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Preface

Circuit design based on numerical simulation relies heavily on mathematical
methods. As a result, relations have long since been established between the
microelectronics industry and university groups specializing in simulations for
semiconductor processes and devices, electromagnetics and electronic circuits.
State-of-the-art methods from the fields of applied and numerical analysis, as well
as newly developed dedicated algorithms, have facilitated the large-scale use of
simulations, thereby enabling the industry to reach its current high state of the art.

Designing complex integrated circuits calls for adequate simulation and optimi-
sation tools. The current design approach involves simulations and optimizations
in different physical domains (device, circuit, thermal, electromagnetic) and in
electrical engineering disciplines (logic, timing, power, crosstalk, signal integrity,
system functionality). The physical aspects are essential to characterizing circuit
behavior from an electrical engineering and system-oriented standpoint.

Accordingly, the main scientific objectives of the COMSON (COupled Multi-
scale Simulation and Optimization in Nanoelectronics) project were as follows:

• To develop new descriptive models that take these mutual dependencies into
account

• To combine these models with existing circuit descriptions in new simulation
strategies

• To develop new optimization techniques that will accommodate new designs

COMSON was a Marie Curie Research Training Network supported by the
European Commission in the programme Structuring the European Research Area,
part of the EU’s Sixth Framework Research Programme. The project was initiated
by the three major European semiconductor companies – Infineon Technologies
AG, later replaced by its spin-off Qimonda AG of Neubiberg, Germany; Koninklijke
Philips N.V., later replaced by its spin-off NXP Semiconductors Netherlands N.V.
of Eindhoven, the Netherlands; and STMicroelectronics of Catania, Italy – who
worked in cooperation with five European academic partners in Applied Mathe-
matics and Electrical Engineering with considerable experience in the simulation
and optimization of integrated circuits – the University of Wuppertal, Germany
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(coordinator); Eindhoven University of Technology, the Netherlands; University of
Catania, Italy; University of Calabria, Italy; and University Politehnica of Bucharest,
Romania. The rationale behind the project and this book was described as follows:

Performing the step from micro- to nanoelectronics, the semiconductor industry is con-
fronted with very high levels of integration, introducing coupling effects that were not
observed before. Currently, the complexity of this problem is beyond the capabilities of any
industrial software and design environment. Furthermore, in the near future, researchers
must understand all aspects of the problems faced by industry.
To meet these new scientific and training challenges, the COMSON project on “COupled
Multiscale Simulation and Optimization in Nanoelectronics” merges the know-how of the
three major European semiconductor companies with the combined expertise of university
groups specialized in developing adequate mathematical models, numerical schemes, and
e-learning facilities, covering all relevant fields of interest. In COMSON, academia and
industry join their efforts to realize a common Demonstrator Platform: on the one hand,
to test mathematical methods and approaches, so as to assess whether they are capable
of addressing the industry’s problems; on the other hand, to adequately educate young
researchers by providing hands-on experience with state-of-the-art problems, and beyond.

The editor thanks his colleagues for their valued contributions in the different
chapters of this handbook: Roland Pulch of Greifswald, Germany (PDAE mod-
elling); Andreas Bartel of Wuppertal, Germany, and Sebastian Schöps of Darmstadt,
Germany (dynamic iteration); E.J.W. ter Maten of Eindhoven, the Netherlands
(MOR); Salvatore Rinaudo of Catania, Italy (optimization); Georg Denk of Munich,
Germany (demonstrator platform); and Giuseppe Alì of Cosenza, Italy (e-learning).

Wuppertal, Germany Michael Günther
September 2014
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Chapter 1
The COMSON Project

Michael Günther and Uwe Feldmann

Abstract This chapter serves as an introduction into the outcome of the COMSON
project, and links the subsequent chapters to the overall idea of COMSON and its
objectives. We start with a discussion of the state-of-the-art and open problems in
nanoelectronics simulation at the timepoint when the COMSON Project was started.
Therefrom the main scientific objectives of the COMSON project are derived.
Special attention is devoted to a uniform methodology for both testing the new
achievements and simultaneously educating young researchers: All mathematical
codes are linked into a new Demonstrator Platform (Chap. 8), which itself is
embedded into an E-Learning environment (Chap. 9). Subsequently the scientific
objectives are shortly reviewed. They comprise: (i) Development of new coupled
mathematical models, capturing the mutual interactions between the physical
domains of interest in nanoelectronis. These are based on the PDAE approach
(Chap. 2). (ii) Investigation of numerical methods to simulate these models. Our
focus is on dynamic iteration schemes (Chap. 3) and for efficiency on MOR
techniques (Chaps. 4–6). (iii) Usage of models and simulation tools for optimal
design of nanoelectronic circuits by means of multi-objective optimisation in a
compound design space (Chap. 7).

1.1 Trends in Microelectronics

The design of complex integrated circuits ICs requires adequate simulation and
optimisation tools. The current design approach involves simulations and optimi-
sations in different physical domains (device, circuit, thermal, electromagnetic) as
well as in electrical engineering disciplines (logic, timing, power, crosstalk, signal
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integrity, system functionality). Our interests focus on the physical aspects, which
are fundamental for characterising circuit behavior on an electrical engineering and
system oriented level. To limit the complexity of the design task, these domains
are currently treated in isolation (“divide and conquer” approach), and dedicated
simulation and optimisation tools have been developed for the individual domains.
However, this methodology approaches its limits of validity. As semiconductor
technology is progressing down to the nanometer regime, it turns out that the
complexity in simulating and optimising designs goes beyond the capabilities of
the software and design environments used so far. Several shortcomings are clearly
visible:

• With ever smaller characteristic dimensions, higher operating frequency, and
increasing power density many simplifying assumptions are losing their validity.
Particularly, coupling effects between the different physical domains as well as
2D/3D and higher order nonlinear effects have to be taken into account.

• Due to very high levels of integration, simulation times are becoming pro-
hibitively long because of growing problem size and coupling effects.

• More complex design specifications have to be satisfied in a widely extended
design and parameter space, while simulations for assessing a design with a given
parameter configuration get more costly.

Clearly, substantial progress in this situation is not possible by just improving the
single components of the design system being used, and this observation led to the
setup of the COMSON project.

1.2 Scope of the COMSON Project

The COMSON project was initiated by three major European semiconductor com-
panies in cooperation with five academic partners from Europe being experienced
in simulation and optimisation of integrated circuits. The primary objective was to
combine the expertise distributed over the partner nodes in their particular fields in
a joint effort, to get a more global progress for the coupled systems as a whole.

Mathematical modelling and the development of numerical methods were seen
as key enablers in this project. To cope with the coupled nature of problems,
it was planned to pursue cosimulation strategies, where the different domains
are described by Partial Differential-Algebraic Equations PDAEs or ordinary
Differential-Algebraic Equations DAEs, which are – as far as possible – simply
coupled by source terms or boundary conditions. For their numerical solution
dynamic iteration schemes were appealing, since they naturally exploit the widely
separated spectrum of time scales inherent in the various domains.

As a promising side effect of this approach it was seen that it offers to replace
parts of the huge coupled system by reduced order models at least for some of the
domains. So, linear and nonlinear Model Order Reduction MOR became another
essential part of research in COMSON.
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Finally, multi-objective optimisation in the very complex design space formed
the third mathematical item of research.

The global view introduced in COMSON by coupling domains in simulation and
optimisation did not only stimulate mathematical research, but also imposed two
methodological problems:

• How can the new developments be assessed at hand of real life industrial designs,
without implementing them into all of the commercial design tools used by the
industrial partners?

• How can the transfer of knowledge be organised to assure that a researcher
working at a – possibly multi-domain – coupled problem has the background
information about all of the domains being involved?

For the COMSON project, these questions were answered by the decision to include
the development of a software Demonstrator Platform into the project, as well as
an E-Learning environment into which both the Demonstrator Platform and the real
life applications foreseen as a reference problem are embedded.

In total the scope of the COMSON project comprises

• Mathematical research on modelling and discretisation of coupled PDAE sys-
tems, model order reduction, and optimisation

• And a methodological part by linking a new Demonstrator Platform for coupled
simulation and benchmark problems of industrial relevance into an E-Learning
environment.

The project name COMSON is derived from this scope: “COupled Multiscale
Simulation and Optimisation in Nanoelectronics”. The following sections will give
a more detailed introduction into the single parts.

1.3 Methodology

In the following we explain the methodology (linkage of a Demonstrator Platform
and E-Learning environment) used for both testing mathematical methods and
educating young researchers.

Since the general scope of COMSON was too comprehensive for the restricted
project time, research and development were focused on solving a few benchmark
problems. The latter were specified by the industries, close to actual real life
designs of medium complexity. Academic abstractions and simplifications should
be avoided. Hence actual technological data and design specifications were to be
used, and physical models as well as compact transistor models being state-of-the-
art have been taken as a reference.

Even though there were only a few benchmark problems specified, their sim-
ulation and optimisation requires to couple all of the domains which had been
considered to be relevant: Semiconductor devices, circuits, interconnects, elec-
tromagnetic EM fields, and heat flow. To this end the Demonstrator Platform
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concept was introduced, to provide an experimental framework in software for
coupled simulation of the various domains. This gives excellent opportunities to
test new numerical methods even in an early stage, and to make sure that they
contribute to handle the coupled problems of interest. At the end, the Demonstrator
Platform offers all coupled simulation capabilities being necessary for multi-domain
optimisation of the benchmark problems. To realise this concept, and to demonstrate
its functionality, became a key objective of the project.

Another methodological aspect was to provide means for rapid dissemination
of knowledge over the geographically widespread partner nodes of the project.
Somehow, every project member had been active in this field before, however
with different focus and target applications. Now, since all of the partners were
starting towards the same objectives – namely to develop and implement methods
for coupled simulation and optimisation of the benchmark problems specified by
industry – quick and reliable exchange of knowledge became very essential for
the project. Having the complexity of multi-coupled simulation and of advanced
design specifications as well as the different status of knowledge of researchers
in mind, the COMSON members were convinced about the needs to include E-
Learning facilities into the project. A natural step at this stage was the decision to
embed the Demonstrator Platform into the E-Learning environment. This opened
very flexible and valuable means for researchers, at any level of experience, to learn
about models, methods and backgrounds of coupled nanolectronics simulation and
design.

1.3.1 The Demonstrator Platform

1.3.1.1 Objectives and Benefits

The main objective of the Demonstrator Platform was to provide an experimental
software platform for coupled simulation, which serves as a testbench for new
models and methods, and finally offers an adequate simulation tool for optimisation
of the benchmark design problems in a compound design space.

By the rule to integrate their new developments – be it model codes or
mathematical methods – into the platform, the researchers get a natural test bench
with state-of-the-art models and parameters from the different domains, rather
than academic simplifications. And they get immediate feedback on the capability
to address problems of industrial relevance. Furthermore, it is assured that the
individual contributions seamlessly integrate into the whole system from the early
beginning.

Another benefit of such a platform is to collect all knowledge about models,
methods, and coupling principles. This way a homogeneous embedding into an
E-Learning environment becomes possible, thus offering excellent opportunities for
transfer of knowledge and mutual stimulation of new research.
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1.3.1.2 State of the Art

Since the development of the coupled device/circuit simulators MEDUSA [5] and
CODECS [10], there is a long tradition in coupling two domains in one code. At
present there are powerful commercial tools like the platforms MEDICI (Synopsys
Inc.) and ATLAS (Silvaco International) for coupled device/circuit simulation in
use. However, they aim at device engineering and device characterisation with a very
limited number of transistors. Hence they cannot be used for designing integrated
circuits of a medium size complexity, nor do they allow for experiments with new
mathematical algorithms from outside the software companies.

Coupling of device and circuit problems under a rigorous PDAE framework was
introduced in [15, 17]; this served as a basis for the work to be done here.

Signal propagation effects have a large impact on integrated circuits perfor-
mance, in general, and therefore coupled interconnect/circuit simulation is widely
practised since a long time. Roughly, there are two mainstreams: One is to solve
the telegraphers equations for coupled interconnect lines analytically under some
simplifying assumptions, ending up in a transmission line (T-Line) model being
built from controlled sources for circuit simulation [12]. The other one is to split
the interconnect lines into small pieces, which are modelled by lumped R-, L-,
and C-elements for circuit simulation. Due to mutual coupling, the corresponding
resistance/conductance, inductance, and capacitance matrices are very large in
general, and almost dense. Therefore some kind of network reduction or MOR is
applied before including them into circuit simulation [2, 16].

Fully bidirectional coupling of interconnect and circuit simulation is reported in
several papers, see e.g. [8, 11, 13], and the PDAE setting of this coupled problem
was introduced in [9].

Coupling from EM field simulation to circuit simulation is well established in the
literature and in industrial practice, however often under restrictive assumptions.
Most approaches pursue the concept of partially equivalent electrical circuits
(PEEC) developed by A.E. Ruehli [14], and apply linear MOR techniques for
getting circuit models of a reasonable size. Alternatively, field simulators often
generate scattering parameters (S-parameters) for an electro-magnetic component,
which are used in circuit simulation.

Closer coupling between EM field and circuit simulation is necessary for
handling the substrate noise problem in mixed-signal ICs [4], and for analysing
mutual interaction of on-chip integrated passives (inductors) with semiconductor
devices on radio frequency RF chips. To this end some powerful commercial tools
have been developed by the companies Magwel and Sonnet Software, for example.

The coupling of the circuit domain with the thermal domain is straightforward,
in principle, since due to the electrothermal analogy any circuit simulator can be
“misused” for analysing thermal problems, once the latter are modelled by lumped
elements [7]. This kind of coupled simulation is often done in practice. For small
sized problems the more general approach of directly coupling a 2D or 3D thermal
solver and a circuit simulator was pursued, see e.g. [19]. Finally, a general PDAE
oriented framework for coupling thermal and circuit problems was developed in [3].
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The coupling of the device and the thermal domain was mainly driven by power
electronics applications, and started in the late 1970s [1]. While in the beginning the
coupling terms were pretty simple, more consistent models evolved since 1990 [18].
Overall, this kind of coupling has found much attention, and is very well developed.

As an extension of the electro-thermal analogy to other physical domains,
the simulator fREEDA [6] was developed for simulation of coupled multiphysics
problems in an open source project. It is based on a flexible modeling concept, such
that a network built from elements from different physical domains can be brought
into equilibrium under an energy norm. Clearly, the scope of this approach is on the
physical modeling side, while ours is more focused on mathematical analysis and
numerics of coupling existing physical models.

In summary it can be stated that bilateral coupled simulation has been extensively
investigated, and is implemented in a variety of tools and models which are
used in academic and industrial practice. However, simultaneous coupling of all
the domains which are addressed here under a common mathematical framework
of DAEs/PDAEs, and with inclusion of Model Order Reduction is new, to our
knowledge. Furthermore, we are not aware of any other attempt to tightly embed
a software package for coupled simulation in multiple domains into an E-Learning
environment, for the ease and flexibility of transfer of knowledge.

1.3.1.3 Basic Concepts

To achieve an optimal design in the very complex design space, a multi-objective
optimiser will interact with a simulation platform which provides consistent data
about all parts of the design specifications, inclusive their mutual dependencies.
To this end the platform operates on a hierarchy of parameterised subdomains,
which are connected in a common network as a carrier. In the simplest case, the
subdomains on top level are electric (sub)circuits. The subdomains on the lower
levels can either be other subcircuits, or semiconductor devices, or interconnects, or
EM domains, or thermal domains, or Reduced Order Models ROMs for one of these
domains (see Fig. 1.1).

The network approach implies coupling of domains by source terms or boundary
conditions. This will not be flexible enough in certain cases, hence the subdomains
may constitute internally coupled problems by themselves. However, with the
network approach it requires less efforts in general to include existing model
codes. Furthermore, it is well suited for mathematical analysis and development
of numerical methods.

Mathematically, the coupling of domains in a network means to couple partial
differential equations PDEs or differential algebraic equations DAEs by algebraic or
differential algebraic equations, thus getting PDAE systems. The concept is to solve
them by co-simulation in dynamic iteration schemes. To cope with the complexity,
comprehensive physical subdomain models must be substituted by ROMs. Noteably,
the ROMs should be parameterised, in order to be efficient along several steps of the
optimisation process. For the same objective it is an important aspect of the models
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multi-objective optimiser
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Fig. 1.1 The Demonstrator Platform is working on a hierarchy of parameterised subdomains

and codes to provide efficient calculation of sensitivities. Finally, for estimation of
yield, an efficient handling of technological spread is a prerequisite.

1.3.2 E-Learning

One of the main aims of the CoMSON project was to define and to develop a system
of E-Learning in Industrial Mathematics with applications to Microelectronics, in
order to facilitate the exchange of information; to share resources, scientific and
educational materials; to create common standards; to facilitate the use of advanced
tools. The common idea of this project was to create a bridge being able to fill the
gap that exists in the knowledge flow from University to Industry and vice-versa, and
to overcome problems due to Intellectual Property claims raised by the Industries
working together in the project.

1.4 Modelling, Simulation and Optimisation

The modelling is based on the PDAE approach. For numerical simulation efficient
methods have to be used, applying dynamic iteration schemes and MOR tech-
niques. Based on these models and simulation tools, multi-objective optimisation
is addressed.
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1.4.1 Partial Differential Algebraic Equations

Up to now, mathematical research has been mainly focused on models of one
single domain, e.g. semiconductor equations. Including effects of other domains
like thermal and electromagnetic coupling and high frequency aspects to improve
the accuracy of the models results in so-called Partial Differential-Algebraic Equa-
tions (PDAEs), which couple differential-algebraic network models for lumped
descriptions and partial differential equations for the spatially distributed elements
and effects via source terms or boundary conditions. This approach requires new
analysis with respect to consistency and validity of the overall PDAE model that
links different domains and levels of physical description, existence of solutions,
and robustness and efficiency of the numerical methods being applied for solving
the extended sets of equations.

New, robust and efficient methods are needed to solve the resulting equations.
Depending on the type of coupling and accuracy to be achieved within simulation,
two approaches are feasible to cope with these coupling effects:

• Simulator coupling for systems of PDAEs based ony dynamic iteration and
• Model order reduction.

1.4.2 Dynamic Iteration

In the first approach, all dynamic effects (for circuits, devices, thermal effects etc.)
are modeled and simulated separately using their own simulation package which is
based on their own time stepping algorithm in the numerical kernel. In this approach,
modular, i.e., distributed time integration methods are quite natural which exploit
different time constants of the single models by using different time step sizes
(multirate approach).

Assuming the packages are equipped with appropriate interfaces, the coupling
of the PDAE model via right-hand sides, source terms or boundary conditions can
be done by coupling the simulators at communication time points. As the PDAE
systems are coupled dynamically, an outer iteration process (dynamic iteration)
has to be performed until getting convergence within a macro time step from one
communication time point to the next one. Equipped with adequate relaxation and
overlapping techniques, dynamic iteration schemes have to be derived which can
guarantee a stable error propagation from one macro time step to the next one,
thus ensuring rapid convergence as well as robustness and stability of the overall
scheme used for coupling the models and simulators, respectively. This distributed
time integration approach can quite naturally exploit the multirate, i.e., multiscale
behavior in the time domain, as the different time stepping algorithms can use
different time step sizes in accordance with the different time constants of the single
models.
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1.4.3 Model Order Reduction

If all the domains are coupled together for optimisation, then the resulting systems
will become very large. Moreover, they have to be solved very often, in particular
if multi-objective optimisation methods are employed and/or yield improvement is
one of the optimisation targets. In this setting the usage of reduced order models is
appealing, since it helps to save simulation time and memory needs, and supports
to focus on those features of the various domains which are the most relevant ones
for achieving the design objectives. Another benefit of using reduced order models
might be in some cases to enable global optimisation of a design, while hiding
technological or circuit design details which are related to intellectual property
issues.

One way to obtain reduced order models is to develop structural macromodels
or behavioral descriptions, or to employ network reduction techiques. Alternatively,
for a given set of equations – which are possibly obtained by (semi)discretisation of
the original problem – numerical MOR techniques may be used to get a system
of the same structure but reduced dimension. The latter approach, quite well
established in the electronics design community, was to be pursued in the COMSON
project. Clearly, to be useful in the framework of design optimisation, the MOR
has to generate parameterised reduced order models, and should be insensitive
against small changes of the technological parameters. Other needed features are
maintaining the DAE/PDAE structure of the models, and tuning for usage of reduced
order models in simulation of large nonlinear systems.

1.4.4 Optimisation

Aiming at a realistic, medium size coupled problem of industrial relevance, one
faces a multiple domain space with a large number of design objectives and
restrictions (about 10–100), and works in a very complex parameter space (several
hundreds to thousands of parameters). As far as manufacturability requirements
are concerned, optimisation deals with discrete as well as continuous variables.
In addition, any evaluation of a model (functions, constraints) is very costly (each
requiring a coupled simulation), and possibly noisy. So usage of sensitivity analysis
techniques is advisable, but how they can be based on noisy simulation results will
require special attention.

Last, the reliability and robustness of a simulator depends on the accuracy of the
implemented models and, in particular, the model parameters. In fact each separate
model already has several hundreds of parameters. Therefore, in order to calibrate
the models, new advanced and efficient parameter extraction techniques are needed.

The hot spot benchmark example, a Power-MOS circuit introduced by STMicro-
electronics as an example for electro-thermal coupling, will show how all these
different levels are linked: in Sect. 2.2.2, the PDAE model describing the hot
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spot benchmark example is carefully discussed. Simulation results for the coupled
system based on the Demonstrator Platform methodology can be found in Sect. 8.3.
Finally, Chap. 7 discusses how to embedd an optimization flow in an industrial
environment to optimize the benchmark circuit with respect to the peak current.
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Part II
Partial Differential Algebraic Equations

Partial Differential-Algebraic Equations, for short PDAEs, couple differential-
algebraic network models for lumped descriptions and partial differential equations
for the spatially distributed elements and effects via right-hand sides, source terms
or boundary conditions. This approach, discussed in Chap. 2, requires new analysis
with respect to consistency and validity of the overall PDAE model that links
different domains and levels of physical description, existence of solutions, and
robustness and efficiency of the numerical methods being applied for solving the
extended sets of equations.

Simulator coupling is commonly used in an industrial framework for simulating
these PDAE systems numerically. In this approach discussed in Chap. 3 from a
more mathematical viewpoint, all subsystems of the PDAE, which are simulated
separately using their own simulation package, are dynamically coupled at commu-
nication time points. A non-trivial dynamic iteration process has to be performed
until convergence is achieved when stepping from one communication time point to
another. Speed of convergence, stability (error propagation) and robustness of the
overall scheme are the main points for research here. New, advanced, relaxation
techniques have to be developed together with multirate techniques, which use
different time step sizes according to the different time constants of the single
subsystems.



Chapter 2
PDAE Modeling and Discretization

Giuseppe Alì, Massimiliano Culpo, Roland Pulch, Vittorio Romano,
and Sebastian Schöps

Abstract We consider mathematical modeling in nanoelectronics, which causes
coupled systems of differential algebraic equations and partial differential equa-
tions. Both modeling and discretization are investigated for the inclusion of
advanced semiconductor behavior, heat conduction and electromagnetic effects
within electric networks.

2.1 Introduction on Modeling and PDAEs

In this chapter, we introduce the mathematical modeling for the simulation of
circuits and devices in nanoelectronics. To include the significant effects, a refined
modeling using partial differential algebraic equations (PDAEs) is necessary.
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2.1.1 Mathematical Modeling in Nanoelectronics

The mathematical modeling of electronic circuits is typically based on some
network approach. Thereby, we analyse the transient behavior of node voltages and
branch currents. The basic elements of the circuit exhibit corresponding relations
between voltages and currents, which represent differential equations or algebraic
equations. The topology of the circuit is considered via Kirchhoff’s current law
and Kirchhoff’s voltage law, which are algebraic equations. It follows a system of
differential algebraic equations (DAEs).

For example, mathematical modeling using the modified nodal analysis (MNA),
see [26], yields systems of the form

AC
dq
dt

C ARr.ATRe/C ALiL C AV iV CAI iI D 0;

d�

dt
� ATLe D 0;

ATV e � vV D 0;

q � qC .ATC e/ D 0;

� � �L.iL/ D 0;

(2.1)

where e; iL; iV are the unknown node voltages and branch currents through inductors
and voltage sources. The unknowns q;� represent charges and fluxes, respectively.
The functions r;qC ;�L are predetermined. Independent current sources iI and
voltage sources vV may appear. The incidence matricesAC ;AL;AR;AV ;AI follow
from the topology of the electronic circuit.

For a transient analysis of the system (2.1), consistent initial values have to be
specified. The differential index of the DAE system (2.1) follows from the topology
only. An appropriate mathematical modeling implies an index of one or two. Hence
we can use common numerical methods for initial value problems of DAEs.

This modeling approach applies with the assumption of ideally joint lumped ele-
ments in the electronic circuit. No spatial coordinates appear, since the information
on the topology is given by the incidences of the elements. For quite a long time, the
mathematical modeling via time-dependent systems of DAEs has been sufficiently
accurate to reproduce the transient behavior of the underlying physical circuit, i.e.,
the modeling error was sufficiently small. However, miniaturization causes parasitic
effects in nanoelectronics, which cannot be neglected any more. Corresponding
phenomena are, for example:

• Quantum effects: The down-scaling of transistors decreases also the size of the
channel. The channel length comes close to the atomic scale. Hence quantum
effects appear and have to be considered in the mathematical models.

• Heating: The faster clock rate in chips causes a higher power loss in the
electronic network. The down-scaling implies that more heat is produced within
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a unit area. Since cooling cannot ensure a homogeneous temperature any more,
the heat distribution and the heat conduction has to be considered. In particular,
thermal effects of transistors appear due to the semiconductor’s dependence on
temperature.

• Electromagnetic effects: The distance between transmission lines on a chip
becomes tiny due to the miniaturization. The current through some transmission
line can induce a significant current in a neighboring component. Thus the
interference of transmission lines has to be taken into account.

These parasitic phenomena represent spatial effects. Thus corresponding mathemat-
ical models apply partial differential equations (PDEs) in time as well as space.
Firstly, PDE models are required, which reproduce phenomena like quantum and
thermal effects with a high accuracy. Secondly, the parasitic effects are considered
in the electronic network, i.e., the PDEs are coupled to the circuit’s DAEs. It follows
a system of partial differential algebraic equations (PDAEs).

On the one hand, the basic network approaches for modeling electronic circuits
yield time-dependent systems of DAEs, which can be written in the general form

F W Rk � R
k � I ! R

k; F
�

dy
dt
; y; t

�
D 0; (2.2)

where y W I ! R
k denotes the unknown solution in a time interval I WD Œt0; t1�. The

MNA equations (2.1) represent an often used model of the type (2.2). A consistent
initial value y.t0/ D y0 has to be given. On the other hand, a parasitic phenomenon
is included via PDEs. We arrange the general formulation

L W D � I � V ! R
m; L .x; t;u/ D 0 (2.3)

with a differential operator L . Thereby, D � R
d for d 2 f1; 2; 3g represents the

underlying spatial domain. The solution u W D � I ! R
m belongs to some function

space V . Initial and boundary conditions have to be specified appropriately.
Coupling the DAEs (2.2) and the PDEs (2.3) yields systems of PDAEs in time as

well as space. The coupling is feasible via

• (Artificial) coupling variables,
• Source terms,
• Boundary conditions (BCs).

More sophisticated couplings also appear. The involved PDEs may be of mixed
type (elliptic, hyperbolic, parabolic). For example, the drift-diffusion equations
for semiconductors, the telegrapher’s equation for transmission lines or the heat
equation for resistors are used in practice. The types of PDAEs, which result from
the modeling in nanoelectronics, are discussed in the following subsection.
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2.1.2 Classification of PDAE Models

As introduced above, we consider mathematical models of PDAEs, i.e., coupled
systems of DAEs (2.2) and PDEs (2.3). The notion PDAE is also applied in the
context of singular PDEs. For example, we discuss the linear PDE

A
@u
@t

CB
@u
@x

D s.x; t;u/ (2.4)

with matricesA;B 2 R
k�k . IfA and/orB are singular, then a singular PDE appears.

PDAEs in the sense of singular PDEs are investigated in [44], for example. For elec-
tronic circuits with amplitude modulated signals or frequency modulated signals,
the introduction of different time variables transforms the circuit’s DAEs (2.1) into
singular PDEs, see [51].

If the matrix B is regular and the matrix A singular and B�1A diagonalizable,
then the system of PDEs (2.4) can be transformed into the equivalent system

@ Qu1
@t

C QB1 @ Qu1
@x

D Qs1.x; t; Qu1; Qu2/;
d Qu2
dx

D Qs2.x; t; Qu1; Qu2/:

The result can be seen as a coupled systems of PDEs and ODEs, i.e., a PODE. The
source term causes the coupling within the right-hand sides. Likewise, a coupled
system of PDEs and DAEs appears for other cases of the matrices A;B . Thus some
singular PDEs correspond to systems of PDAEs.

In the following, we consider PDAEs in the sense of coupled systems of
DAEs and PDEs only. We present a rough classification of PDAE models in
nanoelectronics according to [12]. Two approaches for PDAE modeling exist:
refined modeling and multiphysical extensions.

2.1.2.1 Refined Modeling

Complex elements of the circuit with a spatial distribution like semiconductors and
transmission lines can be modeled via substitute circuits consisting of lumped basic
elements. These companion models include artificial parameters, which have to be
chosen appropriately to approximate the behavior of the element. Alternatively, PDE
models exist, which describe these elements directly. We consider one or several
components of the electronic circuit by its PDE model and couple the PDE to the
system of DAEs modeling the surrounding network.

The resulting PDAE system is more difficult to analyze and more costly to solve
numerically than a DAE system based on companion models. Nevertheless, the
refined modeling allows to describe certain elements of the circuits with a higher
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accuracy, i.e., the modeling error becomes relatively low. Hence we can focus
on critical components of an electronic circuit. Moreover, the refined modeling
yields results, which can be used for the construction and the validation of better
companion models. Sophisticated PDE models for semiconductor behavior have
been developed for this purpose, see [7–9, 48, 49, 53–58], for example. The aim
is to reproduce the electric input-output behavior of the semiconductor with a high
accuracy in the presence of quantum and thermal effects.

The coupling of the DAE network and the PDE systems is performed via
voltages and currents. The node potentials of the connecting network yield boundary
conditions of Dirichlet type for the Ohmic contacts of the PDE model. At other
boundaries without electric contacts, homogeneous boundary conditions of von-
Neumann type may appear. Vice versa, the output of the PDE model represents
an electric current, which enters the surrounding network. It follows a source term
for the DAE system. The refined modeling yields PDAE systems of the form

A @
@t

u C LDu � s.u; t/ D p.y/ (PDE in I �D)
uj�1 D g.y/ (Dirichlet BC)

@
@n u

ˇ̌
�2

D h.y/ (Neumann BC)

F
�

d
dt y; y; t

� D r.u/ (DAE in I )

(2.5)

with a matrixA and a spatial differential operatorLD with domainD. The coupling
can be realized via the source terms p; r or the boundary conditions g;h, where the
boundary is decomposed into @D D �1 [ �2.

We categorize the refined modeling into the following cases:

• Semiconductors: Several transistors or diodes of the electronic circuit are
modeled via drift-diffusion equations or quantum mechanical equations, which
are coupled to the electric network. Existence and uniqueness of solutions
for models including stationary or non-stationary drift-diffusion equations is
analyzed in [4, 5]. The drift-diffusion equations represent PDEs of mixed type.
Hydrodynamical models for semiconductors, which represent hyperbolic PDEs,
are considered in [6].

• Transmission lines: Telegrapher’s equation describes the physical effects in
transmission lines, i.e., a PDE model of hyperbolic type. The coupling of these
PDEs and the network’s DAEs exhibits the form (2.5). For further details, see
[36, 37].

2.1.2.2 Multiphysical Extensions

Refined modeling can be seen as a partitioning of the electronic circuit, where
we describe some parts by PDEs and model the remaining larger part via the
traditional DAE formulation. Moreover, the involved systems of PDEs always
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describe the electric or electromagnetic behavior of some components of the
circuits. In contrast, multiphysical modeling introduces an additional distributed
effect within the complete circuit. We consider the circuit as two or more layers,
where one layer corresponds to the common network description and the other
layers model another physical effect given by PDEs.

Multiphysical modeling includes the following phenomena, for example:

• Thermal aspects: The faster clock rate implies a significant heat production
in particular parts of the electronic circuit. Thus cooling cannot achieve a
homogeneous and moderate temperature. Since the electric behavior of the
components depends on the temperature (for example, strongly for resistors), the
heat distribution and conduction has to be considered in the numerical simulation.

In addition to the electric network, a thermal network can be arranged, which
describes the heat flow within the circuit, see [29]. The thermal network consists
of zero-dimensional elements as in the electric network. Moreover, a refined
modeling of the thermal network is feasible, where some elements are replaced
by a PDE model based on the heat equation in one, two or three space dimensions.
The heat equation, i.e., Fourier’s law, represents a parabolic PDE. Further details
can be found in [11]. Modeling, analysis and discretization corresponding to two
dimensional heat equations is considered in [3, 20, 21, 25].

A special case is given by the usage of the heat equation with a spatial domain
including the complete electronic circuit. Consequently, we obtain two layers in
parallel: the electric network described by DAEs and the thermal aspects modeled
via a PDE.

• Electromagnetics: On the one hand, Maxwell’s equations imply the network
approaches, which produce the DAE formulations (2.2), via according simpli-
fications. The aim is to achieve an efficient numerical simulation. On the other
hand, the electronic circuit can be described completely by the full Maxwell’s
equations, i.e., a PDE system. However, this approach would cause a huge
computational effort.

Alternatively, just some parts or components of the circuit can be modeled
by Maxwell’s equations or its variants like the magnetoquasistatic formulation.
The systems of PDEs are coupled to the network’s DAEs again. Hence the same
effects are described in different ways, i.e., distinct mathematical models. This
approach is similar to a refined modeling. Nevertheless, the model represents a
multiphysical extension, since the magnetic fluxes are considered in addition to
the purely electric behavior of the circuit. An application based on magnetoqua-
sistatic equations is presented in [59].

We note that refined modeling and multiphysical extensions can also be com-
bined. In a multiphysical framework, we can arrange a refined modeling of some
components (semiconductors, transmission lines) within the layer of the common
electric network. However, such a complex structure is not considered in the
following, i.e., we apply either refined modeling or multiphysical extensions.
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In this chapter, we present some examples of mathematical models, which yield
systems of PDAEs. The chapter is organized as follows. In Sect. 2.2.1, a refined
modeling for semiconductor devices is performed, where diodes are described by
systems of PDEs including two space dimensions. The resulting system of PDAEs
is discussed. In Sect. 2.2.2, a multiphysical modeling is performed by considering
thermal behavior at the system level. The electric network is coupled to the heat
equation. In Sect. 2.2.3, multiphysical modeling of the electric circuits is considered
based on Maxwell’s equations. The approach applies a magnetoquasistatic formula-
tion. In Sect. 2.2.4, a description of thermal and quantum effects for semiconductor
devices is presented to obtain according mathematical models. Thereby, the focus is
on the PDE level, which can be used as a module in further refined models.

2.2 Modeling, Analysis and Discretization of Coupled
Problems

We present four applications of coupled problems in nanoelectronics to illustrate the
essential strategies.

2.2.1 Refined Modeling of Networks with Devices

We investigate electric networks including semiconductor devices. Some devices are
described by more sophisticated mathematical models based on partial differential
equations now, whereas the surrounding electric network is still represented by
traditional models using differential algebraic equations.

2.2.1.1 Modeling of Electric Networks

An RCL electric network is a directed graph with nv vertices (or nodes), and na arcs
(or branches) which contain resistors, capacitors and inductors, and independent
voltage and current sources, vV .t/ 2 R

nV and iI .t/ 2 R
nI . The branches are usually

labelled according to the components they contain:R for resistors, C for capacitors,
L for inductors, V for voltage sources, I for current sources.

The topology of the network can be described by an incidence matrixA D .aij/ 2
R
nv�na , defined by:

aij D
8<
:

�1 if the branch j leaves the node i ;
1 if the branch j enters the node i ;
0 otherwise:

(2.6)
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To keep track of different branches, they are collected according to their labels
(R;C;L; I; V ), and write

A D .AR;AC ;AL;AI ; AV / 2 R
nv�.nRCnCCnLCnICnV / � R

nv�na :

The electric behavior of the network is described by a set of time-dependent
variables associated to its nodes and branches. An applied potential is associated
to each node (u 2 R

nv ), a voltage drop and a current is associated to each branch
(v; i 2 R

na ). To keep track of the different labels, we write

v D

0
BBBBB@

vR
vC
vL
vI
vV

1
CCCCCA
; i D

0
BBBBB@

iR
iC
iL
iI
iV

1
CCCCCA
:

The direction of each branch coincides with the positive direction of the voltage drop
and the current through the branch. The voltage drops and the applied potentials are
related by the voltage relation:

v D A>u: (2.7)

The currents satisfy Kirchhoff’s current law:

Ai D 0; (2.8)

which ensures charge conservation. To the above relations we need to add constitu-
tive relations for the RCL components:

iR D r.vR/; iC D dq
dt
; vL D d�

dt
; (2.9)

with

q D qC .vC /; � D �L.iL/: (2.10)

Here, qC collects the charges inside the capacitors, and �L is a flux term for the
inductors. Finally, for the branches with sources we assume to know the time-
dependent functions iI .t/, vV .t/.

Following the formalism of Modified Nodal Analysis (MNA) [40, 50], we use
the relations (2.9) in Kirchhoff’s current law (2.8), together with the voltage
relation (2.7) and the relations (2.10), to obtain the DAE equation (2.1), for the
unknowns q, �, u, iL, iV . Sometimes it is convenient to reduce the number of
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variables, eliminating q and �. This leads to the following alternative form of the
MNA equations, for the unknowns u, iL, iV :

AC
dqC .ATCu/

dt
CARr.ATRu/C ALiL CAV iV C AI iI D 0;

d�L.iL/
dt

� ATLu D 0;

ATV u � vV D 0:

(2.11)

The above equations apply also to electric circuits with semiconductor devices,
provided that the devices are described by concentrated (companion) models,
i.e., by means of equivalent RCL circuits. In this framework, a semiconductor
device is represented by a subnetwork of the overall electric network. In following
subsection we will show how to replace these subnetworks with distributed models
for semiconductor devices.

2.2.1.2 Distributed Models for Devices

In this subsection, we consider an electric network with nD semiconductor devices.
We assume that the i -th device has 1C Ki contacts. More precisely, we model the
i -th device by a d -dimensional domain˝i , i D 1; : : : ; nD , with d D 1; 2, or 3, and
we assume that the boundary @˝i is made of a Dirichlet part � i

D , union of 1 CKi

disjoint parts, which represent Ohmic contacts, and of a Neumann part � i
N , which

represents insulating boundaries (for d > 1),

� i
D D

Ki[
jD0

� i
D;j ; � i

N D @˝i n � i
D; i D 1; : : : ; nD:

In total, the devices contain nvD Ohmic contacts, with

nvD WD nD C
nDX
jD1

Kj :

Each contact must be connected to a node of the electric network. To relate the
contacts of the devices to the nodes of the network, we need to introduce a contact-
to-node selection matrix, SD D .sD;ij/ 2 R

nv�nvD , defined by:

sD;ij D
�
1; if the contact j is connected to the node i;
0; otherwise:

(2.12)

This definition differs with the definition of branch-to-node incidence matrix,
previously given. In fact, the branch-to-node incidence matrix relates each branch
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to two nodes, and the values 1 and �1 give information on the orientation of the
branch, while the contact-to-node selection matrix relate each contact to one node.

The behavior of the i -th device is described by an electric potential �i .x; t/, and
by a vector variable Ui .x; t/, which collects the other macroscopic variables for the
device, such as carrier density, flux density, energy, etc. Several models can be used,
with different mathematical characters, but sharing some common features.

1. The first common feature is that the electric potential �i is generated by the built-
in charge, �ibi.x/, due to the dopants embedded in the semiconductor, and by the
charge density �i .Ui /, due to the carriers, so that it satisfies the Poisson equation:

� r � .�ir�i/ D �ibi C �i.Ui /; (2.13)

where �i .x/ is the dielectric constant. This equation is supplemented with the
following boundary conditions:

(
�i D �ibi.�

i
bi/C uiD;j ; on � i

D;j ; j D 0; 1; : : : ; Ki ;

�i � r�i D 0; on � i
N ;

(2.14)

where �ibi.�
i
bi/ is the built-in potential, uiD;j , j D 0; 1; : : : ; Ki , are the applied

potentials at the Ohmic contacts of the i -th device, and the symbol �i denotes
the external unit normal to @˝i . For later use, we comprise the applied voltages
in the vectors:

uiD D

0
B@

uiD;0
:::

uiD;Ki

1
CA 2 R

1CKi ; uD D

0
B@

u1D
:::

unDD

1
CA 2 R

nvD :

2. The second common feature, is that the device variable Ui satisfies a system
of partial differential equations, which is coupled to the electric potential only
through the electric field Ei D �r�i . Symbolically, we can write

F i .Ui ; @
@t

Ui ;rUi ; : : : I Ei / D 0: (2.15)

In the following sections we will see explicitly several of these partial differential
models.

3. The last common feature is that (2.15) is consistent with the conservation of the
charge density:

@�i .Ui /

@t
C r � Ji .Ui / D 0: (2.16)

Here, Ji .Ui / is the electric current, which can be a component of the variable Ui ,
or can be evaluated as a functional of the said variable. The electric current Ji
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depends also on the applied potentials uiD;j , j D 0; 1; : : : ; Ki , due to the coupling
of (2.15) with the Poisson’s equation (2.13), through the electric field Ei .

As a consequence of (2.13) and (2.16), we have

r �
�
�i
@

@t
Ei C Ji .Ui /

�
D 0 (2.17)

The term � @
@t

Ei is the displacement current, and represents the current induced by
time-variations of the electric field. Then, the total current in the i -th device is
given by

ji WD �i
@

@t
Ei C Ji .Ui /: (2.18)

The current j iD;j through the j -th contact of the i -th device, is defined by:

j iD;j D �
Z
� iD;j

ji � �i d�.x/: (2.19)

We introduce the vectors

jiD D

0
B@
j iD;0
:::

j iD;Ki

1
CA 2 R

1CKi ; jD D

0
B@

j1D
:::

jnDD

1
CA 2 R

nvD :

Recalling the definition of the selection matrix, the MNA equations need to be
modified in the following way:

AC
dq
dt

C ARr.ATRu/CALiL C AV iV C AI iI C � D 0;

d�

dt
� ATLu D 0;

ATV u � vV D 0:

q � qC .ATCu/ D 0;

� � �L.iL/ D 0;

(2.20)

where the auxiliary variable � 2 R
nv is given by the device-to-network coupling

relation:

� D SDjD: (2.21)
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To close the system, we also need the network-to-device coupling relation:

uD D S>
Du: (2.22)

Remark 2.1 The components of the vector jD are not independent. In fact, by
using (2.17), after integrating by parts over˝i , we find

KiX
jD0

j iD;j D 0; i D 1; : : : ; nD: (2.23)

This means that we can express jiD and, consequently, jD in terms of the vectors

iiD D

0
B@
j iD;1
:::

j iD;Ki

1
CA 2 R

Ki ; iD D

0
B@

i1D
:::

inDD

1
CA 2 R

naD ; (2.24)

with naD D PnD
iD1 Ki , by means of the relations:

jiD D A�i
D iiD; jD D A�

D iD; (2.25)

where

A�i
D D

0
BBB@

�1 � � � �1
1 � � � 0
:::
: : :

:::

0 � � � 1

1
CCCA 2 R

.1CKi /�Ki ; (2.26)

A�
D D diag.A�1

D ; : : : ;A
�nD
D / 2 R

nvD�naD : (2.27)

Remark 2.2 The components of the vector jiD depend only on the voltage drops

viD D A�i>
D uiD; i D 1; : : : ; nD: (2.28)

Thus, the components of the overall vector jD depend only on the voltage drops

vD D A�>
D uD: (2.29)

In fact, recalling (2.15), the variables Ui are coupled to the Poisson equation
only through the electric field Ei , and so are the components of the electric
current Ji .Ui /, and the components of ji , which appear in (2.19). Since the electric
field is not affected by a time-dependent translation of the electric potential,



2 PDAE Modeling and Discretization 27

�iD ! �iD C uiD;0.t/, we have a dependence of ji on the voltage drops viD;j WD
uiD;j � uiD;0, j D 1; : : : ; Ki , which in compact form can be written as in (2.28).

As a consequence of the previous remarks, the coupling conditions (2.21)
and (2.22) can be replaced by the conditions

� D ADiD; (2.30)

vD D A>
Du; (2.31)

where we have introduced the device incidence matrix

AD WD SDA�
D: (2.32)

We call this matrix “incidence matrix” because, for devices with two Ohmic
contacts, it reduces to the usual incidence matrix for branches with two-terminal
devices.

2.2.1.3 Displacement Current and Device Capacitance Matrix

The displacement currents, present in the definition of iD , will cause an additional
capacitance effect. To see this, we introduce the auxiliary functions 'ij , defined by:

8̂
<̂
ˆ̂:

�r � .�ir'ij / D 0; in ˝i

'ij D ıjk; on � i
D;k; k D 0; 1; : : : ; Ki ;

�i � r'ij D 0; on � i
N ;

(2.33)

where ıjk is the Kronecker delta. The auxiliary functions 'ij , j D 0; 1; : : : ; Ki , are
not independent, since

'i0 D 1 �
KiX
jD1

'ij : (2.34)

Using these functions, we can find an alternative expression for the current j iD;j
through the j -th contact of the i -th device:

j iD;j � �
Z
@˝i

'ij ji � �i d� D �
Z
˝i

r'ij � ji dx; (2.35)

where we have used the identity (2.17). Recalling the definition (2.18), the current
ji is the sum of the displacement current and the current due to the carriers. For the
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displacement current part, we find

�
Z
˝i

r'ij � �i @
@t

Ei dx D d

dt

Z
˝i

r � .�ir'ij �i / dx

D d

dt

KiX
kD0

Z
� iD;k

� � .�ir'ij .�ibi C uiD;k/'
i
k/ d�

D
KiX
kD0

Z
� iD;k

� � .�ir'ij 'ik/ d�
duiD;k

dt
;

which, using the divergence theorem and identity (2.34), leads to

�
Z
˝i

r'ij � �i @
@t

Ei dx D
KiX
kD1

Z
˝i

�ir'ij � r'ik dx
dviD;k

dt
; (2.36)

with viD;k D uiD;k � uiD;0. Combining this identity with (2.35), we find

j iD;j D
KiX
kD1

C i
D;jk

dviD;k
dt

�
Z
˝i

r'ij � Ji dx; (2.37)

with

C i
D;jk D

Z
˝i

�ir'ij � r'ik dx: (2.38)

In concise form, we can write:

iD D CD

dvD
dt

C ID.J/; (2.39)

with CD D diag.C1
D; : : : ;C

nD
D /, Ci

D D .C i
D;jk/ 2 R

Ki�Ki , and

ID.J/ D

0
B@

I 1
D.J

1/
:::

I nD
D .JnD/

1
CA ; I i

D.J
i / D

0
B@
I i
1 .J

i /
:::

I i
Ki
.Ji /

1
CA ; I i

j .J
i /D �

Z
˝i

r'ij �Ji dx

for j D 1; : : : ; Ki . Using the expression (2.39), the device-to-network coupling
relation (2.30) becomes

� D AD iD D ADCD

dvD
dt

C ADID.J/: (2.40)
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The matrix CD is symmetric and positive definite, and can be interpreted as a
capacitance matrix [2]. Thus we can write the previous relation as

� D AD

dqD
dt

C ADID.J/; (2.41)

qD D CDvD: (2.42)

These relations represent an alternative formulation of the device-to-network cou-
pling relation (2.30), to be used together with the network-to-device coupling
relation (2.31).

2.2.1.4 The Drift-Diffusion Model

In what follows we exemplify the coupled equations for an electric network with
semiconductor devices, by using a specific distributed model for the devices. For
simplicity, we consider an RLC network which contains a single device (nD D 1),
with K terminals.

The basic distributed model for semiconductor devices is the drift-diffusion
model. In this model, the electric behavior is described in terms of two charge
carriers: electrons, with negative elementary charge qn D �q, and holes, with
positive elementary charge qp D q. We denote by n, p, respectively, the electron
and hole number density. The carrier number densities are coupled with the electric
potential � through Poisson’s equation

� r � .�r�/ D �bi C �.n; p/ � qNbi � qnC qp; (2.43)

with the doping profile Nbi, and satisfy the balance laws

@n

@t
C r � jn D �R; @p

@t
C r � jp D �R; (2.44)

where jn, jp are the electron and hole density flux, respectively, given by the
following constitutive relations:

jn D �DnrnC �nnr�; jp D �Dprp � �ppr�: (2.45)

In the previous equations, R D R.n; p/ is the recombination-generation term,
which is assumed to have the following structure:

R.n; p/ D F.n; p/ �
�np

n2i
� 1

�
; (2.46)

for some rational function F.n; p/, with intrinsic concentration ni. In the consti-
tutive relations, Dn, Dp are the electron and hole diffusivity, respectively, and �n,
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�p are the electron and hole mobility, respectively. Diffusivities and mobilities are
functions of .n; p;E; x/. Generally, they satisfy the Einstein’s relations

Dn D Vth�n; Dp D Vth�p;

with thermal potential Vth.
The drift-diffusion equations (2.43)–(2.45) are considered for .x; t/ 2 ˝ � I �

R
d � R, I D Œt0; te�, with the following initial-boundary conditions:

• Boundary conditions for the Poisson equation:

(
� D �bi C uD;j .t/; on �D;j ; j D 0; 1; : : : ; K;

� � r� D 0; on �N ;
(2.47)

where �bi is the built-in potential, given by

�bi D Vth ln

�
Nbi

2ni
C
s�

Nbi

2ni

�2
C 1

�
;

uiD;j , j D 0; 1; : : : ; K , are the applied potentials at the Ohmic contacts of the
device, and � is the external unit normal to @˝ . Notice that here the time t 2 I

appears as a parameter, through the boundary data uD;j .t/.
• Initial-boundary conditions for the continuity equations:

8̂
<̂
ˆ̂:
n D nbi; p D pbi; on �D � I;
� � rn D 0; � � rp D 0; on �N � I;
n D n0; p D p0; on ˝ � ft0g;

(2.48)

where the Dirichlet data nbi, pbi are given by

nbi D Nbi

2
C
s�

Nbi

2

�2
C n2i ; pbi D �Nbi

2
C
s�

Nbi

2

�2
C n2i ;

and the initial data n0, p0 are arbitrary functions. It is interesting to notice the
identities �bi D Vth ln.nbi=ni/, and nbipbi D n2i .

The total electric current due to the carriers is:

J D �qjn C qjp: (2.49)

It is possible to show that J satisfies (2.16), with � D �qn C qp. Then we can apply
the formalism described in the previous subsections.

For convenience of the reader, we write below the full coupled system.
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(i) Network equations:

AC
dq
dt

C ARr.ATRu/C ALiL C AV iV C AI iI C � D 0;

d�

dt
�ATLu D 0;

ATV u � vV D 0:

q � qC .ATCu/ D 0;

� � �L.iL/ D 0;

(2.50)

with initial data for the differential part,

PCq.t0/ D PCq0; �.t0/ D �0; (2.51)

where PC is projector which picks the component of a vector outside
the null-space of the incidence matrix AC [24]. We also need to assume
index-1 conditions, that is, the algebraic equations can be solved uniquely for
the remaining variables in terms of the differential variables PCq, �.

(ii) Poisson equation:

� r � .�r�/ D qNbi � qnC qp; (2.52)

with boundary data:

(
� D �bi C uD;j .t/; on �D;j ; j D 0; 1; : : : ; K;

� � r� D 0; on �N :
(2.53)

(iii) Device equations:

@n

@t
C r � jn D �R;

@p

@t
C r � jp D �R;

jn D �DnrnC �nnr�;
jp D �Dprp � �ppr�;

(2.54)
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with initial-boundary data:

8̂
<̂
ˆ̂:
n D nbi; p D pbi; on �D � I;
� � rn D 0; � � rp D 0; on �N � I;
n D n0; p D p0; on˝ � ft0g:

(2.55)

(iv) Network-to-device coupling:

vD D A�>
D uD; uD D S>

Du; (2.56)

where

A�
D D

0
BBB@

�1 � � � �1
1 � � � 0
:::
: : :

:::

0 � � � 1

1
CCCA ; uD D

0
BBB@

uD;0
uD;1
:::

uD;K

1
CCCA :

(v) Device-to-network coupling:

� D ADiD; (2.57)

with AD D SDA�
D , and

iD D

0
B@
jD;1
:::

jD;K

1
CA ; jD;i D �

Z
�D;i

j � � d�; i D 1; : : : ; K; (2.58)

where

j WD �
@

@t
E � qjn C qjp:

As we have seen, the device-to-network coupling relation can be replaced by the
equivalent relation:

(v)0 Device-to-network coupling (alternative formulation):

� D AD

dqD
dt

C ADID.J/;

qD D CDvD;
(2.59)
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with J D �qjn C qjp, and CD D .CD;ij/ 2 R
K�K ,

CD;ij D
Z
˝

�r'i � r'j dx; i; j D 1; : : : ; K; (2.60)

where 'j are defined by (2.33), and

ID.J/ D

0
B@
I1.J/
:::

IK.J/

1
CA ; Ij .J/ D �

Z
˝

r'j � J dx:

2.2.1.5 Space Discretization of the Distributed Model: The Gummel Map

In this section we discuss the space discretization of the drift-diffusion model, for
later use in the following chapter. We need to address two different topics: (1) space
discretization of the PDE model, and (2) derivation of discrete device-to-network
coupling relations.

Whatever method we use, the space discretization amounts to replacing the
space-dependent unknowns, depending on a continuous variable x 2 ˝ � R

d , with
corresponding index-dependent unknowns, that is, vector unknowns, depending on
an index i 2 I � N. At the same time, the space-differential operators appearing
in the equations are mapped to finite-dimensional operators on R

jI j, with values on
the same space. This mapping procedure is achieved, for finite difference methods or
Box Integration methods by discretizing the operator itself, while for finite element
methods by “discretizing” the functional space on which the original operator
acts, that is, by constructing appropriate finite-dimensional functional spaces with
dimension jI j.

Since the starting model is generally nonlinear, the discretization is performed
after linearizing the system by iteration. The linearization procedure is better
discussed at a continuos level. For simplicity, in this discussion we do not
write explicitly the initial-boundary conditions. Let us consider the drift-diffusion
equations, written in the form:

r � D D qNbi � qnC qp;

@n

@t
C r � jn D �R;

@p

@t
C r � jp D �R;

D D ��r�;
jn D �DnrnC �nnr�;
jp D �Dprp � �ppr�;

(2.61)
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where D is the electric displacement field. In this formulation, we have singled out
the fluxes, and after replacing their expressions in the remaining equations, we get a
parabolic-elliptic system of partial differential equations. Nonlinearities are present
only in the recombination-generation term R, and in the constitutive equations for
the carrier density fluxes jn, jp.

The nonlinearities in the constitutive equations are the more delicate to treat
because, roughly speaking, the solution of the drift-diffusion equations tends rapidly
to the equilibrium solution, in which there is an exponential relationship between
the carrier densities and the electric potential. Thus, in a small region, such as
a discretization cell, there might be small variations of the electric field and the
carrier density fluxes but big variations of the carrier densities. For this reason, it
is not convenient to linearize the system in the form written below, and the natural
variables n; p are usually transformed into a different set of variables. The Slotboom
variables �n; �p are the most common choice. They are defined by the relations:

n D ni�n exp

�
�

Vth

�
; p D ni�p exp

�
� �

Vth

�
; (2.62)

where ni is the intrinsic concentration and Vth is the thermal potential. In equilib-
rium, the difference

np � n2i D n2i .�n�p � 1/

is identically zero, so we can conclude that equilibrium is characterized by the
product of the Slotboom variables to be equal to 1.

In these new variables, system (2.61) becomes

r � D D qNbi � qni�ne
�=Vth C qni�pe

��=Vth ;

@

@t

�
ni�ne

�=Vth
�C r � jn D �R;

@

@t

�
ni�pe

��=Vth
�C r � jp D �R;

D D ��r�;
jn D �Dnnie

�=Vthr�n;
jp D �Dpnie

��=Vthr�p:

(2.63)

This system is usually solved in three steps, by using an iteration procedure called
Gummel map, .�k�1; �k�1

n ; �k�1
p / 7! .�k; �kn; �

k
p/, starting from an initial guess

.�0; �0n; �
0
p/.
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First step We solve the Poisson equation for �k :

r � Dk D qNbi � qni�
k�1
n e�

k=Vth C qni�
k�1
p e��k=Vth ;

Dk D ��r�k:
(2.64)

This is a nonlinear problem, so it can be solved by using a modified Raphson-
Newton method, which involves another iteration procedure. Starting from an initial
guess �Œ0� which satisfies the boundary conditions, given an approximate solution
�Œi�1�, we compute the solution �Œi�, given by

�Œi� D �Œi�1� C ı�Œi �;

�r � .�rı�Œi �/ D �qni

Vth

�
�k�1
n e�

Œi�1�=Vth C �k�1
p e��Œi�1�=Vth

�
ı�Œi �

Cr � .�r�Œi�1�/C qNbi � qni�
k�1
n e�

Œi�1�=Vth C qni�
k�1
p e��Œi�1�=Vth :

This equation for ı�Œi � is linear and can be discretized and solved by using any
appropriate numerical method.

Second step We solve the continuity equation for �kn :

@

@t

�
ni�

k
ne
�k=Vth

�
C r � jkn D �Rkn;

jkn D �Dk
nnie

�k=Vthr�kn:
(2.65)

Here, the recombination-generation term Rkn is the usual term R evaluated at �k�1
n ,

�k�1
p in such a way to be a linear relaxation term for �kn . Recalling the general

expression (2.46) for R.n; p/, it is sufficient to take

Rkn D F.ni�
k�1
n e�

k�1=Vth ; ni�
k�1
p e��k�1=Vth/n2i .�

k
n�

k�1
p � 1/:

As for the diffusivityDk
n , it is usually dependent on the electric field E D �r�, so

it should be evaluated at � D �k . The resulting equation is linear parabolic for the
unknown �kn , and can be discretized and solved by using any appropriate numerical
method.

For the discretization of the constitutive relation for jkn, exponential interpola-
tion is the most common choice. The basic example is the Scharfetter-Gummel
discretization, which provides a formula for the carrier density flux

j kn;ij WD jkn � nij � Dk
nnie

�k=Vth
d�kn
ds
;

along the line connecting two adjacent grid points xi , xj . In this definition, the vector
nij WD xj�xi

jxj �xi j is the unit vector along the segment Œxi ; xj �, and the parameter s is the
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line element on the same segment, so that sj � si D jxj � xi j. Assuming that the
density flux j kn;ij and the electric field

Ek
ij WD Ek � nij � �d�k

ds
;

are approximately constant along the connecting line, we have

d

ds

�
Dk
nnie

�k=Vth
d�kn
ds

�
D 0; s 2 Œsi ; sj �;

�kn.si / D �kn;i WD �kn.xi /; �kn.sj / D �kn;j WD �kn.xj /;

with

d2�k

ds2
D 0; s 2 Œsi ; sj �;

�k.si / D �ki WD �k.xi /; �k.sj / D �kj WD �k.xj /:

The result for the electric potential is

�k.s/ � �k.si /

s � si
D �k.sj /� �k.si /

sj � si � �Ek
ij ;

and thus, assuming that the diffusivity depends only on the electric field, we find

j kn;ij D Dk
n;ijnie

�ki =VthB

 
�ki � �kj
Vth

!
�kn;j � �kn;i

jxj � xi j ; (2.66)

whereDk
n;ij D Dn.E

k
ij /, and B is the Bernoulli function,

B.z/ D
�

z
ez�1 ; if z ¤ 0;

1; if z D 0:

Third step We solve the continuity equation for �kp:

@

@t

�
ni�

k
pe

��k=Vth

�
C r � jkp D �Rkp;

jkp D �Dk
pnie

��k=Vthr�kp;
(2.67)

with

Rkp D F.ni�
k�1
n e�

k�1=Vth ; ni�
k�1
p e��k�1=Vth/n2i .�

k
n�

k
p � 1/:
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As before, the diffusivity Dk
p is evaluated at � D �k . This equation is linear

parabolic for the unknown �kp , and can be discretized and solved by using any
appropriate numerical method. A Scharfetter-Gummel discretization for the hole
density flux jkp can be derived using a similar argument as before. The result is

j kp;ij D Dk
p;ijnie

��ki =VthB

 
�kj � �ki
Vth

!
�kn;i � �kn;j
jxj � xi j ; (2.68)

with obvious notation.
The Gummel map generally converges after few iterations. Instead of separating

the original nonlinear problem in three subproblems, it is also possible to apply a
Newton-like method to the full system. In either case, we end up with a sequence of
linear problems that can be thought as a method for solving a nonlinear differential
algebraic system. As we have seen in the description of the Gummel map, it is not
simple to obtain an explicit representation of this differential algebraic system, nor
is it relevant to know it. In fact, what really matters is the convergence and stability
of the method.

For later use in the next chapter, it is nevertheless useful to have at least an explicit
example. For this reason we derive a space-discretized system by using the Box
Integration method [27, 60]. The discretized coupling conditions will be discussed
diffusely for this example, since the general treatment follows along the same line.

2.2.1.6 Space Discretization of the Distributed Model: The Box
Integration Method

The Box Integration method consists of two sets of equations – a set of exact
equations for the fluxes on the boundaries of the Voronoi cells of a numerical
grid, and a set of approximate equations for the fluxes in terms of the value of
the unknown function on the grid points. In addition, we need discrete equations for
supplementing the boundary conditions. To exemplify the Box Integration method,
first we give a rough sketch of its application for the Poisson equation, and then we
just show the result of the method for the continuity equations.

Some notation, first. We consider a tessellation Th of the domain˝ , which might
be a Delaunnay triangulation, a rectangular grid, or a hybrid grid, with vertices (grid
points) Xh D fx1; : : : ; xN g and edges Eh D fe1; : : : ; eM g. We also consider the set
of the internal grid points, X 0

h D fx1; : : : ; xN 0g, and the set E 0
h D fe1; : : : ; eM 0g

of the internal edges, for which at least one of the two end vertices is internal. We
denote by eij 2 Eh the edge which connects the grid points xi , xj 2 Eh. For each
grid point xi , we introduce the set of indices I.i/ of the neighboring grid points,
that is, j 2 I.i/ if and only if eij 2 Xh.

We consider the Dirichlet tessellation Dh, dual to Th, made of the Dirichlet (or
Voronoi) cells of the grid points Xh, and we denote by D 0

h the Dirichlet tessellation
corresponding to the internal grid points X 0

h . We denote by Vi 2 Dh the Voronoi
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cell of the grid point xi 2 Xh. The Voronoi cell Vi has at most as many faces as the
cardinality of I.i/, and we use the notation vij D Vi \ Vj , j 2 I.i/. The face vij,
whenever the area jvijj ¤ 0, is orthogonal to eij for any j 2 I.i/, and equidistant
from xi and xj , so the external unit normal on vij, external with respect to Vi , is
nij D xj�xi

jxj �xi j , which we have already encountered when discussing the Scharfetter-
Gummel discretization.

Now we are ready to apply the Box Integration method to the Poisson equation

r � D D � WD qNbi � qni�ne
�=Vth C qni�pe

��=Vth ;

D D ��r�;

with � D �.x; �n; �p; �/. Integrating the first equation on the internal Voronoi cell
Vi 2 D 0

h, and using the divergence theorem, we get:

X
j2I.i/

Z
vij

D � nij d� D
Z
Vi

� dx; i D 1; : : : ; N 0: (2.69)

These exact equations are approximated as

X
j2I.i/

jvijjDij D jVi j�i ; i D 1; : : : ; N 0; (2.70)

where Dij WD D � nij is evaluated on the mid point of the edge eij, that is, on xij WD
1
2
.xi C xj /, and the index i in the source term denotes evaluation on xi , in all its

arguments.
Next, we need to approximate the flux Dij, and this is done by assuming that the

electric field is constant along the edge eij. Then, we can derive the expression

Dij D ��ij
�j � �i

jeijj ; j 2 I.i/; i D 1; : : : ; N 0; (2.71)

where the dielectric constant is evaluated on xij, and is generally approximated by
�ij � 1

2
.�i C �j /.

Using (2.71) in (2.70), we find

X
j2I.i/

jvijj�ij
�i � �j

jeijj D jVi j�i ; i D 1; : : : ; N 0; (2.72)

which is a nonlinear system of N 0 equations for the N unknowns �1; : : : ; �N . In
compact form, we can write

A��C A@
��

@ D b�.�;�n;�p/; (2.73)
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with � D .�1; : : : ; �N 0/>, �@ D .�N 0C1; : : : ; �N />. This equation is the discrete
analog of the Poisson equation.

The remainingN �N 0 equations, needed to determine the unknowns, come from
the boundary conditions. We have N � N 0 D ND C NN , where ND is the number
of nodes on �D , and NN the number of nodes on �N . It is simple to impose ND
Dirichlet conditions,

�i D �bi;i C uD;k; if xi 2 �D;k: (2.74)

It is a bit more complicated to impose NN Neumann conditions, at least in the
framework of the Box Integration method. A possible way of doing it, is by using
a BDF formula for expressing the normal derivative on a Neumann grid point in
terms of inner grid points along the normal direction, possibly with the help of
some interpolation. Whatever method we use, we end up with NN equations of the
form

�i C
N 0X
jD1

aij�j D 0; if xi 2 �N ; (2.75)

with many zero coefficients. Combining Eqs. (2.74) and (2.75), we can write them
in the compact form

A@�C �@ D b@�.uD/: (2.76)

We notice that the matrix A@ does not depend on the differential equation but only
on the tessellation Th and on the formula used for expressing the normal derivative
with respect to the internal nodes. Equation (2.76) is the discrete analogue of the
boundary conditions for the Poisson equation, and together with (2.73) form a set
of equations which can be solved for � and �@.

We can apply the same procedure to the electron continuity equation,

@n

@t
C r � jn D �R;

jn D �Dnnie
�=Vthr�n;

(2.77)

and to the hole continuity equation,

@p

@t
C r � jp D �R;

jp D �Dpnie
��=Vthr�p;

(2.78)
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with n, p given in terms of �n, �p and � by (2.62). Using the Scharfetter-Gummel
discretization (2.66) and (2.68) for the fluxes, we obtain the discretized equations

jVi jdni
dt

C
X
j2I.i/

jvijjjn;ij D �jVi jRi ;

jn;ij D Dn;ijnie
�i =VthB

�
�i � �j
Vth

�
�n;j � �n;i

jeijj ; j 2 I.i/;
(2.79)

and

jVi jdpi
dt

C
X
j2I.i/

jvijjjp;ij D �jVi jRi;

jp;ij D Dp;ijnie
��i =VthB

�
�j � �i

Vth

�
�n;i � �n;j

jeijj ; j 2 I.i/;
(2.80)

with i D 1; : : : ; N 0. To these equations we need to add the discrete Dirichlet and
Neumann boundary conditions for both equations,

�n;i D e�uD;k=Vth ; if xi 2 �D;k; (2.81)

�n;i C
N 0X
jD1

aij�n;j D 0; if xi 2 �N ; (2.82)

and

�p;i D euD;k=Vth ; if xi 2 �D;k; (2.83)

�p;i C
N 0X
jD1

aij�p;j D 0; if xi 2 �N : (2.84)

In compact form, the spatially discrete continuity equations can be written as:

A0

dn.�;�n/

dt
C An.�/�n C A@

n.�/�
@
n D bn.�;�n;�p/; (2.85)

A@�n C �@n D b@n.uD/; (2.86)

A0

dp.�;�p/

dt
C Ap.�/�p C A@

p.�/�
@
p D bp.�;�n;�p/; (2.87)

A@�p C �@p D b@p.uD/; (2.88)

with notation analogous to the one used for the discretized Poisson equation (2.73)
and (2.76). Besides the presence of the time derivative, the main difference is that
now the matrices corresponding to the elliptic operators, that is, An and Ap , depend
nonlinearly on the electric potential.
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We notice that, within the Box Integration method framework, other spatial dis-
cretizations are possible. In particular, we can start from the drift-diffusion system
written for the natural variables �, n, p. In this case, the discrete Poisson equation
becomes linear and it is possible to write the Scharfetter-Gummel discretization for
jn;ij as a linear combination of ni , nj , with coefficients depending nonlinearly on
the electric potential,

jn;ij D Dn;ij

jeijj
�
B

�
�j � �i
Vth

�
nj � B

�
�i � �j
Vth

�
ni

�
; (2.89)

jp;ij D Dp;ij

jeijj
�
B

�
�i � �j
Vth

�
pj � B

�
�j � �i
Vth

�
pi

�
: (2.90)

Then, we obtain a linear ordinary differential equation for n, with coefficients
depending nonlinearly on the electric potential, and similarly for p. This form
looks much simpler than the one we have derived above, but it becomes unstable
if we try to decouple the three main problems by iteration, as in the Gummel map.
Nevertheless it can be used if the system is solved by Newton iteration, without
using the Gummel map. For this reason, we will apply it in the next chapter, and we
summarize it as follows:

A��C A@
��

@ D b�.n;p/; (2.91)

A@�C �@ D b@�.uD/; (2.92)

A0

dn

dt
C An.�/nC A@

n.�/n
@ D bn.n;p/; (2.93)

A@nC n@ D b@n; (2.94)

A0

dp

dt
C Ap.�/p C A@

p.�/p
@ D bp.n;p/; (2.95)

A@p C p@ D b@p: (2.96)

Note that Eqs. (2.94) and (2.96) do not depend on uD , because the Dirichlet
boundary conditions for the variables n, p are now given by (2.55).

2.2.1.7 Space Discretization of the Distributed Model: The Coupling
Conditions

The last item to be discussed is the coupling conditions with the network. The
network-to-device coupling condition is immediate, because the term b@� (in the

formulation with the Slotboom variables, also b@n and b@p) depends on the applied
potentials uD , which are related to the network node potentials by the coupling
relation (2.56). The device-to-network coupling is more delicate, because we need to
introduce the discretized current transmitted to the network through the k-th Ohmic
contact, �D;k , k D 1; : : : ; K .
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First, we implement the coupling condition as in (2.57). At this aim, we consider
the Voronoi cells Vi corresponding to grid nodes xi in �D;k , and we integrate
the charge conservation equation on the union of these Voronoi cells, VD;k DS

xi2�D;k Vi :

Z
VD;k

	
@

@t
.�qn C qp/C r � .�qjn C qjp/



dx D 0: (2.97)

Using Poisson’s equation, we find

@

@t
.�qn C qp/ D r � @D

@t
; D D �E D ��r�:

Then, by the divergence theorem, we can write

Z
VD;k

r �
	
@D
@t

� qjn C qjp



dx D

Z
@VD;k

n �
	
@D
@t

� qjn C qjp



d�

D
Z
@VD;k\@˝

n �
	
@D
@t

� qjn C qjp



d�

C
Z
@VD;kn@˝

n �
	
@D
@t

� qjn C qjp



d� D 0:

The first integral is approximately the outer current flux through the Ohmic contact
�D;k , that is, with our convention,

Z
@VD;k\@˝

n �
	
@D
@t

� qjn C qjp



d� � �jD;k :

The maximum error in this approximation occurs when the grid points on �D;k
closer to the neighboring Neumann boundary are located on the junction between
Dirichlet and Neumann boundary, in which case @VD;k \ @˝ consists of �D;k
bordered with a strip whose thickness is the order of half the diameter of the Voronoi
cells. On the other hand, we can write

Z
@VD;kn@˝

n �
	
@D
@t

� qjn C qjp



d�

D
X

xi2�D;k

X
j2I.i/

xj …�D;k

Z
vij

nij �
	
@D
@t

� qjn C qjp



d�

�
X

xi2�D;k

X
j2I.i/

xj …�D;k

jvijj
	

dDij

dt
� qjn;ij C qjp;ij



;
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where Dij, jn;ij, jp;ij are defined as in (2.71) and (2.79), (2.80), or (2.89), (2.90).
Combining the previous relations we find the approximation

jD;k D
X

xi2�D;k

X
j2I.i/

xj…�D;k

jvijj
	

dDij

dt
� qjn;ij C qjp;ij



; (2.98)

which can be used as device-to-network discrete coupling condition. In short,
recalling the definition of the coupling term �, we can write

� D ADiD; iD D Ac d�

dt
C Ac

n.�/n C Ac
p.�/p: (2.99)

We note that in this coupling condition, the time derivative of Dij occurs, that is,
the time derivative of �, which is an “algebraic variable” for the discretized device
equations with no coupling.

Next, we formulate the discrete version of the alternative formulation of the
device-to-network coupling conditions (2.59). We need to evaluate the capacitance
matrix CD , defined by (2.60), and to formulate the discrete version of the operator
Ik.J/ appearing in (2.59). As for the capacitance matrix, we can write

CD;kl D
NX
iD1

Z
Vi

�r'k � r'l dx

D
NX
iD1

	Z
@Vi

�'kr'l � n d� �
Z
Vi

'kr � .�r'l / dx



D
NX
iD1

Z
@Vi

�.'k � 'k;i /r'l � n d�;

where 'j are defined by (2.33), and 'k;i D 'k.xi /. The last equality follows because
r � .�r'l/ is identically zero due to the definition of 'l . If xi 2 X 0

h , this integral
can be approximated by

Z
@Vi

�.'k � 'k;i /r'l � n d� D
X
j2I.i/

Z
vij

�.'k � 'k;i /r'l � nij d�

�
X
j2I.i/

jvijj�ij.'k;ij � 'k;i /
'l;j � 'l;i

jeijj ;
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with �ij D �.xij/ � 1
2
.�i C �j /, 'k;ij D 'k.xij/ � 1

2
.'k;i C 'k;j /. Then, we find the

following approximation:

Z
Vi

�r'k � r'l dx �
X
j2I.i/

jvijj
2jeijj�ij.'k;j � 'k;i /.'l;j � 'l;i /: (2.100)

If xi 2 Xh \ @˝ , we have

Z
@Vi

�.'k � 'k;i /r'l � n d� D
X
j2I.i/

Z
vij

�.'k � 'k;i /r'l � nij d�

C
Z
@Vi\@˝

�.'k � 'k;i /r'l � n d�:

The second integral vanishes because either r'l � n D 0, if Vi touches the Neumann
boundary, or 'k � 'k;i D 0, if Vi touches a Dirichlet boundary, so we are led to the
same approximation (2.100).

In conclusion, the capacitance matrix is approximated by

QCD;kl D
NX
iD1

X
j2I.i/

jvijj
2jeijj�ij.'k;j � 'k;i /.'l;j � 'l;i /: (2.101)

In a similar way, we can approximate Ik.J/. We can write

Ik.J/ D �
NX
iD1

Z
Vi

r'k � J dx

D �
NX
iD1

	Z
@Vi

'kJ � n d� �
Z
Vi

'kr � J dx



� �
NX
iD1

Z
@Vi

.'k � 'k;i /J � n d�;

so an approximation is given by

QIk D �
NX
iD1

X
j2I.i/

jvijj
2
.'k;j � 'k;i /.�qjn;ij C qjp;ij/: (2.102)
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In short, the coupling conditions can be written as:

� D AD

dqD
dt

C AD
QID; QID D Ac

n.�/n C Ac
p.�/p;

qD D QCDvD � QCDA>
Du:

(2.103)

2.2.2 Electro-Thermal Effects at the System Level

The typical trend associating new technology generations with a reduced power
consumption has been reversed in the last decade making an accurate electro-
thermal analysis of ICs a necessity for a reliable and cost-effective design. To
support this need computer aided design (CAD) tools must provide dependable
means to simulate coupled electro-thermal effects.

The development of a robust algorithm for this purpose requires a high degree
of integration inside usual industrial design flows to be effectively usable, and
the possibility to account for 2D/3D heat diffusion to properly describe thermal
effects at the system level. In particular it should allow an efficient handling of
the space-time multiscale effects associated with the problem at hand. Figure 2.1
shows a brief sketch of a new strategy (originally proposed in [20]) to automatically
perform system level electro-thermal simulations inside an industrial design flow.
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Fig. 2.1 Automated design flow for the electro-thermal simulation of ICs. A thermal element
model is automatically constructed from available circuit schematic and design layout, permitting
the set-up and simulation of an electro-thermal network that accounts for heat diffusion at the
system level
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In this approach the electrical behavior of possibly each circuit element is modeled
by standard compact models with an added temperature node. Mutual heating is
then accounted for by a novel circuital element embedding a 2D or 3D diffusion-
reaction partial differential equation (PDE) in its constitutive relations to describe
heat-diffusion on a distributed domain. By imposing suitable integral conditions this
element is casted in a form analogous to that of usual electrical circuit elements,
so that its use in a standard circuit simulator requires only the implementation of
a new element evaluator, but no modification to the main structure of the solver.
This permits the automatic set-up and simulation of an electro-thermal network that
accounts for heat diffusion at the system level.

2.2.2.1 Definition of the PDE-Based Thermal Element Model

A suitable thermal element balancing power fluxes at junction temperature nodes is
required to extend a purely electrical description of a circuit to an electro-thermal
one. In the following it is shown how a multiscale model that fits such a purpose
can be derived starting from information that are readily available during IC design
phase, i.e. 2D or 3D layout geometry and possibly 3D package geometry.

As sketched in Fig. 2.2 this information is used to describe the overall physical
region where to simulate thermal effects as an open, bounded domain:

˝ � R
d .d D 2; 3/;

a b

Fig. 2.2 Layout or package information from IC design are automatically converted into a
geometrical description of the domains in which suitable PDEs describing heat diffusion at the
system level are casted. Notice that while 	1 and 	2 refer to mean temperature values over ˝1 and
˝2 respectively, 	3 represents ambient temperature. (a) Inverter layout. (b) Extracted geometry
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and to associate each thermally active device with a subset related to its layout
positioning:

˝k � ˝ for k D 1; : : : ; K

where its power flux is supposed to be dissipated. Each subset is required one to
fulfill the following properties:

int.˝k/ ¤ ; 8k D 1; : : : ; K;

N̋
k � ˝ 8k D 1; : : : ; K;

N̋
k \ N̋

j D ; 8j; k D 1; : : : ; K; k ¤ j:

Furthermore it is supposed for either ˝ and ˝k (k D 1; : : : ; K) to have Lipschitz
boundary. The unknowns considered in the thermal element model are the junction
temperature vector:

� D Œ	1; : : : ; 	KC1�T ;

where the first K components are associated with each subset region while the last
one represents ambient temperature, the power density vector:

p D Œp1; : : : ; pK�
T ;

where each component represents the Joule power per unit area dissipated in each
region and the distributed temperature field T .x; t/ on˝ .

Assuming .�; �/ to denote the usual L2.˝/ scalar product and 1˝k to denote the
indicator function of the set ˝k , then the distributed temperature field T .x; t/ is
linked to junction temperature nodes through:

1

j˝kj.T; 1˝k / D 	k for k D 1; : : : ; K;

i.e. 	k represents the mean value over˝k of T .x; t/. In the same way the power flux
entering each node is related to the Joule power per unit area via:

.pk; 1˝k / D pkj˝kj D Pk for k D 1; : : : ; K:

The total power Pk dissipated over˝k is thus equal, for every fixed time instant, to
the product of a mean power density pk times the area of each active region j˝kj.
Finally the power flux to ambient temperature node is defined to be:

PKC1 D �
KX
kD1

pkj˝kj:
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to ensure energy conservation inside the thermal element. Though the decisions
to uniformly distribute the dissipated power Pk inside ˝k and define 	k as the
mean temperature over ˝k are somehow arbitrary, they constitute a sound physical
approximation at a macro-scale level, if it is considered that usually:

diam.˝k/ � diam.˝/ for k D 1; : : : ; K:

Anyhow, other shapes for the power distribution inside ˝k, as well as any other
means to define junction temperatures starting from the distributed field T .x; t/may
have been adopted in principle.

If packaging information is available, then heat-diffusion on a 3D domain is
supposed to be modeled by a quasi-linear PDE:

cV .T; x/
@T .x; t/
@t

C L 3 T .x; t/ D
KX
kD1

pk.t/ 1˝k .x/ in ˝; (2.104)

where:

L 3 T .x; t/ WD �
3X

i;jD1
Di

h

ij.T; x/DjT .x; t/

i
; Di WD @

@xi
: (2.105)

In (2.104) the term cV .T; x/ represents the distributed thermal capacitance of
the material, while in (2.105) the terms 
ij.T; x/ .i; j D 1; : : : ; 3/ account
for possibly anisotropic heat-diffusion. A common assumption, stemming from
physical considerations, is that:


ij.T; x/ D 
ji.T; x/;

so that the associated tensor results to be symmetric. This PDE has to be comple-
mented by suitable boundary conditions that are, here and in the following, assumed
to be of Robin type:

@ T .x; t/
@nL

D R.T; 	KC1/ on @˝: (2.106)

In (2.106) the term
@ T .x; t/
@nL

denotes the conormal derivative of T .x; t/ on @˝ and

is defined as:

@ T .x; t/
@nL

WD
3X

i;jD1
ni 
ijDjT .x; t/ ;

where ni is the i -th component of the normal outward oriented unit vector on @˝ .
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In the case that only layout information is available, or that package temperature
field is not of interest, then heat diffusion can be modeled by a quasi-linear PDE
similar to the one used in the 3D case:

OcV .T; x/@T .x; t/
@t

C L 2 T .x; t/ D
KX
kD1

pk.t/ 1˝k .x/ in ˝;

the only difference being that now the operator L 2, defined as:

L 2 T .x; t/ WD �
2X

i;jD1
Di

h
O
ij.T; x/DjT .x; t/

i
C Oc.T; x/T .x; t/;

embodies a reaction term Oc.T; x/ to model heat loss in the missing third direction.
Suitable boundary conditions are needed also in this case to close the model.

2.2.2.2 Analysis of the Thermal Element Model

The well-posedness of the thermal element model when externally controlled by
independent sources fixing the Joule power per unit area stems directly from its
definition in Sect. 2.2.2.1. The reader interested in a broader treatment of this
subject is referred to [20, Chapter 3]. Existence and uniqueness of a solution can
also be proven in the case where the external independent sources fix the average
temperature over a region. In particular, a result of this type is given in this section.

In the case at hand heat-diffusion processes are restricted to the case of the linear
operator:

L T .x/ WD �
dX

i;jD1
Di

h

ij.x/DjT .x/

i
C c.x/T .x/; (2.107)

where 
ij.x/; c.x/ 2 L
1.˝/ and:

c.x/ 	 0 a.e. in ˝ ;


ij.x/ D 
ji.x/ i; j D 1; : : : ; d :

Furthermore it is assumed for L to be uniformly elliptic in ˝ , i.e. it exists � > 0

such that:

dX
i;jD1


ij.x/�j �i 	 � j�j2 ; (2.108)
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for each � 2 R
d and almost every x 2 ˝ . The PDE employed to describe thermal

effects is enforced in a weak formulation that reads:

d

dt
.T; v/C a.T; v/C Ǫ .T � 	KC1; v/@˝ D

KX
kD1

pk.1˝k ; v/ ; (2.109)

where:

a.T; v/ WD
Z
˝

� dX
i;jD1


ij.x/ Dj T Div
�
dx C

Z
˝

c.x/ T v dx: (2.110)

is the bilinear form associated with L , while .�; �/@˝ denote the L
2.@˝/ scalar

product. Under these hypothesis it is possible to prove the following:

Theorem 2.1 Given:

1. T0 2 L
2.˝/,

2. 	k 2 C
0Œ0; t1� and 	k.0/ consistent with T0 (k D 1; : : : ; K),

3. 	KC1 2 C
0Œ0; t1�,

there exist unique:

1. T 2 C
0
�
Œ0; t1�IL2.˝/

�\ L
2
�
.0; t1/IH1.˝/

�
,

2. pk 2 C
0Œ0; t1� (k D 1; : : : ; K),

such that:

d

dt
.T; v/C a.T; v/C . ǪT; v/@˝ D

KX
kD1

pk.1˝k ; v/C . Ǫ	KC1; v/@˝

for all v 2 H
1.˝/;

T .x; 0/ D T0.x/;

.T; 1˝k / D 	k.t/j˝kj for k D 1; : : : ; K:

Readers interested in the proof of this theorem are referred to [20, Chapter 3.2],
where further considerations on the practical role played by Theorem 2.1 and its
elliptic counterpart are also given.

2.2.2.3 Evaluation of the Thermal Element Model

The structure most commonly adopted in the design of a software package for
transient circuit simulation is usually based upon a set of element evaluators that
provide a non-linear solver with the local Jacobian matrices and residuals needed
to assemble the linearized system corresponding to each Newton iteration. These
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local contributions, commonly referred to as stamps, completely define the behavior
of each circuit element and are usually represented in a table-like format [20,
Chapter 5]. In the following the stamp associated with the thermal element model
defined in Sect. 2.2.2.1 will be given.

Introduce to this aim the vectors:

�k D Œ	1.tk/; : : : ; 	KC1.tk/�T ;

pk D Œp1.tk/; : : : ; pK.tk/�
T ;

Tk D �
TC .tk/;T1.tk/; : : : ;TK.tk/

�T
;

associated with the thermal element unknowns at the time instant tk . The particular
structure of the vector Tk stems from the space discretization of the distributed
temperature field T .x; t/ with the patches of finite elements methods [34]. If the
linear operator (2.107) is assumed to properly describe heat-diffusion effects, and a
p-step linear multi-step method of the form:

Py.tk/C f .y.tk/; tk/ �
pX
jD0

˛j y.tk�j /C h

pX
jD0

ˇj f .y.tk�j /; tk�j / ;

is supposed to be used for time-discretization purposes, then the stamp associated
with the thermal element reads:

�k rk
Jk;� Jk;r Fk ,

Qk;� Qk;r Gk ,

where:

rk D
"

pk

Tk

#
:

Assuming T to have nT components, and defining:

˝ 2 R
KC1�K such that ˝ WD

2
66664

j˝1j � � � 0

:::
: : :

:::

0 � � � j˝K j
�j˝1j � � � �j˝K j

3
77775 ;
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then it is possible to provide an explicit formulation for the entries referring to the
first line of the stamp:

Jk;� 2 R
KC1�KC1 with Jk;� WD �

0
�
;

Jk;r 2 R
KC1�KCnT with Jk;r WD �

˝ 0
�
;

Fk 2 R
KC1 with Fk WD ˝ pk :

The definition of the remaining entries results to be a bit more involved. Assume
f�j ; j D 1; : : : ; nT g to represent the full basis set associated with the space
discretized vector T and define:

M� 2 R
K�KC1 with M� WD

2
64
1 � � � 0 0
:::
: : :

::: 0

0 � � � 1 0

3
75 ;

MT 2 R
K�nT with ŒMT�ij WD 1

j˝i j .�j ; 1˝i / :

The space discretized counterpart of the relation linking junction temperatures and
distributed temperature field reads then:

M�� �MTT D 0 :

Denote with:

B 2 R
nT�KC1 with B WD

2
64
0 � � � 0 b1
:::
: : :

:::
:::

0 � � � 0 bnT

3
75 ;

P 2 R
nT�K with ŒP �ij WD .1˝j ; �i / ;

the matrices accounting for the PDE boundary conditions and heat generation terms,
respectively. Notice that only the last column of B has non-zero entries, as boundary
conditions depend only on the environment temperature. Assume finally A and C
to be the stiffness and mass matrix stemming from patches of finite element method
(for more insight on the construction of these matrices the interested reader is
referred to [20, Chapter 4]). The space discretized formulation of the heat-diffusion
equation reads then:

C PT C AT C Pp C B� D 0 :
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Applying the linear multi-step time discretization introduced before it is possible to
write the Jacobian contributions as:

Qk;� 2 R
KCnT�KC1 with Qk;� WD

	
M�

hˇ0B



;

Qk;r 2 R
KCnT�KCnT with Qk;r WD

	
0 MT

hˇ0P .˛0C C hˇ0A/



;

while defining:

gk D
pX
jD1

˛jCTk�j C h

pX
jD1

ˇj
�
ATk�j C Ppk�j CB�k�j

�
;

gives the following expression for the residual Gk 2 R
KCnT :

Gk D �
	

0

hˇ0B�k C hˇ0Ppk C .˛0C C hˇ0A/Tk C gk



:

2.2.2.4 Analysis of the Coupled System

To conclude this section the existence and uniqueness of a solution to the whole
electro-thermal system is discussed. This result is of major importance to show that
under non-restrictive assumptions the extended electro-thermal netlist introduced in
Fig. 2.1 enjoys the same smoothness of the original electrical netlist, that is here
formalized as:

AC
dq
dt

C ARr.ATRe;�/C ALiL C AV iV C AI i.ATC e;�/ D 0;

d�

dt
�ATLe D 0;

ATV e � v.t/ D 0;

q � qC .ATC e/ D 0;

� � �L.iL/ D 0:

(2.111)

Notice that an additional dependence on junction temperatures is assumed for resis-
tors and controlled current sources. The electrical part has then to be complemented
by the balance of Joule power at the thermal network nodes:

j˝kjpk �Wk.�; e/ D 0 for k D 1; : : : ; K; (2.112)
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by the thermal element interface conditions:

j˝kj	k � .T; 1˝k / D 0 for k D 1; : : : ; K; (2.113)

and by the PDE describing heat diffusion:

d

dt
.T; v/Ca.T; v/C Ǫ .T; v/@˝ �

KX
kD1

pk.1˝k ; v/� Ǫ .gk; v/@˝ D 0 8v 2 H
1.˝/:

(2.114)

The electrical part (2.111) is supposed in the following to be index-1 for any
given � 2 C

0Œ0; t1�. Defining QC to be the orthogonal projector onto the kernel of
ATC and PC to be its complement, then sufficient conditions to fulfill the index-1
requirement are [24]:

1. ker.AC ;AR;AV /T D f0g , kerQT
CAV D f0g ,

2. i.ATC e;�/ uniformly continuous in � and Lipschitz continuous in ATC e,
3. V.�/ continuous,
4. �L.�/ and qC .�/ differentiable functions of their arguments,

5.
@qC .ATC e/

@.ATC e/
,
@�L.iL/
@.iL/

positive definite,

6. r.ATRe;�/ uniformly continuous in � and differentiable in ATRe,

7.
@r.ATRe;�/

@.ATRe/
positive definite and uniformly continuous in � .

Under these assumptions the existence and uniqueness of a global solution to
an initial value problem with consistent initial conditions on Œ0; t1� follows from
standard results [35, Theorem 15]. Furthermore, for each component of the solution
in the time interval Œ0; t1� a bound of the form:

jx.t/j 
 jdA.�.t//j C
Z t

0

jdD.�.�//jd� ; (2.115)

holds, where dA.�/ and dD.�/ are continuous functions. Notice that the form
of (2.115) is due to the index-1 condition, thanks to which the time-derivatives of
�.t/ do not appear in the bound. In this case also the following a-priori bound,
uniformly in � , can be shown to hold:

jx.t/j 
 max
G

jdA.�/j C jt j max
G

jdD.�/j ; (2.116)

where G is a closed set, such that:

F WD
�

s 2 R
K W jsj 
 max

t2Œ0;t1�
j�.t/j


� G � R

K : (2.117)
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The assumptions made on the thermal part of the system are:

1. g.x; t/ 2 C
0
�
Œ0; t1�;L

2.@˝/
�
,

2. Wk.�; �/ continuous function of its arguments .k D 1; : : : ; K/,

To provide system (2.111)–(2.114) with consistent initial conditions it is possible
to prescribe arbitrarily T .x; 0/ WD T0.x/ 2 L

2.˝/, PC e.0/ and iL.0/. Then
�.0/ is obtained from (2.113), QC e.0/, iV .0/, �.0/, q.0/ are computed from the
algebraic constraints of (2.111) once �.0/ is known, and p.0/ is finally determined
from (2.112).

The existence and uniqueness of a solution to (2.111)–(2.114) in a given time
interval t 2 Œ0; t1� is investigated in the next:

Theorem 2.2 Consider system (2.111)–(2.114) with the further hypothesis that:

1. There exist CW > 0 such that jWk.�; e/j 
 CW for k D 1; : : : ; K .

Suppose furthermore that the assumptions outlined in the previous paragraphs on
the electrical and thermal part of the network are fulfilled. Then, given consistent
initial conditions, there exist a unique solution to an initial value problem on a given
time interval Œ0; t1� and:

1. PC e, iL, q and � are differentiable,
2. QC e, iV , � and p are continuous,
3. The regularity of the PDE solution is at least:

T 2 L
2
�
.0; t1/;H

1.˝/
�\ C

0
�
Œ0; t1�;L

2.˝/
�
;

while:

@T

@t
2 L

2
�
.0; t1/;H

�1.˝/
�
;

4. The energy estimate:

kT .x; t/k2
L
2.˝/

C 

Z t

0

kT .x; �/k2
H
1.˝/

d� 
 kT0.x/k2L2.˝/ C 1



Z t

0

S2d� ;

holds for each t 2 Œ0; t1� where:

S D S.CW; Ǫ ;˝k; g/ WD CW

KX
kD1

p
j˝kj C Ǫ kg.t/k

L
2.@˝/ :

Proof In the following the so-called Faedo-Galerkin method is exploited to con-
struct a sequence of DAE systems that approximate the PDAE system (2.111)–
(2.114). The line followed stems directly from the one usually employed to prove the
well posedness of parabolic PDEs casted in a weak formulation (see [52, Chapter 11,
Theorem 11.1.1]).
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That being said, since H
1.˝/ is a separable Hilbert space it admits a complete

orthonormal basis f�j gj�1. Define then:

V N WD spanf�1; : : : ; �N g :

Substitute the PDE appearing in (2.111)–(2.114) with the approximate problem:

d

dt
.T N ; v/Ca.T N ; v/C Ǫ .T N ; v/@˝�

KX
kD1

pNk .1˝k ; v/� Ǫ .g; v/@˝ D 0 (2.118)

for all v 2 V N , where N 	 K in order to fulfill the constraints imposed by (2.113).
Writing:

T N .x; t/ WD
NX
sD1

cNs .t/�s.x/ ; (2.119)

then (2.118) results to be equivalent to:

M
dcN

dt
C AcN � BpN � FN .t/ D 0 : (2.120)

where the stiffness and mass matrices are defined as:

M 2 R
N�N with

�
Mij
� WD Œ.�i ; �j /� ;

A 2 R
N�N with ŒAij� WD Œa.�j ; �i /C Ǫ .�j ; �i /@˝� ;

B 2 R
N�K with ŒBij� WD Œ.1˝k ; �i /� ;

while the known vector FN reads:

FN 2 �
C
0Œ0; t1�

�N
with ŒF N

i � WD Œ Ǫ .g; �i /@˝� :

Finally the unknown vectors in (2.120) are:

pN .t/ WD ŒpN1 .t/; : : : ; p
N
K .t/�

T ;

cN .t/ WD ŒcN1 .t/; : : : ; c
N
N .t/�

T :

Similarly it is possible to substitute (2.119) in (2.113) and obtain the equivalent
system:

˝�N � BT cN D 0 ; (2.121)
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where:

˝ 2 R
K�K with ˝ WD diag.j˝1j; : : : ; j˝K j/ ;

and:

�N .t/ WD Œ	N1 .t/; : : : ; 	
N
K .t/�

T :

Reformulating (2.112) in matrix notation:

˝pN � W.�N ; eN / D 0 ; (2.122)

with:

W .�N ; eN / WD ŒW1.�
N ; eN /; : : : ;WK.�

N ; eN /�T ;

it is possible to write the DAE system approximating (2.111)–(2.114) as:

AC
dqN

dt
C ARr.ATReN ;�N /C ALiNL C AV iNV C AI i.ATC eN ;�N / D 0 ;

d�N

dt
�ATLeN D 0 ;

ATV eN � V.t/ D 0 ;

qN � qC .ATC eN / D 0 ;

�N � �L.iNL / D 0 ;

˝pN � W.�N ; eN / D 0 ;

˝�N � BT cN D 0 ;

M
dcN

dt
C AcN � BpN � FN .t/ D 0 :

(2.123)

Notice that M can be inverted as it is positive definite. Thus (2.120) defines an
explicit differential equation for the variable cN :

dcN

dt
D �M�1 �AcN � BpN � FN .t/

�
: (2.124)

From (2.121) it holds:

�N D ˝�1BT cN ; (2.125)
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due to the regularity of ˝ . Differentiating (2.125) and taking into account (2.124)
the following explicit differential equation is obtained for �N :

d�N

dt
D ˝�1BT dcN

dt
D �˝�1BTM�1 �AcN � BpN � FN .t/

�
:

Substituting (2.125) into (2.111) reads:

AC
dq
dt

C AR Or.ATRe; cN /C ALiL C AV iV C AI Oi.ATC e; cN / D 0;

d�

dt
� ATLe D 0;

ATV e � V.t/ D 0;

q � qC .ATC e/ D 0;

� � �L.iL/ D 0;

(2.126)

where:

Or.ATRe; cN / WD r.ATRe;˝�1BT cN / ;

Oi.ATC e; cN / WD i.ATC e;˝�1BT cN / :

The assumptions on the electrical part of the system ensure that only one differen-
tiation of (2.126) is needed to derive, through appropriate algebraic manipulations,
a set of explicit differential equations for the variables e, q, �, iL and iV . Finally
from (2.122) it stems:

pN D ˝�1W.�N ; eN / :

Even here only one differentiation is necessary to derive an explicit differential
equation for pN . The index of system (2.123) results then to be one.

Defining the orthogonal projection:

PN W L2.˝/ ! V N ;

it is possible to derive a set of consistent initial conditions for (2.123). In fact, it just
suffices to define the initial conditions for the approximate problem (2.118) as:

T N0 WD PN .T0/ ; (2.127)

and proceed as done in the original PDAE system. Notice that the initial condition
for system (2.120) equivalent to (2.127) is given by the solution of the linear system:

.M cN .0//j D .T0; �j / for j D 1; : : : ; N :
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As consistent initial conditions have been obtained, then (2.123) admits a unique
global solution [35].

To proceed with the Faedo-Galerkin method it is necessary at this point to
recover, for all the variables in (2.123), upper bounds in L

2.0; t1/ that are inde-
pendent of N . These bounds will be employed afterwards to pass to the weak-limit
N ! 1 and determine then a solution to the initial PDAE system. Due to the
hypothesis made on the boundedness of jWk.�; �/j it is convenient to start from the
thermal part of the network, noticing that:

pNk 2 C
0Œ0; t1� � L

2.0; t1/ k D 1; : : : ; K;

cNk 2 C
1Œ0; t1� � H

1.0; t1/ k D 1; : : : ; K;

hold, from which it follows naturally:

T N 2 H
1
�
.0; t1/;H

1.˝/
�
:

Choosing T N as a test function in (2.118) gives:

�
d

dt
T N ; T N

�
C a.T N ; T N /C Ǫ .T N ; T N /@˝ (2.128)

D
KX
kD1

pNk .1˝k ; T
N /C Ǫ .g; T N /@˝ : (2.129)

Exploiting the coercivity of the bilinear form it is possible to obtain:

1

2

d

dt

��T N��2
L
2.˝/

C 
��T N��2

H
1.˝/

(2.130)



�
d

dt
T N ; T N

�
C a.T N ; T N /C Ǫ .T N ; T N /@˝ ; (2.131)

while from the continuity of the right-hand side in (2.128) and the hypothesis on the
boundedness of jWk.�; �/j (k D 1; : : : ; K) follows:

KX
kD1

pNk .1˝k ; T
N /C Ǫ .g; T N /@˝



 
CW

KX
kD1

p
j˝kj C Ǫ kg.t/k

L
2.@˝/

!��T N .t/��
L
2.˝/

:

(2.132)
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Recapitulating the definition of S.CW; Ǫ ;˝k; g/ WD CW

KX
kD1

p
j˝kj C

Ǫ kg.t/k
L
2.@˝/ ; and combining (2.130) with (2.132) it is possible to obtain:

1

2

d

dt

��T N .t/��2
L
2.˝/

C 
��T N .t/��2

H
1.˝/


 S.CW; Ǫ ;˝k; g/
��T N .t/��

L
2.˝/

:

Integrating over .0; t/ with t 2 .0; t1/, employing Young’s inequality and taking
into account that:

kT N0 k
L
2.˝/ 
 kT0kL2.˝/ ;

as T N0 is a projection of T0 onto a finite dimensional space, it follows then:

��T N .t/��2
L
2.˝/

C 

Z t

0

��T N .�/��2
H
1.˝/

d� 
 kT0k2L2.˝/ C 1



Z t

0

S2d� : (2.133)

The sequence T N is thus bounded in L
2
�
.0; t1/;H

1.˝/
�\L

1 �
.0; t1/;L

2.˝/
�

and
from (2.112) it is trivial to infer that also pN is bounded in the L

2.0; t1/ sense.
From (2.113) it is possible to obtain, after some algebra:

j	Nk .t/j2 
 1

j˝kj2 kT N .t/k2
L
2.˝/

k D 1; : : : ; K;

and derive an upper bound in L
2.0; t1/ for �N by means of (2.133):

j	Nk .t/j2 
 1

j˝kj2
h
kT0k2L2.˝/ C 1



Z t1

0

S2d�
i

k D 1; : : : ; K:

Also this bound does not depend on N . It is now possible to define:

C� WD max
kD1;:::;K

� 1

j˝kj2
h
kT0k2L2.˝/ C 1



Z t1

0

S2d�
i�
;

and then:

G WD
n
s 2 R

K W jsj 

p
C�

o
:

As G does not depend on N and fulfills condition (2.117) then the bound on the
variables of the electrical part is derived from (2.116). Notice that this is possible in
our framework due to the index-1 hypothesis made on (2.111). Finally, due to the
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continuity of the non-linear functions in (2.123) also the terms:

rN WD r.ATReN ;�N / ; iN WD i.ATC eN ;�N / ;

qNC WD qC .ATC eN / ; �NL WD �L.i
N
L / ;

WN WD W.�N ; eN / ;

are bounded in the L
2.0; t1/ norm by a constant that is independent of N . At this

point upper bounds for every entity in (2.123) have been determined. Hence it is
possible to select a subsequence (still denoted with the N super-script) in which
(see e.g. [42]):

• T N converges in the weak* topology of L1 �
.0; t1/;L

2.˝/
�
,

• T N converges weakly in L
2
�
.0; t1/;H

1.˝/
�
,

• eN , iNL , qN , �N , iNV , pN and �N converge weakly in the L
2.0; t1/ sense,

• rN , iN , qNC , �NL and WN converge weakly in the L
2.0; t1/ sense.

Anyhow, to exploit weak convergence properties in order to construct a solution to
the original PDAE system it is still necessary to prove that:

rN * r.ATRe;�/ ; iN * i.ATC e;�/ ;

qNC * qC .ATC e/ ; �NL * �L.iL/ ;

WN * W.�; e/ ;

when:

eN * e ; iNL * iL ; �N * � :

This will be shown in the following taking advantage of regularity results that hold
for the PDE part of this system. Indeed it will turn out that the convergence of the
DAE part of (2.111)–(2.114) is to be intended at least pointwise.

Let us start then multiplying the first term at the left hand side in (2.118) by:

� 2 C
1.Œ0; t1�/ ; �.t1/ D 0 ;

and integrating by parts (j D 1; : : : ; N ):

Z t1

0

�
dT N

dt
.�/; �j

�
�.�/d� D �

Z t1

0

�
T N .�/; �j

� d�
dt
.�/d� � .T N0 ; �j /�.0/ :

Passing to the limit in (2.118), choosing an arbitrary N0 	 K and recalling that
T N0 converges in L

2.˝/ to T0 while pNk converges in L
2.0; t1/ to pk , it is finally
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obtained:

�
Z t1

0

�
T .�/; �j

� d�
dt
.�/d� � .T0; �j /�.0/C

Z t1

0

a.T; �j /�.�/d�

C
Z t1

0

Ǫ .T .�/; �j /@˝�.�/d� D
Z t1

0

KX
kD1

pk.1˝k ; �j /�.�/d�

C
Z t1

0

Ǫ .g; �j /@˝�.�/d� j D 1; : : : ; N0:

(2.134)

Since the linear combinations of �j are dense in H
1.˝/, then (2.134) can be written

equivalently testing on each v 2 H
1.˝/. Thus:

T .x; t/ 2 L
2
�
.0; t1/;H1.˝/

� \ L
1 �
.0; t1/;L2.˝/

�
; (2.135)

fulfills (2.114) with pk (k D 1; : : : ; K) as source terms. From (2.135) it follows
also:

T .x; t/ 2 L
2
�
.0; t1/;H

1.˝/
�\ H

1
�
.0; t1/;H

�1.˝/
�
; (2.136)

and using the arguments in [52, Chapter 11, p.369] and [43, p.23]:

T 2 C
0
�
Œ0; t1�;L

2.˝/
�

;
@T

@t
2 L

2
�
.0; t1/;H

�1.˝/
�
:

Define:

�T N .t/ WD T N .t/ � T .t/ ; �pNk .t/ WD pNk .t/ � pk.t/ :

Subtracting (2.114) from (2.118) and choosing�T N .t/ as a test function reads:

1

2

d

dt
k�T N k2

L
2.˝/

C a.�T N ;�T N /C Ǫk�T N k2
L
2.@˝/

D
KX
kD1

�pNk .1˝k ;�T
N / :

Integrating over .0; t/ and exploiting the coercivity of the bilinear form it is then
possible to obtain the following inequality:

���TN .t/��2
L
2.˝/


 �KN.t/
N!1����! 0 ; (2.137)

with:

�KN.t/ WD ���T N .0/��2
L
2.˝/

C 2

KX
kD1

hZ t

0

�pNk .�/.1˝k ;�T
N .�//d�

i
:
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As both sides of (2.137) are continuous, this inequality holds also in the form:

max
t2Œ0;t1�

���T N .t/��2
L
2.˝/


 max
t2Œ0;t1�

�KN.t/
N!1����! 0 :

Introducing�	Nk WD 	Nk .t/ � 	k.t/ and noticing that:

max
t2Œ0;t1�

j�	Nk .t/j2 
 1

j˝kj2 max
t2Œ0;t1�

���TN .t/��2
L
2.˝/

k D 1; : : : ; K;

it follows that the convergence of �N to � is not only weak, but uniform. Then, due
to the stability properties of (2.111) the electrical variables also converge to their
limit uniformly and not only weakly. In particular it can be inferred that:

• PC e, iL, q and � are differentiable,
• QC e and iV are continuous.

As at this point e and � are known to be continuous, then it follows that WN

converges to W pointwise and thus p is also continuous.
Finally it remains to show that T .x; 0/ D T0.x/ in order to prove that the

constructed solution actually solves the initial value problem prescribed in the
beginning. Multiplying (2.114) by:

� 2 C
1.Œ0; t1�/ ; �.t1/ D 0 ;

and integrating by parts it follows:

�
Z t1

0

.T .�/; v/
d�

dt
.�/d� � .T .0/; v/�.0/C

Z t1

0

a.T; v/�.�/d�

C
Z t1

0

Ǫ .T .�/; v/@˝�.�/d� D
Z t1

0

KX
kD1

pk.1˝k ; v/�.�/d�

C
Z t1

0

Ǫ .g; v/@˝�.�/d� 8v 2 H
1.˝/;

thus, taking �.0/ D 1:

.T .0/� T0; v/ D 0 8v 2 H
1.˝/ :

This implies T .x; 0/ D T0.x/, and proves the existence and uniqueness of a solution
to a prescribed initial value problem for system (2.111)–(2.114).
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2.2.3 Multiphysics Modeling via Maxwell’s Equations

The mathematical model of circuit analysis is given by element relations connected
by Kirchhoff’s laws, yielding a system of DAEs. Each relation originates from
Maxwell’s equations, but typically it is simplified to avoid the simulation of PDEs,
where it is not necessary. But if an application demands distributed field effects,
e.g. eddy currents, those effects need to be reintroduced by a PDE, in which some
conducting parts are identified by circuit branches. We consider here two examples,
that are especially important in the analysis of magnetoquasistatic fields, the solid
and stranded conductor models. Finally the coupling of the networks DAEs with
the (magnetoquasistatic) field PDEs yields a system of PDAEs.

Let us start with the network model of circuits, as introduced in system (2.1).
[26], that yields a system of DAEs. We extend the current balance equation by two
additional vectors isol 2 R

Nsol and istr 2 R
Nstr , that describe the unknown currents

throughNsol solid and Nstr stranded conductors

AC
d

dt
q C ARr.A>

Ru; t/C ALiL C AViV C AIi.t/C Astristr C Asolisol D 0;

d

dt
� � A>

Lu D 0; A>
Vu � v.t/ D 0;

q � qC.A>
Cu; t/ D 0; � � �L.iL; t/ D 0;

with consistent initial values for the node potentials u, charges q, fluxes �, and
currents iL, iV. We will address the whole system in the following more abstractly
by the semi-explicit initial-value problem

Py1 D f1.y1; z1; z2b/; with y1.0/ D y1;0

0 D g1.y1; z1; z2b/;
(2.138)

with the unknowns

y1 WD .q;�/>; z1 WD .u; iL; iV/
>; and z2b WD .istr; isol/

>:

We assume that System (2.138) is an index-1 DAE, i.e., @g1=@z1 nonsingular, which
is the case if several topological conditions are fulfilled, [24]. The field PDE will
describe a relation between the unknown currents z2b and the voltage drops

vstr WD A>
stru and vsol WD A>

solu ;

that will serve as an external excitement of Maxwell’s Equations.
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2.2.3.1 Maxwell’s Equations

Maxwell’s equations can be applied to describe a wide range of electromagnetic
devices; in our focus are device parts that are typically embedded in electrical
circuits exhibiting significant magnetic effects and dissipation losses, but with a
disregardable displacement current. This kind of application is covered by the
magnetoquasistatic (MQS) subset of Maxwell’s Equations, [39], that is given by
the partial differential equations

r �E D �dB

dt
; r �H D J ;

r �D D � ; r �B D 0 ;

(2.139a)

with algebraic material relations

J D �E ; D D "0 "rE D "E ; B D �0 �rH D �H ;

(2.139b)

on a domain˝ and typically with the flux wall boundary condition

B � n? D 0 on @˝ ; (2.139c)

where E D E .r; t/ is the electric field strength, depending on its location in space
r D .x; y; z/> and time t , similarlyB D B.r; t/ is the magnetic flux density, whose
normal component is vanishing at the boundary, since the vector n? defines here
the outer normal at the boundary.H D H .r; t/ denotes the magnetic field strength,
D D D.r; t/ the electric flux density, � D �.r; t/ the electric charge density and
J D D.r; t/ the electric current density. The material parameters " D ".r/, � D
�.r/, � D �.r;H / are rank-2 tensors describing the permittivity, conductivity and
permeability; the first two tensors are assumed constant but the permeability may
depend nonlinearly on the field strength. If we neglect furthermore hysteresis, the
Jacobian @B=@H is symmetric positive definite, [38], and we can derive from the
second relation of (2.139b) the HB-characteristic

H D�B

with the (nonlinear) reluctivity � D �.r;B/ acting as the inverse of the permeability.
Now when expressing the magnetic flux and the electric field in terms of the
magnetic vector potentialA D A.r; t/ and the electric scalar potential ' D '.r; t/

B D r �A ; E D �r' � dA

dt
; (2.140)
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Ampère’s Law may be equivalently given as the curl-curl equation

r � .�r �A/ D J : (2.141)

The curl-curl equation does not determine the potentials uniquely, because the
definitions (2.140) are still fulfilled after a gauge transformation. Typically one
defines a representant from the class of equivalent potentials as the desired solution
by enforcing an additional gauge condition, for example Coulomb’s gauge

r �A D 0 ; (2.142)

which ensures on simply connected domains a unique solution of the problem in the
vector potential formulation, [14].

In the 2D case, where a planar model is embedded in an 3D environment both,
the magnetic vector potential A and the source current density J exhibit only
components in z-direction, which are perpendicular to the planar model in the x�y
plane, i.e.,

A D �
0 0 Az

�>
and J D �

0 0 J z

�>
:

Thus the potentialA fulfills automatically the Coulomb gauge

r �A D @Ax

@x
C @Ay

@y
C @Az

@z
D 0 ;

sinceAx D Ay D 0 is trivial andAz is independent of z and therefore the potential
is uniquely defined without enforcing a gauge explicitly; this is in contrast to the 3D
case.

2.2.3.2 Conductor Models

In the following the models for the solid and stranded conductor are derived, whose
characteristics are determined by Maxwell’s Equations (2.139), but on the other
hand allow us to identify parts of the field domain ˝ as branches in a circuit using
voltages vsol, vstr and currents isol, istr, [13]. We denote the corresponding parts of
the domain by

˝sol;l � ˝ and ˝str;k � ˝ for 1 
 l 
 Nsol, 1 
 k 
 Nstr

and assume furthermore that they are mutually non-overlapping.
The solid conductor model describes the behavior of a massive bar of conducting

material, as shown in Fig. 2.3b. For high frequencies there is a tendency for the
current density in the core of those conductor to be smaller than near the surface,
[39]. This phenomenon is called skin effect. It causes the resistance of the conductor
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str,1

sol,1

=0

>0

≥0

=0

str,2

vsol

isol

vstr

istr
a b c

Fig. 2.3 Conductors Models. (a) Sketch of a 2D domain with two stranded and one solid
conductor, (b) solid conductor made of massive conducting material causing eddy currents and
(c) stranded conductor made of thin strands

to increase with the frequency of the current. A similar phenomenon appears in
a solid conductor when localized in the neighborhood of other current carrying
conductors. Also then, eddy currents and eddy-current losses appear in the solid
conductor. These effects are to be simulated in the following: the solid conductor
will serve as the device in a electrical circuit, where skin- and proximity effects are
considered.

