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Foreword

These are the Proceedings of the International Colloquium of Mathematics
and Computer Science held at the University of Versailles-St-Quentin, September
18-20, 2002. This colloquium is the second one in a now regularly established series
following the first venue in September 2000 in Versailles. The present issue is cen-
tered around Combinatorics, Random Graphs and Networks, Algorithms Analysis
and Trees, Branching Processes and Trees, Applied Random Combinatorics.

The contributions have been carefully reviewed for their scientific quality and
originality by the Scientific Committee chaired by P. Flajolet and composed by P.
Chassaing, B. Chauvin , M. Drmota, J. Fill, P. Flajolet, A. Frieze, D. Gardy, S.
Janson, C. Krattenthaler, G. Louchard, A. Mokkadem, R. Pemantle, P. Robert,
J. Spencer , B. Ycart. We do thank them for their impressive work.

We also thank the invited speakers: D. Aldous, L. Devroye, S. Janson, M.
Krivelevich, B. Pittel, H. Prodinger, M. Steele, the authors of submitted papers
and the participants for their contribution to the success of the conference.

A. Baffert and C. Ducoin deserve special thanks for their kind and efficient
contribution to the material preparation of the colloquium.

Finally, we express our acknowledgements to the laboratory of Mathemat-
ics (LAMA), the laboratory of Computer Science (PRISM), the University of
Versailles-St-Quentin, the Centre National de la Recherche Scientifique (CNRS)
and the Institut National de Recherche en Informatique et Automatique (INRIA)
for providing generous financial and material support.

The Organizing Committee
B. Chauvin

S. Corteel
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Preface

These colloquium proceedings address problems at the interface between mathe-
matics and computer science, with special emphasis on discrete probabilistic mod-
els and their relation to algorithms. Combinatorial and probabilistic properties of
random graphs and networks, random trees and branching processes, as well as
random walks are central. Applications are to be found in analysis of algorithms
and data structures, the major application field, but also in statistical theory, in-
formation theory, and mathematical logic. This colloquium is the second one in
a now regularly established series, following the first venue in September 2000 in
Versailles. The book features a collection of original refereed contributions supple-
mented by survey articles written by the invited speakers, L. Devroye, S. Janson,
M. Krivelevich, B. Pittel, H. Prodinger, and M.Steele. As the field is burgeoning
with applications at the frontier of several scientific disciplines, authors have been
asked to provide a perspective on the various subfields involved.

Combinatorics. The starting point of many studies of random discrete models
is combinatorics, which often provides us with exact representations in terms of
counting generating functions. Arqués and Micheli develop the combinatorial enu-
merative theory of maps with special attention to colouring problems. Banderier
presents a synthetic theory of walks with returns over the half integer line, which is
motivated by fast random generation of combinatorial structures. Bousquet-Mélou
shows us an explicitly solvable model of walks in the quarter-plane that originates
with basic queueing theory questions and gives rise to elegant combinatorial devel-
opments. Brlek, Duchi, Pergola and Pinzani enrich the theory of “ECO-systems”
now recognized to provide a unifying framework for many problems of combinato-
rial random generation. Krikun and Malyshev finely characterize the boundary of
a random triangulation of the disk by means of combinatorial-analytic methods.
Labelle, Lamathe, and Leroux successfully apply the theory of species to tree-like
arrangements of cells and derive an original combination of explicit and asymptotic
counting results.

Random Graphs and Networks. Following Erd6s and Rényi’s pioneering work
around 1960, random graph models have been the subject of intense study for four
decades. Baert, Ravelomanana, and Thimonier base a novel analysis of triangle
free graphs on breadth-first search and its associated stochastic properties in the
line of Spencer’s approach. Chassaing and Schaeffer solve a long-standing open
questions: What is the diameter of a random map? Their result is achieved by
an examplary combination of bijective and probabilistic methods. Coppersmith,
Gamarnik, and Sviridenko characterize the diameter of a random graph with long
range interactions—such problems are of interest for percolation models but also
in relation to the geometry of the web. Devroye, McDiarmid, and Reed analyse the
emergence of giant components in two graph models that are similarly motivated
by our desire to understand the “graph of the web”. Krivelevich’s invited lecture
surveys random graph colouring: the problem is NP-complete in the worst-case,
but the perspective changes dramatically when one switches from the pessimistic
worst-case scenario to the more realistic average-case analysis. Le Bars demon-
strates the usefulness of probabilistic inequalities in the analysis of some threshold
phenomena of logic. Palaysi explores combinatorial and algorithmic aspects of

xi



wavelength assignment in certain graphs representing interconnection networks.
Last but not least, Steele’s invited lecture reviews and revisits the celebrated prob-
lem of minimal spanning trees in graphs with random edge weights; his text gives
for the first time surprisingly explicit formulae out of which quantitative estimates
can be derived.

Analysis of Algorithms and Trees. Trees are perhaps the most important structure
of computer science. In particular, they appear as data structures in an amazing
variety of domains, like textual data processing, data compression, fast retrieval of
information, symbolic computation, and so on. Bourdon and Vallée exhibit versa-
tile criteria informing us on conditions under which a complex pattern is or isn’t
likely to occur; their analysis is based on an original interplay of combinatorial and
dynamical systems methods. The invited lecture by Devroye and Neininger devel-
ops an original analysis of a new structure, the suffix search tree that is a hybrid
of two of the most important data structures, the suffix trie and the binary search
tree. In particular, their study contributes significantly to our understanding of
basic data structures when these are subjected to correlated data. Gittenberger
proposes an approach via generating functions to the analysis of strata of nodes
in random trees, which has applications to breadth-first search traversal. Hwang
and Steyaert offer a definitive analytic treatment of the heap structure whose
importance devolves from its widespread use in priority queue management and
near-optimal sorting. Jacquet and Szpankowski are able to characterize the redun-
dancy of Markov sources of order r by an ingenious combination of combinatorial
and analytic methods. Quickfind, which is one of the most spectacular algorithms
known for basic order statistics, is thoroughly analysed by Martinez, Panario,
and Viola: their contribution even results in an eminently practical discussion of
cut-off points for optimal performance. Nguyen-The’s paper show that the study
of random combinatorial trees is intimately related to the performance of basic
algorithms of symbolic manipulation, in particular the formal simplification of ex-
pressions. The invited paper of Prodinger offers a unified analytic perspective on
digit statistics in a wide variety of number representation systems. Beyond its
pure number-theoretic aspects, this study finds numerous applications in parsing
and compiling (register allocation), sorting networks, the design of adder circuits,
mergesort, interpolation search, and even branching fractals.

Branching Processes and Trees. Branching processes constitute the probabilistic
counterpart of the combinatorial theory of trees. Fayolle and Krikun provide er-
godicity conditions for a model of random trees that is akin to binary search trees,
but where evolution involves random insertions and deletions. The invited lec-
ture of Janson tackles problems motivated by exhaustive search, along the lines of
research by Ruskey and Knuth (see the forthcoming volume, Combinatorial Algo-
rithms). In particular, Janson proves the existence of a limit distribution for the
number of ideals in random trees and does so by a clever adaptation of contrac-
tion methods, using the size-biased branching process. Menshikov and Petritis
report on recent results concerning random walks in a random environment on
trees and their relationship to multiplicative chaos. Pittel’s invited lecture revisits
the loop erased random walk: this is a biased model of self-avoidance that is cur-
rently witnessing a number of spectacular developments. This article derives very
precise estimates of limiting distributions that are also of interest for generating
random spanning trees of the complete graph. Rosler, Topchii, and Vatutin finely
characterize convergence rates of weighted branching processes and detect there

xii



the occurrence of stable laws. Vatutin and Dyakonova develop informative limit
theorems for a critical branching process in a random environment.

Applied random combinatorics. Random combinatorics interacts with many other
areas of science. Huillet and Porzo re-examine a version of the parking problem
that is known to have numerous applications in computer science (hashing algo-
rithms, resource allocation), combinatorial optimization, as well as statistical me-
chanics and adsorption models. Mossel and O’Donnell examine the sensitivity to
input noise of Boolean functions; their results have implications in learning theory,
complexity theory, neural networks, and even (the authors argue) the American
election system. Teytaud develops a set of new results in learning theory basing
himself on ergodicity properties. Trouvé and Yu establish upper bounds on the
number of questions a user asks in the case of hierarchically structured databases.
Weiermann characterizes 0-1 laws in ordinal theory via analytic combinatorics;
his paper also serves as a valuable introduction to random combinatorics in its
relation to finite model theory and logic. The last contribution to this book, by
Zhang and Golin, develops explicit formule for the number of spanning trees in
structured graphs having a highly regular shape.

Altogether papers assembled in this volume offer snapshots of current research. At
the same time, they illustrate the numerous ramifications of the theory of random
discrete structures throughout mathematics and computer science. Many of them,
in particular invited lectures, include carefully crafted surveys of their field. We
thus hope that the book may serve both as a reference text and as a smooth
introduction to many fascinating aspects of this melting pot of continuous and
discrete mathematics.

Enjoy!
Brigitte Chauvin,
Philippe Flajolet,

Daniéle Gardy,
A. Mokkadem
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n-Colored Maps and Multilabel n-Colored
Trees

Didier Arqués, Anne Micheli

ABSTRACT: New topological operations are introduced in order to recover in
another way the generalized Dyck equation for the generating function of n-colored
maps presented in a former paper, by decomposing maps topologically and bijec-
tively. Applying repeatedly the operations which allowed to reveal the generalized
Dyck equation to the successive transformed maps, a one-to-one correspondence
is obtained between n-colored maps on any surface and n-colored trees whose ver-
tices can be labelled with several labels. This bijection provides us with a coding
of these maps.

1 Introduction

The enumerative study of maps starts in 1962 with W.T. Tutte [15, 16], who
enumerates the number of rooted planar maps with n edges. Maps can also be
described as combinatorials objects [12]. In 1975, R. Cori [7] studies planar maps
in this perspective and extends these results with A. Machi [8] to orientable maps.
In particular, R. Cori and B. Vauquelin determine a bijection between planar maps
and well labelled trees [9], which leads to a code of these maps. These results were
extended to maps of genus g and well labelled g-trees [13] and a code for maps
of genus g by words product of a shuffle of Dyck words with constraints and of a
sequence of integers was then obtained. Many studies can be found on maps of a
strictly positive genus, orientable or not, as for example [1, 6, 3].

The study of rooted maps independently of their genus begins with T.R.S. Walsh
and A. Lehman [17]. They give a recursive relation on the number of rooted maps
with respect to the number of edges, which does not lead to an explicit enumer-
ation formula of these maps. In 1990, D.M. Jackson and T.I. Visentin [11] use
an algebraic approach and obtain a closed formula for the generating functions of
orientable rooted maps with respcet to the number of edges and vertices.

More recently, D. Arqués and J.F. Béraud [2] determine a functional equation
satisfied by the generating functions of rooted maps with respect to the num-
ber of edges and vertices and expresse the solution in a continued fraction form.
This continued fraction reveals an interesting bijection, since it also enumerates
connected fixed-point free involutions [14].

Topological operations applied to a map such as the removal or the addition of an
edge, the fusion of two vertices, modify sometimes the genus of the map. These
operations can not therefore be carried out in a systematic way when one works
with fixed genus. However, these elementary operations make it possible to find
new functional equations on maps studied independently of genus and to establish
bijections between families of maps.

In Section 2, we recall general definitions on maps and n-colored maps. New
topological operations are introduced in Section 3, in order to establish in Section
4, a bijection between n-colored maps of arbitrary genus, and n-colored maps
of arbitrary genus with a root bridge, in which a subset of their vertices has

B. Chauvin et al. (eds.), Mathematics and Computer Science 11
© Springer Basel AG 2002



18 Didier Arqués, Anne Micheli

been selected. This bijection provides us with a new proof of the generalized
Dyck equation on orientable n-colored rooted maps obtained formerly [4, 5]. This
equation was obtained by an analytic resolution of a differential equation satisfied
by the generating function of n-colored rooted maps and led to a solution in a multi-
continued fraction form. We here present a new proof of this equation, without
any computation over the generating function, by transcription of the presented
bijection. P. Flajolet [10] moreover showed that many continued fractions having
integer coefficients can be explained in a purely combinatorial way, and here is an
example of his assertion on a multi-continued fraction with integer coefficients.
In Section 5, we give a bijection between orientable n-colored rooted maps and a,
family of n-colored trees whose vertices can be labelled by several labels according
to certain rules, which is deduced from the one presented in Section 4 by successive
applications of this bijection. The bijection enables us to determine a new language
coding n-colored maps.

2 Definitions

Let us recall some definitions used afterwards (for further details, see for example
[7, 8]).

A topological map C in an orientable surface ¥ of R? is a partition of ¥ in three
finite sets of cells: the set of vertices of C, which is a finite set of dots; the set
of edges of C', which is a finite set of open Jordan arcs, pairwise disjoint, whose
extremities are vertices ; the set of faces of C. Each face is simply connected and
its border is the union of vertices and edges.

The genus of the map C' is the genus of £. A cell is incident to another cell if one
is contained in the boundary of the other. A bridge is an edge incident on both
sides to the same face. We call half-edge an oriented edge of the map.

Let B be the set of half-edges of the map. With each half-edge, one can associate
its initial vertez, its final vertex and its underlying edge. o (resp. o) is the
permutation in B associating to each half-edge b its opposite half-edge (resp. the
first half-edge met when turning round the initial vertex of b in the positive way
of the surface). The cycles of « (resp. o) represent the edges (resp. the vertices)
of the map. The cycles of ¢ = ¢ o a are the oriented borders of the faces of the
map. (B,o,a) is the combinatorial definition of the topological orientable map
associated C.

A map C = (B, 0, ) is rooted if a half-edge b is distinguished. The half-edge b is
called the root half-edge of C, and its initial vertex is the root vertez. C is then

defined as the triplet (o,a,b). Face 6*(b) is called the exterior face of C. By
convention, the one vertex map (one vertex, no edge) is said to be rooted.

Two orientable maps of the same genus are isomorphic if there is a homeomorphism
of the surfaces, preserving its orientation, mapping vertices, edges and faces of one
map onto vertices, edges and faces respectively of the other map. An isomorphism
class of orientable rooted maps will simply be called a rooted map.

Definition 2.1. n-colored map An orientable rooted n-colored map (n > 1) is a
rooted map, where a maximum of n colors are used to color the vertices and such
that each edge is incident to two vertices of different colors.

The property “n-colored” is compatible with the equivalence relation whose classes
are the rooted maps.
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Let M be the set of orientable rooted maps, M., ; the set of orientable rooted n-
colored maps, whose root vertex is of color ¢, Z,, ; the subset of M, ; of maps with
a root bridge, and for any map I € I, ;, Right(I) (resp. Left(I)) the maximal
submap of I incident to the root vertex (resp. the final vertex of b) such that the

root half-edge b (resp. a(b)) of I does not belong to Right(I) (resp. Left(I)) (see
Figure 4.1). Let {p;} be the one vertex map of M, ;.

3 Preliminaries

In Section 3.1, we describe two algorithms of half-edges and vertices numbering of
a map. Numbering induces an order relation on half-edges and vertices that allow
us to define in Section 3.2, new topological operations on maps. These operations
will be useful to prove Theorem 4.1. These two operations are reciprocal and
they are interesting since the derivation operation allows to gather in one vertex
a subset of vertices of a same color of a map, and the integration operation allows
to get back this subset of vertices.

3.1 Order relations in a rooted map

Order relations on half-edges and vertices of a map are introduced in this Section.
We show a map traversal algorithm. Half-edges are numbered beginning with the
root half-edge and in the order of their appearance in the oriented circuit given by
the algorithm (see map C in Figure 3.1). Half-edges are then naturally ordered
by their number.

The root half-edge b gets number 0, then the other half-edges of its face, 5*(b),
are numbered. Afterwards while there still are numberless half-edges:

e Among numbered half-edges, the smallest half-edge b is chosen with a num-
berless opposite half-edge.

o Along the face 6*(a(b)), beginning with a(b), half-edges are numbered.

Definition 3.1. Order relation on vertices. Let C be a rooted map and sy, s9
two vertices of C. The vertex s; is smaller than so if the smallest half-edge of s;
is smaller than the smallest half-edge of ss.

Vertices are numbered by this order relation. Number 1 is affected to the root
vertex and other vertices are numbered in an ascending order (see numbers in
bold on map C of Figure 3.1).

A map is ordered when its half-edges and vertices are numbered by the algorithms
given above.

Definition 3.2. Path and subpath of a map. The path of an ordered map
C corresponds to the ascending ordered sequence of the half-edges of C, starting
from its root half-edge. A subpath of C is defined as an increasing subsequence of
ordered and successive half-edges of C.

Property 3.3. On the smallest half-edges of a face and of a vertex of
an ordered map. The smallest half-edge bs of a vertex s different from the root

vertez, of an ordered map C = (o,a,b), is not the smallest half-edge of its face
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G*(bs). The smallest half-edge by of a face f different from the exterior face, of
an ordered map C, is not the smallest half-edge of its initial vertex.

Proof : If bs belongs to the exterior face of C, as s is different from the root vertex,
we have b < by and bs; cannot be the smallest half-edge of its face.

If b5 does not belong to the exterior face of C, half-edges of face *(a(bs)) have
been numbered before b, (see the algorithm above). Thus, a(bs) is smaller than
bs. Then 7(a(bs)) = o(bs), which belongs to vertex s, is smaller than b, ¢

3.2 Topological and bijective operations on maps

In 3.2.1 we define the derivation operation that gather a subset of vertices of a map
and the root vertex of a second map, in one vertex. These vertices can be recovered
by applying the inverse operation, called integration operation and defined in 3.2.2,
which uses the order properties on a map to get back all the gathered vertices.
These operations are the main tools used in the proof of Theorem 4.1.

Let us denote by My the subset of maps of M which have at least two distinct
vertices.

3.2.1 Derivation of maps

In this section we define a derived map of a pair of maps (C, R) of M2 x M with
respect to certain vertices of C. To derive a pair of maps with respect to vertices
81,-...,5m of C means to collect these vertices in one vertex while respecting an
order and afterwards to glue this vertex to the root vertex of R, as described in
definition below.

Figure 3.1. Derived map with respect to vertices 3 and 5 of a pair of maps.
25 b=0l

Cl

{38},R s=3
reorderedb _
—_— VS T
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Definition 3.4. Derived map. Let C = (0, q, B) be a map of M3, with root
vertex 5¢ and R = (og, ) be a map of M, with root vertex 3p and if R # {p},
let (bgn’l,bgR’z,...,bgR’lgR) be the half-edges of 5z and b, 1 be the root half-
edge of R. Let ¥ = {s1,...,Sm} be a set of m distinct vertices of C such that
50 < 81 < 83 <...< 8. Forall i in [I,m], let (bs; 1,---,bs,1, ) = 0*(bs;,1), be
the half-edges of initial vertex s;, in which bs, ; is the smallest half-edge of s;.
The derived map C'y p = (o', b) of (C,.#, R) is then the map obtained from C
and R after the gathering in a unique vertex s, of the vertices of . | J{3r} in the
following way (see Figure 3.1):

s = (bsl,la ses 7bs1,lsl ) bsz,lv sy b32,l52 yee. 7?81,1,17 sy bsm,lsm ) b§n,17 sy b§R,l§R) =

M M sm in
0'*(bs,,1)- In terms of permutation, it means: ¢’ = TigTim ... T120 = Yo with

T1s = (bsy,10s,,1); Tir = (bs;,1055,1) and v = (bs, 1...bs,, 1055,1)-

Property 3.5. Orders of C', p

1. In the ordered map C'y g, if R # {p}, bsx,1 is the smallest half-edge among
the half-edges of R (see Figure 3.1 in which bs, 1 =15 and b5 15, = bsp2 =
17).

2. The subpaths from b to (b, 1,,) are identical in C and C'y  (see Figure
3.1, afbs,1,,) =1 in C and in Cly 5 p)-

Proof :

1. By construction, R is recovered if in C’, p, the subset of half-edges belong-
ing also to R, i.e. {bsp,1,---,b5p,15, }, is unglued from vertex s. Thus in the
traversal of C, g, starting from its root half-edge, b, to reach any half-edge of

R, one has to pass through s. It implies that there exists ¢, 1 <14 <3, such
that bz ; is the smallest half-edge of the half-edges of Rin C'y, p. If 5, > 1,

let us prove that bs,, 1 is the smallest half-edge of the half-edges of Rin C’;, .
bsp.,: cannot be the smallest half-edge of its face, 0" (bsy.:), otherwise a(bsy, ;),
which belongs to R and which has been previously numbered to the face
0" (bsp.i), is smaller than bz, ;.

Ifi>1, bsp,i = O'I(bgﬂ,i_l) = F(a(bgmi_l)), so that Oé(bgﬂ,i_l), which be-
longs to R, is smaller than b;, ; (as b, ; is not the smallest half-edge of its
face), which contradicts definition of b3, ;. Thusi =1.

2. InC, 51 <s2 <...< sy implies that by, 1 < bsy 1 < ... <bs, 1.
Furthermore forall ¢ in [1,m], 5(a(bs, 1,,)) = bs,,1 and bs, 1 is not the smallest

half-edge of its face (see Property 3.3), so that a(bs, ;, ) precedes bs, 1 in the
ordered map C. '

One then has in C, b < a(bs,1,,) < bsy1 < albs,,) < boy1 < ... <
O!(bsm’lsm) < bsm,l-

Thus in C, the subpath from b to a(bs, 1,,) does not go through any half-
edge a(bsi,lsi).

If one proves that in C', p, the subpath from b to a(bs, ., ) does not go

s1
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through a(bsy,1;,, ), then one will conclude from what precedes that in C%, 5,
the subpath from b to a(b,, ;, ) does not go through any of the half-edge

a(bs,,i,,)- It means that the subpath from b to a(bs, 1,,) in C'y p is un-
bs;p1 ifa=a(bs,,) V1<i<m
bgRyl ifa = a(bsmylsm)
changed as 0’(a) = bs,1  ifa=a(bssis,) )
g(a) ifaeC,a# bsit,, V1<i<m
or(a) ifa€R,a#bssus,
Let us then prove that the subpath of C, p from b to a(bs, i,,) does not go
through the half-edge a(bsp i ., )-
Since o’ (a(bs,, 1,,.)) = bsg,1 and bs, 1 is not the smallest half-edge of its face
(see item 1 of this proof), a(bs,, 1,,.) precedes bz, 1 in the path of C, p.
Furthermore, from Property 3.5.1, bs,,1 < a(bsp,i;,) as a(bspi;,) € R
Thus in C% g, a(bs, 1,,) < A(bsais,) ©

s1 3R

The following technical lemma gives us the way to recover vertices $1,. .., 8m,Srg,
which compose vertex s, as will be shown in Lemma 3.10.
Notations of Definition 3.4 are used here.

b5271 me >1
Lemma 3.6. In C' g, 0'(bs, 1, ) = { bspa Y R#{p}andm=1 s the
7 bs,1 fR={p}andm=1
smallest half-edge among half-edges of verter s.

