(V, A) and two fixed vertices s
and ¢ in V; in LONGEST PATH the objective is to determine a maximum-size directed
path from s to t.

If the measure of the problem is expressed by means of vertices (the path’s length
as number of vertices, or sum of the weights of the vertices on the path), we have the
versions of LONGEST PATH which in the sequel we call VERTEX LONGEST PATH, or
VERTEX WEIGHTED LONGEST PATH, while if the measure of the problem is expressed
by means of arcs (the path’s length as number of arcs, or sum of the weights of the
arcs on the path) we have the variants called ARC LONGEST PATH, or ARC WEIGHTED
LONGEST PATH, in what follows. In the deterministic framework, the unweighted
problems are equivalent in the sense that, for a given graph, the solution value of
VERTEX LONGEST PATH differs from the solution value of ARC LONGEST PATH by 1.

The probabilistic versions of all of VERTEX LONGEST PATH, ARC LONGEST PATH,
VERTEX WEIGHTED LONGEST PATH and ARC WEIGHTED LONGEST PATH, PROBA-
BILISTIC VERTEX LONGEST PATH, PROBABILISTIC ARC LONGEST PATH, PROBA-
BILISTIC VERTEX WEIGHTED LONGEST PATH and PROBABILISTIC ARC WEIGHTED
LONGEST PATH, respectively, are built considering presence probabilities associated
with the vertices of the input-graph (in what follows, we will denote, as is usual, by p;
the presence probability of vertex v; € V). The only restriction admitted on the form
of these probabilities is that the probabilities of s and ¢ (the initial and terminal end-
points of the path) are equal to 1 (i.e., s and ¢ are always present). The objective for
the probabilistic versions dealt is, as we have already mentioned, given a modification
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strategy, to compute the functionals associated with, and then to determine the a priori
solution maximizing them.

Given a graph G(V U {s,t}, A), we set Ly = (vg,v1,..., Uk, Ukt1) (list of ver-
tices) and Ly = (ag,a1,...,ax) (list of arcs), where vg = s, vgyr1 = t, a; =
(vi,Vi+1),© = 0,...,k. In other words, Ly and L 4 are the lists of vertices and arcs
representing the a priori solutions (paths) for the variants (simple and weighted) of
PROBABILISTIC VERTEX LONGEST PATH and PROBABILISTIC ARC LONGEST PATH,
respectively. For simplicity, an arc (v;,v;) will be called transitive if there exists
a path from v; to v; using at least two arcs. By analogy if such a path does not
exist, then (v;,v;) will be called non-transitive. Given a set V' C V containing
vertices s and ¢, we denote by A(V’) the arc-set of G[V’]. Recall that the “occur-
rence” probability of G[V']is Pr[V’] = [[,. ey pi [],,ev\v/ (1 — pi). Also, instead
of E(G,S,M) , we use notation E(G, ¢, S,M) in order to denote the functional for
PROBABILISTIC VERTEX WEIGHTED LONGEST PATH associated with a priori solu-
tion S and modification strategy M in a vertex-weighted graph with vertex-weight
vector ¢; analogously, for PROBABILISTIC ARC WEIGHTED LONGEST PATH we will
use notation E(G, cf, S, M), where d is the vector of the arc-weights. Also for a vertex-
set V' (resp., arc-set A’), we denote by c(V"’) (resp., d(A’)) the total weight of V'
(resp., A).

4.1. Probabilistic longest path in terms of vertices

The modification strategy MV adopted for both PROBABILISTIC VERTEX LONGEST
PATH and PROBABILISTIC VERTEX WEIGHTED LONGEST PATH is strategy MS (see
Chapter 1) adapted to fit PROBABILISTIC VERTEX LONGEST PATH. It consists, given
an a priori solution Ly and a present set of vertices V', of dropping the absent vertices
out of Ly . It is easy to see that, because of the transitivity of G, the solution L’V thus
obtained is feasible for G[V”].

Figure 4.1. A graph G input of PROBABILISTIC VERTEX LONGEST PATH,
and an a priori solution {s,1,2,5,t}
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EXAMPLE 4.1.— Consider the graph of Figure 4.1, set Ly = {s,1,2,5,t} (some a
priori solution), and assume that vertices 1 and 4 are absent. Then application of MV
produces the path L7, = {s,2,5,t} (Figure 4.2).

2

Figure 4.2. Application of strategy MV on G[V'], with an a priori solution
{s,1,2,5,t}, path produced: {s,2,5,t}

For VERTEX WEIGHTED LONGEST PATH, the value of Ly is ZU_GLV ¢(v;). For
PROBABILISTIC VERTEX WEIGHTED LONGEST PATH, MV provides for G[V'] a solu-
tion L}, of value:

c(Ly) =2+ > c)lpevy [4.1]

v €L, NV

The functional associated with PROBABILISTIC VERTEX WEIGHTED LONGEST
PATH is:

E(G,éLy,Mv) = Y Pr[V']c(Ly) [4.2]
A%

In what follows, we compute the functional in a more explicit way, we give the
complexity of such a computation and we determine the a priori solution maximiz-
ing E(G, &, Ly, MV). The following basic result holds (its proof can be found in Sec-
tion 4.4.1.

THEOREM 4.1.— For PROBABILISTIC VERTEX WEIGH ED LONGEST PATH, thefunc—
tional E (G, ¢, Ly, MV) is given by:

E(GvaLV7MV):2+ Z pLC(UL)
v, ELyNV

It is computed in O(n). The a priori solution Ly maximizing E(G,C, Ly, MV) is an
optimal solution of VERTEX WEIGHTED LONGEST PATH in G (where the cost for
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a vertex v; is the quantity p;c(v;)) and is computed in polynomial time. Finally, if
pi = p, v; €V, then:

E(G, &Ly, M) =2+p Y c(w)
v, ELyNV

For the case of PROBABILISTIC VERTEX LONGEST PATH strategy MV provides
for G[V'] a solution L}, of cardinality:

Lyl =2+ > lpevy=k+2— Y lpevy [4.3]

v, €L}, NV v €LL,NV

Using [4.3] and what has been discussed above, the following corollary summa-
rizes the case for PROBABILISTIC VERTEX LONGEST PATH.

COROLLARY 4.1— E(G,Ly,MV) =2+ > ;v pi and is computed in O(n).
The a priori solution Ly maximizing E(G, Ly ,MV) is an optimal solution of VERTEX
WEIGHTED LONGEST PATH in G (where the vertex-costs are the vertex-probabilities)
and is computed in polynomial time. Finally, if p; = p, v; € V, then E(G, Ly ,MV) =
2 + pk.

4.2. Probabilistic longest path in terms of arcs

Let Ly = (ap,a,...,ax), where a; = (v;,v;41), vo = s and vip41 = t be
a path of length (number of arcs) k + 1 and let G[V'|(V', A(V")), {s,t} C V' be
the present subgraph of GG. Then, the following modification strategy MA is used for
obtaining a PROBABILISTIC ARC WEIGHTED LONGEST PATH- (or PROBABILISTIC
ARC LONGEST PATH-) solution for G[V']:

—setL)y = LanAV');

—ifag ¢ L) and a; is the first arc of L', then set L’y = L', U {(vo,v;)};

—if (v;,vi41) and (vj,vj41), j > ¢+ 1, are consecutive arcs in L’,, then set
Ly = Ly U{(vig1,05) )5

—ifa, ¢ L', and q; is the last arc of L', then set L’y = L’y U {(vi41,t) };

— output ;.

It is easy to see that, thanks to the transitivity of G, solution L’,, constructed by
strategy MA is feasible.

EXAMPLE 4.2.— Consider the graph of Figure 4.1, assume an a priori solution given
byset Ly = {(s,1),(1,2),(2,5), (5,t)}, and assume that vertices 1 and 4 are absent.
Then application of MA produces the path L', = {(s,2), (2,5), (5,¢) (Figure 4.2).
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THEOREM 4.2.— The functional E(G,d, L, MA) associated with PROBABILISTIC
ARC WEIGHTED LONGEST PATH and with modification strategy MA is given by:

k

E(G#iLA,MA) = Y pipivad (vi,0i41)
i=0

k—1 k+1 j—1
+Y ) pips < IT a —pl)> d (vi, vj)

=0 j=1i+2 l=i+1

and is computed in O(n?).
The proof of Theorem 4.2 is in section 4.4.2.

In a similar way than the one followed in Theorem 4.2, we can obtain several
equivalent expressions for F (G, d, L 4,MA). The most interesting is the one given in
Proposition 4.1.

PROPOSITION 4.1.— Let us suppose that for i’ < i, H;;Z(l —p1) = 1. Then:

: k j—1
E(G,d_;LA,MA> = , Z DiDj ( H (1 —pl)> d(Ui,Uj)

If, forv, € V, p; = p, then:
E(G,d L, ua) = (1 - p)*d(s,1)

k
+ 2 ((L=p) td(s,0) + (1 - p)*d (i, 1)

i=1
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As one can see from the expressions for E(G, cf, L 4,MA) given in both Theo-
rem 4.2 and Proposition 4.1, if one tries to express PROBABILISTIC ARC WEIGHTED
LONGEST PATH, under strategy MA, as a kind of arc-weighted deterministic longest
path problem, then the weights that have to be assumed depend on the a priori solu-
tion itself. So, under these two functional-expressions, it is difficult to conclude on a
precise characterization of the a priori solution maximizing them.

4.2.1. An interesting algebraic expression

In this section we deal with a simplified version of PROBABILISTIC ARC WEIGH-
TED LONGEST PATH, namely the one of PROBABILISTIC ARC LONGEST PATH (where
all arcs of GG have equal distances). For this restrictive version, the following result
can be proved.

THEOREM 4.3.— E(G,La,M4) =1+ Zle p; and is computable in O(n). The a
priori solution maximizing it is computed in polynomial time. If all the vertices of G
have the same presence-probability p, then E(G, L o, M4) = 1 + pk.

Proof. We first prove that in the case of unit (or equal) arc-distances, for every subin-
stance V' of G, the value of the optimal solution in terms of vertices equals the value
of the optimal solution in terms of arcs plus 1. For this, it suffices to prove that in every
subgraph G[V’] of G, solutions computed by procedures MV and MA are identical.

Consider an optimal a priori solution £ for G and a subgraph G[V'] of G. Also
let 1 (V') = (s,...,05,05,...,t) and po (V') = (s,...,v;,0,...,t) be the solu-
tions computed by strategies MV and MA in G[V”], respectively. Suppose that uq (V)
and po (V') are identical from s to v; and that j < k. Finally, suppose that both
solutions are expressed in terms of vertices and recall that the vertex-indices in both
lists are sorted in increasing order (see notations in the beginning of the chapter).
Obviously, the vertices of both w1 (V') and po(V”) also appear in p. Following the
hypotheses just made, v; is present in G[V’] and, moreover, arc (v;,vy) is part of
the PROBABILISTIC ARC LONGEST PATH-solution computed by MA. So we have to
examine two possible cases:

— (vi,vg) € p when p is seen as PROBABILISTIC ARC LONGEST PATH solution;
this is impossible since there exists at least v; which appears in 1 between v; and vy;

— (vs,v;) ¢ p; consequently there exists a subpath 1/ C p from v; to vy and
any vertex v; with ¢ < | < k is absent from G[V’]; this is impossible since v; with
1 < j < k is supposed present in G[V].
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Hence, 111 (V') and po (V') are identical and, consequently, for any V', |Ly| = |L},|—
1 = |p1(V")] — 1; therefore:

E(G,LaMA) = Y Pr[V'] = > PrV](Ly|-1)
V'V V'V
k
= E(GLy,m)—-1 = 1+ p; [4.4]

where the last equality holds by Theorem 4.1.

Consequently, F(G, L 4,MA) can be computed with worst-case time complexity
linear in n.

Since, from [4.4], E(G,La,MA) = E(G, Ly,MV) — 1, the same a priori solu-
tion (an optimal solution for VERTEX WEIGHTED LONGEST PATH on G with its ver-
tices weighted by their probabilities) simultaneously maximizes both E(G, Ly, MV)
and E(G, L 4,MA); therefore, by Corollary 4.1, determining the a priori solution max-
imizing E(G, L 4,MA) is performed in polynomial time.

Finally, by substituting, in [4.4], p; by p, v; € V (for the case of identical vertex-
probabilities), we obtain F(G, L 4,MA) = 1 + pk. |

The proof of Theorem 4.3 is established using combinatorial arguments. We show
in section 4.4.3, that Theorem 4.3 can be established also by purely algebraic ar-
guments. This proof has its own (algebraic) interest going beyond probability- or
graph-theory. Indeed, as can be seen in section 4.4.3, the last argument of this proof
(expression [4.15]) establishes the following corollary holding for all tuples of n + 2
numbers of the form (1, z1,...,2z,,1) withz; < 1,1 <7 < n.

COROLLARY 4.2.— Consider n + 2 numbers z; < 1,7 = 0,...,n + 1 with zg =
ZTp4+1 = 1. Then:

n—1 n+1 J—1 n
Za: sz—I—Z Z Tt < H (1—95;)) =1—|—in
i=1

1=0 j=i+2 l=i+1

4.2.2. Metric PROBABILISTIC ARC WEIGHTED LONGEST PATH

We study in what follows the complexity of the metric PROBABILISTIC ARC WEI-
GHTED LONGEST PATH. For this, we shall first give a characterization of the a priori
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solution maximizing F (G, J; L 4,MA) (i.e., of the optimal a priori solution). For this,
we require the following definition introducing a notion of path domination.

DEFINITION 4.1.— A path u' is said dominated if there exists a path y such that:
E(G,d,u, M4) > E(G,d, ', M4).

We prove now that a path using transitive arcs is always a dominated one. For this,
we first use the two following Lemmata 4.1 and 4.2 (the proofs of which can be found
in sections 4.4.4 and 4.4.5, respectively).

LEMMA 4.1.— Consider a list (x1, . .., x,) of numbers and let i and m be two indices
such that1 <1 <m < n. Then:

m j—1 m

Zl‘jH(l—xl)Zl—H(l—xl)

j=i l=i =i

LEMMA 4.2.— Consider a list (xq, ...,z,) with0 < z; <1, i=1,...,n. Then:

n n

—2
2 [] Q=2) < —2n1) (1 —x)
i=0  j=i+l

THEOREM 4.4.— Consider two paths:

no= (ao,al’ ceey (Uz‘oq,vio) , ('Uioa'Uil) s (Ui17vi2) , ('Uizavingl) g 7(11@)

,u’ = (ao,al’ ) (Uio—lavio) , (Uz'o,?fz‘z) s (Uigavi2+1) yo ,ak)

In other words, both paths are from s to t and i’ contains the same vertices as [
except v;, . Then, under the modification strategy induced by procedure MA:

E (G,CZ:M,MA) > F (G,J:;/, MA)
in other words, 11’ is dominated.
The proof of Theorem 4.4 can be found in section 4.4.6.

An immediate consequence of Theorem 4.4 is that every path using at least one
transitive arc is dominated. Obviously, the optimal PROBABILISTIC ARC WEIGHTED
LONGEST PATH-solution (the a priori solution maximizing E(G, (Z L 4,MA)) cannot
be dominated; so, this solution corresponds to a path containing only non-transitive
arcs.

LEMMA 4.3.— Let us denote by G’ the undirected version of G. Then:
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— every path from s to t in G corresponds to a clique in G';

— to every maximal (for the inclusion) clique K' of G’ containing s and t corre-
sponds a unique path from s to t in G; this path includes all the vertices of K' and
uses only non-transitive arcs.

Proof. Let 11 be a path from s to ¢ in G. Since G is transitive, for every pair (v;, v;)
of vertices in pu, there exists an arc (v;,v;). So the vertex-set of x induces in G a
completely connected subgraph, i.e, a clique, thus concluding the proof of the first
item.

In order to prove the second item, we first notice that s and ¢ belong to at least
one maximal clique of G’. In fact, since G is transitive and s is a source of G, it is
connected to every other vertex of G. On the other hand, if we consider a clique K’
of G’ containing at least one neighbor of ¢ (this neighbor is, really, a predecessor of ¢
in ), then, by transitivity, ¢ is linked to every other vertex of K.

Let us now consider a maximal clique K’ in G’ and denote by V (K) its vertex-set.
It is well-known that the directed version K of K’ also being acyclic, it contains one
source, s in this case. Moreover, it is easy to see that s is the unique source because,
in the opposite case, K’ would not be a clique (because there would exist at least two
sources in K and, being sources, these would be not mutually linked).

With the same arguments, V(K”) \ {s} induces a clique of G’ and its directed
version contains a unique source vg. This vertex is a successor of s and arc (s, vg) is,
obviously, non-transitive.

So, by successive reasoning on the subcliques of K’ (resulting from the removal
of the unique source of the precedent step), we bring to the fore a path from s to ¢
in G, including all the vertices of K’ and using exclusively non-transitive arcs, thus
concluding the proof of the second item and of the lemma. |

The following Theorem 4.5 results from an immediate simultaneous combination
of Theorem 4.2 and Lemma 4.3.

THEOREM 4.5~ Let G’ be the undirected version of G; moreover, given an edge-
weighted graph, let us define the edge-weight of a clique as the sum of the weights of its
edges. Then, the optimal PROBABILISTIC ARC WEIGHTED LONGEST PATH-solution
in G corresponds to a maximal (for the inclusion in terms of vertices) maximum edge-
weight cliqgue K' of G' where the weights on the edges of K' are computed as follows:

—if edge (v;,v;) corresponds to a non-transitive arc (v;,vj) of A, then the
weight w(v;,v;) is:

w (vi,v;) = d (vi,v;) pip;
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— if edge (v;,v;) corresponds to a transitive arc (v;,v;) of A, then:

w (v, v;) =d(vi,v)pip;  [[ (1—p)

leplvs,vy]

where i is the path induced by K' (following the second item of Lemma 4.3)
and plv;, v;] is the set of vertices of p lying between v; and v;.

Let us recall that a comparability graph is a graph, the edges of which can be
oriented in such a way that the resulting directed graph is acyclic and transitive (see
Appendix A). Obviously, the graph G’ of Theorem 4.5 is a comparability graph.

In [CAT 92] (see also [BJO 97]), an O(D_ i V (K)) algorithm is presented gen-
erating all maximal cliques in comparability graphs, where /C draws the set of maximal
cliques of G’. This result can be immediately used to devise the following algorithm,
denoted by METRIC for metric PROBABILISTIC ARC WEIGHTED LONGEST PATH:

— construct G/;
— run the algorithm of [CAI 92] in G/;

— for any generated clique K':
1) apply Lemma 4.3 to extract the induced path p;
2) weight the edges of K’ by the weights suggested by Theorem 4.5;
3) compute the edge-weight of K';

— let K* be the maximum-weight clique computed by Steps 1 to 3;

— output the induced path p* of K* as the PROBABILISTIC ARC WEIGHTED
LONGEST PATH-solution.

By Theorem 4.5, algorithm METRIC computes the a priori solution maximizing the
functional of the metric version of PROBABILISTIC ARC WEIGHTED LONGEST PATH.
Consequently, the following theorem concludes this section.

THEOREM 4.6.— Metric PROBABILISTIC ARC WEIGHTED LONGEST PATH is opti-
mally solved by algorithm METRIC in O(}_ i cic V (K)).

The characterization of the optimal a priori solution for metric PROBABILISTIC
ARC WEIGHTED LONGEST PATH provided by Theorem 4.5 does not apply for general
PROBABILISTIC ARC WEIGHTED LONGEST PATH. Indeed, consider the graph of Fig-
ure 4.3 where all vertices have the same probability p except vertices s and ¢ which
are of probability 1. All the arcs except (a, ¢) have weight 1; the weight of (a, ¢) is M
for some large M € R. Consider also paths p = (sa, ab, be, ct) and u’ = (sa, ac, ct).
Expectations of p and 1’ are, respectively:

E (G,JZM,MA) = p+p°+p*+p+p(l—p)+p(l—p)?
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+(1—=p)?+p1—-p)?+pd—p) +p*1-pM

E(G@u’,MA) = p+p’M+p+p(l—p)+(1-p)°+pl-p)

Their difference is:

E (G,JZM,MA) ~E (G,Jiu’,MA) =20 +2p(1 - p)* + (1 —p)°

+p*(1 —p)M — p*M — (1 — p)?
= (1-M)p*+p

The above difference is negative for M > (1/ p2) + 1; in other words, choosing M
arbitrarily large, 1’ although containing a transitive arc, is longer than p.

b

a M c

Figure 4.3. A counter-example for general PROBABILISTIC ARC WEIGHTED
LONGEST PATH

4.3. Why the strategies used are pertinent

The modification strategies MV and MA used in this chapter are quite natural for the
problems covered here. Given an a priori solution L, they generally consist first of
removing absent vertices (disconnecting L) and then in using appropriate arcs in order
to reconnect the several surviving pieces of L. These arcs always exist due to the fact
that the input-graph has been assumed to be transitive. In fact, as one can see, they are
the simplest modification strategies one can invent.
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There exist several reasons rendering use of such strategies pertinent for the ver-
sions of probabilistic LONGEST PATH we have dealt with in this chapter. These strate-
gies model the probabilistic optimization context very well. Here, we are initially
given a “potential” graph and in the sequel we have considered that objects (vertices)
disappear at the last moment, too late to react by applying more complicated strate-
gies. Constructing more complicated modification strategies implies that we are able
to know the subinstance which will be actually optimized sufficiently early in order
to have the time to devise such a strategy. But if one has the time to do this, then it
is very likely that one has the time to solve the deterministic problem entirely in the
present subinstance (recall that the version of the deterministic longest path we deal
with is polynomial), thus obtaining, in polynomial time, an optimal solution.

Some other reasons can also justify the study of strategies MV and MA. In [GAB 97],
it is shown that a short-term satellite shot planning problem (with planning-horizon
of one day) can be modelled in terms of LONGEST PATH. But uncertainty due to
meteorological phenomena is not taken into account in the modelling of [GAB 97];
this can be done by associating probabilities with the vertex-set of the graph-instance
of LONGEST PATH and a probabilistic longest path problem has then to be solved. The
planning performed under the meteorological uncertainty (of the next day) consists of
finding an a priori solution (maximizing the functional) and once the shots planned
have been taken, the inexploitable shots are removed; this is strategy MV exactly.

The second motivation is more theoretical. As we have discussed in the beginning
of the chapter, VERTEX LONGEST PATH and ARC LONGEST PATH are equivalent in
the sense that an optimal solution of the former is identical to an optimal solution
of the latter and their values differ by 1. Hence VERTEX LONGEST PATH and ARC
LONGEST PATH are also of identical complexity. We have seen that strategies MV
and MA, of course under different data-representation, provide identical solutions for
the corresponding probabilistic versions. Our purpose studying these strategies was
also to confirm this fact.

4.4. Proofs of the results

4.4.1. Proof of Theorem 4.1

Starting from the expression for ¢(L7,) given in (4.1), and since s and ¢ are always
present, we get:

k

c¢(Ly) =m(G[V'], Ly (V/,MV)) =2+ > ¢(v;) Lin,evry [4.5]
=1
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A combination of [4.2] and [4.5] leads to:

E(G,&Ly,m) = Y Pr[V]c(Ly)
VICV
k
= Z Pr [V’} (2"—2(3(111) 1{1}¢€V’}>
V'V i=1
k
= 23 PrV]+> > Pr[V]c(vi)lievy
V/CV i=1V/'CV
k
= 2+Zpic(vi) [4.6]
=1

which proves the first result of the theorem.

The expression for E(G, ¢, Ly, MV), in the case where all the vertices are of proba-
bility p, is obtained by simply substituting p for p;, v; € V. Finally, it is immediately
observed that the computation of E(G, & Ly ,MV) needs only at most n multiplica-
tions (the terms p;c(v;)) and the addition of the n rational numbers, results of the
multiplications. So, the linear complexity of such a computation is concluded.

As one can see from [4.6], the maximum value for F(G, &, Ly, MV) is:

Ewv =2+ HLIE‘L/X{ Z pic(vi)}

v;€ELyNV

and the a priori solution Lj, corresponding to Eg, is a kind of vertex-weighted
longest path in G where the weights on the vertices of GG are, this time, the prod-
ucts p;c(v;); these quantities may be rational numbers.

In what follows, we shall prove that finding an optimal solution for VERTEX
WEIGHTED LONGEST PATH in directed acyclic graphs, when the weights are ratio-
nal, is polynomial.

It is well-known ([GAR 79]) that ARC WEIGHTED LONGEST PATH is polynomial
on directed acyclic graphs. To start with let us prove that even if the weights on the
arcs are rational, ARC WEIGHTED LONGEST PATH remains polynomial. To do it, we
transform every arc-distance d; = p;/¢;, ¢; € N,i = 1,...,minto d; = Qd; where )
is, for example, the lcm of the g;s. It is then easy to see that the longest paths in the
modified graph remain identical to the ones in G.
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Finally, let us show how one can transform VERTEX WEIGHTED LONGEST PATH
into ARC WEIGHTED LONGEST PATH in such a way that the corresponding solutions
are the same.

Consider a graph G(V U{s,t}, E, &,), instance of VERTEX WEIGHTED LONGEST
PATH. We construct the graph G'(V U {s,t}, FE,d,,), instance of ARC WEIGHTED

LONGEST PATH, where for an arc (v;, v;), d(v;,v;) = c(v;).

As we have already mentioned, ARC WEIGHTED LONGEST PATH from s to ¢ is

polynomial in G'; let i’ = (ag, a1, ..., ax) be a longest path from s to ¢ in G’, with
ao = (5,v4,), a5 = (vi;,vi,,, ), ax = (vg,,t), v, €V, j=1,...,k — 1. We shall
prove that the path 1 = (s,v4,,...,vi;,0i;,,,...,V;,t) is an optimal solution for

VERTEX WEIGHTED LONGEST PATH.
Let us suppose that there exists another path:
ﬂ = (S,’lA}il,...7’{}1'].71,’[71'].,...,@1'“15)

with i # p, longer than 4 in G. Then, Z% ep c(0iy) > Z% e, ¢(vi;). On the other
hand, since, by the construction of G, c(v;;) = d(vi,, vi,,,) = d(ay), if we consider
the path ﬂ = (ﬂo, ﬂh e ,ﬁk) with iLO = (S7 QA)“), ij = (’LA}ij,lA)ij_H), ftk = (’LA)Z'Mt),
we get Zﬁj cp dliy) > Zaj ¢, d(a;), which contradicts the optimality of 4’ for ARC
WEIGHTED LONGEST PATH. Consequently, VERTEX WEIGHTED LONGEST PATH is
polynomially solved.

The above discussion leads to the conclusion that solving VERTEX WEIGHTED
LONGEST PATH, even when the vertex-costs are rational, is polynomial; therefore, by
the expression of E(G, &, Ly, MV), determining the a priori solution maximizing it is
also polynomial and the proof of the theorem is complete.

4.4.2. Proof of Theorem 4.2

Let V(Ly4) = (s,v1,...,vg,t) be the list of vertices associated with the path L 4.
Then, G[V (L 4)](V(La),A(L4)), the subgraph of G induced by V(L 4) is a transi-
tive directed acyclic graph with:

k  k+1
A(La) = ’Lgoj:L:iJ+1 (v, vj)
(k+2)(k+1)

AL = ;
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Note that all the arcs of A(L4) may be part of the solution L 4[V’] of certain
present subgraphs G[V"]; for the arcs of A\ A(L 4), no solution for any present subin-
stance includes any of them. Consequently:

d(Lly) = Z d (v, v;) 1{(vi»v_7)€LlA} [4‘7]

(vi,vj)eA(LA)

Using [4.7] and the fact that A(L4) = La U (A(LAa) \ La), we get:

(G, d Laya) = 3 Priv]d (L))

V'Ccv
= Z Pr [V’] Z d (U“ v]) 1{(vl vj)eL’, }
VI'CV (vi,v;)EA(LA)

Z Pr V'] Z d (vi, vj) 1{ (viv;)ELY }

VeV (vi;v;)€Lla

+ Z d(vmvj)l{(vu'UJ)eL }

(visv5)€(A(La)\La)

Z Z PI‘ 1{ v“vJ)EL/ }d(’U“’Uj)

(visvj)eLa VIEV

—+ Z Z PI‘ 1{ UI,’U])EL/ }d(U17UJ) [48]

(vi,v;)E(A(LA)\La) V'EV

In the case where (v;,v;) € La (ie., (vi,vj) = a;), (vi,v;) € L4 only if both v;
and v; are present in V'; on the other hand, if (v;,v;) € (A(La)\La), then (v;,v;) €
L’,, only if both v; and v; are present in V" and, moreover, all vertices v;, ¢ < [ < j
are absent. Finally:

ALA)\La = {(yv):i=0,...,k=1,j=i+2,....k+1} [49]
k—1 k+1 k—1
A(LA)\Lal = > 1 = (k+1—(i4+2)+1)
=0 j=1+2 =0
k—1 k—1 2
= (k—i) = (k+1)?=> i = (k—;k)[MO]
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Using [4.9] and [4.10], expression [4.8] becomes:

k
E(G,CZ:LA,MA) = Zpipi+1d(%vi+1)

=0
k-1 k+1

+Z Z Z PT[VI] vzvvj)l{(vl,v])EL }

i=0 j=i+2V/CV

k
= > ppirrd (vi,vi41)

=0

k—1 k+1 j—1
+Y Y v ( IT @ —m)) d (vi,v;) [4.11]

=0 j=i+2 l=i+1

In order to compute righthand side of [4.11], given that k& < n, we have to per-
form, at most, n multiplications for each term of the double sums; since each sum
performs, at most, n additions, we conclude that the total computation complexity
of E(G,d,L,MA) is of O(n?).

4.4.3. An algebraic proof for Theorem 4.3

From the expression for E(G, d, L 4,MA) of Theorem 4.2, setting d(v;, vj) =1,
v;,v; € VU {s,t}, we get:

k—1 k+1 j—1
B (G,d, La,Ma) = szPzHJrZ > pm;(H 1}71)) [4.12]

=0 j=i+2 l=1+1

Dealing with the righthand side of [4.12], we prove now that:

k—1 k+1 Jj—1 k
szpm +3°3 pps < 11 1Pl)> =1+ pi [4.13]
=1

=0 1=0 j=142 l=i+1
Note first that:
k—1 k+1 j—1 k—1 k+1 j—1
Yo o [[ 1-m) = sz > [T a-m)
i=0 j=i+2 1=i+1 i=0  j=i+2 =i+l

k+1 j—1

k—1
= oo D> 0 [[ O=p)—pina
=0

Jj=i+1 I=i+1



The Probabilistic Longest Path 115

Given ig € {1,...,k} and kg such that k + 1 > ko > 4o, we show by induction
on kg that:
k() j*l k()
Yoo [[a-p=1-T]C0-m) [4.14]
j=to l=ig I=ig

For ko = i, we have p;, = 1—(1—p;, ), so the equality holds. Assume that [4.14]
holds for h < k; we shall prove it for h + 1:

h+1 j—1 j—1 h
ij H (1-pm) = ij H (1 =p) +Prtr H (1—m)
j=10 l:ig _] Lo = 10 l:io
h h
= 1-JJ =)+ [JO-p)
=19 =19
h
= 1- [0 =)@ =prs)
I=io
h41
= 1-JJa-m
=19

In particular, for kg = k+ 1,9 =i+ 1,7 € {0,...,k — 1}, we get:

k+1 j-1 k+1
Yo Il a-m=1-1[ -m)
j=itl  I=i+1 I=i+1

Since pr11 = Pr[t] = 1, we have:

k+1 J—1

oo [I a-p)=

=i+l I=it1

SO:

k-1 k+1

Jj—1
szpﬁﬁz > v [ 0-m) [4.15]

=0 1=0 j=142 l=i+1
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k k=1
= ZpipiJrl + sz' (1= pis+1)
i=0 i=0
k-1 k-1 k-1
= DPkPr+1+ Zpipz‘+1 + Zpi - Zpipz'+1
i=0 i=0 i=0

k—1 k
= pr+ Zpi = Zpi
=0 =0
k k
= po+y.pi = 1+ p [4.16]
=1 =1

and this concludes [4.13] and the algebraic proof of the expression for E(G, L 4,MA)
of Theorem 4.3.

As we have already noted at the end of section 4.2.1, [4.15] establishes the follow-
ing corollary.

COROLLARY 4.3.— Consider n + 2 numbers z; < 1,7 = 0,...,n + 1 with zg =
ZTn+1 = 1. Then:

n—1 n+1 Jj—1 n
szz+1+z Z Ti%j < H (l—xl)> :1—|—in
i=1

1=0 j=1i+2 l=i+1

4.4.4. Proof of Lemma 4.1

The proof is done, for fixed ¢, by induction on m:
—form =14: z; = 1 — (1 — x;) and the expression claimed is true;
— assume that the expression is true at range m;

— then, at range m + 1, we have:

m+1 j—1 m
ZI]H 1—ay) Z@Hl—m +xm+1H1—a}l
=1 =1

= 1-JJO—2) +zma [JQ - )
=1

l=i

m m—+1

= 1-JJ0-2)Q—zmp)=1-J] Q-2

=i l=i

This completes the proof of the lemma.
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4.4.5. Proof of Lemma 4.2

Given that z,, < 1, in order to prove the claimed inequality, it suffices to prove
that:

n—1

sz H (1—zj)<1—2p

1=0 j=i1+1

Let us consider the series U; = Y°\_! Hé.:iﬂ(l —xzj),1<l<n
We shall prove that U,,_; <1 —2,_1.

Series U, is recurrently defined as U1 = (1 — 2;41)(U; + ;). In fact:

I+1 1-1 1+1
Uy = Zml H (1—=xy) le H (1—z;)+a (1 —2141)
i=0 j=i+1 1=0 Jj=i+1

We now prove by induction on [ that U; < 1 — z;:
—forl=1: Uy = xo(1 — 1) < 1 — x; (because g < 1);
— suppose that the inequality claimed is true at range [;
—atrange [ + 1, we get:

Upr = (1 —242) U +2) S (L —zga) (L -z +20) S 1 -2
and the proof of the lemma is complete.