The voltage drop along each solid conductor is applied as the potential difference
between two electrodes, i.e.,

�r' D
NsolX
lD1
�sol;l .vsol/l

where �sol;l is the potential distribution function of the l-th solid conductor with
supp�sol;l D ˝sol;l . Inserting the voltage drop into Ohm’s Law, first equation in
(2.139b), and applying it as the only excitement of the curl-curl equation yields
(2.141)

�
dA

dt
C r � .�r �A/ D

NsolX
lD1

��sol;l .vsol/l : (2.143a)

The current through the solid conductor is found by integrating the current density
over the electrodes. This is equivalent to integrating the quantity �sol � J over the
whole computational domain, i.e.,

.isol/l D
Z
˝

�sol;l � J d˝ D .Gsol/l;l .vsol/l �
Z
˝

��sol;l � dA

dt
d˝ ; (2.143b)
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for l D 1; : : : ; Nsol, where each entry of the positive definite diagonal matrix

.Gsol/l;l D
Z
˝

��sol;l � �sol;l d˝ : (2.143c)

corresponds to the lumped DC conductivity of a solid conductor.
In contrast to the solid conductor, the stranded conductor is not built of a single

solid material, but consists of thin individual strands wound to form a coil, as
depicted in Fig. 2.3c. Each strand does not exhibit significant eddy currents because
of its cross section, which is assumed to be substantially smaller than the skin depth
related to the frequencies occurring in the model, hence the conductivity, which
introduces eddy current effects in the curl-curl equation, is assumed to vanish within
stranded conductors

�
dA

dt

ˇ̌
ˇ
˝str;k

D 0 with k D 1; : : : ; Nstr: (2.144)

We assume furthermore windings with constant cross-section and thus a homoge-
neous current distribution holds in the conductor domain, i.e.,

J D
NstrX
kD1

�str;k .istr/k

where �str;k is the winding function for the k-th stranded conductor with
supp�str;l D ˝str;l , such that the curl-curl equation becomes

r � .�r �A/ D
NstrX
kD1

�str;k .istr/k : (2.145a)

The flux linked with the winding is given by

 k D
Z
˝

�str;k �A d˝

and the total voltage drop along the stranded conductor consists of this induced part
and a resistive part, i.e.,

.vstr/k D .Rstr/k;k .istr/k C d k
dt

; (2.145b)

where the diagonal DC resistance matrix Rstr can be computed from the model by

.Rstr/k;k D
Z
˝

1

fstr
��1�str;k � �str;k d˝ ; (2.145c)

and fstr 2 .0; 1� is the fill factor accounting for the cross-sectional fraction of
conductive versus insulating materials; in this equation the ��1 is only evaluated
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in the domains ˝str;k (k D 1; : : : ; Nstr), where � > 0but anywhere else in ˝ the
inverse is not necessarily well defined due to non-conducting materials.

Now summing up all excitements for solid and stranded conductors, i.e.,
Eqs. (2.143)–(2.145), and putting everything together, we obtain the following PDE
system

�
dA

dt
C r � .�r �A/ D

X
k

�str;k .istr/k C
X
l

��sol;l .vsol/l (2.146a)

Z
˝

�str;k � dA

dt
d˝ D .vstr/k � .Rstr/k;k � .istr/k ; (2.146b)

Z
˝

��sol;l � dA

dt
d˝ D .Gsol/l;l � .vsol/l � .isol/l ; (2.146c)

with Coulomb gauging, flux wall boundary and initial conditions

r �A D 0; A � n? D 0 on @˝; A.r; t0/ D A0 at t D t0: (2.146d)

Finally the coupling of the field PDE (2.146) and the circuit DAE (2.138) yields the
full field/circuit PDAE problem.

2.2.3.3 Discretization

Following the method of lines, a spatial discretization of the PDE has to be
applied first and a time discretization of the overall system in the second step. For
spatial discretization we apply the Finite Integration Technique (FIT), [63], which
translates the continuous Maxwell equations one by one into a space-discrete set,
called the Maxwell grid equations (MGE). The topology is approximated by a finite
number of cells V.n/ for 1 
 n 
 N . In 3D those cells are hexahedra when applying
the simplest mesh, such that the scheme is equivalent to the finite-difference time-
domain method proposed by Yee, [66]. Other methods (FEM) are analoguously, see
[15].

The hexahedra discretization yields a cell complex G, composed of intervals
defined by equidistant distributed coordinates xi , yj and zk

G WDfV.n/ WD V.i; j; k/ j V.i; j; k/ D Œxi ; xiC1� � Œyj ; yjC1� � Œzk; zkC1�I
i D 1; : : : ; I � 1I j D 1; : : : ; J � 1I k D 1; : : : ; K � 1g;

where the three indices i , j and k are combined into one space index, which allows
us to number the elements consecutively:

n D n.i; j; k/ D i C .j � 1/ � I C .k � 1/ � I � J ; (2.147)

such that n 
 N WD I � J �K .
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The intersection of two volumes is by construction either empty for non-
neighboring volumes or one of the following p-cells, where p 2 f0; 1; 2; 3g denotes
the dimension of the geometrical object and w 2 fx; y; zg a direction in space:

• 0-cell: a simple point P.n/,
• 1-cell: an edge Lw.n/,
• 2-cell: a facet Aw.n/,
• 3-cell: a volume V.n/.

Every object is associated with its smallest numbered connected point P.n/. An
edge Lw.n/ connects two in w-direction neighbored points P.n/ and P.n0/ (n < n0)
and is always directed from P.n/ towards P.n0/. A facet Aw.n/ is defined by P.n/
and the direction w, in which its normal vector points.

The basic idea of FIT is the usage of two grids, the primary grid G is supported
by the dual grid QG, which is identically but shifted in x-, y- and z-direction by half
of a cell length, see Fig. 2.4a. The definition of the dual p-cells, i.e., edges QLw.n/,
facets QAw.n/ and volumes QV.n/ is analogous to the primary grid (w 2 fx; y; zg). In
the following each primary p-cell of G will be related to one .3 � p/-cell of QG.

As state variables of the FIT, we introduce electric and magnetic voltages and
fluxes. They are defined as integrals of the electric and magnetic field strengths and
flux densities over geometrical objects of the computational grid, with respect to the
directions w 2 fx; y; zg. The state variables are assigned diacritics (_� ) according to
their dimension p of the underlying object. The grid voltages over the edges read as

_ew.n/ D
Z

Lw.n/

E ds ; _aw.n/ D
Z

Lw.n/

A ds ; and
_

hw.n/ D
Z

QLw.n/

H ds :

The fluxes are located on the grid facets and read

__

bw.n/ D
Z

Aw.n/

B dA ;
__

dw.n/ D
Z

QAw.n/

D dA ; and
__

jw.n/ D
Z

QAw.n/

J dA :

primary
cell

dual
cell

primary
point

dual
point

dual
cell

primary
cell

primary point

dual
point

a b

Fig. 2.4 Examples for primary and dual grid cells in 3D and 2D discretizations. (a) Staggered
hexahedra. (b) Barycentric triangulation
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Fig. 2.5 Discretization of
Faradays Law

ey (n) ey (n +1)

ex (n)

ex (n +I)

bz(n)

x

y
z

To simplify the notation we will build augmented vectors for each of the newly
defined quantities with a length of 3N , including every spatial direction. For
example the discrete electric field strengths are collected in

_e D ._ex.1/; : : : ;
_ex.N /;

_ey.1/; : : : ;
_ey.N /;

_ez.1/; : : : ;
_ez.N //

> : (2.148)

The remaining vectors _a,
_

h,
__

b,
__

d and
__

j are defined analogously.
Using these notations we are able to discretize Maxwell’s Equations (2.139) in

terms of FIT. For example, Faraday’s law, Fig. 2.5, for a single grid facet Az.n/ can
be written discretely as

_ex.n/C _ey.nC 1/� _ex.nC I / � _ey.n/ D � d

dt

__

bz.n/ ; (2.149)

which exploits the new order of numbering and is easily generalized to all facets.
The relations for all grid facets are collected in the matrix equation

0
BB@

:::

� � � 1 � � � �1 � � � �1 1 � � �
:::

1
CCA

„ ƒ‚ …
C

0
BBBBBBBBBBBBBBB@

:::
_ex.n/
:::

_ex.nC I /
:::

_ey.n/
_ey.nC 1/

:::

1
CCCCCCCCCCCCCCCA

„ ƒ‚ …
_e

D � d

dt

0
BB@

:::
__

bz.n/
:::

1
CCA

„ ƒ‚ …
__

b

: (2.150)

Applying this procedure to all continuous MQS equations yields the MQS
Maxwell’s Grid Equations, where the differential operators are represented by
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the discrete curl operators C, QC D C> and divergence operators S, QS, which live on
the primary and dual grid, respectively

C_e D � d

dt

__

b ; QC_

h D __

j ;

QS__

d D q ; S
__

b D 0 ;

(2.151)

with the vector q containing the electrical charges allocated at the dual grid
cells, resembles closely the continuous system (2.139) and maintains several of its
properties.

The laws of the continuous magnetic vector potential (2.140) transfer to

C_a D __

b and _e D � d

dt
_a � S>� ; (2.152)

with the discrete electric scalar potential �. The discrete potentials are not uniquely
defined, similar to the continuous ones, because the curl matrix C has a non-trivial
nullspace.

Working towards a complete discretization of Maxwell’s Equations, the material
relations (2.139b) have to be given in terms of the discrete quantities. This relates
the fluxes on the primary grid G to the voltages on the dual analogon QG and vice
versa. Hence, the material relations establish a coupling between both grids, but their
construction requires approximations through averaging processes and here lies the
fundamental difference between the various discretization approaches, e.g. FEM
and FIT, [15]. FIT has the advantage, that for isotropic and anisotropic materials,
whose principal directions coincide with the mesh directions, the material matrices
are always diagonal.

For example the magnetic flux densityB is related to the magnetic field strength
H through the permeability �. In coherence with our earlier requirements we will
assume that there are local permeabilities �.n/ for each grid volume V.n/. When
we start with the definition of the discrete magnetic field strength in conjunction
with constitutive relation and averaging its value over the facet Aw.n/ to jBj, we get
the integral quantity

_

hw.n/ D
Z

QLw.n/

H � ds D
Z

QLw.n/

��1B � ds

D N��1.n/ j QLw.n/j � jBj C O.hl / (2.153)

:D N��1.n/ j QLw.n/j � jBj ; (2.154)

with averaged permeabilities N�.n/ that gives an error, whose order l depends on
the used discretization grid (in this particular case of a Cartesian grid l D 2) and
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the maximum length of the cell edges h WD max Lw.n/, with w 2 fx; y; zg and
1 
 n 
 N . In a similar manner, we derive for the magnetic flux density

__

bw.n/ D
Z

Aw.n/

B � dA

D jAw.n/j � jBj C O.hlC1/
:D jAw.n/j � jBj: (2.155)

Both Eqs. (2.154) and (2.155) contain the averaged magnetic flux density jBj, which
is unknown. Eliminating this unknown through inserting one equation into the other
leads to

__

bw.n/ D N�.n/ jAw.n/j
j QLw.n/j„ ƒ‚ …

DW N�w.n/

�_hw.n/ ;

finally arranging of these permeabilities as a matrix gives

M� WD diag
� N�x.1/; : : : ; N�x.N /; N�y.1/; : : : ; N�y.N /; N�z.1/; : : : ; N�z.N /

�
:

Similarly the other two material matrices are obtained, such that the laws can be
given as

__

j D M�
_e ;

__

d D M"
_e ;

_

h D M�

__

b ;

where M� , M" and M� are the (diagonal) matrices of conductivities, permittivities
and reluctivities. As before in the continuous case the first two matrices are assumed
to be constant, and the reluctivity matrix M� D M�.

__

b/ may depend nonlinearly on
the magnetic flux. Furthermore the matrices of permittivities and reluctivities (for all
__

b) are positive definite, while the conductivity matrix is only positive semi-definite,
due to vanishing conductances in electrical insulators.

2.2.3.4 Discrete Vector Potential Formulation

Now having obtained a discrete version of Maxwell’s Equations, we can deduce the
discrete curl-curl equation with the same steps we used to derive the continuous
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formulation. The PDE (2.146) becomes the following space-discrete DAE

M�

d

dt
_a C QCM�C_a D Qstristr C M�Qsolvsol ; (2.156a)

Q>
str

d

dt
_a D vstr � Rstristr ; (2.156b)

Q>
solM�

d

dt
_a D Gsolvsol � isol ; (2.156c)

where the matrix Q D ŒQsol;Qstr� is the discrete analogue to the characteristic
functions � in the continuous model: each column of this matrix corresponds to
a conductor model and imposes currents/voltages onto edges of the grid, while
each row in the transposed matrix Q> corresponds to the integration of the vector
potential over the domain ˝ in system (2.146). The conductor domains shall not
overlap and we assume this to be true even after the spatial discretization, which
affects the coupling matrix as follows

.Q/k;m .Q/m;l D 0 for all m and k ¤ l : (2.157)

Additionally we find especially for the stranded conductor coupling matrix

.M� /k;m .Qstr/m;l D 0 for all m, k and l ; (2.158)

which is a consequence of the disregard of eddy currents in stranded conductors,
see Eq. (2.144). The matrices of lumped resistances and conductivities are extracted
from the model, as explained in Eqs. (2.143c) and (2.145c) and they read in their
discrete form as

Rstr WD Q>
strM

C
�;strQstr and Gsol WD Q>

solM�Qsol ; (2.159)

where MC
�;str is the pseudo-inverse of the conductivity matrix with conductivities

only in the stranded conductor domains, hence

.M�;str/k;m .Qsol/m;l D 0 for all m, k, l and M�MC
�;str D 0 ; (2.160)

where MC
�;str is the pseudo-inverse of M�;str.

2.2.3.5 Gauging of the Curl-Curl Equation

In 3D the curl-curl equation (2.156a) has no unique solution since both the
conductivity matrix M� and the curl operator C have non-trivial nullspaces, and
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thus the matrix pencil

�M� C QCM�C for � 2 R

is in general only positive semi-definite, but a gauging, can enforce positive
definiteness. For example a special Coulomb gauging, see (2.142), which applies
only to the non-conducting parts of the problem, is proposed in [18]

QSM O�_a D 0 ;

where M O� is a special material matrix with artificial conductivities on the diagonal,
if the entry corresponds to a non-conducting material, such that all its columns are
in the nullspace of M� . Using a Schur complement the restriction can by integrated
into the curl-curl matrix, which becomes for example

K� WD QCM�C � M O� QS>N QSM O�

and gives the grad-div regularization, [19]. Finally the matrix pencil �M� C K� is
positive definite for a simply connected domain ˝ (without cavities), if the matrix
N is negative definite, [18].

The positive definiteness of the gauged matrix pencil can still be enforced, if
nonlinear reluctivities are considered, i.e., M� D M�.

__

b/. The structure and hence
the kernel of the nonlinear curl-curl matrix remain unchanged, as the following
derivative shows

d

d_a

� QCM�.
__

b/C_a
�

D QC d

d
__

b

�
M�.

__

b/C_a
� d

__

b
d_a

D QC d

d
__

b

�
M�.

__

b/
__

b
�

C D QCd
_

h

d
__

b
C ;

where both the reluctivity matrix M�.
__

b/ and the differential reluctivity matrix
M�;d WD d

_

h=d
__

b are still positive definite, [33]. In any case only the (constant)
nullspace of the curl-operator has to be covered by the gauging and thus it is
assumed in the following that

�M� C K�.
__

b/ and �M� C d

d_a

�
K�.

__

b/_a
�

are positive definite for a � 2 R.

2.2.3.6 Structure of the Coupled System

Having now transformed the field PDE into a uniquely solvable DAE, we discuss in
the following the coupling of the subproblems using a more abstract formulation.
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Lemma 2.1 The field system (2.156) is equivalent to the semi-explicit initial value
problem

Py2 D f2.y2; z2a; v1/; with y2.0/ D y2;0;

0 D g2a.y2; z2a/;

0 D g2b.y2; z2a; z2b/;

(2.161)

where y2 WD P�
_a, z2a WD Q�

_a, z2b WD .istr; isol/
>, and v1 WD .vstr; vsol/

>.

Proof In a first step system (2.156) is reformulated, such that there are no
dependencies on derivatives in the two solid and stranded conductor coupling
equations (2.156c) and (2.156b). In a second step the curl-curl equation (2.156a)
is split into equations coming from conductive materials and non-conductive
materials, since only the first materials did yield a differential term d

dt
_a.

Equation (2.156b) is left-multiplied by QstrR�1
str and added to Eq. (2.156a), which

yields

�
M� C QstrR�1

str Q>
str

� d

dt
_a C K�.

__

b/_a D QstrR�1
str vstr C M�Qsolvsol ; (2.162a)

where the new mass matrix M� C QstrR�1
str Q>

str is still symmetric positive semi-
definite and can be interpreted as a special conductivity matrix, but it is obviously
less sparse.

Left-multiplying Eq. (2.162a) by Q>
strM

C
�;str and adding to Eq. (2.156b) gives

istr � R�1
str Q>

strM
C
�;strK�.

__

b/_a D 0 ; (2.162b)

because the conductors do not overlap MC
�;strM� D 0, see Eq. (2.160) and due to the

definition of the lumped resistance matrix for stranded conductors Q>
strM

C
�;strQstr D

Rstr in Eq. (2.145c). Similarly a left-multiplication of Eq. (2.156a) by Q>
sol added to

Eq. (2.156c) gives

isol � Q>
solK�.

__

b/_a D 0 ; (2.162c)

because of the definition of the lumped solid conductor conductances Gsol D
Q>

solM�Qsol.
Let us now split the curl-curl Equation (2.162a) according to the conductivity

of the materials. The symmetric positive semi-definiteness of the mass matrix
guarantees an orthogonal matrix T that transforms the mass matrix into its Jordan
Normal Form

T
�
M� C QstrR�1

str Q>
str

�
T > D

�
J�

0

�
;
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where J� is a diagonal matrix consisting of the (positive) eigenvalues of M� and
QstrR�1

str Q>
str. This transformation depends only on the topology, there is neither a

dependence on the vector potential nor on the time. Thus its application to the whole
Eq. (2.162a) gives automatically a splitting of the vector potential _a into differential
and algebraic parts, that is constant in time

y2 WD P�
_a WD �

I 0
�
T _a and z2a WD Q�

_a WD �
0 I
�
T _a ;

such that _a D P>
� y2 C Q>

� z2a, while the currents are just collected in an additional
algebraic variable

z2b WD .istr; isol/
> :

The application of T to the right hand side of (2.162a) yields

T
�
QstrR�1

str vstr C M�Qsolvsol
�

DT
�
M� C QstrR�1

str Q>
str

�
T >T

�
Qstr.Q>

strQstr/
�1vstr C Qsolvsol

�

D
�

J�
0

�
T
�
Qstr.Q>

strQstr/
�1vstr C Qsolvsol

�

by just utilizing the properties (2.157)–(2.159) and thus the transformation of
Eq. (2.162a) using the new variables read

J�
d

dt
y D �P�K�P

>
� y2 � P�K�Q

>
� z2a C P�

�
QstrR�1

str vstr C M�Qsolvsol
�

0 D Q�K�P
>
� y2 C Q�K�Q

>
� z2a : (2.163)

The first equation defines the function f2 after a left-multiplication by the inverse J�1
�

of the Jordan Normal Form, while the second Eq. (2.163) defines the first algebraic
constraint g2a. Finally the definition of the additional algebraic constraint g2b
follows immediately from Eqs. (2.162b) and (2.162c).

Using the new abstract notation, the field/circuit coupled problem consists of the
two subsystems (2.138) and (2.161), i.e.,

Py1 D f1.y1; z1; z2 /; and Py2 D f2.y2; z2; z1 /;

0 D g1.y1; z1; z2 /; 0 D g2.y2; z2/;

where the coupling terms are highlighted by boxes. Note, that the notation was
abused slightly, since the algebraic variables z1 and z2 contain more than the actually
needed node potentials u and the currents isol and istr through solid and stranded
conductors.

The coupled problems from electromagnetics are considered again in Chap. 2.
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2.2.4 Thermal and Quantum Effects in Semiconductors

In semiconductor technology, the miniaturization of devices is more and more
progressing. As a consequence, the simulation of the today nanoscale semiconductor
devices requires advanced transport models that take into account also quantum
effects and the heating of the crystal. These effects are not very relevant in microm-
eter devices, but they are crucial for the electric performance in the nanoscale case.

At semiclassical kinetic level the thermal effects are modeled by describing the
energy transport in solids with a phonon gas obeying the Peierls kinetic equation
while the charge transport is described by the Boltzmann equation, coupled to the
Poisson equation for the electric potential. However such a complex system is very
difficult to face from a numerical point of view and the simulations require long
CPU times not suitable for CAD purposes in electrical engineering. For this reason
simpler macroscopic models are warranted in order to use them in the design of
electrical devices. A physically sound way for getting macroscopic models is to
consider the moment system associated with the transport equations and obtain the
closure relations with the maximum entropy principle (hereafter MEP) [9, 53, 54].

Concerning the quantum effects, the typical physical situation we want to
describe is the case when the main contribution to the charge transport is semi-
classical while the quantum effects enter as small perturbations. For example, this is
reasonable for MOSFETs of characteristic length in the range of 10–20 nanometers
under strong electric field. Now the semiclassical Boltzmann equation for electrons
is replaced with the Wigner equation and a singular perturbation approach is used
with a Chapman-Enskog expansion in the high field scaling.

What follows is based on [56] and [57].

2.2.4.1 The Electron-Phonon System

At semiclassical kinetic level, the transport of energy inside the crystal is modeled
through quasi-particles called phonons (Fig. 2.6).

The electron-phonon system is described by the Boltzmann-Peierls equations for
the distribution functions of electrons and phonons, coupled to the Poisson equation
for the electric potential

@f

@t
C v.k/ � rxf � e E

„ � rkf D C Œf; g.ac/; g.np/�; (2.164)

@g.ac/

@t
C @!.ac/

@qi
@g.ac/

@xi
D S.ac/Œg.ac/; g.np/; f �; (2.165)

@g.np/

@t
D S.np/Œg.np/; g.ac/; f �; (2.166)

E D �rx˚; r.�r˚/ D �e.CD.x/ � n/; (2.167)
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Fig. 2.6 Schematic representation of the electron-phonon system describing the coupling between
the charge transport and the crystal thermal effect in a semiconductor and general strategy for
getting macroscopic models

where ac and np stand for acoustic and non-polar optical phonons. f .x;k; t/ is the
electron distribution function which depends on the position x 2 R

3, time t and
wave vector k. C Œf; g.ac/; g.np/� is the collision operator of electrons with phonons
and impurities. We will neglect electron-electron interaction because it is relevant
only at very high density, usually not reached in the most common electron devices.
e represents the absolute value of the elementary charge. rx and rk denote the nabla
operator with respect to x and k, respectively.

We assume that the conduction bands of semiconductor are described by Kane’s
dispersion relation

E .k/ D 1

2˛

"
�1C

r
1C 4˛

„2k2
2m�

#
; k 2 R

3;

with E .k/ the energy measured from the valley minimum,m� the effective electron
mass, „k the crystal momentum and ˛ the non parabolicity parameter (for Silicon

˛ D 0:5eV �1). Consequently, according to the quantum relation v D 1

„rkE .k/, the

electron velocity is given by the relation v D „k

m�
q
1C 4˛ „2k2

2m�

.

g.A/ � g.x; t;q.A// is the phonon distribution of type A (acoustic or non
polar optical) which depends on the position x, time t and the wave vector q.A/.
S.A/Œg.ac/; g.np/; f � is the collision operator of phonons with electrons. The phonon-
phonon interaction is described by the relaxation time approximation.

The phonon energy „!.A/ is related to q.A/ by the dispersion relation. Here we
will consider a simplified isotropic model ! D !.q/, q being the modulus of q. In
particular in the acoustic branch the Debye approximation ! D c q will be adopted
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with c the Debye velocity, while in the optical branch the Einstein approximation
! D const will be used. Moreover we assume that the non-polar optical phonons
are described by the Bose-Einstein distribution.
CD.x/ is the doping density, considered as a known function of the position, � is

the dielectric constant and n.x; t/ the electron number density

n.x; t/ D
Z
R
3
f d3 k:

The direct solution of the system (2.164), (2.167) is very expensive from a
computational point of view (for a deterministic numerical solution see [16, 30])
and not practical for electron device design. An alternative approach is to replace
the transport equations with a macroscopic model deduced as moment equations
of (2.164)–(2.166). These are obtained by multiplying (2.164) with a weight
function .k/, (2.165) and (2.166) with a weight function .q/ and integrating over
the first Brillouin zone.

We will consider the 8-moment electron system comprising the balance equa-
tions for the electron density, average crystal momentum, energy and energy-flux

@n

@t
C @

�
nVi

�
@xi

D 0; (2.168)

@
�
nPi

�
@t

C @
�
nUij

�
@xi

C neEi D nC i
p; (2.169)

@ .nW/

@t
C @

�
nSj

�
@xi

C neVkE
k D nCW ; (2.170)

@
�
nSi
�

@t
C @

�
nFij

�
@xi

C neEjG
ij D nC i

W ; (2.171)

coupled to the 9-moment phonon system comprising the balance equation for the
phonon energy, average momentum density and the deviatoric part of its flux

@u

@t
CQk D Pu; (2.172)

@pi

@t
C 1

3

@u

@xi
C @Nhjki

@xk
D Pi ; (2.173)

@Nhiji
@t

C @Mhijik
@xk

D Phiji: (2.174)
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The basic quantities entering the electron equations are defined in the kinetic
framework as follows (the density has been already defined above)

V i D 1

n

Z
R
3
f vid3 k is the average electron velocity;

W D 1

n

Z
R
3
E .k/f d3 k is the average electron energy;

S i D 1

n

Z
R
3
f viE .k/d3 k is the energy flux;

P i D 1

n

Z
R
3
f „kid3 k D m� �V i C 2˛Si

�
is the average crystal momentum:

The other electron quantities including production terms are given by

U ij D 1

n

Z
R
3
f vi„kjd3 k; Gij D 1

n

Z
R
3

1

„f
@

@kj
.E vi /d

3 k;

F ij D 1

n

Z
R
3
f vi vjE .k/d3 k

nCW D
Z
R
3
C Œf; g.ac/; g.np/�E .k/ d3k; nCi

p D
Z
R
3
C Œf; g.ac/; g.np/�„kid3k;

nCi
W D

Z
R
3
C Œf; g.ac/; g.np/�viE .k/ d3k:

The basic quantities entering the phonon equations are defined as follows

u D
Z
R
3
„! g d3 q is the phonon energy density;

Qk D
Z
R
3
„! @!
@qk

g d3 q is the phonon energy density flux;

pi D „
Z
R
3
qi g d3 q is the phonon momentum density;

Nik D
Z
R
3

„!
q2
qiqk g d3 q is the momentum flux density:

Phonon momentum flux can be decomposed into an isotropic part and a deviatoric

part Nik D u

3
ıik CNhiki. The deviatoric part of the momentum flux Nhiki, and its

flux are represented by

Nhiji D
Z
R
3

„!
q2
q<iqj> g d3 q; Mhijik D

Z
R
3

„!2
q4

q<iqj>qk g d3 q:
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The phonon production terms are given by

Pu D
Z
R
3
„! SŒg.ac/; g.np/; f � d3 q; Pi D

Z
R
3
„qi SŒg.ac/; g.np/; f � d3 q;

Phiji D
Z
R
3

„!
q2
q<iqj> SŒg

.ac/; g.np/; f � d3 q:

2.2.4.2 The Maximum Entropy Principle

The set of balance equations (2.168)–(2.174) does not form a closed system since
more unknowns appear than the number of equations. Therefore the problem of
prescribing suitable closure relations arises.

The maximum entropy principle (hereafter MEP) gives a systematic way for
obtaining constitutive relations. In the information theory framework the principle
has been formalized by Shannon [61]. In statistical physics, it has been introduced
in [22, 41] (see also [65] for a review). In [7–9, 49, 53, 54] the approach has been
applied to charge transport in semiconductors considering the phonons as a thermal
bath. Here the phonons are no longer supposed to be at equilibrium and therefore
one has to maximize the phonon distribution.

In the case under investigation, since it is assumed that the non-polar optical
phonons are described by Bose-Einstein distribution

gBE D
	

exp

�„!.op/

kBTL

�
� 1


�1
;

with TL the lattice temperature, MEP can be formulated as follows. If a given
number of moments M.f /

A , A D 1; : : : ; N of f as well as a given number of

moments M.g/
B , B D 1; : : : ;M of g D g.ac/ are known, the distribution functions

which can be used to evaluate the unknown moments of f and g, correspond to the
maximum, .fME; gME/, of the entropy functional

s.f; g/ D �kB
	Z

R
3
f .logf � 1/d3 k C

Z
R
3

�
g ln

g

y
� .y C g/ ln

�
1C g

y

��
d3 q




under the constraints
Z
R
3
�
.e/
A .k/fMEd3 k D M

.f /
A ;

Z
R
3
�
.p/
B .q/gMEd3 q D M

.g/
B ;

where �.e/
A .k/ and �.p/

B .q/ are electrons and phonons weight functions, respec-

tively, relative to the basic moments M.f /
A and M.g/

B . kB is Boltzmann constant and

y D 3

8�3
.
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From a statistical point of view, fME and gME represent the least biased estimators
of f and g that can be obtained using only the knowledge of a finite number of
moments of f and g. Assuming as fundamental variables for electrons, the density
n, the velocity V, the energy W and the energy-flux S, this procedure leads for
electrons to the non-equilibrium distribution (see [9, 53])

fME D exp

�
� �

kB
� �W E .k/

�
Œ1 � �� ;

with1 � D �Vi v
i C �Si vi E .k/ where Lagrange multipliers associated with the

density, the momentum and the energy flux have the expressions

�

kB
D � log

n„3
4�m�p

2m�d0
; �Vi D b11Vi C b12Si ; �

S
i D b12Vi C b22Si

while �W is the Lagrange multiplier related to the energy. It depends onW and it is
obtained by inverting the relation

W D
R1
0

E
p
E .1C ˛E / .1C 2˛E / exp

���W E
�

dER1
0

p
E .1C ˛E / .1C 2˛E / exp .��W E / dE

:

The coefficients bij are given by b11 D a22

�
; b12 D �a12

�
; b22 D a11

�
with

a11 D � 2p0

3m�d0
; a12 D � 2p1

3m�d0
; a22 D � 2p2

3m�d0
;� D a11a22 � a212;

including dk and pk defined by

dk D
Z 1

0

E k
p
E .1C ˛E / .1C 2˛E / exp

���W E
�

dE ;

pk D
Z 1

0

ŒE .1C ˛E /�3=2 E k

1C 2˛E
exp

���W E
�

dE :

For acoustic phonons, assuming as fundamental variables the energy u, the momen-
tum p and the deviatoric part of the momentum flux Nhiji, the following phonon
non-equilibrium distribution has been deduced as in [23]

gME � g
.ac/
ME D gBE C gC

BE

	
3c2„q
4ukBTL

pi li C 15„cq
8ukBTL

�
Nijli lj � u

3

�

;

1Einstein’s convention is used: summation with respect repeated dummy indices is understood.
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where

gC
BE D

exp
� „cq
kBTL

�
�

exp
� „cq
kBTL

�
� 1

�2 ;

and l D .l1; l2; l3/ belongs to S2, the unit sphere of R3. We assume as definition of
TL, the Debye relation u D � T 4L.

The previous acoustic phonon distribution is valid up to first order in the
deviation from the equilibrium.

Putting fME and gME into the kinetic definition of the variables appearing in the
balance equations (2.168)–(2.174), one gets the desired closure relation in terms of
the fundamental variables n, V, W , S, u, p and Nhiji.

2.2.4.3 Closure Relations: Phonon Subsystem

Each term is given by the sum of two contributions: one due to the acoustic and
another due to the non-polar optical phonons. The details can be found in [56].
Concerning the energy-flux one hasQ.ac/

k D c2 p
.ac/
k ; Q

.np/
k D 0 wherefrom

Qk D c2 pk;

since p.np/
k D 0. Similarly, concerning the divergence of the deviatoric part, one has

@Mhijik
@xk

D c2
2

5

@phi
@xj i

:

The production of the energy and the production of the deviatoric part of the
momentum flux due to interaction between acoustic phonons and electrons vanishes
P
.ac/
u D 0; P

.ac/
hiji D 0 while the production of momentum for this scattering

mechanism is given by

P
.ac/
i D �nIVi 4�„

3

Z 1

0

gBE.q/ .A0.q/ b11.W /CA1.q/ b12.W // q
4 dq

�nISi 4�„
3

Z 1

0

gBE.q/ .A0.q/ b12.W /C A1.q/ b22.W // q
4 dq;

(2.175)
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where I D D2
A„2

16�2�Svs
p
2.m�/3=2d0

; with D2
A the deformation potential, �S the

silicon density, vs the longitudinal sound speed and

A0 .q/ D
Z 1
q
2

k exp
���W E

�
dk; A1 .q/ D

Z 1
q
2

kE exp
���W E

�
dk:

Since the non-polar optical phonons are described by the Bose-Einstein, the
production of momentum is zero along with the deviatoric part of the momentum
flux: P .np/

i D 0; P
.np/
hiji D 0.

The energy production can be easily obtained by taking into account that the
total energy of the electron-phonon system must be conserved. Since the energy
production vanishes in the case of acoustic phonons, we haveP .np/

u D Pu D �nCW ;
where CW is the electron energy production.

The production terms of energy, momentum and the deviatoric part of the
momentum flux arising from the phonon-phonon .ph/ acoustic interaction are
given by

P .ph/
u D 0; P

.ph/
i D � 1

�R
pi ; P

.ph/
hiji D �1

�
Nhiji;

where �R is the relaxation time for resistive processes and � is total relaxation time.
Summing up the above relations the production terms read as follows. The

production of energy, momentum and deviatoric part of the momentum flux read
as

Pu D �nCW ;
Pi D n c

.p/
11 .W; TL/ Vi C n c

.p/
12 .W; TL/ Si � pi

�R
;

Phiji D �Nhiji
�
;

where the coefficients c.p/11 .W; TL/ and c.p/12 .W; TL/ originate from Eq. (2.175).

2.2.4.4 Closure Relations for Electrons

The general expression of the production term for acoustic phonons based on fME

reads as

C
.ac/
 .e/

D

I

Z
R
3

Z 2k

0

 .e/ .k/ Œ2gBE C 1� exp
���W E

� q4
2k2

�
�Vi l

i C �Si li E .k/
�

dq d3k:
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The production of the energy is zero since the scattering is considered in the elastic
approximation C .ac/

W D 0. The production of the crystal momentum is given by

C i .ac/
p D 2�I

3
Vi

Z 1

0

„k C .k/ exp
���W E

�
.b11.W /C E b12.W // dk

C2�I

3
Si

Z 1

0

„k C .k/ exp
���W E

�
.b12.W /C E b22.W // dk; (2.176)

where C .k/ D R 2k
0
q4 .2gBE C 1/ dq.

The production of the energy flux has the same structure

C
i .ac/
W D 2�I

3
Vi

Z 1

0

„k
m�

E C .k/ exp
���W E

�
q
1C 4˛ „2k2

2m�

.b11.W /C E b12.W // dk

C2�I

3
Si

Z 1

0

„k
m�

E C .k/ exp
���W E

�
q
1C 4˛ „2k2

2m�

.b12.W /C E b22.W // dk: (2.177)

In the case of electron–non-polar optical phonon scattering we have the same
expressions already found in [9, 53] but with the lattice temperature which is no
longer constant.

Summing up the above results, the production terms in the electron moment
system can be written in general forms as the sum of terms due to productions of
acoustic and non-polar phonon–electron scattering (electron-electron scattering is
negligible). In particular, the production of energy, momentum and energy-flux read

CW D C
.e/
W ;

C i
p D c

.e/
11 .W; TL/Vi C c

.e/
12 .W; TL/Si ;

C i
W D c

.e/
21 .W; TL/Vi C c

.e/
22 .W; TL/Si :

where the coefficients c.e/11 .W; TL/, c
.e/
12 .W; TL/, c

.e/
21 .W; TL/ and c.e/22 .W; TL/ origi-

nate from Eqs. (2.176) and (2.177).

2.2.4.5 Limiting Energy Transport and Lattice Heating Model

Under an appropriate scaling, an energy-transport model for electrons coupled to
the crystal energy balance equation can be derived. Such a model comprises three
balance equations: one for the electron density, one for the electron energy density
and one for the crystal temperature. This allows a comparison with the existing
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models, already known in the literature, for the lattice heating in presence of a charge
flow. We assume long time and diffusion scaling, that is with spatial variation on
large scale,

t D O

�
1

ı2

�
; xk D O

�
1

ı

�
;

and that the variables vanishing at equilibrium are of first order

V D O .ı/ ; S D O .ı/ ; p D O .ı/ ; Nhiji D O .ı/ ;

ı being a formal small parameter which is related to the anisotropic part of fME (see
[53]). Moreover we suppose that

CW D O

�
1

ı2

�
and � D O

�
1

ı2

�
: (2.178)

The last assumptions have the following meaning. If we introduce the energy relax-

ation time �W , one can write CW D �W � 3
2
kBTL

�W
. Therefore relation (2.178)1 is

equivalent to require a long energy relaxation time. Since the experimental data
indicates � 	 �W , it is quite natural to assume also (2.178)2.

By proceedings formally as in [53], we write

t D ı2 Qt ; x D ı Qx; V D ı QV; S D ı QS; p D ı Qp; Nhiji D ı QNhiji;

and substitute into relations (2.168)–(2.174).
By eliminating the tilde for simplifying the notation, observing that C i

P and C i
W

are of order ı and by putting equal to zero the coefficients of the various powers of
ı in the previous system, one gets again the balance equations (3.72) and (3.74) of
density and energy, and moreover

@

@t
nV i D 0;

@

@t
nSi D 0;

1

n

@

@xj
nU .0/ D �eEi C c

.e/
11 V

i C c
.e/
12 S

i ;

1

n

@

@xj
nF .0/ıij D �eEiG.0/ C c

.e/
21 V

i C c
.e/
22 S

i :

The last two relations allow to express V and S as functions of n, W , TL and �.
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Concerning the phonon part, solving the previous compatibility conditions at
each order in ı gives

@u

@t
C @c2pk

@xk
D �nCW ; (2.179)

pi D �1
3
�R

@u

@xi
C �R

�
n c

.p/
11 Vi C n c

.p/
12 Si

�
; (2.180)

@Nhiki
@t

D �@Nhiki
�

; (2.181)

@phi
@xj i

D 0: (2.182)

We remark that, as expected in a diffusive regime, only the resistive processes
are relevant and that neglecting the convective part due to the electron flow

�R

�
n c

.p/
11 Vi C n c

.p/
12 Si

�
in (2.180) leads to the well known Peierls relation

Qk D �1
3
c2 �R

@u

@xk
.

Collecting all the previous results, the following energy transport model for
electrons coupled to the lattice energy equation is obtained

@n

@t
C div .nV/ D 0; (2.183)

@ .nW /

@t
C div .nS/ � neV � r� D nCW ; (2.184)

�cV
@TL

@t
� div Œk.TL/rTL� D H; (2.185)

where � cV D @u

@TL
with cV specific heat in Silicon at constant volume, k.TL/ D

1
3
� cV c

2 �R is the thermal conductivity and

H D �nCW � c2div
�
�R nc

.p/
11 V C �Rnc

.p/
12 S

�
(2.186)

is the crystal energy production.
The electron velocity and energy-flux have the same expression as in [54] but

with a lattice temperature which is not kept at equilibrium

V D D11.W; TL/r lognCD12.W; TL/rW CD13.W; TL/r�; (2.187)

S D D21.W; TL/r lognCD22.W; TL/rW CD23.W; TL/r�; (2.188)
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where

D11.W; TL/ D DV

h
c
.e/
12 F � c.e/22 U

i
; D12.W; TL/ D DV

h
c
.e/
12 F

0 � c.e/22 U 0i ;
D13.W; TL/ D DV

h
c
.e/
22 e � c

.e/
12 eG

i
; DV .W; TL/ D 1

c
.e/
12 c

.e/
21 � c

.e/
22 c

.e/
11

;

D21.W; TL/ D DS

h
c
.e/
11 F � c

.e/
21 U

i
; D22.W; TL/ D DS

h
c
.e/
11 F

0 � c
.e/
21 U

0i ;
D23.W; TL/ D DS

h
c
.e/
21 e � c

.e/
11 eG

i
; DS.W; TL/ D 1

c
.e/
22 c

.e/
11 � c.e/12 c.e/21

:

The explicit form of the coefficients can be easily obtained when taking into the
account expressions reported in [9, 53].

In the literature several expressions of H have been proposed (see for more
details [60]). In [32] only the Joule effect has been included H D �e nV � E;
while in [1] the following formulation was suggested H D �div .EC nV/ ; with
EC the conduction band edge energy. A different model has been given in [17]
H D �e nV � r�n; with �n the quasi-Fermi electron potential. It is evident that the
previous models can cover only part of the effects present in (2.186).

In order to compare our results with those reported in [62], we sum up Eqs. (3.74)
and (3.75), obtaining the balance equation for the total energy

@ .nW /

@t
C �cV

@TL

@t
C div .nS � k.TL/rTL/ D

�J � E � c2div
�
�R nc

.p/
11 V C �Rnc

.p/
12 S

�
; (2.189)

where J D �enV is the current density. The production terms in Eq. (2.189) are
given by a Joule heating term and a divergence term. The argument of the divergence
operator can be written as

�Pn J � PS nS;

with Pn D c2 �R c
.p/
11

e
and PS D �c2 �R c.p/12 a kind of thermoelectric power coeffi-

cients. The main difference with [62] (eq. 31 therein, without holes and recombina-
tion-generation term), is that nS is not neglected. Moreover, Pn and PS have an
explicit expression directly related to the scattering parameters, and both electrons
and lattice have different temperatures.
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2.2.4.6 Quantum Corrections

Besides the crystal heating, also quantum effects must been included in the
simulation of nanoscale devices. What follows is based on [57]. The starting point
is the single particle Wigner-Poisson system in the effective mass approximation
which represents the quantum analogous of the semiclassical Boltzmann-Poisson
system. In the following the explicit dependence on the lattice temperature will be
not written since the results does not change with respect to TL.

In the effective mass approximation the Wigner-Poisson system reads as

@w

@t
C v � rxw C e

m��Œ˚�w D C Œw�; (2.190)

div .�r˚S/ D �e.CD.x/ � n/: (2.191)

where the unknown function w.x; v; t/, depending on the position, velocity and time,
is the Wigner quasi distribution, defined as

w.x; v; t/ D F�1Œ�.x C „
2m�	; x � „

2m�	; t/�.v/ D
1

.2�/3

Z
R
3
�.x C „

2m�	; x � „
2m�	; t/ e

iv�	 d3 	:

Here �.x; y/ is the density matrix, which is related to the wave function  .x; t/ by

�.x; y/ D  .x; t/  .y; t/:

F denotes the Fourier transform, given for function g.v/ 2 L1.R3/ by

F Œg.v/�./ D
Z
R
3
v

g.v/ e�iv� d3 v;

and F�1 the inverse Fourier transform

F�1Œh.	/� D 1

.2 �/3

Z
R
3


h.	/ eiv�	 d3 	:

The potential˚ is usually given by the sum of a self-consistent term˚S , solution
of the Poisson equation (2.191), and an additional term ˚B which models the
potential barriers in hetero-junctions and is a prescribed function of the position.

As well known, w.x; v; t/ is not in general positive definite. However it is
possible to calculate the macroscopic quantities of interest as expectation values
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(moments) of w.x; v; t/ in the same way of the semiclassical case, e.g.

density n.x; t/ D
Z
R
3

w.x; v; t/ d3 v;

velocity V.x; t/ D 1

n.x; t/

Z
R
3

v w.x; v; t/ d3 v;

energy W.x; t/ D 1

n.x; t/

Z
R
3

1

2
m� v2 w.x; v; t/ d3 v;

energy-flux S.x; t/ D 1

n.x; t/

Z
R
3

1

2
m� v v2 w.x; v; t/ d3 v:

It is worth to mention that the previous definition of energy and energy flux are valid
only in the parabolic band, consistently with the effective mass approximation.
�Œ˚� represents the pseudo-differential operator

�Œ˚�w.x; v; t/ D im�

„.2�/3
Z
R
3
 �R

3
v0

	
˚

�
x C „

2m�	; t
�

� ˚

�
x � „

2m�	; t
�


w.x; v0; t/ e�i.v0�v/�	 d3 v0 d3 	:

C Œw� is the quantum collision term. Its formulation is itself an open problem.
Some attempts can be found in [10, 28], but a derivation suitable for application
in electron devices is still lacking. Here we propose an expression which is a
perturbation of the semiclassical collision term, useful for the formulation of
macroscopic models.

As general guideline C Œw� should drive the system towards the equilibrium. If
we consider the electrons in a thermal bath at the lattice temperature TL D 1=kBˇ,
the equilibrium Wigner function weq has been found in [64].

For our purposes we locally parameterize the equilibrium Wigner function in
terms of the electron density. Up to first order in „2 on has

weq D w.0/eq C „2 w.1/eq C O.„4/ D n.x; t/
�
m�ˇ
2�

�3=2
e�ˇ E �

�
1C „2ˇ2e

24

	
�˚

m� � ˇ vr vs
@2˚

@ xr @ xs



C O.„4/;

where

w.0/eq D n.x; t/
�
m�ˇ
2�

�3=2
e�ˇ E

is the classical Maxwellian.
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We suppose that the expansion

w D w.0/ C „2 w.1/ C O.„4/

holds. By proceedings in a formal way, as „ 7! 0 the Wigner equation gives the
semiclassical Boltzmann equation in the parabolic band approximation

@w.0/

@t
C v � rxw.0/ C e

m� rx ˚ � rvw
.0/ D C .0/Œw.0/�: (2.192)

At first order in „2 we have

@w.1/

@t
C v � rxw.1/ C e

m� rx˚ � rvw
.1/ � e

24m3

@3 ˚

@ xi xj xk

@3 w.0/

@ vi vj vk
D C .1/;

(2.193)

with C .1/ to be modeled.
Since w.0/ must be positive, being a solution of the semiclassical Boltzmann

equation, we make the following first assumption

C Œw� D C .0/Œw.0/�C „2 C .1/Œw.1/� D CC Œw
.0/� � „2� �w.1/ � w.1/eq

�C O.„4/
(2.194)

with CC Œw
.0/� semiclassical collision operator .w.0/ > 0Š/

and � > 0 quantum collision frequency:

Remark 2.3 At variance with other approaches, only the „2 correction to the
collision term has a relaxation form. This assures that as „ 7! 0 one gets the
semiclassical scattering of electrons with phonons and impurities.

The value of the quantum collision frequency � is a fitting parameter that can be
determined comparing the results with the experimental data.

We require that C Œw� conserves the electron density (second assumption)

Z
R
3
C Œw� d3 v D 0:

Proposition 2.1 The collision operator C Œw� of the form (2.194) satisfies up to
terms O.„4/ the following properties:

1. Ker .C Œw�/ is given by the quantum Maxwellian

w.eq/ D w.0/eq C „2w.1/eq ;

with w.0/eq the classical Maxwellian.
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2.

�kB
Z
R
3
C .0/Œw.0/� ln

w.0/

exp.�ˇm�v2

2
/

d3 v D

�kB
Z
R
3

	
ln w.0/ C ˇm�v2

2



C .0/ d3 v 	 0;

3.

�1
2
C .1/Œw.1/�

�
w.1/ � w.1/eq

� 	 0:

Moreover the equality holds if and only if w is the quantum Maxwellian, defined
above.

Properties 1 and 3 are straightforward. Property 2 is based on the proof in [45–47]
valid in the classical case.

2.2.4.7 Quantum Corrections in the High Field Approximation

In the case of high electric fields, it is possible to get an approximation for w.1/ by a
suitable Chapman-Enskog expansion. Let us introduce the dimensionless variables

Qx D x
l0
; Qt D t

t0
; Qv D v

v0
; with l0, t0 and v0 D l0=t0 typical length, time and

velocity. Let l˚ be the characteristic length of the electrical potential and 1=tC the
characteristic collision frequency. After scaling the collision frequency according to
Q� D tC �; Eq. (2.193) can be rewritten as

1

t0

@w.1/

@t
C v0

l0
v � rxw.1/ C v0

l˚

h e
m� rx˚ � rvw

.1/

� e

24m3

@3 ˚

@ xi xj xk

@3 w.0/

@ vi vj vk



D � 1

tC
�
�
w.1/ � w.1/eq

�
:

We will continue to denoted the scaled variables as the unscaled ones for simplifying
the notation. Note that the scaling of w.1/ is unimportant.

Let us introduce the characteristic length associated with the quantum correction
of the collision term (a kind of mean free path in a semiclassical context) lC D v0 tC
We assume that the quantum effects occur in the high field and collision dominated
regime, where drift and collision mechanisms have the same characteristic length.

Therefore we set formally
lC

l˚
D 1 and observe that in the high frequency regime
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the Knudsen number ˛ D lC

l0
is a small parameter. Substituting in the previous

equation, we get

˛
@w.1/

@t
C ˛v � rxw.1/ C e

m� rx˚ � rvw
.1/

� e

24m3

@3 ˚

@ xi xj xk

@3 w.0/

@ vi vj vk
D �� �w.1/ � w.1/eq

�
:

The zero order in ˛ gives

q

m� rx˚ � rvw
.1/ � e

24m3

@3 ˚

@ xi xj xk

@3 w.0/

@ vi vj vk
D �� �w.1/ � w.1/eq

�

and by Fourier transforming one has

w.1/.x; v; t/ D F�1
(

1

� C ie
m�

	 � rx˚

	
� ie

24m�3
@3 ˚

@ xi xj xk
ij kFw.0/.	/

C�Fw.1/eq .	/
��
.x; v; t/:

Approximating w.0/ with fME , we obtain

w.x; v; t/ � fME.x; v; t/C „2w.1/.x; v; t/; (2.195)

which will be used in the next section for evaluating the unknown quantities in the
moment system, associated with the Wigner equation.

In analogy with the semiclassical case, multiplying (2.190) by suitable weight
functions  , depending in the physical relevant cases on the velocity v, and
integrating over the velocity, one has the balance equation for the macroscopic
quantities of interest

@

@t

Z
R
3

w.x; v; t/  .v/ d3 v C rx

Z
R
3
 .v/v � w d3 v

C q

m�

Z
R
3
 .v/�Œ˚�w d3 v D

Z
R
3
 .v/C Œw� d3 v:

(2.196)

In the 8-moment model the basic variables are the moments relative to the weight

functions 1, m� v,
1

2
m� v2,

1

2
m� v2v.
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By evaluating (2.196) for  D 1, under the assumption that the necessary

moments of w.1/.x; v; t/ and
@3 w.0/

@ vi vj vk
with respect to v exist, one has

q

m�

Z
R
3
�Œ˚�w d3 v D e

m� rx �
Z
R
3
rvw

.0/ d3 v

C„2
	
e

m� rx˚ �
Z
R
3
rvw

.1/ d3 v � e

24m3

@3 ˚

@ xi xj xk

Z
R
3

@3 w.0/

@ vi vj vk
d3 v



D 0;

obtaining the continuity equation

@

@t
nC @.nVi /

@xi
D 0: (2.197)

In order to get other moment equations we observe that from (2.195) it follows

e

m� rx˚ �
Z
R
3
 .v/rvw

.1/ d3 v � e

24m3

@3 ˚

@ xi xj xk

Z
R
3
 .v/

@3 w.0/

@ vi vj vk
d3 v

C�
Z
R
3
 .v/

�
w.1/ � w.1/eq

�
d3 v D 0; (2.198)

for each weight function  .v/ such that the integrals exist.
By taking into account (2.198), multiplying Eq. (2.190) by the weight functions

m� v, 1
2
m� v2, 1

2
m� v2v, after integration one finds the balance equations for

momentum, energy and energy-flux

@

@t
.nVi /C @.nUij/

@xj
C n e Ei D nC i

p;
�
W .0/; V

.0/
i S

.0/
i

�
; (2.199)

@

@t
.nW /C @.nSj /

@xj
C neV

.0/

k Ek D nCW .W
.0//; (2.200)

@

@t
.nSi /C @.nFij/

@xj
C 5

3
n
e

m�EiW
.0/ D nnC i

W ;
�
W .0/; V

.0/
i ; S

.0/
i

�
: (2.201)

Here V .0/
i , W .0/ and S.0/i are the zero order components of the average velocity,

energy and energy-flux. Also for other quantities, the superscript .0/ will mean zero
order with respect to „2. The components of the flux of momentum and the flux of
energy-flux are defined as

Uij D 1

n.x; t/

Z
R
3
m� vi vj w.x; v; t/ d3 v;

Fij D 1

n.x; t/

Z
R
3

1

2
m�vi vj v2 w.x; v; t/ d3 v:
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The production terms are defined as

nC i
p; D

Z
R
3
m� vi C Œw� d3 v;

nCW D
Z
R
3

1

2
m�v2 C Œw� d3 v;

n nC i
W ; D

Z
R
3

1

2
m�v2 vi C Œw� d3 v:

Remark 2.4 The quantum corrections affect only the free streaming part, while the
drift and production terms appear only at the zero order.

Therefore CW .W .0//, C i
p;
�
W .0/; V

.0/
i ; S

.0/
i

�
and C i

W ;
�
W .0/; V

.0/
i ; S

.0/
i

�
are as in

the semiclassical case.
The system (2.197), (2.199)–(2.201) is not closed because of the presence of the

unknown quantities Uij, Fij, C i
p, CW and C i

W ;. We solve the closure problem with
the approximation (2.195), assuming a collision dominated high field regime for the
quantum effects. The results are given by the following proposition

Proposition 2.2 In the high field approximation one has

Ji D nVi D nV
.0/
i C O.„4/;

W D W .0/ � „2ˇ e
24m� �˚ C O.„4/;

Uij D U
.0/
ij � „2ˇ e

12m�
@2˚

@xi@xj
C O.„4/;

Si D S
.0/
i � „2ˇ2 e2

24m�2�

�
2
@2˚

@xi@xr

@˚

@ xr
C @˚

@xi
�˚

�

� „2 e
8m�2�

@

@ xi
�˚ C O.„4/;

Fij D F
.0/
ij � „2ˇ e3

3m�3�2
@˚

@ x.i

@2˚

@xj /@xr

@˚

@xr
� „2 e2
4m�3�2

@3˚

@xi @xj @xr

@˚

@xr

� „2 ˇ e3
12m�3�2

�
@˚

@xi

@˚

@ xj
�˚ C jr ˚ j2 @2˚

@xi @xj

�

� „2 e2
4m�3�2

@�˚

@x.i

@˚

@xj /
� „2 e
24m�2

�
�˚ ıij C 5

@2˚

@xi@xj

�

� „2 e
4m�2�

�
@�˚

@x.i
Vj / C @3˚

@x.i xj xk/
Vk

�
C O.„4/:
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In the previous relationships round brackets indicate symmetrization, e.g.

Ai.jk/ D 1

2

�
Aijk C Aikj

�
;

A.ijk/ D 1

3Š

�
Aijk C Aikj CAjik C Ajki C Akij C Akji

�
:

Remark 2.5 In the limit of high frequency � ! 1 one has the simplified model

Ji D nVi D nV
.0/
i C O.„4/;

W D W .0/ � „2ˇ e
24m� �˚ C O.„4/;

Uij D U
.0/
ij ıij � „2ˇ e

12m�
@2˚

@xi @xj
C O.„4/;

Si D S
.0/
i C O.„4/;

Fij D F
.0/
ij � „2 e

24m�2

�
�˚ ıij C 5

@2˚

@xi@xj

�
:

From Eq. (2.195) one sees that in the limit � ! 1, w.1/ reduces to the quantum cor-
rection of the equilibrium Wigner function w.1/eq . The resulting quantum corrections
to the tensor Uij are the same as those obtained in [31] by using a shifted Wigner
function, but with the semiclassical contribution which contains also a heat flux, not
added ad hoc.

2.2.4.8 Quantum Corrected Energy-Transport and Crystal Heating
Model

Assuming the same scaling of Sect. 2.2.4.4, one gets (formally) the energy-transport
equations (3.72) and (3.74) with the closure relations

Vi D 1

�

�
c
.e/
22

	
Uik

n

@n

@xk
C @Uik

@xk
� e

@˚

@xi




�c.e/12
	
Fik

n

@n

@xk
C @Fik

@xk
� 5e

3m�W
.0/ @˚

@xi



;

Si D 1

�

�
c
.e/
11

	
Fik

n

@n

@xk
C @Fik

@xk
� 5e

3m�W
.0/ @˚

@xi




�c.e/21
	
Uik

n

@n

@xk
C @Uik

@xk
� e

@˚

@xi



;
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where

�.W .0// D c
.e/
11 c

.e/
22 � c.e/12 c.e/21 :

If also the effect of the crystal heating need to be included, the lattice temperature is
no longer constant and one has to take into the account equation (3.75) as well.

The zero order terms are strictly valid in the parabolic band case (˛ D 0),
in particular the c.e/ij ’s. A simple way to extend the results in the case of Kane
dispersion relation is to consider for the semiclassical part of V and S the
relations (2.187)–(2.188), but including the quantum corrections for Uik and Fik

according to the proposition 2.2.
For example, in the case � ! 0 the complete model reads as

@n

@t
C @.nV i /

@xi
D 0;

@.nW /

@t
C @.nSj /

@xj
C neVkE

k D nCW ;

�cV
@TL

@t
� div Œk.TL/rTL� D H;

E D �rx˚;

��˚S D �e.ND �NA � n/;

along with the constitutive relations

Vi D D11.W
.0/; TL/

@ logn

@xi
CD12.W

.0/; TL/
@W

@xi
CD13.W

.0/; TL/
@�

@xi

C 1

�

	�
�c.e/22

„2ˇ e
12m�

@2˚

@xi @xk
C c

.e/
12

„2 e
24m�2

�
�˚ ıik C 5

@2˚

@xi@xk

��
@ logn

@xk

�c.e/22
@

@xk

� „2ˇ e
12m�

@2˚

@xi @xk

�
C c

.e/
12

@

@xk

� „2 e
24m�2

�
�˚ ıik C 5

@2˚

@xi@xk

��

;

Si D D21.W
.0/; TL/

@ logn

@xi
CD22.W

.0/; TL/
@W

@xi
CD23.W

.0/; TL/
@�

@xi

C 1

�

	�
c
.e/
21

„2ˇ e
12m�

@2˚

@xi@xk
� c.e/11

„2 e
24m�2

�
�˚ ıik C 5

@2˚

@xi@xk

��
@ logn

@xk

Cc.e/21
@

@xk

�„2ˇ e
12m�

@2˚

@xi @xk

�
� c

.e/
11

@

@xk

� „2 e
24m�2

�
�˚ ıik C 5

@2˚

@xi@xk

��

:
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If one introduces the equation of state

W .0/ D 3

2
kBT; (2.202)

the previous energy-transport model can be written using the electron density and
temperature T , besides the electrical potential, as variables. However, it is crucial
to remark that (2.202) is valid only in the parabolic band case (in analogy with the
monatomic gas dynamics) and it is not justified in the non parabolic case, e.g. the
Kane dispersion relation. In this latter case it is more appropriate to retain the energy
W as fundamental variable.
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Chapter 3
Simulation of Coupled PDAEs: Dynamic
Iteration and Multirate Simulation

Giuseppe Alì, Andreas Bartel, Michael Günther, Vittorio Romano,
and Sebastian Schöps

Abstract This chapter investigates the error transport in dynamic iteration schemes
for coupled DAE systems. The essential theory is developed in detail. Then the
results are applied to various coupled systems stemming from applications in
electrical engineering.

3.1 Aim and Outline

In practice, we often have to deal with multiphysical descriptions of mathematical
models and as well with systems which exhibit widely separated time scales. A com-
mon approach for multiphysical systems is the application of dynamic iteration (or
co-simulation), which allows to treat each subsystem with a dedicated solver, and
also an according discretization. Furthermore, so-called multirate techniques can be
applied to specifically exploit different time scales.
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To reflect this, the aim of this chapter is twofold. First we address dynamic itera-
tion of spatially discretized PDAE systems, which are in fact coupled DAE systems.
We demonstrate the crucial differences between coupled DAE and coupled ODE
systems by investigating the splitting error of these coupled systems theoretically.
Then we apply the obtained knowledge to coupled systems from Chap. 2. Secondly,
a multirate strategy is discussed and studied numerically.

To this end, this chapter is organized as follows. It starts with the detailed theory
of dynamic iteration schemes for coupled DAEs. First we consider a single window
and proof an error recursion for any investigated window. Then we treat multiple
windows and generalize the results. In the following section, we apply our results
to some of the DAE models introduced in Chap. 2: refined network models, electric
networks and Maxwell’s magnetostatic equations. Finally, a multirate method for
the coupled simulation of thermal effects in silicon devices is investigated.

3.2 Theory of Dynamic Iteration Schemes for Coupled DAEs

Here we address the time-domain solution of PDAEs by means of dynamical
iteration schemes. To explain the basic concept, let us suppose that we want to
solve an initial value problem for a system of PDAEs, on a time interval Œ0; te�.
To this end, the time interval Œ0; te� is split in windows Œtn; tnC1� with so-called
synchronization points tn, which satisfy: 0 D t0 < t1 < � � � < tN D te . The windows
are treated sequentially and in each window the subsystems are solved iteratively.
Mathematically speaking, this leads to apply a dynamic iteration scheme.

Coupled systems as our PDAEs, see Chap. 2, can be treated with coupled
simulators, each designed and tailored to the respective subsystem’s structure.
This is called simulator-coupling, co-simulation or distributed (time-)integration.
Compared to monolithic approaches, where the overall system is treated by any
standard integration the distributed computation offers potential w.r.t. parallelization
and incorporates adapted step sizes and orders to every subsystem automatically.

Although we have in mind applications to PDAEs, we will develop the theory
of dynamic iteration schemes for DAEs. For practical applications, all the results
presented in this Chapter can be extended to PDAE after performing suitable spatial
discretizations. A detailed example of this approach is given for PDAEs arising in
refined network modeling.

Iteration schemes were first applied to coupled ODE systems, including
multirate, multi-order, multi-method and dynamic iteration. For the latter, which
is our focus, convergence is unconditional (see [10]) if the windowing technique
is applied. However, the situation changes, when this methods are applied to
DAEs. Here instabilities may occur and solutions can explode even if a windowing
technique is in use. Here convergence, that is, contraction of the corresponding
fixed point operator, can be guaranteed by fulfilling additional stability constraints.
This dates back to Lelarasmee [24] and was applied for single window convergence
[3, 22] and specially coupled systems for multiple windows in [1, 4]. We note that
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the stability restrictions where also encountered in the numerical analysis of DAEs,
see [16, 21] and [1, 23].

Here we follow [4] with some more details to derive a general representation of
the error recursion for coupled systems. The preceding steps, e.g. for convergence
result, are as in [1]. Furthermore we aim at extracting the underlying principle:
algebraic to algebraic coupling is to be excluded or damped.

3.2.1 Description of Coupled Systems

After applying a suitable space discretization to the PDAE problems discussed in the
first chapter, we are faced with the following simulation problem: solve an initial-
value problems of semi-explicit differential-algebraic equations

Py D f.y; z/; (3.1a)

0 D g.y; z/; (3.1b)

where the dot denotes differentiation with respect to time. In this formulation we
do not distinguish between different subsystems, but all subsystems are comprised
within one system. As we will see, this is enough to treat dynamic iteration
schemes. It is specially well-applicable for linear PDE-parts, where space and time
discretization can be easily separated. Also a non-autonomous system can be casted
in this form, by introducing an additional equation: Pt D 1. We assume that this
problem, equipped with initial values

y.0/ D y0 ; z.0/ D z0; (3.2)

has a unique solution y W Œ0; te� ! R
ny ; z W Œ0; te� ! R

nz on the finite time interval
Œ0; te�. In a neighborhood of this solution the functions f and g are supposed to be
sufficiently often differentiable. Furthermore, it is supposed that

the Jacobian @g=@z is non-singular; (3.3)

in the neighborhood of the solution. Hence system (3.1) has index-1. Moreover,
the initial values (3.2) have to be consistent, that is for our semi-explicit index-1
system (3.1), the explicit algebraic constraint (3.1b) is fulfilled for the initial data.

Next we discuss the representation of coupled systems. In multiphysics prob-
lems, system (3.1) is often directly given as a coupled system of r DAE subsystems

Pyi D fi .y; z/; (3.4a)

0 D gi .y; z/ (3.4b)

for i D 1; : : : ; r , with y> D .y>
1 ; : : : ; y

>
r /, z> D .z>

1 ; : : : ; z
>
r /, f> D .f>1 ; : : : ; f>r /,

g> D .g>
1 ; : : : ; g

>
r /. In addition to the index-one assumption (3.3) for the whole
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system (3.1), we now assume that

@gi =@zi is non-singular for all i D 1; : : : ; r; (3.5)

so that the equations gi .y; z/ D 0 are locally uniquely solvable with respect to zi ,
with other words: system (3.4) defines an index-1 system for unknown functions
yi , zi assuming that all other variables yj , zj (j ¤ i ) are given as time-dependent
functions.

Sometimes system (3.1) may be given as r coupled ODE systems linked to only
one algebraic equation:

Pyi D fi .y; z/; (3.6a)

0 D g.y; z/; (3.6b)

for i D 1; : : : ; r . The index-1 assumption now again reads as in (3.3), that is, we
assume that @g=@z is non-singular in a neighborhood of the solution.

Sometimes a separation in subsystems is not a priori fixed by a simple partition
(e.g. (3.6)). This leads to the following notation, where some quantities are assigned
to several subsystems.

Overlapping modeling The structure (3.6) gives more freedom in a dynamic
iteration scheme by applying appropriate overlapping strategies [2]. For such a
strategy, the system is replaced by a number of overlapping subsystems, defined
by means of splitting matrices. As splitting matrices we introduce Pi 2 R

nz�li with
1 
 li 
 nz and rank.Pi/ D li for i D 1; : : : ; r , such that the matrix

.P1 : : :Pr / 2 R
nz�.Pi li / has full rank nz (3.7)

(thus we implicitly require
P

i li 	 nz). In this way, arbitrary parts P>
i g of the

algebraic equation (3.6b) can be extracted, since it holds:

.P1; : : : ;Pr />g D 0 if and only if g D 0:

Next, we assign the extracted components to the i -th ODE subsystem to define r
overlapping DAE systems:

Pyi D fi .y;wi /; (3.8a)

0 D P>
i g.y;wi /; (3.8b)

substituting z by wi (for i D 1; : : : ; r). Also z is split into further components
Nzi WD P>

i z, such that it holds

wi D z D .I � PiP>
i /z C Pi Nzi : (3.9)



3 Simulation of Coupled PDAEs: Dynamic Iteration and Multirate Simulation 107

This splitting is crucial for any modular time integration to come. Adding the
coupling equation (3.9) to the r th system, we obtain in fact:

Pyi D Qfi .y; z; Nzi /; (3.10a)

0 D Qgi .y; z; Nzi /; (3.10b)

for i D 1; : : : ; r , with

Qfi .y; z; Nzi / WD fi .y; .I � PiP>
i /z C Pi Nzi /; i D 1; : : : ; r;

Qgi .y; z; Nzi / WD P>
i g.y; .I � PiP>

i /z C Pi Nzi / i D 1; : : : ; r � 1;

Qgr .y; z; Nz/ WD

0
B@

P>
r g.y; .I � PrP>

r /z C Pr Nzr /
z �

	
.I �

rX
jD1

PjP>
j /z C

rX
jD1

Pj Nzj


1
CA :

If the original system (3.6) has index-1, then also system (3.10) has index-1. In
fact, the index-1 conditions for system (3.10) are:

P>
i .@g=@z/Pi regular;

rX
jD1

PjP>
j regular;

which are ensured by the index-1 condition (3.3), and by the definition of our
matrices Pj , which satisfy condition (3.7).

Lastly, we notice: (a) according to our system (3.6), we have only overlap-
ping in the algebraic system; of course, more general situations are conceivable;
(b) the case of additional coupling equations can be also retrieved within the above
discussed case.

Next, we discuss several types of iteration schemes, which we can identify with
splitting functions.

3.2.2 Iteration Schemes for Coupled DAE Systems

The idea of our dynamic iteration schemes is now to work directly on the splitting
structure of system (3.1) given by either (3.4) or (3.6) to exploit the varying
properties of the subsystems via multirate and multimethod approaches.

Before going into the details of exploiting the special structure, we define a
generic dynamic iteration scheme in the following. In a first step we split the whole
integration interval Œ0; te� into windows Œtn; tnC1� � Œ0; te� (n D 0; 1; : : : ; N �1 with
t0 D 0 and tN D te), of sizeHn WD tnC1� tn. As already mentioned, this windowing
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technique guarantees convergence in the case of purely coupled ODE systems and
for DAE systems additional stability restrictions to be discussed play an important
role (for convergence and fast numerical computation of solutions).

Let us now consider a window Œtn; tnC1� and suppose that the numerical solution

.Qy; Qz/> W Œ0; te� ! R
ny �R

nz

has already been computed for t 2 Œ0; tn�. To get a numerical approximation in the
next window Œtn; tnC1�,

Qyj.tn;tnC1�; Qzj.tn;tnC1�;

we proceed as follows:

• Extrapolation step: the iteration starts with

 
Qy.0/n
Qz.0/n

!
WD ˆn

�Qyj.tn�1;tn�

Qzj.tn�1;tn�

�
with ˆn D

�
ˆy;n

ˆz;n

�
; (3.11)

where ˆn W NC1;0
n�1 ! C1;0

n denotes an operator that extrapolates .Qy; Qz/ continu-
ously from .tn�1; tn� to Œtn; tnC1� with corresponding spaces

NC1;0
n WD ˚

.y; z/j.tn;tnC1� W .y; z/ 2 C1;0
n

�
;

C 1;0
n WDC1.Œtn; tnC1�;Rny / � C.Œtn; tnC1�;Rnz/:

The most simple initial guesses are constant functions

Qy.0/n .t/ D Qy.tn/; z.0/n .t/ D Qz.tn/ .f.a. t 2 Œtn; tnC1�/

which results in approximation errors proportional to the window size Hn.
Approximations of higher order may be obtained by using higher degree
polynomials. In any case, these extrapolation operators satisfy uniform Lipschitz
conditions independent of the window size (see [1]).

• Iteration step: the k-th iteration step in the dynamic iteration scheme (with k D
1; : : : ; kn) defines a mapping

 
Qy.k�1/
n

Qz.k�1/
n

!
!
 

Qy.k/n
Qz.k/n

!
WD ‰n

 
Qy.k�1/
n

Qz.k�1/
n

!
with ‰n D

�
‰y;n

‰z;n

�
; (3.12)

‰n W C1;0
n ! C1;0

n . Here we assume kn to denote the finite number of iterations to
be performed in the n-th window (Œtn; tnC1�). Regarding the general setting (3.1),
the iteration operator ‰n is implicitly defined via splitting functions F and G by
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solving the initial value problem

PQy.k/n D F.Qy.k/n ; Qy.k�1/
n ; Qz.k/n ; Qz.k�1/

n / (3.13a)

0 D G.Qy.k/n ; Qy.k�1/
n ; Qz.k/n ; Qz.k�1/

n / (3.13b)

with initial value

Qy.k/n .tn/ D Qy.k�1/
n .tn/: (3.13c)

The splitting functions F and G can be chosen as arbitrarily smooth functions
provided that they are related to the right-hand-sides f and g of the DAE system
(3.1) by the compatibility conditions

F.y; y; z; z/ D f.y; z/; G.y; y; z; z/ D g.y; z/: (3.14)

As f, g are assumed to be sufficiently often differentiable, this is also assumed
for F and G.

Remark 3.4 Notice, that the analytic solution .y; z/ is a fixed-point of the iteration
operator‰n due to the compatibility conditions (3.14).

With these notations the dynamic iteration step for window Œtn; tnC1� may be
written as composition of the above introduced operators:

�Qyj.tn;tnC1�

Qzj.tn;tnC1�

�
D .‰kn

n ıˆn/.
�Qyj.tn�1;tn�

Qzj.tn�1;tn�

�
/: (3.15)

We now come back to the question how to exploit the given structure of the
coupled DAE system. If the DAE system is given in partitioned form (3.4), we are
looking for numerical approximations

Qyn D .y1;n; : : : ; yr;n/>; Qzn D .z1;n; : : : ; zr;n/>

in split form. Now the iteration operator ‰n should reflect this partitioning. Instead
of (3.13), ‰n is now implicitly defined by the r initial-value problems

PQy.k/i;n D Fi .Qy.k/n ; Qy.k�1/
n ; Qz.k/n ; Qz.k�1/

n /; (3.16a)

0 D Gi .Qy.k/n ; Qy.k�1/
n ; Qz.k/n ; Qz.k�1/

n /; (3.16b)

for i D 1; : : : ; r , with initial value

Qy.k/i;n .tn/ D Qy.k�1/
i;n .tn/: (3.16c)
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Again, all splitting functions Fi and Gi are related to the right-hand-sides fi and gi
of the DAE system (3.4) by the compatibility conditions

Fi .y; y; z; z/ D fi .y; z/; Gi .y; y; z; z/ D gi .y; z/:

And it holds:

F> D .F>
1 ; : : : ; F>

r / and G> D .G>
1 ; : : : ; G>

r /:

In the notation of splitting functions, the following important classes of dynamic
iterations schemes for the coupled system (3.4) read as:

Fi .Qy.k/n ; Qy.k�1/
n ; Qz.k/n ; Qz.k�1/

n / D fi .Y
.k/
i;n ;Z

.k/
i;n /; (3.17a)

Gi .Qy.k/n ; Qy.k�1/
n ; Qz.k/n ; Qz.k�1/

n / D gi .Y
.k/
i;n ;Z

.k/
i;n /; (3.17b)

for i D 1; : : : ; r , with:

• Picard iteration:

Y.k/
i;n D Qy.k�1/

n ;

Z.k/i;n D Qz.k�1/
n ;

• Jacobi iteration:

Y.k/
i;n D .Qy.k�1/

1;n ; : : : ; Qy.k�1/
i�1;n ; Qy.k/i;n ; Qy.k�1/

iC1;n; : : : ; Qy.k�1/
r;n />;

Z.k/i;n D .Qz.k�1/
1;n ; : : : ; Qz.k�1/

i�1;n ; Qz.k/i;n ; Qz.k�1/
iC1;n; : : : ; Qz.k�1/

r;n />;

• Gauss-Seidel iteration:

Y.k/
i;n D .Qy.k/1;n; : : : ; Qy.k/i;n ; Qy.k�1/

iC1;n; : : : ; Qy.k�1/
r;n />;

Z.k/i;n D .Qz.k/1;n; : : : ; Qz.k/i;n ; Qz.k�1/
iC1;n; : : : ; Qz.k�1/

r;n />:

These techniques can be applied to the system derived from overlapping (3.8).
The involved multiple computation of certain quantities, enables higher flexibility
with respect to stability, as we will see. In the following we discuss a variant of the
Gauss-Seidel scheme.

Overlapping technique For a DAE system given in form (3.6) (with an overall
algebraic equation), overlapping was introduced in (3.10) with dynamic iteration as
the method of choice [2]. For a Gauss-Seidel-like scheme, this overlapping modular
time integration reads as follows. First, each subsystem

Pyi D fi .y1; : : : ; yr ;Wi /; (3.18a)

0 D P>
i g.y1; : : : ; yr ;Wi /; (3.18b)
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for i D 1; : : : ; r , is equipped with the relation

Wi D .I � PiP>
i /z

.k�1/
n C PiP>

i Z.k/i ;

introducing an additional stage vector Z.k/i , which serves as an intermediate
approximation for components of z. Translated into splitting functions (and adding
the Gauss-Seidel scheme), this leads to system (3.16), with

Fi .Qy.k/n ; Qy.k�1/
n ; Qz.k/n ; Qz.k�1/

n / D fi .Y
.k/
i;n ;W

.k/
i;n /; i D 1; : : : ; r;

Gi .Qy.k/n ; Qy.k�1/
n ; Qz.k/n ; Qz.k�1/

n / D P>
i gi .Y

.k/
i;n ;W

.k/
i;n /; i D 1; : : : ; r � 1;

Gr .Qy.k/n ; Qy.k�1/
n ; Qz.k/n ; Qz.k�1/

n /

D
 

P>
r gr .Y

.k/
i;n ;W

.k/
i;n /

Qz.k/n �
�

I �Pr
jD1 AjPjP>

j

�
Qz.k�1/
n �Pr

jD1 AjPjZ.k/j

!
;

where we have posed

Y.k/
i;n D .Qy.k/1;n; : : : ; Qy.k/i;n ; Qy.k�1/

iC1;n; : : : ; Qy.k�1/
r;n />;

W.k/
i;n D .I � PiP>

i /Qz.k�1/
n C PiP>

i Z.k/i :

Thereby in the last algebraic constraint, we have introduced additional matrices

Aj 2 R
nz�nz .j D 1; : : : ; r/

as free parameters for enforcing better stability properties. Notice that the special
choice Pi D e>i , Ai D I (i D 1; : : : ; r) leads back to system (3.4), solved by
the Jacobi-like iteration scheme, while regarding the algebraic part only. Last, the
index-1 hypothesis, leads to the assumption that

the matrix
rX

jD1
AjPjP>

j is regular: (3.19)

This is the case, if .A1P1; : : : ;ArPr / has full rank.
The discussed method corresponds to a dynamic iteration for the overlapping

DAE systems (3.10), with slight generalization with respect to the free parameter
matrices.

Applying Gauss-Seidel, Jacobi or Picard like dynamic iteration schemes, as well
as overlapping modular time integration, to coupled ODEs convergence may always
be achieved using sufficiently small window sizes. In the application to coupled
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differential-algebraic equations, however, two additional contractivity conditions
have to be satisfied to achieve

• Convergence within one window, and
• A stable error propagation in the algebraic components z from one window to

another.

This will be the topic of the next sections, where we generalize corresponding results
of [1] obtained for a special coupled system to the general case of system (3.1).

3.2.3 Convergence and Stability

In the following we address the convergence of the above defined dynamic iteration
schemes. That is, we want to deal with (a) the error within one window, and
(b) the transport and amplification of error from window to window. To this end,
we introduce the related error notations. First, we derive the error recursions for the
error within one window, and prove convergence within each single window under
certain stability requirements. Secondly, we treat a finite number of windows and
prove the convergence under the related requirements.

We consider an analytic error recursion, thus error due to time integration are
not considered explicitly, here. We follow basically [1], but put everything in a
more general context as already started in[3]. Thus in fact, only Lemma 3.1 and
the exact definition of ˛ differ from the preceding work. Here we adopt a more
general viewpoint, to reveal the most prominent structural properties.

3.2.3.1 Error Recursion

Following standard procedures in error analysis, e.g. [21], we define the global error

y;n.t/; 
z;n.t/ on the n-th time window (t 2 Œtn; tnC1�) as the difference of the
numerical approximation Qy.t/, Qz.t/ and the exact solutions y.t/, z.t/, where the
unknowns and hence the errors are split into algebraic and differential components:

�

y;n


z;n

�
WD
�
.Qy � y/ j.tn;tnC1�

.Qz � z/ j.tn;tnC1�

�
D �

‰kn
n ıˆn

��Qyj.tn�1;tn�

Qzj.tn�1;tn�

�
�
�

yjŒtn;tnC1�

zjŒtn;tnC1�

�
:

Here the numerical approximation on the current time window is given by an
approximation on the previous time window, which is extrapolated by ˆn and then
kn-times iterated by the dynamic iteration operator (e.g. using the Gauss-Seidel
scheme).
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Classically, the global error is split into contributions from previous windows
due to error propagation ey;n, ez;n and into the errors from the current window dy;n,
dz;n, i.e.,


y;n D ey;n C dy;n


z;n D ez;n C dz;n;
(3.20)

where the propagated errors are described by

�
ey;n

ez;n

�
WD �

‰kn
n ıˆn

� �Qyj.tn�1;tn�
Qzj.tn�1;tn�

�
� �
‰kn
n ıˆn

� �yj.tn�1;tn�

zj.tn�1;tn�

�
(3.21)

and the local error contributions by

�
dy;n

dz;n

�
WD �

‰kn
n ıˆn

� �yj.tn�1;tn�

zj.tn�1;tn�

�
�‰kn

n

�
yjŒtn;tnC1�

zjŒtn;tnC1�

�
: (3.22)

The sum gives indeed global error, since the exact solution .y; z/ is a fixed point
of ‰n.

To investigate the convergence of the dynamic iteration scheme applied to
system (3.1), we introduce a neighborhood Ud;n of the exact solution xjŒtn;tnC1� WD
.y; z/jŒtn;tnC1�, defined for any given d > 0 by

Ud;n D
n
.Y;Z/ 2 C1;0

n W ˇ̌ˇ̌Y � yjŒtn;tnC1�

ˇ̌ˇ̌
2;1;

ˇ̌ˇ̌
Z � zjŒtn;tnC1�

ˇ̌ˇ̌
2;1 
 d

o
;

with jjvjj2;1 D maxt jv.t/j, where the maximum is taken on the interval of
definition of the vector function v.t/, and j � j denotes the vector 2-norm, that is,
the Euclidean norm. Furthermore, we assume:

Assumption 3.1 For our problem, there exists d0 > 0 such that

� The splitting function F is Lipschitz-continuous in all
its coordinates on Ud0;n with constant LF > 0 ;

(3.23)

� The splitting function G is totally differentiable, and
its derivatives are Lipschitz-continuous on Ud0;n;

(3.24)

� The partial derivative Gz.k/ is invertible on Ud0;n: (3.25)

The Lipschitz continuity means: for any fixed time t and for any set of vectors
Yi ; QYi 2 R

ny, Zi ; QZi 2 R
nz , i D 1; 2, that satisfy jYi � y.t/j; jZi � z.t/j;
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j QYi � y.t/j; j QZi � z.t/j 
 d0, it holds

ˇ̌
F.Y1; QY1;Z1; QZ1/ � F.Y2; QY2;Z2; QZ2/

ˇ̌

 LF.jY1 � Y2j C j QY1 � QY2j C jZ1 � Z2j C j QZ1 � QZ2j/

To have a well-defined solution to (3.13), we have the second and third assumption;
it is analogous to the index-1 condition.

For 0 < d < d0, let us consider arbitrary functions X WD .Y;Z/> and QX WD
. QY; QZ/> 2 Ud;n, and denote their image after k dynamic iterations by

Yk
n WD ‰k

y;nX; Zkn WD ‰k
z;nX;

QYk
n WD ‰k

y;n
QX; QZkn WD ‰k

z;n
QX:

(3.26)

Do not confuse the above definition (3.26) with the notation in (3.17).
Let us denote distances of the y-component after k dynamic iteration by

�k
y;n.X; QX/.t/ WD Yk

n.t/ � QYk
n.t/;

�k
z;n.X; QX/.t/ WD Zkn.t/ � QZkn.t/;
ıky;n.X; QX/ WD jj�k

y;n.X; QX/jj2;1;
ıky;n.X; QX/ WD jj�k

y;n.X; QX/jj2;1:

(3.27)

Now, we deduce an estimate for the error when the dynamic iteration is applied to
the functions in Ud;n. As in [3], we have

Lemma 3.1 (Error recursion) Given a DAE (3.1) – with initial conditions (3.2) –
and a dynamic iteration (3.13) with consistent splitting functions F; G. For the
current time window Œtn; tnC1� let Assumption 3.1 hold true. Then there are constants
C; Qc > 0, such that for d < minfd0=C; 1=.2 Qc/g, H < H0 WD 1=C , and

‰k�1
n X; ‰k�1

n
QX 2 Ud;n

implies

 
ıky;n.X; QX/
ıkz;n.X; QX/

!

 K

 
ık�1

y;n .X; QX/
ık�1

z;n .X; QX/

!
C
 
1

0

!
j�k�1

y;n .X; QX/.tn/j (3.28)

with

K WD
 

CH CH

C CH C ˛n

!
; (3.29)

˛n WD .1C Qc d/ jjG�1
z.k/ Gz.k�1/ jj2;1 C Cd: (3.30)



3 Simulation of Coupled PDAEs: Dynamic Iteration and Multirate Simulation 115

Notice �k�1
y;n .X; QX/.tn/ D �0

y;n.X; QX/.tn/ denotes the offset due to differing
initial values at the beginning of the n-th time window.

Proof We apply the technique used in [1, 3]. First we show

‰k�1
n X; ‰k�1

n
QX 2 Ud;n H) ıky;n.X; QX/; ıkz;n.X; QX/ 
 Cd (3.31)

thus ıky;n.X; QX/; ıkz;n.X; QX/ 2 Ud0;n. On the one hand, we investigate the differential

part (3.13a). To this end, we write this equation for any two sets of functions QX D
. QY; QZ/> and X D .Y;Z/> from Ud;n, which approximate the solution at the start
of the dynamic iteration. Here we take the difference, and time integrate over the
interval Œtn; ��, with tn < � 
 tnC1. This gives for the k-th iterate, with k > 0,

j�k
y;n.X; QX/.�/j 
 j�k�1

y;n .X; QX/.tn/j

C LF

Z �

tn

˚j�k
y;n.X; QX/j C j�k�1

y;n .X; QX/j

C j�k
z;n.X; QX/j C j�k�1

z;n .X; QX/j� dt; (3.32)

using Lipschitz-continuity and consistency of F, and observing that the initial value
does not change in the iterations

�k�1
y;n .X; QX/.tn/ D �k

y;n.X; QX/.tn/:

On the other hand, the algebraic part (3.13b) can be solved for variable Z.k/ D
O�.Y.k/;Y.k�1/;Z.k�1// due to Assumption 3.1. The Lipschitz continuity of O� (due

to the implicit function theorem on Ud0;n) leads to

j�k
z;n.X; QX/j D j O�.Y.k/;Y.k�1/;Z.k�1// � O�. QY.k/; QY.k�1/; QZ.k�1//j


 L O�
�
j�k

y;n.X; QX/j C j�k�1
y;n .X; QX/j C j�k�1

z;n .X; QX/j
� (3.33)

for some L O� > 0. Plugging this estimate into (3.32), we obtain

ıky;n.X; QX/ 
 j�k�1
y;n .X; QX/.tn/j

C L0 H
�
ıky;n.X; QX/C ık�1

y;n .X; QX/C ık�1
z;n .X; QX/

�
;

where L0 WD LF .1C L O�/. Now solving for ıky;n.X; QX/ gives

ıky;n.X; QX/ 

�
1C L0

1 � L0 H
H

�
j�k�1

y;n .X; QX/.tn/j

C L0

1 � L0 H
H
�
ık�1

y;n .X; QX/C ık�1
z;n .X; QX/

�
:
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The smallness of H , i.e., H < H0 D C�1, implies for C > L0

H L0 < H0 L0 < 1:

This motivates the definition cy WD 2L0=.1 �L0H0/ from which follows

ıky;n.X; QX/ 

�
1C cy

2
H
�

j�k�1
y;n .X; QX/.tn/j

C cy

2
H
�
ık�1

y;n .X; QX/C ık�1
z;n .X; QX/�


 j�k�1
y;n .X; QX/.tn/j C cyH

�
ık�1

y;n .X; QX/C ık�1
z;n .X; QX/�; (3.34)

because the initial error at time tn is smaller than the maximal error on the whole
interval

j�k�1
y;n .X; QX/.tn/j 
 ık�1

y;n .X; QX/:

Estimate (3.34) controls the error propagation for the differential variables, and it is
the first line of the estimate (3.28) with the global constant C > max

˚
cy; L0

� D cy
(so far).

From the estimates (3.34) and (3.33), it is immediate to prove (3.31). In fact, by
hypothesis, the .k � 1/th iterates differ at most by 2d , so we have

ıky;n.X; QX/ 
 2.1C 2cyH0/ d;

ıkz;n.X; QX/ 
 2L O�.3C 2cyH0/ d:
(3.35)

Thus (3.31) holds with

C > max
n
cy; 2.1C 2cyH0/d; 2L O�.3C 2cyH0/ d

o
:

The error recursion estimate for the algebraic component, in the second line of
estimate (3.28), can be deduced from the following homotopy of the kth iterates: let
	 2 Œ0; 1�, and let us put

Y.k/;	 .t/ WD 	 QYk
n.t/C .1 � 	/Yk

n.t/:

Z.k/;	 .t/ WD 	 QZkn.t/C .1 � 	/Zkn.t/:

For the splitting function of the algebraic part, we use the short notation

G.	/ WD G
�
Y.k/;	 ; Y.k�1/;	 ; Z.k/;	 ; Z.k�1/;	 � and Gu.	/ WD @G

@u
.	/;
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for any argument u of G. Notice that G.0/ D G.1/ D 0. Thus a version of the
fundamental theorem of calculus yields:

0 D G.1/� G.0/

D
Z 1

0

�
Gy.k/ .	/�

k
y;n.X; QX/C Gy.k�1/ .	/�k�1

y;n .X; QX/

C Gz.k/ .	/�
k
z;n.X; QX/C Gz.k�1/ .	/�k�1

z;n .X; QX/
�

d	; (3.36)

since @
@	

Y.k/;	 D �k
y;n.X; QX/, and so forth. The upper bound of d in terms of d0, i.e.,

Cd 
 d0

allows us to use the Lipschitz continuity of Gz.k/ on Ud0;n (inside the integral
of (3.36)). We denote the corresponding constant by L0

G . Together with the above
estimate (3.31), we obtain for any time t 2 Œtn; tnC1�

jGu.	/� Gu. O	/j 
 LG0

� ˇ̌
	 QYk

n.t/ C .1 � 	/Yk
n.t/

� O	 QYk
n.t/ � .1 � O	/Yk

n.t/
ˇ̌

C � � � C ˇ̌
	 QZk�1

n .t/C .1 � 	/Zk�1
n .t/

� O	 QZk�1
n .t/ � .1 � O	/Zk�1

n .t/
ˇ̌�

D LG0 j	 � O	 j
�
j�k

y;n.X; QX/j C j�k�1
y;n .X; QX/j

C j�k
z;n.X; QX/j C j�k�1

z;n .X; QX/j
�


 cgd:

(3.37)

(This defines cg in the obvious way.) The operator G�1
z.k/
.0/ exists due to Assump-

tion 3.1. Left-multiplication of (3.36) by G�1
z.k/
.0/ yields:

0 D
Z 1

0

G�1
z.k/ .0/

��
Gz.k/ .0/C �

Gz.k/ .	/ � Gz.k/ .0/
��
�k

z;n.X; QX/
C �

Gz.k�1/ .0/C �
Gz.k�1/ .	/ � Gz.k�1/ .0/

��
�k�1

z;n .X; QX/
C �

Gy.k/ .0/C �
Gy.k/ .	/ � Gy.k/ .0/

��
�k

y;n.X; QX/
C �

Gy.k�1/ .0/C �
Gy.k�1/ .	/ � Gy.k�1/ .0/

��
�k�1

y;n .X; QX/
�

d	:

The matrices G�1
z.k/
; Gz.k�1/ ; Gy.k/ ; Gy.k�1/ are uniformly bounded on Ud0;n. Let the

constant be denoted by c0
g . Now, this equation is (partially) solved for the first bit of
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�k
z;n.X; QX/. Using

jjG�1
z.k/ Gz.k�1/ jj2 D jjG�1

z.k/ Gz.k�1/ jj2.0/
D ˇ̌ˇ̌

G�1
z.k/ Gz.k�1/

ˇ̌ˇ̌
2

�
Yk
n.t/;Y

k
n.t/;Z

k
n.t/;Z

k
n.t/

�

and applying the maximum norm in time as well as (3.37) gives

ıkz;n.X; QX/ 

�
jjG�1

z.k/ Gz.k�1/ jj2;1 C Qc
2
d
�
ık�1

z;n .X; QX/

C Qc
2
d ıkz;n.X; QX/ C ch

�
ıky;n.X; QX/C ık�1

y;n .X; QX/�

with ch WD .cgd C c0
g/ c

0
g and Qc WD 2 cgc

0
g . Inserting the estimate for ıky;n.X; QX/

(3.34), we deduce, having H and d small enough, such that d < 1=.2 Qc/, the
estimate

ıkz;n.X; QX/ 
 .1C Qcd/ch
�
j�k�1

y;n .X; QX/.tn/j C .1C cyH/ı
k�1
y;n .X; QX/

�
(3.38)

C .1C Qcd/
�
chcyH C jjG�1

z.k/ Gz.k�1/ jj2;1 C Qc
2
d
�
ık�1

z;n .X; QX/


 .1C Qcd/ch.2C cyH0/ı
k�1
y;n .X; QX/ (3.39)

C .1C Qcd/
�
chcyH C jjG�1

z.k/ Gz.k�1/ jj2;1 C Qc
2
d
�
ık�1

z;n .X; QX/;

.H < H0/. Finally, summing up, the global constant C should be large enough to
state (3.31) from (3.34), (3.35) and to obtain from estimate (3.39) the claim (3.28)
with (3.29). Hence we conclude

C > max
n
cy; 2.1C 2cyH0/ d; 2L O�.3C 2cyH0/ d

.1C Qcd/ch.2C cyH0/; .1C Qcd/chcy; Qc
2

o
:

Then (3.34) and (3.39) yield the recursion (3.28), our claim. ut
When iteratively applying Lemma 3.1, one can deduce the following rather

technical result, which is proven for an analogous recursion in [1]:

Proposition 3.1 (Recursion Estimate) Let the splitting functions fulfill the
assumptions of Lemma 3.1 and ˛n < 1, C > ˛n, then there is a constant C0
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such that
 
ıky;n.X; QX/
ıkz;n.X; QX/

!


 
C.4C C 1/H�

max.0;k�2/
n 4CH�k�2

n

4C�k�1
n �kn C .�n � ˛n/

k

! 
ı0y;n.X; QX/
ı0z;n.X; QX/

!

C
 
1C C0H

C0

!
� ı0y;n.X; QX/.tn/

(3.40)
with

�n D �.˛n;H/ WD ˛n C 2CH
˛n
2C

C p
H

(3.41)

is satisfied for all k 	 1 and for all H 
 H0.

This result is proven for a similar setting in [1]. It is established using the same
arguments as in the proof of Theorem 3.1 for the local error: the iteration error is
determined by the powers of its matrix K as given in (3.29) and the computation of
the eigenvalues and eigenvectors as in (3.44) proofs the claim.

Next, we will employ the above estimates to show that the mapping is indeed a
fixed-point operator.

3.2.3.2 Contraction and Local Error

We consider in this section the local error as defined in Eq. (3.22) only, where the
error of a single iteration starting from exact data is analyzed

dy;n D �kn
y;n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/;

and analogously for dz;n with x WD .y; z/> in both cases. We follow [3] and the
strategy from [1] to proof the following result, that is already predicted in [19].
It shows that the crucial point in the coupling lies in the algebraic-to-algebraic
coupling, which is represented by the additional DAE-contraction factor ˛.

Theorem 3.1 (Contraction) The splitting functions shall fulfill the assumptions of
Lemma 3.1 including the index-1 assumption. Furthermore, let x denote our exact
solution. Then for d andH < H0 small enough the map

ık�1
n .xjŒtn;tnC1�; ˆnxj.tn�1;tn�/ 7! ıkn.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/ (3.42)

is strongly contractive for all k provided that

jjG�1
z.k/ Gz.k�1/ jj2;1 < 1: (3.43)
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Proof We show contractivity for the constant extrapolation with Qy.0/n D Qy.tn/, z.0/n D
Qz.tn/, from which the contraction for any higher order polynomial extrapolation
follows automatically.

By induction we setup the error recursion (3.28) in Ud;n: as induction basis, we
have for k D 0 and � 2 Œtn; tnC1�

j�0
y;n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/j.�/ D ˇ̌Z �

tn

f.y; z/ dt
ˇ̌
 cf H;

where cf WD jjf.y; z/jj2;1. Then the index-1 assumption implies for z

ˇ̌
�0

z;n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/
ˇ̌
.�/ 
 ˇ̌�.ˆy;nxj.tn�1;tn�/� �.y/ˇ̌


 L�
ˇ̌
ˆy;nxj.tn�1;tn� � y

ˇ̌

 cf L�H I

thus choosingH sufficient small, such that cf .L� C 1/H0 < 1 (andH < H0), we
obtain an extrapolation, which lies in the neighborhood of the solution:ˆnx 2 Ud;n.

Recall the definition of the matrix K (3.29), which denotes an upper bound on
the error recursion. Now, the mapping (3.42) is contractive if the spectral radius
�.K/ < 1. The eigenvalues of K are

�1;2.K/ D 1

2

�
˛n C 2CH ˙

q
˛2n C 4C 2H

�
; (3.44)

Therefore ˛n < 1 is sufficient for contraction provided that d and H0 are small
enough. Inspecting (3.30), this translates into:

jjG�1
z.k/ Gz.k�1/ jj2;1 < 1:

Eventually applying Lemma 3.1 iteratively and using

ı0y;n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/.tn/ D 0

concludes the proof. ut
Remark 3.5 (Convergence Order of Iteration) The eigenvalues of K, defined in
(3.29), suggest a certain order of convergence (i.e., for the asymptotics as H !
0) for the dynamic iteration (3.13): For the rate of convergence, we use Taylor
expansion of the square root term in �.K/ (3.44) and find

q
˛2n C 4C 2H D ˛n .1C 2C 2H=˛2n/C O.H2/:

This suggests a order of ˛n C O.H/, if ˛n does not vanish and 4C 2H < ˛2n. For
˛n D 0, we have order

p
H .
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We notice: convergence of the DAE-distributed time integration depends on the
stability of the algebraic-to-algebraic component coupling (3.43) (and, of course,
depends on the mentioned hypothesis). Thus modeling coupling is important for
DAEs and should be organized if possible in a way, s.t. contractivity (stability)
is directly given. The following important special case avoids these kinds of
dependencies:

Corollary 3.1 (Simple Coupling) Let the hypothesis of Lemma 3.1 be fulfilled.

(i) If no algebraic constraint depends on an old algebraic variable, i.e.,

Gz.k�1/ D 0 (3.45)

then contraction is archived with ˛n D 0.
(ii) If no algebraic constraint depends on an old algebraic or a differential

variable, i.e.,

Gz.k�1/ D 0 and Gy.k�1/ D 0 (3.46)

then the contraction is archived with convergence order H .

Proof We discuss (3.36) for the special cases in which the given partial derivatives
vanish.

(i) The assumption Gz.k�1/ D 0 gives the following estimate for the algebraic part
replacing (3.39)

ıkz;n.X; QX/ 
 
C ık�1
y;n .X; QX/C CH ık�1

z;n .X; QX/:

This is (3.28) with ˛n D 0. This result is in the spirit of the numerical DAE-
theory (cf. [21]).

(ii) Analogously Gy.k�1/ D Gz.k�1/ D 0 yields

ıkz;n.X; QX/ 
 .1C Qcd/ch
�
j�k�1

y;n .X; QX/.tn/j C cyHı
k�1
y;n .X; QX/

�

C .1C Qcd/chcyH ık�1
z;n .X; QX/

replacing (3.38). This give the error recursion

ıkz;n.X; QX/ 
 CH ık�1
y;n .X; QX/C CH ık�1

z;n .X; QX/C C j�0
y;n.X; QX/.tn/j

which unveils a contraction operator K D O.H/ and hence implies a
convergence order of H , cf. Remark 3.5. Only the initial offset cannot be
improved.

ut
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Now still following the strategy from [1], we prove estimates for the local
and propagated errors, and conclude from those results the overall stability and
convergence of the method for the nth time window.

Proposition 3.2 (Local Error) Let the assumptions of Lemma 3.1 be fulfilled, then
the recursion (3.40) with �n (3.41) of that Lemma holds. Moreover, then there is for
a sufficiently smallH < H0 a constantCd? , independent ofH , ˛n and kn, such that
the local error is bounded by

jjdy;njj CH jjdz;njj 
 Cd?Hı
0
n

where the right-hand-side is given in terms of the extrapolation errors

ı0n WD�max.0;kn�2/
n ı0y;n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/

C �kn�1
n ı0z;n.xjŒtn;tnC1�; ˆnxj.tn�1;tn�/

Proof The proof of Theorem 3.1 showed thatˆnxj.tn�1;tn� 2 Ud;n forH sufficiently
small. Therefore applying Proposition 3.1 to the specific functions

X WD xj.tn;tnC1� and QX WD ˆnxj.tn�1;tn�

where x D .y; z/ is the exact solution. Notice ı0y;n.X; QX/.tn/ D 0 holds, since the
initial values are equal. Summation of the two equations in (3.40) yields the claimed
estimate. ut

This proves convergence for one window (for kn ! 1), since �n < 1 for H
sufficiently small. Next, we have to address the error transport, since the iteration is
stopped after a finite number of iterations and we are not performing kn ! 1 in
the numerical treatment.

3.2.3.3 Stability and Convergence for Windowing Technique

To obtain convergence and stability of the method on multiple windows it is crucial
to control the error propagation from the previous window to the current one, hence
we need to inspect

ey;n D �kn
y;n.ˆnxj.tn�1;tn�; ˆn Qxj.tn�1;tn�/

and the similar expression for ez;n (here x denotes the analytic solution and Qx an
approximation). The following result is again a consequence of Proposition 3.1
(cf. [1]):

Proposition 3.3 (Propagation Error) Let an continuous extrapolation (3.11) be
given, that is of accuracy O.H/ and satisfies a uniform Lipschitz condition (with
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constant Lˆ) and a dynamic iteration (3.13), which fulfill the assumptions of
Proposition 3.1 with �n < 1, then there is a constant Ce? > 0, such that the
propagation error is bounded by

 
jjey;njj
jjez;njj

!


 
1C Ce? Ce?H

Ce? ˛n?

!
�
 

jj
y;n�1jj
jj
z;n�1jj

!
(3.47)

with ˛?n depending on the Lipschitz constant Lˆ of the extrapolation operator

˛?n WD Lˆ.�
kn
n C .�n � ˛n/kn/ (3.48)

Proof When applying Proposition 3.1 to the extrapolation of exact and erroneous
functions of the previous time window

X WD ˆnxj.tn�1;tn� and QX WD ˆn Qxj.tn�1;tn� ;

we will have an offset in the initial values (at tn), which is bounded by the total error
on the interval

jj�0
y;n.ˆnxj.tn�1;tn�; ˆn Qxj.tn�1;tn�/.tn/jj 
 jjy � Qyjj.tn�1;tn�:

Furthermore the extrapolation operator is a uniformly Lipschitz continuous mapping
with Lipschitz constant Lˆ, hence we have

ı0n.ˆnxj.tn�1;tn�; ˆn Qxj.tn�1;tn�/ 
 Lˆ

�jjy � Qyjj.tn�1;tn�

jjz � Qzjj.tn�1;tn�

�

D Lˆ

�jjey;n�1jj
jjez;n�1jj

�
;

that completes together with Eq. (3.40) of Proposition 3.1 the proof. ut
Now bringing all pieces together, we obtain the following result on stability and

convergence

Theorem 3.2 (Stability) Let a continuous extrapolationˆ (3.11) be given, that is
of accuracy order O.H/ and satisfies a uniform Lipschitz condition (Lˆ), further
a dynamic iteration (3.13), where the splitting functions F; G are consistent and
for the current time window Œtn; tnC1� let Assumption 3.1 hold true, furthermore the
contractivity constant is bounded

˛n 
 N̨ < 1 and Lˆ˛
kn
n 
 N̨

and the numerical solution remains close to the exact solution

jj
y;mjj C jj
z;mjj 
 d for 0 
 m < n;
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then there is a constant C? > 0, independent of n and H , such that the total error
on the time window Œtn; tnC1� is bounded by

jj
y;njj C jj
z;njj 
 C? max
0�m<n ı

0
m 
 d (3.49)

all for a sufficiently small step size 0 < H < H0.

Proof According to Eq. (3.41) we have �n D ˛n C O.H/ and by assumption
Lˆ˛

kn
n 
 N̨ , hence

˛?n D Lˆ
�
.�knn /

kn C .�n � ˛n/
kn
� D Lˆ

�
.˛n C O.H//kn C O.H/kn/

�
< 1;

and therefore the maximum is bounded as well

˛? WD max
0�m�n ˛

?
m < 1:

Now combining the results from Propositions 3.2 and 3.3 yields

 
jj
y;njj
jj
z;njj

!


 
1C Ce? Ce?H

Ce? ˛?

!
�
 

jj
y;n�1jj
jj
z;n�1jj

!
C
 
Cd?Hı

0
n

Cd?ı
0
n

!

and this proves the left half of (3.49), the right bound is enforceable since the
extrapolation error ı0m D O.H/ decreases with the step size. ut

One can use Theorem 3.2 to prove by induction that the numerical solution
remains close to the exact solution, analogously to the application in [1], then the
overall convergence and stability follows by

Corollary 3.2 (Global Convergence and Stability) Let the assumptions of Theo-
rem 3.2 be fulfilled, then there is a constant C?, such that the estimate holds

jj Qy � yjjŒ0;te � C jjQz � zjjŒ0;te � 
 C? � max
0�n<N ı

0
m;

where ı0m is the extrapolation error on the m-th window.

This result shows convergence and stability, since the global error can by controlled
in terms of the step size H , which determines the extrapolation error.

3.3 Applications in Electrical Engineering

In this section we show how the dynamic iteration theory can be used to study the
convergence of iteration schemes for the main coupled models introduced in the
previous chapter. These problems basically stem from chip design.
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3.3.1 Refined Network Models

We consider an electric network with semiconductor devices, modeled by drift-
diffusion equations. The electric network is described by the MNA equations, which
can be written in the form:

AC

d

dt
qC .AT

Cu/C ARr.AT
Ru/C ALiL C AV iV C AI iI C � D 0;

d

dt
�L.iL/ � AT

Lu D 0;

AT
V u � vV D 0:

(3.50)

This system is supplemented with initial data for the differential part,

PCu.t0/ D PCu0; iL.t0/ D iL;0: (3.51)

Here, we have PC D I � QC , where QC is a projector onto the null-space of AT
C ,

and we are assuming index-1 conditions for the uncoupled MNA system.
The above equations are coupled, through the current term �, to the drift-

diffusion equations which describe the devices contained in the circuit. Here, as an
exemplification, we use the space-discretization derived in the previous Chapter, by
means of the Box Integration method. Then, assuming for simplicity that the circuit
contains a single device, this device will be described by the time-dependent vectors
�, n, p, comprising the values of the electric potential �, the electron concentration
n and the hole concentration p, evaluated on the inner grid points, and by the time-
dependent vectors �@, n@, p@, comprising the values of �, n and p on the boundary
grid points. As we have seen in the previous Chapter, these vector functions satisfy
the following equations:

A��C A@
��

@ D b�.n;p/;

A@�C �@ D b@�.uD/;

A0

dn

dt
C An.�/nC A@

n.�/n
@ D bn.n;p/;

A@nC n@ D b@n;

A0

dp

dt
C Ap.�/p C A@

p.�/p
@ D bp.n;p/;

A@p C p@ D b@p:

(3.52)

These equations must be supplemented with initial data for the differential variables,

n.t0/ D n0; p.t0/ D p0: (3.53)
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The MNA equations (3.50) and the device equations (3.52) are coupled by
means of appropriate relations which express, on the one hand, the boundary
electric potential uD in (3.52) in terms of the network variables (network-to-device
coupling), and on the other hand, the device current source term � in (3.50) in
terms of the device variables (device-to-network coupling). The network-to-device
coupling is given by:

uD D STDu: (3.54)

The device-to-network coupling is more involved. In Chap. 1 we have introduced
two alternative formulations. In the first formulation, the device-to-network cou-
pling relation is given by:

� D ADiD; iD D Ac d�

dt
C Ac

n.�/n C Ac
p.�/p; (3.55)

with AD D SD OAD . This formulation is problematic, because of the appearance of
the time derivative of �, which is an algebraic variable for the uncoupled device
system. Thus, after the coupling, the set of differential variables generally differs
from the union of the differential variables for the network and the device system,
considered as uncoupled.

For this reason, we consider the alternative formulation,

� D AD

d

dt
. QCDA>

Du/C AD
QID; QID D Ac

n.�/n C Ac
p.�/p: (3.56)

In this formulation, it is simpler to see that the differential variables for the coupled
system are PCu, iL, n, p, provided the additional condition

AT
DQC D 0: (3.57)

Under this condition, we can identify the differential and algebraic components,
and we set

yc D
�

PCu
iL

�
; zc D

�
QCu

iV

�
;

and

yd D
�
n

p

�
; zd D

0
BB@
�

n@

p@

�@

1
CCA :
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Then, using the standard reduction to differential and algebraic equations, by means
of appropriate projectors, the two systems of equations can be written in the
following form:

Pyc D fc.yc; zc; Q�/;
0 D gc.yc; zc/;

Pyd D fd .yd ; zd /;

0 D gd .yd ; zd ;uD/;

(3.58)

with

Q� D Q�.yd ; zd / WD ADŒAc
n.�/nC Ac

p.�/p�:

Also, we have

uD D STD .PCu C QCu/ D STD.yc C zc/;

so the above system becomes

Pyc D f�
c .yc; zc; yd ; zd /;

0 D gc.yc; zc/;

Pyd D fd .yd ; zd /;

0 D g�
d .yd ; zd ; yc; zc/:

(3.59)

Next, we apply the dynamic iteration theory, expounded in this Chapter, to the
coupled system (3.59), by using the Gauss-Seidel method. We can use to different
strategies: circuit-device iteration, and device-circuit iteration. For the circuit-device
coupling, we have1:

PQy.k/c D f�
c .Qy.k/c ; Qz.k/c ; Qy.k�1/

d ; Qz.k�1/
d /;

0 D gc.Qy.k/c ; Qz.k/c /;
PQy.k/d D fd .Qy.k/d ; Qz.k/d /;
0 D g�

d .Qy.k/c ; Qz.k/c ; Qy.k/d ; Qz.k/d /:

(3.60)

We can observe that in this case the matrix Gz.k�1/ is identically zero. Thus, by
Corollary 3.1, this scheme leads to an unconditionally, strongly contractive map.

1For simplicity we omit the subscript n.
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By contrast, if we consider the device-circuit iteration scheme, we have

PQy.k/d D fd .Qy.k/d ; Qz.k/d /;
0 D g�

d .Qy.k�1/
c ; Qz.k�1/

c ; Qy.k/d ; Qz.k/d /;
PQy.k/c D f�

c .Qy.k/c Qz.k/c ; Qy.k/d ; Qz.k/d /;
0 D gc.Qy.k/c ; Qz.k/c /:

and the condition (3.43), in Theorem 3.1, which ensure the contractivity of the
dynamic iteration map, is verified if and only if

������
 
@g�

d

@z.k/d

!�1
@g�

d

@z.k�1/
c

������ < 1:

Explicitly, this condition is equivalent to

�����.A� � A@
�A@/�1

@b@�
@uD

STDQC

����� < 1; (3.61)

where, by definition, we have

@b@�;i

@uD;j
D
�
1; if xi 2 �D;j ;
0; otherwise:

The matrix A� � A@
�A@ depends on the space-discretization, so the above condition

implies a smallness assumption on the spacing of the grid, unless STDQC D 0. This
condition is stronger than the additional topological condition (3.57), and in general
is not satisfied.

In conclusion, the circuit-device iteration scheme is preferable to the device-
circuit scheme.

3.3.2 Electro-Thermal Coupling

Similarly, the coupling of heat effects with electric systems plays an important role
in electric circuit simulation, see Sect. 2.2.2 and, e.g., [3, 14]. Spatial discretization
of certain thermal models (e.g. for heat conduction) can yield a DAE-ODE coupling.
This type of coupling is less problematic, since no coupling via old algebraic
variables will occur. Therefore no contraction is needed in this case, see, e.g., [3]. In
other models, e.g. with patches, the situation is a bit more complicated—for details
we refer to [14].
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3.3.3 Coupled System of Electric Networks and Maxwell’s
Magnetoquasistatic Equations and Their Properties

3.3.3.1 Introduction

Let us apply the dynamic iteration theory to the field/circuit coupling as introduced
in Sect. 2.2.3.

There are two subproblems, on one hand the electric circuit and on the other
hand the magnetoquasistatic field problem (“eddy current problem”). The circuit
equations can abstractly by described by the semi-explicit initial value problem

Pyc D fc.yc; zc; im/; with yc.0/ D yc;0

0 D gc.yc; zc; im/;
(3.62)

similar to the derivation in Sect. 3.3.1. We assume an index-1 circuit, i.e., the
topological conditions as given in [17] to be fulfilled, such that

@gc
@zc

is nonsingular: (3.63)

The unknowns are given by

yc WD .q;�/>; zc WD .u; iL; iV/
>; im WD .istr; isol/

>:

where u denotes node potentials, q charges, � fluxes and iL, iV currents through
inductances and voltage sources. The additional variables istr and isol define currents
through stranded and solid conductors and are treated separately since they are
determined by the field model. This field model describes a relation between those
currents and the voltage drops

vstr WD A>
stru; vsol WD A>

solu

by one common PDE for the whole domain ˝ and an additional differential
equation for the coupling of each stranded (k D 1; : : : ; Nsol) and solid conductor
(l D 1; : : : ; Nsol) in the corresponding subdomains˝str;k and ˝sol;l to the circuit

�
@A

@t
C r � .�r �A/ D

X
k

�str;k .istr/k C
X
l

��sol;l .vsol/l (3.64a)

Z
˝

�str;k � @A
@t

d˝ D .vstr/k � .Rstr/k;k � .istr/k ; (3.64b)

Z
˝

��sol;l � @A
@t

d˝ D .Gsol/l;l � .vsol/l � .isol/l ; (3.64c)
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with Coulomb gauging, flux wall boundary and initial conditions

r �A D 0; A � n? D 0 on @˝; A D A0 at t D t0; (3.64d)

where A denotes the magnetic vector potential, n? is the vector normal to the
boundary, � D �.A/ the reluctivity tensor and � the conductivity tensor vanishing
on stranded conductor domains, i.e.

�
@A

@t

ˇ̌
ˇ
˝str;k

D 0 (3.65)

since it is assumed that the diameter of the individual strands in the those conductors
is thinner that the skin depth. Each distribution function �str;k and �sol;k distributes
the current in the corresponding conductor domains ˝str;k and ˝sol;k . The diagonal
matrices

.Rstr/k;k D
Z
˝

1

fstr
¢�1�str;k � �str;kd˝ and .Gsol/l;l D

Z
˝

��sol;l � �sol;ld˝

describe lumped DC resistances Rstr for stranded conductors using the fill factor
fstr 2 .0; 1� and DC conductivities Gsol for the solid conductors.

According to Sect. 2.2.3.3, the spatial discretization of the field PDE yields a
DAE, describing a unique vector potential in time. The discrete field problem reads
in the FIT notation, [12]

M¢

d

dt
_a C K�.

__

b/_a D Qstristr C M¢Qsolvsol (3.66a)

Q>
str

d

dt
_a D vstr � Rstristr (3.66b)

Q>
solM¢

d

dt
_a D Gsolvsol � isol; (3.66c)

where _a denotes the discrete magnetic vector potential with consistent initial value
_a.0/ D _a0, the mass matrix M¢ is symmetric positive semi-definite describing
the conductivities, K� is a symmetric curl-curl matrix composed of the discrete
curl-operators and the reluctivities. We assume a regularization on K� , e.g. by the
Coulomb gauging, such that

_e>
�
˛M¢ C @

@_a

�
K�.

