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Preface

For many years all three of us have been interested in, and have tried to make contri-
butions to, derivative-free optimization. Our motivation for writing this book resulted from
various circumstances. We had the opportunity to work closely with the leading contrib-
utors to the field, including especially John Dennis, Michael Powell, Philippe Toint, and
Virginia Torczon. We had some knowledge of various facets of the recent developments in
the area, and yet felt there was a need for a unified view, and we hoped thereby to gain a
better understanding of the field. In addition we were enticed by the growing number of
applications. We also felt very strongly that there was a considerable need for a textbook
on derivative-free optimization, especially since the foundations, algorithms, and applica-
tions have become significantly enriched in the past decade. Finally, although the subject
depends upon much that is true for, and was developed for, optimization with derivatives,
the issues that arise are new. The absence of computable derivatives naturally prohibits the
use of Taylor models—so common in derivative-based optimization. The fact that typical
applications involve expensive function evaluations shifts the emphasis from the cost of the
linear algebra, or other contributors to the iteration complexity, to simply the number of
function evaluations. Also, the noise in the function values affects the local convergence
expectations. Thus, the area is both simpler, in the sense of diminished expectations, and
harder, in the sense that one is trying to achieve something with considerably less informa-
tion. It is definitely fun and challenging and, not incidentally, very useful.

Although we do make considerable effort to give a sense of the current state of the
art, we do not attempt to present a comprehensive treatise on all the work in the area. This
is in part because we think that the subject is not yet mature enough for such a treatise.
For similar reasons our emphasis is on the unconstrained problem, although we include a
review on the work done so far in constrained derivative-free optimization. The constrained
problem is in fact very important for applications, but theoretical treatment of derivative-
free methods for constrained problems is very limited in the literature published to date,
and thus, for the present volume at least, we are content to concentrate on the unconstrained
case.

The book is meant to be reasonably self-contained and is addressed to readers at the
level of a graduate student or a senior undergraduate with a background in calculus, lin-
ear algebra, and numerical analysis. Some elementary notions of optimization would be
helpful but are not necessary. It is certainly our intent that practitioners would find the
material covered to be both accessible and reasonably complete for their needs, whether
their emphasis is on the algorithms or the applications. We have also made an effort to in-
clude figures and exercises when appropriate. The major aims include giving any interested
reader a good idea of the state of the art of derivative-free optimization, with a detailed de-

xi
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xii Preface

scription of the basic theory to the extent that the reader can well understand what is needed
to ensure convergence, how this affects algorithm design, and what kind of success one can
expect and where. Thus, it is certainly our goal that the material be of interest to those who
want to do research in the area.

As we state in our introduction, due to the growing sophistication and efficiency
of computer simulations as well as of other applications, there is an increasing number of
instances where one wishes to perform optimization of a complex system and the derivative
information of the resulting objective functions is not available. This book is intended to
help the reader to study and select, if necessary, suitable approaches to do exactly that. It
is also intended to extract and emphasize the common theoretical features used by modern
derivative-free algorithms, as well as highlight the differences.

We would be remiss if we ended our preface without some indicator of what the
future holds in this area. There is still much waiting to be discovered. Undoubtedly, re-
searchers and practitioners, perhaps soon, will discover ways to tackle much larger prob-
lems, whether through the use of massively parallel architectures or through advances in
hardware yet to be realized, or through breakthroughs in the theory, or likely all three. The
theory of constrained derivative-free optimization is also likely to advance significantly in
the near future. Certainly, and especially because of the broad availability of difficult and
important applications, this promises to be an exciting, interesting, and challenging area
for many years to come.

Aside from the colleagues we mentioned in the first paragraph of this preface, there
are many others we would like to thank who have provided us their valuable feedback in
specific parts of the book, including, in particular, Natalia Alexandrov, Charles Audet, and
Paul Tseng. We are very grateful to Ana Luísa Custódio for her tireless proofreading of
the manuscript. We would also like to thank the reviewers who have refereed the version
originally submitted to SIAM, in particular Tim Kelley and Jorge Nocedal, for their many
interesting comments and suggestions.
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Chapter 1

Introduction

1.1 Why derivative-free optimization
It is well known that extensive useful information is contained in the derivatives of any
function one wishes to optimize. After all, the “standard” mathematical characterization of
a local minimum, given by the first-order necessary conditions, requires, for continuously
differentiable functions, that the first-order derivatives are zero. However, for a variety of
reasons there have always been many instances where (at least some) derivatives are un-
available or unreliable. Nevertheless, under such circumstances it may still be desirable to
carry out optimization. Consequently, a class of nonlinear optimization techniques called
derivative-free optimization methods has always been needed. In fact, we consider op-
timization without derivatives one of the most important, open, and challenging areas in
computational science and engineering, and one with enormous practical potential. The
reason that it is challenging is that, from the point of view of optimization, one gives up
so much information by not having derivatives. The source of its current, practical im-
portance is the ever growing need to solve optimization problems defined by functions for
which derivatives are unavailable or available at a prohibitive cost. Increasing complexity
in mathematical modeling, higher sophistication of scientific computing, and an abundance
of legacy codes are some of the reasons why derivative-free optimization is currently an
area of great demand.

In earlier days of nonlinear optimization perhaps one of the most common reasons
for using derivative-free methods was the lack of sophistication or perseverance of the user.
The users knew they wanted to improve on their current “solution,” but they wanted to use
something simple that they could understand, and so they used (and, unfortunately, some-
times continue to use) nonderivative methods, like the method by Nelder and Mead [177],
even when more appropriate algorithms were available. In defense of the practitioner, we
should remember that until relatively recently computing derivatives was the single most
common source of user error in applying optimization software (see, for example, [104,
Chapter 8, page 297]). As the scale and difficulty of the applications increased, more so-
phisticated derivative-based optimization methods became more essential. With the growth
and development of derivative-based nonlinear optimization methods it became evident that
large-scale problems can be solved efficiently, but only if there is accurate derivative infor-
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2 Chapter 1. Introduction

mation at hand. Users started either to provide such derivatives (by hand-coding them or
applying automatic differentiation tools to their software) or to estimate the derivatives by
finite differences. Some optimization software packages perform the finite-difference gra-
dient evaluation internally, but it is usually better to leave this to the user since the ideal
size of the finite-difference step may depend on the application.

However, there are situations where none of these approaches for obtaining the deriva-
tives works. For example, in the case of legacy or proprietary codes, i.e., codes that have
been written in the past and which have not been maintained by the original authors, rewrit-
ing such a code now, or adding to it what would be required to provide first-order deriva-
tives, can be an extremely time-consuming task. The problem might also depend on a code
owned by a company for which there is access only to the binary files. Automatic differ-
entiation techniques (see, for example, [111, 112]) also cannot be applied in all cases. In
particular, if the objective function is computed using a black-box simulation package, au-
tomatic differentiation is typically impossible, and even in the case where the computation
is more accessible, legacy or proprietary issues may make such an approach unacceptable.

There are also two situations where applying finite-difference derivative approxima-
tion is inappropriate: when the function evaluations are costly and when they are noisy. In
the first case, it may be prohibitive to perform the necessary number of function evaluations
(normally no less than the number of variables plus one) to provide a single gradient esti-
mation. In the second case, the gradient estimation may be completely useless. Ironically,
with the growing sophistication of computer hardware and mathematical algorithms and
software, situations like these are becoming more, rather than less, frequent. The reason
is simply that while, before, simulation of complex systems was a difficult and costly task
and did not provide a sufficiently good setting for optimization, now such simulations are
becoming more routine and also more accurate; hence optimization of complex systems
is becoming a reasonable possibility. The growing demand for sophisticated derivative-
free optimization methods has triggered the development of a relatively wide range of
approaches. In recent years, the field has undergone major changes with improvements
in theory and practice and increased visibility in the nonlinear optimization community.
By writing this book we hope to provide a unifying theoretical view of the derivative-free
methods existing today. We discuss briefly the practical performance, and what can be ex-
pected, but the main purpose of the book is to give the general picture of why and how the
algorithms work.

The methods we will consider do not rely on derivative information of the objec-
tive function or constraints, nor are the methods designed explicitly to approximate these
derivatives. Rather, they build models of the functions based on sample function values or
they directly exploit a sample set of function values without building an explicit model. Not
surprisingly, as we already suggested, there are considerable disadvantages in not having
derivative information, so one cannot expect the performance of derivative-free methods to
be comparable to those of derivative-based methods. In particular, the scale of the prob-
lems that can currently be efficiently solved by derivative-free methods is still relatively
small and does not exceed a few hundred variables even in easy cases. Stopping criteria
are also a challenge in the absence of derivatives, when the function evaluations are noisy
and/or expensive. Therefore, a near-optimal solution obtained by a derivative-free method
is often less accurate than that obtained by a derivative-based method, assuming deriva-
tive information is available. That said, for many of the applications that exist today these
limitations are acceptable.
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1.2 Examples of problems where derivatives are
unavailable

There is really an enormous number of problems where derivatives are unavailable but one
has imperative practical reasons for wanting to do some optimization. It is almost a natural
perversity that practical problems today are often complex, nonlinear, and not sufficiently
explicitly defined to give reliable derivatives. Indeed, such problems were always numer-
ous, but, 30 years ago, when nonlinear optimization techniques were relatively more naive
than they are today, even the most optimistic practitioners would not try to optimize such
complex problems. Not so in 2008! The diversity of applications includes problems in en-
gineering, mathematics, physics, chemistry, economics, finance, medicine, transportation,
computer science, business, and operations research.

As examples we include a subset of known applications and references. We start by
some illustrations (like algorithmic parameter tuning and automatic error analysis) which
may be atypical of the applications of derivative-free optimization but are easy to under-
stand.

Tuning of algorithmic parameters and automatic error analysis

An interesting (and potentially useful) application of derivative-free optimization has been
explored in [22] to tune parameters of nonlinear optimization methods, with promising re-
sults. Most numerical codes (for simulation, optimization, estimation, or whatever) depend
on a number of parameters. Everybody implementing numerical algorithms knows how
critical the choices of these parameters are and how much they influence the performance
of solvers. Typically, these parameters are set to values that either have some mathematical
justification or have been found by the code developers to perform well. One way to auto-
mate the choice of the parameters (in order to find possibly optimal values) is to consider
an optimization problem whose variables are the parameters and whose objective function
measures the performance of the solver for a given choice of parameters (measured by CPU
time or by some other indicator such as the number of iterations taken by the solver). Such
problems might have constraints like upper and lower bounds on the values of the solver
parameters, and look like

min
p∈Rn p

f (p)= C PU (solver ; p) s.t. p ∈ P ,

where n p is the number of parameters to be tuned and P is of the form {p ∈Rn p : �≤ p ≤
u}. Not only is it hard to calculate derivatives for such a function f , but numerical noise
and some form of nondifferentiability are likely to take place.

Derivative-free optimization has also been used for automatic error analysis [126,
127], a process in which the computer is used to analyze the accuracy or stability of a
numerical computation. One example of automatic error analysis is to analyze how large
the growth factor for Gaussian elimination can be for a specific pivoting strategy. The
relevance of such a study results from the influence of the growth factor in the stability
of Gaussian elimination. Given a pivoting strategy and a fixed matrix dimension n, the
optimization problem posed is to determine a matrix that maximizes the growth factor for
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Gaussian elimination:

max
A∈Rn×n

f (A)= maxi, j ,k |a(k)
i j |

maxi, j |ai j | ,

where the a(k)
i j are the intermediate elements generated during the elimination. A starting

point could be the identity matrix of order n. When no pivoting is chosen, f is defined
and continuous at all points where elimination does not break down. There could be a lack
of differentiability when ties occur at the maxima that define the growth factor expression.
For partial pivoting, the function f is defined everywhere (because the elimination cannot
break down), but it can be discontinuous when a tie occurs at the choice of the pivot ele-
ment. Other examples of automatic error analysis where derivative-free optimization has
been used are the estimation of the matrix condition number and the analysis of numerical
stability for fast matrix inversion and polynomial root finding [126, 127].

Engineering design

A case study in derivative-free optimization is the helicopter rotor blade design prob-
lem [38, 39, 206]. The goal is to find the structural design of the rotor blades to minimize
the vibration transmitted to the hub. The variables are the mass, center of gravity, and stiff-
ness of each segment of the rotor blade. The simulation code is multidisciplinary, including
dynamic structures, aerodynamics, and wake modeling and control. The problem includes
upper and lower bounds on the variables, and some linear constraints have been considered
such as an upper bound on the sum of masses. Each function evaluation requires simula-
tion and can take from minutes to days of CPU time. A surrogate management framework
based on direct-search methods (see Section 12.2) led to encouraging results. Other mul-
tidisciplinary or complex design problems have been reported to be successfully solved by
derivative-free optimization methods and/or surrogate management frameworks, like wing
platform design [16], aeroacoustic shape design [164, 165], and hydrodynamic design [87].

Circuit design

Derivative-free methods have also been used for tuning parameters of relatively small cir-
cuits. In particular, they have been used in the tuning of clock distribution networks. Op-
erations on a chip are done in cycles (e.g., eight cycles per operation), and every part of
the chip has to be synchronized at the beginning of each cycle. The clock distribution
network serves to synchronize the chip by sending a signal to every part, and the signal
has to arrive everywhere with minimum distortion and delay in spite of the fact that there
is always some of both. The resulting optimization problem includes as possible param-
eters wire length, wire width, wire shields, and buffer size. The possible constraints and
objectives considered include delay, power, slew over/undershoot, the duty cycle, and the
slew. The function values are computed by the PowerSpice package [2], a well-known
accurate simulation package for circuits that, however, provides no derivative computation.
Derivative-free optimization is applied to assist circuit designers in the optimization of their
(small) circuits. In the particular case of clock distribution networks, it makes it possible
for the circuit designers to try different objective functions and constraint combinations,
relatively quickly, without manual tuning. This leads to a much better understanding of the
problem and thereby enables discovery of alternative designs.
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Molecular geometry

Another area where it is not unusual to use derivative-free methods of the type we are
interested in is in the optimization of molecular geometries and related problems. An ex-
ample of this would be considering the geometry of a cluster of N atoms (which amounts
to 3N −6 variables). The aim is then the unconstrained minimization of the cluster’s total
energy computed by numerical simulation of the underlying dynamics. We point out that
for these classes of problems there is the presence of several local minimizers (although the
more realistic the computation of the total energy, the lower the number of local minima),
and so there must be some caution when using the type of derivative-free methods covered
in this book (see Section 13.3 for extensions to global optimization). The gradient might
be available, but it could be either expensive or affected by noise or even undesirable to use
given the presence of nonconvexity. Derivative-free optimization methods, in particular
direct-search methods (see Chapter 7), have been appropriately adapted to handle classes
of these problems (see [10, 170]).

Other applications

Many other recent applications of derivative-free optimization could be cited in diverse
areas such as groundwater community problems [99, 174, 233], medical image registra-
tion [179, 180], and dynamic pricing [150].

1.3 Limitations of derivative-free optimization
Perhaps foremost among the limitations of derivative-free methods is that, on a serial ma-
chine, it is usually not reasonable to try and optimize problems with more than a few tens
of variables, although some of the most recent techniques can handle unconstrained prob-
lems in hundreds of variables (see, for example, [192]). Also, even on relatively simple and
well-conditioned problems it is usually not realistic to expect accurate solutions. Conver-
gence is typically rather slow. For example, in order to eventually achieve something like a
quadratic rate of local convergence, one needs either implicit or explicit local models that
are reasonable approximations for a second-order Taylor series model in the current neigh-
borhood. With 100 variables, if one was using interpolation, a local quadratic function
would require 5151 function evaluations (see Table 1.1). Just as one can achieve good
convergence using approximations to the Hessian matrix (such as quasi-Newton meth-
ods [76, 178]) in the derivative-based case, it is reasonable to assume that one can achieve
similar fast convergence in the derivative-free case by using incomplete quadratic models
or quadratic models based on only first-order approximations. These ideas are successfully
used in [52, 59, 61, 191, 192]. For instance, the algorithm in NEWUOA [192] typically
uses 2n+ 1 function evaluations to build its models. However, unless the function looks
very similar to a quadratic in the neighborhood of the optimal solution, in order to progress,
the models have to be recomputed frequently as the step size and the radius of sampling
converge to zero. Even in the case of linear models this can be prohibitive when function
evaluations are expensive. Thus typically one can expect a local convergence rate that is
closer to linear than quadratic, and one may prefer early termination.

As for being able to tackle only problems in around 20 or moderately more variables
(currently the largest unconstrained problems that can be tackled on a serial machine appear
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6 Chapter 1. Introduction

Table 1.1. Number of points needed to build a “fully quadratic” polynomial in-
terpolant model.

n 10 20 50 100 200
(n+1)(n+2)/2 66 231 1326 5151 20301

to be in several hundred variables), the usual remedy is to use statistical methods like anal-
ysis of variance (see, for example, [203]) to determine, say, the most critical 20 variables,
and optimizing only over them. It may also be reasonable to take advantage of the relative
simplicity of some of the derivative-free algorithms, like directional direct-search methods
(explained in Chapter 7), and compute in a parallel, or even massively parallel, environ-
ment.

Another limitation of derivative-free optimization may occur when minimizing non-
convex functions. However, and although nothing has been proved to support this state-
ment, it is generally accepted that derivative-free optimization methods have the ability to
find “good” local optima in the following sense. If one has a function with an apparently
large number of local optimizers, perhaps because of noise, then derivative-free approaches,
given their relative crudeness, have a tendency to initially go to generally low regions in the
early iterations (because of their myopia, or one might even say near-blindness) and in later
iterations they still tend to smooth the function, whereas a more sophisticated method may
well find the closest local optima to the starting point. The tendency to “smooth” functions
is also why they are effective for moderately noisy functions. There are many situations
where derivative-free methods are the only suitable approach, capable of doing better than
heuristic or other “last-resort” algorithms and providing a supporting convergence theory.

There are, however, classes of problems for which the use of derivative-free meth-
ods that we address here are not suitable. Typically, rigorous methods for such problems
would require an inordinate amount of work that grows exponentially with the size of the
problem. This category of problems includes medium- and large-scale general global op-
timization problems with or without derivatives, problems which not only do not have
available derivatives but which are not remotely like smooth problems, general large non-
linear problems with discrete variables including many combinatorial optimization ones
(so-called NP hard problems), and stochastic optimization problems. Although relatively
specialized algorithms can find good solutions to many combinatorial optimization prob-
lems perfectly adequately, this is not the case for general large nonlinear problems with
integer variables. We do not address algorithmic approaches designed specifically for com-
binatorial or stochastic optimization problems.

For some of the extreme cases mentioned above, heuristics are frequently used, such
as simulated annealing [143], genetic and other evolutionary algorithms [108, 129], artifi-
cial neural networks [122], tabu-search methods [107], and particle swarm or population-
based methods [142], including (often very sophisticated variations of) enumeration tech-
niques. The authors think of these as methods of a last resort (that is, applicable to prob-
lems where the search space is necessarily large, complex, or poorly understood and more
sophisticated mathematical analysis is not applicable) and would use them only if nothing
better is available. We do not address such methods in this book. However, sometimes these
approaches are combined with methods that we do address; see, for example, [13, 135, 222]
and Section 13.3 of this book.
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It is sometimes perceived that derivative-free optimization methods should be sim-
ple and easy to implement. However, such methods are typically inferior in theory and
in practice. The Nelder–Mead algorithm, however, can work very well and it is expected
to survive a very long time. Nevertheless it is seriously defective: it is almost never the
best method and indeed it has no general convergence results, because it can easily not
converge (although modifications of it are provably convergent, as we will explain in our
book). Since the authors’ combined research experience in optimization is over 60 years,
we believe that ultimately more sophisticated and successful methods will earn their right-
ful place in practical implementations once a comprehensive description of such methods
is widely available. This, in part, is motivation for this book.

Finally, we want to make a strong statement that often councils against the use of
derivative-free methods: if you can obtain clean derivatives (even if it requires considerable
effort) and the functions defining your problem are smooth and free of noise you should
not use derivative-free methods.

1.4 How derivative-free algorithms should work
This book is mostly devoted to the study of derivative-free algorithms for unconstrained
optimization problems, which we will write in the form

min
x∈Rn

f (x). (1.1)

We are interested in algorithms that are globally convergent to stationary points (of first- or
second-order type), in other words, algorithms that regardless of the starting point are able
to generate sequences of iterates asymptotically approaching stationary points.

Some of the main ingredients

Perhaps this is oversimplifying, but one could say that there are three features present in all
globally convergent derivative-free algorithms:

1. They incorporate some mechanism to impose descent away from stationarity. The
same is done by derivative-based algorithms to enforce global convergence, so this
imposition is not really new. It is the way in which this is imposed that makes the
difference. Direct-search methods of directional type, for instance, achieve this goal
by using positive bases or spanning sets (see Chapter 7) and moving in the direction
of the points of the pattern with the best function value. Simplex-based methods
(Chapter 8) ensure descent from simplex operations like reflections, by moving in
the direction away from the point with the worst function value. Methods like the
implicit-filtering method (Chapter 9) aim to get descent along negative simplex gra-
dients, which are intimately related to polynomial models. Trust-region methods,
in turn, minimize trust-region subproblems defined by fully linear or fully quadratic
models, typically built from polynomial interpolation or regression—see Chapters 10
and 11.

In every case, descent is guaranteed away from stationarity by combining such mech-
anisms with a possible reduction of the corresponding step size parameter. Such a
parameter could be a mesh size parameter (directional direct search), a simplex di-
ameter (simplicial direct search), a line-search parameter, or a trust-region radius.
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8 Chapter 1. Introduction

2. They must guarantee some form of control of the geometry of the sample sets where
the function is evaluated. Essentially, such operations ensure that any indication
of stationarity (like model stationarity) is indeed a true one. Not enforcing good
geometry explains the lack of convergence of the original Nelder–Mead method.

Examples of measures of geometry are (i) the cosine measure for positive span-
ning sets; (ii) the normalized volume of simplices (both to be kept away from zero);
(iii) the�-poisedness constant, to be maintained moderately small and bounded from
above when building interpolation models and simplex derivatives.

3. They must drive the step size parameter to zero. We know that most optimization
codes stop execution when the step size parameter passes below a given small thresh-
old. In derivative-based optimization such terminations may be premature and an
indication of failure, perhaps because the derivatives are either not accurate enough
or wrongly coded. The best stopping criteria when derivatives are available are based
on some form of stationarity indicated by the first-order necessary conditions.

In derivative-free optimization the step size serves a double purpose: besides bound-
ing the size of the minimization step it also controls the size of the local area where
the function is sampled around the current iterate. For example, in direct-search
methods the step size and the mesh size (defining the pattern) are the same or con-
stant multiples of each other. In a model-based derivative-free method, the size of the
trust region or line-search step is typically intimately connected with the radius of the
sample set. Clearly, the radius of the sample set or mesh size has to converge to zero
in order to ensure the accuracy of the objective function representation. It is possi-
ble to decouple the step size from the size of the sample set; however, so far most
derivative-free methods (with the exception of the original Nelder–Mead method)
connect the two quantities. In fact, the convergence theory of derivative-free meth-
ods that we will see in this book shows that the sequence (or a subsequence) of the
step size parameters do converge to zero (see, e.g., Theorem 7.1 or Lemma 10.9). It
is an implicit consequence of the mechanisms of effective algorithms and should not
(or does not have to) be enforced explicitly. Thus, a stopping criterion based on the
size of the step is a natural one.

The details of the ingredients listed above—it is hoped—will be made much clearer
to the reader in the chapters to follow.

With the current state-of-the-art derivative-free optimization methods one can expect
to successfully address problems (i) which do not have more than, say, a hundred variables;
(ii) which are reasonably smooth; (iii) in which the evaluation of the function is expensive
and/or computed with noise (and for which accurate finite-difference derivative estimation
is prohibitive); (iv) in which rapid asymptotic convergence is not of primary importance.

An indication of typical behavior

We chose two simple problems to illustrate some of the validity of the above comments and
some of the advantages and disadvantages of the different classes of methods for derivative-
free optimization. We do not want to report a comprehensive comparison on how the dif-
ferent methods perform since such a numerical study is not an easy task to perform well,
or even adequately, in derivative-free optimization given the great diversity of the applica-
tion problems. A comparison among different methods is easier, however, if we focus on
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1.4. How derivative-free algorithms should work 9

a particular application. Another possibility is to select a test set of problems with known
derivatives and treat them as if the derivatives were unavailable. Moré and Wild [173] sug-
gested the use of data profiles to compare a group of derivative-free algorithms on a test
set. In any case we leave such comparisons to others.

The first problem consists of the minimization of the Rosenbrock function

min
(x1,x2)∈R2

100(x2
1− x2)2+ (1− x1)2,

which has a unique minimizer at (1,1). The level curves of this function describe a strongly
curved valley with steep sides (see Figure 1.1). Depending on the starting point picked,
methods which do not explore the curvature of the function might be extremely slow. For
instance, if one starts around (−1,1), one has to follow a curved valley with relatively steep
sides in order to attain the minimum.

The second problem involves the minimization of a deceptively simple, perturbed
quadratic function. The perturbation involves cosine functions with periods of 2π/70 and
2π/100:

min
(x1,x2)∈R2

10(x2
1)(1+0.75cos(70x1)/12)+ cos(100x1)2/24

+2(x2
2)(1+0.75cos(70x2)/12)+ cos(100x2)2/24+4x1x2.

The unique minimizer is at (0,0) (see Figure 1.1). As opposed to the Rosenbrock function,
the underlying smooth function here has a mild curvature. However, the perturbed function
has been contaminated with noise which will then pose different difficulties to algorithms.

Figure 1.1. Level curves of the Rosenbrock function (left) and a perturbed
quadratic (right).

We selected four methods to run on these two problems as representatives of the four
main classes of methods addressed in this book (see Chapters 7–10). The first method
is coordinate search, perhaps the simplest of all direct-search methods of directional type
(see Chapter 7). In its simplest form it evaluates the function at 2n points around a cur-
rent iterate defined by displacements along the coordinate directions and their negatives
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10 Chapter 1. Introduction

and a step size parameter (a process called polling). This set of directions forms a posi-
tive basis. The method is slow but robust and capable of handling noise in the objective
function. The implementation used is reported in [70]. The second choice is the Nelder–
Mead method [177], a simplicial direct-search method (see Chapter 8). Based on simplex
operations such as reflections, expansions, and contractions (inside or outside), the Nelder–
Mead method attempts to replace the simplex vertex that has the worst function value. The
simplices generated by Nelder–Mead may adapt well to the curvature of the function. How-
ever, the original, unsafeguarded version of Nelder–Mead (as coded in the MATLAB R© [1]
routine we used in our testing) is not robust or reliable since the simplices’ shapes might
deteriorate arbitrarily. Coordinate search, on the contrary, is guaranteed to converge glob-
ally.

The other two methods follow a different approach. One of them is the implicit-
filtering algorithm (see Chapter 9). This is a line-search algorithm that imposes sufficient
decrease along a quasi-Newton direction. The main difference from derivative-based meth-
ods is that the true gradient is replaced by the simplex gradient. So, to some extent, the
implicit-filtering method resembles a quasi-Newton approach based on finite-difference
approximations to the gradient of the objective function. However, the method and its
implementation [141] are particularly well equipped to handle noisy functions. The last
method is a trust–region-based algorithm in which the quadratic models are built from
polynomial interpolation or regression. We used the implementation from the DFO code of
Scheinberg (see Chapter 11 and the appendix). Both methods can adapt well to the cur-
vature of the function, the implicit-filtering one being less efficient than the trust-region
one but more capable of filtering the noise (perhaps due to the use of the simplex gradient,
which corresponds to the gradient of a linear interpolation or regression model, and to an
inaccurate line search).

The results are reported in Figure 1.2 for the two functions of Figure 1.1 and fol-
low the tendency known for these classes of methods. The type of plots of Figure 1.2 is
widely used in derivative-free optimization. The horizontal axis marks the number of func-
tion evaluations as the optimization process evolves. The vertical axis corresponds to the
value of the function, which typically decreases. We set the stopping tolerance for all four
methods to 10−3 (related to the different parameters used for controlling the step sizes).

On the Rosenbrock function, the trust-region method performs the best because of
its ability to incorporate curvature information into the models (from the start to the end
of the iteration process). We chose the initial point (1.2,0) for all methods. As expected,
coordinate search is reasonably fast at the beginning but is rather slow on convergence.
Attempts to make it faster (like improving the poll process) are not very successful in this
problem where curvature is the dominant factor (neither would other fancier directional
direct-search methods of poll type). If we start coordinate search form (1,−1) (curvature
more favorable), coordinate search will do much better. But if we start it from (−1,1), it
will perform much worse. The other two methods perform relatively well. It is actually
remarkable how well a direct-search method like Nelder–Mead performed and seems to be
able to exploit the curvature in this problem.

The results for the perturbed quadratic are less clear, as happens many times in
derivative-free optimization. The Nelder–Mead method failed for the initial point cho-
sen (0.1,0.1), although it would do better if we started not so close to the solution (but not
always. . . ). The method performs many inside contractions which are responsible for its
lack of convergence (see Chapter 8 for more details). The implicit-filtering method does a
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Figure 1.2. Results of coordinate-search, Nelder–Mead, implicit-filtering, and
trust-region interpolation-based methods for the Rosenbrock function (left) and a perturbed
quadratic (right).

good job in filtering the noise for this problem and progressing towards the solution (and
its performance is not affected by the starting point). The interpolation-based trust-region
approach is very efficient at the beginning but soon stagnates—and reducing the tolerance
does not help in this case. Coordinate search performs relatively well (remember that the
curvature is mild) and does not seem affected by the noise.

In summary, we would say that model-based methods (like interpolation with trust
regions) are more efficient. Direct search loses in comparison when the function is smooth
and the curvature is adverse, but it offers a valid alternative for noisy or nonsmooth prob-
lems and can be successfully combined with model-based techniques. The ease of paral-
lelization is also one of its strongest points. There is certainly room for other methods like
modified, safeguarded Nelder–Mead methods and for approaches particularly tailored for
noisy problems and easy to parallelize like implicit filtering.

1.5 A short summary of the book
Thus, having convinced you, perhaps, that there is a need for good derivative-free methods
we hope there is also some intellectual encouragement for pursuing research in the area, or
at least continuing to read this book. The basic ideas, being reasonably simple, lead to new
interesting results. Hence, besides being useful, it is fun.

After the introduction in this chapter, we begin the first part of the book dedicated
to Sampling and Modeling. Thus Chapter 2 introduces the reader to positive spanning sets
and bases, linear interpolation and regression models, simplex gradients, and the impor-
tance of geometry. It also includes error bounds in the linear case. Chapters 3, 4, and 5
then consider nonlinear polynomial interpolation models in a determined, regression and
underdetermined form, respectively. They give due consideration to the concept of well
poisedness, Lagrange polynomials, the conditioning of appropriate matrices, and Taylor-
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12 Chapter 1. Introduction

type error bounds. Chapter 6 is devoted to constructive ways to ensure that well poisedness
holds and to prepare the material on derivative-free models for use in model-based algo-
rithms such as the trust-region ones.

The second part of the book on Frameworks and Algorithms begins in Chapter 7,
which addresses direct-search methods where sampling is guided by desirable sets of direc-
tions. Included is global convergence with integer lattices and sufficient decrease. The next
chapter covers direct-search methods based on simplices and operations over simplices,
of which a classical example is the Nelder–Mead method mentioned earlier, for which
we include a globally convergent variant. Chapter 9 is devoted to line-search methods
based on simplex derivatives, establishing a connection with the implicit-filtering method.
Chapter 10 presents trust–region-based methods, including the relationship with derivative-
based methods, the abstraction to fully linear and fully quadratic models, and a comprehen-
sive global convergence analysis. The more practical aspects of derivative-free trust-region
methods with particular examples of modified versions of existing methods are covered in
Chapter 11, in connection with the material of Chapter 6.

Finally, Chapters 12 and 13 (the third part of the book) are concerned with some
relevant topics not covered in full detail. In Chapter 12 we review surrogate models built by
techniques different from polynomial interpolation or regression, and we describe rigorous
optimization frameworks to handle surrogates. A survey of constrained derivative-free
optimization is presented in Chapter 13, where we also discuss extension to other classes
of problems, in particular global optimization. The book ends with an appendix reviewing
the existent software for derivative-free optimization.

The reader is also referred to a number of survey papers on derivative-free optimiza-
tion, namely the more recent ones by Conn, Scheinberg, and Toint [60], Kelley [141],
Kolda, Lewis, and Torczon [145], Lewis, Torczon, and Trosset [156], Nocedal and Wright
[178, Chapter 9], Powell [187], and Wright [231], as well as older ones by Brent [47],
Fletcher [94], and Shawn [207].

Notation
In this book we have tried to use intuitive notation to simplify reading. This inevitably
implies some abuse, but we hope the meaning will nevertheless be clear to the reader. For
instance, vectors can be considered row vectors or column vectors according to context
without always changing the notation or using transposes.

The uppercase letters typically denote sets or matrices. There are several constants
denoted by κ with a subscript acronym; for instance, κbhm stands for the constant bound
on the Hessian of the model. Each acronym subscript is intended to help the reader to
remember the meaning of the constant.

The big-O notation is used in an intuitive way, and the meaning should be clear from
the text. All balls in the book are considered closed. All norms are �2-norms unless stated
otherwise.



idfo
2008/11/17
page 13

�

�

�

�

�

�

�

�

Part I

Sampling and modeling



idfo
2008/11/17
page 14

�

�

�

�

�

�

�

�



idfo
2008/11/17
page 15

�

�

�

�

�

�

�

�

Chapter 2

Sampling and linear models

2.1 Positive spanning sets and positive bases
Positive spanning sets and positive bases are used in directional direct-search methods. As
we will see later, the main motivation to look at a positive spanning set D ⊂ Rn is the
guarantee that, given any nonzero vector v in Rn , there is at least one vector d in D such
that v and d form an acute angle. The implication in optimization is then obvious. Suppose
that the nonzero vector v is the negative gradient,−∇ f (x), of a continuously differentiable
function f at a given point x . Any vector d that forms an acute angle with −∇ f (x) is a
descent direction.1 In order to decrease f (x), it might be required to evaluate the points
x + αd (for all d ∈ D), where α > 0, and to repeat this evaluation for smaller positive
values of α. But, since the gradient∇ f (x) is nonzero, there exist a positive value for α and
a vector d in D for which f (x +αd) < f (x), which shows that such a scheme should be
terminated after a finite number of reductions of the parameter α.

In this section, we will review some of the basic properties of positive spanning
sets and positive bases and show how to construct simple positive bases. Most of the
basic properties about positive spanning sets are extracted from the theory of positive linear
dependence developed by Davis [74] (see also the paper by Lewis and Torczon [153]).

Definitions and properties

The positive span2 of a set of vectors [v1 · · ·vr ] in Rn is the convex cone

{
v ∈Rn : v = α1v1+·· ·+αrvr , αi ≥ 0, i = 1, . . . ,r

}
.

(Many times it will be convenient for us in this book to regard a set of vectors as a matrix
whose columns are the vectors in the set.)

1By a descent direction for f at x we mean a direction d for which there exists an ᾱ > 0 such that
f (x+αd)< f (x) for all α ∈ (0, ᾱ].

2Strictly speaking we should have written nonnegative instead of positive, but we decided to follow the
notation in [74, 153]. We also note that by span we mean linear span.

15
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16 Chapter 2. Sampling and linear models

Definition 2.1. A positive spanning set in Rn is a set of vectors whose positive span is Rn.
The set [v1 · · ·vr ] is said to be positively dependent if one of the vectors is in the

convex cone positively spanned by the remaining vectors, i.e., if one of the vectors is a
positive combination of the others; otherwise, the set is positively independent.

A positive basis in Rn is a positively independent set whose positive span is Rn.

Equivalently, a positive basis for Rn can be defined as a set of nonzero vectors of
Rn whose positive combinations span Rn but for which no proper set exhibits the same
property.

The following theorem due to [74] indicates that a positive spanning set contains at
least n+1 vectors in Rn .

Theorem 2.2. If [v1 · · ·vr ] spans Rn positively, then it contains a subset with r−1 elements
that spans Rn.

Proof. The set [v1 · · ·vr ] is necessarily linearly dependent (otherwise, it would be possible
to construct a basis for Rn that would span Rn positively). As a result, there are scalars
ā1, . . . , ār (not all zero) such that ā1v1+·· ·+ ārvr = 0. Thus, there exists an i ∈ {1, . . . ,r}
for which āi �= 0.

Now let v be an arbitrary vector in Rn . Since [v1 · · ·vr ] spans Rn positively, there
exist nonnegative scalars a1, . . . ,ar such that v = a1v1+·· ·+arvr .

As a result, we get

v =
r∑

j=1

a jv j =
r∑

j=1
j �=i

(
a j − ā j

āi
ai

)
v j .

Since v is arbitrary, we have proved that {v1, . . . ,vr }\{vi } spans Rn .

It can also be shown that a positive basis cannot contain more than 2n elements
(see [74]). Positive bases with n+1 and 2n elements are referred to as minimal and maximal
positive bases, respectively.

The positive basis formed by the vectors of the canonical basis and their negative
counterparts is the most simple maximal positive basis one can think of. In R2, this positive
basis is defined by the columns of the matrix

D1 =
[

1 0 −1 0
0 1 0 −1

]
.

Later in the book we will designate this basis by D⊕.
A simple minimal basis in R2 is formed by the vectors of the canonical basis and the

negative of their sum: [
1 0 −1
0 1 −1

]
.

For convenience, we normalize the third vector and write

D2 =
[

1 0 −√2/2
0 1 −√2/2

]
.
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If we add one more vector to this positive basis, we get a positive spanning set that is
not a positive basis:

D3 =
[

1 0 −√2/2 0
0 1 −√2/2 −1

]
.

In Figure 2.1, we plot the positive bases D1 and D2 and the positive spanning set D3.

D1 = D⊕ D2 D3

Figure 2.1. A maximal positive basis (left), a minimal positive basis (center), and
a positive spanning set that is not a positive basis (right).

We now present three necessary and sufficient characterizations for a set that spans
Rn to also span Rn positively (see also [74]).

Theorem 2.3. Let [v1 · · ·vr ], with vi �= 0 for all i ∈ {1, . . . ,r}, span Rn. Then the following
are equivalent:

(i) [v1 · · ·vr ] spans Rn positively.

(ii) For every i = 1, . . . ,r , the vector−vi is in the convex cone positively spanned by the
remaining r −1 vectors.

(iii) There exist real scalars α1, . . . ,αr with αi > 0, i ∈ {1, . . . ,r}, such that
∑r

i=1 αivi = 0.

(iv) For every nonzero vector w ∈ Rn, there exists an index i in {1, . . . ,r} for which
w�vi > 0.

Proof. The proof is made by showing the following implications: (i)⇒ (ii), (ii)⇒ (iii),
(iii)⇒ (i), (i)⇒ (iv), and (iv)⇒ (i).

(i)⇒ (ii) Since [v1 · · ·vr ] spans Rn positively, the vector −vi , with i in {1, . . . ,r}, can be
written as

−vi =
r∑

j=1

λi j v j ,
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18 Chapter 2. Sampling and linear models

where the scalars λi1, . . . ,λir are nonnegative. As a consequence, we obtain

−vi −λiivi =
r∑

j=1
j �=i

λi j v j

and

−vi =
r∑

j=1
j �=i

λi j

1+λii
v j =

r∑
j=1
j �=i

λ̃i j v j ,

where λ̃i j = λi j
1+λii

≥ 0 for all j ∈ {1, . . . ,r}\{i}. This shows that −vi is in the convex cone
positively spanned by the remaining r −1 vectors.

(ii)⇒ (iii) From the assumption (ii), there exist nonnegative scalars λ̄i j , i , j = 1, . . . ,r , such
that

v1 + λ̄12v2 +·· ·+ λ̄1rvr = 0,

λ̄21v1 + v2 +·· ·+ λ̄2rvr = 0,
...

λ̄r1v1 + λ̄r2v2 +·· ·+ vr = 0.

By adding these r equalities, we get(
1+

r∑
i=2

λ̄i1

)
v1+·· ·+

(
1+

r−1∑
i=1

λ̄ir

)
vr = 0,

which can be rewritten as
α1v1+·· ·+αrvr = 0,

with α j = 1+∑r
i=1
i �= j

λ̄i j > 0, j ∈ {1, . . . ,r}.

(iii)⇒ (i) Let α1, . . . ,αr be positive scalars such that α1v1+ ·· ·+αrvr = 0, and let v be
an arbitrary vector in Rn . Since [v1 · · ·vr ] spans Rn , there exist scalars λ1, . . . ,λr such that
v = λ1v1+·· ·+λrvr . By adding to the right-hand side of this equality a sufficiently large
multiple of α1v1+ ·· · + αrvr , one can show that v can be expressed as a positive linear
combination of v1, . . . ,vr . Thus, [v1 · · ·vr ] spans Rn positively.

(i)⇒ (iv) Letw be a nonzero vector in Rn . From the assumption (i), there exist nonnegative
scalars λ1, . . . ,λr such that

w = λ1v1+·· ·+λrvr .

Since w �= 0, we get that

0 < w�w = (λ1v1+·· ·+λrvr )�w
= λ1v

�
1 w+·· ·+λrv

�
r w,

from which we conclude that at least one of the scalars w�v1, . . . ,w�vr has to be positive.
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(iv)⇒ (i) If the convex cone positively spanned by v1, . . . ,vr is not Rn , then there exists
a hyperplane H = {v ∈ Rn : v�h = 0}, with h �= 0, such that this convex cone (and so all
of its generators) is contained in either {v ∈ Rn : v�h ≥ 0} or {v ∈ Rn : v�h ≤ 0}; see
[200, Corollary 11.7.3]. The assumption would then be contradicted with either w = h or
w =−h.

As mentioned before, the characterization (iv) of Theorem 2.3 is at the heart of direc-
tional direct-search methods. It implies that, given a continuously differentiable function f
at some given point x where ∇ f (x) �= 0, there must always exist a vector d in a given
positive spanning set (or in a positive basis) such that

−∇ f (x)�d > 0.

In other words, there must always exist a direction of descent in such a set. In Figure 2.2,
we identify such a vector d for the three spanning sets D1, D2, and D3 given before.

v

v

v

d

d d

d

d

D1 D2 D3

Figure 2.2. Given a positive spanning set and a vector v = −∇ f (x) (dashed),
there exists at least one element d (dotted) of the set such that v�d > 0.

Simple positive bases

Now we turn our attention to the construction of positive bases. The following result (given
in [153]) provides a simple mechanism for generating different positive bases.

Theorem 2.4. Suppose [v1 · · ·vr ] is a positive basis for Rn and W ∈Rn×n is a nonsingular
matrix. Then [Wv1 · · ·Wvr ] is also a positive basis for Rn.

Proof. It is obvious that [v1 · · ·vr ] spans Rn since it does it positively. Since W is non-
singular, [Wv1 · · ·Wvr ] also spans Rn . Thus we can apply Theorem 2.3 for both [v1 · · ·vr ]
and [Wv1 · · ·Wnr ].

Now let w be a nonzero vector in Rn . Since [v1 · · ·vr ] spans Rn positively and W is
nonsingular, we get from (iv) in Theorem 2.3 that

(W�w)�vi > 0
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20 Chapter 2. Sampling and linear models

for some i in {1, . . . ,r}. In other words,

w�(Wvi ) > 0

for some i in {1, . . . ,r}, from which we conclude that [Wv1 · · ·Wvr ] also spans Rn posi-
tively.

It is a direct consequence of the definition of positive dependence that if [Wv1 · · ·Wvr ]
was positively dependent, then [v1 · · ·vr ] would also be positively dependent, which con-
cludes the proof of the theorem.

One can easily prove that D⊕ = [I − I ] is a (maximal) positive basis. The result just
stated in Theorem 2.4 allows us to say that [W −W ] is also a (maximal) positive basis for
any choice of the nonsingular matrix W ∈ Rn×n .

From Theorems 2.3 and 2.4, we can easily deduce the following corollary. The proof
is left as an exercise.

Corollary 2.5.

(i) [I −e] is a (minimal) positive basis.

(ii) Let W = [w1 · · ·wn] ∈ Rn×n be a nonsingular matrix. Then [W −∑n
i=1wi ] is a

(minimal) positive basis for Rn.

Positive basis with uniform angles

Consider n + 1 vectors v1, . . . ,vn+1 in Rn for which all the angles between pairs vi , v j
(i �= j ) have the same amplitude α. Assuming that the n+ 1 vectors are normalized, this
requirement is expressed as

a = cos(α) = v�i v j , i , j ∈ {1, . . . ,n+1}, i �= j , (2.1)

where a �= 1. One can show that a =−1/n (see the exercises).
Now we seek a set of n + 1 normalized vectors [v1 · · ·vn+1] satisfying the prop-

erty (2.1) with a = −1/n. Let us first compute v1, . . . ,vn ; i.e., let us compute a matrix
V = [v1 · · ·vn] such that

V�V = A,

where A is the matrix given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1/n −1/n · · · −1/n
−1/n 1 −1/n · · · −1/n

...
. . .

...
. . .

−1/n −1/n −1/n · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.2)

The matrix A is symmetric and diagonally dominant with positive diagonal entries, and,
therefore, it is positive definite [109]. Thus, we can make use of its Cholesky decomposition

A = CC�,
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where C ∈ Rn×n is a lower triangular matrix of order n with positive diagonal entries.
Given this decomposition, one can easily see that a choice for V is determined by

V = [v1 · · ·vn] = C�.

The vector vn+1 is then computed by

vn+1 = −
n∑

i=1

vi . (2.3)

One can easily show that v�i vn+1 =−1/n, i = 1, . . . ,n, and v�n+1vn+1 = 1.
Since V is nonsingular and vn+1 is determined by (2.3), we can apply Corollary 2.5(ii)

to establish that [v1 · · ·vn+1] is a (minimal) positive basis. The angles between any two vec-
tors in this positive basis exhibit the same amplitude. We summarize this result below.

Corollary 2.6. Let V = C� = [v1 · · ·vn] ∈Rn×n , where A= CC� and A is given by (2.2).
Let vn+1 =−∑n

i=1 vi .
Then [v1 · · ·vn+1] is a (minimal) positive basis for Rn satisfying v�i v j =−1/n, i , j ∈

{1, . . . ,n+1}, i �= j , and ‖vi‖ = 1, i = 1, . . . ,n+1.

A minimal positive basis with uniform angles is depicted in Figure 2.3, computed as
in Corollary 2.6.

v1

v2

v3

[v1 v2 v3 ]=
[

1 −1/2 −1/2
0
√

3/4 −√3/4

]

Figure 2.3. A minimal positive basis with uniform angles.

2.2 Gradient estimates used in direct search
What we now show is that if we sample n+1 points of the form x+αd defined by a positive
basis D, and their function values are no better than the function value at x , then the size
of the gradient (considered Lipschitz continuous) of the function at x is of the order of
the distance between x and the sample points x +αd and, furthermore, the order constant
depends only upon the nonlinearity of f and the geometry of the sample set.

To prove this result, used in the convergence theory of directional direct-search meth-
ods, we must first introduce the notion of cosine measure for positive spanning sets.
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22 Chapter 2. Sampling and linear models

Definition 2.7. The cosine measure of a positive spanning set (with nonzero vectors) or of
a positive basis D is defined by

cm(D) = min
0 �=v∈Rn

max
d∈D

v�d

‖v‖‖d‖ .

Given any positive spanning set, it necessarily happens that

cm(D) > 0.

Values of the cosine measure close to zero indicate a deterioration of the positive spanning
property. For example, the maximal positive basis D⊕ = [I − I ] has cosine measure equal
to 1/
√

n. When n = 2 we have cm(D⊕)=√2/2.
Now let us consider the following example. Let θ be an angle in (0,π/4] and Dθ be

a positive basis defined by

Dθ =
[

1 0 −cos(θ )
0 1 −sin(θ )

]
.

Observe that D π
4

is just the positive basis D2 considered before. The cosine measure of
Dθ is given by cos((π − θ )/2), and it converges to zero when θ tends to zero. Figure 2.4
depicts this situation.

θ = π
4 θ = π

8 θ = π
16

Figure 2.4. Positive bases Dθ for three values of θ . The cosine measure is ap-
proaching zero.

Another key point, related to the descent properties of positive spanning sets, is that,
given any vector v �= 0, we have

cm(D) ≤ max
d∈D

v�d

‖v‖‖d‖ .

Thus, there must exist a d ∈ D such that

cm(D) ≤ v�d

‖v‖‖d‖
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or, equivalently,
cm(D)‖v‖‖d‖ ≤ v�d .

Given a positive spanning set D, a point x , and a positive value for the parameter α,
we are interested in looking at the points of the form x +αd for all d ∈ D. These points
are in a ball centered at x , of radius	, defined by

	 = αmax
d∈D
‖d‖.

We point out that if only a finite number of positive spanning sets are used in an algorithm,
then 	 tends to zero if and only if α tends to zero. The following result is taken from [80,
145].

Theorem 2.8. Let D be a positive spanning set and α > 0 be given. Assume that ∇ f is
Lipschitz continuous (with constant ν > 0) in an open set containing the ball B(x ;	). If
f (x)≤ f (x+αd), for all d ∈ D, then

‖∇ f (x)‖ ≤ ν

2
cm(D)−1 max

d∈D
‖d‖α.

Proof. Let d be a vector in D for which

cm(D)‖∇ f (x)‖‖d‖ ≤ −∇ f (x)�d .

Now, from the integral form of the mean value theorem and the fact that f (x)≤ f (x+αd),
we get, for all d ∈ D, that

0 ≤ f (x+αd)− f (x) =
∫ 1

0
∇ f (x+ tαd)�(αd)dt .

By multiplying the first inequality by α and by adding it to the second one, we obtain

cm(D)‖∇ f (x)‖‖d‖α ≤
∫ 1

0
(∇ f (x+ tαd)−∇ f (x))� (αd)dt ≤ ν

2
‖d‖2α2,

and the proof is completed.

If a directional direct-search method is able to generate a sequence of points x satis-
fying the conditions of Theorem 2.8 for which α (and thus 	) tends to zero, then clearly
the gradient of the objective function converges to zero along this sequence.

The bound proved in Theorem 2.8 can be rewritten in the form

‖∇ f (x)‖ ≤ κeg	,

where κeg = ν cm(D)−1/2. We point out that this bound has the same structure as other
bounds used in different derivative-free methods. The bound is basically given by 	 times
a constant that depends on the nonlinearity of the function (expressed by the Lipschitz
constant ν) and on the geometry of the sample set (measured by cm(D)−1).
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24 Chapter 2. Sampling and linear models

2.3 Linear interpolation and regression models
Now we turn our attention to sample sets not necessarily formed by a predefined set of
directions. Consider a sample set Y = {y0, y1, . . . , y p} in Rn . The simplest model based on
n+1 sample points (p = n) that we can think of is an interpolation model.

Linear interpolation

Let m(x) denote a polynomial of degree d = 1 interpolating f at the points in Y , i.e.,
satisfying the interpolation conditions

m(yi ) = f (yi ), i = 0, . . . ,n. (2.4)

We can express m(x) in the form

m(x) = α0+α1x1+·· ·+αnxn ,

using, as a basis for the space P1
n of linear polynomials of degree 1, the polynomial basis

φ̄ = {1, x1, . . . , xn}. However, we point out that other bases could be used, e.g., {1,1+
x1,1+ x1+ x2, . . . ,1+ x1+ x2+·· ·+ xn}. We can then rewrite (2.4) as⎡

⎢⎢⎢⎣
1 y0

1 · · · y0
n

1 y1
1 · · · y1

n
...

...
...

...
1 yn

1 · · · yn
n

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
α0
α1
...
αn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f (y0)
f (y1)

...
f (yn)

⎤
⎥⎥⎥⎦ .

The matrix of this linear system is denoted by

M = M(φ̄,Y ) =

⎡
⎢⎢⎢⎣

1 y0
1 · · · y0

n

1 y1
1 · · · y1

n
...

...
...

...
1 yn

1 · · · yn
n

⎤
⎥⎥⎥⎦ . (2.5)

In this book we write M as M(φ̄,Y ) to highlight the dependence of M on the basis φ̄ and
on the sample set Y .

Definition 2.9. The set Y = {y0, y1, . . . , yn} is poised for linear interpolation in Rn if the
corresponding matrix M(φ̄,Y ) is nonsingular.

The definition of poisedness is independent of the basis chosen. In other words, if Y
is poised for a basis φ, then it is poised for any other basis in P1

n . The definition of m(x) is
also independent of the basis chosen. These issues are covered in detail in Chapter 3. It is
straightforward to see that the sample set Y is poised for linear interpolation if and only if
the linear interpolating polynomial m(x)= α0+α1x1+·· ·+αnxn is uniquely defined.

Linear regression

When the number p+1 of points in the sample set exceeds by more than 1 the dimension
n of the sampling space, it might not be possible to fit a linear polynomial. In this case,
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Figure 2.5. At the left, the linear interpolation model of f (x1, x2)= (x1−0.3)2+
(x2 − 0.3)2 at y0 = (0,0), y1 = (0.2,0.6), and y2 = (0.8,0.7). At the right, the linear
regression model of f (x1, x2) = (x1− 0.3)2+ (x2 − 0.3)2 at y0 = (0,0), y1 = (0.2,0.6),
y2 = (0.8,0.7), and y3 = (0.5,0.5). The inclusion of y3 pushes the model down.

one option is to use linear regression and to compute the coefficients of the linear (least-
squares) regression polynomial m(x)= α0+α1x1+·· ·+αn xn as the least-squares solution
of the system

⎡
⎢⎢⎢⎢⎢⎢⎣

1 y0
1 · · · y0

n

1 y1
1 · · · y1

n
...

...
...

...
...

...
...

...
1 y p

1 · · · y p
n

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
α0
α1
...
αn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

f (y0)
f (y1)

...

...
f (y p)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.6)

Again, we denote the matrix of this (possibly overdetermined) system of linear equations
by M = M(φ̄,Y ).

The definition of poisedness generalizes easily from linear interpolation to linear
regression.

Definition 2.10. The set Y = {y0, y1, . . . , y p}, with p > n, is poised for linear regression in
Rn if the corresponding matrix M(φ̄,Y ) has full (column) rank.

It is also possible to prove, in the regression case, that if a set Y is poised for a basis φ,
then it is also poised for any other basis in P1

n and that m(x) is independent of the basis
chosen. Finally, we point out that the sample set is poised for linear regression if and only
if the linear regression polynomial m(x) is uniquely defined. These issues are covered in
detail in Chapter 4.
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2.4 Error bounds for linear interpolation and regression
Error bounds for linear interpolation

Let us rewrite the linear interpolating polynomial in the form

m(y) = c+ g�y

by setting α0 = c and αi = gi , i = 1, . . . ,n.
One of the natural questions that arises in interpolation is how to measure the quality

of m(y) as an approximation to f (y). We start by looking at the quality of the gradient
g =∇m(y) of the model as an approximation to ∇ f (y). We consider that the interpolation
points y0, y1, . . . , yn are in a ball of radius	 centered at y0. In practice, one might set

	 = 	(Y ) = max
1≤i≤n

‖yi − y0‖.

We are interested in the quality of ∇m(y) and m(y) in the ball of radius 	 centered at y0.
The assumptions needed for this result are summarized below.

Assumption 2.1. We assume that Y = {y0, y1, . . . , yn} ⊂Rn is a poised set of sample points
(in the linear interpolation sense) contained in the ball B(y0;	(Y )) of radius	=	(Y ).

Further, we assume that the function f is continuously differentiable in an open
domain� containing B(y0;	) and ∇ f is Lipschitz continuous in � with constant ν > 0.

As we can observe from the proof of Theorem 2.11 below, the derivation of the
error bounds is based on the application of one step of Gaussian elimination to the matrix
M = M(φ̄,Y ) in (2.5). After performing such a step we arrive at the matrix

⎡
⎢⎢⎢⎣

1 y0
1 · · · y0

n
0 y1

1 − y0
1 · · · y1

n − y0
n

...
...

...
...

0 yn
1 − y0

1 · · · yn
n − y0

n

⎤
⎥⎥⎥⎦ ,

which can be expressed by blocks as [
1 y�0
0 L

]
,

with

L =
[

y1− y0 · · · yn− y0
]� =

⎡
⎢⎣

(y1− y0)�
...

(yn− y0)�

⎤
⎥⎦ =

⎡
⎢⎣

y1
1 − y0

1 · · · y1
n − y0

n
...

...
...

yn
1 − y0

1 · · · yn
n − y0

n

⎤
⎥⎦ .

It is evident to see that L is nonsingular if and only if M is nonsingular, since det(L) =
det(M). Notice that the points appear listed in L by rows, which favors factorizations by
rows.
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It turns out that the error bounds for the approximation which we derive are in terms
of the scaled matrix

L̂ = 1

	
L = 1

	

[
y1− y0 · · · yn− y0

]� =
⎡
⎢⎢⎣

y1
1−y0

1
	

· · · y1
n−y0

n
	

...
...

...
yn

1−y0
1

	
· · · yn

n−y0
n

	

⎤
⎥⎥⎦ .

This matrix L̂ corresponds to a scaled sample set

Ŷ = {y0/	, y1/	, . . . , yn/	} ⊂ B(y0/	;1),

which is contained in a ball of radius 1 centered at y0/	.

Theorem 2.11. Let Assumption 2.1 hold. The gradient of the linear interpolation model
satisfies, for all points y in B(y0;	), an error bound of the form

‖∇ f (y)−∇m(y)‖ ≤ κeg	, (2.7)

where κeg = ν(1+n
1
2 ‖L̂−1‖/2) and L̂ = L/	.

Proof. If the set Y is poised, then the (n+1)× (n+1) matrix M = M(φ̄,Y ) is nonsingular
and so is the n×n matrix L.

We look initially at the gradient of f at the point y0. Subtracting the first interpolating
condition from the remaining n, we obtain

(yi − y0)�g = f (yi )− f (y0), i = 1, . . . ,n.

Then, if we use the integral form of the mean value theorem

f (yi )− f (y0) =
∫ 1

0
(yi − y0)�∇ f (y0+ t(yi − y0))dt ,

we obtain, from the Lipschitz continuity of ∇ f , that

(yi − y0)�(∇ f (y0)− g) ≤ ν

2
‖yi − y0‖2, i = 1, . . . ,n.

Then, from these last n inequalities, we derive

‖L(∇ f (y0)− g)‖ ≤ (n
1
2 ν/2)	2,

from which we conclude that

‖∇ f (y0)− g‖ ≤ (n
1
2 ‖L̂−1‖ν/2)	.

The error bound for any point y in the ball B(y0;	) is easily derived from the Lips-
chitz continuity of the gradient of f :

‖∇ f (y)− g‖ ≤ ‖∇ f (y)−∇ f (y0)‖+‖∇ f (y0)− g‖ ≤ (ν+n
1
2 ‖L̂−1‖ν/2)	.
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Assuming a uniform bound on ‖L̂−1‖ independent of 	, the error in the gradient
is linear in 	. One can see also that the error in the interpolation model m(x) itself is
quadratic in 	.

Theorem 2.12. Let Assumption 2.1 hold. The interpolation model satisfies, for all points y
in B(y0;	), an error bound of the form

| f (y)−m(y)| ≤ κe f 	
2, (2.8)

where κe f = κeg+ ν/2 and κeg is given in Theorem 2.11.

Proof. We use the same arguments as in the proof of Theorem 2.11 to obtain

f (y)− f (y0) ≤ ∇ f (y0)�(y− y0)+ ν
2
‖y− y0‖2.

From this we get

f (y)− f (y0)− g�(y− y0) ≤ (∇ f (y0)− g)�(y− y0)+ ν
2
‖y− y0‖2.

The error bound (2.8) comes from combining this inequality with (2.7) and from noting
that the constant term in the model can be written as c = f (y0)− g�y0.

Error bounds for linear regression

In the regression case we are considering a sample set Y = {y0, y1, . . . , y p} with more than
n+1 points contained in the ball B(y0;	(Y )) of radius

	 = 	(Y ) = max
1≤i≤p

‖yi − y0‖.

We start by also rewriting the linear regression polynomial in the form

m(y) = c+ g�y,

where c = α0 and gi = αi , i = 1, . . . ,n, are the components of the least-squares solution of
the system (2.6).

Assumption 2.2. We assume that Y = {y0, y1, . . . , y p} ⊂ Rn, with p > n, is a poised set of
sample points (in the linear regression sense) contained in the ball B(y0;	(Y )) of radius
	=	(Y ).

Further, we assume that the function f is continuously differentiable in an open
domain� containing B(y0;	) and ∇ f is Lipschitz continuous in � with constant ν > 0.

The error bounds for the approximation are also derived in terms of the scaled matrix

L̂ = 1

	
L = 1

	

[
y1− y0 · · · y p− y0

]�
,
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which corresponds to a scaled sample set contained in a ball of radius 1 centered at y0/	,
i.e.,

Ŷ = {y0/	, y1/	, . . . , y p/	} ⊂ B(y0/	;1).

The proof of the bounds follows exactly the same steps as the proof for the linear
interpolation case. For example, for the gradient approximation, once we are at the point
in the proof where

‖L(∇ f (y0)− g)‖ ≤ (p
1
2 ν/2)	2,

or, equivalently,

‖L̂(∇ f (y0)− g)‖ ≤ (p
1
2 ν/2)	, (2.9)

we “pass” L̂ to the right-hand side by means of its left inverse L̂†.3 We can then state the
bounds in the following format.

Theorem 2.13. Let Assumption 2.2 hold. The gradient of the linear regression model
satisfies, for all points y in B(y0;	), an error bound of the form

‖∇ f (y)−∇m(y)‖ ≤ κeg	,

where κeg = ν(1+ p
1
2 ‖L̂†‖/2) and L̂ = L/	.

The linear regression model satisfies, for all points y in B(y0;	), an error bound of
the form

| f (y)−m(y)| ≤ κe f 	
2,

where κe f = κeg + ν/2.

2.5 Other geometrical concepts
The notion of poisedness for linear interpolation is closely related to the concept of affine
independence in convex analysis.

Affine independence

We will follow Rockafellar [200] to introduce affine independence as well as other basic
concepts borrowed from convex analysis.

The affine hull of a given set S ⊂ Rn is the smallest affine set containing S (meaning
that it is the intersection of all affine sets containing S). The affine hull of a set is always
uniquely defined and consists of all linear combinations of elements of S whose scalars
sum up to one (see [200]).

Definition 2.14. A set of m+1 points Y = {y0, y1, . . . , ym} is said to be affinely independent
if its affine hull aff(y0, y1, . . . , ym) has dimension m.

The dimension of an affine set is the dimension of the linear subspace parallel to it.
So, we cannot have an affinely independent set in Rn with more than n+1 points.

3 A† denotes the Moore–Penrose generalized inverse of a matrix A, which can be expressed by the sin-
gular value decomposition of A for any real or complex matrix A. In the current context, where L has full
column rank, we have L̂† = (L̂� L̂)−1 L̂�.
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Given an affinely independent set of points {y0, y1, . . . , ym}, we have that

aff(y0, y1, . . . , ym) = y0+L(y1− y0, . . . , ym − y0),

where L(y1 − y0, . . . , ym − y0) is the linear subspace of dimension m generated by the
vectors y1− y0, . . . , ym − y0.

We associate with an affinely independent set of points {y0, y1, . . . , ym} the matrix[
y1− y0 · · · ym− y0

]
∈Rn×m ,

whose rank must be equal to m. This matrix is exactly the transpose of the matrix L that
appeared when we linearly interpolated a function f on the set Y = {y0, y1, . . . , yn}, with
m = n, choosing an appropriate basis for the space P1

n of linear polynomials of degree 1 in
Rn .

Simplices

Similarly, the convex hull of a given set S ⊂ Rn is the smallest convex set containing S
(meaning that it is the intersection of all convex sets containing S). The convex hull of a
set is always uniquely defined and consists of all convex combinations of elements of S,
i.e., of all linear combinations of elements of S whose scalars are nonnegative and sum up
to one (see [200]).

Definition 2.15. Given an affinely independent set of points Y = {y0, y1, . . . , ym}, its convex
hull is called a simplex of dimension m.

A simplex of dimension 0 is a point, of dimension 1 is a closed line segment, of
dimension 2 is a triangle, and of dimension 3 is a tetrahedron.

The vertices of a simplex are the elements of Y . A simplex in Rn cannot have more
than n+1 vertices. When there are n+1 vertices, its dimension is n. In this case,[

y1− y0 · · · yn− y0 −(y1− y0) · · · −(yn− y0)
]

(2.10)

forms a (maximal) positive basis in Rn . We illustrate this maximal positive basis in Fig-
ure 2.6.

The diameter of a simplex Y of vertices y0, y1, . . . , ym is defined by

diam(Y )= max
0≤i< j≤m

‖yi − y j‖.

One way of approximating diam(Y ) at y0 is by computing the less expensive quantity

	(Y )= max
1≤i≤n

‖yi − y0‖.

Clearly, we can write 	(Y )≤ diam(Y )≤ 2	(Y ).
By the shape of a simplex we mean its equivalent class under similarity: the simplices

of vertices Y and λY , λ > 0, share the same shape. The volume of a simplex of n + 1
vertices Y = {y0, y1, . . . , yn} is defined by

vol(Y ) = |det(L)|
n!

,
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y0
y1

y2

D

Figure 2.6. How to compute a maximal positive basis from the vertices of a simplex.

where

L = L(Y ) =
[

y1− y0 · · · yn− y0
]�

.

Since the vertices of a simplex form an affinely independent set, one clearly has that
vol(Y ) > 0. It is also left as an exercise to see that the choice of the centering point in
L is irrelevant for the definition of the volume of a simplex.

The volume of a simplex is not a good measure of the quality of its geometry since it
is not scaling independent. To see this let

Yt =
{[

0
0

]
,

[
t
0

]
,

[
0
t

]}
,

with t > 0. It is easy to see that vol(Yt )→ 0 when t → 0. However, the angles between
the vectors formed by the vertices are the same for all positive values of t (or putting it
differently all these simplices have the same shape).

A measure of the quality of a simplex geometry must be independent of the scale of
the simplex, given by either 	(Y ) or diam(Y ). One such measure is given by

‖[L(Y )/	(Y )]†‖,
which reduces to

‖[L(Y )/	(Y )]−1‖
for simplices of n+ 1 vertices. One alternative when there are n+ 1 vertices is to work
with a normalized volume

von(Y ) = vol

(
1

diam(Y )
Y

)
= |det(L(Y ))|

n!diam(Y )n
.

Poisedness and positive spanning

Another natural question that arises is the relationship between the concepts of poised in-
terpolation and regression sets and positive spanning sets or positive bases. To study this
relationship, let us assume that we have a positive spanning set D formed by nonzero vec-
tors. Recall that consequently the cosine measure cm(D) is necessarily positive. For the
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sake of simplicity in this discussion let us assume that the elements in D have norm one.
Then

cm(D) = min‖v‖=1
max
d∈D

v�d ≤ min‖v‖=1
max
d∈D
|v�d| ≤ min‖v‖=1

‖D�v‖. (2.11)

We immediately conclude that D has full row rank.
Thus, given a point y0 and a positive spanning set D for which cm(D)> 0, we know

that the sample set {y0}∪ {y0+d : d ∈ D} is poised for linear regression. See Figure 2.7.
The contrary, however, is not true. Given a poised set Y = {y0, y1, . . . , y p} for linear

regression, the set of directions {y1− y0, . . . , y p− y0}might not be a positive spanning set.
It is trivial to construct a counterexample. For instance, let us take n = 2, p= 3, y0 = (0,0),
and [

y1 y2 y3
] = [

1 0 −1
0 1 0

]
.

See also Figure 2.7.

Y

D

Figure 2.7. For the positive spanning set on the left, the set Y marked by the
bullets is poised for linear regression. However, given the poised set on the right, we see
that the set of directions D marked by the arrows is not a positive spanning set.

From the Courant–Fischer-type inequalities for singular values (see [131]), we con-
clude from (2.11) that

cm(D) ≤ min‖v‖=1
‖D�v‖ = σmin(D�),

where σmin(D�) represents the smallest singular value of D�. Hence,

‖(D�)†‖ = 1

σmin(D�)
≤ 1

cm(D)
,

which shows that if the cosine measure of D is sufficiently away from zero, then the set
{y0}∪ {y0+d : d ∈ D} is sufficiently “well poised.”

2.6 Simplex gradients
Given a set Y = {y0, y1, . . . , yn}with n+1 sample points and poised for linear interpolation,
the simplex gradient at y0 is defined in the optimization literature (see Kelley [141]) by

∇s f (y0) = L−1δ f (Y ),
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where

L =
[

y1− y0 · · · yn− y0
]�

and

δ f (Y ) =
⎡
⎢⎣

f (y1)− f (y0)
...

f (yn)− f (y0)

⎤
⎥⎦ .

However, it requires little effort to see that the simplex gradient is nothing else than
the gradient of the linear interpolation model m(x)= c+ g�x :

∇s f (y0) = g.

When the number of sample points exceeds n+1, simplex gradients are defined in a
regression sense as the least-squares solution of L∇s f (y0)= δ f (Y ), where

L =
[

y1− y0 · · · · · · y p− y0
]�

and

δ f (Y ) =

⎡
⎢⎢⎢⎢⎣

f (y1)− f (y0)
...
...

f (y p)− f (y0)

⎤
⎥⎥⎥⎥⎦ .

Again, one points out that a simplex gradient defined in this way is the gradient g of the
linear regression model m(x)= c+ g�x . We note that simplex gradients when p > n are
also referred to as stencil gradients (see the papers by C. T. Kelley). The set {y1, . . . , y p} is a
stencil centered at y0. For instance, the stencil could take the form {y0±hei , i = 1, . . . ,n},
where h is the stencil radius, and ei , i = 1, . . . ,n, are the coordinate vectors.

It is then obvious that under the assumptions stated for linear interpolation and linear
regression the simplex gradient satisfies an error bound of the form

‖∇ f (y0)−∇s f (y0)‖ ≤ κeg	,

where κeg = p
1
2 ν‖L̂†‖/2 and L̂ = L/	. In the case p = n, one has ‖L̂†‖ = ‖L̂−1‖.

2.7 Exercises
1. Prove that a set of nonzero vectors forms a positive basis for Rn if and only if their

positive combinations span Rn and no proper subset exhibits the same property.

2. Show that [I −I ] is a (maximal) positive basis for Rn with cosine measure 1/
√

n.

3. Prove Corollary 2.5.

4. Show that the value of a in (2.1) must be equal to −1/n.

5. Show that the cosine measure of a positive spanning set is necessarily positive.
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6. In addition to the previous exercise, prove the reverse implication; that is, if the
cosine measure of a set is zero, then the set cannot span Rn positively.

7. Show that the cosine measure of a minimal positive basis with uniform angles in Rn

is 1/n.

8. Prove, for linear interpolation and regression, that if Y is poised for some basis, then
it is poised for any other basis in P1

n . Show that the definition of m(x) in linear
interpolation and regression is also independent of the basis chosen.

9. Show that (2.10) forms a (maximal) positive basis.

10. From (2.9), conclude the proof of Theorem 2.13.

11. Show that 	(Y )≤ diam(Y )≤ 2	(Y ) and vol(Y )> 0 for any simplex of vertices Y .
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Chapter 3

Interpolating nonlinear models

The sampling and linear models discussed in the previous chapter are appealing because
they are simple to construct and to analyze. But as with any linear model they do not
capture the curvature information of the function that they are approximating (unless it is
flat). To achieve better local convergence rates in general it is essential to consider nonlinear
models.

The quadratic polynomial model can be considered the simplest nonlinear model, yet
it is often the most efficient. In this chapter we cover the properties of quadratic interpola-
tion models. Quadratic regression models will be covered in a similar manner in Chapter
4. Nonpolynomial models, such as radial basis functions, can also be used effectively in
derivative-free optimization. We will briefly cover these models in Chapter 12.

Everything discussed in this chapter applies to polynomial interpolation of any de-
gree. But the quadratic case is of most interest to us, and hence all examples and pictures
are limited to the quadratic case.

The goal of this chapter is to establish a theoretical foundation for using interpolant
models as approximations of the true objective function in a derivative-free optimization
algorithm. To ensure global convergence of an optimization algorithm that uses a model of
the objective function it is typically necessary to guarantee a certain quality of this model.
When a model is a truncated Taylor series expansion of first or second order, then the
quality of the model is easily derived from the Taylor expansion error bounds. In the case
of polynomial interpolation there exist similar bounds, but, unlike the Taylor expansion
bounds, they depend not only on the center of the expansion and on the function that is be-
ing approximated but also on the set of interpolation points. (We have seen this in Chapter 2
for linear interpolation.) Thus, in order to maintain the quality of the interpolation model it
is necessary to understand and maintain the quality of the interpolation set. In this chapter,
we will examine several constants that characterize the quality of an interpolation set. We
will study the relationship amongst these constants and the role they play in the error bound
between a polynomial interpolant and the true function (and between their derivatives).

35
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36 Chapter 3. Interpolating nonlinear models

3.1 Basic concepts in interpolation
Polynomial bases

Let us consider Pd
n , the space of polynomials of degree less than or equal to d in Rn . Let

p1 = p+1 be the dimension of this space. One knows that for d = 1, p1 = n+1 and that
for d = 2, p1 = (n+1)(n+2)/2.

A basis φ = {φ0(x),φ1(x), . . . ,φp(x)} of Pd
n is a set of p1 polynomials of degree less

than or equal to d that span Pd
n . Since φ is a basis in Pd

n , then any polynomial m(x) ∈ Pd
n

can be written as m(x)=∑p
j=0α jφ j (x), where the α j ’s are some real coefficients.

There are a number of polynomial bases that are interesting to consider for various
applications. We will focus only on those bases that are of interest in the context of this
book. The simplest and the most common polynomial basis is the basis of monomials, or
the natural basis.

The natural basis φ̄ can be conveniently described via the use of multiindices. Let a
vector αi = (αi

1, . . . ,αi
n) ∈Nn

0 be called a multiindex, and, for any x ∈Rn , let xα
i

be defined
as

xα
i =

n∏
j=1

x
αi

j
j .

Also, define

|αi | =
n∑

j=1

αi
j and (αi )! =

n∏
j=1

(αi
j !).

Then the elements of the natural basis are

φ̄i (x) = 1

(αi )!
xα

i
, i = 0, . . . , p, |αi | ≤ d .

