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Preface 

These colloquium proceedings address problems at the interface between mathe­
matics and computer science, with special emphasis on discrete probabilistic mod­
els and their relation to algorithms. Combinatorial and probabilistic properties of 
random graphs and networks, random trees and branching processes, as well as 
random walks are central. Applications are to be found in analysis of algorithms 
and data structures, the major application field , but also in statistical theory, in­
formation theory, and mathematical logic. This colloquium is the second one in 
a now regularly established series, following the first venue in September 2000 in 
Versailles. The book features a collection of original refereed contributions supple­
mented by survey articles written by the invited speakers, 1. Devroye, S. Janson, 
M. Krivelevich, B. Pittel, H. Prodinger, and M.Steele. As the field is burgeoning 
with applications at the frontier of several scientific disciplines, authors have been 
asked to provide a perspective on the various sub fields involved. 

Combinatorics. The starting point of many studies of random discrete models 
is combinatorics, which often provides us with exact representations in terms of 
counting generating functions. Arques and Micheli develop the combinatorial enu­
merative theory of maps with special attention to colouring problems. Banderier 
presents a synthetic theory of walks with returns over the half integer line, which is 
motivated by fast random generation of combinatorial structures. Bousquet-Melou 
shows us an explicitly solvable model of walks in the quarter-plane that originates 
with basic queueing theory questions and gives rise to elegant combinatorial devel­
opments. Brlek, Duchi, Pergola and Pinzani enrich the theory of "ECO-systems" 
now recognized to provide a unifying framework for many problems of combinato­
rial random generation. Krikun and Malyshev finely characterize the boundary of 
a random triangulation of the disk by means of combinatorial-analytic methods. 
Labelle, Lamathe, and Leroux successfully apply the theory of species to tree-like 
arrangements of cells and derive an original combination of explicit and asymptotic 
counting results. 

Random Graphs and Networks. Following Erdos and Renyi's pioneering work 
around 1960, random graph models have been the subject of intense study for four 
decades. Baert, Ravelomanana, and Thimonier base a novel analysis of triangle 
free graphs on breadth-first search and its associated stochastic properties in the 
line of Spencer's approach. Chassaing and Schaeffer solve a long-standing open 
questions: What is the diameter of a random map? Their result is achieved by 
an examplary combination of bijective and probabilistic methods. Coppersmith, 
Gamarnik, and Sviridenko characterize the diameter of a random graph with long 
range interactions-such problems are of interest for percolation models but also 
in relation to the geometry of the web. Devroye, McDiarmid, and Reed analyse the 
emergence of giant components in two graph models that are similarly motivated 
by our desire to understand the "graph of the web". Krivelevich's invited lecture 
surveys random graph colouring: the problem is NP-complete in the worst-case, 
but the perspective changes dramatically when one switches from the pessimistic 
worst-case scenario to the more realistic average-case analysis . Le Bars demon­
strates the usefulness of probabilistic inequalities in the analysis of some threshold 
phenomena of logic. Palaysi explores combinatorial and algorithmic aspects of 

xi 



wavelength assignment in certain graphs representing interconnection networks. 
Last but not least, Steele's invited lecture reviews and revisits the celebrated prob­
lem of minimal spanning trees in graphs with random edge weights; his text gives 
for the first time surprisingly explicit formulre out of which quantitative estimates 
can be derived. 

Analysis of Algorithms and Trees. 'frees are perhaps the most important structure 
of computer science. In particular, they appear as data structures in an amazing 
variety of domains, like textual data processing, data compression, fast retrieval of 
information, symbolic computation, and so on. Bourdon and Vallee exhibit versa­
tile criteria informing us on conditions under which a complex pattern is or isn't 
likely to occur; their analysis is based on an original interplay of combinatorial and 
dynamical systems methods. The invited lecture by Devroye and Neininger devel­
ops an original analysis of a new structure, the suffix search tree that is a hybrid 
of two of the most important data structures, the suffix trie and the binary search 
tree. In particular, their study contributes significantly to our understanding of 
basic data structures when these are subjected to correlated data. Gittenberger 
proposes an approach via generating functions to the analysis of strata of nodes 
in random trees , which has applications to breadth-first search traversal. Hwang 
and Steyaert offer a definitive analytic treatment of the heap structure whose 
importance devolves from its widespread use in priority queue management and 
near-optimal sorting. Jacquet and Szpankowski are able to characterize the redun­
dancy of Markov sources of order r by an ingenious combination of combinatorial 
and analytic methods. Quickfind, which is one of the most spectacular algorithms 
known for basic order statistics, is thoroughly analysed by Martinez, Panario, 
and Viola: their contribution even results in an eminently practical discussion of 
cut-off points for optimal performance. Nguyen-The's paper show that the study 
of random combinatorial trees is intimately related to the performance of basic 
algorithms of symbolic manipulation, in particular the formal simplification of ex­
pressions. The invited paper of Prodinger offers a unified analytic perspective on 
digit statistics in a wide variety of number representation systems. Beyond its 
pure number-theoretic aspects, this study finds numerous applications in parsing 
and compiling (register allocation), sorting networks, the design of adder circuits, 
mergesort, interpolation search, and even branching fractals. 

Branching Processes and Trees . Branching processes constitute the probabilistic 
counterpart of the combinatorial theory of trees. Fayolle and Krikun provide er­
godicity conditions for a model of random trees that is akin to binary search trees, 
but where evolution involves random insertions and deletions. The invited lec­
ture of Janson tackles problems motivated by exhaustive search, along the lines of 
research by Ruskey and Knuth (see the forthcoming volume, Combinatorial Algo­
rithms). In particular, Janson proves the existence of a limit distribution for the 
number of ideals in random trees and does so by a clever adaptation of contrac­
tion methods, using the size-biased branching process. Menshikov and Petri tis 
report on recent results concerning random walks in a random environment on 
trees and their relationship to multiplicative chaos. Pittel's invited lecture revisits 
the loop erased random walk: this is a biased model of self-avoidance that is cur­
rently witnessing a number of spectacular developments. This article derives very 
precise estimates of limiting distributions that are also of interest for generating 
random spanning trees of the complete graph. RosIer, Topchii, and Vatutin finely 
characterize convergence rates of weighted branching processes and detect there 
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the occurrence of stable laws. Vatutin and Dyakonova develop informative limit 
theorems for a critical branching process in a random environment. 

Applied random combinatorics. Random combinatorics interacts with many other 
areas of science. Huillet and Porzo re-examine a version of the parking problem 
that is known to have numerous applications in computer science (hashing algo­
rithms, resource allocation), combinatorial optimization, as well as statistical me­
chanics and adsorption models. Mossel and O'Donnell examine the sensitivity to 
input noise of Boolean functions; their results have implications in learning theory, 
complexity theory, neural networks, and even (the authors argue) the American 
election system. Teytaud develops a set of new results in learning theory basing 
himself on ergodicity properties. Trouve and Yu establish upper bounds on the 
number of questions a user asks in the case of hierarchically structured databases. 
Weiermann characterizes 0-1 laws in ordinal theory via analytic combinatorics; 
his paper also serves as a valuable introduction to random combinatorics in its 
relation to finite model theory and logic. The last contribution to this book, by 
Zhang and Golin, develops explicit formulre for the number of spanning trees in 
structured graphs having a highly regular shape. 

Altogether papers assembled in this volume offer snapshots of current research. At 
the same time, they illustrate the numerous ramifications of the theory of random 
discrete structures throughout mathematics and computer science. Many of them, 
in particular invited lectures, include carefully crafted surveys of their field. We 
thus hope that the book may serve both as a reference text and as a smooth 
introduction to many fascinating aspects of this melting pot of continuous and 
discrete mathematics. 

Enjoy! 
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Brigitte Chauvin, 
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Daniele Gardy, 
A. Mokkadem 
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n-Colored Maps and Multilabel n-Colored 
Trees 

Didier Arques, Anne Micheli 

ABSTRACT: New topological operations are introduced in order to recover in 
another way the generalized Dyck equation for the generating function of n-colored 
maps presented in a former paper, by decomposing maps topologically and bijec­
tively. Applying repeatedly the operations which allowed to reveal the generalized 
Dyck equation to the successive transformed maps, a one-to-one correspondence 
is obtained between n-colored maps on any surface and n-colored trees whose ver­
tices can be labelled with several labels. This bijection provides us with a coding 
of these maps. 

1 Introduction 

The enumerative study of maps starts in 1962 with W.T. Thtte [15, 16J, who 
enumerates the number of rooted planar maps with n edges. Maps can also be 
described as combinatorials objects [12}. In 1975, R. Cori [7} studies planar maps 
in this perspective and extends these results with A. Machi [8} to orient able maps. 
In particular, R. Cori and B. Vauquelin determine a bijection between planar maps 
and well labelled trees [9], which leads to a code of these maps. These results were 
extended to maps of genus 9 and well labelled g-trees [13} and a code for maps 
of genus 9 by words product of a shuffle of Dyck words with constraints and of a 
sequence of integers was then obtained. Many studies can be found on maps of a 
strictly positive genus, orient able or not, as for example 11, 6, 3]. 
The study of rooted maps independently of their genus begins with T.R.S. Walsh 
and A. Lehman 117}. They give a recursive relation on the number of rooted maps 
with respect to the number of edges, which does not lead to an explicit enumer­
ation formula of these maps. In 1990, D.M. Jackson and T.!. Visentin Ill} use 
an algebraic approach and obtain a closed formula for the generating functions of 
orientable rooted maps with respcet to the number of edges and vertices. 
More recently, D. Arques and J.F. Beraud [2} determine a functional equation 
satisfied by the generating functions of rooted maps with respect to the num­
ber of edges and vertices and expresse the solution in a continued fraction form . 
This continued fraction reveals an interesting bijection, since it also enumerates 
connected fixed-point free involutions [14]. 
Topological operations applied to a map such as the removal or the addition of an 
edge, the fusion of two vertices, modify sometimes the genus of the map. These 
operations can not therefore be carried out in a systematic way when one works 
with fixed genus. However, these elementary operations make it possible to find 
new functional equations on maps studied independently of genus and to establish 
bijections between families of maps. 
In Section 2, we recall general definitions on maps and n-colored maps. New 
topological operations are introduced in Section 3, in order to establish in Section 
4, a bijection between n-colored maps of arbitrary genus, and n-colored maps 
of arbitrary genus with a root bridge, in which a subset of their vertices has 
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18 Didier Arques, Anne Micheli 

been selected. This bijection provides us with a new proof of the generalized 
Dyck equation on orient able n-colored rooted maps obtained formerly [4, 5]. This 
equation was obtained by an analytic resolution of a differential equation satisfied 
by the generating function of n-colored rooted maps and led to a solution in a multi­
continued fraction form. We here present a new proof of this equation, without 
any computation over the generating function, by transcription of the presented 
bijection. P. Flajolet [10] moreover showed that many continued fractions having 
integer coefficients can be explained in a purely combinatorial way, and here is an 
example of his assertion on a multi-continued fraction with integer coefficients. 
In Section 5, we give a bijection between orient able n-colored rooted maps and a 
family of n-colored trees whose vertices can be labelled by several labels according 
to certain rules, which is deduced from the one presented in Section 4 by successive 
applications of this bijection. The bijection enables us to determine a new language 
coding n-colored maps. 

2 Definitions 

Let us recall some definitions used afterwards (for further details, see for example 
[7, 8]). 
A topological map C in an orient able surface I: of ]R3 is a partition of I: in three 
finite sets of cells: the set of vertices of C, which is a finite set of dots; the set 
of edges of C, which is a finite set of open Jordan arcs, pairwise disjoint, whose 
extremities are vertices; the set of faces of C. Each face is simply connected and 
its border is the union of vertices and edges. 
The genus of the map C is the genus of I:. A cell is incident to another cell if one 
is contained in the boundary of the other. A bridge is an edge incident on both 
sides to the same face. We call half-edge an oriented edge of the map. 
Let B be the set of half-edges of the map. With each half-edge, one can associate 
its initial vertex, its final vertex and its underlying edge. a (resp. a) is the 
permutation in B associating to each half-edge b its opposite half-edge (resp. the 
first half-edge met when turning round the initial vertex of b in the positive way 
of the surface). The cycles of a (resp. a) represent the edges (resp. the vertices) 
of the map. The cycles of u = a 0 a are the oriented borders of the faces of the 
map. (B, a, a) is the combinatorial definition of the topological orient able map 
associated C. 
A map C = (B, a, a) is rooted if a half-edge b is distinguished. The half-edge b is 
called the root half-edge of C, and its initial vertex is the root vertex. C is then 
defined as the triplet (a, a, b). Face u* (b) is called the exterior face of C. By 
convention, the one vertex map (one vertex, no edge) is said to be rooted. 
Two orient able maps of the same genus are isomorphic if there is a homeomorphism 
of the surfaces, preserving its orientation, mapping vertices, edges and faces of one 
map onto vertices, edges and faces respectively of the other map. An isomorphism 
class of orient able rooted maps will simply be called a rooted map. 

Definition 2.1. n-colored map An orient able rooted n-colored map (n > 1) is a 
rooted map, where a maximum of n colors are used to color the vertices and such 
that each edge is incident to two vertices of different colors. 

The property "n-colored" is compatible with the equivalence relation whose classes 
are the rooted maps. 
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Let M be the set of orient able rooted maps, Mn,i the set of orientable rooted n­
colored maps, whose root vertex is of color i, In,i the subset of Mn,i of maps with 
a root bridge, and for any map I E In,i, Right(I) (resp. Left(I)) the maximal 
submap of I incident to the root vertex (resp. the final vertex of b) such that the 
root half-edge b (resp. a(b)) of I does not belong to Right(I) (resp. Left(I)) (see 
Figure 4.1). Let {pd be the one vertex map of Mn,i. 

3 Preliminaries 

In Section 3.1, we describe two algorithms of half-edges and vertices numbering of 
a map. Numbering induces an order relation on half-edges and vertices that allow 
us to define in Section 3.2, new topological operations on maps. These operations 
will be useful to prove Theorem 4.1. These two operations are reciprocal and 
they are interesting since the derivation operation allows to gather in one vertex 
a subset of vertices of a same color of a map, and the integration operation allows 
to get back this subset of vertices. 

3.1 Order relations in a rooted map 

Order relations on half-edges and vertices of a map are introduced in this Section. 
We show a map traversal algorithm. Half-edges are numbered beginning with the 
root half-edge and in the order of their appearance in the oriented circuit given by 
the algorithm (see map C in Figure 3.1). Half-edges are then naturally ordered 
by their number. 

The root half-edge b gets number 0, then the other half-edges of its face, a* (b), 
are numbered. Afterwards while there still are numberless half-edges: 

• Among numbered half-edges, the smallest half-edge b is chosen with a num­
berless opposite half-edge . 

• Along the face a*(a(b)), beginning with a(b), half-edges are numbered. 

Definition 3.1. Order relation on vertices. Let C be a rooted map and 81,82 

two vertices of C. The vertex 81 is smaller than 82 if the smallest half-edge of 81 

is smaller than the smallest half-edge of 82. 

Vertices are numbered by this order relation. Number 1 is affected to the root 
vertex and other vertices are numbered in an ascending order (see numbers in 
bold on map C of Figure 3.1). 
A map is ordered when its half-edges and vertices are numbered by the algorithms 
given above. 

Definition 3.2. Path and subpath of a map. The path of an ordered map 
C corresponds to the ascending ordered sequence of the half-edges of C, starting 
from its root half-edge. A subpath of C is defined as an increasing subsequence of 
ordered and successive half-edges of C. 

Property 3.3. On the smallest half-edges of a face and of a vertex of 
an ordered map. The smallest half-edge bs of a vertex 8 different from the root 
vertex, of an ordered map C = (a,a,b), is not the smallest half-edge of its face 
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0-* (bs ). The smallest half-edge b f of a face f different from the exterior face, of 
an ordered map C, is not the smallest half-edge of its initial vertex. 

Proof: If bs belongs to the exterior face of C, as 8 is different from the root vertex, 
we have b < bs and bs cannot be the smallest half-edge of its face. 
If bs does not belong to the exterior face of C, half-edges of face o-*(a(bs )) have 
been numbered before bs (see the algorithm above). Thus, a(bs ) is smaller than 
bs . Then o-(a(bs )) = a(bs ), which belongs to vertex 8, is smaller than bs <> 

3.2 Topological and bijective operations on maps 

In 3.2.1 we define the derivation operation that gather a subset of vertices of a map 
and the root vertex of a second map, in one vertex. These vertices can be recovered 
by applying the inverse operation, called integration operation and defined in 3.2.2, 
which uses the order properties on a map to get back all the gathered vertices. 
These operations are the main tools used in the proof of Theorem 4.l. 
Let us denote by M2 the subset of maps of M which have at least two distinct 
vertices. 

3.2.1 Derivation of maps 

In this section we define a derived map of a pair of maps (C, R) of M2 x M with 
respect to certain vertices of C. To derive a pair of maps with respect to vertices 
81, ... ,8m of C means to collect these vertices in one vertex while respecting an 
order and afterwards to glue this vertex to the root vertex of R, as described in 
definition below. 

Figure 3.1. Derived map with respect to vertices 3 and 5 of a pair of maps. 
25 b = 0 1 

Cf 
{3,5},R 

1 

C 
• • 

R 

1 

Cf 6 
{3,5},R 8 = 3 Ik:------.. 

reorder: bs = 
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Definition 3.4. Derived map. Let C = (0", a, b) be a map of M 2, with root 
vertex se and R = (O"R, a) be a map of M, with root vertex SR and if R =I- {p}, 
let (bsR ,l, bSR ,2, ... , bsR,liiR) be the half-edges of SR and bsR ,l be the root half­
edge of R. Let.9' = {Sl, ... , sm} be a set of m distinct vertices of C such that 
se < Sl < S2 < ... < Sm. Forall i in [1, m], let (bsi ,l, ... , bsi,ls) = O"*(bSi,t}, be 
the half-edges of initial vertex Si, in which bsi ,l is the smallest half-edge of Si' 

The derived map C'y R = (0"', a, b) of (C,.9', R) is then the map obtained from C 
and R after the gath~ring in a unique vertex s, of the vertices of .9' U{SR} in the 
following way (see Figure 3.1): 
S = (bSl,1, ... ,bsl,lsl,bs2,1, ... ,bs2,ls2,···,bsrn,1, ... ,bsm,Ism,bsR ,l, ... ,bSR ,lsR) = 

, J, I' I, I v v v 
81 82 8 m SR 

O"'*(bSl ,l)' In terms of permutation, it means: 0"' = T1RT1m ... T120" = ,0" with 
T1i = (bSl ,lbsi ,l), T1R = (bSl,lbsR,t) and, = (bSl ,l .. ' bsrn,lbSR,t)· 

Property 3.5. Orders of C'y,R 

1. In the ordered map C'y,R' if R =I- {p}, bsR ,l is the smallest half-edge among 
the half-edges of R (see Figure 3.1 in which bsR ,l = 15 and bsR,lsR = bSR ,2 = 
17). 

2. The subpaths from b to a(bSl,lsJ are identical in C and C'y,R (see Figure 
3.1, a(bSl,lsl) = 1 in C and in C{3,5},R)' 

Proof: 

1. By construction, R is recovered if in C'y,R' the subset of half-edges belong­
ing also to R, i.e. {bSR,l, ... , bSR,!sR}' is unglued from vertex s. Thus in the 

traversal of C'y,R' starting from its root half-edge, b, to reach any half-edge of 
R, one has to pass through s. It implies that there exists i, 1 :s; i :s; ISR such 
that bSR,i is the smallest half-edge of the half-edges of R in C'y,R' If ISR > 1, 
let us prove that bsR ,l is the smallest half-edge of the half-edges of R in C'y,R' 

bSR,i cannot be the smallest half-edge of its face, 0"'* (bSR,i), otherwise a(bSR,i), 
which belongs to R and which has been previously numbered to the face 
0"'* (bSR,i), is smaller than bSR,i. 
If i > 1, bSR,i = O"'(bSR,i-t} = O"'(a(bSR,i-t)), so that a(bSR,i-t), which be­
longs to R, is smaller than bSR,i (as bSR,i is not the smallest half-edge of its 
face), which contradicts definition of bSR,i. Thus i = 1. 

2. In C, Sl < S2 < ... < Sm implies that bSl ,l < bs2 ,1 < ... < bsrn ,l. 
Furthermore forall i in [1, m], iJ(a(bsi,lsi)) = bsi ,l and bsi ,l is not the smallest 
half-edge of its face (see Property 3.3), so that a(bsi,ls) precedes bsi ,l in the 
ordered map C. ' 
One then has in C, b < a(bSl,lsl) < bSl ,l < a(bs2 ,lsJ < bs2 ,1 < ... < 
a(bsrn,lsrn) < bsrn ,l. 
Thus in C, the subpath from b to a(bsl,lsl) does not go through any half­
edge a(bsi,ls,)' 
If one proves that in C'y,R' the subpath from b to a(bsl,lsl) does not go 
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through a(bSR,l iiR ), then one will conclude from what precedes that in Cy,R' 
the subpath from b to a(bSl,lsJ does not go through any of the half-edge 

a(bSi, IS)' It means that the subpath from b to a(bsl,lsJ in Cy,R is un-

{ 

bS,+l,1 if a = a(bs"ls,) \ll:S i < m 
bSR ,1 if a = a(bsm,lsm) 

changed as a'(a) = bSI ,1 if a = a(bsR,lsR) 
a(a) if a E C , a i=- bs"ls, \ll:S i :S m 
aR(a) if a E R, a i=- bSR,l ii R 

Let us then prove that the subpath of Cy,R from b to a(bSl ,lsI ) does not go 
through the half-edge a(bSR,lsR )' 
Since a' (a(bsm ,I sm)) = bSR ,1 and bSR,1 is not the smallest half-edge of its face 
(see item 1 of this proof), a(bsm,l sm) precedes bSR ,1 in the path of CY ,R' 
Furthermore, from Property 3.5.1, bSR ,1 < a(bSR,!sR) as a(bSR,!sR) E R. 
Thus in Cy,R' a(bSI,lsl) < a(bSR,!sR) 0 

The following technical lemma gives us the way to recover vertices 81,"" 8 m , BR, 
which compose vertex 8, as will be shown in Lemma 3.10. 
Notations of Definition 3.4 are used here. 

{ 
bS2,1 

Lemma 3.6. In Cy ,R> a'(bsl,lsJ = bSR ,1 
bSl ,1 

smallest half-edge among half-edges of vertex 8. 

Proof: 

ifm> 1 
if R i=- {p} and m = 1 
if R = {p} and m = 1 

is the 

1. If R = {p} and m = 1 then C = Cy,R' 8 = 81 and thus, a'(bsl,lsJ = bSl ,1 is 
the smallest half-edge among the half-edges of 8. 

2. Let us assume that R i=- {p} or m i=- 1. Let b be the smallest half-edge of 
face a* (bSl,d in C. 

(a) In C, bSl ,1 is the smallest half-edge of vertex 81. From Property 3.3, 
as 81 i=- Be, bSI ,1 is not the smallest half-edge of its face. Thus, there 
exists j > 0 such that aj(b) = bSI ,1. 

(b) Let us prove at last Lemma 3.6, that is: a'(bSl,lsJ is the smallest half­
edge of 8 in Cy,R (see Figure 3.1, a'(bSI,lsl) = bs in C{3,5},R)' 

From Property 3.5.2, one knows that the subpath from b to a(bsl,lsl) in 

Cy ,R is identical to the one in C. Thus a(bSl ,lsl ) = aj - 1(b) = a,j-\b). 

Furthermore, in C, the subpath from b to a(bsl,lsl) does not go through 
8 as bSI ,1 is the smallest half-edge of the half-edges of 8 in C and 
a(bSl,l sl ) is smaller than bSI ,1 in C (see the proof of Property 3.5.2). It 
is the same in CY ,R' 
Thus a'(bSl ,lsl ) = a'(a(bSI ,lsJ) is the smallest half-edge of 8 in Cy,R 0 

bSl ,1 is the smallest half-edge of Yin C. Its predecessor in the path of C, is the 
half-edge a(bSlo/sl ) as bSl ,1 is not the smallest half-edge of its face (see Property 
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3.3). In map C'y R' built from C and R by gluing together vertices of C and the 
root vertex of R'in one vertex 8, the successor of ex(bS"lsl) becomes bs2 ,1, which 
then is the smallest half-edge of 8 in Cy,R reordered. If bS" l has been marked, 
one gets back thus vertex 81 which is detached from 8, then recursively vertices 
82, ... ,8m . Thus the pair of initial maps can be recovered from its derived map. 
A formal definition of this inverse operation, which will be called integration, is 
given in the next Section. 

3.2.2 Integration of a map 

A topological operation of opening of a vertex into two vertices is introduced in 
order to define the integration of a map, which consists in the splitting of a vertex 
into several vertices. It will then be seen that to recover a pair of maps (C, R) and 
the subset of vertices of C if its derived map is known, one has to integrate this 
last map. 

Definition 3.7. Topological operation of opening of a map with respect 
to a half-edge. Let C = (a, ex, b) be a map and b a half-edge of C. Let bs be 
the smallest half-edge of a vertex 8 = a* (b). The opening of C with respect to b 
consists in the splitting of the vertex 8 into two vertices 81 and 82 in the following 
way: 

8 = (b, ... , a- 1 (bs ), bs , ... , a- 1 (b)) --t 81 = (b, ... , a- 1 (b s )) 

and 82 = (b s , ... ,a-1(b)). 
It means that the following permutation db is applied to the half-edges of C: 
db = Ta with T = (bbs ). 
The result of the opening of C with respect to b is a map or a pair of maps: 

(i) If bs =1= b and if the group generated by (db, ex, b) acts transitively on the set 
of half-edges of C (i.e. (gb, ex, b) generates a map and not two disconnected 
maps), then a new map Cb = (gb, ex, b) is defined. 

(ii) Otherwise a pair of maps (Cb , D), & = (db, ex, b), D = (db, ex, bs ), is obtained, 
D being the map {p} if bs = b. 

Remark 3.8. If 8 =1= s, Cb E M2. 

Figure 3.2. Integration of map C{3,5} ,R reordered of Figure 3.1 with respect to 

the half-edge b = 13: a pair of maps (&, D) of M2 X M is obtained. 

b= 01 b is now equal to 8) 2 b=Ol 
bs of Figure 3.1 

51 bt = 10 7 
8= 5 

[!] 6 -----8 

6 8 
4 
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Definition 3.9. Integration of a map. Let C = (a, a , b) be a map of M2, of 
root vertex s. Let s -I- s be a vertex of C and bE s. Let Y = 0. 
It will be said that a map C is integrated with respect to a half-edge b, when the 
operation of the opening of C is recursively applied until case (ii) of Definition 3.7 
is reached, that is: 

• Let bs be the smallest half-edge of a*(b). C is opened with respect to b (see 
Definition 3.7) . 

• If this operation gives a map Cb (see Figure 3.2, drawing [IJ), the vertex 
obtained after the opening, incident to b (the other obtained vertex is incident 
to bs), is added to Y and the opening operation starts again with C +- Cb 
and b +- bs . 

• Otherwise, a pair of maps of M2 x M, (Cb, D) is obtained (see Figure 3.2, 
drawing [Ij), and also a set of vertices of Cb , Y with the added vertex of Cb 

which was split from the root vertex of D (vertex of Cb to which b belongs). 

Lemma 3.10. Let C~,R' be the derived map of a pair of maps (C, R) of M2 X M 
with respect to a set of vertices Y of C. Let us denote by b (= bSl ,l of Definition 
3.4) the smallest half-edge of Y in C. Integration of C~,R with respect to b gives 
(C,Y,R). 

Proof : With notations of Definitions 3.4 and 3.9, the map C~ R = (a' , a,b) is 
integrated with respect to the half-edge bSl ,1: b = bSl ,l and bs = bs~ , 1 (from Lemma 
3.6). The opening operation of vertex s unglues vertex S1 from s, and gives the 

map (C:;;;)b = (;;tb, a, b): 

Two vertices are obtained, a vertex S1 = (bSl ,l, ... , bSl ,lsl) and a vertex s = 
(bS2 ,1, ... ,bS2 ,ls2' ... , bsm , l, . . . , bsm ,lsm' bSR,1, ... ,bSR,!sR)' One has: ;;, b = T12a'. 

Thus, (a2 = ;;'b,a,b) = C{ S2, ... ,sm},R and Y = {sd. One successively ob­

tains maps C{s;, ... ,sm},R = (ai = Ti-1iai-1, a, b) for Ti-1i = (bS; _l ,lbs;,I), and 
Y = {81,"" si-d, with 3 :::; i :::; m. Applying for the last time to C{sm} ,R the 
topological operation of opening of 8 = (bSm ,1, . .. ,bsm,lsm' bSR ,1, .. . ,bSR,lsR)' two 
disconnected maps, C = (a,a,b) and R = (a,a,bsR ,I), are recovered and also 
Y = {81," " sm}. One has: (J = TRmTmm-1 ... T12a' = 8a' with 8 = ,),-1 (see 
Definition 3.4) 0 

4 Generalized Dyck equation on n-colored maps 

The well-known Dyck equation on trees, is based on a one-to-one correspondence 
between rooted planar trees A, without the one vertex tree, and A2. In Section 
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4.1, an equation generalizing the Dyck equation to n-colored rooted maps of arbi­
trary genus, is given. This equation is equivalent to an equation on sets which is 
determined. A proof of the equation on sets is given in 4.2. Topological operations 
introduced in Section 3.2 will be used for this proof. 

4.1 Generalized Dyck equations 

The equation on sets is given as a bijection between the set of n-colored rooted 
n 

maps of arbitrary genus, Mn,i, and the set of pairs of maps of U Mn,j x Mn,i, 
j=l,j#i 

where in one of these maps a subset (possibly empty) of its vertices of color i is 
selected. Equation (1) is then a translation with generating functions of this 
bijection. 
For any map M of Mn,i, let us denote by Vi,M the set of vertices of color i of M 
and P(Vi,M) the set of all subsets of Vi,M' 

Theorem 4.1. Mn,i +-4 {pd. U . [ U M X P(Vi'M)] x Mn,i 
J=l,1'/ot MEMn,j 

The proof of this theorem is given in Section 4.2. 
Let In be the set {I, ... , n}. Let Mn,i (resp. Mi), i E In, be the generating 
function of maps of Mn,i, enumerated by vertices (resp. vertices of color j E In) 
and half-edges whose initial vertex is of color j E In. Let Ci, i E In, be the 
variable whose exponent represents the number of half-edges with initial vertex of 
color i. Let y be the variable whose exponent represents the number of vertices 
of the map. Henceforth we will write Mn,i for Mn,i(Y, C1, ... , cn) and Mi(U) for 
Mi(u;C1, ... ,en) with U= (ujh::;j::;n. 

Corollary 4.2. Generalized Dyck equation: 

n 

Mn,i = Y + CiMn,i L cjMj(v) with v = (Vjh::;j::;n = (y + Oijh::;j::;n' (1) 
j=l,j#i 

4.2 Proof of Theorem 4.1 

A bijection between maps of Mn,i, different from the one vertex map and Pn,i X 

Mn,i, with Pn,i = . U . [ U M X P(Vi'M)]' is described, which means 
J=l,J#t MEMn,j 

between maps of Mn,i and maps of In,i in which for each map I of In,i, a set 
Yi of vertices of color i of Lejt(I), has been selected. As a matter of fact In,i 

n 

is in one-to-one correspondence with U Mn,j x Mn,i, as to each map I of 
j=l,j#i 

In,i, a pair of maps of Mn,j x Mn,i, (Lejt(I), Right(I)), can be associated, and 
j =1= i as a half-edge of a n-colored map is incident to two vertices of distinct colors. 
Furthermore the set of pairs (Lejt(I), Yi) is the set Pn,i' 
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Lemma 4.3. Bijection of theorem 4.1. There is a one-to-one correspondence 
between Mn ,i and the set of pairs (1, Yi), in which I is a map of In ,i and Yi a 
set of vertices of color i of Left(I), possibly empty. 

Proof: Integration of a map with respect to a half-edge b of initial vertex of color 
i allows to recover a pair of maps as well as a set of vertices of color i of one of the 
obtained maps. Thus when a derived map I' is obtained, to have the possibility 
of going back, one has to memorize the half-edge b. To do this, if the root vertex 
of I' is only incident to the root half-edge and is of color i, then it is sufficient to 
glue the root half-edge just before b in order to obtain a map M of Mn,i. 
Starting with a map I of In,i (see Figure 4.1), in which a set .9"i of vertices of color 
i of Left(I) has been selected, to obtain a map M = (17M , 00, b) of M n,i, one has 
to (see Figure 4.2) : 

• apply the derivation operation to (h, Yi, Right(I)) = I', with h, the map 
I without Right(I), with the same root half-edge than I, 

• if Yi =j:. 0, to glue the root vertex of I' in the following way I7M(b) = bsl ,l, 

with bsl , l is the smallest half-edge of Yi in 10 

Figure 4.1. Map of In,i 

1 - - 8 
1 ~ 6 b=OSI=l 9 __ ~ lJ- -' 10 

',t .. • -- - _.-- '-,, ~ 

\' , . '- 1r. 9 ... .. 
14 iif "'- 7 " 7 Riqht(I) 

. " 5 8 .. ' 
il12LI020 -, 
1.···············\./·········································:;·. 6 

\ I 22 23 // 
\ i // 17 

16 \ 18/ / ' / 
\-.---- .. ---.,/·4 
4 3 15 5 

Figure 4.2. A map I' = (h){4,6}'Right(I) and a map M of Mn,i are obtained 
(I' and M have not been reordered) 
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5 Bijection between maps of arbitrary genus and 
multilabel n-colored trees 

The operation that allowed to prove Theorem 4.1 transforms a map of Mn,i into a 
map with a root bridge in which a subset of its vertices of color i has been selected. 
If this operation is iterated on the successive submaps incident to the two vertices 
incident to the bridge, and if the subset of vertices associated with each map is 
labelled (one distinct label for each subset), the initial map is transformed into a n­
colored tree whose vertices can be labelled with several labels, following repartition 
rules. One then obtains what we will call a multilabel n-colored tree. 
In Section 5.1, we give the definition of a multilabel n-colored tree and in Section 
5.2, we give the Theorem 5.3 explaining the one-to-one correspondence between 
maps of Mn,i and multilabel n-colored trees. This bijection leads to a coding of 
maps by words of a language, as shown in Section 5.3. 

5.1 Multilabel n-colored trees 

We give definitions of a multilabel n-colored tree. Order relations given in Section 
3.1 are applied to multilabel n-colored trees. An order on half-edges and vertices 
is thus established in a classical in-depth descent of the tree. Let us notice that 
the smallest half-edge of a vertex is also its left son in the tree structure, since a 
tree has only one face. 

Figure 5.1. Illustration of Definition 5.1 

8i 
~.. Wi 0--.-_ 

I 
I 

/ 
/ 

/ 
/ 

I 
I 

I 

-"- ./ 

T."l t V 
Vertices of color Wi exclusively 
belong to this subtree. 2 distinct subtrees 

WiWj 
Wi 8 = 8) -unique vertex 

Wj 

of labels Wi 

and Wj 

Illustration of the rule 2a Illustration of the rule 2b Illustration of the rule 3 

Definition 5.1. Multilabel n-colored tree. Let T = (u, ex, b) be an-colored 
rooted tree. Let W = {WI, ... , wp } be a set of p distinct labels, eventually empty 
(p 2: 0). Each vertex of T can have 0 to p labels in W. Forall i in [1,p], let us 
denote by Si, the smallest vertex of T of label Wi. 

T is a multilabel n-colored tree if T complies with the following rules (see Figure 
5.1): 

1. each label of W is assigned to at least two distinct vertices of T and the 
vertices of a same label must be of a same color; 
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2. let (bSi ,l, ... , b si ,lsJ = (J"*(bsi, l) be the half-edges of initial vertex Si, where 
bsi ,l is the smallest half-edge of (J"*(bSi,d, i.e. the left son of Si. bsi ,j,l ::; j < 
lS i are the half-edges, sons of Si, and bSi ,lsi is the half-edge which goes up 
towards the father of Si . Let Tsi,j, be the subtree of T incident to the final 
vertex of bsi,j, rooted in a(bSi ,j) and TSi,j, the tree composed of TSi ,j and of 
the half-edge bsi, j which is its root half-edge. Then: 

(a) there is a single ji such that in T, Wi is assigned to Si and exclusively 
vertices of TSi ,j i . Let us denote this subtree by T si , Wi = TSi ,j" its root 
half-edge by bs = bs " J"" and T s " W = T s " J"",. 1. 1., 'I. t ) t Z, 1. 

(b) forall k in [l,p], k =I- i, if Si = Sk then TSi,Wi n TSk,Wk = 0. 

3. For all distinct labels Wi and Wj, if there is a vertex S of labels Wi and Wj 
where Si is smaller than Sj, then S = Sj and S is the only vertex of label Wj 
which is also of label Wi . 

We will be say that two multilabel n-colored trees are isomorphous if one can be 
obtained from the other by a permutation on its labels. A class of isomorphism of 
multilabel n-colored trees will simply be called multilabel n-colored tree. 

Let Yn ,i be the set of multilabel n-colored trees , with a root vertex of color i. 

Remark 5.2. If T is a multilabel n-colored tree with m vertices and p distinct 
labels, then p < m. 

5.2 Bijection between Mn,i and Yn,i 

Theorem 5.3. The set of rooted n-colored maps with root vertex of color i and 
p edges is in bijection with the family of multilabel n-colored trees with root vertex 
of color i and p edges. 

Figure 5.2. The multilabel n -colored tree associated with the map M of Figure 
4·2 
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2 5j~7 WI .. 4 
b~36 
Right(J) 

5.3 Application: a language coding maps of arbitrary genus 

In this Section, we present a language coding rooted n-colored maps. The equation 
defining this language is a generalization of the well-known equation on Dyck 
words. In fact this language codes multilabel n-colored trees and thus by bijection 
rooted n-colored maps. 
In order to clarify the significance of each letter of the alphabet of the language 
that we present, we need to give a definition. 

Definition 5.4. Twin labels. Two labels wand w' of a tree of Tn i are twin 
if there is a vertex of T labelled by these two labels or if there is a s~bsequence 
of labels of T, WI = W, W2, ... , wn = W' such that forall j in [1, n[, Wj and Wj+1 

label the same vertex. One then defines classes of equivalence of labels, where two 
labels are in the same class if they are twin. 

Let us denote by e (resp. e) the variable coding a half-edge, whose opposite half­
edge is not coded (resp. is coded), Vi the variable coding a vertex of color i in case 
of maps, and in case of multilabel n-colored trees a vertex of color i without any 
label or the smallest vertex of color i of a same or twin label. Let Yj, j :2: 1, be 
the variable coding a vertex of label Wj (with Wj =I Wk if j =I k) of a multilabel 
n-colored tree. In a rooted n-colored map, Yj, codes the half-edges belonging to 
a subset of the set of half-edges of initial vertex Sj, for a given vertex Sj of arity 
strictly superior to 1 (Sj can be equal to Sk if j =I k). 
Let us denote by v= (vjh~j~n and vq,p = (Vj +Ypt5jqh~j~n' 

Theorem 5.5. The set of rooted n-colored maps with root vertex of color i is coded 
by the language Loo,i = lim Lp,i, where Lp,i represents the language coding maps 

p-too 
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of Mn,i with at most p edges and is defined in the following way: 

n 

Lp,i(V,Yl,···,Yp,e,e) Vi+ e L Lp-1,j(Vi ,p, Yl,···,Yp-l,e,e) (2) 
j=l,]#i 

e Lp-1,i(V, Yl, ... , Yp- l, e, e) (1 - Ep + YpEp)be,p 
Lo(v,e,e) = Vi (3) 

where for every word ml of Lp-1 ,j(Vi ,p, Yl, ... , Yp-l, e, e) and m2 of 
Lp-1,i(V, Yl,···, Yn-l, e, e): 

{ 1 if YP E ml 
Ep 0 otherwise 

{ 1 if (the number of occurrences of e in eml em2) ::; p 
be,p and ~1 ::; k ::; p/Yk E ml and Yk E m2 

0 otherwise 
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Limit Laws for Basic Parameters of Lattice 
Paths with Unbounded Jumps 

Cyril Banderier 

ABSTRACT: This paper establishes the asymptotics of a class of random walks 
on N with regular but unbounded jumps and studies several basic parameters 
(returns to zero for meanders, bridges, excursions, final altitude for meanders). 
All these results are generic (obtained by the kernel method for the combinatorial 
part and by singularity analysis for the asymptotic part). 
This paper completes the article [3] which was only dealing with the combina­
torics (enumeration and bijections) of walks with unbounded jumps (the so-called 
''factorial walks'?, which play an important role for uniform random generation of 
some combinatorial objects. We fully parallelize the analytical approach from [4] 
which was dealing with walks with bounded jumps only. 

1 Introduction 

Our main motivation for analyzing a class of walks with unbounded jumps comes 
from the fact that several classes of combinatorial objects can be generated via the 
so-called "generating trees". Enumerating these trees (and predicting the number 
of nodes at a given depth) allows uniform random generation. The concept of 
generating trees has been used from various points of view and has been introduced 
in the literature by Chung, Graham, Hoggatt and Kleiman [11] to examine the 
reduced Baxter permutations. This technique has been successively applied to 
other classes of permutations and the main references on the subject are due to 
West [14, 25, 26], then followed by the Florentine school [6, 7, 16, 19, 20, 22, 23] 
and other authors [3, 12, 18]. A generating tree is a rooted labeled tree (labels are 
integers) with the property that if VI and V2 are any two nodes with the same label 
then, for each label £, VI and V2 have exactly the same number of children with 
label £. To specify a generating tree it therefore suffices to specify: 1) the label of 
the root; 2) a set of rules explaining how to derive from the label of a parent the 
labels of all of its children. Points 1) and 2) define what we call a rewriting rule. 
Any random walk in the generating tree can also be seen as a lattice path (random 
walk on the integers, with an infinite number of possible jumps). The regularity of 
the rewriting rules determines the "solvability" (combinatorially speaking) of the 
corresponding random walk process. 

Few years ago, Pinzani and al. [6] exhibited several cases of factorial-like rewriting 
rules for which the generating functions were algebraic. This was calling for a 
general solution of the factorial-like rewriting rules case. This problem was solved 
in [3], by establishing a link between the generating trees and families of lattice 
paths with unbounded jumps (with respect to a given rewriting rule, the number 
of nodes with label k at depth n in the tree is the number of walks of length n 
ending at altitude k); then, the corresponding generating functions for walks are 
always algebraic and are made explicit via the kernel method (we give more details 
in Section 3) . The asymptotic properties of such walks were remaining open. 

B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
© Springer Basel AG 2002
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The article [4] and an important part of the PhD thesis [2] are dedicated to the 
analysis of several parameters of discrete random walks on Z or N with bounded 
jumps. For this case (but not for the case of unbounded jumps), a context-free 
grammar approach is also possible (as the jumps are bounded and thus can be 
encoded by a finite alphabet). However this language theory approach (which 
was previously the main one considered in combinatorics) reveals almost nothing 
about the shape of the generating function and is even less talkative about the 
asymptotics. An orthogonal approach (the kernel method) has the merit of giving 
a direct access to the generating functions and their asymptotics. 
A natural question is: can the same approach be the winning one for the study 
of walks with unbounded jumps? We show here that the answer is clearly: yes, 
for a quite general family of walks! What follows is a slightly modified copy/paste 
of [4] which gives however some new original results for generating functions and 
asymptotics of walks with unbounded jumps. 

2 Lattice paths and generating functions 

This section presents the varieties of lattice paths to be studied as well as their 
companion generating functions (in the same terms as in [4]). 

Definition 2.1. Fix a set of vectors of Z x Z, S = {(Xl, yt), .. . }. (S can be finite 
or not). A lattice path or walk relative to S is a sequence v = (Vl, ... , vn ) such 
that each Vj is in S. The geometric realization of a lattice path v = (Vl, .. . , vn ) 

-------) 

is the sequence of points (Po, Pl , ... , Pn ) such that Po = (0,0) and Pj-1Pj = Vj. 
The quantity n is referred to as the size of the path. 

In what follows, we focus our attention to a class of infinite sets S and we shall 
identify a lattice path with the polygonal line admitting Po , .. . ,Pn as vertices. 
The elements of S are called steps or jumps, and we also refer to the vectors 
-------) 

Pj-1Pj = Vj as the steps of a particular path. 
Various constraints will be imposed on paths. In particular we restrict attention 
throughout this paper to directed paths defined by the fact that if (i, j) lies in S, 
then necessarily one should have i > O. In other words, a step always entails 
progress along the horizontal axis and the geometric realization of the path natu­
rally lives in the half plane N x Z. (This constraint implies that the paths studied 
can be treated essentially as I-dimensional objects.) The following conditionings 
are to be considered (Figure 1). 

Definition 2.2. A bridge is a path whose end-point Pn lies on the x-axis. A 
meander is a path that lies in the quarter plane N x N. An excursion is a path that 
is at the same time a meander and a bridge; it thus connects the origin to a point 
lying on the x-axis and involves no point with negative y- coordinate. 
A family of paths is said to be factorial if each allowed step in S (Definition 2.1) 
is of the form (1 , -y) for any y :::: 1 or of the form (l,j) with j E .J a given finite 
subset of z. We thus simply note S = {z<o, .J}. 

In the factorial case the size of a path coincides with its span along the horizontal 
direction, that is, its length. The terminology of bridges, meanders, and excursions 
is chosen to be consistent with the standard one adopted in Brownian motion 
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walks 

unconstrained 
(on Z) 

constrained 
(on N) 

ending anywhere 

walk (W) 
W(z,u) == L Wk(Z) uk 

kEZ 
1 

1-zQ(u) 

Wn = +00 

meander (M) 

M(z) == L Fk(Z) 
k~O 

1 b 

= -- IT (1 - Ui(Z)) 
Z 

i = O 
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ending in 0 

bridge (8) 

_ ~ u;(z) 
B(z) = Wo(z) = Z ~ Ui(Z) 

Bn rv (30 Q(T)n 
v27rn 

excursion (E) 
( 1)b+1 b 

E(z) == Fo(z) = - IT Ui(Z) 
ZP-b i=O 

Figure 1: The four types of paths with unbounded jumps: walks, bridges, me­
anders, and excursions. We give the corresponding generating functions and the 
asymptotics of their coefficients. (N.B.: there is an infinite number of uncon­
strained walks as jumps are unbounded.) 

theory; see, e.g., [24). A factorial walk is simply a walk for which there is, at 
each step, not only a finite amount of "bounded" jumps below or above the actual 
position but also the possibility to go anywhere below the actual position. 
The main objective of this paper is to enumerate exactly as well as asymptotically 
paths, bridges, and meanders, this with special attention to factorial families. 
Once the set of steps is fixed, we let Wand !3 denote the set of paths and bridges 
respectively (W being reminiscent of "walk"); we denote by M and t: the set of 
meanders and excursions. 
Given a class C of paths, we let Cn denote the subclass of paths that have size n, 
and, whenever appropriate, Cn,k C Cn those that have final vertical abscissa (also 
known as ''final altitude") equal to k. With the convention of using standard fonts 
to denote cardinalities of the corresponding sets (themselves in calligraphic style), 
Cn = card(Cn ) and Cn ,k = card(Cn,k), the corresponding (ordinary) generating 
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functions are then 

C(z) := L cnzn, 
nEI\! 

Cyril Banderier 

C(z,u) = LCk(z)Uk = L Cn,kukzn = Lcn(u)zn. 
kEZ nEI\!,kEZ nEI\! 

This paper is entirely devoted to characterizing these generating functions: they 
are either rational functions (W) or algebraic functions (B, M, E)1. As we shall see, 
a strong algebraic decomposition prevails which, as opposed to other approaches, 
renders the calculation of the generating functions effective. Even more impor­
tantly, the decomposability of generating functions makes it possible to extract 
their singular structure, and in turn solve the corresponding asymptotic enumer­
ation problems in a wholly satisfactory fashion. 

Weighted paths. For several applications, it is useful to associate weights to 
single steps. In this case, the set of steps S is coupled with a system of weights 
IT = {wihEZ, with Wi > 0 the weight associated to (1, i) E S; the weight of a 
path is then defined as the product of the weights of its individual steps. Then the 
quantity Cn, still referred to as number of paths (of size n), represents the sum of 
the weights of all paths of size n. Such weighted paths cover several situations of 
interest: (i) combinatorial paths in the standard sense above when each Wi = 1; 
(ii) paths with coloured steps, e.g., Wi = 2 means that the corresponding step 
(1, i) has two possible coloured incarnations (say blue and red); (iii) L Wi = 1 
corresponds to a probabilistic model of paths where, at each stage, step (1, i) is 
chosen with probability Wi' 

3 Functional equation and the kernel method 

In this section, we characterize the generating functions of the four types of directed 
paths (unconstrained, bridges, meanders, and excursions). It will be seen that a 
specific algebraic curve, the "characteristic curve" plays a central role. 

Definition 3.1. Let S = {Z<o,.1} be a factorial set of jumps, with IT = {wihEZ 

the corresponding system of weights (Wi == 1 in the unweighted case). The charac­
teristic series of S is defined as the Laurent series2 

Q(u):= L WiUi . 

iEZ<o U:! 

Let b = - min.] U {O} and a = max.1 be the two extreme vertical amplitudes of 
any jump of.], and assume throughout a > 0, b 2': o. We restrict now attention 
to the unweighted case (but with possibly coloured jumps in .1, see the paragraph 
"weighted paths" in Section 2). The characteristic series can be then rewritten as 

-1 . 1 a. 

Q(u) = L u'+P(u) == P(u)-l_ u' where P(u):= L PjUJ (Pj EN). (1) 
i=-oo j=-b 

IThe attentive reader should have understood that this does not stand for the acronym of a 
well-known Belgian theorem (Brownian Motion Everywhere)! 

+00 m 

2By Laurent series, we mean objects like L 9kuk (m E Z) or L 9kUk . The reader 
k=m k=-oo 

can check that our generating functions are holomorphic/meromorphic functions; they can be 
expanded at 0 or at infinity, and so they can be seen as belonging either to 1C[[~l][ul or 1C[~][[ull. 
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So Pj can be seen as the multiplicity of the jump (1, j). The kernel is defined by 

K(z, u) := (1 - u)ub - z(ub(1 - u)P(u) - u b). (2) 

The characteristic curve of the lattice paths determined by S is the plane algebraic 
curve defined by the kernel equation 

1- zQ(u) = 0, or equivalently K(z,u) = o. (3) 

As we shall see the characteristic equation plays a central role, the second form 
being the entire version (that is, a form without negative powers). 

Proposition 3.2. The kernel equation (3) admits a + b + 1 roots in u : b + 1 
roots Uo (z), ... , Ub (z) finite for z '" 0 and a large roots VI (z), ... , Va (z) infinite for 
z '" o. 
Proof: This polynomial has degree a + b + 1 in u, and hence, admits a + b + 1 
solutions, which are algebraic functions of z. The classical theory of algebraic 
functions and the Newton polygon construction enable us to expand the solutions 
near any point as Puiseux series (that is, series involving fractional exponents; 
see [13]). The a + b + 1 solutions, expanded around 0, can be classified as follows: 

- the ''unit'' branch, denoted by uo, is a power series in z with constant term 
1; 

- b "small" branches, denoted by UI, ... ,Ub, are power series in ZI/b whose first 
nonzero term is (ZI/b, with (b + 1 = 0; 

- a "large" branches, denoted by VI, ... , Va, are Laurent series in zl/a whose 
first nonzero term is (z-I/a, with (a + 1 = o. 

In particular, all the roots are distinct. 0 

Formulae (4) and (5) in the following theorem were first derived in [3]: 

Theorem 3.3 (Excursions and meanders). The generating function F(z, u) 
for factorial walks starting from 0 is algebraic; it is given by (8), where uo, ... , Ub 
(resp. VI, ... , Va) are the finite (resp. infinite) solutions at z = 0 of the equation 
K(z, u) = 0 and the kernel K is defined by (2). In particular, the generating 
function for all walks, irrespective of their endpoint, is 

1 b 

M(z) = F(z, 1) = -- II (1 - Ui), 
z i=O 

(4) 

and the generating function for excursions, i.e., walks ending at 0, is, for b < 0: 

(_1)b+1 b 
E(z) = F(z, 0) = II Ui· 

ZP-b i=O 

(For b = 0, the relation becomes F(z, 0) = H(lu~po)z.) 
More generally, the generating function for meanders ending at altitude k is 

Fk(Z) = _1_ t v:;k-I . 
ZPa i=1 D#i Vj - Vi 

(5) 

(6) 
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Proof; The allowed jumps imply that from position k (encoded by uk), one can 
k > k uk - 1 

go to the position encoded3 by Uo + u1 + ... + u -1 + {u_o}P(u)u = -- + 
u-1 

{u2:0} P( u )uk, as this is a linear mapping, this leads to the recurrence on the 
f n (u) 's (the polynomials encoding the possible walk positions at time n): 

and equivalently to the following equality 

n2:0 

1 + Z (F(Z, 1) - F(z, u) + P(u)F(z, u) - {u<o}[P(u)F(z, u)]) . 
1-u 

Thus, F(z, u) satisfies the following functional equation: 

( ) () b-1 z zF z, 1 
F(z,u) l+---zP(u) =1+ -z"rk(u)Fk(Z) , 

l-u 1-u ~ k=O 

where rk(u) is a Laurent polynomials whose exponents belong to [k - b, -1] : 

-k-1 
rk(u) := {u<o} (P(u)uk) == I: PjUj+k. 

j=-b 

(7) 

Now comes the second ingredient of the proof, the so called "kernel method". The 
right-hand side of (7), once multiplied by ub(l - u), is 

By construction, it is a polynomial in u of degree b + 1 and leading coefficient 
-1. Hence, it admits b + 1 roots, which depend on z. Replacing u by the series 
Uo, U1, ... , Ub in Eq. (7) shows that these series are exactly the b+ 1 roots of R, so 
that 

b 

R(z,u) = - II(u - Ui). 
i=O 

Let Pa := [ua]P( u) be the multiplicity of the largest forward jump. 

Then the coefficient of ua+b+1 in K(z,u) is PaZ, and we can write 

b a 

K(z, u) = PaZ II (u - Ui) II (u - Vi). 
i=O i=l 

3We make use of the conventional notations for coefficients of entire and Laurent series: 
[znJ Ln fnzn := fn and {u 20 }g(u) is the sum of the monomials of g(u) with a nonnegative 
exponent. 
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Finally, as K(z, u)F(z, u) = R(z, u), we obtain 

-fIb (u-u o) F(z u) - <=0< 
, - ub(l - u) + zub - zub(l - u)P(u) 

1 
(8) 

Setting u = 1 and u = 0 gives formulae (4) and (5) and a partial fraction 
decomposition of the rightmost part of (8) gives (6). 0 

The "kernel method" has been part of the folklore of combinatorialists for some 
time and is related to the what is known as ''the quadratic method" in enumeration 
of planar maps [10]. Earlier references (see [17] Ex. 2.2.1.11 for Dyck paths, [21, 
Sec. 15.4] for a pebbling game) were dealing with the case of a single unknown in 
the right part of (7). The kernel method in its more general version was developed 
by Banderier, Bousquet-Melou, Flajolet, Petkovsek [1, 2, 3, 4, 9]. A somewhat 
similar idea (involving a reduction to a Riemann-Hilbert problem) was used in [15] 
for a queuing theory application. 

Theorem 3.4 (Bridges). The bivariate generating function of paths (with z 
marking size and u marking final altitude) relative to a simple set of steps S with 
characteristic series Q ( u) is a rational function. It is given by 

1 
W(z,u) = Q( ) 1-z u 

(9) 

The generating function of bridges is an algebraic function given by 

b uj(z) d 
B(z) = z ~ Uj(z) = z dz log (uo(z) .. ·Ub(Z)) , (10) 

where the expressions involve all the small branches uo, ... ,Ub of the characteristic 
curve (3). Generally, the generating function Wk of paths terminating at altitude k 
is, for -00 < k < b, 

(11) 

and for -a < k < +00, 

a '() ( a ) Vj Z z d -k 
Wk(z) = -z L vo(z)k+1 = k dz L Vj(z) , 

)=1 ) )=1 

(12) 

where V1, ... ,Va are the large branches. 

(For Wo, the second form in (11) and (12) is to be taken in the limit sense k -t 0.) 
Proof: The proof of an identity similar to (10) for walks with bounded jumps 
is given in [4] and holds verbatim for walks with unbounded jumps: Consider 
a bridge and let m (with m :<:; 0) be the minimal altitude of any vertex. Any 
nonempty bridge (3 decomposes uniquely into a walk 'P1 of size ~ 1 from 0 to m 
that only reaches level m at its right end, followed by an excursion E, followed 
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by a path 'P2 of size ~ 0 from m to 0 that only touches level m at its beginning. 
By rearrangement, one can write f3 = c· ('P21'PI), where the gluing of 'P2'PI is an 
arch (that is, an excursion which reaches 0 only at its beginning and its end) and 
the bar keeps track of where the splitting should occur. This links bridges and 
excursions: 

bridges 
~ 
B(z) - 1 = 

. split arches 
excurSIons ~ 

E(;) . (z d~ A(Z)), (13) 

as E(z) = 1/(1- A(z)) (A(z) stands for the generating function of arches), this is 
equivalent to 

d ( 1) E'(z) 
B(z) - 1 = E(z) . z dz 1 - E(z) = z E(z) , 

using Formula (5) for E(z) gives the identity (10). 
This reinforces the discussion of [4] about ubiquitous Spitzer, Andersen-like rela­
tions and here also, this gives the possibility of analysing the number of times a 
bridge attains its minimum or maximum value by adapting the decomposition (13). 
Set wn(u) = [zn]w(z, u), the Laurent series that describes the possible alti­
tudes and the number of ways to reach them in n steps. We have wo(u) = 1, 
Wl(U) = Q(u), and Wn+1(u) = Q(u)wn(u), so that wn(u) = Q(u)n for all n. The 
determination of W ( z, u) in (9) follows from 

Observe that the resulting series is entire in z but of the Laurent type in u (it 
involves arbitrary negative powers of u). 
For positive Q(u), the radius of convergence of W(z, u) viewed as a function of z is 
exactly 1/Q(u). Also, by the link between E(z) and B(z) (see above), the radius 
of convergence of B(z) as a function of z is p = 1/Q(7), the radius of convergence 
of E(z) (7 > 1, as it is proven in the next section). Consider now Izl < r, where 
r := ~ and then follow the scheme of the proof from [4]. 0 

4 Asymptotics 

Lemma 4.1. Let Q(u) = P(u) -1/(1- u) be the rational series associated to the 
jumps a factorial walk. Then, there exists a unique number 7, called the structural 
constant, such that Q' (7) = 0, 7 > 1. The structural radius is by definition the 
quantity 

1 
p:= Q(7)" 

The following domination amongst the roots holds 

IUi(Z)1 < uo(z) ::; Vl(Z) < IVj(z)1 'Vlzl::; p for i = 1, ... , band j = 2, ... , a. 
(14) 
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Proof: Differentiating twice Q as given in (1), we see that Q" (x) > 0 for all x > 1. 
Thus, the real function x 1--4 Q(x) is strictly convex on [1, +00]. Since it satisfies 
Q(1+) = Q(+oo) = +00, it must have a unique positive minimum attained at 
some T, and Q'(T) = o. 
As Q is aperiodic, a strong version of the triangular inequality gives 

1 
Q(vd = - = IQ(Vi)1 < Q(IVil) 

z 

since Q is strictly increasing on the interval [1, +00] and since IVil > T > 1 belongs 
to this interval for z E [0, p], one has the three last inequalities of (14); a duality 
argument gives the first inequality of (14). D 

As one of the referee pointed out, the structural constant T is such that the jumps 

with law Qj(~; are centered. Similarly, the factoriality assumption results in steps 
which can be seen as a mixture of a geometric probability law and a finitely 
supported one. 

Theorem 4.2. The asymptotics for the number of bridges, meanders, excursions 
is given by 

Q( T)n /31 /32 
Bn rv/3o ~(1+-+2+···)' y21fn n n 

1 
/30 =-

T 

/Lo = U(p) 

Q(T)n El E2 2Q3(T) 
En rv EO 2V1fn3 (1 + -:;;; + n2 + ... ), EO = U(p)( _l)b Q"(T) , 

where U(p) = Ul(p) ... Ub(p) and U(p) = (1- Ul(P)) ... (1- Ub(P)). 

Proof: Here again, the approach used in [4] is the winning one. A saddle point 
method gives 

~1 Q(u)n du 
2m lul=T U 

1 ITe+
i

€ (( 1 Q"(T) )) du -.- . exp n .logQ(T) + --Q( ) (u - T)2 + O((u - T)3) 
2z1f Te->< 2 T U 

Q(T)n r+ oo e-nht2/2dt = Q(T)n, h = Q"(T). 
21fT i-oo Tv21fnh Q(T) 

The approximation is valid as Q( T) dominates on the circle of integration (this 
can be seen by the Laurent series expression of Q(u)). 
Contrary to what is observed for the bounded jumps case, it may happen that the 
small roots cross for Izl < p (but their product remains analytic). We follow the 
scheme of prooffrom [4] which uses the link between B(z) and E(z). One has, by 
local inversion of the kernel equation, 

Uo(z) = T- (15) 
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Then the only possible behaviour compatible with the above asymptotics for En 
is that U(z) := U1(Z) ... Ub(Z) is analytical for Izl < p; the same hold for U(z) := 
(1- U1(Z)) ... (1- Ub(Z)). 
Singularity analysis on the following expressions then gives the asymptotic expan­
sions from the theorem 

D 

5 Returns to zero 

Theorem 5.1 (Excursions). The number of returns to zero of an excursion with 
unbounded jumps is asymptotically the sum of two independent geometric laws. 
The average is 2E(p) - 1 + 0 (~) returns to zero, with a variance 2E(p)(E(p) -
l)+O(~). 

Proof: An excursion is a sequence of arches, so E(z) = l-~(Z) and A(z) = 1- ECz) 

for E(z) and A(z) generating functions of excursions and arches respectively. We 
note F(z, u, t) the generating functions with respect to their length, final altitude, 
number of returns to zero. Thus, one has 

F( ) - '" f () j n _ 1 _ 1 z,O,t -L njOtz ---A- ( 1)' . 1-t 1-t 1--
nJ E 

where fnj(O) stands for the number of excursions of length n with j returns to 
0. Then, all the moments can be made explicit as the m-th derivatives in t of 

F(z, 0, t) are computable (at' F(z, 0, t) = m! (1_~(\-=-~-12)~rn+l) and simplify when 
t = 1 : at'F(z, 0,1) = m!E(z)(E(z) _l)m. 
Thus, the average number of returns to zero is 

as E(z) = eo - e1 Vp - z + ... and the variance is given by 

2 f::(l) 2 [zn]2E(z) - 4E(z)2 + 2E(z)3 2 

(Tn = fn(l) + J.Ln - J.Ln = [zn]E(z) + J.Ln - J.Ln 

2 2 (1) = 6eO - 8eO + 2 + J.Ln - J.Ln = 2eO (eO - 1) + 0 ; . 
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The number of excursions of length n with j returns to zero is given by 

fn(O) = [zn] (1- _l_)j = [zn](l- ~)j _ ed(l- eol)j-lJr=Z + O(r - z). 
J E(z) eo e6 

Consequently, the probability to get asymptotically j returns to zero is 7rj = 
j(l-eo'J1-' _ fnj(O)/ fn --+ eg for n --+ +00, and L12:0 7rj - 1 for any eo. The proba-

bility generating function is x ( ..l. ( I 1)? and one has so a discrete limit law 
eo I-x I-eo 

which is asymptotically the sum of two independent geometric laws of parameters 
1 - l/eo. D 

Perhaps it can seem strange than a walk with a infinite negative drift has such a 
small average number of returns to zer04 , the explanation of this "paradox" is that 
most of the walks have much more returns, but their probabilities are very low, 
decreasing exponentially (so, like for Zeno's paradox, the sum is finite). 

Theorem 5.2 (Meanders). The average number of returns to zero of a meander 
with unbounded jumps follows a discrete limit law of a geometrical type. 

Proof: Equation (8) gives F(z, u), the bivariate generating function for meanders 
(length, final altitude). Taking into account the number of returns to zero (via 
another variable t) leads to 

F( ) "f.() j n _ 1 F(z, u) 
z,u,t = ~ nJ U t z - 1-t(1-1/E(z)) E(z) . 

n,J~O 

This reflects the fact that a meander is a sequence of arches, followed by a prefix 
(i.e. a left part) of an arch, so M(z) = 1_~(z)M+(z) and that a prefix of arch 

(note M+(z, u) their generating function) times an excursion gives a meander, so 
M+(z, u) = F(z, u)/ E(z). The number fnj(l) of meanders of length n with j 
returns to zero is then given by 

Notice that 

Multiplying by the behaviour of M(z) = F(z, 1) = mo + ml VP - z around z = p 
gives 

( 
1 . ·-1 ) (1 - - )1 j 1 1 J e 

ml eo + mo (-- + (1- -)) (1- -) ~ [zn]y/p=Z. 
eo eo eo eo e6 

40ne referee pointed out that a similar result was known in a special case of bridge, cf. 
Proposition 2.2 page 101 of [8]. 
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So fn)' (1) / fn(1) ---> ( -L +!!lll. ~ )(1- -L)j - moe1i (1 - -L)j-l for n ---> +00. Asymp-
eo ml eo eo mleo eo 

toties of moments is also easily computable from 

8t F(z, u, 1) = F(z, u)(E(z) - 1) and 8; F(z, u, 1) = 2(E(z) - 1)2 F(z, u). 

Average and variance are 0(1). D 

Theorem 5.3 (Bridges). The number of returns to zero of a bridge with un­
bounded jumps is asymptotically the sum of two independent geometric laws. The 
average is 2B(p) - 1 + 0 (~) returns to zero, with a variance 2B(p)(B(p) - 1) + 
o (~). 
Proof: We can play the same game as above: 

1 Wk(Z) 
Wk(Z,t) = ( 1) B(z) , 

1-t 1--B(z) 

The number of walks Wnj of length n ending at altitude k with j returns to zero 
is then given by 

D 

6 Final altitude of a meander. 

The final altitude of a path is the abscissa of its end point. The random variable 
associated to finite altitude when taken over the set of all meanders of length n is 
denoted by X n , and it satisfies 

We state: 

Theorem 6.1 (Meanders). The final altitude of a random meander of size n 
admits a discrete limit distribution characterized in terms of the large branches: 

(1 - 7)2 II 1 -ve(P) 
lim Pr(Xn = k) = [uk] w(u), where w(u) = ()2 ( ). 

n--+oo U - 7 U - Ve P 

The limiting distribution admits an explicit form 

[uk]w(u) = 7-k(eo +c1k) + Lceve(p)-k, 
e2:2 

e2:2 

for a set of constants Cj that can be made explicit by a partial fraction expansion 
of w(u). 
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Proof: Similarly to [4], one directly shows that the probability generating function 
of Xn at u converges pointwise to a limit that precisely equals w(u), the conver­
gence holding for u E (0, 1). By the fundamental continuity theorem for probability 
generating functions, this entails convergence in law of the corresponding discrete 
distributions. 
We now fix a value of u taken arbitrarily in (0,1) and treated as a parameter. The 
probability generating function of Xn is 

[zn]F(z, u) 
[zn]F(z, 1)' 

where F(z, u) is given by Theorem 3.3. We know from the proof of Theorem 4.2 
that T = VI(p) satisfies T > 1 while the radius of convergence of F(z, 1) coincides 
with the structural radius p. Then, the quantity 

_ a 1 
V(z,u) = II ( ) 

i~2 U - Vi Z 

is analytic in the closed disk Izl :::; p: being a symmetric function of the nonprinci­
pal large branches, it has no algebraic singularity there; given the already known 
domination relations between the large branches (Lemma 4.1), the denominators 
cannot vanish. 
It then suffices to analyse the factor containing the principal large branch VI. This 
factor has a branch point at p, where 

1 1 1 
------~~ ----+~--~ 
U-VI(Z) U-T (U-T)2 

Q ( T ) ,..---,--

2 Q" ( T) vi 1 - z / p, 

as follows directly from (15) and the fact that VI is conjugate to Uo at z = p. 
Singularity analysis then gives instantly the fact that, for some nonzero constant C, 

1 -
where O(u) = ( )2 V(p, u), 

U-T 

and the result follows after normalization by [zn]F(z, 1). 
D 

7 Variations ... 

All the above theorems hold with a slightly more general model of walks, for 
which all the backward unbounded jumps are coloured (say, there is m colors). 
The only modification is that the roots are then the roots of the kernel K(z, u) = 
(1 - u)ub - z(ub (1 - u)P(u) - mub ). The analysis for the F~s and W~s is more 
delicate as it involves a better "individual" knowledge of the small and large roots. 
Some more general models of walks were considered in [5], there is still some 
algebraic generating functions but their asymptotic properties remain to be estab­
lished, this seems quite difficult as there is no clear simple closed form formula (in 
terms of the roots of the kernel) in the general case. 
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Counting Walks in the Quarter Plane 

Mireille Bousquet-Melou 

ABSTRACT: We study planar walks that start from a given point (io,)o), take 
their steps in a finite set 6, and are confined in the first quadrant x ::::: 0, y ::::: 0. 
Their enumeration can be attacked in a systematic way: the generating function 
Q(x, y; t) that counts them by their length (variable t) and the coordinates of their 
endpoint (variables x , y) satisfies a linear functional equation encoding the step­
by-step description of walks. For instance, for the square lattice walks starting 
from the origin, this equation reads 

(xy - t(x + y + x2y + xy2)) Q(x, y; t) = xy - xtQ(x, 0; t) - ytQ(O, y; t). 

The central question addressed in this paper is the nature of the series Q(x, y ; t) . 
When is it algebraic? When is it D-finite (or holonomic)? Can these properties 
be derived from the functional equation itself? 
Our first result is a new proof of an old theorem due to Kreweras, according to 
which one of these walk models has, for mysterious reasons, an algebraic generating 
function. Then, we provide a new proof of a holonomy criterion recently proved by 
M. Petkovsek and the author. In both cases, we work directly from the functional 
equation. 

1 Walks in the quarter plane 

The enumeration of lattice walks is one of the most venerable topics in enumerative 
combinatorics, which has numerous applications in probability [16, 30, 39]. These 
walks take their steps in a finite subset 6 of 71,d, and might be constrained in 
various ways. One can only cite a small percentage of the relevant litterature, 
which dates back at least to the next-to-Iast century [1, 20, 27, 33, 34]. Many 
recent publications show that the topic is still active [4, 6, 12, 22, 24, 35, 36]. 
After the solution of many explicit problems, certain patterns have emerged, and 
a more recent trend consists in developing methods that are valid for generic 
sets of steps. A special attention is being paid to the nature of the generating 
function of the walks under consideration. For instance, the generating function 
for unconstrained walks on the line 71, is rational, while the generating function for 
walks constrained to stay in the half-line N is always algebraic [3]. This result has 
often been described in terms of partially directed 2-dimensional walks confined 
in a quadrant (or generalized Dyck walks [14, 21, 28, 29]), but is, essentially, of a 
I-dimensional nature. 

Similar questions can be addressed for real 2-dimensional walks. Again, the gen­
erating function for unconstrained walks starting from a given point is clearly 
rational. Moreover, the argument used for I-dimensional walks confined in N can 
be recycled to prove that the generating function for the walks that stay in the 
half-plane x ::::: ° is always algebraic. What about doubly-restricted walks, that is , 
walks that are confined in the quadrant x ::::: 0, y ::::: O? 

B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
© Springer Basel AG 2002
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Figure 1: A walk on the diagonal square lattice confined in the first quadrant. 

A rapid inspection of the most standard cases suggests that these walks might have 
always a D-finite generating function l . The simplest example is probably that of 
the diagonal square lattice, where the steps are North-East, South-East, North­
West and South-West (Figure 1): by projecting the walks on the x- and y-axes, 
we obtain two decoupled prefixes of Dyck paths, so that the length generating 
function for walks that start from the origin and stay in the first quadrant is 

a D-finite series. For the ordinary square lattice (with North, East, South and 
West steps), the generating function is 

'" (m + n) ( m ) ( n ) m+n _ '" ( n ) (n + 1) n 
L- m lm/2J In/2J t - L- In/2J in/21 t , 

m ,n::::O n::::O 

another D-finite series. The first expression comes from the fact that these walks 
are shuffles of two prefixes of Dyck walks, and the Chu-Vandermonde identity 
transforms it into the second simpler expression [25]. 
In both cases, the number of n-step walks grows asymptotically like 4n In, which 
prevents the generating function from being algebraic (see [17] for the possible 
asymptotic behaviours of coefficients of algebraic series). 
The two above results can be refined by taking into account the coordinates of 
the endpoint: if ai,j (n) denotes the number of n-step walks of length n ending at 
(i,j), then we have, for the diagonal square lattice: 

'" .. ( ) i j n _ '" (i + l)(j + 1) (n + 1) (n + 1) i j n L- at,} n x y t - L- (n 1)2 n-i :!!:..::.i x Y t , 
.. > 0 .. >0 + 2 2 't,J,n_ 'l, ,),n_ 

1 A series pet) is D-finite (or holonomic) if it satisfies a linear differential equation with 
polynomial coefficients in t. Any algebraic series is D-finite. 
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where the binomial coefficient ((n-~)/2) is zero unless 0 ::; i ::; nand i == n mod 2. 
Similarly, for the ordinary square lattice, 

~ .. () i j n _ ~ (i + l)(j + 1) ( n + 2 ) (n + 2) i j n 
. ~ at,) n x y t -. ~ (n + l)(n + 2) n+i;J+2 n-~-j X Y t . 
~,J,n2:0 2,],n2:0 

(1) 

These two series can be seen to be D-finite in their three variables. 

This holonomy, however, is not the rule: as proved in [11), walks that start from 
(1,1), take their steps in 6 = {(2, -1), (-1, 2)} and always stay in the first quad­
rant have a non-D-finite length generating function. The same holds for the sub­
class of walks ending on the x-axis. These walks are sometimes called knight's 
walks. 

, 
yl 

Figure 2: Kreweras' walks in a quadrant. 

At the other end of the hierarchy, another walk model displays a mysteriously 
simple algebraic generating function: when the starting point is (0,0), and the 
allowed steps South, West and North-East (Figure 2), the number of walks of 
length 3n + 2i ending at the point (i,O) is 

4n(2i + 1) (2i) (3n + 2i) 
(n+i+1)(2n+2i+1) in· 

(2) 

This result was first proved by Kreweras in 1965 [27, Chap. 3), and then rederived 
by Niederhausen [35] and Gessel [20]. It is, however, not well-understood, for two 
reasons: 
- no direct proof of (2) is known, even when i = o. The number of walks ending 
at the origin is closely related to the number of non-separable planar maps, to 
the number of cubic non-separable maps [37, 38, 41, 42), and to the number of 
two-stack sortable permutations [5, 43, 44]. All available proofs of (2) are rather 
long and complicated. Moreover, in all of them, the result is checked rather than 
derived. 
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- most importantly, the three-variate generating function for these walks can be 
shown to be algebraic [20], but none of the proofs explain combinatorially this 
algebraicity. 

All problems of walks confined in a quadrant can be attacked by writing a func­
tional equation for their three-variate generating function, and it is this uniform 
approach that we discuss here. This functional equation simply encodes the step­
by-step construction of the walks. For instance, for square lattice walks, we can 
write 

Q(x, y; t):= 2:= ai,j(n)xiyjtn 

i,j ,n?:.O 

1 ( )Q( ) Q(x, y; t) - Q(O, y; t) Q(x, y; t) - Q(x, 0; t) 
= +t x+y x,y;t +t +t , 

x y 

that is, 

(xy - t(x + y + x2y + xy2)) Q(x, y; t) = xy - xtQ(x, 0; t) - ytQ(O, y; t), (3) 

and the solution of this equation, given by (1), is D-finite (but transcendental). 
Similarly, for the diagonal square lattice, we have 

(xy - t(1 + x2)(1 + y2)) Q(x, y; t) = 

xy - t(1 + x2)Q(x, 0; t) - t(1 + y2)Q(0, y; t) + tQ(O, 0; t), 

with again a D-finite transcendental solution, while for Kreweras' algebraic model, 
we obtain 

(xy - t(x + y + x2y2)) Q(x, y; t) = xy - xtQ(x, 0; t) - ytQ(O, y; t). (4) 

Finally, the equation that governs the non-holonomic model of [ll] is 

The general theme of this paper is the following: the above equations completely 
solve, in some sense, the problem of enumerating the walks. But they are not the 
kind of solution one likes, especially if the numbers are simple, or if the generating 
function is actually algebraic! How can one derive these simple solutions from the 
functional equations? And what is the essential difference between, say, Eqs. (3) 
and (4), that makes one series transcendental, and the other algebraic? 
We shall answer some of these questions. Our main result is a new proof of (2), 
which we believe to be simpler than the three previous ones. It has, at least, 
one nice feature: we derive the algebraicity from the equation without having to 
guess the formula first. Then, we give a new proof of a (refinement of) a holonomy 
criterion that was proved combinatorially in [11]: if the set of steps 6 is symmetric 
with respect to the y-axis and satisfies a small horizontal variations condition, then 
the generating function for walks with steps in 6, starting from any given point 
(io,jo), is D-finite. This result covers the two above D-finite transcendental cases, 
but not Kreweras' model... We finally survey some perspectives of this work. 
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Let us conclude this section with a few more formal definitions on walks and power 
series. 
Let (5 be a finite subset of 7l}. A walk with steps in (5 is a finite sequence 
W = (wo, WI, ... ,wn ) of vertices of 7l} such that Wi - Wi-l E (5 for 1 ::::: i ::::: n. 
The number of steps, n, is the length of w. The starting point of W is Wo, and 
its endpoint is W n . The complete generating function for a set ~ of walks starting 
from a given point Wo = (io,jo) is the series 

A(x, y; t) = I)n L ai ,j(n)xiyj, 
n~O i,jEZ 

where ai,j (n) is the number of walks of ~ that have length n and end at (i , j). 
This series is a formal power series in t whose coefficients are polynomials in 
x , y, l/x, l/y. We shall often denote x = l/x and y = l/y . 
Given a ring lL and k variables Xl, ... , Xk, we denote by lL[XI, . .. , Xk] the ring of 
polynomials in Xl, ... , Xk with coefficients in lL, and by lL[[XI, " " Xk]] the ring of 
formal power series in Xl , . . . , X k with coefficients in lL. If lL is a field, we denote 
by lL(XI' ... ,Xk) the field of rational functions in Xl, ... ,Xk with coefficients in lL. 
Assume lL is a field. A series F in lL[[XI' ... ,Xk]] is rational if there exist polynomi­
als P and Q in lL[XI, ... ,Xk], with Q =I- 0, such that QF = P. It is algebraic (over 
the field lL( Xl, ... , Xk)) if there exists a non-trivial polynomial P with coefficients 
in lL such that P(F, XI,'" , Xk) = 0. The sum and product of algebraic series is 
algebraic. 

The series F is D-finite (or holonomic) if the partial derivatives of F span a 
finite dimensional vector space over the field lL(XI,"" Xk) (this vector space is a 
subspace of the fraction field of lL[[XI' ... ,Xk]]); see [40] for the one-variable case, 
and [31, 32] otherwise. In other words, for 1 :S i ::::: k, the series F satisfies a 
non-trivial partial differential equation of the form 

di aPF 
L Pp,i axP = 0, 
p=o t 

where Pp,i is a polynomial in the Xj' Any algebraic series is holonomic. The sum 
and product of two holonomic series are still holonomic. The specializations of 
a holonomic series (obtained by giving values from lL to some of the variables) 
are holonomic, if well-defined. Moreover, if F is an algebraic series and G(t) is 
a holonomic series of one variable, then the substitution G(F) (if well-defined) is 
holonomic [32, Prop. 2.3]. 

2 A new proof of Kreweras' result 

Consider walks that start from (0,0), are made of South, West and North-East 
steps, and always stay in the first quadrant (Figure 2). Let ai,j(n) be the number 
of n-step walks ofthis type ending at (i,j). We denote by Q(x, y; t) the complete 
generating function of these walks: 

Q(X, y; t):= L ai,j(n)xiyjtn. 
i,j,n~O 
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Constructing the walks step by step yields the following equation: 

(xy - t(x + y + x 2y2)) Q(x, y; t) = xy - xtQ(x, 0; t) - ytQ(O, y; t). (5) 

We shall often denote, for short, Q(x, y; t) by Q(x, y). Let us also denote the series 
xtQ(x, 0; t) by R(x; t) or even R(x). Using the symmetry of the problem in x and 
y, the above equation becomes: 

(xy - t(x + y + x 2y2)) Q(x, y) = xy - R(x) - R(y). (6) 

This equation is equivalent to a recurrence relation defining the numbers ai,j (n) 
by induction on n. Hence, it defines completely the series Q(x, y; t). Still, the 
characterization of this series we have in mind is of a different nature: 

Theorem 2.1. Let X == X(t) be the power series in t defined by 

X = t(2 + X 3 ). 

Then the generating function for Kreweras' walks ending on the x-axis is 

Q(x, 0; t) = - - - - - - - - vII - xX . 1 (1 1 ( 1 1) 2) 
tx 2t x X x 

Consequently, the length generating function for walks ending at (i, 0) is 

. X 2i+1 ( Ci+l X3 ) 
[x']Q(x, 0; t) = 2.4 i t Ci - 4 ' 

where Ci = (~i) / (i+ 1) is the i-th Catalan number. The Lagrange inversion formula 
gives the number of such walks of length 3n + 2i as 

ai 0 3n + 2z = .. . 
. 4n(2i + 1) (2i) (3n + 2i) 

,( ) (n+i+1)(2n+2z+1) z n 

The aim ofthis section is to derive Theorem 2.1 from the functional equation (5). 

Note. Kreweras also gave a closed form expression for the number of walks 
containing exactly p West steps, q South steps, and r North-East steps, that 
is, for walks of length m = p + q + r ending at (i,j) = (r - p, r - q): 

( p+q+r) ( p+q) ar-p,r-q(p+q+r) = 1 - --
p,q,r r + 1 

f-.~ (_l)h+k (h+k)(2h+2k-2)( p+q+r ) 
+ ~~ (h+k)(h+k-1) h 2h-1 p-h,q-k,r+h+k' 

The functional equation (5), combined with the expression of Q(x,O) given in 
Theorem 2.1, gives an alternative expression for this number, still in the form of 
a double sum: 

( p + q + r) "L 4n(2i + 1) (2i) (3n + 2i) 
ar-p,r-q(p+q+r) = p, q, r - ~ (n + i + 1)(2n + 2i + 1) i n 

,2:0 n2:0 
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( ( p + q + r - 3n - 2i - 1 ) ( p + q + r - 3n - 2i - 1 ) ) 
x p _ n, q _ n - i-I, r - n - i + p - n - i-I, q - n, r - n - i . 

This expression has a straightforward combinatorial explanation (all walks, except 
those that cross the x- or y-axis). But none of these formulas specialize to the 
above simple expression of ai,O(m) when q = r ... 

2.1 The obstinate kernel method 

The kernel method is basically the only tool we have to attack Equation (6). This 
method had been around since, at least, the 70's, and is currently the subject of a 
certain revival (see the references in [2, 3, 10]). It consists in coupling the variables 
x and y so as to cancel the kernel K(x, y) = xy - t(x + y + x2y2). This should 
give the "missing" information about the series R( x). 
As a polynomial in y, this kernel has two roots 

Yo(x) 
1 - tx - J(l - tx)2 - 4t2x 

2tx 

1 - tx + J(l - tX)2 - 4t2x 
2tx 

The elementary symmetric functions of the Y; are 

x 
Yo + Y1 = - - x2 and Yo Y1 = X. 

t 
(7) 

The fact that they are polynomials in x = l/x will playa very important role 
below. 
Only the first root can be substituted for y in (6) (the term Q(x, Y1 ; t) is not a 
well-defined power series in t). We thus obtain a functional equation for R(x): 

R(x) + R(Yo) = xYo. (8) 

It can be shown that this equation - once restated in terms of Q(x, 0) - defines 
uniquely Q(x, 0; t) as a formal power series in t with polynomial coefficients in x. 
Equation (8) is the standard result of the kernel method. 
Still, we want to apply here the obstinate kernel method. That is, we shall not 
content ourselves with Eq. (8), but we shall go on producing pairs (X, Y) that 
cancel the kernel and use the information they provide on the series R( x). This 
obstination was inspired by the book [15] by Fayolle, Iasnogorodski and Malyshev, 
and more precisely by Section 2.4 of this book, where one possible way to obtain 
such pairs is described (even though the analytic context is different). We give 
here an alternative construction that actually provides the same pairs. 
Let (X, Y) =f. (0,0) be a pair of Laurent series in t with coefficients in a field OC 
such that K(X, Y) = O. We define q,(X, Y) = (X', Y), where X' = (Xy)-l is 
the other solution of K(x, Y) = 0, seen as a polynomial in x. Similarly, we define 
\II (X, Y) = (X, Y'), where Y' = (Xy)-l is the other solution of K(X, y) = O. Note 
that q, and \II are involutions. Let us examine their action on the pair (x, Yo). We 
obtain the diagram of Figure 3. 
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Figure 3: The orbit of (x, Yo) under the action of <I> and w. 

All these pairs of power series cancel the kernel, and we have framed the ones that 
can be legally substituted2 in the main functional equation (6). We thus obtain 
two equations for the unknown series R( x): 

R(x) + R(Yo) 

R(Yo) + R(Yd = 
xYo, 
YOYl = x. 

(9) 

(10) 

Remark. Let p, q, r be three nonnegative numbers such that p + q + r = 1. Take 
x = (pr)l/3 q-2/3, y = (qr)l/3p-2/3, and t = (pqr)l/3. Then K(x,y;t) = 0, so that 
R(x) + R(y) = xy. This equation can be given a probabilistic interpretation by 
considering random walks that make a North-East step with (small) probability 
r and a South (resp. West) step with probability p (resp. q). This probabilistic 
argument, and the equation it implies, is the starting point of Gessel's solution of 
Kreweras problem [20, Eq. (21)]. 

2.2 Symmetric functions of Yo and Y1 

After the kernel method, the next tool of our approach is the extraction of the 
positive part of power series. More precisely, let S(x; t) be a power series in t 
whose coefficients are Laurent polynomials in x: 

S(x;t) = L:tnL:Si(n)xi, 
n2:0 iEZ 

where for each n :2: 0, only finitely many coefficients Si (n) are non-zero. We define 
the positive part of this series by 

S+(x;t) := 2:>n L:>i(n)xi. 
n2:0 iEN 

This is where the values of the symmetric functions of Yo and Yl become crucial: 
the fact that they only involve negative powers of x (see (7)) will simplify the 
extraction of the positive part of certain equations. 

2The fact that the series Q(Yo, Yl; t) and Q(O, Yl; t) are well-defined is not immediate, and 
depends strongly on the three steps taken by the walks. 
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Lemma 2.2. Let F( u, V; t) be a power series in t with coefficients in iC[u, v], such 
that F(u, V; t) = F(v, u; t). Then the series F(Yo, Y1 ; t), if well-defined, is a power 
series in t with polynomial coefficients in x . Moreover, the constant term of this 
series, taken with respect to x, is F(O, 0; t). 

Proof. All symmetric polynomials of u and V are polynomials in u + V and uv 
with complex coefficients. 

• 
We now want to form a symmetric function of Yo and Y1 , starting from the equa­
tions (9-10). The first one reads 

R(Yo) - xYo = -R(x). 

By combining both equations, we then obtain the companion expression: 

R(YI) - xY1 = R(x) + 2x - lit. 

Taking the product3 of these two equations gives 

(R(Yo) - xYo) (R(YI) - xYI) = -R(x)(R(x) + 2x - lit). 

The extraction of the positive part of this identity is made possible by Lemma 2.2. 
Given that R(x; t) = xtQ(x, 0; t), one obtains: 

x = -t2x 2 Q(x, 0)2 + (x - 2t)Q(x, 0) + 2tQ(0, 0), 

that is, 
t2 X2 Q(X, 0)2 + (2t - x)Q(x, 0) - 2tQ(0, 0) + x = O. (11) 

2.3 The quadratic method 

Equation (11) - which begs for a combinatorial explanation - is typical of the 
equations obtained when enumerating planar maps, and the rest of the proof 
will be routine to all maps lovers. This equation can be solved using the so­
called quadratic method, which was first invented by Brown [13]. The formulation 
we use here is different both from Brown's original presentation and from the 
one in Goulden and Jackson's book [23]. This new formulation is convenient for 
generalizing the method to equations of higher degree with more unknowns [7]. 
Equation (11) can be written as 

P(Q(x),Q(O),t,x) = 0, (12) 

where P(u, v, t, x) = t 2 x 2u 2 + (2t-x)u-2tv+x, and Q(x, 0) has been abbreviated 
in Q(x). Differentiating this equation with respect to x, we find 

ap aQ ap 
au (Q(x),Q(O),t,x) ax (x) + ax (Q(x),Q(O),t,x) = o. 

3 An alternative derivation of Kreweras' result, obtained by considering the divided difference 
(R(Yo) - xYo - R(Yl) + xYl)/(YO - Yl), will be discussed on the complete version of this paper. 
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Hence, if there exists a power series in t, denoted X(t) == X, such that 

aP au (Q(X) ,Q(O),t ,X) = 0, 

then one also has aP ax (Q(X),Q(O),t,X) = 0, 

(13) 

(14) 

and we thus obtain a system of three polynomial equations, namely Eq. (12) 
written for x = X, Eqs. (13) and (14), that relate the three unknown series Q(X), 
Q(O) and X. This puts us in a good position to write an algebraic equation defining 
Q(O) = Q(O, 0; t). 
Let us now work out the details of this program: Eq. (13) reads 

X = 2t2 X2Q(X) + 2t, 

and since the right-hand side is a multiple of t, it should be clear that this equation 
defines a unique power series X(t). The system of three equations reads 

{ 
t2 X2Q(X)2 + (2t - X)Q(X) - 2tQ(0) + X = 0, 
2t2 X2Q(X) + 2t - X = 0, 
2t2 XQ(X)2 - Q(X) + 1 = O. 

Eliminating Q(X) between the last two equations yields X = t(2 + X 3 ), so that 
the series X is the parameter introduced in Theorem 2.1. Going on with the 
elimination, we finally obtain 

X ( X 3
) Q(O o· t) = - 1 - -

" 2t 4' 

and the expression of Q(x, 0; t) follows from (11). 

• 

3 A holonomy criterion 

Using functional equations, we can recover, and actually refine, a holonomy crite­
rion that was recently proved combinatorially [11]. Let 6 be a finite subset of Z? 
We say that 6 is symmetric with respect to the y-axis if 

(i,j) E 6 :::} (-i,j) E 6. 

We say that 6 has small horizontal variations if 

(i, j) E 6 :::} Iii::; 1. 

The usual square lattice steps satisfy these two conditions. So do the steps of the 
diagonal square lattice (Figure 1). 

Theorem 3.1. Let 6 be a finite subset of 71} that is symmetric with respect to the 
y-axis and has small horizontal variations. Let (io,jo) E N2 . Then the complete 
generating function Q (x, y; t) for walks that start from (io, jo), take their steps in 
6 and stay in the first quadrant is D-finite. 

A combinatorial argument proving the holonomy of Q(1, 1; t) is presented in [11]. 
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3.1 Example 

Before we embark on the proof of this theorem, let us see the principle of the proof 
at work on a simple example: square lattice walks confined in a quadrant. The 
functional equation satisfied by their complete generating function is 

xy - xtQ(x, 0) - ytQ(O, y) = xy - R(x) - R(y), (15) 

where, as in Kreweras' example, we denote by R(x) the series txQ(x,O). The 
kernel K(x , y) = xy - t(x + y + x2y + xy2), considered as a polynomial in y, has 
two roots: 

Yo(x) = 1-t(x+x)-J(1-t(x+x))2-4t2 = 
2t 

() 1-t(x+x)+J(1-t(x+x))2-4t2 1 _ ( -)2 0(3) 
Y1 X = =--x-x-t- x+xt + t . 

2t t 
The elementary symmetric functions of the Yi are 

1 
Yo + Y1 = - - x - x and Yo Y1 = l. 

t 

Observe that they are no longer polynomials in x = l/x. 
If, as above, we apply to the pair (x, Yo) the transformations <P and W, we obtain 
a very simple diagram: 

~~ 
(x , Yt) 

<P 
(x, Yt) 

From the two pairs that can be substituted for (x, y) in Equation (15), we derive 
the following system: 

R(x) + R(Yo) xYo, 
R(x) + R(Yo) xYo. 

From here, the method has to diverge from what we did in Kreweras' case. Elim­
inating R(Yo) between the two equations gives 

R(x) - R(x) = (x - x)Yo. (16) 

Since R(O) = 0, extracting the positive part of this identity gives R(x) as the 
positive part of an algebraic series. It is known that the positive part of aD-finite 
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series is always D-finite [311. In particular, the series R(x) is D-finite. The same 
holds for Q(x,O), and, by (15), for Q(x, y). 
This argument is enough for proving the holonomy of the series, but, given the 
simplicity of this model, we can proceed with explicit calculations. Given the 
polynomial equation defining Yo, 

Yo = t(1 + xYo + xYo + Y02) = t(1 + xYo)(1 + xYo), 

the Lagrange inversion formula yields the following expression for Yo: 

Yo = l: l: Xi t2m~lil+l (2m + lil.+ 1) (2m + Iii + 1). 
. 2m + Izl + 1 m + Izl m 

m202EZ 

Since R(O) = 0, extracting the positive part in the identity (16) now gives, after 
some reductions, 

xHlt2m+Hl(i + 1) (2m + i + 2) (2m + i + 2) 
R( x) = txQ( x, 0) = l: l: -:-:(2-m-+-i +---:-1 )-:-( 2-m'--+-i +'---::-2) m + i + 1 m . 

m20220 

This naturally fits with the general expression (1). 

3.2 Proof of Theorem 3.1. 

We define two Laurent polynomials in y by 

Po(y):= l: yj 
(0,j)E6 

and Pl(y):= l: yj. 
(l,j)E6 

Let -p be the largest down move; more precisely, 

p = max(O, {-j : (i,j) E (5 for some i}). 

The functional equation obtained by constructing walks step-by-step reads: 

K(x, y)Q(x , y) = 

j-l 
xl+iOyp+jo - tyP P1(y)Q(0, y) - t l: l: (Qm(x) - 6i,IQm(0)) x 1- iyp+m-j 

(i,-j)E6 m=O 

(17) 
where 

K(x, y) = xyP (1 - tPo(y) - t(x + x )P1 (y)) 

is the kernel of the equation, and Qm(x) stand for the coefficient of ym in Q(x, y). 
All the series involved in this equation also depend on the variable t, but it is 
omitted for the sake of briefness. For instance, K(x, y) stands for K(x , y; t) . 
As above, we shall use the kernel method - plus another argument - to solve the 
above functional equation. The polynomial K(x, y), seen as a polynomial in y, 
admits a number of roots, which are Puiseux series in t with coefficients in an 
algebraic closure of Q(x). Moreover, all these roots are distinct. As K(x, y; 0) = 
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xyP, exactly p of these roots, say Y1, ... , Yp, vanish at t = O. This property 
guarantees that these p series can be substituted for y in (17), which yields 

j-1 
x1+ioyp+jo = tYPP1(Y)Q(0,Y)+t L L (Qm(X)-6i,lQm(0))x 1- i yp+m- j 

(i,-j)E6 m=O 
(18) 

for any Y = Y1, ... , Yp, 
Given the symmetry of K in x and x, each of the Yi is invariant by the trans­
formation x -> l/x. Replacing x by x in the above equation gives, for any 
Y=Y1, ... ,Yp, 

j-1 
x1+ioyp+jo = tYP P1 (Y)Q(O, Y)+t L L (Qm(x) - 6i,lQm(0)) Xi- 1 yp+m-j. 

(i,-j)E6 m=O 
(19) 

We now combine (18) and (19) to eliminate Q(O, Y): 

j-1 L (X1- iQm(X) - Xi- 1Qm(X)) yp+m-j 
(i,-j)E6 m=O 

for any Y = Y1, ... ,Yp. This is the generalization of Eq. (16). The right-hand side 
of the above equation is a polynomial P in Y, of degree at most p-l. We know its 
value at p points, namely Y1 , ... ,Yp ' The Lagrange interpolation formula implies 
that these p values completely determine the polynomial. As the left-hand side of 
the equation is algebraic, then each of the coefficients of P is also algebraic. That 
is, 

j-1 p-1 

tL L (X1- iQm(X) - Xi- 1Qm(X)) yp+m- j = L Am(x)ym, 
(i,-j)E6 m=O m=O 

where each of the Am is an algebraic series. Let us extract the positive part of 
this identity. Given that i can only be 0, 1 or -1, we obtain 

j-1 p-1 

tL L (X1- i Qm(X) - 6i,lQm(0)) yp+m- j = L Hm(x)yffi 
(i,-j)E6 m=O m=O 

where Hm(x) := A;t:.(x) is the positive part of Am(x). Again, this series can be 
shown to be D-finite. Going back to the original functional equation (17), this 
gives 

p-1 
K(x,y)Q(x,y) = X1+iOyp+jo - tyPP1(y)Q(0,y) - L Hm(x)ym. 

m=O 

Let us finally4 consider the kernel K(x, y) as a polynomial in x. One of its roots, 
denoted below X, is a formal power series in t that vanishes at t = O. Replacing 

4In the square lattice case, the symmetry of the model in x and y makes this step unnecessary: 
once the hoI anomy of Q(x, 0) is proved, the holonomy of Q(x, y) follows. 
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x by this root allows us to express Q(O, y) as a D-finite series: 

p-1 
tyPP1(y)Q(O,y) = Xl+iOyp+jo - 2: Hm(X)ym. 

m=O 

The functional equation finally reads 

p- 1 
K(x, y)Q(x, y) = (Xl+io - Xl+iO)yp+jo - 2: (Hm(x) - Hm(X))ym. 

m=O 

Since the substitution of an algebraic series into a D-finite one gives another D­
finite series, this equation shows that Q(x, y) is D-finite. 

• 

4 Further comments, and perspectives 

We first give some asymptotic estimates for the number of n-step walks in the 
quadrant, for various sets of steps. Then, a number of research directions, which 
I have started to explore, or would like to explore in the coming months, are 
presented. All of them are motivated by the new proof of Kreweras' formula given 
in Section 2. 

4.1 Asymptotic estimates 

Following a suggestion of one of the referees, the table below summarizes the 
asymptotic behaviour on the number of n-step walks in the first quadrant, for the 
four models mentioned in the introduction, with three different conditions: the 
endpoint is fixed, the endpoint lies on the x-axis, the endpoint is free. This is 
all the more relevant that the argument proving the transcendence of the square 
lattice case is based on asymptotic estimates. The results for the two versions of the 
square lattice can be obtained directly from the formulas given in the introduction. 
The results for Kreweras' walks are derived from Theorem 2.1 and the functional 
equation (5), by analysing the singularities of the series [18]. The last series of 
results is derived from [11] using, again, an analysis of the singularities of the 
generating functions. 

Model Specific Endpoint Free Nature 
endpoint on the x-axis endpoint of the series 

Ordinary or 
4n 4n 4n 

D-finite 
n 3 n 2 n 

diagonal sq. lattice transcendental 

Kreweras' walks 
3n 3n 3n 

algebraic 
n 5/ 2 n 7/ 4 n 3/ 4 

Knight walks ° 
1 ( 3 ) n 

n3/2 41/ 3 
2n not D-finite 
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4.2 Other starting points 

It was observed by Gessel in [20] that the method he used to prove Kreweras' result 
was hard to implement for a starting point different from the origin. The reason of 
this difficulty is that, unlike the method presented here, Gessel's approach checks 
the known expression of the generating function, but does not construct it. I am 
confident that the new approach of Section 2 can be used to solve such questions. 
If the starting point does not lie on the main diagonal, the x - y symmetry is 
lost; the diagram of Figure 3 now gives four different equations between the two 
unknown functions Q(x,O) and Q(O, y). 

4.3 Other algebraic walk models 

A close examination of the ingredients that make the proof of Section 2 work might 
help to construct other walk models which, for non-obvious reasons, would have 
an algebraic generating function. Note that for some degenerate sets of steps, like 
those of Figure 4, the quadrant condition is equivalent to a half-plane condition 
and thus yields an algebraic series. 

y! 
r 

Figure 4: A degenerate set of steps. 

I have started a systematic exploration of walks with few steps and only one up 
step: the non-trivial algebraic cases do not seem to be legion! However, I met 
in this exploration one model that seems to yield nice numbers (with aD-finite 
generating function) and for which the method of Section 2 "almost" works. I then 
realized that the same problem had been communicated to me, under a slightly 
different form, by Ira Gessel, a few months ago. I plan to explore this model 
further. 

4.4 Other equations 

Any combinatorial problem that seems to have an algebraic generating function 
and for which a linear functional equation with two "catalytic" variables (in the 
terminology of Zeilberger [45]) is available is now likely to be attacked via the 
method of Section 2. These conditions might seem very restrictive, but there is at 
least one such problem! The vexillary involutions, which were conjectured in 1995 
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to be counted by Motzkin numbers, satisfy the following equation: 

t 2x 2y2 (t y ) t 2x2y 
(1 )( ) +t 1 + -1 - F(xy, 1; t)+ --F(I, y; t). - ty 1 - txy - Y 1 - x 

The conjecture was recently proved via a difficult combinatorial construction [26]. 
I have been able to apply successfully the method of Section 2 to this equation [9]. 

4.5 Random walks in the quarter plane 

Random walks in the quarter plane are naturally studied in probability. Given 
a Markov chain on the first quadrant, a central question is the determination 
of an/the invariant measure (pi,j )i,j?O' The invariance is equivalent to a linear 
equation satisfied by the series P(x,y) = L.Pi,jXiyj, in which the variables x and 
yare "catalytic". A whole recent book is devoted to the solution of this equation 
in the case where the walk has small horizontal and vertical variations [15]. This 
book contains one example for which the series P(x, y) is algebraic: no surprise, 
the steps of the corresponding walk are exactly Kreweras' steps ... This result is 
actually due to Flatto and Hahn [19]. The equation satisfied by the series P(x, y) 
does not work exactly like the equations for complete generating functions like 
Q(x, y; t): roughly speaking, the third variable t is replaced by the additional 
constraint P(x, y) = 1. 
Very recently, I have found a new, simpler proof of Flatto and Hahn's result 
(at least, in the symmetric case). The principle is the same as in Section 2. 
One can either study a version of the enumeration problem in which each walk 
is weighted by its probability (so that the invariant distribution is obtained as 
a limit distribution), or directly adapt the method to the context of the series 
P(x, y). With both approaches, one remains, from the beginning to the end of 
the proof, in the field of algebraic series [8]. This offer a significant shortcut to 
Flatto and Hahn's proof, which is based on non-trivial complex analysis, and uses 
a parametrisation of the roots of the kernel by elliptic functions, which are not 
algebraic. 

Acknowledgements. To my shame, I must recall that, in the lecture that I gave 
at FPSAC'OI in Phoenix, I mentioned (part of) Kreweras' result as a conjecture. I 
am very grateful to Ira Gessel who enlightened my ignorance by giving me the right 
references. I also thank the anonymous referees for their very valuable comments. 
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Bijective Construction of Equivalent 
Eco-systems 

Srecko Brlek, Enrica Duchi, Elisa Pergola, Renzo Pinzani 

ABSTRACT: First, we explicit an infinite family of equivalent succession rules 
parametrized by a positive integer a, for which two specializations lead to the 
equivalence of rules defining the Gatalan and Schroder numbers. Then, from an 
EGO-system for Dyck paths, we easily derive an EGO-system for complete binary 
trees, by using a widely known bijection between these objects. We also give a 
similar construction in the less easy case of Schroder paths and Schroder trees 
which generalizes the previous one. 

1 Introduction 

The concept of succession rule was introduced in [4] by Chung et al. in the study 
of Baxter permutations. Later West [12], Gire [6] and Guibert [7] used succes­
sion rules for the enumeration of permutations with forbidden sequences. More 
recently, this concept was deepened by Barcucci et al. [2] as a fundamental tool for 
ECO method, which is a method for constructing and enumerating combinatorial 
objects. In particular, let 0 be a class of combinatorial objects and p a parameter 
on 0 such that On = {O E 0 I p( 0) = n} is finite. ECO method provides, by 
means of an operator fJ, a construction for the class 0 with respect to the param­
eter p. If fJ is an operator on 0 satisfying the following conditions: 

(i) for each 0' E On+l, there exists 0 E On such that 0' E fJ(O), 
(ii) for each 0,0' E On such that 0 =1= 0', then fJ( 0) n fJ( 0') = 0, 

then the family of sets Fn+l = {fJ(O) : 0 E On} is a partition of On+l. 

(E) 

Note that many different operators may exist on a class O. Consequently, when an 
operator fJ is fixed on 0, we will denote it by fJ 0, and the ECO-pair by (0, fJ 0). 
The subscript will be omitted when no confusion arises. The conditions (E) above 
state that the construction of each object 0' E On+! is obtained from one and 
only one object 0 E On. This construction can be described by a generating tree 
[2, 4], a rooted tree whose vertices are objects of O. The objects having the same 
value of p lie at the same level, and the sons of an object are the objects produced 
from it by using fJ. A generating tree can be sometimes described by means of a 
succession rule of the form: 

(1) 

where a, k, ei E N, meaning that the root object has a sons, and the k objects 
Oi, ... , O~, produced by an object 0 are such that IfJ(ODI = ei, 1 :S i :S k. A 
succession rule n of type (1) defines a sequence {fn}n of positive integers, where 
In is the number of nodes at level n of the generating tree of n. 

lThe first author was supported by NSERC (Canada), and GNCS - Istituto Nazionale di 
Alta Matematica (Italia) 
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Given an ECO-system (a,p, iJo, A) and a bijection <P : a ~ V between two 
classes of combinatorial objects, it is always possible to map formally iJo on the 
class V along the bijection cI>. Indeed, let 0 E a then we define the ECO-system 
(V,p', iJv , A) by 

cI>(O') E iJv(cI>(O)) ~ 0' E iJo(O). 

This means that the generating tree To for the class a is mapped on the generating 
tree Tv, where each node of Tv contains the image of the corresponding node ofTo. 
It is clear that in this case the same succession rule is obtained, but the problem 
of describing the operator iJv , independently from cI>, remains and is not easy in 
general. In Section 4, we describe explicitly this construction on two examples. 
Firstly, we carry out the description in the easy case of the bijection between 
Dyck paths and complete binary trees, and, secondly, in the less easy case of the 
bijection between Schroder paths and Schroder trees. 
Two succession rules A and A' are equivalent (written A rv A' ) if they define 
the same number sequence [9]. The problem of determining classes of equivalent 
succession rules, is still open. In section 5, by using both a combinatorial and 
a generating function approach, we prove that 0", rv O~, where 0", and O~ are 
defined as follows. Let 0: E N+, 

and 

0' = 
'" 

0",= {~~~"-+(0:+1)'" 
(k) "-+ (0: + 1)(0: + 2) ... (k -l)(k)(k + 1)"', 

These succession rules are related to the well known classical rules for Catalan and 
Schroder numbers. 

2 Some classical combinatorial structures 

In the plane Z x Z, we consider lattice paths using three step types: rise steps 
(1, 1), fall steps (1, -1) and k -length horizontal steps (k, 0) (briefly, k-horizontal 
steps). 

Definition 2.1. A generalized Motzkin path is a sequence of rise, fall and k-hor­
izontal steps, running from (0,0) to (n, 0), and remaining weakly above the x-axis. 

These paths have been extensively studied, an account of which can be found in 
[11] for instance. They include many classical lattice paths, and, among others, 
Dyck, Motzkin and Schroder paths correspond respectively to the cases k = 0, 
k = 1 and k = 2. A path remaining strictly above the x-axis except for (0,0) 
and (n,O) is called elevated. A coloured generalized Motzkin path is a generalized 
Motzkin path for which the horizontal steps can have more than one colour. We 
give now the classical ECO construction for Dyck and Schroder paths. 
Let V be the class of Dyck paths, and let D E V. Then, iJ(D) is the set of Dyck 
paths obtained by adding a peak on each point of the last sequence of D's fall 
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steps. The rule associated to this construction is the classical rule for Catalan 
numbers: 

(1) 
(1) -v-+ (2) 
(k) -v-+ (2) ... (k)(k + 1) 

Let S be the class of Schroder paths and let S E S. The set 73(S) contains the 
Schroder paths obtained from S by inserting a horizontal step at the end of S, or 
by inserting both a rise step in each point of the last sequence of fall and horizontal 
steps, and a fall one at the end of S. The rule 

Figure 1: Classical ECO construction for Schroder paths. 

(2) 
(2) -v-+ (3) (3) 
(k) -v-+ (3) ... (k)(k + I? 

associated to this construction is the classical rule for Schroder numbers (Fig. 1). 

Definition 2.2. A Schroder tree is either a leaf or a list (r, AI, ... ,Am), where 
m ~ 2, and such that each Ai is a Schroder tree. 

The class T of Schroder trees contains planar trees whose internal nodes have 
degree at least two, and are enumerated by little Schroder numbers (Le. the half 
of Schroder numbers) according to the number of their leaves [8]. As a particular 
case, the class B of complete binary trees, i. e. binary trees whose nodes have 
degree 0 or 2, is a subclass of T. 
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3 A construction for Dyck and Schroder paths 

The specialisations 0: = 1 and 0: = 2 of n~ yield two new succession rules defining, 
respectively, Catalan and Schroder numbers, 

n' 1 (1) "" (2) {

(I) 

(2k) "" (1)k(4)(6) ... (2(k - 1))(2k)(2(k + 1)) 

H (2) "" (2)(4) 
O

2
' = {(2) 

(4k) "" (2)2k(4)(8)2(12)2 ... (4(k - 1))2(4k)2(4(k + 1)), 

for which we are able to describe the corresponding constructions. 

3.1 A construction for Dyck paths corresponding to O~ 

Each Dyck path D factors uniquely in blocks of elevated Dyck paths, 

and, D is said of even type (respectively odd type) if k = 2j for some j (resp. 
k = 2j + 1). The last sequence of fall steps, or last descent, of D is denoted €d(D) 
and satisfies 

€d(D) = €d(D k ). 

Let P(D) be the set of points of €d(D), excepting the point at level O. The set of 
Dyck paths having length 2n is denoted by V n , and the operator 

is defined as follows: 

Dl. If D is of even type, then 1'Jv(D) contains a single Dyck path, obtained by 
glueing a peak of height 1 at the end of D (see Fig. 2(D1)). 

D2. If D is of odd type, then 1'Jv (D) is the set of Dyck paths obtained from D 
by performing on each A E P(D) the following actions: 

(a) insert a peak; 

(b) let A' be the leftmost point such that A' A is a Dyck path; remove the 
subpath A' A from D, elevate it by 1, and glue it at the end of D (see 
Fig. 2(D2)). 

This construction yields the succession rule n~. 
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Dl. 

(a) 1 

(b) 1 

D2. 

(a) 2 

(b) 2 

Figure 2: The construction for Dyck paths according to the rule O~. 

3.2 A construction for Schroder paths corresponding to 0; 

We give now a similar construction for Schroder paths. Each Schroder path 8 
factors uniquely, 

8 = 8182 ", 8k , 

where 8 i , 1 :s; i :s; k, is either elevated or a horizontal step on the x-axis. The path 
8 is said of even type (respectively odd type) if the number of elevated factors 
following the rightmost horizontal step is even (resp. odd). The last descent £d(8) 
of 8 is the last run of fall steps, and P(8) is the set of its points, excepted the last 
point on the x-axis. 
The set of Schroder paths having length 2n is denoted Sn, and the operator 

is defined by the following rules: 

S1. If 8 is of even type, then iJs (8) contains two Schroder paths, obtained re­
spectively by glueing at the end of 8, either a peak of height 1, resulting in 
an odd type path, or a horizontal step, resulting in an even type path (Fig. 
3(Sl)). 

S2. If 8 is of odd type, then iJs(8) is the set obtained by performing the following 
actions on every point A E P(8) (Fig. 3(S2)): 

(a) insert a peak of height 1 or a horizontal step; 

(b) let A' be the leftmost point such that A' A is a Schroder path. Then 
cut A' A, elevate it by 1, and glue it at the end of 8; 

(c) let A" be the first left point such that A" A is a Schroder path; if A" A 
is not empty, then replace it by a horizontal step and glue A" A at the 
end of 8; if A" A is empty then glue a horizontal step at the end of 8. 
In this way we obtain an even type path. 



74 Srecko Brlek, Enrica Duchi, Elisa Pergola, Renzo Pinzani 

~ ----~ Sl. --~ 
~ (a) 1 

~ ~ (a) 1 

~".". (b) 1 

~ ~ (c) 1 1 --S2. ~ 

~ 
~ (a) 2 

~ (a) 2 

~.~ .. (b) 2 • • 
~ (c) 2 

Figure 3: The construction for Schroder paths corresponding to the rule O~. 

The previous construction for Schroder paths, can be easily extended to Schroder 
a-coloured paths by using a-coloured horizontal steps. It leads to the succession 
rule O~+l' with a ;::: 2. For instance, when horizontal steps of two colours are 
used, we obtain Schroder bi-coloured paths associated to the succession rule O~. 

Moreover, if we use a - coloured horizontal steps in the classical ECO construction 
for Schroder paths we obtain a-coloured Schroder paths to which the rule Oa+1, 
a ;::: 2, is associated. So we have proved the equivalence between Oa and O~ in a 
combinatorial way. 

4 A new construction for the classes Band T 

In this section we show how to transport an operator {) along a bijection, and we 
provide a description that is independent from the bijection in two classes of trees. 

The nodes of a planar tree T can be totally ordered by means of the prefix traversal, 
and indexed increasingly by the integers, so that, given two nodes Xi and Xj, 

Accordingly, the maximum of two nodes is defined by 

max(xi,Xj) = Xj ~ i < j. 

Also, the total order allows to define notions like first, last, successor, predecessor, 
etc., consequently, for every node p of T, we denote by (see Fig. 5 and 7): 
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- £i (T), £1 (T), £8 (T) the last, respectively, internal node, leaf, internal sibling; 

- f(p) the set of leaves following p; 

- father(p) the father of p; 

- succ(p) the successor of p; 

A common abuse of notation identifies a tree with the name of its root, and, 
consequently subtrees as nodes. The total order extends to the the class :F of 
forests, whose objects are lists of trees, in the obvious way, making all the above 
definitions relevant for forests as well. 
For convenience we denote the tree consisting of a single point by "e", and define 
the "tree" and "raise" constructors 

tree, raise: :F -----+ T 

respectively, by 

and (see Fig. 4), 

A useful operation on trees is the substitution. Given two trees T1, T2 E T, the 

raise 

Figure 4: The raise constructor. 

substituting of T2 by Tl (T2 <- T1 ) is denoted 

Moreover, we say that T is of even type (resp. odd type) if the length of its rightmost 
branch is even (resp. odd). 

> From here on, we consider this total order on two subclasses of planar trees, 
namely, the class B of complete binary trees and the class T of Schroder trees. 
The parameter p considered on these two classes of combinatorial objects is the 
number of leaves. 
There is a well-known bijection between Dyck paths and complete binary trees , 

(for instance, see [10] and Fig. 5). For D E V and B = W(D), define 
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4 9 
6 

5 
11 

6 7 
2 4 8 10 12 

PCB) 
3 9 13 

Figure 5: A complete binary tree B in B7 , and the corresponding Dyck path. 

and observe that the number of elevated Dyck paths in D corresponds to the length 
of the right branch of B. Moreover, we have the underlying set bijection on nodes 

\II(Cd(D)); 
\II(P(D)). 

These observations lead to an almost direct translation of the operator {)v. Indeed, 
let Bn be the set of binary trees having n leaves, and let B E Bn, then the operator 

is defined as follows (see Fig. 6): 

Bl. if B is of even type then add two sons to C1(B) , i.e. 
{)13(B) = subs(raise(e),Cl(B)); 

B2. if B is of odd type then {)13(B) is the set of complete binary trees obtained 
by performing on each leaf A E P(B) the following actions: 

(a) subs(raise( e) , A); 

(b) let A' be the largest complete binary subtree of B such that A = C1(A'); 
then, do 
subs(raise(A'), C1(B)) and subs( e, A'). 

Clearly, {)v and {)13 share the same succession rule n~. 

4.1 A construction for Schroder trees 

Let S' be the class of Schroder paths, without horizontal steps at level 0, and let 
{) SI be the restriction of {) S to S'. That is 

As for Dyck paths, we show how to transport the operator {)SI along the bijection 
[8](see Fig.7) 

\II' : S' --7 T. 
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~B1. 

Figure 6: The construction for complete binary trees. 

This bijection provides a simple interpretation of the required parameters. Indeed, 
a rise (resp. fall) step of S corresponds to a leftmost (resp. rightmost) sibling of 
T, and the horizontal steps of S correspond to the internal siblings of T, that is, 
those siblings strictly between the leftmost one and the rightmost one. The last 
run of fall steps fd(S) corresponds to, either the leaves following the last internal 
node fi(T), or, the last internal sibling fs(T) and its successors, whichever occurs 
the last. Therefore, define 

z = max(succ(fi(T)),fs(T)), 

(z = 14 in Fig. 7), and set 

P(T) = w'(P(S)) = {z} U J(z) \ {f/(T)}. 

Observe that this generalizes the corresponding definition in the class B. 

2 

10 II 

.12 __ .... 13 __ -t.. 14 

3 6 

Figure 7: A Schroder tree and its corresponding path. 

Let Tn be the set of Schroder trees having n-Ieaves. The operator 

f)T : Tn ----7 2Tn+l 

15 

16 

17 
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is defined as follows (see Fig. 8): 

STl. 1fT is of even type, then iJy(T) = subs(raise(e)'£I(T)) (see Fig. 8(STl)). 

ST2. If T is of odd type, then 7Jy(T) is obtained by performing on each point 
A E peT) the following actions (see Fig. 8(ST2)): 

(a) subs (raise( e), A), or add a left brother to succ(A); 

(b) let A' be the largest Schroder subforest of T, such that A = £1 (A'); 
then, do 
subs(raise(A' ), £1 (T)) and subs( e, A'); 

(c) if A -1= Z, let A" be the tree having father(A) for root; then, do 
subs(A"'£I(T)), subs(e,A"), and add a right brother to A" . 

(el2 

Figure 8: The construction for Schroder trees. 

A careful comparison between the constructions associated to the operators 7Jy and 
7J s shows some differences. Indeed, since we are concerned with the restriction 7J S', 
it was necessary to avoid the cases that generate a Schroder path with a horizontal 
step at level O. This occurs precisely when the node Z is treated. 
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5 Equivalence between two succession rules 

We show now that the two succession rules Oa and O~ defined in Section 1 have 
the same generating function. The computation is based on the kernel method, 
which was succesfully used for similar computations in [1, 3]. 

The bivariate generating function F(x, y) counts the structures which satisfy Oa 
according to their size and the value of the associated label. Obviously, we suppose 
the size of the structure represented by the root of the generating tree being equal 
to o. Therefore, we have: 

If 

then 

xy 
1 + -- - xyo. = 0, 

l-y 

The solution of the equation (2) is: 

x(o. - 1) + 1 - J(x(1 - a.) - 1)2 - 4xo. 
yo(x) = 2 xo. 

so, the generating function for Oa is: 

F(x, 1) 
yo(x) - 1 

xYo(x) 
x(1 - a.) + 1 - J(x(1 - a.) - 1)2 - 4xo. 

2x 

(2) 

In an analogous way we determine the generating function G(x, y) arising from 
O~. After some computations we get: 

where 

and 

which simplify into: 

B ( ) 1 + B2(x, 1) 
1 x, 1 = ------'---'--'-

1 - xo. + 2x 

(3) 
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and 
B2 (x 1) - __ --::-__ -"--yo--...:(-'x )'--_I-:-c--__ -:--:--

, - 0: - x0:2 + 3xo: - 2x - xYo(x)o: + 2xyo(x) 

where 
1 - x(o: - 1) - J(x(o: - 1) - 1)2 - 4x 

~(x)= . 
2x 

Substituting these values in (3), we have F(x, 1) = G(x, 1), that is On and O~ are 
equivalent. 

6 Concluding remarks 

The constructions we provided in this paper are natural because, in a sense, they 
commute. Indeed let 7fD and 7ft3 be the projections 

7fD : S -----; V; and 7ft3: T -----; H; 

which erase, respectively, the horizontal steps and the internal siblings. The fol­
lowing diagram 

S' 
7fD 1 

V 

commutes, and the ECO-operators also commute. We believe that the problem of 
characterizing the natural bijections between objects (allowing the translation of 
ECO-operators) is a problem that is worth investigating. 
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Random Boundary of a Planar Map 
Maxim Krikun, Vadim Malyshev 

ABSTRACT: We consider the probability distribution PN on the class of near­
triangulations T of the disk with N triangles, where each T is assumed to have 
the weight ym, m = mN = mN(T) is the number of boundary edges ofT. We find 
the limiting distribution of the random variable mN(T) as N ---700: in the critical 
point y = Ycr = 6-! the random variables N-!mN converge to a non-gaussian 
distribution , for Y > Ycr for some constant c the random variables N - ! (mN - cN) 
converge to a gaussian distribution. 

1 Introduction 

Enumeration of maps is an important part of the art of combinatorics. It started 
in sixties with the papers by W. Tutte. He invented powerful "deleting a rooted 
edge" and analytic "quadratic" methods, that have been exploited and developped 
in hundreds of subsequent papers, until nowadays. Unfortunately since then, no es­
sentially new analytic methods for enumeration of maps appeared in combinatorics 
itself. This lack of essentially new ideas was compensated by two breakthroughs 
in other fields of mathematics and physics, where maps played an important role. 
One breakthrough occured in theoretical physics in eighties. Maps provided a 
discrete approximation to the string theory and two-dimensional quantum grav­
ity. To deal with maps new powerful matrix methods were invented. Second one 
was initiated by A. Grothendieck in his program devoted to algebraic geometry 
and Galois theory. Some connections between these two breakthroughs were un­
derstood in nineties as having essential physical interpretation. We do not give 
references here, see a detailed introduction and references in [5]. For several rea­
sons enumerative combinatorics of maps has been develop ping all this period in a 
stand alone way. 

We study here some probabilistic problems for maps. Enumeration of maps deals 
in fact with the uniform distribution on some finite class A of maps. If this class 
has IAI elements then the probability of each map T is P(T) = IAI-I . In physics 
one is interested in the probability when maps TEA have non-negative weights 
w(T), the weights have a special Gibbs form, derived from physics. We use one 
below. Then the probabilities are P(T) = Z-lw(T), where Z = 2:TEA w(T) 
is called a partition function. We hope that rigorous probability approach can 
establish interconnections between differents applications of maps clearer. 

As a particular case of probability for maps, we consider classes To (N, m) of rooted 
maps of a disk, called rooted near-triangulations in [2], with N triangles and 
m edges on the boundary. Enumeration problem for the number Co(N, m) = 
ITo(N, m)1 was completely solved by Tutte [1], see also [2]. We remind that this 
class of maps is defined by the following restrictions: the boundary of each cell 
consists exactly of three edges, moreover the map is assumed to be nonseparable, 
thus multiple edges are allowed but no loops. 

In this paper we consider the probability distribution PN on a class To(N) = 
U~=2 To (N, m) of maps with fixed N but variable boundary length, given by the 
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formula 
PN(T) = Zi/ym(T). 

