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Foreword

The employees of a mathematical Fraunhofer Institute spend a great deal of their time
discussing problems with industrial clients and then solving these problems with the help
of mathematics and computers. The periods of reflection occasionally made possible by
public projects and self-financed preliminary research are normally used to build the math-
ematical foundation necessary for finding our clients’ solutions. Taking a step back to
critically examine one’s own activities and then to precisely and understandably articu-
late them requires great inspiration and an enormous commitment of time. Nonetheless,
18 employees and 5 other mathematicians closely connected to the Institute have ventured
to report on their thoughts and actions in this book.

Our point of entry is represented by the four basic concepts that determine our work:
modeling, computing, optimizing and analyzing data. What these terms mean to us is
described in four relatively short concept chapters.

Next, five projects—perhaps better referred to as project groups—are presented as ex-
amples; and here, we take this business of presenting very seriously. First, we describe the
non-mathematical problem and explain the deficiencies in the standard approaches for its
solution. We also explain why the existing mathematics is often inadequate and describe
how many preliminary works surrounding question clarification have already emerged
from the Institute for Industrial Mathematics ITWM, in the form of doctoral theses, for
example. The core of these five research chapters, however, is solid mathematics—the
models and their numerical evaluation. Finally, we describe the “solution,” that is, what
the customer gets from us, which often includes software.

In a closing chapter, we describe in detail how this problem-driven, model-based,
solution-oriented mathematics can be integrated into mathematics instruction in our
schools, in order to emphasize its significance and to promote students’ joy in learning
mathematics.

In writing this book, we have kept quite diverse groups of readers in mind: First, there
are the people in industry and business, to whom we wish to make clear that mathemati-
cians don’t just discuss or analyze problems, they also solve them. Second, there are the
university mathematicians, whom we want to convince that this approach can also provide

\
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new impulses to mathematics. Third, there are university students, who want to know, and
with good reason, what they will really be doing later in their professional lives—for only
a small number of them will lecture at universities. And finally, there are those who want
to become teachers or who already are; this group can read how mathematics instruction
in the classroom can be revitalized.

Is a mathematical Fraunhofer Institute really entitled to claim that it can fulfill all these
promises? There are more than 65 institutes in the Fraunhofer-Gesellschaft, and three of
them are based on mathematical methods: The ITWM in Kaiserslautern, the SCAI (Insti-
tute for Algorithms and Scientific Computing) in Sankt Augustin, and MEVIS (Institute
for Medical Image Computing) in Bremen. Among these, the ITWM today enjoys the
highest industrial revenues and the most rapid growth. The Institute’s fantastic growth
over the nearly 20 years of its existence is shining evidence that mathematics really has
become a key technology. For this reason, we believe that we can indeed turn all of our
readers into fans of our kind of mathematics!

Kaiserslautern, Germany .
June 2015 ’Jfr% [/ //(

Dieter Pritzel-Wolters

%L\M\

Helmut Neunzert
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Problems Trump Methods: A Somewhat Different
Mathematics from a Somewhat Different Institute

Dieter Pratzel-Wolters and Helmut Neunzert

This book is dedicated to mathematics-based topics that are driven by practical problems
whose solutions generate innovation. The formulations of these problems have arisen in
the context of projects carried out at the Fraunhofer Institute for Industrial Mathematics
(ITWM), and the majority of the authors of this book are either employed at the Fraun-
hofer ITWM or are closely affiliated with it. Fraunhofer Institutes dedicate their work
to problems in industry; a mathematical Fraunhofer Institute therefore makes “Industrial
Mathematics”.

The book’s editors originally suggested “Fraunhofer Mathematics” as a title. This sug-
gestion was discarded, however, since it found no consensus among the authors. A book
about “Fraunhofer Mathematics” might have also had a polarizing effect. For many math-
ematicians, it would have also been a provocative title, one that generates confusion about
what exactly “Fraunhofer Mathematics” refers to.

Mathematics is the science with the highest degree of abstraction; there is virtually
one hundred percent agreement about what is recognized as mathematics; and mathe-
matical results are highly objective, intrinsically verifiable, and formulated in a largely
standardized language. Mathematics is divided into the categories of pure and applied,
although making even this basic distinction is somewhat difficult. It also happens occa-
sionally that the works of important mathematicians become identified with their origi-
nators, so that one then speaks, for example, of Hilbertian or Riemannian mathematics.
There are also schools that have developed particular structural edifices of mathematical
thought and whose works are then cited, for example, as Bourbaki or constructivist math-
ematics.

D. Pritzel-Wolters - H. Neunzert ()
Fraunhofer Institut fiir Techno- und Wirtschaftsmathematik ITWM, Kaiserslautern, Germany
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4 D. Pratzel-Wolters and H. Neunzert

How then is Fraunhofer mathematics to be fitted into such a classification system?
As the mathematics of Joseph von Fraunhofer, perhaps? Hardly. Although he too pro-
duced mathematically oriented works, Joseph von Fraunhofer (1787-1826) was not a
mathematician. He was a very successful scientist who discovered the lines in the so-
lar spectrum that were subsequently given his name and who was extremely well versed
in physics and in the design of lenses and optical equipment. At the same time, he was
a successful businessman who, at the tender age of 22, was made director of the glass-
works in Benediktbeuren, which he then successfully managed (the telescope pictured
below, manufactured for the University in Dorpat (today: Tartu, Estonia) was the largest
and best of its day) (Fig. 1). Joseph von Fraunhofer also became the namesake of the
Fraunhofer-Gesellschaft—after MIT, the second largest institution for applied science in
the world.

The identity of Fraunhofer research is characterized by proximity to application, indus-
trial relevance, and innovation. The Fraunhofer-Gesellschaft has recognized that research
in applied mathematics not only serves as an aid to other scientific disciplines in the search
for solutions to practical, in particular, technical and organizational problems. Mathemat-
ics also represents a discipline that is indispensible for maintaining economic competi-
tiveness and meeting the challenges faced by society. It has evolved from being a key to

Fig. 1 Joseph von Fraunhofer: researcher, inventor, and businessman (© Fraunhofer-Gesellschaft)
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basic research and technology to being an enabling force for virtually every economically
significant key technology.

The Fraunhofer-Gesellschaft, remaining cognizant of this evolutionary development,
has added three new mathematics-based institutes to its ranks in the past decade:

e The Fraunhofer Institute for Industrial Mathematics ITWM, in Kaiserslautern,

e The Fraunhofer Institute for Algorithms and Computational Science SCAI in Sankt
Augustin, and

e The Fraunhofer Institute for Medical Image Computing MEVIS, in Bremen.

These institutes are dedicated, in terms of their research mission and focus, to
application-oriented mathematics and the implementation of mathematics in society and
industry.

Our book is dedicated to the mathematics practiced in the ITWM, whose spirit also
prevails at the other institutes. It is problem-driven, model-based and solution-oriented.
We will have more to say about this elsewhere in the book. If the goal is to highlight a
unique feature associated with a particular “brand” of mathematics, then this is certainly
the description “problem-driven, not method-driven.” The style and structure of this book
have been influenced by this attribute.

Beyond this, another motive was certainly to share the “success story” of the Fraun-
hofer ITWM. We want to illustrate how innovation in mathematics and the transfer of
its results into the marketplace and society at large can be effectively carried out in a
large research institute receiving relatively little basic funding. The success of the “ITWM
model,” as proven also by the formidable role played by mathematics in contemporary in-
dustry, might also serve as a motivating force for establishing similar institutions in other
locations and other countries, adapted to the regional and national circumstances found
there.

1 “Industrial Mathematics” Versus “Applied Mathematics”'

Many scientific disciplines profit from the solutions to practical problems developed
through research in applied mathematics. As a rule, however, traditional, academically-
oriented applied mathematics only examines and numerically treats problems that are also
accessible to rigorous mathematical analysis; that is, problems for which existence and

IPortions of this introduction have been taken from the following publications:

H. Neunzert, U. Trottenberg: Mathematik ist Technologie — Ein Beitrag zur Innovations-Initiative
aus Fraunhofer-Sicht, Fraunhofer ITWM und Fraunhofer SCAI, Kaiserslautern und Sankt Augustin,
2007

D. Pritzel-Wolters, U. Trottenberg: Rechnen fiir Fortschritt und Zukunft — Innovationen brauchen
Mathematik, Jahresbericht der Fraunhofer-Gesellschaft 2007, S. 47ff., Miinchen 2008.
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uniqueness statements for the solution and convergence statements for the applied numeri-
cal method, for example, can be proved. As a result, the problems treated in the mathemat-
ical literature are often highly idealized and not especially realistic.

The effective solution of large-scale, real-life problems only became the object of in-
tensive mathematical research after technomathematics, economathematics, and computa-
tional science established themselves as new mathematical disciplines.

This practice-oriented mathematics, which further develops mathematical methods
for the solution of specific problems and whose models and algorithms form the ba-
sis for simulating and optimizing complex products and processes, is at the heart of
the mathematically oriented Fraunhofer Institutes. The fact that this research is far more
than mere mathematics transfer is frequently underappreciated in the more academically-
minded world found in universities. Here, one sometimes encounters the notion that such
industrial-oriented mathematics is not “real” mathematics at all, or that the truly “new”
mathematics is developed in universities—decoupled from practical application—and only
after a time delay finds industrial application. The experience and expertise of the math-
ematically oriented Fraunhofer Institutes, gathered in extensive, long-term collaborations
with industry, contradict these views.

Modeling and simulating the behavior of complex materials, for example, results in
mathematically challenging problems involving the coupling of very diverse differen-
tial equations, such as those of fluid mechanics and Maxwell equations. This coupling
represents a significant challenge, not only numerically, but also theoretically. The high-
dimensional partial differential equations arising from the risk evaluation of financial se-
curities require entirely new methods of numerical solution. The transition from smaller
to larger scales can be tackled with homogenization methods, but only when the essential
scales are well separated. When this is not the case—as happens in many practical appli-
cations, such as those involving turbulence or crack formation in materials under stress
and in rocks—then there are currently only a few fruitful approaches for simplifying the
models and/or the numerics. The digital interconnection of control systems demands new
procedures for analyzing and synthesizing hybrid systems with continuous and discrete
dynamics and logic based switching functions.

These few examples illustrate that substantial momentum for the development of “new”
and “real” mathematics arises from treating complex, practical problems.

Nevertheless, the transfer of mathematics to the marketplace is a vital mission of the
mathematically oriented Fraunhofer Institutes. Here, however, they don’t restrict them-
selves to merely preparing general mathematical aids for the solution of practical prob-
lems, thus leaving the actual problem-solving to the users or to other technical software
companies. Instead, they get involved themselves—in close cooperation with the users—to
work towards a complete solution through the development of appropriate software mod-
ules. The goal of demonstrating a direct benefit to the economy, that is, of putting research
results directly into practice with their industrial partners, is part of their identity and their
mission. Here, it is accepted that the relevance of their research results is also reflected in
the fact that the businesses making use of those results contribute substantially and directly
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to financing the costs of the research efforts. The Fraunhofer financing model assumes that
an Institute will cover at least one third of its operating budget through business revenues.

However, to ensure long-term success in mathematics transfer, it is also essential to
maintain contact with the frontlines of basic research and to actively pursue new math-
ematics oneself. Practical problems represent a wonderful source of new questions and
methods that can then feed basic research in the Institutes.

In this context, the Institutes’ joint ventures with other research institutions and univer-
sities, as well as with industrial partners in connection with projects publicly sponsored
by the BMBF (Federal Ministry for Education and Research), the DFG (German Research
Foundation), or the EU, for example, play a very significant role. They serve to build up
new research areas and establish a trusting and cooperative working atmosphere with the
participating institutions. The results of this research create innovation in economically
and societally relevant fields of application and help finance the Institutes’ knowledge-
oriented basic research.

2 Problem-Driven or Method-Driven?

This view is reflected in the stereotype, still frequently encountered in public opinion, that
mathematics is a difficult, dry, ivory-tower sort of endeavor. Mediocre or worse grades in
school mathematics classes are accepted in society, where they are met with a shrug of the
shoulders and commented upon sympathetically.

This attitude captures neither the fascination of mathematics as a playground for the
mind nor its significance as a crucial instrument for shaping technological progress.

The mathematician himself is seen as a person who—cut off from the real world—
performs his researches upon questions he has thought up himself, within the confines of
his own system of thought. His research is driven by the methods and structures intrinsic
to mathematics; solving practical problems doesn’t interest him particularly. The ideal
location for this endeavor is indeed the ivory tower, an intellectual refuge, inviolate and
untouched by the world.

The ivory tower stands for the isolation of the scientist, who retreats from the events
of the world and dedicates himself exclusively to pure research, paying no heed to either
the practical uses or consequences of his investigations, but simply losing himself in his
passionate pursuit of answers.

This image of the mathematician no longer fits into the research landscape of the 21st
century. Applied mathematics has long-since abandoned the ivory tower, seized the com-
puter as a tool of the trade, and addressed itself to the solution of practical, relevant prob-
lems. But it is a shortsighted view to assume that it was only through the computer that
mathematics was finally rendered able and willing to solve practical problems.

Mathematics was always both: It was problem driven and it was method driven. It
helped to solve practical problems, and it created culture, by following its own evolu-
tionary path.
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For the active participants in this process—mostly mathematicians—the past hundred
years were dominated by the continued development of methods. This happened either in
the pursuit of answers to questions that arose within mathematics—as in pure mathematics,
such as with algebraic geometry—or in the pursuit of solutions to problems that typically
manifest when dealing with practical questions—as in applied mathematics, such as with
inverse problems. University mathematicians had, and still have, the privilege of being able
to deeply immerse themselves for long periods of time in a particular class of mathematical
problems.

Things were once different, however. Earlier, one’s income depended on the successful
treatment of problems posed from outside. Typical examples are the fluid dynamic prob-
lems that Euler needed to solve or the geodetic problems tackled by Gauss. And it is again
different today; mathematics, with the aid of its tool, the computer, has become a tech-
nology in its own right, and a host of practical problems are standing in line, so to speak,
outside its office door.

The doors of the Fraunhofer Institutes are opened wide to receive such problems, and
the mathematics practiced there is driven very significantly by the need to solve them. This
means that the focus of research is not on the further development of existing mathematical
methods, but on the development of new methods for formulating and solving problems
or the adaptation of known methods to the particular problem being addressed. The goal
of solving the problem determines the direction in which the methods are developed and
extended.

3 Model-Based and Solution-Oriented

Efficient mathematical treatment of practical problems calls for the preparation of “eco-
nomical” mathematical models, as well as the development of efficient algorithms.
A model is “economical” when it is as complex as necessary and as simple as possible.
Often, the simplicity is also imposed by a desire for real-time simulations or because the
simulations calculate the values of objective function(s) for an optimization task. Algo-
rithms are efficient when they achieve maximal exactness on the computers at hand in the
limited processing time available.

For most problems confronted in industrial practice, physics provides models. These are
frequently continuum mechanical, thermodynamic, or electromagnetic equations, which
very precisely describe the manufacturing processes of industrial goods or their behavior.
Naturally, it is possible to describe the behavior of thousands of polymer fibers in the
transition from fluid to solid phase in turbulent airflow. Or one can model very precisely
at the particle scale the flow of a gas and the absorption of entrained particles by a porous
medium.

However, even using high performance computers and the most modern algorithms, it
is not possible to arrive at even a rough solution for these very complex equations. Presum-
ably, this will not be possible decades from now either. But this isn’t necessary, since one
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can simplify and reduce the models and still meet the specified precision requirements.
The algorithms then have to be adapted to the model reductions, and vice versa: the first
approximations in iterative solvers may work with simpler models; then, as the precision
increases, the models themselves also become more precise. This interplay between model
and algorithm is especially important for optimization tasks. Model reductions often deal
with asymptotic analysis or multi-scale approaches, where small parameters are replaced
by the limit value zero. Or they rely upon projection methods on lower-dimensional sub-
spaces. It is also quite possible, however, that entirely new models based on a different
mathematical theory are employed, for example, the use of stochastic models for very
complex, deterministic behavior.

Because it is important when dealing with “real-life” problems to find usable solutions,
the development of efficient algorithms, as already mentioned, also comes into consider-
ation. Thus, multi-core approaches from modern computer architecture fit well together
with multi-grid approaches, which, in turn, are often coupled with multi-scale models.
Parallel algorithms also currently represent an important field. All of this, however, as is
usually the case elsewhere, is not to be understood as “method for method’s sake”—we
repeat it once again here—but as problem-driven.

4 Mathematics as a Motor for Innovation in Technology and
Society

The potential for applying mathematics is enormous. The scope of the mathematics that
has found its way into industrial practice has grown explosively over the past 40 years.
This can be explained for the most part by the fact that work with real models has been
replaced by simulations, that is, by work with mathematical models. This development
has been accompanied by the automation of work processes, sensory perceptions, and
experiences in the form of algorithms, computer programs, or expert systems. Mathematics
has become a key technology, one that can and should be mentioned in the same breath as
nanotechnology or biotechnology.

At first blush, this may appear a rather audacious statement. It requires, at least, an
explanation. To be sure, for thousands of years, natural scientists have used mathematics
as a resource and as a language in which to formulate their theories, and it has formed the
basis for the computations of the world’s engineers. Thus, it is at least a raw material—the
raw material of models that are then converted into technology. But simply being a raw
material is not enough to qualify as a key technology. It is the computer that has elevated
mathematics to the rank of technology. In a certain respect, the computer is the purest
form of mathematics-turned-technology. Mathematics has taken on a material form in the
guise of the computer, and it represents the intellect behind every computer simulation.
Simulations need models and algorithms to evaluate and visualize their results. On closer
inspection, it is always mathematics serving as the basis, as the “source code,” so to speak,
for these critical work steps.
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Fig. 2 Mathematics is a key technology (Graphic: S. Griitzner, Fraunhofer ITWM)

The computer has altered our world. In the view of the cultural philosopher Ivan Illich
(1926-2002), it has become a universal and convivial tool. Computer simulations—and
thus also mathematics—represent the essential tool for shaping and optimizing products
and work processes.

Real models are being replaced by virtual models. Mathematics, as raw material and
key technology, forms the foundation for a bridge to this second world—the world of
virtual simulations—which has found a foothold in almost every area of our society and
economy (Fig. 2).

5 Mathematics Is Universally Applicable, Because It Traverses
Boundaries

This universal applicability stems from the fact that mathematical methods and tools de-
veloped for one sphere of reality or science can also be made useful in other areas of
application, either directly or in an analogous form. Mathematical models fit horizontally
into a landscape of scientific disciplines and technological applications that are arranged
vertically. This transverse quality of mathematics makes it a “generic” technology.

The ideas developed in one area can bear fruit in others. In keeping with this motto,
mathematics creates cross-links between disciplines and makes comprehensive insights
possible. “Out-of-the-box thinking,” as a characteristic of the mathematical approach to
work, creates innovation by layering different levels of reference.

Mathematical models are in demand; solutions require simulations. As a rule, there
is not just one solution, and mathematical optimization is also required to find the best
ones. The abbreviation for this triad of Model-Simulation-Optimization is MSO. MSO is
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anchored in the research and development departments of today’s large technology com-
panies as its own field of competence, and is occasionally even part of the organizational
structure of such companies. In practically all mathematics-based, practically-oriented re-
search projects, MSO is an integral component of project work.

All in all, one may easily speak of a quantum leap over the past decades in the visibility
of mathematics as an engine for innovation in technology and society.

There is a great deal of evidence for this development—a development that, in the
interim, has become entrenched in the fields of politics, science, and industry.

5.1 Committee for Mathematical Modeling, Simulation, and
Optimization (KoMSO)

This committee was established in connection with the “Strategic Dialog on Mathematics,”
an initiative of the German Ministry for Education and Research (BMBF). Its goal is. . .

“...to anchor the triad of mathematical modeling, simulation, and optimization
in research and development as a new field of technology, in order to strengthen
the innovative power of the technology nation Germany. Research and innovation
are the foundation of prosperity for all of society. Therefore, the potential of MSO,
which has remained undiscovered or only partially exploited up to this time, must be
tapped into and made visible.”

And, as also found in the strategy paper of the BMBF Strategy Commission:

“Improved mathematical methods and continuously improving computer perfor-
mance make increasingly complex physical-technical, economic, or medical ques-
tions accessible to description with mathematical modeling, virtual simulation in
computers, and optimization relative to a given technological goal. In this way,
the most diverse simulation techniques have become as thoroughly established—
as a third pillar of knowledge acquisition—as theory and experiment for optimiz-
ing automation and decision-making in an increasingly complex and interconnected
world.”

5.2 “Mathematics—Engine of the Economy”

The book “Mathematik — Motor der Wirtschaft”2, published in the Year of Mathematics
in 2008, and produced in close cooperation with the Oberwolfach Stiftung (Oberwolfach
Foundation) and the Mathematisches Forschungsinstitut Oberwolfach (Oberwolfach Re-
search Institute), contains, among other things, a series of contributions from prominent

2G.-M. Greuel, R. Remmert, G. Rupprecht (Eds.): Mathematik — Motor der Wirtschaft, Springer-
Verlag, Berlin, Heidelberg, 2008.
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representatives of German industry. The book illustrates that mathematics is today of great
significance in virtually all branches, in all areas of industry, business, and finance. For
example, Peter Loscher, former chairman of the board of Siemens, Inc., writes:

“Mathematics—this is the language of science and technology. This makes it a
driving force behind all high technologies and, thus, a key discipline for industrial
nations. Without mathematics, there is no progress and no technical innovation.”

Or, to quote Dieter Zetsche, Chairman of the Board of Daimler, Inc.:

“As does no other science, mathematics helps us in our branch to solve the most
varied sorts of problems—and it is exactly this universal applicability that makes it
the royal discipline.”

Of course, not all the companies surveyed by the Oberwolfach Stiftung responded. Nor
was the vast economic sector of small and medium-sized businesses included, although
these companies are responsible for the lion’s share of German economic power. Never-
theless, there can be absolutely no doubt about the general validity of these statements.

There are indeed other studies that confirm them completely: For example, “MACSI-net
roadmap,” published in 2004 by ECMI (European Consortium for Mathematics in Indus-
try); “Mathematics: Giving Industry the Edge,” published in 2002 by the Smith Institute at
Oxford; and “Forward Look: Mathematics in Industry,” a report prepared in 2010 by the
European Science Foundation in cooperation with the EMS (European Mathematical So-
ciety). The experience of the mathematical Fraunhofer Institutes, whose mission is, after
all, research cooperation with industrial partners, also lends support to the argument.

53 ECMI

Since 1986, the “European Consortium for Mathematics in Industry ECMI,” to which
many European institutions belong—including groups in Barcelona (E), Dresden (D),
Eindhoven (NL), Florence (I), Glasgow (GB), Gothenburg (S), Graz (A), Grenoble (F),
Kaiserslautern (D), Lappeenranta (FIN), Limerick (IRL), Linz (A), Lund (S), Lyngby
(DK), Madrid (E), Milan (I), Oxford (GB), Sofia (BG), Trondheim (N), and Wroclaw
(PL)—has endeavored to emphasize the significance of mathematics for European in-
dustry and organize the training and cooperation of European “industrial mathemati-
cians.”

Germany’s applied mathematics enjoys an outstanding position internationally; it is one
of the few areas in which Germany ranks globally among the top three nations. In industrial
mathematics, Europe as a whole and Germany in particular are also at the forefront; the

3Cf. H. Neunzert: Mathematik ist iiberall — Anmerkungen eines Mathematikers zu den Beitrégen der
Wirtschaftsunternehmen in G.-M. Greuel, R. Remmert, G. Rupprecht (Eds.): Mathematik — Motor
der Wirtschaft, Springer-Verlag, Berlin, Heidelberg, 2008.
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USA and Asia orient themselves for the most part on European examples. Here, once
again, there is ample evidence to back up this claim.

The DFG sponsors a collection of graduate schools, memberships in excellence clus-
ters, and collaborative research centers that have a strong link to applied mathematics.
Applied mathematics is also strongly represented in the BMBF’s large flagship projects,
such as the Leading-edge Clusters and the Research Campus Program.

5.4 Berlin

In the past few decades, Berlin has evolved into a nationally and internationally recog-
nized center of excellence in the area of applied mathematics. The Konrad-Zuse-Zentrum
fiir Informationstechnik Berlin (ZIB) is one of the most successful institutes in scientific
computing and has an excellent global network. ZIB is also home to the only mathemati-
cally oriented research campus “MODAL—Mathematical Optimization and Data Analysis
Laboratories.” Along with the graduate school “Stochastic Analysis with Applications in
Biology, Finance and Physics” and the “Berlin Mathematical School,” the DFG Research
Center “Matheon—Mathematics for Key Technologies: Modeling, Simulation, and Opti-
mization of Real Processes” is the German applied mathematics center having the widest
international recognition. Matheon is supported by the mathematics institutes of the Tech-
nische Universitdt Berlin (TU Berlin), the Humboldt-Universitidt zu Berlin (HU Berlin),
and the Freie Universitit Berlin (FU Berlin), as well as by the ZIB and the Weierstrass
Institute for Applied Analysis and Stochastics (WIAS) (see, also™).

Since 2010, Berlin, with the WIAS, has also been the permanent headquarters of the
Internationale Mathematische Union (IMU), an umbrella organization for 77 national
mathematical societies. Among other activities, it supports education and research in de-
veloping countries and organizes the International Congress of Mathematicians (ICM),
the largest conference in the field of mathematics and venue for awarding the Fields
Medals.

5.5 Kaiserslautern

The mathematics department at the TU Kaiserslautern (Technical University of Kaiser-
slautern) has acquired an outstanding global reputation by virtue of its research activities
in theoretical and practical mathematics and its innovations in education. The curriculum
of technomathematics was “invented” and conceived in Kaiserslautern, and the depart-
ment here was one of the first in Germany, after Ulm, to introduce the economathematics

4p, Deuflhard, M. Grotschel, D. Homberg, U. Horst, J. Kramer, V. Mehrmann, K. Polthier,
F. Schmidt, C. Schiitte, M. Skutella, J. Sprekels (Eds.): MATHEON—Mathematics for Key Tech-
nologies; EMS Series in Industrial and Applied Mathematics 1, European Mathematical Society
Publishing House, Ziirich 2014.
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curriculum. Both fields of study have become successful curricula within Germany and
developed into especially strong focal points in Kaiserslautern. The DFG has been a past
sponsor of two graduate schools in mathematics in Kaiserslautern and a third, “Stochastic
Models for Innovations in the Engineering Sciences,” has just been approved.

With regard to its mathematics programs, the TU Kaiserslautern is among Germany’s
elite universities. This is evidenced by the university rankings, compiled by the CHE (Cen-
ter for Higher Education Development) and the magazines Focus, Stern, Spiegel, and Zeit
since 2003, in which mathematics in Kaiserslautern has always been placed in the top
group.

Over the past five years, in connection with a mathematics initiative sponsored by
the State of Rheinland-Pfalz, the TU Kaiserslautern, and the Fraunhofer ITWM, urgently
needed specialists in differential-algebraic equations, image processing, biomathematics,
and stochastic algorithms have been brought to Kaiserslautern.

The Fraunhofer ITWM emerged from the technomathematics working group and was
the first mathematics institute to join the Fraunhofer-Gesellschaft. Today, with its yearly
industrial revenues of more than 20 million euros and some 260 full-time employees
and doctoral students, it is one of the largest applied mathematics institutes in the
world.

The Institute is continually receiving new impulses for innovation from its cooperative
efforts within the mathematical department of the TU Kaiserslautern. By the same token,
the department is closely affiliated with the ITWM by virtue of third-party projects and
doctoral programs, and research within the department is stimulated by the project-driven
topics of the ITWM. Unfortunately, this close affiliation is not always perceived publicly
and we encounter the misconception that there is a mathematics department very nicely
situated in basic research and a Fraunhofer Institute that successfully transfers mathemat-
ics to industry, but the two have little to do with each other. The supposed separation into
basic research within the department and mathematics transfer at the ITWM does not cor-
respond to reality. The ITWM performs its own basic research within applied mathematics
on a large scale. Between 2000 and 2013, for example, 150 PhDs and habilitations were
successfully completed in the Institute and its immediate environment. Naturally, these
degrees were granted by the TU Kaiserslautern.

In order to further strengthen the connection between the mathematical department and
the ITWM, the “Felix-Klein-Zentrum fiir Mathematik” (FKZM) was founded in late 2008,
in connection with the Rheinland-Pfalz “Mathematics Initiative.” The center was named
after the important mathematician and scientific promoter Felix Klein (1849-1925). This
name was selected, because Felix Klein united Germany’s pure and applied mathematics
like no other mathematician in history, reorganized mathematics in Germany 100 years
ago, built a solid bridge to industry, linked academic and school mathematics, and cele-
brated and promoted the history of science—all activities that have served and still serve
as pole stars for Kaiserslautern’s mathematicians. Therefore, the FKZM offers a platform
and provides infrastructure for joint research projects, guest programs, scholarships, and
school outreach activities. Last, but not least, the FKZM represents a forum for cooperation
with other departments and industry.
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5.6 Other Activities in Germany

It would exceed the scope of this introduction to offer detailed descriptions of all the sites
in Germany at which applied mathematics plays a prominent role.

Heidelberg is certainly another exceptional location for applied mathematics, where
great emphasis is placed on cooperation with industry. Along with the Heidelberg Grad-
uate School of Mathematical and Computational Methods for the Sciences (HGS Math-
Comp), the Interdisciplinary Center for Scientific Computing (IWR)—a research institute
of the Ruprecht-Karls-Universitidt Heidelberg—is among the world’s largest university-
based centers for scientific computing. The previously mentioned Fraunhofer Institutes
for Algorithms and Computational Science SCAI, in Sankt Augustin, and for Med-
ical Image Computing MEVIS, in Bremen, along with the Max Planck Institute for
Mathematics in the Sciences, in Leipzig, are all German centers of applied mathemat-
ics. In addition, there are numerous locations with well-funded chairs, state institutions,
and special research areas that have also helped carve out Germany’s applied math-
ematics landscape. Some examples are Bremen, Paderborn, Munich, Erlangen, Bonn,
Stuttgart, Freiburg, Saarbriicken, Wuppertal, and Dresden—and this list is far from com-
plete.

To conclude this introduction, we would like to offer the reader a bit of information
about the design of this book and the various areas of focus in the individual chap-
ters.

6 The Design of This Book

In structuring our book, we have kept in mind various groups of potential readers:

e Practitioners and interested laypeople who want to inform themselves—without having
to dive into the technical details—about what today’s mathematics can offer toward the
solution of practical problems.

e Professional mathematicians and university-level mathematics students who want to
understand the mathematics developed at the [ITWM.

e Teachers, younger students of mathematics, and instructors or tutors who want to un-
derstand how to integrate the new image of mathematics into their school systems.

The triad “problem-driven—model-based—solution-oriented,” has determined this book’s
design. The section entitled “The Concepts™ (Part 2) is dedicated to the following super-
ordinated topics:
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e Mathematical modeling
e Computation
e Data analysis
e Optimization processes

These chapters serve to provide an overview of the essential questions, methodologi-
cal approaches, strengths, and potentials—along with the weaknesses and limitations—of
each topic. They are addressed to both practitioners and interested laypeople, as well as
to professional mathematicians and university-level mathematics students. The aim here
is not to offer a mathematical representation of specific models or algorithms. Instead, the
chapters comment upon and give structure to the work of the Institute, work that has cul-
minated in the research descriptions found later in the book. For this reason, these chapters
tend to be written in more of a “prose” style.

This approach can be attributed to the fact that the mathematics of the ITWM is
problem-driven, which means that the reality described by our models is much more com-
plex than that forming the foundation of academic works. There are more complicated
boundary conditions, the materials are non-homogeneous, the objective functions are not
immediately clear, and the models must be simplified in order to make their application
really practicable. All these aspects are discussed in the overview chapters. In addition,
important models or algorithms that don’t happen to appear in the “research” chapters
presented later are also addressed briefly.

Significant results from the mathematics originating in the various ITWM departments
are then introduced in the following five chapters under the rubric “The Research.” These
department-related chapters serve as prototypes of the model-based, problem-driven, and
results-oriented mathematical research of the ITWM. They come nowhere near to provid-
ing a complete overview of the projects and results achieved during the past 20 years of
research at the ITWM. Rather, they serve as examples from working areas that are espe-
cially suited to illustrate the unique flavor of industrial mathematics. All five chapters are
structured in a similar fashion. The first three sections of each chapter are written so as to
also be understandable to interested laypeople having no pertinent knowledge of mathe-
matics.

In contrast, the fourth section is aimed principally at mathematicians. It comprises
a “self-contained,” compact mathematical presentation for one or two problem areas,
addresses the mathematical challenges, and describes the significant results, includ-
ing their relevance for the “problem solution.” The remaining sections discuss simula-
tions based on the previous results and round off each research chapter with descrip-
tions of specific examples arising from “practice” that have been addressed in the joint

projects.
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The various chapter sections focus on the following questions:

Basic structure of the research chapters

1. Why is the industrial partner coming to us?

— What are the industrial problems and challenges found in a particular area of
focus in the department?

2. What are the mathematical challenges?

— Which mathematical methods are needed and which results are available for
solving these problems?

— Why is the existing mathematics very often insufficient; i.e., why is it not
simply a question of mathematics transfer?

3. What was achieved in the department?

— What are the primary topics focused on in the department and what results
were achieved?

— What is the impact of doctoral dissertations and graduate theses and who are
the visible cooperation partners and customers?

4. What problem-oriented mathematical results were achieved?

— What results were achieved and to what extent are they relevant for the “prob-
lem solution”?
— What works and what doesn’t work?

5. How do the results apply in actual practice?

— What is handed over to the customer in the end for his specific problems?
— Are there simulation tools offered?

The final part, “The Training,” containing the chapter entitled “Applied mathematics in
schools—made in Kaiserslautern,” is aimed primarily at high school teachers and students.
As mentioned at length previously, recent decades have seen a quantum leap in the visibil-
ity of mathematics as an engine for innovation in technology and society. Unfortunately,
the new role of mathematics as a key technology has not yet been recognized in our school
systems. Mathematical modeling, computing for the solution of existing, practical prob-
lem, and interdisciplinary projects are hardly ever found in schools. Of course, one does
find so-called “word problems,” but these very rarely describe authentic problems whose
relevance is clear to learners and who might thus be excited about finding solutions. Al-
gorithms are introduced in schools, granted, but hardly any that have been developed in
recent years to tackle large-scale challenges.

The MINT subjects (from German M = Mathematics, I = Informatics, N = Natural
Sciences, T = Technology; in English maybe better STEM) are not sufficiently integrated
into either the curriculum or into classroom practice. Learners perceive lessons in the var-
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ious MINT subjects as sequences of contents and tools that often fail to make clear over-
arching relationships—even within a given subject. The linking of the subjects with each
other happens even less often.

One reason for this is the way teachers are trained: to date, applied mathematics has
been assigned a rather humble position in the teacher training curriculum. Neither model-
ing nor work with algorithms—which, in practice, have widely replaced the use of compli-
cated formulas—play a role in school. Similarly, within the education curriculum, the in-
terdisciplinary interplay of mathematics, computer science, the natural sciences, and tech-
nology is neither discussed nor trained adequately.

In the final chapter of our book, we want to present some ways and means for reforming
instruction, both in our schools and in the training and continuing education programs for
teachers, as they have been practiced for several years in Kaiserslautern.

After a short, application-oriented introduction into mathematical modeling, we will
point out which measures can be adopted to bring learners into closer contact with applied
mathematics and interdisciplinary work. Here, we will present both intracurricular and
extracurricular events.

Activities such as “modeling week,” “modeling day,” and competitions can be used
to offer pupils the opportunity, within the framework of a compact project, to become
more closely acquainted with the role of mathematics, to actively and creatively practice
mathematics, and to witness interdisciplinary connections. The sample problems serve as
invitations to interested teachers to integrate modeling into their lessons. In the “Junior
Engineer Academy” and the nation-wide “Fraunhofer MINT-EC Math Talents” program,
participants have a chance to experience, over a longer period of time, a new philosophy
of linking education with practical application.

We also offer pointers for the education and continuing education of future teachers that
will help them to structure their lessons and additional intracurricular activities accord-
ingly. For this purpose, prepared lesson material is far less important than the necessary
technical training and a positive attitude towards using new methods and ways to address
questions that have no clear-cut right or wrong answers. The information about the didac-
tical integration of new instruction methods is designed to explain the impact and point
out ways to connect new with traditional instruction.

7 A Brief Portrait of the Fraunhofer Institute for Industrial
Mathematics ITWM

The Fraunhofer ITWM was founded by the working group “Technomathematics” from the
University of Kaiserslautern. As a research institution belonging to the State of Rheinland-
Pfalz, it was, from the beginning, under Fraunhofer administration. After a successful
evaluation in 1999, it advanced to the status of the first mathematical research institute of
the Fraunhofer-Gesellschaft, thus, becoming part of one of the world’s largest and most
successful research organizations (Fig. 3).
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Fig. 3 Institute building of the ITWM at the Fraunhofer Center in Kaiserslautern (Photo: G. Ermel,
Fraunhofer ITWM)

As a mathematics institute, the ITWM has remained committed to one of civilization’s
oldest sciences while, at the same time, developing into one of the most successful insti-
tutes in the Fraunhofer-Gesellschaft, as measured by its economic revenues. The basis for
this balancing act has been the previously mentioned, dramatic increase in the relevance of
mathematics for all production, service, and communication processes in modern industry.

After 20 years of effort, the vision with which the ITWM began—to transport mathe-
matics out of the ivory towers and cathedrals of pure science and transform it into a key
technology for innovation in technology and business—has become realized to a signifi-
cant extent. This vision was not always universally applauded. Hardly anyone would have
believed at the time of the Institute’s founding that, in so short a span of time, such a
large and successful Fraunhofer Institute of Mathematics would develop out of the seeds
of technomathematics and economathematics from the University of Kaiserslautern.

The warnings often had the ring of “modern technology needs mathematics, but not
mathematicians; it remains the domain of engineers and scientists.” In the interim, a rever-
sal in thinking has taken place here.

In the past 30 years, the scope of the mathematics that has found its way into industrial
practice has grown exponentially. The essential reason for this is that work on real models
has been replaced by simulations, that is, by work on mathematical models. Augmenting
this development has been the automation of work processes, cognitive capabilities, sense
perceptions, and experiences in the form of algorithms, computer programs, and expert
systems. The materialization of mathematics in computers and software programs has also
played a role. As a raw material for models and the core of every simulation program,
mathematics serves as a key technology and forms the foundation of the bridge to the
world of simulations—a world based on the highly efficient assistance of the computer,
a tool that has gained a foothold in nearly every sphere of our society and economy.
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Research and development projects with industry, preparation of customized software
solutions and systems, and support with the use of high performance computing technol-
ogy are integral building blocks of this transformation. The projects of the ITWM reflect
a broad range of clients, from low tech to high tech companies, from small and mid-sized
companies to industrial heavyweights, from regional businesses to customers throughout
Europe and overseas. Industry appreciates and needs the Institute’s modeling competence,
its algorithms, and its software products. Significant economic revenues, coupled with a
strong emphasis on research—62 doctoral students are working on their dissertations at
the Institute in 2014—form the basis for sustainable success and continuous growth.

Since its founding in late 1995, the ITWM has attracted more than 81 million euros’
worth of industrial projects and almost 51 million euros’ worth of publicly sponsored
projects. In the past three years alone, more than 700 industrial projects have been suc-
cessfully completed.

This is proof that there is a great demand on the part of industry for innovative mathe-
matics and, simultaneously, that industrial problems can serve as a driving force for devel-
oping innovative mathematical methods and tools.

The ITWM budget has grown continuously since the Institute’s founding and reached
a total of more than 22 million euros in 2014; almost half of that is financed by industrial
projects. This establishes the ITWM as one of the world’s largest institutes in the area of
applied and industry-oriented mathematics.

One quarter of ITWM business revenues come from contracts with small and mid-sized
businesses. One third of ITWM business projects are contracted with regional businesses,
and a further third with companies outside of Germany.

Analysis of ITWM’s industrial projects reveals several trends that, in our view, are
not attributable to local or regional effects, but have a general validity:

e Mathematical modeling, simulation, and optimization are in demand by large
companies in all business sectors.

e The use of mathematical methods is also a significant innovation factor for small
and mid-sized companies.

e The transfer of mathematics to industry is subject to globalization.
Regional companies represent a large customer potential.
Small batch sizes predominate in the projects.

The ITWM boasts a broad customer spectrum: the main sectors involved are plant and
machine construction; the automobile industry; the plastics, metal, and mineral process-
ing industries; information and communication technology; the wood, paper, and printing
industries; microelectronics; medical technology; the pharmaceutical industry; the chem-
ical industry; technical textiles; banks; and the insurance industry. Many of the projects
involve large companies traded on the German Stock Exchange (DAX). In the automo-
bile industry, the ITWM cooperates with all of the domestic companies and many foreign
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manufacturers as well. The ITWM works with a problem-oriented approach in a project
landscape that encompasses the most varied business sectors and that allows, due to the
cross-linking character of mathematics, an efficient transfer of methods. This results in
structural stability and makes the Institute resilient in the face of economic downturns in
any given industrial branch.

Many small and mid-sized companies are subject to enormous competitive pressures
and take advantage of the ITWM’s modeling and simulation competence to help them
cope. The vanguards in this development have profited in the marketplace by using simu-
lations as proof of innovation and quality assurance in their products. The fact that com-
puting power can be purchased more cheaply every year has helped small and mid-sized
companies, who have more limited financial resources. Here, it is not investments in com-
puters, but in the relatively expensive software, that is the bottleneck. Moreover, techni-
cally qualified personnel must also be hired to support the ever more complex software
programs. Because small and mid-sized companies often have little or no in-house R
and D, the use of simulations frequently means hiring additional staff, which results in
permanent costs. Along with this economic factor, the psychological challenge of giv-
ing up tried and tested, mainly experiment-based procedures—where one can always see
and measure the results—and replacing them with simulations—where one must put faith
in the computer and software tools—still occasionally impedes progress in project busi-
ness. However, when implemented correctly, simulations are extraordinarily reliable. This,
along with their almost limitless flexibility, will sooner or later convince everyone, which
means that the potential for cooperative ventures is enormous.

Businesses located here and in the surrounding region use the ITWM’s competences.
In 2013, almost one third of the projects were carried out with cooperation partners from
Kaiserslautern and environs, although these were predominantly small and mid-sized com-
panies. This shows that a mathematics-based research institute can also significantly sup-
port the regional economy in the field of R and D and promote innovation.

The globalization of the economy is reflected in the ITWM’s contracting partners. The
portion of industrial revenues from projects with foreign partners has grown to more than
one third. Many customers are based in Europe, but cooperative ventures with companies
in the USA and Asia are becoming more and more significant.

With respect to the associated marketing efforts, the long-term planning of staff uti-
lization and competence development, and the minimization of administrative costs, the
ITWM’s ideal partner is one who signs a multi-year contract with us that covers the exe-
cution of individual projects. Existing customers that meet this profile are very valuable to
the Institute.

Small and mid-sized companies usually contract for single, smaller projects. Many
companies which, when taken together, provide us with a large volume of contracts, have
various R and D departments that sign separate contracts with the ITWM for their specific
projects. New customers tend to first test the competence and capabilities of the Institute
by means of smaller feasibility studies and computational jobs. As a result, the number of
projects being processed yearly at the ITWM has grown to more than 250, and the average
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economic volume of the projects in 2013 was just under 40 000 euros. The large number
of follow-up projects is a clear sign of the quality of our project work and a source of great
satisfaction.

71 Which Competences and Structures Are Needed to Successfully
Transfer Mathematics to the Market Place?

The cornerstones for successfully transferring mathematics are the classical disciplines of
applied mathematics: numerics, optimization, stochastics and statistics, differential equa-
tions, and mathematical modeling. These are augmented by such strongly mathematically-
oriented theoretical fields as 3D differential geometry, continuum mechanics, electrody-
namics, system and control theory, financial mathematics, inverse problems, and image
and signal processing, which have evolved into boundary fields between mathematics and
technology over the past decades (Fig. 4). They are indispensible constituents for success-
fully carrying out application projects.

The ITWM’s main field of activity consists of transforming mathematics that is applica-
ble into mathematics that is actually applied: We adapt theorems and algorithms to models
that come from actual practice and we convert optimal solutions that exist in theory into
practicable solutions that can exist in reality. However, this transformation requires specific
competences above and beyond the aforementioned cornerstones in order to build actual
bridges to the virtual world. In relation to the processing of available experimental and
observational data, they consist of setting up the mathematical model; transforming the
mathematical solution of the problem into numerical algorithms; combining data, models,
and algorithms in simulation programs; optimizing solutions in interaction with the simu-
lation; and, finally, visualizing the simulation runs in the form of images and graphics. The

System and control theory

Statistics

e Numerics

Inverse problems

Mathematics
core competences
at the ITWM

e Differential equations

Image and signal processing
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3D differential geometry
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Fig. 4 Mathematics core competences at the ITWM (Graphic: S. Griitzner, Fraunhofer ITWM)
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Fig. 5 Process chain at the ITWM (Graphic: S. Griitzner, Fraunhofer ITWM)

competences needed to build this process chain represent the [ITWM’s core competences
(Fig. 5).

This entire process chain is frequently subsumed under the term “numerical simula-
tion.” In the past 20 years, the increasing performance capacity of computers has opened
up entirely new possibilities for industrial simulation tasks. More and more, computer net-
works are achieving central significance. There has been a dramatic paradigm change with
regard to generating the highest computational performance for industrial applications. PC
clusters, multi-core systems, and cloud computing are replacing super computers. Parallel
computing systems, which just a few years ago were found only in a few meteorological
research centers, have now made their way into industrial settings. Adapting numerical al-
gorithms to these rapid changes in hardware configuration is still a troublesome bottleneck
in the complete realization of the performance potential of these new computing systems.

The full process chain is illustrated in very many ITWM projects. One of the Institute’s
great advantages is that all these competences are available in-house and their utilization
in projects can be centrally planned. The original team of 34 scientists, PhD students, and
staff in the centralized areas has grown into the current team of 260 employees. All in
all, 170 scientists, most of them with doctorates in mathematics, but also coming from the
fields of physics, engineering, and informatics, process a multitude of topics and develop
simulation software (cf. Appendix: The Fraunhofer Institute in numbers). In contrast to
project execution in university settings, there is no need for coordination and reconciliation
of content and timing between working groups from different chairs. Zones of responsibil-
ity and authority, along with schedules and delivery of work packages, are already clearly
defined during bid preparation.

At the same time, in order to maintain contact with the frontlines of research and remain
competitive with other research institutions in the marketplace, it is necessary to continu-
ously reflect on how our own focal points, ideas, and goals mirror events in research and
development outside the ITWM microcosm (Fig. 6).



24 D. Pratzel-Wolters and H. Neunzert

Math.
research

ITWM

Business Scientific
development exchange

Fig. 6 Scientific exchange (Graphic: S. Griitzner, Fraunhofer ITWM)

The research at the ITWM is very tightly integrated with the research in the TU Kaisers-
lautern Department of Mathematics. At the University, there are counterparts to the groups
working in the Institute’s primary areas of focus. The University also participates in the
State’s research focus area CM2 and the graduate school “Stochastic Models for Inno-
vations in the Engineering Sciences.” Beyond this, there are cooperative projects with
many chairs in the Informatics, Mechanical and Process Engineering, Civil Engineering,
Electrical Engineering, and Information Technology Departments, including, for example,
projects in the innovation center “Applied System Modeling” and in the Kaiserslautern
“Science Alliance.”

The bridging technology of mathematics is also reflected in a multitude of coopera-
tive projects between the ITWM and other Fraunhofer Institutes. The ITWM is one of the
most profitable members in the Fraunhofer ICT Group (Information and Communication
Technology) and also enjoys the status of a guest institute in the Fraunhofer Group for
Materials. Moreover, the Institute is a member of the Fraunhofer Alliances Automobile
Production, Batteries, Big Data, Cloud Computing, Lightweight Construction, Numeri-
cal Simulation of Products and Processes, Transportation, and Vision, as well as of the
Fraunhofer Innovation Cluster “Digital Commercial Vehicle Technology.”

In association with other institutes, the ITWM participates in a series of larger in-house
Fraunhofer cooperative projects. Here, we contribute our mathematically oriented compe-
tences, which, as a rule, complement those of the partner institutes. All told, the ITWM is
one of the best-connected institutes in the Fraunhofer-Gesellschaft.

The ITWM'’s international network manifests itself also in the current research coop-
erative ventures with many foreign universities and research institutions, in the numerous
foreign guest scientists working here, and in the extensive participation of ITWM scientists
in scientific committees and in the publication of technical journals.
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7.2 Departments, Business Areas, and Customers

The departments serve to structure the Institute’s business areas, not always with perfectly
sharp divisions, but with sufficient specificity for differentiation purposes. The matrix
structure found in many institutes was consciously avoided in order to have few hierar-
chic levels in the ITWM and to minimize the internal coordination processes necessary in
business development and project work. As a rule, the departments have at their disposal
the relevant competences needed to serve the business areas they address.

It is beyond the scope of this introductory chapter to offer detailed descriptions of
the competence and customer profiles of the various departments. Five departments have
made significant contributions to this book, and the chapters in “The Research” that were
prepared by these departments offer a glimpse into the work they have conducted. The
ITWM’s pallet of customers is also far too extensive to offer a complete accounting.

From 2009 to 2013, the ITWM processed 1070 industrial projects. The following short
overview illustrates, using 2013 as an example, the Institute’s diverse branch and customer
pallet.

e Business sectors:
Vehicle industry, general mechanical engineering, energy and raw materials, chemi-
cals, financials, manual trades, information and communication technology, medical
technology, and textiles.

e Customers:
Accenture CAS GmbH, Assyst GmbH, AUDI AG, AUTEFA (A), BASF SE, BMW
Group, BPW Bergische Achsen Kommanditgesellschaft, ClusterVision (NL), Daimler
AG, DZ-Bank (L), ebm papst, FLSmidth Wadgassen GmbH, Freudenberg Filtration
Technologies, Gorlitz AG, IBS FILTRAN GmbH, John Deere, Johns Manville Europe
GmbH, K + S Kali, Klinikum Essen, Liebherr, LONZA Group AG (CH), Lundin (N),
M + W Process Industries GmbH, Marathon Oil (USA), Math2Market GmbH, MTU
Aero Engines GmbH, Paul Wild OHG, proALPHA Software AG, Procter & Gamble
(USA), Progress Rail inspection & information systems, Repsol (USA), Robert Bosch
GmbH, Seismic Image Processing Ltd (GB), SGL Carbon, SIEDA GmbH, Siemens
AG, Statoil (N), Teckpro AG, Voith Hydro, Volkswagen AG, Volvo CE (S), Woltz
GmbH.

7.3 Cooperation with the Fraunhofer-Chalmers Center for Industrial
Mathematics FCC

The ITWM was one of the first Fraunhofer Institutes to implement the recommendation
of the Fraunhofer Board to promote internationalization in Europe. In Gothenburg, Swe-
den, the Fraunhofer-Chalmers Center for Industrial Mathematics FCC was successfully
established as a joint venture between the Chalmers Technical University and the ITWM
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Fig. 7 The Software IMMATM—Intelligently Moving Manikins—utilizes families of manikins in
order to accommodate the majority of the population. The manikins are used for evaluating assembly
ergonomics (Graphic: FCC, geometry mesh: Poser®)

(Fig. 7). Today, 51 employees generate an operating budget of almost 41 million Swedish
kronor (approx. 4.3 Million euros). The Institute, with its departments

e Geometry and Motion Planning
e Computational Engineering and Design
e Systems and Data Analysis

was founded in 2001, and since that time has developed into one of Sweden’s most
renowned centers for “industrial mathematics.”

8 Summing up the ITWM

Today, the ITWM already numbers among the largest institutes in the field of applied
and industry-oriented mathematics. Its mission is to be the spearhead of mathematics in
industry, with particular focus on small and mid-sized companies.

It will strengthen and enlarge this position and continue to contribute its part to mak-
ing mathematics a key technology in industry and business. The outstanding connection
with the TU Kaiserslautern in research and education guarantees proximity to current re-
search topics, particularly (but not only) in applied mathematics and represents an im-
portant resource for attracting talented, young scientists. The ITWM’s integration in the
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Fraunhofer-Gesellschaft, its participation in a number of international cooperative ven-
tures, and the close collaboration with its affiliated institute FCC in Gothenburg are also
among the Institute’s strengths.

The horizontal structures, with autonomous departments and a small, efficient admin-
istration, allow for simple operational procedures, operational flexibility without complex
matrix structures, and direct coupling of ITWM competences with customers. A good
working environment, a minimum of hierarchical friction, and a climate of mutual respect
and appreciation contribute significantly to our employees’ high level of commitment to
and identification with their work and the Institute as a whole. Last, but not least, our
straightforward dealings with our cooperation partners, based on the motto “promise only
those things that you can really deliver,” is an important element in the Institute’s on-going
economic success.

This is not to say that there is no room for improvement. We want to increase our co-
operation with top national and international researchers in applied mathematics in order
to ensure the quality of our research and to further develop and add to our competences.
The publication activities in the departments vary widely; overall, an increase here is de-
sirable, both for its own sake and to strengthen the Institute’s visibility within the scientific
community. The Institute addresses numerous application topics in almost all branches.
This provides a degree of structural stability and helps ensure that economic downturns in
individual branches have only a modest impact on the Institute’s revenues. On the other
hand, this high level of diversification is frequently associated with small project size, and
the ITWM is the premium partner for MSO in only a few branches, such as commercial
vehicles and the oil and gas industry. Moreover, there is a potential for further focusing,
for example, in process technology, the energy sector, or the IT industry, which we want
to promote more strongly in the future.

In addition, the Institute operates in a competitive environment: there are engineering
offices offering companies R and D consulting with commercial software; there are soft-
ware companies who are members of the [TWM’s contract research pool offering commer-
cial solutions for problems; there are university chairs pushing their way into the market-
place in response to the increasing market and third-party-funding orientation in academia;
and there are also other Fraunhofer Institutes expanding their own modeling and simula-
tion competences in their particular application domains. Of course, this competition is
also directed toward attracting the best minds available in the employment marketplace.
Naturally, the restrictions imposed by the TVOD (public service wage agreement) repre-
sent a competitive disadvantage. Attracting highly qualified new personnel and maintain-
ing high employee motivation levels, while the team is increasing in age, will be one of
the Institute’s biggest challenges in the coming years.

The ITWM participates in many BMBF (Federal Ministry for Education and Research)
projects as a partner for MSO. Although the innovation initiatives in Germany and the EU,
when compared globally, may be viewed as providing a positive overall framework, it must
nonetheless be admitted that mathematics does not fit squarely into the BMBF’s funding
channels. The BMBF mathematics program is certainly an important resource for applied
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mathematics in Germany, and mathematics funding also has a high priority for the DFG, as
evidenced by its inclusion in all DFG subsidy programs. However, mathematics, as an in-
dependent technology, still has no funding program of its own, and the financial support of
the BMBF program is exceedingly modest in comparison to the funding provided to other
key technologies. The significance of applied mathematics as a driver of innovation is still
not taken seriously in political circles. Thus, mathematically oriented research institutes
and university chairs must continually rely on successfully docking their competences
onto domain-oriented projects. However, they receive little dedicated funding for devel-
oping methodologies and expanding their core competences. There is no funding program
for larger network projects with industry, in which methodological development, oriented
on industrial needs, is expedited under the consortium management of the mathematics
partners, and in which the companies themselves can also receive funding.