The natural basis can be written out as follows:

φ̄ = {1, x1, x2, . . . , xn , x2
1/2, x1x2, . . . , xd−1

n−1 xn/(d−1)!, xd
n/d!}. (3.1)

For instance, when n = 3 and d = 2, we have

φ̄ = {1, x1, x2, x3, x2
1/2, x1x2, x2

2/2, x1x3, x2x3, x2
3/2}.

The natural basis is the basis of polynomials as they appear in the Taylor expansion.
For instance, assuming the appropriate smoothness, the Taylor model of order d = 2 in R3,
centered at the point y, is the following polynomial in z1, z2, and z3 (we write the elements
of the natural basis within squared brackets for better identification):

f (y) [1]+ ∂ f
∂x1

(y)[z1]+ ∂ f
∂x2

(y)[z2]+ ∂ f
∂x3

(y)[z3]

+ ∂2 f
∂x2

1
(y)[z2

1/2]+ ∂2 f
∂x1x2

(y)[z1z2]+ ∂2 f
∂x2

2
(y)[z2

2/2]

+ ∂2 f
∂x1x3

(y)[z1z3]+ ∂2 f
∂x2x3

(y)[z2z3]+ ∂2 f
∂x2

3
(y)[z2

3/2].

When d = 1, we have φ̄ = {1, x1, . . . , xn}, which appeared already in Chapter 2. There we
have seen that the natural basis provides an immediate connection to geometrical concepts
like affine independence and positive bases.
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Other polynomial bases that are of interest in this chapter are the bases of Lagrange
and Newton fundamental polynomials. We will discuss their definitions and properties later
in this chapter.

Polynomial interpolation

We say that the polynomial m(x) interpolates the function f (x) at a given point y if m(y)=
f (y). Assume we are given a set Y = {y0, y1, . . . , y p} ⊂ Rn of interpolation points, and
let m(x) denote a polynomial of degree less than or equal to d that interpolates a given
function f (x) at the points in Y . By determining the coefficients α0, . . . ,αp we determine
the interpolating polynomial m(x). The coefficients α0, . . . ,αp can be determined from the
interpolation conditions

(
m(yi ) =

) p∑
j=0

α jφ j (yi ) = f (yi ), i = 0, . . . , p. (3.2)

Conditions (3.2) form a linear system in terms of the interpolation coefficients, which we
will write in matrix form as

M(φ,Y )αφ = f (Y ),

where

M(φ,Y ) =

⎡
⎢⎢⎢⎣
φ0(y0) φ1(y0) · · · φp(y0)
φ0(y1) φ1(y1) · · · φp(y1)

...
...

...
...

φ0(y p) φ1(y p) · · · φp(y p)

⎤
⎥⎥⎥⎦ ,

αφ =

⎡
⎢⎢⎢⎣
α0
α1
...
αp

⎤
⎥⎥⎥⎦ , and f (Y ) =

⎡
⎢⎢⎢⎣

f (y0)
f (y1)

...
f (y p)

⎤
⎥⎥⎥⎦ .

For instance, when n = d = 2 and p = 5, the matrix M(φ̄,Y ) becomes⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 y0
1 y0

2 (y0
1)2/2 y0

1 y0
2 (y0

2)2/2

1 y1
1 y1

2 (y1
1)2/2 y1

1 y1
2 (y1

2)2/2

1 y2
1 y2

2 (y2
1)2/2 y2

1 y2
2 (y2

2)2/2

1 y3
1 y3

2 (y3
1)2/2 y3

1 y3
2 (y3

2)2/2

1 y4
1 y4

2 (y4
1)2/2 y4

1 y4
2 (y4

2)2/2

1 y5
1 y5

2 (y5
1)2/2 y5

1 y5
2 (y5

2)2/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the above system to have a unique solution, the matrix M(φ,Y ) has to be nonsin-
gular.

Definition 3.1. The set Y = {y0, y1, . . . , y p} is poised for polynomial interpolation in Rn if
the corresponding matrix M(φ,Y ) is nonsingular for some basis φ in Pd

n .
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Poisedness has other terminology in the literature (for example, the authors in [53]
refer to a poised set as a d-unisolvent set). As we have seen in Section 2.5, the notion of
poisedness in the linear case (d = 1) is the same as affine independence.

It is easy to see that if M(φ,Y ) is nonsingular for some basis φ, then it is nonsingular
for any basis of Pd

n . Under these circumstances, one can also show that the interpolating
polynomial m(x) exists and is unique.

Given the polynomial space Pd
n and a basis φ, let

φ(x) = [φ0(x),φ1(x), . . . ,φp(x)]�

be a vector in Rp1 whose entries are the values of the elements of the polynomial basis at
x (one can view φ as a mapping from Rn to Rp1 ).

Lemma 3.2. Given a function f : Rn → R and a poised set Y ∈ Rn, the interpolating
polynomial m(x) exists and is unique.

Proof. It is obvious that m(x) exists and is unique for a given basis φ(x), since Y is poised.
What we now need to show is that m(x) is independent of the choice of φ(x). Consider
another basis ψ(x)= P�φ(x), where P is some nonsingular p1× p1 matrix. Clearly, we
have that M(ψ ,Y ) = M(φ,Y )P . Let αφ be a solution of (3.2) for the basis φ, and let αψ
be a solution of (3.2) for the basis ψ . Then, for any right-hand side f (Y ), we have that
αψ = P−1(M(φ,Y ))−1 f (Y ) and

α�ψψ(x)= f (Y )�(M(φ,Y ))−�P−�P�φ(x)

= f (Y )�(M(φ,Y ))−�φ(x) = α�φ φ(x).

We conclude that m(x)= α�ψψ(x)= α�φ φ(x) for any x .

The matrix M(φ,Y ) is singular if and only if there exists γ ∈ Rp1 such that γ �= 0
and M(φ,Y )γ = 0 and that implies that there exists a polynomial, of degree at most d ,
expressed as

m(x) =
p∑

j=0

γ jφ j (x),

such that m(y) = 0 for all y ∈ Y . In other words, M(φ,Y ) is singular if and only if the
points of Y lie on a “polynomial manifold” of degree d or less. For instance, six points on
a second-order curve in R2, such as a curve, form a nonpoised set for quadratic interpola-
tion.4

Now that we have established algebraic and geometric criteria for poisedness of an
interpolation set it is natural to ask: can these conditions be extended to characterize a well-
poised interpolation set. For instance, since nonsingularity of M(φ,Y ) is the indicator of
poisedness, will the condition number of M(φ,Y ) be an indicator of well poisedness? The
answer, in general, is “no,” since the condition number of M(φ,Y ) depends on the choice
of φ. Moreover, for any given poised interpolation set Y , one can choose the basis φ so

4The fact that the points lie on a second-order curve trivially implies that columns of M(φ,Y ) can be
combined with some coefficients, not all of them zero, to obtain a zero vector.
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that the condition number of M(φ,Y ) can equal any number between 1 and +∞. Also,
for any fixed choice of φ, the condition number of M(φ,Y ) depends on the scaling of Y .
Hence, the condition number of M(φ,Y ) is not considered to be a good characterization of
the level of poisedness of a set of points. However, we will return to this issue and show
that for a specific choice of φ, namely for the natural basis, and for Ŷ , a scaled version of Y ,
the condition number of M(φ̄, Ŷ ) is a meaningful measure of well poisedness.

3.2 Lagrange polynomials
The most commonly used measure of well poisedness in the multivariate polynomial inter-
polation literature is based on Lagrange polynomials.

Definition 3.3. Given a set of interpolation points Y = {y0, y1, . . . , y p}, a basis of p1 =
p+1 polynomials � j (x), j = 0, . . . , p, in Pd

n is called a basis of Lagrange polynomials if

� j (yi ) = δi j =
{

1 if i = j ,
0 if i �= j .

If Y is poised, Lagrange polynomials exist, are unique, and have a number of useful
properties.

Lemma 3.4. If Y is poised, then the basis of Lagrange polynomials exists and is uniquely
defined.

Proof. The proof follows from the fact that each Lagrange polynomial λ j (x) is an inter-
polating polynomial (of a function that vanishes at all points in Y except at y j where it is
equal to 1) and from Lemma 3.2.

The existence of Lagrange polynomials, in turn, implies poisedness of the sampling
set. In fact, if Lagrange polynomials exist, then there exists a matrix Aφ (whose columns
are the coefficients of these polynomials in the basis φ) such that M(φ,Y )Aφ = I and, as a
result, the matrix M(φ,Y ) is nonsingular.

To show that the set of Lagrange polynomials as defined above forms a basis for
Pd

n , we need to show that any polynomial m(x) in Pd
n is a linear combination of Lagrange

polynomials. We know that any polynomial is uniquely defined by its values at the points
in Y , since Y is poised. As the lemma below shows, these values are, in fact, the coefficients
in the linear expression of m(x) via Lagrange polynomials.

Lemma 3.5. For any function f : Rn→ R and any poised set Y = {y0, y1, . . . , y p} ⊂ Rn,
the unique polynomial m(x) that interpolates f (x) on Y can be expressed as

m(x) =
p∑

i=0

f (yi )�i (x),

where {�i (x), i = 0, . . . , p} is the basis of Lagrange polynomials for Y .
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40 Chapter 3. Interpolating nonlinear models

The proof of this last result is left for an exercise. To illustrate Lagrange polynomials
in R2, consider interpolating the cubic function given by

f (x1, x2) = x1+ x2+2x2
1 +3x3

2

at the six interpolating points y0 = (0,0), y1 = (1,0), y2 = (0,1), y3 = (2,0), y4 = (1,1),
and y5 = (0,2). Clearly, f (y0) = 0, f (y1) = 3, f (y2) = 4, f (y3) = 10, f (y4) = 7, and
f (y5) = 26. It is easy to see that the corresponding Lagrange polynomials � j (x1, x2), j =
0, . . . ,5, are given by

�0(x1, x2) = 1− 3
2 x1− 3

2 x2+ 1
2 x2

1 + 1
2 x2

2 + x1x2,
�1(x1, x2) = 2x1− x2

1 − x1x2,

�2(x1, x2) = 2x2− x2
2 − x1x2,

�3(x1, x2) = − 1
2 x1+ 1

2 x2
1 ,

�4(x1, x2) = x1x2,
�5(x1, x2) = − 1

2 x2+ 1
2 x2

2 .

It is also easy to verify that

m(x1, x2) = 0�0(x1, x2)+3�1(x1, x2)+4�2(x1, x2)+10�3(x1, x2)

+7�4(x1, x2)+26�5(x1, x2)

satisfies the interpolation conditions.
Computing the entire basis of Lagrange polynomials for a given set Y requires O(p3)

operations, which is of the same order of magnitude of the number of operations required
to compute one arbitrary interpolating polynomial m(x). If a set of Lagrange polynomials
is available and the set Y is updated by one point, then is takes O(p2) to update the set of
Lagrange polynomials. We will discuss this further in Chapter 6.

One of the most useful features of Lagrange polynomials for the purposes of this
book is that an upper bound on their absolute value in a region B is a classical measure of
poisedness of Y in B . In particular in [53], it is shown that for any x in the convex hull of Y

‖Dr f (x)−Drm(x)‖ ≤ 1

(d+1)!
νd

p∑
i=0

‖yi − x‖d+1‖Dr�i (x)‖,

where Dr denotes the r th derivative of a function and νd is an upper bound on Dd+1 f (x).
Notice that this error bound requires f (x) to have a bounded (d+1)st derivative. See [53]
for a precise meaning of each of the elements in this bound. When r = 0, the bound on
function values reduces to

| f (x)−m(x)| ≤ 1

(d+1)!
p1νd��	

d+1,

where
�� = max

0≤i≤p
max

x∈B(Y )
|�i (x)|,

and 	 is the diameter of the smallest ball B(Y ) containing Y . See also [188] for a simple
derivation of this bound. �� is closely related to the Lebesgue constant of Y (see [53]).
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Equivalent definitions of Lagrange polynomials

Lagrange polynomials play an important role in the theory of uni- and multivariate polyno-
mial interpolation. As seen from the properties described above, they can also be very use-
ful in model-based derivative-free optimization. Since the interpolation model is trivially
expressed through the basis of Lagrange polynomials, and such a basis can be computed
and updated reasonably efficiently, it is practical to maintain the interpolation models by
means of maintaining the Lagrange polynomial basis. From the interpolation error bound
presented at the end of the last subsection it is evident that Lagrange polynomials are also
useful for constructing criteria for selecting good interpolation sets. Hence, it is important
for us to better understand the properties of Lagrange polynomials. Here we discuss two
alternative ways to define Lagrange polynomials.

Given a poised set Y = {y0, y1, . . . , y p} ⊂ Rn and an x ∈ Rn , because the matrix
M(φ,Y ) is nonsingular, we can express the vector φ(x) uniquely in terms of the vectors
φ(yi ), i = 0, . . . , p, as

p∑
i=0

λi (x)φ(yi) = φ(x) (3.3)

or, in matrix form,

M(φ,Y )�λ(x) = φ(x), where λ(x) = [λ0(x), . . . ,λp(x)]�. (3.4)

From (3.4) it is obvious that λ(x) is a vector of polynomials in Pd
n . We can also see directly

from (3.3) that λi (x) is the i th Lagrange polynomial for Y . Hence, the value of a Lagrange
polynomial at a given point x is the weight of the contribution of the vector φ(yi ) in the
linear combination that forms φ(x).

The second alternative way to define Lagrange polynomials is as follows. Given the
set Y and a point x , consider the set Yi (x) = Y \ {yi } ∪ {x}, i = 0, . . . , p. From applying
Cramer’s rule to the system (3.4), we see that

λi (x) = det(M(φ,Yi (x)))

det(M(φ,Y ))
. (3.5)

From this expression it is clear that λ(x) is a polynomial in Pd
n and that it satisfies Defini-

tion 3.3. Hence, {λi (x), i = 0, . . . , p} is exactly the set of Lagrange polynomials. It follows
that λ(x) does not, in fact, depend on the choice of φ as long as the polynomial space Pd

n
is fixed.

To help further understand the meaning of (3.5), consider a set φ(Y ) = {φ(yi ), i =
0, . . . , p} in Rp1 . Let vol(φ(Y )) be the volume of the simplex of vertices in φ(Y ), given by

vol(φ(Y )) = |det(M(φ,Y ))|
p1!

.

(Such a simplex is the p1-dimensional convex hull of φ(Y ).) Then

|λi (x)| = vol(φ(Yi (x)))

vol(φ(Y ))
. (3.6)

In other words, the absolute value of the i th Lagrange polynomial at a given point x is
the change in the volume of (the p1-dimensional convex hull of) φ(Y ) when yi is replaced
by x .
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3.3 �-poisedness and other measures of well poisedness
So, how should we define a measure of well poisedness, after all? Given an interpolation
set Y , a measure of poisedness should reflect how well this set “spans” the region where
interpolation is of interest. Unlike the linear case, where a “good span” represents affine
independence of the points of Y , in the nonlinear case we consider how well vectors φ(yi ),
i = 0, . . . , p, span the set of all φ(x) in a region of interest.

Clearly, such a measure will depend on Y and on the region considered. For ex-
ample, in the case of linear interpolation, a set Y = {(0,0), (0,1), (1,0)} is a well-poised
set in B(0;1)—the ball of radius 1 centered at the origin—but is not a well-poised set in
B(0;106)—the ball of radius 106 centered at the origin.

Well poisedness (and poisedness) of Y also has to depend on the polynomial space
from which an interpolant is chosen. For instance, six points on a circle in R2 are not
poised for interpolation by quadratic polynomials, but they are poised for interpolation,
for example, in a subspace of cubic polynomials that does not have quadratic and constant
terms.

�-poisedness

We will use the following equivalent definitions of well-poised sets.

Definition 3.6. Let � > 0 and a set B ∈ Rn be given. Let φ = {φ0(x),φ1(x), . . . , φp(x)}
be a basis in Pd

n . A poised set Y = {y0, y1, . . . , y p} is said to be �-poised in B (in the
interpolation sense) if and only if

1. for the basis of Lagrange polynomials associated with Y

� ≥ max
0≤i≤p

max
x∈B
|�i (x)|,

or, equivalently,

2. for any x ∈ B there exists λ(x) ∈Rp1 such that

p∑
i=0

λi (x)φ(yi) = φ(x) with ‖λ(x)‖∞ ≤ �,

or, equivalently,

3. replacing any point in Y by any x ∈ B can increase the volume of the set {φ(y0),φ(y1),
. . . ,φ(y p)} at most by a factor�.

Note that this definition does not imply or require that the sample set Y be contained
in the set B where the absolute values of the Lagrange polynomials are maximized. Indeed,
the set Y can be arbitrarily far from B as long as all the Lagrange polynomials are bounded
in absolute value on B . However, as we will see later, to guarantee the validity of algorithms
that construct�-poised sets we have to generate points (up to the whole set Y ) in B .

The second and the third definitions provide us with some geometric intuition of �-
poisedness. As we mentioned earlier, we can consider a mapping x→ φ(x) and φ(Y ) and



idfo
2008/11/17
page 43

�

�

�

�

�

�

�

�

3.3. �-poisedness and other measures of well poisedness 43

φ(B)—the images of Y and B under this mapping. The second definition shows that �
is a measure of how well φ(Y ) spans φ(B). If φ(Y ) spans φ(B) well, then any vector in
φ(B) can be expressed as a linear combination of vectors in φ(Y ) with reasonably small
coefficients. The third definition has a similar interpretation, but it is expressed via volumes
of simplices. If φ(Y ) spans φ(B) well, then it is not possible to substantially increase the
volume of φ(Y ) by replacing one point in Y by any point in B .

Figures 3.1–3.4 show several sets of six points in B—the “squared” ball of radius 1/2
around the point (0.5,0.5) in R2. The sets are listed under the figures, and for each of these
sets the corresponding � = max0≤i≤5 maxx∈B |�i (x)| is listed. All the numbers are listed
with sufficient accuracy to illustrate cases of well- and badly poised sets. For each inter-
polation set, we also show the model which interpolated the function cos(x1)+ sin(x2) on
that set. It is evident from the pictures that the quality of the interpolation model noticeably
deteriorates as � becomes larger.

Figure 3.1. A nonpoised set perturbed by about 0.1: Y = {(0.05,0.1),
(0.1,0.05), (0.5,0.5), (0.95,0.9), (0.9,0.95), (0.85,0.85)} and�= 440.

�-poisedness as the distance to linear independence

The constant � can be interpreted as an actual measure of distance to a nonpoised set.
Given an interpolation set Y , let B(y0;	(Y )) be the smallest closed ball centered at the
interpolation point y0 and containing Y . Assume that, for a given �, the set Y is not
�-poised in B(y0;	(Y )). Then there exists a z ∈ B(y0;	(Y )) such that

p∑
i=0

λi (z)φ(yi ) = φ(z) and ‖λ(z)‖∞ > �,

and hence, without loss of generality, λ1(z)>�. Then, dividing this expression by �, we
have

p∑
i=0

λi (z)

�
φ(yi ) =

p∑
i=0

γi (z)φ(yi ) = φ(z)

�
and γ1(z) > 1.
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Figure 3.2. A nonpoised set of points perturbed by about 0.01: Y =
{(0.01,0.02), (0.02,0.01), (0.5,0.5), (0.99,0.98), (0.98,0.98), (0.97,0.97)} and�= 21296.

Figure 3.3. A poised set, but the points nearly lie on a circle:
Y = {(0.524,0.0006), (0.032,0.323), (0.187,0.890), (0.854,0.853), (0.982,0.368),
(0.774,0.918)} and�= 524982.

Thus, ∥∥∥∥∥
p∑

i=0

γi (z)φ(yi )

∥∥∥∥∥
∞
≤ maxx∈B(y0;	(Y )) ‖φ(x)‖∞

�
.

If, for example, φ̄ is the natural basis, y0 = 0, and the radius	(Y ) of B(y0;	(Y )) is 1, then

max
x∈B(0;1)

‖φ̄(x)‖∞ ≤ 1
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Figure 3.4. An “ideal” set: Y = {(0.524,0.0006), (0.032,0.323), (0.187,0.890),
(0.5,0.5), (0.982,0.368), (0.774,0.918)} and�= 1.

and ∥∥∥∥∥
p∑

i=0

γi (z)φ̄(yi )

∥∥∥∥∥
∞
≤ 1

�
with γ1(z) > 1.

It is now easy to see that 1/� bounds, in some sense, the distance to linear dependency
of the vectors φ̄(yi ), i = 0, . . . , p. As � grows, the system represented by these vectors
becomes increasingly linearly dependent. But the actual distance to singularity depends on
the choice of φ.

Properties of �-poisedness

From now on we will omit saying that Y is �-poised with respect to some given Pd
n . It

will be assumed that the space Pd
n remains fixed according to a given context, unless stated

otherwise.
We will state a few basic results that we hope serve to enhance understanding the

poisedness constant�. The proofs are left as exercises.

Lemma 3.7.

1. If B contains a point in Y and Y is �-poised in B, then � ≥ 1.

2. If Y is�-poised in a given set B, then it is�-poised (with the same constant) in any
subset of B.

3. If Y is�-poised in B for a given constant�, then it is �̃-poised in B for any �̃≥�.

4. For any x ∈Rn, if λ(x) is the solution of (3.3), then

p∑
i=0

λi (x) = 1.
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We will now show that the poisedness constant � does not depend on the scaling of
the sample set.

Lemma 3.8. Let Y = {y0, y1, . . . , y p} be an interpolation set and λi (x), i = 0, . . . , p, be the
set of solutions to (3.3) for the given Y . Then, for any 	> 0, λi (x/	), i = 0, . . . , p, is the
set of solutions to (3.3) for Ŷ , where Ŷ = {y0/	, y1/	, . . . , y p/	}.

Proof. Since the solution λ(x) of (3.3) does not depend on the choice of basis, we can
consider φ̄(x) (the natural basis). We know that λi (x), i = 0, . . . , p, satisfy

p∑
i=0

λi φ̄(yi ) = φ̄(x).

If we scale each yi and x by 1/	, this corresponds to scaling the above equations by dif-
ferent scalars (1, 1/	, 1/	2, etc.). Clearly, λ(x/	) satisfies the scaled system of equations
(3.3).

An immediate corollary of this lemma is that if Y is�-poised in B , then Ŷ = Y/	 is
�-poised in B̂ = B/	.

Our next step is to show that �-poisedness is invariant with respect to a shift of
coordinates.

Lemma 3.9. Let Y = {y0, y1, . . . , y p} be an interpolation set and λi (x), i = 0, . . . , p, be
the solution to (3.3) for a given x. Then, for any a ∈ Rn, it is also the solution to (3.3) for
Ya = {y0+a, y1+a, . . . , y p+a} and xa = x+a.

Proof. Since the solution λ(x) of (3.3) does not depend on the choice of basis, we can
consider φ̄(x) (the natural basis). Let us recall the multiindex notation: φ̄ j (x)= 1

(α j )! xα j .
Is it easy to show that, for any j = 0, . . . , p,

φ̄ j (x+a) = φ̄ j (x)+ φ̄ j (a)+
∑

k: |αk|<|α j |
γk(a)φ̄k(x), (3.7)

where γk(a) are some coefficients depending on the choice of a but independent of x .
From (3.7) it is easy to see that φ̄(x + a) defines a basis in Pd

n . And, again, since the
solution of (3.3) does not depend on the choice of basis,

p∑
i=0

λi (x)φ̄(yi +a) = φ̄(x+a).

Newton fundamental polynomials

Newton fundamental polynomials (NFPs) are similar in nature to Lagrange polynomials.
We briefly introduce them here, since, just as for Lagrange polynomials, they have been
used in derivative-free optimization framework to maintain the quality of the interpolation
models (see [59, 60]).
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As for Lagrange polynomials, the NFPs form a basis and each member of the basis
corresponds to one point in the interpolation set. The difference from the Lagrange poly-
nomial basis is the following. The interpolation points and the corresponding NFPs are
grouped into blocks, each block corresponding to a polynomial degree from 0 to d . Each
block with degree � contains precisely as many points and polynomials as there are mul-
tiindices α such that |α| = �. The NFPs are constructed in such a way that the elements
corresponding to the first � blocks form the NFP basis for the space of polynomials with
degree less than or equal to �.

More specifically, the number of points in the �th block is

|Y [�]| =
(
�+n−1

�

)
,

where the right-hand side is a binomial coefficient. Note that |Y [0]| = 1. Corresponding to
each point y[�]

i ∈ Y [�] is a single NFP n[�]
i (x) of degree � satisfying the conditions

n[�]
i (y[m]

j ) = δi j δ�m ∀y[m]
j ∈ Y [m] with m ≤ �. (3.8)

The interpolating polynomial m(x) is then given as

m(x) =
∑

y[�]
i ∈Y

γ
[�]
i (Y , f )n[�]

i (x),

where the coefficients γ [�]
i (Y , f ) are generalized finite differences applied to f . We refer

the readers to [205] for more details.
To exemplify NFPs we consider quadratic interpolation in R2 and the same set of

points for which we computed the Lagrange polynomial basis in Section 3.2. The six
interpolation points chosen are partitioned into three blocks (d = 2):

Y [0] = {(0,0)}, Y [1] = {(1,0), (0,1)}, and Y [2] = {(2,0), (1,1), (0,2)}.
The NFPs are given by

n[0]
1 = 1, n[1]

1 = x1, n[1]
2 = x2,

n[2]
1 =

1

2
(x2

1 − x1), n[2]
2 = x1x2, and n[2]

3 =
1

2
(x2

2 − x2),

for which the conditions (3.8) may easily be verified.
Just as in the case of the Lagrange polynomials, the NFPs exist if and only if the set

Y is poised. The value
�n = max

0≤i≤p
max

x∈B(Y )
|ni (x)|

serves as a measure of poisedness of the set Y (in B(Y )). The following bound is a simpli-
fication of the bound found in [205]:

| f (x)−m(x)| ≤ 2d

(d+1)!
p1νd�n	

d+1,

where νd is again an upper bound on Dd+1 f (x) and 	 is the radius of B(Y ).
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An advantage of the NFPs over the Lagrange polynomials lies in the fact that the
polynomials associated with blocks of lower degree are independent of the higher-degree
blocks. Notice that in the example above the first three NFPs provide a basis for linear
interpolation and do not have quadratic terms, unlike the Lagrange polynomials for the
same set of points discussed in Section 3.2.

The NFP basis is most advantageous when there are several blocks of moderate size,
namely, when the dimension n is small and the degree d is relatively large. Such a situa-
tion rarely occurs in derivative-free optimization. However, in situations when Y does not
contain enough points to construct a complete quadratic model it may be useful to select
a block of sample points for linear interpolation and construct a linear basis based on that
block. The remaining points can then serve to generate a set of second-order polynomials,
which do not form a basis but nevertheless satisfy conditions (3.8). We will discuss this
briefly in Chapter 5.

3.4 Condition number as a measure of well poisedness
As we concluded earlier, the condition number of the matrix M(φ,Y ) of the interpolation
conditions is a bad measure of poisedness of Y since it can be made arbitrarily large by
changing φ or scaling Y .

We will now consider a specific choice of φ = φ̄ (the natural basis). We will look at
the condition number of M(φ̄, Ŷ ), where Ŷ is the shifted and scaled version of Y so that

Ŷ = {0, ŷ1, . . . , ŷ p} ⊂ B(0;1)

and
max

1≤i≤p
‖ŷi − ŷ0‖ = max

1≤i≤p
‖ŷi‖ = 1.

Then we will establish how the condition number of M(φ̄, Ŷ ) relates to the measure of
poisedness. This will enable us to use the interpolation conditions and the matrix M(φ̄, Ŷ )
directly in a derivative-free algorithm, without computing Lagrange polynomial or NFP
bases, and still be able to maintain sufficient poisedness of the interpolation sets (and hence
to guarantee a moderate bound on the interpolation error).

Shifting and scaling

For numerical reasons it is often useful to consider a set Y where one of its points (without
loss of generality, y0) is at the origin. If Y is not such a set, then a shift of coordinates is
performed to move y0 to the origin. In interpolation-based derivative-free optimization, the
current best iterate is usually the center of the interpolation and it can always be viewed as
the origin. As we have seen, neither the poisedness constant � of an interpolation set Y
nor the quality of interpolation on Y changes under a shift of the coordinates.

We have established that�-poisedness is also independent of the scaling, although it
does depend on the region B in which the poisedness is considered. The condition number
of the matrix M(φ,Y ) depends on the scaling of Y but is “independent” of any region B .
To connect these two concepts we will fix the region to be B(0;	(Y ))—the smallest ball
(centered at y0 = 0) that contains Y . Then we scale B = B(0;	(Y )) and Y so that the
radius of B(0;	(Y )) equals 1. We denote such a ball by B(0;1).
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Thus, given any sample set written as

Y = {y0, y1, . . . , y p},
we first shift it by −y0 to center the new set at the origin:

{0, y1− y0, . . . , y p− y0}.
Then we consider

	 = 	(Y ) = max
1≤i≤p

‖yi − y0‖

and scale the set by	:

Ŷ = {0, ŷ1, . . . , ŷ p} = {0, (y1− y0)/	, . . . , (y p− y0)/	} ⊂ B(0;1).

The resulting sample set Ŷ is contained in a ball of radius one centered at the origin and
has at least one point on the ball boundary. The algorithms discussed in Chapter 6 which
factorize M(φ̄,Y ) to achieve well poisedness will be stated and analyzed for sampling
sets of this form, unless noted otherwise. If the original sample set Y does not meet this
requirement, we first shift it and then scale it, so that Ŷ ⊂ B(0;1).

Some auxiliary results

Let φ(x) be some basis of the space Pd
n of polynomials of degree less than or equal to d .

We will show that any polynomial which can be expressed through φ(x) with coefficients
that are not too small cannot vanish (or nearly vanish) on a unit ball.

Lemma 3.10. There exists a number σ∞ > 0 such that, for any choice of v satisfying
‖v‖∞ = 1, there exists a y ∈ B(0;1) such that |v�φ(y)| ≥ σ∞.

Proof. Consider
ψ(v) = max

x∈B(0;1)
|v�φ(x)|. (3.9)

It is easy to prove that ψ(v) is a norm in the space of vectors v (which has the dimension
of Pd

n , given by p1 = p+ 1 in our notation). Since the ratio of any two norms in finite-
dimensional spaces can be uniformly bounded by a constant, there exists a σ∞ > 0 such
that ψ(v) ≥ σ∞‖v‖∞. The constant σ∞ is defined as

σ∞ = min‖v‖∞=1
ψ(v).

Thus, if v has �∞-norm one, then ψ(v) ≥ σ∞ and there exists a y ∈ B(0;1) such that
|v�φ(y)| ≥ σ∞.

If we restrict our attention to the case of φ being the natural basis and d ≤ 2, then
we can readily provide an explicit lower bound on σ∞. We start by the case d = 1 where
σ∞ ≥ 1.
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Lemma 3.11. Let v�φ̄(x) be a linear polynomial, where ‖v‖∞ = 1 and φ̄ is the natural
basis (defined by (3.1) when d = 1). Then

max
x∈B(0;1)

|v�φ̄(x)| ≥ 1.

The proof is given in Chapter 6. For d = 2 we have the following result. The proof is
also postponed to Chapter 6 because it suggests an algorithm that can be part of the overall
strategy to improve well poisedness of sample sets.

Lemma 3.12. Let v�φ̄(x) be a quadratic polynomial, where ‖v‖∞ = 1 and φ̄ is the natural
basis (defined by (3.1) when d = 2). Then

max
x∈B(0;1)

|v�φ̄(x)| ≥ 1

4
.

Then, given any v̄ such that ‖v̄‖ = 1, we can scale v̄ by at most
√

p1 to v = αv̄,
0< α ≤√p1, such that ‖v‖∞ = 1. Thus,

σ2 = min‖v̄‖=1
max

x∈B(0;1)
|v̄�φ̄(x)| ≥ 1√

p1
min‖v‖∞=1

max
x∈B(0;1)

|v�φ̄(x)| ≥ 1

4
√

p1
. (3.10)

The last inequality is due to Lemma 3.12 applied to polynomials of the form v̂�φ̄(x).
Specifying the bound on σ∞ or σ2 for polynomials of higher degree is also possible but is
beyond the scope of this book.

�-poisedness and the condition number of M(φ̄, Ŷ )

We will show how�-poisedness relates to the condition number of the following matrix:

M̂ =

⎡
⎢⎢⎢⎣

1 0 · · · 0 0 0 · · · 0 0
1 ŷ1

1 · · · ŷ1
n

1
2 (ŷ1

1)2 ŷ1
1 ŷ1

2 · · · 1
(d−1)! (ŷ1

n−1)d−1 ŷ1
n

1
d! (ŷ1

n )d

...
...

...
...

...
...

...
1 ŷ p

1 · · · ŷ p
n

1
2 (ŷ p

1 )2 ŷ p
1 ŷ p

2 · · · 1
(d−1)! (ŷ p

n−1)d−1 ŷ p
n

1
d! (ŷ p

n )d

⎤
⎥⎥⎥⎦ .

This matrix is exactly the matrix M(φ, Ŷ ) when φ is the natural basis φ̄.
The definition of�-poisedness in B(y0;	(Y )), when using the natural basis, implies,

for all x ∈ B(y0;	(Y )), the existence of a λ(x) such that

M�λ(x) = φ̄(x) with ‖λ(x)‖∞ ≤ �.

From Lemmas 3.8 and 3.9, we know that this is equivalent to claiming, for all x ∈ B(0;1),
the existence of a λ(x) such that

M̂�λ(x) = φ̄(x) with ‖λ(x)‖∞ ≤�.
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Also, since x ∈ B(0;1) and since at least one of the yi ’s has norm 1 (recall that B(0;1)
is the smallest enclosing ball centered at the origin), then the norm of this matrix is always
bounded by

1 ≤ ‖M̂‖ ≤ p
3
2
1 . (3.11)

The condition number of M̂ is denoted by cond(M̂)=‖M̂‖‖M̂−1‖. To bound cond(M̂)
in terms of � it is then sufficient to bound ‖M̂−1‖, and, conversely, to bound � in terms
of cond(M̂) it is sufficient to bound it in terms of ‖M̂−1‖. Theorem 3.14 below establishes
this relationship. Its proof requires the following (easy to prove, see the exercises) auxiliary
result.

Lemma 3.13. Let w be a (normalized) right-singular vector of (a nonsingular square) ma-
trix A corresponding to its largest singular value. Then, for any vector r of the appropriate
size,

‖Ar‖ ≥ |w�r |‖A‖.

Theorem 3.14. If M̂ is nonsingular and ‖M̂−1‖ ≤�, then the set Ŷ is
√

p1�-poised in the
unit ball B(0;1) centered at 0. Conversely, if the set Ŷ is �-poised in the unit ball B(0;1)
centered at 0, then

‖M̂−1‖ ≤ θp
1
2
1�, (3.12)

where θ > 0 is dependent on n and d but independent of Ŷ and�.

Proof. Since the �2-norm is invariant under transposition, we can use M̂� in the proof. If
M̂ is nonsingular and ‖M̂−1‖ ≤�, then

‖λ(x)‖∞ ≤ ‖M̂−�‖∞‖φ̄(x)‖∞ ≤ p
1
2
1 ‖M̂−�‖‖φ̄(x)‖∞ ≤ p

1
2
1�,

since maxx∈B(0;1)‖φ̄(x)‖∞ ≤ 1.
To prove the reverse relation let v̄ be a (normalized) right-singular vector of M̂−�

corresponding to its largest singular value. Since ‖v̄‖ = 1, we know from Lemma 3.10 that
there exists a y ∈ B(0;1) such that

|v̄�φ̄(y)| ≥ σ2 ≥ σ∞√
p1

.

By applying Lemma 3.13 with A = M̂−�, w = v̄, and r = φ̄(y),

‖M̂−�φ̄(y)‖ ≥ |v̄�φ̄(y)|‖M̂−�‖,
and the result follows easily with θ =√p1/σ∞.

The constant θ can be estimated for specific values of d , for example d = 1 and d = 2.
In fact, it is inversely related to σ2, where

σ2 = min‖v̄‖=1
max

x∈B(0;1)
|v̄�φ̄(x)|.
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Thus, as we have stated before, it is easy to see that θ ≤ 1 for d = 1. For d = 2 we can
replace the constant θ of Theorem 3.14 by an upper bound (θ ≤ 4

√
p1), which is easily

derived using Lemma 3.12.
It is important to note that θ depends on the choice of φ. For example, if we scale

every element of φ̄ by 2, then the appropriate θ will decrease by 2. Here we are interested
in the condition number of a specific matrix M̂ = M(φ̄, Ŷ ) arising in our algorithms and,
hence, in a specific choice of φ.

The following corollary of Theorem 3.14 will be useful in Chapter 6. For the sake of
clarity, we highlight the dependence of the constant involved on the natural basis φ̄.

Corollary 3.15. If Ŷ is �-poised in B(0;1), then vol(φ̄(Ŷ ))≥�(p, φ̄)> 0, where �(p, φ̄)
depends only on p (i.e., on n and d) and φ̄.

Proof. Theorem 3.14 guarantees the existence of a constant θ dependent only on p and φ̄
such that ‖M(φ̄, Ŷ )−1‖ ≤ θ√p1�. Since the absolute value of the determinant of a squared
matrix is the product of its singular values, we obtain

vol(φ̄(Ŷ )) = 1

p1!|det(M(φ̄, Ŷ )−1)| ≥
1

p1!(θ
√

p1�)p1
.

Derivation of error bounds in terms of the condition number

In the sections on Lagrange and Newton fundamental polynomial bases, we have seen the
bounds on the error between the interpolating polynomial and the function being interpo-
lated, between their gradients and, possibly, between their Hessians, expressed in terms of
the bound on the maximum absolute value of these polynomials in the region of interest.
We will now present similar bounds expressed via the condition number of M(φ̄, Ŷ ). Since,
as we have shown, the condition number of M(φ̄, Ŷ ) is connected to �-poisedness, we can
use the bound in Theorem 3.14 directly and express the error bound in terms of p, θ , and
‖M(φ̄, Ŷ )−1‖ instead of �. However, the derivation of the bounds in [53] is quite compli-
cated and requires knowledge of approximation theory. By contrast, the derivation of the
bound presented below is very simple and requires no knowledge beyond calculus.

We consider interpolation of a function f (y) by a polynomial m(y), written using the
natural basis:

m(y) =
p∑

k=0

γkφ̄k(y).

The interpolation set satisfies Y = {y0, y1, . . . , y p} ⊂ B(y0;	(Y )), where B(y0;	(Y )) is
the smallest closed ball, centered at y0 and of radius 	 = 	(Y ), containing Y . The co-
efficients γk , k = 0, . . . , p, are defined by the linear system arising from the interpolation
conditions (3.2).

We will consider the quadratic case (d = 2) in detail. The linear case (d = 1) has
already been covered in Section 2.4. The error bounds are estimated in the quadratic case
under the following assumptions.

Assumption 3.1. We assume that Y = {y0, y1, . . . , y p} ⊂Rn, with p1 = p+1= (n+1)(n+
2)/2, is a poised set of sample points (in the quadratic interpolation sense, d = 2) contained
in the ball B(y0;	(Y )) of radius	=	(Y ).

Further, we assume that the function f is twice continuously differentiable in an open
domain� containing B(y0;	) and ∇2 f is Lipschitz continuous in � with constant ν2 > 0.
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Under these assumptions it is possible to build the quadratic interpolation model

m(y) = c+ g�y+ 1

2
y�H y = c+

∑
1≤k≤n

gk yk+ 1

2

∑
1≤k,�≤n

hk�yk y�, (3.13)

where H is a symmetric matrix of order n. The unknown coefficients c, g1, . . . , gn, and
hk�,1 ≤ � ≤ k ≤ n, are uniquely defined by the interpolation conditions (3.2) because the
sample set is poised.

We will assume for the moment and without loss of generality that y0 = 0. Later, we
will lift this assumption and establish the interpolation bounds for any y0.

We now consider a point y in the ball B(0;	(Y )), for which we will try to estimate
the error in the function value

m(y) = f (y)+ e f (y), (3.14)

in the gradient
∇m(y) = H y+ g = ∇ f (y)+ eg(y), (3.15)

and, since we are considering the quadratic case, also in the Hessian

H = ∇2 f (y)+ E H (y).

Since the Hessians of f and m are symmetric, we need only consider the error of the
second-order derivatives in diagonal elements and in elements below the diagonal:

hk� = ∇2
k� f (y)+ E H

k�(y), 1≤ �≤ k ≤ n.

Using (3.13) and subtracting (3.14) from all the p1 = p+ 1 equalities in (3.2), we
have that

(yi − y)�g+ 1

2
(yi − y)�H (yi− y)+ (yi− y)�H y

= f (yi )− f (y)− e f (y), i = 0, . . . , p.

Substituting the expression for g from (3.15), regrouping terms, and applying the second-
order Taylor expansion formula we get

(yi − y)�eg(y)+ 1

2
(yi − y)�[H −∇2 f (y)](yi − y)

= O(	3)− e f (y), i = 0, . . . , p. (3.16)

The next step is to subtract the first equation of (3.16) from the other equations, canceling
e f (y) and obtaining (note that y0 = 0)

(yi )�(eg(y)− E H (y)y)+ 1

2
(yi )�[H −∇2 f (y)](yi) = O(	3), 1≤ i ≤ p.

Thus, the linear system that we need to analyze in this quadratic case can be written as

∑
1≤k≤n

yi
k tk(y)+ 1

2

∑
1≤k≤n

(yi
k)2 E H

kk (y)+
∑

1≤�<k≤n

[yi
k yi
�]E H

k�(y)

= O(	3), 1≤ i ≤ p,
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or, in matrix form, as

Q

[
t(y)

eH (y)

]
= O(	3), (3.17)

with
t(y) = eg(y)− E H (y)y = eg(y)− [H−∇2 f (y)]y. (3.18)

Here eH (y) is a vector of dimension n + n(n − 1)/2 storing the elements E H
kk(y), k =

1, . . . ,n, and E H
k�(y), 1≤ � < k ≤ n.

Notice that the matrix Q is the same as the matrix formed by the last p rows and
columns of M(φ̄,Y ) in the case when d = 2 (quadratic) and y0 = 0, provided eH (y) is
suitably ordered, which we will henceforth assume.

We will estimate an upper bound on the right-hand side vector in (3.17). Each ele-
ment of this vector is the difference of two terms that can be bounded by ν2‖yi− y‖3/6 and
ν2‖y‖3/6, respectively, where ν2 is the Lipschitz constant of ∇2 f in � (see [76, Lemma
4.1.14]). Since ‖yi − y‖ ≤ 2	 and ‖y‖ ≤ 	, the difference can be bounded by 3	3/2.
Hence, the �∞-norm of the right-hand side can be bounded by that amount, and a bound
on the �2-norm is ∥∥∥∥Q

[
t(y)

eH (y)

]∥∥∥∥ ≤ 3

2
p

1
2 ν2	

3. (3.19)

To eliminate the dependence of Q on 	 we need to consider the scaled matrix

Q̂ = Q

[
D−1
	 0
0 D−1

	2

]
, (3.20)

where D	 is a diagonal matrix of dimension n with 	 in the diagonal entries and D	2 is a
diagonal matrix of dimension p−n with 	2 in the diagonal entries. This scaled matrix is
the same as the matrix Q corresponding to the scaled set Ŷ = Y/	⊂ B(0;1).

The next theorem states our error bounds in the quadratic case. As one might expect,
the error bounds are linear in 	 for the second derivatives, quadratic in 	 for the first
derivatives, and cubic in 	 for the function values, where 	 = 	(Y ) is the radius of the
smallest ball containing Y . The smaller ‖Q̂−1‖ is, the better is the poisedness of Y and the
better are the error bounds.

Theorem 3.16. Let Assumption 3.1 hold. Then, for all points y in B(y0;	(Y )), we have
that

• the error between the Hessian of the quadratic interpolation model and the Hessian
of the function satisfies

‖∇2 f (y)−∇2m(y)‖ ≤ κeh	,

• the error between the gradient of the quadratic interpolation model and the gradient
of the function satisfies

‖∇ f (y)−∇m(y)‖ ≤ κeg	
2,

• the error between the quadratic interpolation model and the function satisfies

| f (y)−m(y)| ≤ κe f 	
3,
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where κeh, κeg, and κe f are given by

κeh = 3
√

2p
1
2 ν2‖Q̂−1‖/2,

κeg = 3(1+√2)p
1
2 ν2‖Q̂−1‖/2,

κe f = (6+9
√

2)p
1
2 ν2‖Q̂−1‖/4+ ν2/6.

Proof. Let us first assume that y0 = 0 and write the left-hand side of the system (3.17) in
the form

Q

[
D−1
	 0
0 D−1

	2

][
D	t(y)

D	2eH (y)

]
.

Then, using the bound (3.19) and the notation (3.20), we obtain∥∥∥∥
[

D	t(y)
D	2eH (y)

]∥∥∥∥ ≤ 3

2
p

1
2 ν2‖Q̂−1‖	3, (3.21)

from which we get

‖D	2 eH (y)‖ ≤ 3

2
p

1
2 ν2‖Q̂−1‖	3,

yielding the bound ‖eH (y)‖ ≤ (3/2)p
1
2 ν2‖Q̂−1‖	. The error in the Hessian is therefore

given by

‖E H (y)‖ ≤ ‖E H (y)‖F ≤
√

2‖eH (y)‖ ≤ 3
√

2

2
p

1
2 ν2‖Q̂−1‖	,

where ‖ ·‖F denotes the Frobenius norm of a matrix given by the square root of the sum of
all entries squared.

Now we would like to derive the bound on ‖eg(y)‖. From (3.21) we also have

‖D	t(y)‖ ≤ 3

2
p

1
2 ν2‖Q̂−1‖	3

and

‖t(y)‖ ≤ 3

2
p

1
2 ν2‖Q̂−1‖	2,

and therefore, from (3.18),

‖eg(y)‖ ≤ ‖t(y)‖+‖E H (y)‖‖y‖
≤ 3

2 p
1
2 ν2‖Q̂−1‖	2+

(
3
√

2
2 p

1
2 ν2‖Q̂−1‖	

)
	

= 3(1+√2)
2 p

1
2 ν2‖Q̂−1‖	2.

Here we have used the fact that y is in the ball B(0;	(Y )) centered at the origin.
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Finally, from the detailed version of (3.16) for i = 0 and the bounds on ‖eg(y)‖ and
‖E H (y)‖ we have

|e f (y)| ≤ ‖eg(y)‖	+ 1
2‖E H (y)‖	2+ ν2

6 	
3

≤ 6+9
√

2
4 p

1
2 ν2‖Q̂−1‖	3+ ν2

6 	
3.

If y0 �= 0, we would make a change of variables and consider a function f̂ (z) =
f (z + y0) with z = y− y0. We can then apply the results previously proved, since the
shifted interpolation set {0, y1− y0, . . . , y p − y0} is now centered at the origin and f̂ has
the appropriate smoothness, and thus derive bounds for ‖∇2 f̂ (z)−∇2m̂(z)‖, ‖∇ f̂ (z)−
∇m̂(z)‖, and | f̂ (z)− m̂(z)|. Now we define m(y)= m̂(y0+ z) and change the function and
the polynomial model back to the original variables. It is a simple matter to see that we
obtain the desired bounds since ∇2m̂(z)= ∇2m(y), ∇2 f̂ (z) = ∇2 f (y), ∇m̂(z) = ∇m(y),
and ∇ f̂ (z)= ∇ f (y).

Since ‖Q̂−1‖ ≤ ‖M̂−1‖ (see the exercises), one can use Theorem 3.14 and express
the error bounds given in the above theorem in terms of the constant� used in the definition
of �-poisedness.

The error bounds given here for quadratic interpolation can be generalized for inter-
polation of any degree (for the generalization to the cubic case see [63]).

3.5 Exercises
1. Prove that if M(φ,Y ) is nonsingular for some basis φ, then it is nonsingular for any

basis of Pd
n .

2. Show that for any given poised interpolation set Y , one can choose the basis φ so
that the condition number of M(φ,Y ) can equal any number between 1 and +∞.

3. Construct a set of Lagrange polynomials in R2 for the set y0 = (0,0), y1 = (1,0),
y2 = (0,1), y3 = (−1,0), y4 = (1,1), and y5 = (0,−1). Compare the �-poisedness
constant for this set to the one relative to the set mentioned in Section 3.2.

4. Show that six points on a circle in R2 are not poised for interpolation by quadratic
polynomials but are poised for interpolation in a subspace of cubic polynomials that
does not have quadratic and constant terms.

5. Given Pd
n , show that λ(x) in (3.3) does not depend on the choice of φ.

6. Prove Lemma 3.5.

7. Prove Lemma 3.7.

8. Prove that ψ(v) given by (3.9) is a norm in the space of vectors v.

9. Show that the bounds (3.11) for ‖M̂‖ are true.

10. Prove Lemma 3.13.

11. Show that ‖Q̂−1‖ ≤ ‖M̂−1‖.
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Regression nonlinear models

Let us again consider Pd
n , the space of polynomials of degree less than or equal to d in Rn .

Let q1 = q + 1 be the dimension of this space, and let φ = {φ0(x),φ1(x), . . . ,φq (x)} be a
basis for Pd

n . Given a polynomial basis φ, we define φ(x)= [φ0(x),φ1(x), . . . ,φq (x)]�, as
before, to be a vector in Rq1 . As before, Y = {y0, y1, . . . , y p} ⊂ Rn denotes the set of p1 =
p+ 1 sample points. Let f (Y ) denote the vector whose elements are f (yi ), i = 0, . . . , p.
We will consider the context where the dimension q1 of the polynomial space is fixed but
the number p1 of sample points can change.

It is known that a large portion of derivative-free optimization applications exhibits
noisy functions. To some extent, most of the derivative-free methods are based on sampling
the objective function at several points, sufficiently spaced apart. This approach by itself
allows many of the derivative-free methods to be reasonably tolerant to noise. However,
one may prefer to take the presence of noise into account when designing an algorithm.

The first and, perhaps, most natural approach to handling noisy data is to replace
the interpolation of the objective function by least-squares regression. In this case, the
interpolation conditions described in the previous chapter,

M(φ,Y )α = f (Y ),

are solved in the least-squares sense, meaning that a solution α is found such that ‖M(φ,Y )α
− f (Y )‖2 is minimized.

If function evaluations are relatively cheap, but still noisy, then it may be effective
to sample the objective function at more local sample points (i.e., at points closer to the
“center” of the model) than it would be necessary for complete interpolation. In that case,
p1 > q1, which means that the number of rows in the matrix M(φ,Y ) is larger than the
number of columns and the interpolation system is overdetermined. As the number of sam-
ple points increases, the least-squares regression solution to the noisy problem converges
(in some sense and under reasonable assumptions) to the least-squares regression of the
underlying true function.

Specifically, let the noisy function f (x) = fsmooth(x)+ ε, where fsmooth(x) is the
true, mostly likely smooth function which we are trying to optimize and ε is a random
variable, independent of x and drawn from some distribution with zero mean. Assume that
a polynomial basis φ is fixed, and consider a sample set Y p whose size |Y p| = p+ 1 is

57
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58 Chapter 4. Regression nonlinear models

variable. Let the random vector α p be the least-squares solution to the system

M(φ,Y p)α = f (Y p)

and the real vector α p
smooth be the least-squares solution to the system

M(φ,Y p)α = fsmooth(Y p).

Now assume that the size of the sample set Y p is going to infinity and that the following
condition holds:

liminf
p→+∞λmin

(
1

p+1
M(φ,Y p)�M(φ,Y p)

)
> 0, (4.1)

where λmin denotes the minimum eigenvalue of a matrix. Then it is easy to prove the
following consistency result (see the exercises at the end of this chapter and the books [116,
224] for further details).

Theorem 4.1. If condition (4.1) holds and the sequence {Y p} is bounded, then

E(α p) = α
p
smooth ∀p ≥ q

and
lim

p→+∞Var(α p−α p
smooth) = 0.

Condition (4.1) on the sequence of sets Y p means that the data is sampled in a uni-
formly well-poised manner. We will return to this point when we study the poisedness
properties of an overdetermined set Y .

When function evaluations are expensive, one rarely can afford to accumulate enough
local sample points to exceed the number of points necessary for complete quadratic inter-
polation, namely (n+ 1)(n+ 2)/2. In this case least-squares regression and interpolation
will produce identical results. But, even then, it may be useful to relax the interpolation
conditions. If the objective function is very noisy, then the interpolation model may turn
out to be unnecessarily “nonsmooth.” One can then use regularized regression, which tries
to trade off between optimizing the least-squares fit and the “smoothness” of the interpo-
lation polynomial at the same time. We will explore these ideas further at the end of the
chapter.

This chapter is dedicated entirely to the case when p > q . First, we will discuss the
properties of the least-squares models and the corresponding well-poised sample sets.

4.1 Basic concepts in polynomial least-squares regression
Let m(x) denote the polynomial of degree less than or equal to d that approximates a given
function f (x) at the points in Y via least-squares regression. Since φ is a basis in Pd

n , then
m(x)=∑q

k=0 αkφk(x), where the αk’s are the unknown coefficients. The coefficients α can
be determined from the least-squares regression conditions

M(φ,Y )α
�.s.= f (Y ) (4.2)
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or, equivalently,
min
α
‖M(φ,Y )α− f (Y )‖2.

The above system has a unique solution if the matrix

M(φ,Y ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

φ0(y0) φ1(y0) · · · φq (y0)
φ0(y1) φ1(y1) · · · φq (y1)

...
...

...
...

...
...

...
...

φ0(y p) φ1(y p) · · · φq (y p)

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.3)

has full column rank.
It is easy to see that if M(φ,Y ) is square and nonsingular, then the above problem

becomes the interpolation problem. In many ways the properties of regression exactly or
closely mimic those of interpolation. Just as in the case of interpolation, if M(φ,Y ) has
full column rank for some choice of φ, then it is so for any basis of Pd

n . The following
definition of poisedness is thus independent of the basis chosen.

Definition 4.2. The set Y = {y0, y1, . . . , y p} is poised for polynomial least-squares regres-
sion in Rn if the corresponding matrix M(φ,Y ) has full column rank for some basis φ
in Pd

n .

We now show that if Y is poised, then the least-squares regression polynomial is
unique and independent of the choice of φ.

Lemma 4.3. Given a function f : Rn → R and a poised set Y ∈ Rn with respect to poly-
nomial least-squares regression, the least-squares regression polynomial m(x) exists and
is unique.

Proof. Since the set is poised, it is obvious that the least-squares regression polyno-
mial m(x) exists and is unique for a given choice of basis. Now consider two different
bases ψ(x) and φ(x) related by ψ(x)= P�φ(x), where P is q1×q1 and nonsingular. Then
M(ψ ,Y )= M(φ,Y )P .

Let αφ (resp., αψ ) be the vector of coefficients of the least-squares regression poly-
nomial for the basis φ(x) (resp., ψ(x)). Since αφ is the least-squares solution to the system
M(φ,Y )α = f (Y ), then

αφ = [M(φ,Y )�M(φ,Y )]−1 M(φ,Y )� f (Y )

= [P−�M(ψ ,Y )�M(ψ ,Y )P−1]−1 P−�M(ψ ,Y )� f (Y )

= P[M(ψ ,Y )�M(ψ ,Y )]−1 M(ψ ,Y )� f (Y ) = Pαψ .

The last equality follows from the fact that αψ is the least-squares solution to the system
M(ψ ,Y )α = f (Y ). Then, for any x ,

α�ψψ(x) = α�ψ
(

P�φ(x)
)
= (

Pαψ
)�
φ(x) = α�φ φ(x).
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4.2 Lagrange polynomials in the regression sense
The condition of poisedness and the existence of the regression polynomial is not suffi-
cient in practical algorithms or in the derivation of “uniform” error bounds for use in the
convergence analysis of derivative-free algorithms. As in the case of interpolation, one
needs a condition of “well poisedness,” characterized by a constant. We will extend the
notions of�-poisedness and Lagrange polynomials to the case of polynomial least-squares
regression.

Lagrange polynomials

Definition 4.4. Given a set of sample points Y = {y0, y1, . . . , y p}, with p > q, a set of
p1 = p+ 1 polynomials � j (x), j = 0, . . . , p, in Pd

n is called a set of regression Lagrange
polynomials if

� j (yi )
�.s.= δi j =

{
1 if i = j ,
0 if i �= j .

(4.4)

This set of polynomials is an extension of the traditional Lagrange polynomials to
the case p > q . Clearly, these polynomials are no longer linearly independent, since there
are too many of them. However, as we show below, many other properties of interpolation
Lagrange polynomials are preserved. Lemma 4.3 implies the following result.

Lemma 4.5. If Y is poised for polynomial least-squares regression, then the set of regres-
sion Lagrange polynomials exists and is uniquely defined.

Another essential property of Lagrange polynomials carries over to the regression
case.5

Lemma 4.6. For any function f : Rn→R and any poised set Y = {y0, y1, . . . , y p} ⊂Rn for
polynomial least-squares regression, the unique polynomial m(x) that approximates f (x)
via least-squares regression at the points in Y can be expressed as

m(x) =
p∑

i=0

f (yi )�i (x),

where {�i (x), i = 0, . . . , p} is the set of regression Lagrange polynomials for Y .

Proof. The polynomial m(x) can be written as

q∑
i=0

αiφi (x) = α�φ(x),

where α is the least-squares solution to the system

M(φ,Y )α = f (Y ).

5It is interesting to note that the extension of Lagrange polynomials applies only to the case of least-
squares regression. In the case of �1-norm regression, for instance, the uniqueness property fails and m(x)=∑p

i=0 f (yi )�i (x) may fail to hold for any choice of �i (x), i = 0, . . . , p.
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Since Y is poised, from the expression of the least-squares solution, we know that

α = [M(φ,Y )�M(φ,Y )]−1 M(φ,Y )� f (Y ). (4.5)

We can write the j th Lagrange polynomial using the basis φ with some coefficient
vector a j

φ ∈Rq1 :

� j (x) = φ(x)�a j
φ .

Then the Lagrange regression conditions (4.4), meant in the least-squares sense, can be
written in the following matrix format:

M(φ,Y )a j
φ

�.s.= e j+1, j = 0, . . . , p,

where e j+1 is the ( j+1)th column of the identity matrix of order p+1. In matrix notation,
we have that

M(φ,Y )Aφ
�.s.= I ,

where Aφ is the matrix whose columns are a j
φ , j = 0, . . . , p. From the solution of these

least-squares problems, we have

Aφ = [M(φ,Y )�M(φ,Y )]−1 M(φ,Y )�. (4.6)

Hence, from the expression for α in (4.5),

α�φ(x) = f (Y )�A�φ φ(x)= f (Y )��(x),

where �(x) = [�0(x), . . . ,�p(x)]�.

To illustrate the regression Lagrange polynomials, we consider the same six interpo-
lation points y0 = (0,0), y1 = (1,0), y2 = (0,1), y3 = (2,0), y4 = (1,1), and y5 = (0,2) as
we considered in the example in Section 3.2 and we add an extra point y6 = (0.5,0.5) to
make interpolation overdetermined. It is difficult to verify the correctness of the regression
Lagrange polynomials by hand, because their values at the corresponding points no longer
have to be equal to 1 or 0. Below are the corresponding regression Lagrange polynomials
� j (x1, x2), j = 0, . . . ,6, whose coefficients were computed with the help of MATLAB R© [1]
software:

�0(x1, x2) = 1− 3
2 x1− 3

2 x2+ 1
2 x2

1 + 1
2 x2

2 + x1x2,

�1(x1, x2) = 5
3 x1− 1

3 x2−0.823x2
1+0.176x2

2−0.764x1x2,

�2(x1, x2) = − 1
3 x1+ 5

3 x2+0.176x2
1−0.823x2

2−0.764x1x2,

�3(x1, x2) = − 5
12 x1+ 1

12 x2+0.455x2
1−0.044x2

2−0.588x1x2,

�4(x1, x2) = − 1
6 x1− 1

6 x2+0.088x2
1+0.088x2

2+1.117x1x2,

�5(x1, x2) = 1
12 x1− 5

12 x2−0.044x2
1+0.455x2

2−0.588x1x2,

�6(x1, x2) = 2
3 x1+ 2

3 x2−0.352x2
1−0.352x2

2−0.47x1x2.

The values of these regression Lagrange polynomials at their corresponding regression
points are �0(y0)= 1, �1(y1)= 0.84, �2(y2)= 0.84, �3(y3)= 0.99, �4(y4)= 0.96, �5(y5)=
0.99, and �6(y6)= 0.37.



idfo
2008/11/17
page 62

�

�

�

�

�

�

�

�
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Equivalent definition of the Lagrange polynomials in the regression case

Recall the alternative definition given in (3.3), Chapter 3, for the (interpolation) Lagrange
polynomials. We will show how this alternative definition extends to the regression La-
grange polynomials.

Given a poised set Y = {y0, y1, . . . , y p} ⊂Rn , with p> q and x ∈Rn , we can express
the vector φ(x) in terms of the vectors φ(yi ), i = 0, . . . , p, as

p∑
i=0

λi (x)φ(yi) = φ(x) (4.7)

or, equivalently,

M(φ,Y )�λ(x)= φ(x), where λ(x)= [λ0(x), . . . ,λp(x)]�.

Unlike the similar system in Chapter 3 this new system is underdetermined, and
hence it might have multiple solutions. In order to establish uniqueness, we consider the
minimum �2-norm solution. Thus, we are interested in the minimum-norm solution λ(x)
and in a bound on this norm. Just as in the interpolation case, where the λ(x) that satisfy
(3.3) are exactly the corresponding (interpolation) Lagrange polynomials, the same is true
in the regression sense in that the λ(x) that satisfy the minimum �2-norm solution of (4.7)
are the corresponding (regression) Lagrange polynomials. In fact, when Y is poised, the
matrix M(φ,Y ) has full column rank and, from the definition of the minimum-norm solu-
tion of (4.7), we have that

λ(x) = M(φ,Y )[M(φ,Y )�M(φ,Y )]−1φ(x),

and, as we have seen in the proof of Lemma 4.6, the regression Lagrange polynomials
satisfy

λ(x) = M(φ,Y )[M(φ,Y )�M(φ,Y )]−1φ(x) = �(x).

However, note that the alternative definition given by (3.6) which defines the value of
Lagrange polynomials via a ratio of volumes of the sets Y and Yi (x)= Y \ {yi }∪ {x} does
not seem to extend in a straightforward manner to the regression case.

4.3 �-poisedness in the regression sense
As in the interpolation case, an upper bound on the absolute value of the Lagrange poly-
nomials in a region B is the classical measure of poisedness of Y in B and is a constant
present in the regression approximation error bounds. The results in [53] extend to the
least-squares regression polynomials, and it is known that for any x in the convex hull of Y

| f (x)−m(x)| ≤ 1

(d+1)!
νd

p∑
i=0

‖yi − x‖d+1|�i (x)|, (4.8)

where νd is an upper bound on the derivative of order d+1 of f and �i (x), i = 0, . . . , p, are
the regression Lagrange polynomials. The bound on the error in the appropriate derivatives,
as mentioned in Chapter 3 and presented in [53], also applies to the regression context. For
the purposes of this chapter, we rewrite the bound (4.8) in two possible forms.
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�-poisedness

First, as in Chapter 3, we have

| f (x)−m(x)| ≤ 1

(d+1)!
νd p1��	

d+1, (4.9)

where
�� = max

0≤i≤p
max

x∈B(Y )
|�i (x)|,

and 	 is the diameter of the smallest ball B(Y ) containing Y .
This bound suggests that the measure of poisedness should involve the bound on��,

analogously to the interpolation case. Note, however, that in the case of regression, �� is
not the only element of the bound that depends on the sample set. The number of points
p1 may change also. A simple solution would be to bound p1; however, it is precisely by
making p1 grow large that we are able to achieve more accurate models for noisy problems,
as we discussed in the beginning of this chapter. Hence, even if in reality having large
sample sets is impractical, introducing artificial bounds on the number of sample points is
perhaps also inappropriate. On the other hand, there are cases when such a bound occurs
naturally. It is possible that, due to the cost of the function evaluations, only a few extra
sample points are available in addition to a regular interpolation set. While one may want
to use these points in the hopes of improving the accuracy of the model, one may not
want to worry about the poisedness of these additional points. Hence, we will discuss two
definitions of �-poisedness, one for the case when p is fixed and hence only the bound on
�� is needed, and another for the case when p is allowed to grow. We start with the case
of fixed p.

Definition 4.7. Let � > 0 and a set B ∈ Rn be given. Let φ = {φ0(x),φ1(x), . . . , φq (x)},
with p > q, be a basis in Pd

n . A poised set Y = {y0, y1, . . . , y p} is said to be �-poised in B
(in the regression sense) if and only if

1. for the set of regression Lagrange polynomials associated with Y

� ≥ max
0≤i≤p

max
x∈B
|�i (x)|,

or, equivalently,

2. for any x ∈ B the minimum �2-norm solution λ(x) ∈Rp1 of

p∑
i=0

λi (x)φ(yi ) = φ(x)

satisfies ‖λ(x)‖∞ ≤ �.

Note that, as in the definition of�-poisedness for interpolation of Chapter 3, the set B
is not required to contain the sample set Y . When p = q the definitions of �-poisedness
for interpolation and for regression coincide. When p > q it is easy to see that if the set Y
contains a subset of q1 points that is �-poised, then the whole set Y is at least

√
q1�-

poised. The following theorem establishes the reverse relationship between a �-poised
regression set Y and �-poisedness of a subset of Y .
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Theorem 4.8. Given a set Y = {y0, y1, . . . , y p}, which is �-poised in the regression sense,
there is a subset of q1 = q+1 points in Y which is (p1−q1+1)�-poised in the interpola-
tion sense.

The proof of Theorem 4.8 follows from the definitions for�-poisedness in the inter-
polation and regression senses and from Lemma 4.14 (given at the end of this chapter).

Most of the properties of �-poisedness in the interpolation sense extend to the re-
gression case easily.

Lemma 4.9. If Y is �-poised in a given set B, then

1. it is �-poised (with the same constant) in any subset of B,

2. it is �̃-poised in B for any �̃ ≥�,

3. for any x ∈ Rn, if λ(x) is a solution of (4.7), then

p∑
i=0

λi (x) = 1,

4. Ŷ = Y/	 is �-poised in B̂ = B/	 for any 	> 0,

5. Ya = {y0+a, y1+a, . . . , y p+a} is �-poised in Ba = B+{a} for any a ∈Rn.

It is no longer true for the regression case, however, that if B contains a point in Y
and Y is �-poised in B , then � ≥ 1.

Strong �-poisedness

When the number of sample points for each regression model used by an optimization
algorithm is bounded (and is moderate) the above �-poisedness condition on the sets is
sufficient for establishing a Taylor-like error bound and, hence, convergence properties (see
Chapter 10). But when p is allowed to grow arbitrarily large, for the error bound (4.9) to be
useful, we need to have a uniform bound on the product p1�� for any sample set we wish
to consider for accurate approximation. Such a bound is needed not only for theoretical
purposes but also to serve as a practical condition to keep the error between the regression
polynomial and the true function from growing.

Thus, the definition of �-poisedness needs to be strengthened to take the number of
sample points into consideration when it becomes too large. Because the definition of the
Lagrange polynomials, via λ(x), involves the minimization of the �2-norm of λ(x) rather
than the �∞-norm, we find it more convenient to rewrite the error bound (4.8) in the form

| f (x)−m(x)| ≤ 1

(d+1)!
νd
√

p1��,2	
d+1,

where
��,2 = max

x∈B(Y )
‖�(x)‖.
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Instead of bounding p1��, to keep the error bound in check, it is equivalent to bound√
p1��,2. If p grows, we need to consider sample sets whose �2-norm of the Lagrange

polynomials reduces proportionally to 1/
√

p1. Let us first investigate if such sets exist.
For simplicity let us consider only sample sets whose number p1 of points is an

integer multiple of the dimension q1 of the polynomial space. We can partition such a
sample set Y into l = p1/q1 subsets of size q1, say Y1,Y2, . . . ,Yl . Each subset can be
viewed as an interpolation set, since it has the right number of points. Assume now that
each such set is �-poised in a given region B for some � > 1. This means that, for any
x ∈ B and for any j = 1, . . . , l, we have

q∑
i=0

λ
j
i (x)φ(yi

j ) = φ(x), ‖λ j (x)‖ ≤ √q1‖λ j (x)‖∞ ≤ √q1�,

where yi
j is the i th point of the set Y j and λ j

i (x) is the i th element of the Lagrange poly-
nomial basis for the interpolation set Y j (see Section 3.2). Now let us divide each of these
expressions by l and add them together. What we obtain is

l∑
j=1

q∑
i=0

1

l
λ

j
i (x)φ(yi

j ) = φ(x), ‖λ j (x)/ l‖ ≤
√

q1

l
�.

Thus, for the entire sample set Y , there exists a solution λ̄i (x), i = 0, . . . , p1, to (4.7), which
is obtained by concatenating the vectors λ j (x), j = 1, . . . , l, and dividing every component
by l, such that

‖λ̄(x)‖ ≤ √l

(√
q1

l
�

)
= q1√

p1
�.

We are interested in the solution λ(x) to (4.7) with the smallest �2-norm; hence, for such a
solution

‖λ(x)‖ ≤ ‖λ̄(x)‖ ≤ q1√
p1
�.

Since this solution is indeed the set of regression Lagrange polynomials for the set Y , that
means that we have established that the product

√
p1��,2 is bounded on B by q1�.

We derived this property by insisting that the set Y can be partitioned into l = p1/q1
subsets of size q1 that are�-poised for interpolation. If p1 is not an integer multiple of q1,
then we partition Y into l = �p1/q1� subsets (�-poised) and one more subset of less than
q1 points. We simply note that the case of fractional p1/q1 is a simple extension of the
case where this number is an integer, and we do not consider it in detail here so as not to
complicate the notation further.

We introduce the following definition of strong �-poisedness for a regression set Y .

Definition 4.10. Let �> 0 and a set B ∈ Rn be given. Let φ = {φ0(x),φ1(x), . . . , φq (x)},
with p > q, be a basis in Pd

n . A poised set Y = {y0, y1, . . . , y p} is said to be strongly
�-poised in B (in the regression sense) if and only if

1. for the set of regression Lagrange polynomials associated with Y

q1√
p1
� ≥ max

x∈B
‖�(x)‖,
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or, equivalently,

2. for any x ∈ B the minimum �2-norm solution λ(x) ∈ Rp1 of

p∑
i=0

λi (x)φ(yi ) = φ(x)

satisfies ‖λ(x)‖ ≤ q1√
p1
�.

Consider p1 = q1 for a moment. If Y is �-poised in the interpolation sense, then
‖λ(x)‖∞ ≤ � and, since ‖λ(x)‖ ≤ √q1‖λ(x)‖∞, we have ‖λ(x)‖ ≤ √q1�. We can see
that in the case when p = q the definition of strong �-poisedness is not equivalent to the
definition of �-poisedness for the interpolation but is implied by it. To induce the equiva-
lence, it is possible to define �-poisedness via the �2-norm bound on the Lagrange poly-
nomials in the case of interpolation in Chapter 3. This would not fundamentally alter any
result related to approximation by polynomials presented in this book, but it would some-
what complicate the presentation and change several constants in various bounds related to
polynomial interpolation.

Illustration of the �-poisedness definitions

With the help of the following two examples we try to illustrate the two definitions of
�-poisedness and how they relate to each other and to the�-poisedness in the interpolation
sense. We consider the following regression set:

Y1 = {(0,0), (1,0), (0,1), (2,0), (1,1), (0,2)}
and let Yg = {Y1,Y1, . . . ,Y1}+ z, which consists of 31 copies of Y1 slightly perturbed by a
random vector z of appropriate size with entries uniformly distributed between 0 and 0.05.
It is illustrated on the left-hand side of Figure 4.1.

Let us consider one such typical random set which we generated and tested in
MATLAB [1] software. The interpolation set Y1 itself is �-poised (in the interpolation
sense) with � = 4.121, while the largest �-poisedness constant among the 31 perturbed
copies of Y1 was 4.541. The entire regression set Y is �-poised (in the regression sense)
with � = 0.152. First of all, we notice that the �-poisedness constant of the entire re-
gression set is much smaller than the�-poisedness constant of any subset of the six points.
Also notice that we can partition the set Yg into 31�-poised sets with�≤ 4.541. Although
one might expect it, it is not true that the constant �� of Yg is 31 times smaller than the
maximum �� in any of these subsets, since 0.152× 31 = 4.721 > 4.541. In our experi-
ments, the �-poisedness constant, however, did reduce proportionally with the number of
perturbed copies of Y1 which we included in Yg . Hence, we expect this set to be strongly
�-poised.

To analyze strong �-poisedness, we need to estimate the strong �-poisedness con-
stant of Yg . This value is not simple to compute (in MATLAB [1] software) due to the need
to maximize nonquadratic functions. However, instead of considering

��,2 = max
x∈B(Yg)

‖�(x)‖
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Figure 4.1. A strongly well-poised regression set Yg (left) and a well-poised (but
not strongly poised) regression set Yb (right). The thick squares are collections of slightly
perturbed identical points. The thin squares are single points.

we can easily compute the upper bound√√√√ p∑
i=0

[
max

x∈B(Yg)
|�i (x)|

]2

,

which in the case of the set Yg equals 1.122. Now we can see for this case that

��,2 ≤ 1.122 ≤ q1√
p1

4.541 = 6

13.64
4.541 = 1.998,

which means that the set Yg is strongly �-poised with � ≤ 4.541. Here we showed an
example of a collection of subsets with roughly the same �-poisedness constants, which
together make up a strongly�-poised regression set with a similar constant.

Now let us consider a different sample set Yb which is composed of Yb = {Y1,Y2, . . . ,
Y2}+ z, where Y1 is the same set as above and

Y2 = {(0,0), (0,1), (0,1), (0,0), (0,2), (0,2)}.
This set Y2 is obtained from Y1 by repeating the first, third, and sixth points so that there
is only a variation in the second argument. Thus the set Yb contains one perturbed copy
of a well-poised set Y1 and 30 perturbed copies of a badly poised set Y2 (note that z is
again a random perturbation vector). The set Yb is illustrated on the right-hand side of
Figure 4.1. The �-poisedness constant for this Yb is 3.046, which is smaller than the
�-poisedness constant of Y1, as expected, but is comparable to it, as opposed to being
about 30 times smaller as in the first case. It is clear that the �-poisedness constant does
not decrease significantly with p when badly poised subsets are used. Let us now show
that the set Yb is not strongly �-poised for � close to the constant of the poisedness of
Y1. To avoid computing ��,2, we use the fact that the �2-norm of any vector is greater
than or equal to its �∞-norm. It follows that ��,2 ≥ ��, and hence it is clear that Yb is
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not strongly �-poised for any � ≤ 13.64
6 3.046= 6.925. Since ��,2 could actually be up to√

p1 times larger than ��, the strong �-poisedness constant of the set Yb may be as high
as �= 13.64×6.925� 94.