Here y is a positive parameter, that corresponds to y = e-I-' /2 according to [4], and 
m(T) = mN(T) is the number of the boundary edges of the triangulation T. We 
will be interested with asymptotic propeties of the random variable mN = mN(T). 
Its distribution is given by 

PN(mN = m) = Zi/ymCo(N,m) ,m ~ 2 

where we use the normalization factor (canonical partition function) 

00 

ZN(y) = I:: exp(-~m(T)) = I:: ymCo(N,m) 
T:F(T)=N m=2 

Note that Nand m are always of one parity, because m + 3N equals twice the 
number of edges, consequently PN(mN = m) = 0 if N + m is odd. 
In [4] relations with quantum gravity are explained, and several equivalent defi­
nitions of the distribution PN are given, showing its naturalness, also in [4] the 
phase transition phenomena for mN is described. 
Here we essentially strengthen the results of section 4.2 of [4] and get explicit 
expressions for the limiting distributions for all three phases. Moreover, complex 
analytic methods we use here are quite different from [4], where the explicit com­
binatorial formula for Co(N, m) by Tutte was used. The method used here seems 
to be more adequate also in more general situations. 
In the sub critical region a finite limit of mN exists. In the critical point and the 
supercritical region by choosing an appropriate scaling we get a limiting distribu­
tion, which is non-gaussian or gaussian correspondingly. This is summarized in 
the following three theorems. 
Here and further the critical parameter value is Ycr == Jt;. 
Theorem 1.1 (subcritical). If y < Ycr then for any z, Izi < 1, the generating 
function of (mN - 2), 

00 

fN(Z) = I:: (m - 2)PN(mN = m)zm-2, 
m=2 

for even N tends as N ~ 00 to 

and for odd N to 

(1 - V6yz)-3/2 + (1 + V6YZ)-3/2 
feven(z) = (1 _ V6y)-3/2 + (1 + V6y)-3/2 ' 

(1 - V6yz)-3/2 - (1 + V6YZ)-3/2 
fOdd(Z) = (1 _ V6y)-3/2 _ (1 + V6y)-3/2 

Theorem 1.2 (critical). If y = Ycr then ~N = ~ tends in probability to the 
random variable ~ with the density 

2 x 2 

Pt;(x) = 3'Vxe- T , x ~ O. 
3"2 
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Theorem 1.3 (supercritical). If y > Yer then 

where 

mN - EmN Pr N(O 2) VN --> ,0", 

24y3 + 8y - (12y2 + 1)J4y2 + 2 

Cl = J4y2 + 2(1 + 4y2 - 2yJ4y2 + 2) , 

2 32y4 + 16y2 + 1 - (16 y3 + 4y)yl4y2 + 2 
0" =4y--~--~~==~~~~~~~==~ 

(2y2 + 1)yl4y2 + 2(1 + 4y2 - 2yJ4y2 + 2)2 

2 The generating function 

It is known [1, 2] that the generating function 

= = 
UO(X,y) = L L Co(N,m)xN ym-2 

N=Om=2 

85 

(1) 

is analytic in (0,0) and satisfies the following equation (in a neighborhood of (0, 0)) 

UO(x, y) = Xy-l(UO(X, y) - UO(X, 0)) + XyU6(X, y) + 1, (2) 

which also can be rewritten as 

where S(x) = UO(x , 0). We will need some analytic techniques which slightly 
differs from the original method by Tutte. 

Denote by D(x, y) the righthand side of (3) and consider the analytic set V = 
{(x,y) : D(x,y) = O} in a small neighbourhood of (0,0). This set is not empty as 
it contains the point (0,0), and it defines the branch of the function y = y(x) such 
that y(x) = X+O(X2) in a neighbourhood of x = 0, we denote it further mostly by 
h(x). In particular, it will be shown that h(x) and S(x) are algebraic functions. 
Because D(x, y) is a square of an analytic function, we have two equations valid 
at the points of V 

or 

D(x,y) = 0, BD(x, y) = ° 
By 

4x2y2S(X) + (x - y)2 - 4xy3 = 0, 

8x2yS(x) - 2(x - y) - 12xy2 = 0. 

(4) 

One can exclude the function S(x) by multiplying the second equation (4) on ~ 
and subtracting it from the first equation, then 

(5) 

or x 
(6) y = 1- 2y2' 
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We have exposed the quadratic method belonging to Thtte. Now we have to get 
more information about analytic properties of the solution. 
By the theorem on implicit functions equation (6) gives the unique function h(x) = 
y(x), analytic for small x with h(O) = o. It is evident from (6) that the convergence 
radius of h(x) is finite, and its series have nonnegative coefficients. Moreover, y(x) 
is an algebraic function satisfying the equation y3 + py + q = 0 with p = - ~, q = ~. 
The polynomial f (y) = y3 + py + q has multiple roots only when f = f~ = 0, which 

gives x± = ±fj;. These roots are double roots because f; -I=- 0 at these points. 

From f~ = 3y2 - ~ = 0 and f = 0 it follows that y(x±) = ± ~. From (6) it also 
follows that x( -y) = -x(y) and thus y(x) is odd. It follows that y(x) has both 

x± = ±fj; as its singular points. 

From (4) we know S(x) explicitely. The unique branch y(x) = h(x), defined by 
equation (6), is related to the unique branch of S(x) by the equation 

1- 3h2 (x) -2 2 2 
S(x) = (1 _ 2h2(x))2 = x h (1 - 3h ) (7) 

that is obtained by substituting x = h - 2h3 to the first equation (4). 

We know that S(x) has positive coefficients, that is why x+ = fj; should be 

among its first singularities. Then x_ = - fj; should also be a singularity of 

both h(x) and S(x). We proved also that the generating functions are algebraic. 

The principal part of the singularity at the root x+ is h(x) = A(x - X+)d+~ for 
some integer d (as the sigularity is algebraic and the root is a double root). As 
y+ = h(x+) is finite then d ;::: O. At the same time h'(x) = 1- 6h 2 (x) that is 00 

for x = x+. It follows that d = O. For S(x) we have the same type of singularity 
A(x-x+)d+~ but here d = 1 as S(x+) and S'(x+) are finite but S"(x+) is infinite. 
As y = h(x) is a double root of the main equation, we have by substituting (7) to 
(3) 

D(x, y) 4y2h2(1 _ 32h2) + (h(l - 2h2) _ y)2 - 4y3h2(1 - 2h2) 

(y - h)2 (~~ - 4xy) (8) 

Remember that D(x, y) = (2xy2UO(x, y) + X - y)2, so 

u, ( ) _ -(x-y)+(h-y)v'd(X:Yj 
o x , y - 2 2 ' xy 

x 2 
d(x, y) = h2 - 4xy. (9) 

In the last equality we have chosen the sign appropriately, that is the sign + should 
be chosen so that for x = y > 0 the value Uo(x, y) were positive. 

Singularities of Uo(x, y) Let us prove that for any fixed y E (0, YeT) the minimal 
singularities of Uo(x, y) (as a function of x) coincide with the minimal singularities 

of h(x) that is with x± = ±fj;. Consider the right hand side of (9). All 
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singularities of Uo(x, y) that do depend on y are described by the equation d(x, y) = 
0, which is equivalent to 4h:Cx) = y- l. The series of the function 4h:Cx) has all 
coefficients nonnegative, that's why for Iyl < Ycr 

Thus for y < Ycr the minimal singularities are at x±. Moreover, the equation 

(10) 

becomes, as x = h - 2h3 , 

Its solutions are 

In particular this means that for every real y the solution of (10) is real too. As 
we are interested only in y > 0, a minimal singularity is unique and is given by 
choosing minus in the latter equation, 

(11) 

For each y ~ ~ this gives Xl (y) ::; Xcr = /"it, equalities are achieved simultane­

ously. This can be easy checked by plotting a graph of (h - 2h3 )/h2 and using the 
fact that the function hex) is strictly increasing, we omit this construction. 

3 Subcritical region 

The canonical partition function is the coefficient in the expansion 

00 

Uo(x,y) = L ZN(Y)XN. 
N=O 

Uo(x, y) is algebraic, and we will prove that for any fixed y,O < y < Ycr, in the 
vicinity of x± 

X 3 
UO(X, y) = J± ,O(X, y) + J± ,I(X, y)(1 - _)2 

x± 

where for fixed y the functions f±,o, f±,l are analytic near x± correspondingly, the 
values of f±,l at x± are nonzero, namely 
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Expand h(x) near x+ = /"it in t = x+ - x 

1 1 1/2 1 5 ~ 3/2 2 h(x) = - - -t - -t - -t + O(t ) V6 ~ 6 72 
(12) 

Substitute (12) together with x = x+ - t to the expression (9) for Uo(x, y) and 
expand in t 1/ 2 

Similary we find 

Then as N ----+ 00 

Z 63 43 xN x x 2" / ( 1 (-l)N) 3 

N(Y) rv (1 _ V6y)3/2 + (1 + V6y)3/2 [ ]( + - ) (13) 

This is known under different names (for example, as Darboux theorem in [3]). 
However, it can be proved elementarily, using the following expansion for a = ~ 

t a = (x _x)a = ~ r(N - a) xa-NxN 
o ~ N!f(-a) 0 

N=O 

(14) 

where [xN]F(x) stands for the N-th coefficient in the F(x) power series. Secondly, 
subtracting this main term and proving that the rest is asymptotically negligible. 
In fact, (13) should be read as two separate equations, 

ZN(y)rv63/43( 1 ± 1 )[xN](x -x)~ 
(1 - V6y)3/2 (1 + V6y)3/2 + , 

with a plus sign standing for even values of N and a minus sign for odd. 
Finally for given y the generating function for mN - 2 is obtained from the partition 
function ZN(y) by normalization, that is 

and after taking limits in N (by even an odd values separately) we come to the 
assertion of Theorem 1.1. 

4 Critical point 

In a critical point the expectation of mN has no finite limit. To describe the 
limiting distribution we shall calculate the asymptotics (as N ----+ (0) ofthe factorial 
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moments of mN and find the appropriate scaling. That is we have to study the 
singularities of all the partial derivatives ty:Uo(x,y) at Y = Yen as we have done 
in the previous section for Uo(x, y) only. 
From the previous analysis we know that for Y = YeT the singularity defined by 

d(x, y) = 0 is among the minimal ones. According to (11) is equal to v'ir and 

coins ides to x+ singularity of h(x), so there are two minimal singularities at points 
x+ and x_. 

Lemma 4.1. Put t = x - Xo. Then there exist functions 'Pn,i(t) = 'Pn,i(t, Y), i = 
0,1,2, analytic in the vicinity of t = 0 such that 

u.(n)(x Y ) = If) (t) + If) (t) t 3/ 4 - n/2 + If) (t) t 5/ 4 - n/2 o ,cr yn,O yn,l yn,2 , 

Proof. Instead of calculating the y-derivatives of Uo(x, y) we calculate them for 
2xy2UO(x, y), which is much simpler, but keeps all information on Co(N, m). We 
have 

( X) 1/2 
xy2UO(x, y) = Y - x + (h - y)V4X 4h2 - Y , x 2 0, 

( X) 1/2 
xy2UO(x,y) =y-x+(h-Y)V-4x - 4h2 +y , x ::; O. 

To get the derivatives put y = YeT + U and consider the formal series in u: 

00 r(n -~) ( X )1/2-n n 
XV4X~ n!r(-~) 4h2 - YeT U , x 2 0, 

2xy2UO(X,y)1 = (YeT-X)+u+((h-YeT)-U) 
Y=Ycr+ U 

00 r(n-~)( x )1/2-n n 
xV-4x ~ n!r(-~) - 4h2 + YeT (-U) , x ::; O. 

For n > 1, x 2 0 the n-the coefficient (we denote it [un]) is equal to 
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and similarly for n > 1, x ::; 0 

Next we need the following auxiliary expansions 

( X ) -11 1 3 1/4 1/2 ) (h - y ) - - y = -- + -6 t + O(t er 4h2 er x=x+-t 2 8 ' 

(~ - Yer) I = ~63/4tl/2 + O(t), 
4h2 x=x+-t 3 

(h - Yer) ( - 4~2 + Yer) -ll x=x_ +t = -1 + ~61/4tl/2 + O(t), 

( - ~ + Yer) I = ~J6 + ~63/4tl /2 + O(t) . 
4h2 x=x_+t 3 3 

(note that the second one has no constant term). Using these expansions we obtain 
from (15) and (16) the behaviour of the Uo(x, y) derivatives near x±, namely 

(r 
-Uo(x, y)1 = const t 3 / 4 - n/ 2 (1 + O(t1/ 2 )) , 
ayn x=x+- t 

:n Uo(x,y)1 =const +O(t1/ 2 ). 
uyn x=x _+t 

Lemma is proved. 

The factorial moments of mN are 

M (N) = [xN]Un rv T 2n3n+1(2n _ 1)(2n _ 5)" -r( - ~ ) Nn/2 
n [xN]UO •. r(i - ~) , 

Consequently the moments of a random variable ~ = limN --->00 mN / VN are 

_ r(~) 
1S~ -3(3/4)r(_~) ' 
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The moment generating function for e is uniquely defined by this sequence (by 
classical uniqueness criteria, see sections VII.3 and VIII.6(b) of [6]), as they grow 
slower than Cnn! for some C) and is equal to 

U sing the Laplace transform we get the density of e 
(t) 3-!! 1 _I t - 1/ 4 

Pe = 2r(~)e 9 

5 Supercritical region 

We shall prove that EmN rv eN and all the semiinvariants (coefficients in the 
Taylor expansion of the logarithm of the generating function) of mN are of order 
N. Then it follows that the semiinvariants of order greater than two of a scaled 
random variable (mN - EmN/VN tend to zero as N ----7 00, which means the 
imiting distribution is uniquely defined by its moments (see above), and moreover 
it is gaussian (as the log of its generating function is a quadratic polynomial). 

The semiinvariants of mN are given by the formula 

where 

ined thing is the characteristic function of mN. 

We saw that for fixed y > Yer the minimal singularity of Uo(x, y) (as the function 
of x) is unique and is given by (11). The expansion of Uo(x, y) (as the function of 
x) at the singular point Xer (y) is 

Uo(x, y) = a(y) + b(y)(xer(y) - x)1/2 + O(lxer(y) - xl) 

for some constants a(y), b(y). Then 

It follows that all semiinvariants of mN are O(N). 
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6 Some remarks 

Equivalent presentations of the model The factor ym = exp( - ~m) is quite 
natural: it is derived from the Hilbert-Einstein action in two-dimensional pure 
quantum gravity, see introductory exposition in [5]. The case Y = 1 that could be 
natural for combinatorics seems to have no special interest for physics, where the 
critical point is of most interest. We could assign weights to maps as exp( -pL(T), 
where L(T) is the number of all edges of the map T. This would give the same 
probability distribution because of the formula IL(T)I = 3f + m~T). 

Second kind phase transition The free energy for this model is defined as 

. 1 " F(f-l) = J~oo N log ZO,N, ZO,N = ~ exp{ - f-lL(T)} 
T 

The next theorem gives an explicit formula for the free energy, it corrects a cal­
culational mistake in the corresponding result in [4]. It shows also that the phase 
transtion is a second order phase transition, as in the critical point the free energy 
is differentiable but not twice differentiable. 

Theorem 6.1. The free energy is equal to - ~ f-l + In (I¥) if Y ::; Yer and is equal 

to -~f-l + Inxer(y) if Y > Yer· 

Proof. It easily follows from the proofs in the preceding sections. We have 

ZO,N = 2: exp{ -f-lL(T)} = 2: exp{ -~(3N+m)} = exp{ -~f-lN}[xN]Uo(x, e-J.'/2), 
T T 

~ log ZO ,N = -~f-l + ~ log ([xN]Uo(l, e-J.'/2)) 

Put Y = e-J.'/2. Following section 3, as Y < Yer: 

When Y = Yer: 
[xN]Uo(l, e-J.'/2) = f(y)[xN](xo _ x)3/4 

1 3 ( (27) N log ZO,N ~ -2f-l + In V"2 . 
Following section 5, as Y > Yer: 

[xN]Uo(1,e-J.'/2) = b(y)[xN](xcr(Y) _ X)1/2, 

xcr(Y) = 2y + 8y3 - 4y2J4y2 + 2 being defined as in (11) we get 

1 3 
NlogZo,N ~ -2f-l+lnxcr(Y) 
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Further problems The similar problem for two holes in the sphere could be the 
next solvable problem, that is consider a ring (or cylinder) with two boundaries of 
lengths ml, m2. Joint distribution of these two random variables is to be found. 
Not that if for one boundary there is the combinatorial formula for Co(N, m) 

2J+2(2m + 3j - 1)!(2m - 3)! 
Co(N, m) = (j + 1)!(2m + 2j)!((m _ 2)!)2 

by Thtte (used in [4]). Nothing similar is known for the number Co(N, ml, m2) 
of rooted near triangulations of a ring with N triangles and the lengths ml, m2 of 
the boundaries, where only analytic methods can be of use. 
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Enumeration des 2-arbres k-gonaux 

Gilbert Labelle, Cedric Lamathe, Pierre Leroux 

RESUME Dans ce travail!, nous gfmeralisons les 2-arbres en remplagant les 
triangles par des quadrilateres, des pentagones ou des polygones a k cotes (k­
gones), ou k 2 3 est fixe. Cette generalisation, aux 2-arbres k-gonaux, est naturelle 
et est etroitement liee dans Ie cas planaire aux arbres cellulaires. Notre objectif est 
Ie denombrement, etiquete et non etiquete, des 2-arbres k-gonaux selon Ie nom­
bre n de k-gones. Nous donnons des formules explicites dans Ie cas etiquete, et, 
dans Ie cas non etiquete, des formules de recurrence et des formules asymptotiques. 

ABSTRACT: In this paper!, we generalize 2-trees by replacing triangles by 
quadrilaterals, pentagons or k-sided polygons (k-gons), where k 2 3 is given. This 
generalization, to k-gonal 2-trees, is natural and is closely related, in the planar 
case, to some specializations of the cell-growth problem. Our goal is the enumer­
ation, labelled and unlabelled, of k-gonal 2-trees according to the number n of 
k-gons. We give explicit formulas in the labelled case, and, in the unlabelled case, 
recursive and asymptotic formulas. 

1 Introduction 

L'espece des arbres bidimensionnels, ou 2-arbres, a ete bien etudiee dans la litter­
ature. Voir par exemple [4] et [2, 3]. Essentiellement, un 2-arbre est un graphe 
simple connexe constitue de triangles qui sont lies entre eux par les aretes de 
maniere arborescente, c'est-a-dire sans former de cycles (de triangles). Dans [5], 
Hararyet al. ont enumere une variante des arbres cellulaires (relie au "cell-growth 
problem"), a savoir des 2-arbres k-gonaux plans et planaires2 , dans lesquels les 
triangles ont ete remplaces par des quadrilateres, des pentagones ou des polygones 
a k cotes (k-gones), OU k 2 3 est fixe. De tels 2-arbres, batis sur des k-gones, sont 
appeles 2-arbres k-gonaux. Cette generalisation apparait naturellement et Ie but 
de ce travail est l'enumeration des 2-arbres k-gonaux libres, c'est-a-dire vus comme 
graphes simples, sans question de planarite. La figure 1 a) propose un exemple de 
2-arbres k-gonal, dans Ie cas OU k = 4. 

Nous disons qu'un 2-arbre k-gonal est oriente si ses aretes sont orientees de fa<;on 
telle que chaque k-gone forme un cycle oriente, voir la figure 1 b). Notons par 
a et par ao les especes des 2-arbres k-gonaux et des 2-arbres k-gonaux orientes 
respectivement. Pour ces deux especes, nous utili sons les symboles -, 0 et ~ en 
exposant pour indiquer que les structures ont ete pointees en une arete, en un 
polygone, et en un polygone muni d'une arete distinguee, respectivement. 

Notre objectif est Ie denombrement, etiquete et non etiquete, des 2-arbres k-gonaux 
selon Ie nombre n de k-gones. Nous donnons des formules explicites dans Ie cas 
etiquete, et dans Ie cas non etiquete, des formules de recurrence et des formules 
asymptotiques. Pour cela, nous adaptons l'approche de Fowler et al. dans [2, 3] 

1 Avec l'appui du FCAR (Quebec) et du CRSNG (Canada) . 
2 Au sens ou toutes les faces, a part la face externe, sont des k-gones 

B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
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a) 

Figure 1: Un 2-arbre 4-gonal non oriente et oriente 

qui correspond au cas k = 3. En particulier, les 2-arbres sont etiquetes aux k­
gones. La principale difficulte a cette extension vient, comme on Ie verra, du cas 
ou k est pair. 
Les deux premieres etapes sont assez directes. Il s'agit d'etendre Ie theoreme de dis­
symetrie au cas k-gonal et de caracteriser l'espece B = a---> des 2-arbres k-gonaux 
munis d'une arete distinguee et orientee, a l'aide d'une equation fonctionnelle de 
type lagrangien. Le premier result at est une extension immediate du cas k = 3 et 
la demonstration est omise. 

Th€lOreme 1.1. THltOREME DE DISSYMETRIE. Les especes a et ao des 2-arbres k­
gonaux orientes et non orientes respectivement satisfont les isomorphismes d'espe­
ces suivants : 

(1) 

(2) 

Dans la pro chaine section, nous caracterisons l'espece B = a---> et nous en don­
nons ses proprietes. Par la suite, nous exprimons les diverses especes pointees qui 
apparaissent dans Ie theoreme de dissymetrie en fonction de l'espece Bet nous en 
deduisons les resultats enumeratifs desires pour les especes ao et a. Le cas oriente, 
plus simple, est traite d'abord, dans la section 3. Le cas non oriente, suit, dans la 
section 4, en distinguant les deux cas de parite de k, pour Ie denombrement non 
etiquete. Enfin, les resultats asymptotiques sont presentes dans la section 5. 

2 L'espece B = a-t 

L'espece B = a---> joue un role fondamental dans l'etude des 2-arbres k-gonaux. 

Theoreme 2.1. L'espece B = a---> des 2-arbres k-gonaux pointes en une arete 
orientee satisfait l 'equation {isomorphisme} fonctionnelle suivante : 

(3) 

ou E represente l'espece des ensembles. 

Preuve. On decompose une a---> -structure en un ensemble de pages, c'est-a-dire 
en sous-graphes maximaux qui partagent un seul k-gone avec l'arete distinguee. 
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Pour chaque page, l'orientation de l'arete pointee permet alors de definir un ordre 
et une orientation sur les k - 1 aretes restantes du polygone possedant cette arete, 
selon la figure 2 a) pour Ie cas impair, et b) pour Ie cas pair. Ces aretes etant 
orientees, on peut alors y accrocher des B-structures. On en deduit alors l'equation 
(3). • 

a) b) 

Figure 2: Vne page orientee a) k = 5 b) k = 6 

On peut relier simplement l'espece B = a---> a celle des arborescences (arbres 
enracines), A, caracterisee par l'equation fonctionnelle A = XE(A), OU X est ici 
l'espece des sommets. En efIet de (3), on deduit successivement 

(k -1)XBk~l = (k -1)XE((k -1)XBk~l), 

sachant que Em(x) = E(mX), et, par unicite, 

(k - I)XBk~l = A((k - I)X). 

(4) 

(5) 

Finalement, on obtient l'expression suivante pour l'espece Ben fonction de l'espece 
des arborescences : 

Proposition 2.2. L 'espece B = a---> des 2-arbres k-gonaux pointes en une arete 
orientee veri fie 

B = k - l A((k - I)X). 
(k - I)X 

(6) 

Proposition 2.3. Les nombres a;;, a;;: ,n , ... ' et bn = Ii;; de 2-arbres k-gonaux 
pointes en une arete orientee et ayant n k-gones, respectivement etiquetes, lais­
ses fixes par une permutation de §n de type cyclique 1 n12n2 ... , et non etiquetes, 
satisfont les relations suivantes : 

a; = ((k -1)n+ l)n~l = mn~l, (7) 

ou m = (k - l)n + 1 est le nombre d'aretes, 
00 

i=l dli 

et 
1 

bn =; 2:= 2:=(la l + l)ba1 ba2 ·· .bak_lbn~j, 
l:Sj:Sn a 

dli 
d<i 

bo = 1, (9) 

la deuxieme somme etant prise sur les (k-l) -uplets d 'entiers a = (aI, a2, ... , ak~ 1) 
tels que lal + 1 divise 1 'entier j, ou lal = al + a2 + ... + ak~l. 
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Preuve. Les formules (7) et (8) s'obtiennent en specialisant avec J.L = (k _1)-1 
les formules suivantes, donnees par Fowler et al. dans [2, 3], 

z( A(X/")),, = 
x/" 

(10) 

(11) 

La formule (7) peut egalement se voir directement par une adaptation de la bi­
jection de Priifer. Pour obtenir la recurrence (9), il suffit de prendre la derivee 
logarithmique de l'equation 

(12) 

ou B (x) = I:n2o bnxn , qui decoule de la relation (3). • 
La suite des nombres ibn}, pour k = 2,3,4, 5, est repertoriee dans l'encyclopedie 
des suites d'entiers [11] et l'equation (3) , dans l'encyclopedie des structures combi­
natoires [6]. Le comportement asymptotique des nombres bn est analyse, not am­
ment en fonction de k, dans la section 5. 

3 Cas oriente 

Commen<;ons par determiner les especes pointees qui apparaissent dans Ie theoreme 
de dissymetrie. Ces relations sont assez immediates et la demonstration est laissee 
au lecteur. 

Proposition 3.1. Les espixes a;; , a:;, et a~ sont caracUrisees par les isomor­
phismes suivants 

(13) 

ou B = a---> et Ok represente l'espece des cycles (orientes) de longueur k. 

Le theoreme de dissymetrie permet d'exprimer la serie generatrice ordinaire (1o(x) 
des 2-arbres k-gonaux orientes non etiquetes, en termes des especes pointees, 

(14) 

et par la proposition 3.1, nous pouvons alors exprimer (1o(x) en fonction de B(x) = 
{1---> (x) . 
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Proposition 3.2. La serie generatrice ordinaire ao(x) de l'espece des 2-arbres 
k -gonaux orientes non etiquetes est donnee par l' expression 

ao(x) = B(x) + ~ L ¢(d)B~ (xd ) _ k ~ 1 xBk(x). 
dlk 
d>l 

(15) 

Corollaire 3.3. Les nombres ao,n et ao,n de 2-arbres k-gonaux orientes etiquetes 
et non etiquetes, sur n k-gones sont donnes par 

((k - l)n + l)n-2 = m n- 2, n::::: 2, 

k-l(k) 1", (~) 
bn - -k-bn- 1 + k ~ ¢(d)b n ;;, ' 

dlk 
d>l 

(16) 

(17) 

bi, bi2 ... bij , represente le coefficient de xi dans la serie Bj (x), 
il +··+ij=i 

avec bY) = 0 si r est non entier ou negatif. 

Preuve. Pour Ie cas etiquete, il suffit de remarquer que a;: = mao,n. Dans Ie cas 
non etiquete, l'equation (17) s'obtient directement de (15). • 

4 Cas non oriente 

Dans Ie cas non oriente, Ie nombre an de 2-arbres k-gonaux etiquetes sur n poly­
gones satisfait 2an = ao,n + 1, puisque Ie seul 2-arbre k-gonal oriente etiquete laisse 
fixe par changement d'orientation pour un nombre de polygones donne, est celui 
dont les polygones partagent tous une arete commune. On obtient 

Proposition 4.1. Le nombre an de 2-arbres k-gonaux etiquetes sur n polygones 
est donne par 

1 a = - (mn - 2 + 1) 
n 2 ' n::::: 2, (18) 

ou m = (k - l)n + 1. 

Pour Ie denombrement non etiquete des 2-arbres k-gonaux (non orientes), nous 
allons considerer certaines especes quotients de la forme F /Z2, OU Fest une 
espece de structures "orientees" et Z2 = {1,T}, est un groupe dont l'action de 
T sur les F-structures est de renverser I 'orientation. Vne structure d'une telle 
espece quotient consiste alors en une orbite {s, T' s} de F-structures selon l'action 
de Z2. 

Par exemple, les diverses especes pointees de 2-arbres k-gonaux , a-, a 0 et aQ., 
s'expriment comme especes quotients des especes de 2-arbres k-gonaux orientes 
correspondantes : 

(19) 



100 Gilbert Labelle, Cedric Lamathe, Pierre Leroux 

Pour Ie d€mombrement non etiquete de telles especes quotients, on utilise la formule 
suivante qui est evidente : 

(20) 

ou Fr (x) = L:n>O iFix F (T) ixn est la serie generatrice des F -structures non etique­
tees laissees fixes par l'action de T, c'est-a-dire par changement d'orientation. 
Toutefois, Ie calcul de ces series FT(X) est assez complexe et il est avantageux 
de differencier en deux cas selon la parite de k. 

4.1 Cas k impair 

On peut remarquer, en observant les figures 2 a) et b), que dans tout k-gone 
contenant l'arete pointee (mais non orientee), d'une a- -structure, il est possible 
d'orienter les k - 1 autres aretes, dans la direction s'eloignant de l'arete pointee 
comme dans la figure 2 a) , lorsque k est impair, mais qu'il restera une arete 
ambigue si k est pair. Ce phenomene permet d'introduire des especes squelettes, 
lorsque k est impair, en analogie avec l'approche de Fowler et al. [2, 3] OU k = 3. 
Ce sont les especes a deux sortes Q(X, Y), S(X, Y) et U(X, Y), OU X represente 
la sorte des k-gones et Y celle des aretes orientees, definies par les figures 3 a), b) 
et c), OU k = 5. En analogie avec Ie cas k = 3, on a les propositions suivantes. 

a) b) c) 

Figure 3: Especes squelettes a) Q(X, Y), b) S(X, Y) et c) U(X, Y) 

Proposition 4.2. Les especes squelettes Q, S et U admettent des expressions en 
termes d'especes quotients: 

Q(X, Y)=E(Xy2)/Z2, S(X, Y)=Ck(E(Xy2))/Z2, U(X, Y)=(E(Xy2))k/Z2. 
(21) 

Proposition 4.3. Lorsque k est impair, k 2: 3, on a les expressions suivantes 
pour les especes pointees de 2-arbres k-gonaux , OU B = a---> : 

k - l k-l k - l 
a- = Q(X, B-2), a O = S(X, B-2), a Q = U(X, B-2 ). (22) 

Dans Ie but d'obtenir des formules d 'enumeration , il faut prealablement calculer 
les series indicatrices de cycles des especes Q, S et U. 
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Proposition 4.4. Les series indicatrices de cycles des especes Q(X, Y), S(X, Y) 
et U(X, Y) sont donnees par la formule 

ZQ ~ (ZE(XY2) + q), (23) 

Zs 1 ( k-l) 2" ZCk(E(XY2)) + q. (P2 ° ZE(XY2))-2- , (24) 

Zu 1 ( k-l) 2" Z(E(XY2))k + q. (P2 ° ZE(Xy2))-2- , (25) 

2 

ou q = hO(XIY2+P20(Xl Yl ;Y2 )), P2 represente la fonction somme de puissances de 
degre deux, h la fonction symetrique homogene et 0, la composition plethystique. 

Preuve. La formule (23) et la methode utilisee se trouvent dans [2, 3]. II s'agit 
de denombrer les F(X, Y)-structures colorees non etiquetees laissees fixes par T. 

Dans Ie cas de S, on doit laisser fixe une Ck(E(Xy2 ))-structure coloree. Pour cela 
Ie cycle de base de longueur k doit posseder au moins un axe de symetrie passant 
par Ie milieu d'un des cotes. On peut voir que lorsqu'une telle structure possede 
plusieurs axes de symetrie, Ie choix d'un axe est arbitraire. De part et d'autre de 
l'axe de symetrie, chaque E(Xy2 )-structure coloree doit avoir son image miroir; ce 
qui contribue pour un terme de (P2 ° ZE(XY2)) k21 . Ensuite, la structure attachee 
a l'arete distinguee doit etre globalement laissee fixe, ce qui donne Ie facteur q. Le 
raisonnement est tres similaire pour l'espece U. • 

Combinant Ie theoreme de dissymetrie, les equations (23), (24), (25) et les lois de 
substitution de la theorie des especes, on obtient les series generatrices des types 
de l'espece des 2-arbres k-gonaux . 

Proposition 4.5. Soit k ;::: 3 impair. La serie generatrice ordinaire a(x) des 
2-arbres k-gonaux non etiquetes est donnee par 

a(x) = ~ (ao(x) + exp (2= ;i (2Xi B k21 (x2i ) + x 2i Bk - 1 (X2i ) - X2i B (k 2 1) (x4i))). 
i2:1 

(26) 

Corollaire 4.6. Pour k ;::: 3 impair, Ie nombre an de 2-arbres k-gonaux non 
etiquetes sur n k-gones satisfait la recurrence suivante 

ou, pour tout n ;::: 1, 

(28) 

et b~j) est defini au corollaire 3.3. 
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4.2 Cas k pair 

Le cas ou k est pair est plus delicat. Dans Ie but d'exprimer les series generatrices 
ordinaires des types des trois especes a-, a <) et a2., nous appliquons la formule 
(20) aux formules (19). Pour l'espece a-, on a 

-- 1 ----> ----> 
a (x) = 2( a (x) + aT (x)), (29) 

ou a:;(x) = Ln?:oIFixa~(T)lxn est la serie generatrice des 2-arbres k-gonaux 

pointes en une arete orient~e, non etiquetes, laisses fixes par changement d'orienta­
tion. II faut donc calculer a:; (x). Pour cela, introduisons quelques especes aux­
iliaires. La premiere, notee aTS, est l'espece des 2-arbres k-gonaux pointes en 
une arete orientee et dont toutes les pages attachees autour de cette arete sont 
verticalement symetriques, sans symetries croisees (voir plus loin); on dira tatale­
ment symetriques. On peut caracteriser cette espece par l'equation fonctionnelle 

~--- -

Figure 4: Vne structure de l'espece ~s 

sui vante (voir figure 4), 
2 k-2 

~S = E(X . X= < B-2 > ·~s) = E(PTS), (30) 

ou X~ < F > represente l'espece des couples de F-structures isomorphes et PTs 
est l'espece des pages tatalement symetriques. Cette equation se traduit au niveau 
des series generatrices des types par 

aTs(x) = exp (2.: ~xiBk22 (X2i)~S(Xi)) . 
i?:l 

(31) 

Proposition 4.7. Les nambres f3n = laTs[nll, de aTS-structures non etiquetees 
sur n palyganes satis/ant la recurrence 

(32) 

au 
Wn = 

i+j=n-l 
i pair 
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Preuve. II suffit de prendre la derivee logarithmique de l'expression (31). • 

Passons maintenant it l'introduction des deux especes PCR et PM, des paires de 
pages croisees et des pages mixtes. Vne paire de pages croisees est, par definition, 
une paire de pages orientees (des a--> -structures comportant une seule page) de la 
forme { S, T· s} avec s et T· S non isomorphes. La figure 5 a) montre une structure de 
cette espece. Vne page mixte est une page symetrique possedant une (ou plusieurs) 
symetrie de type croisee. Vne telle structure est dessinee en figure 5 b). On peut 
alors exprimer ces deux especes l'une en fonction de l'autre, comme suit 

(33) 

(34) 

ou 1>2 < F > represente l'espece des paires de F-structures de la forme {s, T . s} 
et E+ est l'espece des ensembles non vides. Passant aux series generatrices des 
types, il vient 

~(X2Bk-l(X2) - PTS(X2) - P M(X2)), (35) 

xB ',' (x') itrs( x) (cxp ( ~ ~ (PcR (x') + 1\, (X'))) - 1) .(36) 

Apres ma~ipulatio~s et la prise de la derivee logarithmique de (36), on obtient les 
nombres PCR,n et PM,n de pages croisees et mixtes respectivement sur n polygones 

ou 

PCR,n 

k - 2 b(k-l) F P. P 
-2- n-l + TS ,n + CR,n + M,n, 

i+j=n-l 

i+j=n-l 

+ 
i+j=n-l 

i+j+l=n-2 

. (k22)~ 
Jb i aTS,j· 

2 

(37) 

(38) 

(39) 

(40) 

( 41) 

N otons par as (x) la serie generatrice des a--> -structures non etiquetees syme­
triques. On a alors (voir figure 6) 

E(PTs + PCR + PM)~(X), 

exp (L ~(PTS(xi) + PCR(Xi ) + PM(Xi ))). 
i>l 

(42) 

(43) 
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On en deduit alors une recurrence pour Ie nombre an = as ,n de 2-arbres k-gonaux 
pointes en une arete laisses fixes par changement d'orientation. 

(44) 

oil 

,) b) 

Figure 5: Une paire de pages croisees et une page mixte 

Figure 6: Decomposition d'une a--> -structure fixee sous T 

Proposition 4.8. Si k est un entier pair, k 2: 4, alors le nombre de 2-arbres 
k-gonaux pointes en une arete (non orientee) sur n k-gones est donne par 

(45) 

Passons maintenant a l'espece aQ. des 2-arbres k-gonaux pointes en un k-gone pos­
sedant une arete distinguee. On trouve 

- 0 1 (- 0 - 0 ) a-(x) ="2 a;(x) + a~,T(X) , (46) 

puisque une a~-structure non etiquetee T-symetrique possede un axe de symetrie 
qui est, en fait, la mediatrice de l'arete distinguee dans Ie polygone pointe, et, 
qui est donc aussi naturellement la mediatrice de l'arete opposee a celle pointee. 
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Les structures attachees a ces deux aretes sont donc symetriques, d'ou Ie terme 
(as(x))2; ensuite, de part et d'autre de l'axe, les B-structures que l'on y at­
tache doivent s'echanger par paire, soit une contribution d'un facteur B(x2 ) pour 
chacune des k;2 paires. On en deduit alors une expression du nombre de a Q -

structures non etiquetees a~, 

(47) 

Procedons de fa<;on similaire pour l'espece a 0, des 2-arbres k-gonaux pointes en 
un polygone. Vne nouvelle fois, nous utilisons la relation (20), qui donne 

~O 1 (~O ~O ) a (x) = 2" ao (x) + ao,r(x) . (48) 

Remarquons d'abord que pour qu'une a:; -structure soit laissee fixe par changement 
d'orientation, elle doit comporter au moins un axe de symetrie, qui peut etre de 
deux types: 

1. un axe passant par Ie milieu de deux aretes opposees, ou 

2. un axe passant par deux sommets opposes, 

du polygone pointe. Le denombrement se fait en orient ant d'abord l'axe de 
symetrie. On trouve 

(49) 

ou Ie premier terme correspond a une symetrie de type 1, et Ie deuxieme, de type 
2. Les structures qui possedent les deux symetries sont precisement celles qui sont 
comptees une demi fois dans chacun des deux termes. Le theoreme de dissymetrie 
donne donc, pour k 2 4 pair, 

1~ 1~ 1~o 1~o 
2"ao(x) + 2"as(x) + 2"ao,r(x) - 2"a;:r(x), 

1 ~ 1 ~ x ~ k 2 ~2 ~ k-2 2 
2" ao(x) + 2" as(x) + 4(B2 (x ) - as(X)B-2 (x )), (50) 

ou ao(x) est donne par (15) et as(x) par (43). 

Theoreme 4.9. Si k 2 4 est pair, le nombre de 2-arbres k-gonaux non etiquetes 
sur n k-gones est donne par 

(51) 

avec 
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5 Denombrement asymptotique 

Grace au theoreme de dissymetrie et aux diverses equations combinatoires qui lui 
sont associees, Ie denombrement asymptotique des 2-arbres k-gonaux (etiquetes ou 
non) depend essentiellement de celui des B-structures OU Best l'espece auxiliaire 
caracterisee par l'equation combinatoire (3). Dans Ie cas etiquete, la situation est 
triviale puisque l'on dispose des formules closes simples (7), (16) et (18). Dans Ie 
cas non etiquete, la situation est vraiment plus delicate puisque la serie B(x) est 
caracterisee par l'equation fonctionnelle complexe (12). 
Voici quelques notations preIiminaires It l'enonce du resultat principal de la presente 
section. Si A = (AI ~ A2 ~ ... ~ A",) est un partage d'un entier n en v parts, on 
ecrit A f--- n, n = IAI, v = l(A), mi(A) = l{j : Aj = i}1 = nombre de parts de taille i 
dans A. De plus, on pose 

dli dli,d< i 

On a Ie result at suivant. 

Proposition 5.1. Posons p = k - 1 et B(x) = I:. bn(p)xn . Alors 

i) bn(p) est un polyn6me en p de degre n - 1, n ~ 1, 

ii) it existe des constantes Ctp et (3p telles que 

pour n ---) 00. 

I 1 

(52) 

(54) 

1 1 ( p~pW(~p))2 
De plus, Ctp = Ct(~p) =!7C ! 1 + (~ ) 

V 27r (p~p) p p w p 

1 
et (3p = ~p' au ~p est la 

plus petite racine de l'equation 

(55) 

au w(x) est la serie (absolument convergente au voisinage de ~p) donnee par (58). 
On a Ie developpement convergent 

(56) 

au les coefficients Cn sont des constantes, independantes de p, donnees explicite­
ment par 

-A 
Cn = L ~~ II (ai(A) - ~)mi(A)-I(a;(A) - ~), 

N-n AZ(A) i21 

lorsque A parcourt l'ensemble des partages de n. 

(57) 



p 
1 
2 
3 
4 
5 

Enumeration des 2-arbre k-gonaux 107 

Preuve. La partie i) de l'enonce decoule immediatement de la formule explicite 
(8) . Pour la partie ii) qui affirme l'existence des constantes O:n et {3n, on s'inspire 
de l'approche de Fowler et al. pour les 2-arbres (k = 3) en utilisant Ie theoreme 
classique de Bender. Posons, pour simplifier b(x) = B(x). Alors, grace a (12), 
y = b( x) satisfait la relation 

(58) 

Par Ie theoreme de Bender, applique a la fonction f(x, y) = y - eX YP w(x), on doit 
chercher un couple (~p, Tp) solution du systeme 

f(x , y)=O et fy(x, y) = O. (59) 

Ceci equivaut a dire que ~p est solution de (55) et que P~pT: = 1. Les formules 
explicites (56) et (57) s'obtiennent en appliquant prealablement l'inversion de La­
grange a l'equation ~ = zR(O OU z = e~ et R(t) = w-P(t), pour obtenir 

(60) 

Ensuite, pour evaluer explicitement w-np(x), on utilise la version de Labelle [7] 
de la formule d'inversion de Good pour les series indicatrices en tenant compte de 
(6) et en remarquant que 

-np ( ) _ -n(Xi +¥+ ... ) z ( )1, w x - e 0 A Xl, X2,··· Xi:=PX', (61) 

OU A = XE(A) est l'espece des arborescences. • 
Dans Ie cas oriente non pointe, une methode similaire basee sur l'equation (15), 
mene a 

(62) 

Enfin, une analyse fine de la formule (51) montre que 

(63) 

La table 1 donne, a 20 decimales, les constantes ~p, O:p et {3p = t;~ pour P = 1, . .. ,5. 

~p Q p (3p 

0.3383218568 9920769520 1.3003121246 8216843599 2.955765285651994974715 
0.177099522303285617693 0.349261381742311443973 5.646542616232949712893 
0.119674100436145452060 0.191997258649948899321 8.356026879295995368276 
0.090334539604383047938 0.131073637348549764379 11.069962877759326312419 
0.072539192528125499910 0.099178841365021748147 13.785651110084685198930 

Table 1 : Valeurs numeriques de ~p, O:p et {3p, P = 1, ... ,5. 
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Voici les premieres valeurs des constantes universelles Cn apparaissant dans (56), 
pour n = 1, . .. 5. 

~ = 0.36787944117144232160, (64) 
e 

-~ 13 = -0.02489353418393197149, (65) 
2e 

1 1 1 1 
8 e5 - :3 e4 = -0.00526296958802571004, (66) 

1 1 1 1 1 
- 48 e7 + e6 - "4 e5 = 0.00077526788594593923, (67) 

1 1 4 1 49 1 1 1 
384 e9 - :3 e8 + 72 e7 - "5 e6 = 0.00032212622183609932. (68) 

Remarque 5.1. Les calculs de cette section sont egalement valables pour le cas 
ou k = 2 et p = 1, correspondant aux arborescences ordinaires (de Cayley) definies 
par l'equation A = XE(A). Dans ce cas, la constante de croissance f3 = f31, dans 
(54), est connue sous Ie nom de constante d'Otter (voir [10]). Il est interessant de 
noter que cette constante prend la forme explicite f3 = t, avec 

(69) 

II est a noter que lorsque k = 3, nous retrouvons les resultats asymptotiques 
obtenus par Fowler et al. dans [2, 3). 
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Breadth First Search, Triangle-Free Graphs 
and Brownian Motion 

Anne-Elisabeth Baert, Vlady Ravelomanana, Loys Thimonier 

ABSTRACT: One major problem in the enumeration of random graphs con­
cerns triangle-free graphs. In this paper, we study Breadth First Search processes 
and the associated queues to compute, in terms of Wright's constants, the number 
of triangle-free graphs. Next, we prove that this number is equivalent to the num­
ber of connected labelled graphs by using arguments of the Brownian excursion 
type. 

1 Introduction 

In computer science, trees are combinatorial structures evolving with time, and 
both the algorithm to traverse them (here Breadth First Search) and the underlying 
data structure (namely a queue; more generally for graph algorithms a priority 
queue) imply a wealth of interesting properties and other algorithms, as remarked 
in Sedgewick's book [15). Depth First Search and Breadth First Search processes 
have been studied in a lot of published works, one can cite for example Aldous 
[1, 2, 3), Chassaing et al. [6, 7), Drmota and Gittenberger [8), Marckert and 
Mokkadem [12) .... 
We consider here simple labelled connected graphs, i.e., graphs with labelled ver­
tices, undirected edges and without self-loops or multiple edges. Throughout this 
paper, a (n, n + k) graph is one having n vertices and n + kedges; k is then called 
its excess. Denote by c(n, n + k) the number of connected graphs on n vertices 
and n + k edges, usually expressed with Wright's constants. Wright and Bender 
et al. [18, 19, 4) gave exact and asymptotic formulae for the numbers c( n, n + k) 
by means of enumerative and analytic approaches. As an alternative method, 
Spencer [16) surprisingly used Breadth First Search and developped formulae for 
c( n, n + k) in terms of appropriate expectations. 
Harary and Palmer [9) pinpointed that one of the major problem in graphical 
enumeration concerns the triangle-free graphs. Since Breadth First Search is con­
venient to examine the connections between vertices at the same level in a tree, 
we exploit this fact to enumerate connected triangle-free graphs. 
In this paper, we recall shortly the Breadth First Search method to traverse rooted 
labelled trees and graphs, then we examine Breadth Fisrt Search Trees to precise 
some enumeration in the associated queue. We use Breadth First Search processes 
to show that the number of triangle-free graphs with excess k can be expressed 
in terms of Wright's constants. Then, using Breadth First Walk and Brownian 
excursion, we show that the number of triangle-free graphs with n vertices and 
n + k edges, is equivalent to the number of connected labelled (n, n + k )-graphs, 
as n ----* +00. 
B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
© Springer Basel AG 2002
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2 The Breadth First Search method 

2.1 Breadth First Search on random trees 

Let T be a tree with {I, ... , n} as vertex set, rooted on the first vertice 1. The 
well-known Cayley's formula [5] gives nn-l for the number of such trees. All 
adjacency lists being in numerical order, the tree can be obtained through Breadth 
First Search (BFS). 

Steps Edges Queue 
1 1 6, 7 
2 6 7,3,4 
3 7 3,4,5,8,9 6 

4 3 4,5,8,9 
5 4 5,8,9,2 

3 4 5 9 6 5 8,9,2 
7 8 9,2 
8 9 2 
9 2 

Figure 1: Tree with 9 vertices Figure 2: Associated queue 

Recall this method: a queue Q is initialized with 1 (the root ofthe labelled tree), 
and the BFS ends when the queue is empty. At each step i (i 2: 1) a vertex x is 
taken at the head of the queue and removed from Q; all new adjacent vertices to x 
are added to Q. Such vertices are said to be found by x. Let q~n) be the size of Q 
after the ith vertex (to remove) is processed and let Xi be the number of vertices 
found by this ith vertex. We have 

(1) 

Remark that -1 corresponds to removing the ith vertex, q~n) = 0 (empty queue), 
and the total number of vertices is equal to: 

n 

(2) 

For random simulation of such trees of a given type (Xl, ... , x n ), we consider 

independent random variables Xl, ... , Xn and the random variables Q~n) defined 

recursively by: Q6n) = 1, Q~n) = Q~~)l + Xi - 1. We have Q~n) = 0 if and only if 
Xl + ... + Xn = n - 1. The constraints 

Q~n) = 0 and Q~n) 2: 0 for i < n, (3) 

are necessary and sufficient for a tree to be connected or for the queue to become 
empty only after step n. 
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2.2 Breadth First Search on random graphs 

Let G+ be a connected graph on vertex set {I,··· ,n}. Once traversed by BFS, 
one obtains a tree T called a Breadth First Search Tree (BFST).W want to find 
the number of graphs that split BFST T, for a given type T. BFSTs have nice 
properties: for instance, the edges of G+ are of three types: some edges are in T, 
some connect two vertices at the same level of T, and the remaining ones connect 
two vertices on two adjacents levels. It is not possible for an edge to skip a level. 
Finally, the maximum number M(n) of edges that can be added in a given tree T 
in order to build a graph with the same BFST, satisfies: 

n-l 

M(n) = I: (Q~n) -1). (4) 
t=l 

Proposition 2.1. Let M(n) be the number of edges that can be added in a given 
tree T in order to build a graph with the same BFST: 

M(n) = (;) - (n - 1) - ~(t - l)Xt . (5) 

Proof: This follows directly from the recursive definition of Q~n). Indeed, one has 

Q~n) = 2:~=1 Xj - (t - 1), and thus: 

~Q(n) _ (n-1)(n+2) _ ~ X 
6 t - 2 6 t t· 
t=l t=l 

o 

N = (~) is the total number of edges in a complete graph with n vertices and 
(n - 1) is the number of vertices in a tree. (t - l)Xt is the number of edges we 
can add between the vertices found by the tth vertice processed, i.e., Xt and the 
vertices processed before t, i.e., the first one to the (t - 1)th. 

2.3 Results on the queue 

Let (Gin)) be the number of vertices at distance I from the root. (c<n)) 
[>0 [ [20 

is called the -profile of the tree and satisifies: 

G (n) (n) 
1, 1 = ql and 

(n) 
q" 1.-1 ern) . 

Ut=O '/. 
(6) 

At time t = 2:::~ G~n) the last vertex at distance 1- 1 from the root is processed 
and all the vertices at distance I are in the queue. Therefore, M(n) can be classified 
according to the three different types of edges. 
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Proposition 2.2. Let M(n) be the number of edges that can be added in a given 
tree T in order to build a graph with the same BFST. The total number of edges 
in M(n) at Levell is: 

In particular, at level I the number of edges between two vertices with the same 
"father" is : 

(7) 

Between Levell and Levell + 1, the number of edges is: 

(8) 

Proof: By induction on I, and using the fact that between 

/-2 /-1 

t = L G~n) + 1 and t = L G~n) 
i=O i=O 

all the vertices at level I - 1 are processed. 

D 

3 Enumeration of triangle-free graphs 

3.1 Thiangle-free graphs with excess at most 2 

LCA(3,4) 

4 

2 

Figure 3: Triangle graph with excess 0 

Let T* be a connected triangle-free graph with excess 0 on vertex set {I, ... ,n} 
traverse by BFS method. Any two vertices in a tree have one or more common 
ancestors. The Lowest Common Ancestor of a set of vertices is the one that is 
closest to the vertices. We denote by LCA(ti, tD the Lowest Common Ancestors of 
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ti and t;. When an edge is added at random to T, the only way to have a triangle 
is to connect two vertices at the same level and for which their Lowest Common 
Ancestor is at distance 1. 
Similarly to M(n) in (4), let R(n) be the number of edges which can be added to 
T in order to obtain a triangle. The number of sons of the tth vertex processed is 
Xt, hence R(n) is given by: 

R(n) = ~ (~t) . 
t=l 

(9) 

Thus from a tree T, M(n) - R(n) triangle-free graphs with excess 0 can be con­
structed. M(n) and R(n) are random variables under the conditioned distribution 
of the X t and we have the following 

Theorem 3.1. The number f*(n, n) of triangle-free graphs with excess 0 satisfies 

f*(n, n) = E(M(n) _ R(n») . 
c(n,n-1) 

(10) 

We denote by (ti' tD the ith edge added between ti and t:. Recall that the consid­
ered graphs have undirected edges and labelled vertices; we can suppose without 
loss of generality that ti is processed before t;. 
Definition 3.2. Let d(ti' tD be the distance between ti and t;, and (ti 1\ tD the 
first vertex processed. Let 

~ .. 
2,) 

if d(LCA(ti,t:),ti) = 1 
otherwise 

if (ti' t;, tj, tj are on two adjacent levels) and (ti = tj or tj = tD 
otherwise. 

~i,j = 1 if there is a path between three vertices in two adjacent levels. 

Theorem 3.3. Let f*(n , n + k) be the number of triangle-free graphs with excess 

k at most 2, and let v(n) = M(n) - R(n) and r~~) = 2:~=O(¢(ti) + 2:~=l,j>i ~i,j). 

f*(n, n + k) = 1 E [Ilk (v(n) _ u - r(U»)]. 
c(n,n-1) (k+1)! u=o ',) 

(11) 

Proof: To obtain a triangle-free graph with excess 0, the first edge (h, t~) must 
be chosen amongst the M(n) - R(n) possible edges. Then, a second edge (t2' t;), is 
added in order to obtain triangle-free graphs with excess 1. As described in figure 
4, two situations appear depending on the choice of the first edge. The case where 
the first edge added connects two vertices and one of them is at distance one of 
their Lowest Common Ancestors, and the case where the distance of one of the 
two vertices is at least two. For the first case, since Xtl is the number of vertices 
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Added Edge 

Forbidden Edge 

Added Edge 

Forbidden Edges 

Figure 4: Two possible cases to add the second edge 

Added Edges 

Forbidden Edges 

Extra Forbidden Edge 

Added Edges 

Forbidden Edges 

Figure 5: Two cases to add the third edge 

found by tI, there is (M(n) - R(n) - 1 - XtJ possible choices for the second edge 
whereas in the second case, this number becomes (M(n) - R(n) - 1 - Xtl - 1). 

At least, we have to add the last edge, (t3, t~) in order to obtain a Triangle- Free 
graph with excess 2. When this edge is added, (tI' t~) and (t2' t~) can have a 
common vertex. Suppose that (tl = t~) hence ~I,2 = 1, if (t~, t2) is added to the 
graph h, t2, t~ is a triangle (as seen in figure 5): this sort of edge must be avoided. 
If the second added edge has no common vertex with the first one, we can proceed 
for the third edge as for the second one. 

o 
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3.2 Triangle-free graphs with excess k ~ 3 

Theorem 3.4. Let f*(n, n + k) be the number of triangle-free graphs with excess 
k for k 2: 3 fixed, and let v(n) = M(n) - R(n) and r~~) = I:~=O(¢(ti) + I:J=o ~i,j). 

j>i 

1 E [Ilk (v(n) -u-r(u»)] < f*(n,n+k) < E [(v(n»)] (12) 
(k+1)! u=O ',J - c(n,n-1) - k+1 

Proof: A connected triangle-free graph with excess k is obtained by adding k + 1 
edges to the tree T. If these edges do not share some common vertices, the triangle­
free graph has the same evolution as previously described. 

Added Edges 

Forbidden Edges 

ADD 

Added Edges 

Forbidden Edges 

Figure 6: Example of path of length four 

However, as depicted in figure 6, four edges can form a path and some edges can 
be counted twice or more. Consequently, putting all these repetitions in 

leads to the lower bound given by (12). 
Ob ' 1 (M(n)_R(n»). 1 b d 

VlOUS y, k+l IS a natura upper oun . 

4 Brownian motion and k excess graphs 

4.1 Breadth First Walk and Brownian excursion 

o 

We follow here the way suggested by Spencer [16]. We consider Poisson indepen­
dent random variables, Xl, ... , X n , with mean 1, the sequence Q~n) is conditioned 



120 Anne-Elisabeth Baert, Vlady Ravelomanana, Loys Thimonier 

to satisfy (3). Qin), ... ,Q~n) can be considered as a random walk whose step size 

has distribution Yi = Q~n) - Qt)l = Xi - 1. Xi are Poisson with mean 1; Yi are 
Poisson 1 minus 1. It is well-known that: 

weakly 
~ 

where e is a normalized Brownian excursion. Let 

L = 101 
e(s)ds 

(13) 

which may be interpreted as the mean distance from the origin in this conditioned 
I-dimensional Brownian motion. The maximum number of edges that can be 
added in a given tree T (in order to buid graphs with the same BFST), is M(n) = 
L~=l ( Q~n) - 1) and we obtain in distribution, as n ----t +00 : 

(14) 

In [7], similar arguments are used to provide tight bounds for the moments of the 
width of rooted labelled trees. 

Proposition 4.1. In distribution as n ----t +00, and for any fixed k ::::: 0: 

(15) 

Proof: Following the works of Chassaing and Marckert [7], we use connections be­
tween Breadth First Search random walks and empirical processes. Let (Uih<i<n 
be a sequence of n i.i.d random variables uniformly distributed on [0, 1]. Denote 
by Fn(t) the empirical distribution function of (Uih<i<n defined for t E [0,1] by 

D ( ) _ card {i E {I, ... , n}, Ui ~ t} 
rn t - . 

n 

The empirical distribution function converges towards the distribution function, 
F(t) = t, of the uniform law. The speed of convergence is revealed by the empirical 
process 

an(t) = Vn (Fn(t) - F(t)) , 

and (an(t)o<t<d converges in distribution to the Brownian bridge (b(t))O<t<l. 
The theorem of "strong convergence" of Komlos, Major and Tusnady [101 shows 
the existence on the same probability space as (Ui )i>l of a sequence of Brownian 
bridges (bn )n>l that approximate closely the sequence (an )n>l' i.e., if a, M, /-L are 
positive absolute constants, for all n and x: -
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The relation 
an (T( n)) = min an (_j ) 

n + 1 O:'Oj:'On n + 1 ' 

defines a unique number T(n) between 0 and nand T(n) is uniformly distributed 
on {O, 1, ... ,n}. Using the relations established between parking functions and 
empirical processes in [7], we denote by 

w(n) = n - j + Vn [an {j + 1 + T( n) } _ an (T( n) )] 
J n+l n+l n+l 

for 05: j 5: n. (17) 

We can write [7, Prop. 4.6 p.13]: 

(Q(n)) l~ (w(n)) . 
J O:'Oj:'On J O:'Oj:'On 

(18) 

We can establish the following relation using (17) 

We recall 

Theorem 4.2 (Vervaat, 1979). Let b = (b(t))O<t <l be a brownian bridge, and 
let T be the almost surely unique point such that bfT) = minO<t<l b(t). Then T is 
uniform and e = (e(t))O <t<l' defined by e(t) = b({T+t}) - b(T) is a normalized 
Brownian excursion independent of T . 

According to Skorohod representation theorem with (bn)n ::::: 1 comes a sequence 
of Brownian excursions (en )n>l. One can deduce from (16),(19) and (13), (18) 
the proposition. -

o 

4.2 Triangle-free graphs and Brownian motion 

We can now express the number of triangle free graphs in terms of a certain 
restricted Brownian motion: 

Theorem 4.3. For any fixed k ::::: 0, and when n tends to +00: 

"----;-'-'---.-'- rv n 2 E f*(n,n+k) 3(k+l) [Lk+l] 
c(n,n-l) (k+l)! . 

(20) 
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To prove this theorem we need the following 

Proposition 4.4. For any fixed k :::: 0, we have: 

(21) 

Proof: Marckert and Mokkadem in [12] show how to reduce the study on discrete 
excursions to the same study on (non-conditioned) random walks; if there is a 
moderate deviations principles for a functional of a centered random walk, there 
exists an upper bound for the analogous principle on the associated excursion. The 
number R(n) of edges which can be added to T in order to obtain a triangle is given 
by R(n) = E~ll Xt(~t-l); the triangular inequality once applied to M(n) - R(n) 
leads to: 

III M(n) ;2R (n) II _II ~(n: II :s; II R~n~ II ' 
n / k+ 1 n / k+1 n / k+1 

(22) 

Thanks to ''the conditioning argument" [12, 3.2 pp.8]: E (E~~ll Xt(~t-l)) = n;-l, 

and there exits 0: :::: 0 such that E (expo: (E~ll Xt(~t-l))) < +00. According 

to Petrov's theorem [13], for 0 < I < 1, there exists c > 0 such that 

Pr (IR(n) - ncl:::: n!+'Y) :s; exp (-n'Y) . (23) 

Consequently, one can decompose the right term of (22) in two parts: 

Now, each term of the previous sum can be bounded, according to (23): 

(
R(n))k+l (nc+nl /2+'Y )k+l 
n3/ 2 lIR(n) -ncl::on1 / 2 +'Y :s; n3/ 2 ' 

and using the fact that R(n) :s; n 3 : 

( 
3 )k+1 

:s; exp( -n "I) n~/2 

Thus, as n --t +00, 

and so, 

II M(n) ;2R (n) II rv II ~(~ II . 
n / k+1 n / k+1 
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D 

Proof of Theorem 4.3: For k 2: 3, the inequality (12)of the theorem 3.4 gives two 
bounds for fc·C~~::!l~). The lower one, is asymptotically equivalent to 

The upper one is the same than the lower one, as for any fixed k and when n tends 
to +00 

E [(MCn) - RCn))] rv E [(MCn) - RCn))k+1] . 
k+1 (k+1)! 

Obviously, one can deduce from Proposition 4.4 that for any fixed k 2: 0 and when 
n --+ +00: 

f*(n, n + k) rv 1 E [(MCn))k+l] 
c(n,n-1) (k+1)! ' 

and from Proposition 4.1 comes the end of the proof. 

D 

Theorem 4.5. The number of triangle-free graphs with excess k is asymptotically 
equivalent to the number of graphs with excess k. 

Proof: Theorem 3.2 in [16] allows us to write when n --+ +00: 

3(k+l) 

c( n, n + k) rv n 2 E [L k+1] 
c( n , n - 1) (k + I)! 

which combined with the previous theorem leads to the theorem. 

D 

5 Conclusion 

In this paper, we addressed the problem of counting constrained graphs. We 
showed that the Breadth First Search processes and Brownian excursion perfom 
well with connected triangle-free (n, n + k) graphs and permit us to estimate their 
numbers whenever n tends to 00 but k is fixed. Although, the work presented 
here suggests that the analysis can be significantly more complex (especially if 
k == k(n)), however the methods still have potential and connections between 
dynamic algorithms and their underlying structures can be deepened. 
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Random Planar Lattices and Integrated 
SuperBrownian Excursion 
Philippe Chassaing, Gilles Schaeffer 

ABSTRACT: In this extended abstract, a surprising connection is described 
between a specific brand of random lattices, namely planar quadrangulations, and 
Aldous' Integrated SuperBrownian Excursion (ISE). As a consequence, the radius 
rn of a random quadrangulation with n faces is shown to converge, up to scaling, 
to the width r = R - L of the support of the one-dimensional ISE, or precisely: 

-1/4 law (8/9)1/4 n rn ----t r. 

More generally the distribution of distances to a random vertex in a random quad­
rangulation is described in its scaled limit by the random measure ISE shifted to 
set the minimum of its support in zero. 

1 Introduction 

From a distant perspective, this article uncovers a surprising, and hopefully deep, 
relation between two famous models: random planar maps, as studied in combina­
torics and quantum physics, and Brownian snakes, as studied in probability theory 
and statistical physics. More precisely, our results connect some distance-related 
functionals of random quadrangulations with functionals of Aldous' Integrated Su­
perBrownian Excursion (ISE) in dimension one. 

In this extended abstract, most proofs are omitted. A detailed manuscript is 
available from the authors or as arXi v: math. CO/0205226. 

Quadrangulations On the one hand, quadrangulations are finite plane graphs 
with four-regular faces (see Figure 1 and Section 2 for precise definitions). Ran­
dom quadrangulations, like random triangulations, random polyhedra, or the 1}­
models of physics, are instances of a general family of random lattices that has 
received considerable attention both in combinatorics (under the name random 
planar maps, following Tutte's terminology [27)) and in physics (under the name 
Euclidean two-dimensional discretised quantum geometry, or simply dynamical tri­
angulations or fluid lattices [2, 7, 13)). 
Many probabilistic properties of random planar maps have been studied, that 
are local properties like vertex or face degrees [12], or 0 - 1 laws for properties 
expressible in first order logic [6]. Other well documented families of properties are 
related to connectedness and constant size separators [5], also known as branchings 
into baby universes [16]. In this article we consider another fundamental aspect of 
the geometry of random maps, namely global properties of distances. The profile 
(H'k)k?O and radius rn of a random quadrangulation with n faces are defined in 
analogy with the classical profile and height of trees: H'k is the number of vertices 
at distance k from a basepoint, while rn is the maximal distance reached. The 
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Figure 1: Random quadrangulations, in planar or spherical representation. 

profile was studied (with triangulations instead of quadrangulations) by physicists 
Watabiki, Ambj0rn et al. [3, 28] who gave a consistency argument proving that 
the only possible scaling for the profile is k '" n 1/ 4 , a property which reads in their 
terminology the internal Hausdorff dimension is 4. Independently the conjecture 
that lE(rn) '" cn1/ 4 was proposed by Schaeffer [24]. 

Integrated SuperBrownian Excursion On the other hand, ISE was intro­
duced by Aldous as a model of random distributions of masses [1]. He considers 
random embedded discrete trees as obtained by the following two steps: first an 
abstract tree t, say a Cayley tree with n nodes, is taken from the uniform dis­
tribution and each edge of t is given length 1; then t is embedded in the regular 
lattice on Zd, with the root at the origin, and edges of the tree randomly mapped 
on edges of the lattice. Assigning masses to leaves of the tree t yield a random 
distribution of mass on Zd. Upon scaling the lattice to n-1/ 4 Zd, these random 
distributions of mass admit, for n going to infinity, a continuum limit :J which is 
a random probability measure on lRd called ISE. 
Derbez and Slade proved that ISE describes in dimension larger than eight the 
continuum limit of a model of lattice trees [11], while Hara and Slade obtained the 
same limit for the incipient infinite cluster in percolation in dimension larger than 
six [14]. As opposed to these works, we shall consider ISE in dimension one and 
our embedded discrete trees should be thought of as folded on a line. The support 
of ISE is then a random interval (L, R) of lR that contains the origin. 

From quadrangulations to ISE The purpose of this paper is to draw a relation 
between, on the one hand, random quadrangulations, and, on the other hand, 
Aldous' ISE: upon proper scaling, the profile of a random quadrangulations is 
described in the limit by ISE translated to have support (0, R - L). This relation 
implies in particular that the radius r n of random quadrangulations, again upon 
scaling, weakly converges to the width of the support of ISE in one dimension, that 
is the continuous random variable r = R- L. We shall indeed prove (Corollary 5.4) 
that 

-1/4 law (8/9)1/4 n rn ----4 r, 

as well as the convergence of moments. While this proves the conjecture lE(rn) '" 
cn1/ 4 , the value of the constant c remains unknown because, as mentioned by 
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Aldous [1], little is known on R or R - L. 

The path from quadrangulations to ISE consists of three main steps, the first two of 
combinatorial nature and the last with a more probabilistic flavor. Our first step, 
Theorem 3.1, revisits a correspondence of Cori and Vauquelin [9] between planar 
maps and some well labelled trees, that can be viewed as plane trees embedded in 
the positive half-line. Thanks to an alternative construction [24, Ch. 7], we show 
that under this correspondence the profile can be mapped to the mass distribution 
on the half-line. In particular, the radius rn of a random quadrangulation is equal 
in law to the maximal label /-In of a random well labelled tree. 
Safe for the positivity condition, well labelled trees would be constructed exactly 
according to Aldous' prescription for embedded discrete trees. Well labelled trees 
are thus to Aldous' embedded trees what the Brownian excursion is to the Brow­
nian bridge, and we seek an analogue of Vervaat's relation. At the discrete level a 
classical elegant explanation of such relations is based on Dvoretsky and Motzkin's 
cyclic shifts and cycle lemma. Our second combinatorial step, Theorem 4.4, con­
sists in the adaptation of these ideas to embedded trees. More precisely, via 
the conjugation of tree principle of [24, Chap. 2], we bound the discrepancy be­
tween the mass distribution of our conditioned trees on the positive half-line and a 
translated mass distribution of freely embedded trees. In particular we construct 
a coupling between well labelled trees and freely embedded trees such that the 
largest label /-In, and thus the radius r n , is coupled to the width of the support 
(Ln' Rn) of random freely embedded trees: 

Since our freely embedded trees are constructed according to Aldous' prescription, 
one could expect to be able to conclude directly. However two obstacles still need 
to be bypassed at this point. 

Contour walks and Brownian snakes. The first obstacle is that the construc­
tion of ISE as a continuum limit of mass distributions supported by embedded 
discrete trees was only outlined in Aldous' original paper. The original mathemat­
ical definition is by embedding a continuum random tree (CRT), which amounts 
to exchanging the embedding and the continuum limit. But Borgs et al. proved 
that indeed ISE is the limit of mass distributions supported by embedded Cayley 
trees [8] and their proof could certainly be adapted to other simple classes of trees 
and in particular to our embedded plane trees. 
The second, more important, obstacle is that weak convergence of probability 
measures is not adequate to our purpose, since we are interested in particular 
in convergence of the width of the support, which is not a continuous functional 
on the space of measures. In order to circumvent this difficulty, we turn to the 
description of ISE in terms of superprocesses: ISE can be constructed from the 
Brownian snake with lifetime e, the standard Brownian excursion [1, 18]. 
From the discrete point of view, we consider the encoding of an embedded plane 
tree by a pair of contour walks (Xk' Yk), that encode respectively the height of the 
node visited at time k and its position on the line. Our last result, Theorem 5.2, is 
the weak convergence, upon proper scaling, of this pair of walks to the Brownian 
snake with lifetime e: 
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Figure 2: Two distinct planar maps, and a spherical representation of the second. 

As R = suPs Ws and L = infs Ws this convergence, together with some deviation 
bounds obtained in the proof allows us to conclude on the radius. (A similar 
weak convergence was independently proved by Marckert and Mokkadem [21) but 
without the deviation bounds we need here.) 
More generally the joint convergence of the minimum and the mass distribution of 
discrete embedded trees implies that, upon scaling, the label distribution of well 
labelled trees converges to ISE translated to have the minimum of its support at 
the origin. The same then holds for the profile of random quadrangulations. 

Dynamical triangulations and a Continuum Random Map Although we 
concentrate in this article on the radius and profile of random quadrangulations, 
our derivation suggests a much tighter link between random quadrangulations and 
ISE. We conjecture that a Continuum Random Map (CRM) can be built from ISE 
that would describe the continuum limit of scaled random quadrangulations, in a 
similar way as the CRT describes the continuum limit of scaled random discrete 
trees. From the point of view of physics, the resulting CRM would describe in 
the limit the geometry of scaled dynamical triangulations as studied in discretised 
two-dimensional Euclidean pure quantum geometries [2, 7, 13). We plan to discuss 
this connection further in future work. 

2 The combinatorial models of random lattice 

2.1 Planar maps and quadrangulations 

A planar map is a proper embedding (without edge crossings) of a connected graph 
in the plane. Loops and multiple edges are a priori allowed. A planar map is rooted 
if there is a root, i. e. a distinguished edge on the border of the infinite face, which 
is oriented counterclockwise. The origin of the root is called the root vertex. Two 
rooted planar maps are considered identical if there exists an homeomorphism of 
the plane that sends one map onto the other (roots included). 
The difference between planar graphs and planar maps is that the cyclic order 
of edges around vertices matters in maps, as illustrated by Figure 2. Observe 
that planar maps can be equivalently defined on the sphere. In particular Euler's 
characteristic formula applies and provides a relation between the numbers n of 



Random maps and ISE 

o 

e 
e+l~H , e+l 

@: ~o 

\,/ 
e+2 

e 
e+l ,H"e+l 

@, ~o 
\) ~ 
e 

131 

Figure 3: Labelling by distance from the root vertex and the two possible config­
urations of labels (top: a simple face; bottom: a confluent face). 

edges, f of faces and v of vertices of any planar map: f + v = n + 2. 
The degree of a face or of a vertex of a map is its number of incidence of edges. 
A planar map is a quadrangulation if all faces have degree four. All (planar) 
quadrangulations are bipartite: their vertices can be colored in black or white so 
that the root is white and any edge joins two vertices with different colors. In 
particular a quadrangulation contains no loop but may contain multiple edges. 
See Figures 1 and 3 for examples of quadrangulations. 
Let Qn denote the set of rooted quadrangulations with n faces. A quadrangulation 
with n faces has 2n edges (because of the degree constraint) and n + 2 vertices 
(applying Euler's formula). The number of rooted quadrangulations with n faces 
was obtained by W.T. Tutte [27]: 

(1) 

Various alternative proofs of this result have been obtained (see e.g. [7, 9, 4, 24]). 
Our treatment will indirectly provide another proof, related to [9, 24]. 

2.2 Random planar lattices 

Let Ln be a random variable with uniform distribution on Qn. Formally, Ln is 
the Qn-valued random variable such that for all Q E Qn 

1 1 
Pr(Ln = Q) = iQl = _2 ~(2n)' 

n n+2 n+l n 

The random variable Ln is our random planar lattice. To explain this terminology, 
taken from physics, observe that locally the usual planar square lattice is a planar 
map whose faces and vertices all have degree four. Our random planar lattice 
corresponds to a relaxation of the constraint on vertices. 
Classical variants of this definition are obtained by replacing quadrangulations 
with n faces by triangulations with 2n triangles, or by (vertex-)4-regular maps with 
n vertices, or by all planar maps with n edges, etc. All these random planar lattices 
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have been considered both in combinatorics (see [5] and references therein) and 
in mathematical physics (see [2] and references therein; in the physics literature, 
definitions are usually phrased using "symmetry weights" instead of rooted objects, 
but this is strictly equivalent to the combinatorial definition). Although details of 
local topology vary between families, most probabilistic properties are believed to 
be "universal", that is qualitatively analogue for all "reasonable" families. Observe 
also that random maps in classical families have exponentially small probability to 
be symmetric, so that all results hold as well as in the model of uniform unrooted 
maps [23]. 
In this article we focus on quadrangulations because of their combinatorial relation, 
detailed in Section 3, to well labelled trees. 

2.3 The profile of a map 

The distance d(x, y) between two vertices x and y of a map is the minimal number 
of edges on a path from x to y (in other terms all edges have abstract length 1). 

The profile of a rooted map M is the sequence (Hk)k?l, where Hk == HkMl is the 
number of vertices at distance k of the root vertex Vo. We shall also consider the 
cumulated profile HkMl = 2::;=1 H~Ml. By construction the support of the profile 
of a rooted map is an interval i.e. {k I Hk > O} = [1, r] where r is the radius of 
the map (sometimes also called eccentricity). The radius r is closely related to the 
diameter, that is the largest distance between two vertices of a map: in particular 
r :::; d :::; 2r. The quadrangulation of Figure 3 has radius 3. 

The profile of the random planar lattice Ln is the random variable (Hin)k;O:l that 
is defined by taking the profile (HkLnlh?l of an instance of Ln, while (Hin)h?l 
denotes the cumulated profile of Ln. Similarly the radius of a random planar 
lattice is a positive integer valued random variable rn. 

3 Encoding the profile with well labelled trees 

3.1 Well labelled trees and the encoding result 

A plane tree is a rooted planar map without cycle (and thus with only one face). 
Equivalently plane trees can be recursively defined as follows: 

• the smallest tree is made of a single vertex, 

• any other tree is a non-empty sequence of subtrees attached to a root. 

In other term, each vertex has a possibly empty sequence of sons, and each vertex 
but the root has a father. The number of plane trees with n edges is the well 
known Catalan number C(2n) = n~l e:)· 
A plane tree is well labelled if all its vertices have positive integral labels, the labels 
of two adjacent vertices differ at most by one, and the label of the root vertex is 
one. Let Wn denote the set of well labelled trees with n edges. 

The label distribution of a well labelled tree T is the sequence (>'k)k?l == (>.lTl)k?l 
where >.lTl is the number of vertices with label k in the tree T. The cumulated 
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Figure 4: A well labelled tree with its label distribution. 

label distribution is defined by >:lTl = 2:;=1 >.1Tl. By construction the support of 
the label distribution is an interval: there exists an integer f-L such that {k I >'k > 
O} = [1, f-L]. This integer f-L is the maximal label of the tree. These definitions are 
illustrated by Figure 4. 

The following theorem will serve us to reduce the study of the profile of quadran­
gulations to the study of the label distribution of well labelled trees. 

Theorem 3.1 (Schaeffer [24]). There exists a bijection T between rooted quad­
rangulations with n faces and well labelled trees with n edges, such that the profile 
(HrQlk::~l of a quadrangulation Q is mapped onto the label distribution (>.lTl h::::: 1 

of the tree T = T(Q). 

Theorem 3.1 and Tutte's formula (1) imply that the number of well labelled trees 
with n edges equals 

w __ 2 ~(2n) I nl - n + 2 n + 1 n . (2) 

This result was proved already by Cori and Vauquelin [9], who introduced well 
labelled trees to give an encoding of all planar maps with n edges. Because of 
a classical bijection between the latter maps and quadrangulations with n faces, 
their result is equivalent to the first part of Theorem 3.1. Their bijection has been 
extended to bipartite maps by Arques [4] and to higher genus maps by Marcus 
and Vauquelin [20]. All these constructions were recursive and based on encodings 
of maps with permutations (also known as rotation systems). 
However, our interest in well labelled trees lies in the relation between the profile 
and the label distribution, which does not appear in Cori and Vauquelin's bijection. 
The bijection we use here is much simpler and immediately leads to the second part 
of Theorem 3.1. This approach was extended to non separable maps by Jacquard 
[15] and to higher genus by Marcus and Schaeffer [19]. 

We postpone to Section 4 the discussion of the interesting form of Formula (2) 
and its relation to Catalan's numbers. Instead the rest of this part is concerned 
with the proof of Theorem 3.1, which goes in three steps. First some properties of 
distances in quadrangulations are indicated (Section 3.2). This allows in a second 
step to define the encoding, as a mapping T from quadrangulations to well labelled 
trees (Section 3.3). The proof that this encoding is correct is omitted here. 
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Figure 5: The rules of selection of edges and an example. 

3.2 Properties of distances in a quadrangulation 

Let Q be a rooted quadrangulation and denote Vo its root vertex. The labelling 
¢ of the map Q is defined by ¢(x) = d(x, vo) for each vertex x, where d(x, y) 
denote the distance in Q (cf. Figure 3). Observe that in the number of label kin 
the labell\2ff of the map Q is precisely the number of vertices at distance k of vo, 
that is H k = 1 {x 1 ¢( x) = k} I. This labelling satisfies the following immediate 
properties: 

Proposition 3.2. If x and yare joined by an edge, I¢(x) - ¢(y)1 = 1. Indeed 
the quadrangulation being bipartite, a vertex x is white if and only if ¢( x) is even, 
black if and only if ¢( x) is odd. 

Proposition 3.3. Around a face, four vertices appear: a black Xl, a white YI, a 
black X2 and a white Y2. These vertices satisfy at least one of the two equalities 
¢(xd = ¢(X2) or ¢(yd = ¢(Y2) (cf. Figure 3). 

A face will be said simple when only one equality is satisfied and confluent other­
wise (see Figure 3). It should be noted that one may have Xl = X2 or YI = Y2. 

3.3 Construction of the encoding T 

Let Q be a rooted quadrangulation with its distance labelling. The map Q' is 
obtained by dividing all confluent faces Q into two triangular faces by an edge 
joining the two vertices with maximal label. Let us now define a subset T( Q) of 
edges of Q' by two selection rules: 

• In each confluent face of Q, the edge that was added to form Q' is selected . 

• For each simple face f of Q, an edge e is selected: let v be the vertex with 
maximal label in f, then e is the edge leaving v with f on its left. 

These two selection rules are illustrated by Figure 5. The first selected edge around 
the endpoint of the root of Q is taken to be the root of T(Q). 

Proposition 3.4. The mapping T sends a quadrangulation Q with n faces on a 
well labelled tree with n edges. 

More precisely, T is the bijection of Theorem 3.1. 
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Figure 6: An unconstrained well labelled tree with its label distribution and a 
representation of the embedding on the line (the plane order structure of the tree 
is lost in the latter representation). 

4 Well labelled and embedded trees 

4.1 Unconstrained well labelled trees as embedded trees 

Formula (2) for the number of well labelled trees with n edges, 

2 3n (2n) 2 n IWnl = -- = -·3 ·C(2n), 
n+2n+l n n+2 

is remarkably simple and yet not immediately clear from definition. Indeed, even 
though C(2n) is known to be the number of plane trees, the positivity of labels 
makes it difficult to count labellings that make a plane tree well labelled. 
It is thus natural to work first without this positivity condition: define a plane 
tree to be an unconstrained well labelled tree if its vertices have integral labels, 
the labels of two adjacent vertices differ at most by one, and the label of the root 
vertex is one. Let Un denote the set of unconstrained well labelled trees with n 
edges. 
The labelling of a labelled tree can be recovered uniquely from the label of its root 
and the variations of labels along all edges. We shall denote K( E) E { -1,0, I} the 
variation of labels along the edge E when it is traversed away from the root. Since 
there is no positivity condition on the labels of unconstrained well labelled trees, 
all K( E) can be set independently and the number of labellings of a plane tree that 
yield an unconstrained well labelled tree is just 3n . That is, 

IUnl = ~ (2n) = 3n . C(2n). 
n+ 1 n 

The definition of label distributiop. extends to unconstrained well labelled trees. 
For U E Un let P.'k)m<k<M == (.xlUjhEZ be the number of vertices with label kin 
the tree U. The label distribution of U is supported by an interval [m, M] with 
m ::; 1 ::; M. The cumulated label distribution is defined with respect to the 

minimum label m by ~luJ = L;=l .x~le-1' These definitions are illustrated by 
Figure 6. 
Observe moreover that similar unconstrained labellings have been considered by 
D. Aldous [1] with the following interpretation (we restrict to our special one­
dimensional case). The tree is folded on the lattice Z with the root set at position 
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1 and each edge mapped on an elementary vector (here +1, 0, or -1). The label 
of a node then describes its position on the line and, upon counting the number 
of nodes at position j, a mass distribution is obtained. More precisely, with our 
notations, Aldous' discrete mass distribution associated to a tree U E Un is just 
the empirical measure of labels 

where 6k denote the dirac mass at k. 
In view of this interpretation and for concision's sake, let us rename unconstrained 
well labelled trees and call them instead embedded trees. 

4.2 Random trees and random quadrangulations 

Let Wn and Un be random variables with uniform distribution on Wn and Un. 
More precisely, 

Pr(Wn = W) 
1 

and Pr(Un = U) 
1 

2 3 n (2n) , 
n+2n+1 n 

~(2n) , 
n+1 n 

for all W E Wn and U E Un. 
The label distribution of the corresponding random trees are two random variables 
that we shall denote (A~n)h~l == (AlWn]h~l for random well labelled trees, and 

(A~n)hEZ == (AlUn]hEZ for random embedded trees. For random well labelled trees 
we also use the notation JJn for the maximal label, and for random embedded trees 
the notations mn and Mn for the minimal and maximal label respectively. Finally 
cumulated profiles ~~n) = 2::;=1 A1Wn ] and A~n) = 2::;=1 A~:~R-1 are defined ac­

cordingly (the minimum mn in A~n) is understood for the same realisation Un). 

At this point we are given three random variables: random quadrangulations L n , 

random well labelled trees Wn and random embedded trees Un. On the one hand, 
according to Theorem 3.1, random quadrangulations "are" random well labelled 
trees, as illustrated by the next corollary. 

Corollary 4.1. The label distribution of random well labelled trees has the same 
distribution as the profile of quadrangulations: 

(n) law (n) 
(Ak h~l = (Hk )k~l. 

In particular rn = JJn. 

On the other hand, random embedded trees seem to be a simple variant of well 
labelled trees that has the great advantage to be defined in accordance with Aldous' 
prescription for discrete embedded trees. This leads us to study more precisely the 
relation between Wn and Un. By definition, Wn C Un, and according to Tutte's 
formula (2), 

(3) 
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For combinatorists, this relation could be reminiscent of the relation between the 
number of Dyck walks and the number of bilatere Dyck walks (see [26, Ch. 5]). 
Equivalently, from a more probabilistic point of view, the relation reads 

2 
Pr(Un E Wn ) = --2' n+ 

and random well labelled trees are random embedded trees conditioned to posi­
tivity. This is exactly similar to Kemperman's formula for the probability that a 
simple symmetric walk on Z starting from k > 0 and ending at 0 after n steps 
remains positive until the last step (see [22]). 

4.3 How to lift the positivity condition for labelled trees 

In view of Relation (3), it is tempting to look for a cyclic shift argument in the 
spirit of the classical combinatorial argument for Lukasiewicz words. This idea to 
consider cyclic shifts originates in Dvoretsky and Motzkin's work and was used by 
Raney to prove Lagrange inversion formula and by Takacs to prove and extend 
Kemperman's formula for random walks (see [26, Ch. 5] and [22] for historical 
references). From the probabilistic point of view this approach should be compared 
to Vervaat's relation between the Brownian excursion and the Brownian bridge and 
their local times relatively to the minimum. 

It is indeed possible to adapt the cyclic shift idea to draw a relation between well 
labelled and embedded trees. More precisely, in the complete article we prove the 
following theorem. 

Theorem 4.2. There exists a partition of Un = UCECn C into disjoint conjugacy 
classes each of size at most n + 2 and such that in each class C E en 

• well labelled trees are fairly represented: 

• and for any W E Wn n C, U E C and k 2': 1, 

Corollary 4.3 (Cori-Vauquelin, 1981). The number of well labelled trees with 
n edges, (which is also the number of quadrangulations with n faces), is 

IW 1= _2_· IU I = _2_.~(2n) 
n n+2 n n+2 n+1 n . 

The proof of Theorem 4.2 relies on an encoding of plane trees in terms of another 
family of trees, called blossom trees, and on the conjugation of trees principle which 
is an analogue of the cycle lemma for blossom trees. This principle was introduced 
in [24] in order to give a direct combinatorial proof of Corollary 4.3 based on the 
cycle lemma. However that proof did not rely on well labelled trees and does not 
provide the link to the profile. 

Theorem 4.2 admits the following probabilistic restatement. 
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Theorem 4.4. There is a coupling (Wn, Un) (i.e. a distribution on Wn x Un such 
that the marginals are Wn and Un as previously defined) such that the induced 
joint distribution (A (n) , A (n)) satisfies for all k 

K(n) < :\(n) < K(n) 
k-2 - k - k+2' 

and in particular 

Proof. [Proof of Theorem 4.4] The distribution on Wn xUn is immediately obtained 
from the partition Un = UCECn C as follows: for any (W, U) in Wn x Un, let 

{ 
21~nl if U, Ware both in C with IC n Wnl = 2, 

Pr((Wn , Un) = (W, U)) = Il-LI if U, Ware both in C with IC n Wnl = 1, ° if U E C1 and W E C2 with C1 i=- C2 . 

In view of the first part of Theorem 4.2, the marginals are uniformly distributed. 
The second part of Theorem 4.2 gives the two inequalities. D 

5 Quadrangulations, Brownian snake and ISE 

5.1 Encoding embedded trees by pairs of contour walks 

Let Un be the set of embedded trees with root label zero instead of one. These 
trees, that are simply obtained from trees of Un by shifting all labels down by one, 
will be more convenient for our purpose. 

Let U be an embedded tree of Un and consider the following traversal of U, where 
traversing an edge takes unit time: 

• At time t = 0, the traversal arrives at the root. 

• If the traversal reaches at time t a vertex Vt having k sons for the £th time 
with £ ::::; k, its next step is toward the £th son of Vt. 

• If the traversal reaches at time t a vertex Vt having k sons for the (k + 1 )th 
time, its next step is back toward the father of Vt. 

This traversal is called the contour traversal because, as exemplified by Figure 7, it 
turns around the tree. In particular every edge is traversed twice (first away from 
and then toward the root) and the complete traversal takes 2n steps. The contour 
pair of U is then defined by the height (i. e. distance to the root in the abstract 
tree), E[U] (t) and label V[U] (t) of vertex Vt traversed at time t = 0, ... ,2n. (The 
path E is often called the Dyck path associated to the tree U [26, Ch. 5], or the 
contour process in [18, Ch. I.3].) 

The following proposition is immediate from the definition of contour pairs. 

Proposition 5.1. The contour pair construction is a one-to-one correspondence 
between Un (or Un) and the set £V2n of pairs of walks of length 2n such that; 
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• the walk E is an excursion with increment ±1 or Dyck path, that is E(O) = 
E(2n) = 0, IE(t) - E(t + 1)1 = 1 and E(t) ?: 0 for all t = 0, ... , 2n - 1; 

• the walk V is a bridge with increment { -1,0, 1} or bilatere M otzkin path, 
that is V(O) = V(2n) = 0 and (V(t) - V(t + 1)) E {-1, 0, 1} for all t; 

• and the consistency condition hold: 
( E(t) = E(t') and E(s) ?: E(t) for all t < s < t') :::} V(t) = V(t'). 

The excursion E alone determines a unique unlabelled rooted plane tree, while 
the walk V describes one of the 3n labelling of the tree encoded by E. Recall 
that for an embedded tree U, 11:( E) E { -1,0, 1} denotes the variation along edge E 
when traversed away from the root. In particular if E is traversed for the first time 
between time t and t + 1 and for again between t' and t' + 1, then 

I1:(E) = V(t + 1) - V(t) = V(t') - V(t' + 1). 

This local condition is equivalent to the consistency condition of Proposition 5.1. 

5.2 Random trees as random contour pairs 

Endow now Un with the uniform distribution and let (E(n), v(n)) == (E[Un], V[Un]) 
denote the contour pair of the random tree Un. According to Proposition 5.1, 
the random contour pair (E(n), v(n)) is uniformly distributed on EV2n and En is 
uniformly distributed on E2n , the set of Dyck walks of length 2n. More precisely, 
for all (E, V) E EV2n, 

Pr((E(n), v(n)) = (E, V)) 1 Pr(E(n) = E) 1 
.l..::... (2n) , 
n+l n 

1 (2n)' 
n+l n 

In order to state convergence results, let us now defined scaled version of these 
random walks: given a random tree Un and its contour pair (E(n), v(n)), let 

e(n) = (E(n)(l2nsJ)) and 

ffn O~s~l 
A (n) = (v(n)(l2nsJ)) 

W (8nj9)1/4 O~s~l' 

The random variables e(n) and Wen) take their values in the Skorohod space 
D([O, 1], JR) of cadlag real functions (right continuous with left limits). 
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e(s) 

Figure 8: Spacial extension of the snake at time S1. 

As was proved by Kaigh [17], the scaled version ern) of the contour process con­
verges weakly to the normalised Brownian excursion e. Our aim is to state an 
analogous result for the random variable 

that takes its value in the Skorohod space D([O, I],JR2 ). 

5.3 A Brownian snake 

Let e be the normalised Brownian excursion and 

W = (Ws(t))o:Ss::;I, O:St:Se(s) 

be the Brownian snake with lifetime e, as studied previously in [1, 8, 10, 11, 18,25]. 
More precisely, the process W can be defined as follows: 

• for all 0 :::; S :::; 1, t -+ Ws(t) is a standard Brownian motion defined for 
0:::; t :::; e(s) (see Figure 8); 

• the application s -+ Ws (.) is a path-valued Markov process with transition 
function satisfying: for S1 < S2, and for m = infs1 <u<s2 e(u), conditionally 
given WS1 (.) (see Figure 9), - -

- on the one hand we have that 

- and on the other hand (WS2 (m + t))o:St:Se(s2)-m is a standard Brownian 
motion starting from WS2 (m), independent of WS1 (.). 

The Brownian snake can be viewed as a branching Brownian motion, or as an 
embedded continuum random tree (see [1]). More precisely the excursion e can 
be thought of as the contour walk obtained by contour traversal of a continuum 
random tree, while the snake Ws (-) at times s describes the embedding of the 
branch to the root at time s. 
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e(s) 

m 1-----"'-"'---------; 

s o 

Figure 9: Consistency of the snake between times S1 and 82. 

Instead of considering the full Brownian snake Ws (t) we shall concentrate, as we 
did in the discrete case, on its description by a contour pair (or "head of the snake" 
description) X = (Xs)O::;s::;1, defined by (see also Figure 10) 

for 0 ~ 8 ~ 1. 

In complete analogy with the discrete case, the full Brownian snake can be recon­
structed from its contour pair description since Ws(t) = Wa(s,t) where CJ(8, t) = 
SUp{8' ~ 8 I e(8') = t}. However we need only and shall content with results in 
terms of X (see [21] for a complete discussion ofthe relation between the full snake 
and its contour description). 

5.4 Integrated SuperBrownian Excursion 

Let In denote the empirical measure of labels of a random embedded tree: 

Following Aldous [1], for any simple family of trees like our embedded trees, In 
is expected to converge upon scaling to a random mass distribution J supported 
by a random interval 0 E [L, R] c R This random measure J is called Integrated 
SuperBrownian Excursion (ISE) by Aldous, in view of its relation to W through 

(4) 

for any measurable test function g, see [18, Ch. IV.6]. In [8] the convergence of 
In to J is proved for random embedded Cayley trees. Although these trees are 
not exactly our random embedded plane trees, the proof could easily be adapted. 
According to Corollary 4.1 and Theorem 4.4, the radius rn is given by the width 
of the support of In. However the weak convergence of In to J, as obtained in 
[8] is not sufficient for our purpose since r = R - L, the width of the support of 
J, is not a continuous functional of the measure J. 
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Figure 10: The contour description (e, Ws): the excursion e encodes the extension 
of the snake, the second walk describes the horizontal position of its head. 

5.5 Convergence of snakes 

Instead of weak convergence of In to J , we shall prove in the extended version 
the following stronger result. 

Theorem 5.2. The scaled contour pair x(n) converges weakly to X in D([O, 1], ]R2). 

This theorem establishes weak convergence of the scaled contour (or head of the 
snake) description of embedded trees to the head of the snake description of the 
Brownian snake with lifetime e. We moreover obtain a deviation bound for the 
maximal extension of the snake win). 
Proposition 5.3. There exists Yo > 0 such that for all y > Yo and n, 

Theorem 5.2 was independently obtained by Marckert and Mokkadem [21]. They 
extend the convergence result to the explicit full description (Ws(t))s,t but their 
alternative proof does not provide the exponential bound of Proposition 5.3. 

5.6 The radius of quadrangulations and the width of ISE 

According to Corollary 4.1 and to Theorem 4.4, the radius rn of the quadrangu­
lation corresponding to Un satisfies 
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Theorem 5.2 and Proposition 5.3 thus prove the conjecture E(rn) = 8(n1/ 4 ) and 
lead to a much more precise characterization: 

Corollary 5.4. The random variable n- 1/ 4 rn converges weakly to (8/9)1/4 r, in 
which 

Furthermore, convergence of all moments holds true. 

In view of Relation (4) the random variable r is also the width of ISE process :1. 

5.7 The profile and a CRM 

Actually, Theorems 3.1 and 4.4 suggest that not only the scaled radius but the 
full scaled profile converges (at least in distribution) to the ISE mass distribution. 
More precisely, define the distribution function F(x) of the translated ISE by 

Wmin = inf W8 , F(x) = :1((-00, Wmin + x]) = :1 ([Wmin , Wmin + x)]) , 
0::;89 

and the scaled distribution function of the profile of random quadrangulations by 

1 ~(n) 1 ~ (n) 
Fn(x) = n + 1 .Al(8n/9)l / 4xJ = n + 1 H l(8n /9)1/4 x J· 

where "X~n) is the cumulated distribution of labels of a random well labelled tree 
(as defined in Section 3) and Hkn ) is the cumulated profile of a random quadran­
gulation (as defined in Section 2). 
Then the following is a corollary of Theorems 3.1, 4.4, 5.2 and Corollary 5.4. 

Corollary 5.5. The scaled profile Fn converges weakly to F in D([O, +00), JR). 

A natural conjecture is that there is a continuum analogue to Theorem 3.1 that 
allows to define from ISE a Continuum Random Map (CRM), such that the prop­
erties of scaled distances in random quadrangulations (distances between arbitrary 
pairs of points, not only with respect to a basepoint) would be described by the 
properties of distance in the CRM. In view of the interpretation of random quad­
rangulations as 2d Euclidean pure quantum geometries, this CRM might be con­
sidered as a natural candidate model of continuum 2d pure quantum geometry. 
We plan to discuss this connection further in a subsequent paper. 
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The Diameter of a Long-Range Percolation 
Graph 

Don Coppersmith, David Gamarnik, Maxim Sviridenko 

ABSTRACT: e consider the following long-range percolation model: an undi­
rected graph with the node set {O, 1, ' .. ,N}d, has edges (x, y) selected with prob­
ability ~ ,6/1 Ix - yW if Ilx - yll > 1, and with probability 1 if Ilx - yll = 1, for 
some parameters /3, s > O. This model was introduced by Benjamini and Berger 
[2J, who obtained bounds on the diameter of this graph for the one-dimensional 
case d = 1 and for various values of s, but left cases s = 1,2 open. We show 
that, with high probability, the diameter of this graph is 8(log N / log log N) when 
s = d, and, for some constants 0 < "'1 < "'2 < 1, it is at most N'72 when s = 2d, 
and is at least N'7l when d = 1, s = 2, /3 < 1 or when s > 2d. We also provide a 
simple proof that the diameter is at most logO(l) N with high probability, when 
d < s < 2d, established previously in {2J. 

1 Introduction 

Long-range percolation is a model in which any two elements x, y of some (finite 
or countable) metric space are connected by edges with some probability, inverse 
proportional to the distance between the points. The motivation for studying this 
model is dual. First, it naturally extends a classical percolation models on a lat­
tice, by adding edges between non-adjacent nodes with some positive probability. 
The questions of existence of infinite components were considered specifically by 
Schulman [8), Aizenman and Newman [1] and Newman and Schulman [7), where 
the metric space is Z and edges (i,j) E Z2 are selected with probability /3/li _ JIB 
for some parameters /3, s. Existence of such an infinite component with positive 
probability usually implies its existence with probability one, by appealing to Kol­
mogorov's 0 - 1 law. It was shown in [7] and in [1] respectively, that percolation 
occurs if s = 2, /3 > 1 and (suitably defined) short range probability is high enough, 
and does not occur if s = 2, /3 :::; 1, for any value of the short range probability. 
The second motivation for studying long-range percolation is modelling social net­
works, initiated by Watts and Strogatz [9]. They considered a random graph model 
on integer points of a circle, in which neighboring nodes are always connected by 
an edge, and, in addition, each node is connected to a constant number of other 
nodes uniformly chosen from a circle. Their motivation was a famous experiment 
conducted by Milgram [6), which essentially studied the diameter of the "social 
acquaintances" network and introduced the notion of "six degrees of separation". 
Watts and Strogatz argued that their graph provides a good model for different 
types of networks, not only social networks (world wide web, power grids), and 
showed that the diameter of their random graph is much smaller than the size 
of the graph. This model was elaborated later by Kleinberg [5), who considered 
a model similar to a long-range percolation model on a two-dimensional grid, al­
though the work was concerned mostly with algorithmic questions of constructing 
simple decentralized algorithms for finding short paths between the nodes. 

B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
© Springer Basel AG 2002
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The present paper is motivated by a recent work by Benjamini and Berger [2]. 
They consider a one-dimensional long-range percolation model in which the nodes 
are elements of a finite circle {O, 1, ... , N}. An edge (i, j) exists with probability 
one if Ii - jl = 1, and with probability 1 - exp( -,B/li - j18) otherwise, for some 
parameters (3, s, here the distance I . I is taken with respect to a circle. Since for 
large Ii - jl, 1 - exp(-(3/li - jn ~ (3/li - j18, this model is closely related to 
the infinite percolation model on Z, with an important distinction, however. The 
graph is finite and, since neighboring nodes are connected with probability one, the 
graph is connected. Thus, the percolation question is irrelevant as such; rather, 
as in models of "social networks", the diameter of the graph is of interest. It is 
shown in [2] that the diameter of the circle graph above is, with high probability, a 
constant, when s < 1; is O(log8 N), for some 6 > 1, when 1 < s < 2; and is linear 
8(N), when s > 2. These results apply immediately to a graph on an interval 
{a, 1, ... , N}. A multidimensional version of this problem with a graph on a node 
set {a, 1, ... ,N}d was also considered by Benjamini, et al in [3], who showed that 
the diameter is I d/ (d - s) 1 when s < d. The critical cases s = 1, 2 were left open 
in [2] and the authors conjectured that the diameter is 8 (log N) when s = 1, and 
8(N"l) for some ° < "7 < 1, when s = 2. In addition, the authors conjectured that, 
for the case 1 < s < 2, 8(log8 N) is also a lower bound for some 6 > 1. In other 
words, the system experiences a phase transition at s = 1 and s = 2. Recently 
Biskup [4] proved that for the case 1 < s < 2 the diameter is indeed 8(log8 N) for 
some constant 6 which Biskup computes explicitly. 

In this work we consider a multidimensional version of the problem. Our graph 
has a node set {a, 1, ... , N}d and edges are selected randomly using a long-range 
percolation (3/llx - yW law. We obtain upper and lower bounds on the diameter 
for the regimes s = d, d < s < 2d, s = 2d and s > 2d. This corresponds to regimes 
s = 1,1 < s < 2, s = 2, s > 2 for the one-dimensional case. We show that, with 
high probability, for s = d, the diameter of this graph is 8 (log N / log log N); for 
d < s < 2d the diameter is at most log8 N for some constant 6 > 1; and for 
s = 2d, the diameter is at most N"l2, for some constant ° < "72 < 1. We also prove 
a lower bound N"ll, "71 < 1 on the diameter, which holds with high probability but 
only when d :::: 1, s > 2d or d = 1, s = 2, (3 < 1. We do not have lower bounds 
for other cases. Note that our lower bound for s > 2d is weaker than known 
linear lower bound when d = 1. We conjecture that the linear lower bound holds 
for general dimensions. Our results, when applied to the one-dimensional case, 
support bounds conjectured in [2] for the case s = 2 and disprove it for the case 
s = 1. As we mentioned above, the upper bound log8 N for the case d < s < 2d 
was proven in [2] for the one-dimensional case. It was pointed to the authors 
that the proof extends to a multidimensional case as well. We provide here an 
alternative proof which seems simpler. Summarizing the results of present paper 
and of [2], the diameter of the long-range percolation graph in one-dimensional 
case experiences a phase transition at s = 1,2 and has a qualitatively different 
values for s < 1; s = 1; 1 < s < 2; s = 2 and (3 < 1; s > 2. Whether the same 
holds true for general dimensions (whether s = d, s = 2d are the only critical 
values) remains to be seen. Our results only partially support this conjecture. 



The Diameter of a Long-Range Percolation Graph 149 

2 Model and the maIn result 

Our model is a random graph G = G(N) on a node set [N]d == {O, 1, ... , N}d 
- integral points of the d-dimensional cube with side length N. Let Ilxll denote 
an L1 norm in the space Zd. That is Ilxll = l:~=l IXi I. Nodes x, y E [N]d 
are connected with probability 1 if Ilx - yll = 1, and, otherwise, with probability 
1-exp( -R)' where /3 > 0, s > ° are some fixed parameters. Let D(N) denote 
the (random) diameter of the graph G(N), and let P(N) denote the (random) 
length of a shortest path between nodes 0 == (0, ... ,0) and N = (N, ... , N). For 
any x, y E [N]d let also P(x, y) denote the length of a shortest path between nodes 
x, y in the graph G(N). Our main result is as follows. 

Theorem 2.1. There exist constants G1 , G2 , Gs > 0, <5 > 1, ° < 'T}1 < 'T}2 < 1, 
which in general depend on s, /3 and on dimension d such that 

1. limN---> oo Prob{D(N) ;::: N'I/J} = 1, for any s > 2d, 'ljJ < s~d~l' 

2. limN--->oo Prob{D(N) ::; N1)2} = 1, for s = 2d and 
limN--->oo Prob{ D(N) ;::: N1)l} = 1, for d = 1, s = 2, /3 < 1. 

3. limN--->ooProb{GslogN::; D(N)::; log" N} = 1, for d < s < 2d. 

4. limN--->ooProb{~~\~~~ ::; D(N)::; ~~\~~~} = 1, for s = d. 

As we mentioned above, it was shown in [3] that the diameter is, with high prob­
ability, id/(d - s)l, when s < d. Also part 3 of the theorem above was proven 
by Benjamini and Berger in [2] for the one-dimensional case. They also pointed 
out to the authors that their proof holds for a multidimensional case as well. 
We provide here a simpler proof. Throughout the paper we use standard nota­
tions f = O(g) , f = 0.(g) , f = 8(g) , f = o(g), which mean respectively that for 
two functions f(N), g(N), f(N) ::; G1g(N), f(N) ;::: G2g(N), G3g(N) ::; f(N) ::; 
G4g(N),J(N)/ g(N) -+ 0, for some constants Gi , i = 1,2,3,4 which in general 
depend on /3, s, but do not depend on N. Also, throughout the paper [n]d denotes 
an integral cube {O, 1, ... ,n}d for any nonnegative integer n. The logarithmic 
function is always assumed to be with the base e. 

3 Case s > 2d. Lower bound 

In this section we show that,with high probability, the diameter of the graph G(N) 
s -2d 

is at least essentially N s - d - l. As we noted, for the one dimensional case d = 1 
this is weaker than the existing linear lower bound 0.(N) ([2]). 

Proof of Theorem 2.1, Part 1: We fix a constant 'ljJ < S~d~l' For any k > N1-'I/J 
let · L( k) be the total number of edges between pairs of points at distance exactly 
k. We will now show that if'ljJ < (s - 2d)/(s -d-l) then l:k>Nl - '" kL(k) ::; dN /2 , 
with high probability. Since IINII = dN, then this would imply that, with high 
probability, any path between 0 and N would contain at least dN/(2N1-'l/J) = 
(dN'I/J) /2 edges and the proof would be completed. For a fixed pair of nodes x, y at 
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a distance k, the probability that the edge between them exist is 1-exp( -f3/kS) :'S: 
f3 / kS , where we use exp( - f3x) 2: 1 - f3x for all 0 :'S: x :'S: 1. For a fixed node x there 
are 8(kd - 1 ) nodes y which are at distance k from x; also there are N d choices for 
the node x. Combining E[L(k)] = O(Ndkd- 1 (f3/kS)). Then 

2:: kE[L(k)] = O(f3Nd 2:: kd- s ) = O(Nd N(l-1f;)(d-s+l)). 

For the given choice of 'Ij;, we have d + (1 - 'Ij;)(d - s + 1) < 1 and the value above 
is o(N). Using Markov's inequality, we obtain 

Prob{ 2:: kL(k) > N/2} :'S: (a;::;) = 0(1). 
k>Nl - ,p 

o 

4 Case s = 2d. 

4.1 Upper bound 

In this subsection we prove that when s = 2d, there exists a constant 0 < 'f} < 1, 
which depends on f3 and d, such that with high probability D(N) :'S: NTJ. To this 
end we first establish an upper bound on maxx,YE[N]d E[P(x, y)] and then use 
this bound to obtain a polynomially small bound on Prob{D(N) > NTJ} for some 
constant 'f} < 1. 

Proof of Theorem 2.1, Part 2: 
We first assume that N is a power of 3 : N = 3m , for some integer m > 0, and 
then consider the general case. For any fixed integer n let 

R(n) = max E[P(x, y)]. 
x,yE[n]d 

That is, R( n) is the maximum over expected lengths of shortest paths between 
all the pairs of points in the cube [nk We obtain an upper bound on R(N) 
by relating it to R(N/3). Divide the cube [N]d into 3d sub cubes of the type 
I i1 "' id == I1;=l[ij~, (i j + 1)~], 0 :'S: ij :'S: 2. Each cube has a side length N/3 
(which is integer since N is a power of three). We say that two such cubes are 
neighboring if they have at least a common node. For example [0, N/3]d and 
[N/3,2N/3]d are neighboring through a corner node (N/3, ... , N/3). We now fix 
a pair of points x, y E [N]d and estimate P(x, y) by considering two cases. 

1. x, y belong to the same subcube I = I i1 ... id . The length of a shortest path 
between these two points using edges of [N]d is not bigger than the length of 
the shortest path between same points but using only edges of the subcube 
I. Therefore E[P(x,y)] :'S: R(N/3). 

2. x,y belong to different subcubes 1,1'. Let £ = £(1,1') be the event ''there 
exists at least one edge between some nodes v E I, v' E I"'. The probability 
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that £ occurs is at least 1-exp( -f3( ~+1)2d /(dN)2d) since there are (~+l)d 
nodes in each cube, and the largest possible distance between them is dN. In 
particular, Prob{ £} is not smaller than a certain constant 15 > 0, independent 
of N. We now estimate E[P(x, y)] conditioned on £ and E. Given that £ 
occurs, select an edge (v, v') between the cubes I, I'. Then 

E[P(x,Y)I£] :::; E[P(x, v)I£] + E[P(v',y)I£] + 1 

Note, however, that edges within each cube I, l' are selected independently 
from edges between cubes and specifically are independent from the event £. 
Therefore, since x, v belong to the same cube, E[P(x, v)I£] :::; R(N/3). Sim­
ilarly, E[P(v', Y)I£] :::; R(N/3). We conclude E[P(x, Y)I£] :::; 2R(N/3) + 1. 
Now, suppose £ does not occur. Select a cube Iff which is a neighboring cube 
for cubes I, I' (it is easy to see that such a cube exists). Specifically, let z(z') 
be the nodes shared by cubes I and Iff (I' and Iff). Then arguing as above 
E[P(x,Y)IE] :::; E[P(x,z)IE] + E[P(z,z')IE] + E[P(z',Y)IE] :::; 3R(N/3). 
Combining, we obtain 

E[P(x, y)] :::; (2R(N/3) + l)Prob{£} + 3R(N/3)(1- Prob{£}) = 

(3 - Prob{ £} )R(N /3) + Prob{ £} :::; (3 - t5)R(N /3) + 1. 

We conclude, R(N) = maxx,YE[N]d E[P(x, y)] :::; (3 - t5)R(N /3) + 1. Applying this 
bound m - 1 = log N / log 3 - 1 times, we obtain 

m-2 
R(N) :::; (3 - t5)m-l R(3) + L (3 - t5)i = 0((3 _ t5)m) = O(NIO~£!;O»), 

i=O 

Note, a == log(3 - 15)/ log 3 < 1. We obtain R(N) = O(No.) for some a < 1. 

In order to generalize the bound for all N, it is tempting to argue that R(N) :::; 
R(3m ) as long as N :::; 3m . This would require proving a seemingly obvious 
statement that R( n) is a non-decreasing function of n. While this is most likely 
correct, proving it does not seem to be trivial. Instead, we proceed as follows. Let 
m be such that 3m :::; N < 3m +l . We cover the cube [N]d with 3d cubes Ii, i = 

1, ... ,3d with side length 3m, with a possible overlapping. Specifically, Ii C [N]d 
and UJi = [Nk Let x, y E [N]d be arbitrary. Find cubes Ii!, Ii2 , Ii3 such that 
x Eli! , Y E Ii3 and Ii! n Ii2 -I- 0, Ii2 n Ii3 -I- 0. Let Zl, Z2 be some nodes lying in 
these intersections. Then E[P(x, y)] :::; E[P(x, zt)] + E[P(Zl, Z2)] + E[P(Z2, y)] = 
0((3m)o.), where the last equality follows since pairs (x,Zt),(Zl,Z2),(Z2,Y) lie 
within cubes Ii!, Ii2 , Ii3 respectively and each of them has a side length 3m. But 
3m :::; N. We conclude E[P(x, y)] = O(No.) and R(N) = maxx,y E[P(x, y)] = 
O(No.). 
We now finish the proof of part 2, upper bound, by obtaining a similar bound on the 
diameter D(N). Fix an arbitrary 0 < f, "( < 1 such that a+f < 1 and f-d(l-"() > 
O. Divide the cube [N]d into equal subcubes Ii! ... id = Il~=l[ijN', (ij + l)N'], 0:::; 
ij :::; N l-" each with side length N'. The total number of sub cubes is Nd(l-,). 
Fix any such cube I and let x(I) be its lower corner (the node with smallest 
possible coordinates). We showed above E[P(O,x(I))] :::; O(No.), from which, 
using Markov inequality, 

Prob{P(O,x(I)) > N o.+€} = O( No.+ ) = O(~). - NO. € N€ 
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Then 
Nd(l-,) 1 

Prob{mtxP(O,x(I))~N°+€}=O( N€ )=O(NE- d(l - ,))' 

On the other hand for every cube I and every x E I we have trivially, P(x, x(I)) :::; 
dN'. Since D(N):::; 2SUPXE[N]dP(O,X), then 

Prob{D(N) ~ 2(dN' + N a +E)} = O(NE-;(l-,)) = 0(1). 

We take 'fJ = maxh, a + f} < 1 and obtain Prob{D(N) ~ 4dN1)} = 0(1). This 
completes the proof of the upper bound. D 

4.2 Lower bound 

The proof of the lower bound for the one-dimensional case d = 1, s = 2, (3 < 1 
is similar to the proof for the case s > 2, from [2] and uses the notion of a cut 
point. We first show that E[D(N)] ~ N1) for a certain constant 0 < 'fJ < 1, for 
large N. Then we show that this bound holds with high probability. Given a node 
1 :::; i :::; N -1, we call it a cut node if there are no edges which go across i. Namely, 
i is a cut point if edges (j, k) do not exist for all j < i < k. The probability that i 
is a cut node is exp( -(3 L-j<i<k 1J_1kI2) ~ exp( -(3 L-1::on::ON ~) = 6( ~). Then 
the expected number of cuts is O(N1-,8) (which will be helpful to us only if (3 < 1). 
But the shortest path P(N) and as a result the diameter D(N) are not smaller 
than the number of cuts. Taking'fJ < 1 - (3, we obtain the bound E[D(N)] ~ N1) 
for large N. 

We now complete the proof, by showing that the lower bound holds with high 
probability. Divide the interval [N] into N~ intervals h, h···,I N1 each oflength 

Nl. For each interval Ii and each x E Ii, we say that x is a local cut point if it is 
a cut point with respect to just the graph induced by vertices from h We showed 
above that the expected number of local cut points in the interval Ii is at least 
IIil1) = N!, for any 'fJ < 1 - (3 and for all i. Let C(Ii) be the number of local cut 
points in the interval h We now show that, with high probability, at least one 
of the intervals has at least (1/2)N! local cut points. Note {C(Ii)} 2 are 

1<i<N3 
independent from each other. We have E[C(Ii)] ~ N!. Also Var(C(Ii)) ;; IIil 2 = 
N~. Applying Chebyshev's inequality, we have 

Prob{"C(I)/N~ < ~N!} < Var(Ii) = 0(_1_) L: t 2 - ~N!N~ N! ' 

Therefore, with high probability, at least one of the intervals contains at least 
(1/2)N! local cut points. We denote this interval by Ii" Let us estimate the 
number of edges between Ii' and [N] \ Ii" Note that in defining interval Ii' with 
many local cut points, we only considered edges within intervals h Note also, 
that for each k ~ 1 there are at most 2k edges of length k between Ii' and its 
complement. Then, the expected number of edges between Ii" and [N] \ Ii" is at 
most 

N (3 N (3 2: 2k(1 - exp( - p)) + 0(1) = 0(2: k) = O(log N), 
k=l k= l 



The Diameter of a Long-Range Percolation Graph 153 

where we use exp( -,8x) ~ 1 - ,8x for all x E [0,1]. Using Markov's inequality, 
the probability that the number of edges between Ii' and its complement is bigger 
than log2 N is at most 0(1/ log N). We conclude that with high probability there 
are at most log2 N edges between Ii' and its complement. Since the number 
of local cuts in Ii' is n(Nt) then there are two local cuts il,i2, such that the 
interval [iI, i2] contains at least n(Nt / log2 N) = n(N~) local cuts and no outside 
edges are connected to nodes in interval [iI, i2]' Let the number of local cuts in 
[il, i2] be L. We take the (1/3)L-th and the (2/3)L-th local cut in this interval. 
By construction, the shortest path between these local cuts is at least (1/3)L = 
n(N~). We conclude, D(N) = n(N~), with high probability. D 

5 Case d < s < 2d. 

The lower bound D(N) ~ Cs 10gN was proven to hold with high probability in 
[2] for the case d = 1, using branching theory and the fact that for each node, the 
expected number of its neighbors is a constant. The proof extends easily to all 
dimensions d. We now focus on an upper bound. Our proof is similar to the one 
in [2] and is based on renormalization technique, although our analysis is simpler. 

Proof of Theorem 2.1, Part 3: We have d < s < 2d. Let us fix a < 1 such that 
2da > s. Split the cube [N]d into equal sub cubes I i1 "' id == I1~=1 [i j 1 N"'l, (i j + 
1) 1 Na1 - 1] with side length 1 Na1. If N /1 N"'l is not an integer then we make 
the cubes containing nodes ( ... , N, ... ) overlap partially with some other cubes. 
In the following we drop the rounding 1·1 for simplicity, the argument still holds. 
Consider the following eventEl : "there exist two cubes I, I' such that no edge 
exists between points x E I and y E I"'. Each resulting cube I = I i1 "' id we split 
further into sub cubes with side length N a2 . We consider the event E2 : ''there 
exist a cube I with side length N'" and its two subcubes h, 12 with side length 

2 
Na , such that no edge exists between points in hand 12". We continue this 
process m times, obtaining in the end cubes with side length Na m

• Assume that 
none of the events El , E2, ... , Em occurs. We claim that then the diameter of our 
original graph is at most 2m +l Na rn

• In fact, since event El does not occur any 
two points x, y E [N]d are connected by a path with length at most 2D(Na) + 1, 
where D(Na) is the (random) largest diameter of the cubes I i1 "' id with side length 
N a. Similarly, since event E2 does not occur, D(Na) :=:; 2D(N",2) + 1, where 
D(Na2) is the largest diameter of the sub cubes with side length N",2, obtained 
in second stage. In the end we obtain that the diameter of our graph satisfies 
D(N) :=:; 2mD(Nam ) + 2m :=:; 2m+l dNa rn

, since trivially, D(N",m) :=:; dNam. We 
now show that for a certain value of m, which depends on N, this upper bound on 
the diameter D(N) is at most log" N for some constant t5 > 1 and simultaneously, 
the probability Prob{ !\~=l Er } ---t 1, as N ---t 00. For a given cube with side length 

r-l r 
N a and its two given subcubes with side length N'" , the probability that no 
edges exist between these two subcubes is at most exp(_,8N2dar /(dN)sa r

-
1

) = 
exp( _8(Na r

-
1 (2da-s))), since there are N2da r pairs of points considered and the 

largest distance among any two of them is dNa r
-

1
• Since there are at most N 2d 

pairs of such subcubes, then the probability of the event Er is bounded above by 
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N 2d exp( _8(Nar- 1 (2da-s))). We conclude 

m 
Prob{V~=l Er} :::; L N2de_8(Nar-l(2da-s)) :::; mN2de-8 (Na"'(2da-s)). 

r=l 

Let us fix a large constant C and take 

loglogN -logloglogN + log(2do: - s) -logC 0(1 1 N) 
m = = og og . 

log ± 
A straightforward computation shows that for this value of m, 

(1) 

On the other hand, we showed above that, conditioned on event Artn we have 
D(N) = 0(2m dN",Tn). For our choice of m a simple calculation shows that 
o:mlogN = O(loglogN) or N a '" = logO(l) N. Also, since m = O(loglogN), 
then 2m = O(logO(l) N). This completes the proof. D 

In the course of the proof we established the following bound which follows imme­
diately from (1). 

Corollary 5.1. For any constant C, there exists a constant 6 > 1 such that 

Prob{D(N) > logO N} :::; 0(e-8 (logC N)). 

6 Case s = d. 

Proof of Theorem 2.1, Part 4: We first prove a lower bound. We show that 
D(N) ~ (d - E) log N / log log N with high probability, for any constant 0 < E < 
1. Observe, that, for any 1 < k :::; N and for each node x E [N]d, there are 
8(kd- 1) nodes at distance k from x. Each such node is connected to x with 
probability 1 - exp( -(3/kd ) :::; {3/kd . (We used exp( -(3x) ~ 1 - (3x for all x E 
[0,1]). Then the expected number of nodes connected to x by an edge is at most 
0(1) + OCL.l<k<dN(kd-1/kd)) = O(log N). Then, the total expected number of 
nodes which are reachable from x by paths with length:::; m is at most cm logm N, 
for some constant c. We denote the number of such nodes B(m). Using Markov's 
inequality 

Prob{B(m) > N d} < E[B(m)] < cm logm N ~ 0 
- - Nd - Nd 

if m = (d - E) log N / log log N. Therefore, with probability tending to one, the 
diameter D (N) is n (log N / log log N). 
We now focus on a more difficult part - the upper bound. The proof is fairly 
technical, but is based on a simple observation which we present now. We have 
already noted that any fixed node z, in particular, node N = (N, N, ... , N), has 
in expectation 8 (log N) neighbors. We will show later in the formal proof that 
this actually holds with high probability. Consider a subcube I = [0, N / loge N]d 
for a certain constant c. Let y be a neighbor of x. The probability that y has no 
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neighbors in I is at most exp( - (3Nd I (dd N d logCd N)) , since the largest possible 
distance is dN and the number of nodes in I is N d I logCd N. Then probability that 
none of the 8(log N) neighbors of N is connected to some node of I by a path of 
length::; two is at most exp(-(3Nd logNI(ddNd log cd N)) = exp(-8(logl~cd N)). 
If c < lid then this quantity converges to zero. Therefore, with high probability N 
is connected to some node Xl E I by a path of length 2. Applying this argument 
for Xl we find a node X 2 which is connected to Xl by a path of length two and 
such that all the coordinates of X 2 are at most N I log2C N. Continuing m times we 
will obtain that N is connected by a path of length O( m) to some node Xm with 
all the coordinates ::; N I logcm N. Taking m = O(log N I log log N) we will obtain 
that, with high probability, N is connected to 0 by a path of length::; O(m). We 
now formalize this intuitive argument. 

We fix an arbitrary node Zo E [Nk Consider all the paths (x, y , zo) with length 
two, which end in node zoo That is edges (x, y), (y, zo) exist. Let Xl = argminllxll, 
where the minimum is taken over all such paths. In other words, Xl is the smallest, 
in norm, node connected to Zo via a path of length at most 2. Note, Xl is random 
and IIXIII ::; Ilzoll, as Zo is connected to itself by a path of length two. Similarly, 
let X 2 < Xl be the smallest , in norm, node, connected to Xl via a path of length 
2. We continue this procedure for m (to be defined later) steps and obtain a 
(random) node X m. 

Lemma 6.1. 
For any constantly large integer c, if m = (2d + 2) . 2c+lIog NI log log N, then the 
bound IIXm II ::; exp((log N)d/2C

) holds with probability at least 1 - 1 I N2d . 

Before we prove the lemma, let us show how it is used to prove the result. We 
invoke part 3 of Theorem 2.1, which we proved in the previous section. Choose 
a constant integer c such that 2C I d ~ 2<5, where <5 > 1 is a constant from part 
3 of Theorem 2.1. Applying part 3 of Theorem 2.1, the diameter of the cube 
[exp((logN)d/2C )]d is at most ((logN)d/2c)8 ::; log! N = o(logNl loglogN) with 
high probability. In particular sUPx:l lxll:Sexp((log N)d / 2C ) P(O, x) = o(log N I log log N) 
with high probability. By the conclusion of the lemma, with probability at least 1-
0(IIN2d ), each fixed node Zo E [N]d is connected to some node Xm with IIXml1 ::; 
exp( (log N)d/2C

) by a path of length m = O(log N I log log N). Then, with proba­
bility at least 1 - 0(11 N d), all the nodes Zo E [N]d are connected to some corre­
sponding nodes Xm E [exp((log N)d/2c )]d by a path of length O(log NI log log N). 
Combining, we obtain that sUPzoE[N]d P(O,zo) = O(logNlloglogN) with proba­
bility at least 1 - 0(1). But D(N) ::; 2 SUPzoE[N]d P(O, zo). D 

Proof of Lemma 6.1: We fix a node x with Ilxll ::; Ilzoll , fix 1 ::; r ::; m and 
consider Xr conditioned on event X r - l = x (assume Xo = zo). Our goal for the 
remaining part is the following 

Lemma 6.2. If Ilxll > exp((logN)*), then 

[ I ] Ilxll 
E IIXrl1 Xr~l = X ::; O( (log N)I /2c+ 1 ). (2) 

In other words, at each step r = 1,2, ... ,m, the expected value of IIXrl1 de­
creases by a factor of O( (log N~' / 2C+I ), provided that IIXr-111 is still bigger than 
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exp( (log N) ~). 

Proof. Let B(x) be the total number of nodes which are connected to X r - 1 = x 
and which have a norm smaller than Ilxll. Note, that for each such node y, 
Ily - xii:::; Ilyll + Ilxll < 211xll· We first show that with probability at least 
1 - O( (lOg.J)d/2C)' the equality B(x) = D(log Ilxll) holds. For any fixed k :::; Ilxll 

there are 8(kd - 1 ) nodes y which for which Ily - xii = k and Ilyll < Ilxll. Each 
such node is connected by an edge to x with probability 1 - exp( -/3/kd ). Then 

E[B(x)] = 
/38(k d - 1 ) L (l-exp(- kd ))=8(logllxll)· 

09::; Ilxll 

Let Cl < C2 be constants, such that cdog Ilxll :::; E[B(x)] :::; c2log Ilxll. We now 
estimate the second moment 

E[B2(X)] = E[B(x)]+ 

L (l-exp(- /3 ))(l-exp(- /3 )):::; 
nrfY2,IIYlll,IIY211<llxll IIYl - xii IIY2 - xii 

"'" /3 /3 E[B(x)] + L.. (1 - exp( -IIYl _ xii ))(1 - exp( -IIY2 - xii)) = 
IIYlll,IIY211<llxll 

E[B(x)] + (E[B(x)])2. 