Proof :

1. If R = {p} and m = 1 then C = C', p, s = 51 and thus, 0'(bs, 1, ) = bs, 1 is
the smallest half-edge among the half-edges of s.

2. Let us assume that R # {p} or m # 1. Let b be the smallest half-edge of
face *(bs, 1) in C.

(a) In C, b, 1 is the smallest half-edge of vertex s;. From Property 3.3,
as s1 # 3¢, bs,,1 is not the smallest half-edge of its face. Thus, there
exists j > 0 such that 57 (b) = by, ;.

(b) Let us prove at last Lemma 3.6, that is: 0’(bs, 1, ) is the smallest half-
edge of s in C), p (see Figure 3.1, 0/(bs, 1,,) = bs in C£375}*R)'

From Property 3.5.2, one knows that the subpath from b to a(bs, 1, ) in
C'y p is identical to the one in C. Thus a(bs, 1, ) = 37/~ (b) = ' Hb).
Furthermore, in C, the subpath from b to a(bs, 1, ) does not go through
5 as bs, 1 is the smallest half-edge of the half-edges of s in C' and

a(bs, i,, ) is smaller than bs, 1 in C (see the proof of Property 3.5.2). It
is the same in C'y p.

Thus o' (bs, 1,, ) = 0’ (a(bs, 1,,)) is the smallest half-edge of s in Cly po

bs, 1 is the smallest half-edge of . in C. Its predecessor in the path of C, is the
half-edge a(bs, 1, ) as bs,1 is not the smallest half-edge of its face (see Property
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3.3). In map C'; g, built from C and R by gluing together vertices of C and the
root vertex of R in one vertex s, the successor of a(bs, i, ) becomes by, 1, which
then is the smallest half-edge of s in C"y, p reordered. If b,, 1 has been marked,
one gets back thus vertex s; which is detached from s, then recursively vertices
$2,...,8m. Thus the pair of initial maps can be recovered from its derived map.
A formal definition of this inverse operation, which will be called integration, is
given in the next Section.

3.2.2 Integration of a map

A topological operation of opening of a vertex into two vertices is introduced in
order to define the integration of a map, which consists in the splitting of a vertex
into several vertices. It will then be seen that to recover a pair of maps (C, R) and
the subset of vertices of C if its derived map is known, one has to integrate this
last map.

Definition 3.7. Topological operation of opening of a map with respect
to a half-edge. Let C' = (0,0, b) be a map and b a half-edge of C. Let bs be
the smallest half-edge of a vertex s = ¢*(b). The opening of C with respect to b
consists in the splitting of the vertex s into two vertices s; and s2 in the following
way:

s=(b,...,0  (bs),bs,...,0 (D)) = 51 = (b,...,071(bs))
and sy = (bs,...,071(b)).
It means that the following permutation &, is applied to the half-edges of C:

Gy = 7o with 7 = (bby).
The result of the opening of C' with respect to b is a map or a pair of maps:

(i) If by # b and if the group generated by (65, b) acts transitively on the set
of half-edges of C (i.e. (63, ,b) generates a map and not two disconnected
maps), then a new map Cj, = (63, I~)) is defined.

(ii) Otherwise a pair of maps (6’\1,, D), Cy = (63, ,0), D = (G, a, bs), is obtained,
D being the map {p} if bs = b.

Remark 3.8. If s # §, a, € Mas.

Figure 3.2. Integration of map CE?,,S},R reordered of Figure 3.1 with respect to
the half-edge b = 13: a pair of maps (a,,D) of Mo x M is obtained.

2 b =01 b is now equal to @ 2 b=01

bs of Figure 3.1

32 4
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Definition 3.9. Integration of a map. Let C = (0,a,b) be a map of Ms, of
root vertex §. Let s # § be a vertex of C and b € s. Let . = {.

It will be said that a map C is integrated with respect to a half-edge b, when the
operation of the opening of C is recursively applied until case (ii) of Definition 3.7
is reached, that is:

e Let b, be the smallest half-edge of ¢*(b). C is opened with respect to b (see
Definition 3.7).

e If this operation gives a map Ch (see Figure 3.2, drawing ), the vertex
obtained after the opening, incident to b (the other obtained vertex is incident

to bs), is added to . and the opening operation starts again with C « 6’\;,
and b — b,.

e Otherwise, a pair of maps of M3 x M, (6’;, D) is obtained (see Figure 3.2,
drawing ), and also a set of vertices of Cp, . with the added vertex of Cy,
which was split from the root vertex of D (vertex of C, to which b belongs).

Lemma 3.10. Let C', p, be the derived map of a pair of maps (C, R) of Max M
with respect to a set of vertices ¥ of C. Let us denote by b (= bs, 1 of Definition
3.4) the smallest half-edge of ¥ in C. Integration of C”y’ R With respect to b gives

(C,.%,R).

Proof : With notations of Definitions 3.4 and 3.9, the map C’, p = (o', a,b) is

integrated with respect to the half-edge b,, 1: b = bs,,1 and by = b, 1 (from Lemma
3.6). The opening operation of vertex s unglues vertex s; from s, and gives the

map (C' gy = (0, b):

SZ(bsl,l ""’bslylsl’ bsz,l ,...,b52’152,...,bst,...,bsmvlSm,bngl,...,bgR’lsR)
b bs
Two vertices are obtained, a vertex s; = (bshl,...,bsl,lﬂ) and a vertex s =
Lo ’
(b3271,. "absz,lsza" .y bs"“l, . ..,bsm’lSm,bngl,.. "bgn,ls‘R)' One has: o b — T120 .

Thus, (03 = 0%y, ,b) = C’isz smp,r a0d F = {s1}. One successively ob-
tains maps Cisl_ smhR = (0; = Ti_liai_l,a,l;) for 7;_1; = (bs,_,,1bs,.1), and
& = {s1,...,8i—1}, with 3 < i < m. Applying for the last time to C’ism} g the
, bBR,l, ey béa,léR)’ two
disconnected maps, C = (0,a,b) and R = (0,,bs, 1), are recovered and also
& = {s1,...,5m}. One has: 0 = TpRmTmm—1...T120" = 60’ with § = v~ (see
Definition 3.4) o

topological operation of opening of s = (bs,, 1,-..,bs,, 1

sm

4 Generalized Dyck equation on n-colored maps

The well-known Dyck equation on trees, is based on a one-to-one correspondence
between rooted planar trees A, without the one vertex tree, and A%. In Section
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4.1, an equation generalizing the Dyck equation to n-colored rooted maps of arbi-
trary genus, is given. This equation is equivalent to an equation on sets which is
determined. A proof of the equation on sets is given in 4.2. Topological operations
introduced in Section 3.2 will be used for this proof.

4.1 Generalized Dyck equations
The equation on sets is given as a bijection between the set of n-colored rooted

n
maps of arbitrary genus, M,, ;, and the set of pairs of maps of U My i X My i,
J=1,j#1

where in one of these maps a subset (possibly empty) of its vertices of color i is
selected. Equation (1) is then a translation with generating functions of this
bijection.

For any map M of M,, ;, let us denote by V; pr the set of vertices of color i of M
and P(V; ) the set of all subsets of V; as.

Theorem 4.1. M,,; < {p;} U U MxPWVim)| x Mp,

j=1j#i | MEMn

The proof of this theorem is given in Section 4.2.

Let I,, be the set {1,...,n}. Let M, ; (resp. M;), i € I,, be the generating
function of maps of M, ;, enumerated by vertices (resp. vertices of color j € I,,)
and half-edges whose initial vertex is of color j € Z,,. Let ¢;, i € T,, be the
variable whose exponent represents the number of half-edges with initial vertex of
color i. Let y be the variable whose exponent represents the number of vertices
of the map. Henceforth we will write M, ; for M, ;(y,c1,...,c,) and M;(u) for
Mi(u; Cly...,Cpn) With u = (u]‘)lsjgn.

Corollary 4.2. Generalized Dyck equation:

n
Mps=y+ciMu; Y ¢M;j(w) withv=(v;)i1<j<n = ¥ +8ij)1<j<n- (1)
=Ly

4.2 Proof of Theorem 4.1

A bijection between maps of M,, ;, different from the one vertex map and P, ; x
n
My, with P, ; = U U M x P(V; m)|, is described, which means
j=1,j#i | MEM,, ;
between maps of M, ; and maps of Z,, ; in which for each map I of 7, ;, a set
& of vertices of color i of Left(I), has been selected. As a matter of fact Z,, ;
n
is in one-to-one correspondence with U M, ; X My, i, as to each map I of
j=1,5#i
I, a pair of maps of M,, ; x M,, ;, (Left(I), Right(I}), can be associated, and
j # 1 as a half-edge of a n-colored map is incident to two vertices of distinct colors.
Furthermore the set of pairs (Left(I),.#;) is the set P, ;.
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Lemma 4.3. Bijection of theorem 4.1. There is a one-to-one correspondence
between M, ; and the set of pairs (I,%), in which I is a map of I,,; and & a
set of vertices of color i of Left(I), possibly empty.

Proof : Integration of a map with respect to a half-edge b of initial vertex of color
i allows to recover a pair of maps as well as a set of vertices of color i of one of the
obtained maps. Thus when a derived map I’ is obtained, to have the possibility
of going back, one has to memorize the half-edge b. To do this, if the root vertex
of I’ is only incident to the root half-edge and is of color i, then it is sufficient to
glue the root half-edge just before b in order to obtain a map M of M, ;.

Starting with a map I of Z,, ; (see Figure 4.1), in which a set .%; of vertices of color

i of Left(I) has been selected, to obtain a map M = (aar,,b) of M, ;, one has
to (see Figure 4.2):

¢ apply the derivation operation to (I,.%;, Right(I)) = I’, with I, the map
I without Right(I), with the same root half-edge than I,

o if & # 0, to glue the root vertex of I’ in the following way o (b) = by, 1,
with bs, 1 is the smallest half-edge of ., in I ¢

Figure 4.1. Map of Z,,;

189 ,
ight{1)

.

L2110

i

. 5
| 22723
| 17

i
/ o

el

Figure 4.2. A map I' = (IL)I{4,6},Right(I) and a map M of M, ; are obtained
(I' and M have not been reordered)
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5 Bijection between maps of arbitrary genus and
multilabel n-colored trees

The operation that allowed to prove Theorem 4.1 transforms a map of M,, ; into a
map with a root bridge in which a subset of its vertices of color ¢ has been selected.
If this operation is iterated on the successive submaps incident to the two vertices
incident to the bridge, and if the subset of vertices associated with each map is
labelled (one distinct label for each subset), the initial map is transformed into a n~
colored tree whose vertices can be labelled with several labels, following repartition
rules. One then obtains what we will call a multilabel n-colored tree.

In Section 5.1, we give the definition of a multilabel n-colored tree and in Section
5.2, we give the Theorem 5.3 explaining the one-to-one correspondence between
maps of M, ; and multilabel n-colored trees. This bijection leads to a coding of
maps by words of a language, as shown in Section 5.3.

5.1 Multilabel n-colored trees

We give definitions of a multilabel n-colored tree. Order relations given in Section
3.1 are applied to multilabel n-colored trees. An order on half-edges and vertices
is thus established in a classical in-depth descent of the tree. Let us notice that
the smallest half-edge of a vertex is also its left son in the tree structure, since a
tree has only one face.

Figure 5.1. Illustration of Definition 5.1

8
w;

Wiw;

<—unique vertex
of labels w;
and w;

Vertices of color w; exclusively L
belong to this subtree. 2 distinct subtrees

Tllustration of the rule 2a  Illustration of the rule 2b Illustration of the rule 3

Definition 5.1. Multilabel n-colored tree. Let T = (o, ,b) be a n-colored
rooted tree. Let W = {w1,...,wp} be a set of p distinct labels, eventually empty
(p > 0). Each vertex of T can have 0 to p labels in W. Forall i in [1,p], let us
denote by s;, the smallest vertex of T' of label w;.

T is a multilabel n-colored tree if T complies with the following rules (see Figure
5.1):

1. each label of W is assigned to at least two distinct vertices of T' and the
vertices of a same label must be of a same color;
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2. let (bs;,1,-.-,bs,,1,.) = 0*(bs; 1) be the half-edges of initial vertex s;, where
b1 is the smallest half-edge of 6*(bs, 1), i.e. the left son of s;. bs,;,1 <5<
ls, are the half-edges, sons of s;, and bs, 1, is the half-edge which goes up
towards the father of s;. Let Ty, ;, be the subtree of T' incident to the final
vertex of b, ;, rooted in 5(bs, ;) and T, ;, the tree composed of Ty, ; and of
the half-edge b,, ; which is its root half-edge. Then:

(a) there is a single j; such that in T, w; is assigned to s; and exclusively
vertices of Ty, j,. Let us denote this subtree by Ty, , = T, j,, its root

half-edge by bs, = bs, j, and T, u; = Ts, ji;

(b) forall kin [1,p], k # i, if 8; = s then T, 4, N T, v, = 0.

3. For all distinct labels w; and wy, if there is a vertex s of labels w; and w;,
where s; is smaller than s;, then s = s; and s is the only vertex of label w;
which is also of label w;.

We will be say that two multilabel n-colored trees are isomorphous if one can be
obtained from the other by a permutation on its labels. A class of isomorphism of
multilabel n-colored trees will simply be called multilabel n-colored tree.

Let 7, ; be the set of multilabel n-colored trees, with a root vertex of color i.

Remark 5.2. If T is a multilabel n-colored tree with m vertices and p distinct
labels, then p < m.

5.2 Bijection between M, ; and 7,;

Theorem 5.3. The set of rooted n-colored maps with root vertex of color i and
p edges is in bijection with the family of multilabel n-colored trees with root vertezx
of color i and p edges.

Figure 5.2. The multilabel n-colored tree associated with the map M of Figure
4.2
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Left(I) Left(I) g b=0
5.6=0 cwz
1 This map

6 has not been

been reordered

5.3 Application: a language coding maps of arbitrary genus

In this Section, we present a language coding rooted n-colored maps. The equation
defining this language is a generalization of the well-known equation on Dyck
words. In fact this language codes multilabel n-colored trees and thus by bijection
rooted n-colored maps.

In order to clarify the significance of each letter of the alphabet of the language
that we present, we need to give a definition.

Definition 5.4. Twin labels. Two labels w and w’ of a tree of 7,,; are twin
if there is a vertex of T labelled by these two labels or if there is a subsequence
of labels of T', w; = w,ws,...,w, = w’ such that forall j in [1,n[, w; and wj41
label the same vertex. One then defines classes of equivalence of labels, where two
labels are in the same class if they are twin.

Let us denote by e (resp. €) the variable coding a half-edge, whose opposite half-
edge is not coded (resp. is coded), v; the variable coding a vertex of color ¢ in case
of maps, and in case of multilabel n-colored trees a vertex of color ¢ without any
label or the smallest vertex of color i of a same or twin label. Let y;, j > 1, be
the variable coding a vertex of label w; (with w; # wy if j # k) of a multilabel
n-colored tree. In a rooted n-colored map, y;, codes the half-edges belonging to
a subset of the set of half-edges of initial vertex s;, for a given vertex s; of arity
strictly superior to 1 (s; can be equal to sy if j # k).

Let us denote by 7 = (v;)1<j<n and ¥ p = (v; + Ypdjq)1<j<n.

Theorem 5.5. The set of rooted n-colored maps with root vertex of color i is coded
by the language Lo ; = lim L, ;, where L, ; represents the language coding maps
p—oo
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of My, ; with at most p edges and is defined in the following way:

n
Lp,i(’l—)"yla""yp7evé) = v;te Z Lp~1,j<17i,p7y17'"7yp~1767é) (2)
J=1,j#i
€ Lp—1,:(V,y1,-- -, Yp-1,6,€) (1 —€p+ Yp€p)Oe,p
Lo(ﬁ,e,é) = v (3)
where for every word my of Ly_1 ;(¥Uip,y1,...,Yp-1,€,€) and my of

Lp_l’i(’l—)‘, Yy ooy yn‘l,e,é):

0 - 1 ify,em
P 0 otherwise
1 if (the number of occurrences of e in emiems) < p
bep = and #1 <k < p/yx € m1 and yx € mo
0 otherwise
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Limit Laws for Basic Parameters of Lattice
Paths with Unbounded Jumps

Cyril Banderier

ABSTRACT: This paper establishes the asymptotics of a class of random walks
on N with regular but unbounded jumps and studies several basic parameters
(returns to zero for meanders, bridges, excursions, final altitude for meanders).
All these results are generic (obtained by the kernel method for the combinatorial
part and by singularity analysis for the asymptotic part).

This paper completes the article [3] which was only dealing with the combina-
torics (enumeration and bijections) of walks with unbounded jumps (the so-called
“factorial walks”), which play an important role for uniform random generation of
some combinatorial objects. We fully parallelize the analytical approach from [4]
which was dealing with walks with bounded jumps only.

1 Introduction

Our main motivation for analyzing a class of walks with unbounded jumps comes
from the fact that several classes of combinatorial objects can be generated via the
so-called “generating trees”. Enumerating these trees (and predicting the number
of nodes at a given depth) allows uniform random generation. The concept of
generating trees has been used from various points of view and has been introduced
in the literature by Chung, Graham, Hoggatt and Kleiman [11] to examine the
reduced Baxter permutations. This technique has been successively applied to
other classes of permutations and the main references on the subject are due to
West [14, 25, 26], then followed by the Florentine school [6, 7, 16, 19, 20, 22, 23]
and other authors [3, 12, 18]. A generating tree is a rooted labeled tree (labels are
integers) with the property that if v; and v, are any two nodes with the same label
then, for each label ¢, v; and v, have exactly the same number of children with
label £. To specify a generating tree it therefore suffices to specify: 1) the label of
the root; 2) a set of rules explaining how to derive from the label of a parent the
labels of all of its children. Points 1) and 2) define what we call a rewriting rule.
Any random walk in the generating tree can also be seen as a lattice path (random
walk on the integers, with an infinite number of possible jumps). The regularity of
the rewriting rules determines the “solvability” (combinatorially speaking) of the
corresponding random walk process.

Few years ago, Pinzani and al. [6] exhibited several cases of factorial-like rewriting
rules for which the generating functions were algebraic. This was calling for a
general solution of the factorial-like rewriting rules case. This problem was solved
in [3], by establishing a link between the generating trees and families of lattice
paths with unbounded jumps (with respect to a given rewriting rule, the number
of nodes with label k£ at depth n in the tree is the number of walks of length n
ending at altitude k); then, the corresponding generating functions for walks are
always algebraic and are made explicit via the kernel method (we give more details
in Section 3). The asymptotic properties of such walks were remaining open.

B. Chauvin et al. (eds.), Mathematics and Computer Science 11
© Springer Basel AG 2002
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The article [4] and an important part of the PhD thesis [2] are dedicated to the
analysis of several parameters of discrete random walks on Z or N with bounded
jumps. For this case (but not for the case of unbounded jumps), a context-free
grammar approach is also possible (as the jumps are bounded and thus can be
encoded by a finite alphabet). However this language theory approach (which
was previously the main one considered in combinatorics) reveals almost nothing
about the shape of the generating function and is even less talkative about the
asymptotics. An orthogonal approach (the kernel method) has the merit of giving
a direct access to the generating functions and their asymptotics.

A natural question is: can the same approach be the winning one for the study
of walks with unbounded jumps? We show here that the answer is clearly: yes,
for a quite general family of walks! What follows is a slightly modified copy/paste
of [4] which gives however some new original results for generating functions and
asymptotics of walks with unbounded jumps.

2 Lattice paths and generating functions

This section presents the varieties of lattice paths to be studied as well as their
companion generating functions (in the same terms as in [4]).

Definition 2.1. Fiz a set of vectors of Zx Z, S = {(z1,41),-..}- (S can be finite

or not). A lattice path or walk relative to S is a sequence v = (vy,...,v,) such

that each v; is in S. The geometric realization of a lattice path v = {(vy,...,vy)
_—

is the sequence of points (P, Py,...,P,) such that Py = (0,0) and P;_1P; = v;.

The quantity n s referred to as the size of the path.

In what follows, we focus our attention to a class of infinite sets S and we shall
identify a lattice path with the polygonal line admitting P, ..., P, as vertices.
The elements of S are called steps or jumps, and we also refer to the vectors
P;_,1 P; = v; as the steps of a particular path.

Various constraints will be imposed on paths. In particular we restrict attention
throughout this paper to directed paths defined by the fact that if (¢, ) lies in S,
then necessarily one should have ¢ > 0. In other words, a step always entails
progress along the horizontal axis and the geometric realization of the path natu-
rally lives in the half plane N x Z. (This constraint implies that the paths studied
can be treated essentially as 1-dimensional objects.) The following conditionings
are to be considered (Figure 1).

Definition 2.2. A bridge is a path whose end-point P, lies on the r-azis. A
meander is a path that lies in the quarter plane N x N. An excursion is a path that
is at the same time a meander and a bridge; it thus connects the origin to a point
lying on the x-axis and involves no point with negative y—coordinate.

A family of paths is said to be factorial if each allowed step in S (Definition 2.1)
is of the form (1, —y) for any y > 1 or of the form (1,j) with j € J a given finite
subset of Z. We thus simply note S = {Z«o,J}.

In the factorial case the size of a path coincides with its span along the horizontal
direction, that is, its length. The terminology of bridges, meanders, and excursions
is chosen to be consistent with the standard one adopted in Brownian motion
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walks ending anywhere ending in 0
|y
V / e
N
unconstrained walk (W) bridge (B)
(on Z) (z,u) = ZWk b ul(2)
B(z) = Wy(z) = 2 :
kell ( ) 0( ) ; U (Z)
h 1- ZQ(U) n
Bo ~ o 20"
Wy =400 2mn
/\ /
/
meander M) , -
constrained Z Fi(z excursion (5)
(on N) >0 1P+ P
b B() = Foz) = T
=—2T]0 - uz o0
1
- Q)"
n ETL ~
Q(7) 0 2vmn3
Mn ~ o
2vmn3

Figure 1: The four types of paths with unbounded jumps: walks, bridges, me-
anders, and excursions. We give the corresponding generating functions and the
asymptotics of their coefficients. (N.B.: there is an infinite number of uncon-
strained walks as jumps are unbounded.)

theory; see, e.g., [24]. A factorial walk is simply a walk for which there is, at
each step, not only a finite amount of “bounded” jumps below or above the actual
position but also the possibility to go anywhere below the actual position.

The main objective of this paper is to enumerate exactly as well as asymptotically
paths, bridges, and meanders, this with special attention to factorial families.
Once the set of steps is fixed, we let W and B denote the set of paths and bridges
respectively (W being reminiscent of “walk”); we denote by M and £ the set of
meanders and excursions.