We do not, however, wish to conclude this introduction with what needs to be improved
upon. The fact is that applied mathematics has experienced great growth in Germany
within the past decades and has become a “motor of innovation,” firmly anchored in the
economy and society. The ITWM has made an important contribution to this development
and is among the most renowned institutes of applied mathematics today. A significant part
of the Institute’s success is owed to the authors of this book. They have contributed to the
project with great enthusiasm and attempted to identify the main elements of a problem-
driven, model-based, and solution-oriented mathematics in the context of the Fraunhofer
ITWM. Whether they have succeeded, we leave it for you to decide, dear reader. In any
case, we wish you an interesting journey through this book, and look forward to receiving
both positive feedback and constructive criticism.
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Appendix: The Fraunhofer ITWM in Numbers
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Modeling

Helmut Neunzert

Without doubt, “models and modeling” represents one of the most important core compe-
tences in industrial mathematics. Our primary purpose here is to clarify what we mean by
models and modeling, for there are few terms in applied mathematics—perhaps few in all
of the natural sciences—that have a wider variety of meanings and specialized uses. This
is true, despite their also being key terms in natural science research, which is composed
of the interplay between modeling and measuring.

So, let us begin with a definition of terms.

1 What Is a Model and what Is Modeling?

The literature is full of more or less original answers to this question. Here, for example,
is an almost poetic entry: “Models describe our beliefs about how the world functions.”
And, further: “With mathematical modeling, we translate the contents of our beliefs into
the language of mathematics” [4].

One might also say that we form hypotheses and pictures of our beliefs about how
the world functions—or at least a part of the world. There is a note of caution in such
sentences. We don’t know how the world really functions, but we work with certain hy-
potheses about it until these hypotheses have been falsified. One hears the voice of Karl
Popper here. These hypotheses have, at least, clear boundaries regarding the scope of
their validity—and this is an important message, one that we place almost at the very
beginning—especially when “world” means the world of industrial practice. Whatever is
delivered in the form of solutions to industrial problems, one must never forget when ap-
plying these solutions that they were arrived at by virtue of simplified conditions that must
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Fig. 1 Heinrich Hertz (1857-1894, Photo: Robert Krewaldt)

always be taken into account. This caveat has often been forgotten—in financial mathe-
matics, for example—but also with regard to technical problems. The unreliability of the
results was not the fault of the mathematicians, but of the blithe utilizers of the results.

However, it is also true that, within the boundaries of their validity, models can
reflect the world with surprising accuracy—and this, above all, is what we want to
discuss.

But let us remain for a while with the defining of terms. A less poetic definition than the
first, but more useful from a scientific perspective, is that of the physicist Heinrich Hertz

(Fig. 1), proposed in 1896 in his “Principles of Mechanics.” To quote Mr. Hertz:
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i B

Fig. 2 Systems: (a) natural ecosystem, (b) technical system (© Pressefoto BASF), (¢) economic
system (© Deutsche Borse)

“We create for ourselves internal replicas or symbols of external objects, and we
create them in such a way that the logically necessary consequences of the pictures
are always the pictures of the naturally necessary consequences of the replicated
objects.”

In Fig. 1, we see a graphical representation of the above sentence. When we replace
“internal replica or symbol” simply with model, then we understand that Hertz considered
modeling to be the actual core of scientific research, for the above quote relates to the
actual practice of science. We must determine the “logically necessary consequences of
the pictures.” This works best when the pictures are “made up of mathematics.” Or, to put
it another way: the raw material of the models under consideration here is mathematics.
This corresponds to many other definitions of modeling also: “Mathematical modeling is
the use of mathematics to describe phenomena from the real world” [7]. Moreover, the
author goes on to say that modeling “investigates questions about the observable world,
explains the phenomena, tests ideas, and makes predictions about the real world.”

Wikipedia puts it even more simply. Here, a model is the description of a system by
means of mathematical concepts and language. A model can help to explain a system and
study the influence of various components, as well as help to make predictions about its
behavior. Here too, science and modeling are closely coupled: “The quality of a scientific
field depends on how well the mathematical models developed on the theoretical side agree
with results of repeatable experiments.”

A more thorough introduction to the most important terminology is provided by Vel-
ten [6]. He gives very formal definitions that are indeed correct, but not always helpful.
The most comprehensible is still his Definition 1.2.1, which he adopts from Minski [3]:
“To an observer B, an object A* is a model of an object A to the extent the B can use A*
to answer questions that interest him about A.” Is it now clear to everyone what modeling
means? Another basic interest of modeling and modelers is objects. In most texts—and in
[6] as well—these objects are quickly made more specific: one is interested in systems:
natural systems, such as lakes; technical systems, such as installations and motors; eco-
nomic systems, such as the stock market; and virtual systems, such as computer games
(Fig. 2).
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Fig. 3 Model and reality: which is which? (© iStockphoto (left), Photo and montage: G. Ermel,
Fraunhofer ITWM)

There are also more and less formal definitions for the term “system,” but we accept the
word as it is commonly understood. Without exception, the work of the ITWM also deals
with systems of the kind mentioned above: spinning installations, grinding equipment,
filter systems, generators, stock markets, etc. And although we prefer Heinrich Hertz’s
definition for our work and for this book, we too refrain from defining what a “picture” or
replica is. We can say, however, that it illustrates to the investigator the essential qualities
of a system; consequently, it excludes the non-essential qualities. In other words, a picture
abstracts. Perhaps the word “caricature” would be more accurate than picture. Or perhaps
the photograph in Fig. 3 says it best, entirely without words.

For us, then, a model is a picture of a system. The picture is composed of mathemat-
ics and reflects with satisfactory precision certain characteristics of the system that are of
interest to the investigator. The model has clear boundaries for its validity, although these
boundaries depend on the degree of precision that is desired. There are often parameters
in the models that can be determined directly by measurement or extracted indirectly from
measurement data via parameter identification. The precision requirements of the model
must correspond to the precision of the data; it makes no sense to incorporate the tiniest
phenomena into the model, when the parameters that belong to them can not be measured
or can only be roughly ascertained—a problem that appears particularly often in biology.
A cell’s metabolism is extremely complex. On the basis of the structure model shown in
Fig. 4, a mathematical model can easily be constructed using a system of ordinary differ-
ential equations, but the many transfer coefficients are neither measurable nor identifiable.
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Modeling is a significant part of scientific practice. Physics, for example, con-
sists of modeling and measuring. Newton’s mechanics, Einstein’s relativity theory, and
Schrddinger’s quantum physics are just as much models as Navier—Stokes or Euler equa-
tions, as Darcy’s law of flow in porous media, as Cosserat’s solid body theory, or as the
Maxwell equations. In our projects, classical physics predominates—particularly contin-
uum mechanics, thermodynamics, and electrodynamics—since the temporal and spatial
magnitudes dealt with in industry are generally well-suited to it.

The supply of models in biology or the social sciences is not nearly so plentiful as in
physics, and one often has to invent them anew. This is a challenge and sometimes a joy
as well, but here, one is not as firmly rooted in solid ground as in physics.

Ultimately, I believe that modeling, as we have outlined it here, is essential for all
problem solving, and thus represents a fundamental human activity. For, as Karl Popper
reflected: “Life is problem solving.”

2 Why Do We Model?

This question becomes superfluous once one has grasped what a model is. Nevertheless,
the importance of mathematical models—and with it, the importance of mathematics—has
increased greatly for industry, since computers have made it possible to utilize even more
complex models. When one uses a computer to numerically evaluate a model that reflects
a particular system, then one obtains in the computer a virtual picture of the system’s
behavior.

We simulate the system. A simulation thus arises by means of the numerical eval-
uation of models, generally with the help of a computer. A simulation allows the
behavior of a system to be predicted; one can investigate how system changes im-
pact behavior and one can also optimize systems using a computer. Thus, models
and simulations serve as important supports for decision-making: tactical decisions
in the case of managers, and strategic decisions in the case of planners.

In the days of Heinrich Hertz, most models could not be evaluated. One had to sim-
plify them—for example, by reducing the number of dimensions from three to two, or even
one, or by using perturbation methods—in order to be able to then “solve” the simplified
models analytically. The solutions of such simplified models often help one to better un-
derstand the system: Which parameters are important? Are there bifurcations? Can the
system become unstable? And so on. However, if one wants to quantitatively predict sys-
tem behavior in real, three-dimensional systems—and technical systems are mostly three
dimensional—then such simplifications are not acceptable, and one must try to find at least
an approximate evaluation of the original, complex model (Fig. 5).
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Fig. 5 Real and virtual systems: a cast object and a solidification simulation (Photo: G. Ermel,
Fraunhofer ITWM; simulation: Fraunhofer ITWM)

In industrial practice, one almost always wants relatively exact quantitative predictions.
A purely qualitative understanding is indeed useful, but usually insufficient. This question
also distinguishes between various groups offering “industrial mathematics™ as a univer-
sity or research institute topic. The “Study groups with industry” founded in Oxford some
45 years ago, for example, bear down for an entire week on industrial problems using
mathematical methods and deliver interesting analyses, but rarely quantitative predictions.
The Fraunhofer ITWM, in contrast, strives to ultimately provide the client with software
for simulating, optimizing, or controlling the systems. The two approaches also call for
different working tactics. At the Fraunhofer, the models should be “as simple as possible,”
but no simpler. A “small parameter” that is allowed to approach zero in Oxford in order to
permit further investigations of the models is, at the Fraunhofer, often not small enough to
cancel out without causing substantial quantitative errors.

Moreover, right from the start, when setting up the models, it is necessary to keep in
mind that one must be able to efficiently evaluate them. Modeling and computation go
hand in hand; artists of pure modeling and computation virtuosos, one without the other,
are often inadequate to the real demands of industry. This calls for a genuine balancing act,
for there are also “number crunchers” who will resort to faster algorithms, better comput-
ers, and sometimes coarser grids in their desire to evaluate the most complex of models—
sometimes paying the price of large quantitative inaccuracies. Or of prohibitively expen-
sive computing times. Modeling and computation specialists should form a team from
the very beginning if they want to deliver reliable software to the client in the end. How-
ever, the idea of starting with the development of so-called “computer models,” that is,
with models formulated directly in the language of finite elements (FEM), for example, is
untenable in our opinion. Numerical methods, such as FEM, help with the evaluation of
differential equations, which in turn represent models from continuum mechanics or elec-
tromagnetism. The models are one thing; their evaluation algorithms are another. There
might indeed be, for example, more efficient algorithms than FEM, and one loses out on
the chance of using them.
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Nor does it make sense to set up models that cannot be evaluated. Such models were oc-
casionally found in the past with system biology problems, where the systems of ordinary
differential equations used for the modeling contained so many unknown parameters that
no parameter identification algorithm could reliably calculate them all (see Fig. 4). Here
as well, close cooperation between modeler and computation expert is needed to ensure
that optimal use is made of the existing information.

So, to repeat the question: Why do we model? We model so that, in the end, we can
simulate, optimize, and control a real system—within the virtual world of a computer.
The picture from Heinrich Hertz comes to mind again. The simulation should replace real
experiments, since it is simpler, faster, and cheaper. Imagine the geometry of a production
line, of a car, of a chemical reactor; how much easier it is to vary them in a computer than
it is in reality! But always with the caveat, the simulation must also be reliable.

Optimization algorithms can only be executed in the virtual world—the raw gemstone
must be “virtualized” before it can be optimally cut or ground. Gerda de Vries [7] has
one more argument: “Experimental scientists are very good at taking apart the real world
and studying small components. Since the real world is nonlinear, fitting the components
together is a much harder puzzle. Mathematical modeling allows us to do just that.”

Modeling and simulating is problem solving. We are always doing this, wherever we
may find ourselves—though we are not always doing it consciously. However, this fact
should be made conscious at an early age, while we are still in school. The models don’t
have to be differential equations; counting and adding can suffice for model evaluation pur-
poses. It represents great progress that modeling is included as a permanent topic in school
instruction plans in some federal states of Germany. This book also includes a chapter that
reports on the valuable experience with modeling that Kaiserslautern’s mathematicians
have gained in schools (cf. “The training”). Just how deeply this look at modeling can
penetrate into our daily life was made clear to me when taking leave of a Burmese student
after her completion of a two-year Masters in “Industrial Mathematics.” “I cannot open a
refrigerator any more without thinking about how I can model the cooling loss and change
the controls so that the energy consumption is lowered,” she said laughing, and full of
pride.

3 There Is Never Just One Model. How Can We Find the Right One?

Naturally, there is never just one model, not even when the questions about the system
under consideration have been very clearly and unambiguously formulated.

For one thing, the model will depend very strongly on the modeler’s previous knowl-
edge and experience. Perhaps the modeler only finds problems that are reconcilable with
his existing knowledge base. I used to poke fun at how often my Oxford colleagues man-
aged to discover “free boundary value problems, until I found myself discovering an as-
tonishing number of problems that fit into the even more exotic area of kinetic equations.
Of course, that should come as no surprise. “Very many, perhaps the majority, of people,
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in order to find something, must first know that it’s there,” said G. Ch. Lichtenberg in his
Sudelbiicher book of aphorisms.

Naturally, only university mathematicians can afford such a luxury; when they search
out their modeling problems, their search is “method driven.” The mathematician at Bosch
doesn’t have this option. He has to optimize the transmission, regardless of what method
fits. The Fraunhofer ITWM also takes on all problems that are mathematically interesting
(and which lie within the Institute’s competence). Granted, a problem may be transferred
to the department that has the appropriate method for it. To be perfectly honest, however,
departments usually attract the problems that suit them, which makes such problems trans-
ferals relatively rare.

Even when the modeler’s methodological competence is not the determining factor, the
model of choice is not unambiguous. Again, we see varying degrees of complexity. One
begins with the “full physics” (models of first principles)—for example, the full compress-
ible Navier Stokes equations—and, since these are not utilizable for the given parameters,
ends with Prandtl boundary layer equations or with simpler turbulence models. This is the
true art of industrial mathematics: how far can I drive the simplifications without violating
my precision requirements for the simulation? Naturally, asymptotic analyses yield an er-
ror on the order of (¢¥) and a numerical error on the order of (h7). My € and h are small,
but not zero, and these orders tell me absolutely nothing about the size of my error for a
given € and . And the constants in the order estimations are much too rough to be usable.

One must validate the models and simulations in order to know what is really meant
by “as simple as possible, as complex as necessary.” We return to this point in the section
“How do we construct the correct model?”

Here, however, we must still discuss the structure of the system somewhat. Actually,
these are always input-output systems. They take input data, such as the environmental
conditions or the tributaries to a lake, the control values of a machine, the trading data on
a stock market, or the use of topography or solar irradiation in a solar farm, and convert
it to output data, such as the lake’s algae growth, the performance or consumption of the
machine, the stock market quotation, or the daily energy production of the solar farm (see
Fig. 6).

The system is the “piece in the middle” that transforms the input into the output. What
this transformation looks like depends of course on the “state” of the system. Along with
state variables that describe the system’s instantaneous condition, there are also parame-
ters that distinguish the system from other, similarly structured, systems. With an engine,
for example, the geometry and fuel are described by parameters, while the temperature,
pressure, piston position, etc. are state variables. The model’s job is to describe their
changes over time for a given input. The output is then usually a direct function of the
state.

When there are natural laws that describe these state changes, such as the flow dy-
namic equations and the equations governing the combustion process in an engine, then
all parameters have a geometric, physical, or chemical significance, and one can measure
them. The model is then built from these equations, which often come from different ar-
eas of physics—one speaks then of “multi-physics”—and the measured parameters are
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Fig. 6 Another example of an input-output system: a solar collector farm (© Siemens)

inserted. When the equations can be solved numerically with enough accuracy, then the
input-output system can be simulated, and the output can be calculated and predicted for
each input, without experimentation. Even better, one can change the parameters—say,
the geometry or the materials—and then calculate how the output changes. In this fash-
ion, one can try out ways to improve the output, for example, to reduce fuel consumption
and harmful emissions in the engine and/or increase performance. And still better, one can
optimize these criteria by varying the parameters; one can develop an “optimal engine.”
Here, however, one should proceed cautiously. There are usually several criteria to be min-
imized or maximized; that is, one almost always has a “multi-criteria” problem. This will
be discussed further in “The Concepts—Optimization Processes.”

There was a time when many companies used optimization algorithms to help them
“calculate” the form of an auto body. This led to autos that all looked the same, once their
decorative elements were stripped away. Today, one often foregoes the absolute optimum
in favor of a little individuality.

Optimization algorithms require many evaluations of the target function(s), and each
evaluation requires a simulation. Consequently, one must simulate the system many, many
times, which means that the individual simulation runs cannot take too long. Model sim-
plifications are called for here, at least for the initial optimization steps. The clever cou-
pling of optimization and model/computation is an important, modern research area, about
which we will likewise report elsewhere in this book (cf. “The Concepts—Optimization
Processes” and “The Research—Maximum Material Yield for Gemstone Exploitation.”)
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Optimization is an important reason for wanting a simplified model. The coupling of
different simulations can also make it necessary to perform faster, although perhaps less
precise, individual simulations. The simplified models sometimes contain parameters that
are not measurable. These can be determined by means of a computation with the complex
model. A good example of this can be found in “The Research—Virtual Production of
Filaments and Fleeces.”

Models that are based completely on natural laws and contain measurable param-
eters, that is, in which the system is completely “understood,” are also referred to
as white box models. The box, that is, the system between the input and output, is
“white,” in other words, transparent. These models stand in contrast to input-output
systems in which the system is observable, but not really understood, which are re-
ferred to as black box models. The latter represent the best choice when one has
many observations of system inputs and their associated outputs, but no theoretical
knowledge of the system.

With black box models, one makes an approach for the transformation input — output
that is as general as possible—one that has many free, that is, not directly measurable
parameters—and then tries to determine these parameters from the measurement series.
Good examples for such approaches are dynamic systems with an input u(¢), output y(¢),
and a system

X(0) = f(t,x(0),u))
y(t) = g(t. x(1),u(®)),

where the states x(¢) are from R”, and the dimension n reflects the complexity of the
system. The functions f and g are yet to be selected and are often assumed to be linear
and even time-invariant

x=Ax+Bu
y =Cx + Du,

where A, B, C, D denote matrices whose dimensions are given by the dimensions of the
state space and the input-output space. In this case, A alone contains n> parameters that
must also be identified by inserting observed #(¢) and y(¢). Similar, but non-linear, cases
are handled with neural networks, which approximate general input — output transforma-
tions especially well. These are black box models, which require no theoretical knowledge
and whose parameter identification algorithms can be taken “off the shelf.” For this rea-
son, they are quite popular. They enjoy a prestige, in fact, that is further increased through
the notion that “neural networks” function according to the model of the human brain, in
which the neurons “fire.” Whether this prestige is justified is a matter of opinion.
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Fig. 7 An already very
finely-grained FEM model of a
tire rolling over a threshold
(Simulation: Fraunhofer
ITWM, department MDF)

Certainly, however, black box models also have significant disadvantages. Because the
coefficients of the matrices, that is, the parameters, have no relationship to the natural
world, one never knows how changing them will affect the system. Thus, only for a given
observed system can one identify the parameters and predict its behavior. Changes and
improvements in the system are not possible. Therefore, one tries to reserve black box
models for simulations of biological or ecological systems that are resistant to change; for
technical systems, one tries to avoid them. For want of theory, however, black box models
are also commonly used in economics, despite the frequent changes such systems undergo.

There are also intermediate stages between white box and black box. For example, one
has theory that establishes the model’s substructures, but one also has terms that are se-
lected for mathematical reasons and contain non-measurable parameters. These so-called
grey box models are found much more frequently in practical work than in the mathe-
matical theory of the natural sciences. Grey box models are found, for example, in the
deposition model used in “The Research—Virtual Production of Filaments and Fleeces.”
The models for car tires developed at the ITWM are also grey box models. A detailed
resolution of the structure of a modern tire, that is, a white box model, is feasible in prin-
ciple, but it cannot be evaluated. The tremendously fine-grained structure would make the
elements of an FEM so microscopically small that an evaluation would be prohibitively
expensive (cf. Fig. 7). One therefore aggregates the tire into larger compartments; the
material values that characterize them are non-linear averages and thus non-measurable.
These parameter values must be identified by means of tire tests; for example, recordings
of tire deformation during traversal of a threshold—still a numerically delicate task for
which the mathematics must be invented. The tire model shown here resolves many of the
details, but not all of them. The nylon filaments in the tire are not individually reproduced.
So, we have here indeed a grey box model, albeit one that is rather light grey.
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This type of grey box model often arises in so-called multi-scale modeling, to which
we will return when we speak of model reductions.

So, there are always many ways to arrive at a model. The reputation and success of an
institute seeking to solve real-world problems surely depend primarily on finding good,
suitable models. This means, models that predict system behavior with the desired preci-
sion and do so with modest computing effort. Such criteria are not the guiding motives of
a university mathematician, but their use contributes significantly to the prestige of math-
ematics as a practical science, and indeed, as a technology. “Technology is the application
of scientific knowledge to the practical aims of human life,” according to the Encyclope-
dia Britannica. This application of knowledge takes place through the use of mathematical
models, which thus makes modeling the key technology.

4 Avenues to Model Reduction

How does one make a mathematical model? In the classroom, one starts perhaps with quite
a simple model and then advances to more complex ones (see “The Training”). In practice,
however, one usually starts with the complex models. Here, the natural laws are known and
the materials can be described in detail. One therefore has to reduce the complexity to ar-
rive at simpler models, since evaluating the complex ones is too expensive. The process of
systematic simplification is called “model reduction.” Here, there are various approaches
that can be used, initially, for genuine white box models.

4.1 Methods of Asymptotic Analysis, Perturbation Theory, and
Up-scaling

The art of finding small parameters by non-dimensionalizing a model—which should al-
ways be the first step, for otherwise, one cannot say what are the “large” and what are
the “small” terms in an equation—and then letting them approach zero is called asymp-
totic analysis. This art, which is still especially cultivated in Great Britain, is what practi-
tioners there mean when they speak of “modeling.” It is learned very nicely by studying
Barenblatt’s book [1]. In the research articles in this book, one also finds examples that
demonstrate how difficult it sometimes is to find the “right” small parameter.

A special case arises when the medium is periodically inhomogeneous and the periods
of these inhomogeneities are very small compared to the size of the total system. Here,
one can skillfully apply a two-scale approach, for example, by letting the “period length
approach zero”—which is called “homogenizing”—in order to obtain models whose in-
homogeneities are no longer so finely scaled. One thus obtains models that only capture
large-scale effects, but still maintain a memory of the micro-scales. One therefore speaks
of up-scaling, which can also be attained—granted, in a somewhat “more robust” manner—
by means of averaging in numerical methods (numerical up-scaling) (Fig. 8).



46 H. Neunzert

Particle and Filter components with Filter element Complete
fiber size deposits system
Nanoscale Microscale Mesoscale Macroscale

Fig. 8 Filter simulation at various scales (Graphic: S. Griitzner, Fraunhofer ITWM, simulations:
Fraunhofer ITWM, department SMS, photo: iStockphoto)

This multi-scale modeling is closely related to the multi-grid methods of numerics. In
“The Research—Modeling and Simulation of Filtration Processes,” up-scaling will be ex-
amined for the simulation of filters (which indeed exhibit a crucial microstructure), along
with the interplay between multi-scale and multi-grid.

Asymptotic analysis, perturbation theory, homonogenization, etc. are important an-
alytical methods for the reduction of white box or grey box models.

4.2 Model Order Reduction (MOR) and Projection Methods

The simplification of models using projection methods, such as principal component anal-
ysis, balanced truncation, and proper orthogonal decomposition (POD), comes from sys-
tem and control theory. These methods, which arose in statistical problems in the context
of the Karhunen—Loeve expansion, are based on the fundamental assumption that the rel-
evant effects or temporal evolutions of the sought-after quantities play out in subspaces
of the entire state space, so that projections onto these subspaces are possible without the
resulting errors violating the accuracy requirements. This method of reducing dimensions
is well established for linear systems [2]. The article “The Research—Robust State Estima-
tions of Complex Systems” may be referred to in this regard.

The manner in which the subspaces are found varies from method to method. POD,
for instance, uses information from representative snapshots of the solution, which has
been obtained, for example, through elaborate FEM calculations: If u(¢) from R¥ is a spa-
tially discretized solution, then one observes snapshots of it, that is, (u (1), ..., u(t)),
and tries to find the subspace W with the smaller dimension n, onto which the sub-
space U created from the snapshots can be best projected, that is, which minimizes
|lU — Projection of U onto W||. Thus, one starts with the already discretized model in
order to arrive in finite dimensional spaces, such as R, and one discretizes time. W is
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then found using an eigenvalue problem from the correlation matrix. POD delivers good
results for simple flow or diffusion problems, but usually breaks down on the choice of
snapshots for rapid and stiff transport processes.

Methods for nonlinear, parameter-dependent models are particularly attractive for ap-
plications and represent a current research field that is also being actively pursued at the
Fraunhofer ITWM [5]. Parametric model reduction methods allow reduced models to be
determined for changed parameters without repeated observation and simplification of the
original model. For this reason, they are popular for use in parameter studies. The meth-
ods use interpolation of the transfer function, for example, or of the projection spaces, or
even of the entire solution. This last example is known as the reduced basis method and
is motivated by classical error estimators for Galerkin approximations for partial differ-
ential equations, whereas the empirical interpolation approaches are oriented toward the
approximation of dynamic behavior.

5 Summary

In the standard texts on modeling, distinctions are often made between deterministic and
stochastic, discrete and continuous, linear and nonlinear, explicit and implicit, and static
and dynamic models. I suspect that, in each case, this is a function of the existing knowl-
edge base of the modeler. For us, however, stochastic models are sometimes simplifications
of too complex deterministic models; discrete are sometimes discretizations of continuous
models; linear are sometimes desperate attempts at simplifying what are in reality nonlin-
ear models (The world is not linear!). Such a system of classification has little value for
us—the problem determines the model, not our knowledge or lack thereof. Black box mod-
els, however, represent the method of last resort, to be used only when we have no theory,
and only observations, to work with. In reality, however, almost everything is “grey.”
We repeat here once again the steps involved in modeling:

(a) We check to see if there are theories which, when appropriately compiled, describe
our problem. Often, we must amend these theories, for example, by setting up the
right boundary values. Here, we must be clear as to the questions we want to answer
about the problem: which quantities do we want to predict, and with what accuracy?
We have to thoroughly consider not only the desired output, but also the input: What
belongs to the state of our system; what is the input, that is, what is the environmental
data that must be entered; and what can we control? How often will we have to repeat
the simulation? What aids (computers, toolboxes) do we have at our disposal?

(b) We have to simplify the complex “complete” model enough so that we can eval-
uate it. Here, model simplification and numerics work hand in hand. After non-
dimensionalizing, we must investigate the remaining parameters. Above all, we have
to identify the non-measurable parameters (and there are such parameters in grey box
models). We must find algorithms and estimate their precision, and here, the standard
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order estimates are of little help. We have to implement the whole algorithm, while
paying attention to our computer architecture. The coupling of multi-core, multi-grid,
and multi-scale is becoming more and more important. In the end, we have a simula-
tion program.

(c) We must test this program with the user, the problem provider, the client. Here, we
will often note that we have not understood him correctly; he will perhaps only at this
point really understand his problem himself. And then, we start again at the beginning:
What is the desired output? What can we control? How exact must everything be? Etc.

(d) Finally, we hand over the program to the client and collect our fee. And, if the work
was well done, he will soon come knocking at our door again with more requests: “I'd
like to change this; I’d like to know this more precisely; this should be optimized...”
Marvelous! For in this way, science and practice—and our Institute as well—all make
progress together.
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Numerics

Oleg lliev, Konrad Steiner, and Oliver Wirjadi

We now turn to the development and use of numerical algorithms and software for indus-
trial problems, once again, guided by the philosophy and experience of the ITWM. After
we recapitulate a few basic ideas, we elaborate on the specifics of Fraunhofer research in
the field of computational mathematics and formulate some of the essential requirements
and criteria of such research. We begin with grid generation and discretization. Because
of its important role in the Institute, the so-called Lattice-Boltzmann Method, LBM, will
be treated separately. Several departments work on multi-scale problems, and so we ad-
dress this topic next. Efficient methods for problems in image processing will be briefly
mentioned. Here as well, we will continue to point out the differences between research
at the Fraunhofer ITWM and academic research. Finally, we reflect a bit upon the topic
“validation” of models and algorithms.

1 The Fundamentals

Most of the models discussed in this book use partial differential equations (PDE). Or-
dinary differential equations (ODE), differential algebraic equations (DAE), and integro-
differential equations also occur, albeit less frequently. These models describe determin-
istic systems. For stochastic cases, of course, stochastic ordinary or partial differential
equations (SDE and SPDE) must also be analyzed and solved. Some examples of scalar
PDE are non-steady-state or steady-state diffusion or heat conduction and, for systems
of PDE, the Navier—Stokes equations or the equations of linear or nonlinear elasticity.
Examples of DAE are found in models of two-phase flow in porous media and in incom-
pressible Navier—Stokes equations. We find SDE in models describing the transport of
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nanoparticles in cases where the Brownian motion of the particles plays an important role
and, naturally, in financial mathematics as well. We find SPDE in single or multi-phase
flows in porous media with random permeability and in the extrusion of fibers. And, fi-
nally, integro-differential equations are used to describe viscoelastic fluids or to represent
kinetic equations.

Of course, one only very rarely finds analytical solutions to these equations for initial
boundary value problems, and we need numerical algorithms to compute approximate
solutions. These algorithms will be discussed extensively in the case of PDE; elsewhere,
we will only touch upon them briefly.

Almost all numerical algorithms for solving PDE belong to one of the following two
large classes: the grid-based methods or the grid-free methods. Spectral methods play a
smaller role for us and are not discussed here. With grid-based methods, one must gen-
erate a regular or irregular grid in the computational domain in order to then use it for
discretizing the continuous problem. The most popular methods for this are the finite dif-
ference method (FDM), the finite volume method (FVM), and the finite element method
(FEM). FDM is the easiest to understand, since its basic idea is to replace partial deriva-
tives with finite differences. The method works very well with Cartesian grids but is much
more difficult to manage with complex domain shapes and irregular grids. FDM used to
be applied mainly to scalar equations, such as heat conduction equation, and also to fluid
dynamics equations. In contrast, it is rarely used in structural mechanics. As already men-
tioned, the advantage of FDM is its simplicity; among its drawbacks, one should mention
the complexity when working with complicated domains and, in many cases, the high
smoothness requirements for the solutions. FVM is especially suited to fluid dynamics
problems. Fluid dynamics models are usually based on conservation laws (conservation of
mass, momentum, and energy). Such conservation laws are often written in integral form
for small sub-domains (finite volume) and yield the differential equations when one lets
the size of these partial domains suitably approach zero. The latter limit is not taken for
FVM. Instead, the conservation equations are discretized over the finite volumes directly
from the integral form of the conservation laws. Here, the union of the finite volumes over-
laps the computation domain. The significant advantage of FVM is that the conservation
laws are fulfilled locally also at the discrete level. This is especially important in industrial
problems, where, for example, loss of mass in the computations is not tolerated. FVM,
like FDM, is used predominantly with scalar problems and fluid dynamics problems, but
hardly ever with problems in structural mechanics.

Finite element methods are very suitable for solving problems in irregular domains.
Unlike the FDM, which works with the so-called strong formulation, i.e., directly with
the PDEs, the FEM is a variational method, and it works with the weak (integral) form
of the governing equations. In this case, the solution is sought as a linear combination of
a finite number of basis functions, with each basis function having local support (hence
the name, finite elements). The standard procedure, for example, for scalar elliptic equa-
tions is to replace the continuous solution in the equation, which belongs to infinitely
dimensional functional space, with the best approximation from a properly selected finite
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dimensional space (i.e., the span of the basis functions). Next, one multiplies the equation
by test functions and integrates over the computational domain. There is a large variety
of finite element methods: Galerkin or Petrov—Galerkin, conforming or non-conforming,
discontinuous Galerkin, etc. The basis functions are usually polynomial functions with lo-
cal support. Originally, the FEM was derived for the needs of structural mechanics. Today,
however, it is widely used in other areas as well.

The result of all approximation methods, whether FDM, FVM, or FEM, is a large sys-
tem of linear equations (one must also sometimes linearize nonlinear equations or systems
of PDEs; this process will not be discussed here, however). Solving these systems with di-
rect methods generally consumes much time and memory. Therefore, iterative methods are
used. Toward this end, geometric or algebraic multi-grid iterative methods usually show
the best performance. These are best used as pre-conditioners in Krylov subspace methods.

In our research in computational mathematics, we are not interested merely in devel-
oping numerical algorithms for PDEs, ODEzs, etc.; we are mainly interested in providing
solutions to industrial problems by using proper numerical algorithms and performing and
analyzing computer simulations. This distinguishes our work from pure academic research
in computational mathematics.

Several factors play a crucial role in developing numerical algorithms and performing
computer simulations when the goal is to provide solutions to industry:

e As emphasized in the previous chapter, during the discussion of modeling, the algo-
rithms cannot be separated from the models, because modeling error and computational
error must be balanced out.

e The same applies to the input data; the expected accuracy of the solution should corre-
spond to the accuracy with which the input data is given.

e When developing algorithms to solve industrial problems, the foremost goal must be
to achieve a solution using the resources available with a reasonable amount of com-
putational time. Algorithms with theoretical, but no practical, value are not considered
here.

e Similarly, algorithms that cannot be implemented with existing programming languages
or whose complexity exceeds the capabilities of the available computers are not (yet)
relevant for the solution of industrial problems. In numerical analysis, the convergence
behavior when the grid-size parameter approaches zero plays a crucial role. We keep
this in mind, while at the same time remembering that we solve problems on realistic
(and not on asymptotic) grids. In certain cases, methods that are preferable with re-
spect to the asymptotic properties might not perform well on relatively coarse grids. In
practice often we can solve the problem only on one grid with a fixed size.

e Often the numerical algorithms must be developed in a way that preserves as many of
the physical properties of the model as possible (e.g., conservation of mass and momen-
tum, monotonicity). Industrial clients might not accept a solution with a non-physical
sink or source of mass, for example, and/or with non-physical oscillations of the solu-
tion, even if there are theoretical estimates proving that the method is asymptotically
conservative.
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e In projects carried out directly with industry, the work usually needs to be executed
in steps, with each step being of several months’ duration. After each step, one must
deliver results proving that a correct strategy is being used. Further on in such projects,
the final project solution generally has to be delivered before a specified deadline. If
a solution is not provided on time, the project may be terminated. Consequently, we
mainly develop algorithms that can be modularized. This allows the modules to be
developed, implemented, and tested in a relatively short time; in the ideal case, they
can be used to solve simplified industrial problems.

e Because the work at the ITWM is problem driven (and not method driven), we find
ourselves subjected to a large variety of problems that need solving, which means that
we also need a large number of algorithms and software tools to solve them.

2 New Development or Adaptation of Known Algorithms?

There is no simple answer to this question. One has a better feel for the strengths and
weaknesses of algorithms that one has developed oneself, but in-house development takes
time. With public projects, therefore, we develop our own algorithms. These then also
find application in industrial projects, just as do the algorithms in the literature that are
adapted to a given problem. It must be mentioned, however, that the process of adaptation
is not always faster. Many researchers working in the area of computational mathemat-
ics, as well as researchers active in “computational X,” where X stands for mathematics,
physics, chemistry, biology, etc., develop algorithms that they consider to be especially
good for solving practical problems. However, it often happens that these algorithms don’t
converge for the industrial parameters, or they converge to a false solution, or they yield re-
sults that exhibit non-physical behavior (oscillations, loss of mass, etc.). When developing
and adapting algorithms, we often have to pay attention to their robustness and—as em-
phasized earlier—make sure that computational, model, and data errors are of comparable
size.

In-House Software or Commercial Software? Actually, the answer to this question
requires a multi-criterion optimization. Using commercial software is a good idea when it
has already demonstrated its ability to solve models of the form being currently consid-
ered. Thus, we are also confronted with problems that we tackle using ANSYS, FLUENT,
Comsol, etc. And we do indeed take this software right up to the limits of its capabilities.
However, if it cannot provide a usable answer—and this is not so seldom an occurrence—
then we develop new software ourselves. The pros and cons of commercial software are
well known. We would like to briefly address the counter arguments. Comsol, for exam-
ple, is outstanding for training purposes. It also claims to be able to quickly solve every
industrial problem. Experience has shown us, however, that this is only true when the
same or very similar problems have already been solved in the past using Comsol, and
are therefore contained in the library. If a completely new and complex problem must be
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solved quickly, then this software, in our experience, is not always reliable. Naturally, the
developers at this software firm keep very close track of these cases and, after a certain
period of time, release a new version that redresses these deficiencies. Unfortunately, we
can rarely wait, and therefore need our own developments. The situation is similar with
Open Source software tools, which, on top of the aforementioned problem, offer even less
support. The developers of FLUENT take great pains to ensure that their software is as
robust as possible. One sometimes pays a price for this robustness, however, in terms of
precision.

Our own software development has many facets. The algorithms are often implemented
in MATLAB for quick testing or the quick computation of a solution. We often couple our
own developments with commercial tools by processing only those parts of a composite
problem ourselves for which the commercial software is inadequate to our purposes. For
example, in the chapter ”Virtual Production of Filaments and Fleeces,” a situation is de-
scribed in which the software for simulating fiber production is composed of a FLUENT
simulation of turbulent flow and an in-house development for simulating filament dynam-
ics.

Our software tools are not only used within our Institute; they are also released to our
customers. Here, the software is usually coded in C++, equipped with GUI, accompanied
by handbooks, etc. Sometimes, these in-house developments attain a degree of sophistica-
tion that allows them to be marketed in spin-off firms. This book points out several such
cases.

3 Grid Generation

Of course, there are numerous commercial and academic tools for generating grids.
Nonetheless, this is still today a very active research area. In many industrial problems
having complex geometry, the effort involved in generating a grid of acceptable quality
can be comparable to the entire effort involved in solving the problem. It can, in fact, be
the determining factor (see Fig. 1). Sometimes one needs a tremendous amount of experi-
ence to design a good grid. In structural mechanics, where FEM dominates, grid generation
is unavoidable.

In addition, we pursue two other options for flow simulations: the generation of Carte-
sian grids (and voxel-based grids, in particular) or the use of finite point set methods in
connection with grid-free methods. Our use of Cartesian grids is motivated by the follow-
ing reasons:

e One can generate them quickly, simply, and reliably.

e The error that arises when the domain is approximated by such a grid is often compa-
rable to the error of the input data.

e This error can be controlled, particularly for laminar, viscous flows or diffusion type
problems.



54 O. lliev et al.

Fig. 1 Generating a good
quality unstructured grid for
simulation of flow through this
structure would be a real
challenge (grid generation:

I. Shklyar, Fraunhofer ITWM)

e Both, our comparisons and examples from the literature, show that comparable preci-
sion can be attained for voxel-based and unstructured grids for certain classes of prob-
lems (e.g., computations of permeability of porous media or the effective mechanical
characteristics of composite materials).

e Not much time is required to develop the algorithms and test the implementation.

e Computation domains arising from three-dimensional computer tomography are a pri-
ori only available in voxel format.

The mesh-free approach (see also the next section) is especially suitable when the com-
putation domain varies very quickly over time and, therefore, grid generation and the in-
terpolation that it necessitates takes up time and also represents an error source. At the
ITWM, the “Flow and Material Simulation” and “Image Processing” Departments, in par-
ticular, use Cartesian access. For image processing, this is quite natural, since images are
based on either pixels or voxels. Grid-free methods are focused on in the “Transport Pro-
cesses” Department.

4 Discretization Approaches

FEM is generally used for structural mechanics problems. On occasion, however, plate or
rod models are used instead. For these cases, mimetic type finite difference methods have
been developed in the TV and MDF Departments of the Fraunhofer ITWM. Mimetic type
methods aim to also preserve conservation properties or momentum at the discrete level,
when they are preserved at the continuous level. With few exceptions, in the area of FEM,
we work mainly on modeling or optimization and more rarely on developing entirely new
FEM algorithms.
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Lately, the ITWM has been developing FEM algorithms to simulate lithium-ion bat-
teries. The ion concentration and potential are discontinuous on the boundary surfaces
between the solid particles and the electrolytes (the electrodes have a porous structure that
is resolved by the grid), whereas the temperature is continuous there. Therefore, one must
approximate these boundary surfaces very carefully. The situation is quite different with
flow problems. Historically, FDM and FVM dominated “computational fluid dynamics
(CFD), and they are also implemented in most commercial packages. In the past decade,
however, FEM has also been developed for this application. Here, too, there is now soft-
ware available on the market. Nonetheless, we still prefer FVM. Here are our arguments
in its favor:

e FVM provides discretizations that locally fulfill the conservation laws, a factor that is
important, particularly for flow problems with discontinuous coefficients.

e The monotonicity of the solution can be easily checked when FVM (which has a lower
order) is used. Thus, for example, the probability of finding non-physical oscillations in
the numerical solutions of convection problems is markedly higher with FEM than with
FVM. This is related to the fact that the stability of FEM is only ensured in the weak (in-
tegral) sense, but not locally. Appreciable progress has been made in the development
of stabilization methods for FEM discretizations for flow problems, but the reliability
and robustness that have been reached are not yet adequate for industrial problems. It
bears repeating: these methods function when they are applied to the classes of prob-
lems, geometries, and flow zones for which they were developed. Adapting them to
other geometries, flow zones or modified equations can require a great deal of effort.

e FVM discretizations are indeed of a lower order, but our input data are also often inex-
act.

e In the past few decades, efficient solutions have been developed for the linear equation
systems arising in FVM discretizations and have reached an adequate degree of ma-
turity. The same cannot be said for the new FEM discretizations. Today, for example,
iso-geometric methods are very much in vogue. However, along with other challenges,
the development of robust and efficient multi-grid solvers for these discretizations still
remains to be achieved. The situation is similar for the discontinuous Galerkin method
(DG).

FEM is indeed a powerful method, but new problems may demand new elements. Let
us illustrate this with a few examples. FEM made a breakthrough for flow problems when
“bubble finite elements” were invented and LBB stability conditions for the pairs of fi-
nite elements were analyzed and understood. The need to use special finite elements for
elasticity problems with almost incompressible material is also known. In the past 5 to 7
years, there has been very intensive research directed at finding finite elements suitable for
a robust solution of the Brinkman equation (Brinkman is a Stokes equation perturbed by a
Darcy term). These examples show that the solution of new models (or of known models
applied to new flow regimes) may require extensive investigations into new basis func-
tions, stability, etc. before applying FEM. Such investigations cannot be undertaken with
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Fig. 2 A further example for the application of the FPM method: a car driving through water;
experiment and associated FPM simulation (photo and simulation: Volkswagen, Inc., as part of a
cooperative project with the Fraunhofer ITWM)

industrial projects running on tight schedules, and we therefore in general rely on FVM
discretizations for the new models. Looking ahead, once the behavior of the solutions is
better known and academic researchers have made more progress, then we will also use
FEM more extensively, just as we already do now with battery simulations.

In our FVM developments, we place special emphasis on the conservation character-
istics, the monotonicity of the solutions, and the accurate treatment of the discontinuity
surfaces of coefficients. For example, when solving the Navier—Stokes—Brinkman equa-
tions needed to simulate flow in filtration processes in plain and porous media, we have
suggested discretizing the interface conditions. This correctly captures the linear pressure
gradient in porous media, although only one layer of cell-centered finite volumes is used.

Over the past 20 years, the ITWM has developed a grid-free method, which we have
named the “finite point-set method” (FPM). This successful tool comes from the “Trans-
port Processes” Department. In contrast with the other methods discussed above, it is not
based on a fixed grid. Rather, the (grid) points are free to float, and often move with the
flow in the manner of Lagrange. FPM is especially apt for situations in which the computa-
tion domains vary very quickly; the classic example is the simulation of an airbag. Instead
of continually varying the grid (“re-meshing”), as would be required by FDM, FVM, and
FEM, FPM only has to monitor the density of the points (Fig. 2).

5 Microstructure Simulation (Voxel-Based Methods)

In this section, we will use the topic of microstructure modeling and simulation to illus-
trate how problem-oriented modeling (see “The Concepts—Modeling”) and the applica-
tion of numerical methods cross-fertilize each other in the mathematical research of the
ITWM. Moreover, the mathematical research is also driven forward—here, in particular,
voxel-based numerical solution procedures for PDE. In the early years of the Institute,
calculations were made for flows in porous media for design simulations of diapers or fil-
ter components. Here, it soon became evident very difficult it is in industrial applications
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Fig. 3 Visualization of streamlines through a microstructure on a voxel-based grid (simulation:
S. Rief, Fraunhofer ITWM)

to experimentally determine material parameters such as permeability and capillarity for
soft, porous materials (fleeces, filter papers). Consequently, the idea quickly arose of pur-
suing microstructure simulation, which is based on the homogenization theory and which
numerically calculates the material characteristics as a solution of the cell problem for the
most realistic, porous microstructure geometries possible (in 2001, the ITWM received its
first Fraunhofer prize for this development).

Here, realistic, high-resolution, three-dimensional images of the porous structure are
needed, since they are significant ingredients of the microstructure simulation. These are
customarily delivered by micro-computer tomography in a 3-D image format (voxel). The
material characteristic calculation is then generated as a solution of the fluid dynamic equa-
tions (Stokes or Navier—Stokes) in the pore space, that is, in the complex microstructure
geometry. Because the given discretization of the image data has a large number of uni-
form voxels (generally 1000 x 1000 x 1000), lattice Boltzmann methods (LBM) provide
themselves to this application as a very specific, but also very adequate, solution procedure
and were developed further at the ITWM.

Lattice Boltzmann methods solve a discrete and linearized Boltzmann equation on the
voxel network by means of a time-explicit procedure and take advantage of the fact that,
with an appropriate limit value of the discretization parameter, the Navier—Stokes equa-
tions are approximated. The aligned discretization of the velocity model with the space
discretization (voxel grid) allows for an exact time integration of the transport step. By im-
plementing a simple data exchange, the no-slip conditions on the geometric walls can also
be taken into consideration (Fig. 3). The linear collision step does indeed take more effort
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and require many computation operations, but these are completely local, which means
that the entire procedure can be very simply and efficiently parallelized. Through the use
of clever extensions, LBM make possible the solution of single and multiple phase flows
for both Newtonian and non-Newtonian fluids in arbitrarily complex microstructures, and
thus have become established as a suitable tool for micro-simulating porous media.

Unfortunately, lattice Boltzmann methods cannot be directly applied to elliptic prob-
lems, such as the ones for determining effective thermal conductivity or mechanical stift-
ness. Here as well, however, specialized procedures have emerged from the ITWM, thus
stimulating research into techniques that possess advantages similar to those of the lattice
Boltzmann methods.

These are numerical methods that use voxel partition directly as discretization, work
without matrices, and can be efficiently parallelized. These voxel-based methods rely
on the solution of the associated integral equations in the perturbed form (Lippmann—
Schwinger formulation) and the highly efficient solution in Fourier space utilizing the
explicit form of the Green’s function by means of fast Fourier transformation. Generalized
boundary element procedures, such as the explicit-jump immersed interface methods, are
related approaches that also allow for more exact boundary approximations. Just like the
lattice Boltzmann methods, these voxel-based methods have existed for several decades.
Their industrial utility, as robust microstructure solvers for arbitrary geometries, in partic-
ular for arbitrary material contrasts, has been significantly improved at the [ITWM.

Today, at the Institute, microstructure simulation is a significant tool for determining the
anisotropic characteristics of heterogeneous composite materials. Because the numerics
are so effective, it is also used in industry for designing and optimizing virtual material
structures and as a high-resolution material model in multi-scale simulations.

6 Numerics for Multi-Scale Problems

Multi-scale problems are of special interest to mathematicians, not least because they are
very important in many areas of the natural sciences and industry. There has been much
progress made in the past decades with problems that permit a clear separation of fine
and coarse scales (e.g., periodic microstructures; media that are heterogeneous on the fine
scale, but can be considered homogeneous on the coarser scale) (Fig. 4). In this case, the
ratio of the characteristic lengths of the two scales can play the role of a small parameter,
so that asymptotic analysis can be applied. Thus, rigorous results were obtained in the area
of asymptotic homogenization, and it was possible to prove that the problems on the two
scales can often be decoupled. In this case, the multi-scale problem then reduces to a two-
step procedure: (a) one solves the periodicity “cell problem” at the fine scale and uses this
solution to determine the coefficient of the macro-problem, and (b) one solves the problem
on the coarse scale with the “scaled-up” coefficients, i.e., the coefficients determined in
step 1.
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Filter element

Filtering media Filtering media

Fig. 4 Illustration of micro-scale (filter medium, enlarged) and macro-scale (filter element) in fil-
tration (graphics: G. Printsypar, KAUST)

The homogenization theory delivers everything needed to solve the overall problem:
the operators that link both scales, the equations of the coarse scale (whose type can differ
from that of the fine scale), estimations for asymptotic solutions, etc.

However, a clear separation of the scales is not always possible. Many problems are
heterogeneous on several scales, and one cannot define any small parameters. Here, the
problems of the different scales are strongly coupled and the two-step procedure mentioned
above is no longer applicable. Instead, the coupled problems must be solved iteratively.
The most active mathematical research in the field of numerical upscaling is currently
being carried out in three directions: upscaling based on multigrid methods, upscaling
based on multiscale finite element method and related approaches, and the application of
upscaling for solving multiscale industrial problems.

The ITWM is active in the last two directions; in the first direction, there have only been
isolated developments concerning the linear elasticity of composite materials. It is obvious
that calculating the effective characteristics of composite materials or porous media from
their microstructure is of great importance for industry. This was the point of departure
for the development of numerous algorithms and software tools designed to help solve the
cell problem derived in homogenization theory. Here, the focus was on the efficiency of the
methods, so as to make the underlying “cells,” that is, the microscopic sub-domains being
treated, as large as possible. We have, for example, already reported on microstructure
simulation in this section.

We now want to return to the case of non-separable scales and examine it more closely.
Many successful developments have been based on the aforementioned multi-scale finite
element method (MSFEM). Here too, one resolves the microstructure into sub-domains
belonging, in turn, to elements of a coarser scale. This solution then feeds into the de-
sign of customized basis functions for the coarser scale. Where needed, an outer itera-
tion across the various scales is applied, and the result is a “coupled global-local up-
scaling.” MSFVM and a variational multi-scale method (VMSM) are both related to MS-
FEM. Another member of this family is a two-level domain decomposition method for
equations with oscillating coefficients, where upscaled equations are used for the coarse
grid correction. In their classical formulation, all members of this family are quite ex-
pensive, computationally, since they “see and touch” every unknown of the finer scale
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when they calculate the basis functions. A variant of MSFEM, the heterogeneous multi-
scale method (HMM), sometimes seems to have a broader scope of application. With
HMM, the subdomains for the fine scale cell problems do not cover the entire compu-
tational domain. Instead, one selects small sub-domains around the integration points of
the coarser scale elements, and the micro-scale problems are solved only in these small
sub-domains. The purpose of this procedure, of course, is to obtain macroscopic coeffi-
cients to be used for the macroscopic problems. The method is appreciably faster than
MSFEM, since only a small part of the domain must be processed on the fine scale. On
the other hand, this fact restricts the use of this method to problems in which the scales are
“almost” separable. One can also carry out HMM with iterations between the scales, and
one must do so in cases of non-linear problems. In the field of mechanics, the method is
then known as FE?. HMM is often viewed as a general framework for solving multi-scale
problems, and not just as a special method. This framework also fits well when one consid-
ers the micro-problems discretely (“atomically,” so to speak), while the macro-problems
are treated continuously, that is, as PDE. Engineers have been using these approaches
for many years, and HMM is an attempt to give them a suitable mathematical formula-
tion.

The mathematical solution of multi-scale problems is often especially helpful for con-
sortia of several industrial partners, in cases where the partners consider one and the same
process, but some are more interested in micro-scale characteristics (e.g., filter media man-
ufacturers, in the case of filtration), while others are more interested in macroscopic char-
acteristics (e.g., filter element manufacturers). However, multi-scale approaches are also
used by companies that generally work on a fine or coarse scale, but understand that their
processes are, in reality, multi-scaled, and who therefore try to improve their products by
taking the multi-scale interactions into consideration. Thus, manufacturers of filter media
are usually interested in investigations of filtering processes on the pore scale, and they
often simplify the conditions in the proximity of the actual filter medium (by assuming,
for example, uniform flow velocity). But these companies sell their media to filter man-
ufacturers. For this reason, it is advantageous if they also understand how their materials
behave under the actual working conditions of the filter. For their part, the filter manufac-
turers seek to understand how their products behave on the scale of the filters themselves
and, to do so, they assume they are dealing with ideal filter material. They too must know
how filter media behave under operating conditions in order to be able to specify and
utilize a suitable design. In summary: both kinds of firms profit from a true multi-scale
simulation.

7 Image Analysis

The analysis of two-dimensional and three-dimensional image data in industrial environ-
ments is another area of activity at the Fraunhofer ITWM. The spectrum of applications
runs from quality assurance in production via optical systems to statistical evaluation of
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Fig.5 Visualization of a glass fiber-reinforced polymer, imaged using X-ray computed tomography
(visualization: H. Riedel, Fraunhofer ITWM, department “Image processing”)

three-dimensional microstructures in engineering and materials science. PDE were dis-
cussed at the start of this chapter. In the sense defined there, PDE are also used in im-
age processing, for example, with so-called diffusion filters (operators for adaptive image
smoothing). Various linear and nonlinear image-processing filters are described in the lit-
erature. Frequently, however, these are not directly applicable for industrial challenges. For
example, it is often necessary to process enormous quantities of image data in order to at-
tain statistically representative results with regard to the three-dimensional microstructures
of materials such as composites, fleeces, or insulation materials. In such cases, standard
algorithms frequently require a long run time, much storage space, or both. Adapting these
algorithms to specific industrial challenges offers a way out of this dilemma. In this section,
we describe two examples of efficient numerics for linear and nonlinear image-processing
filters that we have developed in years past.

The first example comes from the application area of image analysis for fiber-reinforced
polymers. These composites are currently used extensively in lightweight construction.
In order to be able to analyze such materials—above all, their fiber systems—ITWM uti-
lizes three-dimensional imaging by means of X-ray computed tomography. This technique
achieves a spatial resolution down to the scale of a few microns (Fig. 5). But how can such
image data be efficiently evaluated so as to process and analyze the largely anisotropic
fiber system in fiber composites?
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One possible way is to apply with an anisotropic Gaussian convolution filter. These
linear image filter operators can, among other things, assume an elongated shape in 3D,
so that they offer a good fit to the local shape of a fiber. Efficient implementations of
these operators for two-dimensional images are indeed found in the literature (so-called
“separable filters”). But how could a corresponding implementation be realized for three-
dimensional data? To answer this question, we took a closer look, together with a colleague
from the German Research Center for Artificial Intelligence (DFKI), at the underlying
mathematical principles. The result of this work was not only a very efficient algorithm
for this anisotropic filter operation, but also a fundamental geometric insight: a separated
anisotropic Gauss smoothing corresponds to a shearing of the voxel grid that is indepen-
dent of the dimension of the data. The geometric characteristics of this efficient filter im-
plementation had previously been unknown, even in 2D. This fundamental understanding
thus allowed fibers in fiber-reinforced polymers to be precisely and efficiently analyzed.