4.4.6. Proof of Theorem 4.4

Starting from the generic expression for E(G, d.La, MA) = E(G, d, 1, MA) given
in Theorem 4.2, we will re-write it in order to fit E(G, d, u’,MA):

io—1

E (G7 d, MA) = Y pipitad (vi, vig1) + PigPind (Vg Vi)
i=0
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k—1 k+1 J—1
+ szszrld 'Uz,Uerl + Z Z pibj H 1_pl)d(viavj)

1=t i1=0 j=i42 l=i+1

i#iy] jAi I#iy
io—1

= Z piPi+1d (Vi Vig1) + DigPird (Vig, Viy)

=0

k

i1—1=i9 k+1

-1
+Y ppiad (o) + Y > oy [ (1= p)d(vi,v;)

1=12

1=0 j=i+2 l=i+1
il I#i1
k=1 k+1 j—1
+ > > e [ A-p)d (i)
i=iy 4 1=ip j=it2 I=i+1
io—1 k
= Y pipirad (0, 0i1) + PigPind (Vi viy) + Y pipigad (vi, Vi)
i=0 =13
i0—2 k41 j—1
+3 Y pips [] 0= p)d(visv;)
i=0 Jj=i+2 l=i+1
FE I#ig
k1l g1
+ Pig—1 ij H (1 —=p1)d(vig—1,v5)
=
k+1

=+ iy Z pJH (1-p)d Ulwvj)

j=ia+1 I=ig

k—1 k+1

j—1
+ Z Z DiDj H (1 —pi) d (v, v5)
i=1g j=1+2 l=i+1
i0—1 k
= > pipi1d (i, ig1) + PigPind (i, viy) + Y Pipit1d (i, Vi)
i=0 =12
i0—2 19 J—1
+3 0> pipy [] =) d(wi,v)
i=0 j=i+2 l=it1
i0—2 k41 -1
+) Y iy [T (= p0) d(vi,v;)
i=0 j=is 1=it1

1#£iq
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kb1l j-1
+ Pig—1 ij H (1 —pi)d(vig—1,v5)
=
k+1 Jj—1

+pi Yy [ (=) d(vig,v))

j=iz+1l  Il=ip

k—1 k+1 j—1
+3°3 pps ] A -m)d(visvy) [4.17]
1=ig =142 l=i+1

We shall now rewrite the expression for E(G, J; 14, MA) in order to isolate the terms
relative to v;, :

k
E (G@:u, MA) = ZpipiJrld(Uia Vit1)

i=0
k=1 k+1 j-1
+ Z Z pip;j H (1 —mpi) d(vi,vy5)
=0 j=it2  l=i+1
io—1
= Y pipirrd (vi,vig1) + pigpiyd (Vig, i,) + PiyPind (v, 3,
=0
k i0—2 o j—1
+ ZpipiJrld('Ui,UiJrl) + Z Z Dibj H (1 —=mpi) d(vi,vy5)
i=is =0 j=it2  I=i+1
i0—2 kt1 j-1
+3 > pips [ (0 =p)d(vi,v))
=0 j=i1  l=it1
k1 g1

+ Pig—1 Z Dj H (1—p)d(vig—1,v5)

j=i1 =i
k+1 Jj—1

+ i Y0 [ (1= p1) d(vig—1,05)

j=iz =iy

k=1 k+1 j—1

+3°N  mips [[ O -p)d(vivy)
1=11 j=1+2 l=i+1

in—1

= Z pipi+1d (viv Ui+1) + piopild (Uim Uil) + pi1pi2d (vil ) Uiz)
=0
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i0—2 o Jj—1

+Zp1pz+1d qu2+1 +Z Z Pipj H l_pl)d(viavj)
1=19 =0 j=i+2 l=i+1

1,0 2 ’Lo
+ Zplpll H 1 _pl)d(viavil)

l=i+1

i0—2 k+1 j—1
+) Y vy [] A —po)d(vi,vg)

i=0 j=i, l=i+1

+ Pig—1 <Pz'1 (1 = pig) d (vig—1, i)

k+1 Jj—1
+> o [[-m) d(vio—l’vj)>

j=is  l=ig

+pi0 <p12 (1 _pzl) d(vioaviz)

k+1 j—1
+ Y i JJa —Pl)d(vim%‘))

j=ia4l =iy

k+1 j—1

+pi Y, o [[ (A =p)d(vi,v))

j=i1+2  l=ig

k—1 k+1 j—1
+3°3 paps ] A -m)d(visvy) [4.18]
1=ig =142 l=i1+1

From [4.17] and [4.18] for E(G,d, 1, MA) and E(G,d, i/, MA), respectively, we
get for their difference, denoted by D (i, pt'):

D(u,p)=F (G,dju,MA) - F (G,cf,u',MA)

DioPiy d (Vig, Vi, ) + Piy Dip d (Vi , Uiy )

=2 g
= DigPind (Vig, viy) +piy ¥ pi [ (1 =p1)d (vi,v3,)
=0 I=it1
i0—2 k1 j—1 j—1
+Y S i | [T =20 = J] @ =p) | d(wi,v5)
i=0 j=is 1=it1 1=

10
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+ Pig—1Piy (1 = piy) d (vig—1,vi,)

k1 j—1 j—1
+pio-1 o [ [T =)= [T O =p0) | d(vig—1,05)
Jj=ti2 I=ig ;;?o
i1

=+ DioDi, (1 _pil) d(”iga”h)
k+1 j—1 j—1
+pig Y D) (H 1-p)-JJ —pz)> d (viy, v;)
j=iatl  \izis =is

k+1 j—1

+pi, Y pi [[Q-p)dwioiv)) [4.19]

j=h+2 =i,

Since
j—1 j—1 j—1
IMHa-»- JI G-p)=-p, [] -
1=i+1 1=i+1,l%i, l=i+1,l%i,

quantity D(u, ') (expression [4.19]) becomes:

D (p, pt") = pigpir d (Vig, viy) + Piy Pind (Vi , viy)
i0—2 o

- piopiQd (’Uiov v’iz) + pil Z Di H (1 - pl) d (viv U’Ll)
=0 =141

i0—2 k+1 j—1

—pi Y Y ey [ (=) d(vi,vy)
i=0 j=is 1=it1

1#i1

+pio—lpil (1 7pio) d(vio—la Uil)

k+1 j—1
—pio—1Pix Y_ i || (1= 1) d (vig—1,v;)
=

+ piopigd (Ui07 vig) - piopizpil d (Ui07 Uig)
k+1

Jj—1
—pigpin Y, i [[ (1 =p)d (v, v))

J=ia+1 =iy

k+1 j—1
+pi Y o [[ A =p)d (i, v5) [4.20]

j=i14+2  l=io
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From [4.20], since the terms not containing p;, are mutually cancelled, we get:

D (p, ")
— —— = Piod (Vig, Vi, ) + pipd (viy, viy)
Diy
i0—2
+> p H (1—pi)d (vi, vi,)
=0 l=i+1
i0—2 k+1 j—1
- Z Zpipj H (1 =pi) d(vi, v5)
i=0 j=is 1=it1

1£i1
+ Dig—1 (1 _pio) d(vi071a vi1) — Pip—1Dis (1 _pio) d(vio*lvviz)
k1 j—1

—pio1 Y, 2 [[ 0 =p)d(ig-1,v;)

j=iaHl  l=ig
1#iq

k+1
_piopizd(vio7vtg plo E p] H 1_pl ’Uloavj)
Jj=i2+1 l=iy
k+1

+ > pJH 1 —pi)d(viy, v5)

Jj=i1+2 =iy

Since p;; > 0, we must show that D(u, p')/p;; > 0. For this, using the fact
that G is metric, we will first prove a lower bound for D(u, u')/p;,. In particular,
let us note that for all d(v;,v;) with ¢ < 41 and j > iy, we have: —d(v;,v;) >
—d(v;,v;,) — d(vi,, vj). By applying this form of triangular inequality, we get:

D (u, !
% = piod<vio7vi1) +pi2d(vi1>vi2)
11
ZO 2 ZO
+Zp7 IT a=p)d(i,v)
=0 l=i+1
i0—2 k+1 J—1
=N o [] A =p) (d i vi,) + d (viy,v;))
i=0 j=is 1=i+1

I#£i
+ Pig—1 (1 - pio) d ('Uio—ly'Uil) — Pig—1Diy (1 —pio) d(vio—h Uil)
— Pig—1Pi» (1 - pio) d (viuvig)
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k+1

— Pig—1 Z pj H ]-_pl UZO*lvvil)—’_d(vilavj))
j=i2+1 l=ig
I#iq
- piopiQd(U’ioavi1> - piopiQd (’Ui17v’i2)
k+1
—Pig Y pJH 1= p1) (d (viy, vi,) + d (03, v7))
J=ti2+1 l=iy
k+1

+ > pJH L= pr)d(vi,,v))

Jj=ia+1 =19

i0—2 io k41 G-l
Y opdivn) | T] C=p) =D p [[ 0=m)
i=0

l=i+1 l=i+1
i+ Jj=i2 iy

+ pig—1d (Vig—1, v4,)

k+1

X (17pi0)7(1 plo Diy — Z ij 17pl

1 =i
J=t2+ #l?

k+1 j—1

+ piod (Vig,viy) | 1= piy — Z Pj H 1—p)

Jj=izo+1 =iz

+pi2d(viuvi2)
20 2 21
X lipio—l (liplo p?o Zp7 H 1 7pl)
114:1
k+1
+ D pid(vi,)
Jj=iz+1
j—1 j—1
x [ (U=pi) [T O =p0) = pis1 [[ 1 =m1)
l=1ig i;%o
i1
7,0—2 j—l
-> o [[ 0-m)
i=0  l=it1

123
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io—2

= > pid(vi,vi,)
=0
o k1 j—1
x ( 1T (1—}?1)) 1= pi [[-m)

I=i+1 j=is  l=is
+ Pig—1d (Vig—1,vi, ) (1 = piy)

k+1 j—1

x| 1=pi— > p [J—m)

Jj=ia+1 l=ig

k+1

+pi0d(vioav’i1) pZQ Z p] H l_pl

J=ti2+1 l=i2

+ pizd (vil ) viz)

x <(1pio 1) (1= pio) Oz:m H 1pz)>

1=0 l=i+1

k+1 Jj—1
+ > pid(vi,,v)) (H (1 —Pl)>

j=ia+1 l=iz

i0—2 10
X <(1—pio) — Pio—1) sz 11 l—pz)> [4.21]

1=0 l=i+1

To complete the proof of the theorem, it suffices to show that the lower bound
for D(p, i) /pi, provided in [4.21] is non-negative. Indeed:

— for the factor of d(vz, 11“ ), by Lemma 4.1 and taking into account that p;+1 = 1,
k41 k+1
we get: 1_ZJ is Pi Hl 12( L) :Hl:i2(1_pl) =05
— for the terms multiplying d(v;,—1,v;, ) and d(v;,, v;, ), respectively, we have by

Lemma 4.1:
k+1

1 —pi, — Z p]H L—p)=

J=ti2+1 l=i2

k+1 Jj—1 k+1
—pi,— (Yo [JO=p)=pi | =] =p)=0
j=i2 l=io l=i2

— finally, by direct application of Lemma 4.2, the two last terms are positive.



Chapter 5

Probabilistic Minimum Coloring

We study in this chapter PROBABILISTIC MIN COLORING under the simple modifica-
tion strategy M consisting, given an a priori solution C, of removing the absent vertices
Sfrom C (this is strategy MS of Chapter 1, fitting PROBABILISTIC MIN COLORING). As
we will see in section 5.1, PROBABILISTIC MIN COLORING becomes in our proba-
bilistic framework a kind of weighted coloring and the objective then is to determine
such a coloring of minimum total-weight such coloring. We deal with two versions of
this problem:

— the first one is the natural version where one wishes to determine a best (mini-
mum weight) coloring;

— the second version, called PROBABILISTIC MIN k-COLORING, consists, given
k € N of determining a minimum-value k-coloring of the graph, i.e., a best coloring
using exactly k colors.

PSfrag replacements

1 2 3
5
4
O
6 7 8

Figure 5.1. A graph G, together with the a priori coloring (white, black,
shadow)
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For both versions, we settle complexity and approximation issues in general graphs
as well as in natural particular classes of graphs as bipartite graphs, split graphs, etc.

EXAMPLE 5.1.— Consider the graph G of Figure 5.1, together with the a priori 3-
coloring C = ({2,4,5,8},{3,6},{1,7}) (white, black, shadow) and assume that
vertices 1, 7 and 8 are absent. Application of MS in G’ produces the (white, black)
2-coloring C’ = ({2,4, 5}, {3,6}) (Figure 5.2).

2 3

6

Figure 5.2. Application of strategy MS on G’ (Figure 5.1), starting from the a
priori (white, black, shadow) coloring; colors produced: (white, black)

Given an a priori coloring C' = (S, ..., Sk) for V, the functional to be minimized
is defined as: E(G,C,M) = >,/ Pr[V']|C(V',M)|, where C'(V', M) is the solution
computed by M(C, V') (i.e., by M when executed with inputs the a priori solution C
and G[V']) and, as usually, Pr[V'] = [[;cy pi [Licy\ v/ (1 — i)

In what follows, given a graph G(V, E), we denote by C* an optimal a priori
coloring of GG. Furthermore, since the modification strategy M is fixed for the rest
of the chapter, we will simplify notations by using F (G, C) and E(G, C*) instead
of E(G,C,M) and E(G,C* M), respectively, and C'(V’) instead of C'(V’,M). Fi-
nally, we shall denote by pyax (r€sp., Pmin) the maximum (resp., minimum) vertex-
probability of V.

We have already seen in the Example 1.2 of Chapter 1 how a natural timetabling
problem can be modeled and faced as a probabilistic coloring problem. As another
example, consider a planning aiding process for realizing satellite shots. We associate
a vertex with any shot requested and we link two vertices if they correspond to shots
that cannot be realized by the satellite on the same orbit. But a shot realized under, for
example, strong cloud covering cannot be used for the purposes for which it has been
requested. Using meteorological forecasting, one can assign to any shot requested a
probability that it will be usable. For a mean-term planning, one of the main problems
is to decide if, on a given time slot (consequently, for a fixed number of orbits), a
shot can or cannot be realized. It has been shown ([GAB 97]) that this problem can
be modeled as a minimum partition into cliques of the vertices of the graph outlined
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above. So, if one takes into account probabilities associated with meteorological fore-
casting, one has to solve a probabilistic version of the problem mentioned. Note that
the partition into cliques in a graph amounts to a coloring problem in its complement.

5.1. The functional E(G, C)

In this section, we first analytically express the functional for PROBABILISTIC MIN
COLORING; then, based on it, we show that it can be computed in polynomial time.
Moreover, always based upon the analytical expression obtained for the functional,
we give a combinatorial characterization of the optimal a priori solution.

Recall that given an a priori solution C' = (S1,S2, ..., Sk) of cardinality k and
a subgraph G’ = G[V'] of G, we denote by C (V") the coloring of G’ obtained by
restriction of C'in V'’ and set k' = |C(V’)|. As has already been noted, F(G,C) =
> vy Pr[V’]|C(V")|. Using the notations just above:

E(G,C)= > PrV]IC(V)|= Y Pr[VFK [5.1]

VICV VICV

Consider variable x; defined by:

1SNV =0
i~ 0 otherwise

Note that condition S; NV’ = () means that color S; is empty in G’ (i.e., that the

vertices of S; are absent from V”). Then &’ can be written as k' = 2521(1 —zj)

and [5.1] becomes:

E(G,C)

I
(]
T
=

=
_
s
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It is easy to see that computation of (G, C') needs at most O(n?) arithmetical oper-
ations.

Notice that [5.2] provides a closed characterization of the optimal a priori solu-
tion C* for PROBABILISTIC MIN COLORING: if the value of an independent set .S
of Gis 1 — Hviesj (1 — p;), then the optimal a priori coloring for G is the parti-
tion into independent sets for which the sum of their values is the smallest over all
such partitions. So, as in the case of the problems covered in the previous chapters
of this book under strategy MS, PROBABILISTIC MIN COLORING can be equivalently
stated as a “deterministic combinatorial optimization problem” as follows: given a
graph G(V,E), and a vertex-probability vector Pr, determine a coloring C* =
(55,85, ..) minimizing quantity f(G,C*,Pr) = ZS;eC*(l - HviES;(l — i)
where p; = Prv;] denotes the probability of vertex v; € V.

It can be immediately noted that PROBABILISTIC MIN COLORING is completely
different from the problems studied in the previous chapters. There, when absent
vertices were dropped out of the a priori solutions considered, the optimal a priori
solutions were a maximum weight independent set, or a minimum weight vertex-
covering, of the input graph considering that its vertices receive their probabilities as
weights. Here, the problem covered is not so simple, since weight of an independent
set is not an additive function. Let us note that there exist several weighted versions
of the minimum coloring. For example, one can consider that the weight of a color
is the maximum (or the minimum, or even the average) weight of the vertices in the
independent set representing it, and the objective is to find a coloring minimizing
the sum of the weights of the colors (see, for example, [DEM 01, DEM 02] for a
version of weighted coloring, where the weight of a color is the maximum over the
weights of its vertices). Also, another problem that could be seen as a non-standard
version of weighted coloring is the so-called “chromatic sum” problem considered
in [BAR 88, JAN 97, NIC 99]. The problem of this chapter is quite different from all
these coloring-versions. Note also that minimum coloring is one of the paradigmatic
problems for the combinatorial optimization and one of the hardest ones from both
optimal and approximated solutions perspectives (see, for example, [GAR 79] for the
former and [AUS 99, PAS 03, VAZ 01] for the latter). Yet for this reason, it is always
interesting to apprehend it under several objective functions in order to better capture
its intractability facets.

We now provide upper and lower bounds on the value of E(G,C) valid for any
graph. They will be used later for achieving approximation results about PROBABILIS-
TIC MIN COLORING.
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Consider a graph G(V, E), a coloring C = (S1, ..., Sk), and set n = |V|. Then:

EG.C) < Sp
=1 " noom [5.3]
E(G,C) > 1- H (1 7pi) 2 Z 2 _Z plp]

v; €V i=1

N

k
E(G,C) max { > (1 — exp {_ 3 pi}) 7kpmin} [5.4]

Jj=1 UriESj

WV

We first prove the upper bound of [5.3] and the rightmost lower bound. Consider a
coloring C' = (54, . ..,Sk). We first produce a framing for the term 1 — Hmesj (1—
pi). For simplicity, assume |.S;| = £ and arbitrarily denote vertices in S; by v1, ..., v.
Then, by induction in ¢, the following holds:

L

£ 4 0
Zpi—z Z pipj <1 H 1—pi) < sz [5.5]
i=1 i=1

i=1 j=i+1

The proof of [5.5] is given in section 5.9.1.

Taking the sums of the members of [5.5] for m = 1 to k, the right-hand side
inequality immediately gives E(G,C) < >, p;.

We now prove that E(G,C) = 371 pi — Y0y > 5.y PiDj» i-€., the rightmost
lower bound claimed in [5.3]. From the left-hand side of [5.5], we get:

¢

1m—i2 > pivs

n 14
m=1i=1 j=i+1
n

S (Sh-3 S

m=1 =1 i=1 j=i+1 i=

n

Sori=>" > pip; [5.6]
=1 =1

=1 j=i+1

WV

Observe that, from the first inequality of [5.5], we have:

i sz Z Z pipj | S i (1_ﬁ(1_pi)> [5.7)

m=1 \ =1 i=1 j=i+1 m=1 i=1
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The righthand side of [5.7] is exactly E(G,C). Putting this together with [5.6],
the rightmost lower bound for E(G, C') in [5.3] is proved.

In order to prove the second inequality in [5.3], just apply the first inequality
in [5.5] setting £ = n.

We finally prove that 1 — [], oy (1 —pi) < E(G, C). For this, we first recall that
given three numbers p1, p2, ¢ € R such that p; < p2 and ¢ < 1, then:

1—p1q+1—%<1—p1+1—p2 [5.8]

Expression [5.8] is equivalent to p1q + p2/q > p1 + p2. Starting from this expres-
sion, some very simple algebra leads to (1 — ¢)(p1 — (p2/q)) < 0, which is true since
1—q>0andp; <p2 <p2/q.

Consider two colors S; and S; of C, set g(S;) = [[,, ¢s,(1 — px) and g(S;) =
[I.,es,; (1 = px) and assume that g(S;) < g(S5;). Consider finally a vertex v; € S of
probability p;. Applying [5.8] with ¢(S;), g(S;) and 1 — p; instead of pq, ps and g,
respectively, we get:

1- [ a=po)+1- J] 0 —px) =

VR ES; UkGSj

1- I G-po+1- J[ Q-w) [5.9]

’UkESiU{UL} UkESJ\{UZ}

Denote by S the color of C' minimizing quantity ¢(S;) = 1, es, (1 —pi), over

any other color S; of C. Iterating [5.9] for any vertex outside S by moving it into S
(obtaining so a possibly infeasible coloring), we get the inequality claimed.

The proof of [5.9] also shows the following interesting “local optimality” corollary
that will be broadly used later.

COROLLARY 5.1.— Consider a coloring C' = (S1,...S) of a graph G and two
colors S; and S; of C. Set f(S;) = 1-]],, cg, (1 —px) and f(S;) = 1— Hvkesj (1—
pi) and assume that f(S;) > f(S;). Then, emptying S; by moving its vertices into .S;
produces a (possibly unfeasible) coloring C’ such that E(G,C") < E(G,C).

The proof of the bounds claimed in [5.4] is given in section 5.9.2.
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5.2. Basic properties of probabilistic coloring
5.2.1. Properties under non-identical vertex-probabilities

We give in this section some general properties about probabilistic coloring, which
we use later in order to achieve our results. In what follows, given an a priori k-
coloring C' = (S1,...,Sk) we will sometimes set, for simplicity, f(C) = E(G, C),
where E(G, C) is given by [5.2], and, fori = 1,...,k, f(S;) =1— ijesi(l —Dpj).

PROPERTY 5.1.— Let C = (Sy,...,S;) be a k-coloring and assume that colors
are numbered so that f(S;) < f(Sit1), 7 = 1,...,k — 1. Consider a vertex = (of
probability p,) colored with .S; and a vertex y (of probability p,) colored with S},
j > i, such that p, > p,. If swapping colors of = and y leads to a new feasible
coloring C’, then f(C’) < f(C).

The proof of Property 5.1 can be found in section 5.9.3.
Notice that Corollary 5.1 can be equivalently stated as follows.

PROPERTY 5.2.— (Equivalent statement of Corollary 5.1) Let C' = (Sy,...,Sk) be
a k-coloring and assume that colors are numbered so that f(S;) < f(Si+1), i =
1,...,k—1. Consider a vertex x colored with color S;. If it is feasible to color x with
another color S, j > 1, (by keeping colors of the other vertices unchanged), then the
new feasible coloring C" verifies f(C”) < f(C).

PROPERTY 5.3.— In any graph of maximum degree A, the optimal solution of PROB-
ABILISTIC MIN COLORING contains at most A + 1 colors.

Proof. If an optimal coloring C uses A + k colors, k& > 0, then, by emptying the
least-value color (which is always possible as there are at least A + 1 colors) and due
to Property 5.2, we achieve a A + 1-coloring feasible for G with value better (smaller)
than the one of C. |

5.2.2. Properties under identical vertex-probabilities

Properties shown up to this point work for any graph and for any vertex-probabi-
lity system. Let us now focus on the case of identical vertex-probabilities. It should
be noted first that, for this case, Property 5.2 has a natural counterpart expressed as
follows.

PROPERTY 5.4.— Let C = (S1,...,S%) be a k-coloring and assume that colors are
numbered so that |.S;| < |S;+1], ¢ =1,...,k — 1. If it is feasible to inflate a color S
by “emptying” another color S; with ¢ < j, then the new coloring C’, thus created,
satisfies f(C') < f(C).
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Proof. Simply note that if |.S;| < |S;], then f(.S;) < f(S;) and apply the same proof
as for Property 5.1. |

Since, in the proof of Property 5.4, only the cardinalities of the colors intervene,
the following corollary-property consequently holds.

PROPERTY 5.5.— Let C = (Sy,...,S%) be a k-coloring and assume that colors are
numbered so that |S;| < |Siy1].4=1,...,k — 1. Consider two colors S; and S;, i <
Jj,and a vertex-set X C S; such that |S;|+|X| > |S;|. Consider (possibly unfeasible)
coloring C' = (S1,...,5,UX,...,S; \ X,...,Sk). Then, f(C") < f(C).

We note that Property 5.1, 5.2 or 5.4 describes a process of achieving “locally
optima” colorings by local swaps of vertices aiming to “reinforce” the heavier (larger,
in the case of identical probabilities) colors. In the sequel, a coloring for which no
swaps as the ones described in the statements of Property 5.1, 5.2 or 5.4 are possible,
will be called locally optimal. Obviously, for a non locally optimal coloring C', there
exists a coloring C’, better than C, obtained as described in Property 5.1, 5.2 or 5.4.
Hence, the following Proposition immediately holds.

PROPOSITION 5.1.— For any non locally optimal coloring, there exists a locally opti-
mal one dominating it.

5.3. PROBABILISTIC MIN COLORING in general graphs
5.3.1. The complexity of probabilistic coloring

Revisit [5.2] and observe that if we assume p; = 1,7 = 1,...,n, then PROBA-
BILISTIC MIN COLORING becomes the classical MIN COLORING problem, since, in
this case, the weight of any color becomes 1 and what has to be minimized is the
number of independent sets in the coloring. This observation immediately deduces
the NP-hardness of PROBABILISTIC MIN COLORING.

THEOREM 5.1.— PROBABILISTIC MIN COLORING is NP-hard.

5.3.2. Approximation

5.3.2.1. The main result

In this section, we devise and analyze an approximation algorithm for general
PROBABILISTIC MIN COLORING. We first note the following.

REMARK 5.1.— Assume that at least pp,ax is a fixed constant and denote it by p. Then,
denoting, as previously, by C* = (Sf,...,S}.) an optimal a priori solution for
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PROBABILISTIC MIN COLORING, one gets using [5.48], in the proof of [5.4] in sec-
tion 5.9.2: E(G,C*) 2 1 — exp{—pPmax} = 1 — exp{—p}, which is a fixed constant
since p is supposed fixed. If one applies the polynomial algorithm of [LOV 75] com-
puting, in any connected graph G of maximum degree A > 3 (that does not contain
a Ka41, i.e., a complete graph on A + 1 vertices, as induced subgraph) , a coloring
with at most A colors, this algorithm, when used for PROBABILISTIC MIN COLORING,
guarantees (using [5.4]) an approximation ratio of O(A).

Let us first deal with vertex-probabilities such that p.,;, > ¢, for some . Then, the
following auxiliary lemma holds.

LEMMA 5.1.— Assume a graph of order n with vertex-probabilities verifying pmin >
t. If minimum coloring is polynomially approximable within approximation ratio p,
then PROBABILISTIC MIN COLORING is approximable in polynomial time within ra-

tio p/t.

Proof. From [5.4], denoting by C* = (ST, ..., S}.) an optimal a priori solution for
PROBABILISTIC MIN COLORING, we get:

E(G,C*) > k*puin > k™t [5.10]

Consider a p-approximation algorithm A computing a feasible coloring C for G

(by not taking probabilities into account), and set C= (Sl, ..., S};)- Then, the func-

tional F(G, C') for C’ in other words, the objective value of C for PROBABILISTIC
MIN COLORING, is, by [5.4]:

E(G,é) -

J

1- H (1 —pi) <k

k
=1 vieS'j

By hypothesis, k/x(G) < p (where x(G) denotes the chromatic number of the
graph G, see Appendix A.2); furthermore, C* being a feasible coloring, k* > x(G).
Therefore, k /k* < p and the approximation ratio of A for PROBABILISTIC MIN COL-
ORING is, taking [5.10] into account, E(G, C)/E(G,C*) < p/t. |

COROLLARY 5.2.— If ppiy is a fixed constant, then PROBABILISTIC MIN COLORING
is approximable in polynomial time within ratio O(p).

Consider now a graph G, fix two vertex-probabilities pg and p’, py < p’, assume
that a p-approximation polynomial time algorithm A for minimum coloring exists, and
run the following algorithm, called PCOLOR:
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1) partition the vertices of G into three subsets: the first, Vy, including the vertices
with “small” probabilities, i.e., at most pg, the second, Vi, including the ones with
“intermediate” probabilities, i.e., greater than pg and at most p’, and the third, Vip
including the vertices with “large” probabilities, i.e., greater than p’;

2) feasibly color vertices of G[V;,] and G[Vip] using a proper set of colors for any
subgraph;

3) run A in G[Vip);

4) take the union of colors computed in Steps 2 and 3 as solution for G.

For simplicity we fix pg = 1/n. This, as we will see, has no important impact on
the approximation ratio concluded; p’ will be fixed later.

The following lemmata deal with the approximation ratios of the algorithm above
in G[Vgp), G[Vip] and G[Vip), respectively. As previously, set € = (ST, ..., S%)
an optimal a priori solution and by C' = (Sl, 5 ;) the approximate coloring com-

puted in Step 4. In the proof of the three lemmata just below, C* and C will deal
with G[Vgp), G[Vip] and G[Wip], respectively.

LEMMA 5.2.— (The ratio in G[Vsp]) Any feasible polynomial time approximation al-
gorithm for PROBABILISTIC MIN COLORING achieves in G[Vyp| approximation ratio
bounded above by 2.

Proof. Denote by ng, the order of G[Vsp]. Using [5.3] for C and C*, we get:

E(GVip),C) < X pi and B(G[Vepl, C*) = Y05 pi — 300 20%5 piby-
Combining them we get:

Msp MNsp Nsp Nsp
>, > pipj (Z pi) Py 5
1 i=1

E(G [‘/;p]vc*) S 11— i=1j=i+1 _
E(G [Vsp],C) iih 2§Pi
i=1 i=1
lei lef lei
> = = > = 5.11
st 5 [5.11]

2 Z Di
i=1

Since p;s are assumed to be smaller than 1/n and ngp < N, the right-hand side
of [5.11]is atleast 1 — ng,/2n > 1/2. Observe now that the approximation ratio of a
coloring algorithm in G[Vip] is E(G[Vip], C)/E(G[Vip], C*) which is smaller than,
or equal to, 2 and the proof of Lemma 5.2 is complete. |
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LEMMA 5.3.— (The ratio in G[V;ip)) Any feasible polynomial time approximation al-
gorithm for PROBABILISTIC MIN COLORING achieves in G[Vip) approximation ratio
bounded above by O(np').

Proof. We deal here with a subgraph of G for which, for any vertex v;, p; > po = 1/n.
Obviously, [], cg« (1 —ps) < (1 — (1/n))1%7 ! and, consequently:
i€

_1)

|55 ] * «| (|§*
1H(1pi)>1<1£> >‘S]|7’SJ (‘SJ

n n 2n2
V4 ES;

where the last inequality is an easy application of the left-hand side of [5.5] with
p; = 1/n for any vertex v;. Furthermore:

s Is0si-n _ Isi(,1sil-0

n 2n2 n 2n
CHEES 5.12]
n 2n 2n

Summing inequality [5.12] for j = 1,...,k*, we get E(G[Vip],C*) = nip/2n,
where njj, is the order of G[Vi,].

On the other hand, using [5.4] we immediately get E(G[Vip], C) < nipp’-

Consequently, using the bounds for E(G[V;p], C*) and E(G[Vip], C ) provided, we
get E(G[Vip],0)/E(G[Vip],C*) < 2np’ = O(np'), and the proof of Lemma 5.3 is
complete. |

Finally remark that Lemma 5.1 induces the following lemma dealing with the ap-
proximation of PROBABILISTIC MIN COLORING in G[Vj,].

LEMMA 5.4.— (The ratio in G[Vip]) Assuming that 4 achieves approximation ratio p
for minimum coloring problem, algorithm PCOLOR, when running in G[Vip], achieves
approximation ratio bounded above by p/p’ for PROBABILISTIC MIN COLORING.

We are going now to use Lemmata 5.2, 5.3 and 5.4 in order to complete the analysis
of the overall algorithm.

THEOREM 5.2.— On the hypothesis that A guarantees approximation ratio p for mini-
mum coloring, PCOLOR approximately solves in polynomial time PROBABILISTIC MIN
COLORING within ratio O(,/pn).
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Proof. In what follows, denote by C* an optimal a priori coloring for PROBABILIS-
TIC MIN COLORING in G, by C*[V;p], C*[Vip] and C*[Vi,,] the solutions induced
by C* in G[Vgp), G[Vip] and G[Vyp], respectively, and by Csp» i, and Cf‘p, C’sp, C’ip
and C}, the optimal and approximated a priori solutions in G[Vs,], G[Vip] and G[Vi,],
respectively.

We prove that, for any = € {sp, ip, Ip}:

E(G,C) 2 E(GVa],C" Vi) = E(G[Ve], C7)

Note that C*[V,] is a particular feasible solution for G[V]; hence:

E(GVe],C"[Va]) 2 E(G VL], C)

In order to prove the first inequality, fix an  and consider a color, say S of C*.
Then, the contribution of S5 in C*[V,] is:

1- H (1-pi)) <1-— H (1—ps)

Vi ES;OVE Vi ES}‘

which is its contribution in C*. Iterating this argument for all the colors in C*[V,],
the claim follows.

Recall finally that the algorithm colors the vertices of G[V,], = € {sp, ip,lp} with
a distinct set of colors and the a priori solution C finally provided is the union of these
sets. Consequently:

E (G, é) - E (G Vil ,Csp) +E (G Vo] 7éip) tE (G Vi) ,qu)

Note that E(G,C*) is at least as large as any of E(G[V,],C%), z € {sp,ip,Ip}.
Hence, one immediately deduces that the overall ratio of the algorithm in G is at most
the sum of the ratios proved by Lemmata 5.2, 5.3 and 5.4, i.e., at most O(2 4+ np’ +

(p/P")-

Remark that the ratio claimed in Lemma 5.3 is increasing with p’, while the one
in Lemma 5.4 is decreasing with p’. Equality of expressions np’ and p/p" holds for
p' = \/p/n. In this case the value of the ratio obtained is O(,/pn), and the proof of
the theorem is now complete. |

COROLLARY 5.3.— Using for A the O(nlog? log n/ log® n)-approximation algorithm
of [HAL 93], the approximation ratio achieved by PCOLOR is O(n log log n/ log®/? n).
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Moreover, taking into account that any induced subgraph of a k-colorable graph is
k-colorable, the following corollary holds also.

COROLLARY 5.4.— If A stands for the O(n'~(/(*+1)) Jog n)-approximation algo-
rithm of [KAR 98], then the approximation ratio achieved by PCOLOR in k-colorable

graphs is O (n'~(3/(2:+2)) /Togn).

5.3.2.2. Further approximation results

We first note that another easy corollary of Theorem 5.2 is that when the minimum
coloring problem is polynomial, PROBABILISTIC MIN COLORING is approximable
within approximation ratio O(y/n).

On the other hand, it is easy to see that if there exists an algorithm producing a k-
coloring, then it achieves approximation ratio bounded above by k. Indeed, if such an
algorithm produces a coloring C' = (S1, ..., Si) inagraph G(V, E), then E(G,C) =
>t (1= TLes, (1 =p)) < Sy (1= Tl,ev (L= po)) = k(L =TT, e (1= pi)).
Using the leftmost lower bound of [5.3] for E(G, C*), where C* denotes an optimal
probabilistic coloring of G, the bound claimed is immediately concluded.