Given a class C of paths, we let C,, denote the subclass of paths that have size n,
and, whenever appropriate, C,, x, C C,, those that have final vertical abscissa (also
known as “final altitude”) equal to k. With the convention of using standard fonts
to denote cardinalities of the corresponding sets (themselves in calligraphic style),
Cn = card(Cy) and Cyp = card(Cy k), the corresponding (ordinary) generating
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functions are then

C(z) = ZC’nz”, C(z,u) = ZCk(z)uk = Z Crpuk2" = Z cn(u) 2™

neN kEZ n€EN,KEZ neN

This paper is entirely devoted to characterizing these generating functions: they
are either rational functions (W) or algebraic functions (B, M, E)}. As we shall see,
a strong algebraic decomposition prevails which, as opposed to other approaches,
renders the calculation of the generating functions effective. Even more impor-
tantly, the decomposability of generating functions makes it possible to extract
their singular structure, and in turn solve the corresponding asymptotic enumer-
ation problems in a wholly satisfactory fashion.

Weighted paths. For several applications, it is useful to associate weights to
single steps. In this case, the set of steps S is coupled with a system of weights
II = {w;}iez, with w; > 0 the weight associated to (1,7) € S; the weight of a
path is then defined as the product of the weights of its individual steps. Then the
quantity C,,, still referred to as number of paths (of size n), represents the sum of
the weights of all paths of size n. Such weighted paths cover several situations of
interest: (i) combinatorial paths in the standard sense above when each w; = 1;
(i4) paths with coloured steps, e.g., w; = 2 means that the corresponding step
(1,7) has two possible coloured incarnations (say blue and red); (i) > w; = 1
corresponds to a probabilistic model of paths where, at each stage, step (1,%) is
chosen with probability w;.

3 Functional equation and the kernel method

In this section, we characterize the generating functions of the four types of directed
paths (unconstrained, bridges, meanders, and excursions). It will be seen that a
specific algebraic curve, the “characteristic curve” plays a central role.

Definition 3.1. Let S = {Z<o,J} be a factorial set of jumps, with II = {w; }iez
the corresponding system of weights (w; = 1 in the unweighted case). The charac-
teristic series of S is defined as the Laurent series

Q(u) == Z w; u'

1€ZLco UT

Let b = —min J U {0} and a = max J be the two extreme vertical amplitudes of
any jump of J, and assume throughout a > 0,b > 0. We restrict now attention
to the unweighted case (but with possibly coloured jumps in J, see the paragraph
“weighted paths” in Section 2). The characteristic series can be then rewritten as

Qu) = Z u'4+P(u) = P(u)—T%E, where P(u) := Z pjul  (p; €N). (1)
i=—00 Jj=—b

1The attentive reader should have understood that this does not stand for the acronym of a
well-known Belgian theorem (Brownian Motion Everywhere)!
+o0 m
2By Laurent series, we mean objects like Z gkuk (m € Z) or Z gkuk. The reader
k=m k=-—o00
can check that our generating functions are holomorphic/meromorphic functions; they can be
expanded at 0 or at infinity, and so they can be seen as belonging either to C[[--]][u] or C[%][[u]]

1
u



Walks with Unbounded Jumps 37

So p; can be seen as the multiplicity of the jump (1,7). The kernel is defined by
K(z,u) == (1 —u)u® — 2(u®(1 — u)P(u) — ub). (2)

The characteristic curve of the lattice paths determined by S is the plane algebraic
curve defined by the kernel equation

1-2Q(u) =0, or equivalently K(z,u)=0. (3)

As we shall see the characteristic equation plays a central role, the second form
being the entire version (that is, a form without negative powers).

Proposition 3.2. The kernel equation (3) admits a + b+ 1 roots in v : b+ 1
roots up(z), . . ., up(z) finite for z ~ 0 and a large roots vi(z),...,v.(z) infinite for
z~ 0.

Proof : This polynomial has degree a + b+ 1 in u, and hence, admits a + b + 1
solutions, which are algebraic functions of z. The classical theory of algebraic
functions and the Newton polygon construction enable us to expand the solutions
near any point as Puiseux series (that is, series involving fractional exponents;
see [13]). The a + b+ 1 solutions, expanded around 0, can be classified as follows:

— the “unit” branch, denoted by ug, is a power series in z with constant term
L
— b“small” branches, denoted by uy, ..., us, are power series in 2!/ whose first

nonzero term is ¢z1/, with ¢ +1 = 0;

~ a “large” branches, denoted by v1,...,v,, are Laurent series in 2z1/% whose
first nonzero term is ¢z~1/9, with ¢* +1 = 0.

In particular, all the roots are distinct. O

Formulae (4) and (5) in the following theorem were first derived in [3]:

Theorem 3.3 (Excursions and meanders). The generating function F(z,u)
for factorial walks starting from O is algebraic; it is given by (8), where u, ..., up
(resp. vi,...,v,) are the finite (resp. infinite) solutions at z = 0 of the equation
K(z,u) = 0 and the kernel K is defined by (2). In particular, the generating
function for all walks, irrespective of their endpoint, is

b

1
M(z) = F(z,1) = —;Hu—ui), (4)
i=0
and the generating function for excursions, i.e., walks ending at 0, is, for b < 0:
b
(-1)+!
E(z)=F(2,0) = —— } | u;.. 5
&)= Fe0 = =] )

(For b =0, the relation becomes F(z,0) = ﬁ_‘m)
More generally, the generating function for meanders ending at altitude k is

a —k—1
Fee)= —S =% (6)

2Pa = Tljpivi —vi
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Proof : The allowed jumps imply that from position k (encoded by u*), one can
—-1
-1
{u=°}P(u)u*, as this is a linear mapping, this leads to the recurrence on the
fn(u)’s (the polynomials encoding the possible walk positions at time n):

go to the position encoded® by u® +u! + ... + v + {42} P(u)u”* =

fra () = 220D 420 by )

and equivalently to the following equality

F(z,u) = an(u)z"

_ 1+Z(F(z,1)~F(z,u)

1—u

T P(u)F(z,u) — m@H<><zmQ.

Thus, F(z,u) satisfies the following functional equation:

z 2F(z,1) i
F(z,u) 1+1—_—u—zP(u) =1+ ~—u Zrk (7)
where 71 (u) is a Laurent polynomials whose exponents belong to [k — b, —1] :
k=1
ri(w) = {u="} (P =Y pu'th
j=-b

Now comes the second ingredient of the proof, the so called “kernel method”. The
right-hand side of (7), once multiplied by u®(1 — u), is

b1
R(z,u) = u’(1 — ) <1+1—_—le zZrk, )

=0

By construction, it is a polynomial in u of degree b + 1 and leading coefficient
—1. Hence, it admits b + 1 roots, which depend on z. Replacing u by the series
ug, U1, . .., up in Eq. (7) shows that these series are exactly the b+ 1 roots of R, so

that
b

R(z,u) = — H(u — ;).

=0
Let pg := [u®]P(u) be the multiplicity of the largest forward jump.

Then the coefficient of u®+®+! in K(z,u) is pa2z, and we can write

b a

K(z,u) = pyz H(u — Ug) H(u — ;).

=0 =1

3We make use of the conventional notations for coefficients of entire and Laurent series:
[2"]Y,, fnz"™ == fn and {uZ%}g(u) is the sum of the monomials of g(u) with a nonnegative
exponent.
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Finally, as K(z,u)F(z,u) = R(z,u), we obtain

_ ~ [T g(u— ) _ !
Fz,u) = ub(l —u) + zubo— zub(1 —w)P(u)  paz [Ty (w— i) )

Setting « = 1 and u = 0 gives formulae (4) and (5) and a partial fraction
decomposition of the rightmost part of (8) gives (6). O

The “kernel method” has been part of the folklore of combinatorialists for some
time and is related to the what is known as “the quadratic method” in enumeration
of planar maps [10]. Earlier references (see [17] Ex. 2.2.1.11 for Dyck paths, [21,
Sec. 15.4] for a pebbling game) were dealing with the case of a single unknown in
the right part of (7). The kernel method in its more general version was developed
by Banderier, Bousquet-Mélou, Flajolet, Petkoviek [1, 2, 3, 4, 9]. A somewhat
similar idea (involving a reduction to a Riemann—Hilbert problem) was used in [15]
for a queuing theory application.

Theorem 3.4 (Bridges). The bivariate generating function of paths (with z
marking size and u marking final altitude) relative to a simple set of steps S with
characteristic series Q(u) is a rational function. It is given by

1

= — 9
W(Z,u) 1 —ZQ(U) ( )
The generating function of bridges is an algebraic function given by
b /
_ Uj(z) . d
B(E) = 2 ) L = 25 08 102 () (10)
where the expressions involve all the small branches uo, . . ., up of the characteristic

curve (3). Generally, the generating function Wy, of paths terminating at altitude k
is, for —oo < k < b,

b uj(2) z d b —k
Wk(Z):ZZW:—EE ZUJ(Z) s (11)
j=0 7 =0
and for —a < k < +00,
ovi(r) oz d O _
Wk(z)Z—ZZ;,]z)—kHZEE > v, (12)
j=1 7 =1
where v1,...,v, are the large branches.

(For Wy, the second form in (11) and (12) is to be taken in the limit sense k£ — 0.)

Proof : The proof of an identity similar to (10) for walks with bounded jumps
is given in [4] and holds verbatim for walks with unbounded jumps: Consider
a bridge and let m (with m < 0) be the minimal altitude of any vertex. Any
nonempty bridge 3 decomposes uniquely into a walk ¢; of size > 1 from 0 to m
that only reaches level m at its right end, followed by an excursion ¢, followed
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by a path s of size > 0 from m to 0 that only touches level m at its beginning.
By rearrangement, one can write 8 = ¢ - (¢2]¢1), where the gluing of w21 is an
arch (that is, an excursion which reaches 0 only at its beginning and its end) and
the bar keeps track of where the splitting should occur. This links bridges and
excursions:

split arches

bridges  excursions ——A—,
—— ~

Bla)-1= B - (z dizA(z)), (13)
as E(z) = 1/(1 - A(z)) (A(z) stands for the generating function of arches), this is
equivalent to

B(z)-1=E(z) 2% (1_$> =ng((j)),

using Formula (5) for F(z) gives the identity (10).

This reinforces the discussion of [4] about ubiquitous Spitzer, Andersen-like rela-
tions and here also, this gives the possibility of analysing the number of times a
bridge attains its minimum or maximum value by adapting the decomposition (13).

Set w,(u) = [z"]W(z,u), the Laurent series that describes the possible alti-
tudes and the number of ways to reach them in n steps. We have wo(u) = 1,
wy (u) = Q(u), and wp41(u) = Q(u)wy(u), so that wy,(u) = Q(u)" for all n. The
determination of W(z,u) in (9) follows from

n.n __ 1
2, Q" = gy

Observe that the resulting series is entire in z but of the Laurent type in u (it
involves arbitrary negative powers of u).

For positive Q{u), the radius of convergence of W{z, u) viewed as a function of z is
exactly 1/Q(u). Also, by the link between F(z) and B(z) (see above), the radius
of convergence of B(z) as a function of z is p = 1/Q(7), the radius of convergence
of E(z) (t > 1, as it is proven in the next section). Consider now |z| < r, where
7 := £ and then follow the scheme of the proof from [4].

4 Asymptotics

Lemma 4.1. Let Q(u) = P(u) —1/(1 —u) be the rational series associated to the
jumps a factorial walk. Then, there exists a unique number 7, called the structural
constant, such that Q'(t) =0, 7 > 1. The structural radius is by definition the
quantity
1
0= ——.
Q(7)

The following domination amongst the roots holds

[ui(2)] < ug(z) <v1(2) < |vj(2)] VY|z|<pfori=1,....bandj=2,...,a.
(14)
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Proof : Differentiating twice @ as given in (1), we see that Q”(z) > O for all z > 1.
Thus, the real function z — Q(z) is strictly convex on [1,+o00]. Since it satisfies
Q(1%) = Q(4+00) = 400, it must have a unique positive minimum attained at
some 7, and Q’'(7) = 0.

As @ is aperiodic, a strong version of the triangular inequality gives

Q) = 7 = Q1) < Q)

since ) is strictly increasing on the interval [1, +00] and since |v;| > 7 > 1 belongs
to this interval for z € [0, p|, one has the three last inequalities of (14); a duality
argument gives the first inequality of (14). O

As one of the referee pointed out, the structural constant 7 is such that the jumps

with law = Q( ) are centered. Similarly, the factoriality assumption results in steps
which can be seen as a mixture of a geometric probability law and a finitely
supported one.

Theorem 4.2. The asymptotics for the number of bridges, meanders, excursions
is given by

P _1 [em

B, ﬂOM(H L2400, ﬂo—T o
M, NNO?})—( +— + 5+, wo=Ulp) 25?((:))7
EnNGOQ(:r)T;(l'F%'F%'F'“)’ ()( l)b Q//(( ))

where U(p) = u1(p) ... us(p) and U(p) = (1 —u1(p)) ... (1 — us(p)).

Proof : Here again, the approach used in [4] is the winning one. A saddle point
method gives

B, = 2% luI_TQ(U)"d—u

Gl Q(T) @0

21T J_o v2mnh’ Q(7)
The approximation is valid as Q(7) dominates on the circle of integration (this
can be seen by the Laurent series expression of Q(u)).

Contrary to what is observed for the bounded jumps case, it may happen that the
small roots cross for |z| < p (but their product remains analytic). We follow the
scheme of proof from [4] which uses the link between B(z) and E(z). One has, by
local inversion of the kernel equation,

W)
Q”( )

uo(z) =7 — L—z/p+--- (z—=p) (15)
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Then the only possible behaviour compatible with the above asymptotics for B,
is that U(z) := u1(2)...up(z) is analytical for |z| < p; the same hold for U(z) :=
(I —u1(2)...(1 —up(2)).

Singularity analysis on the following expressions then gives the asymptotic expan-
sions from the theorem

b+1F
E, ~ [z"U(p) Q”T\/l—z ,

M, ~ (7 T)\/l—z

5 Returns to zero

Theorem 5.1 (Excursions). The number of returns to zero of an excursion with
unbounded jumps is asymptotically the sum of two independent geometric laws.
The average is 2E(p) — 14+ O () returns to zero, with a variance 2E(p)(E(p) —

D+0(2).

Proof : An excursion is a sequence of arches, so E(z) = = A(z) and A(z) = ﬁ

for E(z) and A(z) generating functions of excursions and arches respectively. We
note F(z,u,t) the generating functions with respect to their length, final altitude,
number of returns to zero. Thus, one has

1 1
F(z,0,t) me 2" —tAzl—t(l—%;—)’

where fr;(0) stands for the number of excursions of length n with j returns to
0. Then, all the moments can be made explicit as the m-th derivatives in ¢ of

F(z,0,t) are computable (8*F(z,0,t) = m! %) and simplify when
t=1: 0"F(z,0,1) = m!E(z)(E(z) - 1)™.
Thus, the average number of returns to zero is

- [2"]0:F(z,0,1) B (2" E(2)? e l
I = nE(0,1)  BG) o 1+O<n)

as E(z) = ey —e14/p— 2z +--- and the variance is given by

_ s _ ["128(:) - 4B(z) + 2B(z)°
=T T ["]B () +in = i

1
:663—860-{-2-{-#”—#%2260(60—1)4—0(%) .
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The number of excursions of length n with j returns to zero is given by

Fus () = [27] (1 - ﬁ) _a - Ly adlma VI E )

Consequently, the probability to get asymptotically j returns to zero is m; =

fni(0)/ fn — 1(1—2"3— for n — 400, and .5 m; = 1 for any ep. The proba-

bility generating function is x { 610 W—)) and one has so a discrete limit law

which is asymptotically the sum of two independent geometric laws of parameters
1-1 / €Q- 2

Perhaps it can seem strange than a walk with a infinite negative drift has such a
small average number of returns to zero?, the explanation of this “paradox” is that
most of the walks have much more returns, but their probabilities are very low,
decreasing exponentially (so, like for Zeno’s paradox, the sum is finite).

Theorem 5.2 (Meanders). The average number of returns to zero of a meander
with unbounded jumps follows a discrete limit law of a geometrical type.

Proof : Equation (8) gives F'(z,u), the bivariate generating function for meanders
(length, final altitude). Taking into account the number of returns to zero (via
another variable t) leads to

1 F(z,u)
F(z,u,t) ;0 Frg (2" = 7 —t(1—-1/E(z)) E(z) '

This reflects the fact that a meander is a sequence of arches, followed by a prefix
(i.e. a left part) of an arch, so M(z) = 1= A( )M+( z) and that a prefix of arch
(note M*(z,u) their generating function) times an excursion gives a meander, so
M*(z,u) = F(z,u)/E(z). The number f,;(1) of meanders of length n with j
returns to zero is then given by

fng (1) = [")(1 = 1/E(z)Y =

Notice that

a-ypey o &, (-Lra-1) (1 L)H W

Multiplying by the behaviour of M(z) = F(z,1) = my + m14/p — z around z = p
gives

Fas(1) ~ <7n(1;_)~ wmo (<L - 2 (1- i)j_l —) EN=r

€g €0 €o

4One referee pointed out that a similar result was known in a special case of bridge, cf.
Proposition 2.2 page 101 of [8].
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R . j—1
S0 fag(1)/fa(l) = (E+225)(1-L)7 - oo (1- L)J for n — +00. Asymp-

ma eo (=]
totics of moments is also easily computable from

0iF(z,u,1) = F(z,u)(E(z) — 1) and 82F(z,u,1) = 2(E(z) — 1)2F(z,u).
Average and variance are O(1). a

Theorem 5.3 (Bridges) The number of returns to zero of a bridge with un-
bounded jumps is asymptotzcally the sum of two independent geometric laws. The
average is 2B(p) — 1+ O () returns to zero, with a variance 2B(p)(B(p) — 1) +

0(2).
Proof : We can play the same game as above:

1 Wi(2)
1t (1-%) B(z) ’

The number of walks w,; of length n ending at altitude k with j returns to zero
is then given by

Wk(z,t) =

s (1) = (7101 = 1/BG) )

6 Final altitude of a meander.

The final altitude of a path is the abscissa of its end point. The random variable
associated to finite altitude when taken over the set of all meanders of length 7 is
denoted by X,,, and it satisfies
[z"uF]F(z,u)
Pr(X, =k)= "——"".
e =8 = TG

We state:

Theorem 6.1 (Meanders). The final altitude of a random meander of size n
admits a discrete limit distribution characterized in terms of the large branches:

l—T 1—1)@

lim Pr(X, = k) = [u*] @(u), where w(u) 2
n—oo — 7‘ >2 u— ’Ue

The limiting distribution admits an explicit form

[w¥]@(u) = 77%(co + c1k) + ) cove(p) 7F,
0>2

for a set of constants c; that can be made explicit by a partial fraction ezpansion

of w(u).
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Proof: Similarly to [4], one directly shows that the probability generating function
of X,, at u converges pointwise to a limit that precisely equals w(u), the conver-
gence holding for u € (0,1). By the fundamental continuity theorem for probability
generating functions, this entails convergence in law of the corresponding discrete
distributions.

We now fix a value of u taken arbitrarily in (0, 1) and treated as a parameter. The
probability generating function of X, is

[2")F (2, u)
[2"F(z,1)’

where F(z,u) is given by Theorem 3.3. We know from the proof of Theorem 4.2
that 7 = v1(p) satisfies 7 > 1 while the radius of convergence of F(z,1) coincides
with the structural radius p. Then, the quantity

V(z,u) = H !

et ve(2)

is analytic in the closed disk |z| < p: being a symmetric function of the nonprinci-
pal large branches, it has no algebraic singularity there; given the already known
domination relations between the large branches (Lemma 4.1), the denominators
cannot vanish.

It then suffices to analyse the factor containing the principal large branch v;. This
factor has a branch point at p, where

O +(u—lr)2 2Q(T)M’

u—vi(z) u-7 Q' (1)
as follows directly from (15) and the fact that v; is conjugate to ug at z = p.

Singularity analysis then gives instantly the fact that, for some nonzero constant C,

[2"]F(z,u) ~ Cp~"n"32Q(u), where Q(u)= @—:1—7_—)217(;), u),

and the result follows after normalization by [2"]F(z,1).

7 Variations...

All the above theorems hold with a slightly more general model of walks, for
which all the backward unbounded jumps are coloured (say, there is m colors).
The only modification is that the roots are then the roots of the kernel K(z,u) =
(1 — w)ub — 2(ub(1 — u)P(u) — muP). The analysis for the F}s and W/s is more
delicate as it involves a better “individual” knowledge of the small and large roots.
Some more general models of walks were considered in [5], there is still some
algebraic generating functions but their asymptotic properties remain to be estab-
lished, this seems quite difficult as there is no clear simple closed form formula (in
terms of the roots of the kernel) in the general case.
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Counting Walks in the Quarter Plane
Mireille Bousquet-Mélou

ABSTRACT: We study planar walks that start from a given point (ig, jo), take
their steps in a finite set &, and are confined in the first quadrant > 0,y > 0.
Their enumeration can be attacked in a systematic way: the generating function
Q(z,y;t) that counts them by their length (variable t) and the coordinates of their
endpoint (variables x,y) satisfies a linear functional equation encoding the step-
by-step description of walks. For instance, for the square lattice walks starting
from the origin, this equation reads

(zy — t(z +y + 2’y + 2y°)) Q(z, y;t) = vy — 2tQ(x, 05t) — ytQ(0,y; t).

The central question addressed in this paper is the nature of the series Q(x,y;1t).
When is it algebraic? When is it D-finite (or holonomic)? Can these properties
be derived from the functional equation itself?

Our first result is a new proof of an old theorem due to Kreweras, according to
which one of these walk models has, for mysterious reasons, an algebraic generating
function. Then, we provide a new proof of a holonomy criterion recently proved by
M. Petkovsek and the author. In both cases, we work directly from the functional
equation.

1 Walks in the quarter plane

The enumeration of lattice walks is one of the most venerable topics in enumerative
combinatorics, which has numerous applications in probability [16, 30, 39]. These
walks take their steps in a finite subset & of Z%, and might be constrained in
various ways. One can only cite a small percentage of the relevant litterature,
which dates back at least to the next-to-last century [1, 20, 27, 33, 34]. Many
recent publications show that the topic is still active [4, 6, 12, 22, 24, 35, 36].

After the solution of many explicit problems, certain patterns have emerged, and
a more recent trend consists in developing methods that are valid for generic
sets of steps. A special attention is being paid to the nature of the generating
function of the walks under consideration. For instance, the generating function
for unconstrained walks on the line Z is rational, while the generating function for
walks constrained to stay in the half-line N is always algebraic [3]. This result has
often been described in terms of partially directed 2-dimensional walks confined
in a quadrant (or generalized Dyck walks [14, 21, 28, 29]), but is, essentially, of a
1-dimensional nature.