These two examples serve to illustrate the point that strong poisedness reflects how
well the sample points are spread in space to form poised subsets. From the statistical point
of view it is also clear that the strongly poised set Y of the first case is a better sample set
to use in order to obtain an accurate model of a noisy function, since the second sample set
will result in a model which puts strong bias on the variation of the second variable x2.

4.4 Condition number as a measure of well poisedness
We recall that even though the condition number of the matrix M(φ,Y ) is not a reliable
measure of poisedness for arbitrary φ and Y , we have seen, in Chapter 3, that for the choice
of φ = φ̄ (the natural basis) and for the set Ŷ (shifted and scaled from Y in such a way that
the maximum distance between y0 and any other points in Y is equal to 1) the�-poisedness
constant and ‖M(φ̄, Ŷ )−1‖ (and hence the condition number of M(φ̄, Ŷ )) differ only by a
constant factor.

In the regression case such a fact can be of particular importance since it supports
the consistency of least-squares regression for noisy problems. Recall that for Theorem 4.1
to hold we needed condition (4.1) to be true. This means that for a sequence of sample
sets Y p , with p→+∞, the smallest eigenvalue of the matrix M(φ,Y p)�M(φ,Y p) has
to increase with a rate of at least p. Let us try to build some intuition behind this condi-
tion. As in the previous section, let us assume that the number of points p1 equals lq1,
where l is an integer. Let us partition the set Y p into l subsets, say Y p

1 ,Y p
2 , . . . ,Y p

l . Then

the matrix M(φ,Y p)�M(φ,Y p) can be written as
∑l

i=1 M(φ,Y p
i )�M(φ,Y p

i ). The small-
est eigenvalue of M(φ,Y p)�M(φ,Y p) is greater than or equal to the sum of the smallest
eigenvalues of M(φ,Y p

i )�M(φ,Y p
i ), i = 1, . . . , l. Hence, if the smallest eigenvalue of each

of the M(φ,Y p
i )�M(φ,Y p

i ) is bounded away from zero by a constant σ 2 > 0 (or, equiva-
lently, the smallest singular value of M(φ,Y i ) is bounded from below by σ > 0), then the
smallest eigenvalue of the sum is bounded from below by lσ 2 (equivalently, the smallest
singular value of the whole matrix is bounded from below by

√
lσ ). From this argument

and Theorem 3.14 we have the second part of the following result. The first part has already
been shown in the previous section.

Theorem 4.11. If a set Y p of p1 sample points can be partitioned into l = p1/q1 sets which
are �-poised for interpolation, then the entire set is strongly �-poised for regression. If
Y p = Ŷ p ⊂ B(0;1), then the inverse of the smallest singular value of M(φ̄,Y p) is bounded
by
√

q1/p1�.

Thus, we see that it is possible to ensure that the smallest eigenvalue of the matrix
M(φ̄,Y p)�M(φ̄,Y p) increases with a rate of at least p, which implies condition (4.1) re-
quired for the consistency of the least-squares regression model.

To connect strong�-poisedness in the regression sense directly with the bound on the
condition number of M(φ̄, Ŷ ) we need an analogue of Theorem 3.14. For this purpose, let
us consider the reduced singular value decomposition of M̂ =M(φ̄, Ŷ )= Û�̂V̂� (meaning
that Û is a p1× q1 matrix with orthonormal columns, �̂ is a q1× q1 matrix of nonzero
singular values, and V̂ is a q1× q1 orthonormal matrix). Let σ̂1 (resp., σ̂q1 ) denote the
value of the largest (resp., smallest) singular value of M̂ . Then ‖M̂‖ = ‖�̂‖ = σ̂1 and
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‖�̂−1‖ = 1/σ̂q1 . Note that cond(M̂)= σ̂1/σ̂q1 . To bound cond(M̂) in terms of � it is then
sufficient to bound ‖�̂−1‖. The proof of the following theorem and related details can be
found in [64].

Theorem 4.12. If �̂ is nonsingular and ‖�̂−1‖ ≤ √q1/p1�, then the set Ŷ is strongly
�-poised in the unit ball B(0;1) centered at 0. Conversely, if the set Ŷ is strongly�-poised
in the unit ball B(0;1) centered at 0, then

‖�̂−1‖ ≤ θq1√
p1
�, (4.10)

where θ > 0 is dependent on n and d (i.e., on q1) but independent of Ŷ and �.

Error bounds in terms of the condition number

Now we turn our attention to the derivation of error bounds for polynomial least-squares
regression. As in the polynomial interpolation case, we obtain Taylor-like bounds for linear
and quadratic least-squares regression in terms of the poisedness constant � and in terms
of the norm of �̂−1. The bound in terms of � was presented in Section 4.3. Due to the
relation between �̂−1 and � this bound can also be expressed in terms of �̂−1. However,
bounds using �̂−1 can be derived directly as was done in Chapter 3. Here we present the
resulting bounds for the quadratic case. For the derivation and other details see [64]. Note
that the linear case has already been covered in Section 2.4.

Assumption 4.1. We assume that Y = {y0, y1, . . . , y p} ⊂Rn, with p1 = p+1> (n+1)(n+
2)/2, is a poised set of sample points (in the quadratic regression sense, d = 2) contained
in the ball B(y0;	(Y )) of radius 	 = 	(Y ). Further, we assume that the function f is
twice continuously differentiable in an open domain � containing B(y0;	) and ∇2 f is
Lipschitz continuous in � with constant ν2 > 0.

Theorem 4.13. Let Assumption 4.1 hold. Then, for all points y in B(y0;	(Y )), we have
that

• the error between the Hessian of the quadratic regression model and the Hessian of
the function satisfies

‖∇2 f (y)−∇2m(y)‖ ≤ κeh	,

• the error between the gradient of the quadratic regression model and the gradient of
the function satisfies

‖∇ f (y)−∇m(y)‖ ≤ κeg	
2,

• the error between the quadratic regression model and the function satisfies

| f (y)−m(y)| ≤ κe f 	
3,

where κeh, κeg, and κe f are given by

κeh = 3
√

2 p
1
2 ν2‖�̂−1‖/2,

κeg = 3(1+√2)p
1
2 ν2‖�̂−1‖/2,

κe f = (6+9
√

2)p
1
2 ν2‖�̂−1‖/4+ ν2/6.
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Note that from Theorem 4.12 if the set Y is strongly �-poised, then p
1
2 ‖�̂−1‖ is

uniformly bounded, independently of p1 and Y .

4.5 Notes and references
We have established in this chapter that the regression models enjoy similar properties to
the interpolation models in terms of accuracy of approximation expressed via the bound on
the corresponding Lagrange polynomials or on the norm of the inverse or the pseudoinverse
of an appropriate matrix. These properties are useful for constructing provable convergent
derivative-free algorithms that use least-squares regression to model the objective function.

Let us now turn our attention to other regression approximations which we men-
tioned in the introduction of this chapter. For instance, in the case of expensive but noisy
function evaluations it may be useful to use regularized regression instead of interpolation.
This will allow the approximating function to be more “smooth” by somewhat relaxing the
interpolation conditions. Specifically, let α be the solution to our interpolation/regression
conditions M(φ,Y )α = f (Y ), and let Hα be the resulting Hessian of the model

m(x) =
q∑

i=0

αiφi (x).

When φ = φ̄ is the natural basis, Hα is the symmetric matrix whose lower triangular part
simply contains the elements of α corresponding to the monomials of degree 2. Now let us
pick a regularization parameter ρ and consider the following problem:

min
α
ρ‖Hα‖2+‖M(φ,Y )α− f (Y )‖2.

Assume that we are considering complete quadratic models with p1 ≥ q1. We know
that if ρ→ 0, then we recover the least-squares regression model which satisfies second-
order Taylor-like error bounds for poised sample sets. If ρ → +∞, then, in this case,
we recover linear least-squares regression, which also satisfies first-order Taylor-like error
bounds. To preserve the second-order approximation we need to limit the size of ρ. In fact,
it is possible to derive from the Taylor-like error bounds for least-squares regression models
that, for small enough values of ρ, the solutions to the regularized regression problems also
satisfy Taylor-like error bounds of second order. Here is a rough outline of the argument.

Let m(x) be the regularized regression model and m�s(x) be the least-squares regres-
sion model. Let us consider a ball B of radius 	 and a strongly well-poised sample set
Y ⊂ B . Let m�s(x)= (α�s)�φ(x) and m(x)= α�φ(x). From the bound on the error of the
least-squares regression, we know that for appropriately chosen Y

‖m�s(Y )− f (Y )‖ = ‖M(φ,Y )α�s − f (Y )‖ = O(	3).

This, in turn, means that by choosing ρ small enough (and if ‖[M(φ,Y )�M(φ,Y )]−1‖ is
bounded) we can make the regularized regression model satisfy

‖M(φ,Y )α− f (Y )‖ = O(	3).

This implies that
‖M(φ,Y )α−M(φ,Y )α�s‖ = O(	3).
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If ‖[M(φ,Y )�M(φ,Y )]−1‖ is bounded, then we conclude that ‖α − α�s‖ = O(	3) and
therefore |m�s(x)−m(x)| =O(	3). Since for any x ∈ B we know that |m�s(x)− f (x)| =
O(	3), we have |m(x)− f (x)| = O(	3); in other words, we have shown that if the least-
squares regression model is accurate, then by keeping ρ sufficiently small we can ensure
that the regularized regression model is also accurate. We conclude that the results that we
discuss in this chapter are useful in applications to a variety of approximating functions, in
addition to simple least-squares regression.

We end this chapter by proving the simple lemma which we used earlier to derive
Theorem 4.8.

Lemma 4.14. Consider a poised set Z = {z1, . . . , zm} ⊂Rn, with m > n. Let I ⊂ {1, . . . ,m}
be a subset of indices with |I | = n. It is possible to choose I so that, for any x ∈ Rn such
that

x =
m∑

i=1

λi z
i , |λi | ≤ �,

for some �> 0, we can write

x =
∑
i∈I

γi z
i , |γi | ≤ (m−n+1)�.

Proof. Consider an n× n matrix A whose columns are the vectors zi , i ∈ I . Among all
possible sets I , choose the one that corresponds to the matrix A with the largest absolute
value of the determinant. We will show that this I satisfies the statement of the lemma.

Let Ī = {1, . . . ,m}\I , and let Z Ī be the subset of Z containing points whose indices
are in Ī . First, we will show that for any z j , j ∈ Ī ,

z j =
∑
i∈I

α
j
i zi , |α j

i | ≤ 1.

By Cramer’s rule α j
i = det(Az j ,i )/det(A), where Az j ,i corresponds to the matrix A with its

i th column replaced by the vector z j . Since, by the selection of I , |det(A)| ≥ |det(Az j ,i )|
for any j ∈ Ī , we have |α j

i | ≤ 1.
Now consider any x such that

x =
m∑

i=1

λi z
i , |λi | ≤ �.

We have

x =
∑
i∈I

λi z
i +

∑
j∈ Ī

λ j

(∑
i∈I

α
j
i zi

)
=

∑
i∈I

γi z
i , |γi | ≤ (m−n+1)�, i ∈ I .
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4.6 Exercises
1. Prove Theorem 4.1 from

α p−α p
smooth =

[
1

p+1
M(φ,Y p)�M(φ,Y p)

]−1 1

p+1
M(φ,Y p)�ε p ,

where εp is the appropriate vector of independent random variables drawn from the
same distribution with mean 0.

2. Prove that if M(φ,Y ) has full column rank for some basis φ, then it has full column
rank for any basis of Pd

n .

3. Show that λ(x) in (4.7) does not depend on the choice of φ in Pd
n .

4. Show that if a set Y with p1 points (p1 > q1) contains a subset of q1 points that is
�-poised, then it is

√
q1�-poised.

5. Prove Lemma 4.9.

6. Prove Theorem 4.13.
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Underdetermined
interpolating models

We will now consider the case when the number of interpolation points in Y is smaller than
the number of elements in the polynomial basis φ (p < q , or p1 < q1 with p1 = p+ 1
and q1 = q + 1). In this case, the matrix M(φ,Y ) defining the interpolating conditions
(see (4.3)) has more columns than rows and the interpolation polynomials defined by

m(yi ) =
q∑

k=0

αkφk(yi )= f (yi ), i = 0, . . . , p, (5.1)

are no longer unique.
This situation is extremely frequent in model-based derivative-free optimization meth-

ods. Most of the derivative-free applications are based on objective functions that are costly
to compute. The cost varies from application to application, and it is more or less relevant
depending on the dimension of the problem. For instance, for a problem with 3 variables
it takes 10 function evaluations to construct a determined quadratic polynomial interpola-
tion model. If each such evaluation takes 1 hour, then even 10 evaluations might be too
costly to insist upon. But if each evaluation takes 2 seconds, then it appears reasonable to
construct accurate quadratic models whenever desired. Moreover, in the presence of noise
it may be a good idea to use more than 10 points per model and apply regression, as was
discussed in the previous chapter. For a 100 variable problem, however, to construct a de-
termined quadratic polynomial interpolation model, we would need over 5000 points (see
Table 1.1). Even with each function evaluation taking 2 seconds, evaluating the sample set
would take hours. Of course, an efficient derivative-free method would not try to generate
all these points from scratch for each new model, but rather it would try to reuse existing
sample points whose values are known. For that to be useful, normally the sample points
would have to be reasonably close to the current iterate. Unless the algorithm does not
progress for a long time, which is clearly not desirable, there will typically occur situations
where the number of useful sample points already evaluated is lower or much lower than
the number of elements in the polynomial basis.

A simple way to conserve the cost of building a sample set is to use linear models;
however, it is well known that convergence slows down significantly when no curvature is
exploited. The answer to this dilemma is to use underdetermined quadratic interpolation

73
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models, using fewer points than are needed for a complete quadratic interpolation model but
more points than those defining linear interpolation. By incorporating these extra points one
hopes to capture some of the curvature of the function and observe an empirical superlinear
rate of local convergence. The choice of the model and of the sample set plays a crucial
role for such an approach. We will discuss these issues in this chapter.

5.1 The choice of an underdetermined model
First, we need to make sure that the model we are constructing is uniquely defined by the
sample set. The simplest approach to restrict (5.1) so that it has a unique solution is to
remove from the system the last q − p columns of M(φ,Y ). This causes the last q − p
elements of the solution α to be zero. Such an approach approximates some elements of
α, while it sets others to zero based solely on the order of the elements in the basis φ.
Clearly, this approach is not very desirable without any knowledge of, for instance, the
sparsity structure of the gradient and the Hessian of the function f . There is also a more
fundamental drawback: the first p1 columns of M(φ,Y ) may be linearly dependent. In
this latter case, a natural conclusion would be that our sample points are not poised (in
some sense) and we have to change them. However, if we had selected a different subset
of p columns of M(φ,Y ), it might have been well poised without changing any points. We
will use a notion of subbasis of the basis φ to mean a subset of p1 elements of the basis
φ. Selecting p1 columns of M(φ,Y ) therefore corresponds to selecting the appropriate
subbasis φ̃. Let us consider the following example.

Let φ= {1, x1, x2, 1
2 x2

1 , x1x2, 1
2 x2

2}, Y = {y0, y1, y2, y3}, and let y0= (0,0), y1= (0,1),
y2 = (0,−1), and y3 = (1,0). The matrix M(φ,Y ) is given by

M(φ,Y ) =
⎡
⎢⎣

1 0 0 0 0 0
1 0 1 0 0 0.5
1 0 −1 0 0 0.5
1 1 0 0.5 0 0

⎤
⎥⎦ .

If we select the first four columns of M(φ,Y ), then the system is still not well defined,
since the matrix is singular. Hence, the set Y is not poised with respect to the subbasis φ̃ =
{1, x1, x2, 1

2 x2
1}, and a new set of sample points is needed. Notice that if another subbasis

was selected, for instance, φ̃ = {1, x1, x2, 1
2 x2

2}, then the set Y is well poised, the matrix
consisting of the first, the second, the third, and the sixth columns of M(φ,Y ) is well
conditioned, and a unique solution exists. If the Hessian of f happens to look like[

0 0

0 ∂2 f
∂x2

2
(x)

]
,

then this reduced system actually produces the complete quadratic model of f .
If the sparsity structure of the derivatives of f is known in advance, then this ad-

vantage can be exploited by deleting appropriate columns from the system (5.1). A more
sophisticated version of this idea is exploited in [56] for group partial separable functions
and works well in practice when there is a known structure of the Hessian and gradient
elements. If no such structure is known, then there is no reason to select one set of columns
over another except for geometry considerations. Hence, it makes sense to select those
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columns that produce the best geometry. Given the sample set Y , this could be achieved
by selecting the subbasis φ̃ so that the poisedness constant � is minimized. The follow-
ing example shows the possible disadvantages of this approach in computing a polynomial
model.

Let us consider the purely linear case in R3 for simplicity. An example for a quadratic
case can be constructed in a similar manner. Consider φ={1, x1, x2, x3} and Y ={y0, y1, y2},
where, as usual, y0 = (0,0,0), and where y1 = (1,0,0), and y2 = (0,1,1− ε). Assume
f (Y )= (0,b1,b2). The system (5.1) then becomes

⎡
⎣ 1 0 0 0

1 1 0 0
1 0 1 1− ε

⎤
⎦α =

⎡
⎣ 0

b1
b2

⎤
⎦ .

The best subbasis for Y is then φ̃ = {1, x1, x2}. If we select the appropriate columns of
M(φ,Y ) and solve the reduced system, we obtain the following solution for the coefficients
of m(x):

α =
⎡
⎢⎣

0
b1
b2
0

⎤
⎥⎦ .

Now, if we consider y2 = (0,1− ε,1), then the best subbasis is φ̃ = {1, x1, x3} and the
solution that we will find with this approach is

α =
⎡
⎢⎣

0
b1
0
b2

⎤
⎥⎦ .

Notice that the two possible solutions are very different from each other, yet as ε goes to
zero the two sets of sample points converge pointwise to each other. Hence, we see that the
subbasis approach suffers from a lack of robustness with respect to small perturbations in
the sample set. We also notice that in the first (second) case the fourth (third) element of
the coefficient vector is set to zero and the third (fourth) element is set to b2 (b2). Hence,
each solution is biased towards one of the basis components (x2 or x3) without using any
actual information about the structure of f . A more suitable approach would be to treat
all such components equally in some sense. This can be achieved by the minimum-norm
solution of (5.1).

For this example, the minimum-norm solution in the first case is

αmn = M(φ,Y )�[M(φ,Y )M(φ,Y )�]−1 f (Y ) =

⎡
⎢⎢⎢⎢⎣

0
b1
b2

2−2ε+ε2

(1−ε)b2
2−2ε+ε2

⎤
⎥⎥⎥⎥⎦
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and in the second case is

αmn =

⎡
⎢⎢⎢⎢⎣

0
b1

(1−ε)b2
2−2ε+ε2

b2
2−2ε+ε2

⎤
⎥⎥⎥⎥⎦ .

These two solutions converge to (0,b1,b2/2,b2/2) as ε converges to zero. Hence, not only
is the minimum-norm solution robust with respect to small perturbations of the data, but it
also “evens out” the elements of the gradient over the x2 and x3 basis components.

For the reasons described above it is beneficial to consider the minimum-norm solu-
tion of the system (5.1). The minimum-norm solution is expressed as

M(φ,Y )�[M(φ,Y )M(φ,Y )�]−1 f (Y )

and can be computed via the QR factorization or the reduced singular value decomposition
of M(φ,Y ). It is well known that a minimum-norm solution of an underdetermined system
of linear equations is not invariant under linear transformations. In our case, this fact means
that the minimum-norm solution depends on the choice of φ. It is easy to show that the
resulting interpolation polynomial also depends on the choice of φ in the system (5.1).

Hence, depending on the choice of φ, we can obtain a better or a worse approximation
to f by computing the minimum-norm interpolating polynomials. Ideally, we would like,
for each set Y , to identify the “best” basis φ, which would generate the “best” minimum-
norm interpolating polynomial. However, it is a nontrivial task to define such a basis. First
of all, one needs to define the best interpolating polynomial. The natural choice is the
polynomial that has the smallest approximation error with respect to the function f . But
the definition of the best basis (and hence of the best polynomial) should depend only on Y .
Moreover, the choice of the best subbasis model clearly depends on the initial choice of the
basis as well. We are not aware of any work that answers these questions; hence, we do
what seems most natural—we consider the minimum-norm underdetermined interpolant
for the natural basis φ̄. As we will observe later, this turns out to be a reasonable choice.

5.2 Lagrange polynomials and �-poisedness for
underdetermined interpolation

We will consider the natural basis φ̄ defined by (3.1) and the corresponding matrix M(φ̄,Y ).
We will start by introducing a particular definition of the set of Lagrange polynomials for
underdetermined interpolation.

Definition 5.1. Given a set of interpolation points Y = {y0, y1, . . . , y p}, with p < q, where
q1= q+1 is the dimension of Pd

n , a set of p1= p+1 polynomials � j (x)=∑q
i=0(α j )i φ̄i (x),

j = 0, . . . , p, is called a set of minimum-norm Lagrange polynomials for the basis φ̄ if it is
a minimum-norm solution of

� j (yi )
m.n.= δi j =

{
1 if i = j ,
0 if i �= j .
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The minimum-norm Lagrange polynomials are thus given by the minimum-norm
solution of

M(φ̄,Y )α j
m.n.= e j+1, j = 0, . . . , p,

where e j+1 is the ( j +1)st column of the identity matrix of order q+1. This set of poly-
nomials is an extension of the traditional Lagrange polynomials to the case when p < q .
Clearly, these polynomials no longer compose a basis, since there are not enough of them.
However, as in the regression case, many other properties of Lagrange interpolation poly-
nomials are preserved.

The set of minimum-norm Lagrange polynomials exists and is unique if the ma-
trix M(φ̄,Y ) has full row rank. In this case, we will say that Y is poised. We again note that
here the Lagrange polynomials generally depend on the choice of the basis φ, so the level
of well poisedness does also, but it is easy to see that the poisedness of Y does not since
the rank of M(φ̄,Y ) does not depend on the choice of basis.

Just as in the case of standard Lagrange polynomials, the minimum-norm interpolat-
ing polynomial m(x) in the underdetermined case has a simple representation in terms of
the minimum-norm Lagrange polynomials.

Lemma 5.2. For any function f : Rn→ R and any poised set Y = {y0, y1, . . . , y p} ⊂ Rn,
the minimum-norm interpolating polynomial m(x) (in terms of the basis φ̄) that interpolates
f (x) on Y can be expressed as

m(x) =
p∑

i=0

f (yi )�i (x),

where {�i (x), i = 0, . . . , p} is the set of minimum-norm Lagrange polynomials for Y .

We will now show that, as in the case of polynomial interpolation and regression,
the alternative interpretations of the Lagrange polynomials can be easily derived. Thus, we
will also have an analogous definition of �-poisedness.

Given a poised set Y = {y0, y1, . . . , y p} ⊂ B ⊂ Rn and x ∈ B , we attempt to express
the vector φ̄(x) in terms of the vectors φ̄(yi ), i = 0, . . . , p. Since the dimension of the vector
φ̄(x) is q1 > p1, it may no longer be possible to express it as a linear combination of the p1
vectors φ̄(yi ), i = 0, . . . , p. Instead, we will be looking for the least-squares solution to the
following system:

p∑
i=0

λi (x)φ̄(yi )
�.s.= φ̄(x). (5.2)

We observe a duality in that in system (4.7) the minimum �2-norm solution λ(x) to the
system corresponded to the least-squares regression Lagrange polynomials, while in the
current case the least-squares solution λ(x) corresponds to the minimum �2-norm Lagrange
polynomials.

To extend the definition given in (3.6) to the underdetermined case we use the same
approach as in the full interpolation case. Given a set Y and a point x , we again define a
set Yi (x)= Y \{yi }∪{x}, i = 0, . . . , p. From Cramer’s rule and from the definition of λi (x)
given in (5.2), we obtain that

λi (x) = det(M(φ̄,Y )M(φ̄,Yi (x)�))

det(M(φ̄,Y )M(φ̄,Y )�)
. (5.3)
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Let us denote M(φ̄,Y ) by M̄ and consider the set φM̄ (Y )= {M̄φ(yi ), i = 0, . . . , p} in
Rp1 . The i th element of this set is a vector φ(yi ) ∈ Rq1 “projected” onto a p1-dimensional
space by computing its inner product with the rows of M̄ . Let vol(φM̄ (Y )) be the volume
of the simplex of vertices in φM̄ (Y ), given by

vol(φM̄ (Y )) = |det(M̄ M(φ̄,Y )�)|
p1!

.

(Such a simplex is the p1-dimensional convex hull of φM̄ (Y ).) Then

|λi (x)| = vol(φM̄ (Yi (x)))

vol(φM̄ (Y ))
. (5.4)

In other words, the absolute value of the i th Lagrange polynomial at a given point x is the
change in the volume of (the p1-dimensional convex hull of) φM̄ (Y ) when yi is replaced
by x .

The following definition of well poisedness is analogous to Definitions 3.6 and 4.7.

Definition 5.3. Let � > 0 and a set B ∈ Rn be given. Let φ̄ be the natural basis of
monomials of Pd

n . A poised set Y = {y0, y1, . . . , y p}, with p < q, where q1 = q + 1 is the
dimension of Pd

n , is said to be �-poised in B (in the minimum-norm sense) if and only if

1. for the set of minimum-norm Lagrange polynomials associated with Y

� ≥ max
0≤i≤p

max
x∈B
|�i (x)|,

or, equivalently,

2. for any x ∈ B there exists λ(x) ∈Rp1 such that

p∑
i=0

λi (x)φ̄(yi )
�.s.= φ̄(x) with ‖λ(x)‖∞ ≤ �,

or, equivalently,

3. replacing any point in Y by any x ∈ B can increase the volume of the set {M̄φ(y0),
M̄φ(y1), . . . , M̄φ(y p)} at most by a factor�.

It is proved in [64] that if a set is well poised in the minimum-norm sense, then it is
well poised in the best subbasis (interpolation) sense and vice versa.

Derivation of error bounds in terms of the condition number

As far as Taylor-like error bounds are concerned, the underdetermined models do not offer
in general any accuracy at all. First of all, the bounds from [53] do not apply since they
cover only the cases when the model of a polynomial itself is the polynomial. This is not
generally the case for underdetermined interpolation, since the polynomial is not usually
defined uniquely by the interpolation conditions.
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One can prove for minimum-norm models in the underdetermined case that a pro-
jection of the errors onto an appropriate linear subspace obeys similar error bounds as for
interpolation or regression models, but such a result is clearly insufficient (see [64]).

As we will see in Theorem 5.4 below, when the sample set is linearly poised, under-
determined quadratic interpolation can offer an accuracy similar to linear interpolation or
regression. However, these error bounds depend not only on the linear poisedness constant
but also on the poisedness constant for the whole interpolation set. In fact, in Theorem 5.4,
we will see that the error bounds depend on the norm of the Hessian of the model. The
norm of the Hessian can be bounded, in turn, by the overall poisedness constant (in the
quadratic underdetermined sense, or in the minimum Frobenius norm sense as discussed in
the next section). It is important to note that the derivation of these error bounds is done
for any underdetermined quadratic interpolating model based on a set poised for linear
interpolation or regression.

We first present the derivation of these bounds. We begin, as usual, by stating our
assumptions.

Assumption 5.1. We assume that Y = {y0, y1, . . . , y p} ⊂Rn is a set of sample points poised
in the linear interpolation sense (or in the linear regression sense if p > n) contained in
the ball B(y0;	(Y )) of radius	=	(Y ).

Further, we assume that the function f is continuously differentiable in an open
domain � containing B(y0;	) and ∇ f is Lipschitz continuous in � with constant ν > 0.

We recall here, from Chapter 2, the definitions of

L̂ = 1

	
L = 1

	

[
y1− y0 · · · y p− y0

]�
and L̂† = (L̂� L̂)−1 L̂�. The error bounds are stated in terms of the conditioning of this
scaled version of L.

Theorem 5.4. Let Assumption 5.1 hold. Then, for all points y in B(y0;	(Y )), we have that

• the error between the gradient of a quadratic underdetermined interpolation model
and the gradient of the function satisfies

‖∇ f (y)−∇m(y)‖ ≤ 5
√

p

2
‖L̂†‖(ν+‖H‖)	,

• the error between a quadratic underdetermined interpolation model and the function
satisfies

| f (y)−m(y)| ≤ 5
√

p

2
‖L̂†‖(ν+‖H‖)	2+ 1

2
(ν+‖H‖)	2,

where H is the Hessian of the model.

Proof. Let us write our quadratic underdetermined interpolation model as in (3.13) and
denote the errors in function values and in the gradient, e f (x) and eg(x), as in (3.14)
and (3.15), respectively.
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Similarly to what we have done in the proof of Theorem 3.16, we start by subtract-
ing (3.14) from the interpolation conditions and obtain

(yi − y)�g+ 1

2
(yi − y)�H (yi − y)+ (yi− y)�H y

= f (yi )− f (y)− e f (y), i = 0, . . . , p.

Now, instead of using a second-order Taylor expansion as we did in Theorem 3.16, we use
a first-order argument and write

(yi − y)�eg(y)+ 1

2
(yi − y)�H (yi− y)

= O(	2)− e f (y), i = 0, . . . , p. (5.5)

The next step is to subtract the first of these equations from the others, canceling the
term e f (y) and obtaining

(yi − y0)�eg(y)+ 1

2
(yi − y)�H (yi− y)− 1

2
(y0− y)�H (y0− y)

= O(	2), i = 1, . . . , p.

The bound for the error in the gradient can now be easily derived using Assumption 5.1
and the matrix form of these equalities.

Finally from (5.5) with y = y0 and from the bound on the error in the gradient we get
the bound on the error in the function values.

5.3 Minimum Frobenius norm models
It is important to note that not any set of p1 ≥ n+ 1 points that is well poised for mini-
mum norm or best subbasis interpolation is poised for linear interpolation. A simple ex-
ample is the set Y = {(0,0,0), (1,0,0), (0,1,0), (1,1,0)} which is poised for the subbasis
{1, x1, x2, x1x2} but not poised for the subbasis {1, x1, x2, x3}.

Typically, in a derivative-free optimization framework which uses incomplete inter-
polation it is desirable to construct accurate linear models and then enhance them with
curvature information, hoping that the actual accuracy of the model is better than that of
a purely linear model. Hence, it is important to construct sample sets that are poised for
linear interpolation or regression. Those sets will give us at least linear accuracy as we have
seen from Theorem 5.4. We also know from this result that it is relevant to build models
for which the norm of the Hessian is moderate.

Let us consider underdetermined quadratic interpolation (q = (n+1)(n+2)/2), and
let us split the natural basis φ̄ into linear and quadratic parts: φ̄L = {1, x1, . . . , xn} and
φ̄Q = { 12 x2

1 , x1x2, . . . , 1
2 x2

n}. The interpolation model can thus be written as

m(x) = α�L φ̄L (x)+α�Qφ̄Q (x),

where αL and αQ are the appropriate parts of the coefficient vector α. Let us define the
minimum Frobenius norm solution αmfn as a solution to the following optimization problem
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in αL and αQ :
min 1

2‖αQ‖2
s.t. M(φ̄L ,Y )αL +M(φ̄Q ,Y )αQ = f (Y ).

(5.6)

We call such a solution a minimum Frobenius norm solution because, due to our specific
choice of φ̄(x) and the separation α = (αL ,αQ ), minimizing the norm of αQ is equivalent
to minimizing the Frobenius norm6 of the Hessian of m(x).

The condition for the existence and uniqueness of the minimum Frobenius norm
model is that the following matrix is nonsingular (see the exercises):

F(φ̄,Y ) =
[

M(φ̄Q ,Y )M(φ̄Q ,Y )� M(φ̄L ,Y )

M(φ̄L ,Y )� 0

]
. (5.7)

So, we say that a sample set Y is poised in the minimum Frobenius norm sense if the ma-
trix (5.7) is nonsingular. Poisedness in the minimum Frobenius norm sense implies poised-
ness in the linear interpolation or regression senses and, as a result, poisedness for quadratic
underdetermined interpolation in the minimum-norm sense. Note that the matrix (5.7) is
nonsingular if and only if M(φ̄L ,Y ) has full column rank and M(φ̄Q ,Y )M(φ̄Q ,Y )� is posi-
tive definite in the null space of M(φ̄L ,Y )� (and that this latter condition can be guaranteed,
for instance, if M(φ̄Q ,Y ) has full row rank). Note also that the Hessian H of the minimum
Frobenius norm model can be easily calculated as (see the exercises)

H =
p∑

i=0

μi

(
(yi )(yi )�− 1

2
Di

)
,

where Di is the diagonal matrix with diagonal entries [yi
j ]

2, j = 1, . . . ,n, and μi , i =
0, . . . , p, are the Lagrange multipliers associated with the equality constraints in (5.6).

We can define minimum Frobenius norm Lagrange polynomials as follows.

Definition 5.5. Given a set of interpolation points Y = {y0, y1, . . . , y p}, with n < p < q,
where q + 1 is the dimension of Pd

n with d = 2, a set of p1 = p+ 1 polynomials �i (x) =∑q
j=0(αi ) j φ̄ j (x), i = 0, . . . , p, is called a set of minimum Frobenius norm Lagrange poly-

nomials for the basis φ̄ if the i th Lagrange polynomial is a solution of (5.6) with the func-
tion f equal to the indicator function for yi , for each i = 0, . . . , p.

There is also an alternative definition for such minimum Frobenius norm Lagrange
polynomials consisting of defining λ(x) as the solution of the problem

min ‖M(φ̄Q ,Y )�λ(x)− φ̄Q(x)‖2
s.t. M(φ̄L ,Y )�λ(x) = φ̄L (x).

(5.8)

For a set Y poised in the minimum Frobenius norm, λ(x) satisfies

F(φ̄,Y )

[
λ(x)
μ(x)

]
=

[
M(φ̄Q ,Y )φ̄Q(x)

φ̄L (x)

]
(5.9)

6The Frobenius matrix norm is defined for squared matrices by ‖A‖2F =
∑

1≤i, j≤n a2
i j . The Frobenius

norm is the norm defined by the trace matrix inner product ‖A‖2F = 〈A, A〉tr = tr(A�A) (recall from linear
algebra that the trace of a squared matrix is the sum of its diagonal entries).
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for some vector (of multipliers) μ(x). Each of the elements of the solution vector λ(x)
for this problem is the corresponding minimum Frobenius norm Lagrange polynomial, i.e.,
λ(x)= �(x). It is also true that the minimum Frobenius norm model is expressible via the
minimum Frobenius norm Lagrange polynomials:

mmfn(x) =
p∑

i=0

f (yi )�i (x). (5.10)

The proof of these facts are left as exercises.
One can also extend the definition given in (3.6) to the minimum Frobenius norm

case. Given a set Y and a point x , we again consider Yi (x) = Y \ {yi } ∪ {x}, i = 0, . . . , p.
From Cramer’s rule and from the definition of λi (x) given in (5.9), we obtain that

λi (x) = det(FM̄ (φ̄,Yi (x)))

det(FM̄ (φ̄,Y ))
,

where (using M̄ = M(φ̄,Y )= [M̄L M̄Q ])

FM̄ (φ̄,Yi (x)) =
[

M̄Q M(φ̄Q ,Yi (x))� M̄L

M(φ̄L ,Yi (x))� 0

]
.

Thus, we can also regard the absolute value of the Lagrange polynomial λi (x) as a ratio of
two volumes, in the sense that

|λi (x)| = vol(φ̄M̄ (Yi (x)))

vol(φ̄M̄ (Y ))

with the volume of Y (in the minimum Frobenius norm sense) defined as

vol(φ̄M̄ (Y )) = |det(FM̄ (φ̄,Y ))|
(p1+n+1)!

.

We can now state a definition of �-poisedness in the spirit of this book.

Definition 5.6. Let � > 0 and a set B ∈ Rn be given. Let φ̄ be the natural basis of
monomials of Pd

n with d = 2. A poised set Y = {y0, y1, . . . , y p}, with p < q, where q1 =
q+1 is the dimension of Pd

n , is said to be �-poised in B (in the minimum Frobenius norm
sense) if and only if

1. for the set of minimum Frobenius norm Lagrange polynomials associated with Y

� ≥ max
0≤i≤p

max
x∈B
|�i (x)|,

or, equivalently,

2. for any x ∈ B the solution λ(x) ∈ Rp1 of (5.8) is such that

‖λ(x)‖∞ ≤ �,

or, equivalently,
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3. replacing any point in Y by any x ∈ B can increase the volume vol(φ̄M̄ (Y )) at most
by a factor�.

This definition of�-poisedness in the minimum Frobenius norm sense automatically
implies the definition of

√
p1�-poisedness for linear regression. One can see this easily

since λr (x) for linear regression is the minimum-norm solution of the constraints in (5.8)
and thus ‖λr (x)‖∞ ≤ ‖λr (x)‖ ≤ ‖λ(x)‖ ≤√p1‖λ(x)‖∞ ≤√p1�. In particular, since θ ≤
1 in the linear case (see the discussion after Theorem 3.14), we get ‖M(φ̄L ,Y )†‖ ≤√p1�,
which can then be used in Theorem 5.4.

To establish that the minimum Frobenius norm models based on �-poised sets in
the minimum Frobenius norm sense yield first-order Taylor-like errors of the type given in
Theorem 5.4, it remains to show that the Hessians of the models are bounded.

Theorem 5.7. Let Assumption 5.1 hold, and assume further that Y is �-poised in the
minimum Frobenius norm sense. Given an upper bound 	max on 	, we have that the
Hessian H of the minimum Frobenius norm model satisfies

‖H‖ ≤ 4 p1
√

q1ν�

c(	max)
,

where c(	max)=min{1,1/	max ,1/	2
max}.

Proof. Note that we can assume without loss of generality that y0 = 0. From Lemma 3.10,
we know that there exists a constant σ∞ > 0, independent of the set of Lagrange polyno-
mials, such that, for any i ∈ {0, . . . , p}, one has �i (y) = a�i φ̄(y) and (with x = y/	 and
ai (	)—the vector obtained from ai by dividing the terms corresponding to linear compo-
nents in φ̄ by 	 and the terms corresponding to quadratic components in φ̄ by 	2)

max
y∈B(0;	)

|a�i φ̄(y)| = ‖ai (	)‖∞ max
x∈B(0;1)

|(ai (	)/‖ai (	)‖∞)�φ̄(x)|
≥ ‖ai (	)‖∞σ∞
≥ ‖ai‖∞c(	max)	2σ∞.

The general definition of σ∞ is given in Lemma 3.10, and we know, from Lemma 3.12,
that σ∞ ≥ 1/4 in the quadratic case. Thus, from the �-poisedness assumption we get

‖ai‖∞ ≤ 4�

c(	max)	2
.

On the other hand, we also know that

‖∇2�i (y)‖ ≤ ‖∇2�i (y)‖F ≤ √
2‖aQ

i ‖ ≤
√

2(‖aL
i ‖+‖aQ

i ‖)
≤ 2‖ai‖ ≤ 2

√
q1‖ai‖∞,

where �i (y)= a�i φ̄(y)= (aL
i )�φ̄L (y)+ (aQ

i )�φ̄Q(y).
Without loss of generality we can also assume that f (y0)= 0 and ∇ f (y0)= 0. Such

an assumption requires a subtraction of a linear polynomial from f . If we now subtract
the same polynomial from mmfn, this new model will remain the minimum Frobenius norm
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model of the transformed f , and the Hessian of mmfn remains unchanged. But then we can
conclude, expanding about y0 and using the properties of f stated in Assumption 5.1, that

max
y∈B(y0;	)

| f (y)| ≤ ν

2
	2.

Finally, from (5.10) and the above inequalities, we obtain that

‖H‖ = ‖∇2mmfn(y)‖ ≤
p∑

i=0

| f (yi )|‖∇2�i (y)‖ ≤ 4 p1
√

q1ν�

c(	max)
. (5.11)

Note that the poisedness constant � appears twice in the error bounds of Theo-
rem 5.4, once as the bound on the linear regression and once in the bound on the Hessian
of the model.

As in Theorem 3.14, we can prove that the condition number of F(φ̄,Y ) and the
�-poisedness constant are related to each other for poised sets in the minimum Frobenius
norm sense. To establish such a result we consider a set Ŷ , obtained by shifting and scal-
ing Y , so that it is contained tightly in B(0;1) (meaning that Ŷ ⊂ B(0;1) and at least one of
the points in Ŷ lies on the boundary of B(0;1)) and work with F̂ = F(φ̄, Ŷ ).

Theorem 5.8. If F̂ is nonsingular and ‖F̂−1‖ ≤�, then the set Ŷ is κ�-poised in the unit
ball B(0;1) centered at 0, where κ depends only on n and p. Conversely, if the set Ŷ is
�-poised in the unit ball B(0;1) centered at 0, then

‖F̂−1‖ ≤ max{θ0,θ2(�),θ4(�)}, (5.12)

where θ0, θ2(�), and θ4(�) are polynomials in � of degrees 0, 2, and 4, respectively, with
nonnegative coefficients dependent only on n and p.

Proof. Let ψ(x) = (M̂Q φ̄Q(x), φ̄L(x)) and pF = p1 + n + 1. If F̂ is nonsingular and
‖F̂−1‖ ≤�, then, from (5.9) and maxx∈B(0;1)‖φ̄(x)‖∞ ≤ 1,

‖λ(x)‖∞ ≤ ‖F̂−1‖∞‖ψ(x)‖∞ ≤ p
1
2
F‖F̂−1‖‖ψ(x)‖∞ ≤ κ�,

with

κ = p
1
2
F

∥∥∥∥
[

M̂Q 0
0 I

]∥∥∥∥ .

To prove the reverse relation let v̄ be a normalized eigenvector of F̂−1 corresponding
to its largest eigenvalue in absolute value. By applying Lemma 3.13 with A= F̂−1, w= v̄,
and r = ψ(y) for some y ∈ B(0;1), we obtain

‖F̂−1ψ(y)‖ ≥ |v̄�ψ(y)|‖F̂−1‖.
Now note that v̄�ψ(y)= v�F φ̄(y) with vF = (M̂�Q v̄λ, v̄μ) and v̄ = (v̄λ, v̄μ). Thus,

‖F̂−1ψ(y)‖ ≥ |v�F φ̄(y)|‖F̂−1‖. (5.13)
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We know that v̄ is also an eigenvector of F̂ associated with its smallest eigenvalue emin
in absolute value (note that |emin | = 1/‖F̂−1‖). Thus, using F̂ v̄ = emin v̄ we can derive

‖M̂�Q v̄λ‖2+ emin‖v̄μ‖2 = emin‖v̄λ‖2, (5.14)

which then implies
‖vF‖2 = emin‖v̄λ‖2+ (1− emin)‖v̄μ‖2. (5.15)

Now we will prove that either |emin | ≥ 1/2 (in which case ‖F̂−1‖ ≤ 2 = θ0) or it
happens that vF is such that ‖vF‖2 ≥ 1/4 or ‖vF‖2 ≥ |emin |. In fact, if |emin |< 1/2, then,
from (5.15),

‖vF‖2 ≥ emin‖v̄λ‖2+|emin |‖v̄μ‖2.

Thus, when emin > 0, since ‖v̄‖ = 1,

‖vF‖2 ≥ |emin |
(
‖v̄λ‖2+‖v̄μ‖2

)
= |emin |.

If emin < 0, then we know from (5.14) that it must be the case where ‖v̄λ‖2 ≤ ‖v̄μ‖2. Now
note that since ‖v̄‖ = 1, either ‖v̄μ‖2 ≥ 1/4 or ‖v̄λ‖2 ≥ 1/4; in the latter case one also gets
‖v̄μ‖2 ≥ ‖v̄λ‖2 ≥ 1/4. Then, as a result of the definition of vF , we obtain ‖vF‖2 ≥ 1/4.

From Lemma 3.10, we can choose y ∈ B(0;1) so that, for some appropriate σ2 > 0,

|v�F φ̄(y)| ≥ σ2‖vF‖.
Thus, either

|v�F φ̄(y)| ≥ σ2

2
,

in which case, from (5.13), we obtain ‖F̂−1ψ(y)‖ ≥ (σ2/2)‖F̂−1‖, or

|v�F φ̄(y)| ≥ σ2|emin | 12 = σ2
1

‖F̂−1‖ 1
2

,

in which case we have ‖F̂−1ψ(y)‖ ≥ σ2‖F̂−1‖ 1
2 , again using (5.13). Thus, using (5.9),∥∥∥∥

[
λ(y)
μ(y)

]∥∥∥∥ = ‖F̂−1ψ(y)‖ ≥ σ2 min

{
‖F̂−1‖

2
,‖F̂−1‖ 1

2

}
. (5.16)

Finally, we use (5.9) to express μ(y) in terms of λ(y):

M̂Lμ(y) = M̂Q φ̄Q(y)− M̂Q M̂�Qλ(y).

As we have seen immediately after Definition 5.6,�-poisedness in the minimum Frobenius
norm sense implies �-poisedness in the linear (interpolation or regression) sense. Thus,
using that we consider a unit ball, we can bound ‖μ(y)‖ in terms of a quadratic polynomial
in �:

‖μ(y)‖ ≤ √p1‖M̂Q‖�+ p1‖M̂Q M̂�Q‖�2.

Then, from ‖λ(y)‖∞ ≤�, we see that∥∥∥∥
[
λ(y)
μ(y)

]∥∥∥∥ ≤ ‖λ(y)‖+‖μ(y)‖ ≤ √p1(‖M̂Q‖+1)�+ p1‖M̂Q M̂�Q‖�2.
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As a result of this bound and using (5.16), we see that either

‖F̂−1‖ ≤ 2
√

p1

σ2
(‖M̂Q‖+1)�+ 2 p1

σ2
‖M̂Q M̂�Q‖�2 = θ2(�)

or

‖F̂−1‖ ≤
(√

p1

σ2
(‖M̂Q‖+1)�+ p1

σ2
‖M̂Q M̂�Q‖�2

)2

= θ4(�),

and the proof is concluded.

The following corollary of Theorem 5.8 will be useful in Chapter 6. For the sake of
clarity, we highlight the dependence of the constant involved on the natural basis φ̄.

Corollary 5.9. If Ŷ is �-poised in B(0;1) in the minimum Frobenius norm sense, then
|det(F(φ̄, Ŷ ))| ≥�(n, p, φ̄)> 0, where �(n, p, φ̄) depends only on n, p, and φ̄.

Proof. Theorem 5.8 guarantees the existence of a constant max{θ0,θ2(�),θ4(�)} dependent
only on n, p, and φ̄ such that ‖F(φ̄, Ŷ )−1‖ ≤ max{θ0,θ2(�),θ4(�)}. Since the absolute
value of the determinant of a symmetric matrix is the product of its eigenvalues, we obtain

|det(F(φ̄, Ŷ )| = 1

|det(F(φ̄, Ŷ )−1)| ≥
1

(max{θ0,θ2(�),θ4(�)})p1+n+1
.

Least Frobenius norm updating of quadratic models

Powell [191] suggested choosing the solution to the underdetermined interpolation sys-
tem (5.1) which provides the Hessian model H closest, in the Frobenius norm sense, to a
previously calculated Hessian model H old . In the notation of this chapter, such a model is
the solution of

min 1
2‖αQ −αold

Q ‖2
s.t. M(φ̄L ,Y )αL +M(φ̄Q ,Y )αQ = f (Y ).

(5.17)

Rather than solving (5.17) directly, one can solve a shifted problem on αdi f
Q = αQ −αold

Q

and then compute αQ as αdi f
Q +αold

Q (and the same for αL ). The shifted problem is posed
as follows:

min 1
2‖αdi f

Q ‖2
s.t. M(φ̄L ,Y )αdi f

L +M(φ̄Q ,Y )αdi f
Q = f di f (Y ),

(5.18)

where f di f (Y )= f (Y )−mold(Y ). Problem (5.18) is then of the type given in (5.6).
It is possible to show (see [191] or the exercise below) that if f itself is a quadratic

function, then
‖H −∇2 f ‖ ≤ ‖H old−∇2 f ‖, (5.19)

where∇2 f is the constant Hessian of f . This property is an indication of the good behavior
of Powell’s least Frobenius update (as we will discuss in Chapter 11).
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5.4 Notes and references
Another effective idea for constructing a “quasi-Newton” model with guaranteed linear
accuracy is to employ NFPs, which we discussed in Chapter 3. First, a subset of n +
1 affinely independent points of Y is selected and the set of linear NFPs is constructed.
Then for the remaining points the set of NFPs is underdetermined. As described above
for Lagrange polynomials, we can consider the minimum Frobenius norm NFPs for the
quadratic block. NFPs can then serve as a measure of poisedness of the sample set, a
criterion for selecting sample points, and to construct the interpolation model. Further
references on the use of NFPs can be found in [59, 205].

Minimum Frobenius norm models have so far proven to be the most successful
second-order models in interpolation-based trust-region methods. They are used in at least
two software implementations. In the DFO code (see Chapter 11 and the appendix) they are
used to construct a model for any n+ 1 < p < q with the smallest Frobenius norm of the
Hessian and where the sample set selection is based on the NFPs. As we have mentioned
above, the models in [191, 192] are constructed to minimize the Frobenius norm not of the
Hessian itself but of the change in the Hessian of the model from one iteration to the next.
This clever idea works very successfully with p1 = 2n+1 and is an attempt to recreate the
second-order information in the style of quasi-Newton methods. The sample set selection
is based on minimum Frobenius norm Lagrange polynomials. We will discuss both of these
approaches in more detail in Chapter 11.

5.5 Exercises
1. Show that the set of minimum-norm Lagrange polynomials (associated with φ̄) exists

and is unique if the matrix M(φ̄,Y ) has full row rank.

2. Given a poised set Y , show that the functions λi (x), i = 0, . . . , p, defined by the least-
squares solution of (5.2), form the set of minimum-norm Lagrange polynomials for
Y given in Definition 5.1.

3. Show that the minimum Frobenius norm polynomial exists and is unique if and only
if the matrix (5.7) is nonsingular. (State the first-order necessary and sufficient con-
ditions for problem (5.6), eliminate αQ , and write these conditions in terms of the
Lagrange multipliers and αL .)

4. Show that the Hessian H of the minimum Frobenius norm model is

H =
p∑

i=0

μi

(
(yi )(yi )�− 1

2
Di

)
,

where Di is the diagonal matrix with diagonal entries [yi
j ]

2, j = 1, . . . ,n, and μi , i =
0, . . . , p, are the Lagrange multipliers associated with the equality constraints in (5.6).
(Given the previous exercise, it is easy to see that [αQ]1 =∑p

i=0
1
2μi [yi

1]2, [αQ]2 =∑p
i=0μi yi

1yi
2, . . . , [αQ]q−n =∑p

i=0
1
2μi [yi

n]2.)

5. Assume that Y is poised in the minimum Frobenius norm sense. Show that the so-
lution of (5.8) is the (unique) set of minimum Frobenius norm Lagrange polynomi-
als given in Definition 5.5. (State the first-order necessary and sufficient conditions
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of (5.6) for the (i+1)st indicator function associated with yi and express it as a func-
tion of the i th column of the inverse of (5.7), and do the same for the i th component
of λ(x).)

6. Assume that Y is poised in the minimum Frobenius norm sense. Using the derivation
of the previous exercise, show (5.10).

7. Assume that Y is poised in the minimum Frobenius norm sense. Show that the mini-
mum Frobenius norm Lagrange polynomials given in Definition 5.5 are the Lagrange
multipliers associated with the equality constraints of the following problem:

min 1
2‖αQ‖2+ (φ̄L(x))�αL

s.t. M(φ̄L ,Y )αL +M(φ̄Q ,Y )αQ = M(φ̄Q ,Y )φ̄Q(x).

8. Prove (5.19) when f is quadratic by taking the following steps. First, consider the
function

h(θ ) = ‖(H − H old)+ θ (∇2 f − H )‖
and show that it attains its minimizer at θ = 0. Then, write down h′(0)= 0 and see
that H − H old and ∇2 f − H are orthogonal in the trace matrix inner product. Basi-
cally you have shown that H is the projection of H old onto the affine set of quadratic
functions defined by the interpolating conditions, applied using the Frobenius norm
in H .
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Chapter 6

Ensuring well poisedness and
suitable derivative-free models

In Chapters 3–5 the sample set Y was typically considered given and fixed, and we were
exploring the properties of the polynomial bases and models associated with such a set.
In contrast, in this chapter we will consider modifying a set Y to improve the quality of
the models. From Chapters 3–5 we know that the quality of the model is connected with
the poisedness of the sample set. To motivate the material of this chapter we first put to-
gether the conditions and error bounds on derivative-free models required by model-based
derivative-free algorithms, such as the trust-region methods of Chapter 10. We abstract
from the specifics of the model functions and state general requirements for these mod-
els. For polynomial interpolation and regression models, in particular, these requirements
imply that the sample sets Y have to be �-poised with a fixed upper bound on � for all
sample sets used by a derivative-free algorithm. It turns out that this property does not
actually have to hold for all models used by a derivative-free algorithm, but it has to be
checked and enforced whenever necessary. To enforce this we need to have algorithms
which can perform the checking and enforcing and which can be used efficiently within a
derivative-free framework (such as, for instance, the one described in Chapter 10).

We will discuss algorithms which construct poised interpolation or regression sets,
and those which improve and maintain the poisedness constants of these sets. Recall that
the definition of�-poisedness requires the maximum absolute value of the Lagrange poly-
nomials associated with the sample set to be no greater than �. The algorithms that we
discuss here are based on constructing Lagrange or other (similar) polynomial bases and
using those as a guide for the modification of the sample set Y .

We will discuss two main algorithmic approaches for updating the set Y . One ap-
proach consists of directly controlling the absolute values of the Lagrange polynomials.
It is discussed in Section 6.2. The other approach controls �-poisedness “indirectly” by
applying pivotal algorithms to control the conditioning of the scaled version M(φ̄, Ŷ ) of the
matrix M(φ,Y ) (see Chapters 3–5), which defines the system of Lagrange polynomials. In
Section 6.3 we will describe such a pivotal algorithm.

We shall always refer to the sample set as Y in this chapter, and it should be under-
stood that the set is being updated as an algorithm progresses. We will not index different
interpolation sets by iteration number or algorithmic step, in order to keep the notation
simple. The meaning of each use of the Y notation should be clear from the context. When

89
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90 Chapter 6. Ensuring well poisedness and suitable derivative-free models

it is not so, we employ some additional notation. We also would like to mention that in
this chapter the order of the points in Y is important, since the points in Y may be consid-
ered, accepted, rejected, or replaced by each algorithm in a certain order. Naturally, once
the set Y has been fixed, the order of the points has no influence on the interpolation or
regression model. We will consider an arbitrary set Y and the set, which we denote by Ŷ ,
which is obtained from Y by shifting and scaling it so that the smallest superscribing ball
containing Ŷ is B(0;1)—the ball of radius 1, centered at the origin.

6.1 Fully linear and fully quadratic models
In this section we will abstract from the specifics of the models that we use. We will
impose only those requirements on the models that are essential to reproduce the proper-
ties of the Taylor models needed to guarantee global convergence of interpolation-based
derivative-free methods (such as the trust-region methods of Chapter 10). We will show
that polynomial interpolation and regression models, in particular, can satisfy such require-
ments.

In a derivative-free algorithmic framework (such as the one described in Chapter 10),
it is essential to guarantee that whenever necessary a model of the objective function with
uniformly good local accuracy can be constructed. In the case of linear approximation, we
will say that such a model has to belong to a fully linear class. This concept requires the
following assumption.

Assumption 6.1. Suppose that a set S and a radius 	max are given. Assume that f
is continuously differentiable with Lipschitz continuous gradient in an appropriate open
domain containing the 	max neighborhood

⋃
x∈S B(x ;	max) of the set S.

In the algorithmic context of model-based methods, one is typically given a point x0
and the smoothness conditions on the function f are imposed in a level set of the form
S = L(x0)= {x ∈Rn : f (x)≤ f (x0)}. It is also typical to impose an upper limit 	max on
the size of the balls where the model is considered. The definition of a fully linear class of
models is given below.

Definition 6.1. Let a function f : Rn → R, that satisfies Assumption 6.1, be given. A set
of model functions M = {m : Rn → R, m ∈ C1} is called a fully linear class of models if
the following hold:

1. There exist positive constants κe f , κeg, and νm
1 such that for any x ∈ S and 	 ∈

(0,	max] there exists a model function m(y) in M, with Lipschitz continuous gradi-
ent and corresponding Lipschitz constant bounded by νm

1 , and such that

• the error between the gradient of the model and the gradient of the function
satisfies

‖∇ f (y)−∇m(y)‖ ≤ κeg	 ∀y ∈ B(x ;	), (6.1)

and

• the error between the model and the function satisfies

| f (y)−m(y)| ≤ κe f 	
2 ∀y ∈ B(x ;	). (6.2)
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Such a model m is called fully linear on B(x ;	).

2. For this class M there exists an algorithm, which we will call a “model-improvement”
algorithm, that in a finite, uniformly bounded (with respect to x and 	) number of
steps can

• either establish that a given model m ∈M is fully linear on B(x ;	) (we will
say that a certificate has been provided and the model is certifiably fully linear),

• or find a model m̃ ∈M that is fully linear on B(x ;	).

In the case of quadratic approximation, we will ask the models to belong to a fully
quadratic class, and for that purpose we require one more degree of smoothness.

Assumption 6.2. Suppose that a set S and a radius 	max are given. Assume that f
is twice continuously differentiable with Lipschitz continuous Hessian in an appropriate
open domain containing the 	max neighborhood

⋃
x∈S B(x ;	max) of the set S.

The fully quadratic class of models defined below has uniformly good local second-
order accuracy.

Definition 6.2. Let a function f , that satisfies Assumption 6.2, be given. A set of model
functions M = {m : Rn → R, m ∈ C2} is called a fully quadratic class of models if the
following hold:

1. There exist positive constants κe f , κeg, κeh, and νm
2 , such that for any x ∈ S and

	 ∈ (0,	max] there exists a model function m(y) in M, with Lipschitz continuous
Hessian and corresponding Lipschitz constant bounded by νm

2 , and such that

• the error between the Hessian of the model and the Hessian of the function
satisfies

‖∇2 f (y)−∇2m(y)‖ ≤ κeh	 ∀y ∈ B(x ;	), (6.3)

• the error between the gradient of the model and the gradient of the function
satisfies

‖∇ f (y)−∇m(y)‖ ≤ κeg	
2 ∀y ∈ B(x ;	), (6.4)

and

• the error between the model and the function satisfies

| f (y)−m(y)| ≤ κe f 	
3 ∀y ∈ B(x ;	). (6.5)

Such a model m is called fully quadratic on B(x ;	).

2. For this class M there exists an algorithm, which we will call a “model-improvement”
algorithm, that in a finite, uniformly bounded (with respect to x and 	) number of
steps can

• either establish that a given model m ∈M is fully quadratic on B(x ;	) (we
will say that a certificate has been provided and the model is certifiably fully
quadratic),
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• or find a model m̃ ∈M that is fully quadratic on B(x ;	).

Note that the definition of a fully quadratic (resp., fully linear) class does not imply
that all models contained in that class satisfy (6.3)–(6.5) (resp., (6.1)–(6.2)) for given 	
and x . This has to be the case to make the definition of the class independent of the choice
of	 and x . It is required only that for any specific choice of	 and x there exists a member
of the class which satisfies (6.3)–(6.5) (resp., (6.1)–(6.2)).

As a consequence of the flexibility of Definitions 6.1 and 6.2, some of the model
classes that fit in their framework are usually of no interest for a practical algorithm. For
instance, consider M= { f }—a class consisting of the function f itself. Clearly, by Defi-
nition 6.2 such an M is a fully quadratic class of models, since f is a fully quadratic model
of itself for any x and 	 and since the algorithm for verifying that f is fully quadratic is
trivial.

Another source of impractical fully linear or fully quadratic classes is the flexibility
in the choice of a model-improvement algorithm. The definition in the fully linear case
requires the existence of a finite procedure which either certifies that a model is fully linear
or produces such a model. For example, Taylor models based on suitably chosen finite-
difference gradient evaluations are a fully linear class of models, but a model-improvement
algorithm needs to build such models “from scratch” for each new x and	. In a derivative-
free algorithm with expensive (and often noisy) function evaluations this approach is typ-
ically impractical. However, the framework of fully linear models still supports such an
approach and guarantees its convergence, provided that all necessary assumptions are sat-
isfied.

The purpose of the abstraction of fully linear and fully quadratic models is, however,
to allow for the use of models possibly different from polynomial interpolation and regres-
sion, as long as these models fit Definitions 6.1 and 6.2. The abstraction highlights, in our
opinion, the fundamental requirements for obtaining the appropriate global convergence
results for interpolation-based trust-region algorithms or other sampling-based algorithms
where the models are expected to reproduce the local uniform behavior of Taylor models.

The case of polynomial models

One can immediately observe that linear and quadratic, interpolation and regression, poly-
nomial models can be chosen to satisfy the error bounds of Definitions 6.1 and 6.2. In
fact, given � > 1, any linear (resp., quadratic) polynomial interpolation model built on a
�-poised set or a polynomial regression model built on a strongly �-poised set is an el-
ement of the same fully linear (resp., fully quadratic) class, for which the constants κe f
and κeg (resp., κe f , κeg , and κeh) depend only on �, the cardinality p1 of the sample set,
the dimension q1 of the polynomial space, and the Lipschitz constant of ∇ f (resp., ∇2 f )
in Assumption 6.1 (resp., Assumption 6.2). From the discussion in Section 5.3 we also
know that the minimum Frobenius norm models based on a �-poised set (in the minimum
Frobenius norm sense) are fully linear with κe f and κeg depending only on�, p1, and q1 of
the polynomial space and on the Lipschitz constant of ∇ f . Note that since the gradient of
a linear polynomial model and the Hessian of a quadratic polynomial model are constant,
they are trivially Lipschitz continuous for any positive Lipschitz constant.

One can also guarantee under some conditions (see the exercises) that the gradient
of a quadratic polynomial model based on a �-poised set is Lipschitz continuous—and
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thus that (interpolation or regression) quadratic polynomial models also satisfy the bounds
needed in the definition of a fully linear class.

We will show in the remainder of this chapter how polynomial interpolation and
regression models can provide fully linear and fully quadratic model classes. Toward that
end we need to address the issue of the existence of finite model-improvement algorithms
as required by Definitions 6.1 and 6.2.

6.2 Ensuring well poisedness using Lagrange polynomials
We know from Chapter 3 that, given a set of interpolation points, the maximum of the ab-
solute values of the Lagrange polynomials �(x) (see Definition 3.3) in the region of interest
defines the �-poisedness of the interpolation set (see Definition 3.6) in that region. It is
natural, therefore, to directly monitor and control the size of �(x) as a way of maintaining
well poisedness in interpolation sets. The cases of regression sets (see Chapter 4) and un-
derdetermined interpolation sets (see Chapter 5) are somewhat different; therefore, for the
moment, we will focus on complete determined interpolation.

Before we discuss the method of maintaining the �-poisedness of the interpolation
set via Lagrange polynomials, let us discuss, given an interpolation set, how to compute
and update Lagrange polynomials.

Computing and updating Lagrange polynomials

Given an interpolation set Y = {y0, y1, . . . , y p}, whose cardinality is equal to the dimen-
sion of the polynomial space Pd

n , the following procedure generates the basis of Lagrange
polynomials.

Algorithm 6.1 (Computing Lagrange polynomials).

Initialization: Start by choosing an initial approximation to the Lagrange polynomial ba-
sis, e.g., given by the monomial basis (3.1), �i (x)= φ̄i (x), i = 0, . . . , p.

For i = 0, . . . , p

1. Point selection: Find ji = argmaxi≤ j≤p |�i (y j )|. If �i (y ji )= 0, then stop (the
set Y is not poised). Otherwise, swap points yi and y ji in set Y .

2. Normalization:
�i (x)← �i (x)/�i (yi ). (6.6)

3. Orthogonalization: For j = 0, . . . , p, j �= i ,

� j (x) ← � j (x)− � j (yi )�i (x). (6.7)

It is easy to verify that this algorithm indeed generates the basis of Lagrange polyno-
mials. After the first iteration we have that

�0(y0) = 1 and � j (y0) = 0, j = 1, . . . , p. (6.8)
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After the second iteration we get that

�1(y1) = 1 and � j (y1) = 0, j = 0, . . . , p, j �= 1.

However, this second iteration does not destroy (6.8) since �1(y0)← �1(y0)/�1(y1) and
� j (y0)← � j (y0)− � j (y1)�1(y0), j = 0, . . . , p, j �= 1. The rest of the proof is left as an
exercise.

Each Lagrange polynomial can have up to p1 = p+1 coefficients; hence evaluating
and updating each polynomial in (6.6) and (6.7) takes O(p) operations. There are p+ 1
such polynomials, and at each iteration of the algorithm up to p+ 1 of these polynomials
get evaluated and updated. Since the algorithm always makes p+1 steps it requires O(p3)
operations to compute the set of Lagrange polynomials from scratch.

Now assume that the basis of Lagrange polynomials is already at hand. The question
is how will it change if one of the points, say yk , in the interpolation set Y = {y0, y1, . . . , y p}
is replaced by a new one, say yk∗ . The new interpolation set becomes

Y ∗ = Y ∪{yk∗} \ {yk}.
Denote by �∗j (x), j = 0, . . . , p, the new Lagrange polynomials corresponding to Y ∗. If

�k(yk∗) �= 0, then we simply perform the normalization and orthogonalization steps of the
above algorithm for i = k. In particular,

�∗k (x) = �k(x)/�k(yk∗), (6.9)

�∗j (x) = � j (x)− � j (yk∗)�∗k(x) ∀ j ∈ {0, . . . , p}, j �= k. (6.10)

If it happens that �k(yk∗) = 0, then we have a nontrivial polynomial that vanished at all
points of Y ∗, and hence the resulting set Y ∗ is not poised and the above steps are not valid.

It is easy to see now from (6.9) and (6.10) that the effort of updating the Lagrange
polynomials is O(p2), since it is simply the same as performing one iteration of Algo-
rithm 6.1. In the case of linear interpolation, p = O(n) and the cost of computing the
whole set of Lagrange polynomials is not very high. On the other hand, in the case of
quadratic interpolation, p =O(n2) and the cost of computing the whole set of of Lagrange
polynomials is O(n6), which can be prohibitive for anything but small n if used often. Thus,
restricting the changes of interpolation set to simple one-point updates can imply signifi-
cant savings with respect to Lagrange polynomial computations. Now we can recall that
the interpolation model can be expressed as a simple linear combination of the Lagrange
polynomials with known coefficients. Hence, the computation of the interpolation model
reduces to computing the set of Lagrange polynomials and, therefore, has the same com-
plexity. In particular, if a new set of Lagrange polynomials can be recomputed in O(n2)
steps, then so can the new model.

Geometry checking algorithm

In order to make the�-poisedness requirement practical we need to have a procedure which
presented with an interpolation set Y can either verify that the set is �-poised in a given
closed ball B or, in case it fails to do so, is able to make improvement steps in such a way
that after a finite number of these steps the set Y is guaranteed to become�-poised.
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There are two cases to consider. The first case is when Y is either not poised or it con-
tains less than p1 points. This case is detected by the point selection step of Algorithm 6.1
(in practice with the zero test replaced with a suitable tolerance on the absolute value). To
improve the set Y in this situation we consider the following modification of Algorithm 6.1.
(Later we will consider a second case when the given set Y contains at least p1 points and
it is poised.)

Algorithm 6.2 (Completing the nonpoised set Y via Lagrange polynomials).

Initialization: Start by choosing an initial approximation to the Lagrange polynomial ba-
sis, e.g., given by the monomial basis (3.1), �i (x)= φ̄i (x), i = 0, . . . , p. Let pini +1
be the number of given points in the initial set Y .

For i = 0, . . . , p

1. Point selection: Find ji = argmaxi≤ j≤pini
|�i (y j )|. If |�i (y ji )|> 0 and i ≤ pini ,

then swap points yi and y ji in set Y . Otherwise, compute (or recompute if
i ≤ pini ) yi as

yi ∈ argmax
x∈B

|�i (x)|.

2. Normalization:
�i (x) ← �i (x)/�i (yi ).

3. Orthogonalization: For j = 0, . . . , p, j �= i ,

� j (x) ← � j (x)− � j (yi )�i (x).

This algorithm will first include those points in Y which make it a poised set. Once it
runs out of such points, it will discard any remaining points (those which make the set non-
poised). Then it will generate a point at a time, by maximizing the next suitable Lagrange
polynomial until Y contains p1 points. The complexity of this algorithm depends on the
complexity of performing global optimization of Lagrange polynomials in B .

Now let us focus on the case where Y is poised and has exactly p1 points (it can have
more, but we will simply ignore the unused points). We want an algorithm that will check if
Y is�-poised, for a given�> 1, and, if it is not, then it will make it so. To check whether
Y is �-poised, we can compute the maximum absolute value of the Lagrange polynomials
on B . If such a maximum absolute value is below a given �, then Y is �-poised. If it is
not below �, then the interpolation point corresponding to the Lagrange polynomial with
the largest maximum absolute value is replaced by a point that maximizes this Lagrange
polynomial on the ball.

Algorithm 6.3 (Improving well poisedness via Lagrange polynomials).

Initialization: Choose some constant � > 1. Assume that a poised interpolation set Y is
given with cardinality p1 (if not, apply Algorithm 6.2 to generate such a set). If not
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already available, compute the Lagrange polynomials �i (x), i = 0, . . . , p, associated
with Y (= Y0).

For k = 1,2, . . .

1. Estimate

�k−1 = max
0≤i≤p

max
x∈B
|�i (x)|.

�k−1 can be computed exactly by maximizing the absolute value of all La-
grange polynomials on B or estimated via upper and lower bounds. Ensure
that �k−1 is known with enough accuracy to guarantee either that �k−1 > �

or �k−1 ≤�.

2. If �k−1 >�, then let ik ∈ {0, . . . , p} be an index for which

max
x∈B
|�ik (x)| > �,

and let yik∗ ∈ B be a point that maximizes |�ik (x)| in B (approximately or exactly
depending on the optimization performed in Step 1).

Update Y (= Yk) by performing the point exchange

Y ← Y ∪{yik∗ } \ {yik }.

Otherwise (i.e.,�k−1 ≤�), Y is �-poised and stop.

3. Update all Lagrange polynomial coefficients.

Assuming that the global maximization of the quadratic polynomials on B can be
performed (for instance, as in [172]), let us show that for any � > 1 the above algorithm
will stop after a finite, uniformly bounded number of steps.

First of all, let us recall the properties of Lagrange polynomials with respect to shift-
ing and scaling. Hence, given a set Y in a ball B we observe that Algorithm 6.3 performs
identically to the case when it is applied to the shifted and scaled version of Y which lies
tightly in B(0;1) (meaning that it is a subset of B(0;1) and at least one of its points lies
on the boundary of B(0;1)). By identical behavior we mean that the algorithm will replace
the same sequence of points and that the resulting new sample sets will be identical up to
shifting and scaling.

Theorem 6.3. For any given � > 1, a closed ball B, and a fixed polynomial basis φ,
Algorithm 6.3 terminates with a �-poised set Y after at most N = N(�,φ) iterations,
where N is a constant which depends on � and φ.

Proof. We divide the proof of the theorem into three parts.
Part 1. Recall that �(x) = λ(x), (3.6) for Lagrange polynomials, and the definition

of φ(Y )=M(φ,Y ) for some fixed polynomial basis φ. Equation (3.6) states that |�ik (yik∗ )| is



idfo
2008/11/17
page 97

�

�

�

�

�

�

�

�

6.2. Ensuring well poisedness using Lagrange polynomials 97

equal to the ratio of the volume of the simplex of vertices in φ(Y ∗), where Y ∗ = Y ∪{yik∗ }\
{yik }, to the volume of the simplex of vertices in φ(Y ):

|�ik (yik∗ )| = vol(φ(Y ∗))
vol(φ(Y ))

> � > 1.

This means that each time a point yik is replaced by a new point yik∗ such that |�ik (yik∗ )|>
�> 1, the volume of the appropriate simplex increases by at least a factor of �.

All the points are considered within the closed ball B , and hence φ(B) is a compact
set in Rp1 . This means that the volume of the simplex defined by φ(Y ) cannot increase
infinitely many times by a constant factor �> 1. Let Vmax = V (φ,Ymax) be the maximum
volume of all simplices formed by φ(Y ) for Y ⊂ B , and let V (φ,Y0) be the volume of
the simplex defined by the vertices in φ(Y0) for the initial set Y0. The number of steps
of Algorithm 6.3 cannot exceed �log�(Vmax/V (φ,Y0))�. Note that this quantity is scale
independent.

Part 2. We will now show that, after at most p1 steps, Algorithm 6.3 computes a set Y
such that the simplex volume satisfies V (φ,Y )≥�(p,φ)> 0. First, we will show that after
at most p1 iterations the algorithm obtains a set Y which is 2p-poised.

Assume that one iteration of Algorithm 6.3 requiring an update is performed, the
point yi1 is replaced, and the Lagrange polynomials get updated. After the update, since
�i1 is divided by its maximum value, we have maxx∈B |�i1 (x)| ≤ 1. Then, on the next
step requiring a replacement point, i2 �= i1, since we choose a polynomial whose value is
larger than 1 on B . After the second step, we have, again, maxx∈B |�i2 (x)| ≤ 1, and also
maxx∈B |�i1 (x)| ≤ 2, since �i1 (x)← �i1 (x)−�i1 (yi2 )�i2 (x). At the third step we either have
a 2-poised set or we have i3 /∈ {i1, i2}. By the same logic as used above after the third step
we have maxx∈B |�i3 (x)| ≤ 1, maxx∈B |�i2 (x)| ≤ 2, and maxx∈B |�i1 (x)| ≤ 4. By extending
this argument and applying mathematical induction we easily achieve that after p1 steps
we will have a 2p-poised set Y .

