
SPRINGER BRIEFS IN APPLIED SCIENCES AND
TECHNOLOGY COMPUTATIONAL INTELLIGENCE

Neha Yadav
Anupam Yadav
Manoj Kumar

An Introduction
to Neural Network
Methods for
Differential
Equations

SpringerBriefs in Applied Sciences
and Technology

Computational Intelligence

Series editor

Janusz Kacprzyk, Warsaw, Poland

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in com-
putational intelligence spanning the areas of neural networks, connectionist sys-
tems, genetic algorithms, evolutionary computation, artificial intelligence, cellular
automata, self-organizing systems, soft computing, fuzzy systems, and hybrid
intelligent systems. Of particular value to both the contributors and the readership
are the short publication timeframe and the world-wide distribution, which enable
both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/10618

http://www.springer.com/series/10618

Neha Yadav • Anupam Yadav
Manoj Kumar

An Introduction to Neural
Network Methods for
Differential Equations

123

Neha Yadav
Department of Applied Sciences
ITM University
Gurgaon, Haryana
India

Anupam Yadav
Department of Sciences and Humanities
National Institute of Technology
Uttarakhand

Srinagar, Uttarakhand
India

Manoj Kumar
Department of Mathematics
Motilal Nehru National Institute of
Technology

Allahabad
India

ISSN 2191-530X ISSN 2191-5318 (electronic)
SpringerBriefs in Applied Sciences and Technology
ISBN 978-94-017-9815-0 ISBN 978-94-017-9816-7 (eBook)
DOI 10.1007/978-94-017-9816-7

Library of Congress Control Number: 2015932071

Springer Dordrecht Heidelberg New York London
© The Author(s) 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer Science+Business Media B.V. Dordrecht is part of Springer Science+Business Media
(www.springer.com)

Preface

Artificial neural networks, or neural networks, represent a technology that is rooted
in many disciplines like mathematics, physics, statistics, computer science and
engineering. Neural networks have various applications in the area of mathematical
modelling, pattern recognition, signal processing and time-series analysis, etc. It is
an emerging field for researchers and scientists in the industry and academics to
work on. Also, many problems in science and engineering can be modelled with the
use of differential equations such as problems in physics, chemistry, biology and
mathematics. Due to the importance of differential equations, many methods have
been developed in the literature for solving them, but they have their own
shortcomings.

This book introduces a variety of neural network methods for solving differential
equations arising in science and engineering. Emphasis is placed on the deep
understanding of the neural network techniques, which have been presented in a
mostly heuristic and intuitive manner. This approach will enable the reader to
understand the working, efficiency and shortcomings of each neural network
technique for solving differential equations.

The objective of this book is to provide the readers with a sound understanding
of the foundations of neural network, comprehensive introduction to neural network
methods for solving differential equations along with the recent developments in the
techniques. The main purpose to write this textbook is stated in its title An Intro-
duction to Neural Network Methods for Differential Equations. This book aims to get
started with the neural network techniques for solving differential equations easily,
quickly and pleasantly to beginners, regardless of their background—physics,
chemistry, mathematics or engineering. This book is a comprehensive text on neural
network methods for solving differential equations, and the subject matter is pre-
sented in an organized and systematic way. The book may serve as a background for
readers who do not have in-depth knowledge of differential equations and neural
networks together with building a basic skill set that can be used to bemaster in it. Our
presentation in the book is aimed at developing the insights and techniques that are
most useful for attacking new problems. To compile this book, we had to borrow

v

ideas from different sources and the credit goes to all the original developers of these
networks; we have presented a list of references for each section.

This book has been compiled in four chapters. The Introduction provides a
glimpse of the organization of the book and a general introduction. Chapter 1
consists of a brief overview of differential equations and the physical problems
arising in science and engineering. Chapter 2 illustrates the history of neural net-
works starting from the 1940s beginning to the 1980s renewed enthusiasm. A
general introduction to neural networks and learning technologies is presented in
Chap. 3. This chapter also includes a description of multilayer perceptron and its
learning methods. In Chap. 4, we introduce the different neural network methods for
solving differential equations. The recent developments in all the techniques is also
presented in this section. The conclusion is also presented at the end of Chap. 4,
which concludes the topics presented in the book. An exhaustive list of references is
given at the end of the book.

Neha Yadav
Anupam Yadav
Manoj Kumar

vi Preface

http://dx.doi.org/10.1007/978-94-017-9816-7_1
http://dx.doi.org/10.1007/978-94-017-9816-7_2
http://dx.doi.org/10.1007/978-94-017-9816-7_3
http://dx.doi.org/10.1007/978-94-017-9816-7_4
http://dx.doi.org/10.1007/978-94-017-9816-7_4

Contents

1 Overview of Differential Equations . 1
1.1 Classification of Differential Equations 1

1.1.1 Ordinary Differential Equations 1
1.1.2 Partial Differential Equations . 2
1.1.3 Delay Differential Equations . 2
1.1.4 Stochastic Differential Equations 2
1.1.5 Differential Algebraic Equations 3

1.2 Types of Differential Equation Problems 3
1.2.1 Initial Value Problem . 3
1.2.2 Boundary Value Problem . 3

1.3 Differential Equations Associated with Physical Problems
Arising in Engineering . 5

1.4 General Introduction of Numerical Methods for Solving
Differential Equations . 5
1.4.1 Shooting Method . 6
1.4.2 Finite Difference Method . 6
1.4.3 Finite Element Method . 8
1.4.4 Finite Volume Method . 9
1.4.5 Spline Based Method . 9
1.4.6 Neural Network Method . 11

1.5 Advantages of Neural Network Method for Solving
Differential Equations . 11

2 History of Neural Networks . 13
2.1 The 1940s: The Beginning of Neural Networks 13
2.2 The 1950s and 1960s: The First Golden

Age of Neural Networks . 14
2.3 The 1970s: The Quiet Years . 15
2.4 The 1980s: Renewed Enthusiasm . 15

vii

http://dx.doi.org/10.1007/978-94-017-9816-7_1
http://dx.doi.org/10.1007/978-94-017-9816-7_1
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec1
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec1
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec2
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec2
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec3
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec3
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec4
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec4
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec5
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec5
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec6
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec6
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec7
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec7
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec8
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec8
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec9
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec9
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec13
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec13
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec13
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec14
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec14
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec14
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec15
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec15
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec16
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec16
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec17
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec17
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec18
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec18
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec19
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec19
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec20
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec20
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec21
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec21
http://dx.doi.org/10.1007/978-94-017-9816-7_1#Sec21
http://dx.doi.org/10.1007/978-94-017-9816-7_2
http://dx.doi.org/10.1007/978-94-017-9816-7_2
http://dx.doi.org/10.1007/978-94-017-9816-7_2#Sec1
http://dx.doi.org/10.1007/978-94-017-9816-7_2#Sec1
http://dx.doi.org/10.1007/978-94-017-9816-7_2#Sec2
http://dx.doi.org/10.1007/978-94-017-9816-7_2#Sec2
http://dx.doi.org/10.1007/978-94-017-9816-7_2#Sec2
http://dx.doi.org/10.1007/978-94-017-9816-7_2#Sec3
http://dx.doi.org/10.1007/978-94-017-9816-7_2#Sec3
http://dx.doi.org/10.1007/978-94-017-9816-7_2#Sec4
http://dx.doi.org/10.1007/978-94-017-9816-7_2#Sec4

3 Preliminaries of Neural Networks . 17
3.1 What Is Neural Network? . 17
3.2 Biological Neural Network . 18
3.3 Artificial Neural Network . 19
3.4 Mathematical Model of Artificial Neural Network 19
3.5 Activation Function . 21

3.5.1 Linear Activation Function . 22
3.5.2 Sign Activation Function . 22
3.5.3 Sigmoid Activation Function . 22
3.5.4 Step Activation Function. 23

3.6 Neural Network Architecture . 24
3.6.1 Feed Forward Neural Networks 24
3.6.2 Recurrent Neural Networks . 25
3.6.3 Radial Basis Function Neural Network 26
3.6.4 Hopfield Network . 28
3.6.5 Cellular Neural Network . 30
3.6.6 Finite Element Neural Network 31
3.6.7 Wavelet Neural Network. 31

3.7 Learning in Neural Networks . 33
3.7.1 Supervised Learning. 33
3.7.2 Unsupervised Learning . 34
3.7.3 Reinforcement Learning . 34
3.7.4 Competitive Learning . 34

3.8 Multi-layer Perceptron . 34
3.8.1 Backpropagation Algorithm. 35
3.8.2 The RPROP Learning Algorithm 35
3.8.3 The Levenberg-Marquardt Learning Algorithm 37
3.8.4 Genetic Algorithm . 38
3.8.5 Particle Swarm Optimization . 40

3.9 Neural Networks as Universal Approximator 41

4 Neural Network Methods for Solving Differential Equations 43
4.1 Method of Multilayer Perceptron Neural Network 43

4.1.1 Gradient Computation. 44
4.1.2 Gradient Computation with Respect to Network Inputs . . . 45
4.1.3 Gradient Computation with Respect to Network

Parameters . 46
4.1.4 Network Parameter Updation. 46
4.1.5 Recent Development in MLPNN for Solving

Differential Equations . 47
4.2 Method of Radial Basis Function Neural Networks. 65

viii Contents

http://dx.doi.org/10.1007/978-94-017-9816-7_3
http://dx.doi.org/10.1007/978-94-017-9816-7_3
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec1
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec1
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec2
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec2
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec3
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec3
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec4
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec4
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec5
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec5
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec6
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec6
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec7
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec7
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec8
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec8
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec9
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec9
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec10
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec10
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec11
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec11
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec12
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec12
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec13
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec13
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec14
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec14
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec19
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec19
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec20
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec20
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec21
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec21
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec22
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec22
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec23
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec23
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec24
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec24
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec25
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec25
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec26
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec26
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec27
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec27
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec28
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec28
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec29
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec29
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec30
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec30
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec31
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec31
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec32
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec32
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec33
http://dx.doi.org/10.1007/978-94-017-9816-7_3#Sec33
http://dx.doi.org/10.1007/978-94-017-9816-7_4
http://dx.doi.org/10.1007/978-94-017-9816-7_4
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec1
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec1
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec2
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec2
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec3
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec3
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec4
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec4
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec4
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec5
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec5
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec6
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec6
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec6
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec23
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec23

4.3 Method of Multiquadric Radial Basis Function
Neural Network . 67
4.3.1 DRBFN Procedure for Solving Differential Equations. . . . 67
4.3.2 IRBFN Procedure for Solving Differential Equations 69
4.3.3 Recent Development in the RBF and MQRBF

Neural Network Techniques . 69
4.4 Method of Cellular Neural Networks . 77

4.4.1 Principle for CNN Templates Findings 78
4.4.2 Design of the Complete CNN Processor 80
4.4.3 Recent Development in the Cellular Neural

Network Technique . 80
4.5 Method of Finite Element Neural Networks 88

4.5.1 Boundary Conditions in FENN 90
4.6 Method of Wavelet Neural Networks . 91
4.7 Some Workout Examples . 93

Conclusion . 101

Appendix . 103

References. 105

Index . 111

Contents ix

http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec24
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec24
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec24
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec25
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec25
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec26
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec26
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec27
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec27
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec27
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec36
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec36
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec37
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec37
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec38
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec38
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec39
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec39
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec39
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec51
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec51
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec52
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec52
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec53
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec53
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec54
http://dx.doi.org/10.1007/978-94-017-9816-7_4#Sec54

Introduction

A series of problems in many scientific fields can be modelled with the use of
differential equations such as problems in physics, chemistry, biology, economics,
etc. Although model equations based on established physical laws may be con-
structed using analytical tools and are frequently inadequate for the purpose of
obtaining their closed form solution. Due to the importance of differential equations
many methods have been proposed in the existing literature for their solution.
Principal numerical methods available for solving differential equations are Finite
difference method (FDM), Finite element method (FEM), Finite volume method
(FVM), the boundary element method (BEM), etc. These methods generally require
discretisation of the domain into a number of finite elements (FEs), which is not a
straightforward task.

In contrast, for FE-type approximation, neural networks can be considered as
approximation schemes where the input data for a design of network consist of only
a set of unstructured discrete data points. Thus an application of neural network for
solving differential equations can be regarded as a mesh-free numerical method.
The solution via neural network is differentiable, closed analytic form and easily
used in any subsequent calculation. Most other techniques offer a discrete solution
or a solution of limited differentiability. This book presents the general introduction
to neural networks and a brief description of different neural network methods for
solving ordinary and partial differential equations.

Neural networks are simplified models of the biological nervous system and
therefore have drawn their motivation from the kind of computing performed by a
human brain. In general, the neural network is a highly interconnected network of a
large number of processing elements called neurons in an architecture inspired by
the brain. The neural network learns by examples and thus can be trained to acquire
knowledge about the system. Once the training has been performed appropriately,
the network can be put to effective use for solving ‘unknown’ instances of the
problem. Neural networks adopt various learning mechanisms among which
supervised and unsupervised learning methods have turned out to be very popular.

xi

Neural networks have been successfully applied to problems in the fields of pattern
recognition, image processing, forecasting and optimization, etc.

Initially, most of the work in solving differential equations using neural network
is restricted to the case of solving the system of algebraic equations which result
from the discretisation of the domain. The solution of a linear system of equations is
mapped onto the architecture of a neural network and the solution to the system of
given equations is then obtained by the minimization of the network’s energy
function. Another approach to the solution of differential equations is based on the
fact that certain types of splines, for instance B1 splines, can be derived by the
superposition of piecewise linear activation functions. The solution of differential
equations using B1 splines as basis functions can be obtained by solving a system of
linear or nonlinear equations in order to determine the coefficients of splines. Such a
solution is mapped directly on the architecture of a feedforward neural network by
replacing each spline with the sum of piecewise linear activation functions that
correspond to the hidden units. This method considers local basis function and in
general requires many splines in order to yield accurate solution. Furthermore, it is
not easy to extend these techniques to multidimensional domains.

In this book we present different neural network methods for solution of dif-
ferential equations, which provides many attractive features towards the solution: (i)
The solution using neural network is differentiable, closed analytic form and easily
used in any subsequent calculation; (ii) Method is general and can be applied to
solve ordinary as well as partial differential equations with higher order complex-
ities; (iii) Method requires less number of model parameters than any other tech-
nique and hence requires less memory space; (iv) Provides a solution with very
good generalization properties.

The objective of this book is to provide the reader with a sound understanding
of the foundations of neural network and a comprehensive introduction to different
neural network methods for solving differential equations. Our presentation is
aimed at developing the insights and techniques that are most useful for attacking
new problems. However, the matter presented in this book is available in different
books and research articles but we summarized the important useful material in an
effective manner, which can serve as an introduction to new researchers and be
helpful both as a learning tool and as a reference.

The structure of the book is as follows. The book is divided into four chapters.
Chapter 1, entitled “Overview of Differential Equations”, introduces funda-

mentals of differential equation problems with some appropriate examples. This
chapter also explains some existing numerical methods with examples for the
solution of differential equations.

Chapter 2, entitled “History of Neural Networks”, presents the origin of Neural
Network in the existing literature.

Chapter 3, entitled “Preliminaries of Neural Networks”, introduces the funda-
mentals of neural networks along with their learning algorithms and major
architectures.

xii Introduction

http://dx.doi.org/10.1007/978-94-017-9816-7_1
http://dx.doi.org/10.1007/978-94-017-9816-7_2
http://dx.doi.org/10.1007/978-94-017-9816-7_3

Chapter 4, entitled “Neural NetworkMethods for Solving Differential Equations”,
contains different neural network methods for solving differential equations of var-
ious kinds and complexities. This chapter also contains some worked out numerical
examples arising in real-life applications.

MATLAB code for the solution of differential equations based on neural net-
work has been also given in the Appendix section.

Introduction xiii

http://dx.doi.org/10.1007/978-94-017-9816-7_4

Chapter 1
Overview of Differential Equations

Abstract This chapter presents a general introduction to differential equations
together with its boundary conditions. In general, a differential equation is an
equation which involves the derivatives of an unknown function represented by a
dependent variable. It expresses the relationship involving the rates of change of
continuously changing quantities modeled by functions and are used whenever a
rate of change (derivative) is known. A brief introduction to different numerical
methods in the existing literature like finite difference, finite element, shooting
method and spline based method is also presented.

Keywords Ordinary differential equation � Partial differential equation � Dirichlet
boundary condition � Neumann boundary condition � Mixed boundary condition

The term “differential equations” (aequatio differentialis) was initiated by Leibnitz
in 1676. A solution to a differential equation is a function whose derivatives satisfy
equation [1–6].

1.1 Classification of Differential Equations

The differential equations can be categorized in ordinary differential equation
(ODE), partial differential equation (PDE), delay differential equation (DDE),
stochastic differential equation (SDE) and differential algebraic equation (DAE)
which are defined as follows:

1.1.1 Ordinary Differential Equations

An ordinary differential equation (ODE) is a differential equation in which the
unknown function is a function of a single independent variable. It implicitly
describes a function depending on a single variable and the ODE expresses a

© The Author(s) 2015
N. Yadav et al., An Introduction to Neural Network Methods
for Differential Equations, SpringerBriefs in Computational Intelligence,
DOI 10.1007/978-94-017-9816-7_1

1

relation between the solution and one or more of its derivatives. Beside the ODE,
usually one or more additional (initial) conditions are needed to determine the
unknown function uniquely. The most general form of an ordinary differential
equation of nth order is given by

dny
dxn

¼ f x; y;
dy
dx

;
d2y
dx2

; . . .;
dn�1y
dxn�1

� �
;

which is termed as ordinary because there is only one independent variable.

1.1.2 Partial Differential Equations

A partial differential equation (PDE) is a relation involving an unknown function of
at least two independent variables and its partial derivatives with respect to those
variables. Partial differential equations are used to formulate and solve problems
that involve unknown functions of several variables, such as the propagation of
sound or heat, electrostatics, electrodynamics, fluid flow, elasticity or more gen-
erally any process that is distributed in space or distributed in space and time. In
general, A partial differential equation (PDE) is an equation involving functions and
their partial derivatives.

1.1.3 Delay Differential Equations

A delay differential equation (DDE) is a special type of functional differential
equation which is similar to ordinary differential equation but in delay differential
equation derivative of the unknown function at a certain time is given in terms of
the values of the function at previous times. The solution of delay differential
equation therefore requires of knowledge of not only the current state, but also of
the state at certain time previously.

1.1.4 Stochastic Differential Equations

A stochastic differential equation (SDE) is a differential equation in which one or
more of the terms are a stochastic process, thus resulting in a solution which is itself
a stochastic process. Stochastic differential equation used to model diverse phe-
nomenon such as fluctuating stock prices or physical system subject to thermal
fluctuations.

2 1 Overview of Differential Equations

1.1.5 Differential Algebraic Equations

A differential algebraic equation (DAE) is a generalized form of ordinary differ-
ential equation which involves an unknown function and its derivatives. This type
of equation arises in the mathematical modeling of wide variety of problem from
engineering and science such as optimal control, chemical process control,
incompressible fluids etc.

1.2 Types of Differential Equation Problems

1.2.1 Initial Value Problem

An initial value problem is one in which the dependent variable and its possible
derivatives are specified initially or at the same value of independent variable in the
equation. Initial value problems are generally time-dependent problems.

For example: If the independent variable is time over the domain [0, 1], an
initial value problem would specify a value of yðtÞ at time 0. Physically, in the
middle of a still pond if somebody taps the water with a known force that would
create a ripple and gives us an initial condition.

1.2.2 Boundary Value Problem

A boundary value problem is one in which the dependent variable and its possible
derivatives are specified at the extreme of the independent variable. For steady state
equilibrium problems, the auxiliary conditions consist of boundary conditions on
the entire boundary of the closed solution domain.

For example: If the independent variable is time over the domain [0, 1], a
boundary value problem would specify values for yðtÞ at both t ¼ 0 and t ¼ 1. If
the problem is dependent on both space and time, then instead of specifying the
value of the problem at a given point for all time, the data could be given at a given
time for all space. For example, the temperature of an iron bar with one end kept at
absolute zero and the other end at freezing point of water would be a boundary
value problem. There are three types of boundary conditions:

1.2.2.1 Dirichlet Boundary Condition

In Dirichlet boundary condition, values of the function are specified on the boundary.
For example if an iron rod has one end held at absolute zero then the value of the
problem would be known at that point in the space. A Dirichlet boundary condition

1.1 Classification of Differential Equations 3

imposed on an ordinary or a partial differential equation specifies the values of a
solution is to take on the boundary of the domain and finding the solution the solution
of such a equations are known as the Dirichlet problem.

For example: Let us consider a case of an partial differential equation:

@2u
@x2

þ @2u
@y2

¼ f ðx; yÞ in X

u x; yð Þ ¼ A on @ X

ð1:1Þ

where, A is some number. The boundary condition given in Eq. (1.1) represents a
Dirichlet boundary condition as the value of the function u(x,y) is specified on the
boundary.

1.2.2.2 Neumann Boundary Condition

In Neumann boundary condition, values of the function are specified on the
derivative normal to the boundary. For example if one iron rod had heater at one
end then energy would be added at constant rate but the actual temperature would
not be known. A Neumann boundary condition imposed on the ordinary or partial
differential equation specifies the derivative values of solution are to take on the
boundary of the domain.

For example:

@2u
@x2

þ @2u
@y2

¼ f x; yð Þ in X

@u
@n

¼ w on @ X

ð1:2Þ

1.2.2.3 Mixed Boundary Condition

Mixed boundary conditions are the linear combination of Dirichlet and Neumann
boundary conditions and also known as the Cauchy boundary condition. A mixed
boundary condition imposed on an ordinary or partial differential equation specifies
both the values of a differential equation is to take on the boundary of the domain
and the normal derivative at the boundary. It corresponds to imposing both
Dirichlet and Neumann boundary condition:

@2u
@x2

þ @2u
@y2

¼ f x; yð Þ in X

w1
@u
@n

þ w2u ¼ w on @ X

ð1:3Þ

4 1 Overview of Differential Equations

1.3 Differential Equations Associated with Physical
Problems Arising in Engineering

As the world turns, things change, Mountains erode, river beds change, machines
break down, the environment becomes more polluted, populations shift, economics
fluctuate, technology advances. Hence any quantity expressible mathematically
over a long time must change as a function of time. As a function of time, relatively
speaking, there are many quantities which change rapidly, such as natural pulsation
of a quartz crystal, heart beats, the swing of a pendulum, chemical explosions, etc.

When we get down to the business of quantitative analysis of any system, our
experience shows that the rate of change of a physical or biological quantity relative
to time has vital information about the system. It is this rate of change which plays a
central role in the mathematical formulation of most of the physical and biological
models amenable to analysis.

Engineering problems that are time-dependent are often described in terms of
differential equations with conditions imposed at single point (initial value prob-
lems); while engineering problems that are position dependent are often described
in terms of differential equations with conditions imposed at more than one point
(boundary value problems). Some of the motivational examples encountering in
many engineering fields are:

(i) Coupled L-R electric circuits,
(ii) Coupled systems of springs,
(iii) Motion of a particle under a variable force field,
(iv) Newton’s second law in dynamics (mechanics),
(v) Radioactive decay in nuclear physics,
(vi) Newton’s law of cooling in thermodynamics,
(vii) The wave equation,
(viii) Maxwell’s equations in electromagnetism
(ix) The heat equation in thermodynamics,
(x) Laplace’s equation, which defines harmonic functions,
(xi) The beam deflections equation,
(xii) The draining and coating flows equations etc.

1.4 General Introduction of Numerical Methods for Solving
Differential Equations

In the field of mathematics the existence of solution in many cases is guaranteed by
various theorems, but no numerical method for obtaining those solutions in explicit
and closed form is known. In view of this the limitations of analytic methods in
practical applications have led the evolution of numerical methods and there are

1.3 Differential Equations Associated … 5

various numerical methods for different type of complex problems which have no
analytical solution.

Analytical solutions, when available, may be precise in themselves, but may be of
unacceptable form because of the fact that they are not amenable to direct interpre-
tation in numerical terms, in which case the numerical analyst may attempt to derive a
method for effecting that interpretation in a satisfactory way. Numerical techniques to
solve the boundary value problems include some of the following methods:-

1.4.1 Shooting Method

These are initial value problem methods. In this method, boundary value problems
are transformed into two initial value problems by adding sufficient number of
conditions at one end and adjust these conditions until the given conditions are
satisfied at the other end. The solution of these two initial value problems is
determined by such methods as the Taylor series, Runge-Kutta etc. and the required
solution of the given boundary value problem is given by the addition of the two
solutions obtained by solving initial value problems.

For example: Let us consider a boundary value problem given as:

y00 ¼ f t; y; y0ð Þ with y að Þ ¼ a and y bð Þ ¼ b ð1:4Þ

We can solve this problem by taking the related initial value problem with a
guess as to the appropriate initial value y0ðaÞ and integrate the equation to obtain an
approximate solution hoping that yðbÞ ¼ b. If yðbÞ 6¼ b then the guesses value of
y0ðaÞ can be change by trying again. This process is called shooting and there are
different ways for doing it systematically. If we consider the guessed value of y0ðaÞ
is k, so the corresponding boundary value problem becomes

y00 ¼ f t; y; y0ð Þ with y að Þ ¼ a and y0 að Þ ¼ k ð1:5Þ

The solution of this initial value problem will be denoted by yk and our objective
is to select k such that ykðbÞ ¼ b. Let us consider /ðkÞ ¼ xkðbÞ � b, so that our
objective is to simply solve the equation /ðkÞ ¼ 0 for k which can be solve by any
of the method for solving non linear equations e.g. Bisection method, Secant
method etc. Each value of /ðkÞ is computed by numerically solving an initial value
problem.

1.4.2 Finite Difference Method

In finite difference method (FDM), functions are represented by their values at
certain grid points and derivatives are approximated through differences in these

6 1 Overview of Differential Equations

values. For the finite difference method, the domain under consideration is repre-
sented by a finite subset of points. These points are called “nodal points” of the grid.
This grid is almost always arranged in (uniform or non-uniform) rectangular
manner. The differential equation is replaced by a set of difference equations which
are solved by direct or iterative methods.

For example: consider the second order boundary value problem

y00 ¼ f x; y; y0ð Þ ð1:6Þ

with

y að Þ ¼ a or y0 að Þ ¼ a

y bð Þ ¼ b or y0 bð Þ ¼ b
ð1:7Þ

Approximating the derivatives at the mesh point by finite differences gives:

yi�1 � 2yi þ yiþ1

h2
¼ f xi; yi;

yiþ1 � yi
2h

� �
; i ¼ 1; 2; . . .; n ð1:8Þ

with

y1 ¼ a or
y2 � y0
2h

¼ a ð1:9Þ

yn ¼ b or
ynþ1 � yn�1

2h
¼ b ð1:10Þ

Rewriting Eq. (1.8) by elimination the points outside the domain as

y0 � 2y1 þ y2 � h2f x1; y1;
y2 � y0
2h

� �
¼ 0 ð1:11Þ

yi�1 � 2yi þ yiþ1 � h2f xi; yi;
yiþ1 � yi�1

2h

� �
¼ 0; i ¼ 2; 3; . . .; n� 1 ð1:12Þ

yn�1 � 2yn þ ynþ1 � h2f xn; yn;
ynþ1 � yn�1

2h

� �
¼ 0 ð1:13Þ

The boundary conditions on y are replaced by y1 � a ¼ 0 and yn � b ¼ 0, y0 and
ynþ1 are obtained from Eqs. (1.9) and (1.10) and then substituted in Eqs. (1.11) and
(1.12) respectively. Thus we can obtain the set of n simultaneous algebraic equa-
tions with n unknowns which can be solved by any of the method applicable for
solving set of algebraic equations.