Similar questions can be addressed for real 2-dimensional walks. Again, the gen-
erating function for unconstrained walks starting from a given point is clearly
rational. Moreover, the argument used for 1-dimensional walks confined in N can
be recycled to prove that the generating function for the walks that stay in the
half-plane z > 0 is always algebraic. What about doubly-restricted walks, that is,
walks that are confined in the quadrant x > 0,y > 0?7

B. Chauvin et al. (eds.), Mathematics and Computer Science 11
© Springer Basel AG 2002
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Figure 1: A walk on the diagonal square lattice confined in the first quadrant.

A rapid inspection of the most standard cases suggests that these walks might have
always a D-finite generating function!. The simplest example is probably that of
the diagonal square lattice, where the steps are North-East, South-East, North-
West and South-West (Figure 1): by projecting the walks on the z- and y-axes,
we obtain two decoupled prefixes of Dyck paths, so that the length generating
function for walks that start from the origin and stay in the first quadrant is

2 (Ln72J)2t"’

a D-finite series. For the ordinary square lattice (with North, East, South and
West steps), the generating function is

= (Mo () 2 (tor) (o)

another D-finite series. The first expression comes from the fact that these walks
are shuffles of two prefixes of Dyck walks, and the Chu-Vandermonde identity
transforms it into the second simpler expression [25].

In both cases, the number of n-step walks grows asymptotically like 4™/n, which
prevents the generating function from being algebraic (see [17] for the possible
asymptotic behaviours of coefficients of algebraic series).

The two above results can be refined by taking into account the coordinates of
the endpoint: if a; ;(n) denotes the number of n-step walks of length n ending at
(i,7), then we have, for the diagonal square lattice:

Y amatytt =) %(n&l) (ngi_ril):ciyjt",

1,7,n>0 1,5,n>0 2

1A series F(t) is D-finite (or holonomic) if it satisfies a linear differential equation with
polynomial coefficients in t. Any algebraic series is D-finite.
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where the binomial coefficient ((n_T;) /2) is zero unless 0 < ¢ < n and i = n mod 2.
Similarly, for the ordinary square lattice,

4,§,n>0 1,§,n>0 2

These two series can be seen to be D-finite in their three variables.

This holonomy, however, is not the rule: as proved in [11], walks that start from
(1,1), take their steps in & = {(2,—1),(—1,2)} and always stay in the first quad-
rant have a non-D-finite length generating function. The same holds for the sub-
class of walks ending on the z-axis. These walks are sometimes called knight’s
walks.

Figure 2: Kreweras’ walks in a quadrant.

At the other end of the hierarchy, another walk model displays a mysteriously
simple algebraic generating function: when the starting point is (0,0), and the
allowed steps South, West and North-East (Figure 2), the number of walks of
length 3n + 24 ending at the point (4,0) is

(n+i i"1(>2(z'2: -1|-)2i 1) <2Z> (?m: %) - (2)

This result was first proved by Kreweras in 1965 [27, Chap. 3|, and then rederived
by Niederhausen [35] and Gessel [20]. It is, however, not well-understood, for two
reasons:

— no direct proof of (2) is known, even when ¢ = 0. The number of walks ending
at the origin is closely related to the number of non-separable planar maps, to
the number of cubic non-separable maps [37, 38, 41, 42], and to the number of
two-stack sortable permutations [5, 43, 44]. All available proofs of (2) are rather
long and complicated. Moreover, in all of them, the result is checked rather than
derived.
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— most importantly, the three-variate generating function for these walks can be
shown to be algebraic [20], but none of the proofs explain combinatorially this
algebraicity.

All problems of walks confined in a quadrant can be attacked by writing a func-
tional equation for their three-variate generating function, and it is this uniform
approach that we discuss here. This functional equation simply encodes the step-
by-step construction of the walks. For instance, for square lattice walks, we can
write

Q(z,y;t) = Z ai,j(n)xiyjt"

1,5,20

Q(z,y;t) — Q(0,y;1) Tt Q(z,y;t) — Q(z,0;t)

z Y

= 1+t(z+y)Q(z, y; )+t
that is,
(zy — t(z + y + 2%y + 27)) Q(z, y; 1) = zy — 2tQ(z,0;1) — ytQ(0,33t),  (3)

and the solution of this equation, given by (1), is D-finite (but transcendental).
Similarly, for the diagonal square lattice, we have

(zy — t(1+2*)(1 + 7)) Q(=z,y;t) =

zy — t(1+ 2°)Q(x, 05 ¢) — t(1 + y*)Q(0, y; t) + tQ(0, 05 t),

with again a D-finite transcendental solution, while for Kreweras’ algebraic model,
we obtain

(zy — t(z + y + 2%9%)) Q(z, y; t) = xy — 2tQ(x, 05¢) — ytQ(0,y3t).  (4)

Finally, the equation that governs the non-holonomic model of [11] is
(zy — t(2® +4°)) Q(z, y;) = 2°y* — t2®Q(x, 05) — t5°Q(0, 5 t).

The general theme of this paper is the following: the above equations completely
solve, in some sense, the problem of enumerating the walks. But they are not the
kind of solution one likes, especially if the numbers are simple, or if the generating
function is actually algebraic! How can one derive these simple solutions from the
functional equations? And what is the essential difference between, say, Egs. (3)
and (4), that makes one series transcendental, and the other algebraic?

We shall answer some of these questions. Our main result is a new proof of (2),
which we believe to be simpler than the three previous ones. It has, at least,
one nice feature: we derive the algebraicity from the equation without having to
guess the formula first. Then, we give a new proof of a (refinement of) a holonomy
criterion that was proved combinatorially in [11]: if the set of steps & is symmetric
with respect to the y-axis and satisfies a small horizontal variations condition, then
the generating function for walks with steps in &, starting from any given point
(40, Jo), is D-finite. This result covers the two above D-finite transcendental cases,
but not Kreweras’ model... We finally survey some perspectives of this work.
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Let us conclude this section with a few more formal definitions on walks and power
series.

Let & be a finite subset of Z2. A walk with steps in & is a finite sequence
w = (wg, w1, ...,wy) of vertices of 72 such that w; — w;_; € & for 1 < i < n.
The number of steps, n, is the length of w. The starting point of w is wp, and
its endpoint is w,. The complete generating function for a set A of walks starting
from a given point wg = (4o, jo) is the series

Az, y; 1) Zt"Zam n)z'y,

n>0  i,j€Z

where a; j(n) is the number of walks of 2 that have length n and end at (3, j).
This series is a formal power series in ¢t whose coefficients are polynomials in
z,y,1/x,1/y. We shall often denote T =1/z and § =1/y.

Given a ring L and k variables x1, ..., xx, we denote by L(zy,...,z] the ring of
polynomials in zi,. ..,y with coefficients in L, and by L[[z1,...,zx]] the ring of
formal power series in z1,...,Z; with coefficients in L. If L is a field, we denote
by I{(z1,...,zx) the field of rational functions in x1, ...,z with coefficients in L.

Assume L is a field. A series F' in L[[z1, ..., 2] is rational if there exist polynomi-
als P and Q in L[zy,...,zs], with @ # 0, such that QF = P. It is algebraic (over
the field L(x1,...,zx)) if there exists a non-trivial polynomial P with coefficients
in L such that P(F,z,...,zx) = 0. The sum and product of algebraic series is
algebraic.

The series F' is D-finite (or holonomic) if the partial derivatives of F' span a
finite dimensional vector space over the field IL{z1, ..., zx) (this vector space is a
subspace of the fraction field of L{[z1, ..., zk]]); see [40] for the one-variable case,
and [31, 32] otherwise. In other words, for 1 < ¢ < k, the series F' satisfies a
non-trivial partial differential equation of the form

d,

- OF
> Prigr =0,
=0 T

1

where P, ; is a polynomial in the j. Any algebraic series is holonomic. The sum
and product of two holonomic series are still holonomic. The specializations of
a holonomic series (obtained by giving values from L to some of the variables)
are holonomic, if well-defined. Moreover, if F' is an algebraic series and G(t) is
a holonomic series of one variable, then the substitution G(F) (if well-defined) is
holonomic [32, Prop. 2.3].

2 A new proof of Kreweras’ result

Consider walks that start from (0,0), are made of South, West and North-East
steps, and always stay in the first quadrant (Figure 2). Let a; ;(n) be the number
of n-step walks of this type ending at (i, 7). We denote by Q(z,y;t) the complete
generating function of these walks:

Qz,y;t) := Z ai j(n)z'y’t".

2,5,m20
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Constructing the walks step by step yields the following equation:
(zy — tx +y + 2%y%)) Q(z, y; t) = zy — ztQ(x,0;t) — ytQ(0,y;t).  (5)

We shall often denote, for short, Q(z, y;t) by Q(z,y). Let us also denote the series
xtQ(z,0;t) by R(x;t) or even R(z). Using the symmetry of the problem in x and
1y, the above equation becomes:

(zy — t(x +y + 2*y%)) Q(z,y) = zy — R(z) — R(y). (6)

This equation is equivalent to a recurrence relation defining the numbers a; j(n)
by induction on n. Hence, it defines completely the series Q(z,y;t). Still, the
characterization of this series we have in mind is of a different nature:

Theorem 2.1. Let X = X (t) be the power series in t defined by
X =2+ X3).

Then the generating function for Kreweras’ walks ending on the z-azxis is

1 1 1 1 1

0; — - (= —=)V1-zx2).

Qw00 = (5 -1 - (5 - 3) VI—ex?)

Consequently, the length generating function for walks ending at (i,0) is
X2i+1 . Ci+1X3

2.4t ¢ \ ' 4 ’

[z']Q(z,0;t) =

where C; = (212 /(i41) is the i-th Catalan number. The Lagrange inversion formula
gives the number of such walks of length 3n + 2i as

. 4n(2i+ 1) 23\ (3n + 2i
3,0(3n + 21) = - - . .
aio(3n +2i) (n+z+1)(2n+2z+1)<z)( n )

The aim of this section is to derive Theorem 2.1 from the functional equation (5).

Note. Kreweras also gave a closed form expression for the number of walks
containing exactly p West steps, ¢ South steps, and r North-East steps, that
is, for walks of length m = p + ¢+ r ending at (i,5) = (r —p,r —q):

pt+qg+r p+q
— _ = 1_.—
ropr-a(PHat) < p,g,T ) < r+1)

+ii 1)tk h+k\ [2h+2k—2 p+qg+r
i ( h+k h+k—1) h 2h —1 p—hqgq—kr+h+k/)

The functional equation (5), combined with the expression of @Q(z,0) given in
Theorem 2.1, gives an alternative expression for this number, still in the form of
a double sum:

_(pt+q+r 4"(2i 4+ 1) 2t\ (3n+ 2i
ar~p’r—q(p+q+7a)—( D, q,T ) ZZ (n+i+1)2n+2i+1)\ ¢ n

>0 n>0
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» p+g+r—3n—-2i—-1 n p+g+r—3n—-2i-1
p—n,q—n—i—1,r—n—1 p-n—i—1l,q—n,r—n—i/) /)’
This expression has a straightforward combinatorial explanation (all walks, except

those that cross the z- or y-axis). But none of these formulas specialize to the
above simple expression of a; o(m) when g =r...

2.1 The obstinate kernel method

The kernel method is basically the only tool we have to attack Equation (6). This
method had been around since, at least, the 70’s, and is currently the subject of a
certain revival (see the references in [2, 3, 10]). It consists in coupling the variables
z and y so as to cancel the kernel K(z,y) = zy — t(z + y + x?y?). This should
give the “missing” information about the series R(x).

As a polynomial in y, this kernel has two roots

1—tz — /(1 —tz)2 — 4t%z

Yo(z) = 5tz = t+zt2 + O(t%),
1—1tx 4+ /(1 —tx)2 — 4¢2 r _
Yi(z) = ad (m 7) T = f—gﬂ — t—zt2+O(3).

The elementary symmetric functions of the Y; are

Yo+Yi =5 —-22 and YoY; ==z (7)

|8

The fact that they are polynomials in Z = 1/z will play a very important role
below.

Only the first root can be substituted for y in (6) (the term Q(z,Y1;t) is not a
well-defined power series in ¢). We thus obtain a functional equation for R(z):

It can be shown that this equation — once restated in terms of Q(x,0) — defines
uniquely Q(z,0;t) as a formal power series in ¢ with polynomial coefficients in z.
Equation (8) is the standard result of the kernel method.

Still, we want to apply here the obstinate kernel method. That is, we shall not
content ourselves with Eq. (8), but we shall go on producing pairs (X,Y) that
cancel the kernel and use the information they provide on the series R(z). This
obstination was inspired by the book [15] by Fayolle, Iasnogorodski and Malyshev,
and more precisely by Section 2.4 of this book, where one possible way to obtain
such pairs is described (even though the analytic context is different). We give
here an alternative construction that actually provides the same pairs.

Let (X,Y) # (0,0) be a pair of Laurent series in ¢ with coefficients in a field K
such that K(X,Y) = 0. We define ®(X,Y) = (X',Y), where X’ = (XY) ! is
the other solution of K(x,Y) =0, seen as a polynomial in z. Similarly, we define
U(X,Y)=(X,Y’), where Y’/ = (XY)~! is the other solution of K(X,y) = 0. Note
that ® and ¥ are involutions. Let us examine their action on the pair (z,Y). We
obtain the diagram of Figure 3.
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(z,Yo)

[01] ¥
(Y1,Yo) (z,Y1)
)\ [i1]
(Y1,7) (Yo, Y1)

Q\(Y‘ : v

Figure 3: The orbit of (z,Y;) under the action of ® and ¥.

All these pairs of power series cancel the kernel, and we have framed the ones that
can be legally substituted? in the main functional equation (6). We thus obtain
two equations for the unknown series R(z):

R(z) + R(Ys) = 1%, (9)
R(Yo)+R(Y) = Yo¥i—z (10)

Remark. Let p, q,r be three nonnegative numbers such that p+ ¢+ r = 1. Take
x = (pr)/3q=%3, y = (gr)/3p=%/3 and t = (pgr)}/3. Then K(z,y;t) = 0, so that
R(z) + R(y) = zy. This equation can be given a probabilistic interpretation by
considering random walks that make a North-East step with (small) probability
r and a South (resp. West) step with probability p (resp. ¢). This probabilistic
argument, and the equation it implies, is the starting point of Gessel’s solution of
Kreweras problem [20, Eq. (21)].

2.2 Symmetric functions of Y; and Y;

After the kernel method, the next tool of our approach is the extraction of the
positive part of power series. More precisely, let S(x;t) be a power series in ¢
whose coefficients are Laurent polynomials in z:

S(z;t) = Z t" Z si(n)z’,
n>0 €L

where for each n > 0, only finitely many coefficients s;(n) are non-zero. We define
the positive part of this series by

St (z;t) := Z " Z si(n)z".
n>0 €N

This is where the values of the symmetric functions of Yy and Y; become crucial:
the fact that they only involve negative powers of z (see (7)) will simplify the
extraction of the positive part of certain equations.

2The fact that the series Q(Yo, Y1;t) and Q(0,Y1;t) are well-defined is not immediate, and
depends strongly on the three steps taken by the walks.
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Lemma 2.2. Let F(u,v;t) be a power series in t with coefficients in Clu,v], such
that F(u,v;t) = F(v,u;t). Then the series F(Yy,Y1;t), if well-defined, is a power
series in t with polynomial coefficients in T. Moreover, the constant term of this
series, taken with respect to T, is F(0,0;1).

Proof. All symmetric polynomials of u and v are polynomials in v + v and uv
with complex coefficients.

We now want to form a symmetric function of Yy and Y7, starting from the equa-
tions (9-10). The first one reads

R(Yy) — Yo = —R(x).
By combining both equations, we then obtain the companion expression:
R(Y1) — zY1 = R(z) + 2z — 1/t.
Taking the product® of these two equations gives
(R(Yo) — zYo)(R(Y1) — 2Y1) = —R(z)(R(z) + 2T — 1/1).

The extraction of the positive part of this identity is made possible by Lemma 2.2.
Given that R(z;t) = xtQ(z,0;t), one obtains:

r = —t222Q(z,0)2 + (z — 2t)Q(z, 0) + 2tQ(0,0),

that is,
t222Q(x,0)% + (2t — 2)Q(z, 0) — 2tQ(0,0) + = = 0. (11)

2.3 The quadratic method

Equation (11) — which begs for a combinatorial explanation — is typical of the
equations obtained when enumerating planar maps, and the rest of the proof
will be routine to all maps lovers. This equation can be solved using the so-
called quadratic method, which was first invented by Brown [13]|. The formulation
we use here is different both from Brown’s original presentation and from the
one in Goulden and Jackson’s book [23]. This new formulation is convenient for
generalizing the method to equations of higher degree with more unknowns [7].

Equation (11) can be written as

P(Q($)7Q(O)7ta 'T) =0, (12)

where P(u,v,t, 1) = t22%u? + (2t — z)u — 2tv +z, and Q(z, 0) has been abbreviated
in Q(z). Differentiating this equation with respect to x, we find

OP 0Q oP
%(Q('T)’Q(O)J’x)%(x) + EZ(Q(‘T),Q(O)J:I) =0.

3An alternative derivation of Kreweras’ result, obtained by considering the divided difference
(R(Yo) — Yo — R(Y1) + 2Y1)/(Yo — Y1), will be discussed on the complete version of this paper.
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Hence, if there exists a power series in ¢, denoted X (t) = X, such that
oP

%(Q(X),Q(O),t,X) =0, (13)
then one also has ap
B (@(X),Q(0),¢,X) =0, (14)

and we thus obtain a system of three polynomial equations, namely Eq. (12)
written for x = X, Egs. (13) and (14), that relate the three unknown series Q(X),
Q(0) and X. This puts us in a good position to write an algebraic equation defining

Q(0) = Q(0,051).
Let us now work out the details of this program: Eq. (13) reads
X =22X%Q(X) + 2t,

and since the right-hand side is a multiple of ¢, it should be clear that this equation
defines a unique power series X (t). The system of three equations reads

2X2Q(X)? + (2t — X)Q(X) — 2tQ(0) + X =0,
202 X2Q(X) + 2t — X =0,
22 XQ(X)? - Q(X)+1=0.

Eliminating Q(X) between the last two equations yields X = ¢(2 + X3), so that
the series X is the parameter introduced in Theorem 2.1. Going on with the
elimination, we finally obtain

X X3
Q(0,05¢) 2t( 4),
and the expression of Q(z, 0;t) follows from (11).

3 A holonomy criterion

Using functional equations, we can recover, and actually refine, a holonomy crite-
rion that was recently proved combinatorially [11]. Let & be a finite subset of Z.
We say that G is symmetric with respect to the y-axis if

(i,j) € 6 = (~i,j) € 6.
We say that G has small horizontal variations if
(1,j) €6 =i <L

The usual square lattice steps satisfy these two conditions. So do the steps of the
diagonal square lattice (Figure 1).

Theorem 3.1. Let G be a finite subset of Z* that is symmetric with respect to the
y-azis and has small horizontal variations. Let (ig, jo) € N2. Then the complete
generating function Q(x,y;t) for walks that start from (ig, jo), take their steps in
G and stay in the first quadrant is D-finite.

A combinatorial argument proving the holonomy of Q(1,1;¢) is presented in [11].
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3.1 Example

Before we embark on the proof of this theorem, let us see the principle of the proof
at work on a simple example: square lattice walks confined in a quadrant. The
functional equation satisfied by their complete generating function is

(zy — t(z +y + 2’y + 2°)) Qlz,y) =

zy — 7tQ(z,0) — y1Q(0,y) = zy — R(z) — R(y), (15)

where, as in Kreweras’ example, we denote by R(z) the series txQ(x,0). The
kernel K (z,y) = oy — t(z + y + 2%y + zy?), considered as a polynomial in y, has
two roots:

1tz +2) - /A -tz +7)% - 42
— " -

Yo(z) t+(z+2)t* +O(t%),

1-t(z+1) + \/(;t— He +12))° — 482 _ %—x—a‘v—t—(m‘+i)t2+0(t3)-

The elementary symmetric functions of the Y; are

Yi(a) =

1
Yo—l-Y1=¥—:c—:i° and YpY; =1.

Observe that they are no longer polynomials in Z = 1/z.

If, as above, we apply to the pair (z,Y)) the transformations ® and ¥, we obtain
a very simple diagram:

(z,Yo)
[} v
(z,Yo) (z,Y1)
5
(z,Y1)

From the two pairs that can be substituted for (z,y) in Equation (15), we derive
the following system:

R(z)+ R(Yy) = Yo,
R(Z)+ R(Yy) = zYo.

From here, the method has to diverge from what we did in Kreweras’ case. Elim-
inating R(Yp) between the two equations gives

R(z) - R(z) = (z — ©)Yp. (16)

Since R(0) = 0, extracting the positive part of this identity gives R(z) as the
positive part of an algebraic series. It is known that the positive part of a D-finite
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series is always D-finite [31]. In particular, the series R(z) is D-finite. The same
holds for Q(z,0), and, by (15), for Q(z,y).

This argument is enough for proving the holonomy of the series, but, given the
simplicity of this model, we can proceed with explicit calculations. Given the
polynomial equation defining Yy,

Yo = t(1 +2Yp + zYo + Y§) = t(1 + 2Yp)(1 + zYp),
the Lagrange inversion formula yields the following expression for Yp:
-y Z gt it (2m—|—| |+1> (Zm—l— Es 1)
ot 2m+ i +1 m+ |i| \ m

Since R(0) = 0, extracting the positive part in the identity (16) now gives, after
some reductions,

gHE@mEL( 4 ) 2m+i+2\ 2m+i+2
R(z) =t 0) '
() = toQa, mz>0§ 2m +i+ 1) 2m+@+2)(m+i+1)( m )

This naturally fits with the general expression (1).

3.2 Proof of Theorem 3.1.

We define two Laurent polynomials in y by

> ¢ and Pi(y) = Z Y.
(1.j)e6

(0.5)e6
Let —p be the largest down move; more precisely,
p =max(0,{—j : (¢,j) € & for some i}).
The functional equation obtained by constructing walks step-by-step reads:

K(.Z‘, y)Q(x, y) =

Jj—1
Ryt PP )QO) —t Y. Y (Qm(@) - 5:1Qm(0)) 2 Ty
(1,1)€6 m=0
(17)
where
K(z,y) = zy? (1 - tPy(y) — t(z + Z)P1(y))

is the kernel of the equation, and Qn,(z) stand for the coefficient of y™ in Q(z,y).
All the series involved in this equation also depend on the variable ¢, but it is
omitted for the sake of briefness. For instance, K(z,y) stands for K(z,y;t).

