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FOREWORD TO THE FIRST EDITION

This text is based on a course that I taught at Western Michigan
University in 1971. The material is suitable for presentation at the
graduate or advanced undergraduate level, and assumes only an intro-
ductory knowledge of group theory and of point-set topology. One of
the features of the subject matter is that many results of the
general theory can be readily visualized, or modeled, so that the
student is constantly reassured that what he is doing has meaning,
is more than a formal manipulation of symbols.

The focus of attention is an interaction amoung graphs, groups,
and surfaces (see Figure 0-1). After a brief introduction to the
theory of graphs, the relationship between graphs and groups will be
explored. For every graph there is an associated group, called the
automorphism group of the graph. Conversely, for every group presen-
tation, there is an associated graph, called a Cayley color graph of
the group. Both associations will be studied, with emphasis on the
latter. An excursion into combinatorial topology will follow;
Euler's generalized polyhedral formula and the classification theorem
for closed 2-manifolds will be discussed. Imbedding problems in
graph theory will be examined at some length (here a graph and a
surface come together, often with the aid of a group); it will be
seen that the famous four-color conjecture can be stated in this con-
text. The five-color theorem will be established. The Heawood map-
coloring theorem will then be studied in detail. (This theorem
determines a chromatic number for every closed 2-manifold except the
sphere -- a truly astounding result!) The theory of quotient graphs
and quotient manifolds (and guotient groups) is at the heart of the
proof of this theorem (as well as many others) and will be presented;
this theory relies upon each of the concepts mentioned in this para-

graph and serves as the unifying feature of this text.



vi Foreword to the First Edition

Several peripheral (but significant) results are stated without
proof. An effort has been made to provide those proofs of theorems
which are most indicative of the charm and beauty of the subject and
which illustrate the techniques employed. Proofs missing in the
text can be supplied by the reader, as part of the problem sets
(problems marked "*" are difficult; those marked "**" are as yet un-
solved), or can be found in the references. A bibliography is pro-
vided, for further reading; items (c¢) or (j), (g), and (h) respect-
ively are particularly suitable for more extensive treatments of the

theories of graphs, groups, and surfaces, which are seen interacting
in this text.

A.T.W.
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FOREWORD TO THE SECOND EDITION

The field of topological graph theory has greatly expanded in
the ten years since the first edition of this book appeared, with
many able mathematicians contributing to this expansion, As with
the first edition, I have tried to focus on those aspects of the
subject germane to the interaction of the structures listed in the
title., I apologize in advance, for any omissions of relevant mate-
rial.

The nine chapters of the first edition have been revised and up-
dated. Thirty-two new problems have been distributed among these
chapters.

Six new chapters have been added, dealing with: voltage graphs
(extending the work of Jacques even further), non-orientable imbed-
dings (emphasizing parallels to the orientable theory and results),
block designs associated with graph imbeddings (tying topological
graph theory securely to more traditional combinatorics), hypergraph
imbeddings (as generalizing graph imbeddings and as depicting block
designs), map automorphism groups (groups acting (primarily) on
graphs of groups on surfaces), and change ringing (finding how to
ring church bells by picturing the right graph of the right group on
the right surface.)

Several new problems have been given for each new chapter, so
that there are now 181 problems in all; 22 of these have been desig-
nated as "difficult" (*) and 9 as "unsolved" (**). Three of the four
unsolved problems from the first edition have been solved during the
ten years between editions; they are now marked as "difficult."

I wish to thank everyone who read the first edition, particular-
ly those who sent me comments and corrections, and especially
Jonathan Gross., I also owe thanks (but delegate no responsibility)

to many, including the following, for their contributions to my



viii Foreword to the Second Edition

understanding of the material in the new chapters as indicated:
Thomas Tucker (10), Saul Stahl (11) and (13), Seth Alpert (12),
Derek Waller {(13) and (14), Norman Biggs (14), and Sabra Anderson,
Joan Hutchinson, and T. Jefferson Smith (15). TFinally, I thank
Margo Johnson for typing the manuscript, and Paul Himelwright for
drawing the figures.
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CHAPTER I

HISTORICAL SETTING

In coloring the regions of a map, one must take care to color
differently any two countries sharing a common boundary line, so that
the two countries can be distinguished. One would think that an
economy-minded map-maker would wish to minimize the number of colors
to be used for a given map, although there appears to be no histori-
cal evidence of any such effort. Nevertheless a conjecture was made,
over thirteen decades ago, to the effect that four colors would always
suffice for a map drawn on the sphere, the regions of which were all
connected. The first reported mention of this problem (see [BCL1]
and [0Ol}) was by Francis Guthrie, through his brother Frederick and
Augustus de Morgan, in 1852. The first written references were by
Cayley, in 1878 and 1879. Incorrect "proofs" of the Four Color Con-
jecture were published soon after by Kempe and Tait. The error in
Kempe's "proof" was found by Heawood {[H3] in 1890; this error has
reappeared in various guises in subsequent years. Ore and Stemple
[0581] showed that any counterexample to the conjecture must involve a
map of at least 72 regions, The conjecture continued to provide
one of the most famous unsolved problems in mathematics, until Appel
and Haken affirmed it in 1976 [AH1].

It is an astonishing fact that several related, seemingly much
more difficult, map-coloring problems have been completely solved.
Chief among these is the Heawood Map-coloring Conjecture, which gives
the chromatic number for every closed 2 -manifold other than the

spere; we state the orientable case:

[Z+ 4TI or oo,

where k 1is the genus of the closed orientable 2 -manifold Sk.
Heawood showed in 1980 [H3] that x(sk) < f(k) , and in 1891 Heffter
[H4] showed the reverse inequality for a possibly infinite set of

natural numbers Kk ; almost eight decades passed before it was shown
that X(Sk) > k), for all k > 0. In 1965 this problem was given

the place of honor on the dust jacket for Tietze's Famous Problems




2 Historical Setting Chapt. 1

of Mathematics [T2]. An outline of the major portion of the solu-
tion now follows.

The dual of a map drawn on S is a pseudograph imbedded in

k
Sk , and it can be shown (see Section 8-4) that x(Sk) > E(k) o,
for k > 0, provided the complete graph Kn has genus given by
_ (n-3)(n-4) "
Y(K) = [——3—=}, n>27. (*)

Heawood established (*) for n = 7 in 1890, and Heffter for
8 < n <12 1in 1891; Ringel handled n = 13 in 1952. The first

major breakthrough occurred in 1954, when Ringel showed (*) for

n =5 (mod 12). During 1961-1965, Ringel treated the residue cases
7,10, and 3 (mod 12) , while independently Gustin settled the
cases 3,4, and 7. Gustin's method involved the powerful and

beautiful idea of quotient graph and quotient manifold, and relies
upon the fact that Kn can be regarded as a Cayley color graph for
a group presentation; thus graph theory, group theory, and surface
topology are combining to solve this famous problem of mathematics.

In 1965, Terry, Welch, and Youngs announced their sclution to
case 0. Gustin, Ringel, and Youngs finished the remaining residue
cases f{(mod 12} , except for the isolated values n = 18 , 20, and
23 ; their work was announced in 1968 [RY1l]. In 1969, Jean Mayer
(a Professor of French Literature) [M4] eliminated the last three
obstinate graphs by ad hoc techniques.

Much of the work of Ringel, Terry, Welch, and Youngs was made
possible by Gustin's theory of quotient graphs and quotient manifolds;
this theory was developed and modified by Youngs, who also intro-
duced the theory of vortices [Y¥3]. The theory is considerably more
general than was needed to prove the Heawood Map-coloring Theorem,
and has been unified and developed in more generality by Jacques
[J2], in 1969. Jacques' results will be presented in Chapter 9,
together with many applications to other imbedding problems in
graph theory. This will be a focal point of the text, and it
illustrates vividly the fruitful interaction among graphs, groups,
and surfaces.

We continue this development through the theory of voltage
graphs and by extending to nonorientable imbeddings. We consider
the related structures of block designs and hypergraph imbeddings.
In map autcmorphism groups we study groups acting on graphs of groups

on surfaces. Finally, in studying change ringing, we use graphs of
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groups on surfaces to compose pieces of music.

The conjunctions of graph theory, group theory, and surface
topology described above are foreshadowed, in this text, by several
pairwise interactions among these three disciplines. The Heawood
Map-coloring Theorem is proved by finding, for each suface, a graph
of largest chromatic number that can be drawn on that surface.
Equivalently {(as it turns out) we find, for each complete graph, the
surface of smallest genus in which it can be drawn. The extension of
this latter problem to arbitrary graphs is natural; the solution is
particularly elegant for graphs which are the Cayley color graphs of
a group. We are led in turn to the problem of finding, for a given
group, a surface of minimum genus which represents the group in some
way.

Dyck [D5] (see also Burnside [B18], Chapters 18 and 19) consid-
ered maps, on surfaces, that are transformed into themselves in
accordance with the fixed group T, acting transitively on the
regions of the map. Any such map gives an upper bound for the para-
meter Y (I') discussed in Chapter 7 of this text, as a "dual" formed
in terms of Burnside's white regions gives a Cayley color graph for
r. (Cayley [C4] defined his coclor graphs as complete symmetric
digraphs, corresponding to the choice T 1less the identity element
as a generating set for T ; it is sensible to extend hisdefinition
to any generating set for the group in question.) Brahana ([B15]
studied groups represented by regular maps on surfaces; these maps
correspond to presentations on two generators, one of which is of
order two. In this context the group acts transitively on the edges
of the map, and again an upper bound for y(I') 1is obtained. 1In
Chapter 7, we regard I as acting transitively on the vertices of
the map induced by imbedding a Cayley color graph CA(F) for ' 1in

a surface; in Chapter 4, we show that the automorphism group of

CA(F) is isomorphic to T, independent of the generating set A
selected for T, so that in this sense CA(F) provides a "picture"
of T. But more: many properties of T, such as commutivity,

normality of certain subgroups, the entire multiplication table, can
be "seen" from the picture provided by CA(F) . Thus it is natural
to seek the simplest surface on which to draw this picture; this is
given by the parameter y(T) .

This point of view may give a surface of lower genus for a
given group than the other two approaches listed above; for example,

the group T = Z, x Z, is toroidal for Dyck (or Burnside) and for
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Brahana, yet Y(Z2 xZ4) = 0.

There is one correspondence depicted in Figure 0-1 which we de
not discuss in this text: to every surface Sk there corresponds a
unigue group, Q(Sk) , called the fundamental group of the surface;
the groups Q(Sk) have been complctely determined -- they are givcn
by 2k generators ay ,bl Pe ey ’bk and the single defining
relation alblaIlbIl . .akbka;lb;l = ¢ (see, for example, [S6] .)
Each of the other five correspondences illustrated in Figure 0-1
(where the inner triangle commutes, for proper choice of A) 1is
germane, as outlined above, to the conjunction of graph theory,
group theory, and surface topology described in this introduction

and which we now begin to develop.



CHAPTER 2

A BRIEF INTRODUCTION TO GRAPH THEORY

In this chapter we introduce basic terminology from the theory
of graphs that will be used in this text. We will give several
binary operations on graphs; these will enable us to construct more
complicated graphs, and hence to build up our store of examples of
frequently encountered graphs.

We emphasize that the material introduced here is primarily for
the purpose of later use in this text; for a considerably more thor-

ough introduction to graph theory, see [BCLl] or [H2].

'2~1. Definition of a Graph

Def. 2-1. A graph G consists of a finite non-empty set V(G) of
vertices together with a set E(G) of unordered pairs of
distinct vertices, called edges. If x = [u,vVv] ¢ E(G) ,
for u,v e V(G) , we say that u and v are adjacent

vertices, and that vertex u and edge x are incident

with each other, as are v and x. We also say that
the edges [u,v] and [u,w], w # v, are adjacent.
The degree, d(v) , of a vertex v 1is the number of

edges with which v 1is incident. (Equivalently, d{(v)

is the number of vertices to which v 1is adjacent; i.e.,
d(v) = {{u e v(G)|lu,Vv] ¢ E(G)}] .)

If the vertices of G are labeled, G 1is said to be a

labeled graph.

As a matter of notation, we usually write wuv for [u,vVv];
p=|viG)]; g = |E(G)| . The order of G is given by p . The

size of G 1is given by q.
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Example: Let G be defined by:

v(G) = (v v v

1’ 2 37 V4}

E(G) = [vlvz, Va3 Vv, vlv4};

then G may be represented by either Figure 2-la or 2-1lb,
where the latter representation is more accurate, in a

sense we will describe in Chapter 6.

2
G
vy Va
(a)
Figure 2-1.
Note: A graph may be more briefly defined as a finite one-

dimensional simplicial complex.

p
Thm, 2-2. For any graph G, )

d{v.) = 2g9.
i=1 1

Proof: In summing the degrees, each edge is counted

exactly twice.

Cor. 2-3., In any graph G, the number of vertices of odd degree

is even.

2-2. Variations of Graphs

Def. 2-4. A loop is an edge of the form vv . A multiple edge is
an edge that appears more than once in E(G) . Adirected
edge is an ordered pair of distinct vertices. A multi-
graph allows multiple edges. A Qﬁggggg£gg§ allows loops
and multiple edges. A directed graph (digraph) has every

edge directed. The corresponding graph (with all edge
directions deleted) is called the underlying graph. An

infinite graph has infinite vertex set.

For example, see Figure 2,2.
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QO =

loop multiple edge directed edge

a directed pseudograph

Figure 2-2,

The term "graph," unless qualified appropriately, disallows any

and all of the above variations.
2-3. Additional Definitions
Def. 2-~5. A graph H 1is said to be a subgraph of a graph G if

V(H)  V(G) and E(H) ¢ E(G) . If V(H) = V(G) , H is
called a spanning subgraph. For any ¢ # 8 < V(G) , the

induced subgraph (8) 1is the maximal subgraph of G

with vertex set S.

Notation: For v € V(G), G - v denotes (V(G) - v). For
x £ E(G) , V(G-~x) = VI(G) , and E(G-x) = E(G) - x.
Certain subgraphs are given special names. We indicate these

by a series of definitions.

Def. 2-6. A walk of a graph G 1is an alternating sequence of ver-
tices and edges Vo r Xy Ve e e sV e XV (or,
briefly: Vo Vi o Voo Yy )  beginning and ending
with vertices, in which each edge is incident with the
two vertices immediately preceding and following it; n
is the length of the walk., If Vg = Vo the walk is
said to be closed; it is said to be open otherwise. The
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walk 1s called a trail if all its edges are distinct, and
a path if all the vertices are distinct. A cycle is a
closed walk with n > 3 distinct vertices (i.e.,

Vg = Voo but otherwise the v, are distinct).

Two famous problems in graph theory may be described in terms
of the above definitions. A graph is said to be eulerian if the
graph itself can be expressed as a closed trail. (This corresponds
to the "highway inspector" problem; eulerian graphs have been
completely and simply characterized: see Harary [H21, p. 64-65.)

A graph is said to be hamiltonian if it has a spanning cycle. (This
corresponds to the "traveling salesman" problem; hamiltonian graphs
have not been completely characterized. See Harary, p. 65-69, for

some partial results.)

Def. 2-7. A graph G is connected if u,v £ V(G) 1implies there
exists a path in G Jjoining u to v . A component

of G 1s a maximal connected subgraph of G.

Def. 2-8. The distance, d(u,v) , between two vertices u and v
of G 1is the length of a shortest path joining them if

such exists; if not, d(u,v) = «.

Thm. 2~9. A connected graph may be regarded as a (finite) metric

space.
Proof: See Problem 2-7. #

For a partial converse to the above theorem, see Chartrand and
Kay [CK1]. By Theorem 2-9, every connected graph may be regarded as
a topological space. (Actually, since the metric induces the dis-
crete topology, we knew this already.) In Chapter 6 we will see
that this is true in another sense also; that is every graph may be
regarded as a subspace of R3 , with all edges represented as
straight lines, If we consider G as a topological space in this
latter sense, then G 1is connected as a graph if and only if it is
connected as a topological space (see Problem 2-8). The term
“component" is easily seen to mean the same in both contexts.
Furthermore, a graph (as a subspace of R3) is connected if and only

if it is path connected; (see Problem 2,9.)



Sect. 2.3 Additional Definitions 9

Def. 2-10. Two graphs Gl and G2 are said to be isomorphic

(Gy =G, , or G, = G,) Aif there exists a one-to-one,
onto map 0 : V(Gy) > V(G,) preserving adjacency; that

is, uv ¢ E(Gl) if and only if 0(u)6(v) ¢ E(Gz)
Note: Isomorphism is an equivalence relation on the set of all
graphs.
Notation: §(G) = min{d(v)|v ¢ V(G)} .
A(G) = max{d(v)|v € V(G)} .
Def. 2-11. If &(G) = A(G) =1r, we say that G 1is regular of
degree r . (If r=3, G 1is said to be cubic.)
Thm., 2-12. Let 6 : V(Gl) > V(Gz) give Gl = G, i then
da(e(v)) = d{v) , for all v ¢ V(Gl).
Proof: See Problem 2-10. #
Cor. 2-13. If Gl is regular of degree r and Gl = G2 , then
G2 is regular of degree «r .

Cor. 2-14, Let the vertices of a graph Gl have degrees

d; <dy < ... 2d , and the vertices of a graph G,
have degrees cq < Cy < ... f,cn . If di # cy o for
some 1 < i < n, then Gl and G2 are not isomorphic.

The inverse of the above corollary need not be true; see

Problem 2-3.
Def, 2-15. The complement G of a graph G has V(G) = V(G) and
E{G) = {uvju # v and uv £ E(G)} .
2-4. Operations on Graphs

We now define several binary operations on graphs. In what

follows, we assume that V(Gl) r1V(G2) = ¢ .
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Def, 2-16. 1.,) The union G = Gl U G2 has:
V(G) = V(Gl) U V(Gz)
E(G) = E(Gl) v E(Gz).

Notation: 2G = G U G

nG = (n-1)G U G, n > 3,

2.) The join G = Gl + G, has:

V(G) = V(Gy) U V(G,)

E(G) = E(Gy) U E(G,) U {vlvzivi € VG, 1 = 1,2},
3.) The cartesian product G = Gl x G, has:

V(G) = V(Gl) X V(G2)

E(G) = {[(ul,uz),(vl,v2)1|ul = v and u,v, € E(G,)

or u, = v, and u, vy € E(Gl)}.

4.) The composition (or lexicographic product)

G = Gl[G2] has:

V(G) = V(Gy) x V(Gy)

B(G) = {l(up,uy), (v, vy)lluvy € E(G)) or

(ul = v, and u,v, € E(Gz))}.

For additional products, see Harary and Wilcox [HW1].
We are now in a position to conveniently define several infi-

nite families of graphs.

Def, 2-17. a.) Pn denotes the path of length n-1 (i.e. of
order n.)

Cn denotes the cycle of length n.

a o

Kn denotes the complete graph on n vertices;

that is all (2) possible edges are present.

d.) ﬁh denotes the totally disconnected graph on n

vertices; that is, E(ﬁh) = b.
e.) Km n denotes a complete bipartite graph:
r
Km,n = Km + Kn'

(Equivalently, Km n is defined by:
7



Sect, 2.4 Operations on Graphs 11

=K U K_.)
m,n m n
f.) K denotes a complete n-partite
PPy s eve 1Py
graph:
K =K + K  + ... +K_,
pl 192 LA A lpn pl p2 pn
an iterated join. In the special case where
p; = p, = "0 = 1< ( = m, say). we get a reqular
complete n-partite graph:
K = K _[R 1.
m,M,...m n-m
We introduce Kn(m) as a shorter notation
for this graph.
g.) Qn denotes the n-cube and is defined recursively:
Q = K
% =Ky X Qpy v P22

The complete bipartite graphs are a subclass of an extremely

important class of graphs -- the bipartite graphs.

Def. 2-18. A bipartite graph G 1is a graph whose vertex set V(G)

can be partitioned into two non-empty subsets V' and
V" so that every edge of G has one vertex in V'

and the other in V".

Thm. 2-19. A nontrivial graph G is bipartite if and only if all

its cycles are even.

Proof: (i). Let ViV sV V) be a cycle in a bipar-

tite graph G, and assume, without loss of generality,

that vy € V'; then v, € v", and n must be even.
(ii). We may assume that G is connected, with

only even cycles, since the argument in general follows
directly from this special case. Consider a fixed v
€V(G). Let v, = {u ¢ V(G)ld(u,vo) =i}, i =0,1,

...,n. Then n 1is finite, since G 1is connected, and

0
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V0 ,Vl P ,Vn provides a partition of V{(G). Now,
no two vertices in v, are adjacent, since G contains
no 3-cycles. Also, no two vertices in V2 are adja-

cent, or G would contain either a 3-cycle or a 5-
cycle, In fact, every edge in G 1is of the form uv,
where u ¢ Vi V€ Vi+l , for some i =20,1,...,n-1.
Letting V' be the union of the Vi for i o0dd, and
V" be the union of the V.l for i even, we see that

G is bipartite. #

This completes our brief introduction; other terms will be de-

fined, and theorems developed, as needed.

2.5. Problems

2-1.) Prove that if G is not connected, then G is connected.
Given an example to show that the converse need not hold.
2-2.) A graph is said to be perfect if no two vertices have the
same degree, Prove that no graph is perfect, except G = Kl'
2-3.) Show that, even though K3’3 and K, x Ky are both regular
of order 6 and degree 3, they are not isomorphic.
2-4.) Prove that Gl X G2 is bipartite if and only if both G
and G2 are bipartite. Give an example to show that a

1

similar result need not hold for the lexicographic product.
2-5.) show that G,[G,] = G;I[G,].

2-6.) show that G, + G, = G, U G,.
2-7.) Prove Theorem 2-9.
2-8.) Consider the graph G as a subspace of R3. Show that G

is connected as a topological space if and only if it is con-
nected as a graph,

2-9.) ©Show that the first occurence of "connected" in Problem 2-8
may be replaced with "path-connected." (Recall that a path-
connected topological space must be connected, but that the
converse does not always hold. However, a connected space
for which every point has a path connected neighborhood must
be path-connected.)
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2-10.)
2-11.)

2-13.)

2.

5 Problems 13

Prove Theorem 2-12.

Show that the set of all graphs, under the operation of
cartesian product, forms a commutative semigroup with unity
(i.e. a commutative monoid).

Let G and H both be hamiltonian. Show that G[H] and

G * H are hamiltonian also. Show that Qn is hamiltonian,
for n > 2.

The line graph H = L(G) of a graph G 1is defined by

V(H) = E(G), E(H) = {ef|le and f are adjacent,

e,f € E(G)}. Show that L(Km, ) = Km x Kn. (This result

n
appears in Palmer [P2].)
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CHAPTER 3

THE AUTOMORPHISM GROUP OF A GRAPH

In this chapter we show that there is associated, with each
graph, a group, known as the automorphism group of the graph. We
introduce various binary operations on permutation groups to aid in
computing automorphism groups of graphs. Several powerful results
relating graph and group products are stated, sometimes without
proof (see [H2] for a further discussion); these results will not be
used in the sequel. Indeed, the concept of automorphism group of a
graph is, in the main, peripheral to the present course; it is in-
troduced here primarily as one example of an interaction between
graphs and groups. (In Section 2 of Chapter 4 we find a more direct

bearing on subsequent material.)

3-1. Definitions

Def, 3-1. A one-to-one mapping from a finite set onto itself is

called a permutation. A permutation group is a group
whose elements are all permutations acting on the same
finite set, called the object set. (The group operation
is composition of mappings.) If X 1is the object set
and A the permutation group, then 1A1 is the order of
the group, and |X| 1is the degree.

A permutation P partitions its object set by the
equivalence relation x =z y 1if and only if Pk(x) =y
for some integer - k. The eguivalence classes are called
the orbits of X, under the action of P. If there is
just one orbit in the action of A on X, then A |is
said to be transitive on X. If |A| = |x|, and if
A 1is transitive on X, then A 1is said to be a regular

permutation group.

Def, 3-2, Two permutation groups A and B are said to be isomor-

phic (A = B) 1if there exists a one-to-one onto map



16 The Automorphism Group of a Graph Chapt. 3

6: A > B such that O(alaz) = e(al)e(az) , for all
a; ra, € A.
Def. 3-3. Two permutation groups A and B (acting on object sets

X and Y respectively) are said to be identical (or
equivalent) (A = B) if:
(i) A =B (given by 0: A - B)
(ii) there exists a one-to-one, onto map f: X ~» Y
such that f(ax) = o(a)f(x), for all x € X
and a € A,

For a general treatment of permutation groups acting on combina-.
torial structures, see Biggs and White [BWl]. Here, we consider only

the graph automorphism case.

Def. 3-4. An automorphism of a graph G is an isomorphism of G
with itself. (The set of all automorphisms of G forms
a permutation group, G(G), acting on the object set

V(G).) G(G) 1is called the automorphism group of G,

Remark. An automorphism of G, which is a permutation of V(G),

also induces a permutation of E(G), in the obvious manner.

Def. 3-5. An identity graph is a graph G having trivial automor-

phism group; that is, the identity permutation on VI(G)

is the only automorphism of G.

It is easy to see that the graph pictured in Figure 3-1 is an
identity graph. That there is no identity graph of smaller order
(other than Kl) is established in Problem 3-1.

G: (@@ =1

Figure 3-1
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Thm. 3-6. @(G)

(48}

G(G) .

Proof: Let ©: G(G) -~ G(G) and £f: V(G) -+ V(G) both be
identity maps, and observe that adjacency is preserved in

a graph if and only if non-adjacency is preserved. #

3-2. Operations on Permutation Groups

From a theorem due to Cayley, we recall that any finite group
is abstractly isomorphic (as opposed to necessarily being identical)
with a permutation group; in fact, if the group G has order n ,
then G 1s isomorphic to a subgroup of S+ In this light, the
operations soon to be defined could be regarded as applying to
groups in general; however, the definitions will be given in terms
of action upon a specified object set.

Let A and B be permutation groups acting on object sets
X and Y respectively. We define three binary operations on these

permutation groups as follows:

Def, 3-7. 1l.) The sum, A + B, (or direct product)} acts on the
disjoint union X UY; A +B = {a + bla€ A ,b¢€ B},

and
r az, if z € X
(a+b) (2) = ﬁ
. bz, if =z €Y .
2.) The product, A x B, (or cartesian product) acts on
X xY; AxB=1{axbla€a,b eB}, and ’
(a x b)(x ,y) = (ax ,by).
3.,) The composition, AI[B] , (or wreath product) acts on

X X Y as follows: for each a € A and any se-

quence b; +by +evv sby (where 4 = |x]) in B,
there is a unique permutation in A[B] , written
(a;bl ,b2 PR ,bd) , and

(aiby by vvon byl (x ,yj) = (ax; ,biyj).

Note: The order of A[B] is [A|{B[d.
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Thm., 3-8. A 4+ B = A x B.

Proof: Let U:A + B - A x B be given by ©§(atb) = (axb).
¥

Note that, in general, we cannot claim A + B - A x B.

3-3. Computing Automorphism Groups of Graphs

The following theorems indicate some connections between the

graphical operations defined in Section 2-4 and the group operations

defined above. The groups Sn ’ An ’ Zrl ’ Dn are respectively the
symmetric and alternating groups of degree n , the cyclic group of
order n , and the dihedral group of order 2n. The first theorem

is due to Frucht [F5].

Thm, 3-9. If G 1is a connected graph, then ¢ (nG) = Sn[G(G)].
Thm. 3-10. If no component of Gl is isomorphic with a component
of G, , then G(G; U Gy) = G(G)) + a(Gy).
Proof: See Problem 3-2, #
Thm. 3-11., Let G = anl U n2G2 U ++. U anr , Where ny is the
number of components of G isomorphic to Gi' Then
a(G) = snl[a(Gl)l + Snz[G(Gz)] + e 4 Snr[a(Gr)l.

Proof: Apply Theorems 3-9 and 3-10, using induction. #

Note: Any graph G may be written as in Theorem 3-11, but if
r=n_= 1, the theorem gives no information.
Thm. 3-12., If no component of El is isomorphic with a component
of G2 , then (1(Gl + G2) = G(Gl) + G(Gz).
Proof: Apply Theorems 3-6 and 3-10, together with
problem 2-6. #
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The following two theorems are due to Sabidussi ([S2] and [S2]

respectively).

Def. 3-13. A non-trivial graph G 1is said to be prime if

G =G, xG implies that either Gl or 62 must be

1 2
trivial (i.e. = Kl). If G 1is not prime, G 1is
composite. Two graphs Gl and 62 are relatively
prime if Gl = G3 * Gy and G2 = G3 X G5 imply
G3 = Kl.
Thm. 3-14. Q(Gl X G2) = G(Gl) X G(GZ) if and only if Gl and G2

are relatively prime.

Def. 3-15. The neighborhood of a vertex u 1is given by:
N{u) = {v € V(G) [uv ¢ E(G)}. The closed neighborhood
is N[u] = N(u) Uy {u}.

Thm. 3-16. If Gl is not totally disconnected, then Q(Gl[Gz]) =

Q(Gl)[G(GZ)] , 1f and only if:
(i) if there are two vertices in Gl with the
same neighborhood, then G2 is connected.
and
(ii) 1if there are two vertices in < with the
same closed neighborhood, then G2 is con-
nected.

We are now able to list the automorphism groups for several

common families of graphs.

fre

Thm. 3-17, 1.) G(Kn)
2.) G(Cn) z

3.) G(K )

_ m
4.) G [K 1) = s [S 1.
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3-4, Graphs with a Given Automorphism Group

Thm. 3-18, Every finite group is the automorphism group of some

graph.

For a proof of this theorem, due to Frucht [F4}, see
Section 4-2,

3-5. Other Groups of a Graph

Def. 3-19. Two graphs G and H (with non-empty edge sets) are
said to be edge-isomorphic if there exists a one-to-one,
onto map ¢: E(G) + E(H) preserving adjacency; that is
x ,y share a vertex in G 1f and only if ¢(x) , ¢(y)

share a vertex in H. ¢ is called an edge-isomorphism.

Thm. 3-20. If G and H are isomorphic (with non-empty edge sets),
then they are edge-isomorphic.

Proof: See Problem 3-6.
Def. 3-21. An induced edge-isomorphism is an edge isomorphism

$: E(G) >~ E(H) determined by ¢(uv) = 6ubv , where

$: V(G) - V(H) 1is an isomorphism, An edge-automorphism

of a non-empty graph G 1is an edge-automorphism of G
with itself. (The set of all edge-automorphisms of G

forms a permutation groug, Gl(G)' acting on the object
set E(G).) Gl(G) is called the edge-automorphism

group of G, Similarly, the induced edge-automorphism

group of G, a* (G) , is the set of all induced edge-

automorphisms of G under composition.

We note that G*(G) 1is a (possibly proper; see Problem 3-8)

subgroup of Gl(G). However, in almost every case, the three groups
introduced in this chapter are isomorphic (see, for example, [BCL1ll);
let Kl 3 + x denote the graph obtained by adding one edge to

!
K

1,3°
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Thm. 3-22. For G # Kl , G(G) = G*(G) if and only if G contains

neither K2 as a component nor two or more isolated
vertices.
Thm. 3-23, Let E(G) # ¢; then Gl(G) = G*(G) if and only if:
(1) not both C3 and Kl 3 are components of G, and
’
(2) none of Kl,3 + x , K4 - x, K4 is a component
of G.

Thm. 3-24. Let G be a connected graph of order p > 3; then

G(G) = Gl(G) = @0*(G) 1if and only if
G # Kl,3 +tx, Ky - x, K.

Thus it is customary to focus attention on the automorphism

group, G(G).
3-6. Problems

3-1.) Does there exist an identity graph (other than Kl) of
order five or less? (Hint: Check to see that every graph in
Appendix 1, Harary [H2], with p < 5, has at least one non-

trivial automorphism.)

3-2.) Prove Theorem 3-10.

3-3.) Prove Theorem 3-17.

3-4.) Let G = Kp,q,r; find G(G).

3=5.) G(K4) = S4, vet K4 is the l-skeleton of the tetrahedron,
and the symmetry group of the tetrahedron is A, Explain!

3-6.) Prove Theorem 3-20.

3-7.) Show that the converse of Theorem 3-20 is false.

3-8.) Show that not all edge-automorphisms are induced.
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CHAPTER 4

THE CAYLEY COLOR GRAPH
OF A GROUP PRESENTATION

In this chapter we see that any group may be defined in terms
of generators and relations and that corresponding to such a presen-
tation there is a unique graph, called the Cayley color graph of the
presentation. A "drawing" of this graph gives a "picture" of the
group, from which may be determined certain properties of the group.
We will establish some basic results about Cayley color graphs, in-
cluding a rather natural correspondence between direct products of
groups and cartesian products of associated Cayley color graphs. 1In
Chapter 7 we will ask which groups have Cayley color graphs that can
be represented properly in the plane, and associated questions. In
Chapter 9 appropriate answers will solve the Heawood map-coloring
problem, as well as many others. The voltage graph theory of Chap-
ter 10, the block design connection of Chapter 12, and the map
automorphisms of Chpater 14 will be especially natural in the con-
text of Cayley graphs. And, each change-ringing graph of Chapter
15 will be a Cayley color graph.

4-1., Definitions

Def. 4-1. Let T be a group, with {gl,gz,g3,...} a subset of the
element set of G. A word W in 91 195 193 4. is a
finite product flfz---fn , where each fi is in the

et { - oL ot
S gl rgz lg3 l---rgl lgz Ig3

element of [ <can be expressed as a word in 9y 19, 193 4

yeee} o If every

cee then gl ,92 ,g3 ;... are said to be generators

for T. A relation is an equality between two words in

gl,g2 ,g3,... .

Thm. 4-2. Given an arbitrary set of symbols and an arbitrarily pre-
scribed set (possibly empty) of relations in these sym-

bols, there is a unique (up to isomorphism) group with the
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symbols as generators and with structure determined by

the prescribed relations.
(For a proof, see [MKS1l].) ¥

Def, 4.3, If [ 1is generatcd by 9y 19y 19y e and if every
relation in G can be deduced from the relations P =
P'" ,0=Q', R=R',..., then we write [' = (g1 19y
94 ;v P=P" ,0=0",R=R"',...), and the right
hand side of the equation is said to be a presentation

of ' . A presentation is said to be a finitely gener-

ated (finitely related) if the number of generators (de-

fining relations) is finite. A finite presentation is

both finitely gencrated and finitely related.
Thm. 4-4, Every finite group has a finite presentation,

Proof: Take | itself as the set of generators, with all
relations of the form qigj = 9y as determined by the
group operation. (i.e. the multiplication table serves

as a finite presentation.) #

Def. 4-5. For every group presentation there is associated a Cayley

color graph: the vertices correspond to the elements of
the group; next, imagine the generators of the group to
be associated with distinct colors. 1f vertices vy and
Vo correspond to group elements 9, and g, Trespec-
tively, then there is a directed edge (of the color (or

label) of generator h) from v to v if and only if

1 2

glh = 4g,; see Figure 4-1.

9, O——p—0 9,0 = 9,

Figure 4-1.
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Let P be a presentation for the group I ; we denote the
Cayley color graph of P for T Dby CP(F) , or (when convenient)
by Cﬂ(r) , where A denotes the generating set. (Since a group

may have more than one generating set, the Cayley color graph de-
pends on A, as well as I'Y. Then CA(F) is a labeled, direc-
ted graph, with a color (or label) assigned to each edge. We

observe that the following correspondences occur:

Group Cayley Color Graph
element vertex
generator a set of directed edges of

the same color
inverse of a generator the same set of edges (now

directed against the arrow)

word walk

multiplication of elements succession of walks
identity word closed walk

solvability of rx = s (weakly) connected di-graph

Note: A characterization is given in [MKS1l] of those graphs G
which can be oriented and colored so as to form Cayley color

graphs.

Historical note: Max Dehn (in 1911) formulated three fundamental de-

cision problems concerning group presentations.
One of these is: "determine in a finite number
of steps, for two arbitrary words W and W' in
the generators, whether W = W' or not." Equiv-
alently: ‘"construct the Cayley color graph for a

given group presentation."
The term "connected" may have a "stronger" meaning for directed
graphs than for graphs in general, since we may be allowed to travel

only in the direction of the arrow along a given directed edge.

Def. 4-6. A directed graph D is said to be strongly connected if,

for every pair u ,v of distinct vertices, there is a
directed path from u to v. D 1is said to be unilat-

erally connected if, for every pair of distinct vertices,

one is joined to the other by a directed path. D is
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called weakly connected if the (undirected) pseudograph

underlying D is connected.

For example, see Figure 4-2, where D 1is strongly connected,
D' is unilaterally connected (but not strongly connected) and D"

is weakly connected (but not unilaterally connected).

Figure 4-2.

4-2. Automorphisms

We have previously defined an automorphism of a graph G (as a
permutation of V(G) preserving adjacency). An automorphism of a
directed graph must preserve directed adjacency; and an automorphism
of a Cayley color graph must also preserve the color corresponding

to each adjacency. We summarize in:

Def. 4-7. An automorphism of a Cayley color graph CA(F) is a per-
mutation 6 of V(CA(F)) such that, for each 91 9,
in T and h 1in A, glh =9, if and only if

0(g;)h = 8(G,).

Equivalently (see Problem 4-1), 6 is an automorphism of
CA(P) if and only if: for each g in T and generator h in A,
8(gh) = 6(g)h; 1i.e. the diagram in Figure 4-3 commutes,
q h gh

CA 0

! h |
8(g 8(gh) = g(g)h

Figure 4-3
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As expected, the collection of all automorphisms of CA(F)

forms a group, called the automorphism group of CA(F) , and de-

noted by O(CA(F)). The next result is perhaps not expected.

Thm, 4-8. Let CA(T) be any Cayley color graph for the finite
group [ ; then G(CA(Y)) = ' (independent of the pre-

sentation selected for G.)

Proof: Define ar [ - G(CA(P)) by af(g) = Gg , where
Ug: V(CA(I)) > V(CA(F)) is given by Gg(gi) = gg;.
First we show that 6g € G(CA(T)). Clearly Gg is one-
to-one and onto (and hence permutes V(CA(F))). Also,
Sg(gih) = glg;h) = (gg;)h = Gg(gi)h, so that o 1is
well-defined.

Now, « preserves products: a(gg*) = Ggg* P de-
fined b 0 *(g.) = *g. = 6 *g,) = 6 (8 _*(g. =

Yy Ogg (g;) 99*g. g<g g9;) g( g (g;))

(8g6g*)(gi) ;  that is a(gg*) = a(g)alg*).

It is clear that o« 1is one-to-one, since
ker o« = {e}.

It remains to show that a 1is onto. Let
6 € G(CA(T)). ILet ©6(e) = g, where e 1is the iden-
tity of I'. Now any g* in T can be written as a word

a, a, a
in the generators for ' ; 1i.e. g* = hl h2 e hmm ,
where hi is a generator for [ and a; = % 1. Then
ay 4 a4

8(g*) = 0(eg*) = e(e)hl h2 oo hm = gg* ; that is,
5 = eg , so that o is onto. This completes the
proof. #

From the above theorem (and its proof) it is evident that any
vertex of CA(T) can be labeled with the identity e of T , and
that once this has been done (for fixed assignment of colors to the
generators) all other vertex labelings are determined; that is,

CA(T) is vertex transitive. Moreover, G(CA(F)) is a regular
permutation group, on V(CA(F)).

We are now able to provide a proof of Frucht's Theorem, Theorem

3-18: Every finite group is the automorphism group of some graph.
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Proof: Let [ be a finite group, and let A be a generating
set for ' . Form the Cayley color graph CA(F) ; by Theorem
4-8, we know that (ﬂCA(F)) = 1 . It only remains to convert
CA(P) to a graph G having the same automorphism group, .
This is done as follows: let A = {61 , 62 PR 6n}.
Replace each edge (gi ,gj) , where gj = giék , by a path:
v. ;U.,. ,u,.' ,v.. At vertex u..(u..,) we attach a new path
i i3 ij 3j ijtrig
Pij(Pij') of length 2k - 1 (2k) (1 < k < n) ; see Figure 4-4,
for the case k = 2. 1In this way the "non-graphical" features
of direction and label, present in CA(T) , are incorporated
into the graph G. It is clear that G(G) = alc, (1) = 1. #
52
o-———’-———-o
1
95 95 Vi ij ii Y3
Figure 4-4

4-3. Properties

It is clear that every Cayley color graph is both regular and
connected (as a graph); the converse is not true (see Problem 4-10),
For two characterizations of graphs which may be regarded as Cayley
color graphs, see [J2] and [MKS1l].

We may study additional properties for I (apart from the
multiplication table so conveniently summarized in CA(F)) from
CA(T) as follows: '

Thm. 4-9, ' is commutative if and only if, for every pair of gene-

rators h; and hj , the walk hih.h_lhfl

. is closed.
1 3

Proof: See Problem 4-2. #
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Thm. 4-11.
Thm., 4-12.
Thm, 4-13.
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An element of a generating set for a group I 1is said
to be redundant if it can be written as a word in the
remaining generators. A generating set is said to be

minimal if it contains no redundant generators.

{x2 ,X3} is a minimal generating set for 2 = (x\x6 = e),

even though {x} 1is a generating set with fewer elements.

Let T be a finite (infinite) group. A generator h
is redundant if and only if the deletion of all edges
colored h 1in CA(F) leaves a strongly (weakly) con-

nected directed graph.
Proof: See Problem 4-3. #

If H 1is not redundant, the removal of all edges col-
ored h leaves a collection of isomorphic disjoint

subgraphs, each representing the subgroup of [ gene-

rated by the generating set of [I' minus h.
Proof: See Problem 4-4. #

et T be a finite group with minimal generating set
{hl ,h2 P ,hr} , and € a (necessarily proper) sub-
group with generating set {h2 vhy e ,hr}. Let

Cl ,C2 PP ,Ck be the weak components of the directed
graph Chl(F) , obtained from CA(F) by deleting the
edges colored hl' Then & 1is normal in I if and
only if the deleted directed edges from any given com-

ponent Ci all lead to a single other component Cj.

Proof: (i) Assume the condition holds. Let Cl = Q
be the component containing e , let g € Cl and

r € I'. We must show that rgr_l € Cl' We write r =
bl b2 bm

a,-a e+ a , where a, 1is a generator of T and

1 72 m i

bi =+ 1, 1If hl occurs in r exactly w times with
bi = +1 and v times with bi = -1, then the walk

corresponding to r leads from e (in Cl) through

w -v components, ending in The walk

cl+w—v'
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corresponding to g in C now leads to another
l+w-v -b b -p

. m 2 1
vertex in c1+w-v ,_ and the walk am - .. az a; ,
corresponding to r , returns us to Cl.

(i1) Suppose that edges colored hl lead from
C.l to Cl and Cj , 1 #F . (Again assume @ € Cl.)
Then there exists g € Cl such that hzlghl e Cj , so
that © 1is not normal in ' . #

It now follows that, for @ (as above) normal in T, the ecle-

ments of the factor group T/ (i.e. the right cosets) are the
components of Chl(G). By shrinking these components, each to a
single vertex, and restoring the edges colored hl {(this can bhe
done unambiguously, by Theorem 4-13), a Cayley color graph of [/
is obtained. (This "shrinking" may be described by adjoining, to
the defining relations for G , the additional relations h2 = h3 =
ce. = hr = e.)

In general, given a Cayley color graph CA(F) , whether a sub-
group & of ' is normal or not, we obtain a Schreier (right)
coset graph as follows: the vertices are the right cosets of ( in
', and there is an edge directed from §g to Qg' , labeled with
§ €, 1if and only if Qg6 = g’ {i.e. if and only if
§ € g_ng'.) That §gd is a right coset follows from the fact that
the right cosets of @ in ' partition T . Note that a Schreier
coset graph may actually be a pseudograph, as loops and/or multiple
edges may result from this process, For the special case o = {e},
the Schreier coset graph is just the Cayley color graph CA(F).

Several of the ideas discussed above are illustrated in Figure
4-5. Note that & = Z3 is normal in 53 , but not in By

As a further example, contrast the groups 22 X 24 and D4 , as
in Figure 4-6. Note that the subgroup of order 2 generated by r
is normal in Z2 X Z4 y but not in D4. This comment extends in an
obvious way to the groups 22 x Zn and Dn + n > 3. For example,
see S5 = Dy (in Figure 4-5); the subgroup generated by r 1is not
normal here, either, For a generator ¢ of order 2, we adopt
the standard convention of representing the two directed edges
(g ,g8) and (g8 ,g) in CA(F) by a single undirected edge

(g ,g6].
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In Figure 4-7 we give the Schreier coset graph for ¢ = {e,r},
in o= Dy (see Figure 4-6).

Figure 4-7.
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We close this section with a theorem due to Gross [G4].
Thm, 4-14. Every connected reqular graph of even degree underlies a
Schreier coset graph.

4-4, Products,

We now develop a relationship between the direct product for
groups and the cartesian product for graphs. Recall the following

from group theory:

Def. 4-15. Let T and T both be subgroups of the same group

1 2

", with Yl f\Fz = {e} and gh = hg for all g € Iy

h & I,. Then I} xI,={ghjg € I}, h € '} is also

a subgroup of I'; called the direct product of Fl and

VZ.

TF 1y =Cky veee sk W) = --r = w_ =e) and
= = ... = = )
T2 <km+l rees ’kn\wr+l Yr+s &’
1. -1
* T = = .. = = =
then Fl x T, <kl , . ,kn[wl W kikjkl kj e,
for all 1 < i <m< 3 <n)
is a presentation for Yl x Tz , called the standard presentation
for Wl < ?2.
This binary operation may be extended to the class of all
groups, by noting that " = Fi = {{(g ,ez)lg € 'y re, 1is the iden-
1 = v ' : . .

tity of Tz} , T2 = F2 = {(el,h)|h € Uy req s the identity of Fl},
and defining Tl x Tz = {(g ,h)|g € Fl ,h € f2} , with
(ql ,hl)(q2 ,hz) = (q1g2 'hth) giving the group operation.

Also recall the following (see, for example [BMl, p. 348]):

Thm. 4-16. {The Fundamental Theorem of Finite Abelian Groups):

Let ' be a finite abelian group of order n; then
=z % B e X 2, r Wwhere i divides LY
1 2 r
r
i=2,...,r and momgo= g furthermore, this
i=1

decomposition is unique.
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(We assume m. > 1, unless n =1, in which case

m, =r = 1.)

The number r of Theorem 4-15 is called the rank of

the abelian group I'.

Theorem 4-16 completely specifies the structure of finite abe-

The next theorem specifies, as a corollary, a Cayley

color graph for every finite abelian group. We first extend the de-

finition of cartesian product for graphs to Cayley color graphs, in

the natural way.

Def.

and

4-18. The cartesian product, CA (r,) x c, (r,) , of two
us 1 A2 2 —
Cayley color graphs is given by: V{C, (I.,) x C, (T,)) =
Al 1 A2 2
V(CAl(Fl)) x V(CA2(T2)); and (gl ,g2) is joined to
(gi ,gé) by an edge colored h if and only if either:
(i) 9, = gi and gzh = gé , for h a generator
in Az
or
(ii) g, = gé and glh = gi ' for h a generator
in Al.
Figure 4-8 shows CA (ZB) x CA (22) , Where Z3 = <x|x3 = e)
1 2
2
Z, =({yly® = e).
e e
Z,) D (2
Al( 3 Az( 2)

Figure 4-8
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Thm. 4-19. Let C (Ti) be the Cayley color graph associated with

P.
i
presentation Pi for group Fi , i =1,2,. Let P
be the standard presenation for 'y Y2 Then
Co(l'y = ') = Co (1',) = C. (Ua).
Pl 2 Pl 1 PZ 2
P f£: Fi t C hat V ’ ® ’ =
roo irst we note tha (Cpl(ll) CP2(12))
V(CPl(Jl)) * V(CP2(;2)) = V(CP(Il X 12)). We now show

that the edge sets of the two Cayley color graphs coin-

cide (in colored directed adjacency.)

(1) Let (gl ,q2) be joined to (gi ,gé) by an

edge colored h in CP(I'l X FZ). Then h = ki , for
some 1 < i<n. If 1 <1<«<m, then h is a
generator of Fl . and

(glv :gé) = (Gl 192) (h lez) = (glh /gz) ’

s0 that qi = qlh and gé = gy i.e. this directed,
. P Ls . .
colored edge in DP('l * 12) is also in CPlU

). A similar argument applies for m < i < n

1)
so that

E(CP(i'l ['2)) ¢ E(C (rl) % Cp

Py 2

(ii) The argument is reversible, to show that

(r
1

E(C x 1,0,

) xCp (Th)) = Cplly P

P 1 P2

This completes the proof. #

Since the cyclic group Zn with presentation P: Zn =
(xlxn = e}, has the readily constructed Cayley color graph
Cp(Zn) = Cg (where CA denotes the directed cycle of length n),
it is a simple matter to construct, using Theorems 4-16 and 4-17, a

Cayley color graph for any finite abelian group.
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Thm. 4-20. Let ' be a finite abelian group; then C% X C% X
1 2
. X Ca is a Cayley color graph for ', where
r
' = 72 x Z x - x 7,
My M My

The class of groups for which we can construct Cayley color

graphs -- using Theorem 4-19 -- can be enlarged as follows:

Def. 4-21, A non-abelian group [ 1is said to be hamiltonian if

every subgroup of [ is normal in r.

Clearly all abelian groups have this normality property for
subgroups. That non-abelian groups may also have all subgroups nor-
mal is illustrated by Q , the quaternions (one of the two non-
abelian groups of order eight). But more the finite hamiltonian

groups are characterized (see Coxeter and Moser [CM1], p. 8):

Thm. 4-22. " 1is a finite hamiltonian group if and only if

['=Q><Al><A2, 1

of odd order, and A2 is a group for which a“ = e,

where A is a finite abelian group

for every a ¢ A2.