__

b/_a
��

_e > 0 for all _e ¤ 0 and ˛ ¤ 0: (3.67)

which ensures a (symmetric) positive definite matrix pencil and hence allows for
the application of iterative solvers, e.g. Krylov subspace methods, [13]. The matrix
Q D ŒQsol;Qstr� is the discrete counterpart to the characteristic functions � in the
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continuous model, it imposes currents and voltages onto edges in the computational
grid.

The matrices of lumped resistances and conductivities can be extracted from the
discrete field model by

Rstr WD Q>
strM

C
¢;strQstr and Gsol WD Q>

solM¢Qsol; (3.68)

where MC
¢;str is the pseudo inverse of a conductivity matrix with positive conductiv-

ities in the stranded conductor domains.

3.3.3.2 Coupling Analysis

To apply the schemes of Sect. 3.2 to the field/circuit coupled problem we need to
verify, that the DAE index of the field problem is one, see Eq. (3.4), and that the
contractivity condition (3.30) is fulfilled. Here comes the decomposition of the field
system into differential and algebraic parts into play: according to the Lemma the
field system (3.66) can be interpreted as the semi-explicit initial value problem

Pym D fm.ym; zma; vc/; with ym.0/ D ym;0;

0 D gma.ym; zma/;

0 D gmb.ym; zma; zmb/;

(3.69)

where ym WD P�
_a, zma WD Q�

_a, zmb WD .istr; isol/
>, and vc WD .vstr; vsol/

>. Now using
this semi-explicit problem formulation we obtain the following result

Lemma 3.2 The field System (3.66) is an index-1 DAEs, i.e.,

@gm
@zm

is nonsingular;

for given voltages vstr and vsol and the matrix pencil of the curl-curl equation (3.67)
is positive definite.

Proof The DAE-indices of Systems (3.66) and (3.69) are equal, since the second
system was obtained only by merely algebraic operations, proof of Lemma 2.1,
hence it is sufficient to consider the more abstract system only; with the definitions

gm WD .gma; gmb/
> and zm WD .zma; zmb/

>
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the index-1 requirement corresponds to the non-singularity of the Jacobian

@gm
@zm

D

0
BB@
@gma

@zma

@gma

@zmb

@gmb

@zma

@gmb

@zmb

1
CCA D

0
BB@
@gma

@zma
0

@gmb

@zma
I

1
CCA ;

where the upper left vanishes, since there is no coupling in the algebraic part of
the curl-curl equation. The lower right block @gmb=@zmb D I is the identity, since
the function gmb is just an assignment of the currents through solid and stranded
conductors and hence trivially regular. On the other hand the upper left block coming
from Eq. (2.163) reads

@gma

@zma
D @

@zma

�
Q�K�P

>
� y2 C Q�K�Q

>
� zma

�

D @

@_a

�
Q�K�.

__

b/_a
� @_a
@zma

D Q�

@

@_a

�
K�.

__

b/_a
�
Q>
�

which is surely regular since the matrix pencil was assumed to be positive definite
and thus the transformation

Q�

�
�
�
M¢ C QstrR�1

str Q>
str

�C @

@_a

�
K�.

__

b/_a
��

Q>
�

is still positive definite because Q>
� has full rank and the mass matrix does not

contribute by construction to this submatrix

Q�

�
M¢ C QstrR�1

str Q>
str

�
Q>
� D 0 :

Hence we obtain the positive definiteness of @

@
_a

�
K�.

__

b/_a
�

, furthermore this shows

the regularity of the minor @gma=@zma and thus we have finally proven System (3.66)
being an index-1 DAE. ut
Theorem 3.3 The field/circuit coupled system (3.62)+(3.69), i.e.,

Pyc D fc.yc; zc; zm /; and Pym D fm.ym; zm; zc /;

0 D gc.yc; zc; zm /; 0 D gm.ym; zm/;

is index-1, if the circuit fulfills the index-1 assumption (3.63), and the matrix pencil
of the underlying curl-curl equation (3.67) is positive definite.

Proof We proceed similarly to the proof of Lemma 3.2, where we inspected the
algebraic constraints for the field DAE. For the algebraic constraints and variables
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of the whole coupled system

g WD .gc; gm/> D .gc; gma; gmb/
> and z WD .zc; zm/> D .zc; zma; zmb/

>;

follows analogously the Jacobian

@g
@z

D

0
BB@
@gc
@zc

@gc
@zm

@gm
@zc

@gm
@zm

1
CCA D

0
BB@
@gc
@zc

@gc
@zm

0
@gm
@zm

1
CCA ;

which is nonsingular, because the index-1 assumption for the circuit guarantees the
regularity of @gc=@zc and finally Lemma 3.2 gives the regularity of @gm=@zm. ut

To allow the coupling of already existing simulator packages, the coupled system
(3.62)C(3.64) is split such both that sub-problems can be computed independently.
The dynamic iteration method will call each simulator to integrate the sub-problem
on a time window and then exchange the obtained voltages and currents at the
synchronization points. During the computation of a sub-problem on a window
the data of the other system is frozen and represented by a source. Since each
system describes for current/voltage relations, we have to decide which quantities
are considered as known for each branch and conductor. This question is crucial
for the field/circuit coupling since the DAE-index of the field system and hence the
applicability of the dynamic iteration method depends on this decision:

Corollary 3.3 The field system (3.66) is index-1, if all voltages .vsol, vstr/ are given,
and in all other cases, i.e., given .isol, vstr/, .vsol, istr/ or .isol, istr/, it is at least
index-2.

Proof The first part for given voltages is proven by Lemma 3.2, since the currents
zmb in (3.69) can be obtained by just evaluating the algebraic equation

0 D gmb.zm; zma; zmb/

but if instead a current is prescribed, then the function f2 depends on an unknown
voltage (vstr or vsol) and hence the coupling equation gmb must be differentiated once
with respect to time to obtain a hidden algebraic constraint for the missing voltage,
such that the overall system is at least index-2. ut
That it is just index-2 has been shown for the case of given currents in solid
conductors in [37] and more generally in [34] was proven, that (3.66) is in fact an
index-2 Hessenberg system, [8], with some additional algebraic (index-1) equations
due to the singularity of the mass matrix.



134 G. Alì et al.

3.3.3.3 Field-Circuit Scheme

Now having obtained semi-explicit index-1 formulations of both sub-systems,
(3.62) and (3.69), we give a more abstract description of the coupling that fits into
the framework of dynamic iteration methods in Sect. 3.2.2, i.e., System (3.4).

On hand we have the circuit DAE-IVP

Pyc D fc.yc; zc; zmb /; yc.0/ D yc;0; yc WD �
q>;�>�>;

0 D gc.yc; zc ; zmb /; zc WD �
u>; i>L ; i>V

�>
;

and on the other hand the field DAE-IVP

Pym D fm.ym; zma; zc /; ym.0/ D ym;0; ym D P�
_a;

0 D gma.ym; zma/; zma D Q�
_a;

0 D gmb.ym; zma; zmb/; zmb D �
i>str; i

>
sol

�>

where a slight abuse of notation is introduced when inserting all algebraic circuit
unknowns zc into fma instead of only the actually needed voltage drops v.

Let us discuss a dynamic iteration of Gauss-Seidel type on the time interval
Œ0; te�, with 1 
 n 
 N windows Œtn; tnC1� � Œ0; te� and adequate initial values
for each window

�
yc;n
ym;n

�
WD
�

yc.tn/
ym.tn/

�
DW y.tn/:

We start each iteration with the integration of the field DAE-IVP. It depends on
data from the circuit DAE-IVP (denoted by yc , zc). These missing data, i.e., the
voltage drops v at the conductors, are unknown at start time. Hence we extrapolate
the initial value to the current time. We choose the following constant extrapolation
of the differential variables

 
y.0/c;n
y.0/m;n

!
D ˆy;n.yj.tn�1;tn// WD y.tn/; (3.70)

from which a consistent supplement z.0/1;n and z.0/2;n for the algebraic variables is
obtained. Providing this data the field system can be solved for the first time .k D 1/
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on the time window Œtn; tnC1�

Py.k/m D fm.y.k/m ; z
.k/
ma ; z.k�1/

c /; y.k/m .0/ D ym;n;

0 D gma.y.k/m ; z
.k/
ma /;

0 D gmb.y.k/m ; z
.k/
ma ; z

.k/
mb /:

(3.71a)

Having obtained a first algebraic iterate z.k/mb (at k D 1) for the currents istr and isol

we may continue to solve the circuit subsystem

Py.k/c D fc.y.k/c ; z
.k/
c ; z.k/mb /; y.k/c .0/ D yc;n;

0 D gc.y.k/c ; z
.k/
c ; z.k/mb /:

(3.71b)

After the first iteration the functions y.k/ and z.k/ (k D 1) are obtained and we may
restart the scheme for kC1 until kn sweeps of the n-th time window are completed.
After that we proceed to the next time window (n C 1) and start again with the
constant extrapolation (3.11) and the following knC1 Gauss-Seidel iterations, until
the end of the integration interval Œ0; te� is reached.

In this application of the Gauss-Seidel-Scheme the splitting functions, as intro-
duced in Eqs. (3.13), are defined as the mappings

F.y.k/; y.k�1/; z.k/; z.k�1// WD
 

fc.y
.k/
c ; z

.k/
c ; z

.k/
mb /

fm.y
.k/
m ; z

.k/
ma ; z

.k�1/
c /

!

and

G.y.k/; y.k�1/; z.k// WD

0
B@

gc.y
.k/
c ; z

.k/
c ; z

.k/
mb /

gma.y
.k/
m ; z

.k/
ma /

gmb.y
.k/
m ; z

.k/
ma ; z

.k/
mb /

1
CA

where G does not depend on an old algebraic variable z.k�1/. Therefore Corol-
lary 3.1 applies here

Corollary 3.4 The dynamic iteration scheme (3.71) is is unconditionally stable on
the time interval Œ0; te�.

By contrast, if we consider the circuit-field Gauss-Seidel scheme or a Jacobi-
Scheme, we have to deal with the partial derivatives as in the case of the device-
circuit scheme in Sect. 3.3.
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3.3.3.4 Multimethod and Multirate Benefits

Besides advantages in software engineering, there are other benefits for the coupling
of simulation packages: the most important are benefits due the use of problem-
specific methods for time integration (multimethod) and the possibility of different
step sizes (multirate) for each subproblem. Thus adaptive time stepping schemes
will apply automatically the time step sizes, that are inherently given by the
subproblem and not the minimum of all those step size as in the monolithic
approach. This will yield a computational more efficient integration.

The benefit of the multimethod approach is obviously present since the packages
for field simulation are commonly applying the implicit Euler scheme or implicit
Runge-Kutta schemes for time integration, [28], while circuit simulators are typi-
cally based on schemes from the BDF family, [21].

The advantage due multirate behavior depend highly on the specific configuration
of the problem considered, since different time scales do not occur in the field/circuit
coupling as natural as in the thermal coupling (Sect. 3.3.2), where the effects are
clearly from multiphysics. In contrast to this, the described phenomena of the
field/circuit coupling originate all from Maxwell’s equations and hence there is no
guarantee of multirate effects. Even if present, e.g. due to switches or filters, the
partition of the subsystems according to the network DAE and field PDE model
does not necessarily correspond to time constants of different magnitude. Moreover
a partition into fast and slow switching components would require to split the circuit
at arbitrary nodes and could hence destroy the advantages of the simulator coupling
approach.

Anyhow if the circuit contains only a small number of devices that are active at
a time, while others remain latent and the field model belongs to such a latent part,
then the computational expensive solution of the PDE can be obtained using less
time steps than the circuit solution requires. This weak coupling will be naturally
exploited by the dynamic iteration method, if the step sizes for the time integration
of the sub-problems are chosen accordingly (or are automatically determined by an
adaptive time integrator) and increase its efficiency when compared to a single-rate
integration method.

For such configurations an efficient special case of the dynamic iteration method
is the multirate co-simulation, where only one sweep (kn D 1) is made, but
obviously smaller synchronization steps have to be chosen.

3.3.3.5 Numerical Example

Let us discuss a classical example from engineering: a transformer is excited at its
primary coil by an alternating voltage source with veff D 250V at f D 50Hz
and is connected to a rectifier circuit at its secondary coil with a load resistance
of Rload D 100�, Fig. 3.1a. The diodes are described by Shockley’s model with
Is D 10�A. The transformer is represented by a PDE in 3D, discretized by EM
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R
loadv(t)

321

0
4

Field
Model

a b

Fig. 3.1 (a) Example circuit: rectifier. (b) Field model: transformer

Studio from CST Software,2 where each coil is connected to the circuit using the
a stranded conductor model.

The simulation software was implemented within the COMSON DP and applies
either the classic monolithic strategy or the dynamic iteration method by using
Gauss-Seidel’s scheme. Simulation results are presented in Fig. 3.2.

3.3.3.6 Summary

In this section we shown how nonlinear index-analysis of DAEs can be used to
prove the convergence of dynamic iteration methods applied coupled problems. In
the case of Maxwell’s magnetoquasistatic equations coupled to electric circuits we
find that there is no dependence of the algebraic equations on previous algebraic
iterates. This guarantees an index-1 problem in the case of monolithic coupling
and furthermore proofs convergence and stability of the proposed dynamic iteration
scheme. To obtain this result it is not even necessary to validating the contractivity
condition given in Sect. 3.2.3.

3.4 Coupled Numerical Simulations of the Thermal Effects
in Silicon Devices

In this section we analyze the discretization of the model presented in Sect. 2.2.4,
describing the coupling between the transport of electrons and the heating of the
crystal lattice. Results of the simulation of a MOSFET with a nanoscale channel are
presented and the influence of the thermal effects on the electrical performance is
analyzed. This section is based on reference [30, 31] where the interested reader can
find more details.

2see http://www.cst.com/

http://www.cst.com/
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Fig. 3.2 Numerical Example. Error plots with respect to the reference solution. (a) Input (dashed)
and output (solid) voltages of the reference solution, obtained by monolithic simulation with step
size H D 1e � 5. (b) Error in output voltage in multirate co-simulation with window size H D
1e � 4. (c) Error in output voltage in multirate co-simulation with window size H D 1e � 5.
(d) Error in output voltage in dynamic iteration with 3 sweeps and window size H D 1e � 4.
(e) Error in output voltage in dynamic iteration with 3 sweeps and window size H D 1e � 5.
(f) Error in output voltage in monolithic simulation with step sizeH D 1e� 4. (g) Error in output
voltage in monolithic simulation with step size H D 1e � 5
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In addition to the model presented in Chap. 2, also the holes will be included with
a simple drift-diffusion equation.

The complete mathematical model is given by the equations

@n

@t
C div .nV/ D �R; (3.72)

@p

@t
C div

�
pVp

� D �R; (3.73)

@ .nW/

@t
C div .nS/C nqV � r� D nCW ; (3.74)

�cV
@TL

@t
� div ŒK.TL/rTL� D H; (3.75)

E D �r�; ��� D �q.ND �NA � nC p/; (3.76)

with n and p the electron and holes density respectively,W the electron energy, TL
the lattice temperature, � the electrostatic potential and E D �r� the electric field.
ND andNA are the density of donors and acceptors respectively (assumed as known
function of the position). q is the elementary charge, � the silicon density, cV the
specific heat, CW the energy production term, which can be written in a relaxation
form as

CW D �W �W0

�W
; (3.77)

with W0 D 3=2kBTL and �W .W / the energy relaxation time. kB is the Boltzmann
constant and � is the dielectric constant.

The closure relations for the electron velocity V, the energy flux S, the thermal
conductivityK.TL/ and the crystal energy production termH have been obtained in
[32, 33] by employing MEP and are reported in Chap. 2. The holes are described by
a standard drift-diffusion model with constant mobility. Vp is the velocity of holes.

Since the electron production terms are slowly changing with respect to kBTL,
we adopt the simplification that they are evaluated at TL D 300K.

The phonon energy production is given by

H D �.1C PS/ nCW C PS J � E; (3.78)

where PS D �c2 �R c.p/12 plays the role of a thermopower coefficient and �R is the
phonon relaxation time in resistive processes.
R is the generation-recombination term (see [35] for a complete review)

which splits into the Shockley-Read-Hall (SRH) and the Auger contribution (AU)
R D RSRH CRAU where

RSRH D np � n2i
�p.nC n1/C �n.p C p1/

; RAU D �
CcnnC Ccpp

�
.np � n2i /;

(3.79)
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We will take the valuesCcn D 2:8�10�31 cm 6 s�1 andCcp D 9:9�10�32 cm 6 s�1.
In our numerical experiments we set n1 D p1 D ni , ni being the intrinsic
concentration. The expressions of �p and �n we will use are [35]

�n D �n0

1C ND.x/CNA.x/
N

ref
n

; �p D �p0

1C ND.x/CNA.x/
N

ref
p

; (3.80)

where �n0 D 3:95 � 10�4, �p0 D 3:25 � 10�5s, N ref
n D N

ref
p D 7:1 � 1015cm�3.

At the source and drain contacts the Robin boundary condition

� kL
@TL

@n
D R�1

th .TL � Tenv/; (3.81)

is assumed,Rth being the thermal resistivity of the contact and Tenv the environment
temperature. We use no-flux condition for the temperature on the lateral boundary
and oxide silicon interface and Dirichlet condition at the bulk contact. The electron
energy at the source, drain and bulk contacts is set equal to the lattice energy. The
other boundary conditions needed for integrating the Mosfet model are described
in [29].

3.4.1 The Numerical Method

The crystal lattice temperature TL changes much slower than other variables. For
instance the typical relaxation time for the temperature in our simulations is in the
order of thousand picoseconds, while relaxation time of the other fields is in the
order of picoseconds. We exploit this double-scale behavior by applying a variant
of the multirate integration scheme [18, 20] which is a popular choice in coupled
electro-thermal circuit simulation [5]. For the simulation of the transient response
of the model we solve the balance equations by adopting the following multirate
integration scheme:

• Step 1. We first integrate the balance equations for electrons and holes with the
crystal lattice energy and the electric field frozen at the time step k�1. This gives
the density of the electrons and holes and the electron energy at the time step k
and schematically can be written as

@U k

@t
C F.U k; �k�1; T k�1

L / D 0; (3.82)

with U D .n; p;W /. Here k D 1; : : : ; N is the index of the integration interval
Œtk�1; tk �, with tk D tk�1 C �t , �t being the time size of the synchronization
window.
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• Step 2. We integrate the lattice energy balance equation with n and W given by
the step 1

�cV
@T kL
@t

� div
�
K.T kL/rT kL

� D H.U k; T kL / (3.83)

along with the Poisson equation with n D nk and p D pk .

For steps 1 and 2 different time steps for the numerical integration over the interval
Œtk�1; tk� are used. Typically the time step for integration of (3.83) we can use is 100
times larger than the time step for (3.82).

This sequence can be considered as steps of a splitting technique [26] and we
expect that such a numerical scheme is a stable first-order approximation with
respect to time, as confirmed by the numerical experiments presented in the next
section.

3.4.1.1 Step 1

The numerical scheme is based on an exponential fitting like that employed in the
Scharfetter-Gummel scheme for the drift-diffusion model of semiconductors. The
basic idea is to split the particle and energy density currents as the difference of
two terms. Each of them is written by introducing suitable mean mobilities in order
to get expressions of the currents similar to those arising in other energy-transport
models known in literature [6, 7, 11, 25, 36]. A simple explicit discretization in time
with constant time step proves satisfactorily efficient and avoids the problem related
to the high nonlinear coupling of the discretized equations of [27]. The equations
are spatially discretized on a regular grid. The details of the numerical scheme can
be found in [29]. Here a brief account is given.

For the sake of simplicity, the numerical method is presented only for the electron
part, putting equal to zero the generation-recombination term. The inclusion of holes
and the coupling with electrons is performed straightforwardly in an explicit way.

First the current density J D nV and the energy-flux density Z D nS are
rewritten as

J D J.1/ � J.2/; Z D Z.1/ � Z.2/ (3.84)

and then each term is put into a drift-diffusion form

J.1/ D c22

D
Œr.nU / � qnr�� ; J.2/ D c12

D

	
r.nF / � qnF

U
r�



; (3.85)

Z.1/ D c11

D

	
r.nF /� qn

F

U
r�



; Z.2/ D c12

D
Œr.nU / � qnr�� ; (3.86)

with D D c11c22 � c12c21.



142 G. Alì et al.

We introduce the grid points .xi ; yj / with xiC1 � xi D h = constant and
yjC1 � yj D k = constant, and the middle points .xi ; yj˙1=2/ D .xi ; yj ˙ k=2/

and .xi˙1=2; yj / D .xi ˙ h=2; yj /. A uniform time step �t is used and we set
uli;j D u.xi ; yj ; l �t/.

By indicating with Jx and Jy the x and y component of the current density
J and by Zx and Zy the x and y component of Z, we discretize the balance
equations (3.72) and (3.74) up to terms of orderO.h2; k2;�t/ in the bidimensional
case as

nlC1i � nli
�t

C .Jx/iC1=2;j � .Jx/i�1=2;j
h

C .Jy/i;jC1=2 � .Jy/i;j�1=2
k

D 0;

(3.87)

.nW /lC1i � .nW /li
�t

C .Zx/iC1=2;j � .Zx/i�1=2;j
h

C .Zy/i;jC1=2 � .Zy/i;j�1=2
k

C

� q .Jx/iC1=2;j C .Jx/i�1=2;j
2

�iC1;j � �i�1;j
2h

� q .Jy/i;jC1=2 C .Jy/i;j�1=2
2

�i;jC1 � �i;j�1
2k

C ni;j
Wi;j �W0

.�W /i;j
D 0:

(3.88)

The variables without temporal index must be considered evaluated at time level l .
In order to evaluate the components of the currents in the middle points, let us

consider the sets

IiC1=2;j D Œxi ; xiC1� � Œyj�1=2; yjC1=2�; Ii;jC1=2 D Œxi�1=2; xiC1=2� � Œyj ; yjC1�

and expand J .r/x , r= 1, 2, in Taylor’s series in IiC1=2;j

J .r/x .x; y/ � .J .r/x /iC1=2;jC.x�xiC1=2/
 
@J

.r/
x

@x

!
iC1=2;j

C.y�yj /
 
@J

.r/
x

@y

!
iC1=2;j

and J .r/y , r =1, 2, in Taylor’s series in Ii;jC1=2

J .r/y .x; y/ � .J .r/y /i;jC1=2C.x�xi /
 
@J

.r/
y

@x

!
i;jC1=2

C.y�yjC1=2/
 
@J

.r/
y

@y

!
i;jC1=2

:

First, we introduce UT D U.W /=q, which plays the role of a thermal
potential (see [29] for more details) and indicate by UT its piecewise constant
approximation, which is given by UT D U.Wi;j /CU.WiC1;j /

2q
in the cell IiC1=2;j and by
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UT D U.Wi;jC1/CU.Wi;j /
2q

in the cell Ii;jC1=2. Then we introduce the local mobilities

g11 D �c22
D
nU; g12 D �c12

D
nF; g21 D �c11

D
nF; g22 D �c12

D
nU;

(3.89)

where cpq is a piecewise constant approximation of cpqp; q D 1; 2, given by cpq D
cpq

�
Wi;jCWiC1;j

2

�
in the cell IiC1=2;j and by cpq D cpq

�
Wi;jCWi;jC1

2

�
in the cell

Ii;jC1=2, and, as in [15], the local Slotboom variables

skr D exp
���=U T

�
gkr k; r D 1; 2

that satisfy

rs1r ' � exp
���=UT

�
J.r/; rs2r ' � exp

���=UT

�
H.r/ r D 1; 2:

(3.90)

From the x component of (3.90)1, one has

@s1r .x; yj /

@x
' � exp

���=U T

�
J .r/x .x; yj / D

� exp
���=U T

�
8<
:.J .r/x /iC1=2;j C .x � xiC1=2/

 
@J

.r/
x

@x

!
iC1=2;j

C o.�x;�y/

9=
; ;

which, after integration over Œxi ; xiC1� and some algebra, gives

.J .r/x /iC1=2;j D �ziC1=2;j coth ziC1=2;j
.g1r /iC1;j � .g1r /i;j

h

CziC1=2;j
.g1r /iC1;j C .g1r /i;j

h
; r D 1; 2 (3.91)

where ziC1=2;j D �iC1;j��i;j
2UT

.
Likewise by evaluating the y component of (3.90)2 and integrating over

Œyj ; yjC1� we find

.J .r/y /i;jC1=2 D �zi;jC1=2 coth zi;jC1=2
.g1r /i;jC1 � .g1r /i;j

k

Czi;jC1=2
.g1r /i;jC1 C .g1r /i;j

k
; r D 1; 2 (3.92)
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where zi;jC1=2 D �i;jC1��i;j
2U T

. With the same procedure the following discrete
expression for the components of the energy flux are obtained

.H.r/
x /iC1=2;j D �ziC1=2;j coth ziC1=2;j

.g2r /iC1;j � .g2r /i;j
h

CziC1=2;j
.g2r /iC1;j C .g2r /i;j

h
; (3.93)

.H.r/
y /i;jC1=2 D �zi;jC1=2 coth zi;jC1=2

.g2r /i;jC1 � .g2r /i;j
k

Czi;jC1=2
.g2r /i;jC1 C .g2r /i;j

k
; r D 1; 2: (3.94)

The error in formulas (3.91)–(3.94) is O.h; k/.
The Poisson equation is solved by replacing it with

�t � div .�r�/ D q.ND �NA � n/: (3.95)

The solution of (3.95) as t 7! C1 is the same as that of the original Poisson
equation, at least in the smooth case.

If we introduce a time step �Ot and set �rij D �.xi ; yj ; r�Ot/, (3.95) can be
discretized in an explicit way as

�rC1ij D �rij C ��Ot
	
1

h2

�
�iC1;j � 2�i;j C �i�1;j

�C 1

k2

�
�i;jC1 � 2�i;j C �i;j�1

�

Cq.Ci;j � ni;j /
�

(3.96)

with the notable advantage to take easily into account the different types of boundary
conditions, that will be considered in more detail in the next sections. The price to
pay is that at each time step, we need to reach the stationary state of (3.95) by using
a time step satisfying the CFL condition, usual for parabolic equations,

�Ot 
 1

2

1
1
h2

C 1
k2

:

However the computational effort is comparable with that required by direct
methods.

3.4.1.2 Step 2

A coordinate splitting technique [26] is used for the solution of the lattice energy
equation for the variable u D kBT with time step �tT . The splitting technique
allows an efficient usage of stable implicit time schemes. The procedure contains
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two steps with the two sub operators

�cV
unC1=2 � un

�tT
D @

@x

	
K.T nL/

@unC1=2

@x



C kB

2
HnC1=2; (3.97)

�cV
unC1 � unC1=2

�tT
D @

@y

	
K.T nL/

@unC1

@y



C kB

2
HnC1: (3.98)

This scheme is absolutely stable and approximates the equation of the lattice energy
with first order accuracy in time. For the approximation of the spatial derivatives, the
standard stencil with three points has been chosen. For instance, the approximation
of (3.98) is the following

�cV unC1
i;j D �cV unC1=2

i;j C �tT

k2

" QKi;j C QKi;jC1
2

.unC1
i;jC1 � unC1

i;j /�

QKi;j C QKi;j�1
2

.unC1
i;j � unC1

i;j�1/
#

CkB

2

�tT

�W
.1C PS/n

nC1
i;j

�
W nC1

ij � 3

2
unC1
i;j

�
C kB

2
�tT J

nC1
i;j EnC1

i;j ;

where QKi;j D K.TLi;j /. Of course such a discretization is valid in the interior points
of the mesh.

The Robin boundary condition (3.81) is approximated as

� kL
unC1
i;1 � unC1

i;0

k
D R�1

th .u
nC1
i;0 � kBTenv/: (3.99)

Here we have assumed that at the portion of boundary where the Robin condition
holds, one has j D 0 and the closest interior points have j D 1.

The obtained linear system can be solved efficiently with the tridiagonal matrix
factorization procedure.

3.4.2 Numerical Simulation of the Crystal Lattice Heating
in MOSFETs

We apply the above numerical method for the simulation of the heating of the crystal
lattice in a MOSFET described by the MEP model.

We have modeled the thermal conductivity with the fitting formula K.TL/ D
1:5486 .TL=300K/�4=3 V A/cm K and have set cV D 703m2/s2 K (see [35]). The
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Fig. 3.3 Schematic
representation of a
bidimensional MOSFET
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mobility of holes has been considered as constant and equal to 500 cm2/V s. More
details about the values of the physical parameters can be found in [30].

The shape of the device is shown in Fig. 3.3. The length of the channel (x4 � x1
in the figure) is Lc , the length of source and drain (x1 � x0) is L D Lc=2.
We will consider Lc D 50 nm and Lc D 200 nm. The source and drain depths
are 0.1�m. The gate oxide is 20 nm thick. The substrate thickness is 0.4�m.
An environment temperature Tenv D 300K has been considered. In most of our
numerical experiments we will take Rth D 10�8 K m2/W as in [9].

The doping concentration is

ND.x/�NA.x/ D
�
nC in the nC regions
�p� D �1014cm�3in the p region

(3.100)

with abrupt junctions. We will consider different values of nC in the simulations.
First a MOSFET with 200 nm channel length has been simulated. The stationary

solution is shown in the Figs. 3.4–3.8. The distance between gate and source (x2 �
x1) and between drain and gate (x4 � x3) is 25 nm. The thermal resistivity of the
contact is set equal to Rth D 10�8 K m2/W. The donor concentration is nC D
1017cm�3. In Fig. 3.4 one can see a relatively small heating of the crystal, just a
maximum of about 7ı above the environment temperature. The maximum of the
crystal temperature is attained near the drain contact where also the maximum of
the electron energy is observed (see Fig. 3.5). It is worth remarking that there is
almost no influence of the device self-heating on the current through the device as
shown in Fig. 3.8, where the characteristic curves with the lattice temperature fixed
at 300 K are compared with those obtained with varying TL.
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Fig. 3.4 Stationary solution of the lattice temperature in the MOSFET with channel of 200 nm by
setting Rth D 10�8 Km2/W
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Fig. 3.5 Stationary solution of the electron energy in the MOSFET with channel of 200 nm by
setting Rth D 10�8 Km2/W

As second example we have simulated a nanoscale MOSFET device with a
channel of length 50 nm . The gate length is 45 nm and the gate voltage VDG D 0:8V.
The donor concentration is nC D 1017cm�3. In the Figs. 3.9 and 3.10 is plotted the
stationary solution of the lattice temperature and the electron energy. In contrast to
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Fig. 3.6 Stationary solution of the x component of current in the MOSFET with channel of 200 nm
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Fig. 3.7 Stationary solution of the y component of current in the MOSFET with channel of 200 nm
by setting Rth D 10�8 Km2/W

the previous case, now the lattice temperature raises up to 380K in the area near the
gate. We argue that this temperature raise should depend, beside the strength of the
electric field, on the density of the hot electrons and might be higher for higher
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Fig. 3.9 Stationary solution of the lattice temperature in the MOSFET with channel of 50 nm by
setting Rth D 10�8 Km2/W

doping concentration. In order to investigate this assumption, a simulation with
nC D 5 � 1017cm�3 has been performed too. As expected one can see in Fig. 3.11
that the maximum lattice temperature attains about 550K. In Fig. 3.12 the result of
the lattice temperature for the even higher donor concentration nC D 1018 cm�3 is
reported. The maximum lattice temperature achieves about 700K, confirming the
dependence of it on the density of the electron current.
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Fig. 3.10 Stationary solution of the electron energy in the MOSFET with channel of 50 nm by
setting Rth D 10�8 Km2/W
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Fig. 3.11 Stationary solution of the lattice temperature in the MOSFET with channel of 50 nm by
setting n

C

D 5� 1017 cm�3 and Rth D 10�8 Km2/W

By shrinking the dimension of the device the thermal effects have also a non
negligible influence on the current through the device. In Fig. 3.13 current Ãś
voltage characteristics for the device with nC D 1017 cm�3 are shown. With
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Fig. 3.13 Drain current with constant and varying lattice temperature in the MOSFET with
channel of 50 nm by setting n

C

D 1018cm�3 and Rth D 10�8 for VDG D 0:4, 0.6, 0.8, 0.9 V.
The current increases by increasing VDG

increasing electric field strength, we observe a rising deviation of the characteristic
curves corresponding to a constant lattice temperature from those with varying TL.

The lattice temperature in the device is also strongly influenced by the thermal
resistivity of the contact Rth. This value depends on the manufacturing process. In
Figs. 3.14 and 3.15 the lattice temperature is shown for Rth D 10�10 Km2/W and
Rth D 10�9 Km2/W with nC D 1017 cm�3.
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Fig. 3.16 Simulated inverter circuit

3.4.3 Coupled Circuit-Device Simulation

At last a case of coupling between a Mosfet and a circuit is present. We simulate
the heating of a transistor in the electrical circuit representing an inverter. The
inverter circuit is plot in Fig. 3.16. Input voltage on the gate contact is (in Volt)
Vin D 0:3 cos.!t/ C 0:5 , with frequency ! D 2� 109 rad/s and power voltage
Vdd D 1V . The width of the transistor (length in the orthogonal direction with
respect to the considered 2D cross section) is set equal to 200 nm. Modified nodal
analysis gives us for the output voltage Vout:

C
dVout

dt
C Vout � Vdd

R
C j.Vin; Vout; t/ D 0; (3.101)

where current through the transistor j.Vin; Vout; t/ is computed by the energy-
transport model. We refer for instance to [9] for details of device-circuits coupled
modeling algorithm.

The output voltage simulated with and without transistor self heating and
maximum temperature in the transistor are plot in the Fig. 3.17. One can see that
lattice temperature in the transistor does not achieve 400K as we have observed in
the single transistor simulation. It can be explained with smaller average voltage
at the gate and consequently smaller average electrical field. However there is still
a shift in the minimum values of the output voltage and a clear indication of the
crystal heating.
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References

1. Arnold, M., Günther, M.: Preconditioned dynamic iteration for coupled differential-algebraic
systems. BIT 41(1), 1–25 (2001)

2. Arnold, M., Heckmann, A.: From multibody dynamics to multidisciplinary applications.
In: García Orden, J., Goicolea, J., Cuadrado, J. (eds.) Multibody Dynamics. Computational
Methods and Applications, pp. 273–294. Springer, Dordrecht (2007)

3. Bartel, A.: Partial Differential-Algebraic Models in Chip Design – Thermal and Semiconductor
Problems. Forschrittsberichte. VDI-Verlag, Düsseldorf (2004)

4. Bartel, A., Brunk, M., Günther, M., Schöps, S.: Dynamic iteration for coupled problems of
electric circuits and distributed devices. SIAM J. Sci. Comput. 35(2), B315–B335 (2012)

5. Bartel, A., Günther, M.: Multirate co-simulation of first order thermal models in electric circuit
design. In: Schilders, W., ter Maten, E., Houben, S. (eds.) Scientific Computing in Electrical
Engineering SCEE 2002, Mathematics in Industry, pp. 23–28. Springer, Berlin (2004)

6. Ben Abdallah, N., Degond, P.: On a hierarchy of macroscopic models for semiconductors. J.
Math. Phys. 37, 3306–3333 (1996)

7. Ben Abdallah, N., Degond, P., Genieys, S.: An energy-transport model for semiconductors
derived from the boltzmann equation. J. Stat. Phys. 84, 205–231 (1996)

8. Brenan, K.E., Campbell, S.L.V., Petzold, L.R.: Numerical solution of initial-value problems in
differential-algebraic equations. SIAM, Philadelphia (1995)

9. Brunk, M., Jüngel, A.: Numerical coupling of electric circuit equations and energy-transport
models for semiconducotrs. SIAM J. Sci. Comput. 30, 873–894 (2008)

10. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations. Clarendon,
Oxford (1995)



3 Simulation of Coupled PDAEs: Dynamic Iteration and Multirate Simulation 155

11. Chen, D., Kan, E., Ravaioli, U., Shu, C.W., Dutton, R.: An improved energy-transport model
including nonparabolicity and non-maxwellian distribution effects. IEEE Electron Device Lett.
13, 26–28 (1992)

12. Clemens, M.: Large systems of equations in a discrete electromagnetism: formulations and
numerical algorithms. IEE Proceedings - Science, Measurement and Technology 152(2), 50–
72 (2005). doi:10.1049/ip-smt:20050849

13. Clemens, M., Schuhmann, R., van Rienen, U., Weiland, T.: Modern Krylov subspace methods
in electromagnetic field computation using the finite integration theory. Appl. Comput.
Electromagn. Soc. J. 11(1), 70–84 (1996)

14. Culpo, M.: Numerical Algorithms for System Level Electro-Thermal Simulation. Ph.D. thesis,
Bergische Universität Wuppertal (2009)

15. Degond, P., Jüngel, A., Pietra, P.: Numerical discretization of energy-transport models for
semiconductors with nonparabolic band structure. SIAM J. Sci. Comput. 22, 986–1007 (2000)

16. Deuflhard, P., Hairer, E., Zugck, J.: One-step and extrapolation methods for differential-
algebraic systems. Numer. Math. 51, 501–516 (1987)

17. Estévez Schwarz, D., Tischendorf, C.: Structural analysis of electric circuits and consequences
for mna. Int. J. Circuit Theory Appl. 28(2), 131–162 (2000)

18. Gear, C., Wells, R.: Multirate linear multistep methods. BIT 24, 484–502 (1984)
19. Günther, M.: Preconditioned splitting in dynamic iteration schemes for coupled dae systems in

rc network design. In: Buikis, A., Ciegis, R., Fitt, A. (eds.) Progress in Industrial Mathematics
at ECMI 2002, Mathematics in Industry, pp. 173–177. Springer, Berlin (2004)

20. Günther, M., Rentrop, P.: Multirate row methods and latency of electric circuits. Appl. Numer.
Math. 13, 83–102 (1993)

21. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems. Springer Series in Computational Mathematics. Springer, Berlin (1996)

22. Jackiewicz, Z., Kwapisz, M.: Convergence of waveform relaxation methods for differential-
algebraic systems. SIAM J. Numer. Anal. 33, 2303–2317 (1996)

23. Kübler, R., Schielen, W.: Two methods for simulator coupling. Math. Comput. Model. Dyn.
Syst. 6, 93–113 (2000)

24. Lelarasmee, E., Ruehli, A., Sangiovanni-Vincentelli, A.: The waveform relaxation method for
time domain analysis of large scale integrated circuits. IEEE Trans. on CAD of IC and Syst. 1,
131–145 (1982)

25. Lyumkis, E., Polsky, B., Shir, A., Visocky, P.: Transient semiconductor device simulation
including energy balance equation. Compel 11, 311–325 (1992)

26. Marchuk, G.: Splitting and alternating direction method. In: Ciarlet, P., Lions, J. (eds.)
Handbook of Numerical Analysis. Vol. 1: Finite Difference Methods (Part 1) and Solution
of Equations in R

n (Part 1), pp. 197–462. North-Holland, Amsterdam (1990)
27. Marrocco, A., Anile, A., Romano, V., Sellier, J.M.: 2d numerical simulation of the mep energy-

transport model with a mixed finite elements scheme. J. Comput. Electron. 4, 231–259 (2005)
28. Nicolet, A., Delincé, F.: Implicit Runge-Kutta methods for transient magnetic field computa-

tion. IEEE Trans. Magn. 32(3), 1405–1408 (1996)
29. Romano, V.: 2d numerical simulation of the mep energy-transport model with a finite

difference scheme. J. Comput. Phys. 221, 439–468 (2007)
30. Romano, V., Rusakov, A.: 2d numerical simulations of an electron-phonon hydrodynam-

ical model based on the maximum entropy principle. Comput. Meth. Appl. Mech. Eng
199(41–44), 2741–2751 (2010)

31. Romano, V., Rusakov, A.: Numerical simulation of coupled electron devices and circuits by
the mep hydrodynamical model for semiconductors with crystal heating. Il Nuovo Cimento C
(2010). doi:10.1393/ncc/i2010-10573-5

32. Romano, V., Scordia, C.: Simulations of an electron-phonon hydrodynamical model based
on the maximum entropy principle. In: Roos, J., Costa, L.R.J. (eds.) Scientific Computing
in Electrical Engineering SCEE 2008, Mathematics in Industry. Springer, Berlin/Heidelberg
(2010)



156 G. Alì et al.

33. Romano, V., Zwierz, M.: Electron-phonon hydrodynamical model for semiconductors. 2741–
2751 (2008) doi:10.1016/j.cma.2010.06.005

34. Schöps, S., Bartel, A., De Gersem, H., Günther, M.: DAE-index and convergence analysis of
lumped electric circuits refined by 3-d magnetoquasistatic conductor models. Preprint 08/06,
Bergische Universität Wuppertal, Wuppertal (2008)

35. Selberherr, S.: Analysis and simulation of semiconductor devices. Springer, Wien/New York
(1984)

36. Stratton, R.: Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126,
2002–2014 (1962)

37. Tsukerman, I.: Finite element differential-algebraic systems for eddy current problems. Numer.
Algorithms 31(1), 319–335 (2002)



Part III
Model Order Reduction

MOR techniques are very well established in the electronics design community
since nearly two decades. The main drivers have been the coupling of circuit
simulation with electromagnetic problems by using the PEEC concept, and cap-
turing parasitic effects due to interconnect on ICs. The subsystems generated this
way are linear but very large. Furthermore they exhibit properties like passivity,
controllability and observability, which must be maintained in the reduced order
model. Based on sound mathematics, remarkable progress has been achieved in the
development of methods and codes.

Chapter 4 gives an overview of current methods, concepts and properties.
Chapter 5 is devoted to Parameterized Model Order Reduction: aiming at design
optimisation including yield improvement in the COMSON project, it is natural
to ask for MOR techniques which propagate relevant design or technological
parameters from the original system to the reduced order model. Chapter 6 deals
with more advanced topics: nonlinear networks and multi-terminal circuits.



Chapter 4
Model Order Reduction: Methods, Concepts
and Properties

Athanasios C. Antoulas, Roxana Ionutiu, Nelson Martins,
E. Jan W. ter Maten, Kasra Mohaghegh, Roland Pulch, Joost Rommes,
Maryam Saadvandi, and Michael Striebel

Abstract This chapter offers an introduction to Model Order Reduction (MOR).
It gives an overview on the methods that are mostly used. It also describes the main
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concepts behind the methods and the properties that are aimed to be preserved.
The sections are in a prefered order for reading, but can be read independentlty.
Section 4.1, written by Michael Striebel, E. Jan W. ter Maten, Kasra Mohaghegh
and Roland Pulch, overviews the basic material for MOR and its use in circuit
simulation. Issues like Stability, Passivity, Structure preservation, Realizability are
discussed. Projection based MOR methods include Krylov-space methods (like
PRIMA and SPRIM) and POD-methods. Truncation based MOR includes Balanced
Truncation, Poor Man’s TBR and Modal Truncation.

Section 4.2, written by Joost Rommes and Nelson Martins, focuses on Modal
Truncation. Here eigenvalues are the starting point. The eigenvalue problems related
to large-scale dynamical systems are usually too large to be solved completely.
The algorithms described in this section are efficient and effective methods for the
computation of a few specific dominant eigenvalues of these large-scale systems.
It is shown how these algorithms can be used for computing reduced-order models
with modal approximation and Krylov-based methods.

Section 4.3, written by Maryam Saadvandi and Joost Rommes, concerns passiv-
ity preserving model order reduction using the spectral zero method. It detailedly
discusses two algorithms, one by Antoulas and one by Sorenson. These two
approaches are based on a projection method by selecting spectral zeros of the
original transfer function to produce a reduced transfer function that has the
specified roots as its spectral zeros. The reduced model preserves passivity.

Section 4.4, written by Roxana Ionutiu, Joost Rommes and Athanasios C.
Antoulas, refines the spectral zero MOR method to dominant spectral zeros.
The new model reduction method for circuit simulation preserves passivity by
interpolating dominant spectral zeros. These are computed as poles of an associated
Hamiltonian system, using an iterative solver: the subspace accelerated dominant
pole algorithm (SADPA). Based on a dominance criterion, SADPA finds relevant
spectral zeros and the associated invariant subspaces, which are used to construct
the passivity preserving projection. RLC netlist equivalents for the reduced models
are provided.

Section 4.5, written by Roxana Ionutiu and Joost Rommes, deals with synthesis
of a reduced model: reformulate it as a netlist for a circuit. A framework for model
reduction and synthesis is presented, which greatly enlarges the options for the re-
use of reduced order models in circuit simulation by simulators of choice. Especially
when model reduction exploits structure preservation, we show that using the model
as a current-driven element is possible, and allows for synthesis without controlled
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sources. Two synthesis techniques are considered: (1) by means of realizing the
reduced transfer function into a netlist and (2) by unstamping the reduced system
matrices into a circuit representation. The presented framework serves as a basis for
reduction of large parasitic R/RC/RCL networks.

Co-operations Between the Various Co-authors

The subactivity on Model Order Reduction (MOR) of the COMSON project1 was
greatly influenced by interaction with additional research on MOR, first at Philips
Research Laboratories and (from october 2006 on) at NXP Semiconductors (both
in Eindhoven). There was direct project work with the TU Eindhoven, with the
Bergische Universität Wuppertal and with the Royal Institute of Technology (KTH)
in Stockholm:

• R. IONUTIU: Model order reduction for multi-terminal Systems – with applica-
tions to circuit simulation. Ph.D.-Thesis, TU Eindhoven, 2011, http://alexandria.
tue.nl/extra2/716352.pdf.

• M. SAADVANDI: Passivity preserving model reduction and selection of spectral
zeros. MSc. Thesis, Royal Institute of Technology (KTH), Stockholm. Also
published as Technical Note NXP-TN-2008/00276, Unclassified Report, NXP
Semiconductors, Eindhoven, 2008. [In September 2012, Maryam Saadvandi did
complete a Ph.D.-Thesis at KU Leuven, Belgium, on Nonlinear and parametric
model order reduction for second order dynamical systems by the dominant pole
algorithm.]

• M.V. UGRYUMOVA: Applications of Model Order Reduction for IC Modeling.
Ph.D.-Thesis, TU Eindhoven, 2011, http://alexandria.tue.nl/extra2/711015.pdf.

• A. VERHOEVEN: Redundancy reduction of IC models by multirate time-integra-
tion and model order reduction. Ph.D.-Thesis, TU Eindhoven, 2008,
http://alexandria.tue.nl/extra2/200712281.pdf.

• T. VOSS: Model reduction for nonlinear differential algebraic equations, MSc.
Thesis, University of Wuppertal, 2005. Unclassified Report PR-TN-2005/00919,
Philips Research Laboratories, September 2005.
[Afterwards, Thomas Voß did complete a Ph.D.-Thesis at the Rijksuniversiteit
Groningen, the Netherlands, on Port-Hamiltonian modeling and control of
piezoelectric beams and plates: application to inflatable space structures, 2010,
http://catalogus.rug.nl/DB=1/SET=1/TTL=4/REL?PPN=326-918639.]

1Coupled Multiscale Simulation and Optimization in Nano-electronics, COMSON – EU-FP6
MCA-RTN Research and Training Network Project, 2006–2010, http://www.comson.eu/.

http://alexandria.tue.nl/extra2/716352.pdf
http://alexandria.tue.nl/extra2/716352.pdf
http://alexandria.tue.nl/extra2/711015.pdf
http://alexandria.tue.nl/extra2/200712281.pdf
http://catalogus.rug.nl/DB=1/SET=1/TTL=4/REL?PPN=326-918639.
http://www.comson.eu/
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Here Roxana Ionutiu was partially funded by the COMSON project. Apart from
TU Eindhoven she also worked with Thanos Antoulas at the Jacobs University in
Bremen. Roxana Ionutiu appears several times as co-author in this chapter and in the
following ones. Also Maryam Saadvandi appears as co-author of a section. Work by
the others is found in the reference lists at each section.

Parallel to the COMSON Project research on MOR was done within the
O-MOORE-NICE! project.2 The Marie Curie Fellows, Luciano De Tommasi
(University of Antwerp), Davit Harutyunyan (TU Eindhoven), Joost Rommes (NXP
Semiconductors), and Michael Striebel (Chemnitz University of Technology), inter-
acted actively with the COMSON PhD-students. They contribute to several sections
as co-authors, together with researchers from the staff from NXP Semiconductors
(Eindhoven), TU Eindhoven, Bergische Universität Wuppertal and the Politehnica
Univ. of Bucharest.

The Politehnica Univ. of Bucharest greatly acknowledges co-operation with
Jorge Fernandez Villena and Luis Miguel Silveira of INESC-ID in Lisbon. They
appear as co-author in the next chapter. Jorge Fernandez Villena was partially
funded by the COMSON project. Work in Bucharest and in Lisbon also did
benefit from financial support during earlier years from the following comple-
mentary projects: FP6/Chameleon, FP5/Codestar, CEEX/nEDA, UEFISCSU/IDEI
609/16.01.2009 and POSDRU/89/1.5/S/62557.

The fourth co-author acknowledges the ENIAC JU Project /2010/SP2(Wireless
communication)/270683-2 Artemos, Agile Rf Transceivers and front-Ends for future
smart Multi-standard cOmmunications applicationS, http://.artemos.eu.

The COMSON project did directly lead to four Ph.D.-Theses on MOR-related
topics:

• Z. ILIEVSKI: Model order reduction and sensitivity analysis. Ph.D.-Thesis, TU
Eindhoven, 2010, http://alexandria.tue.nl/extra2/201010770.pdf.

• S. KULA: Reduced order models of interconnects in high frequency integrated
circuits. Ph.D.-Thesis, Politehnica Univ. of Bucharest, 2009.

• K. MOHAGHEGH: Linear and nonlinear model order reduction for numerical
simulation of electric circuits. Ph.D.-Thesis, Bergische Universität Wuppertal,
Germany. Available at Logos Verlag, Berlin, Germany, 2010.

• A. ŞTEFĂNESCU: Parametric models for interconnections from analogue high
frequency integrated circuits. Ph.D.-Thesis, Politehnica Univ. of Bucharest,
2009.

2Operational MOdel Order REduction for Nanoscale IC Electronics (O-MOORE-NICE!) –
EU-FP6 MCA-ToK Transfer of Knowledge Project, 2007–2010, http://www.tu-chemnitz.de/
mathematik/industrie_technik/projekte/omoorenice/index.php?lang=en

http://.artemos.eu
http://alexandria.tue.nl/extra2/201010770.pdf
http://www.tu-chemnitz.de/mathematik/industrie_technik/projekte/omoorenice/index.php?lang=en
http://www.tu-chemnitz.de/mathematik/industrie_technik/projekte/omoorenice/index.php?lang=en
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4.1 Circuit Simulation and Model Order Reduction

Speaking of “circuit models”, we refer to models of electrical circuits derived
by a network approach.3 In circuit simulation the charge-oriented modified nodal
analysis (MNA) is a prominent representative of network approaches used to
automatically create mathematical models for a physical electrical circuit. In the
following we give a short introduction to circuit modeling with MNA. For a detailed
discussion we refer to [22].

In charge-oriented MNA, voltages, currents, electrical charges and magnetic
fluxes are the quantities that describe the activity of a circuit. The electrical circuit
to be modelled is considered to be an aggregation of basic network elements: the
ohmic resistor, capacitor, inductor, voltage source and current source. Real phys-
ical circuit elements, especially semiconductor devices, are replaced by idealised
network elements or so-called “companion models”. The basic network elements
correlate the network quantities. Each basic element is associated to a characteristic
equations:

• Resistor: I D r.U / (linear case: I D 1
R

� U )
• Capacitor: I D Pq with q D qC .U / (linear case: I D C � PU )
• Inductor: U D P� with � D �L.I / (linear case: U D L � PI )
• Voltage source: U D v.t/ (controlled source: U D v.Uctrl; Ictrl; t/)
• Current source: I D {.t/ (controlled source: I D {.Uctrl; Ictrl; t/)

where U is the voltage drop across the element’s terminal, I is the current flowing
through the element, q is the electric charge stored in a capacitor and � is the
magnetic flux of an inductor. The dot P on top of a quantity indicates the usual
time derivative d=dt on that quantity.

All wires, connecting the circuit elements are considered to be electrically ideal,
i.e., no wire possesses any resistance, capacitance or inductance. Thereby, also
the volume expansion of the circuit becomes irrelevant, the electrical system is
considered being a lumped circuit.The circuit’s layout, defined by the interconnects
between elements, is thus reduced to its conceptional structure, which is called
network topology.

The network’s topology consists of branches and nodes. Each network element
is regarded as a branch of the circuit and its terminals are the nodes by which it is
connected to other elements. Assigning a direction to each branch – the direction
of the current traversing the corresponding element – and a serial number to each
node, we end up with a directed graph representing the network. As any directed
graph, the network can be described by an incidence matrix A. This matrix has as

3Section 4.1 has been written by: Michael Striebel, E. Jan W. ter Maten, Kasra Mohaghegh and
Roland Pulch. For additional details we refer to the Ph.D.-Thesis [33] of the third author.
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many columns as there are branches, i.e., elements and as many rows as there are
nodes in the circuit. Each column of the matrix has one entry C1 and one entry �1,
displaying the start and end point of the branch. As all other entries are 0, the matrix
A is sparse.

Usually, one circuit node is tagged as ground node. As a consequence, each
branch voltage U between two nodes l an m can be expressed by the two node
voltages el and em, which are the voltage differences between each node and the
ground node. From this agreement, the node voltage of the ground node is constantly
0 and therefore the information stored in the corresponding row of the incidence
matrix becomes redundant and this very row can be removed. Hence, frequently by
the term incidence matrix, one refers to the reduced matrix A, given by removing
the row corresponding to the ground node.

As each branch of the network represents one of the five basic network element
resistor (R), capacitor (C), inductor (L), voltage and current source (V and I,
respectively), the indicence matrix can be described as an assembly of element
related incidence matrices:

A D .AC ;AR;AL;AV ;AI / ;

with A˝ 2 f0;C1;�1gne�n˝ for ˝ 2 fC;R;L; V; I g. Here, ne is the number of
nodes (without the ground node) and nC ; : : : ; nI are the cardinalities of the sets of
the different basic elements’ branches.

The Kirchhoff’s laws, which relate the branch voltages in a loop and the currents
accumulating in a node, namely Kirchhoff’s voltage law and Kirchhoff’s current
law, respectively, are the final component for setting up the MNA network equations:

AC

d

dt
q C ARr.AT

Re/C AL{L C AV {V C AI {.t/ D 0; (4.1a)

d

dt
� � AT

Le D 0; (4.1b)

v.t/ � AT
V e D 0; (4.1c)

q � qC .AT
C e/ D 0; (4.1d)

� � �L.{L/ D 0: (4.1e)

It is worthwile to highlight the subequations (4.1a) and (4.1c). The former is
the personification of Kirchhoff’s current law, stating that for each network node
the sum of branch currents meeting is identically zero. The latter reflects the
functionality of voltage sources: dictating branch voltages.

The unknowns q;�; e; {L; {V , i.e., the charges, fluxes, node voltages and currents
traversing inductors and voltage sources, respectively – each of them functions of
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time t – are combined to the state vector x.t/ 2 R
n of unknowns, of dimension

n D nC C nL C ne C nL C nV . Then, the network equations (4.1) can be stated in
a compact form:

d

dt
q.x.t//C j.x.t//C Bu.t/ D 0; (4.2)

where q; j W R
n ! R

n describe the contribution of reactive and nonreactive
elements, respectively.4 The excitations defined by the voltage- and current-sources
are combined to the vector u.t/ 2 R

m with m D nV C nI . The excitations are
assigned to the corresponding nodes and branches by the matrix B 2 R

n�m.
If the circuit under considerations contains only elements with a linear character-

istic equation, the network equations can be written as5

EPx.t/C Ax.t/C Bu.t/ D 0; (4.3a)

with

E D
0
@ACCAT

C 0 0
0 L 0
0 0 0

1
A ; A D

0
@ARGAT

R AL AV

�AT
L 0 0

�AT
V 0 0

1
A ; B D

0
@AI 0

0 0
0 InV

1
A ; (4.3b)

where C ;L ;G are basically diagonal matrices containing the individual capacitors,
inductances and conductances (inverse resistances) of the basic network elements.
InV is the identity matrix in R

nV �nV .
We arrive at this formulation by eliminating the charges and fluxes. Hence the

unknown state vector here is x D .eT ; {TL; {
T
V /

T and the excitation vector is u D
.{TI ; v

T /T :

It is straightforward to see that the structure of the matrices E;A 2 R
n�n and B 2

R
n�m is determined by the element related incidence matrices AC ;AR;AL;AV ;AI .

As there is usually only a week linkage amongst the network node, i.e., nodes are
connected directly to only a few other nodes, these incidence matrices are sparse
and so are the system matrices in (4.3a) and the Jacobian matrices dq=dx; d j=dx 2
R
n�n of the element functions in (4.2), respectively.

4Note that the meaning q in (4.1) and (4.2) is different: in the prior it is an unknown, in the latter
it is a mapping.
5Note that A in (4.3a) does not refer to the incidence matrix A. Furthermore the composition of
the unknown x in (4.2) and (4.3a) can be different. In the latter, taking into account the linear
characteristics for capacitors and inductors, the time derivatives of the charges and fluxes can be
expressed by the time derivative of the node volages e and the inductor current {L directly. In this
case the unknown state vector amounts to x D .eT ; {TL; {

T
V /

T 2 R
n with n D ne C nV C nL.
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In general, real circuit designs contain a large number of transistors. In the
course of setting up the network equations such semiconductor devices are replaced
by companion models that consist of a larger number of the basic network
elements. Here especially resistors with nonlinear characteristics emerge. Hence,
the “mathematical image” of an integrated circuit is usually a nonlinear network
equation of the form (4.2).

However, also linear network equations of the form (4.3a) are fundamental
problems in the design process. As mentioned above, one disregards the volume
extension of a circuit and considers wires as electrically ideal. At the end of
the design process, however, there will be a physical integrated circuit. Even on
the smallest dies there are kilometers of wiring. These wires do have an electric
resistance. As the actual devices are getting small and smaller, capacitive effects
introduced by neighbouring wires can not be neglected just as little as inductive
effects arising from increasing clock rates.

In fact these issues are not neglected. At least at the end of the design process,
when the layout of the chip has to be determined these effects are taken into
account. In the parasitic extraction from the routing on the chip an artificial linear
network is extracted which again is assumed to be a lumped and comprise of ideal
wires. However, the resistances, capacitances and inductances that are present there
describe the effects caused by the wiring on the actual circuit. A characteristic of
these artificial networks is their large dimension: here n can easily be in the range
of 106.

The impact of the effects on the behaviour of the actual circuit are accounted for
by coupling the linear parasitic model to the underlying circuit design.

If the electrical circuit comprises reactive elements, i.e., capacitors and inductors,
the network equation (4.2) or (4.3a), respectively, forms a dynamical problem
for the unknown state vector x. Usually, however, the system matrix E, or the
Jacobian dq=dx, respectively, does not have full rank.6 Dynamical systems with
this property, i.e., systems consisting of differential and algebraic equations are
called differential algebraic equations (DAE), or descriptor systems. DAEs differ
in several senses from purely differential equations, causing problems in various
aspects. A requirement for the solvability of the network equation is the regularity
of the matrix pencil fE;Ag. The matrix pencil is called regular, if the polynomial
det.�E C A/ does not vanish identically. Otherwise fE;Ag is called singular matrix
pencil. Then a normal initial-value problem for the linear DAE (4.3a) has none or
infinitely many solutions. The regularity of the matrix pencil can be checked by
examining the element related incidence matrices [15].

6This is easy to see from inspecting the first subequation – the node-current relation – of the MNA
equation (4.1): a network node for instance, that is not the starting or end point of a capacitor
branch causes a row equal to zero in the incidence matrix AC and therefore the node-current
relation for that node is an algebraic equation only.
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In the context of numerical time integration, needed to solve the network
problem in time domain, worthwhile stressing that the initial value has to be
chosen properly – x.0/ has to satisfy the algebraic constraints – and that numerical
perturbations can be amplified dramatically. Hence, numerical methods have to
match the requirements posed by the differential-algebraic structure.

For a detailed analysis of DAEs we refer to the textbook [29]. A detailed
discussion of solving DAEs can be found in the textbook [24].

4.1.1 Input-Output Systems in Circuit Simulation

We recall that the origin of the network equations in nonlinear or linear form is a
real circuit design, ment to be simulated, i.e., tested with respect to its performance
under different circumstances. Nowadays, complex integrated circuits are usually
not designed from scratch by a single engineer. In fact, large electrical circuits are
usually developed in a modular way. In radio frequency applications, for instance,
analogue and digital subcircuits are connected to each other. In general several sub-
units of different functionality, e.g., one providing stable oscillations another one
amplifying a signal, are developed separately and glued together. Hence, subunits
possess a way of communication with other subunits, the environment they are
embedded in.

To allow for a communication with an environment, the network model (4.2)
(or (4.3a)) has to be augmented and transfered to a system that can receive and
transmit information. Abstractly, the output of a system can be defined as a function
of the state and the input:

y.t/ D h.x.t/;u.t// 2 R
p :

In circuit simulation, however, usually the output is a linear relation of the form:

y.t/ D Cx.t/C Du.t/;

with the output matrix C 2 R
p�n and the feedthrough matrix D 2 R

p�m.
The excitation, we mentioned above, i.e., the last term Bu.t/ in the network

model (4.2) (or (4.3a)) can be understood as information imposed on the system,
in the form of branch currents and node voltages. Therefore we call u.t/ the input
and B the input matrix to the system.

Hence, an input-output system in electrical circuit simulation is given in the form

0 D EPx.t/C Ax.t/C Bu.t/; (4.4a)

y.t/ D Cx.t/C Du.t/; (4.4b)
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if only linear elements form the system. If also nonlinear elements are present, we
arrive at systems of the form:

0 D d

dt
q.x.t//C j.x.t//C Bu.t/; (4.5a)

y.t/ D Cx.t/C Du.t/: (4.5b)

The input to state mapping (4.4a) and (4.5a), respectively, is a relation defined by
a dynamical system. Therefore, the representation of the input-output system (4.4)
and (4.5), respectively, is said to be given in state space formulation. The dimension
n of the state space is referred to as the order of the system.

Frequently the state space formulation in circuit design exhibits a special
structure.

• Often there is no direct feedthrough of the input to the output, i.e.

D D 0 2 R
p�m : (4.6a)

• We often observe

p � m and C D BT 2 R
m�n : (4.6b)

In full system simulation, individual subcircuit models are connected to each
other. To allow for an information exchange, done in terms of currents and
voltages, each subcircuit possesses a set of terminals – a subset of the unit’s
pins.

From a subcircuit’s point of view incoming information is either a current
being added to or a voltage drop being imposed to the terminal nodes. The former
corresponds to adding a current source term to (4.1a), the latter corresponds to
adding a voltage source to (4.1c). Information returned by the subsystem is the
voltage at the terminal node in the former case or the current traversing that
artificial voltage source in the latter case. Having a detailed look at the MNA
network equations (4.1) and the composition of the state vector x.t/, it is easy to
understand that in this setup, assuming that there are no additional sources in the
subcircuits, the output matrix is the transpose of the input matrix.

4.1.2 The Need for Model Order Reduction

Clearly, mathematical models for a physical circuit are extracted for a purpose. In
short, the manufacturing process of an electrical circuit starts with an idea of what
the physical system should do and ends with the physical product. In-between there
is a, usually iterative, process of conceptual designing the circuit in the form of a
circuit schematic, that comprises parameters defining the layout and nominal values
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of circuit elements and, choosing the parameters, testing the design, adapting the
parameter, : : : , etc.

Testing the design means to analyse its behaviour. There are several types of
analysis we briefly want to mention in the following. For a more detailed discussion
we refer to [22].

• Static (DC) analysis searches for the point to which the system settles in an
equilibrium or rest condition. This is characterised by d=dt x.t/ D 0.

• Transient analysis computes the response y.t/ to the time varying excitation u.t/
as a function of time.

• (Periodic) steady-state analysis, also called frequency response analysis, deter-
mines the response of the system in the frequency domain to an oscillating, i.e.,
sinusoidal input signal.

• Modal analysis finds the system’s natural vibrating frequency modes and their
corresponding modal shapes;

• Sensitivity analysis determines the changes of the time-domain response and/or
the frequency-domain response to variations in the design parameters.

Transient analysis is run in the time domain. Here the challenge is to numerically
integrate a very high-dimensional DAE problem.

Both the frequency response and the modal analysis are run in the frequency
domain. Hence, a network description in the frequency domain is needed. As this
is basically defined only for linear systems7 we concentrate on linear network
problems of the form (4.4). The Laplace transform is the tool to get from the time
to the frequency domain.

Recall that for a function f W Œ0;1/ ! C with f .0/ D 0, the Laplace transform
F W C ! C is defined by

F.s/ WD L ff g.s/ D
Z 1

0

f .t/e�stdt:

For a vector-valued function f D .f1; : : : ; fq/
T , the Laplace transform is defined

component-wise: F.s/ D .L ff1g.s/; : : : ;L ffqg.s//T .
The physically meaningful values of the complex variable s are s D i! where

! 	 0 is referred to as the (angular) frequency. Taking the Laplace transform of
the time domain representation of the linear network problem (4.4) we obtain the
following frequency domain representation:

0 D sEX.s/C AX.s/C BU.s/;

Y.s/ D CX.s/C DU.s/;
(4.7)

7Applying those types of analysis to nonlinear problems involves a linearisation about some point
of interest x in the state space.
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where X.s/;U.s/;Y.s/ are the Laplace transforms of the states, the input and the
output, respectively. Note that we assumed zero initial conditions, i.e., x.0/ D 0,
u.0/ D 0 and y.0/ D 0.

Eliminating the variable X.s/ in the frequency domain representation (4.7) we
see that the system’s response to the input U.s/ in the frequency domain is given by

Y.s/ D H.s/U.s/

with the matrix-valued transfer function

H.s/ D �C .sE C A/�1 B C D 2 C
p�m: (4.8)

The evaluation of the transfer function is the key to the frequency domain based
analyses, i.e., the steady-state analysis and the modal frequency analysis. The key
to the evaluation of the transfer function, in turn, is the solution of a linear system
with the system Matrix .sE C A/ 2 C

n�n.8
Note that at the very core of any numerical time integration scheme applied in

transient simulation we have to solve as well linear equations with system matrices
of the form ˛E C A were ˛ 2 R depends on some coefficient characteristic to the
method and the stepsize used.

It is the order n of the problem, i.e., the dimension of the state space that
determines how much computational work has to be spend to compute the p output
quantities. Usually, the order n in circuit simulation is very large, whereas the
dimension of the output is rather small.

The idea of model order reduction (MOR) is to replace the high dimensional
problem by one of reduced order such that the reduced order model produces an
output similar to the output of the original problem when excited with the same
input.

Before we give an overview of some of the most common MOR techniques we
specify the requirement a reduced order model should satisfy. Again, we just briefly
describe some concepts. For a more detailed discussion we refer to the textbook [1].

4.1.2.1 Approximation

The output of the ersatz model should approximate the output of the original model
for the same input signal. There are various measures for “being an approximation”.
In fact these different viewpoints form the basis for different reduction strategies.

8Note that here we see the necessity of fE;Ag being a regular matrix pencil.
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We give first a Theorem (for an ODE) that confirms how an approximation in
the frequency domain leads to an accurate result in the time domain. Let I! � R

be a closed interval (but may be I! D f!0g or I! D R). For convenience we
assume single input u.t/ and single output y.t/, with transfer function H.s/ in the
frequency domain between the Laplace transforms U.s/ and Y.s/. Let QH.s/ be the
approximation to H.s/ which gives QY .s/ D QH.s/ U.s/ and Qy.t/ as the output
approximation in the time domain.

Theorem 4.1 Let jju.t/jjL2.Œ0;1// < 1 and U.i!/ D 0 for ! … I! . If the
system (4.4a) consists of ODEs, then we have the estimate

max
t>0

jy.t/ � Qy.t/j 
 .
1

2�

Z
I!

jH.i!/ � QH.i!/j2d!/ 12 .
Z 1

0

ju.t/j2dt/
1
2 : (4.9)

Proof We obtain by using the Cauchy-Schwarz inequality in L2.I!/

max
t>0

jy.t/ � Qy.t/j 
 max
t>0

j 1
2�

Z
R

.Y.i!/ � QY .i!//ei!td!j


 max
t>0

1

2�

Z
R

jY.i!/� QY .i!/j � jei!t j d!

D 1

2�

Z
R

jH.i!/ � QH.i!/j � jU.i!/j d!

D 1

2�

Z
I!

jH.i!/ � QH.i!/j � jU.i!/j d!


 1

2�
.

Z
I!

jH.i!/ � QH.i!/j2d!/ 12 .
Z
I!

jU.i!/j2 d!/ 12


 .
1

2�

Z
I!

jH.i!/ � QH.i!/j2d!/ 12 .
Z 1

0

ju.t/j2dt/
1
2 :

This completes the proof. ut
We note that for I! D R the above error estimate is already found in [23],

also for parameterized problems. In [42] the more general case I! is considered
and applied to Uncertainty Quantification for parameterized problems. In MOR the
error estimate becomes often small in an interval I! sufficiently close to the used
expansion point.

Besides producing similar outputs, the reduced order model should behave
similar to the original model in various aspects, which we discuss next.

4.1.2.2 Stability

One of the principal concepts of analyzing dynamical systems is its stability.
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An autonomous dynamical system, i.e., a system without input is called stable if
the solution trajectories are bounded in the time domain. For a linear autonomous
system the system matrices determine whether it is stable or unstable. Considering
for instance the network equation (4.3a) with B � 0 we have to calculate the
generalized eigenvalues9 f�i.A;�E/; i D 1; : : : ; ng of the matrix pair .A;�E/ to
decide whether or not the system is stable. The system is stable if, and only if, all
generalized eigenvalues have non-positive real parts and all generalized eigenvalues
with Re.�i .A;�E// D 0 are simple.

4.1.2.3 Passivity

For input-output systems of the form (4.4), stability is not strong enough. If
nonlinear components are connected to a stable system it can become unstable.

For square systems, i.e., system where the number of inputs is equal to the
number of outputs, p D m, a property called passivity can be defined. This property
is much stronger than stability: it means that a system is unable to generate energy.

Here, an inspection of the system’s transfer function yields evidence if the system
is passive or not. A necessary and sufficient conditions for a square system to be
passive is that the transfer function is positive real. This means that

• H.s/ is analytic for Re.s/ > 0;
• H.Ns/ D H.s/, for all s 2 C;
• The Hermitian part of H.s/ is symmetric positive, i.e.: HH.s/ C H.s/ 	 0, for

all s with Re.s/ > 0 [50]. Here H means the transposed conjugate complex:
AH D NAT .

The second condition is satisfied for real systems and the third condition implies the
existence of a rational function with a stable inverse. Any congruence transforma-
tion applied to the system matrices satisfies the previous conditions if the original
system satisfies them, and so preserves passivity of the system if the following
conditions are true:

• The system matrices are positive definite, E, A 	 0.
• B D CT , D D 0.

These conditions are sufficient, but not necessary. They are usually satisfied in the
case of electrical circuits, which makes congruence-based projection methods very
popular in circuit simulation.

9For a matrix pair .A;B/ � is a generalized eigenvalue with a generalized eigenvector v, if Av D
�Bv.
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4.1.2.4 Structure Preservation

For the case of having a circuit made up of linear elements only we have seen
in (4.3b) that the system matrices exhibit a block structured form. Furthermore we
recognized that the system matrices are sparse. In fact, the same properties hold for
the linear case (4.3a) also.

As a consequence, the matrices of the form .�E C A/ that have to be decomposed
during the different modes of analysis exhibit already a form that can be exploited
when solving the corresponding linear systems.

If the full system (4.4) is replaced by a small dimensional system, it would be
most desirable if that ersatz system again has a structure similar to the structure
of the full problem. Namely, a block structure should be preserved and the system
matrix arising from the reduced order model should be sparse as well, as it can be
more expensive to decompose a small dense matrix then a larger sparse one.

4.1.2.5 Realizability

Preserving the block structure, as just mentioned, is crucial for realizing a reduced
order model again as an RLC-circuit again. Another prerequisit for a reduced order
model to be synthesizable is reciprocity.10 This is a special form of symmetry of
the transfer function H. We will not give details here but refer to [44] for a precise
definition and MOR techniques and to [6] for other reciprocity preserving MOR
techniques.

There is an ongoing discussion if it is necessary to execute this realization (also
referred to as un-stamping). It is worthwhile mentioning two benefits of that

• An industrial circuit simulator does in fact never create the MNA equations.
Actually, a circuit is given in the form of a netlist, i.e., a table where each line
correspond to one element. Each time a system has to be solved, the simulator
runs through that list, evaluates each element and stamps the corresponding value
in the correct places of the system matrix and the corresponding right-hand side.
If a reduced order model is available in the form of such a table as well, the
simulator can treat that ersatz model like any other subcircuit and does not have
to change to a different mode of including the contribution of the subsystem to
the overall system.

• A synthezised reduced order model can provide more insight to the engineers
and designers than the reduced order model in mathematical form [52].

10A two-terminal element is said to be reciprocal, if a variation of the values of one terminal
immediately has the reverse effect on the other terminal’s value. Linear characteristics obviously
have this property.
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4.1.3 MOR Methods

We recall the idea of model order reduction (MOR):
Replace a high dimensional problem, say of order n by one of reduced order

r � n such that the two input-output systems produce a similar output when excited
with the same input. Furthermore the reduced order problem should conserve the
characteristics of the full model it was derived from.

In fact there is a need for MOR techniques in various fields of applications and
for different kind of problem structures. Although a lot of effort is being spent
on deriving reliable MOR methods for, e.g., nonlinear problems of the form (4.5)
and for linear time varying (LTV) problems – these are problems of the form (4.4)
where the system matrices E;A; : : : depend on time t – MOR approaches for linear
time systems, or, more precisely, for linear time invariant (LTI) systems, are best
understood and are technically mature.

The outcome of MOR applied to the linear state space problem (4.4) is an ersatz
system of the form

0 D OEPz.t/C OAz.t/C OBu.t/; (4.10a)

Qy.t/ D OCz.t/C ODu.t/; (4.10b)

with state variable z.t/ 2 R
r , output Qy.t/ 2 R

p and system matrices OE; OA 2 R
r�r ,

OB 2 R
r�m, OC 2 R

p�r and OD 2 R
p�m. The order r of this system is much smaller

than the order n of the original system (4.4).
There are many ways to derive such a reduced order model and there are

several possibilities for classifying these approaches. It is beyond the scope of this
introductory chapter to give a detailed description of all the techniques – for this we
refer to [3] and to the textbooks [1, 7, 51] and the papers cited therein.

We classify MOR approaches in projection and truncation based techniques. For
each of the two classes we reflect two methods that can be seen as the basis for
current developments. Note, that actually it is not possible to draw a sharp line. In
fact all MOR techniques aim at keeping major information and removing the less
important one. It is in how they measurure importance that the methods differ. In
fact several current developments can be regarded as a hybridization of different
techniques.

4.1.4 Projection Based MOR

The concept of all projection based MOR techniques is to approximate the high
dimensional state space vector x.t/ 2 R

n with the help of a vector z.t/ 2 R
r of

reduced dimension r � n, within the meaning of

x.t/ � Qx.t/ WD Vz.t/ with V 2 R
n�r :
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Note that the first approximation may be interpreted as a wish. We will only aim
for y.t/ � Qy.t/ D CVz.t/ C ODu.t/. The columns of the matrix V are a basis
of a subspace QM � R

n, i.e., the state space M , the solution x.t/ of the network
equation (4.4a) resides in, is projected on QM . A reduced order model, representing
the full problem (4.4) results from deriving a state space equation that determines
the reduced state vector z.t/ such that Qx.t/ is a reasonable approximation to x.t/.

If we insert Qx.t/ on the right-hand side of the dynamic part of the input-output
problem (4.4a), it will not vanish identically. Instead we get a residual:

r.t/ WD EVPz.t/C AVz.t/C Bu.t/ 2 R
n :

We can not demand r.t/ � 0 in general as this would state an overdetermined
system for z.t/. Instead we apply the Petrov-Galerkin technique, i.e., we demand
the residual to be orthogonal to some testspace W . Assuming that the columns
of a matrix W 2 R

n�r span this testspace, the mathematical formulation of this
orthogonality becomes

0 D WT r.t/ D WT .EVPz.t/C AVz.t/C Bu.t// 2 R
r ;

which states a differential equation for the reduced state z.t/.
Defining

OE WD WTEV 2 R
r�r ; OA WD WTAV 2 R

r�r ;

OB WD WTB 2 R
r�m; OC WD CV 2 R

p�r ;

OD WD D 2 R
p�m;

(4.11)

we arrive at the reduced order model (4.10).
To relate V and W we demand biorthogonality of the spaces V and W spanned

by the columns of the two matrices, respectively, i.e. WTV D Ir . With this, the
reduced problem (4.10) is the projection of the full problem (4.4) onto V along W .
If an orthonormal V and W D V is chosen, we speak of an orthogonal projection
on the space V (and we come down to a Galerkin method).

Now, MOR projection methods are characterised by the way of how to construct
the matrices V and W that define the projection. In the following we find a short
introduction of Krylov methods and POD approaches. The former starts from the
frequency domain representation, the latter from the time domain formulation of
the input-output problem.

4.1.4.1 Krylov Method

Krylov-based methods to MOR are based on a series expansion of the transfer
function H. The idea is to construct a reduced order model such that the series
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expansions of the transfer function OH of the reduced model and the full problem’s
transfer function agree up to a certain index of summation.

In the following we will assume that the system under consideration does not
have a direct feedthrough, i.e., (4.6a) is satisfied. Furthermore we restrict to SISO
systems, i.e., single input single output systems. In this case we have p D m D 1,
i.e., B D b and C D cH where b; c 2 R

n, and the (scalar) transfer function becomes:

H.s/ D �cH .sE C A/�1 b 2 C;

As fE;Ag is a regular matrix pencil we can find some frequency s0 such that
s0ECA is regular (for a good discussion on how to choose such “expansion points”
s0, see [17]). Then the transfer function can be reformulated as

H.s/ D l .In � .s � s0/F/
�1 r; (4.12)

with l WD �cH , r WD �.s0E C A/�1b and F WD .s0E C A/�1A.
In a neighbourhood of s0 one can replace the matrix inverse in (4.12) by the

corresponding Neumann series. Hence, a series expansion of the transfer function is

H.s/ D
1X
kD0

mk.s � s0/k with mk WD l Fk r 2 C: (4.13)

The quantitiesmk for k D 0; 1; : : : are called moments of the transfer function.
A different model, of lower dimension, can now be considered to be an

approximation to the full problem, if the moments Omk of the new model’s transfer
function OH.s/ agree with the momentsmk defined above, for k D 1; : : : ; q for some
q 2 N.

AWE [38], the Asymptotic Waveform Evaluation, was the first MOR method that
was based on this idea. However, the explicit computation of the moments mk ,
which is the key to AWE, is numerically unstable. This method can, thus, only be
used for small numbers q of moments to be matched.

Expressions like Fk r or l Fk arise also in methods, like Krylov-subspace-
methods, which are used for the iterative solution of large algebraic equations. Here
the Lanczos- and the Arnoldi-method are algorithms that compute biorthogonal
bases W;V or a orthonormal basis V of the �th left and/or right Krylov subspaces

Kl .FT ; lT ; �/ WD span
�

lT ;FT lT ; : : : ;
�
FT
���1

lT
�
;

Kr .F; r; �/ WD span
�
r;F r; : : : ;F��1 r

�
;

for � 2 N, respectively in a numerically robust way.
The Krylov subspaces, thus “contain” the moments mk of the transfer function

and it can be shown, e.g., [2, 12], that from applying Krylov-subspace methods,
reduced order models can be created. These reduced order models, however, did not
arise from a projection approach. In fact, the Lanczos- and the Arnold-algorithm
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produces besides the matrices W and/or V whose columns span the Krylov
subspaces Kl and/or Kr , respectively, a tridiagonal or an upper Hessenbergmatrix
T , respectively. This matrix is then used to postulate a dynamical system whose
transfer function has the desired matching property.

Concerning the moment matching property there is a difference for reduced order
models created from a Lanczos- and those created from an Arnoldi-based process.

For a fixed q, the Lanczos-process constructs the qth left and the qth right
Krylov-subspace, hence biorthogonal matrices W;V 2 R

n�q . A reduced order
model of order q, arising from this procedure possesses a transfer function OH.s/
whose first 2q moments coincide with the first 2q moments of the original problem’s
transfer function H.s/, i.e. Omk D mk for k D 0; : : : ; 2q � 1. Hence, the Lanczos
MOR model yields a Padé approximation.

The Arnoldi method on the other hand is a one sided Krylov subspace method.
For a fixed q only the qth right Krylov subspace is constructed. As a consequence,
here only the first q moments of the original system’s and the reduced system’s
transfer function match.

Owing to their robustness and low computational cost, Krylov subspace algo-
rithms proved suitable for the reduction of large-scale systems, and gained consid-
erable popularity, especially in electrical engineering. A number of Krylov-based
MOR algorithms have been developed, including techniques based on the Lanczos
method [9, 19] and the Arnoldi algorithm [36, 56]. Note that the moment matching,
mentioned above, can only be valid locally, i.e., for a certain frequency range around
the expansion point s0. However, also Krylov MOR schemes based on a multipoint
expansion in the frequency range have been constructed [21].

The main drawbacks of these methods are, in general, lack of provable error
bounds for the extracted reduced models, and no guarantee for preserving stability
and passivity. There are techniques to turn reduced systems to passive reduced
systems. However, this introduced some post-processing of the model [18].

4.1.4.2 Passivity Preservation

Odabasioglu et al. [36] turned the Krylov based MOR schemes into a real
projection method. In addition, the developed scheme, PRIMA (Passive Reduced-
Order Interconnect Macromodeling Algorithm), is able to preserve passivity.

This MOR technique can be applied to electrical circuits that contain only passive
linear resistors, capacitors and inductors and which accepts only currents as input at
the terminals. One says that the RLC-circuit is in impedance form, i.e., the inputs
u.t/ are currents and the outputs y are voltages.

In this case, the system matrices E;A;B and C have a special structure
(cp. (4.3b)), namely:

E D
�

E1 0
0 E2

�
; A D

�
A1 A2

�AT
2 0

�
; B D CT D

�
B1
0

�
; (4.14)
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where E1;A1 2 R
ne�ne and E2 2 R

nL�nL and are symmetric non-negative definit
matrices.

In PRIMA, first the Arnoldi method is applied to create the projection matrix
V. Then, choosing W D V, the system matrices are reduced according to (4.11).
For several implementational details, covering Block-Arnoldi as well as deflation,
see [55]. The reduced order model arising in this way can be shown to be passive
[36]. The key to these findings is the above special structure of linear RLC-circuits
in (4.14).

It is, however, not necessary, to use the Arnoldi method to construct the matrix V.
Furthermore, it is also possible to apply the technique to systems in admittance form,
i.e., where the inputs are voltages and the outputs are currents. For more details we
refer to [27] in this book.

4.1.4.3 Structure Preservation

As we have seen PRIMA takes advantage of the special block structure (4.14) of
linear RLC circuits to create passive reduced order models. The structure, however,
is not preserved during the reduction. This makes it hard to synthesise the model,
i.e., realize the reduced model as an RLC circuit again.

Freund [12–16] developed a Krylov-based method where passivity, the structure
and reciprocity are preserved. SPRIM (Structure-Preserving Reduced-Order Inter-
connect Macromodell) is similar to PRIMA as first the Arnoldi-method is run to
create a matrix V 2 R

n�r . This, however, is not taken as the projection matrix
directly. Instead, the matrix V is partitioned to

V D
�

V1

V2

�
with V1 2 R

ne�r ;V2 2 R
nL�r ;

corresponding to the block structure of the system matrices E;A;B;C.
Finally, after re-orthogonalization, the blocks V1;V2 are rearranged to the matrix

OV D
�

V1 0
0 V2

�
2 R

n�.2r/; (4.15)

which is then used to transform the system to a reduced order model, according to
the transformations given in (4.11) (with V D W D OV).

It can be shown, that the SPRIM-model preserves twice as many moments as the
PRIMA, if the same Arnoldi-method is applied. Note, however, that the dimension
also increases by a factor 2.
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4.1.4.4 Multi-input Multi-output

For the general case, where p andm are larger than one, i.e., when we have multiple
inputs and multiple outputs, the procedure carried out by the Krylov MOR methods
is in principle the same. In this case however, Krylov subspaces for multiple starting
vectors have to be computed and one has to take care, when a “breakdown” or a
“near-breakdown” occurs, that is, when the basis vectors constructed for differing
starting vectors, r1 and r2 become linearly dependent. In this case the progress
for the Krylov subspace becoming linear dependent has to be stopped. The Krylov
subspace methods arising from that considerations are called Block Krylov methods.
For a detailed discussion we refer to the literature given above.

4.1.4.5 POD Method

While the Krylov approaches are based on the matrices, i.e., on the system itself, the
method of Proper Orthogonal Decomposition (POD) is based on the trajectory x.t/,
i.e., the outcome of the system (4.4). One could also say that the Krylov methods
are based on the frequency domain, whereas POD is based on the time domain
formulation of the input output system to be modelled.

POD first collects data fx1; : : : ; xKg. The datapoints are snapshots of the state
space solution x.t/ of the network equation (4.4a) at different timepoints t or
for different input signals u.t/. They are usually constructed by a numerical time
simulation, but may also arise from measurements of a real physical system.

From analysing this data, a subspace is created such that the data points as a
whole are approximated by corresponding points in the subspace in a optimal least-
squares sense. The basis of this approach is also known as Principal Component
Analysis and Karhunen–Loève Theorem from picture and data analysis.

The mathematical formulation of POD [39] is as follows: Given a set of K
datapoints X WD fx1; : : : ; xKg a subspace Sr � R

n of dimension r is searched
for that minimizes

kX � %rXk22 WD 1

K

KX
kD1

kxk � %rxkk22; (4.16)

where %r W Rn ! Sr is the orthogonal projection onto Sr .
We will not describe POD in full detail here, as in literature, e.g., [1, 39], this

is well explained. However, the key to solving this minimization problem is the
computation of the eigenvalues �i and eigenvectors 'i (for i D 1; : : : ; n) of the
correlation matrix XXT :

XXT'i D �i'i ;
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where the eigenvalues and eigenvectors are sorted such that �1 	 � � � 	 �n. The
matrix X is defined as X WD .x1; : : : ; xK/ 2 R

n�K and is called snapshot matrix.
Intuitively the correlation matrix detects the principal directions in the data cloud

that is made up of the snapshots x1; : : : ; xK . The eigenvectors and eigenvalues can
be thought of as directions and radii of axes of an ellipsoid that incloses the cloud
of data. Then, the smaller the radii of one axis is, the less information is lost if that
direction is neglected.

The question arises, how many directions r should be kept and how many can
be neglected. There is no a-priori error bound for the POD reduction (Rathinam and
Petzold [43], though, perform a precise analysis of the POD accuracy). However,
the eigenvalues are a measure for the relevance of the dimensions of the state space.
Hence, it seems reasonable to choose the dimension r of the reduced order model in
such a way, that the relative information content of the reduced model with respect
to the full system is high. The measure for this content, used in the literature cited
above is

I .r/ D �1 C � � ��r
�1 C � � ��r C �rC1 C � � ��n :

Clearly, a high relative information content means to have I .r/ � 1. Typically r is
chosen such that this measure is around 0:99 or 0:995.

If the eigenvalues and eigenvectors are available and a dimension r has been
chosen, the projection matrices V and W in (4.11) are taken as

V WD W WD .'1; : : : ;'r / 2 R
n�r :

leading to an orthogonal projection %r D VVT on the space Sr spanned by
'1; : : : ; 'r .

The procedure described so far relies on the eigenvalue decomposition of the
n � n matrix XXT . This direct approach is feasible only for problems of moderate
size. For high dimensional problems, i.e., for dimensions n  1, the eigenvalues
and eigenvectors are derived form the Singular Value Decomposition (SVD) of the
snapshot matrix X 2 R

n�K .
The SVD provides three matrices:

˚ D .'1; � � � ; 'n/ 2 R
n�n orthogonal,

� D . 1; � � � ;  K/ 2 R
K�K orthogonal,

˙ D diag .�1; : : : ; ��/ 2 R
��� with �1 	 � � � 	 �� > ��C1 D : : : D �K D 0;

such that

X D ˚

�
˙ 0
0 0

�
� T ; (4.17)
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where the columns of ˚ and � are the left and right singular eigenvectors, respec-
tively, and �1; : : : ; �� are the singular values of X (�� being the smallest non-zero
singular value; this also defines the index �). It follows that '1; : : : ; 'n are eigenvec-
tors of the correlation matrix XXT with the n eigenvalues �21 ; : : : ; �

2
� ; 0; : : : ; 0.

4.1.5 Truncation Based MOR

The MOR approaches we reviewed so far rely on the approximation of the high-
dimensional state space, the solution of (4.4) resides in, by an appropriate space
of lower dimension. An equation for the correspondent z.t/ of x.t/ is derived by
constructing a projection onto that lower-dimensional space.

Although the approaches we are about to describe in the following can also be
considered as projection methods in a certain sense, we decided to present them
separately. What makes them different, is that these techniques base on preserving
key characteristics of the system rather than reproducing the solution. We will get
aquainted with an ansatz based upon energy considerations and an approach meant
to preserve poles and zeros of the transfer function.

4.1.5.1 Balanced Truncation

The technique of Balanced Truncation, introduced by Moore [35], is based on
control theory, where one essentially investigates how a system can be steered
and how its reaction can be observed. In this regard, the basic idea of Balanced
Truncation is to first classify, which states x are hard to reach and which states x are
hard to deduce from observing the output y, then to reformulate the system such that
the two sets of states coincide and finally truncate the system such that the reduced
system does not attach importance to these problematic cases.

The system (4.4) can be driven to the state Nx in time T if an input Nu.t/, with
t 2 Œ0; T � can be defined such that the solution at time T , i.e., x.T / takes the value
Nx where x.0/ D 0. We perceive the L2-norm k � k2, with kNuk22 D R T

0
Nu.t/T Nu.t/ dt

as energy of the input signal. If the system is in state Qx at time t D 0 and no input
is applied at its ports we can observe the output Qy.t/ for t 2 Œ0; T � and the energy
kQyk2 emitted at the system’s output ports.

We consider a state as hard to reach if the minimal energy needed to steer the
system to that state is large. Similarly, a state whose output energy is small leaves a
weak mark and is therefore considered to be hard to be observed.

The minimal input energy needed and the maximal energy emitted can be
calculated via the finite and the infinite controllability Gramian

P.T / D
Z T

0

eAtBBT eAT tdt and P D
Z 1

0

eAtBBT eAT tdt (4.18a)
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and the finite and infinite observability Gramian

Q.T / D
Z T

0

eAT tCTCeAtdt and Q D
Z 1

0

eAT tCTCeAtdt; (4.18b)

respectively. Note that the system (4.4) is assumed to be stable. Furthermore, the
above definition is valid for the case E D In�n. The latter does not mean a limitation
of the method of Balanced Truncation to standard state space systems. In fact, these
considerations can be applied to descriptor systems as well, e.g., [54].

With the above definitions one can prove that the minimal energy needed, i.e.,
the energy connected to the most economical input Nu, to reach the state Nx holds

kNuk22 D NxTP�1 Nx:

Similarly, the energy emitted due to the state Qx holds

kQyk22 D QxQ Qx:

The Gramians are positive definite. Applying a diagonalization of the control-
lability Gramian, it is easy to see that states that have a large component in the
direction of eigenvectors corresponding to small eigenvalues of P are hard to reach.
In the same way it is easy to see that states pointing in the direction of eigenvectors
to small eigenvalues of the observability Gramian Q are hard to observe.

The basic idea of the Balanced Truncation MOR approach is to neglect states that
are both hard to reach and hard to observe. This marks the truncation part. However,
to reach this synchrony of a state being both hard to reach and hard to observe,
the basis of the state space has to be transformed. This marks the balancing part.
Generally, a basis transformation introduces new coordinates Qx such that x D T�1 Qx
where T is the matrix representation of the basis transformation. Here the Gramians
transform equivalently to

QP D TPTT and QQ D T�1QT�T :

The transformation T is called balancing transformation and the system arising
from applying the transformation to the system (4.4) is called balanced if the
transformed Gramians satisfy

QP D QQ D diag.�1; : : : ; �n/: (4.19)

The values �1; : : : ; �n are called Hankel Singular Values. They are the positive
square roots of the eigenvalues of the product of the Gramians:

�l D p
�k.P � Q/; l D 1; : : : ; n:
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Now we assume that the eigenvalues are sorted in descending order, i.e., �1 	
�2 	 � � � 	 �n. We introduce the cluster

0
BBBBBBBBB@

�1
: : :

�r

�rC1
: : :

�n

1
CCCCCCCCCA

D
�
˙1

˙2

�
;

and adopt this to the tranformed input-output system11

0 D
�PQx1.t/

PQx2.t/
�

C
� QA11

QA12

QA21
QA22

��Qx1.t/
Qx2.t/

�
C
� QB1

QB2
�

u.t/;

y.t/ D .C1;C2/

�Qx1.t/
Qx2.t/

�
;

(4.20)

such that Qx1 2 R
r and Qx2 2 R

n�r .
Finally we separate the cluster and derive the reduced order model

0 D POx11.t/C QA1 Ox1.t/C QB1u.t/; (4.21a)

Qy1.t/ D QC1 Ox1.t/ (4.21b)

of dimension r � n, by skipping the part corresponding to the small eigenvalues
�rC1; : : : ; �n of both Gramians.

Important Properties

Balanced Truncation is an appealing MOR technique because it automatically
preserves stability.

Furthermore, and even more attractive is that this MOR approach provides a
computable error bound: Let �rC1; : : : ; �k be the different eigenvalues that are
truncated. Then, for the transfer function H1 corresponding to (4.21), it holds

kH � H1kH
1


 2 .�rC1 C � � � C �k/ ; (4.22)

where the H1 norm is defined as kHkH
1

WD sup!2R kH.i!/k2 where k � k2 is the
matrix spectral norm.

11To simplify matters we have chosen E D In�n D diag.1; : : : ; 1/ 2 R
n�n and D D 0.
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Computation

Applying the method of Balanced Truncation as presented above makes it necessary
to compute the Gramians and the simultaneous diagonalization of the Gramians.

The infinite Gramians P and Q are defined by infinity integrals. However, it is
not hard to show that they arise from solving the Lyapunov equations:

AP C PAT C BBT D 0

ATQ C QA C CTC D 0
(4.23)

Having solved the Lyapunov equations, one way to determine the balancing
transformation is described by the square root algorithm (see e.g. [1]). The basic
steps in this approach are the computation of the Cholesky factorisations of the
Gramians P D ST S and Q D RTR and the singular value decomposition of the
product SRT .

In the past Balanced Bruncation was not favored because the computation of
the solution of the high dimensional matrix equations (4.23) and the balancing was
very cumbersome and costly. In recent years however, progress was made in the
development of techniques to overcome these difficulties. Techniques that can be
applied to realize the Balanced Truncation include the ADI method [30], the sign
function method [4] or other techniques, e.g. [49]. For a collection of techniques we
also refer to [5].

Poor Man’s TBR

Another method that should be mentioned is Poor Man’s TBR,12 introduced
by Phillips and Silveira [37]. Balanced Truncation relies on the Gramians. The
methods we mentioned so far compute these Gramians based on the Lyapunov
equations (4.23).

The idea of Poor Man’s TBR (PMTBR) however, is to compute the Gramians
from their definition (4.18). If the system to be reduced is symmetric, i.e. A D AT

and C D BT , P and Q coincide. The (controllability and observability) Gramian
is then defined as

P D
Z 1

0

eAtBBT eAT tdt:

As the Laplace transform of eAt is .sI�A/�1, we can apply Parseval’s lemma, which
says that a signal’s energy in the time domain is equal to its energy in the frequency

12TBR D Truncated Balanced Realization
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domain and transfer the time domain integral to the frequency domain:

P D
Z 1

�1
.i!I � A/�1BBT .i!I � A/�Hd!:

PMTBR now starts with applying a numerical quadrature scheme: With nodes
!k , weights wk and defining zk D .i!kI � A/�1B an approximation OP to the
gramian P can be computed as:

P � OP D
X
k

wk zk zHk D ZW � .ZW /H ;

where Z D .z1; z2; : : :/ and W D diag.
p

w1;
p

w2; : : :/.
For further details on the order reduction we refer to the original paper mentioned

above.

4.1.5.2 Modal Truncation

Engineers usually investigate the transfer behavior of an input-output system by
inspecting its frequency response H.i!/ DW G.!/ for frequencies ! 2 R

C. The
Bode plot, i.e. the combination of the Bode magnitude and phase plot, expressing
how much a signal component with a specific frequency is amplified or attenuated
and which phase shift can be observed from in- to output, respectively, is a graphical
representation of the frequency response.

One is especially interested in the peaks and sinks of the Bode magnitude plot,
which are caused by the poles and zeros of the transfer function H. The Modal
Truncation [45] is aimed at constructing a reduced order model (4.10) such that
peaks and sinks of the reduced order model’s frequency response OG.!/ D OH.i!/
match with the one of the full dynamical problem (4.4).

Applying Cramer’s rule it is obvious that the transfer function is a rational
function:

H.s/ D pn�1.s/
qn.s/

;

with polynomials pn�1 and qn of degree n � 1 and n respectively. The zeros of the
numerator are the zeros of the transfer function and the zeros of the denominator are
its poles.

The generalized eigenvalues of the matrix pencil fE;Ag, or the eigenvalues of A,
if we assume E D In�n, are the key to the poles of the transfer function. For a more
detailed discussion we refer to [28]. To illustrate this relation we restrict to the latter
case and consider a SISO system without direct feedtrough, i.e., D D 0.



186 A.C. Antoulas et al.

The eigentriples .�i ; vi ;wi / for i D 1; : : : ; n of A consist of the i th eigenvalue
�i 2 C and the i th right and left eigenvalue vi ;wi 2 C

n, respectively, that satisfy

Avi D �ivi and wH
i A D �iwH

i :

From assuming that A is diagonalizable it can be derived that

LHAR D �;

where � D .�1; : : : ; �n/, R D .v1; : : : ; vn/ and L D .w1; : : : ;wn/ 2 C
n�n, where

the left and right eigenvectors are scaled such that LHR D In�n.
We apply a change of coordinates x D RQx and multiply the input to state

mapping (4.4a) with LH which is a projection on the space spanned by the columns
of R along the space spanned by the columns of L. This transforms the input-output
system (4.4) to

d

dt
Qx D �Qx C LHbu;

y D cHRQx:
(4.24)

The transformed system is equivalent to the original system (4.4), the (scalar)
transfer function can be represented as

H.s/ D
nX
iD1

ri

s � �i with ri D �
cHvi

� �
wH
i b
� 2 C for i D 1; : : : ; n: (4.25)

This form of displaying the transfer function is known as Pole-Residue Representa-
tion, where the quantities ri 2 C are called residues and where we can see that the
eigenvalues of the matrix A are the poles of H.s/.

The idea of modal truncation is to replace the full order problem with a reduced
order model of say order r < n whose transfer function has a pole-residue represen-
tation that is a truncation of the corresponding full model’s representation (4.25), i.e.

OH.s/ D
rX
iD1

ri

s � �i ; (4.26)

where ri and �i for i D 1; : : : ; r are the same as in (4.25). The corresponding state-
space representation (4.10) evolves from carrying out the matrix projections defined
in (4.11) where V;W 2 C

n�r comprises r right and left eigenvectors v1; : : : ; vr and
w1; : : : ;wr , respectively. As no new poles arise by constructing the reduced order
model in this way, the stability property is inherited from the full order problem.

Immediately the question arises, which pairs .�i ; ri / of poles and residues and
how many should be taken into account.
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Rommes [45] and Martins et al. [31] sort these pairs according to decreasing
dominance of the pole. Their measure for dominance of a pole is the magnitude of
the relation

jri j
jre.�i /j :

Hence, modal truncation takes into account the first r poles/residues according to
this ordering scheme. The answer to the second part of the question, i.e., how many
poles/residues to keep, arises from the error bound [20]

kH � OHkH
1



nX

jDrC1

jrj j
jre.�j /j ; (4.27)

and hence from the deviation one is willing to tolerate.
The computation of the error bound (4.27) necessitates a full eigenvalue decom-

position. This is only feasible for moderate orders n 
 2;000. For large scale
systems methods using only a partial eigenvalue decomposition can be applied.
Here the Subspace Accelerated Dominant Pole Algorithm (SADPA), introduced by
Rommes and Martins [46] produces a series of dominant poles. The main principle
of SADPA is to search for the zeros of 1

H.s/ using a Newton-iteration. As the
Newton-iteration can only find one zero sufficiently close to a starting value at a
time, the iteration procedure has to be applied several times. In order to find less
dominant poles at each time, the system the dominant pole algorithm is applied to
is adjusted each time one dominant pole has been found. This adjustment is referred
to as subspace acceleration.

Again, for further details we refer to the papers cited above.

4.1.6 Other Approaches

We shortly address some other approaches. In [26, 40, 41], port-Hamiltonian sys-
tems are considered to guarantee structure preserving reduced models. In [8, 10, 11],
vector fitting techniques are used to obtain passivity preserving reduced models. In
[25, 32, 47], one matches additional moments of Laurent expansions involving terms
with 1=s. These are applied to obtain passive reduced models for RLC circuits.

4.1.7 Examples

In this part we will introduce linear circuits and reduce them with techniques which
have already been discussed. We give results for the methods PRIMA [36], SPRIM
[12–16], and PMTBR [37].
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In simulation a Bode magnitude plot of the transfer function shows the magnitude
of H.i!/, in decibel, for a number of frequencies ! in the frequency domain of
interest. If the transfer function of the original system can be evaluated at enough
points s D i! to produce an accurate Bode plot, the original frequency response can
be compared with the frequency response of the reduced model. In our examples, H
is a scalar.

4.1.7.1 Example 1

We choose an RLC ladder network [33] shown in Fig. 4.1. We set all the capaci-
tances and inductances to the same value 1 while R1 D 1

2
and R2 D 1

5
, see [34, 53].

We arrange 201 nodes which gives us the order 401 for the mathematical model of
the circuit.

If we write the standard MNA formulation the linear dynamical system is
derived. The system matrices are as follows (forK D 3, for example):

E D I; A D

2
666664

�2 0 0 �1 0

0 0 0 �1 1

0 0 �5 0 1

1 1 0 0 0

0 �1 �1 0 0

3
777775
; B D

2
666664

0

0

5

0

0

3
777775
;

C D �
0 0 �5 0 0 � ; D D 5: (4.28)

In the state variable x, xk is the voltage across capacitanceCk (k D 1; : : : ; K), or the
current through inductor Lk�K (k D KC 1; : : : ; 2K � 1). In general the number of
nodes K is odd. The voltage u and the current y are input and output, respectively.
Note that when the number of nodes is K the order of the system becomes n D
2K � 1. In this test case we have an ODE instead of a DAE as E D I, see (4.28).
The original transfer function is shown in Fig. 4.2. The plot already illustrates how
difficult it is to reduce this transfer function as many oscillations appear.

Fig. 4.1 RLC Circuit of order n D 2K � 1, Example 1
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Fig. 4.2 Original transfer function for the first example of Fig. 4.1, order n D 401. The frequency
domain parameter ! varies between 10�2 to 103

Fig. 4.3 RLC Circuit of order n D 2K � 1, Example 2

4.1.7.2 Example 2

Next, we use another RLC ladder network, given in Fig. 4.3 [33, 48], for the second
example. The major difference to the previous example is that we introduced a
resistor (all of equal value) in parallel to the capacitors at each node connected to
the ground. We set all the capacitances and inductances to the same value 1 while
R1 D 1

2
,R2 D 1

5
andR D 1. We choose 201 nodes which results in a system having

order 401 for the mathematical model of the circuit. Like the previous example we
again derive a system of ODEs. The original transfer function of the second example
is shown in Fig. 4.4.
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4.1.7.3 MOR by PRIMA, SPRIM and PMTBR

The main reason for choosing these two examples is the behavior of the Hankel
singular values, see Fig. 4.5. The Hankel singular values for the first example do not
show any significant decay, while in the second example we observe a rapid decay
in the values. The results are taken from [33].

The Figs. 4.6 and 4.7 show the absolute error between the transfer function of
the full system and the transfer function of several reduced systems. The model
is reduced by three linear techniques (PRIMA, SPRIM and PMTBR) for both
examples.
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Fig. 4.6 Error plot, the frequency domain parameter ! varies between 10�2 to 103 , Example 1
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Fig. 4.7 Error plot, the frequency domain parameter ! varies between 10�2 to 103 , Example 2

In the Example 1 we reduced the system from order n D 401 (number of nodes
is K D 201) to order 34, which means that we reduced the system (in all three
methods) by a factor of 10. The order of the reduced model is relatively large in
this case as the dynamical system is somehow stubborn for any reductions, see
Fig. 4.5. The price we will pay for a smaller system is too high as we loose a lot
of information during the reduction and the error is becoming relatively large. As
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we expected, PRIMA and SPRIM in Fig. 4.6 produced reliable results close to the
expansion point, in this case s D 0, but the error is immediately increasing for
the rest of the oscillation part, see Fig. 4.2, and then smoothly decreases for higher
frequencies. In the first example the PMTBR method matches a bit worse for the low
frequencies as the error decreases just for a short interval and immediately starts to
increase again. But PMTBR also cannot cover the oscillation part of the transfer
function although it resolves the higher frequencies well. The order in PMTBR
results from a prescribed tolerance.

For the second example the SPRIM and PRIMA produced a nice match around
the expansion point, s D 0, like the first example, but for a larger interval, see
Fig. 4.7. The peaks of error for both PRIMA and SPRIM are around �50 and
�80 dB, respectively, which are much lower than in Example 1 where the peaks
are around 0 dB for both PRIMA and SPRIM. We allowed PMTBR to reduce the
system by a factor of 20 in this case although we keep the order of the reduced
system the same as for the first example for the PRIMA and SPRIM. Despite the
lower dimension for the reduced system PMTBR produced much better results for
this test case compared to the first example as the error starts from �50 dB and
smoothly decreases for low frequencies and suddenly falls to �300 dB for larger
frequencies.

As we expected, the SPRIM produces a better approximation than PRIMA,
especially for the second example, since it matches twice as much moments.
Although both methods have a good agreement around the expansion point s D 0,
the error increases as we are far from the expansion point. Since the Hankel singular
values for the first example do not decay, the PMTBR method cannot produce an
accurate model for low frequencies in that case. In the second example where the
Hankel singular values rapidly decay PMTBR produced a more reliable result with a
better match. This shows that we cannot stick to one method for reduction in general
and the method should be chosen depending on the circuit’s behavior.

4.1.8 Summary

In industrial applications of different disciplines, model order reduction is gaining
more and more interest. As there is not the one and only type of model to describe
all kinds of dynamics of different physical problems there is not and will never be
the one and only MOR technique that fits best to all problems. Hence, research on
MOR techniques is an ongoing process.

In the following contributions in this chapter you will find different approaches to
different questions, aiming to attack different facets of reduced order models. This
introductory contribution was ment to give an overview of the basic ideas and the
motivation of some MOR techniques that are applied and refined throughout this
chapter.



4 Model Order Reduction: Methods, Concepts and Properties 193

4.2 Eigenvalue Methods and Model Order Reduction

Physical structures and processes are modeled by dynamical systems in a wide
range of application areas.13 The increasing demand for complex components
and large structures, together with an increasing demand for detail and accuracy,
makes the models larger and more complicated. To be able to simulate these
large-scale systems, there is need for reduced-order models of much smaller size,
that approximate the behavior of the original model and preserve the important
characteristics.

In order to preserve the important characteristics, one usually first has to know
what are the important characteristics. For linear dynamical systems, two important
characteristics are the dominant dynamics and stability. The dominant dynamics are
determined by the dominant modes of the system, while stability of the system is
determined by the location of the eigenvalues. Hence, both characteristics can be
computed by solving eigenvalue problems: the dominant dynamics can be found by
computing the dominant eigenvalues (poles) and corresponding eigenvectors, while
stability can be assessed by determining whether the system has no eigenvalues in
the right half-plane (the system is stable if there are no eigenvalues with real part
greater than zero).

A large-scale dynamical system can have a large number of modes. Like a general
square matrix can be approximated by its largest eigenvalues, i.e. by projecting it
onto the space spanned by the eigenvectors corresponding to the largest eigenvalues,
a dynamical system can be approximated by its dominant modes: a reduced order
model, called the modal equivalent, can be obtained by projecting the state space
on the subspace spanned by the dominant eigenvectors. This technique, modal
approximation or modal model reduction, has been successfully applied to scalar
and multivariable transfer functions of large-scale power systems, with applications
such as stability analysis and controller design, see [81, 82].

The dominant eigenvectors, and the corresponding dominant poles of the system
transfer function, are specific eigenvectors and eigenvalues of the state matrix.
Because the systems are very large in practice, it is not feasible to compute all
eigenvectors and to select the dominant ones.

Section 4.2 is concerned with the efficient computation of the dominant poles
and eigenvectors specifically, and their use in model order reduction. The section
is organized as follows. In Sect. 4.2.1 the concept of dominant poles and modal
approximation is explained in more detail. Dominant poles can be computed with
specialized eigensolution methods, as is described in Sect. 4.2.2. Some generaliza-
tions of the presented algorithms are shown in Sect. 4.2.3. Ideas on how to improve
Krylov based MOR methods by using dominant poles are discussed in Sect. 4.2.4.
Numerical examples are presented in Sect. 4.2.5. Section 4.2.6 concludes.

13Section 4.2 has been written by: Joost Rommes and Nelson Martins.
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For general introductions to model order reduction we refer to the previous
Sect. 4.1 and to [58, 60, 61, 88]; for eigenvalue problems, see [87, 93]. More detailed
publications on the contents of this section are [80–85]. The pseudocode algorithms
presented in this section are written using Matlab-like [92] notation.

4.2.1 Transfer Functions, Dominant Poles and Modal
Equivalents

In Sect. 4.2, the dynamical systems .E;A;b; c; d / are of the form

�
E Px.t/ D Ax.t/C bu.t/
y.t/ D c�x.t/C du.t/;

(4.29)

where A;E 2 R
n�n, E may be singular, b; c; x.t/ 2 R

n, u.t/; y.t/; d 2 R. The
vectors b and c are called the input, and output map, respectively. The transfer
functionH W C ! C of (4.29) is defined as

H.s/ D c�.sE � A/�1b C d: (4.30)

The poles of the transfer function in (4.30) are a subset of the eigenvalues �i 2 C

of the matrix pencil .A;E/. An eigentriplet .�i ; xi ; yi / is composed of an eigenvalue
�i of .A;E/ and corresponding right and left eigenvectors xi ; yi 2 C

n:

Axi D �iExi ; xi ¤ 0;

y�
i A D �iy�

i E; yi ¤ 0; .i D 1; : : : ; n/:

The actual occurring poles in (4.30) are identified by the components of the
eigenvectors in in b and c. Assuming that the pencil is nondefective, the right
and left eigenvectors corresponding to the same finite eigenvalue can be scaled so
that y�

i Exi D 1. Furthermore, it is well known that left and right eigenvectors
corresponding to distinct eigenvalues are E-orthogonal: y�

i Exj D 0 for i ¤ j . The
transfer functionH.s/ can be expressed as a sum of residuesRi 2 C over the Qn 
 n

finite first order poles [68]:

H.s/ D
QnX

iD1

Ri

s � �i
CR1 C d; (4.31)

where the residuesRi are

Ri D .c�xi /.y�
i b/;

and R1 is the constant contribution of the poles at infinity (often zero).
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Although there are different indices of modal dominance [57, 64, 94], the
following will be used in this chapter.

Definition 4.1 A pole �i ofH.s/ with corresponding right and left eigenvectors xi
and yi (y�

i Exi D 1) is called the dominant pole if jRi j=jRe.�i /j > jRj j=jRe.�j /j,
for all j ¤ i .

More generally, a pole �i is called dominant if jRi j=jRe.�i /j is not small
compared to jRj j=jRe.�j /j, for all j ¤ i . A dominant pole is well observable
and controllable in the transfer function. This can also be seen in the corresponding
Bode-plot, which is a plot of the magnitude jH.i!/j against ! 2 R: peaks occur
at frequencies ! close to the imaginary parts of the dominant poles of H.s/. In
practise one also plots the corresponding phase of H.i!/. An approximation of
H.s/ that consists of k < n terms with jRj j=jRe.�j /j above some value, determines
the effective transfer function behavior [90] and is also known as transfer function
modal equivalent:

Definition 4.2 A transfer function modal equivalentHk.s/ is an approximation of
a transfer functionH.s/ that consists of k < n terms:

Hk.s/ D
kX

jD1

Rj

s � �j
C d: (4.32)

A modal equivalent that consists of the most dominant terms determines the
effective transfer function behavior [90]. If X 2 C

n�k and Y 2 C
n�k are matrices

having the left and right eigenvectors yi and xi of .A;E/ as columns, such that
Y �AX D � D diag.�1; : : : ; �k/, with Y �EX D I , then the corresponding
(complex) reduced system follows by setting x D X Qx and multiplying from the
left by Y �:

� PQx.t/ D �Qx.t/C .Y �b/u.t/
Qy.t/ D .c�X/Qx.t/C du.t/:

In practice, it is advisable to make a real reduced model in the following way:
for every complex pole triplet .�; x; y/, construct real bases for the right and left
eigenspace via ŒRe.x/; Im.x/� and ŒRe.y/; Im.y/�, respectively. Let the columns of
Xr and Yr be such bases, respectively. Because the complex conjugate eigenvectors
are also in this space, the real bases for the eigenspaces are still (at most) k
dimensional. The real reduced model can be formed by using Xr and Yr in
.Y �
r EXr ; Y �

r AXr ; Y �
r b; X�

r c; d /.
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For stable nondefective systems, the error in the modal equivalent can be
quantified as [64]

kH �Hkk1 D k
nX

jDkC1

Rj

s � �j k1



nX

jDkC1

jRj j
jRe.�j /j ;

where kHk1 is the operator norm induced by the 2-norm in the frequency domain
[58, 64]. An advantage of modal approximation is that the poles of the modal
equivalent are also poles of the original system.