A second example of numerics in image processing comes from the field of nonlinear
smoothing filters. Nonlinear filters are filter operations for which the result of the filtering
in a voxel cannot be represented as a linear function of the voxels in the original image.
The median filter is a very versatile nonlinear filter. It can suppress certain types of noise
without damaging important information, such as the edges depicted in the data set. It
has been shown in the literature that this filter operation can be implemented with a fixed
number of calculation steps per voxel. When viewed from a theoretical standpoint, this
means that it was hardly possible to find a more efficient algorithm.

However, at ITWM, we routinely use these median filters for very large three-
dimensional image data sets (20003 voxels, or more). In these cases, the above-mentioned
filter, with its fixed number of calculation steps per voxel, is indeed fast. At the same time,
however, it occupies a very large memory block. The implementation described in the lit-
erature, for example, requires 8 GB of additional memory when filtering an image with
20003 voxels, and 31 GB for an image with 40003 voxels (when using a 7 x 7x 7 voxel
mask). This storage capacity is indeed available on modern computers, but not on a normal
desktop PC. Moreover, the storage problem will only intensify with every new generation
of still higher-resolution CT scanners.

For these reasons, a novel median filter algorithm was developed at the ITWM. This
new algorithm makes it possible to use the median filter for image data in three or more
dimensions with a substantially lower memory requirement (e.g., 8 MB, instead of 31 GB,
for the 40003 voxel example mentioned above). This algorithm sacrifices the theoretical
runtime optimality of the algorithm described in the literature for the sake of a reduced
memory overhead. We achieve this by not executing the procedure described in the litera-
ture algorithm for each of the d dimensions of a data set (e.g., d = 3, for volume images).
Instead, we interrupt after d — ¢ dimensions with a parameter ¢ (0 < ¢ < d), and manage
the remaining calculations using a simpler algorithm. Surprisingly, we have found that,
for many practically relevant situations, this theoretically slower algorithm is even faster
than the theoretically optimal algorithm from the literature. This can be explained by the
memory management overhead (allocation, reading, and writing of data). This overhead
makes the theoretically faster algorithm, in practice, slower.
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One can say, in summary, that the use of custom-made numerics in image processing
makes it possible for us to work efficiently with large image data sets. When a technical
challenge can be recognized and its underlying mathematical structure analyzed, one is
often rewarded with innovative, practicable solutions.

8 Validation and Verification

When one develops new models—and the new software that often comes with them—both
must be carefully validated. For cases in which there are no known analytical solutions for
the models, then the validations must take place using numerical solutions. Here, one must
be aware of various sources of error: modeling error, discretization error, rounding error,
measurement error, and data error.

The first three sources of error are well known from a mathematical perspective and are
treated in every lecture on modeling and numerical analysis. The last two error sources
originate more in engineering practice, however, and are generally not mentioned in lec-
tures delivered to mathematicians. Here, one often assumes perfect measurement accuracy.
In reality, however, this is unachievable. Consequently, from a mathematical perspective,
a total evaluation is not simple.

For industrial problems in particular, the validation process presents some challenges,
which can arise for the following reasons:

Exact measurement results are often not available. Moreover, the question arises as to
which portion of the results can be used. For example, a measurement of the pressure dif-
ference between the upstream and downstream sides of a filter contains no information
about the velocity and pressure distribution within the filter. If one wants to validate a
model that contains these quantities, then one needs detailed measurements. Or, one must
treat the problem of identifying these internal quantities from the pressure difference as an
ill-posed problem. In this case, measurement errors are especially critical. This is particu-
larly risky when new parameter ranges are being processed and the measurement devices
have not yet been calibrated for these values.

The communication between those taking the measurements and those doing the com-
putational work, that is, between the engineers and the mathematicians, is often difficult,
for they speak different languages. Great care must be taken here to ensure clear under-
standing. The human factor must be kept in mind.

As these reasons show, it is also very important for mathematicians to understand how
engineers think and to learn something about their sphere of activity. Here as well, the
difference between our work at the ITWM and that of academic institutions is made clear.

Even the phrase “exact result” has different meanings for engineers from different
fields. To put it in plain terms: a 0.01 % relative error is considered an exact result in
the aviation industry, as is 5 % in the filter industry, and up to 30 % in CFD for chemical
process technology. It is also necessary to bear this in mind.
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The world of research and the world of industry are different; each has its own lan-
guage. But when the inhabitants of these two worlds meet, when they work together
in a spirit of genuine cooperation, then both sides profit from their efforts: with in-
novations and, equally important, with enjoyment and gratification for a job well
done!



Data Analysis

Patrick Lang and Jurgen Franke

1 Data Sources

Today, due to the continuously advancing digitalization of production and business pro-
cesses, data is being produced and often archived in an amount that only a few years
ago would have been hardly imaginable. The drivers of this trend are the availabil-
ity of numerous new sensor technologies and higher-performance data storage equip-
ment. For many production processes in large industry, all potentially relevant adjust-
ment and equipment parameters are now being recorded at high temporal resolution
and then stored. Moreover, implementation of the Industry 4.0 concept, in which di-
verse, context-specific communication is to flow between production goods and produc-
tion equipment, and between one production step and another, will lead to numerous
additional data streams and, consequently, to a further significant increase in data vol-
ume.

The availability of ever more complex and precise measurement and analysis proce-
dures also leads to the generation of larger quantities of data. One can think, for exam-
ple, of the Next Generation Sequencing Procedure for genome analysis in the context of
personalized medicine. Here, data on the order of terabytes can easily accrue with each
analysis.

A further source for this flood of data is the increased networking of our world. One
only has to consider the many data streams in the Internet, such as real-time stock mar-
ket index updating; numerous social media with their own news channels; on-line ser-
vice providers, such as eBay and Amazon, with their movements of customer data; or
locally-resolved meteorological data streams. Moreover, in addition to current data, for
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almost any question that can be asked, there exists a data base with corresponding his-
torical data to answer it. Not only is the quantity of data increasing, but the opportuni-
ties of the individual for utilizing the publicly accessible flood of data are increasing as
well.

Data, as it is generally understood, is not necessarily a structured combination of nu-
merical values in the form of vectors, matrices, or time series; it can also refer to semi-
structured or unstructured information, such as a simple piece of text. Due to its nature,
the latter is not directly accessible to mathematical processing. Instead, it must first be pre-
pared appropriately. The methods of information retrieval and text mining deal with this
topic.

Media reports also currently feature the problems associated with “Big Data,” which
is typically characterized by the three “V’s”: volume, velocity, and variety. Volume
refers simply to the size of such data sets, and velocity, to the speed with which
streaming services can supply new data. Variety describes the heterogeneity of the
data that might appear together in a common context. This brief description out-
lines the challenges facing the data analysis procedures that will be needed in the fu-
ture.

2 Data Quality and Informational Content

The enormous amounts of existing and newly arising data remain relatively useless, un-
less we succeed in discovering new connections and knowledge within it. This is the main
task of data mining and statistical learning theory, fields that have provided a multitude of
algorithms for diverse scenarios (see [1] and [14]). Despite the existence of these methods
and the software tools that accompany them, their use in the context of industrial produc-
tion processes, for example, has not yet caught on widely. As shown in a joint project
entitled “Supporting Decisions in Production Using Data Mining Tools,” carried out by a
consortium consisting of the ITWM, other Fraunhofer institutes, and representatives from
the manufacturing industry, the disproportionately large adaptation efforts required for
heterogeneous production domains and communication structures often cause significant
difficulties. The lack of real-time capability for many of the analysis procedures also plays
an important role here.

Generally speaking, especially in the context of dynamic systems, not all arbitrarily
measured combinations of system inputs and outputs contain enough information in and
of themselves to allow for complete identification of the system dynamics and genera-
tion of a corresponding system model. Discussions with customers from the manufac-
turing industry have consistently revealed that, although the adjustment and equipment
parameters, for example, may indeed be highly temporally resolved, the product quali-
ties to which they are assigned are only sampled randomly on a coarse time schedule.
And there is another factor. Because the determination of these quality characteristics is
often not automated, but performed manually in the lab, there are also long time delays
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before the data becomes available. Taken as a whole, this often means that the potential
of high-resolution input data can only be realized in a limited way for modeling product
quality.

For successful, data-based system identification, it is also crucial to have data from
different operating points and/or different dynamic excitation states. Otherwise, the result-
ing system models are only valid within a very limited area and are usually not suitable
for use in subsequent optimization or control approaches. The most informative genera-
tion of process data is methodologically supported by the design of experiments (DOE)
framework, which seeks to achieve the largest possible variance reduction in the model
parameters being estimated by means of the smallest possible number of suitably cho-
sen measurement points. In our projects, however, we regularly run up against technical
or economic limits regarding specifications in the experimental design about the amount
of data to be collected and the selected process points. The insertion of appropriate fil-
ters to protect against technically impossible parameter combinations is very helpful, but,
for reasons of complexity, is usually only partly feasible. It should also be noted that the
experimental design only delivers explicit formulas for determining the system input set-
tings for models that are linearly dependent on their parameters. For nonlinear depen-
dencies, no generally valid formulas can be specified in advance. Instead, the DOE plans
themselves depend on the results of the executed measurements and are of an iterative
nature.

In the life sciences—for example, when considering the expression patterns of the more
than 20000 human genes—there is also often a multitude of potential influencing factors
that might explain a specific disease. However, one has only a small number of patients
available who have been classified and analyzed.

Another crucial point in the evaluation of data quality is the proportion of disturbances
contaminating the observed data. Particularly with measurement data, there is always con-
tamination of this kind caused by the measurement-principle-dependent characteristics of
the sensors being used. If the characteristics of the processes generating the disturbances
are known with sufficient precision, then they can be modeled explicitly, and this model
can be used to correct the data for the impact of the disturbances. In practice, however,
one is often dealing with the simultaneous overlapping of several disturbance sources, and
the resulting complexity often makes mechanistic modeling impossible. Instead, one de-
scribes the disturbances as the result of stochastic processes, which can be characterized
by the appropriate distribution information. The frequently made assumption that this data
follows a normal distribution can indeed be justified in many situations, due to the law
of large numbers. There are, however, very many technical and biological questions for
which this assumption is false. Nonetheless, many well-established procedures presume
a normal distribution, along with the linearity of the underlying data-producing process
dynamics. If one generalizes these assumptions, for example, in the field of state and pa-
rameter estimation, one then moves from the well-known Kalman filter based methods
to the sequential Monte Carlo approach. This is a method that has been actively pursued
for several years in the System Analysis, Prognosis, and Control Department in its work
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with particle filters (see also “The Research—Robust State Estimations of Complex Sys-
tems”).

In many application cases, it is not just disturbances in the data that cause difficul-
ties. Often, the observed data sets are also incomplete, that is, some entries are missing.
The values of some data sets may also be many times higher than the level of compa-
rable data sets. The correct treatment of these defects and outliers, which can be caused
by damaged sensors, for example, plays a decisive role in dealing with industrial data
sources.

3 Data Integration and Pre-processing

The selection and allocation of suitable information-bearing quantities is crucial for the
successful use of data analysis methods. In many industrial cases, this data is not to be
found initially all together in some data warehouse, easily accessible to analysis. It is
more likely to be distributed across different sources. Here, the spectrum runs from di-
verse databases to ASCII and/or Excel files to other, application-specific data formats.
Occasionally, it still happens that certain data is only available in paper form and must
first be digitalized. One initially looks for opportunities to extract the relevant data from
all sources and bring it together into a higher-level data structure. Here, there are often
problems in correctly assigning the data sets. In addition to solving these problems, one
must also find suitable treatments for other incompatibilities, such as differing sampling
rates among sensor data. Organizational challenges can arise when the needed data is dis-
tributed among different spheres of responsibility within different departments of a com-
pany.

As mentioned in the previous section, data sets are generally incomplete. One can al-
most always count on finding discontinuities and outliers. There are various procedures
for identifying and adequately managing such problem cases, which must be chosen and
executed according to the situation.

Along with integrating the data, one generally also subjects it to a normalization
process and, possibly, a disturbance correction. Here as well, there are many proce-
dures available for these work steps. In general, however, our project experience has
taught us that, from the perspective of data analysis, it is desirable to retain as much
control as possible over the entire chain of data processing steps. In accordance with
this goal, one should always try to obtain data from project partners in its “rawest”
form.

Moreover, to optimally select the next processing steps, it helps to first gain an overview
of the data distribution. Especially for highly dimensional problems, one will make deci-
sions on dimension reduction on the basis of the data’s correlation structure and remove
strongly correlated quantities from further consideration. In many cases, it also makes
sense to execute the subsequent modeling steps not on the basis of the original data, but
to draw upon compressed features instead. A well-known example of this is the prin-
cipal component analysis, in which the original data is projected onto those sub-spaces
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that explain the largest portion of variance in the data. If the corresponding background
information is available, one attempts in this step—in the manner of grey box modeling—
to transfer this knowledge into a set of appropriate features. For more on this topic, see
Sect. 5.

4 Data-Based Modeling

In almost all mathematical modeling questions arising from practical applications, the
existence of an adequate amount of real, measured data plays a decisive role in the suc-
cess of the model design. Depending on the type of modeling, however, the requirements
for the quantity and information content of the needed data fluctuate markedly. With
so-called white box modeling, in which the model design is strongly guided by the ex-
plicit implementation of physical, biological, or economic laws, the data requirements
are rather moderate and serve primarily scaling and calibration purposes. In contrast, so-
called black box approaches assume purely data-driven modeling, with correspondingly
high requirements on the quantity and information content of the available data. With
so-called grey box modeling, a hybrid form of knowledge-driven and data-driven mod-
eling, the data requirements lie somewhere in between. For the remainder of this chap-
ter, we will be concerned primarily with questions of purely data-driven modeling. For
further discussion of white box and black box modeling, refer also to “The Concepts—
Modeling.”

Data-driven modeling approaches come into consideration primarily when suffi-
ciently informative measurement data is available and the interrelations and dynam-
ics of the observed systems or processes resist explicit description due to their com-
plexity. Two examples here are the extrusion of plastic components, including varia-
tion in the material recipe, and the crash behavior of carbon-fiber composite materi-
als.

In general, data mining includes procedures with which relevant information can be
extracted from complex data. Here, statistical learning methods model the data as results
from random experiments. This perspective makes it possible to derive, verify, and bet-
ter understand procedures for gaining information on the basis of statistical theory and
intuition.

Statistical learning has a great deal in common with machine learning. With com-
plex data, statistics must rely on appropriate, computationally intensive learning algo-
rithms. Conversely, the statistical perspective in machine learning often allows one to
understand when and why data analysis algorithms function and how they can be ex-
tended.
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An important distinction of data mining problems lies in the type of data being ob-
served. So-called structure-describing procedures, such as regression and classifica-
tion, are normally confronted with the problem of approximating a target quantity Y
(output, dependent variable) as accurately as possible using a function of the input
quantity U (input, independent variable, predictor). The data forms a random sam-
pling or training set (Uy, Y1), ..., (Un, Yn) of input variables U, together with the
output variables ¥;. When learning the connections between input and output, one
can therefore judge and optimize the system’s performance on the basis of correct,
observed values Y;. In this case, one speaks of supervised learning.

With so-called structuring problems, in contrast, one has only input data
Ui, ..., Uy, in which one wishes to identify structures such as clusters or low-
dimensionality. Because there are no output variables that can serve as starting
points for correcting errors in the learning results, this is also described as unsuper-
vised learning. The features U are generally high-dimensional, and their structures
usually cannot be simply visualized. Graphically representable projections onto two
or three coordinate dimensions do not typically show the structures of interest. To
make cluster formation or low dimensionality graphically visible, one must identify
the most informative projections possible for this data.

5 Unsupervised Learning

With unsupervised learning, the focus is on characterizing the distribution and structure
of the existing data. Along with observing standard quantities from the descriptive statis-
tics, one is especially interested in discovering clusters and low-dimensional structures in
the data. Here, there is also a strong overlap with the goals of data pre-processing, and
unsupervised learning is therefore often used as a preparatory step in supervised learning
problems.

One class of structuring problems arising in practice contains so-called variant manage-
ment problems. Here, the input data describes the composition of complex products, such
as commercial vehicles, for example, on the basis of their structural components. The goal
is to find a sensible way to structure the product space, as defined by the customers of the
associated company by means of the purchased products.

Here, the space should be approximated by the smallest possible number of represen-
tative products. This then allows one, in a subsequent step, to derive a plan for revising
and reducing the necessary component spectrum and thus, decreasing inventory costs. The

so-called cluster analysis is one method suitable for working on this question.
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5.1 Cluster Analysis

One considers a finite set U of objects, each of which is described by the characteristics
Ui, ..., Uy, of a number of attributes. The central prerequisite for the grouping of data
is the existence of a dissimilarity or distance measure d : U x U — RZ°, which permits
measurement of the similarity between two objects; the larger the value d(U;, U;), the
more dissimilar are the objects U; and U;. In the cluster analysis, the goal is now to
decompose the finite set U into pairwise disjoint groups or clusters Cy, ..., Cy :

,
u=Jc. ci[\Cj=0. fori#j.

i=1

Such a decomposition is also called a partition of U. Each two objects within a cluster
should be as similar as possible, whereas two objects from different clusters should be
highly dissimilar. There are numerous algorithms for determining an optimal partition
of U, which differ in search strategy and in the data types permissible for the features. The
algorithms themselves frequently need specifications for the values of control parameters,
such as the number of clusters to be sought, the minimal number of elements in a cluster,
or the minimum dissimilarity between the objects of different clusters. Some algorithms
also assume the specification of a start partition. This multitude of choices militates in
favor of an external evaluation of the result partitions (in contrast to an evaluation within
the algorithm regarding optimality) [8]. By comparing the results of a cluster algorithm
for different parameter settings or start partitions, one can draw conclusions about, among
other things, the stability of a result partition, the optimal number of clusters, and the
coarse structure of the similarity space (U, d). The comparison of partitions can itself be
accomplished by means of a distance measure

D:PU) x P(U)— R

which is defined on the set P(U) of all partitions of the set U. Such measures have been
used for many years in biology and the social sciences. One possibility for comparing
partitions is the information variation introduced in [11], which represents a metric based
on an entropy approach.

5.2 Feature Selection

During the process of preparing a data-based regression model, the choice of which fea-
tures one uses to build up the model is crucial. In our experience, this decision is signif-
icantly more important for successful modeling than the choice of a special model class.
Although individual input quantities can be used as features, in many cases, one relies
instead on the functional linking of different input quantities. Clues as to how one arrives
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at the definition of the most information-rich features often come in the form of problem-
specific expertise. Our project experience has shown us that these clues should definitely
be followed. This helps to turn the original black box modeling at least partially grey.
Particularly in cases where there are no application-specific clues about feature defi-
nition, there is indeed in many applications the problem of a disparity between the high
dimension of the input space and the relatively small number of existing input-output data
pairs. Here, a dimension reduction is necessary, and one often carries out a principal com-
ponent analysis of the input data. Restricting oneself to the principal components assigned
to the largest singular values then delivers a corresponding subspace that is defined by the
selected principal components. Another advantage of this approach is that the transformed
data is uncorrelated and thus, in the case of normally distributed data, is even independent.
Data that is given as a linear mixture of independent, arbitrarily distributed data sources
can be decomposed into independent individual components using entropy based methods,
such as independent component analysis (ICA) [9]. Entropy-based measures for quantify-
ing the independence of two random variables, such as Mutual Information, are also often
suitable for evaluating the explanatory power of a feature or a collection of features with
regard to a given output quantity. On the basis of corresponding ranking criteria, one can
then derive a variety of selection strategies for building up information-rich feature sets.

6 Supervised Learning

In the remainder of this section, we will consider supervised learning on the basis of input-
output pairs (U;,Y;), j=1,..., N, which are modeled as independent and identically
distributed (i.i.d.) realizations of random variables. For the sake of simplicity, we will only
look at the case in which Y is one-dimensional. In contrast, the features U used to predict
Y; are typically highly dimensional in data mining. (U, Y) stands for a representative
input-output pair that has the same distribution and is independent from the observed data.

The goal of the learning is to find a mapping f, so that f(u) approximates or predicts
“as well as possible” a new value Y, when the associated input value U = u is known.
In order to refine this, a loss function L ¢ (u, y) is specified that measures the quality of
the approximation. The most widely used loss function for regression problems is the
quadratic forecasting error L s (1, y) = (y — f (w))2.

Statistical learning now attempts to find a classification or prediction function f () that
delivers a good approximation on average, i.e., for which the expectation value R(f) =
EL (U, Y) is as small as possible. For regression problems with quadratic loss functions,
the optimal prediction is

Jw)=m@)=E{Y | U =u}

of the conditional expectation value of Y, given that U = u is known. Because the distribu-
tion of the data (U}, Y;) is unknown and can be quite arbitrary, the conditional expectation
value m(u), in practice, cannot be calculated. The goal of statistical learning is therefore
to use the data to calculate approximations or estimators for this optimal function.
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One demanding regression problem from the area of production is the quality prognosis
of extruded plastic components. During extrusion, a mixture of plastic granules and other
raw materials is melted in an extruder under the influence of temperature and pressure and,
with the help of the extruder screw, pressed through an application-dependent mold. Such
processes are used to manufacture window frame stock and insulation sheets, for example.
Here, one is interested in the functional dependency of the thermal conductivity coefficient
and the compressive strength of the extruded insulation sheets on the starting recipe and
the settings of the equipment parameters, as well as on the various temperature zones
along the extruder and the rotation speed of the extruder screw. Due to the complexity of
the dependencies, an explicit modeling of the interactions is futile, and one resorts instead
to historical production data and regression methods. The identified transformations then
serve as the starting point for a subsequent process optimization by means of suitable
Pareto optimization methods. For more, see “The Concepts—Optimization Processes”.

A further example of a complicated regression problem from business economics is
the calculation of the expected residual value of a leasing vehicle according to the spec-
ified duration of the contract. The value depends on numerous predictor variables, such
as distance driven, vehicle model, engine, color, diverse equipment options, vehicle age,
etc. If one knows the dependence of the residual value on this vehicle data, then one can
estimate the capital value of the leasing inventory, plan future equipment packages so as
to optimize the residual value, and so on. A similar regression problem is estimating the
value of a house as a function of square footage, lot size, roof style, location, number of
separate apartments, age and condition of the house, etc. What we are looking for is a
forecasting function that predicts the price obtainable on the market as a function of all
this data. In addition to providing support for specific purchase and sales decisions, this
value information also plays an important role in appraising and mortgaging larger real
estate projects.

In addition to regression problems for which the target quantity is continuous, so-called
classification problems are also of practical importance. Here the Y; only assume values
in a finite set /C, which, for the sake of simplicity, correspond to the numbers 1, ..., K of
the K classes. Figure 1 shows an example of a classification problem for two classes that
is not separable by a linear classifier, but by a nonlinear one. Classification problems can
be represented mathematically as special regression problems and thus will not be treated
as a topic in their own right in the following discussion.

A challenging classification problem from economics is automatic fraud detection
within the very large number of invoices that contracting firms submit to a company. On
the basis of extensive information about the accounting data, such as amount and scope
of the individual items, the identity of the invoicing party, etc., one uses statistical learn-
ing to decide whether there are any grounds for suspecting fraud and whether the invoice
must therefore be examined more closely. An everyday example for the use of statistical-
learning-based classification procedures are the spam filters in email accounts, which de-
cide, on the basis of a large set of features, whether an incoming item is spam or a genuine
email.
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Fig. 1 Nonlinear classification problem: class 1: blue, class 2: red

A representative classification problem from the field of bio-informatics is identifying
a so-called biomarker for a particular disease within a set of gene expression data. In other
words, one searches for genes whose common expression pattern is characteristic for the
presence and severity of the disease in question. If such a biomarker is found, then it can
be used to manufacture disease-specific test kits, which allow one to quickly verify the
presence of the disease.

6.1 Non-parametric Regression

If one defines the residuals ¢; =Y; —m(U;), j =1,..., N, then they have conditional
expectation values E{¢; | U; = u} = 0. That is, U; contains no information about which
average value &; will assume. One usually assumes that the ¢; are i.i.d., which means that
the following standard model of non-parametrical regression [3, 6] applies for the data:

szm(Uj)-l-Sj, j=1...,N, Eé‘j:O, (D)

where Uy, ..., Uy are i.i.d. and independent from the likewise i.i.d. 1, ..., 5. Moreover,
one also usually assumes that the residuals possess a finite variance: vare; < oo.

In contrast to classical regression analysis, where the regression function m(u) is as-
sumed to be known except for a few parameters, non-parametric regression, and thus sta-
tistical learning as well, does not need these restrictive pre-requisites. Weak regularity
assumptions about m(u), such as twice continuous differentiability or quadratic integra-
bility with respect to the distribution of U, are sufficient. The estimation procedure makes
it possible to use the data to “learn” a predictive function that is largely unknown at the
start.
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Non-parametric regression approaches are not restricted to the standard model (1). For
example, the residuals ¢; can also depend on the independent variables U;. One example
is the heteroscedastic regression model

Yi=m(Uj)+ej=mU) +oUpn;. j=1.....N, @)

with i.i.d. n;, for which En; =0 and var n; = 1. Here, it is not only the average, but
also the variability of Y; that depends on U;. The term o2(u) is the conditional variance
var{Y; | Uj = u} of Y}, given that U; = u, and it can also be estimated using the same
procedures as for m(u).

An important class of problems that one repeatedly encounters in practice is character-
ized by dynamic developments in the target quantity over time. The above methods are also
used in the corresponding non-parametrical time series analysis; one merely abandons the
assumption that the U; are independent. For example, if one sets U; = (Y;—1,..., Y;j—)),
then the result is a non-parametrical auto-regression model

Yj =m(Yj71,...,Yj7p)+8j, j=1,...,N, e,...,en iid. WithESj =0.

In this case, the auto-regression function m delivers the best prediction of the value Y
of the time series at time j, using the last p observations Y;_1,...,Y;_,, inasmuch as
the average quadratic prediction error is minimized. Correspondingly, one obtains non-
parametrical versions of the ARCH models from (2), which play an important role in risk
measurement in financial statistics.

6.2 Empirical Risk Minimization

The predictive function m(u) = E{Y; | U; = u} minimizes the expected loss R(f) =
E(Y — f(U))? (also known as risk) relative to f. With empirical risk minimization, in
order to estimate m(u), the risk is first estimated from the data, taking reference here to
the law of large numbers, by

_ 1Y
R(f)=5 2 (¥~ W) (3)

j=1

Depending on the application, other loss functions might be more suitable, such as the L!-
risk, as defined by adding the absolute deviations of the amounts. Particularly for multi-
dimensional target quantities, the search for an optimal loss function is commensurately
complex. One must also consider that many prominent learning algorithms take advantage
of the special characteristics of a quadratic loss function, in particular for the derivative
formation. Thus, one must assume that there are significantly fewer suitable learning al-
gorithms for more general loss functions. Particularly with classification problems, one
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is also often dealing with the kinds of problems for which the costs caused by a mis-
classification depend on the original class affiliation; that is, they are often particularly
non-symmetric. Let us consider here a healthy person who is incorrectly classified as sick,
and a sick person who is classified as healthy. While in the former case, a superfluous
therapy is prescribed that is possibly accompanied by quite unpleasant side effects and
unnecessary monetary costs, in the latter case, a possibly life-saving treatment is withheld
from a sick person who requires it to survive. Arriving at a loss function that accurately
reflects the characteristics of the problem under investigation and that can also be effi-
ciently minimized is, in many cases, a key milestone in a successful data-based modeling
endeavor.

One then attains an estimator for by minimizing the empirical risk R( f). Minimizing
across all measurable functions, or even merely across all twice continuously differentiable
functions, leads to a function f , however, that interpolates the data, that is, ¥; = f Uy,
j=1,..., N. Such a solution is unserviceable for use in predicting future data, since it
models exactly the random disturbances ¢; in the collected random samples, instead of
adequately reflecting the general form of dependency between the random quantities U
and Y.

There are three strategies that allow empirical risk minimization to circumvent this
problem:

o Localization, that is, restricting the averaging in the empirical risk to those U
lying in the neighborhood of that point u, at which one wants to estimate m (u);

e Regularization, that is, imposing variation limitations on f that rule out interpo-
lating solutions;

e Restricting the set of functions across which (3) is minimized, which leads to the
class of sieve estimators.

In the following sections, we will discuss important further aspects and implemen-
tations of these strategies.

6.3 Local Smoothing and Regularization

The idea of local smoothing for the estimation of a largely arbitrary regression function
m(x) can be derived directly from the law of large numbers: when Y71, ..., Yy i.i.d., with
expectation value EY; = my, then the random sample average for N — 0o converges al-
most surely toward mg:

1 N
—1



Data Analysis 77

If, in regression model (1), m(u) is smooth—for example, twice continuously differentia-
ble—then m is approximately constant within a small neighborhood around u. This means
that, for small 2 > 0

m(z) ~m(u), when ||z —ul <h. 4)

If one now averages only those observations Y; in the neighborhood of u, that is, with
IU; — ull < h, then, for all EY; ~ m(u), that is, for large N,

N N

Z (1U; —ull)Y; ~mQu), with N@.h)=>"1,(1U; — ul)
j=1
)

m(u, h)
N(u h)

in which 1;,(z) = 1 for —h < z < h, and = 0 otherwise. N (u, h) is the number of obser-
vations in the neighborhood of u. Local smoothing of the data, that is, averaging of the
data in the neighborhood of u, delivers a convenient estimator for m(x). One obtains a
convergence of i (u, h) towards m(u) for one-dimensional U;, for example, for N — o0,
h— 0and Nh — oo.

The local averaging is based on assumption (4), for z = U}, an assumption that becomes
better and better as the distance between U; and u decreases. This suggests therefore the
idea of weighting the contribution of Y; to the local averaging according to how closely
U; lies to u. Instead of a simple average, one then obtains a weighted local average. One
example of this is the kernel estimator, in which the weights are generated by a function
K (1) known as a kernel. Typical choices for K are probability densities, that is, K (1) >0
and [ K (u)du =1.

With a simple local average (5) and, in general, with kernel estimators, the bandwidth A
determines the size of the area used for local averaging. This leads to problems in estimat-
ing m(u) when there are only a few observations U; in the neighborhood of u. Therefore,
drawing on the same insight, k-nearest-neighbor estimators do not average across a fixed
neighborhood surrounding u. Instead, they average across a fixed number k of data points.
Those data points Y; are chosen for which U; lies closest to u, that is, the averaging is
performed across the k nearest neighbors to u.

At first glance, regularization estimators appear to follow an entirely different approach
than localized smoothing procedures for ruling out interpolation when minimizing an em-
pirical risk. In (3), I’i’\( f) measures how well the function values f(U;) fit to the obser-
vations Y. In order to avoid over-fitting, an auxiliary condition r (f) < ¢ is placed on the
minimization of Ri (f), where r(f) is a measure for the variation of the function f. As a
result, when N is large, the strongly-fluctuating interpolating functions or nearly interpo-
lating functions are ruled out as solutions. For some regularization estimators, an asymp-
totic equivalence to special kernel estimators can be shown (see [10] and [13]). Because
the latter allow for a simple asymptotic theory, corresponding distribution approximations
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can be transferred to the regularization estimators and used for hypothesis tests and the
calculation of confidence intervals and quantiles.

A recognized problem with the use of local smoothing procedures, one that, unfortu-
nately, arises frequently with applications relevant to practice, is the so-called “curse of
dimensionality.”” When these procedures are applied in the direct form described here for
input spaces U with high dimension d, then, except for extremely large random samples,
the neighborhoods determined by % are almost empty for many values of u. As a result,
the random error is not averaged out. With k-nearest-neighbor estimators, the design does
indeed ensure that averaging is always performed across k values. But here, when the
number of dimensions is large, the adaptively selected neighborhoods are necessarily very
large. This corresponds to the choice of a very large bandwidth % for kernel estimators,
which leads to a systematic distortion of the estimator.

Especially when working on attractors of nonlinear dynamic systems that have been
reconstructed using phase space methods, the above next neighbor methods can often be
used successfully. Indeed, here, we have relevant project experience in connection with
the risk evaluation of electrocardiogram data. In this context, the dimensions d being ob-
served are small to medium in size, and there is a relatively large data set. Nevertheless,
it is definitely advisable to use efficient procedures when searching for each of the near-
est neighbors; a naive implementation quickly reaches its performance limits. See [7],
also.

6.4 Sieve Estimators

Sieve estimators dispense with localization or regularization as a means of avoiding over-
adaptation or, worse, interpolation of the data. Instead, they achieve this by restricting
the function class across which the empirical risk (3) is to be minimized. In order to still
achieve the necessary flexibility and avoid limiting assumptions about the estimated func-
tion m(x), the function class Fx being considered here grows with the random sample
size N. A sieve estimator therefore solves the minimization problem

min R(f).
fin @)

To ensure that the resulting function estimator my (x) converges to m(x), the function
classes F1 C J2 C - -- must possess a universal approximation characteristic. That is, for
each regression function m being considered, there must be a suitable N and an my € Fy,
so that my approximates the function m with sufficient accuracy. There are various pos-
sibilities for refining this requirement. The function classes Fy are typically paramet-
ric, that is, they contain only functions that have been specified, except for a single pa-
rameter 0 € RP. Actually, just as in classical statistics, one adapts a parametric model
to the data, but allows the model to be mis-specified. That is, one allows the function



Data Analysis 79

m being estimated to lie outside of Fp. The non-parametric consistency of the proce-
dure is achieved by allowing the parameter dimension p = p(N) to grow as the num-
ber N of data grows. Next, we will briefly discuss the three most important function
classes.

As a starting point for designing the function classes Fy, one often resorts to series
expansions relative to orthogonal basis functions. Accordingly, the number of summands
then depends on N. Sieve estimators can also be derived for non-orthogonal functions,
provided that a universal approximation characteristic applies. In order to guarantee the
stability of the estimator, one usually carries out an additional regularization of the coeffi-
cients of the series expansion. For corresponding convergence results, see [3].

The starting point for partition estimators is a disjoint decomposition of the domain of
the input variables. Each of the estimators is then constant on each set of this partition, and
the corresponding values are calculated as the average of the observations lying within the
set. If the partitions become finer and finer as N grows, then Fy possesses the univer-
sal approximation characteristic. A data-adaptive choice of partitions is advantageous. In
many cases, tree-based methods are used here, and the corresponding estimators are then
called classification or regression trees. See [2]. These approaches are useful for practical
applications requiring the estimator to be interpretable, such as is almost always the case
in medical applications, for example. Here, in very rare cases, one accepts a black box
whose decisions may indeed be correct, but cannot necessarily be explained or argued sat-
isfactorily. In particular, rule bases for decision-making can also be derived directly from
the classification trees. This allows the plausibility of this procedure to then be evaluated
in discussions with experts in the application domain.

Neural networks (see [4, 5], and [12]), originally developed as models for signal pro-
cessing in the brain, represent an important class of sieve estimators. The best known of
these are the feed-forward networks. In addition to the input and output layers, these net-
works possess at least one nonlinear, hidden layer of so-called neurons. These lead with
the activation function i to the following class of functions:

H d
Fn=1fx)=vo+ kaw<w0k + Zwucx/z): k, wek € R

k=1 =1

with the parameter 0 = (v, ..., vy, wot, ..., way) € RY4TPHF! The classes Fy of out-
put functions of feed-forward networks possess the universal approximation characteristic
when the number H of neurons grows as a function of N. The practical success of neural
networks is the result of the existence of fast algorithms, particularly the back propaga-
tion algorithm and suitable modifications [15], which allow the network parameters to be
learned within an acceptable time, even for large data sets N. An important point for suc-
cessfully learning the underlying dependencies in the given data is the selection of a neural
network whose size is adapted to the informational content of the data. The next section
describes approaches for doing this.
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7 Data-Adaptive Complexity Selection

All non-parametrical regression estimators contain tuning parameters with which the vari-
ation or complexity of the function can be controlled. They are utilized to force the esti-
mation procedure to adapt to an adequate description of the actual dependency structure
between input U; and output Y;, instead of reproducing irrelevant random effects that
are inconsequential for the prediction of future data. With kernel estimators, the tuning
parameter is the bandwidth /; with next-neighbor estimators, it is the number k of neigh-
bors; and with sieve estimators, it is basically the number of free parameters of the function
class Fu. There is a variety of procedures that allow for data-adaptive selection of these
tuning parameters.

The choice of tuning parameters is closely connected with the bias-variance dilemma
and the problem of finding a balance between over-adaptation (overfitting) to the data and
insufficient adaptation (underfitting) to the data. If the estimator is allowed too much free-
dom, overfitting will result; the estimator /1 adapts itself not only to the desired function m,
but also tries to model parts of the random error ¢ ;. Conversely, if the estimator is allowed
too little freedom, the result is underfitting. Here, the variability of the function estimator
m is indeed small, but it deviates systematically from the function m being estimated, since
the bias Em(u, h) — m(u) is large. Accordingly, it is also unsuitable for predicting future
data.

The goal of the data-adaptive selection of tuning parameters is an estimator of the func-
tion m that is as good as possible and that delivers optimal predictions. The average es-
timation error should be as small as possible, but is unknown. Therefore, one generally
proceeds by splitting the data into training data and validation data; the training data is
then used to calculate the estimator and the validation data is used to compare different
estimators with different tuning parameters or complexity. When there is only a small
amount of data available, and the estimation quality suffers significantly because some of
the data must be put aside for validation purposes instead of being used for the estima-
tion, then the cross-validation approach can be used [6]. This approach uses the data more
efficiently, but at the cost of appreciably higher computation time.

8 Concluding Remarks

Our experience with industrial data analysis questions shows that an application-specific
problem formulation, combined with the selection of suitable data sources and the features
derived from them, plays the central role. Here, as much expertise as possible from every
application domain should be brought to bear on the modeling process. The success of
the endeavor generally depends more on this expertise than on the choice of a special
machine-learning procedure.

Nonetheless, in all cases, the quality and informational content of a given data set also
implicitly set an upper limit to the maximum attainable quality for learning a dependency
structure based on the data. Here, it is very important to suitably adapt the complexity of
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Fig.2 Data mining platform “Design”

the chosen model approach to this informational content. Acknowledging and integrating
any additionally available expertise and domain-specific knowledge is always beneficial.

To promote acceptance of data mining procedures in industry, it is important, on the
one hand, to supply high-performance algorithms that take into account the correspond-
ing requirements and restrictions regarding run-time or data volume. At the same time, it
is also crucial to support the user in selecting procedure parameters and interpreting and
evaluating the results. Toward this end, we in the System Analysis, Prognosis, and Con-
trol Department have developed the analysis platform “Design” (Fig. 2). It can be easily
adapted to diverse application contexts and data structures, and it contains a selection of
effective machine learning algorithms. At the same time, however, it relieves the user of
much of the work of setting critical procedure parameters.
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Optimization Processes in Practice

Karl-Heinz Kufer

1 Improve? or Perhaps even Optimize?

“We are always working to optimize our processes!” or “Our products are continually
optimized!” are sentences often heard at press conferences or at the kickoff events of large
business projects. Optimize has a positive connotation and is a word that is heard and
spoken gladly, due to its positive associations. It is often used together with always or
continuously or ongoing, words that imply “we are relentless in our efforts” and suggest a
permanent process.

But what does optimize actually mean? Upon asking, one usually hears that optimize
means to improve, to make something better than it was before. To put it abstractly: one
starts with a current status, and one strives to change the current status so that something
is made better. The colloquial expression, make something better, means that one attains
more favorable values or evaluations for at least one objectively measurable benchmark.
For example, that something can be produced more cheaply with the same quality, or that
the consumption characteristics of a product are improved.

Actually, however, when one reflects on the meaning of the word optimal in light of
its Latin origins, then it becomes clear that optimal means best possible, and not simply
better. Thus, when optimizing, one is striving to choose the best alternative from the mul-
tiplicity of alternatives defined by a set of boundary conditions, according to an objective
benchmark. To do so, one needs not only a starting situation and a target situation with
comparison criteria, as when one merely wants fo improve. One needs instead a descrip-
tion of every sensible alternative, out of which then the best one is chosen. Optimizing is
therefore more than just improving, or, to return to Latin, meliorating.

K.-H. Kiifer ()
Kaiserslautern, Germany
e-mail: kuefer @itwm.thg.de

© Springer-Verlag Berlin Heidelberg 2015 83
H. Neunzert, D. Pritzel-Wolters (eds.), Currents in Industrial Mathematics,
DOI 10.1007/978-3-662-48258-2_5


mailto:kuefer@itwm.fhg.de
http://dx.doi.org/10.1007/978-3-662-48258-2_5

84 K.-H. Kiifer

Was everyone daydreaming in Latin class? Why do not people speak of meliorating
instead of optimizing when they want to say they are improving something? Or do they in
fact really want to optimize, that is, to find the best possible alternative? “Can this even be
done?” one is inclined to ask.

2 The Mathematical Optimization Task

For mathematicians, the world needs to be well defined: there are many layout alterna-
tives within a design space that are exactly defined, either explicitly or implicitly. Exactly
defined means it is absolutely clear whether a particular alternative is permissible or not.
“That depends”, the typical colloquial response to the question “Can we do that?”” does not
exist. Along with these many permissible solutions, one also needs at least one, or even
several, usually numerical—also known as scalar—valuations or grades. These so-called
objective functions or target quantities help with the comparison of alternatives. One al-
ways assumes that such evaluations are possible for all options and that each alternative
is completely rankable with regard to each of the individual evaluations. The evaluation
quantities then create a decision space of one or more dimensions in which the evaluated
options can be selected.

One thing is clear: if the decision space is one-dimensional, that is, if there is but one
objective function, then it is simple to characterize the best possible choice, at least when
there is a finite number of options to choose from. However, when there are several di-
mensions or objective functions in the decision space, as is usually the case in everyday
life, then it is a bigger challenge. Take price and quality, for instance. The least expensive
alternative is rarely the one with the best quality. Should this indeed be the case, then we
have the happy circumstance that one alternative dominates all others. The more likely sit-
uation, however, is that one must make compromises. For example, one establishes a price
limit and then selects the best quality. Quality is frequently evaluated using several target
quantities, however. What do we do then?

For this situation, mathematicians have defined the term Pareto optimal solutions, or
options, named after the Swiss economist and sociologist Vilfredo Pareto. A solution is
Pareto optimal when it is impossible to find an alternative that is better in at least one ob-
jective function while remaining at least as good in all the others. Pareto optimal solutions
are thus alternatives that are not completely dominated by at least one other solution. Usu-
ally there are numerous such Pareto optimal solutions from which decision-makers have
to select a compromise that appears favorable to them.

If one looks at university lecture catalogs and the relevant mathematical literature, one
finds a multitude of lectures, books, and technical articles under the heading optimization,
which address themselves to the following topics:
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Questions from the field of mathematical optimization
Given a set of alternatives in a well-defined design space and a set of well-defined
scalar objective functions that establish a decision space.

e Are there optimal solutions and are they unambiguously described? If so, then
find a complete description or characterization of these optimal solutions?

e How does one find the optimal solutions? Which algorithmic concepts exist to do
so?

e How much time and effort will it take to find the optimal solution(s), or at least
to come close to them?

e What is the best algorithm for finding, or at least approximating, the solution set,
taking into consideration the computation time and storage complexity?

Along with the various disciplines of mathematical optimization, one should also men-
tion decision-theory. This field seeks to shape the finding and selecting of best-possible
alternatives into an (optimizable) process of its own. It also tries to help decision-makers
orient themselves quickly and efficiently in the decision space, offers them rules-of-thumb
for decision processes, and helps them evaluate decisions made in the context of uncer-
tainty and partial information. A complete overview of mathematical optimization can be
found in the compendium [12].

3 Are There Mathematical Optimization Problems in Practice?

Before we reflect upon the practical benefits of the mathematical optimization concept
just introduced, it makes sense to first critically examine the principal assumptions of the
mathematical optimization task. Is the mathematician’s picture of an optimization task
with well-defined alternative sets and explicitly known, completely described target quan-
tities at all relevant in practice?

If one comes to industry as an applied mathematician with expertise in optimization and
introduces oneself in this manner, one is welcomed with open arms. Optimization is a very
familiar term in industry, although it is perhaps used in a slightly different way there. It
has, as mentioned previously, a positive connotation, which makes starting a conversation
quite easy. Practitioners frequently even have experience with optimization software and,
thus, also with mathematical optimization approaches in various contexts. Optimization
components are readily bought and are therefore important to many software suppliers.
Optimization routines are often viewed as intelligent extensions to administrative software
or simulation tools, and they generate interest at trade fairs and software demonstrations.

However, if one looks at the daily realities of businesses and inquires as to which pro-
cesses, which daily optimization tasks, are actually supported with the help of the op-
timization routines from the purchased software, the picture is quite sobering. Unfortu-
nately, automatic optimization routines are very seldom used. And this, despite the fact
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that they are, by definition, designed to simplify and accelerate the tiresome process of
finding good or best solutions. That is, despite the fact that they promise an inherent,
generic benefit.

Why is this? Why isn’t better use made of these often very expensive systems? Are
the algorithms bad? Are the routines too slow? Are they poor at finding or approximating
good solutions? Generally speaking, these are not the explanations. In fact, two cardinal
problems frequently lead to rejection of optimization routines:

Cardinal problem A—an inflexible model: routines are not used because the model-
ing of the optimization task, that is, the defining of the objective functions and the
feasibility of the alternatives, is not flexible enough. Or, the user himself must first
prepare or modify an optimization mode—a very time-consuming prospect. The lat-
ter is typical of generic optimization packages, in which the mathematical method
or algorithm is the focal point, and not the particular application.

Cardinal problem B—no interaction: in optimization packages, genuine interac-
tion with the model is often impossible. All boundary conditions for the set of fea-
sible solutions and exact objective criteria must be fixed a priori. Then, on the basis
of this rigid model, solutions are found. This forces the user to accept the calculated
solutions just as they were found by the optimizer. What if scenarios cannot usually
be considered a posteriori without a completely new computation using a suitably
modified model. This often makes it impossible to fix partial aspects of the initial
solution in the design space and then let the optimizer make further improvements
around these fixed aspects. Moreover, it is also impossible to simultaneously ana-
lyze solutions in the design and decision spaces. This is a fatal shortcoming, since
practitioners love to think and plan in design aspects; to them, target quantities are
merely dependent auxiliary variables.

Let us now illustrate these observations using an example taken from the Fraunhofer
ITWM’s past experience. The research and development department of a power plant
builder contracted with the Fraunhofer ITWM to evaluate planning software they had pre-
pared themselves for photovoltaic power plants. During a visit to coordinate the evaluation
work it became clear that there was a wide gap between the wishes of the management
team and the ideas of the planning engineers. The managers had the notion that a com-
prehensive set of rules describing how a photovoltaic power plant should be erected on a
pre-selected building site could be used to generate a well-defined proposal, after entering
a few parameters. This could then be applied to the piece of land in question and, with
the help of an algorithm, used to design a power plant yielding the highest expected profit
for the investor. Quality assurance of the technical design, cost modeling, and return-on-
investment simulation were to be components of the package. The goal was to use this
software to generate, within a few minutes, valid planning recommendations that could be
used as a basis for preparing a bid for the customer. The planning engineers, for their part,
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Fig. 1 Practial project work requires flexibility!

viewed the idea of such a “turn-key solution” with great skepticism. Initial tests with the
new system showed that one could fail for the widest variety of reasons in one’s search for
good recommendations. The engineers favored, instead, a simple modular system, which
could be used to prepare a recommendation in an extended CAD system without built-
in “optimization intelligence”. Planning a new installation in this way would take several
days.

So, the contract with the customer called for us to analyze the model and solution
approaches used in the software and, where needed, to offer suggestions for improvements.
At the very least, however, we were to help objectify the points of contention. Under these
circumstances, one felt a bit like one had been beamed into the world of Fig. 1, in which
equally large discrepancies in the objective targets are apparent.

A first examination of the software and several long discussions with potential users
from the circle of planning engineers revealed evidence of both cardinal problems. The
model of the photovoltaic plant recommended by the software was much too rigid and was
partially over-specified, which led to many good solutions being absent from the alterna-
tive set. The lack of interaction capabilities prevented specifications that were necessary in
this context, but could not be captured in the model, from being entered manually. Thus,
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it was impossible in even simple cases to use the system to generate viable solutions. On
the other hand, it was just as clear that a complete customized planning, as desired by the
engineers, would greatly hinder a comparison of solutions or an orientation on generally
valid standards. In the end, the Fraunhofer ITWM was able to deliver a solution concept
for the contracted task that led to a larger, still on-going, research and development project.

For mathematicians, some old questions of principle may heave into view here: Doesn’t
mathematics always need a rigid or well-defined model? When there is no such model, is
this not due to the insufficient diligence and underdeveloped mathematical discipline of
the practitioner? Of what use is interactivity when one can fix exact constraints and target
quantities in advance so that only the best possible solutions can appear?

4 Flexible Optimization Concepts for Practical Use

On the basis of many years’ experience in practical project work, the scientists at the
Fraunhofer ITWM have come to the basic conviction that both cardinal problems can be
solved with the help of mathematics.

Parametrical Boundary Conditions as a Lever for Interaction From out of a well-
defined multiplicity of alternatives, a mathematical optimization process uses the light of
target quantities to illuminate the best possible proposals. The definition of the alterna-
tives is carried out by means of constraining conditions, which can be formulated math-
ematically as equality or inequality constraints. In some cases, one uses combinatorial
constraints or stochastic bounds.

Some of the specified constraints result from natural laws, others from legal stipula-
tions. In both cases, one must accept them as hard constraints, since they lie outside the
defining powers of the modeler. In practice, however, one often observes that a far larger
number of constraints can be traced back to the arbitrary defaults and guidelines of plan-
ners and decision-makers. Such constraints are often revisited when their acceptance re-
sults in optimization solutions that don’t fulfill one’s wishes or expectations. Here, one
then hears phrases like “If we can, we ought to relax this constraint a bit!” Mathemati-
cally speaking, this means that one should change the constraints and once again compute
and optimize. But how then should the constraints be determined? Should one ask how to
shape the constraints on the basis of a target number for a target quantity? If so, one might
then want to couple the constraint parameter itself to the corresponding target quantity.

But this might then compromise another target quantity. This means that treating a soft
constraint in the same manner as the hard constraints frequently leads to a sequential solu-
tion and evaluation of parametrically altered optimization tasks. Hence, using the iterative
trade-off of model selection and target evaluation, one seeks the best possible model for
the optimization, into which one would like to feed knowledge gained from the objective
function relations a posteriori. How can such an iterative modeling process be avoided?
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There are basically two variants in the optimization process for treating soft constraints.
As mentioned above, one can integrate constraint parameters a priori into the objective
function(s). This assumes that one has at least a rough overview of their functional rela-
tionships. Otherwise, one runs again into the aforementioned iteration dilemma. Alterna-
tively, one can solve a host of optimization problems that are dependent on the constraint
parameters of the soft constraints; store the collection of solutions; and then illustrate to
the decision-maker the a posteriori unknown functional relationships by means of an inter-
active navigation through the solution landscape. Navigating the solution landscape means
considering the parametrical solution diversity with the help of a computer-supported de-
piction. One can thus contemplate the solution landscape in real time, as it is altered by the
constraint parameters, and study the dependencies between the constraint parameters and
the achievable target quantity or quantities. The extra overhead accruing from the solution
process of such a parametric task is compensated for by avoiding the unsatisfying iterative
process of model modification and optimization run.

In engineering practice, this technique is known as a parameter study. However, en-
gineers usually carry out such studies merely for simulation purposes; the evaluation of
simulation results using target quantities is done manually, and optimization runs for find-
ing favorable parameters don’t normally take place. The approach described above goes
further, however. Instead of considering the results of a simulated parameter study, one
analyzes interactively the solution landscape of a host of optimization problems with para-
metrical constraints. An overview of parametrical optimization is found in [2].

Multi-criteria Models for Improving Target Function Flexibility Even more difficult
than describing the permissible alternatives for an optimization problem is accurately eval-
uating the alternatives using objective functions that ought to cover all aspects of an intrin-
sic value. In practice, one frequently observes the attempt to postulate a single objective
function that integrates all these target values. This is usually done by coupling all rele-
vant objective values, such as those for cost and quality, with the help of artificial weights.
These weights typically add up to one. Thus, the weight of an evaluation aspect indicates
its significance for the whole in the form of a percentage. What is the most sensible way
to choose such weights?

Actually, such weights represent translation rates between the various target quantities.
So, how can quality be translated into cost?

Managers usually offer a simple business solution: “We convert all aspects of an eval-
uation into currency and then maximize our margin!” This sounds simple and convincing,
but is it really possible? Let’s assume we are considering a suggestion for a new product,
and we have to translate the benefit of a quality aspect into money. To do so, we have to
know how the increase in quality will translate into additional units sold on the market,
and thus, into additional revenues. This brings us to prognosis-based, expected revenues,
which we then have to discount by the expected costs. The stochastic comes from the un-
known sales figures of a new or altered product. Management will put a question mark
behind these figures, since sales estimations for a new product are notoriously risky. One
will have trouble finding good weights that are valid for all alternative solutions.
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The situation is even more difficult when we must weigh the benefits of a medical
therapy against its costs. Costs, in this case, might refer to the actual costs of the therapy,
such as those for an expensive chemotherapy for a gravely ill patient. Is it fair to burden
the community of insurees with the costs of a very expensive treatment that increases one
individual’s life expectancy by a few weeks or months? Costs might also refer, however, to
the side effects or post-treatment complications afflicting a basically curable patient. How
does one translate the hours of life of an individual into costs for a community of insurees?
How does one balance the healing of an illness against subsequent complaints that last a
lifetime?

This makes weighting a very complex matter, if only due to ethical considerations. In
practice, such weights are indeed set; they are rarely talked about, however. Is it neces-
sary to work with weights? How do the solutions depend on the weights selected? What
happens if one sets the wrong weights?

Let’s assume initially that one has set the weights according to past experience, or
simply made them all equal to start with. One then computes solutions and considers the
relationships of the objective values. If these are unsatisfactory or unbalanced, then one
tries adjusting the weights. In a minimization problem, for example, if an aspect is un-
acceptable, its weight is increased. The weights for the other criteria are then decreased
accordingly. One solves the optimization task again, and then iterates again across the set-
ting of the weights, just as with the soft constraints, until one arrives at a solution that is
more or less balanced in all relevant aspects. How can such a “human iteration loop” be
avoided?

Here too, it makes sense to let aspects that are non-comparable or at least non-
translatable remain independent of each other. Instead of computing the solutions of a
one-criterion task, one then computes the solution landscape of a multi-criteria task, that
is, the Pareto solutions. A posteriori, once the Pareto set has been computed, the decision-
maker can determine by means of a navigation process which target criteria are in conflict
with which others, how an assumed constraint for one quantity impacts the achievability
of another, and so on. Thus, here too, one can first work with a more generally described
task, whose more complex solution landscape can be studied and used to gain insights into
implicit dependencies and to find a balanced alternative that is appropriate for the context.
An overview of the treatment of multi-criteria tasks and the interactive use of their solution
sets is found in the monograph [22].