Since elementary group theory shows that A2 must be abelian,
we can apply Theorem 4-19 to find a Cayley color graph for [T, pro-
viding we know a Cayley color graph for Q. This latter Cayley
color graph will be produced in Chapter 7; it turns out to be the
Cayley color graph of minimum order which cannot be drawn properly

in the plane (among those on minimal generating sets.)

4-5. Cayley Graphs

Let A Dbe a generating set for the group I subject to the

following conditions:

(i) e £ A
(ii) If & € 4, 6_1 € A (unless §2 = e).

Also, we adopt the following convention:
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2

4

(iii) I1f & ¢ A, 6 = e, each pair (g ,g8) and (g6 ,g) of

directed edges are coalesced into a single undirected

edge [g ,g8].

Then the pseudograph obtained from the Cayley color graph CA(F) by

suppressing all edge directions and all edge labels (colors) has no

loops (by (i)) and no multiple edges (by (ii) and (iii)); it is in

fact a graph.

Def. 4-23, 1If 4 satisfies (i), (ii), and (iii) above, then the
graph underlying the Cayley color graph CA(T) is
called a Cayley graph and is denoted by GA(T).

It is clear that, in passing from CA(Y) to GA(V), only
structural properties are lost. Thus in the topological considera-
tions to follow in the rest of the book, it will be without loss

that we restrict our attention to GA(T).

4-6, Problems

4-1.) Show that 8 is an automorphism of CA(F) if and only 1if:
for each g in ' and h in &, 0(gh) = 0(g)h.

4-2.,) Prove Theorem 4-9.

4-3.) Prove Theorem 4-11. Give an example of an infinite group
with a redundant generator whose deletion does not leave a
strongly connected digraph.

4-4.,) Prove Theorem 4-12.

4-5.) How many isomorphic disjoint subgraphs are there, as in the
statement of Theorem 4-127?

4-6.) Give a graph-theoretic proof of the fact that a subgroup of
index 2 must be normal.

4-7.) Let T Dbe an abelian group of order pgq , where p and g
are distinct primes. By one of the Sylow theorems, T has
Zp as a subgroup. Give a graph-theoretic proof that 2
is normal, first finding CP(Zp % Zq). Then modify this
Cayley color graph, to obtain a Cayley color graph of F/Zp
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Compile an appendix of Cayley color graphs for all groups

of order < 12. (This appendix should be useful for refer-
ence, both in this course and in later life. You might want
to save some work by doing Z, 125 % Z, and b, in
general, rather than in each case where appropriate. Also,
you will find that some of your graphs cannot be properly
represented in the plane; these should be re-drawn, follow-
ing Chapter 7.)

Show that, if [|' 1is finite, then CA(Y) is always strongly
connected. Give an example to show that this need not be
true, if T 1is infinite.

Show that the Petersen graph (see Figure 8-9) cannot be

colored and labeled so as to be a Cayley color graph.

Find A so that C3 x C3 = GA(Z3 X Z3). Show that there is
no A  such that C3 x C3 = GA(Zg)'

A cut-vertex (bridge) for a connected graph G 1is a vertex
v € V(G) (edge e € E(G)) such that G - v(G -~ e) is
disconnected. Show that the Cayley graph GA(T) has no
cut-vertices, and hence no bridges, for |T]| > 3.

An n-factor of a graph G 1is a spanning n-regular subgraph
of G. Petersen's Theorem is: a bridgeless cubic graph is
the edge disjoint union of a l-factor and a 2-factor.
Illustrate this theorem, for Cayley graphs GA(F), where A
consists of two generators, exactly one of which has order
two.

Show that every Cayley graph GA(F) can be expressed as

an edge disjoint union of m 1l-factors and n 2-factors,

For some m and n such that m + n = |A].
A graph G 1is n-factorable if it can be expressed as an
edge disjoint union of n-factors (cf Problem 4-13). Find a
non-trivial sufficient condition for a Cayley graph GA(F)

to be:

(i) 1l-factorable
(ii) 2-factorable
(1ii) 3-factorable
(iv) eulerian
Show that the n-cube Qn is m-factorable if and only if m
divides n. (In particular, Qn is 1-factorable, for all

n.)
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o

-17.)

0k

-18.)

4-19.)

*
4-20.)
4-21.)

The Cayley Color Graph of a Group Presentation Chapt. 4
Babai [B2] conjectured that, for ifﬁ =3, G\(V) is
always hamiltonian. Prove or disprovel
Show that if ¥ is a finite abclian group of order at
least three and if 4 1is a minimal generating set for |,
then G\(V) is hamiltonian. (Klerlein [K2] showed that,
in fact; CN(V) is hamiltonian.)

i

Let P denote a property (in adjectival form) that a graph

might possess (such as "eulerian" or "hamiltonian",) and
let ' denote a finite group. We say that  1s P
(universally P) 1f there exists a A for P (for all &
for P) GL(I) is P. Discuss:

(i) If ' is abelian, |I'| » 3, then ' is hamiltonian

and universally hamiltonian.

(ii) 1f ' is hamiltonian (in the scnse of Definition
4-21), then T 1is hamiltonian {(cf Problem 2-12 and
Theorem 4-22) and (**) universally hamiltonian.
(Klerlein and Starling [KS1l] showed that, in fact,

C,(") is hamiltonian, for hamiltonian and A

Ay

minimal. )

(iii) Tf |r| » 3, then [ is hamiltonian.
(iv) If |!'] is odd, then |I' is universally eulerian.
(v} If ' is abelian, |I'| » 3, then |' is eulerian.
(vi) The abelian group I' 1is universally eulecrian if
and only if |I'| 1is odd.
(vii) What other properties P might be studied?
Is Theorcm 4-13 true for ' infinite?
et I' be a finite group, with 1 = Tl U Fz. Prove that if
Pl does not generate ', then YZ does. (Hint: use

Problem 2-1.)
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CHAPTER 5

AN INTRODUCTION TO SURFACE TOPOLOGY

In this chapter we present an introduction to surface topology,
including the statement and a brief discussion of the classification
theorem for closed 2-manifolds and a complete development of the
euler formula for the orientable case. One motivation for this
material is that it gives us alternatives to the plane for drawing
graphs in (for example, no Cayley color graph for the guaternions
can be drawn properly in the plane); these alternatives are com-
pletely classified, and the euler formula gives us important infor-
mation about them. We give a topological proof that there are
exactly five regular polyhedra, and conclude the chapter with a

brief discussion of pseudosurfaces.

5-1. Definitions

In this text, a surface will be a closed, orientable 2-manifold,
Any such figure may be considered as a topological subspace of
euclidean 3-space, R3. We consider the subspace topology to be
that induced by the standard distance-measuring metric in R3. To
pin down this idea of "surface", we must define the terms used in
the first sentence of th%s paragraph. First, we specify that by the

open unit disk we mean D ={(x ,y) ¢ R2|x2 + y2 < 1},

Def, 5-1. A 2-manifold is a connected topological space in which

every point has a neighborhood homeomorphic to the open

unit disk.

o
Note: In Definition 5-1, D may be replaced by Rz, since these

two spaces are themselves homeomorphic.

Example: Only one of the conical spaces (the third) in Figure 5-1

is a 2-manifold.
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-

- - e

-®o o e -
- -

Figure 5-1

Definition 5-1 may be extended as follows: an n-manifold is a
connected topological space in which every point has a neighborhood
homeomorphic to B = {(x1 P Xy e 'Xn) € Rn'-?lxi < 1l}. llowever,
we are only concerned here with the case n = ;.

Def. 5-2. A subspace M of R3 is bounded if there exists a
natural number n such that M ¢ B(O ;n) =

{(x,y ,z)|x2 + y2 + 22 < n}t,

Def. 5-3, Let M ¢ R3 be a 2-manifold. M 1is said to be closed
if it is bounded and the boundary of M coincides with M.

For example, M of Figure 5-2 is closed, while M' and M"

are not.
e
2 P4
7, V'd
\_/ : '
M= 52 M =s®-D M" = R®

Figure 5-2

Note that the term "closed" does not mean quite the same thing
to a surface topologist as it does to a point-set topoclogist. What
a surface topologist calls a "closed 2-manifold", a point-set topol-
ogist calls a "compact 2-manifold." (Recall that M € R3 is com-

pact if and only if M 1is closed (point-set sense) and bounded.)
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Def.

5-4, Let

M be a 2-manifold; M

Definitions

for every simple closed curve

C

on

M

’

a clockwise

sense of rotation is preserved by traveling once around

C.

Otherwise,

M

It can be shown that a 2-manifold M

if it is two

~-sided.

For example,

is nonorientable.

41

is said to be orientable if,

is orientable if and only

orientable, whereas a Mobius strip (imbedded in

way) 1s not.

R

3

a cylinder open at both ends is

in the usual

We offer an equivalent defintion of orientability.

Def. 5-4"',

We finally know what a surface is

which subspa

M

with coherent orientation (i.e.

is orientable if it admits a 2~cell decomposition

the boundary of each

2~cell is given an orientation so

that a l-cell

portion of the boundary incident with two adjacent

2-cells is oppositely oriented within those two 2-cells.)

5-2.

ces of

R

3

are surfaces?

Surfaces and Other 2-manifolds

{(abstractly);

now,

exactly

Let us begin to answer this question by representing certain

familiar 2-manifolds as polygons with appropriate edges identified.

See Figure 5-3 for the sphere, open cylinder,
plane, mobius strip, and klein bottle, respectively.

2-manifolds are orientable,

the bottom three non-orientable.

the cylinder and mobius strip are not closed.

a

Projectiva

cylinder a
m8bius
strip a

Figure 5-3

torus, projective

The top three
Only

| A

ag

torus

1o O}

ap

klein
bottle

o*ﬁ
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It turns out that every closed 2-manifold (whether orientable
or not) can be represented in this manner, In fact (see Fréchet

and Fan, [FFl] p. 63) we have the following theorem:

Thm. 5-5. Every closed 2-manifold is elementarily associated with a
polygon whose symbolic representation is of one of the

following forms:

. -1
(i) aa
. -1 -1 -1, -1 -1 -1 _
(ii) alblal bl a2b2a2 b2 ...apbpap bp , P =1,2,3,...
(iii) a,a,a,a,...a a_ ,q=1,2,3,

19192920 - 848

The form (i) corresponds to the sphere; (ii) to the sphere with
p handles (a torus is a sphere with one handle) and (iii) to the
sphere with g cross-caps (a projective plane is a sphere with one
cross-cap; a klein bottle is a sphere with two cross-caps.) Only
the forms (iii) correspond to non-orientable closed 2-manifolds.
(None of these can be realized in R3.)

As a byproduct of the development in Fréchet and Fan, an in-

variant called the characteristic is determined for each closed 2-

manifold., Then it is shown that:

Thm., 5-6. (The Classification Theorem) Two closed 2-manifolds are
homeomorphic if and only if they have the same charac-

teristic and are both orientable or both non-orientable.

It follows that a closed orientable 2-manifold (i.e. a surface)

M is a sphere with %k handles, where %k 1is a non-negative integer;

k is said to be the genus of M, and we write Y(M) = k and

M= S A closed nonorientable 2-manifold M 1is a sphere with k
crosscaps, where k 1is a positive integer; k 1is said to be the
(nonorientable) genus of M, and we write Y(M) =k and M = N, .

5-3. The Characteristic of a Surface

We now give an independent determination of the characteristic
of a surface, using the notion of a pseudograph. The proof will be

by induction on k, the genus of the surface. We first need a few
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definitions, and one preliminary theorem. The first definition is

intuitive; it will be made more precise in Chapter 6.

Def. 5-7. A pseudograph is said to be imbedded in a surface M 1if
it is "drawn" in M so that edges intersect only at

their common vertices.

For example, Figure 5-4 shows two drawings of K, in the plane,

but only the second is an imbedding.

Figure 5-~4

Def. 5-8. A tree is a connected graph having no cycles.

For example, Figure 5-5 shows three graphs, but only G3 is a

tree.

Figure 5-5

Thm. 5-9. Let G be a tree, with p vertices and g edges; then
p=g+ 1.

Proof (by induction on ©p): The result is clearly true
for p =1, for then g = 0. Now assume the result holds
for all trees with fewer than p vertices, and let G

be a tree with p vertices and g edges. Since G has

no cycles and is finite, we can find v € V(G) such that
d(v) = 1. Then G - v 1s a tree with p - 1 wvertices
and g - 1 edges, so that (p-1) = (g-1) + 1; 1i.e.

p=gqg+ 1. #
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Def. 5-10. Let a pscudograph G be imbedded in a surface M; the
components of M - G are called regions (or facgﬁ) of
the imbedding.

For example, the imbedding of K in Figure 5-4 has four

4
reglions.

The following theorem is attributed to both Descartes and
Euler, independently; we perhaps indicate our preference by calling

it the euler polyhedral identitys:

Thm. 5-11. Let G be a connected graph imbedded in the sphere, S

Let G have p vertices and q edges, with r the

number of regions of the imbedding., Then p - g + r =
Proof (by induction on g): The result is clearly true
for g =1, for then p =2 and r = 1. Now assume
the result holds for all connected graphs with fewer
than g edges, and let G be a connected graph with

q edges, p vertices, and r regions for an imbedding
in SO. We have two cases to consider:

(i) If G 1is a tree, then p = g + 1 by Theorem
5-9, and r =1 (since there are no cycles), so that

p-qg+r =2,

(ii) If G 1is not a tree, then (since G 1is con-
nected) G contains a cycle; let x be any edge of
this cycle. Then G - x has p vertices, g - 1

edges, is still connected, and is imbedded in S with

0
r - 1 regions. Hence p - (g-1) + (r-1) = 2; i.e.
p-q+r=2,
Cor. 5-12, Let G be a connected pseudograph imbedded in SO,

with p vertices, ¢q edges, and r regions; then

p-qg+tr=2,

Proof See Problem 5-3.

5

2,
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We observe here that imbedding a graph in the sphere is equiv-
alent to imbedding it in the plane. To see this, perform a stereo-

graphic projection (see Figure 5-6) with the north pole of the

sphere any point in the interior of some region of the imbedding.
For each point of the sphere, there corresponds a unique point of
the plane: the intersection of the line L through (0,0,2) and

(x,y,2) with the plane. The mapping is given explicitly by
2 2

f: 87 - P » R, where
s? = {(x,y,2) ¢ R3[x% + y% + (2-1)% = 1},
p = (0,0,2),
R® = {(x,y,2) ¢ R3lz = 0},
and
flx,y,2) = (x'hy', 0),
with
T 2x
x' =
y' o= EJ?L; (see Problem 5-4).
(0,0,2)

{x',y',0)

Figure 5-6

The image of the graph G from 52 is an imbedding of G 1in R2,

with the unbounded region corresponding to the region in 82 from
the interior of which the north pole was selected. Clearly, this
process is reversible. In fact, the map f gives a homeomorphism

between 82 - P and R2 , where P 1is any point of Sz. Note
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that neither space is closed from the point of view of surface

2 {and not 52 - P) is closed -- in the point-set

3

topology, yet R

sense -~ as a subspace of R

Def., 5-13, A region of an imbedding of a graph G 1in a surface M
is said to be a 2-cell if it is homeomorphic to the open
unit disk. If every region for an imbedding is a 2-cell,

the imbedding is said to be a 2-cell imbedding.

Thm, 5-14, Let G be a connected pseudograph, with a 2-cell im-
bedding in Sk , with the usual paramters p, g, and
r. Then

p-g+ryr=2 - 2k.

Proof (by induction on k); The case k = 0 has been
settled by Corollary 5-12, Now assume the theorem is
true for fewer than k handles (k > 1), and let G
be as in the statement of the theorem. Without loss of
generality, we assume all the vertices of G to be on

the "sphere" portion of S and since the imbedding

x?
is 2-cell, each handle has at least one edge of G
running over it, Select one handle, and draw two dis-

joint simple closed curves C and C, around this

1
handle. Suppose edges xl ,x2 P ,xn run over the
handle, where n > 1. Then Ci meets xj in a point
of 8 iy’ i=1,2;

i=1,2,... ,n. Consider the points u.lj to be

" which we designate by u

vertices of a new pseudograph, with edges determined in

the natural manner. Now remove the portion of the handle
between Cl and c, and "fill in" the two resulting
holes (bounded by Cl

disks (this is called a capping operation). The result

and C2 respectively) with two

is a 2-cell imbedding of a connected pseudograph in

sk—l , with parameters p' ,q', and r' (say). But
p' = p + 2n
g' =g+ 3n

r'* = r +n + 2.
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Thus, by the inductive assumption,

2 - 2(k-1) = p' - qg' + '
= (p+2n) - (g+3n) + (r+n+2)
=p-qg+r+ 2;
that is, p - g + r = 2 - 2k. #

Cor. 5-15. Let G be a connected graph, with a 2-cell imbedding
in Sk , with the parameters p, g, and r; then

p-q+r =2 - 2k.

Proof: The result is immediate, since any graph is also
a pseudograph. #
We have shown that the number p - g + r 1is invariant for Sk ,
for any 2-cell imbedding of any connected pseudograph;
p-g+r=2- 2k, depending only on k. This invariant number,
2 - 2k, 1is called the euler characteristic for the surface Sk'
It then follows that S, and s, are homeomorphic if and only if
m = n. In the nonorientable case, the characteristic is given by
p-g9g+r=2-%k, where k 1is the number of cross-caps (see
Fréchet and Fan.) In notation, x(Sk) = 2 - 2Kk; x(Nk) =2 - k.

5-4. Two Applications

The ramifications of Theorem 5-14 are enormous. In the re-
mainder of this section, we give only two of these, both pertaining

to the case k = 0.

Def. 5-16. A graph is said to be planar if it can be imbedded in
the plane (or, equivalently, in SO). A graph imbedded
in Sy is called a plane graph.

Notation: Suppose a graph G 1is 2-cell imbedded in a surface Sk'

Let Vi be the number of vertices of degree i, and let
r, designate the number of regions having 1 sides (i.e.

the number of regions having as boundary a closed walk of
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Lemma 5-17.

Thm. 5-18.

Lemma 5-~19.
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length 1; 1 is also called the length of the region).
o = V] T Vy = 0,
hedral graphs in this section; moreover, since G 1is a

We assume that v as we focus on poly-

graph, g = Ty = I, = 0.

(i) p= ) v

i>3
(ii) r = 5 r,
i>3
(iii) 2gq = E iv,
i3 t
(iv) 2q = § ir,
i>3
Proofs: (i) and (ii) are obvious; (iii) is
Theorem 2-2, and (iv) follows in like manner to (iii);

in summing the number of sides in the regions, each edge

is counted exactly twice. #

The graph K is not planar.

5
Proof: Suppose that the connected graph K5 were im-
bedded in the plane; then 2q = 20 =) ir. > 3} r,
i*>3* iy *

= 3r, and by Theorem 5-11.

2=p-qg+r

20 _ 5
<5 -10 + =5 =3

a contradiction! Hence, K5 is not planar. #

Let the planar connected graph G(8§(G) > 3) be imbed-
ded in the plane; then

(i) G has a vertex of deqree 5 or less; and
{ii) G has a region with 5 or less sides.
Proof: (i) Suppose, to the contrary, that v, = o,

i=20,1, 2, 3, 4, 5; then
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2q = E ivi > 6 y v, = 6p. As before, 2q =
i>3 i>3
) ir.l >3 X r, = 3r. Then, by Theorem 5-11,
i>3 i>

g=p+r -2
q/3 + 2q/3 - 2 =g - 2,

I~

a contradiction.

(ii) This follows by duality (soon to be explain-

ed); it also follows from Problem 5-6. #

We are now prepared to give a topological proof of what the
Greeks knew, geometrically, over two thousand years ago: there are
exactly five regular polyhedra. A polyhedron is a finite, connected
collection of at least four polygons, fit together in. R3 so that:
(i) each side of each polygon coincides exactly with one side of one
other polygon, and (ii) around each vertex there is one circuit of
polygons; together with the region of R3 bounded by these poly-
gons. These two conditions rule out the anomalies depicted in

Figure 5-7,

Figure 5-7

A reqgular polyhedron is a convex polyhedron for which: (i) the

polygons are congruent regular polygons, and (ii) the same number of

polygons surround each vertex.
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Thm.

5-20.
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There are exactly five regular polyhedra.

Proof: Let P be a regular polyhedron. Associated
with p is a regular planar graph G (to picture this,
first bound P with a sphere, then place a light socurce
inside the polyhedron -- the shadow of the vertices and
edges of P gives a graph imbedded in the sphere;
finally, perform a stereographic projection.) This pla-
nar graph G has vy = vy o= v, = 0, and in fact:

n ¢ for k , h {3,4,5}, by Lemma 5-19.
Next by Theorem 5-11, p - g + r = 2; we re-write this

p=v,,r=r

as follows:

8 = 4p + 4r - 2q - 2g

1]

" (4-1)(r, + v.)
s ity

(4-h)rh + (4—k)vk.

But also, hrh = kvk ,
Of the nine possibilities for (h ,k) in positive

since both = 2gq, by Lemma 5-17.

integers, only the following satisfy both of the above

equations in ry and vy th , k) =
(1) (3 ,3); ry = vy = 4 (the tetrahedron)
(ii) (3 ,4); ry =8, v, =6 (the octahedron)
(iii) (3 ,5); ry = 20, vy = 12 (the icosahedron)
(iv) (4 ,3): Iy = 6, vy = 8 (the hexahedron; i.e.
the cube)
(v) (5, 3); rg = 12, vy = 20 (the dodecahedron)

This complete the proof. #
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(duals)

~~

Kg Q3 Ka,2,2
({tetrahedron) (hexahedron) {octahedron)
(self-dual)

\\\\ (dodecahedron)

(duals)

(icosahedron)

Figure 5-8
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The reader may have noticed a certain interchangability between
the roles of vertices and regions (compare (ii) and (iv) above, (iii)
and (v) above; see Lemmas 5-17 and 5-19, and Theorem 5-14). This is
no accident,

Def. 5-21. Let a connected pseudograph G be 2-cell imbedded in
Sy - The dual pseudograph of G, DI(G) (relative to
this imbedding 1I), 1is given by: the vertices of
DI(G) are the regions of G in S+ and two such
vertices are adjacent if and only if their corresponding
regions share a common edge in their boundaries. (Each
edge of G 1is associated with exactly one edge of
DI(G) , which therefore may have loops and multiple
edges.)

For example, Figure 5-8 not only gives the regular polyhedral
graphs, but also indicates duality relationships. Figure 5-9 shows,
for instance, that the tetrahedron is self-dual. Thus, having estab-
lished Lemma 5-19 (i), we establish part (ii) by applying (i) to the
dual. Similarily, having found the hexahedron, we discover the

octahedron as its dual; and so forth.

Figure 5-9

Although there are only five regyular polyhedra (also called the

Platonic Solids), there are infinitely many convex polyhedra, as the

classes of all prisms and antiprisms show. The thirtcen Archimedean
Solids are also all convex polyhedra. There are many non-convex

. 4 .
polyhedra, some of which are uniform with regard to face structurc

and vertices, which have planar graphs as l-skeletons; see, f[or
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example, [W4]. For a splendid study of orientable polyhedra (of
possibly positive genus) with regular faces, consult B. M. Stewart's

Adventures Among the Toroids [s16].

bef. 5-22. A graph G 1is said to be 3-polytopal if it is the
l-skeleton (the graph induced by the vertices and edges)

of a convex polyhedron.

Def. 5-23. A graph G 1is said to be n-connected (n > 1) 1if the
removal of fewer than n vertices from G neither
disconnects G nor reduces G to the trivial graph
Kl.

Graphs which are 3-polytopal have been characterized by

Steinitz [S15].

Thm 5-24. A graph G 1is 3-polytopal if and only if it is planar

and 3-connected.

One readily verifies that the five planar graphs of Figure 5-8
are also 3-connected. The following theorem of Weinberg [W3] gives

information about the automorphism groups of 3-polytopal graphs:

Thm 5-25, Let G be 3-polytopal, with g edges. Then
| G(G) | < 4q, with equality holding if and only if G

is the l-skeleton of a Platonic Solid.

In the next chapter we consider imbedding graphs (and graphs

of groups!) in surfaces of positive genus.

5-5. Pseudosurfaces

We now consider topological spaces akin to surfaces, but which
fail to be 2-manifolds at a finite number of points; these spaces
form additional candidates for the imbedding of graphs, and were

studied extensively by Petroelje [P4].
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t
5-26. Let A denote a set of ) n,m, > 0 distinct points of
i=1
S, , with 1 <m, <m < «++ < qm_, Partition A into
k 1 2 t
n. sets of m, points each, i =1,2,... ,t. For

each set of the partition, identify all the points of
that set. The resulting topological space is called a
pseudosurface, and is designated by S(k ;nl(ml) ,
n2(m2) P ,nt(mt)). Each point resulting from an
identification of m, points of Sk is called a
singular point. If a graph G 1is imbedded in a pseudo-
surface, we assume that each singular point is occupied
by a vertex of G ; such a vertex is called a singular

vertex. A generalized pseudosurface results when

finitely many identifications, of finitely many points
each, are made on a topological space of finitely many
components, each of which is a pseudosurface, with a

connected topological space resulting.

5-27. Let G be a graph having a 2-cell imbedding in

S(k ;nl(ml) ,nz(mz) Foees ,nt(mt)); then p - g+ r =
t

2 -2k - ] n;m-1).
i=1

t
The number 2- 2k - ) n,(m;-1) is said to be the character-

i=1

istic for the pseudosurface, and is a topological invariant, just

as 2 - 2k 1s for the surface S

5-1.)

k*

5-6, Problems

A forest is a graph for which every component is a tree.
Show that, if G 1is a forest with p vertices, g edges,
and k components, then p =g + f(k}), where £(k) must be

determined.
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Let G, a graph with p vertices, g edges, and k
components, be imbedded in the sphere, with r regions.
Show that p - g + r = g{(k}, where g(k} must be determin-
ed. Illustrate, for G = 2K4. For what value of k will
the imbedding be 2-cell?

Prove Corollary 5-12.

Verify that f(x ,y ,2z) = (2x/(2-2) ,2y/(2-2) ,0) gives the
stereographic projection.

Show that is not planar.

3,3
Prove Lemma 5-19 (ii), without using duality.

Where might the proof of Theorem 5-14 break down, for graphs
(instead of pseudographs)?

Consider the 2-manifolds in Figure 5-3. Determine in which
of these Ky can be imbedded. For each 2-manifold, compute
the characteristic. Note that the characteristics agree for
the torus and the klein bottle; are these two homeomorphic?
Why? The characteristics also agree for the mdbius strip
and the projective plane; are they homeomorphic? How about
the sphere and the cylinder?

Show that the two symbolic representations ab_lab (as in
Figure 5.3) and alalaza2 (as in Theorem 5-5 (iii)) both
give the klein bottle. (Hint: cut along an appropriate
diagonal of the rectangle aja a,a, and then make an N
appropriate identification to obtain the rectangle ab Tab.)
For G the l-skeleton of a Platonic Solid, show that

| G(G) | = 4qg.

The wheel graph Wm is defined as the join (see Def. 2-10)
Ky +C
holding 1iff m = 4. 1Is this consistent with Thm. 5-257?

, m > 4, Show that l(uwm)l < 4q, with equality

Give an example to show that two pseudosurfaces with the
same characteristic can be non-homeomorphic (compare the
situation for surfaces). Find a formula that gives, for

n > -2, the number of non-homeomorphic pseudosurfaces with
characteristic -n.

Extend Theorem 5-27 to generalized pseudosurfaces.

Into how many regions is the plane R2 divided, by n
lines in general position (i.e. no two lines parallel, no

three lines concurrent)? The answer can be conjectured
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inductively and then proved using mathematical induction,
but try to obtain it directly by using the euler identity

and stercographic projection.
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CHAPTER 6
IMBEDDING PROBLEMS IN GRAPH THEORY

Recall from Definition 2-1 that a graph is an abstract mathe-
matical system. It is when we concern ourselves with the geometric
realization of a graph as a finite one-dimensional complex that im-
bedding problems arise. There are practical applications for this
view of graphs. For instance, we will see in Chapter 8 that one of
the truly famous problems in mathematics can be stated in terms of
imbedded graphs. As another example, imagine the task of printing
an electronic circuit on a circuit board. Associated with the
circuit (in an obvious manner) is a graph, and the circuit can be
printed without shorts if and only if the associated graph can be
imbedded in the plane. What to do if the graph is not planar will
be studied in this chapter.

What do we mean by "the geometric realization" of a graph? 1In
this section, we will normally mean a configuration in R3, where
the vertices of the graph are represented by distinct points, and
the edges of the graph by lines; two lines intersect only at a point
representing common end vertices of the two corresponding edges. A
natural question is: "In what subspaces of R3 will a given graph
imbed in this manner?" We will confine our attention to the fol-

lowing subspaces:

(i) R® itself
(ii) R®
(iii) n-books (see definition below)
(iv) surfaces
(v) pseudosurfaces.

(vi}) generalized pseudosurfaces

Def. 6-1, BAn n-book is the cartesian product of the unit interval

with the geometric realization of the graph Ky n'

That is, an n-book consists of n rectangles (the pages)

joined along a common edge (the spine).
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6-1. Answers to Some Imbedding Questions

The imbedding qguestion has been completely answered for (i),
(ii1), and (iii), as the next three theorems indicate. We will also
neced some definitions. In the seqguel, the term "graph" will be used
interchangeably, to represent either the abstract mathematical
system, or a realization of this system in R3. The context should

make it clear which use is intended,

Thm. 6-2, If K 1is a countable and locally finite simplicial com-
plex, with dim K < n, then K has a realization (i.e.

. . . . +
a lincar imbedding) as a closed subset in R2n l.

(See Spanier [86] for a discussion of this theorem,)

Cor, 6-3. Any finite one-complex is imbeddable in RJ.

Note that Corollary 6-3 indicates that any graph may be inbed-
ded in R3, and in such a way that every edge is represented as a
straight line.

Another way to see this is as follows. Let € be the curve in
R3 determined by the parametric equations x = t, y = tz, 2 = t3
(t > 0). sSelect p distinct points along C to represent the
vertices of G and represent the g edges of G as straight lines
joining these points appropriately. Since no four points on € are

3

coplanar (see Problem 6-2) C meets any plane in R at most

three times, and no two edges of G intersect extraneously.

Def, 6-4. An elementary subdivision of an edge uv of a graph is

the deletion of edge wuv, the addition of a new vertex

w, and the addition of two new edges, uw and wv,

Def. 6-5. A graph G 1is said to be homecmorphic from a graph H

if G can be obtained from H by a (finite) sequence of
elementary subdivisions., (We say that G 1s a subdivi-
sion of H.) Gl and G2 are said to be homeomorphic
with cach other if they are both homeomorphic from a

common graph 11,
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Note that G is homeomorphic with G, in the graph-theoret-

1
ical sense defined above if and only if the realizations of Gl and
G2 in R3 are homeomorphic in the topological sense (see Problem
6-1.)

The next theorem is one of the most important in all of graph

theory; it is due to Kuratowski (K41,

Thm. 6-6. A graph G 1is planar if and only if it contains no sub-

graph homeomorphic with either K. or K3 3-
’

It is clear that any graph with g edges can be imbedded in a
g~book: place all the vertices along the spine, and use one page
for each edge. However, we can do much better; the following theo-

rem, due to Atneosen [A8], is rather surprising.
Thm., 6-7. Any graph G can be imbedded in a 3-book.

Note that by Theorem 6-6, we have a criterion for ascertaining
if the third page is needed for a particular graph. Theorem 6-7 is
proved as follows: as shown in Massey [M3], any closed 2-manifold
with non-void boundary can be represented as a disk with strips
attached in a certain way. Clearly any graph G can be imbedded in
a closed 2-manifold with non-void boundary (simply remove an open
disk from the interior of some region, for any Sk in which G can
be imbedded; take %k = g, for example). Atneosen showed, very
neatly, that any disk with strips attached as described by Massey
can be imbedded in a 3-book. (An alternate proof has been given by
Babai [Bl]: Draw G in the plane so that all intersections lie on
a straight line and no three lines have a common intersection
(except at common end vertices.) Let this line be the spine of the
book, and let the plane be the union of two pages. Then the third
page can be readily employed to avoid each intersection,

So, it is only for the subspaces (iv), (v), and (vi) of our
list above--that is, the surfaces, pseudosurfaces, and generalized
pseudosurfaces—- that the imbedding problem is, in general, unsolved,
for non-planar graphs. Clearly, any graph will imbed on Sk’ for
k large enough (for example, take k = g and use one handle for
each edge); but this does not characterize which graphs imbed on

S for k fixed. The most natural problem here might be: for a

k!
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given graph, find the surface of minimum genus in which the graph
can be imbedded. If the graph is associated with an electronic
circuit, the corresponding problem is: find the fewest number of
holes that must be punched in the circuit board so that the board
can accommodate the circuit. For Cayley color graphs, the problem
becomes: find the simplest locally 2-dimensional "drawing board"
in which to "paint" a picture of a given group. We will also see,
in Chapter 8, that imbedding certain graphs in appropriate surfaces

will tell us a good deal about map-coloring problems.

6-2., Definition of "Imbedding"

Let us now give two very careful definitions of "imbedding"
(they are easily seen to be equivalent), and then proceed to study
this process in some detail.

Def. 6-8. Let G be a graph, with V(G) = {vl PV g ,vn} and
E(G) = {xl P Xy g ,xm}. let M be a 2-manifold. An
imbedding of G in M 1is a subspace G(M) of M such
that

n m
G(M) = vo ) Uou x (M),
i=1 j=1 J
where
(1Y vy ,..., v (M) are distinct points of M
(ii) xl(M) Peee s xm(M) are m mutually disjoint

open arcs in M

il

(iii) xj(M) n vi(M) $, i =1,...,n; j=1,...,m.

(vi) if xj = (vjl'v'2)’ then the open arc xj(M)
has vjl(M) and ij(M) as end points;

i=1,... ,m

In the above definition, an arc in M 1s a homeomorphic image
of [0,1]1; an open arc is an arc less its two end points, the
images of 0 and 1.

Equivalently (and much more briefly) we have:
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Def. 6-8'. The graph G can be imbedded in the 2-manifold M 1if
the geometric realization of G as a one-dimensional
simplicial complex is homeomorphic to a subspace of M.
6-3. The Genus of a Graph

Imbedding question (iv) in this chapter leads directly to:

Def. 6-9. The genus, v(G), of a graph G 1is the minimum genus

among all surfaces in which G can be imbedded.

For example, if G 1is planar then we write y(G) = 0. If
Y(G) =k, k > 0, then G has an impedding in Sk , but not in
Sh’ for h < k. Moreover, G imbeds in Sm , for all m > k

(merely add m - k handles to an imbedding of G in Sk)'
As mentioned above, it is clear that every graph has a genus.
Let G have g edges; then place the vertices of G on the sphere,

and add one handle for each edge. Thus y(G) < q.

Def. 6-10. An imbedding of a graph G in a surface Sk is said to
be a minimal imbedding if vy (G) = k.

The next result is extremely useful, as it tells us that the
euler formula applies for any minimal imbedding of a connected

graph. For a complete proof, see [Yl].

Thm., 6-11. If a connected graph G 1is minimally imbedded in a
suface, then the imbedding is a 2-cell imbedding.

Heuristic Argument: We assume (without loss of general-

ity) that every vertex of G 1lies on the sphere. Hence
only edges can be imbedded on the handles. Suppose that
R 1s a non- 2-cell region. Then there is a simple

closed curve C in R which cannot be continuously

deformed, in R, to a point. If ¥(G) =0 C divides
5, into two parts (by the Jordan curve theorem), each
of which must contain a vertex of G. But then G
would be disconnected. Hence v(G) > 1. We consider

three cases:
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Case (i), If C 1lies entirely on one handle, we cut

the surface along (C, cap the two resulting holes,

and obtain an imbedding of G in Sy(G)—l’ a con-
tradiction,
Case (il). If C 1lies entirely on the sphere, we re-

gard the "sphere"” portion of the surface as a handle,

and apply case (i).

Case (iii). If <C 1lies partially on some handle H
and partially on Sy(G) - H, we redraw the edges of G

formerly carried by H along that portion of C 1lying

in Sy(G) - II; we obtain an imbedding of G on the
surface without using handle H, the final contradic-
tion. #

The corollary below follows directly from Theorems 5-14 and
6-11.

Cor. 6-12, 1If a connected graph G has a minimal imbedding in Sk’
with p wvertices, q edges, and r regions, then

p~-qgqg+r =2 - 2k,

The next two corollaries are often helpful in computing the

genus of a graph. We require two new terms.

Def. 6-13, A 2-cell imbedding is said to be a triangular (quadri-

lateral) imbedding if r = r3(r = r4).

Cor. 6-14. If G 1is connected, with p > 3, then, y(G)z_g— g + 1,
Furthermore, equality holds if and only if a triangular
imbedding can be found for G.
Proof: Let G be imbedded in Sy(G)’ so that

pP-g+r=2-2y(G). Since 2q > 3r, with equality

if and only if r = rq (see Lemma 5-17), the result is

immediate. #
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Cor. 6-15. If G 1is connected, with p > 3, and has no triangles,
than v(G) > % - g + 1. Furthermore, egquality holds if

and only if a guadrilateral imbedding can be found for

G.
(The proof is entirely analogous to that of Cor. 6-14) .#%

The next corollary will be heavily used in the remainder of

this chapter.

Cor. 6-16. If G 1is a connected bipartite graph having a quadri-
lateral imbedding, then Y(G) = % - % + 1.
Proof: Apply Theorem 2-19 and Corollary 6-15. #

We have shown (among other things) that, for connected graphs,
minimal imbeddings are 2-cell imbeddings. Two questions arise:
(1) What about minimal imbeddings of disconnected graphs? (i1} Are
there 2-cell imbeddings which are not minimal? We discuss these two

guestions briefly.

Def. 6-~17. Given a connected graph G, a cut-vertex is a vertex v
such that G - v is disconnected. A block is a maximal

connected subgraph of G having no cut~vertices.,
For example, the graph in Figure 6-1 has two blocks, both iso-

morphic to Ky v is a cut-vertex for this graph. Note that a

block 1is either K2 or is 2-connected.

Figure 6-1.
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The next theorem and its corollary are due to Battle, Harary,

Kodama, and Youngs [BHKY1l], and are presented without proof.

Thm. 6-18. The genus of a graph is the sum of the genera of its

blocks.
Cor, 6-19. 7The genus of a graph is the sum of the genera of its
n
components. (i.e., let ¢ = U Cys then Y(G) =
i=1
)
v (C)).
i=1 *
6-4. The Maximum Genus of a Graph

That there exist 2-cell imbeddings which are not minimal is
evident from Figure 6-2, which shows K, in Sl' Note that the
euler formula still applies here (4 - 6 + 2 = 0). It is clear
that no imbedding of a disconnected graph can be a 2-cell imbedding.
To describe all 2-cell imbeddings of a given connected graph, we

introduce the following concept:

Y

Y

Figure 6-2

Det. 6-20., The maximum genus, YM(G), of a connected graph G is
the maximum genus among the genera of all surfaces in
which G has a 2-cell imbedding.

Duke [D4] has shown the following:

Thm, 6-21, If a graph G has 2-cell imbeddings in Sm and 8§
then G has a 2-cell imbedding in S

k, m< k <n,

nl

K’ for each
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Cor. 6-22. B connected graph G has a 2-cell imbedding in Sk if

and only if v(G) < k < v,(G).

An upper bound for YM(G) is not difficult to determine.

Def. 6-23. The Betti number £(G), of a graph G having p
vertices, q edges, and k components, is given by:
B(G) = g - p + k.

B(G) is sometimes called the cycle rank of G; it gives the
number of independent cycles in a cycle basis for G; see Harary
[H2, pp. 37-40].

Recall that ([x] denotes the greatest integer less than or
equal to x; {x} gives the least integer greater than or equal to

x. Both symbols will be used frequently in the remainder of this

chapter.

Th. 6-24, Let G be connected; then YM(G) < [6(§> J. Moreover,
equality holds if and only if r =1 or 2, according
as B(G) is even or odd, respectively.

Proof: Let G be connected, with a 2-cell imbedding in
Sk;
p~qg+r=2+- 2k; thus

then r > 1, and B(G) = g~ p + 1; also

1+ 49zp-r . g-p+l _ ((6)

k 2 b 2 o

i

and the result follows.

Nordhaus, Stewart, and White [NSW1l] have shown that equality
holds in Theorem 6-~24 for the complete graph K. i Ringeisen [R7]
has shown that equality holds for the complete bipartite graph

Km ni and Zaks [2l] has shown that equality holds for the n-cube
1 2
Qn (if YM(G) = [Eigl»], G 1s said to be upper imbeddable.)
_ -1y (n-2) "
Thm. 6-25, YM(Kn) = L___—TT_"——J'

r - - il
Thm. 6-26. v, (K n) = LSELJJ%E_ELJ
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W0 = =2)2"7%, for a > 2.

Moreover, Kronk, Ringeisen, and White [KRW1l] established:
Thm. 6-28. All complete n-partite graphs are upper imbeddable.

Also, Ringeisen [R6] has found YM(G) for several classes of
planar graphs G, including the wheel graphs and the regular poly-
hedral graphs.

Nordhaus, Ringeisen, Stcwart, and White have combined [NRSW1}
to establish the following analog to Kuratowski's Theorem (Theorem

6-6): (the graphs 1I and @ are given in Figure 6-3.)

Thm. 6-29. The connected graph G has maximum genus zcro if and
only i1f it has no subgraph homeomorphic with 2ither H

or 0, (Furthermore, Y(G) = (G) if and only if

¥

M
Y.(G) = 0 if and only if G 1s a cactus with vertex-
2 Y

disjoint cycles.)

Def. 6-30. A cactus is a connected (planar) graph in which every

block is a cycle or an cdge.

Def. 6-31., A splitting tree of a connected graph G 1is a spanning

trce T for G such that at most one component of
G - E(T) has odd size.

The following characterization is due, independently, to

Jungerman [J7] and Xuong [X2].

Thm. 6-32, A graph G 1is upper imbeddable if and only if G has

a splitting tree,

Thus, for example, we get an immediate proof of Theorem 6-25
merely by taking T = Kl,n—l'
Nchesky [N1] has given a sufficient condition for upper

imbeddability. Tirst, we need

Def. 6-33., A graph G 1is said to be locally connected if, for

every Vv € V(G), the sct NG(V) of vertices
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adjacent to v 1is non-empty and the subgraph of G

induced by N_(v) is connected.

G

Thm. 6-34. If G is connected and locally connected, then G is

upper imbeddable.

Although no workable formula is known for the genus of an
arbitrary graph, Xuong [X1l] developed the following result for
maximum genus. Let QO(H) denote the number of components of

graph H of odd size, and for G connected set

£(G) = min &, (G - E(T)),

0

the minimum being taken over all spanning trees T of G. Then:

Thm. 6-35. The maximum genus of the connected graph G is given
by

(G) = & (8(®) - £(a)).

Figure 6-3

6-5., Genus Formulae for Graphs

Prior to the work of Jungerman and Xuong, Theorems 6-25,
6-26, 6-27, and 6-28 and the work of Ringeisen [R6] referred to

above gave the only known non-trivial formulas for maximum genus.
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Not very many more formulas are known for the genus parametecr; we

list some of these below. For most of what else was known up to
1978, see Table 1 of Stahl [S9].

Thm. 6-36,.
Thm, 6-37
Thm. 6-38
Thm, 6-39
Th. 6-40
Thm, 6-41.
Thm. 6-42.
Thm. 6-43.
Thm, 6-44.
Thm., 6-45.

(Ringel [R10); Beineke and Harary [BH1l])
¥ = 1+ 2" n-g), n - 2.

(Ringel [(R11})

(' _ _ Al
yix ) o= (imshinn2) g

;oom,n > 2,
m,n

(Ringel and Youngs [RY1])

_ [ (n=3) (n-4) | .
YK ) = e, 0oz 3.

(White ([W51; see also [RY5], for the case m = 1)

_ (mn-2) (n-1)

Y(Kmn,n,n B 2

{Stahl and White [SW1])
2

_ (n-2) .
Y(Kn,n,n—Z) = = for n even, n > 2.
(Stahl and White [SW1])

) = Bn=2) (n-1)

Ky, 2n,n 3 z

(Jungerman [J5]}; see also Garman ([Gl})
~ 2

Y(K4(m)) = {m-1), m # 3.

(Jungerman and Ringel [JR4]; see also Gross and Alpert

[GAll)

&%Ln-_l)_, for n /2 (mod 3).

Y(Kn(z)) =

(Ringel [R16])

. / (n-2) (n-3)
For 2 <n /5,9 (mod 12), Y(Kz X Kn) =
(White [W7]) Let G have p vertices of positive de-
gree, g edges, k non-trivial components, and no 3-
cycles., Let H have 2n (n > 1) vertices and maximum
degree less than two. Then y{(Gll1]) = k + n{ng - p).
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Cor. 6-46. Let G have no 3-cycles. Then Y(G[Kz]) = Y(G[Ez])
= B(G).

The special case of Theorem 6-45 when G 1is bipartite, p > 3,
and H = iﬁ has been generalized to include m odd, by Abu-Sbeih
and Parsons [APl].

For a very readable proof of Theorem 6-36, see Behzad,

Chartrand and nLesniak-Foster [BCLl]. Theorems 6-37 and 6-39 are
proved using schemes identical or similar to that discussed in the
next section. Theorem 6-38 will be discussed at length in Chapter 9.
Theorems 6-40 and 6-41 are obtained by means of voltage graph con-
structions (see Chapter 10). Theorems 6-42 and 6-44 are established
using current graph constructions (see Chapter 9), as is Theorem
6-43 - although the latter is in the context of branched covering
spaces (see Chapter 10.)

For an outline of the surgical proof of Theorem 6-45, we offer
the following: first we note that we may assume G to be connected
(the general result will then follow from the Battle, Harary, Kodama,
and Youngs Theorem). We then show that G[H] can have at most
2quH triangular regions in any imbedding (where G has order 2

and H has edges), and proceed to construct an imbedding of

g

H
G[H] with ry = 2quH and ry = r = rs. The euler formula shows
that this imbedding will be minimal, and gives the desired formula
for the genus. To construct the imbedding, we begin with dg

copies of K2n n’ each quadrilaterally imbedded in S as

(n-1)°
described by Ringel (see Theorem 6-37). By making suitable vertex
identifications (and this is the heart of the proof; see [W7]), we
obtain the graph G[k;;], guadrilaterally imbedded in the desired
surface. The construction thus far allows the 9y edges of each
copy of H to be added; each such edge converts one quadrilateral
region of the imbedding of G[—E;] into two triangular regions.
This gives the result.

For the above construction, one can compute the genus of the
resulting surface directly, without recourse to any euler-type

formula. The contributions ot the genus are of three types:

(1) qG(n—l)z, representing the collective genera of the qg

2-manifolds with which we began our construction;

(ii) correspondong to every vertex v of G, we make (degGv—D

sets of 2n vertex identifications each, each set
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requiring a "bundle" of n tubes joining two 2-manifolds;

this contributes (2qG —pG)(n - 1) to Lthe genus;
(iii) B(G) = dg = Pg 1, representing the contribution of the
bundles of tubes taken collectively.
adding, we find:

(GTHD) = ag(n-1)% + (2a5 - pg) (n-1)+ (dg = ag + 1)

H

1+ n(an - pG).

We mention that Bouchet [Bl3] has studied Y(Kn(m))’ using
"generative m-valuations." e considered the residue classes of

n(mod 12) and m (mod 6) and detecrmined vy (K for 32 of

)
n(m)
these 72 cases, by constructingtriangular imbeddings,

Parsons, Pisanski, and Jackson ([PPJ1l]) and [JFPl]) employed

"wrapped quasli-coverings" to establish:
Thm. 6-46a. Let G have a triangular imbedding in SO; then there
are infinitely many n € N such that G(?ﬁ) has a

triangular imbedding.

Finally, we comment that Jackson [J1] has constructed tri-
angular imbeddings, as branched covering spaces (see Section 10), for

some complete n-partite graphs of the form K({(n-2)m,m,...,m).

6-6, Edmonds' Permutation Technique

Before leaving the theory of graph imbeddings and considering
specific imbedding problems, we present a powerful tool for solving
such problems: the Edmonds' permutation technique ([El]}; see also
Youngs [Yl].) This amounts to an algebraic description, for any 2-
cell imbedding of a graph G. It is used, in one form or another,
in the proofs of many of the theorems listed above.

Denote the vertex set of a connected graph G by V(G) =
{1,2,...,n}. For each i € V(G), let V(i) = {k € V(G)|Ii,k] ¢ E(G)}.
let P;: V(i) » V(i) Dbe a cyclic permutation on V(i), of length

ni = |V(i)| . Then there is a one-to-one correspondence between
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2-cell imbeddings of G and choices of the P; given by:

Thm. 6-47., Each choice (pl PN ,pn) determines a 2-cell imbedding
G (M) of G 1in a surface M, such that there is an
orientation on M which induces a cyclic ordering of
the edges [i,k] at 1 in which the immediate suc-
cessor to [i,k] is [i,pi(k)], i=1,...,n. In
fact, given (pl PN ,pn), there is an algorithm
which produces the determined imbedding. Conversely,
given a 2-cell imbedding G(M) 1in a surface M with
a given orientation, there is a corresponding

(pl PR ,pn) determining that imbedding.

pProof: Let D* = {(a,b)| la,b] € E(G)}, and define
P*: D* » D* by: P*(a,b) = (b,pb(a)). Then P* 1is a
permutation on the set D* of directed edges of G
(where each edge of G 1is associated with two oppo-
sitely-directed directed edges), and the orbits under
P* determine the (2-cell) regions of the corresponding
imbedding. These regions may then be "pasted" together
-- with (a,b) matched with (b,a) as in Figure 6-4 --
to form a surface M in which G 1is 2-cell imbedded.
(Since every edge (a,b) 1in the boundary of a given re-
gion is matched with an edge -- (b,a) -- in the

boundary of another (or possibly the same) region, M

is closed. Since (a,b) is matched with (b,a) -- and
not with (a,b) -- M 1is orientable. Since each Py
is a cyclic permutation, M 1is a 2-manifold.) The

genus of . M may now be determined by the euler formula,
with r given by the number of orbits under P. The

converse follows from similar considerations. #

As an example, consider the imbedding of K3 5 in sl de-
picted in Figure 6-5. Let V(K5 3) = {1,2,3,4,5,6}, with
V(1) = v(2) = Vv(3) = {4,5,6}; V(4) = v(5) = V(6) = {1,2,3}. Then
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\ / l (3) T o
a b A T s (3) “ 7
(2) (1)
/’a—"g\ 3 6 2
e iy

Figure 6-4 Figure 6-5
Py: (4,5,6) Py (1,2,3)
Pyt (4,5,6) Pg: (1,2,3)
Pyt (4,5,6) Pyt (1,2,3)

describe this imbedding. The orbits under P* are:

(1) (1,5)(5,2)(2,6)(6,3)(3,4)(4,1)
(2)  (5,1)(1,6) (6,2)(2,4) (4,3)(3,5)

(3) (2,5)(5,3)(3,6)(6,1)(1,4)(4,2)

(Note that P*(4,1) = (1,5); P*(3,5) = (5,1); P*(4,2) = (2,5).)