It follows, Var(B(x)) :::; E[B(x)]. Using Chebyshev's inequality, 

Prob{B(x) :::; (1/2)Cllog Ilxll} :::; Prob{IB(x) - E[B(x)]1 ~ (1/2)Cllog Ilxll} :::; 

Var(B(x)) c2logllxll O( 1 ) O( 1 ) 
(1/4)cilog2 1Ixll :::; (1/4)cilog2 1Ixll = log Ilxll:::; (logN)d/2c' 

(3) 

where the last inequality follows from the assumption Ilxll > exp( (log N)d/2c
) of 

the lemma. Let 
Ilxll 

V(x) = {z: Ilzll :::; (logN)1/2c+l}' 

In particular, lV(x)1 = 8(llxlld /(logN)d/2c+1
). Suppose y, Ilyll < Ilxll is any node 

connected by an edge to x (if any exist). Note that the distance between Y and 
any node in V(x) is smaller than 311xll. Then, the probability that y has no nodes 
in V(x) connected to it by an edge is at most 

/38(llxll d) 8(1) 
exp( - (log N)d/2c+1 1I x lld) = exp( - (log N)d/2c+1 ). 

By (3), with probability at least 1-0( (log;;)1/2c), x has D(log Ilxll) nodes y, Ilyll < 
Ilxll connected to it. Conditioned on this event, the probability that no node in 
V(x) is connected to x by a path of length two is at most exp( - ( fl(lo~!~~~lll ). 

logN 

By assumption, Ilxll > exp((logN)~) or logllxll > (logN)~, using which, 
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exp( - (l~~~~l~~~lll ) :::; exp( -O( (log N)d/2C+1)). It follows, that the probability that 

no node in V(x) is connected to x by a path of length two, is at most 

1 _ d/2c+1 _ 1 
O( (log N)d/2c ) + exp( O( (log N) )) - O( (log N)d/2c ). 

Summarizing, conditioned on X r- l = x, the bound IIXrl1 :::; ( "~~~2C+1 holds 
logN 

with probability at least 1 - O( (log;!;) 1/2c ). On the other hand, with probability 

one IIXrl1 :::; IIXr-lll. We conclude 

This completes the proof of Lemma 6.2. D 

We now complete the proof of Lemma 6.1. Note, that for any 2 :::; r :::; m, 
E[XrIXr- 1 , X r- 2, ... , Xl] = E[XrIXr-I]. We denote exp((log N)d/2C) by a(N). 
We have, 

Prob{IIXmll > a(N)} = 

L Prob{Xm = xmlXm- 1 = xm-dProb{Xm-1 = Xm-l} :::; 
a(N)<llx",II:SIIX",_III<llzoll 

L IlxmllProb{Xm = xmlXm- 1 = xm-dProb{Xm- 1 = Xm-l}:::; 
a(N)<llx",II:SIIX"'-III<II Zoll 

L E[IIXmIIIXm- 1 = xm-I]Prob{Xm- 1 = xm-d· 
a(N)<llxm-lll<llzoll 

But, using bound (2) of Lemma 6.2, we have 

as long as Ilxm-lll > a(N). We obtain 

Prob{IIXmll > a(N)} 

1 
:::; O( (log N)1/2c+l ) L Ilxm-IIIProb{Xm- 1 = xm-d 

a(N)<llx"'_III<llzoll 

1 
= O( (log N)1/2c+l ) L 

a(N)<llxm-lll:Sllx",-211<llzoll 

Ilxm-IIIProb{Xm- 1 = x m-IIXm- 2 = x m-2}Prob{Xm- 2 = Xm-2} 

:::; O( (lOgN~I/2C+l) L E[IIXm-111IXm-2 =Xm -2 ]Prob{Xm - 2 =Xm -2} 
a(N)< Ilxm-211<llzoll 

:::; (O( (log N~I/2C+l ) f L Ilxm-21IProb{ X m- 2 = Xm-2}, 
a(N)< Ilxm-211<llzoll 
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where in the last inequality we used bound (2) of Lemma 6.2 again. Continuing 
this conditioning argument m - 1 times, we obtain that for some constant C 

C m- 1 (lOgN)2C~1 em 
Prob{IIXmll > a(N)} S m-l Ilzoll s m dN. 

(log N) 2 c+1 (log N) 2C"'fT 

But, by assumption of the lemma, m = (2d+ 2)· 2c+ 1 log NI log log N, from which 

(lOgN)2C~1 em = o(N) and Prob{IIXmll > a(N)} S 1/N2d for large N. D 

7 Concluding remarks and open questions 

We considered a long-range percolation model on an graph with a node set {0,1, 
... , N}d. Answering some open questions raised by Benjamini and Berger in 
[2], we showed that if two nodes at a distance r are connected by an edge with 
probability >::::: (31 r S , then, with high probability, the diameter of this graph is 
eCo~ro~ N) when s = d, and is at most N'I for some value 'TI < 1, when s = 2d. 

We also proved a lower bound NT/', 'TI' < Ion the diameter for the cases d = 1, s = 
2, (3 < 1 and s > 2d, d ::::: 1. Note that for the case d = 1, s > 2 our bound is weaker 
than known linear lower bound O(N) established in [2]. We conjecture that this 
linear lower bound holds for all dimensions d as long as s > 2d. Other unanswered 
regimes are lower bounds for s = 2d and d = 1, s = 2, (3 > 1. It would also be 
interesting to compute the limits (log NJi~)log N) -+ e and log D( N) I log N -+ 'TI 
or even show that these limits actually exist when s = d, 2d respectively. 
Acknowledgments. We wish to thank I. Benjamini and N. Berger for clarifying 
their work and identifying several errors in an earlier version of this paper. 
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Giant Components for Two Expanding 
Graph Processes 

Luc Devroye, Colin McDiarmid, Bruce Reed 

ABSTRACT: We discuss the emergence of giant components in two random 
graph models (one directed, one undirected). Our study of these models was 
motivated by an interest in finding a random model of the Internet. 

1 Introduction 

The hyperlinks between the pages of the internet yield a directed graph whose 
vertices are the web pages and whose arcs correspond to the hyperlinks themselves. 
This directed graph and the undirected graph underlying it have been intensely 
studied (see Adamic and Huberman 1999, Broder et aI, 2000, Kleinberg et al. 
1999) as an understanding of its structure could be useful in designing searching 
engines or identifying communities on the web. Researchers are also attempting 
to build random models of the web (see Barabasi Albert and Jeong 1999, Cooper 
and Frieze 2001, Kumar et al. 1999). 
As pointed out in (Kumar et al. 1999), standard random graph models do not 
accurately represent the web for two reasons. The first is that the web has more 
vertices of high degree than an average graph. The second is that the web expands 
as pages get added over time, and a page is more likely to link to those which were 
present when it was added. 
Indeed, this expansion is to some extent responsible for the existence of high 
degree vertices, as old pages tend to have high degree. However, the function a 
page serves is also important in determining its degree. For example, the home 
page for Google has very high degree. 
Researchers (see Aiello Chung and Lu 2000, Strogatz and Watts 1999) have applied 
the techniques of (Molloy and Reed 1995), to study the connectivity properties of 
graphs whose degree sequence is similar to that of the undirected graph underlying 
the web. However, less attention has been devoted to developing models which 
reflect the time dependency inherent in the internet graph. In this paper we study 
the threshold for the existence of a giant component in two expanding graph 
processes. 
Although the analysis of our processes was motivated by attempts to model the 
internet, we present the results for their intrinsic interest. Indeed other time­
dependent random processes will obviously provide better models of the web graph, 
yielding e.g. a degree sequence like that of the web graph (see Aiello Chung and 
Lu 2002, Barabasi Albert and Jeong 1999). 
B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
© Springer Basel AG 2002
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2 The Models 

We are interested in the following random process UGROW with parameter a 
constant p, with 0 < P :<:::; 1, for constructing an undirected graph. 

o. Initialize with the single vertex 1. 

1. For i = 2, ... , n add vertex i and with probability P add an edge between i 
and a vertex chosen uniformly at random from 1, ... , i - 1. 

We are interested in the following random process DGROW for constructing a 
directed graph. Again the parameters 0 :<:::; Pdown , P extra :<:::; 1 are constants, and all 
choices are independent. 

o. Initialize with the single vertex 1. 

1. For i = 2, ... , n add vertex i and with probability Pdown add an arc from i to 
a vertex chosen uniformly at random from 1, ... , i - 1. 

2. For each ordered pair (i, j) of vertices, add an arc from i to j with probability 
Pextra 
n-l . 

3 The Results 

Obviously, if P = 1 in UGROW then the algorithm produces a spanning tree of G. 
We prove: 

Theorem 3.1. Let Mn be the maximum order (number of nodes) of a component 
of the n-node graph constructed by UGROW. Then the expected value of Mn sat­
isfies E(Mn) = 8(nP ); and for any E > 0 there are positive constants Cl and C2 

such that 

for all n. 

In the directed case, we are interested in whether or not there is a 'giant' strong 
component, that is one with O( n) vertices. 

Theorem 3.2. If Pdown + Pextra :<:::; 1 then the digraph constructed by DGROW 
almost surely has no giant strong component. 

Theorem 3.3. If Pdown + P extra > 1 then the digraph constructed by DGROW 
almost surely has a giant strong component. 

Theorem 3.1 is a consequence of much finer results on the output of UGROW. We 
discuss these results in the next section and then turn to the directed case. We 
close the paper with some concluding remarks. 
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4 Analyzing UGROW 

We orient each edge of the random graph we obtain to point to its endpoint 
of smaller index. The directed graph obtained is a random forest, consisting of 
a number of trees which is distributed like 1 + B(n - 1,1 - p), where B(n,p) 
denotes a binomial random variable with parameters nand p. Let Ni denote the 
order (number of vertices) of the subtree in the forest rooted at node i, and let 
Mn = max(N1 , ... , Nn) be the maximal order of a subtree. We will show the 
following. 

Lemma 4.1. For fixed k, 
Nk - ~ Z(k ,p) 
nP 

in distribution, and Z(k ,p) is a random variable with £-th moment 

f(£ + l)f(k) 
r(k + pi) 

Note that for p = 1, these are the moments ofthe beta (1, k -1) distribution when 
k > 1. For k = 1, Z (k, 1) == 1. 

Lemma 4.2. For all £ ~ 0, and all 1 ~ k ~ n, 

Lemma 4.3. For t > 0, 

Note that Lemma 4.3 may be generalized to bounds of the form C( a, p) Ita for any 
a > 0 and some constants C(a,p) > O. The order nP for Mn is actually achieved 
in all cases in a probabilistic sense: for all t > 0, we have, 

p{~n ~t}~p{~; ~t}=P{Z(k'P)~t}+O(l) 

But P{Z(k,p) ~ t} tends to zero as t ! 0: 

Lemma 4.4. For all p E (0,1), and all k ~ 1, Z(k ,p) is a continuous random 
variable. In particular, 

limP{Z(k,p) ~ t} = 0 . 
flO 

The forest we are studying is somewhat related to uniform random recursive trees. 
A uniform random recursive tree (or URRT) on n nodes is a tree recursively con­
structed by letting the i-th node pick its parent uniformly and at random from 
among the first i-I nodes. This corresponds to p = 1 in our model. A uni­
form random recursive dag (or URRD) on n nodes starts this process only at node 
m + 1, so that the first m nodes are roots. Furthermore, the i-th node picks r 
nodes uniformly from among the first i-I nodes to be its "parents", thus creating a 
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directed acyclic graph. Na and Rapoport (1970), Moon (1974), Gastwirth (1977), 
Meir and Moon (1978), Najock and Heyde (1982), Dondajewski and Szymanski 
(1982), Gastwirth and Bhattacharya (1984), Devroye (1987, 1988), Szymanski 
(1987, 1990), Mahmoud (1992), Mahmoud and Smythe (1991), Pittel (1994), and 
Devroye and Lu (1995) have studied the URRT in some detail. A URRT of course 
is just a URRD with m = 1. Dags model expression trees in which the symbols 
are the roots and the mathematical operators correspond to internal nodes. They 
also model PERT networks, and represent partial orders in general. 
There is also a P6lya urn model view for our process. In P61ya urns (P61ya, 1931), 
one starts with a fixed finite number of urns, each having a given number of balls. 
An urn is picked with probability proportional to the size of the urn, and a ball is 
added to that urn. An urn in our setting is of course a tree in the forest. It was 
shown by P61ya and others (Defays, 1974, Athreya, 1969; for a survey, see Johnson 
and Kotz, 1977) that the proportions of the balls in the urns tends almost surely 
to a Dirichlet random vector. The urn occupancies are thus not concentrated in 
the sense that the proportion of balls in the first urn does not tend in probability 
to a constant. This lack of concentration is also apparent from the results below. 
In fact, the moment method proof of Lemma 4.4 is mimicked after the standard 
proof of the beta limit law for the proportion of balls in the first urn in P6lya's 
urn model. However, our limit law for each subtree size is not beta! In fact, the 
subtrees have sizes that are roughly (n/k)P. Theorem 3.1 shows that the maximal 
tree size is O( nP ) in probability. 

PROOF OF LEMMA 4.l. 

Consider the following process started at node k. Let X k = 1, and for j > k, let Xj 
denote the size of the subtree rooted at k when j nodes have been processed. When 
the j-th node is processed, note that that subtree grows by one with probability 
pXj-l/(j -1). Clearly, Xn = Nk . For fixed £ ~ 0, it takes a moment to verify the 
following relationship for the (£ + 1)-st increasing factorial moment: 

> From this, we have without further work, 

E{Xn(Xn+l)···(Xn+£)} = (£+1)! IT (I+P(~~II)) 
j=k+l J 

= (£ + 1)!f(n + p(£ + 1))f(k) 
f(k + p(£ + 1))f(n) 

For fixed k and l, we note that the right-hand side is asymptotic to 

p(£+l) f(£ + 2)f(k) n 
f(k + p(£ + 1)) 
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Thus, 
lim E {Xn(Xn + 1)··· (Xn + £)} _ f(£ + 2)f(k) 

n--->oo nP(Hl) - f(k + p(£ + 1)) . 

The limit of E {(Xn/nP)(Hl)} is identical. Carleman's condition applied to the 
limiting moments shows that these are the moments of a distribution that is 
uniquely determined by its moments. We call the limiting distribution Z(k,p). 
This proves Lemma 4.1. 

PROOF OF LEMMA 4.2. 

From the proof of Lemma 4.1, we recall 

E {Xn(Xn + 1)··· (Xn + £)} 

= (£+I)! IT (I+P(~~II)) 
j=k+1 J 

<; (/ + J)!exp (~P(£: 1)) 
::; (£ + I)! exp (p(£ + 1) (1og(n/k) + I/k)) 

(
n)p(Hl) ::; (£ + I)! k eP(Hl)/k . 

PROOF OF LEMMA 4.3. 

For t < 1, there is nothing to prove, so assume t 2: 1. Let Xn = N k. By Markov's 
inequality, 

P {Xn 2: tnP} ::; P {Xn(Xn + 1)··· (Xn + £) 2: tH1nP(Hl)} 

< E{Xn(Xn+I)",(Xn+£)} 
- tH1nP(£+1) 

uniformly over all n. 

( 
el/k )P(Hl) 

::; (£ + I)! t1/Pk 

In particular, if we set £ = f2/pl - 1, then p(£ + 1) 2: 2. Thus, 

P {Nk 2: tnP} ::; r(2 + 2/p) (t1;Pk)2 

From this, we deduce by Boole's inequality, 

n 2 

P{max(N1, ... , Nn ) 2: tnP} ::; L f(2 + 2/p) (t1;Pk) 
k=l 

f(2 + 2/p)e27[2/6 
< ---'---t-':::27/ P'-----'--
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PROOF OF LEMMA 4.4. 
The random variable Z(k,p) has characteristic function given by 

'P(t) = E { eitZ(k,p) } 

= f (itt E {(Z(k,pW} 
r. 

r=O 

= f(k) f (iW 
r=O f(k + pr) 

= f(k)Mp,k(it) , 

where Mp,k(Z) = L~o zr /f(k+pr) is the Mittag-LefHerfunction with parameters 
p and k. This function is of semiexponential type, analytic on the positive complex 
halfspace (Henrici, 1986, p. 333), and thus, Mp,k(Z) ---+ 0 if Z ---+ 00 along the 
imaginary axis. Thus, 1'P(t)1 ---+ 0 as It I ---+ 00, and thus, Z(k,p) is a continuous 
random variable. As Z(k,p) has no atoms, it has no atom at zero, and thus, 
P{Z(k,p) ~ t} = 0(1) as t 10. 

5 Analyzing DGROW 

We let D = D(n,Pdown,Pextra) be the random digraph constructed by DGROW. 
For each vertex v, we let F(v) be the set of vertices which can be reached by a 
directed path From v in D. We let T(v) be the set of vertices from which there 
is a directed path To v in D. We note that the strong component containing v is 
exactly T(v) n F(v). Our approach is to model the construction of F(v) for each 
vertex using a branching process. 

The expected number of arcs out of vertex i in D is essentially Pdown + Pextra. 
(More precisely, for i > 1 this expected value is Pdown + Pextra - Pdow;!'lxtra whilst 
for i = 1 it is Pextra). If this value is at most 1 then it is not hard to show that 
almost surely the maximum size of a strong component is o(n), as we now see. 

Proof of Theorem 3.2 The out degree of a node is stochastically at most the 
sum of independent random variables B(n - 1, P~"'-'t) and B(l,Pdown)' Let X n , 

X~l), X~2), ... be independent random variables with this distribution. Note that 
Xn is a sum of n Poisson trials, and E(Xn) = Pdown + Pextra. We consider a 
Galton-Watson branching process in which the family sizes are distributed like 
X n. Let R = Rn be the random tree constructed by this process. Clearly, for any 
node v, P(IF(v)1 ~ k) ~ P(IRI ~ k). 
Consider first the case when Pdown + Pextra = 1 - E for some E > 0, so that the 
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expected number of offspring in our branching process is 1 - E. Now 

j 

P(IRI > k) = P(2)XAi ) - 1) ::::: 0 "ij = 1, ... , k) 
i=1 

k 

::; P(I: XAi ) ::::: k). 
i=1 

But 2:7=1 XAi ) is a sum of nk Poisson trials with (total) mean p, 
Pextra)k = (1 - E)k. Hence 

(Pdown + 

k 

P(IRI > k)::; P(I:XAi ) ::::: (1 + 1 ~ E)P,) ::; e-4 k 
i=1 

by standard bounds. But this last term is o(l/n) for k ::::: (3/E2 )logn, and so in 
this case each component of D almost surely has O(1og n) nodes. 

Now consider the case Pdown + Pextra = 1, when the expected number of offspring 
in our process equals 1. We need to be a little more careful. Note first that, if v 
is in a strong component of D with at least k nodes then IF(v)1 ::::: k. Thus, 

P(some strong component has::::: k nodes) 
::; E(# of strong components with::::: k nodes) 

1 
< k E(# of nodes in strong components with::::: k nodes) 

< ~ P(IRI ::::: k). 

We may assume that Pdown < 1, since otherwise Pextra = 0 and D has only trivial 
strong components. Note that 

var(Xn - 1) = Pextra(l - Pextr1a) + Pdown(1 - Pdown) -t 1 - P~own > 0 
n-

as n -t 00, and E(IXn - 11 3 ) = 0(1). Hence by the Berry-Esseen theorem, there 
is a constant c such that for all nand k we have 

P(XA1) + ... + X~k) = k - 1) ::; ck-~. 

It follows (see Dwass (1969)) that, for the tree R corresponding to the Xn distri­
bution, we have 

P(IRI = k) = p(X~1) + ... + X~k) = k - l)/k ::; ck-~, 

and so P(IRI ::::: k) = O(k-~). Thus 

n 3 
P(some strong component has ::::: k nodes) ::; k P(IRI ::::: k) = 0(nk- 2 ), 

and this last term is 0(1) if k = w(n)n~. Thus each component of D almost surely 
has O( w( n)n ~) vertices. This completes the proof of Theorem 3.2. 
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Conversely, if Pdown + Pextra > 1 then we almost surely have a giant strong com­
ponent, as we now show. 

Proof of Theorem 3.3 

For our branching process analysis to work, we need a final 'post-processing' stage. 
We will reserve a constant proportion of the extra arcs to be added in this stage. 
That is, for some constant Pfinal > 0, we add an arc from i to j with probability 
(Pextra -Plina!l(I- Plinal )-1 .. . 

n-l n-1 m step 2 (whIch completes the first stage), and then WIth 
probability P~:~l in the new final stage. We use our branching process analysis to 
show that before this final stage we have: 

Proposition 5.1. For some E = E(Pdown,Pextra) > ° there are almost surely at 
least en vertices in the set A, = {v: IF(v)1 2: en}. 

Proposition 5.2. For some 0 = O(Pdown,Pextra) > ° there are almost surely at 
least On vertices in the set B8 = {v : IT( v) I 2: on}. 

It is an easy matter to show that 

Proposition 5.3. For any 0, E > 0, almost surely for every U E A, and v E B8 

there are at least 8'Pf;nal n vertices w for which we add both an arc from F(u) to 
wand an arc from w to T ( v) in the final stage. 

Proposition 5.4. If IA,IIB81 > nlogn holds for some 0, E > 0, then almost surely 
there is an arc xy with x E B8 and yEA,. 

Combining these last two results we see that if IA,IIB81 > nlogn holds for some 
0, E > 0, then almost surely there is an x E B8 such that the strong component 

.. h I 8,p} In contammg X as at east;na vertices. So to prove the theorem we need only 
prove Propositions 5.1 and 5.2. 

Now, since the sum of the sizes of the F ( v) equals the sum of the sizes of the T ( v ), 
if Proposition 5.1 holds for some E > ° then an easy averaging argument shows 

2 
that Proposition 5.2 holds for 0 = T. SO, in fact we need only prove Proposition 
5.1. 

Before doing so, we specify our choice of Pfinal. We recall that in step 2, instead of 
adding an arc from i to j with probability P~"'.:'ia , we add the arc with probability 

I 

P;;"::::T for P~xtra = (Pextra - Pfinal)(l - P~:~l )-1. Now, no matter how small we 
make Pfinal, Propositions 5.3 and 5.4 will still hold so by decreasing Pfinal we 
can make P~xtra arbitrarily close to Pextra. In particular, we want to ensure that 
Pdown + P~xtra > 1. It turns out that choosing Pfinal = Pdown +~extra-l ensures this 
is true. 

Thus, the expected number of arcs out of a vertex in step 2 exceeds 1. From 
now on then, we may ignore Pfinal and the final stage, and just assume that 
Pdown +Pextra > 1. It remains to prove (the cleaned-up version of) Proposition 5.1. 
However, if we try to analyze growing F(v) using a simple branching process we 
soon run into difficulties because the 'down' arcs make it highly likely we pick 
vertices with low indices and so the expected out degree of a low index vertex 
outside of the already picked vertices rapidly becomes less than 1. 
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Instead, we will think of a step in the branching process as consisting of starting 
with a vertex i , exposing all the 'extra' arcs out of i and then exposing the set of 
vertices reachable from these vertices by 'down' arcs. Now clearly, the expected 
number of vertices reachable from j by down arcs is essentially 1 + Pdown + P~own + 
P~own'" = 1-P~own (this isn't quite true if j is small e.g. if j = 1 this value will 
be 0 but if e.g. j > yin then this value will be 1- 1 - 0(1)). So, the expected 

Pdo wn 

number of vertices reachable from i in a step is essentially l~extra ,which exceeds 
Pdown 

one. 
In order to avoid the complications due to low index vertices, we actually only 
consider arcs which go to vertices of reasonably high index. Furthermore, we only 
consider arcs from i added in Step 1 which go to vertices whose index is reasonably 
high in terms of i. Forthwith the details. 

For a given (Pextra,Pdown), we choose E1, E2 > 0 and C ~ 1 so that setting p* = 
L~o((l - (2)Pdown)i we have: 

(1 - EdPextra p* > l. 

This is possible since the inequality holds if E1 = E2 = 0 and C = 00 (in which 
case we have p* = (1- Pdown)-l), and we are free to choose the E'S as small as we 
like and C as large as we like. 
We set E3 = E1 - 't and E4 = E3('t)C+2. We will restrict our attention to the 
subgraph D' of D consisting of those arcs (i , j) with j > E4n. 

To begin, we obtain for each node v, a lower bound on the size of the random set 
F'(v), consisting of those vertices which can be reached from v along a path P 
which satisfies: 

(a) for any 'extra' arc (i,j) of P added in Step 2 we have j > ¥, 
(b) for any 'down' arc (ij) of P added in Step 1 we have j > ~, and 

(c) any set of C + 1 consecutive arcs of P contains at least one which was added 
in Step 2. 

We will grow F' (v) iteratively. In each iteration we will explore from some vertex 
i in F'(v) by exposing all the extra arcs out of i which satisfy (a) and go to new 
vertices, and then exposing the set of new vertices reachable from these vertices 
by paths of up to C down arcs which satisfy (b). We begin with F'(v) = {v}, and 
continue until either there are no unexplored vertices of F'(v) or IF'(v)1 ~ E4n. 

Thus throughout the process, there are at most (E3 + (4)n :::; E1n vertices which 
are either already known to be in F' (v) or which have indices less than E3n. In 
the same vein, from any vertex i, there are at most E~i + E4n vertices which have 
indices less than ~ or are already in F' (v). If i ~ (~ f E3n then this is less than 
E2i. 
Consider the corresponding search tree, while it contains less than E4n nodes. 
The distribution of the number of (new) children of a node v is stochastically at 
least the distribution Dn defined as follows. Take a sum of B((l - Edn, P~~ia) 
independent random variables Y , where each of these random variables Y takes 
values in {O, 1, ... ,C} and satisfies: 

for 0:::; i :::; C, P(Y ~ i) ~ ((1 - (2)Pdown)i. 
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Further, our choices of El, E2 and C ensure that (for n sufficiently large) this dis­
tribution is stochastically at least a fixed distribution D* taking a bounded set 
of values {O, 1, .. . , b} and having mean > 1, where we take a sum of a truncated 
Poisson number of independent random variables like Y above. 
Thus the probability that IF'(v)1 2: E4n is at least the probability that the Galton 
Watson branching process with family size distribution D* constructs a tree with 
at least E4n nodes. 
Consider such a Galton Watson branching process. Let its generation sizes be 
Zo = 1, Z2, ... and let IRI be the total number of descendants. We need two facts: 

and 

P(IRI = 00) = E5 > 0, 

1 
P(IRI = oollRI 2: w logn) = 1 - o( -). 

n 

Let 5 be the set of nodes v such that IF' ( v) I 2: E4 n, and let 5' be the set of nodes v 
such that IF'(v)1 2: w(n) logn. Then 5 ~ A'4' and from the above we have 5' ~ 5 
a.s., and E(15'1) 2: E5n. 

To complete the proof we show that 15'1 is concentrated around its expected value, 
using the second moment method. Having exposed the set W of the first up to 
w(n) logn vertices of F'(u) we explore, it is quite likely that for some other vertex 
v, when we expose the first up to w(n)logn vertices of F'(v) we will not touch 
W. Thus, P(v E 5'lu E 5') = P(v E 5')(1 + 0(1)), which is enough to apply the 
second moment method. Thus 15'1 2: ~E5n a.s., and hence IA,I 2: En a.s., where 
E = min(E4' ~E5). Thus the proof is complete. 

6 Concluding Remarks 

We could attempt to compute the probability that D has no giant component when 
Pdown + P extra > 1: we believe it is exponentially small in n and our technique 
may perhaps be pushed to yield this. 
We could also imagine a random process where each vertex throws up to kedges 
back according to probabilities PI, ... , Pk . 

Finally, in Kim et al. 2002, results are given for the undirected model in which at 
iteration i, we add one of the m possible edges with endpoints in {I, .. , i} with 
probability p. The authors show that the threshold for having a giant component is 
P = i and determine bounds on the size of the largest component in the sub critical 
case. 
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Coloring Random Graphs - an Algorithmic 
Perspective 

Michael Krivelevich 

1 Introduction 

Algorithmic Graph Coloring and Random Graphs have long become one of the 
most prominent branches of Combinatorics and Combinatorial Optimization. It 
is thus very natural to expect that their mixture will produce quite many very 
attractive, diverse and challenging problems. And indeed, the last thirty or so 
years witnessed rapid growth of the field of Algorithmic Random Graph Coloring, 
with many researchers working in this area and bringing there their experience 
from different directions of Combinatorics, Probability and Computer Science. 
One of the most distinctive features of this field is indeed the diversity of tools 
and approaches used to tackle its central problems. 
This survey is not intended to be a very detailed, monograph-like coverage of 
Algorithmic Random Graph Coloring. Instead, our aim is to acquaint the reader 
with several of the main problems in the field and to show several of the approaches 
that proved most fruitful in attacking those problems. We do not and we simply 
cannot provide all details of the proofs, referring the (hopefully) enthusiastic reader 
to the papers where those proofs are presented in full, or to his/her previous 
experience in Random Graphs, which should be sufficient to recover many sketched 
arguments. But of course, the best way to become fluent in this field is to learn 
from the best, most influential papers, and above all, to engage in independent 
research, which will undoubtedly bring new and exciting results. 

2 Graph coloring is hard 

Graph coloring ([21]) has long been one of the central notions in Graph Theory and 
Combinatorial Optimization. Great many diverse problems can be formulated in 
terms of finding a coloring of a given graph in a small number of colors or calculat­
ing, exactly or approximately, the chromatic number of the graph. Unfortunately, 
it turns out that these computational problems are very hard. Karp proved al­
ready in 1972 [25] that is it NP-complete to decide, for any fixed k 2: 3, whether 
a given graph G is k-colorable. Recent results show that one should not even 
hope to obtain an efficient algorithm which approximates the chromatic number 
within a non-trivial approximation ratio. Specifically, Feige and Kilian proved [12] 
that, unless coRP = N P, there is no approximation algorithm for the chromatic 
number whose approximation ratio over graphs on n vertices is less than n 1- E , for 
any fixed E > O. Coloring 3-colorable graphs in four colors is NP-complete as well 
([28], [18]). Altogether, the situation does not appear particularly encouraging, 
from both theoretical and practical points of view. 

B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
© Springer Basel AG 2002
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3 The chromatic number of random graphs 

The picture changes dramatically when one switches from the somewhat pes­
simistic worst case scenario to possibly more applicable in practice average case 
analysis. Already the term "average case analysis" suggests that there should be 
some underlying probability distribution, whose ground set is composed of graphs, 
and whose purpose is to help to measure the typical or average performance of 
various coloring algorithms. Usually this underlying probability space is composed 
of graphs with the same number n of vertices. 

It appears that the most natural and interesting definition of the probability mea­
sure on graphs on n vertices is the so called binomial random graph G(n,p). This 
is the probability space whose elements are all labeled graphs G = (V, E) with 
vertex set V = {l, ... ,n}, where each pair of vertices (i,j) : 1 :::; i < j :::; n is 
chosen to be an edge of G independently and with probability p, in general p may 
be a function ofthe number of vertices n: p = p(n). Thus G(n,p) can be viewed as 
a product probability space, formed by (;) i.i.d. Bernoulli random variables with 
parameter p. The probability of an individual graph G on n vertices in G(n,p) 
is easily seen to be Pr[G] = pIE(G)(1 - p)(;)-IE(G)I. The special case p = 0.5 
occupies a very prominent position in the study of random graphs, as for this case 
the probabilities of every pair (i,j) to be an edge or be a non-edge are equal, 
resulting in the uniform distribution on the set on all labeled graphs on n vertices: 

Pr[G] = T(;). Therefore studying asymptotic properties of the random graph 
G(n, 0.5) is in a sense equivalent to counting graphs on n vertices with specified 
properties. 
Usually asymptotic properties of random graphs G(n,p) are of interest. For this 
reason we will assume that the number of vertices n tends to infinity. Also, for a 
graph property A (where "graph property" means just a family of graphs closed 
under isomorphism), we say that A holds almost surely, or a.s. for brevity, in 
G(n,p), if the probability that a random graph G, drawn according to the distri­
bution G(n,p), possesses A tends to 1 as n tends to infinity. With some abuse of 
notation we will use G(n,p) both for the probability distribution on graphs on n 
vertices and for a graph G drawn from this distribution. 
The theory of random graphs is one of the most rapidly developing areas of Com­
binatorics, with already thousands papers devoted to the subject. We certainly do 
not intend to cover it here, instead referring the reader to recent monographs [20] 
and [9]. We will however represent the state of the art of one aspect of random 
graphs, relevant to the subject of this survey - the asymptotic behavior of the 
chromatic number of random graphs. 
To begin with, consider the most important case p = 0.5. For an integer k, let 

(1) 

Obviously, f(k) is just the expectation of the number of independent sets of size 
k in G(n,0.5). When f(k) = 0(1), this expectation tends to zero as n grows, 
and applying Markov's inequality we get immediately that a.s. G(n,0.5) does not 
contain an independent set of size k. We thus set 

ko = max{k : f(k) ::::: I} . (2) 
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Applying standard asymptotic estimates on the binomial coefficients, one can eas­
ily solve asymptotically the above equation for ko, getting ko = (1 - o(1))2log2 n. 
Hence a.s. a(G(n,0.5)) ::; (1-0(1))2log2 n. Providing a matching lower bound on 
the independence number of G(n, 0.5) requires more effort, but this can be done 
as follows [41]. Let X k be a random variable, counting the number of indepen­
dent sets of size k in G(n,0.5). Clearly, E[Xk] = f(k). If k is chosen around ko, 
using direct calculations one can show that V AR[Xk] = O(E[XkJ2). Thus Cheby­
shev's inequality applies, and we get that X k is concentrated around its mean. In 
particular, when f(k) ---+ 00, we derive that a.s. Xk 2:: 1, which means exactly 
that a( G) 2:: k. To satisfy the former condition it is enough to choose k = ko or 
k = ko + 1. Altogether we get that a.s. a(G(n, 0.5)) = (1 - 0(1))2log2 n. 
As for every graph G, X(G) 2:: IV(G)I/a(G), the above asymptotic (upper) bound 
on a( G(n, 0.5)) supplies an easy asymptotic bound for the chromatic number -
a.s. x(G(n,0.5)) 2:: (1 + 0(1))n/(2log2n). Providing a matching upper bound 
for the chromatic number was one of the major open questions in the theory of 
random graphs for about quarter of a century until Bela Bollobas [8] discovered a 
very inspiring proof of the following theorem. 

Theorem 3.1. Almost surely in the probability space G(n,0.5), X(G) ::; (1 + 
o( 1)) 21o~2 n . 

Proof. Set m = n/ 10g2 n and define 

The parameter kl is chosen so as to guarantee that the expected number of inde­
pendent subsets of size kl in a fixed subset Va s;:; V of m vertices is at least n3 . 

An asymptotic computation very similar to the one mentioned above for ko shows 
that still kl = (1- 0(1))2log2n. 
The theorem will easily follows from the following lemma. 

Lemma 3.2. Almost surely in G(n,0.5) , every subset Va of m vertices contains 
an independent set of size k1 . 

We will return to the proof of the lemma shortly, but let us see first how it implies 
Theorem 3.1. Assume that a graph G on n vertices satisfies the conclusion of the 
lemma. We will prove then that X(G) < n/kl + m = (1 + 0(1))n/(2log2 n). To 
show this, we will act in a rather typical for existential coloring arguments way, 
coloring the graph G by excavation. As long as G contains at least m uncolored 
vertices, there exists an independent set I of size kl in G, all of whose vertices are 
still uncolored. We then color I by a fresh color and discard all of its vertices from 
the graph. Clearly this procedure is repeated at most n/k1 times. Once less than 
m vertices are left uncolored, we can color each one of them in a new and separate 
color, resulting in less than m additional colors. The total number of colors used 
by the above argument is less than n/kl + m, as promised. 
Of course, the above derivation was pretty easy, so the crux of the proof of Theorem 
3.1 lies in proving Lemma 3.2. In order to prove Lemma 3.2, fix a subset Va C V 
of cardinality IVai = m. The subgraph of G(n, 0.5), induced by Va, behaves like 
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a random graph G(m,0.5). Let Y be the number of independent sets of size kl 
inside Vo. Then 

E[Y] = (7) (~) m ~ n3 , 

due to the definition of k 1 . To prove the lemma it is enough to prove that 

1 
Pr[Y = 0] « C:J ' (3) 

as then by the simple Union bound almost surely every subset of size m in G( n, 0.5) 
contains an independent set of the required size. 
Notice that (3) is a typical large deviation statement - one needs to show that 
the probability that a random variable (Y) deviates from its expectation (E[Y] ~ 
n 3 ) by a large quantity (n3 ) is exponentially small. However, this task, rather 
standard and accessible by now, was very challenging fifteen years ago! The main 
contribution of Bollobas was first to switch from Y to another random variable 
Z, easier to tackle and such that the positivity of Z implies the positivity of 
Y, and then to provide an exponential bound for Pr[Z = 0], using martingales 
- a very novel by then tool for combinatorialists. Currently, there are at least 
three alternative proofs of Lemma 3.2, based on three different large deviation 
techniques - the one of Bollobas through martingales, a proof through the so called 
generalized Janson Inequality, and a proof using the Talagrand concentration of 
measure inequality. Since all three of them require some technical calculations, we 
prefer not to present any of them here, instead suggesting the reader to consult 
[5], where all three tools are discussed in great details. 

Bollobas' argument works also for smaller values of p(n) down to p(n) = n- a for a 
small positive constant a. Later, Luczak [37] was able to establish the asymptotic 
value ofthe chromatic number of G(n,p) for all values of p(n) down to p(n) ~ C In 
for a large enough constant C > 0: 

Theorem 3.3. There exists Co such that for every p = p(n) satisfying Coin :s: 
p :s: log-7 n a.s. in G(n,p) 

np < X(G) < np 
210g(np) - 2 log log(np) + 1 - - 210g(np) - 4010glog(np) 

Luczak's argument is quite challenging technically and relies heavily on the so 
called expose-and-merge approach invented by Matula [42]. We will not discuss it 
here. For future reference we summarize the above discussion by noting that the 
chromatic number of G(n,p) is almost surely (1 +o(l))n 10g2(1(1-p))/ (210g2 n) for 
a constant edge probability p, and (1 + o( 1) )np I (21n( np)) for C I n :s: p( n) :s: o( 1)), 
where the 0(1) term tends to 0 as np tends to infinity. 
The above described results of Bollobas and Luczak have settled the most impor­
tant problem in random graph coloring - the asymptotic value of the chromatic 
number of a random graph. Still many quite significant and attractive problems in 
this area remain unsolved, for example, the concentration of the chromatic num­
ber of random graphs ([45], [38], [2]), list coloring ([3], [29]' [33]), thresholds for 
non-k-colorability for a fixed value of k ~ 3 (see a recent survey of Molloy [43]), to 
mention just a few. And of course, there are many algorithmic problems related 
to random graph coloring, some of them to be addressed later in this survey. 
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4 The greedy algorithm for coloring random graphs 

The greedy algorithm, sometimes also called the first fit algorithm for reasons 
to become evident immediately, is probably the simplest imaginable algorithm 
for graph coloring. The greedy algorithm proceeds as follows: given a graph 
G = (V, E) on n vertices , one first fixes some order (V1' . . . ' vn ) of the vertices 
of G, and then scans the vertices of G according to the chosen order, each time 
coloring a current vertex Vi in the first available color , not used by any already 
colored neighbor Vj,j < i, of Vi. Of course, the resulting number of colors may 
depend not only on the graph G itself, but also on the chosen order of its vertices. 
A distinctive feature of the greedy algorithm is that it is essentially an online 
algorithm as the color of a vertex is determined by the edges from the vertex to 
already seen vertices, and once the color is chosen it will remain unchanged (see 
[27] for a survey on online graph coloring). This fact makes the analysis of the 
performance of the greedy algorithm on random graphs G( n, p) quite accessible, as 
we can generate the random graph as the algorithm proceeds, using the so called 
vertex exposure mechanism - once the algorithm reaches vertex i , a p-Bernoulli 
coin is flipped for each pair (j, i), 1 :S j < i, to decide whether this pair is an edge 
of G(n,p), and then a color of i is chosen based on the results of coin flips and a 
coloring of vertices 1, ... , i - 1. 

The greedy algorithm turns out to be quite successful for most graphs, using 
about twice as many colors as the chromatic number of a graph - a remarkable 
achievement taking into account its simplicity and also the hardness results for 
graph coloring mentioned above! 

Theorem 4.1. [16} Almost all graphs on n vertices are colored by the greedy 
algorithm in at most n / (log2 -310g210g2 n) colors. 

Proof. Let k = lJ 3 ~ J J. We assume that the greedy algorithm colors og2 n- og 2 og2 n 
the vertices of G according to their natural order 1, ... , n. Denote by Xg (G) the 
number of colors used by the greedy algorithm to color G. In the probability space 
G(n,0.5) define A to be the event "Vertex i is the first to get color k + 1". Then 
clearly the event "Xg(G) > k" is the union of the events A, 1 :S i :S n, which are 
pairwise disjoint, and thus: 

n n 

Pr[Xg(G) > kl = Pr[U Ail = I:Pr[Ail, 
i=l i=l 

and the theorem will follow if we will prove Pr[Ail = o(l/n) for all i. 

Consider vertex i of G. The probability Pr[Ail obviously depends only on the 
coloring of preceding vertices 1, ... , i - 1. Moreover, we can assume that exactly 
k colors have been used by the algorithm to color those vertices , for otherwise 
Pr[A;] = o. So we fix a k-coloring (C1 , ... , Ck) of {I, ... , i-I} and estimate 
the conditional probability Pr[Ai l(C1 , ... , Ck)]. In order to force vertex i to be 
colored in color k + 1 at least one edge should connect i with each of the color 
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classes C 1, ... , C k. We therefore get: 

Pr[A,[(G" ... , Gk )] J1 (1- Gt') <; (1- G) L:L, le'l/k), 

< (1- G)'r <,-(l)" 

3 
( 1 )log2 n-3log2 log2 n k k log2 n (1 (1)) I 2 

:::; e- "2 =e--n- =e- +0 ag2 n =o(l/n) , 

where the first inequality above follows from the convexity of 10g(1 - (1/2)X) for 
x> 0. 

Grimmett and McDiarmid also showed in [16] that the upper bound on the greedy 
algorithm from Theorem 4.1 is asymptotically tight - almost every graph in 
G(n,0.5) will be colored by at least (1 + o(l))n/ 10g2 n colors by the greedy algo­
rithm. Moreover, almost surely all color classes produced by the greedy algorithm 
have size at most (1 + 0(1)) 10g2 n. Another attractive feature of the greedy algo­
rithm is its extreme robustness when applied to random graphs, as shown by the 
following result of McDiarmid [39]: 

Theorem 4.2. Pr[Xg(G(n,0.5) > (1 + 5log2log2n/log2n)n/log2n] < l/nn. 
Therefore, almost every graph on n vertices is such that no matter which order of 
the vertices is chosen, the greedy algorithm uses fewer than 
(1 + 5log2log2 n/ log2 n)n/ log2 n colors. 

When the edge density becomes lower, the greedy algorithm becomes less com­
petitive. Pittel and Weishaar show in [44] that when applied in the probabil­
ity space G(n, c/n), the greedy algorithm almost surely outputs a coloring with 
(1 + 0(1)) log2log n colors, while the chromatic number of most of the graphs in 
this probability space is bounded from above by a constant C = C(c) (see, e.g., 
Theorem 3.3). As explained in [44], it is quite easy to see why the number of colors 
used by the greedy algorithm in G(n, c/n) is a.s. unbounded. To show this, define 
a sequence of trees Tk as follows: TI is a single vertex, and for k :::: 2 the tree Tk in 
obtained from Tk-I by joining each vertex of Tk- I with a new pendant vertex. A 
standard second moment argument shows that G(n, c/n) contains a.s. 8(n) con­
nected components isomorphic to Tk , for each fixed k. Observe that if the vertices 
of Tk are colored from "outside in", k colors will be required. As the graph a.s. has 
so many copies of Tk, at least one of them will a.s. be ordered in this adversarial 
way. One can however reach essentially the same approximation ratio 2 + o( 1) like 
in the dense case by a simple modification of the greedy algorithm as suggested 
by Shamir and Upfal in [46]. The algorithm of Shamir and Upfal proceeds in two 
phases. The first phase is the usual greedy algorithm as described above. In the 
second phase, called the correction phase in [46], a subgraph of G spanned by the 
set Vo of all vertices that received color higher than some predetermined quantity 
K(n,p) = (1 + o(l))np/ln(np) is considered. This set is then shown to be a.s. 
colorable by a breadth-first search in a bounded number of colors. 

Unfortunately, the greedy algorithm is not always as good as the typical behavior 
analysis suggests. It is quite easy to construct an example of a bipartite graph 
G on n vertices for which the greedy algorithm will use a linear in n number of 
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colors for a certain ordering of the vertices of G. Choosing an ordering of vertices 
at random does not necessarily help much, as Kucera shows in [35] that for every 
positive E > ° and all sufficiently large n there exists a graph G on n vertices with 
chromatic number at most nf, for which the greedy algorithm with a randomly 
chosen initial vertex ordering uses almost surely at least (1 - E)n/ log2 n colors. 
Let us return to the most basic case p = 0.5. We know already that almost 
surely in G(n, 0.5), Xg(G)/X(G) = 2 + 0(1). Is there a better on average coloring 
algorithm than the greedy coloring? Specifically, 

Research Problem 1. Does there exist a polynomial time algorithm which colors 
most of the graphs on n vertices in (1 - E)n/ log2 n colors, for some fixed E > O? 

This is certainly one of the major problems in algorithmic random graph color­
ing. It is instructive to observe that any such algorithm would produce also an 
independent set of size (1 + E') log2 n (a largest independent set in such a color­
ing). Therefore the coloring problem is closely related to a quarter century old 
question of Karp, who asked [26] for a polynomial time algorithm for finding an 
independent set of size (1 +E) log2 n in almost all graphs on n vertices. As we men­
tioned already, the greedy algorithm almost surely does not provide such a large 
set. Jerrum proved in [22] that the Metropolis algorithm, which in this case is a 
random walk on independent sets of the graph biased towards larger independent 
sets, also requires almost surely a super-polynomial time to reach an independent 
set of size (1 + E) log2 n. So apparently the problem of finding a large indepen­
dent set in a typical graph is hard algorithmically, the fact which has been used 
even for cryptographic purposes [23]. An interesting fact is that it follows from 
the above mentioned expose-and-merge technique of Matula that an algorithm for 
finding a.s . an independent set of size (1 + E) log2 n in G(n,0.5) can be used as a 
subroutine in an algorithm for coloring a typical graph in (1 - E')n/ log2 n colors. 
A marginal improvement over the greedy algorithm (Theorem 4.1) has been 
achieved by Krivelevich and Sudakov [31], who provided a randomized polynomial 
time algorithm that colors almost every graph on n vertices is n/(log2 n+cy'log2 n) 
colors for every positive constant c, thus outputting a coloring with color classes 
of average size log2 n + cy'log2 n, compared to log2 n - 8(1og log n) of the greedy 
algorithm. Again, the critical task here is to find an independent set of size 
log2 n + cVlog n. This is achieved in [31] by running the greedy algorithm for find­
ing an independent set I of size III = log2 n - 2cvlogn in the first n/2 vertices of 
the graph. The set U of non-neighbors of I in the second half of the graph has then 

almost surely about 22cVlog2 n vertices and contains inside an independent set h 
of size (1-0(1))2Iog21U1 = (1-0(1))4cy'log2 n , which can be found in polynomial 

time by checking exhaustively all (4CJ~~2 n) subsets of U of the appropriate size. 

The union of I and h forms a desired independent set . 
There is (at least) one reason to believe that it would be hard to break the log2 n + 
8( Vlog n) barrier. Going back to the expectation (1) of the number of independent 
sets of size k, we can easily check that f(k) is polynomially smaller than the total 
number of independent sets in G(n,0.5) only if k:::; log2n+8(Vlogn). This may 
indicate that finding independent sets of larger size may take superpolynomial 
time. Further discussion can be found in [31]. 
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5 Approximating the chromatic number 
in expected polynomial time 

As discussed above, the greedy algorithm is quite successful for most of graphs, 
providing a coloring that uses about twice as many colors as an optimal color­
ing. But there are some (very rare though) graphs for which the greedy coloring 
performs rather miserably. On the other hand, one cannot probably expect to 
design a coloring algorithm that beats significantly the trivial approximation ratio 
n for all graphs, due to the complexity results stated in Section 2. It is therefore 
desirable to provide a coloring algorithm with a guaranteed approximation ratio 
for all graphs on n vertices and with running time polynomial on average in n. 
We thus arrive naturally to the concept of algorithms with expected polynomial 
running time. 

Given an algorithm A whose domain is the set of all graphs on n vertices, and a 
probability distribution P[.] on the same set, the expected running time of A is de­
fined as Lc Pr[G]RA(G), where the sum runs over all graphs on n vertices, Pr[G] 
is the probability of G according to the chosen probability measure, and RA (G) 
is the running time of A on G. Thus, while looking for an algorithm A whose 
expected running time is polynomial, we can allow A to spend a superpolynomial 
time on some graphs on n vertices, but it should be efficient on average. 
Observe that if an algorithm A has expected polynomial running time with respect 
to the probability distribution P(·), then A is polynomial for almost all graphs 
according to P. Therefore, it is more difficult to develop algorithms with expected 
polynomial running time than algorithms that perform the same algorithmic task 
for almost all graphs. 
Obviously the problem is quite sensitive to the choice of the underlying probability 
distribution. In this section we concentrate on the case where the distribution is 
chosen to be G(n,p), the binomial random graph. There have been a few papers 
addressing different probability distributions, we will discuss some of them later. 

Krivelevich and Vu prove in [32] the following result on the existence of an ap­
proximate coloring algorithm with expected polynomial running time: 

Theorem 5.1. For any constant E > 0 the following holds. If the edge prob­
ability p(n) satisfies n- 1/2+€ ::; p(n) ::; 0.99, then there exists a deterministic 
coloring algorithm, approximating the chromatic number x( G) within a factor 
O( (np )1/2/ log n) and having polynomial expected running time over G( n, p). 

Thus in the most basic case p = 0.5 we get a coloring algorithm with approx­
imation ratio O( vn/ log n) - a considerable improvement over best known ap­
proximation algorithm for the worst case [19], whose approximation ratio is only 
O(n/polylog(n)). Note also that the approximation ratio decreases with the edge 
probability p(n). 
Before describing the basic idea of the algorithm of [32], we would like to say a few 
words about combinatorial ideas forming the core of its analysis. As is typically 
the case with developing algorithms whose expected running time is polynomial, 
we need to distinguish efficiently between "typical" graphs in the probability space 
G(n,p), for which it is relatively easy to provide a good approximation algorithm, 
and "non-typical" ones, which are rare but may be hard for approximating a 
desired quantity. As these rare and possibly hard graphs have an exponentially 
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small probability in G(n,p), this gives us a possibility to spend an exponential 
time on each of them. This in turn enables to approximate the chromatic number 
within the desired factor even for these graphs. 
A separation between typical and non-typical instances will be made based on the 
first eigenvalue of an auxiliary matrix, to be defined later. Then we will apply a 
large deviation result to show that this eigenvalue deviates from its expectation 
with exponentially small probability, and thus bad instances are indeed extremely 
rare. Thus our main tools will come from two seemingly unrelated fields - graph 
spectral techniques and large deviation inequalities. 
We now describe a proof of a somewhat weaker version of Theorem 5.1 for the 
case p = 0.5. Recall that according to Theorem 4.2 the probability that the 
greedy algorithm fails to color a graph in G(n,0.5) in 1 + o(I))nj log2 n colors is 
less than n-n. Therefore we can run the greedy algorithm, and then apply the 
exhaustive search for graphs colored by more than, say, 2nj log2 n colors. 

In order to show that the greedy coloring is within O( yIn) factor from an optimal 
coloring of a graph G, we need to bound from below the chromatic number of G. 
As x(G) 2 nja(G), it is enough to certify that a(G) = O(y'n). We thus need an 
efficiently computable graph parameter that bounds from above the independence 
number of G. Given a graph G = (V, E) with vertex set V = {I , ... , n} define an 
n-by-n matrix M = (mij) as follows: 

m .. _ { 1, if i,j are non-adjacent in G, 
'J - -1, otherwise , (4) 

Then M is a real symmetric matrix and has therefore n real eigenvalues .AI 2 
.A2 2 ... 2 .An. The connection between a( G) and the first eigenvalue .AI (M (G)) 
is given by the following lemma. 

Lemma 5.2. Let M = M(G) be as defined in (4). Then .A1(M) 2 a(G). 

Proof. Let k = a(G) . Then M contains a k by k block of all l 's, indexed by 
the vertices of an independent set of size k. It follows from interlacing (see, e.g., 
Chapter 31 of [51]) that .A1(M) 2 .A1(1k Xk) = k. 

(In fact, .A1(M(G)) is an upper bound not only for the independence number of 
G, but also for its Lovasz theta-function [36].) 
The spectrum of a real symmetric matrix can be efficiently calculated within any 
desired precision. So if we calculate .A1(M(G)) and see that .A1(M(G)) = O(y'n), 
then we have a certificate of the desired lower bound for x( G). 

What is a typical value of .A1(M(G))? Recall that G is distributed according to 
G(n,0.5), and therefore M(G) is a random symmetric matrix, each of its entries 
above the main diagonal is independently 1 or -1 with probability 0.5. This 
enables us to apply known results on eigenvalues of random symmetric matrices. 
Fiiredi and Koml6s proved in [14] that 

E[.A1(M)] = (1 + o(1))2y'n . 

This shows that typically .A1(M(G)) is of order yIn. 
Now we need to estimate the probability that .AI (M(G)) is significantly larger than 
its expectation. The desired estimate is provided by the following large deviation 
result from [32] (see also [4] for a more general result): 



184 Michael Krivelevich 

Lemma 5.3. Let M = (mij) be an n-by-n random symmetric matrix with all 
entries bounded by 1 in their absolute values. Then for all t > 0, 

Pr[>'1 (M) > E[A1 (M)] + t] ::; 2e-(Ho(1))t2 /32 . 

This lemma is proven by applying the Talagrand concentration of measure inequal­
ity, see [32], [4] for details of the proof. 
Plugging an estimate of Fiiredi and Koml6s on E[A1 (M)] in the above lemma we 
conclude that Pr[A1(M(G)) ;:::: 6y'n log n] < n-n. 
Now we have at hand all necessary ingredients to formulate our coloring algorithm 
and analyze its performance. 

Step 1. Run the greedy algorithm on G. Let C be the resulting coloring. If C 
uses more than 2n/ log2 n colors, go to Step 3; 
Step 2. Define M = M(G) according to (4) and compute A1(M). If A1(M) ::; 
6y'nlnn, output C; 
Step 3. Find an optimal coloring by the exhaustive search and output it. 

Let us verify that the above algorithm approximates X(G) within a factor of 
O(Jn/logn). If coloring C is output at Step 2, then ICI ::; 2n/log2n and 
X(G);:::: n/a(G);:::: n/A1(G);:::: O(Jn/logn), implying ICI/x(G) = O(Jn/logn). 
Of course, if we ever get to Step 3 of the algorithm, an optimal coloring is output. 
To estimate the expected running time, observe that Steps 1 and 2 take obviously 
a polynomial in n number of steps. The probability of getting to Step 3 is at 
most O( n -n) as follows from the above discussion. As the complexity of Step 3 is 
O(nnpoly(n)) the desired expected running time estimate follows. 
A more careful implementation of the same basic idea enables to shave off an extra 
logarithmic factor from the above described result. We refer the reader to [32] for 
details. 

Research Problem 2. Find a coloring algorithm with approximation ratio o( vn/ 
logn) and polynomial expected running time over the probability space G(n,0.5). 

Research Problem 3. Find coloring algorithms with good approximation ratios 
and polynomial expected running time in probability spaces G(n, n-a ) for a> 0.5. 

6 Deciding k-colorability in expected polynomial 
time 

In this section we continue our coverage of coloring algorithms with expected poly­
nomial running time in probability spaces G(n,p). The subject here is algorithms 
for deciding k-colorability. 
As stated in Section 2, deciding k-colorability in NP-complete for every fixed k ;:::: 3. 
Observe however that for absolute most of the graphs G on n vertices the answer 
to the question whether G is k-colorable is "No": 

Proposition 6.1. For every fixed positive integer k, the random graph G(n, 0.5) 
is non-k-colorable with probability 1 _ 2-e(n2). 
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Proof. If G has n vertices and is k-colorable then it contains an independent set 
of size at least n/k. The probability of the latter event in G(n,0.5) is at most: 

The above proposition indicates that it should be probably easy to decide k­
colorability quickly on average - the answer is "No" for vast majority of the graphs, 
and exceptional instances are very rare. And indeed, Wilf showed in [52] that 
the backtrack algorithm for deciding k-colorability in graphs on n vertices has 
a constant expected running time over G(n,0.5) as n approaches infinity. For 
instance, a backtrack search tree for 3-coloring a graph has an average of about 
197 nodes only! The backtrack search tree of a graph G with vertex set {I, ... , n} 
is the tree whose nodes are on levels 0, ... ,n, and in which there is a node on level 
i corresponding to every proper k-coloring of the sub graph of G induced by its 
first i vertices. A node v' at level i is connected by an edge to a node v" at level 
i + 1 if the colors of vertices 1, ... ,i are the same at v' and v". Level 0 contains a 
single root node, corresponding to the empty coloring. 
In fact, it is quite easy to see why there exists an algorithm for deciding k­
colorability in constant expected time. To show this, fix t = C(k)n edge disjoint 
copies K 1 , ... ,Kt of the complete graph Kk+l in the complete graph on n vertices, 
where C(k) is a large enough constant (this is of course feasible, as in fact 8(n2 ) 

such copies can be found). The probability of each copy Ki to appear in the ran-
( k+l) 

dom graph G(n, 0.5) is 2- 2 ,which is a constant. The appearance of a copy of 
Kk+l is G(n, 0.5) can serve as a certificate for non-k-colorability. Our algorithm 
scans chosen copies Ki looking for a clique on k+ 1 vertices. If such clique is found, 
the algorithm rejects the graph G. If no such copy is found, the algorithm decides 
k-colorability of G by performing the exhaustive search. The correctness of the 
above algorithm is immediate. To estimate the expected running time, observe 
the running time of the first phase is the truncated geometric distribution with 

( k+l) 
parameter p = 2- 2 = 8(1) and has therefore a constant expectation. The 
probability of ever getting to the second phase can be made much smaller than k n 

by choosing the constant C(k) large enough, and hence the expected number of 
steps spent at the second phase is 0(1). 
The problem becomes significantly harder as the edge probability p( n) decreases. 
Bender and Wilf proved [6] that in this case the backtrack algorithm has expected 
running time e8 (1/p), i.e., becomes exponential in n. Also, one can easily show 
that for every fixed k ::::: 3, if the edge probability p satisfies p(n) = 0(n-2/k), then 
a.s. every subgraph of G(n,p) with a bounded number of vertices is k-colorable, 
and thus one cannot hope to find a certificate for non-k-colorability by performing 
local search only. 
Here we present an algorithm from [30] for deciding k-colorability in expected 
polynomial time in G(n,p) for every fixed k ::::: 3, as long as p(n) ::::: G/n, where 
G = G(k) > 0 is a sufficiently large constant. Our algorithm can be immediately 
extended for larger values of p(n). Note that if C is sufficiently large, the random 
graph G(n,p) is not k-colorable with probability 1 - e-8 (n). Therefore the algo­
rithm still rejects most of the graphs from G(n,p). In order to be able to reject an 
input graph, the algorithm needs some graph parameter whose value can serve as 
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a certificate for non-k-colorability. This parameter should be computable in poly­
nomial time. The parameter we will use in our algorithm is the so called vector 
chromatic number of a graph [24]. Besides being computable in polynomial time, 
the vector chromatic number turns out to be extremely robust, and the probability 
that its value is small is exponentially small in n. This will enable us to invest 
exponential time in "exceptional" graphs, i.e. those with small vector chromatic 
number. 
Let us now provide necessary background on the vector chromatic number. This 
concept has been introduced by Karger, Motwani and Sudan in [24]. Suppose we 
are given a graph G = (V, E) with vertex set V = {I, ... , n}. A vector k-coloring 
of G is an assignment of unit vectors Vi E Rn to the vertices of G so that for every 
edge (i,j) E E(G) the standard scalar product of the corresponding vectors Vi, Vj 
satisfies the inequality (Vi, Vj) ::::; - k~ 1. The graph G is called vector k-colorable if 
such a vector k-coloring exists. Finally, the vector chromatic number of G, which 
we denote by VX( G), is the minimal real k 2: 1 for which G is vector k-colorable. 
Karger, Motwani and Sudan established the connection between the usual chro­
matic number of a graph, X(G), and its vector chromatic number, VX(G). Below 
we repeat some of their arguments and conclusions. 

Lemma 6.2. If x(G) = k, then G is vector k-colorable. Thus, VX(G) ::::; X(G). 

Proof. The statement will follow easily from the proposition below. 

Proposition 6.3. For every k ::::; n+ 1, there exists a family {VI, ... , vd of k unit 
vectors is Rn satisfying (Vi, V j) = - k~ 1 for every 1 ::::; i i= j ::::; k. 

Proof. The existence of such a family can be proven by induction on n, as in 
[24]. Here we present an alternative proof. 
Clearly it is enough to prove the proposition for the case k = n + 1 (if k < n + 1, 
find such a family in R k - 1 and complete the found vectors by zeroes in the last 
n - k+ 1 coordinates to get the desired family). Define an n-by-n matrix A = (aij) 
by setting aii = 1 for 1 ::::; i ::::; n, and aij = -lin for alII::::; i i= j ::::; n. Then A is 
a symmetric positive definite matrix (the eigenvalues of A are Al = ... = An-l = 
1 + lin, An = lin). Therefore it follows from standard linear algebra results 
that there exists a family {VI, ... , vn} of n vectors in Rn so that aij = (Vi, Vj) for 
all 1 ::::; i, j ::::; n. In particular, (Vi, Vi) = aii = 1, so all members of this family 
are unit vectors. Also, (Vi, Vj) = aij = -1 In for all 1 ::::; i i= j ::::; n. Set now 
Vn+l = -(VI + ... + vn ). Then (Vn+l,Vn+I) = (VI + ... + Vn ,Vl + ... + vn) = 
n·1 + 2(;)(-1In) = 1, and V n +l is a unit vector as well. Also, for alII::::; i::::; n, 
(Vi, Vn+d = (Vi, -Vl-·· .-Vn ) = -1+(n-1)ln = -lin. Hence, {VI, ... , Vn , vn+d 
forms the desired family. 

Returning to the proof ofthe lemma, we argue as follows. Let V = C1 U .. . uCk be a 
k-coloring of G. Based on the above proposition, we can find a family {VI, ... ,Vk} 
of unit vectors in R n so that (Vi,Vj) = -l/(k - 1) for alII::::; i i= j ::::; k. Now, 
for each color class Ci , every vertex from Ci gets the vector Vi assigned to it. The 
obtained assignment is clearly a vector k-coloring of G. 

The most important algorithmic feature of the vector chromatic number, noticed 
by Karger et al., is that it is polynomially computable. Formally, if a graph G 
on n vertices is vector k-colorable, then a vector (k + E)-coloring of the graph 
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can be constructed in time polynomial in k, n and log~. This is due to the fact 
that vector chromatic number can be represented as a solution of a Semidefinite 
Program and as such is polynomial time computable (see [17]). 
Another concept, needed for the analysis of our algorithm and borrowed again 
from [24], is that of a semi-coloring. Given a graph G = (V, E) on n vertices and 
an integer 1 ::::: t ::::: n, a semi-coloring of G in t colors is a family (G1 , ... , Gt ), 
where each Gi <;;; V (G) is an independent set in G, the subsets Gi are pairwise 
disjoint, and I U~=1 Gil 2 ~. 

Lemma 6.4. [241 For any k 2 3, there exist c = c(k) > 0, no = no(k) > 0 so 
that the following holds. For any n > no and for any graph G on n vertices and 
with m > n edges, if vx( G) ::::: k then there exists a semi-coloring of G in t colors, 
where 

(m) k;;:2 I 1/2 (m) t<c - n -. - n n 

Thus the assumption that the vector chromatic number of G is small enables to 
claim the existence of many pairwise disjoint and large on average independent 
sets in G. 
Now we formulate an algorithm for deciding k-colorability. As the reader will see 
immediately, the algorithm is extremely simple and in a sense just calculates the 
vector chromatic number of an input graph. 

Input: An integer k 2 3 and a graph G = (V, E) on n vertices. 

Step 1. Calculate the vector chromatic number VX(G) of the input graph G; 

Step 2. If VX(G) > k, output "G is not k-colorable"; 

Step 3. Otherwise, check exhaustively all kn potential k-colorings of G. If a 
proper k-coloring of G is found, output "G is k-colorable", else output "G is 
not k-colorable". 

The correctness of the algorithm is immediate from Lemma 6.2. Let us see what 
its expected running time is polynomial in G(n, Gin) for G = G(k) large enough. 
Steps 1 and 2 of the algorithm take polynomial time. Notice that we get to Step 3 
only if VX( G) ::::: k. At Step 3 we check exhaustively all kn potential k-colorings of 
G, and checking each potential coloring costs us time polynomial in n. Therefore 
it takes at most knpoly(n) time to perform Step 3. Thus it is enough to prove the 
following lemma: 

Lemma 6.5. If G = G(k) > 0 is large enough, and G is distributed according to 
G(n,p) with p = Gin, then 

Pr[vx(G) ::::: k] ::::: k-n . 

Proof. The proof is based on the following technical propositions about the 
probability space G(n,p). 

Proposition 6.6. If G > 0 is large enough then 
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Proposition 6.7. For every fixed c > 0, k ~ 3, if C > 0 is large enough then the 
following is true in G(n,p) with p = C /n. Let t = c(2C) k;;2 lnl/2(2C). Then 

Pr[G has a semi-coloring in t colors] = o(k-n) . 

Assuming the above two propositions hold, we prove now Lemma 6.5. By Propo­
sition 6.6 we may assume that G has at most 2n2p = 2Cn edges. If the vector 
chromatic number of such a graph is at most k, then by Proposition 6.4 G has 
a semi-coloring in t = c(m/n)(k-2)/k) lnl / 2(m/n) :::; c(2C)(k-2)/k lnl/2(2C) colors. 
However, by Proposition 6.7 this happens in G(n,p) with probability o(k-n ). 
Both Propositions 6.6 and 6.7 are proven by straightforward calculations, quite 
standard for the probability space G(n,p). We omit the details here, referring the 
reader to [30]. 

Research Problem 4. Find an algorithm for deciding k-colorability whose ex­
pected running time is polynomial over G(n,p) for any value of the edge probability 
p = p(n). 

Note that if p(n) :::; c/n with c = c(k) > 0 sufficiently small, then G(n,p) is k­
colorable almost surely (see, e.g. [43]), and the algorithm should thus accept most 
of the input graphs. The problem becomes especially challenging when p( n) is close 
to the threshold probability for non-k-colorability. This is due to the widespread 
belief that typical instances at the non-colorability threshold are computationally 
hard (see, e.g., [10] for a relevant discussion). 

Research Problem 5. Find an algorithm for deciding k-colorability in expected 
polynomial time in G(n,p) when the parameter k is a growing function of n: k = 
k(n). 

The apparent difficulty here lies in the fact that the vector chromatic number 
seems no longer be useful as Lemma 6.4 degenerates to a trivial statement already 
for k » log n. 

7 Coloring random k-colorable graphs 

The somewhat contradictory title of this section should not confuse the reader -
of course, a k-coloring of the input graph is not known to an algorithm, and the 
task it to recover it or to find some k-coloring. 

We should first define models or probability spaces we will be working with. The 
first one, which we denote by G( n, p, k) is formed as follows. The vertex set is 
a union of k disjoint subsets of VI, ... ,Vk of size n each, and for every pair of 
vertices u E \Ii,v E Vj,i i= j, (u,v) is an edge of G(n,p,k) independently and 
with probability p = p( n). The second model G s (n, p, k), usually called the semi­
random model is more complicated - first a random graph G is generated according 
to the distribution G( n, p, k), and then the adversary can for every non-edge (u, v) 
of G, where u and v belong to different color classes, add this pair to the set of 
edges. Adding extra edges to the otherwise random graph G(n,p, k) can spoil its 
random structure, making the task of recovering its k-coloring significantly more 
difficult. Of course, the resulting graphs in both models are guaranteed to be 
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k-colorable with proper coloring (VI, ... , Vk), but this k-coloring is not necessarily 
unique, and in fact the resulting graph can even have chromatic number smaller 
than k. It should be clear to the reader that those two models are not the most 
general ones, and quite a few other models of random k-colorable graphs exist 
(see, e.g., Section 1 of [49] for a detailed discussion). In this survey we will mostly 
restrict ourselves with the case of a constant k ?: 3, although some of the results 
we will describe work for growing k = k(n) as well. 
Just as in the previous sections, we will consider here two algorithmic tasks. The 
first task is to provide an algorithm that k-colors in polynomial time almost all 
graphs in a chosen probability space. The second, more challenging task is to give 
a k-coloring algorithm with expected polynomial running time. 
Let us start with the random model G(n,p, k) and the edge probability p = 0.5. 
This value of the edge probability is the most natural choice as most k-colorable 
graphs are easily seen to have a quadratic number of edges. Turner [50] proposed 
the following very simple algorithm for finding a.s. a k-coloring in this case. The 
algorithm of Turner starts with finding a clique K = {VI, ... , Vk} of size k in G and 
coloring its vertices arbitrary in k distinct colors. Then the algorithm repeatedly 
searches for an uncolored vertex V that has neighbors in exactly k - 1 colors, and 
colors such a vertex in a unique available color. It is rather easy to see that for a 
constant k such a vertex can almost surely be found at each step. Turner proves 
in fact that the above algorithm works as long as the number of colors k satisfies 
k :::; (1 - E) log2 n. The result of Turner has been strengthened by Dyer and Frieze 
[11], who proposed an algorithm for finding a k-coloring in G(n, 0.5, k) in O(n2) 
expected time. As the number of edges in G(n, 0.5, k) is almost surely quadratic 
in n, the algorithm of Dyer and Frieze colors this random graph in linear in the 
number of edges expected time. 

An equally simple algorithm has been proposed by Kucera [34] for the case of 
k :::; en/ log n. (It could be helpful for the reader to note here that a formal 
statement of Kucera's result in his paper appears different; this is due to the fact 
that he considers the probability space of k-colorable graphs on n vertices, so if 
k = 8( yln/ log n) in his result, this approximately translates to 8(n/ logn) colors 
in our setting). Observe that if vertices u, v belong to the same color class Vi of 
G(n,p, k), then the number of their common neighbors is binomially distributed 
with parameters (k - 1)n,p2), while if u and v come from distinct color classes 
u E Vi, v E Vi, i # j, the number of their common neighbors is again binomially 
distributed, but this time with parameters (k - 2), n,p2). Therefore we expect a 
pair of vertices in the same color class to have more common neighbors than a pair 
from different color classes. Using standard bounds on the tails of the binomial 
distribution, one can easily show that for the case p = 0.5, k :::; cn/logn, almost 
surely the number of common neighbors of any two vertices in the same color class 
is strictly larger than the number of common neighbors in different color classes. 
We can thus use the number of common neighbors to classify vertices into the 
same of different color classes. Technical details of the proof can be easily filled or 
alternatively found in [34]. 

Research Problem 6. Find an algorithm that almost surely k-colors a random 
graph G( n, 0.5, k) for k » n. 

However, as the edge probability p = p( n) decreases, it becomes harder and harder 
to find a k-coloring in G( n, p, k) even for fixed k. This should not be surprising -
the more random edges we have, the more evident becomes the prefixed coloring 
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scheme. Still, algorithms are known even for very sparse random graphs. The best 
achievement belongs to Alon and Kahale [1], who gave an algorithm for k-coloring 
G(n,p,k) for p 2: Gin, where G = c(k) is a large enough constant. Notice that if 
p = Gin, then the random graph has typically only a linear in n number of edges, 
and a linear number of vertices are isolated. 
Let us describe briefly the main idea of the algorithm of [1] for the case of k = 3 
colors. Denote d = pn, then d is the expected number of neighbors of every 
vertex v E Vi in every other color class. Let us assume for simplicity that every 
vertex v has indeed exactly d neighbors in every other color class in G. Consider 
the adjacency matrix A = A( G) of G. Let Al 2: ... 2: A3n-1 2: A3n be the 
eigenvalues of A, and e1, ... , e3n-1, e3n be the corresponding orthonormal basis 
of eigenvectors. The largest eigenvalue of A is then Al = d, and the spectrum of 
A is in the interval [-d, d]. Let F be the 2-dimensional subspace of all vectors 
x = (xv: v E V) that are constant on every color class, and whose sum is zero: 
EVEV XV = o. A simple calculation shows that any non-zero vector from F is an 
eigenvector of A with eigenvalue -d. One can also show that almost surely the 
multiplicity of the eigenvalue -d is two, and thus F is in fact the eigenspace of 
-d. Therefore any linear combination t of the vectors e3n-1 and e3n (both can 
be efficiently computed) is constant on every color class. Now we find a non-zero 
linear combination t of e3n-1 and e3n, whose median is zero, that is, the numbers 
of positive and negative components of t both do not exceed 3n/2. (It is easy to see 
that such a combination always exists and can be found efficiently.) Normalizing 
such t to have it with lz-norm y2ii, we get a vector t' whose coordinates take 
values 0,1 or -1 depending on the color class. Defining now 

VI = {v E V : t~ = O} ; 
V2 = {VEV:t~=l}; 
V3 = {v E V : t~ = -I} , 

we get a proper coloring of G in three colors. The real algorithm of Alon and 
Kahale is of course much more complicated, it starts from defining an approximate 
coloring (VI, V2 , V3 ) according to the last two eigenvectors e3n-1, e3n as described 
above, and then refines it to get a proper coloring. 

Very recently, McSherry [40] described a very general spectral algorithm, appli­
cable to several partitioning problems in random graphs. This algorithm differs 
significantly from the one of Alon and Kahale, and when applied to the k-coloring 
problem works for the edge probability p(n) down to p(n) 2: clog3 (n)ln. 

Research Problem 7. Find an algorithm that k-colors almost every graph in 
G(n, cln, k) for a fixed k 2: 3, for all values of the constant c > 0. 

If the constant c in the above problem is small enough, the random graph 
G(n, cln, k) almost surely does not contain a subgraph with minimal degree k 
and hence can be easily colored by a greedy-type algorithm. The problem is most 
challenging for moderate values of c. 

The expected time version of the problem has been considered by Subramanian in 
[48], who proposed a k-coloring algorithm with expected running time polynomial 
in n as long as p(n) 2: n-a and a < 3/4. It would be interesting to obtain 
coloring algorithms with polynomial expected time for smaller values of the edge 
probability p(n). 
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Let us now switch to the semi-random model Gs(n,p, k). This model has been 
considered by Blum and Spencer [7], who applied the so-called forced coloring ap­
proach. To explain this approach, assume that vertices u, v of G are fully connected 
to a common clique of size k -1. Then every proper k-coloring of G should put u, v 
in the same color class. Blum and Spencer implemented this approach as follows: 
(a) Given a graph G = (V, E), define a new graph G' = (V, F) where (u, v) E F 
if u and v are both adjacent to a common (k - 1 )-clique; (b) Find all connected 
components of G'. If G' contains exactly k connected components, then they coin­
cide with color classes of the original graph G. Returning to the probability space 
Gs(n,p, k), observe that adding edges to the random graph G rv G(n,p, k) can 
only add edges in the corresponding auxiliary graph G', and hence it is enough to 
show that already in G(n,p, k) almost surely the graph G' has exactly k connected 
components. The expected number of copies of Kk+l - e becomes linear in n for 

2k 
p( n) = n (k 1)(k+2) , and Blum and Spencer were able to show that increasing this 
probability a bit (say, by factor n E for any E > 0) suffices to get almost surely 
k connected components in G'. Later, Subramanian, Fiirer and Veni Madhavan 
[49] extended the result of Blum and Spencer by giving a k-coloring algorithm for 
Gs(n,p, k) for the same range of edge probabilities. 
The best result for the semi-random coloring problem has been obtained by Feige 
and Kilian [13]: 

Theorem 7.1. For every constant k, there is a polynomial time algorithm that k­
colors almost graphs in the probability space Gs(n,p, k) for p(n) ::::: (1 + E)k In nln. 

Feige and Kilian observed also that the above result is close to optimal, as given 
by the next theorem: 

Theorem 7.2. Let E > 0, k ::::: 3 be constants and let p(n) ::; (1 - E) In nln. 
The unless NP ~ BPP, every random polynomial time algorithm will fail almost 
surely to k-color a semi-random graph from Gs(n, k,p). 

We do not intend to cover a rather complicated algorithm of Feige and Kilian 
here. Very briefly, it starts by finding a large independent set in G s (n, p, k), using 
Semidefinite Programming in the spirit of Lemma 6.4. This independent set I is 
shown to belong almost entirely to one of the color classes Vi. Then I is purified 
to get rid of the vertices outside Vi, and then remaining vertices from Vi are found 
to recover one color class completely; the algorithm then proceeds to recovering 
the next color class and so on. 
Finally we note that a random graph G(n,p, k) can have in fact chromatic number 
less than k. Subramanian in [47] provides algorithms that color G(n,p, k) and 
Gs(n,p, k) in minimal possible number of colors in expected polynomial time, 
as long as p(n) ::::: n-'Y(k)+€ for the random model and p(n) ::::: n - a(k)+E for the 

semi-random model, where ,(k) = k2~%+2 and a(k) = (k-l)(k+2). 
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A Sharp Threshold for a Non-monotone 
Digraph Property 

Jean-Marie Le Bars 

ABSTRACT: We define a non-monotone digraph property TOUR1, a variant 
of the digraph property KERNEL, which refines the notion of maximal tourna­
ment. First we prove that there is a constant 0 < a < 1 such that TOURl is 
asymptotically almost surely true in random digraphs with constant arc probabil­
ity p ~ a and asymptotically almost surely false in random digraphs with constant 
arc probability p > a. Then we concentrate our study on random digraphs with 
arc probability close to a and we obtain a sharp threshold. 

1 Introduction 

The study of random digraphs began with the fundamental paper by Erdos and 
R€myi [6] where they studied the asymptotic probability of graph properties over 
random graphs with constant edge probability and gave applications of proba­
bilistic method in combinatorics. Several books give a very complete presentation 
of this area, such that the books Random graphs of Bollobas [2], The Probabilis­
tic Method of Alon and Spencer [1] and Random graphs of Janson, Luczak and 
Rucinski [9]. Studies may be conducted for digraphs. Let 1i(p(n)) be the set of 
digraphs with n vertices for which any pair (a, b) of vertices gives rise to an arc 
with probability p(n). Note that p = ! leads to the uniform distribution over 
digraphs. Let P be some digraph property. One denote by p,l}, (P) the probability 
that a digraph H from 1i(p(n)) satisfies P. The limit of p,l},(P) - if it exists - is 
denoted by p,P(P) and is called the asymptotic probability of P on 1i(p(n)). We 
use the notations P,n(P) and p,(P) for the uniform distribution. We will say that 
a digraph property P is asymptotically almost surely true when p,P(P) = 1 and 
asymptotically almost surely false when p,P(P) = O. In many papers on random 
structures the phrase "almost surely" is used but we prefer the phrase "asymp­
totically almost surely" (abbreviated a.a.s.) to avoid confusions (this notation is 
choosen by Janson, Luczak and Rucinski in [9]). 
The study of 0-1 laws give a well-known interaction between asymptotic proba­
bilities and logic. Let p = p( n) a fixed function. Consider the probability space 
1i(p(n)) and a class of properties C. If each P in C is either a.a.s true (p,P(P) = 1) 
or a.a.s false (p,P(P) = 0), one has a 0-1 law for C in 1i(p(n)). In many studies, C 
is the class of properties expressible in a logic. 
In the studies of 0-1 laws, we fix the sequence p = p( n) and we consider the asymp­
totic probability of a class of properties on random graphs with edge probability p. 
In most of the problems [2, 1, 9], we give a property P and we study the asymp­
totic behavior of the probability that a random graph has P, where p = p(n) 
varies. This is the case of the studies of threshold functions. The definitions of a 
threshold, a coarse threshold and a sharp threshold are usually made for mono­
tones properties. Let P be a monotone property. Assume that P is an increasing 
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property. A sequence fJ = fJ( n) is called a threshold if for every sequence P = p( n) 

pP(P) = 0 if P = o(fJ), 
= 1 if fJ = o(p). 

Furthermore, a threshold fJ( n) is called a sharp threshold if 

pP(P) = 0 if P ~ (1 - 7])jj(n) , 
= 1 if P :::: (1 + 7])fJ(n) 

for every 7] > O. For any i E [0, 1], denote by Pi = Pi (n) a sequence such that the 
f.LPi(P) = i. Let 0 < c < !, we will denote by ~(c) the term Pl-c:(n) - pc:(n). It 
is already checked that the existence of a sharp threshold is equivalent to ~(c) = 
o(fJ( n)). Bollobas and Thomason proved in the existence ofthreshold functions for 
all monotone set properties [3]. Friedgut and Kalai [7] gave a method to prove the 
existence of a sharp threshold for some monotones properties. For non-monotones 
properties one adopts a local version of the definition of a threshold. On the 
opposite of monotone properties, a non-monotone have not necessary exactly on 
threshold, it may have 0 or several thresholds. Besides, the thresholds fJ = fJ( n) 
of monotones properties satisfies fJ(n) = 0(1). Our purpose is to study thresholds 
fJ(n) of non-monotone properties which satisfy fJ(n) = 0:+0(1), for a fixed a E]O, 1[. 
The definition above is not interesting since there exists no sequence P such that 
fJ = o(p). We propose a more restricted definition of a threshold: let fJ(n) = 0:+0(1) 
and P be a non-monotone property. fJ(n) will be called a threshold ofP if it satisfies 

f.LP(P) = i if P < a + c 
= j if P > a + c, 

for every fixed c > 0, where (i,j) is (0,1) or (1,0). Moreover, fJ(n) will be a sharp 
threshold if it satisfies ~(c) = 0(1). 
We introduce now some properties which are of the utmost interest from the 
point of view of asymptotic probabilities. First, we consider the digraph property 
KERNEL, studied in various areas. Given a directed graph H = (V, A), a kernel 
U of H is a nonempty subset of V that satisfies the following 

- for any (a, b) E U2 , (a, b) tt A (U is a stable set). 
- for any a tt u, 3b E U, (a, b) E A (U is a dominating set). 

H has the property KERNEL if it has at least one kernel. This property has 
been shown NP-complete by V. Chvatal [4, 5]. Fernandez de la Vega [8] and 
Tomescu [14] obtained independently the result that the property KERNEL is 
a.a.s true over random digraphs from H(p), for every fixed p E]O, 1[. Before their 
result, there was no insight that the property was a.a.s true. This result comes 
from a frail balance between stability and dominance, the two parts of the property 
KERNEL. Indeed the truth could have been different if the ratio of this two parts 
have been slightly different. Our idea was to change this ratio in order to break 
this balance. Kernel properties provide the best counterexamples of 0-1 laws in 
fragments of monadic existential second-order logic. In [11, 12] we consider such 
a variant -namely KERNEL2- which has no asymptotic probability. KERNEL2 
is expressible in a small fragment of the logic above. It involves several types of 
arcs that change the ratio between stability and dominance. Recently we improve 
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this result by proving that the 0-1 law fails for frame satisfiability of propositional 
modal logic, a very small fragment of the logic above [13]. It is established that 
the property KERNEL and its variants playa central role for the failure of 0-1 
law for the fragments of the monadic second-order logic (see the survey of Kolaitis 
and Vardi [10]). 
We define now a variant of the KERNEL. Given a directed graph H = (V, A), a 
tournament 1 U of H is a nonempty subset of V that satisfies the following 

- for any (a,b) E U2 , (a,b) E U and (b,a) tJ. U 
or (a, b) tJ. U and (b, a) E U (U is a tournament). 
- for any a tJ. U, 3b E U, (a, b) E A and (b, a) E A (U is neutralized). 

H satisfies the property TOUR1 if it has at least one tournamentl. 
The main result of this paper is the following: there is a constant 0 < a < 1 
such that TOUR1 has a sharp threshold. As we did to get counterexamples of 
0-1 laws, we use the well-known first and second moment method to compute the 
asymptotic probabilities. We present before some results for KERNEL that we 
need to adapt for the property TOURl. 

2 The digraph property KERNEL 

Given a directed graph H = (V, A), recall that a kernel U of H is a nonempty 
subset of V that satisfies the following 

- for any (a,b) E U2 , (a,b) tJ. A (U is a stable set), 
- for any a tJ. U, 3b E U, (a, b) E A (U is a dominating set) 

and H has the property KERNEL if it has at least one kernel. 

2.1 Random variables 

Let P be one of the properties stable set (stable), dominating set (dom) and kernel 
(K) applied to subsets of V. Let r E {I, ... , n}. We define (elementary) random 
variables X;:'p, for any subset U of Vn of cardinality r, X;:'u = 1 if the property P 
holds for U and 0 otherwise. We denote by X;: the random variable equal to the 
number of subsets U of order r satisfying property P. With the above definition, 
it is obvious that the random variables X:,trjble and X~,um are mutallY independent, 
since they involve two disjoint sets of arcs. Furthermore, the properties in concern 
are monotone; each subset of a stable set is also a stable set, that is to say 

Pr (Ur '2:r [x:!able > 0]) = Pr (x:table > 0) 

and each superset of a dominating set is also a dominating set, that is to say 

Pr ( Ur , <r [x;,om > 0]) = Pr (x~om > 0) 

. For the computations, we use the following asymptotic notations: f(n) = 
O(g(n)) iff there are two positive constants c and N such that If(n)1 ::; clg(n)1 for 
all n ~ N, f(n) = o(g(n)) iff limn--->+ool ~t~? I = 0 and f(n) = 8(g(n)) iff there are 
three positive constants Cl, C2 and N such that cllg(n)1 ::; If(n)1 ::; c2Ig(n)l, for 
all n ~ N. 
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2.2 First results 

Tomescu and Fernandez de la Vega independently obtained very close results: 

Theorem 2.1. (Tomescu, [14]) 
Let H E H(n, ~) and (3 = log2 n - log21og2 n. There exist two reals kl and k2' 

where kl ~ 1.43 and k2 ~ 2.11, such that for every c > 0, 

1. there is a.a.s. a kernel of order r in H for every natural number r with 
(3 - kl + c < r < (3 + k2 - c; 

2. there is a.a.s. no kernel of order < (3 - kl - c or> (3 + k2 + c. 

Moreover, the number K(H) of kernels of H satisfies 

nO.9l3+o(l) < K(H) < nHo(l) as n -; +00. 

Theorem 2.2. (Fernandez de la Vega, [8]) 
For any fixed p, HE H(p(n)) has a.a.s. a kernel of order 1(31 for (3 = 10gb n-

10gb 10gb n, where b = l~P. 

2.3 Tools: first and second moment methods 

Let r = r( n) be a sequence of positive integers. Let U be a subset of Vn , we denote 
by K applied to U the property that U is a kernel. 

E[X~]= L E[X~u]= (~) Pr(UrisaK)= (~)pr(r;l), 
ucVn,lUl=r 

where Ur C Vn denotes the set {O, ... , r - I}. 

On one hand, if the sequence r(n) satisfies lim E[X~] = 0, by using the first 
n--->+oo 

moment method Pr (X;! > 0) :S E [X;!J, we conclude limn--->+oo Pr (X;! > 0) = o. 
On the other hand, if the sequence r(n) satisfies 

E [(X~?] - E [X;!j2 
lim ----''-'-----'----'---:-'------:c:-:-=-=----'---=---- = 0, 

n--->+oo E [XfJ2 

by using the second moment method (Chebychev's inequality), 

Pr (XK = 0) < E [(X~)2]_ E [X~j2 
r - E [XfJ2 ' 

this implies 
lim Pr (X~ > 0) = 1. 

n--++OCl 

It is possible to extend the above theorems as follows 

Theorem 2.3. Let p E]O, 1[, H E H(p(n)) and (3 = 10gb n-logb 10gb n. There exist 
two sequence of reals min(n,p) and Max(n,p) such that min(n,p) < Max(n,p) 
andmin(n,p) = (3-kl and Max(n,p) = (3+k2, where kl = kl(P) and k2 = k2(P) 
only depend on p so that the interval I(3 = [(3 - kl(p),(3 + k2(p)] satisfies: 
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1. there is a.a.s. a kernel of order r in H for every natural number r with 
f3 - kl + E < r < f3 + k2 - E; 

2. there is a.a.s. no kernel of order < f3 - kl - E or> f3 + k2 + E. 

2.4 Steps of the proof of Theorem 2.3 

From now on, we will use the symbols nand p to denote respectively a natural 
number and a real E]O,I[ and b still equals l~P' Then f3(n) denotes the real 
10gb n - 10gb 10gb n. 

Definition 2.4. Let r = r(n) be a sequence, we will denote by c(n, r(n)) the 
unique real c which satisfies 

n = eC r(n) br(n). 

Definition 2.5. Denote by f and g lR into lR the functions defined by f(c) 
c + 1 + In band g(c) = _ec + c + 1 + Inb. 

Definition 2.6. The definition of min( n, p) and M ax( n, p) require a study of the 
function g. Since g' (c) = 0 iff c = 0 and g is strictly decreasing for c > 0 and 
strictly increasing for c < 0, the maximum of the function is g(O) = In b. Thus 
there are only two reals 0 < CMax < Cmin, such that g(Cmin) = g(CMax) = O. 
We denote by M ax( n, p) and min( n, p) the sequences of reals defined by n = 
eCrnin minbmin and n = eCMax Max bMax . 

Observe that Cmin and CMax do not depend upon n, Claim 2.5 implies that the 
interval [min, Max] contains a finite number of natural numbers. Let m( n) de­
fined by m(n) = ff3(n)l if g(n,c(ff3(n)l)) > g(n,c(lf3(n)J)) and m(n) = lf3(n)J, 
otherwise. In other words, the maximum of the restriction of g on natural numbers 
is reached by c(n, m(n)). 

Let m' (n) denote the sequence l i m( n) J . 

Definition 2.7. An m-sequence r is a sequence such that m'(n) :::; r(n) :::; 2 m(n), 
for any nEw. 

From now on, we denote by r = r(n) a m-sequence and by c(n, r(n)) the real c 
which satisfies n = eC r( n) br(n). 
The proof consists of several steps which requires the following lemmas: 

Lemma 2.8. There is a.a.s. no kernel of order less than or equal to m'(n). 

Lemma 2.9. Let m' = m'(n) be the sequence m'(n) = li m(n)J, for any nEw. 
There is a.a.s. no kernels of order r, where m'(n) < r < min(n,p). 

Lemma 2.10. There is a.a.s. no kernels of order strictly greater than Max. 

Lemma 2.11. Let r be a natural number in I{3. There is a.a.s. a kernel of order 
r. 
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Let pstable(r), pdom(r, v) and pK(r)) be the probabilities that a subset of Vn 
of order r will be respectively a stable set, a dominating set over a subset of 
Vn of order v and a kernel. It is easily seen that we have pstable(r) = b-r(r- l) 
and pdom(r, v) = (1 - b-rt. Since the events "Ur is a stable set" and "Ur is a 
dominating set" are independent, we have pK(r) = b-r(r-l) (1 - b-r)n-r. 
It follows that 

and 

Hence 

E[X::l = (~) b-r(r-l) (1- b-r )n-r. 

Lemmas 2.8,2.9,2.10 require the following claims: 

Claim 2.1. 
( n) =e(nrr-r). 

r Vr 
Claim 2.2. The expectation of the number of stable sets of order r satisfies 
E [X;tablel = e(e r;»). 

Claim 2.3. The probability that a subset of V of order r will be a dominating 
set satisfies pdom(r, n - r) = (1 + 0(1)) e-r e C

• 

Claim 2.4. The expectation of the number of kernels of order r satisfies 

er g(c) 

E [X::l = e( Vr ). 

Claim 2.5. Let r + 1 denote the sequence r(n) + 1, then 

c(n, r(n) + 1) = c(n, r(n)) -lnb + 0(1). 

2.5 The use of the second moment method 

We prove in this part Lemma 2.11. Assume that r is a sequence r = m + k, where 
k is a fixed integer k. We adapt with some modifications Fernandez de la Vega's 
proof which establishes this result for r = 1.81. 
By Claim 2.5, 

~b ~b -2 - k lnb+o(l)::; c(n,m)::; 2 - klnb+o(l) (1) 

Let U be a subset of Vn and x be a vertex of Vn , U dominates x if there is a vertex 
y of U such that (x, y) is an arc of the digraph H. We turn to the evaluation of 
the variance of the random variable xr,U (H). Let U1 and U2 C Vn = {I, ... , n} 
with lUll = I U2 1 = rand U1 n U2 = i where 0 ::; i ::; r - 1. We shall require 
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the probability, denoted by R(i), that both UI and U2 are kernels of H. Hence in 

particular R(O) = (Pr(UI is a kernel of H)) 2. We have 

R(i) = Pr(UI and U2 stable). Pr(UI and U2 dominating set lUI and U2 stable). 

The first factor is equal to q2r(r-I)-i(i-I). The second factor is equal to the product 
p,n-2r+i .v2r- 2i where p, denotes the probability that a vertex x E Vn \ (U1 U U2) 
is dominating by both U1 and U2 and v denotes the probability that a vertex 
y E Ui \ Uj , where (i,j) = (1,2) or (2,1), is dominated by Uj . Clearly 

v = 1 - qr-i ::::; 1 - qr and 

p, = Pr(UI n U2 dominates x) 
+(1 - Pr(Ul n U2 dominates x) Pr(Ul \ U2 and U2 \ U1 dominates x) 

= 1 - qi + qi(l _ qr-i)2 = 1 _ 2qr + q2r-i 
::::; (1 - qr)2(1 + q2r-i(1 + 3qr)) , 

for sufficiently large n, using the fact that qr ---f O. Collecting the obtained upper 
bounds we get 

which gives 
R(i) (1 + q2r-'(1 + 3qr))n 
--<-'------''--.....,.,:.--,-;--~'--R(O) - q, (,-l) 

Let us write N for X';: where r is previously defined for a fixed k. 

Lemma 2.12. 
E [N(N - 1)] = (1 + 0(1)) E [N]2 . 

Proof. Recall that r is a sequence such that r = m + k, where k is a fixed 
integer k. 

E [N(N -1)] ~ h( .) 
E [N]2 ::::; 1 + ~ z (2) 

where 

(3) 

We shall make use of the following bounds for the binomial coefficients: 
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(~) ~ (Uver and (~) 2 8v-!(Uv
er, for v ~ u!, where 8 is an absolute 

constant. Since 

( n ) (n -r +i) 

(n)= r-i i 

r G) 
we get 

(4) 

with 8' = 28-1 . Setting j = r - i, we get 

(5) 

Let c: denote an arbitrarily small positive constant. 

We suppose firstly i ~ io = r - l (1 + c:) 10gb 10gb n J. Then, using eC = n r- 1 qr, 
we get 

(6) 

and q2r-i ~ ne; •. This implies (1 + q2r-i(1 + 3qr) r = 1 + 0(1). This gives, using 

(3) and (4) and by separating the cases i 2 r - ~:; In r + 1 and i < r - ~:; In r + 1, 

h( i) ~ 8' i! (n ;:~-1 r (1 + o( 1)) ~ 8' (~ero: r (1 + o( 1)), 

which clearly implies 
io . 4 e 8' L h(z) ~ -0: = 0(1). 

r 
i=1 

(7) 

It remains now to consider the case i > io, i.e. 1 ~j ~jo = l(1+c:)logblogbnJ-l. 
Here we shall use (5) with qi-1 2 qr eC = rn- 1 by applying (1), q2r-i = qr+j = 
eC rn -1 qj, obtaining 

h(i) ~ 8' r! (:ef C ;2e2r (~f-j eec r qi(l + 3qr) 

~ 8' r! C/) 2j er(eC qj (1 + 3qr) - 1) 

Fix j' > 0 the less natural number which satisfies eC qj < q, for every j > j'. 
Setting i' = r - j'. By computing the first bound of h(i), we obtain 

h(i) = 0(1), 
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for every if ::; i ::; r - 1. Let i < if, we have h(i) ::; er (q-l-{3) for sufficient large 
n, where j3 denotes an arbitrarily small positive constant. Combining with the 
previous result for if ::; i ::; r - 1, it implies 

r-l 

L h(i) = 0(1). (8) 
i=io 

Finally (2), (7) and (8) imply 

E [N(N - 1)] = (1 + 0(1)) E [N]2. 

By using the second moment method (Chebychev's inequality), 

E [N2] - E [Nj2 1 
Pr (N = 0) ::; E [NJ2 = (1 + 0(1)) E [N]· 

Since by definition of 1{3 we have limn--++oo E [N] = +00, for any natural number 
r E 1{3, we conclude that there is a.a.s. a kernel of order r in H. 

3 The property TOURI 

Given a directed graph H = (V, A), recall that a tournamentl U of H is a 
nonempty subset of V that satisfies the following 

- for any (a, b) E U2 , (a, b) E U and (b, a) ~ U 
or (a, b) ~ U and (b, a) E U (U is a tournament). 
- for any a ~ U,3b E U,(a,b) E A and (b,a) E A (U is neutralized). H 

satisfies the property TOUR1 if it has at least one tournament1. 
1, 21 1 ;;;ql 

Let a = "3 a -"3 a' - "3' where a' = (17 + 3y 33) 3" , a >::;j 0.5437. It is easy to show 

that a is the unique p E [0, 1] solution of the equation p3 - p2 - P + 1 = o. 
Proposition 3.1. The property TOURl has a threshold. 

Proof. It requires the following propositions, 

Proposition 3.2. TOURl is a.a.s. true in H(a). 

Proposition 3.3. Let a fixed p E]a, 1[. TOURl is a.a.s. true in H(p(n)). 

Proposition 3.4. Let a fixed p E]O, a[. TOURl is a.a.s. false in H(p(n)). 

3.1 Study of the first and the second moment 

Let p = p( n) a sequence such that 0 < p < 1. From now on, H will be denote a 
digraph in H(p(n)). Let pT(r) the probability that a subset of Vn of cardinality 
r be a tournament. It is easily seen that 

PT( ) _ r(r-l) r - qT , 

where qT = p(1 - p). 

o 



206 Jean-Marie Le Bars 

Let U be a subset of Vn of cardinality r. We denote by pN (r) the probability that 
U is neutralized. It follows that 

qN = 1- p2. 

Let UI and U2 C Vn = {I, ... , n} with lUll = IU2 1 = rand UI n U2 = i where 0 ::::: 
i ::::: m -1. Let 8( i) denote the probability that both UI and U2 are tournament! 's 

of HE H(n,p). It follows 8(0) = (Pr(UI is a tournament of H))2. 

We have 8(i) = Pr(UI and U2 tournaments). 
Pr(UI and U2 neutralized lUI and U2 tournaments). 

The first factor is equal to q~(r-l)-i(i-l). The second factor is equal to the product 
/-L,n-2r+i .v,r-i where /-L' denotes the probability that a vertex x E Vn \ (UI U U2) 
neutralized both UI and U2 and v' denotes the probability that a vertex y E Ui \ Uj , 

where (i,j) = (1,2) or (2,1), neutralizes Uj , i.e. there exists bj E Uj such that 
(ai,b j ) and (bj,ai) are arcs of H. Since we may have al = bl and a2 = b2, 

Besides, 

/-L' = Pr(x neutralizes UI n U2) 
+(1 - Pr(x neutralizes UI n U2) Pr(x neutralizes UI \ U2 and U2 \ UI ) 

= 1 - 2qN + q~-i 

Hence 
8(i) ::::: R(i)(1 + >.?m(m-l)-i(i-l), 

8(0) = R(O)(l + >.)2m(m-I), 

S(i) < R(i) (1 + >.)-i(i-l) 
S(O) - R(O) . 

3.2 Proof of Proposition 3.2 

We consider the particular case p = 0:. It is easy to check that 0: is the unique value 
p E [0, 1] such that qT = qN. The probability that a specific subset is a tournament 
in random digraphs with constant arc probability 0: or a kernel in random digraphs 
with constant arc probability 1 - 0:2 are the same. Hence the expected number 
of tournament! 's and kernels are the same. So, we get similar results from the 
first moment method. However, the correlations are slightly different. Let UI and 
U2 C Vn = {I, ... , n} with lUll = IU2 1 = rand UI n U2 = i where 0 ::::: i ::::: m - 1. 
Let 8(i) (resp. R(i)) denote the probability that both UI and U2 are tournament Is 
(resp. kernels) of H E H(o:) (resp. H' E H(l - 0:2)). We keep the notations of 
Section 2.5. It follows 

8(i) R(i) --<--
8(0) - R(O)' 

then the correlation is less than in H'. Hence, by using the second moment method, 
we deduce that H satisfies a.a.s. TOUR1. Furthemore the size of those tourna­
ments are the same than the size of the kernels in H'. 
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3.3 Proof of Proposition 3.3 

Recall that men) denote men) = i,8(n)l if g(n,c(l,8(n)l)) > g(n,c(l,8(n)J)) and 
m( n) = l,8( n) J, otherwise. In other words, the maximum of the restriction of 9 
on natural numbers is reached by c(n, men)). 
Fix a < p < 1, it implies qT > qN. Let A be the positive constant such that 

qT = (1 + A) qN. 

Let X;-,I-qN denote the random variable of the number of kernels in H' = H(l -
qN) and X;l denote the random variable of the number of tournamentl's of H. 

Let m = logbN n logbN logbN n. From now on, we will write N for X:;-"I-qN, M for 
X;,l, q for qN and b for bN . 

E [M] = E [N] (1 + A)m(m-l), 

Let UI and U2 C Vn = {l, ... ,n} with lUll = IU2 1 = rand UI n U2 = i where 
o :::; i :::; m - 1. Let SCi) (resp. R(i)) denote the probability that both UI and 
U2 are tournamentls (resp. kernels) of HE H(p(n)) (resp. H' E H(l - qN(n))). 
Recall that qN = (1 - p2). It follows that 

SCi) = R(i) (1 + A)m(m-1) < R(i) 
S(O) R(O) - R(O)' 

Let k( i) denote 

_E-=:..[M-=-,:-(M::-::=-_l.:.:-)] < 1 + ~ k(i) < 1 + ~ h(i) < E [N(N - 1)]. 
E [MJ2 - ~ - ~ - E [NJ2 

1=1 1=1 

And the last term tends to 0 as n -> +00. Since limn--->+oo E[M] = +00, there is 
a.a.s. a tournamentl of order m. 0 

Proposition 3.4 P E]O, a[ implies qT < q. Let r be a sequence such that r(n) < n 
and A the positive constant such that 

qT = (1 - A) q. 

By Claim 2.2 we have 

rf(e) 
E [x:table] = eC y'r ) (1 - A)r(r-l), 

where f(c) = c + 1 + lnb, b = i and n = eC r br . It follows that 

E [M] = E [N] (1 - Ay(r-1). 

Observe that in H(p) the expectation of TOUR1 is less than the expectation of 
KERNEL in H(l - q). We adapt the proof of Theorem 2.3 and it is sufficient to 
check that there is a.a.s. no tournamentl of order close to m. 
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4 Sharp threshold 

Let qT = (1- A) q, where A = l;n for an absolute constant t. It is easily seen that 

(1- A)m(m-l) = e(e-r:::), hence 

By definition of g, 0 < g(c) :::; lnb. Consequently, the sequence 8 = 8(n) defined 
by 

g(c) = 8lnb 

satisfies -1 < 8 < 1. Moreover, emg(c) = bm 8 and 

-lnb<c<lnb. 

Hence 
E [M] = e(bm (8-(ln

t
b)2) m-~). 

Lemma 4.1. One can divide the study into three cases: 

1. t = (lnb)28: 

E [M] = e( m-~), then limn--->+oo E [M] = O. 

2. t < (Inb)28: 

E [M] = e (bml ) , for some l > 0, then limn--->+oo E [M] = +00. 

3. t>(lnb)28: 

E [M] = e(b-ml ) , for some l > 0, then limn--->+oo E [M] = o. 

(9) 

As we did for KERNEL, we prove that the possible sizes of tournament! 's are 
in a finite interval I which contains m. Furthermore by definition of 9 and m, 
the expectation of the number of tournaments 1 's of order rEI is less than the 
expectation of the number of tournaments1's of order m . Hence TOURS1 is a.a.s. 
false for t ~ 8. 

Lemma 4.2. 
E [M(M -1)] = (1 + 0(1)) E [Mf 

Proof. The proof is similar as these of Lemma 2.11. 

Recall that k(i) = 

8(i) < R(i) (1 _ A)-i(i-l) . 
8(0) - R(O) 

(rr:) (n -~)8(i) 
z m - Z , hence k(i) :::; h(i) (1 _ A)-i(i-l). 

(:) 8(0) 
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Let io = m - l(l + c) 10gb 10gb nJ. 
As we did for KERNEL, we separate the cases i :::; io and i > io. 

i :::; io 

where 8' is an absolute constant. 

(1 - A)-HI:::; (1 - A)-m = 0(1), 

which implies L~~~o k(i) :::; 4 ~f = 0(1). 

209 

i > io 1 :::; ] :::; ]0 = l (1 + c) 10gb 10gb n J - 1. We adapt the result in 2.5. Since 

(1- A)-HI:::; (1- A)-m < e-~~, 

1 (m e)2j m(eC qj (1 + 3qm) - 1 + f-) 
k(i) :::; 8' m'i -. e nq . 

J 

By computing the first bound of h(i) for i = r - 1, we obtain 

k(r - 1) = 0(1). 

Let i < r - 1. By definition of t, we have l~q < -lnq. Then we show that 

Hence 

. t 
eC qJ - 1 + - < O. 

lnq 

h(i) :::; em (q-I-!3l 

for sufficient large n, where (3 denotes an arbitrarily small positive constant. Com­
bining with the previous result for i' :::; i :::; r - 1, it implies 

m-I 

L k(i) = 0(1). (10) 
i=io 

By (9) we deduce the lemma below: 

Lemma 4.3. E [M] = 8(1) if and only if 

t=8+0(1). 

Furthermore, if E [M] = 8(1), m is the unique possible size of a tournament1. It 
means that 

JL(TOUR1) = Pr(M > 0), 

provided the limit exists. 
Let 0 :::; Pi = Pi (n) ~ 1 be a sequence such that JLPi (T) = i. Fix i E [0, 1 [, recall 
that Pi = pi(n) denote a sequence such that the JLPi(P) = i. We denote by ti the 
corresponding value of t. 

o 
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The first and the second moment method, imply that E [M] = 8(1), for every 
i E [0,1[. By Lemma 4.3, ti = /j + 0(1) . Besides, by definition of ti , we have 

Pi = a - eC:n)' (11) 

Fix f > O. Recall that ~(f) denote the term Pl-t:(n) - pt: (n), (11) implies 

~(f) = e(_l ), 
Inn 

which clearly prove the sharp thershold. 
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Approximability of Paths Coloring 
Problem in Mesh and Torus Networks 

Jerome Palaysi 

ABSTRACT: In optical networks, the use of bandwidth can be optimized by a 
technique called "Wavelength Division Multiplexing" (WDM). In these networks, 
the data undergo some optical-electronic conversions which make them slow down. 
To solve this problem, the path was computed and set up before the data transmis­
sion: these networks are refered as all-optical networks. Signals can be transmitted 
through a same fiber link at the same time only if they have different wavelengths. 
We deal with particular networks families: meshes and toroidal meshes. Let a 
set of paths assigned to a set of connection requests. We try to find a feasible 
assignment of wavelengths (called "colors" in our model) to the paths. The goal is 
to minimize the number of wavelengths used. 
We show the existence of approximation algorithms for paths computed by a line­
column routing, while the problem is shown to be no-APX when paths are com­
puted by a free-routing, a shortest-path routing or a minimal load routing. 

1 Introduction 

In optical networks, links are optical fibers, each time a message reaches a router, 
it is converted from optical to electronic state and back again to optical state. 
These electronic switching are considered as bottlenecks for the network. 
Contrary to optical networks which use expensive optoelectronic conversions, all­
optical networks allocate to each communication request a physical path into the 
network, as for usual circuit switching; each router being set up, messages can 
stay in their optical state from start to end. The all-optical network commutation 
node that we study are Wavelength Routing Optical Cross-connect (WR-OXC) 
with Optical Add/Drop Multiplexer (OADM) [2] (cf. figure 1) 

Figure 1: WR-OXC with OADM 

Wavelength Division Multiplexing (WDM) is a well known technique [1] that pro­
poses to share the huge bandwich of optical fiber by allocating one frequency to 

B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
© Springer Basel AG 2002
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each communication. Several communications can simultaneously use the same 
fiber as long as their wavelength are different . 
In this context, networks can be viewed as graphs, wether directed or not. Up to 
the concern of this paper, we can restrict ourselves to undirected graphs. Then 
the ALL-OPTICAL-ROUTING problem is defined as: given a graph and a family of 
requests (a request is a pair of nodes, some pairs may not be unique in the family), 
satisfy each request, that is, find a path in the graph linking its two nodes, and 
allocate one color to each path in such a way that no two paths using a common 
edge bear the same color. 

1.1 Previous results 

The last few years, several researchers have dealt with the ALL-OPTICAL-RoUTING 
problem. It is known to be polynomial in linear networks and trees with bounded 
degree, but NP-Hard in trees, rings or meshes [6]. This last result can be extended 
to other families of graphs such as tori and some graphs products with cycles [10]. 
However, approximation algorithms are known in trees and rings [6]. 
Some researchers dealt with particular requests collections giving, for instance, a 
polynomial algorithm for total exchange [2, 11] in the torus and an over one for 
the multicast [2] in any graph. 
We deal with the problem of wavelengths assignment to a given paths collection, 
which we call the "PATH-COLORING" problem, also known as the "Fixed Path Col­
oring" [7]. This problem is obviously polynomial in linear networks and bounded 
degree tree since ALL-OPTICAL-RoUTING is polynomial in these graphs. As a 
direct consequence of a result of [6], it is NP-Hard but approximable in networks 
in the "shape" of tree. In the same way, it is NP-Hard and approximable in ring 
networks and a 2-approximation algorithm exists [12]. 

1.2 Meshes and tori 

One of the mesh and toroidal mesh commun properties is that for a given number 
of nodes to be linked, the toroidal mesh and the mesh, which are naturally very 
high secure networks, will use at last only twice edges more than a non-secure tree. 
In the all-optical networks case, torus and toroidal mesh have been largely stud­
ied [2, 4, 11] and are considered as real competitive solutions among current 
metropolitan topologies. For deflection routing methods [4], good results corrobo­
rate this idea. Furthermore, we can easily imagine deflection routing and routing 
by path and wavelength allocation together in the same network by dividing the 
fiber optical bandwith. 
The toroidal mesh has already been used in the past, for example to make parallel 
computers (2D toroidal mesh for the Fujitsu AP 1000, 3D toroidal mesh for T3D 
and T3E of Cray) , and the mesh as well (2D mesh for multiprocessor Intel Paragon 
and 3D mesh for Wavetracer computer Zephir). 
We first define the cartesian sum [3] of two graphsl G and G' as the graph whose 
vertices are the ordered pairs (x , x') where x is a vertex of G and x' a vertex of 
G' and such that there is an edge from (x, x') to (y, y') if and only if x = y and 
{x', y'} is an edge of G' , or x' = y' and {x, y} is an edge of G. 

lOur graphs are always simple graphs with out loop 
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Definition 1.1. For any integer interval I = [a , b] and J = [c , d], a 

1. path (or linear network) PI is the graph (I, E) where E = { {i, i + I} la :S 
i < b}; 

2. mesh MI xJ is the cartesian sum of the two paths PI and PJ; 

3. ring RI is the graph (I , E) where E = {{i, i + I}la :S i < b} U {a , b}; 

4. torus (or toroidal mesh) TIxJ is the cartesian sum of the two rings RI 
and R J . 

As usual, we extend these definitions up to isomorphism. The reader is referred 
to [5] for more definitions on graphs. We take advantage of the representation 
of meshes (and tori) as grids (or extended grids) to use words such as "line" or 
"column" and expressions like ''follow a line (or a column)" that have a simple and 
intuitive meaning on the figures . 

1.3 Problems and contents of the paper 

We deal mainly with the PATH-COLORING problem. In this problem, the paths 
were calculated and the algorithm must assign a color for each path. Paths being 
given, we often call "routing" the paths family himself. Sometimes, we will also 
use the term "routing" to designate the process that calculates a path for each 
connection request. 

Definition 1.2 (PATH-COLORING). is defined by: 

• input : a graph G and a paths family R 

• output : an assignment of color for any R path such that paths using the 
same edge are assigned different colors. 

• goal: minimize the number of colors used, denoted w(R) 

This problem is equivalent to the vertices coloring problem of the conflicts graph: 

Definition 1.3 (conflicts graph). The conflicts graph associated to a paths fam­
ily R is the undirected graph G R = (R, E) such that two paths of E are adjacent 
in G R if and only if they share at least one edge. 

Definition 1.4 (load). The load of an edge a, associated to a routing R, is the 
number of paths which contain this edge. We denote this by 7r( a, R) or 7r( a) if 
there is no ambiguity. The load of a routing R is the maximum load among all the 
edges of G and is referred to as 7r(R). 

Fact: clearly, for any paths family R, w(R) 2: 7r(R). 

Here, problems are minimization problems for which every solution cost is positive. 
In these conditions: 
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Definition 1.5 (d-approximation, APX, No-APX). An algorithm A is said 
to be a d - approximation if A is polynomial and if for any instance x, we have 
o~~(2) ~ d where A(x) is the cost obtained by the algorithm A on the instance x 
and Opt(x) is the cost obtained by an optimal algorithm on the instance x. An 
APX problem is a problem for which a d-approximation exists for some real number 
d. Otherwise, this problem is said to be No-APX. 

For more details about the approximation theory, the reader is referred to [9]. 

In the next section, we show that the PATH-COLORING problem is NP-Hard and 
No-APX in the mesh and in the torus when the paths family can be any paths 
family (so called a free routing) and that it remains NP-Hard and No-APX when 
paths families are produced by a shortest paths routing or a routing that minimizes 
the load. 

In section 3, we deal with line-column paths routing (also called line-column rout­
ing or simply Ie-routing). A path is called a line-column path (or Ie-path) when 
its edges belong to one line and one column of the mesh or the torus. We show 
approximation algorithms for coloring line-column paths routing in meshes or in 
tori. 

2 No-approximable paths coloring problems 

Theorem 2.1. The paths coloring problem in a mesh or a torus is NP-Hard and 
NoAPX when the paths instance is a solution to 

1. a free routing problem 

2. a shortest paths routing problem 

3. an optimal load routing problem 

Proof 

1. This result comes from the graph vertices coloring problem complexity: NP­
Hard and No-APX [9]. The reduction used polynomialy builds paths in a 
mesh (resp. torus) in order that the conflicts graph is isomorphic to the 
graph to be colored. This way, it becomes obvious that any paths coloring 
approximation algorithm in a mesh (resp. a torus) would also be a graph 
vertices coloring approximation algorithm in the general case. 

Figure 2 shows a graph, on the left hand side, and the paths built for the 
reduction, on the right hand side. 

Given a graph G with m edges and n vertices, we construct the mesh 
M[O,n+mlx[-n,nl. The vertices of G are treated in the order xo, Xl, X2, ... , Xn-l. 

We call 8i = I{Xjl{xi,Xj} E E and j < i}l. The first vertex Xo leads to a 
path beginning from the vertex (0,0) to the vertex (n+m, 0) through vertices 
(j,0) with 1 ~ j < n + m. This is the path Po on figure 2. 

Vertex Xi gives rise to a path beginning from vertex (0, -i), going vertically 
to vertex (l:~:~ 8j + i, -i), next, horizontally to column i, crossing every 
path Pj for 0 ~ j < i, dropping down to the next line along Pj whenever Xj 



Paths Coloring Problem 

0 

2 
0 3 

4 

2 3 5 

6 

7 

8 

9 

10 

11 

12 

13 

.... II~ 

• ..... 1::. ........ 
••• i ••• t : . 

: . ........•.. ,. .. 
: . . 
: . . . -~ ---- --.: . 

I~ • 

i -~: • 
:: -: . :: . -.- .~ 
§ : • 1 ________ ~_I: 

. . If _ • 

: I. 

217 

: "-' : : II at _. 
I 

I 

-5 -4 -3 -2 -1 0 2 3 4 5 

Figure 2: reduction from COLORING to PATH-COLORING in the torus and in 
the mesh 

is adjacent to Xi. Once column i is reached, the path goes down to vertex 
(n+m,i). 
One can verify that the conflicts graph of this routing is isomorphic to the 
graph G. Furthermore, the size of the requested mesh (resp. torus) is poly­
nomial. 

2. For meshes, this result is a direct consequence of the previous reduction. For 
tori, we only have to perform this reduction on the torus T[O,3( n+m)] x [-n,3n] 

(the torus is large enough so that the above construction yields paths which 
are actually shortest paths). The torus size stays obviously polynomial in 
the size of the graph to be colored. 

3. Fact : for any family of paths, if these paths are shortest paths and if the 
load is the same on all the edges, then this routing is optimal for the load. 
Now, it is easy to give the scheme of proof for the third part of the theorem. 
One only has to extend the first reduction adding to the family path: 

• 2 paths of length 1 on each edge (of the mesh or torus) of load 0 

• 1 path of length 1 on each edge (of the mesh or torus) of load 1. 

The routing is an optimal routing for the load (the load is uniform ally dis­
tributed in the mesh and the chosen paths are the shortest) . If an algo­
rithm finds a K -coloration for this routing then the graph G is obviously 
K-colorable. Besides, if an approximation paths coloring algorithm exists 
then an approximation graph vertices coloring algorithm exists: which is 
impossible. 0 
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~~~ 
path type 1 path type 2 path type 3 path type 4 

Figure 3: the different types of paths 

3 Approximable paths coloring problems 

This section deals with the lc-paths or lc-shortest-paths coloring problem in meshes 
and tori. Note that in the mesh, a lc-path is always a shortest path and that for the 
torus, it suffices to show that the lc-shortest-paths coloring problem is NP-Hard. 
First let us recall : 

Theorem 3.1. [6} The paths coloring problem in the ring of size n, is NP-Hard, 
even if the length paths are at most l ~ J . 

Our first result stems from the above theorem. 

Theorem 3.2. The lc-paths coloring problem and the lc-shortest-paths coloring 
problem are NP-Hard in the mesh and in the torus. 

Proof: We first note that the paths coloring problem in a ring of size 4n with 
paths oflength at most 4n is NP-Hard (hint: if the routers number on the ring is 
not a multiple of 4, one can add up to 3 nodes spaced out along the ring in such 
a way that every path length grows by at most one). 
Taking advantage of a reduction used in [6], we map in a straightforward way the 
4n routers of the ring to the 4n outside nodes of the mesh. Obviously, solving 
the path-coloring problem in the ring is polynomially equivalent to solving the lc­
path-coloring problem on the mesh. A similar argument still holds for the torus, 
mapping the previous mesh onto a torus of size (2n + 1) x (2n + 1) to ensure that 
lc-paths are lc-shortest-paths indeed. D 

Next results need preliminary definitions. In a mesh MlxJ or in a torus T1xJ of 
n lines and n columns (I = [0, n -1] and J = [0, n -1]), we characterize a lc-path 
by a triplet (8, c, d) where 8 and d are the ends of the path and c the "corner" of 
the path2 . We distinguish 4 types of paths (cf. figure 3). For instance, for a path 
of type 1, we go from 8 to c from left to right and from c to d from down to up. 
In the torus, among paths of type 1 we define four sub-types of line-column paths 
(cf. figure 4): 

• paths of type 1.1 are paths ((i, y), (i,j), (x,j)) with y E [O,j[ and x E [0, i[ 

• paths oftype 1.2 are paths ((i, y), (i,j), (x,j)) with y E [O,j[ and x E]i, n-l] 
(these paths cross the line 0) 

2C = (i,j),s = (i,y),d = (x,j), y 1= j and x 1= i, where i,j,x,y E [O,n - 1]. 



Paths Coloring Problem 

(x,j) 

"".-J (i,j) 

path type 1.1 

(i,y)_-_____ 

(ij) 

(x,j)l 

I 

path type 1.2 

(x,j) 

(i,y) 
-+-----... -I­

(i,j) 

path type 1.3 

Figure 4: the different types of paths 

219 

(i,y) -­(i,j) 

(x,j) T 
I 

path type 1.4 

• paths of type 1.3 are paths ((i, y), (i, j), (x, j)) with y ElJ, n-1] and x E [0, i[ 
(these paths cross the column 0) 

• paths of type 1.4 are paths ((i,y),(i,j),(x,j)) with y ElJ,n -1] and x E 
]i, n - 1] (these paths cross the line 0 and the column 0) 

Paths of type k.1, k.2, k.3 and k.4 are defined similary from paths of type k with 
k E {2,3,4}. 

Lemma 3.3. Given any instance R of the Ie-paths coloring problem and for any 
k E {1,2,3,4}: 

1. a paths family restricted to paths of type k.1, k.2 or k.3 is polynomialy col­
orable with 21f colors; 

2. a paths family restricted to paths of type k.4 is polynomialy colorable with 1f 
colors. 

Proof: 
We prove the lemma for k = 1 (other cases are similar). We partition the paths 
family of type 1 in the instance R into three classes : 

• Vi,j is the sub-family of paths (s, c, d) for which c = (i, j) 

• Li,j = UkElJ,n- l) Vi,k 

• Ci,j = UkE)i,n-l) Vk ,j 

for all i,j E [O,n -1]. 
Our algorithm is a greedy algorithm. In all cases (1.1, 1.2, 1.3 and 1.4) the 
algorithm starts at coloring the paths in Vn-1,n-l. When the paths family Vi,j 
is colored, it deals with the family Vi,j-l or the family Vi-l,n-l if j - 1 < O. It 
terminates when the last family: Vo,o is colored. 

1. Let us consider the sub-family 1.1. We prove by induction on the algorithm 
steps that 21f colors are enough. First, we note that 21f colors are enough 
for coloring Vn-1,n-l. Assume that no more than 21f colors have been used 
before coloring Vi ,j' Let r = 1 Vi ,j I. Let p denote the paths number of Li,j 
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in conflict with the paths of Vi ,j' These p paths and paths of Vi ,j share the 
edge {(i , j), (i , j -I)}. Obviously, p+r::; 1r. Let q denote the paths number 
of Ci ,j in conflict with the paths of Vi,j' These q paths and paths of Vi, j 
share the edge {(i,j), (i - I,j)}. Obviously, q + r ::; 1r. So, p + q + 2r ::; 2n 
and r ::; 2r ::; 2n - p - q, that is to say I Vi,j I is less or equal to the number 
of free colors. 

2. Proofs for sub-families 1.2 and 1.3 are similar. 

3. Let us consider the sub-family 1.4. We build a bipartite3 graph B = (L, C, E) 
such that L is the lines set of the torus, C is the columns set of the torus 
and for any line-column path p = (s, c, d) which c = (i, j), one edge, denoted 
e(p), exists in the bipartite graph between the line i and the column j. We 
can check that any coloring ofthe sub-family 1.4 induces an edge coloring of 
B (each edge e(p) takes the color of p) such that two incident edges in B have 
two different colors. Inversely, an edges coloring of B such that two incident 
edges in B have two different colors induces a coloring of the sub-family 1.4. 
Indeed, two paths Pi and Pj are in conflict if and only if e(pi) and e(pj) are 
incident in B. 
We note that the edges of B are colorable with b.(B) colors ((b.(B) is the 
max degree of B) using a polynomial algorithm [3]. At last, we can check 
that b.(B) is equal to the 1.4 sub-family load. 0 

Now, let us define a l-or-c paths family as a family of paths whose nodes are on one 
single line (resp. column). Because interval graphs are known to be polynomialy 
(b. - I)-colorable [8], no more than n colors are needed to color any l-or-c paths 
sub-family on the mesh. Because a 2-approximation exists for the paths coloring 
problem on a ring (that uses at most 2n colors [12]), the same result stands for 
any l-or-c paths sub-family coloring problem on the torus. 

Theorem 3.4. le-paths coloring problem is 9-APX in meshes. 

Proof: 

In a mesh, the paths are of type 1.1, 2.1, 3.1 or 4.1 or else of l-or-c type. In the 
worst case, for each type we use 2n colors expect for the last one which requires 
only n colors. If w a1go denotes the number of colors used by our algorithm: 

wa1go 9n --<-<9 
w* - n -

Theorem 3.5. le-paths coloring problem is 30-APX in tori. 

Proof: 

o 

In the torus, all types of line-column path exist plus the l-or-c type. Among which, 
(4 x 3) + 1 = 13 of them need 2n colors at most and 4 x 1 of them need n colors 
at most. Therefore: we can color the paths with less than 30n colors: 

wa1go 30n --<-<30 
w* - n -

o 

3that is not necessary a simple graph 
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Theorem 3.6. shortest lc-path coloring problem is 18-APX in tori. 