The dominant poles are specific (complex) eigenvalues of the pencil .A;E/ and
usually form a small subset of the spectrum of .A;E/, so that rather accurate modal
equivalents may be possible for k � n. Since the dominant poles can be located
anywhere in the spectrum, specialized eigensolution methods are needed. Because
the dominance of a pole is independent of d , without loss of generality d D 0 in
the following.

4.2.2 Specialized Eigensolution Methods

In this section we describe the Dominant Pole Algorithm and its extension with
deflation and subspace acceleration.

4.2.2.1 The Dominant Pole Algorithm (DPA)

The poles of the transfer function (4.30) are the � 2 C for which lims!� jH.s/j D
1 and can be computed via the roots of G.s/ D 1=H.s/. Applying Newton’s
method leads to the scheme

skC1 D sk � c�vk
w�
kEvk

; (4.33)

where vk D .skE � A/�1b and wk D .skE � A/��c. The algorithm based on
this scheme, also known as the Dominant Pole Algorithm (DPA) [72], is shown in
Algorithm 4.1. Note that strictly speaking the definition of dominance used here
is based on jRj j (and not on jRj j=jRe.�j /j as in Definition 4.1); observe that
in (4.32)Rj D .c�xj /.y�

jb/. The subsequent algorithms offer refinements that may
lead to additional candidates, in any user-specified dominance criterion, including
Definition 4.1.
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Algorithm 4.1 The Dominant Pole Algorithm (DPA)
INPUT: System .E; A; b; c/, initial pole estimate s0, tolerance � � 1

OUTPUT: Approximate dominant pole � (close to s0) and corresponding right and left eigenvec-
tors x and y

1: Set k D 0

2: while not converged do
3: Solve vk 2 C

n from .skE � A/vk D b
4: Solve wk 2 C

n from .skE � A/�wk D c
5: Compute the new pole estimate

skC1 D sk � c�vk
w�

k Evk
D w�

k Avk
w�

k Evk

6: The pole � D skC1 with x D vk and y D wk has converged if

kAvk � skC1Evkk2 < �
7: Set k D k C 1

8: end while

The Dominant Pole Algorithm is closely related to Rayleigh Quotient Iteration
[76, 77]: the only difference is that in DPA the right hand-sides in Step 3 and 4
remain fixed, while in Rayleigh Quotient Iterations these are updated with b D
Evk�1 and c D E�wk�1 every iteration. See [85] for a detailed comparison.

The two linear systems that need to be solved in step 3 and 4 of Algorithm 4.1
to compute the Newton update in (4.33) can be efficiently solved using one LU-
factorization LU D skE � A, by noting that U �L� D .skE � A/�. If an exact
LU-factorization is not available, one has to use inexact Newton schemes, such as
inexact Rayleigh Quotient Iteration and Jacobi-Davidson style methods [67, 89, 91].
In the next section, extensions of DPA are presented that are able to compute more
than one eigenvalue in an effective and efficient way.

4.2.2.2 Deflation and Subspace Acceleration

In practical applications often more than one dominant pole is wanted: one is
interested in all the dominant poles, no matter what definition of dominance is used.
Simply running the single pole algorithm DPA for a number of different initial shifts
will most likely result in duplicate dominant poles. A well known strategy to avoid
computation of already found eigenvalues is deflation, see for instance [87]. It is also
known that subspace acceleration may improve the global convergence: for an n�n
problem, the subspace accelerated algorithm converges within at most n iterations,
although in practice it may need only k � n iterations and will almost never build
a full search space of dimension n, but restart every kmax � n iterations. The use
of subspace acceleration requires that every iteration an approximate pole has to
be selected from the available approximations. This also may improve the global
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convergence, since better approximations than the initial estimate, which may be a
rather crude approximation, become available during the process.

In the next subsections, variants of DPA for the computation of more than one
pole without and with subspace acceleration are discussed. This variant that does not
use subspace acceleration can be implemented efficiently with only constant costs
for deflation, while the subspace accelerated variant has better global convergence.

Throughout the rest of this chapter, let the .n � k/ matrices Xk and Yk have as
their columns the normalized (found) right and left eigenvectors xi and yi (i D
1; : : : ; k) of .A;E/, respectively, and let �k be a diagonal .k � k/ matrix with the
corresponding eigenvalues on its diagonal, i.e. �k D diag.�1; : : : ; �k/, Y �

k AXk D
�k and Y �

k EXk D I . For ease of notation, the subscript k will be omitted if this
does not lead to confusion.

4.2.2.3 DPA with Deflation by Restriction

It can be verified that if X � Xk and Y � Yk have as their columns exact
eigenvectors (normalized so that Y �EX D I ), then the system .Ed ; Ad ;bd ; cd /,
where

Ed D .I � EXY�/E.I � XY�E/;

Ad D .I � EXY�/A.I � XY�E/;

bd D .I � EXY�/b;

cd D .I � E�YX�/c;

has the same poles, eigenvectors and residues, but with the found �i (i D 1; : : : ; k)
and correspondingRi transformed to 0. So in order to avoid recomputing the same
pole, DPA could be applied to the deflated system .Ed ; Ad ;bd ; cd / after having
found one or more poles. This would require solves with .sEd � Ad/ and .sEd �
Ad/

� in step 4 and 5 of Algorithm 4.2,14 but the following theorem shows that it is
sufficient to only replace b by bd and c by cd to ensure deflation.

Theorem 4.2 ([80, Thm. 3.3.1]) The deflated transfer function Hd.s/ D c�
d .sE �

A/�1bd , where

bd D .I � EXY�/b and cd D .I �E�YX�/c;

has the same poles �i and corresponding residuesRi asH.s/ D c�.sE�A/�1b, but
with the residuesRi corresponding to the found poles �i (i D 1; : : : ; k) transformed
to Ri D 0.

14Note that .sEd�Ad/would never be computed explicitly, and that sparse systems .sEd�Ad/x D
bd can be solved efficiently.
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Algorithm 4.2 Dominant Pole Algorithm with deflation (DPAd)

INPUT: System .E; A; b; c/, initial pole estimates s10 ; : : : ; s
p
0 , tolerance � � 1

OUTPUT: Approximate dominant poles � D diag.�1; : : : ; �p/, and corresponding right and left
eigenvectors X D Œx1; : : : ; xp� and Y D Œy1; : : : ; yp�

1: Set k D 0, i D 0, sk D s10
2: while i < p do
3: F Continue until p poles have been found
4: Solve vk 2 C

n from .skE � A/vk D b
5: Solve wk 2 C

n from .skE � A/�wk D c
6: Compute the new pole estimate

skC1 D sk � c�vk
w�

k Evk
D w�

k Avk
w�

k Evk

7: if kAvk � skC1Evkk2 < � (with kvkk2 D 1) then
8: Set i D i C 1

9: Set �ii D skC1

10: Set vk D vk=.w�

k Evk/
11: Set X D ŒX; vk � and Y D ŒY;wk�

12: Deflate: b D b � Evkw�

k b
13: Deflate: c D c � E�wkv�

k c
14: Set skC1 D si0
15: end if
16: Set k D k C 1

17: end while

Proof The proof follows by using the definition of residues and basic linear algebra
[80, Thm. 3.3.1]. ut

In other words, by using bd and cd the found dominant poles are degraded to non
dominant poles ofHd.s/, while not changing the dominance of the remaining poles.
Hence these poles will not be recomputed by DPA applied toHd.s/. Graphically, the
peaks caused by the found poles are ’flattened’ in the Bode plot (see also Fig. 4.8).

Note that if H.s/ D c�.sE � A/�1b C d with d D 0, then the deflated poles
in fact become zeros of Hd.s/. It can be shown that DPA applied to Hd.s/ D
c�
d .sE �A/�1bd and DPA applied toH Qd .s/ D c�

d .sEd �Ad/�1bd produce the same
results [85].

The important result is that the single pole DPA can easily be extended, see
Algorithm 4.2, to an algorithm that is able to compute more than one pole, while
maintaining constant costs per iteration, except for iterations in which a pole is
found. The only change to be made to Algorithm 4.1, is when a dominant pole
triplet .�; x; y/ is found: in that case, the algorithm continues with b and c replaced
by .I � Exy�/b and .I �E�yx�/c, respectively.

This approach has a number of advantages. The implementation is straight-
forward and efficient: search spaces, selection strategies and orthogonalization
procedures are not needed, so that the computational costs per iteration remain
constant, even if the number of found poles increases. For every found pole only
two skew projections are needed once to compute the new bd and cd , so the costs
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Fig. 4.8 Exact transfer function (solid) of the New England test system [72], and modal
equivalents where the following dominant pole (pairs) are removed one by one: �0:467 ˙ 8:96i

(square), �0:297˙ 6:96i (asterisk), �0:0649 (diamond), and �0:249˙ 3:69i (circle). Note that
the corresponding peaks are removed from the Bode plot as well (to see this, check the Bode plot
at the frequencies near the imaginary part of the removed pole)

for deflation are constant. The pseudo code in Algorithm 4.2 can almost literally be
used as Matlab code. The special properties of DPA ensure convergence to dominant
poles (locally). Furthermore, the deflation of found poles is numerically stable in
the sense that even if the corresponding transformed residues are not exactly zero,
which is usually the case in finite arithmetic, this will hardly influence the effect of
deflation: firstly, all the poles are left unchanged, and secondly, already a decrease
of dominance of the found poles to nondominance (because of the projected in- and
output vectors bd and cd ) will shrink the local convergence neighborhood of these
poles significantly, again because of the convergence behavior of DPA [85].

This approach, however, may still suffer from the fact that the convergence
behavior can be very local and hence may heavily depend on the initial estimates si0.
Although in practice one often has rather accurate initial estimates of the poles of
interest, this may be problematic if accurate information is not available. It may take
many iterations until convergence if the initial estimate is not in the neighborhood of
a dominant pole. On the other hand, the computational complexity of this problem
depends on the costs of the LU factorization, which in certain practical examples
can be computed very efficiently. In the next section a subspace accelerated version
of DPA is described, that improves the global convergence by using search spaces.
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Algorithm 4.3 Subspace Accelerated DPA (SADPA)
INPUT: System .E; A; b; c/, initial pole estimate s1 and the number of wanted poles p
OUTPUT: Dominant pole triplets .�i ; xi ; yi /, i D 1; : : : ; p

1: k D 1, pfound D 0, � D Œ �, X D Y D Œ �

2: while pfound < p do
3: Solve v from .skE � A/v D b
4: Solve w from .skE � A/�w D c
5: v D MGS.V; v/, V D ŒV; v=jjvjj2�
6: w D MGS.W;w/, W D ŒW;w=jjwjj2�
7: Compute S D W �AV and T D W �EV

8: . Q�; QX; QY / D Sort.S; T;W �b; V �c/ F Algorithm 4.4
9: Dominant approximate eigentriplet of .A;E/ is

.O�1 D Q�1; Ox1 D V Qx1=kV Qx1k2; Oy1 D W Qy1=kW Qy1k2/

10: if jjAOx1 � O�1E Ox1jj2 < � then
11: .�;X; Y; V;W; b; c/D
12: Deflate.O�1; Ox1; Oy1; �;X; Y; V QX2Wk; W QY2Wk; E; b; c/ F Algorithm 4.5
13: pfound D pfound C 1

14: Set Q�1 D Q�2, k D k � 1

15: end if
16: Set k D k C 1

17: Set the new pole estimate sk D Q�1
18: end while

4.2.2.4 Subspace Accelerated DPA

A drawback of DPA is that information obtained in the current iteration is discarded
at the end of the iteration. The only information that is preserved is contained in
the new pole estimate skC1. The current right and left approximate eigenvectors vk
and wk , however, may also contain components in the direction of eigenvectors
corresponding to other dominant poles. Instead of discarding these approximate
eigenvectors, they are kept in search spaces spanned by the columns of V and W ,
respectively. This idea is known as subspace acceleration.

A global overview of SADPA is shown in Algorithm 4.3. Starting with a single
shift s1, the first iteration is equivalent to the first iteration of the DPA (step 3–4). The
right and left eigenvector approximations v1 and w1 are kept in spaces V andW . In
the next iteration, these spaces are expanded orthogonally, by using modified Gram-
Schmidt (MGS) [63], with the approximations v2 and w2 corresponding to the new
shift s2 (step 5–6). Hence the spaces grow and will contain better approximations.

It can be shown that subspace accelerated DPA, under certain conditions, is
equivalent to subspace accelerated Rayleigh Quotient Iteration and the Jacobi-
Davidson method, see [80, 85] for more details.
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Algorithm 4.4 . Q�; QX; QY / D Sort.S; T;b; c/
INPUT: S; T 2 C

k�k , b; c 2 C
k

OUTPUT: Q� 2 C
k , QX; QY 2 C

k�k with �1 the pole with largest (scaled) residue magnitude and
Qy1 and Qx1 the corresponding right and left eigenvectors.

1: Compute eigentriplets of the pair .S; T /:

.Q�i ; Qxi ; Qyi /; Qy�

i T Qxi D 1; i D 1; : : : ; k

2: Q� D ŒQ�1; : : : ; Q�k�
3: QX D ŒQx1; : : : ; Qxk�
4: QY D ŒQy1; : : : ; Qyk�
5: Compute residues Ri D .c�Qxi /.Qy�

i b/
6: Sort Q�, QX , QY in decreasing jRi j=jRe.Q�i /j order

Selection Strategy

In iteration k the Petrov-Galerkin approach leads (step 7) to the projected eigen-
problem

W �AV Qx D Q�W �EV Qx;
QyW �AV D Q�QyW �EV:

Since the interaction matrices S D W �AV and T D W �EV are of low dimension
k � n, the eigentriplets . Q�i ; Qxi ; Qyi / of this reduced problem can be computed
using the QZ method (or the QR method in the bi-E-orthogonal case) (step 1
of Algorithm 4.4). This provides k approximate eigentriplets . O�i D Q�i ; Oxi D
V Qxi ; Oyi D W Qyi / for .A;E/. The most natural thing to do is to choose the triplet
. O�j ; Oxj ; Oyj / with the most dominant pole approximation (step 8–9): compute the
corresponding residues ORi D .c� Oxi /.Oy�

i b/ of the k pairs and select the pole with
the largest j ORj j=jRe. O�j /j (see Algorithm 4.4). The SADPA then continues with the

new shift skC1 D O�j (step 16).
The residues ORi can be computed without computing the approximate eigen-

vectors explicitly (step 5 of Algorithm 4.4): if the Qxi and Qyi are scaled so that
Qy�
i T Qxi D 1 (D Oy�

i E Oxi ), then it follows that the ORi can be computed as ORi D
..c�V /Qxi /.Qy�

i .W
�b// (D .c� Oxi /.Oy�

i b/).
Instead of Oy�

i E Oxi D 1 one can also use the scaling kOyik2 D kOxik2 D 1 when
computing approximate residues. In that case the product of the angles †.Oxi ; c/ and
†.Oyi ;b/ is used in the computation of the approximate residues (see also [85]),
which numerically may be more robust.
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Algorithm 4.5 .�;X; Y; QV ; QW ;bd ; cd / D Deflate.�; x; y; �;X; Y; V;W;E;b; c/
INPUT: � 2 C, x; y 2 C

n, � 2 C
p , X; Y 2 C

n�p, V;W 2 C
n�k , E 2 C

n�n, b; c 2 C
n

OUTPUT: � 2 C
q , X; Y 2 C

n�q , QV ; QW 2 C
n�k�1,bd ; cd 2 C

n, where q D pC 1 if � has zero
imaginary part and q D p C 2 if � has nonzero imaginary part.

1: � D Œ�; ��

2: Set x D x=.y�Ex/
3: X D ŒX; x�
4: Y D ŒY; y�
5: Deflate: bd D b �Ex.y�b/
6: Deflate: cd D c � E�y.x�c/
7: if imag.�/ ¤ 0 then
8: F Also deflate complex conjugate
9: � D Œ�; N��

10: x D Nx, X D ŒX; x�
11: y D Ny, Y D ŒY; y�
12: Deflate: bd D bd � Ex.y�bd /
13: Deflate: cd D cd � E�y.x�cd /
14: end if
15: QV D QW D Œ �

16: for j D 1; : : : ; k do
17: QV D Expand. QV ;X; Y; E; vj / F Algorithm 4.6
18: QW D Expand. QW ; Y;X;E�;wj / F Algorithm 4.6
19: end for

Deflation

In each iteration step a convergence test (step 10) is done like in DPAd (Algo-
rithm 4.2): if for the selected eigentriplet . O�1; Ox1; Oy1/ the norm of the residual
jjAOx1 � O�1E Ox1jj2 is smaller than some tolerance �, it is converged. In general
more than one dominant eigentriplet is wanted and it is desirable to avoid repeated
computation of the same eigentriplet. The same deflation technique as used in DPAd
can be applied here (steps 5–6 and 12–13 of Algorithm 4.5, see also Sect. 4.2.2.3),
and since SADPA continues with bd and cd , no explicit E-orthogonalization of
expansion vectors against found eigenvectors is needed in step 3 and 4. The effect is
similar to the usual deflation in Jacobi-Davidson methods [62]: found eigenvectors
are hard-locked, i.e. once deflated, they do not participate and do not improve during
the rest of the process (contrary to soft-locking, where deflated eigenvectors still
participate in the Rayleigh-Ritz (Ritz-Galerkin) procedure and may be improved, at
the cost of additional computations and administration, see [69, 70]). In fact, there
is cheap explicit deflation without the need for implicit deflation (cf. [62, remark 5,
p. 106], where a combination of explicit and implicit deflation is used).
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Algorithm 4.6 V D Expand.V;X; Y;E; v/
INPUT: V 2 C

n�k with V �V D I , X; Y 2 C
n�p , E 2 C

n�n, v 2 C
n, Y �EX diagonal,

Y �EV D 0

OUTPUT: V 2 C
n�.kC1/ with V �V D I and

1: vkC1 D Qp
jD1.I � xj y�

j E

y�

j Exj
/ � v

2: v D Qp
jD1.I � xj y�

j E

y�

j Exj
/ � v

3: v D MGS.V; v/
4: V D ŒV; v=jjvjj2�

If an eigentriplet has converged (steps 11–13 of Algorithm 4.3), the eigenvectors
are deflated from the search spaces by reorthogonalizing the search spaces against
the found eigenvectors. This can be done by using modified Gram-Schmidt (MGS)
and by recalling that, if the exact vectors are found, the pencil

..I � EXY�/A.I � XY�E/; .I � EXY�/E.I � XY�E//

has the same eigentriplets as .A;E/, but with the found eigenvalues transformed to
zero (Algorithm 4.6, see also [62, 67]). Since in finite arithmetic only approxima-
tions to exact eigentriplets are available, the computed eigenvalues are transformed
to  � 0. The possible numerical consequences of this, however, are limited, since
SADPA continues with bd and cd , and as argued in Sect. 4.2.2.3, the residues of the
found poles are transformed to (approximately) zero.

If a complex pole has converged, its complex conjugate is also a pole and the
corresponding complex conjugate right and left eigenvectors can also be deflated. A
complex conjugate pair is counted as one pole. The complete deflation procedure is
shown in Algorithm 4.5.

After deflation of the found pole(s), SADPA continues with the second most
dominant approximate pole (steps 13–16 of Algorithm 4.3).

Further Improvements and Remarks

It may happen that the search spaces V andW become high-dimensional, especially
when a large number of dominant poles is wanted. A common way to deal with
this is to do a thick restart [62, 87]: if the subspaces V and W reach a certain
maximum dimension kmax � n, they are reduced to a dimension kmin < kmax by
keeping the kmin most dominant approximate eigentriplets; the process is restarted
with the reduced V andW (already converged eigentriplets are not part of the active
subspaces V and W ). This procedure is repeated until all poles are found.
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Furthermore, as more eigentriplets have converged, approximations of new
eigentriplets may become poorer or convergence may be hampered, due to rounding
errors in the orthogonalization phase and the already converged eigentriplets. It is
therefore advised to take a small tolerance � 
 10�10. Besides that, as the estimate
converges to a dominant pole, the right and left eigenvectors computed in step 3 and
4 of Algorithm 4.3 are usually more accurate than the approximations computed in
the selection procedure: if the estimate sk is close to an eigenvalue �, then skE �A
may become ill-conditioned, but, as is discussed in [79] and [78, Section 4.3], the
solutions vk and wk have large components in the direction of the corresponding
right and left eigenvectors (provided b and c have sufficiently large components
in those directions). In the deflation phase, it is therefore advised to take the most
accurate of both, i.e., the approximate eigenvector with smallest residual. It may also
be advantageous to do an additional step of two-sided Rayleigh quotient iteration to
improve the eigenvectors.

SADPA requires only one initial estimate. If rather accurate initial estimates are
available, one can take advantage of this in SADPA by setting the next estimate after
deflation to a new initial estimate (step 16 of Algorithm 4.3).

Every iteration, two linear systems are to be solved (step 3 and 4). As was already
mentioned, this can efficiently be done by computing one LU-factorization and
solving the systems by using L and U , and U � and L�, respectively. Because
in practice the system matrices A and E are often very sparse and structured,
computation of the LU-factorizations can be relatively inexpensive.

The selection criterion can easily be changed to another of the several existing
indices of modal dominance [57, 64, 94]. Furthermore, the strategy can be restricted
to considering only poles in a certain frequency range. Also, instead of providing the
number of wanted poles, the procedure can be automated even further by providing
the desired maximum error jH.s/ � Hk.s/j for a certain frequency range: the
procedure continues computing new poles until the error bound is reached. Note
that such an error bound requires that the transfer function of the complete model
can be evaluated efficiently for the frequency range of interest.

A Numerical Example

For illustrational purposes, SADPA was applied to a transfer function of the New
England test system, a model of a power system. This small benchmark system has
66 state variables (for more information, see [72]). The tolerance used was � D
10�10 and no restarts were used. Every iteration, the pole approximation O�j with

largest j ORj j=jRe. O�j /j was selected. Table 4.1 shows the found dominant poles and
the iteration number for which the pole satisfied the stopping criterion. Bodeplots
of two modal equivalents are shown in Fig. 4.9. The quality of the modal equivalent
increases with the number of found poles, as can be observed from the better match
of the exact and reduced transfer function.
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Table 4.1 Results for SADPA applied to the New England test system (s1 D 1i )

#Poles #States New pole Iteration Bodeplot

1 2 �0:4672 ˙ 8:9644i 13 –

2 4 �0:2968 ˙ 6:9562i 18 –

3 5 �0:0649 21 Fig. 4.9 (left)

4 7 �0:2491 ˙ 3:6862i 25 –

5 9 �0:1118 ˙ 7:0950i 26 –

6 11 �0:3704 ˙ 8:6111i 27 Fig. 4.9 (right)
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Fig. 4.9 Bode plot of 5th order (left) and 11th order (right) modal equivalent, complete model and
error for the transfer function of the New England test system (66 states in the complete model)

4.2.3 Generalizations to Other Eigenvalue Problems

In this section, four variants of the dominant pole algorithm presented in the
previous section are briefly discussed. In Sect. 4.2.3.1, the theory is extended to
multi-input multi-output systems. A variant of DPA that computes the dominant
zeros of a transfer function is described in Sect. 4.2.3.2. Section 4.2.3.3 describes
the extension to higher-order dynamical systems. Finally, in Sect. 4.2.3.4 it is
shown how DPA can be used for the computation of eigenvalues most sensitive
to parameter changes.

4.2.3.1 MIMO Systems

For a multi-input multi-output (MIMO) system

�
E Px.t/ D Ax.t/C Bu.t/
y.t/ D C �x.t/CDu.t/;
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where A;E 2 R
n�n, B 2 R

n�m, C 2 R
n�p , x.t/ 2 R

n, u.t/ 2 R
m, y.t/ 2 R

p and
D 2 R

p�m, the transfer functionH.s/ W C ! C
p�m is defined as

H.s/ D C �.sE �A/�1B CD: (4.34)

The dominant poles of (4.34) are those s 2 C for which the largest singular value
�max.H.s// ! 1. For square transfer functions (m D p), there is an equivalent
criterion: the dominant poles are those s 2 C for which the absolute smallest
eigenvalue j�min.H

�1.s//j ! 0. This leads, for square transfer functions, to the
following Newton scheme:

skC1 D sk � 1

�min

1

v�C �.skE � A/�2Bu
;

where .�min;u; v/ is the eigentriplet of H�1.sk/ corresponding to �min.H
�1.sk//.

For a dominant pole, the mountain spreads of �max are larger and, therefore, the
neighborhood of convergence attraction is larger than for a less dominant pole,
which would show just a spike. An algorithm for computing the dominant poles
of a MIMO transfer function can be readily derived from Algorithm 4.1. The reader
is referred to [74] for the initial MIMO DPA algorithm and to [81] for an algorithm
SAMDP, similar to SADPA, generalizations to non-square MIMO systems and more
details.

4.2.3.2 Computing the Zeros of a Transfer Function

The zeros of a transfer function H.s/ D c�.sE � A/�1b C d are those s 2 C for
which H.s/ D 0. An algorithm, similar to Algorithm 4.1, can be derived by noting
that a Newton scheme for computing the zeros of a transfer function is given by

skC1 D sk C c�.skE � A/�1b C d

c�.skE � A/�2b
: (4.35)

In fact, it can be shown that the dominant zeros can be computed as the dominant
poles of the inverse transfer function ŒH.s/��1 D c�

z .sEz �Az/
�1bz Cdz, which has

the realization

Az D
	
A b
cT d



; Ez D

	
E 0

0 0



;

bz D
	
0

�1


; cz D

	
0

1



; dz D 0;

In other words, the dominant zeros of H.s/ can be computed by applying DPA to
ŒH.s/��1. See [73] for further details.
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4.2.3.3 Polynomial Eigenvalue Problems

The main idea of using Newton’s method to find dominant poles can be generalized
to higher order systems [84]. For the second-order transfer function H.s/ D
c�.s2M C sC CK/�1b, for instance, the scheme becomes

skC1 D sk � c�v
w�.2skM C C/v

;

where v D .s2kM C skC C K/�1b and w D .s2kM C skC C K/��c. The efficient
use of subspace acceleration on large scale second-order eigenvalue problems is
described in [84].

4.2.3.4 Computing Eigenvalues Sensitive to Parameter Changes

Let p 2 R be a system parameter (e.g., a resistor value R, or 1=R, in an electric
circuit), and let A.p/ and E.p/ be matrices that depend on p. The derivative of an
eigenvalue � of the pencil .A.p/;E.p//, with left and right eigenvectors y � y.p/
and x � x.p/, to a parameter p is given by [66, 75]

@�

@p
D

y�. @A
@p

� �@E
@p
/x

y�Ex
: (4.36)

The derivative (4.36) is often called the sensitivity (coefficient) of �. Assuming that
@E
@p

D 0, with y and x scaled so that y�Ex D 1, the eigenvalue derivative (4.36)
becomes

@�

@p
D y� @A

@p
x: (4.37)

The larger the magnitude of the derivative (4.37), the more sensitive eigenvalue �
is to changes in parameter p. In practical applications such information is useful
when, for instance, a system needs to be stabilized by moving poles from the right
half-plane to the left half-plane [83, 95].

Suppose that the derivative of A to parameter p has rank 1 and hence can be
written as

@A

@p
D bc�; (4.38)

where b; c 2 R
n are vectors. Then the sensitivity of an eigenvalue � with left and

right eigenvectors y and x (with y�Ex D 1) becomes

@�

@p
D y� @A

@p
x D .y�b/.c�x/ D .c�x/.y�b/: (4.39)



4 Model Order Reduction: Methods, Concepts and Properties 209

In the right-hand side of (4.39) one recognizes the residues of the transfer function
H.s/ D c�.sE �A/�1b. Consequently, the most sensitive eigenvalues of the pencil
.A.p/;E/ can be computed by applying DPA to .E;A;b; c/, with b and c defined
by (4.38).

If @A
@p

has rank higher than 1, one can change Algorithm 4.1 as follows to

compute the most sensitive eigenvalues: replace b and c by @A
@p

vk�1 and
�
@A
@p

wk�1
��

,

respectively. The algorithm based on this is called SASPA. For more details and
generalizations to higher rank derivatives and multiparameter systems, see [83].

Having obtained, with the use of SADPA [82] or SAMDP [81], a reduced model
for a large scale system incorporating feedback controllers at nominal parameters,
one may want to find other reduced models for off-nominal parameters in these
controllers. The SADPA and SAMDP are ideal algorithms for this application, since
they benefit from the reduced model information for the nominal parameters. Note
that only a true modal equivalent can benefit from this sensitivity feature, through
the use of the SASPA [83].

4.2.4 Improving Krylov Models by Using Dominant Poles

It is well known that for some examples moment matching works well, while
reduced order models computed by modal approximation are of low quality, and the
other way around [58, 80]. Generally speaking, modal approximation performs best
if there are k � n dominant poles with residues much larger than the residues of
the non-dominant poles. In other words, there is a k � n for which one has jR1j 	
jR2j 	 : : : 	 jRkj  jRkC1j 	 jRn�1j 	 jRnj, so that truncation at the kth pole
does not give a large error [64]. Moment matching based approaches, on the other
hand, perform best if the moments show a similar steep decay. There is, however,
one additional complication for Krylov based moment matching approaches, that is
best explained by an example. Figure 4.10 shows the Bode magnitude plots of an
exact transfer function and of two reduced order models: one modal approximation
and a moment matching approximation. While the modal approximation captures
the dominant dynamics, the moment matching model deviates for ! > 4 rad/s.

The modal approximation matches the original transfer function well because
it is built from the 7 most dominant poles. The moment matching Arnoldi model
(k D 30) was built using left and right Krylov subspaces with shift s0 D 0.
Therefore, the match for frequencies up to ! D 4 rad/s is good. For higher
frequencies, however, this approach suffers from a well known property of Arnoldi
methods, that were originally developed for the computation of eigenvalues: the
eigenvalue approximations, or Ritz values, tend to approximate the eigenvalues at
the outside of the spectrum [93]. This can also be seen in Fig. 4.11, where the circles
denote the poles of the moment matching model (note the inverses of the poles are
shown): they match the eigenvalues at the outside. The dominant poles, however,



210 A.C. Antoulas et al.

0 2 4 6 8 10 12 14 16 18 20
−80

−75

−70

−65

−60

−55

−50

−45

−40

−35

Frequency (rad/s)

G
ai

n 
(d

B
)

SADPA (k=12)
PRIMA (k=30)
ORIG (n=66)

Fig. 4.10 Frequency response of complete system (n D 66), modal approximation (k D 12), and
dual Arnoldi model (k D 30)

may be located anywhere in the spectrum, as can also be seen in Fig. 4.11 (squares).
This explains why the Arnoldi model fails to capture the peaks.

Based on the above observations and theory in [65], the idea is to use the
imaginary parts of dominant poles as shifts for the rational Krylov approach, so
that resonance peaks located well within the system frequency bandwidth can also
be captured by Krylov methods. The combined dominant pole – Krylov approach
can be summarized as follows:

1. Compute k � n dominant poles �j D ˛j ˙ ˇj i , with j D 1; : : : k and i Dp�1.
2. Choose interpolation points sj D ˇj i .
3. Construct Vj ;Wj 2 C

n�kj such that their columns are bases for the rational
Krylov [86] spaces

colspan.Vj / D K kj ..sjE � A/�1E; .sjE � A/�1b/

and

colspan.Wj / D K kj ..sjE �A/��E�; .sjE � A/��c/;

respectively.
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Fig. 4.11 Relevant part of pole spectrum of complete system (n D 66), modal approximation
(k D 12), and dual Arnoldi model (k D 30)

4. Project with V D orth.ŒV1; : : : ; Vk�/ and W D orth.ŒW1; : : : ;Wk�/, where orth
constructs an orthogonal basis for the spaces. The size of the reduced model is at
most K D Pk

jD1 kj , matching 2K moments.

4.2.5 Numerical Examples

4.2.5.1 Brazilian Interconnected Power System (BIPS)

The Brazilian Interconnected Power System (BIPS) is a year 1999 planning model
that has been used in practice (see [82] for more technical details). The size of the
sparse matricesA andE is n D 13;251 (the number of states in the dense state space
realization is 1;664). The corresponding transfer function has a non-zero direct
transmission term d . Figure 4.12 shows the frequency response of the complete
model and the reduced model (41 states) together with the error. Both the magnitude
and the phase plots show good matches of the exact and the reduced transfer
functions (a relative error of approximately jjH.s/ � Hk.s/jj=jjHk.s/jj D 0:1,
also for the DC-gain H.0/). Figure 4.13 shows the corresponding step response
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Fig. 4.12 Bode plot (with modulus and phase) of the modal equivalent, the complete model and
the error for the transfer function Psc.s/=Bsc.s/ of BIPS (41 in the modal equivalent, 1664 in the
complete model)

(step u D 0:01).15 The reduced model nicely captures the system oscillations.
The reduced model (30 poles, 56 states) was computed by SADPA in 341 LU-
factorizations (kmin D 1, kmax D 10). This reduced model could be reduced further
to 41 states (22 poles) by removing less dominant contributions, without decreasing
the quality of the reduced model much.

Sensitivity of BIPS

To study the sensitivity of the dominant poles and system stability of BIPS, the
gain (Kpss) of one of the generators is varied between 0 and 30, with increments
of 0:5. Figure 4.14 shows the traces for the most sensitive poles as computed by
SASPA (Sect. 4.2.3.4, see also [83]). The CPU time needed for the 60 runs was
1,450 s. A root-locus plot for all poles, computed using the QR method, confirmed
that the most sensitive poles were found, but needed 33,600 s. Hence, for large-scale
systems, SASPA is a very effective and efficient way to produce relevant root-locus
plots.

15If hk.t/ is the inverse Laplace transform of Hk.s/, the step response for step u.t / D c of the
reduced model is given by y.t/ D R t

0 h.t/u.t / D c.
Pk

iD1.
Ri
�i
.exp.�i t /� 1//C d/.
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Fig. 4.13 Step responses for transfer function Psc.s/=Bsc.s/ of BIPS, complete model and modal
equivalent (41 states in the modal equivalent, 1664 in the complete model, step disturbance of
0:01 pu)

4.2.5.2 The Breathing Sphere

Figure 4.15 shows the frequency response of a 70th order Second-Order Arnoldi
[59] reduced model of vibrating body from sound radiation analysis (n D 17;611

degrees of freedom, see [71]), that was computed using the complex parts iˇ of five
dominant poles � D ˛ C iˇ (computed by Quadratic DPA [84]) as interpolation
points, as described in Sect. 4.2.4. This model is more accurate than reduced order
models based on standard Krylov methods and matches the peaks up to ! D 1 rad/s,
because of use of shifts near the resonance frequencies. This model is a good
example of the combined dominant pole – rational Krylov approach, since modal
approximations of similar quality require too much CPU time, while Krylov models
with uniformly spaced shifts do not capture the peaks.

4.2.6 Concluding Remarks

In this chapter eigenvalue methods, based on the Dominant Pole Algorithm, for
the computation of a few specific eigenvalues were discussed. The methods can
be used to solve large-scale eigenvalue problems arising in real-life applications
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and simulation of dynamical systems, for instance for the computation of transfer
function dominant poles and zeros, and eigenvalues most sensitive to parameter
changes. Furthermore, the corresponding eigenvectors can be used for construction
of reduced-order models (modal equivalents) or to improve Krylov-based models.
The dominant poles can be used to determine shifts in rational Krylov methods for
computing reduced-order models. The practical application of the algorithms was
illustrated by numerical experiments with real-life examples.

4.3 Passivity Preserving Model Order Reduction

In this Section we are concerned with dynamical systems
P D .E;A;B;C;D/ of

the form

�
EPx.t/ D Ax.t/C Bu.t/
y.t/ D C�x.t/C Du.t/;

(4.40)

where A;E 2 R
n�n, E may be singular (we assume E is symmetric and positive

(semi) definite), B 2 R
n�m, C 2 R

n�p, D 2 R
p�m, x.t/ 2 R

n, y.t/ 2 R
p and



4 Model Order Reduction: Methods, Concepts and Properties 215

10−1 100 101
−250

−200

−150

−100

−50

0

50

Frequency (rad/sec)

G
ai

n 
(d

B
)

k=70 (RKA)
Exact
Rel Error

Fig. 4.15 Exact and reduced system transfer functions for a vibrating body, computed by a rational
Krylov method with resonance frequencies as complex interpolation points

u.t/ 2 R
m.16 The matrix E is called the descriptor matrix, the matrix A is called

the state space matrix, the matrices B and C are called the input and output map,
respectively, and D is the direct transmission map. The vectors u.t/ and x.t/ are
called the input and the state vector, respectively, and y.t/ is called the output of the
system. The dimension n of the state is defined as the complexity of the system

P
.

These systems often arise in circuit simulation, for instance, and in this application
the system

P
is often passive.17

The transfer function G W Cm ! C
p, of (4.40),

G.s/ D C�.sE � A/�1B C D;

can be obtained by applying the Laplace transform to (4.40) under the condition
x.0/ D 0. The transfer function relates outputs to inputs in the frequency domain
via Y.s/ D G.s/U.s/, where Y.s/ and U.s/ are the Laplace transforms to y.t/ and
u.t/, respectively.

16Section 4.3 has been written by: Maryam Saadvandi and Joost Rommes. For further details see
the MSc-Thesis of the first author [108]. Her further research is found in her Ph.D.-Thesis [109].
17Passivity condition is one of the important concepts and many researches have been studying it,
[97–101, 104, 106, 107].
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We want to reduce the original system
P

to a reduced order model OP D
. OE; OA; OB; OC;D/

( OE POx.t/ D OAOx.t/C OBu.t/
Oy.t/ D OC� Ox.t/CDu.t/;

(4.41)

where OA; OE 2 R
k�k , OB 2 R

k�m, OC 2 R
k�p , D 2 R

p�m, Ox.t/ 2 R
k , Oy.t/ 2 R

p ,
u.t/ 2 R

m and k � n.
It is important to produce a reduced model that preserves stability and passivity.

Remark 4.1 Throughout the reminder of this chapter it is assumed that:

• m D p such that B 2 R
n�p , C 2 R

p�n and D 2 R
p�p .

• A is a stable matrix i.e. Re.�i / < 0 with �i 2 �.A/; i D 1; � � � ; n.
• The system

P
is observable and controllable [112] and it is passive.

Spectral zeros play an important role in guaranteeing passivity as will be
explained in the next sections. In Section 4.3.3 the spectral zeros and the method
for computing them are introduced. In the following we describe two projection
reduced order methods from literature for reducing the system, that aim to produce
a reduced transfer function, which has the specified roots at selected spectral zeros.
These methods have been developed by Sorensen [110] and Antoulas [96].

4.3.1 Model Reduction via Projection Matrices

We assume that M and N are k-dimensional subspaces of Rn. V and W are built for
reducing the system by a projection method. So we construct V D fv1; � � � ; vkg 2
R
n�k , of which the column vectors vi form a basis of M, and W D fw1; � � � ;wkg 2

R
n�k , of which the column vectors wj form a basis of N (we are interested in

W �V D Ik). We assume that V and W are time-invariant.
We suppose x 2 M is an approximate solution of˙ . Hence we can write x D VOx,

where Ox 2 R
k and Px D VPOx. Then the residual is

EPx � Ax � Bu D EVPOx � AVOx � Bu:

Next, we assume that this residual is orthogonal to N

W�.EVPOx � AVOx � Bu/ D 0;
) W�EVPOx � W�AVOx � W�Bu D 0:
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Then the reduced model Ȯ becomes:
( OEPOx.t/ D OAOx.t/C OBu.t/;

Oy.t/ D OC� Ox.t/C Du.t/;

where OA D W�AV 2 R
k�k; OE D W�EV 2 R

k�k , OB D W�B 2 R
k�m, OC D CV 2

R
k�p , Ox.t/ D VOx 2 R

k and y D Oy.t/ 2 R
p [105].

4.3.2 Passive Systems

We can reduce the model by V and W, which are constructed in the previous
Sect. 4.3.1. With arbitrary V and W, some features of the original system may not
be preserved. One of these properties, which we are interested in to preserve, is
passivity.

The matrix A is assumed to be stable, which means all its eigenvalues are in the
open left half-plane. Passivity is defined using an energy concept.

Definition 4.3 A system is passive if it does not generate energy internally, and
strictly passive if it consumes or dissipates input energy [110].

In other words˙ is passive if

Re
Z t

�1
u.�/�y.�/d� 	 0; 8t 2 R; 8u 2 L2.R/

or strictly passive if

9ı > 0 s.t. Re
Z t

�1

u.�/�y.�/d� 	 ı � Re
Z t

�1

u.�/�u.�/d�; 8t 2 R; 8u 2 L2.R/

Another more practical definition of passivity is based on the transfer function G.s/
in the frequency domain:

Definition 4.4 [110] The system ˙ is passive iff the transfer function G.s/ is
positive real, which means that:

1. G.s/ is analytic for Re.s/ > 0,
2. G.Ns/ D G.s/, 8s 2 C,
3. G.s/C .G.s//� 	 0 for Re.s/ > 0 where

.G.s//� D B�.sE� � A�/�1C C D�:
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We try to construct the V and W in such a way that the transfer function of the
reduced model has the above three properties. Property 3 implies the existence of a
stable rational matrix function K.s/ 2 R

p�p (with stable inverse) such that

G.s/C .G.�s//� D K.s/K�.�s/:

We prove this only for the scalar case p D 1 of the transfer function. Let G.s/ be
a scalar, positive-real transfer function with real coefficients. The spectral zeros of
G are defined as the zeros of G.s/ C G�.�s/. Since all coefficients of G are real,
we have G�.�s/ D G.�s/. Since G.s/ is scalar, we can write G.s/ D n.s/

d.s/
, where

n.s/ and d.s/ are polynomials of degree 
 kC 1 (in this note we assume k is even;
a similar explanation holds when k is odd). Note that .G.�s//� D n�.�s/

d�.�s/ . Now we
have

G.s/C .G.�s//� D n.s/

d.s/
C n�.�s/
d�.�s/

D n.s/d�.�s/C d.s/n�.�s/
d.s/d�.�s/

D r.s/r�.�s/
d.s/d�.�s/ : (4.42)

We focus on proving (4.42). We will use the following identies:

n.s/ D
k=2X
iD0

�2i s
2i C

k=2X
iD0

�2iC1s2iC1 D AC B;

d.s/ D
k=2X
iD0

ı2i s
2i C

k=2X
iD0

ı2iC1s2iC1 D C CD:

It is easy to see that

n.�s/ D
k=2X
iD0

�2i s
2i �

k=2X
iD0

�2iC1s2iC1 D A� B;

d.�s/ D
k=2X
iD0

ı2i s
2i �

k=2X
iD0

ı2iC1s2iC1 D C �D:
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For the sum n.s/d.�s/C n.�s/d.s/ we then have

n.s/d.�s/C n.�s/d.s/ D .AC B/.C �D/C .A� B/.C CD/D 2AC � 2BD

D 2

2
4 k=2X
iD0

�2i s
2i

3
5
2
4 k=2X
iD0

ı2i s
2i

3
5

�2
2
4 k=2X
iD0

�2iC1s2iC1
3
5
2
4 k=2X
iD0

ı2iC1s2iC1
3
5

D Qv.s/� Qw.s/:

Note that

Qv.s/ D ˛0 C ˛1s
2 C ˛2s

4 C � � � C ˛ks
2k;

Qw.s/ D ˇ1s
2 C ˇ2s

4 C ˇ3s
6 C � � � C ˇkC1s2kC2:

So, we have

t.s/ WD Qv.s/� Qw.s/ D ˛0 C .˛1 � ˇ1/s2 C � � � C .˛k � ˇk/s2k � ˇkC1s2kC2:

Clearly, if s0 is a zero of t.s/, so is �s0. Consequently, we can factorize t.s/ as
t.s/ D r.s/r.�s/. Summarizing, we finally have

n.s/d.�s/C n.�s/d.s/ D Qv.s/ � Qw.s/ D t.s/ D r.s/r.�s/;
which proves (4.42). �

This last result equals K.s/K�.�s/, i.e., this is the spectral factorization of G.
HereK is a called the spectral factor ofG. The zeros ofK , i.e. the �i , i D 1; � � � ; n
such that det.K.�i // D 0, are the spectral zeros of G.

4.3.3 Spectral Zeros and Generalized Eigenvalue Problem

We start this section with explaining a generalized eigenvalue problem, which
Sorensen used in [110]. It brings together the theory of positive real interpolation by
Antoulas [96] and the invariant subspace method for interpolating the spectral zeros
by Sorensen.

First we recall that for the transfer function G.s/ we have

G.s/ D C�.sE � A/�1B C D; and thus;

.G.�s//� D B�.�sE� � A�/�1C C D�;

D B�.sE� � .�A�//�1.�C/C D�:
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Then we compute G C G�,18

G.s/C .G.�s//� D .C�.sE � A/�1B C D/C .B�.sE� � .�A�//�1.�C/C D�/

D �
C� B�

� 	 .sE � A/�1 0

0 .sE� � .�A�//�1


 	
B

�C



C .D C D�/

D �
C� B�

� �
s

	
E 0

0 E�



�
	

A 0

0 �A�


�
�1 	

B
�C



C .D C D�/:

Note that this is the transfer function of the following system:
8̂
ˆ̂<
ˆ̂̂:

	
E 0

0 E�



Px.t/ D
	

A 0

0 �A�



x.t/C
	

B
�C



u.t/

y.t/ D �
C B

��
x.t/C .D C D�/u.t/

(4.43)

Let

A D
2
4 A 0 B

0 �A� �C
C� B� D C D�

3
5 and E D

2
4E

E�
0

3
5 :

The finite spectral zeros of G are the set of all finite complex numbers � such that

Rank.A � �E/ < 2nC p;

i.e., the finite generalized eigenvalues �.A;E/. The set of spectral zeros is denoted
as SG .

Lemma 4.1 If � is a generalized eigenvalue �.A��E/ in SG then �N� also belongs
to SG , i.e.,

� 2 SG ) �N� 2 SG since Aq D �Eq ) Qq�A D .�N�/ Qq�E;

where q� D Œx�; y�; z�� is a right eigenvector and Qq� D Œy�;�x�; z��. Also

� 2 SG ) �N� 2 SG since rA D �rE ) AQr� D .�N�/EQr�;

where r� D Œx1�; y1�; z1�� is a left eigenvector and Qr� D Œ�y1�; x1�; z1��.

18Block wise inversion:

	
A B

C D



�1

D
	
A�1 C A�1B.D � CA�1B/�1CA�1 �A�1B.D � CA�1B/�1

�.D � CA�1B/�1CA�1 .D � CA�1B/�1
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Proof If � 2 �.A � �E/ and q is the corresponding eigenvector then

Aq D �Eq

or

2
4 A 0 B

0 �A� �C
C� B� D C D�

3
5
2
4 x

y
z

3
5 D �

2
4E

E�
0

3
5
2
4 x

y
z

3
5

By taking conjugates and changing rows one obtains

�
y� �x� z� �

2
4 A 0 B

0 �A� �C
C� B� D C D�

3
5 D �N� �y� �x� z� �

2
4E

E�
0

3
5 ; or

Qq�A D �N� Qq�E:

Now we can conclude that �N� 2 SG and that Qq� is its corresponding eigenvector.
The proof is similar for the left eigenvectors [110]. �

If specified spectral zeros are preserved (interpolated) in the reduced model with
S OG then a passive reduced model will result. For real systems, S OG must include
conjugate pairs of spectral zeros. This result is based on Antoulas’ theorem [96]:

Theorem 4.3 (Antoulas) Suppose S OG � SG and also that OG.�/ D G.�/ for all
� 2 S OG and that OG is a minimal degree rational interpolant of the values of G on

the set S OG . Then the reduced system OP with transfer function OG is both stable and
passive.

4.3.4 Passivity Preserving Model Reduction

Theorem 4.3 indicates that Antoulas’s approach [96] preserves passivity for the
reduced model when spectral zero interpolation is applied. The interpolation is
guaranteed by building the projection matrices using a Krylov subspace method
[103, 111]. Antoulas’ method [96] significantly differs from PRIMA [107]. For a
detailed comparison between PRIMA and Antoulas’s approach we refer to [105].

In Antoulas’ method it is assumed that the system ˙ with transfer function G.s/
is passive. Then one defines a set S1 � SGstable where SGstable is the set of stable
spectral zeros and one takes S2 D �S1. Antoulas [96] has shown that the reduced
system Ȯ with transfer function OG.s/ is passive if the set of interpolation points is
S1 [ S2.
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A second approach has been introduced by Sorensen [110], which can be seen
as an interpolatory model reduction too. It is based on invariant subspaces. In this
method it is not necessary that the spectral zeros (interpolation points) are computed
in advance. Sorensen’s approach transfers the model reduction problem into an
eigenvalue problem. In this case the eigenvalues are the spectral zeros of the transfer
function of the original system. Then the projection matrices are built from a basis
for a chosen invariant subspace.

Choosing different spectral zeros gives us different invariant subspaces, which
return different reduced models. Although these reduced models are passive, they
may not be a good approximation to the original system. So the selection of spectral
zeros must guarantee that the reduced model is a good approximation to the original
ones.

In large scale problems in which the eigen computation of the resulting highly-
structured eigenvalue problem should be done iteratively, all selection criteria can
not be satisfied. So the problem has two goals: the first one is to have a good
approximation of the original model, the second one is to be suitable as an iterative
scheme for large-scale dynamical systems.

4.3.5 Model Reduction by Projection

We will construct a basis for a selected invariant subspace of the pair .A;E/
(Sorensen [110]). Let

AQ D EQR

be a partial real Schur decomposition for the pair .A;E/. Then, Q�Q D I and R is
real and quasi-upper triangular. LetQ D ŒX�;Y�;Z��� be partitioned in accordance
with the block structure of A:

2
4 A 0 B

0 �A� �C
C� B� D C D�

3
5
2
4X

Y
Z

3
5 D

2
4E

E�
0

3
5
2
4X

Y
Z

3
5R

)
2
4 A 0 B

0 �A� �C
C� B� D C D�

3
5
2
4X

Y
Z

3
5 D

2
4 EX

E�Y
0

3
5R (4.44)

The projection will be constructed from X and Y and the reduced model will be
obtained out of these. Here it will be useful to have the following lemma [110].

Lemma 4.2 Suppose that R in (4.44) satisfies Re.�/ > 0, 8� 2 �.R/. Then
X�E�Y D Y�EX is symmetric.
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Proof We start with

AQ D EQR: (4.45)

By (4.45) and according to the previous proof we have

OQ�A D .�R�/ OQ�E where OQ� D �
Y� �X� Z� � ; (4.46)

If we multiply equation (4.45) with OQ� from the left, then we get

OQ�AQ D OQ�EQR: (4.47)

We substitute the right part of equation (4.46) in the left part of equation (4.47),
giving

.�R�/ OQ�EQ D OQ�EQR

) R� OQ�EQ C OQ�EQR D 0: (4.48)

Here

OQ�EQ D �
Y� �X� Z� �

2
4E

E�
0

3
5
2
4X

Y
Z

3
5

D Y�EX � X�E�Y: (4.49)

If we substitute (4.49) in (4.48) we obtain

R�.Y�EX � X�E�Y/C .Y�EX � X�E�Y/R D 0: (4.50)

Therefore the equation (4.50) has the unique solution19:

Y�EX � X�E�Y D 0;

and hence

Y�EX D X�E�Y;

which completes the proof. �

19Equation (4.50) is a simple form (R�X C XR D 0) of a Lyapunov equation of the more
general type AX � XB D C (which has a unique solution if �.A/ \ �.B/ D ˛). Due to the
condition Re.�/ > 0 for � in �.R/, we have that �.R�/ \ �.�R/ D ˛. Hence the Lyapunov
equation (4.50) has a unique (zero) solution.
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For the construction of V and W as projections, we first have to find a basis for an
invariant subspace [102] with all eigenvalues of R in the right half-plane.

Let QxS2Q�
y D X�Y be the SVD of X�Y and note that Qy D QxJ where J is a

signature matrix by virtue of the fact that X�Y is symmetric.
If S 	 0 is nonsingular, put

V D XQxS�1
W D YQyS�1:

(4.51)

It follows that

W�V D .YQyS�1/�XQxS�1

D S��Q�
yY�XQxS�1

(include the SVD form of X�Y) D S��Q�
yQy.S2/�Q�

xQxS�1

(Qx and Qy are unitary matrices) D S��S�S�S�1
D I:

and also we have

V�W D .W�V/� D I:

Now from the SVD of X�Y, let

OX D S.Qx/
�

OY D S.Qy/
�;

and define

V D
2
4V 0 0

0 W 0
0 0 I

3
5 and W D

2
4W 0 0

0 V 0
0 0 I

3
5 :

It is obvious that W�V D I and that

V OX D .XQxS�1/.SQ�
x/;

D XQxQ�
x ;

.Q�
x is unitary matrix/ D X:
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Similarly, W OY D Y, so we have

2
4X

Y
Z

3
5 D

2
4V 0 0

0 W 0
0 0 I

3
5
2
4

OX
OY
OZ

3
5 :

Therefore

OA D W�AV D
2
4

OA 0 OB
0 � OA� � OC
OC� OB� D C D�

3
5 and OE D W�EV D

2
4

OE
OE�

0

3
5 ;

and

2
4

OA 0 OB
0 � OA� � OC
OC� OB� D C D�

3
5
2
4

OX
OY
OZ

3
5 D

2
4

OE
OE�

0

3
5
2
4

OX
OY
OZ

3
5R;

or

2
4

OA 0 OB
0 � OA� � OC
OC� OB� D C D�

3
5
2
4

OX
OY
OZ

3
5 D

2
4

OE OX
OE� OY

0

3
5R:

where OA D W�AV; OE D W�EV; OB D W�B; and OC D V�C.
This shows that S OG � SG and since S OG D �.R/[�.�R�/20 and �.R/ is in the open
right half-plane, the reduced model has no spectral zeros on the imaginary axis.

The previous result is also valid when S is nonsingular. Now we consider the
case S is singular. Beginning with X;Y from (4.44) and with the SVD of X�Y,

20We know that if we have a real matrix A and � 2 �.A/ then N� 2 �.A/. In Lemma 4.1 we showed
that if � 2 SG then �N� 2 SG . Therefore

�; N�; �� and � N� 2 SG:

On the other hand, R is a selected invariant subspace of .A;E/, which means that �.R/ 	 SG .
Now, we need to find a basis for an invariant subspace with eigenvalues of R in the open right
half-plane. As we mentioned above �.R/ and �.�R�/ are a subset of SG . Thus take

S
OG D �.R/[ �.�R�/:
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Algorithm 4.7 Sorensen’s Algorithm [110]
INPUT: System .E; A; B; C;D/,
OUTPUT: Reduced System . OE; OA; OB; OC;D/
1: Compute A;E

2: ŒA1;E1; Z;Q; V;W � D qz.A;E/;
3: Find spectral zeros, � D eig.A;E/;
4: Find the real basis for the right eigenvector matrix V ,
5: Find the positive real spectral zeros and corresponding eingenvectors, �1 D Œ �; V1 D Œ �;
6: for i D 1 W length.�/ do
7: if .real.�.i// > 0 and �.i/ are chosen spectral zeros/ or imag�.i/ D 0

then
8: �1 D Œ�1 �.i/�; V1 D ŒV1 V .W; i /�;
9: end if

10: end for
11: X D V1.1 W n; W/; Y D V1.nC 1 W 2n; W/;
12: ŒQx; S

2;Qy� D svd.X�Y /;
13: Construct the projection matrices, V D XQxS

�1; W D YQyS�1;

14: OE D W �EV ; OA D W �AV ; OB D W �B; OC D CV;

where QxS2Qy D X�Y, specify a cut-off tolerance �c 2 .0; 1/ and let j be the
largest positive integer such that

�j 	 �c�1 where �j D S.j; j /:

Define Qj D Qx.W ; 1 W j /, Sj D S.1 W j; 1 W j/ and then let .Xj /
I D Qj .Sj /�1.

Replace OX�1 D .Xj /
I , V D X.Xj /

I and W D �Y.Xj /
I . According to [110], in

this way, the reduced system is passive and also the stability of the reduced model
is obtained if Z is full rank.

Sorenson’s Algorithm is described in Algorithm 4.7.

4.3.6 Model Reduction by Projection

We want to reduce the original system
P

to OP where the complexity k of OP
is (much) less than that of

P
(k � n) (Antoulas [96]). This reduction must

preserve both stability and passivity and it must be numerically efficient. Antoulas’
Algorithm is described in Algorithm 4.8.

We will look for V;W 2 R
n�k such that VW� is a projection with the additional

condition W�V D Ik (recall that P is a projection matrix if P2 D P ). So, if we
have V and W with W�V D Ik , then indeed

.VW�/2 D VW�:
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Algorithm 4.8 Antoulas’s Algorithm [96]
INPUT: System .E; A; B; C;D/,
OUTPUT: Reduced System . OE; OA; OB; OC;D/

Compute A;E

2: Find spectral zeros, � D eig.A;E/;
�R D Œ �; �C D Œ �;

4: while n � length.�/ do
if�.n/ is positive real, �R D Œ�R �.n/�;

6: if�.n/ is complex and in right half-plane, �C D Œ�C �.n/�;
end while

8: for m D 1 W length.�C/ do
if�C.m/ chosen spectral zeros then

10: �R D Œ�R �C.m/�;
end if

12: end for
V D Œ �; W D Œ �;

14: for q D 1 W length.�R/ do
v D .�R.q/E � A/�1B; w D .��R.q/E� � A�/�1C�;

16: V D ŒV v�; W D ŒW w�;
end for

18: Make a real basis for V and W
W D .W �V /�1W ;

20: OE D W �EV ; OA D W �AV ; OB D W �B; OC D CV;

Given 2k distinct points s1; � � � ; s2k , let

QV D �
.s1In � A/�1B � � � .skIn � A/�1B

�
;

QW D �
.skC1In � A�/�1C � � � .s2kIn � A�/�1C

�
: (4.52)

Now take V D QV and W D QW. QV� QW/�1. We define

OA D W�AV; OB D W�B; OC D V�C: (4.53)

Then we have the following theorem (Antoulas [96])

Proposition 4.1 Assuming that det. QW� QV/ ¤ 0, the projected system OP, defined
by (4.53), interpolates the transfer function of

P
at the points si :

OG.si / D G.si / i D 1; 2; � � � ; 2k:

where si are the spectral zeros.



228 A.C. Antoulas et al.

4.3.7 Numerical Results

In [108] several numerical results are presented for an RLC-circuit that is also found
in [96, 110]. The transfer function is a scalar function G.s/. The starting point is to
compute the spectral zeros (using a generalized eigenvalue method) and then to try
to categorize them related to their magnitude, like distance from the real and the
imaginary axis in order to have a good match in low or high frequency. The reduced
method was obtained by Algorithm 4.8 of Antoulas. A large distance from the real
axis results in a good approximation at high frequencies. A large distance from the
imaginary axis results in a good approximation at low frequencies. In both situations
including the real spectral zeros plays an important role for having a good reduced
model at low frequencies.

One should check if a spectral zero also occurs as a pole and as a zero, both, in
which case the factors .�I � A/ are singular. These spectra zeros should be left out
of the reduction.

In this section we study a circuit which has a descriptor matrix E ¤ In. We
consider the circuit shown in Fig. 4.16. We assume that all capacitors and inductors
have a unit value, R1 D 1

2
˝ , R2 D 1

5
˝ , R2k D 1

3
˝ , where k D 2; 3; � � � ; n and

R2kC1 D 1
4
˝ , where k D 1; 2; � � � ; n.

The order of the original system is 1003 and the selected spectral zeros close to
the real axis are shown in Fig. 4.17. In this case, like before, the reduced model has
a good match at low and at high frequencies, as shown in Fig. 4.18.

4.3.8 Conclusion

We have considered two approaches for passive and stable reduction of dynamical
systems in circuit simulation, based on the methods by Antoulas [96] and Sorenson
[110] that both exploit interpolating spectral zeros. The reduced models preserve
passivity and stability. The original system is reduced by projection matrices, which
are built via spectral zero interpolation. Different selections of spectral zeros give
us different approximations of the original model, which may/may not produce

y

u

R1

R2R3C1 C2 R5

L2 R6

C3 R7

R4L1

Fig. 4.16 RLC Circuit of Order 7
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Fig. 4.17 Spectral zeros of the original model .C/, and spectral zeros of the reduced model .o/.
For interpolation, the spectral zeros close to the real axis are chosen. All selected spectral zeros are
preserved after reduction. The order of the original model is 1003 and it is reduced to 341

Fig. 4.18 Effect of several real spectral zeros, Left: Frequency responses of the original system
and reduced model. The spectral zeros close to the real axis are interpolated. Right: Frequency
response of the error k˙ � Ȯ k2

acceptable reduction. We have considered criteria for selecting the spectral zeros
and also to approximate the original system well in low and high frequency. When
the spectral zeros are chosen close to the real axis, the reduced model matches the
original response well for low frequencies. On the other hand, when they are far
from the real axis, the reduced model is more accurate for high frequencies. As
already shown preserving the real spectral zero plays an important role for having a
good reduction in the whole frequency domain, specially in low frequency. It means
that one should try to save all the real spectral zeros of the system.
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The approaches of Antoulas and Sorensen are equivalent but as Sorensen’s
algorithm works directly with eigenvalues and eigenvectors, it is more usable for
constructing the projection matrices. For the same reason Sorensen’s approach is
more suitable for large scale systems.

4.4 Passivity Preserving Model Reduction Using
the Dominant Spectral Zero Method

The design of integrated circuits has become increasingly complex, thus electro-
magnetic couplings between components on a chip are no longer negligible.21

To verify coupling effects, on-chip interconnections are modeled as RLC circuits
and simulated. As these circuits contain millions of electrical components, the
underlying dynamical systems have millions of internal variables and cannot be sim-
ulated in full dimension. Model order reduction (MOR) aims at approximating the
mathematical description of a large scale circuit with a model of smaller dimension,
which replaces the original model during verification and speeds up simulation. The
reduction method should preserve important properties of the original model (i.e.,
stability, passivity) and have an efficient, robust implementation, suitable for large-
scale applications. RLC circuits describing the interconnect are passive systems,
with positive real transfer functions [113, 116], thus reduced models should also
be passive. A passive reduced model can be synthesized back into an RLC circuit
[113], which is placed instead of the original in the simulation flow. Passive reduced
circuits also guarantee stable simulations when integrated with the overall nonlinear
macro-model [117, 128, 133] during later simulation stages.

The proposed Dominant Spectral Zero Method (dominant SZM) is a model reduc-
tion method which preserves passivity and stability, and is efficiently implemented
using the subspace accelerated dominant pole algorithm (SADPA) [130, 131].
Passivity preservation is ensured via a new approach, that of interpolation at
dominant spectral zeros, a subset of spectral zeros of the original model. Dominant
SZM reduces automatically all passive systems, including those with formulations
unsuitable for PRIMA (first order susceptance-based models for inductive couplings
(RCS circuits) [140] or models involving controlled sources, such as vector potential
equivalent circuit (VPEC) [139] and partial element equivalent circuit (PEEC)
models [136]). In comparison to positive real balanced truncation (PRBT) [129],
dominant SZM efficiently handles systems with a possibly singular E matrix
[see (4.54)]. Unlike modal approximation (MA) [131, 135] where interpolation is
at dominant poles, our method matches the dominant spectral zeros of the original
system, guaranteeing passivity.

21Section 4.4 has been written by: Roxana Ionutiu, Joost Rommes and Athanasios C. Antoulas.
For an extended treatment on the topics of this Section see also the Ph.D. Thesis of the first author
[121].
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The remainder of this section is structured as follows. The introduction continues
with the mathematical setup of MOR in Sect. 4.4.1, and with a brief description
of MOR via spectral zero interpolation in Sect. 4.4.2. Dominant SZM is presented
concisely in Sect. 4.4.3.1 (following [125]). It is extended with the concept of domi-
nance at 1 (Sect. 4.4.3.2), and with an approach for converting the reduced models
to circuit representations (Sect. 4.4.3.3). Numerical results follow in Sect. 4.4.4 and
the section concludes with Sect. 4.4.5. Algorithmic pseudocode for the dominant
SZM – SADPA implementation is given in the Appendix 4.4.6.

4.4.1 Background on MOR

The model reduction framework involves approximation of an original dynamical
system described by a set of differential algebraic equations in the form:

EPx.t/ D Ax.t/C Bu.t/; y.t/DCx.t/C Du.t/; (4.54)

where the entries of x.t/ are the system’s internal variables, u.t/ is the system
input and y.t/ is the system output, with dimensions x.t/ 2 R

n, u.t/ 2 R
m,

y.t/ 2 R
p. Correspondingly, E 2 R

n�n, A 2 R
n�n, .A;E/ is a regular pencil,

B 2 R
n�m, C 2 R

p�n, D 2 R
p�m. The original system ˙.E;A;B;C;D/ is stable

and passive and has dimension n, usually very large. We seek a reduced order model
Ȯ . OE; OA; OB; OC;D/, which satisfies: OEPOx.t/ D OAOx.t/C OBu.t/, Oy.t/ D OCOx.t/C Du.t/,

where Ox 2 R
k , OE 2 R

k�k , OA 2 R
k�k , OB 2 R

k�m, OC 2 R
p�k , D 2 R

p�m. Ȯ is
obtained by projecting the internal variables of the original system x onto a subspace
ColSpan.V/ � R

n�k, along Null.W�/ � R
k�n. The goal is to construct V and

W, such that Ȯ is stable and passive. Additionally, V and W should be computed
efficiently. The reduced matrices are obtained as follows:

OE D W�EV; OA D W�AV; OB D W�B; OC D CV: (4.55)

4.4.2 MOR by Spectral Zero Interpolation

We revise the spectral zero interpolation approach for model reduction as proposed
in [114, 134]. The ingredient for passivity preservation are the spectral zeros of
˙.E;A;B;C;D/, defined as follows:

Definition 4.5 For system˙ with transfer function: H.s/ WD C.sE � A/�1B C D,
the spectral zeros are all s 2 C such that H.s/ C H�.�s/ D 0, where H�.�s/ D
B�.�sE� � A�/�1C�CD�.
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According to [114, 134], model reduction via spectral zero interpolation involves
forming rational Krylov subspaces:

V D Œ.s1E � A/�1B; � � � ; .skE � A/�1B�;

W D Œ.�s�

1 E� � A�/�1C�; � � � ; .�s�

k E� � A�/�1C��; (4.56)

where s1 : : : sk;�s�
1 : : :�s�

k are a subset of the spectral zeros of˙ . By projecting the
original system with matrices (4.56) according to (4.55), the reduced Ȯ interpolates
˙ at the chosen si and their mirror images �s�

i , i D 1; : : : ; k [113, 114]. Projection
matrices V and W insure that the reduced system satisfies the positive real lemma
[113, 114, 116, 134], thus passivity is preserved. If in the original system D ¤ 0,
the reduced system is strictly passive, and realizable with RLC circuit elements. In
Sect. 4.4.3.2 we show one way of obtaining strictly passive reduced systems also
when D D 0.

4.4.3 The Dominant Spectral Zero Method

The new Dominant Spectral Zero Method (dominant SZM) is presented. The
spectral zero method [114, 134] is extended with a dominance criterion for selecting
finite spectral zeros. These are computed efficiently and automatically using the
subspace accelerated dominant pole algorithm (SADPA) [130, 131]. We show in
addition how, for certain RLC models, dominant spectral zeros at 1 can also be
easily interpolated.

4.4.3.1 Dominant Spectral Zeros and Implementation

In [134] it was shown that spectral zeros are solved efficiently from an associated
Hamiltonian eigenvalue problem [127, 137]. In [114, 134] however, the selection of
spectral zeros was still an open problem. We propose a solution as follows: we
extend the concept of dominance from poles [130] to spectral zeros, and adapt
the iterative solver SADPA for the computation of dominant spectral zeros. The
corresponding invariant subspaces are obtained as a by-product of SADPA, and are
used to construct the passivity preserving projection matrices V and W. Essentially,
dominant SZM is the SADPA-based implementation of modal approximation for the
Hamiltonian system associated with G.s/ D ŒH.s/CH�.�s/��1. Recalling Def. 4.5,
the spectral zeros of ˙ are the poles of G.s/, with partial fraction expansion:
G.s/ D P2n

jD1
Rj

s�sj ; where si are the poles of G with associated residues Rj

[126, 131]. The modal approximate of G.s/ is obtained by truncating this sum:
OG.s/ D P2k

jD1
Rj

s�sj . The procedure is outlined next.
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1. Given ˙.E;A;B;C;D/, construct the associated Hamiltonian system ˙s , asso-
ciated with transfer function G.s/:

a. ˙s when DCD� is invertible:

As D
0
@A 0 B

0 �A� �C�
C B� DCD�

1
A;Es D

0
@E 0 0

0 E� 0
0 0 0

1
A;Bs D

0
@ B

�C�
0

1
A�;

Cs D �� �C B� 0
�
; Ds D � D .DCD�/�1 (4.57)

b. ˙s when D D 0:

As D
0
@A 0 B

0 �A� �C�
C B� 0

1
A; Es D

0
@E 0 0

0 E� 0
0 0 0

1
A; Bs D

0
@ B

�C�
I

1
A; Cs D � �C B� I

�

(4.58)

2. Solve the Hamiltonian eigenvalue problem .�;R;L/ D eig.As;Es/, i.e., AsR D
EsR�, L�As D �L�Es . R D Œr1; : : : ; r2n�, L D Œl1; : : : ; l2n� and eigenvalues
� D diag.s1; : : : ; sn;�s�

1 ; : : : ;�s�
n / are the spectral zeros of˙ .

3. Compute residues Rj associated with the stable22 spectral zeros sj , j D 1 : : : n

as follows: Rj D �jˇj , �j D Csrj .l�jEsrj /�1, ˇj D l�jBs:

4. Sort spectral zeros descendingly according to dominance criterion kRj k
jRe.sj /j [130,

Chapter 3], and reorder right eigenvectors R accordingly.
5. Retain the right eigenspace OR D Œr1; : : : ; rk� 2 C

2n�k , corresponding to the
stable k most dominant spectral zeros.

6. Construct passivity projection matrices V and W from the rows of OR: V D
ORŒ1Wn;1Wk�, W D ORŒnC1W2n;1Wk�, and reduce˙ according to (4.55).

As explained in [114, 125, 134], by projecting with (4.55), Ȯ interpolates the k
most dominant spectral zeros of ˙ , guaranteeing passivity and stability. For large-
scale applications, a full solution to the eigenvalue problem in step 2, followed
by the dominant sort 3–4 is computationally unfeasible. Instead, the iterative
solver SADPA [130, Chapter 3] is applied with appropriate adaptations for spectral
zero computation (see Appendix 4.4.6 for the pseudocode). SADPA implements
steps 2–4 efficiently and automatically gives the k most dominant spectral zeros
and associated 2n� k right eigenspace OR. The implementation requires performing
an LU factorization of .sjE � A/ at each iteration. The relevant sj are nevertheless
computed automatically in SADPA, which may have several advantages over other
methods (see [125] for a more detailed cost analysis).

22s 2 C is stable if Re.s/ < 0:
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4.4.3.2 D D 0 and Dominance at s! 1

Systems arising in circuit simulation often satisfy D D 0 in (4.54). In this case, the
projection (4.55), with W and V obtained in step 6 in Sect. 4.4.3.1, gives a lossless
system [125]. This is because W and V only interpolate dominant finite spectral
zeros, whereas the original system has spectral zeros at 1, some of which may be
dominant [120]. A strictly passive system (with all poles in the left half plane) can
nevertheless be obtained by recovering this dominant behavior. For systems often
occurring in circuit simulation this is achieved as follows. Consider the modified
nodal analysis (MNA) description of an RLC circuit:

0
@0 0 0

0 C 0
0 0 L

1
A

„ ƒ‚ …
E

d

dt

0
@ vp
vi

iL

1
A

„ ƒ‚ …
Px

C
0
@ G 11 G 12 E 1

G �
12 G 22 E 2

�E �
1 �E �

2 0

1
A

„ ƒ‚ …
�A

0
@vpvi
iL

1
A

„ƒ‚…
x

D
0
@B1

0
0

1
A

„ƒ‚…
B

u; (4.59)

where u.t/ 2 R
m are input currents and y.t/ D Cx 2 R

m are output voltages,
C D B�. The states are x.t/ D Œvp.t/; vi .t/; iL.t/�T , with vp.t/ 2 R

np the
voltages at the input nodes (circuit terminals), vi .t/ 2 R

ni the voltages at the internal
nodes, and iL.t/ 2 R

niL the currents through the inductors, np C ni C niL D n. C
and L are the capacitor and inductor matrix stamps, respectively. With (4.59) it is
assumed that no capacitors or inductors are directly connected to the input nodes,
thus B 2 Null.E/ and C� 2 Null.E�/. As B and C are right and left eigenvectors
corresponding to dominant poles (and spectral zeros) at 1 [120], the modified
projection matrices are:

QW D ŒW;C��; QV D ŒW;B�; (4.60)

where W and V are obtained from step 6 in Sect. 4.4.3.1. With (4.60), the finite
dominant spectral zeros are interpolated as well as the dominant spectral zeros at
1, and the reduced system is strictly passive [120]. In [125] two alternatives were
proposed for ensuring strict passivity for systems in the more general form (4.54)
with D D 0.

4.4.3.3 Circuit Representation of Reduced Impedance Transfer Function

Reduced models obtained with dominant SZM and other Krylov-type methods
(PRIMA [128], SPRIM [117, 118], SPRIM/IOPOR [115, 138]) are mathematical
abstractions of an underlying small RLC circuit. Circuit simulators however can
only handle mathematical representations to a limited extent, and reduced models
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have to be synthesized with RLC circuit elements. We reduce all circuits with
respect to the input impedance transfer function (i.e., the inputs are the currents
injected into the circuit terminals and the outputs are the voltages measured at the
terminals) [123]. After converting the reduced input impedance transfer function
to netlist format, the reduced circuit can be driven easily by currents or voltages
when simulated. Thus both the input impedance and admittance of an original model
can be reproduced (see Sect. 4.4.4). Here, models obtained with dominant SZM are
converted to netlist representations using the Foster impedance realization approach
[119, 122]. Netlist formats for the SPRIM/IOPOR [115, 117, 138] reduced models
are obtained via the RLCSYN unstamping procedure in [123, 138]. With both
approaches, the resulting netlists may still contain circuit elements with negative
values, nevertheless this does not impede the circuit simulation. Obtaining realistic
synthesized models with positive circuit elements only is still an open problem.

4.4.4 Numerical Results

Two transmission line models are reduced with the proposed dominant spectral
zero method and compared with the input-output structure preserving method
SPRIM/IOPOR [115, 117, 138]. For both circuits, the circuit simulators23 yield
systems in the form (4.59), thus the dominant SZM projection is (4.60). RLC netlist
representations for the reduced models are obtained (see Sect. 4.4.3.3) and simulated
with Pstar.

The RLC transmission line with connected voltage controlled current sources
(VCCSs) from [125] is reduced with dominant SZM, SPRIM/IOPOR [117, 138]
and modal approximation (MA). The transfer function is an input impedance i.e., the
circuit is current driven. Matlab simulations of the original and reduced models, as
well as the Pstar netlist simulations are shown in Fig. 4.19: the model reduced with
Dominant SZM gives the best approximation. Table 4.2 summarizes the reduction:
the number of circuit elements and the number of states were reduced significantly
and the simulation time was sped up.

In [125], the voltage driven input admittance of an RLC transmission line (con-
sisting of cascaded RLC blocks) was reduced directly as shown in Fig. 4.20. Here
we reduce and synthesize the underlying input impedance of the same transmission
line (see Figs. 4.21 and 4.22). When driving the reduced netlist by an input voltage
during the actual circuit simulation, the same input admittance is obtained as if
the input admittance had been reduced directly, as seen in Figs. 4.20 and 4.23.
Table 4.3 summarizes the reduction results. Although the reduced mathematical

23Pstar and Hstar are in-house simulators at NXP Semiconductors, Eindhoven, The Netherlands



236 A.C. Antoulas et al.

2 4 6 8 10 12 14 16 18
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Frequency (rad/s)

M
ag

ni
tu

de
 (

db
)

Frequency response
DominantSZM, Modal Approxiation, SPRIM/IOPOR

n = 1501, k = 2

Original

Reduced(domSZM)

Reduced(MA)

Reduced(SPRIM/IOPOR)

DomSZM−synthesized

SPRIM/IOPOR −synthesized

Fig. 4.19 Original, reduced and synthesized systems: Dominant SZM, SPRIM/IOPOR

Table 4.2 Transmission line with VCCSs: reduction and synthesis summary

System Dimension R C L VCCs States Simulation time

Original 1501 1001 500 500 500 1,500 0:5 s

Dominant SZM 2 3 2 0 – 4 0:01 s

SPRIM/IOPOR 2 6 3 1 – 4 0:01 s

models have the same dimension (k D 23), the reduction effect can only be
determined after obtaining the netlist representations. Although the SPRIM/IOPOR
synthesized model has fewer states, it has more circuit elements than the dominant
SZM model, i.e., the matrix stamp of the model is more dense. This suggests that
simulation time is jointly determined by the number of states and the number of
circuit elements. Thus for practical purposes it is critical to synthesize reduced
models with RLC components.
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4.4.5 Concluding Remarks

A novel passivity preserving model reduction method is presented, which is
based on interpolation of dominant spectral zeros. Implemented with the SADPA
eigenvalue solver, the method computes the partial eigenvalue decomposition of an
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Fig. 4.23 Input admittance transfer function: original, synthesized SPRIM/IOPOR model

associated Hamiltonian matrix pair, and constructs the passivity preserving projec-
tion. Netlist equivalents for the reduced models are simulated and directions for
future work are revealed. Especially in model reduction of multi-terminal circuits,
achieving structure preservation, sparsity and small dimensionality simultaneously
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Table 4.3 RLC transmission line: Input impedance reduction and synthesis summary

System Dimension R C L States Simulation time

Original 901 500 300 300 901 1.5 s

Dominant SZM 23 22 11 10 34 0.02 s

SPRIM/IOPOR 23 78 66 6 18 0.02 s

is an open question. New developments on sparsity-preserving model reduction for
multi-terminal RC circuits can be found in [124]. In this context, RLC synthesis
with positive circuit elements will also be addressed.

4.4.6 Appendix: SADPA for Computing Dominant Spectral
Zeros

We outline SADPA for SISO systems; the MIMO implementation is similar and
the code for computing dominant poles can be found in [132] or online [130]. The
following pseudocode is extracted from [130, Chapter 3] and [131], with efficient
modifications to automatically account for the four-fold symmetry (�;���; ��;��)
of spectral zeros. In particular, as soon as a Hamiltonian eigenvalue (spectral zero) �
has converged, we immediately deflate the right/left eigenvectors corresponding to
��� as well. It turns out that the right/left eigenvectors corresponding to ��� need
not be solved for explicitly. Rather, due to the structure of the Hamiltonian matrices
[127, 137], they can be written down directly from the already converged left/right
eigenvectors for �, as shown in steps 14–17 of Algorithm 4.9. As for modal approx-
imation [131], [130, Chapter 3] deflation for �� and �� is automatically handled
in Algorithm 4.11. To summarize, once the right/left eigenvectors corresponding
to an eigenvalue � have converged, the right/left eigenvectors corresponding to
���; ��;�� are also readily available at no additional computational cost, and can
be immediately deflated.

In Algorithm 4.10, the MATLAB qz routine is proposed for solving the small,
projected eigenvalue problem in step 1. This reveals the right/left eigenvectors QX; QV
of the projected pencil directly, however they are neither orthogonal nor bi-G-
orthogonal. Thus the normalization in step 3 is needed when computing the residues.

A modified Gram-Schimdt procedure (MGS) is used for orthonormalization. We
used the implementation in [130, Algorithm 1.4]. For complete mathematical and
algorithmic details of SADPA we refer to [130, Chapter 3] and [131].
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Algorithm 4.9 .�;R;L/ DSADPA.Eh;Ah;Bh;Ch; s1; : : : pmax; kmin; kmax/

INPUT: .Eh;Ah;Bh;Ch/, Eh 2 C
2n�2n, Ah 2C

2n�2n, Bh 2 C
2n�1, Ch 2 C

1�2n an initial pole
estimate s1 and number of desired poles pmax (in the restarted version, kmin and kmax are also
specified)

OUTPUT: �, the pmax most dominant eigenvalues and associated right, left eigenspaces R, L of
.Ah;Eh/

1: k D 1; pfound D 0; � D Œ�; R D Œ�; L D Œ�

2: while pfound < pmax do
3: Solve for x from .skEh � Ah/x D Bh
4: Solve for v from .skEh � Ah/

�v D C�

h

5: x DMGS(X; x), X D ŒX; x=kxk�
6: v DMGS(V; v), V D ŒV; v=kvk�
7: Compute G D V�EhX and T D V�AhX
8: . Q�; QX; QV/ D DomSort.T;G;X;V;Bh;Ch/ F F Algorithm 4.10
9: Compute dominant approximate eigentriplet (O�1; Ox1; Ov1):

O�1 D Q�1; Ox1 D .XQx1/=kXQx1k; Ov1 D .VQv1/=kVQv1k

10: if kAh Ox1 � Eh Ox1 O�1k < � then
11: .�;R;L;X;V;Bh;Ch/ D Deflate.O�1; Ox1; Ov1; �;R;L;X QX.W;2Wk/;V QV.W;2Wk/;Eh;Bh;Ch/

12: F F Algorithm 4.11
13: pfound C C F F Also find eigenvectors for the antistable spectral zero �O��

1 and deflate
14: x D Œ �Ov1.nC1W2n;W/

I Ov1.1Wn;W/ �
15: v D Œ Ox1.nC1W2n;W/

I �Ox1.1Wn;W/ �
16: .�;R;L;X;V;Bh;Ch/ D Deflate.�O��

1 ; x; v; �;R;L;X;V;Eh;Bh;Ch/ F F
Algorithm 4.11

17: pfound C C
18: Q�1 D Q�2
19: else if ncols. QX/ > kmax then
20: F F Possible restart
21: F F Retain first kmin most dominant approximate eigenvectors and re-orthonormalize
22: X DMGS(X QX.W;1Wkmin/) F F Orthornormalize all columns sequentially
23: V DMGS(V QV.W;1Wkmin/)
24: end if
25: Increment k D k C 1

26: Select new most dominant pole estimate sk D Q�1
27: end while

Algorithm 4.10 . Q�; QX; QV/ = DomSort.T;G;X;V;Bh;Ch/

INPUT: .T;G/;X;V;Bh;Ch

OUTPUT: . Q�; QX; QV/, k dominant approximate eigenvalues and associated right, left eigenvectors
of .T;G/, sorted such that Q�1 is most dominant

1: .AA;BB; Q;Z; QX; QV/ D QZ.T;G/
2: Q� D diag.AA/:=diag.BB/ and j Q�i j ¤ 1, i D 1 : : : k

3: Ri D ŒCh Qxi �ŒQv
�

i Bh�
Qv�

i GQxi
F F Compute residues

4: Sort . Q�; QX; QV/ in decreasing jRi j=jRe.Q�i /j order
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Algorithm 4.11 .�;R;L;X;V;Bh;Ch/ D Deflate. O�; Ox; Ov; : : : �;R;L; OX; OV;Eh;
Bh;Ch/

INPUT: .O�; Ox; Ov/: the newly converged most dominant eigentriplet, .�;R;L/: the dominant
eigentriplets already found correctly, OX; OV: the approximate right/left eigenvectors not yet
checked for convergence, Eh;Bh;Ch

OUTPUT: .�;R;L/: updated converged eigentriplets, X;V: deflated approximate eigenspaces,
Bh;Ch: deflated matrices

1: � D Œ�; O��
2: Or D Ox=.Ov�Eh Ox/ F F For keeping converged eigenvectors bi-E-orthogonal
3: Ol D Ov
4: R D ŒR; Or�, L D ŒL; Ol�
5: Deflate Bh D Bh � EhOr.Ol�Bh/
6: Deflate Ch D Ch � .ChOr/Ol�Eh
7: if imag(O� ¤ 0) then
8: F F Also deflate complex conjugate
9: � D Œ�; O���

10: Or D Or�, Ol D Ol�
11: R D ŒR; Or�, L D ŒL; Ol�
12: Deflate Bh D Bh � EhOr.Ol�Bh/
13: Deflate Ch D Ch � .ChOr/Ol�Eh
14: end if
15: X D Y D Œ�

16: for j D 1 : : : #cols. OX/ do
17: X D Expand.X;R;L;Eh; Oxj / F F Algorithm 4.12
18: V D Expand.V;R;L;E�

h ; Ovj / F F Algorithm 4.12
19: end for

Algorithm 4.12 X DExpand(X;R;L;Eh; Ox)

INPUT: X 2 C
2n�k such that XX� D I, .R;L/ 2 C

2n�p: the correctly found right/left
eigenvectors such that: L�EhR is diagonal and L�EhX D 0, Ox: approximate eigenvector not
yet checked for convergence, Eh

OUTPUT: X 2 C
2n�.kC1/ expanded such that XX� D I

1: xkC1 D Qp
jD1

�
I � rj l�j Eh

l�j Ehrj

�
Ox

2: x D MGS.X; xkC1/

3: X D ŒX; x=kxk�

4.5 A Framework for Synthesis of Reduced Order Models

The main motivation for this section comes from the need for a general framework
for the (re)use of reduced order models in circuit simulation.24 Although many
model order reduction methods have been developed and evolved since the 1990s
(see for instance [141, 146] for an overview), it is usually less clear how to use these

24Section 4.5 has been written by: Roxana Iountiu and Joost Rommes. For an extended treatment
on the topics of this section see also the Ph.D.-Thesis of the first author [156] and [159].
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methods efficiently in industrial practice, e.g., in a circuit simulator. One reason
can be that the reduced order model does not satisfy certain physical properties,
for instance, it may not be stable or passive while the original system is. Failing
to preserve these properties is typically inherent to the reduced order method
used (or its implementation). Passivity (and stability implicitly) can nowadays be
preserved via several methods [142, 151, 157, 166, 169, 173, 174], but none address
the practical aspect of (re)using the reduced order models with circuit simulation
software (e.g., SPICE [150]). While the original system is available in netlist
format, the reduced order model is in general only available in numerical format.
Typically, circuit simulators are not prepared for inputs of this form and would
require additional software architecture to handle them. In contrast, a reduced model
in netlist representation could be easily coupled to bigger systems and simulated.

Synthesis is the realization step needed to map the reduced order model into
a netlist consisting of electrical circuit components [154, 170]. In [148] it was
shown that passive systems (with positive real transfer functions) can be synthesized
with positive R,L,C elements and transformers. Later developments [147] propose
a method to circumvent the introduction of transformers, however the resulting
realization is non-minimal (i.e., the number of electrical components generated
during synthesis is too large). Allowing for possibly negative R;L;C values, other
methods have been proposed via e.g. direct stamping [163, 166] or full realization
[155, 167]. These mostly model the input/output connections of the reduced model
with controlled sources.

In this section we consider two synthesis methods that do not involve controlled
sources: (1) Foster synthesis [154], where the realization is done via the system’s
transfer function and (2) RLCYSN synthesis by unstamping [176], which exploits
input-output structure preservation in the reduced system matrices [provided that
the original system matrices are written in modified nodal analysis (MNA)
representation]. The focus of this section is on structure preservation and RLCSYN,
especially because synthesis by unstamping is simple to implement for both SISO
and MIMO systems. Strengthening the result of [176], we give a simple procedure
to reduce either current- or voltage-driven circuits directly in impedance form by
removing all the sources. Such an impedance-based reduction enables synthesis
without controlled sources. The reduced order model is available as a netlist, making
it suitable for simulation and reuse in other designs. Similar software [149] is
commercially available.

The material in this section is organized as follows. A brief mathematical
formulation of model order reduction is given in Sect. 4.5.1. The Foster synthesis
is presented in Sect. 4.5.2. In Sect. 4.5.3 we focus on reduction and synthesis with
structure (and input/output) preservation. Section 4.5.3.1 describes the procedure to
convert admittance models to impedance form, so that synthesized models are easily
(re)used in simulation. Based on [176], Sect. 4.5.3.2 is an outline of SPRIM/IOPOR
reduction and RLCSYN synthesis. Examples follow in Sect. 4.5.4, and Sect. 4.5.5
concludes.
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4.5.1 Problem Formulation

In this section the dynamical systems ˙.A;E;B;C;D/ are of the form EPx.t/ D
Ax.t/C Bu.t/, y.t/ D Cx.t/C Du.t/; where A;E 2 R

n�n, E may be singular but
the pencil .A;E/ is regular, B 2 R

n�m, C 2 R
p�n, x.t/ 2 R

n, and u.t/ 2 R
m, y.t/ 2

R
p , D 2 R

p�m. If m;p > 1, the system is called multiple-input multiple-output
(MIMO), otherwise it is called single-input single-output (SISO). The frequency
domain transfer function is defined as: H.s/ D C.sE � A/�1B C D: For systems in
MNA form arising in circuit simulation see Sect. 4.5.3.

The model order reduction problem is to find, given an n-th order (descriptor)
dynamical system, a k-th order system: QEPQx.t/ D QAQx.t/ C QBu.t/, Qy.t/ D QCQx.t/ C
Du.t/ where k < n, and QE; QA 2 R

k�k , QB 2 R
k�m, QC 2 R

p�k , Qx.t/ 2 R
k , u.t/ 2

R
m, Qy.t/ 2 R

p, and D 2 R
p�m. The number of inputs and outputs is the same as

for the original system, and the corresponding transfer function becomes: QH.s/ D
QC.s QE � QA/�1 QB C D: For an overview of model order reduction methods, see [141,
145, 146, 172]. Projection based model order reduction methods construct a reduced
order model via Petrov-Galerkin projection:

Q̇ . QE; QA; QB; QC;D/ � .W�EV;W�AV;W�B;V�C;D/; (4.61)

where V;W 2 R
n�k are matrices whose k < n columns form bases for

relevant subspaces of the state-space. There are several projection methods, that
differ in the way the matrices V and W are chosen. These also determine which
properties are preserved after reduction. Some stability preserving methods are:
modal approximation [171], Poor Man’s TBR [168]. Among moment matching
[152] methods, the following preserve passivity: PRIMA [166], SPRIM [151],
spectral zero interpolation, [142, 157, 161, 173]. From the balancing methods,
balanced truncation [144] preserves stability, and positive real balanced truncation
[169, 174] preserves passivity.

4.5.2 Foster Synthesis of Rational Transfer Functions

This section describes the Foster synthesis method, which was developed in the
1930s by Foster and Cauer [154] and involves realization based on the system’s
transfer function. The Foster approach can be used to realize any reduced order
model that is computed by standard projection based model order reduction tech-
niques. Realizations will be described in terms of SISO impedances (Z-parameters).
For equivalent realizations in terms of admittances (Y -parameters), see for instance
[154, 175]. Given the reduced system (4.61) consider the partial fraction expansion
[162] of its transfer function:

QH.s/ D
kX
iD1

Qri
s � Qpi C D; (4.62)
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The residues are Qri D . QCQxi /.Qy�

i
QB/

Qy�

i
QEQxi and the poles are Qpi . An eigentriplet . Qpi ; Qxi ; Qyi /

is composed of an eigenvalue Qpi of . QA; QE/ and the corresponding right and left
eigenvectors Qxi ; Qyi 2 C

k . The expansion (4.62) consists of basic summands of the
form:

Z.s/ D r1 C r2

s � p2
C r3

s
C
�

r4

s � p4
C Nr4
s � Np4

�
C sr6 C

�
r7

s � p7 C r7

s � Np7
�
;

(4.63)

where for completeness we can assume that any kind of poles may appear, i.e., either
purely real, purely imaginary, in complex conjugate pairs, at 1 or at 0 (see also
Table 4.4). The Foster realization converts each term in (4.63) into the corresponding
circuit block with R;L;C components, and connects these blocks in series in the
final netlist. This is shown in Fig. 4.24. Note that any reordering of the circuit blocks
in the realization of (4.63) in Fig. 4.24 still is a realization of (4.63). The values for
the circuit components in Fig. 4.24 are determined according to Table 4.4.

The realization in netlist form can be implemented in any language such as
SPICE [150], so that it can be reused and combined with other circuits as well.
The advantages of Foster synthesis are: (1) its straightforward implementation for
single-input-single-output (SISO) transfer functions, via either the impedance or
the admittance transfer function, (2) for purely RC or RL circuits, netlists obtained
from reduction via modal approximation [171] are guaranteed to have positive

Table 4.4 Circuit element values for Fig. 4.24 for the Foster impedance realization of (4.63)

Pole Residue R(Ohm) C (F) L(H) G(Ohm�1)

p1 D 1 r1 2 R r1

p2 2 R r2 2 R � r2
p2

1
r2

p3 D 0 r3 2 R
1
r3

p4 D � C i! 2 C r4 D ˛ C iˇ 2 C a0
a1
L 1

a1

a31
a21b0�a0.a1b1�a0/

a1b1�a0
a21p5 
 Np4 r5 
 Nr4

a0 D �2.˛� C ˇ!/, a1 D 2˛, b0 D �2 C !2, b1 D �2�
p6 D 1 r6 2 R r6

p7 2 iR r7 2 R 1
r7

2r7
p7 Np7

p8 
 Np7 r8 
 Nr7

G

C

R L

R

C

C

R

L

C

L

Fig. 4.24 Realization of a general impedance transfer function as a series RLC circuit
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RC or RL values respectively [158]. The main disadvantage is that for multi-
input-multi-output transfer functions, finding the Foster realization (see for instance
[175]) is cumbersome and may also give dense reduced netlists (i.e., all nodes are
interconnected). This is because the Foster synthesis of a k-dimensional reduced
system with p terminals, will generally yield O.p2k/ circuit elements. A method
based on partitioning of an RLC circuit is found in [164]. The method produces a
positive-valued, passive and stable reduced RLC circuit.

4.5.3 Structure Preservation and Synthesis by Unstamping

This section describes the second synthesis approach, which is based on unstamping
the reduced matrix data into an RLC netlist and is denoted by RLCSYN [176].
It is suitable for obtaining netlist representations for models reduced via methods
that preserve the MNA structure and the circuit terminals, such as the input-output
structure preserving method SPRIM/IOPOR [176]. The strength of the result in
[176] is that the input/output connectivity is synthesized after reduction without
controlled sources, provided that the system is in impedance form (i.e., inputs are
currents injected into the circuit terminals, and outputs are voltages measured at
the terminals). Here, we interpret the input-output preservation as preserving the
external nodes25 of the original model during reduction. This way the reduced
netlist can easily be coupled to other circuitry in place of the original netlist,
and (re)using the reduced model in simulation becomes straightforward. The main
drawback is that, when the reduced system matrices are dense and the number of
terminals is large [O.103/], the netlist obtained from RLCSYN will be dense. For a
k dimensional reduced network with p terminals, the RLCSYN synthesized netlist
will generally have O.p2k2/ circuit elements. The density of the reduced netlist
however is not a result of the synthesis procedure, but a consequence of the fact that
the reduced system matrices are dense. Developments for sparsity preserving model
reduction for multi-terminal circuits can be found in [160], where sparse netlists are
obtained by synthesizing sparse reduced models via RLCSYN.

First, we motivate reduction and synthesis in impedance form, and show how
it also applies for systems that are originally in admittance form. Then we explain
model reduction via SPRIM/IOPOR, followed by RLCSYN synthesis.

4.5.3.1 A Simple Admittance to Impedance Conversion

In [176] it was shown how SPRIM/IOPOR preserves the structure of the input/out-
put connectivity when the original model is in impedance form, allowing for

25A terminal (external node) is a node that is visible on the outside, i.e., a node in which currents
can be injected. The other nodes are called internal.
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synthesis via RLCSYN without controlled sources. The emerging question is: How
to ensure synthesis without controlled sources, if the original model is in admittance
form (i.e., it is voltage driven)? We show that reduction and synthesis via the input
impedance transfer function is possible by removing any voltage sources from the
original circuit a priori and re-inserting them in the reduced netlist if needed.

To this end, consider the modified nodal analysis (MNA) description of an input
admittance26 type RLC circuit, driven by voltage sources:

0
@C 0 0

0 0 0
0 0 L

1
A

„ ƒ‚ …
EY

d

dt

0
@ v.t/iS.t/

iL.t/

1
A

„ ƒ‚ …
PxY

C
0
@ G E v E l

�E v
� 0 0

�E �
l 0 0

1
A

„ ƒ‚ …
�AY

0
@ v.t/iS .t/

iL.t/

1
A

„ ƒ‚ …
xY

D
0
@ 0
B

0

1
A

„ƒ‚…
BY

u.t/; (4.64)

where u.t/ 2 R
n1 are input voltages and y.t/ D CY x.t/ 2 R

n1 are output currents,
CY D B�

Y . The states are xY .t/ D Œv.t/; iS.t/; iL.t/�T , with v.t/ 2 R
nv the node

voltages, iS .t/ 2 R
n1 the currents through the voltage sources, and iL.t/ 2 R

nl the
currents through the inductors, nv C n1 C nl D n. The nv D n1 C n2 node voltages
correspond to the n1 external nodes (i.e., the number of inputs/terminals) and the
n2 internal nodes.27 Assuming without loss of generality that (4.64) is permuted
such that the first n1 nodes are the external nodes, we have: v1Wn1.t/ D u.t/: The
dimensions of the underlying matrices are: C 2 C

nv�nv ; G 2 C
nv�nv ; E v 2

C
nv�n1 ; L 2 C

nl�nl ; E l 2 C
nv�nl ; B 2 C

n1�n1 : Recalling that v1Wn1.t/ D u.t/,
the following holds:

E v D
�

Bv

0n2�n1

�
2 C

nv�n1 ; Bv 2 C
n1�n1 ; B D �Bv: (4.65)

We derive the first order impedance-type system associated with (4.64). Note
that by definition, iS .t/ flows out of the circuit terminals into the voltage source
(i.e., from the C to the � terminal of the voltage source, see also [166, Figure 3]
[158]). We can define new input currents as the currents flowing into the circuit
terminals: iin.t/ D �iS .t/. Since u.t/ D v1Wn1.t/ are the terminal voltages, they

26The subscript Y refers to quantities associated with a system in admittance form.
27For the pencil .AY ;EY / to be regular, in (4.64) one node must be chosen as a ground (reference)
node; this is however only a numerical requirement.
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describe the new output equations, and it is straightforward to rewrite (4.64) in the
impedance form:

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

�
C 0
0 L

�
„ ƒ‚ …

E

d
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„ ƒ‚ …

Px

C
�

G E l

�E l
� 0

�
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E �
v 0
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„ ƒ‚ …
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Dy.t/ D Bvv1Wn1.t/; E �
v D �

B�
v 0n1�n2

� (4.66)

where B describes the new input incidence matrix corresponding the input currents,
iin. The new output incidence matrix is C, corresponding to the voltages at the
circuit terminals. We emphasize that (4.66) has fewer unknowns than (4.64), since
the currents iS have been eliminated. The transfer function associated to (4.66) is
an input impedance: H.s/ D y.s/

iin.s/
. In Sect. 4.5.3.2 we explain how to obtain an

impedance type reduced order model in input/output structure preserved form:
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where QC , QL , QG , QE v are the reduced MNA matrices, and the reduced input
impedance transfer function is: QH.s/ D Qy.s/

iin.s/
: Due to the input/output preservation,

the circuit terminals are easily preserved in the reduced model (4.67). The simple
example in Sect. 4.5.4.1 illustrates the procedure just described.

It turns out that after reduction and synthesis, the reduced model (4.67) can still
be used as a voltage driven admittance block in simulation. This is shown next. We

can rewrite the second equation in (4.67) as:
�
�QE �

v 0 0
� �Qv.t/T QiS .t/T QiL.t/T

�T D
Bu.t/. This result together with iin.t/ D �iS .t/, reveals that (4.67) can be rewritten
as:

0
@

QC 0 0
0 0 0
0 0 QL

1
A

„ ƒ‚ …
QEY

d

dt

0
@ Qv.t/
iS.t/
QiL.t/

1
A

„ ƒ‚ …
PQxY

C

0
B@

QG QE v
QE l

�QE �
v 0 0

�QE �
l 0 0

1
CA

„ ƒ‚ …
�QAY

0
@ Qv.t/
iS .t/
QiL.t/

1
A

„ ƒ‚ …
QxY

D
0
@ 0
B

0

1
A

„ƒ‚…
QBY

u.t/; (4.68)

which has the same structure as the original admittance model (4.64). Conceptually
one could have reduced system (4.64) directly via the input admittance. In that
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case, synthesis by unstamping via RLCSYN [176] would have required controlled
sources [155] to model the connections at the circuit terminals. As shown above,
this is avoided by: applying the simple admittance-to-impedance conversion (4.64)
to (4.66), reducing (4.66) to (4.67), and finally reinserting voltage sources after syn-
thesis [if the input-output structure preserved admittance reduced admittance (4.68)
is needed]. Being only a pre- and post-processing step, the proposed voltage-
source removal and re-insertion can be applied irrespective of the model reduction
algorithm used. For ease of understanding we relate it here to model reduction via
SPRIM/IOPOR.

4.5.3.2 I/O Structure Preserving Reduction and RLCSYN Synthesis

The reduced input impedance model (4.67) is obtained via the input-output structure
preserving SPRIM/IOPOR projection [176] as follows. Let V D �

VT
1 ;V

T
2 ;V

T
3

�T 2
C
..n1Cn2Cnl /�k/ be the projection matrix obtained with PRIMA [166], where V1 2

C
.n1�k/, V2 2 C

.n2�k/, V3 2 C
.nl�k/, k 	 n1, i D 1 : : : 3. After appropriate

orthonormalization (e.g., via Modified Gram-Schmidt [171, Chapter 1]), we obtain:
QVi D orth.Vi / 2 C

ni�ki ,ki 
 k. The SPRIM [151] block structure preserving

projection is: QV D blkdiag
�QV1; QV2; QV3

�
2 C

n�.k1Ck2Ck3/; which does not yet

preserve the structure of the input and output matrices. The input-output structure

preserving SPRIM/IOPOR [176] projection is QW D
�

W 0
0 QV3

�
2 C

n�.n1Ck2Ck3/

where:

W D
�

In1�n1 0
0 QV2

�
2 C

.n1Cn2/�.n1Ck2/: (4.69)

Recalling (4.65), we obtain the reduced system matrices in (4.67): QC D W�CW,
QG D W�GW, QL D QV�

3L
QV3, QE l D W�E l

QV3, QE v D W�E v D �
B�
v 0n1�k2

��
,

which compared to (4.65) clearly preserve input-output structure. Therefore a netlist
representation for the reduced impedance-type model can be obtained, that is driven
injected currents just as the original circuit. This is done via the RLCSYN [176]
unstamping procedure. To this end, we use the Laplace transform and convert (4.67)
to the second order form:

(
Œs QC C QG C 1

s
Q� �Qv.s/D QE viin.s/

Qy.s/D QE �
v Qv.s/; (4.70)

where QiL.s/ D 1
s

QL�1� QE l
�� Qv.s/ and Q� D QE l

QL�1 QE �
l :
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The presentation of RLCSYN follows [176, Sect. 4], [158] and is only sum-
marized here. In circuit simulation, the process of forming the C ;G ;L system
matrices from the individual branch element values is called “stamping”. The
reverse operation of “unstamping” involves decomposing entry-wise the values of
the reduced system matrices in (4.70) into the corresponding R, L, and C values.
When applied on reduced models, the unstamping procedure may produce negative
circuit elements because the reduced system matrices are no longer diagonally
dominant (while the original matrices were). Obtaining positive circuit elements
only is subject to further research. The resultingRs, Ls and C s are connected in the
reduced netlist according to the MNA topology. The reduced input/output matrices
of (4.70) directly reveal the input connections in the reduced model via injected
currents, without any controlling elements. The prerequisites for an unstamping
realization procedure therefore are:

1. The original system is in MNA impedance form (4.66). If the system is of
admittance type (4.64), apply the admittance-to-impedance conversion from
Sect. 4.5.3.1.

2. In (4.66), no Ls are directly connected to the input terminals so that, after
reduction, diagonalization and regularization preserve the input/output structure.

3. System (4.66) is reduced with SPRIM/IOPOR [176] to (4.67) and converted to
second order form (4.70). The alternative is to obtain the second order form of
the original system first, and reduce it directly with SAPOR/IOPOR [143, 176].

4. The reduced system (4.70) must be diagonalized and regularized according to
[176]. Diagonalization ensures that all inductors in the synthesized model are
connected to ground (i.e., there are no inductor loops). Regularization eliminates
spurious over-large inductors. These steps however are not needed for purely RC
circuits.

4.5.4 Numerical Examples

We apply the proposed reduction and synthesis framework on several test cases.
The first is a simple circuit which illustrates the complete admittance-to-impedance
formulation and the RLCSYN unstampting procedure, as described in Sect. 4.5.3.
The second example is a SISO transmission line model, while the third is a MIMO
model of a spiral inductor.
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Fig. 4.25 Admittance-type circuit driven by input voltages [166]. G1;2;3 D 0:1S , L1 D 10�3H ,
C1;2 D 10�6, Cc D 10�4 , ku1;2k D 1

4.5.4.1 Illustrative Example

The circuit in Fig. 4.25 is voltage driven, and the MNA admittance form (4.64) is:
0
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(4.71)

Notice that

iin D
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�
(4.72)
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�
; (4.73)

thus the external nodes (input nodes/terminals) are v1 and v4, and the internal nodes
are v2 and v3. As described in Sect. 4.5.3.1, (4.71) has an equivalent impedance
formulation (4.66), with:
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Matrices (4.74) and (4.75) are reduced either in first order form using SPRIM/IO-
POR according to Sect. 4.5.3.2.

Here we reduce the circuit with SPRIM/IOPOR and synthesize it by unstamping
via RLCSYN. Note that there is anL directly connected to the second input node v4,
thus assumption 2. from RLCSYN is not satisfied. We thus reduce and synthesize
the single-input-single-output version of (4.71) only, where the second input i2 is
removed. Therefore the new incidence matrices are:

E v1 D

0
BB@
1

0

0

0

1
CCA;B1 D ��1 �; Bv1 D �B1: (4.76)

We choose an underlying PRIMA projection matrix V 2 C
n�k spanning a

k D 2-dimensional Krylov subspace (with expansion point s0 D 0). According
to Sect. 4.5.3.2, after splitting V and appropriate re-orthonormalization, the dimen-
sions of the input-output structure preserving partitioning are:

n1 D 1; n2 D 3; nl D 1; k2 D 2; k3 D 1; (4.77)

and the SPRIM/IOPOR projection is:
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After diagonalization and regularization, the SPRIM/IOPOR reduced system
matrices in (4.70) are:
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Reduced matrices (4.79) are now unstamped individually using RLCSYN. The
reduced system dimension in second order form is thus N D 3, indicating that the
reduced netlist will have 3 nodes and an additional ground node. In the following,
we denote by Mi;j i D 1 : : : N , j D 0 : : : N � 1 a circuit element connected
between nodes .i; j / in the resulting netlist. M represents a circuit element of the
type: R,L,C or current source J .
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By unstamping QG , we obtain the followingR values (for simplicity only 4 figures
behind the period are shown here, nevertheless in implementation they are computed
with machine precision � D 10�16):
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3X
kD1
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#
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i
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3X
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h QG .2;3/

i
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"
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By unstamping QC , we obtain the following C values:

C2;0 D
3X

kD1

QC .2;k/ D �3:3026 � 10�5 F; C2;3 D � QC .2;3/ D 5:0526 � 10�5 F;

C3;0 D
"

3X
kD1

QC .3;k/

#
�1

D 1:0221 � 10�4 F:

By unstamping Q� , we obtain the following L values:

L3;0 D
"

3X
kD1

Q�.3;k/
#

�1

D 3:317 � 10�2 H:

By unstamping QE v1 , we obtain the current source J1;0 of amplitude 1 A.
The Pstar [165] equivalent netlist is shown below:.

circuit;
r r_1_0 (1, 0) 8.0417250765565598e+000;
r r_1_2 (1, 2) -1.2247448713915894e+001;
r r_1_3 (1, 3) 1.7452546181796258e+001;
r r_2_0 (2, 0) 9.5798755840972589e+000;
r r_2_3 (2, 3) 1.2942609947762115e+001;
r r_3_0 (3, 0) 1.3535652691596653e+001;
l l_3_0 (3, 0) 3.3170000000000033e-002;
c c_2_0 (2, 0) -3.3026513336014821e-005;
c c_2_3 (2, 3) 5.0526513336014765e-005;
c c_3_0 (3, 0) 1.0221180442099465e-004;
j j_1 (1, 0) sw(1, 0);
c: Set node 1 as output: vn(1);
c: Resistors 6;
c: Capacitors 3;
c: Inductors 1;

end;

Table 4.5 summarizes the reduction and synthesis results. Even though the
number of internal variables (states) generated by the simulator is smaller for
the SPRIM/IOPOR model than for the original, the number of circuit elements
generated by RLCSYN is larger in the reduced model than in the original.
Figure 4.26 shows that approximation with SPRIM/IOPOR is more accurate than
with PRIMA. The Pstar simulation of the RLCSYN synthesized model also matches
the MATLAB simulation of the reduced transfer function.



4 Model Order Reduction: Methods, Concepts and Properties 253

Table 4.5 Input impedance reduction (SPRIM/IOPOR) and synthesis (RLCSYN)

System Dimension R C L States Inputs/Outputs

Original 5 3 3 1 5 1

SPRIM/IOPOR 4 6 3 1 4 1

0 1 2 3 4 5 6 7 8 9
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Reduced: SPRIM/IOPOR
RLCSYN: SPRIM/IOPOR

Fig. 4.26 Original, reduced and synthesized systems: PRIMA, SPRIM/IOPOR. The reduced and
synthesized systems match but miss the peak around 4:5 rad/s

Fig. 4.27 Transmission line from Sect. 4.5.4.2

4.5.4.2 SISO RLC Network

We reduce the SISO RLC transmission line in Fig. 4.27. Note that the circuit
is driven by the voltage u, thus it is of admittance type (4.64). The admittance
simulation of the model reduced with the dominant spectral zero method (Dominant
SZM) [157, 161], synthesized with the Foster approach, is shown in Fig. 4.28. The
behavior of the original model is well approximated for the entire frequency range,
and can also reproduce oscillations at dominant frequency points.
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Fig. 4.28 Input admittance transfer function: original, reduced with Dominant SZM in admittance
form and synthesized with Foster admittance
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Fig. 4.29 Input admittance transfer function: original and synthesized SPRIM/IOPOR model (via
impedance), after reconnecting the voltage source at the input terminal

In Fig. 4.29 the benefit of the admittance-to-impedance transformation, described
in Sect. 4.5.3.1, is seen. By reducing the system in impedance form with SPRIM/-
IOPOR and synthesizing (4.67) [using the second order form (4.70)] with RLCSYN
[176], we are able to recover the reduced admittance (4.68) as well. The approxima-
tion is good for the entire frequency range.
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Fig. 4.30 Coil structure from Sect. 4.5.4.3

4.5.4.3 MIMO RLC Network

We reduce the MIMO RLC netlist resulting from the parasitic extraction [153] of the
coil structure in Fig. 4.30. The model has 4 pins (external nodes). Pin 4 is connected
to other circuit nodes only via C ’s, which causes the original model (4.66) to have a
pole at 0. The example shows that the SPRIM/IOPOR model preserves the terminals
and is synthesizable with RLCSYN without controlled sources.

Figure 4.31, shows the simulation of the transfer function from input 4 to output
4. SPRIM/IOPOR is more accurate around DC than PRIMA. Another alternative is
to ground pin 4 prior to reduction. As seen from Fig. 4.32, SPRIM/IOPOR applied
on the remaining 3-terminal system gives better approximation than PRIMA for
the entire frequency range. With pin 4 grounded however, we loose the ability to
(re)connect the synthesized model in simulation via all the terminals.

4.5.5 Conclusions and Outlook

A framework for realizing reduced mathematical models into RLC netlists was
developed. Model reduction by projection for RLC circuits was described and
associated with two synthesis approaches: Foster realization (for SISO transfer
functions) and RLCSYN [176] synthesis by unstamping (for MIMO systems).
An admittance-to-impedance conversion was prosed as a pre-model reduction step
and shown to enable synthesis without controlled sources. The approaches were
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Fig. 4.31 Input impedance
transfer function with “v4”
kept: H44 for PRIMA,
SPRIM/IOPOR and
RLCSYN realization
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Fig. 4.32 Input impedance
transfer function with “v4”
grounded: H33 for PRIMA,
SPRIM/IOPOR and
RLCSYN realization
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tested on several examples. Future research will investigate reduction and synthesis
methods for RCLK circuits with many terminals, while developments on sparsity-
preserving model reduction for multi-terminal RC circuits can be found in [160].
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Chapter 5
Parameterized Model Order Reduction

Gabriela Ciuprina, Jorge Fernández Villena, Daniel Ioan, Zoran Ilievski,
Sebastian Kula, E. Jan W. ter Maten, Kasra Mohaghegh, Roland Pulch,
Wil H.A. Schilders, L. Miguel Silveira, Alexandra Ştefănescu,
and Michael Striebel

Abstract This Chapter introduces parameterized, or parametric, Model Order
Reduction (pMOR). The Sections are offered in a prefered order for reading,
but can be read independently. Section 5.1, written by Jorge Fernández
Villena, L. Miguel Silveira, Wil H.A. Schilders, Gabriela Ciuprina, Daniel Ioan and
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Sebastian Kula, overviews the basic principles for pMOR. Due to higher integration
and increasing frequency-based effects, large, full Electromagnetic Models (EM)
are needed for accurate prediction of the real behavior of integrated passives and
interconnects. Furthermore, these structures are subject to parametric effects due to
small variations of the geometric and physical properties of the inherent materials
and manufacturing process. Accuracy requirements lead to huge models, which are
expensive to simulate and this cost is increased when parameters and their effects
are taken into account. This Section introduces the framework of pMOR, which
aims at generating reduced models for systems depending on a set of parameters.

Section 5.2, written by Gabriela Ciuprina, Alexandra Ştefănescu, Sebastian Kula
and Daniel Ioan, provides robust procedures for pMOR. This Section proposes
a robust specialized technique to extract reduced parametric compact models,
described as parametric SPICE-like netlists, for long interconnects modeled as
transmission lines with several field effects such as skin effect and substrate losses.
The technique uses an EM formulation based on partial differential equations
(PDE), which is discretized to obtain a finite state space model. Next, a variability
analysis of the geometrical data is carried out. Finally, a method to extract an
equivalent parametric circuit is proposed.

Section 5.3, written by Michael Striebel, Roland Pulch, E. Jan W. ter Maten,
Zoran Ilievski, and Wil H.A. Schilders, covers ways to efficiently determine
sensitivity of output with respect to parameters. First direct and adjoint techniques
are considered with forward and backward time integration, respectively. Here also
the use of MOR via POD (Proper Orthogonal Decomposition) is discussed. Next,
techniques in Uncertainty Quantification are described. Here pMOR techniques can
be used efficiently.