1.4 General Introduction of Numerical Methods … 7

1.4.3 Finite Element Method

The finite element method is a numerical method like finite difference method but it
is more general and powerful for the real world problems that involve complicated
boundary conditions. In finite element method (FEM), functions are represented in
terms of basis functions and the differential equations are solved in its integral
(weak) form. In the finite element method the domain under consideration is par-
titioned in a finite set of elements fXig so that Xi \ Xj

� � ¼ / for i 6¼ j; and

[Xi ¼ X: Then the function is approximated by piecewise polynomial of low
degree. Further they are constructed so that their support extends only over a small
number of elements. The main reason behind taking approximate solution on a
collection of sub domains is that it is easier to represent a complicated function as a
collection of simple polynomials. To illustrate the Finite element method let us
consider the following boundary value problem:

u00 ¼ uþ f xð Þ; x\0\1 ð1:14Þ

with

u 0ð Þ ¼ 0 and u 1ð Þ ¼ 0 ð1:15Þ

Finite element methods finds piecewise polynomial approximation vðxÞ to the
solution of Eq. (1.14) which can be represented by the equation

v xð Þ ¼
Xm
j¼1

aj/j xð Þ ð1:16Þ

where /jðxÞ, j ¼ 1; 2; . . .;m are specified functions that are piecewise continuously
differentiable called basis functions and aj are unknown constants. In case of
Galerkin method Eq. (1.14) is multiplied by /i, i ¼ 1; 2; . . .;m and integrate the
resulting equation over the domain [0, 1]

Z1
0

u00 xð Þ � u xð Þ � f xð Þ½ �/i xð Þdx ¼ 0; i ¼ 1; 2; . . .;m ð1:17Þ

Since the functions /iðxÞ satisfies the boundary conditions Eq. (1.17) becomes:

Z1
0

u0 xð Þ/0
i xð Þdxþ

Z1
0

y xð Þ þ f xð Þ½ �/i xð Þdx ¼ 0; i ¼ 1; 2; . . .;m ð1:18Þ

8 1 Overview of Differential Equations

For any two function we define

g;wð Þ ¼
Z1
0

g xð Þw xð Þdx ð1:19Þ

Using Eqs. (1.19) and (1.18) becomes

u0;/0
i

� 	þ u;/ið Þ þ f ;/ið Þ ¼ 0; i ¼ 1; 2; . . .;m ð1:20Þ

Equation (1.19) is called the weak form of Eq. (1.13). If vðxÞ is given by
Eq. (1.16) then (1.20) becomes

Xm
j¼1

aj/
0
j;/

0
i

 !
þ

Xm
j¼1

aj/j;/i

 !
þ f ;/ið Þ ¼ 0 ð1:21Þ

Solution of Eq. (1.21) gives the vector a, which specifies Galerkin approximation.

1.4.4 Finite Volume Method

The finite volume method is used to represent and evaluate differential equations in
the form of algebraic equations. Finite Volume refers to the small volume sur-
rounding each node point on a mesh. In the case of Finite volume method values are
calculated at the discrete places of meshed geometry as in the Finite difference
method. In this method, volume integrals in a differential equation that contain a
divergence term are converted to surface integrals, using the divergence theorem.
These terms are evaluated as fluxes at the surfaces of each finite volume and since the
flux entering in a given volume is identical to that leaving the adjacent volume,
the method is conservative in nature. Finite volume method has an advantage over
the finite difference method that it does not require a structured mesh and also the
boundary conditions can be applied non-invasively. This method is powerful on non
uniform grids and in calculations where the mesh moves to track interfaces.

1.4.5 Spline Based Method

Usually a spline is a piece-wise polynomial function defined in a region, such that
there exist a decomposition of the region into the sub regions in each of which the
function is a polynomial of some degree. In spline based methods, the differential
equation is discretized by using approximate methods based on spline. The end

1.4 General Introduction of Numerical Methods … 9

conditions are derived for the definition of spline. The algorithm developed not only
approximates the solutions, but their higher order derivatives as well.

For example: Consider the two point boundary value problem of the form:

� d
dx

p xð Þ du
dx

 �
¼ g xð Þ

u að Þ ¼ u bð Þ ¼ 0
ð1:22Þ

where p 2 C1½a; b�; p[0 and g 2 C½a; b�. To solve the Eq. (1.22) with spline
method, we consider a uniform mesh D with nodal points xi with equal intervals.
Consider a non polynomial function sD xð Þ for each segment xi; xiþ1½ �,
i ¼ 0; 1; . . .;N � 1 of the following form:

sD xð Þ ¼ ai þ bi x� xið Þ þ ci sin s x� xið Þ þ di cos s x� xið Þ; i ¼ 0; 1; . . .;N

ð1:23Þ

where ai; bi; ci and di are constants and s is free parameter. Let ui be an approxi-
mation to uðxiÞ which can be obtained by the segment sD xð Þ of the mixed splines
function passing through the points xi; uið Þ and xiþ1; uiþ1ð Þ. To derive the expres-
sions for the coefficient of Eq. (1.23) in terms of ui, uiþ1, Mi and Miþ1, we first
denote:

sD xið Þ ¼ ui; sD xiþ1ð Þ ¼ uiþ1; s00D xið Þ ¼ Mi; s00D xiþ1ð Þ ¼ Miþ1 ð1:24Þ

Thus from algebraic manipulation we get the following equation:

ai ¼ ui þM
s2

; bi ¼ uiþ1 � ui
h

þMiþ1 �Mi

sh

ci ¼ Mi cos h�Miþ1

s2sin h
; di ¼ �Mi

s2

ð1:25Þ

where h ¼ sh and i ¼ 0; 1; . . .;N � 1.
Using the continuity of first derivative we get the following equation:

aMiþ1 þ 2bMi þ aMi�1 ¼ 1
h2

uiþ1 � 2ui þ ui�1ð Þ ð1:26Þ

where,

a ¼ 1
h2

h cosec h� 1ð Þ; b ¼ 1
h2

1� h cot hð Þ

10 1 Overview of Differential Equations

Hence by using the moment of spline in Eq. (1.19) we obtain

Mi þ qiu
0
i ¼ fi

By approximating the first derivative of u and substituting the equations into the
Eq. (1.26) we get the tri-diagonal system of equation, which can be solve by any of
the method for solving system of equations.

1.4.6 Neural Network Method

Neural network methods can solve both ordinary and partial differential equations
that relies on the function approximation capabilities of feed forward neural net-
works and results in a solution written in a closed analytic form. This form employs
a feed forward neural network as a basic approximation element whose parameters
are adjusted to minimize an appropriate error function. Training of the neural
network can be done by any optimization technique which in turn requires the
computation of the gradient of the error with respect to the network parameters. In
this method, a trial solution of the differential equation is written as a sum of two
parts. The first part satisfies the initial or boundary conditions and contains no
adjustable parameters. Second part is constructed so as to not affect the initial or
boundary conditions and involves a feed forward neural network by containing
adjustable parameters. Hence by construction the trial solution, the initial or
boundary conditions are satisfied and the network is trained to satisfy the differ-
ential equation.

1.5 Advantages of Neural Network Method for Solving
Differential Equations

A neural network based model for the solution of differential equations provides the
following advantages over the standard numerical methods:

(a) The neural network based solution of a differential equation is differentiable
and is in closed analytic form that can be used in any subsequent calculation.
On the other hand most other techniques offer a discrete solution or a solution
of limited differentiability.

(b) The neural network based method to solve a differential equation provides a
solution with very good generalization properties.

(c) Computational complexity does not increase quickly in the neural network
method when the number of sampling points is increased while in the other
standard numerical methods computational complexity increases rapidly as we
increase the number of sampling points in the interval.

1.4 General Introduction of Numerical Methods … 11

(d) The method is general and can be applied to the systems defined on either
orthogonal box boundaries or on irregular arbitrary shaped boundaries.

(e) Model based on neural network offers an opportunity to tackle in real time
difficult differential equation problems arising in many sciences and engineer-
ing applications.

(f) The method can be implemented on parallel architectures.

12 1 Overview of Differential Equations

Chapter 2
History of Neural Networks

Abstract Here we are presenting a brief history of neural networks, given in
Haykin (Neural networks: a comprehensive foundation, 2002) [7], Zurada (Intro-
duction to artificial neural systems, 2001) [8], Nielsen (Neurocomputing, 1990 [9]
in terms of the development of architectures and algorithms that are widely used
today. The history of neural networks has been divided in four stages: Beginning of
neural networks, First golden age, Quiet Years and Renewed enthusiasm which
shows the interplay among biological experimentation, modeling and computer
simulation, hardware implementation.

Keywords Perceptron � ADALINE � Signal processing � Pattern recognition �
Biological modeling � Neurocomputing

2.1 The 1940s: The Beginning of Neural Networks

The beginning of Neurocomputing is often taken to be the research article of
McCulloch and Pitts [10] published in 1943, which showed that even simple types
of neural networks could, in principle, compute any arithmetic or logical function,
was widely read and had great influence. Other researchers, principally Norbert
Wiener and von Neumann, wrote a book and research paper [11, 12] in which the
suggestion was made that the research into the design of brain-like or brain-inspired
computers might be interesting.

In 1949 Hebb wrote a book [13] entitled The Organization of Behaviour which
pursued the idea that classical psychological conditioning is ubiquitous in animals
because it is a property of individual neurons. This idea was not itself new, but
Hebb took it further than anyone before him had by proposing a specific learning
law for the synapses of neurons. Hebb then used this learning law to build a
qualitative explanation of some experimental results from psychology. Although
there were many other people examining the issues surrounding the neurocom-
puting in the 1940s and early 1950s, their work had more the effect of setting the

© The Author(s) 2015
N. Yadav et al., An Introduction to Neural Network Methods
for Differential Equations, SpringerBriefs in Computational Intelligence,
DOI 10.1007/978-94-017-9816-7_2

13

stage for later developments than of actually causing those developments. Typical
of this era was the construction of first neurocomputer (the Snark) by Marvin
Minsky in 1951. The Snark did operated successfully from a technical stand point
but it never actually carried out any particularly interesting information processing
functions.

2.2 The 1950s and 1960s: The First Golden Age of Neural
Networks

The first successful neuro-computer (the Mark I perceptron) was developed during
1957 and 1958 by Frank Rosenblatt, Charles Wightman, and others. As we know it
today, Rosenblatt as the founder of Neurocomputing. His primary interest was
pattern recognition. Besides inventing the perceptron, Rosenblatt also wrote an
early book on Neurocomputing, Principles of Neurodynamics [14].

Slightly later than Rosenblatt, but cut from similar cloth, was Bernard Widrow.
Widrow, working with his graduate students (most notably Marcian E. “Ted” Hoff,
who later went on to invent the microprocessor) developed a different type of neural
network processing element called ADALINE, which was equipped with a pow-
erful new learning law which, unlike the perceptron leaning law, is still in wide-
spread use. Widrow and his students applied the ADALINE successfully to a large
number of toy problems, and produced several films of their successes. Besides
Rosenblatt and Widrow, there were a number of other people during the late 1950s
and early 1960s who had substantial success in the development of neural network
architectures and implementation concepts.

Notwithstanding the considerable success of these early Neurocomputing
researchers, the field suffered from two glaringly obvious problems. First, the
majority of researchers approached the subject from a qualitative and experimental
point of view. This experimental emphasis resulted in a significant lack of rigor and
a looseness of thought that bothered many established scientists and engineers who
established the field. Second, an unfortunate large fraction of neural networks
researchers were carried away by their enthusiasm in their statements and their
writings. For example, there were widely publicized predictions that artificial brains
were just a few years away from development, and other incredible statements.

Besides the hype and general lack of rigor, by the mid 1960s researchers had run
out of good ideas. The final episode of this era was a campaign led by Marvin
Minsky and Seymour Papert to discredit neural network research and divert neural
network research funding to the field of “Artificial Intelligence”. The campaign was
waged by the means of personal persuasion by Minsky and Papert and their allies,
as well as by limited circulation of unpublished technical manuscript (which was
further published in 1969 by Minsky and Papert as the book Perceptrons [15]).

The implicit thesis of Perceptrons was that essentially all neural networks suffer
from the same “fatal flaw” as the perceptron; namely the inability to usefully

14 2 History of Neural Networks

compute certain essentials predicates such as XOR. To make this point the authors
reviewed several proposed improvements to the perceptron and showed that these
were also unable to perform well. They left the impression that neural network
research had been proven to be a dead end.

2.3 The 1970s: The Quiet Years

In spite of Minsky and Papert’s demonstration of the limitations of perceptrons,
research on neural network continued. A great deal of neural network research went
on under the headings of adaptive signal processing, pattern recognition, and bio-
logical modeling. In fact, Many of the current leaders in the field began to publish
their work during 1970s. Examples include Amari [16], Fukushima [17], Grossberg
[18] and Klopf and Gose [19]. These people, and those who came in over the next
13 years, were the people who put the field of neural network on a firm footing and
prepared the way for the renaissance of the field.

2.4 The 1980s: Renewed Enthusiasm

By the early 1980s many Neurocomputing researchers became bold enough to
begin submitting proposals to explore the development of neuro-computers and of
neural network applications. In the years 1983–1986 John Hopfield, an established
physicist of worldwide reputation, had become interested in neural networks a few
years earlier. Hopfield wrote two highly readable papers on neural networks in 1982
[20] and 1984 [21] and these, together with his many lectures all over the world,
persuaded hundreds of highly qualified scientists, mathematicians, and technolo-
gists to join the emerging field of neural networks.

In 1986, with the publication of the “PDP books” (Parallel Distributed Pro-
cessing, Volumes I and II, edited by Rumelhart and McClelland [22]), the field
exploded. In 1987, the first open conference on neural networks in modern times,
the IEEE International Conference on Neural Networks was held in San Diego, and
the International Neural Network Society (INNS) was formed. In 1988 the INNS
journal Neural Networks was founded, followed by Neural Computation in 1989
and the IEEE Transactions on Neural Networks in 1990.

2.2 The 1950s and 1960s: The First Golden Age of Neural Networks 15

Chapter 3
Preliminaries of Neural Networks

Abstract In this chapter brief introduction to neural network has been given along
with some basic terminologies. We explain the mathematical model of neural
network in terms of activation functions. Different architectures of neural network
like feed forward, feed backward, radial basis function network, multilayer per-
ceptron neural network and cellular network etc., is described. Backpropagation and
other training algorithms have been also discussed in this chapter.

Keywords Neural network � Feed forward � Recurrent network � Particle swarm
optimization � Genetic algorithm � Backpropagation algorithm

3.1 What Is Neural Network?

A neural network is a parallel distributed information processing structure in the
form of a directed graph, (directed graph is a geometrical object consisting of a set
of points called nodes along with asset of directed line segments called links
between them) with the following sub-definitions and restrictions:

(i) The nodes of the graphs are called processing elements.
(ii) The links of the graphs are called connections. Each connection functions as

instantaneous unidirectional signal-conduction path.
(iii) Each processing element can receive any number of incoming connections.
(iv) Each processing element can have any number of outgoing connections, but the

signals in all of these must be the same. In effect, each processing element has a
single output connection that can branch out or fan out into copies to form
multiple output connections, each of which carries the same identical signal.

(v) Processing elements can have local memory.
(vi) Each processing element possess a transfer function which can use local

memory, can use input signals, and which produces the processing element’s
output signal.

(vii) Input signals to a neural network from outside the network arrive via con-
nections that originate in the outside world.

© The Author(s) 2015
N. Yadav et al., An Introduction to Neural Network Methods
for Differential Equations, SpringerBriefs in Computational Intelligence,
DOI 10.1007/978-94-017-9816-7_3

17

3.2 Biological Neural Network

Artificial neural networks emerged after the introduction of simplified neurons by
McCulloch and Pitts in 1943. These neurons were presented as models of biological
neurons and as conceptual components for circuits that could perform computa-
tional tasks. The basic model of the neuron is founded upon the functionality of a
biological neuron. “Neurons are the basic signaling units of the nervous system”
and “each neuron is a discrete cell whose several processes arise from its cell body”.

The neuron has four main regions to its structure. The cell body, or soma, has
two offshoots from it, the dendrites, and the axon, which end in presynaptic ter-
minals. The cell body is the heart of the cell, containing the nucleus and main-
taining protein synthesis. A neuron may have many dendrites, which branch out in a
treelike structure, and receive signals from other neurons. A neuron usually only
has one axon which grows out from a part of the cell body called the axon hillock.
The axon conducts electric signals generated at the axon hillock down its length.
These electric signals are called action potentials. The other end of the axon may
split into several branches, which end in a presynaptic terminal. Action potentials
are the electric signals that neurons use to convey information to the brain. All these
signals are identical. Therefore, the brain determines what type of information is
being received based on the path that the signal took. The brain analyzes the
patterns of signals being sent and from that information it can interpret the type of
information being received.

Fig. 3.1 Biological neural
network

18 3 Preliminaries of Neural Networks

Myelin is the fatty tissue that surrounds and insulates the axon. At these nodes,
the signal traveling down the axon is regenerated. This ensures that the signal
traveling down the axon travels fast and remains constant. The synapse is the area
of contact between two neurons. The neurons do not actually physically touch.
They are separated by the synaptic cleft, and electric signals are sent through
chemical interaction. The neuron sending the signal is called the presynaptic cell
and the neuron receiving the signal is called the postsynaptic cell. Neurons can be
classified by their number of processes (or appendages), or by their function [23].
Figure 3.1 represents the structure and functioning of biological neural network.

3.3 Artificial Neural Network

An artificial neural network (ANN) is an information–processing system that has
certain performance characteristics in common with biological neural networks.
Artificial neural networks have been developed as generalizations of mathematical
models of human cognition or neural biology, based on the assumptions that:

(i) Information processing occurs at many simple connections called neurons.
(ii) Signals are passed between neurons over connection links.
(iii) Each connection link has an associated weight, which in a typical neural net,

multiplies the signal transmitted.
(iv) Each neuron applies an activation function to its net input to determine its

output signal.

The basic component of an artificial neural network is artificial neuron like bio-
logical neuron in biological neural network. A biological neuron may be modeled
artificially to perform computation and then the model is termed as artificial neuron.

A neuron is the basic processor or processing element in a neural network. Each
neuron receives one or more input over these connections (i.e., synapses) and
produces only one output. Also this output is related to: the state of the neuron and
its activation function. This output may fan out to several other neurons in the
network. The inputs are the outputs i.e. activations of the incoming neurons mul-
tiplied by the connection weights or synaptic weights. Each weight is associated
with an input of a network. The activation of a neuron is computed by applying a
threshold function (popularly known as activation function) to the weighted sum of
the inputs plus a bias. Figure 3.2 represents an artificial neuron.

3.4 Mathematical Model of Artificial Neural Network

A neuron Ni accepts a set of n inputs, S ¼ xj
��j ¼ 1; 2; . . .; n

� �
: In Fig. 3.3, each

input is weighted before reaching the main body of a neuron Ni by connection
strength or weight factor wij for j = 1, 2, …, n. In addition, it has a bias term wo, a

3.2 Biological Neural Network 19

threshold value hk; which has to be reached or exceeded for the neuron to produce
an output signal. A function f(s) acts on the produced weighted signal. This function
is called the activation function. Mathematically, the output of the i-th neuron Ni is

Oi ¼ f wo þ
Xn
j¼1

wijxj

" #
ð3:1Þ

Fig. 3.2 An artificial neuron

Fig. 3.3 Mathematical model of artificial neural network

20 3 Preliminaries of Neural Networks

And the neuron’s firing condition is,

wo þ
Xn
j¼1

wijxj � h ð3:2Þ

Figure 3.3 shows detailed computational steps of the working principle of an
artificial neuron in a neural network. Now the input signal for the i-th neuron Ni is

si ¼ wo þ
Xn
j¼1

wijxj ð3:3Þ

This is obtained by adder function and the output signal obtained by activation
function is:

Oi ¼ f si � hið Þ ð3:4Þ

3.5 Activation Function

As we have discussed in the above section, the output signal is a function of the
various inputs xj and the weights wij which are applied to the neuron. Originally the
neuron output function proposed as threshold function, however linear, sign, sig-
moid and step functions are widely used output. Generally, inputs, weights,
thresholds and neuron output could be real value or binary or bipolar. All inputs are
multiplied to their weights and added together to form the net input to the neuron
called net. Mathematically, we can write

net ¼ wi1x1 þ wi2x2 þ � � �wijxj þ h ð3:5Þ

where h is a threshold value that is added to the neurons. The neuron behaves as
activation or mapping function f netð Þ to produce an output y which can be
expressed as:

y ¼ f netð Þ ¼ f
Xn
j¼1

wijxj þ h

 !
ð3:6Þ

where f is called the neuron activation function or the neuron transfer function.
Some examples of the neuron activation functions are explained in Fig. 3.4.

3.4 Mathematical Model of Artificial Neural Network 21

3.5.1 Linear Activation Function

The linear neuron transfer function is called the linear activation function or the
ramp function, which is shown in Fig. 3.4.

y ¼ f netð Þ ¼ f
Xn
j¼1

wijxj þ h

 !
¼ net ð3:7Þ

3.5.2 Sign Activation Function

Neuron transfer function is called sign activation function if the output is hard
limited to the values +1 and −1, or sometimes 0 depending upon the sign of net as
shown in Fig. 3.5. In this case the expression of the output y can be written as:

y ¼ 1 if net� 0
�1 if net\0

�
ð3:8Þ

3.5.3 Sigmoid Activation Function

It is an S shaped nonlinear smooth function, where input is mapped into values
between +1 and 0. The neuron transfer function is shown in Fig. 3.6 and defined as:

y ¼ 1
1þ e�Tx

ð3:9Þ

Fig. 3.4 Linear activation
function

22 3 Preliminaries of Neural Networks

3.5.4 Step Activation Function

In this case, the net neuron input is mapped into values between +1 and 0. The step
activation function is shown in Fig. 3.7 and defined by:

y ¼ 1 if net� 0
0 if net\0

�
ð3:10Þ

Fig. 3.5 Sign activation
function

Fig. 3.6 Sigmoid activation
function

3.5 Activation Function 23

3.6 Neural Network Architecture

A single node is insufficient for the practical problems, and networks with a large
number of nodes are frequently used. The way in which nodes are connected
determines how computations proceed and constitutes an important early design
decision by neural network developer. An artificial neural network is essentially a
data processing system comprised of a large number of simple highly intercon-
nected processing elements, called neurons and shown in Fig. 3.8–3.14 using a
directed graph, where nodes represent neurons and edges represent synaptic
lengths. Various neural network architectures are found in the literature. Here we
define different network which are commonly used in current literature [24–26].

3.6.1 Feed Forward Neural Networks

Feed forward neural networks are the simplest form of artificial neural network. The
feed forward neural network was the first and arguably simplest type of artificial
network devised. In this network, the information moves in only one direction,
forward, from the input nodes, through the hidden nodes (if any) and to the output
nodes as shown in Fig. 3.8. There are no cycles or loops in the network. In a feed-
forward system, processing elements (PE) are arranged into distinct layers with
each layer receiving input from the previous layer and outputting to the next layer.
Weights of direct feedback paths, from a neuron to itself are zero. Weights from a
neuron to a neuron in a previous layer are also zero. Weights for the forward paths
may also be zero depending on the specific network architecture, but they do not
need to be in every case. Mathematically, we can express that,

Fig. 3.7 Step activation
function

24 3 Preliminaries of Neural Networks

wij ¼ 0 if i ¼ j

wij ¼ 0 if layer i� layer j
ð3:11Þ

A network without all possible forward paths is known as sparsely connected
network, or a non-fully connected network. The percentage of available connec-
tions that are utilized is known as the connectivity of the network.

3.6.2 Recurrent Neural Networks

A recurrent network can have connections that go backward from output nodes to
input nodes and, in fact, can have arbitrary connections between any nodes. In this
way, a recurrent network’s internal state can alter as sets of input data are presented
to it, and it can be said to have a memory. This is particularly useful in solving
problems where the solution depends not just on the current inputs, but on all
previous inputs. When learning, the recurrent network feeds its inputs through the
network, including feeding data back from outputs to inputs through the network,
and repeats this process until the values of the outputs do not change. At this point
the network is said to be in a state of equilibrium or stability. A typical recurrent
neural network can be explained by Fig. 3.9.

Hence, a recurrent network can be used as an error-connecting network. If only a
few possible inputs are considered “valid”, the network can correct all other inputs
to the closest valid input.

Fig. 3.8 A feed-forward network

3.6 Neural Network Architecture 25

3.6.3 Radial Basis Function Neural Network

Radial basis function (RBF) network consists of three layers, input layer is first
layer and basis function is the second layer as hidden layer and an output layer as
shown in Fig. 3.10. Each node in the hidden layer represents a Gaussian basis
function for all nodes and output node uses a linear activation function. LetWk

RBF be
the vector connection weight between the input nodes and the k-th RBF node or we
can say Wk

RBF ¼ X �Wk; so the output of the k-th RBF node is

hkRBF ¼ exp � 1
r2k

Wk
RBF

�� ��2� �
ð3:12Þ

where rk is the spread of k-th RBF function, X ¼ x1; x2; . . .; xmð Þ is the input vector,
W ¼ w1k;w2k; . . .;wmkð Þ and Wk

RBF

�� jj ¼Pm
i¼1 xi � wikð Þ2: The output of the j-th

output nodes can be computed as:

Fig. 3.9 A recurrent neural network

26 3 Preliminaries of Neural Networks

Oj
RBF ¼

Xm1

k¼0

wkj
0 h

k
RBF ð3:13Þ

Training algorithm for RBF starts with one RBF node using one of the data
points as the centre of the Gaussian functions, then it finds the data points with the
highest error, which is used as the centre of a new RBF node. Squared errors are
minimized by adjusting the connection weights between the hidden layer and the
output layer. The process is continued till the error goal in terms of square of error
is achieved as the number of RBF nodes attains a given maximum value. An RBF
depends only on the distance to a centre point xj and is of the form / x� xj

	
�� �� and
have a shape parameter e in which / rð Þ is replaced by / r; eð Þ. Some of the most
popular RBF’s are:

(i) Piecewise smooth RBF’s: / rð Þ
(ii) Piecewise polynomial Rnð Þ: rnj j; n odd
(iii) Thin plate splines (TPSn): rnj jln rj j; n even
(iv) Infinitely smooth RBF’s: / r; eð Þ
(v) Multiquadric (MQ):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e rð Þ2

q
(vi) Inverse multiquadric (IMQ): 1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ e rð Þ2
p

(vii) Inverse quadratic (IQ): 1
1þ e rð Þ2

(viii) Gaussian (GS): e� e rð Þ2

Fig. 3.10 Radial basis function network

3.6 Neural Network Architecture 27

3.6.4 Hopfield Network

A set of neurons with unit delay is fully connected to each other and forming a
feedback neural network known as Hopfield neural network. In this kind of network
connection weight from neuron i to neuron j is equal to the weight from neuron j to
neuron i and there is no self-feedback in the network as depicted in Fig. 3.11.
There are four kinds of Hopfield network:

3.6.4.1 Binary Hopfield Network

A binary Hopfield network is full connected through symmetric bi directional
connections with weights wij = wji for i; j ¼ 1; 2; . . .; n with no self connections for
all i. An activity rule of a Hopfield network is for each neuron to update its state as
if it were a single neuron with the threshold activation function and updates may be
synchronous or asynchronous. Activities in binary Hopfield network are in terms of
binary numbers (+1, −1). The learning rule sets the weights with the intention that a
set of desired memories {x(t)} will be stable states of the Hopfield network’s activity

rule. The weights are set using the sum of outer products wij ¼ g
P

n x
tð Þ
i x tð Þ

j ; where
g is an unimportant constant.

Fig. 3.11 Hopfield network

28 3 Preliminaries of Neural Networks

3.6.4.2 Continuous Hopfield Network

It uses the identical structure and learning rule of the binary Hopfield network but
its activities are real numbers between −1 and +1. In continuous Hopfield network
updates may be synchronous or asynchronous and involve equations

xi ¼
X
j

wijxj and ai ¼ tanh xið Þ

or

ai ¼ tanh bxið Þ ¼ 1� e�bxi

1þ e�bxi
ð3:14Þ

where b 2 0;1ð Þ and b is known as the gain factor.

3.6.4.3 Continuous-Time Continuous Hopfield Network

In continuous time continuous Hopfield network xi is continuous function of time t
i.e. xiðtÞ which is computed as:

ai tð Þ ¼
X
j

wijxj tð Þ ð3:15Þ

And the response of a neuron to its activation is assumed to be mediated by the
differential equation:

d
dt

xi tð Þ½ � ¼ 1
s
xi tð Þ � f aið Þ½ � ð3:16Þ

where, f ðaÞ is the activation function, such as f að Þ ¼ tanh að Þ. Every component of

d
dt

xi tð Þð Þ

has the same sign in case of continuous-time continuous Hopfield network, which
means the system performs the steepest descent.

3.6.4.4 Discrete Hopfield Network

In the case of discrete Hopfield network the state vector x ðtÞ converges to a local
error minimum for an initial state vector x ð0Þ. The networks weight is given by the
Hebb rule:

3.6 Neural Network Architecture 29

wij ¼
1
n

Xd
l¼1

xl ixl j; i 6¼ j

0; i ¼ j

8><
>: ð3:17Þ

The weight matrix is always symmetric and has zero diagonal elements. Acti-
vation functions are updates according to the given rule:

yi tð Þ ¼ fHopfield xi þ
XN
j6¼i

yj t � 1ð Þwji

 !
ð3:18Þ

where t describes the dynamics of the activations of a collection of N neurons.