Proof: 
On one hand, l-or-c paths require 27r colors at most. 
On the other hand, if the line-column paths are shortest paths in the torus, 47r 
colors are enough for each type of paths: 1,2,3 and 4. Indeed, let us see a torus 
T[O,n-ljx[O,n-lj with equal and even number of lines and number of columns. We 
divide each family of type of path in four parts: 

1. paths of type La are paths (s, (i,j),d) with i E [0, ~ -1] and j E [0, ~ -1] 

2. paths of type 1.b are paths (8, (i,j), d) with i E [~, n -1] and j E [~, n -1] 

3. paths of type 1.c are paths (8, (i,j), d) with i E [0, ~ - 1] and j E [~, n - 1] 

4. paths of type 1.d are paths (8, (i,j),d) with i E [~,n -1] and j E [0, ~ -1] 

According to the lemma, the line-column paths of type l.a are colorable polyno­
mialy with 27r colors. Since the paths La and 1.b are not in conflict, we can use 
the same 27r colors for the paths Lb. In the same way, 27r colors are enough for 
coloring 1.c and 1.d. D 

4 Conclusion 

The paths coloring problem in a graph G is known to be NP-Hard and NoAPX in 
general. 
When G is itself a path, the problem becomes polynomial. It remains NP-Hard 
when G is a tree or a ring but then becomes approximable. 
The topologies of meshes and tori have been investigated in this paper. It turns 
out that, G being a mesh or a torus, the problem is NP-Hard and No-APX in 
general. Focussing on specific families of paths of interest, we proved APX or 
NoAPX results as summarized in the following table. 

mesh torus 
free routing, shortest 

paths routing or NoAPX NoAPX 
optimal load routing 

Ie-routing APX (d=9) APX (d=30 
or d=18 if shortest paths) 

Table 1: abstract table on the paths coloring problem in meshes and tori 

Furthermore, as the load minimizing problem in a mesh and in a torus turns out 
to be APX when the routing is a Ie-routing (work in preparation), this would yield 
an APX algorithm for the all-optical routing problem in meshes and tori when the 
routing is a Ie-routing. 
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Minimal Spanning Trees for Graphs with 
Random Edge Lengths 

J. Michael Steele 

ABSTRACT: The theory of the minimal spanning tree (MST) of a connected 
graph whose edges are assigned lengths according to independent identically dis­
tributed random variables is developed from two directions. First, it is shown 
how the Tutte polynomial for a connected graph can be used to provide an exact 
formula for the length of the minimal spanning tree under the model of uniformly 
distributed edge lengths. Second, it is shown how the theory of local weak con­
vergence provides a systematic approach to the asymptotic theory of the length 
of the MST and related power sums. Consequences of these investigations include 
(1) the exact rational determination of the expected length of the MST for the 
complete graph Kn for 2 ::; n ::; 9 and (2) refinements of the results of Penrose 
(1998) for the MST of the d-cube and results of Beveridge, Frieze, and McDiarmid 
(1998) and Frieze, Ruzink6, and Thoma (2000) for graphs with modest expansion 
properties. In most cases, the results reviewed here have not reached their final 
form, and they should be viewed as part of work-in-progress. 

1 Introduction and Main Results 

Consider a finite, connected, simple graph G with vertex set v( G), and for each 
element of the edge set e( G) let ~e denote a nonnegative random variable that 
one views as the length of the edge e. The random variables {~e : e E e( G)} 
are assumed to be independent with a common distribution F, and the quantities 
that are of central concern here are the total length of the minimal spanning tree 
(MST) of G, 

LMST(G) = L ~eJI( e E MST(G)), 
eEG 

and the associated sums for power weighted edges 

LMST(G) = L ~~JI( e E MST(G)). 
eEG 

The first of these sums has been studied extensively since Frieze (1985) showed 
that for edge lengths with the uniform distribution on [0,1] that one has 

00 1 
E[LMST(Kn)] ~ ((3) = L k3 = 1.202· . . as n ~ 00 (1) 

k=l 

where Kn is the complete graph on n vertices. 
In particular, this result has now been refined or extended by numerous investi­
gations. There are relaxations of the distributional assumption by Steele (1987), 
extensions to the bipartite MST expectations E[LMsT(Kn,n)] by Frieze and McDi­
armid (1989), and even the development of a central limit theorem for LMST(Kn) 
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by Janson (1995). More recently, the basic limit (1) has been extended to larger 
classes of graphs, including an extension to the d-cube Qd by Penrose (1998) and 
extensions to general classes of "modestly expansive" regular graphs by Beveridge, 
Frieze, and McDiarmid (1998) and Frieze, Ruzink6, and Thoma (2000). 
The path taken here diverges from this earlier work in several respects, but one 
key difference comes from the focus on exact calculations, rather than asymptotic 
relations. Specifically, we provide a formula for E[LMST ( G)] that permits one to 
determine the exact rational value of E[LMST( G)] for many concrete choices of G. 
We also pursue exact calculations for a certain infinite graph T that is in a sense 
the universal limit for any sequence of randomly rooted independently weighted 
finite graphs whose vertex degrees go to infinity. This calculation then permits 
us to provide a necessary and sufficient conditions for the determination of the 
asymptotic behavior of E[LMST(Gn)] for a large class of sequences of graphs. 
After framing our main results more fully in the next few paragraphs, we turn to 
the proofs. In particular, Section 2 develops an exact formula for E[LMST ( G)] finite 
G, and then in Section 3 we calculate the expected length per vertex of a special 
subgraph of T that holds the key to many of the limit theorems for the MST. 
Section 4 then addresses some foundational results that connect calculations on T 
to calculations for sequences of finite randomly rooted graphs, and these results 
are subsequently applied to complete the proof of the basic limit theorem for 
E[LMST(Gn)]. Section 4 also examines a critical example that serves to illustrate 
the role of uniform integrability in the limit theory of the MST. The final section 
reviews some open problems and briefly speculates on the possibilities for further 
development. 

A Formula for E[LMST(G)] 

Theorem 1.1. If G is a finite connected graph and the Tutte polynomial1 of G 
is T( G; x, y), then for independent edge lengths that are uniformly distributed on 
[0,1]' one has 

E[LMST(G)] = r1 (1- p) Tx(G; lip, 1/(1- p)) dp, 
10 p T(G; lip, 1/(1- p)) 

(2) 

where Tx(x,y) denotes the partial derivative ofT(x,y) with respect to x. 

We illustrate the efficacy of this formula by providing what we believe to be the 
first explicit computations for E[LMST(Kn)] for finite values of n that go beyond 
the trivial n = 2 and the easy n = 3. Specifically, we use this formula to calculate 
E[LMST(Kn)] for 2 ~ n ~ 9, and these calculations lead to several compelling 
conjectures. 

Asymptotic Consequences of an Exact Calculation 

If dn , n = 1,2, ... is a sequence of integers such that dn ----7 00 as n ----7 00, we 
say that the sequence of graphs Gn, n = 1,2, ... is nearly regular provided that 
the maximum ~(Gn) degree and the minimum degrees 8(Gn) satisfy the degree 
conditions 

(3) 

1 Subsection 2.2 provides a brief but friendly development of the necessary background on the 
Thtte polynomial - beginning with its definition. 
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We also relax our assumption on F(x) = P(~e :::; x), and instead of requiring the 
that the ~e be uniformly distributed on [0, 1] we only require 

F(O) = 0 and F(x) = x + o(x) as x ---+ 0, (4) 

a condition that simultaneously covers the uniform distribution on [0, 1] and the 
exponential distribution with mean one - our two leading cases. 
Next, we consider the power-weighted analog to the MST, 

e 

and we introduce a new sequence 

(5) 
e 

where R( G) denotes an element of the vertex set v( G) that is chosen indepen­
dently according to the uniform distribution. While Y",(Gn) may not seem natu­
ral at first, we will see shortly that its expectation determines the expectation of 
LMST ; moreover, there are major technical benefits to working with Y",(Gn). In 
particular, Y",(Gn ) satisfies a limit law that requires nothing more of the graph 
sequence {Gn} than those features that one needs for the definition of Yn(Gn) and 
the statement of the limit. As an easy consequence of the general theory of local 
weak convergence and an exact calculation on a special infinite tree, one obtains 
the asymptotic behavior of E[LMST(Gn)]. 

Theorem 1.2. IfGn , n = 1,2, ... is a sequence of connected graphs that are nearly 
regular in the sense of (3), then for any ° < a < 00, one has 

if and only if the sequence 

{Y",( Gn ) : n = 1,2, ... } is uniformly integrable. 

Thus, one finds that even a crude qualitative measure of the good behavior of the 
sequence {Y",(Gn) : n = 1,2, ... } is enough to guarantee the regular asymptotic be­
havior ofE[LMsT(Gn)]. Moreover, the good behavior of {Y",(Gn)} turns out to be 
necessary, so one finds a strong hint that this sequence may be more fundamental 
to the theory of the MST than first impressions might suggest. 
As a quick illustration of this last result, we should note that if one takes a = 1 
and takes Gn to be Qn, the n-cube, then it implies 

(7) 

a limit which was found by Penrose (1998) by different means. A more novel 
consequence of the limit (6) comes from taking a = 1/2 and a = 3/2 to find that 
the limit (7) is nicely sandwiched between 
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Despite the large swath of ground that Theorem 1.2 covers, one should not lose 
sight of the fact that it really is a simple corollary of more general result from the 
theory of local weak convergence that has its roots in Aldous (1992) and Aldous 
(2001). In particular, local weak convergence to the PWIT is a fundamental part 
of those papers, and the modest generalization PWIT Limit Theorem developed 
here in Theorem 4.2 is best viewed as part of a longer term effort to make the 
techniques introduced in Aldous (1992) and Aldous (2001) more easily accessible 
and more readily applied. 

2 Exact Calculations for Finite Graphs 

The program begins with the derivation of an exact formula for the expectation 
lE[LMST(G)] under the uniform model for the edge lengths. Here the first step 
is to derive a relationship between the random variable LMST(G) and an integral 
of another random variable that measures the connectedness of G when one just 
uses edges length not greater than 0 ~ p ~ 1. Versions of this relationship go 
back at least to Avram and Bertsimas (1992), and in some way or another it has 
had a role in most recent investigations of the MST, including the central limit 
theorem of Janson (1999) and the general graph MST results of Beveridge, Frieze, 
and McDiarmid (1998) and Frieze, Ruzink6, and Thoma (2000). .. 

2.1 Length of the MST as an Integral 

For any finite graph G and any subset A of the edge set e(G), we write k(G, A) 
for the number of connected components of the graph with vertex set v( G) and 
edge set A. If each edge e EGis assigned length ~e, then we also write 

et (G) = {e E e (G) : ~e ~ t}, 

and we let 
NMsT(G, t) = L lI(~e ~ t), 

eEMST(G) 

so NMsT(G, t) denotes the number of edges of the MST of G that are elements of 
et(G). Now, if G is a connected graph, then by counting the number of elements 
of et( G) in each connected component of (G, et( G)) one finds 

NMsT( G, t) + k( G, et( G)) = n, 

so we can simply compute 

LMST(G) = L ~elI( e E MST(G)) = L 11 1I( t < ~e , e E MST(G)) dt 
eEG eEG 0 

= 11 L(1-lI(~e ~ t, e E MST(G))) dt 
o eEG 

= 1\n-1-NMsT(G,t))dt= 11{k(G,et(G))-1}dt. 
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In other words, for any connected graph we have the rather pleasing random 
variable representation 

(8) 

Thus, our main task is to understand the expectation of k( G, et (G)), and this 
provides a natural roll for the Tutte polynomials. 

2.2 The Tutte Polynomial 

To define the Tutte polynomial, one needs to go outside the familiar class of simple 
graphs and to consider graphs that may have loops or parallel edges. Given such a 
graph G, the Tutte polynomial T(G; x, y) is then defined by a set offour devilishly 
simple rules: 

1. If G has no edges, then T( G; x, y) = 1. 

2. If e is an edge of G that is neither a loop nor an isthmus, then 

T(G; x, y) = T(G~; x, y) + T(G~; x, y), 

where G~ is the graph G with the edge e deleted and G~ is the graph G with 
the edge e contracted. 

3. If e is an isthmus, then T(G;x,y) = xT(G~;x,y). 

4. If e is a loop, then T(G;x,y) = yT(G~;x,y). 

To confirm the understanding of these rules, one might want to check that they 
imply that the Tutte polynomial of K2 is just X; indeed, by successive applications 
of Rule 3 one finds that the Tutte polynomial of any tree with n vertices is just 
the monomial xn-l. 

The rules are more amusing when one needs to use contractions, and here the basic 
exercise is to show that the Tutte polynomial of K3 is X + x 2 + y. Finally, one 
might want to check that the Tutte polynomial of a bow tie (made by two copies 
of K3 joined at a vertex) is just (x + x2 + y)2. The last exercise naturally suggests 
a general principle for finding the Tutte polynomial for the graph built by joining 
two arbitrary graphs at a single vertex; one can then recapture Rule 3 as a special 
case of the general principle. 

Much of the usefulness of the Tutte polynomial comes from its relation to the rank 
function r(·) that associates to each A c e( G) the integer r( A) given by 

r(A) = Iv(G)I- k(G, A), 

where, as before, k( G, A) is the number of connected components of the graph 
with vertex set v( G) and edge set A. The rank function provides a measure of the 
extent to which the graph (v(G),A) is connected, and it permits one to express 
the Tutte polynomial as a large - but informative - sum: 

T(G;x,y) = I: (x _lr(G)-r(A)(y _l)IAI-r(A), 

ACe(G) 
(9) 
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where r(G) is shorthand for the more pedantic r(e(G)). 
One immediate consequence of this formula is that it shows the Tutte polynomial 
does not depend on the order in which one deletes the edges of G in the recursive 
definition ofT(G; x, y), a fact that may not seem particularly evident from the rules 
themselves. To return the favor, the defining rules make it evident the coefficients 
of T( G; x, y) are nonnegative, while this is not so easily seen from the sum. 
One obvious consequence of the sum formula (9) is that 

T(G;2,2)=2m where m=le(G)I, (10) 

and a natural use of this triviality is to provide a quick feasibility check on a 
candidate Tutte polynomial. In fact, the evaluations of the Tutte polynomial at 
special choices of x and y provide a rich buffet of combinatorial interpretations 
(d. Welsh (1999)), and in principle each such evaluation can be used as a check. 
In practice, the evaluation (10) is the easiest to use; it catches many blunders and 
offers many hints. 

2.3 Connection to the Probability Model 

Any sum over all of the subsets of e( G) can be interpreted as an expectation 

L p1AI(1 - p)m-IAlf(A) (11) 
ACe(G) 

for an appropriate choice of f, and when one recalls that 

r(A) = Iv(G)1 - k(G, A) = n - k(G, A) and r(G) = n - 1 

for a connected graph G, then the sum formula (9) is simply 

. _ 1 "" _ IAI (_ _ )k(G,A) T(G, x, y) - (x _ 1)( _ 1)n ~ (y 1) (x 1)(y 1) , 
Y ACe(G) 

which obviously may be written in expectation form as 

ym (y _ 1) IAI (1) m-IAI k(G,A) 
(x -1)(y -1)n L -y- y ((x -1)(y -1)) , 

ACe(G) 
(12) 

provided that we set m = le(G)1 and make the natural identifications 

y-1 1 
p = -- and 1 - p = -. 

y y 
(13) 

This kind of reinterpretation of the Tutte polynomial is bread-and-butter to the 
theory of the correlated percolation model (d. Fortuin and Kasteleyn (1972)), 
and this specific form of the Tutte polynomial has also been useful in the study 
of the computational complexity of the Tutte polynomial (d. Welsh (1999) and 
especially Lemma 1 of Alon, Frieze, Welsh (1994)). 
On the other hand, the application of this formula to the problem of calculating the 
minimal spanning tree for uniformly distributed edges seems to be novel, though 
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admittedly easy and natural. We first note that the first factors under the sum 
provide the probability under the uniform model that one has ~e ::::: p for exactly 
those edges in the set A. If one then takes 

A = ep (G) == {e : e E e( G), ~e ::::: p} 

then one can write the moment generating function 

<p(t) == lE [exp( tk( G, ep( G))) 1 

in terms of T( G; x, y) as 

(14) 

and this formula gives us a natural way to calculate the expectation of k (G, ep ( G)). 
Specifically, if we retain the abbreviations (13), we have 

<p'(t) = <P(t){l + et 1 - p Tx(G; x, y)}, 
p T(G;x,y) 

so, when we let t = 0, we find for x = l/p and y = 1/(1 - p) that 

lE[k(G, e (G))] = 1 + 1- p Tx(G; x, y). 
p p T(G;x,y) (15) 

Finally, when we expand the abbreviations for x and y and recall the representa­
tion (8) for LMsT(G) in as an integral of k(G,ep(G)), we find 

lE[LMST(G)] = rl (1- p) Tx(G; l/p, 1/(1- p)) dp, 
io p T(G; l/p, l/(l-p)) 

(16) 

just as we needed to complete the proof of Theorem 1.1. 

2.4 Illustrations and Applications 

There are some natural and easy checks one can make to familiarize the formula 
(16). If we recall that for G = K2 we have T(G; x, y) = x, then the integral (16) 
easily works out to be 1/2, just as it should. More generally, if G is a tree with 
n vertices, then T(G;x,y) = xn - l and the integral work out to be (n -1)/2, and 
again this is obviously the correct value of lE[LMsT (G)]. 
It is perhaps more informative to note that the form of the integrand as a logarith­
mic derivative is quite natural. If G and H are two graphs that share a common 
vertex, then the graph G U H has Tutte polynomial T(G;x, y)T(H; x,y) so the 
formula (16) recaptures the obvious fact that in this case one also has 

For the complete graph on three vertices we have already seen that one has 
T(K3) = x + x2 + y, and for this polynomial the integral (16) yields 3/4, and 
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n 
2 
3 
4 
5 
6 
7 
8 
9 

1 2 
3/ 4 
31 / 35 
893/924 
278/273 
30739/ 29172 
199462271/ 184848378 
126510063932/ 115228853025 

Numerical Value 
0.50000 
0.75000 
0.88571 
0.96645 
1.01832 
1.05372 
1.07906 
1.09790 

J. Michael Steele 

Forward Difference 
0.250000 
0.135714 
0.080735 
0.051864 
0.035400 
0.025342 
0.018843 

Table 2: The exact expected values of the MST of Kn for n = 2 to n = 9 under 
the model of independent UfO, 1] edge lengths. 

yet again one can check independently that lE[LMsT(K3 )] = 3/4. Nevertheless, for 
K4 the situation is much more interesting. Hand computations become tedious, 
but they still suffice for one to show 

When this polynomial is used in the integral formula (16), one then finds 

and now we are on new ground. This appears to be the first time lE[LMsT(K4 )] 

has been computed, and one may be hard pressed to provide an independent 
calculation that not pass through some integral like that provided by our basic 
representation (16). 

Naturally one can go further , but beyond n = 4 it would be masochistic not to 
use symbolic calculation to determine the Tutte polynomials and to perform the 
required integrations. In fact, a table of the Tutte polynomials T(Kn; x, y) for 
the values n = 2,3, ... ,8 is included in Gessel and Sagan (1996), and with help 
from Maple this table has been extended by Gessel (personal communication) to 
include all values up to n = 15. For convenience of display, we us just the first 
nine of these polynomials in the construction of Table 2. 
The numerical evaluations in the table and their successive differences suggests 
two compelling conjectures; it seems inevitable that lE[LMsT(Kn )] is monotone 
increasing and concave. This evidence is new and not fully digested, so it is 
possible that these conjectures will follow from our basic formula (16) and the 
known properties of the Tutte polynomial for Kn. On the other hand, if such an 
approach is not successful, the conjectures may prove to be difficult. After all, the 
analogous monotonicity conjecture for the assignment problem (cf. Steele (1997), 
p. 94) has resisted all attempts for more than fifteen years. 
A final feature of Table 1 worth noting is that the rate of convergence is perhaps 
slower than one might guess. By the result of Frieze (1985) mentioned in the intro­
duction, we know that lE[LMST(Kn )] converges to ((3) = 1.202· .. , and one might 
hope that the behavior of lE[LMsT(Kn )] would parallel that of the partial sums of 
((3) given by Sn = 1 + 1/23 + ... + l/n3 . Sadly, Sn reaches 1.19 when n = 6 and 
reaches 1.20 when n = 16, while lE[LMST(Kn )] lags far behind. By analogy with 
the Parisi conjecture for the assignment problem (cf. Parisi (1998) and Aldous and 
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Steele (2002)), one suspects that under the exponential model the corresponding 
expected values lE[LMsT(Kn )] will indeed be closer to Sn. Nevertheless, such an 
exploration will have to wait for another day. 

3 An Exact Calculation for an Infinite Tree 

We now take up a second exact calculation, but this time it will be for a special 
infinite graph. To explain why this graph deserves to be singled out requires some 
background on the theory of the Poisson weighted infinite tree and the attending 
theory of local weak convergence. This background is developed more fully in 
Aldous (2001) and Aldous and Steele (2002), so the next two subsections recall 
just the most essential facts. 

3.1 An Infinite Thee of Special Significance 

The Poisson weighted infinite tree - or the PWIT - is a simple object. Never­
theless, it provides one with a direct and effective understanding of many of the 
problems of combinatorial optimization for large graphs with edge lengths that are 
given by independent random variables. 
Formally, a PWIT is a rooted tree that one defines recursively. One starts with a 
single vertex r called the root, and one gives the root a count ably infinite number 
of children. The set of these children is called generation one, and the edges from 
the root to the children are then labeled by the realizations of a Poisson process 
on [0,00) that has constant intensity J.l > O. That is, each edge from the root is 
assigned a unique element of the set 

P(J.l) = {~k: k = 1,2, ... } where ~k = Y1 + Y2 + ... + Yk 

and the random variables {Yj : j = 1,2, ... } are independent and 

JP'(Yj > x) = exp(-J.lx) for all j = 1,2, ... and x E [0,00). 

After generation k has been defined, one defines generation k + 1 by taking each 
element of generation k and applying the same construction that we applied to 
the root to get the first generation. At each stage the Poisson process that is used 
to label the edges is taken to be independent of all of the other Poisson processes 
that have been introduced. This construction is then continued until there is a 
well defined generation for each of the natural numbers k = 1,2, .... 
A tree T that is produced by this construction is said to be a PWIT with intensity 
J.l > 0, and, as shorthand, we will write 

d 
T = PWIT(J.l), 

whenever T has the same distribution as the PWIT we have just constructed. 
Shortly, we will be more precise about the metric space in which one understands 
this distributional equality to take place. 
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One View of a PWIT T 

• • • 

• • • 

• • • 

• • • 

J. Michael Steele 

Each vertex in T has 
countably many children. 
Here each triangle 
represents an infinite 
tree that is itself a PWIT. 

Each edge of T 
is assigned a length. The 
lengths from a vertex to 
its children are determined 
by an independent 
Poisson process. 

Figure 1: The PWIT is arguably the most fundamental limit object in the theory 
of randomly weighted graphs. It is the local weak limit of many different sequences, 
and it offers a unified approach to limit theorems for matching, spanning trees, 
and many other problems of combinatorial optimization. 

3.2 Components of the PWIT 

If G is any graph with a real number associated to each edge of G, then G is 
called a weighted graph, and the numbers on the edges are called the edge lengths. 
Given such a graph, we let G(x) denote the graph that one obtains when all of 
the edges of length x or greater are delete, and if G is a rooted graph we also let 
G*(8) denote the component of G(8) that contains the root. If T is a PWIT with 
intensity fl and root r, then we may again view '4 (8) as a rooted graph with root 
r, and this graph turns out to be and old friend. It is nothing more than a Poisson 
Galton-Watson tree. 
More precisely, if PGW (8) denotes the distribution of the random tree determined 
Galton-Watson branching process with a single progenitor and an offspring distri­
bution that is Poisson with mean 8, then we have 

d 
T = PWIT(fl) 

d 
'4(8) = PGW(8fl)· 

Many pleasing computations may be based on this simple observation. 
In particular, we will need a qualitative understanding of the size of '4(8) when 
fl = 1, but everything we need has been known for 120 years or more. Specifically, 
the probability p = p( 8) that a PGW (8) branching process is finite (the so-called 
extinction probability) is one if 0 ::; 8 ::; 1 and for 8 > 1 the value of p is given by 
the unique root in (0,1) of the equation. 

p = exp( -8(1 - p)). 

Lagrange-Biirmann inversion provides an explicit formula 

p(8) = ~ ~ k-k (8es )k for 8 > 1, 
8~ k! 

k=l 
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Either c( G, VI; s) is finite 

•• 

• • 
• • 

• • 

• • • • 

• • 
• • 

•• or c( G, V2; s) is finite, or both are finite. 
• • 
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Figure 2: The edge e = (VI, V2) of G is in the minimal spanning forest if and only 
if at least one of the trees c( G, VI; s) and c( G, V2; s) is finite when s = ~e. 

but, despite its charm, this sum does not always provide the best way to understand 
p(s), or the complementary probability q(s) = 1 - p(s). Here we will rely more 
directly on the fact that q( s) is the unique strictly positive solution of 

1 - q(s) = exp( -sq(s)) when s> 1, 

and the obvious inverse relationship 

s(q) = _log(1 - q) . 
q 

(17) 

(18) 

that gives us the value of s for which we have we have probability 0 < q < 1 that 
the total PGW(s) population is infinite. 

3.3 Minimal Spanning Forests 

The minimal spanning forest of an infinite graph G that has all distinct edge 
lengths is the subgraph MSF( G) of G with the same vertex set as G and with an 
edge set that contains each edge e = (VI, V2) of G for which 

(1) C(G,vI;S) and C(G,v2;S) are disjoint, and 
(2) C(G,vI;S) and C(G,v2;S) are not both infinite 

when s is taken to be the length of the edge e = (VI, V2) E G. An illustration of 
this definition is given in Figure 2 from Aldous and Steele (2002). 
The real utility of this definition can only be brought out by the PWIT Limit 
Theorem (Theorems 4.2), but a good exercise with the definition is first to show 
that each component of MSF( G) must be infinite and then to argue that MSF( G) 
is indeed free of cycles. 
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3.4 Zeta Meets a PWIT 

Let T be a PWIT with intensity f-1 = 1, and let r denote its root. If MSF(T) is the 
minimal spanning forest of T, then by a natural extension of our earlier notation 
we denote the sum of the edges incident to the root by 

Y(T) = L ~e][(e E MSF(T)), 
e:rEe 

and denote the associated power sum by 

Ya(T) = L ~~][(e E MSF(T)). 
e:rEe 

The next lemma exploits the method of Lemma 4 of Aldous and Steele (2002) to 
obtain a slightly more general result. Although the innovation is minor, there do 
seem to be genuine benefits to having the parameter a at one's disposal. At a 
minimum, the joint presence of the gamma and zeta functions is amusing. 

Lemma 3.1. The sum of the ath powers of edges of the PWIT that are incident 
to the root has expectation 

E[Ya(T)] = 2r(1 + a)((2 + a) for a E (-1,00), (19) 

and by analytic continuation the same formula holds for all complex a for which 
the left-hand side is well defined; consequently, one has the Mellin integral repre­
sentation 

2 100 x a +1 
E[Ya(T)] = -- -- dx for all Rea> O. 

1 + a 0 eX - 1 
(20) 

Proof: If one conditions a Poisson process P on [0, 00) to have a point at s, then 
P \ {s} is again a Poisson process, so, if we condition on the event that there is 
an edge e of length s incident to the root, then the subtrees obtained by cutting 
that edge are again independent PGW(s) trees. 
Now, since the probability that at least one of these is finite is equal to 1 - q2(S), 
we see that this is also the probability that the edge e is in the minimal spanning 
forest of T and we have 

(21) 

To compute the integral, we apply integration-by-parts, the implicit formula for 
(17) for q(s), and the fact that q(s) vanishes on [0,1] to find 
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A good table would now suffice, but it is as easy to substitute u = -log(l - q) to 
find 

(1 + o:)JB:[Ya(T)] = 2 roo u1+a e-u
_ u du = 2 roo u1+a f e-ku du 

io 1- e io 
k=1 

00 1 
= 2 L k2+af(2 + 0:) = 2f(0: + 2)((0: + 2). 

k=1 

Since one has (1 + 0:)r(1 + 0:) = f(2 + 0:), the proof of formula (19) is complete. 
Finally, the analytic continuation of the identity (19) follows from the general 
principles of function theory, and the validity of the Mellin integral representa­
tion (20) is embedded in our calculations. Alternatively, one can note that the 
representation (20) follows from formula (19) and the well known formula 

f(z)((z) = roo xz - 1 dx 
io eX - 1 

Rez> 1, 

which one can prove by expanding (eX - 1)-1 as a geometric series. D 

4 Local Weak Convergence Theory 

We now need to recall (and to modestly extend) some basic facts from the theory 
of local weak convergence. The main results in this section are the PWIT Con­
vergence Theorem (Theorem 4.2) and the MST Convergence Theorem (Theorem 
4.4). The first of these is implicit in Aldous (1992) and Aldous (2001), and, al­
though Theorem 4.2 is nominally more general than the results that were needed 
in Aldous (1992) and Aldous (2001), no essentially new ideas are needed. Finally, 
the MST Convergence Theorem is a direct import from Aldous and Steele (2002). 

The real benefit of the present development of the PWIT Limit Theorem is that 
it is reasonably self-contained. Thus, with very little overhead, one gains direct 
access to the single most important fact about the PWIT. 

4.1 A Poisson Convergence Lemma 

We begin with a lemma that is surely part of classic folklore, but the snappy 
proof via Renyi's characterization of the Poisson process appears to be new. At 
a minimum, this proof draws the straightest possible line between the hypotheses 
on F and the required Poisson limit. 

Lemma 4.1. Let F denote a distribution function such that 

F(O) = 0 and F(x) = f-LX + o(x) as x ---+ o. (22) 

If the random variables of the triangular array {~i,n : 1 ::; i ::; dn} are independent 
within each row and if one has 
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where dn -. 00 as n -. 00, then one has the weak convergence 

Bn = { ~i,n : 1 SiS dn } ~ P(f-l) as n -. 00 

in the sense of point processes. 

Proof: By R{myi's characterization of the Poisson process (cf. R{myi (1967) or 
Kingman (1993), pp. 34-37), it suffices to show that for each union of disjoint 
intervals A = (aI, bl ] U (a2' b2] U··· U (an, bn] one has 

(23) 

where A(A) denotes the Lebesgue measure of A. By our hypothesis on F and the 
independence of the {~i,n : 1 SiS dn}, we have 

( k )dn 

p( IBn n AI = 0) = 1-8 {F(bi/dn) - F(addn)} 

= (1 - f-lA(A) / dn + o(f-lA(A) / dn)) d n , 

so the limit (23) follows instantly. 0 

There is a sense in which R{myi's criterion is modestly magical; it provides us with 
independence of a different sort than we assume at the beginning. Also one should 
note that the only sly aspect of Renyi's Theorem is the requirement that one deal 
with all A that can be written as finite unions of disjoint intervals; in fact, Moran 
(1967) shows by example that one cannot get by with less. Finally, there is one 
small technical point; we have used REmyi's characterization of the Poisson process 
to provide convergence criterion for of a sequence of processes. Naturally, one only 
needs to apply the usual subsequence argument to pass from the characterization 
to the convergence criterion. 

4.2 Local Weak Convergence Defined 

We now need to extend the classical notion of weak convergence for point processes 
to a larger domain that is more directly connected with the convergence of weighted 
graphs. The treatment given here follows the exposition of Aldous and Steele 
(2002) which was designed in part to systematize the basic constructions used in 
Aldous (1992) and Aldous (2001). 
To begin, we consider a graph G with a vertex set v( G) that may be finite or 
countable. We further suppose there is a function £ from the edge set e( G) to 
(0,00], and we call £(e) the length of the edge e. We then use £ to define a metric 
on v( G) by taking the distance from u to v as the infimum over all paths between 
u and v of the sum of the lengths of the edges in the path. Naturally, the distance 
from any vertex v to itself is taken to be zero. 
Now, if G is a connected graph with a countable or infinite vertex set and if £ is an 
edge length function that makes G locally finite in the sense that for each vertex 
v and each real p < 00 the number of vertices within distance p from v is finite, 
then we call G a geometric graph. Also, when there is a distinguished vertex v, we 
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say that G is a rooted geometric graph with root v, and to save space, we denote 
the set of geometric graphs by Q and the set of rooted geometric graphs by Q*. 

The key issue is to say what one means for a sequence {Gn } of elements of Q* to 
converge to a G in Q*. The driving idea is that for large n, the rooted geometric 
graph Gn should look very much like G in a neighborhood of the root of G that is 
as large as we like. 
Formally, we take p > 0 and let Np(G) denote the graph whose vertex set Vp(G) is 
the set of vertices of G that are at a distance of at most p from the root of G and 
whose edge set consists of just those edges of G that have both vertices in Vp(G). 
One again views Np(G) as an element of Q* with edge length function and root 
given by those of G. Also, p> 0 is called a continuity point of G if no vertex of G 
is exactly at a distance p from the root of G. 
Now, at last, we say that Gn converges to Goo in Q* provided that for each con­
tinuity point p of Goo there is an no = no(p, Goo) such that for all n ~ no there 
exists a isomorphism2 "(n,p from the rooted geometric graph Np(Goo ) to the rooted 
geometric graph Np(Gn ) such that for each edge e of Np(Goo ) the length of "(n,p(e) 
converges to the length of e as n ......, 00. 

This definition determines a topology that makes Q* into a complete separable 
metric space. As a consequence, and it gives us access to the usual tools of weak 
convergence theory. Here, if {Xn} is a sequence of Q*-valued random variables 
and X is a Q*-valued random variable we write 

Xn ~ X to mean that E[f(Xn)]""'" E[J(X)] 

for each bounded continuous function f : Q* ......, R This is just plain vanilla weak 
convergence Qstar-valued random variables, but to emphasize the special attention 
that is paid to the neighborhood of the root we also say that we have the local 
weak convergence of Xn to X. 
From examples one finds that local weak convergence is a perfectly natural notion, 
despite the fact that it takes a while to make precise. In fact, the only subtle 
feature about local weak convergence is the way in which it force one to focus so 
myopically on the neighborhoods of the root. 

4.3 The PWIT Limit Theorem 

We now have the background in place to prove the theorem that makes us inter­
ested in PWIT; it shows that the PWIT is arises as the limit of a very natural 
sequence of geometric graphs. As noted earlier, this particular version of the PWIT 
limit theorem is intended to make the PWIT limit ideas from Aldous (1992) and 
Aldous (2001) more explicit, more accessible, and modestly more general 

Theorem 4.2 (The PWIT Limit Theorem). Let Gn , n = 1,2, ... , denote 
a sequence of graphs such that the vertex set v( Gn ) has cardinality n for each 
n = 1,2, .. and such that the maximum and minimum degrees satisfy the degree 
conditions 

(24) 

2Graphs G and G' are isomorphic provided that is a bijection ¢ : v(G) -> v(G') such that 
(¢(u), ¢(v)) E e(G') if and only if (u, v) E e(G). 
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Also, let F denote a distribution function that satisfies the conditions (22) and 
associate to each e E v( Gn ) an independent edge length ~e with distribution 

P(~e ::; x) = F(x/dn ) for all x ~ o. 

Next, independently choose an element of v( Gn ) according to the uniform distribu­
tion, and let G n denote the rooted geometric graph produced by this construction. 
One then has 

As one often does in the theory of weak convergence, we prove this limit theorem 
by passage to an equivalent characterization theorem. Specifically, one first argues 
(in a step that we leave as an exercise) that the sequence of 9*-valued random 
variables {Gn } is tight. Then we consider an arbitrary subsequence, say {nk : 
k = 1,2, ... }, and we note by tightness that there must exist a further subsequence 
{mk : k = 1,2, ... } and a 9*-valued random variable G such 

d G mk ----+ G as n ---+ 00. 

Next, we observe by Skorohod's theorem (cf. Dudley (1989), pp. 325-327) that 
one can assume without loss of generality that 

G mk ---+ G almost surely as n ---+ 00, 

and now all we have to do is to prove that G is actually a PWIT. 
From the definition of the topology of local weak convergence, we know automat­
ically that G is connected, so G will be a tree provided that we show that it has 
no cycles. This will follow from the next lemma. 
For the statement of the lemma, we note that a path-pLus-cycle is a graph that 
can be written as a path plus one additional edge that makes a cycle by joining 
two vertices on the path. Also, to a~lticipate the application of the lemma, one 
should recall that the root of G n is randomly chosen uniformly from the vertex 
set v( Gn ), so the lemma immediately implies that with probability one the limit 
graph G has no cycles in any p neighborhood of its root. 

Lemma 4.3. Let S(n,p) the set of all vertices v E v(Gn ) for which there exists a 
path-plus-cycle H = H (v) C G n such that 

v E Hand L t,e::; p. 
eEe(H) 

One then has 
IS(n,p)l/n !!... 0 as n ---+ 00. 

Proof; We first note that the number of path-plus-cycle subgraphs of G n with k 
vertices cannot be larger than 
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Also, by our hypothesis on F, we know there is an Xo such that F(x) ::; 2JLx for 
all 0 ::; x ::; Xo, and from this bound, integration by parts, and induction one finds 
a corresponding bound for the k-fold convolution is given by 

Thus, for any kedges el, e2, ... , ek of G n we find from the distributional assumption 
J1D(~e ::; x) = F(x/dn ) that 

The expected number vertices of G n that are contained in path-pIus-cycle sub­
graph G n with k vertices and total length bounded by p is therefore no larger 
than 

(2JL)knk26.(G;1~~lpk provided that 0::; p::; xodn . 

Now, since 6.(Gn ) rv dn , we may chose a constant C = C(JL,p) such that this 
bound is not larger than nCk /dnk!, and, thus, one finds 

lE(IS(n,p)l) ::; eCn/dn , for all n such that dn :::: p/xo. 

Since we assume dn ----> 00, this bound is more than one needs to complete the 
proof of the lemma. D 

Now that we know G is a tree, the proof of Theorem 4.2 will be complete provided 
that we confirm that the edge lengths from each vertex to its children are given by 
the realization of an independent Poisson process. For the root of G this is quite 
easy. When we look at the edges incident to the root of G n for large n, we see 
by Lemma 4.1 that the lengths of these edges are approximately the points of a 
Poisson process, and consequently the lengths of the edges incident to the root of 
G must exactly follow a Poisson process. 
Now consider a fixed p and an n so large that the probability that G n contains 
a cycle in the p-neighborhood of the root of G n is small. We know that the 
distances to the children of the root approximately follow the initial segment of 
a Poisson process, and now we consider the second generation. Let c be a fixed 
child of the root r, and consider the set S of edges incident to c. The set of edge 
lengths {~e : e E Sand e -=1= (r, cn again satisfy the assumptions of Lemma 4.1, so 
the distribution of the lengths of the descendants of c will again follow a Poisson 
process as closely as we like. This argument shows that the first two generations 
of G are consistent with the construction of the PWIT. There is no change to the 
argument as one moves from the kth to the k + 1st generations, so one finds that 
G is indeed a PWIT and the proof of Theorem 4.2 is complete. 

4.4 Convergence of MSTs 

We now need a general result from Aldous and Steele (2002) that tells us that the 
local weak convergence of a sequence of randomly rooted graphs automatically 
gives us the local weak convergence of their associated MSTs. 
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Theorem 4.4 (MST Convergence Theorem). Let Goo denote a Q*-valued 
random variable such that with probability one Goo has infinitely many vertices 
and no two of the edges of G have the same length. Further, let {Gn : n = 
1,2, ... } denote a sequence of Q*-valued random variables such that for each n the 
distribution of Gn is given by the standard construction and such that for each n 
the vertex set of Gn has cardinality n with probability one. If 

d Gn ------t Goo as n ----t 00, (25) 

then one has the joint weak convergence in Q* x Q*, 

(26) 

Further, if N n denotes the degree of the root of MST(Gn) and N denotes the 
degree of the root of MSF( Goo) 

N n ~ Nand lE[Nn ] ----t lE[N] = 2, (27) 

and, if Ln denotes the sum of lengths of the edges incident to the root of M ST( Gn) 
and L denotes the corresponding quantities for MSF(Goo ), then 

d 
L n ------t L. (28) 

4.5 Closing the Loops 

Theorems 1.2 is now a remarkably easy corollary of the PWIT Limit Theorem, 
the MST Convergence Theorem, and the exact PWIT calculation developed in 
Section 3. The first step is simply to make the link between LMsT(Gn ) and 
Y",(G n ) more explicit. 

Here it is useful to let lER[f(Gn)] denote the conditional expectation of f(G n) 
given {~e : e E v(Gn)}; in other words, we just average f(G n) over the possible 
values of the random root R. We now just compute 

e 

= d;:;"'~ I: I:(dn~e)"'lI(e E MST(Gn )) 

v e 

= ~d;:;'" Iv(Gn)llER [I:(dn~e)"'lI(e E MST(Gn ) and R(Gn) E e)] 
e 

= ~d;:;'" Iv(Gn)llER[Y",(Gn)]. 

Finally, if one takes expectations in this representation one finds the basic identity 

(29) 
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d 
Now, by the PWIT limit theorem we already know that Gn ---+ T, and by 
the MST Convergence Theorem this automatically entails MST(Gn ) ---+ MSF(T). 
From the defining topology of local weak convergence, we then have 

L ~~IT(e E MST(Gn ) and R E e) 
d 

---+ L ~~IT(e E MSF(T) and R E e), 
eEe(Gn ) eEe(T) 

or in other words 
d 

---+ Ya(T). (30) 

Now, if {Y( On) : n = 1,2, .. } uniformly integrable, we can take expectations in 
the limit (30) and apply our earlier calculation of IE[Ya(T)] to find 

but by the introductory identity (29), this is equivalent to 

(31) 

so the direct part of Theorem 1.2 is complete. 
The converse now comes almost for free. One first notes that we may reverse the 
path from the limit (31) to the convergence of the expectations IE[Ya(Gn)], so 
when one pairs this fact with the limit (30), the loop is closed by applying the 
following simple lemma. 

Lemma 4.5. If a sequence of nonnegative random variables X n , n = 1,2, ... 
converges to X in distribution, then one has 

IE[Xn] ---+ IE[X] if and only if {Xn: n = 1,2, ... } is uniformly integrable. 

Proof: If we assume that the sequence {X n : n = 1, 2, ... } is uniformly integrable 
then convergence in probability implies Xn convergence in L1 and this certainly 
implies that one has the convergence of the expectations. For the converse, we 
first note that by the Skorohod embedding theorem (Dudley (1989), pp. 325-
327), there is no loss of generality if we assume that Xn converges almost surely 
to X. In this case, the nonnegativity and convergence of the expectations implies 
that Xn converges to X in L1 by Sheffe's lemma (Williams (1991), p. 55). Since 
L1 convergence is stronger than uniform integrability of {Xn : n = 1,2, ... }, the 
proof of the lemma is complete. D 

4.6 An Illustrative Example 

Theorem 1.2 tells us that the limit behavior of E[LMST ( On)] is determined once 
one shows the uniform integrability of the sequence {Ya(Gn)}. The systematic 
treatment of this question will be left for another time, but one should note that 
this reasonably crude and qualitative property of {Ya (On)} often follows from 
known results. Nevertheless, there are certainly many situations where uniform 
integrability fails or where the proof of uniform integrability can be subtle. 
The example we consider here is illustrated in Figure 3, and it has also been used 
for illustration in Beveridge, Frieze, and McDiarmid (1998) and Frieze, Ruzink6, 
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and Thoma (2000). If one takes Gn = C(mn , K;;l), then one can see just from 
Frieze's ((3) theorem that under the model of uniformly distributed costs that one 
has 

E[LMST(Gn)] rv mn(((3) + 1) as n ---) 00 

for any choice of the sequence 2 ~ mn < 00. On the other hand, uniform integra­
bility of {Y(Gn ) : n = 1,2, ... } would imply that 

E[LMsT(Gn)] rv mn((3), 

so in this case we certainly know {Y(Gn ) : n = 1,2, ... } is not uniformly integrable. 
Nevertheless, one might want to check this directly, and, in fact, a moment's 
thought about the impact of a random root is all one needs to show 

limsupE[Y(Gn)Il(Y(Gn) ~ t)] ~ 1 for all 0 ~ t < 00. 
n--->oo 

The situation is more interesting in case one takes 0 < 0: < 1, in which case one 
may now show that 

lim lim sup E[Y", (Gn)Il(Y", (Gn ) ~ t)] = 0, 
t---+CX) n--+oo 

so the sequence {Y", (Gn )} is uniform integrable. As a consequence, one obtains a 
positive result for C(mn , K;;l) that asserts 

a fact which is perhaps more amusing when made more concrete. If one takes 
mn = In''' J and 0: = 0.99, then r(1.99) = 0.995··· and ((2.99) = 1.204···, so one 
finds 

E[L~~~(C(n, K;;l)] rv en where c = r(1.99)((2.99) = 1.1990··· . 

5 Concluding Observations 

As noted earlier, this is a report on work-in-progress and there are many loose 
ends that time and diligence may suffice to resolve. Perhaps the most compelling 
questions that have been left open concern the monotonicity and concavity of 
E[LMST(Kn)] under the uniform model. Next on the list would be the possible 
analog of Parisi's conjecture and an exploration of the relationship of E[ LMST (K n)] 
to Sn = 1 + 1/23 + ... + l/(n - 1)3 under the exponential model. 

More generally, the exact formula (2) for E[LMsT( G)] provides one with consid­
erable motivation to work out detailed representations for the Tutte polynomials 
for those graphs that are of most interest in probability theory. One also suspects 
that interesting consequences may flow from the interpretation of formula (2) in 
the light of general results for the Tutte polynomial. Specifically, one might spec­
ulate that results like the Negami Splitting Formula (Negami (1987)) could lead 
to interesting inferences. Finally, the appearance of the logarithmic derivative of 
the Tutte polynomial in formula (2) suggests that this rational function may have 
informative properties beyond those it inherits from the Tutte polynomial. 
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.l6I ...... l6I. 

C(m, K;;l) has mn vertices 
and mn(n - 1)/2 edges. 

C(m, K;;l) is regular 
with degree n - 1; a dotted 

edge is as honest as any other. 

243 

Figure 3: The graph C(6, K;l) is built out of 6 copies of K4 that have had one 
edge removed. These altered graphs ~ called K;ls ~ are then chained together 
in a cycle. The result is a regular graph with degree 3 and 6 . 4 = 24 vertices; in 
grocer's terms one has a cubic graph with two dozen vertices. 

The questions that are left open from the second part of the report are less well 
formed. Certainly, the question of uniform integrability of {Ya (Gn)} deserves more 
systematic thought. Right now the easiest paths to uniform integrability freeload 
on the efforts of the more direct approaches to E[LMsT(G)], especially the recent 
arguments of Frieze, Ruzink6, and Thoma (2000) that exploit the lovely bound 
of Karger (1999) on the number of approximately minimal cuts. Nevertheless, as 
the easy example of Subsection 4.6 suggests, the sequence {Ya(Gn )} does have an 
independent character. One suspects that in time the direct investigation of its 
uniform integrability will lead to arguments that do not poach on other approaches. 
Finally, the second part of the report suggests several overarching questions from 
the theory of local weak convergence. One major line of investigation that surely 
deserves a sustained effort is the extension of the MST Convergence Theorem. 
There are many other classes of subgraphs from combinatorial optimization for 
which one expects an analogous result, and the class of confirmed examples is 
growing. Nevertheless, the final form of this theory is nowhere in sight. 
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Generalized Pattern Matching Statistics 
Jeremie Bourdon, Brigitte Vallee 

ABSTRACT: In pattern matching algorithms, a characteristic parameter is the 
number of occurrences of a given pattern in a random text of length n generated 
by a source. We consider here a generalization of the pattern matching problem 
in two ways. First, we deal with a generalized notion of pattern that encompasses 
classical patterns as well as "hidden patterns". Second, we consider a quite gen­
eral probabilistic model of sources that may possess a high degree of correlations. 
Such sources are built with dynamical systems and are called dynamical sources. 
We determine the mean and the variance of the number of occurrences in this 
generalized pattern matching problem, and establish a property of concentration 
of distribution. These results are obtained via combinatorics, formal language 
techniques, and methods of analytic combinatorics based on generating operators 
and generating functions. The generating operators come from the dynamical sys­
tem framework and generate themselves generating functions. The motivation to 
study this problem comes from an attempt at finding a reliable threshold for in­
trusion detections, from textual data processing applications, and from molecular 
biology. 

1 Introduction 

Various pattern matching problems. String matching is the basic pattern 
matching problem. Here, a string W is a sequence of symbols W = WI W2 •.. Ws (of 
length s), and one searches for occurrences of w (as a block of consecutive symbols) 
in a text T. However, there are several useful generalizations of this basic problem: 

Set of patterns. In the classical string matching problem, the pattern w should 
appear exactly (and consecutively) in the text, while, in the approximate case, a 
few mismatches are considered acceptable. The approximate string matching is 
then expressed as matching against a set £ of words that contains all the valid 
approximations of the initial string. 

Sequence of patterns. If we are interested in occurrences of the pattern w as a 
subsequence ofthe text T (now, the symbols no longer need to be consecutive), the 
problem is quite different, and it is called the subsequence matching problem. If 
the lengths of the gaps between successive symbols are not bounded, this matching 
problem becomes that of finding a subsequence of symbols. 

Hidden pattern problem. If some of the gap lengths are bounded, while some 
others are not, one has the hidden pattern problem. A typical hidden pattern 
may look like ab#2r#ac#a#d#4a#br#a. Here, the notation #i abbreviates a 
sequence of "don't-care-symbols" where the subscript denotes a strict upper bound 
on the length of the associated gap, # abbreviates #00 and #1 is omitted. 

Here, we present a common framework for all the previously discussed types of 
pattern matching problems. We consider a generalized pattern which consists in 
a sequence £ of languages, i.e., £ := (£1, £2, ... ,£r). Each language £i itself 
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represents the i-th set of patterns to be used; it may be of infinite cardinality, but 
it is supposed to be "nondense" (in a formal sense that will be precised in the 
sequel). This generalized pattern then models a succession of r tasks, the i-th task 
corresponding to language 'ci' Between each task, any event (namely, any word 
of A*) may occur. The corresponding pattern matching problem encompasses all 
the problems that we have described previously, as well as most of the classical 
problems of pattern matching, as described in [7] for instance. Surprisingly enough 
and to the best of our knowledge, there are no studies in the literature that address 
the question at this level of generality. 

Motivations. We cite the introduction of [8] devoted to hidden patterns: "This 
general problem arises in two domains: intrusion detection and molecular biology. 
In the area of computer security, the intrusion detection [1, 12] searches in an 
audit file (the text) for certain patterns (known also as signatures) representing 
suspicious activities that might be indicative of an intrusion by an outsider, or 
misuse of the system by an insider. The key to this approach is to recognize 
that these patterns are subsequences because an intrusion signature specification 
requires the possibility of a variable number of events between successive events 
of the signature. 
Molecular biology provides another important source of applications [16, 22, 23]. 

As a rule, there, one searches for subsequences, not strings. Examples are in 
abundance: split genes where exons are interrupted by introns, starting and 
stopping signal in genes, etc.... In general, for gene searching, the generalized 
pattern matching is the right approach for finding meaningful information. 
We wish to study the number of occurrences of the generalized pattern in a ran­

dom text of length n produced by a source of symbols. In all of the contexts 
mentioned above, it is of obvious interest to discern what constitutes a meaningful 
observation of pattern occurrences from what is merely a statistically unavoid­
able phenomenon ("noise"). This is precisely the problem addressed here. An 
immediate consequence of our results is the possibility to set thresholds at which 
appearance of a generalized pattern starts being meaningful". 

Probabilistic model. In information theory contexts, data items are (infinite) 
words that are produced by a common mechanism, called a source. While real­
life sources are often complex objects, pattern matching analyses only deal with 
quite idealized sources, such as memory less sources or Markov chains. We use here 
a general framework of sources related to dynamical systems theory which goes 
beyond the cases of memoryless and Markov sources [19]. This model can describe 
non-Markovian processes, where the dependency on past history is unbounded, and 
as such, they attain a high level of generality. A probabilistic dynamical source 
is defined by two objects: a symbolic mechanism and a density. The mechanism 
is related to symbolic dynamics and associates an infinite word M(x) to a real 
number x of the [0,1 J interval. It can be viewed as a generalization of numeration 
systems. Once the mechanism has been fixed, the density f on the [0, 1 J interval 
can vary. This induces then different probabilistic behaviors for source words. 
In dynamical systems theory, an important tool is the density transformer; here, 

we use it in a non classical way, and, since we show that it can easily generate 
objects that are essential in the analysis, we give it the role of a "generating 
operator". 

Results. To the best of our knowledge, all the results that are already obtained 
in this area deal with classical sources -memoryless sources, Markov chains-. For 
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instance, the number of string occurrences in a random text has been intensively 
studied over the last two decades, with significant progress in this area being re­
ported [2, 9, 10, 13, 14, 15, 23]. Guibas and Odlyzko [9, 10] have revealed the fun­
damental role played by autocorrelation vectors and their associated polynomials. 
Regnier and Szpankowski [14, 15] established that the number of occurrences of a 
string is asymptotically normal under a diversity of models that include Markov 
chains. Nicodeme, Salvy, and Flajolet [13] showed generally that the number of 
places in a random text at which a motif (Le., a general regular expression pattern) 
terminates is asymptotically normally distributed. 
We consider here the general problem -a general pattern in a general source-. 
Let On(.c) be the number of occurrences of a given nondense generalized pattern 
.c = (.c 1, .c2 , ... , .cr ) in a random text of length n generated by a dynamical 
source. Here, the number r of components of the generalized pattern .c plays 
a fundamental role, since it measures the degree of freedom of the pattern. We 
study the expectation and the variance of the random variable On(.c), and show 
the following estimates 

where 7r(.c) is the weight of .c. Here, the variance coefficient (J2(.c) depends on two 
kinds of correlations. The first kind of is due to the source, and disappears when 
the source is memoryless. The second kind of correlations is due to the structure 
of the pattern, and it may exist even in the memory less case. 
When there exists only one degree of freedom (i.e., r = 1), the mean and the 
variance become of linear growth. This situation arises as soon as one considers 
only one set of patterns: for instance, the basic string matching, the approximate 
string matching, the totally constrained hidden pattern, etc .... For r = 1, it is 
possible to deal with finite-state models and de Bruijn graphs (as it is announced 
in [8] for memoryless sources) and obtain a central limit law. 

Methodology. The first step we approach the probabilistic analysis is through 
a formal description of situations of interest by means of regular languages. Basi­
cally, as in [8], such a description of contexts of one or two occurrences gives access 
to expectation and variance, respectively. In previous works, based on the "gen­
erating function methodology", as in the main books of the area [11, 18, 17], one 
operates a systematic translation into generating functions. Due to correlations of 
the source, such a direct approach is no longer possible. Instead, we perform what 
we call a "dynamical analysis" and we first operate a systematic translation into 
generating operators. Now, there are many instances of this methodology, that 
can be applied in two main areas: text algorithms as in [3, 6, 19], or arithmetical 
algorithms as in [20, 21]. Here, the structure of the implied generating operators 
at the pole z = 1 provides the necessary asymptotic information. Finally, we come 
back to (classical) generating functions, and obtain the asymptotic behavior of the 
main parameters. 

Plan of the paper. In Section 2, we describe the general pattern matching 
problem. We introduce the languages and the related generating functions that 
intervene in the analysis of the first two moments of the characteristic parame­
ter, namely the number of occurrences of a given generalized pattern. Section 
3 is devoted to the probabilistic model. Here, we define dynamical sources and 
introduce the generating operators that are a basic ingredient associated to the 
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correlated sources considered. In Section 4, we come back to the average-case 
analysis of the characteristic parameter and prove our results. Finally, Section 5 
presents important examples of pattern matching problems that fit in our general 
framework. 

2 Collections of words and generating functions 

We fix an alphabet A, either finite or denumerable. The set of all possible texts 
is A*, and a text of length n is an element T = ttt2 ... tn of An. We distinguish 
two notions: a language that is a set of words, and a collection (of words) that is 
a multi-set of words: in a collection, the same word may occur several times. 

2.1. Generalized patterns. We give a higher degree of generalization to the 
pattern matching problem and consider a sequence of sets of patterns. 

A generalized pattern is then specified by a finite sequence of languages £ := 
(£1, £2, ... , £r). Each language £i represents the i-th set of patterns to be used; 
It is supposed to be non dense. A precise definition of this notion will be given in 
3.4. When all the components £i are nondense, the generalized pattern itself will 
be said to be nondense. We say that £ occurs in the text T if the text T contains 
as a subsequence a sequence £ = (£1, £2, ... , £r) of £. In this case, T is of the form 

with and 

The set of all valid occurrences of generalized pattern £ is then the collection p(£), 

p(£) = A* x £1 X A* x £2 X ... x A* x £r x A*. (1) 

This operation p transforms a finite sequence of languages into a collection of 
words. This operation is called the completion, and p(£) is the completion of the 
sequence £. 

An occurrence, that is an element of p(£), defines a position I: this is the sequence 
of the r disjoint intervals (h, h, ... Ir ), where interval I j := [aj, bj ] represents the 
exact portion of text T where the word £j occurs. Then, for instance, al = 
Iwol + 1,bl = al + 1£11, etc .... We denote by Pn(£) the set of all valid positions 
relative to £ satisfying br 'S n. The number !In(£) of occurrences of pattern £ 
with size n is then a sum of characteristic variables 

!In(£) = ~ XI, with XI(T) := [£ occurs at position I in T], (2) 
IEPn(£) 

where [B] = 1 if the property B holds, and [B] = 0 otherwise (Iverson's notation). 

2.2. An important particular case: hidden patterns. A hidden pattern 
matching problem is specified by a pair (W, 'D): the pattern W = WI··· Ws is a 
word of length s; the constraint 'D = (dl , ... , ds-l) is an element of Ns - l . An 
s-tuple I = (i l ,i2 , ... ,is ), (1 'S il < i2 < ... < is), satisfies the constraint 'D if 
each gap ij+1 - i j is at most dj , in which case it defines a position. An occurrence 
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of pattern W subject to the constraint V is a pair (1, T) formed with a position 
J = (iI, i2, ... , is) and a text T = tlt2'" tn for which tij = Wj (1 :::::: j :::::: s). 

The case V = (00, ... , 00) models the unconstrained problem: in this case, the i-th 
language 12i reduces to the symbol {Wi}; at the other extreme of the spectrum, 
there lies the case where all dj are finite, which we name the constrained problem: 
in this case, there exists only one finite-length language (i.e., r = 1) formed by all 
valid words that begin with the first symbol of W, that end with the last symbol 
of W, and fulfill all the constraints of V. In the general case, the subset U of 
indices j for which dj is unbounded (dj = 00) has cardinality r - 1. It separates 
the pattern (W, V) into r independent sub-patterns that are called the blocks and 
are denoted by (WI, Vd, (W2' V 2 ), ... , (Wr, Vr). Each block (Wk' V k) gives rise 
to a finite-length language 12k defined as the language of all valid words that begin 
with the first symbol of Wk, that end with the last symbol of Wk, and fulfill all 
the constraints of V k • 

2.3. Probabilistic model and generating functions. As regards the prob­
abilistic model, we consider a random source that emits symbols of the text from 
the fixed alphabet A. For a given length n, a random text, denoted by Tn, is 
drawn according to the induced probability on An, and, for any word W of length 
n, we denote by Pw the probability that the source emits a prefix equal to w. 
We associate to any collection M its generating function M(z), where the complex 
variable z marks the length of the word W 

M(z) = 2: Pw z1wl = 2:p(Mn)zn. 
wEM n~O 

The last expression involves the probability of the collection Mn of words of M 
of length n. If the series M(l) and M'(l) converge, they define two objects, the 
total weight p(M), and the average-length N(M), 

p(M):= 2: Pw = M(l), 
wEM 

N(M) := L:WEM Iwlpw = M'(l). 
L:wEMPw M(l) 

(3) 

For a generalized pattern 12, the weight and the average length are defined by 

r r 

7r(12) = IIp(12i), N(M) := 2: N(12i), (4) 
i=I i=l 

two quantities that surface throughout the analysis. 

2.4. Generating function of the mean number of occurrences. Under this 
randomness model, all the quantities XI defined in (2) become random variables 
whose expectations satisfy, for all allowable J E Pn(12), 

E [XI] = 2: p(T) [12 occurs in T at position J]. 
TEAn 

Then, the quantity f2n(12) is itself a sum of correlated random variables, and the 
expectation E [f2n(12)] of the number of occurrences of the generalized pattern £ 
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in a text of length n, equal to 

wEP(£)n 

is exactly the probability of the sub-collection P(£)n defined in (1). Finally, the 
generating function of the expectations coincides exactly with the generating func­
tion L(z) of the collection p(£), 

L(z):= L Pw zlwl = L E [On(£)] zn. 
wEp(£) n;:o.l 

2.5. Generating functions that intervene in the second moment analysis. 
The second moment of the variable OnC£:) equals 

E [0;'(£:)] = L E [XIXJ]. 
I,JEPn (£) 

As previously, the generating function Ln E [0;' (£)]zn coincides with the gener­
ating function L[2J (z) of the collection £[2J of pairs of £-occurrences. 

We now describe the collection £[2J. The aggregate a(I, J) between two positions 
I and J is the sequence of system of intervals obtained by merging together all 
intersecting intervals of I and J. The number {3(I, J) of intervals of a(I, J) plays 
a fundamental role here, since it measures the degree of freedom of pairs. As 
an example, suppose that 1= ([2,6]' [10, 13]), J = ([5,11], [12, 14]) are two valid 
positions for a generalized pattern. Then a(I, J) = [2,14] and {3(I, J) = 1. 

Next, we group the pairs (I, J) according to the value of {3(I, J) and consider 
the sub-collections £~J formed by the pairs of £-occurrences that arise at a pair 
(I, J) of positions for which {3(I, J) equals 21' - p. However, it is sufficient to deal 
with the two sub-collections £b2J and £~2J relative to cases p = a and p = 1 since 
they give rise to the two main terms in the asymptotics of the second moment. 

The first collection £b2J (relative to non-intersecting positions) is just obtained 
from a completion of a generalized shuffle. Consider two sequences of languages M 
and N. The shuffle of M and N, denoted by M liN, is a set of sequences obtained 
by shuffling the two sequences; if the sequence M has i components, and N has j 
components, the set M li N contains C:j ) sequences with i + j components. For 
instance, for a generalized pattern £, the shuffle £ li £ contains e;) sequences, 
and 

(5) 

The second collection £~2J is relative to positions I and J for which only one pair 
(Ii, Jj ) intersects. It is obtained from the operations of completion and generalized 
shuffle, but it also uses another operation that we denote by r that transforms a 
pair (8, C) of languages into a collection 8 r C. This collection gathers all the 
words that can be obtained by overlaps of words of 8 with words of C. It is itself 
the union of three collections 

8 r C :=< 8, C > U < C, 8 > U (8 n C) (6) 
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where < B,C >:= {w = j3u"( I j3,,,(,u E A*,u #- E, (j3,,,() #- (E,E),j3U E B,u,,( E C}. 

Then, for each pair (i,j) of indices with 1 ~ i,j ~ r, the collection C[i,j] is 
obtained by mixing Ci i Cj with two beginning sequences bi(C), bj(C) and two 
ending sequences ei(C),ej(C) of sequence C, 

C[i,j] := (bi(C) II bj(C), Ci i Cj , ei(C) II ej(.c)) , (7) 

with bi(C):= (C l , ... ,Ci- 1 ), ej(C):= (C)+l,'" ,Cr ), 

The collection C[i,j] is then the union of t( i, j) sequences of languages, with 

( . .).= (i + j - 2) (2r - i - j) 
t Z, J. . 1 .' 

Z - r - Z 
(8) 

Note that each sequence has the same components, but with a different order. 
Finally, the collection C~2] is obtained with the completion operator, 

d 2].- ~ p(C ) 1 .- ~ [i,j] . (9) 
l:Si,j:Sr 

2.6. Main differences with the memory less case. In the memoryless case, 
we can obtain quite easily a direct translation of collections defined in (1, 5, 9) 
into generating functions. Moreover, it is possible to work directly with centered 
variables YI := XI - E (XI)' 
Here, this approach does not work (or at least we did not succeed in making it 
work). Due to correlations of the sources, we no longer use a direct translation 
in generating functions. However, in the framework of dynamical sources, it is 
possible to deal with "generating operators". 

3 Dynamical sources and generating operators 

We now present a quite general model of source -dynamical sources- that are 
associated to dynamical systems. Then, probabilities are "generated" by some 
generating operators, and the main generating functions to be studied can be 
generated themselves by operators. More precisely, we prove that an operator 
L(z) can be associated to each generalized pattern C from which the generating 
function L(z) is easily deduced. Furthermore, unions and Cartesian products of 
sets translate into sums and compositions of the associated operators. 

Moreover, such dynamical sources encompass and generalize the two classical 
models of sources, namely, the memory less sources and Markovian sources. We 
refer to [19] for more details. 

3.1. Dynamical sources. A dynamical system S is defined by four elements: 
(a) an alphabet A, either finite or denumerable, 
(b) a topological partition of I :=]0, 1[ with disjoint open intervals I a , a E A, 
(c) an encoding mapping a which is constant and equal to a on each I a , 
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(d) a shift mapping T whose restriction to Ia is a bijection of class C1 from Ia to 
I. The local inverse of T restricted to Ia is denoted by ha. 

Such a dynamical system can be viewed as a "dynamical source". since it produces 
infinite words of Aoo. With an input x of I, it outputs the word M(x) formed 
with the sequence of symbols aTj(x), i.e., M(x) := (ax, aTx, aT2 x, ... ). 

3.2. Generating operators. The mappings hw := hml 0 hm2 o· . ·0 hmk relative 
to prefix words w := m1 ... mk are then the inverse branches of Tk. All the infinite 
words that begin with the same prefix w correspond to real numbers x that belong 
to the same interval Iw =]hw(O), hw(1)[. Then, if the unit interval is endowed 
with some density f, the probability Pw that a word begins with prefix w is the 
measure of the interval Iw. Such a probability Pw is now easily generated by the 
operator G[w], defined as 

G[w] [f](t) = Ih~(t)1 f 0 hw(t), 

since one has 

l hw (1) 11 11 Pw = I f(t)dtl = Ih~(t)lf 0 hw(t)dt = G[w] [f](t)dt. 
hw(O) 0 0 

(10) 

The following composition property holds: 

for any prefixes w, Wi, one has: (11) 

and "replaces" the relation Pw.w' = PwPw' which is no longer true when the source 
has some memory. 
The generating operator B(z) of a collection B of A* is then defined by 

B(z) := L zlwl G[w]. 
wEB 

where the complex variable z marks the length ofthe word w. If the operator B(z) 
is well-defined at z = 1, the operator B := B(l) is called the normalized operator 
of collection B. For instance, the operator 

G:= LG[a], 
aEA 

(12) 

is the normalized operator of the alphabet A and it plays a fundamental role in 
the sequel. It is the density transformer of the dynamical system in the sense that 
if X is a random variable with density f, the density of T X is G [fl. 
Then, from (11), unions and Cartesian products oflanguages translates into sums 

and compositions of the associated operators. For instance, the operator associated 
to the set A* is the quasi-inverse 

(I - zG)-1 := L iGi . 

i>O 
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If £ is a generalized pattern, i.e., a sequence of languages £:= (£1,£2, ... ,£r), 
the generating operator L(z) relative to collection p(£) defined in (1) satisfies 

L(z) = (I - zG)-l 0 Lr(z) 0 (I - zG)-l 0···0 L1 (z) 0 (1 - zG)-l, (13) 

and involves r + 1 occurrences of the quasi-inverse (I - zG)-l "mixed" with the 
generating operators Li (z) of languages £i. 

Then, equation (10) provides a relation between the generating operator B(z) and 
the generating function B(z) relative to the same collection B, that is 

B(z) := L zlwlpw = L zlwl r1 G[w] [f](t)dt = r1 B(z)[f](t)dt. (14) 
wEB wEB Jo Jo 

3.3. Some nice dynamical sources. There exist dynamical sources for which 
"nice" properties of shift T can be transferred into "nice" properties of their density 
transformers. Under some "natural" properties of shift T, there exists a spectral 
decomposition of the density transformer G defined in (12) that induces a spectral 
decomposition of the quasi-inverse (1 - zG) -1. This property will be fundamental 
in the analysis. More precisely, we give the following definition, perhaps a little 
bit informal : 

Definition. A dynamical system is said to be decomposable if the density trans­
former G satisfies the following: It acts on a convenient Banach space:F on which 
it is quasi-compact, and it has positivity properties that entail the existence of 
dominant spectral objects. 

Then, there exist a unique dominant eigenvalue ,\ positive and a dominant eigen­
function denoted by rp. Under the normalization condition fo1 rp(t)dt = 1, this last 
object is unique too. Then, quasi-compacity entails the existence of a spectral 
gap between the dominant eigenvalue and the remainder of the spectrum, that 
separates the operator G in two parts G = '\P + N, where P is the projection 
of G onto the dominant eigenspace, and N is relative to the remainder of the 
spectrum. Since the operator G is a density transformer, its dominant eigenvalue 
satisfies ,\ = 1 and rp is also the (unique) stationary density. One then splits the 
quasi-inverse (1 - zG)-l into two parts, 

1 
(I - zG)-l = --P + R(z), 

1-z 
(15) 

with R(z) := (1 - ZN)-l - P = L zk(Gk - P), 
k?,:O 

P[f](t) = rp(t) 11 f(x)dx. 

The first term of (15) defines an operator which has a pole at z = 1. Due to the 
existence of the spectral gap, the operator N has a spectral radius ft less than 
1, and then the second term of (15) defines an operator R(z) that is analytic in 
Izl < (11ft)· At z = 1, the operator R := R(l) describes the correlations of the 
source. 

A decomposable dynamical source is proven to be ergodic and mixing with ex­
ponential rate. The main class of decomposable dynamical sources is provided by 
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the analytic expanding sources, as defined in [19]; however, there are some other 
instances, as systems described in [5]. 
In the remainder of the paper, we deal with a decomposable dynamical source 

and the initial density will be always the stationary density cp. For any function 9 
of F, one has: 

R[cpJ = 0, 11 P[gJ(t)dt = 11 g(t)dt, 11 R[gJ(t)dt = o. (16) 

3.4. Nondense collections and correlations. We are now ready to give the 
precise definition of a non dense collection. 

Definition. The collection B is said to be non dense if the associated generating 
operator B(z) : F -+ F is analytic on the disk Izl < (1/ p) for some p < 1. A 
generalized pattern £ whose all components 12i are nondense is said to be non dense. 

Denote by Bn the sub collection of B formed with words of length n, and by Bn its 
normalized generating operator. The collection B is non dense if and only if there 
exists p < 1 for which one has IIBnllF = O(pn). Remark that, if B is nondense, 
one has p(Bn) = O(pn). Then the generating function B(z) is analytic at z = 1, 
so that both quantities p(B) and N(B) defined in (3) are well-defined. 

Here are some instances of nondense languages: finite languages, finite-length 
languages. For memoryless sources, languages where a symbol is forbidden, etc ... 

For a non dense collection B, the normalized generating operator B satisfies 

11 P 0 B 0 P[gJ(t) = p(B) (11 9(t)dt) . (17) 

In the analysis, two kinds of correlations may occur between two nondense collec­
tions B, C, according to the relative position of Band C. If Band C do not overlap, 
there are two cases: B before C, or C before B. In these cases, the correlation co­
efficients are c(B, C) or c(C, B) where c(B, C) is defined as 

p(B)p(C)c(B, C) := L [p(B x Ak x C) - p(B)p(C)] = 11 CoR 0 B[cpJ(t). (18) 
k~O a 

If Band C overlap, the correlation coefficient 

p(B l' C) 
d(B, C) := p(B)p(C) (19) 

involves the nondense collection B l' C of words w defined in (6), so that coefficient 
d(B, C) is well-defined. Finally, the total correlation coefficient m(B, C) between B 
and C gathers the three possible cases 

m(B, C) = c(B, C) + c(C, B) + d(B, C), (20) 

so that 

p(B)p(C)m(B, C) = p(B l' C) + L [p(B X Ak x C) + p(C X Ak X B) - 2p(B)p(C)] . 
k>O 
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4 Analysis of the number of pattern occurrences 

We are now able to come back to the analysis of the characteristic parameter 
and we prove a similar asymptotic behavior for the number of occurrences as in 
the classical case [8]. We first study the mean, then the second moment. We 
conclude with an expression of the variance, and a proof of the concentration of 
distributions. 

The main steps of our analysis which can be called a "dynamical analysis" are as 
follows: 

(a) We first describe the generating operators relative to each collection, namely 

L(z) relative to collection p(£) for the mean, and L62] , L~2] relative to collections 

£62], £~2] for the second moment. Each generating operator will contain some 
occurrences of the quasi-inverse (I - zG)-l, and some occurrences of generating 
operators Li (z ). 

(b) We then decompose the three main operators with the help of (15). We will 
consider only the two transformations which give rise to the main asymptotic 
terms: The transformation called AllP, where we replace all the occurrences of the 
quasi-inverse by the first term (1- Z)-l P, and the transformation AllP-1R, where 
we replace all occurrences except one of the quasi inverse (I - zG)-l by the first 
term (1- Z)-lp, the last occurrence being replaced by the operator R(z). Then, 
formulae (16,17) are useful in the computations of constants involved. 

(c) We thus come back to generating functions thanks to (14). 

(d) We finally extract the asymptotic behavior of coefficients of generating func­
tions. 

4.1. Mean number of occurrences. We state our first result: 

Theorem 1. Consider a decomposable dynamical source endowed with its sta­
tionary density 'P and a generalized nondense pattern £ = (£1,£2, ... ,£r). The 
expectation E [Dn(£)] of the number of occurrences of the generalized pattern £ 
in a text of length n satisfies 

where 7r(£) is the total weight and N(£) is the average length. The coefficient C(£) 
equals the sum of the correlations C(£i-1' £i) between two consecutive languages, 
where the correlation coefficient c(B,C) is defined in (18). 

Proof. The collection relative to the mean is p(£) defined in (1), and the gen­
erating function is L(z) defined in (13). When using the transformation AllP in 
L(z), we obtain an operator M1(Z) which has a pole of order r + 1 at z = 1, 

( 
1 )r+1 

M1(Z)= -- PoLr (z)oPo ... oPoL1 (z)oP. 
1-z 
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Near Z = 1, each operator Li(Z) is analytic and admits the expansion Li(Z) = 
Li + (z - l)L~(l) + O(z - 1)2, so that the main term of the expansion is 

( 
1 ) r+1 

-- P 0 Lr 0 Po· .. 0 PoLIo P 
1-z 

(21) 

while the second main term is obtained as a sum of r terms, each of them obtained 
by replacing the operator Li(Z) by its derivative L~(l) at Z = 1. The corresponding 
generating function M 1(z) satisfies near Z = 1 

( 1 ) r+1 (1) r ( 1 ) r-1 M 1(z) = - 7r(.c) - - 7r(.c)N(.c) + 0 -
1-z 1-z 1-z 

(22) 

The apparition of the weight 7r(.c) and the average length N(.c) is due to formulae 
(16,17), together with definitions (4). 
When using now AllP-1R in L(z), we obtain an operator M 2 (z) which has a pole 

of order r at z = 1. This is a sum of r + 1 terms, each of the term containing an 
occurrence of the operator R( z) between two generating operators of consecutive 
languages .ci- 1 , .ci . The relative generating function M 2 (z) has also a pole of order 
r at z = 1 and satisfies near z = 1 

Here, the correlation number c(8, C) between 8 and C is defined in (18). 0 

4.2. The second moment. We prove here that the analysis of the second 
moment is very similar to the analysis of the expectation, even if it is more intricate. 

Theorem 2. The second moment E [n~(.c)l of the number of occurrences of the 
nondense generalized pattern .c = (.c 1 ,.c2 , ... ,.cr ) in a text of length n produced 
by a decomposable dynamical source endowed with stationary density 'P satisfies 

- (2r - 1) (2r) ""' withC(.c):=2 r-l C(.c)-2 r N(.c)+ L. t(i,j)m(.ci,.c j ). 

l::;',J::;r 

Here, 7r(.c) is the total weight, N(.c) is the average length, C(.c) is the coefficient of 
Theorem 1 and the correlation-coefficient m(8, C) is defined in (20). The "choice" 
coefficients t(i,j) are defined in (8). 

Proof. We deal now with collections .c62J , .c~2J defined in (5,9), and the generating 

functions L62J ,L~2J relative to these collections. 

We begin with L62J . When using the transformation AllP in L62J , we obtain an 
operator M3(Z) which has a pole of order 2r + 1 at z = 1. The corresponding 
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generating function M3(z) has also a pole of order 2r + 1 at Z = 1 and satisfies 
near Z = 1 

M3(z) = r __ n 2 (.c) _ 2 r __ n 2 (£)N(£) + 0 __ . (2)( 1 )21"+1 (2)( 1 )21" (1 )21"-1 
r l-z r l-z l-z 

Here, the weight n(£) and the average length N(£) occur thanks to the same 
arguments as in Theorem 1. 

When using AllP-IR in L~2], we obtain an operator M4(Z) which has a pole 
of order 2r at z = 1. This is a sum of terms, where each term contains an 
occurrence of the operator R( z) between two generating operators of languages 
£i, £j. Now, there are two cases, according as the two languages £i, £j "come 
from" the same occurrence or not. In the second case, these languages are not 
necessary consecutive, and all pairs (i, j) may intervene. More precisely, each pair 
(i,j), for 1 ::; i,j ::; r, intervenes in a number of terms equal to 2t(i,j) -here, the 
"choice coefficient" t(i,j) is defined in (8)-. In the first case, the pair (i,j) is 
necessary of the form (i - l,i), with 2::; i::; r, and such a pair occurs in exactly 
2e;~n terms. Finally, the associated generating function M4(Z) has also a pole 
of order 2r at z = 1 and satisfies 

involves the coefficient G(£) that intervenes in Theorem 1 together with supple­
mentary correlations c( B, C) defined in (18). 

The second generating operator L~2] (z) is the sum of generating operators L[i,j] 

relative to collections P(£[i,j]) defined in (7,9). Each operator L(i,j] is itself the 
sum of t(i,j) terms. If, we use AllP in each term, we obtain an operator M5(Z) 
which has a pole of order 2r at z = 1. Near z = 1, the associated generating 
function 

involves correlation-coefficients deB, C) defined in (19). [J 

4.3. Concentration of distributions for the number of occurrences. In 
the computation of the variance, the two main terms of order n2T in E [0;] and in 
E [OnF cancel, and thus, the standard deviation is of an order, O(nT-l/2), that is 
smaller than the mean, O(nT). This fact entails concentration of distribution, via 
a well-known argument based on Chebyshev's inequalities. In summary: 

Theorem 3. The mean and the variance of the number of occurrences On(£) 
relative to a nondense generalized pattern £ = (£1, £2, ... , £1") in a text of length 
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n produced by a decomposable dynamical source endowed with stationary density 
'P satisfy 

where the variance coefIicient 

a2 (£) = 7r2 (£) [r - 2N(£) + m(£) ] 
r!(r - I)! (2r - I)! 

involves the weight 7r(£), the average length N(£) and the total correlation­
coefIicient 

that deals with the correlation-coefIicients m(8, C), defined as 

p(8)p(C)m(8, C) := p(8 i C)+ L [p(8 x Ak x C) + p(C X Ak X 8) - 2p(8)p(C)] . 
k:20 

Consequently, the distribution of the random variable On(£) converges in proba­
bility: 

for any f > 0, 

4.4. A Gaussian law? In the memory less case, we can adapt the method used 
in [8], based on the study of higher centered moments. We then obtain a limit 
Gaussian law. 
However, in the case of a general decomposable source, we did not succeed in 
analysing directly centered moments. We can obtain several main terms of each 
moment E [O~] of order k, but, in order to compute the main term of the moment 
of order k of the centered variable Xn := On - E [On], we would have to get a very 
precise expansion of each E [O~]. We do not succeed to obtain these expansions. 
However, we conjecture that the asymptotic Gaussian law holds, even for a general 
decomposable dynamical source. 

5 Examples of various pattern matching problems 

For memory less sources, all the correlation-coefficients c( £i, £j) disappear. We 
now study some particular cases where the coefficients d(£i' £j) admit some ex­
pressions that are related to classical objects that appear in pattern matching 
problems, such as correlation polynomials, for instance, and we find again some 
classical results that are described in the book [18]. 
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5.1. Basic pattern matching. Here, we consider a pattern 0: that is a finite 
string of length s. This fits in our general framework with r = 1 and .c = {o:}. 
The set .c I .c is here a collection that contains all the words of the form (3u, 
where u satisfies (3u = u, = 0:. Classically, as in [18], the set of all such possible 
suffixes , is called the autocorrelation set and is denoted by Va. Then.c I .c 
coincides with the collection of the words 0:" where the suffix, belongs to Va. 
For, = c:, the word has multiplicity 1, while, for, i=- c:, the word has multiplicity 
2. Then, the autocorrelation-coefficient d( 0:,0:) is related to the auto-correlation 
polynomial Da(z) via the relation p2(0:)d(0:, 0:) = 2Da(1) - p(o:). The following 
theorem holds: 

Theorem 4. Let 0: be a single pattern of length 8. The number On of occurrences 
of 0: in a text of length n produced by a decomposable dynamical source satisfies 

E [On] = [n - 8 + l]p(o:) + O( ~), Var [On] = np2(0:) [1- 28 + m(o:)] + 0(1), 
n 

with 
1 

- p(o:)' 

5.2. Matching a set of patterns. Approximate pattern matching as well as 
multiple pattern matching are very similar to the previous problem. In these cases, 
the generalized pattern .c still satisfies r = 1 and there is a unique finite-length 
language that we denote by.c. The pattern-correlation coefficient is related to 
a correlation polynomial A(a,j3)(z) that extends the autocorrelation polynomial 
for two words 0: and (3 of .c. Totally constrained hidden patterns, as defined in 
paragraph 2.2, are also a particular case of the general setting where r = 1. 

5.3. The gaussian law for a single regular language. In this case, our 
analysis, described in [4], deals with a generating matrix operator that is a mixing 
between generating operators relative to the source and the automaton A relative 
to the regular language.c. We associate to .c subsets S[i,j] of the alphabet A 

formed with all the symbols a that allow automaton transitions from the i-th 
state to the j-th state, 

S[i,]] := {a E A I A(a,i) = j}. 

We denote by B[i,j] the normalized operator relative to language S[i,j], and, we 
mark with variable u all the operators that lead to an accepting state. Finally, we 
consider the matrix operator Bu whose general coefficient is 

B >,} '= , , ' [' '] {B[id] if j is not accepting 
u . U B[>'}] if j is accepting. 

This mixed operator B u , that depends on parameter u, possesses dominant spec­
tral properties when u is near the real axis. We then obtain the following result: 

Theorem 5. The number of occurrences of a regular language in a random text 
of length n produced by a decomposable dynamical source, once normalized by 
the mean and standard deviation, obeys in the asymptotic limit a Gaussian law. 
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5.4. Examples of problems with r > 1. We recall that a hidden pattern 
(W, D) gives rise to a generalized pattern with r components where r + 1 equals 
the number of infinite constraints. Then, as soon as the hidden pattern contains 
an infinite constraint, one has r > 1. 

In the totally unconstrained hidden pattern problem, one considers a pattern 
a := a1 ... as of AS and we are interested in counting all the occurrences of a 
as a subsequence (commonly called hidden word) of a text T. The associated 
generalized pattern corresponds exactly to r = sand £i := {ai}' The pattern­
correlation coefficient d(ai,aj) between two symbols ai and aj satisfies 

and the constant N (£) equals the length s of the pattern. 

The problem of searching for a sequence of words (i.e. £i := {wd) is a slight 
generalization of this problem. In this case, the correlation coefficient d is expressed 
with the correlation polynomial A(Wi,Wj)(Z) between two words Wi and Wj, and the 
constant N(£) is the sum N(£) = I:i IWil. 
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A Note on Random Suffix Search Trees 
Luc Devroye and Ralph Neininger 

ABSTRACT: A random suffix search tree is a binary search tree constructed 
for the suffixes Xi = 0.BiBi+1Bi+2 ... of a sequence B l , B 2, ... of independent 
identically distributed random b-ary digits B j . Let Dn denote the depth of the 
node for Xn in this tree when Bl is uniform on Zb. We show that for any value of 
b> 1, lEDn = 2logn + O(log2 logn), just as for the random binary search tree. 
We also show that Dn/ lE Dn --+ 1 in probability. 

1 Introduction 

Current research in data structures and algorithms is focused on the efficient pro­
cessing of large bodies of text (encyclopedia, search engines) and strings of data 
(DNA strings, encrypted bit strings). For storing the data such that string search­
ing is facilitated, various data structures have been proposed. The most popular 
among these are the suffix tries and suffix trees (Weiner, 1973; McCreight, 1976), 
and suffix arrays (Manber and Myers, 1990). Related intermediate structures such 
as the suffix cactus (Karkkainen, 1995) have been proposed as well. Apostolico 
(1985), Crochemore and Rytter (1994) and Stephen (1994) cover most aspects of 
these data structures, including their applications and efficient construction algo­
rithms (Ukkonen 1995, Weiner 1973, Giegerich and Kurtz, 1997, and Kosaraju, 
1994). If the data are thought of as strings B l , B 2 , ... of symbols taking values 
in an alphabet Zb = {O, 1, ... ,b - I} for fixed finite b, then the suffix trie is an 
ordinary b-ary trie for the strings Xi = (Bi' Bi+ 1, ... ), 1 :::; i :::; n. The suffix tree 
is a compacted suffix trie. The suffix array is an array of lexicographically ordered 
strings Xi on which binary search can be performed. Additional information on 
suffix trees is given in Farach (1997), Farach and Muthukrishnan (1996, 1997), Gi­
ancarlo (1993, 1995), Giegerich and Kurtz (1995), Gusfield (1997), Sahinalp and 
Vishkin (1994), Szpankowski (1993). The suffix search tree we are studying in 
this paper is the search tree obtained for Xl' ... ' X n , where again lexicographical 
ordering is used. Care must be taken to store with each node the position in the 
text, so that the storage comprises nothing but pointers to the text. Suffix search 
trees permit dynamic operations, including the deletion, insertion, and alteration 
of parts of the string. Suffix arrays on the other hand are clearly only suited for 
off-line applications. 

The analysis of random tries has a long history (see Szpankowski, 2001, for refer­
ences). Random suffix tries were studied by Jacquet, Rais and Szpankowski (1995) 
and Devroye, Szpankowski and Rais (1992). The main model used in these studies 
is the independent model: the Bi'S are independent and identically distributed. 
Markovian dependence has also been considered. If Pj = lP'{ Bl = j}, 0 :::; j < b, 
then it is known that the expected depth of a typical node in an n-node suffix 
trie is close in probability to (l/E) log n, where E = Lj Pj 10g(1/pj) is the entropy 
of B l . The height is in probability close to (b/~)logn, where ~ = 10g(1/LjP~). 
If ~ or E are small, then the performance of these structures deteriorates to the 
point that perhaps more classical structures such as the binary search tree are 
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preferable. 

In this paper, we prove that for first order asymptotics, random suffix search trees 
behave roughly as random binary search trees. If Dn is the depth of X n, then 

EDn = 2logn + 0(1og2Iogn) 

and Dn/ log n -t 2 in probability, just as for the random binary search tree con­
structed as if the Xi'S were independent identically distributed strings (Knuth, 
1973, and Mahmoud, 1992, have references and accounts). We prove this for b = 2 
and Po = PI = 1/2. The generalization to b > 2 is straightforward as long as BI is 
uniform on Zb. 
The second application area of our analysis is related directly to random binary 
search trees. We may consider the Xi's as real numbers on [0,1] by considering 
the b-ary expansions 

Xi = O.BiBi+1 ... , 1::::; i ::::; n . 

In that case, we note that Xi+l = {bXd := (bXi ) mod 1. If we start with Xl 
uniform on [0, 1], then every Xi is uniform on [0, 1], but there is some depen­
dence in the sequence Xl, X 2 , .... The sequence generated by applying the map 
Xi+l = {bXi } resembles the way in which linear congruential sequences are gen­
erated on a computer, as an approximation of random number sequences. In fact, 
all major numerical packages in use today use linear congruential sequences of the 
form Xn+1 = (bxn +a) mod M, where a, b, Xn , Xn+l, M are integers. The sequence 
xn/M is then used as an approximation of a truly random sequence. Thus, our 
study reveals what happens when we replace i.i.d. random variables with the mul­
tiplicative sequence. It is reassuring to note that the first order behavior of binary 
search trees is identical to that for the independent sequence. 

The study of the behavior of random binary search trees for dependent sequences 
in general is quite interesting. For the sequence Xn = (nU) mod 1, with U 
uniform on [0,1], a detailed study by Devroye and Goudjil (1998) shows that 
the height of the tree is in probability 8(lognloglogn). The behavior of less 
dependent sequences Xn = (nnu) mod 1,0: > 1, is largely unknown. The present 
paper shows of course that Xn = (2nu) mod 1 is sufficiently independent to 
ensure behavior as for an i.i.d. sequence. Antos and Devroye (2000) looked at the 
sequence Xn = L~=l ti, where the Yi's are i.i.d. random variables and showed 
that the height is in probability 8( y'n). Cartesian trees (Devroye 1994) provide 
yet another model of dependence with heights of the order 8( y'n). 
This extended abstract is organized as follows. In section 2 we introduce a per­
turbed version of the random suffix search tree on which we will draw back trough­
out our analysis. Section 3 provides a rough bound for the mean of the height of 
the random suffix search tree, which will be used later in the analysis of E Dn. 
In the following two sections we present a key lemma on which our expansion of 
the mean and a weak law of large numbers for Dn is based, and give a detailed 
proof for E Dn = 2 log n + o (1og2 log n). From section 6 on we approach the tree 
from a different path, the spacings formed by Xl"'" Xn on [0,1]. First we show 
a limit law for the scaled length of a randomly chosen spacing, convergence of all 
moments and a related limit law when the spacings are chosen with probability 
according to their length. These results could also be used to find the dominant 
term in the expansion of E Dn. We will derive asymptotic information on the size 
of the subtree rooted at Xj for a large range of j. In the last section we state 
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some lemmas which were used in the analysis. Complete proofs can be found in 
Devroye and Neininger (2002). 

2 Notation and perturbed tree 

Denote the uniform distribution on [0,1] by U[O, 1] and the Bernoulli(p) distribu­
tion by Be[p]. We have given a U[O, 1] distributed random variable Xl and define 
X k := T(Xk-d for k ;::: 2, with the map T : [0,1]-+ [0,1], x 1--7 {2x} = 2x mod 1. 

In the binary representation Xl = 0.B1B2 ... , the Bk are independent Be[1/2] 
bits. Then we have 

for all k > 1. For m > 1 we introduce the corresponding perturbed random 
variates 

where {Byl : k, j ;::: I} is a family of independent Be[1/2] distributed bits, inde­
pendent of Xl. Then we have for all k ;::: 1, 

Ix - y:(mll < ~. 
k k - 2m 

and ~(m), ~(m) are independent if Ii - jl ;::: m. 

Since we will switch in our analysis between the random suffix search tree built 
from Xl, ... ,Xn and its perturbed counterpart generated by yl(m) , ... ,y~m) we 
have to control the probability that they coincide. We denote by IlxJI := 2lx/2J 
the largest even integer not exceeding x. For a vector (al, ... , an) of distinct real 
numbers, let 1f(al, ... , an) be the permutation given by the vector. 

Lemma 2.1. If m := 181l1og2 nJI, then for all n ;::: 16, 

P (1f(Xl, ... Xn) of- 1f(Yl(m), ... , y~m))) :'S: :2. 
The perturbed tree and the original tree are thus identical with high probability. 
In the perturbed tree, note that ~(m) and ~(m) are independent whenever li- jl ;::: 
m. Unfortunately, it is not true that random binary search trees constructed on 
the basis of identically distributed m-dependent sequences behave as those for 
Li.d. sequences, even when m is as small as 1. For example, the depth of a typical 
node and the height may increase by a factor of m when m is small and positive. 

3 A rough bound for the height 

We will need a rough upper bound for the mean of the height of the random suffix 
search tree. 
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Lemma 3.1. Let a binary search tree T be built up from distinct numbers Xl, ... , xn 
and denote its height by H. We assume that the set of indices {I, ... , n} is de­
composed into k nonempty subsets II, ... ,Ik of cardinalities IIj I = nj. Assume 
that I j consists of the indices n(j, 1) < '" < n(j, nj) and denote the height of 
the binary search tree'Yj built up from Xn(j,l),"" Xn(j,nj) by H j for j = 1, ... , k. 
Then we have 

k 

H~ k-1+ ~Hj. 
j=l 

This can be turned into a rough estimate for the height using the fact the mean of 
the height is known to be of the order log n for the binary search tree in the random 
permutation model, where each permutation of the keys inserted is equally likely 
(Devroye 1987). Lemma 3.2 below is valid for our model, but also for any random 
binary search tree constructed on the basis of U[O, 1] random variables that are 
m-dependent, with m = O(logn). 

Lemma 3.2. Let Hn denote the height of the random suffix search tree with n 
nodes. Then IEHn = O(log2 n). 

4 A key lemma 

We introduce the events Aj = {Xj is ancestor of Xn in the tree}. Then we have 
the representations 

n-1 

Dn = ~lAj' 
j=l 

n-1 
IEDn = ~ IP'(Aj). 

j=l 

We use the notation (x, (3 c> 11, ... , In, if there does not exist k with 1 ~ k ~ n 
for which (X < Ik < (3 or (3 < Ik < (x, i.e., (x, (3 are neighbors in hI"'" In}. 
Note that Aj = {Xj,Xnc>X1,oo.,Xj-1}. We use At) for the corresponding 

. I' h v(m) A(m) {y(m) y;(m) v(m) y(m)} Th h event mvo vmg t e 1 k : j = j ,n c> 11 , ... , j-1' oug out we 
abbreviate m = 181llog2 n JI. 
Our key lemma consists of an analysis of the depth of the n-th inserted node Xn 
conditioned on its location. For X E [0,1] and 1 ~ i ~ n - 1, define 

( ) '-IP'(y(m) y(m) y(m)) Pi X.- i ,X c> 1 , ... , i-I . 

We use the following bad set: 

m 

Bnun := U {x E [0,1] : Ix - Tk(x)1 < 0, ~ > 0, 
k=l 

where T is the map T(x):= {2x} and Tk its k-th iteration, see Figure 1. 
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Figure 1: The last line shows the bad set Bn(~) for m = 6 and ~ = 3/50. The six 
lines above show the sets {Ix - Tk(x)1 :::; 0 for k = 1, ... ,6. In the square, for the 
case k = 3, it is shown how these sets emerge. 

Lemma 4.1. For all n sufficiently large, all x E [0,1], and 1 :::; i < n, we have 

Pi(X) = 1[m2 /i,1-m2 /iJ(X) (~+ R 1(n,i) + IBn(2m 2 /v'i)(x)R2 (n, i)) 
+ (1-1[m 2 /i,1-m 2 /iJ(x))R3 (n,i), 

where for appropriate constants C1 , C2 , C3 > 0, 

5 Analysis of the depth 

Based on Lemma 4.1, we obtain an expansion for the mean of the depth Dn as 
well as a weak law of large numbers. For a random binary search tree based on 
i.i.d. random variables, it is well-known that lEDn = 210gn + 0(1), where Dn is 
the depth of the n-th node (see, e.g., Knuth 1973 or the references in Mahmoud 
1992). 
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Theorem 5.1. The depth Dn of the n-th node inserted into a random suffix search 
tree satisfies 

E Dn = 2logn + 0(log2logn). 

Proof: We define the events Aj = {Xj is ancestor of Xn in the tree} and the 
representations 

n-1 n-1 

Dn = L lAj' EDn = LIP'(Aj). 
j=l j=l 

For the estimate of IP'( Aj) we distinguish three ranges for the index j, namely 
1 :::; j :::; Ilog~2 n 1, Ilog~2 n 1 < j :::; n - m, and n - m < j < n, where we choose 
m = 181llog2 nJI. 

The range 1 :::; j :::; llog~2 n 1: Note that L~:f n 1 lA j is bounded from above by 

the height of the random suffix search tree with llog~2 n 1 nodes. Thus, by Lemma 
3.2, we obtain 

fiog~2 n 1 
L IP'(Aj):::; EHfiog~2nl = 0(log~log~2n)) = 0(log2logn). 
j=l 

The range llog~2 n 1 < j :::; n - m: We start, using Lemma 2.1, with the represen­
tation 

IP'(Aj) = IP'(Xj,Xnt>X1, ... ,Xj_1) 

= IP'(Yj(m), y~m) t> Y1(m), ... , Yj~{) + 0(1/n2 ) 

= IP'(A;m») + 0(1/n2 ). 

Note that y~m) is independent of Y1(m), ... , Yj(m), since j :::; n - m. Thus for the 

calculation oflP'(A;m») we may condition on y~m). With the notation of Lemma 4.1 

and using the fact that y~m) is U[O, 1] distributed this yields for all 1 :::; j :::; n - m, 

for some constant C > o. When summing note that 

00 log6 n 6 100 1 L ~:::; log n 12 x 3/ 2 dx = 0(1). 
·-rJ 12 1 J fi og 2 nl-1 )-log2 n 

We obtain 

= 2logn + O(loglogn). 
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Hence, this range gives the main contribution. 

The range n - m < j < n - 1: With q := lJ/mJ - 1 we have 

lP'(Aj) = lP'(Xj,Xnt>XI, ... ,Xj-d 
::; lP'(Xj, Xn t> X j - m , ... ,Xj - qm ) 

_ lP'(y(m) y(m) y(m) y(m)) 0(1/ 2) 
- j 'n t> j-m'···' j-qm + n. 

We have, using Lemma 9.2, for n sufficiently large, 

lP'(Yj(m) , y~m) t> Yj~l, ... , Yj~jm) 

< lP'({ly(m) _ y(m) I > m 2 /J.} n {y(m) y(m) t> y(m) ... y(m) }) 
- J n - J 'n J-m" J-qm 

+ lP'(IYj(m) _ y~m) I < m2 fj) 

( 
m2 )j/m-2 m 2 

::; 1- -. +8-. 
J J 

m2 
::; 4exp(-m) +8-. 

J 

< 0 (_1_) +8 m2 . 
- n l8 j 

The summation yields 

n-l 

L lP'(Aj) = 0(1), 
j=n-m 

so that the third range makes an asymptotically negligible contribution. Collecting 
the estimates of the three ranges, we obtain the assertion. • 

Theorem 5.2. We have Dn/ IE Dn ----* 1 in probability as n ----* 00. 

6 Weak convergence of a random spacing 

The lengths of the spacings formed by Xl, ... ,Xn on [0,1] are denoted by Sf := 

X U+I ) - XU) for j = 1, ... , n - 1 and So := X(1), S;;: := 1 - X(n), where XU) 
denotes the j-th order statistic of Xl, ... ,Xn . In this section we provide a limit 
law for the rescaled length of a spacing chosen uniformly from So, ... , S;;:, where 
by uniform we mean that we choose one of the indices j = 0, ... ,n uniformly at 
random. Later we will choose an index by into which spacing an U[O, 1] random 
variable, independent of Xl, falls. 

Lemma 6.1. We have 

nS1n ~ E, (n ----* 00), 

where E is exp(1)-distributed, i.e., has Lebesgue-density e-X on [0,00) and In is 
uniformly distributed on {O, ... , n} and independent of X I. 
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This can be reduced to the following result on the spacings between fractional parts 
of lacunary sequences due to Rudnick and Zaharescu (2002) . A lacunary sequence 
is a sequence (aj}j::::1 of integers such that we have liminfj--->oo aj+I/aj > 1. The 
primary example is aj = 2j . Now, for an 0: E R we define 8j(0:) for j = 0, ... , n 
as the spacings between the fractional parts of o:aj, j = 1, ... , n, in the unit 
interval [0,1J. More precisely, for iP] := {o:aj} we define 8j(0:) := '!9(j+1) - '!9(j) 

for j = 1, ... , n -1 as well as 80(0:) := '!9(1) and 8;::(0:) := 1- '!9(n). Then Rudnick 
and Zaharescu (2002) prove: 

Theorem 6.2. Let (aj) be a lacunary sequence. Then we have for almost all 
0: E R and all ° ::::: a < b, 

1 Ib lim --#{O::::: j ::::: n : n8j(0:) E [a, b]} = e-xdx. 
n--->oo n + 1 a 

For background, see also Kurlberg and Rudnick (1999, Appendix A). This can 
directly be turned into a proof of Lemma 6.1. 

7 Uniform integrability 

In this section we show that the convergence in Corollary 6.1 holds for all moments. 

Lemma 7.1. For all fixed p > 0 

sup E (n8iJP < 00, 
nEW 

where the random index In is unif{ 0, . .. , n} distributed and independent of Xl. 

The limit law of Theorem 6.1 together with the uniform integrability of Lemma 
7.1 implies convergence of all moments (Billingsley 1979, Theorem 25.12). Thus 
we have 

lim E (n8i )" = roo x"e-x dx = e!, e = 0, 1,2, .... 
n--+(x) n io (1) 

We turn to the analysis of the rescaled length of a spacing chosen according to into 
which spacing an indepedendent UfO, 1J random variable falls. For this we define 
the conditional distribution of the index I n chosen by 

IP'(Jn=kI80, ... ,8~)=8k, k=O, ... ,n. 

Then we have the following limit law: 

Lemma 7.2. We have 

where G2 is Gamma(2)-distributed, i. e., has Lebesgue density xe-x on [0,00). 
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8 Applications of spacings 

The analysis of the random spacings generated by Xl, ... , Xn can be used for the 
asymptotic analysis of parameters of the random suffix search tree. The leading 
order term of lEDn can be rediscovered using (1) with £ = 2. This provides an 
alternative path to that followed in Theorem 5.1. The limit law for the size Nn,j 
of the subtree rooted at Xj can be found for a large range of values j. This result 
is rooted in the lemmas of section 7. 

Theorem 8.1. The size Nn,j of the subtree of the random suffix search tree of 
size n rooted at Xj satisfies for j = j (n) with j = o( nl log2 n) and j I log5 n ----+ 00, 

2n 
lEN . rv-

n ,) j' 

as n ----+ 00, where G2 denotes the Gamma(2)-distribution. 

It can be shown that in the case j rv an with a E (0,1) the size Nn,j tends in 
distribution to the negative binomial distibution with parameters (2, a), given by 
its generating function S f-+ (al(1 - (1 - a)s))2. 

9 Appendix 

Lemma 9.1. Let I be an interval in [0,1] of length III- Then for all 1 ~ i ~ 
-log2 III we have 

III 
IP(Xl' X1+i E 1) ~ 2i' 

Lemma 9.2. For all integer 1 ~ i < j, t 2:: 1 and real E > 0, 

IP(IXi - Xjl ~ E) ~ 2E, IP(I~(t) - Yj(t) I ~ E) ~ SE. 

Lemma 9.3. For all integer 1 ~ i < j, t 2:: 1 and real E > 0, and U being U[O, 1] 
distributed and independent of Xl, ~(t), Yj(t) we have 

IP(Xi,Xj E [U,U +E]) ~ 2E2 , IP(~(t),Yj(t) E [U,U +E]) ~ SE2. 

Lemma 9.4. For any Borel set A ~ [0,1], real E,6 > 0, integer i 2:: 0, and U 
being U[O, 1] distributed we have 

. EA(A) 
IP(A(T-t((U, U + E)) n A) 2:: 6) ~ -6-' 

where A( .) denotes Lebesgue measure. 

Lemma 9.5. For all n 2:: 1, a E [0,1), and ~ E (0, lifo) with a + ~ ~ 1, we 
have 

( (m) (m) ) L~ 2L 
IP Y I , ... , YL / 2 tJ. [a, a +~] ~ 1 - 4 + -:;;' 

where L = Illog2 n JI and m = ISL. 
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On the Profile of Random Forests 
Bernhard Gittenberger 

ABSTRACT: An approach via generating functions is used to derive multivari­
ate asymptotic distributions for the number of nodes in strata of random forests. 
For a certain range for the strata numbers we obtain a weak limit theorem to 
Brownian motion as well. Moreover, a moment convergence theorem for the width 
of random forests is derived. 

1 Introduction 

We consider the set F( n, N) of random forests consisting of n vertices and N rooted 
trees which can be viewed as realizations of Galton-Watson branching processes 
with N initial particles and conditioned to have total progeny n. Such forests 
consist of simply generated trees according to Meir and Moon [20] and therefore 
they can easily be described by generating functions: Let b(z) = I:n>O bn,NZn 
denote the generating function for those forests. Then we have b(z) -= a(z)N 
with a(z) = zcp(a(z)). Here a(z) is the generating function for a single tree and 
cp(t) = I:n>O CPntn is the generating function of an arbitrary sequence (cpkk::~o 
of nonnegatIve numbers with CPo > O. In this setting bn,N can be viewed as the 
number of forests in F(n, N), weighted according to the probability on F(n, N), 
i.e., to each forest F is assigned a weight 

w(F) = II cp~dF) 
k~O 

where nk(F) is the number of nodes with out-degree k. The CPk are related to 
the offspring distribution ~ via P {~= k} = Tkcpk/cp(T), with a positive number 
T within the circle of convergence of cp(t). This means that the probability that 
the realization CGW of a conditioned Galton-Watson process as described above 
(offspring~, N initial particles, and conditioned to total progeny n) equals a given 
forest J E F(n, N) is proportional to the weight of J, precisely, we have 

P {CGW = f} = w(f) / L w(f). 
JEF(n,N) 

Without loss of generality we may assume E~ = 1 which equivalently means that 
T satisfies TCP' (T) = cp( T). Then the variance of ~ can also be expressed in terms 
of cp(t) and is given by 

(1) 

The height of a vertex x is defined by the number of edges comprising the unique 
path which connects x with the root of the tree containing x. We are interested 
in the profile of random forests, thus we define Ln,N(k) to be the number of 
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vertices at height k in a random forest in F(n, N). First, let us mention that the 
average height of a random forest in F(n, N) is proportional to yfii as n -> 00 and 
N = 0 (yfii), see [21] and [23] for special cases and [24] for general simply generated 
forests. Thus the most interesting range is k = 0 (yfii). Pavlov [22] derived 
distributional results for various ranges of n, N, k for labeled trees. Different tree 
classes are treated in [4, 10] and results for other ranges can be found in [26]. For 
a survey of results on random forests we refer the reader to [25]. Theorems 5 and 
6 in [22] give a formula for the limiting distribution as integral with respect to 
a two-dimensional probability distribution with explicit Fourier transform for the 
ranges k/yfii -> a > 0 and N = o(yfii) and N rv yfii (cf. [19] for the random 
tree analogue). These theorems have been generalized by Pitman [27] who related 
the profile of simply generated random forests in the above mentioned range for 
n, N, k to stochastic differential equations and obtained a weak limit theorem 

( 2 (2r;,yfii) ) d ayfiiLn,N -a- ,r;, 2 0 -----+ (Xa,,,,, r;, 2 0) (2) 

if 2N/ayfii -> a, where X a ,,,, can be characterized by a stochastic differential 
equation: Let (3 denote a Brownian motion and set 

Then Pitman [27] showed that for each a > 0 there exists a unique strong solution 
of the Ito SDE 

r;, E [0, u(X)), X", == 0 for r;, 2 u(X) 

with 

This process can be identified as total local time of a Brownian bridge B of length 
one conditioned to have total local time a at level 0 (see [27]), 

d Xa,v = (£v(B)I£o(B) = a), (3) 

which coincides with a Brownian excursion local time if a = 0 (cf. the analogous 
results for random trees, see [6] for the combinatorial setting and [27] for the 
stochastic calculus setting). 
In this paper we are interested in the behavior of Ln,N(k) in low strata of random 
forests. Starting point is the following central limit theorem (see [22, 10, 4]): 

Theorem 1.1. Let n -> 00, N = 0 (yfii), and k = o(N). Then 

' <x ->- e u p { LnN(k)-N } 1 JX -u2/2d 
a"fFik - 2n -00 

for any fixed x. 
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In order to simplify the proofs in the following, let us define Ln,N(t) also for 
noninteger t by linear interpolation: 

Ln(t) = (ltJ + 1- t)Ln(ltJ) + (t - ltJ)Ln(ltJ + 1), t ~ O. 

This does not change the limit of the finite-dimensional distributions and simplifies 
the proof of tightness significantly, since we are dealing with continuous functions. 

Theorem 1.1 suggests the convergence to a Gaussian limiting process. In fact we 
will show the following theorem. 

Theorem 1.2. Let cp(t) be a generating function associated to a family of simply 
generated trees. Assume that cp(t) has a positive or infinite radius of convergence 
Rand ( = gcd{ilcpi > O} = 1. Suppose that the equation tcp'(t) = cp(t) has a 
minimal positive solution T < R and that a 2 defined by (1) is finite. Furthermore, 
let (cn ) be an arbitrary sequence satisfying Cn ---7 00 and Cn = o(N). Moreover, 
assume N = 0 ( y'ri). Then 

( ~ (Ln ,N(tcn ) - N) ,t ~ 0) ~ Wt 
a NCn 

where Wt is a standard Brownian motion. 

The proof of this theorem is done by first deriving a limit theorem for the finite­
dimensional distributions which is done in the next section. This will be established 
by describing the joint distribution by means of a suitable generating function (see 
[9] or [14] for a general background) and then determining an asymptotic formula 
(and thus the limiting distribution) by complex contour integration. Afterwards 
we have to prove tightness which is done in Section 3. Section 4 is devoted to 
higher strata of random forests, i.e., the case cn / y'ri ---7 'f] > O. The limiting 
process for this case has been completely characterized by Pitman [27] (see (3)), 
however, using the combinatorial scheme of Section 2 we can give more explicit ex­
pressions for the finite-dimensional distributions in terms of integral transforms for 
the characteristic functions. Moreover, due to a tight bound derived in Section 3, 
it is also possible to derive a moment convergence theorem for the node numbers 
at this range as well as for the width of random forests, which complements the 
weak limit theorem of Pitman [27] (cf. also [3] and [7] for the corresponding results 
for trees). In fact, we will show 

Theorem 1.3. Set Mex := sUPv>o Xex,v and Wn,N := SUPk 2Ln,N(k)/ay'ri. If 
n, N ---7 00 such that 2N/ay'ri ---7 ;; > 0, then we have for every d > 0 

d d ( 2 (2"'y'ri ) ) d d EWn N ---7 EMex and E ;;;; Ln N -- ---7 EXex I< 
, ayn ' a ' 

2 The finite-dimensional distributions 

We have to compute the joint distribution of Ln,N(k 1 ), ... , Ln,N(kd ). This can be 
done by determining the quotient 
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where bkl ,ml ,k2,m2 , ... ,kd,md,n,N is the (weighted) number of forests in F(n, N) with 
mi nodes in stratum ki for i = 1, .. . , d. Therefore define first the generating 
function (see [6] for a more detailed description) 

ml,··.,md,n~O 

= Yk l (z, UIYk2- kl (z , ... Ykd-kd_l (z, Uda(Z)) ... ) , 

where aklmlk2m2 ... kd mdn is the number of single trees with the above property and 

Yo(z, u) = U, YHl(Z,U) = ZCP(Yi(Z,U)), i ~ O. 

Forests consisting of N trees can now be described by the Nth power of this func­
tion and thus the characteristic function of the joint distribution of -/Nl Ln N (k 1 ), 

(1 en ' 

• •• , -/N1 Ln N(kd ) is given by the coefficient 
a en ' 

where [znlJ(z) denotes the coefficient of zn in the power series of J(z). 
In order to extract the desired coefficient we will need some lemmas. First we need 
the tree function and related functions (see [20] or [11]). 

Lemma 2.1. Let Zo = l/cp'(T) be the point on the circle of convergence of a(z) 
which lies on the positive real axis. Set o:(z) = zcp'(a(z)) and (3(z) = zcp"(a(z)) 
and assume arg(z - zo) ::j:. O. Then the following local expansions hold: 

a(z) = T - T;; VI - ~ + 0 (11 - :0 I) as z ~ Zo 

o:(z) = 1 - crv'2V1 - :0 + 0 (1 1 - :0 I) as z ~ Zo 

(3(z) = :2 + 0 (VI - :0 ) as z ~ zoo 

The previous two lemmas immediately imply 

b N- NTN (exp(-~)+o(_I)) n, - crzoV27rn3 2ncr2 yin (5) 

We will need an expansion of the bivariate generating function Yk(Z , u) as well (see 
[15], cf. also [6, Lemmas 2.1 and 3.1]). 

Lemma 2.2. Set w = u - a(z), If w ~ 0 and z - Zo ~ 0 in such a way that 
arg(z - zo) ::j:. 0 and 11 - VZ - zol ::::; 1 + 0 (n- 1/ 2 ), then Yk(Z, u) admits the local 
representation 

o:k(Z)W 
Yk(Z, u) = a(z) + (6) 

1 - ..!H2l1-ak (z)w + 0 (ll-a2k (z) Ilwl2) 
2a(z) l-a(z) l-a2(z) 

uniformly for k = 0 (1/lwl) . 
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With the help of these asymptotic expansions we can prove the convergence of the 
finite-dimensional distributions to a Gaussian limiting distribution now. 

Theorem 2.3. Let n ----+ 00, N = 0 (v'n) and Cn ----+ 00 such that Cn = o(N). 
Moreover, set 

x ._ Ln,N(IiCn ) - N 
",.- e>VNcn . 

Then the joint distribution of XI< 1 , ••• 'X"'d converges to a centered Gaussian dis­
tribution with covariance COV(Xs, Xt) = min(s, t). 

Proof: We have to show that the characteristic function of the centered joint dis­
tribution of yiN 1 Ln(kt), ... , yiN 1 Ln(kd ) for k j = llijCnJ, j = 1, ... , d satisfies 

a en a en 

(7) 

Therefore we apply Cauchy's integral formula on (4) with the integration contour 
f = f 1 U f 2 U f 3 U f 4 where 

fF { Z = Zo (1 + ;) I ~x :s; 0 and Ixl = 1 } 

fF { Z = Zo (1 + ;) l5Sx = 1 and 0 :s; ~x :s; nl/3} , f3 = r2 

f F { Z : I Z I = Zo 11 + log2: + i I and arg ( 1 + log2: + i) :s; I arg( z) I :s; 7r } . 

(8) 
Let us first study the contribution of, = fl U f2 U f3 which will turn out to be 
the main term. For notational convenience, let us abbreviate the second term in 
(6) by 

akw 
Rk := Rk (z, u) = -1-_-/i-l--",-k-w-+-O-(-;OI-I--",-2-k TII-w-12-:-) 

'" 1-", 1-",2 

(9) 

and let us omit the function arguments z, U and so forth whenever there is no 
ambiguity. Furthermore, set Uj = eitj/uylNcn and Wj = (Uj - l)a. Since on ,the 

equation 11- vi -x/nl = 1 + 0 (n- 2/ 3 ) is valid, the assumptions of Lemma 2.2 are 
fulfilled. Thus we have on , 

(10) 
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Here Rk2-kl = Rk2- k1 (Z,U2Yk2-k l (Z ,U3Yk3- k2(Z""Yk r k d_l (Z,Uda(Z)) ... ). 
Expanding the second factor and using the asymptotic relations 

(11) 

(12) 

(13) 

as well as those in Lemma 2.1 yield 

Now observe that for £ ~ d we have by (9) and (10) as well as the asymptotic 
expansions (11)-(13) 

and Rke- ke _ 1 == 0 for £ > d. Thus Rke-ke_ 1 = 0 (I/JNcn ) and in particular 
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and then by substituting R k3 - k2 , Rk4-k3' ... , step by step we arrive at 

If we substitute z = zo(l + x/n) on ,,(, we get 

[znlyk'; 1 (1 N -x ( (1 ))) (1 ( N d z ) 
bn,N = 27ribn,NZon , Ykl e dx 1 + 0 n 1/ 3 +0 bn,N Jr4 Yk1 zn+l . 

(16) 
Moreover, observe that for any M > 0 we have 

~ 1 e->-...r-:x- x dx = _A_e->-2 /4 + 0 (e- M) 
27rZ " 2,fir 

for "(' = {x: Ixl = 1, ~x:S:: O} U {x : 0 :s:: ~x :s:: M, ~x = ±1}, as can be easily seen 
by substituting u2 = x. Thus, since JNcn/n = 0(1), the error terms in (15) are 
negligibly small, and hence the first term in (16) in conjunction with (15) yields 
(7). 
So let us estimate the second term in (16). By Taylor's theorem we have 

Since we required ( = 1 (see Theorem 1.2), we get 

max la(z)1 = la(z)1 and max la(z)1 = la(z)l, 
ZEr4 zEr4 

where z E "( n r 4. There the local expansions of Lemma 2.1 are still valid and 
hence lal < 1 and lal < T. Consequently, with u = eitd/a.jNcn we get 
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Inserting this into Ykt-kt-l' £ = 2, ... ,d - 1, and Yk, and arguing as above, we 
get the same estimate for yi:,. Finally, using Izl-n "-' zan exp (_nl/3) implies the 
existence of some positive constant C such that 

{ lyN I ~ = 0 (exp (_nl/3 + Cnl/4)) Jr4 k, Izn+ll 

which is exponentielly small compared to the integral over 'Y and the proof is 
complete. 0 

3 Tightness 

In order to complete the proof of Theorem 1.2 we have to show that the sequence of 
random variables Ln,N(cnt)/avNcn, t ~ 0, is tight in qo,oo). By [18, Theorem 
4.10] it suffices to establish tightness in qo, T]. Thus by [1, Theorem 12.3] we 
only have to show that Ln,N(O) is tight, which is obviously true, and that there 
exist constants a > 1, f3 ~ 0, and C > 0 such that 

This inequality follows from the following theorem. 

Theorem 3.1. There exists a constant C > 0 such that for all r , h ~ 0 and for 
N = 0 (v'n) the following inequality holds: 

(18) 

In order to show this inequality we will investigate a more general situation. First , 
observe that the left-hand side can be represented by the coefficient of a proper 
generating function. In fact we have 

where 

H;1)(z) = (u :u) 4 Yr(Z,UYh(z,u-1a(z)))N 
u=l 

= [( :u + 7 :~2 + 6 ::3 + ::4) Yr(Z , UYh(Z, u-1a(z )))N] u=l . (19) 

Since bn,N "-' (NTN /v27ra2)zann-3/2exp(-N2/2na2) (see (5)), (18) is valid if 

n (4) _ T (N3 Nh2) 
[z ]Hrh (Z) - 0 zOn3/2 (20) 

holds uniformly for r, h ~ O. We will estimate this coefficient by analyzing the 
function Hrh(z) and using Flajolet and Odlyzko's [13] transfer lemma: 
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Lemma 3.2. Let F(z) be analytic in 6. defined by 

6. = {z : Izl < Zo + 'f/, 1 arg(z - zo)1 > '!9}, 

where Zo and 'f/ are positive real numbers and 0 < '!9 < 7r /2. Furthermore suppose 
that there exists a real number (3 such that 

F(z) = 0 ((1 - z/zo)~{3) (z E 6.). 

Then 

Set Yrh(z, u) = Yr(z, UYh(Z, u~1a(z))). We analyze the derivatives of Yrh(z, u) 
with respect to u in the next lemma. 

Lemma 3.3. Let 6. be the domain defined in Lemma 3.2. Then there exists a 
finite index set I and functions ai£rh (z) such that for all e > 0 

af 

auf Yrh(Z, 1) = L aifrh(Z), 
iEI 

(21) 

where the functions ailrh (z) satisfy for z E 6. 

for some nonnegative integers /-11, /-12, /-13 with /-11 + /-12 - /-13 ::; e - 1. 

Proof: First compute the first few derivatives of !1~l Yr (z, a( z)), 

aYr ( ()) r a2Yr ( ()) (3 r 1 - ar 
-a z,a z = a, -a 2 z,a z = -a --, u u a I-a 

a3Yr i3 r 1 - a 2r (32 r (1 - ar)(1 - ar~1) 
-a 3 (z, a(z)) = -a 1 2 + 3-a (1 )(1 2)' 

U a -a a -a-a 

where (3 = zep"(a(z)) and i3 = zep"'(a(z)). Noticing that Faa di Bruno's formula 
(see e.g. [5]) gives 

afYr _ '" e!zep(k1+·+kl - tl (a(z)) frr~1 (2. ajYr~1)kj afYr~1 
auf (z, 1) - ~ k1! ... kf~1! . j! auj +a(z) auf (z,I). 

'Ef:i iki=f J=1 

and that hence !1~l Yr (z, 1) is the solution of an inhomogeneous first order linear 
recurrence, the estimate 

(22) 

is now easily proved by induction. 
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Now, setting D = a/au and employing again Faa di Bruno's formula, this time to 
Yrh, yields 

where 

Since 

we get by (22) 

D" +·+"y,(z, 1) (DUYh(Z , a( z )/u )Iu~' )" D (~ D'UYh( z, a(z) /u) lu~,) " 

= 0 larl __ a_ 11 _ alk1 __ a_ . ( 1

1- rlkl+"+k£-l 1 1 - hl k1 +L:;(i - 1l ki ) 

I-a I-a 

Note that we omitted a factor a h coming from Yh. This is justified since lal < 1 
in Do. So we could also neglect the factor a r but this one is needed in the sequel. 

If we set J-l1 = Li ki - 1, J-l2 = kl + Li(i - l)ki' and J-l3 = kl' then obviously 
J-l1 + J-l2 - J-l3 = e - 1 which yields (21) and completes the proof. <> 

For the tightness inequality (18) we need the derivatives of Y/h .. These are inves­
tigated in the next lemma. 

Lemma 3.4. There exist bounded functions (3C,M on Do such that 

MM · c 

( a) N" ( C ( )n C II (atYrh) , u au Yrh = ~(3C,M z)N a z - . aui 
£=1 t 

where the Ci satisfy Li (i - 1 )Ci ::; M - e. 

Proof: Faa di Bruno's formula yields 

M 'N' £ (1 ajv )k j M N . . N-L:;. ki Lrh 

(uD) Yrh = L k! ... k !(N-Lk.)!Yrh ' II Jl au j 
L:; ik;=M 1 M t t j=l 

and because of Yrh(Z, 1) = a(z) and Li (i - l)ki = M - e we are done. <> 

Now we are able to prove Theorem 3.1: 
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Proof of Theorem 3.1. By Lemmas 3.3 and 3.4, all terms of H~~~z) are bounded 
by functions of the form 

Nllatllal N 11 - at 11-'1 11 - a h 11-'211 _ al1-'3 
I-a I-a 

= 0 (Nlr NlaTlll - aT 11-'1 11 - a h l1-'2- dhd ll - aI1-'3-1-'1-1-'2+d ) , (23) 

where /13 - /11 - /12 2 2d - e and d = 2. Thus by Lemma 3.2 and the fact that 
N = 0 (y'ri) we get 

as desired. o 

4 The profile in the range en / Vn ---t rJ > 0 and the 
width of random forests 

Equations (2) and (3) characterize the distributions of Ln,N(k) in the range k ~ y'ri 
by a limiting process given implicitly by a stochastic differential equation and by 
conditioning a well known process. The same ideas as in Section 2 allow us to make 
the distributions more explicit, leading to a representation in terms of an integral 
transform for the characteristic functions of the finite-dimensional distributions. 
Starting again with (6) we get as above 

Insert the asymptotic approximations for Uj = e2itj/uVn, Wj, (3, 

N (NF2X (N)) aN = r exp - ay'ri + 0 -:;; , 

a k = exp (-2~J=2X + 0 (~)) , 

for k = 2~y'ri / a we finally arrive at 

Error estimation for r 4 works similar as in Section 2 and therefore we get the 
following theorem. 
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Theorem 4.1. Assume 2N/a-yIn -+ a > O. Furthermore, let kj = 2K,jyln/a-. 
Then the characteristic function of the joint distribution of afoLn,N(kd, ... , 

afoLn,N(kd), satisfies 

¢k"" kdnN(tI, ... ,td)= .V~l exp (-x-aJ-x/2 
, , " 'lay 7r " 

+ W", (x, ih + W"2-"',(. .. W "p-1 -"p-2 (x, itp-l + W "d-"d-1 (x, itd)) ... )) dx 

with 

Now we turn to the width: The structure of the functions in the previous section 
allows us to prove an even tighter bound for the moments of Ln,N (r + h) - Ln,N (r) 
with the help of the following lemma (cf. [7] and [16, Lemma 3.5]). 

Lemma 4.2. Let J(z) and g(z) be analytic functions in ~ which satisfy 

If(Z)I~exp(-cJll<I)' zED. 

g(z) =1- DJ1- z + 0 (1- ~), z E~, 
Zo Zo 

for some positive constants C, D. Then for any fixed £ there exists a constant 
C f > 0 such that 

uniformly for all r, n ~ O. 