As a matter of notation, from this point on, we will abbreviate
an orbit such as (1) above by: 1-5-2-6-3-4; it is implicit that
p4(3) =1, and pl(4) = 5.

It now follows that the genus of any connected graph (and
hence, by Corollary 6-19, of any graph) can be computed, by selec-

n
ting, from among the ki (ni—l)! possible permutations P*, one
i=1
which gives the maximum number of orbits, and hence determines the
genus of the graph (component)., (Since, by Theorem 6-11, a minimal
imbedding must be a 2-cell imbedding, it corresponds to some P¥*;

by Corollary 5-15, r will be minimal for this imbedding.) The
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obvious difficulty in applying this procedure is that of selecting
a suitable P* from the (usually) vast number of possible ordered
n-tuples of local vertex permutations p;-

Each P; is called a rotation, and P = (pl,p2,...,p ) is

n
called a rotation scheme for G.

Stahl has studied "permutation pairs" as a purely combinatorial
generalization of graph imbeddings, and his powerful approach
suffices to establish many of the classical results (Theorems 6-18
and 6-21, for example) as well as to obtain new information about
the genus of the amalgamation of graphs; see [S10], [s12], ([s13],
and [S14].

6-7. Imbedding Graphs on Pseudosurfaces

In Section 5-5 we introduced the pseudosurfaces S(k;nl(ml),

...,nt(mt)). Recall that for any imbedding of a graph G in a
pseudosurface S', we assume that each singular point of §' is
occupied by a (singular) vertex of G. The number 2 - 2k -

¥ n, (m;~1) gives the characteristic of S', denoted by x'(s').

Def. 6-48. The pseudocharacteristic, x'(G), of a graph G 1is the

largest integer x'(S8') for all pseudosurfaces S' in

which G can be imbedded. The generalized pseudochar-

acteristic, x"{(G), 1is the largest integer x(S") such

that G imbeds in the generalized pseudosurface S".

A surface can be considered as a (degenerate) pseudosurface,
and a pseudosurface as a (degenerate) generalized pseudosurface.

Hence we have
x"(G) > x'(G) > 2 - 2Y(G).

The second inequality may be strict (i.e. pseudosurfaces may be more
efficient, from the point of view of maximizing characteristic, for
imbedding graphs into); for example x'(KS) = 1, as Figure 6-6

shows. (Now, see Problem 6-10.)
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Figure 6-6

Petroelje [P4) has found that many of the basic theorems for
imbedding graphs in surfaces carry over for pseudosurfaces. For

example:

Thm, 6-49, Let G be a connected graph minimally imbedded in the
pseudosurfaces §'; then the imbedding must be 2-cell .

Thm. 6-50. If G(p,q) is connected, then x'(G) < p-q/3; equality
holds if and only if G has a triangular imbedding in

some pseudosurface.

Petroelje also developed an analogue of Edmonds' permutation
technique for pseudosurfaces, and found the following formulae

(among others) :

- a = —
Thm. 6-51. x'(K, . . ) = 2n(2-n).

(This is consistent with Theorem 6-42 that, for n # 3,
v (K ) = (n-1)%, with r = r,; sece also Problem 9-10.)

n,n,n,n 3

Thm. 6-52. x'(K } = 2(m+tn-mn) - y(m-1), where 2m >2n >r >1.

2m,2n,r

Ringeisen and White [RW1l] showed:

Thm. 6-53. x'(K )=2-{ﬂﬁ)2£ﬁ}.

m,n



Sect. 6-8 Other Topological Parameters for Graphs 75

In the cases where m and n are both even or either m or

n = 2 (mod 4), the pseudocharacteristic agrees with the character-

istic of Theorem 6-37; in all other cases, ¥'(K ) = x(K ) = 1,
m,n m,n

That is, in terms of pseudocharacteristic these imbeddings are more

efficient than those for the genus case.

Thm., 6-54. x'(Q_ + K) =1 - (n+r—4)2n—2, for 0 <r <n, n > 2.

Generalized pseudosurface imbeddings will have relevance in

Chapter 12.

6-8. Other Topological Parameters for Graphs

We have seen that, if a graph is not planar, we can still make
a "proper" drawing of the graph in some surface and/or pseudo-
surface. Two common topological parameters (other than genus) which
arise if modified drawings are allowed are the thickness and cross-

ing number.

Def. 6-55. The thickness 0(G) of a graph G is the minimum
number of planar subgraphs whose union is G. (The
union is usually taken over spanning subgraphs).

For sample formulae we have:

‘Tth_6—56. (Beineke and Harary [BH2]; Alekseev and Gonchakov [AGl];
vasak [V1])

-
O(Kn) = g 4 r except that

0(K9) = O(Klo) =3
Thm. 6-57. (Beineke [B4])
Thm. 6-58. (Kleinert [K1])

.

B = L%
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Some thickness results have been obtained for surfaces of

positive genus.

Def. 6-59. The thickness Un(G) of a graph G 1is the minimum
number of subgraphs, each imbeddable on Sn, whosc
union is G.
Thus 8(G) = UO(G). The nonorientable thickness On(G)(n > 0)
is defined similarly, for Nn'
Thm. 6-60. (Beineke [BS5] and [B6])
For n > 3:
. _ " n+5 N
(1) Gl(Kn) = .8 4
.. _ I'n+4 = |
T A
(1i1) 0, (k) = &£
111 2 Ky L7 -
Thm. 6-61, (Beineke [B4])
For n > 2:
. = _ . n+4"!
(1) el(Kn’n) = L*Z’J ;
o - _ _ - . n+3
(11) UZ(Kn,n) - OZ(Kn,n) B Ol(Kn,n) T L4 J !
. _ " n+2 7
(ii) 040Ky W) = | =7
Thm., 6-62. (Anderson [A3], [A4], [A5])
. _ ' n+27
R
(ii) 6, (K ) = n-1 for n an odd prime
1°73(n) 2 ! '
Cos _ n+l 7
(111) Ol(K4(n)) = L 3 J
(1v)  Ogrg(2s+1)+1 Kar(2s+1),4r(2s+1)) = *-
Thm, 6-63. The crossing number v(G) of a graph G is the minimum

number of pairwise intersections of its (open) edges,

among all drawings of G in the plane.

One might say that the crossing number tells us,
upon drawing G

if we insist

on SO' just how bad this drawing must be. For
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; we mention the following

bounds (see [G9]):
N lini!n-1 [n—2’“’n—3_' .
Thm. 6-64. V(Kn) < 4\,25{_—5—] _fwfl,AEHJ’ equality holds for
n < 10.
- fmifm-17" n"rn-1 ;
Thm. 6-65. V(Km,n) it_2JL_ 5 j|_2 L 5= i equality holds for
m < 6,
As an indication of the kind of techniques that might be em-

ployed, we prove the following:

Thm. 6-66. v(K3,2'2) 2.
Proof: Suppose V(K3,2’2)
graph of K3,2,2, y(K3’2’2
Problem 6-3). Thus x > 1.
drawing of K3,2’2 in SO;
graph G, with p = 7 + x,
(If r=r

3

must exist since x > 1,

= X.

Since is a sub-

3,3
) > 1 (by the hint for
Consider such an optimal
this gives rise to a plane

q 16 + 2x, r # ry.

and

the configuration in Figure 6-7a, which

must correspond to the con-

figuration in Figure 6-7b, which cannot occur in any

complete tripartite graph.) Hence 2g = 32 + 4x >
(a) (b)
Figure 6-7
4 + 3(r-1) =3r+1, and 9 +x=g-p=71r -2 <
31 4 _ 25 4 2 1
=5 t3x%x- 2 = =5 ot g X Thus 37 <3 X/ SO that x > 2.
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Figure 6-8 shows that x < 2, to complete the proof. #

Figure 6-8

A natural extension of the construction in Figure 6-8 gives

the following:

Thm. 6-67. V(Km n r) < £(m,n) + f(m,r) + f(n,r), where f£f(x,y)
_ y-1 _ x-1 x=11 {y-1] _  (x-1) (y-1) (xy-4)
A e e R IS P
Thm, 6-68, v(Kn’n,n) < %(n—Z)(n-l)z(n+2); equality helds for
n=1,2.

The exact results beclow are due to Beineke and Ringeisen
([BR1] and [RB1]):

Thm. 6-68a. The following cartesian products have crossing numbers

as indicated:

(1) v(Cy ¥ C ) =n, for n > 3;
(ii) wv(C, x C)) = 2n, for n > 4;
(iii) V(K, * C) = 3n, for n > 3.

Other exact results have been found for crossing numbers on

surfaces of positive genus.

Def. 6-69. The crossing number Vn(G) of a graph G 1is the
minimum number of pairwise intersections of its (open)

edges, among all drawings of G in Sn'



Sect. 6-9 Applications 79

Thus v(G) = vO(G). The nonorientable crossing number
Gn(G)(n > 0) 1is defined similarly, for N -
Thm. 6-70. (Guy and Jenkins [GJ1l])
2
_ (s-3)7 1
Viltky o) = T3
Thm. 6-71, (Gross  [G5])
Let h = iﬁ:l%iﬂiél , where n = 1 (mod 4) is a
prime power; then
_ n(n-1)
VhlEh(2)) T 732

We deduce from Theorem 4-22 that the graphs Q x K4 4 are
n [
Cayley graphs for all finite Hamiltonian p-groups (in fact, as we

will see in Chapter 7, these graphs are of minimum genus for these

groups.) From Problem 6-11 we see that Y(Qn x K, 4) =1 + n2",
!
and from Problem 11-8 we will learn that the corresponding non-
orientable genus is ¥(Q_ x K ) = 2 + n2n+l.
n 4,4
Thm. 6-72. (Kainen and White [KW1])
Let h = Y(Qn X K4’4) - m, and Kk = Y(Qn x K4'4) - 2m,
with n > 0; then
. _ . n,
(1) Vh(Qn x K4,4) =4m, if 0 <m < 27;
- - - . n
(ii) vk(Qn x K4,4) =4m, if 0 < m < 27,

6-9. Applications

For applications of the four basic topological parameters dis-
cussed in this chapter, consider the problem of printing an electron-
ic circuit on a circuit board. 1If the associated graph G is
planar, one board will suffice, without modification. If G 1is not
planar, at least four alternatives are available to avoid short cir-
cuits (the choice depending upon relevant considerations of an
engineering and/or economic nature): 1l.) the circuit can be accom-
modated by drilling holes through the board; y(G) gives the min-
imun number of holes; 2.) some of the vertices can be printed on

both sides of the board, with connections made through the board
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(a)

N
Ex\_;_

Figure 6-9
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between corresponding images of the same vertex; here we seek the
minimum n such that G can be imbedded in the pseudosurface

S{(0; n(2)); however, it may occur that no such n exists (see
Problem 6-9.) If a given vertex can appear arbitrarily often, with
connections made through the board among corresponding images of

the same vertex, and if in addition holes can be drilled as in 1.),
then we seek the value of the parameter \'(G), for maximum
efficiency; 3.) If several circulit boards are used, each con-
taining a planar portion of the circuit, and jumpers are run between
successive boards to connect corresponding images of the same junc-
tion, then we are studying the parameter (G); 4.) If the circuit
is stamped on one side of one circuit board (with no holes yet
drilled) and if wherever two connections cross extraneously two
holes are now drilled to allow one connection to temporarily pass to
the other side of the board, enabling it to "cross" the seccond con-
nection while avoiding a short circuit, it is the parameter v (G)
that dictates economy of effort here.

As an example, consider the modified wheatstone bridge circuit

of Figure 6-9(a); the associated graph is G = K3 3° Figures 6-9(b) -~
{(e) correspond respectively to: \(K3 3) =1, ”I(KS 3) =1,
U(K3,3) =2, and V(K3’3) = 1.

6-10. Problems

6-1.) Show that two graphs are homcomorphic in the graph-theoret-
ical sensec if and only if their realizations in RJ are
homeomorphic in the topological sense.

6-2.) Show that no four points on C = {(x,y,z) < R’ X = t,

y = t2, z = tj; t - 0¢ arce coplanar.

6-3.) Prove Corollary 6-15.

6-4.) Prove the casy half of Kuratowski's Theorem: if G contains
a Kuratowski subgraph, then G is non-planar. (Hint: show
that 1f H 1s a subgraph of G, then ) - (6) )

6-5.) Show that the Petersen graph (sec Figure 8-9) 1s non-planar.
What 1is its genus?

6-6.) Show that Corollary 6-19 follows from Theorem 6-18.
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6-10.)

6-11.)

6-12.)
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Show that Py 1Pyt (5,6,7,8)

92194: (8r7 r615)
p51p7: (1,2,3,4)
Pg Pyt (403,2,1)

describe a 2-cell imbedding of L in Sl’ with r = Ty

Why is x'{G) defined as a maximum characteristic, instead
of a minimum genus?

Show that G = Kn, n > 13, imbeds on no pseudosurface

S(0; k(2)).

Can the first inequality following Definition 6-48 be
strict also?

Show that Y(Qn x K4’4) =1 + n2n, n > 1.

Let G be a connected graph of order p > 2; show that
c?(v(6%) = v(a), E(G%) = {uv|u,v € V(G), 1 < d(u,v) < 2})
(6% > P52

> = , and the lower

is upper imbeddable, Ym > 5

bound is sharp.
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CHAPTER 7

THE GENUS OF A GROUP

To get an accurate and efficient "picture" of a group, we seek
a surface of minimum genus on which we can imbed a Cayley color

graph of some presentation of the group. This suggests the fol-

lowing definition; Let Y(CA(F)) denote the genus of the under-
lying graph GA(T) (called the Cayley graph) determined from
CA(F) by removing all arrows and colors from the edges (recall
that, by convention CA(F) has no loops or multiple edges). Then:

Def. 7-1. The genus of a group [ 1is given by:

y(T) = min{v(C, (7))},

where the minimum is taken over all generating sets A

for r.

Def. 7-2. A group T is said to be planar if y(I') = 0.

7-1. Imbeddings of Cayley Color Graphs

Finite planar groups have been cataloged by Maschke [M2] (see
also Anderson [A6]). The finite planar groups on one generator are
exactly the cyclic groups Zn; on two generators, they include the
dihedral groups Dn , groups of the form 22 X Zn B S4 , A4 R and
A5 (the last three groups are the symmetry groups of the regular
polyhedra), and Z2 x A4; on three generators (each must be of
order 2) finite planar groups include Z2 X Dn , Z2 X S4 , and

Z, *XUAL. In summary:

2 5



7

84 The Genus of a Group Chapt.
G 1is planar if and only if G = Gy * G2,
=2 D .S, /A, , or

7-3. The finite group
Gl = Zl or Z2 and G2

Thm,
where
In this chapter,

1\5.
We consider infinite groups temporarily, preparatory to estab-

lishing a startling result, due to Levinson [L1l].

an infinite graph is given by:
An infinite graph is a graph with denumerable vertex set.

(but non-equivalent!) definitions of

Def. 7-4.
There are two natural
planarity, for infinite graphs.
Def. 7-5. An infinite graph is said to be planar if it can be im-
bedded in the plane.
An infinite graph is said to be planar if it can be im-

bedded in the plane so that the vertex set has no limit

Def. 7-5'
points.

We adopt Definition 7-%5, for reasons soon to be obvious.

Thm., 7-6. An infinite graph is planar if and only if it contains

no subgraph homeomorphic with K, or Kj ;.
4

see

To see that this extension does not hold

For a proof of this extension of Kuratowski's theorem,
consider the graph of Figure 7-1, where an
K4.

Dirac and Schuster [DSl}.

for Definition 7.5,
infinite path is attached at each vertex of

Figure 7-1
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An infinite graph G has infinite genus (Y(G) = ),

if, for every natural number n, there exists a finite

subgraph G, of G such that y(Gn) > n.

Let G be the graph of a presentation of an infinite
group I. Let H be an induced finite subgraph of G.

Then there exist two disjoint, isomorphic copies of H

in G.
Proof: The vertex set of H corresponds to a finite set
{gl,...,gn} of elements of TI. Form the (finite) set:
S = {g.gfl[l < i j < n}
i3 - 7 - :

Pick x € I' = S, Form H*, the subgraph of G induced

by {xgi[i =1,...,n}; then H* is isomorphic to H,
since gih = gj if and only if xgih = xgj. Now, sup-
pose that v € V{(G) N V(H*); then there exist i and

j such that xgj = gy, 8O that x = giggl € s, a
contradiction. #

present Levinson's result.

Let T be an infinite group, with G the graph of a
presentation for [. Then either y(G) =0, or Y(G) =«,

Proof: Suppose G 1is not planar; then, by Theorem 7-6,
G contains K, a Kuratowski (and hence finite) subgraph.
Thus Y(G) > 1. Let n be an arbitrary natural number,
But by Lemma 7-8, we can find a second, disjoint copy of
K in G, so that y(G) > y(2K) = 2 by Corollary 6-19.
Now apply the lemma again, with H = 2K, to obtain two
disjoint copies of 2K in G, so that y(G) > 4. Con-
tinuing in this fashion, we eventually find two disjoint

n—lK

copies of 2 in G, so that «v(G) > 2n > n; then

Y(G) = ®, since n was arbitrary. #

For example, Y(G) = . For the standard presentation for

T' =2 x Z % Z; see Problem 7-9.
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. A

XYX N L Xy 2%
Y xy? 2 -2

Yy — - Xy

* -1
Y - Xy

|

e

e - - X

Xy

Xy

= e = XYXY)

Figure 7-2
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Cor. 7-10. Let ' be an infinite group; then either y(I') = 0,

or y(I') = w.

In Figure 7-2, portions of planar Cayley color graphs for pre-
sentations of three infinite groups are given. The second group (b)

is called the infinite dihedral group; the third group (c) is the

free group on two generators. For an infinite group having infinite
genus, see Problem 7-10.

Returning our attention to finite groups, we produce examples
of groups of positive genus. The following lemma will be useful.
Note that if P gives y(l'), then P may be assumed to have no
redundant generators; i.e. P is minimal, We also note that, in
any imbedding of a Cayley Color graph, every region boundary corres-

ponds to an identity word.

Lemma 7-11. TLet T be a finite group, with 3 * |r]; 1let & be
a minimal generating set for ' . Then CA(F) contains

no triangles.

Proof: Suppose CA(F) contains a triangle; then we
A 41, %223 ‘

find a closed walk hl h2 h3 = e in CA(F), where hl

is a generator in P, and a; = * 1. If any two of

the h.l are distinct, then one of these two is redun-

dant. If, on the other hand, hl = h2 = h3, then the

a; all hav§ the same sign (or else all three = e).

But then h] = e, and 3] |r|, a contradiction. #

Now consider @, the group of the quaternions. Let P be a

presentation for Q, such that y(Q) = Y(CA(Q)); then P 1is
minimal. By Lemma 7-11, C,(Q) has no triangles, since ol = 8.

It is not difficult to see that A has at least two generators and
that if A has exactly two generators, neither can be of order 2;
furthermore, A cannot have three generators of order 2 (see Pro-
blem 7-1). Thus CA(Q) is regular of degree at least four. Then

2q > 4p = 32; i.e. ¢ 16. Now, by Corollary 6-15,

Y

ga_Pp
vyl > 3 5+ 121
. R 2 2
Then y(Q) =1 1is shown by Figure 7-3, where Q = (x,y Xx* =y =

(xy) %y .
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Figure 7-~3

7-2. Genus Formulae for Groups

We now find a non-trivial genus formula for an infinite class

of groups: those groups (neccessarily abelian) in which every element
is of order 2. Let Fn denote this group; then Fn = (Zz)n, and
‘wv = o1

i i -

Thm. 7-12. y(T ) =1 + 2" 3 (n-4), n > 2.

Proof: Yn may be expressed as follows: Fl = 227 Fn =
Gy x ln—l’ for n > 2, Writing Fn as an iterated
direct product in this way, we see that any P for I
must have at least n generators; hence 2q > np = n2

thus by Lemma 7-11 and Corollary 6-15,

-4
Y(Fn) 23

v
=]
™o

|
[y
+
—

1+ 273 oy

I

But now let P be determined by repeated application of
Theorem 4-18; then Gﬁ(yn) = Qn’ the n-cube, and

v(E) < (e, ()

i

Y(Qn)

1o+ 2™ 3 (n-gy,
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by Theorem 6~36. This completes the proof.

Let us extend this result somewhat. We will need the following

genus formula, involving (n+l) parameters. Define the graph Hn as

follows: let H, = C , the cycle on 2m vertices, and recur-
1 2m 1
sively define Hn = Hn—l x szn, for n > 2, where each mi > 2,
(m) _ 1
Let M = 7T m..
. i
i=1
Thm. 7-13. v ) = 1+ 2" 2@-2m™, 0> 2.

Proof: By Theorem 2-19, Problem 2-4, and a trivial in-
duction argument, Hn is a bipartite graph. We produce
a quadrilateral imbedding for Hn’ and compute Y(Gn)

using Corollary 6-15. For Hn, let p(n) and q(n)

denote the number of vertices and edges respectively.

p(n) = 2nM(n); and since Hn is regular of de-

O_[(n) _

Then
gree 2n, it is a simple matter to compute
2nnM(n).

Let the statement S(n) be: there is an imbedding
of H_ for which r = r, = n2n—lM(n), including two

disjoint sets of 2n_2M(n) mutually vertex-disjoint

quadrilateral regions each, both sets containing all
2nM(N) vertices of H_ . We claim that S(n) is true
for all n > 2, and we verify this claim by mathemati-
cal induction.

That S(2) 1is true is apparent from Figure 7-4
(which shows an imbedding of Cy C6 in Sl), with
the regions designated by (1) making up one set, and
those designated by (2) making up the other. We now
assume S(n) to be true and establish S(n+l), for

n > 2.
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Figure 7-4

For the graph Hn+l’ we start with .Zanr1 copies
of Hn, minimally imbedded as described by S(n). We
partition the corresponding surfaces inte m coples

n+l

of one orientation, and m copies of the reverse

n+l
orientation, corresponding to the vertex set partition

of the bipartite graph C From cach copy, two

2mn+l
(n)

joins of p edges each must be made, both to copies

of opposite orientation, in order to construct Hn+l'
From the statement S(n), it is clear thalt these two
joins can be made, each one over 2n—2M(n) tubes carry-
ing four edges each. {Attach one end of a tube in the
interior of each region designated by (1) for one join;
use the regions designated by (2) for the second join.)
Each new region formed by this process is a quadrilateral.
In this fashion the required 2

imbed H

joi c be m
m ., Joins can ade to

n+l’ with r = ry- Now form anc set of regions

by selecting opposite quadrilaterals from each tube added
in alternate joins in this construction. Form the second
set by selecting the remaining quadrilaterals on the same
tubes. It is clear that the two sets of regions thus
sclected are disjoint, and that each contains (2).
n-2.{(n), _ ,n-1 (n+1)
(mn+l)(2 M )y = 2 M
quadrilaterals; both sets contain all 2
(n+l1)

_ (n)
nel” Furthermoreiz f = 2mn+lr

+ Ar, wherc Ar = (2m +l)(2n M n>)(2), where 2m
n n-2,(n)

mutually vertex-disjoint
n+lM(n+l)

vertices of H

n+l

joins have becn made, with 2 tubes per join, and

a net increase in r of 2 per tube. Hence,
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r(n+l) - om (n2n-lM(n)) + 2nM(n+l)

n+1l
(n+1) 20 (0FL)

Y

and we have established that S{n+l) follows from S(n).
Therefore, S(n) holds, for all n > 2.

We can now compute:

(n) n_(n)
) _ 2 nM _ 2M
,(Hn) =1 + 7] 5
=1+ 222 (nooyu™ #
For the special case where mi =m, i=1,...,n , we have
M(n) = mn, and:

Cor. 7-14. The genus of Hn

Furthermore, 1f m = 2 in the above formula, since C4 =

K2 X K2,

with Theorem 6-36 ):

ng) is the 2n-~cube, and we obtain the result {(compare

Cor. 7-15. (0, ) = 1 + 22172 10y,

For further results concerning the genus of repeated cartesian
products of bipartite graphs, see [W6], and also Pisanski, {P5].
Now, let Fém) be the abelian group with minimal Cayley color

(m) L Am) (m) (m)
graph Hn pomo> 25 i.e. Il = sz, and Fn = ZZm X Fn_l,

for n > 2, Then we have:
n-2 n
Cor. 7-16. Y(Fn Yy =1+ 2 (n-2)m .

The reader may wish to combine Theorems 4-16, 4-19, and 7-13 to
obtain genus formulae for additional abelian groups. For example,
using the notation of Theorem 4-16, consider [ where m. is even.
Using current graph constructions, rather than the surgery techniques
of Theorem 7-13, Jungerman and White [JW1l] found the genus of

"most" of the remaining finite abelian groups; the next theorem

summarizes to include previous results as well.
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Thm. 7-17. Let ' =2 x Z Xeewx Z , where for 2 < i <r
—_— m m m — —
1 2 r
m., divides m, (and m_ > 1, wunless |I'| = 1.) Let
1 i-1 r
N(T) = 1 - (r-2) |T|/4; then
(i) If r =1, then Y(I') = 0.
(ii) If r = 2 and m. = 2, then Yy(r)y = 0.
(1ii) If N(T) is an integer, m. >3, r >» 1, and
either m. even or r # 3, then «v({(I'} = N(I').
(iv) If N(T) is an integer, m. o= 3, and 1 < r # 3,

then y(T) < N(I).
The argument of Theorem 7-12 can be modified to assist in the

computation of the genus for certain hamiltonian groups ; the follow-

’

ing results are due to Himelwright [H7] :

Thm. 7-18. y(Q * (zz)“) =n 2" + 1.

Thm. 7-19. v(Q x Z % (zz)“) = mn2” + 1, for m odd.

Cor. 7-20. The groups ¢ X L% (22)8, for m odd, have genus

asymptotic to the order.

By Theorems 4-16 and 4-22, if G 1is a hamiltonian group, then

G=0Q %x 2 X e.e X G x {2 )n, where the m. are odd (i =1,
m m 2 i
1 r
... , r) and mi]mi~l (i =2, ... , r). Himelwright has also shown:
Thm. 7-21. The genus of the hamiltonian group Q X B X e X
n n : r
Z x (Z,) is asymptotic to 2" (r +n -1) 7n m,, 1if
m 2 . i
r i=1
1 <r <n+1,
There are many open guestions in this area. If a generalization

of Theorem 7-13 for products of arbitrary (not necessarily even)
cycles could be found, then the genus of any abelian (and also of
any hamiltonian) group could be easily computed. What is y(Sn)?
Y(An)? The following theorem produces upper bounds for these group

genera.
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If ' 1is finite and is minimally generated by

{g;, y oo ya.} and satisfies at least the relations
1 n
ml n k
g," =e-= (0 g.), (1 < i < n) then
=1 )
Il P
T 1 1
v <1+ 5+ in-1 - & erj'
j=1
-1 -1 -1
Proof: select P, = (99,,99) +99,,99, +.-+,99,99,7),

for all g ¢ G. Then, using Edmond's algorithm (see

Theorem 6-42), we compute orbits as follows:

(i) An orbit containing the directed edge (a,ag;l)
continues with p _l(a) = agzz; hence this orbit
ag.
i
M
corresponds to the relation g, = e and has

length m, - (If m, = 2, we draw edges for both

g9; = g' and g‘gi = g, obtaining L%L 2-sided

regions; for each such region, the two sides may be
identified and the arrows removed, so that the re-

gion is destroyed but the genus is unaffected.)

(1ii) An orbit containing the directed edge (a,agi) con-
tinues with Pagi(a) = ag;9;,q} hence this orbit
n

corresponds to the relation ( 7 gj) = e and
j=1

has length nk. As there are no other orbits, we
find:

the euler formula now gives the genus 7y of the
theorem for this imbedding of CA(F), for this
presentation P for T'. Hence Y (1) <

y(C, (M) < . #
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We note that an equivalent formula was obtained by Burnside
[B18, p. 398] in a different context. Theorem 7-22 gives v(G)
exactly, for I = Zm ,A4 ,S4 ,A5 , or 23 x Z3. We also obtain

the following two corollaries:

(n-2)! 2

Cor. 7-23. Y(Sn) <1+ 7 (n"=-5n+2), n > 2,
Proof: Take s = (1 2 3 ... n) and t ={(1 2) as gen-
erators for Sn; then sn = t2 = (st)n_l = e #
Cor. 7-24.
- —_ ]
( l+-(£1—llé—ni)—'-(n2—6n+4), n odd
|
Y(An) <
- 1 -
14 w , n even.
Proof: For n odd, s = (1 2 ... n-2) and t =
(1 n-1)(2 n) generate An' and sn_2 = t2 = (st)n = e.
For n even, s = (12 ... n-1){2 n) and t = (1 2)(3 n)
generate A, with ML g2 - (st)? = ¢ (see [9]).
#

The two formulas given above for Sn and An respectively were
also found by Brahana [B1l5], using a different method and in a
slightly different context. For related results, see [W8].

There has been much activity in the study of the genus parameter
for groups, in recent years, perhaps at least in part motivated by

Chapter 7 of the first edition of this book. We have already pre-

sented Theorem 7-16. Here is a continued sample of this research,.
Thm. 7-25. (Proulx [P9])
]
Y(Sn) <1+ %?, for n even, n > 4.

This improves on Corollary 7-23, for n even. For n odd,
a sharper bound than that of Corollary 7-23 was developed in [W8];
but the next results detract from the interest that might acecrue to

the improvement of bounds for y(Sn):
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Thm. 7-26. (Proulx (P9])
Y (85) = 4.

(The proof is not easy!)

Thm., 7-27. (Tucker {T4])
Y(Sn) =1 + I%%-, for n > 168.

We also find

Thm. 7-28. (Tucker [T4])
Y(a) <1+ %, for n > 168

During the period 1972-77, Gross [Gél, Gross and Lomonaco [GL1lj},
and White (W8] showed that certain metacyclic and dicyclic groups
are toroidal. Then in 1977 Proulx [P8] completed work begun by
Baker in 1931 (B3], to classify all torocidal groups in a major effort.
The classification consists of nineteen presentations on two dgenera-
tors, ten presentations on three generators, and one presentation on

four generators.

7-3. Related Results

In 1977 Babai [B2] solved a problem posed in the first edition
of this book, when he established:

Thm. 7-29. If Tl is a subgroup of FZ' then Y(Fl) < Y(FZ).
Since Sn is isomorphic to a subgroup of Ay we obtain
Cor. 7-30. Y(Sn) < Y(An+2).
For example, we learn from Theorem 7-25 that Y(A7) > 4.
Despite the fact that there are infinitely many planar groups

{(Maschke's Theorem) and infinitely many toroidal groups (Proulx's

classification) Tucker [T3] showed, in 1978:
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Thm, 7-31, VYor each g > 2, there are at most finitely many groups
' such that y(T) = g.

The following 1981 result, also due to Tucker [T5], is cven

more surprising:

Thm. 7-32. There is cxactly one group of genus two. It has order
9¢ and presentation (x,y,z[xzz y2 = 22 = (xy)2 =
8 4
(yz)3 = (xz) = y(xz)4y(xz) = ey .

The (unique) group of genus two is the automorphism group of
the generalized Petersen graph G(8, 3); see Frucht, Graver, and
Watkins [FGW1l].

We mention that other definitions of the "genus of a group"
appear in the literature, due to Levinson (L2}, Machlachlan [M1l],
and Burnside [Bl8]. For [’ a finite group, we denote these para-
meters Dby YL(T), YM(T), and YB(f) respectively. The Levinson
paramcter, like the parameter y{I') advocated in this chapter, re-
gards T as being depicted by a Cayley graph GA(F) minimally im-
bedded on a surface Sy but Sy is always an |['|-fold (possibly
branched) cover of some Sn (i.e. the imbedding is index one.) The
Machlachlan and Burnside parameters also regard Sk as an [Fl-
fold (possibly branched) cover of some Sn' but represent the group

' wvia its action on the Riemann surface S for the Burnside para-

}(;
meter, it is always the case that n = 0. The four parameters are
related as follows, where the equality holds except for certain

small [':

Thm. 7-33. For |I' a finite group, y(I) < YL(F) = YM(F) < YB(F);
all are bounded above by the bound of Theorem 7-22,

Thus the most cfficient genus, among all these, is that given

by y(I'). We remark that both the inequalities of Theorem 7-33 can

be strict, as the groups [ = (ZZn)4’ for n > 2 indicate:
Tho. 7-34. tet ' = (2, )% n > 2; then

(1) Y(ry =1 + 8n4

(i1) v (1) = vy (") = 1 + lén®

(1ii) v4(1) = 1 + 4n°(6n-5)
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7-4. The Characteristic of a Group

If we allow nonorientable surfaces also, as our "drawing boards"
for "picturing” groups, then we are led naturally to the parameter of
this section. Recall from Section 5-~3 that the characteristic of a
surface S 1is x(8) =2 - 2k, 1if § = Sk; X {(S) = 2 - k, if
S = Nk'

Def. 7-35. The characteristic of a graph G, denoted by x({(G), 1is

the maximum surface characteristic Xx(8) such that G

imbeds in 8S.

For example, a graph has characteristic two if and only if it
is planar; K5 and K6 have characteristic one; K7 has character-
istic zero; and so forth.

Def. 7-36. The characteristic of a group [ 1is given by:

XA(r) = max{X(GA(F))},

where the maximum is taken over all generating sets A

for T.

Thus a group has characteristic two if and only if it appears
in Maschke's list (Theorem 7-3.)

Here are some less obvious sample results.

Thm. 7-37. (White (W1l0])
Let ' be finite and abelian; then

2, if T =32, 2, x12, or (22)3
X (T) = 1, if T =z, x 2,
0, if T =1z, x2, %2, (n>1), ()%
or Zmn X Zm (m > 2, mn # 3).

¥ () < 0, otherwise.
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Thm.

Thm.

7-39.

Thm.

Thm.

7-41.

2;

cach of order

tors, neither can be of order

exacltly three generators,
L(C ) 2 4.

Find an example of a group [

such that ((C, () = .

rind for all m and n,

and that

and a presentation

P

2. (Hence

p

Show that the only finite planar abelian groups are

r Z g Z 1

on and 74, 4 4, * 4

2 2 2

Use the impedding of Problem 6-7 to find

Find a non-normal subgroup in Q.

Q

where

(Thus the product

n > 1,

y(Q =« Q).

of

hamiltonian groups need not be hamiltonian.)

for U

The Genus of a Group Chapt. 7
7-38. (White [W10]}])
Let ({r], G) =1, with not cyclic. Then () =0
if and only if ' has a presentation of the form
2k +
= (a,b1a2k+l = ):)2n - W= L., = e )
. . -1.~-1 -1
where w 1s either aba b or abab 7.
(Tucker [T4])
There is no group having =« (1) = =1.
7-40 (Tucker [T41])
. _ -n!
For n > 168, (An) = ¢
(Tucker [T4])
-n.
For n » 168, (s ) = a4 -
We observe that, for n - 168, ;1(Sn)/x(An) = [Sn An}
7-5. Problems
Show: that any presentation P for 0, the quaternions, has
at lcast two genervators; that if P has exactly two gencra-

can not have
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* -
7-7.) Show that the dicyclic group G = (x,y %20 = <My 2

y_lxyx = e¢) has genus 1, for all n > 1. (G, = Q; Gy

is the "least familiar group of order 12V)

7-8.) Find an infinite group with a presentation of the form given

in Theorem 7-22.

7-9.) Let n = {(,0,0), (0,1,0),(0,0,1)} for T =12 x Z x Z.
Show that Y(GA(T)) = @,

7-10.) Show that y(Z x Z % Z) = » , Now let Pl = Z, and
N
numbers n.

n > 2; find Y(Fn), for all natural

*
7-11.) The smallest order group whose genus is unknown is the abelian
Z3 X Z3 X Z3' It is known that 5 < y(Z3 X Z3 X Z3) < 10;
resolve the issue!

7-12.) Verify Theorem 7-34,
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CHAPTER 8

MAP-COLORING PROBLEMS

In this chapter we will see that the famous four-color conjec-

ture (now the four-color theorem) can be formulated -- and studied--

in graph-theoretical terms. Graph theory will be used to establish

the five-color theorem., The Heawood Map-coloring theorem will be in-

troduced; this powerful theorem, whose proof was completed in 1968,

answers the coloring guestion -- which was still unanswered for the
sphere -- for every other closed 2-manifold., The easy half of the
proof -- found by Heawood in 1890 -- is presented in this section.
The difficult half of the proof -- developed primarily by Ringel and
Youngs -- will be discussed in Chapter 9.

Consider any map of the world, Suppose we desire to color the
countries of the world (or the states of a particular country, or the
counties of a particular state, etc.) so that the distinct countries
are distinguishable. This means that if two countries share a border
at other than isolated points, then they must be colored differently.
We make only one assumption as to the countries themselves: each
country must be connected (this rules out Pakistan of the last decade,
and the United States, for example.) Note that a country need not be
a 2-cell; that is, it may entirely surround some collection of other
countries {(such is the case for a certain region in France; see
Frechet and Fan ([FFl], p. 3).

We mention in passing that several generalizations of this map-
coloring problem are possible. One of the most appealing is the
following: allow disconnected countries, with each country having
at most k components. (It is not hard to see that, without this
restriction involving k, arbitrarily many colors may be needed.)
Then it can be shown (see Problem 8-6 for the case k = 2) that 6k
colors will always suffice. Ringel ([R8]; p. 26 (see also Heawood
[H3])) displays a map, for the case k = 2, requiring 12 colors, so
that this case is completely solved.

Returning now to the case of classical interest (k = 1), we
pose the question thusly: what is the smallest number of colors need-

ed to color any map on the sphere (or, equivalently, on the plane)?
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That four colors may be needed is indicated by the map induced by
the tetrahedron. That five colors suffice for the sphere will be
demonstrated shortly. Whether or not five colors are cver necessary
has probably stimulated as much work in mathematics as my other
single mathematical question; and the answer is finally known. The
four-color theorem says that five colors are never necessary;

four colors will suffice to color any map on the spherc. Many
"proofs" of the four color theorem have been presented to the
mathematical community, but only one has yet survived close scrutiny.
The interested rcecader might wish to read through one of the false
"proofs”, given by Kempe in 1879 (sce [BCLl], for example), and try
to spot the error in the "proof."

Graph theory enters the picture in the following way. Form the
dual of the map in question. This produces a pseudograph. Altempt
to color the vertices of the pseudograph so that no two adajcent
vertices have the same color. The pseudograph has no loops, as no
self-respecting country cver shares a border with itself. In fact,
we may as well drop any multiple edges, since they (the "extra”
edges) have no bearing on the coloring question., Then the coloring
numbers, or chromatic numbers, of the resulting graph and the map

will be identical. This leads to the following definitions.

8-1 . Definitions

Def. 8-1, The chromatic number, %(G), of a graph & 1s the

smallest number of colors for V(G so that adjacent

vertices are colored differently.

Def., 8-2. The chromatic number Z(Sk), of a surface 5 is the

largest ,{G) such that G can be imbedded in Sk'

8-2, The Four-color Conjecture

In this terminology, the four-color conjecture becomes:

Conjecture 8-3. (%)) = 4.
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There are many other equivalent formulations of the four-color

or

8-4

(sec, for example, Ore's book: The Four Color Problem

[BCL1]). We consider two of these.

The four-color conjecture is true if and only if every

cubic plane block is 4-region colorable.

Proof: Clearly if every plane graph is 4-region color-
able, so is every cubic plane block. For the converse,
assume every cubic plane block is 4-region colorable, and

let G be a plane block. We obtain a cubic plane block

G' from G, by repeated operations of the form (a) --
for vertices of degree 2 -- and (b) =-- for vertices of
degree 3 or more -- as depicted in Figure 8-1. Thus

G' 1s 4-region colorable (by hypothesis), and any

in G: X O Y - in G': X Y
(a)
in G: = in G':
(b)
Figure 8-1
4~-region coloring of G' induces a 4-region coloring for

G. Since it is apparent that the region coloring number
of an arbitrary plane graph is the maximum of the cor-

responding numbers for its blocks, the proof is complete.
#
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Def. 8-5. A graph G 1is said to be n-edge colorable if colors can

be assigned to E(G) so that adjacent edges are colored

differently.

Thm. 8-6. The Four-Color Conjecture is true if and only if every

cubic plane block is 3-edge colorable.

Proof: By Theorem 8-4, it suffices to show that a cubic
plane block G 1is 4-region colorable if and only if it
is 3-edge colorable.

Suppose G 1is 4-region colorable, and let the
colors be taken from the group I = Zy % 22. Since G
is a block, each edge x of G appears in the boundary

2

of two distinct (but adjacent) regions, Rx and R_.

Define the color of x by ci(x) = c(Ri) + c(Ri), addi-

tion taking place in [I' . Since c(Ri) # c(Ri), c(x) # e,
the identity of T (every element is its own inverse, in
') Let x, vy, and z be adjacent edges in G; see

Figure 8-2. We claim that x,y, and 2z are colored

Figure 8-2

distinctly. Suppose to the contrary that, say, co(x) =
ely); that is C(Ri)+ c(Ri) = c(Rb + c(Ri) = c(Rb +
c(Rb . But then c(R;) = c(Ri), a contradiction. Thus
G 1is 3-edge colorable (the colors being taken from
= feld

Now assume that G 1is 3-edge colored, with the ele-
ments of T - {e}, Let R be any region of G, and set

c(R} = e. Let S be any other region of G; we
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determine <¢(S) as follows. Let C' be an arc joining

a point in R with a point in S, with C' 1 V(G) = ¢.

Suppose C' crosses edges Xyv Xoy w4 X (repetition
n

allowed.) Set c(S) = z c(xi). To show that ¢ (8) is
i=1

well-defined, we must show that this element of T is in-
dependent of the particular arc C' selected. Equiva-

lently, we show that if C 1is a simple closed curve

crossing edges Yir Yor sev v Yoo with C N V(G) = ¢ .
m
then AE c(yi) = e, Let C be such a curve. If
1=1
V(G) N Int C = ¢ , then each edge crossed by C is
m
crossed an even number of times; hence z c(yi) = e, in
i=1
this case. If VI(G) N Int C # ¢ , we assume {without

loss of generality) that each edge crossed by C 1is
crossed exactly once. Let Yy S IntCc, i=m+1, ..., r.
By hypothesis, the sum of the colors on three edges inci-
dent with any vertex is e; hence the total of such sums
for the set V(G) N Int C 1is also e; but this sum is

also given by

m r m
ety +2 ] clyp) = ] clyy.
i=1 i=m+1 i=1
m
Therefore z c(yi) = e 1in this case also, and c(S)
i=1
is well-defined.
Now consider two adjacent regions, Ri and Ri. We
have assigned colors to the regions of G so that
2 1, _ o 2 1
c(RX) - c(Rx) = c(x) # e; 1l.e. c(Rx) # c(Rx). Thus G
is 4-region colored. #

In 1976, Bppel ahd Haken [AHl] announced their resolution of

this issue, in the four-color theorem; see Woodall and Wilson [WW1l],

for one discussion ©f the proof.

Thm.

8-7.

X(So) = 4,
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8-3. The Five-Color Theorem
The proof below is found in [BCL1}.

Thm. 8-8. Five colors will suffice to color any map on the spherc;

i.e. x(SO) < 5.

Proof: We use induction on p, the order of the graph
G, to show that if 4 (G) = 0, then A G)Y < 5. The
anchor at p =1 1is obvious. Now assume that all planar
graphs with p-1 vertices (p > 1 are b5-colorable.

Let G be planar, with p vertices. By Lemma 5-19, G
contains a vertex v of degree 5 or less. By the in-
duction hypothesis, x(G-v) < 5; denote the colors in a
5-coloring of G-v by 1,2,3,4,5. 1If not all five
colors are used for the vertices adjacent to v in G,
we can color v with one of the colors not so used, to
give x(G) < 5. Otherwise, d(v) = 5, and all five
colors are used for vertices adjacent to v. We can as-

sume that the situation around v 1is as in Figure 8-3,

and that vy is colored with color 1i. Consider now
Vs
V4 Vl
\'4
V3 V2
Figure 8-3,

any two colors assigned to non-consecutive vertices Vi,
say 1 and 3, and let H be the subgraph of G - v
induced by all those vertices colored 1 or 3., If

vy and Vs belong to different components of H, then
by interchanging the colors in the component of H con-
taining Vi say, a 5-coloring of G - v is produced in

which no vertex adjacent with v 1is assigned the color 1,



Sect. 8-4, The Heawood Map-coloring Theorem 107

and we can use 1 for wv. If, on the other hand, vy

and vy are joined by a path in H, the above argument
guarantees that we can recolor v, with 4, and use 2
for v. This completes the proof. #

8-4, Other Map-coloring Problems;
The Heawood Map-coloring Theorem

Now let us consider other subspaces of R3 in which to pose
map-coloring questions such as that above, for the sphere (and
planec). Strangely enough, if we allow 3-dimensional countries,
arbitrarily many colors may be needed to color the map. This is in-
dicated by Fiqgure 8-4, in which the countries are numbered; it is
seen that each country meets each of the other countries. (In
general, n rectangular parallelopipeds are laid across n other

such solids.)

Figure 8-4

Perhaps it seems natural, since the coloring problem is ap-
parently extraordinarily difficult for the sphere, and admits no
finite answer in R3, to consider next the surfaces Sk as candi-
dates for maps and the corresponding map-coloring questions.

The Heawood Map Coloring Theorem (formerly the Heawood Map-
Coloring Conjecture) has a particularly colorful background, as out-
lined in Chapter 1; also see J. W. T. Youngs [Y2]. We state the

theorem first for the orientable case:
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Thm. 8-9. o
x(8y) =[7——+—/1‘2+——4ﬂ<—] , for k > 0.

Note what happens if we replace Xk with 0 in this formula.
This led many mathematicians to feel that the four color conjecture
was probably true, and they were vindicated! Thus we can now take
k > 0 in Theorem 8-9.

The corresponding map-coloring question can also be asked for
the closed non-orientable surfaces Nk {(spheres with k cross-
caps). Ringel [RB] showed the following (the case k = 2 was
solved by Franklin [F3]):

[7+ VI + 20k

Thm. 8-10. X(Nk) 3 4 *

x(N,) = 6.

For example, the formula gives x(Nl) = 6 (for the projective
plane). Figure 8-5 shows KG imbedded in N
X (N > x(Kgh = 6.

Recalling that the euler characteristics for S and N are

k k
given by n = 2 - 2k and n = 2 - k respectively, we can combine

17 indicating that

1)

Theorems 8-8, 8-9, and 8-10 as follows:

Figure 8-5

Thm, 8~11, Let Mn be a closed 2-manifold, other than the klein

bottle, of characteristic n; then
_[7 + /49 - 24n "
womy = [T 228
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7 + v49 - 24n

For ease of notation, we let f(n) = —_—— - We will

now establish what Heawood knew in 1890:
x (M) < [f(n)].

We proceed by a series of steps, following the translator's notes

in Fréchet and Fan [FF1l].
Lemma 8-12, Let a graph G, with p > 3, be 2-cell imbedded in
Mn’ with a denoting the average degree of the

vertices of G. Then a < 6(1 - n/p).

Proof: Note that a = 2g/p. Now 3r < 2q = ap. Also,

pPp - g+ r =n. Hence
g < 3(g-1) = 3(p - n),
so that
a = 2q/p < 6(1 - n/p). #

Thm. 8-13. x(Nl) < 6.

Proof: We use induction on p, the order of a graph im-
bedded in Nj. We need only consider graphs having 2-
cell imbeddings in Nl' for otherwise (see Youngs [Yl]),
¥(G) = 0, and x(G) < 5. The result is clearly true

for p < 6. Assume x(G) < 6 for all graphs in Nl
with p - 1 vertices, p > 7; let G be a graph im-
bedded in Nl' with p vertices. By Lemma 8-12,

a < 6, so that G has a vertex v such that d{v) < 5.
Then G - v 1s imbedded in Nl’ and (G - v) < 6,

by the induction hypothesis. Since there are vertices
of at most five colors adjacent to v, the sixth color

can be used for v, and x(G) < 6. #

Note that Theorem 8-13, together with Figure 8-5, show that
X(Nl) = 6.
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Thm, 8-14. X(Mn) < [f(n)], for n # 2.