3.6.5 Cellular Neural Network

A cellular neural network is an artificial neural network which features a multi-
dimensional array of neurons and local interconnections among cells. The important
features of CNN paradigm are that it uses the analog cells with continuous signal
values and local interaction within finite radius. Its architecture consists of regular
spaced cloned circuits called cells, which is connected to its neighbor cells and can
interact directly with each other. CNN consists of linear and non linear circuit
elements, which typically are linear capacitors, linear resistors, linear and non linear
controlled sources and independent sources as shown in Fig. 3.12, the typical circuit
of a single cell. In the figure, Euij is the independent voltage source, I is the
independent current source, Iyijn ; Iuijn is voltage controlled current sources and Eyij is
the output voltage controlled source. The cell has direct connections to its neighbors

Fig. 3.12 Cellular neural network

30 3 Preliminaries of Neural Networks

through two kinds of weights: the feedback weight and the control weight and the
index pair represent the direction of signal from one cell to another cell. The global
behavior of CNN is characterized by a template set containing A-Template,
B-Template, and the bias I. Cellular neural network has important potential
applications in areas such as image processing and pattern recognition. It has the
best features of both the words, its continuous time feature allows real time signal
processing important in the digital domain and its local interconnection feature
makes it tailor made for VLSI implementation.

3.6.6 Finite Element Neural Network

Finite element neural network represents the finite element model converted into the
parallel network form. In the case with M elements and N nodes in the finite
element mesh, the M network inputs take the a values in each element as input; N
groups of N neurons are arranged in the hidden layer with N2 neurons. The output
of each group of hidden layer neurons is the corresponding row of the global matrix
which is embedded by the material properties in each of elements. Each group of
hidden neurons is connected to one output neuron by a set of weights u, with each
element of u represents the nodal value /j as shown in Fig. 3.13 for a two element,
four node FEM mesh. The output of each neuron is equal to bi and each output
neuron is a summation of linear activation function followed by a linear activation
function:

bi ¼
XN
j¼1

/j

XM
k¼1

bkwk
ij

 !
ð3:19Þ

where bk is the input corresponding to each element, wk
i j is the weights from the

input to the hidden layer. Figure 3.13 represents the FENN architecture with two
input neurons, 16 hidden layer neurons and four output neurons. It represents the
grouping of the hidden layer neurons and the similarity inherent in the weights that
connect each group of hidden layer neurons to the corresponding output neuron.

3.6.7 Wavelet Neural Network

Wavelet neural network is an alternative to the feed forward neural network for
approximating arbitrary non linear functions as an alternative. The basic idea for
WNN is to replace the neurons by wavelons i.e. computing units obtained by
cascading an affine transform and a multidimensional wavelet. Then these trans-
forms and weights are identified from noise corrupted input/output data.

3.6 Neural Network Architecture 31

It has the network structure of the form:

g xð Þ ¼
XN
i¼1

wiw DiRi x� tið Þ½ � þ �g ð3:20Þ

where, the parameter �g is used to approximate the function easily with non zero
average, since the wavelet wðxÞ is non zero mean average. The dilation matrices
Di’s are diagonal matrices and Ri’s are rotation matrices. Architecture of WNN is
depicted in Fig. 3.14.

The initialization of the wavelet network consists in the evaluation of the
parameters �g;wi; ti and si for i ¼ 1; 2; . . .;N. �g is initialized by estimating the mean

Fig. 3.13 Finite element neural network

Fig. 3.14 Wavelet neural network

32 3 Preliminaries of Neural Networks

of function and set �g to the estimated mean. Weights wi’s are set to zero and ti’s,
Si’s are initialized by taking the point p between the domain the n set t1 ¼ p,
s1 ¼ nðb� aÞ, where n[0 is a properly selected constant. Interval is divided into
the subintervals and t2; s2; t3; s3, and so on are initialized until all the wavelets are
initialized. Point p is taken to be the centre of gravity of the domain ½a; b�.

3.7 Learning in Neural Networks

A neural network has to be configured such that the application of a set of inputs
produces the desired set of outputs. Various methods to set the strengths of the
connection exist. One way is to set the weights explicitly, using priory knowledge.
Another way is to train the neural network by feeding it, teaching patterns and letting it
change its weights according to some learning rule. The term learning is widely used
in the neural network field to describe this process; it might be formally described as:
determining an optimized set of weights based on the statistics of the examples. The
learning classification situations in neural networks may be classified into distinct
sorts of learning: supervised learning, unsupervised learning, reinforcement learning
and competitive learning.

3.7.1 Supervised Learning

A supervised learning method is one in which weight adjustments are made based
on comparison with some target output. A teaching signal feeds into the neural
network for the weight adjustments. These teaching signals are also known as
training sample. A supervised learning algorithm is shown in following Fig. 3.15.

Fig. 3.15 A supervised learning algorithm

3.6 Neural Network Architecture 33

3.7.2 Unsupervised Learning

An Unsupervised learning method is one in which weight adjustments are not based
on comparison with some target output. Here no teaching signal feeds into the
weights adjustments but it requires some guidelines for successful learning. This
property is also known as Self organization.

3.7.3 Reinforcement Learning

This learning requires one or more neurons at the output layer and the teacher or
training sample, unlike supervised learning, indicates how closed the actual output
is to the desired output. During the training session the error signal generated by the
teacher is only binary, e.g. pass or fail, true or false, 1 or 0, in or out, etc. If the
teacher’s indication is fail, the network readjusts its parameters with the help of
input signals and tries again and again until it gets its output response right i.e. pass.

3.7.4 Competitive Learning

A Competitive learning method is one in which several neurons are at the output
layer of the network. When an input signal is applied to the network, each output
neuron competes with the others to compute the closest output signal to the target.
The network output for the applied input signals becomes the dominant one, and the
remaining computed outputs from other neurons cease producing an output signal
for that input signal.

3.8 Multi-layer Perceptron

The Perceptron is a paradigm that requires supervised learning. In general, multi-
layer perceptron (MLP) neural networks are composed of many simple perceptrons
in a hierarchical structure forming a feed forward topology with one or more hidden
layers between the input and output layers, depending upon the application. The
number of hidden layer is selected through typically either an educated guess or a
cut and tries process, but it has been mathematically proved by researchers that one
hidden layer is sufficient to obtain an equivalent neural network with multiple
hidden layers. A single-layer perceptron forms half-plane decision regions, a two-
layer perceptron can form convex (polygon) regions, and a three layer perceptron
can form arbitrarily complex decision regions in the input space. The learning
algorithms used with MLP’s are the back propagation (BP) algorithms, RPROP

34 3 Preliminaries of Neural Networks

learning algorithm, Levenberg-Marquardt learning algorithm, Genetic Algorithm
and Particle swarm optimization.

3.8.1 Backpropagation Algorithm

A backpropagation method of ANN was first proposed by Werbos [27] in 1974.
Later on Rumelhart, Hinton and Williams exploited backpropagation in their work
in simulating cognitive process. Since then backpropagation has been employed in
a number of fields for solving problems that would be quite difficult using con-
ventional computer science techniques.

The backpropagation model of ANN has three layers of neurons: an input layer,
a hidden layer, and an output layer, where there is no connection within the layer
but fully connected between two consecutive layers. There are two synaptic (i.e.
connection) weight matrices-one is in between the input layer and the hidden layer,
and the other is in between the hidden layer and the output layer. There is a learning
rate a in the subsequent formulae, indicating how much of the weight change
should influence the current weight change. There is also a term indicating within
what tolerance we can accept an output as ‘good’. The backpropagation algorithm
is an involved mathematical tool which has been widely used as a learning algo-
rithm in feedforward multi-layer neural networks.

The main difficulty with MLP arises in calculating the weights of the hidden
layers in an efficient way that results in the least output error. There is no direct
observation of the error at the hidden layers. The weights are calculated during the
learning phase of the network in this algorithm.

To apply the backpropagation learning procedure following is required:

(i) The set of normalized training patterns i.e., sample or data, both inputs {xk}
and the corresponding targets {Tk}.

(ii) Value for the learning rate.
(iii) Criterion that terminates the algorithm.
(iv) Methodology for updating the weights, i.e., weight updating rules and dif-

ferent criteria for rule updation.
(v) Usually sigmoid activation is preferred by the user for non-linear activation.
(vi) Initial weight values (generally random numbers between −0.5 and 0.5).

3.8.2 The RPROP Learning Algorithm

RPROP stands for ‘resilient propagation’ and is an effective learning scheme that
performs a direct adaption of weight parameters based on local gradient informa-
tion. The RPROP algorithm [28, 29] was originally chosen as the gradient descent
technique used as a learning algorithm due to its simplicity and the adaptive nature

3.8 Multi-layer Perceptron 35

of its parameters. To explain this algorithm, consider a vector u ¼ u1; u2; . . .; un½ �
which contains n number of weights to be optimized. Each weight u i has an
updated value Di associated with it, which is added to and subtracted from the
current weight value depending on the sign of derivative of @E=@ui. Where @E=@ui
represents the derivative of the error function with respect to network parameters
and the error function which has to reduce can be written in the following form:

E ¼ 1
Aj j
X
x2A

F x;Nð Þ2 ð3:21Þ

Here, F is some signed error measure, A is a set of training points at which error
is to be evaluated and N represents the output of the neural network. The weight of
the parameters in the t þ 1ð Þth epoch is updated using the following scheme:

utþ1
i ¼ uti � Dt

i; if @E
�
@utþ1

i

	

[0

uti þ Dt
i; if @E

�
@utþ1

i

	

\ 0

(
ð3:22Þ

The approach based on the above scheme is computationally inexpensive and
very powerful since the updated values are adjusted dynamically rather than
depending upon the magnitude of the derivative of the error function with respect to
network parameters. The updated value in the (t + 1)-th epoch is adjusted according
to the rule that if the derivative of the error function with respect to network
parameters has same sign in the consecutive epochs indicates that the adjustment
should be accelerated, and thus the current updated value is increased by a factor of
gþ [1.

Dtþ1
i ¼

gþDt
i; if

@E
@uti

� @E

@utþ1
i

[0

g�Dt
i; if

@E
@uti

� @E

@utþ1
i

\ 0

8>>><
>>>:

ð3:23Þ

Recommended value of gþ ¼ 1:2 is used, also if the sign of @E=@ui is changed
in the next epoch then the minimum has been passed in the previous epoch and the
updated value is reduced by a factor 0\ g� \ 1. The update values and weights
are changed every time the whole pattern set has been presented once to the
network.

The main advantage of the RPROP algorithm is based on the fact that there is no
need of the choice of parameters at all for many problems to obtain optimal con-
vergences times. Also the algorithm is efficient with respect to both time and
storage consumption and the other strength of this method is that convergence
speed is not especially sensitive to the three parameter values gþ ¼ 1:2, g� ¼ 0:5
and D0 ¼ 0:1. The only drawback of the method being the memory is required to
store the @E

�
@uti and Dt

i values for each weight.

36 3 Preliminaries of Neural Networks

3.8.3 The Levenberg-Marquardt Learning Algorithm

Although RPROP algorithm is simple and computationally inexpensive still it fails
to reduce error when solving more complicated boundary value problems. The
Levenberg-Marquardt algorithm (LM) is also known as the damped least squares
method is a classical approach which provides a numerical solution to the problem
of minimizing a function over a space of parameters of the function [30]. It is
known for its fast convergence using a sum of error squares error function as shown
in Eq. (3.24). The Levenberg-Marquardt algorithm is derived by considering the
error E after a differential change in the neural network weights from u 0 to u
according to the second order Taylor series expansion

E uð Þ ¼ E u0ð Þ þ f T u� u0ð Þ þ 1
2

u� u0ð ÞTH u� u0ð Þ þ � � � ð3:24Þ

where,

f ¼ rE uð Þ ¼ @E
@u

¼ @E
@u1

;
@E
@u2

; . . .;
@E
@un

 �T
ð3:25Þ

is the gradient vector and

H uð Þ ¼

@2E uð Þ
@u21

@2E uð Þ
@u1@u 2

. . . @2E uð Þ
@u1@un

@2EðuÞ
@u2@u1

@2EðuÞ
@u22

. . . @2E uð Þ
@u2@un� � �

� � �
� � �

@2E uð Þ
@un@u1

@2E uð Þ
@un@u2

. . . @ 2EðuÞ
@u2n

2
666666664

3
777777775

ð3:26Þ

is the Hessian matrix. Taking the gradient of Eq. (3.24) with respect to the weight
parameters the weight vector corresponding to the minimum error can be obtained:

rE uð Þ ¼ H u� � u0ð Þ þ f ð3:27Þ

Equating Eq. (3.27) to zero and solving for the weight vector with minimum
error we can get:

u� ¼ u0 � H�1f ð3:28Þ

which results,

uiþ1 ¼ ui � giH
�1fi ð3:29Þ

3.8 Multi-layer Perceptron 37

where u i is the weight vector in the i-th iteration and g is the learning rate and
represents the Newton-Raphson learning algorithm. The error in Eq. (3.21) can be
rewritten as:

EðuÞ ¼ FðuÞTFðuÞ ð3:30Þ

where F uð Þ ¼ F x1; hð Þ;F x2; hð Þ; . . .;F xjAj; h
	
� �T

given that x1; x2; . . .; xjAj 2 A.
The error is computed by summing the square of F at each location in the domain as
determined by set of points. The Jacobian matrix is used to define the Hessian for
the special case of sum of squared error.

H ¼ 2JTJ þ 2
@JT

@u
F ð3:31Þ

where,

J x; uð Þ ¼

@F x1;uð Þ
@u1

@F x1;uð Þ
@u2

. . . @F x1;uð Þ
@un

@F x2;uð Þ
@u1

@Fðx2;uÞ
@u2

. . . @F x2;uð Þ
@un� � �

� � �
� � �

@F x Ak k;uð Þ
@u1

@F x Ak k;uð Þ
@u2

. . .
@F x Ak k;uð Þ

@un

2
66666664

3
77777775

ð3:32Þ

The errors can be linearly approximated to produce H � 2JTJ, this approxi-
mation combined with Eq. (3.29) produces the Gauss Newton learning algorithm
which assumes that the second hand term on Eq. (3.31) is negligible. The Leven-
berg–Marquardt method modifies the Gauss Newton algorithm by:

uiþ1 ¼ ui � 1
2
gi J

TJi þ kiI
	
�1

fi ð3:33Þ

where k is scalar and I is the identity matrix. Large values are taken for learning
rate g and factor k in the beginning of the training and decreases as the solution
improves. The Levenberg-Marquardt method has a fast convergence and effective
optimization scheme for the weight parameters. The method is powerful and simple
to operate after having few matrix operations.

3.8.4 Genetic Algorithm

Genetic algorithm searches the solution space of a function through the use of a
simulated evolution i.e. the survival of the fittest strategy [31, 32]. It works on a set
of elements of the solution space of the function that have to minimize. The set of

38 3 Preliminaries of Neural Networks

elements is called a population and the elements of the set are called individual. The
Genetic algorithm is applied to the problem which is a preventative of the opti-
mization problem. The initial population could be defined randomly and or based
on the prior knowledge. The algorithm will evaluate the individual of population
based on the objective function and how much each agent is closed to the objective.
To produce the next generation of people from the current generation, agents with
better fitness are selected as the parents for the next generation and there are several
operators which are applied to chromosomes to produce the next generations, these
operators are known as genetic operators. Some important operators are Mutation,
Crossover and Combination. So the new population is generated and its fitness will
calculate and the process repeats up to maximum epoch assigned is achieved.

The procedure of Genetic algorithm can be written as the difference equation:

x t þ 1½ � ¼ s v x tð Þð Þð Þ ð3:34Þ

where xðtÞ is the population at time t, s is a selection operator and v is a random
operator.

The shortcomings of the BP algorithm could be overcome if the training process
is based on the global search of connection weights towards an optimal set defined
by GA. For neural network to be fully optimal the learning rules are adapted
dynamically according to its architecture and the problem. The basic learning rule
can be given by the function:

DwðtÞ ¼
Xn
k¼1

Xn
i1;i2;...;ik

hi1;i2;...;ik¼1

Yk
j¼1

xij t � 1ð Þ
 !

ð3:35Þ

where t is time, Dw is the weight change, h’s are the real value coefficients which
will be determined by global search and x1; x2; . . .; xn are local variables. Equa-
tion (3.35) is based on the assumption that same learning rules are applicable to
every node of the network and weight updating is only dependent on the number of
connection weights on a particular node. h’s are encoded as the real valued coef-
ficient and the global search for learning rules can be done by the following rules:

(i) The evolution of the learning rules has to be implemented such that the
evolution of architecture chromosomes is evolved at faster rate.

(ii) Fitness of the each evolutionary artificial neural network is evaluated.
(iii) Children for each individual in the current generation are reproducing using

suitable selection method and depending upon the fitness.
(iv) Next generation is obtained by applying genetic operators to each individual

child generated in the above 3rd rule.
(v) If the network has achieved the required error rate or the specified number of

generations otherwise the procedure is repeated.

3.8 Multi-layer Perceptron 39

3.8.5 Particle Swarm Optimization

Particle swarm optimization is a non gradient based, probabilistic search algorithm
which is based on a simplified social model and is inspired by the social behavior of
animals and swarm theory [33, 34]. For optimizing the weight parameters in neural
network the mean sum of square is defined in term of fitness function as:

Fj ¼ 1
k1

Xk1
i¼1

f �ðÞð Þ2 þ 1
k2

Xk2
i¼1

Lf �ðÞð Þ2 for j ¼ 1; 2; 3; . . .: ð3:36Þ

where k1 is the number of steps, k2 is the number of initial/boundary conditions, f �

is the algebraic sum of differential equation neural network representation that
constitute a differential equation, L is the operator to define the initial/boundary
conditions and j is the flight number. This fitness function representing in Eq. (3.36)
has to be minimized using PSO for finding the global minimum from a huge space
of the input data set.

The basic principle of particle swarm optimization is the adaptation between the
individuals and this adaptation is a stochastic process that depends upon the
memory of the each individual as well as the knowledge gained by the population
as whole. The formulation of the problem in PSO is done by taking randomly
generated particles called swarm as a population. This population of particles
contains the randomly generated particle positions and velocity vectors for each
particle. All particles in the swarm have fitness values and evaluated by fitness
functions that is depends on the problem. The fitness of the function is defined by
f : Rn ! R. The best way to update the initial position particles in PSO is to move
towards its own direction, towards the globally best particle or towards the per-
sonally best particle. In each iteration, the position and velocity of the particle is
updated according to its known previous local best position kn�1

i and global best
position of all particles kn�1

g in the swarm so far. In PSO the updating formula for
each particle velocity and position is given by:

vni ¼ uvn�1
i þ b1 randðÞ

�
kn�1
i � xn�1

i

�
þ b2 randðÞ kn�1

g � xn�1
i

� �
ð3:37Þ

and

xni ¼ xn�1
i þ vni ð3:38Þ

where u is the inertia weight which is linearly decreasing, rand() is the random
number generated between 0 and 1, i ¼ 1; 2; 3; . . .;m, m is the number of particles
in a swarm, b 1 and b 2 are the self confidence constants, n is the flight number. xni
and vni are the position vector and velocity vector of the i-th particle of swarm at
flight n respectively. In Particle swarm optimization, first of all initial population is
randomly generated K ¼ X1;X2;X3; . . .;Xn½ � and assign the velocities to each

40 3 Preliminaries of Neural Networks

particle in the population V ¼ V1;V2;V3; . . .;Vn½ �, where K and V defines the initial
population of sub swarms and n is the number of subpopulation. An initial popu-
lation is generated in a bounded range with the random number generator in the
following way:

xij ¼ B� Að Þ�r þ A

vij ¼ B� Að Þ�r þ Að Þ=2 ð3:39Þ

for j ¼ 1; 2; 3; . . .;m, xij is the j-th particle of the i-th sub swarm and vij is the
velocity of j-th particle of the i-th sub swarm. A and B represent the upper and lower
bounds for the search dimension and r is a random number between 0 and 1. Then
fitness function is evaluated and particles are ranked subject to the fitness value
obtained also assign local best and global best accordingly. The position and
velocity parameters are updated using Eqs. (3.37) and (3.38) until all the flights are
achieved and store the global best particle. The distance of each stored global best
particle is calculated by the following formula:

di ¼
Xm
j¼1

xj
�� ��	
" #

=m ð3:40Þ

for i ¼ 1; 2; 3; . . .;N. From the global best population N=4 particles are selected on
the basis of maximum distance until the global best particles becomes equal to the
number of particles in the subpopulation.

3.9 Neural Networks as Universal Approximator

Artificial neural network can make a non linear mapping from the inputs to the
outputs of the corresponding system of neurons which is suitable for analyzing the
problem defined by initial/boundary value problems that have no analytical solu-
tions or which cannot be easily computed. One of the applications of the multilayer
feed forward neural network is the global approximation of real valued multivari-
able function in a closed analytic form. Namely such neural networks are universal
approximator. It has been find out in the literature that multilayer feed forward
neural networks with one hidden layer using arbitrary squashing functions are
capable of approximating any Borel measurable function from one finite dimen-
sional space to another with any desired degree of accuracy. A squashing function
is a function f : R ! 0; 1½ � if it is non decreasing, limk!1 f kð Þ ¼ 1 and
limk!�1 f ðkÞ ¼ 0: To prove that multilayer feed forward neural networks as a class
of universal approximator K. Hornik et al. presents various definitions and results in
[35, 36].

3.8 Multi-layer Perceptron 41

Definition 3.1 If Ar : Rr ! R is the set of all functions of the form A xð Þ ¼ w:xþ b,
where w and x are vectors in Rr, b 2 R is a scalar and “.” Is the usual dot product for
any r 2 N. In the context of neural network in the above definition x represents the
input to neural network, w corresponds to network weights from input to indeter-
minate layer and b corresponds to the bias.

Definition 3.2 Let
Pr G be a class of functions for any Borel measurable function

Gð:Þ is a mapping from R to R and r 2 N.

f xð Þ ¼
Xq
j¼1

OjG Aj xð Þ	
 ð3:41Þ

where, x 2 Rr;Oj 2 R;Aj 2 Ar and q ¼ 1; 2;
In this case

Pr G represents the class of output functions with squashing at the
hidden layer and no squashing at the output layer and the scalars Oj corresponds to
the network weight from hidden to the output layers.

Theorem 3.1 If G be any continuous non constant function from R to R, thenPQr Gð Þ is uniformly dense on compacta in Cr, where Cr is a compact function
from Rr to R. In other words

PQ
feed forward neural networks are capable of

arbitrary accurate approximation to any real valued continuous function over a
compact set. Another feature of this result is that the activation function should be
any continuous non constant function.

Theorem 3.2 For every continuous non constant function G, every r and every
probability measure l on Rr;Brð Þ,PQr G is qu-dense in Mr. Hence, Theorem 3.2
corresponds that the standard feed forward neural networks with only a single
hidden layer can approximate any continuous function uniformly on compact set
and any measurable function arbitrary well in qu metric. Thus

P
networks are also

universal approximator.

Theorem 3.3 For every function g in Mr there is a compact subset K of Rr and an
f 2P r wð Þ such that for any e[0, 9 lðkÞ\1� e and 8x 2 k; 9 f xð Þ � g xð Þj j\e.
That defines that a single hidden layer feed forward neural network can approxi-
mate any measurable function to any desired degree of accuracy on some compact
set of input patters that to the same degree of accuracy has measure. Thus the
results established by Hornik et al. and given in the theorems proved that the neural
networks are universal approximator that can approximate any Borel measurable
set defined on a hypercube.

42 3 Preliminaries of Neural Networks

Chapter 4
Neural Network Methods for Solving
Differential Equations

Abstract In this chapter we presented different neural network methods for the
solution of differential equations mainly Multilayer perceptron neural network,
Radial basis function neural network, Multiquadric radial basis function network,
Cellular neural network, Finite element neural network and Wavelet neural net-
work. Recent development in all the above given methods has been also presented
in this chapter to get better knowledge about the subject.

Keywords Multilayer perceptron � Radial basis function �Multiquadric functions �
Finite element �Wavelet method � Cellular network

4.1 Method of Multilayer Perceptron Neural Network

Different neural network methods for the solution of differential equations are
described in this chapter. For more details, we refer [37, 57, 63, 81, 102, 111]

A method based on MLP neural network has been presented in [37] for the
solution of both ordinary differential equations (ODE’s) and partial differential
equations (PDE’s). Method is based on the function approximation capabilities of
feedforward neural networks and results in the construction of a solution which is in
a differentiable and closed analytic form. This form employs a feedforward neural
network as the basic approximation element, whose parameters (weights and biases)
are adjusted to minimize an appropriate error function. Optimization techniques are
used for minimizing the error quantity and training of the network, which in turn
require the computation of error gradient with respect to the inputs and network
parameters.

To illustrate the method, let us consider the problem of general differential
equation to be solved as:

F ~x; y ~xð Þ;ry ~xð Þ;r2y ~xð Þ� � ¼ 0; �x 2 D ð4:1Þ

© The Author(s) 2015
N. Yadav et al., An Introduction to Neural Network Methods
for Differential Equations, SpringerBriefs in Computational Intelligence,
DOI 10.1007/978-94-017-9816-7_4

43

defined on certain boundary conditions where ~x ¼ x1; x2; . . .; xnð Þ 2 Rn, D � Rn

denotes the definition domain and y ~xð Þ is the solution to be computed. Following
steps are required for the computation of the above differential equation Eq. (4.1)

(a) Transformation
First discretize the domain D and its boundary S into a set of discrete points D̂

and Ŝ respectively. The problem is then transformed into a system of equations

F ~xi; y xið Þ;ry xið Þ;r2y xið Þ� � ¼ 0 8 ~xi 2 D̂ ð4:2Þ

subject to the constraints imposed by the boundary conditions. If yt ~x;~pð Þ denotes a
trial solution with the adjustable parameters ~p, the problem is transformed to an
optimization problem

min
~p

X
xi2~D

Fðð~xiÞ; ytð~xi;~pÞ;rytð~xi;~pÞ;r2ytð~xi;~pÞÞ2 ð4:3Þ

subject to the constraints imposed by the boundary conditions.
(b) Construction of Trial Solution
To construct the trial function yt ~xð Þ we assume that the trial function satisfies the

given boundary conditions and it is the sum of two terms-one is independent of
adjustable parameters, and the other is with adjustable parameters. Suppose the trial
function is

ytð~xÞ ¼ Að~xÞ þ f ~x;Nð~x;~pÞð Þ ð4:4Þ

where, A ~xð Þ contains no adjustable parameters which satisfies the initial/boundary
conditions and N ~x;~pð Þ is a single output feed forward neural network with param-
eters~p and n input feds with the input vector~x. The second term f is constructed in a
way so that it does not contribute to the boundary conditions, since yt ~xð Þ must also
satisfy them. This term represents a neural network whose parameters are to be
adjusted in order to solve minimization problem, hence the problem has been
reduced to the unconstrained optimization problem from the original constrained one
which is much easier to handle due to the choice of the form of the trial solution that
satisfies by construction the boundary conditions.

4.1.1 Gradient Computation

Minimization of error function can also be treated as a procedure of training the
neural network, where the error corresponding to each input vector~xi is the value
f ~xið Þ which has to become zero. In Computation of this error value, it requires the
network output as well as the derivatives of the output with respect to the input

44 4 Neural Network Methods for Solving Differential Equations

vectors. Therefore, while computing error with respect to the network parameters,
we need to compute not only the gradient of the network but also the gradient of the
network derivatives with respect to its inputs.

4.1.2 Gradient Computation with Respect to Network Inputs

Next step is to compute the gradient with respect to input vectors, for this purpose
let us consider a multilayer perceptron (MLP) neural network with n input units, a
hidden layer with H sigmoid units and a linear output unit. For a given input vector
~x ¼ x1; x2; . . .; xnð Þ the output of the network can be given as:

N ¼
XH
i¼1

vir zið Þ ð4:5Þ

where,

zi ¼
Xn
j¼1

wijxj þ ui;

In Eq. (4.5) wij denotes the weight from the input unit j to the hidden unit i, vi
represents weight from the hidden unit i to the output, ui is the bias of hidden unit i,
and r zð Þ is the sigmoid activation function. Now the derivative of networks output
N with respect to input vector xj is:

@N
@xj

¼ @

@xj

XH
i¼1

vir
Xn
j¼1

wijxj þ ui

 ! !
¼
Xh
i¼1

viwijr
1ð Þ ð4:6Þ

where,

r 1ð Þ ¼ @r xð Þ
@x

Similarly, the k-th derivative of N is

@kN
@xkj

¼
X

viw
k
ijr

kð Þ
i ð4:7Þ

where, ri ¼ r zið Þ and r kð Þ denotes the k-th order derivative of the sigmoid acti-
vation function. In general the derivative for any order with respect to any of input
vector can be given as:

4.1 Method of Multilayer Perceptron Neural Network 45

@k1

@xk11

@k2

@xk22
� � � � @

kn

@xkn2
N ¼

Xn
i¼1

viPir
Kð Þ
i ¼ Nkð~xÞ ð4:8Þ

and

Pi ¼
an
k¼1

wkk
ik K ¼

Xn
i¼1

ki ð4:9Þ

4.1.3 Gradient Computation with Respect to Network
Parameters

Network’s derivative with respect to any of its inputs is equivalent to a feed-forward
neural network Nk ~xð Þ with one hidden layer, having the same values for the weights
wij and thresholds ui and with each weight vi being replaced with vipi. Moreover,
the transfer function of each hidden unit is replaced with the K-th order derivative
of the sigmoid function. Therefore, the gradient of Nk with respect to the parameters
of the original network can be easily obtained as:

@Nk

@vi
¼ Pir

Kð Þ
i ð4:10Þ

@Nk

@ui
¼ viPir

ðKþ1Þ
i ð4:11Þ

@Nk

@wij
¼ xjviPir

Kþ1
i þ vikjw

kj�1
ij

Y
k¼1;k 6¼j

wkk
ik

 !
r Kð Þ
i ð4:12Þ

4.1.4 Network Parameter Updation

After computation of derivative of the error with respect to the network parameter
has been defined then the network parameters updation rule can be given as,

vi t þ 1ð Þ ¼ vi tð Þ þ a
@Nk

@vi
ð4:13Þ

ui t þ 1ð Þ ¼ ui tð Þ þ b
@Nk

@ui
ð4:14Þ

46 4 Neural Network Methods for Solving Differential Equations

wij t þ 1ð Þ ¼ wij tð Þ þ c
@Nk

@wij
ð4:15Þ

where a; b and c are the learning rates, i ¼ 1; 2; . . .; n and j ¼ 1; 2; . . .; h.
Once a derivative of the error with respect to the network parameters has been

defined it is then straightforward to employ any optimization technique to minimize
error function.