Part 3. From the remark before this theorem we know that if the algorithm runs for p1
steps, then it will produce the same set (up to shifting and scaling) as if it were applied to the
shifted and scaled Ŷ in B(0;1). This means that we can apply Corollary 3.15, which states
that the volume V (φ,Y ) of the simplex of vertices Y obtained after p1 steps is uniformly
bounded away from zero: V (φ, Ŷ )≥�(p,φ)> 0, where�(p,φ) depends only on p and φ.
(Corollary 3.15 is stated for the natural basis φ̄ but holds for any φ with an according
redefinition of θ .) Hence, �log�(Vmax/V (φ,Y ))� is uniformly bounded from above by
a constant N1 that depends only on �, p, and φ. Letting N = N1 + p1 concludes the
proof.

Note that the first part of the proof, where the number of steps is shown to be finite
(but not necessarily uniformly bounded), still holds if we use only the fact that at each step
the absolute value of the Lagrange polynomial at the new point is greater than�. However,
the proof that the number of steps is not only finite but also uniformly bounded required
a uniform lower bound on the volume of the initial set Y0. This was accomplished in the
second and third parts of the proof. Note that in the second part of the proof, to show that
we can obtain a 2p-poised set after p1 steps, we needed the fact that the global maximum
absolute value of a Lagrange polynomial on B can be found at each iteration. Such a
requirement could be circumvented if one finds a different way to ensure a uniform lower
bound on the volume of the initial set Y0.
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We now give an outline on how one can modify Algorithm 6.3 to avoid global opti-
mization of all polynomials at each step. Each improving step of Algorithm 6.3 performs an
update of Lagrange polynomials, which we know requires O(p2) steps. Hence, the global
optimization of all Lagrange polynomials on B at each step can dominate the overall com-
putational effort. Such optimization can be necessary to find out if there is any polynomial
whose maximum absolute value exceeds �. It is possible to reduce the computational ef-
fort by looking at the coefficients of the Lagrange polynomials, rather than at their actual
maximum absolute values. This will remove the necessity of optimizing all polynomials at
each step.

By knowing B and the polynomial coefficients it is possible to estimate an upper
bound on its maximum absolute value. For example, a polynomial in R2 of degree 2 whose
coefficients do not exceed 100 cannot have an absolute value of more that 600 in a ball of
radius 1 around the origin, because its value is the sum of six monomials, each of which
cannot exceed 100 in absolute value. An upper bound on the value of a polynomial in an
arbitrary ball can be derived similarly: from the value of the polynomial at the center of the
ball and the radius of the ball, one can estimate the maximum change in the value of the
polynomial within the ball. One can use these upper bounds to estimate an upper bound
on the �-poisedness constant and also to select the Lagrange polynomials that need to be
optimized.

To avoid the global optimization of the polynomials whenever possible, we also
would need to use specific lower bounds on the maximum absolute values of the Lagrange
polynomials. This can be done, for instance, by the enumeration method outlined in the
proof of Lemma 6.7 below. The procedure in the proof is outlined for polynomials with at
least one of the coefficients having an absolute value of at least 1. Clearly, the same pro-
cedure can be applied to any positive lower bound on the maximum absolute value of the
coefficients. For instance, in the case of quadratic polynomials, if b > 0 is such a bound,
then the lower bound on the maximum absolute value of the polynomial itself is guaranteed
to be at least b/4 (instead of 1/4). It is important to remember, however, that the applica-
tion of Theorem 6.3 is not straightforward when the global optimization of the Lagrange
polynomials is replaced by procedures to construct upper and lower bounds.

In the examples of the performance of Algorithm 6.3 that we present in this chapter
we perform the global optimization of all the Lagrange polynomials and select as ik the
index of the polynomial which has the largest absolute value. In one algorithm presented
in Chapter 11 (see Section 11.3), we consider selecting ik based on the distance of the
interpolation point yik from the center of B . If the maximum absolute value of the chosen
Lagrange polynomial does not exceed �, then the index of the next furthest point can be
considered. Such an approach fits into the framework of Algorithm 6.3, and it has the
advantages of economizing on the Lagrange polynomial global optimization and allowing
flexibility in the point selection process.

An example

To illustrate the step-by-step outcome of Algorithm 6.3 we present an example where the
algorithm is applied to the poorly poised set in Figure 3.2 with � = 21296. To simplify
presentation and computations we shifted and scaled the set here so that it lies in or around
the unit ball centered at the origin. This involves scaling the points by a factor of two; hence
the � constant is reduced by a factor of 4 to �= 5324. We are computing the poisedness
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within the unit ball around the origin, i.e., B = B(0;1) (despite the fact that Y is not a
subset of B). Below we list the initial set Y0 and the sets Y1, . . . , Y5 computed by the first
five iterations of Algorithm 6.3 which are also illustrated in Figure 6.1. At each iteration,
one point in the set is being replaced by a better point and the poisedness improves.

Y0 =

⎡
⎢⎢⎢⎢⎢⎣

−0.98 −0.96
−0.96 −0.98

0 0
0.98 0.96
0.96 0.98
0.94 0.94

⎤
⎥⎥⎥⎥⎥⎦ , Y1 =

⎡
⎢⎢⎢⎢⎢⎣

−0.98 −0.96
−0.96 −0.98

0
0.98 0.96
0.96 0.98

0.707 −0.707

⎤
⎥⎥⎥⎥⎥⎦ ,

Y2 =

⎡
⎢⎢⎢⎢⎢⎣

−0.848 0.528
−0.96 −0.98

0
0.98 0.96
−0.96 −0.98
0.707 −0.707

⎤
⎥⎥⎥⎥⎥⎦ , Y3 =

⎡
⎢⎢⎢⎢⎢⎣

0.848 0.528
−0.96 −0.98

0 0
0.98 0.96
−0.89 0.996
0.707 −0.707

⎤
⎥⎥⎥⎥⎥⎦ ,

Y4 =

⎡
⎢⎢⎢⎢⎢⎣

−0.967 0.254
−0.96 −0.98

0 0
0.98 0.96

−0.089 0.996
0.707 −0.707

⎤
⎥⎥⎥⎥⎥⎦ , Y5 =

⎡
⎢⎢⎢⎢⎢⎣

−0.967 0.254
−0.96 −0.98

0 0
0.98 0.96

−0.199 0.979
0.707 −0.707

⎤
⎥⎥⎥⎥⎥⎦ .

(6.11)

As we can see, the algorithm achieves almost optimal poisedness in five steps. These
steps forced the algorithm to replace the interpolation set almost entirely. However, we
notice that near-optimal poisedness is already achieved after three steps, which exactly
reflects the number of points that need to be replaced in this case to remedy near-affine
dependence. If instead we consider the badly poised set from Figure 3.3, where the six
points almost lie on a circle, we see in Figure 6.2 that just by performing one step of
Algorithm 6.3 we achieve optimal poisedness.

6.3 Ensuring well poisedness using pivotal algorithms
We recall that in Chapter 3 we have seen that the poisedness of the interpolation set can
be expressed through the condition number of the matrix M(φ̄, Ŷ ), where Ŷ is the scaled
and shifted version of Y . It turns out that an algorithm equivalent to Algorithm 6.2 can
be stated, which considers this condition number rather than the bound on the value of
Lagrange polynomials explicitly. Recall that Algorithm 6.2 was introduced to check if a
set Y is poised in a given region B and modify/complete Y if necessary to make a poised
set. The algorithm below achieves the same result by applying Gaussian elimination with
row pivoting to the matrix M(φ̄,Y ) and monitoring the pivots. The i th pivot during the
Gaussian elimination is selected from the i th column of the modified M(φ̄,Y ) after the
factorization is applied to the first i − 1 columns. The elements of the i th column of the
modified M(φ̄,Y ) are in fact the values of a certain polynomial, evaluated at the sample
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Figure 6.1. Result of the application of Algorithm 6.3 starting from Y0 in (6.11).
The corresponding poisedness constants are the following: �0 = 5324,�1 = 36.88,�2 =
15.66,�3 = 1.11,�4 = 1.01, and �5 = 1.001.
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Figure 6.2. Result of the application of Algorithm 6.3 starting from a set of points
that nearly lie on a circle. Changing only one point reduces the poisedness constant�0 =
524982 to �1 = 1.

points in Y . We will call these polynomials pivot polynomials and denote them by ui (x),
i = 0, . . . , p. As we will see later, the pivot polynomials are closely related to Lagrange
polynomials.

Algorithm 6.4 (Completing the nonpoised set Y via LU factorization).

Initialization: Start by choosing an initial approximation to the pivot polynomial basis,
e.g., given by the monomial basis (3.1), ui (x)= φ̄i (x), i = 0, . . . , p. Let pini +1 be
the number of given points in the initial set Y .

For i = 0, . . . , p

1. Point selection: Find ji = argmaxi≤ j≤pini
|ui (y j )|. If |ui (y ji )| > 0 and i ≤

pini , then swap points yi and y ji in set Y . Otherwise, compute (or recompute
if i ≤ pini ) yi as

yi ∈ argmax
x∈B

|ui (x)|.

2. Gaussian elimination: For j = i +1, . . . , p

u j (x) ← u j (x)− u j (yi )

ui (yi )
ui (x).

Let us observe the differences between Algorithms 6.2 and 6.4. The latter algorithm
does not normalize the pivot polynomials. In fact, one can easily see that after the algo-
rithm terminates we have a set of pivot polynomials u = {u0(x),u1(x), . . . ,u p(x)} and the
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corresponding matrix M(u,Y ) is nothing else but the upper triangular factor of the LU
factorization of M(φ,Y ).

Apart from these differences we observe that the two algorithms have the same com-
plexity and produce identical sets of points.

Lemma 6.4. Given the same, possibly not poised, starting set Y , the same region B, and
the same initial basis φ̄, Algorithms 6.2 and 6.4 produce identical poised sets Y .

Proof. We will use the induction to prove this statement. It is clear that during the zeroth
step (i = 0) of both algorithms the point selection step will produce the same point for y0.
Let us now assume that the first k steps of both algorithms resulted in an identical set
{y0, . . . , yk−1}. Indeed, at the kth step of Algorithm 6.4 (we start from the zeroth step) the
kth pivot polynomial has the following properties: it is a linear combination of the first
k+ 1 elements of the basis φ̄ and its value is zero at the first k points y0, . . . , yk−1 of Y
(the points that have already been included by the pivotal algorithm). The same is true for
the kth Lagrange polynomial �k(x) at the beginning of step k of Algorithm 6.2. Since by
the induction assumption the first k points produced by the two algorithms are the same,
this means that at the beginning of step k of each of the two algorithms we are considering
two polynomials which (i) lie in the same (k+ 1)-dimensional subspace of polynomials
(the subspace spanned by φ0(x),φ1(x), . . . ,φk(x)) and (ii) have value zero at a given poised
subset of k points. Hence, the two polynomials have to coincide up to a constant factor. It
immediately follows that when i = k, the point selection step of Algorithms 6.2 and 6.4
produce the same point yk . By induction the lemma follows.

Let us now consider possible algorithms for the improvement of poisedness of a
poised set Y using the pivot polynomials. It is natural to introduce the following modifica-
tion to Algorithm 6.4. We apply a threshold ξ for accepting the next pivot during the point
selection step.

Algorithm 6.5 (Improving poisedness of Y via LU factorization).

Initialization: Initialize the pivot polynomial basis with some basis, e.g., the monomial
basis (3.1), ui (x)= φ̄i (x), i = 0, . . . , p. Select pivot threshold ξ > 0.

For i = 0, . . . , p

1. Point selection: If possible, choose ji ∈ {i , . . . , |Y | − 1} such that |ui (y ji )| ≥
ξ . If such ji is found, then swap the positions of points yi and y ji in set Y .
Otherwise, recompute yi as

yi ∈ argmax
x∈B

|ui (x)|

and stop if |ui (yi )|< ξ (the pivot threshold is too big).

2. Gaussian elimination: For j = i +1, . . . , p

u j (x) ← u j (x)− u j (yi )

ui (yi )
ui (x).
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The result of the modified algorithm is a poised set Y such that when Gaussian elimi-
nation is applied to M(φ̄,Y ) all pivots have absolute values not smaller than ξ . In this case,
it is possible to prove (see the exercises) that the norm of the inverse of M(φ̄,Y ) is bounded
by

‖M(φ̄,Y )−1‖ ≤
√

p1 εgrowth

ξ
, (6.12)

where εgrowth can be seen as an estimate of the growth factor (see, e.g., [127, Sections 9.3
and 9.4]) that occurs during the factorization, and ξ is the lower bound on the absolute
value of the pivots imposed by the algorithm. Notice that there is some freedom in how the
index ji is chosen, as long as the corresponding pivot is large enough. To keep the growth
factor down it is desirable to choose the index which provides the largest value of a pivot
(this corresponds to partial pivoting in Gaussian elimination). On the other hand, in an
optimization algorithm, one may give preference to points according to their proximity to
the current iterate. In a practical algorithm a balance of these two policies usually provides
the best approach.

The above bound holds for any matrix M(φ̄,Y ) and for any set Y which is generated
by Algorithm 6.5. However, to have a simple pivoting strategy and a meaningful bound on
‖M(φ̄,Y )−1‖ we need to shift and scale Y = {y0, y1, . . . , y p} to get

Ŷ = {0, ŷ1, . . . , ŷ p} = {0, (y1− y0)/	, . . . , (y p− y0)/	} ⊂ B(0;1),

where
	 = 	(Y ) = max

1≤i≤p
‖yi − y0‖.

It can be seen that Ŷ lies tightly in a ball of radius one centered at the origin. Algorithm 6.5
is then applied to the shifted and scaled set Ŷ . Unlike Algorithm 6.3, where the Lagrange
polynomials may be available beforehand and hence shifting and scaling of the set Y may
result in increased computational complexity, Algorithm 6.5 always builds the set of pivot
polynomials from scratch, and hence shifting and scaling of Y do not cause significant
additional work.

From Theorem 3.14 we know that if ‖M(φ̄, Ŷ )−1‖ is bounded, then the set Y is
�-poised, with � being within a constant factor of ‖M(φ̄, Ŷ )−1‖. We conclude that to ver-
ify or guarantee�-poisedness of a given interpolation set Y , we apply scaling and shifting
to obtain an appropriate set Ŷ . We then apply Algorithm 6.5, which computes a factoriza-
tion of M(φ̄, Ŷ ) by computing the pivot polynomials and assigning them to interpolation
points. If small pivots are encountered during the factorization, then the “unacceptable”
points are replaced by “acceptable” ones. After the factorization is completed the resulting
set Ŷ can be transformed back to Y , which is �-poised for some constant � independent
of the original interpolation set Y .

The threshold ξ is used to trade off between maintaining better poised sets and not
having to discard many of the existing points in Y . If ξ is chosen to be very small, then it is
easy for the pivot values to pass this threshold and hence for the points to be accepted into
the interpolation set. But since the resulting poisedness constant is inversely proportional
to ξ as (6.12) implies, the resulting set may not be well poised. On the other hand, if the
value of ξ is chosen too high, it may be necessary to replace almost all points in Y to satisfy
the threshold condition. If one is not careful, it may even be impossible to find a point
which can provide large enough pivot value. Fortunately, there exists a reasonably large
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upper bound on ξ , for which we guarantee that the algorithm will always be successful.
We know that the (k+ 1)st pivot polynomial uk(x) can be expressed as (vk)�φ̄(x), where
vk = (v0, . . . ,vk−1,1,0, . . . ,0), and hence ‖vk‖∞ ≥ 1. By Lemma 6.7 below, there exists a
θ > 0 such that if the pivot threshold is chosen to be any number between 0 and θ , then
Algorithm 6.5 will always be successful. Note that θ can be set to 1 when d = 1 and to 1/4
when d = 2. Thus, we can state the following result.

Theorem 6.5. For any given ξ ∈ (0,1) and p1 = n+ 1 in the linear case, and any given
ξ ∈ (0,1/4) and p1 = (n+ 1)(n+ 2)/2 in the quadratic case, Algorithm 6.5 computes a
set Ŷ of p1 = p+ 1 points in the unit ball B(0;1) for which the pivots of the Gaussian
elimination of M̂ = M(φ̄, Ŷ ) satisfy∣∣∣ui (yi )

∣∣∣ ≥ ξ , i = 0, . . . , p.

To guarantee �-poisedness, Algorithm 6.5 relies on the bound (6.12). Since the
growth factor is usually unknown and theoretically can be very large (but finite), then, in
theory, the outcome of a pivot algorithm can be an interpolation set with a very large �-
poisedness constant. For theoretical purposes what matters is that in this case� is bounded
by a constant, however large. From the practical point of view, the growth factor is known to
be moderate in almost all cases and grows exponentially large only for artificial examples.

The effort required by one run of Gaussian elimination in the quadratic case is of
the order of O(n6) floating point operations. The algorithm does not require, however, the
global maximization of the absolute value of the pivot polynomials in a ball. Although such
optimization will help and should be used if possible, strictly speaking we need only guar-
antee the determination of a point that generates an absolute value for the pivot polynomial
greater than or equal to ξ . This can be done by using the arguments used in the proof of
Lemma 6.7 for scaled and shifted sets. It shows that by simple enumeration we can find
such a point for any value of ξ such that θ > ξ > 0 for some positive constant θ which is
equal to 1/4 in the case of quadratic interpolation. The complexity of such an enumeration
is O(p), and it has to be performed at most O(p) times; hence it does not have a significant
contribution to the overall complexity, which is O(p3).

Incremental improvements via pivotal algorithms

Algorithm 6.3 improves �-poisedness in a gradual manner, replacing one point at a time
and reducing the upper bound on the Lagrange polynomial absolute values. Algorithm 6.5,
on the other hand, selects the threshold a priori and replaces as many points as necessary to
satisfy the threshold condition. One can apply Algorithm 6.5 repetitively with decreasing
threshold values to encourage gradual improvement of the poisedness. However, picking
a good sequence of threshold values is a nontrivial task. One may happen to decrease the
value of ξ too slowly and not obtain any improvement after several applications of the algo-
rithm, or one may decrease the threshold too quickly and end up having to replace too many
points. There are cases where the gradual updates of the threshold value make algorithmic
sense, for example, when the pivot values from the last application of Algorithm 6.5 are
remembered and used as a guideline. Such considerations should be addressed during the
development of a specific derivative-free optimization algorithm (see Chapter 11).
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The example in the following subsection applies the threshold reduction idea to show
the possible progress of the poisedness of the sets produced by Algorithm 6.5. We will see
that in this case Algorithm 6.5 works similarly to Algorithm 6.3, but it may replace more
than one point per run. In a practical derivative-free optimization framework, this prop-
erty may be advantageous when a few points actually need to be replaced to obtain good
geometry—Algorithm 6.5 may be able to identify them all during one run. On the other
hand, it may replace some of the points unnecessarily, obtaining marginal improvement of
the poisedness but wasting valuable function evaluations.

If we want to use the pivoting approach but replace only one point per each run, the
scheme described next can be used. Essentially, we run Algorithm 6.5 without a threshold
(i.e., the threshold value is set to zero). Assuming that the initial set Y is poised and has p1
points, the algorithm will run to the last iteration, where we can then optimize the last pivot
polynomial and replace the last point in Y .

Algorithm 6.6 (Incremental improvement of poisedness of Y via LU factorization).

Initialization: Start by choosing an initial approximation to the pivot polynomial basis,
e.g., given by the monomial basis (3.1), ui (x) = φ̄i (x), i = 0, . . . , p. Assume Y
contains p1 poised points.

For i = 0, . . . , p−1

1. Point selection: Find ji = argmaxi≤ j≤|Y | |ui (y j )| and swap points yi and y ji

in set Y .

2. Gaussian elimination: For j = i +1, . . . , p

u j (x) ← u j (x)− u j (yi )

ui (yi )
ui (x).

Improvement step:
y p

new ∈ argmax
x∈B

|u p(x)|.

This algorithm attempts to identify the best candidate point for replacement. Since
the LU procedure pivots by rows (that is, by points) the points which result in bad pivot
values are pushed to the bottom rows. Hence, by replacing the very last point we hopefully
obtain the best improvement of the poisedness.

Note that the new point generated by Algorithm 6.6 is the same as a point generated
at an iteration of Algorithm 6.3 if the sets under consideration are the same and the last
point in the LU factorization of Algorithm 6.6 corresponds to the Lagrange polynomial of
maximum absolute value in Algorithm 6.3—since in this case the pth pivot polynomial is
the same (up to a constant factor) as the Lagrange polynomial just mentioned (see the proof
of Lemma 6.4). The workload involved in the application of Algorithm 6.6 is O(p3), but it
does not need to optimize all Lagrange polynomials.

Algorithm 6.6 constitutes one iteration of the improvement procedure. To identify the
next point to be replaced, Algorithm 6.6 should be repeated again from the beginning. If
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after applying Algorithm 6.6 the last point is already the optimal point for the corresponding
pivot polynomial, then no further improvement can be obtained by this strategy. There is
no guarantee that the sequence of points which is replaced by Algorithm 6.3 is identical
to the sequence of points replaced by a strategy consisting of a sequential application of
Algorithm 6.6. However, as long as these sequences are identical, namely, if the point
which produces the largest absolute value of the Lagrange polynomials and the point which
produces the smallest (hence the last) pivot are the same on each iteration, then the resulting
interpolation sets are identical (since, recall, the pth pivotal polynomial is, up to a constant,
the corresponding Lagrange polynomial).

An example

Let us again turn to the example we used to illustrate Algorithm 6.3, with � = 5324,
to show the effects of Algorithm 6.5. We want to show that Algorithm 6.5 can produce
interpolation sets of comparable quality to the ones produced by Algorithm 6.3. To that end
we will apply the following adjustments of ξ : we run Algorithm 6.5 three times, applying
thresholds ξ = 0.01,0.1,0.5.

Below we list the initial set and the results of the three runs of Algorithm 6.5 which
are also illustrated in Figure 6.3:

Y0 =

⎡
⎢⎢⎢⎢⎢⎣

−0.98 −0.96
−0.96 −0.98

0 0
0.98 0.96
0.96 0.98
0.94 0.94

⎤
⎥⎥⎥⎥⎥⎦ , Y1 =

⎡
⎢⎢⎢⎢⎢⎣

−0.98 −0.96
−0.96 −0.98

0 0
0.98 0.96
0.96 0.98

0.707 −0.707

⎤
⎥⎥⎥⎥⎥⎦ ,

Y2 =

⎡
⎢⎢⎢⎢⎢⎣

−0.98 −0.96
−0.135 −0.99
−0.0512 0.0161

0.98 0.96
−0.14 0.99

6.99 −7.14

⎤
⎥⎥⎥⎥⎥⎦ , Y3 =

⎡
⎢⎢⎢⎢⎢⎣

−0.98 −0.96
0.943 −0.331

0.0281 0.0235
0.98 0.96
−0.14 0.99
0.699 −0.714

⎤
⎥⎥⎥⎥⎥⎦ .

(6.13)

At each step, some of the points in the set are replaced by better points and the
poisedness improves. Moreover, the poisedness progress during the three applications of
Algorithm 6.5 is slightly better than the poisedness progress of the first three iterations of
Algorithm 6.3 on the same example (see Figure 6.1). However, on average 2 points per run
are replaced in the former case, versus one point per iteration in the latter. The replacement
of the origin on the second step by the point (−0.0512,0.0161) is, in fact, an example of
wasting a sample point to obtain a relatively negligible improvement of the poisedness.
Notice that the final sets are very similar for both cases. We used global optimization of the
pivot polynomials to illustrate that their behavior is similar to using Lagrange polynomials.

If we apply Algorithm 6.6 to the same set, then it will produce exactly the same
sequence of sets as the first four iterations of Algorithm 6.3; that is, it will produce the first
four sets in the example of Lagrange polynomials given in Section 3.3 and illustrated in
Figure 6.1. After four iterations it will stop, unable to improve set Y any further.
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Figure 6.3. Result of applying Algorithm 6.6 four times starting from Y0 in (6.13).
The corresponding poisedness constants are the following: �0 = 5324,�1 = 36.88,�2 =
1.699, and �3 = 1.01.

6.4 Practical considerations of geometry improvement
algorithms

Let us discuss whether the proposed procedures are “practical.” Derivative-free optimiza-
tion problems typically address functions whose evaluation is expensive; hence a practical
approach should attempt to economize on function evaluations. The first question about
the pivotal algorithms is whether too many interpolation points need to be replaced at each
iteration of a model-based derivative-free optimization algorithm. The secondary consid-
eration is the linear algebra cost of a model-improvement algorithm.

Several situations arise during the course of a model-based derivative-free algorithm.
First, as the iterates progress, some of the points in the sample set may become too distant
from the current best iterate. In this case they no longer belong to a region B where the
poisedness is considered. These points simply need to be replaced by points closer to the
current iterate. These are the cases when Algorithms 6.2 and 6.4 are useful. If the basis
of Lagrange polynomials is available, then the Lagrange polynomial that corresponds to
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the point which is being removed is optimized over B . The optimal point then replaces
the point that is being removed. The rest of the polynomials are updated. The cost of
this procedure is O(p2) plus the cost of optimizing the Lagrange polynomial. If a point
which produces a large enough value (greater than 1) of the absolute value of the Lagrange
polynomial is found, then the global optimization is not necessary, since we know that
the poisedness improves. If the set of Lagrange polynomials is not available, or if a pivot
approach is used, then the complexity is O(p3).

Another situation when an interpolation point needs to be replaced is when a new
optimization iterate is found and needs to be included in the interpolation set. In this case,
the Lagrange polynomial algorithm will identify the polynomial whose value at the new
point is the largest and replace the point in Y corresponding to that polynomial with the
new point. This effort requires O(p2) operations. The pivotal algorithm will simply start
by choosing the new optimization iterate to generate the first pivot and then proceed by
choosing points which produce the best pivot value until the factorization is complete. The
remaining unused point will be the one which is replaced. This approach requires O(p3)
operations, but it maintains guaranteed �-poisedness, which the Lagrange polynomial ap-
proach does only if the absolute value of the Lagrange polynomial at the new point happens
to be at least 1.

Finally, if a model is suspected to be insufficiently well poised, then Algorithm 6.3 or
a repeated application of Algorithm 6.6 can be used. In this case, although not necessary,
the global optimization of the corresponding polynomials is desirable, in which case both
strategies have comparable complexity.7

6.5 Ensuring well poisedness for regression and minimum
Frobenius norm models

Let us now consider the cases when the number of points p1 in Y is not equal to the
dimension q1 of the polynomial space.

Regression models
First, we recall the regression case, p1 > q1, and the regression Lagrange polynomials
discussed in Chapter 4. Algorithm 6.1 for computing and updating interpolation Lagrange
polynomials does not apply to the regression case. Regression Lagrange polynomials can
be computed from the expression (4.6) for the matrix of the coefficients

Aφ = [M(φ,Y )�M(φ,Y )]−1M(φ,Y )�.

The work involved in this computation is O(q2 p). If only one point is replaced in the
set Y , then only one row of the matrix M(φ,Y ) is replaced. To update the set of regression
Lagrange polynomials one can apply a rank-two update to [M(φ,Y )�M(φ,Y )]−1 via the

7The optimization of a quadratic polynomial over an ellipsoid is a particular trust-region subproblem.
Even in the nonconvex case it is known that the first-order necessary conditions for such trust-region sub-
problems are sufficient (see Section 10.8). These problems have some form of hidden convexity in the sense
that the necessary conditions are sufficient (or the duality gap is zero) or there exist convex reformulations.
For more details on the complexity bounds and convex reformulations for ellipsoidal trust-region subprob-
lems see [32, 98, 232].
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Sherman–Morrison–Woodbury formula (see, e.g., [109, 178]). The overall work required
for the update of the regression Lagrange polynomials is O(pq).

It is, however, not clear if computing the set of regression Lagrange polynomials is
useful. Recall that for strong�-poisedness we require the maximum value of the Lagrange
polynomials to be smaller than 1, when p is sufficiently large. There is no guarantee
that an analogue of Algorithm 6.3, based on the regression Lagrange polynomials, can
be designed to terminate after a finite number of iterations, since there is no analogue of
Theorem 6.3. Moreover, it is not even clear how to fix nonpoised sets with the help of
regression Lagrange polynomials. If the set Y is not poised, then it is not possible to invert
the matrix M(φ,Y )�M(φ,Y ). Unfortunately, unlike Algorithm 6.1, the proposed method
of computing Lagrange polynomials for regression does not have a natural way of detecting
the points which cause the set to be nonpoised and of replacing these points. It is possible
to do so by considering linear independence of the rows of M(φ,Y ), which leads us to the
pivotal algorithms.

We can apply Algorithm 6.4 to the set Y and select or generate a poised subset of q1
points. The remaining unused points now can be simply added, since their presence will
not ruin the poisedness of the set. The same argument applies to generating a �-poised
regression set. Algorithm 6.5 can be used to select or generate a subset of q1 points which
is (1/

√
p)�-poised in the interpolation sense. Then the remaining points can be added to

the set, which will be �-poised in the regression sense by the properties of Definition 4.7
(point 2) of �-poisedness for regression.

It is also possible to apply Algorithms 6.2 and 6.3 to select poised and (1/
√

p)�-
poised subsets of Y , respectively, in the interpolation sense. The resulting interpolation
Lagrange polynomials are the interpolation polynomials for the subsets and are not imme-
diately related to the regression polynomials for Y .

For the purpose of providing fully linear and fully quadratic regression models with
arbitrarily large sample sets we need to be able to establish strong �-poisedness following
Definition 4.10. Due to Theorem 4.11 we know that we can guarantee strong�-poisedness
if we can partition set Y into �-poised subsets of q1 points each. Clearly, this can be done
by applying either Algorithm 6.3 or 6.5 repeatedly to select or generate �-poised subsets
of Y .

Algorithm 6.7 (Computing a strongly �-poised set Y ).

Initialization: Let Ȳ = Y and i = 1. Pick �> 1 or threshold ξ > 0.

While |Ȳ | ≥ q1

1. Select a �-poised subset: Apply Algorithm 6.3 or 6.5 to Ȳ to select or generate
a �-poised subset Y i .

2. Remove subset:
Ȳ ← Ȳ \Y i , i ← i +1.

Reset Y =⋃
i Y i .

When the algorithm terminates we obtain a possibly smaller set Y , because we do
not include the points that fall into the last incomplete subset. Alternatively it is possible
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to include these points in Y or to generate another �-poised subset by adding more points
to Y . All of these options are acceptable and there is no significant theoretical difference
when large values of p are considered. Hence, only practical considerations should dictate
how to treat the remaining points.

It is easy to see that this algorithm generates a strongly �-poised set Y (see the dis-
cussion before Definition 4.10). Since by the discussion in previous sections we know
that Algorithm 6.3 or 6.5 will terminate after a finite number of steps, then so will Algo-
rithm 6.7.

Minimum Frobenius norm models

In the case of the minimum Frobenius norm models discussed in Chapter 5, the set of
Lagrange polynomials is also computed by solving a system of linear equations. When the
matrix of this system,

[
M(φ̄Q ,Y )M(φ̄Q ,Y )� M(φ̄L ,Y )

M(φ̄L ,Y )� 0

]
,

is singular, then again updating the interpolation set to generate a poised one is not as
straightforward as in the full interpolation case. By applying Algorithm 6.2 or 6.4 one can-
not generate the minimum Frobenius norm Lagrange polynomials, but one could check and
enforce poisedness of Y in the minimum Frobenius norm sense (the details are omitted).

It is more natural, however, to maintain well poisedness of Y using directly the set of
minimum Frobenius norm Lagrange polynomials. An efficient update procedure for these
polynomials is suggested in [191]. We can use an analogue of Algorithm 6.3 to update the
sample set and to maintain �-poisedness in the minimum Frobenius norm sense. Notice
that the steps that update the Lagrange polynomials have to be changed in Algorithm 6.3
to accommodate the minimum Frobenius norm polynomials. To show that this procedure
is also finite one can use an analogue of Theorem 6.3.

Theorem 6.6. For any given � > 1, a closed ball B, and a fixed polynomial basis φ,
Algorithm 6.3 for minimum Frobenius norm Lagrange polynomials terminates with a �-
poised set Y after at most N = N(�,φ) iterations, where N is a constant which depends
on� and φ.

The proof of this theorem is practically identical to the proof of Theorem 6.3 and
makes use of the determinant (or volume) ratio interpretation of the minimum Frobenius
norm Lagrange polynomials and of Corollary 5.9.

We do not elaborate any further on this issue and just conclude that minimum Frobe-
nius norm models form a fully linear class because of the corresponding error bounds and
the existence of finite model-improvement algorithms.

6.6 Other notes and references
Here we present the statement and a proof of the lemma, which we used on several occa-
sions in this chapter and in Chapters 3–5.
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Lemma 6.7. Let v�φ̄(x) be a quadratic polynomial of degree at most d, where ‖v‖∞ = 1
and φ̄ is the natural basis (defined by (3.1)). Then there exists a constant σ∞ > 0 indepen-
dent of v such that

max
x∈B(0;1)

|v�φ̄(x)| ≥ σ∞.

For d = 1, σ∞ ≥ 1, and for d = 2, σ∞ ≥ 1
4 .

Proof. The first part (general case) has been proved in Lemma 3.10.
When d = 1 we have φ̄(x)= [1, x1, . . . , xn]�. Let w = [v2, . . . ,vn+1]�. It is easy to

see that the optimal solution of problem maxx∈B(0;1) |v�φ̄(x)| is given either by w/‖w‖
(with optimal value v1+‖w‖) or by −w/‖w‖ (with optimal value −v1+‖w‖). Thus, the
optimal value is |v1|+‖w‖ ≥ 1.

Let us consider the case when d = 2. Since ‖v‖∞ = 1, at least one of the elements of
v is 1 or −1, and thus one of the coefficients of the polynomial q(x)= v�φ̄(x) is equal to
1, −1, 1/2, or −1/2. Let us consider only the cases where one of the coefficients of q(x)
is 1 or 1/2. The cases −1 or −1/2 would be analyzed similarly.

The largest coefficient in absolute value in v corresponds to a term which is either a
constant term, a linear term xi , or a quadratic term x2

i /2 or xi x j . Let us restrict all variables
that do not appear in this term to zero. We will show that the maximum absolute value of the
polynomial is at least 1/4 by considering the four cases of different terms that correspond
to the largest coefficient. In each case we will evaluate the restricted polynomial at several
points in the unit ball and show that at least at one of these points the polynomial achieves
an absolute value of at least 1/4. It will clearly follow that the maximum absolute value of
the unrestricted polynomials is also bounded from below by 1/4.

• q(x)= 1. This case is trivial.

• q(x) = x2
i /2+ αxi + β. In this case we have q(1) = 1/2+α+ β, q(−1) = 1/2−

α+β, and q(0)= β. If |q(1)| ≥ 1/4 or |q(−1)| ≥ 1/4, we already have the desired
result. If |q(1)| < 1/4 and |q(−1)| < 1/4, then, by adding these inequalities, we
derive−1/2< 1+2β < 1/2. But then we obtain q(0)= β <−1/4.

• q(x)= αx2
i /2+ xi +β. This time we have q(1)= 1+α/2+β and q(−1)= −1+

α/2+β, and so
max{|q(−1)|, |q(1)|} ≥ 1.

• q(x) = αx2
i /2+ βx2

j /2+ xi x j + γ xi + δx j + ε. In this case we are considering
the quadratic function over a two-dimensional ball. By considering four points,
p1 = (1/

√
2,1/
√

2), p2 = (1/
√

2,−1/
√

2), p3 = (−1/
√

2,1/
√

2), and p4 =
(−1/
√

2,−1/
√

2), on the boundary of the ball, we get

q(p1)= α+β
4
+ 1

2
+ γ + δ√

2
+ ε,

q(p2)= α+β
4
− 1

2
+ γ − δ√

2
+ ε,

q(p3)= α+β
4
− 1

2
− γ − δ√

2
+ ε,
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q(p4)= α+β
4
+ 1

2
− γ + δ√

2
+ ε.

As a result, we obtain q(p1)− q(p2) = 1+√2δ and q(p3)− q(p4) = −1+√2δ.
In the case where δ ≥ 0, we have q(p1)− q(p2) ≥ 1. Thus, if |q(p1)| < 1/2, then
q(p2)≤−1/2. The case δ < 0 is proved analogously.

6.7 Exercises
1. Prove that Algorithm 6.1 computes the basis of Lagrange polynomials for poised

interpolation sets.

2. Show that the gradient of a quadratic interpolation (or regression) polynomial model
is Lipschitz continuous, i.e., that

‖∇m(y1)−∇m(y2)‖ ≤ κ‖y1− y2‖ ∀y1, y2 ∈ B(x ;	),

where κ depends on the �-poisedness constant of the sample set, on the number p1
of points used to build the model, on an upper bound	max for	, on an upper bound
for the values of f , and on an upper bound for the inverse of M(φ,Y ) (or inverse of
the diagonal matrix of singular values of M(φ,Y )).

3. Prove the bound (6.12) when εgrowth is given by the product of the norms of the
inverses of the L and U factors in the LDU factorization of M(φ̄,Y ).
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Chapter 7

Directional direct-search
methods

Direct-search methods are derivative-free methods that sample the objective function at a
finite number of points at each iteration and decide which actions to take next solely based
on those function values and without any explicit or implicit derivative approximation or
model building. In this book we divide the presentation of direct-search methods into
two chapters. In the next chapter we cover direct-search methods based on simplices and
operations over simplices, like reflections, expansions, or contractions. A classical example
of a simplicial direct-search algorithm is the Nelder–Mead method.

In this chapter we address direct-search methods where sampling is guided by sets of
directions with appropriate features. Of key importance in this chapter are the concepts of
positive spanning sets and positive bases (see Section 2.1). The two classes of direct-search
methods considered in this book (directional and simplicial) are related to each other. For
instance, by recalling what we have seen in Section 2.5, one can easily construct maximal
positive bases from any simplex of n+1 vertices. Reciprocally, given any positive basis, it
is straightforward to identify simplices of n+ 1 vertices. Despite the intimacy of the two
concepts (positive spanning and affine independency), the philosophy of the two classes of
direct-search methods under consideration differ enough to justify different treatments.

The problem under consideration is the unconstrained optimization of a real-valued
function, stated in (1.1). Extensions of directional direct-search methods for various types
of derivative-free constrained optimization problems are summarized in Section 13.1.

7.1 The coordinate-search method
One of the simplest directional direct-search methods is called coordinate or compass
search. This method makes use of the maximal positive basis D⊕:

D⊕ =
[

I −I
] = [e1 · · · en −e1 · · · −en ] . (7.1)

Let xk be a current iterate and αk a current value for the step size or mesh parameter.
Coordinate search evaluates the function f at the points in the set

Pk = {xk+αkd : d ∈ D⊕},

115
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following some specified order, trying to find a point in Pk that decreases the objective
function value. In the terminology of this chapter, we say that Pk is a set of poll points and
D⊕ is a set of poll vectors or directions. This process of evaluating the objective function
is called polling. We illustrate the poll process for coordinate search in Figure 7.1.

x0

x1 x2 x3 = x4

x5 x6

Figure 7.1. First six iterations of coordinate search with opportunistic polling
(following the order North/South/East/West). Function evaluations (a total of 14) occur
at circles, but only the bigger circles are iterates. The ellipses depict the level sets of the
function.

Polling is successful when one of the points in Pk is better than the current iterate xk
in terms of the values of f . When that happens, the method defines a new iterate xk+1 =
xk + αkdk ∈ Pk such that f (xk+1) < f (xk) (a simple decrease in the objective function).
In such a successful case, one either leaves the parameter αk+1 unchanged or increases
it (say by a factor of 2). If none of the points in Pk leads to a decrease in f , then the
parameter αk is reduced (say by a factor of 1/2) and the next iteration polls at the same
point (xk+1 = xk). Polling can be opportunistic, moving to the first encountered better
point, or complete, in which case all the poll points are evaluated and the best point is taken
(if better than the current iterate). Complete polling is particularly attractive for running on
a parallel environment.

Algorithm 7.1 (Coordinate-search method).

Initialization: Choose x0 and α0 > 0.

For k = 0,1,2, . . .

1. Poll step: Order the poll set Pk = {xk + αkd : d ∈ D⊕}. Start evaluating f
at the poll points following the order determined. If a poll point xk +αkdk is
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found such that f (xk+αkdk)< f (xk), then stop polling, set xk+1 = xk+αkdk ,
and declare the iteration and the poll step successful. Otherwise, declare the
iteration (and the poll step) unsuccessful and set xk+1 = xk .

2. Parameter update: If the iteration was successful, set αk+1 = αk (or αk+1 =
2αk). Otherwise, set αk+1 = αk/2.

To illustrate what is coming later we also introduce for coordinate search the follow-
ing set (called a mesh, or a grid):

Mk =
{

xk+αk

(
n∑

i=1

ui ei +
n∑

i=1

un+i (−ei )

)
: u ∈ Z

|2n|
+

}
, (7.2)

where Z+ is the set of nonnegative integers. An example of the mesh is illustrated in
Figure 7.2. The mesh is merely conceptual. There is never an attempt in this class of
methods to enumerate (computationally or not) points in the mesh.

x6

Figure 7.2. The mesh in coordinate search at x6.

For matters of practical efficiency, it is useful to introduce some flexibility in the
above coordinate-search framework. Such flexibility can be accommodated by the so-
called search step,8 which is optional and applied just before polling when formulated.
Basically, the search step consists of evaluating the objective function at a finite number of
points in Mk , trying to find a point y ∈Mk such that f (y)< f (xk). We illustrate this process
in Figure 7.3. When the search step is successful so is the iteration (the poll step is skipped
and a new iteration starts at xk+1 = y). The search step is totally optional, not only in the
implementation of the method but also when proving its convergence properties. When the

8We should remark that coordinate search is often described in the literature without a search step.



idfo
2008/11/17
page 118

�

�

�

�

�

�

�

�

118 Chapter 7. Directional direct-search methods

search step is applied it has no interference in the convergence properties of the method
since the points are required to be on the mesh Mk . In the next section, we will describe a
class of directional direct-search methods that includes coordinate search as a special case.

x0

x1 x2

Figure 7.3. Three iterations of coordinate search with a search step (con-
sisting of trying the South-East point) and opportunistic polling (following the order
North/South/East/West). Function evaluations occur at crosses (search step) and circles
(a total of 6). Only the bigger circles are iterates. The ellipses depict the level sets of the
function.

7.2 A directional direct-search framework
We now present a class of globally convergent directional direct-search methods. Much of
this presentation is based on the generalized pattern-search framework introduced by Audet
and Dennis [18] and makes extensive use of the structure of an iteration organized around
a search step and a poll step.

To start the presentation let us consider a current iterate xk and a current value for
the step size or mesh parameter αk . The goal of iteration k of the direct-search methods
presented here is to determine a new point xk+1 such that f (xk+1)< f (xk).

The process of finding a new iterate xk+1 can be described in two phases (usually
designated as the search step and the poll step).

The search step is optional and is not necessary for the convergence properties of the
method. It consists of evaluating the objective function at a finite number of points. The
choice of points is totally arbitrary as long as their number remains finite (later we will
see that the points must be in a mesh Mk if only simple decrease is imposed, but we skip
this issue to leave the presentation as conceptual as possible).9 For example, the points

9It is obvious that descent in the search step must be controlled in some form. The reader can think of
what a sequence of points of the form xk = 2+1/k does to the minimization of f (x)= x2.
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might be chosen according to specific application properties or following some heuristic
algorithm. The search step can take advantage of the existence of surrogate models for f
(see Chapter 12) to improve the efficiency of the direct-search method. The search step
and the current iteration are declared successful if a new point xk+1 is found such that
f (xk+1)< f (xk).

The poll step is performed only if the search step has been unsuccessful. It consists
of a local search around the current iterate, exploring a set of points defined by the step size
parameter αk and by a positive basis Dk :10

Pk = {xk+αkd : d ∈ Dk} . (7.3)

The points xk+αkd ∈ Pk are called the poll points and the vectors d ∈ Dk the poll vectors
or directions. Later we will see that the poll points must also lie in the mesh Mk if only
simple decrease is imposed, but, again, we skip this issue to concentrate on the geometrical
properties of these methods (which are related to those of other derivative-free methods).

The purpose of the poll step is to ensure a decrease of the objective function for a
sufficiently small step size parameter αk . As we saw in Section 2.2, as long as the objective
function retains some differentiability properties and unless the current iterate is a station-
ary point, we know that the poll step must eventually be successful (after a finite number
of reductions of the step size parameter). The key ingredient here is the fact that there is at
least one descent direction in each positive basis Dk .

The poll step and the current iteration are declared successful if a new point xk+1 ∈ Pk
is found such that f (xk+1)< f (xk). If the poll step fails to produce a point in Pk where the
objective function is lower than f (xk), then both the poll step and the iteration are declared
unsuccessful. In these circumstances the step size parameter αk is typically decreased.

The step size parameter is kept unchanged (or possibly increased) if the iteration is
successful (which happens if either in the search step or in the poll step a new iterate is
found yielding objective function decrease).

In this class of directional direct-search methods one can consider multiple positive
bases and still be able to guarantee global convergence to stationary points. When new
iterates are accepted based on simple decrease of the objective function (as we have just
described), the number of positive bases is required to be finite. As we will point out later,
this requirement can be relaxed if one imposes a sufficient decrease condition to accept
new iterates. Still, in such a case, one can use only an infinite number of positive bases for
which the cosine measure is uniformly bounded away from zero.

The class of directional direct-search methods analyzed in this book is described in
Algorithm 7.2. Our description follows the one given in [18] for the generalized pattern
search, by considering search and poll steps separately. We do not specify for the moment
the set D of positive bases used in the algorithm. Polling is opportunistic, moving to
the first encountered better point. The poll vectors (or points) are ordered according to
some criterion in the poll step. In many papers and implementations this ordering is the
one in which they were originally stored, and it is never changed during the course of
the iterations. Consequently, our presentation of directional direct search considers that
the poll directions are ordered in some given form before (opportunistic) polling starts.
From a theoretical point of view, this ordering does not matter and could change at every

10The application of this class of direct-search methods and its convergence properties is valid both for
positive spanning sets and positive bases (satisfying some properties mentioned later).
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iteration. Efficient procedures to order the poll directions include ordering according to the
angle proximity to a negative simplex gradient, random ordering, and ordering following
the original order but avoiding restarts at new poll iterations (and combinations of these
strategies).

Algorithm 7.2 (Directional direct-search method).

Initialization: Choose x0, α0 > 0, 0< β1 ≤ β2 < 1, and γ ≥ 1. Let D be a set of positive
bases.

For k = 0,1,2, . . .

1. Search step: Try to compute a point with f (x) < f (xk) by evaluating the
function f at a finite number of points. If such a point is found, then set xk+1 =
x , declare the iteration and the search step successful, and skip the poll step.

2. Poll step: Choose a positive basis Dk from the set D. Order the poll set Pk =
{xk+αkd : d ∈ Dk}. Start evaluating f at the poll points following the chosen
order. If a poll point xk +αkdk is found such that f (xk +αkdk)< f (xk), then
stop polling, set xk+1 = xk +αkdk , and declare the iteration and the poll step
successful. Otherwise, declare the iteration (and the poll step) unsuccessful and
set xk+1 = xk .

3. Mesh parameter update: If the iteration was successful, then maintain or
increase the step size parameter: αk+1 ∈ [αk ,γαk]. Otherwise, decrease the
step size parameter: αk+1 ∈ [β1αk ,β2αk ].

The poll step makes at most |Dk | (where |Dk | ≥ n + 1) function evaluations and
exactly that many at all unsuccessful iterations.

The natural stopping criterion in directional direct search is to terminate the run when
αk < αtol , for a chosen tolerance αtol > 0 (for instance, αtol = 10−5).

7.3 Global convergence in the continuously
differentiable case

First, we point out that this class of directional direct-search methods is traditionally ana-
lyzed under the assumption that all iterates lie in a compact set. Given that the sequence
of iterates {xk} is such that { f (xk)} is monotonically decreasing, a convenient way of im-
posing this assumption is to assume that the level set L(x0) = {x ∈ Rn : f (x) ≤ f (x0)} is
compact.

Assumption 7.1. The level set L(x0)= {x ∈Rn : f (x)≤ f (x0)} is compact.

We are interested in analyzing the global convergence properties of these methods,
meaning convergence to stationary points from arbitrary starting points. In direct search
we will deal only with first-order stationary points.
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Behavior of the step size parameter

The global convergence analysis for these direct-search methods relies on proving first that
there exists a subsequence of step size parameters converging to zero. For this purpose we
must be able to ensure the following assumption.

Assumption 7.2. If there exists an α > 0 such that αk > α, for all k, then the algorithm
visits only a finite number of points.

In Sections 7.5 and 7.7, we will discuss how this assumption can be ensured in prac-
tical implementations of direct search. We will see in Section 7.5 that when the number of
positive bases is finite, some integral/rational structure on the construction of these bases
and on the update of the step size parameter will suffice for this purpose. When any number
of bases is allowed, then something else is required to achieve Assumption 7.2 (namely a
sufficient decrease condition to accept new iterates, as we will prove in Section 7.7).

Based on Assumption 7.2 one can prove that the step size parameter tends to zero.

Theorem 7.1. Let Assumption 7.2 hold. Then the sequence of step size parameters satisfies

liminf
k−→+∞αk = 0.

Proof. Let us assume, by contradiction, that there exists an α > 0 such that αk >α for all k.
Then one knows from Assumption 7.2 that the number of points visited by the algorithm is
finite. On the other hand, the algorithm moves to a different point only when a decrease in
the objective function is detected. By putting these last two arguments together, we arrive
at the conclusion that there must exist an iteration k̄ such that xk = xk̄ for all k ≥ k̄. From
the way αk is updated in unsuccessful iterations, it follows that limk−→+∞αk = 0, which
contradicts what we have assumed at the beginning of the proof.

The following corollary follows from Assumption 7.1.

Corollary 7.2. Let Assumptions 7.1 and 7.2 hold. There exist a point x∗ and a subse-
quence {ki} of unsuccessful iterates for which

lim
i−→+∞αki = 0 and lim

i−→+∞ xki = x∗. (7.4)

Proof. Theorem 7.1 states the existence of an infinite subsequence of the iterates driving
the step size parameter to zero. As a result, there must exist an infinite subsequence of
iterations corresponding to unsuccessful poll steps, since the step size parameter is reduced
only at such iterations. Let K 1

u denote the index subsequence of all unsuccessful poll steps.
It follows also from the scheme that updates the step size parameter and from the

above observations that there must exist a subsequence K 2
u ⊂ K 1

u such that αk+1→ 0 for
k ∈ K 2

u . Since, αk ≤ (1/β1)αk+1 for k ∈ K 2
u , we obtain αk → 0 for k ∈ K 2

u .
Since {xk}K 2

u
is bounded, it contains a convergent subsequence {xk}K 3

u
. Let x∗ =

limk∈K 3
u

xk . Since K 3
u ⊂ K 2

u , it also holds that limk∈K 3
u
αk = 0, and the proof is completed

by setting {ki } = K 3
u .
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The rest of the global convergence analysis of directional direct search relies on the
geometrical properties of positive bases and on differentiability properties of f either on
the entire level set L(x0) or at the limit point x∗ identified in Corollary 7.2. We will consider
the most relevant cases next.

Arbitrary set of positive bases

Directional direct-search methods can make use of an infinite number of positive bases
as long as they do not become degenerate, namely, as long as their cosine measures are
uniformly bounded away from zero. We frame this assumption next. It is also required to
bound the size of all vectors in all positive bases used.

Assumption 7.3. Let ξ1,ξ2 > 0 be some fixed positive constants. The positive bases Dk
used in the algorithm are chosen from the set

D = {
D̄ positive basis : cm(D̄)> ξ1, ‖d̄‖ ≤ ξ2, d̄ ∈ D̄

}
.

In addition, when using an infinite number of bases we require that the gradient of f
is Lipschitz continuous on the level set L(x0).

Assumption 7.4. The gradient ∇ f is Lipschitz continuous in an open set containing L(x0)
(with Lipschitz constant ν > 0).

We will see later that this assumption is not necessary if one uses a finite number
of positive bases. By assuming the Lipschitz continuity we can use the result of Theo-
rem 2.8 and, thus, relate the global convergence of this type of direct search to the global
convergence of the derivative-free methods based on line searches or trust regions.

Under this assumption we arrive at our first global convergence result for the class of
direct-search methods considered.

Theorem 7.3. Let Assumptions 7.1, 7.2, 7.3, and 7.4 hold. Then

liminf
k−→+∞‖∇ f (xk)‖ = 0,

and the sequence of iterates {xk} has a limit point x∗ (given in Corollary 7.2) for which

∇ f (x∗) = 0.

Proof. Corollary 7.2 showed the existence of a subsequence {ki } of unsuccessful iterations
(or unsuccessful poll steps) for which (7.4) is true.

From Theorem 2.8 (which can be applied at unsuccessful poll steps and for ki suffi-
ciently large), we get that

‖∇ f (xki )‖ ≤
ν

2
cm(Dki )

−1 max
d∈Dki

‖d‖αki . (7.5)

As a result of Assumption 7.3, we obtain

‖∇ f (xki )‖ ≤
νξ2

2ξ1
αki .



idfo
2008/11/17
page 123

�

�

�

�

�

�

�

�

7.3. Global convergence in the continuously differentiable case 123

Thus, we conclude that

lim
i−→+∞‖∇ f (xki )‖ = 0,

which shows the first part of the theorem. Since ∇ f is continuous, x∗ = limi−→+∞ xki is
such that ∇ f (x∗)= 0.

One could also obtain the result of Theorem 7.3 by assuming the Lipschitz continu-
ity of ∇ f near x∗ (meaning in a ball containing x∗), where x∗ is the point identified in
Corollary 7.2. Note that to obtain this result it is not enough to assume that ∇ f is Lips-
chitz continuous near all the stationary points of f since, as we will see in Section 7.4, the
point x∗ in Corollary 7.2 might not be a stationary point if smoothness is lacking.

The step size parameter provides a natural stopping criterion for directional direct-
search methods, since not only is there a subsequence of step size parameters converg-
ing to zero (Theorem 7.1), but one also has (in the continuously differentiable case) that
∇ f (xk) = O(αk) after an unsuccessful iteration (see, again, Theorem 2.8 or (7.5) above).
In general, αk seems to be a reasonable measure of stationarity (even in the nonsmooth
case). Dolan, Lewis, and Torczon [80] studied this issue in detail.11 They reported results
indicating that in practice one also observes that αk =O(∇ f (xk)), a hypothesis confirmed
by our numerical experience.

Finite set of positive bases

We will now prove global convergence under the assumption that the number of positive
bases is finite, using an argument different from the proof of Theorem 7.3.

The proof of Theorem 7.3 goes through when the set of all positive bases is infinite,
provided cm(Dk)−1 is uniformly bounded. The argument used in Theorem 7.4 below,
however, is heavily dependent on a finite number of different Dk’s.

Both proofs have their own advantages. The proof of Theorem 7.4 is easily gener-
alized to the nonsmooth case as we will see next. The proof of Theorem 7.3 not only is
more of the style of the ones applied to analyze other methods in this book but also allows
the use of an infinite number of positive bases (provided their cosine measure is uniformly
bounded away from zero).

Assumption 7.5. The set D of positive bases used by the algorithm is finite.

In this case, it is enough to require the continuity of the gradient of f . The following
assumption is the counterpart, for continuous differentiability of the objective function, of
Assumption 7.4.

Assumption 7.6. The function f is continuously differentiable in an open set contain-
ing L(x0).

11In their paper it is also shown that pattern-search methods (directional direct-search methods based on
integer lattices, as explained in Section 7.5) produce sequences of iterates for which the subsequence of
unsuccessful iterates converges r-linearly to x∗ (in the case where αk is not increased at successful iterations
after some finite iteration).
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Now we prove, for continuously differentiable functions f , the same result as in
Theorem 7.3 but following a different proof.

Theorem 7.4. Let Assumptions 7.1, 7.2, 7.5, and 7.6 hold. Then the sequence of iter-
ates {xk} has a limit point x∗ (given in Corollary 7.2) for which

∇ f (x∗) = 0.

Proof. Recall the definitions of the poll set Pk and of an unsuccessful iteration (which
includes an unsuccessful poll step). The following is true for any unsuccessful iteration k
(such that f is continuously differentiable at xk):

f (xk)≤ min
x∈Pk

f (x)= min
x∈{xk+αk d :d∈Dk}

f (x)

= min
d∈Dk

f (xk+αkd)

= min
d∈Dk

f (xk)+∇ f (xk+ tk,dαkd)�(αkd)

= f (xk)+αk min
d∈Dk
∇ f (xk+ tk,dαkd)�d ,

where tk,d ∈ (0,1) depends on k and d , and consequently

0 ≤ min
d∈Dk
∇ f (xk+ tk,dαkd)�d .

Corollary 7.2 showed the existence of a subsequence of unsuccessful iterations {ki }
for which (7.4) is true. The above inequality is true for this subsequence {ki }. Since the
number of positive bases is finite, there exists at least one D∗ ⊂ D that is used an infinite
number of times in {ki }. Thus,

0 ≤ min
d∈D∗
∇ f (x∗)�d . (7.6)

Inequality (7.6) and the property of the spanning sets given in Theorem 2.3(iv) necessarily
imply ∇ f (x∗)= 0.

One could also obtain the result of Theorem 7.4 by assuming the continuity of ∇ f
near x∗ (meaning in a ball containing x∗), where x∗ is the point identified in Corollary 7.2.

7.4 Global convergence in the nonsmooth case
In the nonsmooth case one cannot expect directional direct search to globally converge to
stationarity. In Figure 7.4 we depict the contours of the two-dimensional real function:

f (x) = 1

2
max

{
‖x − c1‖2,‖x− c2‖2

}
, (7.7)

where c1 = (1,−1) and c2 = −c1. This function, introduced in [145], is a variant of the
Dennis–Woods function [78]. The function is continuous and strictly convex everywhere,
but its gradient is discontinuous along the line x1 = x2. The function has a strict minimizer
at (0,0).



idfo
2008/11/17
page 125

�

�

�

�

�

�

�

�

7.4. Global convergence in the nonsmooth case 125

Figure 7.4. Contours of the Dennis–Woods-type function (7.7) for c1 = (1,−1)
and c2 =−c1. The cone of descent directions at the poll center is shaded.

It has also been pointed out in [145] that coordinate search can fail to converge on
this function. The reader can immediately see that at any point of the form (a,a), with
a �= 0, coordinate search generates an infinite number of unsuccessful iterations without
any progress. In fact, none of the elements of D⊕ = [e1 e2 −e1 −e2] is a descent direction
(see Figure 7.4). The descent directions of f at (a,a), with a �= 0, are marked in the shaded
region of the picture. Our numerical experience has not led to the observation (reported
in [145]) that coordinate search frequently tends to converge to points of this form where,
then, stagnation easily occurs. In fact, we found that stagnation occurs only when the
starting points are too close to points on this line, as illustrated in Figure 7.5.

It is possible to prove, though, that directional direct search can generate a sequence
of iterates under Assumptions 7.1, 7.2, and 7.5 which has a limit point where directional
derivatives are nonnegative for all directions in a positive basis. Such a statement may
not be a certificate of any type of stationarity (necessary conditions for optimality), as the
example above would immediately show.

Let us consider the point x∗ identified in Corollary 7.2. We will assume that f is
Lipschitz continuous near x∗ (meaning in a neighborhood of x∗), so that the generalized
directional derivative (in the Clarke sense [54]) can assume the form

f ◦(x ;d) = limsup
y→x ,t↓0

f (y+ td)− f (y)

t

for all directions d ∈Rn . Since f is Lipschitz continuous near x∗, this limit is well defined,
and so is the generalized subdifferential (or subgradient)

∂ f (x∗) = {s ∈ Rn : f ◦(x∗;v) ≥ v�s ∀v ∈ Rn}.
Moreover,

f ◦(x∗;d) = max{d�s : s ∈ ∂ f (x∗)}.
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Figure 7.5. Application of the coordinate-search method to the Dennis–Woods
function (7.7) starting around the point x0 = (1,1). The plots on the left (resp., right)
correspond to 10 starting points randomly generated in a box of �∞ radius 10−2 (resp.,
10−3) around the point (1,1).

Assumption 7.7. Let x∗ be the point identified in Corollary 7.2, and let the function f be
Lipschitz continuous near x∗.

Theorem 7.5. Let Assumptions 7.1, 7.2, 7.5, and 7.7 hold. Then the sequence of iter-
ates {xk} has a limit point x∗ (given in Corollary 7.2) for which

f ◦(x∗;d) ≥ 0 ∀d ∈ D∗,
where D∗ is one of the positive bases in D.

Proof. Corollary 7.2 showed the existence of a subsequence of unsuccessful iterations {ki }
for which (7.4) is true. Since the number of positive bases used is finite, there exists one
positive basis D∗ ⊂D for which

f (xki +αki d) ≥ f (xki )

for all d ∈ D∗ (and all i sufficiently large).
From the definition of the generalized directional derivative, we get, for all d ∈ D∗,

that

f ◦(x∗;d) = limsup
y→x∗,t↓0

f (y+ td)− f (y)

t
≥ limsup

k∈{ki }
f (xk+αkd)− f (xk)

αk
≥ 0.

The proof is completed.

If, in addition to Assumption 7.7, the function f is regular at x∗ (meaning that the
directional derivative f ′(x∗;v) exists and coincides with the generalized directional deriva-
tive f ◦(x∗;v) for all v ∈ Rn; see [54]), then the result of Theorem 7.5 becomes

f ′(x∗;d) ≥ 0 ∀d ∈ D∗,
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where D∗ is one of the positive bases in D. Neither the result of Theorem 7.5 nor this
particularization for regular functions implies stationarity at x∗, as expected, since D∗ �=Rn

and as the example above demonstrates.
Further, if the function f is, so called, strictly differentiable at x∗ (which is equivalent

to saying that f is Lipschitz continuous near x∗ and there exists a vectorw=∇ f (x∗)—“the
gradient”—such that

f ◦(x∗;v) = w�v
for all v ∈ Rn; see [54]), then the result of Theorem 7.5 becomes ∇ f (x∗)�d ≥ 0 for all
d ∈ D∗. Then the property about positive spanning sets given in Theorem 2.3(iv) implies
that ∇ f (x∗) = 0, which is similar to what we obtained in the continuously differentiable
case (Theorem 7.4).

Note that coordinate search can still fail to converge if strict differentiability is not
assumed at the point x∗ of Corollary 7.2. In [145], the authors provided the example

f̂ (x) =
(

1− e−103‖x‖2) f (x),

where f (x) is the modified Dennis–Woods function defined in (7.7). The function f̂ (x)
is just slightly different from f (x) but is now strictly differentiable at the minimizer (0,0)
(but still not strictly differentiable at (a,a) with a �= 0). However, the same problem can
occur as before: coordinate search might find a point of the form (a,a), with a �= 0, and
stop since none of the directions in D⊕ provides descent at the poll steps, no matter how
small the step size parameter is.

7.5 Simple decrease with integer lattices
We start by characterizing the directions in D used for polling. We assume D is finite and
D = D. As pointed out before in this book, it is convenient to regard Dk as an n×|Dk |
matrix whose columns are the vectors in Dk , and, similarly, we regard the finite set D as
an n×|D| matrix whose columns are the vectors in D.

Assumption 7.8. The set D = D of positive bases used by the algorithm is finite. In
addition, the columns of D are of the form Gz̄ j , j = 1, . . . , |D|, where G ∈ Rn×n is a
nonsingular matrix and each z̄ j is a vector in Zn.

Let Z̄ denote the matrix whose columns are z̄ j , j = 1, . . . , |D|. We can therefore
write D = G Z̄ . The matrix G is called a mesh or pattern generator.

In this section we will impose that all points generated by the algorithm lie on a
mesh Mk defined by all possible nonnegative integer combinations of vectors in D:

Mk =
{

xk+αk Du : u ∈ Z
|D|
+

}
, (7.8)

where Z+ is the set of nonnegative integers. The mesh Mk is centered at the current iter-
ate xk , and its discretization size is defined by the step size or mesh size parameter αk . It is
easy to see that the mesh (7.2) introduced for coordinate search is a particular case of Mk
when D = D⊕.

Note that the range of u in the definition of Mk allows the choice of the vectors in the
canonical basis of R|D|. Thus, all points of the form xk +αkd , d ∈ Dk , are in Mk for any



idfo
2008/11/17
page 128

�

�

�

�

�

�

�

�

128 Chapter 7. Directional direct-search methods

Dk ⊂ D. It is clear that Pk ⊂ Mk , and thus we need only impose the following condition
on the search step.

Assumption 7.9. The search step in Algorithm 7.2 evaluates only points in Mk defined
by (7.8) for all iterations k.

A standard way to globalize directional direct-search-type methods is to force the
iterates to lie on integer lattices. This intention is accomplished by imposing Assump-
tions 7.8 and 7.9 and the following additional assumption.

Assumption 7.10. The step size parameter is updated as follows: Choose a rational
number τ > 1, a nonnegative integer m+ ≥ 0, and a negative integer m− ≤ −1. If the
iteration is successful, the step size parameter is maintained or increased by taking αk+1 =
τm+k αk , with m+k ∈ {0, . . . ,m+}. Otherwise, the step size parameter is decreased by setting

αk+1 = τm−k αk , with m−k ∈ {m−, . . . ,−1}.

Note that these rules respect those of Algorithm 7.2 by setting β1 = τm− , β2 = τ−1,
and γ = τm+ .

First, we prove an auxiliary result from [18] which is interesting in its own right. This
result states that the minimum distance between any two distinct points in the mesh Mk is
bounded from below by a multiple of the mesh parameter αk .

Lemma 7.6. Let Assumption 7.8 hold. For any integer k ≥ 0, one has that

min
y,w∈Mk

y �=w
‖y−w‖ ≥ αk

‖G−1‖ .

Proof. Let y = xk + αk Duy and w = xk + αk Duw be two distinct points in Mk , where

uy ,uw ∈ Z
|D|
+ (with uy �= uw). Then

0 �= ‖y−w‖ = αk‖D(uy−uw)‖
= αk‖G Z̄ (uy−uw)‖
≥ αk
‖Z̄ (uy−uw)‖
‖G−1‖

≥ αk

‖G−1‖ .

The last inequality is due to the fact that the norm of a vector of integers not identically
zero, like Z̄ (uy−uw), is never smaller than one.

It is important to remark that this result is obtained under Assumption 7.8, where the
integrality requirement on the generation of the meshes plays a key role. For instance, all
the positive integer combinations of directions in {−1,+π} are dense in the real line, which
does not happen with {−1,+1}. What is important is to guarantee a separation bounded
away from zero for a fixed value of the step size parameter, and integrality is a convenient
way of guaranteeing that separation.
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Now we show that the sequence of step size or mesh parameters is bounded.

Lemma 7.7. Let Assumptions 7.1, 7.8, 7.9, and 7.10 hold. There exists a positive integer r+
such that αk ≤ α0τ

r+ for any k ∈N0.

Proof. Since L(x0) is compact, one can consider

θ = max
y,w∈L(x0)

‖y−w‖.

Now suppose that αk > θ‖G−1‖ for some k ∈ N0. Then Lemma 7.6, with w = xk , would
show us that any y ∈ Mk , different from xk , would not belong to L(x0). Thus, if αk >

θ‖G−1‖, then iteration k would not be successful and xk+1 = xk .
The step size parameter could pass the bound θ‖G−1‖ when it is lower than it. When

it does, it must be at a successful iteration, and it cannot go above τm+θ‖G−1‖, where m+
is the upper bound on m+k . The sequence {αk}must, therefore, be bounded by τm+θ‖G−1‖.
Letting r+ be an integer such that τm+θ‖G−1‖ ≤ α0τ

r+ completes the proof.

Since αk+1 is obtained by multiplying αk by an integer power of τ , we can write, for
any k ∈N0, that

αk = α0τ
rk (7.9)

for some rk in Z. We now show that under the assumptions imposed in this section, Algo-
rithm 7.2 meets the assumption used before for global convergence.

Theorem 7.8. Let Assumptions 7.1, 7.8, 7.9, and 7.10 hold. If there exists an α > 0 such
that αk > α, for all k, then the algorithm visits only a finite number of points. (In other
words, Assumption 7.2 is satisfied.)

Proof. The step size parameter is of the form (7.9), and hence to show the result we define
a negative integer r− such that 0 < α0τ

r− ≤ αk for all k ∈ N0. Thus, from Lemma 7.7, we
conclude that rk must take integer values in the set {r−,r−+1, . . . ,r+} for all k ∈N0.

One knows that xk+1 can be written, for successful iterations k, as xk +αk Duk for
some uk ∈ Z

|D|
+ . In unsuccessful iterations, xk+1 = xk and uk = 0. Replacing αk by α0τ

rk ,
we get, for any integer �≥ 1,

x� = x0+
�−1∑
k=0

αk Duk

= x0+α0G
�−1∑
k=0

τ rk Z̄uk

= x0+ pr−

qr+ α0G
�−1∑
k=0

prk−r−qr+−rk Z̄uk ,
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where p and q are positive integer numbers satisfying τ = p/q . Since

�−1∑
k=0

prk−r−qr+−rk Z̄uk

is a vector of integers for all � ∈ N, we have just proved that the sequence of iterates {xk}
lies in a set of the form (an integer lattice)

L = {x0 + G0z : z ∈ Zn},
where

G0 = pr−

qr+ α0G

is a nonsingular n×n matrix. Now note that the intersection of L with the compact L(x0)
is necessarily a finite set, which shows that the algorithm must visit only a finite number of
points.

It is important to stress that no properties of f are specifically required in Theo-
rem 7.8.

The rest of this section focuses on particular cases of the direct-search framework
presented and on some extensions which preserve the asymptotic behavior of the step size
parameter. A reader not acquainted with the convergence properties of these directional
direct-search methods might postpone the rest of this section to a future reading.

Tightness of the integrality and rationality requirements

Assumptions 7.8 and 7.10 are necessary for Theorems 7.1 and 7.8 to hold, when a finite
number of positive bases is used and only simple decrease imposed.

It is possible to show that the requirement of integrality stated in Assumption 7.8
for the positive bases cannot be lifted. An example constructed by Audet [12] shows an in-
stance of Algorithm 7.2 which does not meet the integrality requirement of Assumption 7.8
for the positive bases and for which the step size parameter αk is uniformly bounded away
from zero when applied to a particular smooth function f .

Audet [12] also proved that the requirement of rationality on τ is tight. He provided
an instance of Algorithm 7.2 for an irrational choice of τ , which for a given function f
generates step size parameters αk uniformly bounded away from zero. We point out that
the function f used in this counterexample is discontinuous, which is acceptable under the
assumptions of this section.

When τ > 1 is an integer (and not just rational) the analysis above can be further
simplified. In fact, one can easily see that q = 1 in the proof of Theorem 7.8 and the upper
bound r+ on rk is no longer necessary.

Other definitions for the mesh

Instead of as in (7.8), the mesh Mk could be defined more generally as

Mk = {xk+αk Du : u ∈ Z}
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as long as the set Z ⊂ Z|D| contains all the vectors of the canonical basis of R|D| (so that
Pk ⊂ Mk ). Another possible generalization is sketched in the exercises.

For instance one could set

Mk = {xk+αk( jd) : d ∈ D, j ∈ Z+},
which would amount to considering only mesh points along the vectors d ∈ D. Figure 7.6
displays two meshes Mk when n= 2, for the cases where D contains one and three maximal
positive bases.

Figure 7.6. Two pointed meshes, when D has one maximal positive basis (left)
and three maximal positive bases (right).

Complete polling and asymptotic results

Another example is provided by Audet [12], which shows that the application of an in-
stance of Algorithm 7.2 under Assumption 7.8 to a continuously differentiable function
can generate an infinite number of limit points, one of them not being stationary. Thus, the
result

liminf
k−→+∞‖∇ f (xk)‖ = 0

cannot be extended to
lim

k−→+∞‖∇ f (xk)‖ = 0, (7.10)

without further assumptions or modifications to the direct-search schemes in Algorithm 7.2.
Such an observation is consistent with a similar one in trust-region algorithms for uncon-
strained nonlinear optimization, pointed out by Yuan [236]. This author constructed an ex-
ample where a trust-region method based on simple decrease to accept new points (rather
than a sufficient decrease condition—see Chapter 10) generates a sequence of iterates that
does not satisfy (7.10) either.
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Conditions under which it is possible to obtain (7.10) have been analyzed by Torc-
zon [217] (see also [145]). The modifications in the directional direct-search framework
are essentially two.

First, it is required that

lim
k−→+∞αk = 0.

From Theorem 7.1, one way of guaranteeing this condition is by never increasing the step
size parameter at successful iterations.

Second, there is the imposition of the so-called complete polling at all successful
iterations. Complete polling requires the new iterate generated in the poll step to minimize
the function in the poll set:

f (xk+1) = f (xk+αkdk) ≤ f (xk+αkd) ∀d ∈ Dk .

Complete polling necessarily costs |Dk | (with |Dk | ≥ n+1) function evaluations at every
poll step, and not only at unsuccessful poll steps like in regular polling. The new iter-
ate xk+1 could also be computed in a search step as long as f (xk+1)≤ f (xk+αkd), for all
d ∈ Dk , which means that the search step would have then to follow the (complete) poll
step.

The proof of (7.10) under these two modifications is omitted. It can be accomplished
in two phases. In a first phase, it is proved that for any ε > 0 there exist α−,η > 0 such that
f (xk+αkdk) ≤ f (xk)−ηαk‖∇ f (xk)‖ if ‖∇ f (xk)‖> ε and αk < α

−. This inequality can
be interpreted as a sufficient-decrease-type condition (see Chapters 9 and 10). A second
phase consists of applying the Thomas argument [214] known for deriving lim-type results
for trust-region methods (i.e., convergence results for the whole sequence of iterates; see
also Chapter 10). The details are in [145].

7.6 The mesh adaptive direct-search method
Audet and Dennis introduced in [19] a class of direct-search algorithms capable of achiev-
ing global convergence in the nonsmooth case. This class of methods is called mesh adap-
tive direct search (MADS) and can be seen as an instance of Algorithm 7.2.

The globalization is achieved by simple decrease with integer lattices. So, let the
mesh Mk (given, for instance, as in (7.8) but always by means of a finite D) be defined by
Assumptions 7.8 and 7.9. Also let αk be updated following Assumption 7.10. The key point
in MADS is that D is allowed to be infinite, and thus different from the finite set D—which
is important to allow some form of stationarity in the limit for the nonsmooth case—while
the poll set Pk (defined in (7.3)) is still defined as a subset of the mesh Mk . (An earlier
approach also developed to capture a rich set of directions can be found in [10].)