Theorem 4.3. For every fixed positive integer d there exist constants CI, C2 such 
that for every r, h > 0 

(24) 

The constants CI and C2 are independent of nand N, provided that N = 0 ( yin) 

Proof: Since 

( a) 2d 2d k ( a ) k 
U au = t; S2d,kU au ' 

where Sn,k are the Stirling numbers of the second kind, we can apply Lemmas 3.3 

and 3.4 directly to H;~d) and get (23). Keep in mind that a(z) admits a represen­
tation like g(z) in Lemma 4.2 due to Lemma 2.1 and thus there exists a constant 

C > 0 such that in ~ the inequality la(z)1 ::; exp (-CJI1 - z/zol) holds. Hence 
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we obtain 

( )
2d 

2d 1 n {) 
E ILn,N(r) - Ln,N(r + h)1 =-b -[z ] u {)u Yr h(z,l) 

n,N 

and this immediately implies (24). 0 

By [8, Theorem 1], this property in conjunction with the fact that there exists a 
t 2: 0 (in fact we can choose t = 0) such that I SUPn E(Ln ,N(t)/y'n)kl < 00 for all 
k 2: 0 and for 2N/ay'n E [a - fn, a + fn] with a > 0, fn ~ 0 implies that the 
sequence (Ln,N (.) / y'n)n>O is polynomially convergent in the sense of Drmota and 
Marckert [8], i.e., 

n~oo 

for every functional F satisfying IF (f) I s:: C( 1 + II f II 00) k for some constants C, k > 
O. If we choose, in particular, F(f) = Ilfll~ and F(f) = f, respectively, then 
Theorem 1.3 is proved. 

Remark 1. Note that Drmota and Marckert [B} studied the concept of polynomial 
convergence only for processes with compact support. But since the height of ran­
dom forests is asymptotically a.s. bounded by cy'n, it suffices to study truncated 
processes with arbitrarily large but compact support and then argue in the same 
way as in [7, Lemma 5]. Thus [8, Theorem 1} is applicable in this case as well. 

Remark 2. Note that the connection between random forests and conditioned 
Brownian bridge can be used to compute functionals of the latter one. Recently, 
this has been done for the conditioned Brownian bridge area, see [12, 17, 2]. Thus 
this approach can help us to derive expressions for the moments of Xa ,v. This will 
be done in a forthcoming paper with G. Louchard. 

References 

[1] P. Billingsley, (1968) Convergence of Probability Measures, John Wiley & 
Sons, New York. 

[2] P. Chassaing and G. Louchard, (2001) Reflected Brownian bridge area con­
ditioned on its local time at the origin, submitted, http://www.ulb.ac.be 
/di/mcs/louchard/. 

[3] P. Chassaing and J.-F. Marckert, (2001) Parking functions, empirical pro­
cesses, and the width of rooted labeled trees, Electronic J. Combinatorics 8(1), 
R14. 

[4] I. A. Cheplyukova, (1997) Limit distributions for the number of vertices in 
layers of a random forest, Diskret. Mat. 9, No.4, 150- 157. 

[5] L. Comtet, (1974) Advanced Combinatorics, Reidel, Dordrecht, Netherlands. 



292 Bernhard Gittenberger 

[6] M. Drmota and B. Gittenberger, (1997) On the profile of random trees, Ran­
dom Structures and Algorithms 10, 421-45l. 

[7] M. Drmota and B. Gittenberger, (1999) The width of Galton- Watson 
trees, submitted, see http://www.geometrie.tuwien.ac.at/drmota/width 
.ps.gz 

[8] M. Drmota and J. F. Marckert, (2001) Reinforced weak convergence of 
stochastic processes, submitted, see http://www.geometrie.tuwien.ac.at 
/drmota/reinf.ps.gz. 

[9] M. Drmota and M. Soria, (1995) Marking in combinatorial constructions: 
generating functions and limiting distributions, Theoretical Compo Science 
144,67-99. 

[10] I. A. Egorova, (1997) The distribution of vertices in strata of plane planted 
forests, in Probabilistic methods in discrete mathematics (Petrozavodsk, 
1996),179-188, VSP, Utrecht. 

[11] P. Flajolet and A. M. Odlyzko, (1989) Random mapping statistics, in Ad­
vances in Cryptology (1990), J.-J. Quisquater and J. Vandewalle, Eds., vol. 
434 of Lecture Notes in Computer Science, Springer Verlag, pp. 329-354. Pro­
ceedings of Eurocrypt '89, Houtalen, Belgium. 

[12] P. Flajolet, P. Poblete, and A. Viola, (1998) On the analysis of linear probing 
hashing, Algorithmica 22, 490-515. 

[13] P. Flajolet and A. M. Odlyzko, (1990) Singularity analysis of generating func­
tions, SIAM J. on Discrete Math. 3, No.2, 216-240. 

[14] P. Flajolet and J. S. Vitter, (1990) Average-Case Analysis of Algorithms 
and Data Structures, in Handbook of Theoretical Computer Science, J. van 
Leeuwen, Ed., vol. A: Algorithms and Complexity. North Holland, ch. 9, pp. 
431-524. 

[15] B. Gittenberger, (1998) Convergence of branching processes to the local time 
of a Bessel process, Random Structures and Algorithms 13, 423-438. 

[16] B. Gittenberger, (1999) On the contour of random trees, SIAM J. Discrete 
Math. 12, No.4, 434-458. 

[17] S. Janson, (2001) Asymptotic distributions for the cost of linear probing hash­
ing, Random Structures and Algorithms, to appear, http://www.math.uu.se 
/ svante/papers/. 

[18] I. Karatzas and S. E. Shreve, (1988) Brownian Motion and Stochastic Calcu­
lus, Springer, New York. 

[19] V. F. Kolchin, (1986) Random Mappings, Optimization Software, New York. 

[20] A. Meir and J. W. Moon, (1978) On the altitude of nodes in random trees, 
Canadian Journal of Mathematics 30, 997-1015. 

[21] Yu. L. Pavlov, (1983) Limit distributions of the height of a random forest, 
Theory Probab. Appl. 28, 471-480. 



On the Profile of Random Forests 293 

[22] Yu. L. Pavlov, (1988) Distributions of the number of vertices in strata of a 
random forest, Theory Probab. Appl. 33, 96-104. 

[23] Yu. L. Pavlov, (1994) Limit distributions of the height of a random forest 
consisting of plane rooted trees, Discr. Math. Appl. 4, 73-88, (translated from 
Diskret. Mat. 6, 137-154, 1994). 

[24] Yu. L. Pavlov, (1994) Asymptotic behavior of the height of a random forest, 
(Russian), A collection of papers, No.1, (Russian), 4-17, 139, Ross. Akad. 
Nauk, Karel. Nauchn. Tsentr, Petrozavodsk, 1994. 

[25] Yu. L. Pavlov, (1997) Random forests, in Probabilistic methods in discrete 
mathematics (Petrozavodsk, 1996), 11-18, VSP, Utrecht. 

[26] Yu. L. Pavlov and I. A. Cheplyukova, (1999) Limit distributions of the number 
of vertices in strata of a simply generated forest, Discr. Math. Appl. 9, 137-
154, (translated from Diskret. Mat. 11,97-112, 1999). 

[27] J. Pitman, (1999) The SDE solved by local times of a Brownian excursion 
or bridge derived from the height profile of a random tree, Ann. Probab. 27, 
261-283. 

Bernhard Gittenberger 

Department of Geometry 
Technische UniversiUit Wien 
Wiedner Hauptstra15e 8-10/113 
A-1040 Wien, Austria 
Bernhard. Gittenberger@geometrie.tuwien.ac.at 



Trends in Mathematics, © 2002 Birkhauser Verlag Basel/Switzerland 

On the Number of Heaps and the Cost of 
Heap Construction 

Hsien-Kuei Hwang, Jean-Marc Steyaert 

ABSTRACT: Heaps constitute a well-known data structure allowing the im­
plementation of an efficient O( n log n) sorting algorithm as well as the design of 
fast priority queues. Although heaps have been known for long, their combinato­
rial properties are still partially worked out: exact summation formulae have been 
stated, but most of the asymptotic behaviors are still unknown. In this paper, we 
present a number of general (not restricting to special subsequences) asymptotic 
results that give insight on the difficulties encountered in the asymptotic study of 
the number of heaps of a given size and of the cost of heap construction. In par­
ticular, we exhibit the influence of arithmetic functions in the apparently chaotic 
behavior of these quantities and study their extremal and average properties. It 
is also shown that the distribution function of the cost of heap construction using 
Floyd's algorithm and other variants is asymptotically normal. 

1 Introduction 

Heap is an elementary data structure often used in applications concerned with 
priority queues and partial (as well as total) ordering. It first appeared in Williams' 
Heapsort algorithm [29], which happened to be the first in-place O( n log n) sorting 
algorithm. Besides its original applications to sorting, heap has wide applications 
in algorithm design, see Aho et al. [1]. It serves as the prototype, both conceptually 
and in actual implementations, of many complex data structures in computational 
geometry (see Preparata and Shamos [25]) and in graph-theoretical problems (see 
Noltemeier [21], Mehlhorn and Tsakalidis [20]). 
A (max) heap is an array with elements aj, 1 ~ j ~ n, satisfying the path­
monotonic property: aj ~ ali/2J for j = 2,3, ... ,n, where l x J denotes the integral 
part of x. It can be viewed as a binary tree in which the value of each element is 
not smaller than that of its children. 
The construction of a heap from an arbitrary set of n keys can be performed ef­
ficiently in linear time using Floyd's algorithm (see [18, §5.2.3]), but it is easy to 
see that the exact number of operations used varies according to the nature of 
the permutation on the input keys. Likewise, the number of heaps of a given size 
n is not a steadily growing function of n, but proves to have a chaotic rate of 
growth. Several authors have proposed partial answers to these problems. Knuth 
states the basic recurrence relation for the number of heaps, and gives an explicit 
solution as a product; he also shows that the expected cost used by Floyd's algo­
rithm to construct a heap is linear; Doberkat [5] derives the probability generating 

1 Most results of this paper appeared as Rapport de Recherche, LIX/RR/93/07, Ecole poly­
technique, 1993; only quite recently did we revise the paper; a full version of this extended 
abstract is available via the link http://algo.stat.sinica.edu.tw. This work was partially 
supported by the ESPRIT Basic Research Action No. 7141 (ALCOM II) and by the AQSI re­
search action of the French Ministry for Research and Space. 
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© Springer Basel AG 2002
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functions for the number of exchanges and comparisons used by Floyd's algorithm, 
he also finds the asymptotics of the first two moments; Sprugnoli [27] examines 
in more detail the average case behavior of Floyd's heap-construction algorithm 
[18] for general values of the heap size. The method of Doberkat is via probability 
generating functions and that of Sprugnoli relies largely on refining the results on 
special sequences. 
We propose a new approach to the asymptotic study of the number of heaps and 
the cost of heap construction. It is based on explicit decomposition of the solution 
to the basic recurrence characteristic of heap structures. The decomposition is in 
terms of some digital sums (sums expressible using the binary digits of n in base 
2). From this canonical representation, elementary asymptotic methods then give 
the asymptotic behavior of the quantity in question. 
This paper is organized as follows. We state the basic recurrence together with 
some notations in the next section. The general solution, in terms of digital 
sums, of this recurrence is presented in Section 3. Then we apply this result to 
determine an asymptotic expression for the number of heaps and the cost (mean 
and variance) of Floyd's heap-construction algorithm. Our results on the mean 
and the variance improve upon that of Doberkat [5] and that of Sprugnoli [27]. 
We also propose means of deriving extremal and typical behaviors of digital sums 
of the form :EoSjSlIlog2nJ 'l/J({n/2j }), which appear naturally in our analysis. In 
the final section, we establish the asymptotic normality of the cost used by Floyd's 
algorithm under the uniform permutation model. 

2 The basic divide-and-conquer recurrence 

A characteristic property of a heap, when viewing as a binary tree, is that at 
least one of the two subtrees of the root node is complete (i.e., it contains 2k - 1 
elements for some positive integer k), and then the size of the other subtree is at 
least half and at most twice this number. Furthermore, this property recursively 
applies to each node. Given a heap H of size n with left and right subtrees £ and 
R, an additive cost function cp on heaps is defined by a relation 

cp[H] = T[H] + cp[£] + cp[RJ, (1) 

for some cost function T. Summing over all heaps of size n, which obviously 
decompose into subheaps of smaller sizes, we thus define a function f that satisfies 
the same recurrence on sizes. Since at least one of £ or R is complete, the relation 
(1) can be written into a more precise form as follows. For positive integer k and 
a given sequence {tn }n2:1 

which is referred to as the (additive) heap recurrence (see [27], [13, Ch. 3]), where 
tn denotes the sum function for T and is usually referred to as the "toll function". 
Observe that we can incorporate the two cases into one by writing 

(n 2: 2), (2) 
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where 2 Llog2 2n/3J represents the unique power of two lying between n/2 and 2n/3. 
Here and in the following, 'Hn denotes the total number of ways to rearrange the 
integers {I, 2, ... , n} into a heap. It is obvious that 'Hn satisfies the multiplicative 
heap recurrence: 

since the root has to contain the largest key and the remaining elements can be 
assigned independently to the left and right subheaps. The sequence 

{'Hn}n>2 = 1,2,3,8,20,80,210,896,3360,19200,79200,506880,2745600, 
21964800,108108000,820019200,5227622400,48881664000 ... 

increases very fast and is the A056971 entry in Sloane's On-Line Encyclopedia 
of Integer Sequences (http://www.research.att.com/rvnjas/sequences).Itis 
more convenient to work with hn = log(n!/'Hn) since hn satisfies (2) with tn = 
logn. 

Knuth [18, p. 154] expresses the number of heaps of size n via the product of the 
sizes of all its subtrees. Denoting by Si, i = 1,2, ... , n, these sizes, the number 
'Hn satisfies 

The s/s are generally of the form 2k - 1, for some positive integer k, except for 
the nodes lying on the special path whose ranks (in hierarchical order) are of the 
form 2j (1 + {n/2 j }), where {x} denotes the fractional part of x. 
If we consider the (backward) difference of f n: 'Pn = "\l f n = f n - f n-l, then we 
obtain, 

{ 0 < . 2k - 1 . _ . 'P2 k - 1 +j, _ J < , 
'P2 k +J - T2 k +J + . 2k - 1 < . < 2k 'PJ' -J, 

(k ;::: 1), 

with the initial condition 'Po = 0, where Tn = "\ltn. Equivalently, if we write 
n = (lbL - 1 ... boh in base 2, then this recurrence can be re-written as 

Before solving (2), we note that there is another very similar type of recurrences 
[10] 

(3) 

which occurs as the solution of the following equation 

(n;::: 2), 
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(with (h given) when the sequence {Tn}n:::::O is strictly concave, namely, Tn+2 -
2Tn+l + Tn < 0 for all n ;:::: O. The same recurrence also appeared in the analysis 
of queue-mergesort and other problems; see [4]. 

On the other hand, when the sequence {Tn}n>O is strictly convex, the solution ¢n 
satisfies [10] -

(n;:::: 2). (4) 

This type of recurrences occurs very often in the analysis of algorithms and was 
systematically treated by an analytic approach by Flajolet and Golin [6]; see also 
[15]. 
Recurrences of the types (2) and (4) are typical representatives of the divide-and­
conquer recurrences that one naturally encounters from its designing principle 

(n ;:::: no> 1), 

with some initial conditions, where Bn is some given sequence (called "toll func­
tion"), An is certain cost measure related to the algorithm in question, x( n) and 
y(n) usually satisfy 1 :::; x(n), y(n) :::; n - 1, their values depending upon the 
dividing strategy. 

Besides (2) and (4), let us mention another recurrence studied by Panny and 
Prodinger [22] for the analysis of bottom-up mergesort algorithm 

(n ;:::: 2), (5) 

with x(n) = 2liog2nl-1, where fyl denotes the least integer;:::: y. 

A typical phenomenon of the behaviors of divide-and-conquer recurrences is that 
they often involve certain periodic fluctuations depending on the instance size. 
Intuitively, this is due to the fact that in each dividing step, the sizes of the 
two subproblems are not necessarily identical. Consequently, the cumulative (re­
cursive) effect renders the global behavior less smooth, or even chaotic. Such a 
fluctuating behavior relies sensitively upon the dividing strategy. Roughly, the 
more "balanced" the two sequences x( n) and y( n) are, the more "smooth" the re­
sulting oscillating behavior is. For example, the recurrence (4) should be expected 
to involve oscillating functions that are more smooth than those of (2) and (5). A 
detailed comparison of the two recurrences (5) and (4) can be found in [22] and in 
[4]. 

Notations. Throughout this paper, n is a positive integer, and n = (hLhL-l ... bob 
the binary representation of n, where L = llog2 n J and hL = 1. Denote by nj = 
(lb j- 1 ... boh for j = 1,2, ... , L with no = 1. All limits are taken to be n ----t 00. 

3 Explicit formula 

To solve the heap recurrence (2) explicitly, we observe that when n = 2k+1 -1, the 
recurrence is essentially linear: i2k+l_l = t2k+1_l + 2f2k-l, which can be solved 
easily by iteration. From this, we can find the solution for the sequences {2k}, 
{2k + 2k - 1 -1 }, .... But this process does not lead readily to a general solution; see 
Sprugnoli [27]. Hence, we begin with another approach, which extends a classical 
counting argument for Young tableaux of a given shape (see [18, §§5.1.4, 5.2.3]). 
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Lemma 1. For n ~ 1, the solution in of the heap recurrence (2) is given by 

in = L (l2j~IJ -l; J -1) t 2 j-l + L tnj , 
l~j~L O~j~L 

(6) 

for any given sequence {tn}n>l. 

Proof. We call, as in [18), the nodes lying on the path from 1 to n special nodes. 
Let ~1 and ~2 denote the first sum and the second sum on the right-hand side 
of (6), respectively. Then ~1 counts the weights of nonspecial nodes under the 
cost function tn, and ~2 counts similarly the weights of special nodes. Nonspecial 
nodes are always perfectly balanced, so their sizes are of the form 2j - 1. Now 
any node of rank (3 = (cr ... coh lying in the range In/2 j J < (3 < In/2 j - 1J has as 
subtree size s{3 = 2::0~i<j 2i = 2j - 1, since1 s{3 is the number of positive integers 
::::; n whose binary representation is of the form (cr ... CO*)2, where * is any 0-1 
string. Hence, the number of nonspecial subtrees of size 2j - 1 is 

l2j~ 1 J - l; J - 1. 

On the other hand, the number of positive integers::::; n whose binary representa­
tion has the form (h ... bj*) for I * I = 0, 1, ... , j -1 is 2::0~i<j 2i + (b j- 1 ... bah + 1 = 
(lb j- 1 ... bah. Hence, the special subtree sizes are n, nL-l, ... , no = nj. This com­
pletes the proof. • 

An interesting consequence of Lemma 1 is the following necessary and sufficient 
condition for the asymptotic linearity of in. 

Lemma 2. Assume that in satisfies the heap recurrence (2). Then in is asymp­
totically linear: in rv cn iff 

tn = o(n), and Lt2j- 12- j < 00. (7) 
j2:1 

The constant c is given by c = 2:: j2:1 t 2j -12-j. 

This result says that without loss of generality, we can, under the hypotheses of 
Lemma 2, consider only the special sequence {i2k-llk, as far as the dominant 
asymptotics is concerned. 

Proof. Assume that (7) holds. By (6) and tn = o(n), we deduce that 

in = n L t 2j-lTj + o(n). (8) 
l~j~L 

Since the sum 2::1~j~L t 2j- 12- j converges (by assumption), we obtain in rv cn. 
Note that the expression (8) holds as long as tn = o(n). 
On the other hand, assume that in = can + o(n) for some constant co. Then by 
definition (2) 

tn = in - i2Llog2 2n / 3J_l - i n _2Llog22n/3J 

= can - co2 Llog2 2n/3J - Co (n - 2 Llog2 2n/3J) + o(n) 

= o(n). 

1 By the basic property of heap: if a node {3 has rank (cr .. . co)2, then its left and right children 
have respective ranks (cr ... coO)2 and (cr ... col)2. 
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This implies, by (8) and In rv con, that Co = c = Lj?::l t2j-12-j < 00. This proves 
the necessity part and the lemma. • 

4 The number of heaps 

In this section, we derive an asymptotic expression for the number of heaps 1tn 
of size n . To this end, we apply Lemma 1 to the sequence hn = log(n!/1tn ). The 
extremal and average order of the arithmetic functions involved are also discussed. 

4.1 The asymptotic behavior of 1in 

First of all, since hn satisfies (2) with tn = logn, Lemma 2 gives, 

log(2j - 1) ( , ' ) hn rv n L 2j = n 2log2 + LTJ log(l- TJ) = 0.945755 ... n. 
j?::l j ?:: l 

Let a = 2 log 2 + L '>1 2- j log(l - 2- j ). In order to obtain an asymptotically 
J_ 

equivalent approximation for 1tn , we need to determine hn up to the constant 
term. 

Theorem 1. The number of heaps of size n satisfies the asymptotic expression 

1tn = 2QJ2;II(log2 n)R(n) nn+3/2 e-(O!+1)n (1 + 2£1+1 + l~n + 0 (n- 2)) , 

where Q = TIj ?::l (1 - 2-j ) =0.288788 ... , R(n) = TIj ?::l [(1- 2-j- 1 )/(1- 2- j )]{n/2 j
} 

and 

2{n/ 2j } 

II(1 ) =22{IOg2n}-{log2n} II (9) 
og2 n 0«£ 1 + {n/2j} . 

_1_ 

Proof. (Sketch) Apply (6) with tn = log n and simplify; see [17] for details. • 

Note that this is not an usual asymptotic formula since 

varies between 0 and -log4(10/9) (see (10) below). 

4.2 Extremal orders of R(n) and II(u) 

Taking logarithms and making use of the inequalities 0 ::; {n/2j} ::; 1 - 2-j , we 
have, for all n ~ 1, 

1 ::; R(n) ::; exp (- LTj log(l - Tj)) = 1.553544 ... 
j?::l 
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Proposition 1. For all n ~ 1, the inequalities 

0< cln- 7J/log2 ::; II(log2 n) ::; 2 

hold, where 'fl = log(1O/9)/2 and Cl is some constant. 

Proof. Observe first that by (9) and the elementary inequalities 

(0::; x ::; 1), 

(0::; x ::; 1), 

we obtain the upper bound II(log2 n) ::; 2 and the lower bounds 

II(log2n) ~ e(log2) GIog2t ~ e(log 2)n-1+1/log 2+Jog Jog 2/Jog2. 
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(10) 

Such a lower bound obtained by considering only the maximum of each term (as 
a continuous function) is, however, too crude and unattainable. 
To prove the better lower bound in (10), we consider the function 

so that 

w(n):= L ~({n/2j}), where ~(x):=log(I+x)-xlog2, 
l~j~L 

II(log2 n) = 22{log2 n} -{Jog2 n} e-w(n). 

Note that the function ~(x) attains the maximum value at (I-log 2)/ log 2 ~ 0.44. 
Also w( n) satisfies the recurrence 

We prove that 

. w(n) 1 1 10 
hmsup -L = 'fl = -(~(I/3) + ~(2/3)) = -log-. 

n-+oo 2 2 9 
(11) 

The proof consists mainly of two parts: First, by induction, it is straightforward 
to show that if 

then 

so that 

4L/2+1 - 1 
n = (1010·· ·lOIh = --3--

lim sup w(n) ~ 'fl. 
n-+oo L 

(L even), (12) 

(13) 
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Second, if n is not of the form (12), then n can be written as 

n = (1010·· .101~h)z, (14) 
>. 

where ,\ 2: 0, ,\ -=J- 1 and * is a binary sequence. We prove again by induction and 
numerical bounds for 7j;(x) that 

w(n) :::; (L + 1)1] (n 2: 1), (15) 

which together with (13) proves (11); see [17] for details. 

Remarks. The proof does not reveal why repeating the pattern 10 yields the best 
possible upper bound for w(n)/L. Roughly, this is because the average of 7j;(1/3) 
and 7j;(2/3) is somehow the most balanced choice. Here is another rough explana­
tion (by calculations). Write first x = {n/2L}. Then w(n) = I:oSj<L 7j;({2jx}). 
The function b - 7j;(x) is positive for ° :::; x :::; 0.27 and 0.62 :::; x < 1. So if we 
assume that (15) holds, then, by induction, we are left with the interval [0.27,0.62] 
for x. Then 2b - 7j;(x) - 7j;({2x}) > ° for 1/3 < x :::; 0.62, and we are left with 
the smaller interval [0.27,1/3]. Continuing this way, we see that 1/3 is a limiting 
point in some sense, which means that n is of the form (12). 

4.3 Average order 

Although the function w(n) oscillates between 0(1) and O(logn), its sum func­
tion has a much smoother behavior. We determine its average order, namely 
n-1 I:lSmSn w(m). 

Lemma 3. Let 'P(x) be any real, continuous function on [0,1] and differentiable 
in (0, 1). Define ¢(m) = I:oSjSlog2m'P({m/2j}). Then 

In other words, the lemma says that the average order of the function ¢( m) is 
equal to log2 n times the mean value of the function 'P in [0,1]. 

Proof. (Sketch) Let ~(n) := I:lSmSn ¢(m). Then 

/,
n+l /,n+l 

~(n) = 1 ¢(x) dx - 1 (¢(x) - ¢(lxJ)) dx + 0(1). 

The first integral on the right-hand side is easily seen to be 

The second integral is O(n) by the differentiability of 'P(x). • 
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If we take <p(x) = x, we obtain, in view of the relation v(n) = LO:Sj:SL {n/2j} + 
n/2L, where v(n) = LO:Sj:SL bj , 

1 1 -; I: v(m) = "2 log2 n + 0(1); 
l:Sm:Sn 

and in general 

1 1 I: vq(m) = -log2 n + 0(1) 
n l:Sm:Sn q + 1 

(q > 0), 

where vq(n) := LO:Sj:SL {n/2 j F· The implied constant in the O-term depends on 
q. Other examples are given in the next section. 

5 The cost of constructing heaps 

In this section, we again apply the solution (6) of the heap recurrence to refine pre­
vious analyses on the mean and the variance of the cost used by Floyd's algorithm 
to construct a heap from a random sequence. Moreover, the asymptotic normality 
of the cost is also established. Our methods apply equally to other variants of 
Floyd's algorithm. 
Let us first recall the algorithm. It is divide-and-conquer in nature. Briefly, to 
construct a heap of size n, construct the left and the right subheaps, respectively, 
by the same procedure and then find the proper place in one of the two subheaps for 
the root element (by comparisons and key-exchanges). We assume, throughout this 
section, that a uniform probability measure is assumed on the set of permutations 
of size n, n ;:::: 1. Knuth [18, p. 155] showed that, given a random permutation of 
size n, Floyd's algorithm preserves randomness in each recursive step. Thus given 
a random permutation of n elements, the output obtained by Floyd's algorithm is 
a random heap of size n. 
Thus, with the notations of (1), the probability generating function Pn(Z) for some 
cost measure of the algorithm like the number of exchanges running over all heaps 
of size n satisfies (see (2)) 

PO(Z) = 1 

Pn(z) = P 2 L10g22n/3J_l(Z)Pn _ 2 L10g22n/3J (z)Qn(z) (n;:::: 1), (16) 

where Qn(z) is the probability generating function for the cost of placing the root 
element of a heap of size n into one of its two subheaps. Note that Qn(z) is always 
a polynomial for all finite n. From (6), we have the explicit representation 

Pn(Z) = Qn(z) II Q2j_l(Z)Ln/2j-1J-Ln/2jJ-lQnj(Z) 
l:Sj:SL 

(n;:::: 1). 

Our analysis below applies to all versions of heap-construction algorithm using 
divide-and-conquer paradigm such that the randomness is preserved in each "con­
quering" step, the randomness is preserved. 
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For concreteness, let ~n denote the number of exchanges used by Floyd's algo­
rithm to convert a random permutation into a heap. We derive precise asymptotic 
expansions for the mean and variance of ~n and show that ~n is asymptotically 
normally distributed with convergence rate of order n-1/2Iogn. 

5.1 The mean of ~n 

> From [18, §5.2.3], the mean number of exchanges E(~n) satisfies the heap recur­
rence (2) with tn = n-1 L:1:S;j:S;nllog2jJ = L + (L + 2)/n - 2£+1/n , the average 
height of a node in a random heap of size n (see [18, p. 155]). Applying formulae 
(6) , we get the following result that is more general than that of Sprugnoli [27]; 
see also [13, Ch. 3]. 

Theorem 2. The expected number of exchanges E(~n) used by Floyd's heap con­
struction algorithm satisfies 

(n ----t 00), 

where f-l = -2 + L: j2:1 j(2j - 1)-1 = 0.744033 ... , 'W1(n) is defined by 

and 'W2(n) = 0(1) is given by 

Furthermore, 'W1 (n) satisfies 

liminf 'W1(n) = -1 , 
n---.oo L 

and 
. 'W1(n) 17 

hmsup -- = --. 
n-->oo L 20 

By Lemma 4, the average order of the arithmetic function 'W1 (n) is 
(3/2 - 2 log 2) log2 n + 0(1). 

(17) 

Proof. (Sketch) With the exact formula (6), simple manipulations using Maple 
lead to (17). The inequalities for 'W1(n) are derived by similar arguments as in 
Proposition 1 (both approaches apply). • 

In particular, if n = (2(m+1)d - 1)/(2d - 1), d 2: 2, then 
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o 0.2 0.4 0.6 0.8 

Figure 1: The function (E(~n) - p,n)/ L platte d against {log2 n} for n from 2 to 
1024; the upper bound as predicte d by Th€JTem 2 is also shown. 
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5.2 The variance of ~n 

We now consider the variance of ~n. Since the variance of a sum of independent 
random variables is equal to the sum of the variance of individual random variable, 
the variance of ~n satisfies (2) with 

tn ~ ~ ,~,yOg2jJ2 - (~'~nllOg2jJr 
2L 4L+1 L2 2L+2 L L 6 2L+3 L2 L 4 

- 6- - -- - - + -- -4- - - + -- - - -4- --
- n n2 n n2 n n n2 n2 n2 n2 ' 

by partial summation. With the help of Maple, we obtain the following result, 
improving that of Doberkat [5]. 

Theorem 3. The variance of the number of exchanges satisfies the asymptotic 
expression 

(n ----+ 00), 

where (J2 = 2 - L.j?lj2(2j _1)-2 = 0.261217 ... , 'W3(n) is defined by 

{n/2j} - {n/2 jp 
'W3(n)=2 L (1 + {n/2 j })2 ' 

and satisfies 

r . f 'W3(n) - 0 
~~ -L-- , 

and w4(n) = 0(1): 

O-:;'j-:;'L 

and 
r 'W3(n) 40137372396071 
l~S~P -L- = 188961240258000' 

The average order of 'W3(n) is (6 log 2 - 4) 10g2 n + 0(1). 
Note that, unlike the two functions w(n)/L and w1(n)/L whose maximum values 
are achieved when n = (1010·· ·10Ih, the maximum of W3/ L is (asymptotically) 
attained when n is of the form 

n = (1010010100 ... 10 1001 b 
so that the ratio 40137372396071/188961240258000 is equal to 

~ (~3(5/31) + ~3(1O/31) + ~3(20/31) + ~3(9/31) + ~3(18/31)), 
where ~3(X) = 2(x - x2)/(1 + X)2. The main difference is that the underlying 
function ~3(X) attains its maximum value 1/4 at x = 1/3 and not between 1/3 
and 1/2. The proof follows the same arguments used in the proof of Proposition 
1; we omit the proof here since it is very involved and uninteresting. 
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5.3 Asymptotic normality 

Theorem 4. The distribution functions of the random variables (~n - I-tn)/(ay'ri) 
converge to the standard normal distribution: 

Ip ( ~n - I-tn ) 1 JX -t2/2 d I 0 (lOgn) sup < x - -- e t - --
-oo<x<oo ay'ri vz;r -00 - y'ri' 

(18) 

where the two constants I-t and a 2 are defined in Theorems 2 and 3, respectively. 

This result is a special case of the following lemma refined from that of Haigh [11], 
where we explicitly characterize the convergence rate to the normal law by a direct 
approach based upon characteristic functions and the Berry-Esseen smoothing 
inequality (see [23]). 

Lemma 4. Let {Xn}n be a sequence of random variables taking only non-negative 
integral values with mean I-tn and variance a;. Suppose that the probability generat­
ing function Pn(z) of On can be decomposed as Pn(z) = fh:;j:::;k n Pnj(z), for some 
sequence {kn}n, where the Pnj(z) are polynomials such that (i) each Pnj(z) is itself 
a probability generating function of some random variable, say, X nj (1 ::; j ::; kn ); 
and (ii) 

(19) 

where Mn = max1:'Oj:'Okn deg Pnj (z). Then the distribution of Xn is asymptotically 
Gaussian: 

sup Ip(Xn-I-tn <x)- ~Jx e-t2/2dtl=o(Mn). (20) 
-oo<x<oo an V 21f -00 an 

Proof. (Sketch) By the expansion 

Using lew - 11 ::; Iwle1wl and the Berry-Esseen smoothing inequality [23, p. 109] 

sup Ip(Xn-I-tn<x)_ ~Jx e-t2/2dtl 
-oo<x<oo an V 21f -00 
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= 0 (r;l + l:n IPn(t) ~ e- t2
/
2 dt), 

we deduce (20). See [17] for details. • 
This simple lemma can be used to derive the asymptotic normality (with conver­
gence rate) for many combinatorial quantities; see [14]. 

Proof of Theorem 4. By (16) and Lemma 5, we need only check that the degree of 
the polynomials Qn(z) in (16) is small compared to the standard deviation of ~n ' 
which is O(yIn). The special form of Qn(z) given in [5] has no importance here. 
Since Qn (z) is the probability generating function for inserting the root into one 
of the two subheaps that are of height O(log n), it is obvious that the degree of 
Qn(z) is O(logn). From this, an application of Lemma 5 yields 

p(~n-E(~n) ) 1 JX -t2/2dt O(Mn) sup < x - -- e --
-oo<x<oo JVar(~n) V2if -00 - (In' 

In view of Theorems 2 and 3, the above equation is asymptotically equivalent to 
(18). • 

Our approach also applies to the number of comparisons used by Floyd's algorithm 
and similar results as Theorems 2-4 hold. 

Here is a more general rule. 

The cost (the number of key-exchanges or the number of comparisons) used to 
construct a heap from a random permutation of n elements by algorithms using 
divide-and-conquer paradigm such that the randomness is preserved in each "con­
quer" step is asymptotically normal in the sense of convergence in distribution. 

It is merely a rule since a formal statement of a precise version would be too heavy. 
In particular, this rule applies to the heap construction algorithms in [3, 19, 12, 28], 
the basic ideas of improvement being more or less due to Floyd. Our approach 
also gives in most cases more precise quantitative results in the form of (18). 

In connection with this, it should be pointed out that the original on-line algorithm 
proposed by Williams [29] to construct a heap is not linear in the worst case and 
that the randomness is not guaranteed (see [24]) in each step. The average case 
analysis of its behavior is more difficult; see [2, 8, 12]. Likewise, a precise analysis 
of the expected behavior of heapsort is very involved since successive deletions 
destroy the initial random character; see for example Schaffer and Sedgewick [26]. 
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A Combinatorial Problem Arising in 
Information Theory: Precise Minimax 

Redundancy for Markov Sources 

Philippe Jacquet and Wojciech Szpankowski 

ABSTRACT: Redundancy of a code is defined as the excess of the code length 
over the optimal code length. When the source of information is unknown, then 
one wants to design the best code for the worst source (within the class of sources 
that are being considered). This is called the minimax redundancy. It can come in 
two flavors: either on average or the worst case. The latter is known as the max­
imal minimax redundancy, and it is studied in this paper for Markovian sources. 
Surprisingly, this problem led us to an interesting combinatorial problem on di­
rected graphs that we shall solve using analytic tools. To be more precise, we need 
to count the number of Eulerian cycles in a directed multi-graph. The maximal 
minimax redundancy turns out to be a sum over such Eulerian paths. In particu­
lar, we shall prove that the maximal minimax redundancy for Markov sources of 
order r is asymptotically equal to ~mr(m -1) logn + log Am + O(l/n), where n is 
the length of source sequences, m is the size of the alphabet and Am is an explicit 
constant that depends on m. * 

1 Introduction 

We start with a quick introduction of the redundancy problem of source coding 
(better known as data compression). A code Cn : An ----> {O,l}* is defined as a 
mapping from the set An of all source sequences xf = (Xl, ... , xn) of length n 
over the finite alphabet A to the set {O, 1}* of all binary sequences (i.e., block-to­
variable code). For a probabilistic source model, we let P(xf) be the probability 
of the message xf and L( Cn, xf) be the code length for xf. 
It is known that the entropy Hn(P) = - LXI P(xf) log P(xf) is the absolute lower 
bound on the expected code length, where log := log2 throughout the paper will 
denote the binary logarithm. Hence - log P( xr) can be viewed as the "ideal" code 
length and therefore one may ask by how much the code length L( Cn , xl') exceeds 
the ideal code length, either for individual sequences or on average. The pointwise 
redundancy is 

Rn(Cn,P;x~) = L(Cn,x~) + logP(x~), 
while the average redundancy Rn(Cn, P) and the maximal redundancy R~(Cn' P) 
are defined, respectively, as 

Rn(Cn, P) = Ep[Rn(Cn, P; Xl)] = Ep[L(Cn, XI)]- Hn(P) , 
R~(Cn' P) = max[Rn(Cn, P; x~)], x, 

*This work was supported by the NSF Grants CCR-9804760 and CCR-0208709, and contract 
1419991431A from sponsors of CERIAS at Purdue. 

B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
© Springer Basel AG 2002
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where the underlying probability measure P represents a particular source model 
and E denotes the expectation. 
In practice, however, the probability distribution (i.e., source) P is unknown, hence 
one is looking for optimal codes for sources with unknown probabilities. In fact, for 
unknown probabilities, the redundancy rate can be also viewed as the penalty paid 
for estimating the underlying probability measure. The redundancy-rate problem 
consists in determining for a class of sources S the rate of growth of the minimax 
quantities either on average 

(1) 

or in the worst case 
(2) 

where en denotes prefix codes (i.e., satisfying Kraft's inequality). 
In this paper we deal with the maximal minimax redundancy R~(S) defined by 
(2) for Markov sources. Precise asymptotics of R~(S) for memoryless sources 
are known (cf. [6, 11, 23]). But there is lack of similar results for Markovian 
sources Mr of order r. Rissanen [18] obtained the first two terms of a related 
quantity called the regret junction, while Atteson [1] derived similar asymptotics 
for the average minimax redundancy of Mr. In this paper, we focus on analyzing 
Markov sources of order one, M I , and build a novel analytic framework upon 
which we obtain asymptotics of R~(Mr). Here, we present our preliminary re­
sults. Interestingly enough, in the course of deriving our findings we encounter 
some combinatorial problems on directed multigraphs that are quintessential to 
the solution of our problem. Among others, we must enumerate Eulerian paths 
in a multigraph whose multiplicity is expressed by a given matrix satisfying the 
so called conservation flow property. In fact, this quantity turns out to be the 
number of types for Markov sources (cf. [28]). 

2 Main Results 

We first review some known results about the maximal minimax redundancy R~ (S) 
for a class of sources S defined above in (2). In 1987 Shtarkov [21] established the 
following bound 

log (2: sup P(Xr)) ::::: R~(S) ::::: log (2: sup P(Xr)) + l. 
x;' PES x;' PES 

Recently, Drmota and Szpankowski [11] replaced these bounds by an exact formula, 
namely 

R~(S) = log (2: sup P(Xr)) + RGs(Q*), 
x;' PES 

(3) 

where R GS (Q*) is the maximal redundancy of the generalized Shannon code (i.e., a 
code which assigns flog 1/ p(xr)l for some source sequences xr and llog 1/ p(xr)J 
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for remaining source sequences) designed for the maximal likelihood distribution 

Q*(xf) = sUPp P(xf) 
2:xn sUPp P(xf) 

1 

In R;;s (Q*) the distribution Q* is assumed to be known. 

Formula (3) suggests that R~(S) = log Dn(S) + R;;S(Q*) where 

(4) 

(5) 

The above decomposition of R~(S) is quite interesting. The first part dn(S) := 
log Dn (S) can be proved to be a non decreasing function of n that depends only 
on the underlying class S of probability distributions, while the second (bounded) 
term contains a coding component and may be a fluctuating function of n. 
In general, our goal is to estimate asymptotically both terms of R~(S) for a class of 
memoryless sources, Markov sources, mixing sources, and other non-parameterized 
class of sources. We aim to develop precise results of practical consequence using a 
combination of tools from average case analysis of algorithms, information theory, 
and combinatorics (cf. [25]). 
Let us first consider, as a warm-up, a memoryless sources Mo over an m-ary 
alphabet. This is well-studied problem (cf. [2, 18, 23]). Indeed, it is easy to see 
that for the memoryless case (5) becomes 

(6) 

where k i is the number of elements in xf containing symbol i E A. Indeed, we 
have 

and (kl,.~,kJ is equal to the number of strings xf having ki symbols i E A. 

In [231 we argued that such a sum can be analyzed through the so-called tree 
generating function. Let us define 

00 kk 1 
B(z) = 2: kfzk = 1 _ T(z)' (7) 

k=O 

where T(z) satisfies T(z) = zeT(z) and also T(z) = 2:;::1 k:~l zk. Let us now de­

fine another tree-like generating function, namely: D(z) = 2:;::0 t~ Dk(S). Then 
the convolution formula for generating functions (cf. [25]) immediately implies 

D(z) = (B(z))m 

which further leads to 
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where [zn]J(z) is the standard notation for the coefficient of J(z) at zn. To extract 
an asymptotic expansion from the above one must know the singular expansion of 
B(z). But a minor modification of [7] gives 

1 1 V2 vi 4 23V2 3/2 2 B(z)= +--- (l-ez)+-(I-ez)---(I-ez) +O((I-ez)). 
J2(I-ez) 3 24 135 1728 

Then an application of the Flajolet and Odlyzko singularity analysis [12] yields 
for dm(Mo) = log Dn(Mo) 

m - 1 (n) ( ft ) r(~)m V2 
dn(Mo) = -2- 10g "2 + log r(~) + 3r(~ -~) . Vn 

( 3+m(m-2)(2m+l)_ r2(~)m2 ).~ 0(_1_) 
+ 36 9r2(~ - ~) n + n3/ 2 

for large n. The first two terms were known before (cf. [22, 26]) but not the 
constant term of R~(Mo) which involves R;;S(Q*). In [11] it was proved that 

In-l-lnm 
R~s(Q*) = - ~~~ + 0(1). 

In general, the term 0(1) can not be improved. Putting everything together we 
obtain 

* m - 1 (n) In mS In m ( ft ) 
Rn(Mo)=-2-10g "2 - Inm +log r(~) +0(1). 

Now, we turn our attention to the main topic of this paper, namely, maximal 
minimax redundancy of Markov sources. Markov sources Ml (in general Mr for 
Markov of order r) still present a challenge even if we know that R~(Mr) rv If log n 
(cf. [2, 18, 26]) where K = m(m -1) is the number of degrees of freedom (or more 
precisely, the dimension of the parameter space). There are some results (cf. [18]) 
concerning the second term of the asymptotic expansion for the minimax regret 
function [18] and the average minimax redundancy [1], but not for the maximal 
redundancy. We should point out that our methodology is quite different from the 
others since we apply throughout analytic combinatorics and algorithmics while 
previous attempts were pure probabilistic. We aim at deriving a full asymptotic 
expansion, however, in this conference version we present only the first two terms 
and an error term. 
We start with a precise formulation of the problem. We concentrate on the non­
fluctuating part Dn(Ml)' After some calculation, we arrive at 

(k )kll (k )krn,rn 
Dn(Md = L N[kJ ;1 ... ;,m , 

[kJ 1 m 

where ki = ~';=lkij, the matrixt [k] = {kij}i,j=l is an integer matrix whose 
(i, j)-th coefficients satisfy the condition ~l::;i,j::;m kij = n - 1. In the above, kij 

tTo simply notation, we shall write [a] for a matrix {ai,j}i,'j=l' 
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denotes the number of pairs (i, j) in xi.', that is the number of times symbol j 
follows symbol i. The quantity N[kJ is the number of string xi.' generated over A 
having kij positions in xi.' where j follows i. It is known under the name frequency 
count (cf. [3)), but in fact it is the number of types for a Markov chain. We call 
the matrix [k] the pair occurrence (PO) matrix for xi.'. 
It turns out that an estimation of N[kJ leads to an interesting combinatorial prob­
lem, namely, enumeration of Eulerian paths in a directed multigraph with multi­
plicity matrix [k]. To find an analytic expression for this expression, we will go 
through the concept of cyclic strings in which the last symbol is followed by the 
first symbol. Cyclic strings have their PO matrices [k] satisfying the following two 
conditions: 

L kij = n, (8) 
l:Si,j:Sm 

m m 

Lkij = Lkji' 'V i. (9) 
j=l j=l 

Our main result proved in the next section can be formulated as follows. 

Theorem 2.1. Let M1 be a class of Markov sources over a finite alphabet A of size 
m. Then the non-fluctuating term Dn(Md of the maximal minimax redundancy 
attains the following asymptotics as n ----+ 00 

(10) 

with 

where JC (1) = {Yij: Lij Yij = 1} and F m (-) is a polynomial expression of degree 
m - 1 defined in Theorem 3.4 of the next section. 

In particular, for a binary alphabet (m = 2) we found that A2 
G = Li (;~:{;2 ~ 0.915965594 is the Catalan constant. 

Next, we extend Theorem 2.1 to Markov sources of order r. 

16· G where 

Theorem 2.2. Let Mr be a class of Markov sources of order r over a finite 
alphabet A of size m. Then the non-fluctuating term Dn (Mr) of the maximal 
minimax redundancy attains the following asymptotics as n ----+ 00 

(11) 

where A~ is defined in Theorem 3.9 of the next section. 
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3 Analysis and Proofs 

In this section we prove our main result, including the enumeration of Eulerian 
paths in a directed multigraph with a given multiplicity. We observe that the main 
novelty of our approach lies in analytical treatment of certain sums over matrices 
satisfying the conservation flow property. 

3.1 Combinatorics on strings 

A cyclic string is a string in which the first symbol follows the last one. If X is a 
cyclic string we call kij (X) the number of positions in X where symbol j follows 
symbol i. It is clear that in cyclic strings we have one pair occurrence more than 
in linear strings, that is, L:ij kij = n, where n is the length of the cyclic string. We 
call the matrix [k(X)] = {kij(x)}i,j=l the pair occurrence (PO) matrix of X. The 
PO matrix obviously satisfies the conservation flow property (CFP) defined in (9). 
Let F* be the set of all the integer matrices which satisfy the CFP. For a given n, 
we let Fn be a subset of F* consisting of matrices [k] such that L:ij kij = n. 

The key parameters needed to enumerate cyclic strings with a given matrix [k] E 
Fn are the so called frequency counts defined as follows: 

• The number N[k] (i.e., frequency count) of cyclic strings for which [k] is the 
PO matrix; 

• The number N~] of cyclic strings starting with a symbol a and having [k] as 
the PO matrix; 

• The number N[~l of cyclic strings starting with a pair of symbols ba and for 
which [k] is the PO matrix. 

Notice that the frequency count Ntkl is of most interest to linear strings since it 
gives the number of strings starting with symbol a and ending with symbol b as 
a function of the PO matrix [k]. Indeed, we know that one occurrence of the pair 
(b, a) has to be removed to make it a linear string. 
Let us start with some notation. Throughout, we shall use the following quantity: 

B[k] - II (k i )! _ ( kl ) ... ( km ) 
- i I1 j (ki,j)!- kll···k1m km1···kmm 

(12) 

where, we recall, ki = L:j kij . Let also [z] = {Zij}ij=l be a complex m x m matrix 

and [k] an integer matrix. In the sequel, we write [z][k] = I1ij z~ij . Let also g[k] 
be a sequence of scalars indexed by matrix [k], and 

g([z]) = Lg[k][Z][k] 
[k] 

be its generating function . We denote 

Fg(z) = L g[kdz][k]. 
[k]EF. 
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Figure 1: A directed multigraph for a binary alphabet A = {O, I} with [k] = koo = 
1, kOl = 2, klO = 2 and kl1 = 2. 

For example, 

B([z]) = l: B[k] [z][k] = II (1 - l: Za,b)-l. 
[k] aEA bEA 

We will also write BA([Z]) := FB([z]). 

We have the following theorems::!: 

Theorem 3.1. For n ~ 1 and [k] E Fn the frequency count N~] is the coefficient 

of [z] [k] of B([z]) that is 
BA - {a} ([z]) , , 

Na _ [z][k] B([z]) 
[k] - BA-{a} ([z]) , 

(13) 

where BA-{a}([z]) is the generating function of B[k] over A - {a} satisfying the 
conservation flow property. 

Proof The proof proceeds via the enumeration of Euler cycles (paths) in a di­
rected multigraph over m vertices. In such a graph vertices are labeled by symbols 
from the alphabet A with the edge multiplicity given by the matrix [k]: there are 
kij edges from vertex i to j. The number of Eulerian paths starting from vertex 
1 in a such multigraph is equal to N[1] ' It is illustrated in Figure 1 for A = {O, I} 
where the matrix [k] is 

Let us now define a "combination" as a set of m arbitrary permutations, one 
permutation per vertex, corresponding to a combination of the edges that depart 
from the vertex. In other words, for a given vertex i there are 

tRecently, it was pointed to us by Dr. Marcelo Weinberger, HPL, that N[kJ was studied before 
by Whittle [28) (cf. [3)). Our formula is a generating function version of Whittle's formula. 
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combinations, and B[k] is the product of such combinations as shown in (12). 
Observe that for a given string when scanning its symbol we trace an Eulerian 
path. However, we are interested in an "inverse" problem: given an initial symbol 
a and a matrix [k] satisfying the flow property (with non zero weights on symbol 
a), does a combination corresponds to a string x?, that is, does it trace an Eulerian 
path. Observe that it suffices to describe the string obtained by successive symbol 
visits by the combination, starting from symbol a: the next symbol is the vertex 
visited by the first edge from a, the next-next symbol is the symbol visited by the 
first edge departing from the the previous vertex (if different of a, otherwise it is 
the symbol visted by the second edge departing from a), and so on. So that, the 
next symbol to symbol i on its kth occurence is the symbol visited by the kth edge 
departing from i in the multigraph combination. The answer to the above question 
is very likely negative, since the process may prematurely end at a symbol c E A 
exhausting all edges departing from symbol c but not using all the other edges of 
the multigraph (i.e., the length of the traced string is shorter than n). Let [k1] 

be the matrix composed of the remaining non-visited edges of the multigraph (the 
matrix [k]- [k1] has been exhausted by the trace). Notice that matrix [kl] satisfies 
the flow property but the row and column corresponding to symbol a contain only 
zeros. Notice also that these edges can be taken in any combination, it will not 
prevent the visiting process to end the same way on symbol a, provided that the 
combination on [kI] are always concatenated after the combination over [k] - [k1] 

that have been exhausted by the trace. 

Given that [k] and [k'] are members of F*, let N(k],[k'J be the number of combi­
nations on the multigraph (i. e. matrix) [k], starting on symbol a, that leaves an 
unexplored set of edges which corresponds to matrix [k']. Notice that k~ = O. We 
have N[%],[O] = N~l' but also the following 

Summing over all matrices [k'] we get all possible combinations on [k], that is, 
L[k'] N~],[k'] = B[k]' This leads to the following 

B[k] = L N[%]_[k'] x B[k']' 
[k'],k~=O 

Summing now over all [z][k] such that ka -=1= 0 it yields 

Denoting Na([z]) = L[kJ N(k] [Z][k], we finally arrive at 

Since F* is an additive semi-group, we observe that for [k] E Fn we also have 
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which completes the proof. • 
The frequency count N[k] can be computed as 

N[k] = [[z][k]]B([z]) L(BA_{a}([z]))-l. 
aEA 

In the next theorem we compute N[~'t. 

Theorem 3.2. For n :::: 1 and [k] E fn' the frequency count Ntk] is the coefficient 
of [z] [k] in B([Z])Zb,a . 

BA_{b} ([z]) 

Proof The proof proceeds the same way as in the previous theorem except that 
we have to consider combinations such that the first edge departing from symbol 
b is always (b,a) (i.e. the first occurrence of symbol b is always followed by 
symbol a), and we let Brkj be the number of such combinations. Observe that 

Brkj = B[k] ~ = B[k]-[8ba ], where [c5ba ] is the matrix with all zero coefficients 
except the ba-th coefficient which is set to one. Let [k] E f*, using the convolution 
we find 

Brkj = L N&l-[k'] x B[k']' 
[k'],k~=O 

Computing the generating function we arrive at 

In other words, L[k]EF.,kba"oO Brkj[zjlk] = Nba([z])BA_{a} ([z]). Using the fact that 

L Brkj [z][k] = fBba([z]), 
[k] EF. ,kba"oO 

with 

Bba([z]) = L Brkj [z][k] = L B[k]-[8ba ] [z][k] 
[kJ,kba >0 [kJ,kba >0 

= B([Z])Zba 

we complete the proof. • 
The next result is important. It provides asymptotics of N[~]. We were not able to 
verify whether such asymptotics appeared before in literature. The closest result 
we found was a bound suggested by Boza [4]. We recall that N&l is the number 
of types of the underlying Markov chain. 



320 Philippe Jacquet and Wojciech Szpankowski 

Theorem 3.3. For a PO matrix [k] such that kba > 0, we have the following 
asymptotic estimate 

(14) 

where [k*] > 0 is the matrix whose the ij-th coefficient is kij / ki' that is, [k*] = 
{kij/kdi,j=l-

Proof First, we derive an asymptotic estimate of B[k]- We should point out that 
the method we propose is not very satisfying since the result is not explicit but for 
our purposes it suffices_ (For more explicit results the Stirling formula performs 
much better _) 
We start with the identity: 

m 2 

B k = (_1) II f dZij X B([z]) 
[ ] 2i7r " " Zij [z][k]-

t,J 

(15) 

Recall that B([z]) = 2:[k] B[k] [z][k] = Il(1- 2:jZij)-l_ We make the change of 

variable Zij = ~: e-itijjkij, where as before ki = 2:j kij _ We have 

Thus 

~ ~ k 1 - tJ (1 -iti"jki ") - Zij - - - e J J 

k 
j j t 

kij = O(n)_ 

We now directly apply this method it to the estimate of Ntk'j- Since 

Therefore, using the same change of variable Zij = ~: exp( -itij), we obtain 

II 1 (. "') Zba 
~ exp 1 L..ttij k B ([ ]) 

i L..Jj ttJ j b A-{b} Z 
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with Zba = ~ exp( -itba/kba) = kba (1 + O(l/n)) and [z] = [k*] + O(l/n)). 
We denote by [k*] the matrix whose ij-th coefficient is kij/ki . Since the func­
tion BA-{b}([Z]) is defined and bounded in a neighborhood of [k*J, we have 
BA-{b}([Z]) = BA-{b}([k*])(l + O(~)). Therefore 

m 2 I1 kkij-l 
N ba - (1 + 0 (~)) (_1) IT j ij [k] - n 2i7r . kki- l , , 

J+OO 1 k* IT dtij IT (" . t. expeL tij ) B ba([k*]) 
i,j -00 i UJ 'J j A-{b} 

= (1+0(~))B[k}kbBA~;:}([k*])· 
This completes the proof. 

3.2 Asymptotics of redundancy 

We first restate our main result in a more precise form. 

Theorem 3.4. When n ---- 00 the following holds 

with 

1 vL:j Yij 
Am = mFm([Y]) IT I1 d[Yij] 

K(l) i j ..jflij 

• 

(16) 

where Fm([Y]) = L:b(detbb(l - [y*]))-l, and [y*] is the matrix whose ij-th coeffi­
cient is Yij / L:j' Yij' , and detij ([a]) is the determinant of the matrix obtained by 
omitting the ith row and the jth column from the matrix [a]. 

In order to establish this result, we need to estimate certain sums over matrices 
[k] E Fn , We start with the following lemma. 

Lemma 3.5. Let g([z]) = L:[k] g[k] [z][k] be the generating function of a complex 
matrix [g]. Then 

'" '" [k} (l)m f dXI f dXm Xi Fg([z]) := ~ ~ g[kJlZ] = -. -... -g([z-]) 
2m Xl X X· 

n::::O [k}E:Fn m J 

(17) 

with the convention that the ij -th coefficient of [z ~] is Zij ~i. In other words, 
J J 

[z~] = ~ -1(x)[z]~(x) where ~(x) is the diagonal matrix with coefficient Xl, ... , 
J 

Xm. By change of variable Xi = exp(iBi) we also have 

Fg([z]) = (2:;m 1: d(h·· ·1: dOmg([zexp((Oi - OJ)i)] 

where [zexp(Oi - OJ)] = exp( -~(O))[z] exp(~(O)). 
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Proof. We show (17). We proceed as follows 
m 

g([z Xi]) = L g[k] [z][k] II xfj kij-L kij 
X· 

J [k] i=1 
(18) 

Therefore Fg([z]) = [x~ ... x~] g([z~]) and the result follows from the Cauchy 
J 

integration (17). • 

Corollary 3.6. We have FB([z]) = (det(I- [zJ))-1, where I is the identity m x m 
matrix. 

Proof: For completeness we give a proof that is due to Whittle [28] who showed 
that 

(2:S' f dx, f dxm I,I ( ~>ijXj) -, ~ (dct.([aJ)) -, (19) 

provided that [a] is not singular. Indeed, one makes the linear change of variables 
Yi = Lj aijXj to obtain 

(~)mfdX1···fdxmII (Lai'X')~det([aJ))-1 (~)mfdY1···fdYm 2m . . J J 2m Y1 Ym 
, J 

=( det ([aJ))-1 

which completes the proof. • 
Remark: From the above corollary one concludes that B.A-{a} ([z]) = (detaa(I­
[z]))-l, where detij([a]) is the (i,j)th coefficient of the covariant matrix of [a]. 

We will also need a continuous version of Lemma 3.5. Let K(x) the hyper-polygon 
(simplex) of matrices [Yij] with non-negative real coefficients that satisfies the 
conservation flow property and such that Lij Yij = x. Recall that Fn is the 
set of non-negative integer matrices [k] that belongs to K(n). Let a(x) the area 
(hyper-volume) of K(x). 

Lemma 3.7. Let g([x]) be a function of real matrices [x]. Let G([t]) be the Laplace 
transform of g, that is, 

G([tJ) ~ J g([x]) exp (-~ tijXij) d[x], 

and let 
G([t]) = roo dy ( g([x]) exp( - L tijXij )d[x]. 

Jo Jqy) ij 

We have 

G([t]) = (2~7r)m f~~oo dfh ... f~~oo dBmG([t + Bi - Bj]) (20) 

where [t + Bi - Bj] is a matrix whose the ij-th coefficient is tij + Bi - Bj . 
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This lemma allow us to prove the following result that we shall use in the asymp­
totic evaluation of Dn. 

Lemma 3.8. We have 

IFni ( / ) a(n) =1+0 1 n, 

that is, the density of Fn in K(n) tends to 1 for large n. 

Proof We will show that IFni = a(n)(1 + O(~)). First, we give an estimate of 
a(n) . In Lemma 3.7 we set g([x]) = 1 to find that J a(x)e-txdx is G(t[l]) where 
[1] is the matrix with all coefficients equal to 1. Since 

G([t]) = J exp( - L.= tijXij )d[x] = II t~j , 
'J 'J 

it turns out that 

where the integration path in t is parallel to the imaginary axis with non-negative 
real parts. With the change ofvariable (t', IIi, ... ,II~) = ~ (t, 111, ... ,11m) we obtain 

m2 -m-1 J J+ioo J+ioo 1 
a(n) = ~ . )m+1 dt' . dll~ ... . dll~et' II, II' _ III . 

217r -100 -100 . . t +, J 
'J 

Now we turn to IFni. Let F(z) = L:n IFnlzn. First we look for an expression 
for F(z). Let G([z]) = L:[k] [z][kJ. We have G([z]) = TIij(l - Zij)-I, and F(z) = 
FG(z[l]). By Lemma 3.5 

and therefore 

Observe also that 
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With the change of variable z = e- t we find 

Let (t',O~, ... ,O~) = ~(t,Ol, ... ,Om), then 1-exp(-t-Oi+Oj) = ~(t'+O~­
OJ) (1 + 0 (~)), and finally we arrive at 

n m2-m-1 J j+in7r j+in7r 1 ( (1)) IFni = (2. )m+l dt' . dO~ ... . dO~(II, 0' _ 0' )e t' 1 + 0 -
In -lmr -In7r .. t +, 1 n 

'1 

n m2-m-1 J j+iOO j+iOO 1 ( (1)) = (2. )mH dt' . dO~ ... . dO~(II, 0' _ 0' )et' 1 + 0 -
In -100 -100 .. t +, 1 n 

'1 

= a(n) (1 + 0 (~)) . 
This completes the proof. • 
Now we are ready to prove Theorem 3.4 which is our main result. To simplify our 
analysis we first handle the partial redundancy D~ restricted to all strings starting 
with a symbol a. It is clear that Dn = mD~. We have 

Nba 
D~ = 2: 2: B[k] B[k]([k]- [Oba])[k]-[8ba ](kb _l)-kbH II(ki)-k; 

b [kJEFn,kba>O [k] if.b 

= 2: 2: ~:detbb(1 - [k*])B[k]([k]- [Oba])[k]-[8ba ](kb _l)kb-l 
b [k]EFn,kba>O 

X II (ki)-ki (1 + O(n-1 )). 

if.b 

Using Stirling's formula we obtain for [k] E Fn and kij = 8(n) 

~a B[k]([k]- [Oba])[k]-[8ba ](kb _1)-kb+l II (ki)-ki = II ~ .. (1 + O(l/n)), 
a if.b i TIj J2nk'1 

and this leads to 

D~ = (1 + O(l/n)) 2: Pm (~[k]) II ~. 
[k]EFn i TIj 2nk'1 

But Pm ([x]) = La detaa (I - [x*]) where [x*] is the matrix whose (i, j) coefficient 
is Xij / Xi, with Xi = Lj' Xijl . 

Using the Euler-Maclaurin summation formula, we finally arrive at the following 
function of 

(21) 
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Via trivial change of variable [y'] = ~[y], and since Fm(~[Y]) = Fm([Y]), we find 

1. Fm([Y]} II ~2~d[YI ~ (2:t~')mi' 1. Fm([Y']) II ~d[Y'1 
JC(n) i] Y'] JC(l) i IT j Yij 

(22) 
Since IFnl/a(n) = 1 + O(l/n), we obtain the final result of our theorem, that is 
Dn = (1 + 0 (~)) U~)(m-1)m/2 Am for large n. • 

Let us now estimate the constant Am for m = 2. We have 

A2 = 2 r (detll(I-[y*])+det22(I-[y*])) £~ £~dYlldY12dY21dY22 
) JC(l) Yll Y12 Y21 Y22 

(23) 
Since detll(I - [y*]) = ~ and det22(I - [Y*]) obtained by symmetry, and since 
the condition [y] E K(l) means Y1 + Y2 = 1 and Y12 = Y21 we arrive at 

which further yields 

A2 = 4 11 dx 1IDin{X,1-X} dy 

o y/(1 -x)x 0 y/(1 -x -y)(x -y) 

11/2 log(l - 2x) -log(l - 2y/(1 - x)x) 
=8 ~ 

o y/(1 - x)x 

= 16 r/4 log( cos(20) )dO 
io 1 - sin(20) 

= 16· G 

with the change of variable x = sin2(O), where G is the Catalan constant. 

3.3 Redundancy of Markov Sources of Higher Order 

In this section we show that the maximal redundancy of a Markov source of order 
r can be derived in a similar manner as for r = l. 
We define the PO matrix [k] as an mT xm matrix whose coefficient kw,jth (w EAT) 
is the number of times the string w is followed by symbol j in the string xl' Then 

(
k ")kW,j 

sup P(xl) = II W,] 

PEM r " kw 
W,] 

(24) 

with the convention that kw = 'Ej kw,j. 

Using the approach developed in the previous sections, we arrive at the following 
generalization. 
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Theorem 3.9. The maximum redundancy Dn(Mr) of Markov sources of order r 
attains the following asymptotics 

with 

A~ = r m r F~([y]) II ffw., 
} Kr(1) w TIj y'Yw,J 

where Kr(l) is the convex set of m r x m matrices [y] with non-negative coefficients 
such that 2:w,j Yw,j = 1. The function F~([y]) = 2:w detww(I - [Y*]r), where [Y]r 
is the m r x m r matrix whose (w, Wi) coefficient is equal to Yw,a if there exist a in 
A such that Wi is suffix of wa, otherwise the (w, Wi) coefficient is equal to o. 

Here, we present only a sketch of the proof. The main combinatorial results that 
we need are as follows: 

(25) 
w j 

(26) 

Furthermore, N[~iw' is the [z][k] coefficient in 

r 

Br([z])detw,w(I - [Z]r) II z(ww,):+r-l,(ww,):t~ (27) 
i=1 

where Xl = XiXi+! ... Xj (i ::; j). The rest follows the footsteps of our previous 
discussion. 
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Analysis of Quickfind with Small Subfiles 
Conrado Martinez, Daniel Panario and Alfredo Viola 

ABSTRACT: In this paper we investigate variants of the well-known Hoare's 
Quickfind algorithm for the selection of the j-th element out of n when recursion 
stops for subfiles whose size is below a predefined threshold and a simpler algo­
rithm is run instead. We provide estimates for the combined number of passes, 
comparisons and exchanges under three policies for the small subfiles: insertion 
sort and two variants of selection sort, but the analysis could be easily adapted 
for alternative policies. We obtain the average cost for each of these variants and 
compare them with the costs of the standard variant which does not use cutoff. 
We also give the best explicit cutoff bound for each of the variants. 

1 Introduction 

Hoare's quickfind [2] selects the j-th element (equivalently, the element of rank 
j in ascending order, the j-th order statistic) out of an array of n elements by 
picking an element from the array -the pivot- and rearranging the array so that 
elements smaller than the pivot are to its left and elements larger than the pivot 
are to its right. If the pivot has been brought to position k = j then it is the 
sought element; otherwise, if j < k then the procedure is recursively applied to 
the subarray to the left of the pivot, and if j > k the process continues in the right 
subarray. A similar principle is used in the celebrated quicksort algorithm [3], also 
by Hoare; once the pivot is brought into place by the partitioning of the array, the 
subarrays to its left and right are recursively sorted. 
Quickfind performs well in practice, its average cost being linear. Knuth [6] has 
shown that the average number of comparisons en,j needed to locate the j-th 
element out of n is 

en,j = 2(n + 3 + (n + I)Hn - (n + 3 - j)Hn+1- j - (j + 2)Hj ), 

where Hn = L:l<i<n Iii = logn + 0(1) denotes the n-th harmonic number. 
Clearly, en,j is 8(nffor any j, 1 :::; j :::; n. More recently, Hwang and Tsai [4] have 
shown that the limiting distribution of the number of comparisons made by this 
algorithm when given a random permutation of n elements for finding the j-th 
smallest element (with j = o(n)), is the Dickman function. They also give the 
limit distribution of the number of exchanges. 

In order to make uneven partitions leading to 8(n2 ) worst-case performance more 
unlikely and to reduce the average cost, one could use the median of a small sample 
of s elements as the pivot of each recursive stage [1, 5, 8]. 
Besides this major, but rather specific, optimization of the algorithm, other gen­
eral optimization techniques should be used in a carefully engineered implemen-
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EU under contract IST-1999-14186 (ALCOM-FT). The second author was supported by NSERC 
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ritmos criptogmficos) . 
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tation of quickfind. For instance, recursion removal and loop unwrapping; the 
former is straightforward, because quickfind has tail recursion. Another general 
optimization technique for divide-and-conquer algorithms is recursion cutoff: for 
sufficiently small inputs, we switch from the recursive divide-and-conquer algo­
rithm to a simpler algorithm. For instance, it is well known that switching from 
quicksort to insertion sort when subfiles have no = 9 elements improves the overall 
performance of the algorithm. Cutoff values in the range 6 to 15 do about as well, 
but no = 9 is the optimal choice for most implementations. Actually, it is typically 
better to ignore small subfiles and perform a single pass of insertion sort over the 
entire file [9, 10]. 
In this paper, we tackle the analysis of quickfind with recursion cutoff. Although 
computing the optimal cutoff value can be readily done using dynamic program­
ming, solving the recurrences for "small" values of the parameters, this approach 
does not guarantee success if the cost function is not increasing with n and pro­
vides very limited information about the modified variant. Besides that, on this 
paper we want also to concentrate on the methodological and analytical aspects of 
the problem. Our approach, although a bit more complex and difficult to apply, 
yields much more information about the problem at hand. 

We consider using insertion sort and two variants of selection sort for small subfiles. 
Actually, in the case of selection sort we consider two variants which stop as soon 
as the desired element is found (unlike insertion sort, which must sort the whole 
sub file in order to locate the j-th element). The first one, which we call selection 
sort locates first the minimum, then the second minimum, and so on. The other 
variant, which we call optimized selection sort looks for the j-th element, starting 
from the most suitable end: so if j ::::; n/2, it behaves just as the first variant, but 
if j > n/2 then it first locates the maximum, then the second maximum, etc, until 
the n + 1 - j-th maximum is found. We perform our analysis trying to keep it as 
general as possible, in order to facilitate a similar analysis using other algorithms 
for small subfiles. This analysis could also be generalized for the median-of-three 
variant. 
The original motivation of our analysis was to determine the optimal choices of 
cutoff values no for each combination of small subfiles algorithm and pivot selection 
strategy. But in the course of this investigation, we have shifted our original 
motivation to more ambitious goals, namely, the study of general techniques for 
the analysis of recursive algorithms with cutoff. 

The paper is organized as follows. The methodology used in this paper is based 
on solving recurrences via generating functions and related differential equations. 
The general approach for analyzing quickfind with small subfiles is presented in 
Section 2. The required functions when we use insertion sort and the two variants 
of selection sort for small subfiles are given in Section 3. In the last section, we 
discuss the benefits of the different small subfiles policies and compute explicit 
cutoff bounds for each of them. 

2 General analysis 

In this section, we study the standard quickfind (a random pivot is chosen from the 
elements in the current subfile) when we use a different policy for the small subfiles. 
An interesting feature of our approach is to provide a common presentation for all 
the costs involved. In the next sections we particularize these results to a certain 
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model of costs and consider three different algorithms for small subfiles, namely 
insertion and two variants of selection sort. 
Our methodology is based upon the translation of recurrence relations into func­
tional equations over corresponding generating functions. This is typical in this 
area of research (see for instance [5]). The analysis of quickfind and its variants 
leads systematically to differential equations. In many instances, we can solve 
them exactly or we can provide suitable asymptotic estimates of the solution near 
the dominant singularities. 
Conditioning the expected value of the cost of selecting the j-th out of n on the 
event that the selected pivot is the k-th element and summing up for all k, one 
can easily verify that for all 1 :s; j :s; n the following recurrence relation for the 
expected cost en,j of selecting the j-th out of n holds: 

en . = {tn,j + ~ 7rn,ken~k,j~k + t 7rn,kek~l,j if n > no, (1) 
,] k=l k=j+l 

bn,j if n :s; no, 

where 7rn ,k is the probability that the chosen pivot is the k-th element, tn,j is the 
average cost of a single pass of the algorithm (for instance, the combined cost of the 
selection of the pivot, the partitioning of the subfile and eventually any associated 
bookkeeping), and bn,j is the same average cost but for the small subfiles algorithm 
to find the j-th out of n. Since recursion cutoff affects the lower order terms of the 
performance of the algorithm, not its main linear order term, it only makes sense 
to consider the expected total cost of the algorithm, not just the expected number 
of comparisons. Therefore, we need to work with a measure of cost that combines 
the cost of comparisons, exchanges, passes, etc. 
Since the pivot is chosen at random (equivalently, the array contains a random 
permutation) we have 7rn,k = lin for all 1 :s; k :s; n. We take en,j = 0 for all 
values n,j such that either j < 1 or j > n. Now, we consider two cases: no :::: j 
and no < j. 
If j :s; no, we multiply both sides of (1) by nzn~l and sum over all n > no to 
obtain 

C n~l n n,jZ = 
n=no+l 

00 

n=no+l 
nt 'zn~l + n,] 

00 n 

00 j~l 

2:= 2:= en~k,j~kZn~l 
n=no+l k=l 

""" """ e n ~ 1 + ~ ~ k~l,jZ . 
n=no+l k=j+l 
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Using the definition Cj(z) = Ln2:0 Cn,jZn, the equation above implies: 

no 00 

C;(z) = L nCn ,jZn-l = L nCn ,jZn-l + L nCn ,jZn-l 

n=j n=no+l 
no 00 

= L nbn ,jZn-l + L ntn ,jZn-l 

n=j n=no+l 

j-l 00 00 00 

+L L C n-l + n-k,j-k Z C n-l 
k-l,jZ . 

k=1 n=no+l k=j+l n=max(no+l,k) 

Rearranging the third and fourth sums in the previous equation we have 

no 00 j-l 00 

C' (z) - '" nb "zn-l + '" ntn ,)"Zn-l + '" zk-l '" Cn_k,)"_kZn-k j -~ n,) ~ ~ ~ 

n=j n=no+l k=1 n=j 

j-l no 00 max(no+l ,k)-1 - L L Cn_k,j_kZn-l + L Ck-l,j _z--l-_-z--

k=1 n=j k=j+l 

Writing the third summand in terms of Cj-k(Z) and simplifying the fourth term, 
we obtain 

no 00 j-l 

Cj(z) = L nbn ,jZn-l + L ntn ,jZn-l + L zk- 1C j _ k (Z) 

n=j n=no+l k=1 

j-l no no+l no 00 zk-l 

- L L bn_k,j_kZn-l + L C k - 1,j lZ_ Z + L Ck-l,j -l---z' 
k=ln=j k=j+l k=no+2 

Simplifying the last two terms, we have 

no 00 j-l 

C;(z) = L nbn ,jZn-l + L ntn ,jZn-l + L zk- 1C j _ k (Z) 

n=j n=no+l k=1 

-"''''b -k "_kZn-l+_Z_"'bk "+- C·(z)- "'Ck "Zk . 
j-l no no no 1 ( no ) 

~ ~ n ,) 1 _ Z ~ ,) 1 _ Z ) ~,) 
k=1 n=j k=j k=j 

Finally, we obtain 

no 00 j-l 

Cj(z) = L nbn ,jZn-l + L ntn ,jZn-l + L zk-1C j _ k (Z) 

n=j n=no+l k=1 

j -1 no no no C" ( ) 1 no 

LL n 1 Z L ) Z L k - bn - k "-kZ - + -- bk " + -- - -- bk "Z . ,) 1 - Z ,) 1 - Z 1 - Z ,) 
k=1 n=j k=j k=j 
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Therefore, for all j ::::; no, we have 

(2) 

where 

no 00 j-1 no 
fJ1.ow(z) -_ "'" nbn,J·zn-1 + "'" nt zn-1 "'" "'" b zn-1 ~ ~ n,j - ~ ~ n-k,j-k 

n=j n=no+1 k=1 n=j 
no no 1 no 

+ _z_ "'" bk . ___ "'" bk .zk. 
1 - z ~ ,J 1 - z ~ ,J 

k=j k=j 

Similarly, for j > no, we multiply both sides of (1) by nzn-1 and sum for all n 2: j: 

00 00 j-1 00 n 
Cj(z) = L ntn, jzn-1 + LL Cn-k,j-k Zn- 1 + L L Ck_1, jZn-1 

n=j n=j k=1 n=j k=j+1 
00 j-1 00 00 00 

= L ntn,jZn-1 + L zk-1 L Cn_k,j_kZn-k + L L Ck_1,jZn-1 
n=j k=1 n=j k=j+1 n=k 

00 j-1 00 k-1 
= L ntn,jZn-1 + L Cj _ k(z)zk-1 + L Ck- 1,j: _ Z 

n=j k=1 k=j+1 

00 j-1 C.(z) 
= L ntn,jZn-1 + L C j _ k(z)zk-1 + 1 J_ z· 

n=j k=1 

Therefore all j > no, we have 

j-1 
Cj(z) = L zk-1Cj _ k (Z) + ~j~Z; + f;igh(z), 

k=1 

then, (2) and (3) imply that for all j 2: 1, 

if j ::::; no, 

if j > no, 

j-1 C.(z) 
Cj(z) = "'" zk-1Cj _ k(Z) + _J_ + gj(z). 

~ 1-z 
k=1 

(3) 

(4) 

(5) 

Let C(z, u) = 2:j ;:::1 Cj(z)uj and g(z, u) = 2:j ;:::1 gj(z)Uj . Multiplying both sides 
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of (5) by u j and summing up for all j 2:: 1 entails that 

00 j-1 
aC(z,u) ( ) C(z,u) LLC () k-1 j 

!l = 9 z , u + + j-k z z U 
u Z 1- Z j=lk=l 

= g(z , u) + C(z, u) + ~ ukz k- 1 ~ Cj_k(z)Uj-k 
1-z L-- L--

k=l j=k+1 
C(z, u) u 

= g(z, u) + 1 + -1 -C(z, u), (6) 
- z -uz 

with the initial condition C(O, u) = o. The homogeneous solution of the equation 
above is 1/((1 - z)(l - uz)). Using it, one can easily obtain the general solution 
of the partial differential equation (6) as follows 

C(z, u) = (1 _ Z)t1 _ uz) (J (1- z)(l - uz)g(z, u)dz + K) , (7) 

where K is a constant which should be determined according to the initial condi­
tion C(O, u) = O. Now, if we introduce 

00 n 

T(z, u) = L zn L tn ,jUj , 
n=l j=l 
no n 

Tno(z, u) = L zn L tn ,jUj , 
n=l j=l 

no n 
Bno(z,u) = LZnLbn,juj , 

n=l j=l 

we obtain the following expression for g(z, u) in terms of the toll generating func­
tion T(z,u) and the polynomials Tno(z ,u) and Bno(z,u): 

a u(uz)no 
g(z, u) = j=} (Bno (z, u) + T(z, u) - Tno (z, u)) + B no - 1 (l/u, u) 

uZ 1- uz 

- _u-Bno _1(z, u) - _1_ (Bno - 1(z, u) - zno B no - 1(1 , u)). 
1- uz 1- z 
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As a consequence, the solution of the differential equation (6) is 

_ J;(1-y)(1-uy)tyT (y,u)dy _ 
C(z,u) - ()(1) + Bno(z,u) Tno(z,u) 1- z - uz 

J;(1 + u - 2uy)(ynO 'L?!1 bno,juj - Tno(y, u)) dy 
+~----------~--~--~------------

(1 - z)(1 - uz) 

Bno_l(1,u)~:o;; ((1- uz) + no~t1) 
+----------,----:----'-----,-------~ 

(1 - z)(1 - uz) 

Bno_d1/u,u)(u~~~2+1 ((1- z) + nO~l) 
+-------~--~--~-----,------~ 

(1 - z)(1 - uz) 

J;(1- y)(1 - uy) tyT(y, u) dy 
= (1-z)(1-uz) +Cno(z,u) 

= CT(z,u) + Cno(z,u), 

where Cno (z, u) represents the part of C(z, u) that depends on no and 

JoZ (1 - y)(1 - uy) tyT(y, u) dy 
CT(Z, u) = (1 _ z)(1 - uz) , 

a part which is independent of the cutoff value and the policy for small subfiles. 
This is a rather general phenomenon which is not particular to quickfind. Such a 
decomposition appears whenever we analyze a recursive algorithm with recursion 
cutoff and it is not a mere mathematical device. 
Assuming tn,j = an + {3 + ,,(/(n -1) (see Section 3), it is almost straightforward 
to get the explicit formula 

C ( ) _ ( -3a + au - (3u + (3) (1 u) 1 1 TZU ----- og--
,- (1 - U)2 1 - z 1 - uz 1 - uz 

+ (3au - a - {3u + (3)u (_1 __ _ u_) log _1_ 
(1 - u)2 1 - z 1 - uz 1 - z 

(a - (3)u 2au (a - (3)u 
+ (1 - u) (1 - z) + (1 - u) (1 - z) 2 - (1 - u) (1 - uz) 

2au ("(U(1 + u - 2uz) "((1 - u)) 1 1 
-(1-u)(1-uZ)2+ 6(1-u) -6(1-z) ogl-uz 

_ ("((1 + u - 2uz) _ "((1- u) ) log _1_ 
6(1 - u) 6(1 - uz) 1 - z 

"((1 + 33u) "((1 + u - 8uz) "(u(u + 33) 
36(1- u)(1 - uz) + 36 + 36(1 - u)(1 - z)' 

and then to extract coefficients. 
On the other hand, if n > no then we have Cno (z, u) = p(z, u)/((1 - z)(1 - uz)), 
with 

no+2 no 
p(z, u) = I: I:Pk,i Zkui 

k=2 i=l 
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a polynomial in z and u that has neither (1 - z) nor (1 - uz) as a factor. Since 
[znu j )(l- z)-1(1- UZ)-1 = [j :S nJ (with [PJ = 1 if the predicate P is true, and 
o otherwise), then 

no+2 no 
[znuj)Cno(z, u) = L LPk,i [j - i :S n - kl 

k=2 i=1 

Therefore, if no + 1 :S j :S n - no and n ::::: 2no + 1, then for 2 :S k :S no + 2 and 
1 :S i :S no, we have j - i :S n - k, and so we find 

no < j :S n - no, n::::: 2no + 1. 

If we do the calculations, we obtain for no + 1 :S j :S n - no and n ::::: 2no + 1: 

",no ",no b ",no-1 ",no-k b 
r - Di=1 Dk=i k,i + Dk=1 Di=1 i+k-1,i 

no - (no + l)(no + 2) (no + l)(no + 2) 
(8) 

+ 2:~~1 bno,i _ (no - 1)(17n6 + 32no + 12) 'Y 
(no + l)(no + 2) 18(no + 2)(no + l)no 

+ (6Hno+2 - 2no - 10 + no ~ 2) a 

+ (4 - 2Hno+2 - no ~ 2) {3. 

Equation (8) covers most of the interesting values of j, in particular j = n/2. The 
fact that [ZnUj)Cno (z, u) does not depend on j for a wide range of values of j and 
given a sufficiently large value of n, has an easy intuitive explanation: after the 
8(log n) passes needed to reduce the size of the subfile from n to m :S no the rank 
of the sought element relative to the subfile will be any of 1, ... ,m with identical 
probability, no matter what the initial value of j is, apart from the extreme cases 
j :S no or j > n - no· 

3 Toll and cutoff functions 

Up to now, we have investigated the average total cost of quickfind under a general 
framework for which no particular values of the toll function tn,j nor the cutoff 
function bn,j are given. 

Table 3: Toll functions. 

In Table 3 we find the values of tn ,j for three important measures: comparisons, 
exchanges and passes. None of these depends on j and for our subsequent devel­
opment we shall assume that 

tn,j = an + (3 + 'Y/(n - 1). 
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Insertion 
Selection 

Table 4: Cutoff functions (j::; in/2l). 
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On the other hand, Table 4 lists the average number of comparisons, exchanges, 
and single data movements made by insertion sort and selection sort. The analysis 
of these basic algorithms can be found elsewhere; see for instance [7, 9, 11, 12]. 
Recall that even though we use the term "selection sort", the algorithm that we 
consider proceeds as selection sort but it terminates as soon as the j-th minimum 
in the subfile is located (and brought to its correct position). For the optimized 
selection sort which either looks for the j-th minimum or the n + 1 - j-th max­
imum, depending on whether j ::; n/2 or j > n/2, we have that the number of 
comparisons is 

1 
n· min(j, n + 1 - j) - 2 min(j, n + 1 - j) (1 + min(j, n + 1 - j)), 

and the number of exchanges is min(j, n + 1 - j). 
Guided by these algorithms, but in order to facilitate the analysis of quickfind 
with alternative small subfiles algorithms, we shall work with cutoff functions of 
the form 

bn,j = Kln2 + K 2n + K3j2 + K 4j + K 5jn + K 6+ 
K7m2 + Ksm + Kgmn + KlOjHn + KllmHn + K 12 Hn, 

where m == min(j, n + 1 - j) and the inclusion of the three last terms is required, 
for instance, in the analysis of quickfind with heapselect (standard or optimized) 
for small subfiles. In this extended abstract, we will set KlO = Kll = K12 = 0, 
though. 
Last but not least, we conclude this section with the simplified model of costs 
that we will use in the sequel. In this model, the unit of measurement is a single 
comparison between any two elements. We denote by ~ the cost of an exchange of 
elements, and by cP the cost of a pass (this cost includes the selection of the pivot 
and the cost of additional bookkeeping). Typically, ~ ::::::: 3 and cP ::::::: 2~ ::::::: 6; these 
values agree with the experimental values given for usual implementations and also 
with the values obtained from more delicate and precise cost models [7, 9, 11]. We 
also assume that a single data movement has cost ~/3; in a real setting it would 
be a bit more, since exchanges use some intermediate register rather than three 
data movements. 
Under these assumptions and measuring the total cost as the sum of the costs of 
comparisons, exchanges and passes, we have 

Q = 1 + ~/6 , f3 = ~/3 + cP - 1, and 'Y = 203. 

The bookkeeping costs in the outermost loop of insertion and the selection sort 
variants are assimilable to "passes", but we shall introduce suitable constants cPins 

and cPsel to account for these costs (usually, cPins and cPsel are::::::: 3/2). 
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In the case of insertion sort we have n - 1 iterations through the main loop and 
hence 

1 1 
Kl = 4(1 + ~/3), K2 = 4(-1 +~) + <,D;ns, K6 = -03 - <Pins, 

K3 = K4 = K5 = K7 = K8 = Kg = O. 

In the case of selection sort, we perform the outermost loop j times and we have 
thus 

1 1 
K3 = - 2' K4 = - 2 + ~ + <Psel, K5 = 1, 

Kl = K2 = K6 = K7 = K8 = Kg = O. 

Finally, if we use the optimized variant of selection sort that scans the array from 
the most convenient end, we have 

1 1 
K7 = -2,K8 = -2 +~+<Psel,Kg = 1, 

Kl = K2 = K3 = K4 = K5 = K6 = O. 

4 Optimal cutoff bounds 

We are now ready to tie the general framework of Section 2 with the particular 
toll and cutoff functions of Section 3, to provide the optimal values of no. We 
have used MAPLE to instantiate (8) with the proper values of the toll and cutoff 
functions of Section 3, and to help with the tedious calculations'. 
Since rno is the contribution originated by the term that depends on no, ro should 
be 0, since in this case we have the basic quickfind algorithm. When rno is negative, 
then cutting off the algorithm (when we have files of size no or less) improves its 
efficiency. Therefore, the optimal value of no is the one that minimizes r no' 
In these calculations we have considered ~ = 3, <P = 6, <Pins = 3/2, and <Psel = 3/2. 
For the case of insertion sort, we obtain 

no 1 2 3 4 5 6 
rno -2.5000 -5.0000 -6.5166 -7.3277 -7.5182 -7.1277 

no 7 8 9 10 11 12 
rno -6.1787 -4.6850 -2.6562 -0.9902 2.9817 6.5823 

Table 5: Values of rno for 1 :::; no :::; 12, for insertion sort. 

From the table we can see that the optimal value of no is 5, while quickfind with 
cutoff has better performance than the standard algorithm only up to no = 10. 
For the case of selection sort, we obtain 

From this table we can see that the optimal value of no is 6, and that switching 
to selection sort improves the performance of the standard algorithm only up to 
no = 11. 

'The MAPLE program and C code for dynamic programming computations is available from 
request from the contact author (conradolDlsLupc.es). 
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nQ 1 2 3 4 5 6 
rna -1.0000 -2.8333 -4.1166 -4.9944 -5.4944 -5.6277 

nQ 7 8 9 10 11 12 
rna -5.4009 -4.8183 -3.8835 -2.5990 -0.9669 1.0108 

Table 6: Values of rna for 1 ::; no ::; 12, for selection sort. 

Finally, Table 7 shows the first values of rna when the optimized selection sort is 
used. The optimal value is no = 11 and rna < 0 for no ::; 22 (not shown in the 
table). Also, comparing this last table with the two previous ones, it is clear (and 
not surprising) that this variant outperforms the other two variants. 

nQ 
1\0000 

2 3 4 5 6 7 
rna -3.5833 -5.5667 -7.4278 -8.9468 -10.3063 -11.3731 

nQ I ~12.2628 9 10 11 12 13 14 
rna -12.8835 -13.3187 -13.4990 -13.4891 -13.2336 -12.7848 

Table 7: Values of rna for 1 ::; no ::; 14, for optimized selection sort. 

The variation of rna as a function of the performance constants is small for rea­
sonable ranges of variation of ~, rP, rPins and rPseh which indicates that setting no in 
a range around the optimal choice provides a tuned but portable implementation 
with good performance. For example, if we consider ~ = 1.5 and rP = 4.5, then the 
optimal value of no is 5 for insertion sort and selection sort, and 9 for optimized 
selection, while if we consider ~ = 2.5 and rP = 7.5 then the optimal values of no 
are respectively 6, 7 and 12. 
On the other hand, experimental determination of the performance constants (or 
even better, of the constants 0::, /3, 'Y and K i ) together with (8) would yield a precise 
estimation of the optimal cutoff value no for any particular implementation and 
environment under which the algorithm is run. 
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Distribution of the Size of Simplified or 
Reduced Trees 
Michel Nguy~n Th~ 

ABSTRACT: Previous works by Casas, Fernandez-Camacho and Steyaert have 
determined the mean and variance of the size of simplified or reduced trees of 
m-ary trees. Using the implicit function and the Quasi Powers theorems, we show 
that the limit distribution of that size is Gaussian. 

1 Introduction 

Many analyses, but mostly limited to the average case, have been done which 
concern algorithms in symbolic computation: symbolic differentiation [10] and 
more general rewriting rules [4], unification [1]. 
This paper deals with the analysis of a number of simplifying rewriting rules, as 
used in computer algebra systems. Instances of such rewriting rules commonly 
encountered in mathematics are for example x2 = x in Boolean rings, p . x = 0 
and xP = x in fields of characteristic p, x . 0 = 0, x . 1 = 1, x - x = 0 over the 
reals, and so on. 
We will consider two types of simplifying rewriting rules. 
For the first type, we consider expressions generated by a finite algebra starting 
from a finite number q ~ 2 of constants, and an idempotent p-ary law 8 (p ~ 2): 
given any expression I, the expression 8 (1, ... ,I) (p times) is equivalent to f. 
The operation of rewriting an expression to its shortest equivalent expression will 
be called simplification. For the binary case, we will use the infix notation I 8 I 
instead of 8(1, I). 
For the second type, we start from a finite number c~ = Co + 1 of constants (co ~ 1), 
among which one is distinguished and denoted bye, and Cm m-ary laws 8i (m ~ 2) 
such that for any i = 1,2,··· , m and any expression I, the expression 8i(1,··· , I) 
(m times) can be rewritten to e. We will call this operation reduction. 
An issue at stake consists in knowing the gain in space brought by these two types 
of operation. The study of that problem was initiated in [2] and further developed 
in [7] and [3], where the average size and the variance of the size of simplified and 
reduced trees were computed and were proved to be linear in the size of the initial 
tree, using the Darboux-Polya method. Progress has been made with singularity 
analysis and the Quasi Powers Theorem developed by Hwang [11]. In this paper, 
we will show that these new tools allow us to establish that the limit distribution 
of the size of simplified and reduced trees is Gaussian. 
This paper is quite reminiscent of [5, 6], where Drmota studied systems of func­
tional equations leading to Gaussian limits by a repeated use of Weierstrass prepa­
ration theorem to reduce the problem to dimension 1. His framework turned out 
to be quite adapted to rewriting systems. One must nevertheless notice that we 
deal here with an infinity of different rewriting rules, like I 8 I ----t I, with I of 
arbitrary size, and hence that we cannot directly apply Drmota's work here. That 
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is why we will directly state our problem in only one functional equation and ap­
ply Weierstrass preparation theorem just once. The core difficulty of our problem 
consists in showing that all hypotheses are satisfied in order to apply the theorem. 

2 Simplification of trees 

2.1 Algorithm and generating functions 

Let us start with studying a few examples of simplification as defined in the in­
troduction: a 8 b cannot be simplified, a 8 a simplifies to a, (a 8 b) 8 (a 8 b) 
simplifies to a 8 b, (a 8 a) 8 (a 8 b) simplifies to a 8 (a 8 b), (a 8 b) 8 (b8 a) cannot 
be simplified, and (a 8 a) 8 (a 8 a) can be simplified to a through the chains of 
rewriting rules: 

(a 8 a) 8 (a 8 a) --+ a 8 (a 8 a) --+ a 8 a --+ a, 

(a 8 a) 8 (a 8 a) --+ (a 8 a) 8 a --+ a 8 a --+ a. 
It should be clear that every expression admits one and only one shortest equiv­
alent expression, and that the chain of simplifying rules used does not matter. 
Nevertheless, a good strategy to simplify an expression consists in using the pro­
cedure simplify defined below, depending on a procedure equal testing the equality 
of trees. The procedure simplify recursively simplifies trees in prefix order, and 
clearly transforms any expression tree into its shortest equivalent. 

function simplify(tree:Q):Q; 
local t: array of p Q; eq: boolean; i: integer; 

if tree.degree = 0 then simplify:=tree; 
else for i:=1 to p do 

t[i]: =simplify( tree.child[i]); 
od; 
i:=l; eq:=true; 
while i:::;p-l and eq do 

if equal(tree.child[i],tree.child[i+ 1]) then i:=i+ 1; 
else eq:=false; fi od 

if eq then simplify:=t[l]; 
else simplify:=8(t[l],- .. ,t[p]) fi fi. 

Program for simplification of expressions with an idempotent law. 
Tree-variables consist of three fields: degree (0 for leaves, p for internal nodes), 
info (operand ei (for i = 1,2, ... ,q), or operator 8), child array of p subtrees. 

There corresponds to this procedure only one chain of rewriting rules leading to 
the shortest equivalent expression. For example, the expression 

((a8a) 8 (b8b)) 8 (a8b) 

simplifies to a 8 b according to the chain of rules 

(( a 8 a) 8 (b 8 b)) 8 (a 8 b) --+ (a 8 (b 8 b)) 8 (a 8 b) --+ (a 8 b) 8 (a 8 b) --+ a 8 b. 
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Such a procedure is called a bottom-up algorithm, because it operates firstly on 
leaves, then on small subtrees and so on climbing up to the root. 

The family of Q of p-ary trees with q possible symbols at external nodes is defined 
by the formal series 

q 

Q= I:~ +8(Q,··· ,Q). 
i=l 

The generating function Q of the class Q can be written as 

Q(z) = q + zQP(z). (1) 

Let P be the dominant singularity of Q and T = Q(p). Of course p's value could 
be recovered from the closed form pn~ 1 (pn: 1 ) q(p-l )n+l of the coefficients of Q, 
that can be computed for example through Lagrange inversion theorem applied to 
zQ(zP), but for reasons to be apparent below, we will perform the analysis with 
generating functions and singularity analysis. 

As long as the function Q can be defined implicitly by (1), it remains analytic 
(Izl < p); it is no longer analytic when the functional equation defining Q ceases 
to be regular, that is when the derivative of the functional equation (1) with respect 
to Q becomes null: this corresponds to the moment when z becomes equal to p. 
Then it is often said that the dominant singularity corresponds to a failure of the 
implicit function theorem [8]. 
Hence p and T are solutions of the system 

from which we deduce 

T=q+PTP,1=PPTP- 1 , 

(p -l)p-l 
P = pPqP-l (2) 

Let an irreducible tree be a tree that cannot be further simplified. Let I the class 
of irreducible trees recursively defined by 

q 

I= I:~ +{8(tl,··· ,tp ) 13i,jsuchthatti~tj} 
i=l 

q 

= I:~ +8(I, ... ,1) - {8(t, ... ,t) It E I}, 
i=l 

of generating function I (z) = LtEI ziti = Ln>o Inzn, which is solution of equation 
I(z) = q + zI(z)P - zI(zP). It is easy to see that the number of irreducible trees 
is small: 

Lemma 2.1. Let PI be the dominant singularity of I. Then P < PI < 1; hence the 
number of irreducible trees of size n is asymptotically exponentially small, compared 
to the total number of trees of that size. 

Proof. It is easy to see - e.g. by using a proof by induction - that, for each tree 
of size n, there exist at least two irreducible trees having the same structure. As 
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(p - 1)p-1p- p is the singularity of the generating function of p-ary trees without 
symbols at its nodes (formula (2) remains valid for q = 1), we have 

(p - 1)p-1 
PI < < l. pP 

We deduce that pj < PI, and that the radius of convergence of z f---+ I (zP) is strictly 
greater than the radius of convergence of I. Hence the failure of the application 
of the implicit function theorem on (z, y) f---+ Y - q - zyP - zI (zP) gives P < PI. D 

For each u E Q, let s( u) be the irreducible tree to which u simplifies. Define for 
each irreducible t the generating function Qt(z) = Ls(ul=t zlul, and introduce the 

bivariate generating function X(z, y) = LtEQ yls(tllzltl. Then the following lemma 
gives a functional equation for X: 

Lemma 2.2. 

X(z, y) = q + yzX(z, y)P - Z ~ ( yp1 t l+1 - yltl) Qf(z). 
tEI 

Proof. We have the equations 

P 

where e E {e1' ... ,eq } and t E I with t = 8 (t1' ... ,tp). 
P 

P 

Summing the equalities y1tIQt(z) = yz II yltilQdz) + zy1tIQt(z), we obtain the 
i=l 

desired expression for X(z, y). D 

2.2 An algebraic singularity 

This section is devoted to show that the singularity z = p(y) of the bivariate gener­
ating function satisfies certain properties, so that p(l) / p( u) resembles a probability 
generating function. These properties are summarized in the following proposition: 

Proposition 2.3. There exist real numbers Zl > p, Y1 > 1, and analytic functions 
A, Band C such that, in the domain 

D = {(z, y) Ilzl < Zl, Iyl < yd, 

X admits the representation 

X(z, y) = A(z, y) + B(z, y).jC(z, y). 

This proposition states first that for every y, the singularity z is of the algebraic 
type, and second that the function y f---+ p(y) is analytic near l. 
To prove the proposition, it suffices to show (as will be done in Lemma 2.5 below) 
that the function (z, y) f---+ LtEI (yp1 t l+1 - yltl) Qf(z) is analytic for (z, y) beyond 
(p,l). In order to do so, we will use the fact that the functions Qt are small 
enough: 
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Lemma 2.4. There exist Zo > p, I, c> 0, such that , P < p and, for all t E I, 
Qt(zo) < c, ltl . 

Proof. Due to lack of space, we cannot give a proof of that crucial lemma, already 
fully proved in [7]. We can only say that straightforward computations are enough 
for the binary case, but that more efforts are needed for p ;::: 3. The proof is by 
induction, using the formula 

P 

Qt(zo) - Zo II Qti (zo) = zoQt(zo) 
i=l 

and closely examining the function x 1-+ x - zoxp. D 

Lemma 2.5. Let d(z, y) = LtET (ypltl+l - yltl) Qf(z) be the function such that 

X(z, y) = q + yzX(z, y)P - zd(z, y). 

There exists Zo > p and Yo > 1 such that d( z, y) is holomorphic in the two variables 
z and y in the domain Izl < Zo, Iyl < Yo. 

Proof. Define Zo and I as in Lemma 2.4. Since we have 1 < PI-P < PII-P, we 
can find a real number Yo in the interval]l,pVP,-l[ and, for Izl < Zo, Iyl < Yo: 

I: yPltI+lQf(z) ~ I: ygltl+1Qf(z) ~ I: Inygn+lcP,pn 
tEI tEI n2:0 

and 
I: yltIQf(z) ~ I: YbtIQf(z) ~ I: In Yo cp, Pn , 
tEI tEI n2:0 

from which we deduce that the numerical series 

tEI tEI 

converge. Since they have nonnegative coefficients in znyk, they are normally 
convergent, and hence holomorphic in z and y. As a consequence, their difference 
d(z, y) is also holomorphic in z and y for Izl < Zo, Iyl < Yo. D 

We are now fully equipped to show that the bivariate generating function X ad­
mits an algebraic singularity, and prove Proposition 2.3. 

Proof of Proposition 2.3. Define F(z,y,x) = x-q-yzxP+zd(z,y), which satisfies 
F(z, y, X(z, y)) = 0 for all z , y in the domain of convergence of X . As long as d 
is analytic and ~~ is non zero, the implicit function theorem asserts that X is 
analytic in z and y (it is a direct consequence of the residues theorem which 

enables to write X(z,y) = r Fx((z,y,ujUdU for an appropriate curve C). lc F z,y,u 
Let Zo and Yo be real numbers as in Lemma 2.5. Let us show that for all y such 
that Iyl < Yo, z 1-+ X(z, y) admits a singularity z = p(y) that is implicitly defined 
by an analytic function and is of square root type in a vicinity of y = 1. 
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For all y, the system of equations 

{ F(z,y,x) = 0 
of - 0 ox -

defines a singularity p(y) depending on y. Hence this system implicitly defines 
a function z = p(y). Let us reduce it to a single equation. The system can be 
written 

{
X - q - yzxP + zd(z, y) = 0 (2.2.a) 

1 - pyzxp - 1 = O. (2.2.b) 

1 1 x 
(2.2.b) rewrites into xP- = -, and replacing xP by - in (2.2.a) gives a linear 

pyz pyz 

equation in x which solves to x = q - zld. Injecting this expression in (2.2.b) gives 
1--

P 

( )

P-l 
q - zd 

1- pyz 1 = 0, 
-1 +-

P 

or C(z, y) = 0, with 

1 1 p-l ( )
P-l 

C(z,Y)=-p 1- p +yz(q-zd(z,y)). 

According to Lemma 2.5 about d(z, y), C is analytic on a domain of the form 
{ (z, y) I Izl < Zo, IYI < Yo}, with Zo > p and Yo > 1. Moreover, it satisfies 
Cz (p,l) i=- o. As a consequence, the singularity z = p(y) of z f---t X(z, y) is 
implicitly defined in a neighborhood of y = 1 by C(p(y), y) = O. 
As the function implicitly defining X satisfies 

Fx2 (p, 1, X(p, 1)) = (p - l)ppX(p, 1)p-2 i=- 0, 

p(l) is a square root singularity, and it remains true for p(y) if y stays in the 
vicinity of 1. Hence, there exist real numbers Zl, Yl, and analytic functions A and 
B such that p < Zl, 1 < Yl, and X admits the representation 

X(z, y) = A(z, y) + B(z, Y)VC(z, y). 

o 

2.3 Limit law 

Before using the Quasi Powers theorem, we need to establish a variability condi­
tion, contained in the following lemma. 

Lemma 2.6. The expectation /-In and the variance Vn of the size of the simplified 
trees are linear in the size of the initial trees. 
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Proof. Singularity analysis provides us with the asymptotics 

[zn]Xy(z, l) () . 
J-Ln = [zn]Q(z) = J-Ln + 0 1 wIth J-L > 0, 

and 
_ [zn] (Xy2(Z, 1) + Xy(z, 1)) _ 2 _ _ ( ) 

Vn - [zn]Q(z) J-Ln - vn + 0 1 . 

The fact that v > 0 is not obvious and requires a proof, that has been overlooked 
in literature so far, apart from numerical computations in particular cases. Let us 
suppose that v = 0 (it of course cannot be negative). Then the variance would 
be bounded by a constant V. Define K such that V K- 2 < 1/2. Then if Yn is 
the random variable equal to the size of the simplified tree of a tree of size n, 
Chebyshev inequality writes 

[ ] Vn 1 
Vn, Pr IYn - J-Lnl ~ K ::; K2 < 2' 

from which we deduce 

But from Lemma 2.4, there exist c> 0 and Zo > p such that Qt(zo) is uniformly 
bounded by c. As Qt has nonnegative coefficients for all t, it is easy to see that, 
for all n and t, [zn]Qt < czon, and 

tEL 
I"n-K<ltl <l"n+K 

As on the other hand we have [zn]Q(z) c::' CQpn /V7rn3 for some constant CQ, it 
entails that 

r [zn] LtEL, I"n-K<ltl<l"n+K Qt(z) 0 
n~~ [zn]Q(z) = , 

which contradicts (3). Hence v = 0 is impossible. D 

It is now possible to find the limit distribution of the size of simplified trees. 

Theorem 2.7. The size of simplified p-ary trees has a Gaussian limit distribution, 
with mean J-Ln and variance Vn satisfying 

. J-Ln p-1 
J-L = hm - = 1 - p--dy(p, 1) 

n->oo n q 

and 

V = lim ~ = p-- - p2 d (p, 1) - 3(p _1)2_d2(p, 1) v [ p - 1 (p - 1) (p - 2) ] p2 
n->oo n q q2 Y q2 Y 

( )
2 

2P -1 3 P -1 P +2p -dyAp, 1) - 2p - dy(p, l)dyz (p, 1) - (p -1)-dy2(p, 1). 
q q q 
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Proof. According to Lemma 2.3, in a domain of the form 

V = {(z, y) Ilzl < Zl, Iyl < Y1} 

for some Zl > p and y > 1, X admits the representation 

X(z, y) = A(z, y) + B(z, y)..)C(z, y) 

with A, Band C analytic, 
B(p,l)~O 

and 

Michel Nguy~n Thii 

C(z, y) = _~ (1 - ~ y-1 + yz(q _ zd(z, y)y-1. 

As d(z, 1) == 0, it is easy to see that ( = p is a simple root of ( f---t C((, 1). Hence X 
satisfies the algebraic-logarithmic conditions of theorem 9.8 of [9] p.68-69, which 
states a Gaussian limit for any random variable Yn with probability generating 
function 

given the variability condition 

[zn]x(z, y) 
[zn]x(z, 1)' 

1· Var(Yn) 0 
1m > , 

n--+oo n 

that we have just proved in the lemma above. 

We know from the same theorem that J-l = lim ~ E[Yn ] and v = lim ~ Var(Yn) are 
given by the expressions 

To compute these values, one only has to solve the system of equations 

Cy(p, 1) = 0, Cy2(p, 1) = 0, 

and notice that dz (p, 1) = dz 2 (p, 1) = 0, which is simpler than using the partial 
derivatives Xy(z, l) and Xy2(Z, 1) and the asymptotic equalities of the former 
lemma. D 

Numerical computations for p = q = 2 give the values J-l = 0.8196 ... and v = 
0.2166 .... Heuristically, we also obtained that J-l and v are respectively increasing 
and decreasing when p and q are increasing. 

3 Nilpotent m-ary laws 

3.1 Algorithm and generating functions 

We consider now an algorithm of reduction slightly different from simplification. 
We work with Cm different operators of arity m, which are nilpotent instead of 
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being idempotent: there exists a particular operand e such that, if a tree has 
identical subtrees, it is reduced to e. 
Examples of reduction, as defined in the introduction, are, for Cm = 1 and a 
nilpotent operator 8: a 8 b cannot be reduced, a 8 a reduces to e, (a 8 b) 8 (a 8 b) 
reduces to e, (a 8 a) 8 (a 8 b) reduces to e 8 (a 8 b), (a 8 b) 8 (b 8 a) cannot be 
reduced, and (a 8 a) 8 (a 8 a) can be reduced to e through the chains of rewriting 
rules: 

(a 8 a) 8 (a 8 a) --) e 8 (a 8 a) --) e 8 e --) e, 

(a 8 a) 8 (a 8 a) --) (a 8 a) 8 e --) e 8 e --) e. 

We define a procedure reduce quite similarly as the procedure simplify: just replace 
occurrences of simplify by reduce in the algorithm, and define the result to be equal 
to e when one finds identical subtrees instead of the common subtree itself. 

As an example, the expression ((a 8 a) 8 (b 8 b)) 8 (a 8 b) reduces to e 8 (a 8 b) 
according to the chain of rules 

((a8a)8(b8b))8(a8b) --) (e8(b8b))8(a8b) --) (e8e)8(a8b) --) e8(a8b). 

One can notice that the reduction of the initial expression leads to a tree with 
more nodes than the tree obtained through simplification. 

We consider the class R of m-ary trees whose external nodes can be labeled with 
Co constants ai or with the specific symbol e, and whose internal nodes can be 
labeled with an m-ary operator among m different operators. We will denote the 
total number of possible labels for the external nodes with c~ = Co + 1. Hence the 
generating function enumerating the objects of class R by their size satisfies 

R(z) = L ziti = c~ + cmzRm(z). 
tER 

Let PR be the dominant singularity of R, and II t II denote the total number of 
nodes of the tree t. We also introduce the generating function 

M(z) = L zlltll = zR(zm). 
tER 

It is obvious that M admits m singularities on its circle of convergence, of modulus 
11m 

PM =PR 
We define again a notion of irreducible tree, that is a tree which cannot be reduced. 
The class of irreducible trees is isomorphic to the former one defined in the case 
of simplification, as long as C~ = q and m = p, so there cannot be any confusion, 
and we still denote it I. We introduce two subclasses of I, namely I- and I+ , 
defined by: 

The generating function enumerating the objects of class I by their size satisfies 
I(z) = LtEI ziti = c~ + cmzlm(z) - cmzlm(z). Let PI be its dominant singularity. 
We introduce the series J(z) = LtEIzlltll = zI(zm), of radius of convergence PJ. 
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With obvious notations, let also 1-, 1+, J-, J+ be the generating functions of 
objects in classes I - and I+, respectively by size and by total number of nodes. 
Their respective radii of convergence will be denoted PI- , PI+, PJ - , PJ+. Once 
again we have PI = PJ' PI- = p7- and PI+ = pj+. 
It is easy to prove, as in Lemma 2.1, that PR < PI < 1. Besides, we also have 
PI ~ PI- < 1 and PI ~ PI+ < 1. 
For each U E R, let s(u) be the irreducible tree to which u simplifies. Define 
for all irreducible t the generating function Rt(z) = l:r(u)=t zlul, and introduce 
the bivariate generating function H(z, y) = l:tER ylr(t)lzltl. H is given by the 
following functional equation: 

Lemma 3.1. 

H(z, y) = c~ + cmyzH(z , y)m - CmZ I: (ym 1t l+1 - 1) R;"(z). 
tEL 

Proof. We have: 

Vt= 8 i(t1,'" ,tm) EI, R t = 8 i(Rtll'" ,Rt",J, 
which in terms of generating functions translate in: 

Re(z) = 1 + CmZ I: Rt(z)m, 
t EL 

m 

Vt = 8i(t1,'" ,tm) E I, Rt(z) = z II Rtj (z). 
j=l 

Summing these equalities, we obtain the desired expression for H(z , y). 0 

3.2 An algebraic singularity 

To get a representation of the bivariate generating function H, we have to show 
that the function (z,y) f--' l:tEI (ymltl+1 -1) R;"(z) is analytic far enough (Lem­
ma 3.4). In order to do so, we will once again begin with providing upper bounds 
for Rt(zo) for some zo0 The m-ary case will prove more difficult than in the 
precedent section. That is why we will separate the binary case (Lemma 3.2) from 
the m-ary general one (Lemma 3.3). 
In the binary case, we can find an upper bound for Rt that is similar to the one 
we found for Qt: 

Lemma 3.2. There exist Zo > PR, C> 0 and, > 0 such that,2 < PI and for all 
t E I, Rt(zo) ~ qltl. 
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Proof. We will admit the following results proved in [71: first, we have Me(PM) < 1; 
second, there exists c: > 0 such that for all t E I, Mt(z) is convergent on the disk 
{z Eel I z I ~ PM + c: }. From these two results we deduce that there exists c: > 0 
such that Me(PM + c:) is convergent and Me(PM + c:) < 1. In terms of Re it can 
be rewritten: 

(PM + c:)Re((PM + c:)2) < 1, 

and there exists c:' > 0 such that 

As z f---+ y'zRe(z) is increasing, we have 

Let us choose Zo ~ PR + c:' such that PR < Zo < PI, and define "( = Fa. Then 
zoRe (zo) < "( with "(2 < PI. Define c = Re (zo) and use the equalities Ra (z) = 1 
for any label a i=- e, and Rt = zRuRv for any t = u 8 v E I. We have 

Ra(zo) < Re(zo) ~ c,,(o, 

and by induction on the size of t, one can prove 

Indeed, if Ru ~ q1ul and Rv ~ qlvl with u i=- v, then if t = u 8 v we have 

D 

The m-ary case proves a little more difficult in so far as we have to use the classes 
I- and I+. 

Lemma 3.3. There exists c:' > 0 such that, if c = PV2m (PR + c:,)-l/m: 
1'1 

a) if c~ = 2 or c~ < m - 2: Rt(PR + c:') < cP/Vt E I \ e. 

{ 
Rt(PR + c:') < cp~t1.l2 Vt E I+ \ e 

b) if c~ i=- 2 and c~ ~ m - 2: I I 
Rt(PR + c:') < Cp/!2 Vt E I- \ e. 

Proof. A lemma from [71 states that there exists c: > 0 such that: 
11'11 

a) if c~ = 2 or c~ < m - 2: Mt(PM + c:) < pTVt E I\ e. 

{ 
Mt(PM + c:) < p~~1/2 Vt E I+ \ e 

b)ifc~i=-2andc~~m-2: t 2 

Mt(PM + c:) < p~~I/ Vt E I- \ e. 

These results are proved by induction, using elementary methods like in 2.4, but 
with more intermediate steps and different cases. Why do we have to split I 

in two? As can be seen from formula Mt(z) = zlltll - ltle(Me(z))ltle for t E I, 
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majorizing Mt(z) is more difficult when II t II -Itl e is small. This is why the case 
Itle > II t 11/2 has to be studied more closely. 
Let us now choose [ such as above. Define [' such that PR + [' = (PM + [)m. We 
have 

a) if c~ = 2 or c~ < m - 2, then, for all t E I \ e, 

lWl. lWl. 
Mt(PM +[) < pi ~ (PM + [)Rt((PM +c)m) < pi 

=1_1 + 1 1 ~ ~ 

~ (PR + c')l/m Rt(PR + c') < P J 2 ~ Rt(PR + c') < (PR + [')-m PT p/ . 

b) if c~ 012 and c~ 2 m - 2, similar computations provide the result. o 

Lemma 3.4. Let g(z,y) = LtET (ymltl+l -1) Rr'(z) be the function such that 
H(z, y) = c~ + cmyzH(z , y)m - cmzg(z, y). There exist Zo > PR and Yo > 1 
such that g(z, y) is holomorphic in the two variables z and y in the domain Izl < 
Zo, Iyl < Yo· 

Proof. Case m = 2. - Define Zo and"( as in Lemma 3.2. We have "(2 < PI, hence 
1 < pn-2 . Let Yo E ]1, Jpn- 2 [. Recall that there exists c > 0 such that, for 
all t E I, Rt(zo) < qltl. Hence for Izl < Zo, Iyl < Yo, the following two relations 
are satisfied: 

L (y2Itl+l) R;(z) :::; L (y~ltl+l) R;(zo) :::; LIn (Y6n+l) c2"(2n, 
tET tET n:;::O 

From Y5"(2 < PI and "(2 < PI, we deduce that the numerical series 

Ly21tl+l R;(z) and 
tET 

converge. Since the two series have nonnegative coefficients in znyk, they are 
normally convergent, and hence holomorphic in z and y. Their difference g(z, y) 
is consequently also holomorphic in z and y. 

Case m 2 3. - If we are in case a) with c~ = 2 or c~ < m - 2, then Lemma 3.3 

gives c' > 0 such that Rt(PR + c') < Cp~I/2 for all t E I \ e. As 1 < PJ(p-;1 /2 )m 
(because m 2 3), similar computations allow us to establish that there exists 

Yo E ] 1, "J PI(p-;1/2)m [ such that the series g(z, y) is holomorphic in the domain 

Izl < PR + c', Iyl < Yo· 
If we are in case b) with c~ 01 2 and c~ 2 m - 2, we can prove, still from Lemma 3.3, 
that there exists c' > 0 such that 

L ym1tl+l Rr'(z) and L ym1tl+l Rr;'(z) 
tET+ tET-
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are holomorphic respectively in the domains 

and 
{z Ilzl < PR + E'} X {y Ilyl < p~~m(p~y2)}. 

Hence if we define Zo = PR + E' and Yo = inf(p~~m(p~;/2), p~~m(p~y2)), then 
Yo > 1 (because PI+ < 1, PI- < 1 and m > 2), and g(z, y) is holomorphic in the 
domain Izl < Zo, Iyl < Yo. D 

As was the case in section 2, we can prove that H follows an algebraic schema: 

Proposition 3.5. There exist real numbers Zl > p, Yl > 1, and analytic functions 
A, Band C such that, in the domain 

D = {(z, y) Ilzl < Zl, Iyl < yd, 

H admits the representation H(z, y) = A(z, y) + B(z, y)y'C(z, y). 

Proof. We proceed as in the proof of Proposition 2.3, by considering the function 
(z, y, x) 1--+ X - c~ - cmyzxP + cmzg(z, y). D 

3.3 Limit law 

We are now able to determine the limit distribution of the size of reduced trees. 

Theorem 3.6. The size of reduced m-ary trees has a Gaussian limit distribution, 
and the mean f.1n and standard deviation Un are asymptotically linear in n, with 

1· f.1n d 1· Un -1m - = f.1 an 1m - = v, 
n n 

where, with q = ~, f.1 = 1 - p m- 1 gy(p, 1) and 
em q 

V = P-- - p2 9 (p, 1) - 3(m - 1)2_g2(p, 1) [ m - 1 (m - l)(m - 2) ] p2 
q q2 Y q2 Y 

( )
2 m-1 m-1 p + 2p2 __ gyz (p, 1) - 2p3 -- gy(p, l)gyAp, 1) - (m -1)-gy2(p, 1). 

q q q 

Proof. The proof is the same as in Theorem 2.7. D 

Numerical computations for c~ = Cm = 2 provide the values f.1 = 0.8162 ... and 
v = 0.2469 .... The average reduction ratio is not much smaller than the average 
simplification ratio. 

4 Conclusion and open questions 

We proved that the size of simplified and reduced trees are asymptotically Gaus­
sian, whereas only the mean and variance were known before. Our framework also 
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allows to assert that the rate of convergence to the Gaussian limit is in 0(1/ vn) 
thanks to the Berry-Essen inequality. A natural development would be to extend 
this study to a larger family of trees, and to mix different types of operators. 
A more interesting challenge would be to study the distributions of the costs of the 
algorithms of simplification and reduction. Their means are known to be linear in 
n, but their variances have not been computed yet. Their distributions are all the 
more so still unknown. 
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Digits and Beyond 
Helmut Prodinger 

ABSTRACT: This is a survey about digits from a personal point of view. 
Counting the occurrences of digits (and, more generally, subblocks) is discussed 
in the context of various positional number systems. The methods to achieve this 
are Delange's elementary method and Flajolet's idea to use the Mellin-Perron 
summation (or integral) formula. 
Then we move to problems from Theoretical Computer Science (register function 
of binary trees, number of exchanges in Baxter's odd-questions) are also discussed. 
An open problem from physicists Yekutieli and Mandelbrot can also be treated in 
that fashion. 
Furthermore, we consider representations of numbers where some digits are for­
bidden. As a representative example, we discuss the Cantor distribution and its 
moments, asymptotically analyzed by Mellin transforms. Other problems in this 
context lead to sums involving Bernoulli numbers which can be attacked by ana­
lytic Depoissonization. 
Very briefly we mention carry propagation, mergesort parameters and jump inter­
polation search trees. 

1 Introduction 

This is a survey about digits from a personal point of view, i. e., I will talk about 
digit expansions but stress those things that are in one way or another related to 
my own research. 
We are interested in the binary expansion, and, more generally in base q-expansion, 
with an integer q 2: 2, and digits {O, ... , q - I}. Delange [3] has analyzed the sum­
of-digits function S(n) (sometimes, especially for q = 2, written as v(n)), and 
found in particular the following result for the mean value 

1 ~ q - 1 
- ~ S(n) = --logq m + F(logq m), 
m 2 

O::;n<m 

with a periodic function F(x) of period 1, which is continuous but nowhere dif­
ferentiable, and with explicitly known Fourier coefficients. Perhaps even more 
important than his result, is his method which is based on finding an explicit 
formula for the individual digits, in terms of floor functions, rewriting them as 
integrals over piecewise constant functions. Forming the mean value just means 
the union of the intervals of integration, which makes things easier. Then one 
pulls out the main (logarithmic) term and finds that what remains is a periodic 
function of {logg m} (the fractional part of lo~ m) which can be brought into some 
standard form trom which one also gets the J:<burier coefficients. 

In Section 2 we consider such a Delange type analysis for the system with base 
q but digits {d, d + 1, ... ,d + q - I}, where d = 0 means the standard case. 
The restriction for the parameter d is that 0 must be in the set of digits. We are 
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counting how often a given digit i occurs in the representation of a natural number, 
more precisely, we consider the mean value of this counting function. This is based 
on the paper [26] which contains slightly more general results, namely not only 
counting individual digits i but rather a given (contiguous) subblock w. So, as 
an example, one knows how often "on average" the subblock 123014 occurs in the 
base 5 representation of n. 
Delange's technique is elementary and nice, however, in more complicated situa­
tions, it can become quite messy. Flajolet came up with an alternative method 
[10]: It is based on the Mellin-Perron summation formula, which allows to write 
the counting function of interest as a contour integral in the complex plane. Shift­
ing the line of integration produces then the terms in the explicit formula. As it 
often happens in this type of problems, one gets exact formulre. The fact that the 
error term disappears completely is based on 

0= l-!+ioo ((s)nS ds 
_Lioo s(s + 1) 

4 

or similar results. In most instances, this technique is somewhat superior to De­
lange's elementary approach. As an additional reading we recommend Marko 
Riedel's master's thesis [43]. 
In Section 3, we describe the technique for Delange's result (q = 2), and also 
for a related number system called the Gray code, which is obtained from the 
binary representation by a series of reflections. Interestingly enough, the sections of 
Knuth's The Art of Computer Programming, Vol. 4, dealing with Gray codes, are 
already available at the web, see Knuth's homepage http://Sunburn.Stanford.EDU/ 
knuthf. 
In Section 4, we discuss a symmetric number system with base q (an even integer) 
and digits {-q/2, ... , q/2}. This redundant system is made unique by some con­
ditions which in the instance q = 2 simply say that no two adjacent nonzero digits 
can occur. This instance q = 2 was rediscovered many times; perhaps the earliest 
reference is [42]. Some historical remarks can be found in [40]. We discuss again 
the problem of counting digits and subblocks in such a symmetric signed system. 
Digits occur however in counting problems related to the Analysis of Algorithms. 
In Section 6 we deal with the Register function of binary trees (in the literature 
often appearing as Horton-Strahler numbers; here are some (random) references: 
[35, 30, 5, 4, 49, 33, 34]). 
The question about the average value of the register function was solved inde­
pendently by Flajolet-Raoult-Vuillemin [14] and Kemp [25], compare also [32]. 
The quantity v2(n), defined to be k if n = 2k(2i + 1), plays a crucial role here. 
It is related to the sum-of-digits function S(n), since I:k<n v2(k) = n - S(n). 
Consequently one can, after some manipulations, invoke Delange's result. This 
was the route taken by Flajolet-Raoult-Vuillemin. Another approach (Kemp) is, 
after approximating the explicit quantities using real analysis, to consider Mellin 
transforms, which leads to Dirichlet series ofthe type I:n>l v2(n)/ns. Perhaps the 
method that is most advanced [12], also uses Mellin transforms, but on the level of 
generating functions, in order to find the local behaviour of a generating function 
closely related to the desired average values. Once this is established, singularity 
analysis of generating functions (transfer theorems), developed in [11], provides 
the asymptotics of the, say, average value of the register function of binary trees 
of size n. 