Section 5.4, written by Kasra Mohaghegh, Roland Pulch and E. Jan W. ter Maten,
provides a novel way in extending MOR to Differential-Algebraic Systems. Here
new MOR techniques for reducing semi-explicit system of DAEs are introduced.
These techniques are extendable to all linear DAEs. Especially pMOR techniques
are exploited for singularly perturbed systems.
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5.1 Parametric Model Order Reduction

Model Order Reduction (MOR) techniques are a set of procedures which aim at
replacing a large-scale model of a physical system by a lower dimensional model
which exhibits similar behavior, typically measured in terms of its input-output
response.1 Reducing the order or dimension of these models, while guaranteeing
that the input-output response is accurately captured, is crucial to enable the
simulation and verification of large systems [1–3, 33]. Since the first attempts in
this area [31], the methods for linear model reduction have greatly evolved and can
be broadly characterized into two types: those that are based on subspace generation
and projection methods [13, 27], and those based on balancing techniques [26, 30]
(sometimes also referred to as Singular Value Decomposition (SVD)-based [2]).
Hybrid techniques that try to combine some of the features of each family have also
been presented [18, 19, 21, 29].

Although previously ignored when analyzing or simulating systems, parameter
variability can no longer be disregarded as it directly impacts system behavior and
performance. Accounting for the effects of manufacturing or operating variability,
such as geometric parameters, temperature, etc., leads to parametric models whose
complexity must be tackled both during the design and verification phases. For this
purpose, Parametric MOR (pMOR, also known as Parameterized MOR) techniques
that can handle parameterized descriptions are being considered as essential in
the determination of correct system behavior. The systems generated by pMOR
procedures must retain the ability to model the effects of both geometric and
operating variability, in order to accurately predict behavior and optimize designs.

Several pMOR techniques have been developed for modeling large-scale param-
eterized systems. Although the first approaches were based on perturbation based
techniques, such as [17, 25], the most common and effective ones appear to
be extensions of the basic projection-based MOR algorithms [27, 29] to handle
parameterized descriptions. An example of these are multiparameter moment-
matching pMOR methods [8] which can generate accurate reduced models that
capture both frequency and parameter dependence. The idea is to match, via
different approaches, generalized moments of the parametric transfer function, and
build an overall projector. Sample-based techniques have been proposed in order
to contain the large growth in model order for multiparameter, high accuracy
systems [28, 37]. They rely on sampling the joint multi-dimensional frequency
and parameters space. This approach allows the inclusion of a priori knowledge
of the parameter variation, and provides some error estimation. However, the issue
of sample selection becomes particularly relevant when done in a potentially high-
dimensional space.

1Section 5.1 has been writen by: Jorge Fernández Villena, L. Miguel Silveira, Wil H.A. Schilders,
Gabriela Ciuprina, Daniel Ioan and Sebastian Kula. For additional topics and applications see also
the Ph.D.-Thesis of the last author [20].
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5.1.1 Representation of Parametric Systems

In order to include parametric systems inside an efficient simulation flow, the
parametric dependence should be explicit. This means that it must be possible to
access the parameter values and modify them inside the same representation, while
avoiding, if possible, re-computing the parametric systems, i.e. to perform another
extraction.

Parameters usually affect the geometrical or electrical properties of the layout,
and thus, most of these variations can be represented as modifications of the values
of the system matrices inside a state-space descriptor. For this reason, in most cases,
the input and output ports are not affected by these variations (this of course depends
on how the system is built), and in the case when they are in fact affected, these
variations can be shifted to the inner states. The variability leads to a dependence
of the extracted circuit elements on several parameters, of electrical or geometrical
origin. This dependence results in a parametric state-space system representation,
which in descriptor form can be written as

C.�1; : : : ; �P / Px.�1; : : : ; �P /CG.�1; : : : ; �P / x.�1; : : : ; �P / D B u;
y.�1; : : : ; �P / D Lx.�1; : : : ; �P /;

(5.1)

where C;G 2 R
n�n are again, respectively, the dynamic and static matrices, B 2

R
n�p is the matrix that relates the input vector u 2 R

p to the inner states x 2 R
n

and L 2 R
q�n is the matrix that links those inner states to the outputs y 2 R

q . The
elements of the matrices C andG, as well as the states of the system x, depend on a
set of P parameters � D Œ�1; �2; : : : ; �P � which model the effects of the mentioned
uncertainty. This time-domain descriptor yields a parametric dependent frequency
response modeled via the transfer function

H.s; �1; : : : ; �P / D L .s C.�1; : : : ; �P /CG.�1; : : : ; �P //
�1 B (5.2)

for which we seek to generate a reduced order approximation, able to accurately
capture the input-output behavior of the system for any point in the parameter space

OH.s; �1; : : : ; �P / D OL .s OC.�1; : : : ; �P /C OG.�1; : : : ; �P //�1 OB: (5.3)

In general, one attempts to generate a reduced order model whose structure is,
as much as possible, similar to the original, i.e. exhibiting a similar parametric
dependence. The “de facto” standard used in most of the literature for representing
a parametric system is based on a Taylor series expansion with respect to the
parameters (shown here for first order in the frequency domain):

..C0 C C1�1 C : : :C CP�P / s C .G0 CG1�1 C : : :CGP�P // x.s; �/ D B u.s/;
y.s; �/ D Lx.s; �/;

(5.4)
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where G0 and C0 are the nominal values of the matrices, whereas Gi and Ci are
the sensitivities with respect to the parameters. Novel extraction methodologies can
efficiently generate such sensitivity information [5, 12].

A nice feature of this representation is that this explicit parameter dependence
allows to obtain a reduced, yet similar representation when a projection scheme is
applied

.. OC0 C OC1�1 C : : :C OCP�P / s C . OG0 C OG1�1 C : : :C OGP�P // x.s; �/ D OB u.s/;
y.s; �/ D OLx.s; �/;

(5.5)

where OCi D V TCiV , OGi D V TGiV , OB D V T B and OL D LV .
Some questions may be raised about the order neccessary for an accurate

representation of the parametric model. This depends on the range of variation and
the effect of each parameter, and therefore is not trivial to ascertain.

However, some literature presents interesting results in this area [4, 6], with the
conclusion that low order (first order in most cases) Taylor series are a good and
useful approximation to the real parametric system. As it will be shown later, this
statement has important consequences from the point of view of some parametric
algorithms, especially those which rely on moment matching techniques.

5.1.2 Reduction of Parametric Systems

The most straight-forward approach for the reduction of such a parametric system
is to apply nominal techniques. A first possibility is to apply nominal reduction
methodologies on the perturbed system. This means that the model in (5.4) is
evaluated for a set of parameter values. This model is no longer parametric, and thus
standard reduction methodologies can be applied on it. However, once a “perturbed”
system is evaluated and reduced, the parameter dependence is lost, and thus the
result is a system which is no longer parametric, and therefore only accurate for a
set of parameters.

A slightly different approach that overcomes this issue is to apply the projection
on the Taylor series approximation. In this case, depending on the framework
applied, we can distinguish two cases:

• First, in a projection methodology, the projector is computed from the nominal
system, and later applied on the nominal and on the sensitivity matrices,
obtaining a model as in (5.5).

• Second, in the case of Balanced Truncation realizations, the computation of the
Gramians is done via the nominal system, but the balancing and the truncation is
done both on the nominal matrices and on the sensitivities.

These methods, although not oriented to accurately capture the behavior of the
system under variation of the parameters, can yield good approximations in cases
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of small variations or mild effect of the parameters. However, they are not reliable,
and their performance heavily depends on the system.

5.1.2.1 Pertubation Based Parametric Reduction

The first attemps to handle and reduce systems under variations were focused on
perturbation techniques.

One of the earliest attempts to address this variational issue was to com-
bine perturbation theory with moment matching MOR algorithms [25] into a
Perturbation-based Projector Fitting scheme. To model the variational effects
of the interconnects, an affine model was built for the capacitance and conductance
matrices,

G.�1; : : : ; �P / D G0 C �1G1 C : : :C �PGP ;

C.�1; : : : ; �P / D C0 C �1C1 C : : :C �PCP ;
(5.6)

where now C0 and G0 are the nominal matrix values, i.e., the value of the matrices
under no parameter variation, and Ci and Gi , i D 1; : : : ; P , are their sensitivities
with respect to those parameters. For small parameter variations, the projection
matrix obtained via a moment-matching type algorithm such as PRIMA also may
show small perturbations. To capture such effect, several samples in the parameter
space were drawn G.�1; : : : ; �P / and C.�1; : : : ; �P /, and for each sample PRIMA
was applied resulting a projector. A fitting methodology was later applied in order
to determine the coefficients of a parameter dependent projection matrix

V.�1; : : : ; �P / D V0 C �1V1 C : : :C �PVP : (5.7)

To obtain a reduced model, both the parametric system and the projector are
evaluated with the parameter set. Projection is applied and the reduced model
obtained. However, this reduced model is only valid for the used parameter set. If a
reduced model for a different parameter set is needed, the evaluation and projection
must be applied again, what makes hard to include this method in a simulation
environment.

Another method combined perturbation theory with the Truncated Balanced
Realization (TBR) [26, 30] framework. A perturbation matrix was theoretically
obtained starting from the affine models shown in (5.6) [17]. This matrix was
applied via a congruence transformation over the Gramians to address the vari-
ability, obtaining a set of perturbed Gramians. These in turn were used inside a
Balancing Truncation procedure. As with most TBR-inspired methods, this one
is also expensive to compute and hard to implement. The above methods have
obvious drawbacks, perhaps the most glaring of which is the heavy computation
cost required for obtaining the reduced models and the limitation that comes from
perturbation based approximations, possibly leading to inaccuracy in certain cases.
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5.1.2.2 Multi-dimensional Moment Matching

Most of the techniques in the literature extend the moment matching paradigm [13,
27, 34] to the multi-dimensional case. They usually rely on the implicit or explicit
matching of the moments of the parametric transfer function (5.2). These moments
depend not only on the frequency, but on the set of parameters affecting the system,
and thus are denoted as multi-dimensional or multi-parameter moments.

This family of algorithms assumes that a model based on the Taylor Series
expansion can be used for approximating the behavior of the conductance and
capacitance, G.�/ and C.�/, expressed as a function of the parameters

G.�1; : : : ; �P / D P1
i1D0 : : :

P1
iPD0 Gi1;:::;iP �

i1
1 : : : �

iP
P ;

C.�1; : : : ; �P / D P1
i1D0 : : :

P1
iPD0 Ci1;:::;iP �

i1
1 : : : �

iP
P ;

(5.8)

where Gi1;:::;iP and Ci1;:::;iP are the multidimensional Taylor series coefficients. This
Taylor series can be extended up to the desired (or required) order, including cross
derivatives, for the sake of accuracy. If this formulation is used, the structure for
parameter dependence may be maintained if the projection is not only applied to the
nominal matrices, but to the sensitivities as well.

Multiple methodologies follow these basic premises, but they differ in how and
which such moments are generated and used in the projection stage.

The Multi-Parameter Moment Matching method [8] relies on a single-point
expansion of the transfer function (5.2) in the joint space of the frequency s and the
parameters �1; : : : ; �P , in order to obtain a power series in several variables,

x.s; �1; : : : ; �P / D
1X
kD0

kX
ksD0

k�ksX
k1D0

� � �
k�ks�k1::::�kP�1X

kPD0
Mk;ks;k1;:::;kP s

ks �
k1
1 : : : �

kP
P ;

(5.9)

whereMk;ks;k1;:::;kP is a k-th (k D ksCk1C: : :CkP ) order multi-parameter moment
corresponding to the coefficient term sks �

k1
1 : : : �

kP
P .

A basis for the subspace spanned from these moments can be built and the
resulting orthonormal basis V can be used as a projection matrix for reducing the
original system

colspanV D colspanfM00:::0; : : : ;Mk;ks;k1;:::;kP g: (5.10)

This parametrized reduced model matches up to the k-th order multi-parameter
moment of the original system.

However, the main inefficiencies of this method are twofold:

• On the one hand, this method generates pure multi-dimensional moments (see
Eq. (5.9)), which means that the number of moments grows dramatically (all
the possible combinations for a given order must be done) when the number
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of parameters is increased, even for a modest number of moments for each
parameter. For this reason, the reduced model size grows exponentially with the
number of parameters and the moments to match.

• On the other hand, the process parameters fluctuate in a small range around their
nominal value, whereas the frequency range is much larger, and a higher number
of moments are necessary in order to capture the global response for the whole
frequency range. This algorithm treates the frequency as one parameter more,
which turns to be highly innefficient.

An improvement of the previous approach is to perform a Low-Rank Approxi-
mation of the multi-dimensional moments [22]. An SVD-based low-rank approxi-
mation of the generalized moments, G�1Gi and G�1Ci (which are related to the
multidimensional moments), is applied. Then, separate subspaces are built from
these low-rank approximations for every parameter. The global projector is obtained
from the orthonormalization of the nominal moments (computed via Arnoldi for
example), and the moments of the subspaces related to the parameters. The projector
is applied on the Taylor Series approximation to obtain a reduced parametric model.
This approach, although providing more flexibility and improving the matching,
requires the low-rank SVD of the generalized moments, which comes at a cost of
O.n3/, i.e., limiting its applicability to small-medium size problems.

A different multi-dimensional moment matching approach was also presented
in [16], called Passive Parameterized Time-Domain Macro Models. It relies
on the computation of several subspaces, built separately for each dimension,
i.e. the frequency s (to which respect ks block moments are obtained in a basis
denoted as Qs) and the parameter set � (generating the basis Qi which match k�i
block moments with respect to parameter �i ). These independent subspaces can be
efficiently computed using standard nominal approaches, e.g. PRIMA. Once all the
subspaces have been computed, an orthonormal basis can be obtained so that its
columns span the joint of all subspaces. For example, in the affine Taylor Series
representation, using Krylov spaces Kr.A;B; k/ (matrix A, multi-columns vector
B , moments k):

colsp fQsg � Kr fA;R; ksg with

�
A D �G�1C;
R D G�1B

colsp fQi g � Kr fAi ;Ri ; ki g with

�
Ai D �.G C sC /�1.Gi C sCi /;

Ri D �.G C sC /�1B
V D QR Œ Qs Q1 : : : Qi : : : QP �;

(5.11)

where subscript i refers to the i -th parameter �i , and the parameter related moments
have been generalized to any shifted frequency s. QR stands for the QR-factorization
based orthonormalization. Applying the resulting matrix V in a projection scheme
ensures that the parametric Reduced Order Model matches ks moments of the
original system with respect to the frequency, and ki moments with respect to
the parameter �i . If the cross-term moments are needed for accuracy reasons, the
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subspace that spans these moments can also be included by following the same
scheme.

A different approach is explored in CORE [23]. Here an explicit moment
matching with respect to the parameters is first done, via Taylor-series expansion,
followed by an implicit moment matching in frequency (via projection). The first
step in done by expanding the state space vector x and the matrices G and C in its
Taylor Series only with respect to the parameters,

x.s; �/ D
1X
i1D0

� � �
1X
iPD0

xi1;:::;iP .s/ �
i1
1 : : : �

iP
P ; (5.12)

G.�/ D P1
i1D0 � � �P1

iPD0 Gi1;:::;iP �
i1
1 : : : �

iP
P ;

C.�/ D P1
i1D0 � � �P1

iPD0 Ci1;:::;iP �
i1
1 : : : �

iP
P ;

(5.13)

where G0;:::;0; C0;:::;0 and x0;:::;0.s/ are the nominal values for the matrices and
the states vector, respectively. The remaining Gi1;:::;iP , Ci1;:::;iP and xi1;:::;iP are the
sensitivities with respect to the parameters. Explicitly matching the coefficients of
the same powers leads to an augmented system, in which the parametric dependence
is shifted to the output related matrix LA:

CA D

2
6666664

C0
C1 C0
::: 0 C0

Ci 0 0 C0
:::

: : :

3
7777775
; BA D

2
6666664

B

0
:::

0
:::

3
7777775
;

GA D

2
6666664

G0
G1 G0
::: 0 G0

Gi 0 0 G0
:::

: : :

3
7777775
; LA D ŒL �1L � � � �iL � � � �:

xA D

2
6666664

x0
x1
:::

xi
:::

3
7777775
;

(5.14)

The second step applies a typical nominal moment matching procedure (e.g. PRIMA
[27]) to reduce this augmented system. This is possible because the matricesGA, CA
and BA used to build the projector do not depend on the parameters. The projector
is latter applied on all the matrices of the augmented system in (5.14). Furthermore,
the Block Lower Triangular structure of the system matrices GA and CA can be
exploited in recursive algorithms to speed-up the reduction stage. This two-step
approach allows to increase the number of the matched multi-parameter moments
with respect to other techniques, for a similar reduced order. In principle, in spite
of the larger size of the augmented model, the order of the reduced system can be
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much smaller than in the previous cases. On the other hand, the structure of the
dependence with respect to the parameters is lost, since the parametric dependence
is shifted to the later projected output related L matrix. The projection mixes all the
parameters, losing the possibility of modifying them without need of recomputation.
This method also has the disadvantage that the explicit computation of the moments
with respect to the parameters can lead to numerical instabilities. The method,
although stability-preserving, is unable to guarantee passivity preservation.

Some algorithms [24, 37] try to match the same moments as CORE, but in
a more numerical stable and efficient fashion, using Recursive and Stochastic
Approaches. They generalize the CORE paradigm up to an arbitrary expansion
order with respect to the parameters, and apply an iterative procedure in order
to compute the frequency moments related to the nominal matrices, and the ones
obtained from the parametric part (this means, to obtain a basis for each block of
states xi in (5.14), but without building such system).

colspan fV0g � Kr fA;R; q0g D
h
V 0
0 V

1
0 : : : V

q�1
0

i
;

with A D � .G0 C skC0/
�1 C0; R D .G0 C skC0/

�1 B;
colspan fVi g D

h
V 0
i V

1
i : : : V

j
i : : :

i
;

with V
j
i D � .G0 C skC0/

�1 �GiV j
0 C skCiV

j�1
0 C C0V

j�1
i

�
;

Gi D G0:::010:::0;

Ci D C0:::010:::0;

(5.15)

where sk is the expansion point for the Krylov subspace generation, and V j
i is the

j -th moment with respect to the frequency for the i -th parameter. This general
recursive scheme, here presented for first order with respect to the parameters, can
be extended to any (independent) order with respect to each parameter.

The technique in [37] uses a tree graph scheme, in which each node is associated
to a moment, and the branches represent recursive dependences among moments.
Each tree level contains all the moments of the same multi-parameter order. On this
tree, a random sampling approach is used to select and generate some representative
moments, preventing the exponential growth.

On the other hand, the technique in [24] advocates for an exhaustive computation
at each parameter order. This means that all the moments for zero-parameter order
(i.e. nominal), are computed until no rank is added. The same procedure is repeated
for first order with respect to all parameters. If the model is not accurate, more order
with respect to the parameters can be added.

Notice that both schemes provide a large degree of flexibility, as different orders
with respect to each parameter and with respect to the frequency can be applied.
In both approaches, the set of all the moments generated is orthonormalized, so
an overall projector is obtained. This is used inside a congruence transformation
on the Taylor Series approximation (5.4), to generate a reduced model in the same
representation. Another advantage of these methodologies is that the passivity is
PRIMA-like preserved, and the basis is built in a numerical stable fashion.
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5.1.2.3 Multi-dimensional Sampling

Another option present in the literature relies on sampling schemes for capturing
the variational nature of the parametric model. They are applied for the building of
a projector to later apply congruence tranformation on the original model.

A simple generalization of the multi-point moment matching framework [11]
to a multi-dimensional space can be done via Variational Multi-Point Moment
Matching. Small research has been devoted to this family of approaches, but one
algorithm can be found in [22]. The flexibility it provides is also one of its main
drawbacks, as the methodology can be applied in a variety of schemes, from a
single-frequency multi-parameter sampling to a pure multi-dimensional sampling.
From these expansion points, several moments are computed following a typical
moment matching scheme. The orthonormalization of the set of moments provides
the overall projector which is applied in a congruence reduction scheme. However,
it is hard to determine the number and placement of samples, and the number of
moments to match with respect to the frequency and to the parameters.

Another scheme, which overcomes some of the issues of the previous approach
is the Variational Poor Man’s TBR [28]. This approach is based on the statistical
interpretation of the algorithm (see [29] for details) and enhances its applicability to
multiple dimensions. In this interpretation, the Gramian X� is seen as a covariance
matrix for a Gaussian variable x�, obtained by exciting the (presumed stable) system
with u involving white noise. Rewriting the Gramian as

X� D
Z
S�

Z 1

�1
.j!C� CG�/

�1 BBT .j!C� CG�/
�H p.�/ d!d�; (5.16)

where p.�/ is the probability density of � in the parameter space, S�. Just as in
PMTBR, a quadrature rule can be applied in the overall parameter plus frequency
space to approximate the Gramian via numerical computation. But in this case the
weights are chosen taking into account the Probability Density Function (PDF) of �i
and the frequency constraints. This can be generalized to a set of parameters, where
a joint PDF of all the parameters can be applied on the overall parameter space, or
the individual PDF of each parameter can be used. This possibility represents an
interesting advantage, since a-priori knowledge of the parameters and the frequency
can be included in order to constrain the sampling and yield a more accurate
reduced model. The result of this approach is an algorithm which generates Reduced
Order Models whose size is less dependent on the number of parameters. In the
deterministic case, an error analysis and control can be included, via the eigenvalues
of the SVD. However, in the variational case only an expected error bound can be
given:

Efk Ox�.0/� x�.0/k22g 

nX

iDrC1
�2i ; (5.17)
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where r is the reduced order and n the original number of states. On the other
hand, in this method the issue of sample selection, already an important one in the
deterministic version, becomes even more relevant, since the sampling must now be
done in a potentially much higher-dimensional space.

5.1.3 Practical Consideration and Structure Preservation

Inside the pMOR realm, the moment matching algorithms based on single point
expansion may not be able to capture the complete behavior along the large
frequency range required for common RF systems, and may lead to excessively
large models if many parameters are taken into account. Therefore the most
suitable techniques for the reduction seem to be the multipoint ones. Among
those techniques, Variational PMTBR [28] offers a reliable framework with some
interesting features that can be exploited, such as the inclusion of probabilistic
information and the trade off between size and error, which allows for some control
of the error via analysis of the singular values related to the dropped vectors. On
the other hand, it requires a higher computational effort than the multi-dimensional
moment matching approaches, as it is based on multidimensional sampling schemes
and Singular Value Decomposition (SVD), but the compression ratio and reliability
that it offers compensates this drawback. The effort spent in the generation of such
models can be amortized when the reduced order model generated is going to be
used multiple times. This is usually the case for parametric models, as the designer
may require several evaluations for different parameter sets (e.g. in the case of
Monte Carlo simulations, or optimization steps). Furthermore, this technique offers
some extra advantages when combined with block structured systems [14], such as
the block-wise error control with respect to the global input-output behaviour, which
can be applied to improve the efficiency of the reduction. This means that each block
can be reduced to a different order depending on its relevance in the global response.

An important point to recall here is that the block division may not reflect
different sub-domains. Different sub-divisions can be done to address different
hierarchical levels. For instance, it may be interesting to divide the complete set
in sub-domains connected by hooks, which generates a block structured matricial
representation. But inside each block corresponding to a sub-domain, another block
division may be done, corresponding either to smaller sub-domains or to a division
related to the different kind of variables used to model each domain (for example,
in a simple case, currents and voltages). This variable related block structure
preservation has already been advocated in the literature [15] and may help the
synthesis of and equivalent SPICE-like circuit [35] in the case that is required.
Figure 5.1 presents a more intuitive depiction of the previous statements, in which
a two domain example is shown with its hierarchy, and each domain has also some
inner hierarchy related to the different kind of variables (in this case, voltages and
currents, but it can also be related to the electric and magnetic variables, depending
on the formulation and method used for the generation of the system matrices).
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Fig. 5.1 Two-level hierarchy: domain level (given by the numbers, 1 and 2) and variable level
(voltages vk and currents ik)

The proposed flow starts from a parametric state-space descriptor, such as (5.1),
which exhibits a multi-level hierarchy, and a block parametric dependence (as
different parameters may affect different sub-domains). The matrices of size n have
K domains, each with size ni , n D P

i ni . For instance, for the static part,

G D

2
64
G11.�f11g/ : : : G1K.�f1Kg/

:::
: : :

:::

GK1.�fK1g/ : : : GKK.�fKKg/

3
75 ; (5.18)

where �fijg is the set of parameters affecting Gij 2 R
ni�nj . Then we perform the

multi-dimensional sampling, both in the frequency and the parameter space. For
each point we generate a matrix or vector zj (a matrix in case B includes multiple
inputs)

zj D �
C.�j /sj CG.�j /

��1
B; (5.19)

where C.�/ and G.�/ are the global matrices of the complete domain, with n
degrees of freedom (dofs). To generate the matrix zj 2 R

n�m, with m the number
of global ports, we can apply a direct procedure, meaning a factorization (at cost
O.nˇ/, with 1:1 
 ˇ 
 1:5 for sparse matrices) and a solve (at cost O.n˛/,
with 1 
 ˛ 
 1:2 for sparse matrices). Novel sparse factorization schemes can
be applied to improve the efficiency [9, 10]. In cases when a direct method may be
too expensive iterative procedures may be used [32].

The choice of the sampling points may be an issue, as there is no clear scheme or
procedure that is known to provide an optimal solution. However, as stated in [28],
the accuracy of the method does not depend on the accuracy of the quadrature (and
thus in the sampling scheme), but on the subspace generated. For this reason, a good
sampling scheme is to perform samples in the frequency for the nominal system, and
around these nominal samples, perform some parametric random sampling in order
to capture the vectors that the perturbed system generates. The reasoning behind
this scheme is that for small variations, such as the ones resulting from process
parameters, the subspace generated along the frequency is generally more dominant



280 G. Ciuprina et al.

than the one generated by the parameters. In addition, under small variations, the
nominal sampling can be used as a good initial guess for an iterative solver to
generate the parametric samples. For the direct solution scheme, to generate P
samples (and thus Pm vectors) for the global system has a cost of O.Pn˛ C Pnˇ/.
Note that since m is the number of global (or external) ports, the number of vectors
is smaller than if we take all the hooks into account.

The next step is the orthonormalization, via SVD, of the Pm vectors for
generating a basis of the subspace in which to project the matrices. Here an
independent basis Vi , i 2 f1; : : : ; Kg, can be generated for each i -th sub-domain.
To this end the columns in zj are split according to the block structure present in
the system matrices (i.e., the ni rows for each block), and an SVD is performed
on each of these set of vectors, at a cost of O.ni .Pm/2/, where ni is the size of
the corresponding block, and n D P

i ni . For each block, the independent SVD
allows to drop the vectors less relevant for the global response (estimated by the
dropped singular value ratio, as presented in [28]). This step generates a set of
projectors, Vi 2 R

ni�qi , with qi � ni the reduced size for the i -th block of the
global system matrix. These projectors can be placed in the diagonal blocks of an
overall projector, that can be used for reducing the initial global matrices to an order
q D P

i qi . This block diagonal projector allows a block structure (and thus sub-
domain) preservation, increasing the sparsity of the ROM with respect to that of
the standard projection. This sparsity increase is particularly noticeable in the case
of the sensitivities (if a Taylor series is used as base representation), as the block
parameter dependence is maintained (e.g. in the static matrix)

OGij.�fijg/ D V T
i Gij.�fijg/Vj : (5.20)

The total cost for the procedure can be approximated by

O.Pn˛ C Pnˇ C .Pm/2
P

i ni /: (5.21)

5.1.4 Examples

5.1.4.1 L-Shape

As a first example we present a simple L-shape interconnect structure depending
on the width of the metal layer. Figure 5.2 shows the frequency response for a
fixed parameter value, of the nominal system, the Taylor series approximation
(both of order 313), and the reduction models obtained with several parametric
approaches:

• Nominal reduction of the Taylor Series, via PRIMA, of order 25,
• Multi-dimensional moment matching, via CORE, of order 25,
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Fig. 5.2 (Top): Frequency response of the L-shape example. The original, both the nominal and
the Taylor series for a fixed parameter value, of order 313, and the reductions via PRIMA,
CORE, Passive Parameterized Time-Domain Macro Models (PP TDM), and variational PMTBR
(VPMTBR), of different orders. (Bottom): Relative error of the reduction models with respect to
the original Taylor series approximation

• Multi-dimensional moment matching, via Passive Parameterized Time-Domain
Macro Models technique, of order 20,

• And Multi-dimensional sampling, via Variational PMTBR, of order 16.

Figure 5.3 shows the same example, but in this case the response of the systems
with respect of the parameter variation, for a given frequency point. It is clear that
the parametric Model Order Reduction techniques are able to capture the parametric
behavior, whereas the nominal approach (PRIMA) fails to do so, even for high order.

5.1.4.2 U-Coupled

This is a simple test case, which has two U-shape conductors; each of the conductors
ends represent one port, having one terminal voltage excited (intentional terminal,
IT) and one terminal connected to ground. A clear illustration of the setting is given
by Fig. 5.4. The distance (d ) separating the conductors and the thickness (h) of the
corresponding metal layer are parameterized. The complete domain is partitioned
into three sub-domains, each of them connected to the others via a set of hooks (both
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Fig. 5.3 Parameter impact on the response of the L-shape example. The EM model for several
parameter values (of order 313), the Taylor series approximation (of order 313 as well), and the
reductions via PRIMA, CORE, PP TDM, and VPMTBR, of different orders

Fig. 5.4 Topology of the U-shape: (Up) cross view, (Down) top view. Parameters: distance
between conductors, d , and thickness of the metal, h

electric, EH, and magnetic, MH). The domain hierarchy and parameter dependence
are kept after the reduction, via Block Structure Preserving approaches. The Full
Wave EM model was obtained via Finite Integration Technique (FIT) [7], and its
matrices present a Block Structure that follows the domain partitioning. Table 5.1
shows the characteristics of the original system. Each sub-domain is affected by
a parameter. The left and right sub-domains contain the conductors, and thus are
affected by the metal thickness h. The middle domain width varies with the distance
between the two conductors, and thus is affected by parameter d . For each parameter
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Table 5.1 Characteristics of the examples

Ex Domain Dofs Terminals (EH,MH,IT) ROM Dofs

U-shape Left 785 77 (42; 34; 1) 85

Middle 645 152 (84; 68; 0) 90

Right 785 77 (42; 34; 1) 85

Complete 2,215 2 (0; 0; 2) 260

Double Spiral Var1 49,125 2 (0; 0; 2) 142

Var2 54,977 2 (0; 0; 2) 165

Complete 104,102 2 (0; 0; 2) 307

the first order sensitivity is taken into account, and a first order Taylor Series (TS)
formulation is taken as the original system.

For the reduction we apply three techniques. First, a Nominal Block Structure
Preserving (BSP) PRIMA [36], with a single expansion point and matching
50 moments, is applied. This leads to a 100-vector generated basis, that after
BSP expansion produces a 300-dofs Reduced Order Model (ROM). Second, a
BSP procedure coupled with a Multi-Dimensional Moment Matching (MDMM)
approach [16], is tried. The basis will match 40 moments with respect to the
frequency, and 30 moments with respect to each parameter. The orthonormalized
basis has 196 vectors, that span a BSP ROM of size 588. Third, the proposed BSP
VPMTBR, with 60 multidimensional samples, and a relative tolerance of 0:001 for
each block, is studied. This process generates different reduced sizes for each block:
85, 90 and 85, with a global size of 260.

Figure 5.5 shows the relative error in the frequency transfer function at a
parameter set point for the three ROMs w.r.t. the Taylor series. PRIMA and MDMM
approaches fail to capture the behavior with the order set, but the proposed approach
performs much better even for a lower order. Figure 5.6 shows the response change
with the variation of parameter d at a single frequency point (Parameter Impact).
PRIMA and MDMM only present accuracy for the nominal point, whereas the
proposed method maintains the accuracy for the parameter range.

5.1.4.3 Double Spiral

This is an industrial example, composed by two square integrated spiral inductors
in the same configuration as the previous example (See Fig. 5.7). The complete
domain has two ports, and 104;102Dofs. The example also depends on the same two
parameters, the distance d between spirals, and the thickness h of the corresponding
metal layer. In this case a single domain is used, but the BSP approach is applied
on the inner structure provided by the different variables in the FIT method (electric
and magnetic grid). For the reduction, the proposed BSP VPMTBR methodology
is benchmarked against a nominal BSP PRIMA (400 dofs) methodology, and
compared with the original Taylor Series formulation. The ROM size in this case
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Fig. 5.5 U-coupled: Relative error (dB) in jH12.s/j for (Up) the nominal response, and (Down) the
perturbed response at a single parameter set. The curves represent: BSP PRIMA, BSP VPMTBR,
and BSP MDMM

is 142 and 165 respectively for the blocks. The results are presented in the Figs. 5.8
and 5.9. Figure 5.8 shows the frequency relative error of the ROMs with respect
to the original Taylor Series. PRIMA, although accurate for the nominal response,
fails to capture the parametric behavior, whereas the proposed method succeeds in
modeling such behavior. This is also the conclusion that can be drawn from the
parameter impact in Fig. 5.9.

5.1.5 Conclusions

We conclude that Parametric Model Order Reduction techniques are essential for
addressing parameter variability in the simulation of large dynamical systems.
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Fig. 5.6 U-coupled: Variation of jH12j vs. the variation of the parameter d at 59:6GHz for the
original TS and the three BSP ROMs

Fig. 5.7 Layout configuration of the Double Spiral example (view from the top)

Representation of the state space based on Taylor series expansion with respect to
the parameters provide the flexibility and accuracy required by efficient simulation.
This reresentation approach can be combined with projection-based methods to
generate structural equivalent reduced models.

Single-point based moment-matching approaches are suitable for small varia-
tions and local approximations, but usually suffer from several drawbacks when
applied to EM based models operating in a wide frequency range. Multi-point



286 G. Ciuprina et al.

10
−1

10
0

10
1

−160

−140

−120

−100

−80

−60

−40

−20
Relative Error with d = 0  h = 0

Frequency(GHz)

|H
R

12
(s

) 
−

H
12

(s
)|

/|H
12

(s
)|

BS PRIMA(400)
BS VMPTBR(307)

10
−1

10
0

10
1

−60

−40

−20

0

20

40

Relative Error with d = 1.6758e−005  h = −1.8182e−008

Frequency(GHz)

|H
R

12
(s

) 
−

H
12

(s
)|

/|H
12

(s
)|

BS PRIMA(400)
BS VMPTBR(307)

Fig. 5.8 Double Spiral: Relative error (dB) in jH12.s/j for (Up) the nominal response, and (Down)
the perturbed response at a single parameter set
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Fig. 5.9 Double Spiral: jH12j vs. the variation of the parameter d at a frequency point for the
original TS and the ROMs: PRIMA, and VPMTBR

based approaches, although computationally more expensive, are more reliable and
generate more compressed models. Thus, the generation cost can be amortized in
the simulation stages.
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Combination of the projection methodologies with Block Structure Preserving
approaches can be done efficiently in parametric environments. Further advantages
can be obtained in this case, such as different compression order for each block
based on its relevance in the global behavior, higher degree of sparsification of the
nominal matrices, and in particular, of the sensitivities, and the maintenance of the
block domain hierarchy and block parameter dependence after reduction.

5.2 Robust Procedures for Parametric Model Order
Reduction of High Speed Interconnects

Due to higher integration and increasing of running frequency, full Electromagnetic
Models (EM) are needed for an accurate prediction of the real behavior of integrated
passives and interconnects in currently designed chips [45].2 In general, if on-
chip interconnects are sorted with respect to their electric length, they may be
categorized in three classes: short, medium and long. While the short interconnects
have simple circuit models with lumped parameters, the extracted model of the
interconnects longer than the wave length has to consider the effect of the distributed
parameters, as well. Fortunately, the long interconnects have usually the same cross-
sectional geometry along their extension. If not, they may be decomposed in straight
parts connected by junction components (Fig. 5.10). The former are represented as
transmission lines (TLs) whereas the latter are modeled as common passive 3D
components.

Due to the fact that the lithographic technology is pushed today to work at its
limit, the variability of geometrical and physical properties cannot be neglected.

Fig. 5.10 Decomposition of the interconnect net in 2D TLs and 3D junctions

2Section 5.2 has been written by: Gabriela Ciuprina, Alexandra Ştefănescu, Sebastian Kula and
Daniel Ioan. For additional topics see also the Ph.D.-Theses of the second author [59] and of the
third author [56].
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That is why, to obtain robust devices, the variability analysis is necessary even
during the design stage [44, 55].

This Section proposes a robust specialized technique to extract reduced para-
metric compact models, described as parametric SPICE like netlists, for long
interconnects modeled as transmission lines with several field effects such as skin
effect and substrate losses. The technique uses an EM formulation based on partial
differential equations (PDE), which is discretized to obtain a finite state space
model. Next, a variability analysis of the geometrical data is carried out. Finally,
a method to extract an equivalent parametric circuit is proposed. The procedure is
validated by applying it on a study case for which experimental data is available.

5.2.1 Field Problem Formulation: 3D – PDE Models

Long interconnects and passive components with significant high frequency field
effects, have to be modeled by taken into consideration Full Wave (FW) electromag-
netic field equations. Typical examples of such parasitic effects are: skin effect and
proximity, substrate losses, propagation retardation and crosstalk. Only Maxwell
equations in FW regime

curlH D J C @D
@t
; divB D 0;

curlE D � @B
@t
; divD D �;

(5.22)

complemented with the constitutive equations which describe the material behavior:

B D �H ; D D "E ; J D �E ; (5.23)

can model these effects. While material constants are known for each subdomain (Si,
Al, SiO2), vectorial fields B;H ;E ;D W ˝ � Œ0; T / ! R3 and the scalar field � W
˝�Œ0; T / ! R are the unknowns of the problem. They can be univocal determined
in the simple connected set ˝ , which is the computational domain, for zero initial
conditions (B D 0;D D 0 for t D 0), if appropriate boundary conditions are
imposed.

According to authors’ knowledge, the best boundary conditions which allow
the field-circuit coupling are those given by the electric circuit element (ECE)
formulation [54]. Considering S 0

1; S
0
2; : : : ; S

0
n � @˝ a disjoint set of surfaces, called

terminals (Fig. 5.11), the following boundary conditions are assumed:

n � curlE D 0 on @˝; (5.24)

n � curlH D 0 on @˝n [n
kD1 S 0

k (5.25)

n �E D 0 on [n
kD1 S 0

k (5.26)
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Fig. 5.11 ECE – electric circuit element with multiple terminals

Condition (5.24) interdicts the magnetic coupling between the domain and its
environment, (5.25) interdicts the galvanic coupling and the capacitive coupling
through the boundary excepting for the terminals and (5.26) interdicts the variation
of the electric potential over the terminal, thus allowing the connection of the device
to exterior electric circuit nodes. For each terminal, k D 1; : : : ; n the voltage and
the current can be univocal defined:

uk D
Z
Ck	@˝

E � dr; ik D
Z
@S 0

k

H � dr; (5.27)

where C 0
k is an arbitrary path on the device boundary @˝ , that starts on S 0

k and
ends on S 0

n, where, by convention, the n-th terminal is considered as reference,
i.e. un D 0. If we assume that the terminals are excited in voltage, then uk ,
k D 1; 2; : : : ; n � 1 are input signals and ik , k D 1; 2; : : : ; n � 1 are output
signals. Equations (5.24) � (5.26) define a multiple input multiple output (MIMO)
linear system with n � 1 inputs and n � 1 outputs, but with a state space of
infinite dimension. In the weak form of Maxwell’s equations, state variables,H ;E
belong to the Sobolev spaceH.curl;˝/ [39]. Uniqueness theorem of the ECE field
problem [54] generates the correct formulation of the transfer function Y.s/ W C !
C.n�1/�.n�1/, which represents the matrix of the terminals admittance for a complex
frequency s. The relation

i D Yu (5.28)

defines a linear transformation in the frequency domain of the terminal voltages
vector u 2 Cn�1 to the currents vector i 2 Cn�1.
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5.2.2 Numeric Discretization and State Space Models

PDE models are too complex for designers needs. The approach we propose for the
extraction of the electric models is schematically represented in Fig. 5.12. The left
block corresponds to the formulation described in the previous section.

The next important step in the EM modeling is the discretization of the PDEs.
One of the simplest methods to carry out this, is based on the Finite Integration
Technique (FIT), a numerical method able to solve field problems based on spatial
discretization “without shape functions”. Two staggered orthogonal (Yee type) grids
are used as discretization mesh [42]. The centers of the primary cells are the nodes
of the secondary cells. The degrees of freedom (dofs) used by FIT are not local field
components as in FEM or in FDTD, but global variables, i.e., electric and magnetic
voltages ue;um, electric currents i, and magnetic and electric fluxes �; assigned to
the grid elements: edges and faces, respectively. They are associated to these grids
elements in a coherent manner (Fig. 5.13).

By applying the global form of electromagnetic field equations on the mesh
elements (elementary faces and their borders), a system of differential algebraic
equations (DAE), called Maxwell Grid Equations (MGE) is obtained:

curlE D �@B
@t

) R
�

Edr D � R R
S�

@B
@t
dA ) Cue D �d'

dt
(5.29)

,! divB D 0 ) R R
˙

BdA D 0 ) D0' D 0 (5.30)

Fig. 5.12 Three levels of abstraction for a component model and its corresponding equations

Fig. 5.13 Dofs for FIT numerical method in the two dual grids cells
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curlH D J C @D
@t

) R
� Hdr D R R

S�
.J C @D

@t
/dA ) C0um D i C d 

dt

(5.31)

,! divD D � ) R R
˙ DdA D R R R

D˙
�dv ) D D q (5.32)

,! divJ D �@�
@t

) R R
˙

JdA D � R R R
D˙

@�

@t
dv ) Di D �dq

dt
(5.33)

FIT combines MGE with Hodge’s linear transform operators, which approximate
the material behavior (5.23):

' D Gmum;  D Ceue; i D Geue: (5.34)

The main characteristics of the FIT method are:

• There is no discretization error in the MGE fundamental Eqs. (5.29) � (5.33).
All numerical errors are hold by the discrete Hodge operators (5.34).

• An equivalent FIT circuit (Fig. 5.14), having MGE + Hodge as equations may be
easily build. The graphs of the two constituent mutually coupled sub-circuits
are exactly the two dual discretization grids; therefore the complexity of the
equivalent circuit has a linear order with respect to the number of grid-cells [49].

• MGE are:

– Sparse: matrices Gm;C e and G e are diagonal and matrices C ;D have
maximum six non-zero entries per row,

– Metric-free: matrices C – the discrete-curl and D – the discrete-div operators
have only 0, C1 and �1 as entries,

– Mimetic: in Maxwell equations curl and div operators are replaced by their
discrete counterparts C and D, and

– Conservative: the discrete form of the discrete charge conservation equation
is a direct consequence of both Maxwell and as well as of the MGE equations.

Due to these properties the numerical solutions have no spurious modes.

Fig. 5.14 Electric (left) and magnetic (right) equivalent FIT circuits



292 G. Ciuprina et al.

Considering FIT Eqs. (5.29), (5.31), and (5.34) with the discrete forms of
boundary conditions (5.24) � (5.27) a linear time-invariant system is defined having
the same input-output quantities as (5.28), but the state equations:

C
dx

dt
CGx D Bu; i D Lx; (5.35)

where x D ŒuTm;u
T
e ; i

T �T is the state space vector, consisting of electric voltages
ue defined on the electric grid used by FIT, magnetic voltages um defined on the
magnetic grid and output quantities i . Equations can be written such that only
two semi-state space matrices (C and G ) are affected by geometric parameters
(denoted by ˛ in what follows). Considering all terminals voltage-excited, the
number of inputs is always equal to the number of outputs. Since output currents
are components of the state vector, the matrixL D BT is merely a selection matrix.

For instance, the structure of the matrices in the case of voltage excitation is the
following:

C D

2
66666664

Gm.˛/ 0 0

0 �C i .˛/ 0 0

0 0 0

0 C Sl.˛/ 0

0 C TE.˛/ 0

0 0 0

3
77777775

G D

2
66666664

0 B1 B2 0

BT
1 �G i .˛/ 0 0

0 0 BSl 0

0 G Sl.˛/ 0

0 G TE.˛/ �SE
0 PE 0

3
77777775

(5.36)

There are six sets of rows, corresponding to the six sets of equations. The first
group of equations is obtained by writing Faraday’s law for inner elementary
electric loops. Gm is a diagonal matrix holding the magnetic conductances that
pass through the electric loops. The block

�
B1 B2

�
has only 0, 1, �1 entries,

describing the incidence of inner branches and branches on the boundary to electric
faces. The second group corresponds to Ampere’s law for elementary magnetic
loops. C i and G i are diagonal matrices, holding the capacitances and electric
conductances of the inner branches. The third group represents Faraday’s law
for electric loops on the boundary. BSl has only 0, 1, �1 entries, describing the
incidence of electric branches included in the boundary to the electric boundary
faces. The forth row is obtained from the current conservation law for all nodes on
the boundary excepting for the nodes on the electric terminals. G Sl and C Sl hold
electric conductances and capacitances directly connected to boundary. The fifth set
of equations represents current conservation for electric terminals. G TE and C TE

hold electric conductances and capacitances that are directly connected to electric
terminals. SE is the connexion matrix between electric branches and terminals path.
The last row is the discrete form of (5.27), obtained by expressing the voltages of
electric terminals as sums of voltages along open paths from terminals to ground,
PE being a topological matrix that holds the paths that connect electric terminals to
ground.
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Thus, the top left square block of C is diagonal and the top left square bloc of
G is symmetric. The size of this symmetric bloc corresponds to the useful magnetic
branches and to the useful inner electric branches. Its size is dominant over the size
of the matrix, therefore, solving or reduction strategies that take into consideration
this particular structure are useful.

The discretized state-space system given by (5.35) describes the input output
relationship in the frequency domain

i D Y u; (5.37)

similar to (5.28), but having as transfer (circuit) function:

Y D L .sC CG /�1B (5.38)

which is a rational function with a finite number of poles.
In conclusion, the discretization of the continuous model leads to a model

represented by a MIMO linear time invariant system described by the state equations
of finite size. Even if this is an important step ahead in the extraction procedure,
the state space dimension is still too large for designer’s needs, therefore a further
modeling step aiming an order reduction is required.

5.2.3 Transmission Lines: 2D + 1D Models

In this section, aiming to reduce the model extraction effort, we will exploit the
particular property of interconnects of having invariant transversal section along
their extent. We assume that the field has a similar structure as a transversal electro-
magnetic wave that propagates along the line. The typical interconnect configuration
(Fig. 5.15) considered consists of n parallel conductors having rectangular cross
section, permeability � D �0, permittivity " D "0 and conductivity �k; k D
1; 2; � � � ; n, placed in a SiO2 layer (�d , "d , possibly dependent on y) placed above
a silicon substrate (�s , "s).

Fig. 5.15 Typical
interconnect configuration
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If the field is decomposed in its longitudinal (oriented along the line, which is
assumed to lie along the Oz axis) and the transversal components (oriented in the
xOy plane)

E D Et C kEz; J D Jt C kJz; H D Ht C kHz; (5.39)

then Maxwell’s Equations can be separated into two groups:

curlxyHt D k
�
Jz C �

@Ez
@t

�
; divxy.�Ht/ D � @.�Hz/

@z ;

curlxyEt D �k�@Hz
@t
; divxy.�Et/ D � � @.�Ez/

@z ;
(5.40)

called transversal equations and

@Et
@z � gradxyEt D �� @

@t
.Ht � k/I

@Ht

@z � gradxyHz D Jt � k C � @
@t
.Et � k/I

called propagation equations.
The following hypotheses are adopted:

• The volume charge density � and the displacement current density @E
@t

are
neglected both in conductors and in the substrate.

• The following “longitudinal” terms Ez D 0, Hz D 0 are canceled in the
transversal equations, neglecting the field generated by eddy currents.

• The longitudinal conduction current is neglected in dielectric Jz D 0, but not in
the conductors.

• Since the conductances �k of the conductors are much bigger than the dielectric
conductance �d , the transversal component of the electric field is neglected in the
line conductors and in the substrate:

Et D 1

�k
Jt D 0: (5.41)

Under these hypotheses the transversal equations have the following form (where
.k/ D conductor, .s/ D substrate, .d/ D dielectric):

curlxyHt D
�

kJz; in (k) and (s)
0; in (d)

divxy.�Ht / D 0

curlxyEt D 0; divxy.�Et / D 0;

(5.42)

identical with the steady state electromagnetic field equations. For this reason,
the electric field admits a scalar electric potential V.x; y; z; t/, whereas the mag-
netic field admits a vector magnetic potential A.x; y; z; t/ D kA.x; y; z; t/ with
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longitudinal orientation, so that:

Et D �gradxyV; (5.43)

Ht D 1

�
Œk � .curlA � k/� D �k � 1

�
gradxy.A � k/: (5.44)

Thus, the propagation equations become:

gradxy

h
@A
@t

C @V
@z C Ez

i
D 0;

�gradxyHz D k �
h
1
�

gradxy

�
@A
@z

�
C �gradxyV C �gradxy

�
@V
@t

�i
:

(5.45)

By assuming an asymptotic behavior of potentials, the integration of the propagation
equations yields to:

Ez D 1
�
Jz D � @V

@z � @A
@t
;

Hz D � R
C

h
1
�
@
@n

�
@A
@z

�
C � @V

@n C � @
@n

�
@V
@t

�i
ds;

(5.46)

where C is a curve in the plane z D constant, which starts from the infinity and
stops in the computation point of the field Hz, n is the normal to the curve, oriented
so that the line element is

ds D dsk � n: (5.47)

From (5.41) it follows that the potential V is constant on every transversal cross-
section of the conductors and zero in the substrate:

V jSk D Vk.z; t/; Vs D 0: (5.48)

From relations (5.42) and (5.43) it follows that, in the transversal plane, the
electric field has the same distribution as an electrostatic field. By using the
uniqueness theorem of the electrostatic field it results that the function V.x; y; z; t/
is uniquely determined by the potentials of the conductors Vk . Consequently, due
to the linearity, the per unit length (p.u.l.) charge of conductors and the current loss
through the dielectric are:

qk.z; t/ D �
Z
@Sk

�d
@V

@n
ds D

nX
mD1

ckmVm.z; t/I (5.49)

igk.z; t/ D �
Z
@Sk

�d
@V

@n
ds D

nX
mD1

gkmVm.z; t/; (5.50)

where ckm is the p.u.l. capacitance, and gkm is the p.u.l. conductance between the
conductor k and the conductorm.
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By integrating Ez equation from (5.46) over the surface Sk and Hz equation
from (5.46) along the path @Sk which bounds this surface, the following propagation
equations for potentials are obtained:

� @ Qvk
@z

D r0k ik C @ Qak
@t

I �@ik
@z

D igk C @qk

@t
; (5.51)

where r0k D 1=.�kASk / is the p.u.l. d.c. resistance of the conductor k, and

Qvk.z; t/ D 1
ASk

R
Sk
V .x; y; z; t/dxdy D vk.z; t/;

Qak D 1
ASk

R
Sk
A.x; y; z; t/dxdy

(5.52)

are the average values of the two potentials on the cross-section of the conductor k.
By computing the average values of the magnetic potential as in [58] and by

substituting (5.49), (5.50) in (5.51) the following expressions are obtained in zero
initial conditions:

� @vk

@z
D r0k ik C

nX
mD1

l0km

@im

@t
C

nX
mD1

@

@t

Z t

0

�
dlkm

dt

�
t��

im.�; t/ d�; (5.53)

�@ik
@z

D
nX

mD1

�
gkmvm C ckm

@vm

@t

�
; (5.54)

where l0km are the p.u.l. external inductances (self inductances for k D m and
mutual inductances for k 6D m) of the conductors .k/ and .m/ where the return
current is distributed on the surface of the substrate, and lkm.t/ are “transient p.u.l.
inductances”, defined as the average values on Sk of the vector potentialA obtained
in zero initial conditions by a unity step current injected in conductor .m/.

For zero initial conditions for the currents im.z; 0/ D 0, for the potential
vm.z; 0/ D 0 and for the field B0

k.s/ D 0, the Laplace transform of (5.53) and
(5.54) can be written as:

� dvk.z; s/

dz
D

nX
mD1

Zkm.s/im.z; s/; �dik.z; s/

dz
D

nX
mD1

Ykm.s/vm.z; s/; (5.55)

which is identical to the operational form of the classical Transmission Lines (TLs)
Telegrapher’s equations, but where the p.u.l. inductances depend on s (implicitly on
the frequency in a time-harmonic regime). In order to extract these dependencies, a
magneto-quasi-static (MQS) field problem has to be solved.
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Fig. 5.16 The coarsest
model for a single
transmission line: a pi
equivalent circuit

5.2.4 Numeric Extraction of Line Parameters

Models with various degrees of fineness can be established for TLs. The coarsest
ones are circuit models with lumped parameters, such as the pi equivalent circuit for
a single TL shown in Fig. 5.16. As expected, the characteristic of such a circuit is
appropriate only at low frequencies, over a limited range, and for short lines. Even
chaining similar cells, the result is not appropriate.

At high frequencies, the distributed effects have to be considered as an important
component of the model. Proper values for the line parameters can be obtained only
by simulating the electromagnetic field. The extraction of line parameters is the
main step in TLs modeling since the behavior of a line with a given length can be
computed from them. For instance, for a multiconductor transmission line, from the
per unit length parameters matrices R, L, C and G the transfer matrix for a line of
length l can be computed as

T D expŒ.D C j!E/l�; where D D
	

0 �R
�G 0



; E D

	
0 �L

�C 0



:

(5.56)

From them, other parameters (impedance, admittance or scattering) can be com-
puted. The simplest method to extract constant matrices of the line resistance R,
capacitance C and inductance L, respectively, is to solve the field equations numeri-
cally in steady-state electric conduction (EC), electrostatics (ES) and magnetostatics
(MS) regimes. Empirical formulas may also be found in the literature, such as
the ones given in [62] for the line capacitance. None of them take the frequency
dependence of p.u.l. parameters into account.

A first attempt to take into consideration the frequency effect, which becomes
important at high frequencies, is to compute the skin depth in the conductor and
to use a better approximation for the resistance. In [52] we proposed a much more
accurate estimation of frequency dependent line parameters based on the numerical
modeling of the EM field including the semiconductor substrate. The previous
section is the theoretical argument of this approach in which two complementary
problems are solved, the first one describing the transversal behavior of the line
from which Yl .!/ D G.!/ C j!C.!/ is consequently extracted, and the second
one describing the longitudinal behavior of the line from which Zl .!/ D R.!/ C
j!L.!/ is extracted.
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Since the first field problem is dedicated to the computation of the transversal
capacitances between wires and their loss conductances, according to the previous
section, the natural choice is to solve a 2D problem of the transversal electro-quasi-
static (EQS) field in dielectrics, considering the line wires as perfect conductors with
given voltage. The boundary conditions are of Dirichlet type V D 0 on the lower
electrode, and open boundary conditions (e.g. Robin, SDI or appropriate ELOB
[50]) on the other three sides. A dual approach, such as dFIT [51] allows a robust
and accurate parameter extraction.

The second field problem focuses on the longitudinal electric and the generated
transversal magnetic field. Consequently, a short line-segment (with only one cell
layer) is considered. The magneto-quasi-static (MQS) regime of the EM field is
appropriate for the extraction of Zl .!/. However, for our simulations we used a
our FIT solver for Full Wave (FW) ECE problems. The magnetic grid is 2D, thus
ensuring the TM mode of propagation.

In order to eliminate the transversal distribution of the electric field, the lower
electrode is prolongated over the entire far-end cross-section of the rectangular
computational domain, which thus has perfect electric conductor (PEC) boundary
conditions Et D 0 on two of their faces. On the three lateral faces, open-absorbing
boundary conditions are the natural choice, whereas on the near-end cross-section
the natural boundary conditions are those of the Electric Circuit Element (ECE):
Bn D 0, n � curlH D 0 excepting for the wire traces, where Et D 0. These
conditions ensure the correct definition of the terminals voltages, and consequently
of the impedance/admittance matrix (Fig. 5.17).

Fig. 5.17 Boundary conditions for the full wave – transversal magnetic problem
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Fig. 5.18 The pi equivalent
circuit for a simulated short
line segment. Parameters are
evaluated from field
simulations

These boundary conditions are the field representation of the line segment with
short-circuit at the far-end, whereas the 2D EQS problem is the field representation
of the segment-line with open far-end.

The transversal component is finally subtracted from the FW-TM simulation to
obtain an accurate approximation of the line impedance, as given by

ZMQS D
�

Z�1
TM � 1

2
YEQS

��1
: (5.57)

This subtraction is carried out according to a pi-like equivalent net for the simulated
short segment (Fig. 5.18). Finally, the line parameters are:

G.!/ D Re.Yl /; C.!/ D Im.Yl /=!; R.!/ D Re.Zl /; L.!/ D Im.Zl /=!;
(5.58)

where

Yl D YEQS=�l; Zl D ZMQS=�l; (5.59)

where �l is the length of the considered line-segment and ZTM is the impedance
matrix extracted from the TM field solution.

This numerical approach to extract the line parameters, named the two fields
method, is more robust and may be applied without difficulties to multi-wire lines.
The obtained values of the line parameters are frequency dependent, taking into
consideration proximity and skin effects as well as losses induced in the conducting
substrate.

5.2.5 Variability Analysis of Line Parameters

The simplest way to analyze the parameter variability is to compute first order
sensitivities. These are derivatives of the device characteristics with respect to the
design parameters. The sensitivities of the line parameters are essential to estimate
the impact of small variations on the device behavior. Moreover, the sensitivity of
the terminal behavior of interconnects can also be estimated.
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For instance, in the case of a single TL, having the global admittance given by

Y D
	
Y11 Y12

Y21 Y22



D
"

cosh�l
Zcsinh�l � 1

Zcsinh�l

� 1
Zcsinh�l

cosh�l
Zcsinh�l

#
(5.60)

the sensitivities of the terminal admittance with respect to a parameter can be
computed as:

@Y11

@˛
D l

Zc

@�

@˛
� cosh�l

Z2
c sinh�l

@Zc

@˛
� l

Zc

cosh2�l

sinh2�l

@�

@˛
(5.61)

@Y12

@˛
D 1

Z2
c sinh�l

@Zc

@˛
C l

Zc

cosh

sinh2�l

@�

@˛
(5.62)

where the sensitivities of

� D p
.RC j!L/.G C j!C/ and Zc D p

.RC j!L/=.G C j!C/

can be computed if the sensitivities of the p.u.l. parameters @R=@˛, etc. are known.
In the case of a multiconductor TL with n conductors the sensitivity of the

admittance matrix Y of dimension .2n�2n/ is computed by means of the sensitivity
of the transfer matrix

T D
	

T11 T12
T21 T22;



(5.63)

also of dimension .2n � 2n/, knowing that

Y D
	

Y11 Y12

Y21 Y22



D
	 �T�1

12 T11 T�1
12

T22T�1
12 T11 � T21 �T22T�1

12



: (5.64)

In the formulas above, all the sub-blocks are of dimensions .n � n/. For instance

@Y11

@˛
D �T�1

12

@T12
@˛

T�1
12 T11 � T�1

12

@T11
@˛

; (5.65)

@Y12

@˛
D �T�1

12

@T12
@˛

T�1
12 : (5.66)

The transfer matrix T is computed with (5.56) and its sensitivity is

@T
@˛

D expŒ.D C j!E/l�
�
@D
@˛

C j!
@E
@˛

�
; (5.67)
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where

@D
@˛

D
	

0 �@R=@˛
�@G=@˛ 0



;

@E
@˛

D
	

0 �@L=@˛
�@C=@˛ 0



: (5.68)

Thus, the basic quantities needed to estimate the sensitivity of the admittance are
the sensitivities of the p.u.l. parameters. By using a direct differentiation technique,
as explained in [41] the sensitivities of the EQS and TM problems with respect to
the parameters that vary, i.e. @YEQS=@˛ and @ZTM=@˛ are computed. Then, the
sensitivity of the MQS mode is computed by taking the derivative of (5.57):

@ZMQS

@˛
D �

�
Z�1

TM � 1

2
YEQS

��1 �
�Z�1

TM

@ZTM

@˛
Z�1

TM � 1

2

@YEQS

@˛

��
Z�1

TM � 1

2
YEQS

��1

(5.69)

Finally, the sensitivities of the p.u.l. parameters are:

@R
@˛

D 1

l
Re

�
@ZMQS

@˛


;

@L
@˛

D 1

l!
Im

�
@ZMQS

@˛


; (5.70)

@G
@˛

D 1

l
Re

�
@YEQS

@˛


;

@C
@˛

D 1

l!
Im

�
@YEQS

@˛


: (5.71)

The values of the sensitivities thus obtained depend on the frequency as well.

5.2.6 Parametric Models Based on Taylor Series

Continuous improvements in today’s fabrication processes determine smaller chip
sizes and smaller device geometries. Process variations induce changes in the
properties of metallic interconnect between devices.

Simple parametric models are often obtained by truncating the Taylor series
expansion for the quantity of interest. This requires the computation of the deriva-
tives of the device characteristics with respect to the design parameters [55]. Let us
assume that y.˛1; ˛2; � � � ; ˛n/ D y.˛/ is the device characteristic which depends
on the design parameters ˛ D Œ˛1; ˛2; � � � ; ˛n�. The quantity y may be, for instance,
the real or the imaginary part of the device admittance at a given frequency or any
of the p.u.l. parameters. The parameter variability is thus completely described by
the real function, y, defined over the design space S , a subset of Rn. The nominal
design parameters correspond to the particular choice ˛0 D Œ˛01 ˛02 � � � ˛0n�.
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5.2.6.1 Additive Model (A)

If y is smooth enough then its truncated Taylor Series expansion is the best
polynomial approximation in the vicinity of the expansion point ˛0. For one
parameter .n D 1/, the additive model is the first order truncation of the Taylor
series:

Oy.˛/ D y.˛0/C @y

@˛
.˛0/.˛ � ˛0/: (5.72)

If we denote by y.˛0/ D y0 the nominal value of the output function, by @y

@˛
.y0/

˛0
y0

D
S
y
˛ the relative first order sensitivity and by .˛ � ˛0/=˛0 D ı˛ the relative variation

of the parameter ˛, then the variability model based on (5.72) defines an affine [60]
or additive model (A):

Oy.˛/ D y0.1C Sy˛ ı˛/: (5.73)

To ensure a relative validity range of the first order approximation of the output
quantity less a given threshold t1, the absolute variation of the parameter must be
less than

Vd D
s
2y0t1

D2

; (5.74)

where D2 is an upper limit of the second order derivative of the output quantity y
with respect to parameter ˛ [41].

For the multiparametric case, one gets:

y.˛/ D y.˛0/C ry.˛0/ � .˛ � ˛0/ D y0 C
nX

kD1

@y

@˛k
.˛0/.˛k � ˛0k/: (5.75)

Similar with one parameter case, the relative sensitivities w.r.t. each parameter are
denoted by @y

@˛k
.˛0/

˛0k
y0

D S
y
˛k and the relative variations of the parameters by ı˛k D

.˛k � ˛0k/=˛0k , the additive model (A) for n parameters being given by:

Oy.˛/ D y0

 
1C

nX
kD1

Sy˛k ı˛k

!
: (5.76)

Thus, each new independent parameter taken into account adds a new term to the
sum [52]. The additive model is simply a normalized standard version of a linearly
truncated Taylor expansion.
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Instead of using this truncated expansion may be numerically favorable to expand
some transformation F.y/ of y instead. Two particular choices for F have practical
importance: identity and inversion as it will be indicated below.

5.2.6.2 Rational Model (R)

The rational model is the additive model for the reverse quantity 1=y. It is obtained
from the first order truncation of the Taylor Series expansion for the function 1=y.
For n D 1, if we denote by r.˛/ D 1

y.˛/
, it follows that:

Or.˛/ D r.˛0/C @r

@˛
.˛0/.˛ � ˛0/: (5.77)

We define the relative first order sensitivity of the reverse circuit function:

@r

@˛
.˛0/

˛0

r.˛0/
D Sr˛ D S1=y˛ : (5.78)

Consequently, we obtain the rational model for n D 1:

y.˛/ D y0

1C S
1=y
˛ ı˛

: (5.79)

It can be easily shown that the reverse relative sensitivity is S
1
y
˛ D �Sy˛ . For the

multiple parameter case, the rational model is:

Oy.˛/ D y0

1CPn
kD1 S

1=y
˛k ı˛k

: (5.80)

If the circuit function y is for instance the admittance, its inverse 1=y is the
impedance. In the time domain, these two transfer functions correspond to a device
excited in voltage or in current, respectively. Consequently, the choice between
additive and rational models for the variability analysis of the circuit functions
in frequency domain can be interpreted as a change in the terminal excitation
mode in the time domain state representation. Choosing the appropriate terminal
excitation, the validity range of the parametric model based on first order Taylor
series approximation can be dramatically extended.

5.2.7 Parametric Circuit Synthesis

We have shown in [48] that one of the most efficient order reduction method for the
class of problems we address is the Vector Fitting (VFIT) method proposed in [47],
improved in [43, 46] and available at [61]. It finds the transfer function matching
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a given frequency characteristic. Thus, in the frequency domain, for the output
quantity y.s/, this procedure finds the poles pm (real or complex conjugate pairs),
the residuals km and the constant terms k0 and k1 of a rational approximation of
the output quantity (e.g an admittance):

y.s/ � yVFIT.s/ D k1 C sk0 C
qX

mD1

km

s � pm : (5.81)

The resulting approximation has guaranteed stable poles and the passivity can
be enforced in a post-processing step [43]. The transfer function (5.81) can be
synthesized by using the Differential Equation Macromodel (DEM) [57]. Our aim
is to extend DEM to take into consideration the parameterization.

To simplify the explanations, we assume a single input single output system,
excited in voltage. It follows that the output current is given by (5.82), where xm.s/
is a new variable defined by (5.83).

i.s/ D y.s/u.s/ D k1u.s/C sk0u.s/C
qX

mD1
kmxm.s/; (5.82)

xm.s/ D u.s/

s � pm : (5.83)

By applying the inverse Laplace transformation to (5.82) and (5.83), relation-
ships (5.84) and (5.85) are obtained:

i.t/ D k1u.t/C k0
d u.t/

d t
C

qX
mD1

kmxm.t/; (5.84)

d xm.t/

d t
D pmxm.t/C u.t/: (5.85)

If we use the following matrix notations

A D diag.p1; p2; : : : ; pq/; b D �
1 1 � � � 1 �T ; (5.86)

c D �
k1 k2 � � � kq

�T
x D �

x1 x2 � � � xq
�T
; (5.87)

then equations of the system (5.84), (5.85) can be written in a compact form as

dx.t/

dt
D Ax.t/C bu.t/; (5.88)

i.t/ D k1u.t/C k0
d u.t/

d t
C cx.t/: (5.89)
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Fig. 5.19 Equivalent circuit
for the output equation if all
poles are real

Fig. 5.20 Sub-circuit
corresponding to a real pole

5.2.7.1 Case of Real Poles

In the case in which all poles (and consequently, all the residuals) are real, Eq. (5.84)
can be synthesized by the circuit shown in Fig. 5.19 which consists of a capacitor
having the capacitance k0, in parallel with a resistor having the conductance k1,
in parallel with q voltage controlled current sources, their parameters being the
residuals km.

Equation (5.85) can be synthesized by the circuit in Fig. 5.20, where xm is the
voltage across a unity capacitor, connected in parallel with a resistor having the
conductance �pm and a voltage controlled current source, controlled by the input
voltage u.

We would like to include the parametric dependence into the VFIT model and
in the synthesized circuit. To keep the explanations simple, we assume that there is
only one parameter that varies, i.e. the quantity ˛ is a scalar. Assuming that keeping
the order q is satisfactory for the whole range of the variation of this parameter, this
means that (5.81) can be parameterized as:

y.s; ˛/ � yVFIT.s; ˛/ D k1.˛/C sk0.˛/C
qX

mD1

km.˛/

s � pm.˛/
: (5.90)

Without loss of generality, we can assume that the additive model is more accurate
than the rational one. If not, the reverse quantity is used, which is equivalent, for
our class of problems, to change the excitation of terminals from voltage excited to
current excited, and use an additive model for the impedance z D y�1. The additive
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model (5.73) can be written as

y.s; ˛/ � yA.s; ˛/ D y.s; ˛0/C @y

@˛
.s; ˛0/.˛ � ˛0/; (5.91)

where here y is a matrix function. By combining (5.90) and (5.91) we obtain an
approximate additive model based on VFIT:

y.s; ˛/ � yA�VFIT.s; ˛/ D yVFIT.s; ˛0/C @yVFIT

@˛
.s; ˛0/.˛ � ˛0/: (5.92)

From (5.90) it follows that the sensitivity of the VFIT approximation needed in
(5.92) is

@yVFIT

@˛
D @k1

@˛
C s

@k0

@˛
C

qX
mD1

	
@km=@˛

s � pm
C km

.s � pm/2
@pm

@˛



: (5.93)

The sensitivity @y=@˛ can be evaluated with (5.61) for as many frequencies as
required and thus the sensitivities of poles and residues in (5.93) can be computed
by solving the linear system (5.93) by least square approximation. Finally, by
substituting (5.93) and (5.90) in (5.92), the final parameterized and frequency
dependent model is obtained:

yA�VFIT.s; ˛/ D
	
k1 C .˛ � ˛0/

@k1
@˛



C s

	
k0 C .˛ � ˛0/@k0

@˛



C

C
qX

mD1

	
km C .˛ � ˛0/@km=@˛

s � pm



C .˛ � ˛0/
qX

mD1

	
km

.s � pm/2
@pm

@˛



:

(5.94)

Expression (5.94) has the advantage that it has an explicit dependence with respect
both to the frequency s D j! and parameter ˛, is easy to implement and feasible
to be synthesized as a net-list having components with dependent parameters, as
explained below.

If we denote by

k�.˛/ D k� C .˛ � ˛0/
@k�
@˛

; (5.95)

where k� D k�.˛0/ then Eq. (5.94) can be written as

yA�VFIT.s; ˛/ D y1.s; ˛/C y2.s; ˛/; (5.96)
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where

y1.s; ˛/ D k1.˛/C sk0.˛/C
qX

mD1

km.˛/

s � pm ; (5.97)

y2.s; ˛/ D .˛ � ˛0/
qX

mD1

km

.s � pm/2
@pm

@˛
: (5.98)

The output current is thus

i.s; ˛/ D y1.s; ˛/u.s/C y2.s; ˛/u.s/; (5.99)

where the first term can be synthesized with a circuit similar to the one in Fig. 5.19
but where the k� parameters depend on ˛, and the second term

i2.s; ˛/ D .˛ � ˛0/

qX
mD1

km

.s � pm/2
@pm

@˛
u.s/ (5.100)

adds q new parallel branches to the circuit (Fig. 5.21). It is useful to write (5.100) as

i2.s; ˛/ D
qX

mD1
Em.˛/

u.s/

. s
pm

� 1/2
; where Em.˛/ D .˛ � ˛0/km

p2m

@pm

@˛
:

(5.101)
The part that depends on s in (5.101) can be synthesized by a second order circuit,
such as the one in Fig. 5.22.

The current through the coil is

j.s/ D u.s/

s2LC C sLG C 1
: (5.102)

Fig. 5.21 Parameterized
circuit corresponding to the
output equation

Fig. 5.22 Second order
subcircuit, with a voltage
controlled current source
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Fig. 5.23 Second order
subcircuit corresponding to a
real pole

To obtain the expression in (5.101) it is necessary that LC D 1=p2m, LG D �2=pm,
for instance, we can chose G D �pm, L D 2=p2m, C D 1=2. Thus, the parame-
terized circuit is given by the sub-circuits in Figs. 5.21, 5.20 and 5.23. The circuit
that corresponds to the output equations has new branches with current controlled
current sources. Only this sub-circuit contained parameterized components.

Another possibility to derive a parameterized circuit is to do as follows. In (5.100)
we denote by

1

.s � pm/2
@pm

@˛
u.s/ D fm.s/; (5.103)

and by

.s � pm/fm.s/ D gm.s/: (5.104)

Relationships (5.103) and (5.104) are equivalent to

sgm.s/ D pmgm.s/C @pm

@˛
u.s/; (5.105)

sfm.s/ D pmfm.s/C gm.s/; (5.106)

which correspond in the time domain to

dgm.t/

dt
D pmgm.t/C @pm

@˛
u.t/; (5.107)

dfm.t/

dt
D pmfm.t/C gm.t/: (5.108)

Equations (5.107) and (5.108) can be synthesized with the subcircuit shown in
Fig. 5.24. In this case the circuit that corresponds to the output equation is the one
in Fig. 5.25. In brief, the parameterized reduced order circuit can be either the one
in Figs. 5.21, 5.20 and 5.23 or in Figs. 5.25, 5.20 and 5.24. In both approaches only
the circuit that corresponds to the output equation is parameterized. The second
approach has the advantage that can be generalized for a transfer function having
complex poles as well.
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Fig. 5.24 Subcircuit corresponding to the second order term (second approach)

Fig. 5.25 Parameterized circuit corresponding to the output equation (second approach)

5.2.7.2 Case of Complex Poles

Nominal Differential Equation Macromodel

If some of the q poles are complex, then they appear in conjugated pairs since
they are the roots of the characteristic equation corresponding to a real matrix. We
assume for the beginning that the transfer function has only one pair of complex
conjugate poles: p D aC jb and p� D a � jb. In this case the transfer function is

y.s/ D k1

s � p
C k2

s � p� D .s � a/.k1 C k2/C jb.k1 � k2/

.s � a/2 C b2
: (5.109)

The numerator can be a real polynomial in s only if k1 and k2 are complex
conjugated residues: k1 D cC jd, k2 D c� jd. In this case, the matrices in (5.86) are

A D
	
a C jb 0

0 a � jb



; b D �

1 1
�T

c D �
c C jd c � jd

�
x D �

x1 x2
�T
:

(5.110)

In order to obtain a real coefficient equation, a matrix transformation is intro-
duced. The system (5.88) becomes

V
dx.t/

dt
D V AV �1V x.t/C V bu.t/; (5.111)

i.t/ D k1u.t/C k0
d u.t/

d t
C cV �1V x.t/; (5.112)
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where

V D
"� 1p

2
� 1p

2
jp
2

� jp
2

#
; V �1 D

"� 1p
2

� jp
2

� 1p
2

jp
2

#
: (5.113)

Let

Ox D V x D � Ox1 Ox2
�T
; OA D V AV �1 D

	
a �b
b a



; (5.114)

Ob D V b D ��p
2 0

�
; Oc D cV �1 D ��p

2c
p
2d
�
: (5.115)

The transformation OA D V AV �1 is a similarity transformation, preserving the
eigenvalues of the matrix and thus the characteristic polynomial of the system.

The two equations corresponding to the complex conjugated pair of poles

d

dt

	
x1
x2



D
	
p 0

0 p�

 	
x1
x2



C
	
1

1



u.t/ (5.116)

become after applying the similarity transformation

d

dt

	 Ox1
Ox2



D
	
a �b
b a


 	 Ox1
Ox2



C
	�p

2

0



u.t/: (5.117)

If there are several pairs of complex conjugated poles, Eq. (5.117) will be true for
any of these pairs and, by renaming p ! pm, Ox1 ! Ox0

m, Ox2 ! Ox00
m, a ! am,

b ! bm, the synthesized circuit is shown in Fig. 5.26.
In general, if the system has q poles out of which qr are real and qc D .q�qr/=2

are pairs of complex conjugate poles, then the synthesis will be done as follows: for
each real pole m D 1; : : : ; qr , let km be the residue corresponding to the pole; for
each pair of complex conjugate polesm D 1; : : : ; qc let the pole be p0

m D amCjbm,
with the corresponding residue k0

m D cmCjdm. An equivalent circuit for the output
equation is shown in Fig. 5.27. It consists of the following elements connected in
parallel:

• A capacitance k0;
• A conductance k1,

Fig. 5.26 Sub-circuit corresponding to a pair of complex conjugate poles
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Fig. 5.27 Sub-circuit corresponding to a pair of complex conjugate poles

• qr voltage controlled current sources (having the parameter km, controlled by the
voltages xm),

• qc voltage controlled current sources (having the parameter �p
2cm, controlled

by the voltages Ox0
m)

• qc voltage controlled current sources (having the parameter
p
2dm, controlled by

the voltages Ox00
m).

The voltages xm are defined on the qr subcircuits that correspond to real poles
(Fig. 5.20) and the voltages Ox0

m, Ox00
m are defined on the qc subcircuits that correspond

to the pair of complex conjugate poles (Fig. 5.26).

Parametric DEM

To derive the parametric circuit in the case of complex poles, we could proceed as
we did in the first approach for real poles. This would conduce to a transfer function
of order 4, which is not obvious how it can be synthesized. The second approach
can be extended to the case of complex poles, as follows.

Let’s consider Eqs. (5.107) and (5.108) written for a pair of complex conjugate
poles p1 D a C jb, p2 D a � jb:

dg1.t/

dt
D p1g1.t/C @p1

@˛
u.t/; (5.118)

df1.t/

dt
D p1f1.t/C g1.t/; (5.119)

dg2.t/

dt
D p2g2.t/C @p2

@˛
u.t/; (5.120)

df2.t/

dt
D p2f2.t/C g2.t/: (5.121)

By using the matrix notations

g D
	
g1
g2



; f D

	
f1
f2



;

@p

@˛
D
	
@p1=@˛

@p2=@˛



; A D

	
p1 0

0 p2



; (5.122)
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it follows that (5.118) � (5.121) can be written in a compact form as

dg.t/

dt
D Ag.t/C @p

@˛
u.t/; (5.123)

df .t/

dt
D Af .t/C g.t/; (5.124)

and by applying the similarity transformation described in the previous section it
follows that

d Og.t/
dt

D V AV �1 Og.t/C V
@p

@˛
u.t/; (5.125)

d Of .t/
dt

D V AV �1 Of .t/C Og.t/; (5.126)

where V AV �1 is given by (5.114). It is straightforward to derive that

V
@p

@˛
D ��p

2 @a
@˛

�p
2 @b
@˛

�
: (5.127)

Thus, the Eqs. (5.123) and (5.124) corresponding to the two complex-conjugated
poles become after applying the similarity transformation

d

dt

	 Og1
Og2



D
	
a �b
b a


 	 Og1
Og2



C
	�p

2@a=@˛

�p
2@b=@˛



u.t/; (5.128)

d

dt

" Of1
Of2

#
D
	
a �b
b a


" Of1
Of2

#
C
	 Og1

Og2


: (5.129)

If there are several pairs of complex conjugated poles, equations above will be
true for any of these pairs and, by renaming p ! pm, Og1 ! Og0

m, Og2 ! Og00
m, Of1 !

Of 0
m, Of2 ! Of 00

m , a ! am, b ! bm, the synthesized circuit is shown in Fig. 5.28.

Fig. 5.28 Sub-circuit corresponding to a pair of complex conjugate poles
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Fig. 5.29 Parametric sub-circuit corresponding to the output equation

The new terms added in the output equations are

i2.s; ˛/ D .˛ � ˛0/
�
k k� � 	f1

f2



D .˛ � ˛0/

�
k k� �V �1 Of D (5.130)

D .˛ � ˛0/
��p

2c
p
2d
� Of D �p

2c.˛ � ˛0/ Of1 C p
2d.˛ � ˛0/ Of2:

In general, if the system has q poles out of which qr are real and qc D .q�qr/=2
are pairs of complex conjugate poles, then the parametric synthesis will be done as
follows: for each real pole m D 1; : : : ; qr , let km be the residue corresponding to
the pole; for each pair of complex conjugate poles m D 1; : : : ; qc let the pole be
p0
m D am C jbm, with the corresponding residue k0

m D cm C jdm. The equivalent
circuit for the parametric output equation is shown in Fig. 5.29. It consists of the
following elements connected in parallel:

• A parameterized capacitance k0.˛/ D k0 C .˛ � ˛0/@k0=@˛,
• A parameterized conductance k1.˛/ D k1 C .˛ � ˛0/@k1=@˛,
• qr voltage controlled current sources (having as parameter the parameterized

value km.˛/ D km C .˛ � ˛0/@km=@˛, controlled by the voltages xm),
• qc voltage controlled current sources (having as parameter the parameterized

value �p
2cm.˛/, controlled by the voltages Ox0

m),
• qc voltage controlled current sources (having the parameter

p
2dm.˛/, controlled

by the voltages Ox00
m),

• qr voltage controlled voltage sources (having the parameter .˛ � ˛0/km, con-
trolled by the voltages fm,

• qc voltage controlled current sources (having the parameter �p
2cm.˛ � ˛0/,

controlled by the voltages Of 0
m),

• qc voltage controlled current sources (having the parameter
p
2dm.˛ � ˛0/,

controlled by the voltages Of 00
m ).

The voltages xm are defined on the qr subcircuits that correspond to real poles
(Fig. 5.20), the voltages Ox0

m, Ox00
m are defined on the qc subcircuits that correspond

to the pair of complex conjugate poles (Fig. 5.26), the voltages fm are defined on
the qr subcircuits that correspond to real poles (Fig. 5.24), the voltages Of 0

m and Of 00
m

are defined on the qc subcircuits that correspond to the complex poles (Fig. 5.28).
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Fig. 5.30 Stripline parameterized structure

5.2.8 Case Study

In order to validate our approach and to evaluate different parametric models
which can be extracted by the proposed procedure, several experiments have been
performed on a test structure that consists of a microstrip (MS) transmission
line having one Aluminum conductor embedded in a SIO2 layer. The line has
a rectangular cross-section, parameterized by several parameters (Fig. 5.30). The
return path is the grounded surface placed at y D 0. The nominal values used are:
h1 D 1�m, h2 D 0:69 �m, h3 D 10�m, a D 130:5 �m, p1 D h1, p2 D h2,
p3 D 3�m, xmax D 264�m. In order to comply with designer’s requirements, the
model should include the field propagation along the line, taking into consideration
the distributed parameters and the high frequency effects.

5.2.8.1 Validation of the Nominal Model

The first step of the validation refers to the simulation of the nominal case
for which measurements (S parameters) are available from the European project
FP5/Codestar (http://www.magwel.com/codestar/). By using dFIT + dELOB [52],
at low frequencies, the following values are obtained:

R D 18:11k˝=m; L D 322nH/m; C D 213pF/m; (5.131)

which are coherent with the values obtained from the measurements at low
frequencies, and validates the grid used and the extension of the boundary used
in the numerical model. Then, by using the method described in Sect. 5.2.4 the
dependence of p.u.l. parameters with respect to the frequency was computed. The
comparison between the resulting S parameters and the measurements is shown in

http://www.magwel.com/codestar/
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Fig. 5.31 Frequency characteristic Re(S11): numerical model vs. measurements

Fig. 5.31 and it validates the nominal model. The sensitivities of the p.u.l. parameters
are computed using the CHAMY software [40], by direct differentiation method
applied to the state space equations [41]. They could also be computed by Adjoint
Field Technique (AFT) [38, 53].

5.2.8.2 Parametric Models

In this section, the accuracy of several parametric models for the line capacitance is
investigated.

The first sets of tests considered only one parameter that varies, namely the width
of the line,p3. The nominal value chosen was p3 D 3�m and samples in the interval
Œ1; 5� �m were considered. The reference result was obtained by simulated the
samples separately (each sample was discretized and solved). These were compared
with the approximate values obtained from models A and R (Fig. 5.32). As expected
intuitively, the dependence w.r.t. p3 is almost linear and the A model is better than
the R model. Considering the relative variation of the parameters less than 15 %
(which is the typical limit for the technological variations nowadays) the relative
variation of the output parameter is obtained (Fig. 5.32, right). The errors of both
affine and rational first order models for p.u.l. parameters are given in Table 5.2.
Model A based on the first order Taylor series approximation has a maximal error
for technologic variations 1.78 % for p.u.l. resistance when p3 is variable, whereas
model R has an approximation error of only 0.6 % for the same range of the
technological variations for p.u.l. capacitance when p3 is variable. Using (5.74) one
can be easily identify which is the best model for any case.
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Fig. 5.32 Left: Reconstruction of the p.u.l. C from Taylor Series first order expansion; Right:
Relative error w.r.t. the relative variation of parameter p3

Table 5.2 Maximal errors
[%] of p.u.l. parameters for
technology variation of ˙
15 %

Parameter Quantity Affine (A1) Rational (R1)

p1 L 0.11 0.15

C 0.65 0.25

p3 R 1.78 0.22

L 0.34 0.04

C 0.035 0.6

The second set of tests considered two parameters that vary simultaneously: p1
and p3. For reference, a set of samples in Œ0:8; 1:2�� Œ2; 4� �m were considered. The
p.u.l. capacitance was approximated using the additive, rational and multiplicative
models described above. In this case, a new model M is computed using an additive
model for p3 and a rational one for p1, which is the best choice. Fig. 5.33, left
compares the relative variation of the errors w.r.t. a relative variation of parameter
p1 for a variation of p3 of 5 %. Model M provides lower errors (maximum error is
2 %) than models A (3.7 %) and R (2.2 %). Figure 5.33, right illustrates that in the
range from 20 to 40 % model M is the best one if we look at the variation w.r.t. p3
for a variation of p1 of 10 %.

Thus, by using the appropriate multiplicative models in the modeling of the
technological variability, the necessity of higher order approximations can be
eliminated.

5.2.8.3 Frequency Dependent Parametric Models

In this case, the parameter considered variable is h2. The sensitivity of the
admittance with respect to this parameter has been calculated according to (5.61),
using EM field solution. By applying Vector Fitting, a transfer function with 8 poles
has been obtained. This conduced to an overdetermined system of size (236, 26)
which has been solved with an accuracy (relative residual) of 3.7 % (Fig. 5.34-left).
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Fig. 5.33 Left: Relative error w.r.t. the relative variation of parameter p1, for a variation of p3 of
5 %; Right: Relative error w.r.t. the relative variation of parameter p3, for a variation of p1 of 10 %

Fig. 5.34 Left: variation of the admittance sensitivity with respect to the frequency; right:
reference simulation vs. answer obtained from the frequency dependent parametric model (5.94)

Finally, the relative error of the A-VFIT model is 1.09 % compared to the relative
error of the A model which is 0.95 % for a relative variation of the parameter of
10 % (in Fig. 5.34-right the three curves are on top of each other).

5.2.9 Conclusions

The paper describes an effective procedure to extract reduced order parametric
models of on-chip interconnects allowing model order reduction in coupled field
(PDE) – circuit (DAE) problems. These models consider all EM field effects at
high frequency, described by 3D-FW Maxwell equations. The proposed procedure
is summarized by the following steps:

• Step 1 – Solve two field problems (2D EQS and FW-TM) and compute frequency
dependent p.u.l. parameters and their sensitivities with respect to the geometric
parameters that vary;

• Step 2 – Compute admittance for the real length of the line and its sensitivities
with respect to the variable parameters;
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• Step 3 – Choose the A/R variation model, i.e. the appropriate terminal excitation
(admittance or impedance);

• Step 4 – Apply Vector Fitting for the nominal case in order to extract a rational
model for the circuit function with respect to the frequency;

• Step 5 – Compute sensitivities of poles and residues of the circuit function by
solving a least square problem;

• Step 6 – Assemble the frequency dependent parametric model by using the
compact expression (5.94) or by synthesis of a SPICE like parametric netlist
having frequency constant parameters.

Step 1 is dedicated to the extraction of the frequency dependent p.u.l. line
parameters in a more robust and flexible way than the inversion of the equation of
the short line segment. It is based on the solving of two field problems: 2D-EQS field
which describes the transversal effects such as capacitive coupling whereas EMQS-
TM field describes the longitudinal effects such as inductive, skin effect and eddy
currents. The longitudinal propagation is described by the classic TL equations, but
with frequency dependent p.u.l. line parameters.

Then (step 2), variability models for TL structures considering the dependency of
p.u.l. parameters w.r.t. geometric parameters, at a given frequency were analyzed. A
detailed study of the line sensitivity was made by using numeric techniques. For
one parameter case, the proposed methods avoid the evaluation of higher order
sensitivities, but keeping a high level of accuracy by introducing models based
on a rational approximation in the frequency domain. The multi-parametric case
has been analyzed, in addition, a multiplicative parametric model (M) has been
proposed. This is based on the assumption that the quantity of interest can be
expressed with separated variables, for which A and/or R models are used. Model
M is sometimes better than A and R models obtained from Taylor Series expansion.
Its specific terms (products of first order sensitivities) can thus approximate higher
order, cross-terms of Taylor Series. In order to automatically select the best first
order model for a multiparametric problem, the validity ranges of direct and reversed
quantities have to be evaluated (step 3). Once we establish the best model (A or
R) for each parameter, the M model will be easily computed by multiplication of
individual submodels. Our numerical experiments with the proposed algorithm in
all particular structures we investigated prove that the technological variability (e.g.
˙20% variation of geometric parameters, which is typical for the technology node
of 65 nm) can be modeled with acceptable accuracy (relative errors under 5%)
using only first order parametric models for line parameters. This is one of the most
important results of our research.

Next, a rational approximation in the frequency domain, obtained with Vector
Fitting (step 4) is combined with a first order Taylor Series approximation. The
sensitivities of poles, residues and constant terms are computed by solving an over-
determined system of linear equations (step 5). The main advantage of this approach
is that the final result is amenable to be synthesized with a small parameterized
circuit (step 6). This method relies on the differential equation macromodel which
is extended in order to take into account the variability. It also assumes that a first
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order Taylor Series expansion for the parameter that varies is accurate enough for
the frequency range of interest. As shown in our previous work, there is a specific
excitation type of terminals for which this assumption is acceptable for a certain
frequency range. The passivity of the obtained circuit is guaranteed by the fact that
the transfer function used as input for the synthesis procedure is passive as it is
obtained by a fitting procedure with passivity enforcement.

Thus, the proposed method allows one to obtain parameterized reduced order cir-
cuits, having equivalent behavior as on-chip interconnects. These equivalent circuits
described in SPICE language are extracted by considering all electromagnetic field
effects in interconnects at very high frequency. This method applied to extract the
reduced order model of the system described by PDE is a robust and efficient one,
being experimentally validated.

The advantages of the proposed approach are:

• Its high accuracy, due to the consideration of all field effects at high frequency;
• Fast model extraction due to the reduced order of degrees of freedom in the

numerical approach;
• High efficiency of the model order reduction step due to the use of Vector Fitting;

in all interconnect studied cases, extracted models with an order less than 10 had
an acceptable accuracy for designers.

• Simple geometric variability models based only on first order sensitivities, with
extended valability domain due to the appropriate excitation;

• Appropriate variation model for frequency and length of interconnects, due to the
transmission lines approach;

• The reduced SPICE models are simple and compact, containing ideal linear
elements with lumped frequency independent constant parameters: capacitances,
resistances and voltage controlled current sources; these element parameters have
very simple affine variation in the case of the geometric variability.

The proposed method was successfully applied to model technological variabil-
ity, without being necessary the use of higher order sensitivities.

5.3 Model Order Reduction and Sensitivity Analysis

Several types of parameters p D .d; s; 	/ influence the behaviour of electronic
circuits and have to be taken into account when optimizing appropriate performance
functions f .p/: design parameters d, manufacturing process parameters s, and
operating parameters 	 .3 The impact of changes of design parameters, e.g., the width
and length of transistors or the values of resistors, plays a key role in the design of

3Section 5.3 has been written by: Michael Striebel, Roland Pulch, E. Jan W. ter Maten, Zoran
Ilievski, and Wil H.A. Schilders. Of parts of this Section extensions can be found in the Ph.D.-
Thesis of the fourth author [95].
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integrated circuits. Deviations from the nominal values defined in the design phase
arise in the manufacturing process. Hence, to guarantee that the physical circuit
shows the performances that were specified, the design has to be robust with respect
to variations in the manufacturing phase. It has to be analysed how sensitive to
parameter changes an integrated circuit and its performance is.

The manufacturing process parameters have a statistical impact, f.i., for the oxide
thickness threshold. Examples of operating parameters are temperature and supply
voltage.

Sensitivity can ease calculations on statistics (for instance by including the
sensitivity in calculating the standard deviation of quantities that nearly linearly
depend on independent normal distributed parameters [91]: if F .p/ � F 0 C Ap

with pi � N.0; �i / then �2.F i / � P
j a

2
ij�

2
j (�.Fi /, and �j being the standard

deviation of Fi and pj , resp.).
For optimizing one wants to minimize a performance function f .p/ while also

several constraints have to be satisfied. The performance function f .p/ and the
constraint functions c.p/ can be costly to evaluate and are subject to noise (for
instance due to numerical integration effects). For both, the dependency on p can be
highly nonlinear. Here there is interest in derivative free optimization [118], or to
response surface model techniques [79, 80, 92, 117]. Partly these approaches started
because in circuit simulation, sensitivities of f .p/ and c.p/ with respect to p are
not always provided (several model libraries do not yet support the calculation of
sensitivities). However, when the number of parameters increases adjoint sensitivity
methods become of interest [74, 75]. For transient integration of linear circuits this is
described in [76, 77]. In [96] a more general procedure is described that also applies
to nonlinear circuits and retains efficiency by exploiting (nonlinear) techniques from
Model Order Reduction.

A special sensitivity problem arises in verification of a design after layouting.
During the verification the original circuit is extended by a huge number of
‘parasitics’, linear elements that generate additional couplings to the system. To
reduce their effect the dominant parasitics should be detected in order to modify the
layout.

Adjoint equations are also used for goal achievement. One example is in global
error estimation in numerical integration [73, 99].

In this Section we describe adjoint techniques for sensitivity analysis in the
time domain and indicate how MOR techniques like POD (Proper Orthogonal
Decomposition) may fit here. Next we give a short introduction into Uncertainity
Quantification which techniques provide an alternative way to perform sensitivity
analysis. Here pMOR (parameterized MOR) techniques can be exploited.

5.3.1 Recap MNA and Time Integration of Circuit Equations

Modified Nodal Analysis (MNA) is commonly applied to model electrical circuits
[86, 90]. Including the parameterization the dynamical behaviour of a circuit is then
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described by network equations of the general form

d

dt
q.x.t;p/;p/C j.x.t;p/;p/ D s.t;p/: (5.132a)

The state variables x.t;p/ 2 R
n, i.e., the potentials at the network’s nodes and the

currents through inductors and current sources, are the unknowns in this system.
They depend implicitly on the parameters gathered in the vector p 2 R

np , because
the voltage-charge and current-flux relations of capacitors and inductors, subsumed
in q.�; �/ 2 R

n, the voltage-current relations of resistive elements, appearing in
j.�; �/ 2 R

n and the source terms s.�; �/ 2 R
n, i.e., the excitation of the circuit,

may depend on the parameterization. The elements’ characteristics q; j are usually
nonlinear in the state variables x, e.g., when transistors or diodes are present in the
design at hand.

If, however, all elements behave linear with respect to x, the MNA equations are
of the form

C.p/Px.t;p/C G.p/x.t;p/ D s.t;p/; (5.132b)

where Px denotes total differentiation, .d=dt/ x.t;p/ with respect to time. C.p/ and
G.p/ are real n � n-matrices that might depend nonlinearly on the parameters p.

Usually the network equations (5.132) state a system of Differential-Algebraic
Equations (DAEs), i.e., .@=@x/ q.x;p/ (or C.p/) does not have full rank along the
solution trajectory x.t;p/.

In transient analysis the network equations (5.132) are solved on a time-interval
Œt0; tend� � R, where the parameter vector p is fixed and a (consistent) initial value
x0;p WD x.t0;p/ 2 R

n is chosen. As the system can usually not be solved exactly,
numerical integration, e.g., BDF (backward differentiation formulas) or RK (Runge-
Kutta) methods are used to compute approximations xi;p � x.ti ;p/ to the state
variables on a discrete timegrid ft0; : : : ; tl ; : : : ; tK D tendg. For a timestep h form
tl�1 to tl D tl�1Ch, multistep methods, like the BDF schemes, approximate the time
derivative d

dt q.x.tl ;p/;p/ by some k-stage operator �q.xl;p;p/ WD ˛q.xl;p;p/C ˇ,
where ˛ D ˛.h/ 2 R is the integration coefficient and ˇ 2 R

n is made up of history
terms q.x�;p;p/ at the timepoints t� for � D l � k; : : : ; l � 1. For the backward
Euler method, e.g., we have

�q.xl;p;p/ WD 1

h„ƒ‚…
D˛

q.xl;p;p/�1
h

q.xl�1;p;p/„ ƒ‚ …
Dˇ

:

This results at each discretisation point tl 2 ft0; t1; : : : ; tKg in a nonlinear equation
for the state variable xl;p of the form

˛q.xl;p;p/C ˇ C j.xl;p;p/ D s.tl ;p/: (5.133)
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This nonlinear problem is usually solved with some Newton-Raphson technique,
where in each underlying iteration � D 1; 2; : : : a linear system with a system
matrix of the form

J.x.�/l;p/ D
�
˛
@q.�;p/
@x

C @j.�;p/
@x

�
.x.�/l;p/ (5.134)

appears. Typically, simplified Newton-Raphson iterqations may be applied. That is,
only the evaluation at x.1/l;p is involved. Note, also when applying a onestep method,
like an RK-scheme, linear systems, made up of the Jacobian (5.134) arise.

5.3.2 Sensitivity Analysis

We encounter that the state variables x.t;p/ implicitly depend on the the parameters
p 2 R

np . Hence, one is interested in how sensitive the behavior of the circuit with
respect to variations in the parameters is. Thinking about “behavior of the system”
we can basically have in mind

(i) How do the state variables vary with varying parameters?
(ii) How do measures derived from the state variables, e.g., the power consumption

change with varying parameter?

Furthermore, due to usually nonlinear dependence of the element characteristics
q and j or C and G, respectively, on the parameters, we are interested in variations
around a nominal value p0 2 R

np .
In the following we will give a brief overview on the different kinds of

sensitivities and how they can be treated numerically. For further reading we refer
to the PhD thesis by Ilievski [95] and the papers by Daldoss et al. [78], Hovecar
et al. [93], Cao et al. [74, 75] and Ilievski et al. [96].

5.3.2.1 State Sensitivity

In (transient) state sensitivity one is interested, how the trajectories of the state
variables x vary with respect to the parameters p around the nominal setting p0.
Hence, the goal is to compute

�p0 .t/ WD dx.t;p/
dp

ˇ̌
pDp0

2 R
n�np ; for all t 2 Œt0; tend�: (5.135)

As described by Daldoss et al. [78] we linearize the nonlinear network equa-
tions (5.132b) around the nominal parameter set p0, i.e., we differentiate with
respect to p. We assume that the element functions q; j are sufficiently smooth
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such that we can exchange the order of differentiation (Schwarz’s theorem) and get:

d

dt

�
Cx.t/ � �p0 .t/

�C Gx.t/ � �p0 .t/ D Sp.t/ � . d

dt
Cp.t/C Gp.t// (5.136)

with Cx.t/ WD @q
@x
.x.t;p0/;p0/; Cp.t/ WD @q

@p
.x.t;p0/;p0/;

Gx.t/ WD @j
@x
.x.t;p0/;p0/; Gp.t/ WD @j

@p
.x.t;p0/;p0/;

Sp.t/ WD @s
@p
.t;p0/;

where Cx.t/;Gx.t/ 2 R
n�n and Cp.t/;Gp.t/;Sp.t/ 2 R

n�np and x.t;p0/ solves
the network problem (5.132a).

The initial sensitivity value �p0 .t0/ DW �p0;0 DW �DC
p0

can easily be calculated as
the sensitivity of the DC-solution x.0;p0/ WD xDC

p0 of the network equation (5.132a),
satisfying

j.xDC
p0 ;p0/ D s.t0;p0/: (5.137)

Obviously, the DAE (5.136) states a linear time varying dynamical system for the
state sensitivity �p0 , even when (5.132a) was nonlinear. We assume that we have
used the backward Euler method to solve the network problem (5.132). Using the
same time grid for solving the state sensitivity problem (5.136), we advance from
time point tl�1 to tl D tl�1 C h, i.e., we compute �p0;l � �p0 .tl / again with the
backward Euler by solving

Ml�p0;l D rhsl (5.138)

with

Ml W D 1

h
Cx.tl /C Gx.tl / � @q

@x
.xl;p0 ;p0/C @j

@x
.xl;p0 ;p0/;

rhsl W D Sp.tl /� .
d

dt
Cp.tl /C Gp.tl //C 1

h
Cx.tl�1/ � �p0;l�1

� Sp.tl /�
�
1

h

�
@q
@p
.xl;p0 ;p0/� @q

@p
.xl�1;p0 ;p0/

�

C @j
@p
.xl;p0 ;p0/

�
� 1

h

@q
@x
.xl�1;p0 ;p0/ � �p0;l�1:

(5.139)

We note, that the partial derivatives with respect to x have already been computed
in the transient analysis and are available, if they have been stored. Especially, the
system matrix Ml is the same as we have used in applying the backward Euler
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method in the underlying simulation: within the Newton iterations these where the
system matrices in the steps where convergence was recorded. Hence, also the
decomposition of this matrix is available, such that the system could be solved
efficiently. For schemes other than the backward Euler, we can also state, that
the solution of the transient sensitivity problem (5.136) needs ingredients that are
available (if they have been stored) from the solution of the network problem with
the same method and the same step size. A reasoning for this and details on step
size control and error estimation can be found in the paper by Daldoss et al. [78].

However, the sensitivities of the element functions q; j and s have to be
calculated. In total, the evaluation of the right-hand side rhsl requires O.np � n2/C
O.np � n/ operations [96]. As in addition a lot of data has to be stored, computing
the state sensitivities for circuits containing a large number of parameters is not
tractable.

5.3.2.2 Observation Function Sensitivity

Often one is not interested in the sensitivity �p0 .t/ of the states of the parameter
dependent network problem (5.132) but rather in the sensitivity of some perfor-
mance figures of the system, like e.g., power consumption. These measures can
usually be described by some observation function  .x;p/ 2 R

no of the form

 .x;p/ D
Z tend

t0

g.x; t;p/ dt; (5.140)

where the function g W R
n �R�R

np ! R
no is such that the partial derivatives

@g = @x and @g = @p exist and are bounded. Note that at the left-hand side of (5.140)
x D x.:;p/, which is a whole waveform in time.

The sensitivity of the observation function  W Rn �R
np ! R

no around some
nominal parameter set p0 2 R

np , clearly is

d

dp
.x.p0/;p0/ D @

@x
.x.p0/;p0/

@x
@p
.x.p0/;p0/C @

@p
.x.p0/;p0/ 2 R

no�np :

(5.141)

For problems where the sensitivity of a few observables, i.e., where no is small
but the system depends on a large number np of parameters, the adjoint method,
introduced by Cao et al. in [74, 75] is an attractive approach. In the mentioned
papers, the observation sensitivity problem is derived for implicit differential
equations of the form

F.x; Px; t;p/ D 0: (5.142)
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Here we derive the observation sensitivity problem for problem (5.132a) as we
usually encounter in circuit simulation. The idea however, follows the idea presented
by Cao et al. in the papers mentioned.

The observation function’s sensitivity is not calculated directly. Instead, an
intermediate quantity �, defined by a dynamical system, the adjoint model [82]
of the parent problem, is calculated.

5.3.2.3 Adjoint System for Sensitivity Analysis

Instead of considering the definition (5.140) of the observation function  directly,
we define an augmented observation function

� .x;p/ WD  .x;p/�
Z tend

t0

�T .t/

	
d

dt
q.x.t;p/;p/C j.x.t;p/;p/� s.t;p/



dt;

(5.143)

which arises from coupling the dynamics and the observation function  by a
Lagrangian multiplier �.t/ 2 R

n�no that we will define more precisely further on.
If x.t;p/ solves the network equations (5.132a) for p D p0 it holds � .x;p0/ D

 .x;p0/ and also the sensitivities coincide:

d

dp
.x;p0/ D d�

dp
.x;p0/:

Note, that where it is clear from the context we omit in the following the
specifications of the evaluation points, e.g., .x;p0/.

By the definitions (5.140) and (5.143) of the observation function and the
augmented observation function, respectively, we get

d

dp
D
Z tend

t0

�
@g
@p

C @g
@x
@x
@p

�
dt �

Z tend

t0

�T .t/

�
d

dt

dq
dp

C d j
dp

� d s
dp

�
dt:

(5.144)

We have a closer look at the second integral and apply integration by parts:

Z tend

t0

�T .t/

�
d

dt

dq
dp

�
dt D

	
�T
dq
dp


tend

t0

�
Z tend

t0

d�T

dt

dq
dp

dt:
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Recombining this with the observation sensitivity (5.144) and expanding the total
derivatives with respect to p we see

d

dp
D � �

�T .t/
�
Cx.t/�p0 .t/C Cp.t/

��tend

t0

C
Z tend

t0

 
d�T

dt
Cx.t/ � �TGx.t/C �x.t/

!
� �p0 .t/ dt

C
Z tend

t0

 
�p.t/C d�T

dt
Cp.t/ � �T �Gp � Sp.t/

�!
dt;

(5.145)

where Cx;Gx;Cp;Gp and Sp are the quantities defined in Eq. (5.136) and

�x.t/ WD @g
@x
.x.t;p0// 2 R

no�n; �p.t/ WD @g
@p
.x.t;p0// 2 R

no�np

are the partial derivatives of the kernel of the observable and can thus be computed,
if the solution trajectory x.t;p0/ is known.

In the present form (5.145) the calculation of the observation function’s sensi-
tivity still demands to know the development of the state sensitivities �p0 .t/. As
the above considerations are valid for any smooth �.t/ 2 R

n�no we may choose
this parameter such that the state sensitivity disappears in the equation. We have
already seen that the sensitivity �DC

p0 of the circuit’s operating point xDC
p0 can easily

be calculated. Hence, choosing � such that

CT
x .t/

d�

dt
� Gx.t/

T� D ��Tx .t/ (5.146a)

and �T .T /Cx.T / D 0; (5.146b)

the calculation of the observable function’s sensitivity reduces to evaluating

d

dp
D�T .t0/

�
Cx.t0/�

DC
p0 C Cp.t0/

� � �T .tend/Cp.tend/

C
Z tend

t0

 
�p.t/C d�T

dt
Cp.t/ � �T �Gp � Sp.t/

�!
dt:

(5.147)

Equation (5.146a) inherits the basic structure of the underlying network prob-
lem (5.132a). Therefore, this equation defining the Lagrangian �.t/, is usually a
DAE system. This linear system is called the adjoint system to the underlying
network equation. For DAEs of index up to 1, the choice (5.146b) defines a
consistent initial value [75]. For systems of index larger and equal to 2, the
consistent initialisation is more difficult. As an initial value for � is specified for
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the end of the interval Œt0; tend� of interest, the adjoint equation (5.146a) is solved
backwards in time.

Several kind of observation functions also need Px D d
dt x in addition to x. For

instance when considering jitter one is interesting in the time difference between
two subsequent times �1 and �2 when a specific unknown reaches or crosses a
given value c (with equal signs of the time derivative). For the frequency of the
jitter we have f D 1=T D 1=.�2 � �1/. Let the specific unknown be xi .t;p/.
The time moment � for which xi .�;p/ D c may be determined by inverse
interpolation between two time points t1 and t2 and known values xi obtained
by time integration such that xi .t1;p/ < c < xi .t2;p/. Of course � depends
on p, so more precisely we have xi .�.p/;p/ D c. By differentiation we obtain:
d.�/=dp D �Œd.xi /=dt ��1d.xi /=dp.

Hence we are also interested in a more general case than (5.140)

H.Px.p/; x.p/;p/ D
Z tend

t0

F.Px.t;p/; x.t;p/;p/dt: (5.148)

By a similar analysis as presented in [96] for (5.144)–(5.145)we derive (OPx D @Px=@p)

d

dp
H.Px.p/; x.p/;p/ D

Z tend

t0

�@F
@Px � OPx C @F

@x
� Ox C @F

@p

�
dt

D �
�
�T .tend/Cx.tend/ � @F

@Px .tend/
�
�p0 .tend/� �T .tend/Cp.tend/

C
�
�T .t0/Cx.t0/� @F

@Px .t0/
�
�p0 .t0/C �T .t0/Cp.t0/

C
Z tend

t0

�hd�T
dt

Cx � �TGx � d

dt
.
@F
@Px /C @F

@x

i
� �p0

Cd�T

dt
Cp � �T

�
Gp � Sp

�
C @F
@p

�
dt: (5.149)

which holds for any �.t/ 2 R
n�no . If � is chosen such that

CT
x

d�

dt
� GT

x � D d

dt
.
@F
@Px /

T �
�@F
@x

�T
; (5.150)

with ‘initial’ value CT
x �.tend/ D .

@F
@Px /

T .tend/; (5.151)

a significant reduction occurs in (5.149) and Ox.t/ is not explicitly needed. This gen-
eralizes the result in [96] (see also [64]). Note that �p0 .0/ D Ox.0;p0/ D OxDC.p0/,
which is the sensitivity of the DC-solution, which one needs to determine explicitly.
Some efficiency is gained by calculating �T .0/Cx.0/OxDC D ŒCT

x .0/�.0/�
T OxDC

(when np  1). Note however that (5.151) can be satisfied only when the right-hand
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side is in the range of CT
x . Because in (5.150)–(5.151) the right-hand sides are

evaluated at x.t;p/, in general, the solution � will depend on p, even in the case
of constant matrices Cx and Gx . This is in contrast to [64].

Summing up, the backward adjoint method for computing the sensitivity of the
observable  with respect to parameter variations around a nominal parameter
setting p0 is carried out by the following steps

1. Solve the network DAE (5.132a) for x D x.t;p0/, on the interval Œt0; tend�;
2. Solve the backward adjoint problem (5.146a), subject to the initial condi-

tion (5.146b) for � on the interval Œtend; t0�, i.e., backward in time;
3. Compute the observable sensitivity d = dp using the expression (5.147).

Carrying out the backward adjoint method, one has to consider several aspects we
do not address here. Amongst these are the evaluations of the partial derivatives
like Cx along the solution trajectory. On the one hand, these derivatives are usually
not available as a closed function but are approximated by finite differences. On
the other hand, the evaluation points, i.e., points on the trajectory x.t;p0/ are also
available as approximations only. Furthermore, the integral in the formula (5.147)
has to be approximated by a numerical quadrature. The nodes needed in the
according scheme may not be met exactly during transient simulation and/or during
the backward integration of the adjoint problem. For further reading on these
problems we refer to [95, 96].

However, leaving all these aspects aside, one has to integrate two dynamical
systems numerically. First the (nonlinear) forward problem (5.132a) for the states
and then the linear backward problem (5.146a). The contribution of the COMSON
project for transient sensitivity analysis was to add model order reduction (MOR) to
the process. More precisely, the idea elaborated during the project was to solve an
order reduced variant of the backward problem where the data needed to apply the
reduction is calculated from the forward solving phase. In the next section we will
describe the very basic idea of MOR and give a brief introduction to the specific
technique that was used in this project.

5.3.3 Model Order Reduction (with POD)

Solving a dynamical system with any numerical scheme implies to set up and solve
a series of linear equations. In circuit simulation typically the dimension of these
systems are in a range of 105–109. Both the evaluation of the system matrices and
right-hand sides, e.g., Ml and rhsl in (5.138)–(5.139), as well as solving the system,
i.e., decomposing the system matrices, is computationally costly.

However, in circuit design often the main interest is the analysis of how a circuit
block processes an input signal, e.g., if some input signal is amplified or damped by
the circuit. That means, one may not be interested in all n internal state variables but
only in a limited selection. This concern is described by an input-output variant of
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the network model. For a linear network problem (5.132b), omitting the parameters
for ease of notation, e.g., the corresponding input-output system reads

CPx.t/C Gx.t/ D Bu.t/;

y.t/ D Lx.t/;
(5.152)

where u.t/ 2 R
m and y.t/ 2 R

q are the input and the output of the system, injected
to and extracted from the system by the matrices B 2 R

n�m and L 2 R
q�n.

As in an input-output setting, the states x represent an auxiliary variable only.
The idea of MOR is to replace the high-dimensional dynamical system (5.152) by

OCPz.t/C OGz.t/ D OBu.t/;

Qy.t/ D OLz.t/;
(5.153)

where z.t/ 2 R
r and the system matrices OC; OG 2 R

r�r , OB 2 R
r�m and OL 2 R

q�r
are chosen such that r � n and Qy.t/ � y.t/.

There are various methods to construct the reduced variant (5.153) from the full
problem (5.152). We refer to Chapter 4 for an overview, as well as to [63, 67, 69,
70, 103, 108–110, 121] for further studies.

A large class of MOR methods are based on projection. These methods determine
a subspace of dimension r , spanned by a basis of vectors vi 2 R

n .i D 1; : : : ; r/.
The original state vector x.t/ is approximated by an element of this subspace that
can be written in the form Vz.t/, where V D .v1; : : : ; vr / 2 R

n�r . Hence, one
replaces x.t/ by Vz.t/ in (5.152) and projects the equation onto the space subspaces
spanned by the columns of V by a Galerkin approach. In this way, a dynamical
system (5.153) emerges where the system matrices are given by

OC WD VT CV; OG WD VTGV; OB WD VTB; OL WD LV: (5.154)

5.3.3.1 Proper Orthogonal Decomposition

While other MOR methods start operating from the matrices C;G;B and L, the
method of Proper Orthogonal Decomposition (POD) constructs the matrix V, whose
columns span the reduced space the system (5.152) is projected on, from the space
that is spanned by the trajectory x.t/, i.e., the solution of the dynamical system. The
method applies to nonlinear systems as well.

Recall, that our aim is to construct a reduced model for the backward adjoint
problem (5.146). As this is a linear system from which we know the system matrices
only after a solution of the underlying forward network problem (5.132a), POD
seems to be the best choice for this task.
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The mission POD fulfills is to find a subspace approximating a given set of data in
an optimal least-squares sense. The basis of this approach is known also as Principal
Component Analysis and Karhunen-Loève theorem from picture and data analysis.

The mathematical formulation of POD [103, 107, 121] is as follows: Given a
set of K datapoints X WD fx1; : : : ; xKg, a subspace S � R

n is searched for that
minimizes

kX � %Xk22 WD 1

K

KX
kD1

kxk � %xkk22; (5.155)

where % W Rn ! S is the orthogonal projection onto S , which has f'1; : : : ;'rg as
an orthonormal basis of S .