Let us focus ourselves on graph-classes for which the (deterministic) minimum
coloring problem is polynomial in both the input graph itself and any subgraph of it.
Then the following corollary holds.

COROLLARY 5.5.— PROBABILISTIC MIN COLORING is approximable within approx-
imation ratio k in graphs of chromatic number k& where the minimum coloring problem
is polynomial in the input graph and in any of its induced subgraphs. In particular, if k
is fixed, then PROBABILISTIC MIN COLORING € APX, the class of problems approx-
imable within constant ratio.

Let us further restrict ourselves to graphs where not only the computation of a
minimum coloring but also the computation of a maximum-weight independent set is
polynomial. For this case, consider the following algorithm:

1) charge any vertex v; € V with weight log((1 — p;)™1);

2) compute a maximum-weight independent set S* and color its vertices with the
same color;

3) solve the minimum coloring in G[V' \ S*];
4) output the coloring C' = (S*, 51, ..., Sk) thus computed (note that Sy may be
empty).

With simple algebra, for any S C V:

sl ()

v, €ES
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Note also that function f(x) = —e™%, is increasing with x, for any z. So, the
independent set maximizing >, ¢ log(l — pi)~! is exactly the one maximizing
1 — [, es(1 — pi). Hence, the independent set S*, computed in Step 1 of the al-
gorithm above, represents the maximum-value feasible color of C. Considering that
colors in C' are ranged in decreasing value order:

k
E(G,C) = (1— 11 (l—pi)> +>3 (1= I a-») [5.13]

v; ES*

Set, for simplicity, @ = (1 — [[, cg-(1 — pi)) and, for j = 1,....k, 3; =
(1 _HvieSj (1—p;)) and suppose without loss of generality that 51 > (2 > ... > [k.
Then, [5.13] becomes:

k
BE(G,C)=a+) 6 [5.14]

Jj=1

In the same spirit as in Corollary 5.1, one can see that, starting from some coloring,
one can obtain a better-value (possibly unfeasible) coloring not only by strictly inflat-
ing the heaviest color of it, but also by swapping vertices in such a way that the final
heaviest color corresponds to an independent set S maximizing 1 — [], cs(1 — pi)
(or, equivalently, ), s log(1 — pi)~1). So, the value of an optimal solution C* =
(ST, ..., S%) (considering that these colors are also ranged in decreasing value order)
is greater than or equal to (1 —[[, cg.(1—pi)) + 2522(1 - Hvies; (1—p;)). Then,
using Corollary 5.1 in the graph G[V \ S*:

E(G,C") = <1— H (1—Pi)>+ 1- H (1—pi) [5.15]

v, ES* v, EV\S*
Sety = (1 — Hviev\s* (1 —p;)). Then, [5.15] becomes:
E(G,C*) za+~y [5.16]

Note now that since « represents the weight of the maximum-weight independent
set, then by the discussion just after the outline of the algorithm: a > (;, for any
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j =1,...,k; hence, E(G,C) < (k+ 1)a. Also, since the product in any of (; is
composed by a subset of terms in the product in v, 8; < v, forany j = 1,...,k;
henceforth, E(G, C) < a + k~y. Taking all this into account, [5.14] becomes:

E(G,C) < min{(k + 1)a,a + kv} [5.17]

If (k+ 1)a < o+ k~, then o < 7 and combination of [5.17] and [5.16] results
in E(G,C)/E(G,C*) < (k + 1)/2. On the other hand, if (k + 1)ae > a + k~, then
a > - and, taking into account that function f(a) = (a + kv)/(a + ) decreases
with o, combination of [5.17] and [5.16] results, once more, in E(G,C)/E(G,C*) <
(k+1)/2.

COROLLARY 5.6.— PROBABILISTIC MIN COLORING is approximable within approx-
imation ratio (k + 1)/2 in graphs of chromatic number k& where the minimum coloring
problem and the maximum-weight independent set problem are both polynomial.

Corollary 5.6 has the following interesting instantiation when dealing with bipar-
tite graphs (where k = 2).

COROLLARY 5.7.— PROBABILISTIC MIN COLORING is approximable within approx-
imation ratio 3/2 in bipartite graphs.

5.4. PROBABILISTIC MIN COLORING in bipartite graphs

We denote by B(V,U, E) a connected bipartite graph with bipartition V' and U
and edge-set E2. We first make the following emphasized preliminary observation: in
any connected bipartite graph, the bipartition (bicoloring) of its vertices is unique.
This unique 2-coloring is not always the best a priori solution for PROBABILISTIC
MIN COLORING in a bipartite graph as it is shown in Figure 5.3, where the functional
of the 3-coloring consisting of taking vy, ve, v4 and us in the first color, u; and ug in
the second color and w3 in the third color is equal to 1.3896 and better than the one
induced by the 2-coloring (V,U), equal to 1.8364.

5.4.1. A basic property

This section completes the discussion in section 5.2 by establishing a further prop-
erty for probabilistic coloring in bipartite graphs, under identical vertex probabili-
ties. We first note that for “trivial” families of bipartite graphs, as graphs isomor-
phic to a perfect matching, or to an independent set (i.e., a collection of isolated ver-
tices), PROBABILISTIC MIN COLORING is polynomial, under any system of vertex-
probabilities. In fact, for the former case, the optimal solution is given by a 2-coloring
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0.2
% 0.9 0.9 0.8

U1 V2 U3 V4

U us

Uy (15)
0.1 0.8 0.1
Figure 5.3. A bipartite graph B(V, U, E) where the 2-coloring is not the
best-functional a priori solution

where for each pair of matched vertices, the one with largest probability is assigned to
the first color, while the other one is assigned to the second color. For the latter case,
trivially, the 1-coloring is optimal.

Observe also that the cases of vertex-probability O or 1 are trivial: for the former,
any a priori solution has value 0; for the latter, PROBABILISTIC MIN COLORING coin-
cides with the classical (deterministic) coloring problem where the (unique) 2-coloring
is the best one.

Consider a bipartite graph B(V,U, E) and, without loss of generality, assume
|[V| = |U|. Also, denote by «(B) the cardinality of a maximum independent set
of B. Then the following property holds.

PROPERTY 5.6.— If a(B) = |V, then 2-coloring C' = (V, U) is optimal.

Proof. Suppose a contrario that C' is not optimal; then, the optimal coloring C’ uses
exactly k& > 3 colors and its largest cardinality color S7 has cardinality 3. Consider
the following exhaustive two cases:

a(B) = [ then, it is sufficient to aggregate all the vertices not belonging to .S into
another color, say S4; this would lead to a — possibly unfeasible — solution C"”/
which improves upon C’ (due to Proposition 5.1) and whose value coincides
with the value of C;

a(B) > (3: assume that one adds to color S exactly a(B) — [ vertices from the
other colors neglecting possible unfeasibilities; the resulting solution C" dom-
inates C’ (due to Proposition 5.1); but then, the largest cardinality color S7
has in solution C"’ exactly «(B) vertices; hence, as for case a(B) = [, the
2-coloring C is feasible, and dominates both C”" and C". |
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5.4.2. General bipartite graphs

Let us first note that the complexity of PROBABILISTIC MIN COLORING in general
bipartite graphs still remains open. However, we strongly argue that the problem is
NP-hard.

In what follows, we first give an easy result showing that the presumably hard
cases for PROBABILISTIC MIN COLORING are the ones where vertex-probabilities are
“small”. Consider a bipartite graph B(V, U, E) and denote by pyiy, its smallest vertex-
probability. The following proposition, proved in section 5.9.4, holds.

PROPOSITION 5.2.— If pmin = 0.5, then 2-coloring C = (V, U) is optimal for B.

When vertex-probabilities are generally and typically smaller than 0.5, the situa-
tion completely changes with respect the result of Proposition 5.2. Indeed, in this case,
it is possible to provide instances, even with identical vertex-probabilities, where the
2-coloring does not provide the optimal solution. For instance, consider the tree T’

of Figure 5.4, where vertex 1 (the tree’s root) is linked to vertices n + 1,...,2n and
vertex 2n is linked to vertices 1, ..., n.
1

2 n
Figure 5.4. A tree with a 3-coloring of better value than the one of its
2-coloring

Assume that vertex-probabilities of the vertices of 7" are all equal to p < 0.5.
Then, the 2-coloring {{1,...,n},{n+1,...,2n}} has value fo = 2(1 — (1 —p)"),
while the 3-coloring {{1},{2,...,2n — 1},{2n}} has value f3 = 2(1 — (1 — p)) +
(1 — (1 — p)*=2). For p small enough and n large enough, we have fo ~ 2 and
fz = 1.

The example of Figure 5.4 generalizes the counter-example of [MUR 03], dealing
only with bipartite graphs, and shows that not only in general bipartite graphs but
even in trees (that are restricted cases of bipartite graphs), the obvious 2-coloring is
not always the optimal solution of PROBABILISTIC MIN COLORING.
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Dealing with distinct-vertex-probabilities, the following proposition holds.

PROPOSITION 5.3.— In any bipartite graph B(V,UE), its 2-coloring C = (V,U)
achieves approximation ratio bounded by 2. This bound is tight even on paths.

Proof. Consider a bipartite graph B(V, U, E). A trivial lower bound on the optimal
solution cost (due to Property 5.1) is given by the unfeasible 1-coloring V' UU with all
the vertices having the same color. Hence, denoting by C'* an optimal coloring of B,
we have:

f(VuU) < f(C7) [5.18]

Assume that f(V') < f(U). Then, since U C V UU, f(U)

< f(V UU). Therefore,
FWV) +fU) <2f(U) < 2f(VUU) <2

using [5.18] f(C) f(C*), QED.
1—€¢ ¢
1 2
3 4
€ 1—¢

Figure 5.5. Ratio 2 is tight for the 2-coloring of a bipartite graph

For tightness, consider the 4-vertex path of Figure 5.5. The 2-coloring has value
2 — 2¢ + 2¢2, while the 3-coloring {1,4}, {2}, {3} has value 1 + 2¢ — €2. For ¢ — 0,
the latter is the optimal solution and the approximation ratio of the two coloring tends
to 2. |

Consider now the following algorithm, denoted by 3-WEIGHTED_COLOR in what
follows:

1) compute and store the natural 2-coloring Cy = (V,U);
2) compute a maximum weighted independent set .S of B;
3) output the best coloring among Cy and Cy = (S, V \ S, U \ S).
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Computation of a maximum-weight independent set can be performed in polyno-
mial time in bipartite graphs ([BOU 84]); so, 3-WEIGHTED_COLOR is polynomial.

PROPOSITION 5.4.— Algorithm 3-WEIGHTED_COLOR achieves approximation ratio
bounded above by 8/7 in bipartite graphs.

Proof. Consider an optimal solution C* = (ST, S5,...S}) and assume that f(S7) >
f(S3) = ... = f(Sf). Based upon Property 5.2, the worst case for Cj is reached
when it is completely balanced, i.e., when f(V) = f(U). Using the fact that, given
two rational numbers with constant product, their sum is minimized when they are
equal, we get after some very easy algebra:

f<co>=f<V>+f<U><2<1— 11 <1—pi>%> [5.19]
v, eVUU

By exactly the same reasoning, the worst case for C is reached when f(V'\ S) =
f(U\ S), namely when:

f(C) = fS)+fV\S)+ fUN\S)
< f9)+2(1- H (1—291')%
v, €(VUU)\S
< 1-J[a-py+2{1—- J[ @-p)? [5.20]
v €S v; €(VUU)\S

Recall that f(S7) < f(S) and, henceforth, due to Property 5.2:

fC) =2 f(S)+f(VUU)\S)
= 1-J[a-p+1- [ -m) [5.21]

v, €S v, €(VUU)\S

. 1 1 .
Setting 5 = HviES (1-p)2, a = H’UiE(VUU)\S (1 —p;)? and using [5.19],
[5.20] and [5.21], we get for the approximation ratio p the following expression:

f (Co) f(C'1)}
fF(C*) f(C7)

21— af) 3- 42— 2a
S mm{?—QQ—/B?’Q—QQ—ﬁQ}

[5.22]
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We now show that function fi(z) = 2(1 — 3z)/(2 — x? — 3?) increases with x
in [3, 1), while function fa(z) = (3 — % — 22)/(2 — 22 — 3?) decreases with z in
the same interval. Indeed, by elementary algebra, one immediately gets:

o o ()

1(x) = TRy [5.23]
20z -1 (x—(2-p52
o = 2

In [5.23], (2 — 8%)/B = 1; so, f{(x) is positive for x € [3,1) and, consequently f;
is increasing with x in this interval. On the other hand, in [5.24], since < 1 and
B<l,zr—1<0andz — (2— (3%) < 0. So, fj(z) is negative for z € [3,1) and,
consequently f5 is decreasing with x in this interval.

In all, quantity min{ f1(«), f2(a)} achieves its maximum value for « verifying
fi(a) = fa(a), or when 2(1 — aff) = 3 — 32 — 2a, i.e., when a = (1 + 3)/2. In this
case [5.22] becomes (for 7 < 1):

p(B)<2<1_<1%>ﬁ) _8-48-45% _8

2 2 N
148 7T—28-503 7
2- (T) - B
and the result claimed is proved. |

Notice that there exist arbitrarily large instances in which, if 3-WEIGHTED_COLOR
is allowed to arbitrarily choose some maximum independent set, it achieves approxi-
mation ratio asymptotically equal to 8/7. For instance, fix an n € N and consider the
following bipartite graph B(V, U, E) consisting of:

— an independent set S7 on 2n? vertices; n? of them denoted by vy, ... ,’0\7}2 be-
long to V and the n? remaining ones denoted by v, . .. ,v{}z belong to U;

—n paths Py,..., P, of size 4 (i.e. on 3 edges); set, fori = 1,...,n, P, =

(ri,r2,r3,r}), where r}, 73 € V and r?,r} € U; Sy and the n paths P; are disjoint;

212 ey 1771 AR
—two vertices v € V and u € U; v is linked to all the vertices of U and u to all
the vertices of V;

—foranyv; e VUU, p; =p=1n2/n.

The graph so-constructed is balanced (i.e., |V| = |U]) and has size 2n? + 4n + 2.
Figure 5.6 shows such a graph for n = 2.
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vy vy vy vy T Ty T3 5 v
fee—r
N

1 2 3 4 4 2 4 2
UV (%% Vg (%7 1 L T9 r5 u

Figure 5.6. An 8/7 instance for 3-WEIGHTED_COLOR withn = 2

Apply algorithm 3-WEIGHTED_COLOR to the so-constructed graph B. Coloring
Co = (V,U) has value:

F(Co) =2 (1 —(1- p)”2+2"+1) 5.25]

On the other hand, one can see that several maximum-weight independent sets
of B exist, each consisting of the 2n? vertices of S plus two vertices per any of the n
paths P;, i = 1,...,n. Assume that the maximum-weight independent set computed
in Step 2 of algorithm 3-WEIGHTED_COLORis S = Sy Ui—1, . {r},r}}. In this case,
|S| = 2n? + 2n,and |V \ S| = |U \ S| = n + 1; hence, the value of the coloring
Cy = (S, V\S,U\ S) examined in Step 3 has value:

F(C)=1—(1=p)* *2 £ 2(1—(1-p)"H) [5.26]

Finally, consider the coloring C' = (51, S, S3) of B where:
~S1= 81 Ui, {1l 31

- Sg ={u}Ui=1,.n {rZ,ri};

- S5 = {v}.

Obviously:
F(C)=1-@—p 41— 1= p)>* 4p [5.27]

One can easily see that for n — oo and for p = In2/n, A[5.25], [5.26] and [5.27]
give respectively: f(Cy) — 2, f(C1) — 2and f(C*) < f(C) — 7/4.
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Note that the tightness of the bound 8/7 can be shown (under the same hypothesis
on the way it works) for algorithm 3-WEIGHTED_COLOR also on trees by means of the
following instance 7" presented in Figure 5.7 for n = 2. There, the root-vertex ag
of T has n? + 1 children ay,...,a,2,bo. Vertices {ai,...,a,} have no children,
while vertex by has n? 4 1 children by, ..., b,2, co. Again, vertices by, ...,b,2 have
no children, while vertex cy has 2n children cy, ..., cs,. Finally, vertex cs, has no
children while any vertex c;, with¢ = 1,...,2n — 1, has a single child-vertex d;.

ao

d  d2  d3
Figure 5.7. Lower bound 8/7 is attained for 3-WEIGHTED_COLOR even in trees
(n=2)

The tree T' so-constructed gives, as in the previous example, a balanced bipar-
tite graph (i.e., |V/| = |U]) and has size 2n? + 4n + 2. Apply 3-WEIGHTED_COLOR
to T and set C), = (V,U). Assume that the maximum independent set computed in
Step 2 of the algorithm is S” = {a1,...,a,2,01, ..., bp2,Cni1, .-y Can,di, ... dn}
Then the coloring C' = (S',V \ §/,U \ 5’) is also examined in Step 3. Besides,
coloring ¢/ = (5"17 Sy, 5”’3) with §/; = {at,...,an2,b1,...,bp2,¢1,...,Con},
Sl = {ao,co,dy, ..., don_1}, Sl = {bo} is the best one. Some easy algebra derives
then ratio 8/7 for 3-WEIGHTED_COLOR when running on the considered tree.

Algorithm 3-WEIGHTED_COLOR is a simplified version of the following algorithm,
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called MASTER-SLAVE!:
1) compute and store the natural 2-coloring (V, U);
2) set By (V1,Uy) = B(V,U);
3)sett = 1;
4) repeat the following steps until possible:
a) compute some maximum-weight independent set .S; of B;;
b) set (Viy1,Uip1) = (Vi \ i, Ui \ Si);
¢) compute and store coloring (S1,...,S;, Viy1,Uit1);
5) compute and store coloring (S1, Se, . ..), where S;s are the independent sets
computed during the executions of Step 4a);

6) output C, the best among the colorings computed in Steps 1, 4c) and 5.

This algorithm obviously provides solutions that are at least as good as the ones
provided by 3-WEIGHTED_COLOR. Therefore its approximation ratio for PROBABILIS-
TIC MIN COLORING is at most 8/7. We show that it cannot do better (always as it is,
i.e., allowing it to arbitrarily choose the consecutive independent set S; in Step 4a).
Indeed, consider the counter-example after the proof of Proposition 5.4. After compu-
tation of S, the surviving graph consists of the vertex-set U;—1,_ ,{r?,r3}U{v,u}. In
this graph, the maximum independent set is of size n+1 (say the vertices of the surviv-
ing subset of V). In other words, colorings C; computed, for i >> 2 by MASTER-SLAVE

are the same as coloring C; computed by 3-WEIGHTED_COLOR.

Note, however, that the counter-example on trees, presented above, does not work
if algorithm MASTER-SLAVE is applied instead of 3-WEIGHTED_COLOR.

5.4.3. Bipartite complements of bipartite matchings

We deal in this section with bipartite complements of bipartite matchings, i.e, with
bipartite graphs B(V, U, E) with |V| = |U| = n and with E = E(B,, ,) \ {viu;, v; €
Viu; € Uyi = 1,...,n}), where by B,, ,, we denote the complete bipartite graph
with |V| = |U| = n. Such a graph will be denoted by M,, ,, (in Figure 5.8, M, 4 is
illustrated). We will show that, under any vertex-probability system, PROBABILISTIC
MIN COLORING is polynomial in this graph-class.

In any graph M, ,,, a color will be called a horizontal color if it is a proper subset
either of V, or of U; a coloring will be called a horizontal coloring if it is composed

1. This kind of algorithms approximately solving a “master” problem (COLORING in this case)
by running a subroutine for a maximization “slave” problem (MAX INDEPENDENT SET here)
appears for first time in [JOH 74]; appellation “master-slave” for these algorithms is due
to [SIM 90].
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Figure 5.8. A graph My 4

only by horizontal colors. On the other hand, a color will be called a vertical color if
it contains vertices from both V' and U; a coloring of M, ;, will be called a vertical
coloring if all its colors are vertical, otherwise it will be called non-vertical coloring.

LEMMA 5.5.— The following properties hold for the colorings of M, Kok’
1) any vertical color of My, . is exclusively of the form {v;,u;}, i =1,... k;

2) the non-vertical colors of any non-vertical coloring of Mk,k are horizontal, i.e.,
there is no coloring of My, i, other than with horizontal or vertical colors;

3)foranyi = 1,...,k, if v; and u; belong to two different colors, these colors
are horizontal;

4) for any induced subgraph B'(V',U’, E') of My, x, the functional-value of any
horizontal coloring C' is greater than, or equal to, the one of the 2-coloring (V' ,U")
of B'; furthermore, if the vertex-probabilities in V' (resp., U’) are pairwise distinct,
then E(B',C) > E(B',(V',U")).

Proof. Ttems 1 and 2 are easily deduced from the particular form of Mj, j implying
that independent sets {v;,u;}, ¢ = 1,..., k are all maximal for the inclusion.

Item 3 is concluded by the fact that v; excludes any vertex of U (other than u;),
while u; excludes any vertex of V' (other than v;).

Finally, Item 4 is a simple application of Corollary 5.1. Indeed, starting from any
horizontal coloring, one can move vertices from some color to a heavier one, until
the natural 2-coloring is produced for B’. By the form of a horizontal coloring, all
these moves, provided that they are performed inside V, or U, result in new feasible
colorings. By Corollary 5.1 (or, equivalently, by Property 5.2), any of them is better
(i.e., has smaller value) than the previous one. The second claim of Item 4 can be
shown by some easy algebra. |
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In what follows, we call vertical group the set R; = {v;,u;}, i = 1,...,n.
Observe that Properties 1, 2 and 3 of Lemma 5.5 hold independently of the vertex-
probability system considered. Observe also that an immediate consequence of the
combination of these properties with Corollary 5.1 is the following lemma.

LEMMA 5.6.— Consider a graph M,, ,,. Any optimal coloring of M,, , has at most two
horizontal colors. If S1 and S are these colors, then the subgraph of M, ,, induced
by S1 U S is a bipartite complement of a bipartite matching.

The following lemma is the key part for the proof of the result claimed in the
beginning of this section. For simplicity, for a group R;, set f(R;) = 1 — (1 —
Pv;)(1 — py,). Suppose furthermore that, upon a reordering of the groups, M,, ,, is
represented in such a way that f(R1) > f(R2) > ... > f(Ry,); in other words “their
values diminish from the left to the right”.

LEMMA 5.7.— Consider three vertical groups R; = {v;,u;}, R; = {v;,u;} and
Ry, = {vg,u}, such that f(R;) > f(R;) > f(Rk). Fix an optimal coloring C*
of M, .. If colors of v;, v; (on the one hand) and of u;, u; (on the other hand) are
horizontal in C*, then Ry, cannot be a vertical color of C*.

Proof. Denote by S, and S,, the horizontal colors of v;, v; and u;, u;, respectively and
assume, without loss of generality, that f(S,) > f(S.), where, as previously, f(S)
denotes the weight of color S. In other words, assume that:

(1 - pvi) (1 - ij) < (1 - pui) (1 - puj) [528]
As it will be understood below, the opposite case (i.e., the one where (1 —p,, ) (1 —
Pv;) = (1 = pu,;)(1 — py;)) is completely similar.

By the assumption on the values of I2;, R; and Ry, the following holds:
(1=po) (1= pu,) (1 =py;) (1= pu;) (L =po,) (1 =pu,)  [529]

It suffices to show that (1 —pu, ) (1 —pu,) [Ty, e5,\fv;,0,3 (1 —P) < (1 =po, )(1 -
Du,, )s 1.€., that color S, is “heavier” than color Ry. In this'case, application of Corol-
lary 5.1 (by “diluting” color Ry, to colors S, and S, in this order) allows us to improve
solution. Since (1—py, )(1=pu,) [Ty, e5,\(v;,0;3 (1 —Pe) < (1 =Py, )(1=py, ), it suf-
fices to show that (1 —p,,)(1 —py;) < (1 =Py, )(1—py, ). By [5.29] one immediately
gets:

(1= pu,) (1= pu) (1= pu,) (1= pu;) <1 =po)? (1 = puy)’ [5.30]
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Usg

Figure 5.9. The coloring implied by Lemma 5.7

On the other hand, combination of [5.28] and [5.30] easily yields inequality (1 —
Do) (1 = po;) < (1 =y, )(1 = py,) claimed. |

Lemma 5.7 has the following important consequence that will serve us to devise a
polynomial-time algorithm for PROBABILISTIC MIN COLORING in graphs M,, ,,. Fix
an optimal coloring C* and consider the four leftmost vertices, say v;, v; and u;, u; of
its two horizontal colors S, and S, respectively (suppose that any of these colors has
at most two vertices). Then, it suffices to determine vertical groups R; and R; (i.e.,
the ones where v;, u; and v;, u;, respectively, belong), so that the whole coloring C*
is determined. Indeed, applying Lemma 5.7 with v;, v; and u;, u;, the two leftmost
vertices of colors S, and S, respectively, the form of coloring C* is as in Figure 5.9,
i.e., colors on the left of v;, u; and from v; 1, U;41 t0 vj_1, u;_1 are vertical, and the
two horizontal colors have v;, v; and u;, u; as the leftmost vertices, the rest of them
being v41,...,v, and uj1,. .., u,, respectively.

The discussion above exhibits the following algorithm for PROBABILISTIC MIN
COLORING in the class of graphs M, ,,:

1) consider the full vertical coloring (R1, Rs, ..., R, ) and store its value;
2) consider the natural horizontal coloring (V, U) and store its value;
3) for i = 1 to n, consider coloring (R;, V' \ R;,U \ R;) and store its value;

4) fort = 1ton, for j =7+ 1ton — 1, consider the coloring of Figure 5.9 and
store its value;

5) output the best of the colorings computed during Steps 1 to 4.

From what has been discussed previously, the coloring returned by Step 5 of the
algorithm above is optimal for M,, ,,. Furthermore, it is easy to see that this algorithm
runs in polynomial time (in fact, a careful implementation of it, including an ordering
of vertical groups in decreasing order with respect to their weights f(-), implies a
complexity of O(n?)). Consequently the following theorem holds.
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THEOREM 5.3.— PROBABILISTIC MIN COLORING is polynomial for the bipartite
complements of bipartite matchings.

Another immediate consequence of Property 5.2 is the following proposition.

PROPOSITION 5.5.— Assuming identical vertex-probabilities, the unique 2-coloring
of M,, ,, is optimal for PROBABILISTIC MIN COLORING.

Proof. For PROBABILISTIC MIN COLORING, starting either from any mixed color-
ing, or from the vertical one, iterative application of Corollary 5.1 concludes that the
unique 2-coloring is optimal. As we will see later, in section 5.7.1.2, this becomes not
true when dealing with non-identical vertex-probabilities. |

5.4.4. Trees

Recall that the counter-example of Figure 5.5 shows that the natural 2-coloring
is not always optimal in paths under distinct vertex-probabilities. In what follows,
we study PROBABILISTIC MIN COLORING on trees. As previously, we assume that
VI=1[U].

PROPOSITION 5.6.— PROBABILISTIC MIN COLORING can be optimally solved in
trees with complexity bounded above by (n + I)A(’“AH”UJrl where A denotes the
maximum degree of the tree and k the number of distinct vertex-probabilities.

Proof. Consider a tree T(N, E) of order n. Let py,...,px be the k distinct vertex-
probabilities in 7', n; be the number of vertices of 1" with probability p; and set
M = ]_[f:l{O7 ...,n;}. Recall finally that, from Property 5.3, any optimal solution
of PROBABILISTIC MIN COLORING in 7 uses at most A + 1 colors.

Consider a vertex v € N with § children and denote them by vy, ...,vs. Let c €
{1,...,A+1}and Q = {q1,...,qa41} € M2T! where, forany j € {1,..., A+1},
¢ = (¢1,---,45,) € M. We search to see if a coloring of T'[v] (i.e., of the subtree

of T rooted at v) exists verifying both of the following properties:
— v is colored with color ¢;

— gi, vertices with probability p; are colored with color j.

For this, let us define predicate P,(c, Q) with value frue if such a coloring exists.
In other words, we consider any possible configuration (in terms of number of vertices
of any probability in any of the possible colors) for all the feasible colorings for T'[v].
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One can determine value of P, if one can determine values of P,,, ¢ = 1,...,6.
Indeed, it suffices that one looks-up the several alternatives, distributing the qi; Ver-
tices (of probability p; colored with color j) over the d children of v (¢;, may be ¢;; —1
if p(v) = p; and ¢ = j). More formally:

Py(c,Q) = \/ Vo (P (c,@) A APy (e5,Q%)  [531]

where in the clauses of [5.31]:
—forj=1,...,6, ¢j # c(in order that one legally colors v with color c),
—fors=1,...,6,Q° € M>*! and
— for any pair (4, §):

5 . .
Zq‘?’ — qi; — 1 lfp(v) =p;andc =
<1 4, otherwise
-

Observe now that | M| < (n + 1)* and, consequently, |[M2+1] < (n 4 1)FA+D),
For any vertex v, there exist at most n|M“T1| values of P, to be computed and
for any of these computations, at most (n|M“+1[) conjunctions, or disjunctions,
have to be evaluated. Hence, the total complexity of this algorithm is bounded above
by n(n|MAT)0+L < (n 4 1)AFA+E+D+L T conclude, it suffices to output the
coloring corresponding to the best of the values of predicate P,.(c, (Q), where r is the
root of T'. |

COROLLARY 5.8.— PROBABILISTIC MIN COLORING is polynomial in trees with
bounded degree and with bounded number of distinct vertex-probabilities.

Since paths are trees of maximum degree 2, we get also the following result.

PROPOSITION 5.7.— PROBABILISTIC MIN COLORING is polynomial in paths with
bounded number of distinct vertex-probabilities. Consequently, it is polynomial for
paths under identical vertex-probabilities.

Let us note that for the second statement of Proposition 5.7, one can show some-
thing stronger, namely that 2-coloring is optimal for paths under identical vertex-
probabilities. Indeed, this case can be seen as an application of Property 5.6. The
maximum independent set in a path coincides with V' as any vertex of U is adjacent
(and hence cannot have the same color) to a distinct vertex of V. This suffices to prove
the proposition.
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Consider now two particular classes of trees, denoted by 7g and 7o, where all
leaves lie exclusively either at even or at odd levels, respectively (root been considered
at level 0). Trees in both classes can be polynomially checked. We are going to
prove that, under identical vertex-probabilities, PROBABILISTIC MIN COLORING is
polynomial for both 7 and 7. To do this, we first prove the following lemma where,
for a tree T', we denote by N (resp., No) the even-level (resp., odd-level) vertices
of T'.

LEMMA 5.8.— Consider T € To (resp. in Tg). Then No (resp., Ng) is a maximum
independent set of T'.

Proof. We prove the lemma for T' € 7p; case T' € T is completely similar. Set
n, = |Nol|, ne = |Ng| and note that n, > 0 (otherwise, T' consists of a single
isolated vertex). We will show ab absurdo that there exists a maximum independent
set S* of T such that S* = N (resp., S* = Ng).

Suppose a contrario that any independent set S* satisfies |S*| > n,. Then the
following two cases can occur:

S* C Ng. This implies |S*| < ne. Since any vertex in Ng has at least a child,
ne < Ny, hence |S*| < n,, absurd since N, is also an independent set and S*
is supposed to be the maximum one.

S* C No U Ng. In other words, S* contains vertices from both No and Ng.
Then, for any vertex e € Ng N S* that is parent of a leaf, e has at least a
children with no other neighbors in S*. We can then switch between S* and
its children, thus obtaining an independent set at least as large as S*. We can
iterate this argument with the vertices of this new independent set (denoted also
by S* for convenience) lying two levels above e (i.e., the great-grandparents of
the leaves). Let g be such a vertex and assume that g € S*. Obviously, all its
children are odd-level vertices and none of them is in S* (a contrario, S* would
not be an independent set). Furthermore, none of these children can have a child
¢ € S5* because e is an even-level vertex previously switched off from S*, in
order to be replaced by its children. Thus, we can again switch between g and
its children, thus getting a new independent set S* larger than the previous one.
We again iterate up to the root, always obtaining a new “maximum indepen-
dent set” larger than the older one. Moreover, at the end, the independent set
obtained will verify S* = No. |

PROPOSITION 5.8.— Under identical vertex-probabilities, PROBABILISTIC MIN COL-
ORING is polynomial in To and Tg.
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Proof. By Lemma 5.8, trees in 7o and 7 fit Property 5.6. So, for these trees, 2-
coloring is optimal. 0 To conclude this paragraph, we deal with stars and show that
PROBABILISTIC MIN COLORING is polynomial there under any probability system.

PROPOSITION 5.9.— Under any vertex-probability system 2-coloring is optimal for
stars.

Proof. Note first that the center of the star constitutes a color per se in any feasible
coloring. Then, Property 5.2 applied on star’s leaves suffices to conclude the proof. 1

5.4.5. Cycles

In what follows in this section, we deal with cycles ', of size n with identical
vertex-probabilities. We will prove that in such cycles, PROBABILISTIC MIN COLOR-
ING is polynomial. Let us note that, obviously, an odd cycle is not really a bipartite
graph2. However, for economy, we integrate this case into this section also.

PROPOSITION 5.10.— PROBABILISTIC MIN COLORING is polynomial in even cycles
with identical vertex-probabilities.

Proof. Note that in even cycles, Property 5.6 applies immediately; therefore, the nat-
ural 2-coloring is optimal. |

PROPOSITION 5.11.— PROBABILISTIC MIN COLORING is polynomial in odd cycles
with identical vertex-probabilities.

Proof. Consider an odd cycle Cox41, denote by 1,2, ..., 2k + 1 its vertices and fix an
optimal solution C* for it. By Property 5.3, |C*| < 3. Since Ca.1 is not bipartite, we
can immediately conclude that |C*| = 3. Set C* = (57, S5, S%) and denote by S* a
maximum independent set of Cay41; assume S* = {2 : i = 1,...,k}, ie., |S*| = k.
By Property 5.2:

FEC)YZf(S)+fr=1-(0-p)F+ [5.32]

where f is the value of the best coloring in the rest of Cytyq, i.e., in the sub-
graph of Cogy; induced by V(Coxy1) \ S*. This graph, of order k + 1 consists
of edge (v1,vg+1) and k — 1 isolated vertices. Following, once more Property 5.2, in
a graph of order k£ 4 1 that is not a simple set of isolated vertices, the ideal coloring
would be an independent set of size k and a singleton of total value 1—(1—p)*+p. So,
using [5.32], we get: f(C*) > 2—2(1—p)* +p. But the coloring C' = (S*, {2i—1 :
i1 =1,...,k}, {2k + 1}) attains this value; therefore, it is optimal for Cox1, QED. 1

2. Recall that a graph is bipartite, if and only if, it does not have odd cycles (see section A.2 in
Appendix A).
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5.5. Complements of bipartite graphs

Given a bipartite graph B(V,U, E), its complement, B(V,U, E), is a loopless
graph consisting of two cliques, one on V and one on U, plus the set of edges £/ =
{viuj ¢ E : v; € V,u; € U}; in other words, the edges of E are the edges of the
cliques Ky and K|y and the edges between V' and U missing from E. The graph
in Figure 5.10(b) is the complement of the bipartite graph of Figure 5.10(a). These
graphs have the property that any independent set is of cardinality at most 2. In other
words, any coloring there is a collection of independent sets of size 2 and of singletons.
The following lemma characterizes the functional’s value of a such a coloring.