Remark 1 The study of the above method presented in [37] concludes that it can be
applied to both ODE’s and PDE’s by constructing the appropriate form of the trial
solution. Presented method also exhibits excellent generalization performance as
the deviation at the test points was in no case greater than the maximum deviation at
the training points. It can also be stated that the method can easily be used for
dealing with domains of higher dimension.

4.1.5 Recent Development in MLPNN for Solving
Differential Equations

Multilayer perceptron neural network method with the extended back propagation
algorithm is presented by He et al. in [38] to train the derivative of a feed forward
neural network. They presented a method to solve a class of first order partial
differential equation as input to state linearizable or approximate linearizable sys-
tems and to examine the advantage of the method.

4.1.5.1 Extended Back Propagation Algorithm

For training a feed forward network to map a set of n dimensional input/m
dimensional output vector pairs xi; Tið Þ for i ¼ 1; 2; . . .;m are considered as the
problem of nonlinear least squares. If the output of an n layered feed forward neural
network is oni for input vector xi, then the error function for nonlinear least squares
can be defined as:

E ¼
Xm
i¼1

Ti � oni
� �T

Ti � oni
� �

A general structure for calculating output can be given as:
The extended back propagation algorithm for training the derivative of the

network can be given as: If we have input xi and output oi, the performance index of
the network can be given by:

4.1 Method of Multilayer Perceptron Neural Network 47

E ¼ 1
2

Xm
i¼1

oTi � Gi
� �T

oTi � Gi
� � ð4:16Þ

where, GðxÞ represents the transpose of the output of the network with respect to
input x. Gradient of the output of the network with respect to the output in k-th layer
will be:

@On

@Ok

� �T

¼ Dk ð4:17Þ

then, Dn�1 ¼ wnTFnðbnÞ, Dn�2 ¼ wðn�1ÞTFn�1ðbn�1ÞDn�1 and similarly D0 ¼ w1T

F1ðb1ÞD1. Thus G xð Þ can be represented as GðxÞ ¼ D0 þ b0T . Then the derivative of
the squared errors of a single input/output pair Ê ¼ ðoTi � GiÞTðoTi � GiÞwith respect
to Dk, weights and biases are computed. Simulation technique is used to demonstrate
the effectiveness of the proposed algorithm and it is shown that themethod can be very
useful for practical applications in the following cases:

(i) When a non linear system satisfies the conditions for input-to-state lineari-
zation but the nontrivial solution of the given equation

@kðxÞ
@x

gðxÞ ad1f gðxÞ . . . adn�2
f gðxÞ

h i
¼ 0 ð4:18Þ

is hard to find by training the derivative of a neural network. We can seek the
approximate solution by the method given in [38]. Since there is no restrictive
condition for choosing the basis vector to train the neural network, therefore a
simple transformation to construct the basis is recommended

(ii) When a nontrivial solution does not exist for the above given equation, we
still obtain an approximate solution. If the approximate solution is considered
an exact solution for a linearizable feedback system, then the system should
approximate the given non linear system as closely as possible. The extended
backpropagation algorithm can benefit the design of the class of nonlinear
control systems, when the non trivial solution of partial differential equations
is difficult to find. The control design based on this method cannot result in a
satisfactory way for the applications where a large region of operation is
required.

In Lagaris et al. [39] presented an artificial neural network with the synergy of
the two feed forward networks of different types to solve the partial differential
equation.

48 4 Neural Network Methods for Solving Differential Equations

4.1.5.2 Model Based on MLP-RBF Synergy

The constrained optimization problem may be tackle in a way such that constraints
are exactly satisfies by construction of a model and to use a suitable constrained
minimization problem for the constraints. A model has been developed with the
combination of feedforward and RBF networks as:

WMð~x; pÞ ¼ Nð~x; pÞ þ
XM
l¼1

qle
�kj~x�a~rlþ~hj2 ð4:19Þ

where, the first term represents a multilayer perceptron with p representing the set of
its weights and biases and second term represents an RBF network with M hidden
units that all share a common exponential factor k. jj denotes the Euclidean norm,
the coefficients ql are uniquely determined by requiring that the boundary condi-
tions are satisfied i.e. if we consider a partial differential equation of the form:

Lw ¼ f ð4:20Þ

Together with the boundary conditions defined on the M points inside the
boundary as:

wð~riÞ ¼ bi Dirichletð Þ ð4:21Þ

or

n̂i � rwð~riÞ ¼ ci Neumannð Þ ð4:22Þ

where L is a differential operator and w ¼ wð~xÞ ð~x 2 D � RðnÞÞ with Dirichlet or
Neumann boundary conditions. The boundary B ¼ @D can be any arbitrary com-
plex geometrical in shape. n̂i is the outward unit vector, normal to boundary at the
point ~ri. Collocation method is used to prepare the energy function for the mini-
mization process as:

min
p

EðpÞ ¼
XK
i¼1

ðLwMð~xi; pÞ � f ð~xiÞÞ2 ð4:23Þ

Subject to the constraints imposed by the boundary conditions. The coefficients
ql are determined by the equation:

bi � Nð~ri; pÞ ¼
XM
i¼1

ql e
�kj~ri�a~riþ~hj2 ð4:24Þ

4.1 Method of Multilayer Perceptron Neural Network 49

or,

ci �~ni � rNð~ri; pÞ ¼ �2k
XM
i¼1

qle
�kj~ri�a~riþ~hj2~ni � ð~ri � a~ri þ~hÞ ð4:25Þ

for Dirichlet and Neumann boundary conditions respectively. Therefore a set of
linear systems have to solve for obtaining the coefficient in both the cases or penalty
function method can be used to minimize the problem. The model based on the
combination of MLP and RBF satisfies the boundary condition exactly but it is
computationally expensive since one has to solve a system of linear equations at
every evaluation of the model. Penalty method is efficient but it does not satisfy the
boundary conditions exactly, hence the combination of both these methods is used
by the authors. Penalty method is used to obtain a model that satisfies the boundary
condition approximately and then refines using the synergy method. Solutions
obtained by the given approach shows that the method is equally effective, and
retains its advantage over the Galerkin Finite element method. It also provides
accurate solutions in a closed analytic form that satisfy the boundary conditions at
the selected points.

In [40], the authors described a method that involves the combination of artificial
neural networks and evolutionary algorithm to solve partial differential equation
and its boundary or initial conditions. They used the concept that multiple input,
single output and single hidden layer feed forward networks with a linear output
layer with no bias are capable of approximating arbitrary functions and its
derivatives.

4.1.5.3 MLP with Evolutionary Algorithm

To clarify the working of the method, following differential equation has been taken
with two of its initial conditions:

d2y
dt2

þ y ¼ 0; t 2 ½0; 1� ð4:26Þ

dy
dt

¼ 1; yð0Þ ¼ 0 ð4:27Þ

By assuming that

y;
dy
dt

;
d2y
dt2

50 4 Neural Network Methods for Solving Differential Equations

are continuous mappings, these are approximated by the log sigmoid function
mappings arbitrary as:

/ðtÞ ¼
Xm
i¼1

ai f ðwit þ biÞ ð4:28Þ

d/
dt

¼
Xm
i¼1

aiwi
df
dt

ðwit þ biÞ ð4:29Þ

d2/
dt2

¼
Xm
i¼1

aiw
2
i
d2f
dt2

ðwit þ biÞ ð4:30Þ

A differential equation neural network is then constructed having five layers with
bias in the first two layers. All obtained networks are trained simultaneously as a
consequence of their interrelationship using evolutionary algorithm for calculating
the solution of the partial differential equation and its boundary and initial condi-
tions. To apply the evolutionary algorithm the mean sum of squares errors for each
training set of differential equation neural network is defined which represents the
square of the difference between the target and the output of the network which is
summed for all inputs and that sum is divided by the number of inputs. So the
following expression:

e1 þ e2 þ e3 ð4:31Þ

is minimized for the above case by using an evolutionary algorithm using the
GEATbx toolbox in Matlab. It has been observed by the authors that good results
can be obtained if they restrict the values of the variables to the interval [−5, 5]. The
knowledge about the partial differential equations and its boundary and/or initial
conditions has been incorporated into the structures and the training sets of several
neural networks and found that the results for one and two dimensional problem are
very good in respect of efficiency, accuracy, convergence and stability.

Smaoui and Al-Enezi in [41] presented combination of Karhunen-Loeve (K-L)
decomposition and artificial neural networks to analyze the dynamics of two non
linear partial differential equations known as the Kuramato-Sivashinsky (K-S)
equation and the two dimensional Navier-Stokes (N-S) equation.

4.1.5.4 MLP with K-L Decomposition

The K-S equation is a model equation for interfacial instabilities in the terms of
angular phase turbulence for a system of reaction diffusion equation that models the
Belouzov-Zabotinskii reaction in three space dimensions and can be given as:

4.1 Method of Multilayer Perceptron Neural Network 51

@y
@t

þ v
@4y
@x4

þ @2y
@x2

þ 1
2

@y
@x

� �2
¼ 0 ð4:32Þ

Together with the conditions:

yðx; tÞ ¼ yðxþ L; tÞ ð4:33Þ

yðx; 0Þ ¼ y0ðxÞ ð4:34Þ

The time series solution of Eq. (4.32) is computed using y0ðxÞ ¼ sin 2x by
decomposing yðx; tÞ as:

yðx; tÞ ¼
X1
k¼�1

akðtÞeikx ð4:35Þ

The problem described in Eqs. (4.32–4.34) are solved using a pseudo spectral
Galerkin method where the nonlinear term is treated using a “de-aliasing” technique
known as aliasing removal by truncation. The numerical solution obtained using the
technique consists of two laminar states: one between two bursts and the other is on
the other sides of the two bursts for a ¼ 17:75. K-L decomposition was applied on
the numerical simulation data to extract coherent structures of the dynamical
behavior represented by heteroclinic connection. A neural network model is then
constructed with one input layer, two hidden layers both with log sigmoid acti-
vation functions and an output layer. The input layer consists of five data coeffi-
cients’ at time tn and tn�1 and output is the following mapping:

aiðtn þ PÞ ¼ f ðaiðtnÞ; aiðtn�1ÞÞ; i ¼ 1; . . .; 5 ð4:36Þ

where f is the set of non linear function that represent the neural network model.
Network is trained for the data set and when the sum square error reaches the preset
bound, the weights connecting all the bounds are saved and the network is again
trained for testing a new set of data coefficients. For modeling and prediction of P
times steps into the future dynamical behavior artificial neural network is used at
a ¼ 17:75 for different values of P. Authors found that the neural network model is
able to capture the dynamics of system, and observed that as P increases, the model
behavior degrades. Eight different tori were obtained while applying the symmetry
observed in the two-dimensional N-S equations on the quasiperiodic behavior.
They showed that by exploiting the symmetries of the equation and using K-L
decomposition in conjunction with neural networks, a smart neural model can be
obtained.

Malek and Beidokhti in [42] presented a novel hybrid method for the solution of
high order ordinary differential equations.

52 4 Neural Network Methods for Solving Differential Equations

4.1.5.5 MLP with Nelder-Mead Simplex Method

The hybrid technique adopted here as a combination of the neural network and the
Nelder-Mead optimization technique nicely produce non linear function named as
energy function using neural network and minimization of the function is guar-
anteed with the optimum structure of the non linear solution function. Let us
consider a general initial/boundary value problem of the form:

F x; yðxÞ; dy
dx

;
d2y
dx2

; . . .;
dny
dxn

� �
¼ 0; x 2 ½a; b�

B x; yðxÞ; dy
dx

;
d2y
dx2

; . . .;
dny
dxn

� �
¼ 0; x ¼ a and/or b

8>>><
>>>:

ð4:37Þ

where F is a differential operator of degree n, B is an initial/boundary operator, y is
an unknown dependent variable to be calculated and x is an independent variable
belonging to ½a; b�. Solution to Eq. (4.37) is of the form yTðx;PÞ where yT is a
dependent variable to x and P, and P is an adjustable parameter involving weights
and biases in the structure of three layer feed forward neural networks which
satisfies the following optimization problem:

Min
F

Z b

a
D x; yTðx;PÞ; dyTðx;PÞdx

; . . .;
dnyTðx;PÞ

dxn

� �����
����
2

dx

B x; yT ;
dyTðx;PÞ

dx
; . . .;

dnyTðx;PÞ
dxn

� �
¼ 0; x ¼ a and/or b

8>>><
>>>:

ð4:38Þ

In order to deal with Eq. (4.38) it is simpler to deal the following constrained
optimization problem of the form

yTðx;PÞ ¼ aðxÞ þ b ½x;Nðx;PÞ� ð4:39Þ

where, first term involves adjustable parameters and satisfies initial or boundary
conditions and second term represents three layered feed forward neural network.
Minimization in Eq. (4.38) has been done which is considered as a training process
for the proposed neural network and the error EðxÞ corresponding to every entry x
has to be minimized. A three layered perceptron with single entry, one hidden layer
and one unit output is considered for training procedure. Authors used Nelder-Mead
simplex method [43] to compute the error EðxÞ from substitution of yTðx;w; v; bÞ
into the Eq. (4.37). It has been concluded that the proposed method act as a good
interpolation as well as an extrapolation method for calculating the close enough
point outside the boundary points of the interval.

In article [51], the authors solved the first order initial value problem in ordinary
differential equations using cosine function as the transfer function of neural
network.

4.1 Method of Multilayer Perceptron Neural Network 53

4.1.5.6 MLP Based on Cosine-Based Model

The model based on the cosine basis function as a transfer function of the hidden
layer neuron has been presented and the model of neural network based on cosine
basis function can be represented by Fig. 4.1 as:

cnðxÞ ¼
XN�1

n¼0

cosðnxÞ

Here wn is weight vector.
This equation is a transfer function of the hidden layer neuron, x 2 ½0; p�, weight

matrix vector is W ¼ w0;w1; . . .;wn�1½ �T and transfer function matrix as

cðxÞ ¼ c0ðxÞ; c1ðxÞ; . . .; cn�1ðxÞð ÞT ;

N is the number of hidden layer neurons and Neural network output is given as

ŷðxÞ ¼
XN�1

n¼0

xn cos nx ð4:40Þ

A neural network algorithm is developed by considering the initial value
problems in ordinary differential equations, for which the error function is:

eðkÞ ¼
XN�1

n¼1

nxn sin nx� bþ f ðx; ŷðxÞÞ ð4:41Þ

Fig. 4.1 Neural Network based on cosine based model

54 4 Neural Network Methods for Solving Differential Equations

and weights are adjusted as;

wn k þ 1ð Þ ¼ wn kð Þ ¼ �l e kð Þ n sin nxk þ fy x; ŷ xkð Þ cos nxkð Þ	

n ¼ 0; 1; . . .;N � 1

ð4:42Þ

where l is learning rate and 0\l\1.The convergence criterion for the cosine
based neural network is then given by the theorem as: Suppose that l is the learning
rate, N is the number of hidden layer neurons, L is the upper limit of

@f x; yð Þ
@y

Then

@f x; yð Þ
@y

����
����� L;

If learning rate satisfies

0\l\
12

Nð2N2 þ 6L2 � 3N þ 1Þ

then the algorithm is convergent.
The algorithm based on cosine basis function is more precise and provides a new

approach on numerical computation that result at an arbitrary x between two
adjacent nodes.

In [44] authors presented the numerical solution of nonlinear Schrodinger
equation by feed forward neural network and the improvement of energy function is
done by the unsupervised training method.

4.1.5.7 MLP with Unsupervised Training Network

Authors considered the following time independent Schrodinger equation of the
motion of a quantum particle in a one dimensional system:

ĤwðxÞ � � h2

2m
@2

@x2
þ VðxÞ

� �
wðxÞ ¼ EwðxÞ ð4:43Þ

where, m and VðxÞ are the mass of a particle and the potential function, respec-
tively. Ĥ;wðxÞ; and E denote the system Hamiltonian, Eigen function and the Eigen
value, respectively. The identity of quantum mechanical state can be represented by
the wave function wðxÞ ¼ AðxÞ � SðxÞ in the coordinate system. Hence the energy
function:

4.1 Method of Multilayer Perceptron Neural Network 55

Eq ¼ j @
2wðxÞ
@x2

þ EwðxÞj2 þ j
X2
k¼1

Ckj2 ð4:44Þ

Since the eigen value parameter is unknown in the Eq. (4.44), its value is ini-
tialized and the network is then trained with specified hidden units. If the energy
function Eq does not converge to zero, eigen values are updated and tries again. The
algorithm for the above method with unsupervised training methodology is given by
the authors as in Fig. 4.2. Main goal of the algorithm is that the energy function Eq

must be zero, if it does not converge to zero, after finishing these cycles hidden layers
are increased and then tries again. The authors represented the wave function by the
feed forward artificial neural network, in which the coordinate value is regarded as an
input while the networks output are assigned to two separate parts. They obtained
energy function of the artificial neural network from the Schrodinger equation and its
boundary conditions and used unsupervised training method for training the network.

Accuracy of the method is shown by comparing the results to the results that are
analytically known and also by the Runge-Kutta method of order four. The method
can be used for domains with higher dimension also.

Fig. 4.2 An algorithm for neural network with unsupervised learning

56 4 Neural Network Methods for Solving Differential Equations

In [45], the author proposed a hybrid method based on artificial neural networks,
minimization techniques and collocation method to determine a related approximate
solution in a closed analytic form of the time independent partial differential
equations.

4.1.5.8 MLP for Time-Dependent Differential Equations

To describe the artificial neural network method for time dependent differential
equations a set of initial/boundary value problem for time dependent equations has
been taken of the form:

8i1 ¼ 1; . . .; p1 : Di1 t; x; . . .;
@a0þa1þ���þan

@ta0@xa11 � � � @xann yiðt; xÞ; . . .
� �

¼ 0; t 2 ½t0; tmax�; x 2 X

8i2 ¼ 1; . . .; p2 : Ii2 t0; x; . . .;
@a0þa1þ���þan

@ta0@xa11 . . .@x
an
n
yiðt0; xÞ; . . .

� �
¼ 0; x 2 X; 1� i�m

8i3 ¼ 1; . . .; p3 : Bi3 t; x; . . .;
@a0þa1þ���þan

@ta0@xa11 . . .@x
an
n
yiðt; xÞ; . . .

� �
¼ 0; t 2 ½t0; tmax�; x 2 X

8>>>>>>><
>>>>>>>:

ð4:45Þ

where the real valued multivariable functions Di1 , Ii2 and Bi3 represents the known
and non linear time dependent system of partial differential equations, initial and
boundary conditions, respectively, t is the time variable, x is the real valued spatial
variable, X � Rn is a bounded domain, ða0; a1; . . .; anÞ 2 Nnþ1

0 ðN0 ¼ N [f0gÞ is
multi index variable. A trial approximate solution has been prepared as:

yTðt; x;PÞ ¼ ½yT1ðt; x;P1Þ; . . .; yTmðt; x;PmÞ� ð4:46Þ

which includes m three layered feedforward neural networks and contains adjust-
able parameters (weights and biases) for the solution. To obtain the proper values of
the adjustable parameters the problem is transformed into unconstrained optimi-
zation problem. For any desired order differentiable functions ci : R

nþ2 ! Rði ¼
1; . . .;mÞ the trial solution can be assumed as:

yTiðt; x;PÞ ¼ ci½t; x;Niðt; x;PÞ� ð4:47Þ

In the case of mixed partial derivatives for the input values ðt; x1; x2; . . .; xnÞ the
output of the network is:

Nðt; x1; x2; . . .; xnÞ ¼
XH
i¼1

vi s wit þ
Xn
j¼1

wij xj

 !
þ bi

" #
ð4:48Þ

where, vi is the synaptic weight from the i-th hidden neuron to the output, wi is the
synaptic coefficient from the time input to the i-th hidden neuron, wij is the synaptic

4.1 Method of Multilayer Perceptron Neural Network 57

coefficient from the j-th component of spatial units to the i-th hidden neuron, bi is
the bias value and s is the logistic activation function. Nelder-Mead simplex method
is used for minimization problem and the given approximate solution works well
for the points inside and outside the problem domain, near boundary points. Some
advantages of this approach are that, it can solve the time dependent systems of
partial differential equations, the method is generalized for solving the higher order
and nonlinear problems, it deals with a few number of parameters, solution is fast
evaluated, the method can be applied to initial and two point boundary value
problem for ordinary differential equations, and it uses parallel processing. Unlike
the other methods, there is no ill conditioning of the concluded linear system in the
expansion methods or the necessity of making a special relation among the step size
for different axis in the finite difference method.

In article Tsoulos et al. [46], used a hybrid method utilizing constructed feed-
forward neural networks by grammatical evolution and a local optimization
procedure, in order to solve ordinary differential equations, system of ordinary
differential equations and partial differential equations.

4.1.5.9 MLP with Grammatical Evolution

Grammatical evolution is an evolutionary technique that can produce code in any
programming language requiring the grammar of the target language in BNF syntax
and some proper fitness function. The construction of neural network with gram-
matical evolution was introduced by Tsoulos et al. [47]. The method is based on an
evolutionary algorithm whose basis is lies on the biological evolution and the
efficiency of neural network is used as the fitness of the evolutionary algorithm
along with a penalty function which is used in order to represent the initial or
boundary value problem. The algorithm of constructed neural network for solving
ordinary differential equation can be given as:

(i) Equidistant points are chosen within the interval ½a; b� and is denoted by
½x1; x2; . . .; xn�.

(ii) The neural network Nðx; gÞ is constructed using grammatical evolution.
(iii) Training error has been calculated using the error function:

EðNðgÞÞ ¼
XT�1

i¼0

ðf ðxi;Nðxi; gÞ;Nð1Þðxi; gÞ; . . .;NðnÞðxi; gÞÞÞ2 ð4:49Þ

(iv) Penalty value PðNðgÞÞ is calculated using the following equation:

PðNðgÞÞ ¼ k
Xn
k¼1

w2
kðx;Nðx; gÞ;Nð1Þðx; gÞ; . . .;Nðn�1Þðx; gÞÞjx¼tk ð4:50Þ

where k is a positive number.

58 4 Neural Network Methods for Solving Differential Equations

(v) And finally, the fitness value is calculated as:

VðgÞ ¼ EðNðx; gÞÞ þ PðNðx; gÞÞ ð4:51Þ

The main advantage of the proposed method is that it has very less execution
time and does not require a user to enter any parameter. This method can be easily
parallelized, since it is based on the genetic algorithms and can be extended by
using different BNF grammars for the constructed neural networks with different
topologies or different activation functions. The proposed method does not require
the user to enter any information regarding the topology of the network and the
advantage of using an evolutionary algorithm is that the penalty function can be
incorporated easily into the training process.

In [48], the authors attempted to present a novel method for solving fuzzy
differential equations using multilayer perceptron neural network technique.

4.1.5.10 MLP for Fuzzy Differential Equations

Keeping in mind the function approximation capabilities of neural network authors
presented a neural network model for solving fuzzy differential equations. A first
order fuzzy differential equation has the form:

v0ðtÞ ¼ f ðt; vðtÞÞ ð4:52Þ

where v is a fuzzy function of t and f ðt; vÞ is a fuzzy function of the crisp variable t
and the fuzzy variable v and v0 is the fuzzy derivative of v, together with the initial
condition vðt0Þ ¼ v0. Equation (4.52) together with the boundary conditions is
replaced by the following equivalent system:

�v0ðtÞ ¼ �f ðt; vÞ ¼ Fðt; �v; ~vÞ; �vðt0Þ ¼ �v0
~v0ðtÞ ¼ ~f ðt; vÞ ¼ Gðt; �v; ~vÞ; ~vðt0Þ ¼ ~v0

(
ð4:53Þ

where Fðt; �v; ~vÞ and Gðt; �v; ~vÞ represents the minimum and maximum values of the
function respectively and the equation is represented in the parametric form. The
trial solution of the problem is written as the sum of the two parts in which first term
satisfies initial or boundary condition and second term represents feed forward
neural network. If �vTðt; r; �pÞ is a trial solution for the first equation in system, as in
Eq. (4.53), and ~vTðt; r; ~pÞ is a trial solution for the second equation in Eq. (4.53)
where �p and ~p are adjustable parameters, then the problem is transformed into the
optimization problem. Each trial solution �vT and ~vT represents one feedforward
neural network for which the corresponding networks are denoted by �N and ~N with
adjustable parameters. Network is trained to satisfy the differential equations and
the trial solutions should satisfy the differential equation. Quasi Newton method is

4.1 Method of Multilayer Perceptron Neural Network 59

used for the minimization problem and optimal values, weights are obtained after
the optimization process. The neural network method for solving fuzzy differential
equation has the following advantage:

(i) The approximated solution for fuzzy differential equation is very closed to the
exact solution since neural networks have good approximation capabilities.

(ii) Solution of fuzzy differential equation is available at each training point within
the interval.

In [48], authors presented a method for solving boundary value problem using
artificial neural networks for irregular domain boundaries with mixed boundary
conditions and introduce the concept of length factor for constructing approximate
solution.

4.1.5.11 Development of Approximate Solution Using Length Factor

As defined above for the case of MLP the trial solution for boundaries with only
Dirichlet and Neumann condition is defined respectively by

wt ¼ ADðxÞ þ Fðx;NÞ ð4:54Þ

wt ¼ ADðxÞ þ AMðx;NÞ þ Fðx;NÞ ð4:55Þ

where the first term AD satisfy the Dirichlet and Neumann boundary condition in the
equations respectively, AM ensures the satisfaction of boundary condition while not
interfering with the Dirichlet condition in Eq. (4.55) and the second term has to
return zero on the boundary while being the function of the ANN output N for all
the points inside the domain in Eq. (4.54). The concept of length factor is presented
to produce the term for complex boundaries:

Fðx;NÞ ¼ N LDðxÞ ð4:56Þ

and, AM is defined as in Eq. (4.57)

AM ¼ LD LM gMðx;NÞ ð4:57Þ

where the length factor LD is a measure of distance from the Dirichlet boundary and
LM corresponds to the Neumann condition, gM compensates the contribution of
partial derivatives of AD and F to obtain the desired boundary condition. Thin plates
splines [49] are used to compute the length factor for the boundary conditions. The
ANN output N is optimized to approximate solution in Eq. (4.55) and satisfies the
differential equation in the domain as closely as possible. The method presented by
the author is simpler than the other neural network method for irregular boundaries
due to its unconstrained nature and automatic satisfaction of boundary conditions.

60 4 Neural Network Methods for Solving Differential Equations

The continuous approximate solution can be easily evaluated at any point within the
domain with higher accuracy.

Alli et al. in [50] presented an artificial neural network technique for the solution
of mathematical model of dynamic system represented by ordinary differential
equations and partial differential equations.

4.1.5.12 MLP for Vibration Control Problem

Because of non-linearity and complex boundary conditions, numerical solutions of
vibration control problem always have some drawbacks such as numerical insta-
bility. That is why, an alternative method using feed forward artificial neural net-
works is presented by the authors for dynamical system. Extended backpropagation
algorithm is used to minimize the objective function and is used for training ANN.
The most commonly used objective function is taken, which is defined as:

e2 ¼ jTq � /qj2 ð4:58Þ

where, Tq is the target output and /q is the network output. In the case of extended
backpropagation algorithm the weights are updated for the output neurons
according to:

vðN þ 1Þ ¼ vðNÞ � gpð�2ÞjTq � /qj/p ð4:59Þ

wðN þ 1Þ ¼ wðNÞ � gpð2ÞjTq � /qjva/pj1� /pj ð4:60Þ

uðN þ 1Þ ¼ uðNÞ � gpð2ÞjTq � /qjva/pj1� /pj ð4:61Þ

where u; v; w are weight parameters, g represents the learning rate, hidden and
output layer are indexed as p and q respectively. Then the method is applied to
many controlled and non controlled vibration problems of flexible structures whose
dynamics are represented by ODE’s and PDE’s, for e.g., they considered mass-
damper-spring system, whose mathematical model is given by:

m
d2w
dt2

þ c
dw
dt

þ kw ¼ 0 ð4:62Þ

where the initial conditions of the systems are:

wð0Þ ¼ 1 and
dwð0Þ
dt

¼ 0 with t 2 ½0; 2�

The authors also considered the second and fourth order PDEs that are the
mathematical models of the control of longitudinal vibrations of rods and lateral
vibration of beams. To test their method, they also obtain the solutions of the same

4.1 Method of Multilayer Perceptron Neural Network 61

problems by using analytical and Runge-Kutta method. It has been also observed
that the presented method also success outside the training points when the neuron
numbers in the hidden layer are increased.