As above, we shall use the kernel method — plus another argument — to solve the
above functional equation. The polynomial K(x,y), seen as a polynomial in ¥,
admits a number of roots, which are Puiseux series in ¢ with coefficients in an
algebraic closure of Q(z). Moreover, all these roots are distinct. As K(z,y;0) =
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zy?, exactly p of these roots, say Y1,...,Yp, vanish at £ = 0. This property
guarantees that these p series can be substituted for y in (17), which yields

j—1
gToy?Ptio = tyPP (V)Q(0,Y)+t > Y (Qm(x) — 8:1Qm(0)) &' YPH™I
(3,—j)e6 m=0

(18)
forany Y =Y1,...,Y,.
Given the symmetry of K in z and Z, each of the Y; is invariant by the trans-

formation x — 1/x. Replacing =z by T in the above equation gives, for any
Y=N",...,Y,

j-1
gToYPHe = tYPP(Y)Q(0,Y)+t > Y (Qm(E) — 5:,1Qm(0)) &' Y P
(,—j)€6 m=0
(19)
We now combine (18) and (19) to eliminate Q(0,Y):

-1
(I1+i0 _ jl+io)yp+j0 =t Z Z (ml_iQm(x) _ xi_lQm(i)) yptm—j

(6,—j)e& m=0

for any Y =Y3,...,Y,. This is the generalization of Eq. (16). The right-hand side
of the above equation is a polynomial P in Y, of degree at most p—1. We know its
value at p points, namely Y7, ...,Y,. The Lagrange interpolation formula implies
that these p values completely determine the polynomial. As the left-hand side of
the equation is algebraic, then each of the coeflicients of P is also algebraic. That

is,
Z Z lem _1,2 IQ( p+m_7_ZA

(1,—5)€6 m=0

where each of the A,, is an algebraic series. Let us extract the positive part of
this identity. Given that ¢ can only be 0, 1 or —1, we obtain

Z Z - lQm 7 1Qm( p+m I = Z H

(t,—j)€6 m=0

where Hp,(z) := A}, () is the positive part of A,,(z). Again, this series can be
shown to be D-finite. Going back to the original functional equation (17), this
gives

p—1

K(z,y)Q(z,y) = T oyP i — P P (1)Q(0,y) — Y Hpm(a)y™.

m=0

Let us finally* consider the kernel K (z,y) as a polynomial in z. One of its roots,
denoted below X, is a formal power series in ¢ that vanishes at ¢ = 0. Replacing

4In the square lattice case, the symmetry of the model in 2 and y makes this step unnecessary:
once the holonomy of Q(z, 0) is proved, the holonomy of Q(z,y) follows.
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z by this root allows us to express Q(0,y) as a D-finite series:

p—1
1P PL(y)Q(0,y) = X Foyrtie — 37 Ho (X )y
m=0

The functional equation finally reads

K(z,y)Q(z,y) = (z'F% — X Hio)yrtio — i(Hm(m‘) — Hpn(X))y™.

m=0

Since the substitution of an algebraic series into a D-finite one gives another D-
finite series, this equation shows that Q(z,y) is D-finite.

4 Further comments, and perspectives

We first give some asymptotic estimates for the number of n-step walks in the
quadrant, for various sets of steps. Then, a number of research directions, which
I have started to explore, or would like to explore in the coming months, are
presented. All of them are motivated by the new proof of Kreweras’ formula given
in Section 2.

4.1 Asymptotic estimates

Following a suggestion of one of the referees, the table below summarizes the
asymptotic behaviour on the number of n-step walks in the first quadrant, for the
four models mentioned in the introduction, with three different conditions: the
endpoint is fixed, the endpoint lies on the z-axis, the endpoint is free. This is
all the more relevant that the argument proving the transcendence of the square
lattice case is based on asymptotic estimates. The results for the two versions of the
square lattice can be obtained directly from the formulas given in the introduction.
The results for Kreweras’ walks are derived from Theorem 2.1 and the functional
equation (5), by analysing the singularities of the series [18]. The last series of
results is derived from [11] using, again, an analysis of the singularities of the
generating functions.

Model Specific Endpoint Free Nature
endpoint | on the z-axis | endpoint of the series
4n 4n 4"
Ordinary or — — — D-finite
i ) n3 n? n
diagonal sq. lattice transcendental
Kreweras’ walks 52 7 371 algebraic

n3/2 \ 41/3

1 n
Knight walks 0 ( 3 ) n not D-finite



Walks in the Quarter Plane 63

4.2 Other starting points

It was observed by Gessel in [20] that the method he used to prove Kreweras’ result
was hard to implement for a starting point different from the origin. The reason of
this difficulty is that, unlike the method presented here, Gessel’s approach checks
the known expression of the generating function, but does not construct it. I am
confident that the new approach of Section 2 can be used to solve such questions.
If the starting point does not lie on the main diagonal, the z — y symmetry is
lost; the diagram of Figure 3 now gives four different equations between the two
unknown functions Q(z,0) and Q(0,y).

4.3 Other algebraic walk models

A close examination of the ingredients that make the proof of Section 2 work might
help to construct other walk models which, for non-obvious reasons, would have
an algebraic generating function. Note that for some degenerate sets of steps, like
those of Figure 4, the quadrant condition is equivalent to a half-plane condition
and thus yields an algebraic series.

Figure 4: A degenerate set of steps.

I have started a systematic exploration of walks with few steps and only one up
step: the non-trivial algebraic cases do not seem to be legion! However, I met
in this exploration one model that seems to yield nice numbers (with a D-finite
generating function) and for which the method of Section 2 “almost” works. I then
realized that the same problem had been communicated to me, under a slightly
different form, by Ira Gessel, a few months ago. I plan to explore this model
further.

4.4 Other equations

Any combinatorial problem that seems to have an algebraic generating function
and for which a linear functional equation with two “catalytic” variables (in the
terminology of Zeilberger [45]) is available is now likely to be attacked via the
method of Section 2. These conditions might seem very restrictive, but there is at
least one such problem! The vezillary involutions, which were conjectured in 1995
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to be counted by Motzkin numbers, satisfy the following equation:

222y 2y
]- PR F 9 at =
<+1—x+1—y> (z,3:%)

tQIQ y2 t 21‘23;

Y t
t{1 F 1;¢ F(1,y;t).
(1—ty)(1—t:vy)+ ( +1_y> (xya ’ )+1—1‘ ( Y3 )

The conjecture was recently proved via a difficult combinatorial construction [26].
I have been able to apply successfully the method of Section 2 to this equation [9)].

4.5 Random walks in the quarter plane

Random walks in the quarter plane are naturally studied in probability. Given
a Markov chain on the first quadrant, a central question is the determination
of an/the invariant measure (p; ;)i >0. The invariance is equivalent to a linear
equation satisfied by the series P(x,y) = Y. p; ;z'y, in which the variables = and
y are “catalytic”. A whole recent book is devoted to the solution of this equation
in the case where the walk has small horizontal and vertical variations [15]. This
book contains one example for which the series P(z,y) is algebraic: no surprise,
the steps of the corresponding walk are exactly Kreweras’ steps... This result is
actually due to Flatto and Hahn [19]. The equation satisfied by the series P(z,y)
does not work exactly like the equations for complete generating functions like
Q(z,y;t): roughly speaking, the third variable ¢ is replaced by the additional
constraint P(z,y) = 1.

Very recently, I have found a new, simpler proof of Flatto and Hahn’s result
(at least, in the symmetric case). The principle is the same as in Section 2.
One can either study a version of the enumeration problem in which each walk
is weighted by its probability (so that the invariant distribution is obtained as
a limit distribution), or directly adapt the method to the context of the series
P(z,y). With both approaches, one remains, from the beginning to the end of
the proof, in the field of algebraic series [8]. This offer a significant shortcut to
Flatto and Hahn’s proof, which is based on non-trivial complex analysis, and uses
a parametrisation of the roots of the kernel by elliptic functions, which are not
algebraic.

Acknowledgements. To my shame, I must recall that, in the lecture that I gave
at FPSAC’01 in Phoenix, I mentioned (part of) Kreweras’ result as a conjecture. I
am very grateful to Ira Gessel who enlightened my ignorance by giving me the right
references. I also thank the anonymous referees for their very valuable comments.
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Bijective Construction of Equivalent
Eco-systems

Srecko Brlek, Enrica Duchi, Elisa Pergola, Renzo Pinzani

ABSTRACT: First, we explicit an infinite family of equivalent succession rules
parametrized by a positive integer «, for which two specializations lead to the
equivalence of rules defining the Catalan and Schroder numbers. Then, from an
ECO-system for Dyck paths, we easily derive an ECO-system for complete binary
trees, by using a widely known bijection between these objects. We also give a
similar construction in the less easy case of Schréder paths and Schréder trees
which generalizes the previous one.

1 Introduction

The concept of succession rule was introduced in [4] by Chung et al. in the study
of Baxter permutations. Later West [12], Gire [6] and Guibert [7] used succes-
sion rules for the enumeration of permutations with forbidden sequences. More
recently, this concept was deepened by Barcucci et al. [2] as a fundamental tool for
ECO method, which is a method for constructing and enumerating combinatorial
objects. In particular, let O be a class of combinatorial objects and p a parameter
on O such that O, = {O € O|p(O) = n} is finite. ECO method provides, by
means of an operator 1, a construction for the class O with respect to the param-
eter p. If ¥ is an operator on O satisfying the following conditions:

(i) for each O' € Op41, there exists O € Oy, such that O’ € 9(0), E

(ii) for each 0,0 € O, such that O £ O, then 9(0) N 9(0') =8, ®
then the family of sets Fpn+1 = {9(0) : O € O,} is a partition of Op41.
Note that many different operators may exist on a class O. Consequently, when an
operator ¢ is fixed on O, we will denote it by Yo, and the ECO-pair by (O, d0).
The subscript will be omitted when no confusion arises. The conditions (E) above
state that the construction of each object O’ € O, is obtained from one and
only one object O € O,,. This construction can be described by a generating tree
[2, 4], a rooted tree whose vertices are objects of O. The objects having the same
value of p lie at the same level, and the sons of an object are the objects produced
from it by using ¥. A generating tree can be sometimes described by means of a
succession rule of the form:

_J (a)
A= { (k) ~ (e1)(e2) ... (ex), (1)

where a,k,e; € N, meaning that the root object has a sons, and the k objects

%y.-.,O%, produced by an object O are such that [9(0})| = e;, 1 <i < k. A
succession rule §2 of type (1) defines a sequence {fy}, of positive integers, where
fn is the number of nodes at level n of the generating tree of Q.

1The first author was supported by NSERC (Canada), and GNCS - Istituto Nazionale di
Alta Matematica (Italia)
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© Springer Basel AG 2002
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Given an ECO-system (O,p,%0,A) and a bijection ® : O — V between two
classes of combinatorial objects, it is always possible to map formally 9» on the
class V along the bijection ®. Indeed, let O € O then we define the ECO-system
(V7p/a 19\}7 A) by

®(0') € 9y (®(0)) < O’ € Ip(0).

This means that the generating tree T for the class O is mapped on the generating
tree Ty, where each node of T contains the image of the corresponding node of T.
It is clear that in this case the same succession rule is obtained, but the problem
of describing the operator ¥y, independently from ®, remains and is not easy in
general. In Section 4, we describe explicitly this construction on two examples.
Firstly, we carry out the description in the easy case of the bijection between
Dyck paths and complete binary trees, and, secondly, in the less easy case of the
bijection between Schriéder paths and Schroder trees.

Two succession rules A and A’ are equivalent (written A ~ A’ ) if they define
the same number sequence [9]. The problem of determining classes of equivalent
succession rules, is still open. In section 5, by using both a combinatorial and
a generating function approach, we prove that Q, ~ Q, where Q, and Q/, are
defined as follows. Let o € N*,

Qo = { (a) ~ (a+1)"
Yo (o + 1) (@ +2) ... (k — 1)(k)(k + 1),

(2ka) ~ (@)% (2a)*1 (40)*(60)7 ... (2(k — 1)a)*(2ka)*(2(k + 1)a).

These succession rules are related to the well known classical rules for Catalan and
Schréder numbers.

2 Some classical combinatorial structures

In the plane Z x Z, we consider lattice paths using three step types: rise steps
(1,1), fall steps (1,-1) and k-length horizontal steps (k,0) (briefly, k-horizontal
steps).

Definition 2.1. A generalized Motzkin path is a sequence of rise, fall and k-hor-
izontal steps, running from (0, 0) to (n,0), and remaining weakly above the z-axis.

These paths have been extensively studied, an account of which can be found in
[11] for instance. They include many classical lattice paths, and, among others,
Dyck, Motzkin and Schréder paths correspond respectively to the cases k = 0,
k =1 and k£ = 2. A path remaining strictly above the z-axis except for (0,0)
and (n,0) is called elevated. A coloured generalized Motzkin path is a generalized
Motzkin path for which the horizontal steps can have more than one colour. We
give now the classical ECO construction for Dyck and Schréder paths.

Let D be the class of Dyck paths, and let D € D. Then, ¥(D) is the set of Dyck
paths obtained by adding a peak on each point of the last sequence of D’s fall
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steps. The rule associated to this construction is the classical rule for Catalan
numbers:

Let S be the class of Schrioder paths and let S € S. The set ¥(S) contains the
Schréder paths obtained from S by inserting a horizontal step at the end of S, or
by inserting both a rise step in each point of the last sequence of fall and horizontal
steps, and a fall one at the end of S. The rule

N AN N NN
/®\®</\/®\®_>/\/\/\/\/\/\/\_.

/ Poo—e /TN AN ALA A

Aoy = N N SNA
._/®\®—> AN N
=0 — NN N

\og

Figure 1: Classical ECO construction for Schréder paths.

(3)
(k) ~ (3)...(k)(k+ 1)

associated to this construction is the classical rule for Schroder numbers (Fig. 1).

Definition 2.2. A Schrider tree is either a leaf or a list (r,Ay,...,A,), where
m > 2, and such that each A; is a Schréder tree.

The class 7 of Schréder trees contains planar trees whose internal nodes have
degree at least two, and are enumerated by little Schréder numbers (i.e. the half
of Schréder numbers) according to the number of their leaves [8]. As a particular
case, the class B of complete binary trees, i. e. binary trees whose nodes have
degree 0 or 2, is a subclass of 7.
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3 A construction for Dyck and Schroder paths

The specialisations & = 1 and a = 2 of ), yield two new succession rules defining,
respectively, Catalan and Schrioder numbers,

(1)

o = )~

( (2k) ~ (1)*(4)(6) ... (2(k — 1))(2k)(2(k +1))
((2)

QG = ¢ @~

[ (4k) ~ (2)%(4)(8)*(12)° . .. (4(k — 1))*(4k)* (4(k + 1)),

for which we are able to describe the corresponding constructions.

3.1 A construction for Dyck paths corresponding to 2]

Each Dyck path D factors uniquely in blocks of elevated Dyck paths,
D=D1Ds...Dg,

and, D is said of even type (respectively odd type) if k = 2 for some j (resp.
k = 2j+1). The last sequence of fall steps, or last descent, of D is denoted £4(D)
and satisfies

£4(D) = £4(Dy,).

Let P(D) be the set of points of £;(D), excepting the point at level 0. The set of
Dyck paths having length 2n is denoted by D,,, and the operator

Ip : D, — 2P+
is defined as follows:

D1. If D is of even type, then Jp(D) contains a single Dyck path, obtained by
glueing a peak of height 1 at the end of D (see Fig. 2(D1)).

D2. If D is of odd type, then ¥p(D) is the set of Dyck paths obtained from D
by performing on each A € P(D) the following actions:
(a) insert a peak;

(b) let A’ be the leftmost point such that A’A is a Dyck path; remove the
subpath A’A from D, elevate it by 1, and glue it at the end of D (see
Fig. 2(D2)).

This construction yields the succession rule .
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D1. /\//\@ -

5y

(@ 1
! 2 /\/\-v""o. b 1
D2. /\/{%\
/\/\/\ o 2
v "o (b) 2

Figure 2: The construction for Dyck paths according to the rule Q.

3.2 A construction for Schréder paths corresponding to 2,

We give now a similar construction for Schréder paths. Each Schroder path S

factors uniquely,
S=258;...5,

where S;,1 < i < k, is either elevated or a horizontal step on the z-axis. The path
S is said of even type (respectively odd type) if the number of elevated factors
following the rightmost horizontal step is even (resp. odd). The last descent £4(.S)
of S is the last run of fall steps, and P(S) is the set of its points, excepted the last
point on the z-axis.

The set of Schréder paths having length 2n is denoted S,,, and the operator
s : S — 2541
is defined by the following rules:

S1. If S is of even type, then ¥s(S) contains two Schrdder paths, obtained re-
spectively by glueing at the end of S, either a peak of height 1, resulting in
an odd type path, or a horizontal step, resulting in an even type path (Fig.
3(S1)).

S2. If S is of odd type, then 9s(.5) is the set obtained by performing the following
actions on every point A € P(S) (Fig. 3(52)):

(a) insert a peak of height 1 or a horizontal step;

(b) let A’ be the leftmost point such that A’A is a Schréder path. Then
cut A’A, elevate it by 1, and glue it at the end of S;

(c) let A” be the first left point such that A” A is a Schroder path; if A”A
is not empty, then replace it by a horizontal step and glue A” A at the
end of S; if A” A is empty then glue a horizontal step at the end of S.
In this way we obtain an even type path.
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Figure 3: The construction for Schréder paths corresponding to the rule .

The previous construction for Schréder paths, can be easily extended to Schréder
a-coloured paths by using a-coloured horizontal steps. It leads to the succession
rule Q,,,, with a > 2. For instance, when horizontal steps of two colours are
used, we obtain Schréder bi-coloured paths associated to the succession rule Q5.
Moreover, if we use a—coloured horizontal steps in the classical ECO construction
for Schroder paths we obtain a—coloured Schroder paths to which the rule Qg 1,
a > 2, is associated. So we have proved the equivalence between Q, and 2/, in a
combinatorial way.

4 A new construction for the classes B and 7

In this section we show how to transport an operator ¥ along a bijection, and we
provide a description that is independent from the bijection in two classes of trees.

The nodes of a planar tree T can be totally ordered by means of the prefix traversal,
and indexed increasingly by the integers, so that, given two nodes z; and z;,

T, <z &= <]
Accordingly, the maximum of two nodes is defined by
max(zr;,z;) = x; <= i< j.

Also, the total order allows to define notions like first, last, successor, predecessor,
etc., consequently, for every node p of T', we denote by (see Fig. 5 and 7):
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2;(T), £1(T), £s(T) the last, respectively, internal node, leaf, internal sibling;

f(p) the set of leaves following p;
father(p) the father of p;

- succ(p) the successor of p;

A common abuse of notation identifies a tree with the name of its root, and,
consequently subtrees as nodes. The total order extends to the the class F of
forests, whose objects are lists of trees, in the obvious way, making all the above
definitions relevant for forests as well.

For convenience we denote the tree consisting of a single point by “e”, and define
the “tree” and “raise” constructors

tree,raise : F — T

respectively, by
tree(T1,Ts,...,Tk) = (0,11, Ts,...,Tk),

and (see Fig. 4),
raise(Ty, Tn, . .., Tx) = tree(T1, T, . .., Tk, ®).

A useful operation on trees is the substitution. Given two trees 71,7T» € 7, the

raise

I T % A I ¢ % A
Figure 4: The raise constructor.

substituting of T3 by T} (T2 « T1) is denoted
subs(Ty, T2).

Moreover, we say that T is of even type (resp. odd type) if the length of its rightmost
branch is even (resp. odd).

>From here on, we consider this total order on two subclasses of planar trees,
namely, the class B of complete binary trees and the class 7 of Schroder trees.
The parameter p considered on these two classes of combinatorial objects is the
number of leaves.

There is a well-known bijection between Dyck paths and complete binary trees,
v:D—B
(for instance, see [10] and Fig. 5). For D € D and B = ¥(D), define
P(B) = f(¢:(B)) \ {&(B)},
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Figure 5: A complete binary tree B in Br, and the corresponding Dyck path.

and observe that the number of elevated Dyck paths in D corresponds to the length
of the right branch of B. Moreover, we have the underlying set bijection on nodes

ft(B)) = ¥(L(D));
P(B) = U(P(D)).

These observations lead to an almost direct translation of the operator ¥p. Indeed,
let B,, be the set of binary trees having n leaves, and let B € B,,, then the operator

95 : B, — 2Bnt1
is defined as follows (see Fig. 6):

Bl. if B is of even type then add two sons to £;(B), i.e.
¥p(B) = subs(raise(e), £;(B));

B2. if B is of odd type then ¥5(B) is the set of complete binary trees obtained
by performing on each leaf A € P(B) the following actions:

(a) subs(raise(e), A);

(b) let A’ be the largest complete binary subtree of B such that A = ¢;(A’);
then, do
subs(raise(A’), £;(B)) and subs(e, A’).

Clearly, ¥p and 95 share the same succession rule €.

4.1 A construction for Schréder trees

Let S’ be the class of Schroder paths, without horizontal steps at level 0, and let
Js' be the restriction of Y5 to S’. That is

9s/(S,) = 95(Sn) NSpyy » Y > 1.
As for Dyck paths, we show how to transport the operator 95/ along the bijection

[8](see Fig.7)
v.s —T.
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1 2

@1 ®1 @2 o2

Figure 6: The construction for complete binary trees.

This bijection provides a simple interpretation of the required parameters. Indeed,
a rise (resp. fall) step of S corresponds to a leftmost (resp. rightmost) sibling of
T, and the horizontal steps of S correspond to the internal siblings of T', that is,
those siblings strictly between the leftmost one and the rightmost one. The last
run of fall steps £4(S) corresponds to, either the leaves following the last internal
node £;(T), or, the last internal sibling £,(T") and its successors, whichever occurs
the last. Therefore, define

z = max(succ(4;(T)), £s(T)),

(2 =14 in Fig. 7), and set
P(T) = ¥'(P(S)) = {2} U f(z) \ {&(T)}-

Observe that this generalizes the corresponding definition in the class B.

Figure 7: A Schréder tree and its corresponding path.

Let 7,, be the set of Schroder trees having n-leaves. The operator

9 : T, — 2Tr 1
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is defined as follows (see Fig. 8):

ST1. If T is of even type, then 97 (T") = subs(raise(e), ¢;(T')) (see Fig. 8(ST1)).

ST2. If T is of odd type, then ¥7(T) is obtained by performing on each point
A € P(T) the following actions (see Fig. 8(ST2)):

(a) subs(raise(s), A), or add a left brother to succ(A);

(b) let A’ be the largest Schréder subforest of T, such that A = £;(A’);
then, do
subs(raise(A’), £,(T")) and subs(e, A');

(c) if A # z, let A” be the tree having father(A) for root; then, do
subs(A”, ¢,(T)), subs(e, A”), and add a right brother to A” .

ST2.

-

Figure 8: The construction for Schréder trees.

A careful comparison between the constructions associated to the operators ¥ and
95 shows some differences. Indeed, since we are concerned with the restriction ¥s-,
it was necessary to avoid the cases that generate a Schréder path with a horizontal
step at level 0. This occurs precisely when the node z is treated.
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5 Equivalence between two succession rules

We show now that the two succession rules Q, and €, defined in Section 1 have
the same generating function. The computation is based on the kernel method,
which was succesfully used for similar computations in [1, 3].