Thus, MADS first performs a search step by evaluating the objective function at a
finite number of points in the mesh Mk . If the search step fails or is skipped, a poll set is
tried by evaluating the objective function at the poll set Pk defined by the positive basis Dk
chosen from a set of positive bases D (which is not necessarily explicitly given). However,
this set D is now defined so that the elements dk ∈ Dk satisfy the following conditions:

• dk is a nonnegative integer combination of the columns of D.
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• The distance between xk and the point xk+αkdk tends to zero if and only if αk does:

lim
k∈K

αk‖dk‖ = 0 ⇐⇒ lim
k∈K

αk = 0 (7.11)

for any infinite subsequence K .

• The limits of all convergent subsequences of D̄k = {dk/‖dk‖ : dk ∈ Dk} are positive
bases.

In the spirit of the presentation in [19] we now define the concepts of refining subse-
quence and refining direction.

Definition 7.9. A subsequence {xk}k∈K of iterates corresponding to unsuccessful poll steps
is said to be a refining subsequence if {αk}k∈K converges to zero.

Let x be the limit point of a convergent refining subsequence. If the limit limk∈L dk/‖dk‖
exists, where L ⊆ K and dk ∈ Dk, then this limit is said to be a refining direction for x.

The existence of a convergent refining subsequence is nothing else than a restatement
of Corollary 7.2. It is left as an exercise to confirm that this result is still true for MADS.
The next theorem states that the Clarke generalized derivative is nonnegative along any
refining direction for x∗ (the limit point of Corollary 7.2).

Theorem 7.10. Let Assumptions 7.1, 7.7, 7.8, 7.9, and 7.10 hold. Then the sequence of
iterates {xk} generated by MADS has a limit point x∗ (given in Corollary 7.2) for which

f ◦(x∗;v) ≥ 0

for all refining directions v for x∗.

Proof. Let {xk}k∈K be the refining subsequence converging to x∗ guaranteed by Corol-
lary 7.2, and let v = limk∈L dk/‖dk‖ be a refining direction for x∗, with dk ∈ Dk for all
k ∈ L. Since f is Lipschitz continuous near x∗ and dk/‖dk‖→ v and αk‖dk‖→ 0, for all
k ∈ L,

f ◦(x∗;v) ≥ limsup
k∈L

f (xk+αk‖dk‖ dk‖dk‖ )− f (xk)

αk‖dk‖ . (7.12)

Since xk is an unsuccessful poll step,

limsup
k∈L

f (xk+αkdk)− f (xk)

αk‖dk‖ ≥ 0,

and the proof is completed.

Audet and Dennis [19] (see also [15]) proposed a scheme to compute the positive
bases Dk , called lower triangular matrix based mesh adaptive direct search (LTMADS),
which produces a set of refining directions for x∗ with union asymptotically dense in Rn

with probability one. From this and Theorem 7.10, MADS is thus able to converge to a
point where the Clarke generalized directional derivative is nonnegative for a set of direc-
tions dense a.e. in Rn , and not just for a finite set of directions as in Theorem 7.5. And
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more recently, Abramson et al. [8] proposed an alternative scheme to generate the positive
bases Dk (also related to [10]), called OrthoMADS. This strategy also generates an asymp-
totically dense set of directions, but in a deterministic way, and each positive basis Dk is
constructed from an orthogonal basis, thus determining relatively efficiently a reduction of
the unexplored regions.

7.7 Imposing sufficient decrease
One alternative to the integrality requirements of Assumption 7.8, which would still provide
global convergence for directional direct search, is to accept new iterates only if they satisfy
a sufficient decrease condition. We will assume—in this section—that a new point xk+1 �=
xk is accepted (both in search and poll steps) only if

f (xk+1) < f (xk)−ρ(αk), (7.13)

where the forcing function ρ : R+ →R+ is continuous, positive, and satisfies

lim
t−→0+

ρ(t)

t
= 0 and ρ(t1) ≤ ρ(t2) if t1 < t2.

A simple example of a forcing function is ρ(t)= t2. Functions of the form ρ(t)= t1+a , for
a > 0, are also in this category.

Theorem 7.11. Suppose Algorithm 7.2 is modified in order to accept new iterates only
if (7.13) holds.

Let Assumption 7.1 hold. If there exists an α > 0 such that αk > α, for all k, then the
algorithm visits only a finite number of points. (In other words, Assumption 7.2 is satisfied.)

Proof. Since ρ is monotonically increasing, we know that 0< ρ(α)≤ ρ(αk) for all k ∈N0.
Suppose that there exists an infinite subsequence of successful iterates. From in-

equality (7.13) we get, for all successful iterations, that

f (xk+1) < f (xk)−ρ(αk) ≤ f (xk)−ρ(α).

Recall that at unsuccessful iterations f (xk+1) = f (xk). As a result, the sequence { f (xk)}
must converge to −∞, which clearly contradicts Assumption 7.1.

To prove a result of the type of Theorem 7.3 for Algorithm 7.2, under the modification
given in (7.13), we need to show first that for unsuccessful poll steps ki one has

‖∇ f (xki )‖ ≤
(
ν

2
cm(Dki )

−1 max
d∈Dki

‖d‖
)
αki +

cm(Dki )
−1

mind∈Dki
‖d‖

ρ(αki )

αki

, (7.14)

which is left as an exercise. Now, given the properties of the forcing function ρ, it is clear
that ∇ f (xki )→ 0 when αki → 0, provided the minimum size of the vectors in Dk does not
approach zero.

When imposing sufficient decrease, one can actually prove that the whole sequence
of step size parameters converges to zero.
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Theorem 7.12. Suppose Algorithm 7.2 is modified in order to accept new iterates only
if (7.13) holds.

Let Assumption 7.1 hold. Then the sequence of step size parameters satisfies

lim
k−→+∞αk = 0.

The proof is also left as an exercise. Note that Assumption 7.1 is more than what is
necessary to prove Theorems 7.11 and 7.12. In fact, it would had been sufficient to assume
that f is bounded from below on L(x0).

7.8 Other notes and references
The first reference in the literature to direct search has been attributed to a 1952 report of
Fermi and Metropolis [90], in a form that resembles coordinate search (see the preface in
Davidon [73]). In the 1950s, Box [42] and Box and Wilson [44] introduced direct-search
algorithms related to coordinate search, using positive integer combinations of D⊕. Their
algorithms evaluated points in Mk but not necessarily in Pk . Some of the vocabulary used at
this time (like two-level factorial and composite designs [44]) was inspired from statistics
where much of the early work on direct search was developed.12

Hooke and Jeeves [130] seemed to have been the first to use the terminology direct-
search methods. Hooke and Jeeves [130] are also acknowledged to have been the first to
recognize the underlying notion of pattern or integer lattice in direct search, which was then
explored by other authors, in particular by Berman [35]. Hooke and Jeeves’ exploratory
moves scheme is a predecessor of the search step. Later, in the 1990s, Torczon [216, 217]
showed how to rigorously use integer lattices in the globalization of pattern-search meth-
ods (which can be defined as directional direct-search methods based on such lattices, as
explained in Section 7.5). Audet and Dennis [18] contributed to the field by essentially
focusing the analysis of these methods on the subsequence of unsuccessful iterates. The
paper of Booker et al. [40] should get most of the credit for the formal statement of the
search-poll framework.

But the pioneer work on direct search was not confined to directional methods based
on patterns generated by fixed sets of directions. In fact, some of the earliest directional
direct-search methods modified the search directions at the end of each iteration by com-
bining, in some form, a previously computed set of directions. Among such methods are
the ones by Powell [183] which used conjugate directions (see also the modifications in-
troduced by Zangwill [237] and the analysis in Toint and Callier [215]) and by Rosen-
brock [201]. A recent approach has been pursued by Frimannslund and Steihaug [100] by
explicitly rotating the direction set based on curvature information extracted from function
values.

The introduction of a sufficient decrease condition (involving the step size) in di-
rect search was first made by Yu [235] in 1979. Other authors have explored the use of
such a condition in directional direct-search methods, like Grippo, Lampariello, and Lu-
cidi [115], Lucidi and Sciandrone [160], and García-Palomares and Rodríguez [103]. The
work of Lucidi and Sciandrone [160], in particular, concerns the development of an algo-
rithmic framework, exploring the use of line-search techniques in directional direct-search

12J. A. Nelder and R. Mead were also statisticians.



idfo
2008/11/17
page 136

�

�

�

�

�

�

�

�

136 Chapter 7. Directional direct-search methods

methods. Their convergence theory includes first-order lim-type results derived under rea-
sonable assumptions. A particularity of the approaches in [103, 160] is the consideration of
different step sizes along different directions. Diniz-Ehrhardt, Martínez, and Raydan [79]
used a sufficient decrease condition in the design of a nonmonotone algorithm.

In the context of globalization of directional direct-search methods by integer lattices
(see Section 7.5), it is possible in suitable cases to relax the assumption that the directions
are extracted from a finite set D. This has been explored by Coope and Price [66] in
their grid-based methods. They have observed that after an unsuccessful iteration one can
change D (provided it still satisfies Assumption 7.8) and, thus, gain further flexibility in
attempting to capture the curvature of the function. However, there is a price to pay, namely,
that αk → 0 should be imposed, which, for example, can be guaranteed in the context of
Theorems 7.1 and 7.8 by never allowing αk to increase.

There has been some effort in trying to develop efficient serial implementations of
pattern-search methods by considering particular instances where the problem structure
can be exploited efficiently. Price and Toint [195] examined how to take advantage of
partial separability. Alberto et al. [10] have shown ways of incorporating user-provided
function evaluations. Abramson, Audet, and Dennis [6] looked at the case where some
incomplete form of gradient information is available. Custódio and Vicente [70] suggested
several procedures, for general objective functions, to improve the efficiency of pattern-
search methods using simplex derivatives. In particular, they showed that ordering the poll
directions in opportunistic polling according to a negative simplex gradient can lead to a
significant reduction in the overall number of function evaluations (see [68, 70]).

One attractive feature of directional direct-search methods is that it is easy to par-
allelize the process of evaluating the function during poll steps. Many authors have ex-
perimented with different parallel versions of these methods; see [10, 21, 77, 103, 132].
Asynchronous parallel forms of these methods have been proposed and analyzed by García-
Palomares and Rodríguez [103] and Hough, Kolda, and Torczon [132] (see also the soft-
ware produced by Gray and Kolda [110]).

Another attractive feature is the exploration of the directionality aspect to design
algorithms for nonsmooth functions with desirable properties. We have mentioned in Sec-
tion 7.6 that the MADS methods can converge with probability one to a first-order station-
ary, nonsmooth point. It is shown in [3] how to generalize this result to second-order sta-
tionary points with continuous first-order derivatives but nonsmooth second-order deriva-
tives. Other direct-search approaches to deal with nonsmooth functions have recently been
proposed [24, 37] but for specific types of nondifferentiability.

The generating search set (GSS) framework

Kolda, Lewis, and Torczon [145] introduced another framework for globally convergent
directional direct-search methods. These authors do not make an explicit separation in
their algorithmic description between the search step and the poll step. A successful iterate
in their GSS framework is of the form xk +αkdk , where dk belongs to a set of directions
Gk ∪ Hk. In GSS, Gk plays the role of our Dk (used in the poll step). The search step
is accommodated by the additional set of directions Hk (which might, as in the frame-
work presented in Section 7.2, be empty). When the iterates are accepted solely based
on simple decrease of the objective function, integrality requirements similar to those of
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Assumption 7.8 (or something equivalent) must be imposed on the finite set of directions
that contains all choices of Gk ∪Hk for all k ∈ Z+.

The multidirectional search method

Another avenue followed in the development of direct search is simplicial methods (like
the Nelder and Mead simplex method [177]). Simplicial direct-search methods, despite
sharing features with directional direct search, have their own motivation and, thus, will be
treated separately in Chapter 8.

The multidirectional search (MDS) method of Dennis and Torczon [77], described
next, can be regarded as both a directional and a simplicial direct-search method. We
choose to include MDS in the book essentially for historical reasons and because it will
help us frame the modifications necessary to make the Nelder–Mead method globally con-
vergent.

As in the Nelder–Mead method (whose details are not needed now), MDS starts with
a simplex of n+ 1 vertices Y = {y0, y1, . . . , yn}. Each iteration is centered at the simplex
vertex y0 with the lowest function value (in contrast with Nelder–Mead which focuses
particular attention at the vertex with the highest function value). Then a rotated simplex is
formed by rotating the vertices yi , i = 1, . . . ,n, 180◦ around y0 (see Figure 7.7). (The reader
might have already identified a maximal positive basis. . . ) If the best objective value of the
rotated vertices is lower than f (y0), then an expanded simplex is formed in the direction
of the rotated one (see Figure 7.7). The next iteration is started from either the rotated or
expanded simplex, depending on which is better. If the best objective value of the rotated
vertices is no better than f (y0), then a shrink step is taken just as in Nelder–Mead (see
Figure 7.7), and the next iteration is started from the shrunken simplex. We now give more
details on the MDS algorithm.

y1

y2

y0

ye
1

ye
2

yr
2

yr
1

Figure 7.7. Original simplex, rotated vertices, expanded vertices, shrunken ver-
tices, corresponding to an MDS iteration.
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Algorithm 7.3 (The MDS method).

Initialization: Choose an initial simplex of vertices Y0 = {y0
0 , y1

0 , . . . , yn
0 }. Evaluate f at

the points in Y0. Choose constants:

0 < γ s < 1 < γ e.

For k = 0,1,2, . . .

0. Set Y = Yk .

1. Find best vertex: Order the n+1 vertices of Y = {y0, y1, . . . , yn} so that f 0 =
f (y0)≤ f (yi ), i = 1, . . . ,n.

2. Rotate: Rotate the simplex around the best vertex y0:

yr
i = y0− (yi − y0), i = 1, . . . ,n.

Evaluate f (yr
i ), i = 1, . . . ,n, and set f r =min{ f (yr

i ) : i = 1, . . . ,n}. If f r < f 0,
then attempt an expansion (and then take the best of the rotated or expanded
simplices). Otherwise, contract the simplex.

3. Expand: Expand the rotated simplex:

ye
i = y0−γ e(yi − y0), i = 1, . . . ,n.

Evaluate f (ye
i ), i = 1, . . . ,n, and set f e =min{ f (ye

i ) : i = 1, . . . ,n}. If f e < f r ,
then accept the expanded simplex and terminate the iteration: Yk+1 = {y0, ye

1,
. . . , ye

n}. Otherwise, accept the rotated simplex and terminate the iteration:
Yk+1 = {y0, yr

1, . . . , yr
n}.

4. Shrink: Evaluate f at the n points y0+γ s(yi − y0), i = 1, . . . ,n, and replace
y1, . . . , yn by these points, terminating the iteration: Yk+1 = {y0 + γ s (yi −
y0), i = 0, . . . ,n}.

Typical values for γ s and γ e are 1/2 and 2, respectively. A stopping criterion could
consist of terminating the run when the diameter of the simplex becomes smaller than a
chosen tolerance	tol > 0 (for instance, 	tol = 10−5).

Torczon [216] noted that, provided γ s and γ e are rational numbers, all possible ver-
tices visited by the algorithm lie in an integer lattice. This property is independent of the
position in each simplex taken by its best vertex. In addition, note that the MDS algorithm
enforces a simple decrease to accept new iterates (otherwise, the simplex is shrunk and the
best vertex is kept the same). Thus, once having proved the integer lattice statement, the
proof of the following theorem follows trivially from the material of Section 7.3.

Theorem 7.13. Suppose that γ s ,γ e ∈Q, and let the initial simplex be of the form Y0 =G Z̄,
where G ∈Rn×n is nonsingular and the components of Z̄ ∈Rn×(n+1) are integers. Assume
that L(y0

0)= {x ∈Rn : f (x)≤ f (y0
0)} is compact and that f is continuously differentiable

in L(y0
0). Then the sequence of iterates {y0

k } generated by the MDS method (Algorithm 7.3)
has one stationary limit point x∗.
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Proof. We need to convince the reader that we can frame MDS in the format of directional
direct search (Algorithm 7.2). Notice, first, that the expanded step can be seen as a search
step. Polling is complete and involves a maximal positive basis Dk related to the initial
simplex and chosen from the set D formed by{

y j
0 − yi

0, j = 0, . . . ,n, j �= i
}
∪

{
−(y j

0 − yi
0), j = 0, . . . ,n, j �= i

}
,

i = 0, . . . ,n. It is then a simple matter to see that the integer lattice requirements (see
Section 7.5), i.e., Assumptions 7.8, 7.9, and 7.10, are satisfied.

Given the pointed nature of the meshes generated by Algorithm 7.3, it is not nec-
essary that Y0 takes the form given in Theorem 7.13. In fact, the original proof in [216]
does not impose this assumption. We could also have lifted it here, but that would require
a modification of the mesh/grid framework of Section 7.5.

Another avenue to make MDS globally convergent to stationary points is by imposing
sufficient decrease in the acceptance conditions, as is done in Chapter 8 for the modified
Nelder–Mead method.

7.9 Exercises
1. In the context of the globalization of the directional direct-search method (Algo-

rithm 7.2) with simple decrease with integer lattices (Section 7.5), prove that the
mesh Mk defined by (7.8) can be generalized to

Mk =
⋃

x∈Ek

{x+αk Du : u ∈ Z
|D|
+ }, (7.15)

where Ek is the set of points where the objective function f has been evaluated by
the start of iteration k (and Z+ is the set of nonnegative integers).

2. Let the mesh be defined by Assumptions 7.8 and 7.9 for the MADS methods. Let
αk be updated following Assumption 7.10. Prove under Assumption 7.1 that the
result of Corollary 7.2 is true (in other words that there exists a convergent refining
subsequence).

3. Show (7.12). You will need to add and subtract a term and use the Lipschitz conti-
nuity of f near x∗.

4. Generalize Theorem 2.8 for unsuccessful poll steps when a sufficient decrease
condition of the form (7.13) is imposed. Show that what you get is precisely the
bound (7.14).

5. Prove Theorem 7.12.
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Chapter 8

Simplicial direct-search
methods

The Nelder–Mead algorithm [177] is one of the most popular derivative-free methods. It
has been extensively used in the engineering community and is probably the most widely
cited of the direct-search methods (the 1965 paper by Nelder and Mead [177] is officially
a Science Citation Classic). Among the reasons for its success are its simplicity and its
ability to adapt to the curvature of the function being minimized. In this chapter we will
describe the original Nelder–Mead method for solving (1.1) and some of its features. We
will show why it can fail and how it can be fixed to globally converge to stationary points.

8.1 The Nelder–Mead simplex method
The Nelder–Mead algorithm [177] is a direct-search method in the sense that it evaluates
the objective function at a finite number of points per iteration and decides which action
to take next solely based on those function values and without any explicit or implicit
derivative approximation or model building. Every iteration in Rn is based on a simplex of
n+ 1 vertices Y = {y0, y1, . . . , yn} ordered by increasing values of f . See Section 2.5 for
the definition and basic properties of simplices.

The most common Nelder–Mead iterations perform a reflection, an expansion, or a
contraction (the latter can be inside or outside the simplex). In such iterations the worst
vertex yn is replaced by a point in the line that connects yn and yc,

y = yc+ δ(yc− yn), δ ∈ R,

where yc =∑n−1
i=0 yi/n is the centroid of the best n vertices. The value of δ indicates the

type of iteration. For instance, when δ = 1 we have a (genuine or isometric) reflection,
when δ = 2 an expansion, when δ = 1/2 an outside contraction, and when δ = −1/2 an
inside contraction. In Figure 8.1, we plot these four situations.

A Nelder–Mead iteration can also perform a simplex shrink, which rarely occurs in
practice. When a shrink is performed all the vertices in Y are thrown away except the
best one y0. Then n new vertices are computed by shrinking the simplex at y0, i.e., by
computing, for instance, y0+ 1/2(yi − y0), i = 1, . . . ,n. See Figure 8.2. We note that the
“shape” of the resulting simplices can change by being stretched or contracted, unless a
shrink occurs—as we will study later in detail.

141
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yr yeyic yocy2

y1

y0

yc

Figure 8.1. Reflection, expansion, outside contraction, and inside contraction of
a simplex, used by the Nelder–Mead method.

y2

y1

y0

Figure 8.2. Shrink of a simplex, used by the Nelder–Mead method.

The Nelder–Mead method is described in Algorithm 8.1. The standard choices for
the coefficients used are

γ s = 1

2
, δic = −1

2
, δoc = 1

2
, δr = 1, and δe = 2. (8.1)

Note that, except for shrinks, the emphasis is on replacing the worse vertex rather than
improving the best. It is also worth mentioning that the Nelder–Mead method does not
parallelize well since the sampling procedure is necessarily sequential (except at a shrink).
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Algorithm 8.1 (The Nelder–Mead method).

Initialization: Choose an initial simplex of vertices Y0 = {y0
0 , y1

0 , . . . , yn
0 }. Evaluate f at

the points in Y0. Choose constants:

0 < γ s < 1, −1 < δic < 0 < δoc < δr < δe.

For k = 0,1,2, . . .

0. Set Y = Yk .

1. Order: Order the n+1 vertices of Y = {y0, y1, . . . , yn} so that

f 0 = f (y0) ≤ f 1 = f (y1) ≤ ·· · ≤ f n = f (yn).

2. Reflect: Reflect the worst vertex yn over the centroid yc =∑n−1
i=0 yi/n of the

remaining n vertices:
yr = yc+ δr (yc− yn).

Evaluate f r = f (yr ). If f 0 ≤ f r < f n−1, then replace yn by the reflected
point yr and terminate the iteration: Yk+1 = {y0, y1, . . . , yn−1, yr }.

3. Expand: If f r < f 0, then calculate the expansion point

ye = yc+ δe(yc− yn)

and evaluate f e = f (ye). If f e ≤ f r , replace yn by the expansion point ye and
terminate the iteration: Yk+1 = {y0, y1, . . . , yn−1, ye}. Otherwise, replace yn by
the reflected point yr and terminate the iteration: Yk+1 = {y0, y1, . . . , yn−1, yr }.

4. Contract: If f r ≥ f n−1, then a contraction is performed between the best of
yr and yn .

(a) Outside contraction: If f r < f n , perform an outside contraction

yoc = yc+ δoc(yc− yn)

and evaluate f oc = f (yoc). If f oc ≤ f r , then replace yn by the outside
contraction point yoc

k and terminate the iteration: Yk+1 = {y0, y1, . . . , yn−1,
yoc}. Otherwise, perform a shrink.

(b) Inside contraction: If f r ≥ f n , perform an inside contraction

yic = yc+ δic(yc− yn)

and evaluate f ic = f (yic). If f ic < f n , then replace yn by the inside
contraction point yic and terminate the iteration: Yk+1 = {y0, y1, . . . , yn−1,
yic}. Otherwise, perform a shrink.

5. Shrink: Evaluate f at the n points y0+γ s (yi − y0), i = 1, . . . ,n, and replace
y1, . . . , yn by these points, terminating the iteration: Yk+1 = {y0 + γ s(yi −
y0), i = 0, . . . ,n}.
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A stopping criterion could consist of terminating the run when the diameter of the
simplex becomes smaller than a chosen tolerance	tol > 0 (for instance, 	tol = 10−5).

This algorithmic description is what we can refer to as the “modern interpretation” of
the original Nelder–Mead algorithm [177], which had several ambiguities about strictness
of inequalities and tie breaking. The only significant difference between Algorithm 8.1 and
the original Nelder–Mead method [177] is that in the original version the expansion point ye

is accepted if f e < f 0 (otherwise, the reflection point yr is accepted). The standard practice
nowadays [149, 169] is to accept the best of yr and ye if both improve over y0, as is done
in Algorithm 8.1.

The Nelder–Mead algorithm performs the following number of function evaluations
per iteration:

1 if the iteration is a reflection,

2 if the iteration is an expansion or contraction,

n+2 if the iteration is a shrink.

Lexicographic decrease at nonshrink iterations

We focus our attention now on how ties are broken in Algorithm 8.1 when equal function
values occur. The way in which the initial points are originally ordered when ties occur
is not relevant to what comes next. It also makes no difference how these ties are broken
among the n new points calculated in the shrink step.

However, we need tie-breaking rules if we want to well define the smallest index k∗
of a vertex that differs between iterations k and k+1,

k∗ = min
{

i ∈ {0,1, . . . ,n} : yi
k �= yi

k+1

}
.

It is a simple matter to see that such tie-breaking rules involve only the situations reported
in the next two paragraphs.

When a new point is brought to the simplex in the reflection, expansion, or con-
traction steps, there might be a point in the simplex which already has the same objective
function value. We need to define tie-breaking rules to avoid unnecessary modifications to
the change index k∗. We adopt here the natural rule suggested in [149]. If a new accepted
point (yr

k , ye
k , yoc

k , or yic
k ) produces an objective function value equal to the value of one (or

more than one) of the points y0
k , . . . , yn−1

k , then it is inserted into Y k+1 with an index larger
than that of such a point (or points). In this way the change index k∗ remains the same
whenever points with identical function values are generated in consecutive iterations.

Another situation where tie breaking is necessary to avoid modifications by chance
on the change index k∗ occurs at a shrink step when the lowest of the values f (y0

k+γ s (yi
k−

y0
k )), i = 1, . . . ,n, is equal to f (y0

k ). In such a case, we set y0
k+1 to y0

k .
Thus, k∗ takes the following values:

1≤ k∗ ≤ n−1 if the iteration ends at a reflection step,

k∗ = 0 if the iteration ends at an expansion step,

0≤ k∗ ≤ n if the iteration ends at a contraction step,

k∗ = 0 or 1 if the iteration ends at a shrink step.
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In addition, the definition of the change index k∗, under the two above-mentioned tie-
breaking rules, implies that at a nonshrink iteration

f j
k+1 = f j

k and y j
k+1 = y j

k if j < k∗,

f j
k+1 < f j

k and y j
k+1 �= y j

k if j = k∗,

f j
k+1 = f j−1

k and y j
k+1 = y j−1

k if j > k∗.

We observe that the vector ( f 0
k , . . . , f n

k ) decreases lexicographically at nonshrink iterations.
It follows from these statements that, at nonshrink iterations,

n∑
j=0

f j
k+1 <

n∑
j=0

f j
k .

This property of the Nelder–Mead algorithm has been explored by several authors. Kel-
ley [140] used it to detect and remedy stagnation in the context of the Nelder–Mead method.
Tseng [220] suggested a class of simplex-type methods that includes a modified Nelder–
Mead method where this inequality plays a relevant role (see Section 8.3).

Note that the worst vertex function value might not necessarily decrease after a non-
shrink iteration. For instance, suppose that n = 4 and that the vertex function values
are ( f 0

k , f 1
k , f 2

k , f 3
k , f 4

k ) = (1,2,2,3,3) at the nonshrink iteration k. Suppose also that the
new vertex has function value 2. Then the vertex function values at iteration k + 1 are
( f 0

k+1, f 1
k+1, f 2

k+1, f 3
k+1, f 4

k+1) = (1,2,2,2,3). It is clear from this example that the worst
vertex function has not improved. However, one can easily see that the worst function
value will necessarily decrease after at most n+1 consecutive nonshrink iterations, unless
an optimal value has already been attained.

Nelder–Mead simplices

The Nelder–Mead algorithm was designed with the idea that the simplices would adapt
themselves to “the local landscape” [177]. In fact, we can see that the Nelder–Mead
moves allow any simplex shape to be approximated. The good practical performance of
the Nelder–Mead algorithm, when it works, is directly related to this capability of fitting
well the curvature of the function.

However, the simplices can become arbitrarily flat or needle shaped, which is the
reason why it is not possible to establish global convergence to stationary points for the
Nelder–Mead algorithm (as the example by McKinnon given in Section 8.2 demonstrates).
A common procedure used by today’s practitioners is to restart Nelder–Mead whenever the
geometry or well poisedness of the simplex vertices deteriorates.

One way to monitor the geometry of Y = {y0, y1, . . . , yn} is to check if it is �-poised
(for some prefixed constant�> 0), i.e., to check if

‖L̂(Y )−1‖ ≤ �, (8.2)

where

L̂(Y ) = 1

	(Y )
L(Y ) = 1

	(Y )

[
y1− y0 · · · yn− y0

]
(8.3)



idfo
2008/11/17
page 146

�

�

�

�

�

�

�

�

146 Chapter 8. Simplicial direct-search methods

and	(Y )=max1≤i≤n ‖yi − y0‖. It is easy to see that such a simplex measure is consistent
with the definition of linear �-poisedness (see Sections 2.5, 3.3, and 4.3).

Now recall from Section 2.5 the definition of the diameter of a simplex: diam(Y )=
max0≤i< j≤n ‖yi − y j‖. Since 	(Y )≤ diam(Y )≤ 2	(Y ) (see also Section 2.5), it is irrele-
vant both in practice and in a convergence analysis whether the measure of the scaling of Y
is given by	(Y ) or by diam(Y ). We choose to work with diam(Y ) in simplex-type methods
like Nelder–Mead because it does not depend on a centering point like 	(Y ) does. Instead
of �-poisedness, we will work with the normalized volume (see Section 2.5)

von(Y ) = vol

(
1

diam(Y )
Y

)
= |det(L(Y ))|

n!diam(Y )n
.

The choices of diam(Y ) and von(Y ) will be mathematically convenient when manipulating
a simplex by reflection or shrinkage. Tseng [220] ignores the factor n! in the denominator,
which we could also do here.

We end this section with a few basic facts about the volume and normalized volume
of Nelder–Mead simplices [149]. Recall from Section 2.5 that the volume of the simplex
of vertices Yk = {y0

k , y1
k , . . . , yn

k } is defined by the (always positive) quantity

vol(Yk) = |det(Lk)|
n!

,

where
Lk =

[
y0

k − yn
k · · · yn−1

k − yn
k

]
.

Theorem 8.1.

• If iteration k performs a nonshrink step (reflection, expansion, or contraction), then

vol(Yk+1) = |δ|vol(Yk).

• If iteration k performs a shrink step, then

vol(Yk+1) = (γ s )n vol(Yk).

Proof. Let us prove the first statement only. The second statement can be proved trivially.
Let us assume without loss of generality that yn

k = 0. In this case, the vertex computed
at a nonshrink step can be written in the form

Lk tk(δ), where tk(δ) =
[

1+ δ
n

, . . . ,
1+ δ

n

]�
.

Since the volume of the new simplex Yk+1 is independent of the ordering of the vertices,
let us assume that the new vertex Lktk(δ) is the last in Yk+1. Thus, recalling that yn

k = 0,

|det(Lk+1)| =
∣∣∣det

(
Lk− Lktk(δ)e�

)∣∣∣ = |det(Lk)|
∣∣∣det

(
I − tk(δ)e�

)∣∣∣ ,
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Table 8.1. Number of times where the diameter of a simplex increased and the
normalized volume decreased by isometric reflection. Experiments made on 105 simplices
in R3 with y0 = 0 and remaining vertex components randomly generated in [−1,1], using
MATLAB R© [1] software. The notation used is such that Y = {y0, y1, y2, y3} and Y r =
{y0, y1, y2, yr }.

Difference (power k) 0 2 4 6 8

diam(Y r )> diam(Y )+10−k 0% 24% 26% 26% 26%

von(Y r )< von(Y )−10−k 0% 1% 23% 26% 26%

where e is a vector of ones of dimension n. The eigenvalues of I − tk(δ)e� are 1 (with
multiplicity n−1) and−δ. Thus, |det(I − tk(δ)e�)| = |δ|, and the proof is completed.

A simple consequence of this result is that all iterations of the Nelder–Mead algo-
rithm generate simplices, i.e., vol(Yk)> 0, for all k (provided that the vertices of Y0 form a
simplex). Theorem 8.1 also allows us to say, algebraically, that isometric reflections (δ= 1)
preserve the volume of the simplices, that contractions and shrinks are volume decreasing,
and that expansions are volume increasing.

It is also important to understand how these operations affect the normalized volume
of the simplices. When a shrink step occurs one has

von(Yk+1) = von(Yk). (8.4)

This is also true for isometric reflections (δ = 1) when n = 2 or when n is arbitrary but the
simplices are equilateral. We leave these simple facts as exercises. Although counterintu-
itive, isometric reflections do not preserve the normalized volume in general when n > 2,
and in particular they can lead to a decrease of this measure.13 We know from above that
the volume is kept constant in isometric reflections. However, the diameter can increase
and therefore the normalized volume can decrease. The reader can be convinced, for in-
stance, by taking the simplex of vertices y0 = (0,0,0), y1 = (1,1,0), y2 = (0,1,0), and
y3 = (0,0,1). The diameter increases from 1.7321 to 1.7951, and the normalized volume
decreases from 0.0321 to 0.0288. We conducted a simple experiment using MATLAB [1]
software, reported in Table 8.1, to see how often the normalized volume can change.

One can prove that the decrease in the normalized volume caused by isometric re-
flections is no worse than

von(Yk+1) ≥ von(Yk)

2n
. (8.5)

In practice, the decrease in the normalized volume after isometric reflections is not signifi-
cant throughout an optimization run and rarely affects the performance of the Nelder–Mead
method.

13It is unclear whether one could perform an isometric reflection using a centroid point of the form yc =∑n−1
i=0 α

i yi , with
∑n−1

i=0 α
i = 1 and αi > 0, i = 0, . . . ,n−1, that would preserve the normalized volume for

values of αi , i = 0, . . . ,n−1, bounded away from zero.
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8.2 Properties of the Nelder–Mead simplex method
The most general properties of the Nelder–Mead algorithm are stated in the next theorem.

Theorem 8.2. Consider the application of the Nelder–Mead method (Algorithm 8.1) to a
function f which is bounded from below on Rn.

1. The sequence { f 0
k } is convergent.

2. If only a finite number of shrinks occur, then all the n+1 sequences { f i
k }, i = 0, . . . ,n,

converge and their limits satisfy f 0∗ ≤ f 1∗ ≤ · · · ≤ f n∗ .

Moreover, if there is an integer j ∈ {0, . . . ,n− 1} for which f j∗ < f j+1∗ (a property
called broken convergence), then for sufficiently large k the change index is such that
k∗ > j .

3. If only a finite number of nonshrinks occur, then all the simplex vertices converge to
a single point.

Proof. The proof of the first and second assertions is essentially based on the fact that
monotonically decreasing sequences bounded from below are convergent. The proof of the
third assertion is also straightforward and left as an exercise.

Note that the fact that { f 0
k } converges does not mean that it converges to the value of

f at a stationary point. A consequence of broken convergence is that if the change index
is equal to zero an infinite number of times, then f 0∗ = f 1∗ = · · · = f n∗ (assuming that f is
bounded from below and no shrinks steps are taken).

If the function is strictly convex, one can show that no shrink steps occur.

Theorem 8.3. No shrink steps are performed when the Nelder–Mead method (Algorithm 8.1)
is applied to a strictly convex function f .

Proof. Shrink steps are taken only when outside or inside contractions are tried and fail.
Let us focus on an outside contraction, which is tried only when f n−1

k ≤ f r
k < f n

k . Now,
from the strict convexity of f and the fact that yoc

k is a convex combination of yc
k and yr

k
for some parameter λ ∈ (0,1),

f (yoc
k ) = f (λyc

k + (1−λ)yr
k) < λ f (yc

k )+ (1−λ) f (yr
k ) ≤ max

{
f c
k , f r

k

}
.

But max
{

f c
k , f r

k

}= f r
k since f n−1

k ≤ f r
k and f c

k ≤ f n−1
k (the latter is, again, a consequence

of the strict convexity of f ). Thus, f oc
k < f r

k and the outside contraction is applied (and
the shrink step is not taken).

If, instead, an inside contraction is to be considered, then a similar argument would
be applied, based on the fact that yic

k is a convex combination of yn
k and yc

k . Note that strict
convexity is required for this argument.

Lagarias et al. [149] proved that the Nelder–Mead method (Algorithm 8.1) is globally
convergent when n = 1. An alternative and much shorter proof, mentioned in [145] for the
standard choices (8.1), is sketched in the exercises.
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Convergence of the Nelder–Mead method to nonstationary points

Woods [230] constructed a nonconvex differentiable function in two variables for which
the Nelder–Mead method is claimed to fail. The reason for this failure is that the method
applies consecutive shrinks towards a point that is not a minimizer.

McKinnon [169] has derived a family of strictly convex examples for which the
Nelder–Mead method (Algorithm 8.1) converges to a nonstationary point. From Theo-
rem 8.3, shrink steps are immediately ruled out. In these examples the inside contraction
step is applied repeatedly with the best vertex remaining fixed. McKinnon referred to this
behavior as repeated focused inside contraction (RFIC). It is shown in [169] that no other
type of step is taken in these examples. The simplices generated by the Nelder–Mead
method collapse along a direction orthogonal to the steepest descent direction. The func-
tions are defined in R2 as follows:

f (x1, x2) =
{
θφ|x1|τ + x2+ x2

2 if x1 ≤ 0,

θxτ1 + x2+ x2
2 if x1 > 0.

(8.6)

The function is strictly convex if τ > 1. It has continuous first derivatives if τ > 1, con-
tinuous second derivatives if τ > 2, and continuous third derivatives if τ > 3. Note that
(0,−1) is a descent direction from the origin. The Nelder–Mead algorithm is started with
the simplex of vertices

y0
0 =

[
0
0

]
, y1

0 =
[
λ0

1
λ0

2

]
=

[
1
1

]
, and y2

0 =
[
λ1

1
λ1

2

]
, (8.7)

where λ1
1 = (1+√33)/8� 0.84 and λ1

2 = (1−√33)/8�−0.59. For values of τ , θ , and φ
satisfying certain conditions, the method can be shown to converge to the origin which is
not a stationary point. An example of values of τ , θ , and φ that satisfy these conditions is
τ = 2, θ = 6, and φ = 60. The contours of the function (8.6) are shown in Figure 8.3 for
these values of τ , θ , and φ. Another set of parameter values for which this type of counter-
example works is τ = 3, θ = 6, and φ = 400. The RFIC behavior generates a sequence of
simplices whose vertices are not uniformly�-poised (for any fixed�> 0).

We ran the MATLAB [1] implementation of the Nelder–Mead method to minimize
the McKinnon function (8.6) for the choices τ = 2, θ = 6, and φ = 60. First, we selected
the initial simplex as in (8.7). As expected, we can see from Figure 8.3 that the method
never moved the best vertex from the origin. Then we changed the initial simplex to

y0
0 =

[
0
0

]
, y1

0 =
[

1
0

]
, and y2

0 =
[

0
1

]
, (8.8)

and it can be observed that the Nelder–Mead method was able to move away from the
origin and to converge to the minimizer (x∗ = (0,−0.5), f (x∗)=−0.25).

8.3 A globally convergent variant of the Nelder–Mead
method

There are a number of issues that must be taken care of in the Nelder–Mead method (Al-
gorithm 8.1) to make it globally convergent to stationary points.
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Figure 8.3. The left plot depicts the contours of the McKinnon function (8.6) for
τ = 2, θ = 6, and φ = 60 and illustrates the RFIC when starting from the initial sim-
plex (8.7). The right plot describes the application of the Nelder–Mead method to this
function. The dashed line corresponds to the initial simplex (8.7) and the solid line to (8.8).

First, the quality of the geometry of the simplices must be monitored for all oper-
ations, with the exception of shrinks for which we know that the normalized volume is
preserved (see (8.4)). Thus, when a shrink occurs, if the normalized volume of Yk satisfies
von(Yk) ≥ ξ for some constant ξ > 0 independent of k, so does the normalized volume of
Yk+1. However, there is no guarantee that this will happen for reflections (even isomet-
ric ones), expansions, and contractions. A threshold condition like von(Yk+1) ≥ ξ must
therefore be imposed in these steps.

Expansions or contractions might then be skipped because of failure in determin-
ing expansion or contraction simplices that pass the geometry threshold. However, spe-
cial provision must be taken for reflections since these are essential for ensuring global
convergence, due to their positive spanning effect. One must guarantee that some form
of reflection is always feasible in the sense that it does not deteriorate the geometry of
the simplices (i.e., does not lead to a decrease in their normalized volumes). Unfortu-
nately, isometric reflections are not enough for this purpose because they might decrease
the normalized volume. Several strategies are then possible. To simplify matters, we will
assume that an isometric reflection is always tried first. If the isometric reflected point satis-
fies diam

({y0, y1, . . . , yn−1}∪ {yr})≤ γ e	 and von
({y0, y1, . . . , yn−1}∪ {yr})≥ ξ , then no

special provision is taken and the method proceeds by evaluating the function at yr . Other-
wise, we attempt a safeguard step, by rotating the vertices yi , i = 1, . . . ,n, 180◦ around y0 .
This rotation is the same as the one applied by the MDS method (see the end of Chapter 7).
As in MDS, we could also consider an expansion step by enlarging this rotated simplex,
but we will skip it for the sake of brevity.

On the other hand, we know from Chapter 7 that avoiding degeneracy in the geometry
is not sufficient for direct-search methods which accept new iterates solely based on simple
decrease. In Chapter 7 we described two possibilities to fortify the decrease in the objective
function: (i) to ask the iterates to lie on a sequence of meshes defined as integer lattices,
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where the minimal separation of the mesh points is proportional to the step size αk ; (ii)
to ask the iterates to satisfy a sufficient decrease condition of the type f (xk+1)< f (xk)−
ρ(αk). (Recall that ρ : (0,+∞)→ R+ was called a forcing function and was asked to be
continuous and positive and to satisfy

lim
t−→0+

ρ(t)

t
= 0 and ρ(t1) ≤ ρ(t2) if t1 < t2.

A simple example of a forcing function presented was ρ(t)= t2.)
Forcing the iterates to lie on integer lattices seems an intractable task in the Nelder–

Mead context for n > 1, given the diversity of steps that operate on the simplices. Thus,
the approach we follow in this book for a modified Nelder–Mead method is based on the
imposition of sufficient decrease. However, in the Nelder–Mead context we do not have
a situation like the one we have in the directional direct-search methods of Chapter 7,
where the current iterate is the best point found so far. In the Nelder–Mead algorithm, one
makes comparisons among several objective function values, and sufficient decrease must
be applied to the different situations. Also, the step size parameter αk used in the sufficient
decrease condition of Chapter 7 is now replaced by the diameter of the current simplex
	k = diam(Yk)—but, as we have mentioned before, we could had chosen	k =	(Yk).

The modified Nelder–Mead method described in Algorithm 8.2 is essentially one of
the instances suggested and analyzed by Tseng [220]. To simplify matters, the two contrac-
tion steps (inside and outside) have been restated as a single contraction step. There is also
a relevant difference in the shrink step compared to the original Nelder–Mead method. We
have seen that the shrink step in Algorithm 8.1 is guaranteed not to increase the minimal
simplex value ( f 0

k+1 ≤ f 0
k ), which follows trivially from the fact that the best vertex of

Yk is kept in Yk+1. This is not enough now because we need sufficient decrease; in other
words, we need something like f 0

k+1 ≤ f 0
k −ρ(	k), where	k = diam(Yk). When this suf-

ficient decrease condition is not satisfied, the iteration is repeated but using the shrunken
simplex. Thus, we must take into account the possibility of having an infinite number of
cycles within an iteration by repeatedly applying shrink steps. When that happens we will
show that the algorithm returns a stationary limit point.

Algorithm 8.2 (A modified Nelder–Mead method).

Initialization: Choose ξ > 0. Choose an initial simplex of vertices Y0 = {y0
0 , y1

0 , . . . , yn
0 }

such that von(Y0)≥ ξ . Evaluate f at the points in Y0. Choose constants:

0 < γ s < 1 < γ e, −1 < δic < 0 < δoc < δr < δe.

For k = 0,1,2, . . .

0. Set Y = Yk .

1. Order: Order the n+1 vertices of Y = {y0, y1, . . . , yn} so that

f 0 = f (y0) ≤ f 1 = f (y1) ≤ ·· · ≤ f n = f (yn).

Set 	= diam(Y ).
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2. Reflect: Calculate an isometric reflected point yr (as in Algorithm 8.1 with
δr = 1). If

diam
({y0, y1, . . . , yn−1}∪ {yr}) ≤ γ e	,

von
({y0, y1, . . . , yn−1}∪ {yr}) ≥ ξ ,

(8.9)

then evaluate f r = f (yr ). If f r ≤ f n−1 − ρ(	), then attempt an expansion
(and then accept either the reflected or the expanded point). Otherwise, attempt
a contraction.
Safeguard rotation: If the isometric reflection failed to satisfy (8.9), then ro-
tate the simplex around the best vertex y0:

yrot ,i = y0− (yi − y0), i = 1, . . . ,n.

Evaluate f (yrot ,i), i = 1, . . . ,n, and set f rot =min{ f (yrot ,i) : i = 1, . . . ,n}. If
f rot ≤ f 0− ρ(	), then terminate the iteration and take the rotated simplex:
Yk+1 = {y0, yrot ,1, . . . , yrot ,n}. Otherwise, attempt a contraction.

3. Expand: Calculate an expansion point ye (for instance, as in Algorithm 8.1).
If

diam
({y0, y1, . . . , yn−1}∪ {ye}) ≤ γ e	,

von
({y0, y1, . . . , yn−1}∪ {ye}) ≥ ξ ,

then evaluate f e = f (ye), and if f e ≤ f r , replace yn by the expansion point ye,
and terminate the iteration: Yk+1 = {y0, y1, . . . , yn−1, ye}. Otherwise, replace
yn by the reflected point yr , and terminate the iteration: Yk+1 = {y0, y1, . . . ,
yn−1

k , yr }.
4. Contract: Calculate a contraction point ycc (such as an outside or inside con-

traction in Algorithm 8.1). If

diam
({y0, y1, . . . , yn−1}∪ {ycc}) ≤ 	,

von
({y0, y1, . . . , yn−1}∪ {ycc}) ≥ ξ ,

then evaluate f cc = f (ycc), and if f cc ≤ f n − ρ(	), then replace yn by the
contraction point ycc and terminate the iteration: Yk+1 ={y0, y1, . . . , yn−1, ycc}.
Otherwise, perform a shrink.

5. Shrink: Evaluate f at the n points y0+ γ s(yi − y0), i = 1, . . . ,n, and let f s

be the lowest of these values. If f s ≤ f 0− ρ(	), then accept the shrunken
simplex and terminate the iteration: Yk+1 = {y0+ γ s(yi − y0), i = 0, . . . ,n}.
Otherwise, go back to Step 0 with Y = {y0+γ s(yi − y0), i = 0, . . . ,n}.

In practice we could choose γ e close to 1 for reflections and around 2 for expansions,
similarly as in the original Nelder–Mead method. Note also that the normalized volume of
the simplices does not change after safeguard rotations and shrinks. In safeguard rotations
the diameter of the simplex is unaltered, whereas for shrinks it is reduced by a factor of γ s .
Once again, a stopping criterion could consist of terminating the run when the diameter	k
of the simplex becomes smaller than a chosen tolerance 	tol > 0 (for instance, 	tol =
10−5).
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We define an index nk depending on the operation in which the iteration has termi-
nated:

nk = n for (isometric) reflections, expansions, and contractions,

nk = 0 for shrinks and safeguard rotations.

Then the sequence of simplices generated by the modified Nelder–Mead method (Algo-
rithm 8.2) satisfies

f i
k+1 ≤ f i

k , i = 0, . . . ,nk , (8.10)

and
nk∑

i=0

f i
k+1 ≤

nk∑
i=0

f i
k −ρ(	k). (8.11)

Theorem 8.4 below, which plays a central role in the analysis of the modified Nelder–
Mead method, is essentially based on conditions (8.10)–(8.11) and thus is valid for other
(possibly more elaborated) simplex-based direct-search methods as long as they satisfy
these conditions for any nk ∈ {0, . . . ,n}.

What is typically done in the convergence analysis of algorithms for nonlinear opti-
mization is to impose smoothness and boundedness requirements for f on a level set of the
form

L(x0) = {x ∈ Rn : f (x)≤ f (x0)}.
A natural candidate for x0 in the context of the modified Nelder–Mead method would be
yn

0 . However, although (isometric) reflection, rotation, expansion, and contraction steps
generate simplex vertices for which the objective function values are below f n

0 , a shrink
might not necessarily do so. It is possible to define a value f max such that all the simplex
vertices lie in {x ∈Rn : f (x)≤ f max}, but such a definition would unnecessarily complicate
the presentation. We will impose our assumptions on f in Rn ; in particular, in what comes
next, we assume that f is bounded from below and uniformly continuous in Rn .

The next theorem states under these assumptions on f that the diameter of the sim-
plices generated by the Nelder–Mead algorithm converges to zero. Its proof is due to
Tseng [220]—and it is surprisingly complicated. The difficulty comes from the fact that,
for steps like isometric reflection, expansion, or contraction, the sufficient decrease condi-
tion is imposed at simplex vertices different from the one with the best objective function
value. Note that such a result would be proved in a relatively straightforward way for an
algorithm that generates a sequence of points {xk} for which f (xk+1)< f (xk)−ρ(	k). In
the context of simplex-type methods that would correspond, for instance, to having xk = y0

k
and f (y0

k+1)< f (y0
k )−ρ(	k) (a condition we impose only for shrinks and safeguard rota-

tions in the modified Nelder–Mead method).

Theorem 8.4. If f is bounded from below and uniformly continuous in Rn, then the mod-
ified Nelder–Mead method (Algorithm 8.2) generates a sequence {Yk} of simplices whose
diameters converge to zero:

lim
k−→+∞diam(Yk) = 0.

Proof. The proof is done by contradiction, assuming that 	k does not converge to zero.
For each i ∈ {0,1, . . . ,n}, we define

Ki =
{

k ∈ {0,1, . . .} : f i
k+1 ≤ f i

k −ρ(	k)/(nk+1)
}

.
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The fact that both nk ≤ n and (8.11) hold at every iteration guarantees, for all k, that there
exists at least one i ∈ {0,1, . . . ,n} such that k ∈ Ki . Thus, ∪n

i=0 Ki = {0,1, . . .} and the
following index is well defined:

imin = min

{
i ∈ {0,1, . . . ,n} : |Ki | = +∞, lim

k∈Ki
	k �= 0

}
.

Now, since 	k � 0 in Kimin , there exists a subsequence K ⊂ Kimin and a positive
constant κ such that ρ(	k)≥ κ for all k ∈ K . As a result of this,

f 0
k+1 ≤ f imin

k+1 ≤ f imin
k −κ/(n+1) ∀k ∈ K . (8.12)

For each k now let �k be the largest index � ∈ {1, . . . ,k} for which f imin
� > f imin

�−1 (with

�k = 0 if no such � exists). Note that �k must tend to infinity; otherwise, { f imin
k } would

have a nonincreasing tail; i.e., there would be an index ktail such that { f imin
k }k≥ktail is non-

increasing. Then { f imin
k }k≥ktail ,k∈K would also be nonincreasing and thus convergent (since

f is bounded from below). By taking limits in (8.12) a contradiction would be reached.
The relation (8.12) and the definition �k trivially imply

f 0
k+1 ≤ f imin

�k
−κ/(n+1) ∀k ∈ K . (8.13)

The definition of �k also implies that f imin
�k

> f imin
�k−1 (for k sufficiently large such that �k >

0). Thus �k−1 /∈ Kimin . On the other hand, we have seen before that �k−1 must be in K j
for some j , which must satisfy j < imin . Since �k→+∞ when k→+∞, by passing at a
subsequence if necessary, we can assume that this index j is the same for all indices �k−1.
We also have, for the same reason, that |K j | = +∞. From the choice of imin and the fact
that imin �= j , we necessarily have that 	�k−1→ 0 for k ∈ K . Since 	k+1 ≤ γ e	k for all
k, it turns out that 	�k = diam(Y�k )→ 0 for k ∈ K .

One can now conclude the proof by arriving at a statement that contradicts (8.13).
First, we write

f 0
k+1− f imin

�k
=

(
f 0
k+1− f 0

�k

)
+

(
f 0
�k
− f imin

�k

)
.

Note that the first term converges to zero since both f 0
k+1 and f 0

�k
converge to the same

value (here we use the fact that { f 0
k } is decreasing and f is bounded from below but also

that �k tends to infinity). The second term also converges to zero since f is uniformly
continuous and diam(Yk)→ 0 for k ∈ K . Thus, f 0

k+1− f imin
�k

converges to zero in K , which
contradicts (8.13).

In the next theorem we prove that if the sequence of simplex vertices is bounded, then
it has at least one limit point which is stationary. The proof of this result relies on the fact
that the set of vectors yn− yi , i = 0, . . . ,n−1, and yr − yi , i = 0, . . . ,n−1, taken together
form a positive spanning set (in fact, a maximal positive basis; see Figure 8.4.) It is simple
to see that this set (linearly) spans Rn . It can be also trivially verified that

n−1∑
i=0

(yn− yi )+
n−1∑
i=0

(yr − yi ) = 0, (8.14)

and, hence, from Theorem 2.3(iii), we conclude that this set spans Rn positively.
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y2− y1

y2− y0

yr − y1

yr − y0

y2

y1

y0

yr

Figure 8.4. The vectors yr − y0, yr − y1 (right) and y2− y0, y2− y1 (left). (This
picture is misleading in the sense that isometric reflections are guaranteed only to preserve
the diameter and the normalized volume of simplices when n = 2 or the simplices are
equilateral.)

When we say that the sequence of simplex vertices {Yk} has a limit point x∗ we mean
that there is a sequence of vertices of the form {xk}, with xk ∈ Yk , which has a subsequence
converging to x∗.

Theorem 8.5. Let f be bounded from below, uniformly continuous, and continuously
differentiable in Rn. Assume that the sequence of simplex vertices {Yk} generated by the
modified Nelder–Mead method (Algorithm 8.2) lies in a compact set. Then {Yk} has at least
one stationary limit point x∗.

Proof. From the hypotheses of the theorem and the fact that 	k → 0 (see Theorem 8.4),
there exists a subsequence K1 of iterations consisting of contraction or shrink steps for
which all the vertices of Yk converge to a point x∗.

From the ordering of the vertices in the simplices, we know that

f (yn
k ) ≥ f (yi

k), i = 0, . . . ,n−1,

which in turn implies

∇ f (ai
k)�(yn

k − yi
k) ≥ 0, i = 0, . . . ,n−1, (8.15)

for some ai
k in the line segment connecting yn

k and yi
k . Since the sequences {(yn

k − yi
k)/	k}

are bounded, by passing to nested subsequences if necessary we can assure the existence of
a subsequence K2⊆ K1 such that (yn

k − yi
k)/	k→ zi , i = 0, . . . ,n−1. Thus, dividing (8.15)

by 	k and taking limits in K2 leads to

∇ f (x∗)�zi ≥ 0, i = 0, . . . ,n−1. (8.16)
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On the other hand, contraction or shrink steps are attempted only when either

f (yr
k ) > f (yn−1

k )−ρ(	k) (8.17)

or
f rot
k > f (y0

k )−ρ(	k). (8.18)

Thus, there exists a subsequence K3 of K2 such that either (8.17) or (8.18) holds.
In the (8.17) case, we get for k ∈ K3

f (yr
k ) > f (yi

k)−ρ(	k), i = 0, . . . ,n−1. (8.19)

Thus, for k ∈ K3,

∇ f (bi
k)�(yr

k − yi
k) > −ρ(	k), i = 0, . . . ,n−1,

for some bi
k in the line segment connecting yr

k and yi
k . Once again, since the sequences

{(yr
k − yi

k)/	k} are bounded, by passing to nested subsequences if necessary we can assure
the existence of a subsequence K4 ⊆ K3 such that (yr

k − yi
k)/	k → wi , i = 0, . . . ,n− 1.

Also, from the properties of the forcing function ρ we know that ρ(	k)/	k tends to zero
in K4. If we now divide (8.19) by 	k and take limits in K4, we get

∇ f (x∗)�wi ≥ 0, i = 0, . . . ,n−1. (8.20)

We now remark that [z0 · · · zn−1w0 · · ·wn−1] is a positive spanning set. One possible
argument is the following. First, we point out that both [z0 · · · zn−1] and [w0 · · ·wn−1]
(linearly) span Rn , since they are limits of uniform linearly independent sets. Then we
divide (8.14) by 	k and take limits, resulting in

z0+·· ·+ zn−1+w0+·· ·+wn−1 = 0.

Thus, from Theorem 2.3(iii), [z0 · · · zn−1w0 · · ·wn−1] is a positive spanning set. The prop-
erty about spanning sets given in Theorem 2.3(iv) and inequalities (8.16) and (8.20) then
imply that ∇ f (x∗)= 0.

In the (8.18) case, we have that, for all k ∈ K3,

f (yrot ,i
k ) > f (y0

k )−ρ(	k), i = 1, . . . ,n.

From the ordering of the vertices in the simplices, we also known that, for all k ∈ K3,

f (yi
k) > f (y0

k ), i = 1, . . . ,n.

Thus, for k ∈ K3,

∇ f (ci
k)�(yrot ,i

k − y0
k ) > −ρ(	k), i = 1, . . . ,n, (8.21)

and
∇ f (ci

k)�(yi
k− y0

k ) ≥ 0, i = 1, . . . ,n, (8.22)

for some ci
k in the line segment connecting yrot ,i

k and y0
k , and for some di

k in the line seg-

ment connecting yi
k and y0

k . Since the sequences {(yrot ,i
k − y0

k )/	k} and {(yi
k − y0

k )/	k}
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are bounded, by passing to nested subsequences if necessary we can assure the exis-
tence of a subsequence K4 ⊆ K3 such that (yrot ,i

k − y0
k )/	k → −ui , i = 1, . . . ,n, and

(yi
k− y0

k )/	k→ ui , i = 1, . . . ,n. Thus, dividing (8.21) and (8.22) by 	k and taking limits
in K3 yields

∇ f (x∗)�(−ui ) ≥ 0 and ∇ f (x∗)�ui ≥ 0, i = 1, . . . ,n. (8.23)

Now note that [u1 · · ·un] (linearly) spans Rn , since it is a limit of uniform linearly inde-
pendent sets. Thus, from what has been said after Theorem 2.4, we know that [u1 · · ·un

−u1 · · ·− un] is a positive spanning set. Theorem 2.3(iv) and inequalities (8.23) together
imply that ∇ f (x∗)= 0.

It remains to analyze what happens when an infinite number of cycles occur within
an iteration (by consecutive application of shrink steps). Using the same arguments as
those above, it is possible to prove that the vertices of the shrunken simplices converge to a
stationary point.

It is actually possible to prove that all limit points of the sequence of vertices are
stationary. In [220] this result is proved for a broader class of simplicial direct-search
methods. For this purpose, one needs to impose one additional condition to accept isometric
reflections or expansions.14 As in [220], one performs isometric reflections or expansions
if both conditions are satisfied:

f r ≤ f n−1−ρ(	) and f r ≤ f n−1−
(

f n − 1

n

n−1∑
i=0

f i

)
+ρ(	). (8.24)

Thus, in the isometric reflection or expansion cases we have both (8.11) for nk = n and

n∑
i=0

f i
k+1 ≤

n∑
i=0

f i
k −

(
f n
k −

1

n

n−1∑
i=0

f i
k

)
+ρ(	k). (8.25)

Theorem 8.6. Let f be bounded from below, uniformly continuous, and continuously
differentiable in Rn. Assume that the sequence of simplex vertices {Yk} generated by the
modified Nelder–Mead method (Algorithm 8.2, further modified to accept only isometric
reflections or expansions if (8.24) occurs) lies in a compact set. Assume that isometric
reflections always satisfy (8.9). Then all the limit points of {Yk} are stationary.

Proof. The first part of the proof consists of showing that Theorem 8.5 is still valid under
the modification introduced by (8.24). Now contraction or shrink steps can be attempted
because of either (8.17) or

f r
k > f n−1

k −
(

f n
k −

1

n

n−1∑
i=0

f i
k

)
+ρ(	k). (8.26)

If we have an infinite subsequence of K2 for which the condition (8.17) is true, then the
proof of Theorem 8.5 remains valid by passing first to a subsequence of K2 if necessary.

14The need for additional conditions arises in other direct-search methods too (see, for instance, Sec-
tion 7.5, where it is pointed out that it is possible to prove (7.10) for complete polling).
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Thus, we just need to consider the case where K2, or a subsequence of K2, satisfies (8.26).
However, this case is treated similarly. First, we write

f (yr
k ) > f (yi

k)−
(

f n
k −

1

n

n−1∑
i=0

f i
k

)
+ρ(	k), i = 0, . . . ,n−1.

Thus, for k ∈ K2,

∇ f (bi
k)�(yr

k − yi
k) >

1

n

(
n−1∑
i=0

∇ f (ai
k)�(yi

k− yn
k )

)
+ρ(	k), i = 0, . . . ,n−1, (8.27)

where ai
k is in the line segment connecting yn

k and yi
k , and bi

k is in the line segment
connecting yr

k and yi
k . We already know that {(yn

k − yi
k)/	k} converges to zi in K2 for

i = 0, . . . ,n−1. Once again, since the sequences {(yr
k − yi

k)/	k} are bounded, by passing
to nested subsequences if necessary we can assure the existence of a subsequence K3 ⊆ K2
such that (yr

k − yi
k)/	k → wi , i = 0, . . . ,n− 1. So, by taking limits in (8.27) for k ∈ K3,

we obtain

∇ f (x∗)�wi ≥ ∇ f (x∗)�
(

1

n

n−1∑
i=0

(−zi )

)
, i = 0, . . . ,n−1,

or, equivalently,

∇ f (x∗)�
(
wi + 1

n

n−1∑
i=0

zi

)
≥ 0, i = 0, . . . ,n−1. (8.28)

From (8.16) and (8.28), we conclude that ∇ f (x∗)= 0 (the argument used here is similar to
the one presented before).

Now suppose that there is a limit point x∞ which is not stationary. Then, from the
continuous differentiability of f , there exists a ball B(x∞;	∞) of radius	∞ > 0 centered
at x∞ where there are no stationary points.

We focus our attention on one (necessarily infinite) subsequence {xk}k∈K∞ , with xk ∈
Yk , that lies in this ball. Note that we can guarantee that for sufficiently large k there are no
contraction or shrink iterations in K∞, since otherwise we would apply a line of thought
similar to that of the proof of Theorem 8.5 and conclude that there would be a stationary
point in B(x∞;	∞). So, we can assume without loss of generality that K∞ is formed by
iterations where an isometric reflection or an expansion necessarily occurs. Thus, we can
assume, for all k ∈ K∞, that inequality (8.25) holds.

We point out that there must exist a constant κ > 0 such that, for k ∈ K∞ sufficiently
large,

f n
k − 1

n

∑n−1
i=0 f i

k

	k
≥ 2κ . (8.29)

(Otherwise, we would apply an argument similar to the one of Theorem 8.5 and con-
clude that ∇ f (x∞)�(−zi ) ≥ 0, i = 0, . . . ,n − 1, which, together with ∇ f (x∞)�zi ≥ 0,
i = 0, . . . ,n− 1, would imply ∇ f (x∞) = 0.) Thus, by applying inequality (8.29) and the
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properties of the forcing function ρ to (8.25), we can assure, for k sufficiently large, that

n∑
i=0

f i
k+1−

n∑
i=0

f i
k ≤ −κ	k .

Now we divide the ball B(x∞;	∞) into three mutually exclusive sets:

R1 = {x ∈ Rn : 2	∞/3< ‖x− x∞‖ ≤	∞},
R2 = {x ∈ Rn : 	∞/3< ‖x− x∞‖ ≤ 2	∞/3},
R3 = {x ∈ Rn : ‖x− x∞‖ ≤	∞/3}.

Since, from Theorem 8.4, 	k → 0, we know that the number of contractions or shrinks
must be infinite. Thus, the sequence of vertices {xk} enters and leaves the ball B(x∞;	∞)
an infinite number of times. Because	k→ 0 this implies that the sequence of vertices {xk}
must cross between R1 and R3 through R2 also an infinite number of times. So, there must
be subsequences {k j } and {k�} of K∞ such that

xk j ∈ R1, xk j+1 ∈ R2, . . . , xk�−1 ∈ R2, and xk� ∈ R3.

Then, from the fact that ‖xk+1 − xk‖ ≤ 	k+1 +	k ≤ (1+ γ e)	k and that the distance
between points in R1 and R3 is at least 	∞/3, we obtain

n∑
i=0

f i
k�
−

n∑
i=0

f i
k j
=

{
n∑

i=0

f i
k�
−

n∑
i=0

f i
k�−1

}
+·· ·+

{
n∑

i=0

f i
k j+1−

n∑
i=0

f i
k j

}

≤ −κ (	k�−1+·· ·+	k j

)
≤ − κ

1+γ e

(‖xk� − xk�−1‖+ ·· ·+‖xk j+1− xk j ‖
)

≤ − κ
1+γ e ‖xk� − xk j ‖

≤ − κ	∞
3(1+γ e) .

One can now arrive at a contradiction. From the above inequality, the monotone
decreasing subsequence {∑n

i=0 f i
k }k∈K∞ cannot converge, which is a contradiction. In

fact, we know from (8.10)–(8.11) that { f 0
k }k∈K∞ , under the boundedness of f , must be

convergent. Since	k→ 0 and f is uniformly continuous, then the subsequences { f i
k }k∈K∞

are also convergent for i = 1, . . . ,n, and {∑n
i=0 f i

k }k∈K∞ is convergent.

A similar result can be proved when safeguard rotations are always attempted (see
the exercises).

Other modifications to the Nelder–Mead method

We know that the Nelder–Mead method can stagnate and fail to converge to a stationary
point due to the deterioration of the simplex geometry or lack of sufficient decrease. One
approach followed by some authors is to let Nelder–Mead run relatively freely, as long as
it provides some form of sufficient decrease, and to take action only when failure to satisfy
such a condition is identified.
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For instance, the modified Nelder–Mead method of Price, Coope, and Byatt [194]
is in this category. Basically, they let Nelder–Mead run (without shrinks) as long as the
worst vertex results in sufficient decrease relatively to the size of Yk , e.g., f n

k+1 < f n
k −

ρ(diam(Yk)), where ρ is a forcing function. These internal Nelder–Mead iterations are
not counted as regular iterations. After a finite number of these internal Nelder–Mead
steps either a new simplex of vertices Yk+1 is found yielding sufficient decrease f 0

k+1 <

f 0
k −ρ(diam(Yk)), in which case a new iteration is started from Yk+1, or else the algorithm

attempts to form a quasi-minimal frame (see below) around the vertex y0
k+1, for which we

know that f 0
k+1 ≤ f 0

k .
It is the process of identifying this quasi-minimal frame that deviates from the Nelder–

Mead course of action. A quasi-minimal frame in the Coope and Price terminology is a
polling set of the form

Pk = {xk+αkd : d ∈ Dk} ,
where Dk is a positive basis or positive spanning set, and f (xk+αkd)+ρ(αk)≥ f (xk), for
all d ∈ Dk . In the above context we have that xk = y0

k+1 and αk is of the order of diam(Yk).
One choice for Dk would be a maximal positive basis formed by positive multiples of
yi

k+1− y0
k+1, i = 1, . . . ,n, and their negative counterparts, if the cosine measure cm(Dk)

is above a uniform positive threshold, or a suitable replacement otherwise. Other choices
are possible in the Nelder–Mead simplex geometry. Note that the process of attempting
to identify a quasi-minimal frame either succeeds or generates a new point y0

k+1 for which
f 0
k+1 < f 0

k − ρ(diam(Yk)). It is shown in [194], based on previous work by Coope and
Price [65], that the resulting algorithm generates a sequence of iterates for which all the
limit points are stationary, provided the iterates are contained in an appropriate level set in
which f is continuously differentiable and has a Lipschitz continuous gradient. However,
their analysis requires one to algorithmically enforce αk → 0, which in the Nelder–Mead
environment is equivalent to enforcing diam(Yk)→ 0.

In the context of the Nelder–Mead method, Kelley [140] used the simplex gradient in
a sufficient decrease-type condition to detect stagnation as well as in determining the ori-
entation of the new simplices to restart the process. More precisely, he suggested restarting
Nelder–Mead when

n∑
j=0

f j
k+1 <

n∑
j=0

f j
k

holds but
n∑

j=0

f j
k+1 <

n∑
j=0

f j
k −η‖∇s f (y0

k )‖2

fails, where η is a small positive number and ∇s f (y0
k ) is the simplex gradient (see Sec-

tion 2.6) calculated using Yk . For the restarts, the vertices y1
k , . . . , yn

k are replaced by
y0

k ± (0.5min1≤i≤n ‖yi
k − y0

k‖)ei , i = 1, . . . ,n, where ei is the i th column of the identity
matrix of order n. The signs ± are chosen depending of the sign of the i th component of
∇s f (y0

k ). (In the same spirit but in a different context, Mifflin [171] had suggested using
the signs of the centered simplex gradients as descent indicators.)



idfo
2008/11/17
page 161

�

�

�

�

�

�

�

�

8.5. Exercises 161

8.4 Other notes and references
The work by Nelder and Mead [177] profited by the earlier contribution of Spendley, Hext,
and Himsworth [210] in 1962, where simplex-based operations were first introduced for
the purpose of optimization. In their approach, Spendley, Hext, and Himsworth tried to
improve the worst vertex of a simplex (in terms of the values of the objective function)
by isometrically reflecting it with respect to the centroid of the other n vertices or else
by repeating such operations but now reflecting the second worst vertex. The Nelder–
Mead algorithm [177] incorporates similar types of reflections but “improves” over the
Spendley–Hext–Himsworth, by allowing nonisometric reflections, which can be regarded
as expansions and contractions, and thus permitting arbitrary simplex shapes. Of course, it
is this additional flexibility that makes convergence more difficult to consider. In the year of
the publication of the Nelder–Mead paper, Box [45] published a “simplicial” method based
on reflecting the worst vertex over the centroid of the remaining vertices. The method
allowed a number of points between n+1 and 2n and took simple bounds on the variables
into consideration.

Several other variants of the original methods by Nelder and Mead [177] and Spend-
ley, Hext, and Himsworth [210] have been proposed and analyzed, in particular in the Rus-
sian literature. Dambrauskas [71] suggested an extension of the Spendley–Hext–Himsworth
method in which the simplex may also contract toward its centroid. Yu [234] proved global
convergence to a stationary point of a modified version of the Spendley–Hext–Himsworth
method (where the condition to accept reflections was already based on a sufficient de-
crease condition). Rykov (see [202] and the references therein) proposed direct-search
algorithms based on reflections, expansions, and contractions of simplices. Tseng [220]
lists in detail the differences between his general simplex-based framework and Rykov’s.
One fundamental difference is that Rykov’s analysis requires the objective function to be
convex. Woods [230] and Nazareth and Tseng [176] also proved properties for modified
Nelder–Mead algorithms under forms of convexity.

Hvattum and Glover [135] developed a method inspired by several direct-search
methods of simplicial and directional types which works with sample sets of various sizes
and is enhanced by techniques from scatter search to handle the selection of the sample
sets.

The MDS method was tested and applied by a number of authors. Hough and
Meza [133], for instance, applied the MDS method to the derivative-free solution of a
modified trust-region subproblem within a derivative-based trust-region framework. Buck-
ley and Ma [48] studied practical improvements of MDS by quadratic interpolation over
sample sets generated by the algorithm.

8.5 Exercises
1. The Nelder–Mead method is invariant under affine transformations [149]. To prove

this property consider g(x)= Ax+b, where b ∈ Rn and A ∈ Rn×n is a nonsingular
matrix. Show that the Nelder–Mead method (Algorithm 8.1) applied to f (x) from the
starting simplex Y0 and to f (g(x)) from the starting simplex g−1(Y0) = A−1Y0− b
generate the same sequence of simplex vertices.

2. Show that shrink steps preserve the normalized volume of simplices.
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3. Prove that isometric reflections preserve the normalized volume of simplices when
either n = 2 or the simplices are equilateral (meaning that the distance between the
vertices is constant).

4. Prove that isometric reflections in general yield

diam(Yk+1) ≤
(

2n−1

n

)
diam(Yk).

Use this bound to show (8.5).

5. Show that the rotations and expansions of the MDS method (see the end of Chapter 7)
preserve the normalized volume of simplices.

6. Show that the three assertions of Theorem 8.2 are true.

7. Frame the Nelder–Mead method (Algorithm 8.1), when n = 1 and the parameters are
given by the standard values (8.1), as a directional direct-search method of the type of
Algorithm 7.2. By showing that Assumptions 7.8, 7.9, and 7.10 are satisfied (global-
ization by simple decrease with integer lattices) the Nelder–Mead method produces
a sequence of iterates {xk} for which a subsequence of {‖∇ f (xk)‖} = {| f ′(xk)|} con-
verges to zero.

8. Why do the sequences {ai
k}, {bi

k}, and {ci
k} converge to x∗ (proof of Theorem 8.5)?

9. Using similar arguments as in the proof of Theorem 8.5, prove that if an infinite
loop occurs at a given iteration of Algorithm 8.2, then the vertices of the shrunken
simplices converge to a stationary point.

10. In the context of the proof of Theorem 8.6, show that (8.16) and (8.28) imply that
∇ f (x∗)= 0.

11. Explain why a simplified version of the modified Nelder–Mead method that con-
siders only isometric reflections and shrinks is globally convergent (in the sense of
Theorems 8.5 and 8.6) if it starts from an equilateral simplex.

12. Prove the following alternative for Theorem 8.6: Let f be bounded from below,
uniformly continuous, and continuously differentiable in Rn . Assume that the se-
quence of simplex vertices {Yk} generated by the modified Nelder–Mead method
(Algorithm 8.2) lies in a compact set. Assume that safeguarded rotations are al-
ways attempted (meaning that the reflection step would consist only of safeguard
rotations). Then all the limit points of {Yk} are stationary. (The proof follows the
lines of the proof of Theorem 8.6 but is simpler since (8.24) is not needed and
f (y0

k+1)> f (y0
k )−ρ(	k) can be used directly in the contradicting argument.)
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Line-search methods based on
simplex derivatives

The implicit-filtering method of Kelley et al. in [229] (see also [141]) can be viewed as a
line-search method based on the simplex gradient. In this chapter, we present a modified
version of the implicit-filtering method that is guaranteed to be globally convergent to first-
order stationary points of (1.1). The main modification relies on the application of the
backtracking scheme used to achieve sufficient decrease, which can be shown to eventually
be successful. Under such a modification, this derivative-free algorithm can be seen as a
line-search counterpart of the trust-region derivative-free method considered in Chapter 10.

9.1 A line-search framework
For simplicity let us consider, at each iteration k of the algorithm, a sample set Yk =
{y0

k , y1
k , . . . , yn

k }, formed by n + 1 points. We will assume that this set is poised in the
sense of linear interpolation. In other words, the points y0

k , y1
k , . . . , yn

k are assumed to be the
vertices of a simplex set.