Proof: Thanks to Theorem 8-13, we may assume that

n < 0. We use induction on p, to show that x(G) <«
[f(n)], if G 1is imbedded in Mn' (We may assume G
to be connected, as the chromatic number of a graph is
the largest chromatic number for its components,) It is
clear that x(G) < [f(n)] if p < [f(n)]. Now assume
that x(G) < [f(n)] for all graphs with fewer than p

vertices and imbeddable in Mn' Now, from the defini-

tion of f(n), we sece that f2(n) - 7f(n) + 6n = 0;
i.e. 6(1 - n/f(n)) = £f(n) - 1. If the imbedding of G

in Mn is 2-cell, then Lemma 8-12 applies, and

a < 6(l-n/p)

6(l-n/f(n))

b A

f(n) - 1.

If the imbedding is not 2-cell, then it is not minimal

(see again Youngs [Yl]), and we can find a 2-cell im-

bedding in Mm , where m > n. We then apply Lemma

8-12 as above, to get a < f(m) - 1 < £(n} - 1. Thus

in either case a < f(n) - 1, and we can find a vertex

v of G having d(v) < [f(n)] - 1, so that, (using

x(G-v) < [f(n)]1), x(G) < [f(n)]. This completes the

proof. #

The task remains to show that x(MJ > [f(n)], for Mn # N2,

the klein bottle. This is done by finding a graph G imbeddable in
Mn and having x(G) = [f(n)]. Tor M2 = SO’ K4 is such a graph;
for M1 = Nl’ take G = K6 (as in Figure 8-5); for MO = Sl’ pick
G = K7 (see Figure 8-6 for the dual of K7 in Sl); for M_2 = 52,

let G = KB‘ In fact, for Mn # NZ’ [f(n)] is attained by the
largest complete graph imbeddable in M . We now confine our atten-

tion to the orientable case and explore this claim in some detail.
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Figure B8-6

Let us assume the truth of the complete graph theorem (which
will be discussed in detail in Chapter 9):

{(nh3)(m—4)}

Y(Km) for m > 3.

From this it will follow that x(Mn) > [£(n)] (in the orientable

case; the non-orientable case is handled similarly).

q
Thm. 8-15. x(s,) > [£(2-2k)] = [+ /2 2Bk
Proof: Consider Sk' Define m = [f(2-2k)], and now
consider also S . Note that y(K ) < k, so that
Y(Km) -
X(Sy(K )) < X(Sk)‘ Now Km imbeds in SY(Km)' Clearly
x (S ) >m = [£(2-2k)], so that X(Sk) > [£(2-2Kk)].#

Y(Km)

Theorems 8-14 and 8-15 combine to prove Theorem 8-9, with the
understanding that it remains to establish the formula for the genus
of Km. Before indicating how this is done (in the next chapter),

we pause for two related results.

8-5. A Related Problem

We have seen that, for any closed 2-manifold except the sphere,

the maximum chromatic number of an imbedded graph is taken on by a
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complete graph. We now show that the complete graphs play the same
role with respect to maximizing the minimum degree of an imbedded

graph.

Thm. 8-16. Let Mrl be a closed 2-manifold of characteristic n,

and G a graph. 1f G has an imbedding in M then

8 (G) < g(n), where

For e

1 [5+/492 2dn L iF n o< 2

g(n) =

1 5, if n = 2
Furthermore, there exists a graph G, imbeddable in
M such that 6(G) = g(n).
Proof: The theorem is known to be true for n = 2, as

Lemma 5-18 and the icosahedral graph show. Suppose now

that G 1is a graph having p vertices and g edges,

with &(G) > g(n), and a 2-cell imbedding in Mn(# SO)'
By standard arguments, 2q > 3r, and also 2q >

p(g(n) + 1). We may assume that G is connected, since
if the theorem is true for every component of G, it is

also true for G. The euler formula applies, so that

n=p-g+r

ir<g n2+1 - %->q
- Gy ) o

We may assume that n < 0, as the above inequality is
clearly impossible for n = 1. But for n < 0, g(n) > 6,

so that

-3n(g(n)+1)
g(n) -5

O
| A

But since 6(G) > g(n), p > g(n) + 2, and

2q (g(n) +2) (g(n)+1).

| v
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We note that

A9-24n | - /39=-24n .
(g (n)+2) (g (n)=5) = [9 + 549 24n_1 [ 5 + ‘249 24n |

(7 + v/49—24n> <—7 + /49-24n"
‘ p) 2 /

It now follows that

(g(n)+2) (g{n)+1)
2

. =3n(g(n)+1)
g(n)-5

q,
a contradiction. Hence §(G) < g(n).

Now suppose that G has a non 2~cell imbedding in

Mn' By a result of Youngs [Y1l], G has a 2-cell im-
bedding in some Mn,, where n < n'. From what we
have shown above, &§(G) < g(n') < g(n).

Ringel and Youngs have shown [RY1l] (also, see
Chapter 9) that the complete graph K[g(2—2k)]+1 is
imbeddable in Sk’ for k > 1. Ringel [R8} has shown
that the complete graph K[g(Z—k)]+1 is imbeddable in
Nk’ for all positive k except k = 2, It remains
to find a graph G imbeddable in N, and having
§(G) = 6. We begin by considering two projective
planes, Py and Py each with a complete graph K
imbedded as indicated in Figures 8~7. Cut open disks

D and D from the interiors of the five-sided

1 2
regions of Pl and P2, respectively, Let T be a
cylinder disjoint from Pl and PZ’ with simple
closed boundary curves Cl and C2. Identify Cl
with the boundary of Dl and C2 with the boundary
of D2. The result, (Pl—Dl) UTU (P2 - D2), is a

klein bottle (see Problem 8-7). The graph G is then
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constructed by adding the edges (i,i'),(i,i'+1l),
i=1,2,3,4,5, (where the vertex 6' 1is the same as
the vertex 1'). This completes the proof. #

Figure 8-7

We thus make the following observation. The sphere is the only
closed orientable 2-manifold for which the maximum minimum degree is
not attained by a complete graph, In contrast, we have seen that
for every closed 2-manifold (whether orientable or non-orientable),
including the sphere, the maximum chromatic number is attained by a

complete graph.

8-6. A Four-Color Theorem for the Torus

Thus far in this chapter we have been discussing, for a given
closed 2-manifold M, the chromatic number of arbitrary graphs that
can be imbedded in M. 1In this section we impose a restriction on

the girth of the graphs we are considering,

Def. 8-17, The girth g(G) of a graph G 1is the length of a
shortest cycle (if any) in G.

Thus a graph G with cycles but no triangles has g(G) > 4; if
G 1is a forest, we write g(G) = « . The following theorem was

shown by Grdtzsch [G7]:

Thm., 8-18., If y(G) =0 and g(G) > 4, then x(G) > 3.
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The graph G = C. shows that equality can hold in Theorem 8-18.
In this section we [KW2] find an upper bound for the chromatic
number of toroidal graphs having no triangles, and show that this
bound is best possible. We also consider toroidal graphs of arbi-

trary girth,

Def, 8-19., A connectedgraph G 1is said to be n-edge-critical
(n »2) 1if (G) = n but, for any edge x of G,
(G=x)}) = n - 1.

The next theorem is due to Dirac [D3]}.

Thm, 8-20, If G is n-edge-critical, n > 4, and if G # Kn,
then 2g - (n-1)p + n ~ 3.

We are now able to find the analogue of Grotzsch's Theorem,

for the torus.
Thm. 8-21. If (G) =1 and g(G) > 4, then x(G) =< 4.

Proof: Let x({(G) =n > 5. We first assume that G is
n-edge-critical, and hence connected. Since g(G) > 4,

G # K, . By Theorem 8-20,
2g > (n-1)p + n-3.
Now 1f v (G} = 1, then by Corollary 6-15,
4p » 2q > (n~1)p + n-3;

thus n < 4., If y(G) =0, then n ¢ 3, by Theorem
8-18. 1In either case we have a contradiction, so that
n < 4.

Now suppose that G is not n-edge-critical. Then
G contains an n-edge-critical subgraph H, and the

arqument above shows that x(G) = x(H) =n < 4, #

The graph of Figure 8-8, constructed by Mycielsky [M5] as an

example of a graph having no triangles and chromatic number four,
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also has genus one, so that the bound of Theorem 8-21 cannot be

improved,

Figure 8-8

The situation for the torus is (almost) completely analyzed in:
Thm, 8-22., If v{(G) <1 and g(G} =m, then
7, if m = 3

X (G) < 4, if m
3, if m > 6.

1
£
0
A
[%2)

Moreover, all the bounds are sharp, except possibly for
m =5,

Proof: If m > 6, then each region in an imbedding for
G has at least six edges in its boundary, so that

2q » 6r, As in the proof of Theorem 8-21, we may assume
that y(G) = 1 and that G is n-edge~critical, where

n = y{(G. If n >4, then 2q > 3p + 1, by Theorem
8-20. Then, by Corollary 5-~14.

0=p-g+r

29-1 | o
3 a+3

A

1
Wi

an obvious contradiction. Hence for v (G) <1 and

g({G) > 6, we must have x{(G) < 3, This bound is best
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possible, as an appropriate  subdivision G of the
Petersen graph (shown imbedded in in Figure 8-9)

51
m{m > 5), vyi(G) =1,

can always be found, having gl{G) =
and Y (G) = 3.

Figure 8-9

For m =4 or 5, it follows from Theorem 8-21 that
x{(G) < 4, (Now, see Problem 8-9.) Figure 8-8 shows
that equality can hold for m = 4, For m= 3, we

refer to the Heawood Map-Coloring Theorem. #
8-7. A Nine-Color Theorem for the Torus and Klein Bottle
The material in this section is due to Ringel [R17].
Def, 8-23. A graph G 1is said to be l-imbeddable in a surface S
if G can be represented on S so that each edge is

crossed over by at most one other edge.

Def, 8-24, The l-chromatic number Xl(s) is the largest ¥ (G)
such that G is l-imbeddable in S.

Thm. 8-25. The l-chromatic numbers Xl(sk) and Xl(Nh) are
bounded above as shown:
.9 + /64k¥17

(1) xp (S = 5 I for k > 1
. 79 + S2n+i7
(i) xy(N) < =—5——— ] , for h > 1.
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Thm., 8-26. The following holds:

(1) . (s =9,
(ii) ‘1(N2) =9,
(iii) . (Sg4) = 41.

The result (iii) above was obtained using a modified currcnt
graph (see Chapter 9, for a discussion of the theory of current

graphs.}

8-8. k~degenerate Graphs

Before getting to the focal point of this text, in the next
chapter, we digress briefly. The generalization below of Theorem
8-11 may be of interest.

A coloring number for graphs closely related to the chromatic

number is the vertex-arboricity (see [CKWI1].)

bef., B-27. The vertex arboricity, a({G), of a graph G 1is the

minimum number of subsets that V(G) can be partitioned

into so that each subset induces an acyclic graph.

Def, 8-28. The vertex arboricity of a surface Sk is the maximum
vertex-arboricty among all graphs which can be imbedded
in Sk'

In 1969, Kronk [K3] showed that the vertex arboricity of Sir

k 0, is [g—i—ﬁ%—i—ith . Chartrand and Kronk {CK2], alsoc in

1969, proved that the vertex-arboricity of the sphere is three,
The similarity of Kronk's result to those of Ringel and of Ringel
and Youngs for the chromatic number suggested the generalization

mentioned below.

Def. 8-29. A graph G 1is said to be k-degenerate if every induced
subgraph I of G satisfies the inequality ¢(H) < k.
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Def. 8-30. The vertex partition number, >\k(G), of a graph G is

the minimum number of subsets into which V(G) can be
partitioned so that each subset induces a k-degenerate

subgraph of G.

The parameters yO(G) and gl(G) are the chromatic number and
vertex arboricity of G, respectively (see Problem 8-4). A general
study of k-degenerate graphs has been begun in [LWl], where many of

the well-known results for the chromatic number and the vertex-
arboricity of a graph have been extended to the parameters :k(G),

for all non-negative integers k.

Def. 8-31. The vertex partition number of the closed 2-manifold

Mn’ denoted by uk(Mn), is the maximum vertex partition
numoper wk(G) of all graphs G which can be imbedded
in M .

n

The following theorem (for a complete proof, see [LW2]) almost
completely generalizes the results of Kronk, Ringel, Ringel and

Youngs, and Appel and Haken mentioned above.

Thm. 8-32. The vertex partition numbers for a closed 2-manifold M

are given by the formula:

) = 2k+T) + /49=24n -
Pk Yn L 2k + 2 4

where k =20,1,2,...; and n=2,1,0,-1,-2,..., except

for the following cases:

(i) in the orientable case, pl(SO) = 3,
93(50) = Q4(So) = 2; and

(1i) in the non-orientable case, pO(N2) = 6,
pl(Nz) =3 or 4, pz(Nz) = 2 or 3.

We make the following comments about the proof of Theorem 8-28,

- T
set £f£(k,n) =L_(2k+7)2; +42 24n_J. The proof is divided into three

parts.
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(1) “k(Mn) < f(k,n), for Mn # S0 (the proof breaks

down for the sphere, reminding us how obstinate

the four color problem was.)

(11) wk(Mn) ~ f(k,n), for Mn # N2 (the proof fails
for the klein bottle).

(iii) the exceptional cases are treated separately:

(a) for M= SO, ul(SO) = 3 appears in the
literature; for uk(SO) =2, k=2,3,4,
see Problem 8-5; finally, pk(so) =1 for
k - 5, since any planar graph is 5-degener-

ate, by Lemma 5-18.

(b) For Mn = N2,

are devised. For example, the graph con-

additional ad hoc arguments

structed in Figure 8-7 shows that HS(NZ)Q-E

from (i) we see that (N < 2; thus

“:S(NZ) = 2,

e (N5)

8-9., Coloring Graphs on Pseudosurfaces
The pseudosurfaces S(k; nl(ml),...,nt(mt)) have been defined
in Section 5-5 and re-encountered in Sections 6-7 and 6-8, Dewdney
[D1] has studied a subclass of these pseudosurfaces, namely those of

the form S(0,n(2)):

Def, 8-33, The chromatic number, s (5{(0;n(2))), of the pseudo-

surface S(0;n(2)) 1is the largest chromatic number
v (G) of any graph £ that can be imbedded in
5{0;n{2)).,

Thm, 8-34, (5(0;n(2))) = n + 4, for n - 0; equality holds for
n=1,2, 3, 4, %

ror example, Figure 6-6 shows K5 imbedded in S(0;1(2)),
showing that v(8(0;1(2)) » 5. Similarly, K6 imbeds in
5(0;2(2)), to give equality for the case n = 2. Note that we
state this coloring problem for graphs rather than for maps; the

dual of G in sS(0;n(2)) is not a 2-cell imbedding, so that there
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is not the natural correspondence we find for surfaces. (*The
cases n = 3 and 4 were established by Mark O'Bryan and James
Williamson respectively.)

Then in 1974, Borodin and Melnikov [BM2] solved this particular
problem completely, except for the case n = 0 now covered by the

four-color theorem; we state the complete solution:

Thm. 8=35,
n+4, 0<n <4,
8, n =25,
¥ (S(0;n(2 =
«(8(0in(2))) [7+ v1¥74n ,
=], 6 <n <12,
12, n > 12.

Thus we have the map-coloring number for the sphere, where n
countries have two components, and that twelve is the largest of
all these numbers (see Problem 8-6). Heawood [H3] generalized to
ask for the map-coloring number ¥(S,c) for a surface S (orient-
able or nonorientable) of characteristic n, where each country
has at most ¢ components, and showed - for every case but the

sphere for ¢ = 1 - that this number is bounded above by:

Thm, 8-36.

Fec + 1 /(60+1)2—24n E

x(S,c) < | 5 i

Note that the case ¢ =1 1is the one of primary interest (the

Heawood map coloring theorems), and that the bound does hold for
c =1 and n = 2 as well (the four-color Theorem.) Moreover, we
have seen that X(SO,Z) = 12.

Recently it has been shown that equality also holds in Theorem

8-36, for certain other cases:

Thm. 8-37. (Jackson and Ringel [JR2]

X(SO ) = 6¢c, for c¢ > 2,

~
A
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Thm. 8-38. (Jackson and Ringel [JR1})

A(Nllc) = 6¢c, for c 1

Thm. 8-39, (Taylor [T11])

x(Sl'c) = 6c + 1, for c¢ » 1.

Thm. 8-40. (Jackson and Ringel [JR3})

_ [6c+1 + /(6c+i{§j52;ﬁ .
oL 2 4

Let gl{c,n)

’

then Y (s,c) = g(c,n), if:

(i) s = Nk and gl(c,n) -~ 1,4,7 (mod 12), unless
=2 and ¢ =1 or 2.
(ii) s = Sk' c 1s even, and gl(c,n) 1 (mod 12)

(iii) 8§ = Sk’ ¢ is odd, and gl(c,n) = 4,7 (mod 12).
It remains to construct the "verification figureg" (i.e. the
appropriate pscudosurface imbeddings) for the cases not covered
above. (see Problem 8-17.)

8-10. The Cochromatic Number of Surfaces

The material in this section is taken from Straight ([S18] and
[81971.)

Def. 8-41, The cochromatic number, z(G), of a graph G 1is the

minimum number of subsets into which V(G) can be
partitioned so that each subset induces either an cmpty

or a complete subgraph of G.

Def. 8-42, The cochromatic number, z{S), of a surface S, 1is

the maximum z{(G) such that G imbeds in S.
Thm. 8-43. z(Sn) = x(Sn), with equality if and only if n = 0,

For example, z(C5 U K4) = 4, so that z(SO) = 4,
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that, in general, z(S) is the maximum

if and only if G 1is

Form the dual of this

imbedding, and explain why this shows that X(Sl) > 7.

Py (G) = a(G).
2,3,4. (Hint: for each k,

) £ 2. Then consider graphs

Thm, 8-44., For n - 4, z(Nn) - '(Nn)‘
Thm., 8-45. (i) z(SO) = 4
(1i) Z(Nl) = 5
(1i11) Z(NZ) = 6
(iv) z(N3) = 6
(v) 2(N4) = 7.
Straight conjectures
n
n such that u Ki imbeds in S.
i=1
8-11. Problems
8-1.) Let G # i;; show that «(G) = 2
bipartite.
8~2,) Find x(Cn), for all cycles Che
-3.) Find an imbedding of K7 on Sl'
8-4.,) Show that DO(G) = ¥(G) and that
=5.) Show that pk(so) =2, for k =
use induction to show that pk(SO
of certain regular polyhedra.)
*
8-6.) Show (as Ringel and Heawood did)

of the sphere

that any map on the surface

, in which each country has at most two compo-

nents, can be colored with 12 colors, (Hint: it may be

helpful to show that if a graph G 1s n-critical, then

§(G) > n - 1;

all vertices

i

v

«C.

in

if ¥(G) =n

, but x(G-v) = n -1, for

G. Then form two "dual" graphs for an

arbitrary map, one where the vertices represent countries,

the other with vertices representing regions of land. Use
also the fact that

Interpret this result for pseudo-surfaces. Compare Problem

6-9.

q_<_3p°'6l

for planar connected graphs.)



8-11.)

8-12.)

O

-13.)

* %
8-14.)
8-15,)
8-16.)
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Show that the connected sum of two projective planes (as in
the proof of Theorem 8-16) is a klein bottle. (Hint: find
the characteristic of the resulting closed 2-manifold, using

the graph G constructed in the same proof.)

Show that x(G) = 4, for the graph G of Figure 8-8.
Does there exist a toroidal graph G having g(G) = 5 and
X (G) = 42

Prove or disprove: K9 imbeds in S(0;5(2)) (and hence
x{S(0:;5(2)) = 9.) 1Is x(8{0;n(2))) = n + 4 for all n?
Compare Problems 6-9 and 8-6. Does KlO imbed in
5(0;7(2))7

Note that, in Theorem 8-32, there are exactly six cases not
known to comply with the general formula, including four
which are known not to comply. The known non-orientable
value (pO(Nz) = 6} 1is one less than that predicted by the
formula. The three known orientable values
(ol(SO),QB(SO),p4(SO)) are each one more than the formula
would give, What guess do you make, for pl(Nz) and

0y (N2

Define the chromatic number of a group to be:

x(T) = min (GA(F)) (cf Babai [Bll). Find x(I'), for

— n
P=2., 2y % 2,y (2,)

for ' finite abelian or [ = A_,

+ Dy sz D, Sn' Show x () < 3,

If ' has a normal subgroup Fl, show that

x(T) < X(F/Fl). Thus if T 1is solvable (note that this
includes all odd order groups), then x(I) < 3. If T

has a subgroup of index 2, then x (I < 2.

Is x () < 3 for all groups T?

Is X(Tl) <xfry), if T < rye?

Extend the definition of (') to pk(r), for arbitrary
vertex partition numbers. Study this family of parameters.
Find the imbeddings called for at the conclusion of Section
8-9,

Study the conjecture given at the conclusion of Section 8-10,
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CHAPTER 9

QUOTIENT GRAPHS AND QUOTIENT MANIFOLDS
(and Quotient Groups!)

In this chapter we present the beautiful theory of quotient
graphs and quotient manifolds. This theory was introduced by Gustin
[G8], developed by Youngs {(see, for example, [Y2], [Y3], and [Y6]},
and used by Ringel and Youngs to find the genus of Kn and thus
solve the Heawood map-coloring problem, as explained in the pre-
vious chapter. The application of the theory to the graphs Krl
falls into 12 cases, depending upon the residue modulo 12 of n.
The theory applies directly, for n - 0, 3, 4, 7 (mod 12), as
will be seen shortly. For the remaining eight cases, the theory is

modified (by the theory of vortices) to complete the solution. We

will treat the case n = 7 (mod 12) completely, and discuss the
case n = 10 (mod 12); this will give an indication of the power
and beauty of the theory. The remaining ten cases are treated
similarly, although many complicating details must be handled pro-
perly. (Perhaps one should expect a complicated solution, to a
complicated problem!)

We will then see how the theory (designed to produce triangular
imbeddings for Kn) may be extended to handle first triangular im-
beddings for Cayley graphs in general, and then to handle regular
imbeddings (r = r,»n> 3} in general, for Cayley graphs. This
is the scope of the theory, as announced by Gustin. But Youngs'
theory of vortices [Y3] hints at an even more general theory; we
present this general theory, as unified by Jacques [J2]. We con-

clude the chapter with a sampling of applications of this powerful

theory.

9-1. The Genus of Kn

Let us now turn our attention to the complete graphs K_.

Recall that if we can show that
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the lleawood map-coloring theorem will be established. We see the
origin of the number on the right-hand side of the above equality
in the following:

Thm. 9-1, Let K, be minimally imbedded in a surface M., Then
N o _ (n=3) (n—-4) 1 .
((K)) = y(M) = ———S5—— + % I (i-3)r;.
ix4

Proof: From Corollary 6-14, we know that

n{n-1) n (n-3) (n-4)

VIR 2 3 =1z

with equality if and only if Kn has a triangular imbed-
ding. But we can be more specific than this; we can get
some information about the non-triangular regions (if
any!) If K. is minimally imbedded in M, then
clearly y(Kn) = y(M), and the imbedding is 2-cell, by
Theorem 6~11. Thus the euler formula applies, and

TURER IS
1-Begeg-3
=1 -4l d g}nl-%g} 3r,
- i&:i%%ﬂlil + % I i=3rg. #
i>4

We now see that if Kn has a triangular imbedding (ri = 0,
i > 4), then

= {n-3) (n=4)

Y(Kn) 13 '
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and (n=3)(n-4) = 0 {(mod 12); i.e. n 0, 3, 4, 7 (mod 12). More-

. X -3 -4
over, in general, y(Kn) = IAE——%%E——l ,

Z (i-—3)ri < 5. It is now perhaps apparent why there are twelve
i-4

cases for the determination of y(Kn), and why only four of them

if we can show that

admit triangular imbeddings. Let us consider these four cases now.
What is needed is a method of constructing triangular imbed-
dings. The naive trial-and-error method easily handles n = 3, 4,
and 7; it becomes a bit sticky at n = 12. We turn away from the
drawing board and employ the algebraic description of 2-cell im-
beddings given us by Edmonds' permutation technique. Now we seek a
means of selecting judiciously the local vertex permutations
(p1 r Py e ,pn); this is what the method of quotient graphs

and quotient manifolds is all about!

9-2. The Theory of Quotient Graphs and
Quotient Manifolds, as Applied to Kn

We introduce this theory by means of the example K7. Let K7
be imbedded in Sl; by Theorem 9-1, this imbedding must be a tri-
angulation, Select a group ' for which K7 is a Cayley color
graph; in this case, we can only pick I = Z, = (x[x7= e}, but we
pick x, x2, x3 as generators for [ . Label the vertices of K7
with the elements of | (one should also think of the edges as
being directed and colored appropriately.) Now take the dual of
this imbedding; assume this is as pictured in Figure 8-6. Each
region in the dual (formerly a vertex of K7) is now labeled with
a distinct group element: 0, 1, 2, 3, 4, 5, or 6. We proceed
to label the boundary edges of each region of the dual, as in-
dicated in Figure 9-1, (Note that (g—lh)_l = h—lg.) We observe
that the seven regions of the dual have identical boundaries:

1, 3, 2, 6, 4, 5.
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"

or

Figure 9-1

We summarize this information in a map having one region, as shown

in Figure 9-2, But l_1 = 6, 2_1 = 5, and 3_1 = 4; thus the six

Figure 9-2

edges have a natural identification, in three pairs; we make this

identification, to form a closed orientable 2-manifold, as in Figure

9-3., The result (in this case, Sl) is the quotient manifold; the
corresponding graph (actually, in this case, it 1is a pseudograph) is

the guotient graph. The subgroup of ' consisting of all vertices

Figure 9-3
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of K, whose regions in the dual had the same ordering of directed

edges in their boundaries as did e = 0 (in this case, Z7 itself)

gives rise to the gquotient group (in this case, the trivial group).

The index of this subgroup in ' (in this case, 1) 1is the index

of the imbedding. The point is this: all the information needed to

describe a triangular imbedding of K, in S5 is contained in the

quotient graph, imbedded in its quotient manifold (which, after all,

was obtained by (modding out" the subgroup Z7).
To see this, let the permutation at vertex 0 be given by the

boundary of the single region in the guotient manifold:

The remaining local vertex permutations may be obtained by succes-
sively adding 1 to every entry in this row (remember, we are in

the group Z7!):

0: 1, 3, 2, 6, 4, 5
: 2, 4,3,0, 5,6
2: 3,5, 4,1, 6,0
3: 4, 6,5, 2,0, 1
: 5,0,6,3,1, 2
5: 6, 1, 0, 4, 2, 3
: 0, 2, 1, 5, 3, 4.

~
~
~
-

Now, compute orbits (corresponding to regions in a 2-cell imbedding
of K7):
0-1-5 1-2-6 3-5-6
0-2-3 1-3-4 3-6-4
0-3-1 1-4-2
0-4-6 1-6-5
0-5-4 2-4-5
0-6-2 2-5-3.

We see that we have an imbedding of K7 for which r = ry = 14;
that is -- a triangular imbedding. This is no accident; it is

quaranteed by the theory of quotient graphs and quotient manifolds!
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We now examine this theory more closcly. (At first we consider

only triangular imbeddings for Ko i in sections 9-4 - 9-7, we
generalize.) Recall that, for a graph K, D* = T(a,v) ! {u,v] € E(K)];
in this chapter, we set D* = K*,

Def. 9-2., A current graph is a triple (K,7,'), where K 1is a
pseudograph,  is a finite group with identity e, and

1 _ 1

v K* - - e 1s a map such that (n(a))— 1(a_ Y,

for all a & K*.
Note that a Cayley color graph is a current graph.

Def. 9-3, TLet K be a 2-cell imbedded in a surface M, with
v € V(K). We say that Kirchoff's Current Law (KCL) holds

at v 1f the product of the currents directed away from
v, talken in the order given by P, is the identity,

e.

Def. 9-4., Given a group | of order n and a subgroup = of

order m, a guotient manifold M(T/:) is a closed

2-manifold having the following properties:

1.) M("/:) 1is oriented and has a 2-cell decomposition,
given by a pscudograph K.

2.) The 2-cells of the decomposition are N = n/m 1in
number, are named [X}, X ¢ I'’/?, and cach is an
(n~1)-gon. N 1is called the index of M(I'/:).

3.) The oriented edges in K carry currents from

- e,

) K 1s a current graph.

.) Por X ¢ /7, each element of I - e appears
cxactly once as a current on some edge of [X]*,
the oriented boundary of [X] (with orientation in-
herited from M({I'/:).)

6. [¥X] meets [vl # [X)] along those edges of [X]*

whose currents are in the set X_lY, and nowhere

else,
7. [¥] meets itself along those edges of [X]* whose
currents are in the set (X—lX) - e, and nowhere

clse. Moreover, the meeting is along a singular



Sect. 9-3 The Genus of Kn (again) 131

edge (a loop), if and only if the current is of

order 2.
8.) Each vertex of K 1is of degree 1 or 3.
9.) The current going into each vertex of degree 1 1is

of order 3.

10.) The KCL holds at each vertex of degree 3.

Thm. 9-5. If K is triangularly imbedded in a surface M, then
for any group | of order n and 1-1, onto map
A V(Kn) » ', there exists a subgroup ¢ and a quotient
manifold M(i/ ).

It is clear that o= el will always satisfy Theorem 9-5;
but this gives no progress for the imbedding problem, since
M{:/fe!) = M. Economy of effort here is inversely proportional to
the index of the imbedding.

The graph K of Definition 9-4 is called a guotient graph; it
is denoted also by S(I'/2). Note that S(I'/?) is not the graph
alone, but the graph together with a collection of local vertex
permutations that gives rise to an imbedding of the graph in a
quotient manifold.

For additional examples of quotient graphs and quotient mani-

folds, refer to [Y2] or to subsequent sections of this chapter.

9~3, The Genus of Kn (again)
It is the next theorem which is basic to determining y(Kn).

Thm. 9-6. If S(I'/%) 1is a quotient graph, where |' has order n,
then there exists a triangular imbedding of K. -

Thus if we can find an appropriate guotient graph (and this may
be a considerably easier task, if ¢ 1is of low enough index), we
have found a combinatorial equivalent of a triangular imbedding.

The justification for the above theory is given very nicely by
Youngs. We prove here only the special case of an index one imbed-

ding, with [ = Zn'
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Thm.,

9-7.
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If K

(i) K 1is cubic

S(Zn/Zn) is a guotient graph such that

(ii) *»: K* - 2, - 0 is 1-1 and onto,

then Kn has a triangular imbedding.

Proof: Since ' = . , K 1s of index one. Hence there

is exactly one region in the cellular decomposition of

the quotient manifold M(Zn/Zn). This region must con-

tain every edge n € K* in its boundary. Since \ 1is
onto, for every g € Zn ~ 0, there is an edge o € K¥*
such that A {x) = g. Since X is 1-~1, there is no
edge [ # o such that A (f) = g, Thus the succession of

currents on the boundary of the region is a cyclic per-
mutation of Zn - 0 of length (n~1); we take this

permutation as Po (where we label the vertices of K,
by: V(Kn) = {0,1,2,...,n=-1}.) Suppose Py is given by:

Pgy¢ (al,a2,...,an_l);
then the remaining p; are given by:
+ 1},

i=1, 2, ... , n=1; all arithmetic is done in =7 .

n
Note that a,+i # i, for otherwise, a, = 0, Hence the

collection ?po,pl,...,pn_l) determinez a 2-cell imbed-~
ding of K. It remains to show that r = ry for this
imbedding.

Now suppose that po(a) = b, and let o, € K*,
with X(a) = a, A{B) = b. The situation, by property
{1) of the hypothesis, must be as depicted in Figure 9-4.
(The arrow gives the orientation at the vertices:; by
Edmond's algorithm, the region boundaries have the re-

verse orientation.)
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w

X b

Figure 9-4

But, form the KCL, =-a + b + x =0, or x = a - b.
Now, also, po(—b) =x =a - b. Therefore, pb(O) =
x + b =a. Now let (u,v) be any directed edge in Kn.
We will show that (u,v) 1is in the boundary of a tri-

angular region, to complete the proof. Compute the orbit,

beginning
u-v- .
Let pv(u) = w; then we have
U-v-w- .
But since pv(u) = W, po(u—v) = w - v, Letting

u-v=a and w - v = b in the above discussion, we

see that
Py (0) = u - v;
hence pw(v) = u, and we have
u-v-w-u- R

Next, let v - w=a and u - w = b; then (since

P (V) = u, pylv-w) = u-w)

p (0) = v - w,
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U-v-=w-u=-v

constitutes an orbit under P for Kn , of length 3.

This completes the proof. #
We next prove that ,(Kn) is as predicted, for n 7 (mod 12).
By Theorem 9-7, we need only find a cubic quotient graph, K =
S(Zn/zn), with a 1-1 onto assignment L K* oo Z, =~ 0. To

simplify the presentation of K, instead of showing K imbedded

in M(Zn/zn)’ we draw K 1n the plane with the following device
describing the local vertex permutations: a solid vertex has its
incident edges ordered clockwise; a hollow vertex, counterclockwise.
For example, Figure 9-3 and 9-5 depict exactly the same

K = S(Z7/Z7).

Figure 9-5
Thm, 9-8. Kioger has a triangular imbedding.

Proof: Let o= ZlZs+7' We have already treated the
case s = 0, The cases s =1 and s = 2 are shown in
Figures 9-6 and 9-7 respectively. The generalization to

all s 1is as in Figure 2-8, with the vertical edges

Figure 9-6



Sect. 9-3 The Genus of Kn (again) 135

Figure 9-7

directed alternately and carrying the currents 1, 2,
+e. , 2s consecutively. All other currents are deter-
mined by the KCL. It is straightforward to check that
K has 6s + 3 edges, or 12s + 6 directed edges,

5s+4 6s+3

3s+3 4s+2

Figure 9-~8

carrying all the currents from 210647 " 0. The single

region in M(Z /2 is:

12s+7 125+7)

(2s+1)-(55+3) - (5s+4)-...-(65+3) - (4s+3) - (2s+2) -
(-28)-(=-65-3)-(-25+1)-(25+3)~ess—(-1)~(35+2) -
(=28-1)~-(-4s-3)-(2s)—-(4s+2) - (25-1)-(~4s~4)~...-
(1)~ (~5s-3)-(-3s5-2)-(-3s~3)-uee-(-45-2) =~ (-25=~2).

Thus K 1s a quotient graph (imbedded in ss+l)’ satis=-
fying the properties of Theorem 9-7, and K125+7 has a
triangular imbedding, for all non-negative integers s.

#

Cor. 9-9, ) = (3s+1) (4s+1), s > 0.

T (Kypg47
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The theory of current graphs with vortices is employed to find
y(Kn), for n = 10 (mod 12). The group is used to find a

- K

212547

triangular imbedding for the current graph in this

Kias+10 = K37
case has three vertices of degree one; otherwise it is essentially
the K of Figure 9-8. {See [¥3].) This is called the regular part

of the problem. Next, the surface in which K125+10 - K3 is tri-

angularly imbedded is modified -- by the addition of one well-chosen
handle (See [W12])-- so as to accommodate the three edges removed in
Kj. This is called the additional adjacency part of the problem.
The final result is a (non-triangular) imbedding of K125+10 in a
surface of the appropriate genus,

The remaining ten cases for Y(Kn) are handled similarly, with
varying degrees of complexity; see [Y4], [RY2], [¥Y5], [Twy2], [RY3],

[RY4], [TWYl), and {M4]. A constructive proof is given for each case
but n =

plements the theory of quotient graphs in establishing the existence

0 (mod 12):; for this case the theory of finite fields sup-

of a triangular imbedding (see [TWYl])). We now turn our attention
to graphs other than Kn'

9~-4. Extending the Theory

Slight modifications of the above theory allow us to attack
other Cayley color graphs for which triangular imbeddings are pos-
sible., In fact, there is also a theory for quadrilateral imbeddings
of Cayley color graphs. Rather than discuss the modifications of
the theory in this section, we will examine three examples; an even
more general theory will be given in the next section.
Example 1: Let us try to find a triangular imbedding for K2’2’2.
Since K2’2'2 is of order six, there are two possible groups to
work with: Z, and S3. We try them both,

6

Taking 2, = {x,y|x = y3 =e = xyx_ly-l), we see that

6 X2,2,2
is a Cayley color graph for Zg, (Bere, x =1 and y = 2, with
e = 0; y 1is clearly redundant, but its presence as a generator
enables us to picture Ze with K2,2,2.) We try for an index one
imbedding. This requires a quotient graph K having four directed
edges (corresponding to 1,5,2,4) and one region in its quotient
manifold. But then K has two edges; no such K is possible.
Next we try for an index two imbedding. This requires a quotient

manifold having two quadrilateral regions, and hence a
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gquotient graph with four undirected, and eight directed, edges.
The guotient graph is shown in Figure 9-9, imbedded in its quotient

manifold, the sphere.

o:@ y

Figure 9-9
Let ¢ = {0,2,4}: 1, 5, 4, 2
nl = {2,3,5}: 1, 2, 4, 5.
Then: 0o: 1, 5, 4, 2 1: 2, 3,5, 0
2 3, 1, 0, 4 3: 4, 5,1, 2
4 5, 3, 2, 0 5 0, 1, 3, 4

gives a triangular imbedding of K .
2,2,2

The orbits are: 0-1-2 1-3-2
0-2-4 1-5-3
0-4-5 2-3-4
0-5-1 3-5-4.

Figure 9-10 shows this imbedding of Ky 5o (the octahedral graph)
L4 ’
in SO'

Figure 9-10
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Suppose now that we take I = 53 = {(23), (12}, (132) »; then

Ky 5o is again a Cayley color graph. An index one imbedding is
L 7
possible, 1in this case, as shown by Figure 9-11, where the

(132) )
(12)

(23

Figure 9-11,

guotient graph is given. Note that the vertex of degree one has a
current of order three going into it; the two singular edges carry
currents of order two, and the vertex of degree three satisfies the
KCL: {23)(12) (132) = (1) (2)(3) = e.
There is one coset, & = 53. We have:
e: (23),(12),(132),(123)
(12) s (132),e,(23),(13)
(23): e ,(123),(13),(12)
(13): (123),(132),(12),(23)
(123):  (13),(23),e,(132)

(132): (12),(13),(123),e.

The orbits are:

e~ (23)~-(123) (12)-(13)-(23)
e~ (12)-(23) (12)-(132)-(13)
e=-(132)-(12) (23)-(13)-(123)
e-(123)-(132) (13)-(132)-(123)

Figure 9-12 shows this imbedding, which agrees with Figure

9-10, except for labeling.
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(23)

Figure 9-12

Example 2: Consider the gquadrilateral imbedding of K4 4 (for the
7

quaternions) given in Figure 7-3. We find the quotient graph for

this imbedding and choice of groups. Looking at the dual, we find

3

that e, vy, x2, and x2y have the same boundary: X, xzy, X", Y.

Furthermore, i = {e,y,xz,xzy} is a subgroup of Q, since x2 = y2
and x2y = y3, with y4 = e. Also, 0x = {x,x3y,x3,xy} is a
coset of Q with respect to >, and each of these regions (in
the dual) has boundary: x2y,x,y,x3. Hence this imbedding of

K4,4 (for Q) is of index two ([Q:%] = {Q|/]|2] = 2.) We "mod
out" regions (in the dual) with identical boundaries, and form the

guotient graph, in its quotient manifold S as indicated in

l ’
Figure 9-13. To make the appropriate identification, we use the
general relationship:

x,9) Y = (xg,97h),

to match the edge g in the boundary of the region for coset X,

The computations for this situation are:

(,x) 7 = (ox,x%)
%27 = )
(2, <) = (ax,x)
x,y) "L = (ax,x%y) .
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(a)

Figure 9-13

Chapt.
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Example 3: Finally, we find a quadrilateral imbedding of K2l in

543 (with r = ry = 105). It is an easy exercise to check that

this imbedding is compatible with the euler formula. Let us hope

for the best, and try for an index one imbedding with I = 221.

Then we seek a quotient manifold with r = r = 1. This requires

a quotient graph K with 20 directed, or 220 undirected, edges.
For a guadrilateral imbedding, we would like K to be regular, of
degree 4. A likely candidate is K = KS' Now we must make an as-
signment Y K* - Z21 - 0, satisfying the KCL: then we must

make a selection (pl,pz,...,pS) inducing a single orbit, of length

20, for K We find the assignment, using the fact that K is

5e
eulerian; the selection is made, using the fact that yM(KS) = 3
(i.e. S will be the guotient manifold), with r = r = 1; see

3 20

Figure 9-14,

Figure 9-14

The local vertex permutations are:

as (b,c,d,e)
b: (a,c,d,e)
c: (a,b,d,e)
d: (a,b,c,e)
e: {(a,c,d,b)

The single orbit is:
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a-b-c-d-e-b-a-c-b-d-c-e-d-a-e-c~a-d-b-e,
giving rise to:

o: 1,2,3,4,5,10,19,7,18,9,17,6,16,8,20,15,14,13,12,11

1: 2,3,4,5,6,11,20,8,19,10,18,7,17,9,0,16,15,14,13,12

20: 0,1,2,3,4,9,18,6,17,8,16,5,15,7,19,14,13,12,11,10,

which in turn gives r = ry = 105, for K,y on 843, using
Edmonds' permutation technique,

Although this imbedding may be of little general interest, it
does give further indication of the economy of effort possible by
seeking quotient graphs in quotient manifolds, rather than graphs
in manifolds. Moreover, minimal imbeddings have been found by first
finding non-minimal imbeddings of related graphs. For example,

Youngs [Y4] imbeds Ky on S ’ to find K

2s+7 125%+13543

12s+10

on S 2 .
12s"+13s+4

9~5, The General Theory

As we have seen, the standard proof~technique for establishing

a genus or maximum genus formula is to first use the Euler formula
p-gqg+r=2-2k,

describing a 2-cell imbedding of the graph G in the surface Sk’
to find a bound for the parameter under the study. For 7y(G), weget
a lower bound (see, for example, Corollaries 6-14 and 6-15); for
yM(G) we get an upper bound (Theorem 6-24). The second step is to
construct an imbedding of G attaining the bound obtained. Induc-
tive constructions are particularly useful for graphs which can be
defined as repeated cartesian products (as in the proofs of Theorems
6-36 and 7-13). A local vertex permutation scheme, such as that

discussed in Section 6-6, is frequently helpful (as in the proofs of
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Theorems 6-25, 6-37, and 6-39). Ad hoc techniques have occasionally
been successful (see the proof of Theorem 6-45),

But the most powerful and efficient technigque (when it applies,
and this is reasonably often!) 1is the method of quotient graphs
and guotient manifolds. 1In the preceding sections of this chapter,
we have discussed this theory, as introduced by Gustin and developed
by Youngs, and its application to triangular imbeddings of complete
graphs. We have also hinted at a generalization of this theory, and
to this we now devote out attention,

The material in this section is based on work by Jacques [J2}.

Given a finite group | with a set A of generators for T ,
recall that the Caylex color graph CA(V) has vertex set [', with

(g,g') a directed edge -- labeled with generator &i -- 1if and

only if g' = gﬁi. We assume that, if di € A, 611

£ A, unless

has order 2. In this latter case, the two directed edges
(g,gvi) and (g%i,g) are represented as a single undirected edge
[g,g*i], labeled with éi. The graph obtained by deleting all
labels and arrows (directions) from the edges of CA(F) we called
(in Definition 4-23) the Cayley graph, GA(T). This graph has all
edges of the form [g,gﬁi], for g € ' and Gi €A

As examples of graphs which are Cayley graphs, we have Qn for
the elementary 2-group (Zz)n, K4,4XQn (where "x" denotes the

cartesian product of two graphs) for the hamiltonian group Qx(Zz)n

(where @ denotes the quaternions and here "x" indicates the
direct product of two groups), Krl for the Cyclic group Zn’

K2n’2n for Z4n, Kn,n,n for Z3n, and the graph Hn of Jacques
[J2] for the symmetric group 5, The genus is known for each of

the above families of graphs, and in each case the computation is

facilitated by a knowledge of the theory we are about to present.
Consider a Cayley graph GA(F), 2-cell imbedded in a closed

orientable 2-manifold M. We study the imbedding of the Cayley

color graph, C,(I), thus determined. Let & ' = {s77[6, €a)

and form A = AU A_l. The elements of A* are called currents.
The imbedding is characterized (see Section 6-6) by giving, at each
g ¢ I'y the cyclic permutation Ug of gA* determined by the
orientation. For example, see Figure 9-15. Let © Dbe a subgroup
of ' such that if Qg = fig', then u; = OS' , where oﬁ is
the cyclic permutation of A* induced by the action of o, on

hA*; such a subgroup always exists, since we can take @ = {e},



144 Quotient Graphs and Quotient Manifolds Chapt. 9

o= (qel,goz,gsgl)

Figure 9~15

where e 1is the identity of T. It is to our advantage, however,
to choose § as large as possible. In the terminology of Jacgques,

I' and © determine a guotient constellation C' for the constel-

lation C = (CA(F) in M). The quotient constellation is an imbed-
ding of the Schreier coset graph (see Section 4-3) for O in I,
the imbedding being determined by the collection {oﬁ} , taken

over any set {h} of right coset representatives of { in T. The

reduced constellation (C')* 1is the dual of the guotient constel-

lation, This is a 2-cell imbedding of a pseudograph K (with each
edge directed and labeled with the current of its dual edge; see
Figure 9-16) in a closed orientable 2-manifold, called by Youngs
[Y3] the guotient graph and guotient manifold respectively, for
CA(F) and { . Youngs, as we have seen in Section 9-2, obtains

this structure by a different process: he first takes the dual of
CA(F) in M, and then "mods out" faces with identically labeled
boundaries in accordance with the subgroup { . Jacques' approach
is consistent with that of Gustin [G8] and has the advantage of
applying also to irregular imbeddings (i.e. r # r,r for each k).

Ogl
e - o . . og! ,’
in H - '
he,q (g in (C')*: »_—’-d
\\ P " h ‘\
Qg
Qg

Figure 9~16
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Define (after Jacques) a side (or brin) to be an ordered pair
(c,**), where ¢ is a vertex in C, C' or (C')*, and J&* € A*,
Then we have:

Thm, 9-10. The reduced constellation ({(quotient graph in its quo-
tinet manifold, or M(T/®)) satisfies the following
five properties:

1) each side carries a current from A*.

2) two opposing sides x = (c,d8*) and x_l =

(c',ﬁ*_l) (see Figure 9-17) carry inverse currents
(if x = x_l, the current must be of order 2; in

this case the side appears as in Figure 9-18).

g7t <1
o.__g._o considered as ?\
c c' :L\\‘~h-—- c’
x
Figure 9-17
considered as 5
]
c c

Figure 9-18

3) the regions are in one-to~-one correspondence with
. (The index of Q
in T 1is called the index of the imbedding.)

the right cosets of  in T

4) the currents appearing in a region boundary are in

one-to~one correspondence with A* |
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5) 1f a side x appecars in the boundary of a region
associated with g and its opposite side x_l in
the boundary of a region associated with a',

then the current carried by x 1is the set g_l“gh

Proof: The properties follow directly from the defini-

tions and the construction of (C')*, #
What is important for imbedding problems is thc converses:

Thm, 9-11, A reduced constellation M(1/) for c. (") and
(i.e. a pseudograph 2-cell imbedded, with edges and
regions labeled with elements of A* and right cosets
of v in o respectively) satisfying the five pro-
perties above determines a 2-cell imbedding C of
C,{(l') in M such that (C')y* = M(I'/.) .

Proof: For each g € |, define ug:=(gfl,gf2,...,gﬁsb

where is the oriented boundary of

51' f2, cee s g

the region ' in M(I'/%), and g € g'. By pro-
perty 3), Jq is well~defined; by properties 1) and
4), Jg is a permutation of gA*. By Edmonds' algo-
rithm (Theorem 6-47), the collection {wg} deter-
mines a 2-cell imbedding C of C,(I') in M. More-~
over, by properties 2) and 5), che dual of M(T/7)
is a Schreier coset graph C' for ¢, so that

(CY)* = Mm(I"/). #

In short, the region boundaries for M(T/i) determine the
Edmonds' permutation scheme for the Schreier coset graph imbedded
in the guotient constellation, and hence for CA(F) (and thus
GA(T)) in M,

But we can learn much more from M{I'/4%). First we make the

following:

Def, 9-12, Let * be a vertex of M(I'/4%), with = the product
of currents (from A*) directed away from ¢ , in the
order given by the orientation. The order of = in T

is called the valence of ¢,



148 Quotient Graphs and Quotient Manifolds Chapt. 9

pl
k= 1| (h—l)+1+L‘2¥LZ (1_;1_)
i=1 i

proof: Let p, g, r and p', gq', r' apply to C
and (C')* respectively. Since vertex vy of (C')*
L] . .
determines ﬁ?‘ regions of length kivi in C,

i
1 <1i <p', we have

p P
= Lol = |0 = | '
2q Z Vi kiVl ‘ Z ki i (2g'),
i=1 1=1
so that g = |.u|g'. Also p = [2|r' and
p'
L/_:_ Ligropgtops
r= ) -5+ . Moreover, h =1+ 3(q'-p'-r'), and
. i
i=1
1
k =1+ E(q—p—r)
| P!
- @ e L
=l +5 la-r ) v !
i ) i
i=1

p'
=l+—u—,— (q'-r'-p' + (l—;fl—.))
i

2
i=1
pl
- 10l (h= la] - L
= |2](h=1) + 1 + 5 Z (1 T ).
. i
i=1
Note that for \n[ =1, C' = C and, since all region bounda-
ries in C correspond to identity words, each v, = 1 in (C")*,

so that k = h, as expected. (Note also the similarity to

Theorem 7-22,) The following corollaries are immediate:

Cor. 9-15. If the KCL holds at each vertex of (c")=*, then
k = |2 (h-1) + 1,

(This is also Corollary 3 on page 208 of Cairns [Cl], for a

covering of Sh by Sk; see Corollary'lo—B.)
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Remark, If [ is non-abelian, % may not be uniquely determined;
nevertheless, if 1o and m' are two products at vertex
£, then 7 and m' are conjugate elements of T and

thus have the same order, so that the valence of ¢ 1is
well-defined.