The bivariate generating function F(z,y) counts the structures which satisfy Q,
according to their size and the value of the associated label. Obviously, we suppose
the size of the structure represented by the root of the generating tree being equal
to 0. Therefore, we have:

F(z,y) <1 + % - xya) =y*+ xlyj;l F(z,1).
If
l—l—%—xyazo, (2)
then
v+ xlyjHF(x, 1) =0.

The solution of the equation (2) is:

rla—1)+1—+/(z(1 —a) —1)? — 4za

Yo(z) =

2za
so, the generating function for €, is:
-1
Flz,1) yolw) —1
zyo(x)
o oz(l-a)+1—/(2z(1 -a) —1)? —4za
= o .

In an analogous way we determine the generating function G(z,y) arising from
Q,. After some computations we get:

G(z,y) = Bi(2,y) + Ba(z, ), )
where
Bu(a,) =" +ala = Dy Ba(e, 1) + syag Balo)|
and
Bi(z,y) = oyBi(z, 1)+ay(a—1)Baa, 1>+fy_2332<x, D=1 Ba(e, ) oyBy(a, ),

which simplify into:

1+ By(z,1
Bi(e,1) = 1—m(+2i
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and @)
yol(z) — 1
B 1) =
2(z,1) a —za? + 3za — 2z — zyo(T)a + 2xye(z)
where
l—z(a—-1)— /(z(a—-1)—-1)2 — 4z
ey Lo2le =)= VG-I - &

2z

Substituting these values in (3), we have F(z,1) = G(z,1), that is Q, and €, are
equivalent.

6 Concluding remarks

The constructions we provided in this paper are natural because, in a sense, they
commute. Indeed let 7p and 75 be the projections

mp:S — D; and 7 : 7T — B;

which erase, respectively, the horizontal steps and the internal siblings. The fol-
lowing diagram

s Y T
T | l 78
p 2 B

commutes, and the ECO-operators also commute. We believe that the problem of
characterizing the natural bijections between objects (allowing the translation of
ECO-operators) is a problem that is worth investigating.

References

[1] C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, and
D. Gouyou-Beauchamps, (2002) Generating functions for generating trees,
Discrete Mathematics, 246 (1-3) 29-55.

[2] E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani, (1999) ECO: a method-
ology for the Enumeration of Combinatorial Objects, Journal of Difference
Equations and Applications, Vol.5, 435-490.

[3] M. Bousquet-Mélou, M. Petkovsek, (2000) Linear Recurrences with Constant
Coefficients: the Multivariate Case, Discrete Mathematics 225 (1-3)51-75.

[4] F. R. K. Chung, R. L. Graham, V. E. Hoggatt, M. Kleimann, (1978) The
number of Bazter permutations, Journal of Combinatorial Theory Ser. A, 24,
382-394.

[5] S. Corteel, (2000) Séries génératrices exponentielles pour les eco-systémes
signés, in D. Krob, A.A. Mikhalev, A.V. Mikhalev (Eds.), Proceedings of
the 12-th International Conference on Formal Power Series and Algebraic
Combinatorics, Moscow, Russia, Springer, 655—666.



ECO-system Equivalence 81

[6] S. Gire, (1993) Arbres, permutations a motifs exclus et cartes planaires:
quelques problemes algorithmiques et combinatoires, Thése de I'université de
Bordeaux 1.

[7] O. Guibert, (1995) Combinatoire des permutations a motifs exclus en liaison
avec mots, cartes planaires et tableauzr de Young, Theése de 'université de
Bordeaux I.

[8] J.G. Penaud, E. Pergola, R. Pinzani, O. Roques, (2001) Chemins de Schrider
et hiérarchies aléatoires, Theoretical Computer Science, 255, 345-361.

[9] E. Pergola, R. Pinzani, S. Rinaldi, (2000) A set of well-defined operations on
succession rules, Proceedings of MCS, Versailles,1, 141-152.

[10] R. P. Stanley, (1986) FEnumerative Combinatorics, Vol. I, Wadworth &
Brooks/Cole, Monterey, Cal.

[11] R. A. Sulanke, (2000) Moments of Generalized Motzkin Paths, J. of Integer
Sequences, Vol. 3, article 00.1.1.

[12] J. West, (1995) Generating trees and the Catalan and Schroder numbers,
Discrete Mathematics, 146, 247-262.

Srec¢ko Brlek

LaCIM, Université du Québec & Montréal
CP 8888, Succ. Centre-Ville, Montréal (QC)
Canada H3C 3P8

brlek@lacim.ugam.ca

Enrica Duchi, Elisa Pergola, Renzo Pinzani

Dipartimento di Sistemi e Informatica
Via Lombroso 6/17, 50134 Firenze, Italy
{duchi, elisa, pinzani}@dsi.unifi.it



Trends in Mathematics, © 2002 Birkhduser Verlag Basel/Switzerland

Random Boundary of a Planar Map
Maxim Krikun, Vadim Malyshev

ABSTRACT: We consider the probability distribution Py on the class of near-
triangulations T of the disk with N triangles, where each T is assumed to have
the weight y™, m = my = my(T) is the number of boundary edges of T. We find
the limiting distribution of the random variable my(T) as N — oo: in the critical

point Yy = Yor = 6% the random variables N~ 2my converge to a non-gaussian
distribution, for y > y., for some constant c the random variables N~2 (my —cN)
converge to a gaussian distribution.

1 Introduction

Enumeration of maps is an important part of the art of combinatorics. It started
in sixties with the papers by W. Tutte. He invented powerful ”deleting a rooted
edge” and analytic "quadratic” methods, that have been exploited and developped
in hundreds of subsequent papers, until nowadays. Unfortunately since then, no es-
sentially new analytic methods for enumeration of maps appeared in combinatorics
itself. This lack of essentially new ideas was compensated by two breakthroughs
in other fields of mathematics and physics, where maps played an important role.
One breakthrough occured in theoretical physics in eighties. Maps provided a
discrete approximation to the string theory and two-dimensional quantum grav-
ity. To deal with maps new powerful matrix methods were invented. Second one
was initiated by A. Grothendieck in his program devoted to algebraic geometry
and Galois theory. Some connections between these two breakthroughs were un-
derstood in nineties as having essential physical interpretation. We do not give
references here, see a detailed introduction and references in {5]. For several rea-
sons enumerative combinatorics of maps has been developping all this period in a
stand alone way.

We study here some probabilistic problems for maps. Enumeration of maps deals
in fact with the uniform distribution on some finite class .A of maps. If this class
has |A| elements then the probability of each map T is P(T) = |A|~'. In physics
one is interested in the probability when maps T € A have non-negative weights
w(T'), the weights have a special Gibbs form, derived from physics. We use one
below. Then the probabilities are P(T) = Z 'w(T), where Z = > ., w(T)
is called a partition function. We hope that rigorous probability approach can
establish interconnections between differents applications of maps clearer.

As a particular case of probability for maps, we consider classes 7o(IN, m) of rooted
maps of a disk, called rooted near-triangulations in [2], with N triangles and
m edges on the boundary. Enumeration problem for the number Co(N,m) =
|7o(N, m)| was completely solved by Tutte [1], see also [2]. We remind that this
class of maps is defined by the following restrictions: the boundary of each cell
consists exactly of three edges, moreover the map is assumed to be nonseparable,
thus multiple edges are allowed but no loops.

In this paper we consider the probability distribution Py on a class To(N) =
u2_,70(N, m) of maps with fixed N but variable boundary length, given by the

B. Chauvin et al. (eds.), Mathematics and Computer Science 11
© Springer Basel AG 2002
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formula
Pn(T) = Zy'y™™).

Here y is a positive parameter, that corresponds to y = e~*/2 according to [4], and
m(T) = my(T) is the number of the boundary edges of the triangulation 7. We
will be interested with asymptotic propeties of the random variable my = my(T).
Its distribution is given by

Pn(my =m) = Zy'y™Co(N, m), m > 2

where we use the normalization factor (canonical partition function)

Znw)= Y, exn(=gm(T) =Y y"Co(N,m)

T:F(T)=N m=2

Note that N and m are always of one parity, because m + 3N equals twice the
number of edges, consequently Py(my =m) =0if N +m is odd.

In [4] relations with quantum gravity are explained, and several equivalent defi-
nitions of the distribution Py are given, showing its naturalness, also in [4] the
phase transition phenomena for my is described.

Here we essentially strengthen the results of section 4.2 of [4] and get explicit
expressions for the limiting distributions for all three phases. Moreover, complex
analytic methods we use here are quite different from [4], where the explicit com-
binatorial formula for Cy(N,m) by Tutte was used. The method used here seems
to be more adequate also in more general situations.

In the subcritical region a finite limit of my exists. In the critical point and the
supercritical region by choosing an appropriate scaling we get a limiting distribu-
tion, which is non-gaussian or gaussian correspondingly. This is summarized in
the following three theorems.

Here and further the critical parameter value is y., = %.

Theorem 1.1 (subcritical). If y < y., then for any z,|z| < 1, the generating
function of (mn — 2),

fn(z) = Z (m—2)Py(my = m)zm_Q,

m=2

for even N tends as N — oo to

(1 — VByz)—%2 + (1 + Voyz)~%/2
(1= V6u) 2+ (14 Voy) o

feven (Z) -

and for odd N to
(1 = vVBy2) %% — (1 + VByz)"3/2
(1—VBy)=3/2 — (1 + Voy)=3/2

Theorem 1.2 (critical). If y = y., then &y = :/'ﬂﬁ tends in probability to the
random variable £ with the density

fodd(z) =

22

2
pe(x) = 3—§\/Ee" T, z>0.
2
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Theorem 1.3 (supercritical). If y > y., then

1 _E .
Emy = aiN(1+0(3)), m—NV_N—"”V P A0, 02),

where
2413 4+ 8y — (12¢% + 1)1/4y% + 2
1 = 3
VAay? +2(1 + 4y? — 2y/4y? + 2)
52— 32y + 162 + 1 — (16y3 + 4y)+/4y? + 2

(2y2 +1)/4y? + 2(1 + 4y2 — 2y~/4y? + 2)2

2 The generating function

It is known [1, 2] that the generating function

Us(z,y) = > Y Co(N,m)cNy™? (1)

N=0m=2

is analytic in (0, 0) and satisfies the following equation (in a neighborhood of (0, 0))
Uo(z,y) = zy~ ' (Uo(2,y) — Uo(x,0)) + zyUq () + 1, (2)
which also can be rewritten as
(22y°Us(z,y) + ~y)* = (z — y)* — 4ay® + 42”y*S(2), 3)

where S(z) = Up(z,0). We will need some analytic techniques which slightly
differs from the original method by Tutte.

Denote by D(z,y) the righthand side of (3) and consider the analytic set D =
{(z,y) : D(z,y) = 0} in a small neighbourhood of (0,0). This set is not empty as
it contains the point (0,0), and it defines the branch of the function y = y(z) such
that y(x) = £+ O(z?) in a neighbourhood of z = 0, we denote it further mostly by
h(z). In particular, it will be shown that h(z) and S(z) are algebraic functions.
Because D(z,y) is a square of an analytic function, we have two equations valid
at the points of D

Dizy) =0, 22V _y
Oy
or
4%y S(x) + (z — y)* — 4y’ =0, (4)

822yS(z) — 2(z — y) — 12zy? = 0.

One can exclude the function S(z) by multiplying the second equation (4) on
and subtracting it from the first equation, then

y=z+2° (5)

or
x

T ©)

Y
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We have exposed the quadratic method belonging to Tutte. Now we have to get
more information about analytic properties of the solution.

By the theorem on implicit functions equation (6) gives the unique function h(x) =
y(z), analytic for small z with h(0) = 0. It is evident from (6) that the convergence
radius of h(z) is finite, and its series have nonnegative coefficients. Moreover, y(z)
is an algebraic function satisfying the equation y3 +py+q = 0 with p = —%, q=73.
The polynomial f(y) = y3+py+q has multiple roots only when f = fy = 0, which

gives T4 = £,/ 527 These roots are double roots because f,/ # 0 at these points.
From f, = 3y®> — 1 =0 and f = 0 it follows that y(z4) = :i:T From (6) it also
follows that z(—y) = —z(y) and thus y(z) is odd. It follows that y(z) has both
T4 = E4/ 22—7 as its singular points.

From (4) we know S(z) explicitely. The unique branch y(z) = h(z), defined by
equation (6), is related to the unique branch of S(z) by the equation

1 — 3h?(z)

0= T owae

=z 2h%(1 - 3h?) (7)

that is obtained by substituting ¢ = h — 2h3 to the first equation (4).
We know that S(z) has positive coefficients, that is why z, = / % should be

among its first singularities. Then z_ = —,/ % should also be a singularity of
both h(z) and S(x). We proved also that the generating functions are algebraic.

The principal part of the singularity at the root zy is h(x) = A(z — ;)42 for
some integer d (as the sigularity is algebraic and the root is a double root). As
Y+ = h(z4) is finite then d > 0. At the same time h'(z) = ﬁgm that is oo
for x = z,. It follows that d = 0. For S(z) we have the same type of singularity
A(z—24)* % but here d = 1 as S(z,.) and §'(z, ) are finite but S”(z..) is infinite.

As y = h(z) is a double root of the main equation, we have by substituting (7) to
(3)

D(z,y) = 4y°h*(1—3%h%) + (h(1 — 2r?%) — y)? — 4y°h2(1 — 2R?)
= w-h (— ~ 4ay) (8)
Remember that D(z,y) = (22y2Us(z,y) + = — y)2, so
(g — _ 22
Uo(z,y) = —y)+ (- —y) d(x’y), d(z,y) = 35 — day. 9)

2xy?

In the last equality we have chosen the sign appropriately, that is the sign -+ should
be chosen so that for £ = y > 0 the value Uy(z,y) were positive.

Singularities of Uy(x,y) Let us prove that for any fixed y € (0, y-) the minimal
singularities of Uy (z, y) (as a function of z) coincide with the minimal singularities

of h(z) that is with z+ = +,/%. Consider the right hand side of (9). All
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singularities of Up (2, ) that do depend on y are described by the equation d(z,y) =
2 2
0, which is equivalent to ﬂE@ = y~!. The series of the function 4”—2(‘”) has all

coefficients nonnegative, that’s why for |y| < yer

max
|z|<z4

4h%(z
) iy <y

Thus for y < yr the minimal singularities are at x+. Moreover, the equation

2

x
becomes, as = h — 2h3,
h —2h3

Its solutions are
1
hip=-y=x 5\/4y2+2, T12 = 2y+8y33{24y2\/4y2+2.

In particular this means that for every real y the solution of (10) is real too. As
we are interested only in y > 0, a minimal singularity is unique and is given by
choosing minus in the latter equation,

z1(y) =2y + 8y3 — 4y%\/4y? + 2. (11)

For each y > % this gives z1(y) < Ter = ,/%, equalities are achieved simultane-

ously. This can be easy checked by plotting a graph of (h —2h3)/h? and using the
fact that the function h(z) is strictly increasing, we omit this construction.

3 Subcritical region

The canonical partition function is the coefficient in the expansion

o0

Uo(z,y) = Y Zn(y)z".

N=0

Uo(z,y) is algebraic, and we will prove that for any fixed y,0 < y < y.r, in the
vicinity of x4
x

)
T+

where for fixed y the functions f4 o, f+ 1 are analytic near 1 correspondingly, the
values of fi 1 at x+ are nonzero, namely

N

UO(-Ta y) = fﬂ:,O(ma y) + fi,l(xa y)(l -

613 643
fra(zy,y) = W’ fale-y) = ZW
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Expand h(z) near z; = /% int ==z, —

1 —1—t1/2 _ lt_ %ﬁ/?
V6 6 6

Substitute (12) together with = 24 — t to the expression (9) for Up(z,y) and
expand in t1/2

h(z) = +0(t?) . (12)

63/43
Uo(zy — t,y) = +bye (Yt + ———— 32 L O(2).
o(zs —t,y) = ay(y) + b1 (v) 1= Voy) 2 (%)
Similary we find
63/43

Up(z— +t,y) =a_(y) +b_(y)t + 32 + O(t?),

T Vo
Then as N — ¢

R
(1-V6y)*2  (1+V6y)

This is known under different names (for example, as Darboux theorem in [3]).

However, it can be proved elementarily, using the following expansion for a = %

Zn(y) ~ 6713 )M -0 1)

19 = (z9 — 2)° ZNT‘“ 2e NN (14)

where [zV]F(z) stands for the N-th coefficient in the F(z) power series. Secondly,
subtracting this main term and proving that the rest is asymptotically negligible.

In fact, (13) should be read as two separate equations,
1 i 1
(1-v6y)32  (1+V6y)

with a plus sign standing for even values of N and a minus sign for odd.

le

Z(y) ~ 6¥3( 77 V(s - )3,

Finally for given y the generating function for my —2 is obtained from the partition
function Zx(y) by normalization, that is

Zn(yz)

z) = Z P{my =m}:"? = Zn@)

m=2

and after taking limits in N (by even an odd values separately) we come to the
assertion of Theorem 1.1.

4 Critical point

In a critical point the expectation of my has no finite limit. To describe the
limiting distribution we shall calculate the asymptotics (as N — o0) of the factorial
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moments of my and find the appropriate scaling. That is we have to study the
singularities of all the partial derivatives aij—T:LUo(x, y) at ¥y = yer, as we have done
in the previous section for Up(z,y) only.

From the previous analysis we know that for y = y., the singularity defined by
d(z,y) = 0 is among the minimal ones. According to (11) is equal to /% and

coinsides to x4 singularity of h(z), so there are two minimal singularities at points
x4+ and z_.

Lemma 4.1. Putt = x — xg. Then there exist functions on i(t) = @ni(t,y),i =
0,1, 2, analytic in the vicinity of t = 0 such that

Us™ (@, Yer) = @n,0(t) + n,1 () 472 4 o a(6) ¥/477/%, 0n1(0) #0
Proof. Instead of calculating the y-derivatives of Uy(z,y) we calculate them for

2z2y%Uy(z,y), which is much simpler, but keeps all information on Co(N,m). We
have

1/2
2y Us(e,y) =y —z+ (h—y)Vic( 5 —v) , 220,
0 T 1/2
wyUo(x,y)=y—x+(h—y)v—4x<—m+y) , <0,

To get the derivatives put y = y.r + v and consider the formal series in u:

2:1;y2U0(CL‘, y) = (ycr - I) +u+ ((h - yc"‘) - 'U,)
Y=Yertu
T 1/2—n n
X \/ Z (4h2 ycr> u, z Z 07
2xy2Uo($, Y) = (Yor—x)+u+ ((h_ycr) _“)
Y=Yer+u
T3, o 1/2-n
N — — 27 —u)” <
§ 4x7; n!r(—%)< 4n? “’“) (Fw)?, e <0.

For n > 1, > 0 the n-the coefficient (we denote it [u™]) is equal to

n—3 T 3/2-n
i, ) - Vo )
(n— %) T 1/2—n
—(h— ycr)\/ﬂle_%) (4_h2 - ycr)
I(n—3) T 3/2-n
= Vi e (s )
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and similarly forn > 1, z <0

[u™] (2xy2U0(x, y)ly:y0+u> - \/_—llxr‘(n—_%)_< T

IR oD _(%)%)< imw)” e
(1+(h Yor) %( 4h2+ycr) 1) (16)

Next we need the following auxiliary expansions

T -1 13 1/4,1/2
(h=ver) (g = ver) |, _, =5+ 6" +00),
€z 1 3/4,1/2
(g7 = ver) |, = 367407 400
(h— ycr)( 4h2 + ycr) ot =-1+ 561/4151/2 + O(t),
( +y ) 16+ Lesar o
4h2 “Je=z_+t 3 3 ’

(note that the second one has no constant term). Using these expansions we obtain
from (15) and (16) the behaviour of the Up(z, y) derivatives near z, namely

T

WUO( y)

= const t¥/47"/2(1 + O(t'/?)),
T=x4—1

8_y"U0(x’ Z/)

= const + O(t/?),
=z 41
Lemma, is proved.

The factorial moments of my are

3) 1 (-3
My(N) ~27%3? I ‘11)N5, M3(N) ~ 2—434—(1 4)N,
I'(=3) I'(3)
[z"]Us -2 1 _F(_%) 2
M, (N) = ~ 2723 (20 — 1)(2n — 5)! — N2,
[zV1Uo NGRS
Consequently the moments of a random variable £ = limy_,oc mpy/ VN are
() (-9 _9
E¢=3(3/4)=—%~, E&€=303/4)°—xL =,
Ny rd 14
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The moment generating function for £2 is uniquely defined by this sequence (by
classical uniqueness criteria, see sections VIL.3 and VIIL.6(b) of [6]), as they grow
slower than C"n! for some C) and is equal to

n

— n(ﬂs) —
%2(3):;&2 —— = (149574

Using the Laplace transform we get the density of £2

3 1 ¢
pe2(t) =372 e"s¢1/4
¢ r(3)

5 Supercritical region

We shall prove that Fmy ~ cN and all the semiinvariants (coefficients in the
Taylor expansion of the logarithm of the generating function) of my are of order
N. Then it follows that the semiinvariants of order greater than two of a scaled

random variable (my — Emy/v' N tend to zero as N — oo, which means the
imiting distribution is uniquely defined by its moments (see above), and moreover
it is gaussian (as the log of its generating function is a quadratic polynomial).

The semiinvariants of my are given by the formula

0
sk(N) = (a_)\)kln(PN()‘)lAzo, k>1,

where
[zN]Us(z, ye*)
[zNUo(,y)

ined thing is the characteristic function of my.

(,ON(t) = Ee)‘mN =

We saw that for fixed y > y., the minimal singularity of Up(z,y) (as the function
of z) is unique and is given by (11). The expansion of Up(x,y) (as the function of
x) at the singular point z..(y) is

Uo(@,y) = aly) + b(y)(@er(y) — 2)** + O(|zer (y) — )
for some constants a(y), b(y). Then

I'(N —3)

% i_N
NID(—3)

[zV)Us(z, y) ~ b(y)[z"]( — zer ()2 = b(y) zer(y)2 N,

In oy (t) = In[zN]Us(z, ye*) — In[z" |Up(z,y) ~ N( —1In zcr(yeA) + lnxcr(y)>.

It follows that all semiinvariants of my are O(N).
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6 Some remarks

Equivalent presentations of the model The factor y™ = exp(—4m) is quite
natural: it is derived from the Hilbert-Einstein action in two-dimensional pure
quantum gravity, see introductory exposition in [5]. The case y = 1 that could be
natural for combinatorics seems to have no special interest for physics, where the
critical point is of most interest. We could assign weights to maps as exp(—uL(T),
where L(T) is the number of all edges of the map T. This would give the same

probability distribution because of the formula |L(T)| = I + @

Second kind phase transition The free energy for this model is defined as

. 1
F(p) = lim —log Zon, Zo,N = ;exp{—ﬂL(T)}

The next theorem gives an explicit formula for the free energy, it corrects a cal-
culational mistake in the corresponding result in [4]. It shows also that the phase
transtion is a second order phase transition, as in the critical point the free energy
is differentiable but not twice differentiable.