An algorithm for the selection of both input variables and a sparse connectivity
of the lower layer of connections in feed forward neural network of multilayer
perceptron with one layer of hidden non linear single linear output node is presented
by Saxen and Pettersson in [51].

4.1.5.13 Method for Selection of Inputs and Structure of FFNN

The algorithm for the selection for the inputs and structure of feed forward neural
network of MLP type with a single layer of hidden nonlinear unit and a single linear
output node can be mentioned as:

(i) A set of A potential inputs x and the output y is estimated for the M obser-
vation of the training set.

(ii) Iteration index is set to k ¼ 1, a sufficient number of hidden nodes are taken
and the weights are randomly generated for the lower layer of connections of
the network.

(iii) Each non zero weight in weight matrix is turns zero and determine the
optimal upper layer weights. Corresponding value of the objective function

FðkÞ
ij is saved.

(iv) Find the minimum of the objective function values and set W ðkÞ ¼ W ðk�1Þ

and equate to zero the weight corresponding to the minimum objective
function value.

(v) Set wij ¼ k and save this variable in book keeping matrix then set
K ¼ K þ 1, if k\mn the algorithm repeats and go to (II) otherwise stops.

The results of the algorithm are saved in a book-keeping matrix that can be
interpreted in retrospect to suggest a suitable set of inputs and connectivity of the
lower part of the network. Various test examples are presented by the authors to
illustrate that the proposed algorithm is a valuable tool for the users in extracting
relevant inputs from a set of potential ones. The method is a systematic method that
can guide the selection of both input variables and sparse connectivity of the lower
layer of connections in feed forward neural networks of multi-layer perceptron type
with one layer of hidden nonlinear units and a single linear output node and the
algorithm developed for the method is efficient, rapid and robust.

Filici in [52], presented a method of error estimation for the neural approxi-
mation of the solution of an ordinary differential equation.

62 4 Neural Network Methods for Solving Differential Equations

4.1.5.14 Error Estimation in Neural Network Solution

The author adopted the ideas presented by Zadunaisky [53, 54] in order to provide a
method that can estimate the errors in the solution of an ordinary differential
equation by means of a neural network approximation. Firstly neural approximation
to the ordinary differential equation problem is computed, and then neural neigh-
boring problem is solved and the true error �e is estimated. A bound on the difference
between the errors e and their estimations �e is derived, which is used to provide an
heuristic criterion for the validity of the error estimation under some assumptions.
Let eðtÞ be the solution of true error and �eðtÞ is the solution of approximate error, it
is assumed that for a 2 ½�1; 1�, NðtÞ þ axðtÞ belong to S for all t 2 ½0; tf �, x 2 BC, it
is also assumed that hiðtÞ and �hiðtÞ are continuous in t 8i. Then 9 positive constants
c and l such that

jje� �ejj � c exp Lt þ l
L
expðLtÞ � 1½ � ð4:63Þ

8 t 2 ½0; tf �, with jj � jj is the Euclidean norm. A set of examples are presented by
the author to show that the method can provide reasonable estimation of true errors.
These examples also show that the criterion of validity works well in assessing the
performance of the method.

Dua in [55], proposed a new method for parameter estimation of ordinary
differential equations, which is based upon decomposing the problem into two sub
problems.

4.1.5.15 MLP Based Approach for Parameter Estimation of System
of ODE

The first sub problem generates an artificial neural network model from the given
data and then the second sub problem uses the artificial neural network model to
obtain an estimate of the parameters of the original ordinary differential equation
model. The analytical derivatives from the artificial neural network model obtained
from the first sub problem are used for obtaining the differential terms in the
formulation of the second sub problem. The author considered a problem P1 as:

e1 ¼ min
h;zðtÞ

X
i2I

X
j2J

ðẑjðtiÞ � zjðtiÞÞ2 ð4:64Þ

subject to:

dzjðtÞ
dt

¼ fjðzðtÞ; h; tÞ j 2 J; zjðt ¼ 0Þ ¼ zo j 2 J; t 2 ½to; tf �

4.1 Method of Multilayer Perceptron Neural Network 63

and constructed the sub problem P2 and P3 of P1. Problem P3 involves only
algebraic variables, h, and therefore it can be solved to global optimality more
efficiently than the original problem P1 involving differential as well as algebraic
variables, z and h. The author recognized that a simpler sub problem P3 is obtained
by solving the first sub problem, to obtain the artificial neural network model. The
proposed approach is tested on the various example problems and encouraging
results have been obtained. The main advantage of the proposed method is that
requirement of high computational resources is avoided for computing the solution
of a high optimization problem and instead of that two sub problems are solved.
This approach is particularly useful for large and noisy data sets and nonlinear
models where artificial neural networks are known to perform well.

In article [56], the authors considered optimal control problems of discrete
nonlinear systems. Neural network is used to train the find function value, solution
of the Hamilton-Jacobi-Bellman equation and the optimal control law.

4.1.5.16 MLP with Two-Coupled Neural Network

They considered an invariant system; that is function f is independent from the time
k. Moreover, the cost increment function r is also considered as independent of the
time k. Taking horizon N as infinite, they deduced a equation:

@r
@u

þ @f
@u

� �T

� @I
@x

½f ðx; uÞ� ¼ 0 ð4:65Þ

Equation (4.65) is difficult to solve and analytical solutions are not usually
possible to obtain, due to the nonlinearity of the problem. Thus, the author used
neural networks to solve the problem based on the intelligent method such as neural
network. They proposed to use two coupled neural networks to solve the Hamilton-
Jacobi-Bellman equation in order to approximate nonlinear feedback optimal
control solutions. The first neural network computes the value function IðxÞ and the
second one determines the optimal control law gðxÞ. The learning of two neural
networks can be described as in Fig. 4.3.

The value function IðxÞ corresponds to the output of the first neural network as:

IðxÞ ¼ h1ðbÞ ð4:66Þ

where, b ¼Pj W
2
ji sj þ b21 and the output of the second neural network is:

umðxÞ ¼ h2ðbu;mÞ ð4:67Þ

where bu;m ¼Pj W
2
u;jmsu;j þ b2u;m, h2 is the activation function of the output layer.

Minimization has been done and the weights are updated using gradient descent
rule. In order to test the robustness of the proposed method, they consider two kinds
of perturbations. The first type is obtained by variations on the parameters of the

64 4 Neural Network Methods for Solving Differential Equations

system and in the second type of perturbation, they considered random noises
caused by that sensor imperfections which affect the measured state variables.
Simulation results show the performance and robustness of the proposed approach.

4.2 Method of Radial Basis Function Neural Networks

Another method to find an approximate particular solution of a differential equation
is achieved by using Radial Basis Functions (RBFs) as described in [57]. The
advantage of Radial Basis function is that a single independent variable is involved
regardless of the dimension of the problem. RBFs are particularly attractive when
the domain can’t be expressed as product domains of lower dimensions. The
method discussed in previous section presents mesh-free procedures for solving
linear differential equations (ODEs and PDEs) based on multiquadric radial basis
function networks (RBFNs) and the simulation results are perfect. But it doesn’t
determine the number of basis functions, centres and widths of the RBFs. Many
kinds of methods are proposed to optimize the complexity of RBFs in the existing
literature [58, 59].

RBF neural network method to solve differential equations relies on the whole
domain and the whole boundary instead of the data set and can obtain all the
parameters at the same time. The function uðxÞ to be approximated is defined by
u xð Þ : Rp ! R1 and decomposed into basis functions as

u xð Þ ¼
Xm
i¼1

w ið Þg ið Þ xð Þ ð4:68Þ

where the parameters, w ið Þ; c ið Þ; a ið Þ; b ið Þ; i ¼ 1; 2; . . .;m, are to be obtained.

Fig. 4.3 Structure of two
coupled neural network

4.1 Method of Multilayer Perceptron Neural Network 65

The derivatives of the function u ðxÞ are determined as:

uj...lðxÞ ¼ @ku
@xj . . . @xl

¼
Xm
i¼1

wðiÞ @kgðiÞ

@xj . . . @xl
ð4:69Þ

and the decomposition of function uðxÞ can be written as:

uðxÞ ¼
Xm
i¼1

wðiÞgðiÞðxÞ ¼
Xm
i¼1

wðiÞ
ffi
ðr2 þ aðiÞ

2Þ
q

ð4:70Þ

To explain the radial basis function neural network method for solving the
differential equations, 2D Poisson’s equation over the domain X is considered

r2 u ¼ p xð Þ; x 2 C ð4:71Þ

subject to Dirichlet and/or Neumann boundary conditions over the boundary C

u ¼ p1 xð Þ; x 2 C1 ð4:72Þ

n � ru ¼ p2x x 2 C2 ð4:73Þ

where r2 is the Laplace operator, x is the spatial position, p is a known function of
x and u is the unknown function of x to be determined; n is the outward unit normal;
r is the gradient operator; @C1 and @C2 are the boundaries of domain such as
@C1 [@C2 ¼ @C and @C1 \ @C2 ¼ /; p1 and p2 are known functions of x.

The solution u and its derivatives can be expressed in terms of basis functions
given in Eq. (4.70). The design of network is based on the information provided by
the given differential equation and its boundary conditions.

In this method, the model u being decomposed into m basis functions in a given
family as represented by Eq. (4.70) and the unknown parameters wðiÞ; cðiÞ; bðiÞ; i ¼
1; 2; . . .;m are to be obtained by minimizing the following integration

e ¼ F w; c; að Þ ¼
Z
X

Z
u11ðxÞ þ u22ðxÞ � pðxÞ½ �2 dx1dx2 þ

Z
@X

uðxÞ � p1ðxÞ½ �2ds

þ
Z
@X

n1u1ðxÞ þ n2u2ðxÞ � p2ðxÞ½ �2ds ð4:74Þ

where

w ¼ w 1ð Þ;w 2ð Þ; . . .;w mð Þ
 �

; c ¼ cð1Þ; cð2Þ; . . .; cðmÞ
 �

; a ¼ að1Þ; að2Þ; . . .; aðmÞ
 �

66 4 Neural Network Methods for Solving Differential Equations

That is to solve the following equation series

@Fðw; c; aÞ
@wðiÞ ¼ 0;

@Fðw; c; aÞ
@cðiÞ

¼ 0;
@F w; c; að Þ

@aðiÞ
¼ 0; i ¼ 1; 2; . . .;m ð4:75Þ

Finally, the solution is to obtain the values of the parameters by Eq. (4.75).

Remark 2 It has been observed that radial basis function neural network method
provides more accurate and attractive results in comparison to multiquadric radial
basis function. Also RBFN method is suitable for solving ODE as well as PDE’s
problems and the conditions on boundary are not necessarily strict.

4.3 Method of Multiquadric Radial Basis Function Neural
Network

It has been already proved in [60] that radial basis function networks (RBFNs) with
one hidden layer are capable of universal approximation. For problems of inter-
polation and approximation of scattered data, there is a body of evidence to indicate
that the multiquadric (MQ) function yields more accurate results in comparison
with other radial basis functions [7, 61]. Mai-Duy and Tran-Cong [62, 63] have
developed a new method based on the RBFNs for the approximation of both
functions and their first order higher derivatives and named as direct radial basis
function networks (DRBFN) and indirect radial basis function networks (IRBFN)
procedure; it was also found that the IRBFN method yields consistently better
results for both functions and its derivatives.

4.3.1 DRBFN Procedure for Solving Differential Equations

To explain the solution of differential equations using DRBFN and IRBFN pro-
cedures Mai-Duy and Tran-Cong considered in [63] the 2D Poisson’s equation over
the domain X

r2 u ¼ pðxÞ; x 2 X ð4:76Þ

where r2 is the laplacian operator, x is the spatial position, p is a known function of
x and u is the unknown function of x to be found. Equation (4.76) is subject to
Dirichlet and/or Neumann boundary conditions over the boundary C:

u ¼ p1ðxÞ; x 2 C1 ð4:77Þ

4.2 Method of Radial Basis Function Neural Networks 67

n � ru ¼ p2x x 2 C2 ð4:78Þ

where n is the outward unit normal; r is the gradient operator; C1 and C2 are the
boundaries of domain such as C1 [C2 ¼ C and C1 \ C2 ¼ /; p1 and p2 are known
functions of x.

Since numerical solution of differential equation is intimately connected with
approximating function and its derivatives. So the solution u and its derivatives can
be approximated in terms of basis function. The design of neural network is based
on the information provided by the given differential equation and its boundary
conditions.

In the direct approach the sum squared error associated with Eqs. (4.76)–(4.78)
is given by

SSE ¼
X
xðiÞ2X

ðu;11Þ xi þ u;22 ðxðiÞÞ � p ðxðiÞÞ
h i2

þ
X
xðiÞ2C1

u ðxðiÞÞ � p1 ðxðiÞÞ
h i2

þ
X
x ið Þ2C2

n1u;1 ðxðiÞÞ þ n2u;2ðxðiÞÞ � p2ðxðiÞÞ
h i2

ð4:79Þ

A system of linear algebraic equation is obtained in terms of known weights in
the output layer of the network by putting expression for u and its derivatives which
have already been calculated in [64] in Eq. (4.79), as follows:

GTG
� �

w ¼ GTp̂ ð4:80Þ

where G is the design matrix whose rows contains basis functions corresponding to
the terms ðu;11ðxðiÞÞÞ þ ðu;22ðxðiÞÞÞ; uðxðiÞÞ and ðn1u;1ðxðiÞÞ þ n2u;2ðxðiÞÞÞ and
therefore the number of rows is greater than the number of columns (number of
neurons); w is the vector of weights and p̂ is the vector whose elements correspond
to the terms p ðxðiÞÞ, p1ðxðiÞÞ, p2 ðxðiÞÞ.

The solution u in the least squares sense in Eq. (4.79) can be obtained by using
the method of orthogonal triangular decomposition with pivoting or the QR method
[65] for an over determined system of equations, which is

Gw ¼ p̂ ð4:81Þ

In practice, the QR method is able to produce the solution at larger values of the
width of the basis function, than the normal equations method arising from the
linear least square procedures Eq. (4.79).

68 4 Neural Network Methods for Solving Differential Equations

4.3.2 IRBFN Procedure for Solving Differential Equations

In indirect method of approximation, in [63] the function u is obtained via a
particular u;jj which is generally only one of a number of possible starting points. For
the method to be correct, all starting points must lead to same value for function u.
Thus, in indirect approach all possible starting points are taken into account and the
sum squared error is given by

SSE ¼
X
xðiÞ2X

½ðu;11ðxðiÞÞ þ u;22 ðxðiÞÞ � p ðxðiÞÞÞ�

þ
X
xðiÞ2X

½u1ðxðiÞÞ � u2ðxðiÞÞ�2 þ
X

xðiÞ2C1

½u1 ðxðiÞÞ � p1 ðxðiÞÞ�2

þ
X

xðiÞ2C2

½n1u;1 ðxðiÞÞ þ n2u2 ðxðiÞÞ � p2 ðxðiÞÞ�2 ð4:82Þ

where the term u1ðxðiÞÞ is obtained via u;11 and u2ðxðiÞÞ is obtained via u;22. Fur-
thermore, the unknown in the direct procedure also contains the set of weights
introduced by the interpolation of the constants of integration in the remaining
independent co-ordinate directions.

Remark 3 The DRBFN method yields similar accuracy to other existing methods
[66–68] etc. On the other hand, the IRBFN method produces results which are
several orders of magnitude more accurate than those associated with the DRBFN
method if accuracy is measured in terms of norm of error.

The ease of preparation of input data, robustness of DRBFN and IRBFN method
and high accuracy of the solution make the methods very attractive in comparison
with conventional methods such as the FDM, FEM, FVM and BEM.

The indirect RBFN procedure achieves better accuracy than the direct RBFN
procedure over a wide range of width of basis function and hence the choice of RBF
width is less critical in the case of IRBFN procedure. Unlike the MLP neural
network method, RBFN method is not iterative and hence more efficient. Both
regularly shaped and irregularly shaped domains can be handled with this method.

4.3.3 Recent Development in the RBF and MQRBF Neural
Network Techniques

In [69], the authors presented the combination of new mesh free radial basis
function network (RBFN) methods and domain decomposition (DD) technique for
approximating functions and solving Poisson’s equation.

4.3 Method of Multiquadric Radial Basis Function Neural Network 69

4.3.3.1 Radial Basis Function Domain-Decomposition Approach

Since IRBFN procedure achieves greater accuracy than DRBFN over a wide range
of RBF widths for function approximation [62], therefore the IRBFN method is
considered in conjunction with a domain decomposition technique for approxi-
mation of function and solving partial differential equations particularly Poisson’s
equation. In the IRBFN technique described previously, for approximation of the
function of several variables and its derivative each derivative f;j and the associated
function fj is represented by an IRBFN and trained independently for small system
of equations. A better approach should be that both sets will give the same
approximation f1 ¼ f2, hence w1 and w2 are solved simultaneously with the con-
sequence that the system of equation is larger. They developed a new feature of
IRBFN method for the approximation, so that the difficulties related to solving big
matrices can be overcome by using a subregioning technique. Each sub region is
approximated by a separate RBFN and the network is trained independently and, if
desired in parallel. Subregioning of the domain provides an effective means of
keeping the size of the system matrices down while improving accuracy with
increasing data density. Authors developed the boundary integral equations based
domain decomposition method for the estimation of boundary conditions at inter-
faces in solving given Poisson’s equation of potential problem.

r2u ¼ b; x 2 X ð4:83Þ

u ¼ �u; x 2 dXu ð4:84Þ

q ¼ @u
@n

¼ �q; x 2 @ Xq ð4:85Þ

where u is potential, q is the flux across the surface with unit normal, n; �u and �q are
the known boundary conditions, b is known function of position and @ X ¼
@ X u þ @ Xq is the boundary of the domain X. In their method, the interface
boundary conditions are first estimated by using boundary integral equations (BIEs)
at each iteration and sub domain problems are then solved by using RBFN method.
Also the volume integrals in standard integral equation representation (IE), which
usually require volume discretisation, are completely eliminated in order to present
the mesh free RBFN method. The convergence rate of the approach can be affected
by the element type used to compute BIEs. The numerical examples show that the
RBFN methods in conjunction with domain decomposition technique not only
achieve a reduction of memory requirement but also a high accuracy of the solution.
The boundary integral equation based domain decomposition method is very
suitable for coarse-grained parallel processing and can be extended to those prob-
lems whose governing equation can be expressed in terms of integral equations
such as viscous flow problems.

70 4 Neural Network Methods for Solving Differential Equations

Jianyu et al. in [70] defined a neural network for solving PDE in which acti-
vation function of the hidden nodes are the RBF and whose parameters are
determined by the two stage gradient descent strategy.

4.3.3.2 Two-Stage Gradient Learning Algorithm for RBF

The authors illustrated the two stage gradient learning algorithm by considering 2D
Poisson’s equation

Du ¼ P xð Þ; x 2 X ð4:86Þ

where D is Laplace operator, x is the spatial function, P is known function of x and
u is the unknown function of x to be found subject to the Dirichlet and Neumann
boundary conditions over boundary

u ¼ P1ðxÞ; x 2 dX

n	ru ¼ P2ðxÞ; x 2 dX2
ð4:87Þ

n is the outward unit normal, r is gradient operator, dX1; dX2 is the boundary of
domain such that dX1 [dX2 ¼ dX & dX1 \ dX2 ¼ / and P1;P2 are known
functions of x. They introduced a new incremental algorithm for growing RBF
networks and a two stage learning strategy for training the network parameters.
Now the model is decomposed into the set of m basis functions, the unknown
parameters are obtained by minimizing the sum of square due to error. So the
gradient descent optimization technique is used which works in two stages:

(I) cðiÞ and aðiÞ are fixed and wðiÞ is calculated by minimize the SSE by following
formula:

wðiÞ
t ¼ wðiÞ

t�1 � gt�1
@lðcðiÞt�1; a

ðiÞ
t�1;w

ðiÞ
t�1Þ

@wðiÞ
t�1

ð4:88Þ

(II) wðiÞ
t is now fixed and cðiÞ, aðiÞ is computed by minimizing the SSE by fol-

lowing equation:

cðtÞi ¼ cðiÞt�1 � bt�1
@lðcðiÞt�1; a

ðiÞ
t�1;w

ðiÞ
t Þ

@cðiÞt�1

ð4:89Þ

aðtÞi ¼ aðiÞt�1 � at�1
@lðcðiÞt ; aðiÞt�1;w

ðiÞ
t Þ

@aðiÞt�1

ð4:90Þ

4.3 Method of Multiquadric Radial Basis Function Neural Network 71

where gt�1; bt�1 and at�1 are the learning rates at time t � 1 and can be decide
by the recurrent procedure. This learning strategy is able to solve compu-
tational time and memory space because of the selective growing of nodes
whose activation functions consists of different RBFs.

Kansa et al. [71] proposed a finite volume analog of the meshless RBF method
for the solution of system of non linear time dependent partial differential equations.

4.3.3.3 Volumetric Integral Radial Basis Function Method

The integration approach presented by the authors is physically meaningful since
only the extensive volume integration of the various density functions obey strict
conservation laws. Integral form of conservation law can be given as:

Z
X

@ u
@ t

þr � F
� �

dV ¼ 0 ð4:91Þ

The basis functions are modifies to be integrals of RBFs evaluated at the discrete
knots which yield coefficient matrices that premultiply the column vectors. Physical
domain decomposition over piecewise continuous sub domains are applied that are
bounded by shocks, contact surfaces, or rarefaction fans. The authors converted the
set of non linear multidimensional partial differential equations into a set of
ordinary differential equations, by a series of rotational and translational transfor-
mations and introduce an additional local transformation that maps these ordinary
differential equations into compatibility or eigen vector ordinary differential equa-
tions that propagate at ‘characteristic’ velocities, thereby decoupling the compati-
bility ordinary differential equations. By writing the compatibility variables as a
series expansion of RBF’s with time dependent expansion coefficients, the time
advanced problem is converted into a method of lines problem. The volume inte-
gration of the RBF’s is performed in parallel by integrating over each sub domain
Xi separately, and normalizing the results. They tracked strong shocks, capture
weak shocks using artificial viscosity methods to dampen them and used Riemann
solvers and shock polar method for shock wave interactions. When pairs of knots
coincide, discontinuous surface at the coincidence loci is introduced. Since volu-
metric integral formulation of time dependent conservation equations increases the
convergence rates of radial basis function approximates, therefore fewer number of
knots are required to discretize the domain.

Zou et al. in [72] presented a new kind of RBF neural network method based on
Fourier progression, by adopting the trigonometric function as basis function.

72 4 Neural Network Methods for Solving Differential Equations

4.3.3.4 RBF with Trigonometric Function

They used Ŵ B xð Þ to approximate a unknown function f ðxÞ where,

Ŵ ¼ ŵ1; ŵ2; . . .; ŵn; ŵnþ1; . . .; ŵ2n; ŵ2nþ1½ �
B xð Þ ¼ sin x ; . . .; sin nx; cos x; . . .; cos nx; c½ � ð4:92Þ

with the Fourier progression theory that every continuous function f ðxÞ can be
expressed as follows,

f ðxÞ ¼ cþ
X1
n¼1

an sin nxþ
X1
n¼1

bn cos nx

and constructed a neural network which is dense for continuous function space.
They constructed a optimal weight matrix by assuming that, a function vector
h : X ! RP, for any r[0, there always exist a function array B : Rm ! Rl and an
optimal weight matrixW
 such that jjh xð Þ �W
TB xð Þjj � r; 8 x 2 X, where X is
a tight set of Rm and hðxÞ �W
TBðxÞ ¼ DhðxÞ; ~W ¼ Ŵ �W
; where Ŵ 2 Rl	3 is
used to estimate value of W
. To apply the neural network to a practical system, a
class of non linear systems was considered by the authors. Then it is used in a class
of high order system with all unknown control function matrices. The adaptive
robust neural controller is designed by using back stepping method and effective-
ness of the method is presented by simulation study. It has been pointed out that by
adopting the trigonometric function as basis function, the input needs not to be
force between −1 and 1, and there is no need to choose the centre of basis function.

In article [73], the author presented a meshless method based on the radial basis
function networks for solving high order ordinary differential equations directly.

4.3.3.5 RBF for Higher-Order Differential Equations

Two unsymmetric RBF collocation schemes, named the usual direct approach
based on a differentiation process and the proposed indirect approach based on an
integration process, are developed to solve high order ordinary differential equa-
tions. They considered the following initial value problem governed by the fol-
lowing p-th order ordinary differential equation

yjpj ¼ Fðx; y; y0; . . .; yjp�1jÞ ð4:93Þ

with initial conditions yðaÞ ¼ a1; y0ðaÞ ¼ a2; . . .; yjp�1jðaÞ ¼ ap, where

a� x� b; yðiÞðxÞ ¼ diyðxÞ
dxi

4.3 Method of Multiquadric Radial Basis Function Neural Network 73

F is a known function and aif gpi¼1 is a set of prescribed conditions. Like other
meshless numerical methods, the direct RBF collocation approach is based on the
differential process to represent the solution. In the proposed RBF collocation
approach, the closed forms representing the dependent variable and its derivatives are
obtained through the integration process. In the case of solving high order ODEs,
difficulties to deal with multiple boundary conditions are naturally overcome with
integrating constants. Analytical and numerical techniques for obtaining new basis
functions from RBF’s are discussed. Among RBFs, multiquadrics are preferred for
practical use. Numerical results show that the proposed indirect approach performs
much better than the usual direct approach.High convergence rates and good accuracy
are obtained with the proposed method using relatively low number of data points.

In [74], the authors presented a new indirect radial basis function collocation
method for numerically solving bi-harmonic boundary value problem.

4.3.3.6 RBFNN Approach for Bi-harmonic BVP

Authors considered the bi-harmonic equation:

@4v
@x41

þ 2
@4v

@x21@x
2
2
þ @4v
@x42

¼ F ð4:94Þ

in the rectangular domain X with F being a known function of x1 and x2, which can
be reduced to a system of two coupled Poisson’s equations

@2v
@x21

þ @2v
@x22

¼ u; x 2 X;
@2u
@x21

þ @2u
@x22

¼ F; x 2 X ð4:95Þ

since, in the case when boundary data are

v ¼ rðxÞ; @
2v

@n2
¼ sðxÞ; x 2 @X

� �

The use of two Poisson’s equation is preferred as each equation has its own
boundary condition. In this research article [74], the authors described the indirect
radial basis function networks and proposed a new technique of treating integrating
constant for bi-harmonic problems, by eliminating integration constant point wise
subject to the prescribed boundary conditions. It overcomes the problem of increasing
size of conversion matrices caused by scattered points and provides an effective way
to impose the multiple boundary conditions. Two types of boundary conditions

v;
@2v=@n2

u

� �
and v;

@v
@n

� �

74 4 Neural Network Methods for Solving Differential Equations

are considered. The integration constants is excluded from the networks and
employed directly to represent given boundary conditions. For each interior point,
one can form a square set of k linear equations with k being the order of PDE’s,
from which the prescribed boundary conditions are incorporated into the system via
integration constants. This is advancement in the indirect radial basis function
collocation method for the case of discretizing the governing equation in a set of
scattered data points. The proposed new point wise treatment in article [74] over-
comes the problem of increasing size of conversion matrices, and provides an
effective way to implement the multiple boundary conditions without the need to
use fictitious points inside or outside the domains or to employ first order deriva-
tives at grid points as unknowns. This method is truly a meshless method, which is
relatively easy to implement as expression for integration constants are given
explicitly and this represents a further advancement in the case of IRBFN for the
case of discretizing the governing equations on a set of scattered data points.

Golbabai and Seifollahi in [75] implemented RBF neural network method for
solving the linear-integro differential equations.