We now state:

Thm, 9-13., A vertex of degree k and valence v in M(['/®?) de-
termines l%i regions of length kv in the imbedding

of CA(F) in M,

Proof: Tet ¢ be a vertex in M(T/Q) = (C")*, of
degree k and valence v . Thus, in C', £ corres-
ponds to a region of length k for which the product

™ o= tldz...ﬂk of currents in the oriented boundary
(from, say, coset (g to coset {g) 1is of order v .
In C, the walk determined by = 1is a portion of a re-
gion boundary, from g' to g", where g' and g"

are both in «g. This region boundary continues with
another walk determined by 7 (since o*, = g*,) and
only concludes (using 4) of Theorem 9-10) at g', for
for 1”=e. Thus this region in C 'is of length kv.

In this region boundary we find exactly v sides of

the form (h,él), with h € Qg; hence ¢ determines

i%l regions of length kv in C = (CA(F) in M). #

Thus imbeddings can be studied in terms of possibly much
simpler combinatorial structures: the reduced constellations of
Jacques or, equivalently, the quotient graphs and quotient manifolds
of Youngs. We get the genus of C directly from (C')*, as
follows.

Thm., 9-14, Let C 1in Sy be represented by (C')* = M(I'/R) in

Sh, with Vi s Vg ees sV the valences of the

pl
vertices of (C')*. Then
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Cor. 9~16, If (C')* 1is planar, then

(This is essentially the formula on p. 255 of Fox [F2] for

branched coverings of 8 by 5,; see Section 10-1.)

9-6. Applications to Known Imbeddings

To illustrate the power and beauty of the theory, we present
four examples, each giving a new proof of a genus formula appearing
in the literature. We then give a fifth example, illustrating what

Youngs called the theory of vortices.

Application 1: Take I = ZB’ o= Z2 = {0,4}, and A= {1,3}.
Then M(ZB/Zz) in Figure 9-19 determines an imbed-
ding of K4’4 = GA(ZB) in Sl ’ with zr = r, =

4 i%l = 8, This is an index four imbedding. The

generalization to is fairly easy to obtain,

KZn,2n

with o= Z4n and @ = Zn; M(Z4n/Zn) is a multi-
graph of order 2n (with edges appropriately
directed and labeled} in Sn—l' giving KZn,Zn
guadrilaterally imbedded in S 5 (This
(n-1)

appears in Ringel [R11l].)

Figure 9-19
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Application 2:

Application 3:
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Take I =2y, =75 =1{0,3,6}, and A = (1,2,4L
Then M(Z9/Z3) in Figure 9-20 gives K3,3’3 =

. . . _ 6 _ . .
GA(Zg) in Sl , with r = ry = — = 18, This is
an index three imbedding. The generalization to
Komt1, 2m+1, 2mel ¢ With T = 255 and o =2, 4y

has Sm as quotient manifold, and produces a tri-

angular imbedding of K2m+l,2m+l,2m+1 in sm(Zm—l);
this imbedding appears in [W5].
Ql Q2
4 T 1 4
1 lay
4
2 2
2
Ny 4
—e
Figure 9-20
Take T = Q x Zm , where m 1is odd, o = Z4 x Zm,
and A = {s,ta}, where (Q 1is generated by s and

t, and Zm is generated by a. Then
M(Q x Zm/Z4 x Zm) in Figure 9-21 gives G, (Q x Zm)
in Sl , wWith ¢ = r, = 2 l%i = 8m, (This index

two imbedding was first found by Himelwright ([H7];
it shows that the hamiltonian group Q x 2. is
toroidal.)

| -]

Figure 9-21
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Application 4: Consider [ = o = Sn (n > 3), and 4 = {s,t},
with s = (12 ... n) and ¢ = (1 2). Then
M(Sn/Sn) in Figure 9-~22 gives GA(Sn) in Sk'

where k = 1 + 222ML (n? = sni2), with r =2l
n n

n!

(n-1)! and = HfT' The side carrying current

Fon-2
t represents a loop. (This index one imbedding
appears 1in [W8], and gives an upper bound for the

genus of the symmetric group Sn ’ for n even.)

oy
s t

o<+—0——

Figure 9-22

AEElication 5: Take T = § = Z7 , and A = {1,2,3}. Then
M(Z7/Z7) in Figure 9~23 gives GA(Z7) = K, in 85,

Figure 9-23

with ry = 7 and r, = 3. (This index one imbed-

ding solves the regular part of the problem, for

finding y(KlO); see Section 9-3.
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9-7. New Applications

Further connections between the theory and imbedding problems

can be explored. For example:
Thm. 9-17., If K 1is a quotient graph for an imbedding of a graph

G of index one or two, then

M w )
(K) = LLISU .

[

M
Proof: This is a direct conseqguence of Theorem 6-24. #

Every Cayley graph has an index one imbedding; in fact GF(Y)

has (|a*|-1)! index one imbeddings. When are these minimal? A

partial answer is provided in:

Thm. 9-18. Let the finite group T be generated by A=

{él ) eee s 6n}, where each 84 is of order n > 3
n

and # &, = e, Then G (I'}) has an index one imbed-
i=1 * h

ding, with r =r = 2|r| , on S+ where k =1+

i%i (n-3), If n=3, or if n = 4 and no proper

subset of A contains a redundant generator, then

Y(GA(T)) = k.
Cor. 9-19. Let o = (z)™, n >3, with 4 = {¢ ¢
Pl A n ’ -z ’ Lt et n-1"'
n-1 -1
( ui) , where €y is the (n-1l)-tuple having 1
i=1
in the ith position and 0 elsewhere. Then
nn_l(n-3)
Y(G, (1)) <1 + ———— i equality holds for n = 3,4.
Cor, 9-20. Let r = (3,3]|3,3) in the notation of Coxeter and

Moser [CM1] (i.e. T 1is the non-abelian group of order
27, generated by s,t and subject to the relations
S=td= st =s"tyd = e); let 4 = {s,t,(st)z};

then y(GA(F)) = 1, Moreover, T 1is a toroidal group.
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Cor, 9-21. Let r = A4 , the alternating group of degree four,
with & = {(1 2 3),(3 2 4),(1 3 4)}; then

((G:(A4)) 1. (However, A4 is not toroidal, as
there exist planar Cayley graphs for A4.)

1]

In Section 7-2 we saw that we could find the genus of any

abelian group o = 2 x 2 X eee X B , where m is even
m m m r
1 2 r
(assuming my divides m._q i=2,...,r.) The argument used
the fact that C x C X aae x C = G,(r), for the standard
my m, m,. A

presentation for T , and Theorem 7-13, The techniques employed
fail if even one order my is odd. The theory of quotient graphs
and quotient manifolds provides a new approach to the genus problem

for general cycles, and hence to the genus of an arbitrary finite

abelian group. (See also Theorem 7-17).
For example, M((Z3 RPN ZZm)/(Z3 g Z2m)) in Figure
9~24, where Z3 ,Z2n ’ and Z2m are generated by r, s, and

t respectively, shows that

Y(C3><C x C

on ) <1 + 4mny

2m

we conjecture equality for this formula. Also, M((Z3)n/(z3)n) in
Figure 9-25, where £y is a generator for the ith copy of Zy,
shows that

yey)™ <1+ (n-2)3"7L,

e srm——
X

o s

/1
! o
Q
25
*t

— |

Figure 9-24,
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£1

Figure 9-25

Figure 9-26

9-8. Problems

Show that seven "different" minimal imbeddings of K5 are

compatible with the formula of Theorem 9-1. (For example,

r. =4, r,=1 r, =5 give two "different” imbeddings

og Kg on8 8 + since the regions are distributed
differently). How many of the seven can you actually find?
(Hint: not all seven exist!)

Find the guotient manifold and the quotient graph for the
quadrilateral imbedding of K4'4 given (for r = ZS) in
Figure 9-26.

There are twelve different quotient graphs S5(r/f) for

K in s with O # {e}; i.e. twelve different
2,2,2,2 1
ordered pairs (T,9) for K2 5 5 2° Find these twelve
14 ? 7
.ordered pairs and then obtain an M(I'/Q) for each non-

trivial index,
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9-4.) Use the theory of quotient graphs and guotient manifolds
to find a guadrilateral imbedding of K.
9-5.) Use the theory of quotient graphs and quotient manifolds to
find a hexagonal imbedding (r = r6) for K3’3.
9-6.) Generalize Example 3 of Section 9-4, to find r =r

4n

imbeddings of where 4n+l is prime. Is

Kan (an+1)+17
this an infinite class of graphs? (In fact, only the parity
of 4n+l 1is required.}
) Prove Theorem 9-15.
-8.) Find y(Qn) in three ways: (1) by a construction, such

as that employed in the proof of Theorem 7-13; (2) by

selecting an appropriate (pl rPyrese s P n) and using
2

Edmonds' algorithm (see Theorem 6-47) to show that every
orbit has length 4; {3) by finding an appropriate M(T/Q).
9-9.) We see from Theorem 6-25 that K5 has a 2-cell imbedding
in S3 . Show that the theory of this chapter is of no
aid in find this imbedding.
*
9-10.) Find a triangular imbedding for K in a suitable
n,n,n,n
surface (n # 3.)
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CHAPTER 10

VOLTAGE GRAPHS

In the preceeding chapter, following the historical development
of Gustin, Youngs, Ringel, Jacques, et al, we generated graph im~
beddings by means of constructing (simpler) current graph imbeddings.
These latter were variously called "quotient graph in quotient mani-
fold" and "reduced constellation." Each approach has the advantage
of economy of construction; each approach has the disadvantage of
generating regions by vertices and vertices by regions. Moreover,
the mode of'"generation" is not made explicit, in a way to give
maximum aid to intuition.

These defects are corrected by the voltage graph theory initi-
ated by Gross [G3] in 1974 and by its interpretation in the context
of branched covering spaces (see papers by Gross and Alpert: [GAl]l,
(a2}, and [AG2}.)

In this chapter we present just enough covering space theory
for the immediate context (for more details, see [M3]) and then in-
troduce voltage graphs, with examples, We then revisit the Heawood
Map-coloring Theorem from this advantageous viewpoint. Finally, we
describe the strong tensor product construction for graphs; this 1is
an iterative process that often produces an infinite tower of graph

imbeddings from one voltage graph imbedding at the base.

10~1. Covering Spaces

Def. 10-1. A function p :X » X from one topological space to

another is called a covering projection if every point

x € X has a neighborhood UX which is evenly covered;

i.e. p maps each component of p_l(UX) homeomorphi-
cally onto Ux. If YeX and Y € X is such that p
maps Y homeomorphically onto Y, we say that Y 1lifts

toa Y. We call ¥ a covering space for X.
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A standard result in the theory of covering spaces is that
Ep_l(x)ﬁ is independent of the choice of x € X. If \p—l(x)\
=n, then p 1s called an n-fold covering projection. Here are

some standard examples of covering spaces and covering projections:

Example 1: Let st = {(x.y)e Rzlx2 + y2 = 1} and consider
n: R > Sl, where p(t) = (cos t, sin t). Then p ‘"wraps" the
real line R around the unit circle Sl infinitely many times,
with each half-open interval [r, r + 2m) "covering" Sl exactly
once. If we pick (1,0) € Sl and (say) U(l 0) {(x,y) € Sl\
- i y < ! } then U is evenly coveréd - as p_l(U =

2 2 ! (1,0) (1,0)
U (2mi - u/6, 2wi + u/6) and each open interval
ifl
(2mi - 7w/6, 27mi + w/6) is clearly homeomorphic to U(l )

!

The covering projection of the preceeding example fails to be
n-fold, for each n € N. However, for cvery n € N it is a simple

matter to construct an n-fold covering projection.

Example 2: Define p : Sl > Sl by p(z) = zn, where 1z € Sl is
regarded as a complex number. (Recall that, if =z = cist =

(cos0, sin0), then zn = cis n6 = (cos n®, sin nt).) Thus o)
wraps Sl n times around itself, and - for example - p_l(l,O) con-
sists precisely of the nth roots of unity.

The above example is significant for the sequel, as it describes
how region boundariecs of a desired graph imbedding will project to
those of a voltage graph imbedding, in the simplest of cases (cor-

responding to the KCL - see Section 9-2 - holding.)

Example 3: Recall that & is the sphere (in R3), and that N

is the projective plane (gonorientable surface of genus one, or !
sphere with one crosscap.) Define p : 8y Ny by antipodal
identification; i.e. ni{x,y,2) = (-x,-y,~-z); then p 1is a 2-fold
covering projection, Intuitively, we could regard p as fixing the

bottom hemisphere and depressing the top hemisphere in "reverse

overlapping" fashion; the antipodal identification along the equator

then "sews on" the crosscap. (This takes place in R4, not R3.)
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The following result is well known (by the Riemann-Hurwitz

Theorem.)

Thm. 10-2. If p: 8 » S 1is an n-fold covering projection for
surfaces, then the surface characteristics are related
by: x(S) = nx(S).

This relationship is quite natural: if G 1is 2-cell imbedded
in s, with p - g+ r = x{(S), then p-l(G) is 2-cell imbedded in

S with np vertices, ng edges, and nr regions, so that

¥x(8) = np - ng + nr = n{p - g + r) = nx(s).

Cor. 10-3. If S =95  and S = S

K h then k = n(h~1) + 1.

Thus, for example, only the torus can cover the torus (since
h =1 forces k = 1.)

An important generalization of the concept of covering space is
required, to cover the case where the KCL does not hold. (See also

Theorem 9-14 and its two corollaries.)

Def. 10-4, A function p : X » X from one topological space to

another is called a branched covering projection (and

X 1s a branched covering space of X) 1f there exists

a finite set B & X such that the restricted function
p: X - o lB) »x-B is a covering projection. The

points of B are called branch points. For b € B

and Ub a sufficiently syall neighborhocod of b, the
restricted function pr Uy > Uy - {b} is n-fold, for
some cardinal number n - called the multiplicity of
branching at b - where ﬁb is a component of

p_l(Ub - {b}) in X. (If n =1, then there is no
branching.)

Standard examples here are:

Example 4: Let D = {(x,y) € R2 | x2 + y2 < 1}, the unit disk, and
give p: D> D by pl(z) = 2" where, as before, =z 1is regarded as
a complex number, Then o "wraps" D around itself n times,

except that the origin is fixed (and thus is a branch point of

multiplicity n.)
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Example 5: Define o: S0 -+ SO’

p(1,0,¢) = (1,n%,9). Then p "wraps" SO around itself n times,

except that the north and south poles are both fixed; each is thus a

in spherical coordinates, by

branch point of multiplicity n.

Both of the examples above are important for what is to follow,
as the former gives the prototype description of the projection of
regions in (possibly branched) coverings of one graph imbedding by
another - the local picture - while the latter is one instance of
the projection between the corresponding ambient surfaces - the

global picture.
10-2. Voltage Graphs
Let K be a pseudograph. With each edge wuv € E(K), we

associate two oriented edges e = (u,v) and e = (v,u), and we

set K* = {(u,v)luv ¢ E(K)}.

Def. 10-5. A voltage graph is a triple (X,T,¢), where K 1is a
pseudograph , ' 1is a group, and ¢: K* » T satisfies
sie™h) = (6(e))™) for all e € K*.

We remark that the pseudograph K 1is closely related to the
guotient graph S(I'/Q) of Section 9-3.

Def. 10-6. The covering graph Kx¢r for (X,!',¢) has vertex set
V(K)x T and each edge e = uv of K determines the

edges (u,q) (v,g¢(e)) of Kx¢F , for all g € T .

For pseudographs regarded as topological spaces, then Kx¢F
is an |T| - fold covering space of K; in fact, every regular
covering space of K can be obtained in this manner (see [GT2]).
(For additional information on covering projections of graphs, see
Walker [W1l], Parzan and Waller [FWl], Clarke, Thomas, and Waller
[cTwl], Sit ([sb], and Biggs [B1ll].)

For any walk w: el ,e2 s s €p beginning at v € V(K) in
(K, T,¢), we set
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and define the local group at v by:

I, = {¢w) | w 1is a closed walk at v].
Then Fv is a subgroup of [ and moreover Fu and Tv are con-
jugate subgroups of T if u and v are in the same component of
K; thus [TI: FV] is independent of v, 1f K 1is connected.
Thm. 10-7. For a connected voltage graph (K,T,¢), the number of
components of the covering graph Kx¢r is given by
[T: Fv], for any v € V(K).

Now let (K,T,$) be 2~cell imbedded in an orientable surface

S, as described algebraically by the rotation scheme P =

(pl PPy s ,pp). We define the 1lift P of P to Kx¢F as
follows: if pv(v,u) = (v,w), then
Bly.q (V@) (@ge(v,w))) = ((v,9), (w,g6(v,w))),
for each g € T. (See Figure 10-1.) Then
P = {p(vlg) \ (Vlg) € V(KX¢F)}.

Thus P determines a 2-cell imbedding of each component of

Kx¢F . The power of voltage graph theory is that the simpler im-
bedding of K below gives much information about the more compli-
cated imbedding of KX¢F above. To see this, let R be a region
of the imbedding of K on S induced by P, and let lRl¢ be
the order of ¢(w) in T , where w = S A N EEREA is a closed
walk in K consisting of the ordered boundary of R. (Since ¢ (w)
is unique up to inverses and conjugacy, \R}¢ is independent of
the orientation of R and of the initial vertex of w.) We then

have the following central result, due to Gross and Alpert [GAl]:
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u w (u, gy (v,u)) (w,g3(v,w))
w0
—ln
¢ (v,u) b (v,w)
v (Vlg)
{in ¥) (in K be)

Figure 10-1

Thm. 10-8. Let (X,T,¢) be a voltage graph with rotation scheme P
and D the lift of P to Kx,I'. et P and p
determine 2-cell imbeddings of K and Kx¢F on the
orientable surfaces S and S respectively. Then
there exists a (possibly branched) covering projection
p: S » 8§ such that:

-1

(1) o 7(K) = KX¢T;

(ii) if b is a branch point of multiplicity n,
then b 1is in the interior of a region R such

that |R}¢ = n;

(iii) 1if R 1is a region of the imbedding of K which
is a k-gon, then p_l(R) has |F]/lR]¢ com-
ponents, each of which is a klRl¢ - gon region

of the covering imbedding of Kx¢T.

We remark that, for |R|¢ = n, each component of p_l(R) is
mapped by p onto R, essentially by p: D+ D, p(2) = zn, as
described in Example 4 of Section 10-1.

Note that Theorem 10-8 (iii) 1is just the voltage graph analog
of Theorem 9-13 for current graphs. Now compare Definition 9-3 with

the following:
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Def. 10-9. If ¢(w) = e 1in [ for the closed walk w bounding
region R in the voltage graph imbedding, so that
[Rf¢ = 1, we say that R satisfies the Kirchoff
voltage Law (KVL); if the KVL holds for all regions
R of K on S, we say that the imbedding of (K,TI,?)
satisfies the KVL.

Cor. 10-10. If the imbedding of (X,0,¢) satisfies the KVL. then
p: S > § 1is a covering projection (i.e. there is no

branching.)

In either case (branching or not), if K has order m, then
the voltage graph (K,I,¢) 1is said to have index m, and the im-
bedding of Kx¢T is an index m imbedding (compare Theorem 9-10
(3).)

Voltage graph theory is even more general than the "general
theory" of Section 9-5, in that the covering graph Kx¢f need not
be a Cayley graph. In this book, however, we are primarily con-

cerned with the Cayley graph case; this will arise for 0 a sub-

group of T and voltage graph (X,§,¢) - where d: K*¥ > I' - a
Schreier coset graph for 2 in ' . Then KX¢Q = C (I, where
A= {o(k) i k € K*} (reduced as in Section 9-5.) Or, we could use
voltage graph (K,I,¢); then Kx,T would consist of |T]/|f| dis-
joint copies of CA(T).

In the simplest case - index 1 - K has one vertex, I' = Q, the
two approaches coincide, and the construction is quite clear: for
each g € I', we identify (v,g) with g (where V(K) = {v}), and
then V(Kx¢F) = V(K)x T » T and E(Kx¢F) ~ {[g,g9(e)]] g €T,

e = (u,v) € K*},

Finally, we remark that even voltage graph theory has been

generalized; see Gross and Tucker [GT2]. Also, see Bouchet [Bl4]
for graph imbeddings as covering spaces with folds (a fold is a 1-

dimensional analog of the O-dimensional branching.) Aand, see
Parsons, Pisanski, and Jackson ([PP;l] and [JPPl}) for graph imbed-
dings as branched covering spaces, where the restrictions of the
branched coverings to the imbedded graphs are "wrapped quasi-cover-

ings."”
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10-3. Examples

Example l: Consider the index one voltage graph {(a "bouguet" of two
circles) of Figure 10-2, shown imbedded on the torus Sl' We take

——

R

Figure 10-2

o= {a,b} for T =90 abelian (|I'| > 5), so that the KVL
holds; thus, by Corollary 10-10, there is no branching, Then, by
Corollary 10-3, we see that CA(F) = Kx¢F will be imbedded on the

torus as well. By Theorem 10-8, this imbedding will have r = T, =
|T|. Thus Figure 10-2 completely determines an infinite family of
quadrilateral imbeddings on the torus. We mention three special

cases below.

a) Let a=1 and b =2 in T = ZS; then GA(T) = K5. This im-
bedding is self-dual and is the ground case for several infinite
families of imbeddings appearing in the literature:

(i) K4n+l has a self-dual imbedding in § = Sn(4n—3) (see
[W9]); here the voltage graph imbedding is just the
normal form representation for S = Sn (see Theorem 5-5
(ii).) The covering projection is (4n+l) - fold, and

indeed X(é) = 2 ~ 2n(4n-3) = (4n+l) (2-2n) = (4n+l)x(S).

(ii) The imbedding of K5 on Sl can be augmented to an im-
mersion of K5(2) on Sl attaining the toroidal crossing
number vl(K5(2)) = 10. Similarly, vk(Kp(Z)) = p(p-1)/2,
for k = (p-1l)(p-4)/4 and p a prime power = 1 (mod 4);

see Theorem 6-71,
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(iii) The imbedding of K5 on Sl can also be modified to
obtain a genus imbedding for G5 = K5 5 less a l-factor;
this extends to show (G ) ={(n-1) (ni4)/4}, which will
be useful in Chapter 13.

We observe that the rotation scheme for K5 in Sl can be
readily obtained from Figure 10-2. First, we find

p. = ((V,V)a. (v,v)b (v,v) _ ).

v v (vyv) _

a b

As is customary for index one imbeddings, we identify (v,q)
with g in the covering graph. Next, as K5 has no loops or
multiple edges, we regard each ﬁ(v,g) = ﬁg as permuting the
neighbors of g rather than the edges at g. Finally, taking

a=1 and b = 2, we get:

po = (1121413)

P; = (2,3,0,4)
py, = (3,4,1,0)
pgy = (4,0,2,1)
py = (0,1,3,2) .

(In practice, the above is written down directly from the figure.)
The covering projection is S5-fold: the single vertex, two edges,

and one 4~gon for K in Sl lift respectively to five vertices,

ten edges, and five 4-gon regions for Kx¢F = K5 (also in Sl.)
Now let a = (1,0) and b = (0,1) for T = Zm X Zn; then
GA(F) = Cm X Cn and finds a self-dual, quadrilateral, toroidal

imbedding. The case m =n = 3 1is illustrated in Figure 10-3.
The covering space nature of this imbedding is readily apparent:
the single vertex, two edges, and one 4-gon now lift, respective-
ly, to nine vertices, eighteen edges, and nine 4-gons, under

this nine~fold projection p.
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Figure 10-3

Now let I' = u(s;) = (a,b [ aba b7l = e V= 2 x 2, the funda-
mental group of the torus. In this case GA(F) has an imbed-
ding on Sy (1f we allow the vertex set to have limit points),
but it is more natural to consider GA(F) as being imbedded
in R2, as one of the three reqular tessellations of the
plane. (Recall that R2 is the universal covering space for
Sl' in the sense that R2 covers any space which covers Sl;
thus GA(F) in R2 also covers each CA(zm X Zn) imbedding
of b) above, in a natural way.

We mention that n(sl) is also the group of one of the
seventeen wallpaper designs (i.e. a planar crystallographic
group.) The voltage graph theory is applicable to each of the
seventeen planar infinite wallpaper groups (as presented, for
example, in [B17]1):; of these imbeddings in R2, six are index
one branched covers of Sgr six are index two branched covers
of S

one is an index two unbranched cover of § three are

OI
index two unbranched covers of 8§

OI
1! and the pattern described



Sect, 10-3 Examples 167

by H(Sl) is an index one unbranched cover of Sl.

Example 2: ©Now modify Figure 10-2 slightly, to obtain Figure 10-4.

Figure 10-4

We still require T +to be abelian, but now take A = {a,b,a+b}
with |1} > 7. Then GA(F) is regular of degree six and has an
index one r = Ty imbedding in Sl; again infinitely many such
imbeddings are determined, one for each choice of I . Moreover,

each of these has bichromatic dual (the geometric dual G* has

chromatic number two, where G = GA(F)); the indicated 2-coloring
of the regions of Figure 10-4 lifts to a 2-coloring of the regions
for GA(T). (This will be useful in Chapter 12.)

a) For a=1 and b =2 1in T = Z7, GA(T) = K7; this is the
same famous toroidal imbedding obtained by the dual Figure 9-3

(see also Figure 9-5.)

(i) A fairly natural extension of this voltage graph gives
orientable triangular imbeddings for K125+7, for all
s € N, (The dual is bichromatic only for s = 0.)

(ii) By taking first a =1 and b =3 and then a = 2 and

b=51in | = toroidal imbeddings are obtained for

2
13
two complementary graphs in Kl3; this shows that
N{(1,1) = 14, where N(y,y') 1is the least integer such
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that every graph G of order at least N(y,y') is not
(v,v') bi-imbeddable (G imbeddable in SY' G in Sy')'
(See [AW1l]; see also ({[A2] and [ACl].) It also shows

that the toroidal thickness of is two (61(K

K13 13
2; see Beineke [B6] and Ringel [R13]; see also Theorem

6-60 (ii).)

by If a=1 and b =2 for ' =2 we obtain a genus imbed-

ding for K4(2).

c) If a= (1,0) and b = (0,1) for r = 23 % Z3, a genus im-~

bedding for results,

K303y

Voltage graph constructions are by no means unique for a given

graph imbedding. For example, the dual of Figure 10-4 serves as an

index two voltage graph (using [' = Z3) for an imbedding of K3 3
1

on Sl having r = re = 3; the dual of this imbedding then serves

as an index three voltage graph (again using = Z3) to triangu-

larly imbed K3(3) on Sl again. This is the ground case of
Theorem 4.2 in [KRW1].

We also mention that taking a =1 and b = 2 in Figure 10-4,
but replacing a + b with 5 in T = Zg, gives an r = Iy = 2
imbedding for K3(3) (as seen from Theorem 10-8 (iii)}; this gives
the maximum genus of K3(3) as YM(K3(3)) =9, and is our first
example of a branched covering in this section: each 27-gon above
wraps around a triangle R below 9 times, since ]Rt¢ =9,

d) We keep a = (1,0) and b = (0,1), Dbut now in T = X Z

)54 4;

the resulting triangular imbedding of GA(F) will be of

interest in Section 12-7.

e) In [S20] the following conjecture is attributed to Griinbaum: if
a graph G has an orientable triangular imbedding, then the
dual graph G* has a Tait coloring (that is, has edge chromatic
number Ae(G*) = 3,) We remark that G cannot be allowed loops
(consider the G* of Figure 8.2 in [BCLl]) or multiple edges
(consider G* = P, the Petersen graph, in Sl) and that the
conjecture is false also for nonorientable triangular imbeddings

(consider G = KS in Nl' where G* = P.) However the
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conjecture is true, as formulated, for 3-degenerate graphs G,

as an easy induction argument shows. It is also true if
x(G*) = 2: if G* 1is cubic and bipartite, then G* 1is 1-
factorable (see, for example, Theorem 8-7 in [BCLl]), so that
xe(G*) = 3, Moreover, any GA(F) triangulating §, as a

covering space of Figure 10-4 has an edge coloring induced by
the labels a, b, and a + b; now color the dual edges (in G*)
to agree with the colors on the edges of G +they cross. Thus
the voltage graph of Figure 10-4 also provides an easy algorithm

for GrUnbaum's conjecture, for infinitely many torcidal tri-

angulations.
_ 2
Example 3: The graphs K4(n) have genus Y(K4(n)> = {(n-1)°, for

n # 3, as established by Jungerman [J5] and independently (for n
even) by Garman [Gl]. (See Theorem 6-42,) Jungerman did not
announce y(K4(3)), although he did report that y(K4(3)) > 4,
The index three (this is not a Cayley graph construction) toroidal
voltage graph of Figure 10-5, using T = Z3, shows that Y(K4(3))
=5, by first imbedding K3(3) in S5 with ry = 6 and ry = 4.

(Refer to Theorem 10-8 (iii): there are four branch points -

Figure 10-5

indicated by dots inside regions - each of multiplicity three and
determining one 9-gon; the two regions having no branch point each
lift to three triangles.) It is easily verified that each 9~gon is
bounded by a hamiltonian cycle in K3(3). (For example, the clock-

wise boundary of the 1lift of the shaded region R is:
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(b0, a0, c0,bl,al,cl,b2,a2,c2) - where, for ease of notation, we write
(v,g) as vg; the fact that [le = 3 assures that the lift of R
wraps around R three times under branched projection by p.) Now

add a new vertex in the interior of each of the four 9-gons, and
join each new vertex to all nine boundary vertices, for the region
containing that vertex. The result is an imbedding of K4(3) in

3 9
readily augmented to give a triangular (and hence genus) imbedding

SS’ with r, = 33 and r, = 1. Note that the construction is
for the complete 4-partite graph K .
4,3,3,3

Example 4: For G a graph and n a natural number, by n-fold G

we mean that multigraph which results when each edge uv of G is
replaced by n edges uv. The construction of lFigure 1l0-4 suggests
the extension given beclow (where S = SZ)' We take A = d{a,b,a+b)-

again - for T abelian (n = || » 7) and K a bouguet of nine

Figure 10-6

circles in 52, with r = L KVL, and bichromatic dual. The
covering space is an r = ry imbedding of the l8-regular 3-fold

Gﬁ(r) on S having bichromatic dual, The ground case (n = 7)

n+l’
gives an orientable triangular imbedding for 3-fold K7 (using

a=1, b= 2). Jungerman [J9] has found genus imbeddings (no digons
allowed) for m-fold Kn’ for all m and n (in both the orientable

and the nonoricntable cascs.)
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Example 5: The spherical index two voltage graph of Figure 10-7

also appears in [SW1l]; it uses [ = 2, to imbed Kn,n = K2(n) in

0

n-1
0
O
Figure 10-7

Sk (as a branched covering space), where k = n(n-1)/2, with
r=r, =n (each IRI¢ = n; now apply Theorem 10-8 (iii).) More-
over, each region boundary is a hamiltonian cycle, (For example,

the region covering the shaded digon has clockwise boundary (a0,bl,

al,b2,a2, ... , a(n-1),b0).) Thus this imbedding is readily
augmented to give an r = T imbedding for K3(n) (we discussed
the case n = 3 in Example 2c) above), so that Y(K3(n)) = n(n-1)/2;

this proof is far shorter (and more elegant) than those of either
[RY5] or [W5]. It is easy (see Problem 10-1) to show that every
r=r, imbedding for K3(n) has bichromatic dual; this will be
important in Section 12-7. Moreover, these imbeddings thus all
satisfy the Griinbaum conjecture. (In fact, the three types of edges
in the complete tripartite graph G = K3(n) determine a natural 3-

edge coloring for the dual G*.)

10-4. The Heawood Map-coloring Theorem (again)

We reconsider the crux of the proof of the Heawood map-coloring
theorem: the construction of genus imbeddings of complete graphs by
the use of current graphs; our context now will be that of branched
covering spaces, and we use the voltage graph construction. This

viewpoint treats only the regular part of each case; the additional
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adjacency parts continue to be handled as before (see Section 9-3,
[GT1), (w121, and [R14}.)

Recall the current graph of Figure 9-3, for imbedding K7 on
the torus. The dual of Figure 10-4 (in particular, see Example 2a)
is the corresponding voltage graph. From either the single region
of Figure 9-3 or the single vertex of Figure 10-4, we read the rota-
tion Py* (1,3,2,6,4,5); this generates the entire rotation
scheme P = (po PPy v ,p6) and in turn the triangular imbedding.
(Note that the KCL/KVL holds,)

In general, the current graph K(s) for K125+7 (as given in
ZlZs+7' with
= 4s + 2; the voltage graph, as was

Section 9-3) has as its dual a voltage graph for I =
p=1, g=6s + 3, and r = r,

the current graph, is imbedded in S The covering is unbranched

s+l
(since the KVL holds) and is (12s + 7)-fold, giving an imbedding

of Kl2s+7 in S1252+2S+l as before, with p = 12s + 7,
qg = (12s+7)(6s+3), and r = ry = (12s+7) (4s+2) .

The current graph for KlO appears in Figure 9-23; it is used,
with [ = Z7 (see, for example, [W12]) to imbed K7 in S3 with
ry = 7 and ro = 3 (determined by the vortices x, vy, and =z.)
This is readily augmented to a triangulation of 83 by K7 + K3 =

Kig - {xy,xz,yz}; then the additional adjacency part of the con-
struction adds the three missing edges over one extra handle.

The corresponding voltage graph is given in Figure 10-3.

Figure 10-8

The rotation Py = (1,6,4,3,2,5) 1is easily read from either figure.

The outer region of Figure 10-8 satisfies the KVL
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(1 +4 +2 =0, in Z7), so by Theorem 10-8 (iii) it lifts, with-
out branching, to seven triangles in the covering imbedding of K.
Each of the three monogons, however, has voltage sum of order

\R|¢ = 7, so that each is covered, with branching, by one seven-
sided region (a heptagon.) Thus K7 is imbedded in S3 as a
branched covering space over SO. Moreover, since each voltage
generates Z7, each heptagonal region boundary is a hamiltonian
cycle for K7. Thus, if one vertex is added in the interior of each

heptagon, a triangular imbedding of K7 + K3 results. The addition-
al adiacency construction is as before.

The three vortices for each current graph in case 10 (see [R1l4])
become monogons in the voltage graph imbedding, with the single
boundary edges always carrying a voltage which generates ZlZs+7'
Thus each monogon is branch-covered by a single (12s+7)-gon, bounded

by a hamiltonian cycle for and the construction proceeds

K12s+77
as for the case s = 0.
For a discussion of all twelve cases in this voltage graph/

branched covering space setting, see Gross and Tucker [GT1].

10-5. Strong Tensor Products

In [GRW1l] the following product operation for graphs was intro-

duced:

Def. 10-11. For two graphs G and G the strong tensor

1 2’
product Gl 2 G2 has vertex set V(Gl) X V(Gz) and
edge set {(u; ,u,) (v, ,v,) | (u; = v, and
€ F
u,v, € E(Gz)) or (ulvl E(Gl) and u,v, € E(Gz))].
Thus G; & G, consists of lV(Gl)[ disjoint copies of Gy o

together with all the tensor product edges. The following two pro-

perties of the strong tensor product follow from the definition:

£

Thm. 10-12. K. & K = K (o0

Thm. 10-13. G, € G is a subgraph of the lexicographic product

1 2
GZ[Gl]’ with equality if and only if Gl is complete.
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The theorem below from [GRW1l] is especially germane in the
present work:
Thm. 10-14, Let G, have a triangular imbedding in an orientable
surface, with bichromatic dual; let 62 be connected
and bichromatic, with maximum degree at most two,
Then Gl "~ G2 has a triangular imbedding in an orient-

able surface, with bichromatic dual.

In Chapter 12 we will find that orientable triangulations of
strongly regqular graphs with bichromatic duals can be particularly
useful. We shall see that each Kn(m) is strongly regular; thus if
we take Gl = K,, Theorems 10-12 and 10-14 will combine to preserve
this usefulness under the strong tensor product operation.

For the present, we observe that each covering imbedding of
Figure 10-4 (with GA(F) = G2) gives rise to an infinite collection
of bichromatic dual triangulations, via repeated application of

Theorem 10-14 - for each graph G as in that theorem,

1

In particular, we can take Gl = K2 and extend Examples 2a,
2b, and 2c¢ respectively to obtain, for each nonnegative integer Kk,

orientable bichromatic dual triangulations for K , K ,
7(2k) 4(2k+l)
and K k. *
3(3-27)
Finally, we remark that Theorem 10-13 combines with Theorem

6~45 to yield the surprisingly general formula of:

Thm, 10-15. Iet G have p vertices of positive degree, g edges,
k nontrivial components, and no 3-cycles. Then
Y(K2n® G) = k + n(ng-p).

10-6. Problems

10-1.) Show that the identity map i: X » X 1is always a covering
projection.

10-2.) Show that if p: i +~ X and q: § + Y are covering pro-
jections, then so is pxq: ; X ; + X x Y, where

(pxq) (x,¥) = (px,qy).

10-3.) Regard the torus as 8 = C x
circle in R?., Show that RZ = R x R, R x C, and

C, where C 1is the unit
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Sl = C % C all cover Sl' Try to visualize p , in each
case.

Show that every orientable triangular imbedding for KB(n)
has bichromatic dual.

Find the voltage graph corresponding to Figure 9-11.

Find the voltage graph corresponding to Figure 9-13.

What imbedding (and of what graph) covers the voltage graph
imbedding of Figure 10-9 (I = ZS)? Is there branching?
Where, and of what multiplicity?

Figure 10-9

Answer the questions of Problem 10-7, but now for Figure

10-10, with T = Zyy- Then show that Y(K6,6,3) = 7.

Figure 10-10
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10-10.3

10-11.)

10-12.)
10-13.)
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Extend the construction of Problem 10-8, to show that
_ 112 . -

Y(KZn,Zn,Zn—Z) = 2(n-1)°, for n % 1,2 (mod 3). (Sece

also [SWl].)

Show that if we begin with an arbitrary 2-cell imbedding of

a Cayley color graph C,(l}) as a voltage graph imbedding,

and use voltage group T , the covering space consists of
7] disjoint copies of the base configuration.

A graph G of size ¢ 1is said to be conservative (see
Bange, Barkauskas, and Slater [BBSl]) if the edges can be
oriented and distinctly labeled with 1 ,2 ,... ,q so that
at each vertex the sum of the numbers on the inwardly
directed edges equals that on the outwardly directed edges.
Show that if such a graph has a 2-cell imbedding with

r = 1, then it serves as an index one current graph, with
currents from r = Zn, n » 2q + 1. Study the imbedding
of GA(?) determined, for A=A{1,2 ,... ,q). Consider
the special cases n = 2q + 1, n = 2g + 2. Use the fact
that, for n > 4, Kn is conservative (see [BBS1ll) to find

r=vro_ imbeddings for K , n 21,2 (mod 4). If
n”-n+l
G 1is cubic, show that, in general, the covering imbedding

is minimal for Gé(Y).
Prove Theorem 10-12,

Prove Theorem 10-13.



CHAPTER 11

NONORIENTABLE GRAPH IMBEDDINGS

We reiterate that our primary motivation for this entire work

is to depict graphs - and in particular graphs of groups - on sur-

faces
as possible. In keeping with our
exlist in three-dimensional space,
(k > 0) -to the

(h > 1),

able surfaces Sk

(locally 2-dimensional drawing boards), usually as efficiently

desire to study structures that
we have concentrated on the orient-
almost total exclusion of the non-

But much of what we have done has

orientable surfaces Nh
an analog in the nonorientable context, and it is to these analogs

that we now turn our attention.

11-1., General Theory
Def. 11-1. The nonorientable genus, <V(G), of a graph G 1is the
minimum h such that G can be imbedded in the non-
orientable surface Nh' Such an imbedding is said to be
nonorientably minimal for G.

For completeness, we extend Definition 11-1 so that ¥Y(G) = 0,
if G 1is planar. Since h can be regarded as the number of cross-
caps attached to the sphere S0 to form Nh , Y(G) 1is also called
the crosscap number of G, Thus a planar graph has crosscap number
zero.

The genus and nonorientable genus are related by:

Thm. 11-2. Y(G) < 2y(G) + 1.
Proof: Imbed G in Sy(G) and then attach one cross-

cap to Sy(G)’ within one region of the imbedding. Then

G 1is imbedded in this new surface, which is homeomorphic

to #

Nov(Gy+1-
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Auslander, Brown, and Youngs [ABYl] have constructed graphs of
arbitrarily large genus which all imbed in the projective plane Nl;
thus there is no modification of Theorem 11-2 which reverses the in-
equality.

For a proof of the following analog to Theorem 5-14, see
Massey [M3].

Thm. 11-3., Let G be a connected pseudograph, with a 2-cell im-
bedding in Ny oo with the usual parameters p , g , and

r. Then p- g+ 1r =2 - h.

The number 2 - h 1is the characteristic of Nh (x(Nh) = h),

as 1t is independent of G. Note that in computing the characteris-
tic of a surface, one handle has the same weight as two crosscaps.
Unfortunately, the nonorientable analog of Theorem 6-11 is

false. As is implicit in Theorem 8-10, K does not imbed in N

i

but since Ko does imbed in Sy it th an imbedding in N3 2(add
one crosscap in the interior of a region of the K, imbedding in
Sl) which is not 2-cell. This imbedding must be nonorientably
minimal for K7.

Thus we cannot be assured that a nonorientably minimal imbedding
of a connected graph satisfies the very useful euler eguation of
Theorem 11-3. Youngs [Yl] overcame this obstacle by two definitions

and one theorem:

Def, 11-4. An imbedding of a connected graph G into a surface S
(orientable or nonorientable) is simplest if there is no

imbedding of G into any S! satisfying x(S') > x(S).

Def. 11-5. An imbedding of a connected graph G 1into a surface S
(orientable or nonorientable) is maximal if there is no
imbedding of G into any §' having more regions.

(That is, S allows the maximum value of r.)

Thm., 11-6. An imbedding of a connected graph G into a surface S
(orientable or nonorientable) is simplest if and only if

it is both 2-cell and maximal.

Thus the imbedding of K7 into N3 constructed above is

neither simplest nor 2-cell (nor maximal.) In general, if a
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connected graph G has a nonorientable 2-cell imbedding which
maximizes ¥, then that imbedding is simplest (by Theorem 11-6)

and hence nonorientably minimal, so that {(G) has been determined.
Then we have the following analogs to Corollary 6-14, Corollary 6-15,

and Theorem 9-1:

Cor, 11-7. 1If G 1is connected, with p > 3, then ¥(G) >
gq/3 - p + 2; eguality holds if and only if a non-
orientable triangular imbedding can be found for G.

Proof: Let G be imbedded in N. If the imbedding

is 2-cell, then p -~ g+ r = 2 —Yé%é) by Theorem 11-3.
As in the orientable case, 2q > 3r - with equality if
and only if r = rs. Thus V(G = g-p-1r + 2 >

q/3 - p + 2., If, on the other hand, the imbedding 1is
not 2-cell, then it is not simplest, by Theorem 11-6.

Thus G has a simplest (and hence 2-cell) imbedding on

surface S, where X(NY(G)) =2 - y(G) < x(s) =

p-4g+r<p=-qg/3 (using 2gq > 3r again); hence

Yy{G) > q/3 -~ p + 2, in this case. #
Cor, 11-8. If G 1is connected, with p > 3, and has no triangles,

then ¥(G) > gq/2 - p + 2; equality holds if and only
if a nonorientable guadrilateral imbedding can be found

for G.

(The proof is entirely analogous to that of Corollary
11-7.)

Cor. 11-9, Let Kn be nonorientably, minimally, 2-cell imbedded in

{n=3) (n-4)

N 6

s (i-3)r .

Then Y{(K_ ) = h =
n .
i>4

he
(The proof is analogous to that of Theorem 9-1.)

The nonorientable analogs to Theorem 6-18 and Corollary 6-19
are also falgse, as G = 2K7 shows: since, by Corollary 6-19,
Y(2K7) = 2Y(K7) = 2, ?(2K7) < 5, by Theorem 11-2. But, as we have
seen, ?(K7) = 3, so that ?(2K7) # 2?(K7). What is true follows

in two definitions and one theorem, due to Stahl and Beineke [SB1l]:
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Def. 11-10. The manifold number of a graph G |is u(Gg) =
max{2-2v(G), 2=-Y(G)]}.

Def, 11-11. A graph G 1is oricntably simple if 1{(G) # 2 - y{G)
that is, if F(G) > 2v(Q).

H

Thm. 11-12, Let G be a graph with blocks (or components)
Gl ,G2 ’ e e ’Gk’ If G 1is orientably simple, then

k
¥(G) =1 - k + ¥

| ~1 R

Y(Gi); else Y{(G) = 2k -

i n(G.) .
1 i=1 *

i

11-2. Nonorientable Covering Spaces

Recall from Example 3 of Section 10-1 that the sphere SO is a
2-fold covering space of the projective plane. In general (see
Stahl (581, for cxamplej, there is a 2-fold covering projection

-

ol Sk > Nk+l' for every nonnegative integer k. Thus every non-
orientable surface has an orientable covering surface. Trivially,
each nonorientable surface has at least one nonorientable covering
surface, namely itself (see Problem 10-1.) In Section 11-4 we shall
see an example of a nonorientable surface (N3) with infinitely
many nonorientable covering surfaces (Nn+2, n > 7).

In contrast, if the base space is an orientable surface, then
every covering surface must be orientable also. Thus in Chapter 10
- where each base space is orientable - each covering space is
orientable and hence unambiguously determined by its characteristic,
In this chapter, however, since the base space will always be non-
orientable, if the covering surface has even characteristic, then
its orientability character needs to be ascertained to specify the
surface uniquely.

In the next section we shall see how to do this, in the context

of nonorientable graph imbeddings.

11-3. Nonorientable Voltage Graph Imbeddings

To extend the voltage graph theory to nonorientable imbeddings,

we augment the rotation scheme P of Section 10-2 to a pair (P,X)
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called an imbedding scheme: }: K* - 22 gives a voltage graph

(K, 22, ). The region boundaries are computed almost as in the
orientable case (see Section 6-6), except that sometimes p;l(v,u)
is used instead of Pv(v,u); see [S$8] and [SWl] for details. Now
let (X, I, 4) be a voltage graph with imbedding scheme (P ,A)

and let P be the lift of P to Kx ' define ¥ (kx [ )% > 2,
by: 2(e) = }(e), for each lift é of e € E(K). Define (P, X)

to be the 1ift of (P ,)) to Kx¢r. Then the conclusions of Theorem

10-8 and Corollary 10-10 can be shown to follow verbatim.

Thm, 11-13, Let (X, ', ¢) be a voltage graph with imbedding
scheme (P ,)) and (P ,%) the lift of (P ,)\) to
KX®Y. Let (P ,2) and (P ,X) determine 2-cell im:
beddings of K and Kx¢F on the surfaces S and S
respectively. Then there exists a (possibly branched)

covering projection p: S » 5 such that:
(i) » T(K) = Kx

(ii) 1if b 1s a branch point of multiplicity n, then
b is in the interior of a region R such that

|R|¢ = n.

(1ii) 1if R 1is a region of the imbedding of K which
is a k-gon, then p—l(R) has ]Fl/|R|¢ com-
ponents, each of which is a k|R|¢—gon region of

the covering imbedding of KX¢F.

Cor. 11-14, 1If the i1mbedding of (X, I', ¢) satisfies the KVL, then

p: S > S is a covering projection (i.e. there is no
branching.)
0f course, the imbedding scheme (P ,}) 1is used in practice
only when S 1is nonorientable; if S 1is orientable, the rotation

scheme P alone suffices, and S 1is necessarily orientable also,
as observed above, If S 1is nonorientable, we must determine the

orientability character of §; to this end we give:

Def. 11-15. For a voltage graph (X, I', n), a closed walk ¢ 1in

K is said to be n-trivial if nl(c) = e in 1.
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Thm. 11-16. Under the hypothesis of Theorem 11-13, the derived
surface S 1is orientable if and only if every

¢-trivial closed walk in K is also Ji=-trivial.

We mention that Garman [Gl] has further extended the theory of
voltage graphs, as outlined in the previous and present chapters, to
pseudosurface imbeddings, In particular, Theorems 10-7, 10-8, 11-13,
and 11-16, and Corollaries 10~10 and 11-14 also apply for S a
pseudosurface; in this case, S 1is necessarily also a pseudosurface

(or a generalized pseudosurface; see Definition 5-26.)

11-4, Examples

Example 1: Let m = 2 (mod 4). Figure 1l1-1 presents a projective
plane imbedding of a pseudograph K with one vertex and m/2
loops: A(e) =1 for each loop e, Let T = Zn (n even), and

d(e) = 1 as indicated. Then Kx 2, is a graph with vertex set

¢

Fiqure 11-1

{(v,1)| 0 < 1 < n-1} in which (v,i} and (v, i + 1) are joined
by m/2 edges for each 1i. For each regqion R of K imbedded

below, \Rl¢ = n/2, so that the regions of Kx, 2, imbedded above
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are all n-gons; in fact each is a hamiltonian cycle, There are
(m/2)2 = m such regions in all (above.) Thus if we place a new
vertex in the interior of each such region, join it by non-inter-
secting edges to all the vertices on its boundary, and then delete
all the original edges of Kx¢Zn, a quadrilateral imbedding of
Km,n results. It is clear that every ¢-trivial closed walk in K
is also A-trivial, so that the covering imbedding is orientable,
Sk’ where k = (m-2) (n-2)/4. This
gives a partial proof of Theorem 6-37; the approach appears in

[SWl].

by Theorem 11-16; it is into

Example 2. 1In Figure 11-2 we take A = {a,b,at+b} for T abelian
(|7l =n > 7) and K as a bouguet of three circles imbedded in

N The single vertex has been given an orientation as indicated.