(@) B (b) B

Figure 5.10. A bipartite graph B (Figure 5.10(a)) and its complement B
(Figure 5.10(b))

LEMMA 5.9.— Let B be the complement of bipartite graph B, let n be the order
of B and B, let C be a coloring of B and let S = {{vi,,uj,} + k = 1,...,[S[}
be the collection of independent sets of size 2 in C. Then E(B,C) = Y. | p; —

|S
Sl pipi-

Proof. The value of a color {v;, ,u;, } € Cwillbe 1 —(1—p;, )(1—pj,.) = Pir, +Dj, —
D), Pj, > on the other hand, the value of a singleton {v;} € C will be p;. Consequently,
it is easy to see that the functional of C will be E(B,C) = 7, p;i — 12 pi i
as claimed.

From Lemma 5.9, the first term of E (B, C) is constant; so, F(B, C') is minimized
when its second term is maximized. Consider the bipartite graph B'(V,U, E(B’))
with E(B’) = (V x U)\ E’ and assign to any edge v;u; € E(B’) weight p;p;. Then,
collection S becomes a matching of B’ and the term Z‘kﬂl Di, Pj, 18 the total weight
of this matching. Recall finally that a maximum weight matching can be polynomially
computed in any graph ([PAP 81]). Then, consider the following algorithm: given B:



156  Probabilistic Combinatorial Optimization

— transform it into B’ and weight any of its edges with the product of the proba-
bilities of its endpoints;

— compute a maximum weight matching M in B’;

— color endpoints of any edge of M with an unused color (the same for both end-
points);

— color the remaining vertices of B’ with an unused color by such vertex.

From what has been discussed, the coloring so produced is optimal and the fol-
lowing result holds immediately.

THEOREM 5.4.— PROBABILISTIC MIN COLORING is polynomial in complements of
bipartite graphs.

5.6. Split graphs

5.6.1. The complexity of PROBABILISTIC MIN COLORING

We deal now with split graphs. This class of graphs is quite close to bipartite ones,
since any split graph of order m + n is composed by a clique K,,, on m vertices,
an independent set .S of size n and some edges linking vertices of V (K,,) to vertices
of S. In Figure 5.11, such a graph is illustrated for m = 3 and n = 4.

Figure 5.11. A split graph withm = 3 andn = 4

These graphs are, in some senses, midway between bipartite graphs and comple-
ments of bipartite graphs. In what follows, we first show that PROBABILISTIC MIN
COLORING is NP-hard in split graphs even under identical vertex-probabilities. For
this, we prove that the decision counterpart of PROBABILISTIC MIN COLORING in
split graphs is NP-complete. This counterpart, denoted by PROBABILISTIC MIN COL-
ORING(K), is defined as follows: “given a split graph G(V, E), a system of identical
vertex-probabilities for G and a constant K < |V, does there exist a coloring the
functional of which is at most K7”.
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THEOREM 5.5.— PROBABILISTIC MIN COLORING(K) is NP-complete in split gra-
phs, even assuming identical vertex-probabilities.

Proof. Inclusion of PROBABILISTIC MIN COLORING(K) in NP is immediate. In order
to prove completeness, we will reduce 3-EXACT COVER ([GAR 79]) to our problem.
Given a family S = {51, So, ..., Sy } of subsets of a ground setI" = {~v1,72,...,vn}
(we assume that Ug,es55; = I') such that |S;| = 3,7 = 1,..., m, we are asked if there
exists a subfamily S’ C S, |S’| = n/3, such that S’ is a partition on I'. Obviously, we
assume that n is a multiple of 3.

Consider an instance (S,I') of 3-EXACT COVER and set ¢ = n/3. The split
graph G(V, E)) for PROBABILISTIC MIN COLORING will be constructed as follows:

— family § is replaced by a clique K, (i.e., we take a vertex per set of S); denote
by s1, ..., S its vertices;

— ground set I" is replaced by an independent set X = {v1,...,v,};

- (si,v5) € Eiffy; ¢ Sy;

-p>1-(1/q);

- K =mp+q(1-p)—ql—p)"

Figure 5.12 illustrates the split graph obtained, by application of the three first
items of the construction above, on the following 3-EXACT COVER-instance:

L' = {7,727 74,75, 76}

S = {51,52,853,54,55}

S1o= {m,72,7s}

So = {71,72,74} [5.33]
Sz = {73774775}

Sy = {74.75,7}

Ss = {73,757}

Suppose that a partition S’ C S, |S’| = ¢ = n/3 is given for (S,T, ¢). Order S
in such a way that the ¢ first sets are in S’. For any S; € &', set S; = {7, Via» Vis }-
Then, subset {s;, v, vi,, Vis } of V is an independent set of G. Construct for G the
coloring C' = ({8, iy, Vig, Vig Fi=1,...qs {Sq+1}s- - -» {Sm}). It is easy to see that
(@) =gl = (1 =p)*) + (m—qp=mp+q(l—p)—q(l-p)* =K.

Conversely, suppose that a coloring C'is given for G with value f(C') < K. There
exist, in fact, two types of feasible coloring in G:

1) C is as described just above, i.e., it is of the form:

C= <{517 Uiy, Vigs Vig }izl,.“,q ) {SII-H} Yo {Sm})
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U1 U2 U3 U4 Us Ve

Figure 5.12. The split graph obtained from 3-EXACT COVER-instance
described in [5.33]

2) up to reordering of colors, C' is of the form:

¢ = (‘917 T Sqw SQ4+1’ T SQ4+q3’ SQ4+q3+17 IR SQ4+Q3+Q27
{UZI4+(13+(12+1} P {Um} 7X/) [5.34]
where:
- the ¢4 first sets are of the form: {s;,v;,, iy, vis}, 0 =1,. .., q4;
- the g3 next sets are of the form: {s;,v;,, v, }, i =qa+1,...,q4 + g3;

- the ¢ next sets are of the form: {s;,v;, },i =qa+q3+1,...,q4+ g3 + go:

- the m — (g4 + g3 + g2) singletons are the remaining vertices of K, which
form a color per such vertex;

- X' is the subset of X not contained in the colors above.

We note that coloring C’ = ({s1},...,{sm}, X) is a particular case of [5.34] with
@1 =q2=q3=0.

If C is of Type 1, then for any color {s;,v;,, vi,, iz }. 4 = 1,..., ¢, we take set .S;
in &’. By construction of G, set S; covers elements ~;,, v;, and 7;, of the ground
set I'. The ¢ sets thus selected form a partition on I" of cardinality q.

Let us now assume that C'is of Type 2 (see [5.34]). Note first that, for coloring C’
mentioned at the end of Item 2 above, and forp > 1 — (1/q):

fC)=mp+(1—(1=p)")>mp+q(l-p) —ql—p)*=K [535]

Note first that color X’ (see Item 2) can never satisfy |X’| > 4; a contrario,
using the local optimality argument of Property 5.4, since X' is the largest color,
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coloring C’ would have value smaller than the one of C'; hence the latter value would
be greater than K (see [5.35]). Therefore, we can assume |X'| < 3. In this case, one
can, by keeping the g4 colors of size 4 unchanged, progressively transform the rest of
the colors by successive applications of Property 5.4 in order to create new (possibly
unfeasible) 4-colors. This can be done by moving vertices from the smaller colors to
the larger ones and is always possible since n — 3¢y is a multiple of 3. Therefore,
at the end of this processus, one can obtain exactly g (possibly unfeasible) 4-colors,
the remaining vertices being colored with one color by vertex. Denoting by C” the
“coloring” thus obtained, we have obviously, f(C") = K < f(C).

Therefore, from the discussion above, the only coloring having value at most K is
the one of Type 1, QED. |

Split graphs are particular cases of larger graph-family, the chordal graphs (graphs
for which any cycle of length at least 4 has a chord ([BER 73])).

COROLLARY 5.9.— PROBABILISTIC MIN COLORING is NP-hard in chordal graphs
even under identical vertex-probabilities.

5.6.2. Approximation results

We deal in this section with the approximability of PROBABILISTIC MIN COL-
ORING in split graphs. Let G(K, S, E) be such a graph, where K is the vertex set
of the clique (|K| = m) and S is the independent set (|S| = n). Fix an optimal
PROBABILISTIC MIN COLORING-solution C* = (S5, 55,...,5%.) in G(K, S, E).

LEMMA 5.10— m < k*<m+ 1.

Proof. Since vertex-set K forms a clique, any solution in G will use at least 1 colors.
On the other hand, if C* uses more than m colors, this is due to the fact that there
exist elements of S that cannot be included in any of the m colors associated with
the vertices of K. If at least two such colors are used, then, since both of them are
proper subsets of S (recall that S is an independent set), the local optimality argument
of Property 5.1 would conclude the existence of a solution better than C*, which is a
contradiction. |

Consider first the natural coloring, denoted by C, consisting of taking an unused
color for any vertex of K and a color for the whole set .S (in other words C' uses m + 1
colors for G).

PROPOSITION 5.12.— Coloring C' is a 2-approximation for split graphs under any
system of vertex-probabilities.
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Proof. Denote by C* = (S7,55,...,S}.), an optimal solution in G and assume that
colors are ranged in decreasing-value order, i.e., f(S7) =2 f(S71),i=1,..., k" —1.
From Lemma 5.10, m < k* < m+ 1. If &* = m + 1 and ST is the color that
is a subset of .S, then local optimality arguments of Property 5.2 conclude that C' is
optimal. Hence, assume that ST is a color including a vertex of K and vertices of .S.
For reasons of facility assume also that, upon a reordering of vertices, vertex v; € K
is included in color S}'; also, denote by p;, the probability of vertex v; € K and by ¢;
the probability of a vertex v; € S. Then:

(e = ipi + (1 = H (1- qi)) [5.36]

(s = sz + (1 —(1=p1) H (1—- (Jz)> [5.37]

where [5.37] holds thanks to local optimality arguments leading to Property 5.2, when
we charge color S with all vertices of S. Observe also that:

1-JJ-a) < 1-0-p)]JC-a) [5.38]
=1 =1
1-(1-p)[[0-a) = n [5.39]
=1

Combining [5.36] and [5.37], and using also [5.38] and [5.39], we get:

p1+i§2pi+< ﬁ (1_%)>

e s @_u—mﬁh )

i=1

[5.38] p1+§pi+<1_(1—m)ﬁ(1—qi))

=2 i=1

St (1-a-ma-w)

i=1

ot (1-0-mfla-a)
1=2 1=1
[5.39]
< 14— <9
p1+ ) Di

=2
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and the proof of the proposition is complete. |

We now show the main positive approximation result of this section, namely that
PROBABILISTIC MIN COLORING in split graphs can be solved by a polynomial time
approximation schema, under any system of vertex-probabilities.

THEOREM 5.6.— PROBABILISTIC MIN COLORING in split graphs is approximable by
a polynomial time approximation schema.

Proof.  Consider a split graph G(K,S,E) and some optimal coloring C* =
(S7,85,...) of G, with f(S7) > f(S3) > .... Assume, without loss of general-
ity, that C"* contains:

— some colors built from one vertex of K and some vertices of .S;
— some singletons of vertices of K;

— less than one color all of its vertices belong to .S (by Corollary 5.1); we denote
this color by S;:.

Then the following facts can be derived for the form of C'*:

1) for any ¢ > r, S} is a singleton {k;,} C K;

2) for every ¢ < r, the independent set (color) S is maximal (for the inclusion)
for the graph G; = G[V \ (ST U...U S} ;)] (where, fori =1, S ; =0).

Indeed, for Fact 1, if there exists a color S} = {k;,, s}, s?,...}, fori > r, then by
the local optimality arguments of Corollary 5.1 and given the ordering assumed for the
colors S5, S5, .. ., putting vertices s}, s2,...1in S would improve the value of C*.

On the other hand, for Fact 2, if S} is not maximal for G, there exists a color S;f,
J > 1, some vertices of which can be legally introduced in S;. Given the ordering of
the colors, introduction of these vertices in .S would lead to improvement of the value
of C*. Note now that, one can conclude from Fact 2 that, if S} is not a singleton k;
of K, but it also contains some vertices of S\ (ST U...U S’ ,), then it contains all
the vertices of S\ (S} U...U S} ;) that are not its neighbors. This implies that if
one could know exactly which vertex of K belongs to color S}, then one can exactly
determine any color S}, fori < 7.

Now, given a subset X of k distinct vertices of K, we denote by C'x the set of
the k colors built following the rule of Fact 2. Consider also coloring C consisting of
taking an unused color for any vertex of K and a color for the whole set S (i.e., the
one studied in Proposition 5.12). Revisit the proof of Proposition 5.12 and note that
from [5.37], [5.38] and [5.39]:

FC) = f(C) = f(57) [5.40]
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Consider the following algorithm SCHEMA (it is rather a family of algorithms pa-
rameterized by a constant € > 0):

1) fix an e > 0;
2)setk = [1/e];
3) build and store coloring C' of Proposition 5.12 for G;
4) forany k' € {1,...,k — 1} and any set X C K, such that | X| = k’:
a) construct the k’-coloring C; derived by the vertices of X along the rules of
Fact 2;
b) consider the subgraph of G induced by the still uncolored vertices and built
the coloring C5 of Proposition 5.12 for this graph;
¢) build and store coloring C’ = (C1, Cs);
5) output the best coloring C among coloring C' and the colorings C’ built in
Steps 3 and 4c, respectively.

All executions of Step 4 need at most O(m*) = O(m/1/€!) while an execution
of Steps 4a) and 4b) take at most O(nm). So, the overall complexity of SCHEMA is
in O(nm'*+(1/9), polynomial if € is fixed.

Note first that if » < k, then C'is optimal. Indeed, any subset of K of size r —1 has
been processed during the iterations of Step 4 and any of the colorings C'x obtained
has been completed by the still uncolored part of S (constituting a color) and by as
many colors as the yet uncolored vertices of K. By what has been discussed above,
in Facts 1 and 2 and just after them, one of the colorings so-built and completed is
optimal and has been retained by SCHEMA.

If, on the other hand, r > k, then for the set X*, corresponding to C"*, the col-
oring C'x~ obtained is Cx- = {S7,S55,...,S;_,}. Furthermore, on the subgraph

of G induced by the still uncolored vertices, the coloring Cs obtained is such that
(consider [5.40]):

f(C) < f(Sk,-.,50) + f(SF) [5.41]
where ¢ denotes the number of colors in C*. Using [5.41], we get:
A 1
r(€) <rey+rsn<sen (1+4) <reae

k

In other words, for any € > 0:
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So, for a fixed € > 0, SCHEMA constitutes a polynomial time approximation schema
for PROBABILISTIC MIN COLORING in split graphs. |

Now go back to the proof of Theorem 5.5 and notice that it works for any p >
1—(1/q), where ¢ = n/3. Denote by |G|, the size of G in a suitable encoding. Notice
finally that, given that | X’| < 3, application of the local optimality principle of Prop-
erty 5.4, in the case where the initial instance of 3-EXACT COVER is a yes-instance
(see [GAR 79]), the second best solution, for G is coloring C’ = ({s1},...,{sm}, X)
with value f(C’) = mp+1— (1 —p)"; furthermore, C’ is feasible in any split graph.

Assume that a fully polynomial time approximation schema A, exists for PROB-
ABILISTIC MIN COLORING in split graphs. Consider a graph G, resulting from the
transformation described in the proof of Theorem 5.5 from an instance (S,I") of 3-
EXACT COVER, withp > 1 — (3/n) say p = 1 — (1/w(n)), where w is some poly-
nomial with positive coefficients. Apply A, to G and take as the final solution the best
among the solutions computed by this schema and C".

If (S,T) is a no-instance, then C’ is an optimal solution for G.

Suppose now that (S, T") is a yes-instance. In this case, the best coloring for G has
value K and C’ achieves ratio:

F(C") mp+1—(1-p)"

K mp+q(1—p) —q(1 —p)*
mp+1—(1-p)"
mp+q(1—p)(1—(1-p)3)

mp+1—(1—p)* p(1—p)?

mp+1—(1-p)3* mp+1—(1—p)?

\%

Henceforth, execution of A, on G with € < p(1 —p)3/(mp+ 1 — (1 — p)3) will re-
turn the optimal coloring of G with value K and, in this case, one can safely an-
swer that (S,T") is a yes-instance for 3-EXACT COVER. Notice finally that since
p=1-(1/w(n)), e = 1/mw3(n), ie., 1/e ~ mw3(n). So, A, becomes an op-
timal and polynomial algorithm correctly deciding 3-EXACT COVER.

As a consequence, the following concluding proposition can be immediately de-
rived from the discussion above.

THEOREM 5.7.— Unless P = NP, PROBABILISTIC MIN COLORING on split graphs
cannot be solved by a fully polynomial time approximation schema.
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5.7. Determining the best k-coloring in k-colorable graphs

In what follows we focus on an interesting variant of coloring, the one where we
fix an integer k and wish to determine the best k-coloring in a k-colorable graph. In
particular, we tackle this problem in bipartite graphs and in their complements.

5.7.1. Bipartite graphs

We deal here with the most popular k-colorable graphs, for any k£ > 2, the bipartite
graphs. As previously, we denote by B(V,U, E) a connected bipartite graph with
bipartition V and U and edge-set E. The problem covered in this section, denoted by
PROBABILISTIC MIN k-COLORING in what follows, consists, for a k greater than 2
and smaller than the order n of the input bipartite graph B, of determining the best
among the k-colorings of B (since B is bicolorable, there exists at least one coloring
for any such value of k; on the other hand, an n-coloring of any graph is trivial). We
show that PROBABILISTIC MIN k-COLORING is NP-hard for any k& > 3.

5.7.1.1. PROBABILISTIC MIN 3-COLORING

In order to prove the NP-hardness of PROBABILISTIC MIN k-COLORING, we first
need to prove an initial completeness result about PROBABILISTIC MIN 3-COLORING
that will serve us as a basis. Obviously, PROBABILISTIC MIN 3-COLORING consists
of determining the best among the 3-colorings of a bipartite graph B. We denote by
PROBABILISTIC MIN 3-COLORING(K) the decision version of PROBABILISTIC MIN
3-COLORING, i.e., the one where for some constant K, we search for determining if
there exists a 3-coloring of B with a value at most K. We first prove that PROBA-
BILISTIC MIN 3-COLORING(K) is NP-complete. Then, we extend the gadget that we
use for this proof and we use properties of it in order to form a recursive argument
helping us to show that PROBABILISTIC MIN k-COLORING is NP-hard for any k.

PROPOSITION 5.13.— PROBABILISTIC MIN 3-COLORING(K) is NP-complete.

Proof. PROBABILISTIC MIN 3-COLORING(K) is obviously in NP. The complete-
ness will be proved by reduction from the following precoloring extension problem,
called 1-PREXT (shown to be NP-complete in [BOD 94]): “given a bipartite graph
B(V,U, E) with |VUU| > 3 and three vertices vy, va, vs, does there exist a 3-coloring
(51,52, 55) of B such that v; € S; fori =1,2,3?".

Consider an instance B'(V,U’, E’, v, va,v3) of 1-PREXT and note that we can
assume that vy, v, v3 all belong either to V or to U’; in the opposite case it is easy
to see that 1-PREXT is polynomial. Suppose that vy, vs,v3 are in V. We transform
B'(V,U’, E’,v1,v2,v3) into an instance of PROBABILISTIC MIN 3-COLORING(K)
in the following way:
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—add in U’ three new vertices w1, us,us and set U = U’ U {uy,us,uz}; add
in E' the edge-set E” = {v;u; : 4,7 = 1,2,3,4 # j}andsett E = E' U E” and
B =B(V,U,E);

— the probability vector Pr is as follows: p(u1) = p(v1) = €, p(uz) = p(v2) = €2,
p(uz) = p(vg) = €3, fore < 1/10, p(v;) = 0,v; € (VUU)\ {vi,u; 1 i =1,2,3};

—set K = 2¢+ ¢2 + 23 — e — €5,

Obviously, the transformation of B’ into B can be performed in polynomial time.

We claim that (B, Pr, 3, K) has a 3-coloring with functional at most 2¢ + €2 + 2¢3 —

e* — €% if and only if we can 3-color B'(V,U’, E', v1, ve,v3) by assigning any of

v1, V2, v3 With a distinct color.

U1 V2 U3

Ul (5 us

Figure 5.13. The graph M3 3 = B[{v;,u; : i = 1,2,3}]

U1 (%] V3

Uy U2 Uus

Figure 5.14. The 3-coloring C* restricted to M373;
E(B,C*) =2+ € +26% — ¢t — ¢°
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U1 V2 U3 U1 V2 U3
Ui U2 us Uy U2 us

(@) E(B,C) =2¢+2e% —¢* — 5 + €6 (b) E(B,C) = 2¢+2e? + €3 —e* — 265+ €6
U1 V2 U3 U1 V2 U3

Z N\

U Uz us Uy Uz us
(c) BE(B,C) = 2e+2€e?+¢3—2¢* — b 4 €8 (d) E(B,C) = 2¢ + €2 + 2¢€3 — 2¢°
U1 U2 U3 U1 V2 U3

N 7
z N\

Uy U2 us Ui Uz us
(e) E(B,C) = 2¢ + 2¢2 4 2¢3 — 3¢* (f) BE(B,C) = 2¢ +2€2 — 6

Figure 5.15. The 6 distinct-value non-optimal 3-colorings of
B[{vi,u; : ¢ = 1,2, 3}] with the values of the functionals associated
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It is easy to see that the contribution of any vertex in (VUU)\{v;,u; : i = 1,2,3}
in any coloring of B is null. Denote by M3 3 the graph B[{v;,u; : i = 1,2, 3}] (this
graph is a kind of bipartite complement of a perfect matching on 3 edges, in our case
on edges v;u;, ¢ = 1,2,3) and observe that the (non-zero) value of any coloring
of B is value of some coloring of M373. In Figure 5.13, the graph ]\_4373 is shown.
Observe also that the value of K, introduced in the third item above, corresponds to a
3-coloring C* of B taking {v;, u;}, % = 1,2, 3 in the same color, say S;; this coloring
has functional equal to 57, (1—(1—¢*)?) = 2e+¢2+2¢3 —* —¢5. In Figure 5.14, the
optimal functional-value 3-coloring C* restricted to Mj 3 is presented. By a simple
inspection of any other 3-coloring C' of B (there exist seven distinct functional-value
colorings), one can easily see that the functional of C is, for ¢ < 1/10, greater than
the functional K of C*. In Figure 5.15, the other non-optimal 3-colorings of M3 3 are
illustrated.

So, if a 3-coloring C'* of B is polynomially computed with functional K = 2¢ +
€2 + 263 — €* — €9, then C* restricted to Mg,g is in the form of Figure 5.14 (recall
that the contribution of the vertices of (V U U) \ {v;,u; : i = 1,2, 3} in any coloring
of B is 0). Consequently, C* 3-colors the vertices of B’ by assigning a distinct color
to each of vy, vg, v3.

Conversely, if a 3-coloring assigning a distinct color, say S1, So and S5 to each
of vy, v9, v3, respectively, is computed for B’, then (S7 U {u;}, SoU{us}, SsU{us})
is a coloring for B with functional K = 2¢ 4 €2 4 2¢% — ¢* — 5.

REMARK 5.2.— The functional of the (unique) 2-coloring of B[{v;,u; : i = 1,2, 3}]
(figure 5.16) has value 2(e+¢€2 —€* —€® +€0) > 2e+ €2 +2¢% —€* — €5, for e < 1/10.

U1 V2 V3

Ui U2 us

Figure 5.16. The 2-coloring of B[{vi, u; : i = 1,2, 3}] with functional of
value 2(e + 2 — ¢* — ® + €%)

So, the following theorem concludes the discussion of this section.
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THEOREM 5.8.— PROBABILISTIC MIN 3-COLORING is NP-hard.

5.7.1.2. PROBABILISTIC MIN k-COLORING for k > 3

We now consider PROBABILISTIC MIN k-COLORING, where we look for the best
k-coloring for any k € {4,...,n} and its decision version PROBABILISTIC MIN k-
COLORING(K). We will establish that PROBABILISTIC MIN k-COLORING(K) is NP-
complete for any such k.

Consider a bipartite complement of a perfect matching with k edges3.

The NP-hardness of PROBABILISTIC MIN k-COLORING is based upon the follow-
ing proposition.

PROPOSITION 5.14.— Consider Mk,k and assume that there exists a vertex-proba-
bility system Pr with p(v;) = p(w;)) = pi, pi # pj, 4,J = 1,...,k, such that,
for any i, 3 < i < k, the functional of a vertical coloring of any subgraph M, ;
of M, i,k IS (strictly) smaller than the functional of the 2-coloring of Mi,i. Consider a
k-coloring C of My, i with value equal to Zle (1 — (1 —p;)?). Then this coloring is
vertical, i.e., of the form {{v;,u;} : i = 1,...,k} and the functional associated with
it is the smallest over the functional of any feasible coloring of M, koo ke

Proof. Set C' = (S4,...,Sk), and remove vertices vy and wuy from Mk,k together
with their incident edges, in order to obtain graph Mj,_1 x—1. Then, the following
three cases can appear: (a) M %k—1,k—1 remains colored with & colors; (b) M k—1,k—1 1S
colored with k& — 1 colors, i.e., one color is removed from C; (¢) M, %k—1,k—1 is colored
with £ — 2 colors, i.e., two colors are removed from C.

Study of case (a): Mk,17k71 remains colored with k colors

By Item 3 of Lemma 5.5, vj, and uy, belong to two distinct horizontal colors, say S1
(C V) and Sy (C U), respectively. Assume now that C' = (S7,...,Sk) has m
horizontal and k—m vertical colors. Assume also that, up to a reordering of the colors,
the m first ones are horizontal and the k£ — m last ones are vertical; in other words, the
vertical colors in C are S; 1 = {v;,u;},i =m,..., k — 1 (both v, and uy, belong to
horizontal colors). Under this assumption, the graph induced by S;U. . .US,,,, denoted
by M, and the one induced by S,,, 41 U ... U Sy, denoted by M3}, are both bipartite
complements of a perfect matching on vertex-sets {v;,u; : 4 =1,...,m — 1,k} and
{vi,u; : i =m, ..., k—1},respectively. Set C] = (S1,...,Sm)and C) = C\C] =
(Sm+1, - - -, Sk) and note that:

E (Myx,C) = E (M{,C}) + E (M}, C5) [5.42]

3. As we have seen in section 5.4.3, such a graph is a bipartite graph B(V, U, E) with |V| =
|U| = k and with E = E(Bi,x) \ {viwi,v; € V,u; € Ui = 1,...,k}, where by By i we
denote the complete bipartite graph with |V | = |U| = k.



Probabilistic Minimum Coloring 169

By Item 4 of Lemma 5.5, the first term of [5.42] is (strictly) greater than the value
of the 2-coloring of M that by the assumption of the proposition is (strictly) greater
than1— (1 —pg)2+ > 10 '(1— (1 —p;)?). Consequently, the assumption of case (a)
is in contradiction with the value of the coloring C' assumed; in other words case (a)
cannot occur under the hypothesis of the proposition. The proof of case (a) is now
complete.

Study of case (b): Mk_Lk_l is colored with k — 1 colors

One color, say Sy, is removed from C' with the removal of {vj,u;}. Denote
by C' = (S1,...,Sk—_1) the coloring so obtained. Two subcases may appear here:
(b.1) both vy, and uy, belong to Sy and (b.2) vy, and u belong to two distinct colors.

Study of subcase (b.1): both vy, and uy, belong to Sy,

Since {vg, ux } belong to the same color Sy, by Item 1 of Lemma 5.5 stated above,
no other vertex can simultaneously belong to it. In this case, the value of C’ is
Z;:ll (1 — (1 — p;)?) and the proof of subcase (b.1) is complete.

Study of subcase (b.2): vy, and uy, belong to two distinct colors

Assume that one among vy, ug, say vk, belongs to a color in C’, say Sy; then uy
is a color by itself, i.e., Sy = {ux}. By Item 3 of Lemma 5.5, S; is horizontal.

Assume as previously that coloring C7 = (51, .. ., Sp,) is horizontal (S, is one among
Sis.. . Sp) and that Cy = (Spy1,...,Sk—1) is vertical, denote by Mj and M},
the subgraphs of M}, ;. induced by the vertex sets S; U ... U Sy, and Sy,4q U ... U

Sk—1, respectively, and note that both of them are complements of perfect bipartite
matchings. Note also that [5.42] always holds. Then, exactly the same arguments as
for case (a) conclude that C is dominated by the 2-coloring of M { that is dominated
by the (unique) vertical of this graph. Consequently, the assumption of subcase (b.2)
is in contradiction with the value of C' claimed in the proposition’s statement; in other
words, subcase (b.2) never occurs. The study of subcase (b.2) is now complete.

Study of case (c): Mk—l,k—l is colored with k — 2 colors

Here, vy, and uy, are two distinct colors by themselves, say Si_; and Si. Then, by
application of Corollary 5.1, these colors can be mixed into one (vertical) color thus
improving the functional which from Z (1 —(1—p)?)+ 2pk now becomes (after
the merging of the two colors) 3% (1 — (1 —pi)?) < P21 — (1= pa)?) + 2ps,
contradicting so the assumption of the proposition on the value of coloring considered.
Once more, case (¢) cannot occur and its proof is complete.

In all we have proved that, under the assumptions made, only subcase (b.1) can
hold. Moreover, from the proofs of Ehe cases (a), (b) and (c), one can immediately
deduce that the vertical coloring of Mj, ;, is the one with the smallest functional over
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any other feasible coloring of M, k,k- An easy backwards induction finally shows that
the claims of the proposition remain valid for any £ > 3 and this completes its proof. il

A vertex-probability system satisfying Proposition 5.14 really exists. Indeed, the
following lemma states that there exists a probability system for the vertices of a
bipartite graph M, %,k such that, for any 4, 3 < i < K, the functional of a vertical
coloring of any subgraph M; ; of M}, . is smaller than the functional of the 2-coloring
of MH The proof of this lemma can be found in section 5.9.5.

LEMMA 5.11.— Consider a bipartite graph M,, ,,, set V = {v1,...,v,} and U =
{u1,...,un} both sets ranged in decreasing vertex-probability order. Set p(v;) =
p(u;) = €, for e < 1/3. Then, this vertex-probability system verifies Proposition 5.14.

Lemma 5.11 guarantees henceforth that Proposition 5.14 is feasible. We use it in
order to face the main complexity result of this section, namely that PROBABILISTIC
MIN k-COLORING(K) is NP-complete, for any k& > 3.

THEOREM 5.9.— PROBABILISTIC MIN k-COLORING(K) is NP-complete.

Proof. Our problem is obviously in NP. On the other hand, in Proposition 5.13, we
have proved that PROBABILISTIC MIN 3-COLORING(K) is NP-complete even for bi-
partite graphs, B’ having the following three additional characteristics:

(a) only six vertices v;, u;, i = 1,2, 3 of B’ have non-zero probabilities;
(b) the subgraph of B’ induced by these six vertices is a Mg,g;
(©) pi = p(v;) = p(u;) = €', i = 1,2, 3, for a suitable ¢, for example e < 1/10.

We reduce PROBABILISTIC MIN 3-COLORING(K') to PROBABILISTIC MIN k-
COLORING(K). We consider an instance B’ of the former, where B’ fits character-
istics (a) to (¢) and K’ = Z?:1(1 — (1 — p;)?), and construct an instance B of the
latter as follows: we put B’ together with a Mj,_3 ;_3; we link the vertices of V' (B’)
with the ones of U(Mj_3_3) in such a way that the graph induced by V(B’) U
U(My.—3 —3) is a complete bipartite graph; we do so with U(B’) and V (Mj_3 . _3).
We set V(Mk,:;’k,g) = {’U4, . Uk}, U(Mk,;),}k,g) = {U4, . ’U,k} andpi = p(vi) =
p(us) = €, i =4,... k. Finally, we set K = S5 (1 — (1 —p;)?).

By what has been discussed previously, around Proposition 5.14 and Item 1 of
Lemma 5.5 (a vertical color on v; and u; cannot have vertices other than these two
ones) and by the fact that the contribution of any other vertex of B’ in the functional of
any coloring is 0, one can immediately deduce that B has a k-coloring with functional
at most K = Zle (1 — (1 — p;)?), if and only if B’ has a 3-coloring with functional
atmost K’ = 5% (1 — (1 — p;)?), QED. ]
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5.7.1.3. Bipartite complements of bipartite matchings

We now revisit bipartite complements of bipartite matchings, denoted by 1\7[”77,,,
already seen in section 5.4.3. We first make the following preliminary comment that
indeed is a recall of Property 5.4.

REMARK 5.3.— An immediate consequence of Property 5.4 is that the larger the
large colors, the better the value of the coloring. In other words, in the case of equal
probabilities, good colorings are the ones where there exist some very small colors and
some other very large ones. Let us call such colorings unbalanced colorings (in other
words, an unbalanced coloring is a locally optimal coloring). If one could produce a
k-coloring having, say, a very large color and k£ — 1 singletons, this coloring would be
the best among all the k-colorings of the graph, i.e., the best between the colorings of
some size is the most unbalanced one. Conversely, the worst coloring is, in the case of
identical probabilities, the most “balanced” one, i.e., the one where all the colors have
the same size.

We are ready now to prove the following proposition.

PROPOSITION 5.15.— Assuming identical vertex-probabilities, PROBABILISTIC MIN
k-COLORING is polynomial in bipartite complements of bipartite matchings.

Proof. Assume first that £ > n + 1 and set for facility k = n + x. Colorn — z + 1
vertices, say, of U with the same color and then color the n + x — 1 still uncolored
vertices using an unused color for any of them.

Assume now k& < n. Color, say, U with one color. Color n — (k — 2) vertices of V/
with another color and then color the remaining k& — 2 vertices of V' using an unused
color for any of them. Following Remark 5.3 of section 5.7.3, in both of the cases
discussed, the colorings produced are the most unbalanced ones, hence optimal. |

5.7.2. The complements of bipartite graphs

We now revisit the complements of bipartite graphs, seen in section 5.5. Note
first that, assuming identical vertex probabilities, arguments very similar to those
in section 5.5 show that in the complement B of any bipartite graph B of order n,
x(B) = n — |M|, where M is a maximum (cardinality) matching of B’, where B’
is as above. Dealing with complements of bipartite graphs, PROBABILISTIC MIN k-
COLORING makes sense if &k > n — |M|.