4.3.3.7 RBFNN for Linear-Integro Differential Equations

They proposed the approach by considering the following equation:

DyðxÞ � k
Z
C
kðx; tÞyðtÞdt ¼ gðxÞ ; C ¼ ½a; b� ð4:96Þ

with the supplementary conditions as follows:

DyðxÞ ¼ y0ðxÞ þ A1ðxÞyðxÞ;
yða1Þ ¼ c1;

(
ð4:97Þ

DyðxÞ ¼ y00ðxÞ þ A1ðxÞy0ðxÞ þ A2ðxÞyðxÞ;
yða1Þ ¼ c1; y0ða2Þ ¼ c2:

(
ð4:98Þ

where D is the differential operator, k; c1; and c2 are constants, a1; a2 2 C;A1;A2; g
and k are known functions and y is the unknown function to be determined. For
illustrating the method they rewrite Eq. (3.34) in the following operator form

Dy� kKy ¼ g; ð4:99Þ

where

ðKyÞðxÞ ¼
Z
C
kðx; tÞyðtÞdt

4.3 Method of Multiquadric Radial Basis Function Neural Network 75

http://dx.doi.org/10.1007/978-94-017-9816-7_3

and used the collocation method which assumes discretisation of the domain into a
set of collocation data. They assumed an approximate solution ypðxÞ such that it
satisfies the supplementary conditions and quasi-Newton Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method is used for training the RBF network. The
authors also described an algorithm which is used in their experiment, the main
attraction of their algorithm is that it starts with a single training data and with a
single hidden layer neuron, then continues the training patterns one by one and
allows the network to go. Various numerical examples are considered to demon-
strate the proposed idea and method. Golbabai and Seifollahi also described radial
basis function neural network method for solving the system of non linear integral
equations in Eq. (4.35). The result obtained by this approach [75] proves that the
RBF neural network with quasi-Newton BFGS technique as a learning algorithm
provides a high accuracy of the solution. Also the approach is quite general and
appears to be the best among approximation methods used in the literature. This
method is recommended by the author to use in solving a wide class of integral
equations because of its ease of implementation and high accuracy. Moreover, the
reported accuracy can be improved further by increasing the number of training
data and the number of hidden units in the RBF network to some extent.

The research article [77] introduced a variant of direct and indirect radial basis
function networks for the numerical solution of Poisson’s equation. In this method
they initially described the DRBFN and IRBFN procedure described by Mai-Duy
and Tran-Cong in [69] for the approximation of both functions and their first and
higher order derivatives.

4.3.3.8 RBFNN for Poisson’s Equation

The authors illustrated the method by considering a numerical example of two-
dimensional Poisson’s equation:

r2u ¼ sinðpx1Þ sinðpx2Þ ð4:100Þ

where, 0� x1 � 1 and 0� x2 � 1 with u ¼ 0 on whole boundary points. They
consider 20 points, 11 of those were boundary points and 9 were interior points, and
used multiquadric radial basis function method which Deng et al. in [67] had used.
Then they computed the approximate solution by converting the Cartesian coor-
dinate into polar:

r2u ¼ @2u
@r2

þ 1
r
@u
@r

þ 1
r2
@2u

@h2
ð4:101Þ

They found that the approximated solution of this new method is better than both
DRBFN and IRBFN method on the Cartesian ones. Further, they applied this
method to the two dimensional Poisson’s equation in the elliptical region and

76 4 Neural Network Methods for Solving Differential Equations

achieved better accuracy in the terms of root mean square error. In the above
approach [77], it has been shown that transformation of Poisson’s equation into the
polar coordinate can achieve a better accuracy than the DRBFN and IRBFN
methods on the cartesian ones. Also, the accuracy of the IRBFN method is influ-
enced by the width parameter of the radial basis functions such that this parameter
must be in the special range and as it increases the condition number increases too,
but in this method, variations of the width parameter of a basis function do not
influence at the accuracy of the numerical solution. Hence the condition number is
small and the obtained system is stable.

Chen et al. in [78] proposed a method that develops a mesh free numerical
method for approximating and solving PDEs, based on the integrated radial basis
function networks (IRBFNs) with adaptive residual sub sampling training scheme.
Integrated radial basis function network for approximating and solving PDEs is
described initially. In this article, the authors adopted the residual sub sampling
scheme suggested in [79] to train the IRBF network. In the training process, neu-
rons are added and removed based on the residuals evaluated at a finer point set,
and the shape parameter adjusting scheme is modified for suiting the IRBF neuron
behavior which is different from DRBF network. They simply considered the shape
parameters by multiplying the distances between two neighbour neurons with a
fixed coefficient and multiquadric function is taken as the transfer function of the
neurons. Adaptive process for determining the locations of neurons in integrated
radial basis function networks for approximating a one dimensional function is
described by the training procedure. During the training procedure, two neurons
whose centres are end points which are always kept fixed. Numerical examples are
conducted to show the effectiveness of the method. Since IRBFNs are capable to
smooth the derivative errors for solving PDEs, therefore with the proposed adaptive
procedure, IRBFNs require less neurons to attain the accuracy than DRBFN.
Approximation based on smooth IRBFNs is highly effective in approximating
smooth functions, even if the neuron sets are relatively coarse. The adaptive method
applied for training in this article is an effective technique for dealing with the steep
and corner feature of the PDEs solutions; and the IRBF networks contribute to
improve the accuracy of solving PDEs. Hence a combination of IRBF and adaptive
algorithm is a promising approach for mesh free solutions of PDEs. This method
can easily be applied for solving higher dimension problems and time dependent
nonlinear equations. A survey on MLP and RBF neural network methods for
solving differential equations is also presented in [80].

4.4 Method of Cellular Neural Networks

The state-of-the art of the cellular neural networks (CNN) paradigm shows that it
produces an attractive alternative solution to the conventional numerical compu-
tation method [81, 82]. It has been intensively shown that CNN is an analog

4.3 Method of Multiquadric Radial Basis Function Neural Network 77

computing paradigm which performs ultra-fast calculations and provides accurate
results. In research article [83] the concept of analog computing based on the
cellular network paradigm is used to solve complex non-linear and stiff differential
equations. In this method, equations are mapped into a CNN array in order to
facilitate templates calculation. Complex PDEs are transformed into ODE having
structures and the transformation is achieved by applying the method of finite
differences. This method is also based on the Taylor series expansion.

The concept of Cellular Neural Networks (CNN) was introduced by Chua and
Yang [81]. CNN method for solving complex and Stiff ODE is given by following
steps:

4.4.1 Principle for CNN Templates Findings

According to general theory in nonlinear dynamics based on the linearization of the
vector field [84], complex and stiff ODEs can be described by a unique vector field
in a bounded region of Rn, which is given as:

dx
dt

¼ AðxÞ½x� FðxÞ� ð4:102Þ

where AðxÞ is n	 n matrix function of x, F being the mapping of Rn to itself. In this
approach complex ODEs are transformed into the form described in Eq. (4.102) in
order to make them solvable by the CNN paradigm, since it is well known that
Eq. (4.102) can easily be mapped into the form of CNN model [81, 83].

Let us consider the case of a system consisting of three identical oscillators of the
Rossler type coupled in a Master-Slave-Auxiliary configuration. The master
ðx1; y1; z1Þ + slave ðx2; y2; z2Þ + auxiliary ðx3; y3; z3Þ system under investigation are
modeled by the following differential equations:

dx1;2;3
dt

¼ �x1;2;3y1;2;3 � z1;2;3 þ 21;2;3 x2;1;1 þ x3;3;2 � x1;2;3
� � ð4:103Þ

dy1;2;3
dt

¼ x1;2;3x1;2;3 þ a1;2;3y1;2;3 ð4:104Þ

dz1;2;3
dt

¼ f1;2;3 þ z1;2;3 x1;2;3 � U1;2;3
� � ð4:105Þ

where xi are natural frequencies of the oscillators, ei are the elastic coupling
coefficients and, ai, fi, ui are the system parameters.

78 4 Neural Network Methods for Solving Differential Equations

Let us take Eqs. (4.103)–(4.105), which are good prototypes of complex and stiff
ODEs, then transform them into the form:

d
dt

x1;2;3
y1;2;3
z1;2;3

2
64

3
75 ¼

�e1;2;3 �x1;2;3 �1
þx1;2;3 þa1;2;3 0
0 0 �U1;2;3

2
4

3
5 x1;2;3

y1;2;3
z1;2;3

2
64

3
75þ

e1;2;3 x2;1;1 þ e3;3;2
� �

0
f1;2;3 þ x1;2;3:z1;2;3

2
4

3
5

ð4:106Þ

from Eq. (4.102) one can show the existence of fixed points through by Eq. (4.107).

d
dt

x1;2;3
y1;2;3
z1;2;3

2
4

3
5 ¼ 0 ð4:107Þ

By Eq. (4.107) fixed points can evaluate as follows:
Master system fixed point

X̂1 ¼
x01
y01
z01

2
4

3
5 ð4:108Þ

Slave system fixed point

X̂2 ¼
x02
y02
z02

2
4

3
5 ð4:109Þ

Auxiliary system fixed point

X̂3 ¼
x03
y03
z03

2
4

3
5 ð4:110Þ

Now vector field is to linearize around fixed points and this linearization around
a non-zero equilibrium fixed point provides the possibility of modifying the non-
linear part of the coupled system without changing the qualitative dynamics of the
system. This statement can be materialized by:

AX1;2;3 ! AX̂1;2;3 ð4:111Þ

4.4 Method of Cellular Neural Networks 79

Therefore Eq. (4.102) can be considered to evaluate the linear part of the vector
field at the fixed points. This linear part is represented by 3	 3 matrices defined as
follows:

Amaster ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5 ð4:112Þ

Aslave ¼
b11 b12 b13
b21 b22 b23
b31 b32 b33

2
4

3
5 ð4:113Þ

Aauxiliary ¼
c11 c12 c13
c21 c22 c23
c31 c32 c33

2
4

3
5 ð4:114Þ

from which the corresponding CNN templates are derived under precise values of
the model in Eqs. (4.103)–(4.105).

4.4.2 Design of the Complete CNN Processor

Now we have to design a CNN computing platform to investigate the issues of
synchronization in the master-slave-auxiliary system modeled by Eqs. (4.103)–
(4.105). The efficiency of the calculations using CNN makes it a good candidate to
perform computations in the cases of high stiffness and therefore this is an
appropriate tool to tackle the difficulties faced by the classical numerical approach
when dealing with the computation of the model in Eqs. (4.103)–(4.105). Using the
structure of the basic CNN [80], design the complete CNN processor to solve the
above model, and thus the results are obtained from the complete CNN processor.

Remark 4 The Cellular Neural Network method gives accurate results which are
very close to results in the relevant literature [85–89] etc. The Computation based
on CNN paradigm is advantageous, since it provides accurate and ultra-fast solu-
tions of very complex ODEs and PDEs and performs real time computing.

4.4.3 Recent Development in the Cellular Neural Network
Technique

Kozek and Roska [90] presented a cellular neural network for solving Navier-stokes
equation which describes the viscous flow of incompressible fluids.

80 4 Neural Network Methods for Solving Differential Equations

4.4.3.1 Double-Time Scale CNN Model

As an example they investigated poisson’s equation in a 2D rectangular domain
with some planar intensity function at a given location. In order to obtain the CNN
model the spatial differential terms are substituted by central difference formulas
and this discretization is don with equal step sizes in each direction. Hence an
approximate expression for second order poisons equation can be obtain and using
this approximation CNN template is designed. With the homogeneous term applied
as a bias map a CNN array is obtained which, when started from a suitable initial
condition and provided that the transient remains bounded, solves the poisson
equation and the steady state of the CNN array gives the solution to the Poissons
equation.

Authors constructed a three layer CNN model for Navier Stokes equation whose
characteristic equation for incompressible fluids has the form:

@~u
@ t

þ ð~u gradÞ~u ¼~f � 1
e
grad pþ vr2 �u ð4:115Þ

where~u corresponds the velocity flow, p is pressure and~f represents the effects of
external forces. The Navier-stokes equation is converted into the 2D rectangular
coordinates and expressed in the two conservative forms with pressure field is
computed by Poisson equation. As the position equation these three equations are
taken as the starting point in the CNN and the spatial derivatives are replaced by the
difference terms. Since each CNN cell has only one output so three layers are
constructed to represents the variables u, v and p and the CNN templates repre-
senting each variables are presented. Numerical simulation has been done for
solving Navier stokes equation and the stationary flow pattern is shown for a source
drain pair along with the corresponding pressure surface.

In [91] authors presented an analog cellular neural network method with variable
mesh size for partial differential equations.

4.4.3.2 CNN with Variable Mesh Size

They introduce how the accuracy of the method can be improved by using a
variable mesh size within the limited size of the neural network. A one dimensional
problem has been considered as:

@2u
@x2

¼ f ðxÞ ð4:116Þ

where x0 � x� xnþ1, uðx0Þ ¼ u0, uðxnþ1Þ ¼ unþ1. The second order partial deriva-
tive of the Eq. (4.116) is approximated by the difference equation with equal mesh
size, then a system of linear equations is obtained in the matrix form

4.4 Method of Cellular Neural Networks 81

Auþ /þ b ¼ 0 ð4:117Þ

where matrix A is symmetric and positive definite, then a convex energy function
can be obtained as:

EðvÞ ¼ 1
2
vTAvþ vT/ ð4:118Þ

A neural network is constructed to minimize the error function. For the problem
considered above the resulting neural network is a row of cells and the cell is
described by the following dynamic equation

dui
dt

¼ 1
CRi�1

vi�1 � 1
CRi�1

þ 1
CRi

� �
ui þ 1

CRi
viþ1 þ Ii

C
ð4:119Þ

At steady state dui
dt ¼ 0, and ui represents the approximate solution of Eq. (4.116).

They also find out that the mesh size is dependent on the resistance of the CNN,
mesh size can be changed by simply changing the resistance Ri in the cellular neural
network. Thus the technique has been developed to use variable mesh sizes, and
thus to control the accuracy of the method for a particular number of neuron shells.

In [92] authors presented a cellular neural network technique for solving
ordinary as well as partial differential equations.

4.4.3.3 CNN for Partial Differential Equations

They investigated the applicability of CNN to auto waves and spiral waves in
reaction diffusion type system, Burgers equation and Navier-stokes equation for
incompressible fluids. The solution obtained using CNN has the following four
basic properties:

(a) It is continuous in time.
(b) Continuous and bounded in value.
(c) Continuous in interaction parameters.
(d) Discrete in space.

The non linear PDE

@uðx; tÞ
@t

¼ 1
R
@2uðx; tÞ

@x2
� uðx; tÞ @uðx; tÞ

@x
þ Fðx; tÞ ð4:120Þ

is considered which describes the mean density of moving particles along the
coordinate x as a function of time t under the assumption that the particle velocity
decreases linearly with the particle density. The spatial derivatives are replaced by
the difference terms and Eq. (4.120) is approximated by the set of ordinary dif-
ferential equations. Then compared the coefficient of the ODE to the state equation

82 4 Neural Network Methods for Solving Differential Equations

of a non linear CNN, hence the templates are calculated directly. Burgers equation
have been solved for different values of R, D x and for different initial condition
uðx; 0Þ. Authors presented the approximation accuracy of the CNN solution for
homogeneous case by comparing them with the well known explicit solutions of
Burgers equation and the results shows that the solution is strongly dependent on
the parameter value of R, while for larger values of R two distinct peaks are
observed that shifts to larger argument x as time increases. The examples given by
the author in the development of the CNN architecture for solving a class of PDE’s
allow us to fully exploit the immense computing power offered by this program-
mable, analog, parallel computing structure.

In the previous paragraph authors in [92] presented the various techniques for
converting various types of partial differential equations into equivalent cellular
neural networks.

4.4.3.4 Reaction Diffusion CNN

Here Roska et al. in [93] presented the CNN solution of the equation of motion for
chain of particles with non linear interactions, solution of non linear Klein-Gordon
equation and application of a reaction diffusion CNN for finger print enhancement.
One dimensional system of non linear differential equations has been considered

m
d2yi
dt2

¼ �k ½ ðyi � yi�1Þ � ðyiþ1 � yi Þ � � c½ ðyi � yi�1Þ2 � ðyiþ1 � yiÞ2 � ð4:121Þ

for i ¼ 1; . . .;N � 1 which represents the equation of motion for a non linear chain of
particles. To apply the CNN approach the Eq. (4.121) is written in the set of ordinary
differential equations which is equivalent to the two layer CNN with templates. The
long term behavior of the motion of the chain has been examined and a considerable
transmission of energy between the modes is obtained. Similarly the Klein-Gordon
and reaction diffusion are solved using a CNNmodel and demonstrated that the CNN
approach is a flexible framework for describing a wide variety of non linear phe-
nomenon and also provides efficient implementation of such systems.

In [94] a learning procedure has been presented by the authors and applied it in
order to find the parameters of the networks approximating the dynamics of certain
nonlinear systems which are characterized by partial differential equations.

4.4.3.5 CNN for Nonlinear Partial Differential Equations

Partial differential equations can be solved by the CNN based on finite difference
approximations and results in the set of ordinary differential equations. These set of
differential equations can be represented by a single layer CNN with state equa-
tions. For learning the dynamics of a given non linear system, initially the basic
CNN architecture has to be determined which includes the choice of neighborhood

4.4 Method of Cellular Neural Networks 83

and of a class of non linear weight functions. While the number of cells in the
neighborhood has to be large enough for estimating the highest order spatial
derivatives in considered partial differential equation. Mean square error is prepared
by assuming that the values of a special solution of a PDE for an initial condition
u
ðx; 0Þ are known at the cell positions xi for few times tm as:

eðpaÞ ¼ 1
MN

XM
m¼1

XN
i¼1

uCNNðxi; tm; paÞ � u
ðxi; tmÞ½ �2 ð4:122Þ

where pa are the random initial values for the components of parameter vector and
minimization is done by the simplex method. The results obtained by the method
shows the dynamics of the non linear systems and more accurate than those using
direct discretization.

A CNN method for solving a class of partial differential equation is presented in
[95] where each neural cell consists of a novel floating variable, linear resistor, an
amplifier and a passive capacitor.

4.4.3.6 CMOS VLSI Implementation for CNN

Each cell in neural network is integrated with amicro electromechanical heater device
for the output. Initially it is assumed that the region is a rectangle containing the
square grid of points Pi,j spaced a distance h apart. The accuracy of the partial
differential equation is increased by decreasing themesh distance h but it increases the
expenses with VLSI circuits. So mesh density is increased only in the areas where the
function is most active. The system for a non equidistant mesh is defined by

Ni;j ¼ 2
nðnþ sÞ
� �

i;j
ð4:123Þ

Si;j ¼ 2
sðnþ sÞ
� �

i;j
ð4:124Þ

Ei;j ¼ 2
eðeþ wÞ
� �

i;j
ð4:125Þ

Wi;j ¼ 2
wðeþ wÞ
� �

i;j
ð4:126Þ

bi;j ¼ Ni;j þ Si;j þ Ei;j þWi;j ð4:127Þ

where n is the distance above the node north, s is the south, e and w are the east and
west respectively. Then an energy function has been prepared using the matrix form
for the variable mesh case as:

84 4 Neural Network Methods for Solving Differential Equations

EðvÞ ¼ 1
2
vTAvþ vT/ ð4:128Þ

The layout for the entire nine cell circuit is presented and Matlab was used to obtain
node values to compare with the simulation for the 3	 3 array of CNN cells. The
chip layout was analyzed and the results show that the circuit matches the simu-
lations with a small amount of error.

In [96] authors presented a method to model and solve direct non linear problem
of heat transfer in solids by using the cellular neural network.

4.4.3.7 CNN to Solve Nonlinear Problems of Steady-State Heat
Transfer

Problem statement is defined by taking 2D steady state heat conduction in the
observed solid having continually distributed internal heat sources as:

k
@2T
@ x2

þ @2T
@ y2

� �
þ qv ¼ 0 ð4:129Þ

where T is temperature of solid, k is thermal conductivity of the solid and qv is the
volumetric heat flow rate of internal heat sources with the boundary condition offirst,
second, third and fourth kind. Linearization of the equation has been done by using
Kirchhoff’s law, so after the transformation boundary condition of first and second
kind becomes linear while the boundary condition of third and fourth kind remains
non linear. Modeling and solution of Eq. (4.129) are performed by modified two-
dimensional orthogonal CNN and eachM 	 N node of CNN contains the multi input
and multi output cell Ci;j. The problem is solved by two levels of the CNN: the lower
one determined by the other feedbacks and the upper one determined by another
feedback, hence the network is named as single layer two level CNN.

Authors in [97] proposed an implementation of a cellular neural network to solve
linear second order parabolic partial differential equations.

4.4.3.8 CNN for Parabolic PDE

A two dimensional parabolic equation is considered which is defined on a regionR as:

@ u
@ t

¼ A
@2u
@ x2

þ B
@2u
@ y2

þ D ð4:130Þ

where uðx; y; tÞ is a continuously unknown scalar function that satisfies given set of
boundary conditions, A, B and D are functions of spatial dimension x and y.
Equation (4.130) is written in the difference form of the derivatives to get the
numerical solution. In order to solve general parabolic PDE’s the resistors and

4.4 Method of Cellular Neural Networks 85

capacitors in the circuit should be programmable and controlled by a digital input.
8	 8 cell network was simulated with the specific circuit simulator to show the
feasibility of the circuit simulator to solve parabolic partial differential equation.
Two version of this circuit were taken in which in the one circuit, all the resistors
and capacitors were ideal, passive elements for comparison purpose and another
circuit had switched capacitor equivalent resistors, capacitor banks and local
memories. To achieve zero Dirichlet boundary condition all the boundary nodes
were connected to the ground, at first initial values were loaded into the local
memories and then converted into analog voltages by the D/A converters. Circuit
performance is also given by the simulation results which show that CNN technique
succeeds in improving solution throughout and accuracy.

In [98] an online learning scheme to train a cellular neural network has been
presented which can be used to model multidimensional systems whose dynamics
are governed by partial differential equations.

4.4.3.9 Training CNN Using Backpropagation Algorithm

A CNN is trained by modified back propagation algorithm and the goal of the
training is to minimize the error between the outputs of the trained CNN to the
training data by means of adjusting the parameter values. Templates are unknown
to this case:

ûij ¼ �aûij þ P
ûij 1� i; j�N ð4:131Þ

a[0, P is a 3	 3 matrix, so total 9 parameters have to be estimated. The objective
function has been prepared for training the network which is the summation of
squared error of all cells:

J ¼ 1
2

XN
i¼1

XN
j¼1

ðûijðP; tÞ � u
ijðtÞÞ2 ð4:132Þ

where u
ijðtÞ is the desired value of cell ði; jÞ at time t. Stable gradients are computed
according to the objective function represented by Eq. (4.132) are as:

@ J
@Pðm; nÞ ¼

XN
i¼1

XN
j¼1

@ ûij
@Pðm; nÞ ~uij m; n ¼ 1; 2; 3 ð4:133Þ

where, ~uij ¼ ûij � u
ij. Then the derivatives of template are calculated with respect to
ðm; nÞ element of template P. After computing the gradients of the objective
function, update rules are employed to achieve desired parameters. The update rule
for each element of template is:

86 4 Neural Network Methods for Solving Differential Equations

P
� ðm; nÞ ¼ �c

@ J
@Pðm; nÞ � qjj~ujjPðm; nÞ ð4:134Þ

c[0 is the learning rate and q[0 is the damping rate. Simulation has been done
for the heat equation using the modified training methodology and compared to the
analytic solution. A CNN trained by modified back propagation algorithm, is
capable of adjusting the parameters to model the dynamic of a heat equation even
with large changes in boundary conditions, without any knowledge of system
equations.

Authors in [99] proposed a concept on CNN paradigm for ultra fast, potentially
low cost, and high precision computing of stiff partial differential equation and
ordinary differential equations with cellular neural network.

4.4.3.10 NAOP for CNN Template Calculation

The concept is based on a straight forward scheme called Non linear adaptive
optimization (NAOP), which is used for a precise template calculation for solving
any nonlinear ordinary differential equation through CNN processor. The NAOP is
performed by a complex computing module which works on two inputs, the first
input contains wave solutions of models that describes the dynamics of a CNN
network model built from state control templates:

d xi
d t

¼ �xi þ
XM
j¼1

½ Âij xj þ Âij xj þ Bij uj � þ Ii ð4:135Þ

And the second input contains the linear or nonlinear differential equation, under
investigation which can be written in a flowing set of ordinary differential
equations:

d2 yi
d t2

¼ F yi; y
n
i ; y

m
i ; zi; z

n
i ; z

m
i ; t

� � ð4:136Þ

d2zj
dt2

¼ F zj; z
n
j ; z

m
j ; yj; y

n
j ; y

m
j ; t

 �
ð4:137Þ

When the convergence process of the training process is achieved, the output of
the NAOP system will generate after some training steps. The main benefit of
solving ODE and PDE using CNN is the offered flexibility through NAOP to
extract the CNN parameters through which CNN can solve any type of ODE or
PDE.

4.4 Method of Cellular Neural Networks 87

In [100] a CNN model has been developed for solving set of two PDEs
describing water flow channels called Saint Venant equation.

4.4.3.11 CNN for Solving Saint Venant 1D Equation

The set of partial differential equation which describes the problem involves two
equations: First is the preserve mass equation

@Sðx; tÞ
@t

þ @ Qðx; tÞ
@x

¼ q ð4:138Þ

And the second equation is the preserve momentum equation

@Qðx; tÞ
@t

þ
@ Qðx;tÞ

Sðx;tÞ
h i
@x

þ gSðx; tÞ @hðx; tÞ
@x

� gISðx; tÞ þ gJSðx; tÞ ¼ kqq
Qðx; tÞ
Sðx; tÞ

ð4:139Þ

For solving the above equation using CNN, templates have to be designed by
choosing the difference space of variables x with step D x. Scalar energy function
has been written for the function h and for the function Q, also the stability of CNN
system is proved by discovering the state and output of each cell. Solving Saint
Venant equation, following advantages are obtained: As in the theory of Taylor’s
expansion if we get more derivative terms the approximation will reach closer to the
original equation and learning algorithms can be used to find better templates from
original by choosing grid steps and circuit parameters.

4.5 Method of Finite Element Neural Networks

A major drawback of all the above approaches is that the network architecture is
arbitrarily selected, and the performance of the neural networks depends on the data
used in training and testing. If the test data is similar to the training one, the network
can interpolate between them otherwise the network is forced to extrapolate and the
performance degrades.

Hence the solution to the problem is to combine the power of numerical models
with the computational speed of neural networks. So, Takeuchi and Kosugi [101]
developed a finite element neural network formulation (FENN) to overcome these
difficulties. The FENN can be used to solve forward problem and can also be used
in an iterative algorithm to solve inverse problems. Finite element neural network
method for solving the differential equation is given in Eq. (3.63).

88 4 Neural Network Methods for Solving Differential Equations

http://dx.doi.org/10.1007/978-94-017-9816-7_3

Initially the finite element model can be converted into a parallel network form.
Let us take an example of solving typical inverse problem arising in electromag-
netic nondestructive evaluation (NDE), but the basic idea is applicable to other
areas as well. NDE inverse problems can be formulated as the problem of finding
material properties within the domain of problem. Since the domain is discretize in
the FEM method by a large number of elements, the problem can be posed as one of
finding the material properties in each of these elements. These properties are
usually embedded in the differential operator L, or equivalently, in the global matrix
K. Thus in order to be able to iteratively estimate these properties from the mea-
surements, the material properties needs to be separated out from K. This separation
is easier to achieve at the element matrix level. For nodes i and j in element e.

Ke
ij ¼

Z
Xe

Ne
i LN

e
j dX

¼
Z

Ne
i a

e�LNe
j dX

¼ aeSeij ð4:140Þ

where ae is the parameter representing the material property in the element e and �L
represents the differential operator at the element level without ae embedded in it.
From Eq. (4.140), we get the functional

F ~/
 �

¼
XM
e¼1

1
2
/etaeSe/e � /et be

� �
ð4:141Þ

If we define,

Kij ¼
X

aewe
ij ð4:142Þ

where,

we
ij ¼

Seij; i; j 2 e
0; else

�
ð4:143Þ

0 ¼ @F
@Ui

¼
XN
j¼1

KijUj � bi

¼
XN
j¼1

XM
e¼1

aewe
ij

 !
Uj � bi; i ¼ 1; 2; . . .;N ð4:144Þ

4.5 Method of Finite Element Neural Networks 89

Equation (4.144) expresses the functional explicitly in terms of ae. This can be
easily converted into a parallel network form and neural network comprises an
input, output and hidden layer. In the general case with M elements and N nodes in
the FEM mesh, the input layer with M network inputs takes the a values in each
element as input. The hidden layer has N2 neurons arranged in N groups of N
neurons, corresponding to the N2 members of the global matrix K. The output of
each hidden layer neurons is the corresponding row vector of K. The weights from
the input to the hidden layer are set to the appropriate values of we

ij. The output of
the hidden layer neurons are the elements Kij of the global matrix as given in
Eq. (4.143).

Each group of hidden neurons is connected to one output neuron by a set of
weights U, with each element of U representing the nodal values Uj. The set of
weights U between the first group of hidden neurons and the first output neuron are
same as the set of weights between the second group of hidden neurons and the
second output neuron. Each output neuron is also a summation unit followed by a
linear activation function, and the output of each neuron is equal to bi as

bi ¼
XN
j¼1

KijUj ¼
XN
j¼1

Uj

XM
j¼1

aewe
ij

 !
ð4:145Þ

where the second part of Eq. (4.145) is obtained by using Eq. (4.144).