Figure 2, for example, shows the main screen of a software program developed by the
ITWM for planning radiation therapies. The screen is divided basically into two halves: the
right half shows a single radiation therapy plan, depicted by means of dosage distribution
in color wash on the 3 classic 2D-CT body cross-sections. The contours of the relevant
organs and target volumes (violet and pink), along with the healthy risk structures (other
colors), provide orientation as to which dosage is to be expected in which volume. An
additional dose-volume histogram shows what percentage of the relevant structures (target
volumes and risk structures) are being radiated with what dosage. This plan, shown on
the right side, is a Pareto optimal alternative within a set of feasible solutions specified in
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Fig. 2 Navigation screen in the ITWM radiotherapy planning software

advance. The target criteria here are the target dosage averages that are to be achieved as
a minimum or maximum, and the maximum dosage averages that are not to be exceeded
in the risk structures. The specific method of averaging dosages is selected for the risk
structures on an organ-by-organ basis.

The left side of the figure shows an overview of all the Pareto alternatives. The radar
chart with six evaluation axes in the upper section shows the possibilities for the risk
structures, and the two linear axes below show the situation for the 2 target volumes. The
evaluations on the axes are specifically-selected dosage average values for each of the
structures of interest. The area covered by the Pareto solutions is bounded by brackets.
The intervals thus marked out are joined together two-dimensionally in the radar chart.
The alternative selected for the right side, with each of its dosage averages, is depicted in
the radar chart as a polygon. The currently shown solution for the target volumes is marked
in each case by a lower dosage value and an upper dosage value, each of which is depicted
in the graphic by a triangle.

There are two options available to help in selecting a desired solution from the Pareto
solutions:

Restriction The intervals in the alternative landscape can be limited by dragging the
brackets. This is primarily used to interactively exclude undesirable alternatives. Because
the evaluations on the axes depend implicitly on each other, such restrictions render certain
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areas on other axes inaccessible. By dragging the brackets, these no longer accessible ar-
eas, visualized by surfaces on the radar chart in real-time, project forward in high contrast
tones. Thus, the decision-maker immediately sees the effect of the desired constraint. If
the limitation goes too far, for example, one can adjust the bracket accordingly.

Selection Likewise, one can change the currently depicted solution using the tags (the
polygon corners) on the axes. If a different dosage average value is desired, one drags the
corresponding tag of the desired structure, thus changing the solution. Generally, this is
possible as long as one remains within the active interval of the Pareto set. However, this
action causes the values on the other axes to change as well. This is because all the depicted
solutions are Pareto optimal. If one wants to improve such an alternative with regard to one
target quantity, then at least one other will worsen. The selection mechanism works so that
the burdens that result for other structures are distributed onto the other axes as uniformly
as possible, in order to keep each of those changes as small as possible. Obviously, this
only happens within the active intervals, as they are defined by the bracket settings. Here
too, the decision-maker can see the effect of his changes immediately in real-time and
respond appropriately.

Restriction and selection are two examples of interaction mechanisms on Pareto sets
that can change bounds a posteriori or create a desired solution ratio between the various
target quantities. They have been patented by the Fraunhofer ITWM for several application
domains.

Since 2001, the multi-criteria optimization of radiation therapy planning has been pre-
pared and improved for clinical use at the Fraunhofer ITWM in several interdisciplinary,
sequentially coordinated projects with international partners in research and industry (cf.
[10, 14, 18-20, 25, 30, 37] and [35]). The first clinical evaluations are presented in
[36, 38, 40] and [11]. A mathematics oriented presentation of this can be found in the
dissertations [24] and [31]. In addition to radiation therapy planning, similar studies on
radiofrequency ablation were carried out in the medical therapy planning field. This min-
imally invasive technique uses heatable applicators to remove tumors or metastases by
thermal ablation. See [13] and [34] for more on this topic.

Multi-criteria optimization is helpful not only in medical therapy planning, but also in
the design of complex technical systems. At the Fraunhofer ITWM, work has been done
on the design of cooling channels in injection and pressure casting molds (see [21]), on the
design of photovoltaic installations and power plants (see [6] and [5]), and on the planning
of chemical production processes (cf. [8] and [9]).

Along with the above-mentioned physically modeled applications, research has also
been done on organizational tasks, such as improving the connection reliability in local
public transportation networks (see [28] and [29]).

Integration of Modular Elements and Optimization Using Design Rules In the pre-
vious sections, we have illustrated how to fulfill the postulate of an optimization task—
mathematical rigor regarding the alternative set and the target function(s)—by appropri-
ately relaxing soft constraints and using multiple objective concepts. This presupposes,
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however, that constraints and target quantities are essentially known. In practice, however,
it is not uncommon that the context of an optimization task plays an important role. In
other words, constraints or changes must sometimes be implemented due to requirements
that are not contained in the model.

In such cases, is it still possible to make productive use of mathematical optimization?

Yes, it is possible. Provided one is willing to relinquish a fundamental paradigm of
mathematical optimization. Mathematical optimization concepts always assume that the
design space or the alternative set is completely known, and that the attention of the
decision-maker can thus be completely directed to the result space. This attitude is es-
sentially foreign to the engineer, however. For him, the design space is “where the action
is”; the target quantities are simply dependent indicators for evaluating the alternatives.
For him, the changeable objects in the design space are often context dependent, and he
wants to be able to work with them.

One can also gratify this wish by means of interaction alternatives. Here, one presents
the design space to the decision-maker as a modular system, so that he can piece together
alternatives for himself. One also provides a rule-checker with which these alternatives
can be verified against known constraints. One uses the objective function(s) as evaluation
quantities and then places the alternatives thus found in the context of an automatically
computed solution landscape. This procedure creates the possibility of integrating context,
while at the same time offering the decision-maker a chance to evaluate the quality of his
own solutions vis a vis a mathematically optimized solution landscape that satisfies all
known conditions.

A further step for simultaneously using the design space as a construction kit and a
decision space is an alternating sequence of setting binding specifications in the design
space and then automatically optimizing according to these specifications. This allows one
to build a seamless bridge between a completely automatic optimization with a previously
known, complete set of design rules and a totally manual planning process, in which target
quantities serve only the purpose of orientation.

This last concept is accepted by most practitioners without all too much resistance,
since it can be flexibly implemented by all parties. The fan of modular elements can stick
to his accustomed way of working, just as the fan of the “one button solution” can stick
to his. One disadvantage of this concept, however, is the increased difficulty of comparing
solutions when the design rules are only partially binding.

5 Integrating Simulation and Optimization—The Curse
of Complexity?

With many layout questions concerning technology, it is necessary to also draw on physical
simulation models, which are used to help create a virtual representation of the product or
process of interest and to study its behavior. Evaluation dimensions for quality and cost
are often functions taken from simulation results. Depending on the physics used and
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the model granularity, simulation runs can require a good deal of computation time. For
their part, optimization algorithms frequently retrieve target function evaluations. Now,
if one needs a complete simulation run for each target function retrieval, then it is often
impossible to simply and sensibly integrate optimization and simulation algorithms, since
this would lead to absolutely unacceptable computation times.

Let’s look, for example, at radiation therapy planning in medical physics. Using fixed
settings with the physical therapy set-up, a single run on the basis of Monte Carlo sim-
ulations lasts at least several minutes, since imitating the complex physics of collision
processes and particles in non-homogeneous body tissues is very time-consuming.

When confronted with such a challenge, how can one nonetheless integrate simulation
and optimization? The classical approach is to simulate a few constellations that are com-
posed according to past experience. In this case, mathematical optimization algorithms are
not used. This approach is widely used in practice and frequently leads to results that are
far from being “the best possible”.

Reduced Models and Hierarchical Concepts One way out of the incompatibility be-
tween simulation and optimization is to use simplified models, which in some domains are
also referred to as short-cut models. See [4], for example, for process technology. Here,
physical laws are initially simplified or left out entirely in order to achieve faster simu-
lation run-times. It only makes sense to use such a reduced model, however, when the
differences relative to a more refined and realistic physical model can be assessed with an
error estimator, and the coarse and fine models can be used in a complementary fashion.

Using a coarser model with error estimators, one can initially make optimization runs
and then, with the help of the error estimator, exclude zones in the design space that,
under no circumstances, can contain good or optimal solutions. In the literature, so-called
surrogates are also often used here for the objective functions (cf. [15])

In the most favorable case, the solutions found using the reduced model can even be
verified by means of the more refined simulation run. It is standard practice in radiation
therapy planning to approximate the discrete physics with a continuous reduced model,
such as a pencil beam model; to optimize using the reduced model; and finally, to verify
the solutions found using a Monte Carlo simulation run. The deviations of about 1 to 2
percentage points that occur here are typically smaller than the effects of the data uncer-
tainty.

As an alternative to a verification run, one can also initiate the fine simulation in a
post-processing step using the optima found with the reduced model, so as to improve the
results. Often, only a few iterations are needed. This approach is familiar from numerics.
The solution of linear equation systems, such as found in machine arithmetic with single
precision, is then iterated again with double precision, in order to reduce the size of the
residual.

In more complex cases, one works not just with a coarse and a fine model. Instead,
a hierarchy of models is used, each of which can be compared to the others with error
estimators. Examples of this approach can be found in [23]. At the Fraunhofer ITWM,
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hierarchic concepts were used in radiotherapy planning (cf. [1, 16] and [32]) and photo-
voltaic installation planning (see [5, 6]).

Optimization-Driven, Adaptive Simulation Granularity As an alternative to the
model hierarchies described above, with their interplay of coarser and finer simulation
models, one can also steer granularities within a fixed simulation model using the op-
timization algorithm. Within discretization models, for example, one can use increment
controls to obtain faster or slower simulation runs. Increment control is frequently used
with discretization schemes to ensure error monitoring during simulation runs. Normally,
one verifies that a comparable simulation error can be maintained across the entire sim-
ulation result. If discretization is used in the context of optimization, one can relax this
procedure, since one merely needs to monitor whether the discretization errors strongly
compromise the values of the objective function(s). In the end, one can usually discretize
coarsely where the objective function(s) tend toward flat gradients, and more finely where
the gradients are steeper.

This means, with such an optimization-driven discretization, one normally manages
with significantly smaller discretization patterns than with a simulation-driven discretiza-
tion. The integration of simulation and optimization can be achieved with particular effi-
ciency by using model hierarchies with error estimators across all models to supplement
the optimization-driven discretizations performed within the models (cf. [26, 27, 31, 33]
and [39]).

6 Optimizing with Uncertainties

In practice, optimization processes are usually influenced by a variety of uncertainties. Be-
sides the already described model uncertainties, there is also imprecision in the simulation
and in the quality of the available data. In order to obtain good solutions, it is essential to
address these fundamental problems and reconcile the optimization and simulation models
in an appropriate fashion.

Impacts of Data Uncertainty and Simulation Error In practice, optimization pro-
cesses are usually influenced by a variety of uncertainties. Besides the already described
model uncertainties, there is also imprecision in the simulation and in the quality of the
available data. In order to obtain good solutions, it is essential to address these fundamental
problems and reconcile the optimization and simulation models in an appropriate fashion.

Impacts of Data Uncertainty and Simulation Error The following is an important
principle in numerics: when there are known errors in the data, the method and simulation
errors must be kept in a healthy proportion to the data errors in order to achieve a favorable
total error. An analog to this principle also applies to optimization procedures, although
optimizations, due to damping effects, often behave more graciously than pure simulations.
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Data flows into optimization problems at many points. It is frequently inhomogeneous,
due to its heterogeneous origins. It is also stochastic, since it arises from inherently random
processes or because it is afflicted with a randomly scattering measurement error. Despite
these realities, in practice, data is frequently accepted with “no questions asked” and put
to use without any preparation or treatment. Ultimately, this leads to strong distortions in
the results, which, in the worst case, can render an optimization process useless. For this
reason, it is essential, wherever possible, to check for systematic errors using statistical
methods and to treat the data before using it in an optimization process. To do this, it is
useful to enlist data models expressly to assist with the analysis and reconciliation of data.

Let’s once again look at the example of designing photovoltaic power plants. To evalu-
ate the anticipated revenue, it is essential to have at one’s disposal local weather data per-
taining to solar radiation forecasts. The weather data available for purchase is frequently
model data for a “typical” month, which has been developed from values measured over
the previous years. This data is then scaled up to the amortization period for the power
plant. If one is only interested in the expected value of the total solar radiation for the
20-year amortization period, then this procedure will lead to satisfactory results, due to the
law of large numbers. However, if one wants to be certain, for example, that the revenue
within each accounting quarter will lie within a specified interval, in order to be able to
meet the loan installment payment deadlines, then this artificial “typical” month is inade-
quate to guarantee sufficient certainty. How should one deal with these uncertainties?

Robust Optimization and Solution Sensitivity In recent decades, much work has been
done on the topic of robust optimization. Here, it is assumed that one has a set of possible
scenarios for all uncertain model parameters, such as those from measured, often stochas-
tic, data, and that they are known with sufficient accuracy. Optimization is performed using
the scenario sets so that the solution for the worst scenario is as good as possible (“opti-
mum for the worst-case scenario”) or that the solution in the middle is as good as possible
(“optimum for an expected scenario”). A good introduction to robust optimization can be
found in [3].

These concepts of robust optimization depend significantly on the choice of a scenario
set size. Here one can choose more conservatively or less so. At what point is one on the
safe side? With which concept can one work best? These questions are similar to those of
model uncertainty. Interactive methods can also be used for robust optimization, in order
to be able to change assumptions about the scenario sets a posteriori and, at the same time,
study the sensitivity of the result to the various influencing factors.

As an alternative to robust optimization using scenarios, one can also optimize with
fixed specifications and introduce a sensitivity estimator as a further target quantity. These
might be target function gradients, for example, with whose help one can estimate local
changes in the result under conditions of uncertainty. A simple way to achieve a robust
optimization is to only choose solutions whose sensitivity is constrained by a limit that
has been set in advance. With this method, an advance definition of scenario sets is not
necessary; one need only consider the influencing factors that may possibly arise as a
result of changes. [7] is a standard work on sensitivity analysis.
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Naturally, one can also mix the two concepts—the advanced definition of scenarios and
the use of sensitivity estimators. One reasonable approach is to first clarify with sensitivity
estimators which quantities are especially sensitive and then, as a safeguard, to pursue a
scenario approach with just these sensitive quantities. At the Fraunhofer ITWM, one finds
examples in the planning of radiotherapies [17] and chemical production facilities [9].

7 Concluding Remarks

So, what is special about optimization at the Fraunhofer ITWM? What do we excel at?
What do we do differently?

Primarily, our work is dedicated to the question of how to make mathematical opti-
mization of practical use. It is less concerned with answering classical questions, such
as the existence and unambiguity of solutions, or with gaining and analyzing fundamen-
tal insights into solution concepts. It is important for us to think as the decision-maker
thinks, and work from there. What makes a model suitable for optimization? The classical
questions about the definition of alternative sets (“What is feasible?”’) and the objective
quantities (“What is a good result?”) are of tremendous relevance. Here, the observation
that one cannot clarify everything a priori is very important. Design and decision spaces
must be considered at the same time, and not consecutively. Otherwise, one runs into the
dilemma of iterative models. Interactive models that help one to gain knowledge about the
dependencies of constraints and to find solutions represent one way to meet this challenge.

Managing the complexity of optimization, particularly when integration of optimization
and simulation algorithms is necessary, is a second, equally important subject. Simple,
weak coupling of simulation and optimization frequently leads into a complexity trap.
Here, the hierarchical integration of models via error estimators and optimization-adaptive
discretization patterns can provide a way out.

A third relevant topic is data uncertainty and how to manage its impacts on the solu-
tion. Using sensitivity estimators as target quantities and interactive scenario selections
for robust optimization are methods than can help one come to terms with model and data
uncertainties.

In our efforts to optimize this chapter, we have excluded many other likewise relevant
topics due to space constraints (Constraints are lurking everywhere, it seems). Dealing with
NP-hard problems is worth mentioning briefly. Here, we frequently prefer explainable, hi-
erarchical concepts with guaranteed partially-optimal solutions, as opposed to quick, non-
explainable heuristics. Although these often yield excellent solutions for many cases, they
can also deliver strongly sub-optimal solutions, and are therefore rejected by practitioners.
Nor have we discussed how we deal with mixed integer problems, which we encounter
frequently in practice. Here, a maximal decoupling of the discrete and non-discrete vari-
ables often makes sense, in order to ensure an appropriate algorithmic treatment. Dynamic
optimization, as found in control problems, also accompanies the daily work of the ITWM.
To adequately discuss it would require a whole chapter of its own.
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In closing, we can state that the successful implementation of mathematical opti-
mization can only be ensured by means of a good model. Solutions are good when
they are considered good from the perspective of others. Only in very few instances
is it acceptable to label solutions as the best possible, simply because they are the
best possible found within a mathematical model. The practitioner continuously
calls the model itself into question; he does not doubt the art of the mathemati-
cal optimizer. One must succeed in creating an optimization environment that can
also help decision-makers to make modeling trade-offs. Only then can optimization
do full justice to the needs of its users.
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Virtual Production of Filaments and Fleeces

Raimund Wegener, Nicole Marheineke, and Dietmar Hietel

1 Consistency out of Chaos—A Challenge for Production

Production processes for manufacturing continuous filaments and fleeces are on-line pro-
cesses in which the individual process steps are highly coordinated with each other and
integrated into a tightly linked chain. The process chain for fleeces formed from filaments
consists of the operations melting, spinning, swirling, and deposition. Here, molten poly-
mer exits an extruder via a tube and is distributed on a spinning plate, where it is pressed
through capillary jets and spun to filaments by means of aerodynamic forces. The fila-
ments are swirled in an open air jet, decelerated, and deposited on a moving conveyor
belt. The overlapping of thousands of filaments produces a fleece, with its typically irreg-
ular and cloud-like structure. The application spectrum for fleeces is extremely broad and
ranges from everyday products like diapers and vacuum cleaner bags to high-tech goods
like battery separators and medical products. Naturally, filament spinning is also used in
conjunction with further processing steps, in the production of technical yarn products
or synthetic short-fibers, for example. Moreover, we include the production of fiber-like
insulation materials, such as glass wool and mineral wool, in the category of filament pro-
duction, since these processes are based on similar physical, albeit technically different,
principles.
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The fluctuating characteristics of filaments and fleeces—a consequence of the stochas-
tic, and often turbulence-induced, impacts on production processes—can lead to problems
in product quality. In the spinning processes, for example, such problems might come in
the form of fluctuations in filament diameter and strength, due to an unsteady temperature
history during cooling. These problems can frequently be traced back to the economic ne-
cessity of high machine throughput rates and tight filament bundling. Above and beyond
the problems of the individual filaments, fleeces also exhibit problems with fluctuations
in the weight and strength of the material. These latter arise on a sufficiently small scale
from the production principle itself, since a chaotic, turbulence-driven overlapping of the
filaments takes the place of an expensive weaving procedure. The bold challenge faced
by production is therefore to create consistency out of chaos, a challenge that has already
resulted in the development of astonishing installations and processes through decades
of technical advances in machine engineering. The currently available and continuously
improving instruments for simulating such complex processes, however, represent a quali-
tatively new opportunity for the simulation-supported design and control of these installa-
tions and processes. With their help, it is now possible to take the next step toward creating
even more consistency out of chaos.

2 Simulatable, but only in Principle—A Challenge
for Mathematics

Fundamentally, almost all the steps in the process chain outlined above—melting and spin-
ning, for filaments, plus swirling and deposition, for fleeces—can be viewed as continuum-
mechanical, multi-phase problems. Depending on the degree of cooling and the stage in the
process, one is treating a viscous, viscoelastic, or elastic filament phase, coupled with tur-
bulent airflow, in a complex machine geometry. Classical continuum mechanics offers the
models for such multi-phase problems. There is an abundance of numerical discretization
ideas, solution algorithms, and even ready-made software tools in the arsenal of applied
mathematicians and engineers. In other words, the problems can indeed be simulated, in
principle. Unfortunately, however, only in principle.

A closer look reveals, in fact, the hopelessness of such a monolithic approach: as our
examples of fleece production (Sect. 6) and glass wool production (Sect. 7) show, the
actual production processes demand the coupled filament flow simulation of thousands
of filaments having diameters as small as 10 microns in highly turbulent flows across
macroscopic scales on the order of meters. The mathematical challenge is therefore to use
modeling strategies such as homogenization and asymptotics, along with the generation of
surrogate models having a grey box character, to prepare adequate models for all the partial
aspects and then to couple these aspects together. After a thoroughgoing analysis of these
models, numerical algorithms must then be developed and adapted to the problem. Only in
this way can one portray the processes so as to allow realistic application scenarios to be
computed in an acceptable time and, thus, made accessible to optimization. The procedure
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requires, in particular, the compatibility between the various modeling approaches, the
derivation of coupling conditions, and the identification of model parameters. Using this
procedure, we want to avoid the trap of simulatable in principle, and achieve instead the
state of simulatable in practice, which will allow us to contribute significantly to the de-
sign and optimization of production processes. By concentrating diverse approaches from
various mathematical areas in a single application domain, the Fraunhofer ITWM has an
outstanding opportunity to substantiate its claim to be a problem-solver, to make innovative
contributions to existing research into applied mathematics, and to initiate the exploration
of brand new thematic areas. Our contribution to this book is designed to document the
current state of our work, but we hope that it also generates a host of new questions.

3 Studies in Filament Dynamics and Fleece Production
at the Fraunhofer ITWM

The work in filament dynamics at the Fraunhofer [ITWM has its origins in a project that has
absolutely nothing to do with filaments and their production processes. In 1995, the year
the Institute was founded, we began work on simulating the paper flight in a printing press.
This was one of the first industrial projects in the Transport Processes Department, and the
starting point for at least two thematic areas that are today pursued in force within the De-
partment. The largely two-dimensionally characterized flow of paper in a printing press is
a coupled fluid-structure interaction problem. Therefore, particle methods were tested for
the flow domains below and above the sheet, which are time variant due to sheet move-
ment. For the sheet dynamics, shell models from continuum mechanics were refurbished,
which, in their two-dimensional variant, are mathematically equivalent to rod models for
filament dynamics. The work on particle methods led to development of the ITWM soft-
ware FPM (Finite Pointset Method), which is today one of the best-performing grid-free
simulation tools available on the market for a wide and still continuously growing field of
continuum mechanical problems. The work on sheet dynamics was the breeding ground
for all subsequent research in the area of filament dynamics, which is the subject matter of
this chapter. This short story illustrates the enormous power generated by problem-oriented
research in industrial projects: the specific questions breed approaches, which then often
grow far beyond the original field of investigation and the short-term concerns of daily
business.

In 1998, concurrently with the above-mentioned industrial printing press project, our
contact with the company Freudenberg, which dates back to before the founding of the
ITWM, was revitalized in Kaiserslautern in connection with the topic of fleece produc-
tion. It took a while, however, before the tender sprout would grow into a large-scale
Institute activity, whose salient points we want to selectively outline here. Our work in
this area received an initial impulse in 2003, in the form of a large, in-house Fraunhofer
project on market-oriented preparatory research. An accompanying dissertation [27] laid
the foundation for our turbulent force model in 2005 (Sect. 4.3 and Ref. [9, 16, 17]). The



106 R. Wegener et al.

following year witnessed the first ideas for stochastic model analogies for deposition sim-
ulations (Sect. 4.4 and Ref. [5, 6]). At the same time, again on the basis of a dissertation
[29], work commenced on the asymptotic derivation of viscous string models [7, 20]. All
three of these thematic areas have been widely pursued and thematically extended up to
the present date (see development and status for turbulent force modeling [19], for the
stochastic surrogate lay down models [8, 11-13], and for asymptotic rod and string mod-
els [1,4, 14, 18]). Likewise, as a consequence of the above-mentioned Fraunhofer project,
there has been an enormous broadening of our industrial customer base. Johns Manville
(2003) and Oerlikon Neumag (2004) are examples of a fleece manufacturer and a ma-
chine designer in the field of technical textiles. Both remain today steady customers of the
Fraunhofer ITWM.

It was then two projects sponsored by the BMBF at the start of this decade that set
long-term developments in motion: the project ‘Nano-melt-blown fibers for filter media’
(NaBlo, 2008-2011) set the stage for our current work on turbulence reconstruction for
filament dynamics [10]. In the project ‘Stochastic production processes for the manufactur-
ing of filaments and fleeces’ (ProFil, 2010-2013), a consortium project in the BMBF math-
ematics program under the leadership of the Fraunhofer ITWM, the complete production
chain for filaments and fleeces was simulated for the first time. Several PhD projects re-
sulted either directly from the project [22, 23, 25, 28] or were offshoots from it [26, 30, 31].
These represent an important foundation for further investigations in this thematic area.
The project also forms the basis for the current status of the central ITWM software for
filament dynamics, the FIDYST suite, with the software tools FIDYST (Fiber Dynamics
Simulation Tool, Sect. 5.1) and SURRO (Surrogate Model, Sect. 5.2). On the industrial
side, our contact with the company Woltz (2010) and the resulting, on-going cooperation
have proven extremely fruitful. Here, we were able to couple the filament and flow dynam-
ics in a complex production process for the first time, in connection with the manufacture
of glass wool (Sect. 7 and Ref. [3, 15]). The simulation toolbox VISFID (Viscous Fiber
Dynamics, Sect. 5.3) for coupled flow-filament simulations in spinning processes was con-
ceived in projects involving this production process.

Although this chapter discusses many of the above-mentioned topics, it makes no at-
tempt to offer a complete historical portrayal. Instead, it attempts to present a cohesive
overview from our current perspective. We therefore dedicate some space to the presen-
tation of a consistent and integrated modeling basis (Sect. 4), before we then show the
performance status of the software tools available today at the Fraunhofer ITWM (Sect. 5)
and demonstrate their capabilities using two typical industrial applications as examples:
the production of fleeces in the spunbond process (Sect. 6) and the production of glass
wool via rotational spinning (Sect. 7). To promote readability, we offer annotations at var-
ious points that summarize more detailed aspects of the work and illustrate how it fits
into the framework of current international research. Readers interested primarily in the
applications can also begin with Sects. 6 and 7, follow the references to the simulation
tools being used (Sect. 5), and consult with the underlying models (found in grey boxes in
Sect. 4) as desired.
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In addition to the authors, substantial credit for the modeling ideas, software devel-
opments, and industrial projects that serve as the foundations for this chapter must be
given to some of our current colleagues from the Transport Processes Department of the
Fraunhofer ITWM (Sergey Antonov, Dr. Walter Arne, Dr. Christian Leithduser, Dr. Robert
FeBler, Dr. Simone Gramsch, Dr. Jan Mohring, Johannes Schnebele), as well as to some
former colleagues (Dr. Daniel Burkhart, Dr. Marco Giinther, Dr. Jalo Liljo, Dr. Ferdi-
nand Olawsky). The past and current PhD projects mentioned here have been or are being
supervised by Prof. Nicole Marheineke (FAU Erlangen-Niirnberg), Prof. Andreas Meis-
ter (Universitit Kassel), and Prof. Hans Hagen, Prof. Axel Klar, Prof. Helmut Neunzert,
Prof. Rene Pinnau, and Prof. Klaus Ritter (all from the TU Kaiserslautern).

4 Foundations of the Modeling

The Cosserat rod theory serves as the framework for the partial differential equation mod-
els considered here for filament dynamics. At their core are 1D balances for linear and
angular momentum. These are complemented by geometric models for describing angular
momentum, material laws for the emerging internal stress forces and moments, as well
as models for the external forces acting on the system. In view of the target application,
the interaction of the filaments with the surrounding, often turbulent, airflow is especially
significant.

These Cosserat rod models can be used to successfully simulate single filaments in
spinning and swirling processes. However, the significant computational effort prevents a
virtual mapping of complete fleece deposition processes involving large numbers of fil-
aments. Therefore, surrogate models based on stochastic differential equations (SODE)
were developed and implemented at the Fraunhofer ITWM, which allow highly efficient
simulations of the fleece deposition structure. The parameters of these surrogate models
are identified using the Cosserat rod computations for single filaments.

Folklore and Convention We embed our continuum mechanical models in an ab-
stract three-dimensional Euclidean space E3. In this space, we take {e], e, e3} to be a
fixed orthonormal basis (ONB). Such an ONB induces an isomorphism i, : E? > R3,
ar>i.(a) =a=(aj,az,a3) witha; =a-ej;, j =1,2,3. Because we are operating with
different bases, it is important to us to always distinguish between the vectors a € E3 and
their component tuples a € R? in the arbitrary, but fixed ONB {ey, e, e3}. This is moti-
vated largely by the fact that we also introduce, as a component of the Cosserat rod theory,
a temporally and spatially (along the rod) varying director basis {d;, d2, d3}. The compo-
nents of a vector a in this basis are denoted as a = (a1, a2, a3). The canonical basis of R3
(that is, the component tuples of any ONB in relation to itself) is denoted by ey, e, e3.
We use a tensor calculus that is oriented on the calculus of Antman [32]. That is, we
consistently use the point - for scalar products and tensor-vector operations; we make no
distinction between vectors of E and their adjoints; and, consequently, no distinction
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between row and column vectors of R3. In contrast to [32], however, we use ® in place of
a blank space for tensor products. 3 x 3-matrices are identified with tensors having values
in R? ® R? and are frequently, with respect to a basis, the components of tensors with
values in E3 ® 3. For all further details of our selected calculus, we refer the reader to
[32]. We use a generalized summation convention in which Latin indices run between 1
and 3 and Greek indices, between 1 and 2.

Because we are mainly examining modeling aspects, we generally assume, for the
needed manipulations, that there is sufficient differentiability and invertibility—as was
just needed—and we do not usually critically reflect upon these points. This does not mean
that we consider such reflections superfluous, or that all models we examine have classical
solutions. Quantities are always introduced with their SI units, unless this is completely
trivial (or forgotten!). Frequently, this clarifies their physical significance better than many
words.

4.1 Cosserat Rod Theory

The Cosserat rod theory describes a filament as a spatial curve with oriented cross-sections.
This results in a 1D manifold embedded in 3D, to which an element of the rotation group
SO(3) is differentiably assigned at each point. The theory is characterized by 1D balances
for linear and angular momentum, which result from 3D continuum mechanics by aver-
aging over the cross-sectional areas and restricting degrees of freedom. These restrictions
mean that a re-orientation of the cross-sections can indeed be described, but not a genuine
deformation that overcomes their planarity. We largely follow [32] in introducing the the-
ory in a material parameterization (Lagrangian description), but we place a general and
spatial variant (Eulerian description) on an equal footing alongside it. We take pains to
present the theory as self-contained and reflect upon its embedding in 3D continuum me-
chanics as little as possible. Nevertheless, this embedding can be undertaken in order to
thereby identify all elements of the theory in 3D continuum mechanics.

4.1.1 Material Description

Reference State A Cosserat rod or filament is described in its reference state by a curve
r° : (sq,55) — E? and two normalized, orthogonal vectors d, : (sq, sp) — E3, which are
referred to as directors.

One also defines dg = d} x d3, so that the directors form a right-handed orthonormal
system. The reference state can be assumed for any given point in time, but this is not
actually imperative. The interval (s,, s5) C R addresses the section of the filament whose
dynamic is to be subsequently described. A parameter s € (s4, sp) addresses the materially-
determined cross-section of the filament to be modeled. For our applications concerning
filament dynamics, we require that d = d,r° and d;d; = 0 for the reference state. The
geometry and material models formulated in Sect. 4.2 are attuned to this reference state.
More precisely, they ensure an absence of tension and torque in the reference state. With
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Fig. 1 Cosserat rod, consisting
of curve and director triad
(Graphic: Steffen Griitzner,
Fraunhofer ITWM)

these assumptions, we select, in particular, an arc-length parameterization of the reference
state, but only of the reference state.

Kinematics At an arbitrary point in time 7, the state of the rod is defined by the curve

r(-,t) and the orthonormal directors dy (-, ), where dy, - dg = 84. The curve describes

the position and the directors describe the orientation of the cross-sections addressed by s

(Fig. 1). Using the consistently applied definition d3 = d; X d», the directors form a right-

handed orthonormal system at all times. Both the referential linking of d3 with the tangent

dsr and the arc-length parameterization, however, are generally not valid in a moving state.
The velocity and tangent of the rod are characterized by the vector fields

or=1v, osr=T.

Because the directors form a right-handed orthonormal system, there exist also unambigu-
ous vector fields k¥ (1/m) (curvature) and w (1/s) (angular velocity), so that the equations

a,d,»zcoxd,-, 8sdi=ICXd,'
are valid. These vector fields describe the change in the triad over time, and along the
curve. By changing the order of the partial derivatives with respect to ¢ and s, one obtains

the following compatibility relations:

0T = 0yV, 0k = 0w+ w X K.
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In order to use the Cosserat rod theory in specific applications, it proves helpful to
represent vector fields and model equations partially mixed in two basis systems (external
basis and director basis). The change from the invariant formulation to a fixed external
basis {er, e», e3} is, in this instance, trivial. The transition from the external to the director
basis {d, d», d3} can always be accomplished technically using the following calculus.
As agreed, for an arbitrary vector field a € E3 of the rod, a € R? and a € R? denote the
component tuples relative to the external basis or the director basis. The director basis is
transformed with the rotation

D=ei®di=Dijei®ej €E3®E3 WithD,’j =d,--ej

into the external basis. The orthogonal matrix D is assigned to the components D;; of this
rotation. If one now considers an arbitrary vector field of the rod, then

D-a=a, D-d;fa=0da+w x a, D-d;a=0sa+« xa.

Moreover, the kinematic base equations for the directors can be transformed into corre-
sponding equations for the rotation matrix:

;D=—w x D, dsD = —k x D.

This formulation of the kinematics also serves as the starting point for other representations
of the rotation group (Euler angles, unit quaternions, rotation vectors), each of which has
its merits, depending on the application.

The fundamental deformation variables for the formulation of objective material laws
are the component tuples 7 and « of tangent and curvature in the director basis. More
precisely, 1 and 7o quantify shearing, 73, strain, k; and k3, bending, and k3, torsion.
Moreover, with

e=|z|l
we introduce a further strain measure that refers solely to the curve.

Dynamics Balancing linear and angular momentum (dynamic equations) for a rod leads
to the following generalized forms:

(pA)o,v=0;n+Kk, och=90dm+ 717 xn—+1L

The line density of the rod (pA) (kg/m) in the reference state is traditionally designated
using a slightly confusing symbol that suggests a product. When embedded in 3D contin-
uum mechanics, it results in the integral of the density over the cross-section of the rod
in the reference state, and is thus dependent on the filament parameter s, but not on the
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time ¢. The angular momentum line density h (kg m/s) is described as a function of the re-
maining base quantities of our theory, in particular, of the angular velocity (see geometric
modeling, Sect. 4.2.1). The internal stress forces n (N) and torques m (Nm) are mod-
eled via suitable material laws as functions of the internal variables. Section 4.2.2 consists
primarily of a discussion of two types of such material laws—elastic and viscous. In the
dynamic equations, k (N/m) and 1 (N) denote line force density and line torque density
for modeling the external force and torque effects on the rod. Each of these can depend
on different internal variables and thus decisively impact the coupling of the dynamic and
kinematic equations. In the following discussion, we generally restrict ourselves to models
with no external moment effects; that is, 1 = 0. Ultimately, geometric modeling, material
laws, and external forces are the primary determinants of the type of PDE system.

4.1.2 General and Spatial Description

So far, the entire theory has been formulated in a Lagrangian description; that is, the pa-
rameter s € (s;, Sp) addresses a material point (or cross-section) of the rod. Except for
the orientation and a constant, the parameterization is then completely determined by re-
quiring the arc-length parameterization of the reference state. This is not essential, but it
simplifies much of the treatment. As we show below, a simple typing concept for the the-
ory’s base quantities can be used to formulate the model equations very easily in any other
time-dependent parameterization. Without doubt, the most important application case is
the spatial description (Eulerian description), in which, for all times, the transformation is
made to an arc-length parameterization.

Parametrizations Suitable time-dependent re-parameterizations can be introduced with
bijective transformations

¢('at):(5aasb)_> (‘Pa(t)awb(t))s S’_>¢(S,t).

In order to define the transformation behavior of the different fields of the Cosserat rod
theory, we introduce the term type-n-quantity. A type-n-quantity, n € Z, is transformed as
follows:

Js O f(@Gs, 1), 1) = f(s,0),  j=d.

Here, f (s, t) characterizes a type-n-quantity in the material parameterization (Lagrangian
description) and f (¢, t) characterizes the associated field in the new parameterization.
For the different fields of our theory, we specify that r, d;, v, @, n, m are to be
treated as type-O-quantities and 7, k, K, 1, (pA), h as type-1-quantities. This specifi-
cation allows the various quantities to retain their physical character and defining inter-
relationships (point-related observables, densities, derivatives, etc.) in the transformation.
Time-independent re-parameterizations do not disturb the material character of the param-
eterization, nor do they change the form of the base equations. In contrast, time-dependent
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re-parameterizations bring convective terms into play. These have their origins in the scalar
velocity u (¢, t) (convective speed), which is defined by

(s, t) = u(q‘)(s, t), t).

On the basis of this definition, the following applies for type-n-quantities:

I fs.t)=j"(s.) f +ndyuf +udy f)(p(s. 1), 1).

The application of this rule leads directly to the base equations of the Cosserat rod the-
ory (1) in an arbitrary parameterization, which are formulated below. The suitability of
the selected typing of all quantities is demonstrated by the fact that (1) does not depend
explicitly on the selected parameterization, but only on the associated convective speed.
The definition of u and j yields

dpu(p (s, 1),1) = %(s,t).

A change in the sign of j indicates a re-orientation in the parameterization. Without re-
stricting ourselves significantly, we stipulate that j > 0.

Ultimately, every parameterization requires one to define the convection . This defini-
tion can take place directly or indirectly. The simplest case, u = 0, corresponds to either
our starting point of the Lagrangian description or one of the time-independent, and thus
still material, re-parameterizations. Another special case, the Eulerian description, results
from the arc-length parameterization requirement

Izl =1.

If one adds this requirement to the balance equations, then the convective speed u is defined
indirectly as Lagrange parameter to the constraint ||7| = 1. To be consistent, we treat the
deformation measure e = ||7|| just as we do t, that is, as a type-1-quantity. Thus, for the
transition to the Eulerian description, e = 1 and e = j are valid. Moreover, 9;¢(s,t) =
u(p(s,t),t) is the rate of change in the arc-length ¢ (s, ) of the material point s, and
dou(e(s,1),t) =0re/e(s, t) is the associated relative strain rate.

Base Equations With the formalism introduced above, the balance equations follow in
an arbitrary parameterization. To streamline the appearance of the notation, we remove the
marker ~ from the fields and also select s instead of ¢ as parameter in the general case.
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Kinematic and dynamic base equations for the Cosserat rod theory

XY=V —Uut
0rdy = (w — uk) x dg
Gr=1
0sdy =k x dgy
3 (pA) + 35 (u(pA)) =0
3 ((pAIV) + 3 (u(pA)V) = dn + k
oth+ o(uh) =dgm+7 xn+1. @))

The equations for d;r and 9;dy, or dsr and d;d,, can also be replaced by the compati-
bility relations

0T + 05 (ut) = 05V, 0k + 05 (uk) = 05 + @ X K.

As mentioned, the convective speed u is a scalar degree of freedom in (1), which is to be
defined by means of an additional condition. In the Lagrangian description, this is u = 0.
The continuity equation 9;(pA) + ds(u(pA)) = 0 then degenerates to the time constancy
of (pA), and is therefore generally not included as a balance equation. In the case of the
Eulerian description, the convective speed u is a system variable and is defined in the
manner of a Lagrange parameter by the additional constraint ||z || = 1 of the arc-length
parameterization. Provided nothing else is stated, we choose the Lagrangian description in
the following discussion.

4.2 Geometry and Material Modeling

The considerations presented thus far establish the general framework for the Cosserat rod
theory. Modeling the elements of geometric and material characteristics is important for
completing the theory. On the one hand, these two steps deliver the angular momentum as
a function of the angular velocity. On the other, they deliver the emerging internal stress
forces and moments as functions of the fundamental deformation variables. Geometric
constraints on the dynamics frequently replace material laws. These constraints usually

reflect stiff material behavior, for example, inextensibility.
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4.2.1 Geometric Modeling

When modeling the angular momentum h as a function of the angular velocity o, the iner-
tial tensor (pJ) (kg m) plays a central role. In contrast to the line density already discussed
in connection with the dynamic equations, it is a function of time even in the Lagrangian
description, via the director dynamics:

(pd) (s, 1) = (pJ)ij(s)di(s, 1) @d;(s, 7).

Analogously to the notation introduced for the vectors, (pJ) designates the symmetrical
3 x 3-matrix formed from the components (pJ);;. This results, when embedded in a 3D
theory, from the area moments of inertia (pJ) (fﬂ of the reference state

D%~ 0
()= -y, (D 0
0 0 D+ DY

and is thus, as a referential quantity, time-independent.
For a circular cross-section, (pJ) is defined by the polar area moment of inertia (p1)

(pd) = (pD)diag(1, 1,2).

Provided this cross-section with referential surface A° exhibits a homogeneous referential
mass distribution of the density p°, then

(oA =p°A° (o) = jp"A™ @
T

In general, however, just as in the case of line density (pA), the matrix (poJ) is only to be

understood as the symbol for a quantity, and not as a product. The relationships (2) are

initially bound to the material description, since we have not yet defined the type of the

new quantities.

Inertia-Free Geometry Model The simplest geometrical model results by neglecting
all inertial terms in the angular momentum balance; that is,

h=0.

With this approach, the angular momentum balance in (1) degenerates to a quasi steady-
state equation and can be used, in particular, to compute explicit expressions for the non-
tangential components of the stress.

Geometrical Standard Model In the following discussion, we refer to the linear depen-
dency of the angular momentum on the angular velocity

h=(p)) ®
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which is given directly by (pJ), as the geometrical standard model. The basis for this
model is the geometrical assumption that the cross-sections of the rod remain unchanged
in their form and extent for the entire dynamics. The designation standard’ is traced to
the model’s use in the field of elastic materials, which represents the original application
domain of the Cosserat rod theory [32, 34]. For the transition to an arbitrary parameteriza-
tion, we require a continuance of the above relationship, which characterizes the standard
model. This forces one to treat the matrix (pJ) as a type-1-quantity, so that an additional
balance equation

3 (pd) + 35 (u(pd)) =0

in a general description corresponds to the time-independence of the matrix in the La-
grangian description.

This general treatment only makes use of (pJ) and initially avoids all deeper discussions
of the geometry. For more detailed modeling of external forces, materials, and temperature
effects, however, it is useful to introduce the density p (kg/m3) and the cross-sectional area
A as further type-0-quantities. Note that we distinguish—carefully, and as a function of the
geometry model—between these quantities and their referential counterparts p° and A°.
For the standard model, we consider a rod with homogeneous, circular cross-sections of
density p = p°/73 and cross-sectional area A = A°, so that (2), with 73 = 7 - d3, leads to

1
(pA)=T3pA,  (p])=_—T3pA”. 3)
TT

Due to the specified typing, these relationships are form-invariant during re-parameter-
ization. In the Lagrangian description, the time-independence of (pA) and (p1) leads to

9 (130) =0, 0:A=0
and therefore, in an arbitrary parameterization,
9 (t30) + 95 (ut3p) =0, A +ud;A=0. “4)

When dealing with the standard model in an arbitrary parameterization under the assump-
tion of homogeneous, circular cross-sections, the above considerations allow one to use
the definitions in relationship (3) to replace (pA) and (pI) with p and A. In this case,
(4) then replaces the associated balances for (pA) and (pJ) or (pl). Alternatively, one
can retain (pA) and (p1) as base quantities and use (3) to calculate p and A:

2
p= LA g PD
4 t3(pl) (pA)
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Incompressible Geometric Model In contrast to the geometric standard model, the ap-
proach

h= L () -®
7-d3

which is also linear in w, but scaled with t3, accounts for changes in the dimensions
of the cross-sections, which are irreversible for incompressible material behavior. This
model also begins with the assumption that the form of the cross-sections remains un-
changed when the rod undergoes deformation [1]. As with the standard model, we require
for the transition to another parameterization—especially the Eulerian description—that
the above characteristic relationship is invariant in the face of re-parameterization. This
then forces one to treat the matrix (pJ) as a type-2-quantity, unlike in the standard model.
Consequently, in a general description, the additional balance equation

0,(pd) + 85 (u(pd)) = —(pd)du

corresponds to the time-independence of the matrix in the Lagrangian description. It be-
comes clear at this point that, although the typing of the quantities is indeed physically
motivated, it remains ultimately a matter of definition.

In order to clarify for the incompressible model the relationship to the additionally
introduced quantities p and A, we once again consider a rod with homogeneous, circular
cross-sections. This time, however, due to the incompressibility, the rod has density p = p°
and cross-sectional area A = A°/t3. This leads to the following equations, which are form-
invariant during re-parameterization:

1
(pA)=T3pA,  (pD) = —T5pA%,
T

Rearrangement yields

2
po LAy D
4w (pl) 3(pA)

If one wants to replace (pA) and (pl) with p and A in the incompressible model, the
replacement balances then become

O p +udsp =0, 9 (13A4) + 95 (ut3A) = 0. (&)

4.2.2 Constraints and Material Laws

In the Cosserat rod theory, material laws describe the dependency of the internal stress
forces n and moments m on the fundamental deformation variables 7 and «. As the tuple
notation suggests, they are formulated in the director basis in order to ensure objectiv-
ity (invariance in the face of rigid-body movements). Keeping in mind the applications
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considered later, we limit ourselves here to linear-elastic and viscous material laws. Stiff
material behavior is treated by means of geometric requirements on the dynamics, that is,
by formulating appropriate constraints. This reduces the number of material laws to be
formulated. The most important example in practice is the Kirchhoff constraint, which we
will discuss in both its classical form and in a generalized variant.

Classical Variant of the Kirchhoff Constraint The requirement of a strain and shear
free rod

T =d3,

that is, T = e3 in the director basis, is referred to as the Kirchhoff constraint [32]. By fixing
the strain and shear quantities, all stresses n = (n1, ny, n3) become Lagrange parameters
to the constraint; that is, they become variables in the theory, and all that remains is to
formulate a material law for the moments m = (m, m, m3). The classical Kirchhoff con-
straint has its greatest significance in the area of elastic materials. It is not form-invariant in
the face of re-parameterization (7 is a type-1-quantity and ds, a type-0-quantity). Models
using the classical Kirchhoff constraint are therefore treated exclusively in the Lagrangian
description. Because the constraint ensures the arc-length parameterization, this restriction
is not practically relevant with regard to the Eulerian description.

Generalized Variant of the Kirchhoff Constraint For viscous and viscoelastic ma-
terial behavior, shear effects frequently play a subordinated role as well. Strain effects,
however, may not be ignored. This situation is handled by means of a generalization of the
Kirchhoff constraint

T =ed3

or T = ee3 in the director basis. Using this weaker requirement, the normal stress force
components 7 and n,, as Lagrange parameters to the constraint, become variables in the
theory, and the task remains to formulate material laws for the tangential stress force n3
and the moment m. The generalized Kirchhoff constraint is form-invariant in the face of
re-parameterization.

Elastic Filaments—Bernoulli-Euler Among the numerous elastic variants of the
Cosserat rod theory, the Bernoulli-Euler model dominates the filament applications. Here,
a rod is considered using an inertia-free geometry model. The material model in the La-
grangian description consists of a combination of the classical Kirchhoff constraint and a
linear moment-curvature relation:

t=e;,  m=(EDdiag(1,1,1/(14+v))-«.

Here, v is the Poisson’s ratio and (E1) (N m?) is the bending stiffness of the rod.
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In accordance with the discussion of the classical Kirchhoff constraint, we formulate the
model only in the Lagrangian description. In the director basis, we obtain the following:

D-9r=v, 9D=—wxD, D d,f=e3, ;D= —k x D
(pA)V=0n+Kk xn+D -k+ (pA)V X w, 0=9m+k xm+e3xn (6)

(see [32, 34] also). As an alternative to the inertia-free geometry model, the standard model
is also used for the angular momentum. However, the degenerate angular momentum bal-
ance in (0), in interplay with the simple linear material model, permits, by means of several
algebraic rearrangements, a radical simplification of the model. Here, the torsion module
M = mj3 proves to be constant, and N =n3 — (ET)|| 9 sr||2 replaces the tangential stress
force nj as a variable [11].

Elastic Bernoulli—Euler model, Kirchhoff rod

(0A) 3T = 35 (N dsr) — 05 ((El)assr) + Mosr X dggsr + K, [|osx|[=1. (7)

The system (7) shows a wave-like behavior, with an elliptic regularization governed via
the bending stiffness and the constraint of inextensibility, with N as associated Lagrange
parameter. Provided one filament end is stress-free, then M = 0, and the torsion elements
of the momentum balance disappear completely. The simplified formulation (7) forms the
core of the ITWM software tool FIDYST (Fiber Dynamics Simulation Tool) for simulating
cured filaments.

Remark 1 (Elastic rods) Elastic Cosserat rods represent a very old, extremely comprehen-
sive, but still current, field of research. We mention here only a few of the key points that
are important for our work and refer to the existing literature for further information. The
foundations of the theory outlined here can be traced back to Bernoulli, Kirchhoff [72], the
Cosserat brothers [41], and Love [78], among others. From today’s perspective, [96] and
[32] offer a comprehensive overview. The works [80, 81, 111] explore analytical aspects,
such as solution theory and stability. For the basics of Lagrange-based discretization strate-
gies (geometrically exact approach, discrete differential geometry), we refer to [101, 102]
or the more recent [70], and for computer graphic considerations, [34]. Finally, [82] is of
particular interest for the deposition behavior of filaments.

Viscous Filaments—Ribe Ribe proposed modeling viscous jets on the basis of the
Cosserat rod theory. This was initially formulated for steady state [93] and later general-
ized for transient systems [94]. In our system of classification, Ribe’s model is a Cosserat
rod model with incompressible geometry for homogeneous, circular cross-sections of den-
sity p. The material model is based on a generalized Kirchhoff constraint with specifica-
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tion of the tangential stress forces n3 and moments m. In the Lagrangian description [1],
it becomes

A 3u A%
T = ee3, n3 =3u—oae, m = — —diag(1, 1,2/3) - 0:«,
e 4 e

where 1 (Pas) refers to the dynamic viscosity of the jet. Note that the formulated material
laws are form-invariant in the face of re-parameterization. This allows us to formulate the
complete Cosserat rod model for viscous jets in a generalized description with use of the
director basis.

Viscous rod model

D-0;r=v—ueej3
0;D=—(w—ux) xD
D - 0;r=ee3
dsD=—k xD
0r(eA) + d5(ueA) =0

1 _
0r(eAv) + 95 (ueAv) = —(dgn+k XN+ D -k) + eAv X w
0
4
P, - (8t(eA2a)) + 05 (ueAZa))) = —”(asm +kxm+ee3 xn)+eA’(Pr-w) X @
0

1 e
Bte—l—as(ue) = @Zn - e3

T e

4
ric + 05 (uk) 3u Az a2 m (®)

Here, P, = diag(1, 1, ¢) for ¢ € R. The model is completed by means of an additional
equation for selecting the description: for example, # = 0, for the Lagrangian description
and e = 1, for the Eulerian description. If the referential density is not constant, then
a convection equation for p must be added (see (5)). The system (8) has a hyperbolic
character, with additional ordinary differential equations for the curve and rotation group
in place of evolution equations for n and m. Due to their structural closeness to the material
laws, the compatibility relations

0;ee3 + 0s(ue)es = ;v + Kk X V+ee3 X w, 0k + 05 (uK) = s + kK X w

allow diverse re-formulations of (8). In practice, the model presented here forms the de-
scriptive foundation for spinning processes.
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Remark 2 (Slender-body asymptotics) The Cosserat rod models do not arise—as one
might perhaps suppose—as asymptotic limits ¢ — 0 of 3D continuum mechanics for the
slenderness parameter ¢ (ratio of typical filament thickness to filament length). In such lim-
its, one obtains instead string models, which neglect angular momentum effects and, in the
linear momentum balance, only account for the tangential stress forces. The Cosserat rod
models also include terms of the order £ via the angular momentum balance. As demon-
strated using the example of elastic Kirchhoff rods (7), inertia-free geometry models allow
the remaining angular momentum effects to be integrated into the linear momentum bal-
ance. We then speak of generalized strings. Particularly for the viscous case, there are
asymptotically strict derivations of string models based on boundary value problems. For
uni-axial jets based on Stokes equations, see [45], for example; for those based on Navier—
Stokes equations, see [69]. Curved jets are handled in a corresponding manner in [18, 20]
(Navier—Stokes without and with surface tension). The solvability of these string models
relative to the underlying parameters is restricted by the occurrence of singularities [4, 7],
[67]. By a comparative consideration of the associated globally-applicable rod models as
a regularization of the string, we were able to completely analyze this problem [4]. The
viscous rod can also be transferred into a generalized string with an inertia-free geometry
model. However, the structure of the equations remains complex compared to the elastic
case [2, 33].

Remark 3 (Viscous and viscoelastic strings and rods) Fundamental works on viscous fil-
aments are [88], for strings, and [51, 93, 112], for rods, pursuant to Remark 2. There
have been many theoretical and numerical investigations, and the contributions men-
tioned below are merely representative examples that may serve as starting points for
the interested reader. For spinning, see [43, 45, 87, 110]; for break-offs and drops,
[48, 49, 69, 103]; for the deposition of highly viscous filaments, [40, 93-95]; and for
instabilities, [56, 59, 85, 99, 100, 113]. The dynamics of non-Newtonian and viscoelastic
strings, as well as crystallization aspects, are discussed in [14, 24, 37, 53, 54, 63, 92].

4.2.3 Energy Balance

Up to this point, we have presented the classical Cosserat rod theory, which only includes
mass, linear momentum, and angular momentum balances and, consequently, initially ex-
cludes thermal effects. Particularly in the cooling phase of spinning processes, however,
the temperature 7 (K) plays an important role: it determines the choice of an adequate
rheological model. Here, material coefficients such as the viscosity or bending strength
are functions of temperature. An accompanying energy balance is therefore frequently in-
cluded in the applications. This can be constructed from various base quantities (internal
energy, enthalpy, entropy), much as in 3D thermo-mechanics. In the framework of this
chapter, we consider the specific enthalpy # (m?/s?) as a function of the temperature 7.
The associated derivative ¢, = drh (J/(kg K)) is the specific heat capacity of the filament
material. 4, T and ¢, are introduced as type-0-quantities. In this treatment, as a type-1-
quantity, the enthalpy line density (pA)h (J/m) is the actual energetic balance quantity.
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Using the definition of ¢, and the conservation equation for (pA), the general form of the
energy balance becomes:

Energy balance

cp (3 ((pA)T) + 35 (u(pA)T)) =q.