Now we consider the simplex gradient based at y0
k and computed from this sample

set. Such a simplex gradient is given by

∇s f (xk) = L−1
k δ f (Yk),

where

Lk =
[

y1
k − y0

k · · · yn
k − y0

k

]�
and

δ f (Yk) =
⎡
⎢⎣

f (y1
k )− f (y0

k )
...

f (yn
k )− f (y0

k )

⎤
⎥⎦ .

Let us also define

	k = max
1≤i≤n

‖yi
k− y0

k‖.

163



idfo
2008/11/17
page 164

�

�

�

�

�

�

�

�

164 Chapter 9. Line-search methods based on simplex derivatives

As we will see later in this chapter, other more elaborate simplex gradients could be
used, following a regression approach (see also Chapters 2 and 4) or a centered difference
scheme.

No matter which simplex gradient calculation is chosen, all we need to ensure is that
the following error bound can be satisfied:

‖∇ f (xk)−∇s f (xk)‖ ≤ κeg	k , (9.1)

where, as we have seen in Chapters 2 and 3, κeg is a positive constant depending on the
geometry of the sample points. The algorithmic framework presented in Chapter 6 can be
used to improve the geometry of the sample set. In order to make the statement of the
algorithm simultaneously rigorous and close to a practical implementation, we introduce
the following assumption, where by an improvement step of the simplex geometry we mean
recomputation of one of the points in the set {y1

k , . . . , yn
k }.

Assumption 9.1. We assume that (9.1) can be satisfied for some fixed positive κeg > 0 and
for any value of 	k > 0 in a finite, uniformly bounded number of improvement steps of the
sample set.

Basically, one geometry improvement step consists of applying the algorithms de-
scribed in Chapter 6 to replace one vertex of the simplex. Thus, in the interpolation case
(n+1 sample points), for any positive value of 	k , the error bound (9.1) can be achieved
using at most n improvement steps.

At each iteration of the line-search derivative-free method that follows, a sufficient
decrease condition is imposed on the computation of the new point. When using the sim-
plex gradient ∇s f (xk), with xk = y0

k , this sufficient decrease condition is of the form

f (xk−α∇s f (xk))− f (xk) ≤ −ηα‖∇s f (xk)‖2, (9.2)

where η is a constant in the interval (0,1) for all k and α > 0. The new point xk+1 is
in principle of the form xk+1 = xk − αk∇s f (xk), where αk is chosen by a backtracking
procedure to ensure (9.2) with α = αk . However, the line-search version of the method
analyzed here considers the possibility of accepting a point different from xk−αk∇s f (xk)
as long as it provides a lower objective value.

The line-search derivative-free method is presented below and includes a standard
backtracking scheme. However, this line search can fail. When it fails, the size of 	k
is reduced compared to the size of ‖∇s f (xk)‖ (which involves a number of improvement
steps and the recomputation of the simplex gradient) and the line search is restarted from
the same point (with a likely more accurate simplex gradient).

Algorithm 9.1 (Line-search derivative-free method based on simplex gradients).

Initialization: Choose an initial point x0 and an initial poised sample set {y0
0(= x0), y1

0 , . . . ,
yn

0 }. Choose β, η, and ω in (0,1). Select jmax ∈ N.

For k = 0,1,2, . . .

1. Simplex gradient calculation: Compute a simplex gradient∇s f (xk) such that
	k ≤ ‖∇s f (xk)‖ (apply Algorithm 9.2 below). Set jcurrent = jmax and μ= 1.
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2. Line search: For j = 0,1,2, . . . , jcurrent

(a) Set α = β j . Evaluate f at xk−α∇s f (xk).
(b) If the sufficient decrease condition (9.2) is satisfied for α, then stop this

step with αk = α (and go to Step 4).

3. Line-search failure: If the line search failed, then divide μ by two, recompute
a simplex gradient ∇s f (xk) such that 	k ≤ μ‖∇s f (xk)‖ (apply Algorithm 9.2
below), increase jcurrent by one, and repeat the line search (go back to Step 2).

4. New point: Set

xk+1 = argmin
x∈Xk

{ f (xk−αk∇s f (xk)), f (x)},

where Xk is the set of points where f has possibly been evaluated during
the course of Steps 1 and 3. Set y0

k+1 = xk+1. Update y1
k+1, . . . , yn

k+1 from
y0

k , y1
k , . . . , yn

k by dropping one of these points.

A possible stopping criterion is to terminate the run when 	k becomes smaller than
a chosen tolerance	tol > 0 (for instance 	tol = 10−5).

The algorithm that recomputes the sample set at xk and the corresponding simplex
gradient such that 	k ≤ μ‖∇s f (xk)‖ is described next.

Algorithm 9.2 (Criticality step). This algorithm is applied only when	k >μ‖∇s f (xk)‖.
The constant ω ∈ (0,1) should be chosen in the initialization of Algorithm 9.1.

Initialization: Set i = 0. Set ∇s f (xk)(0) =∇s f (xk).

Repeat Increment i by one. Compute a new simplex gradient ∇s f (xk)(i) based on a sam-
ple set containing xk and contained in B(xk;ωiμ‖∇s f (xk)(0)‖) such that

‖∇ f (xk)−∇s f (xk)(i)‖ ≤ κeg

(
ωiμ‖∇s f (xk)(0)‖

)
(notice that this can be done in a finite, uniformly bounded number of steps). Set
	k = ωiμ‖∇s f (xk)(0)‖ and ∇s f (xk)=∇s f (xk)(i).

Until 	k ≤ μ‖∇s f (xk)(i)‖.

9.2 Global convergence for first-order critical points
We need to assume that∇ f is Lipschitz continuous on the level set (where the iterates must
necessarily lie):

L(x0) = {x ∈ Rn : f (x)≤ f (x0)}.
However, we also need to take into account that the points used in the simplex gradient cal-
culations might lie outside L(x0), especially at the early iterations of the method. Thus, we
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need to enlarge L(x0). If we impose that	k never exceeds a given positive constant	max ,
then all points used by the algorithm will lie in the following set:

Lenl (x0) = L(x0)∪
⋃

x∈L(x0)

B(x ;	max) =
⋃

x∈L(x0)

B(x ;	max).

We will assume that f is a continuously differentiable function in an open set containing
Lenl (x0) and that ∇ f is Lipschitz continuous on Lenl (x0) with constant ν > 0.

The purpose of the first lemma is to show that Steps 1 and 3 of Algorithm 9.1 are
well defined, in the sense that Algorithm 9.2 will take a finite number of steps.

Lemma 9.1. If ∇ f (xk) �= 0, Steps 1 and 3 of Algorithm 9.1 will satisfy 	k ≤ μ‖∇s f (xk)‖
in a finite number of improvement steps (by applying Algorithm 9.2).

Proof. The proof is postponed to Chapter 10 (see Lemma 10.5), where it is done in the
trust-region environment, in a slightly more general context. The simplex gradient∇s f (xk)
plays the same role here as the gradient gk of the model plays there.

Now we need to analyze under what conditions the sufficient decrease (9.2) is at-
tained and to make sure that the line search in Step 2 of Algorithm 9.1 can be accomplished
after a finite number of reductions of α andμ. In other words, we will prove that one cannot
loop infinitely between Steps 2 and 3 unless the point is stationary.

Lemma 9.2. Let f be a continuously differentiable function in an open set containing
Lenl (x0). Assume that ∇ f is Lipschitz continuous on Lenl (x0) with constant ν > 0. Let xk
be such that ∇ f (xk) �= 0. The sufficient decrease condition (9.2) is satisfied for all α and
μ such that

0 < α ≤ 2(1−η−κegμ)

ν
(9.3)

and

μ <
1−η
κeg

. (9.4)

Proof. First, we know that (see, e.g., the proof of Theorem 2.8)

f (xk+αd)− f (xk)

≤ α∇ f (xk)�d+ να2

2 ‖d‖2
= α(∇ f (xk)−∇s f (xk))�d+α∇s f (xk)�d+ να2

2 ‖d‖2.

By replacing d by −∇s f (xk) and using (9.1) and α > 0, we obtain

f (xk−α∇s f (xk))− f (xk)

≤ α(κeg	k/‖∇s f (xk)‖−1+ να/2)‖∇s f (xk)‖2.

Combining this inequality with 	k ≤ μ‖∇s f (xk)‖ and α > 0 yields

f (xk−α∇s f (xk))− f (xk) ≤ α(κegμ−1+ να/2)‖∇s f (xk)‖2.
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Thus, the sufficient decrease condition (9.2) is satisfied if

κegμ−1+ να
2
≤ −η,

and the proof is completed.

As a result of Lemma 9.2 and of the scheme in Step 2 to update α, one can guarantee
that αk is bounded from below by

αk ≥ ᾱ = 2(1−η−κegμ̄)β

ν
, (9.5)

where μ̄ is any number such that

0 < μ̄ <
1−η
κeg

.

The global convergence of Algorithm 9.1 to stationary points is stated in the follow-
ing theorem.

Theorem 9.3. Let f be a continuously differentiable function in an open set contain-
ing Lenl (x0). Assume that f is bounded from below in L(x0) and that ∇ f is Lipschitz
continuous on Lenl (x0) with constant ν > 0. Then the sequence of iterates generated by
Algorithm 9.1 satisfies

lim
k−→+∞‖∇ f (xk)‖ = 0. (9.6)

Proof. The proof of
lim

k−→+∞‖∇s f (xk)‖ = 0 (9.7)

follows the classical arguments for line-search methods. The sequence { f (xk)} is decreas-
ing (by construction) and bounded from below in L(x0) (by hypothesis). Thus, the left-hand
side in (9.2) (with α = αk) converges to zero. The limit (9.7) then follows from

f (xk+1)− f (xk) ≤ f (xk−αk∇s f (xk))− f (xk) ≤ −ηᾱ‖∇s f (xk)‖2,

where ᾱ is given in (9.5), and the first inequality comes from Step 4 of the algorithm.
Since ∇s f (xk) converges to zero, we know from (9.1) and Steps 1 and 3 of the algo-

rithm that, for k sufficiently large,

‖∇ f (xk)−∇s f (xk)‖ ≤ κeg‖∇s f (xk)‖.
This inequality together with (9.7) implies (9.6).

9.3 Analysis for noise
In many applications the noise level in the objective function is not zero, and what is eval-
uated in practice can be represented as

f (x) = fsmooth(x)+ ε(x), (9.8)
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where fsmooth is an underlying smooth function and ε(x) represents the noise in its evalu-
ation.

We are interested in extending the analysis of the line-search derivative-free method
to a noisy function f of the form (9.8). So, let us consider Algorithm 9.1 applied to the
minimization of f in (9.8).

In order to retain global convergence to first-order critical points, we require the noise
level in the objective function to satisfy

max
0≤i≤n

|ε(yi
k)| ≤ c	2

k (9.9)

for all iterations, where c> 0 is independent of k. In addition, since for sufficient decrease
purposes one needs to evaluate f at points which might not be used for simplex gradient
calculations, we also ask the noise level to satisfy

ε(xk−α∇s f (xk)) ≤ c	2
k (9.10)

for all values of α considered in the backtracking scheme.
When the noise level satisfies the two conditions stated above, it is possible to prove,

similarly to Theorem 9.3, that the limit of the gradient of the underlying function fsmooth
converges to zero.

9.4 The implicit-filtering algorithm
The implicit-filtering method of Kelley et al. in [229] (see also [141]) differs from Algo-
rithm 9.1 in a number of aspects. First, the sample set is not dynamically updated on an
iteration base. Instead, a new sample set is chosen at each iteration for the purpose of the
simplex gradient calculation. Such a choice may make the algorithm appealing for parallel
computation but might compromise its efficiency in a serial environment.

No provision is made to link the accuracy of the simplex gradient and the quality
of the geometry of the sample set to the line-search scheme itself, as in Algorithm 9.1.
Therefore, it is not possible to guarantee success for the line search (which can terminate
unsuccessfully after the predetermined finite number of steps jmax).

In addition to the basic line-search scheme, implicit filtering incorporates a quasi-
Newton update (see, e.g., [76, 178]) for the Hessian approximation based on the simplex
gradients that are being computed. When the line search fails the quasi-Newton matrix is
reset to the initial choice. The method has been applied to problems with noisy functions,
for which it has been shown to be numerically robust. We present it below especially having
in mind the case where f is of the form (9.8) and the noise obeys (9.9) and (9.10).

Algorithm 9.3 (Implicit filtering method).

Initialization: Choose β and η in (0,1). Choose an initial point x0 and an initial Hessian
approximation H0 (for instance, the identity matrix). Select jmax ∈ N.

For k = 0,1,2, . . .

1. Simplex gradient calculation: Compute a simplex gradient∇s f (xk) such that
	k ≤ ‖∇s f (xk)‖. Compute dk =−H−1

k ∇s f (xk).
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2. Line search: For j = 0,1,2, . . . , jmax

(a) Set α = β j . Evaluate f at xk+αdk .
(b) If the sufficient decrease condition

f (xk+αdk)− f (xk) ≤ ηα∇s f (xk)�dk

is satisfied for α, then stop this step with αk = α.

3. New point: If the line search succeeded, then xk+1 = xk+αkdk .

4. Hessian update: If the line search failed set Hk+1 = H0. Otherwise, up-
date Hk+1 from Hk using a quasi-Newton update based on xk+1 − xk and
∇s f (xk+1)−∇s f (xk).

Other provisions may be necessary to make this algorithm practical when line-search
failures occur. For instance, one might have to recompute the sampling points (by scal-
ing them towards xk so that 	k ≤ μ‖∇s f (xk)‖ for some μ > 0 smaller than one, as in
Algorithm 9.1) and to repeat an iteration after a line-search failure.

9.5 Other simplex derivatives
There exist alternatives for the computation of simplex gradients based on n+1 points. For
example, if the function is evaluated at more than n+ 1 points, one can compute simplex
gradients in the regression sense, as explained in Chapter 2. In both cases, the order of
accuracy is linear in 	 (the size of the ball containing the points).

Centered simplex gradients

When the number of points is 2n+1 and the sampling set Y is of the form{
y0, y0+ (y1− y0), . . . , y0+ (yn− y0), y0− (y1− y0), . . . , y0− (yn− y0)

}
it is possible to compute a centered simplex gradient with 	2 accuracy. First, note that
the sampling set given above is obtained by retaining the original points and adding their
reflection through y0. This geometrical structure has been seen before:[

y1− y0 · · · yn− y0 −(y1− y0) · · · −(yn− y0)
]

forms a (maximal) positive basis (see Section 2.1). When y0 = 0, this sampling set reduces
to {

0, y1, . . . , yn ,−y1, . . . ,−yn
}

.

Consider, again, the matrix L = [
y1− y0 · · · yn− y0

]�
. The centered simplex gradi-

ent is defined by
∇cs f (y0) = L−1δcs f (Y ),
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where

δcs f (Y ) = 1

2

⎡
⎢⎣

f (y0+ (y1− y0))− f (y0− (y1− y0))
...

f (y0+ (yn− y0))− f (y0− (yn− y0))

⎤
⎥⎦ .

One can easily show that if ∇2 f is Lipschitz continuous with constant ν > 0 in an
open set containing the ball B(y0;	), where

	 = max
1≤i≤n

‖yi − y0‖,

then
‖∇ f (y0)−∇cs f (y0)‖ ≤ κeg	

2,

where κeg = n
1
2 ν‖L̂−1‖ and L̂ = L/	. It is important to stress that this improvement in the

order of accuracy of the gradient approximation does not have consequences for second-
order approximations. In fact, it is not possible in general, given only a number of points
linear in n, to compute a simplex Hessian (see the coming paragraphs) that approximates
the true Hessian within an error of the order of 	.

Simplex Hessians

Given a sample set Y = {y0, y1, . . . , y p}, with p = (n+1)(n+2)/2−1, poised in the sense
of quadratic interpolation, one can compute a simplex gradient ∇s f (y0) and a simplex
(symmetric) Hessian ∇2

s f (y0) from the system of linear equations

(yi − y0)�∇s f (y0)+ 1

2
(yi − y0)�∇2

s f (y0)(yi − y0) = f (yi )− f (y0), (9.11)

i = 1, . . . , p.
One can observe that the simplex gradient and simplex Hessian defined above are

nothing else than the coefficients of the quadratic interpolation model m(x) = c+ g�x +
(1/2)x�H x :

∇s f (y0) = g and ∇2
s f (y0) = H .

When p = 2n, it is possible to neglect all the off-diagonal elements of the Hessian
and compute a simplex gradient and a diagonal simplex Hessian.

9.6 Other notes and references
The implicit-filtering algorithm was first described in the already cited paper [229] and
later, in more detail, in the journal publications by Stoneking at al. [212] and Gilmore and
Kelley [105]. The global convergence properties of the method were analyzed by Bortz
and Kelley [41]. Choi and Kelley [52] studied the rate of local convergence.

Mifflin [171] suggested in 1975 a line-search algorithm based on centered simplex
gradients and approximated simplex Hessians, for which he proved global convergence to
first-order stationary points and studied the rate of local convergence. Mifflin’s algorithm
is a hybrid approach, sharing features with direct-search methods (use of the coordinate-
search directions to compute the simplex derivatives) and with line-search algorithms.
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9.7 Exercises
1. Prove that Theorem 9.3 remains true for fsmooth when Algorithm 9.1 is applied to f

given in (9.8) if conditions (9.9) and (9.10) are satisfied.
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Chapter 10

Trust-region methods based on
derivative-free models

Trust-region methods are a well-studied class of algorithms for the solution of nonlinear
programming problems [57, 178]. These methods have a number of attractive features.
The fact that they are intrinsically based on quadratic models makes them particularly at-
tractive to deal with curvature information. Their robustness is partially associated with the
regularization effect of minimizing quadratic models over regions of predetermined size.
Extensive research on solving trust-region subproblems and related numerical issues has
led to efficient implementations and commercial codes. On the other hand, the conver-
gence theory of trust-region methods is both comprehensive and elegant in the sense that
it covers many problem classes and particularizes from one problem class to a subclass in
a natural way. Many extensions have been developed and analyzed to deal with different
algorithmic adaptations or problem features (see [57]).

In this chapter we address trust-region methods for unconstrained derivative-free op-
timization. These methods maintain quadratic (or linear) models which are based only on
the objective function values computed at sample points. The corresponding models can
be constructed by means of polynomial interpolation or regression or by any other approxi-
mation technique. The approach taken in this chapter abstracts from the specifics of model
building. In fact, it is not even required that these models be polynomial functions as long
as appropriate decreases (such as Cauchy and eigenstep decreases) can be extracted from
the trust-region subproblems. Instead, it is required that the derivative-free models have a
uniform local behavior (possibly after a finite number of modifications of the sample set)
similar to what is observed by Taylor models in the presence of derivatives. In Chapter 6,
we called such models, depending on their accuracy, fully linear and fully quadratic. It has
been rigorously shown in Chapters 3–6 how such fully linear and fully quadratic models
can be constructed in the context of polynomial interpolation or regression.

Again, the problem we are considering is (1.1), where f is a real-valued function,
assumed to be once (or twice) continuously differentiable and bounded from below.

10.1 The trust-region framework basics
The fundamentals of trust-region methods are rather simple. As in traditional derivative-
based trust-region methods, the main idea is to use a model for the objective function which

173
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one, hopefully, is able to trust in a neighborhood of the current point. To be useful it must be
significantly easier to optimize the model within the neighborhood than solving the original
problem. The neighborhood considered is called the trust region. The model has to be fully
linear in order to ensure global convergence to a first-order critical point. One would also
like to have something approaching a fully quadratic model, to allow global convergence
to a second-order critical point (and to speed up local convergence). Typically, the model
is quadratic, written in the form

mk(xk+ s) = mk(xk)+ s�gk+ 1

2
s�Hks. (10.1)

The derivatives of this quadratic model with respect to the s variables are given by∇mk(xk+
s)= Hks+gk , ∇mk(xk)= gk , and ∇2mk(xk)= Hk. Clearly, gk is the gradient of the model
at s = 0.

If mk is a first-order Taylor model, then mk(xk)= f (xk) and gk =∇ f (xk), and if it is
a second-order Taylor model, one has, in addition, Hk = ∇2 f (xk). In general, even in the
derivative case, Hk is a symmetric approximation to ∇2 f (xk). In the derivative-free case,
we use models where Hk �= ∇2 f (xk), gk �= ∇ f (xk), and, in the absence of interpolation,
mk(xk) �= f (xk).

At each iterate k, we consider the model mk(xk + s) that is intended to approximate
the true objective f within a suitable neighborhood of xk—the trust region. This region is
taken for simplicity as the set of all points

B(xk;	k) = {x ∈ Rn : ‖x − xk‖ ≤	k},

where 	k is called the trust-region radius, and where ‖ · ‖ could be an iteration-dependent
norm, but usually is fixed and in our case will be taken as the standard Euclidean norm.
Figure 10.1 illustrates a linear model and a quadratic model of a nonlinear function in a
trust region (a simple ball), both built by interpolation. As expected, the quadratic model
captures the curvature of the function.

Figure 10.1. Contours of a linear model (left) and a quadratic model (right) of a
nonlinear function in a trust region.
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Thus, in the unconstrained case, the local model problem (called trust-region sub-
problem) we are considering is stated as

min
s∈B(0;	k)

mk(xk+ s), (10.2)

where mk(xk+ s) is the model for the objective function given at (10.1) and B(0;	k) is our
trust region of radius	k , now centered at 0 and expressed in terms of s = x− xk .

The Cauchy step

In some sense, the driving force for all optimization techniques is steepest descent since it
defines the locally best direction of descent. It turns out that it is crucial, from the point
of view of global convergence, that one minimizes the model at least as well as something
related to steepest descent. On this basis, one defines something called the Cauchy step sC

k ,
which is actually the step to the minimum of the model along the steepest descent direction
within the trust region. Thus, if we define

tC
k = argmin

t≥0:xk−tgk∈B(xk ;	k)
mk(xk− tgk),

then the Cauchy step is a step given by

sC
k =−tC

k gk . (10.3)

A fundamental result that drives trust-region methods to first-order criticality is stated and
proved below.

Theorem 10.1. Consider the model (10.1) and the Cauchy step (10.3). Then

mk(xk)−mk(xk+ sC
k ) ≥ 1

2
‖gk‖min

{ ‖gk‖
‖Hk‖ ,	k

}
, (10.4)

where we assume that ‖gk‖/‖Hk‖ = +∞ when Hk = 0.

Proof. We first note that

mk(xk−αgk) = mk(xk)−α‖gk‖2+ 1

2
α2g�k Hkgk . (10.5)

In the case where the curvature of the model along the steepest descent direction −gk is
positive, that is, when g�k Hkgk > 0, we know that the model is convex along that direction,
and so a stationary point will necessarily be the global minimizer in that direction. Denoting
the optimal parameter by α∗k we have that −‖gk‖2+α∗k g�k Hkgk = 0 and

α∗k =
‖gk‖2

g�k Hkgk
.

Thus, if ‖− α∗k gk‖ = ‖gk‖3/g�k Hkgk ≤ 	k , then the unique minimizer lies in the
trust region and we can conclude that

mk(xk+ sC
k )−mk(xk) = −1

2

‖gk‖4
g�k Hkgk

,
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and, consequently,

mk(xk)−mk(xk+ sC
k ) ≥ 1

2
‖gk‖2/‖Hk‖. (10.6)

If ‖−α∗k gk‖ >	k , then we take ‖− tC
k gk‖ =	k ; i.e., we go to the boundary of the

trust region. In this case

mk(xk+ sC
k )−mk(xk) = −	k‖gk‖2

‖gk‖ +
1

2

	2
k‖gk‖
‖gk‖3 g�k Hkgk .

But ‖gk‖3/g�k Hkgk >	k (since the optimal step was outside the trust region) then gives

mk(xk)−mk(xk+ sC
k ) ≥ 1

2
	k‖gk‖. (10.7)

It remains to consider the case when the one-dimensional problem in α is not convex.
In this case, again we know that we will terminate at the boundary of the trust region
(because the second and third terms on the right-hand side of (10.5) are both negative for
all positive α). Furthermore, g�k Hkgk ≤ 0 implies that

mk(xk+ sC
k )−mk(xk) ≤ −tC

k ‖gk‖2 = −	k‖gk‖ < −1

2
	k‖gk‖. (10.8)

The derived bounds (10.6), (10.7), and (10.8) on the change in the model imply
that (10.4) holds.

In fact, it is not necessary to actually find the Cauchy step to achieve global conver-
gence to first-order stationarity. It is sufficient to relate the step computed to the Cauchy
step, and thus what is required is the following assumption.

Assumption 10.1. For all iterations k,

mk(xk)−mk(xk+ sk) ≥ κ f cd
[
mk(xk)−mk(xk+ sC

k )
]

(10.9)

for some constant κ f cd ∈ (0,1].

The steps computed under Assumption 10.1 will therefore provide a fraction of
Cauchy decrease, which from Theorem 10.1 can be bounded from below as

mk(xk)−mk(xk+ sk) ≥ κ f cd

2
‖gk‖min

{ ‖gk‖
‖Hk‖ ,	k

}
. (10.10)

If mk(xk+ s) is not a linear or a quadratic function, then Theorem 10.1 is not directly
applicable. In this case one could, for instance, define a Cauchy step by applying a line
search at s = 0 along −gk to the model mk(xk+ s), stopping when some type of sufficient
decrease condition is satisfied (see [57, Section 6.3.3] or Section 12.2). Calculating a step
yielding a decrease better than the Cauchy decrease could be achieved by approximately
solving the trust-region subproblem, which now involves the minimization of a nonlinear
function within a trust region.

Assumption 10.1 is the minimum requirement for how well one has to do at solv-
ing (10.2) to achieve global convergence to first-order critical points. If we would like to
guarantee more, then we must drive the algorithm with more than just the steepest descent
direction. We will consider this case next.
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The eigenstep

When considering a quadratic model and global convergence to second-order critical points,
the model reduction that is required can be achieved along a direction related to the great-
est negative curvature. Let us assume that Hk has at least one negative eigenvalue, and let
τk = λmin(Hk) be the most negative eigenvalue of Hk. In this case, we can determine a step
of negative curvature sE

k , such that

(sE
k )�(gk) ≤ 0, ‖sE

k‖ = 	k , and (sE
k )�Hk(sE

k ) = τk	
2
k . (10.11)

We refer to sE
k as the eigenstep.

The eigenstep sE
k is the eigenvector of Hk corresponding to the most negative eigen-

value τk , whose sign and scale are chosen to ensure that the first two parts of (10.11) are
satisfied. Note that due to the presence of negative curvature, sE

k is the minimizer of the
quadratic function along that direction inside the trust region. The eigenstep induces the
following decrease in the model.

Lemma 10.2. Suppose that the model Hessian Hk has negative eigenvalues. Then we have
that

mk(xk)−mk(xk+ sE
k ) ≥ −1

2
τk	

2
k . (10.12)

Proof. It suffices to point out that

mk(xk)−mk(xk+ sE
k ) = −(sE

k )�(gk)− 1
2 (sE

k )�Hk(sE
k )

≥ − 1
2 (sE

k )�Hk(sE
k )

= − 1
2τk	

2
k .

The eigenstep plays a role similar to that of the Cauchy step, in that, provided negative
curvature is present in the model, we now require the model decrease at xk+ sk to satisfy

mk(xk)−mk(xk+ sk) ≥ κ f ed [mk(xk)−mk(xk+ sE
k )]

for some constant κ f ed ∈ (0,1]. Since we also want the step to yield a fraction of Cauchy
decrease, we will consider the following assumption.

Assumption 10.2. For all iterations k,

mk(xk)−mk(xk+ sk) ≥ κ f od
[
mk(xk)−min{mk(xk+ sC

k ),mk(xk+ sE
k )}] (10.13)

for some constant κ f od ∈ (0,1].

A step satisfying this assumption is given by computing both the Cauchy step and,
in the presence of negative curvature in the model, the eigenstep, and by choosing the one
that provides the larger reduction in the model. By combining (10.4), (10.12), and (10.13),
we obtain that

mk(xk)−mk(xk+ sk) ≥ κ f od

2
max

{
‖gk‖min

{ ‖gk‖
‖Hk‖ ,	k

}
,−τk	

2
k

}
. (10.14)
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In some trust-region literature what is required for global convergence to second-order
critical points is a fraction of the decrease obtained by the optimal trust-region step (i.e, an
optimal solution of (10.2)). Note that a fraction of optimal decrease condition is stronger
than (10.14) for the same value of κ f od .

If mk(xk+ s) is not a quadratic function, then Theorem 10.1 and Lemma 10.2 are not
directly applicable. Similarly to the Cauchy step case, one could here define an eigenstep by
applying a line search to the model mk(xk+s), at s = 0 and along a direction of negative (or
most negative) curvature of Hk, stopping when some type of sufficient decrease condition
is satisfied (see [57, Section 6.6.2] or Section 12.2). Calculating a step yielding a decrease
better than the Cauchy and eigenstep decreases could be achieved by approximately solving
the trust-region subproblem, which, again, now involves the minimization of a nonlinear
function within a trust region.

The update of the trust-region radius

The other essential ingredient of a trust-region method is the so-called trust-region man-
agement. The basic idea is to compare the truth, that is, the actual reduction in the objective
function, to the predicted reduction in the model. If the comparison is good, we take the
new step and (possibly) increase the trust-region radius. If the comparison is bad, we re-
ject the new step and decrease the trust-region radius. Formally, this procedure can be
stated as follows. We introduce a distinction between simple and sufficient decreases in
the objective function. In the former case, when η0 = 0, the step is accepted as long as it
provides a simple decrease in the objective function, which might be a natural thing to do
in derivative-free optimization when functions are expensive to evaluate.

Suppose that the current iterate is xk and that the candidate for the next iterate is
xk + sk . Assume, also, that one is given constants η0, η1, and γ satisfying γ ∈ (0,1) and
0≤ η0 ≤ η1 < 1 (with η1 �= 0).

Truth versus prediction: Define

ρk = f (xk)− f (xk+ sk)

mk(xk)−mk(xk+ sk)
.

Step acceptance (sufficient decrease): If ρk ≥ η1, then accept the new point xk+ sk ; oth-
erwise, the new candidate point is rejected (and the trust-region radius is reduced, as
below).

Step acceptance (possibly based on simple decrease): If ρk ≥ η0, then accept the new
point xk+ sk (but reduce the trust-region radius if ρk < η1, as below); otherwise, the
new candidate point is rejected (and the trust-region radius is reduced, as below).

Trust-region management: Set

	k+1 ∈
{

[	k ,+∞) if ρk ≥ η1,
{γ	k} if ρk < η1.

An important property which ensures convergence is the following: if the model is
based on, for example, (some reasonable approximation to) a truncated Taylor series expan-
sion, then we know that as the trust-region radius becomes smaller the model necessarily
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becomes better. This guarantees that the trust-region radius is bounded away from zero,
away from stationarity. In what follows we are not using Taylor models because we are
interested in the case where although derivatives may exist they are not available.

10.2 Conditions on the trust-region models
In the derivative-free case, away from stationary points, it is necessary to ensure that the
trust-region radius remains bounded away from zero. In the case of models based on a Tay-
lor series approximation, this is ensured by the fact that the model becomes progressively
better as the neighborhood (trust region) becomes smaller. The management of the trust-
region radius guarantees that it stays bounded away from zero as long as the current iterate
is not a stationary point. Models like polynomial interpolation or regression models do not
necessarily become better when the radius of the trust region is reduced. Hence, we have
to ensure that we reduce only the trust-region radius when we are certain that the failure of
a current step is due to the size of the trust region and not to the poor quality of the model
itself. With this safeguard, we can prove, once again, that, as the neighborhood becomes
small, the prediction becomes good and thus the trust-region radius remains bounded away
from zero and one can obtain, via Assumptions 10.1 and 10.2, similar results to those one
is able to obtain in the case with derivatives. As we know from Chapters 3–6, what one
requires in these cases is Taylor-like error bounds with a uniformly bounded constant that
characterizes the geometry of the sample sets.

In the remainder of this section, we will describe the assumptions on the function
and on the models which we use, in this chapter, to prove the global convergence of the
derivative-free trust-region algorithms. We will impose only those requirements on the
models that are essential for the convergence theory. The models might not necessarily
be quadratic functions as mentioned in Section 10.1. (We will cover the use of nonlinear
models in trust-region methods in Section 12.2.)

For the purposes of convergence to first-order critical points, we assume that the
function f and its gradient are Lipschitz continuous in the domain considered by the al-
gorithms. To better define this region, we suppose that x0 (the initial iterate) is given and
that new iterates correspond to reductions in the value of the objective function. Thus, the
iterates must necessarily belong to the level set

L(x0) = {
x ∈ Rn : f (x)≤ f (x0)

}
.

However, when considering models based on sampling it is possible (especially at the early
iterations) that the function f is evaluated outside L(x0). Let us assume that sampling is
restricted to regions of the form B(xk;	k) and that 	k never exceeds a given (possibly
large) positive constant	max . Under this scenario, the region where f is sampled is within
the set

Lenl (x0) = L(x0)∪
⋃

x∈L(x0)

B(x ;	max) =
⋃

x∈L(x0)

B(x ;	max).

Thus, what we need are the requirements already stated in Assumption 6.1, making sure,
however, that the open domain mentioned there contains the larger set Lenl (x0).

Assumption 10.3. Suppose x0 and 	max are given. Assume that f is continuously differ-
entiable with Lipschitz continuous gradient in an open domain containing the set Lenl (x0).
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The algorithmic framework which will be described in Section 10.3 for interpolation-
based trust-region methods also requires the selection of a fully linear class M—see Def-
inition 6.1. We reproduce this definition below in the notation of this chapter (where y is
given by x+ s and the set S is L(x0)).

Definition 10.3. Let a function f : Rn → R, that satisfies Assumption 10.3, be given. A
set of model functions M= {m : Rn→ R, m ∈ C1} is called a fully linear class of models
if the following hold:

1. There exist positive constants κe f , κeg, and νm
1 such that for any x ∈ L(x0) and

	∈ (0,	max] there exists a model function m(x+s) in M, with Lipschitz continuous
gradient and corresponding Lipschitz constant bounded by νm

1 , and such that

• the error between the gradient of the model and the gradient of the function
satisfies

‖∇ f (x+ s)−∇m(x+ s)‖ ≤ κeg	 ∀s ∈ B(0;	), (10.15)

and

• the error between the model and the function satisfies

| f (x+ s)−m(x+ s)| ≤ κe f 	
2 ∀s ∈ B(0;	). (10.16)

Such a model m is called fully linear on B(x ;	).

2. For this class M there exists an algorithm, which we will call a “model-improvement”
algorithm, that in a finite, uniformly bounded (with respect to x and 	) number of
steps can

• either establish that a given model m ∈M is fully linear on B(x ;	) (we will
say that a certificate has been provided and the model is certifiably fully linear),

• or find a model m̃ ∈M that is fully linear on B(x ;	).

For the remainder of this chapter we will assume, without loss of generality, that the
constants κe f , κeg , and νm

1 of any fully linear class M which we use in our algorithmic
framework are such that Lemma 10.25 below holds. In this way, we make sure that if a
model is fully linear in a ball, it will be so in any larger concentric one, as happens with
Taylor models defined by first-order derivatives.

To analyze the convergence to second-order critical points, we require, in addition,
the Lipschitz continuity of the Hessian of f . The overall smoothness requirement has been
stated in Assumption 6.2, but we need to consider here, however, that the open domain
mentioned there now contains the larger set Lenl (x0).

Assumption 10.4. Suppose x0 and 	max are given. Assume that f is twice continu-
ously differentiable with Lipschitz continuous Hessian in an open domain containing the
set Lenl (x0).
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The algorithmic framework which will be described in Section 10.5 for interpo-
lation-based trust-region methods also requires the selection of a fully quadratic class M—
see Definition 6.2. We repeat this definition below using the notation of this chapter (where
y is given by x+ s and the set S is L(x0)).

Definition 10.4. Let a function f , that satisfies Assumption 10.4, be given. A set of model
functions M = {m : Rn → R, m ∈ C2} is called a fully quadratic class of models if the
following hold:

1. There exist positive constants κe f , κeg, κeh, and νm
2 such that for any x ∈ L(x0) and

	∈ (0,	max] there exists a model function m(x+s) in M, with Lipschitz continuous
Hessian and corresponding Lipschitz constant bounded by νm

2 , and such that

• the error between the Hessian of the model and the Hessian of the function
satisfies

‖∇2 f (x+ s)−∇2m(x+ s)‖ ≤ κeh	 ∀s ∈ B(0;	), (10.17)

• the error between the gradient of the model and the gradient of the function
satisfies

‖∇ f (x+ s)−∇m(x+ s)‖ ≤ κeg	
2 ∀s ∈ B(0;	), (10.18)

and

• the error between the model and the function satisfies

| f (x+ s)−m(x+ s)| ≤ κe f 	
3 ∀s ∈ B(0;	). (10.19)

Such a model m is called fully quadratic on B(x ;	).

2. For this class M there exists an algorithm, which we will call a “model-improvement”
algorithm, that in a finite, uniformly bounded (with respect to x and 	) number of
steps can

• either establish that a given model m ∈M is fully quadratic on B(x ;	) (we
will say that a certificate has been provided and the model is certifiably fully
quadratic),

• or find a model m̃ ∈M that is fully quadratic on B(x ;	).

For the remainder of this chapter we will assume, without loss of generality, that
the constants κe f , κeg , κeh , and νm

2 of any fully quadratic class M which we use in our
algorithmic framework are such that Lemma 10.26 below holds. By proceeding in this
way, we guarantee that if a model is fully quadratic in a ball, it remains so in any larger
concentric ball (as in Taylor models defined by first- and second-order derivatives).

10.3 Derivative-free trust-region methods (first order)
Derivative-free trust-region methods can be roughly classified into two categories: the
methods which target good practical performance, such as the methods in [163, 190] (see
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Chapter 11); and the methods for which global convergence was shown, but at the expense
of practicality, such as described in [57, 59]. In this book we try to bridge the gap by
describing an algorithmic framework in the spirit of the first category of methods, while
retaining all the same global convergence properties of the second category. We list next
the features that make this algorithmic framework closer to a practical one when compared
to the methods in [57, 59].

The trust-region maintenance that we will use is different from the approaches in
derivative-based methods [57]. In derivative-based methods, under appropriate conditions,
the trust-region radius becomes bounded away from zero when the iterates converge to a
local minimizer [57]; hence, its radius can remain unchanged or increase near optimality.
This is not the case in trust-region derivative-free methods. The trust region for these meth-
ods serves two purposes: it restricts the step size to the neighborhood where the model
is assumed to be good, and it also defines the neighborhood in which the points are sam-
pled for the construction of the model. Powell in [190] suggests using two different trust
regions, which makes the method and its implementation more complicated. We choose
to maintain only one trust region. However, it is important to keep the radius of the trust
region comparable to some measure of stationarity so that when the measure of stationarity
is close to zero (that is, the current iterate may be close to a stationary point) the models
become more accurate, a procedure that is accomplished by the so-called criticality step.
The update of the trust-region radius at the criticality step forces it to converge to zero,
hence defining a natural stopping criterion for this class of methods.

Another feature of this algorithmic framework is the acceptance of new iterates that
provide a simple decrease in the objective function, rather than a sufficient decrease. This
feature is of particular relevance in the derivative-free context, especially when function
evaluations are expensive. As in the derivative case [184], the standard liminf-type results
are obtained for general trust-region radius updating schemes (such as the simple one de-
scribed in Section 10.1). In particular, it is possible to update the trust-region radius freely
at the end of successful iterations (as long as it is not decreased). However, to derive the
classical lim-type global convergence result [214] in the derivative case, an additional re-
quirement is imposed on the update of the trust-region radius at successful iterations, to
avoid a cycling effect of the type described in [236]. But, as we will see, because of the
update of the trust-region radius at the criticality step mentioned in the previous paragraph,
such further provisions are not needed to achieve lim-type global convergence to first-order
critical points even when iterates are accepted based on simple decrease.15

In our framework it is possible to take steps, and for the algorithm to progress, with-
out insisting that the model be made fully linear or fully quadratic on every iteration. In
contrast with [57, 59], we require only (i) that the models can be made fully linear or fully
quadratic during a finite, uniformly bounded number of iterations and (ii) that if a model
is not fully linear or fully quadratic (depending on the order of optimality desired) in a
given iteration, then the new iterate can be accepted as long as it provides a decrease in the
objective function (sufficient decrease for the lim-result). This modification slightly com-
plicates the convergence analysis, but it reflects much better the typical implementation of
a trust-region derivative-free algorithm.

15We point out that a modification to derivative-based trust-region algorithms based on a criticality step
would produce a similar lim-type result. However, forcing the trust-region radius to converge to zero may
jeopardize the fast rates of local convergence under the presence of derivatives.
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We now formally state the first-order version of the algorithm that we consider. The
algorithm contemplates acceptance of new iterates based on simple decrease by selecting
η0= 0. We have already noted that accepting new iterates when function evaluations are ex-
pensive based on simple decrease is particularly appropriate in derivative-free optimization.
We also point out that the model mk and the trust-region radius	k are set only at the end of
the criticality step (Step 1). The iteration ends by defining an incumbent model micb

k+1 and
an incumbent trust-region radius	icb

k+1 for the next iteration, which then might be changed
or might not by the criticality step.

Algorithm 10.1 (Derivative-free trust-region method (first order)).

Step 0 (initialization): Choose a fully linear class of models M and a corresponding
model-improvement algorithm (see, e.g., Chapter 6). Choose an initial point x0 and
	max > 0. We assume that an initial model micb

0 (x0+ s) (with gradient and possibly
the Hessian at s = 0 given by gicb

0 and H icb
0 , respectively) and a trust-region radius

	icb
0 ∈ (0,	max] are given.

The constants η0, η1, γ , γinc, εc, β, μ, and ω are also given and satisfy the conditions
0≤ η0 ≤ η1 < 1 (with η1 �= 0), 0< γ < 1< γinc , εc > 0, μ> β > 0, and ω ∈ (0,1).
Set k = 0.

Step 1 (criticality step): If ‖gicb
k ‖> εc, then mk = micb

k and 	k =	icb
k .

If ‖gicb
k ‖ ≤ εc, then proceed as follows. Call the model-improvement algorithm to

attempt to certify if the model micb
k is fully linear on B(xk;	icb

k ). If at least one of
the following conditions holds,

• the model micb
k is not certifiably fully linear on B(xk ;	icb

k ),

• 	icb
k >μ‖gicb

k ‖,
then apply Algorithm 10.2 (described below) to construct a model m̃k(xk+ s) (with
gradient and possibly the Hessian at s = 0 given by g̃k and H̃k , respectively), which
is fully linear (for some constants κe f , κeg , and νm

1 , which remain the same for all
iterations of Algorithm 10.1) on the ball B(xk ;	̃k), for some 	̃k ∈ (0,μ‖g̃k‖] given
by Algorithm 10.2. In such a case set16

mk = m̃k and 	k = min{max{	̃k ,β‖g̃k‖},	icb
k }.

Otherwise, set mk = micb
k and	k =	icb

k .

Step 2 (step calculation): Compute a step sk that sufficiently reduces the model mk (in
the sense of (10.9)) and such that xk+ sk ∈ B(xk;	k).

Step 3 (acceptance of the trial point): Compute f (xk+ sk) and define

ρk = f (xk)− f (xk+ sk)

mk(xk)−mk(xk+ sk)
.

16Note that 	k is selected to be the number in [	̃k ,	icb
k ] closest to β‖g̃k‖.
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If ρk ≥ η1 or if both ρk ≥ η0 and the model is fully linear (for the positive constants
κe f , κeg , and νm

1 ) on B(xk ;	k), then xk+1 = xk + sk and the model is updated to
include the new iterate into the sample set, resulting in a new model micb

k+1(xk+1+ s)
(with gradient and possibly the Hessian at s = 0 given by gicb

k+1 and H icb
k+1, respec-

tively); otherwise, the model and the iterate remain unchanged (micb
k+1 = mk and

xk+1 = xk).

Step 4 (model improvement): If ρk < η1, use the model-improvement algorithm to

• attempt to certify that mk is fully linear on B(xk;	k),

• if such a certificate is not obtained, we say that mk is not certifiably fully linear
and make one or more suitable improvement steps.

Define micb
k+1 to be the (possibly improved) model.

Step 5 (trust-region radius update): Set

	icb
k+1 ∈

⎧⎪⎨
⎪⎩

[	k ,min{γinc	k ,	max}] if ρk ≥ η1,
{γ	k} if ρk < η1 and mk is fully linear,
{	k} if ρk < η1 and mk

is not certifiably fully linear.

Increment k by one and go to Step 1.

The procedure invoked in the criticality step (Step 1 of Algorithm 10.1) is described
in the following algorithm.

Algorithm 10.2 (Criticality step: first order). This algorithm is applied only if ‖gicb
k ‖ ≤

εc and at least one of the following holds: the model micb
k is not certifiably fully linear

on B(xk;	icb
k ) or 	icb

k > μ‖gicb
k ‖. The constant ω ∈ (0,1) is chosen at Step 0 of Algo-

rithm 10.1.

Initialization: Set i = 0. Set m(0)
k = micb

k .

Repeat Increment i by one. Use the model-improvement algorithm to improve the previ-
ous model m(i−1)

k until it is fully linear on B(xk ;ωi−1	icb
k ) (notice that this can be

done in a finite, uniformly bounded number of steps given the choice of the model-
improvement algorithm in Step 0 of Algorithm 10.1). Denote the new model by m(i)

k .

Set 	̃k = ωi−1	icb
k and m̃k = m(i)

k .

Until 	̃k ≤ μ‖g(i)
k ‖.

We will prove in the next section that Algorithm 10.2 terminates after a finite number
of steps if ‖∇ f (xk)‖ �= 0. If ‖∇ f (xk)‖ = 0, then we will cycle in the criticality step until
some stopping criterion is met.

Note that if ‖gicb
k ‖≤ εc in the criticality step of Algorithm 10.1 and Algorithm 10.2 is

invoked, the model mk is fully linear on B(xk ;	̃k) with 	̃k ≤	k . Then, by Lemma 10.25,
mk is also fully linear on B(xk;	k) (as well as on B(xk;μ‖gk‖)).
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After Step 3 of Algorithm 10.1, we may have the following possible situations at
each iteration:

1. ρk ≥ η1; hence, the new iterate is accepted and the trust-region radius is retained or
increased. We will call such iterations successful. We will denote the set of indices
of all successful iterations by S.

2. η1 > ρk ≥ η0 and mk is fully linear. Hence, the new iterate is accepted and the trust-
region radius is decreased. We will call such iterations acceptable. (There are no
acceptable iterations when η0 = η1 ∈ (0,1).)

3. η1 > ρk and mk is not certifiably fully linear. Hence, the model is improved. The
new point might be included in the sample set but is not accepted as a new iterate.
We will call such iterations model improving.

4. ρk <η0 and mk is fully linear. This is the case when no (acceptable) decrease was ob-
tained and there is no need to improve the model. The trust-region radius is reduced,
and nothing else changes. We will call such iterations unsuccessful.

10.4 Global convergence for first-order critical points
We will first show that unless the current iterate is a first-order stationary point, then the
algorithm will not loop infinitely in the criticality step of Algorithm 10.1 (Algorithm 10.2).
The proof is very similar to the one in [59], but we repeat the details here for completeness.

Lemma 10.5. If ∇ f (xk) �= 0, Step 1 of Algorithm 10.1 will terminate in a finite number of
improvement steps (by applying Algorithm 10.2).

Proof. Assume that the loop in Algorithm 10.2 is infinite. We will show that ∇ f (xk)
has to be zero in this case. At the start, we know that we do not have a certifiably fully
linear model micb

k or that the radius 	icb
k exceeds μ‖gicb

k ‖. We then define m(0)
k = micb

k ,
and the model is improved until it is fully linear on the ball B(xk ;ω0	icb

k ) (in a finite

number of improvement steps). If the gradient g(1)
k of the resulting model m(1)

k satisfies

μ‖g(1)
k ‖ ≥ ω0	icb

k , the procedure stops with

	̃icb
k = ω0	icb

k ≤ μ‖g(1)
k ‖.

Otherwise, that is, if μ‖g(1)
k ‖<ω0	icb

k , the model is improved until it is fully linear on the
ball B(xk;ω	icb

k ). Then, again, either the procedure stops or the radius is again multiplied
by ω, and so on.

The only way for this procedure to be infinite (and to require an infinite number of
improvement steps) is if

μ‖g(i)
k ‖ < ωi−1	icb

k ,

for all i ≥ 1, where g(i)
k is the gradient of the model m(i)

k . This argument shows that

limi→+∞‖g(i)
k ‖ = 0. Since each model m(i)

k was fully linear on B(xk ;ωi−1	icb
k ), (10.15)

with s = 0 and x = xk implies that

‖∇ f (xk)− g(i)
k ‖ ≤ κegω

i−1	icb
k
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for each i ≥ 1. Thus, using the triangle inequality, it holds for all i ≥ 1 that

‖∇ f (xk)‖ ≤ ‖∇ f (xk)− g(i)
k ‖+‖g(i)

k ‖ ≤
(
κeg+ 1

μ

)
ωi−1	icb

k .

Since ω ∈ (0,1), this implies that ∇ f (xk)= 0.

We will now prove the results related to global convergence to first-order critical
points. For minimization we need to assume that f is bounded from below.

Assumption 10.5. Assume that f is bounded from below on L(x0); that is, there exists a
constant κ∗ such that, for all x ∈ L(x0), f (x)≥ κ∗.

We will make use of the assumptions on the boundedness of f from below and on
the Lipschitz continuity of the gradient of f (i.e., Assumptions 10.5 and 10.3) and of the
existence of fully linear models (Definition 10.3). For simplicity of the presentation, we
also require the model Hessian Hk =∇2mk(xk) to be uniformly bounded. In general, fully
linear models are required only to have continuous first-order derivatives (κbhm below can
then be regarded as a bound on the Lipschitz constant of the gradient of these models).

Assumption 10.6. There exists a constant κbhm > 0 such that, for all xk generated by the
algorithm,

‖Hk‖ ≤ κbhm .

We start the main part of the analysis with the following key lemma.

Lemma 10.6. If mk is fully linear on B(xk;	k) and

	k ≤ min

{‖gk‖
κbhm

,
κ f cd‖gk‖(1−η1)

4κe f

}
,

then the kth iteration is successful.

Proof. Since

	k ≤ ‖gk‖
κbhm

,

the fraction of Cauchy decrease condition (10.9)–(10.10) immediately gives that

mk(xk)−mk(xk+ sk) ≥ κ f cd

2
‖gk‖min

{‖gk‖
κbhm

,	k

}
= κ f cd

2
‖gk‖	k . (10.20)

On the other hand, since the current model is fully linear on B(xk;	k), then from the
bound (10.16) on the error between the function and the model and from (10.20) we have

|ρk−1| ≤
∣∣∣∣ f (xk+ sk)−mk(xk+ sk)

mk(xk)−mk(xk+ sk)

∣∣∣∣+
∣∣∣∣ f (xk)−mk(xk)

mk(xk)−mk(xk+ sk)

∣∣∣∣
≤ 4κe f	

2
k

κ f cd‖gk‖	k

≤ 1−η1,
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where we have used the assumption 	k ≤ κ f cd‖gk‖(1− η1)/(4κef ) to deduce the last in-
equality. Therefore, ρk ≥ η1, and iteration k is successful.

It now follows that if the gradient of the model is bounded away from zero, then so
is the trust-region radius.

Lemma 10.7. Suppose that there exists a constant κ1 > 0 such that ‖gk‖ ≥ κ1 for all k.
Then there exists a constant κ2 > 0 such that

	k ≥ κ2

for all k.

Proof. We know from Step 1 of Algorithm 10.1 (independently of whether Algorithm 10.2
has been invoked) that

	k ≥ min{β‖gk‖,	icb
k }.

Thus,
	k ≥ min{βκ1,	icb

k }. (10.21)

By Lemma 10.6 and by the assumption that ‖gk‖ ≥ κ1 for all k, whenever	k falls below a
certain value given by

κ̄2 = min

{
κ1

κbhm
,
κ f cdκ1(1−η1)

4κe f

}
,

the kth iteration has to be either successful or model improving (when it is not successful
and mk is not certifiably fully linear) and hence, from Step 5, 	icb

k+1 ≥ 	k . We conclude
from this, (10.21), and the rules of Step 5 that 	k ≥min{	icb

0 ,βκ1, γ κ̄2} = κ2.

We will now consider what happens when the number of successful iterations is finite.

Lemma 10.8. If the number of successful iterations is finite, then

lim
k→+∞‖∇ f (xk)‖ = 0.

Proof. Let us consider iterations that come after the last successful iteration. We know
that we can have only a finite (uniformly bounded, say by N) number of model-improving
iterations before the model becomes fully linear, and hence there is an infinite number
of iterations that are either acceptable or unsuccessful and in either case the trust region is
reduced. Since there are no more successful iterations,	k is never increased for sufficiently
large k. Moreover,	k is decreased at least once every N iterations by a factor of γ . Thus,
	k converges to zero.

Now, for each j , let i j be the index of the first iteration after the j th iteration for
which the model m j is fully linear. Then

‖x j − xi j ‖ ≤ N	 j → 0

as j goes to +∞.
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Let us now observe that

‖∇ f (x j )‖ ≤ ‖∇ f (x j )−∇ f (xi j )‖+‖∇ f (xi j )− gi j‖+‖gi j ‖.
What remains to be shown is that all three terms on the right-hand side are converging to
zero. The first term converges to zero because of the Lipschitz continuity of∇ f and the fact
that ‖xi j − x j‖→ 0. The second term is converging to zero because of the bound (10.15)
on the error between the gradients of a fully linear model and the function f and because
of the fact that mi j is fully linear. Finally, the third term can be shown to converge to zero
by Lemma 10.6, since if it was bounded away from zero for a subsequence, then for small
enough 	i j (recall that 	i j → 0), i j would be a successful iteration, which would then
yield a contradiction.

We now prove another useful lemma, namely, that the trust-region radius converges
to zero, which is particularly relevant in the derivative-free context.

Lemma 10.9.
lim

k→+∞	k = 0. (10.22)

Proof. When S is finite the result is shown in the proof of Lemma 10.8. Let us consider
the case when S is infinite. For any k ∈ S we have

f (xk)− f (xk+1) ≥ η1[mk(xk)−mk(xk+ sk)].

By using the bound on the fraction of Cauchy decrease (10.10), we have that

f (xk)− f (xk+1) ≥ η1
κ f cd

2
‖gk‖min

{ ‖gk‖
‖Hk‖ ,	k

}
.

Due to Step 1 of Algorithm 10.1 we have that ‖gk‖ ≥min{εc,μ−1	k}; hence

f (xk)− f (xk+1) ≥ η1
κ f cd

2
min{εc,μ−1	k}min

{
min{εc,μ−1	k}
‖Hk‖ ,	k

}
.

Since S is infinite and f is bounded from below, and by using Assumption 10.6, the right-
hand side of the above expression has to converge to zero. Hence, limk∈S	k = 0, and the
proof is completed if all iterations are successful. Now recall that the trust-region radius
can be increased only during a successful iteration, and it can be increased only by a ratio
of at most γinc. Let k /∈ S be the index of an iteration (after the first successful one). Then
	k ≤ γinc	sk , where sk is the index of the last successful iteration before k. Since	sk→ 0,
then	k→ 0 for k /∈ S.

The following lemma now follows easily.

Lemma 10.10.
liminf
k→+∞‖gk‖ = 0. (10.23)
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Proof. Assume, for the purpose of deriving a contradiction, that, for all k,

‖gk‖ ≥ κ1 (10.24)

for some κ1 > 0. By Lemma 10.7 we have that	k ≥ κ2 for all k. We obtain a contradiction
with Lemma 10.9.

We now show that if the model gradient ‖gk‖ converges to zero on a subsequence,
then so does the true gradient ‖∇ f (xk)‖.

Lemma 10.11. For any subsequence {ki} such that

lim
i→+∞‖gki ‖ = 0 (10.25)

it also holds that
lim

i→+∞‖∇ f (xki )‖ = 0. (10.26)

Proof. First, we note that, by (10.25), ‖gki ‖ ≤ εc for i sufficiently large. Thus, the mech-
anism of the criticality step (Step 1) ensures that the model mki is fully linear on a ball
B(xki ;	ki ) with 	ki ≤ μ‖gki ‖ for all i sufficiently large (if ∇ f (xki ) �= 0). Then, using the
bound (10.15) on the error between the gradients of the function and the model, we have

‖∇ f (xki )− gki‖ ≤ κeg	ki ≤ κegμ‖gki ‖.
As a consequence, we have

‖∇ f (xki )‖ ≤ ‖∇ f (xki )− gki‖+‖gki‖ ≤ (κegμ+1)‖gki‖
for all i sufficiently large. But since ‖gki ‖→ 0 then this implies (10.26).

Lemmas 10.10 and 10.11 immediately give the following global convergence result.

Theorem 10.12. Let Assumptions 10.3, 10.5, and 10.6 hold. Then

liminf
k→+∞∇ f (xk) = 0.

If the sequence of iterates is bounded, then this result implies the existence of one
limit point that is first-order critical. In fact we are able to prove that all limit points of the
sequence of iterates are first-order critical.

Theorem 10.13. Let Assumptions 10.3, 10.5, and 10.6 hold. Then

lim
k→+∞∇ f (xk) = 0.

Proof. We have established by Lemma 10.8 that in the case when S is finite the theorem
holds. Hence, we will assume that S is infinite. Suppose, for the purpose of establishing
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a contradiction, that there exists a subsequence {ki } of successful or acceptable iterations
such that

‖∇ f (xki )‖ ≥ ε0 > 0 (10.27)

for some ε0 > 0 and for all i (we can ignore the other types of iterations, since xk does not
change during such iterations). Then, because of Lemma 10.11, we obtain that

‖gki ‖ ≥ ε > 0

for some ε > 0 and for all i sufficiently large. Without loss of generality, we pick ε such
that

ε ≤ min

{
ε0

2(2+κegμ)
,εc

}
. (10.28)

Lemma 10.10 then ensures the existence, for each ki in the subsequence, of a first
iteration �i > ki such that ‖g�i‖ < ε. By removing elements from {ki }, without loss of
generality and without a change of notation, we thus obtain that there exists another subse-
quence indexed by {�i } such that

‖gk‖ ≥ ε for ki ≤ k < �i and ‖g�i‖ < ε (10.29)

for sufficiently large i .
We now restrict our attention to the set K corresponding to the subsequence of itera-

tions whose indices are in the set⋃
i∈N0

{k ∈ N0 : ki ≤ k < �i },

where ki and �i belong to the two subsequences given above in (10.29).
We know that ‖gk‖ ≥ ε for k ∈ K. From Lemma 10.9, limk→+∞	k = 0, and by

Lemma 10.6 we conclude that for any large enough k ∈K the iteration k is either successful,
if the model is fully linear, or model improving, otherwise.

Moreover, for each k ∈K∩S we have

f (xk)− f (xk+1) ≥ η1[mk(xk)−mk(xk+ sk)] ≥ η1
κ f cd

2
‖gk‖min

{‖gk‖
κbhm

,	k

}
, (10.30)

and, for any such k large enough, 	k ≤ ε
κbhm

. Hence, we have, for k ∈ K∩S sufficiently
large,

	k ≤ 2

η1κ f cdε
[ f (xk)− f (xk+1)].

Since for any k ∈K large enough the iteration is either successful or model improving and
since for a model-improving iteration xk = xk+1, we have, for all i sufficiently large,

‖xki − x�i‖ ≤
�i−1∑
j=ki

j∈K∩S

‖x j − x j+1‖ ≤
�i−1∑
j=ki

j∈K∩S

	 j ≤ 2

η1κ f cdε
[ f (xki )− f (x�i )].
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Since the sequence { f (xk)} is bounded from below (Assumption 10.5) and monotonic de-
creasing, we see that the right-hand side of this inequality must converge to zero, and we
therefore obtain that

lim
i→+∞‖xki − x�i‖ = 0.

Now

‖∇ f (xki )‖ ≤ ‖∇ f (xki )−∇ f (x�i )‖+‖∇ f (x�i )− g�i‖+‖g�i‖.
The first term of the right-hand side tends to zero because of the Lipschitz continuity of the
gradient of f (Assumption 10.3), and it is thus bounded by ε for i sufficiently large. The
third term is bounded by ε by (10.29). For the second term we use the fact that from (10.28)
and the mechanism of the criticality step (Step 1) at iteration �i the model m�i is fully linear
on B(x�i ;μ‖g�i‖). Thus, using (10.15) and (10.29), we also deduce that the second term
is bounded by κegμε (for i sufficiently large). As a consequence, we obtain from these
bounds and (10.28) that

‖∇ f (xki )‖ ≤ (2+κegμ)ε ≤ 1

2
ε0

for i large enough, which contradicts (10.27). Hence, our initial assumption must be false,
and the theorem follows.

This last theorem is the only result for which we need to use the fact that xk = xk+1
at the model-improving iterations. So, this requirement could be lifted from the algorithm
if only a liminf-type result is desired. The advantage of this is that it becomes possible
to accept simple decrease in the function value even when the model is not fully linear.
The disadvantage, aside from the weaker convergence result, is in the inherent difficulty of
producing fully linear models after at most N consecutive model-improvement steps when
the region where each such model has to be fully linear can change at each iteration.

10.5 Derivative-free trust-region methods (second order)
In order to achieve global convergence to second-order critical points, the algorithm must
attempt to drive to zero a quantity that expresses second-order stationarity. Following [57,
Section 9.3], one possibility is to work with

σm
k = max {‖gk‖,−λmin(Hk)} ,

which measures the second-order stationarity of the model.
The algorithm follows mostly the same arguments as those of Algorithm 10.1. One

fundamental difference is that σm
k now plays the role of ‖gk‖. Another is the need to work

with fully quadratic models. A third main modification is the need to be able to solve the
trust-region subproblem better, so that the step yields both a fraction of Cauchy decrease
and a fraction of the eigenstep decrease when negative curvature is present. Finally, to
prove the lim-type convergence result in the second-order case, we also need to increase the
trust-region radius on some of the successful iterations, whereas in the first-order case that
was optional. Unlike the case of traditional trust-region methods that seek second-order
convergence results [57], we do not increase the trust-region radius on every successful
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iteration. We insist on such an increase only when the size of the trust-region radius is
small when compared to the measure of stationarity.

We state the version of the algorithm we wish to consider.

Algorithm 10.3 (Derivative-free trust-region method (second order)).

Step 0 (initialization): Choose a fully quadratic class of models M and a corresponding
model-improvement algorithm (see, e.g., Chapter 6). Choose an initial point x0 and
	max > 0. We assume that an initial model micb

0 (x0+s) (with gradient and Hessian at

s= 0 given by gicb
0 and H icb

0 , respectively), with σm,icb
0 =max{‖gicb

0 ‖,−λmin(H icb
0 )},

and a trust-region radius	icb
0 ∈ (0,	max] are given.

The constants η0, η1, γ , γinc εc, β, μ, and ω are also given and satisfy the conditions
0≤ η0 ≤ η1 < 1 (with η1 �= 0), 0< γ < 1< γinc , εc > 0, μ> β > 0, and ω ∈ (0,1).
Set k = 0.

Step 1 (criticality step): If σm,icb
k > εc, then mk = micb

k and	k =	icb
k .

If σm,icb
k ≤ εc, then proceed as follows. Call the model-improvement algorithm to

attempt to certify if the model micb
k is fully quadratic on B(xk ;	icb

k ). If at least one
of the following conditions holds,

• the model micb
k is not certifiably fully quadratic on B(xk;	icb

k ),

• 	icb
k > μσ

m,icb
k ,

then apply Algorithm 10.4 (described below) to construct a model m̃k(xk + s) (with
gradient and Hessian at s= 0 given by g̃k and H̃k , respectively), with σ̃m

k =max{‖g̃k‖,
−λmin(H̃k)}, which is fully quadratic (for some constants κe f , κeg , κeh , and νm

2 , which
remain the same for all iterations of Algorithm 10.3) on the ball B(xk ;	̃k) for some
	̃k ∈ (0,μσ̃m

k ] given by Algorithm 10.4. In such a case set17

mk = m̃k and 	k = min{max{	̃k ,βσ̃m
k },	icb

k }.

Otherwise, set mk = micb
k and 	k =	icb

k .

Step 2 (step calculation): Compute a step sk that sufficiently reduces the model mk (in
the sense of (10.13)) and such that xk+ sk ∈ B(xk;	k).

Step 3 (acceptance of the trial point): Compute f (xk+ sk) and define

ρk = f (xk)− f (xk+ sk)

mk(xk)−mk(xk+ sk)
.

If ρk ≥ η1 or if both ρk ≥ η0 and the model is fully quadratic (for the positive con-
stants κe f , κeg , κeh , and νm

2 ) on B(xk ;	k), then xk+1 = xk + sk and the model is
updated to include the new iterate into the sample set resulting in a new model
micb

k+1(xk+1+ s) (with gradient and Hessian at s = 0 given by gicb
k+1 and H icb

k+1, re-

spectively), with σm,icb
k+1 =max{‖gicb

k+1‖,−λmin(H icb
k+1)}; otherwise, the model and the

iterate remain unchanged (micb
k+1 = mk and xk+1 = xk).

17Note that 	k is selected to be the number in [	̃k ,	icb
k ] closest to β‖σ̃m

k ‖.
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Step 4 (model improvement): If ρk < η1, use the model-improvement algorithm to

• attempt to certify that mk is fully quadratic on B(xk;	k),
• if such a certificate is not obtained, we say that mk is not certifiably fully

quadratic and make one or more suitable improvement steps.

Define micb
k+1 to be the (possibly improved) model.

Step 5 (trust-region radius update): Set

	icb
k+1 ∈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{min{γinc	k ,	max}} if ρk ≥ η1 and 	k < βσ
m
k ,

[	k ,min{γinc	k ,	max}] if ρk ≥ η1 and 	k ≥ βσm
k ,

{γ	k} if ρk < η1 and mk
is fully quadratic,

{	k} if ρk < η1 and mk
is not certifiably fully quadratic.

Increment k by one and go to Step 1.

We need to recall for Algorithm 10.3 the definitions of successful, acceptable, model
improving, and unsuccessful iterations which we stated for the sequence of iterations
generated by Algorithm 10.1. We will use the same definitions here, adapted to the fully
quadratic models. We denote the set of all successful iterations by S and the set of all such
iterations when	k < βσ

m
k by S+.

As in the first-order case, during a model-improvement step, 	k and xk remain un-
changed; hence there can be only a finite number of model-improvement steps before a
fully quadratic model is obtained. The comments outlined after Theorem 10.13 about pos-
sibly changing xk at any model-improving iteration, suitably modified, apply in the fully
quadratic case as well.

The criticality step can be implemented following a procedure similar to the one de-
scribed in Algorithm 10.2, essentially by replacing ‖gk‖ by σm

k and by using fully quadratic
models rather than fully linear ones.

Algorithm 10.4 (Criticality step: second order). This algorithm is applied only if
σ

m,icb
k ≤ εc and at least one the following holds: the model micb

k is not certifiably fully

quadratic on B(xk ;	icb
k ) or	icb

k >μσ
m,icb
k . The constant ω ∈ (0,1) is chosen at Step 0 of

Algorithm 10.3.

Initialization: Set i = 0. Set m(0)
k = micb

k .

Repeat Increment i by one. Improve the previous model m(i−1)
k until it is fully quadratic on

B(xk;ωi−1	icb
k ) (notice that this can be done in a finite, uniformly bounded number

of steps, given the choice of the model-improvement algorithm in Step 0 of Algo-
rithm 10.3). Denote the new model by m(i)

k . Set 	̃k = ωi−1	icb
k and m̃k = m(i)

k .

Until 	̃k ≤ μ(σm
k )(i).

Note that if σm,icb
k ≤ εc in the criticality step of Algorithm 10.3 and Algorithm 10.4

is invoked, the new model mk is fully quadratic on B(xk ;	̃k) with 	̃k ≤ 	k . Then, by
Lemma 10.26, mk is also fully quadratic on B(xk;	k) (as well as on B(xk;μσm

k )).
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10.6 Global convergence for second-order critical points
For global convergence to second-order critical points, we will need one more order of
smoothness, namely Assumption 10.4 on the Lipschitz continuity of the Hessian of f . It
will be also necessary to assume that the function f is bounded from below (Assump-
tion 10.5). Naturally, we will also assume the existence of fully quadratic models.

We start by introducing the notation

σm(x) = max
{
‖∇m(x)‖,−λmin(∇2m(x))

}

and

σ (x) = max
{
‖∇ f (x)‖,−λmin(∇2 f (x))

}
.

It will be important to bound the difference between the true σ (x) and the model σm(x).
For that purpose, we first derive a bound on the difference between the smallest eigenvalues
of a function and of a corresponding fully quadratic model.

Proposition 10.14. Suppose that Assumption 10.4 holds and m is a fully quadratic model
on B(x ;	). Then we have that

|λmin(∇2 f (x))−λmin(∇2m(x))| ≤ κeh	.

Proof. The proof follows directly from the bound (10.17) on the error between the Hessians
of m and f and the simple observation that if v is a normalized eigenvector corresponding
to the smallest eigenvalue of ∇2m(x), then

λmin(∇2 f (x))−λmin(∇2m(x)) ≤ v�[∇2 f (x)−∇2m(x)]v

≤ ‖∇2 f (x)−∇2m(x)‖
≤ κeh	.

Analogously, letting v be a normalized eigenvector corresponding to the smallest eigen-
value of ∇2 f (x), we would obtain

λmin(∇2m(x))−λmin(∇2 f (x)) ≤ κeh	,

and the result follows.

The following lemma shows that the difference between the true σ (x) and the mo-
del σm(x) is of the order of 	.

Lemma 10.15. Let 	 be bounded by 	max . Suppose that Assumption 10.4 holds and m is
a fully quadratic model on B(x ;	). Then we have, for some κσ > 0, that

|σ (x)−σm(x)| ≤ κσ	. (10.31)
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Proof. It follows that

|σ (x)−σm(x)| = ∣∣max
{‖∇ f (x)‖,max{−λmin(∇2 f (x)),0}}

− max
{‖∇m(x)‖,max{−λmin(∇2m(x)),0}}∣∣

≤ max{|‖∇ f (x)‖−‖∇m(x)‖| ,∣∣max{−λmin(∇2 f (x)),0}−max{−λmin(∇2m(x)),0}∣∣} .

The first argument |‖∇ f (x)‖−‖∇m(x)‖| is bounded from above by κeg	max	, because
of the error bound (10.18) between the gradients of f and m, and from the bound 	 ≤
	max . The second argument is clearly dominated by |λmin(∇2 f (x))− λmin(∇2m(x))|,
which is bounded from above by κeh	 because of Proposition 10.14. Finally, we need
only write κσ =max{κeg	max ,κeh}, and the result follows.

The convergence theory will require the already mentioned assumptions (Assump-
tions 10.4 and 10.5), as well as the uniform upper bound on the Hessians of the quadratic
models (Assumption 10.6).

As for the first-order case, we begin by noting that the criticality step can be success-
fully executed in a finite number of improvement steps.

Lemma 10.16. If σ (xk) �= 0, Step 1 of Algorithm 10.3 will terminate in a finite number of
improvement steps (by applying Algorithm 10.4).

Proof. The proof is practically identical to the proof of Lemma 10.5, with ‖g(i)
k ‖ replaced

by (σm
k )(i) and ∇ f (xk) replaced by σ (xk).

We now show that an iteration must be successful if the current model is fully
quadratic and the trust-region radius is small enough with respect to σm

k .

Lemma 10.17. If mk is fully quadratic on B(xk;	k) and

	k ≤ min

{
σm

k

κbhm
,
κ f odσ

m
k (1−η1)

4κe f	max
,
κ f odσ

m
k (1−η1)

4κe f

}
,

then the kth iteration is successful.

Proof. The proof is similar to the proof of Lemma 10.6 for the first-order case; however,
now we need to take the second-order terms into account.

First, we recall the fractions of Cauchy and eigenstep decreases (10.14),

mk(xk)−mk(xk+ sk)≥ κ f od
2 max

{
‖gk‖min

{ ‖gk‖
κbhm

,	k

}
,−τk	

2
k

}
.

From the expression for σm
k , one of the two cases has to hold: either ‖gk‖ = σm

k or
−τk =−λmin(Hk)= σm

k .
In the first case, using the fact that	k ≤ σm

k /κbhm , we conclude that

mk(xk)−mk(xk+ sk) ≥ κ f od

2
‖gk‖	k = κ f od

2
σm

k 	k . (10.32)
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On the other hand, since the current model is fully quadratic on B(xk;	k), we may deduce
from (10.32) and the bound (10.19) on the error between the model mk and f that

|ρk−1| ≤
∣∣∣∣ f (xk+ sk)−mk(xk+ sk)

mk(xk)−mk(xk+ sk)

∣∣∣∣+
∣∣∣∣ f (xk)−mk(xk)

mk(xk)−mk(xk+ sk)

∣∣∣∣
≤ 4κe f	

3
k

(κ f odσ
m
k )	k

≤ 4κe f	max

κ f odσ
m
k
	k

≤ 1−η1.

In the case when −τk = σm
k , we first write

mk(xk)−mk(xk+ sk) ≥ − κ f od
2 τk	

2
k = κ f od

2 σm
k 	

2
k . (10.33)

But, since the current model is fully quadratic on B(xk;	k), we deduce from (10.33) and
the bound (10.19) on the error between mk and f that

|ρk−1| ≤
∣∣∣∣ f (xk+ sk)−mk(xk+ sk)

mk(xk)−mk(xk+ sk)

∣∣∣∣+
∣∣∣∣ f (xk)−mk(xk)

mk(xk)−mk(xk+ sk)

∣∣∣∣
≤ 4κe f	

3
k

(κ f odσ
m
k )	2

k
≤ 1−η1.

In either case, ρk ≥ η1 and iteration k is, thus, successful.

As in the first-order case, the following result follows readily from Lemma 10.17.

Lemma 10.18. Suppose that there exists a constant κ1 > 0 such that σm
k ≥ κ1 for all k.

Then there exists a constant κ2 > 0 such that

	k ≥ κ2

for all k.

Proof. The proof is trivially derived by a combination of Lemma 10.17 and the proof of
Lemma 10.7.

We are now able to show that if there are only finitely many successful iterations,
then we approach a second-order stationary point.