3-

a+b a

a+b b

Figure 11-2

Then those edges which are coherently oriented, as induced by the

vertex orientation, are assigned A = 0 (there are none); all other
edges -~ in this case the three edges bounding the hexagon - are
assigned A = 1. Then the closed walk a + b - (a+b) 1is ¢-trivial

but not A-trivial; thus the covering surface S 1is nonorientable,

by Theorem 11-16. Moreover, x(S) = nx(S) = -n, so that é = Nn+2'
The special case n = 7 produces a self-dual imbedding of K7 on
N

9°
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Example 3. Now modify Figure 11-2 slightly, to give Figure 11-3.

Figure 11-3

The covering imbedding, still on N is now triangular and of

n+2’
the 12-regular 2-fold GA(T). Finally, change ¢ (i.e. relabel the

edges of K on N3; see Problem 11-4} to give 1-fold triangulations

of GA(Y) of characteristic =~2n; for example, consider GA(ZZn)’
where A = {1,2,3,n-3,n-2,n-1} and still n > 7. The case n = 7
gives K7(2) on N16.

11-5, The Heawood Map-coloring Theorem,

Nonorientable Version
If we apply Corollary 11-7 to the graphs G = K o+ we obtain:
Lemma 11-17. ?(Kng_z {iﬂ:}%ﬁﬂ:ﬂl}l for m > 3,

We have noted that equality does not hold for m = 7 and that
Y(K7) = 3. However, equality does hold in every other case:

(m=-3) (m-4)

Thm. 11-18. V(K ) <{ 3 j

, for m# 7,

This is, of course, established by finding an imbedding of Km

lﬂtéélftflf_ The first proof was by Ringel [R8}, with-

{
on Nh’ h = 1
out the benefit of current graphs. Later proofs do employ current
graph theory (in particular, the theory of cascades), and again split

naturally into the residue cases of m modulo 12 (see [R14], [LY1],
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[J4].) Lemma 11-17 and Theorem 11-18 combine to form the nonorient-

able version of the complete graph theoremn:

L(m-_ﬂé&—ﬂj for m >3 and m# 7;
3.

i

Thm., 11-19. V(K )
———— e R m
A (K7)

1

Now we let Mn = Nh in Theorem 8-13, recalling that £f{(n) =
(7 + v49-24n)/2; here n = 2-h:

Lemma 11-20. x(N) < [f(n)] = [(7 + VI+24h)/2].

h
To complete the proof of the Heawood Map-coloring Theorem, non-

orientable version, we need the following:
Lemma 11-21, x(Nh) > [£(2-h)] = {(7 + /1+24h)/2], h # 2,

Proof; Consider Nh’ h # 2, Define m = [f(2-h)]

7
and now consider also Note that Y(Km) < h,

N. .
YK )
so that X(NV(Km)) < x(Nh). Now Km imbeds in

N?(Km)' Clearly X(Ny(Km)) >m = [f(2-h)], so that
x (N ) > [£(2-h)T.
Since Franklin [F3] showed that X(NZ) = 6, we can now combine

Lemmas 11-20 and 11-21 to restate Theorem 8-10,

Thm. 11-22. x (N ) = [(7 + vV1+24h) /2], for h # 2; x(N,) = 6.
e oo Tes h 2

11-6. Other Results

We give a few of the analogs to the orientable results of
Chapter 6. For most of the other nonorientable genus results known

by 1978, see Table 2 of Stahl [s9].

Thm. 11-23, (Ringel [R12])

. (m=-2) (n-2), |
Y(Km,n) = {_____77‘_—f iommn o> 2.
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Thm. 11-24. (Jungerman [J6])

Q(Qn) = 2 + 2n_2(n—4), n > 2, except that ?(Q4) =3

and ?(QS) = 11,

Thm. 11-25. (Jungerman [J8])

. 2 . N
Y(K4(n)) = 2(n-1)", if n > 1, except that

?(K4(2)) = 3,

Thm. 11-26. (Stahl and White [SW1])
2

For n > 3, ¥ (K ) = (n-2)°.

n,n,n-2

Thm. 11-27. (Stahl and White [SW1])

For n > 4 and even, ¥(K ) = (n-2) (n-3).

n,n,n-4

Bouchet [Bl3] has also used his "generative m-valuations" (see

Section 6-5) to study V(K ). He considered the residue classes

n(m)
of m and n (mod 6) and constructed triangular imbeddings for 18

of these 36 cases, thus determining Yy (K ) for those 18

n (m)
cases.,

We now turn our attention to the maximum nonorientable genus

parameter,

Def, 11-28. The maximum nonorientable genus, ?M(G), of a connected

graph G is the maximum h for which G has a 2-cell
imbedding in Nh'

In contrast to the orientable case, the value of this parameter
is readily calculated for each connected graph G (see Ringel [R15]
and Stahl [S8]); recall that the Betti number B(GY = g=-p + 1.
Thm. 11-29. 7,(G) = B(G).

This means that every connected graph has a nonorientable 2-cell
imbedding with r = 1,

The following theorem, also due to Stahl, gives an analog to
Duke's Theorem (6-21) and to Corollary 6-22,

Thm, 11-30, A connected graph G has a 2-cell imbedding in Nh if
and only if ¥(G) < h < @(G).
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We give a nonorientable analog to the famous Kuratowski Theorem
(6-6); this result is due to Glover, Huneke, and Wang [GHW1l] and to
Archdeacon [A7].

Thm. 11-31. A graph G imbeds in the projective plane Nl if and
only if, for each graph H in a prescribed list of 103

graphs, G contains no subgraph homeomorphic with H,

It has long been conjectured that there is a finite number of
graphs obstructing imbedding into each surface, whether orientable or
nonorientable (by Theorem 6-6 there are two for SO; by Theorem

11-31 there are 103 for N Recently Seymour [S4a] has affirmed

l')
this conjecture:

Thm., 11-32. For each closed 2-manifold M, there is a finite set
SM of graphs such that a graph G imbeds in M 1if
and only if G contains no subgraph homeomorphic from
at least one member of SM.

Finally, we mention that Pisanski [P6] has expanded the surgery

technigques he used to generalize work of [W6] (see Theorem 7-13,

for example) in the orientable case, to apply to the nonorientable

case as well,

11~7. Problems

11-1.) Prove Corocllary 11-8,

11-2,) Prove Corollary 11-9.

11-3,) Describe the 2-fold p: Sk - Nk+1 of Section 11-2, for
k > 1.

11-4,) Relabel the edges of K 1in Figure 11-3, to yield the
GA(Z2n) imbedding suggested in Example 3.

11~5.) What imbedding, and of what graph, covers the voltage graph
imbedding of Figure 11-4 (' = 29)? Is there branching?
Where, and of what multiplicity?
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Figure 11-4

Answer the questions of Problem 11-5, but now for . = ZlO'

Try to prove Theorem 11-19 by the use of nonorientable

voltage graphs.

Show that  v(Q, » K4 ,) = 2+ a2, n s,

Sshow that the Z-metacyclic group [ = Z_x D_ =

(a,bla™ = p2? = apab”t = e v, for n gdd aid > 1, 1is
toroidal, (Hint: use Theorem 7-3 and the voltage graph

imbedding that results when the right side arrow is re-
versed in Figure 10-2.)

What other torcidal groups can you find, using the hint of
Problem 11-97?
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CHAPTER 12

BLOCK DESIGNS

Block designs are combinatorial structures of interest in their
own right, with applications to experimental design and to schedul-
ing problems., Heffter [l5] was the first to observe that certain
imbeddings of complete graphs determine BIBDs with k = 3 and
4 = 2 (and sometimes > = 1.) Alpert [Al] established a one-to-one
correspondence between BIBDs with k = 3 and XA = 2 and triangula-
tion systems for complete graphs. In [Wll] this correspondence is
extended to PBIBDs on two association classes with k = 3, Al =0
and k2 = 2 (and sometimes Az = 1) and triangulation systems for
strongly regular graphs. The group-divisible designs of Hanani ([H1]
are used to construct triangular imbeddings (in generalized pseudo-

surfaces) for the groups K in each case permitted by the

’
euler equation. Conversely?(ﬁiiangular imbeddings of Kn(m) are
constructed (by other means) which lead to new group-divisible
designs. A process, using the strong tensor product operation for
graphs, is developed for "doubling" a given PBIBD of an appropriate

form.

12-1. Balanced Incomplete Block Designs

Def, 12-1. A (v, b, r, k, A)-balanced incomplete block design

(BIBD) is a set of v objects and a collection of b
subsets of the object set, each subset being called a

block, satisfying:

(i) each object appears in exactly r blocks;
(ii) each block contains exactly k (k < v} objects;
(iii) each pair of distinct objects appears together in

exactly A Dblocks.
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If k = v, the design would be complete; complete designs arc
trivial to construct, but have little application. Hence for k < v,
the design is "incomplete." The "balance" comes from the three uni-
formity conditions on 1r, k, and A respectively.

A trivial example of a BIBD, for each v > 1 and 0 < k < v,
is obtained by taking the blocks to be all the k-subsets of the

_ v o lv-1 _ fwv=2
v-set; then b = (k} , r = {k—l] , and A = [k—Z}

In general, elementary counting arguments (see Problems 12-1

and 12-2) establish the following well-known result:
Thm. 12-2. If a (v, b, r, k, A )-BIBD exists, then:

(i) vr = bk;

(i1)  A(v-1) = r(k-1).

These necessary conditions have also been shown to be sufficient,
for k = 3,4,5 (and for some of the cases k = 6,7) by Hanani [H1],
and for fixed k and ), with v large enough, by Wilson ([Wl1l3].

12-2. BIBDs and Graph Imbeddings

What Heffter and Alpert observed is that a triangular imbedding
of K in an appropriate surface (this is possible exactly when
n 0,1 (md 3), n > 1l; see Sections 9-1 and 11-5), with the
regions determining the blocks in the natural fashion, serves as an
(n, n(n-1) /3, n-1, 3, 2)-BIBD, since: (i) every vertex is adjacent
to exactly n - 1 other vertices and hence is in exactly n - 1
regions; (ii) each region contains exactly three vertices, by
assumption; and (iii) each pair of distinct vertices constitutes an
edge (since the graph is complete) and hence belongs to exactly two
blocks (the two regions containing that edge in their boundary.)

Conversely, a BIBD on Vv objects with k =3 and A =2 (a
2-fold triple system) determines a triangular imbedding of K in

v
a generalized pseudosurface, as follows. Each block becomes a 3-

sided 2-cell region, with vertices labelled by the objects of the
block., Since A = 2, each pair of vertices appears exactly twice -
so that a 2-manifold (possibly with several components) results from
the standard identification process of combinatorial topology.
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Then identify identically labelled vertices, to form a generalized

pseudosurface triangular imbedding for K,. We summarize, in:

Thm. 12-3. The 2-fold triple systems on v objects are in one-to-one
correspondence with triangular imbeddings of Kv in

generalized pseudosurfaces.

If the triangular imbedding of Kv has bichromatic dual, then
the 2-fold triple system splits naturally into two 1-fold triple

systems (Steiner triple systems, having k = 3 and A = 1):

Thm, 12-4. Steiner triple systems on v objects are in two-to-one
correspondence with triangular imbeddings of Kv in

generalized pseudosurfaces having bichromatic dual.

Letting k =3 and ) =1 or 2 in Theorem 12-2, and invoking
the work of Hanani (or others) mentioned following that Theorem, we

obtain:

Thm, 12-5. (1) Steiner triple systems on v objects exist if and
only if v = 2, 3 (mod 6);
(11) 2-fold triple systems on Vv objects exist if and
only if v = 0, 1 {(mod 3).

For independent verification of (ii) above, we follow Apert in
observing that triangular imbeddings of KV (see Sections 9-3 and
11-5) give 2-fold triple systems on v objects for all v = 0, 1
(mod 3), v # 1. Moreover, in [GRWl] it is observed that the orient-
able genus imbeddings for Kn’ n * 3 (mod 12), all have bichromatic
dual; thus Steiner triple systems are independently produced for

these values of n.

12-3. Examples

Example 1: Refer to Example la of Section 10-3; the quadrilateral im-
bedding of K5 in Sl obtained there yeilds a (5,5,4,4,3)-BIBD.
This is atypical in that k > 3 and X > 2, but it does indicate
that the scope of the connection between BIBDs and graph imbeddings

is even wider than indicated in Section 12-2. This imbedding is a
geometric realization of the "all 4-subsets of a 5-set" abstract

design.
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Example 2: Refer to Example 2a of Section 10-3; the triangular im-
bedding of K7 in Sl obtained there yields a (7, 14, 6, 3, 2)-
BIBD and, since the dual is bichromatic, two (7, 7, 3, 3, 1)-BIBDs.

One of these latter is given abstractly in Table 12-1;

S s W N O
(=2~ N N
N = O O W

Table 12-1

the blocks may be read off from the seven regions covering the un-
shaded region in Figure 10~-4 (note that they are also half of the
"blocks" listed in Section 9-2.) The blocks may also be regarded as
the lines of the Fano Plane (the finite projective plane of order
two.) The design could be employed to schedule firemen (say) in a
weekly schedule (three men per day, etc.) The extension of the
voltage graph of Figure 10-4 to Kys7 gives a (12s+47, (12s+7),
(4s+2), 12s+6, 3, 2)-BIBD, which is not of bichromatic dual for

s > 0; hence we obtain no additional Steiner triple systems from

this figure.

Example 3: Refer to Example 3 of Section 11-4; the triangulation of
2-fold K7 in N9 obtained there gives a (7, 28, 12, 3, 4)-BIBD.
Example 4: Refer to Example 4 of Section 10-3; the triangulation of
3-fold K7 in 58 obtained there gives one (7, 42, 18, 3, 6)-BIBD
and, since the dual is bichromatic, two (7, 21, 9, 3, 3,)-BIBDs.

12-4., Strongly Regular Graphs

For values of v, b, r, k, A not meeting the conditions of
Theorem 12-2 (and perhaps even for those that do), it is natural to
attempt a construction of a related design. For this reason, parti-

ally balanced incomplete block designs were introduced by Bose and
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Nair ([BN1l]. The partial balance occurs in that there are Lo 1
lambda values, one for cach "association class;" we restrict our
attention primarily to the case § = 2.

As the association classes (for the case £ = 2) are determin-
ed by adjacencies within a "strongly reqular graph" - to ensure an

appropriate balance within each class - we first define this latter
concept. Let x and y be distinct vertices in a graph G,

either non-adjacent (h = 1) or adjacent (h = 2). Let p?j(x,y)
be the number of vertices which are non-adjacent to both x and

y (i =3 =1), adjacent to x but not to y (i =2, j =1},
adjacent to y but not to x (i =1, j = 2), or adjacent to both x

and vy (i = 3 = 2).

Def. 12-6. If a graph G 1is regqular of degree n, and is of order
v, yet G # KV or Kv’ and if p?j(x,y) is indepen-
dent of the choice of x and vy, for h, i, 3 =

1, 2, then G 1is said to be a strongly regqular graph.

It is well known that the eight conditions involving x and

y can be replaced by two of them (see Problem 12-4):

Thm. 12-7. If G 1is a regular graph which is neither complete nor
empty, then G 1is strongly reqular if and only if
pgz(x,y) is independent of x and vy, for h = 1,2,

For strongly regular graphs, it is convenient to write p?j
for p?j(x,y), as the choice of x and y 1is immaterial (except

that they must be adjacent in G, for h = 2, and adjacent in G,
for h = 1.) Two vertices (objects) of a strongly regular graph are

said to be first associates if they are non-adjacent and second

associates if they are adjacent. Thus each vertex has exactly n,
ith associates (i =1, 2), and ny + n, = v - 1.

As a major class of examples of strongly regular graphs, we
give:

Thm., 12-8. The reqgular complete n-partite graphs G = K are

n{m)
all strongly regular, for m, n > 2.

proof: Clearly G 1is regular, of degree n, = m{n-1) .

Since m > 1, G 1is not complete; since n, >1, G
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is not cmpty. Finally, we observe that péz = m(n-1)
¢ 2 -
and Psy = m(n-2). #

For the examples of Section 12-8, the following observation
will be crucial. If we start with Gl = K, and the strongly reqular
= 3 & 1 -
G, Kn(m)' then the strong tensor product G = G, s strongly
regular also, by Theorems 10-12 and 12-8.
Other standard examples of strongly regular graphs include

G = L(Kn) and G = L(Kz( ), where L{l) denoLes the linc graph

m)
of graph H. (We mention 1in passing that L(K ) = K

2 (m) m m
see Problem 2-13.)

12-5, Partially Balanced Incomplete Block Designs

Def. 12-9. A (v, b, r, k; Xl' )2)—E§£Eially balanced incomplete
block design (PBIBD) is a set of v objects, pairwise
associated into two association classes (as determined
by a strongly regular graph G of order v) and a
collection of b subsets of the object set, each sub-

set being called a block, satisfying:

(1) each object appears in exactly r blocks;
(1i1) each block contains exactly k (k < v} objects;

(iii) each pair of ith associates appear together in
exactly %i blocks (k =1, 2).

Again, the reguirement k < v corresponds to the incomplete-
ness of the design; the requirement G # K, or Kv ensures that

nin, > 0, so that the PBIBD does not collapse to a BIBD ~ unless

I

%

)l AZ' and the requirement that G be strongly rcgular is an
attempt to restore some of the balance to the experiment that was
lost when one ) could not be found for all pairs x,y.

We now give additional terminology, some of which applies to
both BIBDs and PBIBDs.

Def. 12-10. A PBIBD is said to be group-divisible if the strongly

regular graph G upon which the design is based has a

partition of its vertex set into n groups of m
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vertices each so that two vertices are first associates

if and only if they are in the same group.

Clearly this is possible if and only if G = Kn(m)'

Def. 12-11. A group-divisible PBIBD is a transversal design if each

block contains exactly one vertex from each group.
Clearly this regquires k = n.

Def, 12-12. A design (BIBD or PBIBD) is said to be resolvable if
the set of b blocks can be partitioned into r sub-
sets, of v/k blocks each, each subset containing each

object exactly once.

For example, if we take the edges of a strongly regular graph
G as blocks (k = 2), the resulting PBIBD is resolvable if and only
if ¢ is l-factorable, 1In particular, G = Kn(m) gives an
(mn, mzn(n—l)/2, m(n-1), 2; 0, 1)-PBIBD, which is resolvable (see
Himelwright and Williamson {HW2}) if and only if mn 1is even (for
m= 1, the BIBD on G = Kn(l)

is even) and in fact is a transversal design if and only if n = 2.

= Kn is resolvable if and only if n

The transversal design on for example, is used in dupli-

K ’
2(2w+l)
cate bridge scheduling to ensure that, in 2w+l rounds, each north-

south couple plays exactly one round against each east-west couple.
Def. 12-13. A design (BIBD or PBIBD) is said to be z-resolvable
if the block set can be partitioned so that each set in
the partition contains each vertex exactly =z times.

Thus, a l-resolvable design is resolvable.

Def. 12-14. Two block designs Dy and D, are said to be iso-

morphic if there exists a one-to-one correspondence

6: O, = O between their object sets such that

1 2
{xl, Xor eee s xk} is a block in Dl if and only if

{U(Xl), 8(xy) s wen @(Xk)} is a block in D,.

Clearly if Dy and D, are isomorphic, their parameters

v, b, r, k, A (or Al and Az) must agree; the converse is not
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true, as we shall see in Section 12-6.

For an example of all these definitions, consider the designs
of Tables 12-2 and 12-3; clearly these are isomorphic, under the
map  sending 1 to the ith letter of the alphabet, 1 < i < 6.
The (6, 8, 4, 3; 0, 2)-PBIBD is based upon the strongly regular

graph G = K and hence is group-divisible; it is also a trans-

versal desigi(igd is resolvable (the resolution is given by the
horizontal pairing of the blocks.)

This design could be used to comparc six wines (v = 6) as
follows: companies A, B, and C make wines 1 and 4, 2 and
5, 3 and 6 respectively. We want to test the wines of the
different companies against each other (say twice each: +, = 2),

2
but do not want to compare two wines made by the same company

(Al = 0.) Each taster tastes exactly 3 wines (k = 3}, after
which his judgement becomes impaired. We have eight tasters (b = 8)
in all, and each wine is tasted four times (r = 4).
1, 2, @6 3, 4, 5
2, 4, 6 1, 3, 5
4, 5, 6 r 2, 3
1, 5, 6 2, 3, 4
Table 12-2
a, b, f c, d, e
, 4, f a, c, e
, e, f a, b, ¢
, e, f b, ¢, da
Table 12-3

Finally we remark that the above design was taken directly
from the triangular imbedding of K3(2) in SO depicted in Figure
9-10 (writing "é" for “0" and rearranging the orbits to display
the resolvability.) This foreshadows the correspondence of the next

section.
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12-6. PBIBDs and Graph Imbeddings

For triangular imbeddings of strongly reqgular graphs, we
readily obtain analogs to Theorems 12-3 and 12-4., A design is said
to be connected if its underlying graph is connected; since a
complete graph underlies each BIBD, only a PBIBD could fail to be

connected.

Thm. 12-15. Connected (v, b, r, 3; 0, 2)-PBIBDs are in one-to-one
correspondence with triangular imbeddings of strongly
regular graphs of order v 1in generalized pseudo-

surfaces.

Thm. 12-16. Connected (v, b, r, 3; 0, 1)-PBIBDs are in two-to-one
correspondence with triangular imbeddings of strongly
reqular graphs of order v 1in generalized pseudo-

surfaces and having bichromatic dual.

When a design is constructed, by any method (here we are
advocating graph imbeddings, but other tools of construction in-
clude Latin squares, finite projective geometries, finite euclidean
geometries, difference sets), the natural question is: Is it new?
Clearly the design is new, i1f no design existed previously on the
same parameter set. It is new also if no previously constructed
design on the same parameters is isomorphic to the given design.
The context of topological graph theory is often very convenient

for answering the isomorphism question, as we see in:

Thm. 12-17. Let Dl and D2 be two designs (both BIBDs with

k =3 and X = 2, or both PBIBDs with k = 3 and
kl =90, )2
generalized pseudosurfaces they determine are not

= 2) on the same parameter set. If the

homeomorphic as topological spaces, then Dy and D,

are not isomorphic as designs.

Proof: The identification procedure of surface topology
is well-defined, so that isomorphic designs would yield

homeomorphic generalized pseudosurfaces. #
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The converse of this theorem is false. For example, tri-

K
19
angulates S50 both with and without bichromatic dual. Thus in
one case the 2-fold triple system splits into two Steiner triple
systems and in the other casc it does not, so that the two (19, 114,

18, 3, 2)-BIBDs are not isomorphic.

12-7. Examples

Example 1l: Refer to Example 1lb of Section 10-3; the self-dual

3 in Sl yvields a (9,9,4,4;1,2)-
PBIBD. The graph C3 * C3 is strongly regular, with péz = 2 and

3 Cy = L(K3,3). (See Problem 2~13.) This
"topological" design is atypical in that k » 3 and \l # 0 and

quadrilateral imbedding of c; ¢
2 ; .

Py = 0; in fact, C
thus indicates that the scope of the connection is even wider than
as indicated in Section 12-6. This design will be the yground case
of an infinite collection of interesting designs constructed in

Section 14-8.

Example 2: Refer to Example 2b of Section 10-3; the bichromatic-

dual, triangular imbedding of K4(2) in Sy obtained there gives
one (8,16,6,3;0,2)-PBIBD and two (8,8,3,3;0,1)-PBIBDs (with
blocks generated by {0,1,3} and 1{0,3,2} - in Zg - respectively.)

All three of these designs are on paramcters for which no BIBD exists.
Then Example 2c¢ of Section 10-3 gives a bichromatic-dual triangula-
tion of 81 also, but this time by K3(3) and giving one
(9,18,6,3;0,2) -ppIBD and two (9,9,3,3;0,1)-PBIBDs (generated by

{00,10,01} and {00,11,01} =~ in Z3 * Z3 - respectively.) Finally,
Example 2d of Section 10-3 gives a bichromatic-dual triangulation of
Sl once again, now by the strongly regular GA(F), I'= 2y = 2,

(not in the class K ) and yielding one (16,32,6,3;0,2)-PBIBD

n(m)
and two (16, 16, 3, 3; 0, 1) -PBIBDS. The latter two designs are

on parameters for which no BIBD exists.

Example 3: Refer to Example 50f Section 10-3; the bichromatic-

dual (see Problem 10-4) trlangul;tlon of Sn(n—l)/Z by K3(n)

obtained there gives one (3n,2n",2n,3;0,2)-PBIBD and two
2

(3n,n",n,3;0,1)-PBIBDs. These are all group-divisible, transversal

designs. In [P4] Petroelje constructed orientable triangulations

for K3(n) for which the resulting X, = 2 PBIBDs are also

2
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resolvable. He then used these to obtain pseudosurface triangular
imbeddings for K4(n) and the corresponding (4n,4n2,3n,3;0,2)—
PBIBDs. In [Gl] Garman constructed bichromatic-dual orientable
surface triangulations for K4(n)' n even (no imbedding of K4(n)
can have bichromatic dual for n odd, since each vertex then has
odd degree 3n), so that different (by Theorem 12-7)
(4n,4n°,3n,3;0,2) -PBIBDs, and also pairs of (4n,2n°,3n/2,3;0,1)-
PBIBDs, are obtained for these values of n. Finally, in ([AS5]
Anderson constructed generalized pseudosurface triangulations for
for all n, giving yet another realization of these triples

K4(n) ’
of designs.

Example 4: We observe that any (n,b,n-1,k,A)-BIBD determined

froman r = r imbedding of K, (k > 3) determines in turn an

Kk
(n2,2nb,2n—2,k;0,A)—PBIBD as follows. The line graph L(Kz(n))

= K_ x Kn (see Problem 2-13) is strongly regular, and the cartesian

n
product K, x Kn can be obtained by identifying vertices appropri-
ately among 2n disjoint copies of Kn. (Let vt o=

{(i,5I1 <3 <n}, 1 <i<n, and vj={<i’,j')f1-_<__i-inv},
1' < j' < n', be the 2n disjoint vertex sets, each v’  and each
Vj inducing a K_; then identify (i,3j) with (i',3'"),

1 <i, 3 < n.) Then performing these vertex identification on 2n
disjoint initial imbeddings of K, as given yields a generalized
pseudosurface imbedding of Kn X Kn and a PBIBD on the parameter
set as claimed.

For instance, take kX =3, X =2, n = 0,1 (mod 3). Or, con-
sider the complete design given by Ky in Ny (see Problem 12-6);
this (4,3,3,4,3)-BIBD gives a (16,24,6,4:;0,3)-PBIBD by this method.
Finally, consider the voltage graph for T = 29 consisting of an
octagon with edges labelled, in order, 1, 2, 3, -4, -3, -1, -2, 4
(2 bouguet of four circles in 8,, after identification of the
boundary edges of the octagon); the (9,9,8,8,7)-BIBD arising from
the covering imbedding of K7, although a trivial design, gives a
non-trivial (81,162,16,8;0,7)-PBIBD. These designs on Kn X Kn are
called Latin square designs; their construction could have been
carried out purely combinatorially, but their topological realiza-

tion is convenient for the application of Theorem 12-17.
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EEEEE&E,E: In all of the preceeding examples - including those in
Section 12-3 - we have used graph imbeddings to obtain block designs,
Now we reverse this point of view.

More attention has been paid toward the imbedding of graphs in
the class Kn(m) than in any other class; see for example [B13], [R8],
[RY1l), [RYS5]), [Gl], and [(J5}; for a survey of results in the orient-
able case, sec [grWl] and [KRW1]. Except for n = 2 (where no tri-
angles are possible), the known results are obtained by constructing
triangular imbeddings. For the generalized pseudocharacteristic

2Ry ()
euler characteristic for a triangulation:

) - see Definition 6-48 - the upper bound is given by the

) mn (6 +m-mn)

Thm. 12-18. x"(K () < < .

We observe that the bound is an integer if and only if 3
divides mn(n-1). For m= 1, G = Kn; it is now well-known that

Kn has (in fact surface) triangular imbeddings if and only if

n = 0,1l (mod 3). For m>1 and n > 2 generalized pseudosurface

triangular imbeddings of K are, by Theorem 12-15 and the

n{m)
observation following Definition 12-10, exactly group-divisible

PBIBDs with k = 3, Al = 0, and Ay = 2, The following is Theorem

6.2 of Hanani [H1l], restated in the present context:

Thm. 12-19. A group-divisible PBIBED with the object set partition-
ed into n groups of m objects each (m > 1, n > 2)
and k = 3, A = 0, AZ = 2 exists if and only if 3
divides mn(n-1).

Thus all the triangular imbeddings upon which the estimate of

Theorem 12-18 is based actually exist, and we state:

y = mnletmomn) e g only if

Thm. 12-20. For n > 2, x"(K 3

n (m)
3 divides mn(n-1).

ilence Hanani's result for block designs serendipitously computes

the generalized pseudocharacteristic of K , 1in 7/9 of the

n (m)
possible cases.
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12-8, Doubling a PBIBD

Given an orientable triangular imbedding of Kn(m) with
bichromatic dual, we have seen that one (v,2b,2r,3;0,2)-PBRIBD, as
well as two (v,b,r,3;0,1)-PBIBDs, correspond to this imbedding.
Then by Theorem 10-12 (with r = 2) and Theorem 10-14 (with Gl =

K,)}, the strong tensor product K, % K has an

- “n{m) = Kn(2m)
orientable triangular imbedding with bichromatic dual, so that one
(2v,8b,4r,3;0,2)~PBIBD and two (2v,4b,2r,3;0,1)-PBIBDs result; in
a sense, each original PBIBD has been doubled. Clearly this process
can be iterated indefinitely,

Moreover, the construction given in [GRW1l] for Theorem 10-14
provides a prescription for listing the blocks in the doubled designs

in terms of those in the initial designs. Thus if the 2b initial

b b
r ' [ v U
blocks are .B lail’aiz’ai3} LJ _f {bil’biz’bi3}
i=1 i=1
b b
L i R | t
Yo ibyqblyybiat U Uiy by, blgd
i=1 i=1
and
b U S
U 1 ] v 1
- lajpragyiaisd o biyebigebig) U
i=1 i=1
b b
U v U '
Vo dbyyubioybiab U Vb aby bt
i=1 i=1

{again grouped by color class.)

Theorem 10-14 always gives a triangular imbedding for X, ® G,
for G as in the theorem; yet if K2 ® G 1s not strongly regular,
then no block designs are provided. It is easily seen that K2 & G

is strongly regular if and only if G 1is strongly regular with

p§2 =n, or complete, and that G 1is strongly regular and connected,

. 1 _ . . _
with Py, = Ny, OF complete, if and only if G = Kn(m) for some
m > 1, n > 2. Thus the doubling process of this section is applic-
able exactly to triangular imbeddings of Kn(m) with bichromatic

dual (there 1is a nonorientable analog to Theorem 10-14; see [Gl].)
However, every time such an imbedding is found, it determines an
infinite tower of triples of PBIBDs, as explained above, Moreover,
if the initial imbedding is on a pseudosurface, than all imbeddings

derived from it are also pseudosurface imbeddings; thus the
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associated designs, by Theorem 12-17, differ from thosc of Hanani
{(see Example 5 in Section 12-7.,)

For example, consider the toroidal imbeddings of K7, K4(2),
and K3(3) given as covering spaces of Figure 10-4 (Example 2 in
Section 10-3); each is the base for such an infinite tower of
designs. The graphs for K7, for instance, are the family

K ! k =20,1,2, ... -~ for which the genus is also thereby
7(2%)

determined.
As a second example, consider the voltage graph of Figure 12-1,

for r o= 235; this determines a nonorientable pseudosurface

Figure 12~-1

triangular imbedding for K7(5) with bichromatic dual. Hence

another infinite tower of imbeddings - for K kT and of the
7(5.27)

corresponding block designs is anchored, {In this case, the pseudo-

characteristic y' (K k ) 1is also determined.) The A, =1

7(5.25) 2
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designs, for all k, and the X2 = 2 designs, for k even, have

no BIBD counterparts.

12-9. Problems

12- 1.) Prove Theorem 12-2 (1i).

12- 2.) Prove Theorem 12-2 (ii).

12- 3.) Find (and prove) an analog to Theorem 12-2 for PBIBDs.

12- 4.) Prove Theorem 12-7.

i2— 5.) Prove or disprove the following strengthening of Frucht's
Theorem (3-18): Every finite group is the automorphism

group of some strongly regular graph.
12- 6.) Show that the complement of a strongly regular graph is
strongly regular.
12- 7.) Let a (v,b,r,k;kl,

ular graph G. Show that we may use exactly the same ob-

Az)—PBIBD be based upon the strongly reg-

jects and blocks, to obtain a corresponding (v,b,r,k;Az,Al)—
PBIBD, based upon G. (Thus we may assume, without loss of
generality, that Al < Az.)
12- 8.) Construct an imbedding of K4 in Nl to give a
(4,3,3,4,3)-PBIBRD.

12- 9.) Imbed the Petersen graph in N so as to give a

1
(10,6,3,5;1,2)-PBIBD.
12-10.) What design results from the voltage graph imbedding of
Figure 12-2, using [ = Z19°?

Figure 12-2
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12-11.)

12-12.)

12-13.)

Block Designs Chapt. 12

What designs result from the voltage graph imbedding of

Figure 12-3, using M= le?

Show that the design of Figure 12-1 is 3-resoclvabkle, the
design of Problem 12-10 is 4-resolvable, and the design of
Problem 12-11 is 5-resolvable.

PBIBDs on three or more association classes may also be
found from graph imbeddings. For example, take A=

{(r,0,0), (0,1,0), (0,0,1)} for I = 22 x 22 % 22 anad

show that Q3 = GA(F) in S0 gives an (8,6,3,4;0,1,2)-

PBIBD(3), where v and V2 are first associates if

1
vy = vy + (1,1,1), second associates if non-adjacent but

not first associates, and third associates if adjacent.

Figure 12-3
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CHAPTER 13

HYPERGRAPH IMBEDDINGS

A graph is just a special case of a hypergraph; but although a

great deal of attention has been paid, as we have seen, to the geo-

metric
extend
[ISW1]

in the

realizations of graphs, there has been little effort made to
these concrete representations to the general setting. 1In
an attempt was made to remedy this situation, as we indicate
present chapter also, l

Our aim is to find a geometric realization for hypergraphs

satisfying:

(1) The method should not be unduly cumbersome.
(2) It should include the standard geometric realization of
graphs (as points and arcs in appropriate 2-manifolds) as
a special case.
13-1. Hypergraphs
Def. 13-1. A hypergraph H consists of a finite non-empty set V(H)
of vertices together with a set E(H), each of whose
elements is a subset of V(H) and is called an edge. 1If
e € E(H) (e ¢ V(H)) and if u,v € e (u,v € V(H))}, we
say that wu and v are adjacent vertices, and that the
vertex u and edge e are incident with each other, as
are v and e. Two distinct edges e, and e, are
said to be adjacent if ey n e, # ¢. The degree, d(v),
of v € V(H) is the number of edges with which v 1is
incident. If le| = r(r > 0) for all e € E(H), then
H 1is said to be an r-uniform hypergraph.
Thus a graph is just a 2-uniform hypergraph.
We write p; = [v()| and qy = [E(H)|. Let n, = |ei|, for
1 <i < ay and E(H) = {el,e2 rees reg }. Then as a

H
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generalization of Theorem 2-2, we have:

Thm. 13-2. For any hypergraph H, yoood(v,) =

Proof: Merely count total incidences, in the two

possible ways. #
Note that for a graph each n, = 2, and we regain Theorem 2-2.
In fact:
Py
Ccor. 13-3. For an r-uniform hypergraph I, ¥ a(v,) = rqy.
i=1

For an example, consider the 3-uniform hypergraph H defined

by:
vig) = {1,2,3,4},
E(H) = {{1,2,3}, {1,2,4}, ({1,3,4}, ({2,3,4}};
then Corollary 13-3 observes that 4-3 = 3-4. One convention (see

Berge [B7]) for representing hypergraphs would depjct H as in
Figure 13-1; this method does not appear to meet either criterion

(1) or (2), as given in the introduction to this chapter. Thus, we

Figure 13-1

seek another method.

We observe that Definitions 2-6 and 2-7 carry over verbatim, so

that a connected hypergraph is exactly what one would expect it to be.
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13-2. Associated Bipartite Graphs

We use a bijection between connected hypergraphs H and con-
nected bipartite graphs G(H) given by Walsh [W2}. 1In the present
context, we are primarily concerned with the construction of G(H)

from H:

V(G(H)) = V(H) U E(H), the bipartition;

E(G(H)) ={{v,e} |v ¢ V(H}, e € E(H), v € el.

We next find a 2-cell imbedding of G(H) into some closed
orientable 2-manifold Sk (k > 0), and denote this 2-cell imbedding
by G(H) < S;.

For the example H of Section 13-1, G(H) is less a

K
4,4
l1-factor; that is, G(H) = Q3. It is convenient to take Q5 <4 SO’
as usual.
In the next section, we shall see how to modify the imbedding

of G(H) ] Sk so as to obtain an "imbedding” of H into

A
s, (H<s).

13-3. Imbedding Theory for Hypergraphs

Given a 2-cell imbedding of the associated bipartite graph
G(H) ¢ S, » we modify this imbedding to obtain an imbedding of the

hypergraph H into § wherein certain of the regions of the

k,
modified imbedding (G(H) < Sk) represent edges of H; the re-
maining regions of the modified imbedding (G(H) < Sk) become

regions for the imbedding of H into S For H connected, G(H)

K*
will be connected also, and thus we can find a 2-cell imbedding
G(H) Sk' The modification we perform preserves the 2-cell aspect

of the imbedding, so that the regions for H in S are all 2-cell

also. Hence the notation H <‘Sk is justified. .

We illustrate the modification process in Figure 13-2. 1In
part (a) of that fiqure, we see - in the imbedding of G(H) - the
vertices representing edge e = {vl,v2 poose ,Vk} of H and each

vertex in e. 1In part (b) of the figure we begin modifying the

imbedding by adding edge {vi ,V.. .}, within the region containing

i+l
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()

Figure 13-2

Vior Vi o and e, for 1 <1i <k, (mod k). Then the edges

{e ,vi} , 1 <1 <k, and the vertex e, are deleted, so that in
part (c) of the figure the edge e appears as a region in the modi-
fied imbedding. (More precisely, the set of vertices from the
boundary of region (e) 1is exactly the edge e.)

In Figure 13-3 we illustrate the entire process for the hyper-
graph H of Section 13-1. 1In part (a) of this figure we see an im-
bedding G(H) = Q5 < Sg and the beginning of the modification. In
part (b) of the figure we see the corresponding imbedding H < SO,
with the regions of this imbedding being shaded; the unshaded
"regions" depict the edges of H. The former (i.e. the bhonafide
regions of the hypergraph imbedding) are all digons here, as each
region for the imbedding of G(H) was a quadrilateral. (In general,

a k-gonal region results for H < Sk from a 2k~gonal region of the
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\\\

Wi

Figure 13-3

bipartite G(H)] 5, .)

We remark that: (1) this representation is not cumbersome, in
that V{(H) and E(H) are readily discernible. (Compare Figure 13-1,
for the same hypergraph H.) (2 1If H 1is in fact a graph, then

each edge of H becomes a digon for the modified imbedding
G(H) <] Sy,
bedding H <]Sk. 4’

Imbedding problems for hypergraphs now translate directly into

and the collapsing of each digon gives a traditional im-
This is illustrated for H = K in Figure 13-4,
the graphical context, and many standard results for graphs have
ready generalizations to hypergraphs. (This approach was noted,
independently, for the sphere only, by Jones [J3].) For example,
here is the generalization of Theorem 5-14. (We let rH denote the
number of bonafide regions ~ i.e. not including those regions de-

picting edges - in a 2-cell imbedding of hypergraph H.)
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Figure 13-4

Thm. 13-4, Let the connected hypergraph H have a 2-cell imbedding
in Sk’ with the usual parameters Pyr 9y and Ty
Then

Py * dy - Y n. +xr. =2 - 2k.

Proof: For the 2-cell imbedding G(H) Sy which gave

rise to H S we have

k 1
p-q+r1r=2- 2k,

by Theorem 5-14, where

p = V(G{H)) = Py t 9y
9y
g = E(GH)) = ] ny,
i=1
and r = rH.

The result now follows, by substitution. #
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We note that, for H a graph - so that ni =2, 1 <1< qH,
9y

then izlni = 2qH and we have the familiar Py ~ 9y + r, = 2 - 2k.

13~4. The Genus of a Hypergraph
Once we accept as worthwhile the task of realizing a hypergraph
geometrically, then it is most natural to wish to do this as effi-

ciently as possible., This motivates

Def. 13-5. The genus, +v{H), of a hypergraph H 1is the genus of
its associated bipartite graph; 1i.e. Y{(H) = Y(G(H)).

Since the genus parameter for graphs is additive over connected

components (Corollary 6-19), we obtain immediately

Thm, 13-6. The genus of a hypergraph is the sum of the genera of its

components.,
n

Proof: Let H = Hi be the decomposition of H into
i=1

its connected components, with G(Hi) the bipartite

graph associated with component Hi' Then Y{(H) =

n n n
Y(G(H)) = y( U G(H))) = ¥ V(GH)) = ¥ovH,) . #
i=1 i=1 i=

Thus it is without loss of generality that we continue to re-

strict our attention to connected hypergraphs.

Def. 13-7. The maximum genus (H), of a connected hypergraph H

Y
is given by: YM(H) = YM(G(H))-

We have the natural generalization of Corollary 6-22:

Thm. 13-8. A connected hypergraph H has a 2-cell imbedding in Sk
if and only if «y(H) < k < vy,(H).
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We now give a lower bound for the genus parameter, reminiscent
of Corollary 6~15 (but not in generalization of that corollary,

since if H is a graph, then G{H) will have girth at least six.)

Thm. 13~9. If H 1is a connected hypergraph, then

{ i nyo-oepy - o2q).

Proof: Let H 7 Sk’ where k = y(H) = y(G(H)). Since

H 1is connected, so is G(H); thus the minimal imbedding
G(H) ] Sk is 2-cell, as is H <] Sy - Since G(I) 1is bi-
partite, 4r < 2q. Thus

2r

fl

[ ]
=
A
el
H

o~
3

and using this in the euler equation for hypergraphs

(Theorem 13-4), we get the desired bound. #

We close this section with an upper bound for the maximum genus

parameter, in analogy with Theorem 6-24.

Thm. 13-10., Let H be connected; then

9y
l’pH_qH‘Lillni
) < .
2
Moreover, equality holds if and only if r, = 1 or 2,

H
according as the numerator is even or odd, respectively.

13-5. The Heawood Map-coloring Theorem, for Hypergraphs

pef. 13-11. The chromatic number, ¥(H), of a hypergraph H is the
minimum natural number k for which there is a parti-

k
tion V(H) = U Vi(H) such that, for each edge
i=1

e € E(H), there is no i with e € Vv, (H).
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That is, y(H) 1is the smallest number of colors for V(H) sO
that no edge of H 1is uniformly colored. Note that this is the
"weak" definition of chromatic number for hypergraphs, as we are not
requiring that all vertices in an arbitrary edge be colored differ-
ently (just that they not all be colored alike.) Clearly the weak

and the "strong" definitions agree, if H is a graph.

Def. 13-12. The hypergraph chromatic number of the surface Sk is
defined by: xH(Sk) = the maximum ¥ (H) such that
-~
H‘Sk'
7+ vI+ 48k 1 .
Thm, 13-13. XH(Sk) = [——-———~———-J , k > 0.

2

Proof: Set f(k) = [Z_i_%i_i_ﬂﬁi ]
(1) Let HC] Sk' and let G*{(H) denote the corre-
sponding modification of G(H). Since G*(H) “ sk ,
x(G*(H)) < f(k), by the Heawood Map-Coloring Theorem
(or the Four-Color Theorem, if k = 0) for graphs.

Let G*(H) be f(k)-colored. Now consider an arbitrary
edge e of H and any two consecutive vertices in the
corresponding region of G*(H); since they form an
edge of G*(H), these two vertices are colored differ-
ently. Thus e is not uniformly colored, and

x(H) < f(k). Since H was arbitrary for Sk’ XH(Sk)
f(k).

(s

(2) Since H = Kf(k)q Sy > x(H) = f(k).

Xz k)

(3) Thus XH(S = f(k).

K)

13-6. The Genus of a Block Design

Every block design is a k-uniform hypergraph - with objects as
vertices and blocks as edges - so that any realization of a hyper-
graph associated with a block design is simultaneously a realization

of that design. For example, the Steiner triple system H of
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order 7, arising (for example) from the projective plane of order 2,
is depicted in Figure 13-5, where G{H) would be the "Heawood Graph"”
(see Figure 8-6), the dual of K7 q Sl. In this case, G*(H) is

K7, and our realization of H coincides with that of LCxample 2,
Section 12-3, (The blocks of Table 12-1 appear as the unshaded
regions in Figure 13-5.)

Figure 13-5

It will be no surprise that, once we agree to depict block
designs realistically, we should desire to do this as efficiently
as possible.

Def. 13-14. The genus of a block design D, y(D), is the genus of
the associated hypergraph H; i.e. v(D) = y(H) =
Y(G(H)), where G(H) 1is the bipartite graph for H.

Thus vy(D) gives the most efficient orientable surface for the
representation of D.

For example, if D is the familiar (7,7,3,3,1)-BIBD (Steiner
triple System), then Figure 13-5 shows that «v(D} < 1; but one
readily finds a homeomorph of K3'3 in G(H) for Figure 13-5, so
that y(D) > 1. Thus +vy(D) = 1, and our depiction of Figure 13-5
is optimal.
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Rahn {R1] has characterized planar (i.e. Yy{(D) = 0) BIBDs;

Thm. 13-15. A (v,b,r,k,A)-BIBD is planar if and only if:

(i) k = 1;
(11) k=2 and v = 2,3, or 4;
(iii) k =3 and (v,b,r,k,2) = (3,1,1,3,1),

(3,2,2,3,2) or (4,4,3,3,2).

We note that the case (4,4,3,3,2) 1is displayed in Figure 13-3.

13-7. An Example

As an additional example of many of the concepts of this chapter,
we consider the (n,n,n-1,n-1,n-2)-BIBD Dn (for n > 2) whose
object set 1is {1,2, ... , n} and whose blocks are the complements
of singletons (i.e. all (n-1)-subsets of an n-set.) This immediately
determines a hypergraph H having the same description: V(Hn) =
{1,2, ... , n} , E(H ) = {s ¢ V(Hn); |s| = n-1}. Then G ) is
Kn,n less a l-factor (each vertex 1 1is adjacent to every edge
except its complement, so that the l-factor is composed of pairs
{i, V(Hn) - {i})}, 1 <4i<mn.) For n= 2, 3, 4 respectively, we
have G(Hn) = 2K,, Cgr Q3: see Figure 13-3 for the case n = 4 and
the planar imbedding of Hy-

(n-1) (n-4)
:{ - 4n )j

Thm. 13-16. Y(Dn) , for n > 2,

Proof: From the lower bound of Theorem 13-9, we find

that
- (n—l)(n-4)}
y(D ) = y(H)) 3{———-——~—4 .
To complete the proof, we show the reverse inequality,

by construction. This construction splits into four

cases, depending upon the residue of n modulo 4;

here we provide the details only for the case n = 1
(mod 4). (See Problem 13-2 for the remaining - harder -
cases.) The method uses an index two current graph (see

Figure 13-6 for the cases n =5 and 9, which have
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obvious generalization; the vertex rotations are in-

dicated schematically, to yield a current graph imbed-
ding in 8,, where h = (n-1) /4 and the group o=
7

generated by A= {1,3,5, , n=2} . Since

2n’'
the KCL holds at each vertex of the current graph,
the Cayley graph (GA(F) = G(Hn)) imbedding which

covers the dual of the current graph imbedding is

quadrilateral, and hence - since it is bipartite -
minimally imbedded in Sk’ k = (n-1) (n-4) /4. Thus
(D) = y(H ) = y(G(H))
_ (n-1) (n-4) J (n-1) (n-4) -
2 \ 2 J

in this case.

Figure 13-6.
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13-8. Nonorientable Analogs

We conclude with a brief discussion of the nonorientable imbed-
ding of hypergraphs. The definition of a 2~-cell imbedding of a
hypergraph H (via a 2-cell imbedding of the associated bipartite
graph G(H)) on the nonorientable surface Nh (H /]Nh) carries
over verbatim from the orientable case, as do all related concepts.
We have the following results:

Thm. 13-17. If H~IN then p, + q - y n, +xr,=2-h.

h’
i=1

Thm. 13-18. If ¥(H) denotes the nonorientable genus of hypergraph
H, then

1
) 22+ o ¥ ny - 2p, - 2qy).
i=1

Thm. 13-19. The connected hypergraph H has a 2-cell imbedding on
N if and only if

M) <h <1+ ] my-py - -

Finally, we give the nonorientable Heawood Map-Coloring Theorem

for hypergraphs:

77 + /1 + 24h 7 .
Thm. 13-20. X, (N) = [w——z——————— 1, for n#2
Ay (Ny) = 6.
13-9. Problems
13-1.) Prove Theorem 13-10.
13—2.) Show that Kn a less a l-factor imbeds on Sk' k =
{(n-1) (n~-4)/4} , for n o0, 2, 3, (mod 4).
13-3.) Prove Theorem 13-17.

13-4.) Prove Theorem 13-18.
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13-5.) Prove Theorem 13-19.
13-6.) Prove Theorem 13-20.
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CHAPTER 14

MAP AUTOMORPHISM GROUPS

Our focus in this book has been on the various interactions
among graphs, groups, and surfaces and - in particular - on the
surface imbeddings of graphs depicting groups. In this chapter we go
one step further, by considering the automorphism group of the con-
figuration consisting of a graph imbedded in a surface. An important
special case will occur when the graph is a Cayley graph for some
group. The development here is essentially that of [BW1l]:; see also
Biggs ([B8), [BY9], and [B10l), [W9], and [W13].