4.5.1 Boundary Conditions in FENN

The elements of Ks and bs do not depend on the material properties a. Ks and bs

need to be added appropriately to the global matrix K and the source vector b. Thus
natural boundary conditions can be applied in the FENN as bias inputs to the
hidden layer neurons that are a part of the boundary, and the corresponding output
neurons. Dirichlet boundary conditions are applied by clamping the corresponding
weights between the hidden layer and output layer neurons. These weights are
referred to as the clamped weights, while the remaining weight will be referred to as
the free weights. In Refs. [103–110] finite element neural network has been con-
sidered for various kind of differential equations.

Remark 5 The FENN architecture can be derived without consideration of
dimensionality of the problem at hand so we can use FENN for 1D, 2D, 3D, or
higher dimensional problems. The FENN architecture has a weight structure that
allows both the forward and inverse problems to be solved using simple gradient
based algorithms. The major advantage of the FENN is that it represents the Finite
element model in a parallel form, enabling parallel implementation in either

90 4 Neural Network Methods for Solving Differential Equations

hardware or software; computing gradient in the FENN is very simple and for
solving inverse problems is that it avoids inverting the global matrix in each iter-
ation. The FENN also does not require any training, since most of its weights can be
computed in advance and stored. It also reduces the computational effort associated
with the network.

4.6 Method of Wavelet Neural Networks

Wavelet neural networks are a new class of neural networks with unique capabil-
ities in system identification and classification which was proposed as an alternative
to the feed forward neural networks for approximating arbitrary non linear func-
tions. It has become a popular tool for non linear approximation due to its prop-
erties. It not only has the properties of self organized, self learning and strong error
tolerance of neural network but has properties of finite support and self similarity of
wavelets. In [111] wavelet neural network method is used for solving steady
convection dominated diffusion problem. In back propagation algorithm sigmoid
functions are used to approximate the non linearity while in wavelet neural network
non linearity is approximated by superposition of a series of wavelet functions. A
wavelet transform V with respect to the function f ðxÞ can be expressed as:

Vf ¼ jlj1=2
Zþ1

�1
f ðxÞ/ x� b

a

� �
dx ¼ f ðxÞ;/l;mðxÞ

� � ð4:146Þ

where l and m are the dilation and translation factors. If l and m are discrete
numbers then the transform is known as the discrete wavelet transform. The wavelet
series expansion of the function can be expressed in the following given form:

f ðxÞ ¼
X
i

X
j

hij/ijðxÞ ð4:147Þ

where

hij ¼
Zþ1

�1
f ðxÞ/ijðxÞdx

when function / is taken as the activation function of network it is called as the
wavelet neural network. A three layered neural network can be constructed using
the above function represented by Eq. (4.147) and assuming the number of neurons
of input, hidden and output layer are respectively n, N and m, the input and output
of the wavelet neural network in each layer can be given by

4.5 Method of Finite Element Neural Networks 91

Ij ¼
Pn

i¼1 wjixi � bj
aj

;Oj ¼ /ðIjÞ; ð4:148Þ

yk ¼
XN
j¼1

wjkOj for j ¼ 1; 2; . . .;N; k ¼ 1; 2; . . .;m ð4:149Þ

The Dirichlet boundary value problem associated with steady convection dif-
fusion transport is defined by the following equation:

a � ru�r � ðvruÞ ¼ k in X ð4:150Þ

u ¼ �u on CD ð4:151Þ

In Eqs. (4.150) and (4.151) u is scalar unknown quantity, aðxÞ is the convection
velocity, v [0 is coefficient of diffusion and kðxÞ is the volumetric source term. In
wavelet neural network method, consider the variables x of an unknown function g
as the input of the WNN, and the derivatives with the highest order of the unknown
function as the output of the WNN. The objective function for minimization
problem can be constructed as:

EðxÞ ¼ ja � ru�r � ðvruÞ � kj ð4:152Þ

Integration process is applied for the other lower order derivatives of Eq. (4.152)
and unknown function with respect to the variable xi, and the integration constants
that generated in the integration are evaluated by the boundary points. For solving
the steady convection diffusion transport problem a fourth order scale function of
spline wavelets has been chosen as activation function to test WNN which is:

/4ðxÞ ¼
1
6

0 x� 0
x3 x 2 ½0; 1�
4� 12xþ 12x2 � 3x3 x 2 ½1; 2�
�44þ 60x� 24x2 þ 3x3 x 2 ½2; 3�
64� 48xþ 12x2 � x3 x 2 ½3; 4�
0 x� 4

8>>>>>><
>>>>>>:

ð4:153Þ

Fourth order scale function is symmetric about x ¼ 2 and compactly supported
in the range ½0; 4�. Numerical simulation has been done and particle swarm opti-
mization technique is used to minimize the error quantity and the results obtained
are closed to the exact solution for convection dominated diffusion problem.

Remark 6 The advantage of the wavelet neural network method is that, once the
WNN is trained and its parameters are stored, it allows instantaneous evaluation of
the solution at any desired point in the domain with spending negligible computing

92 4 Neural Network Methods for Solving Differential Equations

time. It can eliminate the singularly perturbed phenomenon in the equation and its
precision is also high in learning process and prediction process. Work is in pro-
gress for solving differential equations using finite element and wavelet neural
network.

4.7 Some Workout Examples

In this section we illustrate workout examples on some of the methods discussed
above in this chapter:

Example 4.7.1 Let us consider a simple two point boundary value problem arising
in the position of falling object as:

d2y
dt2

þ c
m

dy
dt

� �
� g ¼ 0 ð4:156Þ

where c ¼ a drag coefficient ¼ 12 kg/s, m ¼ 80 kg, and g ¼ acceleration due to
gravity ¼ 9:82 m/s2 with the following boundary conditions: yð0Þ ¼ 0,
yð12Þ ¼ 600.

Solution To obtain a neural network solution for the Eq. (4.156) along with the
boundary conditions following steps are required:

Step 1: First we construct a trial solution of the neural network for Eq. (4.156) of
the following form:

yTðt; pÞ ¼ AðtÞ þ Fðt;Nðt; pÞÞ

where first term satisfies initial/boundary value problem and second term represents
feed forward neural network with input vector x and p is the adjustable weight
parameters. Hence, we propose a trial solution for Eq. (4.156) as:

yTðt; pÞ ¼ 50 t þ tð12� tÞNðt; pÞ ð4:157Þ

which satisfies the boundary conditions as:

yTð0; pÞ ¼ 50	 0þ 0ð12� 0ÞNð0; pÞ ¼ 0

and

yTð12; pÞ ¼ 50	 12þ 12ð12� 12ÞNð12; pÞ ¼ 600

Step 2: Since yT is an approximate solution to Eq. (4.156) for optimized values
of parameters p. Thus the problem of finding an approximate solution to Eq. (4.156)
over some collocation points in the domain [0, 12] is equivalent to calculate the

4.6 Method of Wavelet Neural Networks 93

functional yTðt; pÞ that satisfies the constrained optimization problem. If we con-
sider the trial solution of the following form given in Eq. (4.157) the problem is
converted into an unconstrained optimization problem and the error quantity to be
minimize can be given by the following equation:

EðtÞ ¼
X
i

d2yTðti; pÞ
dt

� f xi;
dyTðti; pÞ

dt

� �� �2

ð4:158Þ

where,

dyTðti; pÞ
dt

¼ ð12� 2tÞNðt; pÞ þ ð12t � t2ÞN 0ðt; pÞ

and,

d2yTðti; pÞ
dt2

¼ �2Nðt; pÞ þ 2ð12� 2tÞN 0ðt; pÞ þ ð12t � t2ÞN 00ðt; pÞ

Step 3: Set up the network with randomly generated vector x 2 ½0; 12� and
ui; vi;wi 2 ½�0:5; 0:5� for i ¼ 1; 2; . . .; h together with e an error limit, where h is
number of neurons in the hidden layer. For network parameter updation we com-
pute derivative of neural network with respect to input as well as for parameters of
network and train the neural network for optimized value of parameters.

Step 4: Once the network is trained set up the network with optimized network
parameters and compute yTðt; pÞ from Eq. (4.157).

The neural network constructed for Eq. (4.156) is trained using a grid of almost
13 equidistant points and mean sum squared error is reduced to a minimum of
10�10. So the estimated solution of Eq. (4.156) using neural network is given in
Table 4.1.

Example 4.7.2 As the example of partial differential equations we consider the
wave equation arising in non controlled longitudinal vibration of rod as:

@2y
@t2

� a2
@2y
@x2

¼ 0 ð4:159Þ

together with the following initial and boundary conditions with t 2 ½0; 1� and
x 2 ½0; 1�:

ðx; 0Þ ¼ sinðpxÞ; @yðx; 0Þ
@t

¼ 0; 0� x� 1

yð0; tÞ ¼ yð1; tÞ ¼ 0

94 4 Neural Network Methods for Solving Differential Equations

Solution Following steps are required for solving the Eq. (4.159) using neural
network:

Step 1: Construct a trial solution of neural network in the following form:

yTðx; t; pÞ ¼ Aðx; tÞ þ xð1� xÞtð1� tÞ ½Nðx; t; pÞ�

Thus, assuming a ¼ 1 the trial solution of neural network can be written as:

yTðx; t; pÞ ¼ ð1� t2Þ sinðpxÞ þ xð1� xÞt2½Nðx; t; pÞ� ð4:160Þ

which satisfies the boundary conditions as:

yTðx; 0; pÞ ¼ ð1� 02Þ sinðpxÞ þ xð1� xÞ02½Nðx; t; pÞ� ¼ sinðpxÞ
yTðx; t; pÞ ¼ ð1� t2Þ sinðpxÞ þ xð1� xÞt2½Nðx; t; pÞ�
yTð0; t; pÞ ¼ ð1� t2Þ sinðp � 0Þ þ 0ð1� 0Þt2½Nðx; t; pÞ� ¼ 0

yTð1; t; pÞ ¼ ð1� t2Þ sinðp � 1Þ þ 1ð1� 1Þt2½Nðx; t; pÞ�

and

@yTðx; 0; pÞ
@t

¼ 0

Table 4.1 Neural network
solution for Example 4.7.1 t y dy

dt
0.000 0.00108 32.0135

1.000 32.6934 36.7844

2.000 76.8842 40.3976

3.000 116.7498 44.5563

4.000 170.2756 46.5129

5.000 214.8462 48.5245

6.000 261.1654 51.7344

7.000 324.6534 54.0216

8.000 373.1183 55.6643

9.000 425.8863 56.2267

10.000 493.5689 58.2263

11.000 547.7762 59.1378

12.000 600.000 59.8624

4.7 Some Workout Examples 95

Step 2: Now the error function that has to be minimize can be given by the
following equation:

EðpÞ ¼
X
i

@2yTðxi; tiÞ
@t2

þ @2yTðxi; tiÞ
@x2

� f ðxi; tiÞ
� �2

ð4:161Þ

Step 3: A neural network with one input layer, a hidden layer with h number of
neurons together with an output layer is constructed in which weights and initial
values are random parameters. A neural network is trained to optimize the network
parameters.

Step 4: Once the network is trained the solution of the differential equation is
obtained from Eq. (4.160) with optimized network parameters. The solution of
Eq. (4.159) is given in the following Table 4.2.

Example 4.7.3 In this example we are considering the basic equation of beam
column theory, linking the displacement of the centre line uðxÞ to the axial com-
pressive load F and the lateral load lðxÞ [85] i.e.

EI
d4u
d x4

þ F
d2u
d x2

¼ l: ð4:162Þ

together with the boundary conditions

ðiÞ uð0Þ ¼ u0ð0Þ ¼ uðkÞ ¼ u0ðkÞ ¼ 0: ð4:163Þ

ðiiÞ uð0Þ ¼ u00ð0Þ ¼ uðkÞ ¼ u00ðkÞ ¼ 0: ð4:164Þ

ðiiiÞ uð0Þ ¼ u0ð0Þ ¼ uðkÞ ¼ u00ðkÞ ¼ 0: ð4:165Þ

For the first case given by Eq. (4.163) trial solution can be given as:

uTðx;KÞ ¼ ðx4 þ x2k2 � 2x3kÞNðx;KÞ: ð4:166Þ

which satisfies the boundary conditions given in Eq. (4.6). So, the error is to be
minimized in the following form:

Table 4.2 Neural network
solution for Example 4.7.2 x t y

0.0000 0.0000 0.00000

0.5000 0.1000 1.00010

0.5000 0.4000 0.30869

0.4000 0.6000 −0.29943

0.8000 1.0000 −0.951056

1.0000 0.3000 0.071863

96 4 Neural Network Methods for Solving Differential Equations

Eð�KÞ ¼ uðivÞT ðxi;KÞ � f xi; u0Tðxi;KÞ; u00Tðxi;KÞ; u000T ðxi;KÞ
� �n o

: ð4:167Þ

For second case given by Eq. (4.164) we propose a trial solution of a beam
column hinged at both ends is of the form:

uTðx;KÞ ¼ 16
5

k�4x4 � 32
5
k�3x3 þ 16

5
k�1x

� �
N 0
0 � N 0

k

2k
x2 � N 0

0xþ N

� �
:

ð4:168Þ

where,

N 0
0 ¼

dN
dx

����
x¼0

; and N 0
k ¼

dN
dx

����
x¼k

;

Trial solution given in Eq. (4.168) satisfies the boundary conditions given in
Eq. (4.164) as:

u0T ðx;KÞ ¼
64
5

k�4x3 � 96
5

k�3x3 þ 16
5
k�1

� �
N 0
0 � N 0

k

2k
x2 � N 0

0xþ N

� �
þ � � �

16
5
k�4x4 � 32

5
k�3x3 þ 16

5
k�1x

� �
N 0
0 � N 0

k

2
x� N 0

0 þ N 0
� �

;

ð4:169Þ

And the trial solution for Eq. (4.165) can be given as:

uTðx;KÞ ¼ sin
2px
k

� �
N0 � Nk

2k
x2 � N 0

0xþ xN 0
� �

ð4:170Þ

Numerical simulation has been done for case 1 and the maximum absolute error
calculated in the deflection function of a beam column fixed at both the ends are
presented in Table 4.3.

Table 4.3 Error in deflection of beam column fixed at both end Eq. (4.163)

Load
(F)

Maximum absolute error in deflection of the beam column

l = 0.05 l = 0.10 l = 0.15 l = 0.20 l = 0.25

0 1:0832	 10�9 4:8266 	 10�12 2:8631 	 10�10 1:3275 	 10�10 9:8276	 10�10

200 3:7170 	 10�6 3:6832 	 10�6 5:3678 	 10�6 1:1495 	 10�5 4:8440 	 10�6

400 2:7530	 10�5 5:1240 	 10�7 4:3627 	 10�5 2:7713 	 10�5 5:6425 	 10�6

600 5:4860 	 10�5 4:0406 	 10�6 5:837 	 10�5 1:2222 	 10�5 3:1417 	 10�5

800 3:4310 	 10�5 4:2197 	 10�5 4:6617 	 10�5 7:3132 	 10�5 1:6669 	 10�5

1,000 3:3950 	 10�4 3:7631 	 10�4 5:9272 	 10�4 8:8689 	 10�4 7:0911	 10�4

4.7 Some Workout Examples 97

The maximum absolute error and relative error calculated in the deflection of
beam column fixed at both ends respectively as given by Figs. 4.4 and 4.5.

For the second case the calculated maximum absolute error is given in Table 4.4.
For the third case described in Eq. (4.165) the maximum absolute error is

tabulated in table.

Example 4.7.8 Consider the reaction diffusion Eq. (4.171) mentioned in Ref. [112].

y00 þ k exp
y

ð1þ ayÞ
� �

¼ 0; t 2 ð0; 1Þ ð4:171Þ

with the boundary conditions yð0Þ ¼ yð1Þ ¼ 0. The trial solution of Eq. (4.171)
using neural network can be written as:

Table 4.4 Error in deflection of beam column fixed at both end Eq. (4.164)

Load
(F)

Maximum absolute error in deflection of the beam column

l = 0.05 l = 0.10 l = 0.15 l = 0.20 l = 0.25

0 1:1512	 10�10 6:2567 	 10�7 3:5400 	 10�5 5:845 	 10�8 1:5320	 10�9

50 3:9100	 10�6 2:8580 	 10�5 1:4180 	 10�5 6:5100 	 10�6 4:0770	 10�5

100 6:6600 	 10�6 2:4900 	 10�5 1:4180 	 10�5 1:6310 	 10�6 4:3010 	 10�5

150 6:040 	 10�6 2:4900 	 10�5 1:419 	 10�5 5:00 	 10�4 5:00 	 10�4

200 1:0353 	 10�4 4:00 	 10�4 5:00 	 10�4 4:00 	 10�4 4:00 	 10�4

250 1:60 	 10�3 5:0 	 10�3 3:10 	 10�3 1:5 	 10�3 1:0 2	 10�2

Fig. 4.4 Maximum absolute error and relative error in deflection of beam column fixed at both
ends Eq. (4.163)

Fig. 4.5 Maximum absolute and relative error in the deflection of beam column hinged at both
ends Eq. (4.164)

98 4 Neural Network Methods for Solving Differential Equations

yT ¼ tðt � 1ÞNð�t; �pÞ ð4:172Þ

which satisfies the desired boundary condition at t ¼ 0 and 1. The derivatives are
then calculated with respect to input vector and weight parameters to minimize the
error quantity. We have considered three layered neural network with h ¼ 10
number of hidden nodes and N ¼ 100 (training points) to minimize the error term
whose initial weights are chosen randomly. The ANN solution has been compared

Fig. 4.6 Influence of k on concentration y(t) for a = 0.5, 1 and 3 in Reaction Diffusion Equation
using ANN

4.7 Some Workout Examples 99

with the exact solution for different values of parameters a and k for the present
equations. Influence of one parameter to the other parameters and solution has also
been presented in Fig. 4.6 (Tables 4.5 and 4.6).

Table 4.5 Maximum absolute error in the deflection of beam column fixed at the end Eq. (4.165)

Load
(F)

Maximum absolute error in deflection of the beam column

l = 0.05 l = 0.10 l = 0.15 l = 0.20 l = 0.25

0 1:4328	 10�16 5:8078 	 10�10 4:6800 	 10�9 5:675 	 10�12 2:9603	 10�10

100 8:5466	 10�4 6:2320 	 10�4 1:465 	 10�4 1:7 	 10�3 2:8	 10�3

200 5:2022 	 10�5 1:1201 	 10�4 3:2351 	 10�4 5:3642 	 10�4 4:63 	 10�4

300 7:3016 	 10�5 4:5322 	 10�5 5:597 	 10�4 4:5440 	 10�4 4:82 	 10�4

400 3:5087 	 10�5 8:3430 	 10�5 1:5545 	 10�4 4:3966 	 10�4 4:51 	 10�4

500 6:3423 	 10�4 1:8 	 10�3 1:80 	 10�3 1:06 	 10�3 1:81	 10�4

Table 4.6 Absolute error in the solution of reaction diffusion equation for different values of k
with constant a ¼ 3

t k ¼ 0:01 k ¼ 0:1 k ¼ 0:5 k ¼ 1:2 k ¼ 1:4

0.1 4:96535 	 10�6 4:6302 	 10�5 2:485 	 10�5 1:2305 	 10�5 1:1076 	 10�5

0.2 3:1286 	 10�5 4:8614 	 10�5 3:4271 	 10�5 1:0695 	 10�5 1:8264 	 10�4

0.3 3:0857 	 10�5 3:8208 	 10�4 4:9435 	 10�5 1:1821 	 10�5 2:0632 	 10�5

0.4 3:9237 	 10�5 3:4276 	 10�5 1:0221 	 10�4 2:3835 	 10�5 2:8692 	 10�5

0.5 2:4738 	 10�5 4:3467 	 10�5 2:3980 	 10�5 1:2873 	 10�4 1:3216 	 10�4

0.6 2:1983 	 10�5 1:2838 	 10�4 2:0667 	 10�5 1:76 	 10�4 2:8642 	 10�4

0.7 4:6650 	 10�5 1:2690 	 10�5 1:8532 	 10�4 1:9243 	 10�4 2:7147 	 10�4

0.8 4:3852 	 10�5 1:1741 	 10�5 1:8391 	 10�4 3:8216 	 10�5 5:8838 	 10�4

0.9 2:7036 	 10�4 2:5472 	 10�4 2:333 	 10�4 6:3384 	 10�4 2:864 	 10�5

1.0 1:0831 	 10�4 2:865 	 10�4 1:269 	 10�4 1:73	 10�3 2:634	 10�4

100 4 Neural Network Methods for Solving Differential Equations

Conclusion

Differential equations plays major role in applications of sciences and engineering.
It arises in wide variety of engineering applications for e.g. electromagnetic theory,
signal processing, computational fluid dynamics, etc. These equations can be typ-
ically solved using either analytical or numerical methods. Since many of the
differential equations arising in real life application cannot be solved analytically or
we can say that their analytical solution does not exist. For such type of problems
certain numerical methods exists in the literature. In this book, our main focus is to
present an emerging meshless method based on the concept of neural networks for
solving differential equations or boundary value problems of type ODE’s as well as
PDE’s. Here in this book, we have started with the fundamental concept of dif-
ferential equation, some real life applications where the problem is arising and
explanation of some existing numerical methods for their solution. We have also
presented some basic concept of neural network that is required for the study and
history of neural networks. Different neural network methods based on multilayer
perceptron, radial basis functions, multiquadric functions and finite element etc. are
then presented for solving differential equations. It has been pointed out that the
employment of neural network architecture adds many attractive features towards
the problem compared to the other existing methods in the literature. Preparation of
input data, robustness of methods and the high accuracy of the solutions made these
methods highly acceptable. The main advantage of the proposed approach is that
once the network is trained, it allows evaluation of the solution at any desired
number of points instantaneously with spending negligible computing time.

Moreover, different hybrid approaches are also available and the work is in
progress to use better optimization algorithms. People are also working in the
combination of neural networks to other existing methods to propose a new method
for construction of a better trail solution for all kind of boundary value problems.
Such a collection could not be exhaustive; indeed, we can hope to give only an
indication of what is possible.

© The Author(s) 2015
N. Yadav et al., An Introduction to Neural Network Methods
for Differential Equations, SpringerBriefs in Computational Intelligence,
DOI 10.1007/978-94-017-9816-7

101

Appendix

Matlab Pseudo Code for the Solution of Differential Equation
Using MLP Neural Network

© The Author(s) 2015
N. Yadav et al., An Introduction to Neural Network Methods
for Differential Equations, SpringerBriefs in Computational Intelligence,
DOI 10.1007/978-94-017-9816-7

103

104 Appendix

References

1. H. Lee, I. Kang, Neural algorithms for solving differential equations. J. Comput. Phys. 91,
110–117 (1990)

2. L. Wang, J.M. Mendel, Structured trainable networks for matrix algebra. IEEE Int. Jt. Conf.
Neural Netw. 2, 125–128 (1990)

3. D. Kincaid, W. Cheney, in Numerical Analysis Mathematics of Scientific Computing, 3rd
edn. (American Mathematical Society, Providence, 2010)

4. A.J. Meade Jr., A.A. Fernandez, The numerical solution of linear ordinary differential
equations by feedforward neural networks. Math. Comput. Model. 19, l–25 (1994)

5. A.J. Meade Jr., A.A. Fernandez, Solution of nonlinear ordinary differential equations by
feedforward neural networks. Math. Comput. Model. 20(9), 19–44 (1994)

6. M.E. Davis, Numerical Methods and Modeling for Chemical Engineers (Wiley, New York,
1984)

7. S. Haykin, Neural Networks: A Comprehensive Foundation (Pearson Education, Singapore,
2002)

8. J.M. Zurada, Introduction to Artificial Neural Systems (Jaico Publishing House, St. Paul,
2001)

9. R.H. Nielsen, Neurocomputing (Addison-Wesley Publishing Company, USA, 1990)
10. W.S. McCulloch, W. Pitts, A logical Calculus of the ideas immanent in nervous activity.

Bull. Math. Biol. 5, 115–133 (1943)
11. J.V. Neumann, The General and Logical Theory of Automata (Wiley, New York, 1951)
12. J.V. Neumann, Probabilistic logics and the synthesis of reliable organisms from unreliable

components, in Automata Studies (Princeton University Press, Princeton, 1956), pp. 43–98
13. D.O. Hebb, The Organization of Behaviour: A Neuropsychological Theory (Wiley, New

York, 1949)
14. F. Rosenblatt, Principles of Neurodynamics (Spartan Books, Washington, 1961)
15. M. Minsky, S. Papert, Perceptrons (MIT Press, Cambridge, 1969)
16. S. Amari, A theory of adaptive pattern classifiers. IEEE Trans. Electron. Comput. 16(3),

299–307 (1967)
17. K. Fukushima, Visual feature extraction by multilayered networks of analog threshold

elements. IEEE Trans. Syst. Sci. Cyber 5(4), 322–333 (1969)
18. S. Grossberg, Embedding fields: a theory of learning with physiological implications.

J. Math. Psychol. 6, 209–239 (1969)
19. A.H. Klopf, E. Gose, An evolutionary pattern recognition network. IEEE Trans. Syst. Sci.