Lemma 10.19. If the number of successful iterations is finite, then

lim
k→+∞σ (xk) = 0.

Proof. The proof of this lemma is virtually identical to that of Lemma 10.8 for the first-
order case, with ‖gk‖ being substituted by σm

k and ‖∇ f (xk)‖ being substituted by σ (xk)
and by using Lemmas 10.15 and 10.17.
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We now prove that the whole sequence of trust-region radii converges to zero.

Lemma 10.20.
lim

k→+∞	k = 0. (10.34)

Proof. When S is finite the proof is as in the proof of Lemma 10.8 (the argument is exactly
the same). Let us consider the case when S is infinite. For any k ∈ S we have

f (xk)− f (xk+1) ≥ η1[m(xk)−m(xk+ sk)]

≥ η1
κ f od

2 max
{
‖gk‖min

{ ‖gk‖
κbhm

,	k

}
,−τk	

2
k

}
.

Due to Step 1 of Algorithm 10.3 we have that σm
k ≥ min{εc,μ−1	k}. If on iteration k we

have ‖gk‖ ≥max{−τk ,0} = {−λmin(Hk),0}, then σm
k = ‖gk‖ and

f (xk)− f (xk+1) ≥ η1
κ f od

2
min{εc,μ−1	k}min

{
min{εc,μ−1	k}

κbhm
,	k

}
. (10.35)

If, on the other hand, ‖gk‖<−τk , then σm
k =−τk and

f (xk)− f (xk+1) ≥ η1
κ f od

2
min{εc,μ−1	k}	2

k . (10.36)

There are two subsequences of successful iterations, possibly overlapping, {k1
i }, for which

(10.35) holds, and {k2
i }, for which (10.36) holds. The union of these subsequences contains

all successful iterations. Since S is infinite and f is bounded from below, then either
the corresponding subsequence {k1

i } (resp., {k2
i }) is finite or the right-hand side of (10.35)

(resp., (10.36)) has to converge to zero. Hence, limk∈S	k = 0, and the proof is completed
if all iterations are successful. Now recall that the trust-region radius can be increased only
during a successful iteration, and it can be increased only by a ratio of at most γinc . Let
k /∈ S be the index of an iteration (after the first successful one). Then	k ≤ γinc	sk , where
sk is the index of the last successful iteration before k. Since 	sk → 0, then 	k → 0 for
k /∈ S.

We obtain the following lemma as a simple corollary.

Lemma 10.21.
liminf
k→+∞σ

m
k = 0.

Proof. Assume, for the purpose of deriving a contradiction, that, for all k,

σm
k ≥ κ1

for some κ1 > 0. Then by Lemma 10.18 there exists a constant κ2 such that 	k ≥ κ2 for all
k. We obtain contradiction with Lemma 10.20.
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We now verify that the criticality step (Step 1 of Algorithm 10.3) ensures that a
subsequence of the iterates approaches second-order stationarity, by means of the following
auxiliary result.

Lemma 10.22. For any subsequence {ki } such that

lim
i→+∞σ

m
ki
= 0 (10.37)

it also holds that
lim

i→+∞σ (xki ) = 0. (10.38)

Proof. From (10.37), σm
ki
≤ εc for i sufficiently large. The mechanism of the criticality

step (Step 1) then ensures that the model mki is fully quadratic on the ball B(xki ;	ki ) with
	ki ≤ μσm

ki
for all i sufficiently large (if σm

ki
�= 0). Now, using (10.31),

σ (xki ) =
(
σ (xki )−σm

ki

)
+σm

ki
≤ (κσμ+1)σm

ki
.

The limit (10.37) and this last bound then give (10.38).

Lemmas 10.21 and 10.22 immediately give the following global convergence result.

Theorem 10.23. Let Assumptions 10.4, 10.5, and 10.6 hold. Then

liminf
k→+∞σ (xk) = 0.

If the sequence of iterates is bounded, this result implies the existence of at least
one limit point that is second-order critical. We are, in fact, able to prove that all limit
points of the sequence of iterates are second-order critical. In this proof we make use of the
additional requirement on Step 5 of Algorithm 10.3, which imposes in successful iterations
an increase on the trust-region radius	k if it is too small compared to σm

k .

Theorem 10.24. Let Assumptions 10.4, 10.5, and 10.6 hold. Then

lim
k→+∞σ (xk) = 0.

Proof. We have established by Lemma 10.19 that in the case when S is finite the theorem
holds. Hence, we will assume that S is infinite. Suppose, for the purpose of establishing
a contradiction, that there exists a subsequence {ki } of successful or acceptable iterations
such that

σ (xki ) ≥ ε0 > 0 (10.39)

for some ε0 > 0 and for all i (as in the first-order case, we can ignore the other iterations,
since xk does not change during such iterations). Then, because of Lemma 10.22, we obtain
that

σm
ki
≥ ε > 0
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for some ε > 0 and for all i sufficiently large. Without loss of generality, we pick ε such
that

ε ≤ min

{
ε0

2(2+κσμ)
,εc

}
. (10.40)

Lemma 10.21 then ensures the existence, for each ki in the subsequence, of a first
successful or acceptable iteration �i > ki such that σm

�i
< ε. By removing elements from

{ki }, without loss of generality and without a change of notation, we thus obtain that there
exists another subsequence indexed by {�i } such that

σm
k ≥ ε for ki ≤ k < �i and σm

�i
< ε (10.41)

for sufficiently large i .
We now restrict our attention to the set K, which is defined as the subsequence of

iterations whose indices are in the set⋃
i∈N0

{k ∈ N0 : ki ≤ k < �i },

where ki and �i belong to the two subsequences defined above in (10.41).
From Lemmas 10.17 and 10.20, just as in the proof of Theorem 10.13, it follows that

for large enough k ∈ K the kth iteration is either successful, if the model is fully linear, or
model improving, otherwise, i.e., that there is only a finite number of acceptable iterations
in K.

Let us now consider the situation where an index k is in K∩S \S+. In this case,
	k ≥ βσm

k ≥ βε. It immediately follows from 	k→ 0 for k ∈K that K∩S \S+ contains
only a finite number of iterations. Hence, k ∈ K∩S is also in S+ when k is sufficiently
large.

Let us now show that for k ∈ K∩S+ sufficiently large it holds that 	k+1 = γinc	k
(when the last successful iteration in [ki ,�i −1] occurs before �i −1). We know that since
k ∈ S+, then 	icb

k+1 = γinc	k after execution of Step 5. However, 	icb
k+1 may be reduced

during Step 1 of the (k+ 1)st iteration (or any subsequent iteration). By examining the
assignments at the end of Step 1, we see that on any iteration k+1 ∈K the radius	icb

k+1 is
reduced only when	k+1 ≥ βσ̃m

k+1 = βσm
k+1 ≥ βε, but this can happen only a finite number

of times, due to the fact that 	k → 0. Hence, for large enough k ∈ K∩S+, we obtain
	k+1 = γinc	k .

Let S i+ = [ki ,�i −1]∩S+ = { j1
i , j2

i , . . . , j∗i } be the set of all indices of the successful
iterations that fall in the interval [ki ,�i−1]. From the scheme that updates	k at successful
iterations, and from the fact that xk = xk+1 and	k+1 =	k for model improving steps, we
can deduce that, for i large enough,

‖xki − x�i‖ ≤
∑
j∈S i+

	 j ≤
∑
j∈S i+

(
1

γinc

) j∗i − j

	 j∗i ≤
γinc

γinc−1
	 j∗i .

Thus, from the fact that 	 j∗i → 0, we conclude that ‖xki − x�i‖→ 0. We therefore obtain
that

lim
i→+∞‖xki − x�i‖ = 0.

Now
σ (xki ) =

(
σ (xki )−σ (x�i )

)+(
σ (x�i )−σm

�i

)
+σm

�i
.
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200 Chapter 10. Trust-region methods based on derivative-free models

The first term of the right-hand side tends to zero because of the Lipschitz continuity
of σ (x), and it is thus bounded by ε for i sufficiently large. The third term is bounded by
ε by (10.41). For the second term we use the fact that, from (10.40) and the mechanism of
the criticality step (Step 1) at iteration �i , the model m�i is fully quadratic on B(x�i ;μσ

m
�i

).
Using (10.31) and (10.41), we also deduce that the second term is bounded by κσμε (for i
sufficiently large). As a consequence, we obtain from these bounds and (10.40) that

σ (xki ) ≤ (2+κσμ)ε ≤ 1

2
ε0

for i large enough, which contradicts (10.39). Hence, our initial assumption must be false,
and the theorem follows.

10.7 Model accuracy in larger concentric balls
We will show next that if a model is fully linear on B(x ;	̄) with respect to some (large
enough) constants κe f , κeg , and νm

1 and for some 	̄ ∈ (0,	max], then it is also fully linear
on B(x ;	) for any	 ∈ [	̄,	max ], with the same constants. This result was needed in this
chapter for the analysis of the global convergence properties of the trust-region methods.
Such a property reproduces what is known for Taylor models and is a clear indication of
the appropriateness of the definition of fully linear models.

Lemma 10.25. Consider a function f satisfying Assumption 6.1 and a model m fully linear,
with respect to constants κe f , κeg, and νm

1 on B(x ;	̄), with x ∈ L(x0) and 	̄≤	max .
Assume also, without loss of generality, that κeg is no less than the sum of νm

1 and the
Lipschitz constant of the gradient of f , and that κe f ≥ (1/2)κeg.

Then m is fully linear on B(x ;	), for any 	 ∈ [	̄,	max ], with respect to the same
constants κe f , κeg, and νm

1 .

Proof. We start by considering any 	 ∈ [	̄,	max ]. Then we consider an s such that
	̄ ≤ ‖s‖ ≤	 and let θ = 	̄/‖s‖. Since x + θs ∈ B(x ;	̄) and the model is fully linear on
B(x ;	̄), we obtain

‖∇ f (x+ θs)−∇m(x+ θs)‖ ≤ κeg	̄.

By using the Lipschitz continuity of ∇ f and ∇m and the assumption that κeg is no less
than the sum of the corresponding Lipschitz constants, we derive

‖∇ f (x+ s)−∇ f (x+ θs)−∇m(x+ θs)+∇m(x+ s)‖ ≤ κeg(‖s‖− 	̄).

Thus, by combining the above expressions we obtain

‖∇ f (x+ s)−∇m(x+ s)‖ ≤ κeg‖s‖ ≤ κeg	. (10.42)

In the second part of the proof, we consider the function φ(α)= f (x+αs)−m(x+
αs), α ∈ [0,1]. We want to bound |φ(1)|. From the fact that m is a fully linear model
on B(x ;	̄), we have |φ(θ )| ≤ κe f 	̄

2. To bound |φ(1)|, we bound |φ(1)−φ(θ )| first by
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using (10.42): ∣∣∣∣∣
∫ 1

θ

φ′(α)dα

∣∣∣∣∣≤
∫ 1

θ

‖s‖‖∇ f (x+αs)−∇m(x+αs)‖ dα

≤
∫ 1

θ

ακeg‖s‖2dα = (1/2)κeg(‖s‖2− 	̄2).

Using the assumption κe f ≥ (1/2)κeg, we finally get

| f (x+ s)−m(x+ s)| ≤ |φ(1)−φ(θ )|+ |φ(θ )| ≤ κe f ‖s‖2 ≤ κe f	
2.

Similar to the linear case, we will now show that if a model is fully quadratic on
B(x ;	̄) with respect to some (large enough) constants κe f , κeg , κeh , and νm

2 and for some
	̄ ∈ (0,	max], then it is also fully quadratic on B(x ;	) for any 	 ∈ [	̄,	max ], with the
same constants.

Lemma 10.26. Consider a function f satisfying Assumption 6.2 and a model m fully
quadratic, with respect to constants κe f , κeg, κeh , and νm

2 on B(x ;	̄), with x ∈ L(x0) and
	̄≤	max .

Assume also, without loss of generality, that κeh is no less than the sum of νm
2 and the

Lipschitz constant of the Hessian of f , and that κeg ≥ (1/2)κeh and κe f ≥ (1/3)κeg.
Then m is fully quadratic on B(x ;	), for any 	 ∈ [	̄,	max], with respect to the

same constants κe f , κeg, κeh, and νm
2 .

Proof. Let us consider any 	 ∈ [	̄,	max ]. Consider, also, an s such that 	̄ ≤ ‖s‖ ≤ 	,
and let θ = (	̄/‖s‖). Since x+ θs ∈ B(x ;	̄), then, due to the model being fully quadratic
on B(x ;	̄), we know that

‖∇2 f (x+ θs)−∇2m(x+ θs)‖ ≤ κeh	̄.

Since ∇2 f and ∇2m are Lipschitz continuous and since κeh is no less than the sum of the
corresponding Lipschitz constants, we have

‖∇2 f (x+ s)−∇2 f (x+ θs)−∇2m(x+ θs)+∇2m(x+ s)‖ ≤ κeh(‖s‖− 	̄).

Thus, by combining the above expressions we obtain

‖∇2 f (x+ s)−∇2m(x+ s)‖ ≤ κeh‖s‖ ≤ κeh	. (10.43)

Now let us consider the vector function g(α)=∇ f (x+αs)−∇m(x+αs), α ∈ [0,1].
From the fact that m is a fully quadratic model on B(x ;	̄) we have ‖g(θ )‖ ≤ κeg	̄

2. We
are interested in bounding ‖g(1)‖, which can be achieved by bounding ‖g(1)− g(θ )‖ first.
By applying the integral mean value theorem componentwise, we obtain

‖g(1)− g(θ )‖ =
∥∥∥∥∥
∫ 1

θ

g′(α)dα

∥∥∥∥∥ ≤
∫ 1

θ

‖g′(α)‖dα.
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Now using (10.43) we have∫ 1

θ

‖g′(α)‖dα ≤
∫ 1

θ

‖s‖‖∇2 f (x+αs)−∇2m(x+αs)‖ dα

≤
∫ 1

θ

ακeh‖s‖2dα = (1/2)κeh(‖s‖2− 	̄2).

Hence, from κeg ≥ 1/2κeh we obtain

‖∇ f (x+ s)−∇m(x+ s)‖ ≤ ‖g(1)− g(θ )‖+‖g(θ )‖ ≤ κeg‖s‖2 ≤ κeg	
2. (10.44)

Finally, we consider the function φ(α) = f (x + αs)−m(x +αs), α ∈ [0,1]. From
the fact that m is a fully quadratic model on B(x ;	̄), we have |φ(θ )| ≤ κe f 	̄

3. We are
interested in bounding |φ(1)|, which can be achieved by bounding |φ(1)−φ(θ )| first by
using (10.44): ∣∣∣∣∣

∫ 1

θ

φ′(α)dα

∣∣∣∣∣ ≤
∫ 1

θ

‖s‖‖∇ f (x+αs)−∇m(x+αs)‖ dα

≤
∫ 1

θ

α2κeg‖s‖3dα = (1/3)κeg(‖s‖3− 	̄3).

Hence, from κe f ≥ (1/3)κeg we obtain

| f (x+ s)−m(x+ s)| ≤ |φ(1)−φ(θ )|+ |φ(θ )| ≤ κe f ‖s‖3 ≤ κe f	
3.

The proof is complete.

10.8 Trust-region subproblem
An extensive and detailed analysis as to how the trust-region subproblem (10.2) can be
solved more or less exactly when the model function is quadratic is given in [57, Chap-
ter 7] for the �∞ and �2 trust-region norms. Of course, this is at some computational cost
over the approximate solutions (satisfying, for instance, Assumptions 10.1 and 10.2), but
particularly in the context of modestly dimensioned domains, such as one might expect in
derivative-free optimization, the additional work may well be desirable at times because of
the expected faster convergence rate. Although we will not go into the same level of detail,
it does seem appropriate to at least indicate how one can solve the more popular �2-norm
trust-region subproblem.

The basic driver, as one might expect for such a relatively simple problem, is the
optimality conditions. However, for this specially structured problem we have much more
than just the first-order necessary conditions in that we are able to characterize the global
solution(s) of a (possibly) nonconvex problem.

Theorem 10.27. Any global minimizer s∗ of m(x+ s)= m(x)+ s�g+ 1
2 s�H s, subject to

‖s‖ ≤	, satisfies the equation

[H +λ∗ I ]s∗ = −g, (10.45)
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where H +λ∗ I is positive semidefinite, λ∗ ≥ 0, and

λ∗(‖s∗‖−	) = 0. (10.46)

If H +λ∗ I is positive definite, then s∗ is unique.

If	 is large enough and H is positive definite, the complementarity conditions (10.46)
are satisfied with λ∗ = 0 and the unconstrained minimum lies within the trust region. In
all other circumstances, a solution lies on the boundary of the trust region and ‖s∗‖ = 	.
Suppose that H has an eigendecomposition

H = QE Q�,

where E is a diagonal matrix of eigenvalues λ1 ≤ λ2 ≤ ·· · ≤ λn , and Q is an orthogonal
matrix of associated eigenvectors. Then

H +λI = Q(E+λI )Q�.

Theorem 10.27 indicates that the value of λ we seek must satisfy λ ≥ −λ1 (as only then
is H +λI positive semidefinite), and, if λ > −λ1, the model minimizer is unique (as this
ensures that H +λI is positive definite).

Suppose that λ > −λ1. Then H + λI is positive definite, and thus (10.45) has a
unique solution,

s(λ) = − [H +λI ]−1 g =−Q(E+λI )−1 Q�g.

However, the solution we are looking for depends upon the nonlinear inequality

‖s(λ)‖ ≤ 	.

Now

‖s(λ)‖2 = ‖Q(E+λI )−1 Q�g‖2 = ‖(E+λI )−1 Q�g‖2 =
n∑

i=1

γ 2
i

(λi +λ)2 ,

where γi is (Q�g)i , the i th component of Q�g. It is now apparent that if λ > −λ1, then
‖s(λ)‖ is a continuous, nonincreasing function of λ on (−λ1,+∞) that tends to zero as λ
tends to +∞. Moreover, provided γ j �= 0, then limλ→−λ j ‖s(λ)‖ = +∞. Thus, provided
γ1 �= 0, ‖s(λ)‖ =	 for a unique value of λ ∈ (−λ1,+∞).

When H is positive definite and ‖H−1g‖ ≤	 the solution corresponds to λ= 0, as
we have already mentioned. Otherwise, when H is positive definite and ‖H−1g‖>	 there
is a unique solution to (10.45) in (0,+∞).

When H is not positive definite and γ1 �= 0 we need to find a solution to (10.45) with
λ >−λ1. Because of the high nonlinearities in the neighborhood of −λ1 it turns out to be
preferable to solve the so-called secular equation

1

‖s(λ)‖ =
1

	
,

which is close to linear in the neighborhood of the optimal λ. Because of the near linearity
in the region of interest, it is reasonable to expect fast convergence of Newton’s method.
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But, as is well known, an unsafeguarded Newton method may fail to converge, so care and
ingenuity must be taken to safeguard the method.

When H is not positive definite and γ1 = 0 we have the so-called hard case, since
there is no solution to (10.45) in (−λ1,+∞) when 	 > ‖s(−λ1)‖. However, there is a
solution at λ=−λ1, but it includes an eigenvector of H corresponding to the eigenvalue λ1,
which thus has to be estimated.

The reader is referred to [57] for all the (considerable) details. A more accessible but
less complete reference is [178, Chapter 4].

10.9 Other notes and references
Trust-region methods have been designed since the beginning of their development to deal
with the absence of second-order partial derivatives and to incorporate quasi-Newton tech-
niques. The idea of minimizing a quadratic interpolation model within a region of validity
goes back to Winfield [227, 228] in 1969. Glad and Goldstein [106] have also suggested
minimizing regression quadratic models obtained by sampling over sets defined by positive
integer combinations of D⊕, as in directional direct-search methods. However, the design
and analysis of trust-region methods for derivative-free optimization, when both first- and
second-order partial derivatives are unavailable and hard to approximate directly, is a rela-
tively recent topic. The first attempts in these directions have been presented by Powell in
the 5th Stockholm Optimization Days in 1994 and in the 5th SIAM Conference on Opti-
mization in 1996, using quadratic interpolation. Conn and Toint [58] in 1996 have reported
encouraging numerical results for quadratic interpolation models. Around the same time,
Elster and Neumaier [88] developed and analyzed an algorithm based on the minimization
of quadratic regression models within trust regions built by sampling over box-type grids,
also reporting good numerical results.

Conn, Scheinberg, and Toint [59] (see also [57]) introduced the criticality step and de-
signed and analyzed the first interpolation-based derivative-free trust-region method glob-
ally convergent to first-order critical points. Most of the other issues addressed in this
chapter, including the appropriate incorporation of fully linear and fully quadratic models,
global convergence when acceptance of iterates is based on simple decrease of the objec-
tive function, and global convergence for second-order critical points, were addressed by
Conn, Scheinberg, and Vicente [62]. This paper provided the first comprehensive analysis
of global convergence of trust-region derivative-free methods to second-order stationary
points. It was mentioned in [57] that such analysis could be simply derived from the classi-
cal analysis for the derivative-based case. However, as we remarked during this chapter, the
algorithms in [57, 59] are not as close to a practical one as the one described in this chapter,
and, moreover, the details of adjusting a “classical” derivative-based convergence analysis
to the derivative-free case are not as trivial as one might expect, even without the additional
“practical” changes to the algorithm. As we have seen in Sections 10.5 and 10.6, it is not
necessary to increase the trust-region radius on every successful iteration, as is done in
classical derivative-based methods to ensure lim-type global convergence to second-order
critical points (even when iterates are accepted based on simple decrease of the objective
function). In fact, as described in these sections, in the case of the second-order analysis,
the trust region needs to be increased only when it is much smaller than the measure of
stationarity, to allow large steps when the current iterate is far from a stationary point and
the trust-region radius is small.
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Other authors have addressed related issues. Colson [55] and Colson and Toint [56]
showed how to take advantage of partial separability of functions in the development
and implementation of interpolation-based trust-region methods. The wedge algorithm
of Marazzi and Nocedal [163] and the least Frobenius norm updating algorithm of Pow-
ell [191] will be covered in detail in Chapter 11.

Finally, we would like to point out that derivative-based trust-region methods have
been analyzed under the influence of inexactness of gradient values [51, 57] and inexact-
ness of function values [57]. The influence of inexact function values, in particular, is
relevant also in the derivative-free case since the objective function can be subject to noise
or inaccuracy.

10.10 Exercises
1. Prove that when Hk has a negative eigenvalue, sE

k is the minimizer of the quadratic
model mk(xk+ s) along that direction and inside the trust region B(0;	k).

2. Prove that if sk satisfies a fraction of optimal decrease condition,

mk(xk)−mk(xk+ sk) ≥ κ f od [mk(xk)−mk(xk+ s∗k )],

where κ f od ∈ (0,1] and s∗k is an optimal solution of (10.2), then it also satisfies (10.14).

3. Show that when the sequence of iterates is bounded, Theorem 10.12 (resp., Theo-
rem 10.23) implies the existence of one limit point of the sequence of iterates {xk}
that is a first-order (resp., second-order) stationary point.

4. Prove Lemma 10.16.
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Chapter 11

Trust-region
interpolation-based methods

11.1 Common features and considerations
In this chapter we present several practical algorithms for derivative-free optimization
based on the trust-region framework described in Chapter 10. Although the original al-
gorithms differ from what is presented here, we try to preserve what we see as the main
distinguishing ideas, whilst casting the algorithms in a form which is as close as possible
to the convergent framework of Chapter 10. What these algorithms have in common is the
use of the trust region and of the quadratic models based on polynomial interpolation. The
differences between the algorithms lie mainly in the handling of the sample (interpolation)
set and in the building of the corresponding model.

The following is a list of questions one needs to answer when designing a trust-region
interpolation-based derivative-free method. We will see how these questions are answered
by the different methods discussed in this chapter.

1. How many points should be included in the sample set? We know that a quadratic
model is desirable, but a completely determined quadratic model based on polyno-
mial interpolation requires (n+ 1)(n+ 2)/2 function evaluations. It might be too
expensive to require such accuracy at each step; hence it may be desirable to build
models based on fewer interpolation points, as discussed in Chapter 5. Naturally, an-
other question arises: should the number of points in the sample set be static through-
out the algorithm or should it be dynamic? For instance, the algorithm described in
Section 11.2 allows a dynamic number of points, whereas the algorithm described
in Section 11.3 requires the sample set to have exactly p1 ∈ [n+2, (n+1)(n+2)/2]
points at each iteration, with p1 fixed across all iterations.

2. Should the sample set be �-poised in B(xk;	k) at each iteration and, if not, how
should this requirement be relaxed? To enforce �-poisedness, even occasionally,
one needs to develop a criterion for accepting points into a sample set. This criterion
is typically based on some threshold value. What value for the threshold should be
chosen and when and how should it be improved if it is chosen badly? If the threshold
is chosen too strictly, it might not be possible to find a suitable sample set, and if it is

207
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chosen too loosely, the resulting set could be badly poised. Here we will rely on the
material from Chapter 6.

3. Should the sample set always be contained in B(xk ;	k)? The framework in Chap-
ter 10 assumes this,18 but it might require recomputing too many sample points each
time the iterate changes or the trust-region radius is reduced. Hence, the requirement
of the sample sets lying in the current trust region may be relaxed in a practical al-
gorithm. In this case, it could be restricted to B(xk ;r	k), with some fixed r ≥ 1, or
it could be not restricted at all, but updated in such a way that points which are far
from xk are replaced by points in B(xk ;	k) whenever appropriate.

4. The framework of Chapter 10 allows us to accept new iterates, if any amount of
decrease is achieved and the model is sufficiently good, by setting η0 = 0 in the
notation of Algorithms 10.1 and 10.3. In all the algorithms discussed in this chapter
we will allow accepting new iterates based on a simple decrease condition, since it is
a universally desirable feature for a derivative-free algorithm. However, each of these
algorithms can be trivially modified to accept only new iterates based on a sufficient
decrease condition.

11.2 The “DFO” approach
The algorithm described in this section makes use of the machinery developed in the book
for the purposes of proving global convergence. It will rely on the material of Chapters 6
and 10. The following are the main distinguishing features of the algorithm, developed by
Conn, Scheinberg, and Toint [59, 61] and referred to as “DFO” (derivative-free optimiza-
tion).

1. It makes use of as many sample points (up to (n+1)(n+2)/2) as are available that
pass the criterion for �-poisedness (described below). In other words the number of
points in the sample set Yk is dynamic.

2. The model is a minimum Frobenius norm quadratic interpolation model as described
in (the beginning of) Section 5.3.

3. It always maintains a �-poised set of sample points in B(xk ;r	k) (in the linear
or minimum Frobenius norm interpolation sense or in the quadratic interpolation
sense), with r a small scaling factor greater than or equal to 1. Making r ≥ 2 makes
the algorithm more practical since it allows the sample points to remain in the current
sample sets for a few subsequent iterations even if the current iteration is moved or
the trust-region radius is reduced.

4. The original algorithm described in [59] relies on NFPs to measure and maintain
�-poisedness of sample sets. But the model-improvement algorithm used is very
similar to the pivoting algorithms described in Chapter 6. In this section, we discuss
a globally convergent version that relies on pivoting algorithms to maintain its sample
sets.

18The presentation of Chapter 10 could have been adapted to handle the case where the sample set is
contained in B(xk ;r	k ), with r > 0 a constant fixed across all iterations.
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5. At each iteration, the “DFO” algorithm updates the sample set Yk via the following
steps relying on the pivotal algorithms (Algorithms 6.4, 6.5, and 6.6) described in
Section 6.3:

(i) At the beginning of the algorithm, two different threshold values are selected:
0< ξacc < 1/4 for the acceptance of a point into an interpolation set and ξimp >

1 for the improvement of the current interpolation set. The value of ξacc is
typically smaller than 0.1. The region within which the pivot polynomials are
optimized is a ball of radius 	k centered at the current iterate. If we initiate
Algorithms 6.4, 6.5, and 6.6 with our monomial basis, then the value of the
first pivot is always one; hence it is of no matter which interpolation point is
associated with the first pivot. Given any set (possibly, not poised) of interpo-
lation points that contains the current iterate xk , the algorithms can assign xk
to the first pivot and then select the remaining points so that the resulting set
is �-poised. This guarantees that the current iterate (and the center of the trust
region) can always be included in the well-poised sample set.

(ii) Consider a sample point xk+ sk generated during the trust-region minimization
step. If this point provides a decrease of the objective function (see Step 3
of Algorithm 11.1 below), then it becomes a new iterate. The center of the
trust region is moved, and Algorithm 6.5 is applied (with threshold ξacc) to all
available sample points that lie in the ball of radius r	k centered at xk + sk .
This procedure will either select a well-poised set of up to (n+ 1)(n+ 2)/2
points or will stop short due to the lack of suitable sample points.

(iii) If the new point xk + sk does not provide a decrease of the objective function
(see Step 3 of Algorithm 11.1 below), then it may still be desirable to add
it to the interpolation set, since it brings information which was clearly not
provided by the old model. Moreover, the possibly costly function evaluation
has already been made. Consequently, we simply add xk + sk to Yk and apply
Algorithm 6.5. If in the end some points of the new Yk were unused, then those
points are discarded. Notice that it may happen that xk + sk is discarded and
the resulting Yk remains the same as before. This is acceptable from the point
of view of the global convergence of the algorithm. It is also acceptable from a
practical point of view because it happens very rarely. To avoid such a situation
some heuristic approaches can be applied within Algorithm 6.5. For instance,
one may put some preference on the points that are closer to the current iterate
in the case where a pivot polynomial has similar absolute values at several
points.

(iv) When a model-improvement step is desired after a trust-region step has been
computed, then a new point is computed solely with the poisedness of the sam-
ple set in mind. If the current interpolation set Yk is not complete (for linear or
minimum Frobenius norm interpolation or quadratic interpolation, depending
on the desired accuracy), then one step of Algorithm 6.4 is applied to maxi-
mize the absolute value of the appropriate pivot polynomial and increase the
size of the interpolation set by one point. Otherwise, we apply one step of Al-
gorithm 6.6 to replace one point of Yk . The replacement is accepted only if
the value of the last pivot polynomial is increased by at least a factor of ξimp.
Otherwise, it is considered that the model-improvement step failed.
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6. The pivotal algorithms assume that the set of interpolation points is always shifted
and scaled to lie in a ball of radius 1 around the origin. Hence, every time the center
or the radius of the trust region changes, the new shifting and scaling have to be
introduced and the pivot polynomials have to be computed for the new shifted and
scaled set. However, in practice, it is sufficient to change the shifting and scaling only
every several iterations. Then one can simply update the set of pivot polynomials
whenever no shifting and scaling occurs, which saves considerable computation for
larger interpolation set sizes.

Now we present the modified “DFO” algorithm for both the situations where one
would like to attain global convergence to first-order stationary points or to second-order
stationary points. From the theory of Chapters 3–6, we know that a model is fully lin-
ear (FL), resp., fully quadratic (FQ), in B(xk;r	k) if it is based on a �-poised set with
at least n+1, resp., (n+1)(n+2)/2, points in B(xk ;r	k)—Definitions 6.1 and 6.2 would
have to take into account the trust-region radius factor r . When we can guarantee that
a model is FL, resp., FQ, we say that the model is certifiably fully linear (CFL), resp.,
certifiably fully quadratic (CFQ).

Algorithm 11.1 (Modified “DFO” algorithm).

Step 0 (initialization): Choose an initial point x0, a maximum radius 	max > 0, and an
initial trust-region radius 	0 ∈ (0,	max]. Choose a set Y0 and compute the initial
model m0(x).

The constants η1, γ , γinc , εc, β, andμ are also chosen and satisfy the conditions η1 ∈
(0,1), 0< γ < 1< γinc, εc > 0, and μ>β > 0. Choose positive pivot thresholds ξacc
and ξimp and the trust-region radius factor r ≥ 1. Set k = 0.

Step 1 (criticality step): This step is as in Algorithm 10.2 or 10.4, depending on the de-
sired convergence result. Note that mk , Yk , and 	k might change in the course of
this step.

Step 2 (step calculation): This step is as in Algorithm 10.1 or 10.3.

Step 3 (acceptance of the trial point): Check if mk(x) is CFL/CFQ, which, again, is guar-
anteed if Yk contains at least n+1, resp., (n+1)(n+2)/2, points in B(xk;r	k).

Compute f (xk+ sk) and define

ρk = f (xk)− f (xk+ sk)

mk(xk)−mk(xk+ sk)
.

If ρk ≥ η1 or if ρk > 0 and the model is CFL/CFQ, then xk+1 = xk+ sk . Otherwise,
the model and the iterate remain unchanged (xk+1 = xk). Apply the procedure de-
scribed in items 5(ii) and 5(iii) above to include xk + sk and update the sample set.
Let the new model and sample set be mk+1 and Yk+1.

Step 4 (model improvement): If ρk < η1, then attempt a model improvement by suitable
improvement steps (described in 5(iv) above). Define mk+1 and Yk+1 to be the (pos-
sibly improved) model and sample set.
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Step 5 (trust-region radius update): This step is as in Algorithm 10.1 or 10.3. Incre-
ment k by one and go to Step 1.

Notes on the algorithm

Due to the use of Algorithms 6.4, 6.5, and 6.6 and the fact that Yk contains only points
which provide acceptable pivot values in those algorithms, we know that as long as Yk
lies in B(xk;r	k) it is always �-poised, for some unknown, but fixed, �. It is not diffi-
cult to observe that the model-improvement procedure generates, in a finite and uniformly
bounded number of steps, an interpolation set which is �-poised for linear or minimum
Frobenius norm interpolation or quadratic interpolation, depending on the choice of de-
sired accuracy. From the material in Chapters 3–6, we know that the models that are used
are FL or FQ, and the rest of the algorithm fits closely to the framework discussed in Chap-
ter 10. Global convergence to first- or second-order stationary points follows as a simple
conclusion.

At each iteration of the algorithm only one or two new sample points are generated;
hence at most two function evaluations are required.

The algorithm is very flexible in the number of sample points one can use per it-
eration. In fact it is easy to modify this algorithm to allow for the use of least-squares
regression models.

Aside from the function evaluations and the trust-region step the main computational
effort is in computing the pivot polynomials. Generally, if O(n2) points are used, then
the pivotal algorithm may require O(n6) operations. By keeping and reusing the pivot
polynomials whenever possible we can reduce the empirical complexity of many iterations;
however, some iterations may still require a large numerical effort. For small values of n
this effort is often negligible compared to the expense of one function evaluation. For
larger values of n, it makes sense to restrict the number of points for each model to O(n).
The models based on the minimum Frobenius norm of the change of the model Hessian
work well for a fixed number of points of O(n). It is natural to use minimum Frobenius
norm Lagrange polynomials in the context of such models, which is what is done by the
algorithm described in the next section.

11.3 Powell’s methods
We now describe an algorithm which is a modification of the algorithms developed by
Powell in [188, 189, 190, 191, 192]. We will combine here the features of Powell’s most
successful algorithm in practice with the trust-region framework of Chapter 10. The trust-
region management that Powell is using is different from the one followed in this book.
In particular the trust-region radius and the radius of the interpolation set are not the same
or related by a constant multiple. While the radius of the interpolation set eventually con-
verges to zero (in theory) the trust-region radius is allowed to remain bounded away from
zero. In some respects, the two-region approach is closer to classical trust-region methods
(see [57]) for derivative-based optimization. The reason for the trust-region radius to re-
main bounded away from zero is to allow relatively large steps close to optimality in order
to achieve a superlinear local rate of convergence. The theoretical implication of such a
choice for our framework is that to obtain a lim-type global convergence result as in The-
orem 10.13 one needs to impose a sufficient decrease condition on the trust-region step
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acceptance. It is possible to state and analyze the framework of Chapter 10 for the case
when the trust-region radius is not converging to zero, but we leave that to the interested
reader.

In fact the trust-region management in Powell’s methods is more complicated than
simply keeping two different radii. The smaller of the two radii is also used to force the
interpolation points to be sufficiently far apart to avoid the influence of noise in the function
values. Also, the trust-region updating step is more complicated than that of the framework
of Chapter 10. These additional schemes are developed to improve the practical perfor-
mance of the algorithms. They do not significantly affect the main global convergence
results but make the analysis quite complex. We present here Powell’s method of handling
interpolation sets via minimum Frobenius norm Lagrange polynomials embedded into the
framework of Chapter 10. The model-improvement algorithm is augmented by a test and
a possible extra step which helps ensure that FL models can be constructed in a finite uni-
formly bounded number of steps. For full details on the original Powell methods we refer
the reader to [188, 189, 190, 191, 192], in particular his UOBYQA [189] and NEWUOA [192]
methods. The following are the distinguishing features of the algorithm:

1. All sample sets on all iterations contain p1 ∈ [n+ 2, (n+ 1)(n+ 2)/2] points. The
value p1= 2n+1 is a natural choice and is the default value in the NEWUOA software
package [192].

2. The models are quadratic interpolation models with the remaining degrees of free-
dom taken by minimizing the Frobenius norm of the change in the model Hessian,
with respect to the model used in the previous iteration, as described in (the last part
of) Section 5.3.

3. Sample set maintenance is based on Algorithm 6.3 modified to handle the minimum
Frobenius norm Lagrange polynomials as discussed in Chapter 6.

4. There is no need to involve scaling, as Lagrange polynomials scale automatically.
Shifts also do not have any effect. However, shifting the points with respect to the
current center of the trust region has an important effect on numerical accuracy and
hence is performed regularly.

5. Updates of the sample set in the original Powell algorithms are performed via the
following steps:

(i) The set of minimum Frobenius norm Lagrange polynomials �i (x), i = 0, . . . , p,
is maintained at every iteration.

(ii) If the trust-region minimization of the kth iteration produces a step sk which is
not too short compared to the maximum distance between the sample points and
the current iterate, then the function f is evaluated at xk+ sk and the new point
becomes the next iterate xk+1 if the reduction in f is sufficient, or just positive
and the model is guaranteed to be FL. The quality of the model mk is established
at the end of the preceding iteration. If the new point xk + sk is accepted as
the new iterate, it is included into Yk , by removing the point yi such that the
distance ‖xk− yi‖ and the value |�i (xk+sk)| are both, in the sense that follows,
as large as possible. The trade off between these two objectives is achieved
by maximizing the weighted absolute value wi |�i (xk + sk)|, where wi reflects
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the distance ‖xk − yi‖. In fact, in [191], instead of maximizing |�i (xk + sk)|,
Powell proposes optimizing the coefficient of the rank-two update of the system
defining the Lagrange polynomials, to explicitly improve the conditioning of
that system. However, operating with the values of the Lagrange polynomial
serves the same purpose and makes it easier for us to use the theory developed
in Chapters 5 and 6.

(iii) When the step sk is rejected, the new point xk+ sk can still be accepted into Yk ,
by removing the point yi such that the value wi |�i (xk + sk )| is maximized,
where wi reflects the distance ‖xk − yi‖, as long as either |�i (xk + sk)|> 1 or
‖yi − xk‖> r	k .

(iv) If the improvement in the objective function is not sufficient, and it is believed
that the model needs to be improved, then the algorithm chooses a point in
Yk which is the furthest from xk and attempts to replace it with a point which
maximizes the absolute value of the corresponding Lagrange polynomial in the
trust region (or in the smaller interpolation set region, as is done in [188, 189,
190, 191, 192]).

For global convergence we need the criticality step (see Chapter 10), where one may
need to construct an FL model. An analogue of this step can be found in Powell’s work, and
is related to improving geometry when the step sk is much smaller than 	k , which occurs
when the gradient of the model is small relative to the Hessian. Here we use the same step
that was used in the globally convergent framework of Chapter 10; that is, we use the size
of the gradient as the criticality test. Scaling with respect to the size of the Hessian is also
possible, as long as arbitrarily small or large scaling factors are not allowed. The modified
algorithm is presented below.

Algorithm 11.2 (Minimum Frobenius norm Lagrange polynomial-based algorithm).

Step 0 (initialization): Select p1 ∈ [n+2, (n+1)(n+2)/2]. Choose an initial point x0, a
maximum radius	max > 0, and an initial trust-region radius	0 ∈ (0,	max]. Choose
the trust-region radius factor r ≥ 1. Choose a well-poised set Y0 with cardinality p1.
Compute the minimum Frobenius norm Lagrange polynomials �i (x), i = 0, . . . , p,
associated with Y0 and the corresponding quadratic model m0.

Select a positive threshold value for the improvement step, � > max{|�i (x)| : i =
0, . . . , p, x ∈ B(x0;	0)}.
The constants η1, γ , γinc , εc, τ , β, and μ are also given and satisfy the conditions
η1 ∈ (0,1), 0< γ < 1< γinc , εc > 0, 0< τ < 1, and μ > β > 0. Set k = 0.

Step 1 (criticality step): This step is as in Algorithm 10.1 (the model-improvement algo-
rithm relies on minimum Frobenius norm Lagrange polynomials). Note that mk , Yk ,
and	k might change in the course of this step.

Step 2 (step calculation): This step is as in Algorithm 10.1.

Step 3 (acceptance of the trial point): If ‖sk‖ ≥ τmax{‖y j − xk‖ : y j ∈ Yk}, then com-
pute yi , where i ∈ argmax j {w j |� j (xk+sk)| : y j ∈Yk} andw j > 0 are weights chosen
to give preference to points that are further from xk .
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Compute f (xk+ sk) and define

ρk = f (xk)− f (xk+ sk)

mk(xk)−mk(xk+ sk)
.

Set xk+1 = xk + sk if ρk ≥ η1 or if ρk > 0 and it is known that mk is CFL in
B(xk ;r	k). Include xk + sk into the sample set Yk+1 by replacing yi . Otherwise,
xk+1 = xk , and if either ‖yi− xk‖> r	k or |�i (xk+sk)|> 1, then accept xk+sk into
the sample set Yk+1 by replacing yi .

Step 4 (model improvement): (This step is executed only if xk+1 = xk after Step 3.)
Choose yi ∈ argmax j {‖y j − xk‖ : y j ∈ Yk} and find a new yi∗ ∈ argmax{|�i (x)| :
x ∈ B(xk;	k)}. If ‖yi − xk‖> r	k or if |�i (yi∗)|>�, then replace yi by yi∗ in Yk+1.
Otherwise, consider the next furthest point from xk and repeat the process. If eventu-
ally a point yi is found in Yk+1 such that max{|�i (x)| : x ∈ B(xk;	k)}>�, then this
point is replaced. If no such point is found, then there is no need for improvement
because Yk is�-poised in B(xk;r	k). Hence, we conclude that mk+1 based on Yk+1
is CFL in B(xk;r	k).

Step 5 (trust-region radius update): This step is as in Algorithm 10.1. Update the model
mk to obtain mk+1 and recompute the minimum Frobenius norm Lagrange polyno-
mials. Increment k by one and go to Step 1.

Notes on the algorithm

The steps for updating the interpolation set described above are sufficient to guarantee that
FL models can be constructed in a finite, uniformly bounded number of steps, as required
by the convergence analysis in Chapter 10. It is easy to see that the model-improvement
step first attempts to replace any interpolation point that is too far from the current iterate
(outside the r	k radius). Clearly, this can be accomplished in at most p steps. Once all
the interpolation points are close enough, then the model-improvement step checks the �-
poisedness of the interpolation set, by maximizing the absolute values of the minimum
Frobenius norm Lagrange polynomials one by one. If the set is already �-poised, then
there is nothing to improve. If the set is not�-poised, then one point in the set is replaced.
We know from Chapter 6 and from Theorem 6.3 that after a finite and uniformly bounded
number of steps, a �-poised set is obtained in B(xk ;r	k) and, hence, an FL model is
obtained. Notice that Step 3 may change the interpolation set, but, in the case when the
trust-region step is successful, it is not important (from a theoretical perspective) what this
change does to the model. On the other hand, when the current iterate does not change, the
change of Yk allowed by Step 3 may only either improve the poisedness of Yk or replace
a far away point of Yk by xk + sk . Hence, if the model mk is FL at the beginning of
an unsuccessful Step 3, then mk+1 is so at the end of it; that is, an unsuccessful Step 3
may only improve the model, while Step 4 is guaranteed to produce an FL model in a finite
number or iterations. Hence, we conclude that the global convergence theory of Chapter 10
(for first-order stationary points) applies to Algorithm 11.2.

In the original methods proposed by Powell [189, 192] there is no explicit check in the
model-improvement step that |�i (yi∗)|>�> 1; instead the model-improvement step is far
more complex, but it is aimed at replacing the old interpolation points by the points within
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the trust region which give a large value for the corresponding Lagrange polynomials. One
of the features of this procedure is to avoid the exact global optimization of the Lagrange
polynomials. Consider, now, replacing an interpolation point by another point for which the
absolute value of the appropriate Lagrange polynomial exceeds�> 1, rather than seeking
the exact global maximizer of such absolute value. From the discussion after the proof
of Theorem 6.3 we know that such a step provides an improvement of the poisedness of
the interpolation set. On the other hand, we do not know if such replacements steps result
in a model-improvement algorithm that terminates in a uniformly bounded finite number
of steps. It is possible to modify the model-improvement algorithm to allow several such
“cheap” improvement steps and switch to global optimization only when the maximum
number of consecutive cheap steps is exceeded.

In the original Powell methods a simple decrease step is always accepted as a new
iterate. We allow this in Algorithm 11.2 also but only when we can guarantee that the
sample set Yk on which the model mk was constructed is �-poised in B(xk;r	k). Hence
we may need to have either an extra check or a flag which can be set by Step 4 to indicate
that a �-poised set is at hand. There is a trade off between how often such a check is
performed and how often a simple decrease can be accepted. The exact implementation is
a matter of practical choice.

Although not guaranteed, it is expected that the interpolation set remains well poised
throughout the algorithm as long as it is in B(xk;r	k). In practice one can start with a
simple well-poised interpolation set, such as is used by Powell:

Y0 = {x0, x0+	e1, . . . , x0+	en, x0−	e1, . . . , x0−	en},
where ei is the i th vector of the identity (note that this is nothing else than (complete)
polling using the positive basis D⊕). The advantage of this set is that due to its special
structure it takes O(n2) operations to construct the initial set of minimum Frobenius norm
Lagrange polynomials [192].

11.4 Wedge methods
The two methods we have considered so far in this chapter are closely related in that they
generate two kinds of sample points, those that are aimed at reducing the function value
and those that are aimed at improving the poisedness of the sample set. A natural ques-
tion is: is it possible to achieve both of these objectives at once, by generating one kind
of points? These two objectives may be conflicting, but is it possible to find a point which
improves the value of the model while maintaining an acceptable level of poisedness? An
algorithm based on this idea was proposed by Marazzi and Nocedal in [163]. This algo-
rithm follows the approach of attempting to generate points which simultaneously provide
sufficient decrease for the model (and, thus, hopefully, provide decrease for the objective
function) and satisfy the �-poisedness condition. At every iteration, the trust-region sub-
problem minimization is augmented by an additional constraint which does not allow the
new point to lie near a certain manifold. This manifold is defined by a subset of the sample
set that is fixed for the given iteration and allows for all possible nonpoised sets that contain
the fixed subset of sample points. In the original method the constraint which defined the
proximity to such a manifold (in the linear case) has the shape of a wedge, hence the name
of the method. To provide theoretical guarantees for the method we have to replace the
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“wedge”-shaped constraint by a “strip”-shaped one. We will use the terminology “wedge
method” to refer to its origin.

Let Yk be the interpolation set at iteration k, and let mk(xk + s) be the model based
on Yk ,

mk(xk+ s) = mk(xk)+ g�k s+ 1

2
s�Hks.

Before a trust-region step is taken we need to identify which point of Yk is going
to be replaced with the new point. Notice that the other two methods of this chapter first
make a trust-region step and then decide which point of Yk to replace with the new point,
if appropriate. To choose a point to leave Yk we use the following algorithm, which is a
combination of Algorithms 6.5 and 6.6.

Algorithm 11.3 (Selection of the outgoing point in Yk).

Initialization: Shift and scale Yk and consider the new set Ŷk ={(yi−xk)/	k , i = 0, . . . , p}.
Set ui (x)= φ̄i (x), i = 0, . . . , p. Choose ξ > 0 and r ≥ 1. Assume that Ŷk contains p1
poised points. Set ik = p.

For i = 0, . . . , p−1

1. Point selection: Find ji = argmax j∈{i,...,p}:‖ŷ j‖≤r |ui (ŷ j )|.
2. Point acceptance: If |ui (ŷ ji )| < ξ , then ik = i and stop. Otherwise, swap

points ŷi and ŷ ji in the set Ŷk .

3. Gaussian elimination: For j = i +1, . . . , p

u j (x) ← u j (x)− u j (ŷi )

ui (ŷi )
ui (x).

This algorithm selects the points in Ŷk that lie in B(0;r ) and which give pivot values
of at least ξ . It also computes the first ik pivot polynomials. The index ik is the index of
the first point that needs to be replaced. By the logic of the algorithm such a point either
does not lie in B(0;r ) or does not give a large enough pivot value. In case such points do
not exist, then ik = p and the result of Algorithm 11.3 is similar to the result of one round
of Algorithm 6.6; in that case ŷ p is simply a good point to be replaced.

The purpose of Algorithm 11.3 is to identify points which should be replaced either
because they are far away from the current iterate or because replacing them may make
the poisedness of Ŷk better. Once such a point ŷik is identified and the corresponding pivot
polynomial is computed, the following problem is solved to produce the trust-region step:

min
s∈Rn

mk(xk)+ g�k s+ 1
2 s�Hks

s.t. ‖s‖ ≤ 	k ,

|uik (s/	k)| ≥ ξ .

(11.1)

The above problem is feasible for small enough ξ ; hence an optimal solution exists.
However, what we are interested in is an approximate solution, which is feasible and sat-
isfies the fraction of Cauchy decrease condition (10.9). We will show that such a solution
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also exists, for small enough ξ , in the section of the analysis of the wedge algorithm. The
actual approach to (approximately) solve such a problem can be found in [163]. We will not
repeat the details here and will simply assume that if such a solution exists, then it can be
found. This might require a large computational effort, but it does not require any function
evaluations for f , which is normally the main concern of a derivative-free algorithm.

Recall the example of an “ideal” interpolation set illustrated in Figure 3.4. We shift
and scale this set so that it lies in B(0;1). Let us apply Algorithm 6.5 to construct the pivot
polynomials and then consider the constraint |u p(s/	k)| ≥ ξ for the last quadratic pivot
polynomial. In Figure 11.1 we can see the area of the trust region which is being discarded
by this constraints for the cases when ξ = 0.01 and ξ = 0.1.

Figure 11.1. Areas of the (squared) trust region which are forbidden by the wedge
constraint |u p(s/	k)| ≥ ξ for the cases ξ = 0.01 (left) and ξ = 0.1 (right). The example
refers to the sample set of Figure 3.4.

The following is a summary of the main distinguishing features of the algorithm.

1. The algorithm, as originally proposed in [163], uses exactly n+1 points in the linear
case and (n+ 1)(n+ 2)/2 points in the quadratic case. It is possible to extend it to
use minimum Frobenius norm models, but we will not do so here.

2. Unlike the two methods discussed in the previous sections, in this case the point
which will leave Yk is selected before each trust-region minimization step.

3. The algorithm that we present here aims at maintaining a �-poised set of sample
points as long as the points are in B(xk ;r	k), with r ≥ 1. Due to the use of Al-
gorithm 11.3, and assuming that the trust-region subproblem (11.1) can be solved
successfully, we can show that such a step can be obtained after a finite number of
iterations (see point 5 below).

The original wedge algorithm does not employ Algorithm 11.3; it simply selects
the point which is the furthest from the current iterate as the point that should be
replaced. For the global convergence theory to apply, we need to make sure that
the interpolation set can become �-poised in B(xk;r	k) after a finite number of
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improvement steps before the trust-region radius can be reduced (in case the trust-
region step is unsuccessful). If we insist that all interpolation points lie in B(xk;	k)
in order to consider the model FL or FQ, then we would have to replace a lot of
points each time the iterate changes or the trust region is reduced. Making r large,
say r ≥ 2, makes the algorithm more practical.

4. There are no direct attempts to improve geometry, but there is a heuristic way of up-
dating the balance between the required poisedness of the sample set and the required
fraction of the sufficient reduction in the model (see [163]).

5. If ik produced by Algorithm 11.3 is smaller than p, then, after the trust-region step
(with the wedge constraint), the new Yk may not be �-poised in B(xk;	k). How-
ever, if the wedge trust-region subproblem is solved successfully (namely, a solution
for (11.1) is found for the current value of ξk and it satisfies a fraction of Cauchy
decrease), then, if xk and 	k remain unchanged, then on the next iteration ik in-
creases by 1. Hence, eventually either a successful trust-region step is achieved or ik
equals p. In this case we know that if the wedge trust-region subproblem (11.1)
is solved successfully, then the resulting new model is CFL or CFQ (depending
on p) in B(xk ;	k). Notice that it may not be so in B(xk+1;	k+1), but, unless
sufficient decrease of the objective function is obtained by the trust-region step,
B(xk+1;	k+1)= B(xk ;	k) and a CFL/CFQ model is obtained for certain.

6. The criticality step is crucial for the global convergence properties, just as in the
cases of the other two algorithms described in this chapter. A criticality step needs to
provide an FL/FQ model in a sufficiently small ball around the current iterate. It is
possible to construct such a set by repeatedly solving the problem (11.1). However,
since many interpolation points may need to be replaced, the intermediate models
are likely to be inaccurate. A more practical approach is to generate a �-poised set
directly, without consideration for the model decreases, by applying Algorithm 6.5,
for instance.

We present the modified wedge algorithm for the quadratic interpolation case, but the
analysis that follows mainly concerns global convergence to first-order stationary points.

Algorithm 11.4 (Modified wedge algorithm).

Step 0 (initialization): Choose an initial point x0, a maximum radius 	max > 0, and an
initial trust-region radius 	0 ∈ (0,	max]. Choose a set Y0 and compute the initial
model m0(x).

The constants η1, γ , γinc, εc, β, and μ are also given and satisfy the conditions
η1 ∈ (0,1), 0 < γ < 1 < γinc, εc > 0, and μ > β > 0. Choose a positive pivot
threshold ξ0, a Cauchy decrease coefficient 0 < κ f cd < 1, and a trust-region radius
factor r ≥ 1. Set k = 0.

Step 1 (criticality step): This step is as in Algorithm 10.1 (note that mk , Yk , and	k might
change in the course of this step).

Step 2 (step calculation): Apply Algorithm 11.3 to Yk to select the pivot polynomial uik (x).
Solve problem (11.1) to obtain sk .
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Step 3 (wedge management): Check if the new solution satisfies the fraction of Cauchy
decrease condition:

mk(xk)−mk(xk+ sk) ≥ κ f cd

2
‖gk‖min

{ ‖gk‖
‖Hk‖ ,1

}
.

If so, let yik = xk+ sk and proceed to the next step. Otherwise, the wedge constraint
is relaxed by reducing ξk← ξk/2 and return to Step 2.

Step 4 (acceptance of the trial point): Compute f (xk+ sk) and define

ρk = f (xk)− f (xk+ sk)

mk(xk)−mk(xk+ sk)
.

If ρk ≥ η1 or if ρk > 0 and Yk ⊂ B(xk;r	k), then xk+1 = xk+ sk . Otherwise, xk+1 =
xk .

Step 5 (trust-region radius update): This step is as in Algorithm 10.1. Update the model
mk based on the new sample set Yk . Increment k by one and go to Step 1.

Notes on the algorithm

The computational effort per iteration of Algorithm 11.4 is O(p3) for each Step 2, to which
we need to add the computational effort of solving a wedge subproblem. Solving the wedge
subproblem can be expensive. It would be justifiable if the overall number of function eval-
uations is decreased. Marazzi and Nocedal [163] have reported on computational results
which showed that the method is comparable with other derivative-free methods, but there
was no particularly strong advantage, and other derivative-free methods, in particular that
of Powell [192], have recently improved significantly. However, we note that Marazzi and
Nocedal’s implementation was relying on building complete quadratic models, rather than
minimum Frobenius norm models. The latter are used in DFO and NEWUOA and often give
an advantage to a trust-region interpolation-based algorithm. Hence another implementa-
tion of the wedge method might perform better.

As with the other algorithms we discussed above, there are numerous ways in which
the wedge algorithm can be improved. For instance, one can consider replacing several
different points in Yk and solving several instances of the wedge trust-region subprob-
lem (11.1) to obtain the best trade off between geometry and model decrease. This will
increase the cost per iteration, but may decrease the overall number of iterations, and hence
the overall number of function evaluations.

Validity of the wedge algorithm for the first-order case

We have described a version of the wedge method which uses quadratic interpolation mod-
els. However, Steps 1 and 3 indicate that the method tries only to achieve global conver-
gence to a first-order stationary point. From the results of Chapter 10, we can conclude
that all we need to show in order to establish such a convergence is that an FL model can
be achieved after a finite, uniformly bounded number of unsuccessful iterations. Below
we will show that if only a fraction of Cauchy decrease is required from the approximate
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solution to (11.1), then this is indeed the case. Moreover, we can show that an FQ model
can also be achieved in a finite, uniformly bounded number of unsuccessful iterations while
keeping the fraction of Cauchy decrease requirement.

However, to establish global convergence to a second-order stationary point one can
no longer be satisfied with only the fraction of Cauchy decrease, and the fraction of optimal
decrease (10.13) has to be considered. Thus, second-order criteria would have to be applied
in Steps 1 and 3. This complicates the proofs and, as we will discuss at the end of the
chapter, requires an additional safeguard step to be introduced into the algorithm.

Consider a step of Algorithm 11.3 (which is a modification of Algorithm 6.5 de-
scribed in Chapter 6). Recall the vector v, the vector of the coefficients (with respect to the
natural basis φ̄) of the polynomial ui (x) which is computed during the pivot computation.
We know that ‖v‖∞ ≥ 1. In general we know that for any 0 < ξ < 1/4 there exists ŝk
such that ‖ŝk‖ ≤ 1 and that |v�φ̄(ŝk)| ≥ ξ (see Lemmas 3.10 and 3.12). The purpose of the
analysis below is to show that there exists a constant ξ > 0, such that for all iterations it is
possible to find a step sk simultaneously satisfying the following:

• ‖sk‖ ≤	k ,

• sk provides at least a fixed fraction of Cauchy decrease of the model,

• |v�φ̄(sk/	k)| ≥ ξ .

From this it will follow that the model can be made FL or FQ by the wedge method after a
finite, uniformly bounded number of unsuccessful iterations.

Let us consider the unscaled trust-region subproblem, without the wedge constraint.
We index the elements of the unscaled problem by “u” and omit the index k from now on:

min
su∈Rn

c+ g�u su + 1
2 s�u Husu = mu(su)

s.t. ‖su‖ ≤ 	.

If we scale the trust region so it has radius one, we have

min
s∈Rn

c+ g�s+ 1
2 s�H s = m(s)

s.t. ‖s‖ ≤ 1,

where s = su/	, g =	gu, and H =	2 Hu.
Note that if s satisfies a fraction of Cauchy-decrease-type condition of the form

m(0)−m(s) ≥ κ f cd

2
‖g‖min

{ ‖g‖
‖H‖ ,1

}
, (11.2)

then su =	s also satisfies a fraction of Cauchy-decrease-type condition of the form

mu(0)−mu(su) ≥ κ f cd

2
‖gu‖min

{ ‖gu‖
‖Hu‖ ,	

}
.

The Cauchy step itself (defined as the minimizer of m(s) along −g and inside the trust
region) satisfies inequality (11.2) with κ f cd = 1.



idfo
2008/11/17
page 221

�

�

�

�

�

�

�

�

11.4. Wedge methods 221

We want to show that there exists an approximate solution for the problem

min
s∈Rn

m(s)

s.t. ‖s‖ ≤ 1,

|φ(s)�v| ≥ ξ > 0,

(11.3)

yielding a decrease on m(s) as good as a fixed fraction of the decrease obtained by the
Cauchy step. The value of ξ is not yet determined, but it must be bounded away from zero
for all problem data considered (meaning v, g, and H ).

For a moment let us instead consider the following problem for a fixed κ f cd ∈ (0,1):

max
s∈Rn

|φ(s)�v|
s.t. ‖s‖ ≤ 1,

m(0)−m(s) ≥ κ f cd
2 ‖g‖min

{ ‖g‖
‖H‖ ,1

}
.

(11.4)

If we can show that the optimal value for this problem is always above a positive
threshold ξ∗ > 0, for all vectors v such that ‖v‖∞ ≥ 1 and for all vectors g and symmet-
ric matrices H , then we have shown that there exists an approximate solution for prob-
lem (11.3) satisfying a fraction of Cauchy decrease for small enough ξ > 0. To do so
we need to show that the polynomial φ(s)�v does not nearly vanish on the feasible set
of (11.4). The difficulty is that when ‖g‖/‖H‖ → 0 the feasible set of (11.4) may con-
verge to a singular point, on which a suitably chosen polynomial may vanish. What we
will show is that for the problem (11.3) arising during the wedge algorithm it always holds
that 0< gmin ≤ ‖g‖/‖H‖, where gmin ∈ (0,1) is a fixed constant.

Recall that g = gu	 and H = Hu	
2, and this implies that

‖g‖
‖H‖ =

‖gu‖
	‖Hu‖ .

From the standard assumption on the boundedness of the model Hessian we know that
‖Hu‖ ≤ κbhm . Recall also that 	 ≤ 	max . The criticality step of the modified wedge
algorithm ensures that any time the wedge trust-region subproblem is solved at Step 2 we
have ‖gu‖ ≥min{εc,μ−1	}, and

‖g‖
‖H‖ =

‖gu‖
	‖Hu‖ ≥ gmin , (11.5)

where

gmin = min

{
εc

	maxκbhm
,

1

μκbhm

}
.

Now we prove that is possible to achieve good uniform geometry and, simultane-
ously, a fraction of Cauchy decrease for all g and H such that gmin‖H‖ ≤ ‖g‖, with
gmin ∈ (0,1).

Theorem 11.1. Let gmin ∈ (0,1) be a given constant. There exists a positive constant ξ∗
depending on both gmin and κ f cd such that the optimal value of (11.4) satisfies

ξ (v; g, H ) ≥ ξ∗ > 0
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for all vectors v ∈Rp such that ‖v‖∞ ≥ 1 and for all vectors g ∈Rn and symmetric matri-
ces H ∈ Rn×n such that

gmin ≤ ‖g‖‖H‖ .

Proof. We start by defining

a(v; g, H ) = max
{
|φ(s)�v| : ‖s‖ ≤ 1, m(0)−m(s) ≥ κ f cd

2
‖g‖

}
when ‖g‖ ≥ ‖H‖ and

b(v; g, H ) = max

{
|φ(s)�v| : ‖s‖ ≤ 1, m(0)−m(s) ≥ κ f cd

2

‖g‖2
‖H‖

}

when gmin‖H‖ ≤ ‖g‖ ≤ ‖H‖. The optimal value of (11.4) is given by

ξ (v; g, H ) =
{

a(v; g, H ) when ‖g‖ ≥ ‖H‖,
b(v; g, H ) when gmin‖H‖ ≤ ‖g‖ ≤ ‖H‖.

We will prove that the following minimum is attained:

min
(v;g,H ):‖v‖∞≥1, ‖g‖≥‖H‖a(v; g, H ) > 0.

We can perform the change of variables g′ = g/‖g‖ and H ′ = H/‖g‖. Thus, minimizing
a(v; g, H ) in g and H , with ‖g‖ ≥ ‖H‖, is equivalent to minimizing a′(v; g′, H ′) in g′ and
H ′, with ‖g′‖ = 1 and ‖H ′‖ ≤ 1, where

a′(v; g′, H ′) = max

{
|φ(s)�v| : ‖s‖ ≤ 1, −g′�s− 1

2
s�H ′s ≥ κ f cd

2

}
.

Since −s�H ′s ≥ −‖s‖2 when ‖H ′‖ ≤ 1 and κ f cd < 1, it is always possible, for any g′
and H ′ such that ‖g′‖ = 1 and ‖H ′‖ ≤ 1, to find s (by setting s = −tg′ with t slightly
less than 1) such that both constraints that define a′(v; g′, H ′) are satisfied strictly. Thus,
the feasible set always has an interior; hence a ball can be inscribed in this feasible region,
whose positive radius depends continuously on g and H . Since g and H range over a
compact set, so does the radius of the inscribed ball. Hence, there exists a smallest positive
radius r∗a such that the feasible set that defines a′(v; g′, H ′) always contains a ball of that
radius, say B(x ;r∗a ), for some x ∈ B(0;1) dependent on g′ and H ′.

Similarly to the proof of Lemma 3.10 we can show that there exists ξa∗ > 0 such that

min
x∈B(0;1)

max
s∈B(x ;r∗a )

|v�φ(s)| ≥ ξa∗ ,

by claiming that the above quantity is a norm on v. Hence, a′(v; g′, H ′)≥ ξa∗ for any v, g′,
and H ′ such that ‖v‖∞ ≥ 1, ‖g′‖ = 1, and ‖H ′‖ ≤ 1.

We also need to prove that the following minimum is attained:

min
(v;g,H ):‖v‖∞≥1, gmin‖H‖≤‖g‖≤‖H‖

b(v; g, H ) > 0.



idfo
2008/11/17
page 223

�

�

�

�

�

�

�

�

11.4. Wedge methods 223

Once again, the structure of the problem appears to be favorable since m(0)−m(s) ≥
(κ f cd/2) ‖g‖2/‖H‖ is equivalent to

−
(

g

‖H‖
)�

s− 1

2
s�

(
H

‖H‖
)

s ≥ κ f cd

2

‖g‖2
‖H‖2 .

The change of variables in this case is g′ = g/‖H‖ and H ′ = H/‖H‖. Thus, minimiz-
ing b(v; g, H ) in v, g, and H , with gmin‖H‖ ≤ ‖g‖ ≤ ‖H‖, is equivalent to minimizing
b′(v; g′, H ′) in v, g′, and H ′, this time with gmin ≤ ‖g′‖ ≤ 1 and ‖H ′‖ = 1, where

b′(v; g′, H ′) = max

{
|φ(s)�v| : ‖s‖ ≤ 1, −g′�s− 1

2
s�H ′s ≥ κ f cd

2
‖g′‖2

}
.

Since−s�H ′s ≥−‖s‖2 when ‖H ′‖ = 1 and κ f cd < 1, it is always possible, for any g′ and
H ′ such that gmin ≤ ‖g′‖ ≤ 1 and ‖H ′‖ = 1, to find s (by setting s = −tg′ with t slightly
less than 1) such that both constraints that define b′(v; g′, H ′) are satisfied strictly. Thus,
the feasible set of the problem that defines b′(v; g′, H ′) always has an interior. Hence there
is a smallest radius r∗b such that the feasible region always contains a ball of at least such
a radius. Repeating the arguments for a′(v; g′, H ′) we conclude that there exists ξb∗ > 0
such that b′(v; g′, H ′)≥ ξb∗ for all v, g′, and H ′, such that ‖v‖∞ ≥ 1, gmin ≤ ‖g′‖ ≤ 1, and
‖H ′‖ = 1.

The value of ξ∗ that we are looking for is therefore

ξ∗ = min
{
ξa∗ ,ξb∗

}
> 0.

Validity of the wedge algorithm for the second-order case

To be able to prove global convergence to second-order critical points for the wedge method
one first of all needs to strengthen the fraction of Cauchy decrease requirement by the
fraction of the eigenstep decrease requirement. Recalling the scaled and unscaled trust-
region subproblems, we can see that if s satisfies a fraction of eigenstep-decrease-type
condition of the form

m(0)−m(s) ≥ κ f ed

2
max{−λmin(H ),0} , (11.6)

then su =	s also satisfies a fraction of eigenstep-decrease-type condition of the form

mu(0)−mu(su) ≥ κ f ed

2
max {−λmin(Hu),0}	2.

When λmin(H )≥ 0, any step s such that m(0) ≥ m(s), and in particular the Cauchy
step, satisfies inequality (11.6) for κ f ed > 0. When λmin(H )< 0, the eigenstep (defined as
an eigenvector u of H associated with the minimal eigenvalue of H , appropriately scaled
such that ‖u‖ = 1 and u�g ≤ 0) satisfies inequality (11.6) with κ f ed = 1.

The analogue of problem (11.4) for the second-order case is

max
s∈Rn

|φ(s)�v|
s.t. ‖s‖ ≤ 1,

m(0)−m(s) ≥ κ f cd
2 ‖g‖min

{ ‖g‖
‖H‖ ,1

}
,

m(0)−m(s) ≥ κ f ed
2 max{−λmin(H ),0} ,

(11.7)

with κ f cd ,κ f ed ∈ (0,1).
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We can show an extended result of Theorem 11.1 for the second-order case.

Theorem 11.2. Let σmin ∈ (0,1) be a given constant. There exists a positive constant ξ∗
depending on σmin , κ f cd , and κ f ed such that the optimal value of (11.7) satisfies

ξ (v; g, H ) ≥ ξ∗ > 0

for all vectors v ∈Rp such that ‖v‖∞ ≥ 1 and for all vectors g ∈Rn and symmetric matri-
ces H ∈ Rn×n such that

σmin ≤ max

{ ‖g‖
‖H‖ ,

−λmin(H )

‖H‖
}

. (11.8)

However, this result is not enough anymore because, unlike the first-order case, there
is no guarantee that the bound σmin in Theorem 11.2 exists. We know that the scaled
quantity ‖g‖/‖H‖ is bounded away from zero in the first-order case due to the criticality
step. In the second-order case, what we obtain from the criticality step is

max

{ ‖g‖
‖H‖ ,

1

	

−λmin(H )

‖H‖
}
= σm

u

	‖Hu‖ ≥ min

{
εc

	maxκbhm
,

1

μκbhm

}
. (11.9)

Unfortunately, the boundedness away from zero of the quantity involving 	, given by
max{‖g‖/‖H‖,−λmin(H )/(	‖H‖)}, does not imply the boundedness away from zero of
max{‖g‖/‖H‖,−λmin(H )/‖H‖}, which is what we need in Theorem 11.2. When 	 is
small, it is possible that both ‖g‖/‖H‖ and the most negative eigenvalue of H/‖H‖ ap-
proach zero. In this case, the part of the trust region where a fraction of eigenstep decrease
can be obtained may shrink to a region of empty interior. This means that a polynomial
may nearly vanish on such a region and, hence, there is no threshold on the pivot value that
can be guaranteed to be achievable. Therefore, there might be no step computed in Step 2
of Algorithm 11.4 for which a fraction of eigenstep decrease is attained.

To show this in more detail let us assume that after the criticality step one has

gu =
[

0

	
3
2

]
and Hu =

[
−	 1

2 0
0 1

]
.

We can see that 	≤ μσm
u holds for sufficiently small 	, since

	 ≤ μmax{‖gu‖,−λmin(Hu)} = μ	
1
2 .

Since ‖Hu‖ ≤ max{	
1
2
max ,1}, we see that the model Hessian is bounded. Now, when we

consider the scaled quantities ‖g‖ and ‖H‖, we obtain, for 	≤ 1,

‖g‖
‖H‖ =

‖gu‖
	‖Hu‖ = 	

1
2

and −λmin(H )

‖H‖ = 	
1
2 ,
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and therefore the right-hand side of (11.8) converges to zero when 	 approaches zero.
Hence, the current criticality step does not guarantee the existence of a positive lower bound
on max{‖g‖/‖H‖,−λmin(H )/‖H‖}. Notice that if the Hessian of f is nonsingular at
optimality, then so are all the model Hessians close to optimality and this situation does
not occur. For the situation of a singular Hessian, a different criticality step may need to be
devised that can provide necessary bounds, while maintaining all other properties required
for global convergence.

11.5 Other notes and references
The DFO algorithm described in [59, 61] was implemented by Scheinberg as an open
source package. UOBYQA [189] and NEWUOA [192] were implemented by Powell and
are distributed by the author. WEDGE is Marazzi’s MATLAB R© [1] implementation of the
Wedge method [163] and is available for free download. Berghen [33] and Berghen and
Bersini [34] have implemented a version of the UOBYQA algorithm of Powell [189] in a
parallel environment. Their code is called CONDOR. The web addresses of these packages
are given in the appendix. The paper [34] also contains numerical comparisons among
UOBYQA, CONDOR, and DFO. Uğur et al. [221] report numerical results of CONDOR and
DFO on a practical application.

Fasano, Morales, and Nocedal [89] studied the performance of a trust-region interpola-
tion-based algorithm that dispenses with any control of the geometrical positions of the
sample points. They reported good numerical results compared to NEWUOA when using, in
both algorithms, quadratic models built by (n+1)(n+2)/2 points. It seems that, although
the condition number of the matrices of the interpolation systems grows considerably dur-
ing the course of the iterations, it tends to stabilize at tolerable levels and the algorithm is
able to make progress towards the solution. However, further research is needed to bet-
ter understand such a behavior, and more testing is necessary, in particular, for the more
practical scenario where the number of points for model building is linear in n.

The area is still quite active, and new papers are likely to appear soon (see, e.g.,
Custódio, Rocha, and Vicente [69] and Wild [225]).
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Review of other topics
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Chapter 12

Review of surrogate model
management

Chapters 12 and 13 briefly cover issues related to derivative-free optimization not yet ad-
dressed in this book. The main intention is to organize a number of relevant topics in a
systematic form and to provide a range of pointers to places in the literature where the
material is described with the appropriate depth. We will necessarily oversimplify some
of the issues for the sake of brevity. Occasionally, a little more detail is given, especially
when the technicalities allow us to easily illustrate the points we wish to highlight. The cur-
rent chapter addresses surrogate modeling and rigorous optimization frameworks to handle
surrogate models.

12.1 Surrogate modeling
In engineering modeling it is frequently the case that the function to be optimized is expen-
sive to evaluate. The problem to be (approximately) solved may require extensive simula-
tion of systems of differential equations, possibly associated with different disciplines, or
may involve other time-consuming numerical computations. In the notation of this book,
the true function is denoted by f (x), where f : Rn→ R.

Engineers frequently consider models of the true function, and indeed they often con-
sider the problem to already be a model and use the term “true model” for what we call the
true function and then consider the model of the model to be a surrogate model. In order
not to confuse the various models, we will usually continue to use the term true function
for the underlying problem functions rather than referring to them as true models. A surro-
gate model can serve several purposes; in particular it can be used only for modeling and
analysis, in order to gain insight about problem features and behavior without many expen-
sive evaluations. More interestingly for our context, a surrogate model can take the place
of the true function for purposes of optimization. Some of the methods for derivative-free
optimization are based upon choosing suitable, in some ways essentially simple, models
as surrogate models for the true function. A surrogate model is typically less accurate or
has less quality than the true function, but it is cheaper to evaluate or consumes fewer com-
puting resources. Several evaluations of the surrogate model can still be less expensive
than one evaluation of the true function (true model). We will use the notation sm(x) for
surrogate models, where sm : Rn→ R.