Recall Corollary 6-22: a connected graph G has a 2-cell im-
bedding in Sk if and only if «v(G} < k < YM(G). So far, in this
book, we have concentrated on the two extremes of this imbedding
range, in calculating various values of the genus and the maximum
genus parameters. In this chapter we consider two additional special
types of imbeddings, generally in the interior of the imbedding
range: those which are symmetrical, and those which are self-dual.
Finally, we combine these two concepts (and others as well) in our
study of "Paley maps."

For a theory of maps for orientable surfaces unifying the two
standard approaches (that of geometers, studying symmetry properties,
and that of combinatorialists, studying graph imbeddings and map

colorings), see Jones and Singerman [JS1].

14-1. Map Automorphisms

Recall that a rotation scheme for a connected graph G of

order n 1is an ordered n-tuple P = (pl 1Py e ,pn), where p;
is the rotation at vertex 1, 1 < i < n. Then P determines a

2-cell imbedding in a closed orientable 2-manifold S where k 1is

k’
uniquely specified by the euler equation and thé number of orbits of
the permutation P* on the set D* (see Section 6-6,) Here it will

be convenient to let Py denote the rotation at vertex v and
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p = (ﬂv)v ¢ V() denote P.

Def, 14-1, A map is a pair (G, p), where G 1is a connected graph

and ¢ 1is a rotation scheme for G.

Thus a map may be regarded as a configuration consisting of a
representation of a connected graph by its imbedding in a particular
closed orientable 2-manifold. This definition can be extended to
include nonorientable surfaces as well, as in Section 11-3; but we
concentrate on orientable maps here.

We now define an automorphism of a map (G, p) to be an auto-
morphism of the graph G which also preserves the rotation .
Specifically, we construct an action of the automorphism group (G(G)
on the set R{(G) of all rotations of G. (We observe that

n
IR(C) | = igl (n;-1)t, where n; =d(v;), 1 <1 <n; see Problen

14-1.) If a ¢ g(G) and p e R(G), we define alp) ¢ R(G) by:

that is, if Py takes x to y, then (a(p))
to  a(y) (see Figure 14-1).

takes a(x)

X a(x)

\\ Oy \\ a(“)a(v)

ﬂ
a(v) a(y)

<O

Figure 14-1
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Def. 14-2. Two rotations p and o 1in R(G) are said to be

equivalent if there is an a € g(G) such that o = a(p).
Lemma 14-3, If p and ¢ are equivalent rotations on G, with
o = a(p) and (X , ¥ +Z , ... ,W) a region of map (G,p),
then (a(x) , aly), a(z) ,... ,a(w)) is a region of map
(G ,0).
Proof: Since (X ,V 2 ;.-« ,W) is a region of (G, ),
o*{x ,vyv) = (y ,2); 1i.e. py(x) = z, Thus
a(o) o, (a(x)) = ap a tia(x)) = ao_(x) = a(z).
aly) Y Y
So, putting ¢ = a(p), we have
oa(y)(a(x)) = a(z), and
o*(a(x),a(y)) = (a(y),a(2)).
Hence, (a(x),aly),a(z) ,... ,a(w)) 1is a region of
(G ,0). #

It follows that, if p and ¢ are equivalent rotations, then
there is a one-to-one correspondence between the region sets of the
maps (G , p) and (G ,0). Hence the two maps are in the same

surface; that is, they have the same genus.

Def. 14-4. An automorphism of a map M = (G ,p) 1is a graph auto-
morphism a € G(G) such that a(p) = p; i.e.
_ -1 . .
pa(v) = ap,a -, for all v € V(G). (That is, p is

equivalent with itself, under the action of a.)

The following equivalent formulation (see Figure 14-1 and
Problem 14-2) readily displays the graph—automorphism nature of each
map automorphism. We denote the automorphism group of a map

M= (G,p by aM.

Thm. 14-5. For a permutation a: V(G) - V(G), a € G(M) if and only
if: (X,V1Z 4 eve W) a region of M implies

(a(x),aly),al(z) ,... ,a(w)) 1is a region of M.



222 Map Automorphism Groups Chapt. 14

Thus graph automorphisms preserve edges, while map automorphisms
preserve oriented region boundaries.

We need two standard results from the theory of permutation
groups (see [BW1l], for example.) Let (I ,X) be a permutation
group , so that each vy ¢ I' is a permutation of object set X. The
orbit of x ¢ X is defined by: TIx = {v(x)|y € T}; then Tx 1is a

subset of X. The stabilizer of x 1is defined as: r. =

X
{y e rly (x) = x}; then T, 1is a subgroup of TI. Moreover,
we have:
Thm, 14-6. |Ix| = 1r:rX1.

Finally, for y ¢ I, the set of fixed points for <y 1is denoted
by: F{y) = [x ¢ X|y(x) = x}. Then we have the following theorem of

Frobenius, often called "Burnside's Lemma":

Thm. 14-7. The number, t, of orbits of (r , X) is given by:

1
IT|

t = VAR | .

YEI
Now we put the two above results to work.

Thm. 14-8. Let G be a connected graph and p a rotation on Gj;
then the number of rotations equivalent to p 1s equal
to the index |G(G): G(G,p)|.

Proof: By definition, G(G,p) = Q(G)p, the stabilizer
of p 1in the action of G(G) on R(G). The number of
rotations equivalent to p is just the orbit a4 (G)op.

Now apply Theorem 14-6. #

Thm. 14-9. The number of equivalence classes of maps with under-

lying graph G is:

1
TETET gofyol @ 1

GeG(G)

Where F(a) = {p for G la(p) = p}.
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Proof: Apply Theorem 14-7 to the action of G {G) on
R(G) . #
We illustrate with G = K,; then |IR(G) | = 2% = 16. consider
= ((234),(143),(124),(132)) as shown in Figure 14-2. For this M,

Figure 14-2

G(M) = A4 (see Problem 14-3.,) From Theorem 14-8, using G-(K4) =
S4 (see Theorem 3-17 (1)), we deduce that there are just two of the
sixteen rotations in R(K4) equivalent to the given one (the other
is the "mirror image" ((243),(134),(142),(123))); both have genus
zero. To classify all 16 rotations of K,, we note that [F(y) |

is a class function: it is constant on each conjugacy class of

elements of S4; we obtain Table 14-1.

Class representative (a) e (12) (123) (12) (34) (1234)

NMumber in class 1 6 8 3 6

|F(a) ] 16 0 4 4 2
Table 14-1

Thus, by Theorem 14-7, the number of equivalence classes is
(16 + 32 + 12 + 12)/24 = 3. One of these classes is represented by
Figure 14-2, and we have Jjust seen that this class contains
exactly two rotations. The other two classes are both toroidal

{(genus one); they are represented in Figure 14-3., The map
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automorphism groups are Z, and Zy, SO that the classes contain

(by Theorem 14-8) six and eight rotations respectively. In each

case, the rotations pair off by the "mirror image" relationship:

----.------)-9

cdfmomman=

R e

v
v
-V S

(a) (b)

Figure 14-3

Def, 14-10, The mirror image of a map M = (G,p) 1is given by
-~ _ _1 . _ N

M—I (G,p_l), where 1if o —{uv}v c V(G)’ then

}

o=y e viey

Clearly M always exists for a given map M, and M =M if
and only if G 1is a cycle (since

o= Q;l if and only if
d(v) = 2.)

Def, 14-11. A map M = (G,p) 1s said to be reflexible if and only

if there exists an o € G(G) such that (Vl’VZ""Vn)
is a region for M if and only if (avn,...,avz,uvl)

is a region for M; a is called a reflection,

Thus M 1is reflexible if and only if M

and the mirror image
M are equivalent (Problem 14-4.)

For example, every rotation for
K, gives rise to a reflexible map.

Def. 14-12., The extended map automorphism group, a* (M), of a

map M consists of (G(M) together with all reflections
for M.
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Thm, 14-13, Let D be a (v,b,r,3,2)-BIBD (a 2-fold Steiner
triple system), let (D) be the design automorphism
group, and let M be the corresponding map (Theorem

12-3); then G* (M) = G(D).

We have seen that the sixteen rotations for K, split into
three equivalence classes of maps; we remark that K5 and K6 have

corresponding numbers as indicated by Table 14-2.

n 2 3 4 5 6

number of rotations 1 1 16 7,776 191,102,976

number of classes 1 1 3 78 265,764
Table 14-2

14-2. Symmetrical Maps

We now study G(M), considered as a permutation group acting

on V(G) - where M = (G,0).

Lemma 14-14, Let a € G(M), where M = (G,p), and let {u,v} €E(G)

with a(u) = u and a(v) = v; then a = e,

. . b |
Proof: Since fl € M), Paty) = ar,a . Thus
a(pv(u)) = ap,a " (u) = “a(v) (u) = pv(u); that is, a

fixes pv(u) also. But since oy is cyclic on N{(v)
(the set of vertices adjacent to v), the argument
repeats and we see that a fixes each vertex in
N(vj. Similarly, a fixes each vertex in N{(u),
each vertex in N(uv(u)), and so on; since G is
connected, we see that a fixes each w € V{(G), so

that a = e.

Thm. 14-15., Let g=¢g{M), for M = (G,p), with Vv ¢ V(G). The
stabilizer Gv is isomorphic to a subgroup of the
cyclic group (pv) generated by Dy and hence is a

cyclic group whose order divides d{(v).
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_1 _ )
Proof: We have av,a = pa(v) =y, so that
av, = P a. Let w € N(v); then a(w) € N(v) also,
and since Py is cyclic on N{v) we have al(w)
= pi(w), for some i. Let x € N(v), say x =
3 = ap) = J = It
yv(w). Then a(x) ang (w) nya (w) i (w)
prod(w) = pi(x). Thus 2 = ol, where a is the
v''v v v
restriction of a to N(v), and #: Gv > (pv> ,
Gla) = 3, is a homomorphism and if El = —2, then
ala;1 = e by Lemma 14-14; thus ¢ 1is a mono-
morphism, #

If G 1is transitive on V(G), then all vertex stabilizers are

conjugate in G, so that g = pla,|, where p = [V(G)|. Thus
ial = p%, where § divides d, the common vertex degree of G,
For example, the rotation ¢ for K7 given in Section 9-2 gives a
vertex-transitive map M (consider (0,1,2,3,4,5,6) € G(M)). More-
or SO that |a| = 7.6 = 42. All

4 Tmaps are vertex-transitive, except those in the third of

over, pg = (1,3,2,6,4,5) ¢ G
the K
the three classes.

Now consider G = G(M) to act on D* = {(u,v)|{u,v} € E(G)],
by af(u,v) = (a(u),a(v)). Let x = (u,v): then GX = e, by Lemma
14-14. Thus, by Theorem 14-6, |G| = \Q:QX[ = |G|, independent
of x. This gives:

Thm. 14-16. |G(M)| divides 2|E(G)

Proof: By the preceeding remarks, each orbit of D*
has length |G(M)]. #

Def. 14-17. If |a(M)| = 2|E(G)|, then M is said to be a
symmetrical map.

Thus symmetrical maps display the maximum amount of symmetry.
If M is symmetrical, then (@(M) 1s a reqular permutation group on

the object set D*; symmetrical maps are also called reqular maps.

Thm., 14-18, TIf M is symmetrical, then (M) is transitive on

the vertices, on the edges, and on the regions of M.
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Proof: Let G = G(M) act on D*, with |G{M)] =

ID*]. Let x = (u,v) € D* and a;, a, € G(M; if
ajx = ayx, then a; = a, by Lemma 14-14; thus

lax| = |p*|, and G is transitive on D*  hence

G is transitive on E(G). Now let u,w € V(G), with
(u,v), (w,z) € D*, Since G 1is transitive on D*, we
find a € G so that (a(u),a(v)) = a(u,v) = (w,z);
thus af(u) = w, and (G 1s transitive on V(G).
Finally, let ry = (v,w, ...} and r, = (X,¥, +40)

be two regions of M, with a € G(M) such that

a(v) = x and al(w) = y. Then, since apwa = pa(w)

S aﬁw(V) a(v) = pya(v) = oy(x), so that the

Y Pa(w)
next vertex of ry is carried to the next vertex of
r, by a; this process continues, to show that G is

transitive on the region set as well. ¥

Thus a symmetrical map M has associated with it two important
constants: the constant vertex degree d and the constant number Xk

of vertices in each region boundary.

Thm. 14-19, Let M be a symmetrical map of genus Yy , with p
vertices (all of degree d), g edges, and r regions

{all having length k); then:

(i) dp = kr = 2q;

(d-2) (k-2) - 4

(ii) y =1+ A P.
Proof: We use Lemma 5-17 (iii) and (iv) and Theorem
5-14, #

For d =2, p=g=%, r =2, and Yy = 0; M consists of

G = Cp on SO. Hence we assume d > 3 (and k > 3).

If y = 0, then (d-2)(k-2)< 4 and (d4d,k) = (3,3), (3,4),
(3,5), (4,3), or (5,3). Each pair determines p, q, and r
uniquely; see Section 5-4. Thus we have:

Thm. 14-20. A map M(G,p) is symmetrical of genus zero if and only
if G = Cp(p > 2) or the l-gkeleton of a Platonic

solid.
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I1f y =1, then (d-2)(k-2) =4 and (4,k) = (3,6),(4,4), or
(6,3). For each case, we find infinitely many toroidal maps covered
by the corresponding regular tessellation of the plane (see Figures
8-6, 7-3, and 13-5 for one map of each respective type.)

I1f y > 2, then again each pair (d,k), for fixed 5, deter-
mines p, g, and r uniquely. Moreover, the number of symmetrical

maps of genus vy 1is finite:

Thm. 14-21, If M 1is a symmetrical map of genus ; - 2, then
| G(M) | < B4(y-1); equality holds if and only if
(d,k) = (3,7) or (7,3).

Proof: Using [G(M)| = 2g and both parts of Theorem
14~19, we obtain

4kd
‘G.(M)] = 29 = dp = m(‘y“l).

Since d > 3 and k > 3, the coefficient of y -1
has a maximum value of 84, occurring precisely when
(d,k) = (3,7) or (7,3). #

For any map M, whether orientable or nonorientable, the order
[a* (M) | of the extended map automorphism group G* (M) divides
4IE(G)I, where G 1is the graph of the map. (See Problem 14-8.)
We get |g*(M)| = 4|E(G)]|, in the orientable case, if M is
symmetrical and reflexible. 1In the nonorientable case we lose our

sense of order-preservation, so that "map automorphisms" are in-

distinguishable from "reflections;" & nonorientable map M 1is thus
said to be symmetrical if |G*(M)| = 4|E(G)|. We mention just one

result about such maps, due to Wilson [W1l6]; note the connection

with the covering projection of Section 11-2.

Thm, 14-22, If N 1s a nonorientable symmetrical map, then there
is a unique orientable map M, both symmetrical and

reflexible, which is a 2-fold covering space of N.

For two examples, we give the graph of the dodecahedron on S0

covering, by antipodal identification, the Petersen graph on Ny
and the dual confiqurations: the icosahedral graph on S0 project-

ing to K6 on Nl’
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Wilson shows that the uniqueness of Theorem 14-22 is not re-

versible, by giving one M covering two distinct maps N.

14-3, Cayley Maps

Now let M = (G, .") be a map, where G = G\(T) is a Cayley
graph for group ., as generated by & ¢ [ ;ubject to the usual
restrictions (e & A; 1if = € AN x’l, then +¢ = e): recall that
Ax = 10U ;—l. In this situation, the vertex rotations £y
(v € V(G) = ") can be regarded as permutations not only of N(v),
but also of A*;  thus two rotations can be more readily compared.

Of special interest is the case where the induced permutations of

A*  are all the same,

Def. 14-23. A Cayley map M(I',A,r) is the map M(G,p), where
G = GA(Y) and r: A* - A* 1s a cyclic permutation
so that, for g € ' and h € N(g),

-1
2 (h) = gr( h).
g gr{g
Thus the group structure determines the vertex rotations, as in

Figure 14-4 - where r = (§;,, §,,...,8): the edge {g,g@l}

is determined by 51 € A*, so that the image of gdl under pg

is determined by r(dl) = &2 € A*.

g6,

gs,

Figure 14-4
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For a specific example, we consider the map of K on S

7 1
given in Sections 9-2 and 14-2; it is a Cayley map M(Z, Z7—{O},r),
with r = (1,3,2,6,4,5). Then Oi(g) =i+ r(g-i), O = i < 6;
that is, ny = (1+i,3+1,2+i,6+1,4+i,5+1). In contrast, the graph

Q3 shown in Figure 5-8 is a Cayley graph G,(Z2 X 22 x Zz), with

A = {(,0,0),(0,1,0),(0,0,1)}; but the map shown on S is not a
Cayley map, since no suitable r exists.

Next we give a strengthening of Theorem 4-8; every automorphism
of CA(Y) is also an automorphism of M(I',A,r). We remark that the

Cayley graph GA(F) may well have additional automorphisms.

Thm. 14-24. The Cayley map M = M(I',A,r) 1is vertex-transitive; in
fact G(M) contains a regular subgroup isomorphic
to I

Proof: The isomorphism a: |' » G(CA(Y)), af(g) =

Hg: V(CA(T)) > V(CA(I)), Sg(gi) = g99; given in the
proof of Theorem 4-8 works here as well; it only re-
mains to show that eg € G(M); that is, that

= 8 for each h € V(C,(I)) = I.

o~ 1
"6,h) T Tgnlg
But let f ¢ N(0 (h)); then

pGg(h)(f) = gn(6)
ghr ((gh) "1f)

og(hr(h'lg'lf))

It

]

-1
= Ogoh(g f)

= -1 .
Ggphog (£) #

We observe that the map of K4 in 84 depicted in Figure
14-3(a) 1is a Cayley map M(Z4,Z4—{O},r), where r = (1,2,3), and
has only the automorphisms guaranteed by Theorem 14-24; it is not

symmetrical. This situation generalizes:

Thm. 14-25. Let M = M([l,4,r) be a Cayley map which is not

symmetrical, and let \A*] be prime; then G(M) = T.
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Proof: Let G = G(M) and v € V(CA(Y)). By Theorem

14-15, ]GVJ divides |[A*|, which is prime; hence
jOV] =1 or |[|a*|. By Theorem 14-24, M is vertex-
transitive, so that by Theorem 14-6 |G| = [Y‘IGV}.
But since M is not symmetrical, IGV[ = |A*|; thus
6,1 =1, |G =[], and G =T. #

On the other hand, G(M) may be strictly larger than T , for

M a Cayley map M(l',A,r}. Recall that o: I' = ' 1is an auto-
morphism of group " if « 1is one-to-one and onto, and
u(,lyz) = @(yl)u(y2), for all Y11 Yo €I,

Thm. 14-26. Let M = M(I',A,r) be a Cayley map and let o € G(T)
be a group automorphism such that u'A* = rR, for
some ¢, 1 < & < [A¥[. Then a € (G(M)),. (That is,

« is a map automorphism, fixing e.)

Proof: Since a € G(I'), wle) =e. Let {u,v} €

E(GA(F)), so that u_lv € A%*; then u(u_lv) =

s Hatv) € ax, lalw), «(v)} €E(G, (1), and
o € G(GA(T)). To show that o € G(M), we verify that,

= ap "' let n € N(a(g));

for all g ¢ T, Ou(g) g

then u_l(h) € N(gj), g“lu—l(h) € A*, and

b (g) M) = al@)r((x19))  h)

= ulg)rialg Yn)

Ly

1

= u(g)r(u(g_

= w(@) " gl )

= a(gr (g et (m)))

= upga_l(h). #

In the special case £ =1 of the above theorem, G(M) 1is as

large as possible:

Thm. 14-27. Let M = M([',A,r) be a Cayley map, with « € G(I')

such that ujA*= r. Then M is a symmetrical map.
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Proof: By Theorem 14-26, . € (G(M))e. By Theorem
14-15, \(G(M))e! divides {4*|. DBut |., =r, a
{r*l-cycle, so that {(G,(M))ei = l:*j, {In fact,
(G(M))e is generated by «.) Now, by Theorem 14-24%4,
G(M) is transitive on | = V(G,(i')), so that Theorem

14-6 gives:

L G(M) |

i
o
=

0]

21E(G, (1)) ],

¢

and M is symmetrical, #

We now calculate the genus of an arbitrary Cayley map
M(l,s,r), We first observe that M{i"',A,r}) 1s just the covering
space of the imbedded index one voltage graph K of Figure 14-5
(the ambient orientable surface for K 1is immaterial here; it is
determined uniquely by the rotation at the single vertex.) The

region boundaries for K are clecarly determined by the (not

Figure 14-5

necessarily cyclic) permutation T: A* > A*, given by ?(d) =
r(5-1L So, let ¥ have t cycles Ay bys wee, A in its

tion on /* it . AP, R i '
actio /*, wilth m; the order of 11952 Slki in |,
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where "i: (- 1 < i < t. These t numbers

P17 a2 e ik ) =z
1

m. are called the periods of M.

Thm. 14-28. Let My My e, My be the periods of the Cayley map
M. ,A,r); then the genus y of M is given by:

i

o
=1+J—'4-Lg/\* -2-2

Il ~1 et

1
o ).

i=1 i

Proof: By Theorem 10-8 (iii), the cycle Ai(l < i <%

is covered by }V{/mi regions, each of length m k..
Thus  1s determined by the euler equation (Theorem
5-14), using p = |I'|, q = |I'l |[4*]|/2, and r =

t .

) l—im . #
i=1 i

To illustrate these ideas, consider once again M =

M(Z7 , Z7 - {0}, (,3,2,6,4,5)). It is immediate that GA(F) = K7,
and we compute r = (1,4,2)(3,5,6); thus t = 2, my = m2 = 1, Using
Theorem 14-26, we confirm that <y = 1. Next, we note that o =
(0)(1,3,2,6,4,5) ¢ G(Z7), so that Theorem 14-27 applies to show
that M 1is symmetrical.

Ls a second example, consider nowthemap M = M(AS,A,r) as
specified by r = ((1,2,3,4,5), (5,4,3,2,1), (12)(34)). Then G, (I')

is the one-skeleton of the familiar soccer ball design. We find
r = ((1,2,3,4,5), (12)(34)),((5,4,3,2,1)), so that t =2, m, = 3,

and m, = 5. We again use Theorem 14-28, to compute y = 0 (ihis
is truly fortunate, for the game of soccer!), noting that T = 20
(the white panels of the soccer ball) and ry = 12 (the black
panels.) <Clearly M 1is not region-transitive and hence, by

Theorem 14-18, M 1is not symmetrical. Finally, we observe that r
does not extend to an automorphism of Ag (since r does not pre-

serve order), as required by Theorem 14~27.

14-4. Complete Maps

Def. 14-29, A complete map is a map M(G,p), where G 1is a

complete graph K .
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Of course, we have been studying complete maps throughout this
book, primarily with the aim of minimizing or maximizing the genus

v of M. Now it is the symmetry of M that we wish to maximize.

Lemma 14-30, If o & G(Kn,n) fixes more than one vertex, then

Proof: Any two distinct vertices of Kn are adjacent,

so Lemma 14-14 applies. #

Def, 14-31. The transitive permutation group (T,X) 1is said to be
a Frobenius group if only e € I' has more than one

fixed point in X.

Thus the automorphism group of a vertex-transitive complete map
is necessarily Frobenius, By Lemma 14-30. The study of Frobenius
groups leads to a classification of vertex-transitive complete maps.
We only outline this development here; for full details, see [B9]}
or [BWl].

Thm. 14-32, Let (I',X) be a Frobenius group, with N* the set of
fixed-point-free elements of I' and N = N* U {e}.
Then:
(1) In| = |x[;
(ii) If PX is abelian, then N 1is a regular
normal subgroup of ([ ,X).

The following result appears in Burnside [B18; p. 172]:

Thm., 14-33. If (I',X) 1is a Frobenius group of degree n =
[X| > 6 and order n{(n-1) = ||, then n 1is a

pPrime power.

Now let ' be any group of order n, with A* =1 - {e};
then GA(Y) = Kn, and if r 1is any cyclic permutation of

" - {e}, then the Cayley map (!',A*,r} 1is complete and, by
Theorem 14-24, vertex-transitive. Theorem 14-32 is used to pro-

vide a converse to this result, so that we have:
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Let M = M(Kn,w) be a complete map; then G (M) acts
transitively on the vertices of M if and only if M

is a Cayley map.

Proof: The sufficiency was established in Theorem
14-24, For the necessity, apply Lemma 14-30 to see
that  G(M) is a Frobenius group. Now (G(M))X is
cyclic, by Theorem 14-15, and hence Theorem 14-32 (ii)

guarantees a regular normal subgroup N of G(M).

Now take I = Zn and define a bijection
Y VG, (1)) = ' » N by #(i) = Ei, where ﬁi(O) = 1i;
then calculations show that ¢ 1s given (homeo-

morphically) by r: N - {e}l » N - {e}, r(f;) =
L'/(i)ri#o. #

e

for example, an imbedding of a complete graph covering a

voltage graph of index higher than one (and not projecting to an

index one voltage graph) cannot be symmetrical.

Finally, Biggs [B9)]) established:

14-35.

Thm.

6(M) ,

for

There is a rotation p for Kn so that (Kn,p) is

symmetrical if and only if n 1is a prime power.

Proof: (i) If M= (Kn,u) is symmetrical, then
o | = Z\E(Kn)l = n(n-1); moreover, G (M) is
Frobenius, by Theorem 14-18 and Lemma 14-30. Thus

Theorem 14-33 applies, to show that n 1is a prime

power.
(ii) Conversely, if n = pm where p 1is prime

and m € N, then take | = (Zp)m - the additive

group in GF{n) - and let x € I' generate the multi-

plicative group. Take A* = [ - {0}, and r: A* > A%

by r{(4) = xd&; then r extends (by setting «(0) = 0)

to « € G(I') and, by Theorem 14-27, the Cayley map

M(l',A,r) 1is symmetrical. #

Wle close this section by summarizing our knowledge of G =

M = M(Kn,p) a symmetrical complete map:
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(1) |G| = n{n-1).

(i1i) G is transitive on the vertices, edges, and regions

of M, and regular on the directed edges.

(iii) G is a Frobenius group.

(iv) For each v € V(K ), G = Zo_1-
(v) G has a regular normal subgroup, isomorphic to (Zp)m -
where n = pm; in fact G 1is the semi-direct product
m
of (Zp) and Zn—l'

14-5, Other Symmetrical Maps

In contrast to the situation for K. where symmetrical maps
exist only for prime powers of n, we have the following two re-
sults (see Problems 14-11 and 14~12; for hints, see [BW1]):

Thm. 14-36. The graph Kn n has a symmetrical map, for all n.
r
Thm, 14-37. The graph Qn has a symmetrical map, for all n.

We note that the symmetrical maps for Qn can be taken to be
of genus Y(Qn) or of genus Y(Qn+1).

There are several classes of questions that can be asked re-
garding symmetrical maps; we list three of these, so as to reflect

the thrust of this book:

(i) For a given graph G, what are the symmetrical maps
M(Glp) ?
(i1) For a given group I' , what are the symmetrical Cayley

maps M(l',A,r)?

(iii) For a given surface Sk' what are the symmetrical maps

of genus k?

Theorem 14-35, 14-36, and 14-37 speak to guestion (i). The
discussion following Theorem 14-19 addresses question (iii). And
the following two results (see Problems 14-13 and 14-14; for hints,

see [BW1l]) respond to question (ii):
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Thm., 14-38. The group Sn has a symmetrical Cayley map, for all

n - 2,

Thm. 14-39. The group An has a symmetrical Cayley map, for n
odd, n - 3.

We could also ask:

(iv) For a given group | , what are the symmetrical maps
M = M(G,v) so that GM) = I'?
Thm, 14-40. {Brahana [B16]) The symmetric groups Srl (n » 3) and

the alternating groups Arl (n > 4) each occur as the

automorphism group of a symmetrical map.

14-6. Self-complementary Graphs

Def. 14-41, A graph G 1is said to be self-complementary if it is

isomorphic to its complement: G = G.

Def. 14-42. An anti-automorphism of a graph G 1is a permutation

B: V{(G) » V{G) exchanging edges and "non-edges;"
that is, uv € E(G) if and only if RuBv £ E(G);
u # v. We denote the set of all anti-automorphisms of

G by G(G).

It follows that G 1is self-complementary if and only if
Eun # ¢; 1in this case a(G)y U E(G) is a group containing G(G)
as a (necessarily normal) subgroup of index two.

Self-complementary graphs have been studied in some detail, as
the sample results below demonstrate. (See also Sachs [S3], and
Gibbs [G21.)

Thm, 14-43, (Ringel [R9]) There exists a self-complementary graph
G of order p if and only if p = 0 or 1 (mod 4).

(The necessity is apparent, as the size of G must be
p(p-1)/4.)
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Thm. 14-44. (Ringel [R9]) If p . 1 (mod 4) and . 1is an anti-
automorphism for a self-complementary graph G of
order p, then  has exactly one fixed point and
every other orbit for the action of . on VI(G) has

length a multiple of four.

For example, if & = {1: for | = ZS' then G, (i) = C5 is
self-complementary, as shown (say) by ¢ = (0)(1,2,4,3); G(CS) = DS’
and G(CS) = rDS.

Thm, 14-45, (Read [R5]) There are 36 self-complementary graphs

of order p = 9; 5,600 of order 13; and 11,220,000

of order 17,
Thm, 14-46. (Rao [R3]) If G 1is a self-complementary graph of
order p > 8 and having minimum degree * > n/4, then

G has a 2-factor (a spanning 2-regular subgraph.)

Def., 14-47. A graph G 1is a graphical regular representation of a

group ' if (G(G), VI(G)) 1is a regular permutation
group and G(G) = I,

Thm., 14-48. (Lim ([L3]) If G 1is a graphical regular representation
of U, then G 1is not self-complementary.

Thm. 14-49. (Chao and Whitehead [CW1]) If G 1is self-comple-
mentary, then |V(G)]| < (X(G))Z-

Recall from Problem 2-1 that at least one of G and G is

connected; we get immediately:
Thm. 14-50. If G is self-complementary, then G is connected.

Nebesky [B2] has shown that at least one of G and G is
upper-imbeddable; thus:

Thm, 14-51. If G is self-complementary, then YM(G) = [B(G)/2].
The next result could be useful in seeking a genus imbedding
for a self-complementary graph:
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Thm. 14-52, (Clapham [C5]) The number of triangles in a self-
complementary graph of order p 1is at least
p(p~2) (p—-4) /48, if p 0 (mod 4), and at least
p(p~1) (p~5)/48, if p = 1 (mod 4). These minimum

numbers are attained.

Finally, we comment that self-complementary graphs determined by
the quadratic residues of a finite field have been used to give lower
bounds for the Ramsey numbers r(k,k); see Greenwood and Gleason
[GG1] and Burling and Reyner [BR2}., See also Clapham [C6], for a
more general construction; he finds a self-complementary graph of

order 113 containing no K giving the improved bound «r(7,7) > 1ll4,

7I

14-7. Self-dual Maps

The "self-complementary" property for a graph depends only upon
the abstract structure of the graph itself. To cobtain an analog in
terms of a geometric realization for the graph, we first imbed the
graph on a surface, form the dual graph for this imbedding, and then
compare the original graph with its dual. (In a sense, duality is a
higher-dimensional analog of complementation: in taking a dual, we
fix l1-dimensional subsets, while interchanging 2- and 0O-dimensional
subsets; in taking a complement, we fix O-dimensional subsets, while
interchanging l-dimensional subsets and " (-1)-dimensional” subsets -

the "non-edges.”)

Def. 14-53., Let map M = M(G,p) have dual map M* = M(G*,p¥*);

then M is said to be self-dual if G = G*,

For example, the maps of Figures 5-4 (b), 7-4, and 10-3, and
the map of Example la in Section 10-3 are all self-dual.

The first and last of those are special cases of:

Thm. 14-54, (Heffter [H6], Biggs, [B9], White [W9], Pengelley ([P3],
Stahl, [S7], and Bouchet [(Bl2]) The complete graph Kn
has a self-dual imbedding if and only if n = 0 or
1 (mod 4).

(Compare with Theorem 14-43.)
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We now outline the development of [W9]. Let the finite abelian

174y ,b2 roeee Ay ,bh} ,

where no generator has order 2. Take as the reduced constellation

group I  be generated by O = {al , b

(C')* (see Section 9-5) the normal form for S (h - 1) (as given

h
in Theorem 5-5): a regular polygon of 4h sides, with clockwise

-1 -1 -1 -1 , o
17 bl’ 1 bl R E R bh’ ay bh . Then (C')
has one vertex, 2h edges, and one region on Sh and satisfies the
KCL =~ since each current appears exactly once, on a loop, and ! is

boundary a a

abelian. Also, (C')* 1is an index one quotient manifold; see
Figure 14-6, for the case h = 2. (The condition that no generator
have order two ensures that property 4 (Theorem 9-10) holds; the
other four properties hold trivially here.) Then, by Theorems 9-11
and 9-13, and some routine calculation, (C')* determines an im-
bedding of Cﬂ(F) on S;;i(h—1)+1’
space - with no branching - over Sh' Moreover, the covering im-

which is a [i'|~fold covering

bedding has r = r ; and, in fact:

Figurc 14-6

Thm. 14-55. The map M(GA(F),V) constructed above is self-dual.



Sect., 14-7 Self-dual Maps 241

Thus for each h > 1, the normal form for Sh determines a
variety of self-dual imbeddinags of Cayley graphs (see Problem 14-18.)

This has many ramifications.

Thm. 14-56. TFor h > 1, there is a self-dual imbedding of some
graph G of order p on if and only

if p > 4h+l.

Sp (h-1) +1

Proof: (i) TFor the necessity, we let G be self-

dual imbedded on the euler equation

Sp(h-1) +17
(Theorem 5-14) gives g = 2ph < p(p-1)/2 and p >
4h+1.

(ii) Tor the sufficiency, choose [ = 2 and
A=141, 2, ... , 2h}; that is, a; = 2i-1, bi = 2i,
1 < i < h. Now apply the construction of Theorem 14-55,

Cor. 14-57. There is a self-dual imbedding of some graph G of

order p on the torus if and only if p > 5,

Thm. 14-58. The finite abelian group |' 1is self-dual (i.e. has a
self-dual imbedding for some G&(Y)) if there exists
L
a generating set A for [ of even order with the

-1
roperty that if ¢ € 4, then ¢ £ A,
P

Cor. 14-59, I = Zn (n ~ 1) is self-dual if and only if n > 4.
Thm, 14-60. If 4 divides m(n-1), then Kn(m) has a self-dual
imbedding.
Proof: Take [ = Zmn' with A* consisting of r

less all multiples of n; then {(since the multiples

of n induce the graph nKm, the complement of Kn(m))’
My =
GA(‘) Kn(m)'

even order; moreover, if mn/2 € I, mn/2 € A. Thus

Since 4 divides m(n-1), A has

the construction of Theorem 14-55 applies. #

Now Theorem 14-54 follows as an immediate corollary. For

additional corollaries, we have:
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Cor,

14-61.

cor.

14-62,

cor.,

14-63.

14-64.

Cor,

In [S11]

following:

14-65,

Thm.

(And, in

14-66.

Thm.

14-67.

Thm.

14-68.

Thm.,

Thm.,

into

case

Thm.
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Km n has a self-dual imbedding, for m - 0 (mod 4).

For n - 3 (mod 4), K has a self-dual imbedding

n {m})
if and only if m 1is even.

K has a self-dual imbedding if and only if m
m,m,m

is even.

The 1l-skeleton of the n-dimensional octahedron, Kn(2)’
has a self-dual imbedding for n odd.

Stahl (see also Bouchet [Bl2]) established the

If m-1 = n = 0 (mocd 4), then Kn(m) has a self-dual
imbedding.

[01] Quitté added:

If n = 0 (mod 8) and m = 2,3 (mod 4), then Kn(m)

has a self-dual imbedding. )

For n 7 1 {(mod 4), the complete maps constructed in
the proof of Theorem 14-35 are self-dual.

The fundamental group W(Sk), k > 1, has a self-dual
imbedding in the plane,

The finitely generated abelian group [ has a self-

dual imbedding if and only if T # Z, or Z3.

All of the self-dual imbeddings considered thus far have been

orientable surfaces. Stahl [S11l] considered the non-orientable

as well:

14-70.

The graph K n > 1, has a nonorientable self-

n(m)’
dual imbedding if any one of the following holds:

(1) m =0 (mod 4) and n > 2;
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(ii) m © 2 (mod 4) and n Z 2 (mod 4);
(i1i) m =1 and n @ 0 (mod 4), n # 4;

(iv) m 1 (mod 2), n # 2 (mod 4), n 1is not a power
of 2, and (m,n) # (1,3), (1,5), or (3,3).

Thm. 14-71. The fundamental group N(Nh), h > 1, has a self-dual

imbedding in the plane.

Thm. 14~72. The finitely generated abelian group | has a non-

orientable self-dual imbedding if and only if |T| > 6.

14-8. Paley Maps

The properties for graphs and maps we have been discussing are
symmetry properties; in the self-complementation or self-duality
case, the symmetry is external (G compares with G or G*
respectively ), while in the context of symmetrical maps, the
symmetry is internal (M = (G,p) compares with itself.)

In this section we attempt to tie these three properties
together.

First we recall, from Definition 3-3, that two permutation
groups (!,X) and (I'',X') are equivalent if there exist a bi-
jection B: X - X' and a group isomorphism ¢ : T - T'' such that,
for each x e€X and Yy €T, ¢o(v)(R(x)) = B(y(x)); that is
${(y)B = Ry, so that o¢(y) = BYB_l and ¢ is induced by B8,
which may be regarded as a relabelling. For example, (G(G), VI(G))
and (G(G), V(G )) are equivalent, with B as the identity
function, inducing ¢ as the identity function also. As a less

trivial example, if M = M(G,p) 1is a map, with dual map M* =

M(G*,p*), then (G(M), D*) and (g(M*), (D*)*) are equivalent,
under f: D* - (D*)* assigning, to each s ¢ D*, the unique

sS* ¢ (D*)* ‘'crossing' s (recall that D* = {(u,v)|uv € E(G)}).
However, (G(M), V{(G)) and (G(M*), V(G*)) need not be equivalent;

in fact, it is guite possible that |V(G)| # |V(G*)
We combine the symmetry properties of self-complementation,

.

self~duality, and symmetricality, and proceed with the development

as in [W13].
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Def. 14-73, The map M = M(G, ) 1is said to be strongly symmetric
if:

(1) G = G;
(11) G* = G;
(111) M 1s symmetrical
(iv) G{(M) and (M*) are equivalent, under
an anti-isomorphism . : V{(G) - VI{G¥*).
We need one preliminary result, before characterizing strongly

symmetric maps as to order; compare Theorem 14-33.

Thm. 14-74. (Jordan; see Burnside [B18, p. 1721) If (", X) is a
Frobenius group of degree n = |X| ~ 6 and order
n(n-1)/2 = |i'|, then n 1is a prime power.

Thm. 14-75. There exists a strongly symmetric map of order n if

and only if n 1s a prime power congruent to 1 (mod 8).

Proof: (A) Let M = M(G,:) be a strongly symmetric

map, with n = |V(G)| and e = !E(G)}. Since G is
self-complementary, e = %(;) = n{n-1)/4; thus n 0
or 1 (mod 4) - see also Theorem 14-43, But since M

is symmetrical, G 1s vertex~transitive (by Theorem
14~18) and hence regular of degree (n=-1}/2, so that
n 1 (mod 4), Now let M imbed G on Sk’ with £
regions, Since M 1is self-dual, f = n, and the euler
equation (Theorem 5-14) gives 2n -~ n(n-1)/4 = 2 - 2k,
so that n = 1 (mod 8). Since M 1is symmetrical,
| (M) | = 2]E(G)] = n(n-1)/2, and G(M) 1is a transi-
tive permutation group of order n(n-1)/2 and degree
n - 9. We show that G(M) 1is a Frobenius group and
then apply Theorem 14~74, to see that, in fact, n 1is
a prime power.,

S0, let ¢ EG(M), with u # v € V(G) such that
{u) = u and u{v) = v, If uv € E(G), then a 1is
the identity permutation, by Lemma 14-14. If uv & E(G),
then we apply the anti-isomorphism (1 giving G (M)
equivalent to G(M*). Then ¢ 1induces an isomorphism

; between G(M) and (G(M*), so that 4 (u) = ﬁwG—l.
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Thus (o)) (1 (u)) = :n“—l(ﬁ(u)) = Fu(u) = #(u);
similarly, < (.) also fixed {(v)., But, since & 1is
an anti-isomorphism and uv g E(G), 3{u)p(v) € E(G*).
Hlence, by Lemma 14-14 again, ¢(x) 1is the identity in
1 {M*); but since ¢ 1is a group isomorphism, & 1s the

identity in ¢ (M) and (M) 1is a Frobenius group.

(B) For the converse, let n = pr 1 (mod 8), p a
prime and r ¢ N. We construct a Cayley graph

G = 6, (i), where ' = (Z )r - the additive group
n A, D n p

in the Galois field GF(pr). Take X as a primitive
element for GF(pr), so that x generates the multi-

= {l,xz,x4,...,xn_3}, the

plicative group, and let "k

*
set of all squares 1in GF (pf}. (Equivalently, uv € E(Gn)
if and only if v - u 1is a sguare in GF(Pr).) The
Cayley graph Gn is called a Payley graph (see (P11},
where the ideas behind this construction were intro-
duced.) We remark that Paley graphs are defined for
all prime powers pr 1 {mod 4), since these are pre-
cisely the cases for which -1 1is a square - so that
undirected edges are well-defined; but only in the case
pr Z 1 (mod 8) are self-dual imbeddings possible.

Next we define £t A; > A; by rn(ﬁ) = xzﬁ, [{e}
that Mn = M(In,ﬁn,rn) is a Cayley map- which we now

call a Paley map; T induces vertex rotations
) _ .2
uv(w) = x“(w-v) + v,

in accordance with Definition 14-23; and the permutation

;n: fk > b*,  given by

- . 2
rn(y‘y) = =X (S,

in accordance with the remarks preceeding Theorem 14-28.

We observe that Paley maps are in fact defined for all

n = pr 1 (mod 4), but we continue to specialize to the
case n = pr =1 (mod 8). We claim that, for n =

r - _ o .
p- = 1 (mod 8), the Paley map Mn = M(In,An,rn) is

strongly symmetric.
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(i) Thc permutation {i: (Zp)r -+ (Zp)r given by
B(v) = xv 1s an anti-automorphism for Gn - since w =
u + x2k if and only if §#(w) = xw = x(u + x2k) =
Xu + x2k+1 = f{u) + X2k+1; note the use of the distri-

putive law in the field GF(p") - so that G, is self-
complementary.

We remark that Paley graphs, being Cayley graphs of
odd order, not only have a 2-factor (as required by
Theorem 14-46), but in fact are 2-factorable (the edge
set partitons into 2-factors); see Problem 4-14. We
also observe that the anti-automorphism £ has exactly
one fixed point (the vertex 0) and one orbit of length

n-1320 (mod 4), as required by Theorem 14-44,

(ii) To show that M(Gn,p) is a self-dual map,

we study the corresponding imbedding of Gn into Sk’

where n = pr =8m + 1 and k = 8m2—7m, for m =
1, 2, 3, 5, 6, 9, ... . This imbedding is an (8m+1l)-
fold covering space (no branching) of a voltage graph

imbedding which is the following alternative normal form
-1 -1 -1
for Sm. dp85-eray @) 8, e ea,

n = 8m+l, h = m are consistent with Theorem 14-56

a . {(Note that the values
and that Theorem 14-69 is also illustrated by this con-

struction.) The 2m directed edges bounding this 4m-

gon are labelled with generators from An ‘by the

assignment aj |- X(l'l)(4m-2)'

1 <1 < 2m, This
assignment describes each region boundary (and each
vertex rotation) in the covering space, the map (Gn,p),
by the voltage graph theory; in particular, the single
4m-gon below lifts to 8m+1 4m-gons above.

Figure 10-3 (letting b in Figure 10-2 be 1,

-a = x2) depicts the entire situation for m = 1,

using x° = 2x + 1 in GF(9): a | 1 =01, a,b x* =2%

x = 10; for just the voltage graph for the case m = 2,

replace the labels in Figure 14-6 with: 1, x6, xlz, x2,
6 12 2

-1, -x°, -x~°, -x",

We now utilize a method introduced by Bouchet [Bl2]
for showing self-~duality. Each region in the covering
space imbedding has a unique 1ift of the directed edge

a, from the normal-form voltage graph in its boundary;



Sect.

14-8

Paley Maps 247

this lift is a side (g,g+l} 1in Gn' where g is
uniquely determined for that region; label the region
with g*, It is now routine to check that, for each

g ¢ (zp)r, the region g* (g* ¢ V(G¥)) has neighbors
N(g*) = {(grw(-x*)")* | 0 < k < 4m-1} in GX, where

w = (l—x2)/(l+x2). In fact, the dual is a Cayley map

2 )
* = ' A * = -
Mn Mn(Jn P WAL r;), where rn(w ) x“wé(S € An),

rg being taken in the sense opposite to that of ro-

Thus if w 1s a square in GF(pr), then G; = Gn' Oon
the other hand, if w 1is a non-square, then GS = En =
G_ .
n

(1ii) Using the distributive law in GF(n) again,

we readily see that the permutation ro of A; extends

to a group automorphism of [ = (Zp)r; thus Theorem

n
14-27 applies, to show that Mn(rn,An,rn) is a sym-
metrical map. In fact, G(Mn) is a Frobenius group
with Frobenius kernel the regular normal subgroup
{yq: In - In’ yg(h) =g+h | g € Tn = V(Gn)} = In and
Frobenius complement the cyclic group stablizing the

vertex 0, generated by the automorphism Lo extending

£, ty(h) = x°h. (See Theorems 14-32 and 14-15.) The

other vertex stabilizers are conjugate, with (G(Mn))
-1

generated by ¢ _ = YgCOYg . Of course, lG(Mn)[ =

[rplta | = 2[E(G ) |. Finally; we emphasize that G (M)

contains a subgroup isomorphic with Fn’ as required
by Theorem 14-24, this subgroup must be proper, in
G(Gn), by Theorem 14-48,

(iv) If w = (l—xz)/(l+x2) is a non-square, then
the anti-isomorphism {: V(Gn) > V(G;) given by
G(g) = g* gives an equivalence between (HMn) and
(HM;), since if u* = Buﬁ_l, where o is one of the
generating automorphisms o or Yg (G € Fn) of G(Mn),
one readily checks that a* preserves oriented region
boundaries in Mﬁ' If, however, w € An’ then we take
B(g) = (xg)*, to again see that G(Mn) and G(Mg) are

equivalent, under an anti-isomorphism f3. #
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y = (U A
The Paley maps Mn (An, 5h

tional properties of interest, We use the following facts about

Galois fields, taken from Storer [S17].

, rn) constructcd above have addi-

Thm, 14-76. Let x be a primitive eclecment for GF(pr), where
pr = 2f+1 and f 1is even. Let (i,3) denote the
number of ordered pairs (s,t) such that X25+1 + 1 =
x2t+j, 0 <s, t < £f-1; then:
(i) (0,0) = (f-2)/2;
(ii) (0,1) = (1,0) = (1,1) = £/2.

Thm, 14-77, For n = 4m+l, the Paley graph Gn is strongly regular,

with parameters péz =m and Psy = m-1,

Proof: From n = 4m+l = 2f+1, we find £ = 2m. From
Theorem 14-76 (i) we see that (0,0 = (£-2}/2 = m-1.
Now clearly xzs+l = xzt if and only if x25+2k+x2k =
x2t+2k; it follows that pgz = m-1 for Gn' Similarly,

we use Theorem 14-76 (ii) to deduce that péz =
(1,1y = £/2 = m. #

This result overlaps with the next:

Thm. 14-78. If G 1is self-complementary and has a symmetrical map,

then G is strongly regular.

Proof: 1In fact, for any graph G having a symmetrical
map M, since G(M) 1is transitive on edges and
G(M) < G(G) r

complementary, then G(G) 1is transitive on non-edges

pgz is well-defined. But if G 1is self-

also, so that péz is well-defined too, #
Thus the Paley graphs Gn’ for n = pr = 1 (mod 8), are candi-
dates for determining association classes for PBIBDs, and in fact
the Paley maps give such designs:
Thm, 14-79, Let x be a primitive element for GF(n), where n==pr;
the Paley map Mn’ for n = 8m+l, yields an

(8m+1, 8m+1,4m, 4m; A kz)—PBIBD, where A, = 2m and

1’ 1
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5 = 2m-1  1if x2+1 is a square in GF{n), while
= 2m~1 and o = 2m  1f x2+1 is a non-sguare.
Proof: See Problem 14-20. #

It can be shown that, in a Paley map, either each region boun~
ary consists of neighbors N{(v), v € (Zp)r, or each region boundary
consists of neighbors in the complementary graph, so that the designs
constructed above also exist in a natural, topology~-free, context.
The topological context, however, does facilitate the next observa-
tion: these designs are also self-dual, in a very strong sense. The
dual of a design has as its objects the blocks of the original
design, and a block in the dual design contains all those objects of
the dual design which represent blocks of the original design to

which one fixed object of the original design belongs.