THEOREM 5.10.— For any k > n — | M|, PROBABILISTIC MIN k-COLORING is poly-
nomial in the complements of bipartite graphs, under any vertex-probability system.

Proof. Note first that the discussion in section 5.5 exhibits the following facts dealing
with any feasible k-coloring C' of B:
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1) the 2-colors of B constitute a matching of B’;
2) the number Y of 2-colors of B verifies o = n — k;
3) BE(B,C) = Y"1 pi — >_}2, pi,pj, (see also Lemma 5.9).

A combination of Facts 1 to 3 concludes that, for a given k, in order to determine
the best k-coloring in B, one has simply to compute the maximum-value matching
(among those) of size Yo = n — k in B’.

Recall that computation of a maximum matching in a bipartite graph B’ reduces
to computation of a maximum integral flow in a transportation network N’ (see Ap-
pendix A.2), derived from B’ ([EVE 79]). Indeed, given B'(U,V, E(B’)), one adds
two new vertices, a source s’ and a sink ¢, one links s’ to any vertex u of, say, U by an
arc (s',u), and any vertex v in V to ¢ by an arc (v,t) and transforms edges in E(B’)
into arcs by orienting them from U to V. One sets lower bounds of all of the arcs
to 0; capacities of arcs are set as follows: an arc of type (s’,u) or (v,t) is assigned
with capacity 1, while arcs derived from E(B’) are assigned with capacity co. Note
also that, as one can see from the proof of [EVE 79], any feasible flow ¢ of the so
constructed transportation network N’ corresponds to a matching with size equal to
the value |¢| of ¢.

Now, in order to compute a matching of size, say m’, one can modify N’ by adding
anew source s and by linking it to the former source s’ by an arc (s, s’) of capacity m’
(and of lower bound 0). Let us denote by N the new network thus derived. Then, by
arguments completely analogous to the ones in [EVE 79], the problem of computing
a flow of maximum value m’ in N amounts to computation of a maximum flow in N
which, as observed above, allows computation of a maximum matching, i.e., of a
matching of cardinality m’ in the original bipartite graph B’.

However, our problem is to compute a maximum value matching among the ones
of a fixed cardinality, say m’ in an edge-valuated bipartite graph B’. Obviously, the
construction of an edge-valued transportation network N can be performed as above
by maintaining the same values on the arcs derived from F(B’) and by assigning
value 0 on any other among the arcs added. Denoting by w the vector of the weights
on the arcs of N, our problem then becomes:

{ max ¢-w

subject to ¢ is a feasible flow of value m’ in N

that, by very simple arguments of linear algebra, is equivalent to the following prob-
lem:

{ min ¢ - (—w) (5.43]

subject to ¢ is a feasible flow of value m’ in N
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Note now that Busacker’s and Gowen’s algorithm ([GON 85]), that works for
weights of any sign, determines in polynomial time an optimal solution for the prob-
lem expressed by [5.43] (i.e., the one of determining a minimum-cost flow of a fixed
value in a transportation network).

Consequently, given a bipartite graph B’ (constructed from B as in the discussion
before Theorem 5.4), one transforms it into a weighted one (B’, W) by weighting any
edge (vi, u;) by p;p;. Then, one transforms (B’, W) into a weighted transportation
network (N, wy) as described above and then one applies the minimum-cost fixed
value flow algorithm of Busacker and Gowen. By what has been discussed, this al-
gorithm polynomially solves PROBABILISTIC MIN k-COLORING in complements of

bipartite graphs, QED. |
U1 Ui
() U2
U3 us
Vg Ugq
Us us

(a) A bipartite graph

Us
Us
(b) The derived transportation network

Figure 5.17. A counter-example for the greedy (Kruskal-type) algorithm for
computing a maximum-cost flow of fixed value
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A question that should be addressed here is whether a simpler algorithm, for in-
stance the greedy one, consisting of building a matching of size m’ by using the m/’
heaviest edges that can form a matching (i.e., a strategy analogous to the one of
Kruskal for minimum spanning tree ([KRU 56])), could be used to derive the result
of Theorem 5.4. We show that this kind of procedure does not work for our prob-
lem. Consider the graph B’ of Figure 5.17(a) with edge-weights: w(v1,u1) = 100,
w(vy,uz) = 1, w(vg,ug) = 2, w(ve,ug) = 9, w(vs,uz) = 9, w(vs,usz) = 10,
w(vg, uz) = 1, w(vg, us) = 100, w(vs, uz) = 2, w(vs, us) = 1, and the network N
derived from it, shown in Figure 5.17(b) together with a flow of (maximum) value 210
and of size 3 (heavy-drawn arcs); recall that the capacity of the arc (s, s’) is 3, for
our case, and the weights on the additional arcs are all equal to 0. If one tries to
construct a maximum-value flow of size 4, then the greedy algorithm would have
used arcs (vi,u1), (v4, us), (v3,us) and (ve, us) (resulting in a flow of size 4 and of
value 212), while there exists a flow of size 4 with value 218. It is obtained by re-
placing arc (vs, u3) (of weight 10) in Figure 5.17(b) by the arcs (va, u3) and (vs, usz)
(both of weight 9).

On the contrary, such a simple algorithm is feasible when B has identical vertex-
probabilities. In this case, all the colors of size 2 have the same value; the same holds,
obviously, for the colors-singletons. Hence, all the colorings using 2 2-colors and 1
singleton-colors, i.e., n — X2 colors, have the same functional’s value. Suppose now
that we ask for determining the best k-coloring of B for k = n—|M|+x and for some
x < |M|. Then, starting from a maximum matching M of B’, one can split any x
independent sets of size 2 into 2x singletons. This new configuration corresponds,
with respect to B, to a coloring of size k = n — | M| + .

5.7.3. Approximation in particular classes of graphs

Let us restrict ourselves in graph-classes where the minimum coloring problem is
polynomial and assume that the graphs considered have identical vertex probabilities,
denoted by p.

Consider a k-colorable graph GG, an optimal (deterministic) coloring C of G and
denote by k its cardinality. Then, one can split some colors in order to produce a
k-coloring. A possible way for doing this is, for example, to create k — k new sin-
gletons by “emptying” the smaller colors of C (note that, since we deal with identi-
cal probabilities, the smaller the color, the smaller its weight). Denote by C' the so-
obtained coloring and by C* a minimum-functional one. Then, by Remark 5.3 (sec-
tion 5.7.1.3), the following inequalities hold for E(G, C) (in fact, for any k-coloring)
and F (G, C*), respectively:

k
E(G,C) < Y (1-(1-p)¥) [5.44]

=1
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EG,C*) > (1-(1-p)" Y +(k-1)p [5.45]

Note that n/k < n — k + 1. Then, combination of [5.44] and [5.45] and some ob-
vious algebra derives E(G, C)/E(G,C*) < 1/p. So, the following corollary holds.

COROLLARY 5.10.— PROBABILISTIC MIN k-COLORING is approximable within ap-
proximation ratio 1/p in graphs with identical vertex-probabilities, where the mini-
mum coloring problem is polynomial. In particular, if p is fixed, then PROBABILISTIC
MIN k-COLORING belongs to APX.

Note that, using [5.4], an approximation ratio n/k is immediately derived for any
k-colorable graph of order n with identical vertex-probabilities, where a k-coloring
can be computed in polynomial time. Furthermore, the discussion just before [5.44]
remains valid. So, the following corollary holds.

COROLLARY 5.11.— PROBABILISTIC MIN k-COLORING is approximable within ap-
proximation ratio n/k in graphs of order n with identical vertex-probabilities, where
the minimum coloring problem is polynomial. In particular, if n/k is fixed, then
PROBABILISTIC MIN k-COLORING is in APX.

Let us notice that the result of Corollary 5.11 identically holds for PROBABILISTIC
MIN COLORING.

5.8. Comments and open problems

Table 5.1 summarizes the main results and open questions dealing with PROB-
ABILISTIC MIN COLORING, arising from the chapter, while Table 5.2 does so for
PROBABILISTIC MIN k-COLORING. Obviously, some of these results have several
important corollaries (both tables are given at the end of the chapter). For instance,
the fact that PROBABILISTIC MIN COLORING is polynomial in trees with bounded de-
grees and a fixed number of distinct probabilities has as a consequence that it is also
polynomial in paths with a fixed number of distinct probabilities. Also, since PROBA-
BILISTIC MIN COLORING is approximable within ratio 8/7 in general (i.e., under any
system of vertex-probabilities) bipartite graphs, it is so in general trees, paths and even
cycles.

What has been discussed in this chapter further confirms what we have claimed in
Chapter 1 about the nature of probabilistic combinatorial optimisation problems. As
we have quoted there, for these problems, even the simplest modification strategies
may radically change their complexities with respect to their deterministic counter-
parts. PROBABILISTIC MIN COLORING is a very typical witness of this claim. In its
deterministic version it is polynomial for both bipartite and chordal graphs, as well



Graph-classes ‘ ‘ Complexity Approximation ratio
General graphs NP-hard O(nloglogn/log®?n)
Bipartite graphs ? 8/7
Bipartite graphs, p; > 0.5 Polynomial

Trees ?

Trees, bounded degree, k distinct probabilities Polynomial

Trees, all leaves exclusively at even or odd level, identical p;s Polynomial

Stars Polynomial

Paths ?

Cycles ?

Even cycles, odd cycles, paths, p; identical Polynomial

Bipartite complements of bipartite matchings Polynomial

Complements of bipartite graphs Polynomial

Split graphs

NP-complete even for p; identical

1+e¢ foranye >0

Table 5.1. Summary of the main results of the chapter for PROBABILISTIC
MIN COLORING
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Graph-classes Complexity Approximation ratio
Bipartite graphs NP-hard, for any k& > 3 ?

Bipartite complements of bipartite matchings ? ?

Bipartite complements of bipartite matchings, p; identical Polynomial

Complements of bipartite graphs Polynomial

Table 5.2. Summary of the main results of the chapter for PROBABILISTIC

MIN k-COLORING
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as for many other graph-classes (see [GAR 79] for more details). In its probabilis-
tic version under the most simple, natural and intuitive modification strategy, the one
considered in this chapter, it becomes hard for bipartite graphs. Furthermore, even if
we restrict ourselves to the case of identical vertex-probabilities, no obvious technique
seems to lead to polynomial results, even for general trees. On the other hand, if we
assume distinct probabilities, the complexity of the problem remains unknown even
in the simplest graph-structures such as chains or cycles.

This, to a large extent, is due to the functional associated with the strategy con-
sidered. While such a strategy applied to probabilistic independent set (Chapter 2), or
to probabilistic vertex cover (Chapter 3), or even to probabilistic longest path (when
measured in terms of vertices; Chapter 4) leads to weighted versions of the corre-
sponding deterministic problems, this is not the case for PROBABILISTIC MIN COL-
ORING. Here, as we have seen, the weight of an independent set is not an additive
function and this ensures that MIN PROBABILISTIC COLORING becomes very particu-
lar and much harder than the probabilistic problems covered in the previous chapters.
But such phenomena are precisely the beauty and the challenge of the probabilistic
combinatorial optimization.

5.9. Proofs of the different results

5.9.1. Proof of [5.5]

For the left-hand side of [5.5], observe first that it is true for £ = 1 and suppose it
true for £ = k, i.e.:

o= Y ppy<t—[J-p) [5.46]
i=1

i=1 j=i+1 i=1

Suppose now that £ =  + 1. Expression [5.46] implies [ (1 — p;) < 1 —
Dy Pi A+ Dy 2—s4q Pipj- Multiply both terms of the last inequality by (1 —
Pr+1); then:

Kk+1
H (1 - pi) < 1- sz + Z Z Dipj pn—i—l)
=1 =1 j=141

= lepﬁZszpg Pr+1

=1 j=141
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+ Prt1 sz pﬁ+1z Z Pip;

1=1 =141
K+1 K+l Kk+1
— 1—sz+z > pivj - pﬁﬂz Z pip;
i=1 j=i+1 i=1 j=i+1
r+1 r+1 k+1
< 1- sz + Z Z PiPj
=1 j=i+1

which proves the left-hand side inequality in [5.5]. For the right-hand side, we prove
by induction on ¢ that Hle(l —pi)=1- Zle p;. This is clearly true for £ = 1;
suppose it also true for £ = r, i.e., [[_;(1—p;) > 1—=>"" | p;. Then, by multiplying
both members of this inequality by (1 — p.+1), we find that the product obtained is

equalto 1 — pey1 — Z?=1 Pi + Dr+1 Z?:l pi=1-— Z’{Jrll Pi, QED.

5.9.2. Proof of [5.4]

Consider again quantity ] — p;) and note that simple mathematical argu-

ments derive:

vGS

IT G=p) = expS > log(1—pi)

v; €S v; €S

= exp{ — > log (ﬁ) [5.47]

’UiESj

Consider function f(x) =z —log(1/(1 — z)) = = + log(1 — x); it is decreasing
with € [0,1] and, moreover, f(0) = 0. Therefore, f(z) < 0, in other words,
p; < log(1/(1 — p;)). Using this inequality together with [5.47], we get:

k
> Z 1 —expg — Z Di [5.48]
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On the other hand, HU es, 1-p) < (- pmin)‘sjl < 1 — pmin. Summing for
7 =1tok, we get:

k k
G C = Z 1-— H 1 _pz) = mein = kpmin
j=1 j=1

v €S}

Note now that E(G,C) = Zle (1— Hviesj (1—p;)) < k. Furthermore, observe
that 1 — p; > 1 — pmax; hence, Hu,-esj(l — i) = (1 = pmax)!5l. Let us prove that,
for any £ > 0, (1 — pmax)? = 1 — pmax. This inequality is obviously true for £ = 1.
Suppose it is true for £ < k; in particular, for £ = k we have: (1—pmax)” = 1—EPmax-
At range k + 1 we have: (1 — poax)®™ = (1 — &pmax) (1 — Pmax) = 1 — (5 +
1)Pmax + KP2ax = 1 — (k4 1)pmax and the inequality claimed holds for any ¢. Using
it for |Sj|9.] = la k we have Hv €S; ( pz) 2 (1 _pmax)wj‘ 2 1- |Sj |pmax,
that implies 1 — Hvies,(l —pi) <15 \pmax. Summing it for j = 1,...,k, we get

(G C) Z] 1(1 H’U,-ESj(l - pl)) < Z§=1 ‘S] |pmax = NPmax-

5.9.3. Proof of Property 5.1

Between colorings C and C' the only colors changed are S; and S;. Then:
F(C) = £(C) = F(8) = f(Si) + £ (S)) = F(S)) [5.49]
Set now:

RS i

j = J\Wr) U

S” = Si\{z} = Si\{y} [5.50]
Sé/ = S\ {y}

Then, using notations of [5.50], we get:

f(8) = f(S) =
1-(=p) [[ C=pr) =1+ =p) J] @ =pn)

v €S R €SY

= (y—po) [ (1=pn) [5.51]

’L)h,Esgl
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Similarly, we get:

F(S5) = F(S5)=e—py) [[ 01=pn) [5.52]

Vh GS}/

Using [5.51] and [5.52] in [5.49], we get:

FEY=fC) =wy-po) | TT Q=pn)= [ 1 =pn) [5.53]

’UhES;/ ’UhES.;/

Recall that, by hypothesis, we have f(.S;) < f(5;) and p, > p,; consequently, by
some easy algebra, we achieve [[, o/ (1 —ppn) — [, c5/(1 —pn) > 0 and, since
! !

Py — P2 < 0, we conclude that the right-hand-side of [5.53] is negative, implying that
coloring C’ is better than C, QED.

5.9.4. Proof of Proposition 5.2

If prin > 0.5, then, for any color .S; of any coloring C” of B, 1 > f(S;) > 0.5.
Hence, for any feasible coloring C’ of B, f(C") > 0.5|C’| > 0.5. On the other hand,
as f(C) < 2, the optimal coloring can never use more than 3 colors. So, in a first
instance, an optimal coloring of B uses either 2 or 3 colors.

Consider any 3-coloring C’ of B. Due to Properties 5.1 and 5.2, the best 3-coloring
ever reachable (and possibly unfeasible) is coloring C” = (SY,S%,SY) assigning
color S to a vertex of B with lowest probability (denote by v such a vertex), color S5
to a vertex with the second lowest probability (denote by p ;, this probability and
by v’ such a vertex) and color S¥ to all the other vertices of B. It is easy to see that
F(S%) > f(S5) = f(S7). More precisely:

f(SY) = Pumin [5.54]
f(Sé/) = p;nin = Pmin [555]
f(Sé/) 2 p;nin P Pmin

Using [5.54] and [5.55] and the fact that p.,;, > 0.5, we get:

F(ST)+ £(S9) = 2pmin > 1 [5.56]
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We will prove that f(V') + f(U) < f(S7) + f(S5) + f(S%). For this, we distin-
guish the following four exhaustive cases, depending on the fact that v and v’ belong
toV,orto U:

DveVandd €U,
2)v e Uandd €V,
v, eV
4,0 el.

We will examine Cases 1 and 3 as Case 2 is exactly specular to the former and
Case 4 to the latter.

For Case 1, using [5.54], [5.55] and [5.56], one has to show that:

1+1-— 11 (1-p)=2- 11 (1—p;)

v, €(VUU)\{v,v'} v; €(VUU)\{v,0'}
> 1-JJa-p)+1- ] Q=p)
v; eV v; €U
= 2-J]a-p)- [ @-p) [5.57]
v; eV v, €U

or, equivalently:

(1=p)— (0 =pm) [[ (-p)

v; E(VUU)\{v,v"} v, €V\{v}

- (=pw) JI Q-p)<0 [5.58]
v, €U\{v'}

SetI't = ][, ey oy (1=pi) and T2 = I, ci7\ (o} (1=pi)- Then, [5.58] becomes:
[T — (1 = pmin) T1 = (1 = prin) T2 <O [5.59]

Taking into account that 1 — p,sn, = 'y and 1 — pl ... = Ta, [5.59] becomes
I'?24+T3-TI'y = (I'y —T9)2 4+ Ty > 0, that is always true. The proof of Case 1
is complete.
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We now analyze Case 3. By analogy with [5.58], we have to show that:
IIT =)= =pun) A =pu)  [[  (—p)
v, €(VUU)\{v,v'} v; €V \{v,v"}

- JJa-p)<o [5.60]

v, €U

Set this time I'; = HUiEV\{U U,}(l —p;)and Iy = HvieU(l — p;). Then, [5.60]
becomes:

[T — (1= pin) (1 — pryin) T1 — T2 <0 [5.61]

or, equivalently I's(I'y — 1) < (1 — pmin) (1 — Pl ) T'1, which is always true since the
left-hand quantity is negative and right-hand one is positive. This completes the proof
of Case 3 and of the proposition.

5.9.5. Proof of Lemma 5.11

We fix a k < n and we show that for any isomorphic My, ;. of M, ,, the functional
of a vertical coloring of M, 5, is smaller than the functional of the 2-coloring Mj, ;.
Order the vertices of M}, ;, in decreasing order of probabilities and, without loss of

generality, set Vi, = {vk,, ..., vk, } and Uy = {ug,,. .., ug, }. We will compute an €
such that, if we set p; = p(v ) = p uz) =€, q = 1,...n, and if we assume a vertical
coloring C, = {{vg,, uk, } : .., k} for My, 1, then:
k k
S (1--p)?) <2-2][(0 - ) [5.62]
i=1 i=1

For the left-hand side of [5.62] we have: 31 (1 — (1 —pg,)?) = 23 pi, —
Zle p%i. For the right-hand side of [5.62], we get, using the first inequality of [5.5]:
2-2 Hle(l —Pr;) = 2 Zle Dk, — 2 Zle Z?:i_u Pk, Pk, Using this last ex-
pression, in order to prove [5.62], it suffices to compute py, such that 2 Zle Dk; —

k k k k
Zi:l p%i <2 Z¢=1 Pr;, — 2 Zi=1 Zj=i+1 Pk; Pk, OL:

> oni, =2 Zpk Z Pr; [5.63]

=1 J=i+1
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Fix k; € {1,...,k}; suppose that vertex vy, € V}, corresponds to vertex vy € V
(¢ > k;) and recall that vertices are ranged in decreasing probability-order. We want to
compute py, (of the form €” for some integer € 1,...,n), in such a way that [5.63]
is satisfied, i.e., pg, > QZ?ZHkaj. Obviously, 22§:i+1pk,- < ZE;LHij;
therefore, we want to compute e such that pp, = ¢ > 2 Z;‘l:e 41 €. The right-
hand side of this inequality is a geometric series with ratio e. Its value is (e/T! —
e"*t1)/(1 — ¢€); so, we compute € such that €/ > 2(¢F1 — 1) /(1 —¢), 0or 1 >
2(e — 1) /(1 — ¢€). Function £ — (¢ — €"~“*1)/(1 — ¢) is decreasing with /;
50, 2(e — " 1) /(1 — €) < 2(e — €")/(1 — €). So, we compute ¢ satisfying 1 >
2(e —€™)/(1 —¢€),i.e., 1 > 3e — 2¢™ which is true for e < 1/3, QED.
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Chapter 6

Classification of Probabilistic Graph-problems

The goal of this chapter is to propose some structural results about probabilistic com-
binatorial optimization problems under strategies consisting either of moving absent
elements out of the a priori solution (strategy MS, cf. Chapter 1), or, whenever this
operation does not lead to feasible solutions, completing the result of the application
of MS in order to render it feasible for the problems dealt.

Recall first that, when dealing with probabilistic combinatorial optimization, the
main mathematical problems are the computational time of the functional’s value, the
characterization of the optimal a priori solution and the complexity of its computa-
tion. On the other hand, as we have seen in the previous chapters, when dealing with
a probabilistic problem PII, considering MS leads to some particular weighted ver-
sions of the underlying deterministic optimization problem II; in this sense, for such
problems functional’s computation is polynomial, and the optimal a priori solution
and, consequently, the complexity of the probabilistic problem is well-characterized.
Hence, it seems to us to be natural and interesting to give structural conditions charac-
terizing these three main mathematical issues and to show that natural and well-known
combinatorial problems fit these conditions.

6.1. When MS is feasible

In this section, we deal with graph-problems where a feasible solution is a subset
of the vertex-set, or of the edge-set of the input-graph and where application of MS in
the “present” (final) subgraph produces feasible solutions. Recall that, in the former
case, MS consists, given an a priori solution S and a subgraph G'(V', E') = G[V]
of G(V, F) induced by V' C V, of dropping absent vertices out of S, i.e., of taking
S’ = S NV’ as solution for G’. In the latter case, supposing that whenever a vertex
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v € V is absent, so do all the edges incident to v. So, in this case, MS consists of
taking S’ = S N E’ as solution for G

6.1.1. The a priori solution is a subset of the initial vertex-set

The main result of this section is stated in Theorem 6.1. It gives sufficient condi-
tions under which functionals are polynomially computed and a priori solutions are
well-characterized.

THEOREM 6.1.— Consider a probabilistic combinatorial optimization problem P11
verifying the following assumptions:

1) the instance of 11 is a vertex-weighted graph G(V, E, &) (|V| = n); any vertex
v; € V has, with respect to P11, a presence-probability p;;

2) any feasible solution of 11 on any instance G is a subset of V';

3) application of MS in any of the 2™ subgraphs of G produces a feasible solution;

4) the value of any solution S C V of 11 is defined by: m(G,S) = w(S) =
ZWES w;, where w; is the weight of v; € V.

Then the functional of P11, associated with MS is expressed as:
E(G,S,M8) Z W;P;
v, €S
and can be computed in polynomial time. Furthermore, the complexity of PII is the

same as the one of 1.

Proof. Fix a subset V' C V and an a priori solution S for PIIT on G. Denote by S’ the
solution for G[V’] computed by MS and set G’ = G[V"]. Following our hypotheses, S’
is feasible for G[V']. Its value is given by:

m(G,S(G'M8)) = > wilyevy [6.1]
v, €ES

Using [6.1] in [1.3], we get for the functional:

E(G,SM8) = > m(G,S(GM8))Pr[C]

VICV

= Z Z wi]-{leV/} Pr [V/]

VICV v€8

= > wi ¥ lgevyPr(V] (6.2]

v; €S VICcvV
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For any vertex v; € V, set V! = {V/ C V : v; € V'}. Then, the last sum of [6.2]
becomes:

> wevy PrivV]= Y Pr[V] [6.3]

qs% VeV,

Set V; = V\ {v;}. Then, V| = {V/ CV : V' = {v;} UV" V" C V;}.
Using also the fact that presence-probabilities of the vertices of V' are independent
(cf. Appendice A.3), we get from [6.3]:

Z 1{117,€V'} Pr [VI] = Z Pr [{Ui} U VN]

VICY VICy;

Z Pr [v;] Pr [V"]

VICV;

Priv;] Y Pr[v"] = p; [6.4]
V//gvi

A combination of [6.2] and [6.4] immediately leads to the expression claimed for
the functional.

It is easy to see that this functional can be computed in time linear in n. Further-
more, computation of the optimal a priori solution for PII in G obviously amounts
to the computation of the optimal weighted solution for IT in G(V, E, @"), where, for
any v; € V, w; = w;p,;. Consequently, by this observation and by assumption 4 in the
statement of the theorem, II and PII have the same complexity. |

“Why, although computation of the functional is a priori exponential (since it car-
ries over 2" subgraphs of ¢), assumptions of Theorem 6.1 allow polynomial compu-
tation of its value?” Because, under these assumptions, given a subgraph G’ induced
by a subset V' C V, the value of the solution for G’ is the sum of the weights of
the vertices in S N V’. Furthermore, a vertex not in .S will never make part of any
solution in any subgraph of G. Consequently, computation of the functional amounts
to determining, for any G’, which vertices make part of S N V’. This is equivalent to
the specification, for any v; € S, of all the subgraphs to which v; belongs and to a
summation of the presence-probabilities of these subgraphs. This sum is, as we have
seen in [6.4], equal to p;, i.e., the probability of v;. This simplification is the reason
that renders functional’s computation polynomial.

Theorem 6.1 has the following immediate corollary dealing with the case of prob-
abilistic versions of unweighted combinatorial optimization problems.
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COROLLARY 6.1.— Consider a probabilistic combinatorial optimization problem PII
verifying the following assumptions:

1) the instance of II is a graph G(V, E) (V| = n); any vertex v; € V has, with
respect to PII, a presence-probability p;;

2) any feasible solution of II on any instance G is a subset of V;
3) application of MS in any of the 2" subgraphs of G produces a feasible solution;
4) the value of any solution S C V of Il is defined by: m(G, S) = |5]|.

Then, the functional of PII, associated with MS, is expressed as:

E(G,5,u8) = ) p;

v, ES

and can be computed in polynomial time. Furthermore, PII is equivalent to a weighted
version of II where vertex-weights are the vertex-probabilities.

Notice that Corollary 6.1 is somewhat weaker than Theorem 6.1 since it does not
establish the equivalence between II and PII. Indeed, this result can be seen as a kind
of reduction from II to PII stating that the latter is a priori harder than the former one.

It is easy to see that PROBABILISTIC MAX INDEPENDENT SET and PROBABILIS-
TIC MIN VERTEX COVER under modification strategy MS (cf., also, Chapters 2 and 3,
respectively) fit conditions of Theorem 6.1 and Corollary 6.1.

We now focus ourselves in the case of VERTEX LONGEST PATH and VERTEX
WEIGHTED LONGEST PATH. Recall first that the strategy MS for these problems is
exactly the strategy called MV in Chapter 4. Both problems clearly fit assumptions 1,
2, 4 and 1, 2, 4 of Theorem 6.1 and Corollary 6.1, respectively. Dealing with as-
sumptions 3, things are somewhat more complicated. If no further hypothesis on the
form of the input-graph is made, then these two assumptions are not always satis-
fied. Indeed, denote by Ly the list of vertices in an a priori solution S and suppose
that v;, v; and vy, are three consecutive vertices in Ly . Suppose furthermore that v;
is absent from G’. Then, following strategy MS, arcs (v;, v;) and (v;,vy) (being ab-
sent themselves) should be replaced by (v;, vg). If this arc does not exist in G, then
application of MS is not feasible. On the other hand, if one makes the additional as-
sumption that G is transitive, then arc (v;, vx) exists and, consequently, MS becomes
feasible and, in this case, both Theorem 6.1 and Corollary 6.1 apply. In other words,
PROBABILISTIC VERTEX WEIGHTED LONGEST PATH and PROBABILISTIC VERTEX
LONGEST PATH, restricted in transitive connected acyclic directed graphs, fit all the
assumptions of Theorem 6.1 and Corollary 6.1, respectively.

PROPOSITION 6.1.— Consider modification strategy MS.
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1) Given an instance G(V, E, W) and an independent set S for MAX WEIGHTED
INDEPENDENT SET (resp., MAX INDEPENDENT SET), the functional associated
with S and MS is E(G,S,MS) = > _qwip;i (resp., E(G,S,MS) = > _qpi)
The optimal a priori solution S* is then a maximum-weight independent set in the
graph G(V, E, "), where W' is such that w}, = w;p; (resp., p;), i =1,...,n.

2) Given an instance G(V, E, ) and a vertex cover C for MIN WEIGHTED VER-
TEX COVER (resp., MIN VERTEX COVER), the functional associated with C' and MS
is BE(G,CM8) = cowip; (resp., E(G,CM8) = > opi) The optimal a
priori solution C* is then a minimum-weight vertex cover in the graph G(V, E, '),
where W' is such that w} = w;p; (resp., p;), i =1,...,n.

3) Given an instance G(V U {s,t}, A, W), representing a vertex-weighted transi-
tive connected acyclic oriented graph and a path Ly (as a list of consecutive ver-
tices) for VERTEX WEIGHTED LONGEST PATH (resp., VERTEX LONGEST PATH),
the functional associated with Ly and MS is E(G, Ly ,MS) = ZvieLv w;p; (resp.,
E(G,Ly,M8) = >, ;. pi)- The optimal a priori solution L3, is then a vertex-
weight longest path (i.e., a path maximizing the sum of the weights of its vertices) in the
graph G(V U {s,t}, A, "), where W' is such that w}, = w;p; (resp., p;), i =1,...,n.

6.1.2. The a priori solution is a collection of subsets of the initial vertex-set

We now deal with problems the feasible solutions of which are collections of sub-
sets of the initial vertex-set. Consider a graph G(V, E) and a (deterministic) combina-
torial optimization graph-problem II whose set of feasible solutions are collections of
subsets of V' verifying some specified non-trivial hereditary property! (e.g., indepen-
dent set, clique, etc.). The following theorem characterizes functionals and optimal a
priori solutions for such problems.

THEOREM 6.2.— Consider a probabilistic combinatorial optimization problem PIL
verifying the following assumptions:
1) the instance of Il is a graph G(V, E) (with |V | = n); any vertex v; € V has,
with respect to P11, a presence-probability p;;
2) any feasible solution of TI on any instance G is a collection C = (V1,...,V})
of subsets of V' any of them satisfying some specified non-trivial hereditary property;
3) application of MS in any of the 2™ subgraphs of G produces a feasible solution;
4) the value of any solution S of 11 is defined by: m(G,S) = k (the size of the
collection C).

1. A property 7 is hereditary if, whenever is satisfied by a graph G’, it is satisfied by any
subgraph of G'; a hereditary property 7 is non-trivial if it is true (satisfied) for infinitely many
graphs and false for infinitely many graphs.
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Then, the functional of P11, associated with MS is expressed as:

k
E@G,Sus)=> (1- ] A-p)

j=1 v; €Vj

and can be computed in polynomial time. The probabilistic counterpart PII of 11
under MS, amounts at a particular weighted version of 11, where the weight of any
vertex v; € V is 1 — p;, the weight w(V;) of a subset V; C 'V is defined by w(V;) =
Hvievj (1 — p;) and the objective function to be optimized is equal to Zvjec(l —

w(Vj)).

Proof. Consider an a priori solution C = (V1,Va, ..., V) of cardinality k£ and a
subgraph G’ = G[V’] of G. Denote by k' = m(G’,C(G’,M8)) the value of the
solution returned by MS on G’. As previously, denote by 1f the indicator function of a
fact F'. Recall that:

E(G,C,Ms) Z Pr[V C (G, M8)) Z Pr (V'] K [6.5]

V/'CVv V'V

Consider the facts:
— Fj: subset V; has at least one vertex;
- I_:j: application of MS leaves subset V; empty;

then &’ can be written as k' = Z§:1 1f = Z?Zl(l — 1f ) and [6.5] becomes:

k
E@,cus) = Y Py (1 —15)
VICV Jj=1
k k
= S P> 1= Y PV 1w
V'V j=1 4% Jj=1
k k
= >N - Pr (V'] 1yavi—p
j=1V'CV Jj=1V'Cv
k
= k - Z (1 _pz)
j=1lv;€Vj
k
= Z 1- (1-pi) [6.6]
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It is easy to see that computation of F(G, C,MS) can be performed in at most O(n)
steps; consequently, PII is in NPQO. Furthermore, by [6.6], the characterization of the
feasible solutions for PII claimed in the statement of the theorem is immediate. |

What does play a central role for yielding result of Theorem 6.2 is the fact that the
the sets of the collection C' satisfy some mathematical property which is hereditary.
This makes it possible to preserve sets Vi, . .., V} in the solution returned by MS unless
they are empty and, consequently, to express F(G, C,MS) as in [6.6], in terms of
facts F; and l_:j.

Assume that p; = 1, for any v; € V. Then, by [6.6], E(G,C,MS) = k, i.e., PII
coincides with II and Theorem 6.2 has the following immediate corollary.

COROLLARY 6.2.— If IT is NP-hard, then PII is so.

It is easy to see that MIN COLORING under modification strategy MS (cf., also,
Chapter 5) fits conditions of Theorem 6.2 and Corollary 6.2, respectively. In Chap-
ter 7, we will see some other problems also fitting the same conditions.

6.1.3. The a priori solution is a subset of the initial edge-set

We deal in this section with problems for which feasible solutions are sets of edges
and where MS, consisting of moving absent edges? out from an a priori solution S,
is feasible. In other words, the basic hypothesis in this section is that given an in-
stance G(V, E) of a problem II having as feasible solutions subsets of F, an a priori
solution S C F and a subgraph G'(V', E’) = G[V'], V' C V,theset S’ = SNE'isa
feasible solution for IT when dealt in G’. The main result for this case is the following
theorem.