Digits and Beyond 357 

Section 7 is in a sense the companion of Section 6. The analysis of Batcher's 
odd-even method (see Knuth [29]) was originally left open and eventually solved 
by Sedgewick [44]. What was the binary expansion and the quantity v2(n) for 
the register problems is now the Gray code representation and the function '!9(k) 
which is 1 for k = 2m(4i + 1), and -1 for k = 2m(4i + 3). Flajolet and Ramshaw 
[13] use a result analogous to Delange's but for the Gray code representation (also 
included in Section 3), and proceed along the lines of [14]. The more advanced 
technique (singularity analysis of generating functions) is also described here and 
was worked out a long time ago for the proceedings of a French summer school in 
He de Re [38]. 
The next Section 8 deals with an open problem which is related to the register 
function of binary trees. It was posed by Yekutieli and Mandelbrot [49] and solved 
in [39]. The register function can be extended by attaching a value to each internal 
node in the binary tree (which is the register function of the subtree having that 
node as the root), the value at the root being the register function ofthe tree. The 
question was to count the number of internal nodes having register function exactly 
1 less than the register function of the entire tree. It was observed empirically that 
the expected value of this parameter is asymptotically a periodic function of log4 n 
if all trees of size n (n internal nodes) are considered to be equally likely. Here, 
the following arithmetic function 'lj;(m) plays a role: 'lj;(m) = -k if m = 2i(4k + 1) 
and 'lj;(m) = k + 1 if m = 2i(4k + 3). Otherwise, the same comments about the 
methodology as for the previous sections apply here. 
The Section 9 deals with sets of numbers which have representations avoiding digits 
from a subset of forbidden digits. The most common case is q = 3 with forbidden 
digit 1. If one considers numbers of the form L:k>l ak3- k where ak E {O,2}, 
one obtains the classical Cantor set. One question IS about the moments of the 
Cantor distribution (strings of the form L:k>l ak3-k are produced at random, 
where ''random'' means that each digit might be 0 or 2, with probability 1/2). 
Grabner and I could satisfactorily solve this problem, which originated in [31], 
using the method of Mellin transforms. Another problem, suggested in [23], was 
eventually solved by A. Knopfmacher and myself [27]: If one draws n random 
numbers, according to the Cantor distribution, what is the expected value of their 
minimum? Using exponential generating functions to solve the relevant difference 
equations, one can relate it to ''the hardest asymptotic nut" from [28]. These days, 
one has alternative methods to attack the sums coming out in the analysis a la 
"asymptotic nut"; these are techniques known as Rice's method [15] which are again 
intimately related to Mellin transforms, and (analytic) Depoissonization, which 
was floating around for years in the literature, an early example being perhaps 
[45]. Recently it has been polished and systematized by Jacquet and Szpankowski 
[24]. 
The last sections are very brief and mention carry propagation in positional number 
systems, merge sort , and jump interpolation search trees. 

2 A Delange type analysis 

We describe Delange's technique by considering the number system with base q 
and digits {d, d + 1, ... ,d + q - I} where 1 - q ~ d ~ O. We are going to study 
Bi(n), the number of occurrences of digit i i= 0 in the representation of n. This is 
not a real restriction since the number of occurrences of digit 0 can be obtained 
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as the difference of the length of the representation and the number of the other 
digits. A full treatment, even for subblocks instead of just digits, is in [26]. 
First, one needs an explicit formula: If n is written as ... a2alaO in the (q, d)­
system, then ak = i iff 

lqk:l +1-~- q(q~l) +~J -lqk:l +1-~- q(q~1)J =l. 

Consequently, 

Bi (n) = - + 1 - - - + - - - + 1 - - - . L ( l n i d 1J l n i d J) 
qk q q(q _ 1) q qk q q(q - 1) 

k21 

Delange's simple but extremely useful observation is that one can write the floor 
functions as integrals. We are considering an average of the function Bi(n): 

m-l m-l 
~ '" B (n) = ~ '" '" ( l~ + 1 - i - _d_ + IJ - l~ + 1 - i - _d_J ) m ~ 2 m ~ ~ qk q q(q-l) q qk q q(q-l) 

n=O n=Ok21 

1 1m L ( l tid 1 J l tid J) = - -;;)i" + 1 - - - -- + - - -;;)i" + 1 - - - -- dt. m 0 q q q(q-l) q q q q(q-l) 
k21 

It can be readily checked that nonzero contributions are only possible for k ::; l + 1, 
with l = llogq m-Iogq(l+ q~l)J. After a simple change ofvariable in the integrals, 
it turns out that one should study functions like 

and 

h(3(x) = L q-kg(3(xqk) 
k20 

H(3(x) = 1 - 'Y - {-'Y + x} + ql-'Y-{ -'Y+x } h(3(q{ -'Y+x}-H'Y), 
q 

with {x} = x -lxJ (the fractional part of x) and'Y = logq(l + q~l)' 

Eventually one finds that 

1 m-l log m - L Bi(n) = -q- + H(3(logq m), 
m n=O q 

where (3 depends on the digit i in a simple way: (3 = 1 - ~ - q(q~l) - ~. 

Since the function H(3(x) is periodic with period 1, it is natural to study its Fourier 
series expansion. The result is: H (3 (x) = LkEZ hke27rikx, with 
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with Xk = 27rik/ logq and the Hurwitz' zeta function ((z, a). 
The computation of the Fourier coefficients is relatively straight forward; one has 
to use results like 

The computations in the case of counting subblocks are more complicated, and in 
the end an additional error term of order 1/ m occurs. 

3 The Mellin-Perron summation formula 

This section is based on [10]. Let f(x) be a function defined over [0, +00). Its 
Mellin transform f*(s) = M[f(x);s] is defined by f*(s) = Jooo f(x)x s - 1dx. By 
linearity and the rescaling property we have 

F(x) = LAkf(ILkX) ==} F*(s) = (LAkILk"S)f*(S). (1) 
k k 

The condition is for s to belong to a 'fundamental strip' defined by the property 
that the integral giving f*(s) and the sum L:k AkILk"s are both absolutely con­
vergent. Similar to the Laplace transform there is an inversion theorem (cf. [7]). 
When applied to (1), it provides 

(2) 

with c in the fundamental strip. 

Formula (2) could be called Mellin's summation formula. It is especially useful 
when the integral can be computed by residues, and in that case each residue 
contributes a term in an asymptotic expansion of F(x). 
This formula lends itself to various number theoretic applications, most notably 
proofs of the prime number theorem. Introduce the step function Ho(x) defined 
by 

Ho(x) = {I ~f x E [0,1]' 
o If x> 1, 

together with the functions Hm(x) = (l-x)m Ho(x). In the interesting case where 
ILk == k, we obtain from (2), formulre of the Perron type that provide integral 
representations for the iterated summations of arithmetic functions in terms of 
their Dirichlet generating function. 

Let c > 0 lie in the half-plane of absolute convergence of L:k Akk-s • Then for any 
m ~ 1, we have 

1 k m 1 jC+iOO ( A) ds - Ak 1 - - - - ...!5.. nS 

m! L ( n) - 27ri . L ks s(s+l)···(s+m)" 
l::;k<n c-,oo k2::1 

(3) 
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For m = 0, 

Formula (3) is obtained from (2) by setting x == n- 1 , f(x) == Hm(x), and observing 
that H;"(s) = m!(s(s+I)··· (s+m))-l. For m = 0 the formula has to be modified 
slightly by taking a principal value for the sum, since Ho(x) is discontinuous at 
x = 1. For instance, if we use Ak == 1 and m = 1, we get 

n - 1 1 12+ioo ds -- = - ((s)n8 . 
2 27ri 2-ioo s(s + 1) 

Shifting the line of integration to the left and taking residues into account we 
obtain 

l -!+iOO ds 
0= ((s)n8 ( )" 

-!-ioo S S + 1 
(4) 

Identity (4) is the basis for the existence of several exact rather than plainly 
asymptotic summation formulre. We use this Mellin-Perron technique to derive an 
alternative proof of Delange's theorem: The sum-of-digits function S(n) satisfies 

where Fo(u) can be represented by the Fourier series Fo(u) = 2:kEZ fke27riku and 

Let v2(k) be the exponent of 2 in the prime decomposition of k and v(k) be the 
number of I-digits in the binary representation of k. We have v(k) - v(k - 1) = 
1- v2(k), so that S(n) resembles a double summation of v2(k). Furthermore, it is 
well-known (and also rederived in Section 6) that 

Thus, from (3), with Ak = v2(k) and m = 1, we get the basic integral representation 

S n = n(n -1) _ ~ r2+ioo ~n8 ds . 
( ) 2 27ri J2-ioo 28 - 1 s(s + 1) 

The integrand has a simple pole at s = 1 (originationg from the (-function), a 
double pole at s = 0 and simple poles at s = Xk. Shifting the line of integration 
to ~(s) = - i and taking residues into account we get 
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where the Fourier series (akin to Fo) lO~2 LkEZ x5~~kl1) nXk occurs as the sum of 
residues of the integrand at the imaginary poles s = Xk. The remainder term is 

1 l - !+ioo «(s) 8 ds 
Rn =- --n 
() 2Jri -1-ioo 28 - 1 s(s + 1)' 

4 

(5) 

so that there only remains to prove that R( n) == 0 when n is an integer. The 
integral converges since 1«(-~+it)l« It13/4 (cf. [48]). Using the expansion 2s~1 = 

-1 - 28 - 228 - 238 - ... in (5), which is legitimate since now R(s) < 0, we find 
that R( n) is a sum of terms of the form 

1 - 1+ioo d 14k 8 s 
2Jri -1-ioo «(s)(2 n) s(s + 1) ' 

4 

and each of these terms is 0 by virtue of (4). 
It is clear from the discussion above that an exact formula for a sum-of-digits 
function is obtained each time a similar Dirichlet generating function can be intro­
duced. Let us illustrate this point by the integral representation for the sum- of­
digits function associated to Gray code representations. The Gray code represen­
tation of the integers starts like 0, 1, 11, 10, 110, 111, 101, 100, 1100, 1101, .. . ; 
its characteristic is that the representations of nand n + 1 differ in exactly one 
binary position and it is constructed in a simple manner by reflections based on 
powers of two (for a definition, see, e. g., [13]). Let l'(k) be the number of I-digits 
in the Gray code representation of k, and 15k = l' (k) -1'(k - 1). It is easy to see 
that 152k = 15k, and the pattern for odd values is 152k+1 = (_I)k. Thus the Dirichlet 
generating function 15(s) of {15d is 

15(s) = 28 L(s) with L(s) = " ( ~_I)k) . 
28 -1 ~ 2 + 1 8 

k 2:0 

Thus by (2.4), the summatory function G(n) = Lk<n l'(k) admits the integral 
representation 

n 12+ioo 28 L( s) 8 ds 
G(n) = - --n . 

2Jri 2- ioo 28 - 1 s(s + 1) 

The summatory function G(n) of sum- of-digits function of Gray- code satisfies 

1 
G(n) = 2n log2 n + nFI (lOg2 n), 

where FI (x) is representable by the Fourier series 

4 Symmetric signed digit expansions 

Recently, Heuberger and I [22] have considered a symmetric system with an even 
base q and digits - ~, .. . , ~. Such a system is a priori redundant because of the 



362 Helmut Prodinger 

existence of both ±~ but made unique by the condition that n = 2:: j 2:0 Ejqj , 
where IEjl :s: q/2 and IEjl = q/2 implies that O:S: sign(Ej)EJ+l < q/2. (Equivalent 
conditions were discussed in [22].) We call this expansion the symmetric signed 
digit expansion of n and denote it by ( ... E2(n)El (n)Eo(n)). For q = 2, this system 
was already considered by Reitwiesner in a computer science context [42]. Here is 
an algorithm to compute it from right to left (Algorithm 1): 

Algorithm 1 Computation of the symmetric signed digit expansion of n 

Input: n > 0, q ::::: 2 integers. 
Output: The representation E. 

E +-- 0; m +-- n 

while m > ° do 
a+-- (m mod q) 

if a> q/2 or (a = q/2 and {m/q2} ::::: 1/2) then 
a+--a-q 

end if 
m +-- (m - a) / q; E +-- E & a 

end while 

We were able to derive an explicit formula for the digit Er , which for q = 2 is 

Er = l2r:2 + ~ J -l2r:2 + ~ J -l2::2 + ~ J + l2::2 + ~ J ' 
and was already obtained in [40]. For q = 6 it reads 

Er = + lY + ~~gJ + lY + ~:~J + lY + ~~~J - 5lY + ~;gJ + lY + ~;~J + lY + ~~~J 
+ ly+ ~~~J + ly+ ~;~J + ly+ ~;~J -5ly+ ~~~J + ly+ ~;~J + ly+ ~gJ 
+ ly+ ~~~J + ly+ ~~;J + ly+ ~~gJ -5ly+ ~:~J + ly+ ~~;J + ly+ ~~gJ 
+ lY + ~;~J + lY + ~gJ - 5lY + ~~gJ + lY + ~~~J + lY + i552J + lY + 28582J 
+ lY + 28502J + lY + i532J - 5lY + 26562J + lY + 26~2J + lY + 25l2J + lY + 2~2J 
+ lY + 23:2J + lY + 23512J - 5lY + 225~J + lY + 21582J + lY + A12J + lY + 2:2J ' 

where Y = n/6r+2. In general, it has q2 terms. 
One sees the pattern 0,1,2,3, -2, -1 appearing 3 times followed by 0,1,2, -3, 
-2, -1, also 3 times. The digits 0,1,2,3, -2, -1 are not symmetric around 0, 
and 0, 1, 2, -3, -2, -1 are not, either. However, in combination, both coming with 
"probability" 1/2, the distribution of the digits becomes symmetric. 
In a recent paper with Grabner and Heuberger [16] we are addressing the subblock 
counting problem in symmetric signed digit expansions. To announce our principal 
findings, we need some notation. If a block b = (bs , ... ,bo) is given, we denote its 
value by value(b) = 2::f bfqf. 

We also use Iverson's notation, popularized in [19]: [P] is defined to be 1 if con­
dition P is true, and ° otherwise. With this notation we can count the number of 
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subblock occurrences of b in (the symmetric signed digit expansions of) n via 

L [(ck+r-l(n), ... , ck(n)) = b]. 
k?O 

We only consider admissible blocks b: these blocks represent the number value(b) 
in the symmetric signed digit expansion. For interest we note that there are mqr - l!q (-1 Y admissible blocks of length r; this was implicitly proved in [221. 
We are studying the quantity 

Sb(N) = L L [(ck+r-l(n), ... ,ck(n)) = b]. 
n<N k?O 

This is our main result: 
Let q 2 2 be an even integer and r 2 1. For an admissible block b = (br - 1 , ... , bo) 
with Ibr- 11 < ~ and b -=I=- or the number of occurrences of the block b in the 
symmetric signed digit expansions of the positive integers less than N satisfies 

where 

for r] = 0, 
for r] = ±~, 
else, 

Hb(X) = L hk(b)e2k1rix, 
kEZ\ {O} 

h (b) - log q (I (2kll'i [ I (b) < 0] + -r I (b) + R=in(bo)) 
k - 2kni(1og q + 2kni) '> log q' va ue q va ue qr(q+l) 

- 1 (2kll'i [value(b) < 0] + q-r value(b) + R=ax(bO))) for k --I- 0 '> logq' qr(q+l) r , 

ho(b) = logq r ([value(b) < 0] + q-r value(b) + R7in (bo~) 
qr q + 1 

([ Rmax(bo)) 
- logq r value(b) < 0] + q-r value(b) + ( ) 

qr q + 1 

Q(bo) ( 1 1 1) 1 
- qr (q + 1) r + '2 + log q - q + 1 + qr-l (q + 1) , 

Rmin(r]) = - ~ - [(r] - 1) mod q 2 ~] , Rmax(r]) = ~ + [r] mod q < ~] . 

The function Hb(X) is a periodic continuous function of period 1 and mean O. As 
usual (( s, x) denotes the Hurwitz ( - function. 
The case of blocks b with most significant digit br - 1 = ± ~ can also be obtained 
from that, by a trivial argument taking differences. 
The instance r = 1 (counting digits) was discussed in [22], although without 
mentioning the periodic fluctuations in explicit form. Thuswaldner [471 has used 
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Dirichlet series and the Mellin-Perron summation formula to exhibit this fluctu­
ating behaviour in the case q = 2 and r = l. 

The analysis is based on the Mellin-Perron formula, but with a slight twist: 

1 j C+iOO d _ an 8+1 s :L (N - n)an - -. :L ( )8 (N - a) ( )' 
27fZ c-ioo n - ass + 1 

n<N n2:1 

where ° ::::; a < 1 and c is in the half-plane of absolute convergence of the Dirichlet 
series. This slightly more general situation ° ::::; a < 1 was discussed in [17]. 
Without this version with the parameter a, one could still proceed successfully, as 
in [47], but that would be considerably more cumbersome and less elegant. 

5 Representations of natural numbers as sums of 
3 squares 

This brief account is based on [46, 36, 43). It is an old result that n is not 
representable as a sum of 3 squares iff n = 4i(Sk + 7), which means that in base­
four representation, the last two nonzero digits are either 13 or 33. Let Q(m) be 
the counting function of the numbers that are representable as a sum of 3 squares: 

Q(m) = L [n representable as a sum of 3 squares] = m - L K,(n), 

with K,(n) = 1 if n = 4i(Sk + 7), K,(n) = ° otherwise. It is a good idea to separate 
the main term and write Q(m) = ~m + ~(m). Osbaldestin and Shiu provide a 
Delange type analysis of the following formula: 

1 3 1 
N :L ~(n) = Slog4 N + F(log4 N) + S [N is odd], 

OSn<N 

k =I 0, 
27fik 

Xk=log4· 

It was announced already in [10] that a proof of this result using the Mellin­
Perron summation formula would be possible, and Marko Riedel has worked out 
the details in his Master's thesis [43]. 
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6 The average number of registers to evaluate a 
binary tree of size n 

The function "number of registers" reg is given recursively by Reg(D) = 0 and 

Reg ( A ) = {max{Reg(tt) , Reg(t2)} if Reg(tt) -I- Reg(t2), 
t1 t2 1 + Reg(td otherwise. 

The problem is the evaluation of Rn , the average value of the function reg, based 
on the set of binary trees of size n. This was first studied in [14, 25]; for a tutorial 
see [38]. We have 

with E(z) = I: zn I: Reg(t) 
n2:0 t of size n 

and bn = n~1 e:) being the number of binary trees with n nodes. One can derive 
the following for the function E(z), using the substitution z = u/(l + U)2: 

where v2(n) is the exponent of 2 in the prime number decomposition of n. If we 
write in a unique way n = 2m(1 + 2i), (m ~ 1, i ~ 0), we have v2(n) = L;'=11 = 
m. The quantity v2(n) (which we have seen already in Section 3) is often called 
"dyadic valuation," for obvious reasons. One can get the coefficients, e. g., using 
the Lagrange inversion formula: 

One strategy to proceed is the following (that was the method of Flajolet, Raoult, 
and Vuillemin): One application of partial summation brings, via v(k) = k -
Lj:Sk V2(j), the sum of digits function in, and a second application of partial 
summation makes the summatory function of the sum- of- digits function appear, 
which, according to Delange's analysis, is completely known! That means on the 
other side that the second difference of the binomial coefficients becomes eventually 
a fourth difference, but that causes no problems. The final result is this: The 
average number Rn of registers to evaluate a binary tree of size n satisfies 

Rn = log4 n + D(1og4 n) + 0(1), 

where D(x) is a continuous periodic function of period 1; this function can be 
expanded in a Fourier series as D(x) = LkEZ dke2k7rix, with 

1 I 1 do = - - -- - -- + log 7f 
2 2 log 2 log 2 2 
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27rik 
Xk = log2· 

Another strategy, used by Kemp, is as follows: Approximation of the binomial 
coefficients leads eventually to the study of series of the type 

f(x) := L v2(k)e- k2X2 ; 
k2:1 

the Mellin transform then brings in Dirichlet series g(s) := I:k>l v2(k)k-S; but 
this one is easily evalutated, using v2(2k) = 1 + v2(k) and v2(2k +- 1) = 0: 

g(s) = L (1 + v2(k))(2k)-S = TS(((s) + g(8)), 
k2:1 

from which one gets g(s) = ((s)/(2S - 1). 
A third strategy is more on the lines of [12] and based on singularity analysis of 
generating functions: One must study E(z) for z ---+ i, i. e., for u ---+ 1, and sets 
u = e- t and considers E(z) for t ---+ o. The second factor of E(z), which is denoted 
by V(t), is the challenging one. The Mellin transform of V(t) is denoted by V*(s): 

This gives V* (s) = r~~)~ls). The Mellin inversion formula then leads to 

1 12+i <Xl V(t) = -2 . V*(s)CSds, 
7r2 2-i<Xl 

and we shift the line of integration to the left, taking the residues of the integrand 
V* (8 )CS into account. Using some classical expansions we get 

1 1 1 1 'Y 1 
V(t) '" t + "2 log2 t - "2 log2 27r + "4 + 2 log 2 + log 2 ~ f(Xk)((n)CXk + ... 

k.,-D 

which gives the local expansion for the function E(z); the rest is then singularity 
analysis of generating functions [11]. 

7 Odd-even merge 

In the analysis of a sorting algorithm (Batcher's odd-even merge [28]), one has to 
consider the quantity 

Bn = L ((~~k)) (2F(k) + k), 
k>l n 
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representing the number of exchanges in the odd-even merge of 2n elements. In 
this equation, F(k) = EO::;j<k f(j) and f(j) is the number of digits "I" in the 
Gray code representation of j. The numbers {}(j) := f(j) - f(j - 1) equal ±1: 
if k is of the form k = 2m(4i + 1), {}(k) = 1; if k is of the form k = 2m(4i + 3), 
{}(k) = -1. We might recognize a great similarity between {}(k) and v2(k) from 
Section 6. 
Indeed, there are again basically 3 lines of attack: The Flajolet- Ramshaw ap­
proach [13] uses partial summation and uses an explicit result for the summatory 
function of the sum of digits function in the Gray code representation, as derived 
in Section 3; this is analogous to [14]. The next one, analogous to [25], was used 
by Sedgewick [44]: Approximating binomial coefficients, one has to study series a 
la 

k21 

or, after using Mellin transforms, Dirichlet series like g(s) := E k >l {}(k)k- S , but 
this one is again easily evaluated: -

g(8)= L (2m(4i + l)fs - L (2m(4i + 3)fs = 28(281 _1) [((s,~) - ((s, ~)], 
m,i20 m,i20 

where the Hurwitz ((8,a)-function is defined by ((s,a) = En>o(n + a)-8 for 
~(8) > 1. Recall that the function from Section 3 can be expressed as L( 8) = 
4-8 [((8,~) - ((8, ~)]. 

The third approach, using singularity analysis of generating functions, is presented 
in the tutorial [38]: One has to study the function 

u(l+u) ".0(.) i 

(1- u)3 ~v Z u 
i21 

near u = 1. Eventually one finds: 
The average number of exchanges in the odd-even merge of 2n elements satisfies 

1 
Bn rv :in log2 n + nB( log4 n), 

where B(x) is a continuous periodic function of period 1; this function can be 
expanded as a Fourier series B(x) = EkEZbke2k7rix, with 

and for k =1= 0 

1 'Y 3 (1) bo = - -- - -- - - + 2 log r - - log 'If 
210g2 4log2 4 2 4 2 

b = _1_i( 1) r(n/2) 
k log 2" n, 4 1 + Xk . 

8 A problem of Yekutieli and Mandelbrot 

The following problem was left open (and attacked empirically) in [49] and later 
solved in [39]. 
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If we have an extended binary tree, we label the leaves with 0, and, recursively, if 
the left subtree of a node is labeled with a and the right subtree with b, we label 
the node with max{ a, b} if a i=- b and with a + 1 otherwise. The value attached 
to the root is called the register function of the tree t. The value attached to a 
particular node is the register function of the subtree having this node as its root, 
as already discussed earlier in this paper. 
The authors in [49] consider the bifurcation ratio (at the root). It is meant to be 
the number of maximal subtrees (which is not the same as the number of internal 
nodes (1)) having register function exactly 1 less than the register function of the 
entire tree. It was observed empirically that the expected value of this parameter 
is asymptotically a periodic function of log4 n if all trees of size n (n internal 
nodes) are considered to be equally likely. Here, we want to settle this problem by 
explicitly describing the periodic function in terms of the Fourier coefficients. In 
principle, a full asymptotic expansion could be given, but the computation of the 
lower order term becomes more and more complicated. 
Now, let Wp,k,n be the number of binary trees with n nodes, register function p, 
and Yekutieli- Mandelbrot- parameter k, and let 

Wp(z, y) = L Wp,k,n ykzn 
n,k2:0 

be its bivariate generating function. 
To find the expected values, we have to work with Tp(z) = ty Wp(z, y)ly=l and 

T(z) = L:P2:1 Tp(z). The coefficient of zn in T(z), divided by n~l e:), is the 
expected value sought by Yekutieli and Mandelbrot. One finds for p ~ 1 

Wp(z, y) = zy2 R;_l (z) + 2zyWp(z, y)Rp- 1 (z) + 2zWp(z, y) (B(z) - Sp-l (z)), 

with Rp(z) being the generating function of binary trees and register function = p, 
and Sp(z) = L:j2:P Rj(z). Therefore 

Tp(z) = 2zR;_1(Z) + 2zRp(z)Rp_1(z) + 2zTp(z) (B(z) - Sp(z)), 

and eventually (again with z = u/(l + U)2) 

1 2 3·2P - 1 

T( z) = 2u + 2_-_u_ '" ___ u---;,.--___ . 
u ~ (1 + u2P )2(1 - u2P ) 

One has to study the series 

Now, one performs a Mellin transform analysis in order to find the local behaviour 

T(z) '" 3 - + 5 VI - 4z - - L f(Xk),B(Xk - 1)(1 - 4Z)(1-Xk)/2. ( 4C) 8 
(log 2)n log 2 k#O 
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Here, (3(8) = «(s , ~) - «(s, ~), which is the function that appeared already in the 
odd-even merge problem, Xk = 27rik/log2, and C = Lk>o(-I)k/(2k+l)2 = 
0.9159655942 ... is Catalan's constant. Consequently we -get this result: The 
average value of the Yekutieli-Mandelbrot parameter, if all binary trees of size n 
are considered to be equally likely, is given by 

2C 5 (1) 
(log2)7r +"2 + J(lOg4 n) + 0 ~ . 

The periodic function J(x) has mean value 0 and admits the following representa­
tion as a Fourier series, 

One could also perform an analysis along the lines of Kemp resp. Sedgewick 
[25, 44]; it would be based on the exact formula 

[zn]T(z) = _2 (2n) +2 '" 'IjJ(m) [( 2n ) _ 2( 2n ) + ( 2n )] 
n+l n ~ n+l-m n-m n-l-m 

m2:1 

. {-k ifm = 2i(4k+ 1) 
wlth'IjJ(m)= k+l ifm=2i(4k+3) 

9 Missing digits 

for some i and k, 
for some i and k. 

Interesting phenomena occur if several digits are forbidden. We describe here 
the instance of q = 3 and digits {0,2}, i. e., the digit 1 is forbidden. The set 
of strings 0.ala2 ... , with ai E {O, 2} is the classical Cantor set. Thus consider­
ing 2 Li>l X i3-i , where the Xi are independent and identically distributed with 
probability distribution JP'{X = O} = JP'{X = I} = 1/2, we get a probability dis­
tribution on the interval [0,1] which is conveniently called Cantor distribution. In 
[18], the moments of a slightly more general distribution were investigated, moti­
vated by an earlier paper of Lad and Taylor [31]; we sketch the procedure. Denote 
an the nth moment of the Cantor distribution; it is not hard to see that 

n 21, aO = 1. 

If one rewrites it as (2 - 3-n)an = L~=o (7)2n-iai and introduces the exponential 
generating function A(z) = Ln2:o anzn /n!, it translates into 

2A(z) - 2 - A(~) + 1 = e2z/ 3 A(~) -I, 

or 
1 + e2z /3 1 + e2z/3k 

A(z) = 2 A(~) = II 2 
k>l 
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the last step was by iteration of the functional equation. Slightly more useful 
than this infinite product is the Poisson transformed generating function B(z) = 
e-z A(z), since by a process called Depoissonization one finds that an '" B(n). 
There is a well written survey paper on the subject by Jacquet and Szpankowski 
[24]. We get 

1 + e-2z / 3 1 + e - 2z/ 3k 

B(z) = 2 B(~) = II 2 
k:;:':l 

To find the asymptotic behaviour of B(z) for large z (and thus B(n) and thus an) 
we compute the Mellin transform B*(s) of B(z), viz. 

or 

B*( ) 1 100 II 1 + e-2z /
3k 

-2z/3 8- 1d s = --3- e z z. 
2 - 8 0 2 

k:;:':2 

The standard reference for the Mellin transform in the context of asymptotic 
enumeration is [9]. The Mellin inversion formula gives 

1 l c+ioo 
B(z) = -2 . B*(s)z- 8 ds , 

7ft c-ioo 

where the constant c might be chosen to be -1/2. Now one shifts the line of inte­
gration to the right and collects negative residues. They come from the solutions 
of 2 - 38 = 0, i. e., s = log32 + 27fik/ log 3, for k E Z. If one calls them ik, then 
B(n) '" "'L.kEzikn-log32-21rik/log3, which is of the form n-log328(log3n), with 
a periodic function 8(x) of period 1. Typically, the amplitudes of such periodic 
functions are quite small, so the most interesting term is obtained for k = O. The 
negative residue at s = log3 2 is 

1 100 1 + e-2z / 3k II e-2z/ 3z1og3 2-1dz=0.734 ... , 
210g3 0 k:;:':2 2 

and so an '" B(n) ~ ion-log32::::::! 0.734n-O.631. 

Another interesting question was triggered by Hosking [23] and solved in [27]: 
Assume that we draw n random numbers (independently) according to the Cantor 
distribution. What is the expected value of the minimum of them? If one would 
draw from the interval [0, 1] according to the uniform distribution, then it is fairly 
easy to see that it is l/(n + 1). If we call that minimum an, we get 

ao:= O. 

This recursion is obtained by observing that the minimum is obtained from one of 
the random strings starting with a zero, provided there is one. In the rare event 
that all strings start with 2, this first digit contributes 2/3 (additively), and the 
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minimum is sought from all the n participants. Rearranging the recursion and 
introducing the exponential generating function A(z) := 2:k~O akzk /k!, one finds 

Now we introduce, following Knuth [28], the function A(z) := A(z)/(eZ - 1) = 

2:k~O o'k zk / k! and get 

from which one finds 

A 1 A 2 1 
A(2z) = -A(z) + ---

3 3 eZ + l' 

A 2 Bn+1 2n+1 - 1 
a - - - ----....,..-­

n - 3 n + 1 2n _.1 ' 
3 

with Bernoulli numbers Bn. Hence one gets the explicit solution 

a = _ ~ ~ (n) Bk+1 2k+1 - 1. 
n 3 ~ k k + 1 2k _ .1 

k=O 3 

In order to study the asympotic behaviour of that quantity one can use Rice's 
method [15], which is related to Mellin transforms, and eventually write 

2 1 1 (-I)nn! 2Z - 1 a = - . - - z( 1 - z dz 
n 3(n+l) 27ri c z(z-I) .. . (z-n)( ( ))2z-1_~' 

where the contour C encloses the poles 1,2, ... , n - 1 and no others. Deforming 
the contour of integration reduces the problem to the computation of residues; the 
dominant ones are the solutions of 2z - 1 - ~ = 0, i. e., 1 -log2 3 + 2k7ri/ log 2, for 
all k E Z. Eventually one finds, apart from a periodic function as above, that 

Another type of moments are Cantor's singular moments: Consider the unique 
non-decreasing function on [0 , 1] such that , if x = 2 2:j ?:l t j 3- j with tj E {O, I}, 
then F(x) = I: j ?:l t j 2- j . It was a question in the problem section of the American 
Mathematical Monthly [6] to compute the moments; the following solution came 
out: 

n 2 n + 1 Bj 11 n ( ) 
I n = 0 (F(x)) dx = 3(n + 1) f; j 3· 2j-1 - 1 for n ?: 1 and Jo = 1; 

the case n = -1 was left open and treated by me in [41]: Since one can show that 
J- 1 = I:n~o I n , and, again by Rice's method, 

I n = ~ . ~ J-!+i<Xl r(n + l)r(1 - s) ((1 - s) ds, 
3 2m -Li<Xl r(n + 2 - s) 3.28 - 1 - 1 

2 
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one finds 

~ J _ J, 2 1 l-!+ioo r(N + 2)r(1 - s) ((1 - s) 
~ n- 0+-·- ds 
n=O 3 27ri -!-ioo r(N + 2 - s)s 3.28 - 1 - 1 

_ ~ . _1 l-!+ioo r(2)r(1 - s) ((1 - s) ds 
3 27ri -Lioo r(2-s)s 3 . 28 - 1 -1 . 

2 

Now we perform the limit N -4 00 and get eventually (the computations are not 
displayed here): 

4 2 1 ~~+iOO 1 2k 8 
I n = - + - 3-k . - - ds L 3 3 L 27ri 3 ioo s(s-1)(m) n2:0 k,m2:1 "2-

1 2 (2)k = -"3 + "3 L "3 H2k = 3.3646507281 00925 1608389349 6289 ... , 
k2:1 

with harmonic numbers Hn = L1:5k:5n ~. 

More general results of this type are currently worked out in collaboration with 
F. Bassino [1). 

10 Von Neumann's addition algorithm 

This brief description is based on a recent paper with Heuberger [21). 
Knuth [29) has analyzed von Neumann's addition algorithm: Assume that two 
integers are given in q- ary notation, say ( ... Y2Y1YO)q and ( ... Y2Y1YO)q; then the 
integer ( .. . S2S1S0)q with Si = (Xi + Yi) mod q is formed, as well as ( ... C2C1Co)q 
(the carries), where Ci+1 = [Xi + Yi ~ q). The process is iterated by adding 
( ... S2S1S0)q with Si = (Xi + Yi) mod q and ( ... C2C1CO)q until the string of carries 
contains only zeros. Knuth studied the average number of iterations, assuming two 
random integers with n digits. The result is rv logq n; it turns out that the longest 
subsequence of the form . .. i(q - 1)(q -1) ... (q - 1)j ... with i # q - 1 and j ~ q 
in ( ... (X2 + Y2)(XI +yt}(xo + YO)) q is responsible for the number of iterations. We 
extended Knuth's results to other positional number systems, namely for the basis 
q and the set of q digits {d, d+1, ... , d+q-1}. Note carefully that carries might now 
be ±1 and that the sequence of sums might be oscillating, being smaller or larger 
than the true value of the sum of the two integers. This is in sharp contrast to the 
traditional q- ary system, where the sums are monotonically increasing until the 
algorithm stops. Thus it is perhaps natural that the description of subsequences 
being responsible for the number of iterations is significantly more complicated. 
Here is an example for q = 5, d = -1, and I = -1: 

The generating function where the coefficient of zn counts the number of pairs of 
integers of length :s: n, such that :s: k + 2 iterations are necessary, is given by 

G:5k(z _ so(z) + (z/q)kr1(z) + (z/q2)k r2 (z) + (Z2/q3)kr3 (z) 
) - (1- z)so(z ) + (z/q)kS1(z) + (z/q2)k s2 (z) + (Z2/q3)ks3(Z) ' 



Digits and Beyond 373 

(1211113)(5,_1) = ( ... X2XIXO\5 ,-1) = 21108 
(2210123)(5,_1) = ( ... Y2YIYOb ,-1) = 36863 
(3131331)(5,_1) = ( ... Z2Z1Z0)(5,-1) = 45591 
(1101010)(5,_1) = ( ... C2ClCob,-1) = 12380 

(1333311)(5,_1) = ( ... Z2Z1Z0)(5 ,-1) = -3929 
(11010100)(5, _1) = ( ... C2CICO)(5,-1) = 61900 

(13323111)(5,_1) = ( . . . Z2Z1Z0)(5 ,-1) = 135971 
(10001000)(5,_1) = ( ... C2CICO)(5,-1) = -78000 

(03321111)(5,_1) = ( ... Z2Z1Z0)(5,-1) = 57346 
(00010000)(5,_1) = ( . . . C2CICOb,-1) = 625 

(03331111)(5,_1) = ( ... Z2Z1Z0)(5,-1) = 57971 
(00000000)(5,_1) = ( ... C2CICO)(5 ,-1) = 0 

where so(z ) = _2q 4(q - 1)(q2 - z(l - d))(q2 - z(q + d)). The terms Tl(Z), T2(Z) , 

T3(Z), Sl(Z), S2(Z), S3(Z) are polynomials in z, q, d which are independent of k. 

From this one can derive, essentially by bootstrapping, approximations, and Mellin 
transforms, that the expected number tn of carry propagations satisfies 

tn = logq n + logq 6 + -1 'Y + ~ + 'ljJ(1ogq n + logq 6) + 0 (10g4 n) , 
ogq 2 n 

h J: - (q3+(2d-2)q2+(2d-l)(d-l)q-(d-l)d)(q-l)(q+l) d 0/.( ) . . . d' 
were u - 2(qLq-d)(q2+d-l) an 'P x IS agam a peno IC 

function. 

For the instance of the symmetric signed digit expansion, one can also perform 
such an analysis, but this is more involved, and we refer to the original paper. 

11 Mergesort 

Because of space restrictions, we cannot describe the algorithm and/or any details. 
Basically, there is a top-down version where one needs to study functions like 

( ) ( k+1 ) '" 2j '" (1 - bj ) (2j - (bj - 1 ... boh) 
k+1n-22 -1 +2 ~ +2 ~ , 

O::;j::;k l2J'hJ + 2 O::;j::;k (l2J+d + 1)( l2J+d + 2) 

where (bk ... boh is the binary representation of n. This can be efficiently done 
by a method introduced by Flajolet and Golin [8]. This worked well because such 
quantities were obtained by so-called divide- and- conquer recursions. 
The bottom-up version that I studied with Panny [37] led to even more involved 
expressions, and no divide-and-conquer recursions were available, so we had to 
resort to some Delange type analysis. More recently, Hwang and his coworkers [2] 
developed techniques to deal with quite general versions of Mergesort, including 
the top-down and bottom-up variants; further mergesort papers of Hwang's can 
be found on his homepage http://algo.stat.sinica.edu.twj. 
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12 Jump interpolation search trees 

Giintzer and Paul have used symmetric signed digit representations for the classical 
case q = 2 to construct a data structure that they called jump interpolation search 
trees [20]. All numbers with representations of length ~ n are in the tree, and 
the number 0, its length being zero; it serves as the root. Node y is a child of 
node x, if the least significant nonzero digit in y is replaced by 0, resulting in 
x. Thus, the depth of a node is the number of nonzero digits. This construction 
can be verbatim translated to the case of general even q. The computations are 
analogous to the ones in [40]. The admissible words allow the representation 

E+ (~+L+ T +£)(L~ +o~ +£:y +O-;q +L+£+Or 

with L = {I, ... , ~ - I} and £ = {-~ + 1, ... , -I}, 
To mark the length of the representations by z and the depth by u, we replace L 
and £ by (~ - l)zu, ±5i. by zu, and 0 by z, and of course 1* by 1/(1 - I). The 
coefficient of zn then reFers to words of length n; since we are interested in words 
of length ~ n, we divide the result by 1 - z and obtain 

1 + (-1 + 2u)z - u(uq - 2u + 2)z2 
(6) 

(1- z)(1 + (2u - 1 - uq)z - u(uq - 2u + 2)z2)· 

From this, we get first, by setting u = 1, that the number of words of length ~ n 
is given by 

q2 q _ 2 
--;---_---:-:-_--:-qn + ---;-_--:-
(q+l)(q-l) 2(q-l) 

q (_I)n 
2(q+l) . (7) 

Differentiating (6) with respect to u, and then setting u = 1 leads to 
zq(1-z+(q-2)z2) d h ffi . f n· .. . b (1-z)(1+z)2(1-zq)2' an t e coe Clent 0 z In It IS gIven y 

[ q(q2_2) q(q2_q+2) ] n q(q - 2) [~ (q2+3q+6)q] ( l)n () 
(q-l)(q+l)2 n + (q-l)2(q+l)3 q + 4(1 _ q)2 - 2(q+1)2 n + 4(q+l)3 - . 8 

Taking the quotient of (8) and (7) gives us then that the average depth of a random 
node in the tree is 

q2 _ 2 q2 - q + 2 
~q(-q +----:-:-1) n - q(q + 1)2(q _ 1) + 0(1); 

for q = 2, we get again the old result n/3 from [20]. 
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Growth Rate and Ergodicity Conditions for 
a Class of Random Trees 

Guy Fayolle, Maxim Krikun 

ABSTRACT: The main substance of the paper concerns growth rate and clas­
sification (ergodicity, transience) of a family of random trees. In the basic model, 
new edges appear according to a Poisson process of parameter A and leaves can 
be deleted at a rate f-l. The main results lay the stress on the famous number e. 
A complete classification of the process is given in terms of the intensity factor 
P = AI f-l: it is ergodic if p :::; e-1 , and transient if p > e-1 . There is a phase transi­
tion phenomenon: the usual region of null recurrence (in the parameter space) here 
does not exist. This fact is rare for countable Markov chains with exponentially 
distributed jumps. A theorem, much of ergodic type, is derived for the height of 
the tree at time t, which in the transient case is shown to grow linearly as t --> 00, 

at a rate explicitly computed. 

1 Introduction and model description 

So far, very few results seem to exist for random trees as soon as insertions and 
deletions are simultaneously permitted (see e.g. [9]). We shall study one of the 
simplest models in this class, which offers both interesting and non trivial proper­
ties. Broadly speaking, one might think of a vertex as being a node of a network 
(e.g. the Internet) or of some general data structure. This paper is a self-contained 
continuation of [8). 

Let G = {G(t), t ~ O} be a continuous time Markov chain with state space the 
set of finite directed trees rooted at some fixed vertex Vo. Throughout the study, 
the distance between two vertices is the number of edges in the path joining them, 
and the height h( v) of a vertex v is the distance from the root. The set of vertices 
having the same height k form the k-th level of the tree, the root Vo being at level 
O. Hence the height of G is a stochastic process {Hc(t), t ~ O}, where 

Hc(t) ~ max h(v). 
vEC(t) 

Wherever the meaning is clear from the context, the subscript G will be omitted, 
and we simply write H. The indegree of a vertex v is the number of edges starting 
at v and a vertex with in degree 0 is a leaf. Finally, we will also need the classical 
notion of subtree with root v, which goes without saying. 

At time t = 0, G(O) consists of the single vertex Vo. Then at time t > 0, the 
evolution rules on G mimic those coming in ordinary birth and death processes, 
and they are quite natural. Indeed the transitions are of two kinds 

• Adjunction. At each vertex v, a new edge having its origin at v can be 
appended to the tree at the epochs of a Poisson process with parameter 
A > O. In this case, the indegree of v is increased by one and the new edge 
produces a new leaf. 

B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
© Springer Basel AG 2002
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• Deletion. From its birth, a leaf (but the root) can be deleted at a rate /-1. In 
other words, a vertex as long as it has no descendant has an exponentially 
distributed lifetime with parameter /-1 ~ o. 

1.1 Organization of the paper and main results 

Section 2 is devoted to the birth and death model described above, with A, /-1 > o. 
An exact and complete classification of G is given. Indeed, necessary and sufficient 
conditions are derived for the process to be ergodic (/-1 ~ Ae) or transient (/-1 < Ae). 
A phase transition phenomenon is enlightened, which corresponds precisely to the 
absence of a null recurrence region. The main outcome of section 3 is a general 
theorem for Hc(t), much of ergodic type. It shows in the transient case that 
Hc(t) has a linear gows rate b, as t ----+ 00. In the particular case /-1 = 0 (pure 
birth-process), one rediscovers the known result b = Ae (see [3, 10]). 

2 Classification of G (t) in the birth and death case 

The random tree G evolves according to the rules given in the introduction, and the 
first important question is to find exact conditions for this process to be recurrent 
or transient. The main results are stated in Theorem 2.2. 

For convenience, we define the lifetime Tv of an arbitrary vertex v, which measures 
the length of the time interval between the birth and the death of v (for consistency 
Tv = 00 if v is never erased). 

Lemma 2.1. All vertices, but the root, have the same lifetime distribution p(t), 
which satisfies the following system (S) 

(3(t) = /-1exp{ -A fat (1 - p(x))dx} , 

(3(t) = d~~t) + lot (3(t - y)dp(y), 

with the initial condition p(O) = O. 

(1) 

(2) 

Sketch of proof: Let v be a particular vertex of G(t) and consider the related 
random subtree with root v. Its evolution does not depend on anything below 
v, as long as v exists. Therefore all these subtrees are identically distributed 
and, accordingly, their vertices have the same lifetime distribution. To capture 
more precisely the evolution of the process, we introduce two important random 
variables associated with each vertex v: 

• tv, the proper time of v, such that v appears at tv = 0; 

• X(t v ), the number of direct descendants of v (i.e. who are located at a 
distance 1 from v). 

At rate A, a vertex v produces descendants whose lifetimes are independent, with 
the common distribution p(t). As soon as X(tv) = 0, v can die at rate /-1, in which 
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case the process of production stops. It is actually useful to extend X(tv ) for all 
tv 2: 0 by deciding that, instead of deleting v, a J-l-event occurs without stopping 
the production of descendants. With this convention, the number of descendants 
of the root vertex Vo evolves as X(t), for all t 2: o. 

Let Tv denote the random epoch of the first J-l-event, which is distributed according 
to p(tv).Clearly the process X is regenerative with respect to the J-l-events. Thus 
that the random variables X (tv) and X (Tv + tv) have the same distribution. 

For any fixed tv, we write down a sum of conditional probabilities, expressing the 
fact that v had exactly k descendants, who all have died in [0, tv], their birth­
times being independent and uniformly spread over [0, tv]). This yields equation 
(1), putting (3(t) ~ J-lP{X(tv) = o}. 

As for equation (2), we note that the process X is regenerative with respect to 
the J-l-events, and hence the random variables X(tv ) and X(Tv +tv) have the same 
distribution. • 

Theorem 2.2. 

(A) The Markov chain G is ergodic if, and only if, 

(3) 

(B) When the system is ergodic, the mean lifetime m ~ E( Tv) is given by 

where r :s: 1 denotes the smallest root of the equation 

(4) 

and represents the mean number of descendants of an arbitrary vertex at 
steady state. 

1 
(C) When p > -, then the system is transient. In this case, 

e 

lim p(t) ~ £ < l. 
t--->oo 

As a rule, x being the positve root of xeX = p-l, we have for any p 

and lim p£ = l. 
p--->oo 

The proof of the theorem is spread over the next two subsections. 



384 Guy Fayolle, Maxim Krikun 

2.1 Ergodicity 

Relying on the standard theory of Markov chains with countable state space (see 
[4, vol. I]), we claim the system ergodic if, and only if, m < 00 . As a matter of 
fact, the f.t-events are regeneration points for the process X(t), which is precisely 
the number of descendants of the root Vo. Hence when E(Tv) < 00 (i.e. f3( 00) > 0) , 
the event {X (t) = O} has a positive probability, so that G is ergodic. Conversely, 
if E(Tv) = 00 then X(t) is transient and so is G. 

For an arbitrary positive function f, denote by 1* its ordinary Laplace transform 

1*(s) ~ 100 e- st f(t)dt, ~(s);::: o. 

Later on we will also need the associated inversion formula (see e.g. [5]) 

1 l a +ioo 
f(t) = -. est 1*(s)ds, 

2Z7T a-ioo 
~(a) > O. (5) 

To show the necessity of condition (3), suppose G is ergodic. In this case, by (1), 
the quantity lim f3(t) does exist and, applying relations of Abelian type (see 

t-->oo 
e.g. [5]) in equations (1) and (2), we obtain easily 

As for the sufficiency of (3), we have to get a deeper insight into system (8). There 
two main steps. 

(a) Although (8) reduces to a second order nonlinear integro-differential equa­
tion, this does not help much. What is more useful is that all derivatives p(n) (0) , 
f3(n) (0) , taken at the the origin in the complex t-plane, can be recursively computed 
for all n. This can be checked at once, rewriting (1) in the differential form 

d~~t) + '\(1 - p(t))f3(t) = O. (6) 

Noticing the derivatives pen) (O)-resp. f3(n) (O)-have alternate signs when n varies, 
it is direct to verify that f3 and p are analytic functions around the origin, and 
that their respective power series have a non-zero radius of convergence. The 
first singularities of p and f3 are on the negative real axis, but not easy to locate 
precisely. Thus (8) has a solution, which is unique, remarking also that uniqueness 
is a mere consequence of the Lipschitz character of dp(t)/dt with respect to f3 in 
the Volterra integral equation (2) (see e.g. [1]). En passant, it is worth noting 
that the solution in the whole complex plane-which is not really needed for our 
purpose- could be obtained by analytic continuation directly on system (8). 

(b) When (3) holds, the next stage consists in exhibiting a non-defective prob­
abilistic solution p(t) [necessarily unique by step (a)], with a finite mean m < 00. 

This is more intricate and is achieves by means of a converging iterative scheme. 
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Consider the system 

(3o(t) /L, t 2: 0, 

dpk(t) t 
~ + Jo (3k(t - y)dpk(Y)' 

/Lexp{ -Alt (1 - Pk(y))dy}, 

(7) 

Pk(O) 0, Vk 2: O. 

The second equation in (7) is equivalent to 

* ( ) (3'1. (s) 
sPk S = 1 + (3'1. (s) , (8) 

allowing to derive Pk from (3k by means of (5) (see also [4] for various inversion 
formulas in the real plane). Then computational algorithm is reasonably simple: 

1. po(t) = 1 - e-p.t. 

2. Compute (31(t) = /Lexp[-p(l- e-p.t)]. 

3. Compute Pl(t), then (32(t),P2(t), etc. 

At each step, the successive Pk'S are non-defective probability distributions, with 
finite means denoted by mk . Indeed, one has to check first that the right-hand 
side of (8) is the Laplace transform of a positive measure, since a priori it does not 
correspond to a completely monotone function, according to the classical definition 
of [4]. The scheme (7) enjoys two nice properties. 

(1) It is monotone decreasing: the positive sequences {Pk(t), (3k(t), k 2: O} are 
uniformly bounded and non-increasing for each fixed t. Consequently, 

p(t) = liffi""Pk(t) and (3(t) = lim",,(3k(t) 
k-+oo k-+oo 

form the unique solutions of (S). 

(2) Letting rk ~ Amk and combining the two main equations of (7), we get 

rk+l = perk, Vk 2: 0, with ro = p. 

When p ::; e- 1, the rk 's form an increasing sequence of positive real numbers, with 
a finite positive limit r satisfying equation (4). Since 1-Pk (t) is also an increasing 
sequence of positive functions, the theorem of Beppo Levi ensures the equality 

100 100 r 
(1 - p(t))dt = lim (1 - Pk(t))dt = lim mk = -. 

o k-+oo 0 k-+oo A 
(9) 

It is worth to point out that (7) is equivalent to the construction of a sequence of 
trees {Gk' k 2: O}, such that, for any finite k, G k is ergodic and has a height not 
greater than k. 

This completes the sketch of proof of points (A) and (B) of Theorem 3. 
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Remarks One could have considered the scheme 

'O(t) /Le- At , t 2: 0, 

dqk(t) t 
-;It + Jo Ik(t - y)dqk(Y), 

/Lexp{ -A lot (1- qk(y))dy}, 

(10) 

IHI (t) 

which differs from (7) only by its first equation, but this difference is crucial and 
corresponds to a fictitious function q-l (t) = 0, Vt 2: o. 
Actually, the scheme (10) produces a sequence of trees {Lk' k 2: O}, with the 
property that the leaves of Lk at level k never die, and the following is true: 

• the qk's form an increasing sequence of defective distributions; 

• for all k 2: 0, the tail distribution of qk dominates a defective exponential 

distribution with Laplace transform of the form bakbk ; 
k+ 8 

• under condition (3) , we have 

lim ak = I, lim bk = ~ 
k--->oo k--->oo r 

and qk converges in Ll to the proper distribution p. 

Actually, the scheme (10 is useful to analyze the transient regime, and it plays a 
decisive role in the forthcoming lemma 2.3. 

2.2 Transience 

It turns out that the classification of the process for p > e- 1 can be obtained 
rather straightforwardly from analytic arguments. 

Recalling that C = lim p(t), we define 
t-+oo 

c(t) ~ A lot (C - p(x))dx. (11) 

A direct computation yields 

(3*(8) = /L 1000 
exp[-(c(t) + (A(l- C) + 8)t)]dt, 

together with the functional equation 

C + (C -1)(3*(8) 
1 + (3* (8) 

(12) 
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When p > e-1 , one can show that necessarily C < I, which is tantamount to saying 
the system is transient. 

The last point concerns an exact computation of C. This is a difficult task, involving 
a forest of technicalities. In fact one can hardly expect more than approximate 
formulas. Hereafter, we pick out some salient results (both formal and concrete) 
yielding some interesting bounds for C. 

2.2.1 Formal approach 

Using the definition (11), it appears that the right-hand side member of (12) 
can be analytically continued to the region R(s) < -,\(1 - C). Thus an analysis 
of singularities becomes theoretically possible, which should hopefully allow to 
compute £. 

Owing to the inversion formula (5), we can rewrite (12) in the functional form 

1 l a +ioo [-,\ l a +ioo estds ] 
- .- est(3*(s)ds = f-lexp -.- 2 * ' 
2Z1f a-ioo 2m a-ioo S (1 + (3 (s)) 

R(a) > O. (13) 

Arguing by analytic continuation in (13), it is possible to prove, that (3* (s) is a 
meromorphic function with real negative poles. Hence, (3(t) can be represented by 
the Dirichlet series 

(14) 

where C is a constant, the ai's form a sequence of positive increasing numbers 
satisfying 

,\ 
a· > Vi >_ 0, 

t 1 + (3* (0) , 

and the ui's are ad hoc residues. In the ergodic case (3* (0) = 00 and the first 
term in (14) reduces to the constant C. Then, £(t) could be obtained by formal 
inversion of (3* (s). Alas, the computation becomes formidable and we did not get 
an exact tractable form (if any at all !) for C, since this is equivalent to compute 
ui,ai,i:::: O. 

2.2.2 Bounds and tail distribution 

Beforehand, it is worth quoting some simple facts. First, the value of f. does solely 
depend on p, as can be seen by scaling in system (1- 2). Secondly, combining (1) 
and (2) leads to the inequality 

(3(t) ~ f-l - '\p(t), 

whence immediately 

(15) 
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The iterative scheme (10) is convergent for all p, but the distributions qk(t), k 2 0, 
are defective, their limit being proper if and only if p ~ e-1. When p > e-1, the 
limiting function p( t) remains defective and 

lim p(t) = lim lim qk(t) = £ < 1. 
t->oo k->oo t->oo 

Showing by induction that qk(t), for large t, dominates an exponential distribution, 
we can derive bounds on £. The tail-ordering stated in the forthcoming lemma 
gives, quite pleasantly, the exact value £ = 1, when p ~ e-1 . 

Lemma 2.3. 
(16) 

where the sequence (ak' bk) satisfies the recursive scheme 

{ 
( -Aak) ak+lbk+l = J.texp ---,;;;- , 

bkH (1 - ak+d = A(1 - ak), 

(17) 

with ao = J.t/(A + J.t) and bo = A + J.t. 
Setting a ~ lim ak and b ~ lim bk in (17), one has the limits 

k->oo k->oo 

{
a = 1 b = ~ if , r' 

a = x, b = A, if 
(18) 

where x ~ 1 is the root of the equation 

1 
xex =-

p 
(19) 

Subsidiary comments The method of schemes to analyze nonlinear operators 
in a probabilistic context is extremely powerful (see e.g. [21 for problems related to 
systems in thermodynamical limit), and in some sense deeply related to the con­
struction of Lyapounov functions. Up to sharp technicalities, the schemes (7) and 
(10) can be exploited to derive precise information about the speed of convergence 
as t ----t 00, for any p, 0 < p < 00, and when pushing exact computations slightly 
farther, one perceives underlying relationships with intricate continued fractions. 
Finally, we note that the question of transience could be studied from a large de­
viation point of view, by considering c(t) as the member of a family indexed by 
the parameter (p - e- 1). 

3 An ergodic theorem for H (t) 

The key result of this section is a limit theorem for the height of the tree, which 
indeed is of special interest when the system is transient. 
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For every integer k and all t > 0, define the quantities 

{

Xk(t) ~ :{ v E G(t) : h(v) = k}, 

Yk(t) def LXJ(t)n{t::;r}' 
J=k 

389 

Thus Xk(t) represents the number of vertices at level k in the whole tree at time t. 

Let 
b( ) ~ ~ 1 [A(l - SP*(S))] s,c + og . 

c S 

Theorem 3.1. With probability 1, 

lim H(t) = 8, 
t-+oo t 

where 8 is the unique positive solution of the system 

b(s ,8) = ab~~ 8) = 0. 

In the ergodic case 8 = 0. 

The proof needs three intermediate lemmas. 

Lemma 3.2. Define the events 

Ae = {liminf H(t) ~ c}, 
t-+oo t 

Be = {lim sup H(t) ~ c}. 
t-+oo t 

(20) 

Then P{Ae} = n{Ac} and P{Be} = n{Bc}' In other words, Ae and Be satisfy a 
zero-one law and can only be trivial events (i.e. sure or impossible) . 

Lemma 3.3. 

(i) If, for some integer n and real number c > 0, E[Yn(n/c)] > 1, then 

00 

(ii) If, for some n and real number c > 0, L E[Xkn(kn/c)] < 00, then 
k=O 

Sketch of proof: The result follows from the relations 

P{Ae I G(to) = Go} ~ P{Ae}, 

P{Be I G(to) = Go} ~ P{Be}. 

• 
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Lemma 3.4. With b(s, c) defined in (20), the two following transforms hols: 

__ 1_10"+ioo enb(s,c) [1- sp*(s)] 
E[Yn(n/c)]- 2' >'(1 *( )) ds, Z7r O"-ioo S - - sp s 

in the region U ';;J {a> 0, a> >'(1 - ap*(a))}; 

00 1 10"+iOO d L E[Xkn(kn/c)] = -, ~ [1- enb(s,c)r 1 , 

k=O 2z7r O"-ioo S 

in the region V ';;J {a> 0, a> >'(1- ap*(a))eO"/c} , 

(21) 

(22) 

The proof of Theorem 3 follows from the above lemma, remarking that when the 
system is ergodic, lims->o b( s , c) = log >.m = log r :::; 0, which yields t5 = ° as might 
be expected, • 

As a by-product, we state the following corollary, of which the almost sure con­
vergence part has been derived in [3, 10] through different and less terse methods. 

Corollary 3.5. In the pure birth case f1, = 0, almost surely and in L 1 , 

lim H(t = >.e. 
t->oo t 

(23) 

Proof: Since here 
EXn(t) = (At;n, 

n. 
a direct use of criteria (i) and (ii) of lemma 3.3 yields the first part of (23). On 
the other hand, the function EH(t) is superadditive, namely 

EH(s + t) ;::: EH(s) + EH(t), 

so that, by a variant of Kingman's theorem (see [7]), the limit lim EH(t) does 
t->oo t 

exist. Consequently, the convergence in L1 in (23) will follow if one can show 

EH(t) :::; At, \It > 0, 

for some positive finite constant A. Using the obvious inequality 

we can write 

Then, taking m = r >.etl and using Stirling's formula, we obtain 

v>:ei 
EH(t) :::; Aet + y'27f . 

27r(e - 1) 
(24) 

• 
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Ideals in a Forest, One-Way Infinite Binary 
Trees and the Contraction Method 

Svante Janson 

ABSTRACT: The analysis of an algorithm by Koda and Ruskey for listing 
ideals in a forest poset leads to a study of random binary trees and their limits as 
infinite random binary trees. The corresponding finite and infinite random forests 
are studied too. The infinite random binary trees and forests studied here have 
exactly one infinite path; they can be defined using suitable size-biazed Galton­
Watson processs. Limit theorems are proved using a version of the contraction 
method. 

1 Introduction 

The vertices of a rooted forest may be regarded as a poset in a natural way, with 
the roots being the minimal elements. Consider the family of all ideals (or down­
sets) of this poset. If the forest consists of trees Tl, ... ,Tk, then the ideals are the 
sets of the form VI U ... U Vk, where each Vi is either empty or the vertex set of a 
rooted subtree of Ti . 

Koda and Ruskey [11] described two algorithms for listing the ideals of a forest 
poset in a Gray code manner, i.e. such that consecutive ideals differ by exactly 
one element. (For background and applications, see [11]. For actual implemen­
tations, see Knuth [10].) We are here concerned only with their first algorithm, 
Algorithm Pin [11]. Since the algorithm operates on ordered forests, we assume 
from now on that all forests and trees are rooted and ordered. 
As noted in [11], the running time per ideal of Algorithm P, i.e. the total running 
time divided by the number of ideals listed, is not bounded. However, it is conjec­
tured in [11 , Section 6] that the expected running time per ideal for a randomly 
selected rooted tree on n vertices is bounded as n ~ 00. 

In the present paper, we study random ordered rooted trees, and verify the con­
jecture of [11] in this case. (As pointed out by a referee, the conjecture in [11] is 
really stated for random rooted trees; the algorithm operates on ordered trees, but 
the probability distribution depends on whether the ordering is imposed before or 
after the random selection. Presumably, the result holds for random rooted trees 
and other families of simply generated trees too.) Moreover, we show that both 
the expectation and the distribution of the running time per ideal converges as 
n ~ 00 (without further normalization). 
The proofs use a version of the contraction method, which earlier has been used 
to study many other algorithms, see e.g. [16, 17, 18, 19]. The present application 
includes some novel features, however, which we find at least as interesting as the 
results themselves. Thus, although the paper exclusively studies Algorithm P, it 
should mainly be seen as an example illustrating a method that we hope may be 
useful for the study of other algorithms as well. 
In the proofs we find it convenient to transfer the problem to an equivalent one 
for random binary trees, see Section 3. Note that we consider random binary trees 

B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
© Springer Basel AG 2002
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with the uniform distribution over all binary trees of a given size (sometimes called 
Catalan trees), in contrast to the binary search trees that appear in connection 
with other applications of the contraction method (in particular, Quicksort). The 
distributions are quite different, with the uniform binary trees studied here tending 
to be much more unbalanced and stringy, which leads to new phenomena. 

In the present case (unlike the case of binary search trees), there is a natural 
limit of the random binary tree as its size tends to infinity; this is a non-trivial 
infinite random binary tree. Similarly, there is an infinite random forest that is 
the limit of the random ordered rooted forest. We study these infinite trees and 
forests in Sections 5 and 6 and show that the cost per ideal can be defined (a.s.) 
for these infinite objects too, in such a way that its distribution is the limiting 
distribution of the cost per ideal for finite random forests. This enables us to 
deduce some properties of the limiting distribution. For example, we show that 
the distribution is continuous (Theorem 5.10). It is, however, an open problem 
whether it is absolutely continuous. 

The infinite random forests and binary trees studied here have exactly one infinite 
branch. They can be defined using a size-biased Galton-Watson branching process, 
see Section 5. We include some further comments on the structure of these infinite 
objects in Sections 5 and 6. 

Acknowledgement. I thank Donald Knuth for suggesting this problem. 

2 Preliminaries 

We let IFI denote the number of vertices in a forest, or tree, F. If T is a tree, we 
let T* be the forest obtained by deleting the root, letting the children of the old 
root be the new roots. Thus IT* I = ITI - 1. 
Denote the number of ideals of a forest F by N (F). If F consists of the trees 
T1 , ... , Tm , then 

m 

N(F) = IT N(Ti). (1) 
i=l 

In particular, N(0) = 1. Moreover, it is easily seen that if T is a tree, then 

N(T) = 1 + N(T*). (2) 

Note that (1) and (2) together determine N recursively. It is easily seen by induc­
tion, or directly, considering the ideals consisting of paths from the root and the 
empty ideal, that 

N(F) 2 IFI + 1. (3) 

We let W(F) denote a measure of the running time (work) of Algorithm P on a 
forest F. Of course, the actual running time depends on details in the implemen­
tation, but we make a precise definition as follows, using the descriptions in the 
proof of Lemma 3.1 in [11]: 

If F is empty, we let W(F) = O. 
If F consists of a single tree T, then Algor i thm P lists first 0 and then all ideals of 
T*, in the order given by Algorithm P on T*, with the root of T added to each. 
The work required by the algorithm on T is therefore the same as for T*, but with 
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one extra unit for each ideal of T* (because of the added root) and two extra units 
for the additional ideal. Hence 

W(T) = W(T*) + N(T*) + 2 = W(T*) + N(T) + 1. (4) 

If F consists of several trees TI' ... ' Tk, k ~ 2, let F' = F\TI = T2 U·· ·UTk. Then 
Algori thm P first lists all ideals of T I , ignoring F', then acts in F' as if running 
on F', then lists all ideals of TI in reverse order with the first nonempty ideal of 
F' added to each, then acts in F' again, then lists the ideals of TI in order with 
the second nonempty ideal of F' added to each, and so on. Hence the ideals of TI 
are run through N(F') times (in alternating directions) with a work W(Td each 
time, while the remaining steps together are equivalent to running the algorithm 
on F', which requires W(F'). Hence 

W(F) = N(F')W(Td + W(F'). (5) 

This completes our (recursive) definition of W. (This definition of W by (4) and 
(5) was given, in an equivalent form, by Knuth [personal communication].) 

Remark 2.1. There is some arbitrariness in the definition; in particular, (4) might 
be modified to W(T) = W(T*) + aN(T*) + b for some other positive constants a 
and b. This would not cause any important differences to the results of this paper 
(although numerical values will differ); we can assume that a = 1 by dividing W 
by a, and a value of b different from 2 would cause only routine changes below. 

Note that N(F) and W(F) vary wildly among forests of the same size. The 
extreme cases are, as is easily verified by induction: 

(i) n isolated roots; N = 2n, W = 3(2n -1). 

(ii) n vertices in a path; N = n + 1, W = (ntl) + 2n = (n2 + 5n)/2. 

We therefore study Q(F) := W(F)/N(F), the work per ideal. Note that the path 
in (ii) shows that Q is unbounded (on trees as well as on forests). (N(F) and 
N(T) are studied in [8, 20], but we do not use the results there.) 
There are Cn ordered forests with n vertices, where 

c __ 1_ (2n) _ (2n)! 
n - n + 1 n - n! (n + I)! (6) 

is the n:th Catalan number, and thus there are Cn - I ordered trees with n vertices 
[9, 2.3.4.4]. 

Let Fn denote a random ordered rooted forest with n vertices, uniformly selected 
among the Cn possibilities; let similarly Tn be a uniformly selected random ordered 
rooted tree with n vertices. We can now state the main results ofthe paper, proved 
in Section 4. 

Theorem 2.2. There exists a positive random variable Q with finite mean such 
d that, as n --+ 00, Q(Fn) --+ Q and E Q(Fn) --+ E Q. 

d Corollary 2.3. As n --+ 00, with Q as in Theorem 2.2, Q(Tn) --+ Q + 1 and 
lE Q(Tn) --+ lE Q + 1. 
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Proof: By (2) and (4), 

Q(T: ) = W(Tn) = W(T~) + N(T~) + 2 = Q(T*) 1 1 - Q(T~) . 
n N(Tn) N(T:;) + 1 n + + N(T:;) + 1 

Since T~ is distributed as Fn- I , and N(T~) :::: n by (3), the results follow from 
Theorem 2.2. 
We have no explicit description of the limit distribution .c(Q), but it is charac­
terized by a fixed point equation. This fixed point equation is more complicated 
than in many other similar cases, so we postpone it to Section 5, see Theorems 
5.7 and 5.8. In Sections 5 and 6 we further show that Q may be interpreted as an 
extension of Q to random infinite forests. 

3 Binary trees 

We find it convenient to consider binary trees instead of forests, using the well­
known correspondence in [9, Section 2.3.2], which can be defined recursively as 
follows: If F = 0, then B(F) = 0. If F is a forest consisting of trees T I , ... , Tk, 
k :::: 1, then B(F) is the binary tree with a root, a left subtree B(Tt) and a right 
subtree B(T2 u··· Un). Note that IB(F)I = IFI. 
We define N, Wand Q for binary trees by this correspondence, setting N(B(F)) = 
N(F) and so on. 

It is easily seen that (1), (2), (4), (5) translate as follows: If B is a nonempty 
binary tree with left and right subtrees L and R, then 

N(B) = (N(L) + l)N(R) 

W(B) = N(R)(W(L) + N(L) + 2) + W(R). 

(7) 

(8) 

Together with N(0) = 1 and W(0) = 0, (7) and (8) define Nand W directly on 
binary trees by recursion. Taking the quotient, we further obtain 

W(L) + N(L) + 2 W(R) 
Q(B) = N(L) + 1 + N(R)(N(L) + 1) 

= Q(L) + 1 + 1- Q(L) + Q(R). 
N(L) + 1 

(9) 

Let Bn denote a (uniformly selected) random binary tree with n vertices (n :::: 0). 
Then Theorem 2.2 is equivalent to the following. 

Theorem 3.1. As n ----+ 00, Q(Bn) ~ Q and lE Q(Bn) ----+ lE Q, with Q as in 
Theorem 2.2. 

Let, for n :::: 1, Ln and Rn denote the left and right subtrees of Bn. Note that 

ILnl + IRnI = n - 1. (10) 

Let (Pn,k)~':~ be the probability distribution ofthe size of the left (or, by symmetry, 
the right) subtree of Bn , i.e. 

Pn,k := lP'(ILnl = k) = lP'(IRnl = k). (11) 
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By (10), 
Pn,k = lP'(ILnl = k) = lP'(IRnl = n - 1 - k) = Pn,n-1-k. (12) 

There are Cn binary trees with n vertices, where again Cn is the Catalan number 
(6). Hence, the number of binary trees with k vertices in the left subtree and 
n - 1 - k in the right is CkCn-1-k, and 

Stirling's formula easily yields 

Hence, uniformly for 0 ::; k ::; n/2, 

Pn,k = Ck(n -1- k)-3/2n3/222(n-1-k)-2n(1 + O(n-1)) 

= Ck4-k-1 (1 + O( k: 1)) 
= 7fk ( 1 + 0 ( k : 1 ) ) , 

where 
1· C 4- k - 1 7fk = 1m Pn,k = k , 

n--->oo 
k ? o. 

By the generating function for Catalan numbers 

~ k 1- -)1- 4z 
B(z):= LCkZ = , 

2z 
k=O 

(13) 

see e.g. [9, (2.3.4.4-13)]' we have 

(14) 

Hence (7fk)O' is not a probability distribution. This reflects the symmetry of the 
left and right sides; roughly speaking, for n large, with probability 1/2 ILnl is 
small, and with probability 1/2 IRnl is small and then ILnl ~ n. In particular, a 
large random binary tree is extremely unbalanced. We state this more precisely. 

Lemma 3.2. For each c > 0 there exists M such that, for every n, 

lP'(ILnl < M) > ! - c 

lP'(ILnl ? n - M) > ! - c 

lP'(M::; ILnl < n - M) < 2c. 

(15) 

(16) 
(17) 
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Proof: Choose MI such that 2::~Ml 7fk < E. Then, as n -+ 00, 

Ml-I 

1P'(I Lnl < M I ) -+ L 7fk > ~ - E, 

k=O 

so (15) holds with M = MI for sufficiently large n, say n ~ no. Taking M := 
max(MI,no), (15) holds for all n. Furthermore, (16) holds by (12), while (17) is 
an immediate consequence of (15) and (16). 
We can modify (7fk) to make it into a probability distribution in two ways, both 
of which will be used below. First, we can allow the value +00, giving it the 
probability 1/2 because of (14). We let e be a random variable with values in 
N* := {O, 1, ... ,oo} having this distribution, i.e. 

IP'(C = k) = {~k' 
2 ' 

0::; k < 00, 

k = 00. 

Alternatively, we can renormalize (7fk) and consider the probability distribution 
(27fk)O:Sk<oo. We let ~ be a random variable with this distribution, i.e. 

k ~ o. (18) 

Note that ~ can be defined as e conditioned on e < 00. 

With this notation, the following lemmas are immediate consequences of the results 
above. 

Lemma 3.3. Let n -+ 00. Then ILnl ~ e, as random variables in N*. D 

Lemma 3.4. Let n -+ 00. Then ILnl, conditioned on ILnl < n/2, converges in 
distribution to ~. D 

Of course, the same results hold for 1 Rn I. 

Remark 3.5. These results for the uniform random binary tree studied here 
should be compared with the corresponding results for random binary search trees, 
which have a different distribution and for which ILnl is uniformly distributed on 
{O, ... , n - I}. The stronger imbalance in our case is a source of phenomena quite 
different from the binary search tree case. 

Finally we record a simple but important observation. We let Bn be another 
(uniform) random binary tree, independent of {Bk}k=O. 

Lemma 3.6. Let 0 ::; k < n. The conditional joint distribution of Ln and Rn 
given ILnl = k equals the distribution of (Bk' Bn-I-k). 0 

In other words, conditioned on the sizes of the subtrees Ln and Rn, they are two 
independent random binary trees. 

4 Proof of the limit theorems 

We begin with a preliminary estimate, which verifies the conjecture that the ex­
pected running time is bounded. 
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Lemma 4.1. sUPn2:0 IE Q(Bn) < 00. 

Proof: Define, for n ;:::: 0, 

From (9), conditioning on ILnl and using Lemma 3.6, 

n-l n-l 
= LPn,lal + LPn,rarbn-l-r + 1 

1=0 r=O 
n-l 

= LPn,lal(l + bn-1-l) + 1 
1=0 

n-l 
~ ~ LPn,lal + 1. 

1=0 

Let a~ := maXO<k<n ak. By (19), for any M ;:::: 0, 

an ~ ~aM lP'(ILnl ~ M) + ~a~_llP'(ILnl > M) + 1 

~ 1 + ~aM + ~a~_l (1 -lP'(ILnl ~ M)). 
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(19) 

We choose M as in Lemma 3.2 with E = 0.1. Then lP'(ILnl ~ M) > 0.4 and thus, 
for all n ~ 1, 

an ~ 1 + ~aM + ~ . 0.6a~_1 = 0.9a~_1 + 1 + ~aM' 
An easy induction yields 

an ~ 10(1 + ~aM)' 

The lemma follows because IEQ(Bn) ~ an. 

n ~ o. 

We prove Theorem 3.1, and thus Theorem 2.2 and Corollary 2.3, using the Mallows 
metric d1 for probability distributions with finite expectations. (This metric is also 
known under many other names, such as the Dudley, Fortet-Mourier, Kantorovich 
or Wasserstein distance.) It has several equivalent definitions, see e.g. [15]; for us 
the following is convenient. 
If f is a real (or complex) function on 1R, let 

IlfliLip := sup If(~) - fl(Y)I. 
x#y x - Y 

If J.L and v are probability measures on IR with finite expectations, then 

(20) 
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In other words, we take the supremum in (20) over all functions f satisfying the 
Lipschitz condition If(x)- f(y)1 :::; Ix-yl· (It does not matter whether we consider 
real or complex functions.) 
If X and Yare random variables with finite expectations, we will for simplicity 
write dl (X, Y) for the dl distance between their distributions. Thus 

dl(X, Y) := sup{llEf(X) - IEf(Y)1 : IIfllLip :::; I}. (21) 

It is easily seen that dl(Xn,X) ----t 0 implies Xn ~ X and IEXn ----t lEX. (Take 
f(x) = Itl-leitx , t =1= 0, and f(x) = x.) We will show that dl(Q(Bn), Q) ----t 0 for 
some random variable Q; this thus proves Theorem 3.1. (Indeed, Theorem 3.1 is 
equivalent to dl(Q(Bn),Q) ----t 0, using the fact that dl(Xn,X) ----t 0 is equivalent 

to Xl ~ X and IE IXnl ----t IE IXI for any random variables with finite expectations.) 

Remark 4.2. That IE Q(Bn) converges could also be shown directly using a sim­
plified version of the proof below, taking f(x) = x. 

Note first that replacing f by f - f(O) does not change IE f(X) - IE f(Y). Hence 
we may in (21) further impose f(O) = O. Since then If(x)1 = If(x) - f(O)1 :::; lxi, 
we have the bound 

dl(X, Y) :::; IE IXI + IE IYI. (22) 

We now consider Q(Bn). For notational convenience we write Xn Q(Bn), 
Yn = (N(Bn) + 1)-1 and Xn = Q(Bn). Thus Xn has the same distribution as Xn 
but is independent of all Xk and Yk. Note that, by (3), 

We further define 

1 
Yo <-­

n - n+2 

Let Cl:= sUPnlEXn, which is finite by Lemma 4.1. By (22), 6N:::; 2Cl < 00. 

(23) 

Fix a function f with IIfllLip :::; 1 and f(O) = O. By (9) and Lemma 3.6, condi­
tioning on ILnl, for n 2 1, 

where 

IEf(Xn) = IEf(Q(Bn)) = IEf( Q(Ln) + 1 + 1- ~t2~)++~(Rn)) 

= ~ IEf(Q(B ) + 1 + 1- Q(Bk) + Q(Bn- l- k)) 
L:Pn,k k N(Bk) + 1 

= ~Pn,klEf(Xk + 1 + Yk(1- Xk + X n- l- k)) 
k 

= ~Pn,klEf(Un,k) 
k 

(24) 

(25) 
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We have, for 0 ~ k ~ n, 

IlE !(Un,k) I ~ lE IUn,kl ~ lE(Xk + 2 + X n- 1- k) ~ C2 := 2Cl + 2 (26) 

and 

IlE !(Un,k) -lE !(Xk + 1)1 ~ lE 1!(Un,k) - !(Xk + 1)1 

~ lE IUn,k - X k - 11 = lE !Yk(1 - X k + Xn-1-k)1 
1 ~ C2 

~lE k+211-Xk+Xn-l-kl ~ k+2' 

(27) 

Let c > 0 and let M be as in Lemma 3.2. By (26), 

I~pn' k lE !(Un,k) - ~ 1fk lE !(Un,k) ~ ~ IPn,k - 1fklc2 (28) 

and 

In-t-
2 

pn,klE!(Un,k)1 ~ C2 nf2 Pn ,k = c2lP(M < ILnl < n -1- M) 
k=M+l k=M+l (29) 

< 2C2c. 

Furthermore, 

n-l M M 

L Pn,klE!(Un,k) = LPn,n-j-1lE!(Un,n-l-j) = LPn,jlE!(Un,n-l-j) 
k=n-l-M j=O j=O 

and thus by (26) and (27) 

n-l M 

L Pn,k lE !(Un,k) - L 1fj lE !(Xn- 1- j + 1) 
k=n- l-M j=O 

M M 

~ L IPn,j -1fjlllE!(Un,n-l-j)1 + L 1fjllE!(Un,n-l-j) -lE!(Xn- 1- j + 1)1 
j=O j=O 

M M 

< C2 "Ip . -1f I + ~ "1f" - ~ n,} } n _ M ~ } 
j=O j=O 

(30) 

We define Rn by 

M M 

lE !(Xn) = L 1fk lE !(Un,k) + L 1fk lE !(Xn- 1- k + 1) + Rn (31) 
k=O k=O 

and obtain by (24) and (28)- (30), for n 2': 2M, 

(32) 
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Let No be so large that No > 2M, No > M + 1/c and IPn,k - 1fkl < c/(M + 1) 
when n 2: No for k ~ M. Then (32) yields 

n2: No. (33) 

Now suppose N 2: No and m , n 2: N . Using (31) and (33) we have 

M 

~ L 1fkllE f(Un,k) -lE f(Um,k)1 
k=O (34) 

M 

+ L 1fkllE f(Xn- 1- k + 1) -lE f(Xm- 1- k + 1)1 + 10c2c. 
k=O 

Since h(x) := f(x + 1) is a function with IlhllLip = IIfllLip ~ 1, 

IlE f(Xn- 1- k + 1) -lE f(Xm- 1- k + 1)1 ~ d1 (Xn- 1- k, X m- 1- k). (35) 

Similarly, for any given X k and Yk , the function 

has Lipschitz norm IlgllLip ~ Yk , and thus by (25) 

IlE(J(Un ,k) - f(Um,k) I X k, Yk)1 = IlEg(Xn- 1- k) -lEg(Xm-1-k)1 

~ IlgIILipdl(Xn-1-k, Xm-1-k) ~ Ykdl(Xn-1-k, Xm-1-k). 

Using the crude bound Yk ~ 1/2 and taking the expectation we have 

IlE f(Un,k) -lE f(Um,k)1 ~ lE IlE(J(Un,k) - f(Um,k) I X k, Yk) I 
~ ~dl(Xn-l-k' Xm-1-k). 

Consequently, by (34), (36) and (23), for m, n 2: N 2: No , 

M M 

IlE f(Xn) -lE f(Xm)1 ~ L 1fdON-l-k + L 1fkON-l-k + 10c2c 
k=O k=O 

M 

~ ~ON-I-M L 1fk + 10c2c 
k=O 

~ ~ON-I-M + lOc2c. 

(36) 

Taking the supremum over all f with IIfllLip ~ 1 and f(O) = 0 we find, for 
n , m 2: N 2: No, 

and thus 
N2:No· 



Ideals in a Forest and Binary Trees 

Letting N ----> 00 we obtain 

limsupbN ::; ~ limsupbN + lOc2€ 
N --tcx) N-",oo 

and thus, since lim SUPN---> 00 bN ::; 2Cl < 00, 

limsupbN ::; 40C2€. 
N--->oo 

Finally, letting € ----> 0, we obtain bN ----> ° as N ----> 00. 
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By the definition (23), this shows that (Xn)n, or rather the corresponding sequence 
of distributions, is a Cauchy sequence in the d1 metric. It is easily seen that the 
space of all probability measures on lR with finite expectation is complete with the 
metric d1 [15]. Hence there exists a limit distribution, and thus a random variable 
Q such that d1 (Xn' Q) ----> 0, which completes the proof. D 

Remark 4.3. The proof above shows that the distributions of (Xn)n form a 
Cauchy sequence, and thus converge to some limit. The limit will in the next 
section be characterized by fixed point equations. An anonymous referee has 
pointed out that, alternatively, it is possible to first define the limit distribution 
by the fixed point equation in Theorem 5.7 and then use arguments similar to 
the proof above to show that d1 (Xn , Q) ----> 0. This is the usual procedure in 
applications of the contraction method; it has some advantages in the current 
setting too but also some disadvantages, and we do not find the differences decisive. 
Anyone interested in extending the present results should consider both versions 
of the method. 

5 More on binary trees 

We begin with some more or less well-known (folk-lore?) observations on random 
binary trees. 
Define a random binary tree B* with random size by the following construction: 
Flip a fair coin. If it comes up tails, let B* be empty, otherwise begin with a root. 
In the latter case, flip the coin again twice and add a left child of the root if the first 
flip results in heads and a right child if the second flip results in heads. Continue 
in this way, flipping the coin twice for every new vertex, as long as new vertices 
are added. (Equivalently, do site percolation on the complete infinite binary tree 
by flipping a fair coin for each vertex and removing the vertices that get tails, and 
let B* be the component of the root, if any.) 
We can regard B* as the family tree of a Galton- Watson branching process with 
offspring distribution Bi(2,1/2) (and children labelled as left or right), starting 
with Bi(1 , 1/2) individuals. We thus call B* the Galton- Watson binary tree. Since 
this Galton-Watson process is critical, it a.s. dies out, and thus B* is finite. 
The probability that B* equals a given binary tree with n vertices is 2-2n- 1, since 
the vertices have to be chosen by n specified coin flips coming up heads, while 
n + 1 other coin flips have to yield tails. Hence 

(37) 

In other words, IB* I has the same distribution as ~ defined in (18). Moreover, 
the conditional distribution of B* given IB* I = n is uniform, and thus equals the 
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distribution of Bn. This yields yet another possibility of defining B*: select its 
size by (37) and then select uniformly a binary tree with this size. Equivalently, 
if ~ is independent of (Bn)':=o, we can take B* = Bt;. 
Lemmas 3.4 and 3.6 imply the following: 

Lemma 5.1. Let n -; 00. Then L n, conditioned on ILnl < n/2, converges in 
distribution to B*. 0 

Consequently, a large random binary tree has one branch at the root distributed 
(asymptotically) as B*, while the other is large. We may continue recursively with 
the large branch, which suggests the following construction. 
Define a (non complete) infinite random binary tree Boo as follows. Begin with the 
root and create an infinite path from it by randomly adding, an infinite number 
of times, either a left or a right child to the last added vertex. Finally, add 
independent copies of B* at the free sites of the vertices in the path, i.e. as left or 
right subtrees depending on which side is not already occupied by the remainder 
of the infinite path. Note that Boo has exactly one infinite path from the root; we 
call this path the trunk. 
It is easily seen that Boo can be defined by the following modification of the 
branching process above creating B*. Consider a Galton-Watson process with 
two types of individuals, mortals and immortals. Let a mortal have Bi(2, 1/2) 
children, all mortal, and let an immortal have exactly one immortal child and 
Bi(l, 1/2) mortal children. Moreover, label each child as left or right, at random 
but ensuring that two siblings get different labels. The resulting family tree is Boo. 
It is now easy to see that Lemma 5.1 implies the following description of the 
asymptotic shape of large random binary trees. Let, for any tree B, B(M) be the 
first M levels of B, i.e. the tree with all branches pruned at height M. 

Lemma 5.2. As n -; 00, Bn ~ Boo in the sense of finite-dimensional distribu-
t · . B(M) d B(M) I fi ·t M 0 wns, z.e. , n -; 00 ,or every nz e . 

Remark 5.3. If we regard the space B of all finite or infinite binary trees as a 
subset of the power set of the vertex set of the complete infinite binary tree, with 
the natural product space topology on the power set, B is a metrizable compact 
space. A metric can be defined e.g. by d(B, B') = l/(k + 1) if Band B' differ 
in the k-th level but not below it. The conclusion of Lemma 5.2 is equivalent to 

Bn ~ Boo in this compact metric space B. 

Remark 5.4. The construction of Boo is a special case of the following general 
construction of the size-biased Galton-Watson process (regarded as a family tree); 
see e.g. [1] and [13]. Starting from a Galton-Watson process with an offspring dis­
tribution J.L having finite, positive mean, the size-biased process can be obtained 
by considering a branching process with two types: mortals with an offspring dis­
tribution J.L and all children mortals, and immortals with the size-biased offspring 
distribution Ii and exactly one immortal child (in a random position among its sib­
lings). The process starts with a single immortal. In the critical case studied here 
(and in the sub critical case), the size-biased process is the same as the Q-process 
studied in [3, Section I.14]. It is shown there that this process arises as the limit 
(in the sense of finite-dimensional distributions) as t -; 00 of the original pro­
cess conditioned on extinction occuring after time t (see also [5]). Informally (for 



Ideals in a Forest and Binary Trees 405 

critical and sub critical processes), it is the process conditioned on living forever. 
Similarly, it is easily shown that for a critical Galton-Watson process with finite 
offspring variance, the size-biased process is the limit as n ----+ 00 of the process 
conditioned on the total progeny being n [7, 11. In the case ofrandom binary trees, 
this conditioning yields Bn , and we recover Lemma 5.2. 

Having proved that both the trees Bn and the functional Q(Bn) defined on them 
converge in distribution, it is natural to try to interpret the limit in Theorem 3.1 
as Q(Boo) for an extension of Q to infinite trees. Unfortunately, we cannot define 
this extension by continuity on the space B in Remark 5.3. Indeed, it is easily 
seen that for any infinite binary tree b, there is a sequence bn of finite binary trees 
such that bn ----+ b in B but Q(bn) ----+ 00; for example, construct bn by pruning b at 
height n and adding a sufficiently large complete binary tree at one of the cuts. 
(We leave the verification to the reader.) Hence, Q has no continuous extension 
to B. 
However, we can extend Q in the following, somewhat weaker, way. We let N(B) = 
00 for any infinite tree B. We further let Loo and Roo denote the left and right 
subtree of the root of Boo. Note that exactly one of Loo and Roo is finite. 

Theorem 5.5. There exists an extension of Q to infinite binary trees such that 
lE IQ(B~)) - Q(Boo)1 ----+ 0 as M ----+ 00. This extension satisfies a.s. the equation 

1 
Q(Boo) = Q(Loo) + 1 + N(Loo) + 1 (1 - Q(Loo) + Q(Roo )). (38) 

Moreover, the limit random variable Q in Theorems 2.2 and 3.1 can be taken as 
Q(Boo), i.e. Q(Bn) ~ Q(Boo) as n ----+ 00. 

We do not know whether Q(B~)) ----+ Q(Boo) a.s. as M ----+ 00. 

We begin with a lemma on truncations of finite trees. 

Lemma 5.6. Let, for M ~ 1, 

8(M) := suplE IQ(B~M)) - Q(Bn)l. 
n 

Then 8(M) ----+ 0 as M ----+ 00. 

Proof: Note first that 8(M) < 00 by Lemma 4.1 because Q(B~M)) attains only a 
finite number of values for each M. 
For any nand M ~ 1, the left and right subtrees of B~M+l) are L~M) and ~M), 
and thus (9) yields 
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Since either L~M) = Ln or ILn I > IL~M) I > M, this implies 

For any k ~ 0, by Lemma 3.6, 

Moreover, if ILnl = k ::::; M, then L~M) = Ln. Hence, 

The same estimate holds for lE IQ(R~M)) - Q(Rn)l. We thus obtain from (39), 
again letting Cl := sUPn EQ(Bn) < 00, see Lemma 4.1, 

Let Mo be as in Lemma 3.2 with E = 0.1. Then, for every M ~ Mo, we have 
lP'(ILnl > M) ::::; lP'(ILnl > Mo) < 0.6, and thus by (40) 

lE IQ(B~M+l)) - Q(Bn)1 ::::; 0.9J(M) + :. 

for every n and thus 

M~Mo· (41) 

It follows by induction that J(M) ::::; J(Mo) + 10c2, M :::: M o, and thus J := 

lim SUPM---> 00 J(M) < 00. Furthermore, (41) implies J ::::; 0.9J, and consequently 
J = O. 
Proof: [Proof of Theorem 5.5] For any M , N ~ 1, it follows from Lemma 5.2 

that Q(B~M)) - Q(B~N)) ~ Q(BLM)) - Q(B~)) as n --> 00, and thus by Fatou's 
lemma 

lE IQ(B~)) - Q(B~))I ::::; liminfE IQ(B~M)) - Q(B~N))I ::::; J(M) + J(N). 
n--->oo 

It follows from Lemma 5.6 that B~), M ~ 1, is a Cauchy sequence in Ll, and 
thus this sequence converges to a limit, which can be written Q(Boo). 
This proves the first assertion and the third follows from this and Lemmas 5.2 
and 5.6 by a standard 3E argument, see e.g. [4, Theorem 4.2]. 
For (38), we observe again that by (9) 



Ideals in a Forest and Binary Trees 407 

As M ----; 00, the left hand side converges to Q(Boo) in L1 and thus in probability 
by the first part of the theorem. Similarly, conditioned on ILool = 00, Q(Lr:!l)----; 
Q(Loo) in L1 and thus in probability, since the conditional distribution of Loo given 
that it is infinite equals the distribution of Boo. On the other hand, conditioned 
on ILool < 00, obviously Q(Lr:!l) ----; Q(Loo) a.s.. Combining the two cases, 
Q(Lr:!l) ~ Q(Loo). Similarly Q(Rr:!l) ~ Q(Roo), while N(Lr:!l) ~ N(Loo) :::; 
00 is evident. Letting M ----; 00 in (42) thus yields (38). 
We can develop (38) further. First, Loo is infinite with probability 1/2. In this 
case, N(Loo) = 00 and (38) reduces to 

(43) 

Moreover, the conditional distribution of Loo given ILoo 1 = 00 equals the uncon­
ditional distribution of Boo. 
The other possibility is Loo finite; in this case Roo is infinite and its (conditional) 
distribution equals the unconditional distribution of Boo, while Loo has the same 
distribution as B*. We rewrite (38) as 

where, for a finite binary tree B, 

1 
a(B) := -=-=N:-:-:(B=)-+-l 

(3(B) .= N(B)Q(B) + N(B) + 2 = W(B) + N(B) + 2 
. N(B) + 1 N(B) + 1 . 

We can combine (43) and (44) into the following fixed point equation. 

(44) 

Theorem 5.7. The limit random variable Q = Q(Boo) in Theorems 2.2 and 3.1 

satifies the fixed point equation Q ~ AQ + B, where (A, B) is independent of Q 
and has the distribution given by 

(A B) d {(1,1), 
, - (a(B*),(3(B*)), 

where TJ '" Bi(l, 1/2) and B* are independent. 

TJ = 0, 
TJ = 1, 

o 

We can obtain a slightly simpler fixed point equation if we follow the leftmost 
branch of Boo until we find a vertex v with a finite left subtree, i.e. until the 
infinite path makes its first right turn. (In the branching process construction 
above, we continue until the left child is mortal.) Let ( 2: ° be the height of v, and 
denote its left and right subtrees by Land R. Then, (, Land R are independent; 

( has a geometric distribution Ge(1/2); L is finite and L ~ B*; and R is infinite 

and R ~ Boo. Applying (43) ( times followed by (44), we find 

Q(Boo) = (3(L) + a(L)Q(R) + (. 

This yields the following alternative fixed point equation. 
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Theorem 5.8. The limit random variable Q in Theorems 2.2 and 3.1 satifies the 
fixed point equation Q ~ A'Q + B', where (A', B') is independent of Q and has 
the distribution given by 

where ( rv Ge(I/2) and B* are independent. o 
Corollary 5.9. The limit of lE Q(Fn) and lE Q(Bn) is given by 

lEB' lE,8(B*) +1 
lEQ=lEQ(Boo)= I-lEA' l-lEoo(B*) 

= (2 -lEoo(B*)) lEQ(B*) + 1 = lEQ(B*) + lEQ(B*) + 1. 
1 -lEoo(B*) 1 -lEoo(B*) 

Proof: Taking expectations in Theorem 5.8 we find lE Q = lE A'lE Q + lE B', which 
yields the second inequality, and the third follows by the definitions of A' and B', 
since lE ( = 1. (Theorem 5.7 leads to the same result.) 
Next, we argue as above for the finite random tree B* too. In this case, the tree 
is empty and Q(B*) = ° with probability 1/2, and otherwise Q(B*) = ,8(L*) + 
oo(L*)Q(R*), where L* and R* are independent with the same distribution as B*. 

This can be written, in analogy with Theorem 5.7, Q(B*) ~ AoQ(B*) +Bo, where 
(Ao, Bo) is independent of Q(B*) and has the distribution given by 

(A )d{(O,O), 7]=0, 
o,Bo = (oo(B*),,8(B*)), 7]=1, 

where 7] rv Bi(l, 1/2) as above is independent of B*. Taking expectations we find 

or lE ,8(B*) = (2 -lE oo(B*)) lE Q(B*), and the result follows. 
Note that the variables A, B, A' and B' are discrete and take only rational values; 
for example, A' takes the values {1/k}~2' while Band B' are unbounded. (We 
do not know whether the range Band B' is the set of all nonnegative rational 
numbers.) Since B* and the auxiliary variables 7] and ( only take count ably many 
values, with explicitly given probabilities, the distributions of these variables, and 
in particular their expectations, can in principle be determined numerically with 
arbitrary accuracy. In practice, the slow convergence of lP'( I B* I > n) to zero 
together with the exponential growth of the number of trees of a given size may 
make it difficult to attain high precision. 
We have found, using Maple, the estimates lEoo(B*) = lE(1 +N(B*))-l) ~ 0.318, 
lE ,8(B*) ~ 2.9, and lE Q(B*) ~ 1.7, which yields lE Q ~ 5.7; we have no sharp 
rigorous error bounds, however, so these values should not be taken as absolute 
truths. 
The fixed point equations imply further some qualitative properties of Q. 

Theorem 5.10. The limit random variable Q has a continuous distribution with 
support [3,(0). 
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Remark 5.11. Although A and B (and A' and B') are discrete, Q is continuous. 
Indeed, this is very general, and the proof below uses only A' -=I 0 a.s .. However, 
we have not been able to resolve whether Q is absolutely continuous, although it 
seems very plausible. Note that singular distributions may occur in this type of 
fixed point equations. For example, A = 1/3 and B rv Bi(l, 1/2) yields the Cantor 
measure (up to a scale factor). 

Proof: Let p(x) := lP'(Q = x) and suppose that p(x) > 0 for some x. Let 
Po := sUPxp(x) > o. It is easily seen that this supremum is attained, since 
LxP(x) :::; 1, so we can choose x with p(x) = Po. By Theorem 5.8, 

Po = lP'(A'Q + B' = x) = lE(lP'(Q = (x - B')/A')) = lEp((x - B')/A'). 

Since p(y) :::; Po, this is possible only if p((x - B')/A') = Po for all values of A' 
and B', but this implies that p(y) = Po for infinitely many values of y, which 
contradicts LyP(Y) :::; 1. Hence p(x) = 0 for every x, i.e., the distribution of Q is 
continuous. 
Next, it is easily shown by (7) and (8) and induction that for any finite binary 
tree B, 

W(B) 2: 2N(B) - 2. 

Consequently, 

B' > f3(B ) > 3N(B*) 
- * - N(B*) + 1· 

Hence, for any E > 0, again using Theorem 5.8, 

lP'(Q < 3 - E) = lP'(A'Q + B' < 3 - E) :::; lP'(~7;~~~) < 3 - E) 

= lP'(Q < 3 - (N(B*) + l)E) :::; lP'(Q < 3 - 2E). 

Evidently, this implies lP'(Q < 3 - E) = 0 for every E > 0, and thus Q 2: 3 a.s .. 
Conversely, let E be the support ofthe distribution of Q; by definition, E is closed. 
It follows from the fixed point equation that if x E E and lP'( (A', B') = (a, b)) > 0, 
then ax + bEE. In particular, taking B* = 0 which yields o:(B*) 1/2 and 
f3(B*) = 3/2, we find 

x E E ==> (x + 3)/2 + nEE for every integer n 2: O. (45) 

Starting with any x E E, taking n = 0 and iterating (45), we find in the limit 
3 E E. Taking x = 3 in (45), we find 3 + nEE for every n 2: O. Finally, again 
taking n = 0 in (45), we find by induction on k, that E contains every dyadic 
rational 3 + m2- k with m, k 2: O. Since E is closed, E :2 [3,00). 

Remark 5.12. Although B* is finite, its size has infinite expectation. Indeed, for 
every critical branching process, the expected size of each generation is the same, 
in this case 1/2; this follows also from the fact that each of the 2k possible vertices 
at height k appears with probability 2- k - 1 . 

In Boo, there is at height k one immortal and on the average 1/2 mortal in each 
of the k finite branches descending from the k immortals closer to the root. Hence 
the expected number of vertices at height k is k/2 + 1 and, by symmetry, each 
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of the 2k possible vertices appears with probability (k + 2)2-k- 1 . This illustrates 
that the infinite tree Boo is sparse and stringy. 
As a further illustration, consider the intersection of two independent copies of 
Boo; the expected size is I:~o 2k(k + 2)22-2k- 2 = 11/2. (This can also be seen 
by considering the two independent two-type branching processes generating the 
trees as a single branching process with 4 types representing the common vertices 
and the pairs of types there. We leave the details as an exercise.) Hence, two 
independent random large binary trees have on the average close to 5.5 vertices in 
common. 
For the finite trees Bn , and more generally for any conditioned Galton-Watson 
trees with finite offspring variance, it is known that the bulk of the vertices have 
heights of the order Vn; see e.g. [1), [2] and [14] for much more detailed results. 

6 Back to the forest 

The results on binary trees in Section 5 can be translated to results on forests 
by the correspondence discussed in Section 3, which extends to infinite forests 
and binary trees. Note that the number of trees in a forest equals the number of 
vertices in the rightmost branch of the corresponding binary tree. Again, we begin 
with some simple, more or less well-known observations. 
We let F* be the (finite) random forest corresponding to the random binary tree 
B*. The construction of B* in Section 5 shows that the number of vertices in 
the rightmost branch has the geometric distribution Ge(1/2). Consequently, the 
number of trees in F* is Ge(1/2). Similarly, the number of children of any ver­
tex is Ge(1/2), and all these numbers are independent. Consequently, F* is a 
Galton- Watson forest obtained from a Galton-Watson process with Ge(1/2) ini­
tial individuals (roots) and offspring distribution Ge(1/2). Note that this, too, is 
a critical Galton-Watson process. 
Equivalently, if T* is the Galton-Watson tree with offspring distribution Ge(1/2), 
then T* equals F* with all components joined to a common added root; conversely, 
F* = T:. 

It follows immediately that IF* I = IB* I ,g, ~ and IT* I = IF* I + 1 ,g, ~ + 1, that F* 
conditioned on IF*I = n has the distribution of Fn , and that T* conditioned on 
IT* I = n has the distribution of Tn· 
Similarly, let F 00 be the random infinite forest corresponding to Boo, and let Too 
be the random infinite tree obtained by adding a root to Foo; thus Foo = T::O. We 
can decompose the rightmost branch of Boo into the part belonging to the infinite 
path, which has 1 + Ge(I/2) vertices, and the part after it, which is independent 
of the first part and has the same distribution as the rightmost branch in B*, i.e. 
it has Ge(1/2) vertices. Hence, if (' is the total number of vertices in the rightmost 
branch of Boo, then (' = 1 + (+ (', where ( and (' are independent and Ge(1/2). 
(In the equivalent branching process construction, the rightmost branch has 1 + ( 
immortal and (' mortal vertices.) It follows that (" which also is the number 
of components in F 00 and the degree of the root in Too, has a shifted negative 
binomial distribution, 

JP'((' = k) = kT k - 1 , k = 1,2, . .. ; (46) 
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this is the size-biased distribution Ge(1/2). 
U sing the branching process construction of Boo, exposing first the rightmost 
branch, then the rightmost branches in the left subtrees sprouting from it, and so 
on, it is now easily seen that Too is the tree produced by the size-biased Galton­
Watson pr(){;ess defined in Remark 5.4 with the offspring distribution Ge(1/2) for 
the mortals, and thus Ge(1/2) for the immortals. Foo is obtained by chopping 
off the root of Too, or by starting with Ge(1/2) individuals (roots), one of them 
immortal. 
Note that Foo and Too are locally finite and have exactly one infinite path (the 
immortals). The equation (' = ( + 1 + (' above shows that F 00 and Too also can be 
constructed by starting with an infinite path (the trunk) and adding to each vertex 
in it a G e(1/2) number of branches to each side, each branch being an independent 
copy of T*; for Foo we further add a Ge(1/2) number of copies of T* on each side 
of the infinite component as separate components. (All random choices should be 
independent . ) 
It is easily seen that Lemma 5.2 implies the corresponding statements for forests 
and trees. (This is another instance of the general result given in Remark 5.4.) 
Note, however, that the truncation F/x,M) does not correspond to the truncation 
B~); it corresponds to B~J, where we let B[MJ denote the binary tree B with 
each branch truncated after M steps to the left. (Note that B~J a.s. is a finite 
tree.) We give a formal statement. 

Lemma 6.1. As n --+ 00, Fn ~ Foo and Tn ~ Too in the sense of finite-dimen­
sional distributions, in the sense F~M) ~ F/x,M) and T~M) ~ T/x,M) for every finite 
M. 

Proof: Fix M ~ o. Lemma 5.2 implies that for each fixed finite binary tree b, 
lP'(B~MJ = b) --+ lP'(B~J = b), and thus B~Ml ~ B~J. 
Using the correspondence between forests and binary trees, we now define Q for 
infinite forests too; thus Q(Foo) = Q(Boo), and the limit Q in Theorem 2.2 can be 
taken as Q(Foo). The following theorem shows that Q can be defined (a.s.) directly 
on infinite forests without our use of binary forests as a convenient technical tool. 

Theorem 6.2. There exists an extension of Q to infinite forests such that we have 
JE IQ(F/x,M)) - Q(Foo)1 --+ 0 as M --+ 00. We have Q(Fn) ~ Q(Foo) as n --+ 00. 

Furthermore, Q(Foo) = Q(Boo) when Boo corresponds to Foo. 

Proof: It remains only to prove that JE IQ(F/x,M)) - Q(Foo)1 --+ 0, or equivalently, 

transfering to binary trees again, that JE IQ(B~J) - Q(Boo)1 --+ o. 
Let, for M ~ 1, 

O[MJ := supJE IQ(BhMJ) - Q(Bn)l. 
n 

The proof of Lemma 5.6 shows with minor modifications that O[MJ --+ 0; note that 
BJ,M+1J has the subtrees LhMJ and mM+1J, but this causes no significant problem. 
Moreover, we now need a preliminary step to ensure that O[MJ < 00; this is easily 
done using induction, since (9) implies Q(B) < Q(L) + 2 + ~Q(R), and we omit 
the details. 
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For every M we have as n -; 00, see the proof of Lemma 6.1, B~M] ~ B~]. More­
over, since B(M) is a truncation of B[M], we have joint convergence of (B~M], B~M)) 
to (B~], Br:;)), and consequently 

Since lE IQ(B~Ml) - Q(B~M))I ::; O[M] + O(M) for each n, Fatou's lemma yields 

lE IQ(B~]) - Q(Br:;)) I ::; O[M] + O(M), 

which tends to 0 as M -; 00 by Lemma 5.6 and the claim above. Finally, the 
triangle inequality and Theorem 5.5 yields 

M -; 00. o 

Remark 6.3. We saw above that the number of components of the infinite ran­
dom forest Foo has the shifted negative binomial distribution in (46); hence, by 
Lemma 6.1, the number of components of the random forest Fn has asymptotically 
this distribution. It is easy to find the exact distribution for finite n as follows . 
The generating function for ordered trees is zB(z), with B(z) given in (13), and 
thus the generating function for ordered forests with k components is zk B(z)k. It 
follows as an easy exercise, using e.g. [6, (5.70)], that, with nk denoting the falling 
factorial, 

2n~k en: k) (n + l)k+l 
lP(Fn has k components) = C = k HI' 

n (2n)---

This evidently converges to k2- k - 1 as n -; 00, as asserted above. 

Remark 6.4. There is a well-known correspondence between (random) trees and 
(random) walks on the non-negative integers by means of the depth first walk, 
see e.g. (1). In this context, several nice results are known for the random trees 
studied here. 
The random tree Tn corresponds to a simple random walk of length 2n conditioned 
on returning to 0 at the end but not before (sometimes called Dyck paths). The 
random tree T* corresponds to a simple random walk stopped at its first return to 
o (12). For the infinite tree Too, the depth first walk only captures the structure 
on one side of the infinite trunk; the other side is described by a depth first walk 
running in the opposite direction. The two depth first walks are independent, and 
each is a biased random walk which is a discrete version of the three-dimensional 
Bessel process, see Le Gall (12). 
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On Random Walks in Random 
Environment on Trees and Their 

Relationship with Multiplicative Chaos 
Mikhail Menshikov and Dimitri Petritis 

ABSTRACT: The purpose of this paper is to report on recent results concerning 
random walks in a random environment on monochromatic and coloured trees and 
their relationship with multiplicative chaos. The proofs are omitted since they 
are extensively given elsewhere [12). It is worth noticing that for the random 
walk on monochromatic tree the results we give were previously known [11}; we 
provide however a totally new proof, based solely on multiplicative chaos results, 
that allows to relax some stringent conditions on independence properties of the 
random transition probabilities. For the random walk on a coloured tree the 
results are new; the classification of the asymptotic behaviour of the random walk 
allows to obtain some hints for the classification of the yet unsolved corresponding 
multiplicative chaos problem. 

1 Notation 

Let d be a fixed non-negative integer. We consider the rooted regular tree of order 
d, i. e. a connected graph without loops with a denumerable set of vertices V and 
a denumerable set of non oriented edges A(V). There is a distinguished vertex 
called the root that has degree d; all other vertices have degree d + 1. Vertices 
are completely determined by giving their genealogical history from their common 
ancestor, the root; hence they are bijectively indexed by the set of sequences of 
arbitrary length over an alphabet of d letters. We use the same symbol for the 
indexing set so that V = U~=oVn with Va = {0} and Vn = {v = (VI, ... ,Vn ) : 

Vi E {I , . . . , d}, i = 1 .. . n} for n 2': 1. For every v E V, we denote Ivl the length of 
the path from v to the root i.e. the number of edges encountered. For v E V and 
k ~ Ivl we denote by vlk the truncation of the sequence v to its k first elements, 
i.e. if v = (VI ... vn ) E Vn and k ~ n, then vlk = (VI ... Vk) E V k; the symbol vlk 
must not be confused therefore with Vk, representing the letter appearing at the 
k-th position of the sequence. For 0 ~ k < £ ~ Ivl we denote vl~ the subsequence 
of length £ - k defined by vl~ = (Vk+I , ... , ve). If u E V, we write u ~ v if lui ~ Ivl 
and v = (UI, ... ulul, vlul+l, ... vlvl) i. e. if u is the initial sequence of v; we write 
u < v when u ~ v and lui < Ivl. Similarly for every sequence u and any letter 
£ E {I ... d}, the sequence u£ will have length lui + 1 and last letter £. 
Edges are unordered pairs (u, v) of adjacent vertices u and v. Since every vertex 
has an unique ancestor, every edge is uniquely defined by its most remote vertex. 
Hence, every vertex v E V\{0} defines an edge a(v) = ( vllvl-I,v). Edges are 

o 
thus also indexed by the set V, more precisely by V = V\ {0} and we denote a(v) 

o 
the edge defined by v; therefore A(V) ~ V. 
If u, v E V and u < v, we denote [u; v] the (unique) path from u to v i.e. the 
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collection of edges (aI, a2, ... ) with aj == a(vllul+j), for j = 1, ... , Ivl. For every 
u E V, the symbol [u; u] denotes an empty set of edges. If u and v are not 
comparable vertices, i.e. neither u ::::; v nor v ::::; u holds, although there is a 
canonical way to define the path [u; v], this definition is not necessary in the 
present paper and hence omitted. We write simply [v] to denote the path joining 
the root to v, namely [0; v]. 
At every edge a we assign a number ~a E [O,oo[ in some specific manner. This 
specification differs from model to model and since various models are considered 
here, we don't wish to be more explicit about these variables at the present level. 
Mind however that the numbers (~a)aEA(V) are random variables neither necessarily 
independent nor necessarily equi-distributed. For the time being, we only assume 
that we dispose of a specific collection (~a)aEA' called the edge-environment. 

2 Multiplicative chaos 

Let (V, (~a)aEA(V)) be a given tree and a given edge environment. For u , v E V, 
with u < v we denote 

~[u; v] = II ~a 
aE[u;v] 

the product of environment values encountered on the path of edges from u to v; 
the symbol ~[v] is defined to mean ~[0; v] and ~[v; v] - as a product over an empty 
set - is consistently defined to be 1. It is not necessary for the purpose of the 
present article to define the value of ~[u; v] when u and v are not comparable. 
For every u E V, we consider the process Yn(U)nEN defined by Yo(u) = 1 and 

~[u;v] = 
vEVn+1u l ;v>u aE[u;v] 

for n 2: 1. This process is known as the multiplicative chaos process. Notice 
that even when (~a)aEA is a family of independent random variables, the random 
variables ~[u; v] are not independent for v scanning the set V n+lul. Hence the 
asymptotic behaviour of Yn (u) when n ---; 00 is far from trivial and it is studied for 
several particular cases of dependences of the family (~a) in an extensive literature; 
see for instance [7, 5, 6, 3, 8, 9, 14, 2, 10]. 
The study of the asymptotics of the process (Yn ) is done by various techniques: 

1. If the limit lim Yn (u) i Y (u) exists in distribution for all u E V then it 
n-->oo 

must verify the functional equation 

d Y(u) = ~[u ; w] Y(w). (1) 

The process (Yn (u))n and the corresponding functional equation (1) are thor­
oughly studied in the literature for some particular choices of dependencies 
of the family (~a). 
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2. A second technique of study of the asymptotics is by martingale analy­
sis. If for any fixed U E V, (:F~u)) denotes the natural filtration :F~u) = 
a(~a(uVl ... Vk)' Vi E {l, ... ,d}, i = I, ... ,k} for kEN, we have 

Vl, ... ,vnE{l, .. . ,d} 

and in the special case where the distribution of ~a(uvlv2 ... Vn) depends solely 
on Vn and the random variables are independent for different generations, 
the previous formula simplifies into 

d 

JE(Yn(U)I:F~~l) = Yn-1(u) L JE(~a(uvlv2 .. . Vn))· 
vn=l 

Although the process (Yn) is thoroughly studied, the closely related process 

n 

Zn(u) = LYk(U) for n ~ 0 
k=O 

does not seem - to the best of our knowledge - to have attracted much attention. 
However, if we are interested in connections between multiplicative chaos and 
random walks in random environment on a tree, it is this latter process that 
naturally appears in both subjects. 

3 Nearest neighbours random walk on a tree in an 
inhomogeneous environment 

o 
To every vertex U = (Ul,"" ulul) E V are assigned d + 1 numbers (Pu,O,Pu,l,"" 

Pu,d) with Pu,o > 0, Pu,i ~ 0 'Vi = 1, ... , d and L:~=o Pu,i = 1. To U E '10 = {0} 
are assigned only d numbers (P0,l," ,P0,d) with P0,i ~ 0 'Vi = 1, ... , d and L:~=l 
P0,1 = 1. These numbers will be random variables with some specific dependence 
properties that will be defined later. These numbers stand for transition proba­
bilities of a reversible Markov chain (Xn)nEN on the tree verifying for lui ~ 1 

{
pu,o if V = ullul-l 

Pu,v = IP'(Xn+l = vlXn = u) = Pu,vlvl if U = vllvl-l 
o otherwise. 

For U = (0) we have the slightly modified transition probabilities 

( I (0)) { P0VlifVEVl 
P0 v = IP' X n+1 = v Xn = = 0 ' th . , 0 reWlse. 

For u E V with lui ~ 2 we consider the edge a(u) = ( ullul-l, U ) and attach to 
this edge the variable 
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For u E VI we attach ~a(u) = P0,Ul' One can easily check the validity of the 
following 

Lemma 3.1. For every v E V define the variable 

7r[v] = { 7r[0] ~[v] p~,o if v E V 
7r[0] if v = (0), 

with 7r[0] an arbitrary constant. Then 7r[v] verifies the stationarity condition 

L 7r[v]Pv,v1 = 7r[v'], Vv' E V. 
vEV 

To avoid technical difficulties, we assume that 

Then, apart the factor _1_, the expression for the invariant measure 7r[v] involves 
Pv,O 

the product ~[v] of variables along the edges of the path form 0 to v as was the 
case in the expression of multiplicative chaos. 

4 Models covered by the present formalism and 
main results 

We present below a unified treatment of both the multiplicative chaos process and 
the random walk problem stating in the same theorem the asymptotic behaviour of 
the limiting chaos process and of the random walk. Several models fit the present 
formalism; by making appropriate identifications of random variables, the random 
walk in random environment on N or the problem of random strings in a random 
environment can be rephrased in the present language. 

4.1 Random walk in a random environment on a regular 
tree 

o 
At every vertex v E V is assigned a (d + 1 )-dimensional random vector with 

positive components (Pv,Q, ... ,Pv,d) verifying L~=QPv,j = 1. For the vertex v = 
0, the corresponding random vector is d-dimensional and its components verify 
L~=1 P0,j = 1. These random vectors are independent for different v's and, for 

o 
v E V they have the same distribution. Let"., = (711, ... , TJd), be a vector of 
non-negative random variables TJi, i = 1, ... ,d, having the same distribution with 

o 
Pv,i/Pv,Q, for v E V, with not necessarily independent nor identically distributed 
components. We assume the law of the random vector is explicitly known with 
ETJi < 00 and ETJi log+ TJi < 00, Vi = 1, ... , d. Moreover, to avoid technicalities 
we assume that although the support of the random variables TJi extends up to 0, 
their law has no atom at O. 
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o 
To the edge a(v), having most remote vertex v E V, we assign the random vari-
able ~a(v) having the same distribution as 1]v lvl; the variables ~a(v) and ~a(v') are 
independent if vllvl-l i=- v'llv'l-l. Notice that if the components of the random 
vector 1] are not independent, the variables ~a(v) and ~a(v') with Ivl = Iv'l and 
vllvl-l = v'llv'l-l are not independent either. 
The results are expressed in terms of the functions 

d 

f(x) = IE: (2:: 1]f), x E jR+ and g(x) = log f(x), 
i=l 

and of the parameter A = inf f(x). 
XE[O,l] 

Theorem 4.1. Let A = inf f(x) and Xo E [0,1] be such that f(xo) = A. Then 
xE[O,l] 

1. If A < 1, then almost surely the random walk is positive recurrent and Zoo < 
00. 

2. If A > 1, then almost surely the random walk is transient, Yoo = 00, and 
Zoo = 00. 

3. If A = 1 and moreover 1'(1) < 0, then almost surely 0< Yoo < 00, Zoo = 00, 

and the random walk is null-recurrent. 

This theorem is already formulated, with some stringent conditions on the random 
variables, in [11]. In [12] a totally new proof of this result is provided, based on 
the multiplicative chaos results of [8]. 

4.2 Random walk in a random environment on a coloured 
tree 

This problem is reminiscent of the problem on random strings in a random en­
vironement, studied in [4], where non reversible Markov chains on the tree V 
are considered and general conditions for transience/null recurrence/ergodicity 
are given in terms of Lyapuonov exponent of a product of matrices. To describe 
the problem of random strings in a random environment, we distinguish the d 
children of every vertex by assigning a colour index, chosen without replacement 
from the set {I, ... , d}, to each child. The root is assigned an arbitrary colour 

o 
0: E {I, ... , d}. Consequently, every edge a( v) with v E V is assigned the bicolour 
(ij) E {I, ... , d}2, where i = vlvl-l and j = vlvl. 
Passing to the edge-indexed ratio of outwards over inwards probabilities, the model 
can be rephrased to fit the present formalism. Let 

_ (1]~1 ... 1]ld) 
'TJ- : 

1]dl ... 1]dd 

be a matrix of non-negative random elements of known joint distribution. The 
matrix elements are not necessarily independent. 
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(
JE( 1]11) .,. JE( 1]ld)) 

Theorem 4.2. Let m(x) =: for x E [O,lJ. Assume that the 

JE( 1]~h) ... JE( 1]dd) 
matrix m( x) is regular i. e. there exists some integer N such that that for every 
x E [0,1]' (m(x)N)ij > ° Vi,j. Denote by p(x) the largest eigenvalue of m(x) 
for x E [O,lJ and)" = inf p(x). 

xE[O,lj 

1. If).. < 1 the random walk is almost surely positive recurrent and Zoo < 00 

almost surely 

2. If).. > 1 the random walk is almost surely transient and Y 00 = 00 almost 
surely. 

5 Some open problems on multiplicative chaos and 
further development 

We demonstrated the close relationship between results on multiplicative chaos 
and reversible Markov chains. In particular, the most difficult part for the Markov 
chain problem, namely the critical case).. = 1 becomes an immediate consequence 
of the theorem on the existence of non trivial solutions of the functional equation 
and the uniform integrability of the corresponding martingale, once the conditions 
for the existence of non trivial solutions are known. This analogy can even be 
extended on more general settings to include the case of random trees and of 
general distributions for the environment that correspond to situations much more 
general than the one considered in [11]. Actually, what plays an important role 
is the theorem (1) of [5] but this theorem is properly generalised by Liu [9] to 
include random number of variables d. Therefore, the treatment of random walks 
in general random environment on random trees becomes accessible by virtue of 
the results of Liu on multiplicative chaos. 

We got conditions under which the chaos processes Yn and Zn tend to 00 or 
remain finite according to the values of the parametre)... The precise study of this 
classification gives rise to a multiplicative chaos functional equation of the type 

y(a) ~ I>aj3yl(aj3) 

j3 

for which the conditions of existence of non trivial solutions are not known. In 
view of the results on the random walk problems it is expected that the classifying 
parametre in this problem is the largest eigenvalue of the matrix of moments m( x). 
This problem is actually under investigation. The above mentioned intuition is 
confirmed by some preliminary results, by the partial results of [1] and by physical 
intuition. As a matter of fact the random walk in a random environment can also 
be viewed as a physical system of spins in a quenched disorder. In the random 
string problem the quenching is quite stringent so that the Lyapunov's exponent 
appear. On the contrary, the random walk in random environment on the coloured 
tree behaves very much like a self-averaging problem. 

Other random walk models on more general trees (multiplexed coloured trees) can 
also be introduced that involve matrix valued multiplicative chaos [13]. Again, 
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classification of the random walk problem can be used as a hint for the classification 
of the chaos process. 
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Note on Exact and Asymptotic 
Distributions of the Parameters of the 

Loop-Erased Random Walk on the 
Complete Graph 

Boris Pittel 

ABSTRACT: We study the loop-erased random walk algorithm for generating 
a random spanning tree of the complete graph on n vertices. The number of 
moves is shown to be distributed as n - 2 plus G1/ n , a Geometric with expectation 
n. The lengths of the paths (branches) that are added to a subtree are jointly 
distributed as the consecutive waiting times for heads in a sequence of time-biased, 
but independent, coin flips. As a corollary, the subtree size is shown to grow, with 
high probability, at the rate (rn)1/2, r being the number of branches added. The 
lengths of the largest path and the largest loop are shown to scale with n 1/ 2 and 
(n log n) 1/2; the limiting distributions are obtained as well. 

Introd llction. 

Broder [2] and Aldous [1] independently found a random-walk algorithm for gen­
erating a uniformly random spanning tree of an undirected (connected) graph. 
The walk starts at an arbitrary vertex and, at each move, chooses the next vertex 
uniformly at random among all the neighbors of the current vertex. (Call this 
walk simple.)The spanning tree is formed by the first edges leading away from the 
vertices already visited. Wilson [6] discovered a different random-walk algorithm 
for generating a uniform spanning (rooted) tree. Here is how it works. Pick an 
arbitrary vertex different from root, and start the simple random walk. If at some 
moment the walk returns to a vertex v previously visited, then the loop is erased, 
and the walk continues from v. So what remains of the walk trajectory is always 
a path, possibly consisting of the starting vertex only. With probability 1, even­
tually this path hits the root. The path that includes the root becomes a branch 
(subtree) of the future tree. Recursively, given a current subtree, one picks an 
arbitrary external vertex and generates the loop-erased random walk until it hits 
the subtree, and thus gives birth to the next branch. As mentioned in [6], it had 
been known (Burton and Pemantle [3], Pemantle [5]) that the path from a vertex 
to the root of a uniform spanning tree is the loop-erased random walk. Still it 
was Wilson who suggested to use this walk as a macrostep of a provably efficient 
algorithm to generate a uniform spanning (rooted) tree. 

Our goal was to find the asymptotic distributions of the leading parameters of 
Wilson's algorithm when applied to the complete graph Kn. To our surprise, it 
turned out possible to obtain exact distributions in some cases. We proved that 
the number of moves (microsteps) in the walk is distributed as n - 2 + G1/ n , where 
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Gp denotes the Geometric with parameter p. (Thus the expected number of steps 
is 2(n - 1), the fact already established in [6].) More generally, once the subtree 
reaches size k, (1 :::; k :::; n -1), the number of remaining microsteps is distributed 
as n - k -1 + Gk / n . The lengths of the paths (macrosteps) are shown to be jointly 
distributed as the consecutive waiting times till appearance of Heads in a sequence 
of n - 1 independent coin flips, with probability of Heads in j-th flip being equal 
(j + 1) In. This connection shows immediately that the number of macrosteps is, in 
the limit, Gaussian, with mean and variance n/2 and nl6 respectively. The subtree 
size is shown with high probability (whp) to grow at the rate (rn)1/2, r being the 
number of macrosteps so far. And, for r = o(n1/ 3 ), the subtree sizes up to the 
r-th macro step are sharply approximated by the sequence {(2n 2:;=1 Zj)1/2}s:::;r, 
where Zl, Z2, ... are independent Exponentials with parameter 1. Finally, using 
the factorial moments method, we prove that the longest path and the number of 
loops, each scaled by n 1/2, and the longest loop scaled by (n log n) 1/2, all have the 
nondegenerate limiting distributions. 
To conclude, we mention that Marchal [4] has obtained some determinantal formu­
las for the joint distribution of the consecutive subtrees for the loop-erased walk 
on a general graph. 

1 Distribution of running time and branches lengths 

Let Xn be the total number of branches (paths) added to a current subtree, and let 
L = {Lj : 1 :::; j :::; Xn} be the lengths of (the number of edges in) the successive 
paths (macrosteps). Let Yn be the total number of moves (microsteps) of the 
random walk. And let Gx denote the geometrically distributed random variable 
(Geometric) with parameter x E (0,1]' 

. 1 
P(Gx =j) = x(I-x)1, j ~ 0 ==} E(Gx ) =-. 

x 

Theorem 1. (a) Xn and Yn are independent. (b) Yn and n - 2 + G1/n are 
equidistributed, 

(1) 

in short. Let e = (E2, ... , En) be a sequence of independent Bernoulli variables, 
P(Ej = 1) = jln; let E1 = 1. Let t1 = min{j ~ 1 : E1+j = I}, and recursively, 
if 7s := 1 + 2::=1 tr < n, then tsH = min{r > 1 : ETs+r = I}, and denote 
t = {h, t2' ... }. Then (c) 

1) 

L ==t; (2) 

in words, in distribution the sequence of branches lengths is the same as the se­
quence of time intervals between the success events {E j = I} for the Bernoulli 
sequence e. In particular, 

1) 

Xn == I{r > 1 : Er = 1}1· (3) 
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Note. At first glance, the part (b) is counterintuitive, and may even appear bla­
tantly wrong. After all, by its definition, Yn equals the number of moves until 
the walk hits the vertex 1, which is Gn-l in distribution, plus a genuinely random 
number of the remaining moves that assumes the value n - 2 with a probability 
strictly less than 1. However disconcerting, this observation does not rule out 
validity of the statement, since these two Geometrics (n- 1 ) are different, interde­
pendent, parameters of the walk. 