This problem is solved, applying the Singular Value Decomposition (SVD) to the
matrix X WD .x1; : : : ; xK/ 2 R

n�K , which is called snapshot matrix, as its columns
are (approximations to) the solution of the dynamical system (5.152) at timepoints
t1; : : : ; tK 2 Œt0; tend�. The SVD applied to the matrix X, provides three matrices:

˚ 2 R
n�n orthogonal,

� 2 R
K�K orthogonal,

˙ D diag .�1; : : : ; ��/ 2 R
��� with �1 	 � � � 	 �� > ��C1 D : : : D �K D 0;

such that

X D ˚

�
˙ 0
0 0

�
� T ; (5.156)

where the columns of ˚ and � are left and right eigenvectors, respectively, and
�1; : : : ; �� are the singular values of X.

Then, for any r 
 �, taking '1; : : : ;'r as the first r columns of the matrix ˚ is
optimal in the sense that it minimizes the projection mismatch (5.155).

Both cases, n 	 K and n 
 K , are allowed; in practice one often has n  K .
Finally, the MOR projection matrix V in (5.154) is chosen made up of these basis

vectors:

V WD .'1; : : : ;'r / 2 R
n�r :

To understand why the first r columns of˚ solve the minimization problem (5.155)
one can recall that for i D 1; : : : ; n the i th column'i of˚ is actually an eigenvector
of the correlation (or covariance) matrix of the snapshots with �2i as eigenvalue:

XXT'i D �2i 'i :
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Algorithm 5.1 BRAM: Backward Reduced Adjoint Method
1: Integrate (5.132a) and store the solutions x.ti ; p/
2: Build the snapshot matrix X D Œx.t0; p/; : : : ; x.tN ; p/� (where tN D tend)
3: Determine the singular value decomposition X D ˚T˙� and dominant singular values
�1; : : : ; �r .

4: Determine the Proper Orthogonal Decomposition (POD) time-independent projection matrix
V, such that x � VQx and d

dt x � V d
dt Qx

5: if (BRAM II) then
6: Include a second forward time integration, now for the reduced system of equations.
7: end if
8: Integrate (5.157) backward in time using reduced matrices V?CT

x V and VT GT
x V and the

projected right-hand side VT Œ ddt .
@F
@Px /

T �
�
@F
@x

�T
�

Intuitively the correlation matrix XXT detects the principal directions in the data
cloud that is made up of the snapshots x1; : : : ; xK . The eigenvectors and eigenvalues
can be thought of as directions and radii of axes of an ellipsoid that incloses the
cloud of data. Then, the smaller the radii of one axis is, the less information is lost
if that direction is neglected.

We abandon to explain the derivation of POD in detail here as in literature e.g.,
[63, 103, 121] this is well explained. For details on the accuracy of MOR with POD
we refer to papers by Petzold et al. [94, 107].

5.3.4 The BRAM Algorithm

In [96] it was observed that a forward analysis in time of (5.132a) automatically
provides provides snapshots x.ti ;p/ at time points ti . This can lead to a reduced
system of equations for �.t/ D V Q� in (5.150)–(5.151)

VT CT
x V

d Q�
dt

� VTGT
x V Q� D VT d

dt
.
@F
@Px /

T � VT
�@F
@x

�T
; (5.157)

with ‘initial’ value VTCT
x V Q�.tend/ D VT .

@F
@Px /

T .tend/; (5.158)

Then the overall algorithm is described in Algorithm 5.1, without the lines 5–7.
Here it is assumed that the matrices are saved after the forward simulation. It is also
assumed that for the adjoint system the same step sizes are used as in the forward
run. If not, additional interpolation has to be taken into account to determine the
reduced matrices at intermediate solutions and also effort has to be spent in LU-
decomposition.

Apart from this discussion, the question is why this should work in general
(apart from special cases in [96]). The solution x � VQx depends on the right-
hand side s of (5.132a). Clearly VT s should contain the dominant behaviour of s. If
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VT Œ ddt .
@F
@Px /

T �
�
@F
@x

�T
� behaves similarly when compared to the right-hand side of

(5.150) we may expect a similar good approximation for the solution � � V Q�.
Because the right-hand side of (5.157) does not depend on � this can be checked
in advance, before solving (5.157). In the case of power loss through a resistor

we have
�
@F
@x

�T D .Ax/T (for some matrix A) and we have to check if .Ax/T �
VT QxTVTAT .

Another point of attention is that the projection matrix V found implies that we
more or less are looking to the sensitivity of the solution Qx of

d

dt
ŒVT q.VQx.t;p/;p/�C VT j.VQx.t;p/;p/ D VT s.t;p/ (5.159)

rather than for the solution x of (5.132a). By this it is clear that V depends on p and
thus

x.t;p/ � V.p/Qx.t;p/ H) @x
@p

� @V
@p

Qx C V
@Qx
@p
: (5.160)

The question is: can we ignore the first term at the right-hand side of (5.160).
Here the last term represents the change inside the space defined by the span of
the columns of V. The first term represents the effect by the change of this space
itself. One may expect that this term is smaller than the last term (‘the first term
will in general require more energy’), especially when the reduction is more or less
determined by topology. In several tests we made, this first term indeed was much
smaller than the other term.

Note that we not intend to solve (5.159) by using a fixed projection matrix V,
valid for p D p0, for several different values of p. The danger of obtaining improper
results when doing this was pointed out by [83]. Contrarily, we always apply an up-
to-date matrix V.p/. However, this example shows that @V

@p is not always negligible.

One can collect QV D ŒV.p1/; : : : ;V.pk/� and apply an additional SVD to QV. This
procedure provides a larger, uniform, projection matrix V.

In [95] the parameter dependency of the singular values for POD was analysed
for a battery charger, for a ring oscillator, and for a car transceiver example. Also
the nr of dominant singular values as function of p was studied. Finally the angle
between the subspaces for different p was studied. Note that one can use a matlab
function for this based on the algorithm by Knyazev-Argentati [98].

Finally, in [95] a modification was introduced in Algorithm 5.1 by introducing
the lines 5–7. Note that the additional step 6 is cheap. We obtain the solution of
the POD-reduced system. In [94, 103, 107, 121] error estimates are determined for
the approximation error of the POD approximation. Actually, in step 8, BRAM II
determines the sensitivity of the POD solution. In Fig. 5.35 [95] the singular values
of POD after 3,500 snapshots within a simulation from t0 D 0ms and tend D 200ms
for a Li-ion charger for different values of the area of a capacitor. The parameter
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Fig. 5.35 Singular values of POD after 3,500 snapshots for a Li-ion charger for different values
of the area of a capacitor

p took values p D 30; 32; 34; 36; 38; 40. Clearly the first 100 singular values are
enough for a good reconstruction, which as a by-product als shows a high potential
for the application of the BRAM methods as the dimension of the problem can be
reduced by roughly a factor 35. In Fig. 5.36 [95] the angle in the rotation of the
principle vector is studied, the nominal being for p D 30. The apparent jump to 90ı
rotation near the cut off point is due to matrix diagonal zero padding introduced in
the general case for principle vector analysis. These large 90ı rotations are not due
to principle vectors influenced by parameter changes and should not be taken into
account.

5.3.5 Sensitivity by Uncertainty Quantification

A modern approach to Uncertainty Quantification is to expand a solution x.t;p/
in a series of orthogonal polynomials in which the p is argument of the (multidi-
mensional) polynomials and the t appears in the coefficients. If the p are subject
to variations such a representation is called a generalized Polynomial Chaos (gPC)
expansion. Having established the expansion, this provides facilities similar like a
response surface model: fast and accurate statistics and sensitivity.
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Fig. 5.36 Principle vector rotation as a function of the capacitor area for the problem in Fig. 5.35

In this section we shortly summarize some basic items. We also point out how a
strategy for parameterized Model Order Reduction (pMOR) fits here. This strategy
contains a generalization of one of the pMOR algorithms described in Sect. 5.1 of
this Chapter.

We will denote parameters by p D .p1; : : : ; pq/
T and assume a probability space

given .˝;A ;P/ with P W A ! R (measure; in our case the range will be Œ0; 1�)
and p W ˝ ! Q � R

q , ! 7! p.!/. Here we will assume that the pi are
independent random variables, with factorizable joint probability density �.p/.

For a function f W Q ! R, the mean or expected value is defined by

< f >D
Z
˝

f .p.!//dP.!/ D
Z
Q

f .p/ �.p/dp: (5.161)

A bilinear form < f; g > is defined by

< f; g >D
Z
Q

f .p/ g.p/ �.p/dp D< f g > : (5.162)

The last form is convenient when products of more functions are involved. Similar
definitions hold for vector- or matrix-valued functions f W Q ! R

m�n.
We assume a complete orthonormal basis of polynomials .�i /i2N, �i W Rq ! R,

given with < �i ; �j >D ıij (i; j;	 0). When q D 1, �i has degree i . To treat
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Table 5.3 One-dimensional orthogonal polynomials related to well-known probability density
functions

Distribution Polynomial Weight function Support range

Gaussian Hermite Hn.p/ e�

p2

2 .�1;1/

Uniform Legendre Pn.p/ 1 Œ�1; 1�
Beta Jacobi P˛;ˇ

n .p/ .1� p/˛.1C p/ˇ Œ�1; 1�
Exponential Laguerre Ln.p/ e�p Œ0;1/

Gamma Generalized Laguerre L.˛/n .p/ p˛e�p Œ0;1/

a uniform distribution (i.e., for studying effects caused by robust variations) one
can use Legendre polynomials; for a Gaussian distribution one can use Hermite
polynomials [100, 123, 124]. Some one-dimensional polynomials are mentioned
in Table 5.3. A polynomial �i on R

q can be defined from one-dimensional
polynomials: �i.p/ D Qq

dD1 �id .pd /. Actually i orders a vector i D .i1; : : : ; iq/
T ;

however we will simply write �i , rather then �i. An example is given in (5.163),
using Legendre polynomials. Note that, due to normalization, L0.p/ D 1=

p
2,

L1.p/ D p
3=2p, L2.p/ D 1

2

q
5
3
.3p2 � 1/ – see also [87]. In [88] one finds

algorithms how to efficiently generate orthogonal polynomials from a given weight
function.

�0.p/ D L0.p1/L0.p2/;

�1.p/ D L1.p1/L0.p2/;

�2.p/ D L0.p1/L1.p2/;

�3.p/ D L2.p1/L0.p2/; (5.163)

�4.p/ D L1.p1/L1.p2/;

�5.p/ D L0.p1/L2.p2/:

We will denote a dynamical system by

F.x.t;p/; t;p/ D 0; for t 2 Œt0; t1�: (5.164)

Here F may contain differential operators. The solution x 2 R
n depends on t and on

p. In addition initial and boundary values are assumed. In general these may depend
on p as well.

A solution x.t;p/ D .x1.t;p/; : : : ; xn.t;p//T of the dynamical system becomes
a random process. We assume that second moments < x2j .t;p/ > are finite, for all
t 2 Œt0; t1� and j D 1; : : : ; n. We express x.t;p/ in a Polynomial Chaos expansion

x.t;p/ D
1X
iD0

vi .t/ �i .p/; (5.165)
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where the coefficient functions vi .t/ are defined by

vi .t/ D< x.t;p/; �i .p/ > : (5.166)

Continuity/smoothness follow from the solution x.t;p/ and similarly the construc-
tion of expected values and variances.

A finite approximation xm.t;p/ to x.t;p/ is defined by

xm.t;p/ D
mX
iD0

vi .t/ �i .p/: (5.167)

For long time range integration m may have to be chosen larger than for short time
ranges. Further below we will describe how the coefficient functions vi .t/ can be
efficiently approximated.

For functions x.t;p/ that depend smoothly on p convergence rates for jjx.t; :/�
xm.t; :/jj, in the norm associated with (5.162), are known. For instance, for
one-dimensional functions x.p/ that depend on a scalar parameter p such that
x.1/; : : : ; x.k/ are continuous (i.e., derivatives w.r.t. p), one has

jjx.:/ � xmH.:/jjL2�

 C

1

mk=2
jjx.k/.:/jjL2�

; (Hermite expansion [65]); (5.168)

jjx.:/ � xmL .:/jjL2�

 C

1

mk

vuut kX
iD0

jjx.i/.:/jj2
L2�
; (Legendre expansion [124]):

(5.169)

Here the L2�-norms include the weighting/density function �.:/. Note that the
upperbound in (5.169) actually involves a Sobolev-norm. In [72] one also finds
upperbounds using seminorms (that involve less derivatives).

For more general distributions �.:/ convergence may not be true. For instance,
polynomials in a lognormal variable are not dense in L2�. For convergence one needs
to require that the probability measure is uniquely determined by its moments [81].
One at least needs that the expected value of each polynomial has to exist. This
has a practical impact. The imperfections in a manufacturing process cause some
variability in the components of an electronic circuit. To address the variability,
corresponding parameters or functions are replaced by random variables or random
fields for uncertainty quantification. However, the statistics of the parameters often
do not obey traditional probability distributions like Gaussian, uniform, beta or
others. In such a case one may have to construct probability distributions or
probability density functions, respectively, which approximate the true statistics at a
sufficient accuracy. Thereby, one has to match corresponding data obtained from
measurements and observations of electronic devices. The resulting probability
distribution functions should be continuous and all moments of the random variables
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should be finite such that a broad class of methods like, e.g., Polynomial Chaos, is
applicable.

The integrals (5.166) can be computed by (quasi) Monte Carlo, or by multi-
dimensional quadrature. We assume quadrature grid points p1; p2; : : : ;pK and
quadrature weights wk , 1 
 k 
 K , such that

< x.t;p/; �i .p/ >�
KX
kD1

wk x.t;pk/ �i .pk/: (5.170)

We solve (5.164) for x.t;pk/, k D 1; : : : ; K (K deterministic simulations). Here
any suitable numerical solver for (5.164) can be used. In fact (5.170) is a (discrete)
inner-product with weighting function wK.p/ D PK

kD1 wk ı.p�pk/. This approach
is called Stochastic Collocation [100, 123, 124]. Afterwards we determine

vi .t/ D
KX
kD0

wk x.t;pk/ �i .pk/; for each i : (5.171)

Here the Polynomial Chaos expansion is just a post-processing step.
Only for low dimensions q, tensor-product grids of Gaussian quadrature are used.

Gaussian quadrature points are optimal for accuracy. In higher-dimensional cases
(q > 1) one prefers sparse grids [123, 124], like the Smolyak algorithm. Sparse
grids may have options for refinement. Note that Gaussian points do not offer this
refinement. Stroud-3 and Stroud-5 formulas [116] have become popular [122].

An alternative approach to Stochastic Collocation is provided by Stochastic
Galerkin. After, inserting an expansion of the solution, in polynomials in p,
into the equations one orthogonally projects the residue of the equations to the
subspace spanned by these polynomials. By this, one gets one big system of
differential equations in which the vi are the unknowns [100, 123, 124]. In practice,
Stochastic Collocation is much more easily combined with dedicated software
for the simulation problem at hand than is the case with Stochastic Galerkin.
Theoretically the last approach is more accurate. However, statistics obtained with
Stochastic Collocation is very satisfactory.

We note that the expansion x.t;p/, see (5.165), gives full detailed information
when varying p. From this the actual (and probably biased) range of solutions can
be determined. These can be different from envelope approximations based on mean
and variances.

Because of the orthogonality, the mean of x.t;p/ and of xm.t;p/ are equal and
are given by

EpŒx.t;p/� D
Z
Q

x.t;p/�.p/ dp D v0.t/ D
Z
Q

xm.t;p/�.p/ dp: (5.172)
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Using (5.171), we get an approximative value. The integrals in (5.172) involve all pk
together. One may want to consider effects of pi and pj separately. This restricts
the parameter space R

q to a one-dimensional subset with individual distribution
densities �i .p/ and �j .p/.

A covariance function of x.t;p/ can also be easily expressed

Rxx.t1; t2/ D EpŒ.x.t1;p/ � EpŒx.t1;p/�/T .x.t2;p/ � EpŒx.t2;p/�/�

D
Z
Q

.x.t1;p/ � EpŒx.t1;p/�/T .x.t2;p/� EpŒx.t2;p/�/�.p/ dp

� < .xm.t1;p/� EpŒxm.t1;p/�/T .xm.t2;p/ � EpŒxm.t2;p/�/ >

D < .

mX
iD1

vTi .t1/�i .p// .
mX
jD1

vj .t2/�j .p// >

D
mX
iD1

vTi .t1/vi .t2/: (5.173)

This outcome clearly depends on m. A (scalar) variance is given by

VarpŒx.t;p/� D Rxx.t; t/ �
mX
iD1

vTi .t/vi .t/ D
mX
iD1

jjvi .t/jj2 D jjV0.t/jj2;
(5.174)

where VT
0 .t/ D .0T ; vT1 .t/; : : : ; v

T
m.t//

T . Note that this equals

VarpŒx.t;p/� �
mX
iD1

qX
dD1

v2i;q.t/ D
qX

dD1

mX
iD1

v2i;q.t/ D
qX

dD1
VarpŒxd .t;p/�: (5.175)

Having a gPC expansion the sensitivity (matrix) w.r.t. p is easily obtained

Sp.t;p/ D
	
@x.t;p/
@p



�

mX
iD0

vi .t/
@�i .p/
@p

: (5.176)

One may restrict this to Sp.t; �p/, where �p D EŒp� and @x.t;p/
@p is the solution of

the system that is differentiated w.r.t. p at p D �p . For a scalar quantity x one can
order according to a ‘stochastic influence’ based on

maxf @x
@p1

�p1 ; : : : ;
@x

@pq
�pq g: (5.177)
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Here �2pi D VarŒpi �. The sensitivity matrix also is subject to stochastic variations.
With a gPC expansion one can determine a mean global sensitivity matrix by

Sp.t/ D Ep

	
@x.t;p/
@p



�

mX
iD0

vi .t/
Z
Q

@�i .p/
@p

�.p/ dp: (5.178)

Note that the integrals at the right-hand side can be determined in advance and stored
in tables.

In [85] (see also [84]) a parameterized system in the frequency domain

ŒsC.p/C G.p/�x.s;p/ D Bu.s/; (5.179)

y.s;p/ D BT x.s;p/: (5.180)

is considered. Here s is the (angular) frequency. For this system a parameterized
MOR approach is proposed, which exploits an expansion of C.p/ and G.p/

C.p/ D
k1:::kqX

l1:::lqD0:::0
˚l1:::lq .p/Cl1:::lq ; (5.181)

G.p/ D
k1:::kqX

l1:::lqD0:::0
˚l1:::lq .p/Gl1:::lq ; (5.182)

˚l1:::lq .p/ D p
l1
1 p

l2
2 : : : p

lq
q : (5.183)

In [71] the parameter variation in C and G did come from parameterized layout
extraction of RC circuits.

In Algorithm 5.2 it is assumed that a set p1;p2; : : : ;pK is given in advance,
together with frequencies s1; s2; : : : ; sK . Let �k D .sk;pk/. Furthermore, let A D
sC.p/C G.p/ and AX D B, and, similarly, Ak D A.�k/ D skC.pk/C G.pk/ and
AkXk D B.

A projection matrix V (with orthonormal columns vi ) is determined such that
X.s;p/ � NX.s;p/ � V OX.s;p/ � PK0

iD1 ˛i .s;p/vi . Algorithm 5.2 applies a strategy
of which a key step is found in [85]. The extension of V is similar to the recycling
of Krylov subspaces [102] and used in MOR by [84]. The refinement introduced in
[85] is in the selection from the remaining set (steps 5–6). Note that the residues
deal with B and with x and not with the effect in y. Hence, one may consider a
two-sided projection here. The method of [85] was used in [71] (using expansions
of the matrices in moments of p; note that used expressions from layout extraction
were linear in p).
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Algorithm 5.2 pMOR Strategy in Uncertainty Quantification
1: A set p1; p2; : : : ; pK is given in advance, together with frequencies s1; s2; : : : ; sK . In our case

the p1; p2; : : : ; pK can come from quadrature points in Stochastic Collocation. Let �k D
.sk; pk/. Furthermore, let A D sC.p/ C G.p/ and AX D B, and, similarly, Ak D A.�k/ D
skC.pk/C G.pk/ and AkXk D B.

2: Assume that we have already found some part of the (orthonormal) basis, V D .v1; : : : ; vk/
3: For any �j , that was not selected before to extend the basis, the actual error formally is

given by Ej D X.�j / � Pk
iD1 ˛i .�

j /vi and thus for the residue we have Rj D AjEj D
B � Pk

iD1 ˛i .�
j /Aj vi . In [85] one determines R D B ? Span.AjV/, the residue after

orthogonalization of B against Span.AjV/. This step does not require evaluation of a solution.
4: Let R D .R1; : : : ;Rm/, rj D Pm

iD1 jjRi jj and determine j0 such that rj0 D maxj rj .
5: if (rj0 > ") then
6: X.�j0 / may add most significantly rank to the space spanned by V. Hence one now really

evaluates Xj0 D X.�j0 / and orthogonalizes this against V and extends V with this orthogonal
complement. Thus Xj0 D X.�j0 / D ŒAk�

�1B D ŒA.�k/��1B and Vk D Xj0 � V.VT Xj0 /

is the expansion to V. One can use a rank-revealing QR for this step (which also includes a
tolerance). Note that until now one collects only zero-moments (in the frequency expansion);
for refinements see remarks at the end of this Section.

7: Reduce the set of the �k with �j0 . Go to Step 2.
8: else
9: Decide for applying MOR on remainder.

10: if (MOR) then
11: if (Expressions for C.p/ and G.p/ are explicitly known) then
12: Expand the matrices C.p/ and G.p/ in polynomials as in (5.181)–(5.182)
13: Apply the common projection matrix to get the reduced parameterized system.
14: Apply the collocation to the reduced system (and possibly re-evaluate for param-

eters used so far the solutions of the reduced system). The solutions of the reduced system at
the re-evaluated parameters may be compared to the solutions of the non-reduced system to
provide some error control. Note that the expanded expressions provide expressions for the
reduced system.

15: for all �k do
16: Evaluate C.pk/ and G.pk/ of the reduced system.
17: Solve the reduced system.
18: end for
19: One now has a parameterized reduced system.
20: else
21: for all �k do
22: Evaluate C.pk/ and G.pk/ of the big system (in the CAD environment, say).
23: Apply the common projection matrix to get the reduced system.
24: Solve the reduced system.
25: end for
26: end if
27: Determine the gPC-expansion of the solution of the reduced system.
28: Perform statistics and/or determine sensitivity of the solution of the reduced system.
29: else
30: Use the Krylov space found so far to efficiently solve all remaining solutions X.�j /.

Note that we can use the original expressions in (5.179).
31: Determine the gPC-expansion of the solution of the original system (5.179).
32: Perform statistics and/or determine sensitivity of the solution of the original system.
33: end if
34: end if



5 Parameterized Model Order Reduction 341

This procedure assumes that the evaluation of a matrix Ak (and subsequent
matrix vector multiplications) is much cheaper than determining a solution X.�k/.
Note also that after extending the basis V in the next step the norms of the residues
should reduce. This allows for some further efficiency in the algorithm [85]. Finally,
we remark that the Xk are zero order (block) moments at �k . After determining
the LU-decomposition of Ak one easily includes higher moments as well when
extending the basis.

A main conclusion of this section is that for the Stochastic Collocation the expan-
sions (5.181)–(5.183) are not explicitly needed by the algorithm. This facilitates
dealing with parameters that come from geometry, like scaling [111–115]. The
evaluation can completely be done within the CAD environment of the simulation
tool – in which case the expressions remain hidden.

The selection of the next parameter introduces a notion of “dominancy” from an
algorithmic point of view: this parameter most significantly needs extension of the
Krylov subspace. To invest for this parameter will automatically reduce work for
other parameters (several may even drop out of the list because of small residues).

If first order sensitivity matrices are available, like in C.p/ D C0.p0/C C0.p0/p
and in G.p/ D G0.p0/ C G0.p0/p one can apply a Generalized Singular Value
Decomposition [89] to both pairs .CT

0 .p0/; ŒC
0�T .p0// and .GT

0 .p0/; ŒG
0�T .p0//.

In [101] this was applied in MOR for linear coupled systems. The low-rank
approximations for C0.p0/ and G0.p0/ (obtained by a Generalized SVD [89]) give
way to increase the basis for the columns of B of the source function. Note that by
this one automatically will need MOR methods that can deal with many terminals
[68, 97, 120].

In Algorithm 5.2 and in [85] the subspace generated by the basis V is slightly
increasing with each new pk . A different approach is to apply normal MOR for
each pk , giving bases Vk , and next determine V by an SVD or rank-revealing QR-
factorization of ŒVk; : : : ;VK�. In [66] this approach is used to obtain a Piecewise
H2-Optimal Interpolation pMOR Algorithm.

To efficiently apply parameterized MOR in Uncertainty Quantification is
described in [104, 119]. In [105, 106] sensitivity analysis of the variance did
provide ways to identify dominant parameters that contribute most to the variance of
a quantity of interest. This approach is different from the low-rank approximations
(using the Generalized SVD), mentioned above.

5.4 MOR for Singularly Perturbed Systems

For large systems of ordinary differential equations (ODEs), efficient MOR methods
already exist in the linear case, see [125].4 We want to generalize according
techniques to the case of differential-algebraic equations (DAEs). On the one hand,

4Section 5.4 has been written by: Kasra Mohaghegh, Roland Pulch and E. Jan W. ter Maten. For an
extended version we refer to the Ph.D.-Thesis [135] of the first author and to the papers [136, 137].
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a high-index DAE problem can be converted into a lower-index system by analytic
differentiations, see [127]. A transformation to index zero yields an equivalent
system of ODEs. On the other hand, a regularization is directly feasible in case of
semi-explicit systems of DAEs. Thereby, we obtain a singularly perturbed problem
of ODEs with an artificial parameter. Thus according MOR techniques can be
applied to the ODE system. An MOR approach for DAEs is achieved by considering
the limit to zero of the artificial parameter.

We consider a simplified, semi-explicit DAE system to illustrate some concepts
only

Py.t/ D f.y.t/; z.t//; y W R ! R
k;

0 D g.y.t/; z.t//; z W R ! R
l ;

(5.184)

with differential and perturbation index 1 or 2. For the construction of numerical
methods to solve initial value problems of (5.184), a direct as well as an indi-
rect approach can be used. The direct approach applies an "-embedding of the
DAEs (5.184), i.e., the system changes into

Py.t/ D f.y.t/; z.t//

"Pz.t/ D g.y.t/; z.t//
, Py.t/ D f.y.t/; z.t//

Pz.t/ D 1
"
g.y.t/; z.t//

(5.185)

with a real parameter " ¤ 0. Techniques for ODEs can be employed for the
singularly perturbed system (5.185). The limit " ! 0 yields an approach for solving
the DAEs (5.184). The applicability and quality of the resulting method still has to
be investigated.

Alternatively, the indirect approach is based on the state space form of the
DAEs (5.184) with differential and perturbation index 1 or 2, for nonlinear cases
see [139], i.e.,

Py.t/ D f.y.t/; ˚.y.t/// (5.186)

with z.t/ D ˚.y.t//. To evaluate the function ˚ , the nonlinear system

g.y.t/; ˚.y.t/// D 0 (5.187)

is solved for given value y.t/. Consequently, the system (5.186) represents ODEs
for the differential variables y and ODE methods can be applied. In each evaluation
of the right-hand side in (5.186), a nonlinear system (5.187) has to be solved. More
details on techniques based on the "-embedding and the state space form can be
found in [132].

Although some MOR methods for DAEs already exist, several techniques are
restricted to ODEs or exhibit better properties in the ODE case in comparison to the
DAE case. The direct or the indirect approach enables the usage of MOR schemes
for ODEs (5.185) or (5.186), where an approximation with respect to the original
DAEs (5.184) follows. The aim is to obtain suggestions for MOR schemes via these
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strategies, where the quality of the resulting approximations still has to be analyzed
in each method.

In this section, we focus on the direct approach for semi-explicit system of
DAEs, i.e., the "-embedding (5.185) is considered. MOR methods are applied
to the singularly perturbed system (5.185). Two scenarios exist to achieve an
approximation of the behavior of the original DAEs (5.184) by MOR. Firstly, an
MOR scheme can be applied to the system (5.185) using a constant " ¤ 0, which is
chosen sufficiently small (on a case by case basis) such that a good approximation is
obtained. Secondly, a parametric or parameterized Model Order Reduction (pMOR)
method yields a reduced description of the system of ODEs, where the parameter "
still represents an independent variable. Hence the limit " ! 0 causes an approach
for an approximation of the original DAEs.

We investigate the two approaches with respect to MOR methods based on an
approximation of the transfer function, which describes the input-output behavior
of the system in frequency domain.

5.4.1 Model Order Reduction and "-Embedding

We restrict ourselves to semi-explicit DAE systems of the type (5.188)–(5.189) and
introduce w.t/ as an output instead of y.t/with exact the same condition. According
to (5.184), after linearizing, we can write the system as

CPx D �Gx C Bu.t/; (5.188)

w.t/ D Lx.t/: (5.189)

The solution x and the matrix C exhibit the partitioning:

x D
�

y
z

�
; C D

�
Ik�k 0

0 0l�l

�
:

w.t/ is the output of the system. The order of the system is n D k C l , where k
and l are the dimensions of the differential part and the algebraic part (constraints),
respectively, defined in the semi-explicit system (5.184). B 2 R

n�m; L 2 R
p�n.

After taking the Laplace transform, the correspondingp�m matrix-valued rational
transfer function is

H.s/ D L � .G C sC/�1 � B D L �
�

G C s

�
Ik�k 0

0 0l�l

���1
� B;

provided that det.G C sC/ ¤ 0 and x.0/ D 0 and u.0/ D 0. Following the direct
approach [135], the "-embedding changes the system (5.188)–(5.189) into:
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(
C."/ dx.t/

dt D �Gx.t/C Bu.t/; x.0/ D x0;

w.t/ D Lx.t/;
(5.190)

where

C."/ D
�

Ik�k 0
0 "Il�l

�
for " 2 R

with the same inner state and input/output as before. For " ¤ 0, the matrix C."/ is
regular in (5.190) and the transfer function reads:

H".s/ D L � .G C s � C."//�1 � B

provided that det.G C sC."// ¤ 0. For convenience, we introduce the notation

M.s; "/ WD sC."/ D s

�
Ik�k 0

0 "Il�l

�
:

It holds M.s; 0/ D sC with C from (5.188).
Concerning the relation between the original system (5.188)–(5.189) and the

regularized system (5.190) with respect to the transfer function, we achieve the
following statement. Without loss of generality, the induced matrix norm of the
Euclidean vector norm is applied.

Lemma 5.1 Let A; QA 2 R
n�n, det.A/ ¤ 0 and kA � QAk2 D k�Ak2 where �A is

small enough. Then it holds:

kA�1 � QA�1k2 
 kA�1k22 � k�Ak2
1 � kA�1k2 � k�Ak2 :

Proof It holds

kA�1 � QA�1k2 D max
kxk2D1

���A�1x � QA�1x
���
2
:

Suppose y WD A�1x; Qy WD QA�1x, then the sensitivity analysis of linear systems
yields

k�yk2
kyk2


 
.A/

1 � 
.A/ k�Ak2kAk2

0
BBB@

k�Ak2
kAk2

C k�xk2
kxk2„ ƒ‚ …
D 0

1
CCCA ;

where the quantity


.A/ � ��A�1��
2

kAk2
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is the relative condition number. So by substituting the value of 
.A/ we have:

ky � Qyk2 

��A�1��

2
� k�Ak2 � ��A�1��

2
kxk2

1 � kA�1k2 � k�Ak2
then

kA�1 � QA�1k2 
 kA�1k22 � k�Ak2
1 � kA�1k2 � k�Ak2 :

ut
We conclude from Lemma 5.1 that

lim
�A!0

QA�1 D A�1;

for example.

Theorem 5.1 For fixed s 2 C with det.G C M.s; 0// ¤ 0 and " 2 R satisfying

jsj � j"j 
 c

k.G C M.s; 0//�1k2
(5.191)

for some c 2 .0; 1/, the transfer functions H.s/ and H".s/ of the systems (5.188)–
(5.189) and (5.190) exist and it holds

kH.s/ � H".s/k2 
 kLk2 � kBk2 �K.s/ � jsj � j"j

with

K.s/ D 1

1 � c

��.G C M.s; 0//�1
��2
2
:

Proof Let A D GCM.s; 0/ and QA D GCM.s; "/. The condition (5.191) guarantees
that the matrices QA are regular. The definition of the transfer functions implies:

kH.s/� H".s/k2 
 kLk2 �
���A�1 � QA�1

���
2

� kBk2 :

We obtain:

���A � QA
���
2

D kM.s; 0/ � M.s; "/k2 D jsj �
����
�

0 0
0 "Il�l

�����
2

D jsj � j"j :
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Applying the Lemma 5.1, the term at the right-hand side of the expression above
becomes:

���A�1 � QA�1
���
2



��A�1��2

2
� kM.s; 0/ � M.s; "/k2

1 � kA�1k2 � kM.s; 0/ � M.s; "/k2

 1

1 � c

��A�1��2
2

� kM.s; 0/ � M.s; "/k2

 K.s/ kM.s; 0/ � M.s; "/k2 :

Thus the proof is completed. ut
It is clear that for inequality (5.191) we have:

s ¤ 0 2 C W j"j 
 c

jsj � k.G C M.s; 0//�1k2
s D 0 2 C W " arbitrary

We conclude from Theorem 5.1 that

lim
"!0

H".s/ D H.s/

for each s 2 C with G C sC regular. The relation (5.191) gives feasible domains
of "

jsj 
 1 W j"j 
 c

k.G C M.s; 0//�1k2
;

jsj > 1 W j"j 
 c

jsj � k.G C M.s; 0//�1k2
:

We also obtain the uniform convergence

kH.s/� H".s/k2 
 OK j"j for all s 2 S

in a compact domain S � C and " 
 ı with:

ı D c � min
s2S

1

k.G C M.s; 0//�1k2
for QS D ;;

ı D c �
	

min
s2S

1

k.G C M.s; 0//�1k2



�
	

min
s2 QS

1

jsj



„ ƒ‚ …
�1

for QS ¤ ;;

with QS WD fz 2 S W jzj 	 1g. Furthermore, Theorem 5.1 implies the property

lim
s!0

H.s/� H".s/ D 0
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for fixed " assuming det G ¤ 0. However, we are not interested in the limit case of
small variables s.

For reducing the DAE system (5.188)–(5.189), we have two ways to handle the
artificial parameter ", which results in two different scenarios. In the first scenario,
we fix a small value of the parameter ". Thus we use one of the standard techniques
for the reduction of the corresponding ODE system. Finally, we achieve a reduced
ODE (with small " inside). The ODE system with small " represents a regularized
DAE. Any reduction scheme for ODEs is feasible. Recent research shows that the
Poor Man’s TBR (PMTBR), see [138], can be applied efficiently to the ODE case.
Figure 5.37 indicates the steps for the first scenario.

In the second scenario, the parameter " is considered as an independent variable
(value not predetermined). We can use the parametric MOR for reducing the
corresponding ODE system. The applied parametric MOR is based on [128, 129]
in this case. The limit " ! 0 yields the results in an approximation of original
DAEs (5.188)–(5.189). The existence of the approximation in this limit still has to
be analyzed. Figure 5.38 illustrates the strategy for the second scenario.

Fig. 5.37 The approach of
the "-embedding for MOR in
the first scenario

Fig. 5.38 The approach of
the "-embedding for MOR in
the second scenario

DAE

dimension dimension 
ODE

Parametric
   MOR 

Reduced
System

dimension   q <<

n n

dimension   q << nn

parameter

parameter

parameter ε

limit ε Reduced ODE0

ε

ε
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Theorem 5.1 provides the theoretical background for the both scenarios. We
apply an MOR scheme based on an approximation of the transfer function to the
system of ODEs (5.190). Let QH".s/ be a corresponding approximation of H".s/.

It follows

kH.s/ � QH".s/k2 
 kH.s/� H".s/k2 C kH".s/ � QH".s/k2 (5.192)

for each s 2 C with det.G C sC/ ¤ 0. Due to Theorem 5.1, the first term
becomes small for sufficiently small parameter ". However, " should not be chosen
smaller than the machine precision on a computer. The second term depends on the
applicability of an efficient MOR method to the ODEs (5.190). Thus QH".s/ can be
seen as an approximation of the transfer function H.s/ belonging to the system of
DAEs (5.188)–(5.189).

5.4.2 Test Example and Numerical Results

We consider a substitute model of a transmission line (TL), see [130], which
consists of N cells. Each cell includes a capacitor, an inductor and two resistors,
see Fig. 5.39. This TL model represents a scalable benchmark problem (both in
differential part and algebraic part but not separately), because we can select the
numberN of cells. The used physical parameters are

C D 10�14 F=m; L D 10�8 H; R D 0:1 �=m; G D 10 S=m:

We apply modified nodal analysis, see [131], to the RLC circuit and then the state
variables x 2 R

3NC3 consist of the voltages at the nodes, the currents traversing the

Fig. 5.39 One cell of the RLC transmission line
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inductances L and the currents at the boundaries of the circuit:

.V0; V1; : : : ; VN /; .I1=2; I3=2; : : : ; IN�1=2/;
.V1=2; V3=2; : : : ; VN�1=2/; .I0; IN /:

So far we have 3N C 3 unknowns and only 3N C 1 equations. Thus two boundary
conditions are necessary. Equations for the main nodes and the intermediate nodes
in each cell are

h
2
C PV0 C h

2
GV0 C I1=2 � I0 D 0;

hC PVi C hGVi C IiC1=2 � Ii�1=2 D 0; i D 1; : : : ; N � 1;
h
2
C PVN C h

2
GVN C IN � IN�1=2 D 0;

�IiC1=2 C ViC1=2�ViC1

hR
D 0;

hL PIiC1=2 C .ViC1=2 � Vi / D 0; i D 0; 1; : : : ; N � 1;

where the variable h > 0 represents a discretization step size in space. We apply the
boundary conditions

I0 � u.t/ D 0;

L1 PIN C VN D 0

with L1 > 0 and an independent current source u. Now a direct approach ("-
embedding) is used. For the first simulation the variable " is fixed to 10�14 and
10�7, respectively, and the PMTBR method [138] is used as a reduction scheme
for the ODE system. For all runs we selected the number of cells to N D 300,
which results in the order n D 903 of the original system of DAEs (5.188)–(5.189).
Figure 5.40 shows the transfer function both for the DAE and the ODE (including ")
and the reduced ODE with fixed " for frequencies s D i! with ! 2 R. The number
in parentheses shows the order of the systems.

Finally the second scenario with parametric MOR is studied. We apply the
PIMTAB parametric MOR following [133, 134]. The limit " ! 0 gives the result
for the reduced DAE.The error plot for the parametric reduction scheme is shown
in Fig. 5.41. The error plot shows an overall nice match for the case of " D 0; 10�10
and as the value for the parameter " increases, the accuracy of the method and of the
reduction algorithm decreases. It is also important to mention that the order of the
reduced system in the second scenario is nearly half of the one in the first scenario.

Table 5.4 shows which value for the parameter " is acceptable for the both
scenarios.
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Fig. 5.40 Original transfer function for DAE and ODE and reduced transfer function of PMTBR
in case of three different parameters ". The frequency ! ranges from 10�8 to 108

Table 5.4 Acceptance of the method: different values for " are mentioned. A dash indicates that
the error is not calculated; A. and N.A indicate accepted and not accepted, respectively

Value used for " W 0 10�14 10�10 10�7

Scenario with fixed " Same as DAE A. A. N.A.

Scenario with parametric " A. - A. N.A.

5.4.3 Conclusions

In this section we applied the "-embedding to approximate a linear system of DAEs
by a system of ODEs. We did consider the transfer function in the frequency
domain as a function of " and proved uniform convergence for frequencies s in
a compact region S where the matrix G C sC is regular (and thus its inverse
uniformly bounded). This motivated the usage of MOR methods for ODEs. Most
of the reduction schemes are designed and adopted for linear ODEs. Well-known
methods are PMTBR (Poor Man’s Truncated Balanced Realization [138]) and the
spectral zeros preservation MOR of Antoulas [126].
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Fig. 5.41 Absolute error plot for the transfer function in the "-embedding, reduction carried out
by parametric MOR with PIMTAB, " D 0; 10�10; 10�7

In the first scenario we applied a fixed " and studied for a transmission line model
the behavior of the transfer functions of the DAE, of the ODE and of the reduced
model obtained with PMTBR for " D 10�14; 10�10; 10�7. Already for the last
value the transfer functions between DAE and ODE differ significantly. If we choose
bigger values for ", the system is more friendly but the error is larger and the solution
will be changed. On the other hand the transfer function obtained by PMTBR is able
to approximate quite well the transfer function of the ODE.

In the second approach we applied the parametric MOR technique PIMTAB
[133, 134] to the parameterized ODE. Here we do not need to predefine the value
of the ". We obtain a parameterized MOR that gives a reduced model for " D 0 for
which the transfer function approximates well the one for the DAE [135, 137].
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Chapter 6
Advanced Topics in Model Order Reduction

Davit Harutyunyan, Roxana Ionutiu, E. Jan W. ter Maten, Joost Rommes,
Wil H.A. Schilders, and Michael Striebel

Abstract This chapter contains three advanced topics in model order reduction
(MOR): nonlinear MOR, MOR for multi-terminals (or multi-ports) and finally an
application in deriving a nonlinear macromodel covering phase shift when coupling
oscillators. The sections are offered in a preferred order for reading, but can be read
independently.

Section 6.1, written by Michael Striebel and E. Jan W. ter Maten, deals
with MOR for nonlinear problems. Well-known methods like TPWL (Trajectory
PieceWise Linear) and POD (Proper Orthogonal Decomposition) are presented.
Development for POD led to some extensions: Missing Point Estimation, Adapted
POD, DEIM (Discrete Empirical Interpolation Method).
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Section 6.2, written by Roxana Ionutiu and Joost Rommes, deals with the multi-
terminal (or multi-port) problem. A crucial outcome of the research is that one
should detect “important” internal unknowns, which one should not eliminate in
order to keep a sparse reduced model. Such circuits come from verification prob-
lems, in which lots of parasitic elements are added to the original design. Analysis
of effects due to parasitics is of vital importance during the design of large-scale
integrated circuits, since it gives insight into how circuit performance is affected by
undesired parasitic effects. Due to the increasing amount of interconnect and metal
layers, parasitic extraction and simulation may become very time consuming or even
unfeasible. Developments are presented, for reducing systems describingR and RC
netlists resulting from parasitic extraction. The methods exploit tools from graph
theory to improve sparsity preservation especially for circuits with multi-terminals.
Circuit synthesis is applied after model reduction, and the resulting reduced netlists
are tested with industrial circuit simulators. With the novel RC reduction method
SparseMA, experiments show reduction of 95% in the number of elements and 46x
speed-up in simulation time.

Section 6.3, written by Davit Harutyunyan, Joost Rommes, E. Jan W. ter Maten
and Wil H.A. Schilders, addresses the determination of phase shift when perturbing
or coupling oscillators. It appears that for each oscillator the phase shift can be
approximated by solving an additional scalar ordinary differential equation coupled
to the main system of equations. This introduces a nonlinear coupling effect to
the phase shift. That just one scalar evolution equation can describe this is a
great outcome of Model Order Reduction. The motivation behind this example is
described as follows. Design of integrated RF circuits requires detailed insight in
the behavior of the used components. Unintended coupling and perturbation effects
need to be accounted for before production, but full simulation of these effects can
be expensive or infeasible. In this section we present a method to build nonlinear
phase macromodels of voltage controlled oscillators. These models can be used to
accurately predict the behavior of individual and mutually coupled oscillators under
perturbation at a lower cost than full circuit simulations. The approach is illustrated
by numerical experiments with realistic designs.

6.1 Model Order Reduction of Nonlinear Network Problems

The dynamics of an electrical circuit can in general be described by a nonlinear, first
order, differential-algebraic equation (DAE) system of the form1:

d

dt
q.x.t//C j.x.t//C Bu.t/ D 0; (6.1a)

1Section 6.1 has been written by Michael Striebel and E. Jan W. ter Maten.
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completed with the output mapping

y.t/ D h.x.t/;u.t//: (6.1b)

In the state equation (6.1a), which arises from applying modified nodel analysis
(MNA) to the network graph, x.t/ 2 R

n represents the unknown vector of circuit
variables at time t 2 R; q; j W Rn ! R

n describe the contribution of reactive and
nonreactive elements, respectively and B 2 R

n�m distributes the input excitation
u W R ! R

m. The system’s response y.t/ 2 R
p is a possibly nonlinear function

h W Rn �R
m ! R

q of the system’s state x.t/ and inputs u.t/.
In circuit design, (6.1a) is often not considered to describe the overall design but

rather to be a model of a subcircuit or subblock. Connection to and communication
with a block’s environment is done via its terminals, i.e. external nodes. Therefore,
we assume in the remainder of this document that the inputs u.t/ and outputs y.t/
denote terminal voltages and terminal currents, respectively, or vice versa, which
are injected and extracted linearly, i.e., the output mapping is assumed to be of the
form

y.t/ D Cx.t/; (6.1c)

with C 2 R
p�n.

The dimension n of the unknown vector x.t/ is of the order of the number of
elements in the circuit, which can easily reach hundreds of millions. Therefore, one
may solve the network equations (6.1a) and (6.1c) by means of computer algebra in
an unreasonable amount of time only.

Model order reduction (MOR) aims to replace the original model (6.1a)
and (6.1c) by a system

d

dt
Oq.z.t//C Oj.z.t//C OBu.t/ D 0;

Oy.t/ D OCz.t/;

(6.2)

with z.t/ 2 R
r ; Oq; Oj W Rr ! R

r and OB 2 R
r�m and OC 2 R

p�r , which can compute
the system response Oy.t/ 2 R

p that is sufficiently close to y.t/ given the same input
signal u.t/, but in much less time.

6.1.1 Linear Versus Nonlinear Model Order Reduction

So far most research effort was spent on developing and analysing MOR techniques
suitable for linear problems. For an overview on these methods we refer to [1].

When trying to transfer approaches from linear MOR, fundamental differences
emerge.
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To see this, first consider a linear problem of the form

E
d

dt
x.t/C Ax.t/C Bu.t/ D 0; with E;A 2 R

n�n,

y.t/ D Cx.t/:
(6.3)

The state x.t/ is approximated in a lower dimensional space of dimension r � n,
spanned by basis vectors which we subsume in V D .v1; : : : ; vr / 2 R

n�r :

x.t/ � Vz.t/; with z.t/ 2 R
r : (6.4)

The reduced state z.t/, i.e., the coefficients of the expansion in the reduced space, is
defined by a reduced dynamical system. Applying Galerkin technique, this reduced
system arises from projecting (6.3) on a test space spanned by the columns of
some matrix W 2 R

n�r . There, W and V are chosen, such that their columns are
biorthonormal, i.e., WT V D Ir�r . The Galerkin projection2 yields

OE d

dt
z.t/C OAz.t/C OBu.t/ D 0;

y.t/ D OCz.t/

(6.5)

with OE D WTEV, OA D WT AV 2 R
r�r and OB D WTB 2 R

r�m, OC D CV 2
R
p�r . The system matrices OE; OA; OB; OC of this reduced substitute model are of smaller

dimension and constant, i.e., need to be computed only once. However, OE; OA are
usually dense whereas the system matrices E and A are usually very sparse.

Applying the same technique directly to the nonlinear system means obtaining
the reduced formulation (6.2) by defining Oq.z/ D WT q.Vz/ and Oj.z/ D WT j.Vz/.
Clearly, Oq and Oj map from R

r to R
r .

To solve network problems of type (6.2) numerically, usually multistep methods
are used. This means that at each timepoint tl a nonlinear equation

˛ Oq.zl /C Ǒ
l C Oj.zl /C OBu.tl / D 0 (6.6)

has to be solved for zl which is the approximation of z.tl /. In the above equation
˛ is the integration coefficient of the method and Ǒ

l 2 R
r contains history from

previous timesteps. Newton techniques that are used to solve (6.6) usually require
an update of the system’s Jacobian matrix in each iterations �:

OJ.�/l D
 
˛
@ Oq
@z

C @Oj
@z

! ˇ̌
ˇ
zDz.�/l

D WT

	
˛
@q
@x

C @j
@x


 ˇ̌
ˇ
x.�/DVz.�/l

V: (6.7)

2Most frequently V is constructed to be orthogonal, such that W D V can be chosen.
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The evaluation of the reduced system, i.e., Oq and Oj, necessitates in each step the back
projection of the argument z to its counterpart Vz followed by the evaluation of the
full system q and j and the projection to the reduced space with W and V.

Consequently, with respect to computation time no reduction will be obtained
unless additional measures are taken or other strategies are pursued.

6.1.2 Some Nonlinear MOR Techniques

In MOR for linear systems especially methods based on Krylov subspaces [19] and
balanced realization [30] are well understood and highly elaborated. Hence, it seems
likely to adapt them to nonlinear problems, too. In the following, we shortly describe
these approaches and give references for further reading.

6.1.2.1 Krylov Subspace Methods in Nonlinear MOR

In linear MOR Krylov subspace methods are used to construct reduced order models
of systems (6.3) such that the moments, i.e., the coefficients in a Taylor expansion
of the frequency domain transfer function of original and reduced system match up
to a certain order. The transfer function H W C ! C

p�m is defined by the linear
equation H.s/ D C.sE C A/�1B.

It is not straightforward to define a transfer function for the nonlinear prob-
lem (6.1a) and (6.1c). Instead, there are Krylov based techniques that deal with
bilinear systems (6.8) or linear periodically time varying (LPTV) problems (6.9).

bilinear system:
d

dt
Ox.t/C OAOx.t/C ONOx.t/u.t/C OBu.t/ D 0 (6.8)

LPTV system:
d

dt
ŒE.t/x.t/�C A.t/x.t/C Bu.t/ D 0 (6.9)

The type of problem (6.8) arises from expanding a nonlinear problem Px.t/ C
f.x.t// C Bu.t/ D 0 around an equilibrium point. Systems of type (6.9) with
matrices E.t/;A.t/ that are periodic with some period T one gets when linearising
the system (6.1) around a periodic steady state solution with x0.t C T / D x0.t/.

Volterra-series expansion, followed by multivariable Laplace-transformation and
multimoment expansions are the key to apply Krylov subspace based MOR. For
further reading we refer to [15] and the references therein.

In case of the LPTV systems, a timevarying system function H.s; t/ can be
defined. This plays the role of a transfer function and can be determined by a
differential equation. H.s; t/ has to be determined in terms of time- or frequency
samples on Œ0; T / for one s. Krylov techniques can then be applied to get a reduced
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system with which samples for different frequencies s can be constructed. We refer
to [21] and the references therein.

Given a nonlinear problem (6.1a) and (6.1c) of dimension n, the bilinear system
that is reduced actually has a dimension of n C n2 C n3 C � � � , depending on the
order of the expansion. Similar, the system in the LPTV case that is subject to
reduction has dimension k � n with k being the number of timesamples in the initial
determination of H.s; t/. Therefore, it seems that these methods are suitable for
small to medium sized nonlinear problems only.

6.1.2.2 Balanced Truncation in Nonlinear MOR

The energyLc.x0/ that is needed to drive a system to a given state x0 and the energy
Lo.x0/ the system provides to observe the state x0 it is in are the main terms in
Balanced Truncation. A system is called balanced if states that are hard to reach are
also hard to observe and vice versa, i.e. Lc.x/ large implies Lo.x/. Truncation, i.e.
reduced order modelling is then done by eliminating these states.

For linear problems Lc and Lo are connected directly, by means of algebraic
calculation, to the reachability and observability Gramians P and Q, respectively.
These can be computed from Lyapunov equations, involving the system matrices
E;A;B;C of the linear system (6.3). Balancing is reached by transforming the state
space such that P and Q are simultaneously diagonalised:

P D Q D diag.�1; : : : ; �n/

with the so called Hankel singular values �1; : : : ; �n. From the basis that arises from
the transformation only those basis vectors that correspond to large Hankel singular
values are kept. The main advantage of this approach is that there exists an a priori
computable error bound for the truncated system.

In transferring Balanced Truncation to nonlinear problems, three main tracks can
be recognized. Energy consideration is the common ground for the three directions.

In the approach suggested in [20] the energy functions arise from solving
Hamilton-Jacobi differential equations. Similar to the linear case, a state-space
transformation is searched such that Lc and Lo are formulated as quadratic form
with diagonal matrix. The magnitude of the entries are then basis to truncation again.
The transformation is now state dependent, and instead of singular values, we get
singular value functions. As the Hamilton-Jacobi system has to be solved and the
varying state-space transformations have to be computed, it is an open issue, how
the theory could be applied in a computer environment.

In Sliding Interval Balancing [46], the nonlinear problem is first linearised around
a nominal trajectory, giving a linear time varying system like (6.9). At each state
finite time reachability and observability Gramians are defined and approximated
by truncated Taylor series expansion. Analytic calculations, basically the series
expansions, connect the local balancing transformation smoothly. This necessary
step is the limiting factor for this approach in circuit simulation.
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Finally, balancing is also applied to bilinear systems (6.8). Here the key tool are
so called algebraic Gramians arising from generalised Lyapunov equations. How-
ever, no one-to-one connection between these Gramians and the energy functions
Lc , Lo can be made, but rather they can serve to get approximative bounds for
the aforementioned. Furthermore, convergence parameters have to be introduced to
guarantee the solvability of the generalised Lyapunov equations. For further details
we refer to [9, 14] and the references therein.

6.1.3 TPWL and POD

In view of high dimensional problems in circuit simulation and feasibility in a com-
putational environment, Trajectory PieceWise Linearization (TPWL) and Proper
Orthogonal Decomposition (POD) are amongst the most promising approaches for
the time being. The basic idea of TPWL is to replace nonlinearity with a collection
of linear substitute problems and apply MOR on these. The background of POD
is to identify a low dimensional manifold the solution resides on and reformulate
the problem in such a way that it is solved in terms of the basis of this principal
manifold.

In the following we give more details on the steps done for both approaches.

6.1.3.1 Trajectory PieceWise Linearization

The idea of TPWL [33], is to represent the full nonlinear system (6.1a) and (6.1c)
by a set of order reduced linear models that can reproduce the typical behaviour of
the system.

Since its introduction in [33, 34], TPWL has gained a lot of interest and several
adaptions have been made, see e.g., [18, 39, 49]. In the following we will basically
follow the lines in the original works [33, 34] and briefly mention alternatives that
have been suggested.

For extracting a model, a training input Nu.t/ for t 2 Œtstart; tend� is chosen and
a transient simulation is run in order to get a trajectory, i.e. a collection of points
x0; : : : ; xN , approximating x.ti / at timepoints tstart D t0 < t1 < � � � < tN D tend. The
training input is chosen such that the trajectory it causes, reflects the typical state
of the system. On the trajectory, points fxlin

0 ; : : : ; x
lin
s g � fx0; : : : ; xN g are chosen

around which the nonlinear functions q and j are linearised:

q.x.t// � q.xlin
i /C Ei � �x.t/ � xlin

i

� I j.x.t// � j.xlin
i /C Ai � �x.t/ � xlin

i

�
;

(6.10)

with Ei D @q
@x

ˇ̌
ˇ
xDxlin

i

and Ai D @j
@x

ˇ̌
ˇ
xDxlin

i

.
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Then the nonlinear state-space equation (6.1a) can locally be replaced locally
around xlin

i for i D 1; : : : ; s by

d

dt
ŒEix.t/C ıi �C Aix.t/C � i C Bu.t/ D 0; (6.11)

with ıi D q.xlin
i / � Eixlin

i and � i D j.xlin
i / � Aixlin

i .
One approach, used by Rewieński [33], to get a model that represents the

nonlinear problem on a larger range, is to combine the local models (6.11) to

d

dt

 
sX
iD0

wi .x.t// ŒEix.t/C ıi �

!
C

sX
iD0

wi .x.t// ŒAix.t/C � i �C Bu.t/ D 0;

(6.12a)

where wi W Rn ! Œ0; 1� for s D 1; : : : ; s is a state-dependent weight-function. The
weighting functions wi are chosen such that wi .x.t// is large for x close to xlin

i and
such that w0.x.t//C � � � C ws.x.t// D 1.

A different way to define a global substitute model, suggested by Voß [49] is

sX
iD0

wi .x.t//
�

Ei
d

dt
x.t/C Aix.t/C �i

�
C Bu.t/ D 0: (6.12b)

Although different in definition, in deployment both approaches (6.12a) and (6.12b)
are equivalent, as we will see later.

Figure 6.1 illustrates the idea: Along a training trajectory, extracted from a full
dimensional simulation, a set of locally valid linear models is created. When this
model is used for simulation with a different input, the existing linear models are
turned on and off, adapted to the state the system is in at one moment.

Simulation of the piecewise linearized system (6.12a) or (6.12b) may already
be faster than simulation of the original nonlinear system. However, the linearized
system can be reduced by using model order techniques for linear systems to
increase efficiency.

The main difference between linear MOR and TPWL is that the latter introduces
in addition to the application of a linear MOR technique the selection of lineariza-

Fig. 6.1 TPWL – model
extraction and usage

training trajectory

trajectory from different input

x1
lin

x2
lin

x3
lin

x6
lin

x5
lin

x4
lin

x0
lin
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tion points (to get a linear problem) and the weighting of the linear submodels (to
recover the global nonlinear behavior).

Reducing the System

Basically, any MOR-technique for linear problems can be applied to the linear
submodels (6.11), i.e., .Ei ;Ai ; ŒB;� i � ;C/. Note that we did extend the columns
of B with � i – thus MOR may exploit refinements for multiple terminals (see,
f.i., Sect. 6.2 in this Chapter). Originally Rewieński [33] proposed the usage of
Krylov-based reduction. Vasilyev, Rewieński and White [40] introduced Balanced
Truncation to TPWL and Voß [49] uses Poor Man’s TBR (PMTBR) as linear MOR
kernel. Each of these methods creates local subspaces, spanned by the columns of
projection matrices Vi 2 R

n�ri for i D 0; : : : ; s. For some comparisons on different
MOR methods used within TPWL, see [29]. For comparison between TPWL and
POD (see Sect. 6.1.3.2), see [7, 42].

In a second step one global subspace is created from the information contained
in the local subspaces. This is done by applying a singular value decomposition
(SVD) on the aggregated matrix Vagg D ŒV0; xlin

0 I : : : I Vs; xlin
s �. Note that the xlin

j

are “snapshots” in time of the nonlinear solution. Their span actually forms a POD-
subspace (see Sect. 6.1.3.2) that is collected on-the-fly within TPWL. The inclusion
reduces the error of the solution of the reduced model [7].

The final reduced subspace is then spanned by the r dominating left singular
vectors, subsumed in V 2 R

n�r . Furthermore let W 2 R
n�r be the corresponding

test matrix, where often we have W D V. Then a reduced order model for the
piecewise-linearized system (6.12a) is

d

dt

 
sX
iD0

wi .Vz.t//
h OEiz.t/C Oıi

i!
C

sX
iD0

wi .Vz.t//
h OAiz.t/C O� i

i
C OBu.t/ D 0;

(6.13)

with OEi D WTEiV, OAi D WT AiV, Oıi D WT ıi , O� i D WT� i and OB D WT B.

Selection of Linearization Points

A crucial point in TPWL is to decide, which linearization points xlin
0 ; : : : ; x

lin
s

should be chosen. With a large number of such points, we could expect to find a
linear model suitable to reproduce the nonlinear behaviour locally. But, this would
especially cause to store huge amount of data, making the final model slow. On the
other hand, if too few points are chosen to linearise around, the nonlinear behaviour
will not be reflected correctly. Different strategies to decide upon adding a new
linearization point, and hence a new model automatically exist:

• In the original work, Rewieński [33, 34] suggests to check at each accepted
timepoint t during simulation for the relative distance of the current state
xk � x.tk/ of the nonlinear problem to all yet existing i linearization states
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xlin
0 ; : : : ; x

lin
i�1. If the minimum is equal to or greater than some parameter ˛ > 0,

i.e.

min
0�j�i�1

 kxk � xlin
j k1

kxlin
j k1

!
	 ˛; (6.14)

xk becomes the .i C 1/st linearization point. Accordingly, a new linear model,
arising from linearizing around xlin

iC1 D xk is added to the collection. The
parameter ˛ is chosen depending on the steady state of the system (6.1a).

• In [49] the mismatch of nonlinear and linear system motivates the creation of a
new linearization point and an additional linear model: at each timepoint during
training both the nonlinear and a currently valid linear system are computed in
parallel with the same stepsize. If the difference of the two approximations to the
true solution at a timepoint tkC1 becomes too large, a new linear model is created
from linearizing the nonlinear system around the state the system was in at the
previous timepoint tk .

• The strategy pursued by Dong an Roychowdhury [18] is similar to (6.14).
Here, not deviations between states but function evaluations at the current
approximation xk and the linearization points xlin

j are considered.
• In Martinez [28] an optimization criterion is used to determine the linearization

points. The technique exploits the Hessian of the system as an error bound metric.

Determination of the Weights

When replacing the full nonlinear problem with the TPWL model (6.13) the weights
wi W R

n ! Œ0; 1� are responsible for switching between the linear submodels,
i.e., for choosing the linear model that reflects best the behaviour caused by the
nonlinearity.

Besides the specifications of the desired behaviour, made before, one wants to
have minimum complexity, i.e., one aims at having to deal with a combination of
just a small number of linear submodels at each timepoint. It is hence obvious that
the weight functions have to be nonlinear in nature. Again, different strategies exist:

• Both Rewieński [33] and Voß [49] use

wi .x/ D e� ˇ
m �di .x/; with di .x/ D kx � xlin

i k2 and m D min
i
di .x/. (6.15a)

The constant ˇ adjusts how abrupt the change of models is. A typical value is
ˇ D 25.

• Dong and Roychowdhury [18], however, use

wi .x/ D
�

m

di.x/
e

�di .x/�m
M

��
; (6.15b)
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where di .x/ and m are the same as in (6.15a) and M is the minimum distance,
taken in the 2-norm, amongst the linearization points. The parameter� is chosen
from f1; 2g.

In both cases, the weights are normalized such that
P

i wi .x/ D 1.
Clearly the nonlinearity of the weights causes the TPWL-model (6.13) arising

from (6.12a) – and similar the reduced model that would originate from (6.12b)
– to be nonlinear still. That means, after applying a numerical integration scheme
to (6.13) , still a nonlinear problem has to be solved to get an approximation zk �
z.tk/. To overcome this problem, both Rewieński [33] and Voß [49] decouple the
evaluation of the weights from the time discretisation by replacing

wi .Vzk/ wi .VQzk/ with Qzk � zk;

i.e., for calculating zk from the discretisation of (6.13) at t D tk , zk in the
weighting is replaced by a cheaper approximation Qzk . It is easy to see that with
this action, (6.12a) and (6.12b) are equivalent.

Note: The work of Dong and Roychowdhury [18] does actually not consider a
piecewise linear a but piecewise polynomial approach, i.e., the Taylor expansions
in (6.10) contain one more coefficient, leading to the need for reducing local bilinear
systems. Tiwary and Rutenbar [39] look into details of implementing a TPWL-
technique in an economic way.

TPWL and Time-Domain MOR

In [53] the TPWL approach is combined with wavelet expansions that are defined
directly in the time-domain. For wavelets in circuit simulation we refer to [16, 17]
and for technical details to [10, 11, 51, 52]. After linearizing a differential equation

d

dt
x.t/ D f.x.t//C Bu.t/ (6.16)

at xi D x.ti /, we obtain that Qx.t/ D x.t/ � xi is approximately given by

d

dt
Qx.t/ D f.xi /C A.Qx.t/ � xi /C Bu.t/; (6.17)

D AQx.t/C f.xi / � Axi C Bu.t/: (6.18)

where A D @f .x/

@x
.ti /. The output request y.t/ D Cx.t/ transfers to Qy.t/ D Cxi C

CQx.t/, in which the first term is known. Thus it is sufficient to consider on an interval
Œ0; T � the sum of the solutions of the two problems

d

dt
x.t/ D Ax.t/C Bu.t/; (6.19)

y.t/ D Cx.t/ (6.20)
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and

d

dt
x.t/ D Ax.t/C f.xi /� Axi ; (6.21)

y.t/ D Cx.t/: (6.22)

Assuming T being integer (see [53] for the more general case), for a wavelet order
J we get M D 2J � T C 3 basis functions 	j .t/, j D 1; : : :M . We can write
x.t/ D H1	.t/, and x.t/ D H2	.t/, respectively, where 	.t/ D .	1.t/; : : : ; 	M .t//

and H1; H2 2 R
n�M . We can plug these expressions into (6.19) and into (6.21).

However, note that in (6.19) the source term is time-dependent, while in (6.21) the
source term is constant. Hence rather then to consider (6.19), one considers

d

dt
x.t/ D Ax.t/C Bı.t/; (6.23)

y.t/ D Cx.t/ (6.24)

where ı.t/ is an impulse excitation with the property
R t
0

�

ı.�/d� D 1. Then,
for (6.23), the matrix H1 satisfies

H1

d

dt
	.t/ D AH1	.t/C Bı.t/ (6.25)

Assuming that the wavelets have their support in Œ0; T � we derive

H1	.t/ D AH1

Z t

0
�

	.�/d� C B: (6.26)

In [53] one applies collocation using M collocation points. Next H1 is found after
solving the resulting Sylvester equation. A similar approach is done for (6.21).
Now one determines Vi D Orthog.H1;H2; xi / (note that this is similar to the
multiple terminal approach mentioned before for the frequency domain case). From
.V1; : : : ;Vs/ one determines an overall orthonormal basis V 2 R n � r that is used
for the projection as before.

6.1.3.2 Proper Orthogonal Decomposition and Adaptions

The Proper Orthogonal Decomposition (POD) method, also known as the Principal
Component Analysis and Karhunen–Loève expansion, provides a technique for
analysing multidimensional data [24, 27].

In this section we briefly describe some basics of POD. For a more detailed
introduction to POD in MOR we refer to [31, 47]. For further studies we point
to [32], which addresses error analysis for MOR with POD and [50] where the
connection of POD to balanced model reduction can be found.
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POD sets work on data extracted from a benchmark simulation. In a finite
dimensional setup like it is given by (6.1a), K snapshots of the state xi � x.ti /,
the system is in during the training interval Œtstart; tend�, are collected in a snapshot
matrix

x D .x1; : : : ; xK/ 2 R
n�K : (6.27)

The snapshots, i.e., the columns of x, span a space of dimension k 
 K . We
search for an orthonormal basis fv1; : : : ; vkg of this space that is optimal in the
sense that the time-averaged error that is made when the snapshots are expanded in
the space spanned by just r < k basis vectors to Qxr;i ,

hkx � Qxrk22i with the averaging operator hfi D 1

K

KX
iD1

fi (6.28)

is minimised. This least squares problem is solved by computing the eigenvalue
decomposition of the state covariance matrix 1

K
xxT or, equivalently by the singular

value decomposition (SVD) of the snapshot matrix (assumingK > n)

x D UST with U 2 R
n�n;T 2 R

K�K and S D
 
�1

:::
�n

ˇ̌̌
0n�.K�n/

!
;

(6.29)

where Ut and T are orthogonal and the singular values satisfy �1 	 �2 	 � � ��n 	 0.
The matrix V 2 R

n�r whose columns span the reduced subspace is now build from
the first r columns of u, where the truncation r is chosen such that

Pr
iD1 �2iPn
iD1 �2i

	 d

100
; (6.30)

where usually d D 99 is usually a reasonable choice. For the, in this way
constructed matrix, it holds VTV D Ir�r . Therefore, Galerkin projection as
described above can be applied to create a reduced system (6.2).

However, as mentioned in Sect. 6.1.1 the cost for evaluating the nonlinear
functions q, j is not reduced. In the following we describe some adaptions to POD
that have been made to overcome this problem.

6.1.3.3 Missing Point Estimation

The Missing Point Estimation (MPE) was proposed by Astrid [2, 4] to reduce the
cost of updating system information in the solution process of time varying systems
arising in computational fluid dynamics. Verhoeven and Astrid [3] brought the MPE
approach forward to circuit simulation.
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Once a POD basis is constructed, there is no Galerkin projection deployed.
Instead a numerical integration scheme is applied which in general leads to system
of n nonlinear equations, analogue to (6.6), for the r dimensional unknown zl , that
approximate z.tl /. In MPE this system is reduced to dimension g with r 
 g < n by
discarding n�g equations. Formally this can be described by multiplying the system
with a selection matrix3 Pg 2 f0; 1gg�n, stating a g-dimensional overdetermined
problem

˛ Nq.Vzl /C Pgˇl C Nj.Vzl /C PgBu.tl / D 0; (6.31)

with Nq.Vzl / D Pgq.Vzl / and Nj.Vzl / D Pgj.Vzl /. The system (6.31) is solved at
each timepoint tl for zl in the least-squares sense [3, 41, 44, 45].

The effect of Pg operating on q.�/ and j.�/ is the same as evaluating only the
g � n components of q and j corresponding to the columns Pg has a 1 in.

The choice of Pg is motivated by identifying the g most dominant state variables,
i.e., components of x. In terms of the POD basis this is connected to restricting the
orthogonal V to QV D PgV 2 R

g�r in an optimal way. This in turn goes down to

min
Pg

k
� QVT QV

��1 � Ir�rk: (6.32)

Details on reasoning and solving (6.32) can be found in [4].

6.1.3.4 Adapted POD

A second approach to reduce the work of evaluating the nonlinear functions,
Adapted POD, was proposed in [41, 43–45]. Having done an SVD (6.29) on the
snapshot matrix, not directly a projection matrix V is defined from the singular
values and vectors. Instead the matrix L D u˙ 2 R

n�n, with˙ D diag.�1; : : : ; �n/
is defined. Hence, L arises from scaling the left-singular vectors with the corre-
sponding singular values. Although L is not orthogonal, its columns are. Next we
transform the original system (6.1a) by writing x.t/ D Lw.t/ with w.t/ 2 R

n and
using the Galerkin approach:

d

dt

�
LT q.Lw.t//

�C LT j.Lw.t//C LT Bu.t/ D 0: (6.33)

At this point, L and LT are treated as two different matrices, one acting on the
parameter of the function, the other on the value. For both L and LT we identify the
r and g, most dominant columns. A measure for the significance of a column vector
v 2 R

n is its 2-norm kvk2.

3This means, the matrix has exactly one non-zero entry per row at most one non-zero per column.
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As the columns of L are ordered according to the singular values, we will pick
the first r columns in this case. Now L and LT are approximated by matrices that
agree with the respective matrix in the selected r and g selected columns but have
the n � r and n � g, respectively, remaining columns set to 0 2 R

n. This can be
expressed with the help of selection matrices Pr 2 f0; 1gr�n and Pg 2 f0; 1gg�n,
respectively:

L � LPTr Pr and LT � LT PTg Pg: (6.34)

We may conclude LT � PTr PrLT PTg Pg, insert these approximations in (6.33) and
multiply with Pr , bearing in mind that PrPTr D Ir�r :

d

dt

h
PrLTPTg Pgq.LPTr Pr Qw/

i
CPrLT PTg Pgj.LPTr Pr Qw/CPTr LTBu D 0: (6.35)

Note that due to the approximations to L and LT in the above equation w has
changed to Qw which can merely be an approximation to the former. We introduce
˙ r D diag.�1; : : : ; �r / and let V 2 R

n�r be the first r columns of u. In this wa we
have LPTr D VSr . Finally we scale (6.35) with ˙�1

r and introduce a new unknown
z D ˙ rPr Qw 2 R

r from which we can reconstruct the full state by approximation
x � Vz. We end up with

d

dt

�
Wr;g Nq.Vz/

�C Wr;g
Nj.Vz/C QBu.t/ D 0; (6.36)

with Nq.Vz/ D Pgq.Vz/, Nj.Vz/ D Pgj.Vz/, Wr;g D VTPTg 2 R
r�g and QB D VT B.

Here Pg has the same effect as noted in the previous subsection: not the full
nonlinear functions q and j have to be evaluated but g components only.

6.1.3.5 Discrete Empirical Interpolation

Recently, Chaturantabut and Sorensen [12, 13] did present the Discrete Empirical
Interpolation Method (DEIM) as a further modification of POD. It originates from
partial differential equations (PDEs) where the nonlinearities exhibit a special
structure. It can, however, be applied to general nonlinearities as well. We give a
brief introduction of how this may look like in circuit simulation problems.

Given a nonlinear function f W Rn ! R
n, the essential idea of DEIM is to approx-

imate f.x/ by projecting it on a subspace, spanned by the basis fu1; : : : ;ugg � R
n:

f.x/ � Uc.x/; (6.37)

where U D .u1; : : : ;ug/ 2 R
n�g and c.x/ 2 R

g is the coefficient vector. Forcing
equality in (6.37) would state an overdetermined system for the g < n coefficients
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ct.x/. Instead accordance in g rows is required, which can be expressed by

Pgf.x/ D .PgU/c.x/; (6.38)

with a selection matrix Pg 2 f0; 1gg�n. If PgU is non-singular, (6.38) has a unique
solution c.x/ and, hence f.x/ can be approximated by

f.x/ � U
�
PgU

��1
Pgf.x/; (6.39)

which means that f.x/ is interpolated at the entries specified by Pg.

In (6.39), U
�
PgU

��1
can be computed in advance, and, again, the multiplication

Pgf.x/ corresponds to evaluating only those entries of f, addressed by Pg .
Using the notations introduced before, POD with the DEIM modification yields

a reduced model (6.2) with

Oq.z.t// D OW Nq.z.t//; Oj.z.t// D OW Nj.z.t//; OB D VTB; OC D CVT ;

(6.40)

with OW D VTU
�
PgU

��1
and Nq.�/ D Pgq.�/ and Nj.�/ D Pgj.�/. Here POD provides

the state-space part of the reduction, i.e., V. And DEIM determines the subspace
on which q and j is projected, hence the columns of the matrix U 2 R

n�g and the
selection Pg.

The reduced subspace, suitable for representing a nonlinear function f on, is
constructed from an SVD on a matrix F D .f.x1/; : : : ; f.xK// 2 R

n�K whose
columns are snapshots of the function evaluations. The matrix U in (6.39) consists
then of the g most dominant left singular vectors of F.

The core of DEIM is the construction of the selection Pg 2 f0; 1gg�n. A set
of indices f�1; : : : ; �gg � f1; : : : ; ng, determined by the DEIM-algorithm, define
the selection matrix, meaning that Pg has a 1 in the i th row and �i th column (for
i D 1; : : : ; g) and 0 elsewhere.

The first index, �1 is chosen to be the index of the largest (in absolute value) entry
in u1. In step l D 2; : : : ; g the residual

rlC1 D UlC1 � Ul .PlUl /
�1 PlUlC1

is computed where Ul D .u1; : : : ;ul / and Pl 2 f0; 1gl�n is constructed from the
indices �1; : : : ; �l (cp. (6.39)). Then, the index corresponding to entry of the residual
rlC1 the largest magnitude of is taken as index �lC1.

Setting up the selection matrix with this algorithm, PgU in (6.37) is guaranteed
to be regular. For a detailed description and discussion, including error estimates we
refer to [12, 13].

Note: Originally, DEIM is constructed in the context of discretisation and approx-
imation of PDEs with a special structure of the nonlinearity involved. Considering
network problem (6.1a) that leads to the reduced problem (6.40), we constructed
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a uniform DEIM-approximation, i.e., U and Pg for the both nonlinearities, q and j
involved. This could probably be approached in a different way, too.

6.1.4 Other Approaches

We shortly address some other approaches. In [5, 6, 8, 48] Krylov-subspace methods
are applied to bilinear and quadratic-bilinear ODE-systems. One exploits the obser-
vation that several nonlinear functions can be generated by extending the system first
with additional unknowns for which simple differential equations are introduced. In
[48] also the application to DAEs is discussed. In [22] a transformation from a set
of nonlinear differential equations to another set of equivalent nonlinear differential
equations that involve only quadratic terms of state variables is described to which
Volterra analysis is applied to derive a reduced model.

We already mentioned [20] for nonlinear balancing in which the energy functions
arise from solving Hamilton-Jacobi differential equations. Related work is on cross
Gramians for dissipative and symmetric nonlinear systems [25, 26].

In [37, 38] interpolating input-output behavior of nonlinear systems is studied.
This is related to table modelling.

6.1.5 Numerical Experiments

For testing purposes, a time-simulator, has been implemented in octave. The
underlying DAE integration scheme used here is CHORAL [23], a Rosenbrock-
Wanner type of method, adapted to circuitry problems. Besides performing
transient-analysis, TPWL and POD models can be extracted and reused in
simulations.

To show the performance of TPWL and POD when applied to an example from
circuit design, the nonlinear transmission line in Fig. 6.2, taken from [33] is chosen.
Only the diodes introduce the designated nonlinearity to the circuit, as the current
{d traversing a diode is modeled by {d .v/ D exp.40 � v/ � 1 where v is the voltage
drop between the diode’s terminals. The resistors and capacitors contained in the
model have unit resistance and capacitance .R D C D 1/, respectively. The current

Fig. 6.2 Nonlinear transmission line
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source between node 1 and ground marks the input to the system u.t/ D {.t/ and
the output of the system is chosen to be the voltage at node 1: y.t/ D v1.t/.

Introducing the state vector x.t/ D .v1.t/; : : : ; vN .t//
T 2 R

N , where vi .t/
describes the voltage at node i 2 f1; : : : ; N g modified nodal analysis yields:

d

dt
x.t/C j.x.t//C Bu.t/ D 0

y.t/ D Cx.t/;
(6.41)

where B D CT D .1; 0; : : : ; 0/T 2 R
N and j W RN ! R

N with

j.x/ D

0
BBBBB@

2 �1
�1 2 �1

: : :
: : :

: : :

�1 2 �1
�1 1

1
CCCCCA

� x �

0
BBBBB@

2 � e40x1 � e40.x1�x2/
e40.x1�x2/ � e40.x2�x3/

:::

e40.xN�2�xN�1/ � e40.xN�1�xN /
e40.xN�1�xN / � 1

1
CCCCCA

We chooseN D 100, causing a problem of dimension n D 100.
For extracting a model a shifted Heaviside function was used as training input.

Resimulation was done both with the training input and with a cosine function on
the interval Œtstart; tend� D Œ0; 10�:

utrain.t/ D H.t � 3/ D
(
0 t < 3

1 t 	 3
uresim.t/ D 1

2

�
1C cos

�
2�

10
t

��
:

The TPWL-model was extracted with the Arnoldi-method as suggested in [33],
leading to a order reduced model of dimension 10. For choosing linearization points,
the strategy proposed by Rewieński with ˛ D 0:0167 in (6.14) has been tested.
With this setting, 27 linear models are constructed. Also the extended strategy
described in Voß [49] is implemented, but does not show much different results
for the transmission line. A more detailed discussion on the model extraction and
statistics on which models are chosen can be found in [35, 36].

For the transmission line, also a POD model as well as a POD model that has been
modified with the Discrete Empirical Interpolation Method (DEIM) algorithm is
constructed. By choosing d D 99:9 in (6.30) a reduced model of dimension 4 is con-
structed. Applying the DEIM algorithm the nonlinear q and j where reduced to order
5. Figure 6.3 displays the singular values form snapshots collected during a training
run and the behaviour of the coverage function (6.30). Note, that only 38 singular
values are shown, although the full system is of dimension 100. This is caused by the
time domain simulation: with tolerances specified for the timestepping mechanism,
only 38 time steps where necessary to resolve the system. However, also with more
snapshots, the gradient of the singular values does not change remarkably.

Figures 6.4 and 6.5 show the trajectories, i.e., the behaviour in time, of the
voltages at nodes 1 and ten, when the training signal is and when the cosine like
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Fig. 6.3 Transmission line: singular values (C) & coverage (�)
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Fig. 6.4 Nonlinear transmission line: resimulation results

signal is applied at the input, respectively. The plots show the signals reproduced
by using the full model, the TPWL-model and the plain POD and DEIM-adapted
POD model. Slight deviations from the reference solution are obvious, but, in total,
a good matching is observable. However, the TPWL-model seems to have problems
following the reference solution, when a signal, different to the input is applied. This
indicates that there are still improvements possible.

Finally, Table 6.1 gathers the performance of the models, measured in time
consumption. Clearly, simulation with the TPWL model is cheaper than using the
full network as not the full nonlinearity has to be evaluated. Still, POD, adapted with
DEIM is superior, as no decision has to be made, which model to use. Furthermore,
as predicted in Sect. 6.1.1 applying only projection without taking care of the
nonlinearity, does not guarantee cheaper to evaluate model: the plain POD model,
used for simulation, causes equal or even increased computational expenses.
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Table 6.1 Transmission line:
performance of nonlinear
MOR techniques

Resimulation (s) Changed input (s)

Full problem 6:67 4:66

TPWL model 4:35 3:47

POD model 6:51 5:23

POD-DEIM model 1:98 1:63

6.2 Model Order Reduction for Multi-terminal Circuits

Analysis of effects due to parasitics is of vital importance during the design of large-
scale integrated circuits and derived products.4 One way to model parasitics is by
means of parasitic extraction, which results in large linear RCL.k/ networks. In ESD
analysis [65, 75], for instance, the interconnect network is modeled by resistors with
resistances that are based on the metal properties. In other (RF) applications one
needs RC or even RCLk extractions to deal accurately with higher frequencies as
well.

The resulting parasitic networks may contain up to millions of resistors, capac-
itors, and inductors, and hundreds of thousands of internal nodes, and thousands
of external nodes (nodes with connections to active elements such as transistors).
Simulation of such large networks within reasonable time is often not possible
[62, 63], and including such networks in full system simulations may be even
unfeasible. Hence, there is need for much smaller networks that accurately or even
exactly describe the behavior of the original network, but allow for fast analysis.

4Section 6.2 has been written by Roxana Ionutiu and Joost Rommes. For an extended treatment on
the topics of this section see also the Ph.D. Thesis of the first author [68].
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In this section we describe recently developed methods for the reduction of
large R networks, and present a new approach for the reduction of large RC
networks. We show how insights from graph theory, numerical linear algebra, and
matrix reordering algorithms can be used to construct a reduced network that shows
sparsity preservation especially for circuits with multi-terminals (ports). Hence it
allows for the same number of external nodes, but needs much fewer internal nodes
and circuit elements (resistors and capacitors). Circuit synthesis is applied after
model reduction, and the resulting reduced netlists are tested with industrial circuit
simulators. For related literature we refer to [55–57].

The section is organized as follows. Section 6.2.1 revisits recent work on
reduction ofR networks [83, 84]. It provides the basis for understanding how graph
theoretical tools can be used to significantly improve the sparsity of the reduced
models, which are later synthesized [70] into reduced netlists. Section 6.2.2 deals
with the reduction ofRC networks. Section 6.2.2.1 first reviews an existing method
which employs Pole Analysis via Congruence Transformations (PACT) [73] to
reduce RC netlists with multi-terminals. In Sect. 6.2.2.2 the new method Sparse
Modal Approximation (SparseMA) is presented, where graph-theoretical tools are
brought in to enhance sparsity preservation for the reduced models. The numerical
results for bothR andRC netlist reduction are presented in Sect. 6.2.3. Section 6.2.4
concludes.

6.2.1 Reduction of R Networks

In this section we review the approach for reducing R networks, as developed in
[83, 84]. Reduction of R networks, i.e., networks that consist of resistors only, is
needed in electro-static discharge analysis (ESD), where large extractedR networks
are used to model the interconnect. Accurate modeling of interconnect is required
here, since the costs involved may vary from a few cents to millions if, due to
interconnect failures, a respin of the chip is needed. An example of a damaged piece
of interconnect that was too small to conduct the amount of current is shown in
Fig. 6.6.

6.2.1.1 Circuit Equations and Matrices

Kirchhoff’s Current Law and Ohm’s Law for resistors lead to the following system
of equations for a resistor network with N resistors (resistor i having resistance ri )
and n nodes (n < N ):

	
R P

�PT 0


 	
ib
v



D
	

0
in



; (6.42)
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Fig. 6.6 Example of a piece of interconnect that was damaged because it was too small to conduct
the amount of current caused by a peak charge

where R D diag.r1; : : : ; rN / 2 R
N�N is the resistor matrix, P 2 f�1; 0; 1gN�n is

the incidence matrix, ib 2 R
N are the resistor currents, in 2 R

n are the injected node
currents, and v 2 R

n are the node voltages.
The MNA (modified nodal analysis) formulation [60, 76] can be derived

from (6.42) by eliminating the resistor currents ib D �R�1P v:

Gv D in; (6.43)

where G D PTR�1P 2 R
n�n is symmetric positive semidefinite. Since currents

can only be injected in external nodes, and not in internal nodes of the network,
system (6.43) has the following structure:

	
G11 G12

GT
12 G22


 	
ve
vi



D
	
B

0



ie; (6.44)

where ve 2 R
ne and vi 2 R

ni are the voltages at external and internal nodes,
respectively (n D ne C ni ), ie 2 R

n
e are the currents injected in external nodes,

B 2 f�1; 0; 1gne�ne is the incidence matrix for the current injections, and G11 D
GT
11 2 R

ne�ne , G12 2 R
ne�ni , and G22 D GT

22 2 R
ni�ni . The block G11 is also

referred to as the terminal block.
A current source (with index s) between terminals a and b with current j results

in contributions Ba;s D 1, Bb;s D �1, and ie.s/ D j . If current is only injected
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in a terminal a (for instance if a connects the network to the top-level circuit), the
contributions are Ba;s D 1 and ie.s/ D j .

Finally, systems (6.42)–(6.44) must be made consistent by grounding a node
gnd , i.e., setting v.gnd/ D 0 and removing the corresponding equations. In the
following we will still use the notation G for the grounded system matrix, if this
does not lead to confusion.

6.2.1.2 Problem Formulation

The problem is: given a very large resistor network described by (6.42), find an
equivalent network with (a) the same external nodes, (b) exactly the same path
resistances between external nodes, (c) On � n internal nodes, and (d) Or � r

resistors. Additionally, (e) the reduced network must be realizable as a netlist so
that it can be (re)used in the design flow as subcircuit of large systems.

Simply eliminating all internal nodes will lead to an equivalent network that
satisfies conditions (a)–(c), but violates (d) and (e): for large numbersm of external
nodes, the number of resistors Or D .m2 �m/=2 in the dense reduced network is in
general much larger than the number of resistors in the sparse original network (r
of O.n/), leading to increased memory and CPU requirements.

6.2.1.3 Existing Approaches

There are several approaches to deal with large resistor networks. In some cases the
need for an equivalent reduced network can be circumvented in some way: due to
sparsity of the original network, memory usage and computational complexity are
in principle not an issue, since solving linear systems with the related conductance
matrices is typically of complexity O.n˛/, where 1 < ˛ 
 2, instead of the
traditional O.n3/ [79]. Of course, ˛ depends on the sparsity and will rapidly
increase as sparsity decreases. This also explains why eliminating all internal nodes
does not work in practice: the large reduction in unknowns is easily undone by the
enormous increase in number of resistors, mutually connecting all external nodes.

However, if we want to (re)use the network in full system simulations, a reduced
equivalent network is needed to limit simulation times or make simulation possible
at all. In [77] approaches based on large-scale graph partitioning packages such
as (h)METIS [72] are described, but only applied to small networks. Structure
preserving projection methods for model reduction [66, 86], finally, have the
disadvantage that they lead to dense reduced-order models if the number of
terminals is large. There is commercial software [59, 64] available for the reduction
of parasitic reduction networks.
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6.2.1.4 Improved Approach

Knowing that eliminating all internal nodes is not an option and that projection
methods lead to dense reduced-order models, we use concepts from matrix reorder-
ing algorithms such as AMD [54] and BBBD [88], usually used as preprocessing
step for (parallel) LU- or Cholesky-factorization, to determine which nodes to
eliminate. The fill-in reducing properties of these methods also guarantee sparsity
of the reduced network. Similar ideas have also been used in [77, 89].

Our main motivation for this approach is that large resistor networks in ESD
typically are extracted networks with a structure that is related to the underlying
(interconnect) layout. Unfortunately, the extracted networks are usually produced by
extraction software of which the algorithms are unknown, and hence the structure
of the extracted network is difficult to recover. Standard tools from graph theory,
however, can be used to recover at least part of the structure.

Our approach can be summarized as follows:

1. The first step is to compute the strongly connected components [61] of the
network. The presence of strongly connected components is very natural in
extracted networks: a piece of interconnect connecting two other elements such
as diodes or transistors, for instance, results in an extracted network with two
terminals, disconnected from the rest of the extracted circuit. By splitting the
network into connected components, we have simplified the problem of reduction
because we can deal with the connected components one by one.

2. The second step is to selectively eliminate internal nodes in the individual
connected components. For resistor networks, this can be done using the Schur
complement [67], and no approximation error is made. The key here is that those
internal nodes are eliminated that give the least fill-in. First, (Constrained) AMD
[62] is used to reorder the unknowns such that the terminal nodes will be among
the last to eliminate. To find the optimal reduction, internal nodes are eliminated
one-by-one in the order computed by AMD, while keeping track of the reduced
system with fewest resistors.

Since the ordering is chosen to minimize fill-in, the resulting reduced
matrix is sparse. Note that all operations are exact, i.e., we do not make any
approximations. As a result, the path resistances between external nodes remain
equal to the path resistances in the original network.

3. Finally, the reduced conductance matrix can be realized as a reduced resistor
network that is equivalent to the original network. This is done easily by
unstamping the values in the G matrix intro the corresponding resistor values
and their node connections in the netlist [69]. Since the number of resistors (and
number of nodes) is smaller than in the original network, also the resulting netlist
is smaller in size.

An additional reduction could be obtained by removing relatively large resistors
from the resulting reduced network. However, this will introduce an approximation
error that might be hard to control a priori, since no sharp upper bounds on the
error are available [87]. Another issue that is subject to further research is that the
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optimal ratio of number of (internal) nodes to resistors (sparsity) may also depend
on the ratio of number of external to internal nodes, and on the type of simulation
that will be done with the network.

In the following sections we will describe how strongly connected components
and fill-in minimizing reorderings can be used for the reduction of RC networks as
well.

6.2.2 Reduction of RC Networks

This section presents the developments for RC netlist reduction, first by reviewing
an existing approach called PACT (Pole Analysis via Congruence Transformations).
Then, graph-based tools are brought in to enhance sparsity preservation with the
novel reduction method, SparseMA (Sparse Modal Approximation).

Following the problem description in [73], consider the modified nodal analysis
(MNA) description of an input impedance typeRC circuit, driven by input currents:

.G C sC/x.s/ D Bu.s/; (6.45)

where x denote the node voltages, and u represent the currents injected into the
terminals (also called ports or external nodes). The number of internal nodes is n,
and the number of terminals is p, thus G 2 R

.pCn/�.pCn/, C 2 R
.pCn/�.pCn/ and

B 2 R
.pCn/�p . A natural choice for the system outputs are the voltage drops at the

terminal nodes, i. e., y.s/ D BT x.s/. Thus the transfer function of (6.45) is the input
impedance:

Z.s/ D y.s/
u.s/

D BT .G C sC/�1B: (6.46)

Modal approximation is a method to reduce (6.45), by preserving its most
dominant eigenmodes. The dominant eigenmodes are a subset of the poles of
Z.s/ (i. e. of the generalized eigenvalues �.�G;C/) and can be computed using
specialized eigenvalue solvers (SADPA [80] or SAMDP [82, 85]). For the complete
discussion on modal approximation and its implementation we refer to [80, 81, 85].
Here, we emphasize that applying modal approximation to reduce (6.45) directly
is unsuitable especially if the underlying RC circuit has many terminals (inputs).
This is because modal approximation does not preserve the structure of B and BT

during reduction (for ease of understanding we denote the input-output structure
loss as non-preservation of terminals) [69]. Modeling the input-output connectivity
of the reduced model would require synthesis via controlled sources at the circuit
terminals, and furthermore would connect all terminals with one-another [69]. In
this chapter we present several alternatives for reducingRC netlists where not only
the terminals are preserved, but also the sparsity of the reduced models.
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Grouping the node voltages so that xP 2 R
p are the voltages measured at the

terminal nodes (ports), and xI 2 R
n are the voltages at the internal nodes, we can

partition (6.45) as follows:

�	
GP GT

C

GC GI



C s

	
CP CT

C

CC CI


�	
xP
xI



D
	

BP
0



u: (6.47)

Since no current is injected into internal nodes, the non-zero contribution from the
input is BP 2 R

.p�p/. Eliminating xI , system (6.47) is equivalent to:

Œ.GP C sCP /„ ƒ‚ …
YP .s/

� .GC C sCC /
T .GI C sCI /

�1.GC C sCC /�„ ƒ‚ …
YI .s/

xP D BPu

(6.48)

Y.s/ D YP .s/ � YI .s/ (6.49)

In (6.48) the matrix blocks .GP C sCP / corresponding to the circuit terminals are
isolated. Applying modal approximation on YI .s/ would reduce the system and
preserve the location of the terminals. This would involve for instance computing the
dominant eigenmodes of .�GI ;CI / via a variant of SAMDP (called here frequency
dependent SAMDP, because the input-output matrices .GC C sCC / depend on the
frequency s). We have implemented this approach, but it turns out that a large
number of dominant eigenmodes of .�GI ;CI / would be needed to capture the
DC and offset of the full system Y.s/. Instead, two alternatives are presented that
improve the quality of the approximation: an existing method called PACT (Pole
Analysis via Congruence Transformations) [73] and a novel graph-based reduction
called SparseMA (Sparse Modal Approximation).

6.2.2.1 Existing Method: PACT

In [73] the authors propose to capture the DC and offset of Y.s/ via a congruence
transformation which reveals the first two moments of Y.s/ as follows. Since GI is
symmetric positive definite, the Cholesky factorization LLT D GI exists. Using the
following congruence transformation:

X D
	

I 0
�G�1

I GC L�T



; G0 D XTGX D

	
G0

P 0
0 I



; C0 D XT CX D

	
C0

P C0

T
C

C0

C C0

I




(6.50)

Eqs. (6.48) and (6.49) are rewritten as:

Œ.G0
P C sC0

P /„ ƒ‚ …
Y0

P .s/

� s2C0T
C .I C sC0

I /
�1C0

C �„ ƒ‚ …
Y0

I .s/

x0
P D BPu (6.51)

Y0.s/ D Y0
P .s/ � Y0

I .s/; (6.52)
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where:

G0
P D GP � GT

CM; M D G�1
I GC (6.53)

C0
P D CP � NTM � MT CC ; N D CC � CIM (6.54)

C0
C D L�1N; C0

I D L�1CIL�T : (6.55)

In (6.51), the term Y0
P .s/ captures the first two moments of Y0.s/ and is preserved

in the reduced model. The reduction is performed on Y0
I .s/ only. In [73] this is done

via modal approximation as described next. Using the symmetric eigendecomposi-
tion C0

I D U�0
IUT , UTU D I, the system matrices (6.50) are block diagonalized

as follows:

X0 D
	

I 0
0 U



; G00 D X0TG0X0 D

	
G0

P 0
0 I



D G0 (6.56)

C00 D X0TC0X0 D
	

C0
P C0T

CU
UTC0

C UTC0
IU



D
	

C0
P C00T

C

C00
C �0

I



(6.57)

Y00.s/ D Y0
P .s/ � s2ŒC00T

C .I C s�0
I /

�1C00
C � (6.58)

The reduced model is obtained by selecting only k of the n eigenvalues from�0
I :

Y00
k.s/ D Y0

P .s/� s2
kX
iD1

rTi ri
1C s�0

i

; rTi D C0
C
TUŒW;1Wk�; �0

i D �0
I Œi;i �: (6.59)

In [73], a selection criterion for �0
i ; i D 1 : : : k is proposed, based on a user-

specified error and a maximum frequency. These eigenmodes are computed in [73]
via the Lanczos algorithm. The criterion proposed in [81, 85] can also be used to
compute the dominant eigenmodes �0

i via SAMDP.
The advantage of the PACT reduction method is the preservation of the first two

moments of Y.s/ in Y0
P .s/. This ensures that the DC and offset of the response is

approximated well in the reduced model. The main costs of such an approach are:
(1) performing a Cholesky factorization of CI (which becomes expensive when n
is very large, (2) solving an eigenvalue problem from a dense C0

I matrix and, most
importantly, (3) the fill-in in the port block matrices G0

P , C0
P and in C0

C . It turns
out that (2) can be solved more efficiently by keeping C0

I as a product of sparse
matrices during computation, and will be addressed elsewhere. Avoiding problems
(1) and (3) however require new strategies to improve sparsity, and are presented
in Sect. 6.2.2.2. The fill-in introduced in G0

P , C0
P becomes especially important for

RC netlists with many terminals [p � O.103/]. Compared to the original model
where the port blocks GP and CP were sparse, the dense G0

P , C0
P will yield many

R and C components during synthesis, resulting in a reduced netlist where almost
all the nodes are interconnected. Simulating such netlists might require longer time
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measures than the original circuit simulation, hence sparser reduced models (and
netlists) are desired. Next, we present several ideas for improving the sparsity of
RC reduced models via a combination of tools including: netlist partitioning, graph-
based node reordering strategies, and efficient algorithms for modal approximation.

6.2.2.2 Improved Graph-Based Method: SparseMA

In this section we present an improved model reduction method for RC circuits,
which overcomes the disadvantages of PACT: it requires no matrix factorizations
prior to reduction, performs all numerical computations on sparse matrices, and
most importantly, preserves the sparsity of the matrix blocks corresponding to the
external nodes. The method is called sparse modal approximation (SparseMA) and
uses tools from graph theory to identify a partitioning and reordering of nodes
that, when applied prior to the model reduction step, can significantly improve the
sparsity of the reduced model.

The idea is to reorder the nodes in the RC netlist so that some of the internal
nodes (m) are promoted as external nodes, together with the circuit terminals (p).
We will denote as selected nodes the collection of p C m terminals and promoted
internal nodes. The n�m internal nodes are the remaining nodes. Supposing one has
already identified such a partitioning of nodes, the following structure is revealed,
where without loss of generality we assume the selected nodes appear in the border
of the G and C matrices:

�	
GR GK

GT
K GS



C s

	
CR CK

CT
K CS


�	
xR
xS



D
	

0
BS



u: (6.60)

Note that in BS the rows corresponding to the promoted m internal nodes are still
zero. Similarly to (6.48), the admittance is expressed as:

Œ.GS C sCS /„ ƒ‚ …
YS .s/

� .GK C sCK/
T .GR C sCR/

�1.GK C sCK/�„ ƒ‚ …
YR.s/

xS D BSu

(6.61)

Y.s/ D YS .s/� YR.s/: (6.62)

Recall that reducing YI .s/ directly from the simple partitioning (6.47) and (6.48) is
not a method of choice, because by preserving YP .s/ only, the DC and offset of Y.s/
would not be accurately matched. Using instead the improved partitioning (6.60)
and (6.61), one aims at better approximating the DC and offset of Y.s/ by preserving
YS.s/ (which now encaptures not only the external nodes but also a subset of
the internal nodes). Finding the partitioning (6.60) only requires a reordering of
nodes, thus no Cholesky factorization or fill-introducing congruence transformation
is needed prior to the MOR step. One can reduce YR.s/ directly with modal
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approximation (via frequency dependent SAMDP), and preserve the sparsity of the
extended port blocks from YS .s/.

By interpolating k dominant eigenmodes from the symmetric eigendecoposition
Œ�R;V� D eig.�GR;CR/, the reduced model is obtained:

Yk.s/ D YS .s/�
kX
iD1

qTi qi
1C s�i

; qTi D .GK C sCK/
TVŒW;1Wk�; �i D �RŒi;i �:

(6.63)

In matrix terms, the reduced model is easily constructed by re-connecting the
preserved selected matrix blocks to the reduced blocks:

 " OGR
OGK

OGT
K GS

#
C s

" OCR
OCK

OCT
K CS

#!	OxR
xS



D
	

0
BS



u; (6.64)

where:

OGR D VT
ŒW;1Wk�GRVŒW;1Wk� ! diagonal; OGK D VT

ŒW;1Wk�GK; GS ! sparse

(6.65)

OCR D VT
ŒW;1Wk�CRVŒW;1Wk� ! diagonal; OCK D VT

ŒW;1Wk�CK; CS ! sparse:

(6.66)

The remaining problem is how to determine the selected nodes and the partition-
ing (6.60). Inspired from the results obtained forR networks, we propose to first find
the permutation P which identifies the strongly connected components (sccs) of G.
Both G and C are reordered according to P, revealing the structure (6.60). With this
permutation, the circuit terminals are redistributed according to the sccs of G, and
several clusters of nodes can be identified: a large component consisting of internal
nodes and very few (or no) terminals, and clusters formed each by internal nodes
plus some terminals. We propose to leave all clusters consisting of internal nodes
and terminals intact, and denote these nodes as the selected nodes mentioned above.
If there are still terminals outside these clusters, they are added to these selected
nodes and complete the blocks GS , CS . The remaining cluster of internal nodes
forms GR and CR. The model reduction step is performed on GR and CR (and
implicitly on GK and CK ). We also note that matrices GK and Ck resulting from
this partitioning usually have many zero columns, thus OGK and OCK will preserve
these zero columns.

The procedure is illustrated in Sect. 6.2.3 through a medium-sized example.
Larger netlists can be treated via a similar reordering and partitioning strategy,
possibly in a recursive manner (for instance when after an initial reordering the
number of selected nodes is too large, the same partitioning strategy could be re-
applied to GS and CS and further reduce these blocks). Certainly, other reorderings
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of G and C could be exploited, for instance according to a permutation which
identifies the sccs of C instead of G. The choice for either using G or C to determine
the permutation P is made according to the structure of the underlying system and
may depend on the application. We also emphasize that the reduced models for
both PACT and SparseMA are passive [74] and therefore also stable. Passivity
is ensured by the fact that all transformations applied throughout are congruence
transformations on symmetric positive definite matrices, thus the reduced system
matrices remain symmetric positive definite.

6.2.3 Numerical Results

The graph-based reduction procedures were applied on several networks resulting
from parasitic extraction. We present results for both R and RC networks.

6.2.3.1 R Network Reduction

Table 6.2 shows results for three resistor networks of realistic interconnect layouts.
The number of nodes is reduced by a factor > 10 and the number of resistors by a
factor > 3. As a result, the computing time for calculating path resistances in the
original network (including nonlinear elements such as diodes) is 10 times smaller.

6.2.3.2 RC Network Reduction

We reduce an RC netlist with n D 3;231 internal nodes and p D 22 terminals
(external nodes). The structure of the original G and C matrices is shown in Figs. 6.7
and 6.8, where the p D 22 terminals correspond to their first 22 rows and columns.

The permutation revealing the strongly connected components of G reorders the
matrices as shown in Figs. 6.9 and 6.10. The reordering is especially visible in the
“arrow-form” capacitance matrix. There, the p D 22 terminal nodes together with

Table 6.2 Results of reduction algorithm

Network I Network II Network III

Original Reduced Original Reduced Original Reduced

#external nodes 274 3,399 1,978

#internal nodes 5,558 516 99,112 6,012 101,571 1,902

#resistors 8,997 1,505 161,183 62,685 164,213 39,011

CPU time 10 s 1 s 67 h 7 h 20 h 2 h

Speed up 10� 9.5� 10�
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Fig. 6.7 Original G matrix
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m D 40 internal nodes are promoted to the border, revealing the 62 selected nodes
that will be preserved in the reduced model (i.e. the GS and CS blocks in (6.60)).
The first n � m D 3;191 nodes are the remaining internal nodes and form the GR

and CR blocks in (6.60). The GK block has only 1 non-zero column, and also in CK

many zero columns can be identified.
The reduced SparseMA model is obtained according to (6.63) and (6.64) and

is shown in Figs. 6.11 and 6.12. The internal blocks GR and CR were reduced
from dimension 3;191 to OGR and OCR of dimension k D 7, by interpolating the
7 most dominant eigenmodes of Œ�R;V� D eig.�GR;CR/. Note that OGR and OCR

are diagonal. The selected 62 nodes corresponding to the GS and CS blocks are
preserved, evidently preserving sparsity. The only fill-in introduced by the proposed
reduction procedure is in the non-zero columns of OGK and OCK . It is worth noticing
that OGK only has 1 non-zero column, thus remains sparse.

The sparsity structure of the PACT reduced model (6.59) is shown in Figs. 6.13
and 6.14. The blocks corresponding to the first 22 nodes (the preserved external
nodes) are full, as are the capacitive connection blocks to the reduced internal part.
Only the reduced internal blocks remain sparse (diagonal).

Aside from sparsity preservation, one is interested in the quality of the approx-
imation for the reduced model. In Fig. 6.15, we show that the SparseMA model
accurately matches the original response for a wide frequency range (1Hz !
10THz). The Pstar [78] simulations of the synthesized model are identical to
the Matlab simulations (the synthesized model was obtained via the RLCSYN
unstamping procedure [71, 87]). In Fig. 6.16, the relative errors between the
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Fig. 6.12 Reduced C matrix
with Sparse MA
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Fig. 6.15 AC simulation 1: original, reduced (Sparse MA) and synthesized model

original model and three reduced models are presented: SparseMA, PACT and the
commercial software Jivaro [64]. The SparseMA model is the most accurate for the
entire frequency range.
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Figure 6.17 shows a different AC circuit simulation, where the SparseMA model
performs comparably to the reduced model obtained with the commercial software
Jivaro [64]. Finally, the transient simulation in Fig. 6.18 confirms that the SparseMA
model is both accurate and stable.

Table 6.3 shows the reduction results for the RC network. For the 3 reduced
models: SparseMA, PACT and Jivaro we assess the effect of the reduction by means
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Table 6.3 Results with SparseMA reduction on RC netlist

Original Red. SparseMA Red. PACT Red. Jivaro

#external nodes 22

#internal nodes 3,231 47 7 12

#unknowns 3,253 69 29 34

#resistors 7,944 78 68 28

#capacitors 3,466 383 414 97

#elements

#int: nodes
3.53 9.8 68.8 10.4

#elements

#unknowns
3.5 6.7 16.6 3.67

CPU time 6.8 s 0.1 s 0.06 0.02 s

Speed up 68� 113� 340�

of several factors. With all methods, both the number of nodes and the number
of circuit elements was reduced significantly, resulting in at least 68x speed-up in
AC simulation time. It should be noted that the SparseMA model and the Jivaro
model have lower ratios of #elements

#unknowns and #elements
#int:nodes than the PACT model. Even

though the Jivaro and the PACT model are faster to simulate for this network, the
SparseMA model gives a good trade-off between approximation quality, sparsity
preservation and CPU speed-up. Recall that the matrix blocks corresponding to the
circuit terminals become dense with PACT, but remain sparse with SparseMA. As
for circuits with more terminals � O.103/ the corresponding matrix blocks become
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larger, preserving their sparsity via SparseMA is an additional advantage. Hence,
the improvement on simulation time could be greater with SparseMA when applied
on larger models with many terminals.

6.2.4 Concluding Remarks

New approaches were presented for reducing R and RC circuits with multi-
terminals, using tools from graph theory. It was shown how netlist partitioning
and node reordering strategies can be combined with existing model reduction
techniques, to improve the sparsity of the reduced RC models and implicitly their
simulation time. The proposed sparsity preserving method, SparseMA, performs
comparably to the commercial tool Jivaro. Future work will investigate how similar
strategies can be applied to RC models with many more terminals [� O.103/] and
to RLCk netlists.

6.3 Simulation of Mutually Coupled Oscillators Using
Nonlinear Phase Macromodels and Model Order
Reduction Techniques

The design of modern RF (radio frequency) integrated circuits becomes increasingly
more complicated due to the fact that more functionality needs to be integrated on
a smaller physical area.5 In the design process floor planning, i.e., determining the
locations for the functional blocks, is one of the most challenging tasks. Modern
RF chips for mobile devices, for instance, typically have an FM radio, Blue-
tooth, and GPS on one chip. These functionalities are implemented with Voltage
Controlled Oscillators (VCOs), that are designed to oscillate at certain different
frequencies. In the ideal case, the oscillators operate independently, i.e., they are
not perturbed by each other or any signal other than their input signal. Practically
speaking, however, the oscillators are influenced by unintended (parasitic) signals
coming from other blocks (such as Power Amplifiers) or from other oscillators,
via for instance (unintended) inductive coupling through the substrate. A possibly
undesired consequence of the perturbation is that the oscillators lock to a frequency
different than designed for, or show pulling, in which case the oscillators are
perturbed from their free running orbit without locking.

The locking effect was first observed by the Dutch scientist Christian Huygens in
the seventeenth century. He observed that pendulums of two nearby clocks hanging
on the same wall after some time moved in unison [120] (in other words they

5Section 6.3 has been written by Davit Harutyunyan, Joost Rommes, E. Jan W. ter Maten and
Wil H.A. Schilders.
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locked to the same frequency). Similar effects occur also for electrical oscillators.
When an oscillator is locked to a different frequency, it physically means that the
frequency of the oscillator is changed and as a result the oscillator operates at the
new frequency. In this case in the spectrum of the oscillator we will observe a single
peak corresponding to the new frequency of the oscillator. Contrary to the locking
case, frequency pulling occurs when the interfering frequency source is not strong
enough to cause frequency locking (e.g. weak substrate coupling). In this case in
the spectrum of the pulled oscillator we will observe several sidebands around the
carrier frequency of the oscillator. In Sect. 6.3.9 we will discuss several practical
examples of locking and pulling effects.

Oscillators appear in many physical systems and interaction between oscillators
has been of interest in many applications. Our main motivation comes from the
design of RF systems, where oscillators play an important role [95, 100, 107, 120]
in, for instance, high-frequency Phase Locked Loops (PLLs). Oscillators are also
used in the modeling of circadian rhythm mechanisms, one of the most fundamental
physiological processes [91]. Another application area is the simulation of large-
scale biochemical processes [114].

Although the use of oscillators is widely spread over several disciplines, their
intrinsic nonlinear behavior is similar, and, moreover, the need for fast and accurate
simulation of their dynamics is universal. These dynamics include changes in the
frequency spectrum of the oscillator due to small noise signals (an effect known as
jitter [100]), which may lead to pulling or locking of the oscillator to a different
frequency and may cause the oscillator to malfunction. The main difficulty in
simulating these effects is that both phase and amplitude dynamics are strongly
nonlinear and spread over separated time scales [113]. Hence, accurate simulation
requires very small time steps during time integration, resulting in unacceptable
simulation times that block the design flow. Even if computationally feasible,
transient simulation only gives limited understanding of the causes and mechanisms
of the pulling and locking effects.

To some extent one can describe the relation between the locking range of an
oscillator and the amplitude of the injected signal (these terms will be explained in
more detail in Sect. 6.3.1). Adler [90] shows that this relation is linear, but it is now
well known that this is only the case for small injection levels and that the modeling
fails for higher injection levels [111]. Also other linearized modeling techniques
[120] suffer, despite their simplicity, from the fact that they cannot model nonlinear
effects such as injection locking [111, 127].

In this section we use the nonlinear phase macromodel introduced in [100] and
further developed and analyzed in [104–106, 111, 113, 115, 116, 127]. Contrary to
linear macromodels, the nonlinear phase macromodel is able to capture nonlinear
effects such as injection locking. Moreover, since the macromodel replaces the
original oscillator system by a single scalar equation, simulation times are decreased
while the nonlinear oscillator effects can still be studied without loss of accuracy.
One of the contributions of this paper is that we show how such macromodels can be
used in industrial practice to predict the behavior of inductively coupled oscillators.
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Returning to our motivation, during floor planning, it is of crucial importance
that the blocks are located in such a way that the effects of any perturbing signals
are minimized. A practical difficulty here is that transient simulation of the full
system is very expensive and usually unfeasible during the early design stages. One
way to get insight in the effects of inductive coupling and injected perturbation
signals is to apply the phase shift analysis [100]. In this section we will explain
how this technique can be used to estimate the effects for perturbed individual
and coupled oscillators, and how this can be of help during floor planning. We
will consider perturbations caused by oscillators and by other components such as
balanced/unbalanced transformers (baluns).

In some applications to reduce clockskew (clocksignals becoming out of phase),
for instance, oscillators can be coupled via transmission lines [102]. Since accurate
models for transmission lines can be large, this may lead to increased simulation
times. We show how model order reduction techniques [94, 96, 97, 124] can be used
to decrease simulation times without unacceptable loss of accuracy.

The section is organized as follows. In Sect. 6.3.1 we summarize the phase noise
theory. A practical oscillator model and an example application are described in
Sect. 6.3.2. Inductively coupled oscillators are discussed in detail in Sect. 6.3.3. In
Sect. 6.3.4 we give an overview of existing methods to model injection locking of
individual and resistively/capacitively coupled oscillators. In Sect. 6.3.5 we consider
small parameter variations for mutually coupled oscillators. In Sects. 6.3.6 and 6.3.7
we show how the phase noise theory can be used to analyze oscillator-balun
coupling and oscillator-transmission line coupling, respectively. In Sect. 6.3.8 we
give a brief introduction to model order reduction and present a Matlab script
used in our implementations. Numerical results are presented in Sect. 6.3.9 and the
conclusions are drawn in Sect. 6.3.10.

6.3.1 Phase Noise Analysis of Oscillator

A general free-running oscillator can be expressed as an autonomous system of
differential (algebraic) equations:

dq.x/
dt

C j.x/ D 0; (6.67a)

x.0/ D x.T /; (6.67b)

where x.t/ 2 R
n are the state variables, T is the period of the free running oscillator,

which is in general unknown, q; j W R
n ! R

n are (nonlinear) functions describing
the oscillator’s behavior and n is the system size. The solution of (6.67) is called
Periodic Steady State (PSS) and is denoted by xpss . Although finding the PSS
solution can be an challenging task in itself, we will not discuss this in the present
paper and refer the interested reader to, for example, [105, 108–110, 122, 123, 126].
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A general oscillator under perturbation can be expressed as a system of differen-
tial equations

dq.x/
dt

C j.x/ D b.t/; (6.68)

where b.t/ 2 R
n are perturbations to the free running oscillator. For small perturba-

tions b.t/ it can be shown [100] that the solution of (6.68) can be approximated by

xp.t/ D xpss.t C ˛.t//Cy.t/; (6.69)

where y.t/ is the orbital deviation and ˛.t/ 2 R is the phase shift, which satisfies
the following scalar nonlinear differential equation:

P̨ .t/ D VT .t C ˛.t// � b.t/; (6.70a)

˛.0/ D 0; (6.70b)

where V.t/ 2 R
n is called Perturbation Projection Vector (PPV) of (6.68). It is

a special projection vector of the perturbations and is computed based on Floquet
theory [99, 100, 115]. The PPV is a periodic function with the same period as the
oscillator and can efficiently be computed directly from the PPS solution, see for
example [101]. Using this simple and numerically cheap method one can do many
kinds of analysis for oscillators, e.g. injection locking, pulling, a priori estimate of
the locking range [100, 111].