By means of the source term ¢ (W/m), both thermal conduction along the filament and
various other warming and cooling effects can be included. We restrict ourselves here to
the thermal exchange with a surrounding airstream of temperature 7, which is described
with the help of a heat transfer coefficient o (W/(m? K)). Thermal exchange takes place
across the circumference wd, with diameter d = (2/ ﬁ)«/z, of the filament of cross-
sectional area A. Thus, for this type of model, a geometric model is needed that uses (pA)
to define the density p and the cross-sectional area A, pursuant to (4) and/or (5). The
energy balance for the viscous rod model (8) with an incompressible geometry model and
generalized Kirchhoff constraint 73 = e then becomes:

Convective air cooling of a viscous rod

cpp(at(eAT) + Bs(ueAT)) =q, q=—enda(T —1T,). )

4.3 Filaments in Airflows

The targeted applications are characterized by interactions between filaments and airflows.
This holds for the spinning-and-cooling phase, as well as for the turbulent swirling phase.
The geometric reconstruction of the Cosserat rods in a 3D flow is one possible approach,
but it leads to resource-consuming interface problems. Therefore, we design simplified
models for the line force density k and the heat source g as functions of the relevant
filament quantities ¥ and the flow fields ¥,:

lI/ = (rsv9 Tvd)v lpa = (uas Ta» /Oaa Vas )‘*av Cp,av kav Ea)-

Simulations of the Navier—Stokes equations (NSE) yield the flow velocity u,, the tem-
perature T, (K), the density p, (kg/m3), the kinematic viscosity v, (m?/s), the thermal
conductivity A, (W/(mK)), and the specific heat capacity ¢, , (J/(kg K)) of the air. To the
extent that turbulence effects must be included, we use the Reynolds-averaged Navier—
Stokes equations (RANS) with the statistical k-e-turbulence model [52], since these still
represent the industrial standard in the complex machine geometry of the applications.
Here, &, (mzlsz) is the turbulent kinetic energy and ¢, (m2/s3) is the dissipation rate. To
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date, the alternative of a description based on large-eddy simulations (LES) has not been
pursued. Our concept allows for a one-sided consideration of the flow effect on the fil-
aments by using a filament-free flow as a basis, but also for the complete coupling of
filament and aerodynamics via additional source terms in the flow equations.

While the general framework of the Cosserat rod theory in Sect. 4.1 exhibits an ax-
iomatic character, the inclusion of specific material and geometry models in Sect. 4.2
already begins to bring phenomenological elements into consideration. For the outlined
inclusion of air effects, we draw upon a variegated mixture of experimental results, sim-
ulations, symmetry considerations, and asymptotic reflections. It is precisely this mixture
that permits the formulation of a complete, simulatable model and which is a characteristic
feature of industrial mathematics.

4.3.1 Drag Coefficients and Heat Transfer Coefficients

In order to describe the effect of air on the filaments, it is necessary to specify the associ-
ated external force k = k;,- and the heat transfer coefficient ¢ = «;, in the base equations.
Both models are based on the treatment of a cylindrical incident flow, which is locally
evaluated with the relevant fields for filament ¥ = ¥ (s, t) and flow ¥, = ¥, (r(s, 1), t).
Here, the normalized tangents of the filament and the relative velocity between flow and
filament are identified with the orientation and incident velocity in the idealized cylinder
configuration.

Models for aerodynamic force and heat transfer

T
Kuir (W, ¥y) = ef(z» u, —v,d, pg, Va)

Ao T u,—v (7/2)d PaVaCp,a
(W, W,) = L Nul = - , —v|,———). {0
Agir( ) /2)d ”(e ug — vl ” lug — vl e (10)

What follows is a discussion of the functional dependencies of the line force density
f and the Nusselt number Nu, the latter of which is the basis for the heat transfer model.
Whereas k,;, is referenced to the filament parameter, note that the line force density is
referenced to length—which implies the pre-factor e in (10).

Drag Coefficients We consider the line force density f exerted on a straight cylinder
with orientation t, |[t|| = 1, and diameter d by a homogeneous, steady-state airflow of
density p, and kinematic viscosity v,, and constant incident velocity in the distance field w
(Fig. 2). Assuming a functional relationship among these quantities, a dimensional analysis
necessarily results in the existence of a dimensionless function f*, which depends only on
t and the dimensionless velocity w* = d /v, w, such that

2
d
f(t,w,d, pa,va) = p”dv” f*(t, —W).

Va
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Fig.2 Cylinder incident flow
(Graphic: Steffen Griitzner,
Fraunhofer ITWM)

— Sy

For steady-state flow around the cylinder, the line force density f* is given by the normal
and tangential resistance coefficients r;,, and r;, which, for their part, depend solely on the
normal component of w* (Independence principle [68]. For a formal proof, see [19], for
example.)

fk(t, W*) = 1 (Wn)Wn + 1 (W)W,

we=(Wetht,  wo=w-w,  w,=w,l.

Along with the resistance coefficients, the drag coefficients r, /w, and r;/w, are dis-
cussed in the literature as alternatives. For the normal drag coefficient, that is, for a ver-
tical incident flow, there are several analytical results for creeping flows. See [76] for an
infinitely long cylinder and [36, 42, 71] for finitely elongated objects. For rapid flows as
well, [98, 104, 114] provide an overview of the numerous numerical and experimental
investigations. Our experimentally validated model [19] for the normal and tangential re-
sistance coefficients ry, r; € ‘51(]1%:{ ) comprises piecewise the asymptotic Oseen theory
[107, 108] with the auxiliary function S(w;,) = 2.00 — Inw,, an exponential spline ap-
proximation of our own numerical simulations, and the heuristic Taylor model [105] for
the parameter y =2 (see Fig. 3):
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The result of the Oseen theory (creeping flow) is restricted here to wy < w,,, since, in the
Oseen theory, both resistance coefficients disappear for w,, — 0. This well-known result
is traceable to the consideration of an infinitely long cylinder as an object in a flow. To
generate realistic results for finite objects, the domain w,, < wy is therefore used, so that for
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wy, — 0, one runs smoothly into a Stokes expansion rns = 4 In4/8) —m)/ In? (4/68) and
r,S = (27 In(4/8) + 7 /2)/In%(4/8), with the regularization parameter 8 < 3.5 - 1072, The
transition points of the model, which are adjusted to measurements and simulations, are
wo = 2(exp(2.00) — 47[/r,f), wy = 0.1, wy = 100. The €' -smoothness is guaranteed for
i=n,tbygio=rf. qi1=0.qi2=Bri(wo) —wor](wo) — 3r$)/wi. gis = (—2r; (wo) +
worl.’(wo) + er)/wg as well as p,0=1.69, p,1 =—-6.72- 1071, Pn2 =333 1072,
Pn3=3.50-1073 and p, o= 1.16, p;1 = —6.85- 1071, p;» =1.49- 1072, p, 3 =7.50-
10~*. Here, r,.’ is to be understood as the right-hand limit from the zone [wg, w1). The
model’s zone of application is limited to w,, < 3- 107, that is, to values below the so-called
drag crisis [97, 98]. Due to vortex shedding, steady flows are not realizable for the zone
wy, > 40. The model is to be understood here in the sense of time-averaged resistance
coefficients.

Heat Transfer Coefficient For the Nusselt number Nu, we use a heuristic based model

that was initially formulated in [109] for a vertical cylinder incident flow and then, on

the basis of experimental data, modified in [3] for an arbitrary incident flow direction.

In this model, the Nusselt number is a function of the cosine of the incident flow angle
€ [—1, 1], the Reynolds number Re, and the Prandtl number Pr. The value (7/2)d is

chosen as a typical length,

w (m/2)d

Vg C
A Re wll, Pr— M.
Iwll Va Aa

c=t

In an analogous manner to the drag coefficients, the appropriate regularization with the
associated parameter §; < 1 guarantees a smooth transition to the case of parallel incident
flow. The complete model becomes:

lam

Nu(e, Re, Pr) = (1 = 0.5K(e, Re)) (0.3 + /N, (Re, Pr) -+ NiZ,, (Re, Pr))

0.037Re%°Pr
Re%! 42.443(Pr?/3 — 1)

(1)

Nujgm(Re, Pr) = 0.664Re'/>Pr!/3, Ny (Re, Pr) =

h(c.Re) = { 1 —Re/Sp +cRe/Sp, : Re<ép
c : Re=>éy.
4.3.2 Turbulence Effects
Turbulent flows are characterized by a broad spectrum of variously sized vortices, whose
resolution with the help of direct numerical simulation (DNS) is limited to moderate
Reynolds numbers. Large-eddy simulations (LES) and statistical turbulence models re-
present alternatives. Whereas LES filters out turbulent structures below the grid resolution
and accounts for their effects by means of a grid-dependent correction of the viscosity,
the statistical models assume the Reynolds-averaged Navier Stokes equations, character-
ize the fluctuations by means of additional fields with associated transport equations, and
introduce heuristically a turbulent viscosity that is a function of these fields (Boussinesq
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approximation) [52]. The treatment that follows is based on the k-e-model with turbulent
kinetic energy k, and dissipation rate €,, which are introduced for model justification as
expectation values dependent on the velocity fluctuations u’:

kg = —E(u’z), €a = vaE(Vu': V'),

Turbulence effects enter into the model of heat transfer coefficients (11) via the tur-
bulent Nusselt number Nuy,;p, but must be discussed in more detail for the aerodynamic
forces. We pursue the strategy of reconstructing the turbulent flow fluctuations u’ as a
random field from the k-e-model, taking them into account in the proposed force model,
and, where necessary, transitioning to white noise. The starting point here is a complete
quantitative description of homogeneous, isotropic turbulence.

Homogeneous Isotropic Turbulence Homogeneous, isotropic, advection-driven turbu-
lent flow, pursuant to the k-e-model [77], is characterized by constant values of u,,
Va, kg, and €,. The velocity fluctuations u’ can therefore be described by the dimen-
sionless function u* = u'/ kal/ 2, with dimensionless position x* = €,/ kZ/ ’x and time
t* = €,/ kqt, which is then parametrically dependent only on the turbulence-strength-
scaled mean velocity v =u,/ ki/ % and the ratio of the small and large turbulent length

scales ¢ = ¢, va/kgz

€a € 1 eava) (12)

u'(x, 1) = kl/zu/*< X, —t; =5 Ug, —5—
¢ KPR ke M2 K2

We model the fluctuations as a centered, differentiable, stochastic Gaussian random field

[16, 19]. This is clearly defined by its correlations (covariance function), to which we apply
a product approach in space and time, taking the advection into account:

K(x*+y*, "+ 5y w0, 0) =y (x" —vr*; )o(r). (13)

Assuming isotropy and taking advantage of an incompressibility argument, the spatial
correlation across its Fourier-transform .%,, is defined by the energy spectrum E [55]:

1 E(Ikl: ©) 1
o . — —
IO = T e (I ||x||2"®'c)'

Thus, the modeling task is reduced to the specification of two scalar functions for the
energy spectrum E and the time correlation ¢.
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Our proposal for a differentiable energy spectrum E € ‘52(R8' ) is in agreement with
Kolmogorov’s 4/5-law [55] and the k-e-model:

-5/3

K 2_4 j(—)f DK<k
E(k;¢)=Cg k3 C k1 <k <ky
K25/32_7b (—) I ky<k

with Kolmogorov constant Cx = 1/2. For the dimensionless formulation selected here,
the significance of the turbulence parameters k and € is reflected in the integral terms

o0 o0 1
E(ic; o)die = 1, 2E(k; o)die = —,
/0 (1 £)dk /oK (ki )k = 5

which define the transition wave numbers 1 and «; as functions of the parameter . The
regularity requirement is satisfied by a4 = 230/9, as = —391/9, ag = 170/9, b7 =209/9,
bg = —352/9, and bg = 152/9. For the time correlation ¢ € € °°(R6r ), exponential decay
behavior is plausible (for the time scale 17 = 0.212, see [79, 91]):

o(t*) = exp(_tj).

22

Correlated Stochastic Aerodynamic Force in Turbulent Flows In turbulent flow, the
aerodynamic force is primarily defined by the mean flow velocity and the fluctuations.
As mentioned previously, we follow the approach of using the turbulence information to
reconstruct the fluctuations as a stochastic random field. We then superimpose the fluctu-
ations additively on the force model (10) of the main flow. The force itself thus becomes a
correlated random field and the associated Cosserat rod models become randomized PDEs:

Kk.ir (W, Y, )—ef< ua+u —-v,d, ,oa,va>. (14)

To reconstruct u/, for an arbitrary turbulent flow (inhomogeneous, anisotropic), we draw
on the homogeneous isotropic model (12) by localizing the non-dimensionalizing scales
and parameters [10]:

uw,(x.1) =k (pu ( “_(p)x. (p)r L @), € ())
4 Ep 1/2 2

p=(x.1)

It proves extremely advantageous for the numerical implementation that, in the applica-
tions, the turbulent length ratio { = €,v,/ kﬁ generally satisfies ¢ <« 1, so that the asymp-
totic limit ¢ — O is justified (see [10] for our algorithms, which are based on the ideas
and strategies concerning sampling found in [50, 74, 83]). However, for observation scales
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significantly larger than the correlation scales, the resolution of spatial and temporal turbu-
lence is just as inefficient as it is unnecessary; the asymptotic transition to an uncorrelated
aerodynamic force model (white noise limit) [16, 17] can be used instead.

Uncorrelated Stochastic Aerodynamic Force Starting from the assumption of a lin-
ear approximation, we decompose the aerodynamic force into deterministic and stochastic
elements. The deterministic force f, with its derivative oy f, is yielded by (10). The corre-
lated fluctuations ), are approximated asymptotically along the filament and, in time, by
a Gaussian white noise with turbulence-dependent amplitude A. Here, W characterizes a
vector-valued Wiener process in the filament parameter and in time. For the appropriate
Cosserat rod models, this leads to stochastic partial differential equations (SPDE) with the
following force terms in integral notation (Riemann and Ito integrals):

Kair (W, Wy)dsdr

=ef<£,ua —v,d, pg, va>dsdt
e
T T
+eawf(_vua - V’d3 Pa> Uﬁl) 'A<_9ua - Vvd’ Vaska35a> : dWS,l' (15)
e e

The amplitude A represents the cumulative effects of the localized velocity fluctuations
and is calculated, after the associated non-dimensionalization, by integrating across the
homogeneous, isotropic correlation tensor (13):

At ko €4) k't A* <t Ly, Cava )
s W, Vg, s € = s 7AW, Y5
asRas €a €a kzl/z kg

A*z(t, w*. ¢) :/ y(st—rw*; ¢)p(t)dsdr.
R2

Analogously to the cylinder incident flow (Fig. 2), we decompose A* with respect to the
orthonormal basis {n, b, t}. Thus, the calculation reduces finally to two integrals across the
energy spectrum and the Fourier transforms of the time correlation function (a,% —}—ag = atz),
which are numerically evaluated (Fig. 4):

A*(t, W', 0) = ap(wy, DN @ N+ ap(wn, Hb b +ar(w,, L

© E(K;¢)
K

/2
an Wy, 0) =4n/0 /o {sin® B, cos® B, 1}.7, (wyk cos B)dBdk.

As in the correlated case, the simplification ¢ = 0 normally makes sense here as well, so
that the model is completely represented by two functions. Associated data can be filed in
a look-up table.
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g n

Fig. 4 Amplitude of the uncorrelated aerodynamic force

4.3.3 Coupled Filament and Flow Dynamics

In continuum mechanics, the coupling of multiple phases, such as structure and flow, is
accomplished by means of interface conditions, which ensure the conservation of momen-
tum and energy [65]. In view of the necessary numerical resolution, it makes sense in the
asymptotic context of the Cosserat rod model to represent the interaction with an action-
reaction principle via source terms in the conservation equations of the filaments and the
airflow. Here, the force and heat sources described in the Cosserat rod theory can be en-
listed and incorporated in the flow equations. However, the source terms of the Cosserat
rod theory are line-based, whereas the flow equations expect volume sources. A distribu-
tional approach of the form

krod(lpv wﬂ)(xv t) = /Sb 8(X - r(S, t))kair(wa lIla)ds

on the basis of the deterministic force model (10) suggests itself for the treatment of sin-
gle filaments—and, analogously, for the heat sources g4 (¥, ¥,) [3]. However, the models
presented here lead to non-removable singularities, since the flow data is directly evaluated
locally on the filaments. Making modifications via suitable averaging strategies represents
one remedy; here, however, we follow another path: the inclusion of feedback effects is
unavoidable, particularly for high filament densities. For this reason, we turn to a homog-
enization strategy in which a continuous filament length density o (1/m?) is defined for
the volume occupied by filaments. This is to be scaled with e in the source terms, since
ki was introduced as the line force density in relation to the parameterization. Thus, we
arrive at

1
Kyoa (W, ¥,) = _;Ukair(wy ). (16)
And once again, we have the analogous form for the heat sources. The dynamics of the fila-

ment length density o result directly from the dynamics of representative single filaments,
which, for the purposes of numerical resolution, are to be arranged with sufficient density.
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Both modeling approaches lead to a fully coupled, dynamic system of all state variables
¥ and ¥, (see Sect. 5.3 for an algorithmic solution proposal; a turbulent extension of this
treatment has not yet been developed).

Remark 4 The classical approach of continuum mechanics to fluid-structure interactions
(FSI) with spatially resolved phases for fluid and structure causes significant discretization
problems for the flow, due to the time-changing computation domain. There are indeed
some methods for treating this problem: for example, fictitious domain [58], immersed
boundary [89], and mesh-free methods, such as SPH [86] and FPM [21, 106] (see Sect. 3
also). All of these methods, however, reach their limits for high particle or filament loads,
since the structures must be resolved. For particles, kinetic model approaches [35, 57] that
lead to coupled Navier—Stokes/Fokker—Planck systems have proven effective. Here, the
feedback is accomplished via an extra stress tensor in the momentum balance of the flow.
For filaments, however, these methods are limited to short objects that allow for a local
description of the orientation.

4.4 Stochastic Surrogate Models for the Deposition of Fleeces

In a typical fleece production process, swirled filaments are deposited on a conveyor belt.
Overlapping produces the stochastic microstructure typical of fleeces. The swirling and
deposition phases of the process can be described on the basis of elastic Kirchhoff rods
(7) in turbulent flow, which enters into the model either reconstructed or in the asymp-
totic limit as white noise. However, the full simulation of the Cosserat rod dynamics is
extremely complex and can therefore only be carried out at an acceptable level of effort
for individual filaments. In order to nonetheless represent the entire microstructure of a
fleece fabric through a simulation that incorporates the chosen production parameters, we
developed stochastic surrogate models that describe the deposition structure of a single
filament. These models are based on stochastic (ordinary) differential equations (SODE),
can be very efficiently simulated, and allow for the generation of the entire microstructure
by superimposing repeated runs. Moreover, the parameters of the surrogate models are
identified from the outlined full simulation of single representative filaments. It helps here
that, in typical production situations, many and sometimes all of the filaments run through
process conditions that are identical except for stochastic fluctuations caused primarily by
turbulence. We will discuss the 2D standard lay down model in detail here, and then offer
a brief overview of various model extensions.

4.4.1 Standard Lay down Model

We consider a deposited filament to be an arc-length parameterized curve on a flat con-
veyor belt, which we model as the stochastic process (), Ry € 2. Under real produc-
tion conditions, the filament curve 5 fluctuates around a deterministic, process-specific
reference curve y. For the simplest process, in which v filament length per time is gen-
erated and deposited on a conveyor belt with speed vper€1, it is Y3 = —vperr/vose;. In
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Fig. 5 Basic quantities and
notation of the deposition
models

practice, however, more complex reference curves are also found in processes, such as
those produced by rotating spinning positions or oscillating flows. We use € =9 — y to
refer to the y-related curve (withdrawn process) and o = Z(eq, 7) to denote the angle
between the production direction e; and the tangent T to the filament curve »; that is,
7(a) =cosae| + sinaey and 71 (o) = — sinwe; + cosae; (see Fig. 5).

SODE Model The model for the filament curve 5 is formulated in € and « as a stochastic
differential equation [5, 6]. Here, the arc-length s takes on the role of time in dynamic
systems.

Stochastic surrogate model for the deposition of the filament

dE, =1(as)ds —dy,,  day=—VB(E,) - T-(as)ds + AdW;. (17)

The typical process behavior of a filament is modeled by means of the potential B,
which depends solely on &. The fluctuations of the process are taken into consideration by
means of an additive noise with amplitude A (1/m'/?) to the scalar-valued Wiener process
(W), Ry In (17), (&, o) represents a degenerated diffusion process.
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Fig. 6 Effect of noise amplitude on the filament curve for a fixed process position; model with
C = A21. From left to right: AN = 0.001, 0.025, 1, 4. Spatial depiction in units A (Graphics: Si-
mone Gramsch, Fraunhofer ITWM)

Fokker-Planck Equation and Steady State The Fokker—Planck equation belonging
to the SODE model (17) describes the probability density p : E> x R x Rl — R,
(&,a,5) — p(&,w,s) in the state space of the stochastic process

2

A
dp+ (v(@ +d5¥) - Vep — 3 (VBE) - TH(@)p) = — doaP-

As can be easily shown, in the case of a fixed process position, i.e., for a constant y = p,

ps(§) = cexp(—B(§)) (18)

represents the steady-state, that is, the parameter s-independent solution to the Fokker—
Planck equation (equilibrium solution), with ¢ > 0 as the normalizing constant. Remark-
ably, this stationary solution is independent of the angle « and permits an immediate in-
terpretation of the potential B. As the standard approach in practice,

1
B(§) =& c ¢ (19)

with the positive definite tensor C has proved reliable. With this choice, the position vec-
tors & relative to spinning position y, are static and normally distributed, with expected
value zero and two-dimensional covariance matrix C, whose eigenvalues we designate
as )Ll?, i =1,2. The term ‘throwing range’ has therefore become established for the stan-
dard deviation A;. One must keep in mind, however, that this interpretation is only strictly
valid for a conveyor belt at rest; it is approximately valid for a weakly varying refer-
ence curve y, that is, in the simplest case, for vp;;/vo < 1, since for arbitrary reference
curves (18), there is no steady-state solution for the Fokker—Planck equation. To observe
the interactions of the various parameters, see Fig. 6.

Parameter Identification The parameters appearing in the surrogate model, that is, the
reference curve y, the potential B, and the noise amplitude A, are identified using de-
position images from Cosserat rod calculations of representative filament dynamics [11].
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Fig. 7 Comparison of filament curves from Cosserat rod simulation (/eft) and surrogate model with
identified parameters (right) (Graphics: Simone Gramsch, Fraunhofer ITWM)

There are established approaches for estimating parameters in stochastic differential equa-
tions [75]. We choose a simple but very robust procedure. We also consider the approxi-
mation of an arc-length parameterized deposition curve by means of N equally distributed
(by As) supporting points (9;);=1,...n, Which are acquired from a full simulation of a
suitable Cosserat rod model. In the first step of our parameter identification, one selects
a suitable reference curve y, based on the existing data set and further information about
the process (spin speed, conveyor belt speed, and any oscillation and rotation frequen-
cies). Using subtraction by y and numerical differentiation, one can determine the data set
D;oq = (§;, @j)i=1,... v used for identification. Moreover, a suitable parametrical approach
is made for the potential B. Here, the quadratic forms from (19) with the tensor C perform
nicely. The valuation should always be checked at the end of the procedure, however. What
remains is to identify the parameters P = (C, A) to which we assign the data Dy, (P), to-
ward the end of executing the surrogate process with fixed random numbers. We formulate
the identification task as a minimization problem with the choice of a suitable function .%
across the data set:

P = argming | .7 (Dyuro (P)) — -F Dyoa) |- (20)

As the function, we choose

T _ Zl_1 (ke — )?
J(D)—( Z’fz@’&l’max\/ kKAs(N—k) )

i=1

This function has a tremendous advantage: in the case of a fixed deposition position,
for N — oo, it delivers the parameters directly, since .% (D, (P)) = P and, thus,
P=7 (Dyoq). In the case of a non-trivial reference curve, we apply a quasi Newton method
to solve the minimization problem using the approximated Jacobi matrix I from the triv-
ial case and the estimated initial solution .% (D,,4). Figure 7 shows the results of such a
parameter identification.

4.4.2 Model Extensions, Ergodicity, and Asymptotic Limits

At the Fraunhofer ITWM, the standard model for filament deposition (17) was developed
as an alternative for the very time-consuming Cosserat rod simulations—that is, for highly
pragmatic reasons. The model stands out by virtue of its significant potential for general-
ization (smooth filament curves, 3D microstructures) and, as a result of the degenerated
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diffusion, raises interesting analytical questions concerning long-term behavior (existence
and ergodicity). For this reason, it is of great interest to both modelers and analysts. Im-
portant papers have been produced, some independently [46, 60, 62, 66, 73], and some
in cooperation with the authors [5, 6, 11-13] from L.L. Bonilla (Madrid), J. Dolbeault
(Paris), T. Gotz (Koblenz), M. Herty (Aachen), M. Kolb (Warwick), S. Martin (London),
S. Motsch (Toulouse), C. Mouhot (Cambridge), M. Savov (Oxford), C. Schmeiser (Vi-
enna), A. Wiibker (Osnabriick), as well as from M. Grothaus, A. Klar, J. Maringer, and
P. Stilgenbauer (all from Kaiserslautern).

The filament curve of the standard model is continuous but non-differentiable. Replac-
ing the Brownian motion with an Ornstein—Uhlenbeck process results in a more realistic
smooth model for the curve, angle, and curvature variables. Moreover, extensions to 3D
models for the direct generation of the fleece microstructure are of particular interest.
The most elegant point of entry into this class of models is the formulation of geometric
Langevin systems on sub-manifolds in the Stratonovich calculus [62]. As a two dimen-
sional special case, these lead to the standard model (17). Here as well, smooth models can
be designed analogously. The introduction of an anisotropy parameter takes into account
the fact that filament tangents tend to lie parallel to the conveyor belt. The correspond-
ing 3D model leads in borderline cases to a perfectly isotropic model or to the 2D model
[12, 13]. For an industrial application and comparison with computer tomography data,
see [8].

The aspect of degenerated diffusion increases the challenge of mathematically analyz-
ing this class of models and calls for systematic new developments and extensions. The
ergodicity of the 2D model was initially investigated with Dirichlet forms and semi-group
operator techniques and delivered the first estimates of the convergence rate for a fixed
deposition position [60]. Using hypocoercivity strategies [46, 61] that extend the work of
[44, 47], along with probability methods [73], it was possible to deliver satisfactory results
(including existence results) for the simplest straight reference curve. For the complete
model class, the asymptotic relationships (3D/2D, anisotropic/isotropic, smooth/standard)
have been clarified and the borderline cases of low noise (stochastic averaging tech-
niques [6]) and high noise (analogous to the Chapman—Enskog expansion [5, 38, 39])
have been investigated.

5 Simulation Tools

At the Fraunhofer ITWM, various tools have been developed to numerically simulate the
models presented here for filament dynamics and fleece deposition. These are used for
contract research, continuously extended as elements of projects in applied basic research,
and also licensed to customers. The FIDYST Suite provides software with a high level of
compatibility. It includes the software tool FIDYST (Fiber Dynamics Simulation Tool), for
simulating elastic Kirchhoff rods in turbulent flows, and the software tool SURRO (Surro-
gate Models), which is coupled to FIDYST via modules for parameter identification and
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used to virtually generate complete fleece microstructures. Moreover, VISFID (Viscous
Fiber Dynamics) is a MATLAB-FLUENT toolbox that can be used to treat steady-state,
aerodynamically-driven spinning processes with full coupling of filament and flow dynam-
ics. For details about the commercial software products MATLAB and FLUENT, please
refer to the supplier web pages www.mathworks.com and www.ansys.com, respectively.

5.1 FIDYST—Elastic Filaments in Turbulent Flows

FIDYST, the core building-block of the FIDYST Suite, is a C++ based simulator for the
dynamics of Cosserat rods, with inertia-free geometry model, Kirchhoff constraint, and
Bernoulli-Euler’s moment-curvature relation as material law. This software tool covers
a large class of possible applications for filament dynamics. With its link to SURRO
(Sect. 5.2), however, it is aimed strongly towards the swirling and deposition phases in
fleece production processes and has proven itself in numerous industrial applications.

FIDYST is based on the generalized string formulation (7), with M = 0, since a stress-
free and moment-free filament end is always assumed in s, = 0. Along with the elimina-
tion of the torsion term, this results in the following definition of the boundary conditions
for this filament end: dgr =0, 9;((E1)dssr) =0, N = 0. In analyzing it as a first order
system with the constraint ||dsr|| = 1, this corresponds to the definition of five of the ten
total available degrees of freedom. The user has a great deal of flexibility in assigning the
remaining five degrees of freedom for the boundary conditions on the other end of the
filament (inlet). A freely definable function s, () < O can be used with r(s, (), ) = ro(t)
and 0sr(s,(7),1) = To(t) to specify time-dependent inflow speed (vg = |0;54|), position,
and direction. The filament diameter and, thus, the bending stiffness and line density, can
by varied at the inlet. Along with gravitation, deterministic aerodynamic forces (10) are
taken into account as external forces. Turbulence can be included as either an uncorrelated
(15) or a correlated stochastic force (14) by the user. Moreover, geometry contacts and
the deposition on a conveyor belt are accounted for by means of contact and friction algo-
rithms. FIDYST can process flow data of various types, as well as geometry information in
the EnSight format, and therefore works ideally in combination with FLUENT as a CFD
tool. In both cases (flow and geometry), interpolations are made between discrete time
points for transient information, so that, for example, the above-mentioned contact algo-
rithm also works with movable machine parts. In practical application, for example when
impact elements are used for filament diversion and distribution, this plays an important
role.

FIDYST has a user-friendly GUI for initiating simulations, as well as for the accom-
panying visual simulation guidance and control (Fig. 8). One hallmark is the 3D viewer
integrated into the GUI, which has diverse depiction options for geometry, flow data, and
filament curves. All model and algorithmic parameters are accessible using the GUI. The
software tool uses the EnSight format for the output as well, which allows deposition im-
ages to be fed into SURRO for further processing or simulation results to be transmitted
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to powerful post processors, such as ParaView (see www.paraview.org). To round off this
overview, we will discuss the fundamentals of the discretization and the algorithmic basis
of the contact model.

Discretization We formulate (7) for M = 0 as a first order system in the variables r, v,
and N and use a semi-discretization based on finite volumes in the arc-length parameter
si=(@{—1As,i =1,..., K, with constant grid size As. We characterize integral averages
between s; — As/2 and s; + As /2 with an index i and function values at the point s; — As/2
with an index i — 1/2, and obtain the following fori =3,..., K —2:

T =V;, (pA)3,v; =flux; 1o — flux; 12 +Kk;, 19srlli—1/2 =1
flux; 12 =Niy120050)iv12 — (3s((E1)3ssl'),~+1/2, i=2,...,K-2.

The resulting first and third derivatives of r are approximated by first order finite differ-
ences. Here, we see the merits of the staggered grid, in which r and v are assigned to the
nodes, but N, and consequently also the constraint, are assigned to the edges. Due to the
constraint, the rod in the discretization thus becomes a polygon line with a fixed geomet-
rical spacing for the spatial points associated with the nodes (filament points). The num-
ber of nodes K (¢) is defined indirectly by means of the requirements s, (¢) € [s2, s3) and
sp = sk — (3/2)As. The boundary conditions can be approximated using the ghost points
51,82, 8K -1, Sk . We approximate the external forces by k; >~ (k;_1,2 +K;41,2)/2. For the
aerodynamic forces, this has the advantage that the resulting tangents are, once again, only
needed on the edges; the filament velocities, however, must be averaged across the neigh-
boring nodes. The necessary flow data is interpolated at the associated positions. The case
of an uncorrelated stochastic aerodynamic force is also handled accordingly, and what re-
mains after integration in s is a Wiener process in ¢. All in all, the semi-discretization thus
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leads to a DAE or a stochastic DAE system, which we discretize temporally with an im-
plicit Euler or Euler—Maruyama method. Although the aerodynamic forces in the core (in
the filament tangent and velocity) are also implicitly included, the flow data that appears
in them is queried with the filament positions of the old time step, so that we can solve the
resulting large nonlinear equation system using a Newton method with analytical Jacobi
matrix and Armijo step-size control. The resulting linear systems are treated with a band
solver. The method is so well optimized with regard to assembling the Jacobian that the
main effort per time step is due to the equation solver itself.

Geometry Contacts FIDYST treats the geometry contacts of the filaments as non-
holonomic constraints. Based on the assumption that the existing geometry has been
largely triangulated, a smooth, generalized, signed distance function H(-, 1) € €2 is gen-
erated, so that H > O represents an approximation of the admissible space for filament
motion. Where needed, extrapolation is used to ensure that complete flow data are also
available for this space. To establish the contact, a further Lagrange parameter A is intro-
duced into the momentum balance:

VH
IVHI

(pA)dyr="---+A A=0AH>0VA>0AH=0).

In the semi-discretized variant, a Lagrange parameter A; and a Boolean variable §; € {0, 1}
are assigned algorithmically to each node (filament point) and used to characterize the
movement type as either non-contacting (free) (6; = 0) or contacting (§; = 1). For the
time-step " to t"*1, the equations of motion are now solved in dependence on §;:

VH
(PAYByT; =+ Sidy o

{)\,‘20 6, =0
an
IVH]

H=0 : 5i=1.

Note here that the Lagrange parameters A; are distributions. For a finite Euler step, how-
ever, this creates no problems. If, at the end of the time step, the condition H (r;, t”‘H) >0
for free points (§; = 0) or A; > 0 for contacting points (§; = 1) is violated, the Boolean
variable is switched to the other value and the entire time-step is repeated for all points.
This procedure is iterated until all points move consistently, that is, until it is no longer
necessary to switch the Boolean variables. For purposes of modeling the deposition, this
contact model is combined in FIDYST with a Coulomb friction model (kinetic and dy-
namic), in which the Lagrange parameters A; act as normal forces according to their phys-
ical significance.

5.2 SURRO—Virtual Fleece Production

In the FIDYST Suite, SURRO is the congenial partner of FIDYST for simulating virtual
fleece production and, thus, for analyzing fleece deposition processes. As a C++ tool,
SURRO simulates the surrogate model introduced in (17) for the deposition process and
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makes possible the virtual representation of large production facilities having thousands
of filament spinning positions. By means of an intuitive GUI, the user defines the spinning
positions and assigns to them the parameters of the surrogate model (Fig. 9). In carrying
out this assignment, all spinning positions, groups of spinning positions (rows, blocks,
etc.), or even single specific positions can be easily selected. If desired, the reference curve
can be specified as an analytical function.

To assign the remaining parameters in SURRO, one implements the previously de-
scribed identification procedure (20), which is fed with filament deposition images from
FIDYST. In practical applications, many or all of the spinning positions can often be
viewed as having equivalent flow and filament dynamics. In these cases, only one rep-
resentative FIDYST simulation must be executed for each class of equivalent positions.
Even such single simulations can be very time-consuming, however. Once the parameters
have been identified, SURRO can use them as a basis for simulating even large fleece pro-
duction processes in a few seconds. SURRO provides a series of post-processing function-
alities for analyzing quality characteristics. For example, fluctuations in weight-per-area
can be visualized and quantitatively evaluated using freely selectable scales. Practitioners
are frequently interested in the integrated width and length distributions. The same holds
true for other quality criteria of the virtual fleece, such as strip appraisal.

The structure depicted in SURRO is initially two-dimensional. However, one can use
the arc-length parameter to decide on the crossing arrangement at points where one fil-
ament intersects either with itself or another filament. Using this information, SURRO
forms the filaments into a 3D microstructure, taking their bending stiffness into consid-
eration. This microstructure can be exported in EnSight format. Using the instruments of
microstructure analysis, its flow or strength characteristics can then be further investigated
and evaluated by means of other tools. Due to the short computation times, numerous
stochastic realizations (samples) of the microstructure can be generated for Monte Carlo
simulations without all too much effort.

The interplay of the two FIDYST Suite partners makes it possible to calculate the influ-
ence of production parameters on the primary quality features (e.g., distribution of weight-
per-area) of the virtual fleece and to generate the associated microstructures for purposes
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Fig. 10 SURRO post-processing: analysis of weight-per-area distribution and generation of a 3D
microstructure (Graphics: Simone Gramsch, Fraunhofer ITWM)

of appraising secondary quality features (flow and strength characteristics) (Fig. 10). This
has been impossible up to now, and microstructure simulations, for example, have always
had to rely on measured structures or on those generated without a direct link to the pro-
duction process. This gap has been closed by the FIDYST Suite, so that the design and
improvement of production facilities can now be oriented on material characteristics and
quality.

53 VISFID—Coupled Fluid-Filament Simulations

VISFID, in contrast to FIDYST and SURRO, is not a finished software tool, but a
MATLAB-FLUENT toolbox containing a number of core building-blocks that can be
combined, modified, and/or extended, depending upon the application context. VISFID
focuses on the simulation of spinning processes involving high filament densities. The
toolbox treats these as steady-state processes and, pursuant to the homogenization strate-
gies presented in Sect. 4.3.3, accomplishes full coupling with the surrounding airflow. The
steady-state restriction for the filament continuum, and thus for its representatives, leads to
boundary value problems for all the Cosserat rod models considered (see Sect. 7.2.1 for an
application example). These problems can be solved robustly by means of a continuation-
collocation method realized in MATLAB (see details in [1]). For the spinning processes
we consider, the viscous rods from (8) in the Eulerian description (e = 1), along with the
models for aerodynamic forces and heat exchange (10), represent the bases of the model.
Elastic or viscoelastic filaments can also be treated in a corresponding fashion, however.
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Continuation-Collocation Method Runge—Kutta-based collocation methods [64] rep-
resent the state of the art for numerically solving boundary value problems of the form

d

Y=f®.  e(O.ym)=0.

One such method of fourth order is realized in the MATLAB solver bvp4c. Here, for
the collocation points 0 = sg < 51 < --- < sy = 1, with h; =s; — 5;_1 and y; = y(s;),

a nonlinear system with N + 1 equations for (y;);=o,... ny is assembled:

g(yo,yn) =0

hiyq
Yiel — Vi — %(f(yi) + 4£(yi11/2) +£(ig1) =0

hit1
8

withy; 12 = %(Yi+1 +yi) — (Fyiv1) — £(yi))-

This is solved using a simplified Newton method, so that the usability and convergence of
the method depend crucially and sensitively on the initial Newton method estimator. For
use with the desired coupling in MATLAB-FLUENT, we need a robust and completely
automated method. This can be achieved using a continuation approach (homotopy). Here,
we consider a generalization of the boundary value problem

%y =cf(y)+ (1 —ofo@y),  gy©0,yD)+ 1 —c)go(y©),y(1) =0

with the continuation parameter ¢ € [0, 1]. The new functions fy and g in the system and
boundary conditions are selected so that a solution can be defined for ¢ = 0—whenever
possible, analytically. Through the choice of a suitable step width Ac, the parameter ¢
is then displaced from its starting value ¢ = 0 to ¢ = 1, by using the solution of each
previous step as the estimator for each new step. In this manner, for ¢ = 1, the original
system is ultimately solved. In variations of this method, multiple continuation parameters
are used to first remove and then smoothly reinsert specific terms of the ODE system. The
art of performing a robust continuation lies in choosing and controlling the step width
and, with multiple continuation parameters, in navigating through the sometimes highly-
dimensional parameter space. The step width control we have developed calculates two
half-steps Ac/2 for each full step Ac and compares the solutions using criteria such as
computation time and the number of collocation points needed. The call-ups of bvp4c
executed here are cloaked in a try-catch routine and are crash-proof. The step width is
adjusted according to the result. To navigate in higher-dimensional parameter spaces, we
use a recursively programed reverse tree search on a grid across the parameter space. This
method can be used to reliably and quickly solve even complex examples, such as the
coiling problem of viscous rods described in [93].
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Algorithm 1 Iterative coupling of flow and filaments

1: Compute llfa((» = .%,i»(+), unloaded, i.e., without filaments

2: Setk=0

3: repeat

4:  Compute g® = ymd(llfa(k)) with line sources (Kg;, qair)(lll(k), llfa(k))

5 Average the filament data in the cells of the flow domain

6 Compute filament length in each cell of the flow domain

7:  Compute llla(k+1) = Yair(lll(k)) with volume sources (Koq, qmd)(lll(k), lI/a(kH))
8 Increment k

9: until [|[¥® — g&=D ) < 4o/

Coupling Algorithm The core idea of the iterative coupling algorithm (Algorithm 1)
is as follows: instead of explicitly coupling, that is, simply updating the source terms
step by step in the iteration between flow and filament dynamics—which raises stabil-
ity concerns—we proceed implicitly, that is, we take into account the current flow and/or
filament fields for the flow and/or filament calculation in the source terms. We accomplish
this in FLUENT by means of appropriate user-defined functions (UDF). The coupling al-
gorithm for the filament fields ¥ and flow fields ¥, can then be outlined in the following
way. The coupling algorithm is run with FLUENT as master tool. In preprocessing, we first
mesh the flow domain and make this information accessible to MATLAB and FLUENT.
After each flow simulation .#;., FLUENT starts the MATLAB main program, which in
turn starts a MATLAB executable for each filament, in order to parallelize the filament
simulation .%,4. The MATLAB main program gathers the information from these com-
putations and averages them on the grid of the flow domain. At this point, the filament
length density from (16) is also computed. Here, for a rod parameterized using equidistant
arc-lengths, one simply counts the filament points in each cell. As previously mentioned,
FLUENT uses this data in the new flow simulation by means of a UDF for the source
terms.

6 Production of Fleeces—The Spunbond Process

For some fifty years, fleeces have been an uninterrupted success story, one driven forward
primarily by high-efficiency production processes. In contrast to textiles and similar, well-
structured fabrics, fleeces are characterized by a non-ordered and tangled structure that is
the result of the production process itself. The related term ‘non-woven fabric,” sometimes
used to describe fleeces, also makes this clear. In typical fleece processes, the melting of a
polymer, the simultaneous filament formation from thousands of capillaries, the swirling
in a turbulent open air jet, the deposition of these filaments on a conveyor belt, and their
strengthening by means of thermal or mechanical measures are all combined into a sin-
gle process (Fig. 11). Two significant process classes fall under the rubrics ‘spunbond’
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Fig. 11 Spun-fleece process
installation with three spinning
beams: spunbond—melt-
blown—spunbond (Photo:
Oerlikon Neumag)

and ‘meltblown’ [84, 90, 115], and both have been investigated in detail at the Fraunhofer
ITWM. The meltblown process is characterized by an assault of transonic airflows directly
at the capillary exit and, thus, by a direct connection between spinning and turbulent depo-
sition. In the spunbond process, however, these process steps are spatially separated, and
the propulsion is effected via a rapid airflow, with an interposed cooling zone character-
ized by low air velocities. After the filaments exit this airflow at the so-called slot, they are
swirled in a turbulent open air jet and deposited on a conveyor belt. Spunbond generates
filament diameters on the order of 10 um, whereas meltblown filament diameters range
from 1 um downward. In some applications, both processes are combined in one line, so
that the inner layer of the fleece contains the finer fibers and the outer layer, the somewhat
coarser.

In the following discussion, we will take a closer look at the spunbond process of our
industrial partner Oerlikon Neumag. This spunbond process is based on the ASON tech-
nology, which Neumag acquired a decade ago and whose further development since then
has proceeded through several evolutionary stages. This development has been accompa-
nied by the Fraunhofer ITWM in its entirety. In the beginning, our model-supported and
simulation-supported perspective served primarily to deepen our insight into the processes
involved and to establish simulation as an instrument in the process engineering toolkit.
Subsequently, however, the focus shifted to supporting process development and installa-
tion design. Along this path, simulation studies were used to help develop and optimize
two substantial evolutionary steps of the Neumag spunbond installation in the swirling and
deposition zone. Below, we offer a detailed description of the process and its quality crite-
ria, outline the simulation approaches used, and, finally, take a look at the simulation-based
development of the process machinery.
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6.1 Process Description and Quality Criteria

Along with the previously mentioned characteristics typical of spunbond processes, one
distinguishing feature of the Neumag variant is a hydraulic platform that allows one to ad-
just the distance between capillaries and slot and between slot and deposition belt (Fig. 12).
In its cross-section, the slot consists of a narrow conduit into which the filaments are in-
troduced from above and discharged from below. In the spinning element above the slot,
the filaments that are forming have already cooled significantly and thinned to nearly their
final diameter. In the slot entrance, compressed air is actively blown in via two lateral feed
channels, which establishes an airflow directed from top to bottom. This airflow creates
a traction force along the length of the filaments, which results in their elongation in the
spinning-cooling zone located above. At the slot exit, a smooth open air jet forms, which
continuously weakens as it moves toward the deposition belt. The turbulent fluctuations
arising in the jet initiate stochastic movements in the filaments, which, in turn, cause the
filaments to decelerate, swirl, and lay down overlapping one other.

The quality of the resulting fleece is judged primarily by the homogeneity of its weight-
per-area and by its strength. The homogeneity of weight-per-area is quantified by means
of the C,-value, as the relative standard deviation of stamped pieces of a defined size.
The motion of the filament curtain exhibits fluctuations in the production direction that are
typical for the spunbond process. Such fluctuations are ultimately a significant cause of the
resulting cloud-like nature of the finished fleece. The strength of the fleece is determined
in tensile tests. Due to the conveyor belt motion and the structure of the airflow, there are
marked differences in strength between the machine direction (MD) and the cross direction
(CD); a strength ratio of greater than 1.5 (MD/CD) is not unusual.

Fig. 12 Schematic drawing of
Oerlikon Neumag’s spunbond
process (Graphic: Oerlikon
Neumag)
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From an economic perspective, fleece production is characterized by high raw mate-
rial costs and comparatively low processing costs. With regard to further processing and
application, the required material amounts are frequently determined by the strength that
must be achieved. A trivial, although costly, consequence is that greater strength can be
achieved by using more material. The goal of innovations in process design is to save on
materials while maintaining equally high quality.

6.2 Spunbond from a Simulation Perspective

In the spunbond process, the spinning-and-cooling phase is described using viscous rods
(8) in aerodynamic flows, along with corresponding models for temperature-dependent
viscosity. The swirling of the hardened filaments is based on elastic Kirchhoff rods (7) in
a flow whose turbulence enters into the models either reconstructed or in the asymptotic
limit, as white noise. For the deposition phase—and thus for the generation of the virtual
fleece structure—we use the stochastic surrogate model (17). With VISFID, FIDYST, and
SURRO (Sect. 5), we have software tools at our disposal for simulating all these aspects.
They allow us to continuously evaluate the influence of the process parameters on the
material characteristics. Here, representative single-filament dynamics from VISFID and
FIDYST are used to parameterize SURRO. In the final step of this simulation chain, the
generated microstructure can be analyzed in SURRO. With regard to the homogeneity of
weight-per-area, this is a simple post-processing step involving the virtually-determined
Cy,-value. With regard to strength, we have already made some early progress in recon-
structing tensile strength tests on the virtual microstructure. However, a more practicable
way was chosen on the basis of the extensive studies conducted for Oerlikon Neumag:
starting with the reasonable assumption that the strength is characterized significantly by
the degree of overlapping of the filaments, the size of the deposition area serves as a sub-
stitute criterion for strength. The deposition area is defined directly by the FIDYST sim-
ulation, by correcting the deposited filament curve 5 for the conveyor belt movement p.
In terms of the stochastic reduced model, the deposition corresponds exactly—for a fixed
deposition position—or approximately—for low belt velocities—to the steady-state distri-
bution of the withdrawn process & = 5 — y. In the FIDYST simulations, we observe the
distributions

ps(6) = cexp(~38-C ¢

(see also (18) and (19)), in which the main directions of C correspond approximately
to MD and CD. The roots of the eigenvalues (throwing ranges) describe the deposition
area. The MD to CD ratios in the measured strengths are qualitatively well-reflected in
the simulated MD to CD ratios of the throwing ranges. This, along with other validating
measurements, confirm that the deposition area (as substitute criterion) and the C,-value
are suitable optimization parameters.
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6.3 Improving Fleece Deposition in the Spunbond Process

Two significant evolutionary steps in the Neumag spunbond process were developed and
optimized using the simulation tools and methods described here for the deposition zone.
The primary driving force was the desired increase in strength, so as to ultimately achieve
the same functional characteristics using less material. For the first evolutionary step,
we carried out a comprehensive simulation study with diverse geometric variants (e.g.,
changes in physical dimensions, addition of components for routing air). On the basis of
airflow computations from FLUENT, simulations of representative individual filaments
were performed with FIDYST, which made possible a comparative evaluation of the de-
position areas. The expected C,-values for weight-per-area were determined using the
associated SURRO simulations.

The results of this study were assessed jointly by Oerlikon Neumag and the Fraunhofer
ITWM. Essentially, an increase in deposition height (distance from slot to conveyor belt)
leads to an increase in the deposition area, coupled with a deterioration in C,-values. In
the end, as the best compromise, we chose a variant that leads to a relatively large de-
position area, while still maintaining acceptable weight homogeneity. In this variant, the
self-forming open air jet is laterally restricted in the lower zone and quasi entrapped by two
driven rollers overlying the band. During the implementation of this principle (Fig. 13) on
a 7-meter and, thus, extremely wide installation, the rotating rollers sagged too much and
were ultimately replaced by appropriately-shaped, rigid sheet metal. Figure 14 shows the
FIDYST simulation of the implemented variant; Fig. 15 shows the accompanying SURRO
simulation and an analysis of the weight-per-area distribution. The new machinery de-
sign proved successful, thus confirming the choice of a simulation-based developmental
approach. Comparative measurements of the achieved improvements verified increases in
strength in both directions of about 10 % (MD) and 15 % (CD), with no increase in mate-
rial usage.

Because the simulation-supported development yielded such positive results, simula-
tion analyses were also conducted prior to a further developmental step in the spunbond
process. Although the improvement described above produced overall strength increases,
the MD to CD ratio remained essentially the same. Since, in general, this anisotropy is
not desired, but is an artifact of the production method, the lower CD strength becomes
the critical quality parameter; thus, an increase in the CD value at the expense of the MD

Fig. 13 Implementation options for the best compromise (small rollers) for improving fleece depo-
sition in the Oerlikon Neumag spunbond process (Graphics: Oerlikon Neumag)
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Fig. 14 FIDYST simulation of
the Neumag spunbond process:
filament dynamics and airflow
(Simulation: Simone Gramsch,
Fraunhofer ITWM)

value is desirable. In our further cooperative efforts, our wish to equalize the directions
and further improve homogeneity suggested trying a significantly altered flow routing,
one which, in contrast to the previous design, leads to a completely three-dimensional
flow pattern. This causes the axes of the deposition area to tilt, which significantly reduces
strength differences between the production and cross directions. To summarize the coop-
erative work conducted thus far and to comment on the simulation approach implemented
by the Fraunhofer ITWM, we cite Matthias Schemken, Vice-president and Head of Devel-
opment of Oerlikon Neumag (May 2013): “Simulations have contributed significantly to
the development . .. of the forming zone of our spunbond process.”

Fig. 15 SURRO simulation of the Neumag spunbond process: virtual fleece and accompanying
weight-per-area distribution (Simulation: Simone Gramsch, Fraunhofer ITWM)
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7 Production of Glass Wool—Rotational Spinning

Producing mineral fibers out of glass or stone involves melting and fraying processes that
are run at temperatures above 1000 °C. This cannot be accomplished by means of the
methods typically used with polymers. The technological solution for producing glass
wool consists of replacing high material pressures in a closed spinning head with high
centrifugal forces in an open spinning disc. The molten glass emerging from tens of thou-
sands of holes in the disc wall is then subsequently stretched to fibers in a hot gas stream
and, finally, collected on a conveyor belt (Fig. 16). A typical production set-up for manu-
facturing glass wool insulation consists of four to seven such serially arranged heads.

The following sections examine in detail the installation of our industrial partner Woltz.
As is perhaps already clear from the above introductory sentences, the vocabulary used to
describe the processed material is branch specific: here, one speaks of fibers, not filaments.
This has no impact on the models we use, however. As the industrial example selected here
for illustration clearly shows, the generic model and simulation toolkit covers many, but
by no means all, aspects of a real production process. After describing the process, we
therefore devote ourselves to the application-specific simulation model and demonstrate
its capabilities using a process management example.

Fig. 16 Glass wool
manufacturing machinery
(Photo: Woltz GmbH)
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Fig. 17 Principle behind the glass feed tube 4
rotational spinning of glass
wool (Graphic: Woltz GmbH) «

gas/air mixture

spinning disc

7.1 Description of Rotational Spinning Process

Rotational spinning is a well-established process for manufacturing glass wool and has
a significant share of the insulation material market. The process engineering principle
is sketched out in Fig. 17. The raw material, containing up to 70 % recycled glass, is
continuously liquefied over a large oven and discharged as a thread into the spinning disc.
The centrifugal forces cause it to initially distribute itself radially on the bottom, where
it migrates towards the outer perimeter and emerges through tens of thousands of holes
arranged in rows in the shell surface. The amount of material that flows through any single
capillary depends on the local temperature and viscosity; the thickness of the glass film
and the resulting effective force; and the length and diameter of the hole. Upon discharge
from the spinning disc, the fiber threads are guided through a hot gas stream and, further
outwards, through a cold air jet generated in a so-called veiling air ring. The entire process
is highly integrated and very sensitive, although an equilibrium is established within the
spinning disc when the glass feed rate remains constant. This depends in particular on the
glass volume and temperature, the rotation speed, the hot air volume and temperature, and
the cold air volume.

7.2 Process-Specific Simulation Model

The MATLAB-FLUENT toolbox VISFID introduced in Sect. 5.3 forms the simulation
core for representing the rotational spinning process. However, by itself, it only leads to
systemic insights into the real production process [3], not to a comprehensive represen-
tation. This is because neither the starting conditions for the jet simulation in the hot gas
stream nor the temperature boundary conditions on the spinning disc for the flow calcu-
lation can be adequately estimated. A simulator developed jointly by several groups at
the Fraunhofer ITWM therefore links Spinning in the hot gas stream on the basis of the
fiber flow simulation VISFID with Melting phase and disc mechanics, a COMSOL-based
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Fig. 18 Spinning disc with
selected rows of the fiber
curtain (Simulation: Johannes
Schnebele, Fraunhofer ITWM)

simulation of the thermo-mechanics of the spinning disc and glass reservoir. This, in turn,
requires a series of analytically-based surrogate models for the melt flow in the interior of
the drum [15]. For details into the commercial FEM software COMSOL, please refer to
the supplier website www.comsol.com.

7.2.1 Spinning in the Hot Gas Stream

The perforation array in the spinning disc consists of a moderate number of rows, each
with 770 equidistant holes on the perimeter. The molten glass, driven by centrifugal forces
through the holes and then bent by the hot gas stream, forms of a thick curtain of glass jets
(Fig. 18), which we treat as a continuum, pursuant to the homogenization strategy intro-
duced in Sect. 4.3.3. The design of the machinery therefore suggests a rotation-invariant
description of flow and fiber dynamics. For the fiber continuum, this means in particular
that the totality of information pertaining to one row can be analytically captured by means
of a single representative.

For the numerical treatment of the vertical direction, we choose as representatives one
real spinning position per row, since this provides us with an adequate resolution of the
continuum for the flow grid being used. Because we are interested in the stretching phase
of the fibers, we ignore the installation equipment, restrict our investigation to the area near
the nozzles, and examine fibers with given length L and stress-free ends in the Eulerian de-
scription. This approach yields a steady-state for the fiber and flow dynamics in a rotating
reference system with angular velocity §2 (1/s). Assuming viscous rods (8) with energy
balance (9), where e¢ = 1 in each case, and introducing the constant mass flow Q = pAu
(kg/s), the steady-state model equations [3] become

D-o;r=e3
0sD=—k xD
4 2
3SK=—L% i MP3/2 m
30 u o 307
p unj
o5 = — —
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with external forces (aerodynamic forces, gravitation, and inertial forces caused by rota-
tion) and rotation-induced torques

_ 1 1 _
k=—D-kKgjr + Qg;D -e14+20R2((D-e)) xe3+ Q.QZED- (e1 x (e1 x 1))

02 n3 0’0
=5 Pz2-(D-e1)— 7 —F’z (k xD-er)
127 pu T U
Q2 1
1m0 P2 (uk + 2D -eq) x (uk + 2D - eq).
TP

The boundary conditions take into account the spinning position by means of the height
H and radial distance from the axis R, as well as the exit speed U and exit temperature 6
at the spinning disc:

(0)=(H,R.0), D@O)=e®ei—e28@e3+e3®e
k(0)=0, w®)=U, TO)=6 nlL)=0, mL)=

The airflow modeling is based on the rotationally symmetric, steady-state Navier—Stokes
equations with source terms K4 and ¢,,4, which are projected from the three-dimensional
fiber dynamics (see [3]). The coupled complete system .%5,4—%ir of fiber and flow dy-
namics can be solved using the toolbox VISFID (Sect. 5.3), but it requires the nozzle
conditions ¥,y = (H, R, U, ) for the jets and the disc temperature and geometry in-
formation for the flow dynamics. This data is delivered by the simulation model .%;g for
Melting phase and disc mechanics, which is described next (see Fig. 21).