THEOREM 6.3.— Consider a probabilistic combinatorial optimization problem PII
verifying the following assumptions:

—

1) the instance of 11 is an edge- (or arc-) valued graph G(V, E 0) (|V| = n); any
vertex v; € V has, with respect to P11, a presence-probability p;;

2) any feasible solution of 11 on any instance G is a subset of E;
3) application of MS in any of the 2™ subgraphs of G produces a feasible solution;
4) the value of any solution S C E of 11 is defined by:

m(G,S) =w(S) = Z £ (vi,v5)

(vi,vi)€ES

where {(v;,v;) is the valuation of the edge (or arc) of (vi, v;) of G.

2. Recall that lack of a vertex entails lack of any edge incident to it.
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Then, the functional of P11, associated with MS is expressed as:
E(G, S, MS) = Z K(Ui,l}j)pipj
(vi,vj)€S

and can be computed in polynomial time. Furthermore, dealing with their respective
computational complexities, PII and 11 are equivalent.

Proof. Set S’ = SN E’; by the assumptions of the theorem, S’ is feasible for IT when
dealing with G’. Furthermore:

m(G,S(G M) = Y L(0i,0;) L(v0perr) [6.7]

(viyv;)€S

Using [6.7] in [1.3], we get for the functional:

E(G,Su8) = > m(G,S(G,M8))Pr[V]

VICV

Z Z K(Ui,’l}j) 1{(vi,vj)€E’} Pr [V’]

VICV (vy,v5)€S

> (i) Y Lwwyer PrV] (6.8]

(vi,vj)€S VICcv

Any edge (or arc) (v;,v;) € E belongs to G’ = G[V'], if and only if both of its
endpoints belong to V’. We denote by V. = {V' CV :v; € V', v; € V'} the set of
all the subsets of V' containing both v; and v;. It holds that:

Z 1{(1},, )GE/}PI' Z Pl“ ] [6.9]

(% V’GV{

Set V;j = V\ {v;,v;}. Then, V.. ={V' CV : V' = {v;} U{v;}UV" V" C
Vi; }. Using also the fact that presence probablhtles of the vertices of V" are 1ndepen-
dent (cf. Appendice A.3), we get from [6.9]:

> Ywapern PrV] = > Pri{vitu{o;}uv”]

VICY VICV;,



Classification of Probabilistic Graph-problems 195

Z Pr [v;] Pr [v;] Pr [V"]

= Pr[v]Pr[y] Y Pr[v”]
VI CVij

= DPipPj [6.10]

A combination of [6.8] and [6.10] immediately leads to the expression claimed for
the functional.

It is easy to see that this functional can be computed in time quadratic in 7.
Furthermore, computation of the optimal a priori solution for PII in G obviously
amounts to the computation of the optimal solution for II in an edge- (or arc-) valued
graph G(V, E, (') where, for any (vi,v5) € E, U'(vi,v;) = L(v;,vj)pip;. Conse-
quently, by this observation and by assumption 4 in the statement of the theorem, 11
and PII have the same complexity. |

The reasons for which the functional deduced in Theorem 6.3 are quite analogous
to the ones in Theorem 6.1. Indeed, since an edge that does not belong to the a
priori solution S will never be part of any solution in any subgraph G'(V', E’) of G,
the computation of the functional amounts to the specification, for any G’, of the set
S N E’. This is equivalent to first determining, for any edge e € S, all the subgraphs
containing e and next to a summation of the probabilities of these subgraphs.This sum
equals to the product of the probabilities of the endpoints of e.

As in section 6.1.1 (for Theorem 6.1), the following immediate corollary dealing
with the case of probabilistic versions of unitary edge- (or arc-) valued combinatorial
optimization problems can be deduced from Theorem 6.3.

COROLLARY 6.3.— Consider a probabilistic combinatorial optimization problem PII
verifying the following assumptions:

1) the instance of IT is a graph G(V, E) (|[V| = n); any vertex v; € V has, with
respect to PII, a presence-probability p;;

2) any feasible solution of II on any instance G is a subset of £
3) application of MS in any of the 2" subgraphs of G produces a feasible solution;
4) the value of any solution S C E of II is defined by: m(G, S) = |S|.

Then, the functional of PII, associated with MS is expressed as:

E(G,S,M8) Z DiD;

(vi,vj)€S
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and can be computed in polynomial time. Furthermore, PII is equivalent to an edge-
(or arc-) valued version of II where the values of an edge is the product of the proba-
bilities of its endpoints.

Let us note that, for instance, PROBABILISTIC MAX MATCHING in both edge-
valued and non-valued graphs fits conditions of Theorem 6.3 and Corollary 6.3. More-
over, since MAX WEIGHTED MATCHING is polynomial, both PROBABILISTIC MAX
WEIGHTED MATCHING and PROBABILISTIC MAX MATCHING are polynomial also.

Figure 6.1. A graph G with a cut S (thick edges)

We now deal with MAX CUT in both edge-valued and unitary edge-valued graphs.
Lets us first note that we can represent an a priori cut .S as a set of edges in such a
way that whenever (v;,v;) € S,v; € V3 and v; € Va.

For example, in Figure 6.1, where for simplicity values of edges are not mentioned,
the cut partitions V in subsets V; = {1, 3,4,7,10,13} and V5 = {2,5,6,8,9,11,12}
and the a priori cut S (thick edges) can then be written as

S =1{(1,2),(3,6),(4,2),(4,5), (4,6),...,(13,11)}

(where edges are ranged in lexicographic order). In Figure 6.2, we present graph’s and
cut’s states assuming that vertices 4, 6 and 11 are absent. The result of strategy MS is
a solution S” missing in all edges of .S having at least one endpoint among {4,6, 11}.
In this figure also, one can see that, after application of MS, some vertices may exist,
such as vertex 3 in Figure 6.2, that have no incident cut-edges.
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Hence, both weighted and cardinality PROBABILISTIC MAX CUT meet the condi-
tions of Theorem 6.3 and Corollary 6.3, respectively. Consequently, MAX CUT being
NP-hard, so are PROBABILISTIC MAX WEIGHTED CUT and PROBABILISTIC MAX

"
Asf

N
-

Vi
Vo
Figure 6.2. Application of MS on the surviving subgraph and the a priori
solution of Figure 6.1

PROPOSITION 6.2.— Consider modification strategy MS.

—

1) Given an edge-valued instance G(V,E,{) and a matching M for MAX
WEIGHTED MATCHING (7esp., MAX MATCHING), the functional associated with M
and MSis:

E(G,M, MS) = Z E(vi,vj)pipj
(vi,v5)EM

(resp., E(G, M,MS) = E(vi,vj)eM pip;). The optimal a priori solution M* is then a

maximum-weight matching in the graph G(V, E, 7 ), where 7 is such that ' (v5,v5) =
U(v;,v;)pip; (resp., pip;), i,j = 1,...,|E|. Both PROBABILISTIC MAX MATCHING
and PROBABILISTIC MAX WEIGHTED MATCHING belong to P.

—

2) Given an instance G(V, E {) and a cut C for MAX WEIGHTED CUT (resp.,
MAX CUT), the functional associated with C and MS is:

E(G,CM8) = > L(v;,v;) pip;

(vi,v;)€C

(resp., E(G,C,MS) = Z(ui,vj)ecpipj)' The optimal a priori solution C* is then
a maximum-weight cut in the graph G(V, E, [’), where U is such that (v, v5) =
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U(v;,v;)pip; (resp., pipj), 1,5 = 1,...,|E|. MAX CUT being NP-hard, so are PROB-
ABILISTIC MAX WEIGHTED CUT and PROBABILISTIC MAX CUT.

6.2. When application of MS itself does not lead to feasible solutions

We now deal with problems where application of MS does not immediately provide
feasible solutions for any subgraph of the input graph. We focus ourselves on graph-
problems where feasible solutions are connected sets of edges (for example, paths,
trees, cycles, etc.) and where one can render the result of MS feasible by adding some
new edges (present in the subinstance at hand).

Consider a problem II where a feasible solution is a connected set S of edges.
Consider also that vertices in .S are ordered in some appropriate order. Assume that
application of strategy MS results in a set of connected subsets C1,C5,...,Cf of S
but that S” = U¥_, C; is not connected (i.e., S” does not constitute a feasible solution
for II). We consider a kind of “completion” of MS by additional edges linking, for
i = 1,...,k — 1, the last vertex (in the ordering considered for C) of C; with the
first vertex of C;11. In other words, the new strategy denoted MSC considered in this
section is the following (assuming an a priori solution S representing a connected set
of edges):

1) arrange the vertices of .S following some appropriate order;

2) apply strategy MS; let C', Cy, . . ., C}, be the connected components of .S result-
ing from the application of MS;

3)for: =1,...,k—1, use an edge to link the last vertex of C; with the first vertex
of Ci+l;
4) output S’ the solution so computed.

In what follows, we denote by V[S’] the set of vertices in S and by G”(V[S’], E")
the graph G[V'[S']].

6.2.1. The functional associated with MSC

We show in this section that there exist a class of probabilistic combinatorial opti-
mization problems for which the functional associated with MSC can be computed in
polynomial time.

THEOREM 6.4.— Consider a probabilistic combinatorial optimization problem P11l
verifying the following assumptions:

— —

1) instances of 11 are edge-valued complete graphs (K,,t) = G(V, E,{); fur-
thermore, in the probabilistic version of 11 any vertex v; € V has a presence-
probability p;;
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2) a feasible solution of Il is a subset S of E verifying some connectivity property;

3) given an a priori solution S (the vertices of which are arranged in some ap-
propriate order), strategy MSC computes a feasible solution S', for any subgraph

—

G'(V',E' ) = GIV'] of G (obviously, G' is complete);
4) m(G, S) = Z(vi,vj)es E(vi, Uj).

Denote by [v;,v;] the set {v; 41, Viya,...,vj_1} (¢ < j inthe ordering assumed for S)
such that, for any k = i,i+1,...,j — 1, (g, vk41) € S (e, [v;,v;] is the set of
vertices in the path linking v; to vj in S, where v; and v themselves are not encoun-
tered). Then, the functional E(G,S,MSC) for PII is computable in polynomial time
and is expressed by:

E(G, S, MSC) = K(vi,vj)pipj
(vi,vs)€S
+ > Liv)pp; [ G-m)
(vi,v;)EE\S v €[vg,v5]

where E" and S are as defined previously. Also, it is assumed that if [v;,v;] = 0, then
[L,, €[vs,v;)(1 = 1) = 0. The proof of Theorem 6.4 is given in section 6.4.

The fact that F(G, S,MSC) is polynomial is partly due to the same reasons as
in Theorems 6.1 and 6.3. Furthermore, the order of the additional edges-choices in
Step 3 of MSC are also crucial for this efficiency. Indeed, this order is such that one
can say a priori under which conditions an edge (or arc) (v;,v;) will be added in S’
These conditions carry over the presence or the absence of the edges initially lying
before (v;,v;)in S.

Unfortunately, in the opposite of Theorems 6.1 and 6.3, Theorem 6.4 does not de-
rive a “good” characterization of the optimal a priori solution of the problems meeting
the assumptions stated. In particular, the form of the functional does not imply solu-
tion of some well-defined weighted version of II (the deterministic support of PII).
This is due to the fact that in the expression of Theorem 6.4 for the functional, the
“costs” assigned to the edges depend on the structure of the a priori solution chosen.

6.2.2. Applications

Let us first recall that section 4.2 of Chapter 4 deals with the hypotheses of Theo-
rem 6.4. In what follows, we outline some other cases of problems where strategy MS
does not lead to feasible solutions. In particular, we deal with problems where feasible
solutions are either cycles or trees.
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6.2.2.1. The a priori solution is a cycle

We deal in this section with one of the most paradigmatic combinatorial opti-
mization problems, the MIN TSP and its probabilistic version, called PROBABILISTIC
MIN TSP. We shall see any Hamiltonian cycle T (i.e., a feasible solution for MIN
TSP, also called a tour in what follows) as a set of edges; its value is m(K,,T) =
> ecr {(vi,v;). Moreover, we arbitrarily number the vertices of K, in the order that
they are visited in 7'; so, we can set

T ={(v1,v2),. ., (Wi, Vi41) 5+, (Vn—1,0n), (Un,v1)}

If we consider an a priori tour T and a set of absent vertices, then application of MS
may result in a set { Py, P», ..., Py} of paths3, ranged in the order that vertices have
been visited in 7', that is not feasible for MIN TSP in the surviving graph. Then, in
order to render this set feasible, one can link (modulo k) the last vertex of the path P;
to the first vertex of P;yi; this is always possible since the initial graph is complete.
The tour thus obtained is denoted by 7.

U1 U2 U1 U2

Ug U3 /

vy i vy @~ _

|
|
|
|
|
|
|
|
|
|
|
|
|
Ve Vs Vs
(a) An a priori tour (b) The tour T”

Figure 6.3. An example of application of strategy MSC for PROBABILISTIC
MIN TSP

For example, in Figure 6.3(a), an a priori cycle T derived from a (symmetric) Kg
is shown. In Figure 6.3(b), we consider that vertices v3, v4, v and vg are absent.
On a first occasion, application of MS results in a path-set {{(v1,v2)}, {vs}, {v7}}.
On a second occasion, we will link vertex vy to vs (using dotted edge (v2, vs)) and
vertex v to vy (by dotted edge (vs, v7)). This creates a Hamiltonian path linking all
the surviving vertices of the initial Kg. Finally, we link vertex vy to vy (by dotted

3. These paths may be sets of edges, or simple edges, or even isolated vertices, any such vertex
considered as a path.
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edge (v7,v1). We thus build a new tour feasibly visiting all the present vertices of the
remaining graph.

It is easy to see that for the cases we deal with, all conditions of Theorem 6.4 are
verified. Consequently, its application for the case of PROBABILISTIC MIN TSP gives:

E(Kn,T, MSC) = Z €(U¢,Uj)pipj
(vi, v )ET

+ Z £ (vi,vj) pipj H (1—m) [6.11]

(vi,vi) EE(K)\T v €[vi,v;]

where K, denotes the surviving (complete) subgraph of K, after removal of the ab-
sent vertices, and E(K)) its edge-set. We recover here the result of [JAI 85] about
PROBABILISTIC MIN TSP. We see from [6.11] that the a priori solution minimizing
the functional cannot be characterized tightly, since the expression for E(K,,, T, MSC)
depends on the particular a priori tour T' considered and by the way in which this
particular tour will be completed in the surviving instance. The same expressions as
in [6.11] for the functionals and the same corollaries about the optimal a priori solu-
tions minimizing them also hold for the two most notorious restrictive cases of MIN
TSP, the METRIC MIN TSP and the GEOMETRIC MIN TSP (called also MIN EUCLIDEAN
TSP). For the former version, edge distances are considered to verify the triangle in-
equalities#, while for the latter version, the points are considered in the plane and,
for any two points ¢; = (z;,%;) and ¢; = (z;,y;), the distance between (x;,y;)
and (z;,y;) is the discretized Euclidean length \/(z; — z;)2 + (y; — y;)>.

6.2.2.2. The a priori solution is a tree

Let us consider here another very well-known combinatorial optimization prob-
lem, the MIN SPANNING TREE. For reasons that will be understood later, we restrict
ourselves to complete graphs (see also [BER 90a]). As mentioned previously in sec-
tion 6.2.2.1, we consider a tree by the set of its edges. For any tree 7T its value is

m(Ky,T) = ZeeT E(”Z"Uj)'

Let us note that either for MIN TSP dealt in section 6.2.2.1, or for the longest
path dealt in section 4.2 of Chapter 4, their solutions induced an implicit and natu-
ral ordering of the edges of their solutions. This is not the case here since various
orderings can be considered. We consider the one given by a kind of inverse depth-
first-search ([AHO 75, BAA 78]) and obtained as follows:

4. Informally, for any pair of points, it is shorter to go from one to the other one directly than
to pass from a third point, that is, for any triple (c;, c;, cx), d(c,¢’) < d(c, ") + d(c”, '),
where ¢, ¢’ and ¢, stand for any of c;, ¢; and cy.
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— starting from leaf numbered 1, we first number its incident edge, then one of the
edges intersecting it and so on, until we arrive at a second leaf;

— we then return back to the last vertex of the path incident to an edge not num-
bered yet and we continue the numbering from this edge until a third leaf is encoun-
tered;

— we continue in this way until all the edges of 1" are visited.

This ordering is performed in O(n) for a tree of order n (recall that such a tree has
n — 1 edges).

3
2
11
Figure 6.4. The ordering of the edges of a tree together with the ordering of its
vertices

For example, consider the tree (of order 14) of Figure 6.4 and assume that it is
a minimum spanning tree of sum graph of order 14. Starting from the leftmost leaf
(numbered 1), we visit edges (1,2),(2,3),...,(6,7) in this order; node 7 is another
leaf. We then return to the node 5 that is the last vertex incident to an edge not yet
visited, and we visit edges (5, 8), (8,9)(9,10), (10,11). We then return to the node
numbered 9 and visit edge (9, 12). We return back to the node numbered 4 and visit
edges (4,13), (13, 14) in this order.

Let us note that the ordering exhibited above partitions the edges of the tree into
a number of edge-disjoint paths P, P, ... For instance, dealing with Figure 6.4, the
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depicted tree T is partitioned into 4 paths: P, = {(1,2),(2,3),...,(6,7)}, P> =
{(5,8),(8,9)(9,10), (10,11)}, Ps = {(9,12)} and Py = {(4,13), (13,14)}.

Suppose now that some vertices are absent from the initial graph G. Also, let us
refer to the nodes by their numbering in the ordering just described. Then, strategy MS
will produce a non-connected set of edges (forming paths, any of them being a subset
of some P;; denote by {P], P;,..., P/} the set of paths obtained after application
of MS). Order these paths following the order their edges appear in T'. As done previ-
ously, in section 6.2.2.1, forany [ = 1, ..., k, we link the last vertex, say ¢ of path P},
to the first vertex, say j, of the path P/, ;. Since the initial graph is assumed to be
complete, such an edge always exists.

We have now to specify the path [i, j] associated with the edge (7, ) connect-
ing P/ and P/ ,. Starting from 7', the edges of which are ordered as described,
one can, without loss of generality, renumber the vertices of the graph in such a
way that T can be rewritten as T = {(1,2),(2,3),...,(n — k,n)}. Then, T can
be seen as a sequence of vertices, some of them appearing more than once, i.e.,
T = (11, 21,31,...,71, %2, (] + ].)17 ceey (TL — k)q,nl), where ¢ < j and i, repre-
sents the c-th time where vertex ¢ appears in 7. Based upon this representation, one
can reconstruct 7" in the following way: for any pair (4., j.-) of consecutive vertices,
edge (4, 7) belongs to T if and only if ¢ < j. Note that a leaf appears only once in the
list and that the number of the vertex succeeding it in the list is smaller than the one
of the leaf.

Application of strategy MS implies that, whenever an absent vertex v is not a leaf,
its removal disconnects 7". In order to render it connected, we have to link the vertex
preceding it in the sequence to the one succeeding it. By the particular form of the
sequence considered, any edge (7, ) that strategy MSC is likely to add in order to
reconnect T is such that ¢ < j; the corresponding path [, j] (i.e., the list of vertices
that have to be absent in order that (i, j) is added) is the portion of the list between i,
and j1, where 7; is the last occurrence of 4 before the first occurrence j; of vertex j.

Let us revisit the example of Figure 6.4. The sequence associated with the tree is
T=(11,...,71,52,81,...,111,99,127, 45,131,141 ). Assume now that vertices 2,
5, 11 and 13 disappear from the initial graph. Application of MS results in the sub-
sequence 7" = (141,31,41,61,71,81,91,101,92, 121,45, 144). The first connected
component (path) in this sequence is vertex 1 itself, and the second one is vertices 3
and 4; we thus add edge (1, 3) in order to connect these two components. The third
component is induced by vertices 6 and 7; edge (4,6) is consequently added. The
fourth connected component is induced by vertices 8, 9, 10 and 12; hence, edge (7, 8)
is added. The fifth connected component in the sequence is vertex 4 itself but (12,4)
is not added since 12 > 4. Finally, the sixth connected component, vertex 14, entails
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12

Figure 6.5. The solution T’ derived from application of strategy MSC in the a
priori tree T' of Figure 6.4

introduction of edge (4, 14) that completes the modification of T by strategy MSC. Fig-
ure 6.5, where slotted edges represent edges added during execution of Step 3 of MSC,
illustrates what has been just discussed.

Denoting also by 7" the sequence of vertices representing the a priori spanning
tree T', denoting any vertex of the initial graph by its numbering in the inverse dfs,
explained earlier, and by 7" the tree resulting from the application of MSC on T, and
setting [¢,j] = {q¢ € T : g a vertex between 4; and j; in T'}, the application of Theo-
rem 6.4 leads to the following functional for PROBABILISTIC MIN SPANNING TREE
under strategy MSC:

E(Kn,T,MSC) = > L(i,f)pip;+ Y. Ll )pip; [[ A—p)

(i,9)€T (&,9)€E(KN\T IS¥)

Another interesting version of MIN TSP is the so called MIN METRIC BOTTLE-
NECK WANDERING SALESPERSON PROBLEM. In this problem, we are given a set C'
of n points ¢y, ..., c, one among them considered as initial point, denoted by s, and
another one considered as final point, denoted by f, together with distances d(c;, ¢;)
between any pair (c;, ¢;) of points. The distances between any pair of points satisfy
triangle inequalities. The objective is to determine simple path from the initial point s
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to the final point f passing through all the other points in C, only once?, i.e., a permu-
tationo : {1,...,n} — {1,...,n}, withc,(;) = sand c,(,) = f, minimizing length
of the largest distance in the path, i.e., the quantity max;—1 ... n—1{d(co(;), Co(i4+1))}-

Obviously, the set of the feasible solutions for this problem is the same as for MIN
TSP. Supposing that s and f are always present in the final subgraph, i.e., that their
presence probabilities are equal to 1, it is easy to deduce that strategy MSC is feasible
for MIN METRIC BOTTLENECK WANDERING SALESPERSON. Denoting by P an a
priori Hamiltonian path, we get:

E (K, PMSC) = > Pr[V|m(K,[V'],P(V'usC))
VICV
= D> Pr[V]_max_ {d(cow),Cotin)}
"% T

[6.12]

x l{cg(i) present and Co(it1) prcscnt}

From [6.12], computation of E(K,,, P,MSC) does not seem polynomial. Furthermore,
an a priori solution minimizing it is not tightly characterizable.

6.3. Some comments

The major conclusion that seems to be brought out from what has been studied in
this chapter deals with the complexity of the probabilistic combinatorial optimization
problems. Indeed, it seems that when direct application of MS leads to feasible solu-
tions, the complexity of determining the optimal a priori solution for the problems
covered amounts to the complexity of solving some weighted version of the deter-
ministic problem, where the weights depend on the vertex-probabilities. Moreover,
these weights seem not to depend on particular characteristics of the a priori solution
considered. On the contrary, when more-than-one-stage strategies are necessary for
building solutions of the probabilistic counterpart of the problem dealt, then the obser-
vation above is no longer valid. Indeed, it seems that one also recovers some weighted
version of the original deterministic problem, but the weights on the data cannot be
assigned independently of the structure of a particular a priori solution.

Another comment deals with the framework adopted in this chapter. We have
tried to reduce studies about both the complexity of the probabilistic problems and

5. In other words, we are asked to determine a Hamiltonian path with specified extremities s
and t.
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of the computation of their functionals to verifications of hypotheses about combi-
natorial characteristics of their deterministic counterparts. For instance, for some of
the problems studied, the complexity of functional’s computation simply amounts to
establishing a certain order on the elements of the a priori solution.

In Table 6.1, a summary of the results about the problems considered in this chapter
is given. In the first column we briefly recall the conditions (characteristics) of the
solutions of their deterministic counterparts and the type of the modification strategy
used. In the second column, the complexity of the functional is given and, when this
is possible, the complexity of the probabilistic problem itself. Finally, in the third
column, problems dealing with the conditions in the first column are cited.

6.4. Proof of Theorem 6.4

Denote by C[E’] the set of edges added to S” during the execution of Step 3
of MSC. Obviously, S’ = S” U C[E’]; also, if an edge belongs to C[E’], then it
necessarily belongs to E[S], the set of edges in E induced by the endpoints of the
edges in S. By Assumptions 1 to 3, S’ is a feasible set of edges. Furthermore:

m (G, S (G',MSC))

D L(09) Lweesy

(’L),;,Uj)EE

Z £ (vi,v5) Lo, 0;)€57UCE} [6.13]
(vi,v;)€EE

By construction, any element of C[E’] is an edge (or arc), the initial endpoint
of which corresponds to the terminal endpoint of a connected subset C; of S and
the terminal endpoint of which corresponds to the initial endpoint of the “next” con-
nected C;41 of S. Then, for any subgraph G’ of G, the following two assertions hold:

_9 C E”;

— any edge that does not belong to E”, will never be part of any feasible solution;
indeed, for such an edge, at least one of its endpoints does not belong to V'[S’]; so,
C[E'| C E".

We so have from [6.13], setting S" = S(G’,MSC):

m(G/,S/) = Z g(’l)ﬁ’l)j) 1{(117;,1)]-)65'”UC[E’]}

(vi,vj)EE



|Hypotheses

General results Particular problems

Solution: some vertex-subset
Solution’s value: total weight
MS feasible

(Theorem 6.1)

Functional in O(n) PROBABILISTIC MAX WEIGHTED INDEPENDENT SET
Identical complexities ~PROBABILISTIC MIN WEIGHTED VERTEX COVER
of II and Probabilistic II PROBABILISTIC VERTEX WEIGHTED LONGEST PATH

Solution: some edge-subset
Solution’s value: total weight
MS feasible

(Theorem 6.3)

Functional in O(n?) MAX WEIGHTED MATCHING
Identical complexities = MAX WEIGHTED CUT
of IT and Probabilistic II

Solution: some edge-subset
Solution’s value: total weight
MSC feasible (but not MS)
(Theorem 6.4)

Functional in O(n?) PROBABILISTIC ARC WEIGHTED LONGEST PATH
PROBABILISTIC MIN TSP
PROBABILISTIC MIN SPANNING TREE

Table 6.1. The main results of the chapter.

swoqoxd-yde1n) onsi[iqeqoid Jo uoneoyIsser)
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= > (i) L, pesrucien
(’Ui,’Uj)EE”

= Z E(vi,vj) 1{(1)1171)7‘)65”}
(vi,vj)EE"

+ Z g(vivvj) 1{(Ui7vj)€O[El]}
(’L),;,U]')GE”

> i 0)) L, wyyery

(U,‘,,UJ')GS

+ Z E(vi,vj) 1{(1)1.’1,].)60[]3/]} [6.14]
(’U,;,’U]')GE”\S

A combination of [1.3] and [6.14] gives:

E(G,SMsC) = > | D £ 0) l(,wery

VICV \ (vi;)€S

+ Z g(viavj) ]-{(U,-,vj)EC[E/]} Pr [V/]
(vi,v )EE"\S

= Z Z 14 (Uia 'Uj) ]-{(Ui,vj)EE’} Pr [V/]

VICV (vi,v;)€S

+ Z Z f(vi,vj) 1{(vi,vj)eC[E’]}Pr [V/}
VICV (viv))EE\S

= Z K(vi,vj) Z 1{(%,”],)6]5/} PI‘ [V/]

(’U“UJ')ES VICcv

+ Z g(viﬂvj)

(viyvj)EE"\S

X Z 1{(vi,vj)€C[E’]}Pr [V’] [615]
V'V
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As in the proof of Theorem 6.3, the first term of [6.15] can be simplified as follows:

D L) Y Ywwery PriV] =

(vi,v]-)es (4%
Z g(”i»”j)}%‘pj [616]
(1)7;,1}]')65

Using [6.16] in [6.15], we get:

E(G, S, MSC) = Z g(vivvj)pipj

(vi,vi)ES

+ Z l (Ui, Uj) Z 1{(Ui,vj)€C[El]} Pr [V’] [617]
(vi,v;)EE\S Vcv

We now deal with the second term of [6.17] that, in this form, seems to be exponential.
Consider some edge (v;,v;) added during Step 3 in order to “patch”, say, connected
components C; and Cy; of the a priori solution S. Since (v;,v;) ¢ S, there exists
in S a sequence p = [v;, v;] of consecutive edges (or arcs) linking v; to v;. Suppose
that this sequence is listed by its vertices and that neither v; nor v; belong to u. Edge
(vi,v5) € E"\ S is added to S’ just because all the vertices in p are absent. In other
words, inclusion (v, v;) € C[E'] holds for any subgraph G'(V', E'), where V' € U],
with:
U, ={V' CV:v V' v € V', any vertex of 11 is absent}

Consequently, the second sum in the second term of [6.17] can be written as:

> Lwiwpecien PrV] > Prv]
vicy vreu;,

Pipj H (1—m) [6.18]

v €[vi,v5]

A combination of [6.15], [6.17] and [6.18] derives the expression claimed for the
functional in the statement of the theorem. It is easy to see that computation of a
single term in the second sum of the functional requires O(n) computations (at most
n+ 1 multiplications). Since we may do this for at most O(n?) times (the edges in E),
it follows that the whole complexity of functional’s computation is of O(n?), which
concludes the proof of the theorem.
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Chapter 7

A Compendium of Probabilistic NPO
Problems on Graphs

As has been understood in the previous chapters, the basic problematic of probabilistic
combinatorial optimization can be briefly described as follows. A generic instance 1
of a combinatorial optimization problem II is given. One assumes that II is not to
be necessarily solved on the whole I, but rather on a (unknown a priori) subinstance
I’ C I. Suppose that any datum d; in the data-set describing I has a probability p;,
indicating how d; is likely to be present in the final subinstance I’. One has to com-
pute an a priori solution S for IT in the entire instance I and once I’ becomes known,
to move elements of S that do not belong to I’ out from S (providing that this deletion
results in a feasible solution for I’) returning so a solution S’ fitting I’. The objec-
tive is to determine an initial solution .S for I such that, for any subinstance I’ C T
presented for optimization, the solution S’ obtained as described above respects some
pre-defined quality criterion (for example, optimal for I’, or achieving, say, constant
approximation ratio, etc.). The modification strategy just outlined is strategy denoted
by MS in the previous chapters. Note also that any of the particular graph-problems
considered in Chapters 2 to 5 are first studied under this strategy. Finally, observe that
as has been seen in Chapter 6, such a strategy is not always feasible, in the sense that
it does not always lead to feasible solutions for I”.

In this chapter, we present a list of the most known and well-studied graph-
problems and we investigate if strategy MS is feasible for any of them. For the
problems for which it is feasible, we express the functional associated with it, and,
when possible, we characterize the optimal a priori solution and the complexity of its
computation. Whenever no comment about the computation of functional’s value is
made, this computation is polynomial, i.e., the corresponding probabilistic problem is
in NPO. All the problems studied here (except MAX MATCHING) are classified either
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in [GAR 79], or in the Compendium of [AUS 99]. We have mainly been inspired by
the classification of [AUS 99]. There, the most well-known and natural NPO graph-
problems are classified into two sections including ten main categories, namely:

1) Graph theory
a) covering and partitioning,
b) subgraphs and supergraphs,
¢) vertex ordering,
d) iso- and other morphisms,
e) miscellaneous;

2) Network design
a) spanning trees,
b) cuts and connectivity,
¢) routing problems,
d) flow problems,
e) miscellaneous.

In this chapter, we follow the categorization of [AUS 99] by mixing sections
“Graph theory” and “Network design” and by omitting categories where for any of
the problems included strategy MS is not feasible. For instance:

— for Category 1c), vertex ordering, MS is unfeasible for any of the problems in-
cluded; this is due to the fact that feasible solutions for these problems are one-to-one
functions f (see section A.1 in Appendix A) from V' (the vertex-set of the input-graph)
totheset {1,2,...,|V|}; the absence of some vertices will produce a surviving vertex-
set V'’ and then function f : V' — {1,2,...,|V|} is not one-to-one anymore;

— also, in Category 1e), the feasibility conditions of the problems studied deal with
the existence of structures, such as paths or trees, that verify connectivity properties
that make strategy MS unfeasible;

— the same observation also holds for the problems of Category 2a);

—in Category 2d), the connectivity properties (induced by the structures of the
paths through which pass the feasible flows) that have to be satisfied by the feasible
solutions make MS unfeasible unless particular properties (such as transitivity, etc.) are
admitted for the input graphs;

— finally, in Category 2e), since solutions verify specific cardinality-conditions, the
absence of some vertices might violate them; so, MS is no more feasible for problems
in this category.

Note also that, for economy, we do not deal in the sequel with routing problems.
Indeed, from the list of routing problems in [AUS 99], MS (completed into MSC) is
feasible only for MIN TSP, MIN METRIC TSP, MIN GEOMETRIC TSP and MIN METRIC
BOTTLENECK WANDERING SALESPERSON (for this last problem we have, in addi-
tion, to assume that s and f have presence-probabilities equal to 1). For the other
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ones, as they are defined in general graphs and particular connectivity conditions are
required to be verified by a feasible solution, neither strategy MS nor its completion
into MSC is feasible, unless particular forms (complete, or transitive, etc.) are assumed
for the input-graphs.

In all, problems of the following categories are studied:
— covering and partitioning,

— subgraphs and supergraphs,

— iso- and other morphisms,

— cuts and connectivity.

For simplification, since throughout this chapter we only deal with a single strategy MS,
we use notation E(G, S), instead of E(G, S,MS), for the functional associated with
an input-graph G, an a priori solution S and MS. Also, in order to avoid redundancies,
the following conventions are adopted in what follows:

— When mentioned that a problem! fits conditions of Theorem 6.1 in Chapter 6,
then:
- its functional, associated with an a priori solution V', is expressed as:

E(val) = Z Di

v, eV’

- its probabilistic version becomes a weighted version where a weight equal to
its presence-probability is associated with any vertex of V' and where the objective
becomes to optimize the total weight of a solution (i.e., the sum of the weights of the
vertices in V'),

- since setting p; = 1, for any v; € V, the deterministic problem and its prob-
abilistic counterpart coincide, the complexity of the latter is the same as the former.

— When mentioned that a problem? fits conditions of Theorem 6.2 in Chapter 6,
then:
- its functional associated with an a priori solution C'is expressed as:

k

E@G,C)= (1 [] @)

i=1 v; €V

- its probabilistic version becomes a particular weighted version of the initial
problem where a vertex v; € V is assigned weight 1 — p;, a set V; of the collection C

1. Any feasible solution of which is a subset V'’ of the vertex-set V' of the input graph G.
2. Any feasible solution of which is a collection C' = (V1, Va, ..., V%) of subsets of V verifying
some non-trivial hereditary property.
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is assigned with weight w(V;) = (1 — ijew (1 — p;)) and the objective becomes to

optimize the total weight of a solution (i.e., the quantity Zle w(V;));

- since setting p; = 1, forany v; € V, w(V;) = 1, the deterministic problem
and its probabilistic counterpart coincide, the complexity of the latter is the one of the
former.