Cyber 53, 247–250 (1969)
20. J.J. Hopfield, Neural Networks and physical systems with emergent collective computational

abilities. Proc. Natl Acad. Sci. 79, 2254–2258 (1982)
21. J.J. Hopfield, Neurons with graded response have collective computational properties like

those of two state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984)

© The Author(s) 2015
N. Yadav et al., An Introduction to Neural Network Methods
for Differential Equations, SpringerBriefs in Computational Intelligence,
DOI 10.1007/978-94-017-9816-7

105

22. D.E. Rumelhart, J.L. McClelland, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, I and II (MIT Press, Cambridge, 1986)

23. M. Mahajan, R. Tiwari, Introduction to Soft Computing (Acne Learning Private Limited,
New Delhi, 2010)

24. S. Pal, Numerical Methods: Priniciples, Analyses and Algorithms (Oxford University Press,
Oxford, 2009)

25. L.O. Chua, L. Yang, Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–
1272 (1988)

26. Q. Zhang, A. Benveniste, Wavelet networks. IEEE Trans. Neural Netw. 3, 889–898 (1992)
27. P.J. Werbos, Beyond regression: new tools for prediction and analysis in the behavioral

Sciences, Ph.D. thesis, Harvard University, 1974
28. M. Reidmiller, H. Braun, A direct adaptive method for faster back propagation learning: the

RPROP algorithm, in Proceedings of the IEEE International Conference on Neural Networks
(1993), pp. 586–591

29. K.S. Mcfall, An artificial neural network method for solving boundary value problems with
arbitrary irregular boundaries, Ph.D. thesis, Georgia Institute of Technology (2006)

30. V. Kecman, Learning and Soft Computing (The MIT Press, Cambridge, 2001)
31. D.J. Montana, L. Davis, Training feed forward neural networks using Genetic algorithms, in

Proceedings of the 11th International Joint Conference on Artificial Intelligence, vol. 1
(1989), pp. 762–767

32. R.S. Sexton, J.N.D. Gupta, Comparative evaluation of genetic algorithm and back
propagation for training neural networks. Inf. Sci. 129, 45–59 (2000)

33. J.A. Khan, R.M.A. Zahoor, I.M. Qureshi, Swarm intelligence for the problems of non linear
ordinary differential equations and its application to well known Wessinger’s equation. Eur.
J. Sci. Res. 34, 514–525 (2009)

34. A. Yadav, K. Deep, A new disc based particle swarm optimization. Adv. Intell. Soft Comput.
130, 23–30 (2012)

35. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal
approximators. Neural Netw. 2(5), 359–366 (1989)

36. K. Hornik, M. Stinchcombe, H. White, Universal approximation of an unknown mapping
and its derivatives using multilayer feedforward networks. Neural Netw. 3, 551–560 (1990)

37. I.E. Lagaris, A.C. Likas, Artificial neural networks for solving ordinary and partial
differential equations. IEEE Trans. Neural Netw. 9, 987–1000 (1998)

38. S. He, K. Reif, R. Unbehauen, Multilayer networks for solving a class of partial differential
equations. Neural Netw. 13, 385–396 (2000)

39. I.E. Lagaris, A.C. Likas, D.G. Papageorgiou, Neural-network methods for boundary value
problems with irregular boundaries. IEEE Trans. Neural Netw. 11(5), 1041–1049 (2000)

40. L.P. Aarts, P.V. Veer, Neural network method for partial differential equations. Neural
Process. Lett. 14, 261–271 (2001)

41. N. Smaoui, S. Al-Enezi, Modeling the dynamics of non linear partial differential equations
using neural networks. J. Comput. Appl. Math. 170, 27–58 (2004)

42. A. Malek, R.S. Beidokhti, Numerical solution for high order differential equations using a
hybrid neural network-optimization method. Appl. Math. Comput. 183, 260–271 (2006)

43. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7, 308–313
(1965)

44. Y. Shirvany, M. Hayati, R. Moradian, Numerical solution of the nonlinear Schrodinger
equation by feedforward neural networks. Commun. Nonlinear Sci. Numer. Simul. 13, 2132–
2145 (2008)

45. R.S. Beidokhti, A. Malek, Solving initial-boundary value problems for systems of partial
differential equations using neural networks and optimization techniques. J. Franklin Inst.
346, 898–913 (2009)

46. I.G. Tsoulos, D. Gavrilis, E. Glavas, Solving differential equations with constructed neural
networks. Neurocomputing 72, 2385–2391 (2009)

106 References

47. I.G. Tsoulos, D. Gavrilis, E. Glavas, Neural network construction and training using
grammatical evolution. Neurocomputing 72, 269–277 (2008)

48. K.S. Mcfall, J.R. Mahan, Artificial neural network method for solution of boundary value
problem with exact satisfaction of arbitrary boundary conditions. IEEE Trans. Neural Netw.
20(8), 1221–1233 (2009)

49. A.G.L. Zagorchev, Acomparative study of transformation functions for non rigid image
registration. IEEE Trans. Image Process. 15(3), 529–538 (2006)

50. H. Alli, A. Ucar, Y. Demir, The solutions of vibration control problem using artificial neural
networks. J. Franklin Inst. 340, 307–325 (2003)

51. H. Saxen, F. Pettersson, Method for the selection of inputs and structure of feedforward
neural networks. Comput. Chem. Eng. 30, 1038–1045 (2006)

52. C. Filici, Error estimation in the neural network solution of ordinary differential equations.
Neural Netw. 23, 614–617 (2010)

53. P.E. Zadunaisky, On the estimation of errors propagated in the numerical integration of
ordinary differential equations. Numer. Math. 27, 21–39 (1976)

54. P.E. Zadunaisky, On the accuracy in the numerical solution of the N-body problem. Celest.
Mech. 20, 209–230 (1979)

55. V. Dua, An artificial neural network approximation based decomposition approach for
parameter estimation of system of ordinary differential equations. Comput. Chem. Eng. 35,
545–553 (2011)

56. N.K. Masmoudi, C. Rekik, M. Djemel, N. Derbel, Two coupled neural network based
solution of the Hamilton-Jacobi-Bellman equation. Appl. Soft Comput. 11, 2946–2963
(2011)

57. L. Jianyu, L. Siwei, Q. Yingjian, H. Yaping, Numerical Solution of differential equations by
radial basis function neural networks. Proc. Int. Jt Conf. Neural Netw. 1, 773–777 (2002)

58. J.E. Moody, C. Darken, Fast learning in networks of locally tuned processing units. Neural
Comput. 1(2), 281–294 (1989)

59. A. Esposito, M. Marinaro, D. Oricchio, S. Scarpetta, Approximation of continuous and
discontinuous mappings by a growing neural RBF-based algorithm. Neural Netw. 13, 651–
665 (2000)

60. J. Park, I.W. Sandberg, Approximation and radial basis function networks. Neural Comput.
5, 305–316 (1993)

61. R. Franke, Scattered data interpolation: tests of some methods. Math. Comput. 38(157), 181–
200 (1982)

62. N. Mai-Duy, T. Tran-Cong, Approximation of function and its derivatives using radial basis
function networks. Neural Netw. 14, 185–199 (2001)

63. N. Mai-Duy, T. Tran-Cong, Numerical solution of differential equations using multiquadric
radial basis function networks. Neural Netw. 14, 185–199 (2001)

64. T. Nguyen-Thien, T. Tran-Cong, Approximation of functions and their derivatives: a neural
network implementation with applications. Appl. Math. Model. 23, 687–704 (1999)

65. T.L. Lee, Back-propagation neural network for the prediction of the short-term storm surge in
Taichung harbor, Taiwan. Eng. Appl. Artif. Intell. 21, 63–72 (2008)

66. J. Rashidhinia, R. Mohammadi, R. Jalilian, Cubic spline method for two-point boundary
value problems. IUST Int. J. Eng. Sci. 19(5–2), 39–43 (2008)

67. K. Deng, Z. Xiong, Y. Huang, The Galerkin continuous finite element method for delay
differential equation with a variable term. Appl. Math. Comput. 186, 1488–1496 (2007)

68. M. Kumar, H.K. Mishra, P. Singh, A boundary value approach for singularly perturbed
boundary value problems. Adv. Eng. Softw. 40(4), 298–304 (2009)

69. N. Mai-Duy, T. Tran-Cong, Mesh free radial basis function network methods with domain
decomposition for approximation of functions and numerical solution of Poisson’s equations.
Eng. Anal. Boundary Elem. 26, 133–156 (2002)

70. L. Jianyu, L. Siwei, Q. Yingjian, H. Yaping, Numerical solution of elliptic partial differential
equation by radial basis function neural networks. Neural Netw. 16, 729–734 (2003)

References 107

71. E.J. Kansa, H. Power, G.E. Fasshauer, L. Ling, A volumetric integral radial basis function
method for time dependent partial differential equations. I. formulation. Eng. Anal. Boundary
Elem. 28, 1191–1206 (2004)

72. H. Zou, J. Lei, C. Pan, Design of a new kind of RBF neural network based on differential
reconstruction. Int. Jt. Conf. Neural Netw. Brain 1, 456–460 (2005)

73. N. Mai-Duy, Solving high order ordinary differential equations with radial basis function
networks. Int. J. Numer. Methods Eng. 62, 824–852 (2005)

74. N. Mai-Duy, T. Tran-Cong, Solving biharmonic problems with scattered-point discretization
using indirect radial basis function networks. Eng. Anal. Boundary Elem. 30, 77–87 (2006)

75. A. Golbabai, S. Seifollahi, Radial basis function networks in the numerical solution of linear
integro-differential equations. Appl. Math. Comput. 188, 427–432 (2007)

76. A. Golbabai, M. Mammadov, S. Seifollahi, Solving a system of nonlinear integral equations
by an RBF network. Comput. Math. Appl. 57, 1651–1658 (2009)

77. A. Aminataei, M.M. Mazarei, Numerical solution of Poisson’s equation using radial basis
function networks on the polar coordinate. Comput. Math. Appl. 56, 2887–2895 (2008)

78. H. Chen, L. Kong, W. Leng, Numerical solution of PDEs via integrated radial basis function
networks with adaptive training algorithm. Appl. Soft Comput. 11, 855–860 (2011)

79. S. Sarra, Integrated radial basis functions based differential quadrature method and its
performance. Comput. Math. Appl. 43, 1283–1296 (2002)

80. M. Kumar, N. Yadav, Multilayer perceptrons and radial basis function neural network
methods for the solution of differential equations: A survey. Comput. Math. Appl. 62, 3796–
3811 (2011)

81. L.O. Chua, L. Yang, Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–
1272 (1988)

82. G. Manganaro, P. Arena, L. Fortuna, Cellular neural networks: chaos, complexity and VLSI
processing (Springer, Berlin, 1999), pp. 44–45

83. J.C. Chedhou, K. Kyamakya, Solving stiff ordinary and partial differential equations using
analog computing based on cellular neural networks. ISAST Trans. Comput. Intell. Syst. 1
(2), 38–46 (2009)

84. R. Brown, Generalizations of the Chua equations. IEEE Trans. Circuits Syst. I 40, 878–884
(1993)

85. M. Kumar, N. Yadav, Buckling analysis of a beam column using multilayer perceptron
neural network technique. J. Franklin Inst. 350(10), 3188–3204 (2013)

86. C.A. Brebbia, J.C.F. Telles, L.C. Wrobel, Boundary Element Techniques: Theory and
Application In Engineering (Springer, Berlin, 1984)

87. R.D. Cook, D.S. Malkus, M.E. Plesha, Concepts and Applications of Finite Element Analysis
(Wiley, Toronto, 1989)

88. R.V. Dukkipati, Applied Numerical Methods Using MATLAB (New Age International
Publisher, New Delhi, 2011)

89. M. Kumar, Y. Gupta, Methods for solving singular boundary value problems using splines: a
survey. J. Appl. Math. Comput. 32, 265–278 (2010)

90. T. Kozek, T. Roska, A double time scale CNN for solving two dimensional Navier-Stokes
equation. Int. J. Circuit Theory Appl. 24(1), 49–55 (1996)

91. D. Gobovic, M.E. Zaghloul, Analog cellular neural network with application to partial
differential equations with variable mesh size. IEEE Int. Symp. Circuits Syst. 6, 359–362
(1994)

92. T. Roska, L.O. Chua, T. Kozek, R. Tetzlaff, F. Puffer, Simulating non linear waves and
partial differential equations via CNN-Part I: basic techniques. IEEE Trans. Circuits Syst.
I Fundam. Theory Appl. 42, 807–815 (1995)

93. T. Roska, L.O. Chua, T. Kozek, R. Tetzlaff, F. Puffer, K. Lotz, Simulating non linear waves
and partial differential equations via CNN-Part II: typical examples. IEEE Trans. Circuits
Syst. I Fundam. Theory Appl. 42, 816–820 (1995)

108 References

94. F. Pufser, R. Tetzlafs, D. Wolf, A learning algorithm for cellular neural networks (CNN)
solving nonlinear partial differential equations, in Proceeding of International Symposium of
Signals, Systems, and Electronics (1995), pp. 501–504

95. A. Rasmussen, M.E. Zaghloul, CMOS analog implementation of cellular neural network to
solve partial differential equations with a micro electromechanical thermal interface,
in Proceedings of the 40th Midwest Symposium on Circuits and Systems, vol. 2 (1997),
pp. 1326–1329

96. I. Krstic, B. Reljin, P. Kostic, Cellular neural network to model and solve direct non linear
problems of steady state heat transfer, in International Conference on EUROCON’2001,
Trends in Communications, vol. 2 (2001), pp. 420–423

97. S.T. Moon, B. Xia, R.G. Spencer, G. Han, E. Sanchez-Sinencio, VLSI implementation of a
neural network for solving linear second order parabolic PDE, in 43rd IEEE Midwest
Symposium on Circuits and Systems (2000), pp. 836–839

98. M.J. Aein, H.A. Talebi, Introducing a training methodology for cellular neural networks
solving partial differential equations, in Proceedings of International Joint Conference on
Neural Networks (2009), pp. 72–75

99. J.C. Chedjou, K. Kyamakya, U.A. Khan, M.A. Latif, Potential contribution of CNN-based
solving of stiff ODEs & PDEs to enabling real-time computational engineering,in 12th
International Workshop on Cellular Nanoscale Networks and their Applications (2010),
pp. 1–6

100. V.D. Thai, P.T. Cat, Equivalence and stability of two layered cellular neural network solving
saint venant 1D equation, in 11th International Conference Control, Automation, Robotics
and Vision (2010), pp. 704–709

101. J. Takeuchi, Y. Kosugi, Neural network representation of the finite element method. Neural
Netw. 7(2), 389–395 (1994)

102. P. Ramuhalli, L. Udpa, S.S. Udpa, Finite element neural networks for solving differential
equations. IEEE Trans. Neural Netw. 16(6), 1381–1392 (2005)

103. A.I. Beltzer, T. Sato, Neural classification of finite elements. Comput. Struct. 81, 2331–2335
(2003)

104. B.H.V. Topping, A.I. Khan, A. Bahreininejad, Parallel training of neural networks for finite
element mesh decomposition. Comput. Struct. 63(4), 693–707 (1997)

105. L. Manevitz, A. Bitar, D. Givoli, Neural network time series forecasting of finite-element
mesh adaptation. Neurocomputing 63, 447–463 (2005)

106. H. Jilani, A. Bahreininejad, M.T. Ahmadi, Adaptive finite element mesh triangulation using
self-organizing neural networks. Adv. Eng. Softw. 40, 1097–1103 (2009)

107. O. Arndt, T. Barth, B. Freisleben, M. Grauer, Approximating a finite element model by
neural network prediction for facility optimization in groundwater engineering. Eur. J. Oper.
Res. 166, 769–781 (2005)

108. S. Koroglu, P. Sergeant, N. Umurkan, Comparison of analytical, finite element and neural
network methods to study magnetic shielding. Simul. Model. Pract. Theory 18, 206–216
(2010)

109. J. Denga, Z.Q. Yueb, L.G. Thamb, H.H. Zhuc, F. Huangshan, Pillar design by combining
finite element methods, neural networks and reliability: a case study of the copper mine,
China. Int. J. Rock Mech. Min. Sci. 40, 585–599 (2003)

110. L. Ziemianski, Hybrid neural network finite element modeling of wave propagation in
infinite domains. Comput. Struct. 81, 1099–1109 (2003)

111. X. Li, J. Ouyang, Q. Li, J. Ren, Integration wavelet neural network for steady convection
dominated diffusion problem, in 3rd International Conference on Information and
Computing, vol. 2 (2010), pp. 109–112

112. N. Yadav, A. Yadav, K. Deep, Artificial neural network technique for solution of nonlinear
elliptic boundary value problems, in Proceedings of Fourth International Conference on Soft
Computing for Problem Solving, Advances in Intelligent Systems and Computing vol. 335
(2015), pp. 113–121

References 109

Index

A
Activation function, 19, 20, 21, 28, 29, 59, 92

linear, viii, 22, 22f, 26, 31, 90
sign, 22, 23f
sigmoid, 22, 23f, 45
step, 23, 24f

ADALINE, 14
Aequatio differentialis, 1
Algebraic equations, viii, 7, 9
Artificial neural network (ANN), 18, 19, 24,

48, 51, 52, 56, 63, 64. See also Cellular
neural network (CNN); Feed forward
neural network (FFNN)

mathematical model of, 19–21, 20f

B
Backpropagation algorithm, 35

extended, 47–48, 61
training CNN using, 86–87

Biological modeling, 5
beginning of neural networks, 13–14
first golden age of, 14

Biological neural network, 18–19
Bisection method, 6
Borel measurable function, 41, 42
Boundary element method (BEM), vii, 69
Boundary value problem, 5, 6, 8, 37, 41, 53,

57, 58, 60, 101
Dirichlet boundary condition, 3–4, 92
mixed boundary condition, 4
Neumann boundary condition, 4
second order, 7
two point, 10, 93

C
Cartesian coordinate, 76, 77
Cauchy boundary condition, 4
Cellular neural network (CNN), 30–31, 30f,

77–78
design of processor, 80
principle for templates findings, 78–80
recent development in (see Cellular neural

network (CNN), recent developments
in)

Cellular neural network (CNN), recent
developments in), 80

CMOS VLSI implementation for, 84–85
double-time scale model, 81
NAOP for template calculation, 87–88
for nonlinear partial differential equations,

83–84
for parabolic PDE, 85–86
for partial differential equations, 82–83
reaction diffusion, 83
to solve nonlinear problems of steady-state

heat transfer, 85
for solving Saint Venant 1D equation, 88
training using backpropagation algorithm,

86–87
with variable mesh size, 81–82

Computational fluid dynamics, 101
Cosine-based model, 54–55, 54f

D
Delay differential equation (DDE), 1, 2
Differential algebraic equation (DAE), 1, 3

Note: Page numbers followed by “f” and “t” indicate figures and tables respectively

© The Author(s) 2015
N. Yadav et al., An Introduction to Neural Network Methods
for Differential Equations, SpringerBriefs in Computational Intelligence,
DOI 10.1007/978-94-017-9816-7

111

Direct radial basis function networks
(DRBFN), 67, 69, 70, 76, 77

for solving differential equations, 67–68
Dirichlet boundary condition, 3–4, 49, 50, 60,

66, 67, 71, 86, 90, 92

E
Eigen function, 55
Eigen values, 55, 56
Eigen vector, 72
Electromagnetic theory, 101
Engineering problems, 5, 101

F
Feed forward neural network (FFNN), 11,

24–25, 25f, 42, 44, 53, 55, 62, 91, 93.
See also Wavelet neural network

method for selection of inputs and structure
of, 62

multilayer, 41
Find function value, 64
Finite difference method (FDM), vii, 6–7, 58,

69
nodal points, 7

Finite element method (FEM), vii, vii, 8–9, 31,
69, 89, 90

Finite element neural network (FENN), 31, 32f,
88–90

boundary conditions in, 90–91
nondestructive evaluation (NDE), 89

Finite volume method (FVM), vii, vii, 9, 69
Fourier progression, 72, 73
Fuzzy differential equations, 59–60

neural network for, 60

G
Galerkin approximation, 9
Galerkin method, 8, 50, 52
Gauss Newton learning algorithm, 38
Gaussian function, 26, 27
GEATbx toolbox, 51
Genetic algorithm (GA), 38–39, 59
Gradient computation, in MLP, 44–45

network parameter updation, 46–47
recent development in MLPNN (see MLP

neural network (MLPNN), recent
development in)

with respect to network inputs, 45–46
with respect to network parameters, 46

H
Hamilton-Jacobi-Bellman equation, 64
Hamiltonian system, 55

Hessian matrix, 37, 38
Hopfield network, 28, 28f

binary, 28
continuous, 29
continuous-time continuous, 29
discrete, 29–30

I
Indirect radial basis function networks

(IRBFN), 67, 70, 75, 76, 77
for solving differential equations, 69

International Neural Network Society
(INNS), 15

J
Jacobian matrix, 38

K
Karhunen-Loeve (K-L) decomposition, 51
Klein-Gordon diffusion, 83
Kuramato-Sivashinsky (K-S) equation, 51

L
Laplace operator, 66, 71
Laplace’s equation, 5
Learning in neural networks, 33

competitive learning, 34
reinforcement learning, 34
supervised learning, 33, 33f
unsupervised learning, 34

Leibnitz, G.W., 1
Levenberg-Marquardt learning algorithm,

37–38

M
Master-Slave-Auxiliary configuration, 78

system fixed point, 79, 80
MATLAB code, ix, 51, 85

pseudo code, 103–104
Maxwell’s equation, 5
MLP neural network (MLPNN), recent

development in, 47
based on cosine-based model, 54–55, 54f
development of approximate solution

using length factor, 60–61
error estimation in neural network

solution, 63
with evolutionary algorithm, 50–51
extended back propagation algorithm,

47–48
for fuzzy differential equations, 59–60
with grammatical evolution, 58–59
with K-L decomposition, 51–52

112 Index

Matlab pseudo code for, 103–104
method for selection of inputs and structure

of FFNN, 62
model based on MLP-RBF synergy, 49–50
with Nelder-Mead simplex method, 53
for parameter estimation of system of ODE,

63–64
for time-dependent differential equations,

57–58
with two-coupled neural network, 64–65,

65f
with unsupervised training network, 55–57,

56f
for vibration control problem, 61–62

Multilayer perceptron (MLP), 34, 43–44
backpropagation algorithm, 35
construction of trial solution, 44
genetic algorithm, 38–39
gradient computation (see Gradient

computation, in MLP)
Levenberg-Marquardt learning algorithm,

37–38
neural network, 43, 45. See also MLP

neural network (MLPNN), recent
development in

particle swarm optimization, 40–41
RPROP learning algorithm, 35–36. See

also RPROP learning algorithm
transformation, 44

Multiquadric (MQ) functions, 67, 74, 77, 101
Multiquadric radial basis function neural

network, 67
DRBFN procedure (see Direct radial basis

function networks (DRBFN))
IRBFN procedure (see Indirect radial basis

function networks (IRBFN))
recent development in (see Radial

basis function (RBF), recent
developments in)

N
Naiver-Stokes (N-S) equation, 51, 82
Nelder-Mead simplex method, 53, 58
Neumann boundary condition, 4, 49, 50, 60,

66, 67, 71
Neural network architecture, 24

cellular neural network, 30–31, 30f
feed forward neural networks, 24–25, 25f
finite element neural network, 31, 32f
Hopfield network, 28–30. See also

Hopfield network
radial basis function neural network, 26–27

recurrent neural networks, 25, 26f
wavelet neural network, 31–33, 32f

Neural networks, vii, vii
architecture (see Neural network

architecture)
artificial, 19
beginning of, 13–14
biological, 18–19, 18f
definitions, 17
first golden age of, 14
learning in (see Learning in neural

networks)
method for solving differential equations,

11–12
multi-layer perceptron (see Multi-layer

perceptron (MLP))
quiet years, 15
renewed enthusiasm, 15
as universal approximator, 41–42

Neurocomputing, 13, 14, 15
Neurons, vii, 19

artificial, 20f
transfer function (see Activation function)

Newton-Raphson learning algorithm, 38
Newton’s law

in dynamics, 5
in thermodynamics, 5

Non linear adaptive optimization (NAOP), 87
for template calculation, 87–88

Numerical methods for solving differential
equations, 5–6

finite difference method, 6–7
finite element method, 8–9
finite volume method, 9
neural network method, 11
shooting method, 6
spline based method, 9–11

O
Optimal control law, 64
Ordinary differential equation (ODE), 1–2, 43,

47, 52, 54, 58, 61, 62, 63, 65, 67, 72,
73, 83, 87, 101

complex and stiff, 78, 79, 80, 81

P
Partial differential equation (PDE), vii, viii, 1,

2, 4, 11, 43, 48, 49, 50, 51, 57, 58, 61,
70, 72, 81, 88

CNN for, 82–83
CNN for nonlinear, 83–84
parabolic, 85, 86

Index 113

Particle swarm optimization, 40–41
Pattern recognition, 14, 15, 31
Perceptron, 14, 15

MLP (see Multilayer perceptron (MLP))
Poisson’s equation, 66, 71, 70, 74, 82
RBFNN for, 76–77

Pseudo spectral Galerkin method, 52

Q
Quasi-Newton Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method, 76
Quasi Newton method, 59–60

R
Radial basis function (RBF), 26

multiquadric (MQ) function, 67 See also
Multiquadric radial basis function
neural network

networks (RBFNs), 65
neural network, 26–27, 27f, 65–67.

See also RBFNN
recent development in (see Radial basis

function (RBF), recent developments
in)

Radial basis function (RBF), recent
developments in, 70

for higher-order differential equations,
73–74

radial basis function domain-decomposition
approach, 70–71

RBFNN approach (see RBFNN)
with trigonometric function, 73
two-stage gradient learning algorithm for,

71–72

volumetric integral method, 72–73
RBFNN

for bi-harmonic BVP, 74–75
for linear-intrgro differential equations,

75–76
for Poisson’s equation, 76–77

Recurrent neural networks, 25, 26f
RPROP learning algorithm, 35–36

advantage of, 36
resilient propagation (RPROP), 35

Runge-Kutta method, 6, 56, 62

S
Saint Venant 1D equation, 88
Schrodinger equation, 55, 56
Secant method, 6
Signal processing, 13, 15, 101
Spline based method, 9–11
Stochastic differential equation (SDE), 1, 2

T
Taylor series, 6, 37, 78, 88
Time-dependent differential equations, 57–58

W
Wavelet neural network, 31–33, 32f, 91–93

Dirichlet boundary value problem, 92
Worked examples

beam column theory, basic equation of,
96–98

reaction diffusion equation, 98–100
two point boundary value problem, 93–94
wave equation, 94–96

114 Index

	Preface
	Contents
	Introduction
	1 Overview of Differential Equations
	Abstract
	1.1 Classification of Differential Equations
	1.1.1 Ordinary Differential Equations
	1.1.2 Partial Differential Equations
	1.1.3 Delay Differential Equations
	1.1.4 Stochastic Differential Equations
	1.1.5 Differential Algebraic Equations

	1.2 Types of Differential Equation Problems
	1.2.1 Initial Value Problem
	1.2.2 Boundary Value Problem
	1.2.2.1 Dirichlet Boundary Condition
	1.2.2.2 Neumann Boundary Condition
	1.2.2.3 Mixed Boundary Condition

	1.3 Differential Equations Associated with Physical Problems Arising in Engineering
	1.4 General Introduction of Numerical Methods for Solving Differential Equations
	1.4.1 Shooting Method
	1.4.2 Finite Difference Method
	1.4.3 Finite Element Method
	1.4.4 Finite Volume Method
	1.4.5 Spline Based Method
	1.4.6 Neural Network Method

	1.5 Advantages of Neural Network Method for Solving Differential Equations

	2 History of Neural Networks
	Abstract
	2.1 The 1940s: The Beginning of Neural Networks
	2.2 The 1950s and 1960s: The First Golden Age of Neural Networks
	2.3 The 1970s: The Quiet Years
	2.4 The 1980s: Renewed Enthusiasm

	3 Preliminaries of Neural Networks
	Abstract
	3.1 What Is Neural Network?
	3.2 Biological Neural Network
	3.3 Artificial Neural Network
	3.4 Mathematical Model of Artificial Neural Network
	3.5 Activation Function
	3.5.1 Linear Activation Function
	3.5.2 Sign Activation Function
	3.5.3 Sigmoid Activation Function
	3.5.4 Step Activation Function

	3.6 Neural Network Architecture
	3.6.1 Feed Forward Neural Networks
	3.6.2 Recurrent Neural Networks
	3.6.3 Radial Basis Function Neural Network
	3.6.4 Hopfield Network
	3.6.4.1 Binary Hopfield Network
	3.6.4.2 Continuous Hopfield Network
	3.6.4.3 Continuous-Time Continuous Hopfield Network
	3.6.4.4 Discrete Hopfield Network

	3.6.5 Cellular Neural Network
	3.6.6 Finite Element Neural Network
	3.6.7 Wavelet Neural Network

	3.7 Learning in Neural Networks
	3.7.1 Supervised Learning
	3.7.2 Unsupervised Learning
	3.7.3 Reinforcement Learning
	3.7.4 Competitive Learning

	3.8 Multi-layer Perceptron
	3.8.1 Backpropagation Algorithm
	3.8.2 The RPROP Learning Algorithm
	3.8.3 The Levenberg-Marquardt Learning Algorithm
	3.8.4 Genetic Algorithm
	3.8.5 Particle Swarm Optimization

	3.9 Neural Networks as Universal Approximator

	4 Neural Network Methods for Solving Differential Equations
	Abstract
	4.1 Method of Multilayer Perceptron Neural Network
	4.1.1 Gradient Computation
	4.1.2 Gradient Computation with Respect to Network Inputs
	4.1.3 Gradient Computation with Respect to Network Parameters
	4.1.4 Network Parameter Updation
	4.1.5 Recent Development in MLPNN for Solving Differential Equations
	4.1.5.1 Extended Back Propagation Algorithm
	4.1.5.2 Model Based on MLP-RBF Synergy
	4.1.5.3 MLP with Evolutionary Algorithm
	4.1.5.4 MLP with K-L Decomposition
	4.1.5.5 MLP with Nelder-Mead Simplex Method
	4.1.5.6 MLP Based on Cosine-Based Model
	4.1.5.7 MLP with Unsupervised Training Network
	4.1.5.8 MLP for Time-Dependent Differential Equations
	4.1.5.9 MLP with Grammatical Evolution
	4.1.5.10 MLP for Fuzzy Differential Equations
	4.1.5.11 Development of Approximate Solution Using Length Factor
	4.1.5.12 MLP for Vibration Control Problem
	4.1.5.13 Method for Selection of Inputs and Structure of FFNN
	4.1.5.14 Error Estimation in Neural Network Solution
	4.1.5.15 MLP Based Approach for Parameter Estimation of System of ODE
	4.1.5.16 MLP with Two-Coupled Neural Network

	4.2 Method of Radial Basis Function Neural Networks
	4.3 Method of Multiquadric Radial Basis Function Neural Network
	4.3.1 DRBFN Procedure for Solving Differential Equations
	4.3.2 IRBFN Procedure for Solving Differential Equations
	4.3.3 Recent Development in the RBF and MQRBF Neural Network Techniques
	4.3.3.1 Radial Basis Function Domain-Decomposition Approach
	4.3.3.2 Two-Stage Gradient Learning Algorithm for RBF
	4.3.3.3 Volumetric Integral Radial Basis Function Method
	4.3.3.4 RBF with Trigonometric Function
	4.3.3.5 RBF for Higher-Order Differential Equations
	4.3.3.6 RBFNN Approach for Bi-harmonic BVP
	4.3.3.7 RBFNN for Linear-Integro Differential Equations
	4.3.3.8 RBFNN for Poisson's Equation

	4.4 Method of Cellular Neural Networks
	4.4.1 Principle for CNN Templates Findings
	4.4.2 Design of the Complete CNN Processor
	4.4.3 Recent Development in the Cellular Neural Network Technique
	4.4.3.1 Double-Time Scale CNN Model
	4.4.3.2 CNN with Variable Mesh Size
	4.4.3.3 CNN for Partial Differential Equations
	4.4.3.4 Reaction Diffusion CNN
	4.4.3.5 CNN for Nonlinear Partial Differential Equations
	4.4.3.6 CMOS VLSI Implementation for CNN
	4.4.3.7 CNN to Solve Nonlinear Problems of Steady-State Heat Transfer
	4.4.3.8 CNN for Parabolic PDE
	4.4.3.9 Training CNN Using Backpropagation Algorithm
	4.4.3.10 NAOP for CNN Template Calculation
	4.4.3.11 CNN for Solving Saint Venant 1D Equation

	4.5 Method of Finite Element Neural Networks
	4.5.1 Boundary Conditions in FENN

	4.6 Method of Wavelet Neural Networks
	4.7 Some Workout Examples

	Conclusion
	Appendix
	References
	Index