Theorem 6.1. The free energy is equal to -%u+ln (\/222) if y < yer and is equal
to _%N + lnxcr(y) ny > Yer-

Proof. It easily follows from the proofs in the preceding sections. We have

Zon = 3 exp{-uL(T)} = 3 exp{~ 5 (3N-+m)} = exp{ - 3uN} a¥ Uoz, e /),

1 N —u/2
N log ([m 1U6(1, e ))
Put y = e~#/2. Following section 3, as y < Y,

[&V0o(1,e7#/%) = f(y)[="] (w0 — x)*/2,

1 3
-1 -2
N 108 Zo,n Sh+

1 3 3 27
NlongvN—>—§u+lnx0=—§u+ln( 7)
When y = y,,: N N
[ Us(1,e7#/2) = f(y)[&") (o — 2)*/*
1 3 27
ﬁlOgZO,N_’_iﬂ'Hn( —2—>

Following section 5, as y > ycr:
[2M)Uo(1,e7#/%) = b(y)[e")(xer (v) — 2)'/2,
Ter(y) = 2y + 8y3 — 4y \/4y2 + 2 being defined as in (11) we get
1

N log Zo,n — —gu + Inz.(y)
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Further problems The similar problem for two holes in the sphere could be the
next solvable problem, that is consider a ring (or cylinder) with two boundaries of
lengths my,ms. Joint distribution of these two random variables is to be found.
Not that if for one boundary there is the combinatorial formula for Co(N, m)

_2772(2m + 35 — 1)!(2m — 3)!
Co(N,m) = (G + DI2m + 25)((m — 2)!)2

by Tutte (used in [4]). Nothing similar is known for the number Co(N,m1, m2)
of rooted near triangulations of a ring with N triangles and the lengths m;, mg of
the boundaries, where only analytic methods can be of use.
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Enumeération des 2-arbres k-gonaux
Gilbert Labelle, Cédric Lamathe, Pierre Leroux

RESUME : Dans ce travail', nous généralisons les 2-arbres en remplacant les
triangles par des quadrilatéres, des pentagones ou des polygones a k cotés (k-
gones), ot k > 3 est fixe. Cette généralisation, aux 2-arbres k-gonaux, est naturelle
et est étroitement liée dans le cas planaire aux arbres cellulaires. Notre objectif est
le dénombrement, étiqueté et non étiqueté, des 2-arbres k-gonaux selon le nom-
bre n de k-gones. Nous donnons des formules explicites dans le cas étiqueté, et,
dans le cas non étiqueté, des formules de récurrence et des formules asymptotiques.

ABSTRACT: In this paper', we generalize 2-trees by replacing triangles by
quadrilaterals, pentagons or k-sided polygons (k-gons), where k > 3 is given. This
generalization, to k-gonal 2-trees, is natural and is closely related, in the planar
case, to some specializations of the cell-growth problem. Our goal is the enumer-
ation, labelled and unlabelled, of k-gonal 2-trees according to the number n of
k-gons. We give explicit formulas in the labelled case, and, in the unlabelled case,
recursive and asymptotic formulas.

1 Introduction

L’espéce des arbres bidimensionnels, ou 2-arbres, a été bien étudiée dans la littér-
ature. Voir par exemple [4] et [2, 3]. Essentiellement, un 2-arbre est un graphe
simple connexe constitué de triangles qui sont liés entre eux par les arétes de
maniére arborescente, c’est-a-dire sans former de cycles (de triangles). Dans [5],
Harary et al. ont énuméré une variante des arbres cellulaires (relié au “cell-growth
problem”), & savoir des 2-arbres k-gonaux plans et planaires?, dans lesquels les
triangles ont été remplacés par des quadrilatéres, des pentagones ou des polygones
a k cotés (k-gones), ou k > 3 est fixe. De tels 2-arbres, batis sur des k-gones, sont
appelés 2-arbres k-gonaux. Cette généralisation apparait naturellement et le but
de ce travail est ’énumeération des 2-arbres k-gonaux libres, c’est-a-dire vus comme
graphes simples, sans question de planarité. La figure 1 a) propose un exemple de
2-arbres k-gonal, dans le cas ou k = 4.

Nous disons qu’un 2-arbre k-gonal est orienté si ses arétes sont orientées de fagon
telle que chaque k-gone forme un cycle orienté, voir la figure 1 b). Notons par
@ et par @, les espéces des 2-arbres k-gonaux et des 2-arbres k-gonaux orientés
respectivement. Pour ces deux espéces, nous utilisons les symboles —, ¢ et ¢ en
exposant pour indiquer que les structures ont été pointées en une aréte, en un
polygone, et en un polygone muni d’une aréte distinguée, respectivement.

Notre objectif est le dénombrement, étiqueté et non étiqueté, des 2-arbres k-gonaux
selon le nombre n de k-gones. Nous donnons des formules explicites dans le cas
étiqueté, et dans le cas non étiqueté, des formules de récurrence et des formules
asymptotiques. Pour cela, nous adaptons 'approche de Fowler et al. dans [2, 3]

! Avec I’appui du FCAR. (Québec) et du CRSNG (Canada) .
2 Au sens ol toutes les faces, a part la face externe, sont des k-gones

B. Chauvin et al. (eds.), Mathematics and Computer Science 11
© Springer Basel AG 2002
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77

a) b}

Figure 1: Un 2-arbre 4-gonal non orienté et orienté

qui correspond au cas k = 3. En particulier, les 2-arbres sont étiquetés aux k-
gones. La principale difficulté & cette extension vient, comme on le verra, du cas
ol k est pair.

Les deux premiéres étapes sont assez directes. Il s’agit d’étendre le théoréme de dis-
symétrie au cas k-gonal et de caractériser 'espéce B = @~ des 2-arbres k-gonaux
munis d’une aréte distinguée et orientée, 4 I’aide d’une équation fonctionnelle de
type lagrangien. Le premier résultat est une extension immédiate du cas k = 3 et
la démonstration est omise.

Théoréme 1.1. THEOREME DE DISSYMETRIE. Les espéces @ et A, des 2-arbres k-
gonauz orientés et non orientés respectivement satisfont les isomorphismes d’espé-
ces suwants :

a, +ad = Qa,+ ag, (1)

a-+a° = a+a*. (2)
Dans la prochaine section, nous caractérisons ’espéce B = @ et nous en don-
nons ses propriétés. Par la suite, nous exprimons les diverses espéces pointées qui
apparaissent dans le théoréme de dissymétrie en fonction de I'espéce B et nous en
déduisons les résultats énumeératifs désirés pour les espéces @, et . Le cas orienté,
plus simple, est traité d’abord, dans la section 3. Le cas non orienté, suit, dans la

section 4, en distinguant les deux cas de parité de &, pour le dénombrement non
étiqueté. Enfin, les résultats asymptotiques sont présentés dans la section 5.

2 L’espéce B=a"

L’espéce B = @~ joue un role fondamental dans ’étude des 2-arbres k-gonaux.

Théoréme 2.1. L’espéce B = A~ des 2-arbres k-gonauz pointés en une aréte
orientée satisfait I’équation (isomorphisme) fonctionnelle suivante :

B = E(XB*™), (3)
ot F représente l’espéce des ensembles.

Preuve. On décompose une @~ -structure en un ensemble de pages, c’est-a-dire
en sous-graphes maximaux qui partagent un seul k-gone avec l’aréte distinguée.
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Pour chaque page, 'orientation de I'aréte pointée permet alors de définir un ordre
et une orientation sur les k — 1 arétes restantes du polygone possédant cette aréte,
selon la figure 2 a) pour le cas impair, et b) pour le cas pair. Ces arétes étant
orientées, on peut alors y accrocher des B-structures. On en déduit alors ’équation

(3). |

s F\KA\\ /"FN’/; B
B _ \ [ B —=

L \’ K A B J

r/K] 3;\‘ /><\] 4 %\

Q) gy a—y

N N

a) b)

Figure 2: Une page orientée a) k =5b) k =

On peut relier simplement I'espéce B = (4~ & celle des arborescences (arbres
enracinés), A, caractérisée par ’équation fonctionnelle A = XFE(A), ou X est ici
Pespéce des sommets. En effet de (3), on déduit successivement

(k—1)XB*!=(k-1)XE((k - 1)XB*1), (4)
sachant que E™(X) = E(mX), et, par unicité,
(k—1XBF1 = A((k - 1)X). (5)

Finalement, on obtient ’expression suivante pour ’espéce B en fonction de 'espéce
des arborescences :

Proposition 2.2. L’espéce B = G~ des 2-arbres k-gonauz pointés en une aréte
orientée vérifie

B= ) (6)

Proposition 2.3. Les nombres a;’, a,’ , et by, =@, de 2-arbres k-gonauz

Tn1,Mn2,.
pointés en une aréte orientée et ayant 711 lf: -gones, respectwement étiquetés, lais-
sés fires par une permutation de S, de type cyclique 1™272 ... et non étiquetés,
satisfont les relations suivantes :

a; = ((k=Dn+1)""' =m", (7)

oum=(k—1)n+1 est le nombre d’arétes,

n1,"2, H 1+ - 1 Zdnd nl_l ]- + - ]. Zdnd (8)

dli dli.
d<i
et B
- Z |a| + 1 31 02 s bak—lbn_j7 bo = 1, (9)
n 1<j<n «
la deuziéme somme étant prise sur les (k—1)-uplets d’entiers o = (a1, @2, ..., 0k_1)

tels que |a| + 1 divise Ventier j, ot o] =0 + a2 + -+ + ag—1.
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Preuve. Les formules (7) et (8) s’obtiennent en spécialisant avec u = (k — 1)~!
les formules suivantes, données par Fowler et al. dans [2, 3],

C%?)”:}:mﬂ+nw*%} (10)

n>0

Z( A(X/u) )M ==

X/

3 —-——Wjil!‘;g;;!'. [o+ g Zdn - 1+- Y dng). (1)

ni,na,... dl'L d<i

La formule (7) peut également se voir directement par une adaptation de la bi-
jection de Priifer. Pour obtenir la récurrence (9), il suffit de prendre la dérivée
logarithmique de I’équation

- i Bk—1( i
B(z) = exp Z az_ﬂ ; (12)
>1 !
ou B(z) = 2 n>0bn2", qui découle de la relation (3). u

La suite des nombres {b,}, pour k = 2,3,4,5, est répertoriée dans ’encyclopédie
des suites d’entiers [11] et ’équation (3), dans I’encyclopédie des structures combi-
natoires [6]. Le comportement asymptotique des nombres b, est analysé, notam-
ment en fonction de &, dans la section 5.

3 Cas orienté

Commencons par déterminer les espéces pointées qui apparaissent dans le théoréme
de dissymétrie. Ces relations sont assez immédiates et la démonstration est laissée
au lecteur.

il

Q PRI .
o €t Qo sont caractérisées par les isomor-

Proposition 3.1. Les espéces @, Q
phismes suivants

> =B, a;=XCy(B), a2=XB* (13)
ou B = Q™ et Cy représente l’espéce des cycles (orientés) de longueur k.

Le théoréme de dissymétrie permet d’exprimer la série génératrice ordinaire @, ()
des 2-arbres k-gonaux orientés non étiquetés, en termes des espéces pointées,

(z), (14)

et par la proposition 3.1, nous pouvons alors exprimer @,(z) en fonction de E(m) =
a (z).

o
4

o(z) = G, (z) + @, (z) - G,
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Proposition 3.2. La série génératrice ordinaire Q,(x) de Uespéce des 2-arbres
k-gonauz orientés non étiquetés est donnée par l’erpression

0, (z) = Z ¢(d

d|k
d>1

k—l

:..lz-

zB* (). (15)

Corollaire 3.3. Les nombres ao p, et Gon de 2-arbres k-gonauz orientés étiquetés
et non étiquetés, sur n k-gones sont donnés par

o = ((k=Dn+1)"2=m"? n>2, (16)
~ k k E
Gom = bn ——b( )1+k2¢ " (17)
2
ot bgj) = Z bi,bi, - .. bi,, représente le coefficient de x* dans la série Bi(z),
’Ll++’b]:’b

avec bY) = 0 si 1 est non entier ou négatif.

Preuve. Pour le cas étiqueté, il suffit de remarquer que a,,” = ma, ». Dans le cas
non étiqueté, I’équation (17) s’obtient directement de (15). [ |

4 Cas non orienté

Dans le cas non orienté, le nombre a,, de 2-arbres k-gonaux étiquetés sur n poly-
gones satisfait 2a, = a,,+ 1, puisque le seul 2-arbre k-gonal orienté étiqueté laissé
fixe par changement d’orientation pour un nombre de polygones donné, est celui
dont les polygones partagent tous une aréte commune. On obtient

Proposition 4.1. Le nombre a, de 2-arbres k-gonauz étiquetés sur n polygones
est donné par

an =

-;- (m"2+1), n>2, (18)

oum=(k—-1)n+1.

Pour le dénombrement non étiqueté des 2-arbres k-gonaux (non orientés), nous
allons considérer certaines espéces quotients de la forme F/Zjy, ou F est une
espéce de structures “orientées” et Z = {1,7}, est un groupe dont 'action de
7 sur les F-structures est de renverser l'orientation. Une structure d’une telle
espéce quotient consiste alors en une orbite {s,7-s} de F-structures selon 'action
de ZQ.

Par exemple, les diverses espéces pointées de 2-arbres k-gonaux , @—, G° et A%,
s’expriment comme espéces quotients des espéces de 2-arbres k-gonaux orientés
correspondantes :
a~ a?g XCi(B as  XBF
A L - t)
ZQ ZQ Z2 Z2 Z2
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Pour le dénombrement non étiqueté de telles espéces quotients, on utilise la formule
suivante qui est évidente :

(F/2)"(@) = 5 (F(2) + Fr (z), (20)

o Fr(z) = 3,50 [Fixz (7)|z™ est la série génératrice des F-structures non étique-
- n
tées laissées fixes par laction de 7, c’est-a-dire par changement d’orientation.

Toutefois, le calcul de ces séries F, (x) est assez complexe et il est avantageux
de différencier en deux cas selon la parité de k.

4.1 Cas k impair

On peut remarquer, en observant les figures 2 a) et b), que dans tout k-gone
contenant ’aréte pointée (mais non orientée), d'une @~ -structure, il est possible
d’orienter les k — 1 autres arétes, dans la direction s’éloignant de I’aréte pointée
comme dans la figure 2 a), lorsque k est impair, mais qu’il restera une aréte
ambigué si k est pair. Ce phénoméne permet d’introduire des espéces squelettes,
lorsque k est impair, en analogie avec 'approche de Fowler et al. [2, 3] ou k = 3.
Ce sont les espéces a deux sortes Q(X,Y), S(X,Y) et U(X,Y), ou X représente
la sorte des k-gones et Y celle des arétes orientées, définies par les figures 3 a), b)
et ¢), ot k = 5. En analogie avec le cas k = 3, on a les propositions suivantes.

a) b <)

Figure 3: Espéces squelettes a) Q(X,Y), b) S(X,Y) et ¢) U(X,Y)

Proposition 4.2. Les espéces squelettes Q, S et U admettent des expressions en
termes d’espéces quotients :

Q(X,Y)=E(XY?)/Zy, S(X,Y)=Ci(E(XY?))/Zy, UX,Y)=(E(XY?))* /(Zg.)
21

Proposition 4.3. Lorsque k est impair, k > 3, on a les expressions suivantes
pour les espéces pointées de 2-arbres k-gonauz , o B = Q™ :

- =Q(X,BT), a°=S8(X,B*T), a°=U(X,B). (22)

Dans le but d’obtenir des formules d’énumération, il faut préalablement calculer
les séries indicatrices de cycles des espéces @, S et U.
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Proposition 4.4. Les séries indicatrices de cycles des espéces Q(X,Y), S(X,Y)
et U(X,Y) sont données par la formule

1

Zq = 3 (ZE(XY2) + Q>, (23)
1 E=1

Zs = 3 ZowB(xy?)) +4- (P20 Zpxy?)) % ), (24)
1 B=1

v = 3 (Z(E(xyz))k +q-(p20Zpxy?)) 2 ), (25)

2
ot ¢ = ho(z1y2+pao(z185%2)), p2 représente la fonction somme de puissances de
degré deuz, h la fonction symétrique homogéne et o, la composition pléthystique.

Preuve. La formule (23) et la méthode utilisée se trouvent dans [2, 3]. II s’agit
de dénombrer les F/(X,Y)-structures colorées non étiquetées laissées fixes par 7.
Dans le cas de S, on doit laisser fixe une Cx(E(XY2))-structure colorée. Pour cela
le cycle de base de longueur k doit posséder au moins un axe de symétrie passant
par le milieu d’un des cotés. On peut voir que lorsqu’une telle structure posséde
plusieurs axes de symeétrie, le choix d’un axe est arbitraire. De part et d’autre de
'axe de symétrie, chaque E(XY?)-structure coloree doit avoir son image miroir; ce

qui contribue pour un terme de (pz 0 Zg Xy2)) 7 . Ensuite, la structure attachée
a Paréte distinguée doit &tre globalement laissée ﬁxe ce qui donne le facteur g. Le
raisonnement est trés similaire pour Pespéce U. ]

Combinant le théoréme de dissymeétrie, les équations (23), (24), (25) et les lois de
substitution de la théorie des espéces, on obtient les séries génératrices des types
de Pespéce des 2-arbres k-gonaux .

Proposition 4.5. Soit k > 3 impair. La série génératrice ordinaire G(z) des
2-arbres k-gonauzx non étiquetés est donnée par

a(zr) = §(ﬁo(x)+exp(z ;Z(2x B ( %) 4 g2 BR-1(g%) — e ( 4’))).
i>1
(26)

Corollaire 4.6. Pour k > 3 impair, le nombre a, de 2-arbres k-gonauz non
étiquetés sur n k-gones satisfait la récurrence suivante

L1 - 1. 1. ~
an = 5~ Z <lel> (an_j — §ao,n_j) + 580, ax[0] =1, (27)
J=1 ™ 1|j
ou, pour tout n > 1,

k-1
wa = 2,5 46050 +b( g (28)

et bz(-j ) est défini au corollaire 3.3.
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4.2 Cas k pair

Le cas ou1 k est pair est plus délicat. Dans le but d’exprimer les séries génératrices
ordinaires des types des trois espéces @~, @° et @2, nous appliquons la formule
(20) aux formules (19). Pour l’espéce @, on a

~— 1 ~—

a (z)=5(a (2) + 4, (), (29)

~ . P ’ ’ .
ou @, () = >.,50 |[Fix g~ (7)[z™ est la série génératrice des 2-arbres k-gonaux
- n
pointés en une aréte orientée, non étiquetés, laissés fixes par changement d’orienta-
tion. 11 faut donc calculer @._ (z). Pour cela, introduisons quelques espéces aux-
iliaires. La premiére, notée Qrs, est ’espéce des 2-arbres k-gonaux pointés en
une aréte orientée et dont toutes les pages attachées autour de cette aréte sont

verticalement symétriques, sans symétries croisées (voir plus loin); on dira totale-
ment symétriqgues. On peut caractériser cette espéce par 1’équation fonctionnelle

ISuun>!
/7

B}

Figure 4: Une structure de ’espéce Org

suivante (voir figure 4),

Urs = E(X - X2 < BT > -(gs) = E(Prs), (30)

oll X2 < F > représente ’espéce des couples de F-structures isomorphes et Prg
est 'espéce des pages totalement symétriques. Cette équation se traduit au niveau
des séries génératrices des types par

~ 1 L~ k—2 o~ .
Qrs(z) = exp {xZBT(xm)aTs(xl) : (31)
i>1

Proposition 4.7. Les nombres 3, = |Grs[n]|, de Qrs-structures non étiquetées
sur n polygones satisfont la récurrence

i=1 N dfi

ou
Z (52
Wnp = b% 2 ,8]'.
i+j=n—1
i pair
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Preuve. Il suffit de prendre la dérivée logarithmique de ’expression (31). u

Passons maintenant & l'introduction des deux espéces Por et Py, des paires de
pages croisées et des pages miztes. Une paire de pages croisées est, par définition,
une paire de pages orientées (des @ -structures comportant une seule page) de la
forme {s, 7-s} avec s et 7-s non isomorphes. La figure 5 a) montre une structure de
cette espéce. Une page mizte est une page symétrique possédant une (ou plusieurs)
symétrie de type croisée. Une telle structure est dessinée en figure 5 b). On peut
alors exprimer ces deux espéces I'une en fonction de l’autre, comme suit

PCR = (I)Q <XBk_1 —(PTS+PM) >a (33)
Py = X-X2<B'F >.Grs-Ei(Pcr + Pu), (34)
ou 3 < F > représente l'espéce des paires de F-structures de la forme {s,7 - s}

et I, est 'espéce des ensembles non vides. Passant aux séries génératrices des
types, il vient

Por(z) = =(zB*!(2?) - Prs(z?) — Pu(z?)), (35)

N =

Py(z) = 2B (2?)0rs(z) | exp (Z %(ﬁCR(Ii) + ISM(Ii))> -1 4(36)

i>1

Aprés manipulations et la prise de la dérivée logarithmique de (36), on obtient les
nombres Pcr , et Py, de pages croisées et mixtes respectivement sur n polygones

- k—1 ~ ~
FPern = b(n_;_z - Prsn — Pyu,z, (37)
n
PM,n = Z (Z{‘:d) Cn—i + fna (38)
=1 d|i
ol
k=2 g1 = ~ ~
En = Tbsg_ll) + Prsn + Por,n + Puon, (39)
~ k=2y
Cp, = PM,n + Z bl 2 )aTsﬁj, (40)
i+j=n—1 2
(k52) (554 o
fn = Z b aTSg+2 Z b% 2 ]b%aTS,l
i+j=n—1 i+j+l=n—-2
(552~
+ ). gbi * “ars. (41)
t+j=n—1

Notons par le(ac) la série génératrice des @~ -structures non étiquetées symé-
triques. On a alors (voir figure 6)

Os(x) = E(Prs+ Pcr+ Pu)™ (), (42)
exp (Z %(ﬁTS(ﬂ) + Por(z') + ﬁM(mi))) : (43)

i>1
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On en déduit alors une récurrence pour le nombre o, = as,n de 2-arbres k-gonaux
pointés en une aréte laissés fixes par changement d’orientation.

an = %zn: (Zdwd>an_i, ap =1, (44)
i=1 N d|i

ol
wk = Prs x + Pcr,k + Pu k-

N

a) b

Figure 5: Une paire de pages croisées et une page mixte

»@.B@QW

Figure 6: Décomposition d'une @~ -structure fixée sous 7

Proposition 4.8. Si k est un entier pair, k > 4, alors le nombre de 2-arbres
k-gonauz pointés en une aréte (non orientée) sur n k-gones est donné par

~ 1
a, = §(bn + ap). (45)

Passons maintenant & ’espéce @2 des 2-arbres k-gonaux pointés en un k-gone pos-
sédant une aréte distinguée. On trouve

k-2
2

W) = 3 (@0 + 8,0 o B w)=eB@ETE), o)

2

puisque une @5-structure non étiquetée T-symétrique posséde un axe de symétrie
qui est, en fait, la médiatrice de I’aréte distinguée dans le polygone pointé, et,
qui est donc aussi naturellement la médiatrice de I’aréte opposée & celle pointée.
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Les structures attachées & ces deux arétes sont donc symétriques, d’oui le terme
(Gs(x))?; ensuite, de part et d’autre de l'axe, les B-structures que l’on y at-
tache doivent s’échanger par paire, soit une contribution d’un facteur E(:v?) pour
chacune des k_;g paires. On en déduit alors une expression du nombre de @*°-

240 P ~Q
structures non étiquetées an,

~ 1/, k-2
a§=§<a(§n+ Z agz)-b(l-z)), (47)

i+j=n—1 2
e g
ou a; = [z*]Ag(x).