7.2.2 Melting Phase and Disc Mechanics

The thermo-mechanics of the disc and molten glass reservoir are at the core of the model
for Melting phase and disc mechanics. The model is based on linear elasticity theory for
large deformations and accounts for thermal expansion, convection, thermal conduction,
and thermal radiation. The numerical solution .#;s of the steady-state, rotationally sym-
metrical problem is produced by the software tool COMSOL (Fig. 19), for which boundary
conditions, flows, and heat sources are derived from four analytical surrogate models that
describe the molten glass distribution (Fig. 20): A—A viscous, uniaxial string model of the
glass cord supplying material in the drum interior delivers the disc temperature at the point
of contact; B—The ensuing thin film approximation describes the molten glass movement
toward the inner wall under the effect of centrifugal forces as creeping flow and delivers
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Fig. 19 COMSOL simulation: tenperature [ ° C]
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the thermal flux through the glass film into the disc; C—The free boundary value problem
of the reservoir is treated in a Stokes approximation and ultimately delivers an ordinary
differential equation for the thickness, as well as thickness-dependent analytical expres-
sions for the pressure and convective speed at the perforated wall. The thickness is used as
geometry information for the entire COMSOL model of the wall and the reservoir; D—
A pressure-driven pipe flow for the flow through the capillaries delivers the thermal flux
into the disc, along with the temperature and velocity boundary conditions of the fibers for
the simulation model Spinning in the hot gas stream. These models are described in more
detail in [15]. The COMSOL model requires the heat fluxes into the spinning disc from
the flow description of the simulation model Spinning in the hot gas stream (see Fig. 21).

7.2.3 Iterative Coupling

In order to numerically solve the complete problem arising from the two simulation
models Spinning in the hot gas stream and Melting phase and disc mechanics, we once
again use an iterative coupling strategy (Fig. 21). This can be viewed as an extension of
the VISFID coupling from Sect. 5.3, with ¥,y = ¥ and ¥,; = ¥,, and can be outlined
algorithmically as follows (also see Algorithm 2). Because both the thermo-mechanics

Fig. 20 Overview of the
analytical surrogate models for axis of rotation
molten flow distribution

C
-

thermal flux, glass

\

radiation

thermal flux, air
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aisk and the dependent fiber simulation .%,,4 require data from the flow equations, we
perform this calculation twice in each iteration step for reasons of stability. Note that the
thermo-mechanics ;g delivers an altered geometry that must be re-meshed for the flow
equations. Therefore, for clarity’s sake, we have assigned an independent role to this step

Y geom -

Fig. 21 Coupling structure of

the various routines Y ou
% ir jf/rud
q’m’r
lIlfl ux
'Efmp lllnazzl e

Lisk

Fnesh lPdﬂf Fnesh
fsﬂgenm

Algorithm 2 Coupling of the simulation models
1: Initialize the heat fluxes with a suitable estimation and compute all initial fields (un-
loaded flow; i.e., without fibers)
2: Setk=0
3: repeat
4:  Calculate

Flow: (-, wyH) = yair(lp(k) lpl(e];r)lp’ lp;il];)sh)

flux rod’
Melt and disc: (llfn((]f;l?, W,Eg];n;l), Wéffﬂ)) = disk(lpfgﬁj 1))
Mesh: llfrfl];:rh]) = Sgeom (foﬂ))
Flow: (lI/a(,-er), ) = yair(lpr(ok;’ "ptgfn;l)’ %(ZZED)

. Lo kD (k+1) (k+1) (k+1)
Fibers: 'J/rad - ‘sﬂmd(l]/air ’ 'Ijnazzle ’ 'J/mesh )
5:  Increment k
6: until ¢ —w* D) <101

rod rod
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Fig. 22 Convergence of the 107!
iterative procedure: relative

%2 _error of the fiber positions
on a logarithmic scale
(Simulation: Johannes
Schnebele, Fraunhofer ITWM)

relative error
)

iteration

The fiber positions’ relative .#-error is shown on a logarithmic scale in Fig. 22 to
demonstrate the convergence of the iterative procedure. In parameter studies, four to five
iterations generally suffice for a definitive simulation result; these can be carried out in a
parallelized fiber simulation with a few hours of computation time.

The necessity of a completely coupled consideration of all aspects is verified in an
especially impressive manner by the results of the fiber-loaded airflow. Figure 23 shows the
axial velocity, the rotational velocity (swirl), and the temperature across several iterations.
The influence of the fibers is made particularly clear by the presence of a relevant rotational
velocity (drag effect) and in the warming of the air (a concomitant of the cooling of the
fibers).

7.3 Simulation-Based Process Design and Management

The simulation framework introduced here allows for a comprehensive understanding of
rotational spinning and forms the foundation for simulation-based process design and man-
agement. Among the parameters taken into consideration are the furnace temperature,
glass throughput, cold air quantity, geometry of the cold air ring, and hole diameter of
the different rows. Various aspects of the process were investigated in cooperation with
our industrial partner Woltz.

One optimization goal that pervades almost all investigations is the production of fibers
whose diameters are as uniform as possible, or that have at least a controlled diameter
distribution. Here, one must remember that the hole rows are subjected to different pres-
sures by the glass reservoir and pass through different flow conditions and temperatures
during the spinning process. Figure 24 shows the temperature and velocity of the fibers
for all hole rows. As a consequence of the steady-state continuity equation, the simple
relationship d = D+/u/U applies for diameter d and speed u, where D and U denote the
quantities at the hole exits. Thus, the variations in speed from row to row can be dealt
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Fig. 23 From top to bottom: axial velocity (m/s), rotational velocity (m/s), and temperature (°C) of
the fiber-loaded airflow. From left to right: results of the iterative steps 0, 1, 5, and 10 (Simulation:
Johannes Schnebele, Fraunhofer ITWM)
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Fig. 24 Temperature and velocity along the fiber. The numbering represents the hole rows from top
to bottom (Simulation: Johannes Schnebele, Fraunhofer ITWM)

with by adapting the disc design with regard to the diameter D, in order to make the final
diameter distribution uniform. Due to the coupling described above, the consequences of
such measures are extremely complex, but can nonetheless be assessed quite well on the
basis of simulation. The Fraunhofer ITWM has used parameter studies to generate various
design proposals.

As an example of simulation-based process management, we offer our investigations
into the hot-glass-induced abrasion that leads to capillary expansion in the course of op-
eration. Figure 25 shows the hole throughput, final fiber diameter, maximal fiber speed,
and exit temperature for all rows, first for the starting conditions (new disc) and then
for capillaries with a 5 % expansion. The abrasion has the dramatic effect that the up-
per hole rows are no longer supplied with glass. Thus, unless the process parameters
are tracked and reset, the disc must be replaced. The machine adjustment procedure
developed at the Fraunhofer ITWM, with lowered glass melting temperature and disc
rotation speed, can completely compensate for this effect and lead to throughput and
fiber diameter distributions that are equivalent to the use of a new disc. This process
management step significantly extends the lifetime of the disc, thus greatly reducing
costs.

8 Summary and Outlook

In the last few years, the virtual production of filaments and fleeces has become a real-
ity at the Fraunhofer ITWM. The models, algorithms, and software tools developed here
allow us to depict highly complex production processes, so that simulation-based pro-
cess design and management is now possible. This brings a new quality to the associ-
ated machine engineering work and opens up a multitude of new possibilities. In sev-
eral specific modeling areas, the Fraunhofer ITWM has achieved a unique status. This
is especially true for treating filament dynamics in turbulent flows, modeling fleece de-
position with efficient stochastic surrogate models, and considering filament-flow cou-
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Fig. 25 Process management: new disc (red), with 5 % increase in hole diameter (green), and with
adjustment proposal for compensating abrasion (blue). From left to right, above: hole throughput
and minimum fiber diameter; below: maximum speed and temperature as a function of hole row
(Simulation: Johannes Schnebele, Fraunhofer ITWM)

pling in spinning processes with dense filament curtains. Despite such progress, this
field of work remains lively: including viscoelastic effects in filament dynamics, gen-
eralizing the turbulence impact on LES simulations, handling fiber-fiber contact, ex-
tending simulation-based microstructure generation, and dealing with the feedback ef-
fects of the filaments on flow in non-steady-state and chaotic situations are only a
few of the future problems and topics. As we approach these issues, we will allow
ourselves to be led, in accustomed fashion, by the practical problems of our indus-
trial partners. We look forward eagerly to the new challenges they will surely bring to
us.

Acknowledgement The simulation results presented in this chapter are based on the work of the
members of the Fraunhofer ITWM Transport Processes Department mentioned in Sect. 3. We are
particularly indebted to them. Important works of the authors have been supported by the German
Research Society (WE 2003/3-1, WE 2003/4-1, and MA 4526/2-1), as well as by the Federal Min-
istry for Education and Research (Consortium project ProFil, 0SM10WEA, 05SM10AMB, Consor-
tium project OPAL, 05SM13WEA, and 05SM13AMD).



Virtual Production of Filaments and Fleeces 157

References

Publications of the Authors

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Arne, W., Marheineke, N., Meister, A., Wegener, R.: Numerical analysis of Cosserat rod and
string models for viscous jets in rotational spinning processes. Math. Models Methods Appl.
Sci. 20(10), 1941-1965 (2010)

. Arne, W., Marheineke, N., Meister, A., Schiessl, S., Wegener, R.: Finite volume approach for

the instationary Cosserat rod model describing the spinning of viscous jets. J. Comp. Phys.
294, 20-37 (2015)

. Arne, W., Marheineke, N., Schnebele, J., Wegener, R.: Fluid-fiber-interactions in rotational

spinning process of glass wool manufacturing. J. Math. Ind. 1, 2 (2011)

. Arne, W., Marheineke, N., Wegener, R.: Asymptotic transition of Cosserat rod to string models

for curved viscous inertial jets. Math. Models Methods Appl. Sci. 21(10), 1987-2018 (2011)

. Bonilla, L.L., Gotz, T., Klar, A., Marheineke, N., Wegener, R.: Hydrodynamic limit for the

Fokker—Planck equation describing fiber lay-down models. SIAM J. Appl. Math. 68(3), 648—
665 (2007)

. Gotz, T., Klar, A., Marheineke, N., Wegener, R.: A stochastic model and associated Fokker—

Planck equation for the fiber lay-down process in nonwoven production processes. SIAM J.
Appl. Math. 67(6), 1704-1717 (2007)

. Gotz, T, Klar, A., Unterreiter, A., Wegener, R.: Numerical evidence for the non-existence of

solutions to the equations describing rotational fiber spinning. Math. Models Methods Appl.
Sci. 18(10), 1829-1844 (2008)

. Grothaus, M., Klar, A., Maringer, J., Stilgenbauer, P., Wegener, R.: Application of a three-

dimensional fiber lay-down model to non-woven production processes. J. Math. Ind. 4, 4
(2014)

. Hietel, D., Wegener, R.: Simulation of spinning and laydown processes. Tech. Text. 3, 145-148

(2005)

Hiibsch, F., Marheineke, N., Ritter, K., Wegener, R.: Random field sampling for a simplified
model of melt-blowing considering turbulent velocity fluctuations. J. Stat. Phys. 150(6), 1115—
1137 (2013)

Klar, A., Marheineke, N., Wegener, R.: Hierarchy of mathematical models for production pro-
cesses of technical textiles. Z. Angew. Math. Mech. 89, 941-961 (2009)

Klar, A., Maringer, J., Wegener, R.: A 3d model for fiber lay-down in nonwoven production
processes. Math. Models Methods Appl. Sci. 22(9), 1250020 (2012)

Klar, A., Maringer, J., Wegener, R.: A smooth 3d model for fiber lay-down in nonwoven pro-
duction processes. Kinet. Relat. Models 5(1), 57-112 (2012)

Lorenz, M., Marheineke, N., Wegener, R.: On simulations of spinning processes with a sta-
tionary one-dimensional upper convected Maxwell model. J. Math. Ind. 4, 2 (2014)
Marheineke, N., Liljo, J., Mohring, J., Schnebele, J., Wegener, R.: Multiphysics and multi-
methods problem of rotational glass fiber melt-spinning. Int. J. Numer. Anal. Model. B 3(3),
330-344 (2012)

Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: General modeling framework.
STIAM J. Appl. Math. 66(5), 1703-1726 (2006)

Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: Specific Taylor drag. SIAM
J. Appl. Math. 68(1), 1-23 (2007)

Marheineke, N., Wegener, R.: Asymptotic model for the dynamics of curved viscous fibers
with surface tension. J. Fluid Mech. 622, 345-369 (2009)

Marheineke, N., Wegener, R.: Modeling and application of a stochastic drag for fiber dynamics
in turbulent flows. Int. J. Multiph. Flow 37, 136-148 (2011)



158

R. Wegener et al.

20.

21.

Panda, S., Marheineke, N., Wegener, R.: Systematic derivation of an asymptotic model for the
dynamics of curved viscous fibers. Math. Methods Appl. Sci. 31, 1153-1173 (2008)

Tiwari, S., Antonov, S., Hietel, D., Kuhnert, J., Olawsky, F., Wegener, R.: A meshfree
method for simulations of interactions between fluids and flexible structures. In: Griebel, M.,
Schweitzer, M. A. (eds.) Meshfree Methods for Partial Differential Equations III. Lecture Notes
in Computational Science and Engineering, vol. 57, pp. 249-264. Springer, Berlin (2006)

Dissertations on This Topic at the Fraunhofer ITWM

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Arne, W.: Viskose Jets in rotatorischen Spinnprozessen. Ph.D. thesis, Universitit Kassel
(2012)

Cibis, T.M.: Homogenisierungsstrategien fiir Filament—Stromung—Wechselwirkungen. Ph.D.
thesis, FAU Erlangen-Niirnberg (2015)

Dhadwal, R.: Fibre spinning: Model analysis. Ph.D. thesis, Technische Universitit Kaiser-
slautern (2005)

Leithduser, C.: Controllability of shape-dependent operators and constrained shape optimiza-
tion for polymer distributors. Ph.D. thesis, Technische Universitit Kaiserslautern (2013)
Lorenz, M.: On a viscoelastic fibre model—Asymptotics and numerics. Ph.D. thesis, Technis-
che Universitit Kaiserslautern (2013)

Marheineke, N.: Turbulent fibers—On the motion of long, flexible fibers in turbulent flows.
Ph.D. thesis, Technische Universitit Kaiserslautern (2005)

Maringer, J.: Stochastic and deterministic models for fiber lay-down. Ph.D. thesis, Technische
Universitit Kaiserslautern (2013)

Panda, S.: The dynamics of viscous fibers. Ph.D. thesis, Technische Universitit Kaiserslautern
(2006)

Repke, S.: Adjoint-based optimization approaches for stationary free surface flows. Ph.D. the-
sis, Technische Universitit Kaiserslautern (2011)

Schroder, S.: Stochastic methods for fiber-droplet collisions in flow processes. Ph.D. thesis,
Technische Universitit Kaiserslautern (2013)

Further Literature

32.
33.

34.
35.
36.

37.

38.

Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (2006)

Audoly, B., Clauvelin, N., Brun, P.T., Bergou, M., Grinspun, E., Wardetzky, M.: A discrete
geometric approach for simulating the dynamics of thin viscous threads. J. Comp. Phys. 253,
18-49 (2013)

Audoly, B., Pomeau, Y.: Elasticity and Geometry. Oxford University Press, Oxford (2010)
Barrett, J.W., Knezevic, D.J., Siili, E.: Kinetic Models of Dilute Polymers: Analysis, Approxi-
mation and Computation. Necas Center for Mathematical Modeling, Prague (2009)
Batchelor, G.K.: Slender-body theory for particles of arbitrary cross-section in Stokes flow.
J. Fluid Mech. 44(3), 419-440 (1970)

Bechtel, S.E., Forest, M.G., Holm, D.D., Lin, K.J.: One-dimensional closure models for three-
dimensional incompressible viscoelastic free jets: von Karman flow geometry and elliptical
cross-section. J. Fluid Mech. 196, 241-262 (1988)

Bonilla, L.L., Klar, A., Martin, S.: Higher order averaging of linear Fokker—Planck equations
with periodic forcing. SIAM J. Appl. Math. 72(4), 1315-1342 (2012)



Virtual Production of Filaments and Fleeces 159

39

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

. Bonilla, L.L., Klar, A., Martin, S.: Higher order averaging of Fokker—Planck equations for
nonlinear fiber lay-down processes. SIAM J. Appl. Math. 74(2), 366-391 (2014)
Chiu-Webster, S., Lister, J.R.: The fall of a viscous thread onto a moving surface: a ‘fluid-
mechanical sewing machine’. J. Fluid Mech. 569, 89-111 (2006)

Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)

Cox, R.G.: The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid
Mech. 44(4), 791-810 (1970)

Decent, S.P., King, A.C., Simmons, M.J.H., Parau, E.I., Wallwork, I.M., Gurney, C.J., Uddin,
J.: The trajectory and stability of a spiralling liquid jet: Viscous theory. Appl. Math. Model.
33(12), 42834302 (2009)

Desvilettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous
entropy-dissipating systems: The linear Fokker—Planck equation. Commun. Pure Appl. Math.
54, 1-42 (2001)

Dewynne, J.N., Ockendon, J.R., Wilmott, P.: A systematic derivation of the leading-order equa-
tions for extensional flows in slender geometries. J. Fluid Mech. 244, 323-338 (1992)
Doulbeault, J., Klar, A., Mouhot, C., Schmeiser, C.: Exponential rate of convergence to equi-
librium for a model describing fiber lay-down processes. Appl. Math. Res. Express 2013, 165—
175 (2013)

Doulbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations con-
serving mass. arXiv:1005.1495 (2010)

Eggers, J.: Nonlinear dynamics and breakup of free-surface flow. Rev. Mod. Phys. 69, 865-929
(1997)

Eggers, J., Dupont, T.: Drop formation in a one-dimensional approximation of the Navier—
Stokes equation. J. Fluid Mech. 262, 205-221 (2001)

Elliott, F., Majda, A.J.: A new algorithm with plane waves and wavelets for random velocity
fields with many spatial scales. J. Comp. Phys. 117, 146-162 (1995)

Entov, V.M., Yarin, A.L.: The dynamics of thin liquid jets in air. J. Fluid Mech. 140, 91-111
(1984)

Ferziger, J.H., Peri¢, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer,
Berlin (2002)

Forest, M.G., Wang, Q.: Dynamics of slender viscoelastic free jets. SIAM J. Appl. Math. 54(4),
9961032 (1994)

Forest, M.G., Wang, Q., Bechtel, S.E.: 1d models for thin filaments of liquid crystalline poly-
mers: Coupling of orientation and flow in the stability of simple solutions. Physics D 99(4),
527-554 (2000)

Frisch, U.: Turbulence. The Legacy of A.N. Kolmogorov. Cambridge University Press, Cam-
bridge (1995)

Geyling, E.T., Homsey, G.M.: Extensional instabilities of the glass fiber drawing process. Glass
Technol. 21, 95-102 (1980)

Gidaspow, D.: Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descrip-
tions. Academic Press, San Diego (1994)

Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach
to the direct numerical simulation of incompressible viscous flow past moving rigid bodies:
Application to particulate flow. J. Comp. Phys. 169, 363-426 (2001)

Gospodinov, P., Roussinov, V.: Nonlinear instability during the isothermal drawing of optical
fibers. Int. J. Multiph. Flow 19, 1153-1158 (1993)

Grothaus, M., Klar, A.: Ergodicity and rate of convergence for a non-sectorial fiber lay-down
process. SIAM J. Math. Anal. 40(3), 968-983 (2008)


http://arxiv.org/abs/arXiv:1005.1495

160

R. Wegener et al.

61

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.
76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

. Grothaus, M., Klar, A., Maringer, J., Stilgenbauer, P.: Geometry, mixing properties and
hypocoercivity of a degenerate diffusion arising in technical textile industry. arXiv:1203.4502
(2012)

Grothaus, M., Stilgenbauer, P.: Geometric Langevin equations on submanifolds and applica-
tions to the stochastic melt-spinning process of nonwovens and biology. Stoch. Dyn. 13(4),
1350001 (2013)

Hagen, T.C.: On viscoelastic fluids in elongation. Adv. Math. Res. 1, 187-205 (2002)

Hairer, E., Ngrsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Prob-
lems, 2nd edn. Springer, Berlin (2009)

Hartmann, S., Meister, A., Schifer, M., Turek, S. (eds.): Fluid-Structure Interaction—Theory,
Numerics and Application. Kassel University Press, Kassel (2009)

Herty, M., Klar, A., Motsch, S., Olawsky, F.: A smooth model for fiber lay-down processes
and its diffusion approximations. Kinet. Relat. Models 2(3), 489-502 (2009)

Hlod, A., Aarts, A.C.T., van de Ven, A.A.F,, Peletier, M.A.: Three flow regimes of viscous jet
falling onto a moving surface. IMA J. Appl. Math. 77(2), 196-219 (2012)

Hoerner, S.F.: Fluid-Dynamic Drag. Practical Information on Aerodynamic Drag and Hydro-
dynamic Resistance. (1965) Published by the author. Obtainable from ISVA

Howell, P.D., Siegel, M.: The evolution of a slender non-axisymmetric drop in an extensional
flow. J. Fluid Mech. 521, 155-180 (2004)

Jung, P, Leyendecker, S., Linn, J., Ortiz, M.: A discrete mechanics approach to Cosserat rod
theory—Part I: Static equilibria. Int. J. Numer. Methods Eng. 85, 31-60 (2010)

Keller, J.B., Rubinow, S.I.: Slender-body theory for slow viscous flow. J. Fluid Mech. 75(4),
705-714 (1976)

Kirchhoff, G.: Uber das Gleichgewicht und die Bewegung eines unendlich diinnen elastischen
Stabes. J. Reine Angew. Math. 56, 285-316 (1859)

Kolb, M., Savov, M., Wiibker, A.: (Non-)ergodicity of a degenerate diffusion modeling the
fiber lay down process. SIAM J. Math. Anal. 45(1), 1-13 (2013)

Kurbanmuradov, O., Sabelfeld, K.: Stochastic spectral and Fourier-wavelet methods for vector
Gaussian random fields. Monte Carlo Methods Appl. 12(5-6), 395-445 (2006)

Kutoyants, Y.: Statistical Inference for Ergodic Diffusion Processes. Springer, London (2004)
Lamb, H.: On the uniform motion of a sphere through a viscous fluid. Philos. Mag. 6(21),
113-121 (1911)

Launder, B.E., Spalding, B.I.: Mathematical Models of Turbulence. Academic Press, London
(1972)

Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge Uni-
versity Press, Cambridge (1927)

Lu, Q.Q.: An approach to modeling particle motion in turbulent flows—I. Homogeneous
isotropic turbulence. Atmos. Environ. 29(3), 423—436 (1995)

Maddocks, J.H.: Stability of nonlinearly elastic rods. Arch. Ration. Mech. Anal. 85(4), 311—
354 (1984)

Maddocks, J.H., Dichmann, D.J.: Conservation laws in the dynamics of rods. J. Elast. 34, 83—
96 (1994)

Mahadevan, L., Keller, J.B.: Coiling of flexible ropes. Proc. Roy. Soc. Lond. A 452, 1679-1694
(1996)

Majda, A.J.: Random shearing direction models for isotropic turbulent diffusion. J. Stat. Phys.
75(5-6), 1153-1165 (1994)

Malkan, S.R.: An overview of spunbonding and meltblowing technologies. Tappi J. 78(6),
185-190 (1995)

Matovich, M.A., Pearson, J.R.A.: Spinning a molten threadline. Steady-state isothermal vis-
cous flows. Ind. Eng. Chem. Fundam. 8(3), 512-520 (1969)


http://arxiv.org/abs/arXiv:1203.4502

Virtual Production of Filaments and Fleeces 161

86.
87.
88.
89.
90.
91.
92.

93.
94.

95.

96.
97.

98.

99.
100.
101.
102.
103.
104.

105.

106.

107.

108.

109.

110.

111.

112.

Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703-1759 (2005)
Pearson, J.R.A.: Mechanics of Polymer Processing. Elsevier, New York (1985)

Pearson, J.R.A., Matovich, M.A.: Spinning a molten threadline. Stability. Ind. Eng. Chem.
Fundam. 8(3), 605-609 (1969)

Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479-517 (2002)

Pinchuk, L.S., Goldade, V.A., Makarevich, A.V., Kestelman, V.N.: Melt Blowing: Equipment,
Technology and Polymer Fibrous Materials. Springer Series in Materials Processing. Springer,
Berlin (2002)

Pismen, L.M., Nir, A.: On the motion of suspended particles in stationary homogeneous tur-
bulence. J. Fluid Mech. 84, 193-206 (1978)

Renardy, M.: Mathematical analysis of viscoelastic flows. Annu. Rev. Fluid Mech. 21, 21-36
(1989)

Ribe, N.M.: Coiling of viscous jets. Proc. Roy. Soc. Lond. A 2051, 3223-3239 (2004)

Ribe, N.M., Habibi, M., Bonn, D.: Stability of liquid rope coiling. Phys. Fluids 18, 084102
(2006)

Ribe, N.M., Lister, J.R., Chiu-Webster, S.: Stability of a dragged viscous thread: Onset of
‘stitching’ in a fluid-mechanical ‘sewing machine’. Phys. Fluids 18, 124105 (2006)

Rubin, M.B.: Cosserat Theories. Kluwer, Dordrecht (2000)

Schewe, G.: On the force fluctuations acting on a circular cylinder in cross-flow from subcriti-
cal up to transcritical Reynolds numbers. J. Fluid Mech. 133, 265-285 (1983)

Schlichting, H.: Grenzschicht-Theorie. Verlag G. Braun, Karlsruhe (1982)

Schultz, W.W., Davis, S.H.: One-dimensional liquid fibres. J. Rheol. 26, 331-345 (1982)
Shah, E.T., Pearson, J.R.A.: On the stability of non-isothermal fibre spinning. Ind. Eng. Chem.
Fundam. 11, 145-149 (1972)

Simo, J.C., Vu-Quoc, L.: Three-dimensional finite strain rod model. Part I: Computational
aspects. Comput. Methods Appl. Mech. Eng. 58, 79-116 (1986)

Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions—a geo-
metrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125-161 (1988)

Stokes, Y.M., Tuck, E.O.: The role of inertia in extensional fall of viscous drop. J. Fluid Mech.
498, 205-225 (2004)

Sumer, B.M., Fredsoe, J.: Hydrodynamics Around Cylindrical Structures. World Scientific,
New Jersey (2006)

Taylor, G.I.: Analysis of the swimming of long and narrow animals. Proc. Roy. Soc. Lond. A
214, 158-183 (1952)

Tiwari, S., Kuhnert, J.: Finite pointset method based on the projection method for simulations
of the incompressible Navier—Stokes equations. In: Griebel, M., Schweitzer, M.A. (eds.) Mesh-
free Methods for Partial Differential Equations. Lecture Notes in Computational Science and
Engineering, vol. 26, pp. 373-387. Springer, Berlin (2003)

Tomotika, S., Aoi, T.: An expansion formula for the drag on a circular cylinder moving through
a viscous fluid at small Reynolds number. Q. J. Mech. Appl. Math. 4, 401-406 (1951)
Tomotika, S., Aoi, T., Yosinobu, H.: On the forces acting on a circular cylinder set obliquely
in a uniform stream at low values of Reynolds number. Proc. Roy. Soc. Lond. A 219(1137),
233-244 (1953)

VDI-Gesellschaft: VDI-Wirmeatlas, 10th edn. Springer, Berlin (2006)

Wallwork, I.M., Decent, S.P., King, A.C., Schulkes, R.M.S.M.: The trajectory and stability of
a spiralling liquid jet. Part 1. Inviscid theory. J. Fluid Mech. 459, 43-65 (2002)

Whitman, A.B., DeSilva, C.N.: An exact solution in a nonlinear theory of rods. J. Elast. 4,
265-280 (1974)

Yarin, A.L.: Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman, New York
(1993)



162 R. Wegener et al.

113. Yarin, A.L., Gospodinov, P., Gottlieb, O., Graham, M.D.: Newtonian glass fiber drawing:
Chaotic variation of the cross-sectional radius. Phys. Fluids 11(11), 3201-3208 (1999)

114. Zdravkovich, M.M.: Flow Around Circular Cylinders. Fundamentals, vol. 1. Oxford University
Press, New York (1997)

115. Ziabicki, A., Kawai, H.: High Speed Melt Spinning. Wiley, New York (1985)



Modeling and Simulation of Filtration Processes

Oleg lliev, Ralf Kirsch, Zahra Lakdawala, Stefan Rief, and Konrad Steiner

1 Industrial Challenges in Filtration

Filtration and separation processes are very important for our everyday life. Finding ad-
vanced filtration and separation solutions is often critical for the development of highly
efficient and reliable products and tools, as well as for ensuring a high quality of life for
the general public. It is difficult to find an industry or area of life where filters do not play
an important role. In a single car, for example, one finds filters for the transmission, fuel,
engine air, cabin air, coolant, and brake systems. Furthermore, the quality of our drinking
water, the treatment of wastewater, the air we breathe—everything is critically dependent
on filtration solutions. The filtration and separation business is expanding rapidly, with
scores of large companies and thousands of SMEs competing to develop better filters. The
industrial demand for innovative filtration and purification solutions is growing steadily,
thus promoting the use of Computer Aided Engineering in designing filter media and filter
elements. An important class of filtration processes, namely, solid-liquid separation, i.e.,
filtering solid particles out of liquid, is discussed in this chapter. Furthermore, the focus is
mainly on dead-end filtration, where all the contaminated fluid is forced to pass through
the filtering medium.
Three main criteria that determine the performance of a filter are as follows:

e the flow rate—pressure drop ratio,
e the size of the penetrating particles,
o the dirt storage capacity.
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The first criterion corresponds to the energy efficiency of the filter (i.e. the energy spent
to push the fluid through the filtering medium). The second criterion defines the require-
ments for filtration efficiency (for example, 99.9 % of particles bigger than one micron
have to be captured). The third criterion is a measure of the lifetime of a filter (e.g., the
frequency with which a filter element has to be cleaned or replaced).

Obviously, the three criteria imply that manufacturers must deal with contradicting re-
quirements. For example, higher energy efficiency can be achieved with a more porous
filtering medium, but this will result in worse filtration efficiency; higher storage capacity
can be achieved by using a thicker filtering medium, but this will result in increased energy
demand; and so on. These contradicting requirements impose a number of challenges for
designing highly efficient filters.

In general, there are many possibilities to design the filter media and filter element
for increased life-time performance. Besides the detailed structuring of the pore volume
within a filter media, a filter media can be designed to have a multi-layered structure made
of different single porous media. Often, the active surface is increased by folding the me-
dia (i.e., star-like pleated filters). All together, a complete filter system (e.g., sewage plant,
water purification plant) is usually built out of single filters combined in parallel and/or
series and may have a dimension of several meters, whereas the effective filtration pro-
cess happens in the pores on the microscale or nanoscale. In many cases, the effects of
the filter media (including the multi-layers) and of the filter system (folding and housing)
can only be analyzed and optimized separately under test conditions. However, some-
times filter media and/or a complete filter system that demonstrates high performance
on the test bench does not work well under real application conditions, which is a hint
that the design should simultaneously treat the microscale and macroscale filtration pro-
cesses.

For several years, computer simulation methods and CAE software have been more
and more actively used to provide detailed information about flow, transport, and cap-
turing processes in order to save the time and expense of intensive functional perfor-
mance testing on laboratory filtration test benches. However, the general purpose CFD
software used by many companies in conjunction with the simulation of filtration pro-
cesses does not account for specific modeling and numerical treatments of filtration ef-
fects and does not address the intrinsic multi-scale and multiphysics behavior of the fil-
tration processes. Commercial CAE software tools are only able to simulate single ef-
fects, such as fluid flow through the filter medium or in the filter housing. The highly
coupled interaction between the flow regimes in the filter medium and housing, includ-
ing the correct interface conditions and the coupling of different length scales, often
can not be efficiently solved with existing commercial software tools. Industry needs
customized software tools that demonstrate high efficiency when solving filtration prob-
lems.
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1.1 Filter Media Design

In this chapter, the discussion is restricted mainly to nonwoven filtering media (see Fig. 7),
keeping in mind, however, that many other filtration materials, such as paper, foam, sand,
ceramic and polymer membranes, sieves, etc., face the same challenges. Crucial factors
influencing the performance of non-woven filtering media include:

the microstructure of the media;

grading;

the material used to manufacture the fibers;

the fibers’ surface treatment or charging;

the deformations in the media under operating conditions;
customizing filtering media for particular types of particles.

Microstructure of the filtering media is influenced by the shape of the fibers, the fiber
diameter distribution, the fiber anisotropy, etc. Today, fibers can be manufactured with a
large range of dimensions, with diameters varying from nanometers to micrometers, and
with a variety of shapes ranging from traditional cylindrical shapes to trilobal and ellip-
soidal shapes. It is a challenging task for the manufacturers to select the right combination
of fibers for the filtering medium to achieve the desired performance for a specified class
of dust particles.

Graded and/or multilayered filtering media are used often nowadays. It is an extremely
demanding task to design graded media so as to improve energy efficiency and dirt storage
capacity without reducing the filtration efficiency at the same time.

Materials used to manufacture the fibers significantly influence the filter media perfor-
mance. The chemical industry continuously supplies new materials and selecting the best
material for a specific filtration application remains a difficult task.

Charging the filtering media is known to be a reasonable approach for increasing the
filtration efficiency without reducing the energy efficiency (i.e., flow rate—pressure drop
ratio), especially in the case of air filtration. At the same time, understanding the interplay
between microstructure and charging and the role of the captured particles in shielding the
electrostatic field, etc., would allow one to further improve the performance of the filtering
media.

Deformations often occur under operating conditions, both at the fiber scale and at
the scale of the filtering medium. These can significantly change the microstructure of
the filtering medium and, thus, significantly influence the performance of the filter. It is
a complex task to understand and predict the qualitative and quantitative changes in the
filter’s performance resulting from deformations.

Customizing filtering media for particular types of particles, or even just selecting filter
media that provide better performance for particular real particles, is a very difficult task.
The International Standardization Organization (ISO) tests are usually performed with a
specific dust (e.g., Arizona fine, or coarse) having a fixed distribution of particle diameters
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Fig. 1 Left: A pleated filtering medium with corrugation. Center: A pleated cartridge for fuel fil-
tration. Right: Disassembled housing of a automatic transmission oil filter. The filtering medium is
perforated and the plastic covering has a supporting rib structure optimized for low flow resistivity

with a relatively simple particle shape. In reality, the dust may differ considerably from
the one used in the laboratories, which means that filter performance under real operating
conditions may differ from the performance measured in the laboratories.

1.2 Filter Element Design

Some designs of typical filter elements are shown in Fig. 1. The main factors influencing
the performance of a filter element are:

e the selection of the filtering medium;

e the sizing of the filtering medium (e.g. pleating);

o the stabilization of the filtering medium (e.g. the design of the supporting mesh or
supporting ribs);

o the sizing of the filter element.

The selection of the filtering medium can be a challenge for filter element and filter sys-
tem manufacturers. Average characteristics provided by filter media manufacturers, such
as grammage and porosity, may be too rough to evaluate the performance of the filter el-
ement for a particular dust. Standard ISO tests, such as single pass and/or multipass tests,
Transmission Filter Effectiveness Method (TFEM), are performed to test the filter ele-
ments using flat pieces of the filtering medium. Such tests provide useful information, but
also need careful interpretation in order to evaluate the performance of a filter element
with a filter media and/or housing having a complex shape.

Designing a filter cartridge with the optimal pleat count is a difficult task for many
filtration applications. Negative factors, such as pleat deflection and/or pleat crowding,
can dramatically change the performance of the filter element. Even in the case of rigid
filter media, determining the optimal pleat count is not trivial. Usually the pleat count
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is selected in a way that balances the pressure loss due to the filtering medium and the
pressure loss due to the channels (narrow space) between the pleats. However, this is done
usually for clean filter media. Because the resistance of the media changes as it becomes
loaded, the optimum pleat counts for clean, partially loaded, and heavily loaded media
may differ significantly.

Stabilization is often used with both flat and pleated media. In some cases, the sup-
porting mesh or ribs may block ten percent or more of the surface of the filtering media.
Furthermore, some meshes, and all ribs, create additional resistance for the flow, thus re-
ducing the energy efficiency of the filter element. However, if the support is not properly
sized, the deflection of the filtering media may cause even larger reductions in efficiency.
Optimizing the support is an urgent task.

The sizing of a filter element is a non-trivial task. In some cases (e.g., transmission
filters), the shape and size of the filter element may be limited by the free space allocated
in the engine design. In other cases, e.g., round, pleated liquid filters, the height of the filter
element has to be properly chosen, so that there will be enough pressure to push the liquid
up to the bottom of the filter element and then through the filtering medium, when the flow
inlet is at the top of the filter element.

The partially changing operation conditions of filter elements are also a big challenge
for product development. For example, the dynamics of the operating conditions in au-
tomotive applications are influenced by rapidly turning pumps and start-stop fuel saving
systems. This leads to an immediate change of flow conditions in the filters and sometimes
even a release of captured dust. Similarly, during the typical industrial cleaning process of
back-flushing, due to heterogeneity, the so-called channeling effect in the filter media can
occur, which may significantly reduce filtration efficiency and lifetime.

To summarize, the design of efficient filter media and filter elements is a challeng-
ing task. For a long time, industrial design has relied mainly on lab experiments,
despite the fact that manufacturing prototypes and performing lab measurements are
expensive and time consuming procedures. In the last decade, mathematical model-
ing and computer simulation have been more and more widely used in supporting
the design process. Computer Aided Engineering, CAE, is a part of the everyday
work for many filter media and filter element manufacturers. Virtual material design
and virtual design of filter elements have proven to be extremely effective, since
they significantly reduce the number of prototypes, shorten the design time, and
reduce total costs. Industrial mathematics is a driving force and a key component
of these approaches. The next section describes the challenges confronting indus-
trial mathematics, particularly in the field of modeling and simulation of filtration
processes.
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2 Mathematical Challenges in Modeling and Simulation
of Filtration Processes

Many different interesting mathematical tasks have to be addressed to model and simulate
filtration processes.
The principal aims of the mathematical modeling of filtration processes are to describe

the fluid flow through the filtering (porous) medium and within the filter housing;

the interaction between the fluid and the filtering medium;

the transport of the dirt particles;

the filtration process itself, i.e., the capturing and deposition of the dirt particles;

the interaction of dissolved particles with each other, especially in the case of highly
contaminated fluid.

A major challenge is posed by the fact that all these processes are coupled. Clearly, the
flow influences the transport of the dissolved particles and their deposition in the filtering
medium. The deposition behavior, in turn, changes the geometry of the pore spaces in the
medium with corresponding effects on the velocity field and the pressure distribution.

Analytical solutions for the above models are rarely available, and computer simulation
must be used to find solutions. The principal tasks of computer simulations are to

develop proper numerical algorithms;

implement these algorithms in the proper software tools;
define the computational domain and generate a grid;
perform simulations;

analyse the obtained results.

In this section, we will briefly discuss the challenges faced by industrial mathematics in
conjunction with modeling and simulating filtration processes. The subsections below are
devoted to discussing: (1) modeling approaches at the pore scale, (2) modeling approaches
at the filter element scale, (3) modeling of deformable filtering media, (4) modeling of
multiscale filtration processes, (5) numerical algorithms at the pore scale, and (6) numeri-
cal algorithms at the filter element scale.

2.1 Specific Challenges at Microscale

Some of the main challenges in modeling filtration processes at the pore scale are:

(i) Modeling the pore scale geometry for random microstructures. Filtration media are
often nonwoven materials, foams, membranes, or other materials having a stochastic ge-
ometry at the pore scale. There is no standard approach for modeling such media or for
modeling other random geometries in general. Special models must be developed for each
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class of geometry and a basic way to do this is to use stochastic geometry approaches.
Using computerized tomography or images of material samples from a scanning electron
microscope (SEM) with subsequent image processing, one can characterize the particular
class of pore geometries (see e.g. [27]), and use this information as input for the stochas-
tic geometry models. The latter can be used to create (generate) different realizations of
virtual porous materials (see [37]) to be considered as computational domains in filtration
simulations. Open questions in this area are developing models for the random geometries
for many classes of filtration materials (e.g., various membranes, papers); achieving sta-
tionarity of the stochastic processes in generating microgeometries, especially in the case
of multiparameter models; and improving models for graded filtering media.

(ii) Modeling particle transport and the interaction of particles with the solid skele-
ton. Deriving mathematical models for the transport and capturing of particles at the pore
scale is a difficult task, and models are available mainly for simple cases. In the case
of laminar flow and spherical particles, a known model consists of a coupled system of
equations, including Stokes or Navier—Stokes equations describing the flow, a Langevin
stochastic ordinary differential equation (see Sect. 4.1 for details) describing the transport
of the particles, equipped with various adhesion mechanisms, e.g., direct interception, in-
ertial impact, diffusional deposition, size sieving, and clogging. The Langevin equation,
which accounts for the Brownian motion of the small particles, has been widely studied
in the literature for no boundaries or adsorbing boundaries. There are some studies of the
Langevin equation with reflection boundary conditions, but the case which is of most in-
terest for filtration, namely, boundary conditions describing various adhesion mechanisms,
has hardly been investigated mathematically. Furthermore, during their motion, the parti-
cles are treated as material points, and the volume is accounted for only in calculating the
resistance. At the same time, the deposited particles have a volume, and thus the deposi-
tion of the particles changes the microgeometry. The latter leads to a change in the flow,
and so on. In certain cases (e.g., some of the regimes for air filtration), this system should
be enriched by an equation describing the electrostatic field [24]. Even if the charge for a
filtering medium is known in advance, the deposition of particles changes the electrostatic
field and it has to be recomputed. Open questions in this area include developing mod-
els for non-spherical particles and deformable particles. Furthermore, modeling efforts are
needed to better understand flow at the pore scale for gases or non-Newtonian fluids. In
gas filtration with media composed of nanofibers, one can reach Knudsen number regimes,
for which (Navier—)Stokes equations no longer represents a proper choice and one has to
consider kinetic models. Treating charged particles or macromolecules (having a chain
structure) is another very big challenge.

(iii) Modeling particle-particle interaction. There are models for the interaction of par-
ticles in pure fluid regions [86] that include breakage and agglomeration of particles. How-
ever, adaptation of these models to the flow in the porous space of a filter medium, when
the particles interact with each other and also with the solid walls of the pores, is still far
from complete.
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2.2 Problems Appearing at Macroscale

In certain cases, such as periodic or stochastically homogeneous microstructure of the
filtering medium and slow flows, mathematical models of filtration processes at the
macroscale can be derived from microscale models via asymptotic homogenization
[70, 76] or via volume averaging [83]. Alternatively, they can be postulated directly at
the macroscale based on conservation laws, and equipped with constitutive relations, if
needed.

Even for the flow of clean fluid, the flow modeling is far from trivial.

Slow flows in porous media are usually modeled using the Darcy equation [66] or the
Brinkman equation [62]. Open questions include defining apparent permeability for highly
heterogeneous media (no REV); determining the viscosity in the porous media for the
Brinkman equation; properly modeling the stochasticity for macroscale heterogeneity of
the filtering media.

Fast flows in porous media are more difficult to model. Most often they are modeled us-
ing the quadratic Forchheimer equation [73, 83] (sometimes called Ergun equation), which
in addition to the permeability contains a coefficient in front of a quadratic velocity term,
which still has to be determined from experiments or parameter identification. A theoreti-
cal paper [56] based on asymptotic homogenization states that fast flows in porous media
have to be described by a cubic (with respect to velocity) equation. Furthermore, some
researchers claim that Navier—Stokes—Brinkman equations suffice to describe fast flows
in porous media,. Finally, in an interesting paper [57], an equation having rational terms
with respect to the velocity is introduced. Open questions in this area include determining
the area of applicability for each of the models and developing reliable models in the case
of turbulence. In addition to the non-linear pressure drop behavior, more understanding is
needed about the turbulence in the free fluid and its interaction with the flow in the porous
medium.

One more topic that is very important in modeling flows within a filter element is the
topic of the interface conditions between the plain media (unconfined fluid) and the porous
media. For flows parallel to porous media, the famous Beavers—Josef [59] condition is usu-
ally used in conjunction with flat porous media, the Stokes model for the free fluid, and the
Darcy model for the porous media. This interface condition is experimentally determined,
and later rigorously derived in [80]. In the case of a Stokes—Brinkman system, interface
conditions are derived by Ochoa-Tapia and Whitaker [87] based on volume averaging.
These interface conditions, similar to the case of Beavers—Josef, work well for flat me-
dia and parallel flow [42]. The interface conditions for non-flat media, inclined flow, or
deforming filtering media are an open question and a subject of research.

Since the macroscale modeling of filtration efficiency must consider many different
aspects, there exist different models that rely on additional assumptions, e.g., constant ve-
locity, constant permeability, and porosity. By filtration efficiency, we mean the percentage
of captured particles. There is extensive literature on developing macroscale models of fil-
tration efficiency, considering only the filtering medium and ignoring the influence of the
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filter housing. A representative collection of models is discussed in Sect. 4.2.1. Further-
more, very little has been done on modeling the more complicated case, when the influence
of the filter element housing has to be accounted for. An approach based on developing
lookup tables and combining them with parameter identification and the above-mentioned
macroscale models of filtration, is discussed e.g., in [41]. This approach reflects a ba-
sic requirement for modeling industrial processes: integrating the best research results for
different stages of the studied process into a monolithic approach that can produce quanti-
tative results and support industry in finding innovative solutions.

Open questions in the area of macroscopic models of filtration processes also include:
developing macroscale models of filtration processes for more complicated situations, in-
cluding particle diameter distribution; combined filtration effects (e.g., sieving and depo-
sition); graded and/or multilayered filtering medium; time dependent inflow velocity and
inflow concentration; robust and reliable parameter identification procedures; and analysis
of stability and sensitivity of the lookup tables approach.

23 Mathematical Modeling of Deformable Filtering Media

To this point, the filtering medium was regarded as a “rigid” structure. However, in more
and more fields of application in filtration, the interaction between the flow and the filtering
medium can no longer be neglected.

This leads to another coupling effect: The shape of the filtering medium is influenced
by the pressure distribution and, in turn, the flow field depends on the shape of the porous
medium. The deformation of filtering media can have a tremendous effect on the per-
formance of a filter element. Well-known examples are the crowding (grouping) of filter
pleats and the collapse of filter pleats, i.e., the closing (some) of the inter-pleat channels
under the flow-induced pressure. Of great interest is the influence of the deformations on
the permeability and the filtration efficiency of the medium.

The interaction of fluids with solid structures (FSI) is a widely studied and active field
in physics, engineering, and applied mathematics. However, very little is known at present
about the deformation of porous media, in general, and Fluid-Porous-Structure Interac-
tion (FPSI), in particular. It is obvious that the behavior of a deformable porous medium
may be very different than a solid structure. The fluid can enter the medium, for example,
which shows the importance of a proper modeling of the effects at the fluid-porous inter-
face. Moreover, the influence of phenomena inside the filtering medium, such as the pore
pressure, must be accounted for.

Classical theories, such as the pioneering works by Biot (see [60, 61]), were motivated
by the settlement (consolidations) of soils. A first open question here is to what extent
such models can be applied to filtering media. Another issue is that corresponding mea-
surements are far from being trivial, and it can become difficult to perform experimental
validations for any model derived. As is the case for other aspects in filtration, the model-
ing has to be done at both the pore space level and the macroscopic scale.
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Fiber Media Pleat Element System
Nanometer Micrometer Millimeter Centimeter Meter

Fig.2 An overview of the scale magnitudes important in filtration (Grafik: S. Griitzner, Fraunhofer
ITWM, Simulationen: Fraunhofer ITWM, Abteilung SMS, Foto: iStockphoto)

First promising steps towards a better understanding of poroelasticity and FPSI have
been taken. We will briefly discuss them in the next section.

24 Multiscale Modeling and Simulation of Filtration Processes

Filtration in general, and the dead-end depth filtration of solid particles out of fluid in
particular, is intrinsically a multiscale problem (see, e.g., Fig. 2 for illustration). The depo-
sition (capturing of particles) essentially depends on the local velocity, the microgeometry
(pore scale geometry) of the filtering medium, and the diameter distribution of the par-
ticles. The deposited (captured) particles change the microstructure of the porous media,
which leads to a change in the permeability. The changed permeability directly influences
the velocity field and pressure distribution inside the filter element. To close the loop, we
mention that the velocity influences the transport and deposition of particles. In certain
cases, one can evaluate the filtration efficiency by considering only microscale or only
macroscale models. In general, however, an accurate prediction of the filtration efficiency
requires multiscale models and algorithms.

Filtration studies share some mathematical multiscale problems with the studies of
other industrial and environmental processes. At the same time, there are some multiscale
mathematical challenges that are specific to filtration problems. For example, (i) rigorously
deriving macroscale (averaged) equations assuming that Stokes or Navier—Stokes are valid
for flow at the pore scale and (ii) finding permeability as a function of pore scale geome-
try are both mathematical problems that concern any flow in porous media. On the other
hand, investigating the interplay between the microscopic nature of particle-capturing and
the macroscopic velocity within a filter element is a task that is specific to filtration pro-
cesses.

Let us briefly discuss some of the mathematical challenges related to the multiscale
modeling and simulation of filtration processes.

Mathematical modeling using asymptotic homogenization is a powerful approach for
studying multiscale problems. It has several prominent features: (i) the rigorous deriva-
tions give additional confidence in experimentally discovered models; (ii) the rigorous
derivations offer direct relationships between the particular microstructure and the effec-
tive (upscaled) property; and (iii) the rigorous derivations can be used to derive models
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for cases where no measurements are done. A typical example is the Darcy law describ-
ing slow, single-phase incompressible flow through a rigid porous medium [70, 76]. It
was derived experimentally by Darcy in 1856 for isotropic porous media. The derivation
via homogenization, for example, offers a reliable extension to the case of anisotropic
media and also yields the algorithm for computing the permeability tensor in this case.
Despite this example, there are other examples where the microscale and macroscale can
be decoupled (so-called scale separation). In such situations, solving multiscale problem
reduces to a two-stage procedure: (a) solve the microscale “cell-problem” and use its so-
lution to upscale the effective properties of the multiscale media; (b) solve the upscaled
(macroscale) equations with effective coefficients. It is important to note that homoge-
nization theory provides all the components needed for solving a multiscale problem: in-
terscale connection operators, the type of coarse scale equations (which may be different
from the type of equations at the fine scale), estimates for the difference between the fine
and coarse scale solutions, etc. The challenges here are related to the fact that rigorous
derivations are done only for periodic and statistically homogeneous media and for slow
incompressible flow. Rigorous derivation of macroscopic equations for flows in porous
media for a broad class of fast flows and compressible flows is still an area of active re-
search.

For complex filtration processes, the cell problem [70, 76] (see Sect. 4.3 for details)
has to be solved numerically in order to obtain the effective properties of a filter media.
This might be a challenge in and of itself. Some of the difficulties arising in this case are
discussed in Sect. 4.1.

The separation of scales in filtration is not always possible, even just for the flow prob-
lem. Numerical upscaling approaches can be used here, such as the multiscale finite ele-
ment method (MSFEM), [68], the multiscale finite volume method (MSFV), [81], the het-
erogeneous multiscale method (HMM), [101], the variational multiscale method (VMS),
[55], etc. These approaches allow one to attack the multiscale problems related to flow in
porous media, but they are still computationally very expensive. In fact, their adaptation to
filtration problems is a nontrivial task needing further active research. Some recent devel-
opments will be mentioned in the next section. The above mentioned numerical upscaling
approaches are computationally still rather expensive, and further efforts in the area of
model order reduction (MOR) and reduced basis (RB) approaches are needed in order to
handle practical filtration problems.

When the transport and capturing of particles are considered along with the flow prob-
lem, the situation becomes even more challenging. The Langevin stochastic differential
equation describing particle transport mentioned earlier (see Sect. 4.1 for further details)
can be upscaled to a concentration equation at the macroscale, but focused mathematical
research is needed for upscaling the filtration mechanisms (such as interseption, sieving,
etc.). There is almost nothing in the literature concerning multiscale modeling and simu-
lation of filtration. One approach for solving such problems will be discussed in the next
section and described briefly in Sect. 4.3.
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To summarize, modeling and simulation of filtration processes are challenging math-
ematical tasks. The available literature deals mainly with some components of these
processes but rarely suggests a complete solution for an industrial filtration problem.
The existing commercial software tools, in general, are not adapted to the simulation
of filtration processes. To fill the gap between the incomplete mathematical studies
in the area of filtration processes and the needs of industry for systematic studies and
complete solutions, the SMS Department of the Fraunhofer ITWM has developed a
number of algorithms and software tools in the last decade that are dedicated to the
simulation of filtration processes.

3 ITWM'’s Developments in the Modeling and Simulation of
Filtration Processes

For more than a decade, the Fraunhofer ITWM has been involved in developing models,
algorithms, and software for modeling and simulating industrial filtration processes [29].
Many specific mathematical problems have been solved, although the emphasis has been
on providing complete solutions for industrial filtration applications. The latter requires
integrating the developed algorithms into customized software tools [30]. A short overview
of the achievements can be found in the following subsections.

3.1 Virtual Filter Media Design

A major difficulty for computer simulation on the pore scale of filter media is given by the
complexity of the flow domain due to the random features of the geometry. Most of the
existing commercial and academic 3D grid generation software tools fail at grid genera-
tion in the complicated pore structure of the filtering media. To overcome this bottleneck,
keeping in mind that 3D CT images are defined on voxels anyway, the use of voxel grids
is proposed and successfully exploited in [35]. Existing computer power allows filtration
processes to be simulated only in a small piece of the filtering medium when the pore scale
geometry is fully resolved, and this implies that special attention has to be paid to the ef-
ficiency of the developed algorithms. An idea of the microscale simulation of filtration
processes can be gained, e.g., from [2, 25, 30, 92].

For more than a decade, the virtual material laboratory GeoDict has been under con-
stant development at the Fraunhofer ITWM. The modular software toolbox provides a
huge variety of algorithms to generate virtual porous media, in particular, filtering media.
Among others, there are modules for the generation of

e nonwoven structures originating e.g. from textile applications,
e woven textiles and metal wire meshes,
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e sintered ceramics used in diesel particate filters, for instance,
e paper, i.e., cellulose materials, including fillers and fines, and
o foams.