Thm, 14-80, Given a Paley map, the dual of the design of the map
and the design of the dual of the map coincide, and both

are isomorphic to the design of the Paley map itself.
Proof: See Problem 14-21. #

We make several additional comments relevant to Theorem 14-75,
Firstly, we observe that self-dual imbeddings of self-complementary
graphs need not be unigue for a given order. Moreover, the order
need not be a prime power. (We are temporarily relinquishing the
symmetricality condition for strongly symmetric maps.) For the first
example, take A= {5;1,6,11,16,21} in | = Z25’__ES that GA(F)
is the composition C5[C5]. Since Co = Cq and G[H] = G[H] in
general (see Problem 2-5), CS[CS] is self-complementary. A self~
dual imbedding is constructed by the use of Theorem 14-55, Since

C5[C5] is not strongly regular, the map M 1s not symmetrical, by

Theorem 14-78; thus M differs from the Paley map M25 of the
same order. In fact, aMm) =1 = 255 and is equivalent to G(M¥)
(both are Frobenius groups) under the anti~-isomorphism ((g) = (2g)*,

(Every map M of a Cayley graph GA(T) covering a normal-form
voltage graph has T = I'* < G{M); 1in this case the fact that there
are no additional automorphisms follows from the observation that
each region boundary contains repeated vertices.) We mention that

Theorem 14-55 also provides a self~dual imbedding, but not a



250 Map Automorphism Groups Chapt. 14

symmetrical map, for the Paley graph G25.

For the second example, we take & = {13:;5,20,15;1,4,16;3,12,-17;
7,28,-18;11,-21,-19}; in . = Z65; L{g) = 29 gives an anti-auto-
morphism, so that G, (1) is self-complementary. Again a self-dual

imbedding is constructed by Theorem 14-55, and again the map fails
to be symmetrical, by Theorem 14-78. Again, G(M) and G(M*) are
equivalent under the anti-isomorphism (g} = (2g)}*, and both are
Frobenius groups isomorphic to [ = 265' The non-prime-power order
is possible, because the automorphism group is not large enough for
the Jordan theorem (Theorem 14-74) to apply.

Next we present another sufficient condition to give prime-

power order (see Problem 14-22,)

Thm. 14-81. Let G be strongly regular (with péz = 2m, pgz = 2m-1),
M = {(G,u) a symmetrical map yielding an
(8m+1,8m+l,4m, 4m;2m~1,2m)-PBIBD, ‘'then |V(G)| = 8m+l
is a prime power.
We remark that, for the Paley graphs Gn(n = pr 1 (mod 4)),
an) consists not only of the map automorphisms G(Mn) as in (iii)
of the proof of Theorem 14-75, but also of the field automorphisms,
generated by 9 : (Zp)r > (Zp)r, 0(g) = gp; in fact, G(Gn) =
(GM), 0 ):

Thm. 14-82. (Carlitz [C3]) The automorphism group of the Paley

s
graph G is G(G)) = {g {-»xzkgp +a |0 < k < 4m-1,

r
0 <« s <r-1, a € (2 ) }.

- p
We use this result to study the reflexibility of the Paley maps.

Def. 14-83. If a map M 1is symmetric but not reflexible, we say

that M 1is chiral.

Thm. 14-84 . The Paley map Mn is reflexible if and only if n = 9;
thus Mn is chiral if and only if n # 9.

Proof: If Mn is reflexible, with n = pr, then we

S

p

must have r = 2s and Os(g) =g giving a reflection

Since n®  fixes both 0 and 1, we must have
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s 2s 2s
28x?) = x%P = %P 73 (since o a,x%, ..., xF 73
2s

Thus p -3 = 2ps, so that p divides 3; hence

X

p=3 and s =1 (or else 3 divides 1); that is,

n =9,
Conversely, f(g) = g3 is readily seen to be a
reflection for M9; refer to Figure 10-3. #

As we have seen, the Paley maps - defined for prime powers con-
gruent to 1 (mod 8) -~ have several interesting properties: they
are regular (symmetrical), self-dual imbeddings of strongly regular,
self-complementary graphs which produce self-dual block designs,
for example. Now we see how closely we can approximate these pro-
perties by similar maps, for all other prime power orders.

For pr = 5 (mod 8), the Paley graphs Gn are defined, and are
both self-complementary and strongly regular, as before., The euler
equation disallows self-dual surface imbeddings, so we utilize
pseudosurfaces. Again we use a normal-form voltage graph but, for
n = 8m+5, it is a {4m+2)-gon and thus has two vertices; see Figure

14-7 for the case m = 1, The (8m+5)-fold covering imbedding has

Figure 14-7,

16m+10 vertices, each of degree 2m+l. For each g € GF{n), we
identify the two vertices (a,g) and (b,g); the result is a sym-
metrical, self-dual pseudosurface imbedding of Gn' for m>0,

(Gg = Cg consists of five disjoint loops. For the pseudosurface
theory of voltage graphs, see Garman [Gl].,) In fact, the map is a

. 4 .
Cayley map M(Tn,An,rn), with rod A; > A;, rn(é) = x , having
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. , 4 .
two cycles. The dual G* is ¢ 1if w = (1—x4)/(]+x } is a syuare,
or G 1if w 1is a non-square. The automorphism group is Frobenius,
with Frobenius kernel = (Zp)r. The stablizier of vertex 0 1is

gencrated by gl ng, which alternates between the two orbits of
the vertex rotation at 0. An  (8m+5,8m+5,4m+2,4m+2;2m, 2m+1)-PBIBD
results if 1+x4 is non-sguare; otherwise, the two - wvalues inter-
change.

For pr 3 (mod 4), the Paley graphs Gn are no longer de-
fined, since -1 = x2m+1 (pr = 4m+3) is not a squarc, Instead, we
define the Paley tournament Tn, by: (gl,gz) c E(Tn) if and only
if 9, - 9, is a square in GF(n); of course, we still take
— (Zp)r as our vertex set. Then g, # g9, gives
\{191,92), (gzrgl)} fiE(Tn)l = 1, so that we do have a tournament.
The underlying undirected graph is thus complete, and hence degener-
ately "strongly regular." The Paley tournaments are self-converse,

under the anti-automorphism : g

- %xg. In Biggs [B9] we find sym-

metrical imbeddings of the associated K having B8m+6 regions,

4m+3
cach of length 2m+l; these are Caylcy maps M(l'n Co={0t, rn),
7

where rn(g) = xg. Thus the imbeddings cannot be scl?—dual directly,
although the dual is bichromatic. Hence we obtain one

(4m+3,8m+6,4m+2,2m+1,2m)-BIBD and two (4m+3,4m+3,2m+1,2m+1,m)-BIBDs.
(The latter are Hadamard designs.) We now modify this map to form a

self-dual pseudosurface imbedding of Each region contains

K .
4m+3r
exactly one edge corresponding to 1 € (Zp) , 1n one of the two

possible senses (clockwise or counterclockwise.) In fact, this

distinction determines the 2-coloring of the dual. The region is

assigned label g* (g & (Zp)r) if either: (1) (g,g+1) bounds the
region in the clockwise sense, or (ii) (g-a,g-a-1) bounds the
region in the clockwise sense, where a = 2/(x2m—1). Thus each g

appcars exactly twice as a region label, and if these n pairs of
vertices in the dual are identified, we obtain a self-dual pseudo-
surface imbedding of K4m+3. Moreover, if the edge directions are
carried over into the dual, then we have a self-dual imbedding of
the self-converse tournament Tn’ with each vertex neighborhood
N(g*) partitioned into two sets (corresponding to the g* identi-
fication}): one consists of those vertices dominated by g*, the
other consists of those dominating g¥*.

Finally, we consider p = 2, so that pr = 2. Here not even

. 27=-1 .
1 is a square (1 = x ) in GF(2Y), so our previous
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constructions seem not to apply. However, if we use the planar
voltage graph of Figure 14-8, with n = 2r, we obtain an n-fold
covering imbedding of a 2-fold Kn, with n (n-1)-gons and {2]
digons. If each digon is closed (by identifying its two edges), a
symmetrical, self-dual imbedding of the "strongly regular" Krl (self-
complementary in the 2-fold Kn) results, (In fact, r; =r, for
this case.) The concomitant design is an (n,n,n-1,n-1,n-2)-BIBD
which, of course, can also be constructed by taking complements of

singletons as blocks.

Figure 14-8

We close this lengthy section by discussing conditions under
which the Paley maps are, in some sense, unique. Self-duality,
strong regularity, and designs do not enter into the characteriza-
tions given, but as it is Paley maps being characterized, these ad-
ditional properties persist - except that self-duality fails for
n i 5 (mod 8). For proofs of the following two theorems, refer to

[W13] or to Section 14-9.

Thm. 14-85. If M = (G,p) 1is vertex—~transitive and if (G(M), V(G))
is self-equivalent under an anti-automorphism § of G,
then M 1is isomorphic to a Cayley map M(!',A,r), where
1] = 1v@], [ax] =qvier |- 1)/2.

Thm. 14-86, There exists a symmetrical imbedding of a self-comple-

mentary graph G of order n, with (G(M), V(G))
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self-equivalent under an anti-automorphism & of G,
if and only if n is a prime power congruent to
1 (mod 4). Moreover, if 62 ¢ (M), the maps are

essentially unique, with at most six exceptions.

Cor, 14-87. For each prime p 1 (mod 4), there exists a unique
symmetrical imbedding of a self-complementary graph

G of order p having G(M) = G(G).

Proof: The Paley maps give existence. But if G(M)

= G(G), then Hz and BuB-l (for each o ¢ (M)

and where £ 1is an anti~automorphism of G) are both
in G(M), so that Theorem 14-86 (and its proof) show

that M is a Paley map. #

The strength of this uniqueness claim is illustrated by
Theorem 14-45: the Paley maps of orders 13 and 17, for example,
are unique among 5,600 and 11,220,000 self-complementary graphs

respectively, with respect to being symmetrical, with G(M) = G(G).

Cor. 14-88. If there exists a symmetrical imbedding of a self-
complementary graph G of order n, with G(M) =G(G),
then (with at most six exceptions) n 1is a prime con-

gruent to 1 (mod 4).

Proof: As in the proof of Corollary 14-87, we find by
Theorem 14-86 that n 1is a prime power congruent to

1 (mod 4); moreover, the maps (with at most six excep-
tions) are unique and thus are Paley maps. But if

n = pr with r » 1, then G(M) 1is a proper subgroup
of G(G), Dby Theorem 14-82; thus r =1, and n is

prime, #

14-9., Problems

14-1.) Show that IR(G)] = 1 (ni—l)!
i=1

14-2,) Prove Theorem 14-5,
14-3.) Show that G(M) = A4, for M as in Figure 14-2.-
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14-4.)

14-5.}
14-6,)
14-7.)
14-8.)

14-10.)

*
14-11.)
14-12.)
14-13,)
14-14.)
14-15,)

*
14-16.)

14-17.)

*
14-18.)
14-19.)

*
14-20.)

Prove that the following are equivalent, for a map
M= (G, ):
(1) M 1is reflexible;
(ii) M and its mirror image M are equivalent;
(111) there exists an « € G(G) such that, for all

v € V(G), = up;la_l.

D“(V)
Show that the map of Figure 10-3 is reflexible,
Prove Theorem 14-13.

Verify the entries in Table 14-2,
Show that |G*(M)| divides 4]|E(G)

. (See Theorem 5-25,)
Thus a nonorientable map M 1is defined to be symmetrical
if |a* M) | = 4[E(G)

obvious way to imbed K¢ in Nl' is the resulting map

. If we augment Figure 8-7(a) in the

symmetrical?

Prove or disprove: If G 1is a strongly regular graph,
then there exists a rotation o for G so that M = (G,p)
is aregular map. (Hint: consider the Petersen graph.)

Let M be the imbedding of K on S given in Example

5 1
la of Section 10-3. Show that M 1is symmetrical (i.e.
|G(M) | = 20), but not reflexible (i.e. M 1is chiral.)

Show that the corresponding design D (Example 1 of

Section 12-3) has automorphism group G(D) = 55. Does

this contradict Theorem 14-13?

Prove Theorem 14-36.

Prove Theorem 14-37.

Prove Theorem 14-38,

Prove Theorem 14-39.

Show that M(Zg,{1,2,4}, (1,2,4,8,7,5)) is a symmetrical
YKy 3 5,60 =7

have a symmetrical

map for Use this map to show that

K3(3).
For what other values of n does K3(n)
map?

Let map M* = M(G*,p*) be dual to map M = M(G,p). Find
a description of p*, in terms of p and : D* - D¥*,
where D* = {(u,v)]|uv € E(G)} and (u,v) = (v,u). (See
Biggs [B10].

Prove Theorem 14-55.

Show that YM(Gn) = (n-1) (n-4) /8, where Gn is the Paley
graph of order n = pr = 1 (mod 8.)

Prove Theorem 14-79.
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*
14-21.)
14-22,)
*
14-23.)
*
14-24.)

Prove
Prove
Prove

Prove

Map Automorphism Group

Theorem
Theorem
Theorem

Theorem

14-80.
14-81.
14-85.
14-86.

Chapt.

14
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CHAPTER 15

CHANGE RINGING

The ancient and continuing art of change ringing, or campanology
{how the British ring church bells), is here studied from a mathema-
tical viewpoint. An "extent" on n bells is regarded as a hamilton-
ian cycle in a Cayley color graph for the symmetric group Sn’ im-
bedded on an appropriate surface. Thus - perhaps surprisingly -
graphs, groups, and surfaces combine to model something musical,

After making this model explicit, we discuss two ringing methods

for variable n (Plain Bob for all n and Grandsire for n 3
(mod 4)); and a new method for n odd is introduced. All minimus
methods (n = 4) and five doubles methods (n = 5) are depicted,

one of these being the new "No Call" Doubles.

The material here also appears in [W14].

15-1, Definitions

In the science of change ringing (sometimes called campanology),
the central problem is to ring a full extent on n bells. We de-
signate the n bells by the natural numbers 1, 2, ... , n,

arranged in order of descending pitch,

Def, 15-1, Bell 1 1is called the treble, bell n the tenor. Each
ringing of the n bells, once each in some order, is
called a change; the svecial change 1, 2, ... , n 1is

called rounds., An extent consists of n! + 1 successive

changes, satisfying:

(i) the first and last change are both rounds;
(1ii) no other change is repeated (so that each possible
change other than rounds is rung exactly once);
(iii) from one change to the next, no bell moves more
than one position in its order of ringing (posi-

tions 1 and n are not adjacent, unless n = 2);
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(iv) no bell rests in the same position for more than
two successive changes;

(v) each bell (except perhaps the treble) does the
same amount of "work" (hunting, plain hunting,
dodging, etc.);

(vi) the method employed is palindromic, or self-re-
versing (this will be made more precise in
Section 15.2.)

Conditions (iv) and (v) are occasionally relaxed in practice,
but the other conditions appear to be inviolable.

I venture to guess that rule (i) is for musicality, rule (ii)
for thoroughness, rule (iii) for mechanical considerations (dealing
with how the bells are hung and rung), rules (iv) and (v) to keep the
performance interesting for the ringers, and rule (vi) to ease the
memory burden for the ringers.

Typically the number of bells is in the range 3 < n < 12, with
names assigned to the extents as in Table 15-1, The odd-bell names
reflect the maximum number of pairs of bells that could be exchanged,

in their order or ringing.

n name n! + 1

3 Singles 7
4 Minimus 25
5 Doubles 121
6 Minor 721
7 Triples 5,041
8 Major 40,321
9 Caters 362,881
10 Royal 3,628,801
11 Cinques 39,916,801
12 Maximus 479,001,601

Table 15~1

As an extent of Major takes approximately eighteen hours to
ring (the ringers are allowed no visual aids to memory, so this must

surely rank as one of the "major" physical and intellectual feats of
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mankind), extents on more than eight bells are clearly beyond the
limits of human endurance; even on eight bells they are extremely
rare. Much more tractable, an extent of triples requires under three
hours of concentrated ringing. For this reason peals are often

attempted, and often succeed; a peal consists of at least 5000 and,

for 5 < n < 7, exactly 5041 successive changes satisfying rules
(i) through (vi) above (but not (ii), if n < 7.) For n < 7, a
peal consists of several extents strung together; for n =7 a

peal is an extent; and for n » 7, a peal is a partial extent. If

tower bells are being rung, then each ringer operates one bell (a
huge amount of practice is required for the beginner to learn to
ring his or her bell even individually, let alone in rounds with the
other bells, let alone through all the changes of a peal or an
extent); if handbells are employed, then each ringer rings two bells.
There 1is also a bell-ringing machine (designed and constructed by
John Carter, a gunsmith and bell-ringer, and currently on loan to
the Science Museum in London); it mechanically rings twelve hand
bells suspended in a cabinet, after being "programmed" for method.

As generally an even number of bells is provided, for the odd
bell methods a "covering® bell - always the tenor - rings last in
every change, in forgiven violation of rules (iv) and (v). It might
even be argued that the stability and regularity thus produced is
musically pleasing.

Change ringing, as described above, began in England in the
middle of the seventeenth century and remains almost exclusively a
British art. Today there are over five thousand bell towers in
Great Britain, about a half dozen in Canada and a dozen in the
United States, and perhaps twice that in Australia. On July 27 and
28, 1963, the first extent of Plain Bob Major was successfully rung
on tower bells at the Loughborough Bell Foundry in England. On
December 27 and 28, 1977, the same extent was accomplished on hand-
bells in a private home in Farnham, Surrey, England.

Change ringing has been popularized, to an extent, by Dorothy

Sayers in her novel The Nine Tailors [S4] and, more recently, as

part of the festivities at the Royal Wedding of Prince Charles and
Princess Diana. Only recently have mathematicians begun to study
change ringing from their vantage point, although curiously the
early composers of peals and extents were doing coset decomposition

in symmetric groups a full century before Lagrange. The reader could
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consult works by Rankin [R2], Fletcher [F1], Dickinson [D2], Price
[P7], Budden [B17], and White [W1l0]. For more on the history and
practice of change ringing, the reader should seek out Wilson [W17],
Camp [C2], and the weekly publication "The Ringing World" (published
in Guildford, Surrey, England.)

15-2. Notation

It would be easy to confuse the number of a given bell with the
number of the position it occupies in a particular change. To avoid
this confusion we regard each change as a function from the set of
n positions to the set of n bells, so that domain elements de-
scribe positions and range elements describe bells. Thus a change
f, recorded as f(1l), £(2), ... , f(n), would indicate that bell
f(1) is to be rung first, bell f£f(2) second, and so on. Rounds
is given by r(i) =1, 1 < 1 < n, In order to satisfy condition
(iii) of Section 1, we describe a potential transition from one
change to the next by a permutation on the set of n positions
which either fixes a given position or interchanges it with an
adjacent position. Conversely, each transition satisfying (iii)
is of this type. Thus each transition is represented by an involu-
tion (that is, by a product of disjoint transpositions) in the sym-
metric group Sn. Now let t(n) give the number of possible transi-

tions for n bells, and let F{n) give the nth Fibonacci number

(where F(0) = F(l) = 1); then we have the following well-known
result:
Thm, 15-2. For n > 2, t(n) = F(n) - 1.
Proof: It is easy to verify that <t (2) =1 and that
t(3) = 2, so we assume the result for n < k and con-

sider t(k), k > 4. Since there are t(k-1) allowable
transitions fixing position k, t(k~2) allowable transi-
tions exchanging positions k and k - 1 and at least
one other pair, and the single transposition (k-1,k),

we have:
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t(k) = t(k - 1) + £t(k - 2) + 1
=F(k - 1) =1+ F(k -2) -1+ 1
= F(k) -1
#
Now, if dl ,d2 PRI ’dk represent the first k transitions
in an extent, then the (k+1)st change is the function rd1d2...dk,
where - in accordance with the standard notation for function compo-

sition -~ we take products in Sn from right to left. Let & be
any collection of generating involutions for 8, (if A does not
gencrate S , then condition (ii) fails) and form the Cayley color

graph CG{Sn); then we have the immediate but absolutely central

result:

Thm, 15-3. An "extent" on n bells, satisfying conditions (i)~
(1ii) and using transition rules from & , can be
rung if and only if C&(Sn) is hamiltonian.

Since each d € & has order two, C,(S.) has no directed

edges by convention (see, for example, White [W10]): hence
hamiltonian cycles in CA(Sn) coincide with those in the underlying
Cayley graph GA(Sn)' We retain the edge colors of CA(Sn)’ how-
ever, as they are valuable in constructing the extent itself from
the hamiltonian cycle and in checking the palindromic condition (vi).
Each method is based upon a principle, which usually (but not always)
consists of 2n changes. The word in 5, describing the 2n -1
juxtaposed transitions of the principle should be a palindrome:
d1d2'"dn—ldndn—l"‘d2d1'
These ideas are illustrated in Figure 5-1, with 4 = {(12),(23)}
for the case n = 3., The hamiltonian cycle and the extent it gives
rise to shown in Table 15-2 describe the interior clockwise region
boundary of the spherical imbedding of CA(S3) depicted. The
extent is called "quick six"; the clockwise boundary of the exterior
region produces "slow six", the only other extent possible on 3
bells, (Not surprisingly, "slow six"” is just "quick six" in the
opposite order,) If we let a = {(12) (denoted by solid edges) and
b = (23) (denoted by dashed edges), then "quick six" is completely
described by the identity word (ab)3 in 85 and "slow six" by
(ba)3. In the former case the relevant palindrome is ababa; in

the latter it is babab.
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end V(123)

(132)Q-====~ (13)

Pigure 15-1

hamiltonian cycle change range of change
I rI =1 1,2,3
(12) r(l2) 2,1,3
(123) r(123) 2,3,1
(13) r(13) 3,2,1
(132) r(l132) 3,1,2
(23) r(23) 1,3,2
I r 1,2,3
Table 15-2

15-3. General Theory

In [R4], Rapaport provided an inductive construction, to esta-
blish the following:

Thm. 15-4, Let & = {(12),(12)(34)(56)...,(23) (45)(67)...} for Sn;

then C[(Sn) is hamiltonian.
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In [W10], we required only conditions (i), (ii), and (iii) for
an extent, and gave the following two ramifications of the Rapaport

construction:

Thm. 15-5, An extent on n bells exists, for all n. Moreover,

only three transition rules are required.

Thm. 15-6, For n odd an extent exists which also satisfies condi-
tion (iv) at all but position n, where (at the worst)

no bell rests for more than four successive changes.

In [W10] we also displayed an imbedding of CA(S4), for
Rapaport's 4, in the projective plane. (This is essentially
Figure 15-2 below.) In this imbedding the three left cosets of D,
in 5, bound regions which link together nicely to trace out the
hamiltonian cycle giving the extent, in extension of the idea behind
Figure 15-1. This suggests the efficacy of picturing extents on
surfaces, and as we naturally wish to do this as efficiently as

possible, we make the following definition:

Def. 15-7. The characteristic ¢of an extent (on n bells, with

transition rules A) is the maximum characteristic of

all surface imbeddings for CA(Sn)'

As certain transition rules (the "calls" -~ so called because
the conductor calls them at the appropriate time, while all other

transitions are trusted to the memory of the ringers - known as

"bobs" and "singles") are used infrequently in a particular extent
(a single is perhapsemployed only twice among the n! transitions,

for example) we take A to include only the other generators for
Sn; this has the effect of avoiding unnecessary clutter in CA(Sn)‘
Thus, in the event that A does not generate Sn' a characteristic
imbedding of an extent may be on a disconnected surface.

For example, the Rapaport A = {a,b,c} (where a = (12),
b = (12) {34) (56)..., and c¢ = (23) (45)(67)...) for 5, (n > 5)
involves no "call" generators and the relators (ab)2, (ac)6, and
(bc)n bound regions for an imbedding (orientable if and only if
n = 3 (mod 4)) of CA(Sn) of characteristic (n-1)!(3~n)/6, which
is thus a lower bound for the characteristic of the extent. Or, the

single relator (abc)n_1 can be taken to bound regions for an
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orientable imbedding of C.(Sn] of characteristic n{(n-2)!(3-n)/2,
but this is less efficient. Note that / does generate S , as a

n
and bc are known to do so; see Coxeter and Moscr [CM1, p. 63].

For n = 4, the imbedding in the projective plane cannot be 1lmproved
(as cf(s4) contains a homeomorph of K3’3), so that the character-
istic of this extent is exactly onec.

We now consider = !b,c,d! , where b = (12)(34)(56}...,
c = (23)(45)(67)..., and d = (34)(56)(78)..., for the various
Plain Bob extents on n bells. Here the hunting group generated by
b and c¢ 1is always D, (as can be seen from its action on a
regular n-gon with vertices labeled, in order, 1,2,4,6 , ...,

7,5,3), giving a block of 2n changes. The generator d is used

to link n - 1 of these blocks together, to give a "touch" of
2n{n-1} changes. Finally, for n > 5, the call generators (the
bob ¢ = (23)(56)(78)... and, for n > 6, the single f =

(56) (78)...) are added to produce the full n! + 1 changes of
extent. Here the relators (bc)n, (bd)z, and (cd)n_l bound

regions for an always nonorientable imbedding of Cf(sn) of
characteristic -(n-2)!(n2 - 5n + 2)/4; this is fof n » 4. This
appears to be the most useful imbedding for Plain Bob extents, as
the relator (bc)n exactly portrays the principle embodied in the

hunting group, and replicated in the left cosets of that group.

Again we note that / generates Sn’ as bc and bd are known to
do so,

Next consider /= 1{b,c,g}, where Db = (12)(34)(56)...,
c = (23) (45)(67)..., and g = (12)(45)(67)... for the various
Grandsire extents on n {odd) bells. Here we see that (a,c) =

D, and g 1is used as a linking permutation. The bob for Grandsire
is constructed from &4 , but the single is the new h =

(45) (67) (89)... . To see that CA(Sn) is connected (for n 3
(mod 4)), we observe that gc = (123) and that conjugating
alternately by b and g (and then taking inverses) produces
i(12k) |3 < k “ n}; this is known [CM1, p, 66] to generate An'
But then (An,g) = Sn' We use the relators (gc)3,(gb)n—2, and
(cb)n (the latter is used in the principle for Grandsire) to bound
regions for an imbedding of CA(Sn) (orientable for n 3 (mod 4),
nonorientable and in two components for n 1 (mod 4)) of character-
istic -(n - 1)(n - 3)1(n® = Sn + 3)/3. For n - 1 (mod 4) the

single h 1is odd, so that (An,h) =5 -
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Finally, we endeavor to improve on the Rapaport generating set,
so as to satisfy condition (iv) universally. Her construction is

based upon the following lemmas

Lemma 15-8: A connected graph regular of degree three has a
hamiltonian cycle if there is a set P of polygons
and a set Q of squares, each set partitioning the
vertex set of the graph and such that no member of P

contains every vertex of a member of Q.

For the Rapaport ~ = {a,b,c}, where a = (12), b =
(12) (34) (56) ..., and c= (23)(45){(67)..., the set P 1is composed
of nt/1l2 1l2-gons (ac)6 (or, we could use (n-1)!/2 2n-gons
(bc)n) and the set Q consists of n!'/4 squares (ab)z. The
Rapaport construction of a hamiltonian cycle uses b edges to
combine 12-gons from P (or a edges to combine 2n-gons from
P); thus the cycle consists of partial words (ac)kb(ca)h (or
(bc)ka(cb)h) and we see that condition (iv) is uniformly satis-
fied, if n 1is odd. This strengthens Theorem 15-6.

If we modify & to s' = {d,b,c} as in Plain Bob (so that
d = {34) (56){78}..., instead of (12)), then Lemma 15-8 still
applies, to show that CA(Sn) is hamiltonian (it is clear that A!
generates Sn' since 4 does.) But now the hamiltonian cycle
found by Rapaport always involves ..,.cdc..., which fixes the bell
in position one unduly. '

To retain the constant movement of Plain Bob (that is, to avoid

the "stagnation" of Rapaport's a = (12), which fixes n - 2 bells)

but to avoid the dawdling in position one, we now try A" = {b,c,h},
where h = (45)(67)(89)..., and where n = 2m - 1 1is odd. We
first check that A"™ generates S, = (ch, (bc)zm_B) {this
argument fails if n 1s even.) Lemma 15-8 then applies, with P

determined by (say) (bc)n and Q by (ch)z. Then we obtalin a
hamiltonian cycle in which b alternates throughout; as b moves
every position but the last, which is moved by both ¢ and h, we
see immediately that condition (iv) is satisfied. Moreover, there
is an efficiency here (over Plain Bob), as only three generators
are used; there are no bobs or singles., However, conditions (v)
and (vi) have not been checked, and indeed it appears difficult to
do so from this inductive construction. The special case n = 5

will be considered in detail in Section 5.
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The imbedding of the "no call" extent described above is non-
orientable, of characteristic —(n—l)2(n—4)(n—3)!/4.

Thus the various extent imbeddings we have constructed in this
section have had characteristics asvmptotic to n!/k, where
k €1{2,3,4,61.

15-4, Four-bell Extents (Minimus)

The eleven minimus extents [SS1] are algebraically described

and graphically depicted in this section. We see from Theorem 15-2

that there are four allowable transition rules for four bells; they
are:

a = (12)(34)

b = (23)  —————ee-

c = (34) seraeen

d = (12) -

Each extent is described, in Table 15-3, by the identity word
in Sy giving the hamiltonian cycle in the Cayley color graph.
Since all Cayley color graphs are vertex~transitive, the initial
vertex of the hamiltonian cycle can be arbitrarily selected; the

remainder of the cycle is then uniguely determined.

Minimus Extent Algebraic Description
Plain Bob ({ab) 3ac)?
Reverse Bob (abad(ab)2)3
Double Bob (abadabac)3
Canterbury (abcdcbab)3
Reverse Canterbury (db(ab)zdc)3
Double Canterbury (dbcdcbed)
Single Court (db (ab) %db) 3
Reverse Court (ab(cb)zab)3
Double Court (db (cb) 2ab) 3
St. Nicholas {dbadabdc) >
Reverse St. Nicholas (abcdcbac)3

Table 15-3
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Obviously, each word uses twenty-four symbols, but it is worth
noting that only Plain Bob requires as few as four letters to be
written down in its algebraic description., We observe that none of
the minimum extents satisfies all six of the conditions given in
Section 15-1: all fail (v), and only the first three listed satisfy
(iv).

Now follow the graphical pictures of the corresponding Cayley
graphs. Figure 15-2 serves directly for Plain Bob Minimums and
Reverse Court Minimus; it also applies to Reverse Bob and Single
Court, with d replacing c¢. These four extents all have character-
istic one. Figure 15-3 pictures Double Court and Double Canterbury;
these two extents have characteristic two. (They are the only
planar extents.) Figure 15-4 depicts Reverse St. Nicholas, St.
Nicholas, Reverse Canterbury, Canterbury, and Double Bob; these are
immersions and not imbeddings, as the redundant generator a is
allowed to diagonalize six guadrilaterals. In the language of
topological graph theory, this immersion shows that, for A =

{a,b,c,d}, the crossing number of CA(S4) is at most six.
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Figure 15-3
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Figure 15-4
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15-5, Five-bell Extents (Doubles)

There are sixteen doubles extents given in [SS1l]; there are
undoubtedly many more. The ' seven possible transitions {see

Theorem 15-2) are;

a = (12)(34)

b = (23) (45)
c = (34) e eeee
d = (23) ++++++Htt
e = (12)

£ = (12) (45) B S e IE

g = (45) - =mmmm-m-

We shall not need to represent e for the extents discussed in this

section, which are:

Plain Bob = (((ab) ‘ac)” (ab)?aq)?

Grandsire = ((£b(ab)*fb(ab) £b)2fb (ab)?fb (ab) >fg)2
| Stedman = (fba(f (bf)ab(£b)a) £ (bf) *abfa)?

No-Call = ((ag)3(ab)3ag(ab)2(ag)2ab)5.

Figure 15-5 sbows CA(SS) for Plain Bob Doubles (A =
{a,b,c]) 1imbedded on the nonorientable surface N5, of character-
istic -3. 1Indeed Plain Bob Doubles has characteristic \-3, as
the graprh which results when each decagon is contracted to a vertex
is K6,6 less a l-factor, for which the resulting guadrilateral
imbedding is necessarily optimal, and contraction cannot decrease
characteristic. If we start the hamiltonian cycle at the distinguish-
ed vertex in Figure 15-5 and call the bob d as indicated by the
superimposed edges, then the 121 rows of the extent can be readily

obtained; see Problem 15-2.
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Figure 15-5
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FPigure 15-6 shows CJ(AB)' s = {a,b,f} imbedded on the non-
orientable surface N6’ of characteristic -4, The first 59
symbols of the identity word for Grandsire Doubles trace all but one
edge of a hamiltonian cycle for C&(A5) on N6' The single g
then shunts us across to a second copy of the same C;(AS) on
another, disjoint, surface N6. (Thus C;(SS) has two components,
one for each coset of AS.) The samc hamiltonian path is rcopeated
on this second surface, and the single g returns us to the initial
vertex on the first surface. The result is a hamiltonian cycle in
Cilﬁg}(s5)’ depicted on a topological space consisting of dis-
connected surface whose two homeomorphic components arc joined by a
pair of line segments.

Figure 15-6 also serves for Stedman Doubles, in the same
manner, 1f we use d for the single instead of g. “Thus both these
extents have characteristic at least -8,

We note that the same surface (two copies of N6) can be used
for St. Simon Doubles - ((ab(af)zabac)3ab(af)2abad)3, except that
c 1is used nine times (of 120) as part of +, and d 1is used as a
bob three times; the hamiltonian cycle, due to the action of c,
does not respect the cosets of A_. - that is, it transfers frequently

5

from one N6 to the other.

15-6. A New Composition

Finally, Figure 15-7 shows C (SS), rn={a,b,gt, imbedded on
the nonorientable surface NlO' also of characteristic -8. The
identity word ((ag)3(ab)3ag(ab)2(ag)2ab)5 for "No-call" Doubles
{so named by the author, as no bobs or singles are required) traces
out a hamiltonian cycle in CA(SS)' (In fact, the cycle was found
in this figure first, as suggested by the five-fold symmetry, and
then the word was written down from the picture; start at the in-
dicated vertex, for example.) The corresponding 121 rows of this

extent are given in Table 15-4.



Sect., 15-6 A New Composition 273

Figure 15-6
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Figure 15-7



Sect,

12345
21435
21453
12543
12534
21354
21345
12435
14253
41523
45132
54312
53421
35241
35214
53124
51342
15432
14523
41253
41235
14325
14352

41532

15-6

45123
54213
54231
45321
45312
54132
54123
45213
42531
24351
23415
32145
31254
13524
13542
31452
34125
43215
42351
24531
24513
42153
42135
24315

A New Composition

"No Call" Doubles

23451
32541
32514
23154
23145
32415
32451
23541
25314
52134
51243
15423
14532
41352
41325
14235
12453
21543
25134
52314
52341
25431
25413
52143

Table 15-4

51234
15324
15342
51432
51423
15243
15234
51324
53142
35412
34521
43251
42315
24135
24153
42513
45231
54321
53412
35142
35124
53214
53241
35421

275

34512
43152
43125
34215
34251
43521
43512
34152
31425
13245
12354
21534
25143
52413
52431
25341
23514
32154
31245
13425
13452
31542
31524
13254
12345
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From the table it is a simple matter to check not only that
conditions (i) through (iv) are satisfied (of course, (i)-(iii)
must hold, by Theorem 15-3, if we designate the first (and last)
vertex of the hamiltonian cycle as rounds; this is always possible,
since Cayley graphs are vertex-transitive. Moreover, we get
immediate algebraic verification of (iv) by -analyzing the identity
word for No-call Doubles: a alternates throughout, moving every
position but 5, and both b and g move position 5), but that
condition (v) holds as well: each bell does the same amount of work
as every other. In particular, the path of bell 1 in column i 1is
exactly mimicked by that of bell 4 in column i + 1, bell 2 in
column 1 + 2, bell 5 in column i + 3, and bell 3 in column
i+4, 1 <41 <5 (arithmetic in Z5, writing "5" for "0".)
Unfortunately, condition (vi) just fails, as agagagabababagababagaga
is not palindromic, There are four pairs of symbols (such as the
third "g" and the second "b") that could be switched to obtain a
palindrome, but sadly each such switch destroys the much more crucial
hamiltonian property. Perhaps the efficiency of "No-call" - in that
only three transition rules are required (no other doubles extent
uses this few) - would argue its merit, in spite of the failure of
the final condition. But our final paragraph indicates that such
argument is not needed!

John Elliott, in his article "Doubles Principles" [E2], generat~-
ed by computer eight doubles extents not requiring bobs or singles.
Each of these is palindromic, and in fact satisfies all conditions
(i) - (iv); but it appears that none employs fewer than five genera-
tors. 1In the June 12, 1981 issue of "The Ringing World," a writer
identified only as 8. J. P. commented that the Central Council of
Church Bell Ringers relaxes rule (iv) by allowing a bell to rest
in the same position for up to four successive changes and abolishes
rule (vi) - removed "some years ago" ~ altogether! This latter,
the writer continues, allows "any old rubbish to gqualify as a
method, "

15-7. Problems
15~1,) The planar imbedding of Figure 15-3 is a 12-fold branched

covering space of an index two voltage graph imbedding;
find this latter configuration.
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15-2,) Use Figure 15-5 and the corresponding identity word in S
to write the rows for Plain Bob Doubles,
} Find the characteristic of Plain Bob Minor.

.) Find the characteristic of Plain Bob Major.

) Find F(n), the characteristic of Plain Bob on n bells.

(We know that F(4) =1, F(5) = -3, and in general

F(n) - -(n-2)!(n°-5n+4) /4.

15-6.) If the principle for an extent on n bells corresponds to
a subgroup of Sn (as is the case for Plain Bob), then
contracting each coset of the principle to a single vertex
produces a Schreier coset graph. Discuss the ramifications,
for the calculation of the characteristic of the extent,

15-7.) Show that the lead—-ins {coset leads) for Plain Bob Minor
correspond to a l-factorization of K6. To what extent
(i.e. other minor extents, other even values of n) does

this generalize, and why?
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S(0;n(2)) 120
M 40
v (Ny) 42
C 144
c'! 144
(Cc')* 144
s 146
v 147
xy (8) 117
Xl(Sk) 117
X1 (N,) 117
x(8,c) 121
n 157
Hx 157
X 157
N(y,y") 167

l6l

P
B 161
< 207

;220

,219



Graphs
(1)

L(G)
N (v)
£1(G)

G*
¥ (G)

u(G)
’M(G)

—

70
47
70,205

25

71
130

71
160

13

66

67

82
168
168
177
180
186
189
189
189
189
189
193
193
194
205
207
205
205
211
211
214
215
252

Index

Note:

of Symbols
Groups Surfaces
o) 221
(G, p) 220
RI(G) 220
M 224
M(I',4,r) 229
Ai 233
M* 239
M(G*,p*) 239
The number following the symbol

gives the first page on which

the symbol appears. In the top
half of the list, corresponding
symbols are displayed alongside

one another. The six distin-
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guished symbols correspond to the

six relationships depicted

Figure 0-1,

in
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INDEX OF DEFINITIONS

additional adjacency
part,
adjacent edges,
adjacent vertices,
anti-automorphism of a
graph,
arc,
associated bipartite
graph
associates
first,
second,
automorphism
of a Cayley color
graph,
of a graph,
of a group,
of a map,
automorphism group
of a Cayley color
graph,
of a graph,
of a map,

balanced incomplete
block design (BIBD)
bell
tenor,
treble,
Betti number of a graph,
bichromatic dual,
bipartite graph,
block of a design,
block of a graph,
n-book,
bounded subspace,
branch points,
branched covering
projection,
branched covering space,
bridge,
brin,

cactus,
capping,
Cayley color graph,
Cayley graph,
Cayley map,
cartesian product
of two Cayley color
graphs,
of two graphs,
of two permutation
groups
2-cell imbedding,
change,

136
5
5

237
60

207
193
193

26
16
231
221

27

221

309

characteristic
of a closed 2-manifold, 47
of an extent, 263
of a graph, 97
of a group, 97
of a pseudosurface, 54
chromatic number
of a graph, 102
of a group, 124
of a hypergraph, 212
of a pseudosurface, 120
of a surface 102
l-chromatic number, 117
class function, 222
closed 2~manifold, 40
closed neighborhood, 19
closed walk, 7
n-trivial, 181
cochromatic number
of a graph, 122
of a surface, 122
complement, 9
complete bipartite graph, 10
complete design, 190
complete graph, 10
complete map, 233
complete n-partite graph, 11
component, 8
composite graph, 19
composition
of two graphs, 10
of two permutation
groups, 17
connected design, 197
connected graph, 8
n-connected graph, 53
conservative graph, 176
constellation, 144
quotient, 144
reduced, 144
covering graph, 160
covering projection, 157
branched, 159
n-fold, 158
covering space, 157
branched, 159
n-critical graph, 123
crossing number, 76,78
n-cube 11
cubic graph, 9
current, 130,143
current graph, 130
cut vertex, 37,63
cycle, 8
cycle rank, 65



310 Index of Definitions

k-degenerate graph,
degree
of a vertex,
of a permutation group,
design
balanced incomplete
block (BIBD),
complete,
connected,
genus of,
group divisible,
isomorphic,
Latin square,
partially balanced
incomplete block
(PBIBD),
resolvable,
z-resolvable,
transversal,
dicyclic group,
digraph,
strongly connected,
unilaterally connected,
weakly connected,
direct product
of two groups,
of two permutation
groups,
directed edge,
directed graph,
distance,
dodecahedron,
doubles,
dual,
bichromatic,

edge
of a graph,
of a hypergraph,
-automorphism,
-automorphism group,
directed,
-isomorphic graphs,
-isomorphism, induced,
multiple,
singular,
n-edge colorable graph,
n-edge critical graph,
elementary subdivision,
equivalent permutation
groups,
equivalent rotations,
extended map automorphism
group,
extent,
characteristic of,
doubles,
Grandsire,
minimus,

189
190
197
214
194
195
199

194
195
195
195

99

25
25
26

32

224
257
263
270
264
266

no~call doubles,

plain bob,

planar,
euler characteristic,
euler polyhedral identity,
eulerian graph,
evenly covered,

face,

n~factor,

n~factorable,

finite presentation,

finitely generated
presentation,

finitely related
presentation,

first associates,

n-fold covering projection,

2-fold triple system,
forest,

four color theorem,
free group,

Frobenius group,
fundamental group,

generalized pseudochar-

acteristic of a graph,
generalized pseudosurface,
generator,

minimal set,

redundant,

genus
of a block design,
of a graph,
of a group,
of a hypergraph,
of a surface,

girth,

Grandsire,

graph,

anti-automorphism of,
automorphism group of,
automorphism of,

Betti number of,
bipartite,

Cayley,

Cayley color,
characteristic of,
chromatic number of,
cochromatic number of,
complement of,
complete,

complete bipartite,
complete n-bipartite,
composite,

connected,
n-connected,
congervative,
covering,

n-critical,

24

24
193
158
190

54
102
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graph (continued)

cubic, 9
current, 130
cycle rank of, 65
k-degenerate, 118
directed, 6
n-edge colorable, 104
n-edge critical, 115
edge isomorphic, 20
eulerian, 8
generalized pseudo-

characteristic of, 73
genus of, 61
girth of, 114
hamiltonian, 8
identity, 16
imbedding of, 60
imbedded, 43,60
infinite, 6,84
isomorphic, 9
labeled, 5
line, 13
locally connected, 66
manifold number of, 180
maximum genus of, 64
orientably simple, 180
Paley, 245
n-partite, 11
perfect, 12
planar, 47
planar infinite, 84
plane, 47
3~-polytopal, 53
prime, 19
pseudocharacteristic of, 73
guotient, 128,130
regular, 9
regular complete n-

partite, 11
relatively prime, 19
Schreier coset, 30
self-complementary, 237
strongly regular, 193
totally disconnected, 10
trivial, 19
underlying, 6,83
vertex arboricity of, 118
vertex partition

number of, 119
voltage, 160

graphical regular
representation, 238
group

characteristic of, 97
chromatic number of, 124
dicyclic, 99
edge~automorphism, 20

extended map auto-
morphism, 224

free, 87
Frobenius, 234
fundamental, 4
genus of, 83
graph automorphism, 16
hamiltonian, 35
hunting, 264
identical permutation, 16
infinite dihedral, 87
isomorphic permutation, 15
local, 161
map automorphism, 221
permutation, 15
planar, 83
vertex partition
number of, 124
group divisible PBIBD, 194
hamiltonian graph, 8
hamiltonian group, 35
hexahedron, 50
homeomorphic from, 58
homeomorphic with, 58
hunting group, 264
hypergraph, 205
adjacency in, 205
chromatic number of 212
edge of, 205
genus of, 211
incidence in, 205
maximum genus of, 212
r-uniform, 205
vertex degrees in, 205
vertices of, 205
icosahedron, 50
identical permutation
groups, 16
identity graph, 16
l-imbeddable, 117
imbedded graph, 43,60
imbedding
of a graph, 60
of a pseudograph, 43
2~cell, 46
index of, 129,145,163
irregular, 144
maximal, 178
minimal, 61
nonorientably minimal, 177
quadrilateral, 62
simplest, 178
triangular, 62
imbedding scheme, 181
immersions, 267
incident, 5
index of an imbedding 129,145
163



312 Index of Definitions

induced edge-automorphism

group, 20
induced subgraph, 7
infinite dihedral group, 87
infinite genus, 85
infinite graph, 6,84
irregular imbedding, 144
isomorphic designs, 195
isomorphic graphs, 9
isomorphic permutation

group, 15
join, 10
Kirchoff's Current Law

(KCL), 130
Kirchoff Voltage Law

(KVL) , 163
klein bottle, 41
labeled graph, 5
Latin square designs, 199
lead=-ins, 277
length of a region, 48
length of a walk, 7
lexicographic product, 10
lifts, 157
line graph, 13
local group, lel
locally connected graph, 66
loop, 6
manifold number of a

graph, 180
2-manifold, 39

closed, 40

nonorientable, 41

orientable, 41

vertex partition

number of, 119
n-manifold, 40
manifold, quotient, 123,130
map, 220

automorphism group of, 221

automorphism of, 221

Cayley, 225

chiral, 250

complete, 233

mirror image of, 224

nonorientable

symmetrical, 228,255

Paley, 245

periods of, 233

reflexible, 224

self-dual, 239

strongly symmetric, 244

symmetrical, 226
maximal imbedding, 178

maximum genus
of a graph,
of a hypergraph,
maximum nonorientable
genus,
minimal generating set,
minimal imbedding,
minimums,
mirror image of a map,
mdbius strip,
multigraph,
multiple edge,
multiplicity of branching,

neighborhood of a vertex,
no-call doubles,
nonorientable genus,
nonorientable 2-manifold,
nonorientable symmetrical

map, 228,

nonorientably minimal
imbedding,

object set,

objects,

octahedron,

open walk,

open unit disk,

orbits,

order of a graph,

order of a permutation
group,

orientable 2-manifold,

orientably simple graph,

Paley graph,

Paley map,

Paley tournament,

palindromic method,

partially balanced incom-
plete block design
(PBIBD) ,

path,

peal,

perfect graph,

periods of a map,

permutation group,
degree of,
equivalence,
order of,
regular,
transitive,

plain bob,

planar BIBDs,

planar extent,

planar graph,

planar group,

planar infinite graph,

plane graph,

255
177

15
18¢

39
222

15
180
245
245

252
258



Index of Definitions

Platonic solids, 52
point, singular, 54
polyhedron, 49
regular, 49
3-polytopal graph, 53
presentation, 24
finite, 24
finitely generated, 24
finitely related, 24
standard, 32
prime graph, 19
principle, 261
product
cartesian (Cayley
color graphs), 33
cartesian {graphs), 10
cartesian (permutation
groups) , 17
direct (groups), 32
direct (permutation
groups), 17
lexicographic, 10
strong tensor, 173
wreath, 17
projective plane, 41
pseudocharacteristic of
a graph, 73
pseudographs, 6
imbedded, 43
pseudosurtface, 54
characteristic of, 5S4
chromatic number of, 120
generalized, 54
quadrilateral imbedding, 62
guotient constellation, 144
quotient graph, 128,130
quotient manifold, 128,130
rank of an abelian group, 33
reduced constellation, 144
redundant generator, 27
reflection, 224
reflexible map, 224
region, 44
2-cell, 46
length of, 48
regular complete n-partite
graph, 11
regular graph, 9
regular part, 136
regular permutation group, 15
regular polyhedron, 49
relation, 23
relatively prime graphs, 29
resolvable design, 195
z-resolvable design, 195
rotation, 220
equivalent, 221
rotation scheme, 73,219
rounds, 257

Schreier coset graph,
second assOciates,
self~complementary graph,
self-dual map,

side,

simplest imbedding,
singular edge,

singular point,

singular vertex,

size of a graph,

spanning subgraph,
splitting tree,
stabilizer,

standard presentation,
Steiner triple system,
stereographic projecticn,
strong tensor product,

313

strongly connected digraphs, 25

strongly regular graph,
strongly symmetric map,
subdivision,
elementary,
subgraph,
induced,
spanning,
sum,
surface,
chromatic number of,
cochromatic number of,
genus of,
hypergraph chromatic
number of,
vertex arboricity of,
symmetrical map,
nonorientable,

tenor bell,
tetrahedron,
thickness,

toroidal,
torus,
toroidal thickness,
totally disconnected

graph,
tournament, Paley
trail,
transitive permutation
group,

transversal design,
treble bell,
tree,

splitting,
triangular imbedding,
triple system

2-fold,

Steiner,
trivial graph,
n=trivial closed walk,

193

122
42

213
118
226
228,255

257
50
75,76
168
41
168
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underlying graph, 6,83
r-uniform hypergraph, 205
unilaterally connected
digraph, 25
union, 10
upper-imbeddable, 65
valence, 146
vertex, 5
neighborhood of, 19
singular, 54
vertex arboricity
of a graph, 118
of a surface, 118
vertex partition number
of a graph, 119
of a group, 124
of a closed 2-manifold, 119
voltage graph, 160
vortices, theory of, 136
walk, 7
closed, 7
length of, 7
open, 7
weakly connected digraph, 26
wheel, 55
word, 23

wreath product, 17