Proof of Theorem 1. Let Ls = 1 + L::=l Lr, so that Ls is the size of the subtree 
after s branches (paths) have been attached. Clearly {Ls} is a Markov chain. And 
so is {ts}. So, to prove (c) ((2), (3)), it suffices to show that 

k+j-l 
P(Ls+1 = jlLs = k) = P(Ek+j = 1)· II P(Er = 0). (4) 

r=k+l 

Let k be a generic size of the current subtree (core), i.e. a subtree already grown 
by adding several paths. (At the start k = 1.) Let Pnk(i,j) denote the probability 
that it takes i moves to hit the k-core, and that the path which gets attached to 
the k-core has length j. Clearly, Pnk (i, j) = 0 if i < j. Let j = 1. Then 

Pnk(i, 1) = { l'. ~ . (n_k)i-2 
n n n ' 

if i = 1, 

if i ;::: 2. 
(5) 

(For i ;::: 2, the walk first has to spend i - 2 moves outside the core, then to loop 
back on the starting point, and finally to hit the core on the next move.) Let 

j ;::: 2. The corresponding paths are partitioned into two groups, first and second 
type. A first-type walk moves to a new outside vertex, then spends the next i-I 
moves never going back to the starting point in such a way that it hits the core 
for the first time on the last of those i-I moves. Conditioned on this event, we 
have the loop-erased random walk on the set of n -1 vertices. A second-type walk 
spends some r ;::: 0 moves outside the core, hits the starting point on the next 
move, then moves immediately to a different outside vertex, and spends the next 
i - r - 2 moves outside the core, without ever going back to the starting point, 
and hits the core on the last of those i - r - 2 moves. Therefore 

n-k-l (n-l)i-l p (. 1· 1) -n-· -n . n-l,k Z - ,J- (6) 

L: (n-k)r 1 n-k-l (n_l)i-r-2 p (. 2· 1) + -. - . -_. - . -1 k Z - r - J - . r2::0 n n n n n , , 

The remaining argument is purely algebraic. To handle the recurrence (6) and the 
initial condition (5), let us introduce 

Pnk(Z;j) = I:>iPnk(i,j), 
i2° 

which is the expected value of z#of moves times the indicator of the event "added 
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path has length"j" From (4) it follows that 

k (n_k) i-2 
Pnk(z ; 1) = z;;, + L zi -n-

i22 

k k 1 
= z- +z2 n "n2 "1_z n - k 

k 1 - zn-k-1 
= z-" n 

n 1_z n - k 
n 

Further, using (6), for j 2 2 we have: 

n 

1 k 
n n 

n - k -1 (n _1)i-1 
Pnk(z;j) = z n L z-n- Pn- 1,k(i - 1,j - 1) 

z 

(7) 

(8) 

+ L(Zn~1)i-r-~n_1'k(i_r_2,j_1)" Zr+2(n~k)r ~ n-k-1 
r20 n 

Introduce 

n - k - 1 ( n - 1" ) ( z2/n) = "Pn- 1 k z--;J -1 " z + k n ' n 1-z n -
n 

n-k-1 1_z n- k- 1 (n-1) 
= z " n"::..k" Pn - 1,k z--;j - 1 " 

n 1- z - n n 

v 

zv=zII(n-j)/(n-j+1)=z n-v " 
n-v+1 j=l 

Applying (8) repeatedly and using (7) at the end, we obtain 

j-2 n _ k _ 1 _ v 1 - Zv n-k-1-v 
Pnk(z;j) = II Zv "n~v "Pn- j- 1,k(Zj-1; 1) (9) 

v=o n - v 1 - Zv n-;;,_~v 

Z j 1_ z n - j - k 

= k(;;,) "(n-k-1)j-1" 1-z~ " 
n 

Extracting the coefficient by zi, we get: 

". {n~(n-k-1)j_ I, ifi=j, 
Pnk(z,J) = :3 (n - k - 1)j-1 . * (n-;;,k)i-j-1, if i > j. (10) 

The rest is short" Summing over i 2 j, we get: 

Pnk(j) := Pr(pathlength = j) = k + j (n - k - 1)j-1. (11) 
nJ 

And of course 

k (n_k)i-1 
Pnk(i) := Pr(number of moves = i) =;;, -n- , (12) 



Loop-Erased Walk 427 

that is, the number of moves is equal, in distribution, to Gkln- The relation (11) 
can be rewritten as 

(13) 

which is equivalent to (4). Let Yn be the total number of moves. We want to prove 
that Yn is independent of X n , and 

D 
Yn == G1ln + n - 2. (14) 

To this end, let us consider a more general case of Xnk and Ynk, the number 
of paths and the number of moves remaining after the moment the subtree has 
grown to size k. (Xn = X n1 , Yn = Ynd Introduce the joint (bivariate) generating 
function 

By (9), 

Introducing 

._ (1 _ yn;;k) (~)k 
hnk(x, y) .- gnk(X, y) (n _ k - I)! ' (16) 

we transform (15), after multiplying its both sides by the appropriate factor and 
denoting k + j = s, into 

1 1 
-khnk(x,y) = x ~ --hns(x,y), L n - s 

s>k 
(17) 

a much simpler relation. Writing (17) for k + 1 instead of k and subtracting the 
result from both sides of (17), we get 

or 
k[n-k-1+x(k+1)] 

hnk= (k+l)(n-k-l) ·hn,k+l, k<n-l. (18) 

Notice that 
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so that 

(1 - ;0 (*r-1 (y)n hnn-1(x,y) = , ·gnn-l(x,y)=x(n-l) - . , 0.' n 

Combining (18) and (19) we have 

So, by (16), 

( nrr-l (j-l)(n- j +Xj)).h ( ) 
.(.) n,n-l X, Y 

j=k+l J n - J 

k n .. (y)n 
n(n-k-l)'· rr (n-J+xJ)· ; . 

j=k+1 

n 

(~). I1 (n - j + xj) . (*r 
j=k+l 

gnk (x, y) = ---='-----------;-k--
(1 _ yn;/) . (*) 

rrn (1 j + j) y~ n-k-l - - x- . y 
. n n 1 - Y (1 - ~) . J=k+l n 

(19) 

The product shape of the last formula shows that Xnk and Ynk are independent, 
and that marginally Xnk is distributed as the total number of successes in the 
sequence {cjh<j:<:;n (no news here!), while 

V 
Ynk == Gk/n + n - k - 1. 

For k = 1 this yields (1).0 

The process of building a path leading to a given subtree (of size k) is a Markov 
process on the state space {I, ... ,n - k} U {r*}, the union of the set of all possible 
lengths r of a current path and the absorbing state r*, hitting which corresponds 
to hitting the subtree. The transition probabilities are given by 

{ 
n-k-r, r' = r + 1, 

p(r'lr) = 1/;:, r' E [1, r], 
kin, r' = r*. 

We could have used this Markov chain to obtain a recurrence equation for 

Pnkr(z;j) = LZiPnkr(i,j), 
i~O 

(20) 

where Pnkr(i,j) is the probability analogous to Pnk(i,j), with r corresponding to 
the length r of a starting path; so that Pnk (i, j) = Pnk1 (i, j). Following this route, 
relatively easily one obtains a formula for Pnkr(z;j) - Pnk,r-l(Z;j), but getting 
the equation (9) from it requires some messy computations. There is definitely a 
conservation energy law in the play' This Markov chain is quite useful though in 
dealing with the distribution of cycles erased during the walk. 
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Theorem 2. Let Cnt denote the expected number of cycles of length t erased in 
the course of the random walk, 1 :S t :S n - 1. Then 

(n - 2)t-l 1 (n - 2)t 
Cnt = n t- 1 + t . nt ' (21) 

so that, for every fixed t 2 1, 

. t + 1 
hm Cnt = --. 

n--->oo t 
(22) 

Proof of Theorem 2. As in the proof of Theorem 1, consider the macrostep that 
adds a path to a subtree of size k. Using the Markov chain defined above, introduce 
cnt(r, k), the expected number of cycles in question until the moment of absorption, 
given that the chain starts at state r, i.e. path oflength r, 1 :S r :S n-k. Dropping 
the indices n, t, k for simplicity, we have a recurrence 

c(r) = n-~-r Cr+l + !; 2:j=l [6t,r-j+l + c(j)] 

n-k-r + .!. "r [6' + c( ')]. n n uJ=l tJ J 

Consequently, for 2 :S s :S n - k, 

n-k-r 1 
c(s) - c(s - 1) = (cS+l - cs) + -6ts, 

n n 

(23) 

(24) 

with the first summand on the right missing for s = n-k. Given r, for s E [r, n-k]' 
we multiply both sides of (24) by (n-~:;r:s-r and, adding the results, obtain 

n-k ( ) 
( 1 L n - k - r s-r 

c( r) - c r - 1) = - . 6ts. n ns - r 
s=r 

That is, 

{ 
(n-k-r)t-r 

c(r)-c(r-1) = nt-r+l' r:St:Sn-k, 
0, t < r. 

(25) 

Using (23) for r = 1 and (25) for r = 2, we get two equations for c(l), c(2), which 
-putting the dropped indices back-yield 

Consequently 

( k)_.!..(n-k-1)t-l 
Cnt 1, - k nt- 1 . 

n-l 
Cnt = L P(ck = l)Cnt(1, k) 

k=l 

(n - 2)t-l + (t - I)! . ~ (n - k - 1) 
n t- 1 nt ~ t-1 

k=2 

(n - 2)t-l + (t - I)! . (n - 2) 
nt- 1 nt t' 
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which is equivalent to (21). 0 

Note. That lim Cnt > 0 for every t makes it plausible that with high probabil­
ity (whp) the random walk develops cycles of substantial length. In Section we 
will show that the lenght of the longest cycle is asymptotic, in probability, to 
(nlogn)1/2. 

2 Asymptotic distribution of branches lengths. 

First of all, from Theorem 1 (c) and the central limit theorem for Bernoulli random 
variables, it follows that Xn (the number of paths, macrosteps) is asymptotically 
Gaussian with mean and variance equal n/2 and n/6 respectively. The next lemma 
tells us that whp the subtree grows essentially as (rn) 1/2, r being the number of 
steps. 

Lemma 3. Let w(n) ----t 00 however slowly. Introduce mr = [Jrn/w(n)] and 
Mr = [Jrnw(n)]. Then 

P(mr < Cr :::; Mr, Vr 2: 1) 2: 1 - O(w- 1 (n)). 

Proof of Lemma 3. Using Theorem 1 (c),we have 

P(Cr :::; mr ) = P(E2 + ... + Emr 2: r). 

So (Chernoff-type bound), for every u > 0 we bound 

( mr(mr + 1)) 
:::; exp -ur+ (e U -1) 2n . 

And the best u is given by 

2nr 
u = log ( ) = log(2w(n)) + 0(1). 

mr mr + 1 

Therefore 
P(Cr :::; m r) :::; (exp( -u + 1 - e-U)r :::; w-r(n), 

and consequently 

P(:3r 2: 1: Cr :::; m r ):::; Lwr(-n) :::; 2w- 1 (n). 
r2:1 

Analogously for u = log Mr(Mr+1) 
, 2nr ' 

(26) 
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so that 
P(3r;::: 1 : £r > Mr) ::; I>-rw(n)/3 < w- 1 (n). 

r;:::l 

(26),(27) together complete the proof. 0 

431 

(27) 

Note. Here is an interesting application of the lemma. A starting vertex of the 
first path is trivially a pendant vertex of the resulting subtree. Given r > 1, the 
probability that the starting vertices of the first r paths and the root itself are 
pendant vertices of the subtree formed by all these paths is at least 

r-1 s+l 
1 - L - - P(3 s E [1 , r-1] : £8 ::; m 8 ) = 1 - O( J(r3 /n)w(n)) - O(w-1(n)) 

8=1 ms 
----t 1, 

if r = o((n/w(n))1/3, that is if r = o(n1/3), since in Lemma 3 w(n) ----t 00 however 
slowly. It can be shown that for r » n 1/ 3 the number of the starting points of 
the first r paths that fail to have degree 1 in the subtree formed by those paths 
is unbounded in probability. Thus r = n 1/ 3 is a threshold value for the property 
"none of the first r paths is an extension of an earlier path". 

Let us have a close look at the Markov chain {£j}, for j ::; r, r = o(n"'), 0: E (0,1) 
to be chosen later. Let j = (j1,"" jr) denote the sequence of generic values of 
the paths lengths L 1, ... , L r . Then 

£t = jet) := 1 + j1 + ... + jt, 1::; t ::; r. 

By Lemma 3, we may and will concentrate on j such that 

j(r) w1/2(n) 
j(r) < (rnw(n))1/2 ~ - « ----t O. - n n(1-a)/2 

Using Theorem 1 (c), (see also (13)), and setting j(O) = 1, we have: for 8 ::; r, 

(28) 

Here 
8j(s) (r3 ) 1/2 
-::; -w(n) , 

n n 
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so the remainder term in (28) approaches zero, uniformly for s ::; r, provided that 

(29) 

(r = n 1/ 3 raises its head again!) For s = 1, (28) shows that Cdn1/2 has a limiting 
density f(x) =xe-x2 / 2. Introduce 

( (X')2 X2) 
f(x/lx) = x' exp --2- + 2 ; 

as a function of x', this is a density on [x, 00), and f(xIO) = f(x). Using f(x/lx), 
we can rewrite (28) as 

s (.(t) .(t-l)) 
P(.L:t =j(t),I::;t::;s)=(1+o(I))IIf Jl/2IJnl/2 n- 1/ 2, 

t=l n 
(30) 

uniformly for s ::; r, if r meets (29) and j(r) = O((rnw(n))1/2). Thus 

Theorem 4. Let r = o(n1/3w- 1(n)). For.L:r = O((rnw(n))1/2), the Markov chain 
{.L:s/n1/2}s<r is asymptotic, in terms of the local probabilities, to the Markov chain 
{£s} s::;n with a state space [0,00), the initial state 0, and the one-step transitional 
density f(x/lx). 

Surprisingly, there is a very simple description of the chain {£s}s>l. Let Zl, Z2, ... 
be i.i.d. Exponentials, with parameter 1. Then {£s} s>l has the -same distribution 
as {C;}s>l, where -

f; ~ (2t,Z,r 
Indeed, 

P(Ci::; x) = P(2Z1 ::; x 2 ) = 1- e-x2 / 2 , 

so that £i has density xe-x2 / 2 = f(x). Furthermore, 

Hence the conditional density of £; is indeed f(x/lx).D 

So Theorem 4 can be reformulated as 
Theorem 4/. Let r = o(n1/3w-1(n)). For.L:r = O((rnw(n))1/2), the Markov 
chain {.L:s/n1/2}s<r approaches, in terms of the local probabilities, the sequence 
{£;}, £; = J2 2::=1 Zs, where Zl, Z2,··· are independent copies of the Exponen­
tial Z with mean 1. 
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3 Longest path length. 

Let Lmax denote the length of the longest path. Let us show that Lmax/nl/2 
converges, in distribution, to a nondegenerate random variable. From Theorem 1, 

Lmax ~ Dmax , where Dmax is the largest distance between successes, the moments 

j for which Cj = 1 in the Bernoulli sequence {cjh:Sj:Sn' Pick a > 0 and introduce 
Nn(a), the total number of successes that are at distance £ := [an 1/ 2 ] at least 
from the next success. (Every such success j meets the condition 

Cj = 1, Cj+l = ... C£-l = 0, 

for some 1 :::; j :::; n - £; recall that Cn = 1 with probability 1.) Let us evaluate the 

binomial moments B~k) := E [(N/.,(a))]. Since (N/.,(a)) is the total number of k-Iong 

(chronologically ordered) samples of the successes meeting the above condition, we 
have 

l~jl,· ··,jk'5n-t 
j8 +£ $ j8+1. 1 $s$k - l 

Pr(1f1 :::; s:::; k: Cjs = 1,Cjs+l = . . 'CjsH-l = 0). (31) 

Denote the generic term pm. Suppose first that jl > 1. Then 

pm = 11 [~ (1 - jr : 1) ... (1 _ jr + ~ - 1) ] . 

A standard argument shows that the dominant j are such that each js = O(n1/ 2 ), 

and for those j, denoting Xr = J'i2' 

So the contribution of those j to B~k) converges to 

( e -.' /2)' I::L 11 xce-"" dx = (e-:: /2 r I::L 11 yce-" dy 

x8 +a$Xs+l, sSk-l Ys + l$Ys+l, sSk - l 

Notice that ye-Y is the density of Y Zl + Z2, with Zl, Z2 the independent 
exponentials, of mean 1. So the last integral equals 

1 . -p( mm IY; - YI > 1) k! l:Sii-j::;k" J - , 

where Y1 , . .. , Yk are independent copies of Y. The same derivation shows that the 



434 

limiting contribution to B~k) of the j with ]1 = 1 is 

(e- a2 /2) k 

(a2 )k-1 J ... J 
Yl""'Yk-12:: 0 

Ys-l +l:$.ys, s5k-l 

r=l 

where Yo := o. And the integral equals 

1 . -p( mm Il': - YI > 1) k! O~i#j~k-1 2 J - , 

where Yo := O. Thus we have proved that, for every fixed k 2:: 1, 

lim B~k) = B(k)(a), 
n--->oo 

where 

Boris Pittel 

1 (e- a22
) k B(k)(a)=- - . [P( min IYi-YI2:: 1) +a2 p( min IYi-YI2:: 1)]. 

k! a2 l~i#j~k J O~i#j9-1 J 

(32) 
Since B(k)(a) goes to zero as k --) 00 faster than k- m for every integer m, we infer 
that there exists a unique probability distribution {pj(a)L~o with the binomial 
moments equal Bk(a), that is 

(33) 

And, since B~k) --) B(k)(a) for every k, we have 

lim P(Nn(a) = k) = Pk(a), k 2:: O. 
n--->oo 

Using the last relation for k = 0, and Lmax ~ Dmax , we arrive at 

Theorem 5. For every a > 0 

lim P(Lmax < [an1/2 ]) = lim P(Nn(a) = 0) = po(a). (34) 
n~oo n~oo 

Notes. 1. We were not able to find a formula for po(a) more explicit than the 
series in (34). Since 1- e-a2 / 2 is the limiting distribution of Ldn1/ 2 , we have 

po(a) :::; 1- e-a2 / 2 . 

The bound follows also from the enveloping property of the series in (34). Using 
the series, one can show easily that 
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2. In principle, there is an alternative approach to Lmax. Let L~lx denote the 
length of the longest path added after the subtree reached size k. Then 

L(k) = max{J· L(k+j )} max , max , 

where j is the random length of the path added next. Then 

p(L~lx ::::: £) = L Pnk(j)P(L~;V) ::::: C). (35) 
j-::;'£ 

Assuming that p(L~lx ::::: £) '" h(k/nl/2,£/nl/2), and using (11), we transform 
(on a heuristic level) (35) into an integral equation 

Jx ( (y + z)2 y2 ) 
h(y,x) = (y+z)exp - 2 h(y+z,x)dz, (36) 

o 

or, introducing g(y,x) = e-y2 / 2h(y,x), 

x+y 

g(y,x) = J ug(u,x)du. (37) 

y 

Does (36-37) have a closed-form solution? 

4 Looping back on cycles. 

Let Cn denote the total number of loops created and deleted in the course of the 
algorithm. And let Omax denote the length of the longest loop. By Theorem 2, 
Cnt the expected number of cycles of length t is given by 

where 

And, see the proof, C~t' C~t is the expected number of cycles of length t created 
during the first macrostep, and during all the subsequent macrosteps respectively. 
Given £ E [1, n - 1], let Cn £ denote the total number of cycles of length £ + 1 or 
more. Then Cn £ = C~£ + C~b the summands equal to the number of those cycles 
formed during the first macrostep, and all other macrosteps. Then 

m n£ := E(Cnf ) = m~£ + m~£, 

m~£ := E( C~f) = L C~t' 
t'2£ 

" E(C") """" mnf := n£ = ~ Cnt · 
t>£ 
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In particular, 

so that 

m" n1 

L ' Ln 
-t2 /(2n) fin := cnt rv e rv-, 

2 
t~l t=l 

'""'" ~ -1 -t2 /(2n) logn := ~Cnt rv ~t e rv --, 

t~l t=l 2 

m" 1m' = O(n-1/ 2 logn) n1 n1 . 

In fact, an easy argument shows that, for every C = C(n), 

m~dm~i = O(n-1/ 2 logn). 

Our main result is 

Boris Pittel 

(38) 

(39) 

Lemma 6. Let J.lnik = E[(e~i)kl denote the k-th factorial moment of e~i; in 
particular J.lnil = m~i' If C = C(n) is such that liminfm~i > 0, then, for every 
k;::: 1, 

J.lnik k' 
(J.lnil ) k ---+ •• 

(40) 

Let us apply this Lemma to en and Omax. We have e~ = e~l' mn1 = 8(n1/ 2 ) 

and by (38), e~/m~l ---+ ° in probability. Then, as J.lnll = m~l' it follows from 
(40) that, for every k ;::: 1, 

E ( e~ ) k ---+ k!. 
mn1 

Since {k!} are the moments of the exponential random variable with parameter 1, 
we have proved 

Theorem 7. For every x > 0, 

lim P ( ~en :::; x) = 1 - e -x. 
n---+CXl 7rn 

2 

Next, let x > 0, and 

Then 

m~i = L C~t rv L e- t2 / n rv n 1/ 2 

t>i t>i J e-y2 / 2 dy 

y 
y=i/n1 / 2 

Then, by Lemma 6, for every k ;::: 1, 

lim E[(e~l)kl = x-kk!. 
n->oo 
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Now {X- k k!} are the factorial moments of the Geometric with parameter 

1 x 
p= 1+x-1 = l+x· 

So, for every k 2: 0, 

Observing that P(Omax :::; C) = P(Cnl = 0) and that P(C~l = 0) --. 1, we have 
proved 

Theorem 8. For every fixed x> 0, 

lim P (Omax :::; 
n->oo 

( nx2 )) x nlog -- ---
logn - 1 + x' 

and consequently, in probability, 

1· Omax 1 
1m = . 

n->oo y'n log n 

Proof of Lemma 6. We use the Markov chain from the proof of Theorem 2. 
Introduce fnlr(Z) = Er(zC~e), the probability generating function of the number 
of cycles (during the first macrostep) if the starting path contains r vertices; so 

fn£1(Z) = E(zC~£). Then J-Lnlrk := f~;~(l) = Er[(C~l)k], and J-Lnm = J-Ln£1 = m~l· 
For simplicity, we drop the subindices n and C. By the Markov property, for 
1:::; r :::; n - 1, 

1 n-1-r 1~ 1 r 
fr(z) = - + fr+1(Z) + - ~zfj(z) + - L fJ(z); 

n n n n j=l j=r-l+1 

(fj(Z) := 0 for j :::; 0). So, for every k 2: 1, 

n - 1 - r 1 r k r-l 
J-Lrk = J-Lr+1,k + - LJ-Ljk + - LJ-Lj,k-1; n n n j=l j=l 

(41) 

(J-LjK := 0 for j :::; 0, Ii 2: 0). Using (41) for r - 1 instead of r and taking the 
difference, we have 

n-1-r k 
J-Lrk - J-Lr-1,k = (J-Lr+1,k - J-Lrk) + -J-Lr-l,k-1· (42) n n 

Iterating this relation upward to r = n - 1, 

n-1-r ( ) _k L n-1-rj 
J-Lrk - J-Lr-1 k - - . J-Lr+J·-l k-1· , n nJ ' 

j=O 

(43) 
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Consider k = 1. As ILr+j-£,O = IT(r + j > C), and 

(n-1-r)j ( (r+ j )2_ r2) -'-------:-. ----'-"- < c exp - , 
~ - 2n 

for some absolute constant c > 0, we get easily: 

exp [r2/(2n) - (max(r, C))2 /(2n)] 
ILrl - ILr-1,1 :Sb ( n) . max r,t. 

(44) 

(Here and below A :Sb B stands for A = O(B), uniformly for all values of param­
eters involved in A and B.) And, summing the last bounds downward to r = 2, 
we obtain that 

{ 
e-£2/C2n) 

ILrl - 1L11 :Sb * . er2 /C~n)-£2 /C2n), 
logn, 

Inductively, suppose that for some k 2: 1 

and that 

1· ~-k' 1m ( )k - ., n---+oo 1L11 

e-£2 /C2n) (1L11 log n )k-1 , 

r :S min(C, n 1/ 2 ), 

n 1/ 2 < r < C - - , 
r 2: C. 

pck - ~lk <;b { ; . er2/C2n)-£2/C2n)(IL11logn)k-1, 
r:S min(C,n1/ 2 ), 

n 1/ 2 :S r :S C, 

logk n, r 2: C. 

(45) 

(46) 

For the first two bounds in (46) to be of any use, both should be negligible com­
pared to 1L1k rv k!(IL11)k. Now the ratio of either of them to (1L11)k is bounded 
above by ILl} e _£2 / C2n), and we recall that 

(47) 

Since lim inf 1L11 > 0, we have C = O( yin log n), and from (47) it follows easily that 

Cn-2)e 
_n_i _ :S n- f3 , V f3 < 1/2, 

1L11 

which implies the same bound for e-e2 /C2n) / 1L11. Thus, 

(48) 

Using (43) with k replaced by k + 1, the condition ILr+j-£,k = ° for r + j - C :S 0, 
and (48), we get 

ILr,k+l - ILr-1,k+l :Sb n -1 (1L11 log n)k LjA-r er2 /C2n)-Cr+j)2 /C2n) 

er2 /C2n)-CmaxCe,r))2 /C2n) 
:Sb (lL11 log n)k . ( C) . (49) 

max r, 
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So, just like the bound (44) led to (45), the bound (49) leads now to 

{ 

e-l'2/(2n)(Jl1110gn)k, r ::; min(e, n 1/ 2), 

Jlr,k+l - Jl1,k+l ::;b ; . er2/(2n)-l'2/(2n)(Jl1110gn)k, n1/2::; r::; e, 
logk+l n, r 2: e, 

(50) 

which is the counterpart of (46) with k replaced by k + 1. It remains to prove that 

1· Jl1,k+l - (k + 1)' 
1m ( )k+l - .. n->oo Jl11 

(51) 

To this end we combine (42) for r = 2 and (41) for r = 1, and solving these two 
equations for Jll ,k+1, Jl2 ,k+1, we get 

n-2 ( ) "" n-2 . 
Jll,k+l = (k + 1) D n j J JlHj-l',k· 

j=l' 

Using (48) for the summands with j E [e,2f - 1] and the bottom bound in (46) 
for j 2: 2e, we obtain 

(52) 

Here 

(53) 

and 

L (n - 2)· 
R < logk n . J 2 _b nJ 

j?,2l' 

If e ::; 0.5yfnlogn, then Jl11 » n 1/ 4 » logn, so that R2 = o(Jl~tl). If e > 
0.5yfn log n, then~using lim inf Jl11 > O~we have that 

R2 e-(2l')2/(2n) 

(Jl11)k+l ::;b logn· e-l'2/(2n) 

::; log n . e -(3/8) log n ---) O. 

So R2 = 0((Jl11)k+1) in both cases. Combining this estimate with (52), (53), and 
the inductive hypothesis Jllkl Jl11 ---) k!, we conclude that 

1· Jll,k+l - (k 1)' 
1m ( )k+l - + .. 

n->oo Jl11 
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Thus the inductive step is verified completely, and this proves the lemma.O 
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Convergence Rate for Stable Weighted 
Branching Processes 

RosIer Uwe, Topchii Valentin, Vatutin Vladimir 

ABSTRACT: Let the martingale Wn = m-n Zn, where Zn is a weighted branch­
ing process and m = E L j Tj is the expected sum of the random factors Tj , con­
verge to a limiting random variable W. We give conditions in terms of the factors 
under which W belongs to the domain of attraction or to the domain of normal 
attraction of an a-stable distribution with 1 < a :::; 2. The convergence rate of 
Wn to W is evaluated in the sense that Wn - W correctly normalized converges 
to a non degenerate random variable *. 

One of the basic facts for supercritical Galton-Watson processes Zn, n = 0, 1, ... 
is the almost everywhere convergence of the martingale Wn = m-n Zn to a limit 
W (m = E[ZlIZo = 1]) [1,2]. The random variable W (given Zo = 1) satisfies the 
equation 

w4 t W(j) 
m 

j=l 

(1) 

where W(j) are independent copies of Wand Z is independent of W(j) and has 
the same distribution as the offspring Zl of a particle. 
In addition, the convergence rate of Wn to W as n ---+ 00 is of the order m-~. 

More precisely, for finite variance 0'2 d:;j V ar Z 1 < 00 the random variable 

. / m 2 -m 
Gn = V mn 0'2 (Wn - W) 

converges in distribution to a limiting variable G (see [6] or Theorem A in [7]). 
Here G is a mixture of normal distributions with mean ° and the random variance 
Wand is described by the characteristic function E exp{ itG} = E exp { _ t2~}. 

To formulate the up-to-date results in the case 0'2 = 00 we recall some basic 

definitions and facts related with stable laws. Let rpy(t) d:;j Eexp{itY} denote 
the characteristic function of a nondegenerate random variable Y. It is known (see 
[8], Chapter II, Section 6) that Y belongs to the domain of attraction of a stable 
law of index 1 < a :::; 2 if and only if In rpy (t) has the form 

lnrpy(t) = i'yt - It!'" M(t)B(t), (2) 

where M(t) is a function which is positive in a vicinity of zero and slowly varying 
(in the sense of Karamata [8, 13]) as t ---+ +0, M(t) '" M( -t) as t ---+ 0, and 

de! . t 1I"a B(t) = 1 - z(3- tan -
It I 2 ' 
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where r, and It3I ~ l. 
If the limit M = lim M(t) E (0,00) in (2) exists then Y is said to belong to the 

t--->O 
domain of normal attraction of an a - stable law. 
In both cases for Yj, j E IN being iid copies of Y there exists a monotone determin­
istic sequence bn such that the sequence bn L-?=I (Yj - EY) converges, as n -+ 00 
in distribution to a stable law with characteristic function <p(t) = exp{ -ltI"'B(t)}. 
Now we return to the supercritical Galton-Watson processes and take Y = ZI. It 
is known that in general ZI belongs to the domain of attraction of a stable law of 
index 1 < a ~ 2 if and only if W belongs to the same domain (see [7] Theorems 
1 and 2). If this is the case, the rate of convergence is of order mnb[mn] , or, more 
precisely, 

Gn = (mOO - m) i-mnb[mn] (Wn - W) 

converges in distribution to a limiting random variable G, where G is a mixture 
of a-stable distributions with characteristic function E<pw (t). 
In the present note we establish similar results for the weighted branching processes 
[11, 12]. 
We briefly recall the definition of weighted branching processes. 

Let V = U~=O INn be the set of finite words v = (VI, V2, ... ,vn) over the alphabet 
of natural numbers. The length n of the word v is denoted by lvi, and sometimes 
is called the generation. 
By means of V we construct a space of elementary outcomes 0, where an elemen­
tary outcome w E 0 is a result of assigning to each knot v E V a vector t( v) = 
(t1(V), t2(V), .. . ), tj(v) E JR, and take the natural a-algebraF on o. Now we define 
a probability measure P on F by assigning to each vertex v E V random vectors 
T(v) with values in RIN. The vector T(v,w) = T(v) = (TI(v),T2(v), .. . ), respec­
tively, the coordinates Tj (v), j E IN are called factors. We use T = (TI' T2, ... ) 
for the coordinates, suppressing the wand the v if possible. Notice that we allow 
arbitrary dependence of the factors Tj(v), j E IN for fixed knot v. The (random) 
weight L(v) or length of a knot v E V is recursively given by L(0) = 1 

L(vj) = L(v)Tj(v), 

which is the weight L(v) of the mother v times a random factor Tj(v). We skip 
the detailed construction of the resulting probability space (0, F, P), since it can 
be done by the standard procedure. 

de! 0 de! 
Let Zo = L( ) = 1, Zn = L-Ivl=n L(v) = L-Ivl=n-I L(v) L-j Tj(v) be the total 
weight of the individuals of the n-th generation and let 

m d;! EZI = E 2:Tj =I- o. 
j 

One can check that Wn = m-n Zn is a martingale which converges (under mild 
conditions of Proposition 4 below) to W. Observe, that WI = m- I L-j Tj . 

For several models of ordinary (non-weighted) branching processes Zn the problem 
of the relationship between the asymptotic behavior of the distribution tail for the 
offspring size of a single particle ZI and that of the appropriate limiting variable 
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W has been studied in [4, 5, 7, 10]. Here we restrict ourselves to the case of stable 
distributions with exponent a E (1,2] and generalize the mentioned convergence 
results due to Heyde [7] in several directions. 
In the sequel we shall use the representations 

In CPW1 (t) = it - Ill'" M(t)B(t), 

lncpw(t) = it -Ill'" Moo(t)Boo(t) 

with the obvious meaning. 

Introduce the notation 

m-(a) d:;j E L ITjl"nTj<o, m+(a) d:;j E L ITjl"nTj>O, 
j j 

m(a) d:;j E L ITjl", ~m(a) d:;j m+(a) - m-(a). 
j 

Our first main result is the following statement. 

(3) 

(4) 

Theorem 1. Let 1 < a :::; 2 and assume that m i=- 0, m(l) < 00, m(a) < Iml" 
and Wn converges to W in L 1 . 

i) Suppose there exist constants 0 < C1 < C2 < 00 such that 

(5) 

for all T j i=- o. 
Then W belongs to the domain of attraction of a stable law of index a if and only 
if Zl belongs to the domain of attraction of a stable law of the same index a. In 
addition, in this case 

as t ---+ 0 and 
B(t) = 1 - if3~ tan 7m 

It I 2 ' 
(6) 

. t Iml" - m(a) 7fa 
Boo(t) = 1 - zf3Tt1lml" _ ~m(a) tan 2· (7) 

ii) Assume there exists an a1 > a such that 

(8) 

Then W belongs to the domain of normal attraction of a stable law of index a E 
(1,2] if and only if Zl belongs to the domain of normal attraction of a stable law 
of the same index a. In addition, in this case 

de! . Iml". Iml" 
Moo = hm Moo (t) = I I ( ) hm M (t) = I I ( ) M 

t--->O m " - m a t--->O m " - m a 

and representations (6) and (7) are valid. 
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Observe that under the conditions of Theorem 1 inequality (5) implies m(o:) < 00 

for all 0: > 0 and, as we show below there exists an 0:1 > 0: such that relation (8) 
holds. 
There is a well known connection between the fact that a distribution belongs to 
the domain of attraction of an o:-stable distribution and the tail behavior of this 
distribution ([8], Chapter II, Section 6). Using this connection it is not difficult 
to establish by direct calculations the validity of the following corollary being an 
extension and generalization of Theorem 2 in [5] which was stated for branching 
random walks. 

Corollary 2. Under the basic conditions of Theorem 1 the following representa­
tions are equivalent for 1 < 0: < 2: 

P(WI < -x) = PI + 0(1) H(x), 
xC< 

P(WI > x) = P2 + 0(1) H(x) 
xC< 

as x --+ 00 with Pl,P2 ~ 0, PI + P2 > 0, and 

P(W < -x) = ql + ~(1) H(x), 
x 

P(W > x) = q2 + 0(1) H(x) 
xC< 

as x --+ 00 with ql,q2 ~ 0, ql + q2 > O. Here H(x) is a slowly varying function at 
00 if (5) is true and, in addition, lim H(x) = HE (0, (0) if (8) is valid. 

x-+(X) 

Further, in this case 

I IC< PI + P2 I IC< PI - P2 
ql = m 2(lmlc< _ m(o:)) + m 2(lmlc< - ~m(o:))' 

I I C< PI + P2 C< PI - P2 
q2 = m 2(lmlc< _ m(o:)) - Iml 2(lmlc< - ~m(o:)) 

Remark. This corollary complements a result of Liu [9] in which the case of 
nonnegative Tj was investigated and where (in our terms) under the assumption 
that there exists an X such that 

E I: TjX = 1, E I: TjX log+ Tj < 00, 

j j 

it is shown that lim XXP(W > x) exists and is strictly positive. 
x-+(X) 

Observe that under our conditions the equality E 2:j TjX = 1 for some X > 0: 

implies E (2: j Tj r = 00. And this is an essential difference with [9]. Indeed, 

in our paper the assumption that the respective functionals of T belong to a 
stable distribution means that there is a large number of Tj =I- 0 each of which is 
bounded from above and is separated from zero, while in [9] the number of Tj =I- 0 
may be finite or infinite but for a fixed No the distribution tail of 2: T j should 

j<No 
be "heavy". 

The sequence Wn = m-n Zn is a martingale with respect to the filtration Fn d;J 
a{T(v), Ivl < n} (or also a{L(v), Ivl ~ n}) for n ~ 1. Under Doob's condi­
tion sUPn EIWnl < 00 this martingale converges almost everywhere to a random 
variable W, which might be degenerate. 
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For a ~ 0 we consider 
Zn(a) d!2 L IL(v)la. 

Ivl=n 

Recall that m(a) = EZl(a). Let Wn(a) d!2 m-n(a)Zn(a). 
The next result gives the convergence rate of Wn to Wand generalizes Theorem 
2 in [7]. 

Theorem 3. Let Zl belong to the domain of normal attraction of a stable law of 
index a E (1,2] with lim M(t) = M > 0 in representation (3). Suppose that 

t->O 

1) m #- 0, m(l) < 00 and m(a) < Imla; 
2) Wn converges in L1 to W; 
3) there is an al > a such that (8) is true; 
4) the condition 

is valid. 
Then 

E L ITjl a In ITjla < m(a) In m(a) 
j 

(9) 

i) there exists a sequence of constants {cn} such that C;:;-1Cn+l --t 1 as n --t 00 and 

(10) 

in probability to a random variable Y which is strictly positive whenever the process 
Wn(a) survives; 
ii) for any t E (-00,00) 

lim Eexp {it (mn(a)cn)-l/a (W - Wn)} 
n->oo 

{ 1 la Imla ('(3* t na)} = Eexp - t M Imla _ m(a) Y 1- Z ItT tan 2 ' 

where 

For the Galton-Watson process the factors Tj are 0 or 1 and, therefore L( v) are 0 
or 1 as well. Since the Galton-Watson dies out almost everywhere as m :s: 1, only 
the supercritical case m > 1 is interesting. This implies our condition m(a) == 
m < Imla. The factors are bounded below and above. Our Theorem 1 contains 
convergence in domains of attractions for the Galton-Watson process. 

It is necessary to note that for Galton-Watson processes we always have (3* = 1 
and m-(a) = 0 while the case m-(a) > 0 has not been studied before and gives 
essentially new results. 
One of the key problems of the given paper is to investigate the convergence rate of 
Wn to W. If all Tj are nonnegative then condition (9) for a = 1 is a necessary one 
for the convergence of Wn to W with W #- 0 by Biggins' criterion (see Theorem 
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5). Convergence conditions for the case Tj E IR are investigated in [12]. To get 
the convergence of Wn(a) to an W(a) with W(a) -=I- 0 we need (again by Biggins' 
criterion) condition (9) in both cases. 

We say that a random variable X satisfies the fixed point equation with factors 
Tim = (Tdm, Tdm, ... ) if 

X ~ L: Tj X j , 
, m 

J 

(11) 

where Xj are independent copies of X and T, X j , j E IN are independent. The 
n 

right-hand side is understood in the sense L: TjXj converges as n ----> 00 in distri­
j=1 

bution. 

Proposition 4. Assume that 0 < m(1) < 00 and supEIWnl < 00. Then the 
n 

limiting random variable W satisfies the fixed point equation (11) with factors 
Tim. 

As it was mentioned the ordinary Galton-Watson process is a special case of the 
weighted branching processes with factors in {O, 1}. In this case {Wn } is a positive 
martingale which converges according to Doob almost everywhere to a random 
variable W. A theorem by Kesten-Stigum [2] states that EW is either 1 or o. The 
equality EW = 1 is equivalent to the so-called L log L condition E(Z1In Zd < 00. 

(We use 0 In 0 = 0.) In both cases W satisfies the fixed point equation for the 
factor T. 
The branching random walk is a special case of the weighted branching processes 
with finitely many positive factors (see [3] and [11] for more details). Again {Wn } 
is a positive martingale and converges according to Doob almost everywhere to 
W. The limit W satisfies the fixed point equation of form (11). The problem of 
L1 convergence for branching random walk is settled in the following theorem. 

Theorem 5. [3] Wn(a) converges to some random variable called W(a) in L1 if 
and only if 

(12) 

and inequality (9) is true. 
If only inequality (9) is satisfied then there exists a sequence of constants {cn } such 
that c~1cn+1 ----> 1 as n ----> 00 and 

in probability to a random variable Y, which is strictly positive whenever the process 
Wn(a) survives. 

Remark. Under condition (12) the second part of Theorem 5 is valid for Cn == 1 
and Y = W(a). It will be convenient for us to use equation (10) in both cases. 

According to Proposition 4 W satisfies the fixed point equation 

W~ L:TjW(j) 
,m 

J 

(13) 
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where W(j) are independent copies of Wand T = (TI' T2 , ... ) is independent 
of W(j). Observe that equation (1) is a particular case of (13). An equivalent 
description via characteristic functions is 

The fixed point equation, assuming EW = 1, rewrites 

W - I ~ ~ ;. (W(j) - I) + (~;. - } 

In terms of characteristic functions 

I'W-l(t) ~ I'w, ~~ 1 (t) + Eexp{it(Wl - III ( l} I'W-l (t;') -I) . (14) 

Proposition 6. Let 0 < m(a) < 00. Then 

E L IL(v)!" I~~~~I = (~m(a)t 
Ivl=n 

and the sequence 

~ d:;j (~m(a))-n L IL(v)IQ L(v) 
n Ivl=n IL(v)1 

is a martingale with respect to the sequence of u-algebras Fn = u{L(v), Ivl ~ n}. 

The proposition can be checked by induction arguments. 
Sketch of the Proof of Theorem 1. In order to avoid complicated notation we 
always assume m = 1 and write Zn for Wn and Z for W. We use representations 
(3) and (4). 
First we show that if Z belongs to the domain of attraction of an a-stable law 
1 < a ~ 2 then ZI also possesses this property. 

Using (14) for W = Z we have 

Hence, setting 

j j 

we get 
'PZl-l(t) = 'PZ-I(t) - E(exp{it(ZI -l)}(ea -1)), 
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or 

'PZ1-l(t) = 'Pz_l(t)e- Eb + ('PZ-l(t) -1) (1- e-Eb ) + (2 - Eea - e-Eb ) 

- E [(exp{it(Zl - I)} - 1)(ea - 1)] d:;j Q(I) + Q(2) + Q(3) + Q(4) . 

By standard arguments one can show that 

Q(I) = exp {-ltl"(1 - m(a))Moo(t)B(t)}, 

where B(t) is given in (6) and Q(j) = o(Q(I)) as t ---- 0 for j = 2,3,4. 
Collecting the estimates above we deduce the representation 

In 'PZl (t) = it - IW(1- m(a)) Moo (t)B(t)(1 + 0(1)) 

which proves the direct statement of point i) of Theorem l. 
Now we turn to the converse statement of point i) of Theorem 1: Zl in the domain 
of attraction of an a-stable law 1 < a ::::; 2 implies Z in the same domain. 
This time we use the following simple identity 

Zn - 1 = (Zn-l - 1) + L L(v)(ZiVl - 1) 
Ivl=n 

where the random variables ziv ) = L: Tj(v) are independent for different v. Hence, 
j 

letting Zo = 1, we obtain 

Denote 

1- 'PZn-1(t) = 1- Eeit(Zn- l-1) IT 'PZ1-l(tL(v)) 
Ivl=n-l 

n-l 
= LEeit(Zk-ll( 1- IT 'PZ1-l(tL(v))). (15) 

k=O Ivl=k 

ak d:;j -Itl" L IL(v)I" M(tL(v))B(tL(v)), 
Ivl=k 

bk d:;j -Itl" M(t) L IL(v)I" B(tL(v)). 
Ivl=k 

In the subsequent arguments we deal with the representation (recall, m = 1) 

00 

'PZ-l (t) = L Eeit(Zk-1) (1 - iJk) 
k=O 
00 

+ L Eeit(Wk-1) (ebk - eiik ) d:;j Q(5) + Q(6) 
k=O 

which follows from (15). 
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By standard but a bit lengthy arguments one can demonstrate that 

1. Q(5) 
1m ~----::-~:-'::::----:--:-

t--->O IW'M(t)Boo(t) 
1 

1- m(a)' 

where Boo(t) is given in (7) and Q(6) = 0(Q(5)) as t ---7 O. This proves the first 
equivalence i). 
The proof of the second equivalence ii) is similar to the proof of i). 

Lemma 7. Let 1 < a :::; 2 and assume that m =I- 0, m(l) < 00, m(a) < Iml<> and 
Wn converges to W in L1. 
Then 

II { L(V)} ( L(V)) II ( L(V)) 4?w-wJt) = E exp -it mn 4?w t mn = E 4?W-1 t mn . 
Ivl=n Ivl=n 

The proof of the lemma is straightforward and is omitted. 

We demonstrate now Theorem 3, a generalization of Theorem 2 [7]. 
Proof of Theorem 3. Point i) follows from Theorem 5 for ITj 1<> and the subse­
quent remark. 
Let us prove point ii). Without loss of generality we may take m = 1. Thus, 
Wn = Zn and W = Z. 
Let t =I- 0 and 8 > 0 be fixed. Denote an = (mn(a)cn)-l/<> (recall Theorem 5) and 
put 

a d!jj -Itl<>a~ L IL(v)I<> Boo (tanL(v))Moo (tanL(v)) d!jj -IW(a, 
Ivl=n 

b d!jj -ltl<>a~Moo L IL(v)l<> Boo (tanL(v)) d!jj -IW(b, 
Ivl=n 

Dn = Dn(8) d!jj {w: L anIL(v)1 :::; 8n } . 
Ivl=n 

With this notation we have 

4?an(Z-Zn)(t) = 4?Z-Zn(tan) = E II 4?z_l(tanL(v)) = Eeii 

Ivl=n 

= Eeb + ED.D~ (e ii - eb) + ED.Dn (e ii - i) . (16) 

The scheme of proving point ii) is as follows. First we show that the limit of the 
first summand in the right-hand side of(16) exists as n ---7 00 and coincides with 
the limit we are searching for. Then we establish existence of an 8 E (0,1) such 
that P(D~) ---7 0, proving that the second summand is negligible as n ---7 00. n--->oo 
Finally, we demonstrate that the difference (a - (b) n Dn' being dependent on 
t, also vanishes as n ---7 00 (in the sense of weak convergence) . The mentioned 
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weak convergence is equivalent to the convergence to zero of the third term in the 
right-hand side of (16). This will complete the proof of Theorem 3. 
We proceed to fulfill the plan. 

• Eeb n=:'oo Eexp { -It!" MooY (1 - iiJ* I~I tan T) }, where 

iJ* d:;J {I ~f m-(a) = 0, 
o If m-(a) -=I O. 

Note that iJ = 1 in the definition of Boo(t) (see (7)) if m-(a) = 0 (see Theorem 
2.6.1 in [8]). The possibility m+(a) = 0 is excluded by the assumption m = 1 
while in the remaining cases iJ may take any value in [-1, 1] admissible for the 
stable law in question. 
We consider separately the real and imaginary parts of the exponent. 

By Theorem 5 (the symbol ~ denotes convergence in distribution) 

Reb = -IWa~Moo L IL(v)IQ = -ltIQMooc;:;-lWn(a) ~ -IWMooY 
JvJ=n 

as n ----t 00. On the other hand (recall Proposition 6) 

A I IQ Q t ""' I ( )IQ L(v) (.l 1 - m(a) 
1mb = t anMoo1tl ~ Lv IL(v)( 1- ~m(a) 

JvJ=n 

Q t (~m(a))n -1 1- m(a) 
= It I Moo1tl m(a) cn ~niJ 1 - ~m(a)" 

If m-(a) = 0 then L(v) 2:: 0 with probability 1, and, therefore, iJ = 1, ~m(a) = 
m(a) and ~n = Wn(a). Hence, the same as for Reb (see Theorem 5) 

A d t 1m 
1mb ----t Ill" MooY 1tI tan 2· 

If m-(a) > 0 then b.m(a)/m(a) < 1 and in view of rf:n- ----t 1 it follows that n+l n--+oo 

c-1 (b.m(a))n ----t O. 
n m( a) n--+oo 

Since ~n is a martingale by Proposition 6, we get immediately 1m b ~ 0 completing 
the proof of this point . 
• lim P(D~) = 0 for any fixed t and 6 < 1 such that n--+oo 
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First we show that one can find b meeting the restrictions above. Condition (9) 
implies am'(a) = E I:i ITjl'" In ITjl'" < m(a) lnm(a) < 0 if m(a) < 1. Therefore, 
m(t) is decreasing in t in a right vicinity of a. In addition, taking into account 
the value of the derivative and its estimate we have 

that is , ml/t(t) decreases in t in the same right vicinity of a. This means that 

there exists a2 E (a, all such that m~ a() ) < 1 establishing the existence of the 
m"'2 '" a 

needed b. 

By the Chebyshev inequality we obtain 

(17) 

Since C~ICn+1 ----+ 1, there exists an E > 0 such that 
n--+oo 

for all sufficiently large n. Combining this estimate with (17) completes the proof 
of the desired statement . 

• lim E (eli - eb) liDc = 0 for any fixed t. 
n----+CX) n 

This statement immediately follows from the previous point, since for Re a < 0 

and Re b < 0 the inequality IE (eli - eb) liD:; I :s: 2P(D~) is true . 

• lim ((a - (b) li Dn ~ 0 for any fixed t. 
n--+oo 

The following inequality is valid on Dn: 

an sup IL(v)1 :s: an L IL(v)1 :s: bn. 
Ivl=n Ivl=n 

Therefore, dn d;! sup IMoo(tanL(v)) - Moo I ----+ 0 on Dn. Note, finally, that 
Ivl=n n--+oo 

a~ " IL(v)I"'liDn :s: a~ " IL(v)I'" ~ y. L-t L-t n----+oo 
Ivl=n Ivl=n 

Hence it follows easily that for some constant C3 < 00 

I(a - (blliDn :s: C3a~ " IL(v)I"'liDndn ~ o. L-t n---+oo 
Ivl=n 
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Reduced Branching Processes in Random 
Environment 

Vatutin Vladimir and Dyakonova Elena 

ABSTRACT: Let Zn be the number of particles at time n in a critical branching 
process in random environment and Zm,n be the number of particles in this process 
at time m :::; n which have non-empty offspring at time n. We prove limit theorems 
for the process {Z[nt],n, t E (0, I]} conditioned on the event {Zn > O}. Quenched 
and annealed approaches are considered. * 

1 Introduction 

Let {Zn, n E No} be a branching process in random environment {7r n, n E No} 
where 

00 

7rn = { 7r~O), 7r~1), 7r~2), ... } , 7r~i) ~ 0, L 7r~i) = 1, n E No = {O, 1,2, ... }, 
i=O 

and the tuples 7rn are identically distributed and independent. By definition of 
branching processes in random environment (BPRE) we have 

where 
00 

fn(s) = L7r~i)Si. 
i=O 

We assume that Zn is critical, that is E In f~ (1) = O. Such processes were in­
vestigated by many authors (see [1] and the relevant bibliography in [8]). One 
of the important characteristics of a branching process is its genealogical tree. It 
may be described to a certain extent by the so-called reduced branching process 
{Zm,n, 0 :::; m :::; n} in which Zm,n is equal to the number of particles in the 
process {Zk, 0:::; k :::; n} at time m :::; n each of which has a non-empty offspring 
at time n. Reduced Galton-Watson branching processes were introduced by Fleis­
chmann and Prehn [4], who analyzed the sub critical case. The critical reduced 
Galton-Watson processes were investigated by Zubkov [10] and Fleischmann and 
Siegmund-Schultze [5]. The first results for reduced branching processes in ran­
dom environment were obtained by Borovkov and Vatutin [2] and Fleischmann 
and Vatutin [6]. In the framework of the annealed approach they studied the case 
of iid fractional-linear generating functions fn. The present paper deals with both 
annealed and quenched approaches. 

Let Xk = Inf~_l (1) and TJk = f~_1(1)(JLl(1))-2, k = 1,2, .... It is known that 
properties of a critical BPRE essentially depend on the accompanying random 

·Supported by grants RFBR: 02-01-00266, 00-15-96136, INTAS 99-01317, and 
436RUSI13/683/0-1{R). 

B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
© Springer Basel AG 2002
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walk So = 0, Sn = Xl + ... + X n . We assume that {Sn}n>O is nonlattice and 
satisfies the following conditions -

EXI = 0, (72 := EX? E (0,00), (1) 

and 
(2) 

The symbols E and P are used below for the expectation and probability with 
respect to the measure over environment, while the symbols E". and P". stand for 
the expectation and probability under fixed environment 7r = (7rI' 7r2, ... , 7rn , ... ). 

Our first result concerns the survival probability of an ordinary critical BPRE Zn 
in the quenched setting. Let 

T(n) = max{k E [O,n] : Sj ~ Sk, j oJ k} (3) 

be the right-most point at which the minimal value of Sj, j = 0, 1, ... , n, is attained. 

According to ([7], Ch. IV, Sec. 20) if condition (1) is valid then T(n)n- l ~ T as 
n ----+ 00, where T is a random variable obeying the arcsin law on [0,1] . 

Theorem 1.1. If conditions (1) and (2) are valid, then the distributions of the 
random variables 

(n := e-ST(n) P". (Zn > 0), n = 0, 1,2, ... , (4) 

converge, as n ----+ 00, to the distribution of a random variable ( E [0,1] which is 
positive with probability 1. 

The next statement establishes a Yaglom type conditional limit theorem for the 
critical BPRE. 

Theorem 1.2. If conditions (1) and (2) are valid then for any A E [0,00) 

where ¢ ". (A) is the Laplace transform of a proper nondegenerate random variable 
which is not concentrated at zero. 

Here and below ~ means convergence in distribution with respect to the measure 
over environment, 

Remark. If the offspring generating functions are fractional-linear then 

(5) 

which gives a result in the spirit of the ordinary Galton-Watson branching pro­
cesses. However, it is not clear if this is the case in the general situation. 

For T ~ ° put 
,,(T) (t \) ._ {e->' if T > t, 
'1'". ,A.- ¢".(A) if O~T~t. 
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To simplify notation, let us agree to understand the product nt, t E (0,1), n = 
0, 1,2, ... , as [nt]. Set 

1 
f3n (t) := E [Znt,n I Zn > 0] 

e-Snt (1- io,n (0)) 
1 - int,n (0) 

Theorem 1.3. Under conditions (1) and (2) for any fixed t E [0,1] 

In the case when the offspring generating functions are fractional-linear one can 
get a more detailed information about the form of if);) (t, A). 

Theorem 1.4. Let ° < h < ... < tk :::; 1. If conditions (1) and (2) are valid and 
all offspring generating functions are fractional-linear, then for any tuple Ai > 
O,i = 1,2, ... ,k 

as n ---+ 00, where iT = max{i : T < ti}' 

Now we pass to the limiting behavior of Znt,n in the annealed situation. 

Theorem 1.5. Let condition (1) be valid and Erl1 (1 + Xl) + Ee-X1 < 00. Then 

{ l;;;:;-lnZntn,tE[O,l]IZn>o}~{ inf W+(U),tE[O,l]}, 
IJyn ' t:S;u:S;l 

where W+(t), t E [0,1] is the Brownian meander. 

Remark. Let an = max{m < n: Zm,n = I}. The difference dn = n-an is called 
the distance to the closest mutual ancestor of all individuals existing at time nand 
the respective particle is called the closest mutual ancestor for the particles of the 
nth generation. It is known [5] that for ordinary critical Galton-Watson processes 
dn is asymptotically uniformly distributed over [0, n]. In the random environment 
setting we have quite different situation. 

Indeed, in the framework of the quenched approach it follows from Theorem 1.3 
and Lemma 2.3 below that, as n ---+ 00 

E 11: (exp {-AZnt,n} IZn > 0) ---+ e-A 

on the set {T(n)n- l > t}. On the other hand, if {T(n)n-l < t} then Znt,n is 
large. This means, roughly speaking that n-ldn ~ 1 - T(n)n- l for a frozen 
environment. Thus, the distance to the closest mutual ancestor in the critical 
BPRE and a random but frozen environment is still spreading over the whole 
interval [0, n]. However, since the distribution of T (n) n- l converges, as n ---+ 00, 

to the arcsin law on [0,1], the distribution of this distance is NOT asymptotically 
uniformly distributed over [0, n]. 
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For the annealed approach Theorem 1.5 states, roughly speaking, that the number 
of individuals Znt,n grows as exp{ yninf t ::;u:9 W+(u)}. Recalling that 
P(inft ::;u:9 W+ (u) > 0) = 1 for any t E (0,1], we conclude that in the annealed 
setting the closest mutual ancestor is located at the distance 0 (n) from the origin. 
In fact, as shown by Borovkov and Vatutin [2] for the fractional linear case, the 
closest mutual ancestor is located with positive probability even at the origin! 

2 Quenched setting 

In this section we collect some preliminary results and prove statements for the 
BPRE in the quenched setting. Let 

!k,n (8) = fk(fHI( ... (fn-1 (8)) ... )), 0::::: k::::: n -1, fn,n (8) = 1, 

fn,o (8) = fn-l(fn-2( ... (fo (8)) ... )), n:::: 1, 

1 1 
gd8) = I-fd8) - f~(I)(1-8)' 0:::::8:::::1. 

The following lemma plays a crucial role in our subsequent arguments. 

Lemma 2.1. (see [3]). Let fk -=I- 1,0::::: k ::::: n - 1. Then for every 0 ::::: 8 < 1, 

S n-I 1 e- n 

1 - fo,n (8) = 1 _ 8 + ~ 'T/k,n (8) e- Sk , 

where 
f" (1) o < 71 (8) = 9 (f (8)) < 71 '= -----,-,k---,---,---;c - ·,k,n k k+l,n - ·,HI· (f~ (1))2' 

(6) 

(7) 

Now we are ready to show that the asymptotic behavior of the survival probability 
of Zn depends essentially on the point of minimum of the accompanying random 
walk. 

Lemma 2.2. Let conditions ( 1) and ( 2) be valid, and let Nand M be positive 
integers such that N < M ::::: n. Then, on the set {T( n) = M > N} 

I-fo,n(8) 

where, for any c > 0 

limsuplimsupP( sup cN (M,n,8»cIT(n)=M) =0. (8) 
N--->oo M--->oo sE[O,I],n~M 

Proof. By Lemma 2.1 we have on the set {T(n) = M > N} 

1 - fo,n (8) 1 - fO,M-N (fM-N,n (8)) 

eSM-SM-N 

------+ 
1 - fM-N,n (8) 

M-N-I 
L 'T/k,M-N (fM-N,n (8)) e SM - Sk . 

k=O 
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Now 

M-N-l 
EN (M, n, S):= L "lk,M-N (fM-N,n (s)) eSM - Sk 

k=O 
M-N-l M 

< L "lk+leSM-Sk ~ L "lZeS~, (9) 
k=O k=N+l 

where "lZ and SZ are defined by So = 0, Sk = SM - SM-k = X M + X M- l + ... + 
X M - k+l , k = 0,1, ... , M, and 

("l~,"l;,···,"lM) ~ {("lM,"lM-l, ... , "ld ISM - Sk:::; 0, k = 1,2, ... ,M -I}. 

Following the line of arguments used in the proof of Lemma 4.1 in [3], one can 
demonstrate that under the conditions of our lemma 

(10) 

We know that the probability of the event {T( n) > N} tends to 1 as n ----> 00 for 
each N. Hence the desired statement follows. I) 

Proof of Theorem 1.1. By the total probability formula we write 

Since T (n) n- l obeys the arcsin law as n ----> 00, for any 6 > 0 one can select an 
E E (0,1/2) such that P (T (n) n- l :::; E, T (n) n- l > 1 - E) :::; 6 for all sufficiently 
large n. Thus, we may consider only M belonging to the interval [nE, n (1 - E)]. 
By Lemma 2.2 on the set {T(n) = M > N} 

1 - io,n (0) 

In view of (9) and (10) for any fixed El > 0 and any 6 > 0 one can find 
sufficiently large N such that P (EN (M, n, 0) > Ell T(n) = M) :::; 6 for all M E 
[nE, n (1 - E)]. Therefore, for such N, M, and sufficiently large n 

P (~(N,M,n) :::; x - El I T(n) = M) - 6 :::; P C _ e:a: (0) :::; x I T(n) = M) 

:::; P(~(N,M,n):::; x I T(n) = M), 
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where 

eSMe-SM-N 

~(N,M,n): = 1- f _ (f (0)) 
M N,M M,n 
1 M-1 

1 - fM,n (0) + k=~N "Ik,M (fM,n (0)) e-(Sk-SM) 

N 

!l 1 _ 1,**1 (0) + L "1;',0 (J;,*,.-M (0)) eSk 
O,n-M k=l 

n-M-1 N 
= e-S~*-M + L "I;'~n-M (0) e-s ;;' + L "1;',0 (J;,*,.-M (0)) eSk 

k=O k=l 
eS'N 

= ( ) =: 6 (N,n - M). 
1 - fiv,o f;,*,.-M (0) 

(11) 

Here S;, is the same as before, 

S~* = 0, Sr = SHM - SM = XM+1 + ... + XM+j, j = 0,1, ... , n - M - 1, 

and S;, and S}* are two independent random walks, the first of them conditioned 
to stay non-positive for k = 1, ... , M, while the second one conditioned to stay 
positive for j = 0, 1, ... , n - M - 1, 

"1;',0 (8) = g;' (Jk-1 (···f; (8))) ~ "IM-k,M (8), 

"I;'~n-M (8) = gk,* (Jk+! (··.f~-M (8))) ~ "Ik+M,n (8), 

where f:;',0(8) = f:;'-l (···fO (8)) and fO,*,.(8) = fa (Ji ( ... f~-l (8))) are iterations 
of random generating functions with distributions 

(J:;', f:;'-l, ... , fo) ~ {fo, II, ... , fm I Sk SO, k = 0, 1, ... , m}, 

(J;*,J;*, ... ,f~-l) ~ {f0,1I,···,fn-11 Sj >0, j=0,1, ... ,n-1}. 

Clearly, fO*,.-M (0), being a monotone sequence, converges almost surely as n -
M ---'> 00 t~ a limit q**. Let us show that q** < 1 with probability 1. Indeed, it 
follows from Lemma 2.1 that 

n-M-1 
1 _SO' ~ ** _SO' 

1 _ 1,** (0) S e n-M + ~ "Ij+! e J 

O,n-M j=O 

with natural definition of "1;,+1 (compare with (7)). 

By Lemma 4.1 in [3] 

lim sup E e-S~*-M + L "1;,+1 e-sj* ( 
n-M-1 ) 

n-M--->oo j=O 
< 00. (12) 
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Hence it follows that P (q** < 1) = 1. 
Now everything is ready to complete the proof of the theorem. As we know, 
'T]k,o (s), k = 1, ... , N are continuous in 8 E [0, 1], the sequence ofrandom variables 
10'*-n-M converges to q** as n - M --t 00 with probability 1 and is independent of 
si and, finally, 

eS'N eS'N+l 

1 _ I;' ,o(s) :::; 1 _ 1;'+1,0(8)' 8 E [0, IJ. 

These facts and (11) show that the limit 

S· 

lim lim 6 (N, n - M) = lim /* N ( ) 
N ..... oon-M ..... oo N ..... oo 1 - N ,O q** 

1 00 

= + "" 'T]* (q**) eSZ := ~ (13) 1- q** ~ k,O 
k=l 

exists P",* x P,,** almost surely, where P",* x P,,** is the measure generated by the 
"double"-sided environment ... , 1;',.,1;',.-1, ···,fo; 10*' li*, .. . , 1~-1' .... Observe that 
~ is finite with probability 1 by (7) and (10). As a result we get 

P (~ :::; x - cd - J 
:::; lim lim inf min P (~(N, n - M) :::; x I T(n) = M) 

N ..... oo n ..... oo ME[ng, n(l-g)] 

:::; lim lim sup max P(~(N,n-M):::;xIT(n)=M) 
N ..... oo n ..... oo ME[ng, n(l-g)] 

:::;P(~:::;x) 

for all M E [nc, n (1 - c)J. Hence, 

lim P ( (;; 1 :::; X ) = P ( c 1 :::; x) 
n ..... oo 

where (= ~-1. <) 

Combining Theorem 1.1 and Lemma 2.1 it is not difficult to check the validity of 
the following statement. 

Lemma 2.3. Under conditions (1) and (2) lor any t E (0,1) and c E (0,1) 

nl~~ P (I ~ ~ ;;: (~} -11 > CiT (n) < nt) = 0, (14) 

lim P ((In (t) > ciT (n) < nt) = 0, (15) 
n ..... oo 

and 
lim P(I(Jn(t) -11> c I T(n) > nt) = 0. 

n ..... oo 

Lemma 2.4. Under conditions ( 1) and ( 2) for any A E [0,00) 

E" [e - >.zneST(nl-Sn I Zn > 0] ~ 'ljJ" (A), n --t 00, 

(16) 

where 'ljJ" (A) is the Laplace transform of a proper random variable not concentrated 
at zero. 
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Proof. Clearly, 

Thus, in view of Theorem 1.1 it suffices to establish that the limit 

in distribution exists and possesses the needed properties. Similarly to (11) we 
have on the set {T(n) = M > N} 

~(N, M, n, >..) .-

d eSN 
1-1* (1,** _ (e-Ae-S~~M)) =:6(N,n-M,>..). (17) 

N,O O,n M 

( SM-Sn) d (-S~~M) Observe now that fM,n e- Ae = fO,"n-M e- Ae , n 2:: M, are the 

Laplace transforms of the distributions of the random variables e-S~*-M Z~*-M 
(with natural meaning for Z~*-M) which constitute a positive martingale for each 
fixed sequence {S~*} and, therefore, 

exists P ,,** almost surely. Now repeating almost literally the proof of the previous 
theorem we get sequentially that P (7/J ,," (>..) < 1) = 1 and that the limit 

1 00 

lim lim 6(N,n-M,>..)= 7/J (>..)+"r/k,o(7/J,,**(A))eSZ (18) 
N--+oon-M----+oo 1- 1("** ~ 

k=l 

exists P,,* x P,,** a.s .. Hence, for any A > 0 

( 
e~0) ) 

lim P (S -S) '5: x =P(~(>..)'5:X)=p(Cl(A)'5:X), n->oo 1 _ fO e-Ae T(n) n 
JI,n 

(19) 
where ((>..) = ~-l (>..) is a proper random variable which is positive with proba-

• . ( A ST(n)-Sn) blhty 1. In fact, we can perform the arguments above for 1 - fo,n e- e 

and 1 - fo,n (0) simultaneously. This remark allows us to combine (19) with The­
orem 1.1 to get 

Lemma 2.4 is the crucial step for proving Theorem 1.2. 
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Proof of Theorem 1.2. We have 

E,. [exp{ - E,.[z:F;n > 0]}1 Zn > 0] 
=E,. [exp{-,\Zne-Sn(l-fo,n(O))} IZn>O] 

= E,. [exp {-,\ZneST(n)-Sn(n} I Zn > 0], 

463 

Hence, following the line of arguments used in the proofs of Theorem 1.1 and 
Lemma 2.4 and recalling that we the limit in (13) holds almost surely, we obtain 

Remark. In the fractional linear case representation (7) looks like this 

1 e-Sn 1 n-l 
1-fo,n(s) = l-s +2" ~1Jk+le- Sk, 

Using this identity it is not difficult to show that for a random variable C* 

lim 1 = C* 
n-M-->oo 1 - fO,"n-M (0) 

and 
, 1 1 = ~ + C** 

hm (s.. ) = . /, ( \) \ ." n-M-->oo 1- t** e->.e- n-M 1- 'f/,." A A JO ,n-M 

P,... almost surely, Inserting this into (18) gives for a random variable C 

lim lim 1 = ~** + C = C 1 

N-->oon-M-+oo1_f* (~**_ (0)) N,O O,n M 

and 

1, l' 1 
1m 1m (( s..)) N-+oo n-M-->oo 1 _ f* ~** _ e->.e - n-M N,O O,n M 

P,.. X P,... almost surely, Therefore, 

as claimed in (5), 
Proof of Theorem 1.3. Direct calculations show (see [5]) that 

E ,.(exp{ - ,\Znt,n'sn(t)} I Zn > 0) 

= 1- 1- fO,nt (1- (1- c>'i3n(t)) (1- fnt,n (0))), 
1 - fo ,n (0) 

(20) 

(21) 
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Clearly, 

exp {-A,Bn (t)} 2 En (exp {-AZnt,n,Bn (t)} IZn > 0) 

> 1- eSnt (1 - e-,\,6n(t)) (1 - fnt,n (0)) 
- 1 - fo,n (0) 

= 1- (1 - e-,\,6n(t)) (,Bn (t))-l , 

where we used the inequality 1- f(s) ::; j' (l)(l-s) being valid for any probability 
generating function. This and (16)show that for any E: > 0 

P (IE n (exp {-AZnt ,n,Bn (t)} IZn > 0) - exp {-A}I > E: I T (n) > nt) ----t 0 

as n ----t 00. On the other hand, (14) and (15) yield 

(1 - e-,\,6n(t)) (1 - fnt,n (0)) = A,Bn (t) (1 + 8~1) (t)) (1 - fnt,n (0)) 

= A (1- fo,n (0)) (1 + 8(1) (t)) 
En [ZntlZnt > 0] (1 - fO,nt (0)) n 

_ _ {_ A ((2))} 
- 1 exp En [ZntlZnt > 0] 1 + 8n (t) , 

where 8~i) (t) ~ 0, n ----t 00, i = 1,2 on the set {T(n) < nt}. Hence, recalling 
Theorem 1.2 and (21), we get 

En (exp{ - AZnt,n,Bn (t)) I Zn > 0) 

= 1- 1- fo,nt(exP {-E7r[Znttznt>0] (1+8~2)(t))}) x 

1 - fO,nt (0) 

x 1 - fO,nt (0) ~ ¢ 7r (A) 
1 - fo,n (0) 

on {T( n) < nt} as n ----t 00 , completing the proof. <> 
Using Theorem 1.3 and induction arguments one can check the validity of Theorem 
1.4. We omit the details. 

3 Annealed setting 

The study of reduced BPRE in the annealed setting is more involved and we 
demonstrate main steps only. The reader can find the detailed proofs in [9]. 

Lemma 3.1. Let the conditions of Theorem 1.5 be valid. Then 

{ 1r.:;-ln(1-font(0)),tE[0,1]}~{ inf W(U),tE[0,11} (22) 
ay n ' OSuSt 

in Skorokhod topology in the space D[O, 1], where W (t) is the standard Brownian 
motion with W (0) = O. 
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Proof. By Theorem 1.1 for any x < 0 and any t E (0,1] 

lim P ( 1;;;;-ln (1 - fO,nt (0)) :::; x) 
n->oo (}yn 

= lim P ( 1;;;;- ( min Sk + lne-sr(nt) (1- fO,nt (0))) :::; x) 
n->oo (}yn 0::;; k::;; nt 

= P ( inf W (u) :::; x) . 
0::;;u9 

U sing this fact it is not difficult to establish (22). 
The next lemma shows that in the annealed setting a critical BPRE survives only 
if the trajectories of the accompanying random walk Sn behave "nicely". 

Lemma 3.2. Let the conditions of Theorem 1.5 be valid. Then for any 0 < h < 
... < tr :::; 1 and Yl, ... , Yr ERr 

lim p( 1;;;;- min Sk > Yl, ... , 1;;;;- min Sk > Yr I Zn > 0) 
n->oo (}yn O::;;k::;;ntl (}yn O::;;k::;;ntr 

= P ( inf W(u) > Yl, ... , inf W(u) > Yr). 
tl::;;u::;;l tr::;;u::;;l 

The next important step is the representation 

where Z~~) (n) is the offspring size at moment n in the population generated by 
the kth particle among those existed at moment nt and I (A) is the indicator of 
the event A. 

Lemma 3.3. Let the conditions of Theorem 1.5 be valid. Then for x > 0 and 
tE(O,I] 

lim p( 1;;;;-lnZnt,n>xIZn>O) =p( inf W+(U»x). n->oo (}y n t::;;u::;;l 

Proof. Given Znt and fnt(O), fnt+! (0), ... , fn-l (0) we have by the strong law of 
large numbers on the set {Znt --+ oo} : 

1 Znt 

Z LI (Z~~) (n) > 0) --+ 1- fnt.n(O) 
nt i=l 

P1r-almost surely. On the other hand, one can show that under the conditions of 
the lemma for any E > 0 and any t E (0,1] 

lim P ( 1;;;;-lln (Znt e- Snt ) I > E I Zn > 0) = O. n->oo (}yn 
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Hence, in view of Lemma 3.2 

p( a~ InZnt,n > x I Zn > 0) 

as desired. <) 

~ P (a~ (InZnt + In(l- fnt.n (0))) > x I Zn > 0) 

~ P ( 1;;;;- (Snt + min (Sk - Snt)) > x I Zn > 0) 
ay n nt:Sk:Sn 

P ( 1;;;;- min Sk > x I Zn > 0) 
ayn nt:Sk:Sn 

-+ P ( inf W+ (u) > x) ,n -+ 00, 
t:Su:Sl 

Using Lemmas 3.2 and 3.3 one can complete the proof of Theorem 1.5. 
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A Cooperative Approach to Renyi's 
Parking Problem on the Circle 

Thierry Huillet, Anna Porzio 

ABSTRACT: A cooperative approach to Rfmyi 's parking problem is investigated 
as a circle covering problem. In this approach, the jamming constant is log 2. 

1 Introduction 

Place at random a unit interval of length 1 (a car) in the interval of length x > 1 
(the street), then place a second one, independently of the first in such a way 
that overlap is avoided, and repeat the process until the largest gap between 
cars is less than 1 so that no additional car can be inserted. The final number 
of cars is M (x) and using Laplace transform methods, Renyi [8] proved that 
EM (x) Ix -+xjoo .748 .. is the average space filling rate. 
In Statistical Mechanics, this problem is the I-dimensional version of the irre­
versible hard-sphere model, also called the Random Sequential Adsorption (RSA) 
model which has become important in the physical and biological sciences [4], [6]. 
Some extensions of the sequential approach (the so-called Cooperative Sequential 
Adsorption model) have also been investigated recently [2] in the Physics' litera­
ture. 
In this manuscript, a purely cooperative approach to the Renyi parking problem 
is investigated. In more details, the considered problem is the following one: 
Consider the circle of circumference 1 (or the interval [0, 1]). Throwing at random 
points on the circle and appending clockwise cars of length s to each such points, we 
focus on s-packing configurations that avoid overlap for cars and that do not allow 
for adjunction of a new car. Pick at random one such s-packing configuration 
and let N(s) be the number ofits "cars". Using tools designed by Steutel [10], we 
prove sN (s) -+810 log 2 ~ .693 .. (in probability) which is slightly less than Renyi's 
packing constant. 
In our approach, the random subset of the circle arising from random throws of 
atoms of length s on it, is considered globally: the whole configuration is disre­
garded if it is not a s-packing configuration; in Renyi's model, only the new car 
inserted is discarded if overlap occurs with the previously obtained non-overlapping 
configuration, until the space filling process terminates in a packing configuration. 
Whereas Renyi's formulation is more like a Random Sequential Adsorption model, 
the one discussed here can therefore be seen as a Random Cooperative Adsorption 
(RCA) model. 
Perhaps not surprisingly, the RCA model yields a slightly less effective space­
filling procedure but it could be relevant, in opposition to the sequential RSA one, 
whenever a simultaneous interaction (physical, chemical or biological) is involved; 
for example, in toxicology, the simultaneous action of some toxic substances is 
necessary to obtain some (often lethal) biological effect, say on genes. As the 
input flow of toxic particles is intense, one may wish to consider those particles' 
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configurations saturating the available space, provoking the undesirable effect. 

2 Background: the number of random intervals 
needed to cover the circle and the length of the 
covered set 

2.1 Preliminaries 

Consider a circle of unit circumference. Throw at random n > 1 points on this 
circle and let Sn := {Xl, .. , Xn} be this set of points (thus, with Xl, .. , Xn indepen­
dent and identically distributed, say iid, and uniform). Let s E (0,1). Consider 
the coarse-grained random set of intervals 

Sn (s) : = {Xl + X, .. , X n + X, 0 :S x < S} (1) 

appending clockwise an arc of length s to each starting-point atom of Sn. 
Let Pn (s) be the number of connected components of Sn (s) (which is also the num­
ber of gaps), with, by convention, Pn (s) = 0 as soon as the circle is covered by 
Sn (s). With Xl:n := Xl, consider the ordered set of points (Xm:n' m = 1, .. , n), 
putting Xl, .. , Xn in order while turning clockwise on the circle. Let Sm,n = 
X m+l :n - X m:n , m = 1, .. , n - 1, be the consecutive spacings, with Sn,n = 
X l:n - X n:n, modulo 1, closing the loop. Under our hypothesis, Sm,n all share the 

same distribution, say Sm,n ~ Sn, m = 1, .. , n, which is given by P (Sn > s) = 
(1 - st-\ with ESn = l/n. 
It is indeed an old result [7] that identically distributed (id) spacings Sm,n, with 
Lm Sm,n = 1 can be generated as the ratio Sm,n = Em/ En, with En := L;;'=l Em 
the sum of n iid exponential variables with parameter 1 and so Sn has the claimed 
distribution. 
Note also that the same construction starting with a circle of circumference t > 0 

gives id consecutive spacings, say Sm,n (t) ~ Sn (t), m = 1, .. , n with Sm,n (t) ~ 
tSm,n (1) := tSm,n and Lm Sm,n (t) = t. 
The following Poisson-type results of Steutel [10], which we recall, deepens this 
connection and allows to compute many spacings functionals in terms of function­
als of iid exponential random variables or processes. This may require more or less 
effort, but in general the computational task is far less than the ones which have 
been designed in the literature, using combinatorial, geometrical and/or Laplace­
Fourier theoretic methods (see e.g. [1] for an overview). 

Theorem 2.1. ([10]) 
(i) Let f be any Borel-measurable function for which 

1= Elf (Sl,n (t), .. , Sn,n (t))1 tn-le-ptdt < 00. 

Then, with El (p), .. , En (p) n iid exponential random variables with common dis­
tribution P (E (p) > x) = e-PX , 

1= Ef (Sl,n (t), .. , Sn,n (t)) tn-le-ptdt = r (n) p-nEf (El (p), .. , En (p)). (2) 
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(ii) At p = 1, recalling that Sm,n (t) :1::. Sm,nt, with Em (1) := Em, we get as a 
consequence of (i): 
If f is homogeneous of degree d, i.e. if f b81, .. , "I8n) = "Id f (81, .. , 8n), "I> 0, and 
if Elf (Sl,n, .. , Sn,n)1 < 00 then 

(3) 

Comments: 

Part (i) derives from the fact that, with Em (p) := L::=1 Em (p) and with 
Sm,n (t) := L::=1 Sm,n (t), m = 1, .. , n-1, the random vector (E1 (p), .. , En- 1 (p)) 
given En (p) = t has the same distribution as Sl,n (t), .. , Sn-1,n (t). 
>From (i), r (n) p-nEf (E1 (p), .. , En (p)) interprets as the Laplace transform of 
Ef (Sl,n (t) , .. , Sn,n (t)) tn-I. Inverting this Laplace transform and putting t = 1 
yields Ef (Sl,n, .. , Sn,n). 
>From (ii), any homogeneous functional of sample spacings can be computed 
from the simpler one of iid exponential variables. Famous examples of such ho-
mogeneous functionals of interest are: f (81, .. , 8n) = [L::=11fm8m]A , 1fm > 0, 

L:1fm = 1 with degree d =). and f(81, .. ,8n) = [L::=18~+llA/qwith degree 
d = ). (q + 1) jq. Formula (3) allows (with some computational effort) to evaluate 
the moment functions of respectively the 1f-average fragments' size L::=1 1fmSm,n 

and the q-average fragments' size [L::=1 S~~~ll/q ofthe circle's partition, i.e. the 

quantities E [L::=l1fmSm,n]A and E [L::=1 S~~~lA/q respectively. 

These formulae are also very useful in the context of large n asymptotics. 

Indeed, putting p = n in (2), with 5n (t -1) := r'(:)tn- 1e-nt , approaching the 
Dirac delta function at t = 1, with <Pn (t) := Ef (Sl,n (t), .. , Sn,n (t)) and 'l/Jn (n) := 

Ef (E1 (n), .. , En (n)) this equation reads (En) = Jooo <Pn (t) 5n (t - 1) dt = 'l/Jn (n) 
and one expects 

Lemma 2.2. If <Pn (t) is bounded and continuous, uniformly in n, or if <Pn (t) is 
homogeneous, 

1. <Pn (1) 
1m --;;:---( ) = 1. nToo 'f'n n 

Proof Suppose f is homogeneous of degree d. In this case, <Pn (t) := td<pn (1) is 

homogeneous and (En) reads ti~? = Jooo td5n (t - 1) dt. From Stirling's formula, 
for large n 

'l/Jn (n) _ ~ r (n + d) rv -d ( d)d ---) 1 
<Pn(l)-nn+d r(n) n n+ nToo· 

If f is not homogeneous, the result holds if <Pn (t) is a bounded and continu­

ous function of t, uniformly in n. Indeed, putting hn (t) := t{~), (En) reads: 
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Ehn (Xn) = 1 for all n, with Xn = ~ 2:::=1 Em --+nToo 1 (almost surely). Note 
that Xn has density 8n (t - 1). Suppose hn (1) --+ a =I 1 (or that no limit exists), 
then, if hn is uniformly continuous, hn (Xn) ~. a =I 1 (or has no limit) and if 
hn is uniformly bounded Ehn (Xn) --+ a =I 1 (or has no limit) which contradicts 
Ehn (Xn) = 1 for all n. 

Note that a monotonicity hypothesis instead of the uniform continuity in n will 
do as well. 
In some cases, if the limits exist, one expects limnToo <Pn (1) = limnToo 'ljJn (n). The 
precise setting of this intuition is Steutel's Theorem 

Theorem 2.3. (flO}) Suppose the functions <Pn (t) are uniformly bounded and 
monotonic in t and that limnToo Jooo <Pn (at) 8n (t - 1) dt := 'IjJ (a) exists and is 
continuous in a for all a> 0, then limnToo <Pn (a) = 'IjJ (a). 

2.2 Illustrations on circle covering problems 

Let us illustrate the power of these results. Let Sm:n denote the ordered spacings, 
m = 1, .. , n, with Sl:n < .. < Sn:n. Using (2) with respectively f (81, .. , 8n ) = 
rr:=11 (8m > 8) and f (81, .. , 8n ) = rr:=11 (8m ::::: 8) , with x+ := max(x, 0), we 
recover the well-known results (see [7] for example) 

P (Sl:n > 8) = (1- n8)~-1 and P (Sn:n ::::: 8) = to (_l)m (:) (1 - m8)~-1 . 
(4) 

> From the above definitions, the following two events coincide: 

(Pn (8) ~ n - m + 1) == (Sm:n > 8) or (Pn (8) = p) == (Sn-p:n ::::: 8, Sn+1-p:n > 8), 

and the distribution of Pn (8) can be computed. 

Indeed, with f (81, .. , 8n ) = rr:"?11 (8m ::::: 8) rr:=n+1-p 1 (8m > 8) in (2), we re­
cover a result due to [11] 

P (Pn (8) = p) = (n) t (-lr-p (: -=-p) (1- m8)~-1 . (5) 
p m=p p 

Let then .en (8) be the total length of Sn (8). As there are n - P n (8) spacings 
covered by 8 and Pn (8) gaps each contributing of 8 to the covered length, it can 
be expressed as a contribution of two terms 

n-Pn(s) 

.en (8) = L Sm:n + 8Pn (8). (6) 
m=l 

Note also that the vacancy, which is the length of the circumference not covered 
by any arc is 

Pn(s) n 

1 -.en (8) = L (Sn-p+1:n - 8) = L (Sm,n - 8)+, (7) 
p=l m=l 
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summing the gaps' lengths over the gaps. 
> From these facts, with p E {I, .. , n} and with l E (0, 1], we get 

(8) 

t p (~ Sm:n < l - sp, Sn-p:n :::; s, Sn+1-p:n > s) = 
p=l m=l 

(9) 

inf(n,P/ sl) (n- p ) 

L P L Sm:n < l - 8P, Sn-p:n :::; 8, Sn+1-p:n > 8 , 

p=l m=l 
(10) 

which is the full distribution of Ln (8). This distribution can be obtained in the 
considered uniform case. From the second expression of the vacancy in (7), it can 
also be seen to be [9], [5) 

P (Ln (8) < l) = ;1 ~ (_1)m+k- 1 (:) (n:1) (m;l) (1 _l)k (l - ms)~-l- k 
(11) 

and this expression can also be obtained (with some difficulty) from (10), using 
properties of the Poisson process as in (2). 
Finally, let N (s) be the number of random intervals of length 8 needed to cover the 
circle, that is N (s) := inf (n > 1: Pn (s) = 0). The following four events coincide 

(i) N (s) > n, (ii) Sn:n > 8, (iii) Pn (s) 2: 1, (iv) Ln (s) < 1. 

>From (4), the law of N (8) is given by the alternated sum P (N (s) > n) 
P (Sn:n > s). From the above equivalence of events, an alternative expression of 
this awkward probability is obtained while putting l = 1 in (10). 
Note that the cover probability P (N (8) :::; n) is from (5) 

P (Pn (8) = 0) = to (_l)m (:) (1 - m8)~- 1 = P (Sn:n :::; 8). (12) 

and that, as required 

P (Pn (8) = n) = (1 - n8)~-1 = P (Sl:n > 8). (13) 

> From these definitions and preliminary facts, we are in the position to define 
the packing configurations and to formulate the announced alternative approach 
to the parking problem. 
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3 A cooperative approach to Renyi's parking prob­
lem 

3.1 Setting of the problem 

Fix an arc length s < .5. Throw independently n atoms uniformly on the circle 
and consider the set Sn (s), appending an arc of length s to each atom. Suppose 
Sl:n > s. Then, the number of Sn (s)'s connected components, Pn (s), is maximal 
(Pn (s) = n) and there is no overlap between the arcs. Suppose in addition that 
the largest gap's length, which is Sn:n - s, is less than s. Then, no additional arc 
of length s can be added, wherever on the circle, without provoking overlap and 
the length of the covered set in such configurations is ns. 

Definition 3.1. We call a configuration of Sn (s) for which Sl:n > sand Sn:n < 2s 
a s-packing configuration: due to lack of space, no additional arc of length s can be 
added, wherever on the circle, and the number of connected components is maximal 
(there is no arcs' overlap). 

Thus, an s-packing configuration of Sn (s) (i. e. with n atoms) occurs with proba­
bility P (Sl:n > s, Sn:n < 2s). 
Note that the values of n for which the probability P (Sl:n > s, Sn:n < 2s) > 0 
vary in the range {no (s) := [1/ (2s)] + 1, .. ,n1 (s) := [l/s]} and that the number 

nl (s) 

P (s):= 2:= P (Sl:n > s, Sn:n < 2s) 
n=no(s) 

(14) 

is the probability that some s-packing configuration occurs. In all these aspects, 
the joint law of (Sl:n, Sn:n) is involved. 

Definition 3.2. Pick at random an s-packing configuration and let N (s) be the 
number of connected components of the output. Call N (s) the s-packing number. 
By this definition 

P (N (s) = n) = P (Sl:n > s, Sn:n < 2s) /P (s), 

with n E {no (s), .. , n1 (s)}. 

(15) 

To compute this distribution, it follows that the exact law of (Sl:n, Sn:n) is needed. 
We supply some of the details. Let 0 < a < b < 1. Applying Steutel's formula, 
with f (Sl' .. , sn) = n:=11 (a < Sm < b) yields 

Inverting the Laplace transform on the right hand-side gives, using the Binomial 
identity 

P (Sl:n (t) > a, Sn:n (t) < b) = C(n-1) to (_l)m (:) (t - (na + m (b - a)))~-l . 
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Putting t = 1 gives P (Sl:n > a, Sn:n < b). 
Putting (a = 8, b = 1) and (a = 0, b = 8) gives the two aspects of (4). This formula 
was first obtained by [1]. Putting next a = 8, b = 28, we get 

P (Sl:n > 8, Sn:n < 28) = fo (_I)m (:) (1 - 8 (n + m))~-l . (16) 

3.2 Asymptotic results 

We give now asymptotic results on this formulation of the problem. In this case, 
the following limiting results hold. 

II Consider the probability Pn,l (8) = P ( 8 < Sm,n < 28 for l values of m), with ° s:; l < n a fixed constant. Then, [3], for all x > ° 
I 

( I 2) X -x Pn,l X n ----+nloo TIe ,x > 0, (17) 

showing that Pn,l (xln2) is asymptotically Poisson(x) with mean x > 0. 

Indeed, consider qn,l (8) = L~=o Pn,k (s). Then, for each fixed l < n, the function 
<Pn (tlx) = qn,l (~) is uniformly bounded and monotonic in t (see [10] page 241) 
and, computing '¢n (n) in that case 

100 ~ (n) (x 2X)k ( x 2X)n-k <Pn (tlx) t5n (t - 1) dt = ~ k e- n - e- n 1 - e- n + e- n 
o k=O 

I k 
'""' X -x ----+ nloo ~ k! e . 
k=O 

Picking the term k = l in this sum and applying Steutel's Theorem 3 yields the 
asymptotic result for Pn,l (xln2). 
Note finally that Pn,n (8) = P (Sl:n > 8, Sn:n < 28), is not concerned by this 
asymptotic. 

21 The right asymptotic concerning the joint distribution of (Sl:n, Sn:n) is easily 
found to be, using similar arguments 

P ( n2 Sl:n > a, ~enSnn < b) ----+nloo e-(a+b). (18) 

This result can be found in ([1], page 252). 

3 I A related result of interest to our purpose is the following. Consider the func­
tions <Pn (t) and '¢n (n) defined above with associated test function f (81, .. , 8n) = 
I1~=lI (8 < 8m < 28). We have, intuitively, 

<Pn (1) =P (Sl:n > 8, Sn:n < 28) "'nloo '¢n (n) = (e-ns -e-2nsr = e-n2s (l-e-nSr 
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Recalling the range of n, set ns = x, with x E (1/2,1), we obtain the estimate 

(19) 

>From lemma 2, this may also be seen to follow from the fact that for all x > 0, 
the function ¢n (t/x) = P (nSl:n > x/t, nSn:n < 2x/t) is a uniformly bounded in 
n and monotonic function on its domain t > x > o. 
The probability in (19) tends to 0 exponentially fast with n. To have an estimate 
of the normalizing constant, as a function of n for large n, for all values of s, we 
have to integrate the above probability over x in the corresponding range. We find 
the saddle-point estimate 

because the function e- x (1 - e-X ) > 0 is maximal at x = log 2, with value 1/4 
there. 
This shows, from (15), (16), (19), (20), that, as s tends to 0, sN (s) has a density 
at x approximated by 

(21) 

concentrating at x = log 2. As a result, sN(s) ~810 log2 ~ .693 .. (with an 
entropy flavor) and for any c > 0, however small, with Bc(x) := ]x - c, x + c[ 

limslogP(sN(s) EBc(X)) = sup r(z), 
alo zEBe (x) 

(22) 

giving the concave large deviation rate function as 

(23) 

Remark: 

Consider again the sequential approach on the circle. The question here is how 
to define the event N-+ (s) = n, were N-+ (s) to be a sequential version of the 
s-packing number. Suppose that, given n-l uniform throws have been performed 
on the circle, the following event is realized: 

(Sl:n-l > s, Sn-l:n-l > 2s, Sn-2:n-l < 2s). 

If Sl:n-l > s, there is no overlap between the n -1 cars of size s; if Sn-l:n-l > 2s, 
there still is some vacant place where to insert at least one car of size s and if 
Sn-2:n-l < 2s, there is a single gap where this additional car can be inserted. 
Suppose that this is the available configuration given the number of cars is n - l. 
Insert at random a new atom (n - 1 --> n) and append to it a car of length s, 
clockwise. Then N -+ (s) = n if this new atom precisely falls in the gap remaining 
to be filled, at distance larger than s of its right-most neighbor (clockwise) so as 
not to provoke the fatal overlap and to fill the last available gap. We have not 
tried to compute nor evaluate the probability that N-+ (s) = n. 
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On the Noise Sensitivity of Monotone 
Functions 

Elchanan Mossel, Ryan O'Donnell 

ABSTRACT: It is known that for all monotone functions f : {O, l}n ---+ {O, I}, if 
x E {O, I} n is chosen uniformly at random and Y is obtained from x by flipping each 
of the bits of x independently with probability f, then P[fn(x) =f. fn(Y)] < Cf.jTi, 
for some c > O. 

Previously, the best construction of monotone functions satisfying 
P[Jn(x) =f. fn(Y)] ~ 8, where 0 < 8 < 1/2, required f ~ c(8)n-a, where a = 
1 - In 2/ In 3 = 0.36907 ... , and c( 8) > O. We improve this result by achieving for 
every 0 < 8 < 1/2, P[fn(x) =f. fn(Y)] ~ 8, with: 

• f = c(8)n-a for any a < 1/2, using the recursive majority function with 
arity k = k(a); 

• f = c(8)n- 1/ 2 Iogt n for t = log2\hr /2 = .3257 .. . , using an explicit recursive 
majority function with increasing Mities; and, 

• f = c( 8)n -1/ 2, non-constructively, following a probabilistic CNF construc­
tion due to Talagrand. 

The constructions have implications for learning theory, computational complexity, 
and neural networks, and they shed some light on the American electoral system. 

1 Introduction 

1.1 Noise sensitivity and Fourier coefficients 

The papers [KKL88, BL90] suggested the importance of the Fourier expansion 
and the influence of variables on f for the study of boolean functions. The ideas 
developed in these papers proved to be extremely fruitful in later work, e.g., 
[LMN93, FK96, F98, BKS98] and the material in Subsection 2, to name just a 
few examples. 

Let On = {-I, +l}n be the Hamming cube endowed with the uniform probability 
measure P. We look at boolean functions f : On ---+ {-I, +1}. We are mostly 
concerned with monotone boolean functions. Recall that a function f is monotone 
iffor all x, Y E On we have f(x) ~ f(y) whenever x ~ Y (in the sense Xi ~ Yi for 
all i). 
For -1 ~ rJ ~ 1 and x E On, define N1)(x) to be a random element Y of On which 
satisfies E[YiXi] = rJ (equivalently, P[Xi =f. Yi] = (1 - rJ)/2) independently for all 
i. It is natural to measure how stable f is to rJ-noise by the correlation between 
f(x) and f(N1)(x)), 

Z(j, rJ) = E[f(N1)(x))f(x)] = 1 - 2P[J(N1)(x)) =f. f(x)] . (1) 

B. Chauvin et al. (eds.), Mathematics  and Computer  Science  II
© Springer Basel AG 2002
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If f is stable under the noise operator N'f/' then typically f(x) and f(N'f/(x)) should 
have the same value and therefore Z(f,77), the expression in (1), should be close 
to 1; if f is sensitive to noise, then Z(f,77) should be close to O. 
The space Dn with the uniform probability measure naturally gives rise to an inner 
product space on all functions f : Dn ~ R: 

(f,g) = E[fg] = 2-n I: f(x)g(x). 
xErln 

For a set S ~ [n], define us(x) = IliES Xi. Since USUs' = ust:.s' , where ~ denotes 
symmetric difference, it follows that (US)S~[n] is an orthonormal basis. We call 

j(S) = (us, f) the S Fourier coefficient of f, and f = LS~[n] j(S)us the Fourier 
expansion of f. 
The basis (US)S~[n] has very nice properties with respect to the noise operator; 
most notably, for all X and S, E[us(N'f/(x))] = 77ISlus(x), which implies 

Z(f,77) = E[f(N'f/(x))f(x)] = I: 77 lsl p(S) 
S~[n] 

(see e.g. [BKS98, BJT99, 002]). 

(2) 

The stability of the function f under noise, Z(f, 77), is therefore closely related to 
how much of the £2 mass of the Fourier coefficients of f lies on coefficients j(S) 
for large sets S. 
In addition to the sum in (2), it is common to study several other weighted sums of 
f's squared Fourier coefficients. By Parseval's identity, Ls p(S) = 1. The aver­
age sensitivity of f is defined by I(f) := Ls ISIP(S). It is shown in [KKL88] that 
I(f) = L~=l h(f), where Ik(f) is the probability the value of the function flips, 
when the k'th bit is flipped. Note that if f is monotone, then h(f) = Ij({k})I· 
Finally, we have the quantity IJ(f) := L~=l I~(f), introduced in [BKS98]. 

1.2 Sensitivity of monotone functions 

The parity function, f = urn] = EEl, is the boolean function most sensitive to noise: 
Z(f,77) = 77n is minimal, and I(f) = n is maximal. 
It is natural to ask if monotone functions can be as sensitive to noise as non­
monotone functions. It is known (see Lemma 6.1 of [FK96]) that the majority 
function has maximal I among all monotone functions on n inputs. Since its 
average sensitivity is easily computed to be J2/7rfo + o( fo), we get that for all 
for all monotone f on n inputs, 

I(f) :s; (J2/7r + o(l))fo. (3) 

It remains to determine how small N'f/(f) can be for monotone functions. A natural 
goal is to find a monotone function f on n bits such that Z(f, 1- 0) :s; 1- D(l) for 
the smallest possible quantity 0. This problem was implicitly posed in [BKS98]. 
An easy folklore argument (see long version for proof) uses (3) to deduce: 
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Proposition 1.1. For all monotone i on n inputs, 

Z(j, 1- 5) ~ (1 - 5)(HO(1))J(2l rr)n. 

Therefore if Z(j, 1- 5) :S 1- E, then 5 ~ firr In + 0(1/v'n). 

In particular, in order to obtain Z(j, 1-5) :S 1-0(1),5 must satisfy 5 ~ 0(n- 1/ 2 ). 

Prior to this work, the best sensitivity with respect to N1] was achieved via the re­
cursive majority of 3 function (folklore, see [BL90, BKS98]). This function satisfies 
Z(j, 1- 5) :S 1- 0(1), for 5 = n-a, where 0: = 1-ln2/ln3 = 0.36907 ... 

1.3 Our results 

Recursive majority functions seem to be sensitive to noise. Previous techniques 
for analyzing recursive majorities had suggested that recursive majority of 5, 7, 
etc. might be less sensitive than recursive majority of 3. However, this is not the 
case. 

Theorem 1.2. Let k = 2r + 1 and let REC-MAJ-ke denote the £ level k recursive 
majority. Let 

b = 2r + 1 (2r) 2 

24r r ' 
a = 2r + 1 (2r) . 

22r r 

Then Z(REC-MAJ-ke,l - 5) :S E for £ ~ (loga(1/5) + IOgl/b(1/E)) (1 + r(E, 5)), 

where r(E,5) ----* 0 as E ----* 0 and 5 ----* O. Hence for every 0: < 1/2, and 0 < 5 < 1, 
there exists an odd k ~ 3 such that for n = te, in = REC-MAJ-ke : On ----* {-I, +1} 
is a balanced function with 

Note that this construction is explicit. Moreover, using k-majority gates, we obtain 
a read-once, log-depth circuit which implements the function. The proof technique 
is closely related to techniques in classical branching processes [AN72] (see also 
[M98]). 
By relaxing the bounded degree property, and using instead majority gates of 
varying fan-in, we obtain an explicit read-once construction of log log-depth which 
is sensitive to a noise rate of about n-1/ 2 , up to a sub-logarithmic correction. 

Theorem 1.3. For every 0 < 5 < 1, there exists an explicit infinite family of 
balanced monotone functions in : On ----* {-I, + I} with the following property: 

Z(jn, 1 - l/M) :S 1- 5 + 0(1), 

where M = v'n/8(logt n), and t = log2\hr /2 = .3257 .... 

It is interesting to note that the t parameter is optimal for this construction. 
Finally, analyzing a probabilistic construction due to Talagrand [T96], we obtain 
a tight result up to constant factors. 
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Theorem 1.4. For every 0 < 8 < 1, there exists an infinite family of monotone 
functions f n : Dn -7 {-1, + 1} with the following property: 

(4) 

In this extended abstract, we sketch the proof of a slightly weakened version of 
Theorem 1.4, i.e., instead of (4) we prove 

(5) 

2 Implications for other problems 

2.1 Learning monotone functions 

In the field of computational learning theory, one of the most widely studied models 
is Valiant's Probably Approximately Correct (PAC) model [V84]. In PAC learning, 
a concept class C is a collection Un>lCn of boolean functions, where each function 
(concept) f E Cn is a boolean function on n bits. Let f E Cn be an unknown 
target function, and let V be an unknown probability distribution on {-1, + 1} n . 

A learning algorithm A for C takes as input an accuracy parameter 0 < E < 1 
and a confidence parameter 0 < 8 < 1. During its execution, A has access to an 
example oracle EX(f) which, when queried, generates a random labeled example 
(x, f(x)), where x is drawn from distribution V. A's goal is to output a hypothesis 
h which is a boolean function on n bits, which is "close" to f under distribution 
V. Specifically, we say that A is a PAC learning algorithm for C if for every 
fEe and every E,8, with probability 1 - 8 algorithm A outputs a hypothesis 
h satisfying Prx<-D[f(x) =I- h(x)] ::; Eo Ideally one likes for A to run in time 
poly(n, B, l/E, log(1/8)), where s is a "size parameter" of the concept class. 
An important and well-studied restriction of the PAC model is uniform PAC learn­
ing, which is simply the case in which V is the uniform distribution on {-1, +l}n. 
Linial, Mansour, and Nisan [LMN93] introduced a very powerful and general uni­
form PAC learning algorithm, which has come to be known as the "low degree 
algorithm" (see Mansour's survey [M94]). The low degree algorithm works for any 
concept class which has a Fourier concentration bound. Specifically, suppose that 
for every function f in a given concept class, I:ISI2::m ]2(S) ::; Eo Then the low 
degree algorithm will PAC-learn this class under the uniform distribution in time 
exp(O(mlog(n/m))) log(1/8). The algorithm works by drawing many examples 
for f, and using these to calculate empirical estimates for all Fourier coefficients 
}(S) with lSI < m. The hypothesis outputted is simply the sign of the resulting 
truncated Fourier expansion. 
Bshouty and Tamon [BT96] give the fastest known uniform PAC learning algo­
rithm for the concept class of monotone functions. Their algorithm is the low 
degree algorithm, and they show a Fourier concentration bound for the class of 
monotone functions with m = O(c\!ri). (It is simple to derive this from (3); 
Bshouty and Tamon also extend these results to general product distributions on 
{-l ,+l}n.) This leads to a learning algorithm running in time 
exp( O( ~y'nlog( Ey'n))) log(1/8). 

As a tightness result, [BT96] prove via a counting argument that there is a mono­
tone f which does not satisfy I:ISI2::m]2(S) ::; n-1/ 2 Iogn unless m = D(n). 
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However this leaves open the question of E = 0(n- 1/ 210gn). To show that the low 
degree algorithm for monotone functions cannot be improved, we need to exhibit 
a monotone I for which LISI2:!1(c1v'n) j2(S) > E. The functions I from Theo­

rem 1.4 satisfy LISI2:v'n j2(S) 2: 0(1). Hence the low degree algorithm will have 
0(1) error unless it goes up to degree ,,;n. In fact, our Corollary 7.2 gives us an 
explicit function I with LISI2:0(y'ffi) j2(S) 2: 1 - E. 

See [BJT99, KOS02] for more on noise sensitivity in the context of computational 
learning theory. 

2.2 Hardness amplification within NP 

The central problem in computational complexity theory is whether or not N P = 
P; i.e., deciding if proving a proposition is harder than verifying the proof of 
that proposition. In studying this problem, many researchers have considered the 
slightly weaker question of whether or not every language in NP can be computed 
by circuits of polynomial size. (See any standard text such as [Pa93, BDG88, 
DKOO] for the definitions of P, NP, circuits, etc.) Let us phrase this question 
precisely. A language F E NP gives rise to a family of characteristic functions 
(In), where In : {O,l}n -> {O, I} is defined by In(x) = 1 iff x E F. We often 
abuse language by saying In is a function N P (we always have a particular family 
offunctions in mind). A family of boolean circuits (On) is said to have polynomial 
size if there is a finite k such that size(On) ~ O(nk) . We say NP has polynomial­
sized circuits if for every family of functions (In) in NP, there is a circuit family 
(On) of polynomial size such that Cjxl(x) = Ilxl(x) for every boolean string x. 
Most researchers believe that NP does not have polynomial-sized circuits; i.e., NP 
is hard for polynomial-sized circuits. One might then ask how hard NP is for 
polynomial circuits. One way of viewing this to question is to ask on how large 
a fraction of the inputs in {O, l}n can a polynomial-sized circuit compute a given 
NP function. We say that I is "(1 - o)-hard for polynomial circuits" is for every 
family (On) of polynomial-sized circuits, P[/(x) = On(x)] ~ 1 - o. Note that 
asserting N P is hard for polynomial circuits is the same as saying that there is a 
function I E NP which is (1 - 2-n )-hard for polynomial circuits. Also note that 
no function is (1 - b)-hard for 15 2: 1/2 because either the circuit which always 
outputs 1 or the circuit that always outputs 0 gets I right on at least half of all 
inputs. Under the assumption that NP does not have polynomial circuits, it is of 
interest to know just how hard N P is in this sense. 
In [002], the second author addresses this question. Starting from the assumption 
that there is a function in NP which is (1 - l/nO(l»)-hard for polynomial circuits, 
[002] shows the existence of a function in NP which is (1/2 + n-l/2+c5)_hard for 
polynomial circuits (for any small 15 > 0). The main technical theorem in [002] is 
that if I is a balanced function which is (1 - b)-hard for polynomial circuits, and 
9 is a function satisfying Z (g, 1 - 20) ~ rt, then 9 ® I is essentially (! + ! y'rj)-hard 
for polynomial circuits. 
In order to apply this technical theorem to convert a slightly hard function in NP 
to a very hard function in NP, it is necessary to ensure that 9 ® I E NP when 
I E NP. Recall that NP is the class offunctions I which have easily verified proofs 
of I = 1. In order for 9 ® I to have easily verified proofs of 9 ® I = 1, it suffices 
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for g to be (a) in NP, and (b) monotone. For in this case, we can prove that 
g i8) f = 1 by proving that some subset of the inputs to g are 1, and each of these is 
a statement of the form f = 1, which has an easily verified proof because f E NP. 

Hence to amplify hardness within NP, [002] needs to find a monotone function in 
NP such that Z(g, 1 - l/nO(l)) is very small. This exact problem is addressed in 
the present paper. Take g to be the function from Theorem 7.1 on k inputs. This 
function is easily seen to be in P, hence in N P . If we pick k = n C and E = n C / k 
for some constants C and c, then Theorem 7.1 tells us that Z(g, 1- 1/0(nc/ 2 )) ::::; 

l/k l - c / C . Hence if f (l-l/n°(1))-hard for polynomial circuits, by choosing c and 
C sufficiently large, we can arrange for g i8) f - which has input length kn = nC +! 

- to be (1/2 + (kn)-1/2+8)-hard for any small 8 > o. This is the result of [002]. 
Note that Theorem 1.4 is not useful in this context, since the amplifying function 
g must be in NP, and Talagrand's function is not even explicit. 

2.3 Neural networks 

In the theory of neural networks (see e.g. [H99] for background), a neuron is 
modeled as a weighted majority function. For physical and biological reasons, it is 
expected that such a function would be noise stable. In [BKS98] it is shown that 
there exists a universal constant C such that for all weighted majority functions 
M, Z(M, 1 - E) ~ 1- CEI/4. Peres [Pe98] has improved this to 1- CEI/2. 

If we consider the simplest kind of neural network, in which every variable and 
every majority output is read only once, we obtain a tree circuit of weighted ma­
jority gates. Using a simple exchange of variables, we may assume that all the 
weights of the majority functions are positive and hence that the network repre­
sents a monotone function. Proposition 1.1 implies that the network is insensitive 
to noise rate of n-a for Q: > 1/2, where n is the number of inputs to the function. 
Our construction in Theorem 1.2 implies on the other hand that this is tight, i.e., 
for every Q: < 1/2, there exists a neural network in which every variable and every 
output is read once, and the network is sensitive to noise rate n - a. 

2.4 Sensitivity of election schemes 

One of the desired properties of election schemes is robustness. Consider the 
following simple model: There are n voters who have to decide between candidate 
-1 and candidate 1. Suppose that voter i wants to vote Xi, and that the xi's are 
uniformly random and independent. Suppose furthermore that due to confusion 
and some technical errors, the vote of voter i is recorded as Yi where P[Xi = Yi] = 
1 - E independently for all i. In this setting it is natural to require that the vote 
outcome f(Yl, ... , Yn) be governed by a symmetric balanced monotone function. 
Moreover, if we want to minimize the effect of the confusion and errors, we want 
to maximize P[f(Xl, .. . , xn) = f(Yl, ... , Yn)] = Z(j, 1 - 2E). 
Let us compare two election schemes. In the first scheme, f is the simple majority 
function. Here Z (j, 1 - 2E) is of order 1 - El/2. In the second scheme, we have a 
two level majority function; e.g., each state votes by simple majority for an elector, 
and the majority of the electors' votes chooses the president. Here, if we assume 
n l/2 electors, a calculation as in the proof of Theorem 1.2 shows that Z(j, 1- 2E) 
is of order El/4. Hence the "electoral college" system is much more sensitive to 
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noise. In fact, Theorem 1.2 suggests that adding more levels of sub-electors (such 
as voting by county first) increases the sensitivity of the election to noise, up to 
its maximum possible level for a monotone function. 

3 Sensitivity of majorities 

3.1 Majority 

We denote the majority function on k bits by MAJk. Using asymptotic results for 
random walks, one can prove (cf. [002]): 

Proposition 3.1. For every TJ E [-1,1], 

2. " IZ(MAJk, TJ) - - arcsm(TJ)I ~ O(I/v k). 
7r 

Much more can be said when TJ is very close to 1, specifically, when 1 - TJ is small 
compared to l/k. For TJ close to 1, we prefer to view Z(j, TJ) in terms of the 
probability that flipping input bits of f flips the output bit. We use the following 
lemma in the proof of Theorem 1.3. 

Lemma 3.2. Suppose k ~ 3 and 8 ~ l/k. Say we pick a random input to MAJk 
- call it x - and then construct y by flipping each bit of x independently with 
probability 8. Then 

P[MAJk(x) =I MAJk(y)] ~ {g vk 8 exp( -1/3k) exp( -8k). 

Proof: Clearly, 

P[MAJk(x) =I MAJk(y)] 

~ P[MAJk(X) =I MAJk(Y) I exactly one flip] x P[exactly one flip], (6) 

and P[exactly one flip] = k8(1 - 8)k-l. By elementary calculus, (1 - 8)k-l ~ 
exp( -8k) for 8 ~ l/k . Therefore, 

P[exactly one flip] = k8(1 - 8)k-l ~ k8 exp( -8k). (7) 

The probability that the majority flips given that there is exactly one flipped bit 
in x, is exactly the probability that the remaining input bits split evenly - i.e. , 

P[MAJk(X) =I MAJk(Y) I exactly one flip] = ((kk_-l~/2)T(k-l) 

~ a(1- 1/4k) ~ a exp( -1/3k), (8) 

where the first inequality follows by Stirling's formula and the second since 1 -
1/4k ~ exp( -1/3k) for k ~ 3. Combining (6), (7) and (8) we obtain the required 
result. 0 
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3.2 Recursive majority 

We begin with a formal definition of the recursive majority function. 

Definition 3.3. For f : On --> {-I, +1}, g: Om --> {-I, +1}, we let f ® g denote 
the function f ® g : Onm --> { -1, + I} defined by 

For £ an integer, we define rz/ = f if £ = 1, and t z/ = f ® (f&/-1) otherwise. 

We let REC-MAJ-tf = MAJ~i. 

The following proposition is immediate, yet useful. 

Proposition 3.4. If g is a balanced function and f is any function, then 
Z(f ® g, ry) = Z(f, Z(g, ry)). 

In this section we prove Theorem 1.2. It is easy to calculate (and well known) that 
for the majority function on k = 2r + 1, MAJk, 

JI(MAJ ) = 2r + 1 (2r) 2 
k 24r r ' 

Note therefore that I(MAJk) --> J2/,rrVk as k --> 00. Hence Theorem 1.2 follows 
almost immediately from the following proposition: 

Proposition 3.5. Let f : Ok --> {-I, +1} be a balanced function, and let 

a = L 18IP(8), b= L P(8). 
s ISI=l 

(Note that a = I(f), and if f is monotone, b = II(f).) If a > 1 and b < 1, then 

Z(r'l, 1 - 8) :::; E, fod '2 (loga (1/8) + logl/b(11 E)) (1 + r( E, 8)), where r( E, 8) --> 0 
as E --> 0 and 8 --> o. 

Proof: (sketch) Let f = 2::s ]2(8)us be the Fourier expansion of f. Letting 
p(ry) := Z(f, ry) = 2::s ]2(8)ryISI, we see that p(ry) is a convex polynomial function 
of ry which satisfies 

p(O) = 0, p(l) = 1, p'(O) = 2:: lsl=l ]2(8) = b, p'(I) = 2::s 181]2(8) = a. (9) 

Proposition 3.4 implies that 

Z(f&/, ry) = p(f) (ry) := p(p( . .. p(ry) ... )) . (10) 
" ", v 

f times 

The claim of the proposition now follows by standard arguments on iterations of 
convex functions (for more details, see the long version of this paper). 0 
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4 Sensitivity to small noise 

In this section we prove Theorem 1.3. We do this by proving 

Theorem 4.1. There exists an explicit infinite family of balanced monotone func­
tions f n : Dn -> { -1, + 1} with the following property: 

where M = fo/8(logt n), and t = 10g2-Ji72 = .3257 .... 

Proof of Theorem 1.3: Let in be the function constructed at Theorem 4.1, and 
let E be such that Z(fn,l - E/M) :::; 1 - E + O(E2) < 1 - 6' + 0(1)', where 6' > o. 
Let g = REC-MAJ-3e where C is chosen is such a way that Z(g,l - 6' /2) :::; 1 - 6 
(such C exists by Theorem 1.2). Taking gn = g ® in, we obtain the desired result. 
D 

The construction in Theorem 4.1 again consists of recursive majorities, where now 
the number of inputs to the majority varies with the level. The estimates on the 
sensitivity of these majority functions are derived via Lemma 3.2. 
Proof of Theorem 4.1: Since we are dealing with correlations close to 1, it will 
be more helpful to look at their difference from 1. In particular, we will prove 
the following equivalent formulation of the theorem: Let x be a randomly chosen 
input to in, and suppose we flip each bit of x independently with probability E/ M, 
forming y. Then the probability that in(x) = in(Y) is at least E - O(E2). 
The function i = in will be given by recursive majorities of increasing arity: 
in = MAJk, ® MAJk2 ® ... ® MAJkt· We will select ki = 32i - 1+1, so ''from the 
top down" the majorities have arity 9, 27, 243, etc. Note that ki+1 = k; /3. With 
these choices, the number of inputs is n = 32tH- I . Hence e :::; 10g2log3 n. 
Let 60 = E/M, and recursively define 6i+1 to be the probability that the output 
of a MAJ kt _ i flips, given that each of its inputs is flipped independently with 
probability 6i. Since all MAJ functions are balanced, Proposition 3.4tells us that 
the probability that the output of i is flipped is 6e. We will show that 6e ~ 
E - O(E2). 
By Lemma 3.2, 

where: 
1 

g(t):= r:::T«Jke- i exp( -1/3ke- i ). 
y 1f/2 

Recursively define TJo = TJb = 60, and: 

Since the probability that the output of MAJ flips is an increasing function of 6, 
we can conclude that 6i ~ TJi for every i. But clearly TJ~ ~ TJi for every i. Hence, 



490 Elchanan Mossel, Ryan O'Donnell 

for every i, 1']i+l :2': g(k£-i) exp( -1']~k£-i)1']i. It follows immediately that: 

Defining 

£-1 
1']£ :2': (rrg(k£-i)exp(-1']~k£-i))1']O 

i=O 
1 £ £ 1 £ £-1 

(\hr/2) ]1 A exp( -3 ~ kjl) . exp[~ -1']~k£-i] .80 

and 80 := E/M, we obtain 

£-1 £-1 
1']£ :2': M· exp[I: -1']~k£-i] . (E/M) = E· exp[I: -1']~k£-i]. 

i=O i=O 

Since 8£ :2': 1']£, it remains to show: 

£-1 
exp[I: -1']~k£-i] :2': 1- O(E). 

i=O 

By the recursive definition of 1']~, we immediately have 1']~ = (I1~:t g( k£_ j ))1']b· 
Hence 1']~ = M(I1;;~1 g(km)-1 )1']b = E(I1;;~1 g(km)- I). Therefore: 

£-1 £ k 
exp[I:-1']~k£-i] =exp[-EI: (k) (k ~ .. (k )]. 

i=O m= 1 gIg 2 g m 

Hence if we can show 2::;"'=1 km/g(kl)g(k2)··· g(km) = 0(1) then we're done. 
The first term in this sum is kdg(kl) = 0(1). The ratio of the mth term to the 
(m -l)th term is km/km- 1g(km). But km- 1 = V3~ by definition, so this ratio 
is ~/V3g(km) = J7f/2/V3exp( -1/3km) < 1. Hence the terms in the sum 
decrease geometrically, so the sum is indeed 0(1). 0 

5 Talagrand's function 

In [T96], Talagrand gives a randomized construction of a monotone fn : nn --+ 

{-I, +1} with the following property: at least an n(l) fraction of points x in nn 
satisfy both fn(x) = -1, and #{x' : ~(x,x') = 1 and f(x) = +1} :2': n(n1/ 2 ), 

where ~ denotes Hamming distance. It is natural to conjecture that this function 
is sensitive to slight n-1/ 2 noise, as we prove below. 
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Talagrand's function I = In is a random CNF on its n inputs. Specifically, I is the 
2Vn-wise AND of yi'n-wise ORs, where each OR's inputs are selected independently 
and uniformly at random (with replacement) from [n]. To prove Theorem 1.4, it 
suffices to prove that if we pick I, x, and x' := N,(x) at random (where E = n-1/ 2 ), 

then: 

Proof of Theorem 1.4: (sketch) 

Ej [P[J(x) # I(N,(x))]] = Ex, x, [}[/(x) # I(x' )]] 

= 2Ex , x, [}[J(x) = -1, I(x' ) = +1]], (11) 

by symmetry, since x and x' have the same distribution. We want to show that 
(11) ;::: 0(1). 
Fix x and x'. Let n+* denote the number of indices on which x is +1, let n*+ 
denote the number of indices on which x' is +1, and let n++ denote the number 
of indices on which both x and x' are + l. 
Since I has a fairly simple form - the AND of ORs, where the ORs' inputs are 
completely independent - it is easy to write P j [I (x) = -1, I (x') = +1] explicitly 
in terms of n+*, n*+, and n++: 

where 

p*_ = 1 _ (n*+) Vn, 
n 

p __ = 1- (n*+)Vn _ (n+*)Vn + (n++)Vn. 
n n n 

(12) 

By the mean value theorem, (12) is bounded from below by: 

(13) 

Now n+* rv Binomial(n, 1/2), and similarly for nH. Hence for sufficiently large 
n, both quantities are in the range [n/2 - yi'n, n/2 + y'nJ, except with probability 
.05. Also, n++ rv Binomial(n+*, 1- E), so for sufficiently large n and if E ;::: n- 1/ 2 , 

n++ is no larger than (1 - E + 2JE/n+*)n+*, except with probability .05. Taking 
all these facts together via a union bound, we may conclude that except with 
probability .15, 

n++ ::; 1 - E + 3 ~. 
n*+ Y; 

(14) 

We would like to show that EX,x/[(13)];::: 0(1). Since (14) happen with probability 
at least .85, it suffices to prove EX,x' [(13)] ;::: 0(1) conditioned on these three events 
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holding. But in this case, 

Ex,x,[(13)] = 2Vn (p*_ -P __ )[l- (n~+)Vn _ (n~*)Vn + (n~+)Vn] 
2Vn 

~ 2Vn (p*_ -p __ )[l- (n~+)Vn _ (n~*)Vn] 
2Vn 

2Vn 
~ 2Vn(p*_ - p __ ) [1 - (1/2 + n-1/ 2)Vn - (1/2 + n-l/2)Vn] 

~ 2Vn (p*_ - p--)[1- 2e/2Vn]2Vn 

~ e-2e2Vn (p* _ _ p--) 

= e-2e (2 n~+ ) Vn (1 _ (~::) Vn) 

~ e-2e (1- 2n-l/2)Vn (1 _ (~::) Vn) 

~ e-2e-2 (1 _ (~::) Vn) 

~ e-2e- 2 (1 - (1 - E + 2~)Vn). (15) 

When E = n- 1/ 2, the quantity (1- E + 2~)Vn exceeds e- 1 • Hence (15) is at 
least e-2e- 2 ~ 0(1), and we're done. D 

6 Tribes and high sensitivity 

We have mostly settled the question of how small E can be, such that there is a 
monotone function f satisfying Z(j, 1 - E) ::; 1 - 0(1). At the other end of the 
spectrum, one might ask: given an initial correlation J < 1-0(1), which monotone 
function f makes Z(j, J) as close to 0 as possible? A nearly optimal function for 
this problem (which is tight to within a constant factor if the initial correlation J 
is small enough) is the so-called tribes function of Ben-Or and Linial [BL90]. 
Let ANDk denote the And function on k bits (Le., ANDk(x) = -1 iff Xi = -1 for all 
1 ::; i ::; k), and let ORk denote the Or function on k bits. For each bEN, define 
n = nb to be the smallest integral multiple of b such that (1 - 2-b)n/b ::; 1/2, 
so n is very roughly (In 2) b2b, and b = 19 n - 19 In n + o( 1). (Here 19 n denotes 
log2 n.) Now define the tribes function Tn to be ORn/b ® ANDb. This function 
is monotone, and by construction it's near-balanced; it's easy to see that P[Tn = 
+1] = (1- 2-b)n/b = 1/2 - O(logn/n). 
One can calculate Z(Tn, 7]) directly and exactly: 

Proposition 6.1. 

Corollary 6.2. Z(Tn, 7]) ::; (1 + 0(1)) \g: n7](l + 7])b + 0(log2 n/n2). 

Therefore if 7] ::; 0(1/ logn), then Z(Tn' 7]) ::; 0(7] log2 n/n). 
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We omit the proofs of these results from this extended abstract . A similar result 
to Corollary 6.2 appears in [002], with a more complicated proof. 
Now we give a monotone function for which Z(j, J) is small when J ::; 1 - 0(1). 

Theorem 6.3. Let J ::; 1 - 0(1). Then there is an infinite family of monotone 
functions {gn} satisfying: 

logl+u l n 
Z(gn , J) ::; , 

n 
where u' is any number exceeding u = log 4/3 3 = 3.818 .... 

Proof: The idea is to first use REC-MAJ-3 to reduce J to TJ := 1/ log n; then, 
apply a tribes function. 

Let Tn be any tribes function. We will construct gn' on n' := n logUI n inputs. Let f 
be the REC-MAJ-3 depth necessary from Theorem 1.2 to reduce J correlation down 
to 1/logn correlation. Hence f = (1 + o(I))log4/3(logn) (since 1 - J ~ 0(1)). 

Put h = REC-MAJ-3£, so h is a function on 3£ = 10gUI n inputs. Let gn' = Tn Q9 h. 
By construction, Z(h , J) ::; 1/ logn. By Corollary 6.2, Z(Tn' 1/ logn) ::; O(log n/n). 
Since h is balanced, by Proposition 3.4 we get Z(gnl , J)::; O(logn/n). The result 
follows, since as a function of n', O(log n/n) is 10g1+ul n' In' (taking u' slightly 
larger to kill any constant factors). 0 

As we can see from the following proposition, when the initial correlation 0 < J < 1 
is a constant, the above result is tight up to a factor of log2.818n : 

Proposition 6.4. If f: On -> {-1,+1} is monotone, thenZ(j,TJ) ~ 0(TJlog2 n / n ). 

Proof: 
Z(j,TJ) = LTJ I8I p(S) ~ TJ L p(S) ~ 0(TJlog2n/n) , 

8 181=1 

by a result of [KKL88] (using the fact that f is monotone). 0 

It also follows from this proposition and Corollary 6.2 that when the initial corre­
lation TJ is O(I/logn), the tribes function by itself is maximally sensitive among 
monotone functions, to within a constant factor. 

7 High sensitivity to small noise, and Fourier con­
centration around yin 

It seems natural to combine the functions from Theorems 1.3 and 6.3, via Propo­
sition 3.4. One gets: 

Theorem 7.1. There exists an explicit infinite family of monotone functions f n : 
On -> {-I, +1} with the following property: Z(jn , 1 - I/Q) ::; f, where: 

Q= vInE 
(log(nf))t log(l/f)(1+u l )/2' 

t = .3257 ... , and (1 + u')/2 = 2.409 .... 
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Using the relationship Z(f, ry) = L.s rylSI PeS), it's easy to conclude: 

Corollary 7.2. There exists an explicit infinite family of monotone functions 
fn : On -> {-I, +1} satisfying: 

I: in2(S):S E, 

ISI~Q 

where Q = O( y'nf) is the quantity from Theorem 7.1. 