For small perturbations the orbital deviation y.t/ can be ignored [100] and the
response of the perturbed oscillator is computed by

xp.t/ D xpss.t C ˛.t//: (6.71)

6.3.2 LC Oscillator

For many applications oscillators can be modeled as an LC tank with a nonlinear
resistor as shown in Fig. 6.19. This circuit is governed by the following differential
equations for the unknowns .v; i/:

C
dv.t/

dt
C v.t/

R
C i.t/C S tanh.

Gn

S
v.t// D b.t/; (6.72a)

L
di.t/

dt
� v.t/ D 0; (6.72b)
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Fig. 6.19 Voltage controlled
oscillator: current of the
nonlinear resistor is given by
f .v/ D S tanh. Gn

S
v.t//

v

C L

b(t)

R

f(
v)

where C , L and R are the capacitance, inductance and resistance, respectively. The
nodal voltage is denoted by v and the branch current of the inductor is denoted by i .
The voltage controlled nonlinear resistor is defined by S and Gn parameters, where
S has influence on the oscillation amplitude and Gn is the gain [111].

A lot of work [111, 120] has been done for the simulation of this type of
oscillators. Here we will give an example that can be of practical use for designers.
During the design process, early insight in the behavior of system components is
of crucial importance. In particular, for perturbed oscillators it is very convenient to
have a direct relationship between the injection amplitude and the side band level.

For the given RLC circuit with the following parameters L D 930 � 10�12 H,
C D 1:145 � 10�12 F, R D 1;000˝ , S D 1=R, Gn D �1:1=R and injected
signal b.t/ D Ainj sin.2�f /, we plot the side band level of the voltage response
versus the amplitude Ainj of the injected signal for different offset frequencies,
see Fig. 6.20. The results in Fig. 6.20 can be seen as a simplified representation of
Arnol’d tongues [98], that is helpful in engineering practice. We see, for instance,
that the oscillator locks to a perturbation signal with an offset of 10MHz if the
corresponding amplitude is larger than � 10�4 A (when the signal is locked the
sideband level becomes 0 dB). This information is useful when designing the floor
plan of a chip, since it may put additional requirements on the placement (and
shielding) of components that generate, or are sensitive to, perturbing signals.

As an example, consider the floor plan in Fig. 6.21. The analysis described above
and in Fig. 6.20 first helped to identify and quantify the unintended pulling and
locking effects due to the coupling of the inductors (note that the potential causes
(inductors) of pulling and locking effects first have to be identified; in practice,
designers usually have an idea of potential coupling issues, for instance when there
are multiple oscillators in a design). The outcome of this analysis indicated that
there were unintended pulling effects in the original floorplan and hence some
components were relocated (and shielded) to reduce unintended pulling effects.
Finally, the same macromodels, but with different coupling factors due to the
relocation of components, were used to verify the improved floorplan.

Although the LC tank model is relatively simple, it can be of high value
especially in the early stages of the design process (schematic level), since it can
be used to estimate the effects of perturbation and (unintended) coupling on the
behavior of oscillators. As explained before, this may be of help during floor
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Fig. 6.20 Side band level of the voltage response versus the injected current amplitude for
different offset frequencies

Fig. 6.21 Floor plan with relocation option that was considered after nonlinear phase noise
analysis showed an intolerable pulling due to unintended coupling. Additionally, shielding was
used to limit coupling effects even further

planning. In later stages, one typically validates the design via layout simulations,
which can be much more complex due to the inclusion of parasitic elements. In
general one has to deal with larger dynamical systems when parasitics are included,
but the phase noise theory still applies. Therefore, in this paper we do not consider
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Fig. 6.22 Two inductively coupled LC oscillators

extracted parasitics. However, the values for L, C , R and coupling factors are
typically based on measurement data and layout simulations of real designs.

6.3.3 Mutual Inductive Coupling

Next we consider the two mutually coupled LC oscillators shown in Fig. 6.22. The
inductive coupling between these two oscillators can be modeled as

L1
di1.t/

dt
CM

di2.t/

dt
D v1.t/; (6.73a)

L2
di2.t/

dt
CM

di1.t/

dt
D v2.t/; (6.73b)

where M D k
p
L1L2 is the mutual inductance and jkj < 1 is the coupling factor.

This makes the matrix

�
L1 M

M L2

�

positive definite, which ensures that the problem is well posed. In this section all
the parameters with a subindex refer to the parameters of the oscillator with the
same subindex. If we combine the mathematical model (6.72) of each oscillator
with (6.73), then the two inductively coupled oscillators can be described by the
following differential equations

C1
dv1.t/

dt
C v1.t/

R1
C i1.t/C S tanh.

Gn

S
v1.t// D 0; (6.74a)

L1
di1.t/

dt
� v1.t/ D �M di2.t/

dt
; (6.74b)
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C2
dv2.t/

dt
C v2.t/

R2
C i2.t/C S tanh.

Gn

S
v2.t// D 0; (6.74c)

L2
di2.t/

dt
� v2.t/ D �M di1.t/

dt
: (6.74d)

For small values of the coupling factor k the right-hand side of (6.74b) and (6.74d)
can be considered as a small perturbation to the corresponding oscillator and we can
apply the phase shift theory described in Sect. 6.3.1. Then we obtain the following
simple nonlinear equations for the phase shift of each oscillator:

P̨1.t/ D VT
1 .t C ˛1.t// �

0
@ 0

�M di2.t/

dt

1
A ; (6.75a)

P̨2.t/ D VT
2 .t C ˛2.t// �

0
@ 0

�M di1.t/

dt

1
A ; (6.75b)

where the currents and voltages are evaluated by using (6.71):

Œv1.t/; i1.t/�
T D x1pss.t C ˛1.t//; (6.75c)

Œv2.t/; i2.t/�
T D x2pss.t C ˛2.t//: (6.75d)

Small parameter variations have also been studied in the literature by Volterra
analysis, see e.g. [92, 93].

6.3.3.1 Time Discretization

The system (6.75) is solved by using implicit backward Euler for the time
discretization and the Newton method is applied for the solution of the resulting
two dimensional nonlinear equations (6.76a) and (6.76b), i.e.

˛mC1
1 D ˛m1 C �VT

1 .t
mC1 C ˛mC1

1 /� (6.76a)0
@ 0

�M i2.t
mC1/ � i2.tm/

�

1
A ;

˛mC1
2 D ˛m2 C �VT

2 .t
mC1 C ˛mC1

2 /� (6.76b)0
@ 0

�M i1.t
mC1/ � i1.tm/

�

1
A ;

Œv1.t
mC1/; i1.tmC1/�T D x1pss.t

mC1 C ˛mC1
1 /; (6.76c)
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Œv2.t
mC1/; i2.tmC1/�T D x2pss.t

mC1 C ˛mC1
2 /; (6.76d)

˛11 D 0; ˛12 D 0; m D 1; : : : ;

where � D tmC1 � tm denotes the time step. For the Newton iterations in (6.76a)
and (6.76b) we take .˛m1 ; ˛

m
2 / as initial guess on the time level .mC1/. This provides

very fast convergence (in our applications within around four Newton iterations).
See [123] and references therein for more details on time integration of electric
circuits.

6.3.4 Resistive and Capacitive Coupling

For completeness in this section we describe how the phase noise theory applies to
two oscillators coupled by a resistor or a capacitor.

6.3.4.1 Resistive Coupling

Resistive coupling is modeled by connecting two oscillators by a single resistor,
see Fig. 6.23. The current iR0 flowing through the resistor R0 satisfies the following
relation

iR0 D v1 � v2
R0

; (6.77)

where R0 is the coupling resistance. Then the phase macromodel is given by

P̨1.t/ D VT
1 .t C ˛1.t// �

�
.v1 � v2/=R0

0

�
; (6.78a)
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Fig. 6.23 Two resistively coupled LC oscillators
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Fig. 6.24 Two capacitively coupled LC oscillators

P̨2.t/ D VT
2 .t C ˛2.t// �

��.v1 � v2/=R0
0

�
; (6.78b)

where the voltages are updated by using (6.71). More details on resistively coupled
oscillators can be found in [113].

6.3.4.2 Capacitive Coupling

When two oscillators are coupled via a single capacitor with a capacitance C0 (see
Fig. 6.24), then the current iC0 through the capacitor C0 satisfies

iC0 D C0
d.v1 � v2/

dt
: (6.79)

In this case the phase macromodel is given by

P̨1.t/ D VT
1 .t C ˛1.t// �

0
@C0 d.v1 � v2/

dt
0

1
A ; (6.80a)

P̨2.t/ D VT
2 .t C ˛2.t// �

0
@�C0 d.v1 � v2/

dt
0

1
A ; (6.80b)

where the voltages are updated by using (6.71).
Time discretization of (6.78) and (6.80) is done according to (6.76).

6.3.5 Small Parameter Variation Model for Oscillators

For many applications performing simulations with nominal design parameters
is no longer sufficient and it is necessary to do simulations around the nominal
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parameters. In practice designers use Monte-Carlo type simulation techniques to
get insight about the device performance for small parameter variations. However
these methods can be very time consuming and not applicable for large problems.
For analyzing small parameter variations one can use polynomial chaos approach
described in [119]. But in this paper we apply the technique described in [128] to
mutually coupled oscillators. Here we briefly sketch the ideas of the method and for
details we refer to [128].

Consider an oscillator under a perturbation b.t/ described by a set of ODE’s:

dx
dt

C f .x; p/ D b.t/; (6.81)

where f describes the nonlinearity in the oscillator and it is a function of the state
variables x and the parameter p. Let us consider a parameter variation

p D p0 C�p; (6.82)

where p0 is the nominal parameter and�p is the parameter deviation from p0. Then
for small parameter deviations the phase shift equation for (6.81) reads

P̨ .t/ D VT .t C ˛.t// � .b.t/ � FP .t C ˛.t//�p/; (6.83a)

˛.0/ D 0; (6.83b)

where V.t/ is the perturbation projection vector of the oscillator with nominal
parameters and

FP .t C ˛.t// D @f

@p

ˇ̌̌
xpss.tC˛.t//;p0

; (6.84)

where xpss is the PSS of (6.81) with nominal parameters.
In Sect. 6.3.9.1 we show numerical experiments of two inductively coupled

oscillators using small parameter variations.

6.3.6 Oscillator Coupling with Balun

In this section we analyze inductive coupling effects between an oscillator and a
balun. A balun is an electrical transformer that can transform balanced signals to
unbalanced signals and vice versa, and they are typically used to change impedance
(applications in (RF) radio). The (unintended) coupling between an oscillator and
a balun typically occurs on chips that integrate several oscillators for, for instance,
FM radio, Bluethooth and GPS, and hence it is important to understand possible
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Fig. 6.25 Oscillator coupled with a balun

coupling effects during the design. In Fig. 6.25 a schematic view is given of an
oscillator which is coupled with a balun via mutual inductors.

The following mathematical model is used for oscillator and balun coupling (see
Fig. 6.25):

C1
dv1.t/

dt
C v1.t/

R1
C i1.t/C S tanh.

Gn

S
v1.t// D 0; (6.85a)

L1
di1.t/

dt
CM12

di2.t/

dt
CM13

di3.t/

dt
� v1.t/ D 0; (6.85b)

C2
dv2.t/

dt
C v2.t/

R2
C i2.t/C I.t/ D 0; (6.85c)

L2
di2.t/

dt
CM12

di1.t/

dt
CM23

di3.t/

dt
� v2.t/ D 0; (6.85d)

C3
dv3.t/

dt
C v3.t/

R3
C i3.t/ D 0; (6.85e)

L3
di3.t/

dt
CM13

di1.t/

dt
CM23

di2.t/

dt
� v3.t/ D 0; (6.85f)

where Mij D kij
p
LiLj ; i; j D 1; 2; 3; i < j is the mutual inductance and kij

is the coupling factor. The parameters of the nonlinear resistor are S D 1=R1 and
Gn D �1:1=R1 and the current injection in the primary balun is denoted by I.t/.

For small coupling factors we can considerM12
di2.t/

dt
CM13

di3.t/

dt
in (6.85b) as a

small perturbation to the oscillator. Then similar to (6.75), we can apply the phase
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shift macromodel to (6.85a)–(6.85b). The reduced model corresponding to (6.85a)–
(6.85b) is

d˛.t/

dt
D VT .t C ˛.t// �

0
@ 0

�M12

di2.t/

dt
�M13

di3.t/

dt

1
A : (6.86)

The balun is described by a linear circuit (6.85c)–(6.85f) which can be written in a
more compact form:

E
dx.t/

dt
C Ax.t/C B

di1.t/

dt
C C D 0; (6.87)

where

E D

0
BB@
C2 0 0 0

0 L2 0 M23

0 0 C3 0

0 M23 0 L3

1
CCA ; (6.88a)

A D

0
BB@
1=R2 1 0 0

�1 0 0 0

0 0 1=R3 0

0 0 �1 0

1
CCA ; (6.88b)

BT D �
0 M12 0 M13

�
; (6.88c)

CT D �
I.t/ 0 0 0

�
; (6.88d)

xT D �
v2.t/ i2.t/ v3.t/ i3.t/

�
: (6.88e)

With these notations (6.86) and (6.87) can be written in the following form

d˛.t/

dt
D VT .t C ˛.t// �

�
0

�BT dx.t/
dt

�
; (6.89)

E
dx.t/

dt
CAx.t/C B

di1.t/

dt
C C D 0; (6.90)

where i1.t/ is computed by using (6.71). This system can be solved by using a finite
difference method.
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6.3.7 Oscillator Coupling to a Transmission Line

In some applications oscillators are coupled via transmission lines. By coupling
oscillators via transmission lines, for instance, one can reduce the clock skew in
clock distribution networks [102]. Accurate models for transmission lines may
contain up to thousands or millions of RLC components [129]. Furthermore, the
oscillators or the components that perturb (couple to) the oscillators can consists of
many RLC components, for instance when ones takes into account parasitic effects.
Since simulation times usually increase with the number of elements, one would like
to limit the number of (parasitic) components as much as possible, without losing
accuracy.

The schematic view of an oscillator coupled to a transmission line is given
in Fig. 6.26. Using phase macromodel for oscillator and by applying Kirchhoff’s
current law to the transmission line circuit, we obtain the following set of differential
equations:

d˛.t/

dt
D VT .t C ˛.t// �

0
@ y.t/ � v.t/

R1
0

1
A (6.91a)

E
dx.t/

dt
D Ax.t/C Bu.t/; (6.91b)

y.t/ D CT x; (6.91c)

where

E D diag.C1; C2; : : : ; Cn/; A D tridiag.
1

Ri
;� 1

Ri
� 1

RiC1
;
1

RiC1
/; (6.92a)

B D

0
BBB@

1
R1
0

0 0
:::
:::

0 1

1
CCCA ; x D

0
BBB@
v1.t/

v2.t/
:::

vn.t/

1
CCCA ; u.t/ D

�
v.t/

I.t/

�
; C D

0
BBB@
1

0
:::

0

1
CCCA : (6.92b)
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Fig. 6.26 Oscillator coupled to a transmission line



412 D. Harutyunyan et al.

R Rv v

C C
LCR

v v

C

R R

RCL

v
oscillator 1 oscillator 2

1 21 2

1
2

n

n

n n+1

000

0

Fig. 6.27 Two oscillators coupled via a transmission line

In a similar way the phase macromodel of two oscillators coupled via a
transmission line, see Fig. 6.27, is given by the following equations:

d˛1.t/

dt
D VT

1 .t C ˛1.t// �
0
@ v1.t/ � v.t/

R1
0

1
A (6.93a)

E
dx.t/

dt
D Ax.t/CBu.t/; (6.93b)

d˛2.t/

dt
D VT

2 .t C ˛2.t// �
0
@ vn.t/ � v0.t/

RnC1
0

1
A ; (6.93c)

where ˛1.t/ and ˛2.t/ (V1 and V2) are phase shifts (PPV’s) of the corresponding
oscillator. The matrices E , A and x are given by (6.92) and

B D

0
BBBB@

1
R1

0

0 0
:::

:::

0 1
RnC1

1
CCCCA ; u.t/ D

�
v.t/

v0.t/

�
: (6.94)

6.3.8 Model Order Reduction

Model order reduction (MOR) techniques [94, 96, 97, 124] can be used to reduce
the number of elements significantly. Here we show how model order reduction can
be used for the analysis of oscillator perturbation effects as well. Since the main
focus is to show how MOR techniques can be used (and not which technique is the
most suitable), we limit the discussion here to Balanced Truncation [118]. For other
methods, see, e.g., [94, 96, 97, 124].
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Given a dynamical system .A;B; C / (assumeE D I ), balanced truncation [118]
consists of first computing a balancing transformation V 2 R

n�n. The balanced
system .V T AV; V T B; V T C / has the nice property that the Hankel Singular Values6

are easily available. A reduced order model can be constructed by selecting the
columns of V that correspond to the k < n largest Hankel Singular Values. With
Vk 2 R

n�k having as columns these k columns, the reduced order model (of order
k) becomes .V A

k Vk; V
T
k B; V

T
k C /. If E ¤ I is nonsingular, balanced truncation

can be applied to .E�1A;E�1B; C /. For more details on balanced truncation, see
[96, 97, 118, 124].

In this section we apply model order reduction to linear circuits that are coupled
to oscillators, and the relevant equations for each problem describing linear circuits
have the form of (6.89b)–(6.89c). For each problem the corresponding matrices A,
E ,B , and C can be identified readily, see (6.88), (6.92), (6.94) and note C � C. We
use Matlab [117] implementation for balanced truncation to obtain reduced order
models:

sys = ss( -E\A, -E\B, C’, 0 ) ;
[hsv, baldata] = hsvd(sys); % Hankel singular values
mor_dim = nnz((hsv>1e-10)); % choose largest singular
% values where mor_dim is the dimension
% of the reduced system
rsys= balred(sys,mor_dim,’Elimination’,’Truncate’,...
’Balancing’, baldata) ; %truncate

Note that we can apply balanced truncation because E is nonsingular. It is well
known that in many cases in circuit simulation the system is a descriptor system and
hence E is singular. Although generalizations of balanced truncation to descriptor
systems exist [124, 125], other MOR techniques such as Krylov subspace methods
and modal approximation might be more appropriate. We refer the reader to [94, 96,
97, 124] for a good introduction to such techniques and MOR in general.

6.3.9 Numerical Experiments

It is known that a perturbed oscillator either locks to the injected signal or is pulled,
in which case side band frequencies all fall on one side of the injected signal,
see, e.g., [111]. We will see that contrary to the single oscillator case, where side
band frequencies all fall on one side of the injected signal, for (weakly) coupled
oscillators a double-sided spectrum is formed.

In Sects. 6.3.9.1–6.3.9.3 we consider two LC oscillators with different kinds
of coupling and injection. The inductance and resistance in both oscillators are

6Similar to singular values of matrices, the Hankel singular values and corresponding vectors
can be used to identify the dominant subspaces of the system’s statespace: the larger the Hankel
singular value, the more dominant.
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L1 D L2 D 0:64 nH and R1 D R2 D 50˝ , respectively. The first oscillator
is designed to have a free running frequency f1 D 4:8 GHz with capacitance
C1 D 1=.4L1�

2f 2
1 / D 1:7178 pF. Then the inductor current in the first oscillator

is A1 D 0:0303 A and the capacitor voltage is V1 D 0:5844 V. In a similar way
the second oscillator is designed to have a free running frequency f2 D 4:6 GHz
with the inductor currentA2 D 0:0316 A and the capacitor voltage V2 D 0:5844 V.
For both oscillators we choose Si D 1=Ri , Gn D �1:1=Ri with i D 1; 2. In
Sect. 6.3.9.4 we describe experiments for an oscillator coupled to a balun.

The values for L, C , R and (mutual) coupling factors are based on measurement
data and layout simulations of real designs.

In all the numerical experiments the simulations are run until Tfinal D 6 �
10�7 s with the fixed time step � D 10�11. Simulation results with the phase
shift macromodel are compared with simulations of the full circuit using the
CHORAL[103, 121] one-step time integration algorithm, hereafter referred to as
full simulation. All experiments have been carried out in Matlab 7.3. We would like
to remark that in all experiments simulations with the macromodels were typically
ten times faster than the full circuit simulations.

In all experiments, for a given oscillator or balun we use the response of the
nodal voltage to plot the spectrum (spectrum composed of discrete harmonics) of
the signal.

6.3.9.1 Inductively Coupled Oscillators

Numerical simulation results of two inductively coupled oscillators, see Fig. 6.22,
for different coupling factors k are shown in Fig. 6.28, where the frequency is plotted
versus the Power Spectral Density (PSD7). In Fig. 6.28 we present results for the
first oscillator. Similar results are obtained for the second oscillator around its own
carrier frequency. For small values of the coupling factor we observe a very good
approximation with the full simulation results. As the coupling factor grows, small
deviations in the frequency occur, see Fig. 6.28d. Because of the mutual pulling
effects between the two oscillators a double sided spectrum is formed around each
oscillator carrier frequency. The additional sidebands are equally spaced by the
frequency difference of the two oscillators.

The phase shift ˛1.t/ of the first oscillator for a certain time interval is given
in Fig. 6.29. We note that it has a sinusoidal behavior. For a single oscillator under
perturbation a completely different behavior is observed: in locked condition the
phase shift changes linearly, whereas in the unlocked case the phase shift has a
nonlinear behavior different than a sinusoidal, see for example [112].

7Matlab code for plotting the PSD is given in [107].
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Fig. 6.28 Inductive coupling. Comparison of the output spectrum of the first oscillator obtained by
the phase macromodel and by the full simulation for a different coupling factor k. (a) k D 0:0005.
(b) k D 0:001. (c) k D 0:005. (d) k D 0:01
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Fig. 6.29 Inductive coupling. Phase shift ˛1.t/ of the first oscillator with k D 0:001

Parameter Variation in Two Inductively Coupled Oscillators

Let us consider two inductively coupled oscillators with the nominal parameters
given in Sect. 6.3.9 and a small parameter �L variation in the inductance of the
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second oscillator. Then the corresponding model is:

dv1.t/

dt
C v1.t/

C1R1
C i1.t/C S

C1
tanh.

Gn

S
v1.t// D 0; (6.95a)

di1.t/

dt
� v1.t/

L1
D �M

L1

di2.t/

dt
; (6.95b)

dv2.t/

dt
C v2.t/

C2R2
C i2.t/C S

C2
tanh.

Gn

S
v2.t// D 0; (6.95c)

di2.t/

dt
� v2.t/

L2 C�L
D � M

L2 C�L

di1.t/

dt
: (6.95d)

By using the small parameter variation model given in Sect. 6.3.5 we obtain the
corresponding phase shift macromodel for (6.95):

P̨1.t/ D VT
1 .t C ˛1.t// �

0
@ 0

�M
L1

di2.t/

dt

1
A ; (6.96a)

P̨2.t/ D VT
2 .t C ˛2.t// �

0
@ 0

� M

L2 C�L

di1.t/

dt
� v2.t/

L22
�L

1
A ; (6.96b)

where the currents and voltages are evaluated by using (6.75c)–(6.75d).
For this numerical experiments we consider the coupling factor to be equal to

k D 0:0005. Furthermore, let us denote by f full;�L
2 and f phase;�L

2 the new frequency
of the second oscillator obtained by full simulation and phase macromodel for the
given parameter variation�L. Then we define

�f D f full;�L
2 � f

phase;�L
2 :

In Fig. 6.30 we show the relative frequency difference �f versus parameter
variation �L. We note that for small parameter variations (�L=L2 
 0:01) the
phase macromodel provides a good approximation to the full simulation results.

In Fig. 6.31 we show the output spectrum of the second oscillator for several
values of the parameter�L.

6.3.9.2 Capacitively Coupled Oscillators

The coupling capacitance in Fig. 6.24 is chosen to be C0 D k � Cmean, where
Cmean D .C1 CC2/=2 D 1:794 � 10�12 and we call k the capacitive coupling factor.
Simulation results for the first oscillator for different capacitive coupling factors k
are given in Fig. 6.32 (similar results are obtained for the second oscillator around
its own carrier frequency).
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Fig. 6.32 Capacitive coupling. Comparison of the output spectrum of the first oscillator obtained
by the phase macromodel and by the full simulation for a different coupling factor k. (a) k D
0:0005. (b) k D 0:001. (c) k D 0:005. (d) k D 0:01
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Fig. 6.33 Capacitive coupling. Phase shift of the first oscillator with k D 0:001

For a larger coupling factor k D 0:01 the phase shift macromodel shows small
deviations from the full simulation results Fig. 6.32d.

The phase shift ˛1.t/ of the first oscillator and a zoomed section for some interval
are given in Fig. 6.33. In a long run the phase shift seems to change linearly with
a slope of a D �0:00052179. The linear change in the phase shift is a clear
indication that the frequency of the first oscillator is changed and is locked to a new
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frequency, which is equal to .1Ca/f1. The change of the frequency can be explained
as follows: as noted in [114], capacitive coupling may change the free running
frequency because this kind of coupling changes the equivalent tank capacitance.
From a mathematical point of view it can be explained in the following way. For the
capacitively coupled oscillators the governing equations can be written as:

.C1 C C0/
dv1.t/

dt
C v1.t/

R
(6.97a)

C i1.t/C S tanh.
Gn

S
v1.t// D C0

dv2.t/

dt
;

L1
di1.t/

dt
� v1.t/ D 0; (6.97b)

.C2 C C0/
dv2.t/

dt
C v2.t/

R
(6.97c)

C i2.t/C S tanh.
Gn

S
v2.t// D C0

dv1.t/

dt
;

L2
di2.t/

dt
� v2.t/ D 0: (6.97d)

This shows that the capacitance in each oscillator is changed by C0 and that the new
frequency of each oscillator is

Qfi D 1

2�
p
L1.Ci C C0/

; i D 1; 2:

In the zoomed figure within Fig. 6.33 we note that the phase shift is not exactly
linear but that there are small wiggles. By numerical experiments it can be shown
that these small wiggles are caused by a small sinusoidal contribution to the linear
part of the phase shift. As in case of mutually coupled inductors, the small sinusoidal
contributions are caused by mutual pulling of the oscillators (right-hand side terms
in (6.97a) and (6.97c)).

6.3.9.3 Inductively Coupled Oscillators Under Injection

As a next example, let us consider two inductively coupled oscillators where in one
of the oscillators an injected current is applied. Let us consider the case where a
sinusoidal current of the form

I.t/ D Ainj sin.2�.f1 � foff/t/ (6.98)
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Fig. 6.34 Inductive coupling with injection and k D 0:001. Top: phase shift. Bottom: comparison
of the output spectrum obtained by the phase macromodel and by the full simulation with a small
current injection. (a) Oscillator 1. (b) Oscillator 2. (c) Oscillator 1. (d) Oscillator 2

is injected in the first oscillator. Then (6.75a) is modified to

P̨1.t/ D VT
1 .t C ˛1.t// �

0
@ �I.t/

�M di2.t/

dt

1
A : (6.99)

For a small current injection with Ainj D 10�A and an offset frequency foff D
20 MHz the spectra of both oscillators and the phase shift with coupling factor
k D 0:001 are given in Fig. 6.34. It is clear from Figs. 6.34a, b that the phase shift
of both oscillators does not change linearly, which implies that the oscillators are
not in the steady state. As a result in Figs. 6.34c, d we observe spectral widening in
the spectra of both oscillators. We note that the phase macromodel simulations are
good approximations of the full simulation results.
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6.3.9.4 Oscillator Coupled to a Balun

Finally, consider an oscillator coupled to a balun as shown in Fig. 6.25 with the
following parameters values:

Oscillator Primary balun Secondary balun
L1 D 0:64 nH L2 D 1:10 nH L3 D 3:60 nH
C1 D 1:71 pF C2 D 4:00 pF C3 D 1:22 pF
R1 D 50˝ R2 D 40˝ R2 D 60˝

The coupling factors in (6.85) are chosen to be

k12 D 10�3; k13 D 5:96 � 10�3; k23 D 9:33 � 10�3: (6.100)

The injected current in the primary balun is of the form

I.t/ D Ainj sin.2�.f0 � foff/t/; (6.101)

where f0 D 4:8GHz is the oscillator’s free running frequency and foff D 20 MHz
is the offset frequency.

Results of numerical experiments done with the phase macromodel and the full
simulations are shown in Fig. 6.35. We note that for a small current injection (Ainj D
10�4�10�2 A) both the oscillator and the balun are pulled by each other. When the
injected current is not strong (Ainj D 10�4 A) the oscillator is pulled slightly and in
the spectrum of the oscillator (Fig. 6.35a) we observe a spectral widening with two
spikes around-60 dB (weak “disturbance” of the oscillator). By gradually increasing
the injected current, the oscillator becomes more disturbed and in the spectrum we
observe widening with higher side band levels, cf. Fig. 6.35c–f. When the injected
current is strong enough (with Ainj D 10�1 A) to lock the oscillator to the frequency
of the injected signal, we observe a single spike at the new frequency. Similar results
are also obtained for the secondary balun.

Oscillator Coupled to a Balun

Consider an oscillator coupled to a balun as shown in Fig. 6.25 with the following
parameters values:

Oscillator Primary balun Secondary balun
L1 D 0:64 � 10�9 L2 D 1:10 � 10�9 L3 D 3:60 � 10�9
C1 D 1:71 � 10�12 C2 D 4:00 � 10�12 C3 D 1:22 � 10�12
R1 D 50 R2 D 40 R2 D 60

The coefficients of the mutual inductive couplings are k12 D 10�3; k13 D 5:96 �
10�3; k23 D 9:33 � 10�3: The injected current in the primary balun is of the form

I.t/ D Ainj sin.2�.f0 � foff/t/; (6.102)
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Fig. 6.35 Comparison of the output spectrum of the oscillator coupled to a balun obtained by the
phase macromodel and by the full simulation for an increasing injected current amplitude Ainj and
an offset frequency foff D 20 MHz. (a) oscillator. (b) primary balun. (c) oscillator. (d) primary
balun. (e) oscillator. (f) primary balun. (g) oscillator. (h) primary balun
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Fig. 6.36 Comparison of the output spectrum of the oscillator coupled to a balun obtained by
the macromodel-full and the macromodel-MOR simulations for an increasing injected current
amplitude Ainj and an offset frequency foff D 20 MHz

where f0 D 4:8 GHz is the oscillator’s free running frequency, foff is the offset
frequency and Ainj is the current amplitude.

Results of the numerical experiments are shown in Fig. 6.36, where the results
obtained by the macromodel-MOR technique with mor_dim D 2 provide a good
approximation to the full-simulation results. We note that for the injected current
with Ainj D 10�1 A the oscillator is locked to the injected signal. Similar results are
also obtained for the balun.

6.3.9.5 Oscillators Coupled with Transmission Lines

In this section we consider two academic examples, where transmission lines are
modeled with RC components.



424 D. Harutyunyan et al.

4.77 4.78 4.79 4.8 4.81 4.82 4.83 4.84
x 109

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

frequency

P
S

D
(d

B
)

macromodel−MOR
full simulation

1.436 1.438 1.44 1.442 1.444 1.446
x 1010

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

frequency

P
S

D
(d

B
)

macromodel−MOR
full simulation

a b

Fig. 6.37 Comparison of the output spectrum around the first and third harmonics of the oscillator
coupled to a transmission line, cf. Fig. 6.26. (a) first harmonic. (b) third harmonic

Single Oscillator Coupled to a Transmission Line

Let us consider the same oscillator as given in the previous section, now coupled
to a transmission line, see Fig. 6.26. The size of the transmission line is n D 100

with the following parameters: C1 D : : : D Cn D 10�2 pF; R1 D 40 k˝;R2 D
: : : D Rn D 1˝: The injected current has the form (6.102) with Ainj D 10�2 A and
foff D 20MHz. Dimension of the reduced system is mor_dim D 18. Simulation
results around the first and third harmonics (this oscillator does not have a second
harmonic) are shown in Fig. 6.37. The macromodel-MOR method, using techniques
described in Sect. 6.3.8, gives a good approximation to the full simulation results.

Two LC Oscillators Coupled via a Transmission Line

For this experiment we consider two LC oscillators coupled via a transmission line
with the mathematical model given by (6.93). The first oscillator has a free running
frequency f1 D 4:8GHz and is described in Sect. 6.3.9.4. The second LC oscillator
has the following parameter values: R0 D 50˝ , L0 D 0:64 nH, C0 D 1:87 pF
and a free running frequency f2 D 4:6GHz. The size of the transmission line
is n D 100 with the following parameters: C1 D : : : D Cn D 10�2 pF; R1 D
RnC1 D 4 k˝;R2 D : : : D Rn D 0:001˝: Dimension of the reduced system
is mor_dim D 16. Numerical simulation results are given in Fig. 6.38. We note that
macromodel-MOR approach gives a very good approximation to the full-simulation
results.
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Fig. 6.38 Comparison of the output spectrum around the first and third harmonics of two
oscillators coupled via a transmission line. (a) first harmonic. (b) third harmonic. (c) first harmonic.
(d) third harmonic

6.3.10 Conclusion

In this section we have shown how nonlinear phase macromodels can be used to
accurately predict the behavior of individual or mutually coupled voltage controlled
oscillators under perturbation, and how they can be used during the design process.
Several types of coupling (resistive, capacitive, and inductive) have been described
and for small perturbations, the nonlinear phase macromodels produce results with
accuracy comparable to full circuit simulations, but at much lower computational
costs. Furthermore, we have studied the (unintended) coupling between an oscillator
and a balun, a case which typically arises during design and floor planning of RF
circuits. For the coupling of oscillators with transmission lines we showed how the
phase macromodel can be used with model order reduction techniques to provide an
accurate and efficient method.



426 D. Harutyunyan et al.

References

References for Section 6.1

1. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia
(2005)

2. Astrid, P.: Reduction of process simulation models: a proper orthogonal decomposition
approach. Ph.D.-thesis, Technische Universiteit Eindhoven (2004)

3. Astrid, P., Verhoeven, A.: Application of least squares mpe technique in the reduced order
modeling of electrical circuits. In: Proceedings of the 17th International Symposium on
MTNS, Kyoto, pp. 1980–1986 (2006)

4. Astrid, P., Weiland, S., Willcox, K., Backx, T.: Missing point estimation in models described
by proper orthogonal decomposition. IEEE Trans. Autom. Control 53(10), 2237–2251 (2008)

5. Bai, Z., Skoogh, D.: Krylov subspace techniques for reduced-order modeling of nonlinear
dynamical systems. Appl. Numer. Math. 43, 9–44 (2002)

6. Bai, Z., Skoogh, D.: A projection method for model reduction of bilinear dynamical systems.
Linear Algebra Appl. 415(2–3), 406–425 (2006)

7. Bechtold, T., Striebel, M., Mohaghegh, K., ter Maten, E.J.W.: Nonlinear model order reduc-
tion in nanoelectronics: combination of POD and TPWL. PAMM Proc. Appl. Maths Mech.
8(1), 10057–10060 (2009). doi:10.1002/pamm.200810057. (Special Issue on Proceedings
GAMM Annual Meeting 2008)

8. Benner, P., Breiten, T.: Krylov-subspace based model reduction of nonlinear circuit models
using bilinear and quadratic-linear approximations. In: Günther, M., Bartel, A., Brunk, M.,
Schöps, S., Striebel, M. (eds.) Progress in Industrial Mathematics at ECMI 2010. Mathematics
in Industry, vol. 17, pp. 153–159. Springer, Berlin/New York (2012)

9. Benner, P., Damm, T.: Lyapunov equations, energy functionals and model order reduction of
bilinear and stochastic systems. SIAM J. Control Optim. 49(2), 686–711 (2011)

10. Bittner, K., Urban, K.: Adaptive wavelet methods using semiorthogonal spline wavelets:
sparse evaluation of nonlinear functions. Appl. Comput. Harmon. Anal. 24, 91–119 (2008)

11. Cai, W., Wang, J.: Adaptive multiresolution collocation methods for initial-boundary value
problems of nonlinear PDEs. SIAM J. Numer. Anal. 33(3), 937–970 (1996)

12. Chaturantabut, C., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpo-
lation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

13. Chaturantabut, C., Sorensen, D.C.: A state space error estimate for POD-DEIM nonlinear
model reduction. SIAM J. Numer. Anal. 50(1), 46–63 (2012)

14. Condon, M., Ivanov, R.: Nonlinear systems – algebraic gramians and model reduction.
COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 24(1), 202–219 (2005)

15. Condon, M., Ivanov, R.: Krylov subspaces from bilinear representations of nonlinear systems.
COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 26(2), 399–406 (2007)
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Part IV
Optimization

This section is devoted to the optimization of the hot spot benchmark example
introduced by STMicroelectronics, which couples thermal and electrical effects.
The PDAE theory for electro-thermal coupled systems has been introduced in
Sect. 2.2.2. Corresponding simulation paradigms based on the Demonstrater Plat-
form methodology can be found in Sect. 8.3. Chap. 7 discusses now how to embedd
an optimization flow in an industrial environment to optimize Power-Mos circuits
with respect to the peak current.



Chapter 7
Optimization Methods and Applications
to Microelectronics CAD

Salvatore Rinaudo, Valeria Cinnera Martino, Franco Fiorante,
Giovanni Stracquadanio, and Giuseppe Nicosia

Abstract In many areas of research and design, simulators are a crucial tool
for optimizing the relevant features of devices and for determining the effect of
parameter variations on the output of a given system. Many commercially available
simulation tools in the microelectronics industry are endowed with optimization
programs, usually based on Least Squares Methods coupled with a numerical
solver for minimizing, such as the normal equations or gradient methods. However
these optimization codes are strictly linked to the whole commercial simulation
package and cannot be easily adapted to the various requirements of an industrial
environment. This chapter aims at introducing the most important algorithms and
methods which could be of interest to CAD engineers working in universities or in
several microelectronics companies. The examples which will be illustrated are real
industrial cases and the results obtained with the cascade of simulators used within
STMicroelectronics will be presented.

7.1 Motivation

In many areas of research and design, simulators are a crucial tool for optimizing the
relevant features of devices and for determining the effect of parameter variations
on the output of a given system.

The simulators are used to replace a large amount of experiments and measure-
ments which are necessary to take into consideration the deterministic and stochastic
behaviour of the manufacturing processes of electronic devices.
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A very important application of optimization is the parameter extraction, by
which the parameters characterizing a given device within a given mathematical
model can be obtained from the measurements of some characteristics of the device.

For instance the parameters required to model the behaviour of a device are
related to physical quantities such as mobility, recombination and so on. When
a device is described by an equivalent circuit, as for example the Gummel-
Poon model, used by many circuit simulators (e.g. SPICE [36]), to perform the
characterization of the electrical behaviour of bipolar transistors, the parameters are
related to the electrical components of the circuit.

Many commercially available simulation tools in the EDA field of microelec-
tronics industry are endowed with optimization programs, usually based on Least
Squares Methods coupled with a numerical solver for minimizing, such as the
normal equations or gradient methods. However these optimization codes are
strictly linked to the whole commercial simulation package and cannot be easily
adapted to the various requirements of an industrial environment.

For instance, in some industrial applications, a designer would like to have a
global optimizer, which, being computationally expensive, is usually not available
in the commercial package. However the greater computational cost of global
optimization could be tolerable in an industrial context if efficient use be made
of the computing power of a given design unit (e.g. by an appropriate use of a
cluster of multivendors workstations). Another important example of great interest
is the optimization of a cost function which is computed by using several simulation
codes which are not integrated in a single software package and have been provided
by different software vendors. Still another example would be the need to add more
functions to the optimization (or parameter extraction) which are not usually found
in commercial optimization software.

Because of these various demands for customized optimization and tolerance
analysis in a CAD/CAM unit, several research groups in the microelectronics
industry have developed their own optimization packages.

In particular the TCAD unit of STMicroelectronics has developed a post process-
ing package called EXEMPLAR [33, 34] which encompasses global optimization
and advanced statistical sensitivity analysis for the cascade of commercial and in
house simulators, which are widely used by the design engineers throughout the
company. The activity, started two decades ago in ST with the development of
Exemplar, has been extended in the COMSON project.

This chapter aims at introducing for the most important algorithms and methods
which are part of the optimization framework Exemplar which could be of interest
to CAD engineers working in universities (graduate students) or in several micro-
electronics companies.

The examples which will be illustrated are real industrial cases and the results
obtained with the cascade of simulators used within STMicroelectronics will be
presented. This textbook is addressed to:

• Researchers in the microelectronics industry working in the CAD area. In
particular those who must keep and update the commercial simulation software
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used by CAD engineers; and must also integrate different commercial simulation
software within optimization environments.

• PhD or advanced students in electrical engineering, computer science and applied
mathematics.

7.2 The Optimization Problem

Optimization is the process by which one finds that value x that maximizes or
minimizes a given function f .x/. The function f is called objective function.

Except in linear case, optimization proceeds by iteration, that is, starting from an
approximate trial solution, a good algorithm gradually refines the research space
until a predetermined level of precision has been reached. An extremum of f
(maximum or minimum point) can be either global or local.

Generally, the global extremum is required, even if to distinguish a local
extremum from a global extremum is not so simple. A technique to determine the
global minimum could be to vary the initial point and take as extremum the one
among all that results to be the minimum or maximum in absolute (if they are not
all equal). If necessary, a high number of initial points can be generated in a random
way. Another technique could be to perturb a local extremum to verify if the algo-
rithm gives again the same extremum. Relatively recent techniques such Simulated
Annealing and Genetic Algorithm are designed to minimize functions that are not
smooth and that may have many local minima. Simulated Annealing algorithms
introduce a random element into the iteration process, giving the algorithm a change
to escape from a local extremum. Genetic Algorithms carry information about
multiple candidates for the global extremum that are simultaneously refined as
iteration proceeds.

In the optimization field it is necessary to make another difference between con-
strained optimization and unconstrained optimization; we talk about constrained
optimization when the x value which minimizes or maximizes f has to satisfy a
priori one or more constraints.

Having established the optimization as unconstrained, we must choose an
optimization method. First of all, we must choose between methods that need
only evaluations of the function to be minimized and methods that also require
evaluations of the derivatives of f. In the multidimensional case, this derivative is
the gradient (rf ), that is the vector whose components are the partial derivatives
of f with respect to xi for i D 1; : : : ; n.

Algorithms using the derivative are somewhat more powerful than those using
only the function, but not always enough so as to compensate for the additional
calculations of derivatives. Another criterion to be taken into account, to choose
an optimization method, is related to the quantity of memory it requires. We must
choose between methods that require storage of order n2 and those that require
only of order n, where n is the number of dimensions. For moderate values of
n and reasonable memory sizes this is not a serious constraint. There will be,
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however, the occasional application where storage may be critical. Among the
methods which does not require the derivatives calculation and require a storage
of order n2, we have to focus more attention on Nelder and Mead’s Simplex
Method and on the Powell’s Method. For as much as regards the algorithms
which require the first derivatives calculation we can consider two major families
of algorithms: Conjugate Gradient Method and Quasi-Newton Methods. The
former requires only of order n storage, while the Quasi-Newton Methods require
of order n2 storage. Both families require a one-dimensional minimization sub-
algorithm, which can itself either use, or not use, the derivatives calculation.

The EXEMPLAR optimizer widely used by ST design engineers, is mainly
based on optimization methods without derivatives. Some of these methods are:
the Simplex method [28], the Powell [31], the CRS (Controlled Random Search)
[7, 32] and the Direct method [26].

In the present chapter we describe the integration of ST PAN modeling flow
[4, 5] with the EXEMPLAR framework in which the innovative Discretized Immune
Algorithm (DIA) is encapsulated (Fig. 7.4).

7.3 Parameter Extraction for Compact Circuit Models

High-Voltage discrete power MOSFETs robustness is hardly tied to the topology of
the layout device. Weakness in layout designs could produce, for example, during
a classic UIS (Unclamped Inductive Switching), current focusing known as “hot
spots” [12, 27] that could compromise the integrity of the entire device. It will
be shown that an automatic optimization of a power MOSFET. layout can reduce
the peak currents focused in hot spot areas during an UIS. The device is modeled
using the innovative Power Analyzer (PAN) technique [4, 5] based on an accurate
extraction of a spice-like model of the power device starting from its physical layout
representation. The optimization is based on a framework fully integrated within the
PAN modeling flow, which utilizes many of the most used and effective state-of-art
optimization algorithms [23].

7.3.1 Automatic Physical Layout Optimization of Discrete
Power MOSFETs for Reducing the Effects of Current
Density

Discrete power MOSFET device represents nowadays a class of power devices
highly requested in the field of SMPS (Switched-Mode Power Supply) for Servers,
Solar & Desktop, AC/DC Converters, Battery Chargers, etc. due to their minimized
gate charge, high speed switching and lowest RDS.ON/ (Static drain-source on
resistance).
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The basic internal structure of a power MOSFET is made up of several
elementary transistor cells connected in parallel rows in order to achieve the current
handling capability required by the design application. Each row, and hence each
single cell, is powered by a gate metal path that branches from the gate pad and
stretching itself across the entire device. In the layout, there are cells displaced in
areas far and very near to the gate pad; the result is that the gate impedance of
each cell seen towards the gate pad could vary in relation to its distance to the
gate pad [2, 6]. As a consequence of this non uniformity, it is possible to observe
during the turn-on or turn-off switching that some cells will receive or loose the gate
signal at different times causing a different behavior in terms of current carried. For
example, at high switching frequencies the time required by the gate signal to reach
the farthest elementary cell may be comparable to the switching times of the input
signal. Therefore, this provides fast switching times for cells near to the gate pad
and increasing delays for those located furthest away. The fast turn off for only
portions of the device forces the remainder to drive large amounts of current during
switching [2]. The result is a dramatic current density increase in the slowest parts
of the device causing what we call a “hot spot” . Hot spots are restricted areas where
probable thermal failures can make devices less robust. Also, in a UIS turn-off,
peaks of current forced by the inductor load will be carried only by those slower
cells, therefore, a better distribution of the cells is necessary to minimize the peak
current which is a constraint that the designer should consider in order to develop
a more robust devices [8, 24, 25]. This target could be reached by modifying the
distribution of the gate metal across the device but paying attention not to vary the
gate impedance of the whole device. This is strongly tied to the displacement of the
metal path which is often a given parameter requested by the customer.

A new optimization framework flow will be demonstrated using new optimiza-
tion algorithms that will modify the geometry of the layout. Moving element
positions in the layout can cause an increase or decrease of the current density
in the device depending on where elements are placed. Power Mos is made up of
elements such as metal gate, fingers, gate pad, source windows, etc. which is shown
in Fig. 7.1.

For example, moving the metal fingers closer together can cause current to reach
some elementary MOS gates quicker and slower for others because the path traveled
may be decreased or increased. The number of relative placements for elements can
be enormous, therefore, a new optimization tool is designed to aid this process.

7.3.2 Modeling Approach

In order to better understand how the whole flow works, we will focus our attention
on a spice-like netlist model used in the flow. This model is produced by an
extraction starting from a CAD (Computer Aided Design) layout view of the device.
Since, the layout usually has many different CAD layers that are not useful during
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Fig. 7.1 Simplified layout of
the Device under
investigation
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the final extraction. A simplified CAD view of the device is effectively used by the
modeling tool as input.

The extracting tool, PAN is used to extract the netlist of the device in two steps
from the simplified view.

The first step is to extract a numerical model which is strictly related to the layout
topology. Each layer is mapped to a number, for example, an elementary cell is
represented by the number 2. The second step starts from the numerical model which
automatically produces the spice-like netlist model through indexes interpretation.
The cell named as “MOS” corresponds to the model of a single elementary cell
which must be supplied by the user and it could also be extracted with the aid of a
TCAD (Technology CAD tool) simulation tool or by measurements on a wafer.

The peculiarity of this spice-like modeling flow is once the numerical model
is produced, then the final netlist could be easily extracted starting from this data.
This very important possibility releases the designer from the original layout so
that many more analysis can be performed simply by modify the numerical model
written in ASCII format which implies modification of the physical layout structure
(es. number of fingers, pad size, position, etc.).

Since the position of elements has been discretized such that they are put on a 2D
lattice with integer coordinates, the algorithms have to find the x and y coordinates
for each element of the circuit under observation.

It is important to outline that any algorithm that is able to work with discrete
variables are suitable for this problem, because it can be tackled as a black box
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optimization problem. In our work, we use, through the Exemplar optimizer, four
algorithms that are the state-of-art in black box and circuit design optimization:
in particular, we use Controlled Random Search (CRS), and Controlled Random
Search Enhanched (CRS-E) [7]. The modelling methodology has been evaluated in
several of its aspect and a U.S. Patent has also been deposited [5].

7.4 The Optimization Algorithm

Designing micro-electronic devices is a complex process, which takes into account
increasing frequency and bandwidth ranges, small size factor, high reliability and
low power consumption [3, 20, 29]. From a mathematical point of view, there
are three major aspects to take into account; the formulation of a formal model
of the system, the performance optimization and the robustness analysis. In this
chapter, we focus on finding an optimal design for the power MOSFET. The
space of solutions defined by the parameters of the power MOSFET is enormous
and it is highly rugged. Moreover, the power MOSFET is a complex device
which simulation requires �5 min; due to this expensive computational cost, an
optimization algorithm has to find good solution using tight budget of simulations
[3, 20, 29]. In order to tackle effectively this optimization problem, we design a
new OPTIMIZATION IMMUNOLOGICAL ALGORITHM, called OPTIA [13, 18]. The
OPTIA is a stochastic optimization algorithm based on the Human Clonal Selection
Principle of the Immune System (IS) [1, 16, 17].

The IS is an excellent example of bottom-up optimization strategy through which
adaptation operates at the local level of cells and molecules, and useful behavior
emerges at the global level [15, 19]. In particular, the Clonal Selection theory shows
that B and T lymphocytes, that are able to recognize the antigen, will start to
proliferate by cloning upon recognition of such antigen. When a B cell is activated
by binding an antigen, many clones are produced in response via the so called
clonal expansion. The newly created cells can undergo to somatic hypermutation,
creating offspring B cells with mutated receptors: the higher the affinity of a B-cell
to the antigens, the more likely it will clone. This results in a Darwinian process
of variation and selection, called affinity maturation. The increase in size of these
populations couples with the production of cells with longer than expected lifetimes,
assuring the organism a higher specific responsiveness to that antigenic attack in the
future: the so called immunological memory of the system.

OPTIA tries to mimic the clonal selection principle for optimization: a problem is
an antigen and a B-cell is a candidate solution. The affinity between an antigen and
a B-cell is given by the objective function of the optimization problem [13, 14, 35].

Each B-cell is a vector of real values of dimension n, where n is the dimension of
the problem; moreover each candidate solution has associated an age � : it indicates
the number of iterations since the last successful mutation [9, 13, 21]. Initially the
age is set to zero.
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Fig. 7.2 Pseudo-code of the
Optimization Immune
Algorithm (optIA)

1: procedure OPTIA(d;dup;tB;r;b ;sa)
2: t ← 0
3: BCarch ← Create_Archive(sa)
4: P(t) ← Initialize(d)
5: Evaluate (Pt)
6: while ¬Termination_Condition() do
7: P(clo) ← Cloning(P(t) ;dup)
8: P(hyp) ← Hypermutation(P(clo) ;r)
9: P(macro) ← Macromutation(P(hyp) ;b )

10: Evaluate(P(macro) )
11: Aging(P(t) ;P(macro) ;tB)
12: P(t+ 1) ← Selection(P(t) ;P(macro) ;BCarch)
13: t ← t + 1
14: end while
15: end procedure

An initial population P .0/ of dimension d is generated randomly, with each
variable constrained into its lower and upper bounds. However, it could be useful to
use an ad-hoc population to start the optimization process: optIA can take in input
a starting point pst, and it use this point to initializes one B-cell of the population
and the remaining d � 1 candidate solutions are initialized with vectors obtained as
a perturbation of pst.

The algorithm is iterative: each iteration is made of a cloning, mutation and
selection phase [9, 10, 30]. The algorithm stops when a given stopping criterion
is verified: in particular, it ends when a maximum number of fitness function
evaluations is reached.The pseudo-code of the algorithm is shown in Fig. 7.2.

The cloning phase is responsible for the production of new B-cell. Each B-cell is
cloned dup times producing a population P .clo/

Nc
of size d � dup D Nc , where each

cloned B-cell takes the same age of its parent. At the same time, the age of the parent
is increased by one.

After the P .clo/ population is created, it undergoes to the mutation phase
in order to find better solutions. In the mutation phase, the hypermutation and
hypermacromutation are applied to each candidate solutions [11]. These operators
are the principle responsible of the exploring and exploiting ability of the algorithm.

The hypermutation operator is based on the self-adaptive gaussian mutation that
is computed by:

� 0
i D �i � exp..� �N.0; 1//C .� 0 �Ni.0; 1/// (7.1)

xnew
i D xi C � �N.0; 1/: (7.2)

The hypermacromutation applies a convex mutation to a given solution according
to the following equation:

xnew
i D .1 � ˇ/ � xi C ˇ � xk I (7.3)
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where xi ¤ xk; ˇ 2 Œ0:1� is a random number obtained with uniform distribution.
Since variables xi and xk typically have different ranges, the value xk is normalized
within the range of xi using the following equation:

xnorm
k D Li C .xk � Lk/

.Uk � Lk/
� .Li � Ui/ (7.4)

where Li , Ui are the lower and upper bounds of xi and Lk , Uk are lower and upper
bounds of xk . The value used to mutate the variables xi is then xnorm

k .
The mutation operators are controlled by a mutation rate ˛ that is differently

defined according to the type of operator: for the hypermutation operator, it is
defined as

˛ D e.���f / (7.5)

instead for the macromutation operator is defined as

˛ D .
1

ˇ
/ � e.�f / (7.6)

where f is the fitness function value normalized in Œ0; 1�.
These operators are applied sequentially: the hypermutation operator acts on the

P .clo/ and it produces a new population P .hyp/ and the hypermacromutation mutate
the P .hyp/ generating the P .macro/ population.

The population P .macro/ is evaluated: if a B-cell achieves a better objective
function value, its age is set to zero otherwise it is increased by one.

The Aging operator is executed on P .t/ and P .macro/: it drops all the B-cells with
age greater than �b C 1, where �b is a parameter of the algorithm.

The B-cells deleted by the AGING operator are not discarded but they are saved
into an archive BCarch of size sa: if there is enough space into the archive, the B-cell
is saved into the first available location, otherwise a random location of the archive
is selected and it is substituted by this new B-cell.

The selection is then performed and the new P .tC1/ is created by picking the best
individuals from the parents and the mutated B-cells: if jP .tC1/j < d , d � jP .tC1/j
B-cells are randomly taken from the archive and added to the new population.

Many real world problems associate to each variable of an optimization problem
a fineness parameter in addiction to lower and upper bounds.

OPTIA is able to handle this kind of variable using a grid based model: a grid can
be defined as an n-dimensional space which fineness is specified by a parameter ı.

When OPTIA evaluate the fitness of a B-cell, it projects the solution on the grid
and successively it evaluates the fitness of the projected point. It is possible to define
different strategies to project the point on the grid. For each variable of the problem,
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Fig. 7.3 Extraction of the
description file

...
gpad_width = 7
gpad_length = 7
gpad_x = 14
gpad_y = 8
finger_1_x = 6
finger_1_o = 9
finger_1_oy = 4
finger_2_x = 12
...

OPTIA uses the following projection equation:

˘.x; l; u; ı/ D min.jx � x1ı j; jx2ı � xj/ (7.7)

x1ı D x � l
ı

(7.8)

x2ı D u � x

ı
(7.9)

where x is a variable of the problem, l; u are the relative lower and upper bounds
and ı is the mesh fineness parameter.

7.4.1 The Optimization Flow

The methodology proposed is based on the possibility of modifying the device
layout structure by simply modifying the contents of the numerical model stored
in an ASCII file. Before using the numerical model in the optimization flow, it must
be translated into a text description format using a custom language named DES 1

which is based on a series of parameters that exhaustively describes the content of
the numerical model.

The DES file automatically created by custom software starting from the
numerical model allows for a better definition of constraints that the optimizer must
take into consideration. The DES parameters are geometric locations of elements
within the power Mos layout, for example, the location of the finger 1 is given by
the x,y coordinates and the width parameters such as finger_1_x, finger_1_oy and
finger_1_o respectively. These parameters are setup as variables which are inputs to
the optimizer that can be modified by the optimizer algorithm to find the optimal
location. The same is true for each of the other parameters in Fig. 7.3.

The optimization flow works accordingly as shown in Fig. 7.4. Firstly, a reference
starting geometric layout must be provided. This geometric layout is simplified into

1DES name used to describe the description of the numerical model matrix.
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Fig. 7.4 IO Optimization Flow

a numerical mapped model of the layout which is extracted by the PAN tool so that it
can be converted using DES2MTX2 software into a detailed text description for each
of the important elements. The text description contains the positional coordinates
and sizes of each element which describes the make up of the discrete power MOS.
These elements positions and sizes become the parameters which may be optimized
in order to resolve the current density problem which has been previously described.
Secondly, the detailed text description is provided as input to the optimization
framework as shown in Fig. 7.3 along with constrained bounds for each elements
parameters under evaluation which is provided on the first iteration cycle and used
through out the entire optimization process. Also, at the same time the PAN tool also
converts the numerical mapped layout into a spice like netlist which is simulated
using a third party tool that is a circuit simulator such as Mentor Graphics Eldo [22]
or a fast spice simulator; the results of the performances or simulation results are
passed to the optimization framework as inputs. Next, the optimization algorithm
goes to work by first reading these inputs and lastly providing new elements
parameters values under evaluation. If the new values under optimization are not
within the given constrained bounds (not yet optimal), a new text description file
provided by the optimization framework is converted back to a numerical model
by the DES2MTX software. Then it is converted to a new spice like netlist again,

2DES2MTX is software to convert description language to numerical mapped data of the
PowerMos layout. At the same manner, also the Mtx2Des software has been developed.
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Fig. 7.5 Starting Layout

which is then simulated, and delivered to the optimization frame work. This flow is
cycled until optimal solutions are found or the maximum number of iterations has
been achieved by the optimizer, even if a solution cannot be obtained. However,
if an optimal solution has been found, the text description file provided by the
optimization framework is converted back to a numerical model by the DES2MTX.
Finally, the PAN tool converts the new numerical model to its original geometric
layout form as the optimized physical layout view.

7.4.2 Simulation Results

In this work, we used the optimization flow described in order to improve the
robustness of power MOSFET devices in terms of maximum current density allowed
in a UIS turn-off.

Taken as reference the starting layout of Fig. 7.5, we obtained as result of the
optimization a better new layout where that maximum currentpeak is lower than
the one in the starting layout. In the built spice-like model of the device, each
single cell represents a portion of area of the real device; the size of that area
depends on how dense the mesh has been chosen for the discretezation necessary
to extract the matrix. An evaluation of the drain current referred to the elementary
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Fig. 7.6 Ipeak current 2D map and waveforms in a UIS turn-off for the starting reference layout

cell and, hence, to a given area, will give us very useful current density information.
For technologist, such as parameter is known and represents a physical limit for
the technology even if other causes of failure are to be searched in an excess of
the silicon temperature reached due to the switching power and of some parasitic
bipolars triggered by the high slopes of the drain currents flowing across the
elementary cells [6]. All these aspects could be easily investigated using the PAN
tool together with the optimization flow but in this work, only matters tied to peak
currents are investigated and result presented. In figure 2D map and waveforms
referred to the Ipeak currents across the reference starting layout is reported in
Fig. 7.6 . The light area on dark background represents regions of the devices where
currents are higher.

That 2D map gives information useful from the qualitatively point of view.
Quantitatively information, instead, are given by the waveforms on the right part
for Fig. 7.6 which reports the whole Idrain current across the drain terminal of the
devices Id , the average current Idm that should have been if each cell of the devices
would have switched ideally without gate/source delay and, at end, the maximum
peak current found across all the cells of the devices. The difference between Ipeak

and Idm represents an index of current unbalancing of the device. To study the
effective of immune algorithm and two investigate the hardness of the problem, we
have conducted a long series of simulation using various optimization algorithm:
we have used the SIMPLEX, CRS and CRS-E methods. In our experimental protocol,
when it is possible, we use as a starting point the circuit proposed by the designers or
we generate one randomly. In particular, OPTIA can work completely from scratch
or take an initial point, that is assigned to an individual and the other individuals of
the population are small perturbations of this starting point.

The stopping criterion adopted is the attainment of a fixed number of simulations
(in our case 104) or, for numerical methods, the achievement of the convergence.
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Table 7.1 PowerMosfet
optimization results using
evolutionary and numerical
algorithms

Algorithm Initial point Ipeak

Designer’s point – 9:948 � 10�3

optIA Random point 7:281 � 10�3

Crs Random point 7:296 � 10�3

optIA Designer’s point 7:394 � 10�3

Crs-E Random point 7:397 � 10�3

Simplex Designer’s point 7:894 � 10�3
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In Table 7.1, we report for each algorithm the best solution found in terms
of IPEAK by the various algorithms: by inspecting the results, OPTIA found the
best solution using random points. From an optimization point of view, this is
not surprising because the designer’s circuit can be a local optimum that prevent
the algorithm to find new good solutions. The 2D final current map and relative
waveforms have been shown in Fig. 7.7. As it is possible to observe, during
the analyzed range of time, where the current peak occurs, the final value for
that parameter is normalized decreasing from 1.0000 to 0.73098 obtaining an
improvement of approximately 27 %. In order to obtain this new result the optimizer
has modified the geometry of the original layout by repositioning and modifying
elements in the layout. The optimizer has decreased the size of poly silicon gate
areas and repositioned them along the gate metal finger. It also repositioned the gate
metal fingers in horizontal fashion. The final result is a new layout geometrically
adjusted and optimized for the better (Fig. 7.8).
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Fig. 7.8 Optimized Layout

7.5 Conclusion

In this work we have shown an innovative methodology for the power MOSFET
design aimed to improve robustness and performances. This methodology opens
new spaces in power device designing giving to the designers new innovative CAD
tools that allows investigating problematic until now little afforded due to the lack
of means. The work, yet in the preliminary phase has shown enormous potential
for investigation in future work, and of course, will be treated. The designed
evolutionary algorithm was shown to produce acceptable solutions in most cases,
where classical techniques failed.
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Part V
COMSON Methodology

The COMSON methodology is based in the linkage of a Demonstrator Platform
(Chap. 8) with an e-learning environment (Chap. 9). It is used for both testing
mathematical modells and methods derived in Chaps. 2–7 and educating young
researchers.



Chapter 8
COMSON Demonstrator Platform

Georg Denk, Tamara Bechtold, Massimiliano Culpo, Carlo de Falco,
and Alexander Rusakov

Abstract This chapter describes the Demonstrator Platform (DP), a framework for
simulation of devices, interconnects, circuits, electromagnetic fields, and thermal
effects. This framework is used to develop and test new mathematical methods and
algorithms. Section 8.1 describes the design of the DP and gives an overview of
the available modules. Section 8.2 is a tutorial on how to use the DP focusing on
model-order reduction. It shows for the example of a micro-hotplate model all the
steps needed to apply model-order reduction, including postprocessing and error
estimation. In a second part, a coupled simulation of a circuit combined with a
reduced model of a transmission line is presented. Section 8.3 emphasizes the aspect
of the DP as a development framework. After introducing the benchmark example
of an n-channel power MOS-FET, it is shown how to combine and extend different
modules of the DP to a fully coupled electro-thermal simulation of the device.

G. Denk (�)
Infineon Technologies AG, 81726 München, Germany
e-mail: georg.denk@infineon.com

T. Bechtold
IMTEK – University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
e-mail: tamara.bechtold@imtek.uni-freiburg.de

M. Culpo
Chair of Applied Mathematics/Numerical Analysis, Bergische Universität Wuppertal,
Gaußstraße 20, 42119 Wuppertal, Germany
e-mail: m.culpo@cineca.it

C. de Falco
MOX – Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano,
P.zza L. da Vinci 32, 20133 Milano, Italy

CEN – Centro Europeo di Nanomedicina, P.zza L. da Vinci 32, 201333 Milano, Italy
e-mail: carlo.defalco@polimi.it

A. Rusakov
Institute for Design Problems in Microelectronics of Russian Academy of Sciences (IPPM RAS),
3, Sovetskaya Street, Moscow 124365, Russian Federation
e-mail: rusakov@inm.ras.ru

© Springer-Verlag Berlin Heidelberg 2015
M. Günther (ed.), Coupled Multiscale Simulation and Optimization
in Nanoelectronics, Mathematics in Industry 21,
DOI 10.1007/978-3-662-46672-8_8

455

mailto:georg.denk@infineon.com
mailto:tamara.bechtold@imtek.uni-freiburg.de
mailto:m.culpo@cineca.it
mailto:carlo.defalco@polimi.it
mailto:rusakov@inm.ras.ru


456 G. Denk et al.

8.1 Introduction

The purpose of the COMSON project is to develop algorithms for coupled
multiscale simulation and optimization in nanoelectronics. As several nodes are
involved, a common platform for this development is needed. The main objective
of the consortium is therefore to realize an experimental Demonstrator Platform
in software code, which comprises simulation of devices, interconnects, circuits,
electromagnetic fields, and thermal effects in one single framework. It connects each
individual achievement, and offers an adequate simulation tool for optimization in
a compound design space.

The Demonstrator Platform is used as a framework to test mathematical methods
and approaches, so as to assess whether they are capable of addressing the industry’s
problems, and to adequately educate young researchers by hands-on experience on
state-of-the-art problems, and beyond. The Demonstrator Platform does not aim at
replacing existing industrial or commercial codes. However, it will be capable of
analyzing medium sized coupled problems of industrial relevance, thus offering a
chance to develop advanced mathematics for realistic problems. The second benefit
of such a platform is to collect the knowledge of models and methods, which is
widespread distributed over the different partners, giving a good opportunity for
transfer of knowledge.

This section gives an introduction to the ideas and concepts of the Demonstrator
Platform, followed by a tutorial section on how this platform can be used in
the context of model-order reduction (Sect. 8.2). In Sect. 8.3, a research study is
presented which uses the Demonstrator Platform for development of the coupled
electro-thermal simulation of an n-channel power MOSFET. The Demonstrator
Platform was also used for developing a coupled circuit-device simulation, see [21].

8.1.1 Design of the Demonstrator Platform

In order to allow an easy installation and application within different environments,
the design of the Demonstrator Platform was influenced by the following assump-
tions:

– Provides a fast prototyping environment,
– Is not restricted to a particular operating system,
– Can easily be extended,
– Can easily be distributed to others,
– Allows different license conditions for different parts.

These conditions are especially important, if the Demonstrator Platform should be
used both in an academic environment and in an industrial environment, as they are
present within COMSON. To foster cooperations with other research groups, it is
essential to share the Demonstrator Platform as a common development platform.
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Fig. 8.1 Layout of the Demonstrator Platform

For fast prototyping of mathematical algorithms, interpreted languages like
Matlab or Octave are widely used. To avoid license problems, we decided to use
the free tool Octave [38] which is available for many operating systems and can be
distributed without license issues. Octave allows both an interactive approach for
development and a batch-oriented usage for long-running computations. It offers
additionally a free API for integrating software written in other programming
languages like C or Fortran. Octave builds the controlling language of the
Demonstrator Platform.

The Demonstrator Platform uses a modular structure consisting of so-called
modules and external libraries. Modules provide some functionality to the user of
the Demonstrator Platform, e.g. model-order reduction techniques. To enable the
re-use of already existing software, the modules may interface to external libraries,
e.g. numerical libraries like Slicot. In Fig. 8.1, the structure of the Demonstrator
Platform is depicted.

This flexible concept of external libraries provides a solution for incorporating
software released under different license conditions. Libraries with a free license
can be completely integrated to the Demonstrator Platform which is distributed
as free software. Other libraries with a more restrictive license have to be kept
separated, only the interfacing routines are part of the Demonstrator Platform. With
this approach it is possible to call confidential software from the Demonstrator
Platform, without making it a part of it. Especially in an industrial environment,
this is of great importance. This is indicated in Fig. 8.1, where the boundary of
the Demonstrator Platform includes some of the external libraries, while others are
located outside.
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For quality software, it is not enough to provide a set of functions. Also the doc-
umentation is an essential part of the Demonstrator Platform. This documentation
contains research papers where the theoretic background of the routines is provided.
In addition, a description of the available functions is automatically generated out
of the sources.

The Demonstrator Platform contains an integrated self test to ensure the
correctness of the modules. For this purpose every module is provided with some
test examples for which a reference solution is known. During the self test, the
computed solution is compared with the reference solution and an according
message is printed. This feature is especially important during the joint development
of new modules, as they might interfere with existing modules.

All examples, including the test examples, are categorized in so-called class A,
class B, or class C examples. While class A examples are basic unit tests, class
B examples are (simple) academic examples which already require a full-fledged
algorithm to be solved. Class C examples are real-life examples which need the
proper coupling of algorithms, advanced approaches, and in most cases longer
computing times to be solved.

8.1.2 Modules

This section gives a short overview of the available modules of the Demonstrator
Platform.

8.1.2.1 Generic Numerical Methods

DAEN Differential-Algebraic Equations Solver
DAEN is a BDF implementation of a differential-algebraic equations solver for
problems with index 0, 1, and 2. It uses a variable step size, variable order.

RADAU Differential Algebraic Equation Solver
RADAU is a differential-algebraic equation solver for equations of index 0, 1 and
2. This code is a variable step size, variable order implementation of the RADAU
methods.

GLIMDA Differential Algebraic Equations Solver
GLIMDA is for the numerical solution of differential equations of index 0, 1
and 2. It is a variable step size, variable order implementation of general linear
methods.

BIM Finite-Element Box Integration Method
BIM is a PDE solver using a finite element/finite volume approach. It solves
diffusion-advection-reaction (DAR) partial differential equations based on
the finite volume Scharfetter-Gummel (FVSG) method also known as Box
Integration Method (BIM).
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8.1.2.2 Model-Order Reduction

AMOR Interface to MOR4ANSYS
AMOR provides an interface to the software package MOR for ANSYS which
is part of the module MOR4ANSYS

MOR4ANSYS MOR for ANSYS
MOR4ANSYS is an adapted version of the software package MOR for ANSYS
[44] which reduces dynamic systems provided in Matrix Market format.

ROM-WB Tools for migration between RomWork and OCS
ROM-WB provides some tools for converting input files to make them usuable
for the module OCS and RomWork.

SLICOTINT Interface to SLICOT Model Reduction Routines
SLICOTINT provides an interface to the SLICOT library [49]. It supports
balance and truncate model reduction (routine AB09AD), singular perturbation
approximation based model reduction (routine AB09BD), Hankel norm approx-
imation based model reduction (routine AB09CD). It also allows the efficient
computation of Hankel Singular Values of the dynamical system.

MOR Collection of simple MOR tools
MOR provides a collection of simple projector matrix builders for DAE systems.

8.1.2.3 Circuit and Device Simulation

OCS Octave Circuit Simulator
OCS is a module for solving DC and transient MNA equations stemming from
electrical circuits.

SKIF Interface to the SiMKit library
SKIF provides an interface to SiMKit library [37], a library of compact transistor
models.

D4MEKAI Device Simulator based on Maximum Entropy Principle
D4MEKAI provides a device simulation of the hydrodynamical model of
semiconductors in 1D in case of the Kane dispersion relation.

ETMEP1D Device Simulator of the MEP energy-transport model in 1D
ETMEP1D provides the 1D simulation of the MEP energy-transport model for
semiconductors by using a Scharfetter-Gummel like scheme while the Poisson
equation is solved with a false transient method.

ET_MEP_MOSFET Device Simulator for the 2D MEP energy-balanced
model.
ET_MEP_MOSFET provides the 2D numerical simulation of the MEP energy-
transport model for semiconductors by using the Scharfetter-Gummel scheme
while the Poisson equation is solved with a false transient method [41–43].

FIDES Field Device Simulator
FIDES provides a package for monolithic or co-simulation of field-circuit
coupled problems.

ROMI Reduced Order Model of the multiconductor interconnects
ROMI provides routines for extraction of the reduced order model of the
multiconductor interconnects.
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SECS1D, SECS2D, SECS3D Drift-Diffusion simulator for 1d, 2d, and 3d
semiconductor devices
SECS1D, SECS2D, and SECS3D provides a device simulator for 1d, 2d, and 3d,
resp., semiconductor devices based on drift-diffusion [22, 24, 25].

8.1.2.4 Optimization

CRS Optimization routine based on Controlled Random Search
CRS provides an optimization algorithm based on controlled random search plus
some test functions.

OPTBOOK Optimization procedures
OPTBOOK provides a set of optimization procedures, described in the book
“Optimization of the EM devices”.

8.1.2.5 Auxiliary Routines

MSH Meshing Software Package
MSH is a package for creating and managing triangular and tetrahedral meshes
for finite-element or finite-volume PDE solvers.

FPL FEM Plotting
FPL provides a collection of routines to plot data on unstructured triangular and
tetrahedral meshes.

8.2 Tutorial on Working with the Demonstrator Platform
with Emphasis on MOR

Principle and methods of model order reduction (MOR) are explained in Chaps. 4–6.
Here we would like to demonstrate how the Demonstrator Platform can be used
for testing new MOR algorithms and for coupling reduced order models with the
surrounding/driving circuitry. Section 8.2.1 lists the implemented MOR modules
and describes in more details those, which are relevant for this tutorial. Section 8.2.2
introduces the chosen nanoelectronic case studies. Section 8.2.3 demonstrates in a
step-by-step-manner how to run model order reduction within the Demonstrator
Platform by using two external libraries MOR for ANSYS [44] and SLICOT [49].
It also describes a provided framework for prototyping and testing new model
reduction algorithms. Section 8.2.4 demonstrates how to use reduced order models
(created by the mentioned libraries) within a circuit simulation with the OCS.
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8.2.1 Overview and Structure of MOR Modules

At present, there are the following MOR related modules within the Demonstrator
Platform:

– AMOR,
– MOR,
– MOR4ANSYS,
– MOR_UTILITIES,
– ROMI,
– ROM_WB,
– SLICOTINT,

each located in the subdirectory with the same name. For example, the module
AMOR is located in DP_DIR/AMOR, where DP_DIR denotes the directory in which
the demonstrator platform has been installed. In the following, we will shortly
describe the structure and functionality of AMOR, MOR4ANSYS, MOR_Utilities
and SLICOTINT modules, which are used in the tutorials in Sect. 8.2.3.

8.2.1.1 Interface Modules AMOR and SLICOTINT

AMOR and SLICOTINT are interfaces between the Demonstrator Platform
and two external libraries, MOR for ANSYS (described below) and SLICOT
(stands for Subroutine Library in Control Theory, [49]). Both libraries depend
on subroutines from BLAS (Basic Linear Algebra Subroutines) and LAPACK
(Linear Algebra Package) [2] for numerical linear algebra and are interfaced to
the Demonstrator Platform using dynamically linked C++ functions, contained
in amor.cc and slicot.cc, as schematically represented in Fig. 8.2. The
compilation of those two functions with mkoctfile results in amor.oct and
slicot.oct which provide the Octave functions amor and slicot. The
Fortran subroutines AB09AD, AB09BD and AB09CD from SLICOT implement
three different MOR algorithms for first order linear dynamical systems,
namely Balanced Truncation Approximation (BTA) [52], Singular Perturbation
Approximation (SPA) [36], and Hankel-Norm Approximation (HNA) [27],
respectively. Note that the SLICOT library also contains other mathematical
tools such as discrete sine/cosine and Fourier transformations, which are
however not available within the Demonstrator Platform at present. A full list
of SLICOT subroutines, the documentation and examples are available at [49].
Input arguments for all functions displayed in Fig. 8.2 will be discussed in
Sect. 8.2.3.
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Comson DP (Octave)
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slicot(A,B,C,0.5,"SPA")

results in Octave functions amor.octand slicot.oct
DP Modules, which compilation with mkoctfilefunctions calls

SLICOTINT

AMOR

Fig. 8.2 Demonstrator Platform interfaces to MOR for ANSYS and SLICOT libraries

8.2.1.2 MOR4ANSYS

The Demonstrator Platform module MOR4ANSYS incorporates the C++ library
MOR for ANSYS (stands for model order reduction for ANSYS) [45]. In its
original form, MOR for ANSYS is meant to build compact models directly from
finite element models implemented in the ANSYS simulator.1 It implements the
first and second order Arnoldi algorithm [5, 26] for model reduction of the linear
dynamical systems. In the current implementation, as a Demonstrator Platform
module, ANSYS support has been disabled and only the reduction of the first order
linear dynamical systems is possible (see Fig. 8.3), provided the system matrices are
available in the MatrixMarket format [10].

1The last GPL licensed version, which has been adapted for the Demonstrator Platform is MOR
for ANSYS 1.8. Current commercial version is MOR for ANSYS 2.5 (see http://modelreduction.
com).

http://modelreduction.com
http://modelreduction.com
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Fig. 8.3 MOR for ANSYS
structure. ANSYS support
has been disabled within the
COMSON Demonstrator
Platform and only system
matrices of the first order
linear dynamical system, in
the Matrix Market format,
can be passed

ANSYS Model
Matrices of the dynamical system

Low-dimensional
subspace

Matrix Market
File Format

MOR Algorithm
Linear dynamic system 

Solvers:
- TAUCS
- UMFPACK

x = V z + ε

E x + K x = B u ,   y = C x

8.2.1.3 MOR_UTILITIES

The Demonstrator Platform module MOR_UTILITIES contains two Octave scripts,
namelyMOR4ANSYS_Tutorial.m and SLICOT_Tutorial.m, which demon-
strate in a step-by-step manner how to perform model order reduction by interfacing
the two libraries MOR for ANSYS and SLICOT. It further contains a script
Post4MOR.m with a number of Octave functions for postprocessing a reduced
order model, i.e. analyzing it in time and frequency domain, visualizing results,
etc. The goal of this environment is to provide a framework for prototyping new
model reduction algorithms. Our experience shows that it is more convenient to
first perform research and prototyping in an interpreter environment, like Octave or
Matlab, and only then to perform a compiled language implementation in e.g. C++.

8.2.2 MOR Case Studies

In this section we introduce two case studies to demonstrate the usage of linear
model order reduction routines within the Demonstrator Platform. The first one is
a model of a micro-machined silicon nitride membrane which is, mathematically
speaking, a large-scale linear ordinary differential equation system (ODE). The sec-
ond one is an academic model of a transmission line which is, mathematically
speaking, a large-scale linear differential algebraic equation system (DAE).

8.2.2.1 Micro-hotplate

The first test model is a model of a MEMS (micro-electro-mechanical system)
device, known as a micro-hotplate. This class of structures is employed in a variety
of other microfabricated devices such as gas sensors [31] and infrared sources [50].
The device features sub-millimeter dimensions and is fabricated using technology
originating from the semiconductor industry. Silicon is used as a substrate material
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silicon nitride membrane

sensing
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Fig. 8.4 A silicon-nitride membrane with integrated heater and sensing elements was fabricated
by low-frequency plasma enhanced chemical vapor deposition. The square membrane is 500 nm
thick with a side length of 550�m, and the metal layer is made from 150 nm platinum with a 50 nm
titanium adhesion layer

with a thickness of 525�m. Silicon nitride with a thickness of 500 nm is deposited
onto this substrate. A metal layer, consisting of 150 nm platinum with a 50 nm
titanium adhesion layer is fabricated on top of the silicon nitride and shaped to form
resistor structures for heating and temperature sensing. In order to achieve suitably
high temperatures, the silicon substrate right below the resistor structures is removed
by means of wet chemical etching. In this way, a tiny square membrane with 550�m
side length has been created (see Fig. 8.4 left). Such membrane configuration is
favorable, as it increases the thermal isolation between the heat source (the heating
resistor) and the heat sink (remaining silicon).

Different applications rely on the same working principle, of Joule heating
a thin-film membrane. The membrane is being heated by applying an electrical
voltage signal to the heating resistor. Temperature measurement on the membrane
(necessary for the control) is done with a second resistor, called sensor. Both thin-
film metal resistors are arranged as concentric circles (see Fig. 8.4 right) in order to
achieve a homogeneous temperature distribution over the membrane.

The target temperature of the membrane is defined by the specific application. In
thermo-optical application [33], the membrane temperature determines which wave-
length of the focused light will be transmitted. The device works in the temperature
range between room temperature and 400 ıC. At gas sensing applications [54], the
temperature determines the chemical reaction between the unknown gas and the
membrane material. The working temperature is between 200 and 400 ıC.

In all applications, the simulation goal is to consider important thermal issues
such as, which electrical power should be applied in order to reach the target
temperature at the membrane or to ensure the homogeneous temperature distribution
over the membrane. The original model is the heat-transfer partial differential
equation:

r � .
.r/rT .r; t//CQ.r; t/ � �.r/Cp.r/@T .r; t/
@t

D 0 (8.1)
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Fig. 8.5 FE mesh of
three-dimensional model
with 60020 nodes

substrate 

membrane 

heating 
resistor sensing 

resistor 

air volume 

where r is the position, t is the time, 
 is the thermal conductivity of the material,Cp
is the specific heat capacity, � is the mass density,Q is the heat generation rate that
is different from zero only within the heater volume (Q D j2R.T /, where j is the
current density within the heater), and T is the unknown temperature distribution.
Assuming that the heat distribution is uniformly distributed within the heater and
that both material properties 
 and Cp are temperature independent around the
working point (such assumption can be made in some applications, see e.g. [6]),
the finite element (FE) based spatial discretization of (8.1) leads to a large linear
ODE system of the form:

E � PT CK � T D B � U
2.t/

R.T /
(8.2)

where t is the time, T.t/ 2 Rn is the state vector of unknown temperatures. E ,
K 2 Rn�n are heat capacity and heat conductivity which are symmetric, sparse
and positive definite matrices.2 B 2 Rn is the input distribution array and n is
the dimension of the system. U.t/ is the electrical voltage applied to the heating
resistor with temperature-dependent resistance R.T /. In case that other sources
than U.t/ (in total m sources) would be applied to the model, B would be a
matrix, B 2 Rm�n. Figure 8.5 shows the finite element model (FEM) of the three
dimensional geometry, which consists of 60020 nodes. In terms of model (8.24), this
means that the dimension of the ODE system is 60020. The solution of (8.24) can be
done with a transient analysis within ANSYS, which results in temperature values
at specified times in all nodes of the finite element mesh. However, in engineering
applications, it is often not necessary to determine the complete temperature field.
Mostly, temperature curves in a few nodes are of interest, as specified by the
following output equation:

y D C � T (8.3)

2In engineering applications the heat capacity matrix is usually denoted with C and heat
conductivity matrix with K . However, in the following we use the internal notation of MOR for
ANSYS tool, which is used for reduction.
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Table 8.1 Outputs for the micro-hotplate model

Name Number Comment

Sense_min 37577 Sensor node with minimal temperature

Sense_max 37179 Sensor node with maximal temperature

Sense_max

Sense_min

te
m
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u

re
 d

iff
. /

 K

0

46.1

9.22

18.4

27.7

36.8

Fig. 8.6 Schematic position of the chosen output nodes (left). Temperature distribution after
0.025 s of heating with 2.49 mW (right)

where C 2 Rp�n is the user-defined output distribution array and p is the number
of outputs of interest. In case that one seeks the complete temperature field, C is the
unity matrix of dimension n � n.

For the micro-hotplate, the output nodes of interest (defined by the matrix C 2
R2�60020), are described in Table 8.1 and schematically displayed in Fig. 8.6 (left).

The output nodes have been selected in order to capture the average temperature
of the sensing resistor. Experimentally, this temperature is obtained by measuring
the resistance value of the sensor. Although local variations in the temperature result
in local changes in the material’s resistivity, this is not resolved by measuring the
total resistance. Hence, in order to extract an equivalent temperature value from the
FEM results we observe minimum and maximum temperature values in the sensor
resistor. The arithmetic mean of these two temperatures is used as an equivalent to
the measured temperature.

Equation (8.24) is the starting point for model order reduction, leading to a
system of the same form but with smaller dimension. In Sect. 8.2.3 it is demonstrated
how to apply MOR to this case study within the framework of the COSMON
Demonstrator Platform.
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Fig. 8.7 Structure of a transmission line case study. The node numbering is according to the
Intermediate File Format (IFF) of the Demonstrator Platform, in which external nodes must be
numbered first

8.2.2.2 Transmission Line: An Academic Example

Figure 8.7 shows an academic model of a transmission line. This very simple model
has been chosen, because it resembles the interconnect modeling and can also
be effectively used for testing new MOR algorithms applicable to DAE systems.
It consists of a scalable number of RC ladders and after performing a charge-
oriented Modified Nodal Analysis (MNA) a linear DAE system of the form:

E � Px CK � x D B � u.t/ (8.4)

is obtained. In (8.4), t denotes the time, x.t/ 2 Rn is the state vector containing in
case of MNA nodal voltages and branch currents, i.e. in the Demonstrator Platform
implementation also the charges of the capacitors, n is the dimension of the system
and u.t/ 2 Rm is the input excitation vector. E , K 2 Rn�n are constant and sparse
system matrices,3 which represent the contribution of capacitors and resistors,
respectively. For the transmission line model E is singular as it contains only zero-
valued entries in the rows corresponding to the resistor branches. B 2 Rn�m is
the input distribution array and m is the number of inputs, i.e. sources. It is further
possible to define the output measurement vector y.t/ 2 Rp, where p is the number
of outputs of interest as:

y D C � x CD � u.t/ (8.5)

with C 2 Rp�n andD 2 Rp�m. Contrary to the previously described finite element
model, in case of transmission line, it is necessary to specify a second term in the
output equation, D � u.t/, which allows for the coupling of the transmission line
with surrounding circuitry.

3In engineering applications the circuit matrices are usually denoted with C and G. However, here
we follow the internal notation of MOR for ANSYS tool, which is used for reduction.
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Fig. 8.8 Transmission line with six resistances and two capacitors. Coupling to the surrounding is
modeled through two fictive current sources

In order to explain how the system matrices are assembled within the Demon-
strator Platform, we observe the test model with six resistors and two capacitors,
shown in Fig. 8.8, and write down the MNA equations. We model the coupling to
the surrounding through two virtual current sources, I1 and I2. MNA for nodes N1,
N2, N4 and N5 and for both charges C1 and C2, leads to:

node N1 W V1 � V4
R

D I1 (8.6)

node N2 W V2 � V5
R

C V2

R
D I2 (8.7)

node N4 W V4 � V1
R

C V4

R
C Pq1 C V4 � V5

R
D 0 (8.8)

node N5 W V5 � V4
R

C V5

R
C Pq2 C V5 � V2

R
D 0 (8.9)

charge C1 W C1 � V4 � q1 D 0 (8.10)

charge C2 W C2 � V5 � q2 D 0 (8.11)

or in matrix form:
2
66666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

3
77777775

�

2
66666664

PV1
PV2
PV4
PV5
Pq1
Pq2

3
77777775

C

2
66666664

1
R

0 � 1
R

0 0 0

0 2
R

0 � 1
R
0 0

� 1
R

0 3
R

� 1
R
0 0

0 � 1
R

� 1
R

3
R

0 0

0 0 C1 0 �1 0

0 0 0 C2 0 �1

3
77777775

2
66666664

V1

V2
V4
V5

q1
q2

3
77777775

D

2
66666664

I1

I2
0

0

0

0

3
77777775

(8.12)

This resembles (8.4). If we consider (8.12) as a stand-alone system, we can define
C in such a way that an arbitrary nodal voltage Vk is considered to be an output
of interest. In such case D D 0 and the output equation has the form (8.3).
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Fig. 8.9 Inputs and outputs of the transmission line, when coupled to the surrounding circuitry

However, if the transmission line is a part of a broader circuit, as shown in Fig. 8.9,
it is necessary to introduce terminal-voltages and terminal-currents (V1, V2, I1 and
I2) as inputs/outputs of the model. If we define e.g. terminal voltages as inputs,
u.t/ D ŒV1 V2�

T , terminal currents as outputs, y D ŒI1 I2�
T and x D ŒV4 V5 q1 q2�

T

as the new state-vector, (8.12) can be interpreted as:

E � Px CK � x D B � u.t/
y D C � x CD � u.t/
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(8.13)

with matrices E , K , B , C and D defined as schematically displayed in (8.14).

(8.14)

System (8.13) can be subjected to model order reduction, which leads to a system
of the same form, but with reduced system matrices, as follows:
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(8.15) can be coupled to the surrounding circuitry. Note that the dimension of D
is the same before and after reduction (2 � 2 in case of transmission line), because
the inputs/outputs must stay preserved. The reduction of the transmission line case
study is demonstrated in Sect. 8.2.2.2.

8.2.3 A Step by Step Model Reduction Tutorial

In the following we demonstrate model order reduction of the micro-hotplate model
in a step-by-step tutorial. We use the following Octave scripts from the module
MOR_Utilities:

– MOR4ANSYS_Tutorial.m
– SLICOT_Tutorial.m
– Post4MOR.m

8.2.3.1 Preparing the Model

It is the responsibility of the user to supply the system in the form:

E � Px D A � x C B � u

y D C � x (8.16)

where the system matrices E , A, B and C are written in the Matrix Market Format
[10]. The naming convection is ModelName.E, ModelName.A, ModelName.B and
ModelName.Cwhere ModelName is a user-defined string. It is further convenient to
prepare a text file, which contains names of the output nodes, as listed in Table 8.1.
These names are used by the postprocessing functions in the Post4MOR.m script
to e.g. label the plots for the specific outputs of the full-scale and reduced order
models. The microhotplate model (Sect. 8.2.2.1) is defined through the following
files, all located within the module MOR_Utilities:

– MicroHotplate.E,
– MicroHotplate.A,
– MicroHotplate.B,
– MicroHotplate.C,
– MicroHotplate.C.names,

where the first four are are written in Matrix Market Format and the last one is a text
file in which each line contains the name of the output node, as:
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Prior to actual reduction, it is necessary to load the functions from Post4MOR.m
and the test model into the Octave environment, as follows:

Post4MOR.m contains Octave functions for integrating the model (8.24), comput-
ing the transfer functions of the full and reduced models, computing and plotting
different reduction errors in either time or frequency domain, etc. The function
ReadInTestModel loads the system matrices of the micro-hotplate model from
the above files into Octave.

8.2.3.2 Model Reduction with MOR for ANSYS via AMOR

After all four matrices from (8.16) are available in Matrix Market Format and the
text file with outputs names is prepared, we can proceed to model order reduction
of the dynamical system (8.16). For reduction of the large-scale systems (a few
thousand degrees of freedom) within the Demonstrator Platform, we propose to use
the C++ library, MOR for ANSYS. From the Demonstrator Platform it can be called
via its Octave interface AMOR.

The implemented Arnoldi reduction algorithm [26] can be applied for ODE
and DAE systems equally, i.e. regardless if E in (8.16) is regular or singular. The
passivity and stability of the reduced model are granted, as long as both system
matricesE and A are positive and semi-definite, as shown in [48]. The basic idea of
model reduction with the Arnoldi algorithm is to find a low-dimensional subspace
that approximates the transient behavior of the state vector x:

x D V � z C � (8.17)

and the approximation error � is assumed to be small even though the number of
columns of projection matrix V (i.e. the dimension of z) is much less than the
number of rows (i.e. the dimension of x). The compact model of the linear first
order dynamical system is obtained by the projection of (8.16) as follows:

V T EV � z D V T AV � z C V TB � u

yr D CV � z (8.18)

The projection matrix V is iteratively obtained by the MOR algorithm, i.e.
column by column. This means that if we produced the reduced model of order
r , we can obtain all reduced models of any lower order just by discarding the last
columns in the project matrix. This can be used in the recommended strategy [7]
to find an optimum dimension of the reduced model, by observing the convergence
of the relative error between two “neighbored” reduced order models, with orders
r and r C 1. The reduced order model is valid for an arbitrary input function.
Furthermore, the transient and harmonic simulation of (8.18) is much faster than
those of the original high-order system (8.16). However, the physical meaning of
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the original state vector x is lost in (8.18). The new state vector z can be considered
as a vector of generalized coordinates, which requires a certain level of abstraction in
the engineering applications. Even so, the inputs and outputs defined by the matrices
B and C , will stay preserved after the reduction, i.e. yr from (8.18) approximates y
from (8.16) with high accuracy. It is also possible to recover the complete original
state vector x by back-projecting z, as indicated in (8.17), while neglecting �. The
functionality of the Arnoldi algorithm is that the transfer function of the full-scale
model, defined as:

H.s/ D C.sE �A/�1B (8.19)

when developed into a Taylor series around some value of the Laplace variable
s D s0:

H.s/ D
1X
iD0

mi .s0/.s � s0/i (8.20)

where mi.s0/ D C.�.s0E � A/�1E/i � .s0E � A/�1B is called the i -th moment
around s0 will have the same moments as the transfer functionHr.s/ of the reduced
model, up to the degree r . With other words, it approximates the input/output
behavior.

The AMOR interface between MOR for ANSYS and the Demonstrator Platform
should be called with

where, E , K D �A, B and C are the system matrices4 of the dynamic system, as
defined in (8.16) and other parameters (which are optional) are meant to control the
model reduction process, as follows:

– r specifies the dimension of the reduced model. By default it is 30.
– solver is to choose a solver. By default it is TAUCSlltmf (suitable for

positive definite matrices).
– s_0 specifies which expansion point should be used for the transfer function. By

default it is 0.
– ReorderingScheme is the solver parameter. By default it is metis.
– tol sets up the tolerance to deflate the next column vector of V . By default it is
10�15.

The default values have been chosen based on experience with electro-thermal
models of MEMS devices [8]. The output of AMOR is a projection matrix V from
(8.17), which is constructed vector by vector. When a new vector is generated, MOR
for ANSYS checks its norm. If it is less then the tolerance specified with tol option,

4Note that the internal system representation from of MOR for ANSYS V. 1.8 differs from (8.16),
as it uses matrix K D �A.
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the vector is deflated (removed), as it is assumed to represent a zero vector within
rounding errors.

There is a vast number of solvers to solve a system of linear algebraic equations.
MOR for ANSYS 1.8 uses the TAUCS [51] and UMFPACK [19] libraries with
following solver choices:

– TAUCSlltmf: Multifrontal supernodal Cholesky decomposition.
– TAUCSlltll: Left-looking supernodal Cholesky decomposition.
– TAUCSlltooc: Out-of-core sparse Cholesky decomposition.
– TAUCSllt: Cholesky decomposition column by column (slow).
– TAUCSldlt: LDLT factorization.
– TAUCSlu: Out-of-core sparse pivoting LU decomposition.
– UMFPACK: Multifrontal LU decomposition.

TAUCS solvers for symmetric matrices can take a reordering-scheme parameter,
which specifies the reordering method. Allowable values for ReorderingScheme
parameter are:

– metis: hybrid nested-dissection minimum degree ordering.
– genmmd: multiple minimum degree ordering.
– md: minimum degree ordering.
– mmd: multiple minimum degree ordering.
– amd: approximate minimum degree ordering.
– treeorder: no-fill ordering code for matrices whose graphs are trees.

Our recommendations are as follows. For symmetric and positive definite matrices
TAUCSlltmf with metis is the best choice. If the matrix is symmetric but
indefinite TAUCSldlt with metis is a good choice, although UMFPACK may
be faster in this case. For non-symmetric matrices one must use UMFPACK.

By default, MOR for ANSYS uses zero as an expansion point of the transfer
function. This means that the reduced order model will approximate the original
model accurately at low frequencies. If, however, the expansion point is different
from zero, the reduced model will not preserve the stationary state. The choice
of the expansion point depends on the application. For more information about
methods and more details on input parameters, please consult the MOR for ANSYS
1.8 manual within the Demonstrator Platform documentation.

We run the model order reduction of the micro-hotplate model as follows:

As the output of the call to amor is a projection matrix, it is necessary to actually
construct the reduced order model (8.18). This can be done by projection:
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or in the more compact form, by calling the build_reduced_system routine
from Post4MOR.m:

It is further possible to save the reduced system in the Matrix Market form by setting
a base name for the reduced model. The base name can be same or different than for
the original model. In either case, an extention .MOR will be attached. For example:

will produce the following files:

– MicroHotplate.MOR.E,
– MicroHotplate.MOR.A,
– MicroHotplate.MOR.B,
– MicroHotplate.MOR.C.

8.2.3.3 Postprocessing of the Reduced Model and Error Estimation

Once the reduced order model has been created, it is necessary to integrate it,
compare it with the full-scale model or with measurements, plot it in time and/or
frequency domain etc. For the micro-hotplate we define the integration time of 0:04 s
and the constant input function u.t/ D 1, which corresponds to the constant input
power of Q D 2:49mW. Note, that it is also possible to introduce the non-linearity
of the input function, as indicated in (8.24) directly on the level of the reduced
model, by defining u to be a function of the reduced state-vector z. The following
code sequence performs the time integration of the full-scale and reduced order
models:

Define the input function and the time range for the time integration:

Now we need the initial values of the full and reduced state vector:

The time integration of the full-scale model might take quite some time:

The time integration of the reduced model should be fast:

It is advisable to save solutions for further use:
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Fig. 8.10 Time response of the full model (order 60000) and reduced model (order 30) (top) and
relative error between the both (bottom)

One can further plot all outputs of the full and reduced system in time domain with:

and plot the relative and absolute errors between the full and the reduced model in
each node:

Figure 8.10 shows the temperature response in time and the relative error between
the full-scale and the reduced order model in Sense_min node.

It is further possible to compare the dynamics of the reduced and original system
in frequency domain as well. The following functions compute and plot the transfer
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Fig. 8.11 Frequency response H(1,1) of the full model (order 60000) and frequency response
Hr(1,1) of the reduced model (order 30)

functions of the full and reduced models for 10 frequency values in the range from
1 to 109 rad/s:

Specify the number of frequencies (the frequency range is from 100 rad/s to
10NrOfFreq�1 rad/s):

Now compute the transfer function of the full-scale system:

Compute the transfer function of the reduced system:

Plot the transfer functions between each input/output:

Figure 8.11 shows both transfer functions in output node Sense_min. The transfer
functions match well for low frequencies, which is due to the fact that we have
chosen zero as an expansion point for the Taylor series in (8.20).

The main draw-back of the Arnoldi algorithm is that there is no mathematical
theory to estimate the reduction error. Hence, for the user it is difficult to predict
which dimension of the reduced model will provide the required accuracy. In [7]
we have shown that it is possible to estimate the reduction error by observing the
relative error in frequency domain between two “neighbored” reduced models of
order r and r C 1. If we define a relative frequency response error as:

Er.s/ D jH.s/ �Hr.s/j
jH.s/j (8.21)
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where H.s/ and Hr.s/ are the transfer functions of the original and of the reduced
order model (as defined in (8.19)), respectively, and a relative frequency-response
error between two successive reduced order models as:

OEr.s/ D jHr.s/ �HrC1.s/j
jHr.s/j (8.22)

it turns out that for the micro-hotplate case studies it holds:

Er.s/ � OEr.s/ (8.23)

For benchmarks from [35] (8.23) holds for a wide range of frequencies around
the expansion point s0 D 0. To observe the convergence of the relative error within
the Demonstrator Platform run:

where Freq is the circular frequency of interest. Figure 8.12 shows the convergence
of relative error at 103 rad/s and at 106 rad/s. We observe that Er and OEr match well
at lower frequency 103 rad/s, which is near the expansion point s0 D 0. The system
order necessary to reach the convergence at ! D 103 rad/s is 16, which means that it
is not possible to approximate the system better with higher order. The convergence
occurs presumably because the machine’s numerical precision has been reached. At
high frequencies convergence disappears. Instead, we observe fluctuations, due to
being too far away from the expansion point.

8.2.3.4 Running SLICOT via SLICOTINT for Further Reduction of the
Compact Model

The SLICOT subroutines can be used for reduction of moderate size models (order
few thousands) and for ODE systems of the form:

Px D A � x C B � u

y D C � x (8.24)

only. It is possible to use them to further compact the model that has been obtained
by MOR for ANSYS. We have developed the Octave interface SLICOTINT
to the model reduction subroutines of the SLICOT library. The provided script
SLICOT_Tutorial.m gives the guidelines on how to use it and demonstrates
how the reduction is performed with the micro-hotplate example.
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Fig. 8.12 Error indicators in
the frequency domain in
output node Sense_min of the
micro-hotplate model at
! D 103 rad/s (top) and at
! D 106 rad/s (bottom)
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We invoke Octave, load the reduced-order model (it is of order 30) into the
Octave environment and convert it to the state-space (single-matrix) form, which
is necessary for MOR methods implemented in SLICOT:

Load the functions for the MOR postprocessing and the test model:

Convert the model into the state-space (single matrix) form, which is necessary for
control-theory routines implemented in SLICOT:

We call the Balanced Truncation Approximation algorithm, implemented in SLI-
COT with:
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or with:

The first call invokes reduction with the BTA method to order five (resulting ODE
system will have five equations) and the second one, a reduction to the smaller order
system with the accuracy of 1%. The latest is possible, because the MOR methods
implemented in SLICOT (also known as control theory methods), provide a global
error bound between the transfer function H.s/ of the original and Hr.s/ of the
reduced system as follows:

kH.s/ �Hr.s/k1 
 2.�rC1 C : : :C �n/ (8.25)

where the infinity norm k:k1 denotes the largest magnitude of the difference of the
transfer functions and �rC1; : : : ; �n are the smallest Hankel singular values (HSV) of
the dynamical system under consideration. Hankel singular values are the property
of the dynamical system, which reflect the contributions of the different entries of
the state vector to system responses (see [3] for theoretical explanation).

For calling one of the other two MOR algorithms for linear ODE systems imple-
mented in SLICOT, that is Hankel Norm Approximation or Singular Perturbation
Approximation, it is necessary to replace BTA with HNA or SPA. Each function
returns the system matrices of the reduced ODE system, Ar , Br and Cr , as well as
the list of Hankel singular values sorted in descending order.

After reduction, it is possible to display the responses of the full and the reduced
order systems in time and/or frequency domain and to plot the relative and absolute
errors, by using the same commands as described in Sect. 8.2.3.3. Figure 8.13 shows
the responses of two different reduced models produced with the BTA algorithm for
the same input function, initial conditions and time- and frequency ranges, as in the
previous step.

It is further interesting to observe (see Fig. 8.14), how the target order five model
can be reached with smaller error, in transient phase, if sequential MOR is used
(reduction of the original model with order 60020 down to order 30 with Arnoldi
algorithm and further to order five with BTA) than the Arnoldi algorithm alone. This
is due to the fact that the resulting reduced model of order five (gained by sequential
MOR) includes information of 30 Arnoldi vectors. The steady-state error increases
however, which is typical for the BTA. Better approximation of the steady-state can
be reached by using SPA (see [18] for more explanation). With

we can plot the Hankel singular values of the system. The following commands
compute and plot the error bound as defined by (8.25). First, we compute the
frequency domain error of reduction (infinity norm):

Then, we plot the frequency domain error of reduction (infinity norm):
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Fig. 8.13 Time response (top) and frequency response (bottom) in Sense_min output node of the
micro-hotplate model of order 30 (gained through the reduction with MOR for ANSYS) and of
reduced orders five and one (both gained through further reduction with BTA algorithm from
SLICOT)

Figure 8.15 shows the rapid decay of Hankel singular values for the micro-hotplate
model of order 30, which indicates further reducibility of the dynamical system.
Figure 8.16 shows the difference between the transfer function of the full (order 30)
model of the micro-hotplate and of the reduced (order 6) model.

8.2.4 Coupled Simulation (MOR + Circuit Simulation)

The main goal of implementing model order reduction feature into the COMSON
Demonstrator Platform is to speed up the simulation of complex electronic circuits.
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In this section we demonstrate how MOR can be efficiently applied to build a
compact model of interconnects and couple it with the surrounding circuitry.

We simulate the transmission line model from Sect. 8.2.2.2 with 20 resistors
and 9 capacitors, which is coupled to the simple non-linear circuit, as shown in
Fig. 8.17. The transmission line model is a linear DAE system of form (8.13)
which can be reduced within the Demonstrator Platform with the MOR for ANSYS
library. We would like to emphasize once again, that the entries of the reduced
state vector (z in (8.15)) are without physical meaning, i.e. they do not represent
internal voltages and charges of the transmission line circuit. However, as during
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Fig. 8.17 Transmission line model coupled to non-linear circuity

the reduction the coupling states (those entries of the MNA state vector which are
common for the transmission line and the surrounding circuit, as Vinv and Vin2 in
Fig. 8.17), are preserved, it is possible to couple the reduced order model to both
inverters. This coupling is done in the same manner as without reduction, i.e. by
stamping the matrices of (8.15) into the global system matrices (system matrices of
the whole inverter circuit) at proper positions.

The transmission line model and the inverter circuit are parts of OCS (Octave
Circuit Simulator) module. They are described in the following files:

– MTransLine.cir (located in the DP_DIR/OCS/SBN)
– MTransLine.m (located in the DP_DIR/OCS/SBN)
– TLine2Inv.cir (located in DP_DIR/OCS/Examples/TLINE)
– TLine2Inv.nms (located in DP_DIR/OCS/Examples/TLINE)

MTransLine.cir describes the circuit from Fig. 8.7 with 9 capacitors and 20
resistors. It has two external variables (dimension of u in (8.13)) and 18 internal
variables (dimension of x in (8.13)).
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MTransLine.m builds the local system matrices. It takes as input parameter
a string NonReduced or Reduced. If former, the system (8.13) is built. If latter,
first the system (8.13) is built and then there is a call to MOR for ANSYS with:

reducing the internal states down to 3. Reduced matrices are computed by projecting
the original ones as follows:

and the system (8.15) is built.
TLine2Inv.cir describes the circuit from Fig. 8.17. It contains a sinusoidal

voltage source with an DC offset of 1.5 V, two inverters and a single transmission
line from the template MTransLine.m. The call to transmission line is as follows:

where the string NonReduced can be replaced with Reduced.
TLine2Inv.nms contains the names of the circuit outputs of interest, as

follows:

One can run the simulation of TLine2Inv.cir (either with or without the
reduction of the transmission line) by running the Octave script runme.m which
is located in the directory DP_DIR/OCS/Examples/. It is first necessary to
manually set the path to AMOR interface by executing
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within the DP_DIR/AMOR directory. Calling runme within Octave yields:

and it is necessary to chose the TLINE example (number 12). The transient simula-
tion is performed and the function UTLplotbyname from DP_DIR/OCS/UTL is
used to plot the variables specified in the TLine2Inv.nms. Figure 8.18 shows
the four node potentials over 0.2 s of transient simulation. If we now change
the parameter within the TLine2Inv.cir into “Reduced”, we can observe and
compare the outputs (nodal voltages) with and without reduction. It is possible to use
the MOR post-processing functions from the MOR_Utilities module, which were
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Fig. 8.18 Outputs of the circuit from Fig. 8.17. Transient simulation was done with the OCS
module of the COMSON Demonstrator Platform
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described in the previous section. We observe the nodal voltage Vout. The following
code saves the solution with and without reduction of the transmission line:

We plot full and reduced output and the relative error between the both with:

where in text file TransLineOutputs.names we just write the name V_out.
The resulting plots are displayed in Fig. 8.19. As expected, the change in the output
voltage is negligible. As the reduction was performed with MOR for ANSYS,
which implements Arnoldi algorithm, and as we have chosen 0 Hz as an expansion
point, the steady-state phases are better approximated than the transient steps (see
Fig. 8.19, bottom).

8.3 The Demonstrator Platform as a Development Tool
for Research

In the following it will be shown how the CoMSON Demonstrator Platform can
be used as an effective tool to prototype new algorithms handling different physical
effects in one single framework. In particular the development of a method that
allows a self consistent electro-thermal simulation of a n-channel power MOS-FET
will be taken into account as a case study.

A description of the physical features of this device is therefore given in
Sect. 8.3.1 where the main challenges arising during its design phase are also
highlighted. The state-of-the-art modeling procedures actually adopted in industry
to cope with these challenges will be then introduced, showing the lack of a method
that permits to simulate consistently both the thermal and electrical behavior of
the MOS-FET. To overcome this limit an extension of the model is proposed that
makes use of a PDE-based thermal element to account for heat-diffusion at the
system level (see [1, 14–16]). The reference implementation of the novel method
inside the CoMSON Demonstrator Platform framework will be analyzed into the
details in Sect. 8.3.2. It will be shown first how the modular high-level design
allows for an extreme flexibility in defining methods and solution procedures to
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Fig. 8.19 Vout from circuit in
Fig. 8.17 (top) in case when
the transient simulation was
run without the reduction of
the TLINE (FullOutputVolatage)
and with the reduction of the
TLINE (ReducedOutputVolt-
age). Relative error between
the both (bottom)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.05 0.1 0.15 0.2

ReducedOutputVoltage
FullOutputVoltage

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.05 0.1 0.15 0.2

R
el

at
iv

e 
er

ro
r [

%
]

Time [s]

Vout

Vout

Time [s]

be used. Then the test-driven development (TDD) philosophy adopted during the
implementation will be thoroughly exemplified, showing the progression from basic
unit tests (class “A”) to simple academic examples requiring the full-functionality of
the algorithm (class “B”) reaching finally the height of a real-life benchmark (class
“C”). Simulation results obtained on this final problem will be then adequately
illustrated and commented in Sect. 8.3.3.

8.3.1 Class “C” Benchmark: n-Channel Power MOS-FET

In this section is presented the “real-life” application upon which the algorithm
proposed in [1, 16] will be tested to ensure its effectiveness. The choice to introduce
the final benchmark at this stage reflects the actual development process of the
CoMSON Demonstrator Platform, where a combination of top-down and bottom-
up strategies was employed to correctly structure the modules and dimension
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Fig. 8.20 Sketch of the
cross-section of the power
n-channel MOS-FET: only
one metal layer and one
polysilicon layer are
employed during the
fabrication process

DrainBody
Source
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Poly-silicon gate

the Demonstrator Platform itself. The correct identification of a final benchmark
constitutes, within this framework, the starting point. This full-size problem will
be then analyzed and divided into smaller parts in Sect. 8.3.2 where it will be also
shown how already existing modules may be possibly re-used to provide specific
functionalities.

8.3.1.1 Physical Features of the n-Channel Power MOS-FET

The device taken into account in the following is a vertical n-channel MOS-FET,
mainly used for power applications [9]. As it can be seen in Fig. 8.20 (where a
sketch of its cross-section is depicted) the drain contact is placed at the bottom of
the die. To maintain the lowest possible production cost, the technology employed
for the fabrication of the power MOS-FET exploits only one metal layer and one
polysilicon layer. Source and body are thus short-circuited through the source
metal layer (to avoid the turn-on of the parasitic npn bipolar transistor), while gate
interconnects are laid-out using polysilicon. It should be stressed that the device
surface is almost completely covered by source metal, with the only exception of
a few regions where the metal layer is exploited to provide low-resistance gate
connections.

The device layout (Fig. 8.21) is constituted by several elementary transistors cells
connected in parallel to achieve the high current handling capability typical of power
devices. The active device regions are organized in rows (each of which is a single
wide-channel MOS-FET) as the polysilicon interconnects follow horizontal paths
from the external gate metal. Due to the poor conductive property of the polysilicon
layer, gate metal fingers are used to provide an alternative path between the gate pad
and the elementary cells. However, as space has to be left toward the center to allow
connection of the source bond wires, these fingers cannot extend from the upper
to the lower part of the layout: some elementary cells are thus left without a direct
metal connection.
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Fig. 8.21 Schematic layout of the power n-channel MOS-FET. Several active cells are connected
in parallel. The external gate signal reaches every cell passing through metal fingers (low
resistance) or polysilicon interconnects (high resistance)

When the power device operates at low frequencies, the effect on the elementary
cells of a polysilicon gate connection instead of a metal one can be safely neglected
as in this case the delay of the signal travelling through the polysilicon layer is
small compared to the rise and fall times of the input. Anyhow, this condition does
not hold when the switching frequencies get higher (as it is the case of many power
application). In fact, due to polysilicon high electrical resistance, the signal given at
the gate pad reaches some elementary cells with a delay that causes a non-uniform
current distribution and the presence of a temperature gradient across the device
surface.

8.3.1.2 State-of-the-Art Modeling and Simulation Procedures

The development of new models for power electron devices has been an active area
of research in the last years, due mainly to the increasing use of these type of devices
in many applications [11, 34, 40]. As the main interest of end users is in optimizing
the performance of the circuitry driving the power stage rather than improving the
device itself, the most part of these new models is “only” able to reproduce with a
reasonable degree of accuracy the static or switching characteristic of the device as
observed from external pins [4, 39, 46]. Anyhow they do not provide information
on what happens inside the device, and therefore they are not suitable to be used in
computer aided tools to improve the layout design of power devices themselves.

To overcome this weakness in [9] a lumped-element distributed modeling
approach was introduced, which allowed to observe local maxima in the current
density distribution. The main idea was to exploit the concepts employed for high
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frequency modeling of microstrips to describe the electrical behavior of polysilicon
and metal interconnects of a power device. Hence the layout design information is
used to generate a scalable electrical network feasible to be analyzed by any spice-
like circuit simulator. The resulting netlist has a hierarchical structure based upon
three basic building blocks, representing respectively:

– Metal over passive area,
– Polysilicon over passive area,
– Polysilicon over active area.

A thorough description of the model is reported in [9].
In [32] the model proposed in [9] was extended to account also for the self-

heating of the cells. Still the dependence of the electrical characteristics of each cell
on the dissipated power remains purely local, and thus mutual-heating effects are
not being caught.

8.3.1.3 Extension: PDE-Based Electro-thermal Circuit Element

To allow the description of non-local heating effects the model presented in [9, 32]
will be complemented in the following by the introduction of a PDE-based electro-
thermal circuit element [13]. The general idea of this further extension is presented
in Fig. 8.22. Starting from available layout and/or package geometry information,
a thermal element model is derived directly from PDEs describing heat-diffusion
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Fig. 8.22 Automated design flow for the electro-thermal simulation of ICs. A thermal element
model is automatically constructed from available circuit schematic and design layout, permitting
the set-up and simulation of an electro-thermal network that accounts for heat diffusion at the
system level
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at the system level. By imposing suitable integral conditions this element is casted
in a form analogous to that of usual electrical circuit elements, so that its use in
a standard circuit simulator requires only the implementation of a new element
evaluator. This permits to describe possibly non-linear heat-diffusion phenomena
on 2D/3D domains without modifying the main structure of the circuit solver. The
mathematical model standing at the base of this approach is thoroughly treated in
Chap. 2.