— Finally, when mentioned that a problem3 fits conditions of Theorem 6.3 in Chap-
ter 6, then:
- its functional associated with an a priori solution E’ is expressed as:

E(G.E)= Y pp

(vi,v;)ERE’

- its probabilistic version becomes an edge-weighted version, where a weight
equal to the product of the presence-probabilities of its endpoints is associated with
any edge of E, and where the objective becomes to optimize the total weight of a
solution, i.e., the sum of the weights of the edges in F’;

- since setting p; = 1, for any v; € V, the deterministic problem and its
probabilistic counterpart coincide, the complexity of the latter is the one of the former.

7.1. Covering and partitioning
7.1.1. MIN VERTEX COVER

Consider a graph G(V, E). A vertex cover of G is a subset V' C V such that, for
any (v,u) € E, either u € V' or v € V'. The objective for MIN VERTEX COVER is to
determine a minimum-size vertex cover of G.

As we have seen in Chapter 3, MS is feasible for PROBABILISTIC MIN VERTEX
COVER. Furthermore, the optimal a priori solution for this problem corresponds to
the optimal solution of a particular weighted version where any vertex is weighted
by its probability, and the objective is to determine a minimum-weight vertex cover.
Consequently, PROBABILISTIC MIN VERTEX COVER is NP-hard (see also Chapter 6,
Theorem 6.1).

7.1.2. MIN COLORING
Consider a graph G(V, E). In MIN COLORING, we wish to color V' with as few col-

ors as possible, so that no two adjacent vertices receive the same color. The chromatic
number of G, denoted by x(G), is the smallest number of colors that can feasibly

3. Any feasible solution of which is a subset E’ of the edge-set E of the input graph G.
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color its vertices. A graph G is called k-colorable if its vertices can be legally colored
by k colors, in other words, if its chromatic number is at most k; it will be called
k-chromatic, if k is its chromatic number.

As we have in Chapter 5, strategy MS is feasible for PROBABILISTIC MIN COLOR-
ING. Under MS, the functional associated with an a priori solution C' = (S, Ss,...) is
a type of minimum-weight coloring where the weight of a color S; = {v;,, vs,,...}1s
givenby f(S;) = 1-]],, cg, (1—pi,),and the weight of C'is given by > ¢ . (.5:).
This functional can be corjnputed in polynomial time and the optimal a priori solution
is a coloring that minimizes the above sum. Since if the probability of any vertex
is 1, one recovers the classical MIN COLORING, PROBABILISTIC MIN COLORING is
NP-hard (see also Theorem 6.2 in Chapter 6).

7.1.3. MAX ACHROMATIC NUMBER

In MAX ACHROMATIC NUMBER we wish determine the maximum-size partition
of V' into independent sets such that no union of two of them constitutes an indepen-
dent set. In other words, we wish to color the vertices of G using a maximum set
of colors in such a way, for two colors S; and .S}, their union does not form an in-
dependent set. The maximum number of colors verifying this condition is called an
achromatic number of G.

Strategy MS is not feasible for MAX ACHROMATIC NUMBER, since deletion of a
vertex from one of the a priori colors may result in a coloring for which the union of
two of its colors still remains an independent set.

7.1.4. MIN DOMINATING SET

Consider a graph G(V, E). A dominating set is a subset V/ C V such that for any
v € V\ V’, there exists u € V' such that (u,v) € E (we say that V' dominates V).
In MIN DOMINATING SET the objective is to determine a minimum-cardinality domi-
nating set.

a b c d e f g

Figure 7.1. ¥S is not always feasible for MIN DOMINATING SET

Strategy MS is not always feasible, since removal of a vertex in V/ may result in a
set that does not dominate V' any longer. Consider a path {a,b,c,d, e, f,g}. There,
V' ={a,d, g} dominates V', while if any of the vertices of V', say a, disappears, the
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resulting set V'’ is no more a dominating set, since vertex b becomes non-dominated
(Figure 7.1).

7.1.5. MAX DOMATIC PARTITION

Here, the objective is to determine a maximum-size partition of the vertex-set V'
of a graph G(V, E) into dominating sets.

As previously, in section 7.1.4, MS is not always feasible since, as noticed, removal
of a vertex may result in a set that is no more dominating.

7.1.6. MIN EDGE-DOMINATING SET

Given a graph G(V, E), an edge-dominating set is a subset E' C E such that for
any ¢’ € F'\ F’, there exists ¢ € E’ such that e and ¢’ are adjacent, i.e., they have a
common endpoint. In MIN EDGE-DOMINATING SET, the objective is to determine a
minimum-size edge-dominating set.

v
(a) A graph together with an edge-dominating set

e

Ommmm———

(b) Heavy-lined edges are no more an edge-domintating set

Figure 7.2. ¥S is not always feasible for MIN EDGE-DOMINATING SET

Strategy MS is not feasible for MIN EDGE-DOMINATING SET. Figure 7.2 illustrates
this fact. Indeed, consider the set of heavy-lined edges of Figure 7.2(a); this set is an
edge-dominating set for the graph dealt. Removal of vertex v (together with the edges
incident to it) results in a graph where the set of the (surviving) heavy-lined edges is
no more edge-dominating (in Figure 7.2(b), edge e is not dominated).



A Compendium of Probabilistic NPO Problems on Graphs 217

7.1.7. MIN INDEPENDENT DOMINATING SET

Given a graph G(V, E), we wish to determine a minimum-size independent set
that is maximal for the inclusion; in other words, since a maximal independent set is
always a dominating set, we search for a minimum-size maximal independent set.

For the same reasons as in section 7.1.4, MS is not always feasible for MIN INDE-
PENDENT DOMINATING SET.

7.1.8. MIN CHROMATIC SUM

Given a graph G(V, E'), we wish to compute a coloring C' = (S1,...Sk) of V
that minimizes the quantity Zle Y ves, & This problem is NP-hard since it contains
MIN COLORING as a subproblem?.

Since the feasibility conditions imply that any of S; is just an independent set,
strategy MS is feasible for MIN CHROMATIC SUM. Note, however, that it does not fit
Condition 4 of Theorem 6.2, which does not apply here. Let V' C V be the set of
the finally present vertices and denote by 1(,, ¢y} the indicator function of the fact:
v; € V'. Then:

k
E(G, C) = Z Pr [V’] Z Z il{vevl}

VICV i=1veS;

k
= Z ZZ Z Pr [V’] 1{UEV’}

i=1veSs; V/CV

k

= i S [7.11

=1 ’UjESi

From [7.1], one can derive a tight characterization for the optimal a priori solution of
PROBABILISTIC MIN CHROMATIC SUM. Indeed, if we consider that the weight w(.S;)
of a color S; is the sum of the probabilities of its vertices multiplied by ¢, then
the a priori solution C* optimizing E(G, C) is the coloring minimizing the quan-
tity Zle w(S;). This is a type of weighted version of MIN CHROMATIC SUM where
any vertex of the input-graph is weighted by its probability. This version being a
generalization of the original MIN CHROMATIC SUWM, it is also NP-hard.

4. In MIN COLORING, the weight of color S; is 1 and not k;.
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7.1.9. MIN EDGE COLORING

Given a graph G(V, E), the objective for MIN EDGE COLORING is to determine a
minimum-size partition D = (E}, ..., Ej) of E such that, forall ¢ € {1,...,k}, no
two edges in F; share some common endpoint. In other words, any of the FE;s is a
matching of G and MIN EDGE COLORING consists exactly of determining a minimum-
size partition into matchings.

Strategy MS is feasible for MIN EDGE COLORING. Indeed, if a vertex disappears,
then all of its incident edges disappear also. This removal does not violate the match-
ing property for any of the subsets F; of any a priori solution D. We are now going
to compute £(G, D). Denoting fori = 1,...,k by 1z, ) the indicator function of
the fact: F; # ), and by F’ the edge-set of G[V'], we get:

k k
m(G,SV)) = > gy = > Usne-n

= i=1

k k

= D> 1= Ypnp-o [7.2]
i=1 i=1

Note that F;NE’ = () if and only if all the edges of F; are absent. Note also that all
the edges of E; are independent, i.e., they do not share common vertices. So, assuming
that E; = {e;,, €y, ..., €;; } and taking into account that > ..y Pr[V'] = 1, [7.2]
becomes: -

k k

m(G SN =313 Upnfe, o0} X Mool o) 7

i=1

Using [7.3], the functional E(G, D) becomes:

E(G,D)= > Pr[V]m(G,S (V")
e

k
- Z Pr [V] <Zl - Zl{E’ﬁ{eil}:@} Koo X I{E'”{em}_w}>

i=1 i=1

k k
= Zl Z Pr[V 1{E’ﬁ{911} 0} X ... X 1{E’ﬁ{6z‘ji}:®} [7.4]



A Compendium of Probabilistic NPO Problems on Graphs 219

Observe now that, setting e = (v, v;), we have:

Lipngey=0y =1 = Lgnger20y = 1 = Livingqua 20y X Lvengoyzoy  [7.5]

the above equality meaning that in order that an edge is present in E’, both of these
endpoints have to be present in V.

From [7.4] and [7.5], we immediately get:

k
E(G,D):k—z (1—pkpl):Z 1- H (1= pep1)

i=1 (vg,v)EE; i=1 (vi,v1)EE;

From the above expression for the functional, one derives that considering weight
w(v;,v;) =1 — p;p;, for any edge (v;,v;) € E and considering as value of a match-
ing Ej of G the quantity:

v(Ep)=1-— H (1 —pip;) =1-— H w (v;,v5)

(vi,vj)EEK (vi,vj)EEK

the optimal a priori solution for PROBABILISTIC MIN EDGE COLORING is a partition
D = (B4, Es, . ..) of E into matchings minimizing the quantity ) . ., v(E;). Since,
for p; = 1, v; € V, one recovers the standard MIN EDGE COLORING, one immediately
deduces that PROBABILISTIC MIN EDGE COLORING is NP-hard.

7.1.10. MIN FEEDBACK VERTEX-SET

Given an oriented graph G(V, A), a feedback vertex-set is a subset V' C V such
that V"’ contains at least a vertex of any directed cycle of G. In MIN FEEDBACK
VERTEX-SET, the objective is to determine a feedback vertex-set of minimum size.

Note that absence of a vertex v from V' breaks any cycle containing this vertex.
If v makes part of an a priori solution S then, since no such cycle that contained v
exists in G', feasibility of the solution returned by MS does not suffer from the absence
of v. So, MS is feasible for MIN FEEDBACK VERTEX-SET. and Theorem 6.1 in Chap-
ter 6 applies for this problem. Hence, PROBABILISTIC MIN FEEDBACK VERTEX-SET
is NP-hard.
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7.1.11. MIN FEEDBACK ARC-SET

Given an oriented graph G(V, A), a feedback edge-set is a subset A’ C A such
that A’ contains at least an arc of any directed cycle of G. In MIN FEEDBACK ARC-
SET, the objective is to determine a feedback arc-set of minimum size.

With exactly similar arguments as for the case of MIN FEEDBACK VERTEX-SET
(section 7.1.10), one can conclude that MS is feasible for MIN FEEDBACK ARC-SET
also. Hence, Theorem 6.3 of section 6.1.3 in Chapter 6 applies for this problem.
Consequently, PROBABILISTIC MIN FEEDBACK ARC-SET is NP-hard.

7.1.12. MAX MATCHING

In MAX MATCHING, the objective is to determine a maximum-size matching (see
section A.2 in Appendix A). This problem has been studied in section 6.1.1 and shown
to fit conditions of Theorem 6.1. Consequently, PROBABILISTIC MAX MATCHING is
in P.

7.1.13. MIN MAXIMAL MATCHING

In MIN MAXIMAL MATCHING, the objective is to determine a minimum-size max-
imal matching (see section A.2 in Appendix A). It is easy to see that the maximality
constraint makes that strategy MS is not always feasible for the problem dealt. Indeed,
absence of a vertex in G’ (the finally present subgraph) might entail the absence of an
edge from the a priori solution S in such a way that the resulting matching might not
be maximal.

7.1.14. MAX TRIANGLE PACKING

Given a graph G(V, E), a vertex-packing into triangles is a collection (V1, ..., V%)
such that, forany ¢ = 1,...,k, V; C V, |V;| = 3 and the subgraph induced by V;
is a triangle (i.e., a complete graph on 3 vertices) and, for any 7,5 = 1,...,k, V; N
V= (). In MAX TRIANGLE PACKING, the objective is to determine a maximum such
collection.

Modification strategy MS is not feasible for the problem dealt since absence of a
vertex from any a priori solution S possibly breaks a triangle; hence the surviving
solution is not a packing into triangles. However, if one slightly modifies MS in such a
way that, once a triangle broken, it is removed from the solution, the rest of this solu-
tion constitutes a vertex packing. The strategy thus modified, the functional of which
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is studied in the sequel, then becomes feasible for MAX TRIANGLE PACKING. Fur-
thermore, note that this problem cannot be handled as an application of Theorem 6.2
in Chapter 6, because property “is a triangle” is not hereditary (Condition 2).

Setting (V1, Va, ..., Vi) and, fori = 1,...,k, V; = {v;, u;, w; }, we get:

E(G,S) = > Pr[VIm(G,S(V")

VICV

k
= Z Pr [V’] Z 1{vi,ui,wi€v’}
=1

VICV

k k
= > > PV lpuwwevt = O PuPubu  [76]
=1

i=1V/'CV

From [7.6], we immediately conclude that the optimal a priori solution for PROB-
ABILISTIC MAX TRIANGLE PACKING is the optimal solution of a weighted version
of MAX TRIANGLE PACKING, where any vertex of V' is weighted by its presence-
probability. Hence, PROBABILISTIC MAX TRIANGLE PACKING is NP-hard.

7.1.15. MAX H-MATCHING

Consider a graph G(V, E) and a connected subgraph H of G of order at least 3. An
H-matching of G is a collection G1,Ga, ... of vertex-disjoint subgraphs of G such
that any subgraph G in this collection is isomorphic> to H. In MAX H-MATCHING,
the objective is to determine a maximum size H -matching.

With a reasoning exactly similar to the one of section 7.1.14, and setting:

S =(G1,Ga,...,Gy)

an a priori solution for MAX H-MATCHING, V71, ..., V} the vertex-sets of G1, ..., Gk,
respectively, and, fori = 1,...,k, V; = {v;,. .. s Vi }, we get:
k Vil
E@G,S) =Y [Ir, [7.7]
i=1j=1

5. Two graphs G1(V1, E1) and G2(V2, E2) are said to be isomorphic if there exist two one-
to-one functions f : Vi — Vi and g : F1 — FE» such that, for any edge (u,v) € E1, edge
(f(u), f(v)) is via g in Es.
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From [7.7], we immediately conclude that the optimal a priori solution for PROBA-
BILISTIC MAX H-MATCHING is the optimal solution of a weighted version of MAX
H-MATCHING, where any vertex of V' is weighted by its presence-probability. Hence,
PROBABILISTIC MAX H-MATCHING is NP-hard.

7.1.16. MIN PARTITION INTO CLIQUES

Given a graph G(V, E'), MIN PARTITION INTO CLIQUES consists of determining
a minimum size partition (V7, Va,...) of V such that the subgraph induced by any of
the Vs is a clique of G. It is easy to see that any coloring of G induces a partition into
cliques of the same size in the complement G (see section A.2 of Appendix A) of G.

It is easy to see that, given an a priori solution S = (V1, Vs, ..., V}) for MIN PAR-
TITION INTO CLIQUES, if a vertex belonging to say V; for some ¢ < k disappears, the
rest of the vertices of V; always induces a clique; hence, MS is feasible for the problem
covered and, furthermore, property “is a clique” is hereditary. So, MIN PARTITION
INTO CLIQUES meets the conditions of Theorem 6.2 in Chapter 6; so, PROBABILIS-
TIC MIN PARTITION INTO CLIQUES is NP-hard.

7.1.17. MIN CLIQUE COVER

With the same arguments as in section 7.1.16, one can derive that this problem also
fits perfectly the conditions of Theorem 6.2 in Chapter 6. So, the results stated for MIN
PARTITION INTO CLIQUES in section 7.1.16 hold identically for PROBABILISTIC MIN
CLIQUE COVER.

7.1.18. MIN k-CAPACITED TREE PARTITION

Given a graph G(V, E), an edge-weight function w : £ — N and an inte-
ger k, a partition into k-capacited trees is a collection (E1, Fs, ..., E,,) of pairwise
disjoint subsets of E such that U”, E; = E and the subgraph induced by any of
the E;s is a tree of order at least k. In MIN k-CAPACITED TREE PARTITION, the
objective is to determine such a partition minimizing its total weight, i.e., the quan-

tity Zvnll ZeGEi w(e).

Strategy MS is not feasible for MIN k-CAPACITED TREE PARTITION since absence
of a vertex entails absence of some edges, the removal of which might disconnect one
of more of the trees of the partition, the new trees thus produced having order less
than k.
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7.1.19. MAX BALANCED CONNECTED PARTITION

Consider a connected graph G(V, E') and vertex-weight function w : V' — N. A
connected partition (V3, V5) of V is a pair of disjoint subsets V7 and V5 of V' such
that V3 U Vo = V and the subgraphs of G induced by both V7 and V5 are connected.
MAX BALANCED CONNECTED PARTITION consists of determining a connected par-
tition (V7, V2) maximizing its balance, i.e., the quantity min{w(V1),w(V2)}, where
forasubset V' € V,w(V') =3 o w(V’).

Strategy MS is not feasible for this problem. Indeed, absence of a vertex from one
of V1, or V5 may disconnect the corresponding subgraph.

7.1.20. MIN COMPLETE BIPARTITE SUBGRAPH COVER

Given a graph G(V, E), a feasible solution of MIN COMPLETE BIPARTITE SUB-
GRAPH COVER is a collection C = (V1, Vs, ..., Vi) of subsets of V' such that the
subgraph induced by any of the V;s, 7= = 1,...,k, is a complete bipartite graph and
for any edge (u,v) € E there exists a V; containing both w and v. The objective here
is to minimize the size |C| of C.

Modification strategy MS is feasible for MIN COMPLETE BIPARTITE SUBGRAPH
COVER. Indeed, if a vertex v disappears from some subset V; of an a priori solution C,
the surviving set V; always induces a complete bipartite graph; furthermore:

— except for the edges that have been disappeared (the ones incident to v), any
other edge remain covered by the surviving sets of C;

— property “is a complete bipartite graph” is hereditary.

Since MS is feasible for MIN COMPLETE BIPARTITE SUBGRAPH COVER, this problem
fits the conditions of Theorem 6.2 in Chapter 6. Consequently, PROBABILISTIC MIN
COMPLETE BIPARTITE SUBGRAPH COVER is NP-hard.

7.1.21. MIN VERTEX-DISJOINT CYCLE COVER

Given a graph G(V, E), the objective in MIN VERTEX-DISJOINT CYCLE COVER
is to cover the vertices of V' by a collection (V1, ..., V}) of pair-wise disjoint subsets
of V such that any of the V;s induces a cycle as partial subgraph.

Strategy MS is not feasible for MIN VERTEX-DISJOINT CYCLE COVER, since ab-
sence of a vertex from the a priori solution might break one of its cycles.
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7.1.22. MIN CUT COVER

Given a graph G(V, E), a feasible solution for MIN CUT COVER is a collection
(Vi,..., Vi) of V such that any V;, ¢ = 1,...,k is a cut, i.e., for any (u,v) € E,
there exists a V; such that either w € V; and v ¢ V;, oru ¢ V; and v € V;. The
objective is to minimize the size of the collection.

Consider an a priori solution S = (Vi,..., V). If a vertex v € V is absent,
then any edge incident to v is also absent. However, absence of a vertex together with
any edge incident to it does not affect the edges present to the final graph G'(V', E'),
which remain feasibly covered by endpoints, any of them belonging to distinct cuts.
Hence, strategy MS is feasible for MIN CUT COVER, which meets the conditions of
Theorem 6.2 in Chapter 6, since property “is a cut” is hereditary. Hence, PROBA-
BILISTIC MIN CUT COVER is NP-hard.

7.2. Subgraphs and supergraphs
7.2.1. MAX INDEPENDENT SET

Consider a graph G(V, E). An independent set is a subset V' C V such that, for
any (v,u) € V' x V', (u,v) ¢ E. The objective for MAX INDEPENDENT SET is to
determine an independent set of maximum size in G.

As we have seen in Chapter 2, MS is feasible for PROBABILISTIC MAX INDEPEN-
DENT SET. Furthermore, the optimal a priori solution for this problem corresponds
to the optimal solution of particular weighted version where any vertex is weighted
by its probability, and the objective is to determine a maximum-weight independent
set. Consequently, PROBABILISTIC MAX INDEPENDENT SET is NP-hard (see also
Chapter 6, Theorem 6.1).

7.2.2. MAX CLIQUE

Consider a graph G(V, E). A clique of G is a complete subgraph of G induced by
a subset V/ C V. The objective for MAX CLIQUE is to determine a maximum-size
subset V' C V such that the subgraph of G induced by V" is a clique.

Strategy MS is obviously feasible for MAX CLIQUE (see also section A.2 in Ap-
pendix A). So, this problem fits the conditions of Theorem 6.1 in Chapter 6. Conse-
quently, PROBABILISTIC MAX CLIQUE is NP-hard.
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7.2.3. MAX INDEPENDENT SEQUENCE

Consider a graph G(V, E). An independent sequence of G is a sequence of inde-
pendent vertices of G such that, for all 7, a vertex v; exists which is adjacent to v; 1 but
is not adjacent to any v; for j < ¢. In MAX INDEPENDENT SEQUENCE, the objective
is to find a maximum-length independent sequence.

Strategy MS is not feasible for this problem. Indeed, if a vertex, say v;;; of an a
priori (feasible) sequence S is absent, then, since S is feasible, vertex v; o will not be
adjacent to v;. Consequently, the resulting subsequence will be unfeasible.

7.2.4. MAX INDUCED SUBGRAPH WITH PROPERTY 7

Consider a graph G(V, E') and a non-trivial hereditary property 7. A feasible solu-
tion for MAX INDUCED SUBGRAPH WITH PROPERTY 7 is a subset V/ C V such that
the subgraph G[V”’] of G induced by V" satisfies 7. The objective for MAX INDUCED
SUBGRAPH WITH PROPERTY T is to determine such a set V/ of maximum-size. Note

CLINT3 9% ¢

that “independent set”, “clique”, “planar graph” are hereditary properties.

Strategy MS is feasible for MAX INDUCED SUBGRAPH WITH PROPERTY T, since,
by the definition of , if a subset S C V (an a priori solution) induces a subgraph
verifying it, then any subset of S (resulting from removal of any of its vertices) also
induces a subgraph verifying . Henceforth, MAX INDUCED SUBGRAPH WITH PROP-
ERTY 7 fits the conditions of Theorem 6.1 in Chapter 6; consequently, PROBABILIS-
TIC MAX INDUCED SUBGRAPH WITH PROPERTY 7 is NP-hard.

7.2.5. MIN VERTEX DELETION TO OBTAIN SUBGRAPH WITH PROPERTY 7

Consider a graph G(V, E) and a non-trivial hereditary property w. A feasible
solution of MIN VERTEX DELETION TO OBTAIN SUBGRAPH WITH PROPERTY T is a
subset V/ C V such that the subgraph G[V \ V'] induced by V' \ V' verifies 7; the
objective is to determine a minimum-cardinality set V' to be removed.

Given an a priori solution S, i.e., a set of vertices such that G[V'\ S] verifies 7, the
absence of a vertex v from S has no impact to the set (V' \ {v}) \ (S\ {v}) =V \ S
that always verifies . So, MS is feasible for MIN VERTEX DELETION TO OBTAIN
SUBGRAPH WITH PROPERTY , that verifies all of the conditions of Theorem 6.1
in Chapter 6. Consequently, PROBABILISTIC MIN VERTEX DELETION TO OBTAIN
SUBGRAPH WITH PROPERTY 7 is NP-hard.
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7.2.6. MIN EDGE DELETION TO OBTAIN SUBGRAPH WITH PROPERTY 7

Given a graph G(V, E) and a non-trivial hereditary property , MIN EDGE DELE-
TION TO OBTAIN SUBGRAPH WITH PROPERTY 7 consists of determining a minimum
size set £/ C FE, such that the partial subgraph G’ = G(V, E'\ E’) verifies 7.

Given an a priori solution E/ C E, the absence of a vertex v will entail removal of
the edges incident to it, some of them being in E’. In any case, the absence of a set X
of vertices from G will produce, with respect to G’ an induced subgraph G'[V \ X]
that, being a subgraph of G’, will verify 7 (which is already verified by G’ itself).
Consequently, MS is feasible for MIN EDGE DELETION TO OBTAIN SUBGRAPH WITH
PROPERTY 7 that fits all the conditions of Theorem 6.3 in Chapter 6. Consequently,
PROBABILISTIC MIN EDGE DELETION TO OBTAIN SUBGRAPH WITH PROPERTY 7
is NP-hard.

7.2.7. MAX CONNECTED SUBGRAPH WITH PROPERTY 7

Given a graph G(V, E') and a non-trivial hereditary property 7, MAX CONNECTED
SUBGRAPH WITH PROPERTY 7 consists of determining a maximum-size subset V' C
V, such that G[V’] is connected and verifies 7.

It is easy to see that MS is not feasible for MAX CONNECTED SUBGRAPH WITH
PROPERTY T, since removal of some vertices from V'’ may disconnect the graph in-
duced by this subset.

7.2.8. MIN VERTEX DELETION TO OBTAIN CONNECTED SUBGRAPH WITH
PROPERTY 7

Given a graph G(V, E) and a non-trivial hereditary property m, MIN VERTEX
DELETION TO OBTAIN CONNECTED SUBGRAPH WITH PROPERTY 7 consists of de-
termining a minimum-size subset V' C V, such that G[V \ V'] is connected and
verifies 7.

Strategy MS is not feasible for the same reasons as in section 7.2.7.

7.2.9. MAX DEGREE-BOUNDED CONNECTED SUBGRAPH

Given a graph G(V, E), a weight function w : F — N, and an integer d > 2, a
feasible solution for MAX DEGREE-BOUNDED CONNECTED SUBGRAPH is a subset
E’ C E, such that the partial subgraph G(V, E’) of G is connected and has degree
bounded by d. The objective for MAX DEGREE-BOUNDED CONNECTED SUBGRAPH
is to maximize the total weight of E’, i.e., the quantity > __ ., w(e).

Strategy MS is not feasible for the same reasons as in sections 7.2.7 and 7.2.8.
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7.2.10. MAX PLANAR SUBGRAPH

Given a graph G(V, E'), MAX PLANAR SUBGRAPH consists of determining a max-
imum-size subset E’ C E, such that the partial subgraph G’ (V, E’) of G is planar.

Absence of a vertex from V' may entail removal of some edges in E’ without vio-
lating the planarity property of the subgraph of G’ induced by the surviving vertices.
Hence, MS is feasible for MAX PLANAR SUBGRAPH which fits conditions of Theo-
rem 6.3 in Chapter 6. Consequently, PROBABILISTIC MAX PLANAR SUBGRAPH is
NP-hard. Note also that this problem is a particular restriction of PROBABILISTIC
MIN EDGE DELETION TO OBTAIN SUBGRAPH WITH PROPERTY 7, as seen in sec-
tion 7.2.6.

7.2.11. MIN EDGE DELETION k-PARTITION

Consider a graph G(V, E) together with an edge-weight function w : E — N. A
feasible solution for MIN EDGE DELETION k-PARTITION is a k-partition, i.e., some
color assignment ¢ : V' — {1,2,... k} and the objective is to minimize the total
weight of the monochromatic edges, i.e., the quantity:

Z w(vivvj)

(vi,'uj)EE

e(vi)=e(v;)

In other words, the objective of MIN EDGE DELETION k-PARTITION is to determi-
ne the minimum total-weight edge-subset, the removal of which transforms G into a
k-partite graph®.

Obviously, given an a priori coloring C, absence of some vertices from V' does
not change the coloring of the remaining vertices; so MS is feasible for MIN EDGE
DELETION k-PARTITION. Note now that the latter of the two alternative definitions
of this problem presented just above, together with the feasibility of MS for it, make
MIN EDGE DELETION k-PARTITION perfectly fit the conditions of Theorem 6.3 in
Chapter 6. Consequently, PROBABILISTIC MIN EDGE DELETION k-PARTITION is
NP-hard.

7.2.12. MAX k-COLORABLE SUBGRAPH

A graph G is called k-colorable if its vertices can be colored with at most k colors,
i.e., if its chromatic number is less than, or equal to, k. Consider a graph G(V, E). In

6. A graph G is said to be k-partite if its vertices can be partitioned into a collection
(Va, ..., Vi) of independent sets; in a bipartite graph, k = 2.
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MAX k-COLORABLE SUBGRAPH the objective is to determine a maximum-size subset
E’ C FE such that the partial subgraph G'(V, E’) is k-colorable.

The absence of a vertex from V preserves the fact that the surviving subgraph
of G’ remains k-colorable. So, MS is feasible for MAX k-COLORABLE SUBGRAPH
which fits conditions of Theorem 6.3 in Chapter 6. Hence, PROBABILISTIC MAX
k-COLORABLE SUBGRAPH is NP-hard.

7.2.13. MAX SUBFOREST

Consider a graph G(V, E') and a forest (i.e., a set of trees) H. In MAX SUBFOR-
EST, the objective is to determine a maximum-size set E’ C FE, such that the partial
subgraph G’ (V, E’) of G does not contain any subtree isomorphic to a tree from H.

Strategy MS is not feasible for MAX SUBFOREST. Indeed, given an a priori solution
for this problem, the absence of some vertices may transform a tree non-isomorphic
to some tree of H into one that this time is isomorphic to one of the trees of H.

7.2.14. MAX EDGE SUBGRAPH or DENSE k-SUBGRAPH

Consider a graph G(V, E), an edge-weight function w : E — N and an integer k.
In MAX EDGE SUBGRAPH, the objective is to determine a subset V/ C V with |[V'| =
k such that the quantity } -, e pry <y w(u, v) is maximized.

Strategy MS is not feasible for MAX EDGE SUBGRAPH. Indeed, given an a priori
solution V' of size k, the removal of a vertex from V"’ will produce a set of size smaller
than k, thus violating the feasibility condition of the problem.

7.2.15. MIN EDGE K-SPANNER

Consider a connected graph G(V, E). A k-spanner of G is a spanning subgraph G’
of G such that, for any pair of vertices u and v, the length of the shortest path be-
tween u and v in G’ is at most k times the distance between u and v in G. In MIN
EDGE k-SPANNER, the objective is to determine a k-spanner of G with the smallest
number of edges.

Obviously, strategy MS is not feasible for MIN EDGE k-SPANNER since the absence
of some vertices can disconnect an a priori k-spanner G'.
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7.2.16. MAX k-COLORABLE INDUCED SUBGRAPH

Given a graph G(V, E), MAX k-COLORABLE INDUCED SUBGRAPH consists of
determining a maximum-size subset V' C V, such that the subgraph G[V'] of G
induced by V"’ is k-colorable.

Note first that “k-colorability” is a hereditary property. Consequently (see sec-
tion 7.2.4), strategy MS is feasible for MAX k-COLORABLE INDUCED SUBGRAPH,
which fits now conditions of Theorem 6.1. Hence, PROBABILISTIC MAX k-COLOR-
ABLE INDUCED SUBGRAPH is NP-hard.

7.2.17. MIN EQUIVALENT DIGRAPH

Consider a directed graph G(V, A). In MIN EQUIVALENT DIGRAPH, the objective
is to determine a minimum-cardinality subset E’ C E such that, for any ordered pair
of vertices w and v in V/, the partial graph G’(V, E') contains a directed path from u
to v if and only if G does.

Strategy MS is feasible for MIN EQUIVALENT DIGRAPH. Simply note that if a
vertex disappears from G, then any path associated with this vertex (having it as initial
endpoint) disappears also, the rest of the paths remaining unchanged in the surviving
part of G’. So, PROBABILISTIC MIN EQUIVALENT DIGRAPH fits the conditions of
Theorem 6.3 and is NP-hard.

7.2.18. MIN CHORDAL GRAPH COMPLETION

Consider a graph G(V, E'). MIN CHORDAL GRAPH COMPLETION consists of de-
termining a minimum size superset £’ O F, such that the graph G’ (V, E) is chordal
(see section A.2 in Appendix A).

Strategy MS is feasible for MIN CHORDAL GRAPH COMPLETION (if a vertex dis-
appears, the cycles to which it is contained are broken). So, PROBABILISTIC MIN
CHORDAL GRAPH COMPLETION fits the conditions of Theorem 6.3 and is NP-hard.
7.3. Iso- and other morphisms
7.3.1. MAX COMMON SUBGRAPH

Consider two graphs G1(V1, E1) and G2(Va, E3). In MAX COMMON SUBGRAPH,

the objective is to determine maximum-size subsets ] C F; and E} C Es, such that
the partial subgraphs G} (V1, E}) and G4 (Va, EY) are isomorphic.
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Since G and GY, are required to be isomorphic, we can assume that |V | = |V3| =
|V| and that |E}| = |E4| = |E’|. Moreover, we assume that a vertex v disappears
simultaneously from both V; and V5. Under this last assumption, MS is feasible (it
would not be the case otherwise). Indeed, simultaneous removal of a vertex from two
isomorphic graphs leaves them isomorphic. Hence, MAX COMMON SUBGRAPH fits
the conditions of Theorem 6.3 in Chapter 6 and, consequently, PROBABILISTIC MAX
COMMON SUBGRAPH is NP-hard.

7.3.2. MAX COMMON INDUCED SUBGRAPH

Consider two graphs G (V1, E1) and G2(Va, E2). MAX COMMON INDUCED SUB-
GRAPH consists of determining subsets V; C V; and Vy C V5 such that the sub-
graphs G1[V{] and G3[V4] of G; and G, induced by V{ and V3, respectively, are
isomorphic.

For the same reasons as in section 7.3.1 for MAX COMMON SUBGRAPH, we as-
sume that |V/| = |V3]| = |V’| and, furthermore, that a vertex v disappears simul-
taneously from both V7 and V5. In this case, as previously, MS is feasible and MAX
COMMON INDUCED SUBGRAPH fits the conditions of Theorem 6.1 in Chapter 6. Con-
sequently, PROBABILISTIC MAX COMMON INDUCED SUBGRAPH is NP-hard.

7.3.3. MAX COMMON EMBEDDED SUBTREE

Consider two node-labelled trees 17 and 75. A common embedded subtree is a
labelled tree 7" that can be embedded into both T} and T, an embedding from 7"
to T being an injective function from the nodes of 7" to the ones of T that preserves
labels and ancestorship’. In MAX COMMON EMBEDDED SUBTREE, the objective is to
determine a maximum-order common embedded subtree.