Procédons de fagon similaire pour ’espéce @°, des 2-arbres k-gonaux pointés en
un polygone. Une nouvelle fois, nous utilisons la relation (20), qui donne

00 = (@) + 2,0)) (18)

Remarquons d’abord que pour qu’une @2-structure soit laissée fixe par changement
d’orientation, elle doit comporter au moins un axe de symétrie, qui peut étre de
deux types :

1. un axe passant par le milieu de deux arétes opposées, ou

2. un axe passant par deux sommets opposés,

du polygone pointé. Le dénombrement se fait en orientant d’abord l'axe de
symétrie. On trouve

~ T ~2

G, () = 5 s(2)B"7" () +
ol le premier terme correspond & une symétrie de type 1, et le deuxiéme, de type
2. Les structures qui possédent les deux symétries sont précisément celles qui sont
comptées une demi fois dans chacun des deux termes. Le théoréme de dissymétrie
donne donc, pour k& > 4 pair,

€T ~

B3 (?), (49)

Ua) = 5ln(a) + 5 ls(a) + 5T (@) - 5 5,()
=A@ +50s(@) + SBHE) - B@BT @), (60)

ol @,(x) est donné par (15) et Ug(x) par (43).

Théoréme 4.9. Si k > 4 est pair, le nombre de 2-arbres k-gonauz non étiquetés
sur n k-gones est donné par

~ 1~ 1 ]_ L3 ]_ 2 (_
Gn = 5lon + 50n + gyty — 3 a§>-b%2 , (51)

avec
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5 Dénombrement asymptotique

Grace au théoréme de dissymétrie et aux diverses équations combinatoires qui lui
sont associées, le dénombrement asymptotique des 2-arbres k-gonaux (étiquetés ou
non) dépend essentiellement de celui des B-structures oul B est I’espéce auxiliaire
caractérisée par I’équation combinatoire (3). Dans le cas étiqueté, la situation est
triviale puisque 1'on dispose des formules closes simples (7), (16) et (18). Dans le
cas non étiqueté, la situation est vraiment plus délicate puisque la série B(z) est
caractérisée par I’équation fonctionnelle complexe (12).

Voici quelques notations préliminaires 4 ’énoncé du résultat principal de la présente
section. Si A = (A1 > A2 > ... > ),) est un partage d’un entier n en v parts, on
écrit A-n, n = |A|, v =1(A), my(X\) = [{j : \; = i}| = nombre de parts de taille ¢
dans A. De plus, on pose

ai(A) =Y dma(d), of(\) = > dma()) (52)
d|i d|i,d<i
X=14 A+, 20 =2mPmn)13mMmy)t. ... (53)

On a le résultat suivant.

Proposition 5.1. Posons p =k — 1 et B(z) = > bp(p)x™. Alors

i) bn(p) est un polynéme en p de degré n — 1, n > 1,

i1) il existe des constantes oy, et 3, telles que

by (p) ~ apﬂgn_%, pouUr n — oo. (54)

_ 1 1 p&pwl(fp))% _ 1
De plus, ap = a(&p) = \/ﬁ(pﬁp)%p (1 + o(E) et By = & ot & est la

plus petite racine de ’équation
= —wP 55
€= —uP(e), (55)

ot w(x) est la série (absolument convergente au voisinage de £,) donnée par (58).
On a le développement convergent

o

&=, ;—Z, (56)

n=1

ot les coefficients c, sont des constantes, indépendantes de p, données explicite-

ment par
ea =3 == [[(@:() = N™ N7 (3) - 3), (57)

oA
Nn AZ(A) i>1

lorsque X parcourt ’ensemble des partages de n.
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Preuve. La partie i) de I’énoncé découle immédiatement de la formule explicite
(8). Pour la partie #i) qui affirme U'existence des constantes o, et 3,, on s’inspire
de Papproche de Fowler et al. pour les 2-arbres (k = 3) en utilisant le théoréme

classique de Bender. Posons, pour simplifier b(z) = B(z). Alors, grace a (12),
y = b(x) satisfait la relation

y=eVw(z), o w(z)= e EIHIE @) (58)

Par le théoréme de Bender, appliqué & la fonction f(z,y) = y — e®¥"w(z), on doit
chercher un couple (§,, 7,) solution du systéme

flz,y)=0 et fy(z,y)=0. (59)

Ceci équivaut a dire que &, est solution de (55) et que p§,77 = 1. Les formules
explicites (56) et (57) s’obtiennent en appliquant préalablement ’inversion de La-
grange & ’équation £ = zR(§) ou z = ‘315 et R(t) = w™P(t), pour obtenir

==Y % (eip) s a0} (60)

n! n
n>0

Ensuite, pour évaluer explicitement w™"P(z), on utilise la version de Labelle [7]
de la formule d’inversion de Good pour les séries indicatrices en tenant compte de
(6) et en remarquant que

w P (z) = e MFHEH) 6 Z (3, 20, .)

Ti:=pxts (61)

ot A= XE(A) est I’espéce des arborescences. [ |

Dans le cas orienté non pointé, une méthode similaire basée sur I’équation (15),
mene a

~ _ _3 N 23

Qon ~ Tpfyn~ 2, ou @y = 2mp(psy)? ap,. (62)

Enfin, une analyse fine de la formule (51) montre que

~ 1.
Ap ~ §ao,n- (63)

La table 1 donne, & 20 décimales, les constantes &,, a, et 3, = é pourp=1,...,5.

@

O W N S

P P Bp
0.3383218568 9920769520 1.3003121246 8216843599 2.955765285651994974715
0.177099522303285617693 0.349261381742311443973 5.646542616232949712893
0.119674100436145452060 0.191997258649948899321 8.356026879295995368276
0.090334539604383047938 0.131073637348549764379 | 11.069962877759326312419
0.072539192528125499910 0.099178841365021748147 | 13.785651110084685198930

Table 1 : Valeurs numériques de &,, ap et B, p=1,...,5.
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Voici les premiéres valeurs des constantes universelles ¢, apparaissant dans (56),
pourn=1,...5.

1

c = S = 0.36787944117144232160, (64)

11
cy = 5@ = —0.02489353418393197149, (65)
c3 = 11 11 _ 0.00526296958802571004 (66)
57 8 3ef ’

11 1 11
ca = + = 0.00077526788594593923, (67)

4867 & 46
11 41 491 11

= W 28Tt = 0000322126221 939.
¢ = 35,5 358 T~ 5us = 0-00032212622183609932. (68)

Remarque 5.1. Les calculs de cette section sont également valables pour le cas
o k =2 et p =1, correspondant auz arborescences ordinaires (de Cayley) définies
par Uéquation A = XE(A). Dans ce cas, la constante de croissance 3 = 31, dans
(54), est connue sous le nom de constante d’Otter (voir [10]). Il est intéressant de
noter que cette constante prend la forme explicite 5 = &Ll’ avec

&L= cn (69)

n>1

Il est & noter que lorsque k& = 3, nous retrouvons les résultats asymptotiques
obtenus par Fowler et al. dans [2, 3].

References

[1] F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and tree-like
structures, Encyclopedia of Mathematics and it’s Applications, vol. 67, Cam-
bridge University Press, (1998).

[2] T. Fowler, I. Gessel, G. Labelle, P. Leroux, Specifying 2-trees, Proceedings
FPSAC’01, Moscou, 26-30 juin 2000, 202-213.

[3] T. Fowler, I. Gessel, G. Labelle, P. Leroux, The Specification of 2-trees, Ad-
vances in Applied Mathematics, 28, 145-168, (2002).

[4] F.Harary and E. Palmer, Graphical Enumeration, Academic Press, New York,
(1973).

[5] F. Harary, E. Palmer and R. Read, On the cell-growth problem for arbitrary
polygons, Discrete Mathematics, 11, 371-389, (1975).

[6] INRIA, Encyclopedia of combinatorial structures.
http://algo.inria.fr /encyclopedia/index.html.

[7] G. Labelle, Some new computational methods in the theory of species, Combi-
natoire énumeérative, Proceedings, Montréal, Québec, Lectures Notes in Math-
ematics, vol. 1234, Springer-Verlag, New-York /Berlin, 160-176, (1985).



Enumération des 2-arbre k-gonaux 109

[8] G. Labelle, C. Lamathe and P. Leroux, Développement moléculaire de l’espéce
des 2-arbres planaires, Proceedings GASCom01, 41-46, (2001).

[9] G. Labelle, C. Lamathe and P. Leroux, A classification of plane and planar
2-trees, preprint CO/0202052, submitted.

[10] R. Otter, The number of trees, Annals of Mathematics, 49, 583-599, (1948).

[11] N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Aca-
demic Press, San Diego, (1995).

Gilbert Labelle, Cédric Lamathe, Pierre Leroux

LaCIM

Université du Québec & Montréal

Case Postale 8888, succursale centre-ville
H3C 3P8 Montréal

{gilbert, lamathe, leroux}@math.uqam.ca



Trends in Mathematics, © 2002 Birkhduser Verlag Basel/Switzerland

Breadth First Search, Triangle-Free Graphs
and Brownian Motion

Anne-Elisabeth Baert, Vlady Ravelomanana, Loys Thimonier

ABSTRACT: One major problem in the enumeration of random graphs con-
cerns triangle-free graphs. In this paper, we study Breadth First Search processes
and the associated queues to compute, in terms of Wright’s constants, the number
of triangle-free graphs . Next, we prove that this number is equivalent to the num-
ber of connected labelled graphs by using arguments of the Brownian excursion

type.

1 Introduction

In computer science, trees are combinatorial structures evolving with time, and
both the algorithm to traverse them (here Breadth First Search) and the underlying
data structure (namely a queue; more generally for graph algorithms a priority
queue) imply a wealth of interesting properties and other algorithms, as remarked
in Sedgewick’s book [15]. Depth First Search and Breadth First Search processes
have been studied in a lot of published works, one can cite for example Aldous
[1, 2, 3], Chassaing et al. [6, 7], Drmota and Gittenberger [8], Marckert and
Mokkadem [12] .. ..

We consider here simple labelled connected graphs, i.e., graphs with labelled ver-
tices, undirected edges and without self-loops or multiple edges. Throughout this
paper, a (n,n + k) graph is one having n vertices and n + k edges; k is then called
its excess. Denote by c(n,n + k) the number of connected graphs on n vertices
and n + k edges, usually expressed with Wright’s constants. Wright and Bender
et al. [18, 19, 4] gave exact and asymptotic formulae for the numbers c¢(n,n + k)
by means of enumerative and analytic approaches. As an alternative method,
Spencer [16] surprisingly used Breadth First Search and developped formulae for
¢(n,n + k) in terms of appropriate expectations.

Harary and Palmer [9] pinpointed that one of the major problem in graphical
enumeration concerns the triangle-free graphs. Since Breadth First Search is con-
venient to examine the connections between vertices at the same level in a tree,
we exploit this fact to enumerate connected triangle-free graphs.

In this paper, we recall shortly the Breadth First Search method to traverse rooted
labelled trees and graphs, then we examine Breadth Fisrt Search Trees to precise
some enumeration in the associated queue. We use Breadth First Search processes
to show that the number of triangle-free graphs with excess k can be expressed
in terms of Wright’s constants. Then, using Breadth First Walk and Brownian
excursion, we show that the number of triangle-free graphs with n vertices and
n + k edges, is equivalent to the number of connected labelled (n,n + k)-graphs,
as n — +o0.

B. Chauvin et al. (eds.), Mathematics and Computer Science 11
© Springer Basel AG 2002
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2 The Breadth First Search method

2.1 Breadth First Search on random trees

Let T be a tree with {1, --- , n} as vertex set, rooted on the first vertice 1. The
well-known Cayley’s formula [5] gives n"~! for the number of such trees. All
adjacency lists being in numerical order, the tree can be obtained through Breadth
First Search (BFS).

1 Steps | Edges Queue

1 1 6,7
2 6 7,3,4
3 7 3,4,5,8,0
4 3 4,5,8,9
5 | 58,9,2
6 5 8,9,2
7 8 9,2
8 9 2
9 2

Figure 1: Tree with 9 vertices Figure 2: Associated queue

Recall this method: a queue @ is initialized with 1 (the root of the labelled tree),
and the BFS ends when the queue is empty. At each step (¢ > 1) a vertex z is
taken at the head of the queue and removed from @); all new adjacent vertices to x
are added to ). Such vertices are said to be found by x. Let q§") be the size of @
after the i*" vertex (to remove) is processed and let z; be the number of vertices
found by this it" vertex. We have

g™ =1 andfor 1<i<n, ¢ =¢™ +2,-1. (1)
Remark that —1 corresponds to removing the i vertex, ¢ = 0 (empty queue),

and the total number of vertices is equal to:

For random simulation of such trees of a given type (z1, ---, ,), we consider
independent random variables X1, - - - , X, and the random variables QE") defined

recursively by: Q™ =1, Q™ = Q™ + X; — 1. We have Q" = 0 if and only if
X1+ -+ X, =n —1. The constraints

Qsl") =0 and an) >0 for i< n, (3)

are necessary and sufficient for a tree to be connected or for the queue to become
empty only after step n.
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2.2 Breadth First Search on random graphs

Let G be a connected graph on vertex set {1,---,n}. Once traversed by BFS,
one obtains a tree T called a Breadth First Search Tree (BFST).W want to find
the number of graphs that split BFST T, for a given type T. BFSTs have nice
properties: for instance, the edges of G are of three types: some edges are in T,
some connect two vertices at the same level of T', and the remaining ones connect
two vertices on two adjacents levels. It is not possible for an edge to skip a level.
Finally, the maximum number M) of edges that can be added in a given tree T
in order to build a graph with the same BFST, satisfies:

n—1

MM =37 (8 - 1). (4)

t=1

Proposition 2.1. Let M(™ be the number of edges that can be added in a given
tree T in order to build a graph with the same BFST:

t=1

Proof : This follows directly from the recursive definition of Q,En). Indeed, one has
m — 23:1 X; — (¢t —1), and thus:

n—1 n

Yo = W—l)zﬂ_z,%.

t=1
O

N = (Z) is the total number of edges in a complete graph with n vertices and

(n — 1) is the number of vertices in a tree. (¢ — 1)z; is the number of edges we
can add between the vertices found by the t** vertice processed, i.e., z; and the
vertices processed before t, i.e., the first one to the (¢ — 1)t".

2.3 Results on the queue

Let (Gl("))l be the number of vertices at distance ! from the root. (Gl(")>
>0

> 1>0
is called the profile of the tree and satisifies:

aP =1, &M =g¢" and
m _
G = piaem ©)

At time t = Zi;(l] ng) the last vertex at distance [ — 1 from the root is processed

and all the vertices at distance [ are in the queue. Therefore, M (™ can be classified
according to the three different types of edges.
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Proposition 2.2. Let M(™) be the number of edges that can be added in a given
tree T in order to build a graph with the same BFST. The total number of edges

in M™ at level [ is:
G
5 )

In particular, at level I the number of edges between two wvertices with the same
“father” is :
siztgi™
—0G; -
> (%) @
=515 G 41

Between level | and level [ + 1, the number of edges is:

a1

> (ng) - t) Tt o) ®8)

t=1

Proof : By induction on [, and using the fact that between

- -1
t=Y G"+1 and t=) G
1=0

»N

I
o

%

all the vertices at level [ — 1 are processed.

O
3 Enumeration of triangle-free graphs
3.1 Triangle-free graphs with excess at most 2
Figure 3: Triangle graph with excess 0
Let T™* be a connected triangle-free graph with excess 0 on vertex set {1, -+ ,n}

traverse by BFS method. Any two vertices in a tree have one or more common
ancestors. The Lowest Common Ancestor of a set of vertices is the one that is
closest to the vertices. We denote by LC A(t;,t;) the Lowest Common Ancestors of
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t; and t;. When an edge is added at random to T', the only way to have a triangle
is to connect two vertices at the same level and for which their Lowest Common
Ancestor is at distance 1.

Similarly to M in (4), let R(™ be the number of edges which can be added to
T in order to obtain a triangle. The number of sons of the t** vertex processed is

¢, hence R(™ is given by:
n—1 X
(n) — ¢
ro =3 (7). ©)

Thus from a tree T, M — R("™) triangle-free graphs with excess 0 can be con-
structed. M (™ and R(™ are random variables under the conditioned distribution
of the X; and we have the following

Theorem 3.1. The number f*(n,n) of triangle-free graphs with excess 0 satisfies

frinn) (n) _ p(n)
Sy = B RO). (10)

We denote by (t;,t}) the it" edge added between ¢; and t]. Recall that the consid-
ered graphs have undirected edges and labelled vertices; we can suppose without

loss of generality that ¢; is processed before ).

Definition 3.2. Let d(t;,t) be the distance between t; and t;, and (t; A t]) the
first vertex processed. Let

0 if d(LCA(t;,t)),t:;) =1
d; .
1 otherwise
A, = 1 if (ti,t],t;,t} are on two adjacent levels) and (t; = t; or t; =1t})
J 0 otherwise.

Let ¢(to) =0 and for 1 <i <k, ¢(t;) = x¢, — 4.

A; ;j = 1if there is a path between three vertices in two adjacent levels.
Theorem 3.3. Let f*(n,n+ k) be the number of triangle-free graphs with excess
k at most 2, and let V(™ = M™ — R™ qnd I‘Ef;-) =Y imo(d(t) + 2521 joi Dig)-

k

I1 (V<"> —u- rﬁj‘j’)

u=0

Fomtk) 1
c(n,n—1)  (k+1)!

(11)

Proof : To obtain a triangle-free graph with excess 0, the first edge (¢1,t]) must
be chosen amongst the M (™ — R(™) possible edges. Then, a second edge (t2,15), is
added in order to obtain triangle-free graphs with excess 1. As described in figure
4, two situations appear depending on the choice of the first edge. The case where
the first edge added connects two vertices and one of them is at distance one of
their Lowest Common Ancestors, and the case where the distance of one of the
two vertices is at least two. For the first case, since z;, is the number of vertices
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Added Edge
Forbidden Edge

LCA(1,1) (®)

A

Added Edge
Forbidden Edges

Figure 4: Two possible cases to add the second edge

Added Edges
Forbidden Edges

LCA(1,1) (& LCA(2,2)

fichy

-

Added Edges
Forbidden Edges

Extra Forbidden Edge

Figure 5: Two cases to add the third edge

found by t,, there is (M — R(™ — 1 — z;.) possible choices for the second edge
whereas in the second case, this number becomes (M — R(™) —1 — 2, —1).

At least, we have to add the last edge, (t3,t5) in order to obtain a Triangle- Free
graph with excess 2. When this edge is added, (t1,t}) and (t2,t}) can have a
common vertex. Suppose that (¢; = t5) hence Ao = 1, if (#],t2) is added to the
graph t1, o, th is a triangle (as seen in figure 5): this sort of edge must be avoided.
If the second added edge has no common vertex with the first one, we can proceed
for the third edge as for the second one.
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3.2 Triangle-free graphs with excess k > 3

Theorem 3.4. Let f*(n,n+ k) be the number of triangle-free graphs with excess
k for k > 3 fived, and let V™ = M™ — R™and T = S0 ($(t:) + Y=o Ai ;).
§>i

E }jo(v(") —u —FEZ))} < f:(_iz’% <E [(:_(:)1)] (12)

Proof : A connected triangle-free graph with excess k is obtained by adding & + 1
edges to the tree T'. If these edges do not share some common vertices, the triangle-
free graph has the same evolution as previously described.

FE EDGE

1

(k+1)!

MULTIPLE

. EDGES

3

_____

J— Added Edges ccm— Added Edges
_______ Forbidden Edges [ —— Forbidden Edges

Figure 6: Example of path of length four

However, as depicted in figure 6, four edges can form a path and some edges can
be counted twice or more. Consequently, putting all these repetitions in

u

Z B(ts) + Z A
=0 j=0

>4
leads to the lower bound given by (12).

) ) _gmy .
Obviously, (M, +1R ) is a natural upper bound.

4 Brownian motion and k excess graphs

4.1 Breadth First Walk and Brownian excursion

We follow here the way suggested by Spencer [16]. We consider Poisson indepen-
dent random variables, X1, ..., X,, with mean 1, the sequence QE") is conditioned
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to satisfy (3). ﬁ"), e ,Q;") can be considered as a random walk whose step size

has distribution ¥; = Q™ — Q™) = X, — 1. X; are Poisson with mean 1; ¥; are
Poisson 1 minus 1. It is well-known that:

Q(Z) weakl
% ==, (e(t))ogt§1 ) (13)

0<t<1

where e is a normalized Brownian ezcursion. Let

L= /01 e(s)ds

which may be interpreted as the mean distance from the origin in this conditioned
1-dimensional Brownian motion. The maximum number of edges that can be
added in a given tree T' (in order to buid graphs with the same BFST), is M (") =

Sy (QE") — 1) and we obtain in distribution, as n — +o0 :

M)

—m L (14)

In [7], similar arguments are used to provide tight bounds for the moments of the
width of rooted labelled trees.

Proposition 4.1. In distribution as n — 400, and for any fized k > 0:

(n) k+1
£ (%)
n3

Proof : Following the works of Chassaing and Marckert [7], we use connections be-
tween Breadth First Search random walks and empirical processes. Let (U;)1<i<n
be a sequence of n i.i.d random variables uniformly distributed on [0,1]. Denote
by F,(t) the empirical distribution function of (U;)1<i<n defined for ¢t € [0,1] by

~ E [LFH1] . (15)

_card{i € {1,...,n},U; <t}

F.(t) -

The empirical distribution function converges towards the distribution function,
F(t) = t, of the uniform law. The speed of convergence is revealed by the empirical

process
an(t) = Vn (Fa(t) - F(t)

and (an(t)o<t<1) converges in distribution to the Brownian bridge <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>