229
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230 Chapter 12. Review of surrogate model management

Following suggestions of other authors (in particular as adopted in the PhD theses by
Serafini [206] and Søndergaard [209]), we will the adopt the (necessarily simplified) point
of view of classifying surrogate models as either functional or physical. We will summarize
next the various approaches for building physical and functional surrogate models. More
comprehensive reviews are made in Keane and Nair [139] and Søndergaard [209].

Physical surrogate models

By physical surrogate models we mean surrogate models built from a physical or numerical
simplification of the true problem functions. One can think, for instance, of a coarser
mesh discretization in numerical PDEs or of a linearization of term sources or equations as
ways of obtaining physical surrogate models. Another popular approach is reduced basis
methods (see, e.g., [139]). Physical surrogate models are in many circumstances based
on some knowledge of the physical system or phenomena being modeled, and thus any
particular such model is difficult to exploit across different problems. Some authors [43,
175] called them mechanistic models.

There are other procedures not directly based on simplified physics to build physical
surrogate models from true functions with physical meaning. These procedures typically
involve some form of correction, scaling or alignment of the available surrogate model
using information (function values or gradients) of the true functions. One example is
the β-correlation method [118]. Another, more rigorous, example is the space-mapping
method which will be briefly described in Section 12.2. The multipoint method [219] is a
process of generating physical surrogate models by partitioning the system into a number
of individual subsystems.

If derivatives or approximations to derivatives of the true function are not used in
physical surrogate models these might not exhibit the trends of the true function. In such
cases, one may have to resort to optimizing the possibly expensive true function without
derivatives which may be computationally problematic due to the curse of dimensionality.

Functional surrogate models

Functional surrogate models, on the other hand, are algebraic representations of the true
problem functions. Interpolant and regression polynomial models (see Chapters 3–5) can
be classified as functional models. One can say that functional models are typically based
on the following components: a class of basis functions, a procedure for sampling the
true functions, a regression or fitting criterion, and some deterministic or stochastic math-
ematical technique to combine them all. Functional surrogate models have a mathematical
nature different from the true, original functions. The knowledge of “truth” is not directly
embodied in their mathematical structure, but it is revealed implicitly in the values of their
coefficients. Functional surrogate models are thus generic and empirical and not (at least
entirely) specific to a class of problems. They are strongly dependent on samples of the
true function and are applicable to a wide variety of problems.

Taylor-based models can be seen as either physical or functional, or a mixture of
both. In fact, if the gradients are approximated, for instance, by finite differences, Taylor
models are clearly functional. But if the gradients require some intrinsic procedure like the
simulation of the adjoint equations, then their nature may be physical. Note also that most
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of the physical models are not absolutely pure in the sense that they may contain some
empirical elements, like parameters adjusted to experimental data.

Among the most common classes of basis functions used to build functional surrogate
models are low-order polynomials (see Chapters 3–5), radial basis functions (see [49, 50]
and the review below), adaptive regression splines (see [121]), and wavelets (see [72]).
The most widely used criterion for fitting the data is based on least-squares regression.
In the statistical community, regression models are commonly used in response surface
methodology. Artificial neural networks in turn are nothing other than nonlinear regression
models [121].

There are also single-point techniques specifically developed to extract as much in-
formation as possible from what is known at a given point (such as the value of the true
function and its gradient). Taylor models are the most obvious of these approaches, but
others exist such as reciprocal, modified reciprocal, conservative, and posynomial approx-
imation models (see [11] and the references therein).

Radial basis functions

So far in this book, we have treated in detail only polynomial (linear and quadratic) inter-
polation and regression models. Now we give some details concerning the class of models
given by radial basis functions, which have frequently been used in derivative-free opti-
mization [179, 181, 226]. The earliest reference to radial basis functions appears to be
Duchon [86], but they are currently an active research field in approximation theory (see,
for example, [49, 50, 185]).

One of the attractive features of radial basis functions is their ability to model well
the curvature of the underlying function. Another key feature is that the coefficient matrix
defined by the interpolation conditions is nonsingular under relatively weak conditions (see
the discussion below). In fact, one can guarantee useful bounds on the norm estimates
and condition numbers of the interpolation matrices (see, e.g., [27] and [50, Section 5.3]).
The interpolation linear systems that arise when modeling with radial basis functions are
typically dense, and their solution by iterative algorithms has been investigated. However,
this is relevant only when the number of interpolation points is large, which is not really an
issue in our context.

In order to interpolate a function f whose values on a set Y = {y0, . . . , y p} ⊂ Rn are
known, one can use a radial basis functional surrogate model of the form

sm(x) =
p∑

i=0

λiφ(‖x − yi‖), (12.1)

where φ : R+ → R and λ0, . . . ,λp ∈ R. The term radial basis stems from the fact that
φ(‖x‖) is constant on any sphere centered at the origin in Rn . For sm(x) to be twice
continuously differentiable, the radial basis function φ(x) must be both twice continuously
differentiable and have a derivative that vanishes at the origin (see the exercises).

Some of the most popular (twice continuously differentiable) radial basis functions
are the following:

• cubic φ(r )= r3,

• Gaussian φ(r )= e
− r2

ρ2 ,
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• multiquadric of the form φ(r )= (r2+ρ2)
3
2 ,

• inverse multiquadric of the form φ(r )= (r2+ρ2)− 1
2 ,

where ρ2 is any positive constant.
Since in many applications it is desirable that the linear space spanned by the ba-

sis functions include constant functions (and the standard radial basis choices do not give
this property when n is finite), it turns out to be useful to augment the radial basis func-
tion model in (12.1) by adding a constant term. Similarly, if one wants to include linear
functions (and/or other suitable low-order polynomial functions), one adds a low-order
polynomial tail of degree d−1 that one can express as

∑q
j=0γ j p j (x), where p j ∈ Pd−1

n ,
j = 0, . . . ,q , are the basis functions for the polynomial and γ0, . . . ,γq ∈ R. The new surro-
gate model is now of the form

sm(x) =
p∑

i=0

λiφ(‖x− yi‖)+
q∑

j=0

γ j p j (x).

Furthermore, the coefficients λ are required to satisfy

p∑
i=0

λi p j (yi ) = 0, j = 0, . . . ,q .

These, plus the interpolation conditions sm(yi )= f (yi ), i = 0, . . . , p, give the linear system[
� P
P� 0

][
λ

γ

]
=

[
f (Y )

0

]
, (12.2)

where �i j = φ(‖yi − y j‖) and Pij = p j (yi ) for i , j ∈ {0, . . . , p}, and f (Y ) is the vector
formed by the values f (y0), . . . , f (y p).

The symmetric system (12.2) has a unique solution for the examples of φ given
above, provided P has full rank and d ≥ 2. Such a property is a consequence of the fact
that, for the examples above, φ is conditionally positive definite of order d with d = 2
(see the exercises). One says that φ is conditionally positive definite of order d when∑p

i, j=0 φ(‖yi − y j‖)λiλ j is positive for all distinct points y0, . . . , y p and λ �= 0 satisfying∑p
i=0 λi p j (yi ) = 0, j = 0, . . . ,q , where the p’s represent a basis for Pd−1

n . If φ is condi-
tionally positive definite of order d , then it is so for any larger order. For instance, in the
case of Gaussian and inverse multiquadric radial basis functions, the matrix � is already a
positive definite one (and so trivially conditionally positive definite of order 2).

The approaches by Oeuvray [179] and Oeuvray and Bierlaire [181], and Wild, Regis,
and Shoemaker [226] for derivative-free optimization use cubic radial basis functions and
linear polynomial tails:

sm(x) =
p∑

i=0

λi‖x− yi‖3+ c+ g�x . (12.3)

In this case poisedness is equivalent to the existence of n+1 affinely independent (and thus
distinct) points in the interpolation set. If the number of interpolation points is p+1, then



idfo
2008/11/17
page 233

�

�

�

�

�

�

�

�

12.1. Surrogate modeling 233

the model has p+n+2 parameters, p+1 for the radial basis terms and n+1 for the linear
polynomial terms. However, when the number of points is n+ 1 (or less), the solution
of the interpolation system gives rise to a linear polynomial, since all the parameters λi ,
i = 0, . . . , p, are zero (see the second block equation in (12.2)). Consequently, the simplest
nonlinear model sm(x) of the form (12.3) is based on n+ 2 interpolation points and has
2n+3 parameters.

It is easy to show that the model (12.3), built on a poised sample set contained in a
ball of radius	, provides an error in function values of order	2 and in gradient of order	,
as happens for linear polynomial interpolation or regression, and where the constant in the
upper bounds depends on the size of λ. Wild, Regis, and Shoemaker [226] studied how to
rigorously manage the conditioning of the matrix arising from the system (12.2) to derive
uniform upper bounds for λ.

Kriging models

Functional models may incorporate a stochastic component, which may make them better
suited for global optimization purposes. A popular example is Kriging. Roughly speaking,
Kriging models are decomposed into two components. The first component is typically a
simple model intended to capture the trend in the data. The other component measures the
deviation between the simple model and the true function.

In the following example, we consider the simple model to be a constant for ease of
illustration. Assume then that the true function is of the form

f (x) = β+ z(x),

where z(x) follows a stationary Gaussian process of mean 0 and variance σ 2. Let the
covariance between two sample points y and w be modeled as follows:

R(y,w) = Cov(z(y), z(w)),

where R(y,w) is such that R(Y ,Y ) is positive definite for any set Y of distinct sample
points. A popular choice is to model the covariance by radial basis functions R(y,w) =
φ(‖y−w‖).

Given a set Y of distinct sample points, the Kriging model ksm(x) is defined as the
expected value of the true function given the observed values f (Y ):

ksm(x) = E( f (x) |Y ).

One can prove that ksm(x) is of the form (see the exercises at the end of the chapter)

ksm(x) = β̂+ R(Y , x)�R(Y ,Y )−1( f (Y )− β̂e), (12.4)

where e is a vector of ones and

β̂ = e�R(Y ,Y )−1 f (Y )

e�R(Y ,Y )−1e
.

It is useful to think of β̂ as an approximation to β and of R(Y , x)�R(Y ,Y )−1( f (Y )− β̂e)
as some average approximation to z(x).

Kriging was originally developed in the geostatistics community (see Matheron [166])
and used first for computer experiments by Currin et al. [67]. A good survey article refer-
enced by many researchers is [203].
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Design of experiments and response surface methodologies

A number of sampling procedures have been derived for the construction of functional
surrogate models, depending on the origin of the true function, the cost of its evaluation,
and the smoothness of the model, among other issues.

The techniques developed in Part I of this book, for instance, provide a rigorous and
efficient deterministic sampling procedure for interpolant and regression polynomial mod-
els. In fact, we have seen in Chapters 3–5 how the poisedness or conditioning of the sample
set affects the quality of the polynomial models. We have introduced a measure of well
poisedness (called �-poisedness) and showed in Chapter 6 how to ensure �-poisedness
(with �> 1 not very large) when building and updating sample sets for these polynomial
models.

In the statistical literature the process of determining the location of the points in the
sampling space is called design of experiments, where one of the main goals focuses on
reducing the noise of the experiments. The sample sets are derived by techniques like Latin
or factorial designs, supposed to spread well the points in the sampling space by typically
placing them at hypercube-type vertices. In the language of this book, such sampling sets
are likely to be well poised for linear interpolation or regression. There are more elaborated
criteria to choose the sampling locations, such as D-optimality, where the sample set Y is
chosen so that quantities related to |det((Y�Y )−1)| are minimized (see Driessen et al. [85]
for a trust-region approach based on such a type of sampling).

General references for design of experiments are [144, 203, 204, 208]. In particu-
lar, design and analysis of computer experiments (DACE) [203] is a widely used statisti-
cal framework for using Kriging models in the context of simulation-based experiments,
which, as we have already mentioned, often uses radial basis functions for correlation be-
tween sampling points. DACE also stands for a MATLAB R© [1] toolbox [159], which
provides tools for sampling (by Latin hypercubes) and building Kriging surrogate mod-
els. Latin hypercube sampling was developed by McKay, Conover, and Beckman [168]
(see also [211]). Another technique with interesting spread-out-type sampling properties is
called orthogonal arrays, motivated from the series of papers by Rao in the 1940s (see, for
instance, the papers [182, 213], the book [124], and the references therein).

Response surface methodology (RSM) is a framework to minimize a function (re-
sulting from the response of a system) by sequentially building and minimizing functional
surrogate models. The first RSM proposed is reported in the paper by Box and Wilson [44].
An RSM typically starts by selecting the most important and relevant variables or param-
eters by applying some analysis of variance. Variables contributing little to the variation
in the response may be left out. Then some heuristic optimization iterative procedure is
started where at each iteration a functional surrogate model smk(x) is built (for instance,
by Kriging) and used to produce a direction of potential descent for the true function f . The
current iterate can then be improved by minimizing the true function along this direction.
Such an iterative procedure is terminated when the iterates approach a point x̄ . An RSM can
then be concluded by minimizing a potentially more accurate functional surrogate model
(like a second-order polynomial model) locally around x̄ , without concern about noise. For
a comprehensive coverage of RSMs see the books by Box and Draper [43] and Myers and
Montgomery [175] and the survey paper of Simpson et al. [208].

One can regard other RSMs as one-shot optimization approaches, where a functional
surrogate model is first built and then minimized to determine the optimum (see [203]).
Such approaches, however, are likely to require dense sampling to produce meaningful re-
sults. However, the statistical nature of many applications allows modeling techniques like



idfo
2008/11/17
page 235

�

�

�

�

�

�

�

�

12.2. Rigorous optimization frameworks to handle surrogate models 235

Kriging to assign confidence intervals to the models generated and to identify outliers and
lack of fit. A review paper that considers existing approaches for using response surfaces
in the context of global optimization is given in [137].

12.2 Rigorous optimization frameworks to handle
surrogate models

For the purpose of optimization, surrogate models are often incorporated in some form
of model management framework. RSM, mentioned above, is a popular surrogate model
management framework. We will review next rigorous optimization frameworks to incor-
porate surrogate models which retain the global convergence properties of the underlying
algorithms.

Handling surrogate models in direct search

Booker et al. [40] introduced a rigorous framework to deal with surrogate models in the
context of directional direct-search algorithms. The idea is simple and based on the flexi-
bility of the search step of these algorithms, which is free of the stricter poll requirements.

Suppose that one has a surrogate model sm(x) of the true function f (x). We have in
mind situations where sm(x) is less accurate and cheaper to evaluate than f (x). Suppose
also that, besides having ways of building such an initial surrogate model sm(x)= sm0(x),
one also has ways of possibly improving or recalibrating the surrogate model along the
course of the optimization process. One can think of a process where a sequence of sur-
rogate models {smk(x)} is built by successive recalibrations. Every time f is evaluated at
new points, those values can be used to recalibrate and hence improve the quality of the
surrogate models. In Chapter 11 we have seen a number of ways of updating interpolation
and regression polynomial models within the framework of trust-region interpolation-based
methods. These polynomial models and updating techniques could also be applied in the
context of a search step in directional direct search.

We now describe one possible framework to handle surrogate models in directional
direct search along the spirit of [40] (see Algorithm 12.1 below). Two plausible alternatives
are given for using a surrogate model in the search step, but several others are possible, and
they may be more appropriate given the specifics of the problem at hand. Note that the poll
step itself might benefit from surrogate modeling by, for instance, ordering the evaluation
of the true function in Pk = {xk+αkd : d ∈ Dk} according to increasing values of smk(·).

Algorithm 12.1 (Handling surrogate models in a directional direct-search framework).

Initialization: Initialize as in Algorithm 7.2 and, in addition, form an initial surrogate
model sm0(·).

For k = 0,1,2, . . .

1. Search step: Try to compute a point x with f (x) < f (xk) by evaluating the
function f a finite number of times, by means, for instance, of one of the fol-
lowing two alternatives:
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(a) Evaluate smk(·) on a set of points Yk = {y1
k , . . . , y pk

k }. Order Yk by increas-
ing values: sm(y1

k ) ≤ ·· · ≤ sm(y pk
k ). Start evaluating f in Yk along this

order.

(b) Apply some finite optimization process to minimize smk(·) possibly in
some feasible set. Let yk be the approximated minimizer. Evaluate f (yk).

If such a point x is found, then set xk+1 = x , declare the iteration and the search
step successful, and skip the poll step.

2. Poll step: Poll as in Algorithm 7.2. (The surrogate model smk(·) could be used
to order the poll set just before polling.)

3. Model calibration: Form smk+1(·), possibly by recalibrating smk(·).
4. Mesh parameter update: Update the mesh size parameter as in Algorithm 7.2.

A natural question that now arises is how to guarantee that such a surrogate model
management framework yields a globally convergent algorithm, in other words, an algo-
rithm which converges to a first-order stationary point regardless of the starting point. For-
tunately, we are already equipped to properly answer this question. In fact, we have seen
in Chapter 7 two ways of guaranteeing global convergence for directional direct-search
methods.

One such way was to ask the iterates to lie in integer lattices (see Section 7.5). Such
a globalization scheme allows the algorithm to take steps based on a simple decrease of
the objective function. The set of positive bases (or of positive spanning sets) used by the
algorithm must then satisfy the requirements of Assumption 7.8, and the step size parameter
must follow the rules of Assumption 7.10. But what is relevant in the context of surrogate
model management is the requirement stated in Assumption 7.9, which restricts the search
step of this class of algorithms to evaluate points only in the mesh Mk (defined, for instance,
by (7.8) or (7.15)). In the context of Algorithm 12.1 one can accomplish such a condition
in different ways. If, for instance, one selects the first alternative in the search step, then Yk
must be chosen as a subset of Mk , which does not seem to be a problem at all even if
we want to generate Yk with some level of randomness. In the second possibility, we
could project yk onto the mesh Mk . Such a projection could be computationally expensive
for some choices of positive bases, but it is a trivial task for others. For instance, it is
trivial to project onto Mk if we choose D = {D⊕}, where D⊕ is the set of unit coordinate
vectors given in (7.1). Note that there is no guarantee that the projected point, say x ,
provides a decrease of the form f (x) < f (xk), even when yk does. If f (x) ≥ f (xk) and
f (yk) < f (xk), then either the iteration is considered unsuccessful or yk is taken and the
geometrical considerations needed for convergence are ignored.

The other way to enforce global convergence for directional direct-search methods
is to impose a sufficient decrease condition on the acceptance of new points, both in the
search step and in the poll step (see Section 7.7). In this case, the set of positive bases
(or of positive spanning sets) used by the algorithm in the poll step is required only to
satisfy Assumption 7.3. To impose sufficient decrease, Algorithm 12.1 would have to be
modified appropriately. In particular, the search step would accept a point x only when
f (x)< f (xk)−ρ(αk), where ρ(·) is a forcing function (for example, consider ρ(t)= t1+a

with a > 0 or see the rigorous definition given in Section 7.7).
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What we describe in Algorithm 12.1 is a simplified, though potentially effective, way
of handling surrogate models in directional direct search. The reader interested in this topic
is pointed to Booker et al. [40], as well as to Abramson, Audet, and Dennis [7], Marsden et
al. [165], Serafini [206], and Torczon and Trosset [218], where other algorithmic devices
were developed and tested. One extension of this framework for constrained optimization
is proposed in Audet et al. [14].

Despite the fact that we have been focusing mainly on directional direct search
(Chapter 7), it is also possible to consider ways, perhaps not as effective, of enhancing sim-
plicial direct search (Chapter 8) by exploring the availability of surrogate modeling. We
could, for instance, test the “quality” of the expanded point by first evaluating the current
surrogate model. If the surrogate model predicts a bad performance of the true function f
for such a point, it could be immediately disregarded. One could also, for example, min-
imize the current surrogate model and take that point as a center of a (possibly needed)
simplex restart.

Handling nonlinear models in trust-region methods

In Chapter 10 we have considered trust-region methods based on derivative-free trust-
region models. We assumed there that the trust-region models were quadratic (or linear)
functions of the form (see (10.1))

mk(xk+ s) = mk(xk)+ s�gk+ 1

2
s�Hks, (12.5)

so that we could easily compute a Cauchy step and guarantee that it satisfies (10.10):

mk(xk)−mk(xk+ sk) ≥ κ f cd

2
‖gk‖min

{ ‖gk‖
‖Hk‖ ,	k

}
, (12.6)

with κ f cd = 1 (see Theorem 10.1). Thus, any step that achieves a fraction κ f cd ∈ (0,1) of
Cauchy decrease (see (10.9) in Assumption 10.1) would necessarily verify (12.6).

A natural question that arises is what happens when the trust-region model is not
quadratic, i.e., when the model is not of the form (12.5). It is well known that (12.6) is a
very mild condition, but it could still happen that an approximated solution of a trust-region
subproblem (10.2) defined by a nonlinear model does not satisfy (12.6), when κ f cd ∈ (0,1)
is fixed across all iterations.

If mk(xk + s) is not a quadratic function in s, then Theorem 10.1 is not directly ap-
plicable. On the other hand, the basis of the Cauchy step is that it determines the minimum
of the model along the model steepest descent direction, so it is natural to be interested in
determining the equivalent of Theorem 10.1 for more general models. One way to achieve
this is to use a backtracking algorithm along the model steepest descent direction, where
the backtracking is from the boundary of the trust region (as suggested in Conn, Gould, and
Toint [57, Section 6.3.3]). In this approach one considers choosing the smallest (nonnega-
tive integer) j such that

xk+1 = xk+β j s, where s = − 	k

‖gk‖ gk and β ∈ (0,1), (12.7)

so that one attains a sufficient decrease of the form

mk(xk+1) ≤ mk(xk)+κcβ
j s�gk , (12.8)
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where κc ∈ (0,1). The proof is relatively straightforward and is based upon a standard line-
search condition. If one considers the right-hand side of (12.8) with κc = 1, then this is just
a first-order approximation to the model. Thus, more generally, the right-hand side in (12.8)
is a linear approximation with a slope between the gradient model and the horizontal (slope
zero). From (12.7) we see that (12.8) becomes

mk(xk+1)−mk(xk) ≤ −κcβ
j	k‖gk‖. (12.9)

Using the mean value theorem on the left-hand side, this is equivalent to

−β j	k‖gk‖+ 1

2
β2 j	2

k g�k ∇2mk(yk, j )gk/‖gk‖2 ≤ −κcβ
j	k‖gk‖

for some yk, j ∈ [xk , xk + β j s]. Thus, assuming ‖∇2mk(yk, j )‖ ≤ κbhm , we conclude that
(12.9) is satisfied, provided

β j	k

‖gk‖ ≤
2(1−κc)

κbhm
.

Thus, we indeed find a jk satisfying (12.9) such that β jk > 2(1−κc)β‖gk‖/(κbhm	k). By
defining sAC

k = β jk s as the approximate Cauchy step, we obtain

mk(xk)−mk(xk+ sAC
k )≥ κcβ

jk	k‖gk‖.
On the other hand, if the approximate Cauchy step takes us to the boundary, we imme-

diately deduce from (12.8) that the decrease in the model exceeds or is equal to κc	k‖gk‖,
and so we can conclude that

mk(xk)−mk(xk+ sAC
k ) ≥ κ̄c‖gk‖min

{‖gk‖
κbhm

,	k

}

for a suitably defined κ̄c > 0.
Finally, we point out that something similar can be done in the computation of a

step satisfying a fraction of the eigenstep decrease for nonquadratic trust-region models
(as suggested in [57, Section 6.6.2]). In this case, one computes a damped eigenstep of
the form sAE

k = β j sE
k , β ∈ (0,1), so that mk(xk + sAE

k ) ≤ mk(xk)+ κeτkβ
2 j‖sE

k ‖2, where
κe ∈ (0,1/2) and τk is the smallest (assumed negative) eigenvalue of the Hessian of the
model at xk . It is easy to show that such a condition can be satisfied in a finite number of
backtrack steps (reductions by β) and that the selected jk yields a lower bound of the form
β jk ≥ (2κe−1)βτk/(ν	k), where ν is a Lipschitz constant for the Hessian of the models.
From this one can readily show that the approximated eigenstep sAE

k satisfies a condition of
the form (10.12) for a given constant κ̄e > 0.

Another way of dealing with nonquadratic trust-region models was suggested by
Alexandrov et al. [11]. Their idea is simple and related to the previously described one.
In this approach, one applies a trust-region method to an auxiliary constrained problem of
minimizing h(s)= mk(xk + s) in the variables s subject to ‖s‖ ≤	k . At each iteration of
such an algorithm, we would have a trust-region subproblem, consisting of minimizing a
quadratic model of h(s) subject to two �2-norm constraints (one is the auxiliary problem
constraint ‖s‖ ≤ 	k and the other is the internal trust-region restriction of the algorithm
being applied to the auxiliary problem). Note that one can still guarantee a fraction of
Cauchy decrease for such a trust-region subproblem (see Heinkenschloss [125]). We are
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also guaranteed under the standard assumptions that, at the very first iteration of a run of
such an algorithm (starting from the initial iterate s0 = 0 and a trust-region radius δ0 =	k),
a successful step s j is obtained. One can then prove that such a step yields an appropriate
fraction of Cauchy decrease for the original problem.

Handling surrogate models by space mapping

It is often the case in many engineering applications that the function f (x) considered for
optimization is of the form H (F(x)), where F : Rn→Rm describes a response of a system
and H : Rm→R is some merit function, for instance, a norm. Similarly, suppose we have
a surrogate model S(x) for F(x) and thus a surrogate model sm(x) = H (S(x)) for f (x).
More generally, one can have a family of surrogate models S(x ; p) for F(x), parametrized
by some p ∈ Rp , and a corresponding family of surrogate models sm(x ; p)= H (S(x ; p))
for f (x).

One can then think of an iterative optimization process for the approximated mini-
mization of f (x) consisting of extracting better parameters p by aligning S(x ; p) to F(x),
followed by the minimization of sm(x ; p) for the extracted parameters. The parameters
extracted are called space-mapping parameters. Such a process is summarized now.

Algorithm 12.2 (A space-mapping approach).

Initialization: Choose x (0).

For k = 0,1,2, . . .

1. Parameter extraction: Compute p(k) as a solution for

min
p
‖S(x (k); p)− F(x (k))‖. (12.10)

2. Minimizing the surrogate: Compute x (k+1) as a solution for

min
x

sm(x ; p(k))= H (S(x ; p(k))). (12.11)

In the above formulations we assumed for simplicity that the domains of x (in both S
and F) and of p are unrestricted. One could consider F restricted to �F ⊂Rn , S restricted
to �S ⊂ Rn , and p restricted to �p ⊂ Rp , in which case the minimizations in (12.10)
and (12.11) are restricted to �p and �F ∩�S , respectively. We can also consider �S

dependent on the parameters p(k). Another natural generalization is to extend the fitting
in (12.10) to all previous iterates:

min
p

k∑
i=0

ωk
i ‖S(x (i); p)− F(x (i))‖,

where ωk
k = 1 and ωk

i , i = 0, . . . ,k−1, are nonnegative factors weighting the contribution
of the previous surrogate models in the current space-mapping parameter extraction.

If the Lipschitz constants of the optimal mappings in (12.10) and (12.11) are suffi-
ciently small (with respect to the variables x and the parameters p, respectively), one can
show that the process given in Algorithm 12.2 generates a convergent sequence {(x (k), p(k))}
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(see Koziel, Bandler, and Madsen [148]). If, in addition, one imposes other conditions,
including the fact that the space-mapping parameter extraction is exact at the limit point
(x∗, p∗), meaning that S(x∗; p∗) = F(x∗), then x∗ is an optimal solution for the original
problem of minimizing the true function f (x)= H (F(x)) (see also [148]).

The approach given above corresponds to what has been called implicit space map-
ping because of the implicit dependence of S on the space-mapping parameters p. The
name space-mapping is associated with the mapping P :�F →�S , defined by

P(x f ) ∈ argmin
x∈�S

‖S(x)− F(x f )‖. (12.12)

The original space-mapping approach consisted of the minimization of the space-mapping
surrogate model smsm(x) = sm(P(x)) = H (S(P(x))). In practice, one needs to regular-
ize the definition of the space mapping to guarantee existence and uniqueness of solution
in (12.12). Secant updates have been derived to approximate the Jacobian of P(x) based
only on responses of the system (i.e., evaluations of F). It is thus possible to form a surro-
gate model of the form

S(x ; B(k)) = S[P(x (k))+ B(k)(x− x (k))],

where B(k) is a secant update for the Jacobian of P (e.g., a Broyden update; see [29] and
also the modification suggested in [128]). One can fit the original space-mapping approach
into the framework of Algorithm 12.2 by considering p(k) ≡ B(k) and by looking at the
secant update as a form of approximately solving (12.10). Problem (12.11) is not solved
exactly but locally, by forming a quadratic model of H (S(x ; B(k))) centered around x (k)

and minimizing it within a trust region. The result is a space-mapping-based trust-region
framework for the minimization of smsm(x) (suggested first in [25], and whose global
convergence properties have been analyzed in [162, 223]).

The space-mapping technique was introduced first by Bandler et al. [28] in 1994,
and has been developed along different directions and generalized to a number of contexts,
some of which we have already discussed (some others are the input and the output space-
mapping approaches). Surveys on the topic can be found, for instance, in the thesis by
Søndergaard [209] and in the review papers of Bakr et al. [26] and Bandler, Koziel, and
Madsen [30]. The interested reader is further referred to the special issue on surrogate
modeling and space mapping that has been edited by Bandler and Madsen [31].

12.3 Exercises
1. Show that if φ(r ) is twice continuously differentiable and φ′(0) = 0, then h(x) =
φ(‖x‖) is also twice continuously differentiable. In particular, one has ∇h(0) = 0
and ∇2h(0)= φ′′(0)I .

2. Prove that when the radial basis function φ is conditionally positive definite of or-
der d and P has full rank, then the matrix of the system (12.2) is nonsingular.

3. Show that the model (12.3), built on a poised sample set contained in a ball of ra-
dius 	, yields an error in function values of order	2 and in the gradient of order 	
(the constant in the upper bounds should depend on the size of λ).

4. To obtain the expression (12.4) consider ksm(x)= β+R(Y , x)�γ and solve ksm(Y )=
f (Y ) and e�γ = 0 for β and γ .
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Review of constrained and
other extensions to
derivative-free optimization

In this chapter we briefly consider the case of constrained nonlinear optimization problems
written in the form

min
x∈Rn

f (x)

s.t. x ∈�,

hi (x)≤ 0, i = 1, . . . ,mh ,

(13.1)

where f ,hi : � ⊆ Rn → R∪{+∞} are functions defined on a set or domain �. We will
briefly review the existing approaches for solving problems of the form (13.1) without
computing or directly estimating the derivatives of the functions f and hi , i = 1, . . . ,mh ,
but assuming that the derivatives of the functions that algebraically define � are available.

We emphasize the different nature of the constraints that define� and the constraints
defined by the functions hi , i = 1, . . . ,mh . The first type of constraints are typically simple
bounds of the form l ≤ x ≤ u or linear constraints of the form Ax ≤ b. For instance, the
mass of a segment of a helicopter rotor blade has to be nonnegative, or a wire used on
a circuit must have a width that is bounded from below and above by manufacturability
considerations. In addition, there might be linear constraints, such as a bound on the total
mass of the helicopter blade.

The objective function f (and in some cases the constraint functions hi ) is often not
defined outside �; hence (a possible subset of) the constraints defining � have to be satis-
fied at all iterations in an algorithmic framework for which the objective function (and/or
some hi ’s) is (are) evaluated. Such constraints are not relaxable. In contrast, relaxable
constraints need only be satisfied approximately or asymptotically.19

If� is defined by linear constraints or simple bounds, then it is often easy to treat any
constraints that define � as unrelaxable constraints. In theory � may also include general
nonlinear constraints, whose derivatives are available. We call all the constraints that define
� “constraints with available derivatives.” Whether to treat these constraints as relaxable
or not often depends on the application and the algorithmic approach.

19Other authors refer to relaxable and unrelaxable constraints as soft and hard constraints, or as open and
closed constraints, respectively.

241
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In many applications there are constraints of the form hi (x)≤ 0, i = 1, . . . ,mh , where
the functions hi are computed in the same manner as f , i.e., by a black box which does
not provide derivatives. In circuit tuning, for instance, a bound on delay or the power
of the circuit may be such a constraint. We will call such constraints “derivative free.”
Clearly, the form of these constraints is general enough to model any type of constraints,
including equality constraints which can be converted in two inequalities with opposite
signs, although this may not be a good idea in practice (see below).

It is often the case that a derivative-free optimization problem has several functions
that the user is trying to optimize, all of whose values, at a given point x , are computed
by the same call to the black-box simulator. One of these functions is typically used as
an objective function in a given formulation, while others are treated as constraints with a
bound on their value. In this case the constraints are usually relaxable. There are possible
situations where the derivative-free constraints need to be treated as unrelaxable. These
situations require the availability of a feasible starting point, are quite difficult to address
in general, and are, fortunately, rare in practice.

An extreme case of derivative-free unrelaxable constraints that does occur in practice
are the so-called “hidden” constraints. Hidden constraints are not part of the problem spec-
ification/formulation, and their manifestation comes in the form of some indication that the
objective function could not be evaluated. For example, the objective function f (x) may be
computed by a simulation package which may not converge for certain (unknown a priori)
values of input parameters, failing to produce the objective function value. So far these
constraints are treated in practical implementations by a heuristic approach or by using the
extreme barrier function approach.

Most of the theoretical work on the constrained cases has been done in the framework
of directional direct search (see Chapter 7, for the unconstrained case), and the area is still
a subject of intense research.

13.1 Directional direct-search methods
A significant number of derivative-free methods for constrained problems are feasible
methods, in the sense that the iterates produced are always kept feasible. Feasible ap-
proaches might be preferred for several reasons. On the one hand, the constraints of the
problem might not be relaxable and the objective function value cannot be evaluated out-
side the feasible region. On the other hand, generating a sequence of feasible points allows
the iterative process to be terminated prematurely, a procedure commonly applied when the
objective function is very expensive to evaluate. In such cases there would be the guarantee
of feasibility for the best point tested so far.

There are several methodologies to solve constrained nonlinear optimization prob-
lems. A popular approach in the 1960s and 1970s to deal with constraints consisted of us-
ing penalty and barrier functions, originally called exterior and interior penalty functions,
respectively. The (exterior) penalty function typically consists of adding to the objective
function a measure of infeasibility multiplied by a penalty parameter. The resulting penalty
method allows infeasible iterates. Barrier functions have a different nature: they ensure
feasibility by adding, to the objective function, a function (multiplied by a barrier parame-
ter) that approaches+∞when (strictly) feasible points approach the frontier of the feasible
region. Barrier methods with suitable step sizes, thus, preserve feasible iterates.
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Since it may be desirable that a derivative-free algorithm generates feasible iterates,
the barrier approaches are particularly appealing. The feasibility may be enforced with
respect only to � or with respect to the whole feasible region of problem (13.1):

X = {x ∈� : hi (x)≤ 0, i = 1, . . . ,mh}.
Derivative-free algorithms (and in particular directional direct-search methods) can be ap-
plied not to f directly but to the extreme barrier function f� or fX , where fS , for any S,
is defined by

fS(x) =
{

f (x) if x ∈ S,
+∞ otherwise.

(13.2)

It is not necessary (in many of the existing approaches) to evaluate f at infeasible
points. Rather, the value of the extreme barrier function is set to +∞ at such points—
and here we should recall that direct-search methods compare function values rather than
building models. Clearly, such an approach could be inappropriate for methods based on
interpolation or regression.

When all constraint derivatives are available

We now consider the case when X =�; that is, there are no derivative-free constraints:

min
x∈Rn

f (x)

s.t. x ∈�.
(13.3)

Directional direct-search methods for unconstrained optimization, described in Chapter 7,
are directly applicable to the minimization of f�. However, the extreme barrier technique
cannot be applied using an arbitrary positive spanning set. In fact, a descent direction for
the objective function (for instance, a direction that makes an acute angle with the negative
gradient of a continuously differentiable function) may not be feasible. To guarantee global
convergence in the constrained setting the directions chosen must therefore reflect properly
the geometry of the feasible region near the current iterate.

When the constraints amount to simple bounds on the values of the variables,

� = {
x ∈ Rn : l ≤ x ≤ u

}
, (13.4)

where l ∈ ({−∞}∪R)n and u ∈ (R∪{+∞})n, then (a subset of) the positive spanning set
D⊕ (given in (7.1)) reflects adequately the feasible region near any feasible point. As a
consequence of this simple fact, a directional direct-search method applied to (13.2) that
includes D⊕ among the vectors used for polling is globally convergent for first-order sta-
tionary points when f is continuously differentiable (see, e.g., Lewis and Torczon [152]).
A first-order stationary point for (13.3) when � is of the form given in (13.4) is a point
x ∈ � such that (∇ f (x))i = 0 if li < xi < ui , (∇ f (x))i ≥ 0 if xi = li , and (∇ f (x))i ≤ 0 if
xi = ui .

To illustrate the simplicity of the resulting coordinate-search method we describe it
formally in Algorithm 13.1. A search step could have been included, but it is omitted to
keep the presentation simple.
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Algorithm 13.1 (Coordinate-search method with bounds).

Initialization: Let � = {x ∈Rn : l ≤ x ≤ u} and D⊕ = [I −I ] = [e1 · · ·en−e1 · · · −en].
Choose x0 ∈� and α0 > 0.

For k = 0,1,2, . . .

1. Poll step: Order the poll set Pk = {xk + αkd : d ∈ D⊕}. Start evaluating f�
at the poll points following the order determined. If a poll point xk +αkdk is
found such that f�(xk+αkdk)< f�(xk)= f (xk), then stop polling, set xk+1 =
xk + αkdk , and declare the iteration and the poll step successful. Otherwise,
declare the iteration (and the poll step) unsuccessful and set xk+1 = xk .

2. Parameter update: If the iteration was successful, set αk+1 = αk (or αk+1 =
2αk). Otherwise, set αk+1 = αk/2.

Note that in the simple-bounded case it is very easy to check if a point is outside �.
In those cases one sets f� to +∞ right away, saving one evaluation of f .

Under the presence of more general constraints for which the derivatives are known,
it becomes necessary to identify the set of active constraints, or, more precisely, the set of
quasi-active constraints, in order to construct an appropriate set of poll positive generators.
Suppose, for the purpose of the current discussion, that

� = {
x ∈ Rn : ci (x)≤ 0, i = 1, . . . ,mc

}
. (13.5)

(Equality constraints, when included in the original problem formulation, could be con-
verted into two inequalities. However, such a procedure can introduce degeneracy and
complicate the calculation of a feasible point. One alternative is to get rid of the equalities
by eliminating some of the problem variables. Others are available for specific cases, like
in the linearly constrained case [151].) Given a point x ∈ � and a parameter ε > 0, the
index set of the ε-active constraints is defined by I (x ;ε)= {i ∈ {1, . . . ,mc} : ci (x)≥ −ε}.
Note that when a constraint is linear (ci (x) = a�i x + bi ) it can be properly scaled so that
it is ε-active at a point x if and only if the distance from x to the hyperplane {x ∈ Rn :
a�i x+bi = 0} does not exceed ε (see [9]).

Given x ∈�, we call N(x ;ε) the cone positively generated by the vectors∇ci (x) for
i ∈ I (x ;ε):

N(x ;ε) =
⎧⎨
⎩

∑
i∈I (x ;ε)

λi∇ci (x) : λi ≥ 0, i ∈ I (x ;ε)

⎫⎬
⎭ .

The polar cone T (x ;ε)= N(x ;ε)◦ is then defined by

T (x ;ε) =
{
v ∈Rn : w�v ≤ 0 ∀w ∈ N(x ;ε)

}
.

For proper choices of ε and under a constraint qualification, x+T (x ;ε) approximates well
the local geometry of the feasible region near x (see, e.g., [178]). This property allows
an algorithm to make feasible displacements from x along any direction chosen in T (x ;ε).
Note that in nonlinear programming, T (x ;0) and N(x ;0) are, respectively, the tangent and
normal cones for � at x (again, under the presence of a constraint qualification such as,
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for instance, linearity of the active constraints or linear independence of the gradients of
the functions defining the active constraints).

If at a given iteration k, N(xk ;ε)= {0}, then T (xk ;ε)=Rn , which allows the problem
to be locally seen as unconstrained. In the context of a directional direct-search method,
such an occurrence suggests the use in the poll step of a positive spanning set for Rn . In the
case N(xk ;ε) �= {0}, the set of poll directions must reflect well the local feasible region near
the iterate xk and therefore must contain the positive generators of T (xk ;ε). Let us consider
for simplicity only the nondegenerate case where N(xk ;ε) has a set of linear independent
generators (denoted by the columns of the matrix Nk ). Let us also assume that a full QR
decomposition of the matrix Nk has been performed:

Nk =
[

Yk Zk
][ Rk

0

]
,

where Yk forms an orthonormal basis for the range of Nk and Zk forms an orthonormal
basis for the null space of N�k . The matrix Rk is upper triangular and nonsingular. Then
the following is a set of positive generators for T (xk ;ε) (May [167]):[

Zk −Zk Yk R−�k −Yk R−�k

]
.

Note that [ Zk − Zk ] positively spans the null space of N�k . In fact, other positive bases or
positive spanning sets of the null space of N�k could be used.

In the linearly constrained case, Lewis and Torczon [154] have shown that a con-
struction of this type provides the positive generators for all the cones of the form T (xk ;ε)
for all ε ∈ [0,ε]. In addition, they pointed out that if the linear algebra is performed via
Gaussian elimination and Nk has rational entries, then the positive generators have rational
entries too (which allows the consideration of integer lattices). The extension to equality
and inequality linear constraints is considered in Lewis, Shepherd, and Torczon [151]. The
case of linear degenerate constraints has been studied by Abramson et al. [9], Lewis, Shep-
herd, and Torczon [151], and Price and Coope [193]. The degenerate case poses additional
computational difficulties when the number of nonredundant constraints is high.

In the linearly constrained case, a number of directional direct-search approaches
have been investigated, in particular the following three:

• The set Dk contains positive generators for all the cones T (xk ;ε), for all ε ∈ [0,ε∗],
where ε∗ > 0 is independent of the iteration counter k, and infeasible poll points are
dealt with by the extreme barrier function (see Lewis and Torczon [154]). In this
case, global convergence can be attained by simple decrease with integer lattices.

• The set Dk is a positive generator set for the cone T (xk ;εk ), the parameter εk is
reduced at unsuccessful iterations, polling at feasible points is enforced by projection
onto the feasible set, and a sufficient decrease condition is imposed to accept new
iterates (see Algorithm 1 of Lucidi, Sciandrone, and Tseng [161]).

• The set Dk is a positive generator set for the cone T (xk ;εk ), the parameter εk is set to
be of O(αk) where αk is the step size or mesh parameter, a sufficient decrease condi-
tion is imposed to accept new iterates, and infeasible poll points are dealt with by the
extreme barrier function (see Algorithm 5.1 of Kolda, Lewis, and Torczon [147]).
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The initial point must lie in�, which is relatively easy to enforce in the linearly constrained
case. For all these algorithmic frameworks, it can be shown that the sequence of iterates
generated has a limit point satisfying the first-order necessary conditions (the first-order
Karush–Kuhn–Tucker conditions; see, for instance, [178]) for problem (13.3) when the
constraints in (13.5) are linear (ci (x)= a�i x+bi , i = 1, . . . ,mc). These conditions are sat-
isfied at a point x ∈� if there exists a nonnegative vector λ ∈Rmc of Lagrange multipliers
such that

∇ f (x)+
mc∑
i=1

λi∇ci (x) = 0, λi ci (x)= 0, i = 1, . . . ,mc.

Other approaches go back to the work by May [167], who extended Mifflin’s algo-
rithm [171] (see the notes in Chapter 9) to linearly constrained problems, proving global
convergence to first- and second-order stationary points in the nondegenerate case. May
explored simplex gradients and Hessians of the type considered in [171] along the positive
generators of the tangent cones, proving convergence to first- and second-order stationary
points.

The general nonlinear constrained case, for which the derivatives of the functions
defining the constraints are known, has been studied by Lucidi, Sciandrone, and Tseng [161].
They suggested two globally convergent algorithms (one already mentioned above) with the
following common features: (i) use of sufficient decrease for accepting new iterates; (ii)
projection of poll points onto the feasible set (which could be expensive, especially when
� is nonconvex); (iii) projection of the search direction onto a tangent cone of a nearby
point; (iv) requirement of feasibility for the initial point; (v) permission to apply magical
steps [57], i.e., any steps that are able to compute points for which the value of the objective
function is less than or equal to the value of the accepted point. In the first algorithm, the
set Dk is a positive generator set for the cone T (xk ;εk) and the parameter εk is reduced at
unsuccessful iterations. In the second algorithm, Dk contains positive generators for all the
cones T (xk ;ε), for all ε ∈ [0,ε∗], where ε∗ > 0 is independent of the iteration counter k.
The convergence theory requires some regularity of the constraints, which is satisfied, for
instance, in the linearly constrained case or when the Mangasarian–Fromovitz constraint
qualification (see, e.g., [178]) holds at every feasible point. For the second algorithm (ap-
parently the more efficient of the two), the authors were able to prove that all limit points
of the sequence of iterates satisfy the first-order necessary conditions.

Recently, Dreisigmeyer [81, 82, 84] has studied direct-search methods of directional
and simplicial types for equality-constrained problems by treating the (twice continuously
differentiable) constraints as implicitly defining a Riemannian manifold. In [83] he studied
the case where no derivatives for the constraints are available by treating them implicitly as
Lipschitz manifolds.

When derivative-free constraints are present

Now we turn our attention to the situation where there are derivative-free constraints of the
type hi (x)≤ 0, i = 1, . . . ,mh . The directional direct-search approaches reported here treat
derivative-free constraints as relaxable (unless stated otherwise).

Lewis and Torczon [155] suggested an approach based on an augmented Lagrangian
method. The augmented Lagrangian function in their approach incorporates only the func-
tions corresponding to nonlinear constraints (see [146, 155]). The augmented Lagrangian
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method then considers the solution of a sequence of subproblems where the augmented
Lagrangian function is minimized subject to the remaining constraints (bounds on the vari-
ables or more general linear constraints). Original nonlinear inequality constraints must be
converted into equalities by means of slack variables. Each problem can then be approx-
imately solved using an appropriate directional direct-search method. This application of
augmented Lagrangian methods yields global convergence results to first-order stationary
points of the same type as those obtained under the presence of derivatives (see [146, 155]).

Liuzzi and Lucidi [157] developed and analyzed an algorithm for inequality con-
strained problems, based on a nonsmooth exact penalty function and the imposition of
sufficient decrease. Linear constraints are handled separately by the use of positive gener-
ators. They have proved that a subset of the set of limit points of the sequence of iterates
satisfies the first-order necessary conditions of the original problem.

We point out that is not clear how the augmented Lagrangian or exact penalty ap-
proaches can handle general unrelaxable constraints, other than the linear ones. However,
these methods allow one to start infeasible with respect to the relaxable constraints.

Audet and Dennis [16] suggested using the filter technique within the framework
of directional direct search to solve nonsmooth instances of (13.1). Filter methods were
recently developed by Fletcher and Leyffer [96] (see the survey by Fletcher, Leyffer, and
Toint [97]) as an efficient technique to globalize constrained nonlinear optimization al-
gorithms. Roughly speaking, the filter methodology considers the original problem as a
bi-objective optimization problem, which attempts to simultaneously minimize the objec-
tive function and a measure of infeasibility, but where the latter has some form of priority.
The algorithm by Audet and Dennis [16] handles linear inequalities separately and applies
the extreme barrier approach to all unrelaxable constraints. Using the nonsmooth analysis
of Clarke [54], the authors have shown that their filter directional direct-search method
generates a subsequence of iterates converging to a first-order stationary point of a modi-
fied problem, possibly different from the original nonsmooth problem when the derivatives
of the constraints cannot be used. This discrepancy resulted from using a finite number of
positive spanning sets. In the special case where the functions defining the constraints are
continuously differentiable, Dennis, Price, and Coope [75] considered the use of an infi-
nite number of positive spanning sets for polling. Their filter approach guarantees global
convergence to a first-order stationary point of the original problem under strict differentia-
bility of the objective function at the limit point. Here the concept of an envelope around
the filter is used as means of measuring sufficient decrease.

In the context of directional direct search, one of the most general approaches for
the case where the derivatives of the function defining the constraints are unavailable is the
mesh adaptive direct search (MADS) method of Audet and Dennis [19], already described
in Section 7.6 for unconstrained optimization, which uses sets of poll directions whose
union is asymptotically dense in Rn . This algorithm is applicable to problems with general
derivative-free constraints, including the situation where constraints are hidden. MADS
considers all constraints as unrelaxable and requires a feasible starting point. Infeasibility
is ruled out by means of the extreme barrier for the whole feasible set. The theory guar-
antees a limit point satisfying the first-order necessary conditions for the original (possibly
nonsmooth) problem. A more recent approach by these authors is called mesh adaptive
direct search with a progressive barrier (see [20]), exhibiting global convergence properties
similar to MADS. It allows the handling of both types of constraints, by combining MADS
techniques and the extreme barrier for unrelaxable constraints with nondominance filter-
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type concepts for the relaxable constraints. An interesting feature is that a constraint can
be considered relaxable until it becomes feasible, whereupon it is transferred to the set of
unrelaxable constraints.

We also point out that asynchronous parallel directional direct-search methods based
on the generating set search framework [145] have been proposed by Griffin, Kolda, and
Lewis [114] for linearly constrained optimization and by Griffin and Kolda [113] for more
general nonlinear derivative-free optimization problems.

13.2 Trust-region interpolation-based methods
Most of the analysis of derivative-free methods for constrained optimization has been done
within the framework of directional direct search. Several practical approaches were devel-
oped to handle constraints by trust-region interpolation-based methods (outlined in Chap-
ters 10 and 11 for unconstrained optimization). For simplicity we assume in this section
that all derivative-free constraints are relaxable and all other constraints are not relaxable,
which is often the case in practice.

Conceptually speaking, the extension of these methods to handle constraints is rel-
atively straightforward for the unrelaxable constraints with available derivatives (x ∈ �).
The simplest approach is to intersect � with the trust region B(xk;	k) and generate only
feasible sample points. Depending on the shape of �, the corresponding trust-region sub-
problem may become difficult. It may become especially challenging to perform global
optimization of Lagrange polynomials, as discussed in Chapters 6 and 11. In general,
maintaining a �-poised sample set needs additional care in the presence of constraints.
However, when � is defined by linear or box constraints, the theory should be reasonably
easy to adapt.

In practice the approach of simply using a local solution to the constrained trust-
region subproblem is often sufficient [61]. A careful practical approach to the constrained
trust-region subproblem was developed in [33, 34]. No specific convergent theory exists so
far for the case of unrelaxable constraints with available derivatives.

The case of derivative-free relaxable constraints is treated differently by the existing
model-based methods. First, we notice that relaxable constraints have no effect on the issue
of poisedness, since a poised set can be computed without any consideration of relaxable
constraints. Second, the simple idea of combining the objective function and the relaxable
constraints into a merit function (such as a penalty function) allows the convergence theory
for the unconstrained case to apply directly. Moreover, this simple minded approach is
often very useful when the derivative-free constraint functions hi are in fact additional
objective functions and the user has good intuition about how to combine f and hi into
a sensible penalty function. However, such an approach may not generate a truly feasible
solution, even asymptotically.

A perhaps more theoretically sound approach is to use, for instance, a sequential
quadratic programming (SQP) framework. In SQP one has to build quadratic models for
the Lagrangian function (and thus one needs quadratic models for the functions defining
the constraints). Such models are then minimized within trust regions and subject to some
form of models of the constraints. The models of the constraints can be linear, which makes
the trust-region subproblem easier to solve, or they can be quadratic, if a quadratic model
is used for f . In this case the trust-region subproblem becomes significantly harder, but the
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constraint representation becomes more accurate. For expensive function evaluations this
may be a reasonable trade off.

It is important to notice that quadratic models of the constraints often are available at
little additional cost. It is typically the case in practical applications that the values of the
constraint functions are computed by the same black-box call as the value of the objective
function. This means that if we have a model of f based on a �-poised set Y and we have
the set of Lagrange polynomials for Y , then we also have the values of all of the constraint
functions at all points of Y and we can compute the quadratic models of the constraints by
using the fundamental property of Lagrange polynomials, described in Lemma 3.5.

The significant additional cost of using quadratic models of the constraints may come
from the trust-region subproblem. Depending on the underlying algorithm, the shape of
the constraints, and the cost of the function evaluations, this may or may not be acceptable.
Also, since an iterate might be infeasible with respect to the models of the derivative-free
constraints, the constrained trust-region subproblem may be infeasible. When an iterate
is infeasible with respect to the models of the derivative-free constraints, a model merit
function can be optimized or a model filter methodology employed. Whatever is used has
to be consistent with the approach used for the original problem.

The trust-region interpolation-based code of Scheinberg (see [59, 61]), called DFO,
is based on the type of approach described above. DFO allows trust-region subproblems
to include quadratic models of the derivative-free constraints. Globalization is handled
by using f as the merit function. Powell [186] suggested a method that models the ob-
jective and constraint functions by linear interpolation (on which his COBYLA software
package was based). The CONDOR code of Berghen [33] (see also [34]) is based on the
UOBYQA algorithm of Powell [189] and also handles constraints. In his PhD thesis, Col-
son [55] applied the filter technique to avoid merit functions and management of penalty
parameters. His trust-region interpolation-based method follows the trust-region SQP fil-
ter algorithm suggested and analyzed in [95], where each SQP step is decomposed into
normal and tangential components. Another approach we are aware of is by Brekelmans
et al. [46]. Their algorithm framework consists of solving a sequence of nonlinear (not
necessarily quadratic) trust-region subproblems, building linear interpolation models for
all functions whose derivatives are unavailable. The globalization strategy is based on
the filter mechanism. Currently, there is no convergence theory developed for trust-region
interpolation-based methods.

13.3 Derivative-free approaches for global optimization,
mixed-integer programming, and other problems

Directional direct-search methods have been adapted for derivative-free global optimiza-
tion [13, 123, 222]. In fact, it is an attractive idea to use the search step of the search-poll
framework of Algorithm 7.2 to incorporate a dissemination method or heuristic for global
optimization purposes, since such schemes could provide a wider exploration of the vari-
able domain or feasible region but would not disturb the convergence theory. Vaz and
Vicente [222] selected a particle swarm method for this purpose. The resulting algorithm
has been shown to be competitive for bound-constrained problems (in terms of both effi-
ciency and robustness) when compared to other global optimization solvers. In this case,
the poll step acts at the best particle and contributes to the efficiency of the overall method
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by allowing the particles to be dropped out as the search focuses around a point. Audet,
Béchard, and Le Digabel [13] followed a similar idea, incorporating a variable neighbor-
hood search in the search step of MADS [19] to better explore the feasible region in terms
of global optimality. Pattern search methods have also been combined with evolutionary
techniques (see the work by Hart [119, 120]), and the resulting evolutionary pattern search
method compared favorably against evolutionary algorithms.

A new approach to global optimization of derivative-free unconstrained problems in
the presence of noise has been developed by Ferris and Deng in [92]. They select promising
areas from which to start local derivative-free search by applying ideas from classification
used in machine learning.

DIviding RECTangles (DIRECT) is an optimization algorithm designed to search for
global minima of a function over a bound-constrained domain, motivated by a modification
to Lipschitzian optimization and proposed by Jones, Perttunen, and Stuckman [136]. The
algorithm does not use derivatives of the objective function, and it relies on the iteration
history to determine future sample locations. In each iteration, DIRECT first tries to iden-
tify hyperrectangles that have the potential to contain a global minimizer and then divides
such hyperrectangles into smaller ones. The objective function is evaluated at the centers
of the new hyperrectangles. DIRECT tries to balance the global and local searches. See
also [91, 93, 101, 102].

Multilevel coordinate search (MCS) is another approach developed for the global
optimization of a function in a bound-constrained domain without derivatives. MCS was
developed by Huyer and Neumaier [134] and is also inspired in the DIRECT method [136].
The algorithm contains local enhancements based on the minimization of quadratic inter-
polation models.

Derivative-free global optimization methods based on radial basis functions have also
been proposed by several authors (see [36, 117, 138] and the sequence of papers by Regis
and Shoemaker [196, 197, 198, 199] which includes extensions to the constrained and
parallel cases).

Finally, we would like to point out that directional direct-search methods have also
been applied to mixed integer variable problems, with or without constraints, by Audet
et al. in [4, 5, 17], to linearly constrained finite minimax problems, by Liuzzi, Lucidi, and
Sciandrone [158], and to multiobjective optimization, by Audet, Savard, and Zghal [23].
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Software for derivative-free
optimization

We list below a number of software packages developed for derivative-free optimization.

Chapter 1: Introduction

Benchmarking Derivative-Free Optimization Algorithms
http://www.mcs.anl.gov/~more/dfo

Chapter 7: Directional direct-search methods

APPSPACK
Asynchronous parallel pattern search
http://software.sandia.gov/appspack

Iterative Methods for Optimization: MATLAB R© Codes
Hooke–Jeeves and multidirectional search methods
http://www4.ncsu.edu/~ctk/matlab_darts.html

The Matrix Computation Toolbox
Multidirectional search and alternating directions methods
http://www.maths.manchester.ac.uk/~higham/mctoolbox

NOMAD
Generalized pattern search and mesh adaptive direct search
http://www.gerad.ca/NOMAD
http://www.afit.edu/en/ENC/Faculty/MAbramson/NOMADm.html

SID-PSM
Generalized pattern search guided by simplex derivatives
http://www.mat.uc.pt/sid-psm

251
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Chapter 8: Simplicial direct-search methods

fminsearch
MATLAB implementation of the Nelder–Mead method
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/
fminsearch.html

Iterative Methods for Optimization: MATLAB Codes
Nelder–Mead method
http://www4.ncsu.edu/~ctk/matlab_darts.html

The Matrix Computation Toolbox
Nelder–Mead method
http://www.maths.manchester.ac.uk/~higham/mctoolbox

Chapter 9: Line-search methods based on simplex derivatives

Implicit Filtering
Implicit filtering method
http://www4.ncsu.edu/~ctk/iffco.html

Chapter 11: Trust-region interpolation-based methods

BOOSTERS
Trust-region interpolation-based method (based on radial basis functions)
http://roso.epfl.ch/rodrigue/boosters.htm

CONDOR
Trust-region interpolation-based method (version of UOBYQA in parallel)
http://www.applied-mathematics.net/optimization/
CONDORdownload.html

DFO
Trust-region interpolation-based method (see Section 11.2)
http://www.coin-or.org/projects.html

ORBIT
Trust-region interpolation-based method (based on radial basis functions)
http://www.mcs.anl.gov/~wild/orbit

UOBYQA, NEWUOA
Trust-region interpolation-based methods (see Section 11.3)
mjdp@cam.ac.uk

WEDGE
Trust-region interpolation-based method (see Section 11.4)
http://www.ece.northwestern.edu/~nocedal/wedge.html
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Chapter 12: Review of surrogate model management

DACE
Design and analysis of computer experiments
http://www2.imm.dtu.dk/~hbn/dace

Chapter 13: Review of constrained and other extensions to
derivative-free optimization

Section 13.1: Directional direct-search methods; and Section 13.2: Trust-region
interpolation-based methods

The software packages APPSPACK, CONDOR, DFO, and NOMAD also deal with constrained
derivative-free optimization. SID-PSM solves constrained problems too but requires deriva-
tives for the constraints.

Section 13.3: Derivative-free approaches for global optimization, mixed-integer
programming, and other problems

DIRECT
DIRECT – A Global Optimization Algorithm
http://www4.ncsu.edu/~ctk/Finkel_Direct

MATLAB Toolbox 2.4, The MathWorksTM

Genetic Algorithm and Direct Search Toolbox 2.4
http://www.mathworks.com/products/gads

MCS
Global optimization by multilevel coordinate search
http://www.mat.univie.ac.at/~neum/software/mcs/

PSwarm
Coordinate search and particle swarm for global optimization (including a parallel version)
http://www.norg.uminho.pt/aivaz/pswarm
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affine
dimension, 29
hull, 29
independence, 29

algorithmic parameters (tuning of), 3
analysis of variance, 6, 234
automatic differentiation, 2
automatic error analysis, 3

backtracking (line search), 163, 164, 168
barrier

extreme barrier function, 242, 243,
245, 247

benchmarking, see data profiles
black box, 2, 242, 249

Cauchy step, see step
circuit design, 4
Clarke

generalized directional derivative,
125

nonsmooth analysis, 125, 127, 247
strict differentiability, 127

combinatorial optimization, 6
completing

a nonpoised set
via Lagrange polynomials, 95,

101–102
via LU factorization, 99–102

condition number, 4, 99, 225, 231
as a measure of well poisedness,

38–39, 48–52, 68–69, 84–86
in error bounds, 52, 54, 69, 79

cone
normal, 244
of descent directions, 125
polar, 244
positively spanned by vectors,

15–19, 244
tangent, 244, 246

constraints
ε-active, 244
active, 244, 245
hidden, 242, 247
linear, 241, 244–248
relaxable, 241–242, 246–248
simple bounds, 241, 243–244, 247
unrelaxable, 241–242, 247, 248
with derivatives, 243–246, 248
without derivatives, 246–249

convergence
global (definition), 120
global (results), 122, 124, 126, 131,

133, 155, 157, 167, 189, 211,
214, 219

global (results for second-order
critical points), 198, 211, 225

lack of (Nelder–Mead), 8, 10, 149
local, xi, 5, 35, 74, 182

convex, see also cone
hull, 30, 41

coordinate search, see methods
cosine measure, see positive spanning

set
Cramer’s rule, 41, 71, 77, 82
criticality step, 165, 166, 183–185,

192–193, 195
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curvature, 9–11, 35, 73, 74, 80, 135,
136, 141, 145, 173, 174, 231

negative, 177, 178, 191
positive, 175

data profiles, 9
decomposition, see factorization
decrease

imposing sufficient decrease in
directional direct search,
134–135

imposing sufficient decrease in line
search, 164

imposing sufficient decrease in
modified Nelder–Mead,
150–153

lexicographic (Nelder–Mead),
144–145

simple, 116, 119, 131, 132, 139,
150, 162, 178, 182, 183, 191,
204, 208, 215, 236, 245

sufficient, 119, 121, 135, 136, 139,
159–161, 163, 165–169, 176,
178, 182, 208, 211, 218, 236,
237, 245–247, see also
fraction of Cauchy decrease;
fraction of eigenstep decrease;
fraction of optimal decrease

derivatives, see also automatic
differentiation; simplex
derivatives; simplex gradient;
simplex Hessian

finite differences, 2, 230
generalized finite differences, 47

descent direction, 15
dynamic pricing, 5

eigenstep, see step
engineering design, 4
error bounds

for centered simplex gradients, 170
for polynomial interpolation

general case, 56
linear case, 26–28
quadratic case, 52–56

for polynomial regression
linear case, 28–29
quadratic case, 69–70

for simplex gradients, 33
for underdetermined quadratic

polynomial interpolation
(general), 78–80

for underdetermined quadratic
polynomial interpolation (in
the minimum Frobenius norm
sense), 83–84

in larger concentric balls, 200–202
Taylor-like, 35, 64, 69–70, 78, 83,

179

factorization
by rows, 26
Cholesky, 20
eigenvalue decomposition, 203
Gaussian elimination, see LU

factorization
growth factor, 103, 104, 112
LDU, 112
LU, 99, 101–103, 105, 108
minimization of growth factor, 3–4
QR, 76, 245
singular value decomposition

(SVD), 29, 68, 76
finite differences, see derivatives
forcing function, 134, 151, 156, 159,

160, 236
fraction of Cauchy decrease, 176, 220,

237–239
fraction of eigenstep decrease, 177, 223,

238
fraction of optimal decrease, 178, 205
fully linear (FL), see also model

certificate/certifiable, 91, 180
class, 90, 180

fully quadratic (FQ), see also model
certificate/certifiable, 91, 181
class, 91, 181

function evaluations, 5, 10, see also
noise

cheap or inexpensive, 57, 229, 235
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costly or expensive, xi, 2, 4, 5, 8,
58, 70, 73, 92, 107, 178, 182,
183, 209, 229, 230, 242, 249

noisy, 2, 8, 57, 70, 92

generalized pattern search (GPS), see
methods

generating set search, 136–137
geometry, see also completing;

improvement; improving;
poisedness

dispensing control of, 225
global optimization, 249–250
gradient, see derivatives; simplex
groundwater community problems, 5
group partial separability, 74

Hessian, see derivatives; simplex
heuristic methods

artificial neural networks, 6, 231
enumeration techniques, 6
evolutionary algorithms, 6
genetic algorithms, 6
particle swarm, 6, 249
population-based algorithms, 6
simulated annealing, 6
tabu-search, 6
variable neighborhood search, 250

implicit filtering, see methods
improvement, see model-improvement

algorithm; model-improving
iteration; model-improvement
step

improving
well poisedness

minimum Frobenius norm
models, 110

regression models, 108–110
via Lagrange polynomials,

95–98
via Lagrange polynomials

(example), 98–99
via LU factorization, 104–106
via LU factorization (example),

106

integer lattices, 123, 139, 151, 236, 245
globalization by, 127–130, 132,

135, 136, 139, 162, 245
tightness of integrality and

rationality requirements, 130
interpolation, see also error bounds;

Lagrange polynomials; model;
Newton fundamental
polynomials; poisedness;
uniqueness

conditions, 24, 37, 73

Kriging, see model

Lagrange polynomials
interpolation

basis for, 39
computing and updating, 40,

93–94
definition, 39
equivalent definition, 41
uniqueness, 39
volume definition, 41

invariant under scaling, 46, 212
invariant under shift, 46, 212
minimum Frobenius norm

computing and updating, 110
definition, 81
equivalent definition, 81
uniqueness, 87
volume definition, 82

minimum norm
basis for, 77
definition, 76
equivalent definition, 77
uniqueness, 77, 87
volume definition, 78

regression
basis for, 60
computing and updating,

108–109
definition, 60
equivalent definition, 62
uniqueness, 60

lattice, see integer lattices
Lebesgue constant, 40
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Lipschitz continuity
of a function near a point

as an assumption, 126
of gradient

as an assumption, 23, 26, 28, 79,
90, 122, 166, 167, 179

of Hessian
as an assumption, 52, 69, 91,

170, 180
of model gradient, 92, 112

as an assumption, 90, 180
of model Hessian

as an assumption, 91, 181
Lipschitzian optimization, 250

manifold
Lipschitz, 246
polynomial, 38
Riemannian, 246

medical image, 5
mesh adaptive direct search (MADS),

see methods
mesh or grid

assumptions (integer lattices), 128
coordinate search, 117
general, 127
minimal space between points, 128
other definitions, 130–131, 139
poll and search steps, 128, 132
search step, 118, 132

methods
augmented Lagrangian, 246–247
coordinate search, 9–11, 115–118,

125, 127, 135
directional direct search, 115–139,

235–237, 242–248
DIviding RECTangles (DIRECT),

250
filter, 247–249
generalized pattern search, 118,

119
implicit filtering, 7, 10–11, 163,

168–170
interpolation-based trust region,

10–11, 204–205, 207–225,
248–249

last resort, 6
MADS (mesh adaptive direct

search), 132–134, 136, 139,
247–248, 250

modified Nelder–Mead, 149–162
multidirectional search (MDS),

137–139, 150, 161, 162
multilevel coordinate search

(MCS), 250
Nelder–Mead, 1, 7, 8, 10–11,

141–149, 161
parallel, 136, 168, 225, 248, 250
pattern search, 118, 123, 135, 136
quasi-Newton, 5, 10, 87, 168, 169,

204
sequential quadratic programming

(SQP), 248–249
simplicial direct search, 137–139,

141–162, 237
trust region, 173, 225, 237–240,

248–249
using line search and simplex

derivatives, 163–167
wedge (trust region), 215–225

minimax optimization, 250
mixed integer programming, 250
model

by space mapping, 239–240
fully linear (FL), 90, 180, 200–201,

210–214, 218–220
fully quadratic (FQ), 91, 181,

201–202, 210–211, 218–220
least Frobenius norm updating of

quadratic models, 86, 212
model-improvement algorithm,

91–93, 107, 110, 180, 181,
183, 184, 192, 193, 208,
211–213, 215

model-improving iteration, 185,
187, 191, 193

model-improvement step, 191, 193,
209, 214

surrogate, 229
functional, 230
physical, 230
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Taylor, 5, 35, 36, 90, 92, 173–174,
178–181, 200, 230–231

using Kriging, 233, 240
using polynomial interpolation

in the Frobenius minimum norm
sense, 80–81

in the minimum-norm sense,
74–76

linear, 24
of any degree, 37–38

using polynomial regression
linear, 24–25
of any degree, 58–59

using radial basis functions,
231–233, 240

molecular geometry optimization, 5
multidisciplinary, 4
multiindices, 36
multiobjective optimization, 250

natural basis (of monomials)
definition, 36

Nelder–Mead method, see methods
Newton fundamental polynomials (NFPs)

definition, 46
use in DFO, 87, 208

noise, 3, 5–11, 167–168, 171, 234
consistency, 58, 68, 72

noisy functions, see noise
noisy problems, see noise
nonconvexity, 5, 6, 108, 149, 202, 246
nondifferentiability, 3, 136
nonmonotone, 136
nonsmoothness, 11, 58, 123–127, 132,

136, 247
numerical comparisons, 10–11, see also

data profiles

optimality conditions
first-order necessary for inequality

constraints, 246
first-order necessary for simple

bounds, 243

parallel, see also methods
asynchronous, 136, 248

difficulty of parallelization, 142
ease of parallelization, 11, 136, 168
environment, xii, 6, 116, 225

parameter, see also simplex diameter;
trust-region radius

mesh size, 115, 118
bounded, 129
converging to zero, 135
subsequence converging to zero,

121, 123
step size, 115, 118, 164

bounded, 129
converging to zero, 135
subsequence converging to zero,

121, 123
pattern, see also integer lattices; mesh or

grid
generator, 127

pivot polynomials, 101, 209–211,
216–218

pivotal algorithms, 89, 99–109, 209–211
poisedness, see also completing;

condition number; improving;
Lagrange polynomials;
Newton fundamental
polynomials

�-poisedness
for polynomial interpolation, 42
for polynomial regression, 63
for polynomial regression

(strong), 65
for underdetermined polynomial

interpolation (minimum-norm
sense), 78

for underdetermined quadratic
polynomial interpolation (in
the minimum Frobenius norm
sense), 82

for polynomial interpolation
linear, 24

for polynomial regression
linear, 25

polling, see also poll step
poll vectors or directions, 116
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polynomials, see also manifold; model;
natural basis (of monomials);
pivot

basis, 36
space of, 36
tail, 232

positive, see also positive basis; positive
spanning set

dependence, 16
generators, 244–247
independence, 16
span, 15

positive basis, see also positive spanning
set

definition, 16
examples of, 19–21, 30
maximal, 16
minimal, 16
uniform, 21

positive spanning set
characterizations of, 17
cosine measure of, 22
definition, 16
implication of descent

characterization, 19

radial basis functions (RBF), see also
global optimization; model;
uniqueness

conditionally positive definite, 232,
240

regression, see also error bounds;
Lagrange polynomials; model;
poisedness; uniqueness

�1, 60
conditions, 25, 58
regularized, 70–71

response surface methodology (RSM),
234–235

sampling, see also completing;
improving; interpolation;
model; poisedness; regression;
starting; underdetermined
interpolation

D-optimality, 234
dense, 234

design and analysis of computer
experiments (DACE), 234

design of experiments, 234
Latin hypercubes, 234
orthogonal arrays, 234

scaling
of matrix, 27, 28, 54, 79
system, 46

serial
environment or machine, 5, 136,

168
shifting and scaling

of sample set, 48–49, 68, 84, 90,
96–99, 103–104, 210, 217

simplex
centered simplex gradient, 169
derivatives, 136, 169, 170
diameter of, 30
diameter of (converging to zero),

153
gradient (as gradient of

interpolation model), 33
gradient (as gradient of regression

model), 33
gradient (definition), 32
gradient (error bound), 33
Hessian (definition), 170
normalized volume of, 31
restarting, 160
set, 30
shape of, 30
starting, 150, 161
vertices of, 30
volume of, 30

simulation, see also black box
PowerSpice, 4

starting, see also starting simplex
feasible point, 242, 247
point, 120, 125, 126, 236, 239
sample set, 100–102, 107

stencil
gradient, 33
radius, 33
set, 33

step
Cauchy, 175–176
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criticality, 165, 183, 184, 192, 193,
210, 213, 218, 221, 224, 225

eigenstep, 177–178
poll step, see also mesh or grid

complete polling, 116, 131–132,
139, 157, 215

error bound (unsuccessful
polling), 23, 122, 134

opportunistic polling, 116, 118,
119, 136

search step, see also mesh or grid
use of surrogates, 235–237

stochastic optimization, 6
stopping criterion, 8, 10, 120, 123, 138,

144, 152, 165, 182
surrogate, see also model

rigorous optimization frameworks,
4, 235–240

Taylor, see error bounds; model
termination

early or premature, 5, 8, 242
trust region, see methods

radius, 174
converging to zero, 188, 197
update, 178–179, 184, 193

subproblem, 175, 202–204, 220,
223, 238–239, 248–249

subproblem (wedge), 216, 221, 223

underdetermined interpolation, see also
error bounds; Lagrange
polynomials; model;
poisedness; uniqueness

conditions, 73
in the best subbasis sense, 74–76

uniformly bounded
away from zero

cosine measure, 119, 122, 123
step size, 130
volume, 97

constant in norm equivalence, 49
independently of number of sample

points, 70
model Hessian, 83, 186
number of improvement steps, 91,

96, 164, 165, 180, 181, 184,
193, 211, 212, 214, 215

number of iterations, 182, 187
number of unsuccessful iterations,

219, 220
poisedness constant, 179

uniqueness, see also Lagrange
polynomials

interpolation polynomial, 38
lack of (in space-mapping models),

240
radial basis function model, 232
regression polynomial, 59
underdetermined minimum

Frobenius norm polynomial,
81, 87

unisolvent, see also poisedness
set, 38

wedge, see also methods; trust region
subproblem

constraint, 215–220
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