Strategy MS is not feasible since the absence of a vertex from an a priori common
embedded subtree might disconnect it.
7.3.4. MIN GRAPH TRANSFORMATION

Consider two graphs G1(V, E1) and Go(V, E3). In MIN GRAPH TRANSFOR-

MATION, the objective is to determine a minimum-size subset £’ of F; such that
graphs G (V, E1 \ E’) and G(V, E2 U E’) become isomorphic.

7. Note that since fathership does not need to be preserved, T’ does not need to be an ordinary
subtree.
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As in sections 7.3.1 and 7.3.2, we need to assume that vertices disappear simul-
taneously from both G} and G%. Under this assumption, MS is feasible since the sur-
viving subgraphs of both G/ and G/, remain isomorphic. So, MIN GRAPH TRANS-
FORMATION satisfies the conditions of Theorem 6.3 in Chapter 6 and, henceforth,
PROBABILISTIC MIN GRAPH TRANSFORMATION is NP-hard.

7.4. Cuts and connectivity
7.4.1. MAX CUT

Consider a graph G(V, E). In MAX CUT, we wish to determine a maximum cut
that is to partition V' into two subsets 1} and V5 such that a maximum number of edges
have one of their endpoints in V7 and the other one in V5.

As we have seen in section 6.1.3 of Chapter 6, PROBABILISTIC MAX CUT fits the
conditions of Theorem 6.3. Consequently its optimal a priori solution is the optimal
solution of a particular edge-weighted MAX CUT-problem, where any edge (v;, v;) of
the input-graph is weighted by p;p;. Based on this characterization, PROBABILISTIC
MAX CUT is NP-hard.

7.4.2. MAX DIRECTED CUT

Consider a directed graph G(V, E'). In MAX DIRECTED CUT, we wish to determine
a maximum directed cut, i.e., to partition V into two subsets V; and V5 such that a
maximum number of arcs have one of their endpoints, say the initial, in V; and their
terminal endpoint in V5.

For this problem, hold exactly the same results as for its undirected version of
section 7.4.1.
7.4.3. MIN CROSSING NUMBER

Consider a directed graph G(V, A). In MIN CROSSING NUMBER, the objective is
to compute an embedding of G in the plane, minimizing the number of pairs of edges

crossing one another.

Strategy MS is feasible for MIN CROSSING NUMBER since, even if some vertices
disappear, the embedding of the surviving subgraph of GG in the plane remains feasible.

Since this problem does not belong to any of the cases treated by the three main
theorems of Chapter 6, we are going to compute explicitly its functional associated
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with MS. Consider an a priori embedding R of G in the plane. Then, denoting by
c1,-..,Cr, the crossings in R, we get:

E(G,R)

> Pr[Vm(G,R(V'))

VICV

ST PrVD eerary [7.8]
=1

VICV

Consider crossing c,,, due to edges (v, Vm,) and (U, , Um, ). Observe that c,,
survives in R(V") if and only if all the four vertices vy, , Um» Um,, and v,,, are present
in the subgraph of G induced by the finally present subset V' of V, i.e., if both of
the edges (Vpn,, Vm,) and (v, , Um,) are present. Based upon this observation, [7.8]
becomes:

T

E(G,R) = Z Z Pr(V']1ic,erviyy = Zpiipi,-pikpi, [7.9]

i=1V/CV i=1

From [7.9], one derives that an optimal a priori solution for PROBABILISTIC MIN
CROSSING NUMBER is an optimal solution of a particular weighted version of MIN
CROSSING NUMBER where any edge is weighted by the product of the presence-
probabilities of its endpoints, a crossing is weighted by the product of the weights
of the edges generating it, and the objective is to compute an embedding minimizing
the total weight of the crossings. Obviously, setting p; = 1, for any v; € V, we
recover the classical MIN CROSSING NUMBER. So, PROBABILISTIC MIN CROSSING
NUMBER is NP-hard.

7.4.4. MAX k-CUT

Consider a graph G(V, E) of order n, an edge-weight function w : F — N, and
an integer k£ € {2,...,n}. In MAX k-CUT, the objective is to determine a partition
of V into k disjoint sets V7, V5, ..., Vi such that the quantity:

k=1 k
N Y wnvm) [7.10]
i=1 j=i+1 v eV;

vm €V}

(vi;vm)€E

is maximized.

Considering an a priori k-cut, absence of some vertices may result in a cut imply-
ing less than k subsets of V. Hence, MS is not always feasible for MAX k-CUT.
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7.4.5. MIN k-CUT

This is the same problem as MAX k-CUT (section 7.4.4) up to the fact that the goal
now is to minimize [7.10]. The conclusions are the same as were given previously in
section 7.4.4.

7.4.6. MIN NETWORK INHIBITION ON PLANAR GRAPHS

Consider a planar graph G(V, E'), an edge-capacity function ¢ : £ — N, an edge-
destruction cost function d : E — N, and a budget B. In MIN NETWORK INHIBITION
ON PLANAR GRAPHS, a feasible solution is an attack strategy to the network, i.e., a
function o : £ — [0, 1] such that, ) a(e)d(e) < B. The objective is to minimize
the capability left in the damaged network, i.e., the total capacity of a cut in G where
the capacity ¢’ of an edge e is defined as ¢’(e) = a(e)c(e).

If a vertex disappears, the track of « in the surviving network always verifies
the definition of «. Furthermore, since for the edges that disappear with the ab-
sence of a vertex we can assume that their destruction-cost becomes 0, the quantity
> ecr a(e)d(e), where E' is the edge-set of the surviving graph, is always less than,
or equal to, B. Hence, MS is feasible for MIN NETWORK INHIBITION ON PLANAR
GRAPHS.

Consider an a priori solution « together with a cut Cy, and a subgraph G[V’|
induced by a subset V’ of V. Then:

m(G,C, (V') = Z a(vi,vj)c(vi,vj)1{1,1.6‘//’”],6\//}
(1}73,’1)_7‘)600
E(G.C.) = > PV > (a(viv)c(vi,v;)
V/CV (vi,v5)€Cq
Xl{’UiEV/,’UjEV/}) [711]

Since the facts v; € V'’ and v; € V' are independent, [7.11] becomes:

E(G,C,) = Z a (vi,v5) ¢ (vs,v5) Z (L{pevry X Liv,evi}
(vi,v;)€C VICV
x Pr[V'])
= Z a (vi,v5) ¢ (v, v5) Pipj [7.12]

(v; Vg )EC
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Based upon [7.12], one concludes that the optimal a priori solution for PROBA-
BILISTIC MIN NETWORK INHIBITION ON PLANAR GRAPHS is the optimal solution
of a weighted version of MIN NETWORK INHIBITION ON PLANAR GRAPHS where
except for functions c and d, an edge-weight function w : £ — Q, (v;,v;) — p;pj, is
also provided, and the objective becomes to minimize the weighted capability left in
the damaged network, i.e., the quantity » | . a(e)c(e)w(e).

Let us note that this explicit analysis is performed due to the fact that this problem
is not very well-known. In fact, MIN NETWORK INHIBITION ON PLANAR GRAPHS fits
perfectly the conditions of Theorem 6.3 in Chapter 6, if one considers that a feasible
solution for it is not only the specification of « but also the specification of a cut.

7.4.7. MIN VERTEX k-CUT

Consider a graph G(V, E), an integer k, a subset S = {s;,¢; : i = 1,...,k} of
“special vertices” of V and a vertex-weight function w : V' \ .S — N. MIN VERTEX
k-CUT consists of determining a vertex k-cut, i.e., a subset C' C V'\ S of vertices such
that their deletion from G disconnects any s; from ¢; for¢ = 1, ..., k, minimizing the

quantity » 0~ w(v).

Strategy MS is not feasible if we allow that a vertex in S may be absent. However,
it becomes feasible, if absence of any v € S is not allowed, i.e., if the presence
probability of any v € S is equal to 1. We deal with this assumption. In this case,
PROBABILISTIC MIN VERTEX k-CUT fits the conditions of Theorem 6.1 and hence is
NP-hard.

7.4.8. MIN MULTI-WAY CUT

Consider a graph G(V, E), a subset S of “terminal vertices” of V' and an edge-
weight function w : V' '\ § — N. MIN MULTI-WAY CUT consists of determining a
multi-way cut, i.e., a set £/ C F such that the removal of E’ from F disconnects any
terminal from all the others, minimizing the quantity ) ., w(e).

Under the same hypotheses as for MIN VERTEX k-CUT (section 7.4.7) about the
presence-probabilities of the terminal vertices, MS is feasible. Then, PROBABILISTIC
MIN MULTI-WAY CUT fits the conditions of Theorem 6.3 and hence it is NP-hard.

7.4.9. MIN MULTI-CUT

Consider a graph G(V, E), aset S C V x V of source-sink pairs and an edge-
weight function w : ' — N. MIN MULTI-CUT consists of determining a minimum-
weight multi-cut, i.e., a set £/ C F, such that the removal of E’ from F disconnects s;
from ¢;, for any pair (s;,t;) € S.
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Under the same hypotheses as for MIN VERTEX k-CUT and MIN MULTI-WAY CUT
(sections 7.4.7 and 7.4.8, respectively) about the presence-probabilities of the vertices
in S, MS is feasible. Then, PROBABILISTIC MIN MULTI CUT fits the conditions of
Theorem 6.3 and hence it is NP-hard.

7.4.10. MIN RATIO-CUT

Consider a graph G(V, E), an edge-capacity function ¢ : E — N, k commodities,
i.e., k pairs (s;,t;) € V x V and a demand d; for any pair (s;,t;). The objective
for MIN RATIO-CUT is to compute a cut minimizing its total capacity divided by the
demand across the cut, i.e., minimizing the quantity:

>, clvi,v)
v, EVy
v €V
(virvj)er

d;
it {s1,t: JNV1 | =1

If the presence probabilities of the “distinguished vertices” s;, t;, @ = 1,...,|S],
are different from 1, i.e., if these vertices are not always present, then MS is not always
feasible for MIN RATIO-CUT. In fact, there may exist induced subgraphs of G for
which at least one of the two sets V; and V5 induced by the a priori cut is empty. In
this case, there does not exist a surviving cut for the subgraph considered.

Suppose now that s; and ¢;, ¢ = 1, ..., |S], have presence-probability 1, i.e., they
are always present in any of the subgraphs of GG. Assume also that any of the sets
and V5 contains at least one of the s;, t;, for some ¢ = 1,...,|S]| (otherwise, as
above MS may be unfeasible). In this case MS is feasible for MIN RATIO-CUT. Indeed,
note that a cut remains always a cut, even if some of the vertices of the graph disap-
pear. Furthermore, if for any ¢ € {1,...,|S|}, both s; and ¢; are in the same set V;
or V5, then the total demand is zero and such a solution has no sense for the problem
considered. Note finally that, since forany i = 1,...,|S], s; and t; are always present,
the total demand across the cut, i.e., the quantity ;. ;.1ry; (=7 di is independent
from the finally present subgraph of G, i.e., it is a constant with respect to V' in the
expression for the functional. All this makes that MIN RATIO-CUT fits the conditions
of Theorem 6.3. Considering an a priori cut E’, its functional can then be written as:

Y. c(vi,vj) pipj
v, EV]
vjEVy
(vi,vj)eE

E(G,E)=

d;
i:‘{si,ti}ﬂvl |:1



236  Probabilistic Combinatorial Optimization

7.4.11. MIN b-BALANCED CUT

Consider a graph G(V, E), a vertex-weight function w : V' — N, an edge-cost
function ¢ : E — Nand b € Q, such that b € (0,1/2]. A feasible solution for MIN
b-BALANCED CUT is a vertex-cut, i.e., a subset C' C V such that min{w(C), w(V \
C)} = bw(C), where, for any subset V' C V, w(V') = > .y, w(v). The ob-
jective is to minimize the total cost of the cut between C and V' \ C, i.e., the quan-
tity >_.c5(c) c(€), where 6(C) = {e = (v;,v)) e € E,v; € Cyv; € V\ C}

There might exist subgraphs G[V”’] of G, induced by some sets V' C V, for which
given an a priori solution C, either CNV’, or (V' \ C) NV’ is empty. In this case, the
feasibility constrained is violated since 0 2 bw(C'). Hence, MS is not always feasible
for MIN b-BALANCED CUT.

7.4.12. MIN b-VERTEX SEPARATOR

Consider a graph G(V, E) of order n, and a number b € Q, such that b € (0,1/2].
A feasible solution for MIN b-VERTEX SEPARATOR is a partition of V' into three sets A,
B and C, such that max{|A|, |B|} < bn, and no edge in E has one of its endpoints
in A and another one in B; C is then called a separator. The objective is to determine
a minimum-size such separator.

Absence of a vertex from the set C' of an a priori solution for MIN b-VERTEX SEP-
ARATOR reduces n, leaving |A| and | B| unchanged. This could violate the constraint
on the quantity max{|A|, |B|}. So, MS is not always feasible for MIN b-VERTEX SEP-
ARATOR.

7.4.13. MIN QUOTIENT CUT

Consider a graph G(V, E), a vertex-weight function w : V — N and an edge-
cost function ¢ : £ — N. In MIN QUOTIENT CUT, the objective is to determine a
set C C V minimizing the quantity ¢(C)/ min{w(C), w(V \ C)}, where w(V’) =

ZvGV’ w(v), and C(C) = Z(u,v)GE and (ueC,weV\C) or (ueV\C,wel) C(U, U)‘

If, given an a priori solution C' and a present subset V' of V, because of absence of
some vertices either, CNV’ = ), or (V\C)NV’ = , then min{w(C), w(V\C)} =0
and no value can be computed for the result of application of MS on C'. Hence, this
strategy is not feasible for MIN QUOTIENT CUT.

7.4.14. MIN k-VERTEX CONNECTED SUBGRAPH

Consider a connected graph G(V, E) and a constant k¥ > 2. In MIN k-VERTEX
CONNECTED SUBGRAPH, the objective is to determine a k-vertex connected spanning
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partial subgraph G'(V, E’) of G, i.e., a spanning partial subgraph of G which cannot
be disconnected by removing less than £ vertices, with the least possible number of
edges, i.e., with |E’| as small as possible.

Observe that the absence of some vertices may disconnect GG. So, MS is not always
feasible for MIN k-VERTEX CONNECTED SUBGRAPH.

7.4.15. MIN k-EDGE CONNECTED SUBGRAPH

This is the same problem as MIN k-VERTEX CONNECTED SUBGRAPH (discussed
in section 7.4.14), modulo the fact that the removal constraint carries over the edges.
The result is the same as in section 7.4.14.

7.4.16. MIN BICONNECTIVITY AUGMENTATION

Consider a graph G(V, E) and a symmetric vertex-weight function w : V —
N x N. A feasible solution for MIN BICONNECTIVITY AUGMENTATION is an aug-
menting set E’ for G, i.e., a set £’ of unordered pairs of vertices from V' such
that G(V, E U E’) is biconnected. The objective consists of determining an augment-
ing set £/ minimizing its total weight, i.e., the quantity Z(mv) cp w(u,v).

Absence of a vertex from an a priori augmenting set F’ entails the absence of the
edges of E’ incident to it and, in this case, biconnectivity might be broken. So, MS is
not feasible for MIN BICONNECTIVITY AUGMENTATION.

7.4.17. MIN STRONG CONNECTIVITY AUGMENTATION

This is the same problem as MIN BICONNECTIVITY AUGMENTATION (as seen in
section 7.4.16) up to the fact that GG is an oriented graph. The result is the same as in
section 7.4.16.

7.4.18. MIN BOUNDED DIAMETER AUGMENTATION

Consider a graph G(V, E)) and a positive integer D < |V|. In MIN BOUNDED
DIAMETER AUGMENTATION, we search for a minimum-cardinality set £’ of un-
ordered pairs from V' x V such that G(V, E U E’) has diameter (see section A.2
of Appendix A) D.

Note that the absence of some vertices from a graph changes its diameter in a non-
monotonous way. Hence MS is not always feasible for MIN BOUNDED DIAMETER
AUGMENTATION.
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Appendix A

Mathematical Preliminaries

A.l. Sets, relations and functions

This section recalls basic elements from sets, relations and functions. For further
information, the interested reader can be referred to [LEW 81].

A set S is a collection of distinct elements of some universe &{. We use notation
S = {a,b,c,d} to represent a set .S defined on elements a, b, ¢ and d. This is an
explicit representation of .S. An implicit representation of a set .S is to define it with
respect to some property verified by all of its elements and only by them. This compact
representation is very useful to denote sets with an infinite number of elements. A set
with a finite number of elements is called finite; otherwise, it is called infinite. The
cardinality of a set S (denoted by |S]) is the number of its elements.

The symbols € and ¢ denote the fact that an element belongs, or does not belong
to a set, respectively. Dealing with set S = {a,b,c,d},a € Sand z ¢ S.

Particularly interesting sets are:

— N, the set of natural numbers and N*, the set of positive natural numbers;
— 7, the set of integers and Z™, the set of positive integers;

— @Q, the set of rational numbers;

— R, the set of real numbers and, more generally, R™, the set of real points in an
m-dimensional space.

Two sets S and S’ are equal (denoted by S = S”), if any element of S is also an
element of S’ and vice versa; otherwise, S and S’ are not equal (denoted by S # S”).
A set S’ is a subset of S (denote by S’ C S), if any element of S’ is also an element
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of S; S’ is a proper subset of S (denoted S” C S), if S C S and S’ # S. Two sets
are called disjoint if they do not include common elements.

A set S with |S| = 1 is called a singleton. In other words, a singleton S = {a}
includes a single element a. A set S is empry (denoted by S = () if it contains no
element; otherwise, S is called non-empty. The cardinality of an empty set is 0.

Given two sets X and Y:

— their union, denoted by X UY, is the set of all elements that belong either to X,
or to Y'; the union of more than two sets X1, Xo, ..., X}, is denoted by Ui?:lXi; the
union of an infinite number of sets X, X», ..., will be denoted by U2, X;;

— their intersection, denoted by X NY, is the set of all elements common to both X
and Y,

— the difference X from Y, denoted by X \ Y is the set of all elements of X that
do not belong to Y'; the difference Y \ X is defined analogously;

The following basic equalities hold:

IXUY]| | X|+ Y] —|XNY]|] if X andY are not disjoint
| X| + Y] if X and Y are disjoint
X\v| = |X|—|XNY| if X andY are not disjoint
N | X if X and Y are disjoint

If X, Y and Z are sets, then the following laws hold.

Idempotency: X UX =X and X N X = X.

Commutativity: XUY =Y UXand XNY =Y N X.

Associativity: (XUY)UZ=XU{Y UZ)and( XNY)NZ=XN(YNZ).

Distributivity: XU(YNZ) = (XUY)N(XUZ)and XN(YUZ) = (XNY)U(XNZ).

Absorption: X N(XUY)=Xand XU (XNY)=X.

De Morgan’slaws: X\ (YUZ) = (X\Y)N(X\Z)and X \ (Y NZ) = (X \
YU(X\ Z).

The power-set of a set S (denoted by 25 is the set of all the subsets of S (includ-
ing () and S itself). If S is finite with cardinality n, then [25] = 2/5| = 27,
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Given a non-empty set S, a partition on S is a subset S of 2° such that every
element of S is non-empty, the elements of S are pairwise disjoint, and the union of
its elements is equal to S.

Given a set S, the elements of which verify some property 7, S is said to be
maximal for the inclusion with respect to T if any addition of some other element in .S
results in a set that does not verify 7. It is said to be minimal for the inclusion with
respect to w if any removal of some element of .S results is a set that does not verify 7.
Whenever property 7 is well understood by the context, we use terms maximal and
minimal set, respectively.

A sequence of elements is a list of these elements in some order. A sequence is
expressed by writing a list of its elements between parentheses. A sequence can be
infinite or finite; finite sequences are called fuples. A tuple on k elements is called a
k-tuple. Frequently, a 2-tuple is called a pair and a 3-tuple a triple.

The Cartesian product of k sets S1, . .., Sk, denoted by S X ... x Sk, is the set of
all k-tuples (s1,...,s,) with s; € S;,i=1,...,k. If, foranyi = 1,...,k, S; = S,
then the Cartesian product is denoted by S¥; |S*| = |S|*.

A k-dimensional vector ¥ over a set S is an element of S*. The i-th component
of ¢ will be denoted by v;; in other words, ¥ = (v1,va, ..., Uk).

Given two sets X and Y, any subset R C X X Y is called a binary relation
between X and Y. The domain of R is the set of all z, such that (z,y) € R, for some
y € Y. Analogously, the range of R is the set of all y such that (z,y) € R, for some
x € X. A binary relation R between X and X itself is called a binary relation in X.
Consider such a relation R. Then:

— R is reflexive, if (x,x) € R, forany € X;

— R is symmetric, if, for all pairs of elements z and y (z,y) € R = (y,z) € R;

— R s transitive, if, for all triples (x, y, ) (z,y) € RA (y,2) € R= (z,2) € R.

A binary relation in X that is simultaneously reflexive, symmetric and transitive is
called an equivalence relation.

Given two sets X and Y, a function ¢ from X to Y, denoted by ¢ : X — Y,
is a binary relation between X and Y that includes, at most, one pair (z,y) for any
x € X. A function with domain X and range Y is called a function from X onto Y.
For a function ¢ : X — Y and a pair (z, y) belonging to ¢, we shall write ¢(z) = y
(or, sometimes, ¢ : x — y) instead; x is called the argument and y the value of ¢.

Consider a function ¢ : X — Y. Then:

— ¢ is total if its domain coincides with X;
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— ¢ is partial if its domain is a subset of X;

— ¢ is many-to-one if the value of ¢ coincides on more than one distinct arguments;
— ¢ is one-to-one, or injective, if, for all z, 2’ € X with z # 2/, ¢(z) # ¢(2');

— ¢ is surjective, if Y coincides with the range of ¢;

— ¢ is bijective if it is both injective and surjective; a bijective function is very
frequently called a bijection.

Given two functions ¢, : N — N:

- ¢(n) = O(¢(n)), if there exist constants x, " and ng such that, for all n > ny,
¢(n) < Kp(n) + K";

- ¢(n) = Q(p(n)), if there exist constants x, k" and ng such that, for all n > ng,
¢(n) = kip(n) + K";

= ¢(n) = O(4(n)) if both ¢(n) = O(y(n)) and $(n) = Q(3(n)) hold;

= 6(n) = 0((n)), if limy— e ($(n) 16(n) = 0.

Binary relations and functions can be easily generalized into more than two ground
sets. Given k + 1 sets X1,..., X,Y, a k-ary relation between X1, ..., Xy is any
subset R C X7 X ... X Xi. A k-ary function f : X1 X ... x X, > Yisa(k+1)-
ary relation between the sets X7, ..., Xj, Y that includes, at most, one (k + 1)-tuple
(z1,...,2k,y) forany (x1,...,2r) € X3 X ... X Xp.

Given a function f : X — Y, f admits an inverse function, denoted by f~! :
Y — X, if the following holds: f(z) =y & f~(y) = .

Consider two sets X and Y'; they are called equinumerous if there exists a bijection
¢ : X — Y. In general, if a set is finite then, if its cardinality is n, it is equinumerous!
with {1,2,...,n}. Aninfinite set S is called countably infinite if it is equinumerous
with N; it is called countable if it is finite, or countable infinite; finally, it is called
uncountable if it is not countable.

We denote by Iixy the indicator function of the fact X, i.e.:

1 _ 1 if X is true
X} =) 0 otherwise

A.2. Basic concepts from graph-theory

We give in this section some basic elements of graph theory. For more details and
fundamental concepts, the interested reader can be referred to [BER 73, BOL 79].

1. The empty set is finite and equinumerous with itself.
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An undirected graph G(V, E) is a pair of finite sets (V, E), such that E is a binary
symmetric relation in V. The set V' is the set of vertices (sometimes called nodes) and
the set E is the set of edges. By the symmetry of E, an edge (u, v) identifies both the
pair (u,v) and the pair (v,u). For a (u,v) € E, u and v are said to be adjacent, or
neighbors; they are also called the endpoints of edge (u,v). This edge is said to be
incident to v and u. For a vertex v € V, we denote by I'(v) the set of its neighbors.

The degree of a vertex v € V is the number of vertices adjacent to it (the num-
ber |T'(v)| of its neighbors). The degree of G, denoted by A(G), or simply by A
when no confusions arises, is the degree of its maximum-degree vertex; in other
words, A(G) = max,,ev{|'(v;)|}. The degree of a minimum-degree vertex of G
will be denoted by 0(G) (or simply by § when no confusion arises); in other words,
§(G) = miny,ev{|T(v:)|}. A graph is said to be d-regular, if all its vertices have
degree d,ie., A(G) = 6(G) = d.

A directed graph G(V, A) is a pair of finite sets (V, A), such that A is a binary
relation in V, not necessarily symmetric. The elements of A are called arcs. For an
arc (u,v), u is said initial endpoint of (u,v) and v is said final endpoint of (u,v).

A graph G'(V'| E') is said to be subgraph of G(V, E) induced by V', if V! C V
and E' = {(u,v) : u,v € V' A (u,v) € E}. A graph G'(V', E") is said to be partial
subgraph of G(V, E),if V' C Vand E” C F'.

A weighted graph G(V, E,w) is a graph G(V, E) together with a function w :
V — Q,orw : E — Q, that associates a weight with any vertex, or any edge (or
any arc) of G. Sometimes function w is represented as a vector w, the components of
which are the values of function w on the elements of V' or of E. For any weighted
graph G(V, E,w), and for any vertex v € V (resp., any edge (u,v) € E), w(v)
(resp., w(u, v)) is called the weight of v (resp., of (u, v)).

A graph G(V, E) is called complete, or clique if E = V2, orif E = V?\ {(v,v) :
v € V}). In other words, any two vertices of a clique are adjacent. In the former
case G will be called complete (or clique) with loops. A complete graph on n vertices
verifies |E| = n(n — 1)/2.

Given a graph G(V, E) and two vertices vy and vg, an elementary path from v
to vy, is a sequence of distinct vertices (v, vo, ..., v) such that, fori =1,... k—1,
(vi,vi+1) € E. The definition of a path for a directed graph G(V, A) is similar up to
the fact that, fori = 1,...,k — 1, the pair (v;, v;41) belongs to A. In this latter case
the path (v1, v, . .., vy ) is called a directed path (or simply a path, when no confusion
arises). Sometimes, a path is represented as sequence of its edges (or arcs). The length
of a path is the number of its edges. When dealing with edge-weighted graphs, the
value of the path is the sum of the weights of its edges (or arcs). A cycle of G is a path
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(v1, v, ...,v) with vy = vg. If a cycle contains all the vertices of G, then it is called
a Hamiltonian cycle.

The diameter of a graph is the maximum distance (i.e., the length of the longest
elementary path) of any pair of its vertices.

A graph is connected if, for any pair of distinct vertices u and v, there exists a path
from u to v; otherwise the graph is said to be non-connected. A connected component
of a non-connected graph G is some connected subgraph of GG. A graph is said to be
biconnected if, for any pair of distinct vertices u and v, there exist two vertex-disjoint
paths from wu to v. A directed graph is said to be strongly connected if, for any pair of
distinct vertices u and v, there exist two vertex-disjoint directed paths from w to v.

A tree T(V, E) is a connected graph with no cycles. It is rooted if there exists one
node designated as the root. In this book we deal only with rooted trees. A common
way to recursively define a rooted tree is the following:

— a single vertex v is a tree rooted at v;

— assume that v is a vertex and 77, . . ., T}, are trees with roots vy, . .., vy, respec-
tively; a new tree can be obtained by linking v with vy, ..., vg; in this new tree v is
the root and v, . . ., vy are its children.

The height of a tree-node v is the length of the path from the root of the tree to v.
The height of a tree is the maximum over the heights of its nodes. In a tree, a vertex
with no children is called a leaf. In any tree T'(V, E), | E| = |V|—1. A usual (although
somewhat informal) way to characterize a tree is the following: “a tree is a connected
acyclic graph such that if one adds an edge, then one creates a cycle and if one removes
an edge, then one disconnects the graph”. Following this characterization, a tree is a
graph that, in terms of edges, is minimal for the connectivity and maximal for the
acyclicity. A rooted tree of height 1 will be called a star.

A directed graph G(V, A) is called acyclic, if it contains no directed cycle.

A directed graph G(V, A) is called transitive, if for any pair (u,v) € V x V the
following condition holds: if there exists w € V such that (u, w) € A and (w,v) € A,
then (u,v) € A.

An undirected graph is called a comparability graph if its edges can be oriented in
such a way that the resulting directed graph is acyclic and transitive.

The complement? of a graph G(V, E) is the graph G(V, E') with E' = {(V x V)
(EU{(v,v):veV}h}

2. Sometimes called a complementary graph.
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A graph G(V, E) is bipartite if its vertex-set can be partitioned into two subsets U
and D such that any edge in E links a vertex of U to a vertex of D.

A graph is called chordal if any cycle of length at least 4 has a chord (i.e., an edge
linking two vertices of the cycle).

A graph is called planar if it is possible to represent it on a plane in which the ver-
tices are distinct points, the edges simple curves and no two edges cross one another.

A graph G(V, E) is called a split graph if its vertex-set V' can be partitioned into
two subsets V7 and V5 such that, one of them, say V7, is an independent set and the
other one, V3 is such that G[V43] is a clique.

We now define some characteristic graph-configurations seen in this book.

Given a graph G(V, E), an independent set is a subset V' C V such that, for
any pair (u,v) € V! x V', (u,v) ¢ E. In other words, an independent set is a set
of pairwise non-adjacent vertices. When dealing with (vertex-)weighted graphs, the
measure of an independent set V' is the sum of the weights of the vertices of V',
unless it is defined otherwise. The cardinality of a maximum independent set of G,
also called independence number or stability number, is denoted by a(G).

Given a graph G(V, E), a clique is a subset V/ C V such that, for any pair (u, v) €
V' x V', (u,v) € E. In other words, a clique is a set of pairwise adjacent vertices.

Given a graph G(V, E), a vertex cover is a subset V' C V such that, for any
(u,v) € E, either u or v belongs to V’. When dealing with (vertex-)weighted graphs,
the measure of a vertex cover V' is the sum of the weights of the vertices of V.

The following relations link, for a fixed graph G(V, E), the three configurations
defined just above:

1) for any independent set V' of G, V' \ V" is a vertex cover for G;
2) any independent set V’ of G is a clique in G.

Given a graph G(V, E), a coloring is a function from some color-set onto V' such
that no adjacent vertices in G receive (that is, are colored with) the same color. In
other words the vertices of G colored with the same color form an independent set.
Then, a coloring of G (also called coloring of V') is a partition of V' into independent
sets. The cardinality of a minimum coloring of G is called a chromatic number of G
and is denoted by x(G).

Given a graph G(V, E), a matching M is a subset of E such that no two edges
in M share the same endpoint. In other words if we represent an edge as a set of its
endpoints, a matching is a set of pairwise disjoint edges. A matching M is said to be
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perfect if it saturates all the vertices of G, i.e., if any v € V is the endpoint of some
edge of M.

Consider an oriented graph G(V, A) and assume that G contains at least a vertex,
denoted by s, such that s is the initial endpoint of any arc incident to it, and at least a
vertex, denoted by ¢, such that ¢ is the final endpoint of any arc incident to it. Vertices s
and t are called source and sink, respectively. Fix a pair (s, t). Assume also that with
any arc a; = (u,v) € A are associated two numbers b; and ¢; in Q such that, for any
i =1,...,]A], —o0 € b; < ¢; < +00. Denote by b the vector of b;s and by c¢ the
vector of ¢;s, i = 1,...,|A|. Such a graph is usually denoted by G(V, A, s, t, g, )
and is called a nerwork. Whenever b; = 0, for any ¢ = 1,...,|A|, the network G is
called transportation network. A flow of a network G is a vector 5 = (¢1,---,914])s
¢; € Q such that:

I)foranyi € {1,...,|A|}, b; < & < ¢

2) for any vertex v € V' \ {s,t}, the sum of the arc-flows entering v equals the
sum of the arc-flows leaving v, i.e., ZaiEE(v) ¢; = ZaieL(v) ¢i, where E(v) =
{(z,v) € A} and L(v) = {(v,z) € A}. This property is a kind of conservation law
called Kirchoff’s law.

The maximum flow problem can simply be specified as follows: consider a “ficti-
tious” arc ag from £ to s, set bo_’: —oo and ¢y = 400, denote by G’ the so-modified
network and determine a flow ¢ = (¢o, ¢1,. .., ¢|4|) such that:

1) forany i € {0,...,|A|}, b; < ¢ < ¢

2) for any vertex v € V, the sum of the arc-flows entering v equals the sum of the
arc-flows leaving v, i.e., Za,-EE(’U) P = ZaieL(u) bis

3) ¢g is maximized.

Given a graph G, an edge covering E’ is a subset of F such that any vertex v € V is
the endpoint of an edge in E’.

Given a graph G and a partition of V" into two sets V7 and V53, a cut is a set of edges
in E having one of their endpoints in V; and the other one in V5.

A.3. Elements from discrete probabilities

An event space, or probability space, €} is a set of elements (also called elementary
events) w, such that U, {w} = . With any w € ), we associate a probability Pr|w] €
[0,1], such that ) ¢, Pr{w] = 1. The set {Pr[w] : w € Q} is called probability law
or probability distribution.

An event A is a subset of ). The probability of A is defined as: Pr[4] =
ZweA PI‘[Q}] .
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A random variable (r.v. for short) is a function defined on the elementary events
of some probability space. Any random variable X can be characterized by the prob-
ability distribution {Pr[X = w]} of its values.

Two random variables X and Y are called independent if and only if: Pr[X =
xANY =y] =Pr[X =2z] - Pr[Y =y].

The expectation E(X) of a random variable X (representing, in some sense, the
mean value of X) is defined as:

E(X)= > x-PrX=a4]
z€X(Q)

where X () is the set of all the values the r.v. X can be assigned.

PROPERTY A.1.— Let X and Y be two random variables over a probability space €2
and let a € R. Then:

-BE(X+Y)=EX)+E®Y);
- E(aX)=aE(X);
—if X and Y are independent, then E(X - Y) = E(X) - E(Y).

Given a random variable X, its variance Var(X) (representing the distribution
of X around F (X)) is defined by:

Var(X) = E ((X - E(X))2>

The standard deviation of an r.v. X is defined by: o(X) = /Var(X). It repre-
sents the mean deviation between X and E(X). If o(X) is small, then the value of X
is almost always close to F(X).

PROPERTY A.2.— Let X be an r.v. on a probability space 2. Then:

- Var(X) = E (X?) — (E(X))%;

—if Yisanrv. and X and Y are independent, then 