Moreover, GeoDict provides software interfaces for importing CAD data and micro-CT
data sets, along with image processing tools for cutting, rotating, and filtering the images.
The second set of modules addresses the computation of fully pore-scale-resolved porous
media in order to determine the effective (macroscopic) properties of the porous media.
These modules compute

the porosity and pore size distributions of the media,

permeabilities and flow resistivities based on solving the Navier—Stokes equations,
two-phase properties, such as relative permeabilities, and

filter efficiency and pressure drop evolution in single-pass and multi-pass setups.

The interest in GeoDict has continued to grow over the years and, in 2011, the
Math2Market GmbH was founded as a spin-off company of the Fraunhofer ITWM.
Math2Market focuses on the development, marketing, and dissemination of the GeoDict
software suite.

Furthermore, for performing structural mechanics simulations at the microscale, the
Fraunhofer ITWM developed an elasticity solver for composite and porous materials
(FeelMath). The fundamental approach is the formulation of the elasticity problem as a
Lippmann—Schwinger-type equation, which can be solved very efficiently using the Fast
Fourier Transform (FFT) (see [33] and the references therein). Using this tool, one can
study the local stretching and/or compression of the medium that leads to a change in pore
geometry and compute the effective elasticity properties of the material. The correspond-
ing permeabilities for the non-deformed and deformed states can be computed using the
GeoDict software (see Fig. 3).

There is ongoing research in close collaboration with filter manufactures on this matter
(see e.g. [22]), and there are also research activities concerning the macroscopic level (see
Sect. 3.2).

3.2 Computer-Aided Design of Filter Elements

Fraunhofer ITWM is also active in the field of mathematical modeling, numerics, and
software development for the filter element scale. Here, we will restrict the presentation to
a selection of achievements related to the challenges described in Sect. 2.2.

For industrial applications, the selection of the appropriate model for the fluid flow
and particle movement is crucial. In most cases, the (incompressible) Navier—Stokes—
Brinkman equation is the basis for computing the fluid flow within filter elements, and
the convection—diffusion—reaction equation is used to describe the transport and capturing
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Fig. 3 Numerical study of the influence of the deformation of filtering media on the permeability.
Streamline representation of the velocity for a non-deformed sample (left) and the corresponding
compressed structure (right)

of the particles. Arguments as to why the Brinkman equation is a more suitable model for
filtration processes, as opposed to using the Darcy model in the porous media and cou-
pling it to Navier-Stokes equations in the free fluid, can be found in [17, 42]. The model
for filtration efficiency simulation is described in detail in [41]. Models for fast flows were
the subject of a recent paper [11], in which mathematical models together with numerical
and experimental results in this area were collected and discussed. Further work on deter-
mining the area of applicability for each of the models is needed. A discussion of different
types of interface conditions and their applicability to filtration processes can be found in
[17, 42]. A representative collection of macroscopic models for filtration efficiency can
be found in [10], see also Sect. 4.2. An approach based on developing look-up tables and
combining them with parameter identification and the above-mentioned macroscale mod-
els of filtration is discussed in [10, 41].

On the macroscopic scale, the geometry of the computational domain is mostly given
in the form of CAD data (Computer Aided Design). Since the shapes of the housing,
the media, etc. can be quite sophisticated, grid generation can be a non-trivial task. Ro-
bust methods for the generation of uniform Cartesian grids (voxel grids) and the efficient
numerical solution of the Navier—Stokes—Brinkman equations in the context of filtration
were, amongst others, the subject of the works [41, 42] and [5, 17, 34]. For a robust and
accurate numerical method, special attention needs to be paid to the proper treatment of
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Fig. 4 Overview of the different stages of macroscopic simulation of the flow through a pleated
panel. From left to right: CAD geometry (surface), locally refined 3D grid for numerical simulation,
resulting velocity field, and pressure distribution

the interface between the fluid and the porous filter medium. This is true for both the
transient case, when using discretization schemes of the Chorin type (see e.g. [72]), and
the stationary problem, when using SIMPLE (see e.g. [71]) and its variants. A problem-
adapted discretization for the fluid-porous interface region was proposed in [5] that allows
for recovery of a linear pressure drop profile (in accordance with Darcy’s law), even if the
medium is represented in the grid by only a single voxel layer.

Part of the dissertation [41] was devoted to including the transport and deposition of
particles in the macroscopic simulation of filters. In particular, a method to create and
use look-up tables for the handling of dynamical effects during the filtration process was
developed in that work.

These numerical approaches are the basis for two software tools developed at the Fraun-
hofer ITWM: The Suction Filter Simulation (SuFiS®) (cf. e.g. [14]) and the Filter Element
Simulation Toolbox (FiltEST).

SuFiS® is a tailor-made simulation solution for the optimal design of oil filters in the
automotive sector. The software has been under development for more than a decade in
close collaboration with the company IBS Filtran (see also Sect. 5.1).

The Filter Element Simulation Toolbox (FiltEST) is a collection of software modules
for the analytical study and numerical simulation of the performance of filter elements
used in solid-liquid and solid-gas separation. The core of this software family consists of
the modules to perform the numerical simulation of
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e the flow through the filter housing and medium,
e the particle transport with the flow, and
e the particle deposition in the filter medium.

These will be described in more detail in Sect. 4.2.

The knowledge obtained about the velocity field, the pressure distribution, the concen-
trations of particles, and the deposition allow for the evaluation of a filter design’s main
performance properties, which leads to a significant reduction in the number of manufac-
tured real-world prototypes and accelerates the development process.

Among others, there are modules for

e the import of CAD geometries (see Fig. 4, left) and their conversion into appropriate
computational grids,

e robust estimation of filtration model parameters from experimental data (see
Sect. 4.2.8), and

e exporting the computed results to file formats that allow for effective visualization (see
Fig. 4, right) and further processing using worksheets, etc.

Advances in computer hardware enable the users of simulation software to deal with
more and more challenging problems, particularly in terms of memory requirements. This
involves an increase in the computational cost of the simulation. Therefore, there is a need
to allocate computer resources so that the focus is on relevant simulation setups and the
most promising designs. FiltEST addresses this issue in two ways: For the important spe-
cial case of pleated filters, a tool based on analytical methods can estimate the optimal
pleat count (in terms of pressure drop) for both the clean medium and the loading stage.
The analytical models are based on certain simplifying assumptions, so that the computa-
tions can be done within seconds and the relevant parameter range can be narrowed down
quite quickly. The second technique is based on post-processing: Simulation results and/or
measured data for a series of design parameters are collected in a data base and examined
by a data mining software. Once the data miner is sufficiently “trained”, it can predict the
key quantities for designs that were not part of the collected data. Both approaches help
to avoid wasting precious computer resources (and producing prototypes) on sub-optimal
designs.

Thanks to its modular structure, FiltEST can be extended by customized solutions for
specific application needs. Recent developments include non-linear pressure drop effects
(see [11] and Sect. 4.2.1).

The Fraunhofer ITWM is very active in the mathematical and numerical treatment of
deformable porous media [44] and of Fluid-Porous-Structure Interaction (FPSI) on the
macroscopic level. In internal and international research projects, the numerical solvers
for flow through porous media and elasticity were adapted to the specific needs of poroe-
lasticity and combined for the coupled simulation of FPSI (see Fig. 5). The results ob-
tained were very promising and received very positive feedback in the filtration commu-
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Fig. 5 Fluid-Porous-Structure Interaction: Simulation results for the deformation of a clean filter
pleat (left) and a partially loaded pleat with lower permeability (right)

nity (see [1, 13]). Some recent numerical results, as well as comparisons with lab mea-
surements, can be found in [3].

Analogously to 3D solid mechanics models, dimension-reduced, plate models are also
available for poroelasticity (see [95]). This was one of the motivations to start with the sci-
entific investigation of FPSI on a broader basis. In the French—German Fraunhofer—Carnot
project FPSI_Filt, the phenomenon has been studied analytically, numerically, and experi-
mentally by combining the expertise of the Fraunhofer ITWM, the Department of Mathe-
matics at the University Lyon, and the Laboratory for Mechanics of Fluids and Acoustics
(LMFA), in Lyon. In this framework, new poroelastic plate models were rigorously de-
rived (see [84]) and implemented in a numerical software. Validation against known exact
solutions and experiments shows that the approach is very effective (see [8, 9]). Ongoing
work is being done on the derivation of poroelastic shell models, further improvement of
the coupling algorithms, and the theoretical and experimental study of turbulent flows near
and through porous media.

Recently, algorithms and software for simulating cross flow filtration and reverse and
forward osmosis processes were developed. A short description of these algorithms and
software, as well as first numerical results, can be found in [4].
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3.3 Multiscale Simulation for Filtration and Similar Applications

As stated at the beginning of this section, the phenomena at the microscopic level have
a strong influence on the effects observed at the macroscale. However, the converse is
also true: In many industrial filter element designs, the filtering medium is supported by
wired meshes or rib structures that influence the flow field. Consequently, even if the clean
medium can be regarded as a macroscopic homogeneous continuum, this will not remain
true when the medium is non-uniformly loaded with particles.

A straightforward, direct numerical simulation of an entire filter element would be very
costly, since the whole range from nanometers (fibers, dirt particles) up to centimeters
(housing, inlet and outlet pipes) would have to be treated on a common computational
grid. A more efficient approach is to do modeling and simulation for each scale and then
to couple them in a multiscale simulation approach.

Numerical upscaling and coupled micro—macro-simulations are powerful tools for ob-
taining a full picture of the filtration process. The former is a well-established field in
applied mathematics, with a long list and history of applications. In the filtration context,
a first application is the microscale simulation of the flow through the porous filtering
medium. A representative volume of the filtering medium with resolved micro-structure is
selected. This subdomain is chosen for the numerical solution of the so-called cell problem
in order to get the effective permeability of the volume (see e.g. [20, 29] and the references
therein). The obtained effective value of the permeability serves as an input parameter for
the macroscale simulation.

An approach that has asymptotically the same complexity but allows one to recover
more details of the fine scale solution (or even the complete fine scale solution) is proposed
in [18]. A general framework for multiscale problems, based on the variational multiscale
method, and utilizing iterations between scales, is developed there. It deals with upscaling
a Stokes—Brinkman problem to a Stokes—Brinkman problem and includes the concept of
recalculating the “permeability” of coarse blocks. However, it does not deal with particles
and changing geometries. One-way coupling from microscale (Navier—Stokes—Brinkman)
to macroscale (Navier—Stokes—Brinkman) was considered in [16], but it deals only with
the flow and does not consider back-coupling from macroscale to microscale. The above
methods are still too expensive to be applied to the filtration problem considered here, and
in general, they do not consider Navier—Stokes equations and particle tracking at the mi-
croscale. A truly multiscale model is considered in the recent paper [15], see also Sect. 4.3
for details. In fact, heterogeneous multiscale methods (HMM) can also be considered just
as a general approach for solving multiscale problems. In this sense, our developments
could be classified as HMM for filtration problems. More details on multiscale simulation
and examples of their application in filtration will be given in Sects. 4.2.9 and 5.1.

Based on preliminary results in [41], recent progress has been made in the field of
multiscale simulations of filtration processes (see [15]): Beginning with a macroscopic
computation of the flow through the entire filter element, the macroscopic flow field is
used as input data for microscale simulations that compute the flow and filtration effi-
ciency in properly selected subdomains. The latter are located at “critical” points of the
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Fig.6 Left: Press section of a paper machine (Foto: Voith GmbH). Right: Microstructure simulation
of a press felt

filter element. The results obtained at these special subdomains are interpolated across the
whole domain occupied by the filtering medium, respectively, and used for another flow
simulation on the macroscopic level.

Another topic is the design of the pressing section of a paper machine is a specific
industrial application in which multiscale models are used for the virtual design of press
felts. During mechanical dewatering of the wet paper in the press nip, the water is squeezed
into a porous felt. At the Fraunhofer ITWM, a complete multi-scale simulation for the
press nip, including micro-structure models of press felts, has been developed [28]. Today,
these simulation tools are used in the paper machine industry to develop new press felts
and to virtually test the virtually developed felts in a multiscale press nip simulation for
different paper machine configurations. Essential research questions about multi-scale-
modeling and the numerical simulation of fast flows in thin layered porous media in press
nips of a paper machine application are answered in [19, 46, 47].

During the last years, multiscale models and efficient simulation methods have been
developed at the Fraunhofer ITWM within the framework of PhD theses on filtration and
separation processes [41-43, 4648, 51] as well as on other similar industrial applications
[39, 40, 45, 49, 50, 52].

Summing up, it can be stated that a variety of models, algorithms, and software
tools have been developed at the Fraunhofer ITWM to close the gap between the
(rather) incomplete mathematical research on filtration and the industry’s need for
systematic studies and problem-adapted solutions. For more than ten years, the work
done on this matter at the Department of Flow and Material Simulation has had a
significant impact on mathematical research and the development of methods and
simulation tools.
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4 Modeling and Simulation of Filtration Processes on Different
Length Scales

In this section, we will give an overview of some mathematical models and numerical
methods for simulating the flow through filter media and the filtration of dissolved parti-
cles. We will exclusively consider the so-called dead end filtration, for which one distin-
guishes between the following two cases/phases:

e Depth filtration: The particles penetrate the filter medium, where some of them are
deposited.

o Cake filtration: The particles are captured at the upstream interface of the fluid and the
medium. The deposit forms a so-called filter cake on the surface of the medium. In
general, this cake contributes to the filtration process.

We start with the treatment of filtration phenomena on the level of the particles and pores
in the medium. After the presentation of corresponding models for the flow and deposition,
some examples for the computer-aided investigation of the filtration efficiency and pres-
sure drop will be discussed. The second subsection is devoted to the macroscopic level of
the entire element, especially to depth filtration and the corresponding change in the per-
meability of the medium. After a quite short discussion of the numerical approximation,
a robust method for the estimation of the filtration model parameters will be presented.
The third subsection treats multi-scale methods for filtration.

4.1 Modeling and Simulation of Filtration Processes at the Pore Scale

In this section, we present the mathematical modeling and computer simulation of filtra-
tion processes at the pore scale. Since the main idea of microstructure modeling is the
calculation of the filtration processes on the real pore structure of the filtering media, the
inputs for the geometry are highly resolved 3D images. The images (CT, FIB-SEM) are
usually represented on a structured tensorial gird; in most cases, on a regular voxel grid.
Since the modeling and simulation should be able to work with large 3D images, the mod-
eling of virtual filtration processes and the numerical simulation techniques are closely
related and make essential use of the regular data structure.

Therefore, this section combines modeling and simulation aspects and is organised as
follows: First, the basic principles of virtual geometry generation are introduced. Then,
we explain the approach for the flow field and particle filtration model. Finally, we ex-
plain our iterative Euler—Lagrangian approach to solve for the flow, particle transport, and
deposition.

4.1.1 Modeling and Simulation of Virtual Filter Media Geometries

The starting point of any filter simulation is a realistic three-dimensional computer model
of the geometry. With regard to virtual material design, the possibility of relying on purely
computer generated structures is essential. In Figs. 7 and 8, four virtual structures are
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Fig. 8 Virtual structures: wire mesh (left) and sinter ceramic (right)

shown that can be used in a filtration application. The geometries are generated by the
Fraunhofer software GeoDict [35].

A crucial point when simulating filter media is that one must resolve the entire thick-
ness, since the structure is possibly graded initially, but will become inhomogeneous due
to particle loading. The modeling of virtual structures is based on the theory of determinis-
tic and stochastic modeling of 3D images [88]. Input information for the virtual modeling
may be obtained by the geometric analysis of real material images, as described in [26]. In
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general, all geometries are modeled on regular cubical meshes. This approach requires a
huge number of cells, which are called voxels. On the other hand, extremely efficient algo-
rithms exist that exploit the highly structured mesh. Moreover, it ensures high flexibility,
so that the simulation chain can also be fed by tomographic data sets.

Subsequently, the methods for generating these structures are described.

Virtual Nonwoven The generation of virtual nonwoven is based on a stochastic Poisson
point process [26, 88]. The generator is controlled by a set of parameters that is readily
interpreted geometrically. For instance, the porosity or fiber volume fraction is selectable.
Additionally, several fiber properties, such as densities, lengths, cross sections, and ori-
entations can be prescribed. Finally, the resolutions of the underlying voxel mesh and the
overall dimension have to be entered. After specification of these parameters, the fiber
generation starts by randomly computing fiber axes and entering the fibers into the voxel
mesh. The generation is stopped when the specified fiber volume fraction is reached. If the
volume fraction could not be reached, the initialization of its random number generators
is changed and the process starts again. The algorithms do not work completely randomly,
but are designed to guarantee prescribed properties within a selectable tolerance. On the
other hand, by adjusting the initialization of the random number generator, all geometries
are reproducible.

In view of the simulations, the dimensions should be chosen sufficiently large to give
representative results. Representative means that the results do not change when the di-
mensions are further enlarged. To give an idea of what this means, the geometries in Fig. 7
possess this property with respect to flow simulations. For filter simulations, to be rep-
resentative frequently implies to entirely resolve the medium in flow direction. The size
of the required mesh may reach several million voxels: Let us consider a medium with a
thickness of 1.5 mm and smallest fiber diameter of 20 um. To ensure reasonable results
in a flow computation, the smallest fiber diameter should be resolved by at least 4 voxels.
Hence, the edge length of a voxel is 5 uym, and we need 300 voxels in the flow direction.
Having approximately the same lateral dimension, we end up with 27 million voxels.

Virtual Woven Virtual woven structures require precise deterministic rules following
the weaving pattern of their real counterparts. On the left hand side, Fig. 7 shows a virtual
woven structure possessing a basket weave pattern. Moreover, the yarns consist of many
thin fibers. These fibers do not follow a strict deterministic rule, but have some built-in
randomness reflecting certain irregularities also present in the real woven material.

Virtual Sinter Structures The generation of sinter structures comprises two steps: First,
a stochastic point process [26] is used to create packings of spheres and cylinders. To
achieve satisfactory results, the shape and size distribution of the real sinter grains are
compared and matched with the virtual distributions as well as possible. During the second
step, morphological operations [88] are applied to generate the sinter necks. Iteratively,
using the operations dilatation and erosion, one creates exactly the intended connectivity.



Modeling and Simulation of Filtration Processes 185

Fig. 9 Virtual nonwoven with
binder

L

Complex Geometries The methods presented in the previous sections can be considered
as elementary building blocks for more complex geometries. The voxel mesh approach
naturally allows for combining layers of elementary structures. Thus, media having gra-
dients with respect to some property are easily created (Fig. 7, right). Another interesting
example is the nonwoven with binder in Fig. 9. The binder is added into the nonwoven in
complete analogy to the sinter necks in the previous section.

Regarding virtual material design, we want to finally mention an interesting opportunity
for tomographic data sets. If one is interested in redesigning a certain layer of an existing
medium, one can substitute this layer by a virtual structure. The effect of the replacement
can then be studied by simulation.

Comparison and Validation of Real and Virtual Structures For virtual structures that
are intended to reproduce existing media, quality measures are needed. Quite often, 2-D
SEM (= scanning electron microscope) images or even 3-D tomography data of a real
sample are available. This information can be used to compute and compare various geo-
metrical properties, such as porosity, cord length distribution, pore size distribution, spe-
cific surface area, fiber orientation, etc. In industry, permeability tests of porous samples
are standard. Moreover, flow simulations in typical porous media regimes, i.e., slow flow
regimes, are very reliable. Hence, measured and computed flow properties can be com-
pared quite confidently and provide meaningful results.

4.1.2 Microstructure Modeling of Filtration Processes

Depending on the filtration application in question, the simulation efforts to compute cer-
tain filter properties may differ significantly. In some situations, a single flow simulation is
sufficient to determine the requested effective permeabilities or flow resistivities. Comput-
ing filter efficiencies also requires the solution of particle transport through the medium.
Certainly, the most demanding application is the simulation of an entire filter lifetime.
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Fig. 10 Simulation of a
fibrous medium with deposited
dust particles

In general, we can assume that the time scale of the flow-field changes much more
slowly than the time scale of the corresponding particle transport, due to the small size
of the particles. Hence, the initial stationary flow field for the clean medium is computed,
a certain number of particles are tracked and, in case of collisions, deposited. After a
while, the influence of the deposited dust can no longer be neglected and it is time to
recompute the flow field. This iterative algorithm is repeated until a certain pressure drop
is reached, for instance. At the end of Sect. 4.1.3 subsection, a simulation of a realistic
diesel particulate filter medium is shown.

Modeling of Filtration Processes Slow flow regimes are typical for most filtration pro-
cesses. Hence, flow solvers for the solution of the Stokes equations are well-suited for the
simulation. The Stokes equations describe incompressible viscous flow for low velocities,
i.e., when inertia is negligible:

—uAu+Vp ==f (conservation of momentum) (D
V.-u=0 (conservation of mass) )
+ boundary conditions. 3)

In (1) and (2), u, p, f denote the velocity vector, the pressure and the external body force,
respectively. To solve the system, boundary conditions have to be prescribed, e.g., velocity
profiles at the inlet and outlet of the computational domain.

For high velocity flows, the incompressible Navier—Stokes equations should be used.
This system is quite similar to (1), (2), but contains an additional convective term account-
ing for inertia effects:

—uAu+ (pu-Vyu+ Vp ==f (conservation of momentum) @)
V-u=0 (conservation of mass) ®)

+ boundary conditions. (6)
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In Eq. (4), p denotes the fluid density. Combining free and porous flows enables the mod-
eling of diesel particulate filters (see Sect. 4.1.3), where deposited soot particles are not
resolved by voxels, but modeled as porous media. For this type of application, we employ
the Navier—Stokes—Brinkman equations [42]:

—pnAu+ (pu-Viu+ /,LK_Ill +Vp={f (conservation of momentum) @)
V-u=0 (conservation of mass) (8)

+ boundary conditions. 9)

K~ is the reciprocal of the permeability of a porous medium. In the free flow domain, the
permeability is infinite, simplifying (7) into (4).
In the porous medium, where K ~! is quite large, u is small. In such a case, the first two
terms in (7) are negligible, and we obtain Darcy’s law:
K
u=——(Vp-1H). (10)
w
Darcy’s law was found experimentally in 1856 [66]. It expresses the linear relation be-
tween velocity and pressure drop for slow flows in porous media.

Modeling of Particle Transport and Deposition The first step in computing initial fil-
ter efficiencies is the computation of the fluid flow in the virtual geometry (see Sect. 4.1.2).
The second step consists of particle tracking. Here, we make certain assumptions: The par-
ticles are spherical, there is no particle-particle interaction (= low particle concentration),
and the particles do not influence the flow field. After specifying the particle size distri-
bution and a few additional parameters, particle motion is modeled by Newton’s Second
Law:

F = ma, (11)

where F denotes the force exerted on the particle, m is the particle mass, and a is the
particle acceleration. The particle moves due to its inertia, due to fluid friction, and due to
Brownian motion. Additionally, an electrostatic force may influence the particle trajectory.
For brevity, we refer to [24, 31] for further details on electrostatics. Besides inertia, which
is inherent to (11), all effects are modeled as a superposition of forces. We finally solve
the following system of stochastic differential equations:

dv=y(v(x(t)) —u(x())dr + cdW(1) + @m, (12)
dx
=V (13)

In (12) and (13), ¢, x, v and denote time, position, and velocity of the particle, respectively.
The first term on the right hand side of (12) describes the force due to friction. It is pro-
portional to the difference of the particle velocity and the fluid velocity. The coefficient is
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given for slow flow and spherical particles by:

_ 6muR

1% (Stokes friction) (14)
Here, R denotes the particle radius.

The second term on the right hand side of (12) models Brownian motion by a three-
dimensional Wiener-process W. Let T be the temperature and k be the Boltzmann con-
stant. Then, we have, by the fluctuation-dissipation theorem:

o

= . 5)
m

For further details of the model, we refer to [23, 38]. The last term models the influence of
an electric field E on particles with charge ¢.

4.1.3 Simulation of Filter Media

As mentioned previously, only numerical methods that make essential use of the regu-
lar voxel structure are used for industrial applications, due to the complex geometries of
the real or virtual geometric structure. The natural approach for the numerical solution
of systems (1) and (2) or, in general, (7) and (8) is the Lattice—Boltzmann method [7].
Lattice—Boltzmann methods make use of the relation between the Boltzmann equation
and the (Navier—)Stokes equation in a discrete way on a regular voxel grid. The primary
quantity is a discrete distribution function and the velocity and pressure are moments of
the distribution.

Therefore, the method can be directly applied to the voxel grid and it uses an explicit
update rule to converge to the stationary solution. Since at least the discrete distribution
function must be stored on each voxel, other matrix free methods are alternatively consid-
ered.

Actual industrial simulation techniques make use of a finite volume or finite differ-
ence discretization on the voxel grid and solve the resulting system with the fast Fourier
transform [36]. Concerning the implementation of all solvers, we want to remark that two
ingredients are of predominant importance:

e exploiting the regularity of the voxel meshes and avoiding any kind of overhead to
restrict the storage and
e scalable parallelization of the algorithms.

Keeping both ingredients in mind, one can achieve computation times ranging from min-
utes up to a few hours on modern multi-core workstations to solve the CFD problems.
The particle transport equations (12), (13) can be independently solved for each single
particle by an implicit Euler method. In addition to the computation of the particle motion,
we have to check for collisions of the particles with the geometry in each time step. If a
collision is detected, the particle stops and it is marked as deposited. After the simulation
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Fig. 11 Simulation of the initial filter efficiency of an air filter medium
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Fig. 12 Cumulative initial filter efficiency of a four-layered air filter medium

run, we calculate for each particle size the fraction of deposited to total number of particles
(see Fig. 11). Since the simulation provides complete information about each individual
particle, it is possible to create diagrams like Fig. 12. To date, this detailed analysis is
unavailable experimentally for many filtration applications.

Simulation of Filter Lifetimes—Solid and Porous Deposition Mode Filter lifetime
simulations iteratively compute the flow field and particle transport as introduced in
Sect. 4.1.2. An essential third simulation component comes into play, since we need to
modify the geometry due to deposited particles. Therefore, we keep track of the volume
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fraction filled by deposited particles for every voxel of the geometry. Basically, there ex-
ist two modes how volume fractions influence forthcoming simulations. The first mode
is called solid deposition mode. It is intended to be used whenever particle diameters are
greater than or equal to the voxel length. Hence, particles are resolvable by the voxel
mesh. When the volume fraction of a voxel reaches 1, it is marked as solid. The flow
solver treats this voxel as an obstacle, and the particle tracking treats it as a collision
voxel, where a particle may deposit. The second mode is called porous deposition mode.
It is used when particles are much smaller than a voxel and, hence, build up porous
substructures. Depending on its volume fraction, a permeability value is assigned to the
voxel. Consequently, the flow computation is based on the Navier—Stokes—Brinkman ap-
proach (7), (8). Particle deposition in a porous voxel is possible as long as a prescribed
maximum volume fraction is not reached. When a voxel exceeds the maximum fill-level,
it becomes a collision voxel. Obviously, filter lifetime simulations using the porous de-
position model depend on the prescribed permeability and maximum volume fraction. In
Sect. 4.1.3, we show how the parameters can be obtained by highly resolved single fiber
simulations.

Example: Simulation of a Diesel Particulate Filter The aim of this section is to sim-
ulate the evolution of the pressure drop of the diesel particulate filter medium in Fig. 13.
We will briefly summarize the essential steps and refer to [32] for further details.

The clean medium in bright grey consists of a ceramic substrate with an additional
fiber layer. Both geometries are purely virtual and are created by applying the methods
described in Sect. 4.1.1. The resolution is 1 um, and the dimension of the geometry is
150 x 150 x 650 voxels. With respect to porosity and cord length distribution, the virtual
structure has quite similar properties to its real counterpart. The comparison is done using
SEM images. Moreover, the simulated initial pressure drop is in good accordance with
the measured pressure drop. Since the particle diameters vary between 20 and 300 nm,
the filter lifetime simulation is run in the porous deposition mode. To determine the pa-
rameters of the subgrid model, i.e., the maximum volume fraction and permeability of the
porous medium, highly resolved single fiber simulations in the solid deposition mode are
performed (see Fig. 14). The voxel length is set to 10 nm.

We determine the permeability and the maximum volume fraction by investigating the
porous layer in the upstream direction of the fiber. We obtain 15 % as the maximum volume
fraction and a corresponding permeability of 10~3 Darcy. Both parameters are then used in
the filter lifetime simulation of the filter medium. Figure 15 shows the characteristic S—
profile when filtration switches from depth to surface filtration. The results are in good
qualitative agreement with measurements. Repeating the same simulation with the ceramic
substrate only, i.e., without the fiber layer, we observe a slightly reduced initial pressure
drop, but a much faster and unwanted transition to surface filtration. Thus, the simulation
qualifies the design with the fiber layer as the better medium. The same result is achieved
experimentally.
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Fig. 13 Simulation of soot
deposition in a diesel
particulate filter medium

Fig. 14 Simulation of soot deposition on a single fiber
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Fig. 15 Typical pressure drop evolution of a diesel particulate filter

4.2 Modeling and Numerics for the Macroscopic Scale

The principal tasks of mathematical modeling on the macroscopic level are the same as
for the micro-scale: Based on an appropriate description of the domain, one has to identify
suitable models for the flow, for particle transport, and for particle deposition in the filter-
ing media. Compared to the microscale problem, the main differences in the macroscopic
approach are the following:

e A filtering medium is described in the spirit of Darcy’s law (10) as a homogenized
porous material with a permeability K, i.e., in contrast to the microscopic description,
there is no distinction between pore spaces and the solid regions of the fibers.

e Regarding transport and deposition of dirt from the perspective of simulation, it would
be very costly to deal with the contamination of the fluid in terms of individual particles.
Moreover, such detailed information is usually not required on this scale. Therefore, the
distribution of dirt is described via the concentration of particles.

e The previous two aspects require a different approach to account for the change in
permeability of the filtering media due to the loading with dirt: If the clean medium is
already treated as a homogenized continuum with no distinction between pore spaces
and solid skeleton, then there is no way to “add” the captured dirt to the solid part in
the domain. In other words, the constriction of the pore spaces due to the deposition
requires a different modeling approach on the macroscopic level.

We will discuss the following aspects of modeling and simulation of macroscopic filtra-
tion:

e models for slow and fast flows through the filter element,
e various models for the deposition of dirt in the filtering medium with the focus on depth
filtration processes,



Modeling and Simulation of Filtration Processes 193

e an approach to estimate the deposition model parameters from given measurement data,
models for the time evolution of the permeability of the loaded media,

e numerical algorithms for the simulation of flow and particle transport and capturing at
the scale of filter element, and

e validation and calibration of simulation tools together with their benefits for the filter
element design.

For the sake of self-consistency in this section, we will repeat some formulas already given
in the corresponding section on the microscopic models.

4.2.1 Macroscopic Modeling of Filtration Processes

On the level of filter elements, the description of the domain under consideration is some-
what different from the microscopic case. On the macroscopic scale, one has to take into
account the geometric features of the filter element’s housing and the filtering media.
Moreover, the inflow and outflow regions can have a non-trivial shape. Therefore, it seems
obvious to decompose the filter element’s domain £2™2"  R¥ into (at least) three parts:

e the subdomain .er?ac“’, occupied by the “free” fluid outside of the filtering media,
o the solid part £2{"%"*, occupied by the filter housing, ribs, supporting meshes, etc., and
e the porous subdomain §2;%“"°, occupied by the filtering media.

Obviously, it holds that
Qmacro — QIleﬁCI‘O U _Q;nacro U ‘Q[I?acm’

Q?acro N Q;nacm N Q;)nacro — @

Examples of filter element geometries are shown in Fig. 16. It is worth noting that de-
pending on the field of application, a filter element can contain several filtering media of
different types. So, in general, one has
Nm Nﬂl
macro __ macro macro __
2,70 = 2,7, 2, =9,
i=1 i=1
where N, denotes the number of filtering media involved and .Q;,“"gcro is the subdomain
occupied by the i-th filtering medium.
The boundary I" = 9£2™#" also decomposes into several parts:

Ir=r;ur,ulry, (16)

where [ is the inlet (or inflow) boundary, I7, is the outlet (or outflow) boundary, and I
is the solid (or wall) boundary part. In some cases, there are several inlets and/or outlets
and, depending on the application, pressure-controlled bypass valves may also be part of
the filter housing.
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Fig. 16 Simple geometries of filter elements. Left: A conical filter element with a flat disc-shaped
filtering medium. Right: A pleated cartridge element. The fluid part Q}“acm of the domain is colored

blue, the porous part £2)1*" is shown in white, the inlet is marked in red, and the outlet in green

4.2.2 Macroscopic Flow Models
Assuming that the fluid under consideration is incompressible and that the flow is laminar,
there are several ways to describe the flow inside the filter element:

e The decomposition of the domain into a fluid region .Q?la“o and the porous subdomain
£2,7°7° suggests a coupled system of Navier—Stokes and Darcy equations.
e Alternatively, one can use the Navier—Stokes—Brinkman equations as a flow medium.

Usually, (clean) filtering media are highly porous, such that the usage of Brinkman models
is justified. Since we will focus on industrial applications, the coupled Navier—Stokes and
Darcy system will not be discussed here. A more detailed argumentation and comparison
of the two formulations can be found, e.g., in [42]. With the notations used so far, the
unsteady Navier—Stokes—Brinkman equations read

V.-u=0,

p(g—?+(u-V)u>—v-(ﬁVu)+uK1u=—Vp+f. (17)
Note that the momentum equation contains the effective viscosity (1, which might differ
from 1 in £277%°. Outside of the porous region £2*", it holds that /i = w and clearly
K1 =0, such that in .Q;“acm, the equation is identical with the usual Navier-Stokes sys-
tem.

A typical set for the boundary conditions is the following:

u(x) =wup(x), xelj; p(x)=0, xely; u(x)=0, xely. (18)

The boundary conditions can be naturally extended to the case of multiple inlets and/or
outlets.
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As already mentioned, the choice of the interface conditions between the free fluid
subdomain and the porous subdomain is of special importance when modeling the flow.
In the case of depth filtration, when the flow is (essentially) perpendicular to the porous
media, requiring the continuity of the velocity and of the normal component of the stress
tensor are a natural choice (see, e.g., [42, 54]).

We refer to ([42]) for other variants and further details on this matter.

For moderate volumetric flow rates and corresponding flow speed through the filtering
medium, the Navier—Stokes—Brinkman system has proven to be a suitable mathematical
model. However, it has been observed that the proportionality between the pressure gradi-
ent and fluid velocity according to Darcy’s law does not hold for fast flows and there are
relevant application fields (e.g., air filtration) where this has to be taken into account.

There is a good deal of literature (see, e.g., [58, 82, 83] and references therein) on dif-
ferent models for fast flows through porous media. We shall refer to these models as non-
Darcy models. In order to include the nonlinearity in the Navier—Stokes—Brinkman equa-
tions (17), the permeability K is replaced by a so-called apparent permeability term Kppp.
We list some examples for this.

If the Darcy law is valid, then the Navier—Stokes—Brinkman equations do not need any
modification. Therefore,

/,LKEE,;:/LK_I. (19)

For the classical Forchheimer model (see [73]), one has

— - p
K pp =K ™! + Z Flul, (20)

with the Forchheimer coefficient F'. The Ergun-type models (see [69, 100]) also incorpo-
rate a quadratic term. They read

-1 _ 1 1Y
w K app — 1% K + ﬁ
with the Ergun coefficient E. These two models are widely used in the engineering lit-
erature and commercial software packages for the simulation of the flow. A more recent
example for non-linear pressure drop models was given by Barree and Conway (see [57]),
which is based on the pore space Reynolds number

Elu|, 21

_ pus
M 9

Re

where u is the Darcy speed through the porous medium and £ is the characteristic length,
related to the (average) pore size of the medium. The apparent permeability depends on
the flow as follows:

K — Kmin \
MKi)L = H«(Kmin + — ) . (22)
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This model provides a single formula to cover the entire range from low to quite high
volumetric flow rates. At low flow rates, this model coincides with Darcy’s law and it
agrees well with Forchheimer’s law for intermediate flow rates. Furthermore, the model
features asymptotic behavior at rather high flow rates, which indicates there is a constant
permeability (or minimum permeability Kpi,), which is consistent with laboratory mea-
surements.

Based on the method of asymptotic homogenization, the authors of the paper [56] con-
clude that the nonlinear term cannot be quadratic, but should be cubic instead. In this
context, it should be noted that some experimental papers report a linear dependence of
the Forchheimer coefficient on the velocity, which means that there is a cubic term with
respect to the velocity.

It is worth noting that the concept of an apparent permeability is not standard when
modeling the flow through porous media. However, this approach allows for a simple and
compact description of a class of models and the corresponding numerical algorithms that
are able to handle fast flow scenarios. Furthermore, although fast flows are discussed here,
all the considered models describe laminar flows. Possible turbulent effects are outside the
scope of our considerations.

4.2.3 Macroscopic Models for Particle Transport and Deposition
As already mentioned at the beginning of this section, the concentration of dissolved par-
ticles is a suitable quantity for describing the distribution of dirt on the macroscopic level.
For a given particle type, this can be the count per unit volume or, equivalently, the par-
ticle mass per unit volume. In the following, we will denote by C the concentration of
dissolved particles and by M the concentration of deposited dirt. We will restrict ourselves
to the mathematical treatment of depth filtration processes. The modeling of cake filtration
on macroscale is not considered here, although it is a subject of very active research (see,
e.g. [89, 96] and [53] as well as the references therein).

Assuming that the particles travel with the velocity field and taking into account the
diffusion and deposition in the porous medium, the evolution of the concentration of dis-
solved particles is described as follows:

aC Q
—+u~VC—DAC={O’3M reqs

Jt TR )CEQP.

(23)

Here, D denotes the diffusion constant. Thus, the evolution of the concentration C(x, t) of
dissolved particles is modeled by a convection—diffusion-reaction equation. The reactive
term is non-zero in the porous regions only (depth filtration) and is given by the absorption
rate, i.e., the time derivative of the deposited number (or mass) of particles M.

The following boundary conditions are usually imposed for the concentration:

Vxel;:C(x,t)=Cin(t), (24)
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where Cj, denotes the prescribed inlet concentration and
aC
VxelyUTl,: a—(x):O. (25)
n

4.2.4 Macroscopic Models of Depth Filtration Processes

On the macroscopic level, the filtration process is modeled by defining the absorption rate
appearing on the right hand side of (23). Here, we point out that dusts consist of particle
mixtures with different particle sizes and materials, so that under real operating condi-
tions, each species can exhibit a different filtration behavior. This leads to the necessity of
modeling individual filtration behavior for each of these components.

It is certainly beyond the scope of this short section to provide a complete survey of
depth filtration deposition models. The discussion here is restricted to presenting a few
examples that have proven useful in industrial filtration processes. A survey of classical
models can be found e.g. in [77] and [97].

A very simple (yet useful) model is obtained by assuming that the absorption rate is
proportional to the concentration of dissolved particles, i.e.,

oM
— =«C, (26)
ot

where o > 0 is called the absorption coefficient. This model is valid in most cases for the
initial stage of filtration, when the filtering medium is still (quite) clean. Similarly to the
filter cake on the surface, the deposit in the medium can also have an influence on the
capture rate. Therefore, most macroscopic depth filtration models acquire the following
form:

aM
. =a@(M)C — ¥ (M). Q7

The function @ describes the influence of the deposit on the capturing of dissolved par-
ticles, whereas ¥ serves as a “loss term,” modeling the desorption (washing out) of cap-
tured particles. Denoting once again by « the absorption coefficient of the clean filtering
medium, we have @ (0) = 1 and ¥ (0) = 0. If the absorption rate is increased by the de-
posit, the upstream layers of the filtering medium will collect more dust than the down-
stream layers. This leads to the so-called clogging of the medium on the upstream side.
A linear clogging model was introduced in [78] for water filtration and later studied in
[63] for aerosols. It reads:

M _ 14+ M C (28)
Jat -« My ’

i.e., we have ¥ (M) =0 and @ (M) = 1+ M/My. The absorption rate depends linearly on
the deposit already present in the medium, as described by the parameter M.

As already mentioned in Sect. 4.1, many filtration processes begin with an initial depth
filtration stage, which is followed by cake filtration phase (see also Fig. 15). During the
transition from depth to cake filtration, one usually observes a sudden increase of the
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absorption rate. In order to model this transition, a two-stage model was introduced in
[90]:

oM | e +400C, M <M,
= (29)

ot la(+ M 4o Myc M > M.

Once the deposit exceeds a certain value M1, a second accelerated filtration stage begins.
The “acceleration” is described by the parameter a > 0. Such a behavior is well-known
in aerosol filtration but, depending on the operating conditions of the filter element, it can
also be observed for liquids.

Especially in liquid filtration applications, one can observe that a part of the deposit
is released into the fluid. In order to describe such phenomena, the following model was
introduced in [85]:

BM_ C M 30)
or oo T

Here, y > 0 denotes the release coefficient (re-entrainment parameter). The models dis-
cussed above describe depth filtration, which was the main topic for the Fraunhofer ITWM
in studying macroscopic filtration processes. Recently, research was initiated on the macro-
scopic modeling and simulation of cake filtration, and more importantly, on combined cake

filtration (for large particles) and depth filtration (for small particles). First results can be
found in [12].

4.2,5 Modelsfor Permeability

From our considerations of the microscopic level, we know that captured particles lead to a

constriction of the pore spaces in the medium, which results in increasing flow resistance.
Therefore, the permeability has to be treated as a quantity depending on both space x

and time 7. The question arises as to how to transfer information about the deposits to

the changed permeability. Experimental and theoretical studies have shown that the (local)

permeability strongly depends on the (local) porosity of the filtering medium

Vpores

¢=-

, €2y

which can be extended to a porosity distribution ¢ (x) by considering representative ele-
mentary volumes in the medium. The majority of macroscopic permeability models are of
the form

K(x)=r’F(p)),

where r denotes the (average) radius of the fibers in fibrous media or the particles in
granular media, respectively.

A well-known example for such a permeability model is the one derived in [79] for
fibrous porous media:

, 3 In(1—¢)+0.931

KJJ(d)):_rﬁbz_O 1—¢

(32)
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For granular porous media, the Kozeny—Carman model is widely used (see e.g. [83]):

3
Kkc(@) = rsarcpar(l‘fw, (33)
where the parameter cp,, is related to the sphericity of the particles.

When a fibrous medium is loaded with (more or less) spherical particles, the contri-
bution of the deposit to the total flow resistivity will in general differ significantly from
the resistance of the medium, such that the use of a permeability law for fibrous materials
or for purely granular materials cannot be expected to produce good results. It therefore
seems both natural and promising to use models combining the above two permeability
models,

1 1 -1
K@) = + — : 34
© <Kclean Kload(¢+(t))) GY

i.e., the permeability component due to the deposit is assumed to depend on the increment
of solid volume fraction ¢ = 1 — ¢ at time ¢:

b1 (1) = p(t) — $(0).

An example for such a combined permeability model was introduced in [1]. The impact
of the use of such combined permeability models on the quality of numerical simulation
results will be shown in Sect. 4.2.9.

Note that, in general, the permeability depends not only on the porosity, but also on the
microscopic structure of the filtering media and the deposited particles. This suggests the
use of homogenization methods for the computation of the permeability and in fact, these
methods have proven to produce accurate results. Examples of these multiscale models
and corresponding algorithms for filtration processes are discussed in Sect. 4.3.

4.2.6 Numerical Algorithms for the Simulation of Filtration Processes on
the Macroscopic Scale

In most cases, the time scale for the consideration of filtration phenomena on the pore scale
is very different from the time scale used for the modeling of filtration on the macroscopic
level: The deposition of individual particles (which is typical for the pore level modeling)
does not immediately lead to a significant change in the permeability of the homogenized
porous medium (which is characteristic for modeling on the filter element scale). There-
fore, the following quasi-stationary approach has proven to be very effective for computer
simulation on the macroscopic scale (see Fig. 17):

1. Compute the flow field by solving the Navier—Stokes—Brinkman equations (17).

2. Solve the Transport-Diffusion-Reaction equation (23) and compute the captured mass
M (x, t) in the filtering medium.

3. Update the porosity ¢ (x, t) and, using a suitable model, the permeability K (x, ¢) of the
filtering medium.
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Fig. 17 The algorithmic principle for filtration simulations on the macroscale

4. Repeat steps 2. and 3. until the (average) permeability of the filter medium has changed
to a certain degree since the last computation of the flow. Once this is the case, the flow
field cannot be regarded as valid any longer and the algorithm continues starting from
step 1.

Specifying a threshold for the permeability change is already a first step towards compu-
tational efficiency, since the computation of the flow field can be very costly. On the other
hand, an up-to-date knowledge of the flow field is crucial to a correct prediction of the
particle transport to and through the medium.

A comprehensive discussion of numerical algorithms for Navier—Stokes—Brinkman
equations and for convection—diffusion—reaction equations is certainly beyond the scope
of this text. We will restrict ourselves to algorithms which have proven effective in the
context of filtration simulation.

4.2.7 Space and Time Discretization
As usual in Computational Fluid Dynamics (CFD), the following steps are involved in the
numerical simulation of filter elements:

e Generation of a computational grid (in most practical cases, based on CAD data),

e Time stepping and spatial discretization of the Navier—Stokes—Brinkman equations (17)
on this grid,

e Time stepping and spatial discretization of the concentration equation(s) (23) on this
grid, and

e solution of the (usually) large-scale linear systems obtained by these discretizations.
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Fig. 18 Left: A CAD geometry of a pleated cartridge filter element with housing, filtering medium
(white), inlet boundary (red) and outlet (green). Right: Three-level grid for the simulation of the
pleated cartridge (magnified part of the cross-section of the 3D grid)

Grid Generation Various structured and unstructured grids are used in CFD, (see e.g.
[71, 72, 102] and references therein). As mentioned in Sect. 3.2, the grid generation for
complicated filter element geometries can be a quite challenging task. Here, we restrict our
considerations to simple grids which allow for both easy and relatively robust generation
algorithms, i.e., we present the numerical discretization on uniform Cartesian grids based
on voxel cells and grids obtained from these grid by local refining or local coarsening (see
Fig. 18).

The number of grid cells is directly related to the number of unknowns and therefore,
the computational cost. Therefore, the grid size should be minimized. On the other hand,
a sufficient resolution of geometrical features is crucial to the accuracy of simulation re-
sults. A coarse grid can accelerate the computations, but the quality of the results can be
rather poor. A reasonable trade-off is the decomposition of the computational domain into
subregions requiring a fine grid resolution and other parts allowing for a relatively coarse
grid.

When applying this local grid resolution strategy to filtration simulation, material inter-
faces and boundaries have proven to be suitable criteria for the selection of the subregions:

e Near the boundary I" of the domain, the finest resolution is used for the grid, in order
to account for boundary effects.

e In the porous region Q;“acm of the filter medium, the finest resolution is used, so that the
pressure drop across the medium and the local changes in the particles’ concentration
and the distribution of the captured mass are resolved with good accuracy.

e The fluid-porous interface is also resolved on the finest level in order to account for
effects on the pressure and concentration at the material interfaces.

macro
§2§

e The remaining parts of the fluid subregion can be resolved by a coarser grid.
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Using this method recursively, several resolution levels can be achieved in one grid, leading
to a further reduction of the grid size. An example for such a multi-resolution grid applied
to a pleated cartridge filter is shown in Fig. 18.

In combination with state-of-the-art solution methods for the linear systems, this grid
generation technique can result in a five-fold speed-up of the simulation for the same
geometry. Further details about the voxel grids considered here can be found e.g. in [41].

Time Discretization of the Flow Problem The discretization of incompressible Navier—
Stokes and Navier—Stokes—Brinkman equations is non-trivial, because there is no explicit
equation for the pressure, but only an implicit constraint given by the continuity equation.

There is a good deal of literature on how to overcome this difficulty, such as splitting
algorithms and/or preconditioning for the Navier—Stokes equations (see, e.g. [72, 74, 94,
98D).

A straight-forward application of these algorithms to the discretization of the Navier—
Stokes—Brinkman equations is not recommendable, since the Darcy term in this equation
requires special consideration. In the following discussion, possible ways to do this will
be presented.

As a preliminary remark, note that the apparent permeability in the non-Darcy cases
is linearized using Picard’s method. This is not the most robust and efficient approach in
general, but it allows for a unified formulation of the algorithms.

We will use the following notation: The discretized operators for the convection and
diffusions terms are denoted by C(u)u and Du, respectively. G is the discrete gradient,
G, the discrete divergence operator and Bu, the discretized Darcy term in the momentum
equations.

The actual form of these operators depends on the kind of spatial discretization, which
will be the subject of the subsequent paragraph. The superscripts -“*! and % denote the
new and old time step, respectively, and 7 is the time step length, i.e., T = ¥+ — ¢k,

A splitting scheme for the time discretization of the Navier—Stokes—Brinkman equa-
tions (17) can be formulated as follows:

(pu* = pu) +7(C(u!) - D+ BJu* = 1t 35
(puk+l _ ,Oll*) 4 'L'(Bllk+1 _ Bu*) — T(ka+1 _ ka) (36)
G puft! =0. (37)

Operator splitting or projection methods are different names related to very similar
concepts (cf. [65, 71, 72, 74]). All these methods first solve the momentum equations and
then a pressure correction equation. This is why the algorithm above can be regarded as a
Brinkman variant of the well-known Chorin method for the Navier—Stokes equations.

For the solution of the momentum equations (35), the pressure value of the previous
time step is used on the right-hand side. Thus, one obtains a prediction u* for the velocity
(intermediate velocity).
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The equation for the pressure correction

q:pk-H _pk

is obtained by applying the discrete divergence operator to (36):
1G'Gq =G (pu**! — pu*) + G ' (Bu*™! — Bu*).

Together with the continuity equation (37) and the assumption that the pressure profile in
the flow direction is essentially linear (i.e. G'Buftl ~ 0), this simplifies to

1G'Gg = —G' (pu* + tBu*). (38)

This is nothing but a Poisson equation for the pressure correction with constant coeffi-
cients.

The drawback of this approach for the pressure correction is the lack of information
about the porous medium in the Poisson operator and the fact that the continuity equation
is satisfied only approximately in the filter medium region .Q;“acro. This variant is therefore
not advisable for the numerical simulation of the flow through porous media with non-
constant permeability.

In order to improve the pressure correction, consider the following reformulation of
(36):

<I+ ZB),ouk+l - (I + EB),ou* =1Gyq,
P P

where I denotes the identity operator. Since the Brinkman operator is positive definite,
I+ % is invertible, such that

—1
T
out! — put = r(I + —B) Gq. (39)
Je
As before, we apply the divergence on both sides and use the continuity equation, giving
the following variant of the pressure correction equation:

—1
GT <I n 1B> Gg=—GT pu*. (40)
0

In the fluid region .Qr]?acm, this coincides with the previous pressure correction equa-
tion (38), because there, we have B = 0. In the porous subdomain .Q;,nacm however, the
Brinkman term is dominant. There, this variant is an approximation to the Poisson prob-
lem that would be obtained by applying the divergence to Darcy’s law. We see that the
pressure correction (40) is equally suitable for both the fluid and the porous regions, in
contrast to (38).

After solving the pressure correction equation, the pressure is updated,

P =pk+q, 1)
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+1

and the new velocity value u**! is computed according to (39):

-1
put Tl = pu* + r(I + %B) Gg. (42)

Time Discretization of the Concentration Equation Using the general form (27) for
the deposition model, a straight-forward time-implicit discretization of the concentration
equation (23) reads:

Cn+1 —Cc"

. n+l) _ n+1
~—— +u-(6c") —pC

0 in g1pacro
T | —@@MC - w(M™))  in 21,

The discrete times 1" (n =0, 1, ...) and corresponding time steps Ar = "1 — 1" belong
to the time scale on which the loading of the medium occurs and therefore, they are not to
be confused with the ones used for the flow problem above. This discretization approach
is obviously one of the simplest choices, but it has proved to be very efficient for quite a
lot of scenarios.

At this stage of the numerical simulation, the choice of suitable deposition models and
the knowledge of proper values of the corresponding model parameters are crucial to the
reliability of the simulation results. We will address the question of how this can be done
in the next subsection.

After the problem for the concentration is solved, the solution C n+1 s used to update
the local captured mass M"*!. This in turn is used to update the local porosity and perme-
ability, and a re-computation of the flow is performed, if necessary.

Finally, relevant macroscopic key performance indicators, such as the total pressure
drop across the filter element, its filtration efficiency, and the total captured mass, can be
deduced from the numerical results produced by the flow and concentration simulation.

Spatial Discretization For the numerical solution of flow problems involving porous
media, the following discretization methods can be used:

Finite volume methods (FVM),

Finite difference methods (FDM),

Finite element methods (FEM),

Lattice Boltzmann Method (LBM), particularly for pore-scale problems, and
Meshfree methods.

In order to make the solution procedure as robust as possible and to ensure the local con-
servation of mass, momentum, and particle concentration, the finite volume method is a
good choice. There is much literature devoted to the FVM discretization of Navier—Stokes
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equations (cf. e.g. [71, 99, 102] and the references therein). Therefore, we will limit our
considerations here to those aspects that need special attention when the FVM discretiza-
tion is applied to the Navier—Stokes—Brinkman equations.

If a cell-centered scheme is used, i.e., if both pressure and velocity values are located in
the centers of the grid cells, there is a risk of oscillations occurring in the numerical results.
The pressure is especially sensitive to these oscillations. This effect can be avoided or at
least dampened by using the Rhie-Chow interpolation (see [91]). Another way to overcome
this problem is the use of staggered grids, i.e., the velocity components are located on
grids that are shifted by half a cell length in the corresponding coordinate direction (cf.
e.g. [99]).

We already mentioned that, in many cases, the filter media are very thin compared to
the typical length of the geometry (housing dimension). Even if a multi-resolution grid is
used, the finest grid in the medium may have a relatively coarse resolution compared to the
thickness of the medium. In order to ensure good numerical results in these cases, special
interpolation techniques are required at the fluid-porous interfaces.

For further details on these matters, we refer the interested reader to [41, 42] and [5].

4.2.8 Parameter Estimation for Depth Filtration Models

We now turn to the question of how to identify proper values for the parameters found in
the filtration models. The choice of the appropriate model will in general depend on the
combination of the following influencing factors:

e the fluid,
the types of filtering media (material, porosity, etc.),

e the dirt/dust to be removed, in terms of material(s) involved and particle size (distribu-
tion), and

e the operating conditions of the filter element (temperature/viscosity of the fluid, volu-
metric flow rate, etc.).

In most cases, it is not clear a priori which model is most suitable for a given setup,
so measurements have to be done to find the appropriate model and the corresponding
parameter values.

This should be done for several experimental setups in order to compensate for effects
that are not taken into account by the (sometimes quite) simplified deposition models. As
already stated in Sect. 2.1, on the pore scale, the filtration efficiency depends on many
factors and most of these depend, in turn, more or less directly on the flow velocity in the
medium. Consequently, the parameter values should be obtained for the range of flow ve-
locities at which the filter element will operate. Once this is accomplished, look-up tables
can be created from which the parameter values for the actual velocity can be determined
during the simulation.