From (3), one can easily derive the well-known fact that for all monotone f : On -> 

{-I, + I}, L.ISI~C1Vn PeS) ::::: 1- E. That is, every monotone function has almost 
all the £2 mass of its Fourier spectrum concentrated on coefficients of degree up to 
O( In). Corollary 7.2 demonstrates that this bound is tight up to polylog factors. 

Acknowledgment: We would like to thank Gil Kalai for providing encourage­
ment to write this result and Yuval Peres for interesting discussions. 
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Apprentissage de Sequences 
N on-Independantes d 'Exemples 

Olivier Teytaud 

ABSTRACT: Beaucoup de travaux recent considerent les applications pratiques 
des reseaux neuronaux (ou d'autres algorithmes proches) pour la modelisation de 
series temporelles, par exemple chaotiques. Quelques papiers seulement (dont 
les resultats principaux sont rappeJes ici) ont ete consacres aux applications de la 
partie theorique de l'apprentissage en la matiere. Cet article fournit des rappels des 
resultats bases sur des proprietes d'ergodicite en matiere d'apprentissage de suites 
non-independantes d'exemples, puis developpe quelques nouveaux resultats. 

1 Introduction 

La theorie de l'apprentissage, notamment theorie VC, est une grande aire de 
recherche, basee sur des theoremes statistiques de convergence uniforme des moyen­
nes empiriques vers les esperances. [10, 56) sont des etats de l'art complets dans 
ces domaines. Alors que ces resultats viennent de la communaute de l'intelligence 
artificielle, les mathematiciens, dans la communaute du processus empirique, ont 
prouve de nombreux theoremes centraux generalises, uniformes sur des espaces 
de fonctions et sur des espaces de distributions, resumes dans [57) notamment. 
[19, 25) fournissent des essais d'extensions dans la direction Markovienne. Un but 
de ce travail est une extension dans la meme direction. Bien que l'article soit axe 
sur la theorie, on rappelle les principaux paradigmes usuellement mis en reuvre en 
controle et des cas concrets sont presentes. [21,24) etudient la possibilite de predire 
des systemes chaotiques avec des outils de regression, eventuellement des reseaux 
neuronaux. (36) verifie la validite pratique de la theorie de l'apprentissage dans 
Ie cas de telles series temporelles et conclut que la theorie VC est validee. Nean­
moins, les hypotheses classiques ne sont pas verifiees dans un tel cas: des points 
consecutifs fournis par un systeme chaotique ne sont evidemment pas independants 
identiquement distribues. [17, 52, 18) ont souligne ce manque de resultat theorique 
et ont propose une application de ces predictions. L'idee consiste it transformer 
une prediction en stabilisation. La section 2 presente des resultats venus du pro­
cessus empirique. La section 3 presente une adaptation de la theorie VC dans Ie 
cas d'exemples distribues markoviennement. Dans l'ensemble du papier, F designe 
un espace de fonctions tel que toutes les quantites en jeu soient mesurables et :F 
un espace de fonctions continues. 

2 Resultats asymptotiques: classes de Donsker 
pour des processus "ergo diques" 

La presence de guillemets autour d' "ergodiques" est due au fait que nous travail­
Ions sur differentes sortes de suites, dont certaines completement deterministes, et 
nous ne demandons pas dans tous les cas une ergodicite stricto sensu. Comme 
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explique ci-dessous, des dynarniques stochastiques peuvent apparaitre dans des 
systemes completement deterministes. Cette section est principalement basee sur 
[55] et [2]. On considere dans cette partie des conditions sous lesquelles les ex­
emples generes par un processus approximent une loi asymptotique. Ceci est 
fait en deux etapes: 1) on montre les exemples Xn distribues par un systeme 
"ergodique" assurent la convergence des moyennes empiriques vers les esperances 
pour la distribution asymptotique, avec Ie meme ordre de convergence que dans 
Ie theoreme central limite. Ceci est verifie par l'utilisation des theoremes B.l 
(systemes dynamiques deterministes) ou C.2 (deuxieme partie, chaines de Markov 
stationnaires), 2) on generalise en direction de l'uniformite, ce qui se fait grace au 
theoreme 2.1 (mettant en jeu des resultats sur Ie processus empirique). On con­
sidere des Xn distribues, selon Ie cas, par un modele de Markov (ie une probabilite 
conditionnelle P(XnIXn- 1 = t) = p(t)) (notez que des modeles de Markov de plus 
haut degre peuvent etre utilises de meme) , ou par une fonction deterministe g telle 
que Xn = g(Xn- 1). Le premier cas est plus facile sous certaines jolies hypotheses 
sur p. Le second cas requiert de tres beaux resultats sur les systemes dynamiques. 
On utilisera pour generaliser a l'uniformite Ie resultat suivant de [2]: 

Theoreme 2.1. Considerons An(f) et A(f) des processus stochastiques pour! E 
:F. Supposons que (1) sup! IAn(f)1 est presque surement fini pour tout n, que (2) 
sup! IA(f)1 est fini presque surement, que (3) les distributions de dimension finie 
de {An(f) : ! E F} convergent vers celles de {A(f)I! E F}, et enfin que (4) pour 
tout entier positif q il existe une application 7r q : .1' f---t .1' telle que Ie cardinal de 
{7rq! : ! E F} est fini et pour tout 'I} limq-+oo limn-+oo supPr*{suP!EF IAn(f) -
An (7rq f) I ?: 'I}} = O. Alors An converge faiblement vers A dans loo(F). 

Ce result at se trouve ailleurs dans la litterature. On utilise [2] pour reference car 
beaucoup de resultats (nouveaux) lies a notre propos peuvent etre trouves dedans, 
particulierement dans Ie cas stationnaire. Le corollaire suivant sera utile par la 
suite: 

Corollaire 2.2. Considerons An(f) = )n 2:~=1 (f(Xi ) - E!(Xi)) pour une cer­
taine suite de variables aleatoires Xi. Supposons que (1) .1' est Donsker pour une 
mesure de probabilite 7r, avec 7r! = lim )nAn(f), que (2) sUPf IAn(f)1 est fini 
presque surement, que (3) il existe des bracketing nombres de couverlure pour tout 
E, avec des brackets indus dans .1' (il est probable que cette hypothese pourrait 
etre reduite), et que (4) les distributions de dimension finie de {An (f) : ! E F} 
convergent vers celles de {A(f) : ! E F}. Alors An converge faiblement vers A 
dans loo(F). 

Preuve:La condition 2 (aisement verifiee dans beaucoup de cas pratiques) est la 
condition 1 du theoreme 2.1. Le caractere Donsker de .1' assure que la condition 2 
dans Ie theoreme 2.1 est verifiee, grace au theoreme A.l (avec Zn,i(f) = )n!(Xn,i), 
les Xn,i variables aleatoires independantes ne dependant que de i et de meme loi 
7r). La condition 4 garantit la condition 3 du theoreme 2.1. En utilisant 7rq les 
projections successives sur les bornes superieures dans les brackets garantit la 
condition 4 du theoreme 2.1.0 
Grace a ce simple corollaire, on peut utiliser des resultats forts comme Ie theoreme 
A.l pour prouver la finitude presque sure de sup! IZfl, et alors utiliser Zn sim­
plement garantissant la convergence point a point, telle que les suites determin­
istes du theoreme B.l, ou les suites markoviennes avec theoremes centraux limites 
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(theoreme C.2, deuxieme partie). Malheureusement, dans Ie dernier cas des suites 
markoviennes, de tels theoremes sont seulement disponibles, pour aut ant que nous 
sachions, dans Ie cas de chaines de Markov reversibles (ie pour tout A et B 
sous-ensembles de X JXEA P(x, B)d7r(x) = JyEB P(y, A)d7r(Y)) ou des chaInes de 
Markov stationnaires. Cependant, des travaux sont en cours dans cette direction, 
selon [41, remark 2.4]. [55] explique les mecanismes par lesquels des systemes en­
tierement deterministes (pour aut ant que de tels systemes existent dans un monde 
quanti que ... ). Dans Ie cadre deterministe, la probabilite est definie pour X o, 
point initial du systeme dynamique. Le theoreme B.l (voir [55]) justifie les com­
portements stochastiques observes en pratique. Finalement, on peut resumer ces 
resultats (convergence de chaines de Markov ou dynamiques stochastiques dans 
des systemes deterministes, plus uniformite de la convergence faible sous des con­
ditions de bracketing-entropie) dans Ie theoreme suivant: 

Theoreme 2.3 (Convergence uniforme, suites deterministes ou markovi­
ennes). Si 1 'un des faits suivants a lieu et si Fest Donsker pour la loi limite 
(en particulier si Fest universellement Donsker): (1) les Xn sont distribues selon 
X n+1 = g(Xn) et les hypotheses du theoreme B.1 sont verijiees, (2) les Xn sont 
distribues selon un modele de Markov verijiant les conditions du theoreme C.2 
(second cas). Alors, {In l:~=1 f(Xi ) : f E F} converge faiblement dans lOO(F). 

Des extensions basees sur des hypotheses plus faibles que l'ergodicite aux sens 
definis ici existent, comme la Harris-recurence et les techniques introduites dans 
[11, 44] pour evaluer Ie temps d'oubli du point initial (en particulier pour une 
chaine avec de fortes symetries). On pourra consulter aussi [3, 13]. On peut 
alleger l'hypothese de stationarite (voir [6]). Des convergences plus rapides que 
1/ yin peuvent aussi etre proposees (comme dans la section qui suit, de maniere 
non-asymptotique, ou dans [30]). 

3 Bornes non-asymptotiques 

Dans cette section, on rappelle que resultats classiques, et fournissant une nouvelle 
(pour autant que nous sachions) borne non-asymptotique basee sur la condition 
de Doeblin. Deux paradigmes d'apprentissage en sont deduits, l'un d'eux etant la 
minimisation du risque empirique et l'autre proche de la minimisation du risque 
empirique, et beneficiant d'une borne un peu meilleure (nous prouvons seulement 
une meilleure borne mais ne prouvons pas une stricte superiorite). L'optimalite a 
des facteurs logarithmiques pres est prouvee. 

Espaces d'etats finis ou denombrables Pour aut ant que nous sachions, les 
resultats les plus generaux dans Ie cas d'espaces d'etats finis ou denombrables sont 
ceux de [19]. Leur resultat principal est resume comme suit: dans Ie cas d'espaces 
d'etats finis (avec N etats) et une distribution stationnaire uniforme, la complexite 
d'echantillon requise est bornee par 1~>'2 In( Sf), avec s la complexite d'echantillon 
dans Ie cas iid, J Ie risque, ),2 la seconde plus grande valeur propre de la matrice 
de transition. Des resultats lies peuvent etre trouves dans [19]. 

Cas general On reformule Ie cadre PAC (Probablement Approximativement 
Correct) de Valiant de la fac;on suivante: un algorithme d'apprentissage sur une 
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famille F de fonctions et sur une suite markovienne avec probabilite conditionnelle 
p(t) = U f-t P(Xn E UIXn- 1 = t) est PAC pour une complexite d'echantillon 
m avec precision E et confiance 1 - 6 si et seulement si pour tout n ~ m et 
pour tout Xo la probabilite d'une difference> E entre l'erreur en generalisation 
pour la distribution asymptotique et l'erreur optimale dans Fest::; 6 pour un 
echantillon de taille n. L'erreur en generalisation est definie comme l'erreur limite 
moyenne sur une suite Markovienne finie X o, ... , X k (d'autres definitions sont 
possibles de meme, prenant en compte la longueur de X k ; les resultats seraient 
similaires, a ceci pres que k serait demande plus grand qu'une quantite lineaire en 
D(l -In(8))/E2 avec D defini plus loin). Vne famille F de fonctions est dite PAC 
s'il existe un algorithme choisissant ! E F satisfaisant la condition ci-dessous pour 
m polynomial en E, In(1/6). L'algorithme est dit PAC. La meme definition vaut 
uniformement pour pEP si la condition ci-dessus a lieu uniformement en pEP 
(ie m doit etre independant de pEP). 
La necessite de bornes non-asymptotiques apparait en contr6le adaptatif, ie quand 
l'environnement varie avec Ie temps (notez que ceci est peut-etre moins fondamen­
tal en "contr6le par apprentissage", comme les variations de l'environnement sont 
supposees rapides, ce qui implique que l'on utilise les passages precedents dans la 
meme aire et donc qu'on peut utiliser des resultats asymptotiques). Alors, utiliser 
des milliers de points n'est plus possible, et Ie contr6le doit etre dynamique. 
On restreint notre attention a une suite X o, ... ,Xn , ... de variables aleatoires, avec 
Xn dependant seulement de Xn- 1 ; en outre, Xn1Xn- 1 est independant de n. Des 
chaines de plus haut degre peuvent etre considerees tres similairement, simplement 
en considerant Y; = (Xi, Xi +1 , ... ,XHk ). On considere par la suite la convergence 
uniforme de ~ L~=o !(Xi); uniformement en ! E F et en Xo. Ceci peut aisement 
etre etendu a la regression Xi f-t X H1 en considerant g(Y;) = 1!(Xi ) - Xi +1 I 
par exemple. On suppose que les Xi et les ! E F sont bornes et E [0, 1]. On 
suppose dans la suite que la loi /-Ln de XnlXo converge uniformement vers une 
mesure donnee /-LOC)) dans Ie sens suivant: limn __ oo suPxo J I/-Ln - /-Loo I ---+ 0 La sec­
tion C fournit des conditions suffisantes pour cela. On suppose, en outre, que 
Xn IXo = test continu par rapport a la mesure de Lebesgue, de loi de probabilite 
!n(t, .). Ceci va seulement etre utilise ci-dessous pour prouver une extension expo­
nentielle uniforme de l'equation ci-dessus; aussi cette hypothese peut etre relachee, 
en utilisant Ie theoreme C.2 (premiere partie). L'interet est seulement de fournir 
ici une demonstration simple du result at desire, avec des prerequis aussi reduits 
que possible. L'idee de la preuve, detaillee dans les sous-sections suivantes, est 
comme suit: (1) En un certain sens, les mesures dans les sequences markoviennes 
convergent uniformement et rapidement vers la me sure asymptotique. La vitesse 
de convergence est mesuree par une dimension entiere. (2) Ceci implique que 
pour des sous-suites bien choisies de la suite initiale, les mesures sont "presque" 
independantes. Plus precisement, la loi de cette sous-suite est proche de la loi du 
produit independant de la mesure asymptotique. (3) La convergence uniforme des 
moyennes empiriques dans Ie cas independant implique la convergence uniforme 
des moyennes empiriques dans Ie cas original. 
Premiere partie: convergence Markovienne. Definissons L'l.:o (P) = /-L:o (P)-/-Loo(P). 
/-L:o est /-Ln, conditionnellement a Xo. Alors: L'l.:o(P) = JtL'l.~~k(t)!k(t,P)dt et 
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t:.~o (P) = 1 t:.~~k(t)(!k(t, P) - foo(t, P))dt (1) 

1t:.~O(P)1 ~ J 1t:.~~kl(t)I!k(t, P) - foo(t, P)ldt, 1t:.~O(P)1 ~ ~ llt:.~~kl(t)dt (2) 

La ligne (1) vient du fait que t:.~~k a masse 0 et est independant de P. La ligne (2, 
droite) est basee sur k suffisamment grand pour garantir II !k (t, P) - f 00 (t, P) II < ~ 
pour tout t. Le plus petit tel k sera note, par la suite, D(X) (notation abusive 
pour D(XnIXn- l )), et appele la dimension de la chaine de Markov X. Le D est 
la pour Doeblin ou pour dimension, selon les preferences du lecteur. 

Lemme 3.1 (Convergence rapide non-asymptotique, chaines de Markov 
(Veno, 1961». L'equation 2 implique que t:.elta~o(p) ~ nb\ t:.fO(p). 

2LD X J 

Seconde partie: apprentissage bruite. Considerons XN, X 2N, ... ,XlN, des sous­
suites finies de X, avec N = kD(X). Alors, /tlv° conditionnellement a Xo a 
une loi a distance ~ TJ de /too, V1:N idem, et ainsi de suite, 

avec TJ = ~ suPxo,P masses de Dirac t:.fo (P) ~ 2lk et avec la distance suivante 
d(/tl,/t2) = sUPP l/tl - /t21(P) (intuitivement, l'integrale maximale d'une fonction 
bornee par 1, pour la loi /tl - /t2) On a alors besoin du lemme qui suit: 

Lemme 3.2 (D'une loi a plusieurs). Soient Zl, ... ,Zn des variables aleatoires 
(non necessairement independantes!), chaque Zi+1 ayant une loi conditionnelle­
ment a Zi a distance < TJ de la loi de Z. Alors, la loi de (Zl' Z2,"" Zn) est a 
distance < nTJ de la loi du produit de n variables independantes avec la meme loi 
que Z. 

Preuve:Ceci se prouve par recurrence. La propriete pour n = 1 est claire. La 
recurrence est fait en integrant la propriete au rang n - 1. DCeci implique que 
notre sous-suite a, a une precision explicite pres, la loi du produit de n lois in­
dependantes. 
Troisieme partie: conclure. Les resultats usuels de VC-theorie fournissent des 
bornes sur la complexite d'echantillon dans Ie cadre iid en O(V - In(J)/f2) (ou 
O(Vln(l/:)-ln(8)), dans Ie cas d'un taux d'erreur minimal nul), avec f la preci­
sion, 1 - J la confiance, V la VC-dimension (on considere ici Ie cas de la cate­
gorisation deux-classes - on peut directement considerer la regression de meme 
ou utiliser des fonctions d'egalie f-insensibles en regression pour garder Ie meme 
cadre qu'en classification). Considerons maintenant la complexite d'echantillon 
necessaire pour garantir une difference bornee par f entre les moyennes empiriques 
et les esperances; Pest la probabilite sous l'hypothese iid, alors que PM est la 
probabilite dans Ie cadre markovien, pour la suite suite ci-dessus (la somme dans 
l'equation qui suit est faite sur des copies independantes de /too, qui sont dis-
tinguees par des indices (i)): P(3f Ilk L~=l /t~(f) - /too (f) I > f) ~ f(V, k,f), 
PM (3f, Xo/lk L~=l /t1~N (f) - /t00(f)1 > f) ~ f(V, k, f) + kTJ 
Dans Ie theoreme suivant on considere ERM (empirical risk minimization), con­
sistant a minimiser l'erreur empirique sur tous les exempes, et ERMs consist ant 
a minimiser l'erreur sur les points X N,X2N, ... ,XkN avec N = Dln(2m/J). 
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Theoreme 3.1. Quand D(X) et V sont finis, et pour 6:::; !, alors ERMs a une 
complexite d'echantillon majoree par 

o (D(V + In(~;6)) In(1/6) [In(DV) + In(1n(1/6)) + In(1/E)J) (3) 

Quand l'erreur minimale est nulle, alors 

o (D(Vln(l/E) + !n(1/6)) In(1/6) [In(DV) + In(ln(1/6)) + In(I/E)J) (4) 

En outre, l'equation (4) est valable pour ERM dans Ie cas d'une erreur minimale 
nulle, aussi. Pour ERM, dans Ie cas general, les memes bornes sont vraies, a des 
facteurs logarithmiques pres. 

[19J fournit un resultat partiel dans Ie cas d'un espace d'etat fini, pour apprendre 
avec une famille de fontions dont une qui a une erreur nulle en generalisation. En 
outre, [19], comme rappele plus t6t, fournit des bornes explicites de convergence 
uniforme de distributions vers la distribution asymptotiques. 
Preuve:Tout d'abord, considerons ERMs. Grace au lemme 3.2, les probabilites 
dans Ie cas Markovien et les ,probabilites dans Ie cas iid avec la loi Poo sont 
11 distance au plus 61 = O(""""IV), ce qui satisfait en particulier 61 = 0(6) si 

21) 
N = Dln(m/6). Dans Ie cas iid, avec confiance 1 - 62, la precision est bornee 

par E = O(JV-l~(02)), qui avec 62 = Theta(6), conduit 11 E = o(Jv-~n(o)), 
verifie avec probabilite 8(6) dans Ie cas iid, et 61 + 62 = 8(6) aussi dans Ie cas 
markovien. Ceci conduit 11 la precision globale comme suit, avec confiance 1-O( 6): 

E2 = O(D(V + In(I/6)) In(I/6) In(m)) 
m 

(5) 

Ceci conduit 11 une complexite d'echantillon comme dans l'equation (3). Le cas 
d'un taux d'erreur nul prend simplement en compte les bornes de complexite 
d'echantillon de la forme (Vln(l/e) + In(1/6))/E. Ceci montre qu'apprendre est 
possible avec complexite d'echantillon polynomiale en D, V, l/E, In(1/6). Main­
tenant, considerons ERM. ERM en fait consiste en gros 11 utiliser N algorithmes 
ERMs differents, qui ne sont pas independants. Dans Ie cas d'un taux d'erreur 
nul, ERM inclut ERMs et donc est aussi efficace. Ainsi, l'equation 4 a lieu. 
Considerons maintenant Ie cas general. Avec confiance 2 1 - 6' = 1 - N6, cha­
cun des N apprentissages sur (Xo, X N , X 2N , ... ), (Xl, X N + 1 , X 2N+1, ... ), ... ala 
precision ci-dessus (equation 5). Ainsi, on doit remplacer 6 par 6' = O(6/N) = 
O( D(ln(m)~ln(1/0))) dans l'equation 5. Ainsi il nous faut 6 = O( D In(m)'ln(1/0))' 

6 In(l/ 6) = O( D l~~m))' 0 ln1( i) = O( D l~~m)). Ceci est en particulier verifie avec 

i = (Dl~~m) X In(Dl~~m))). Remplacer i par cette expression dans l'equation 5 
conduit au resultat souhaite.D 
Notez que nous avons propose ci-dessus des bornes sur la difference entre l'erreur en 
generalisation et l'erreur empirique uniformement pour tout classifieur. Ceci n'est 
pas limite 11 la precision du classifieur empiriquement optimal. Comme toujours 
en apprentissage ce theoreme peut conduire 11 des algorithmes pratiques qui sont 
universellement consistent. Si V augmente suffisamment lentement (en tant que 
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fonction de m), alors J DV/m decroit vers O. La minimisation du risque empirique 
est alors universellement consistente, pourvu que la sequence "emboitee" de classes 
de fonctions (chacune de VC-dimension finie) , est un approximateur universel. 

Optimalite On peut montrer que les dependances lineaires en D(~)V ne peut 
etre supprimee, comme explique ci-dessous: 

Theoreme 3.2. La dependance lineaire en VD/E2 ne peut etre supprimee. Pre­
cisement, pour tous V, D, 6, il existe une chaine de Markov de dimension D et 
une famille de VC-dimension D telle qu 'avec probabilite au moins 6 la precision E 

est O(V V;;) + O(D~ In(15)/vm + D 3 In(15)2/m). 

Preuve: 
Considerez une famille F de fonctions sur ]0,1] avec VC-dimension V, une vari­
able aleatoire J.l telle que la complexite d'echantillon de F pour la distribution de 
J.l soit la pire possible, Zn chaine de Markov avec Zo = 0 et Zn+ 1 = 1 - Zn avec 
probabilite p et Zn sinon, Xn = Zn x J.lk(n) avec les J.ln des copies independantes 
de Jl et k(n) = sup([O, n] n {i/Zi -I- Zi- d) . Alors (1) D(X) est ()(I/p), (2) La 
complexite d'echantillon O(V D(X)/E2) + O(D~ In(15)/ vm + D 3 In(15)2 /m). Le 
premier point est prouve par l'evaluation de la loi de (Xn - X oo ), avec Xoo la loi 
asymptotique. Xn(O) - ~ = (1- 2p) x (Xn-1(0) - ~); la meme relation est vraie 
pour tout sous-ensemble de ]0,1]. Considerons maintenant l'evaluation empirique 
de Eg(Xn) jusqu'a la k + Ie occurence de Zn - Zn-l = -1. Ceci est une variable 
aleatoire N/ P, avec N = L~=l Aig(Ai) et P = L~=l (Ai + AD, avec Ai et A~ des 
variables aleatoires independantes egales a k > 0 avec probabilite (1 - p)k-lp, et 
Ai des variables aleatoires independantes avec loi commune J.l. • Tout d'abord, 
fixons les J.li. Les esperances et probabilites ci-dessous sont calculees condition­
nellement aux Jli . • La probabilite de Ai > K est bornee par 0((1 - p)K), et 
la probabilite d'avoir au moins un Ai ou A~ plus grand que K est bornee par 
O(k(l- p)K). Pour un seuil de confiance fixe, on a K = O(1n(k)/p) = O(D In(k)). 
La suite est faite conditionnellement a cela .• Sous l'hypothese Vi max(Ai, AD ::; 
K, on peut conclure qu'avec un seuil de confiance, N et P sont tous deux en 
gros egaux a leurs esperances (toujours conditionnellement aux J.li), avec pre­
cision O(K.Jk) = O(Dln(k).Jk), par l'inegalite de Hoeffding. N/P est alors, 
avec precision O(D In(k)/.Jk + D 2In(k)2 /k) = O(D~ In(15)/ vm+ D 3 In(15)2 /m), 
l'€waluation empirique de Eg(An), qui est connu (grace aux bornes inferieures de 

VC-dimension) () (J(VD/m)) pour lepire choix a posteriori de g. D'ouleresultat 

souhaite.D 
Notez que nous avons montre une un peu meilleure complexite d'echantillon de 
ERMs , mais n'avons pas reussi a montrer qu'ERMs etait en un sens meilleur 
qu'ERM. Vne remarque important est Ie fait que ceci amEme a un algorithme 
qui est universellement consistant: comme dans Ie cas d'echantillons iid, on peut 
utiliser ERM avec les modifications suivantes: (1) accroissement (suffisamment 
lent) de la "taille" de la famille de fonction (en termes de VC-dimension), comme 
Ie nombre d'exemples augmente, (2) Eventuellement, augmentation de l'''arite'' 
(= nombre de pas memorises - la largeur de la fenetre. Ceci est usuellement la 
dimension de plongement, dans Ie cas de systemes chaotiques), dans Ie cas de, 
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disons, la prediction (controle et stabilisation deduites de la prediction de meme). 
Pourvu que l'augmentation de VC-dimension resultante de cela est suffisamment 
lente (meme combinee avec l'augmentation decrite ci-dessus). Ceci est universelle­
ment consistant au sens OU si la condition de Doeblin a lieu et si un degre fini est 
suffisant, alors l'erreur converge vers la plus petite possible. Neanmoins, une forte 
difference avec Ie cas iid persiste: l'erreur decroit comme dans Ie cas iid, mais si 
D est inconnu, alors la validation est impossible. On ne peut jamais etre sur que 
l'erreur en generalisation est ce qu'elle a l'air d'etre sur un ensemble empirique 
d'exemples, sans borne sur D. Ainsi, des conditions generales sous lesquelles D 
peut etre borne sont d'une importance cruciale. Des resultats lies peuvent etre 
trouves dans [33]. 

4 Conclusion, remarques et problemes ouverts 

En conclusion nous enumerons les manques qui nous apparaissent emerger de 
l'etat de l'art: (1) On montre dans Ie "beau" cas markovien une extension de 
la VC-theorie (bornes non-asymptotiques). On montre dans Ie cas deterministe, 
en utilisant des resultats de [55] et [2], des resultats asymptotiques. Un progres 
interessant serait une extension deterministe de la VC-theorie, qui apparait comme 
Ie resultat manquant Ie plus important dans cet article, (2) Comment fournir des 
bornes generales sur la condition de Doeblin ? Ceci semble un probleme tres im­
portant car dans les applications concretes, cette constante est inconnue, et comme 
montre dans les resultats precedents, des bornes sur la dimension sont necessaire 
pour construire des algorithmes capables de decider s'ils ont assez d'exemples. 
Utiliser des mots tels que "quantique" ou "effets chaotiques sur la precision du 
systeme" semble parfois une sorte de sorcellerie; toutefois, on peut penser que 
chercher de tels arguments est un probleme concreto Aussi nous formulons ce 
probleme ouvert: l'incertitude quanti que (ou un autre argument) peut-elle justi­
fier une condition generale sous laquelle la dimension ne peut etre tres haute ? 
(3) En outre, de multiples problemes supplement aires apparaissent lorsque l'on 
cherche a etendre ces resultats au cas non de l'identification de systeme, mais au 
controle. 
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A Processus empirique 

On a besoin parfois d'une forme de nombres de couverture ou de bracketing-nombre 
de couverture differente de la definition classique. [57] fournit des resultats bases 
sur ces nombres, donn ant comme reference [27, 45, 46,58,48,31,47]. Etant donne 
Zn ,i des processus stochastiques independants pour 1 :s; i :s; n, N{ J (E, F, n) est Ie 
cardinal (dependant de n) de la plus petite famille (si elle est finie) de (Fi)iEI 
tel que Vf E F3i E Ilf E Fi et Vi/"'£;:=1E(SUPj,9EF?(Zn,i(f) - Zn,i(g))2):s; E2. 

Des theoremes centraux limite generalises (avec entropie uniforme) sont dus a 
[14, 39, 26], et les equivalents bracketings sont dus a [14, 15, 38, 1]. Un etat de 
l'art general de tels resultats peut etre trouve dans [57]. Le result at suivant sera 
utile avec Zn,i(f) = f(Xn,i)1 Vn principalement. 

Theoreme A.1 (Convergence rapide). Pour tout n E N, on considere Zn ,i , 
pour i E [1, n], des processus stochastiques independants de seconds moments fi­
nis, et on suppose F totalement borne pour la semimetrique d. On suppose que 
l'hypothese suivante a lieu: 

n 

L E II Zn,i IIF {II Zn,i IIF> 1]} -+ 0 pour tout 1] > 0 
i=1 

n 

sup L E(Zn,i(f) - Zn,i(g))2 -+ 0 pour tout 8n decroissant vers 0(6) 
(f ,g)EF,d(f ,g)<8n i=1 

{lin 10 VIOg N{ J (E, F, n )dE -+ 0 pour tout 8n decroissant vers 0 

Alors En = 2:7=1 (Zn,i - E(Zn,i)) est asymptotiquement tendu dans l'espace des 
fonctions totalement bornees de F dans R Ceci signifie ~ue pour tout E > 0 
il existe un ensemble compact K tel que liminf P(En E K ) :2: 1 - E pour tout 
8 > 0, avec Kii = {yld(y, K) < 8} Ie 8-agrandissment de K. II converge en 
distribution, pourvu qu'il converge pour les lois marginales, et le processus limite 
T est centre (moyenne zero), gaussien, avec covariance E(TfTg) = E(Tfg) -
E(T f) x E(T g). La condition 6 peut €tre supprimee si la partition dans N{ J peut 
€tre choisie independamment de n. (La finitude des bracketing-nombres est en fait 
suffisante pour des theoremes plus faibles que nous n'utiliserons pas ici.) 
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B Dynamiques stochastiques dans des systemes 
deterministes 

L'idee de dynamiques compliquees apparaissant spontanement dans des systemes 
naturels provient de Landau-Lifschitz. Dans les annees 60, Smale decouvre que 
les flots reguliers et des transformations regulieres peuvent entrainer une infinite 
de mouvements periodiques. Ces mouvement pouvaient provenir de perturbations 
arbitrairement petites. Smale a alors introduit la notion d'hyperbolicite ([50]). 
Dans Ie debut des annees 70, Ruelle-Takens a developpe l'idee dans l'esprit de la 
presence d'attracteurs "etranges" dans l'espace des etats. La notion d'hyperboli­
cite a ete developpee par un grand nombre de chercheurs dans Ie cadre de la theorie 
ergodique: [49, 4, 43]. [29, 20] ont montre l'importance de l'hyperbolicite pour 
la stabilite structurelle (un systeme etant structurellement stable si ses orbites 
sont en bijection avec les orbites des systemes proches). D'un autre cote, [37] mon­
tre que dans de nombreux cas, les systemes dynamiques etaient non hyperboliques 
- [55] fournit une liste d'exemples ([28, 22, 7, 16]). Lorenz a souligne l'importance 
de la sensibilite aux conditions initiales. Ceci a amene de nombreux chercheurs it 
etudier des systemes faiblement hyperboliques. Le theoreme B.1 donne des condi­
tions generales sous lesquelles des systemes deterministes se comportent "presque" 
comme des systemes aleatoires. 

Theoreme B.I. On suppose qu'au moins l'un des ensembles d'hypotheses suivants 
est verifie: (A) Applications uniformement etendantes: (1) 9 : M ----t M est C1+J.!o 
pour un certain J-to E]O, 1], (2) M est une variete compacte connexe, (3) 9 est une 
application etendante, au sens ou il existe (J > 1 tel que II Dg(x).v II~ (J II v II 
pour tout x et v. (B) Attracteurs uniformement hyperboliques: (1) 9 : M ----t M 
est un diffeomorphisme sur la variete M et Q c M est un certain ensemble ouvert 
positivement invariant, au sens ou g(jermeture(Q)) C Q, (2) C = nnEl\Jgn(Q) 
est transit if (ie contient des orbites denses) et hyperbolique pour g, ie il existe 
une separation du faisceau tangent de M T.cM = E£ ffiEl: et un certain AO < 1 tel 
que: (a) Df(x)E~ = E;(xl et Dg-1(X)E':; = E;-l(xl' (b) II Dg(x)E~ II:::; Ao et II 
Dg-1(x)IE':; II:::; AO pour tout x E C. Alors, on a: (1) il existe une unique mesure 
SRB J-t de support sur C. Cette mesure est ergodique, et son bassin a une mesure 
de Lebesgue> O. Le fait que J-t soit SRB (pour Sinai-Ruelle-Bowen) signifie que J-t 
est invariant (ie f f(t, P)dJ-t(t) = J-t(P)) et il y a un ensemble de mesure positive x 
tel que pour tout cfJ continu, et x dans Ie bassin f cfJdJ-t = limn->oo ~ L:~==-01 cfJo fi(x), 
(2) la chaine est exponentiellement mixante et satisfait Ie theoreme central 
limite dans l'espace de Banach des fonctions continues J-t-Holder, pour tout J-t E 
]0,J-t1]. Le caractere "exponentiellement mixant" signifie qu'il existe r < 1 tel que 
pour tout couple de fonctions (cfJ, 'ljJ) J-t-Holder, il existe C tel que E( (cfJ 0 r (t, .) -
EcfJ 0 r(t,.)) x ('ljJ 0 r(t,.) - E'ljJ 0 r(t, .))) :::; Crn (decroissante exponentieUe 
des correlations). Le theoreme central limite signifie que pour tout cfJ J-t-Holder, 
il y a (J tel que pour tout interval A J-t( {xl In L:~==-Ol(cfJ 0 J1(x) - f cfJdJ-t) E A}) ----t 

~ fA exp( -g;), (3) la chaine est stochastiquement stable sous de petites 
perturbations aleatoires. Voir [55} pour plus d'informations sur cette notion. 

Ce theoreme a ete prouve ailleurs sous diverses formes mais nous utilisons la 
reference [55] en tant que joli etat de l'art de resultats, incluant de nombreuses 
ameliorations dans un cadre commun. En particulier, les applications non-unifor-
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mement hyperboliques sont traitees dans [55, section 5]. Vne classe importante 
(mais non-exhaustive) de systemes deterministes est la classe des systemes chao­
tiques. De nombreuses definitions du chaos existent. Vne definition classique est 
la suivante ([9,23]): soit Xn un systeme dynamique defini par X n+l = f(Xn) avec 
X o E D et f E DD. II est dit chaotique si (1) Les points periodiques de f sont 
denses dans D (un point est dit periodique de periode k si f(kl = x), (2) fest 
topologiquement transit if. Ceci signifie que pour tous ensembles ouverts U et 
V qui intersectent D, il y a x E U n D et un nombre entier n tel que r (z) est 
dans V. Ceci est equivalent au fait que pour tout x et y dans D et E > 0, il y a 
zED tel que d(x,z) < E, d(J(nl(z),y) < E pour un certain n, (3) f presente une 
dependance sensible aux conditions initiales. Ceci signifie qu'il existe 6 > 0 
tel que pour tout xED et E > 0, il y a un y E D et un n E N tel que d(x, y) < E 

et d(J(nl (x),J(nl (y)) > 6. Vne classe particuliere de systemes chaotiques est issue 
d'equations differentielles grace au fameux theoreme de Takens. Considerons les 
equations differentielles suivantes: ~~ = G(Y(t)) (evolution du systeme), x(t) = 
H(Y(t)) + E(t) (mesure avec bruit independant E), Xn = x(nT) (discretisation), 
Xn = (xn, Xn- Tl Xn-2r, ... ,Xn-(d-llr) (fenetre). Selon Ie theoreme de Takens 
(voir [51] pour un enonce precis), sous des hypotheses legeres sur G et H, si 
d 2: 2D + 1, avec D la dimension de l'attracteur du systeme, alors il y a un dif­
feomorphisme qui associe Xn et Y(nT). Ceci implique, en particulier, Ie fait que 
Xn+1 = f(Xn) pour un certain f. La prediction de series temporelles chaotiques 
est un exercice classique pour les algorithmes de prediction. Dans Ie cas general, 
les systemes chaotiques sont beaucoup trop compliques pour des predictions basees 
sur Arma, d'ou Ie besoin d'algorithmes intensifs comme les reseaux de neurones, 
les plus proches voisins ou les reseaux de fonctions a bases radiales. Voir [34] pour 
un resume des points import ants de la prediction de systemes chaotiques. 

C Convergences uniformes et chaines de Markov 

Vne chaine de Markov est une suite de variables aleatoires X n , definies par un 
etat initial X o, ou une distribution de probabilite pour X o, et une probabilite de 
transition P(Xn!Xn-d, supposee constante pour n 2: 1: P(Xn E E!Xn- l = t) = 
f(t, E). Des modeles de Markov de degre plus eleve peuvent etre definis, avec des 
probabilites de transition P(Xn!Xn- l , X n- 2 , ... , X n- k ), avec une distribution de 
probabilite pour (Xo, Xl' ... ' Xk-l). On restreint notre attention au cas ci-dessus, 
qui peut inclure d'autres cas par simple adaptation. r(t, E) est defini par induc­
tion par fl = f et r+l(t, E) = J r(u, E)f(t, du). Vne aire de recherche imp or­
tante a propos des chaines de Markov est leur comportement asymptotique. De 
nombreux livres fournissent des resultats tels l'existence d'une distribution station­
naire et la convergence vers cette distribution, sous des hypotheses raisonnables, 
dans Ie cas d'espaces d'etats finis. L'extension a des espaces d'etat denombrables 
existe, mais pour beaucoup d'applications, on a besoin de convergence rapide dans 
des chaines de Markov non denombrables. [12] a prouve un premier result at dans 
cette direction, et [42] survole les resultats recents, dont: 

Theoreme C.l. On suppose que (1) f admet une distribution stationnaire 
7r, ie une distribution 7r telle que VA mesurable 7r(A) = J f(y, A)d7r(y), (2) fest 
aperiodique, ie il n'existe pas une partition finie en d 2: 2 ensembles Xl' ... ' Xd, 
telle que Vt E Xi f(t, XHd = 1, avec Xd+1 = Xl, (3) fest ¢-irreductible, 
ie 3¢ mesure non-trivialle telle que VP mesurable ¢(P) > 0 =} 3nr(t, P) > 
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o presque surement en t pour 7r. Alors, presque surement en t (pour 7r) 
limn ---+ oo supp If(t, P) - 7r(P) I = O. 

On a besain en fait, dans certaines applications ci-dessous, la convergence uniforme 
(en t), ou du mains des bornes explicites sur la dependance en t. Ceci est gere 
dans Ie theoreme (multiple) suivant (adapte de [32] pour Ie premier, [2, Theorem 
4.1] pour Ie second): 

Theoreme C.2 (Ergodicite uniforme). Premier cas: supposons qu'il existe 
m E IN, IL une mesure de probabilite et 8 > 0 tel que Vtfm(t,.) ::::: 8IL; alors 
II r(t, .) -7r II::::; (1- 8) -!!;:. Cette condition est appelee la condition de Doeblin, 
ou ergodicite uniforme. Second cas: supposons que (1) les Xn sont un proces­
sus strictement stationnaire (ie la loi des Xn est independante de n), (2) 
F est un a-Holder espace de fonctions sur X, sous-ensemble borne de ]Rd, (3) 
on a une condition de melange: avec ak = sup A B measurable 1>1 {IPr(AB) -
Pr(A)Pr(B)IIA E 0"1, BE O"M-I}, avec O"~ la O"-algeb;e generee par}fa, ... , X a+b-1, 

pour un p > 2, .Eann2/(p-2) < 00 et d(p;1) < a. Alors (dans les deux cas!) 

{JnDnflf E F} ----; D f dans lOO(F), avec D dans le second cas un processus 
gaussien centre avec covariances dejinies par D!Ih = Cav(!I (Xd, h(Xd) + 
.E~1 Cav(!I(X1 ), h(X1+k» + Cov(h(Xd, !I (XHk ». 
Notez que des comportements deterministes pour des applications uniformement 
dilatantes ou hyperboliques menent a des meilleurs equivalent que ces chaines de 
Markov. Voir [41] dans Ie cas reversible. [33] fournit des resultats proches tres 
interessants: on peut avoir convergence geometrique avec dependance en Ie point 
initial (dans Ie theoreme ci-dessus, la premiere partie considere la convergence 
uniforme en le point de depart) et avec des bornes (presque) explicites sur les 
constantes. 
Olivier Teytaud 

ISC, 67 Bd Pinel, 69675 Bron Cedex 
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Entropy Reduction Strategies on Tree 
Structured Retrieval Spaces 

Alain Trouve, Yong Yu 

ABSTRACT: In this paper, we study the performance of exact retrieval strate­
gies in the case of tree structured retrieval spaces. We assume that the database 
B is indexed by the leaves of a hierarchical partitioning tree T. We study retrieval 
processes based on interaction with the user through simple questions attached 
to the nodes of T as follows: for each node b, the system can display a summary 
of the subset attached to b (e.g .. some typical images) and get the user answer 
according to the target. We consider retrieval strategies based on step-wise en­
tropy reduction, built on a user model where the answers are independent given 
the target. We prove an upper bound for the expected number of questions which 
appears to be nearly optimal in an interesting case. Moreover, we show that at 
each step, the next question can be found among an adaptive subset of nodes of 
size log(IBI). Finally, the overall complexity of the algorithm (for the computer) 
per retrieval is O(log(IBI)3) whereas the average number of questions (for the user) 
is O(log(IBI)). 

1 Introduction 

In the context of image retrieval in a large database, the use of interactive scenarios 
to get information from the user on her j his target appears as an interesting way to 
try to overcome the so-called "semantic gap" which is responsible to the limitations 
of "one shot" retrieval strategies working on a unique but complex query submitted 
by the user to the system such as an image or a sketch of what shejhis is looking for 
(see [9]). Among these interactive scenarios, an interesting approach introduced in 
[4], is based on simple queries or questions submitted by the system to the user. For 
instance, assume that the user is looking for a given image, called the target, then 
two images are presented to the user and the user selects the closest one to her j his 
target. According to this selection, another couple of images is presented and so 
on until the target is found or the user simply gives up. The selection mechanism 
of couples of images defining the query is built on a probabilistic model connecting 
the user answers and her j his target. Given this user model, the system selects the 
most informative questions according to the criterion of the expected (given the 
model) uncertainty reduction of the distribution of the target given the answer. 
The probability model itself is built on a distance or a set of distances describing 
the dissimilarity between the features extracted from the images in a preliminary 
indexation process [3, 7, ll]. The performance of these retrieval strategies reported 
in [3, 7] is encouraging when tested on a moderate size database. However, it is 
not clear what could happen on a large and heterogeneous database since the 
discrimination through distances is more questionable in that case. 

Instead of using distances, we propose here a coarse-to-fine approach as introduced 
in [1, 5] in the context of face detection. We assume that the database is organized 
in a tree T coding a hierarchical partitioning. This tree can have been built off-
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line, according to the content of the database using adapted clustering algorithms 
[2, 12] or even manually according to the semantic content of the images. 
The paper is organized as follows. In section 2, we precise the mathematical 
framework. Then, in section 3, we define the entropy reduction algorithm and 
show that expected information gain for each new question can be efficiently and 
recursively computed throughout the tree T. In section 4, we prove an upper 
bound for the performance of this strategy and we study the tightness of this 
bound through a comparison with a lower bound proposed in [10] and simulations. 
In section 5, we propose a very fast version of the retrieval strategy by entropy 
reduction choosing the best question among an adaptively selected small set of 
nodes. We show theoretically as well on simulations that the performance does 
not seem to be affected. We end this paper with some concluding remarks. 

2 Model description 

2.1 Tree structured retrieval spaces 

Let us first consider a database B organized in a tree T i.e. aT = B where aT 
denotes the set of the leaves of T. We will denote by A the root node of the tree, 
and for any s, t E T, we say that s ~ t if t is an ancestor of s. With this definition, 
for any SET, s :::S A. For any bET, we define n = {s E Tis ~ b } as the 
subtree formed by the descendants of b. For any bET, Cb will denote the set 
of the children of b. Note that for any bET \ aT, the family (Ts)SECb defines a 
partition of n. 
Now, we consider that the user is looking for a target Y in the database. Assume 
that for any node b, the system can display to the user some kind of summary of 
the subset aTb of the database (for instance, the system might presents random 
samples of 20 images drawn from an) . From that summary, the user is asked to 
say if the target Y could be in an. In a simple formulation of the problem, the 
user's answer can be "no", "yes" or "I have seen my target" (so that the process 
stops). More generally, the user's answer is a label l in a finite set L of labels. 
Assume that the answers to different questions are stored in a family X = (Xb)bET, 
where, for each bET, Xb E L is the answer of the user to question b. Note here 
however, that there is no reason why a question b should be asked only once. 
Indeed, the system can get interesting information about the probability to find 
the target below a given node by repeating the same question (showing a different 
summary each time). In this case, we generalize the previous framework, and we 
denote a question by q = (bq, iq), where bq E T and iq is a positive integer saying 
that the question is asked for the ith time. However, in the extreme case where 
bEaT, then the question attached to b is "Y = b ?" to which the answer is 
deterministic and non repeatable. Let us recall the formal definition of a retrieval 
space as introduced in [10]: 

Definition 2.1. We say that n = (B , T, Q, OQ, rQ) is a retrieval space with 
targets set T, database B (with BeT) and set of possible questions Q if 

1. There exists a family of finite sets L = (Lq)qEQ called the family of possible 
answers such that OQ is defined by 

OQ ~ { w = (y, x) I x = (Xq)qEQ, Xq E Lq, yET }, 
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and f"Q ~ u(Y, X) where X = (Xq)qEQ and Yare the canonical projections; 

2. For any t E B, t E Q and X t = lY=t (that is we can check with no error 
that Y = t, for any t E T). Such a question will be called a basic question. 

We will say that R is a simple retrieval space if T = B, i.e. all the targets are 
available in the database. 

In our framework, a tree structured retrieval space will be a retrieval space R on 
a database B equipped with a tree T such that aT = B and for which the set of 
possible questions is given by Q ~ { (b, i) I bET \ aT, i 2:: 1 } U aT. Moreover, 
we will assume that for q = (b, i), Lq depends only on b and not on i. We will 
consider essentially simple retrieval space (T = B) or retrieval spaces for which 
T = B u { o} where 0 is an extra point representing the outside of the database. 

2.2 User models 

A user model will be a probability model P on (nQ, f"Q). Many user models are 
possible and the selection of a good user model is a challenging issue. Among all 
the possible user models, we want to distinguish an important finite dimensional 
parametric family of models based on three assumptions on the user's behavior. 
The first assumption is the conditional independence of the Xq's given Y. This 
assumption is widely used in this context in order to simplify the definition of the 
model. Hence, in that case, for any finite set 1i C Q 

P( XH = X'H I Y = t ) = II P( Xq = Xq I Y = t ). (1) 
qE'H 

The second assumption is that 

P( Xq = 1 I Y = t) = P( Xql = 1 I Y = t ) if bq = bql (2) 

that is the conditional law of the answers of questions at the same position in the 
tree is independent and identically distributed. This last assumption is maybe 
more doubtful. However, we think that this model can capture the basic fact that 
by repeatedly showing random samples drawn in a given aTb , the user can have a 
perfect representation of this subset. Finally, the third assumption is that 

P( Xq = 1 I Y = t) = P( Xq = 1 I Y = t' ) if b(t) = b(t'), (3) 

where b(t) = ItE8Tb and b = bq . Hence there exists a family (J-tb,EhET,EE{O,l} of 
probability distributions such that for any finite subset 1i c Q 

P( X'H = x'Hl Y = t ) = II II (J-tb,b(t) (l)tb,l . (4) 
bET lELb 

where for any bET and any 1 E L b, nb,l = L:qE'H lxq=l,bq=b. 

Definition 2.2. A user model P satisfying (1) to (4) will be called a conditional 
i.i.d. user model with associated answers distributions (J-tb,E)bET, EE{O,l}' 
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3 Retrieval strategies 

3.1 Definitions 

In words, a strategy is a sequence of questions such that each new question is 
based on the answers of the previous one, which terminates with a decision (for 
instance the prediction of the target). A strategy can be defined by a decision tree 
where the internal node are the questions, the searching process defining a path 
from the root to some leaf where a decision is taken. To each possible answer to a 
question attached to a node, it corresponds a child on which a new question can 
be asked. We recall below the more formal definition given in [10]: 
Let R be a retrieval space and let S = (Q,D) be a random process on (OQ,.rQ) 
where Q is a variable length random sequence Q = (Qnh<n<rs with value in 
Q (the sequence of questions) and D is a random variable defined on the event 
(TS < +00) with value in '0 (defining the possible decision at the end of the 
sequence of questions). Let us consider the associated history sequence (1tn )n>O 
defined by 1to = 0 and for any n > 0, we have 1tn+1 = 1tn U {Qn+d if TS >-n 
and 1tn+l = 1tn otherwise. 

Definition 3.1. - We say that S is a retrieval strategy on R if for any n ~ 0, any 
1t c Q, any q E Q and any d E '0, the two events (D = d) n (TS = n) n (1tn = 1t) 
and (TS > n) n (1tn = 1t) n (Qn+l = q) belong to IT(X7-d ~ IT(Xqlq E 1t). 
-We say that a retrieval strategy S = (Q, D) is exact for the user model P if '0 = T 
and P(D = Y) = 1. 

3.2 Example of the entropy reduction retrieval strategy 

The entropy reduction strategy is built according to a chosen user model P on a 
retrieval space R (not necessarily tree structured) and defined as follows: 

Entropy reduction strategy built on P (Complete scan) 
Let n ~ o. Assume that TS ~ n and let 1t = 1tn . 

If P(Y = t*IXH ) = 1 for some t* E T, then TS = n and D = t*. 

Otherwise, choose Qn+l E argminqEQ HH(YIXq) where 

HH(YIXq) = - L L P(Y = t, Xq = IIXH ) 10g(P(Y = tlXq = I, X H))· (5) 
tET IELq 

Remark 3.2. 1. Note that usual property on the conditional entropy gives 

HH(YIXq) = HH(Y, Xq) - HH(Xq) = HH(XqIY) + HH(Y) - HH(Xq) (6) 

so that Qn+l E argmaxqEQ (HH(Xq) - HH(Xq!y)). The last quantity is 
exactly the conditional mutual information in [8, 7] denoted by IH (Y, X q). 

2. In the case of tree structured retrieval space and conditional Li.d. user model 
P, IH(YIXq) depends only on bq (and not on iq) as soon as q ~ 1t. This 
yields that it is sufficient to compute the mutual information gain on a new 
question asked somewhere in the tree T. The terminology "complete scan" 
emphasizes that we have to scan the complete tree to get the best question. 
This limitation for very large database will be fixed in section 5. 
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3.3 Recursive computation for conditional LLd. user model 

When the user model is a conditional i.i.d. model, the computation of the ex­
pected information gain given the past has the following straightforward simpler 
formulation. 

Proposition 3.3. Let R be a tree structured retrieval space. Assume that P is a 
conditional i.i.d. user model on R. Let 1-{ c Q and q ~ (b, i) (j. 1-{. Then, 

Irt(Y,Xq) = h(PJLb,l + (1- P)JLb,O) - (ph(JLb,d + (1- P)h(JLb,O)) , (7) 

where P ~ P(Y E anlX,t} and h(JL) ~ - L:l JL(l) log(JL(l)) is the usual entropy. 

From proposition 3.3, we see that the key quantity is P(Y E aTblXrt) for 1-{ = 1-{n. 
From the tree structure underlying the user model, we get interesting factorization 
properties so that the computations can be done recursively as follows. We will 
assume throughout this section that the set of targets T = B U {o} where 0 is an 
extra point representing the outside of the database. Let 

{ 
Wb(Xrt) ~ fLETb I11E Ls (JLs,o(l))n s,I(X1-l) 

Cb(X rt) ~ L:tE8Tb P(Y = t) I1sEn I11E Ls (JLs,s(t) (l) )ns,l (X1-l) 

and where as previously ns,I(Xrt ) = L:qErt lXq=l, bq=s. One notices immediately 
that c.x(Xrt ) = P(Xrt, Y E B). Moreover, one proves easily: 

(8) 

Now, if we notice that for tEaT, we have Wt(Xrt ) = I11 EL (JLt,o(l))nt,l(X1-l), and 
Ct(Xrt ) = P(Y = t) I11 EL(JLt,1 (l))n t ,I(X1-l) , we deduce from (8) and (9) a bottom-up 
computation of the Wb'S and the Cb'S starting from the leaves of T. Let 

Cb,r(Xrt ) ~ L P(Y = t) II II (JLs,s(t) (l))n S ,I(X1-l) (10) 
tE8Tb sETr 1ELs 

for any b ::S r, so that Cb,b = Cb. One gets for b ::S rb ::S rand rb E Cr that 

Cb,r(Xrt ) = (II (JLr,l(l))nr,I(X1-l)) cb,rb(Xrt ) II wr,(Xrt ). (11) 
lELr r'ECr,r'i-rb 

Note that Cb,.x(Xrt ) = P(Xrt, YEan) and given Cb,b = Cb, the value of Cb,.x can 
be computed following the path from b to the root A. Since P(Y E an I X rt ) = 

P(X1-l, YE8Tb ) d d 
P(X1-l, Y=o)+P(X1-l, YE13) , we e uce 

P(Y E an I Xrt) = Cb,.x(Xrt ) 
P(Y = o)w.x(Xrt) + c.x(Xrt ) 

(12) 

For simple retrieval space (i.e. P(Y = 0) = 0) we have P(Y E aTb I X rt ) = 
Cb,.x (Xrt )/ C.x (Xrt )· 



518 Alain nouve, Yong Yu 

Remark 3.4. Note that if the tree T is not too irregular then the depth of the 
tree is O(log(IEI)) where lEI is the size of the database. Let us consider a node 
bo E T. Assume that the Cb(X'ltJ has been computed previously and stored in the 
tree. To compute Cbo,A, we only need to compute recursively the Cbo,b for all the 
ancestors b of bo so that the complexity is O(log(IEI) . Moreover, given the user's 
answer at node bo, we need to update the Cb'S and the Wb'S for the ancestor b of 
boo Hence the updating complexity is again O(1og(IEI). 

4 Performance of the entropy reduction strategy 

From now on we consider only simple tree structured retrieval space (i.e. T = E). 

4.1 Theoretical upper bound for the performance 

Let us extend the sequence (Qnh<n<rs by Qn ~ Qrs if n ;::: TS and denote for any 
n ;::: 1, Xn ~ X Qn . We denote by-.t;, the a-algebra of past before time n defined 
by Fn ~ a(Xi' Qi 11 ::::; i ::::; n). Moreover, for any n ;::: 1, we define 

Hn(Y) = H'lt(Y)I'lt='lt n and TIn ~ I'lt(Y,Xq)I'lt='ltn_l,q=Qnlrs2:n (13) 

which is the expected information gain of the target given by the answer to the 
nth question as proved by the next simple proposition (see [10] for a proof): 

Proposition 4.1. For any n ;::: 1 we have TIn = E(Hn-1(Y) - Hn(Y)IFn-d 

Theorem 4.2. Let R be a simple tree structured retrieval space and let S = (Q, D) 
be a reduction entropy retrieval strategy with complete scan on R. Let TS be the 
associated stopping time and let P be a conditional i. i. d. user model. Assume that 

Then, we have E( TS) ::::; ~ H (Y) + 1, where p is the maximum number of children 
for any node in T. -

Proof: Let bET. Since 'l/Jb: P -+ h (PfJ,b,o + (l-p)fJ,b,l)-(ph(fJ,b,O) + (l-p)h(fJ,b,d) 
is a concave function, we get from the hypothesis that 

'l/Jb (p) ;::: 2fJ. (p /\ (1 - p)). (14) 

Now, let n ;::: ° and assume that TS ;::: n. We will denote Pn the conditional law 
of Y given Fn. If TIn = 0, we deduce from the definition of TIn and Proposition 
3.3 that 'l/Jb(Pn(y E an)) = ° so that Pn(y E an) E {O, I} and the position of 
the target is known. Hence in that case, TS = n. Assume now that TIn > 0. We 
deduce that for any bET, we have 'l/Jb(Pn(Y E an)) ::::; TIn so that, using (14), we 
get 

(15) 

Lemma 4.3. Assume that ° < TIn < 2fJ./ (p + 1). Then, there exists tn E aT such 
that Pn(y = tn) ;::: 1- ~. 
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Proof: We first prove by induction that there exists a sequence A = bo t ... t br E 
aT such that Pn(y E an;) ~ l-Tln/(2g) for all a::::; i ::::; r. We start the induction 
noting that Pn(y EaT>.) = Pn(y E B) = 1 ~ 1 - Tln/(2g). Now, assume that we 
have constructed A = bo t ... t bm . If bm E aT, the construction is complete. 
Otherwise, there exists bm +! E Cbm , the set of the children of bm , such that 
Pn(y E anm+J ~ 1 - Tln/(2g). Indeed, using (15), if Pn(y EOn) ::::; Tln/(2g) 
for all b E Cqm , since anm = UbECbm an, we get Pn(y E aTbm) ::::; PTln/(2g) 
since ICbm I ::::; p. However, by induction hypothesis, we have Pn(Y E anm) ~ 
1 - Tln/(2g) so that 1 - Tln/(2g) ::::; PTln/(2g) , and finally TIn ~ 2g/(p + 1) which is 
a contradiction. D 

Lemma 4.4. Assume that a < TIn < 2g/(p + 1). Then P( TS > n + 1 I Fn ) ::::; 
Pn(Y i= tn) where tn is defined in the previous lemma. 

Proof: For any q E Q, if 1in = 1i and b = bq, we have J.,-t(Y,Xq) = H1t(Xq) -
H1t(XqIY) = H1t(Xq) -H}t(Xqlb(Y)) where as defined previously b(Y) = lYE8Tb. 

Hence, hi(Y, Xq) = hi(b(Y), Xq) = H1t(b(Y)) - H1t(b(Y)IXq), and 

11t (y, Xq) ::::; H1t (b(Y)), (16) 

with equality iff H1t(b(Y)IXq) = a. 
Now, denote for any p E [a, 1], h(p) ~ -plog(p) - (1- p) 10g(l- p). Let q E Q \ 1i 
and b ~ bq. If tn E aTb, we deduce from (16), that 11t (Y, Xq) ::::; h(Pn(Y E aTb)) ::::: 
h(Pn(Y = tn)) since h(p) is decreasing for p ~ 1/2, and 2/3 ::::; 1 - Tln/(2g) ::::: 
Pn(y = tn) ::::; Pn(y E an). If tn tt aTb, then one gets 

11t (Y, Xq) ::::; h(Pn(Y EOn)) = h(1 - Pn(y E aTb)) ::::; h(Pn(Y = tn)) 

so that for all q E Q \ 1i, 11t (Y,Xq) ::::; h(Pn(Y = tn)). Now, on basic questions, 
we have H1t(t(Y)IXt) = a for any tEaT so that 11t (Y, XtJ = h(Pn(Y = tn)) 
and for all q E Q 

(17) 

If Qn+! = tn, then we deduce that TS = n + 1 if Y = tn. Indeed, TS > n since 
TIn > a implies that Pn(Y = tn) < 1 and given the answer to question tn, the target 
will be found if Y = tn. Hence, in that case, P( TS > n + 1 I Fn ) ::::; Pn(y i= tn). 
Assume now that Qn+! = q i= tn and let b ~ bq. From (16) and (17), we get 
11t(Y, Xq) = 11t(Y, XtJ = H1t(b(Y)) so that H1t(b(Y)IXq) = a. This means that 

Pn+1(b(Y) = 1) E {a, I}, (18) 

for any f E {a, I}. Now, assume that tn E an. Then 11t (Y, Xq) = h(Pn(b(Y) = 
1) = h(Pn(Y = tn)) implies that tn(Y) = b(Y) so that we get from (18) that 
Pn+! (Y = tn) E {a, I} and the target will be found if Y = tn. Thus, P( TS > 
n + 1 I Fn ) ::::; Pn(y i= tn). 
Now, assume that tn tt aTb. We have h(I-Pn(Y EOn)) = h(Pn(Y = tn)) so that 
tn(Y) = 1 - b(Y) a.s. and similarly, we get from (18) that Pn+! (Y = tn) E {a, I} 
and the target will be found if Y = tn. Hence, in any case, we have P( TS > 
n + 1 I Fn ) ::::; Pn(y i= tn), and the proof of the lemma is ended. D 

We come back here to the proof of the theorem. We first assume that TIn < 
2g/(p+ 1). From the lemma, we deduce that P(TS > n+ 11 Fn)::::; Pn(y i= tn)::::; 
Tln/(2g) ::::; (p + I)Tln/(2g). 
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Now, note that if 'TIn ~ 2rd(p + 1), we have (p + 1)'TIn/(2Q.) ~ 1. Hence, whatever 
the value of 'TIn is, we get P( TS > n + 1 I Fn ) s:; (P~~'1/n. Now, we have 

00 00 (+ 1) 
E(TS) = P(TS ~ 1) + L P(TS > n + 1) s:; 1 + L E( P 2a'TIn), (19) 

n=O n=O-

so that using proposition 4.1, we get E(TS) s:; 1 + (P2~) H(Y). D 

Remark 4.5. The assumption Q. > 0 says that /1b ,1 i=- /1t,o. In other terms, the 
answer to question q should be informative. Moreover, this quantity Q. is connected 
to some measure of randomness of the answer model introduced in [7]. 

4.2 Theoretical lower bound for the performance 

In [10], we propose in a general framework a lower bound on the performance of 
exact retrieval strategies on simple retrieval spaces. We want here to recall briefly 
theses results in the case of our particular framework for a comparison with our 
upper bound. 
In the case of Li.d. user model P on a simple tree structured retrieval space, let 
us define 

a = sup sup h (V/1b,O + (1 - v)/1b,d - (Vh(/1b,O) + (1 - v )h(/1b,d). (20) 
bET\ 8T vE[O,I] 

Since for any bET \ aT, we have h (~/1b,O + ~/1b,1) - (!h(/1b,O) + ~h(/1b,d) s:; 1, 
we deduce that Q. s:; a. Then we deduce from Corollary 3.1. in [10]. 
Theorem 4.6. Let S = (Q, D) be an exact retrieval strategy for P. Then we 
have E(TS) ~ WN ,-a(H(Y)) - tt with WN,a(H) = inft::;H VN(H - ta) + t and 

VN(H') = sUp{L{:~1 imi + (N - l)mN I m E M I ( {l,'" ,N}), h(m) = H' } 
where M I ( {1, ... ,N}) denotes the set of probability distribution on {1, ... ,N} 
and h(m) is the entropy of m. 

Useful properties of VN and WN,a have been given in [10]. Moreover, we have 
the inequality WN,a(H(Y)) - tt ~ H(Y)a-€(a) where E(a) is bounded and tends to 
o when a ----t +00 (uniformly in H(Y)). Thus, we get for the entropy reduction 
strategy S = (Q, D) built on a i.i.d. user model P, that 

H(Y).; E(a) s:; E( TS) s:; (p + ~~H(Y) + 1. (21) 

We can go further in the simple case where for any bET \ aT, we have /1b,1 = B p , 

/1b ,o = B 1- p and for tEaT we have /1t,l = BI, /1t ,O = Bo. Assume moreover that 
T is a complete binary tree. Then, in that case we have p = 2 and 

a(p) ~ Q.(p) = a(p) = 1 + (plog(p) + (1- p) 10g(1 - p)), (22) 

so that for the entropy reduction retrieval strategy we have 

H(Y) - E(a(p)) E( ) 3H(Y) 
( ) s:; TS s:; -(-) + 1. a p 2a p 

(23) 

Hence we see that our bound given in theorem 4.2 is quite tight in this configuration 
and that the entropy reduction strategy is not far from optimal performance. 
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4.3 Experimental evaluation 

The upper bound given in Theorem 4.2 shows the performance of the algorithm, 
in terms of the significance g of the user's answer and the entropy of the prior 
on the target. We want to verify it in a simple case on simulations. For that, we 
consider the situation described previously, where there exists p E [0, 1 J such that 
for any bET \ aT, we have {Lb,l = B p , {Lb ,O = B l - p ' For the leaves, the answer 
is deterministic i.e. we have {Lt,l = B l , {Lt,O = Bo. We consider a complete binary 
tree with various depths d (IBI = 2d ). Moreover, we assume a uniform prior on Y 
(H(Y) = d). As previously, we denote by o:(p) the quantity defined by (22). 
In our first experiment, we check the linear behavior of E( TS) has a function of 
the log size of the database for various values of the significance g (see Fig. 1). 
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roo 

Simulations: 0.1-0.9 + 
0.2-0.8 x 
0.3-0.7 • 

0.35-0.65 D 
lower bound: 0.1-0.9 --_._.-

0.2-0.8 -------
0.3-0.7·-

0.35-0.65 ._. 

~ 80 r ....... ............. ........................................ ..... 0 
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~ 
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! 
4Or···················································· +~ . .......... , 0" 

Size 01 the database 

Figure 1: Average value (1000 simulations) of E(TS) versus IBI for various values 
of the significance 0:: (1- p, p) E {(0.1, 0.9), (0.2,0.8), (0.3,0.7), (0.35, 0.65)}. With 
lines, the corresponding lower bound given by Theorem 4.6 

The linear dependence versus the entropy of the prior is particularly obvious in our 
experiment. Moreover, we see that the slope is increasing with decreasing values 
of the significance g. Note also that as the performance is quite close to the lower 
bound so that the entropy reduction strategy is not far from optimality in that 
case and seems particularly suited to tree structured retrieval spaces. 

To check the accuracy of the functional form of our upper bound, we display 
in figure 2, the value of C = a(EJ(~\-l) which should be almost constant (the 
upper-bound say that this constant is upper bounded by 3/2). 

Figure 2 shows that C = a(EJ(~\-l) is quite stable as soon as the database is 
not too small (of the order of several hundreds). Indeed, for p = 0.65 one has 



522 

0.1-0.9 
O.2.Q.B 
0.3-0.7 

0.9 0.35-0.65 

" '0 

0.8 

0.7 

!l 0.6 
~ 

I 0.5 

~ 
0.4 

0.3 

0.2 

Alain Trouve, Yang Yu 

Size of the database 

Figure 2: Average value (1000 simulations) of o:(E(rs) -l)/H(Y) versus IBI for 
various values of 0:: (1 - p, p) E {(0.1, 0.9), (0.2,0.8), (0.3,0.7), (0.35, 0.65)}. 

0: = 0.0659 and for p = 0.9 one has 0: = 0.531 hence 0:(0.9)/0:(0.65) = 8.05. In the 
same time, we get from the figure 2 that C(0.9)/C(0.65) ~ 1.2. 

5 A fast version of the entropy reduction strategy 

With the usual version of the entropy reduction strategy, we get that given a 
binary tree T, the expected number of questions is bounded by 2~ log(IBI) so that 
the searching time is O(log(IBI)). However, between questions, the algorithm has 
to scan the tree T for the question maximizing the mutual information. From 
remarks 3.4, we deduce that the complexity for the system per asked question is 
O(IBllog(IBI)) so that the expected total complexity of the retrieval process for 
the system is O(IBllog(IBI)2). Even if for the user the "burden" is not too high, 
the complexity for the system can be quite important for a large database or a 
large number of simultaneous users. 

5.1 Definition and theoretical performance 

We propose in this section to select a restricted subset of the database to be 
scanned whose size will be much smaller than the size of the database. This idea 
is quite natural and a usual solution is to randomly select a restricted subset S 
(via uniform sampling) of size ,IBI with 0 < , < IBI and to scan S for for the 
best question in terms of uncertainty reduction. For this choice however, we can 
not prove that the overall complexity will decrease. 
Our proposal is based on the selection of a scan set of size log(IBI) and allows a 
provable bound for the overall complexity. This improved strategy is described as 
following (Pn denotes the conditional law of Y given Fn): 
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Entropy reduction strategy (Fast Partial Scan): 
Assume that TS ?: n and let ?-i = ?-in. 

1. Select recursively bo = A and bi+l E argmaxbEcb Pn(Y E an) for 

any 0:::; i < r. Let TJn = maxl::;i::;rJ.H(Y,Xbi ,nbi+d (nb = L:qE'H Ibq=b). 

2. If TJn = 0 then TS = n and D = br = Y. Otherwise, TS ?: n + 1 and 
Qn+1 = (bi*,nbi* + 1) where i* = max{l:::; i:::; rl I'H(Y,Xbi ,nbi+d = TJn }. 

With the fast scan version, the scanning set is of the order of the depth of the tree 
T. So for a balanced tree, it is of the order of 10g(IBI) as announced. Moreover: 

Theorem 5.1. Theorem 4.2 is true for the fast partial scan version. 

Proof: The proof of this theorem is very similar to the proof of theorem 4.2 and 
even simpler. First lemma 4.3 still holds and we get that if 0:::; TJn < 2gj(p + 1), 
then for tn = Qn+l we have Pn(Y = t n) ?: 1 - 77n/(2Q). Thus, for 0 :::; TJn < 
2Q/(p + 1), TS > n + 1 implies that Y =I- tn and P(TS > n + 1 I Fn ) :::; Pn(y =I­
t n) :::; TJn/(2Q). The proof is ended as for theorem 4.2. 0 

5.2 Experimental evaluation 

We get from the previous theorem the same upper bound as in the case of the com­
plete scan for an overall complexity of 0(1og(IBI)3) instead of the O(IBllog(IBI)2) 
previously obtained in the complete scan version. 
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Figure 3: Complete/ partial scan comparison. Average value (1000 simula­
tions) of E(Ts) versus IBI for various values of the significance: (1 - p,p) E 
{(0.1, 0.9), (0.2,0.8), (0.3,0.7), (0.35, 0.65)}. 
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We want to test here on simulation that the performances in terms of the expected 
number of questions are still the same for the fast partial scan as for the complete 
scan. We use the same framework where /-lb,l = Bp and /-lb,O = B l - p for b E T\ aT. 
The experiments are reported in figure 3. The most important fact is that the 
performances are nearly identical for all the tested values of a. This shows that 
our fast scan version of the entropy reduction strategy allows a considerable speed­
up in the CPU time without any degradation in the performance. 

6 Conclusion 

It seems that, despite there is no global optimization of the number of queries 
from the system, the performance are not far from the optimum for conditional 
i.i.d user model. Hence the limitations of this greedy design, pointed out in [6] in 
the context of model based classification trees, does not seem to play an important 
role here. However, this approach needs to be tested on a real situation. The main 
problem will be to know what can be the value of a on a real situation. Using 
our toy p-model it seems that for a database of the order 105 to 106 , one should 
have a ~ 0.7 corresponding to p = 0.95 which looks pretty high if we want an 
expected number of questions smaller than 20. This implies quite good trees or 
good summaries at each node or also patient users! Moreover, the performance 
of the retrieval strategy based on entropy reduction is not well understood when 
the user behavior is different from the user model P used to build the retrieval 
strategy i.e. when there is an important de-synchronization as introduced in [7]. 
This shows that more experimental and theoretical investigations are still needed. 

References 

[1] Y. Amit, D. Geman, and B. Jedynak. Efficient focusing and face detection. 
In H. Wechsler and J. Phillips, editors, Face Recognition: From Theory to 
Applications, NATO ASI Series G. Springer Verlag, 1998. 

[2] J. Buhmann. Data clustering and learning. In The Hand-book of Brain Theory 
and Neural Networks, pages 278-281. MIT Press, 1995. 

[3] I. Cox, M. Miller, T. Minka, T. Papathomas, and P. Yianilos. The bayesian 
image retrieval system, pichunter: Theory, implementation and psychophysi­
cal experiments. IEEE Trans. Image Processing, 9:20-37, 2000. 

[4] I. Cox, M. Miller, T. Minka, and P. Yianilos. An optimized interaction strat­
egy for bayesian relevance feedback. In IEEE Conf. on Compo Vis. and Pat­
tern Recognition, pages 553-558, 1998. 

[5] F. Fleuret and D. Geman. Coarse-to-fine visual selection. International Jour­
nal of Computer Vision, 2001. To appear. 

[6] D. Geman and B. Jedynak. Model-based classification trees. To appear in 
IEEE Information Theory, 2000. 

[7] D. Geman and R. Moquet. Q & A models for interactive search. Preprint, 
December, 2000. 



Entropy Reduction Strategies 525 

[8] M. S. Pinsker. Information and Information Stability of Random Variables 
and Processes. San-Fransisco: Holden Day, 1964. 

[9] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based 
image retrieval at the end of the early years. IEEE Trans. PAMI, 22:1348-
1375,2000. 

[10] A. Trouve and Y. Yu. A lower bound on performance of exact retrieval 
strategies on simple retrieval spaces. Technical Report 2002-07, Universite 
Paris 13, 2002. 

[11] A. Trouve and Y. Yu. Metric similarities learning through examples: An 
application to shape retieval. In Proceeding of the Third International Work­
shop, EMMCVPR '01 , Sophia Antipolis, September 3-5 2001, Lecture Notes 
in Computer Science. Springer Verlag, 2001. 

[12] A. Trouve and Y. Yu. Unsupervised clustering trees by non-linear principal 
component analysis. Pattern Recognition and Image Analysis, II:108-112, 
2001. 

Alain Trouve 
Universite Paris 13, LAG A et L2TI 
Av. J.-B. Clement 
93430 Villetaneuse, France 
trouve@math.univ-paris13Jr 

Yong Yu 
ENST, Departement TSI 
46 rue Barrault 
75013 Paris - FRANCE 
yuyong@tsi.enstJr 



Trends in Mathematics, © 2002 Birkhiiuser Verlag Basel/Switzerland 

Zero-One Law Characterizations of Eo 

Andreas Weiermann 

ABSTRACT: Using methods and results from finite model theory and real 
analysis it is shown that the ordinal co can be characterized as the first additive 
principal number for which certain zero-one laws for infinitary structures do not 
hold. As a contribution to problem 4.17 and problem 10.6 in Burris 2001 {5} we 
show that additive principal numbers below co yield additive number systems in 
RTI and multiplicative number systems in RVo. 

1 Introduction and motivation 

In this paper we characterize via analytic combinatorics the segment of ordinals be­
low co in terms of zero one laws. Since this goal is based on a somewhat unexpected 
interplay between set theory, in particular the theory of ordinals, finite model the­
ory and analytic combinatorics it might be useful to provide in the introduction 
some informal explanations about the applicability of analytic combinatorics to 
ordinals and finite model theory. 

1.1 Ordinals below co and analytic combinatorics 

Ordinals appear naively in the process of counting into the transfinite. Starting 
from 0,1,2 , ... we arrive at the first level of infinity and we declare w to be the 
first limit number. Then we start counting from w onwards and get a sequence 
w, w + 1, w + 2, ... and we arrive at the second limit point w + w =: w . 2 of this 
process. Clearly this can be iterated and after n steps we have arrived at the n-th 
limit point w . n. After completing this counting process with respect to n we reach 
the first limit point of limit points w . w = w2 . By a suitable iteration we obtain 
for each n the n-iterated limit point wn . 

Up to now nothing special has happened since we can identify these ordinals with 
nth-tuples of natural numbers ordered with respect to the lexicographic ordering. 
If we iterate with respect to n again we reach WW the limit of all wn . This process 
of counting can be iterated further and further and one can imagine a process 
of counting up to wWw ,wwww etcetera. Let WI := wand Wn+1 := wWn . Then co 
appears as the limit point of the wn . In set theory this intuitive approach can 
be formalized rigorously using the principle of transfinite recursion and of course 
there is no reason to stop at co but we will do so in this paper. 
At this stage it does not seem plausible that analytic combinatorics can be applied 
to the structure of these ordinals. But using the Cantor normal form theorem 
from set theory it can easily been seen that each ordinal below co can be denoted 
uniquely by a term over a certain finite signature. Thus combinatorial enumeration 
applies to ordinals via counting the set of corresponding denotations. We will 
not make this approach more precise. Instead we will directly write down an 
ordering on the natural numbers such that the natural numbers represent co with 
respect to -< as the n-tupels of natural numbers represent wn with respect to the 
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lexicographic ordering. The advantage of this approach is that one can work with 
these denotations for ordinals without prior knowledge of set theory. Let (pni)i>l 
be the standard enumeration of the prime numbers and let gcd( m, n) denote the 
greatest common divisor of m and n. 
Let m --< n iff m is not equal to nand (m = lorn = 0 or [gcd~,n) = pnml . 
... . pnmk & gcd('::n,n) = pnnl ..... pnnl & Vi :S k3j :S l(mi --< nj)]). With respect 
to --< the natural numbers start with 1 --< pnt --< pni --< ... --< pn1 --< ... --< pn2 --< 
pn2 . pnl --< ... --< pn2 . pnl --< ... --< pn§ --< ... --< pn'2 --< ... --< pn3 --< ... O. Thus 
pn'2 corresponds to wn. The top element 0 corresponds to co itself and we have 
that ({a: a :S co}, <) is order isomorphic to (N, --<). If we let ql := pn2 and 
qn+l := pnqn then the order type of qn with respect to --< is just wn. Hence 0 is 
the limit of the qn with respect to --< as co is the limit of the wn. A natural size 
function N on {a : a :S co} can be introduced via isomorphism and the following 
size function N defined on No N(l) := 0, N(O) := 1 and N(pnml ..... pnmk ) = 
k + N(md + ... + N(mk)' For any kEN let 

Ck(n) = #{m --< k : N(m) = n} 

and 

Ck(x) = #{m --< k: m:S x}. 

As usual in combinatorics one might be interested in the asymptotics of Ck and 
Ck for various k. It turns out that this should be a quite interesting problem since 

cq2 (n) = p(n) is the partition function and thus cq2 (n) rv ex~~) by the classical 
2 

Hardy Ramanujan result. Further we have lncqk(n) rv 11"6 lnk_~(n) for k ~ 3 by a 

result of Yamashita and, since Co is the tree enumeration function, co(n) rv D· ~, 
where a is Otter's tree constant. 
For certain specific further values of k we have obtained bounds for the asymptotics 
of Ck and Ck but a general classification seems to be difficult. In the appendix we 
include an asymptotic estimate for C5 . We conjecture that the methdods of the 
proof extend to the case Cqk for k ~ 3. 
The analytical main results of this paper are as follows. 

1 If k --I- 0 h - . fi l' ck(n-l) 1 . r t en Ck satls es lmn ---+ oo cdn) = . 

2. If k of- 0 then Ck satisfies limhoo C:;k(~~) = 1. 

Thus, for k of- 0, z=~=o ck(n)Zn has radius of convergence 1 by the ratio test, 
which in Burris' book [5] is denoted by Ck E RT1 . Moreover Ck is slowly varying 
at infinity in the sense of Karamata. In Burris' book this property of Ck is denoted 
by Ck E RVo. This is justified by the fact that slowly varying at infinity is the same 
as having regular variation of index O. As a corollary of this purely analytical result 
and the theory developed by Compton we obtain the desired characterization of 
co in terms of zero one laws. 
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1.2 Logical limit laws and analytic combinatorics 

The investigations on logical limit laws for the ordinal segment below co is inspired 
from related problems in finite model theory and in particular by the pioneering 
work of Compton in this area. For an exposition on general finite model theory 
we refer to the text-book by Ebbinghaus and Flum [8]. In this paper we concen­
trate only on a specific aspect, i.e. logical limit laws, of finite model theory. A 
fundamental and basic question of finite model theory is as follows: What is the 
probability that a given property holds in a randomly chosen large finite structure? 
This rather vague formulation can be put into mathematical terms as follows. As­
sume that we have given a class K of finite structures, such that for every natural 
number n there are at most finitely many members in K which have a universe of 
cardinality n. For a given property P let r n be the proportion of structures in K 
of size n that satisfy P. As the probability that P holds for a randomly chosen 
structure of large size from K we consider the limiting distribution limn--->oo rn if 
this limit exists. This limit is called the labeled asymptotic density of P. Alter­
natively we may as well consider Sn, the proportion of all isomorphism types of 
structures in K of size n that satisfy P. Here limn--->oo Sn is called the unlabeled 
asymptotic density of P . In both cases it is then an obvious problem to figure 
out for which classes of structures and which classes of properties the labeled and 
unlabeled asymptotic probabilities exist. 
Classical results of Fagin [9] and Glebskij et al. [11] show that if the underlying 
first order language L contains only relation symbols but no function symbols 
and no constants then the labeled and unlabeled asymptotic densities exist for 
properties expressible by L-formulas. Moreover these densities are either 0 or 1 
and therefore a zero one law holds for first order logic. Moreover their work show 
that zero one laws hold in the labeled and unlabeled case for the class of finite (as 
well as for directed as for undirected) graphs. 
In pushing these results further to very general classes of finite structures Compton 
applied methods and results from analytic combinatorics to prove logical limit 
laws i.e. the existence of asymptotic densities properties expressed by formulas of 
languages of first order and even of monadic second order logic [6, 7]. For a given 
language L he considered adequat classes K of structures which means that 

1. K is closed under disjoint unions, 

2. members of K with non empty universe can be uniquely decomposed into (a 
disjoint union of) K indecomposable structures and 

3. the L-structure with empty domain is in K. 

For adequat classes K he was able to reduce the limit law question to purely ana­
lytical problems on the count function for K. In the unlabeled case, on which we 
concentrate from now on, the count function CK for K is defined as follows: cd n) is 
the number of isomorphism types of structures in K which have a universe of cardi-
nality n. Then, according to Compton's results, the condition limn--->oo Kk(:)l) = 1 
is sufficient to yield a zero one law for K. 

The underlying idea is as follows. If K is adequate then the isomorphism types 
of K give rise to an additive number system (or additive arithmetical semigroup) 
by considering the (isomorphism types of) indecomposables as indecomposable 
elements and by interpreting disjoint union as addition. The norm of a finite 
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structure is given by the size of its universe. The condition limn~oo cK:(Tt)I) = 1 
CIC n 

is sufficient to yield that every partition set (in the sense of [5]) has asymptotic 
density 0 or 1. Using Ehrenfeucht-Fraisse games one can then show that for any 
first order (monadic second order) sentence ¢ the set of isomorphism types of 
members K E K in which ¢ holds is a finite union of disjoint partition sets and 
thus ¢ has unlabeled asymptotic density 0 or 1. 

A typical way for proving a condition like limn~oo cK:(n(-)I) = 1 is to consider the 
CIC n 

fundamental identity for the additive number system for K. Let cI(n) be the 
number of isomorphism types of indecomposables from K which have a universe 
of cardinality n. Then we have the following fundamental identity 

00 00 

n=O n=l 

and extracting information on CK from CI and vice versa is a classical topic in 
analytic combinatorics. A similar phenomenon occurs when we consider appro­
priate K as multiplicative number systems but here we would like to refer to the 
literature [5]. 
In contrast to finite model theory we consider in this paper infinite structures 
but it turns out that for first order languages the general theory of Compton 
(as for example presented in Burris' book [5]) applies mutatis mutandis to this 
situation as well. The basic observation is that we can replace the size function 
of finite structures by a size function for the denotation of an infinite structure. 
The crucial fact for applying analytic combinatorics is that there are only finitely 
many structures which have a representation of a given finite size. 

2 Basic definitions 

Throughout the paper we denote (if not stated otherwise) ordinals less than 
EO = min {~ : ~ = w~} by small Greek letters. If not stated otherwise small 
Latin numbers range over natural numbers and t ranges over reals. Disjoint 
union is denoted by I±J and isomorphism of structures is denoted by ~. We write 
a=NFwD:l + ... + an if a = WD:l + .. . + an > al 2: ... 2: an. (This means a 
is in normal form. The existence of this representation follows from the Cantor 
normal form theorem.) The (commutative) natural sum of ordinals EB is defined 
as usual, i.e. for a = N F WD:l + ... + wD:rn and (3 = N F WD:",+l + ... + wD:m+n we have 
a EB (3 = WD:p(l) + ... + wD:p(m+n) where p is a permutation of {I, .. . , m + n} such 
that ap(l) 2: ... 2: ap(m+n)· 

We define the (additive) norm Na (or length) of an ordinal a as follows. 

NO:=O 

and 

Na:= n+Nal + ... + Nan 

if a = N F WD:l + ... + wD:n • Let pnl, pn2, ... be the enumeration of prime numbers. 
Inspired by Schutte's (1977) [14] G6del numbering of ordinals below fo we define 
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the (multiplicative) norm Ma (or G6del number) of an ordinal a as follows. 

MO:= 1 

and 

if a = N F wa1 + ... + wan. 
Then {a : N a ::::: n} and {a : M a ::::: n} are always finite for any n. We equip 
any ordinal a with a relation r a as follows. ro := 0 and if a = N F wa1 + ... + wan 
then we put for 13" < a: j3ra , if there are m < n and ~,'T/ < Wa",+l with 
13 = wa1 + ... + warn + ~ and , = wa1 + ... + warn + 'T/ and ~ < 'T/. Then 
(a,ra) c:::: (wa1 ,<) l±J ..• l±J (wan ,<). With Kf3 we denote for 13::::: cO the class of 
structures {(a,ra) : a < wf3}. Then Kf3 is closed under finite disjoint unions since 
(r, r'Y) l±J (8, ro) c:::: (r E9 8, r 'YffiO)' Further the empty structure is in Kf3. Moreover 
elements of Kf3 with nonempty universe can be decomposed uniquely into a disjoint 
union of Kf3 indecomposable structures. Here a structure (a, ra) is called Kf3 
indecomposable if it is not the finite disjoint union of structures (ai, raJ with 
ai < a. Of course then a has to be additive principal. Moreover if (a, r a) c:::: (13, rf3) 
then a = 13. This rigidity property leads in our situation to the fact that the labeled 
and unlabeled densities coincide. 
We denote the cardinality of a finite set M by #M. Let £< be the language of 
orders which contains a binary relation symbol < as only non logical symbol. For 
an £< symbol ¢ we write a F ¢ if (a, ra) F ¢ where ra is the interpretation of 
<. Following the terminology of Burris' book [5] we say that a subset A ~ 13 has 
an additive (local) density 8f3(A) if 

8f3(A):= lim #{a E A: Na = n} 
n->oo #{a < 13 : Na = n} 

exists and a multiplicative (global) density D.f3(A) if 

exists. 

D.f3(A):= lim #{a E A : Ma ::::: n} 
n->oo #{a < 13 : Ma ::::: n} 

We say that 13 satisfies an additive limit law for £< if 

exists for any ¢ E £< and if this is the case we say that 13 satisfies the additive 
zero-one law for £< if 

for any ¢ E £<. We say that 13 satisfies a multiplicative limit law for £< if 

exists for any ¢ E £< and if this is the case we say that 13 satisfies the multiplicative 
zero-one law for £< if 

D.f3({a < 13: a F ¢}) E {O, I} 
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for any ¢> E C<. 

Our aim is to show that any additive principal number (3 < EO satisfies the additive 
and multiplicative zero-one laws for C< but EO does not. For this purpose it proves 
useful to introduce machinery used in [5] for proving zero-one laws in finite model 

theory. For a function f : [0,00[-+ [0, oo[nN say f E RTI if limn-->oo f}(~)l) = 1 

and f E RVo if limt-too f)~:} = 1 for any real x > 0. Let 

c(3(n) := #{a < {3: Na = n} 

and 

C(3(t) := #{a < {3 : Ma :S t}. 

For proving that c(3 E RTI and C (3 E RVo we relate the concept of reduced additive 
number systems and multiplicative number systems to additive principal numbers. 
Given {3 :S EO let 

and 

P(3 := {W1' : 'Y < {3}. 

Then A(3 is an additive number system with respect to EB (when restricted to A(3) 
and 0. Any element of A(3 can be written (modulo commutativity) uniquely as a 
natural sum of elements from P(3. Furthermore let 

and 

Then the structure (A(3, P(3, EB f A(3, 0, N) is a reduced additive number system 
with local counting functions a(3 and P(3. See, for example, Burris [5] for a defini­
tion. Moreover let 

and 

Then the structure (A(3, P(3, EB f A(3, 0, M) is a multiplicative number system with 
global counting functions A(3 and P(3 when we consider EB as multiplication with 
neutral element ° considered as 1. 

3 Proof of the additive results 

Lemma 3.1. If W :S {3 < EO then c(3 E RT1 · 
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Proof. By induction on (3. If (3 = wk then Pk = {wo, ... , Wk- 1} consists of k 
indecomposables. Hence ak E RT1 by Theorem 2.46 in Burris [5] or by Theorem 
1.3 in Bell [2]. Assume now that (3 = w"l where w :::; "f. The induction hypothesis 
yields c"I E RT1 • We have 

p"I(n) = #{w/5 < w"l : Nw/5 = n} = c"I(n - 1). 

Thus P"I E RT1, hence a"l E RT1 by Bell and Burris [4]. This gives Cw"l = a"l E RT1 
for 0:::; "f < EO. Finally assume that (3=NF w"l ·m+w/51 + .. . +W/5k with m+k > 1, 
"f > 81 ~ ... ~ 15k and m > O. The induction hypothesis yields Cw"l, CWO i E RT1 
for 1 :::; i :::; k. Then cW"l(n) ~ CW01+l(n). Let us consider the additive number 
system provided by A/51+1. This is built from the system for A/51 by adding a 
new indecomposable w/51 to P/51 and the norm function satisfies N(w/51 . m + a) = 
m . N w/51 + N a for any a E A/51. The proof of Lemma 3.58 in Burris [5] (confer 
claim 2 or line 7 on page 72) yields 

(1) 

Hence limn->oo ~:".;(c::; = 0 for 1 :::; i :::; k. In particular 

1· cwoi(n-l) 0 
1m = 

n->oo Cw"l (n) 
(2) 

for 1 :::; i :::; k and any fixed l. Moreover Cw"l E RT1 yields limn->oo c~=~(;;)l) = 1 for 
any fixed l. We have 

C{3 (n - 1) = Cw"l (n - 1) + ... + Cw"l (n - 1 - N (w "I . (m - 1))) 
+cwo1 (n - 1 - N(w"l . m)) 
+ ... + cwok (n - 1 - N(w"l . m + w/51 + ... + W/5k-l )). 

The equations (1) and (2) yield limn->oo c:~~(n~) = m and similarly we obtain 
r ~ - h r c{3(n-1) - 1 1mn->00 cW"l(n) - m, ence 1mn->00 ~ - . 

Theorem 3.2. If (3 < EO then w{3 satisfies the additive zero-one law for L<. 

Proof. This follows from Lemma 3.1 and the proof of theorem 6.29 in Burris [5]. 

Theorem 3.3. The ordinal EO does not satisfy the additive zero-one law for L<. 

Proof. Let <p := 3xVy(y =I- x ===} -'y < x A -,x < y) Then (a, ret) F <p iff a 
is a successor ordinal. We claim that 8c:o ( {a < EO : a F <p}) is the radius of 
convergence p of the tree generating function. By Otter 1948 [13] we know that i = 2.95576 ... , hence 0 < p < 1. Further [13] yields that there exists a constant D 

such that cc:o (n) rv D "'3 for n -+ 00. Hence limn->oo Ceo «-)1) = p. Now the result 
~v~ ~on 

follows from observing that #{a < EO: (3(3)[a = (3 + 1] & Na = n} = cc:o(n -1). 
Similarly we can use an L< sentence '¢ (with the same limit density) describing 
that the universe is linearly ordered. 
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4 Proof of the multiplicative results 

Lemma 4.1. If w ::::; (3 < EO then C(3 E RVo· 

Proof. By induction on (3. If (3 = wk then Pk = {wo, ... ,Wk - 1 } consists of k 
many indecomposables. Hence Ak E RVo by Theorem 8.30 in Burris [5]) or by 
Theorem 1.8 in Bell [2]. Assume now that (3 = w' where w ::::; 'Y. The induction 
hypothesis yields C, E RVo. We have P,(t) = #{w8 < w' : Mw8 ::::; t} = 
#{8 < 'Y: pnM8 ::::; t}. We claim that P, E RVo. Here we proceed with some 
elementary intermediate steps. Let D,(t) = #{8 < 'Y: M8 ·lnM8::::; t}. We first 
claim that 

. D,(t) 
hm (t)=1. 

t---+oo C, lnt 
(3) 

Proof of the claim: Assume M 8 ::::; l~ t . Then ln M 8 ::::; ln thence M 8ln M 8 ::::; 
ln tM 8 ::::; t. This discussion shows 

Further, for t large enough, 

C, E RVo yields 

C (2 t ) 
lim ' Tnt = l. 

t---+oo C,C~ t) 

Hence (3) follows. We further have for x > 0 that 

1. C,Cn(~x)) 
1m ---'-:--''-

t---+oo C,C~t) 

Proof of the claim: First note that 

C,(~) < C,(cltx ) 1 
C ( t) - C ( t ) -7t---+oo 

, In t , In t 

since C, E RVo. 
Further, for t large enough, 

c (~) C (1 t) , In(tx) > ' 2 X Tnt 1 
( t) - ( t) -7t---+oo 

C, lnt C, lnt 

since C, E RVo. 

(4) 
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We now claim 

Indeed 

D,(tx) 
D,(t) 

by (3) and (4). 
Next we claim that 

D, E RVo. 

D,(tx) C,(~) C,(dt) 1 
C,Cn(~x)) C,( l~ t) D,(t) --+t--->oo 

lim P,(t) = 1. 
hoo D,(t) 

535 

(5) 

(6) 

Elementary number theory yields the existence of constants E and F such that 
0< E < F and 

Enln(n) 5.Pn 5. Fnln(n) (7) 

for all n > 1. (See, for example, [1] theorem 4.7, for a proof. The full strength of 
the classical prime number theorem is not required here.) The inequality (7) gives 

D,(-j;t) P,(t) D,(-i;t) 
----'-~--'--< -- < ----'---==----'--
D,(t) - D,(t) - D,(t) . 

Thus (6) follows since D, E RVo by (5). Now we can show that 

P, E RVo. 

Indeed we have 

lim P,(tx) = P,(tx) D,(tx) D,(t) --+t--->oo 1 
hoo P,(t) D,(tx) D,(t) P,(t) 

by (5) and (6). Now C{3 = A, E RVo follows by Theorem 1 in Bell [3]. 

(8) 

Finally assume that (3 = N F W 01 + ... + WOk with k > 1. The induction hypothesis 
yields Cwoi E RVo for 1 5. i 5. k. Hence t 1-+ CWoi ( .~ ) E RVo for pnMOl ... pnMOi _ 1 

1 5. i 5. k. We have 

Assertion (2) of Theorem 1.3.7 in Geluk and de Haan [10] yields C{3 E RVo. 

Theorem 4.2. If (3 < EO then w{3 satisfies the multiplicative zero-one law for L<. 

Proof. This follows from Lemma 2 and the proof of theorem 6.29 and theorem 
10.2 in Burris [5]. 

Theorem 4.3. The ordinal EO does not satisfy the multiplicative zero-one law for 
L<. 
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Proof. Again consider ¢ := 3x'Vy(y =I- x ==? ---'y < x 1\ ---,x < y). Then (a, raJ F= ¢ 
iff a is a successor ordinal. We claim that ~co ( {a < co : a F= ¢}) = ~. Indeed 

#{ a < co : (3,8)a = ,8 + 1 & M a :::; n} #{ m : 0 < m :::; ~} 1 
== --+n----+oo -

#{a < co: Ma:::; n} #{m: 0 < m:::; n} 2 

If we use an C< sentence 7/J (with the same limit density) describing that the 
universe is linearly ordered then its limit probability is 0 in contrast to the additive 
case. 
Questions: Is it possible to replace in Theorems 1 and 3 the relations r a by the 
more natural less than relation or other relations? Is it possible to give a complete 
asymptotics for c{3 and C{3 for ,8 :2: WWw? Do general (additive and multiplicative) 
limit laws hold for ordinals above co? The results in [15] indicate a positive answer 
to the first and last question in the additive case. 

5 Appendix 

5.1 An asymptotic bound for Cww 

In this section we show via a Hardy Ramanujan style Tauberian argument from 
[12] the following theorem which seems to be of interest in its own since the additive 
variant Cww of Cww is the partition function. 

Theorem 5.1. 

7rV2 ILf::\ Cww(n) = exp((1 + 0(1)) ~V In(n)). 
V 3In(2) 

For complex z let r WW (z) := 2:::=1 rwW (n)n- Z where rwW (n) = 1 if n = gn(a) for 
some a < WW andrww(n) = o otherwise. Moreover let IIww(z):= 2:::=l7rww(n)n-Z 
where 7rww(n) = 1 if n = gn(wi) for some i < wand 7rww(n) = 0 otherwise. Then 
the fundamental identity (cf. [5] Theorem 8.13) yields 

00 00 

n=l i=2 

Moreover we have IIww(z) = 2::;:opn;;z and Cww(n) = 2::i::;n rww(i). 

Lemma 5.2. 

for real x 1 o. 

1 
IIww(x) rv x .In(2) 

Proof. Since limx~o Jox1n (2) e-vv-xdv = 0 we have by continutiy of the r function 

(9) 
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Fix real numbers A, B with A, B > 0 such that A· l . In(l) < PI < B . l . In(l) for 
l 2:: 1. Then for x > 0 

since 

j oo 1 d -100 1 du _ ~ ( 1 )X 100 1 du 
1 (A2Yyln(2))x y - x 2u(~)xx(ln(2)A)x - x xln(2)A x eu1n(2)ux 

1 In(2)X 100 -v -x d 1 
= -; XX In(2)x Ax In(2) x In(2) e v V rv In(2)x' 

by (9). Similarly we obtain 

00 1 1 100 

IIww(x) 2:: ~(B2Illn(2))X 2:: xx+1in(2)XBXln(2) Xln(2)e- v v-xdv 

1 1 1 
rv -; XX BX In(2) rv In(2)x' 

Lemma 5.3. 

Proof. Let E > O. Then 2:N<n ~ < E for some large N. Prop. 8.22 in [5] yields 

since limxlo nxIIww (nx) = 1. Moreover In(~)x (7[: -E) ~ 2:n:SN ~ nx 1~(2) ~ In(~)x ~2 • 

Ad <1>2: For N < n < ]x we have IIww (nx) ~ ! for some K since for x lOwe 

have nx 1 0 and IIww rv xl~(2)' Hence 0 < <1>2(X) = 2:N:sn:s]x ~IIww(nx) ~ 
'" L < KE L..N<n n2 x - x . 
Ad <1>3 (x): There is a constant L such that for JX ~ nx ~ 1 we have IIww (nx) ~ 
!ix. Lemma 5.2 yields the existence of L with IIww(JX) ~ !ix and the claim 
follows by monotonicity of IIww, This gives for a certain L' independent of x 
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0< <I>3(X) ~ Jx Ltl ~ ~ L1J!) ~ L'~ rv 0 for x! o. 
Ad <I>4: Here nx > 1 and for x small enough 

00 00 

Andreas Weiermann 

IIww (nx) = 2: pn;nx ~ T nx + 2: Tnxl 
l=O l=1 

00 M 
< 2-nx + 2-nx '"' 2-l < _ - ~ - 2nx 

l=1 

Thus <I>4(X) < M L.l<n 2n~n < xM L.l <n 2-nx < 1':~x ~ M' for a suitable 

M'. Putting things t~gether we obtain In(IIww(x)) = In(1)xC11"62 ± 0(1)) + o(x) + 

O(x-!) + 0(1) and the assertion follows. 

Theorem 5.4 (Hardy and Ramanujan [12]). Suppose that Al ::::: 0, An > An-I, 
An -+ 00; A:~' -+ 1, an ::::: 0, A > 0, a > 0, Lan exp( -Ans) is convergent for 
s > 0 and f(s) = Lan exp( -Ans) = exp((l + 0(1))A8- Q In(~)-i3). Then An = 

~ -(3 1 -0: 

al + a2 + ... + an = exp((l + o(l))BA~+a (In(An) 1+a)) where B = A1+" 0: ' +" (1 + 
0:)1+ ,!" when n -+ 00. 

Proof of Theorem 5.1. Put An := In(n), A := 61:~2)' 0: = 1, j3 = 1. Then 
Lemma 5.3 yields r Ww (8) = L~1 'Y2(l) exp( -In( n)8) = exp( (1 +0(1) )AS-l). Thus 
Theorem 5.4 yields Cww(n) = 'Yww(l) + ... + 'Yww(n) = exp((l + o(l))BJln(n)) 

h B-~ were - In(2)y'3. 

Remark: Suitable extensions of the Theorem 5.4 yield bounds on CWn(d) for n ::::: 3 
where wo(d) := d and wn+1(d) := wWn(d). These will be included in a subsequent 
paper. 
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Further Applications of Chebyshev 
Polynomials in the Derivation of Spanning 

Tree Formulas for Circulant Graphs 
Yuan ping Zhang, Mordecai J. Golin 

ABSTRACT: Kirchhoff's Matrix 'Tree Theorem permits the calculation of the 
number of spanning trees in any given graph G through the evaluation of the 
determinant of an associated matrix. Boesch and Prodinger [6} have shown how 
to use Chebyshev polynomials to evaluate the associated determinants and derive 
closed formulas for the number of spanning trees of graphs in certain special classes. 
In this paper we extend this work to describe two further applications of Cheby­
shev polynomials in the evaluation of the numbers of spanning trees of Circulant 
Graphs. 
Note: In this extended abstract some proofs are omitted. 

1 Introduction 

An undirected graph G is a pair (V, E), where V is its vertex set and E its edge 
set. All graphs considered in this paper are finite and undirected with self-loops 
and multiple copies of the same edge permitted. 

o o 

41<------/'-----------\----'), 

5 2 

3 2 4 3 

Figure 1: Two examples of circulant graphs. Note that C~,3 has multiple edges. 

Let 1 ::; 81 < 82 < ... < 8k, the 8j positive integers. The undirected circulant 
graph, C~1,82, .. ·,8k, has n vertices labeled 0, 1, 2, "', n -1, with each vertex 
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and HKUST DAG98/ 99.EG23. 
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i (0::::; i ::::; n - 1) adjacent to 2k vertices i ± 81, i ± 82, . . , , i ± 8k (mod n) . The 
simplest circulant graph is the n vertex cycle C;. Figure 1 illustrates two circulant 
graphs. We note that our definition here specifically forces the graph to be 2k 
regular so, if i ± 8i == i ± 8j (mod n) for some i,j then the graph would have 
repeated edges. See, for example, Ci,3 in Figure 1. 

For graph G, a spanning tree in G is a tree which has the same vertex set as G. 
The number of spanning trees in G denoted by T ( G), is a well studied quantity, 
being interesting both for its own sake and because it has practical implications 
for network reliability, e.g., [7, 8]. 
Let A(G), or simply A be the adjacency matrix of G. If G has vertex set V = 
{ VI , V2 , ... , vn }, the number di of the edges adjacent to vertex Vi is called the 
degree of Vi (1 ::::; i ::::; n). Let B denote the diagonal matrix with {d1 , d2 , ... , dn } 

as diagonal entries. The classic result known as the Matrix Tree Theorem [10] 
states that , the Kirchhoff matrix H defined as H = B - A has all its co-factors 
equal to T( G), providing a method for calculating T( G) for any particular given 
graph. 
The number of spanning trees in graph G also can be calculated from the eigen­
values of the Kirchhoff matrix H. Let 111 ~ 112 ~ .. . ~ Iln( = 0) denote all 
eigenvalues of H. Kel'mans and Chelnokov [9] have shown that the Matrix Tree 
Theorem implies 

1 n-1 

T(G) = - II Ilj· 
n j=l 

(1) 

For special classes of graphs it is possible to show that their Kirchhoff matrices have 
special structures and then bootstrap off of Kel'mans and Chelnokov's formula to 
get formulae for T( G) when G is in those classes. 
In [6] Boesch and Prodinger use this approach to derive closed formulae when G 
comes from the classes of wheels, fans, ladders, Moebius ladders, squares of cycles 
and complete prisms. Their main technique was to show that in these cases (1) 
can be rewritten in terms of Chebyshev polynomials and to then use properties of 
these polynomials to derive the closed formulae. 
The class of circulant graphs have also been well studied. The C;,2 graphs, in 
particular, deserve special mention. The formula T(C;,2) = nF~, Fn the Fibonacci 
numbers, was originally conjectured by Bedrosian [2] and subsequently proven by 
Kleitman and Golden [11). The same formula was also conjectured by Boesch 
and Wang [5) (without the knowledge of [11)). Different proofs can been found 
in [1, 6, 13). The C;,2 graphs are actually the squares of cycles mentioned above 
and the formula for T( C;,2) was also rederived using Chebyshev polynomials by 
Boesch and Prodinger [6) as described above. 
Going further, formulae for T(C;,3) and T(C;,4) are provided in [12). A con­
nection between these formulae was given in [14) by showing that, for any fixed 

where the an satisfy a recurrence relation of the form 

2S k - 1 

'in> 2sk - 1 , an = L bian-i 
i=l 
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with the bi are reals (but not necessarily nonnegative). Recall that the Matrix Tree 
Theorem gives us a method of calculating T( C~1,S2"" ,Sk) = na~ for any arbitrary 
n by building the Kirchhoff matrix and evaluating a determinant. This means 
that we can find the bi by calculating all of the ai for i :S 2Sk and then solving for 
the bi . The asymptotics of T( C~1,S2"" ,Sk) could then be found by solving for the 
minimum modulus root of the characteristic polynomial of the recurrence relation. 
This was done in [14] for all circulant graphs with 8k :S 5. 
In this note we extend the ideas in [6] in two directions. In the first we show how 
to use the Chebyshev polynomial technique to derive a much simpler proof that 
T(Cr,S2,,,,,Sk) = na~ where the an satisfy a linear recurrence relation of order 
2Sk - . This new proof will have the added advantage of providing a method of 
deriving the minimum modulus root of the characteristic polynomial of the recur­
rence relation without having to construct the recurrence relation, thus obviating 
the need to calculate the determinants (it will only require finding the roots of a 
particular polynomial of order 8k - 1). 
In the second we describe how to use the Chebyshev polynomial technique for de­
riving closed formulae for some circulant graphs with non-constant jumps. More 
specifically, the technique will permit the derivation of formulae for circulant 

81 ... Sk ....!!:.... ••• ....!L 

graphs of the form Cn ' , , al' , az where 81, ... ,8k are constant integers, aI, ... , 

az E {2, 3, 4, 6} and Vi :S l, ai In. As examples, we will derive formulae for T( C~;.n), 
T(cj;.n) , T(Ci;.n), T(C~;.n) and T(C~;.2n,3n). 

The rest of the paper is structured as follows. In section 2 we briefly review 
the basic facts we will need. In section 3 we rederive T(C~1,S2"",Sk) = na~ and 
describe how to efficiently calculate its asymptotics. Finally, in section 4, we 
discuss non-constant jumps. 

2 Basic concepts and lemmas 

An n x n matrix C is said to be a circulant matrix [4] if its entries satisfy Cij = 
Cl,j-Hb where the subscripts are reduced modulo n and lie in the set {I, 2" .. ,n}. 
In the other words, i-th row of C is obtained from the first row of C by a cyclic 
shift of i-I steps, and so any circulant matrix is determined by its first row. Let 
W denote the circulant matrix whose first row is (0,1,0, ... ,0), and let C denote a 
general circulant matrix whose first row is (Cl' C2,'" ,cn ). Then a straightforward 
calculation shows that 

n 

C = 2..=CiWi-l. 

i=l 

Since the eigenvalues of Ware 1, c, c 2, ... ,cn - l , where c = e 2;:i , it follows that 
the eigenvalues of C are 

n 

Aj = 2..= Cic(i-l)j, j = 0, 1, ... ,n - l. 
i=l 

(2) 

It's clear that the adjacency matrix ofthe circulant graph C~1,S2"" ,Sk is a circulant 
matrix. The first row (Cl' C2,'" ,cn ) of the adjacency matrix is determined by the 
connection jumps 81,82,'" ,8k. More specifically, an edge (1, i) is in the graph if 
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and only if i == (1 ± Sj) (mod n) for some Sj, 1 ~ j ~ k. (Note that it is possible 
for the Ci > 1. This happens if (1 ± Sj) == (1 ± Sjl) (mod n) for some j i= j'. In this 
case the graph is a multigraph and Ci is the number of different edges connecting 1 
and i. This can only happen when n is small, though.) From the adjacency matrix 
of C~1,82"" ,Sk and the definition of the Kirchhoff matrix it's easy to see that the 
Kirchhoff matrix of C~l ,82,," ,Sk is also a circulant matrix. This can be used to find 
its eigenvalues. 

The starting point of our calculations is actually the following lemma which is a 
direct application of Proposition 3.5 on page 16 of Biggs [4]: 

Lemma 1. The Kirchhoff matrix of the circulant graph C~1,S2"" ,8k has n eigen­
values. They are 0 and, \fj, 1 ~ j ~ n - 1 the values 2k - E;-slj - ... - E;-skJ -

. . 2~i 
E;Sl] - . • . - E;SkJ, where E; = e--;;;- . 

Plugging this into (1) yields the following well known corollary: 

Corollary 1. Set E; = e 2;;:i. Then 

1 n-l (k ( 2' )) =;II L 2_2cosJ~i7f . 
J=l t=l 

An important special case of this occurs when we examine the cycle C~. Clearly 
C~ has exactly n spanning trees. Applying the corollary therefore yields ([6]) the 
nonobvious 

1 n-l ( 2') 1 n-1 . 
n = T(C~) = - II 2 - 2 cos J7f = - II (4sin2 J7f), 

n n n n 
j=l j=l 

(3) 

which will be useful to us later. 

The other main tools we use are various standard properties of Chebyshev polyno­
mials of the second kind. For reference we quickly review them here. The following 
definitions and derivations (with the exception of (11)) follow [6]. 

For positive integer m, the Chebyshev polynomials of the first kind are defined by 

Tm(x) = cos(marccosx). (4) 

The Chebyshev polynomials of the second kind are defined by 

U () - ~5£T ( ) _ sin(marccosx) 
m-1 X - m X - . . 

m dx sm(arccosx) 
(5) 

It is easily verified that 

(6) 
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Solving this recursion by using standard methods yields 

where the identity is true for all complex x (except at x = ±1 where the function 
can be taken as the limit). 
The definition of Um(x) easily yields its zeros and it can therefore be verified that 

m-1 . 
Um - 1(x) = 2m - 1 II (x - cos J7r). 

j=l m 
(8) 

One further notes that 

(9) 

These two results yield another formula for U m (x), 

(10) 

Finally, simple manipulation of the above formula yields the following, which will 
also be very useful to us later: 

X + 2 27rj (f¥-) m-1( ) 
U;'_l -4- = Q x-2cos m ' 

where the identity is true for all complex x. 

3 Recurrence relations for fixed step circulant 
graphs 

(11) 

In this section we assume that 81,82,'" ,8k are fixed positive integers with 1 :S 
81 < 82 < ... < 8k and use the properties of Chebyshev polynomials to reprove 
the main result in [14], i.e, that there exist reals b1 , b2, ... ,b28k-1 such that 

2Sk- 1 

T(C~1,S2,.··,Sk) = na;, where \In> 2Sk -1, an = L bian-i. (12) 
i=l 

We start with a basic lemma on trigonometric polynomials; its proof is quite 
tedious but straightforward so we omit it in this extended abstract: 

Lemma 2. Let k > 0 be any integer. Then 2 - 2 cos( 2kx) can be rewritten in 
the form 4k fk(COS2 x) sin2 x, where fk is a polynomial of order k - 1 with leading 
coefficient 1 that does not have 1 as a root. 

Combining this with Corollary 1 and some manipulation yields 
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Lemma 3. The number of spanning trees T( C~1,82"" ,8k) satisfies 

where f is a polynomial of order Sk - 1 with leading coefficient 1 that does not 
have 1 as a root . 

Now let Xl, X2, "', X8k -1 be the roots of f(x). Then 

8k- 1 

f(x) = (_IYk- 1 IT (Xi - X). 
i=l 

Plugging this into Lemma 3 and using formulae (3) and (10) gives 

n-1 . 

4n - 1 IT . 2 J7f . sm -
j=l n 

8k- 1 

= (_I)(n-1)(8 k -1)n IT U;-l(v'xi)· 
i=l 

Using formula (7) to rewrite U;'_l (yIxi) gives 

T(C~1,82" ,8k) = n[tr 2~ (hi-x, + ~t - (v-x, - ~)n)l 
2 

This actually provides a 'closed formula' for T(C~1,82 , ··· , 8k), albeit, not a partic­
ularly satisfying one. We now continue by, for all i , 1 :::; i :::; Sk - 1, set Yi,O = 
V-xi + vI - Xi and Yi,l = V-Xi - vI - Xi· For (h, (h, ... , 68k -d E {a, 1}8k- 1 

set 

Also set c = TI 8 k- 1 __ 1_ If a is defined so that T(C8 1,82,'" ,8k) = na2 then ,=1 2V1-x i' n n n' 

Since there are at most 28k - 1 different values Ro1 , h ... ,08k-1 this immediately im­
plies (12) and we have proved what we claimed. 
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As noted in [14] one way to find the bi is to simply use the Matrix Tree Theorem 
to calculate the value of T( C~l ,S2 , . . ,8k) for all n :; 2Sk yielding all of the values 
of an and then solve for the bn . Once the bn are known the asymptotics of an 
(and therefore T(C~1 ,S2""Sk)) could be found by standard generating function 
techniques, i.e., by calculating the roots of the characteristic equation of the an. 
This is what was done in [14]. That paper actually proved a stronger result; that 
is, if gCd(Sl' S2,'" ,Sk) = 1, then cp, the smallest modulus root of the generating 
function of the an, is unique and real so an rv ccpn for some c, and T( C~1 , S2'" ,Sk) rv 

nc2cp2n. The asymptotics of T( C~1,S2'" ,Sk) could therefore be found by calculating 
the smallest modulus root of the generating function. If gCd(Sl' S2,'" ,Sk) = 
d -I- 1 it is described in [14] how this case can be reduced down to evaluating 
T(C~1/d,s2/d, .. ,skid). Since gcd(sdd, s2Id,··· ,skid) = 1 we may always restrict 
ourselves to assuming that gCd(Sl' S2 , '" ,Sk) = l. 
The difficulty with this technique is that, in order to derive the generating func­
tion, it was necessary to apply the Matrix Tree theorem 2Sk times, evaluating a 
determinant each time. Since the underlying matrices get quite large this can be 
very calculation intensive. 

Our new proof of (12) immediately yields a much more efficient method of deriv­
ing the asymptotics. Note that the roots of the generating function are exactly 
R 1 . Finding the smallest modulus root is therefore the same as find-

.51,02, ···,c5 S k - 1 

ing R max , the R,h, 82 , ... ,8S k - 1 with maximum modulus since the smallest modulus 
root is real, Rmax is real as well. We can therefore easily find. Rmax by setting 
Yi = max (IYi ,ol , IYi,ll) for all i:; Sk -1 and then noting that IRmaxl = TI:!~lYi' 
This technique yields the asymptotics of T( C~1 , S2 ' " ,Sk) without requiring the eval­
uation of any determinants; all that is needed is the calculation of all of the roots 
of a degree Sk - 1 polynomial. Note that it is not a-priori obvious that Rmax 
is positive but, since we are only interested in na;, and not an, knowing IRmaxl 
suffices. 
As an example we work through the process for T( C~,2,3 ) : 

n - 1 
1 II ( 21rj ~ ~ - 27rj -47[1 - 61tj ) T(c~,2,3) = - 6 - e n - e n - e n - e n - e n - e n 

n 
j = l 

1 nII-1 27rj 47rj 67rj 
- (6-2cos- -2cos- -2cos-) 
n n n n 

j = l 

1 nrr-1 4 7rj 1 2 7rj 1 . 2 7rj 
- 64(cos - - -cos - + -)sm -
n n 4 n 8 n 

j=l 

nrr-1 4 7rj 1 2 7rj 1 
= n 16(cos - - - cos - + -). 

n 4 n 8 
j=l 

The roots of the polynomial x2 - ~x + ~ are 

1 V7. 
Xl = - --z 

8 8 
1 V7. 

and X2 = - + -z. 
8 8 
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Yl,O = ..j-Xl + ~ = ~J -2 + 2V7i + ~J14 + 2V7i, 

Yl,l = ..j-Xl -~ = ~J -2 + 2V7i - ~J14 + 2V7i, 

Y2,O = ..j-X2 + ..j1- X2 = ~J -2 - 2V7i + ~J14 - 2V7i, 

Y2,1 = ..j-X2 - ..j1- X2 = ~J -2 - 2V7i - ~J14 - 2V7i. 

Therefore, T(C~,2 ,3) = na;, an rv c¢n where c = 2vLxl . 2vLx2 = vh- ..:.. 
0.2672612 and ¢ = Yl,O . Y2,O = 116 (J32 + ..j224 + J64V7) ~ 2.102256. These are 
exactly the same values c and ¢ derived in [14] using the longer method. 

4 The number of spanning trees in some non fixed­
jump circulant graphs 

In the previous section we examined the spanning tree number for circulant graphs 
in which the steps, i.e. , the Si, were fixed and the number of nodes, i.e., n, changed. 
In this section we derive formulae for some graphs in which the step sizes can be 
functions of n. Our approach is, as before, to expand T(G) for some circulant 
graph G as a product of trigonometric polynomials and then express it in terms 
of Chebyshev polynomials, in this case, ratios of such polynomials. We will see 
though, that this technique is not totally general and only works for particular 
values of jumps. 

We illustrate the technique via three examples; starting from a easy one, T(Ci;.n), 
then seeing T(cj;.n) , which is more complicated and ending at T(Cl;.n) which 
reveals where the difficulties can lie. 

We start by calculating T( C~;.n). Recall that, according to our definition of circu­
lant graphs, C~;.n is the four-regular graph with 2n vertices 0,1, ... , 2n - 1 such 
that node i has one edge connecting it to (i + 1) (mod 2n) one edge connecting it 
to (i - 1) (mod 2n) and two edges connecting it to (i + n) (mod 2n). We should 
note that this is not the same graph as the Moebius ladder which is a three-regular 
graph on the same vertex set in which node i has one edge connecting it to each 
of (i + 1) (mod 2n), (i - 1) (mod 2n) and (i + n) (mod 2n). The techniques de­
scribed here, though, could be used to rederive closed formulae for the spanning 
tree numbers of Moebius ladders and similar graphs (see [6] for such a derivation). 

Theorem 4. 
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2?Ti 
Proof. Let C:2 = e2n . By Lemma 1, we have 

2n-1 

T(C1,n) = ~ II (4 - c: j - c:- j - c:nj - c:-nj ) 
2n 2n 2 2 2 2 

j=1 

1 2n-1 ( 2 . ) 
= - II 4-2cos 7rJ -2cos(7rj) 

2n 2n 
j=1 

1 2n-1 

= 2n II 
j = 1 
2fj 

( 
2 .) 2n-1 

6 - 2 cos 2:: . II 
J = 1 

21j 

( 27rj ) 2 - 2 cos 2n . 

Noting that if j = 2j' for some integer j' then cos ~ = cos ¥ gives 

( 1,n) 1 2IIn-1 ( 27rj ) nII-1 2 - 2cos~ 
T C2n = - 6 - 2 cos - " 

2n " 2n " 6 - 2 cos ~ 
)=1 )=1 n 

= ~U2 (v'2) . n 2 

2n 2n-1 UL1 (v'2) 

= ~[(v'2 + l)n + (v'2 _1)n]2. 

Where (3), (7) and (11) are used to derive the last two steps. 

We now go to 

Theorem 5. 
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D 

Proof. The proof is similar to the previous one. Let C:3 = e ~:i. By Lemma 1, we 
have 

3n-1 

T(C 1,n) = ~ II (4 - c:j - c:-j - c:nj - c:-nj ) 
3n 3n 3 3 3 3 

j=1 

1 3n-1 ( 27rj 27rj ) 
= - II 4-2cos--2cos-

3n 3n 3 
j=1 

1 3n-1 

= 3n II 
j = 1 
3fj 

( 
2 ") 3n-1 5 - 2 cos 3:: . II 

J = 1 
31j 

( 27rj ) 2 - 2 cos 3n . 
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Note that if j = 3j' for some integer j' then cos 23:: = cos 2";!'. In this case we 
will need the added observation that if 3 t j then cos ~ = -~. This gives 

1 3n-l ( 27fJ·) n-l 2 - 2 cos ~ 
T(Cj~n) = - II 5 - 2cos - II n 

3n j=1 3n j=1 5 - 2 cos ~ 

o 
We next see 

Theorem 6. 

27ii 
Proof. The proof again starts similarly to the previous ones. Let E4 = e""4n. We 
have 

4n-l 

T(C41n,n) -_ 1 II (4 j -j nj -nj ) 4 - E4 - E4 - E4 - E4 
n j=1 

1 4n-l ( 2 . .) - II 4 - 2 cos 7fJ - 2 cos 7fJ 
4n 4n 2 

j=1 

1 4n-l 

4n II 
j=l 
2fj 

( 27fj) 4 - 2 cos 4n 
4n-l 

II 
j=l 

21j 

4-2cos- -2cos-( 27fj 7fj ) 
4n 2' 

where the last derivation follows from the fact that if 2 t j then cos ~ = o. 
Unlike in the previous proofs, though, if 21j it is not true that cos 24:! equals some 
constant, so we will have to derive further. We use the fact that if j = 2j' then 
cos ~ = cos ~ to get 4n 2n 

( l,n) _ 1 4IIn-l ( 27fj ) 2IIn-l 4 - 2 cos ~ - 2 cos( 7fj) 
T C4n - - 4-2cos- 2 . . 

4n j=1 4n j=1 4 - 2 cos 2:: 
At this point we can evaluate both the leftmost product and the denominator of the 
rightmost product in terms of Chebyshev polynomials. To evaluate the numerator 
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of the rightmost product we will need to split it into two cases depending upon 
whether j is odd or even, and apply the same type of procedure again. This yields 

1 n 1 Uin-1 (v1) 2rrn-1 ( 27rj ) nrr-1 2 - 2 cos ~ 
T(C4;.) = --. 6 - 2cos- n. 

4n u.2 (~). 2n . 6 - 2 cos ~ 2n-1 V"2 )=1 )=1 n 

1 Uin-1 (v1) Uin-1 (v'2) 2 
----~~~. ·n 

4n Uin-1 ( v1) U;_l (v'2) 

~ [( v1 + ~r+( v1- ~r1' [( h+lf+(v'2-lrr 
o 

The proofs of Theorem 4, 5 and 6 depend on certain symmetry properties of the 
cosine functions, e.g., if 3 f j then cos ~ = - ~ that permitted us to write products 
out as ratios that were in the proper form to express as Chebyshev polynomials. 
Unfortunately, this can not always be done. For example, we do not seem to be 
able to use this technique to derive a formula for T(C~;.n). The most that we are 
currently able to push this technique is to derive closed formulae for the number 

81 ... Sk ....!!... ••• ....!!.... 
of spanning trees (as a function of n) for all circulant graphs of Cn ' , , al' , al 

where 81,'" , 8k are constant integers and all a1,'" , al are in the set {2, 3, 4, 6} 
with auln for any u, 1 :::; u :::; l. (The proof of this fact is omitted in this extended 
abstract). 
We conclude with a few more applications (proofs omitted): 

Theorem 7. 

T(Ci;.") ~ ~ [( v'52+ r + (v'52-
1 r1' [( h+ If + (h -Iff 

[ ( v'52+ 1 ) "+ ( v'52- 1 ) T [ ( V7 ; J3) '"+ ( V7 ; J3) '"+ J r 
Theorem 8. 

T(ci::n"n) ~ i [( ~+ v:r + (~ - v:r -11' 
[ ( V7; J3) ,n+ ( V7; J3) ,n+ I]' [( h + 1)" + (h _ 1) n] ~ 

A major open problem still remaining is to devise a technique that would work to 
81 .,. Sk ....!!... ••• ...!l.. 

derive closed formulae for T( Cn ' , 'al' 'a l ) where the ai could be arbitrary. 
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