A particular spatial discretization scheme [17, 23, 28–30, 53], based on the use
of completely overlapping non-nested meshes, was chosen to cope with multiscale
issues. This method has two main advantages for the application at hand:

1. It allows to cover the whole thermal domain with a uniform triangulation without
having to excessively refine the mesh to capture small geometrical features,

2. It allows to generate a mesh for each circuit element only once and deploy it
at different positions on the IC with a significant time improvement during the
mesh generation phase.

The latter feature may also give performance gain if an optimization of the relative
device placement is to be performed. In the end the adopted algorithm resembles
what it is known in literature as a brute-force approach [12], the only difference
being that in this case no a-priori interpretation in terms of a circuit netlist is
necessary for the discretized PDEs.

8.3.2 Implementation and Development Procedure

In a research project it is normal and desirable that software requirements undergo
extensive modifications as development proceeds. In fact, rigidly defining even
such basic things as data structures and interfaces at initial stage could severely
limit possible future extensions. Nevertheless developers need clear indications to
structure a software and start coding without loosing focus on the application. The
definition of appropriate benchmarks constitutes an effective way to provide these
indications, as it enables a unique and non controversial way of assessing validity
of design choices while it allows for an extreme flexibility in implementation. In the
following it will be shown how this theoretical principle was applied to prototype
the algorithm briefly introduced in Sect. 8.3.1.3 within the CoMSON Demonstrator
Platform framework.

8.3.2.1 High-Level Design

It is possible to see from the definition of the mathematical model presented in
Chap. 2 that the implementation of the algorithm of interest requires functionalities
that are typical either of circuit simulators, or of finite-element solvers. TheOctave
Circuit Simulator module (OCS) provides CoMSON Demonstrator Plat-
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BIM

Fig. 8.23 High-level design for the implementation of the algorithm presented in Sect. 8.3.1.3.
The basic features required by a circuit simulator are provided by OCS. To implement the PDE-
based electro-thermal element a new module (ETH) will be designed with the same interface as
OCS element evaluators (SBN)

form with the former features, while Box Integration Method module
(BIM) provides the latter.

To implement the PDE-based electro-thermal element a new module (ETH)
has therefore been devised to provide the necessary link between these different
capabilities (see Fig. 8.23). The only constraint imposed by this decision is that the
element evaluator should fit the structure:

thoroughly described in the Intermediate File Format specifications [20].

8.3.2.2 Early Stage: Class “A” Test Cases

In the early stage of the implementation it is important to ensure the correctness
of each module subroutine as soon as it is coded. This can be done exploiting
octave testing capabilities that permits to insert test at the end of the function
source code [38]. Notice that this feature provides the Demonstrator Platform with
a simple but effective strategy to perform regression tests.

8.3.2.3 Intermediate Stage: A Class “B” Test Case

Once the designed module has been implemented and its basic functionalities have
been assessed through class “A” test cases, a preliminary validation of the method
is obtained applying it to a simple problem of academic size. In the case at hand
the choice was to simulate the response of the CMOS-inverter circuit depicted in
Fig. 8.24 to a 1 kHz sinusoidal input signal [14, 15]. The two MOS-FETs appearing
in the schematic are modeled by a simplified version of the classic Shichman-
Hodges model [47] with an added temperature pin (the actual parameters used in
the simulations are collected in Table 8.2).
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Fig. 8.24 CMOS-inverter electro-thermal network. Inside the thermal element the 2D mesh used
for the approximation of heat diffusion on a distributed domain is shown

Table 8.2 Shichman-Hodges MOS-FET model parameters for the CMOS-inverter simulation

W=L �0 	0 Vth rd Cgb Cgd Cgs Csb Cdb

nMOS 5 105 300 0:1 106 10�11 10�12 10�12 10�12 10�12

pMOS 5 105 300 �0:1 106 10�11 10�12 10�12 10�12 10�12

The impact of temperature is represented by a temperature dependent carrier
mobility:

�.	/ D �0

�
	

	0

��3=2
; (8.26)

where � denotes the electron mobility for the n-channel transistor M4 and the hole
mobility for the p-channel transistor M3 and �0 is the value of � at the reference
temperature 	0. The total dissipated Joule-power is given by the simple expression:

P D idsvds ; (8.27)

where ids denotes the current flowing in the controlled current source appearing in
the transistor model and vds is the drain-to-source voltage.

The thermally active regions on the IC substrate are taken to roughly correspond
to the channel region of the transistors. Comparing Figs. 8.25 and 8.26 it can be
seen that, while maintaining the same mesh refinement in the channel regions, the
patched mesh greatly reduces the number of unknowns with respect to a standard
conforming triangulation. Linear heat-diffusion is supposed to properly describe
thermal effects on the layout (Table 8.3).

The plot in Fig. 8.27 shows the voltage waveforms and the corresponding values
of the device temperatures. As it is expected the junction temperatures 	4 and 	5 are
close to the ambient temperature value 	6 D 300K when the output is either in the
ON or in the OFF state, as in such situation only small leakage currents flow in the
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Fig. 8.26 Patched triangulation of 2D chip-layout: 339 nodes, 550 elements and 237 unknowns



494 G. Denk et al.

Table 8.3 Heat diffusion
equation parameters for the
CMOS-inverter simulation

Ocv O
 Oc Ǫ
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Fig. 8.27 Node voltages and junction temperatures plotted against time for two periods of an input
sine voltage at the frequency of 1 kHz

devices, while the current flowing during the ON-to-OFF or OFF-to-ON transitions
generates a relatively more significant heating. Figure 8.28 depicts the temperature
distribution in the IC substrate at different instants during an OFF-to-ON transition.
It can be noted that the heat produced mainly by the p-channel device (above),
diffuses through the substrate and affects the n-channel device (below).

8.3.3 Simulation Set-Up and Results on the Class “C”
Benchmark

A transient simulation of the turn-off switching of the device introduced in
Sect. 8.3.1 is performed as a final validation (Fig. 8.29). This benchmark constitutes
a major step toward a real industrial test case, due to its complexity that greatly
exceeds the one of usual academic problems. The regularity of the n-channel MOS-
FET layout permits easily to show an important characteristic of the method, that
is to say the possibility to replicate a fine mesh associated with a thermally active
area at different positions in the die (Fig. 8.30). This feature allows for the creation
of a library of electro-thermal devices in which a pre-computed mesh of their
active region is included, diminishing thus the computational effort during the mesh
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Fig. 8.28 Subsequent snapshots of the distributed temperature field taken during the first switch-
ing phase. The heat produced mainly by the p-channel device (above), diffuses through the
substrate and affects the n-channel device (below)

+
−

RD = 88Ω

RG = 1Ω

VDD = 400V

VG = 10V 0V

power
MOS-FET

Fig. 8.29 Circuit used to simulate the turn-off switching of the power n-channel MOS-FET. The
input signal switches at t D 3� 10�9 s

generation phase and possibly enabling a performance gain if an optimization of the
relative device placement is to be performed.

The electrical behavior of the power n-channel MOS-FET is described by the
same lumped-element distributed approach presented in [9]. The electrical network
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Table 8.4 Basic cell parameters employed in the simulation of the n-channel MOS-FET turn-off
transient. See [9] for more details

R (series) L (series) R (ground) C (ground)

Metal (passive) 10 10�15 1012 10�13

PolySi (passive) 100 10�6 1012 10�12

PolySi (active) 100 10�6 – –

is scaled to contain 24� 24 active cells and 6metal fingers. A simplified Shichman-
Hodges model with an added temperature pin is used for each elementary transistor
cell. Notice that the values of the parameters gathered in Tables 8.4 and 8.5, though
fitted to provide realistic results, do not stem from any existing technology.

Thermal effects are supposed to be adequately described by a linear heat-
diffusion equation, whose parameters are given in Table 8.6.
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Table 8.5 Parameters of the simplified Shichman-Hodges MOS-FET model used to describe the
behavior of each active cell

W=L �0 	0 Vth rd Cgb Cgd Cgs Csb Cdb

2:2 106 300 0:5 109 10�12 10�15 10�15 10�15 10�15

Table 8.6 Parameters of the thermal element employed in the simulation of the power n-channel
MOS-FET turn-off

Ocv O
 Oc Ǫ
10�4 0:02 1;000 4 � 104
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Fig. 8.31 Total dissipated power and mean temperature plotted against time for a turn-off
transient. The sampled points refer to the snapshots presented in Figs. 8.32 and 8.33. A simple
backward Euler scheme was adopted to time discretize the coupled system

Figure 8.31 shows the total dissipated power and the mean temperature of the
device plotted against time. As expected to a lowering of the power corresponds a
cooling of the device; however these two effects exhibit different relaxation times.
The power densities and junction temperatures of the cells are shown respectively in
Figs. 8.32 and 8.33 for six different time-points defined in Fig. 8.31. It can be clearly
seen a delay in the propagation of the signal from the gate-pad in the lower part of
the die to the single cells, and the presence of an hot-spot in the central upper part of
the die for t D t2 and t D t3. Moreover the presence of a non-negligible temperature
gradient over the device area is detected at times t D t1 and t D t2. Furthermore the
different spatial distribution of heat density and temperature are an indication that
non-local effects may not be negligible in estimating the device performance.
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Fig. 8.32 Snapshots of the active cell power densities at the time points t1, t2, t3, t4, t5, and t6
defined in Fig. 8.31
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Fig. 8.33 Snapshots of the active cell junction temperatures at the time points t1, t2, t3, t4, t5, and
t6 defined in Fig. 8.31



500 G. Denk et al.

References

1. Alì, G., Bartel, A., Culpo, M., de Falco, C.: Analysis of a PDE thermal element model for
electrothermal circuit simulation. In: Roos, J., Costa, L. (eds.) Proceedings of Scientific
Computing in Electrical Engineering (SCEE) 2008, Espoo. Mathematics in Industry, vol. 14,
pp. 273–280. Springer (2010)

2. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A.,
Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK Users’ Guide, 2nd
edn. Technical report, SIAM, Philadelphia (1995)

3. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia
(2005)

4. Aubard, L., Verneau, G., Crebier, J., Schaeffer, C., Avenas, Y.: Power MOSFET switching
waveforms: an empirical model based on a physical analysis of charge locations. In: IEEE
33rd Annual Power Electronics Specialists Conference, PESC 02, Cairns, vol. 3, pp. 1305–
1310 (2002)

5. Bai, Z.J., Meerbergen, K., Su, Y.F.: Arnoldi methods for structure-preserving dimension
reduction of second-order dynamical systems. In: Benner, P., Mehrmann, V., Sorensen,
D. (eds.) Dimension Reduction of Large-Scale Systems, Oberwolfach. Lecture Notes in
Computational Science and Engineering, vol. 45, pp. 173–189 (2005)

6. Bechtold, T., Hohlfeld, D., Rudnyi, E.B., Guenther, M.: Efficient extraction of thin film thermal
parameters from numerical models via parametric model order reduction. J. Micromech.
Microeng. 20(4), 045030 (2010)

7. Bechtold, T., Rudnyi, E.B., Korvink, J.G.: Error indicators for fully automatic extraction of
heat-transfer macromodels for MEMS. J. Micromech. Microeng. 15(3), 430–440 (2005)

8. Bechtold, T., Rudnyi, E.B., Korvink, J.G.: Fast Simulation of Electro-thermal MEMS.
Springer, Berlin/Heidelberg (2006)

9. Biondi, T., Greco, G., Allia, M., Liotta, S., Bazzano, G., Rinaudo, S.: Distributed modeling of
layout parasitics in large-area high-speed silicon power devices. IEEE Trans. Power Electron.
22(5), 1847–1856 (2007)

10. Boisvert, R.F., Pozo, R., Remington, K.A.: The Matrix Market exchange formats – initial
design. http://math.nist.gov/MatrixMarket/formats.html

11. Chen, Y., Lee, F., Amoroso, L., Wu, H.P.: A resonant MOSFET gate driver with complete
energy recovery. In: Proceedings IPEMC 2000 the Third International Power Electronics and
Motion Control Conference, Beijing, vol. 1, pp. 402–406 (2000)

12. Codecasa, L., D’Amore, D., Maffezzoni, P.: Compact modeling of electrical devices for
electrothermal analysis. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 50(4), 465–476
(2003)

13. Culpo, M.: Numerical algorithms for system-level electro-thermal simulation. Ph.D. thesis,
Bergische Universität Wuppertal (2009)

14. Culpo, M., de Falco, C.: Dynamical iteration schemes for coupled simulation in nanoelectron-
ics. In: Proceedings in Applied Mathematics and Mechanics, PAMM 2008. Wiley (2009)

15. Culpo, M., de Falco, C.: Dynamical iteration schemes for multiscale simulation in nanoelec-
tronics. In: Proceedings in Applied Mathematics and Mechanics, PAMM 2008. Wiley (2009)

16. Culpo, M., de Falco, C., Denk, G., Voigtmann, S.: Automatic thermal network extraction
and multiscale electro-thermal simulation. In: Roos, J., Costa, L.R.J. (eds.) Scientific
Computing in Electrical Engineering SCEE 2008, Espoo. Mathematics in Industry. Springer,
Berlin/Heidelberg (2010)

17. Culpo, M., de Falco, C., O’Riordan, E.: Patches of finite elements for singularly-perturbed
diffusion reaction equations with discontinuous coefficients. In: Fitt, A., Norbury, J.,
Ockendon, H. (eds.) Proceedings of the 2008 ECMI Conference, London. Mathematics in
Industry. Springer (2009)

18. Datta, B.N.: Numerical Methods for Linear Control Systems. Elsevier Incorporation,
Amsterdam/Boston (2004)

http://math.nist.gov/MatrixMarket/formats.html


8 COMSON Demonstrator Platform 501

19. Davis, T.A.: UMFPACK. http://www.cise.ufl.edu/research/sparse/umfpack
20. de Falco, C.: Specification of an intermediate file format for the CoMSON demonstrator

platform. Technical report, Bergische Universität Wuppertal (2006)
21. de Falco, C., Denk, G., Schultz, R.: A demonstrator platform for coupled multiscale simulation.

In: Ciuprina, G., Ioan, D. (eds.) Scientific Computing in Electrical Engineering (SCEE) 2006,
Sinaia. Mathematics in Industry, pp. 63–72. Springer (2007)

22. de Falco, C., Gatti, E., Lacaita, A., Sacco, R.: Quantum-corrected drift-diffusion models for
transport in semiconductor devices. J. Comput. Phys. 204(2), 533–561 (2005)

23. de Falco, C., O’Riordan, E.: A patched mesh method for singularly perturbed reaction-
diffusion equations. In: Hegarty, A., O’Riordan, N.K.E., Stynes, M. (eds.) Proceedings of the
International Conference on Boundary and Interior Layers – Computational and Asymptotic
Methods, Limerick. Lecture Notes in Computational Science and Engineering, vol. 69.
Springer (2009)

24. de Falco, C., O’Riordan, E.: Interior layers in a reaction-diffusion equation with a discontinu-
ous diffusion coefficient. Int. J. Numer. Anal. Model. 7(3), 444–461 (2010)

25. de Falco, C., Sacco, R., Jerome, J.: Quantum corrected drift-diffusion models: solution fixed
point map and finite element approximation. J. Comput. Phys. 228, 1770–1789 (2009)

26. Freund, R.: Krylov-subspace methods for reduced-order modeling in circuit simulation. J.
Comput. Appl. Math. 123, 395–421 (2000)

27. Glover, K.: All optimal Hankel norm approximation of linear multivariable systems and their
L-infinity error bounds. Int. J. Control 36, 1145–1193 (1984)

28. Glowinski, R., He, J., Lozinski, A., Rappaz, J., Wagner, J.: Finite element approximation of
multi-scale elliptic problems using patches of elements. Numer. Math. 101(4), 663–687 (2005)

29. Glowinski, R., He, J., Rappaz, J., Wagner, J.: Approximation of multi-scale elliptic problems
using patches of finite elements. C. R. Math. Acad. Sci. Paris 337(10), 679–684 (2003)

30. Glowinski, R., He, J., Rappaz, J., Wagner, J.: A multi-domain method for solving numerically
multi-scale elliptic problems. C. R. Math. Acad. Sci. Paris 338(9), 741–746 (2004)

31. Graf, M., Barrettino, D., Taschini, S., Hagleitner, C., Hierlemann, A., Baltes, H.: Metal oxide-
based monolithic complementary metal oxide semiconductor gas sensor microsystem. Anal.
Chem. 76, 4437–4445 (2004)

32. Greco, G., Rallo, C.: XA integration in custom power MOSFET analysis flow. In: SNUG 2008
Proceedings, Bangalore (2008)

33. Hohlfeld, D., Zappe, H.: Thermal and optical characterization of silicon-based tunable optical
thin-film filters. J. Microelectromech. Syst. 16(3), 500–510 (2007)

34. Hong, S., Lee, Y.G.: Active gate control strategy of series connected IGBTs for high power
PWM inverter. In: Proceedings of the IEEE 1999 International Conference on Power
Electronics and Drive Systems, PEDS ’99, Hong Kong, vol. 2, pp. 646–652 (1999)

35. IMTEK: Oberwolfach model reduction benchmark collection. http://portal.uni-freiburg.de/
imteksimulation/downloads/benchmark

36. Liu, Y., Anderson, B.: Singular perturbation approximation of balanced systems. Int. J. Control
50, 1379–1405 (1989)

37. NXP: SiMKit library. http://www.nxp.com/models/source/
38. Octave: homepage. http://www.gnu.org/software/octave/
39. Pagano, R.: Characterization, parameter identification, and modeling of a new monolithic

emitter-switching bipolar transistor. IEEE Trans. Electron Devices 53(5), 1235–1244 (2006)
40. Raciti, A., Belverde, G., Galluzzo, A., Greco, G., Melito, M., Musumeci, S.: Control of the

switching transients of IGBT series strings by high-performance drive units. IEEE Trans. Ind.
Electron. 48(3), 482–490 (2001)

41. Romano, V.: Non-parabolic band hydrodynamical model of silicon semiconductors and
simulation of electron devices. Math. Methods Appl. Sci. 24(7), 439–471 (2001)

42. Romano, V., Rusakov, A.: 2D numerical simulation of electron-phonon MEP based model for
semiconductors. In: ICTT-21, Torino (2009)

http://www.cise.ufl.edu/research/sparse/umfpack
http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
http://www.nxp.com/models/source/
http://www.gnu.org/software/octave/


502 G. Denk et al.

43. Romano, V., Rusakov, A.: Numerical simulation of semiconductor devices by the MEP
energy-transport model with crystal heating. In: Michielsen, B., Poirier, J.R. (eds.) Scientific
Computing in Electrical Engineering (SCEE) 2010, Toulouse. Mathematics in Industry,
pp. 357–363. Springer, Berlin/New York (2012)

44. Rudnyi, E.: Model reduction software. http://modelreduction.com/Software.html
45. Rudnyi, E.B., Korvink, J.G.: Model order reduction for large scale engineering models

developed in ansys. Lect. Notes Comput. Sci. 3732, 349–356 (2006)
46. Schroder, S., De Doncker, R.: Physically based models of high power semiconductors

including transient thermal behavior. IEEE Trans. Power Electron. 18(1), 231–235 (2003)
47. Shichman, H., Hodges, D.: Modeling and simulation of insulated-gate field-effect transistor

switching circuits. IEEE J. Solid-State Circuits 3(3), 285–289 (1968)
48. Silveira, L.M., Kamon, M., Elfadel, I., White, J.: A coordinate-transformed Arnoldi algorithm

for generating guaranteed stable reduced-order models of RLC circuits. In: Technical Digest
of the 1996 IEEE/ACM International Conference on Computer-Aided Design, pp. 288–294.
IEEE Computer Society, Los Alamitos (1996)

49. SLICOT: The control and systems library. http://www.slicot.org
50. Spannhake, J., Schulz, O., Helwig, A., Müller, G., Doll, T.: Design, development and

operational concept of an advanced MEMS IR source for miniaturized gas sensor systems.
In: Proceedings of the IEEE Sensors Conference, Irrine, California, pp. 762–765 (2005)

51. Toledo, S., Chen, D., Rotkin, V.: TAUCS – a library of sparse linear solvers. http://www.tau.
ac.il/~stoledo/taucs

52. Tombs, M.S., Postlethwaite, I.: Truncated balanced realization of stable, non-minimal state-
space systems. Int. J. Control 46, 1319–1330 (1987)

53. Wagner, J.: Finite element methods with patches and applications. Ph.D. thesis, EPFL,
Lausanne (2006)

54. Woellenstein, J., Boettner, H., Plaza, J.A., Cane, C., Min, Y., Tuller, H.L.: A novel single chip
thin film metal oxide array. Sens. Actuators B: Chem. 93(1–3), 350–355 (2003)

http://modelreduction.com/Software.html
http://www.slicot.org
http://www.tau.ac.il/~stoledo/taucs
http://www.tau.ac.il/~stoledo/taucs


Chapter 9
eLearning in Industrial Mathematics with
Applications to Nanoelectronics

Giuseppe Alì, Eleonora Bilotta, Lorella Gabriele, Pietro Pantano, José
Sepúlveda, Rocco Servidio, and Alexander Vasenev

Abstract The main topic of this chapter is a detailed exposition of CoMSON’s
attempt to give a contribution in the synergetic process of integration of research
and training between Academia and Industry.

9.1 Introduction

In recent years, the use of new information and communication technologies
in educational context has promoted a large spreading of innovative electronic
learning environments (eLearning). The purpose of an educational environment is
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to support learning, but it can also be used for transfer of knowledge and training.
Several eLearning systems have been designed and developed to deliver educational
contents for different purposes: many postsecondary educational institutions and
universities offer entire degree programs via distance education; many companies
use distributed learning for internal training in order to control expenditures and
at the same time to promote/encourage a flexible and quick way of improving the
acquisition of knowledge and skills within a company.

Clearly, the importance of eLearning for training is directly proportional to
the speed of innovation of a specific field of application. In this chapter we
concentrate on eLearning in industrial mathematics, with application to micro- and
nanoelectronics. Microelectronics is a field characterized by high specialization and
high level of innovation. The rapid development of new microelectronic devices
and technologies requires new skills to keep up with the current technological
innovations. A possible strategy to face the worldwide competition is to adopt online
educational and training systems to improve quickly the learning competences of
the internal people. eLearning is currently used in microelectronic industry for
training of personnel, usually by means of eLearning courses provided by dedicated
companies.

A key aspect of training in microelectronics is its highly scientific content.
Innovation in microelectronics is strictly related to scientific and technological
research, usually performed in private research facilities, but also in collaboration
with universities. The role of university becomes especially relevant when the
innovation comes from joint university-industry research.

One of the main aims of the CoMSON (Coupled Multiscale Simulation and
Optimization in Nanoelectronics) project is to define and to develop a system
of eLearning in Industrial Mathematics with applications to Microelectronics, in
order to facilitate the exchange of information; to share resources, scientific and
educational materials; to create common standards; to facilitate the use of advanced
tools. The common idea of this project is to create a bridge able to fill the gap that
exists in the knowledge flow from University to Industry and vice-versa, in the field
of microelectronics above all when a stronger competition among the industries and
when the activities are covered by industrial secrets.

The main topic of this chapter is a detailed exposition of CoMSON’s attempt to
give a contribution in this synergetic process of integration of research and training
between Academia and Industry.

We start the chapter with an overview of the development of eLearning method-
ologies, and their application in microelectronics (Sect. 9.2).

Given the importance of the relationship between industry developing and
training, in the last years the European Union has funded several industrial projects
devoted to use eLearning methodologies as a new training strategy. The aim of
these projects was to design new platform architectures able to deliver advanced
courses by using information technology infrastructure. Then, another concurrent
goal of the current research in the eLearning field, concerns the development
of new methodologies for content creation. eLearning educational contents are
often a transposition in electronic form of the traditional didactical materials. This
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educational scheme implies a rigid user interfaces and then an unusable interactions
procedure. It is very important to ensure to the largest number of users the use of the
technological tools for educational purposes. Specifically, industrial and university
should collaborate to design and test new didactical modalities to deliver educational
contents by using eLearning tools. Clearly, the eLearning environments should take
into account the different cognitive style of the final users. But also, it is important
to assure that student’s interactions with the system interface are as natural and
intuitive possible. This could require a revision of the current interaction paradigm,
providing the designing of new adaptive Graphical User Interfaces (GUI).

Today research in the field of GUI design has achieved important successes. An
important aspect of the modern GUI is their customizability, which determines how
users interact with the system and the tasks they need to perform in the environment.
This design approach includes a strong relationship between learning cognitive
process and graphic designer, which must know the principal aspects of the learning
theory. Thus eLearning GUI must share cognitive aspects and didactical needs of the
final users, in order to support the learners during their learning tasks, rather than
being a mere use of advanced technologies. The GUI design process must be based
on educational models and outcomes that suggest how people learn with the support
of the technological tools. For instance, the integration of multimedia tools must
be carefully integrated in the didactical environment, in order to avoid cognitive
load problem that can affect the learning process. In fact, the use of eLearning
environments does not mean to reject the traditional teaching strategies, such as
simulation, cooperative work, experimental activity, and problem-based strategies.
Contrarily, an eLearning environment should integrate these teaching strategies, in
order to motivate the learner. In other words, to design an efficient and motivating
eLearning environment, it is important to focus on the needs and goals of the
students involved.

Sections 9.3 and 9.4, as an exemplification, illustrate the design and development
of the CoMSON platform. The design phase has represented an important challenge
for us, because we have identified the user requirements and then we have tried to
implemented a platform which could respond to their needs. Next, we have adopted
this methodology to design and implement the CoMSON information system,
whose architecture includes several services devoted to support both communication
and research activities.

One of the key ideas of CoMSON was to connect the information system and the
eLearning system with the simulation environment, by appropriate GUIs. During the
project’s activity, we have designed some prototypical GUI to connect the eLearning
system with the Demonstrator Platform (DP), which is an experimental platform
to execute microelectronics experiments. Thus we have tried to design the GUI
providing new and flexible functionalities, taking into account the traditional didac-
tical techniques with the usability user requirements. This activity is expounded in
Sect. 9.5.

The subsequent section deals with the learning content implementation. It is clear
that the current development of hardware and software have stimulated researchers
to experiment new teaching strategies. Such tools play an important role not
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only to organize and manage the educational contents, but also to deliver it by
using meaningful visual representations. Despite recent advantages on eLearning
technologies, yet much work remains to be done in terms of eLearning content
creation. So far, several methodological proposals to design eLearning educational
contents have been introduced and discussed. But, a didactical methodology to
create educational contents based on specific guidelines is not yet available. In
addition, the production of a high quality of learning material is important for
students that use eLearning environment.

A common idea among eLearning developers concern the content creation,
which takes much time and energy and often the course deliver insufficient
and appropriate didactical contents. Thus, the eLearning researchers’ community
challenge is to develop new didactical approaches, in order to improve the content
creation process. To this end, during the CoMSON project, we have tested and
proposed to the involved partners, to experiment a didactical methodology oriented
to create eLearning contents.

Taking into consideration the diversity of the content creation, the University
of Bucharest has developed a set of eLearning materials and courses based on
Bloom taxonomy. Their contents included not only theoretical description of the
numerical optimization, but also practical applications and pseudo-code to test
problems and models. The theoretical aim was to introduce to the students the
optimization methods, giving them a well understanding of the algorithms. Tutorial
documentation and other didactical material were delivered to the students as
cognitive support to improve their skills.

Section 9.6 ends with the presentation of a document which was distributed
among the participants to CoMSON, providing some hints and suggestions to
turn available didactical material into seminal eLearning courses. The outcome
of this strategy for obtaining learning contents was not promising. Indeed, in our
experience a dedicated financial effort is needed specifically for learning contents
creation, and this possibility of investment was not available within the scope of the
project, whose main aim was research and training.

For this reason, the last part of the eLearning activities within CoMSON took
to a different view, exploring the possibility of using a blended learning approach.
This methodological approach, described in Sect. 9.7, was based on Problem-Based
Learning (PBL) teaching strategies. In addition, the PBL consider the assessment as
integral part of the students’ learning process.

Thus to test this methodology we designed and performed two empirical ses-
sions, whose aim was to involve University students’ to create educational contents.
All the students worked in groups and their developed specific topics according to
the course programme. At the end of the course, the teacher evaluated the students’
project analysing the quality of the educational contents. In this phase, we did not
evaluate the educational value of the developed contents, from a learning standpoint
for other students.

In Sect. 9.8 we describe the platform evaluation, commenting on the results of a
survey conducted on the actual users of the CoMSON platform. According to the
CoMSON project aims, we evaluated the information system architecture designed
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and developed. The basic questions concerned to know the user opinions’ to use
about the communication tools (e.g., mail, eLearning platform, etc.) used during the
CoMSON project activities.

Finally, we underline some perspectives for future work. Recently, a number of
new eLearning applications have been developed. The future challenge is to design
and implement advanced eLearning functionalities based on GUI that provide
easy interaction modalities attracting the students’ interest. Then future work in
the eLearning field, not only for microelectronics applications, is to address the
problems concerning the didactic effectiveness of the eLearning applications and
new procedure to create educational contents.

9.2 An Overview on eLearning

9.2.1 An Historic Perspective

eLearning, as we know it, is a relatively recent methodology. Nevertheless, its roots
go back to the beginning of last century. The first teaching machines were developed
by the U.S. psychologist Sidney Pressey in the early 1920s [62]. These tools were
based on a very simple technology which included the submission of applications
to the students, the assessment of the answers’ correctness and the subsequent
re-submission of the same questions in case of errors. The student’s behavior was
modified by the feedback obtained from the machine, as long as they would acquire
an accurate knowledge of the contents.

From 1970 and until the early 1980s, Computer-Assisted Instruction (CAI)
became greatly widespread [43]. CAI systems were based on exercises that included
“drill and practice”, tutorials and Intelligent Tutoring Systems (ITS). In these
systems, the computer was programmed to teach students to acquire specific
knowledge and skills. For each answer, correct or wrong, subjects received a
feedback that could be either textual or graphical, such as a smile or an explosion.
To acquire knowledge and skills to the highest level, it was necessary to overcome
the lower levels to get to the higher ones [50]. These forms of learning were heavily
influenced by the behaviorist theories (based on the stimulus-response experimental
paradigm), that were unable to explain, or to encourage, the complex forms of
human thinking needed to learn the meanings, to solve problems, to transfer skills
to new situations, generate new ideas, and so forth.

More sophisticated was the ITS, a particular form of CAI system, developed
between 1980 and 1990 by researchers of Artificial Intelligence [56] and dedicated
to simulate problem-solving tasks, decision making strategies, etc. Specifically, an
ITS is an educational software that records the students’ work and gives back them a
specific feedback. The way in which a student performs a specific task is compared
with an expert algorithm that monitors the user’s behaviour. When the ITS detects
a discrepancy in the student’s learning performance, it proposes an appropriate
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tutorial as educational support. Since the ITS collects information on the students’
performances, it can evaluate the work done and provide individualized instructions
in the problem solving strategies, suggesting them which topics to improve. Thus
the ITS represents a first step towards a modern use of the technologies in the
educational field [66].

The broad development of the digital technologies have influenced the way in
which people access and manage both information and knowledge. This process has
radically modified the conventional concepts of education and training, promoting
new teaching methodologies. All these innovations have radically changed the
current educational and training viewpoints. eLearning use the modern Information
and Communication Technology (ICT) for learning purposes. ICT have shown a
great potential in providing new tools and services to support traditional educational
approaches. Strictly speaking, eLearning is a way of teaching and learning based
on the delivery of online educational contents, via all available electronic media,
including Internet, intranets, extranets, satellite broadcasts, audio/video tapes,
interactive TV, and CD-ROMs. Thus, technology is used for designing, distributing,
managing, spreading, and assessing training by carrying out personalized educa-
tional paths [72].

Web-based instruction studies have given considerable attention to flexible
curricula, in order to provide adaptable and personalized learning programs [45].
Specifically, curriculum sequencing aims at designing and delivering optimal
students’ learning paths. This is useful since every learner has different background
profile, preferences, and learning goals [28]. In this perspective, eLearning concerns
the computer-based implementation of an educational system, where teacher and
learner work together to achieve a common educational goal. In order to improve,
from a cognitive point of view, the learning process using eLearning systems
it is necessary to consider different characteristics, such as student’s cultural
background, technical and software equipments, and cognitive abilities of the
students.

In the more recent years many educational systems and didactic approaches have
been developed in the eLearning field, aimed at supporting students’ interaction with
digital educational materials [24]. These systems are based on adaptive algorithms
that analyzing the subject’s cognitive profile are able to create personalized learning
paths. In an educational adaptive system, the optimal learning path aims at
maximizing a combination of the learner’s understanding of the courseware and
the efficiency of learning.

The conceptual framework of eLearning can be summarized in the sentence “any
time, any place, anywhere”, that is, supporting students and teachers that live far
from schools or universities and then increasing the life-long education cycle. This
general program underlines a dramatic change in the traditional learning paradigm.
The foreseen new learning paradigms should make provision for [40, 61]:

• An active and participating role of learners.
• A strong sense of presence and belonging (groups, working communities, virtual

classrooms).
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• A personalization of the learning path, by means of an articulated system of
instrumental and human resources at disposal.

• A thorough exploitation of network hypertextuality as place, mean and social
environment of learning.

The core of eLearning is the platform for managing the distribution and the
use of educational material dedicated to training. An eLearning platform supports
administrative functions, such as student’s registration, assessment, and tracking
of user’s attendance (number of accesses, connection time, evaluation, and test
results, etc.). Along with these services, an eLearning platform should also have
interactive virtual classroom equipped with suitable tools [10]. A virtual classroom
is an interactive environment where users can interact in a synchronous way (e.g.,
videoconference, audio conference, chatting, etc.), and an asynchronous way (e.g.,
web pages, web forum, e-mail, document repository, etc.), or in mixed mode.
However, both communication modalities are available on Internet (e.g., streaming
video, streaming audio, etc.). In fact, the main characteristic of an eLearning system
is to overcome the obstacle of geographical location and to minimize the time
constrains [4, 6].

In recent years, many educational and enterprise institutions have adopted
eLearning systems to promote lifelong learning programme. This phenomenon has
been favored by the Internet era, the development of communication and network
technologies, the improvement of network bandwidth and quality, the real-time
transmission of high-quality video and audio contents. In spite of this technological
innovation, many studies underline that eLearning is still based on online newspaper
form and information transmission, and it fails to provide a higher level of learning
that would differentiate it and make it better than the classical classroom [23].

According to Alexander [3], four aspects should be considered to design a
successful eLearning system:

1. Students’ learning experiences.
2. Teachers’ strategies.
3. Teachers’ consideration and preparation.
4. Teaching/learning environment.

Chen and Zhang [17] underline that often individual differences, such as
background, goal, learning style, that exist among the learners are not taken into
account when an eLearning system is developed. In order to reduce the “cognition
overload” and disorientation, they have developed an eLearning architecture called
Adaptive Learning System, based on Learning Style and Cognitive State, able to
select the learning contents according to the learner’s cognitive style.

Numerous benefits come from eLearning. For instance, according to Kirschner
et al. [40] it increases the students’ skills improving their training and educational
strategies; the learner can study according to his/her own work place; the contents
are always available at a low cost because it is sufficient to have an Internet
connection. Among the eLearning disadvantages we can mention the lack of social
interaction, the high cost to assembly learning materials in a multimedia format,
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the high costs necessary to constantly update the contents and to provide tutorial
support, so that instructor and tutor may not always be available on demand, and so
forth. However, most of the aforementioned disadvantages can be overcome by the
blended learning approach, where different learning style are mixed.

Yongxing [78] reports a case study on blended learning, underling that the
latter modality of learning provides a good principle and idea for the choice of
learning methods when eLearning tools and environment become more and more
popular. Moreover, the methods of blended learning may vary from time to time,
place to place, person to person. Therefore, Kang and Fengli (2007) suggested
that the key of blended learning is to transfer knowledge to a “suitable” person,
in “appropriate” time, with “appropriate” technology, with “appropriate” teaching
style and “appropriate” e-teaching methods [38].

Another recent innovation concerns the emergence of social networks comput-
ing, which opens new opportunities for institutional learning. Social network tools
empower users to produce, publish, share, edit and co-create contents, offering new
opportunities in the learning field. According to Ala-Mutka [2] digital social net-
working offers new participative functions and new ways for cooperation supporting
and facilitating knowledge exchange and collaborative content production. All these
services are encapsulated in the Web 2.0 technology. Web 2.0 represent the second
generation of Internet-based services that facilitate the online collaboration among
users.

Universities and other educational institutions use social networking technolo-
gies as a strategy to discover new and innovative ways to enhance learning,
facilitating collaboration and knowledge exchange. So, Web 2.0 can really support
Universities and Companies to design and implement independent, autonomous and
personalized education systems – i.e., learners are able to set their own learning
goals, to develop critical thinking strategies and plan the cognitive strategies to
achieve these goals [33].

In last years many educational services have been developed. The aim of
these systems is to support both teachers and students, not only in the creation
and communication of educational materials, but also as an scientific setting to
experiment new didactical methodologies to enhance the learning process. For
example, Classroom 2.0 website, is a virtual social network environment for
teachers. It offers them help and advice to use in the classroom Web 2.0 tools
for students’ learning. Some of these services are discussion forum to exchange
ideas and didactical experiences, and other social tools to create interpersonal
relationships.

9.2.2 eLearning in Microelectronics Industry

So far we have discussed general concepts in eLearning. In the second part of this
section, we specialize these general concepts to the specific field of Microelectron-
ics.
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Microelectronics is a field characterized by high specialization and a high level of
innovation. By enabling technological innovation in other sectors, notably informa-
tion technology, communications, and manufacturing, its impact is both profound
and enduring. It is an innovative field which includes advanced technologies and
requires specific competences to control sophisticated software systems to design
and implement new devices [5, 6].

The development of professional and personal abilities in microelectronics is
more and more important not only for engineering students but also for human
resources that work in industry. Designers and researchers use daily software
applications for design, simulation and manufacturing electronic devices. In the last
years we have witnessed a rapid development of both new microelectronics devices
and technologies, changing the skills required by the technical personnel employed
in this field. Besides, international competition and global economy represent a
continuous pressure for microelectronics industry.

In this global scenario, the capacity to handle information, knowledge, and inno-
vation is central for microelectronics industry. To face this worldwide competition
many industries and companies have adopted advanced educational and training
strategies to rapidly improve the competences of the internal people. This strategic
choice involves substantial investments in human capital and active absorption of
technology, not only to introduce new best practice manufacturing system that
integrate automation, process and product innovation, but also to experiment new
educational solutions to optimize the learning activities of the internal resources.
Industrial organizations have the need to improve the internal training strategy
developing new educational environments.

Today training environments for web applications try to satisfy the above men-
tioned needs by developing new interactive educational tools satisfying not only the
industry needs but also the final user’s requests. The current educational approaches,
like constructivism, do not use all the potentialities of the web technologies to
create and manage didactical contents in a productive way. This limit comes from
the fact that the web environments do not always support the user needs from a
cognitive perspective. To overcome this limit, many organizations prefer to use
traditional didactical approaches, because their principal aim is to assure that the
human resources can change in a productive way, improving the competitiveness.

To support the industry needs, many software houses offer the industrial com-
panies not only software systems to design electronics circuit, but also educational
support by using web technologies. For instance, Cadence has developed a flexible
Virtual Classroom to train users in live training events. It is possible to attend virtual
lectures, participate in laboratory exercises, ask questions, and receive feedback
simulating the classroom didactical activities. Cadence virtual classroom offers the
users many educational opportunities that cover the main topics concerning design
and implementation in microelectronics, with the goal to facilitate the adoption
of Cadence solutions. Mentor Graphics is another company active in electronic
design automation which delivers didactical contents in microelectronics, by using
online learning with interactive hands-on activities. Virtual environments allow to
the subjects to manipulate virtual commands of the software interface, simulating
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real context applications. Virtual systems reproduce the software interface without
changing the visual organization.

Although both Cadence and Mentor Graphics have realized virtual educational
system devoted to the microelectronic learning, the educational functionalities of
these platforms are locked and cannot be easily customized.

However, microelectronics industries have been investing a lot of economic
resources to develop autonomously high educational systems that provide an
efficient learning environment. The integration into web of learning materials for
microelectronics is an ideal approach for training professional people to learn new
skills. In this process, the knowledge flows from University to Industry and vice-
versa is especially relevant. On the one hand, it is often apparent a mismatch
between what is usually taught in university courses in electronic engineering
and what are the real needs of microelectronics industry, and a direct contact
between University and Industry is beneficial to the quality of the university
education in microelectronics. On the other hand, University has an established
experience in education and training, which can be exploited for the setting of a
training environment for young employees in microelectronics Industry. Moreover,
Information and Communication Technology (ICT), and in particular eLearning,
can be an innovative bridge between Industry and University, enhancing an intrinsic
collaboration. This collaboration would ensure an effective transfer of knowledge,
integrating different perspectives of how engineering disciplines are coordinated in
both engineering and educational sectors.

In the last few decades, the European Union has supported this need for
information exchanges between University and Industry, funding many research
projects devoted to ICT applications in microelectronics, with the goal to design
and develop new educational materials and eLearning platform based on interactive
and multimodal environments.

For instance, the general objective of the project LIMA (Learning Platform
in Microelectronic Applications, 2003) was to design an eLearning system to
strengthen three leading educational centers in three dependent critical disciplines
of microelectronic design and test, with active support, guidance and feedback from
industry [59]. The resulting eLearning system is a web-based training platform with
the purpose to satisfy different user needs, applications and levels of extensions.
The main idea is to train people for conceiving, designing, verifying, and testing
electronics circuits and systems.

We mention also the project E-LIMM (E-Learning for Microelectronics Man-
ufacturing, 2004), which addressed the problem of the shortage of highly skilled
industrial staff in the microelectronics industry by creating high-quality training
and e-learning courses modules [58]. The goal was to apply new technologies such
as multimedia learning for training and further education of the people that work in
microelectronics manufacturing.

The project INETELE (Development of Multi-Media Teaching Material for
Interactive and Unified E-Based Education and Training in Electrical Engineering,
2006) has been carried out within the Leonardo da Vinci Programme funded by the
European Union, and involved eight universities from eight members states [36].
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The aim of this project was to create a set of multimedia educational material and
software for basic education in electrical engineering, by using simulated animation,
virtual laboratory and final exercises for students assessment.

Finally, we mention the project CoMSON, whose activities are documented in
the present handbook. As an outcome of the project CoMSON, STMicroelectronics
(Catania sales, Italy) has experimented new ways to create educational contents
for eLearning courses, to be used for internal training. Part of this work was done
in collaboration with University of Calabria (Italy). The educational contents are
based on existing materials, which were translated in electronic form. The realized
courses cover basic and advanced concepts, theory, practice and analysis used
for microelectronics applications. In our opinion, this experience shows a novel
perspective in the possible cooperation between Industry and University, related to
the creation and delivery of educational contents by using eLearning methodologies.

9.3 An Integrated Platform for Advanced Training
in Microelectronics

The goal of the project CoMSON was “to realize an experimental Demonstra-
tor Platform in software code, which comprises coupled simulation of devices,
interconnects, circuits, EM fields and thermal effects in one single framework.
It connects each individual achievement, and offers an adequate simulation tool
for optimisation in a compound design space” [21]. This simulation environment
would be complemented by an eLearning platform and a virtual working place.
The eLearning platform would connect academic institutions and microelectronics
companies, which collaborated together to the design of educational contents, to
be delivered by the platform. The learning contents would be created by standard
authoring software. This is advantageous because the system virtually supports any
kind of course material that can be stored inside the web server. The virtual working
place was conceived as an interactive environment where researchers from different
nodes of the CoMSON Consortium could perform joint work, at distance.

As is immediately apparent just from the synthetic statement of the general
objectives of the CoMSON project, this was a very ambitious objective, both
from a scientific and an educational viewpoint. As we have seen in the previous
section, many eLearning environments are available, and many vendors provide
courses specifically designed for microelectronics industry. The problem is that
most of these tools and training material are not flexible enough to cover at once
the wide range of topics concurring in real microelectronics applications, keeping
track of the most advanced research results. Moreover, the eLearning courses
are usually detached from the simulation environments actually used in the main
microelectronics industries.

For this last point, it is worth noting that microelectronics teaching generally
involves the use of equipment laboratory with software tools where learners can
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perform experiments and simulations. In many cases, eLearning environments lack
of these properties making problematic to teach scientific concepts. Usually, eLearn-
ing platform include just specific functions that partially support the students during
the learning process. For example, many eLearning systems deliver educational
contents using video streaming, without or with restricted interaction mechanism.
If this approach works well for many disciplines, in microelectronics education it is
more problematic to adopt these systems with a limited interaction level.

An eLearning environment devoted to microelectronic should include different
typologies of tools such as virtual or remote laboratory, interactive software systems
to design and perform experiments, simulations and an interactive evaluation
systems to assess the achieved learning. The eLearning system should monitor
how subjects interact with virtual tools during the following phases: design,
implementation and test of an electronic circuit. The system should also provide
the user a feedback of the interaction, suggesting how to rectify possible errors.

Today many software houses that operate in this sector are inclined to share
information using remote laboratories. A virtual remote laboratory is an extension
of a real environment. It allows to the users to interact with the interface of a
system, safeguarding them from possible risks. Recently, microelectronics web-
based virtual laboratory architectures have been developed that allow to simulate
activities very similar to the conventional laboratory setup. Students first design
the circuit and then use Internet to access the virtual laboratory to implement it.
Mohtar and collaborators [53] describe an example of virtual laboratory architecture
developed to design and test microelectronics circuits. This system includes a
realistic Graphical User Interface (GUI) that exhibits the properties of a real
laboratory environment. The visual manipulation of the circuit designed in the
previous sessions, can be freely compared with other circuits or move some
components with other to verify how the system work.

As a further example, we mention iLabs, a virtual remote laboratory developed
by the MIT and accessed through the Internet [52]. The virtual laboratory archi-
tecture includes many functionalities which expand the range of experiments that
students can perform during their undergraduate studies and not only. One of the
most interesting functionalities of iLabs is that it can be shared across universities
or across other institutions. One of these platforms simulates a virtual laboratory
devoted to microelectronics.

We are well aware that to realize a virtual education environment that includes
the above-mentioned functions is a difficult task, but not impossible. However, this
approach requires a considerable effort by the developers to design a virtual remote
laboratory able to simulate all the phases that are involved in the activities within a
real laboratory. To achieve these goals it is important to design GUIs able to comply
with different user interaction methods.

Traditional eLearning environments adopt simple user interfaces with restricted
interaction modalities. Actually, many eLearning platforms use a standard architec-
ture based on a predefined set of commands that allows the users to manage courses
and educational material. This approach is fine if a teacher uses an eLearning
platform as a content management system to organize the lectures and to give
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Fig. 9.1 Structure of the
platform

support to the students with educational material, like lecture notes, tutorials,
exercises, and so on. However, the recent findings in computer system and Human-
Computer Interaction allow to design new eLearning platforms oriented to the
microelectronics teaching. In this vision, virtual remote laboratory represent the
future challenge to create innovative eLearning system to teach microelectronics
contents.

As we have written at the beginning of this section, the CoMSON project has
made a serious attempt to tackle the above mentioned problems. In fact, during this
project, we designed an integrated platform devoted to the microelectronics industry.
The main idea was to start from a set of advanced, scientific, research problems,
intrinsically multidisciplinary, and with practical industrial relevance, trying to build
around them a platform which would enable students, or young employees, to be
properly trained. This platform includes three main components:

• Information system.
• eLearning system.
• Simulation environment.

All three main platforms components are integrated through Graphical User Inter-
faces. Figure 9.1 shows the interconnection among the components of the platform
architecture designed to satisfy the project needs.

In the remaining of this section we describe the methodological procedure
adopted in developing the integrated architecture, called CoMSON platform, which
includes both the information system and the eLearning platform. The simulation
environment is discussed in Chap. 7 (on the Demonstrator Platform).
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9.3.1 User Needs Analysis

Following the Human-Computer Interaction methodology [25, 65], we collected the
user information with the purpose to design a platform able to satisfy the requests
coming both from the researchers that will work within the project and the students
that will use the platform for educational training.

The design of the platform is based on the user analysis carried out by means of
a questionnaire. The aim of this questionnaire was to gather information on the user
needs concerning functions such as: communication, development, standards, and
learning environment functionalities. The questionnaire was organized in five main
sections:

1. Individuation of the final users of the platform.
2. Authoring and development tools, such as collaborative and communication

tools and possible integration with specific software (for example, tools for the
simulation of electronic circuits, etc.).

3. Communication and learning tools, aims and use.
4. Design of delivery models that provide the learning materials and resources, such

as tools and communication services used in the learning environment.
5. General characteristics of the eLearning system and standards.

The questionnaire was sent to the group leaders in the different nodes of the
Consortium. The reason for this choice was that the group leader was the best
candidate to make an informed decision about the needs of the final users.

We collected and analyzed eight questionnaires which reflect the answer of each
node. Here we detail the results of the user needs analysis, showing some of the
most influential data used to design the platform.

In the past years the flexibility of Internet technology has favored the develop-
ment of applications that allow to perform scientific simulation by using interactive
educational environments. A virtual classroom, that is, the online environment in
which students and instructors interact, can be an environment with synchronous
interaction (the interactions happen simultaneously in real-time), or with asyn-
chronous interaction (the interactions are delayed over time). It is also possible to
have both kinds of interactions. This allows learners to participate according to their
schedule, and be geographically separated from the instructor. Figure 9.2 shows a
preference for both asynchronous and synchronous interactions.

Learning-by-doing is an educational approach which stresses the use of tools
to enhance the learning process (Fig. 9.3). A great number of studies in eLearning
focused on the importance to improve the learning strategies by using interactive
tools. These tools not only offer the opportunity to interact with theoretical ideas in
practical way, but also support the collaboration among students. The latter concept
is an essential aspect in the process of constructing a shared knowledge among
students.

To support the students’ motivations during the learning process, an eLearning
system should include many additional tools designed to deliver educational
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Fig. 9.2 Communication system in the eLearning environment
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contents (Fig. 9.4). Another important aspect of these tools concerns the possibility
to perform many simulations to test the students’ hypothesis, in so-called virtual
classrooms, which try to extend the physical environment and interactions of a
classroom to an online setting. Students can run simulations and manipulate objects
analyzing in real-time the obtained results. In some cases, hands-on applications
may be required.

eLearning is a collection of technologies, products, services and processes that
support the learning process. In order to improve these aspects, it is important to
design and implement specific Graphical User Interface (GUI) to connect these
different services [69]. Figure 9.5 shows the main needs of the final user involved in
the CoMSON project.

Assessment and testing are key components of any educational environment.
Figure 9.6 shows the importance of self assessment in learning, for the subjects
of the survey. The majority of the subjects chose the self-assessment modalities.
By using this approach, the platform provides a checklist to help students assess
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themselves. Self-assessment is a formal evaluation technique, which enables a more
fluid teaching and learning environment, which coincides nicely with the structure
of eLearning environment.

Figure 9.7 shows the educational objectives that the CoMSON eLearning
platform should satisfy during the project. In the initial phase, the eLearning
platform will be an experimental educational laboratory in order to define specific
guidelines to produce educational contents devoted to microelectronics field. After
this analysis, during the project we have designed guidelines to write and organize
educational contents in order to adapt it with the eLearning platform required.
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9.3.2 Platform Development

In order to develop the platform according to the user needs, we presented to the
CoMSON scientific management board the results of the questionnaire. During
this meeting we introduced a technical proposal aimed to define the design and
implementation of the CoMSON platform.

According to the users’ opinions, the CoMSON platform should possess the
following characteristics:

• To be easy to use.
• To offer user-friendly help.
• To easily integrate existing digital materials.
• To support audio communication.
• To give the lecturer the capability to administer her/his own courses and to

monitor the learners’ progress and participation.



520 G. Alì et al.

• To support multimodal interaction between the users through visual communica-
tion, and real-time display of users’ activities.

• To support live document sharing applications.
• To offer an interactive and shared whiteboard.
• To integrate eLearning environment with other systems (e.g. Demonstrator

Platform, Virtual Campus, and Virtual Working Place).

In short, users prefer a system that can support both types of communication and
training: synchronous training (on-line lectures from a trainer on a specific theme,
online meetings, on-line communication and collaboration between the members
of a user group on a specific theme), and asynchronous training (autonomous
training using interactive educational material and lecture notes, meeting minutes,
administrative information).

From the analysis of the questionnaire results we have also taken some decisions
on the following issues related to the eLearning platform:

• User. The final users of the eLearning platform will be students in micro-
electronics, but the system will be usable by microelectronics companies for
employee training. At this stage of the project, the courses are being tested by
CoMSON researchers, ERs (Experienced Researchers) and ESRs (Early-Stage
Researchers). After this test and with the appropriate modifications the eLearning
courses are made available to the general audience.

• Authoring. The underlying problems are: production of educational materials;
collection and adaptation of existing educational materials for the eLearning tool;
standardization of the educational material. In addition, all CoMSON partners
agreed on the following points: each contributing professor can decide whether
to take, or not, responsibility of formatting of the course. If some contributing
professor does not want to take part in the formatting phase, he/she should
provide the contributed material in any standard format for final adaptation. The
professors will have the responsibility of the written contents (even if researchers
will collaborate to write them). The writers will own the copyright of the written
documents. CoMSON has to certificate the quality of the contents of the Learning
Units, by university standards (certification of quality).

• Educational aims. The educational aims of the eLearning system are: fostering
research in Mathematics dedicated to industrial needs; training to use the main
simulation tools in micro- and nano-electronics. The users’ future professional
career will be: advanced modelling and simulation expert and designer.

• Educational contents. The eLearning system should provide tutorials on sim-
ulation steps (process, device, circuit, EM, optimization), including related
software packages as examples. In general, no previous knowledge is needed
by the user, but each Learning Unit has its own prerequisites. The eLearning
system includes a wide range of topics including: Modelling of semiconductor
devices; Introduction to electrical circuits; Electromagnetism; Interconnects;
Basic numerical analysis; Numerical methods for DAEs.
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The educational contents have been split in two categories: (1) Basic and (2)
Advanced contents. Each category will consist of a minimal number of Learning
Units (modules). The latter, will provide the modules on specific topics.

• Technical specifications. The educational contents should be importable by the
main eLearning platforms used by microelectronic companies, according to the
standards of IEEE P1484 [31] and Sharable Content Object Reference Model
(SCORM 1.2) [67]. No specific software is required to be known by the user in
advance.

9.4 The Components of the CoMSON Platform

As we have seen in the previous section, the CoMSON platform includes the
following components: an information system, an eLearning platform, and a
simulation environment (Demonstrator Platform). These components are connected
by Graphycal User Interfaces, which will be discussed in the following section.

The CoMSON platform runs on a HP IA32 dual processor Xeon 32 bit 2 GHz
frequency. The server has 15 GB of memory and two hard disk SATA architecture.
The system uses a base Operative System (Linux Slackware) which hosts the
following VMWare virtual machines:

(a) CoMSON, used as main communication and eLearning services.
(b) Kepler, used as Demonstrator Platform, with Current Version System (CVS)

service.
(c) Copernicus, used to compile source code in the Demonstrator Platform (DP).

In order to synchronize the time between guest servers we install the Internet
Systems Consortium – ISC- NTP Network Time Protocol server. A schematic
representation of the system architecture is shown in Fig. 9.8.

Next, we detail the main components of the CoMSON platform.

9.4.1 The Information System

The CoMSON information system provides three main functionalities:

1. Documentation, authoring and distribution.
2. Exchange of knowledge.
3. Communication environment.

This set of functions is intended to enable interaction and knowledge exchange
during the period of the project and after its completion. These services support the
communication process between students and teachers as well as among researchers
involved in the project. Ultimately, this initial user group will be enlarged including
different academic and corporate institutions, cooperating on research. Furthermore,
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Fig. 9.8 CoMSON system architecture

the communication platform is the place where seamless knowledge exchange
processes operate between academia and industry [10].

Its architecture, based on web technologies, enhances accessibility, ease of
use and ease of integration with the other elements of the system [48]. The
communication platform has been developed as an enabler for the above functions,
comprising a set of interconnected tools. These tools are: web services including
streaming server for content distribution; a forum and a mailing list system, for
communication; and a documentation environment, which is used as a central
information and document repository [1, 48, 64, 71].

We used Plone [7] as Content Management System (CMS) to implement
the communication platform of the CoMSON project. Plone is an open source
CMS built on Zope [75] application server. “Zope includes an Internet server,
a transactional object database, a search engine, a web page template system, a
through the web development and management tool, and comprehensive extension
support”. Plone, already, has a large user base and multitude of developers, usability
experts, translators, technical writers, and graphic designers who are able to work
with CMS [7].

The Plone workflow allows collaborative and cooperative management of con-
tent. Each object can assume different states. The objects state define whether an
object can be accessible by others users. The Plone workflow includes four states:
visible, pending, public, and private (Fig. 9.9).

The Plone team includes usability experts who have designed an intuitive user
interface and attractive to manage the information. Other services, such as mailing
lists, provide a channel to exchange information between registered users. There
are mailing lists devoted to the different tasks of the project and for administration
matters. This facilitates the communication among researchers on research and
administrative aspects of the project.
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Fig. 9.9 The default workflow for Plone content

Mailing lists are implemented using Mailman, the GNU Mailing List Manager.
Mailman is free software integrated with the web that allows easy management.
Users can manage their accounts and the owner of the list can manage the lists.

9.4.2 The CoMSON eLearning Platform

A learning information infrastructure includes hardware, software, delivery mech-
anisms, and processes to manage educational paths. Hardware refers to servers,
desktop computers, and mobile devices. Software refers to a Learning Management
System (LMS), which is a software application for the administration, documen-
tation, tracking, and reporting of training programs, classroom and online events,
eLearning programs, and training content. A strong information infrastructure
provides access to instructional content and support teachers and students to manage
educational contents and deliver them in easy way. Usually, the term LMS is often
used synonymously with learning information infrastructure, but an LMS by itself
is usually only part of a learning information infrastructure.

The LMS used in CoMSON is based on Moodle open source software [63].
Moodle is a Course Management System (CMS), also known as a LMS or a
Virtual Learning Environment (VLE). Moodle allows the management of courses,
didactical modules, real-time and differed learning. Among the tools available to
the teachers, we find authoring tools for creating lessons and assessment tests.
In addition, to these standard tools, we would like to spend some words on a
possible learning scenario, which might be consistent with the implemented Moodle
platform.
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The eLearning platform provides contents based upon the Sharable Content
Object Reference Model (SCORM) standard [67], which allows the creation of
standard contents that are exportable and executable on every SCORM compliant
system. Moreover, the SCORM standard is integrated with distributed technologies,
in order to develop a complete learning system. Intense research activity is ongoing
on eLearning technologies especially focusing on accessibility, interoperability,
durability, and reusability of components. Applying Web Service Technologies to
a SCORM compatible LMS simplifies the implementation and maintenance of the
LMS and gives web service consumers more choice in finding the services they
require [19].

Moodle, as well as similar VLEs, is designed to include the principal aspects
of the constructivist learning theory [27]. In particular it offers the possibility to
visualize (with animation), and to manipulate interactively, educational contents or
metaphors of learning objects. The constructivist approach is based on the learning-
by-doing approach, which emphasizes the active role of the student in building
his/her knowledge [8, 46, 77]. The active dimension of learning is realized by means
of virtual laboratories [12] that allow students to visualize (with animation) and
manipulate interactively, step by step, metaphoric representations of the functions,
modules and coupling paradigms for a deeper understanding of them.

The VLE foresees the development of a new generation of educational tools,
for example: 3D architecture of circuits, immersive virtual environment, intelligent
agents, avatars, and so on [22, 37, 70]. These new educational tools, offer a
computer-based approach for scientific instruction that provides a number of
advantages over traditional learning methodologies [49]. Students are stimulated
by manipulating objects that offer interactivity, authentic experiences, and a new
adventure in learning [54]. Therefore, our goal was to design an eLearning system
based on experimentation activity (e.g. virtual laboratory) and the scientific method
(e.g. simulation program write in Java and Java 3D language).

As each didactical context, students encounter different problems that are
completed by using the tools of the environment and the scientific method to solve
problems. In this way, the eLearning platform assures the maximum flexibility to
the learner, whose results are assessed in terms of performance on specific tasks.
Results of different studies have demonstrated a positive correlation between student
motivation to learn and classroom integration of technology [11]. In addition, recent
researches indicate that the use of technology in the classroom not only increases
the student’s motivation, but also improves achievement [11, 55].

The CoMSON eLearning platform provides three kinds of learning resources.
First, a repository of lecture notes, slide presentations, articles, book chapters, etc.
Second, it hosts interactive courses that can be used as a stand-alone learning
solution or blended with face-to-face lectures or seminars. Third, a simulation
platform that interfaces with the DP to provide educational simulations. This latter
section of the eLearning platform at this moment is not fully functional.
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9.4.2.1 Conceptual Aspects of the CoMSON eLearning

The CoMSON eLearning is based on constructivist methodologies, a set of assump-
tions about learning that guide many educational theories and associated teaching
methods [44]. Constructivism learning approach guides learners to conduct and
manage their personalized learning activities, and encourage collaborative and coop-
erative learning to improve critical thinking and problem-solving strategies. The
knowledge is constructed actively through the interaction with the environment. In
fact, the constructivist paradigm asserts that learning environments should support
multiple perspectives or interpretations of reality, knowledge construction, context-
rich, and experience-based activities [77]. In our eLearning platform, learners and
instructors can interact with different technologies, which support the students in
the acquisition of skill on specific topics [18, 47].

According to Horton and Horton [32], an electronic curriculum is composed
of individual courses, books, and other learning objects. Courses are typically
composed of clusters of smaller lessons, organized to accomplish one of the major
objectives of the course as a whole. At a lower level are the individual pages, each
designed to accomplish a single low-level objective that answers a single question.
Such units may also be called screens in multimedia presentations or topics in on-
line help. At the bottom level are media components. These are pictures, texts,
animations, and videos that contribute to design the page content.

Figure 9.10 shows the CoMSON eLearning conceptual model adopted to realize
the learning paths [68]. The CoMSON eLearning conceptual model includes five
sections or steps.

In the first step, “Introduction”, the platform introduces the educational aim of the
lesson, such as procedures, principles, concepts that will be discussed. The second
step is “Demonstration”. In this section the platform explains with more details,
by using as example results from scientific experiments, the concept introduced
previously. Next, with the purpose of improving the assimilation of new concepts,
the platform guides the learner through hands-on activities with the support of
virtual laboratory or simulation tools. These activities are based on constructivist
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approaches, emphasizing an active engagement of learners. For example, connecting
this section with the Demonstrator Platform (DP) through a Graphical User Interface
(GUI) so that the learners can perform experiments verifying concepts or testing
hypothesis. Then, the “Conclusions” section summarizes and reviews the theoretical
and practical concepts discussed during the lesson. Finally, the “Assessment”
section concludes the lesson. This module includes a synthesis of the main concepts
discussed during the educational activities.

The integration of different tools allows the application of innovative eLearning
methods and technologies based on the following aspects:

• Definition and development of educational paths for all researchers, including
internal training: using the information system, a web-supported documentation
and Transfer of Knowledge (ToK).

• Adaptation of the DP to training and educational needs: using suitable GUIs
which highlight coupling paradigms, important modelling issues, algorithmic
issues and all other issues analyzed in the training and educational paths.

• Creation of a virtual educational system, which transfers traditional classrooms
to an electronic environment based on: remote access for all system users, direct
interaction between students and lecturers/tutors, and support to communication
among students and teacher.

• A continuing education environment supplying information about the materials
and some general documentation of the platform: annual progress reports on the
project, software, online lectures, and communication tools.

The use of these approaches is supported by a full integration between virtual
tools and remote simulation by the DP environment. The full integration between the
eLearning platform and the simulation environment is a challenging technological
problem, which has not been fully solved during the project CoMSON. More details
on this topic will be given in the following section.

9.5 Graphical User Interfaces

In the previous sections we have introduced the eLearning platform analyzing
it from a technological point of view. The visual interface is another important
component of an educational platform.

The Graphical User Interface or, as it is commonly called, GUI is a crucial
part of a users experience with any computer system [69]. Why? It is the system
to most users. It can be seen, it can be heard, and it can be touched. The piles
of software code are invisible, hidden behind screens, keyboards, and the mouse.
Each user interface has essentially two components: input and output systems. Input
concerning how a person communicates his or her needs or desires to the computer
system. Some common inputs devices are the keyboard, mouse, and so on. While,
the output is how the computer conveys the results of its computation process and
requirement to the users. Today the most common computer output mechanism is
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the display screen and other systems that support the subject during the interaction
with the system.

User interface design is a subset of a field of study called Human-Computer
Interaction (HCI). HCI [15, 16, 25] is the study, planning, and design of how
people and computers work together so that the person needs are satisfied in
the most effective way. HCI designers must consider a variety of factors: what
people want and expect, what physical limitations and abilities people possess, how
their perceptual and information processing systems work, and what people find
enjoyable and attractive. Designers must also consider technical characteristics and
limitations of the computer hardware and software.

The goals of interface design are simple: to make working with a computer easy,
productive, and enjoyable, reducing the cognitive load during the interaction. In the
last years we have assisted to an improvement to the design and implementation of
the GUI [69]. The new generation of GUI includes a variety of new display and
interaction techniques that improve the dialogue among subjects and system.

9.5.1 User Interfaces in the eLearning Platform

In the eLearning environment, GUI should allow the interaction between user and
educational contents in an easy way with the purpose to improve the learning [60].
Clearly, not every student learns in the same way and not every curriculum should
be presented in the same manner. Students are different in their learning cognitive
styles, and different disciplines and contents require different presentations modali-
ties. An eLearning system often provides dynamic and adaptive environments which
allow to personalize educational materials both in terms of students learning styles
and type of contents to deliver. De facto, the best interface will permit the user
to focus on the information and task at hand instead of using complex interaction
mechanisms that impede the communication process and involve a strong cognitive
load reducing the cognitive resources.

It is known that the eLearning interface design is especially complex, as the
learning effectiveness and interface design are substantially intertwined. In addition,
a trend to reduce the complexity of the interface interaction is to apply the usability
approaches to evaluate the quality of the system interface [57].

Usability measures how intuitive, efficient, and pleasurable the experience of
using an interface application is, as well as how effective the application is in
achieving a user’s end goals [57]. The usability of an eLearning system refers to
how easy it is to use and learn the system. In online learning system contexts, the
pedagogic usability is also related to how easy and effective it is for a student to
learn something using the system.

For all practical purposes, the GUI of the CoMSON eLearning platform is
basically the interface provided by its Course Management System, which is
Moodle.
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9.5.2 A Graphical Tool to Visualize Scientific Data
in the Simulation Platform

The main goal of the Demonstrator Platform (DP) is to train new recruits in
the field of microelectronics. To do this, a series of modules have been created
each one tackling a different problem. These modules, created by the researchers
in CoMSON, provide tutorials that explain how they work and to allow the
visualization of results.

These tutorials use OpenDX to visualize data obtained from DP simulation.
OpenDx (Open Visualization Data Explorer) is a scientific visualization software
developed by IBM [35]. This software can operate in complex domains along with
measured or computed data. The OpenDX project started in 1991 and can do 3D
visualizations that represent the output values as color or gray scale coded, or as
vectors streamlines and ribbons. It also offers the advantage that the graphs can be
viewed form the inside or make cuts and represent the data in the cutting plane.
The graphs can be rotated and visualized from any angle and animations of these
movements are produced.

OpenDX provides a simple toolkit that allows the user to manipulate images
and modify different aspects of the visualization. Through a window menu the user
selects a series of blocks that perform actions to visualize data. To visualize the
results of the development platform modules using OpenDX the requisites are:

1. CoMSON DP installed.
2. OpenDX installed.
3. BIM-MSH-FPL packages loaded.

Once these programs have been installed the user can call the packages and be
able to visualize the results. The user has to follow these steps:

1. Move to the example directory.
2. Start octave.
3. Prompt run_test at the command line.
4. Exit octave.
5. Use OpenDX to visualize data.
6. Repeat the procedure changing equation parameters.

This allows the user to visualize the results produced by his/her code. Then the
user uses the interface provided by OpenDX to select the modules that the data is
going to be filtered through. Finally running the data through OpenDX the user can
visualize the solution.

The user then can change the parameters that he/she is using, to see how the result
changes. It is this exploration of the problem through visualization that allows the
user to learn and master the topic.
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Fig. 9.11 Interconnection architecture

9.5.3 Interfacing the Components of the CoMSON Platform

Another task of the eLearning research group was to design and develop a GUI to
connect the eLearning platform with the Demonstrator Platform (DP). According to
the design guidelines, an application should be inviting to use. It should contemplate
all the information and tools necessary to the user to complete tasks quickly, and
it should guide them with an appropriate feedback. To apply with success the
design principles, one needs to understand the user requirements and tasks. To
understand how a final user might interact with a visual interface, it is useful to
formulate a simple functional model of the functions. Figure 9.11 provides a visual
representation of the components that make up the GUI system and the services
that will be possible to activate. This is not an architecture model of the system,
but rather a conceptual model that we can use to realize the GUI product and their
functionality connected with the eLearning platform.

This interface will be realized in Java language and will allow the users to
perform test and simulation realizing electronic circuits. To obtain this results, we
design a prototype architecture of the interconnection based on two-tier, namely
client/server architectures in which the user interface runs on the client and the
database is stored on the server. A first, core tier is used to transfer inputs to the
DP and to collect outputs from the DP; a second tier is used as a user interface layer
(input entry, output presentation) and communicates exclusively with the core tier.
The DP is basically a shell environment that users can access remotely via SSH
service provided by the host machine. A simple approach to designing a core tier
is to define a system that establishes and manages a SSH connection to a remote or
local DP, and exchanges commands (inputs) and outputs using the DP shell.

Based on such core general design, the GUI tiers will be designed in order to
support more or less complex user interactions and visual representations on the
basis of user needs and suitability for specific learning objectives. The approach
used to implement the interface architecture is shown in Fig. 9.11. This remote
interconnection architecture provides the functionalities that let the user complete
use the input and output capability of the DP to take full advantage of the DP’s
computation environment. While the core tier is concerned with exchanging flows
of information (inputs and outputs) with the DP, the user interface tier will have the
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task of translating specific user interactions into such flows. In the Sect. 9.5.2 of this
chapter we show how the DP output is visualized on the screen. The interconnection
architecture shown in Fig. 9.11 raises several technical issues. One issue is the
availability of open source components that implement for example the SSH layer,
the management of graphical widgets and so on. Another issue is the integration into
standard web browsers, commonly used as client applications to access a Learning
Management Systems.

The technical problems posed by the above needs and by the consequent
design, have not been fully solved. Nevertheless, during the project CoMSON
many attempts have been made to build some effective 3D GUI prototypes. In a
first prototypal scenario, testing an industrial case study [9], the GUI would offer
three working environments: the model sculptor, the algorithm sculptor, and the
model inspector. The first two environments are 3D authoring tools for, respec-
tively, designing and manipulating mathematical models (equations) representing
the devices and for designing and manipulating algorithms providing numerical
solutions to those equations. The third environment is a tool for inspecting the value
of variables in the model during simulation time. The manipulation and exploration
of models and algorithms provided by the proposed GUI might be useful in contexts
where learning by exploration and design by exploration are common approaches.

Another direction of research for possible design solutions for GUIs between
different components of the CoMSON platform aimed at exploiting the advantages
and the potentiality of the third dimension. It has been suggested that interfaces
based on this concept will allow to design new virtual environments that include
more interactive functionality [9, 68]. This line of research was not deeply developed
during the project, but it was possible to realize, as a proof of concept, a 3D virtual
environment [14, 39] that includes an avatar which can be controlled by the final
users. In this virtual environment each room has a theme related to microelectronics,
where the user can find different educational objects such as images, interactive
movies and so on. The user is free to move his/her avatar exploring the environment
and moving from one room to the next. The virtual environment is provided with
3D agents that can be used to gather information on request, to get suggestions on
exploration paths and to have support in accessing other services [29].

In this experimental interface, the users are immersed in a virtual context which
is populated by other users and virtual agents’ avatars acting as tutors and guides.
An example of avatar is shown in Fig. 9.12.

Avatars act as cognitive support for the students that use an eLearning system.
The support is crucial because it stimulates human interaction among students,
especially in the autonomy model. Usually, the support consists of personalized
help for each student as he/she encounters an issue in problem solving tasks, and
should be contrasted with the traditional educational activities, in which one teacher
delivers educational contents for many students. Traditionally, the avatar shows
adaptive behavior to increase the comprehension of each student from a cognitive
point of view.

In this scenario, the eLearning system is based on the hypothesis that the
manipulation activity improves the learning [34]. Therefore, our goal is to design
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Fig. 9.12 Example of avatar

and develop an eLearning system based on experimentation activity (e.g. virtual
laboratory) and the scientific method (e.g. simulation program written in Java
and Java 3D language). A virtual laboratory might show some examples of the
microelectronic technologies. It should be furnished of interactive animations and
pictures that allow the user to interact with different learning materials. Users will
be able to study different processes alive. In some virtual laboratory rooms, students
can change the parameters of the objects and see how these will affect the final
result. Also, animations and other educational materials are supplied with specific
descriptions.

The use of virtual environments in eLearning is one of the most promising
applications because it allows the subjects to interact with virtual objects, improving
conceptual and practical abilities [13]. Learning through experimentation is an
important strategy because it supports students during problem-solving activities.
An active and collaborative learning environment provides a powerful mechanism to
enhance depth of learning, increase conceptual retention, and get students involved
with the material instead of passively listening to a lecture [30]. For this reason, a
virtual environment should be based on five categories which included the following
aspects:

1. To work on real-world problems into the virtual environment.
2. To provide the students with scaffolds and tools to enhance learning, in the virtual

environment.
3. To give more opportunities for students and instructors to share ideas and to

collaborate using technological tools, working on common projects.
4. To build virtual educational communities to expand learning opportunities in the

microelectronics field.
5. Integration between collaboration, sharing tools and simulation environments

embedded into the eLearning platform.

Each category poses an opportunity for technology integration, and a successful
integration increases both the technological skills and the content knowledge.
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From a methodological point of view, the informative system integrates a
multidisciplinary approach, in order to share both educational contents and tools.
Academic partners and industrial companies participate to implement contents and
tools to integrate within system. The main goal of the platform architecture is
to improve the integration between documents and tools for a better usage and
collaboration by the consortium members and its future as a learning tool. This
integration facilitates the collaboration and improves the learning.

9.6 eLearning Contents Creation: Methods and Strategies

eLearning scientific education is often difficult to sustain. Educational content
creation is often time consuming because both technological infrastructures are
not always user friendly and in some cases teachers needs to rewrite educational
contents adapting them to the eLearning platform. According to Minato et al. [51],
the eLearning content creation shows many problems:

• Contents are often insufficient or inappropriate.
• Content creation takes much time and energy.
• Quality production entails significantly on financial cost.
• To obtain an effective educational content it is necessary to perform many

revisions.

New ways of teaching and learning are made possible by a variety of new
technological applications, on-line resources and virtual environments, as well as by
new didactical approaches to deliver educational contents, based on problem solving
strategies. Today these changes are not only more evident, with the enormous
increase of ICT in use, but also even more significant because of the new advanced
modalities it is possible to carry out.

All these new technological tools used in educational context require that
teachers acquire new teaching methods for the new generation of the students,
who have grown up with new technologies. Moreover, teachers need to acquire
conceptual and practical skills to create educational contents to be delivered by using
an eLearning platform. In most cases, reviewing a course and responding to current
needs is perhaps done intuitively and without a formal procedure.

Nowadays, the educational community is well aware of the importance of
updating curricula and methodologies in response to the changing requirements of
the information society. Developing a new course or changing an existing teaching
approach is likely to feel discouraging, time-consuming and risky, especially when
technology is involved. These risks and concerns can be significantly diminished if
a more explicit approach is taken to evaluating needs.
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9.6.1 General Methods and Strategies for the Development
of an eLearning Course

Notoriously, eLearning contents creation is a difficult task, because it concerns
different aspects such as conceptual (learning approaches) and operational ones
(technology and infrastructure). On the other hand, it is important to consider other
relevant aspects, such as planning, design and evaluation process. In this framework
it is important take into account the cognitive processes of the user that attends
an eLearning course. The choice of a conceptual learning model is expected to
influence the design of the eLearning environment and then the learning process
of the students. The conceptual aspect involves abilities to organize the didactical
contents in an easy way and to apply educational strategy to design the learning
paths. Hence, many learning approaches have been defined, which suggest how to
organize the lesson contents integrating theoretical and empirical aspects.

The main idea of the educational approaches is to create a virtual environ-
ment where learners can share knowledge and are engaged in a communication
process that makes the learning process more active. The operational approach
concerns abilities to use software to create educational contents such as animations,
simulations, graphical images, movies, online assessment, useful to improve the
quality of the learning path making it more attractive. Besides, a teacher should
know how an eLearning platform works, to adapt the educational contents to the
features of the platform. An eLearning system requires specific competences and an
interdisciplinary team able to support the teacher.

An eLearning application represents an intersection among contents, and design,
learning and cognitive strategies. More specifically, developing an eLearning course
that successfully delivers educational contents requires the joining of many different
skills: technical, psychological, pedagogical and computer graphical skills. All these
aspects represent the core of an eLearning application. It is possible to summarize
all these needs by taking into account the following criteria:

1. Plan the eLearning project. This is a preliminary step in which the available
resources and other aspects to realize the eLearning contents, are evaluated.

(a) Estimate the economical and human resources needed to realize the educa-
tional system and its contents.

(b) Define the criteria to analyze the user cognitive profile. Knowing the final
user profile will allow to organize appropriate educational contents.

(c) Create a project plan of the eLearning paths needed to deliver specific
educational contents. This is the final phase of the first step and concerns
the organization of all the activities.

2. Choose the eLearning platform. Many eLearning platform today have been
developed. For example, Moodle is the principal platform used in academic
context.
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(a) Design the layout of the system. In many cases, the design needs to be
improved creating new functions.

(b) Improve the interaction quality of the system. It is possible to use the
standard applications of the system or to design new functions that improve
the quality of the learning.

(c) Create a visual theme. This aspect concerns the quality of the graphical
layout of the system.

3. Develop educational contents. After this initial planning phase it is possible to
start with the next step that involves the creation of eLearning contents.

(a) Design the learning paths. Each learning path should cover a course’s
contents, including the main topics and subtopics, pre-tests or practice
sessions, overviews, quizzes, and summaries.

(b) Develop the Learning Objects (LO). A LO is a piece of knowledge that
include all parts of the educational process: lesson, assignment, evaluation
and so on.

(c) Choose an instructional approach. There exist several approaches to deliver
educational contents. It is possible, to combine text and other media elements
in order to attract the user’s attention.

4. System evaluation. This final step concerns the usability evaluation of the
eLearning platform and then of the learning objects.

(a) Usability of the eLearning platform. Evaluate the quality of the interaction
with the interface of the system.

(b) Test the quality of the developed eLearning objects. Test the quality of the
educational contents before delivering them.

9.6.2 Some Examples of Course Implementation

Creating eLearning materials is a complex task with attention to delivery effective
material as well as providing learning path to encourage future study of the
audience. According to requirements and existing background of the students, a
course should provide flexibility and exploit full potential of the learners. Within
CoMSON, the Bucharest node implemented an eLearning course on optimization
[73], which is one of the important aspects of the project and collaboration
scheme between project’s nodes. Thus, the connection between optimization and
eLearning modules was strengthened with the deployment of a code on the
Demonstrator platform, involving actions from Bucarest (Technical University),
Catania (STMicroelectronics), Calabria (University) and other nodes [42]. Materials
were presented in a form of a Moodle course, and the programming source code was
made available as Octave and Scilab implementation. Widely available and open
software to solve these tasks were primarily used.
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OPT book content

Introduction to Optimization Problem

One-dimensional Minimization – Zero Order Algorithms
Based on Searching Methods

One-Dimensional Minimizations - First Order Algorithms

Multidimensional Minimizations - Deterministe Methods of
Order Zero. The Descendent Simplex Method

Multidimensional Minimizations - First Order Deterministe
Methods. Conjugate Gradient Method

Multidimensional Minimizations - Deterministic First Order
Models. Quasi - Newton Methods

Multidimensional Minimization - Stochastic Optimization
Methods. Genetic Algoritnms.

Professional Software for Solving the Optimization Problems

Multidimensional Minimizations Application. Helmholtz Coils

Multidimensional Minimizations - Zero Order Methods

Application to the One-dimensional Minimizations

Fig. 9.13 Numerical optimizations handbook

Numerical optimization techniques is an advanced effective module for under-
graduate and postgraduate students at the University Politehnica of Bucharest. The
optimization course’s purpose is to present the fundamental concepts and main
numerical optimization methods used in scientific computing and the computer
aided design of electromagnetic devices. The courseware is developed in two
languages – local language of academic partner node and English. The English
version is a translation of the original Romanian book [20]. The book was widely
used locally especially by the final year students from the Computer Aided Electrical
Engineering Department.

Taking into consideration the diversity of the optimization problem encountered,
algorithms and computing programs, it is difficult to initially find existing solvers
that are optimized and efficient for a particular real problem. Usually, for solving
a real problem, an appropriate baseline algorithm, as close as possible to the
encountered problem must first be selected. The offered course presents not only
the theory, but also practical applications and a pseudocode for test problems and
models from the main approaches used upon which a more refined solution can be
developed (Fig. 9.13).
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With the creation of online contents on CoMSON DP, students now have easy
interactive access to the course. When used in conjunction with another materials
on Bucarest’s ROMI (Reduced Order Modeling Interactive) on the CoMSON DP,
they can exploit the algorithms and write the codes in order to gain a deeper
understanding of the theory, the methods, their advantages and drawbacks. The
theoretical presentations of the optimization methods at the beginning of each
chapter prepare students and give them better understanding of the methods
algorithm. For solving recommended tutorial problems, they can also use code
sources available in Octave language on DP and expand upon them. Exemplary
codes can be archived and showcased for future use.

Materials are arranged to develop higher-order thinking skills in students and
successfully meet the cognitive domain educational objectives outlined in Bloom’s
taxonomy of educational objectives. The presented pseudocode for a number
of optimization routines and the implementation in high level GNU language
Octave and in Scilab, encourage students to experiment with the code for a better
understanding, analysis, synthesis and evaluation of the available solutions [74]. By
means of different representation forms and possibilities of interactively exploiting
the code, better understanding and training results can be achieved.

In addition to the classical optimization procedures, mostly oriented for graduate
students, the course includes genetic algorithms (Particle Swarm Optimization
and Intelligent Particle Swarm Optimization) code. Moreover, industrial CRS
(Controlled Random Search) global optimization algorithms, implemented by
STMicroelectronics, was prepared and deployed on DP. Due to the purpose to
support legacy and consistence of the code, it was presented in a form of program
interface for Octave.

Besides the optimization handbook and the scientific optimization code,
Bucharest node has developed a set of eLearning materials to support user in the
creation of eLearning course. That set included eXe tutorial, LayoutEditor tutorial,
professional communication course and information about technology supported
learning and training.

As an addition to the professional training, many software solutions with descrip-
tive materials were developed. For a better user’s understanding and evaluation of
the complex 3D forms, LayoutEditor was used. Using imbedded script-language,
a subset for visualization was created (Fig. 9.14) in assistance to represent form
of the circuit in the way for interactive exploration. For the purpose of further
calculation a solution was created [26] to visually identify fundamental loops on
the gds layout for extraction of the self and mutual reluctances using Finite Integral
Technique (FIT) between the hooks of Manhattan shapes (union of rectangles) for
further calculation in mathematic software (Fig. 9.15).

In practical applications students are expected to have not only information,
but skills with existing mathematical applications, such as meshing strategies [41].
Therefore, the created materials were oriented not only to deliver knowledge to
students, but also to offer them solutions for real task and develop knowledge in
different areas.
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Fig. 9.14 Visualization of the layout

9.6.3 Practical Strategies for eLearning Contents Creation

Several factors affect the success of an eLearning course. In practical terms, we can
reduce them to: time, money, competence, and technological infrastructures. These
are the main aspects that enable to achieve both the didactical and the learning aims.
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Fig. 9.15 Visual loop identification on the layout

The task of the eLearning research group was to realize an eLearning system
for micro and nanolectronics, including the design of a learning path to manage
educational documents and a Content Management System (CMS) to store, update
and retrieve the educational materials. Unfortunately, the CoMSON project did
not have specific funds devoted to design and implement educational contents for
microelectronics, so it was not possible to adopt all the steps of the methodolog-
ical approach mentioned before. For this reason, initially we analyzed different
approaches to design, implement and deliver eLearning contents. Then, the real
problem was to translate this preparatory study in action, that is, creating eLearning
contents in microelectronics.

Since CoMSON project was devoted to training the researchers, its participants
were mainly specialized in the microlectronics topics. In some cases, participants
also held university courses, and some traditional educational material was avail-
able, in other case only some research papers were available. Thus, we made
an attempt to translate traditional educational materials in eLearning contents,
or to create new materials based on research papers. The idea was to ride out
the economic limitations, suggesting an easy way to produce eLearning contents,
involving all partners of the project consortium.
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This was done by distributing to all participants a document with some
guidelines for the realization of educational material. The document, called
“learning@CoMSON”, introduces the main conceptual aspects and some practical
strategies to create eLearning contents.

9.6.3.1 Learning@CoMSON

As for the conceptual aspects, they can be summarized by the following questions:
What is a learning path? Why is it important? And how to create it? How to create
a learning unit, and how to edit existing material to create learning units? These
concepts are useful when creating a course, which is nothing but a hierarchically
organized collection of learning units. The minimum required materials for the
creation of a course are: a text file with the learning path, materials for the course
(e.g. derived from teaching material), and materials for the assessment of the course
(e.g. derived from homework and exams).

1. What is an learning path?

Learning Path, a methodology developed by Jim Williams and Steve Rosenbaum
[76], is a practical approach to produce an effective sequence of training, practice,
teaching, and experience to reach specific competence in a particular field. A
learning path is a guide that describes the necessary steps that a student should
take to learn a concept or a skill. This is very similar to the outline of the course. A
learning path is created as a helping guide to create a course.

The learning path is composed by a series of Learning Objects (LO) that
are independent educational modules interlinked with each other. These LO are
organized from simple to complex so that, as the student masters the simpler
tasks, he/she builds on that to learn more complex tasks. In order to make these
learning objects reusable in other courses, they should be complete and coherent by
themselves.

Each module should have the following elements: a goal, a description or expla-
nation of the subject and assessment for the concept explained. When developing the
learning path, we should have in mind that the student will take the course without
an instructor so every single step in the learning path should be present. We cannot
assume that the student is brilliant and will be able to solve it by herself. We should
provide a complete and coherent path.

Learning path is a general concept, for example we can have a learning path
for a Computer Science career, the learning path will involve the student in taking
courses in Programming, Operative Systems, Databases, Discrete Math, etc. This
will be the learning path for the student. But the to learn Programming the student
will have the Programming learning path that will include learning Object Oriented
Programming, Procedural Programming, and Scripting Languages. The Object
Oriented Programming will be a learning path that will include learning what are
objects, what is inheritance, what is encapsulation, what is recursion, etc.
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2. Why is it important?

The creation of a learning path has several advantages:

1. The learning path helps to create the course and to devise a perfect and complete
learning track step by step. In the learning path there are no empty spaces and
little or none pre-knowledge is assumed.

2. The outline will help to collaborate with others in the compilation of the course.
The learning path allows for collaboration.

3. The Learning path allows scheduling and division of tasks.
4. The learning path in the platform will be associated to an XML database that will

allow users to reuse the same modules for different outcomes. Different courses
for different outcomes can be created with the same materials.

3. How to create a learning path

To explain how to create a learning path, we give a practical example for a course
in Semiconductor Modeling, commenting on its various steps. The comments are in
parenthesis.
Title of the course: Modeling of semiconductor devices
Course category: Modeling
Steps of the learning path:
Step 1. Description of the course

• Introduction to the course.
(Here, one should give a brief description of the course)
Introduction to mathematical modelling of
semiconductor devices, with a special emphasis on
content on physical-mathematical aspects,
perturbation analysis, numerical simulation which are
more relevant in the applications in microelectronics
industry.

• Goals of the course.
(Here, one should give a wide description or justification of the course. It should
answer the questions: what is the final outcome of the course? What is it useful
for? What does the course prepare the student for? What will the student be able
to do when she has mastered the material?)
The students will have a general understanding of the
most common models of semiconductor devices, of their
mathematical content, and of the most common
strategies of numerical solution.

• Objectives of the course.
(Here is where to write the detailed outcomes and the detailed description on
how the goals should be reached. This paragraph should answer the questions:
how do we get to the goal? and what is that goal going to allow the students to
do?)
Students will acquire knowledge by working on a
simple test case: a 1D diode, modelled by time
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-dependent and steady-state drift-diffusion equations,
solved numerically by using the Scharfetter-Gummel
discretization for the currents and the Gummel map
for the resolution of the resulting nonlinear system.

Step 2. Outline of the course
(When creating the outline of the course one should think how to evaluate or assess
the learning of the student. These are the main questions to be addressed: How
can you tell if the student has learned the concept? Why is the concept important?
How can the concept be used in real life or in a practical setting? How does this
concept relate to other concepts of the course? What previous knowledge is needed
to understand the concept? During this stage one can identify examples to be added
to explain the concept, as well as additional materials that can be linked. All this
information can be added to the learning path and will be really helpful in the future
implementation of the contents. It is useful in one thinks of the learning path as a
dynamic document that you will improve progressively.)

Chapter 1. Notes on semiconductor physics
(one can decide how to implement your course – by chapters, by lectures, by
sessions, etc.)

Section 1.1. Basic concepts
(in each section state one should state the concept that is going to be explained
and the elements that are used to explain that concept. To explain concepts one
can use text, images, animations, video, etc.)

Lecture 1.1.1
(one can add information of what will you use to create this part of the
resource)

� Inverse lattice and Brillouin zones
(e.g., here will be used the demo from website x, y or z)

� Lattice wavenumber pseudo-vector
(e.g., for this concept it will be used the explanation of book X)

� Conduction and valence band in semiconductors
� Electrons and holes

(e.g., the animated graphic A.gif or B.java or C.flv will clarify this
concept)

� Semiclassical approximation
� Lattice vibrations and phonons

Section 1.2. Physics at equilibrium of
semiconductors
(Continue with the same specifications to create the whole learning path)

Lecture 1.2.1

� Fermi-Dirac distribution and carriers number
densities
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Lecture 1.2.2

� Hypothesis of non-degeneracy and mass action
law

Lecture 1.2.3

� Parabolic band approximation and
temperature-dependence of intrinsic
concentration

Lecture 1.2.4

� Partial equilibrium and total equilibrium

Lecture 1.2.5

� Intrinsic semiconductors at total equilibrium

Lecture 1.2.6

� Extrinsic semiconductors at total equilibrium
and nonlinear Poisson equation

Lecture 1.2.7

� Boundary conditions for the nonlinear Poisson
equation

This is just an extract of the complete learning path created for the course of
Modelling of Semiconductor Devices (A.A. 2007–2008). The learning path is a
dynamic concept and can be enriched and actualized.

4. How to create a learning unit

Learning units should be created according to the learning path. One can think of
a learning unit as a single node that is a step in the learning path. To build a learning
unit is possible to reuse existing teaching materials.

A learning unit should be a single and independent unit that is interlinked to
others but that has a meaning by itself and conveys a well-identified concept. A
learning unit should be a unit that states a goal, explains how to reach that goal and
assesses that the goal has been reached. One can think of a learning unit as a section
of some notes or of a scientific paper, with the addition of a short pre-description
and some assessment questions, that is, what in notes would be called “homework”
or “exercises”.

One should remember that the students of an eLearning platform will work
without an instructor. For this reason the contents should be richer in examples
and demonstrations to explain in a clear way every idea. When creating a learning
unit it is important to identify where could practical examples or simulations be
useful. Also, in the learning units one can add video, animated graphics, or links to
additional materials, and use all these elements to make a clear explanation of the
subject.
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To have a well-rounded learning unit one can follow these steps:

1. Objectives and requisites.

(a) Inform of the objectives. What will the student learn in this unit? Informing
of the objectives helps the student to focus on the goal, avoiding distraction
produced by other elements in the unit. These other elements are necessary
for the explanation but are not crucial for the goal. If the student has a goal
will pay more attention to the elements that help to achieve that goal.

(b) Explain the requisites. What previous knowledge is needed? Students should
know what are the prerequisites and links should be provided to additional
information that the student may need to understand the unit.

2. Present your explanation.
This is the main part of the unit, here you have to explain the concept. In this
section you can use text, graphics, equations, video or interactive simulations.
To explain the concept, use as many examples as needed to clarify the concept.
Remember the student is alone. Provide examples to multiple situations where
the concept may apply and provide links to additional information.

3. Assessment and reflection.

(a) Introduce assessment. The assessment’s main goal is to know if the concept
has been understood; but it is also useful to present cases and exceptions. The
questions should provide an insight of the concept and help to deepen the
understanding of the concept. It is convenient to provide a multiple-choice
question with commented answers. Each answer should have an explanation
pointing out why it is correct or incorrect.

(b) Reflection. A reflection or practical example shows the student a wider scope
of how what has been explained in the unit works. This can be a practical
situation where the concept applies, a real life example or other relation that
the concept may have with other concepts.

5. How to transform existing material into eLearning

To create eLearning courses it is possible to reuse own Slides, Notes, Video
and Simulations. Anyway, one should always keep in mind that the creation of an
eLearning course is not the mere translation of previous material to the website
format.

The courses implemented by the scientific content experts will be a series of
modular units that guide the student through a learning path. Each unit should
have the following elements: a goal, a description or explanation of the content,
and a final assessment for the concept explained. When implementing these units
one should have in mind that the student is going to take this course without any
instructor’s help. In the design of the units one should aim for the highest degree
of interaction with the material, using lots of examples, graphics, visually dynamic
content (videos, animated graphics, etc.). For this end the already existing materials
will have to be modified. For example already existing presentations will have to be
modified to be more interactive and include assessment. The final eLearning quality
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of our platform will depend on the clarity of the courses and how well they train the
students.

In the following section, are described some recommendations to transform the
already existing materials to create courses for the CoMSON e-Learning platform.

5.1. Presentations

Slide presentations can be useful to create a course for the CoMSON eLearning
platform. The presentation should be improved to be a stand-alone course that
will be used without an instructor. This means that the student won’t be able to
ask questions to an instructor. The material should provide more examples more
interactivity and links to materials that may help the student to understand better
the concept. You can reuse your slides but you have to modify them to provide
this kind of environment (remember this is not a translation, is an enrichment
process). Slide presentations that have embedded animations, simulations or video
are encouraged and will work flawlessly in the platform. To create or modify an
existing presentation follow these instructions. The first thing to do when creating
an eLearning course is to identify the learning objects and create assessment to see
if the concept has been understood. This is like writing a scientific paper. You have
to ask yourself if your explanation is clear for an external individual to understand
it unaided. Most of the presentations come in the form of power point or PDF. The
presentations can be created or modified in two main ways:

Creating assessment.
Identify the concepts and create questions to see if they have been understood. To do
this in power point, create a new slide with the following 1. Question. 2. Hint to solve
the question. 3. Options to answer. Each option should come with a reason “why”
that option is right or wrong. Create assessment for each concept or module of the
learning path that is covered in the presentation. If you have a PDF presentation
create a document with the assessment in the same way and specify where should be
the assessment placed. This addition is mandatory (a presentation without questions
will provide no interactivity and has little or no value for an eLearning platform).

Adding a voice-over.
To do this in power point, write in the comment box and our software will
automatically read the comments of every slide. To do the same with a presentation
in PDF create a document and create a comment for every slide. Number the
comments with the number of the slide. The voice over is an important optional
modification. Remember that if your presentation doesn’t have comments will run
silently in the server.

5.2. Text notes

Course notes and already exiting textual material can be easily modified to be
used in the platform. Text based material in CoMSON to our knowledge comes
from in PDF, LaTex, Word, or HTML formats. The first stage to modify your
notes to create an eLearning course is to identify the learning objects and create
an assessment to see if the concept has been understood. This learning units can be
enriched using additional materials (animations, graphics, video, etc.). In the end
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the learning unit should be a well rounded unit that can be used independently. The
textual material with the assessment and additional materials can be edited using
eXe software.

9.6.3.2 Outcome

So far, we have realized some experimental eLearning lessons applying the guide-
lines summarized in the “learning@CoMSON” document. The lessons’ aim was
to verify both adequacy and efficiency of the educational material developed take
into account the cognitive and didactical aspects. It is important highlight that the
CoMSON eLearning platform will continue to work after the end project activities.
We hope that the partners of the CoMSON consortium will apply both guidelines to
create educational contents and the eLearning platform to deliver microelectronics
course. These future applications will improve the quality of this initial prototype
improving the quality of the didactical contents creation.

9.7 Blended Learning

After this initial phase, the next step was to experiment the didactical approach
adopting the eLearning guidelines. Initially, we use the blended learning as didac-
tical strategies. Blended learning is a term getting a lot play particularly in the
corporate training course. Practically, it refers to the use of more than one learning
medium, usually it includes a combination of teaching modalities supported by
web-based tools. However, eLearning does not eliminate existing educational meth-
ods and technologies. Rather, it complements them by using new tools supporting
learn cognitive abilities.

In the next two subsections, we describe the empirical studies carried out during
the CoMSON project. The aim of this work was twofold. The first aim was to cerate
eLearning educational contents as support to the traditional didactical activities.
The second one was to identify new operational strategies concerning the eLearning
content creation.

9.7.1 First Empirical Study

Due to the complexity of the subject of the CoMSON project and the scarcity of
the content-experts time, the project has a wide gap between content creation and
eLearning implementation.

To fill this gap we have tested a collaborative Project-Based Learning (PBL)
approach. This approach has been tested in a specific course on “Modeling of
semiconductor devices” at the Engineering Faculty (University of Calabria). The
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program of the course covered physics of semiconductor devices and mathematical
methods of simulation. The program of the course included the following mod-
ules:

• Revision of semiconductor physics.
• Physics of equilibrium in semiconductors.
• Kinetical models of transport.
• Monte Carlo methods.
• Macroscopic models of transport.
• Numerical methods.

The activities of the course was divided in two sections, theoretical lessons
and laboratory activities. The theoretical lessons comprised the aforementioned
course topics. The laboratory activities explored physical phenomena using software
simulations such as Matlab R

� and Octave R
�. For the examination session students

had to develop a project, in the form of a learning module. In a first experimentation
of this assessment procedure, the students had to tackle a single problem, related
to numerical simulation of semiconductor devices, with the possibility to choose
several variants. These modules would compose a sort of online handbook of the
numerical method used for the simulation. In a second experimentation the students
have been asked to present the main topics dealt in the course, creating independent
learning modules. These modules should be able to be used as stand-alone learning
contents. Upon the completion of the project the students had to undergo an oral
examination where they presented their learning modules and were questioned about
the problem tackled, the solution provided and the general pedagogical presentation
produced.

Next, we describe in detail the first group of assessment projects. Overall, the
projects had a central common topic, that is, the simulation of a one-dimension
diode described using the drift-diffusion equations. The students’ work was based
on pre-existing Matlab codes which they had to modify or to replace with new
programs to implement a simulation with the following variations:

• Fixed geometry/variable geometry.
• Uniform discretization/Non uniform discretization.
• Uniform mobility/field-dependent mobility.
• Generation-recombination without impact ionization /with impact ionization.
• Physical variables/nondimensional variables.
• Time independent simulation/time dependent simulation.
• One dimension simulation/two-dimensional simulation.

For the final presentation of the project the students had to create a stand-alone
learning module, which described the problem they solved, the simulation algorithm
used for the numerical solution, the interpretation of the numerical results. In this
module the students used as a guide the following scheme:

• Inform about the goals of the learning activity.
• Explain what prerequisites are needed for the understanding of the module.
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• Present the central explanation of the project.
• Introduce assessment (this assessment has to provide feedback).
• Finish with a reflection or a practical example that shows how does it works in

real life or related to a bigger picture.

The learning modules were produced by using eXe R
�, an open source eLearning

XHTML editor to create educational contents, compatible with the SCORM
standard.

The final evaluation of the course consisted in an oral exam, where the students
presented and discussed the learning modules created for the project, and were
questioned by the teacher on the contents of the course. The evaluation of the project
took 30 % of the final grade of the student. Prior to the oral exam, the students
delivered to the teacher a copy of the project, which performed an initial evaluation
of it. A the end of the evaluation process, the teacher approved or rejected the
student’s admission for the oral examination. If the project did not fulfill the required
quality the student was asked to review it till the project could be approved for the
oral exam.

The projects have been analyzed concerning the code and the learning module.
In the analysis of the code produced by the students the projects present a modular
structure where the students had explained the process as it is produced in the
code. This structure provided evidence of the understanding of the code as well
as the organizational capacity of the student. The students have adapted the code
creating substantial modifications and new pieces of code to solve the specific
problem. The results obtained are then compared with the theoretical predictions.
Some of the students have produced a system of blocks that gives a scheme of the
possible different combinations guiding the learner through all the possibilities of
the software.

The students have produced a detailed analysis of the project describing each
piece of code used in the solution. Also the different parts of the code have been
thoroughly commented explaining the functioning of the code in a step by step
manner. Some of the students have also produced innovative ways to interact with
the software implementing graphical interfaces that can be used as a teaching and
demonstration aid. Using this interface the software can easily produce a visual
presentation of concrete examples.

The results of the analysis of the code are summarized in Table 9.1 and in
Table 9.2 in percentage of students.

In the analysis of the project we have observed that the students provide new and
innovative ways of solving the problems and presenting them. Collaboration among
the students has created new ways of presenting explanations of the problems.

With an analysis of the projects we can see some advantages of the PBL
approach. These included the consolidation of the competences, collaboration with
peers and, improvement of communication and presentation skills. In sum, the
ability to accomplish a project from beginning to end, producing the deliverable
and the documentation for it, is very satisfactory.
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Table 9.1 Analysis of the students’ projects: technical aspects

Items Good (%) Medium (%) Poor (%)

Has implemented new code 20 60 20

Has modified the existing code 40 60 0

Gives an explanation of the problem and inner works
of the code

40 40 20

Comments the code to explain the process 20 60 20

Implements graphical interface 60 0 0

Recommends bibliography and produces help files 20 0 0

Table 9.2 Analysis of the students’ projects: structural aspects

Items Good (%) Medium (%) Poor (%)

Inform of the objectives 40 40 20

Explain the prerequisites 0 60 40

Present your explanation of the project 20 60 20

Introduce assessment and provide feedback 20 40 40

Finish with a reflection or a practical example that
shows how what you explained works

0 0 0

From the analysis of the materials produced by the students, we conclude that
even though the materials present high quality work they cannot be directly used in
an eLearning course without some modification and edition. Some of them need
minor editing while others need more work, such as modifications, corrections
or amplification of the explanations. These deficiencies can be attributed to the
lack of knowledge of engineering students of didactic and pedagogic approaches
and techniques. We think that PBL approach could be a good solution to provide
the students with knowledge on communication techniques needed later in their
professional lives. In a second phase of this approach we will provide students
with more detailed instructions and help to take full advantage of this approach
in improving their communication skills. We think that giving more detailed
instructions on how to create the educational method will bring better outcomes
and will help students learn better about the topics and how to explain them.

9.7.2 Second Empirical Study

As mentioned above the mathematical content creation devoted to eLearning envi-
ronments is complex not only because it is time consuming, but also need to manage
media elements such as graphs, tables, links, and formula. In order to experiment
new didactical strategies to optimize the eLearning content, we have tested a new
approach involving the students to create educational contents. Student’s task was
to design and create educational materials to deliver by eLearning environments.
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The pedagogical strategy was based on constructivism methods, which involve
the student to design educational contents. This approach has been tested within
the mathematical course at University of Calabria, Cosenza – Italy (Engineering
Faculty). We have organized many students’ groups that worked on different course
topics. Before starting with the examination phase, students submitted the projects
and then we analyzed them from a qualitative point of view. The results of this
first experimentation were not very good. We found that students had difficulty in
organizing the learning paths of the educational concepts. The teacher, after this
evaluation phase, decided to do some revisions in order to improve the quality of
the projects.

These educational limits showed the impossibility to create efficient eLearning
courses. So, we decided to design a new experimentation, again with university
students. To improve the eLearning content creation, we designed and provided
to the students some guidelines concerning: pedagogical aspects about lesson
organization; projects editing in order to improve the quality of content description,
and finally we suggested to the students to reduce the MatLab application preferring
the didactical aspects of the educational contents.

The eLearning course topic has been organized by didactic units. Each group
chose one topic and then realized the didactic unit by using the eXeLearning editor
to uniform the student’s projects according to the eLearning platform standards.
Below, we list the didactic units:

1. Physics of a semiconductor in equilibrium and non-linear Poisson equation.
2. Drift-diffusion model: the case stationary IV characteristic.
3. Drift-diffusion model: the case and time-dependent analysis of small signal.
4. Drift-diffusion model: the case of time-dependent and-effect impact ionization.
5. Model of drift diffusion: dependence on mobility model and models generation-

recombination.
6. Models of energy-transport.
7. Semiclassical Boltzmann equation and Monte Carlo method.
8. Hydrodynamic models for semiconductors.
9. Drift diffusion model with quantum corrections.

10. Numerical methods: finite differences (box integration method).
11. Numerical methods: finite element.
12. Numerical methods: numerical solution of nonlinear algebraic equation

(Newton’s method with damping).
13. Scharfetter-Gummel method for the numerical solution of equations drift-

diffusion.

An example of the project organization build with eXeLearning editor is
showed:

• Home.
• Project description: objectives.
• Preliminary knowledge.
• In-depth examination.
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• Core of the project (Contents).
• Observations and conclusions.
• Self-examination (by using different answer modalities: yes/no, true/false, mul-

tiple choices test, and so on).
• References.

The scheduled project activity is based on the following organization:

– Content. The educational contents must have realized by using an easy language
allowing to the others people to understand the educational concepts.

– Didactical. Every project had to include the following didactical aspects: objec-
tives, preliminary knowledge, topic and simulation, self-examination and refer-
ences.

– Structural. It is need to use, when necessary, the following ramification: Topic,
Section, and Unit.

By applying these detailed instructions, the project layout was better that previous.
Besides, this organization makes the projects contents easily usable to create a
distinct eLearning course.

The preliminary evaluation of the student’s projects was satisfactory, but the
projects still required a deeper analysis. The next step was to ask the other students
to improve the existent didactical units adding other topics and contents. However,
we needed to reduce the redundancies of the concepts because often many subjects
used the same contents to implement different educational didactic unit.

9.8 Platform Evaluation: Test and Revision

We have designed a questionnaire with the aim to collect information on the use
of the eLearning platform from the Experienced Researchers (ERs) and Early
Stages Researchers (ESRs) which work in different node of the project consortium.
In particular, we were interested to know the following aspects: what are the
useful features available in the eLearning platform?, what kind of materials are
more frequently used by final users? We believe that this information is essential
to understand if the CoMSON eLearning platform support users needs, from a
communication standpoint.

The questionnaire consists of 13 items with mixed answers modalities (nine
question with closed answers; four questions with closed and open-end questions).
Finally, at the end of the questionnaire we have asked to the users to indicate three
negative and positive aspects of the CoMSON eLearning platform, respectively.

The sample was composed of seven people, six males and one female. All
the users have been working in the CoMSON project from 1 to 4 years. All the
questionnaires collected were analyzed. The results are the following: 71 % of the
sample has created didactic contents for the CoMSON eLearning platform (see
Fig. 9.16).
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Fig. 9.16 Percentage of
sample that has created
didactic contents for the
CoMSON eLearning platform

29 % of the sample used “Once per day” the CoMSON eLearning platform,
another 29 % “Once per week” and 43 % of the sample “Rarely”. None used
“Several times per day” and “Several times per week” the eLearning platform (see
Fig. 9.17).

We found that ERs people used the eLearning platform in different manners.
57 % of the sample used the CoMSON eLearning platform, for “Less than 1 hour”,
14 % “Between 1 and 2 hours”, while 43 % only “More than 2 hours” (see Fig. 9.18).

Both ERs and ESRs used the CoMSON platform for different aims. In particular,
the 71 % of the sample used it “For educational purposes”, while the 29 % used it
both “For research purposes” and “For getting information” (see Fig. 9.19).

The CoMSON eLearning platform includes different functionalities, such as:
Lectures; Courses; Virtual laboratories; Students homework; Communications with
students; Students verification. We find that the more used functionalities are:
“Lectures” from 57 % and “Courses” used from 71 % (see Fig. 9.20).

The majority of the final users (83 %) were satisfied of the eLearning materials
delivered by the platform. In addition, all users agreed that the eLearning materials
stored in the platform are interesting and engaging. 79 % of the users found that the
educational materials are well organized and easy to understand.

As comes out from the literature on eLearning, it is very important to support the
final users during their learning process. The 71 % of the sample found a sufficient
help and support while using the CoMSON eLearning platform.

The eLearning platform is based on SCORM (Sharable Content Object Ref-
erence Model) standard, which allows the creation of standard contents that are
exportable and executable on every SCORM compatible system. In the opinion of
the 83 % of the users this eLearning technology works well.

Moreover, 67 % of the sample underlined that the CoMSON eLearning platform
helped them to increase skills in topics related to the micro- and nano-electronics,
even if the 33 % of the users did not agree with this statement. The same percentage
67 % asserted that the CoMSON eLearning platform supported them during the
research activities.

Finally, both ER and ESR that worked in CoMSON and that used the eLearning
system indicated some negative and positive aspects of the platform. Among the
positive aspect, the sample mentioned: courses with tests are useful, because you
can learn first, and, just after that, test what you have retained (14 %); it requires
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Fig. 9.17 How often CoMSON ERs and ESRs use the eLearning platform
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Fig. 9.18 How long CoMSON ERs and ESRs remain connected to the eLearning platform

a distributed collaboration (14 %); the material and the way it is described is also
nice and new (14 %); it is clear and well organized (42 %); the eLearning platform
is simple; the course on optimization is open to public (28 %).

Among the negative aspect, the following things were pointed out: there are very
often technical problems with the server (42 %); there is the need of more content
and to be actively used (14 %); the platform is not well supported (14 %); it is
not well advertised (14 %); small amount of information (14 %); no recent updates
(14 %).
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Fig. 9.20 Functionalities of the CoMSON eLearning platform more frequently used

9.9 Conclusions and Future Perspectives

The chapter aims to provide a straightforward introduction to the creation and use of
eLearning approaches to support and teaching both university students and industry
people that work in microelectronics field. It is aimed to introduce eLearning
systems to enhance teaching, and it does not assume a high level of technical
knowledge to use these tools. Although this chapter introduce together pedagogical-
psychological, practical and technological aspects of the eLearning, it does not
assume that many people will become an expert in the theories of learning, or a
person with a high level of technical expertise.

Contrarily, this chapter wants to show how to use the techniques suggested
(theoretically and practically) within a specific sector as the microelectronic.
Both technological and psychological aspects, underpins the potentiality of the
eLearning environment, suggesting activities that enhance teaching, learning and
student assessment. In our opinion, CoMSON project has represented a scientific
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opportunity both students and researchers that work in the microelectronics field to
experiment limits and potentiality of the eLearning.

The educational aims of this chapter are based on constructivist learning theory.
According to the constructivist approach, students learn actively by doing things,
rather than simply reading or being told about them, and construct their own
conceptions of what they are learning. By using this approach, subjects want to
test their own hypothesis with other people, thus redefining their understanding.
The active construction of knowledge is thus better realized by virtual laboratories
that allow to visualize (with animation) and manipulating interactively, step by step,
metaphoric representations of the functions, modules and coupling paradigms for a
deeper understanding of them. The CoMSON platform supports both online content
creation and running of learning trails and allows a great flexibility in online material
uploading. A series of tools are present in it, that are easy to use both for students
and trainers, and allow a flexible and personalized acquisition of competences.

In our opinion, it is important to think about eLearning methodology as another
educational innovation or modification of the traditional course design, and consider
how it could be used to improve specific conceptual and practical abilities. This lat-
ter aspect is important for industry companies, which have the needs to experiment
new educational strategies to ensure in short time the design of educational materials
to train the internal people to use specific tools.

Of course, there exist different models of eLearning and procedures that explain
how to integrate this approach into a traditional course for different circumstances.
The assessment of eLearning course is another key issue, and it is important to
ensure the validity of the chosen assessment. The introduction of eLearning is
a good opportunity to think to find new strategies and approaches to evaluate
the contents of a course. In this context, evaluation is important to ensure that
the educational practice is effective to improve the way teaching, learning and
assessment are carried out.

There is some experimental result that eLearning environments, and in particular
the constructivist approach, increase the student’s motivation and can be considered
an effective strategy to enhance learning, improving not only conceptual skills but
also practical competence to use tools (e.g. simulation environment and other system
that stimulate students to interact). In the developing processes of an eLearning
systems it is really important to adopt an interdisciplinary perspective, taking
into account that different competences converge in this process: psychological
(student’s cognitive style, learning theories, cognitive strategies, user profile); peda-
gogical (objectives, contents, organization, methodology and didactic strategies),
technological (technological resources, hardware and software solutions), user
interface design (to foster the interaction between human and machine), usability
(to evaluate the user interaction with the eLearning environments).

Considering the relationship between eLearning and microelectronics education,
there are a number of possible future research directions. In particular, at the end
of this chapter we mention the possibility to design and implement an mLearn-
ing platform devoted to microelectronics educational activities. Mobile learning
(mLearning) refers to the use of mobile and handheld information technology
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devices in teaching and learning. The idea is to create an educational platform able to
deliver electronic courses whose contents will be accessible through mobile devices
such as a Personal Digital Assistant (PDA).

It is important to note that the most effective electronic educational environments
stress the collaboration with others, allowing students to work together, learn
from each other, and test their understandings. These aspects are in line with
the constructivist paradigm discussed concerning the eLearning environment. It is
possible to consider mLearning as an extension of the eLearning technologies and
approaches. In the microelectronics field, mLearning could have many advantages
for students, allowing them to carry out their learning activity from any location, any
time in a connected environment using a personal PDA. Most likely, PDA could be
used to deliver accessible engineering education to traditional and non-traditional
students in blended or online way.

Students using mLearning technology can share documents and other educa-
tional materials with other people, enriching the learning process. This collaborative
learning allows the creation and sharing of documents among students and teacher-
authored resources. Resources can be hosted and linked to relevant websites in order
to enhance the diffusion between students. Finally, we raise the issue that to use
mobile devices as educational tools it is necessary to improve data transmission; to
create a set of technology to unify mobile devices; to improve the quality of the
display screens; to have more memory space to store data, and so on.
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