For the sake of simplicity, let us assume that the test dust consists of only one particle
type (monodisperse dust), such that it is sufficient to consider one particle concentration.
A simple experimental concept is the so-called single pass experiment (see Fig. 19). Here,
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Fig. 19 Single-Pass experiment with constant upstream concentration

a flat probe of the filtering medium is installed in a sufficiently wide flow channel, such
that boundary effects can be neglected. The contaminated fluid flows through the porous
medium at a constant flow rate. Using particle counters, the concentrations upstream and
downstream of the medium are measured at certain times #; (i =0, ..., N). A common
quantity is the so-called beta ratio, which is defined as the ratio of the concentrations
upstream and downstream of the filtering medium. For a medium of thickness L and a
measurement performed at time ¢, this reads

C(,1)

ﬁ0%=56j5~

(43)

Since the upstream concentration is kept constant in the single-pass setup and local vari-
ations of the concentrations are negligible in the channel upstream of the porous medium,
we can assume

C(0,1) = Cin,

where Cj, denotes the inlet concentration.

In addition, let us suppose that for a given combination of fluid, dirt, and filtering
medium, a suitable filtration model is identified. The goal is then to determine the val-
ues of the filtration model parameters from a series of measured beta ratios

lgizﬁexp(ti), i=0,1,...,N.

Due to the inevitable noise in the experimental data, the estimation method should be as
robust as possible.

(Semi-)discretized methods based on finite differences are flexible with regard to the
experimental setup, but the approximations will in general create an additional sensitivity
to the noise in the data. A more robust approach is based on exact solutions, which can be
obtained for a quite large class of depth filtration models, provided that the experimental
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data are obtained in a single-pass setting. In this case, one can assume that the change
in local concentration in the filtering medium is caused by transport and filtration only.
Diffusion effects can either be neglected before-hand (e.g. in oil filtration) or accounted
for in the simulation later by providing suitable look-up tables obtained for different ex-
perimental conditions. Under these conditions, the concentration equation (23) simplifies
significantly to a one-dimensional stationary problem:

oCc oM

Vi>0, xe[0,L]l:u—=——,
0x ot

(44
and boundary conditions
Vi>0:C(,t) = Cjp.

Let the filtering medium be clean at initial time #y = 0, i.e.,
Vxel0,L]: M(x,0)=0.

With these assumptions, one obtains the following exact solutions for the deposition mod-
els we have considered so far: The concentration for the simple filtration model (26) reads

C(x,1) = Cipe™ ", (45)

and for the linear clogging model (28), one has

Cin
aC;

C(x,t)= .
14e™ ' (ei* —1)

(46)

For the two-stage clogging model (29), one has to distinguish several cases: Denote by

My M
te = In(1+— ),
aCiy My

the time at which the second, accelerated stage of the filtration process begins, i.e., for
t <t., the model is identical to the previous one and therefore, the expression for the
concentration is the same. For ¢ > 7., a certain upstream part of the filter depth is described
by the second accelerated stage and the remaining part is still described by the initial linear
clogging model. For ¢ > t., the interface of these two zones is located at the position

u M Mo —aM bag o,

xc(t)=—701n 1+¥(1_e a7t Cin(t zc)) .
a Mo —aM, Mi(1+a)

For t > t. and x < x.(¢), the concentration reads

Cin ( 47)

C(x,1) =

My—aM ’
| 4 Moty ealMigcino_zc)(e e 1
MofaMl
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whereas for ¢ > ¢, and x > x.(t), we have

1 M M\ otac,—1)
C(x,t) =Cipl — — =1 1+ — Mo~
e m<1+a<(aMo )+< +Mo>e
M() a -1
1 v g(x*xc(f)) -1 . 48
x(( +M1>e 48)

Finally, the analytical expression for the concentration in the case of the linear release
model (30) is

t
Clx,1) = Cipe— o (e”’10<2 /ﬂxt) +7// e”’lo<2 /ﬂxr>dr>, (49)
u 0 u

where [y denotes the modified Bessel function of the first kind of order zero. The analytical
beta ratios for a given model are obtained from the corresponding exact solution by setting
x=Landt=1¢t fori=0,1,...,N:

Cin

B) = CL.)

For the estimation of the corresponding filtration model parameters, a least-squares ap-
proach reads

N

> (B — Bi)° — min,

i=0
The solution of these non-linear equations can be computed using a quasi-Newton algo-
rithm. In order to test the robustness of this approach in a reproducible way, a set of exact
parameters was chosen for each of the models. Synthetic measurement data were created
by evaluating exact beta ratios evaluated at times #; and adding noise. This set of noisy
beta ratios served as input for the parameter estimation. Finally, the reconstructed curves
were compared to the original, exact ones. Qualitative test results are shown in Figs. 20,
21 and 22.

Exact solutions not only serve as a means to obtain deposition model parameters in a

robust way. They can also be used for a first, rigorous validation of the simulation software
by running numerical tests for single-pass experiments in simple geometries.

4.2.9 Simulation of Filter Elements: Examples, Validation, and Benefits

In this section, we briefly discuss how a filtration simulation software is validated and
calibrated by applying it to a simple reference problem. Once this step is accomplished,
simulations can be done for more sophisticated real-world designs.

Conical Housing with Flat Sheet Filtering Medium In order to validate and calibrate
the simulation software, a test setup should be chosen that is equally accessible to both
measurements in the lab and simulations in a reproducible way. The geometrical shapes of
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Fig. 20 Parameter identification for the linear clogging model (28)
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Fig. 21 Parameter estimation for the two-stage model (29)

the housing and the filter medium should be as simple as possible, so that their influence
on the results are minimal. This aspect is important in order to validate the models (and
identify the corresponding parameters) for filtration and permeability change.

As an example, we consider a conical filter housing with a flat sheet filter medium, as
shown in Fig. 16, on the left.

As for the parameter estimation, a constant volumetric flow rate is prescribed, together
with the specification of a standardized test dust, the type of fluid used, and other rele-
vant experimental parameters, such as the temperature, etc. Assuming that the flow model
given by the Navier—Stokes—Brinkman equation (17) is appropriate for the test fluid, what
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Fig. 22 Parameter estimation for the release model (30)

remains is to validate the concentration/deposition models and the model chosen for the
permeability.
With this well-defined experimental setup, the validation proceeds as follows:

e First, the clean permeability model is determined by both measuring and simulating the
total pressure drop across the conical filter element. With these measurements, one can
check whether Darcy’s law is valid for the entire range of flow rates or which non-linear
pressure drop model has to be chosen. In the latter case, the model parameters can be
deduced from the experimental data.

e After having chosen a series of measurement times t; (i =0, 1, ..., N), the medium is
loaded with the test dust and the series of beta ratios are measured. In the simulation,
these beta ratios are easily derived from the solution of the concentration equation (see
Fig. 23, left). Note that this procedure is not necessarily restricted to single-pass tests;
other test types (e.g. multi-pass) can also be treated, provided they are implemented in
the simulation code. If good agreement of measured and simulated beta ratios is ob-
served, the deposition models and all parameters involved are validated. In particular, it
follows that the captured mass M computed in the simulation (see Fig. 23, right) agrees
well with the corresponding mass deposited in the real medium in the experiment. Us-
ing gravimetric analysis, the captured mass can also be measured in the experiment.

e Once it is clear that the choice of deposition model is suitable, the permeability model
used for the simulation must be validated. This can be done by direct comparison of the
measured total pressure drop and the corresponding values obtained in the simulation
at the times ;.
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Fig. 23 Simulation results for the test filter element with conical housing. Left: Concentration of
dissolved particles (central section, red: high concentration, blue: low concentration). Right: Distri-
bution of captured mass in the filter medium
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Fig. 24 The increase in pressure drop as a consequence of the loading of the filter medium with
dust. Comparison of the measured pressure values (red) with the simulation results when using the
Jackson—James model (green) and the combined permeability model (blue) (Graphics: IBS Filtran)

In general, this procedure is done for several different conditions (viscosities, flow rates,
etc.), to ensure that the models and parameters are able to cover a certain range of operating
conditions.

Figure 24 shows the time evolution of the total pressure drop in a test filter element
for a flat sheet of a highly efficient medium that is loaded with test dust. Depicted are the
pressure curves that were measured in the laboratory and two simulated curves obtained
by the software SuFiS®. As one can see, the proper choice of the permeability model is
crucial to a reliable prediction of the pressure drop by the computer simulation. In the
study shown here, one can see that the combined permeability model (34) produces much
better results than the Jackson—-James model (32) alone.
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Fig. 25 Simulation results for the pleated cartridge filter element. Left: Streamline representation
of the simulated velocity field of the flow through the element colored by magnitude (red: high
flow speed, blue: low flow speed). Right: Streamline representation of the concentration of dissolved
particles in the filter element (red: high concentration, blue: low concentration)

Application to Real Filter Element Designs After successfully validating the models
and identifying parameters, one can proceed with the simulation of more sophisticated
filter element designs for the market. Figure 18 (left) shows a CAD geometry of a pleated
cartridge filter element. This a classical filter design, since a large area of filtering medium
can be enclosed by a relatively small housing. The geometry of the element is given as
an STL surface (Surface Tesselation Language), which is a common output format for
CAD tools. From this geometrical description, a computational grid for the Finite Volume
Method is generated as depicted in Fig. 18 (right).

Figure 25 (left) shows the computed velocity field of the fluid flow inside the pleated
cartridge filter element. It can be seen that the highest flow speeds are close to the inlet
and outlet of the filter. With simulations, the velocities and pressure values at different
cross sections of the filter element can be visualized and analyzed. Among other things,
this gives an idea about the optimal pleat count and shaping. Figure 25 (right) shows the
particle concentrations in a selected cross-section of the filter element.

By providing such detailed information, the simulation gives valuable insight into the
distribution of “filtering activity” regions in the element for different times during the
operation of the device. It would require substantial efforts to retrieve a comparable level
of information experimentally, if it were possible at all. The product developer will benefit
from the simulation results by receiving suggestions on the further optimization of a design
without the need to construct prototypes.

43 Multiscale Modeling and Simulation of Filtration Processes

Filtration processes, as specified earlier, are intrinsically multiscale. The mathematical
challenges in multiscale modeling and simulation of filtration processes were discussed
briefly in Sect. 2. In this section, we will present some details on:
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e Modeling the permeability of filtering media;
e Subgrid algorithms for the simulation of flow within filter elements; and
e Multiscale modeling and simulation of filtration processes.

The first topic is rather general and concerns not only filtration processes, but also any flow
in porous media. While the last two topics can also be considered from a general viewpoint,
here we discuss developments done exactly for the need of filtration simulation.

4.3.1 Modeling the Permeability of Filtering Media

Permeability plays a key role in simulation of the filtration processes, and we will discuss
it in some detail. Rough models for permeability were discussed in Sect. 4.2.1. These are
the Kozeny—Carman (33) and Jackson and James (32) formulae. They link permeability
to the porosity for granular media or to the porosity and fiber diameter for nonwoven fil-
tering media. Although very useful, these formulae have a limited area of applicability
(e.g., only scalar permeability, only monodiameter distribution for (32), etc.). A more ac-
curate modeling of permeability can be done on the basis of asymptotic homogenization.
Let us recall some known results, which are important for understanding the approaches
discussed later on. Consider for a moment slow, incompressible laminar flow (described
by the steady state Stokes equation) in a periodic microstructure, with Y being the fluid
part of the periodicity cell and Yg being the solid part of the periodicity cell. As known
(see, e.g., [70, 76]), the permeability in this case is given by

Kij = (Vya)i : Vy(,z)j>Y, (50)
where ', V! are solutions of the following cell problem:
—Aw' +Vri=¢ in Yr
V.o =0 inYp
o =0 on dYg
o, 7! Y -periodic. oy

The governing equations at the macroscale (effective porous media) are the well-known
Darcy equation and mass conservation equation:

u:iK(f—Vp) in 2
V.ou=0 in 2 (52)
u-v=_0 on 452

In the engineering literature, another approach for calculating the permeability is usu-
ally used. The Darcy equation at the macroscale is not derived, as in the case of homog-
enization, but is assumed to be valid, and is used to compute the permeability. More pre-
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cisely, the microscale Stokes problem is formulated in some REV (Representative Ele-
mentary Volume)

Vpl —uAul = f1 inY§
V.oul =0 inYg
u, =0 ondYg
u, 7! Y €-periodic, (53)

where ui, pé are microscale velocity and pressure, respectively. Assuming that the
Darcy equation with a permeability tensor is valid,

. dpt
Zm(f,; —<£> ) (54)
k=1 klye
then the permeability is computed as follows:
Kij=Kji={ul )y - (35)

It is shown in [75] that, in the case of Stokes flow in periodic microstructure, both
approaches are equivalent. However, there are no formal requirements for periodicity of
the media for the volume averaging approach; the cell problem can be easily reformulated,
omitting the periodicity requirement, and be formally applied to Navier—Stokes equations
as well. Although this approach can not be rigorously justified, we will use it in connection
with upscaling algorithms for the filtration problems presented in the next two subsections.

4.3.2 Subgrid Algorithm for Simulation of Flow Within the Filter Element
The motivation for developing the subgrid algorithm is the fact that filter element housings
can have very complicated shapes, e.g., featuring very thin media and comparably thick
walls and supporting ribs of different sizes and shapes. On a single uniform grid, such
differences in size can be accounted for in the simulation only by using a sufficiently fine
grid. However, such fine grids often make the simulation very costly or even impossible.
On the other hand, simulations on coarse grids do not provide enough accuracy for the
pressure drop in the filter element. Local grid refinement or coarsening is a possible rem-
edy, as already seen in Sect. 4.2, but even this can become computationally challenging
in cases in which the length scales involved differ too greatly. For this class of problems,
the subgrid algorithm has proven to be a suitable solution strategy. In this approach, one
solves the problem on a coarser grid, but accounts for the unresolved geometrical features
by solving local auxiliary problems on an underlying finer grid in some properly selected
coarse cells.

Subgrid methods have been used in connection with other applications, namely, in solv-
ing the Darcy problem for the fine and for the coarse resolution (cf. [55, 64]) and for the
Navier—Stokes—Brinkman equations in [51] and [18]. The upscaling approach presented
here is similar to the one proposed and justified in [75].
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For a given computational domain of the filter element, we consider a fine and a coarse
grid, with the property that the interior of each coarse cell is the union of the fine grid cell
volumes contained within it. Each fine cell is assigned a material (value), depending on
whether it belongs to the fluid part, the porous medium, or the solid region of the domain.
Accordingly, the resolution of the fine grid is chosen so that the material distribution in
the domain is represented sufficiently well. The (matching) resolution of the coarse grid is
selected in order to ensure an efficient numerical solution of the Navier—Stokes—Brinkman
equation

ou ~ =
P =V (AVu0) 4w i uo + Y po = fo. (56)
where the subscript 0 indicates that the corresponding quantity is considered on the coarse

grid.

The major purpose of the local fine grid simulations is the suitable upscaling of the per-
meability of the filter media, thus providing the effective permeability K. for the coarse
grid computations. To this end, a pre-processing step identifies the so-called quasi porous
cells, i.e., the coarse cells that contain more than one material in terms of the material dis-
tribution on the fine grid. The auxiliary problems for the upscaling are solved in the quasi
porous cells on the fine grid, using the actual permeability (distribution) of the medium
in the porous cells. The effective permeability is then determined using volume averaging.
Either one can compute Keg for each quasi porous cell or for a union of several quasi
porous cells. In the latter case, the resulting effective permeability is assigned to all coarse
cells that were involved in the computation. This variant is recommended e.g. if the coarse
resolution is too fine in the sense that the grid cells cannot be regarded as representative
elementary volumes.

The subgrid approach can be summarized as follows:

1. Choose/identify the quasi-porous cells on the coarse grid.
2. Solve the local cell problems on the fine grid. In some cases, it is sufficient to solve the
auxiliary problems only in some pre-selected quasi-porous subdomains.
. Compute the effective permeabilities in these quasi porous cells.
4. Solve the macroscopic flow problem (56)) using the coarse grid and the upscaled per-
meability Kefr.

W

Remark:

(a) Both the macroscopic and the local cell simulation use the same numerical method.
However, the criteria for convergence etc. will, in general, be different.

(b) If the number of quasi-porous cells is relatively large and/or the local grids contain
a relatively large number of fine cells, the computation of the effective permeability
may represent a major part of the total numerical costs. On the other hand, the auxil-
iary problems are completely independent of each other and, therefore, they allow for
effective parallelization.
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Fig. 26 Filter element housing developed by IBS Filtran (blue), with flat filter medium (yellow)

A more detailed presentation of the method can be found in [16]. A practical application
of the subgrid algorithm will be subject of Sect. 5.

4.3.3 Multiscale Modeling and Simulation of Flow and Filtration Efficiency
Processes

The above subgrid algorithm for solving flow problems in filter elements aims at solv-
ing local problems at a finer scale and, via upscaling, bringing the information to the
macroscale. The algorithm is suitable for flow problems when there is no back coupling
from the macroscale to the finer scales. This general concept must be further developed
when filtration efficiency has to be modeled and simulated. The processes at the microscale
and macroscale are not independent of each other in this case. The microscale geometry
changes due to the deposited particles, which leads to changes in the permeability used
in the macroscale equations. Conversely, the macroscopic velocity influences the transport
and capturing of the particles.

A sketch of one time step of the coupled microscale—macroscale simulation algorithm
for the simulation of filtration processes in an industrial filter (e.g., such as the IBS Filtran-
designed filter shown in Fig. 26) is as follows.

1. At the selected locations, as shown in Fig. 27 of the filtering porous media, Navier—
Stokes—Brinkman problems are solved;

2. The computed velocities are input for the Langevin equation, which together with the
prescribed deposition mechanism, is used to simulate particle transport and deposition
in these selected locations using the approach described in Sect. 4.1;

3. Based on a consecutive upscaling procedure, these results are used to update perme-
ability in the selected locations (see Fig. 27);

4. A proper interpolation procedure is used to calculate the permeability in the full porous
medium (see Fig. 28);

5. The updated permeability is used to compute the macroscopic velocity and pressure in
the whole filter element (see Fig. 29) using the approach described in Sect. 4.2; and

6. The computed velocities and the concentration of the particles are used as input for the
micro scale computations at the next time step.
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Fig.27 Left: velocity profile in a cross-section of the filter element. The points mark the positions of
the “observer cells” for the filtration simulation on the pore level. Right: result of the microsimulation
in an observer cell
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Fig. 28 Permeability distribution in filter medium calculated by interpolation. The locally varying
flow leads to significant inhomogeneities
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Fig. 29 Pressure distribution calculated from the macroscale simulation

These steps are repeated until some prescribed stopping criterion is satisfied (e.g., a cer-
tain duration of the filtration process or pressure limit). The selection of the locations
(windows) in which the microscale problem is solved can be tricky, but in some cases,
simple criteria can be applied based on experience, e.g., selecting locations near the inlet
and at the inlet, near the ribs, in the middle of a channel, etc. Of course, one needs to
have enough information about the microstructure of the filtering media and the particle
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size distribution of the dust. From an algorithmic view point, the fact that microscale and
macroscale filtration processes occur at different time scales can be used to select different
time steps for the microscale and macroscale simulations.

The computational complexity of the coupled multiscale simulations depends on the
number of selected locations where the microstructure is resolved. Here, however, as in
many other algorithms for multiscale problems, the simulations in the selected windows
can be performed in parallel.

Selected results for a practically relevant application (see Fig. 26) are presented in
Figs. 27 to 29. One can observe that the deposition process in the initially heterogeneous
locations leads to non-uniform changes in their permeabilities and to redistribution of the
macroscopic flow.

We have seen how mathematical research can help to handle complex filtration pro-
cesses both qualitatively and quantitatively by providing suitable models and nu-
merical algorithms. The calibration and validation is done by using well-defined
and reproducible experiments, which have to be done anyway, in most cases. Using
simulations does not mean at all that measurements in the lab won’t be needed any
longer. In fact, the computer-aided study of filtration processes supports the opti-
mization of experimental efforts in the sense that the lab resources can be used in a
more effective way for the innovation and improvement of products.

5 Successful Industrial Applications

In this section, we will present two cases in which filter manufacturers successfully applied
numerical simulation tools to speed up their developments and improve their products.

5.1 Accelerating Product Development at IBS Filtran

IBS Filtran' develops and produces parts for the automotive industry, such as suction fil-
ters, pressure filters, oil pans, and specialized filter media.

In order to assist the company with the design of filter elements, the Fraunhofer [TWM
has developed the tailor-made software SuFiS® (Suction Filter Simulation), in close col-
laboration with IBS Filtran (cf. e.g. [6]). The main focus of the collaboration has been the
development of a dedicated simulation tool specialized for the computer-aided design and
optimization of automatic transmission fluid filters. The purity of the transmission fluid is
crucial to the efficient operation of automatic transmissions in vehicles, so that the quality
and performance of the filter elements is of special importance. The development of these

11BS-Filtran GmbH, Morsbach, Germany, www.ibs-filtran.com.
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Fig. 30 A combi filter element
design by IBS Filtran. From
top to bottom: filter upper
cover (plastics), screen mesh,
rib tray spacer, non-woven
filter medium, plate bottom pan
(plate) (Graphics: IBS Filtran)

products is very challenging, requiring continuous adaptation of the filter element designs
to changes in the operating conditions and the available installation space.

An example of such a transmission filter element is shown in Fig. 30. Any optimization
of such a filter element has to be done under certain constraints. As already mentioned,
the installation space is very limited in the engine compartment, so that there is not much
freedom to vary the geometry of the filter housing. In order to minimize the pressure drop
while providing a high efficiency and dirt holding capacity, the following two parts of the
filter element were major optimization targets:

e The geometrical structure of the rib tray should provide mechanical stability while the
flow resistivity should be as small as possible.

e A highly efficient non-woven filter medium was selected for the purification of the
transmission oil. Without modification, the pressure drop across such a medium would
increase much too rapidly during the loading, especially when the transmission oil is
cold (high viscosity). The idea by IBS Filtran was to introduce a perforation of the
medium which should decrease the differential pressure, while still providing good
filtration efficiency. The identification of an optimal combination of number, size
and distribution of the holes in the medium should be based on numerical simula-
tions.

The length scale of the filter element is measured in centimeters, while the perforation
holes are on the millimeter scale or even smaller. Doing a numerical simulation on a single
grid would require a very fine resolution for the holes, causing very high computational
costs for the entire element. On the other hand, when using a coarse resolution, the perfo-
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Table 1 SuFiS® simulation results for perforated filter media. Top: Computational cost and pres-
sure drop (dP) when using a high resolution grid. Bottom: Computational cost, relevant component
of the permeability K»; and pressure drop (dP) when using the subgrid method. Here, T5g denotes
the CPU time for the solution of the auxiliary problems and / is the number of corresponding addi-

tional fluid layers

Grid resolution Number Memory Tcrpu dp

[mm] of CVs [MB] [s] [kPa]

2 5445 4,42 63,54 16,762

1 37400 26,49 465,02 11,627

0,5 299200 182,70 28271,47 1,579

0,25 2393600 1338,37 518425,0 1,762
Grid/subgridresolution l Ky TsG Tcpu dp
[mm] (1] [mm?] [s] [s] [kPa]
1/0,25 mm 4 0,00972 1126,3 1829,4 1,7984

rations would not be “visible” and therefore their influence on the pressure drop could not
be studied.

Therefore, the task was a perfect application case for the subgrid method presented
in Sect. 4.3: Here, the quasi-porous cells are those coarse grid cells containing the filter
medium with the perforation holes. In addition, a certain number of grid layers in the fluid
upstream and downstream of the medium were added to the quasi-porous cells.

In Table 1 (top), the results of typical single grid simulations are presented for different
grid resolutions. One can see that for the coarse grids, the holes are not (properly) resolved,
leading to an overestimation of the pressure drop. As one would expect, the results improve
with finer grid resolutions. But this goes hand in hand with a corresponding increase in
computational time and memory requirements.

The bottom part of Table 1 presents the corresponding data when using the subgrid
method: One can see that the computational efficiency is much higher, while at the same
time providing comparable accuracy in the results.

Using the SuFiS® software, it is possible to simulate standardized efficiency tests for
filter elements (e.g. ISO 16889, TFEM). The development engineers at IBS Filtran use
these features to predict the evolution of the efficiency and/or the pressure loss under test
conditions. For the perforated filter medium, the computer simulations enabled the design-
ers to predict the influence of the perforation pattern on the filter element’s efficiency and
dirt holding capacity (see Fig. 31) without producing corresponding prototypes that would
have required lengthy measurements.

The computer-aided identification of possible weaknesses in a design has led to a sub-
stantial speed-up in the company’s developmental process (see Fig. 32). For the final de-
sign of the perforated medium, IBS Filtran now holds a patent (cf. [67]).
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Fig. 31 Left: Particle deposition in the perforated filter medium, computed by SuFis®. Right: The
deposition in the medium as observed in the lab (Photo: IBS Filtran)

Experiments
Prototype ° Press.ure drop
e Efficiency tests Design cycle:
o .. 6 weeks
Design .
(CAD) Evaluation
\ CFD simulation /De;gn cycle:
(SuFis®) 1 week

Fig. 32 Acceleration of the product development due to the use of SuFiS® at IBS Filtran

5.2 Optimization of Pleat Support in Hydraulic Filters at ARGO-HYTOS

The company ARGO-HYTOS? is a leading manufacturer of systems and components in
the field of hydraulic machine engineering. A major part of the business is the development
and production of filter elements for mobile hydraulic systems. Due to their favorable ratio
of filtration area to housing volume, these elements often use pleated filtering media.

The challenge in the design of filter elements for hydraulic applications is the huge
pressure at which the hydraulic fluid is flowing through the system. As we already men-
tioned in the introductory sections, the interaction of the fluid with the filtering medium
can easily lead to pleat crowding and/or pleat collapse. A common way to prevent this is
to support the pleated medium by a mesh made of some robust material (e.g. steel). Obvi-
ously, there are numerous ways to design the supporting mesh (e.g., thickness of the mesh

2ARGO-HYTOS GmbH, Kraichtal-Menzingen, Germany, www.argo-hytos.com.
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Fig. 33 Computer model of a
filtering pleat with supporting
mesh (zoomed in on the right)

5 v
Y v

wires, shape and dimension of mesh openings, etc.). We state here only the main aspects
that have to be taken into consideration for an optimal design:

e The supporting mesh should not block too much of the filtration area.

e The supporting mesh should not produce too much additional pressure drop.

e Even for the highest pressures, the wires of the mesh should be arranged such that the
fluid can still flow through the pleat channel, i.e., this should be ensured even if the
wires of adjacent pleats touch each other.

The latter requirement clearly indicates that one has to employ a 3D model to address this
issue. In order to solve the problem, the GeoDict module PleatGeo was used to create a
computer model of the pleat together with the supporting mesh structure (see Fig. 33). The
corresponding computational grid was created so that the wires were resolved sufficiently
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Fig. 34 Simulated pressure drop for two different designs of the supporting mesh (at two different
cross-sections). The white areas indicate the wires

well. Finally, the pressure drop was computed using the Navier—Stokes—Brinkman FVM
solver (see [21]). As one can see in Fig. 34, the arrangement of the wires in the supporting
mesh has a significant effect on the pressure drop.

Using the computer simulations, an optimal design of the support mesh could be identi-
fied without producing prototypes for each conceivable variant. With the optimized mesh,
the total pressure drop could be reduced up to 35 %. This significant improvement eventu-
ally led to a patent for ARGO-HYTOS (see [93]).

The two examples presented here show that the combination of mathematical, nu-
merical, and engineering expertise significantly helps to improve product develop-
ment in filtration. In situations in which purely empirical approaches are unreliable,
costly, or practically impossible, computer simulations provide a powerful tool for
both innovation and optimization of filtration products. For markets with tough com-
petition, this is certainly a strong asset for the R&D departments in the industry.
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Maximal Material Yield in Gemstone Cutting

Karl-Heinz Kiifer, Volker Maag, and Jan Schwientek

1 Optimum Material Usage—A Must with Expensive Resources

The quest for optimum material cutting is one of the basic principles of industrial produc-
tion, since the sales price of a manufactured good is not only a function of the production
costs, but often depends predominantly on the necessary raw material usage. Hence, the
range of problems involving maximizing material usage is large.

A tradesman papering walls, for example, will seek to minimize the number of rolls
of wallpaper he uses. In so doing, he will try to manage his use of remnants so that the
final waste pieces are as small as possible. A carpenter cutting molding to size deals with
the same challenge, as does a metalworker using ready-made metal profiles. This one-
dimensional problem—only the length of the pieces matters here—is known in the math-
ematical literature as the Cutting Stock Problem (see [18, 38], for example). Even in its
simple form, it proves to be NP-hard, which is the same as saying that there can be no
efficient algorithm for minimizing waste.

Cutting shapes from standard wooden panels, pieces of clothing from fabric rolls, or
shoe elements from leather hides represents an even more difficult material usage opti-
mization problem; here, in addition to the geometry of the cut-outs, one must also consider
their orientation—as with a fiber’s running direction in a fabric—or cut around flaws in the
material—as with knots in a wooden board or injuries to the animal supplying the hide.

Analogous problems also exist in three dimensions: a dispatcher, for example, when
picking and packing goods will search for the smallest package that will hold all the pieces,
in order to minimize shipping costs. A diamond or colored-gemstone producer will also
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Fig. 1 Exploiting gemstones: raw stones and a selection of cut jewels from Paul Wild oHG
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strive to cut the largest and thus most valuable jewels possible from the raw material he
receives from the mine, taking into consideration the preferred orientation and such flaws
as cracks and inclusions (see Fig. 1). In the literature, the optimization task in the 2D or
3D situation is often referred to as a Nesting Problem (see [19], for example).

1.1 Gemstone Production—An Ancient Craft Using Scarce Raw
Materials

This chapter deals with the optimal cutting of gemstones, although most of the methods
developed here can be applied in an analogous manner to the other examples mentioned
earlier. To promote a better understanding of the practical questions, we have compiled
some background information about gemstone cutting.

For more than 500 years, the most common form of jewel has been the faceted stone.
This is a cut and polished gemstone whose surface consists of small, planar areas known as
facets. The gemstone is divided into three elements: the crown, the girdle, and the pavilion
(see Fig. 2).

The crown and pavilion are polyhedral. The girdle is bordered by planar or curved
surfaces and determines the base form of the faceted stone. There are many faceted stone
shapes, the best-known of which are shown in Fig. 3.
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Fig. 3 The best-known faceted stone shapes, from left to right: baguette, emerald, antique, oval,
round, and pear

Fig.4 The round shape in a }
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cut.

Along with the base form, there are various basic types of crown and pavilion cuts,
which we will subsequently refer to as facetings (see Fig. 4, [25]). Some are possible for
every base form; others are not. Moreover, with some cuts, the number of facets is pre-
defined, whereas for others, the number of facets depends on the size of the finished stone.

Besides its base form and cut, a faceted stone is also characterized by a variety of size
parameters, such as the height, length, and width of the crown, girdle, and pavilion. For
optical and esthetic reasons, there are upper and lower limits on certain ratios between
these parameters, which we will refer to subsequently as proportions. With diamonds,
for example, the transparency of the material and the laws of optics dictate that faceting
patterns and proportions be held within very narrow limits, in order to promote the most
favorable light transmission paths. Here, it is typical that standard faceted stone shapes
are merely scaled to fit the raw material and rotated in order to maximize yield. With
colored gemstones, the rules for proportions and faceting are significantly less stringent.
This has a favorable impact on the optimization tolerances, but it also makes the resulting
mathematical problem considerably harder to solve. For this reason, we consider the more
general problem of colored gemstone cutting in the following discussion.

In the past, size-dependent cuts and weak constraints on proportions led to the facets
not being cut directly into the raw material. The process chain for producing a faceted
stone contains four steps:

(1) Sectioning: First, the raw material is sectioned into “clean” pieces containing no flaws
or cracks, which we will refer to as rough stones. In the end, each rough stone delivers
one faceted stone.

(2) Pre-forming: Here, the rough stones are coarsely pre-cut, or ebauched. This defines
the base form and the approximate proportions of the subsequent faceted stone.

(3) Grinding: Next, the facets of the preferred cut are applied to these pre-cut forms.

(4) Polishing: Finally, the facets are polished to a high gloss finish.
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A faceted stone is appraised according to four criteria, the so-called Four C’s: Carat,
Clarity, Color, and Cut. The carat is a measure of weight equaling 0.2 grams. The value
of a faceted stone is directly proportional to its weight. The clarity indicates the absence
of inclusions, cracks, and surface flaws. The greater the clarity, the more valuable the
faceted stone. The natural color of a gemstone and/or the enhanced effect created during
its processing also have a substantial impact on the value of a faceted stone. Because this
factor can hardly by influenced, however, it will not be discussed further. The cut of a
faceted stone has a decisive influence on its ability to reflect and refract light. An increase
in a faceted stone’s reflective and refractive characteristics increases its value. Moreover,
the faceting contributes significantly to a stone’s overall esthetic qualities.

The value of a faceted stone is thus appraised according to its weight and its esthetic
qualities.

Today, gemstones and diamonds are still manufactured largely by hand. Although in-
dustrial saws and modern grinding machines are used here, all geometric determinations
rely solely on the practiced eye and skilled craftsmanship of the jewel makers. Because the
processes involved are complex and expensive, and because there are not enough appren-
tices learning the trade in the old industrialized nations, most production has long since
shifted to the countries of South Asia.

In the first processing step, the sectioning of larger stones into rough stones so as to
avoid flaws in the material, about half of the raw material is lost. In converting the rough
stones from step (1) into faceted stones in steps (2)—(4), approximately two-thirds more of
the precious material is lost. Thus, the loss of weight from the original raw material to the
finished product is about five-sixths of the total.

1.2 Automation as a Chance for Better Material Utilization

Given the losses described above, it is natural to ask if mathematical modeling and al-
gorithmic concepts that optimize the sectioning of raw material and the embedding of a
faceted stone in a rough stone might not be able to significantly increase the yield above
that achieved by the skill of the craftsman. In order to answer this question, however,
a number of challenges must be met, the most important of which are mentioned here:

e Data acquisition: The first step toward using mathematical models is collecting input
data. Here, the geometry of the rough stones must be depicted for the entire process
(steps 1-4) by means of 3D imaging. This can be accomplished using CT technology,
for example. However, due to the limited resolution of the available technology, it is
very difficult to represent hairline cracks and very small air inclusions in the material.
If one assumes only clean individual stones (steps 2—4), then the digitalization can
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be limited to depicting the stones’ surfaces, which can be accomplished with stripe
projection or laser scanning technology.

How does one prepare the large data sets so that they are suited for the subsequent
optimization problems?

e Mathematical model: Two questions must be answered when dealing with optimization
problems: What is feasible? and What is good? Neither of these questions can be easily
answered for colored gemstone production. Weak constraints on the proportion rules
and the large variety of base forms and faceting patterns make it hard to completely
describe the alternative sets mathematically. Even harder is bringing the wish for maxi-
mum weight—which is directly proportional to volume—into harmony with minimum
esthetic demands, which depend on individual taste and cultural background.

How does one mathematically formulate esthetic requirements?

e Exploitation algorithms: From a mathematical perspective, the resulting optimization
problems are extremely complex. This is due less to the above-mentioned large data
sets arising from the digitalization of rough stones than to the geometric principles,
which, although actually quite simple, are laborious to mathematize. These principles
demand that the resulting faceted stones must be completely contained within the rough
stone and may not overlap each other. A second issue is the simultaneous existence of
continuous variables, such as size and proportion, and discrete variables, such as the
number of facets.

How does one mathematically model the containment and non-overlapping con-
ditions? Is it conceivable to de-couple the combinatorics of the faceting from the
optimal sizing of the proportions?

e Fully-automated production process: If one wants to use mathematical models and al-
gorithmic concepts to optimize the cutting of rough gemstones, it becomes necessary
to automate production; one cannot simply present a craftsman with a good plan and
then wish him luck with it. Simple studies show that even the smallest deviations from
the optimal positioning of the faceted stones in the rough stone can lead to marked de-
teriorations in yield. Thus, there is no way around the implementation of an industrial
production process involving the use of CNC technology.
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How can one clamp the individual work pieces during processing? How can the ge-
ometry be transferred from one process step to the next with the required precision?
Which handling technology should be used? Which saws, grinders, and polishers
are appropriate? Can one continue to use the techniques of manual production, or
will it be necessary to develop new ways and means?

2 Optimum Volume Yield—Is This a Mathematically Challenging
Problem?

A person less trained in mathematics might think: a problem that is so easy to put into
words and so easy to understand cannot be so difficult to solve. After all, it’s just a matter
of packing a few faceted stones into a rough stone in an economically favorable manner;
what’s so hard about that? Unfortunately, this first impression is deceptive, and a look in
the mathematical literature or a search of the Internet under the keywords Cutting Stock
or Nesting Problem brings a rude awakening. Only the simplest variants, such as rectan-
gular or ball packaging, are well understood mathematically—and even these have only
been partially solved. More generalized problem statements and solution approaches are
extremely rare. Thus, in 2003, as the ITWM began work on this problem, the first task was
to find a model that suited the problem.

2.1 Mathematically Modeling the Optimization Problem—Or, what Is
an Acceptable Design for a Jewel?

The central question for modeling the problem is how to mathematically describe a faceted
stone. The initial idea of describing the most common convex base forms as polyhe-
drons failed, since the girdle that separates the crown from the pavilion is, in many cases,
a smooth, curved surface, whereas the crown and pavilion have a polyhedral structure.
Another question is even more complicated: what is the class of acceptable facet patterns
belonging to a given base form? The craftsmen have rules-of-thumb for the number of
facets on the girdle, and these depend on the size of the stone; they know the approximate
number of facet rows or steps on the crown and pavilion; they know the size of the limiting
angles between the facets and the girdle. Facets should decrease in height as one moves
away from the girdle; they should be kite-shaped on Portuguese cut stones and the half-
axes should divide the kites approximately into golden cuts; and much more. Regarding
the proportions, the following guidelines apply: the crown contributes about one-third of
the total height, the pavilion, about 50-55 %, and the girdle makes up the rest. The pavil-
ion should not be too “bellied,” but not too slender either—otherwise, too much volume is
lost, etc. And the most important point of all is this: at the end of the day, the stone must
be beautiful; rules and guidelines alone are not enough.
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The above discussion indicates the all too typical dilemma of putting mathematical
optimizations into practice: the mathematician needs clear-cut rules to do his work. The
alternative set—in this case, the feasible faceted stones—from which favorable solutions
should ultimately be selected, must be described exactly, according to fixed rules. There
is no room for vagueness. Moreover, to optimize, one also needs a target quantity to help
in comparing the quality of two possible solutions. At first glance, this would seem to be
simple for gemstone cutting: the stones should be as large as possible. This increases the
number of carats, i.e., the weight, thus raising their value. At second glance, however, there
is a problem here as well.

If the stone is merely large, but not beautiful, no one will buy it. Therefore, we
need a definition of “beautiful” that can be incorporated into the description of the
alternative set. Or, at a minimum, we need measurement quantities that correlate
well with “beautiful,” so that we can then optimize them as objectives in balance
with solutions that are “large” or “heavy.”

The geometric problem that seems at first so easy to formulate now proves to be mathe-
matically challenging indeed. Gemstone cutting seems somehow to be an art or perhaps a
craft—in any event, not a science. Peering over the shoulder of the practitioner might pro-
vide us with some clues. How does a cutter answer the above questions? Does he simply
start cutting away, or does he use rules-of-thumb containing mathematical principles that
we can imitate with our models?

Observations of the craftsman at work are quite revealing: after sectioning the raw
material, he then closely inspects the shape of a resulting rough stone to see which base
form the final faceted stone might have and how this base form is oriented inside the rough
stone. Then he starts by cutting the base form’s girdle. The crown and pavilion are coarsely
pre-formed; as of this point, there are no facets. This pre-forming process determines the
proportions of the stone, the height ratio and degree of belliedness as well as the base
angles to the girdle. After pre-forming, the facet rows and counts are assigned and the
crown and pavilion are faceted. Figure 5 shows the pre-cut form and intended proportions
for the faceted stone depicted in Fig. 2.

The manual production process is thus divided into two parts: pre-forming and faceting.
This inspired us, in our mathematical modeling, to de-couple the continuous variables,
such as the height and proportions of the faceted stone, from the discrete variables, such
as the number of rows and facets in a given facet pattern.

The approach of de-coupling continuous and discrete variables simplifies the struc-
ture of the optimization problem significantly and allows the esthetic boundary con-
ditions to be more easily described in the reduced variable sets. But what is the best
way to implement this approach?
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The implementation involves introducing a parameterized equivalent to the smooth pre-
cut form, which we refer to as the calibration body. This is then optimized toward the
end of maximizing material yield. Considerations regarding the appearance of a suitable
faceting are relegated to a second step, which is discussed in detail in Sect. 5.1

Let us now turn to the optimization problem of the parameterized calibration body. For a
single stone, this is closely related to the design-centering problem known in the literature
(see [30]), when one describes the quantities relevant for the proportions, such as height,
width, and degree of belliedness, as calibration body parameters (i.e., design parameters)
and takes position and scaling as further degrees of freedom for the optimization. If one
now places limits on the proportion parameters so as to ensure a more-or-less satisfactory
esthetic result, then one is left with the question of how to achieve the largest possible
volume of a parameterized gem design.

In the following discussion, the requirement that the faceted stone be completely
contained within the rough stone is called the containment condition. This is simple
and easy to understand, but how can it be mathematically implemented?

Putting it another way, the containment condition requires that each point of the design,
that is, the calibration body, must also be a point of the container, that is, the rough stone.
We have here, then, an infinite number of constraints for a finite number of parameters,
which must be fulfilled for a feasible calibration body. Problems of this sort are referred to
as semi-infinite optimization problems. Further challenges revolve around the questions of
whether one can mathematically describe in a similar manner the localization of flaws in
the resulting jewel or the non-overlapping of two faceted stones in cases where more than
one jewel is embedded in a single rough stone. This non-overlapping condition is closely
allied to the containment condition. The approach to dealing with both of these questions
is discussed in Sect. 4.
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A generalization results when one also requires minimum separation distances. Thus,
when sectioning raw material into blanks or embedding multiple stones in one rough stone,
it is important to arrange the blanks or stones so as to maintain the minimum separation
distances required for the production process. Moreover, the production process may also
demand adherence to other arrangement principles. For example, if circular saw technol-
ogy is being used, one must ensure that the arrangement allows for consecutively executed
through-cuts, also known as guillotine cuts (for more, see Sect. 6.2).

2.2 The Algorithms—How to Find Optimal Solutions

If one keeps to the above modeling approach, the algorithmic challenge in gaining an
optimal calibration body then becomes developing numerical solution concepts for semi-
infinite optimization problems that robustly solve high-dimensional, non-convex problems
in an acceptable computation time.

To do so, one must first work on reducing the problem size. Here, the goal is to depict
the rough stone—discretized via volume or surface data—using the most economical rep-
resentation possible. Ideally, this is accomplished in a model-friendly form that allows for
reduction to a finite problem (see Sect. 5.1.3). To depict the rough stone, one enlists the
smallest possible number of simple, smooth parametrical functions that permits numeri-
cally non-problematical evaluation.

What remains is a global optimization problem, which commonly has numerous local
extreme solutions. If one can characterize the local extremes in the general case using
a first-degree optimality condition—such as the Karush—Kuhn—Tucker condition (KKT
condition)—then the challenge is to select a suitable strategy for finding an approxi-
mately globally optimal solution. Here, there is no generic approach. A hybrid strategy
must be found for enumerating favorable local extremes and/or excluding unfavorable
ones.

When one has found good calibration bodies for approximating feasible faceted stones,
then one can turn to the second optimization task: finding a favorable faceting; that is, one
that both follows the standard rules of the gemstone cutter’s art and minimizes volume
reduction of the calculated calibration body. At first, it seems obvious that using enough
small facets should guarantee such an approximation. However, upon closer inspection,
it becomes clear that the standard facet patterns used in the gemstone industry do not al-
low every calibration body to be approximated adequately. Thus, a certain coupling of
faceting and base form once again sneaks in through the back door, so to speak. For fixed
facet patterns, the problem of faceting can also be modeled as a non-linear global op-
timization problem. Here, the question arises as to how one can suitably integrate into
the optimization problem the number of facets and facet rows as free optimization vari-
ables.
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3 ITWM Projects Dealing with This Topic

3.1 Projects with the Gemstone Industry

The idea of increasing material yield during gemstone production by using mathematical
optimization methods and automation was prompted by Paul Wild oHG (oHG = general
partnership). This family-managed, mid-sized firm located in Kirschweiler, Rheinland-
Pfalz, near Idar-Oberstein, is one of Europe’s leading producers of precious colored gem-
stones. The Company has its own mines in Africa, South America, and Asia, which ensure
its supply of raw materials. Production of jewelry stones takes place predominantly in
Asia, whereas administration and sales are headquartered in Kirschweiler.

As is typical for the industry, Wild’s jewelry stone production was carried out exclu-
sively by hand until 2003. Up to that point, there had been no significant attempts to in-
dustrialize or automate production processes. Some experiments in improving yields in
the 1990’s using a semi-automatic installation from Israel gave managing director Markus
P. Wild the idea that it ought to indeed be possible to produce colored gemstones in a
fully-automated industrial process, one optimized for each individual rough stone. Since
2003, Markus P. Wild has been pursuing this vision, in collaboration with the Fraunhofer-
Gesellschaft and other partners from the machine engineering sector.

3.1.1 First Steps—Preliminary Feasibility and Profitability Studies

The Spring of 2003 marked the first contact between Markus P. Wild and the Fraunhofer-
Gesellschaft. As a result, the Fraunhofer Institute for Industrial Mathematics ITWM, in
Kaiserslautern, the Fraunhofer Institute for Applied Optics and Precision Engineering IOF,
in Jena, and the Fraunhofer Institute for Manufacturing Technology and Advanced Materi-
als IFAM, in Bremen, were commissioned in the Fall of 2003 and 2004 to conduct a series
of preliminary studies toward the end of preparing a concept for the automatic production
of colored jewelry stones:

e A study into 3D measurement of raw gemstones by means of the stripe projection
method (Fraunhofer IOF, Jena)

e A study into calculating optimal cutting volumes of colored raw gemstones (Fraunhofer
ITWM, Kaiserslautern)

e A study into bonding colored gemstones to metallic processing pins by means of UV-
hardened or hot-melt adhesives (Fraunhofer IFAM, Bremen)

In the course of these preliminary studies, the basic feasibility of colored gemstone pro-
duction with regard to pre-forming, grinding, and polishing in an industrial process was
adequately verified. Thus, the development of an automatic cutting process in the context
of an industrial research project could be started with acceptable prospects for success.
This project was funded from 2005 to 2007 by the mid-sized company promotion foun-
dation of Rheinland-Pfalz via the Investitions- und Strukturbank (ISB). An experimental
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setup was developed that was able to demonstrate, with scientific rigor, the feasibility of
fully-automated colored gemstone processing.

3.1.2 Pioneer Work—The First Industrial Automation of Pre-forming,
Grinding, and Polishing

The preliminary results were promising, and considerably higher volume yields could be
achieved while still retaining excellent quality for the automatically processed jewelry
stones. Thus, as a follow-up to the ISB-sponsored R&D endeavor, Wild oHG commis-
sioned the construction of a fully-automated CNC-controlled production line. Although
the most significant technological risks had been dealt with in the context of the ISB
project, there were still some hurdles to overcome before a practicable industrial process
could be implemented on the new production equipment. These were indeed overcome
and, since 2008, the world’s first fully automated production line for colored gemstones
has been in operation at Wild oHG.

The operation of the production line quickly showed that, for efficient utilization, an
integrated, multi-criteria decision-making process would be needed that considers all of
the four C’s—carat, color, clarity, and cut. In cooperation with the Fraunhofer ITWM in
Kaiserslautern, in the course of a project sponsored by the German Economics Ministry
from 2009 to 2011, a novel decision-support system was developed that facilitates the dif-
ferent types of production decisions: Proposals resulting from the cutting optimization are
visualized within the rough stones before production starts; interactive 3D representation
permits comparisons of the variants of proportion and faceting; production supervisors can
check the quality of the variants before cutting begins; and the marketing department can
integrate customers into the decision-making process via the Internet.

The research work in the Fraunhofer ITWM-Wild consortium was praised in the press
and described as trailblazing. More than 70 articles appeared in such newspapers and jour-
nals as Die Zeit, FAZ (Frankfurter Allgemeine Zeitung), Handelsblatt, and Bild der Wis-
senschaft. Moreover, the accomplishments of the research consortium were honored in
2009 with the Joseph-von-Fraunhofer prize in a ceremony attended by the German Chan-
cellor Angela Merkel.

The decision was finally made at the end of 2009 to guide the gemstone production
machine to series maturity and bring it to market. In 2010, a modular pilot machine was
built at the Fraunhofer Center in Kaiserslautern and, starting in the same year, control
software was developed (see Fig. 6). The machine has been ready for marketing since the
autumn of 2013, and is now being shown to potential buyers. The statements of interest that
have already been received from more than 70 companies and technology brokers around
the world are indeed very promising. Property rights that protect the machine concept have
been granted. To this point, demonstrations at trade fairs have been avoided, so as not to
aid potential product counterfeiters located in areas outside the patent protection zone.
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Fig. 6 Pilot-production
prototype developed at the
Fraunhofer ITWM (Photo:

G. Ermel, Fraunhofer ITWM)

3.1.3 The New Horizon—Automating the Sectioning Process

The earlier projects, dating from the years up to 2008, revolved primarily around the ques-
tion of how to garner a single faceted stone from a rough stone. Beginning in 2009, how-
ever, the question of how to automate the sectioning process moved into the sights of the
project group gathered around Wild oHG. Although one can produce individual stones
from clean raw material by merely collecting data about the stone surface, one must col-
lect volume data for the sectioning process, in order to distinguish between exploitable
material and impurities, inclusions, and cracks. The method of choice for gaining such 3D
data is high-resolution computer tomography (CT). Thus, Wild oHG commissioned testing
of CT devices for their suitability for collecting volume data about colored raw gemstones.
In 2010, a suitable system based on a two-frequency measurement process was located in
the industry. The system was not yet being produced serially, however.

In addition to collecting volumetric data, automating the sectioning process also re-
quired a comprehensive study into which cutting technology would be appropriate for
such automation. As with the cutting of individual stones, imitation of the manual produc-
tion process seemed to be the safest path. To this point in time, raw material had always
been sectioned by the most experienced craftsmen with the aid of diamond-studded circu-
lar saws. In 2009, Wild oHG and the Fraunhofer ITWM initiated the project “Development
of a fully-automated sectioning process for colored gemstones,” which was sponsored by
the ISB Rheinland-Pfalz and concluded in late June, 2011. The results confirmed that one
can indeed use a circular saw to section a colored gemstone in a fully automated pro-
cess. A prototype of a sectioning machine was then built in the manufacturing center in
Kirschweiler. During the actual operation of this machine, however, several obstacles be-
came apparent that made its practical use uneconomical. Thus, some other technologies
were also taken into consideration. In 2013, Wild oHG eventually bought a high-pressure
waterjet cutting machine. An extension of the ISB-sponsored sectioning project, conducted
in cooperation with the Fraunhofer ITWM, is now aiming for a fully-automated sectioning
process based on the use of CT and waterjet cutting technologies. A detailed discussion of
the sectioning process can be found in Sect. 6.
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3.2 Relevant Competences of the ITWM Optimization Department and
Related Projects

Since the beginning of its cooperation with Wild oHG, the Fraunhofer ITWM’s Opti-
mization Department has been systematically expanding its competences in modeling and
solving industrial problems with semi-infinite optimization. Alongside the main project of
gemstone cutting, questions stemming from other domains having comparable structures
are also being treated with the help of these techniques.

In the area of nonlinear optimization, the Department has been utilizing its own al-
gorithms from its inception. But it has also drawn upon commercial methods stemming
mainly from the academic world, which are each adapted individually to the problem be-
ing treated. Here, a broad field of work is the hierarchic decomposition of problems into
simpler sub-problems, or complexity reduction by means of adaptive discretization, or
model reduction in optimization problems through the use of simplified/surrogate models.

In addition to those of the gemstone project, the following problems have been modeled
and solved with the aid of semi-infinite optimization methods:

e Optimizing cooling systems of injection molds and pressure casting dies
e Optimizing the applicator position for radio frequency ablation

Both of these optimization problems deal with how to optimally distribute heat in a
geometrically complex environment. With injection and pressure casting, a cavity must be
cooled as homogeneously as possible; with radio frequency ablation, tumor tissue must be
heated as homogeneously as possible. In each case, a suitable, enveloping isotherm must
be established around the cooling or heating zone. If one models the heat distribution at
equilibrium, then the requirement that the cooling or heating zone lie within the suitable
isotherm is analogous to the containment condition of a faceted stone within a rough stone.
Moreover, as with the gemstone problem, one can describe the non-overlapping of cool-
ing channels and mold cavities or the non-puncturing of blood vessels by the applicator
using semi-infinite constraints, which permits usage of the algorithm from the gemstone
application.

Along with the above-mentioned semi-infinite modeling examples, the Fraunhofer
ITWM’s Optimization Department also considers numerous other decomposition prob-
lems from various industrial branches. Due to their character, however, these are solved
using discrete enumeration techniques:

e Optimal arrangement of electronic components and switches for system-in-package ap-
plications

e Optimal cross-sections for cutting conifer woods in large sawmills

e Optimal cutting patterns for pants in the textile industry

e Optimal layouts for photovoltaic installations
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3.3 Scientific Studies and Collaborations Involving Optimal Volume
Yield

A whole series of scientific inquiries from the aforementioned domains led to graduate
theses and publications. In a seminal degree thesis, semi-infinite optimization methods
were applied for the first time to the problem of optimizing the material yield of gemstones.
More specifically, [11] deals with the approximation of the rough stone using planes and
quadrics and the volume optimization of a faceted stone using generalized semi-infinite
optimization on the basis of a simple calibration-body model. The ideas originating here
were then further developed and supplemented in a dissertation [16]. The topics of this
work are volume optimization using realistic calibration-body models, as well as modeling
multi-body embedding problems as a generalized semi-infinite optimization problem and
developing a feasible method for generalized semi-infinite optimization problems. The
most significant results were published in [2, 10, 12].

Other sub-problems were treated in three degree theses. In [6], the authors calculated
the faceting for a given calibration body using methods of 3D-body reconstruction from
two-dimensional drawings. The goal in [3] was to improve the rough stone approximation
using splines. The topic in [7] was generating better starting points by comparing the rough
stone geometries.

An alternative to the semi-infinite modeling approach for volume optimization of a
faceted stone is described in [4]. Here, the idea was to apply methods of collision detection
from algorithmic geometry to triangulations of the rough and faceted stones.

The more complex problems of sectioning and embedding multiple designs in one con-
tainer are probed in the dissertation [14]. This study involved volume optimizing multiple
calibration bodies using generalized semi-infinite optimization; extending the modeling of
multi-body embedding problems as a generalized semi-infinite optimization problem; and
developing two methods for generalized semi-infinite optimization problems.

One method used in this context to solve the semi-infinite optimization problems is
to reformulate them as usual nonlinear problems (see Sect. 4.5.1). These are ill-posed,
however, in the sense that the usual regularity requirements are not all fulfilled. As a con-
sequence, the customary solution methods don’t work directly; first, a regularization is
required, that is, a softening of the original problem to a similar one having better char-
acteristics. In [5], this idea of softening was transferred to the surface-minimized packing
of rectangles, formulated as a nonlinear optimization problem to prevent the optimization
from getting stuck in local optima.

The related thematic areas of cooling systems and radio frequency ablation mentioned
in the previous section each yielded a dissertation [13, 15], and the latter also resulted in a
publication [1].

Our studies into gemstone cutting also resonated str